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ABSTRACT

With the impressive progress that has been made in transcribing
spoken language, it is becoming increasingly possible to exploit tran-
scribed data for tasks that require comprehension of what is said in a
conversation. The work in this dissertation, carried out in the context
of a project devoted to the development of a meeting assistant, con-
tributes to ongoing efforts to teachmachines to understandmulti-party
meeting speech. In particular, we have focused on the challenge of au-
tomatically generating abstractive meeting summaries, which would
be of great value to individuals as well as organizations. Our research
has been conducted to address three specific tasks, each of which is
addressed in a separate chapter of this dissertation.

We first present our results on Abstractive Meeting Summarization
(AMS), which aims to take a meeting transcription as input and pro-
duce an abstractive summary as output. We introduce a fully unsu-
pervised framework for this task based onmulti-sentence compression
and budgeted submodular maximization. We also leverage recent ad-
vances in word embeddings and graph degeneracy applied to NLP,
to take exterior semantic knowledge into account and to design cus-
tom diversity and informativeness measures. Experiments show that
our system improves on the state-of-the-art, and generates reasonably
grammatical abstractive summaries despite taking noisy utterances as
input and not relying on any annotations.

Next, we discuss our work on Dialogue Act Classification (DAC),
whose goal is to assign each utterance in a discourse a label that rep-
resents its communicative intention. DAC yields annotations that are
useful for a wide variety of tasks, including AMS. We propose a mod-
ified neural Conditional Random Field (CRF) layer that takes into ac-
count not only the sequence of utterances in a discourse, but also speaker
information and in particular, whether there has been a change of speaker
from one utterance to the next. Experiments and visualizations show
that our modified CRF layer outperforms the original one on DAC
and learns meaningful transition patterns between dialogue acts con-
ditioned on speaker-change.

The third part of the dissertation focuses on Abstractive Community
Detection (ACD), a sub-task of AMS, in which utterances in a conver-
sation are grouped according to whether they can be jointly summa-
rized by a common abstractive sentence. We provide a novel approach
to ACD in which we first introduce a neural contextual utterance en-
coder featuring three types of self-attentionmechanisms and then train
it using the siamese and triplet energy-based meta-architectures. We
further propose a general sampling scheme that enables the triplet ar-
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chitecture to capture subtle patterns (e.g., overlapping and nested clus-
ters). Experiments and visualizations show that our system improves
on the state-of-the-art and that our triplet sampling scheme is effective.

iv



RÉ SUMÉ

Grâce aux progrès impressionnants qui ont été réalisés dans la trans-
cription du langage parlé, il est de plus en plus possible d’exploiter
les données transcrites pour des tâches qui requièrent la compréhen-
sion de ce que l’on dit dans une conversation. Le travail présenté dans
cette thèse, réalisé dans le cadre d’un projet consacré au développe-
ment d’un assistant de réunion, contribue aux efforts en cours pour ap-
prendre aux machines à comprendre les dialogues des réunions mul-
tipartites. En particulier, nous nous sommes concentrés sur le défi de
générer automatiquement les résumés abstractifs de réunion, ce qui
serait d’une grande valeur pour les individus comme pour les orga-
nisations. Notre recherche a été menée pour aborder trois tâches spé-
cifiques, dont chacune est abordée dans un chapitre séparé de cette
thèse.

Nous présentons tout d’abord nos résultats sur le Résumé Abstractif
de Réunion (RAR), qui consiste à prendre une transcription de réunion
comme entrée et à produire un résumé abstractif comme sortie. Nous
introduisons une approche entièrement non-supervisée pour cette tâche,
basée sur la compressionmulti-phrases et lamaximisation sous-modulaire
budgétisée. Nous tirons également parti des progrès récents en vec-
teurs de mots et dégénérescence de graphes appliqués au TAL, afin
de prendre en compte les connaissances sémantiques extérieures et de
concevoir de nouvelles mesures de diversité et d’informativité. Les ex-
périmentations montrent que notre système améliore l’état de l’art et
génère des résumés abstractifs raisonnablement grammaticaux, même
s’il prend en entrée des énoncés bruyants et ne s’appuie sur aucune
annotation.

Ensuite, nous discutons de notre travail sur la Classification enActes
de Dialogue (CAD), dont le but est d’attribuer à chaque énoncé d’un
discours une étiquette qui représente son intention communicative. La
CAD produit des annotations qui sont utiles pour une grande variété
de tâches, y compris le RAR. Nous proposons une couche neuronale
modifiée deChampAléatoireConditionnel (CAC)qui prend en compte
non seulement la séquence des énoncés dans un discours, mais aussi
les informations sur les locuteurs et en particulier, s’il y a eu un chan-
gement de locuteur d’un énoncé à l’autre. Les expérimentations et les
visualisations montrent que notre couche CAC modifiée est plus per-
formante que la couche originale sur la CAD et apprend des schémas
de transition faisant sens entre les actes de dialogue conditionnés par
le changement de locuteur.

La troisième partie de la thèse porte sur la Détection de Commu-
nauté Abstractive (DCA), une sous-tâche du RAR, dans laquelle les
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énoncés d’une conversation sont regroupés selon qu’ils peuvent être ré-
sumés conjointement par une phrase abstractive commune. Nous pro-
posons une nouvelle approche de la DCA dans laquelle nous introdui-
sons d’abord un encodeur neuronal contextuel d’énoncé qui comporte
trois types de mécanismes d’auto-attention, puis nous l’entraînons en
utilisant les méta-architectures siamoise et triplette basées sur l’éner-
gie. Nous proposons en outre uneméthode d’échantillonnage générale
qui permet à l’architecture triplette de capturer des motifs subtils (par
exemple, des groupes qui se chevauchent et s’emboîtent). Les expéri-
mentations et les visualisations montrent que notre système améliore
l’état de l’art et que notre méthode d’échantillonnage des triplets est
efficace.
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1
I N TRODUCT ION

Research in meeting analysis (Romano and Nunamaker, 2001)—
the study of meeting expenses, productivity, processes, and
outcomes—has revealed that while meetings are an essential

and inevitable part of one’s working life on the one hand, they are
sometimes considered to be costly, unproductive, and dissatisfying on
the other. Living in the booming era of Artificial Intelligence (AI), our
lives are constantly being affected by the increasing deployment of AI-
based systems in a wide variety of contexts (Lu, 2019), from conversa-
tional agents to autonomous driving, to the healthcare industry. The
time is ripe for an AI-powered assistant that intelligently understands
various aspects of meetings, helps us be more effective during our dis-
cussions, and delivers reliable records of meetings afterwards.

1.1 s poken language under stand ing

In order to teachmachines to understand speech, themedium through
which people most naturally interact, researchers developed the field
ofSpoken LanguageUnderstanding (SLU) (Tur andDeMori, 2011), which
lies between the fields of speech processing and language processing
and aims at investigating conversational speech by leveraging advances
inAutomatic SpeechRecognition (ASR),Natural Language Processing
(NLP), and Machine Learning (ML).

In this context, the meeting assistant can be seen as one type of SLU
system for processing human-human conversation. Once the audio
recording of a meeting is processed by an automatic speech recognizer
that translates speech to text, the meeting assistant uses the resulting
transcription as input to various downstream SLU components, such
as:
d ia logue act s egmentat ion and tagg ing , inwhich anunstruc-

tured stream of words is divided into sentential units called ut-
terances or dialogue acts, and then each utterance is assigned a di-
alogue act label representing the underlying communicative in-
tention it conveys (e.g., stating, questioning, answering, etc.).

top i c s egmentat ion and ident i f i cat ion, in which a conver-
sation is divided into topically coherent sets of utterances, and
each set is assigned a topic.

r e f er ence and addre s s e e r e solut ion, which aims to determine
to what or to whom the speaker is speaking, listening, or refer-
ring.

1
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act ion i t em and dec i s i on det ec t ion, whose goal is to detect
relevant utterances/areas of discussionwith regard to task-assignment
and decision-making.

summar i zat ion, which aims to generate a shortened version of the
meeting discussion while keeping important points.

Much effort has been devoted to the development of meeting assis-
tants through various research projects. One of the earliest contribu-
tions was that of the CALO meeting assistant (Tur et al., 2008, 2010),
which is an automatic agent that provides for distributed meeting cap-
ture, annotation, automatic transcription and semantic analysis of mul-
tiparty meetings. The more recent REUs project (Alizadeh et al., 2018;
Jacquenet, Bernard, and Largeron, 2019; Doan et al., 2020) aims to
provide management tools for meetings and to automatically generate
meeting minutes based on the audio signal provided by lightweight
materials, such as omnipresent smartphones and personal computers,
rather thanmeeting rooms equippedwith high quality sound systems.
Meeting assistants also attract interest from the industrial sector. The
principal goal of the LinTOproject (Lorré et al., 2019; Rebai et al., 2020),
for instance, is to develop such an open source assistant for profes-
sional use in a corporate environment. The LinTO assistant is designed
to be deployed either as a platform or as a physical interactive device
equipped with microphones, a screen, and a 360° camera. LinTO has
a highly configurable client-server architecture, and through a user-
friendly console the provided components can be used to design, build
and mange customized assistants. The functionalities, described as
skills (e.g., ASR and NLP tasks), can be easily added to the manip-
ulable SLU workflow. In addition, LinTO can be deployed in any OS
system and handle a high number of queries, thanks to the Docker
technology (Merkel, 2014) it relies on.

The work described in this dissertation, developed as a CIFRE the-
sis 1 in the context of the LinTO project and in collaboration with the
industrial partner LINAGORA, contributes to ongoing efforts to teach
machines to understand multi-party meeting speech, and more specif-
ically, to automatically generate meeting summaries. Analogous to
human meeting minutes, such documents would be of great value to
meeting participants and non-participants alike (e.g., managers and
auditors), and for individuals as well as organizations.

1.2 mee t ing summar i zat ion

Automatic Text Summarization (Gambhir and Gupta, 2017) is the
task of distilling the key informational elements from a text and using
them to produce a significantly condensed version of the original text.

1. Conventions Industrielles de Formation par la REcherche (CIFRE) is an industrial
Ph.D. program in France supported by the Association Nationale Recherche Technologie
(ANRT).
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Summarization approaches fall into two broad categories: extractive
and abstractive. The former creates summaries by directly lifting impor-
tant sentences from source documents, without any further modifica-
tions. The latter involves the generation of more human-like and novel
abstractive sentences based on a deeper understanding of the meaning
of the original text, via a Natural Language Generation (NLG) compo-
nent. Table 1.1 shows an example of both an extractive and abstractive
summary of the same dialogue.

extractive summary:
UI: But what if we ha what if we had like a Spongy sort of like stress balley
kinda [disfmarker]
PM: If you have like that stress ball material kind of as what you’re actually
holding in your hand,
ME: Because I was thinking if you have a cover for the squashy bit,
UI: oh so so you’re saying the squishy part’s like detachable,
UI: so so maybe one you know [disfmarker] you can have like the broccoli
squishy thing, and then you could have like the banana squishy thing
⋯

abstractive summary:
Some part of the casing will be made of a spongy material.
⋯

Table 1.1 – A comparison of an extractive and abstractive summary of the
ES2011c AMI meeting (McCowan et al., 2005).

In research on automatic summarization, the extractive approach
has received far more attention than the abstractive approach, mainly
because abstraction is a more complex and challenging process than
extraction, as it requires the generation of novel sentences based on
a higher level of linguistic understanding. Human judges generally
prefer abstractive summaries, however, especially for text made up of
dialogues (Murray, Carenini, and Ng, 2010). Indeed, extractive sum-
maries are ill-suited for speech, in which information is often spread
across multiple turns in a dialogue. Cutting and pasting mere frag-
ments of such exchanges, taken out of their original contexts, renders
extractive summaries of spoken conversation largely unintelligible. In
this thesis, we focus on the abstractive summarization approach.

It is widely recognized that reliable automatic summarization meth-
ods would be immensely useful for coping with the well-known in-
formation overload problem with which we are confronted on a daily
basis (Edmunds and Morris, 2000). Yet, while summarization for tra-
ditional textual documents (e.g., news) is an extensively-studied topic,
summarization of multi-party conversations (Murray, 2008; Carenini,
Murray, and Ng, 2011) remains a comparably emerging and under-
developed research area, even if it has recently been gaining attention.
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This asymmetry is due in large part to the nature ofmulti-party conver-
sation, which poses challenges not encountered with traditional text,
but also a lack of data and appropriate evaluation metrics. Such prob-
lems force us to adopt novel methods that move well beyond the state
of the art for text summarization.
datas e t s . Thanks to the impressive progress of automatic speech

recognition technology and its ubiquitous adoption in web con-
ferencing tools, vast amounts of high quality automatic speech
transcriptions are becoming increasingly available. However, very
fewpublisheddatasets are annotatedwith summaries for research
purposes. There are only two available meeting datasets in En-
glish (the AMI and ICSI corpora; Janin et al., 2003; McCowan
et al., 2005), and there are no such resources for other languages.
As supervised learningmethods often need large amounts of train-
ing data, and trained models are usually language-dependent
and domain-dependent, one way to get around the data scarcity
problem might be to move to unsupervised summarization tech-
niques.

mee t ing and summary typ e s . Because there are many different
types ofmeetings carried out for different purposes (Nedoluzhko
and Bojar, 2019), there is arguably no one-size-fits all approach to
summarization. Focused summaries (Fernández et al., 2008; Bui
et al., 2009; Wang and Cardie, 2011, 2012, 2013) that provide an
outline of proposed ideas, supporting arguments, and decisions
might be more appropriate for decision-makingmeetings, for ex-
ample, while general topic summaries might be better suited for
information-sharing meetings, and template-based summaries
(Oya et al., 2014), for well-framed meetings with clear agendas.
Given that summariesmayvarywith respect to their format, style,
and content, approaches to automating productionwill arguably
need to be conductedwith a variety ofmethods to allow a system
to produce a summary type tailored to a particular meeting for-
mat.

nature of s p e ech and no i s e . Unlikewell-formed text documents,
spontaneous conversation consists of complex multi-party inter-
actions with extreme variability. The language is informal with
low information density, and utterances tend to be partial, frag-
mentary, ungrammatical, overlapping, and include many disflu-
encies, ellipses, and pronouns. ASR transcription and segmenta-
tion errors inject additional noise into the input, especially under
non-ideal recording conditions. One needs to take into account
these inherent differences of speech from text (Zechner, 2002)
when developing speech summarization techniques. Oneway to
equalize the hurdles introduced by spoken conversation might
be to incorporate information from the acoustic signal, such as
the nature of pauses or prosodic features, to improveperformance
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over a system that draws on lexical features alone (Xie and Liu,
2010).

evaluat ion. Not only for meetings but also for broader text sum-
marization, evaluation is itself a challenging task. For one thing,
there is normally no single best summary for a given source doc-
ument. Different annotators can create very different but equally
valid summaries. In fact, Rath, Resnick, and Savage (1961) showed
that even for a single person asked to summarize the same doc-
ument twice several weeks apart, the outcomes can be very dif-
ferent. Another problem is that the ROUGE metric, the standard
nowadays for summary evaluation (Lin, 2004), is biased towards
lexical similarities: evaluation is conducted based on surface lex-
icographic matches, making it unsuitable for assessing the qual-
ity of generated abstractive summaries that are semantically but
not lexically similar to human summaries. Nor does ROUGE
take into account the readability or fluency of the generated sum-
maries (Ng and Abrecht, 2015). Given the special characteristics
of dialogues, more studies will be needed to develop more ap-
propriate evaluationmetrics for speech summarization (Zechner
and Waibel, 2000).

The recent explosion of research and development in Deep Learning
(DL) (Goodfellow et al., 2016), especially the invention of sequence-to-
sequence (encoder-decoder) (Sutskever, Vinyals, and Le, 2014) archi-
tectures enhanced with attention mechanisms (Bahdanau, Cho, and
Bengio, 2014; Vaswani et al., 2017), has helped to propel research on
abstractive summarization forward. We have seen performance boosts
from applying DL to traditional text documents (Rush, Chopra, and
Weston, 2015; Nallapati et al., 2016; See, Liu, and Manning, 2017a;
Lewis et al., 2019) and on documents from the meeting domain (Li
et al., 2019a; Zhu et al., 2020). Nevertheless, we are far from being
perfect and producing commercial-level automatic tools that generate
abstractive summaries of human-level quality. The task remains one
of the most challenging NLP tasks, with many open problems to be
resolved (Kryscinski et al., 2019).

1.3 the s i s s tat ement

This dissertation contributes pipelines, models, components, and
new insights to problems that arise in the area of spoken language un-
derstating/meeting summarization. In particular, we have developed:

— A fully unsupervised framework based on multi-sentence com-
pression graphs and budgeted submodular maximization for ab-
stractive meeting summarization: this approach takes a speech
transcription as input and generates a summary.
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— Amodifiedneural conditional randomfield layer that takes speaker-
change into account for dialogue act classification: this approach
assigns each utterance a dialogue act label to represent its com-
municative intention.

— An energy-based learning approach, a general triplet sampling
scheme, and a contextual utterance encoder featuring self-attention
mechanisms for abstractive community detection: this method
groups utterances in a conversation according to whether they
can be jointly summarized by a common abstractive sentence.

We elaborate on these three contributions below.

1.4 overv i ew of contr i but ions

Our research has been conducted to address three specific tasks, which
remain open problems in the domain of SLU: abstractive meeting sum-
marization, dialogue act classification, and abstractive community de-
tection. We consider the latter two tasks as stepping stones towards
generating better abstractive summaries. In more detail, our work has
been motivated by, and has contributed to answering, the following
research questions:

ab stract i v e mee t ing summar i zat ion.
How canwe generate abstractive meeting summaries in an unsupervised way?

Asignificant issue for research inmeeting summarization is the lack
of annotated data. As explained above, meeting transcriptions are be-
coming increasingly available, but few are accompanied with abstrac-
tive summaries for research purposes due to the enormous human ef-
fort and cost required for annotating. Supervised summarizationmod-
els often need to be fed with large amounts of training data in order to
learn from human-labelled examples. Moreover, the resulting models
are usually language-dependent and domain-dependent. These con-
cerns ultimately drove us to investigate unsupervised summarization
techniques.

In Chapter 3 of the thesis, we introduce a novel graph-based frame-
work for abstractive meeting speech summarization that is fully un-
supervised, does not rely on any annotations, and can be applied to
any languages other than English in an almost out-of-the-box fashion.
Within our framework, transcriptions are successively processed through
4 modules:

1. The first module preprocesses text.
2. The second module groups together the utterances that should

be summarized by a common abstractive sentence, for instance,
with respect to a topic or subtopic.
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3. The thirdmodule generates a single abstractive sentence for each
utterance group, where we present an unsupervised NLG com-
ponent: aMulti-SentenceCompressionGraph (MSCG) extended
with novel edge andpathweighting schemes. Our extendedMSCG
can yield a better abstractive sentence that is more fluent, infor-
mative, and diverse than the original MSCG of Filippova (2010).
To accomplish this, we combine the strengths of multiple recent
approaches (while addressing their weaknesses) from different
NLP tasks, and leverage advances in word embeddings, graph-
of-words, and graph degeneracy.

4. The goal of the last module is to generate a summary by select-
ing the best elements from the NLG module’s output under a
budget constraint (summary size). We cast this problem as the
maximization of a custom submodular quality function.

We show via experiments that our system improves on the state-of-
the-art and generates reasonably grammatical abstractive summaries
despite taking noisy utterances as input and not relying on any anno-
tations.

d ia logue act cla s s i f i cat ion.
Is speaker information useful for dialogue act classification?

Althoughour unsupervised approach can generate readable abstracts
of meetings, the quality is still far from those produced by humans,
and they are somewhat extractive and spoken-style. The reason is that
the MSCG is restricted to formulate a new sentence by simply com-
pressing multiple original utterances, thus cannot freely bring novel
words as expressive as humans do. We believe that tomake summaries
more abstractive and written-style, we need first to understand meet-
ing speech deeply. In other words, the systems need to be incorpo-
rated with more knowledge about the discourse, such as the meanings
of utterances and their relationships, topics, etc. Building upon a rich
understanding of conversations will enable unsupervised/supervised
meeting summarization techniques to go one step further in perfor-
mance.

To this end, we investigate the problem of dialogue act (DA) classi-
fication, which aims to assign each utterance a DA label to represent
its communicative intention, such as suggestion, question, agreement,
and so on. DAs provide a preliminary understanding of speakers’ in-
tentions and serve as helpful annotations for a large variety of down-
stream conversation processing tasks. DAs have been proven useful
in the study of focused meeting summarization (Wang and Cardie,
2012).

Recent work in DA classification approaches the task as a sequence
labeling problem, using neural network models coupled with a Con-
ditional Random Field (CRF) as the last layer. CRF models the con-
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ditional probability of the target DA label sequence given the input
utterance sequence. However, the task involves another important in-
put sequence, that of speakers, which is ignored by previous work. In
Chapter 4 of this thesis, we propose a simple modification of the CRF
layer that takes speaker information into account to address this limita-
tion. More specifically, in our modified CRF layer, the label transition
matrix is conditioned on speaker-change. Our contribution is general,
since the layer can be plugged on top of any deep learning component
to form a DA classification model. We evaluate it within the BiLSTM-
CRF architecture, experiments show that our modified CRF layer out-
performs the original one, with very wide margins for some DA la-
bels. Further, visualizations demonstrate that our CRF layer can learn
meaningful, sophisticated transition patterns between DA label pairs
conditioned on speaker-change in an end-to-end way.

We can conclude that taking speaker information into consideration
is beneficial to the task of DA classification.

ab stract i v e commun i ty de t ec t ion.
What is the connection between extractive summarization and abstractive
summarization?

In Chapter 5 of the thesis, we rethink the general process of abstrac-
tive summary generation to make it more consistent with human be-
havior. To this end, we look into how relevant annotations were ini-
tially created in the AMI and ICSI meeting corpora. As described in
the annotation guideline: for each meeting with its manual transcrip-
tion, annotators were asked to 1) write an abstractive summary, 2) ex-
tract important utterances as an extractive summary, 3) link extracted
utterances with the sentences written in the abstractive summary. All
utterances linkedwith a same abstractive sentence form a group called
an abstractive community, which is the source of information based on
which the abstractive summary sentence was written. Table 1.1 shows
an example, where all utterances in the extractive summary are linked
to the sentence in the abstractive summary.

Inspired by the above annotating process, we argue that the abstrac-
tive meeting summarization task needs to be done in three steps: 1)
find a set of important utterances, 2) group selected utterances into
abstractive communities, 3) generate an abstractive sentence for each
of the communities. This pipeline matches the general and basic sum-
marization process described in the work of Jones et al. (1999), as con-
sisting of Interpretation, Transformation, and Generation:

1. Interpretation. Mapping the input text to a source representa-
tion.

2. Transformation. Transforming the source representation to a sum-
mary representation.
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3. Generation. Generating a summary text from the summary rep-
resentation.

We note that the first and the third steps have been extensively stud-
ied as extractive summarization and NLG, while the second step is a
task little explored since its introduction by Murray, Carenini, and Ng
(2012) under the name of Abstractive CommunityDetection. We think
this is an important problem, as it plays the crucial role of bridge be-
tween extractive and abstractive summarization.

We introduce a novel approach to this task, which is essentially an ut-
terance clustering problem. We first present a neural contextual utter-
ance encoder featuring three types of self-attention mechanisms. We
then train it using the siamese and triplet energy-based architectures
(LeCun andHuang, 2005; Lecun et al., 2006) from the area of deepmet-
ric learning (Hoffer and Ailon, 2015; Mueller and Thyagarajan, 2016),
whose objective is to project training utterances into an embedding
space in which the utterances from a given abstractive community are
close to each other. For the triplet architecture, we also propose a gen-
eral sampling scheme that enables the architecture to capture subtle
clustering patterns, such as overlapping and nested abstractive com-
munities. Finally, we apply the Fuzzy c-Means clustering algorithm on
the trained utterance embeddings in order to obtain abstractive com-
munities. Experiments and visualization show that our system outper-
formsmultiple energy-based and non-energy based baselines from the
state-of-the-art and that our triplet sampling scheme is effective.

1.5 so f tware and l i b rar i e s

The primary software and libraries that were used in the context of
this thesis are the following:

— Scikit-learn (Pedregosa et al., 2011). A machine learning li-
brary for the Python programming language.

— Keras (Chollet et al., 2015). Adeep learningAPIwritten in Python,
running on top of themachine learningplatformTensorFlow(Abadi
et al., 2015).

— Gensim (Řehůřek and Sojka, 2010a). A library for topicmodeling,
document indexing, and similarity retrieval with large corpora.

— Numpy (Oliphant, 2006; Van Der Walt, Colbert, and Varoquaux,
2011). A fundamental package for scientific computing in Python.

— Networkx (Hagberg, Schult, and Swart, 2008). A Python pack-
age for creating, manipulating, and studying the structure, dy-
namics, and functions of complex networks.

— Igraph (Csardi, Nepusz, et al., 2006). A library for creating, ma-
nipulating, and analyzing graphs.

— Matplotlib (Hunter, 2007). A library for creating static, ani-
mated, and interactive visualizations in Python.
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— ROUGE 2.0 (Ganesan, 2015). An evaluation toolkit for Automatic
Summarization tasks.

Note that we made all source code and preprocessed data publicly
available for reproducibility and for fostering research on the topics
covered by this thesis.

1.6 outl ine of the the s i s

The rest of the dissertation is organized as follows. Chapter 2 pro-
vides some cornerstones upon which our work was built in terms of
text representation techniques, metrics to evaluate our developed ap-
proaches, and descriptions of datasets on which we conducted the ex-
periments. The next three chapters are devoted to presenting three pri-
mary tasks under study in this thesis, the relatedwork in the literature,
our motivation, and our contributions over the state-of-the-art. In par-
ticular, Chapter 3 presents our unsupervised approach for abstractive
meeting summarization, Chapter 4 , our contributions to dialogue act
classification, and Chapter 5, our work on abstractive community de-
tection. Finally, Chapter 6 concludes the dissertation and sheds some
new light on future research directions.



2
BAS I C CONCEPT S AND PREL IM INAR I E S

In this chapter, we provide some basic concepts and the minimum
background required to follow the rest of the thesis. We discuss in
detail: 1) the text representation techniques used in our work so

that machines can process natural language, 2) the evaluation metrics
adopted in our experiments to measure the performances of our de-
veloped approaches, 3) the data with relevant annotations on which
we report the results. For a deeper understanding of these areas, one
may need to refer to books on Machine Learning (Bishop, 2016), Deep
Learning (Goodfellowet al., 2016), Natural LanguageProcessing (Man-
ning and Schutze, 1999; Jurafsky et al., 2014), Spoken LanguageUnder-
standing (Huang et al., 2001; Tur and De Mori, 2011), and Conversa-
tion Summarization (Carenini, Murray, and Ng, 2011).

2.1 t e x t r e pr e s entat ion

Machines understand the world only through mathematical repre-
sentation, i.e., numbers rather than information in its original form.
The central objective of NLP is to determine how we can effectively
and efficiently convert natural language in textual form to machine-
readable representation. In this section, we present three different text
representation techniques used in our research to enable machines to
process text.

The underlying structure of text is hierarchical. Characters combine
into words, words combine into sentences, and sentences combine to
form documents. Documents can then be assembled into sets called
collections. Different NLP tasks study problems at different levels of
granularity; in our research, we aremainly interested inword-level and
sentence-level representation. From now on, we use 𝑡, 𝑑,𝐷 to denote a
word (term), a sentence, and a document, respectively. Note that their
denotations may vary depending on the specific task at hand.

2.1.1 Bag-of-words

Given a vocabulary 𝑉 (a finite list of indexed words), a word 𝑡 can
then be represented as a one-hot encoded vector x𝑡 of size |𝑉|, in which
the element corresponding to the vocabulary index of 𝑡 is one and all
the other elements are zero. A sentence 𝑑 can then be represented as a

11
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weighted sumof the vectors for all thewords contained in the sentence,
as follows:

x𝑑 = ∑
𝑡∈𝑑,𝑑∈𝐷

𝑓 (𝑡, 𝑑,𝐷)x𝑡 (2.1)

where 𝑓 (𝑡, 𝑑,𝐷) is a weighting function for the word 𝑡 in its context of 𝑑
and 𝐷. The simplest approach is to set 𝑓 (𝑡, 𝑑,𝐷) to be equal to the num-
ber of occurrences of 𝑡 in 𝑑, which is referred to as the Term Frequency
weighting function 𝑇𝐹(𝑡, 𝑑) (Luhn, 1957). The importance (weight) of 𝑡
in 𝑑 is thus simply proportional to its frequency.

This text representation technique is known in the literature as the
Bag-of-Words (BoW)model (Manning, Schütze, and Raghavan, 2008)
because it represents text as if it were a bag of words, i.e., an unordered
set of words that does not keep track of where a word appeared in a
sentence 𝑑 or document 𝐷. Despite the loss of information engendered
by the assumption of term independence, i.e., that the presence of one
word in the bag is independent of another, BoW can be surprisingly
effective on some tasks and is extensively used as a simple baseline.

Apart from term frequency, amorewidely-used and thoughtful term
weighing function is TF-IDF (Salton and Buckley, 1988), where IDF
stands for Inverse Document Frequency (Jones, 1972). It is defined as
follows:

𝑇𝐹-𝐼𝐷𝐹(𝑡, 𝑑,𝐷) = 𝑇𝐹(𝑡, 𝑑) × 𝐼𝐷𝐹(𝑡,𝐷) (2.2)

𝐼𝐷𝐹(𝑡,𝐷) = log |𝐷|
|{𝑑 ∈ 𝐷 ∶ 𝑡 ∈ 𝑑}| (2.3)

where |𝐷| is the number of sentences and |{𝑑 ∈ 𝐷 ∶ 𝑡 ∈ 𝑑}| is the num-
ber of sentences in 𝐷 containing 𝑡. The intuition behind TF-IDF is that
a word should be considered important within a given sentence if it
has a high term frequency and if the number of sentences in which the
word appears is relatively small. With applying IDF, the weights of
the words occurred too often in many different sentences are thus de-
creased, givingmore importance to themore specific words that better
discriminate between sentences.

The primary limitation of BoW is its inability to capture syntactic
and semantic relations betweenwords. For example, thewords "bike"
and "bicycle" are distinct under the view of BoW (e.g., the cosine sim-
ilarity between their vectors is zero), even though they are identical in
terms of semantic meaning and syntactic function. Moreover, since
BoW discards the order of words, which is very important in deter-
mining sentential meaning, the sentence "Beijing is the capital
of China." is treated as identical to "China is the capital of Bei-
jing.". Furthermore, output vectors are inherently high-dimensional
and sparse due to large vocabulary size, which can lead to the curse
of dimensionality (Bellman, Corporation, and Collection, 1957; Bellman
and Collection, 1961) for machine learning models.
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Note that throughout this chapter, we focus on discussing the most
popular TF-IDF weighting function for the BoW model, which creates
orthogonal vectors for all words ("bike" vs. "bicycle"). The other
weighting functions developed in the literature of distributional se-
manticmodels, such as the Positive PointwiseMutual Information (PPMI)
weighting function (Evert, 2005; Baroni, Dinu, and Kruszewski, 2014)
for the BoWmodel can actually creates similar vectors for similarwords
(i.e., capturing lexical semantic similarity). Interested readers are re-
ferred to the work of Turney and Pantel (2010) for details.

In the next two subsections, we present two alternative text represen-
tation techniques, one of which overcomes some drawbacks of BoW
and the other of which overcomes all.

2.1.2 Graph-of-words

The Graph-of-Words (GoW) model or word co-occurrence network
(Mihalcea andTarau, 2004; Rousseau andVazirgiannis, 2013) is a graph-
based text representation technique. In GoW, a sentence/a piece of
text is modelled as a graph whose vertices represent unique terms and
whose edges correspond to co-occurrence relationships between the
terms within a fixed-size sliding window over the text.

For a given sentence, e.g. "information retrieval is the activ-
ity of obtaining information resources relevant to an informa-
tion need from a collection of information resources", we can
create a GoW as illustrated in Figure 2.1. An interactive web applica-
tion GoWvis (Tixier, Skianis, and Vazirgiannis, 2016) that illustrates
the GoW model is available online: https://safetyapp.shinyapps.
io/GoWvis.

Figure 2.1 – Example (Rousseau and Vazirgiannis, 2013) of an unweighted
directed GoW in which an edge indicates at least one directed
co-occurence of the two terms in a window of size 3 in the text.

https://safetyapp.shinyapps.io/GoWvis
https://safetyapp.shinyapps.io/GoWvis
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There are many variants of GoW in terms of edge directionality and
edge weighting. Moreover, changing preprocessing steps or window
sizemay significantly influence the graphs produced and, consequently,
the results for certain tasks. Further discussion of these points falls out
of the scope of this dissertation, but we refer the reader to the work of
Rousseau (2015) for a more extensive review of the subject.

Similar to TF-IDF, we can derive TW-IDF for GoW as follows:

𝑇𝑊-𝐼𝐷𝐹(𝑡, 𝑑,𝐷) = 𝑇𝑊(𝑡, 𝑑) × 𝐼𝐷𝐹(𝑡,𝐷) (2.4)

where the TermWeightweighting function 𝑇𝑊(𝑡, 𝑑) can be any central-
ity measures (e.g., degree, closeness, and betweenness (Easley, Klein-
berg, et al., 2010; Newman, 2010)) that determine the relative impor-
tance of a node(term) 𝑡 in the graph representation𝐺𝑑 of the sentence 𝑑.
The intuition here is if a node is important in the graph (this is, located
in the network center), then its corresponding term is equivalently im-
portant in the original text.

The primary advantage of GoW over BoW is that it enables graph
theory to be applied to text and does not make the term independence
assumption when constructing graphs, so that we can exploit more
information about word dependence, order, and distance. This text
representation technique has already been successfully applied to var-
ious tasks, including information retrieval (Rousseau and Vazirgian-
nis, 2013), keyword extraction (Rousseau and Vazirgiannis, 2015; Tix-
ier, Malliaros, and Vazirgiannis, 2016; Meladianos et al., 2017), extrac-
tive summarization (Tixier, Meladianos, and Vazirgiannis, 2017), sub-
event detection (Meladianos et al., 2015), and representation learning
(Nikolentzos, Tixier, and Vazirgiannis, 2019).

2.1.3 Dense vector representation in deep learning

Both BoW(with TF-IDF) andGoW(with TW-IDF) represent aword
or a sentence as a sparse, long vector in a space whose dimensions are
the unique words in the vocabulary. While GoW avoids some draw-
backs of BoW mentioned earlier, e.g., by taking word order into ac-
count when constructing graphs, it still fails to encode semantic sim-
ilarity between words. To remedy this problem, it is better to use a
short, dense vector so that its dimensions represent higher-level underly-
ing aspects of word meaning (e.g., singular/plural, positive/negative,
male/female, biological/artificial), yielding similar vectors for similar
words (e.g., "bike" and "bicycle").

Mikolov et al. (2013a,b) introduce continuous bag-of-words (CBOW)
and continuous skip-grammodels to learn such representations ofword
meaning—known as word embeddings (as words are embedded in a
vector space)—directly from their distributions in unannotated text.
The CBOW model predicts a target word based on the embeddings
of its context words, while the skip-gram model predicts surrounding
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words given the embedding of a targetword. Thesemodels can be seen
as instantiations of the distributional hypothesis of language (Joos, 1950;
Harris, 1954; Firth, 1957), which states that words that occur in similar
contexts tend to have similar meanings (or functions). This hypothe-
sis suggests that given a newword, one should be able to figure out its
meaning based on the contexts in which it is used. Conversely, when
confronted with a word whose meaning is known, one should be able
to predict the contexts in which that word is likely to occur; that is, the
words with which it is likely to be combined to make a sentence.

CBOW and skip-gram models are very similar in design, so we only
present the latter in detail. The skip-gram model turns the problem
of learning representations into a binary classification task, that of an-
swering a set of questions of the form, “Is a word 𝑡 likely to show up
near a word 𝑐?”. We create a training set that consists of positive pairs
(𝑡, 𝑐) ∈ + and negative pairs (𝑡, 𝑐) ∈ − from collected text examples.
When (𝑡, 𝑐) is positive it means 𝑐 occurs near 𝑡 within a given window
(preceding and following) in the text. In the negative case, 𝑐 can be any
other word randomly sampled from the vocabulary following a nega-
tive sampling strategy. The training objective consists in 1) maximizing
the probability P(+|t,c) that 𝑐 is a real context word of 𝑡, for all positive
pairs (𝑡, 𝑐) ∈ +, and 2) maximizing the probability P(-|t,c) that 𝑐 is not
a real context word of 𝑡, for all negative pairs (𝑡, 𝑐) ∈ −. As described
below:

𝐿(𝜃) = ∑
(𝑡,𝑐)∈+

𝑙𝑜𝑔𝑃(+|𝑡, 𝑐) + ∑
(𝑡,𝑐)∈−

𝑙𝑜𝑔𝑃(−|𝑡, 𝑐) (2.5)

𝑃(−|𝑡, 𝑐) = 1 − 𝑃(+|𝑡, 𝑐) (2.6)
𝑃(+|𝑡, 𝑐) = 𝜎(x𝑡 ⋅ x′

𝑐) (2.7)

where 𝜎 denotes the logistic (sigmoid) function, which turns the dot
product of word embeddings x𝑡 ⋅x′

𝑐 into a probability value. We can see
that the model bases this probability on dot product similarity, i.e. we
want to maximize the similarity of the target word with those words
that occur nearby in texts, and minimize the similarity of the target
word with those words that don’t occur nearby, which reflects the dis-
tributional hypothesis: “a word is characterized by the company it keeps.”
(Firth, 1957).

Note that since word embeddings are automatically learned rather
than hand-crafted, the dimensions are usually not interpretable by hu-
mans, and specific dimensions do not necessarily correspond to spe-
cific concepts. Nevertheless, researchers have found some interesting
semantic properties. For example, Mikolov, Yih, and Zweig (2013)
show that the offsets between embeddings can capture some analog-
ical relations between words. A well-known example is that the result
of the expression xking − xman + xwoman is a vector close to xqueen.

As a result of these advantages, word embeddings are now the most
popular way to represent the meaning of words in NLP. Moreover,
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they are well suited for neural networks, since they can be directly
plugged in as inputs to subsequent neural components. In the work
of this dissertation, for instance, we mainly use LSTMs (Hochreiter
and Schmidhuber, 1997) and GRUs (Cho et al., 2014), both of which
are variants of Recurrent Neural Networks (RNNs) that basically map
a sequence of inputs (word embeddings of the words in a sentence)
{x1 … x𝑇} to a sequence of outputs {y1 …y𝑇}, as well as a sequence of
hidden states {h1 …h𝑇} in a recursive manner, as described below:

h𝑡 = 𝑔(Uh𝑡−1 + Wx𝑡) (2.8)
y𝑡 = 𝑓 (Vh𝑡) (2.9)

where 𝑓 and 𝑔 are activation functions (e.g., tanh, sigmoid, softmax)
andU,W,V areweightmatrices, shared across time, to be trainedwith
respect to a loss function, an optimizer, a dataset. The y𝑇 , the output
vector of the last timestep 𝑇 (corresponding to the last word of the
sentence), thus can be seen as a sentence representation.

2.2 evaluat ion

In this section, we present the evaluation metrics used to measure
the performance of the different approaches developed in this disser-
tation.

2.2.1 Accuracy, Precision, Recall, and F1-score

Given a binary classification task with examples and their ground
truth positive/negative labels, there are four types of possible predic-
tions (Swets, 1963) made by a system, as summarized in the confusion
matrix in Table 2.1: True Positives (TP, correctly classified as positive),
True Negatives (TN, correctly classified as negative), False Positives
(FP, incorrectly classified as positive), and False Negatives (FN, incor-
rectly classified as negative).

Predicted class
positive negative

Actual class positive TP FN
negative FP TN

Table 2.1 – Confusion matrix for binary classification.

Note that there are TP+FN positive and FP+TN negative ground
truth examples in total, and there are TP+FP and FN+TN examples
predicted as positive and negative by the system respectively.

Given the confusion matrix, the accuracy is defined as:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
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where the numerator is the total number of correct predictions, and
the denominator is the number of all available examples. Accuracy
evaluates the overall fraction of predictions that are correct.

The Precision (𝑃), Recall (𝑅), and F1-score (𝐹1) (Allen et al., 1955;
Van Rijsbergen, 1979) are calculated as follows:

𝑃 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 𝑅 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁 𝐹1 = 2 × 𝑃 × 𝑅
𝑃 + 𝑅 (2.10)

𝑃 evaluates the fraction of examples predicted positive that are truly
correct. 𝑅 evaluates the fraction of truly correct examples that are pre-
dicted positive. 𝐹1 is a measure that trades off Precision versus Recall,
which is the Harmonic mean of them.

These metrics can be easily adapted to other tasks in some way. For
example, information retrieval systems aim to find relevant documents
from a collection that best match a given query sentence. In this con-
text, TP can be defined as relevant documents retrieved, and Precision
thus evaluates the fraction of retrieved documents that are relevant.
Moreover, in the case when we are only interested in evaluating the
quality of the highest ranked documents retrieved by a system, we can
keep top 𝑘 results and drop the others for calculation, leading to the 𝑃,
𝑅, and 𝐹1 at 𝑘 metrics.

2.2.2 ROUGE

ROUGE (Lin, 2004) is the most popular measure for summariza-
tion evaluation, which can estimate the quality of a candidate (system-
generated) summary against (one ormultiple) reference (human) sum-
maries. ROUGE is made up of several metrics based on comparing n-
gram overlap, i.e., ROUGE-1 considers unigrams, ROUGE-2 considers
bigrams, ROUGE-SU4 considers unigrams plus skip-bigrams with a
maximum skip distance of 4. ROUGE can also be seen as an adapta-
tion of Precision, Recall, and F1-score. For example, ROUGE-1 Recall
is calculated as follows:

ROUGE-1 R = 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓 _𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔_𝑤𝑜𝑟𝑑𝑠
𝑡𝑜𝑡𝑎𝑙_𝑤𝑜𝑟𝑑𝑠_𝑖𝑛_𝑟𝑒𝑓 𝑒𝑟𝑒𝑛𝑐𝑒_𝑠𝑢𝑚𝑚𝑎𝑟𝑦 (2.11)

It can be interpreted as: the more that the unigrams from the reference
summary also appear in the candidate summary, the higher the Recall
score is.

In the case when there are multiple available reference summaries,
ROUGE simply pairwisely computes scores between the candidate and
one of reference summaries and outputs the maximum score.

2.2.3 Omega index

The Omega index (Collins and Dent, 1988) evaluates the degree of
agreement between two clustering solutions based on pairs of objects
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being clustered. Two solutions 𝑠1 and 𝑠2 are considered to agree on
a given pair of objects, if two objects are placed by both solutions in
exactly the same number of communities (possibly zero).

The Omega index 𝜔 is computed as shown in Equation 2.12. The nu-
merator is the observed agreement 𝜔𝑜𝑏𝑠 adjusted by expected (chance)
agreement𝜔𝑒𝑥𝑝, while the denominator is the perfect agreement (value
equals to 1) adjusted by expected agreement.

𝜔(𝑠1, 𝑠2) =
𝜔𝑜𝑏𝑠(𝑠1, 𝑠2) − 𝜔𝑒𝑥𝑝(𝑠1, 𝑠2)

1 − 𝜔𝑒𝑥𝑝(𝑠1, 𝑠2) (2.12)

Observed and expected agreements are calculated as below:

𝜔𝑜𝑏𝑠(𝑠1, 𝑠2) = 1
𝑁𝑡𝑜𝑡𝑎𝑙

𝑚𝑖𝑛(𝐽,𝐾)
∑
𝑗=0

𝐴𝑗 (2.13)

𝜔𝑒𝑥𝑝(𝑠1, 𝑠2) = 1
𝑁2

𝑡𝑜𝑡𝑎𝑙

𝑚𝑖𝑛(𝐽,𝐾)
∑
𝑗=0

𝑁𝑗1𝑁𝑗2 (2.14)

where 𝐴𝑗 is the number of pairs agreed to be assigned to 𝑗 number of
communities by both solutions, 𝑁𝑗1 is the number of pairs assigned
to 𝑗 communities in 𝑠1, 𝑁𝑗2 is the number of pairs assigned to 𝑗 com-
munities in 𝑠2, 𝐽 and 𝐾 represent respectively the maximum number
of communities in which any pair of objects appear together in solu-
tions 𝑠1 and 𝑠2, and 𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑛(𝑛 − 1)/2 is the total number of pairs
constructed over 𝑛 number of objects.

To give an example, consider two clustering solutions for 5 objects:

𝑠1 = {{𝑎, 𝑏, 𝑐}, {𝑏, 𝑐, 𝑑}, {𝑐, 𝑑, 𝑒}, {𝑐, 𝑑}}
𝑠2 = {{𝑎, 𝑏, 𝑐, 𝑑}, {𝑏, 𝑐, 𝑑, 𝑒}}

solution 𝑠1 solution 𝑠2 solutions
#communities #communities 𝑠1 and 𝑠2

the pair is assigned to the pair is assigned to agree on the pair?
(a, b) 1 1 yes
(a, c) 1 1 yes
(a, d) 0 1 no
(a, e) 0 0 yes
(b, c) 2 2 yes
(b, d) 1 2 no
(b, e) 0 1 no
(c, d) 3 2 no
(c, e) 1 1 yes
(d, e) 1 1 yes

Table 2.2 – Omega index example.
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Solutions are transformed into Table 2.2, from which we can obtain
𝑁𝑡𝑜𝑡𝑎𝑙 = 10, 𝐽 = 3,𝐾 = 2,𝑚𝑖𝑛(𝐽,𝐾) = 2. Two solutions agree to place
(𝑎, 𝑒) together in no community, the pairs (𝑎, 𝑏), (𝑎, 𝑐), (𝑐, 𝑒) and (𝑑, 𝑒) in
one community, and the pair (𝑏, 𝑐) in two communities. We have 𝐴0 =
1,𝐴1 = 4,𝐴2 = 1. Thus the observed agreement is (1 + 4 + 1)/10 = 0.6.
Since 𝑁01 = 3,𝑁11 = 5,𝑁21 = 1 and 𝑁02 = 1,𝑁12 = 6,𝑁22 = 3, the
expected agreement then is (3 ∗ 1 + 5 ∗ 6 + 1 ∗ 3)/102 = 0.36. Finally,
the Omega index for this simple example is computed as: 𝜔(𝑠1, 𝑠2) =
(0.6 − 0.36)/(1 − 0.36) = 0.375.

2.3 de scr i p t ion of datas e t s

In the area of meeting summarization, the AMI and ICSI corpora are
both widely-used and in fact, the only-available English meeting cor-
pora. Not only do they come with summaries for each meeting, but
they are designed to support the work of several research communi-
ties with many other resources (e.g., audio and video recordings) and
annotations.

the am i corpus : (McCowan et al., 2005) contains 137 scenario-driven
meetings ( 65 hours) recordedunder theAugmentedMulti-party
Interaction project. In each meeting ranging from 15 to 45 min-
utes, four participants play the roles of a projectmanager (PM), a
marketing expert (ME), a user interface designer (UI), and an in-
dustrial designer(ID) within a fictive electronics company. The
scenario given to them is that they form a design team, whose
task is to develop a new television remote control from inception
to market, through individual work and a series of group meet-
ings. Note that even though the scenario is artificial, the partici-
pants’ speech is spontaneous and the interaction is natural.

the i c s i corpu s : (Janin et al., 2003) consists of 75 naturally-occurring
meetings ( 72 hours) recorded at the International Computer Sci-
ence Institute. In eachmeeting of around 1 hour (regularly sched-
uled weekly), members from research groups (e.g., undergrad-
uate student, Ph.D. student, and professor) discuss specialized
and technical topics such as natural language processing, neural
theories of language, ICSI corpus related issues. There are 6 par-
ticipants on average per meeting.

To produce the meeting summaries, human annotators were given
instructions onhow to create both abstractive and extractive summaries.
Below, we present the four types of annotations that were used to con-
duct our experiments: speech transcription, extractive summarization,
abstractive summarization, and abstractive-extractive linking. We vi-
sually illustrate the relationships between these annotations in Figure
2.2 by taking as an example an entire meeting from the AMI corpus.
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A more detailed version of this Figure can be found in Figure 5.2 of
Chapter 5.

Figure 2.2 – Example of ground truth human annotations from the ES2008b
AMI meeting. Successive grey nodes (displayed as a straight
line) on the left denote utterances in the transcription, where
black nodes correspond to extractive summary, i.e., the utter-
ances judged important (summary-worthy). Each of the nodes
on the right represents a sentence from the abstractive summary.
All utterances linked to the same abstractive sentence form one
abstractive community.

s p e ech transcr i p t ion : A sequence of utterances over time, each
utterance represents a segment of speech by a single speaker. Ut-
terances are associated with extra attributes, including start/end
timestamp, speaker, dialogue act, addressee, etc. Transcriptions
are either manual, created by an annotator, or automatic, gener-
ated by an ASR system. In Figure 2.2, successive utterances of
the entire transcription are represented as the grey vertical line
of nodes on the left.

e x tract i v e summary: A subset of utterances considered important
(summary-worthy) by the human judge. They are highlighted as
black nodes on the grey line in Figure 2.2.
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ab stract i v e summary: A set of human-written abstractive sentences,
represented as the nodes on the right in Figure 2.2. The abstrac-
tive summary itself consists of 4 sections:

— abstract (nodes in black): coherent text to summarize the
meeting as a whole so that the content can be understood
by those not present for the meeting.

— decisions (nodes in orange): all task-orienteddecisions that
were made during the meeting.

— problems (nodes in red): problems or difficulties encoun-
tered during the meeting, which came to the surface and
remained open.

— actions (nodes in green): next steps that each member of
the group will take before the next meeting.

ab stract i v e - e x tract i v e l ink ing : As shown in Figure 2.2, the
utterances of the extractive summary are linked to the sentences
of the abstractive summary according to whether the former can
be jointly summarized by the latter. In other words, the former
convey or support the information in the latter. A single utter-
ance can be linked with one or more abstractive sentences, and
vice versa (many-to-manymapping). All utterances linked to the
same abstractive sentence form a single abstractive community.

By taking a close look at Figure 2.2, we can observe that for this spe-
cific example meeting: 1) abstract sentences summarize the entire
content, since linked utterances are scattered across the entire meeting
transcription. 2) actions sentences are linked to utterances located
only at the end of the meeting, which is easy to understand since they
correspond to assigned tasks to be performed before the next meeting.
3) decisions and problems sentences are linked to utterances in the
second half of the meeting.





3
UNSUPERV I S ED AB STRACT IVE MEET ING
SUMMAR IZAT ION

In this chapter, we study the task of Abstractive Meeting Summa-
rization, which aims to take a meeting transcription as input and
generate an abstractive summary consisting of novel sentences as

output. We introduce a graph-based framework for this task that is
fully unsupervised and does not rely on any annotations. Our work
combines the strengths of multiple recent approaches while address-
ing their weaknesses. Moreover, we leverage recent advances in word
embeddings and graph degeneracy applied to NLP, to take exterior
semantic knowledge into account and to design custom diversity and
informativeness measures. Experiments on the AMI and ICSI corpus
show that our system improves on the state-of-the-art. Code and data
are publicly available 1, and our system can be interactively tested 2.

3.1 in troduct ion

People spend a lot of their time in meetings. The ubiquity of web-
based meeting tools and the rapid improvement and adoption of Au-
tomatic Speech Recognition (ASR) is creating pressing needs for effec-
tive meeting speech summarization mechanisms.

Spontaneous multi-party meeting speech transcriptions widely dif-
fer from traditional documents. Instead of grammatical, well-segmented
sentences, the input is made of often ill-formed and ungrammatical text
fragments called utterances. On top of that, ASR transcription and seg-
mentation errors inject additional noise into the input.

In this work, we combine the strengths of 6 approaches that had pre-
viously been applied to 3 different tasks (keyword extraction, multi-
sentence compression, and summarization) into a unified, fully unsu-
pervised meeting speech summarization framework that can generate
readable summaries despite the noise inherent to ASR transcriptions.
We also introduce some novel components. Our method reaches state-
of-the-art performance and can be applied to languages other than En-
glish in an almost out-of-the-box fashion.

3.2 f ramework overv i ew

As illustrated in Figure 3.1, our system is made of 4 modules, briefly
described in what follows.

1. https://bitbucket.org/dascim/acl2018_abssumm
2. http://datascience.open-paas.org/abs_summ_app
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utterances utterance communities abstractive sentences abstractive summary

3. multi-sentence compression 4. submodular maximization
1. preprocessing

2. community detection

Figure 3.1 – Overarching system pipeline.

The first module pre-processes text. The goal of the second Com-
munity Detection step is to group together the utterances that should
be summarized by a common abstractive sentence (Murray, Carenini,
and Ng, 2012). These utterances typically correspond to a topic or
subtopic discussed during the meeting. A single abstractive sentence
is then separately generated for each community, using an extension of
the Multi-Sentence Compression Graph (MSCG) of Filippova (2010).
Finally, we generate a summary by selecting the best elements from
the set of abstractive sentences under a budget constraint. We cast this
problem as the maximization of a custom submodular quality func-
tion.

Note that our approach is fully unsupervised and does not rely on
any annotations. Our input simply consists in a list of utterances with-
out any metadata. All we need in addition to that is a part-of-speech
tagger, a language model, a set of pre-trained word vectors, a list of
stopwords and fillerwords, and optionally, access to a lexical database
such as WordNet. Our system can work out-of-the-box in most lan-
guages for which such resources are available.

3.3 r e lat ed work and contr i but ions

As detailed below, our framework combines the strengths of 6 recent
works. It also includes novel components.

Multi-Sentence Compression Graph (MSCG) (Filippova, 2010)

de scr i p t ion : a fully unsupervised, simple approach for generating
a short, self-sufficient sentence from a cluster of related, overlapping
sentences. As shown in Figure 3.5, a word graph is constructed with
special edge weights, the 𝐾-shortest weighted paths are then found
and re-ranked with a scoring function, and the best path is used as the
compression. The assumption is that redundancy alone is enough to
ensure informativeness and grammaticality.
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l im i tat ions : despitemaking great strides and showingpromising
results, Filippova (2010) reported that 48% and 36% of the generated
sentences were missing important information and were not perfectly
grammatical.

contr i but ions : to respectively improve informativeness andgram-
maticality, we combine ideas found in Boudin and Morin (2013) and
Mehdad et al. (2013), as described next.

More informative MSCG (Boudin and Morin, 2013)

de scr i p t ion : same task and approach as in Filippova (2010), ex-
cept that a word co-occurrence network is built from the cluster of sen-
tences, and that the PageRank scores of the nodes are computed in the
manner of Mihalcea and Tarau (2004). The scores are then injected
into the path re-ranking function to favor informative paths.

l im i tat ions : PageRank is not state-of-the-art in capturing the im-
portance of words in a document. Grammaticality is not considered.

contr i but ions : we take grammaticality into account as in thework
ofMehdad et al. (2013). We also follow recent evidence (Tixier,Malliaros,
and Vazirgiannis, 2016) that spreading influence, as captured by graph
degeneracy-basedmeasures, is better correlatedwith “keywordedness”
than PageRank scores, as explained next.

Graph-based word importance scoring (Tixier, Malliaros, and Vazirgiannis,
2016)
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Figure 3.2 – Word co-occurrence network example, for the input text shown
in Figure 3.5.
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Word co-occurrence network (graph-of-words). As shown in Figure
3.2, we consider aword co-occurrence network as anundirected, weighted
graph constructed by sliding a fixed-size window over text, and where
edgeweights represent co-occurrence counts (Mihalcea andTarau, 2004;
Tixier, Skianis, and Vazirgiannis, 2016). More details about the word
co-occurrence network can be found in Subsection 2.1.2.

Important words are influential nodes. In social networks, it was
shown that influential spreaders, that is, those individuals that can reach
the largest part of the network in a given number of steps, are better
identified via their core numbers rather than via their PageRank scores
or degrees (Kitsak et al., 2010). See Figure 3.3 for the intuition. Sim-
ilarly, in NLP, Tixier, Malliaros, and Vazirgiannis (2016) have shown
that keywords are better identified via their core numbers rather than
via their TextRank scores, that is, keywords are influencerswithin their
word co-occurrence network.
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Figure 3.3 – 𝑘-core decomposition. The nodes ⋆ and ⋆⋆ have same degree and
similar PageRank numbers. However, node ⋆ is a much more
influential spreader as it is strategically placed in the core of the
network, as captured by its higher core number.

Graph degeneracy (Seidman, 1983). Let 𝐺(𝑉,𝐸) be an undirected,
weighted graph with 𝑛 = |𝑉| nodes and 𝑚 = |𝐸| edges. A 𝑘-core of
𝐺 is a maximal subgraph of 𝐺 in which every vertex 𝑣 has at least
weighted degree 𝑘. As shown in Figures 3.3 and 3.4, the 𝑘-core decom-
position of 𝐺 forms a hierarchy of nested subgraphs whose cohesive-
ness and size respectively increase and decrease with 𝑘. The higher-
level cores can be viewed as a filtered version of the graph that excludes
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3-core

2-core

1-core

Core number Core number Core numberc = 1 c = 2 c = 3

*
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Figure 3.4 – Value added by CoreRank: while nodes ⋆ and ⋆⋆ have the
same core number (=2), node ⋆ has a greater CoreRank score
(3+2+2=7 vs 2+2+1=5), which better reflects its more central
position in the graph.

noise. This property is highly valuable when dealing with graphs con-
structed from noisy text, like utterances. The core number of a node is
the highest order of a core that contains this node.

TheCoreRanknumber of a node (Bae andKim, 2014; Tixier,Malliaros,
andVazirgiannis, 2016) is defined as the sum of the core numbers of its
neighbors. As shown in Figure 3.4, CoreRankmore finely captures the
structural position of each node in the graph than raw core numbers.
Also, stabilizing scores across node neighborhoods enhances the inher-
ent noise robustness property of graph degeneracy, which is desirable
when working with noisy speech-to-text output.

Time complexity. Building a graph-of-words is 𝒪(𝑛𝑊), and comput-
ing theweighted 𝑘-core decomposition of a graph requires𝒪(𝑚 log(𝑛))
(Batagelj and Zaveršnik, 2002). For small pieces of text, this two step
process is so affordable that it can be used in real-time (Meladianos
et al., 2017). Finally, computing CoreRank scores can be done with
only a small overhead of 𝒪(𝑛), provided that the graph is stored as a
hash of adjacency lists. Getting the CoreRank numbers from scratch
for a community of utterances is therefore very fast, especially since
typically in this context, 𝑛 ∼ 10 and 𝑚 ∼ 100.

Fluency-aware, more abstractive MSCG (Mehdad et al., 2013)

de scr i p t ion : a supervised framework for abstractive meeting sum-
marization. Community detection is performed by (1) building an ut-
terance graphwith a logistic regression classifier, and (2) applying the
CONGA algorithm. Then, before performing sentence compression
with the MSCG, the authors also (3) build an entailment graph with a
SVM classifier in order to eliminate redundant and less informative ut-
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terances. In addition, the authors propose the use of WordNet (Miller,
1995) during the MSCG building phase to capture lexical knowledge
between words and thus generate more abstractive compressions, and
of a languagemodelwhen re-ranking the shortest paths, to favor fluent
compressions.

l im i tat ions : this effortwas a significant advance, as itwas the first
application of the MSCG to the meeting summarization task, to the
best of our knowledge. However, steps (1) and (3) above are com-
plex, based on handcrafted features, and respectively require anno-
tated training data in the form of links between human-written abstrac-
tive sentences and original utterances and multiple external datasets
(e.g., from the Recognizing Textual Entailment Challenge). Such an-
notations are costly to obtain and very seldom available in practice.

contr i but ions : while we retain the use of WordNet and of a lan-
guagemodel, we show that, without deteriorating the quality of the re-
sults, steps (1) and (2) above (community detection) can be performed
in a much more simple, completely unsupervised way, and that step
(3) can be removed. That is, the MSCG is powerful enough to remove
redundancy and ensure informativeness, should proper edge weights
and path re-ranking function be used.

In addition to the aforementioned contributions, we also introduce
the following novel components into our abstractive summarization
pipeline:

— we inject global exterior knowledge into the edge weights of the
MSCG, by using the Word Attraction Force of Wang, Liu, and Mc-
Donald (2014), based on distance in the word embedding space,

— we add a diversity term to the path re-ranking function, thatmea-
sures how many unique clusters in the embedding space are vis-
ited by each path,

— rather than using all the abstractive sentences as the final sum-
mary like in Mehdad et al. (2013), we maximize a custom sub-
modular function to select a subset of abstractive sentences that is
near-optimal given a budget constraint (summary size). A brief
background of submodularity in the context of summarization
is provided next.

Submodularity for summarization (Lin and Bilmes, 2010; Lin, 2012)

Selecting an optimal subset of abstractive sentences from a larger set
can be framed as a budgeted submodular maximization task:

argmax
𝑆⊆𝒮

𝑓 (𝑆)| ∑
𝑠∈𝑆

𝑐𝑠 ≤ ℬ (3.1)
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where 𝑆 is a summary, 𝑐𝑠 is the cost (word count) of sentence 𝑠, ℬ
is the desired summary size in words (budget), and 𝑓 is a summary
quality scoring set function, which assigns a single numeric score to a
summary 𝑆.

This combinatorial optimization task is NP-hard. However, near-
optimal performance can be guaranteed with a modified greedy algo-
rithm (Lin and Bilmes, 2010) that iteratively selects the sentence 𝑠 that
maximizes the ratio of quality function gain to scaled cost 𝑓 (𝑆∪𝑠)−𝑓 (𝑆)/𝑐𝑟

𝑠

(where 𝑆 is the current summary and 𝑟 ≥ 0 is a scaling factor).
In order for the performance guarantees to hold however, 𝑓 has to be

submodular and monotone non-decreasing. Our proposed 𝑓 is described
in Subsection 3.4.4.

3.4 our framework

We detail next each of the four modules in our architecture (shown
in Figure 3.1).

3.4.1 Text preprocessing

We adopt preprocessing steps tailored to the characteristics of ASR
transcriptions. Initial ellipsis, such as ’kay, ’til, and ’em, is replaced re-
ceptively by its complete form okay, until, and them. Acronyms, such as
T_V_, V_C_R_, L_C_D_, underlines are removed to make them com-
pact. Consecutive repeated unigrams and bigrams are reduced to sin-
gle terms. Specific ASR tags, such as {vocalsound}, {pause}, and {gap}
are filtered out. In addition, filler words, such as uh-huh, okay,well, and
by the way are also discarded. Consecutive stopwords at the beginning
and end of utterances are stripped. In the end, utterances that contain
less than 3 non-stopwords are pruned out. The surviving utterances
are used for the next steps.

3.4.2 Utterance community detection

The goal here is to cluster utterances into communities that should
be summarized by a common abstractive sentence.

We initially experimented with techniques capitalizing on word vec-
tors (see Subsection 2.1.3 formore details), such as 𝑘-means and hierar-
chical clustering based on the Euclidean distance or the Word Mover’s
Distance (Kusner et al., 2015). We also tried graph-based approaches,
such as community detection in a complete graph where nodes are
utterances and edges are weighted based on the aforementioned dis-
tances.

Best resultswere obtained, however, with a simple approach inwhich
utterances are projected into the vector space and assigned standard
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TF-IDF weights (see Subsection 2.1.2 for more details). Then, the di-
mensionality of the utterance-term matrix is reduced with Latent Se-
mantic Analysis (LSA), and finally, the 𝑘-means algorithm is applied.
Note that LSA is only used here, during the utterance community de-
tection phase, to remove noise and stabilize clustering. We do not use
a topic graph in our approach.

We think usingword embeddingswas not effective, because inmeet-
ing speech, as opposed to traditional documents, participants tend to
use the same term to refer to the same thing throughout the entire con-
versation, as noted by Riedhammer, Favre, and Hakkani-Tür (2010),
and as verified in practice. This is probably why, for clustering utter-
ances, capturing synonymy is counterproductive, as it artificially re-
duces the distance between every pair of utterances and blurs the pic-
ture.

3.4.3 Multi-sentence compression

The following steps are performed separately for each community.

Word importance scoring

From a processed version of the community (stemming and stop-
word removal), we construct anundirected, weightedword co-occurrence
network as described in Section 3.3. We use a sliding window of size
𝑊 = 6 not overspanning utterances. Note that stemming is performed
only here, and for the sole purpose of building the word co-occurrence
network.

We then compute the CoreRank numbers of the nodes as described
in Section 3.3.

We finally reweigh the CoreRank scores, indicative of word impor-
tance within a given community, with a quantity akin to an Inverse
Document Frequency, where communities serve as documents and the
full meeting as the collection. We thus obtain something equivalent to
the TW-IDF weighting scheme of Rousseau and Vazirgiannis (2013),
where the CoreRank scores are the term weights TW:

𝑇𝑊-𝐼𝐷𝐹(𝑡, 𝑑,𝐷) = 𝑇𝑊(𝑡, 𝑑) × 𝐼𝐷𝐹(𝑡,𝐷) (3.2)

where 𝑡 is a term belonging to community 𝑑, and 𝐷 is the set of all ut-
terance communities. We compute the IDF as 𝐼𝐷𝐹(𝑡,𝐷) = 1+ log|𝐷|/𝐷𝑡,
where |𝐷| is the number of communities and 𝐷𝑡 the number of commu-
nities containing 𝑡.

The intuition behind this reweighing scheme is that a term should be
considered important within a givenmeeting if it has a high CoreRank
scorewithin its community and if the number of communities inwhich
the term appears is relatively small. A detailed explanation of TW-IDF
is provided in Subsection 2.1.2.
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Figure 3.5 – Compressed sentence (in bold red) generated by our multi-
sentence compression graph (MSCG) for a 3-utterance commu-
nity from meeting IS1009b of the AMI corpus. Using Filippova
(2010)’s weighting and re-ranking scheme here would have se-
lected another path: design different remotes for different people bit
of it’s from their tend to for ti. Note that the compressed sentence
does not appear in the initial set of utterances, and is compact and
grammatical, despite the redundancy, transcription and segmen-
tation errors of the input. The abstractive and robust nature of the
MSCG makes it particularly well-suited to the meeting domain.

Word graph building

The backbone of the graph is laid out as a directed sequence of nodes
corresponding to the words in the first utterance, with special START
and END nodes at the beginning and at the end (see Figure 3.5). Edge
direction follows the natural flow of text. Words from the remaining
utterances are then iteratively added to the graph (between the START
and END nodes) based on the following rules:

1) if the word is a non-stopword, the word is mapped onto an ex-
isting node if it has the same lowercased form and the same part-of-



32 unsuperv i s ed ab stract i v e mee t ing summar i zat ion

speech tag 3. In case of multiple matches, we check the immediate
context (the preceding and following words in the utterance and the
neighboring nodes in the graph), andwe pick the nodewith the largest
context overlap or which has the greatest number of words already
mapped to it (when no overlap). When there is no match, we use
WordNet as described below.

2) if the word is a stopword and there is a match, it is mapped only
if there is an overlap of at least one non-stopword in the immediate
context. Otherwise, a new node is created.

Finally, note that any two words appearing within the same utterance
cannot be mapped to the same node. This ensures that every utterance
is a loopless path in the graph. Of course, there are many more paths
in the graphs than original utterances.

Use of WordNet

When the word to be mapped to the MSCG is a non-stopword, and
if there is no node in the graph that has the same lowercased form and
the same part-of-speech tag, we try to perform the mapping by using
WordNet in the following order:

(i) there is a node which is a synonym of the word (e.g., “price”
and “costs”). The word is mapped to that node, and the node is
relabeled with the word if the latter has a higher TW-IDF score.

(ii) there is a node which is a hypernym of the word (e.g., “dia-
mond” and “gemstone”). Theword ismapped to that node, and
the node is relabeled with the word if the latter has a higher TW-
IDF score.

(iii) there is a nodewhich shares a commonhypernymwith theword
(e.g., “red”,“blue” → “color”). If the product of the WordNet
path distance similarities of the common hypernym with the
node and theword exceeds a certain threshold, theword ismapped
to that node and the node is relabeled with the hypernym. A
completely new word might thus be introduced. We set its TW-
IDF score as the highest TW-IDF of the two words it replaces.
Whenmultiple nodes are eligible for mapping, we select the one
with greatest path distance similarity product.

(iv) there is a node which is in an entailment relation with the word
(e.g., “look” is entailed by “see”). The word is mapped to that
node, and the node is relabeled with the word if the latter has a
higher TW-IDF score.

In attempts i, ii, and iv above, if there is more than one candidate node,
we select the one with highest TW-IDF score. If all attempts above are
unsuccessful, a new node is created for the word.

3. We used NLTK’s averaged perceptron tagger, available at: http://www.nltk.
org/api/nltk.tag.html#module-nltk.tag.perceptron

http://www.nltk.org/api/nltk.tag.html#module-nltk.tag.perceptron
http://www.nltk.org/api/nltk.tag.html#module-nltk.tag.perceptron
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Edge weight assignment

Once the word graph is constructed, we assign weights to its edges
as:

𝑤′′′(𝑝𝑖, 𝑝𝑗) =
𝑤′(𝑝𝑖, 𝑝𝑗)
𝑤′′(𝑝𝑖, 𝑝𝑗)

(3.3)

where 𝑝𝑖 and 𝑝𝑗 are two neighbors in theMSCG. As detailed next, those
weights combine local co-occurrence statistics (numerator) with global ex-
terior knowledge (denominator). Note that the lower the weight of an
edge, the better.

Local co-occurrence statistics. We use Filippova (2010)’s formula:

𝑤′(𝑝𝑖, 𝑝𝑗) =
𝑓 (𝑝𝑖) + 𝑓 (𝑝𝑗)

∑𝑃∈𝐺′,𝑝𝑖,𝑝𝑗∈𝑃 diff(𝑃, 𝑝𝑖, 𝑝𝑗)−1 (3.4)

where 𝑓 (𝑝𝑖) is the number of words mapped to node 𝑝𝑖 in the MSCG
𝐺′, and diff(𝑃, 𝑝𝑖, 𝑝𝑗)−1 is the inverse of the distance between 𝑝𝑖 and 𝑝𝑗
in a path 𝑃 (in number of hops). This weighting function favors edges
between infrequent words that frequently appear close to each other
in the text (the lower, the better).

Global exterior knowledge. We introduce a second term based on the
Word Attraction Force score of Wang, Liu, and McDonald (2014):

𝑤′′(𝑝𝑖, 𝑝𝑗) =
𝑓 (𝑝𝑖) × 𝑓 (𝑝𝑗)

𝑑2𝑝𝑖,𝑝𝑗

(3.5)

where 𝑑𝑝𝑖,𝑝𝑗
is the Euclidean distance between the words mapped to 𝑝𝑖

and 𝑝𝑗 in a word embedding space 4. This component favors paths go-
ing through salient words that have high semantic similarity (the higher,
the better). The goal is to ensure readability of the compression, by
avoiding to generate a sentence jumping fromoneword to a completely
unrelated one.

Path re-ranking

As in Boudin and Morin (2013), we use a shortest weighted path al-
gorithm to find the 𝐾 paths between the START and END symbols having
the lowest cumulative edge weight:

𝑊(𝑃) =
|𝑃|−1
∑
𝑖=1

𝑤′′′(𝑝𝑖, 𝑝𝑖+1) (3.6)

4. GoogleNews vectors https://code.google.com/archive/p/word2vec

https://code.google.com/archive/p/word2vec
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Where |𝑃| is the number of nodes in the path. Paths having less than 𝑧
words or that do not contain a verb are filtered out (𝑧 is a tuning param-
eter). However, unlike in Boudin and Morin (2013), we rerank the 𝐾
best paths with the following novel weighting scheme (the lower, the
better), and the path with the lowest score is used as the compression:

score(𝑃) = 𝑊(𝑃)
|𝑃| × 𝐹(𝑃) × 𝐶(𝑃) × 𝐷(𝑃) (3.7)

The denominator takes into account the length of the path, and its flu-
ency (𝐹), coverage (𝐶), and diversity (𝐷). 𝐹, 𝐶, and 𝐷 are detailed in
what follows.

Fluency. We estimate the grammaticality of a path with an 𝑛-gram
language model. In our experiments, we used a trigram model 5:

𝐹(𝑃) =
∑|𝑃|

𝑖=1 log𝑃𝑟(𝑝𝑖|𝑝𝑖−1
𝑖−𝑛+1)

#𝑛-𝑔𝑟𝑎𝑚
(3.8)

where |𝑃| denote path length, and 𝑝𝑖 and #𝑛-𝑔𝑟𝑎𝑚 are respectively the
words and number of 𝑛-grams in the path.

Coverage. We reward the paths that visit important nouns, verbs and
adjectives:

𝐶(𝑃) =
∑𝑝𝑖∈𝑃 TW-IDF(𝑝𝑖)

#𝑝𝑖
(3.9)

where #𝑝𝑖 is the number of nouns, verbs and adjectives in the path. The
TW-IDF scores are computed as explained in Subsection 3.4.3.

Diversity. We cluster all words from the MSCG in the word embed-
ding space by applying the 𝑘-means algorithm. We then measure the
diversity of the vocabulary contained in a path as the number of unique
clusters visited by the path, normalized by the length of the path:

𝐷(𝑃) =
∑𝑘

𝑗=1 1∃𝑝𝑖∈𝑃|𝑝𝑖∈cluster𝑗

|𝑃| (3.10)

The graphical intuition for thismeasure is provided in Figure 3.6. Note
that we do not normalize 𝐷 by the total number of clusters (only by
path length) because 𝑘 is fixed for all candidate paths.

3.4.4 Budgeted submodular maximization

We apply the previous steps separately for all utterance communi-
ties, which results in a set 𝒮 of abstractive sentences (one for each
community). This set of sentences can already be considered to be
a summary of the meeting. However, it might exceed the maximum

5. CMUSphinx English LM: https://cmusphinx.github.io

https://cmusphinx.github.io
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Figure 3.6 – t-SNE visualization (Maaten and Hinton, 2008) of the Google
News vectors of the words in the utterance community shown
in Figure 3.5. Arrows join the words in the best compression
path shown in Figure 3.5. Movements in the embedding space, as
measured by the number of unique clusters covered by the path
(here, 6/11), provide a sense of the diversity of the compressed
sentence, as formalized in Equation 3.10.

size allowed, and still contain some redundancy or off-topic sections
unrelated to the general theme of the meeting (e.g., chit-chat).

Therefore, we design the following submodular and monotone non-
decreasing objective function:

𝑓 (𝑆) = ∑
𝑠𝑖∈𝑆

𝑛𝑠𝑖
𝑤𝑠𝑖

+ 𝜆
𝑘

∑
𝑗=1

1∃𝑠𝑖∈𝑆|𝑠𝑖∈𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑗 (3.11)

where 𝜆 ≥ 0 is the trade-off parameter, 𝑛𝑠𝑖
is the number of occurrences

of word 𝑠𝑖 in 𝑆, and 𝑤𝑠𝑖
is the CoreRank score of 𝑠𝑖.

Then, as explained in Section 3.3, we obtain a near-optimal subset of
abstractive sentences by maximizing 𝑓 with a greedy algorithm. Cor-
eRank scores and clusters are found as previously described, except
that this time they are obtained from the full processed meeting tran-
scription rather than from a single utterance community.

3.5 e x p er imental s e tup

3.5.1 Datasets

We conducted experiments on the widely-used AMI (McCowan et
al., 2005) and ICSI (Janin et al., 2003) benchmark datasets (see Sub-
section 2.3 for more information). We used the traditional test sets of
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20 and 6 meetings respectively for the AMI and ICSI corpora (Ried-
hammer et al., 2008). Each meeting in the AMI test set is associated
with a human abstractive summary of 290 words on average, whereas
eachmeeting in the ICSI test set is associated with 3 human abstractive
summaries of respective average sizes 220, 220 and 670 words.

For parameter tuning, we constructed development sets of 47 and 25
meetings, respectively for AMI and ICSI, by randomly sampling from
the training sets. The word error rate of the ASR transcriptions is re-
spectively of 36% and 37% for AMI and ICSI.

3.5.2 Baselines

We compared our system against 7 baselines listed below. Note that
preprocessing was exactly the same for our system and all baselines.

— Random. A basic baseline recommended by Riedhammer et al.
(2008) to ease cross-study comparison. This system randomly se-
lects utterances without replacement from the transcription until
the budget is violated. To account for stochasticity, we report scores
averaged over 30 runs.

— Longest Greedy. A basic baseline recommended by Riedhammer
et al. (2008) to ease cross-study comparison. The longest remaining
utterance is selected at each step from the transcription until the
summary size constraint is satisfied.

— TextRank (Mihalcea and Tarau, 2004). Utterances within the tran-
scription are represented as nodes in an undirected complete graph,
and edge weights are assigned based on lexical similarity between
utterances. To provide a summary, the top nodes according to the
weighted PageRank algorithm (Page et al., 1999) are selected. We
used a publicly available implementation 6.

— ClusterRank (Garg et al., 2009). This system is an extension of Tex-
tRank tomeeting summarization. Firstly, utterances are segmented
into clusters. A complete graph is built from the clusters. Then,
a score is assigned to each utterance based on both the PageRank
score of the cluster it belongs to and its cosine similarity with the
cluster centroid. In the end, a greedy selection strategy is applied
to build the summary out of the highest scoring utterances. Since
the authors did notmake their code publicly available andwere not
able to share it privately, we wrote our own implementation.

— CoreRank submodular & PageRank submodular (Tixier, Meladi-
anos, and Vazirgiannis, 2017). These two extractive baselines imple-
ment the last step of our pipeline (see Subsection 3.4.4). That is,
budgeted submodular maximization is applied directly on the full
list of utterances. As can be inferred from their names, the only dif-

6. https://github.com/summanlp/textrank

https://github.com/summanlp/textrank


3.5 ex p er imental s e tup 37

ference between those two baselines is that the first uses PageRank
scores, whereas the second uses CoreRank scores.

— Oracle. This system is the same as the Random baseline, but in-
stead of sampling utterances from the ASR transcription, it draws
from the human extractive summaries. Annotators put those sum-
maries together by selecting the best utterances from the entireman-
ual transcription. Scores were averaged over 30 runs due to the
randomness of the procedure.

In addition to the baselines above, we included in our comparison 3
variants of our system using differentMSCGs: Our System (Baseline)
uses the original MSCG of Filippova (2010), Our System (KeyRank)
uses that of Boudin andMorin (2013), andOur System (FluCovRank)
that of Mehdad et al. (2013). Details about each approach were given
in Section 3.3.

3.5.3 Parameter tuning

For Our System and each of its variants, we conducted a grid search
on the development sets of each corpus, for fixed summary sizes of
350 and 450 words (AMI and ICSI). We searched the following param-
eters:

— 𝑛: number of utterance communities (see Subsection 3.4.2). We
tested values of 𝑛 ranging from 20 to 60, with steps of 5. This pa-
rameter controls how much abstractive should the summary be.
If all utterances are assigned to their own singleton community,
the MSCG is of no utility, and our framework is extractive. It be-
comes more andmore abstractive as the number of communities
decreases.

— 𝑧: minimum path length (see Subsection 3.4.3). We searched
values in the range [6, 16] with steps of 2. If a path is shorter
than a certain minimum number of words, it often corresponds
to an invalid sentence, and should thereby be filtered out.

— 𝜆 and 𝑟, the trade-off parameter and the scaling factor (see Sub-
section 3.4.4). We searched [0, 1] and [0, 2] (respectively) with
steps of 0.1. The parameter 𝜆 plays a regularization role favoring
diversity. The scaling factor makes sure the quality function gain
and utterance cost are comparable.

The best parameter values for each corpus are summarized in Table
3.1. 𝜆 is mostly non-zero, indicating that it is necessary to include a reg-
ularization term in the submodular function. In some cases though, 𝑟
is equal to zero, which means that utterance costs are not involved in
the greedy decision heuristic. These observations contradict the con-
clusion of Lin (2012) that 𝑟 = 0 cannot give best results.

Apart from the tuning parameters, we set the number of LSA dimen-
sions to 30 and 60 (resp. on AMI and ISCI). The small number of LSA
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System AMI ICSI
Our System 50, 8, (0.7, 0.5) 40, 14, (0.0, 0.0)

Our System (Baseline) 50, 12, (0.3, 0.5) 45, 14, (0.1, 0.0)
Our System (KeyRank) 50, 10, (0.2, 0.9) 45, 12, (0.3, 0.4)

Our System (FluCovRank) 35, 6, (0.4, 1.0) 50, 10, (0.2, 0.3)

Table 3.1 – Optimal parameter values 𝑛, 𝑧, (𝜆, 𝑟).

dimensions retained can be explained by the fact that theAMI and ICSI
transcriptions feature 532 and 1126 unique words on average, which
is much smaller than traditional documents. This is due to relatively
small meeting duration, and to the fact that participants tend to stick
to the same terms throughout the entire conversation. For the 𝑘-means
algorithm, 𝑘 was set equal to the minimum path length 𝑧 when doing
MSCG path re-ranking (see Equation 3.10), and to 60 when generating
the final summary (see Equation 3.11).

FollowingBoudin andMorin (2013), the number of shortestweighted
paths 𝐾 was set to 200, which is greater than the 𝐾 = 100 used by Filip-
pova (2010). Increasing 𝐾 from 100 improves performancewith dimin-
ishing returns, but significantly increases complexity. We empirically
found 200 to be a good trade-off.

3.6 r e sult s and int erpr e tat ion

Metrics. We evaluated performance with the widely-used ROUGE-1,
ROUGE-2 and ROUGE-SU4 metrics (Lin, 2004). These metrics are
respectively based on unigram, bigram, and unigramplus skip-bigram
overlap with maximum skip distance of 4, and have been shown to
be highly correlated with human evaluations (Lin, 2004). ROUGE-
2 scores can be seen as a measure of summary readability (Lin and
Hovy, 2003; Ganesan, Zhai, and Han, 2010). ROUGE-SU4 does not
require consecutivematches but is still sensitive toword order. Further
explanation of ROUGE is available in Subsection 2.2.2.

Macro-averaged results for summaries generated from automatic tran-
scriptions can be seen in Figure 3.7 and Table 3.2. Table 3.2 provides
detailed comparisons over the fixed budgets that we used for parame-
ter tuning, while Figure 3.7 shows the performance of the models for
budgets ranging from 150 to 500 words.

ROUGE-1. Our systems outperform all baselines on AMI (including
Oracle) and all baselines on ICSI (except Oracle). Specifically, Our Sys-
tem is best on ICSI, whileOur System (KeyRank) is superior onAMI.We
can also observe on Figure 3.7 that our systems are consistently better
throughout the different summary sizes, even though their parameters
were tuned for specific sizes only. This shows that the best parameter
values are quite robust across the entire budget range.
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Figure 3.7 – ROUGE-1 F-1 scores for various budgets (ASR transcriptions).
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Figure 3.8 – ROUGE-1 F-1 scores for various budgets (manual transcrip-
tions).

ROUGE-2. Again, our systems (except Our System (Baseline)) outper-
form all baselines, except Oracle. In addition, Our System and Our Sys-
tem (FluCovRank) consistently improve onOur System (Baseline), which
proves that the novel components we introduce improve summary flu-
ency.

ROUGE-SU4. ROUGE-SU4 was used to measure the amount of in-
order word pairs overlapping. Our systems are competitive with all
baselines, including Oracle. Like with ROUGE-1, Our System is better
than Our System (KeyRank) on ICSI, whereas the opposite is true on
AMI.

General remarks.
— The summaries of all systems exceptOraclewere generated from

noisy ASR transcriptions, but were compared against human ab-
stractive summaries. ROUGE being based on word overlap, it
makes it very difficult to reach very high scores, because many
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words in the ground truth summaries do not appear in the tran-
scriptions at all.

— The scores of all systems are lower on ICSI than onAMI. This can
be explained by the fact that on ICSI, the system summaries have
to jointly match (at the time of parameter tuning) 3 human ab-
stractive summaries of different content and size, which is much
more difficult than matching a single summary.

— Our framework is very competitive to Oracle, which is notable
since the latter has direct access to the human extractive sum-
maries. Note thatOracle does not reach very high ROUGE scores
because the overlap between the human extractive and abstrac-
tive summaries is low (19% and 29%, respectively on AMI and
ICSI test sets).

In addition to the above results obtained on automatic transcriptions,
the same information for summaries generated from manual transcrip-
tions is provided in Figure 3.8 and Table 3.3. Finally, summary exam-
ples are available in Section 3.8.

3.7 conclus ion and future work

Our framework combines the strengths of 6 approaches that had pre-
viously been applied to 3 different tasks (keyword extraction, multi-
sentence compression, and summarization) into a unified, fully unsu-
pervised summarization framework, and introduces some novel com-
ponents. Rigorous evaluation on the AMI and ICSI corpora shows that
we reach state-of-the-art performance, and generate reasonably gram-
matical abstractive summaries despite taking noisy utterances as input
and not relying on any annotations or training data. Finally, thanks to
its fully unsupervised nature, our method is applicable to other lan-
guages than English in an almost out-of-the-box manner.

Our frameworkwas developed for themeeting domain. Indeed, our
generative component, themulti-sentence compression graph (MSCG),
needs redundancy to performwell. Such redundancy is typically present
in meeting speech but not in traditional documents. In addition, the
MSCG is by design robust to noise, and our custom path re-ranking
strategy, based on graph degeneracy, makes it even more robust to
noise. As a result, our framework is advantaged on ASR input. Finally,
we use a language model to favor fluent paths, which is crucial when
working with (meeting) speech but not that important when dealing
with well-formed input.

Future efforts should be dedicated to improving the community de-
tection phase (we introduce a novel approach to this task in Chapter
5) and generating more abstractive sentences, probably by harnessing
deep learning. However, the lack of large training sets for the meeting
domain is an obstacle to the use of neural approaches.
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3.8 example summar i e s

Exampleswere generated from themanual transcriptions of the TS3003c
AMI meeting. Note that our system can also be interactively tested at:
http://datascience.open-paas.org/abs_summ_app.

Reference Summary (254 words)

The project manager opened the meeting and recapped the decisions made in
the previous meeting.
The marketing expert discussed his personal preferences for the design of the re-
mote and presented the results of trend-watching reports, which indicated that
there is a need for products which are fancy, innovative, easy to use, in dark col-
ors, in recognizable shapes, and in a familiar material like wood.
The user interface designer discussed the option to include speech recognition
and which functions to include on the remote.
The industrial designer discussed which options he preferred for the remote in
terms of energy sources, casing, case supplements, buttons, and chips.
The team then discussed and made decisions regarding energy sources, speech
recognition, LCD screens, chips, case materials and colors, case shape and orien-
tation, and button orientation.
The team members will look at the corporate website.
The user interface designer will continue with what he has been working on.
The industrial designer and user interface designer will work together.
The remote will have a docking station.
The remotewill use a conventional battery and a docking stationwhich recharges
the battery.
The remote will use an advanced chip.
The remote will have changeable case covers.
The case covers will be available in wood or plastic.
The case will be single curved.
Whether to use kinetic energy or a conventional battery with a docking station
which recharges the remote.
Whether to implement an LCD screen on the remote.
Choosing between an LCD screen or speech recognition.
Using wood for the case.

Our System (250 words)

attract elderly people can use the remote control
changing channels button on the right side that would certainly yield great op-
tions for the design of the remote
personally i dont think that older people like to shake your remote control
imagine that the remote control and the docking station
remote control have to lay in your hand and right hand users
finding an attractive way to control the remote control
casing the manufacturing department can deliver a flat casing single or double
curved casing
top of that the lcd screen would help in making the remote control easier
increase the price for which were selling our remote control
remote controls are using a onoff button still on the top
apply remote control on which you can apply different case covers
button on your docking station which you can push and then it starts beeping

http://datascience.open-paas.org/abs_summ_app
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surveys have indicated that especially wood is the material for older people
mobile phones so like the nokia mobile phones when you can change the case
greyblack colour for people prefer dark colours
brings us to the discussion about our concepts
docking station and small screen would be our main points of interest
industrial designer and user interface designer are going to work
innovativeness was about half of half as important as the fancy design
efficient and cheaper to put it in the docking station
case supplement and the buttons it really depends on the designer
start by choosing a case
deployed some trendwatchers to milan

Our System (Baseline) (250 words)

apply remote controls on which you can apply different case for his remote con-
trol
changing channels and changing volume button on both sides that would cer-
tainly yield great options for the design of the remote
personally i dont think that older people like to shake their remote control
finding an attractive way to control the remote control the i found some some-
thing about speech recognition
imagine that the remote control and the docking station should be telephone-
shaped
casing the manufacturing department can deliver a flat casing single or double
curved casing
remote control have to lay in your hand and right hand users
remote controls are using a onoff button over in this corner
woodlike for the more exclusive people can use the remote control
heard our industrial designer talk about flat single curved and double curved
innovativeness this means functions which are not featured in other remote con-
trol
button on your docking station which you can push and then it starts beeping
greyblack colour for people prefer dark colours
docking station and small screen would be our main points of interest
special button for subtitles for people which c f who cant read small subtitles
pretty big influence on production price and image unless we would start two
product lines
surveys have indicated that especially wood is the material for older people
mobile phones so like the nokia mobile phones when you can change the case
case the supplement and the buttons it really depends on the designer
buttons

Our System (KeyRank) (250 words)

changing case covers
prefer a design where the remote control and the docking station
greyblack colour for people prefer dark colours
remote controls are using a onoff button over in this corner
requirements are teletext docking station and small screen with some extras that
button information
apply remote controls on which you can apply different case covers
woodlike for the more exclusive people can use the remote control
casing the manufacturing department can deliver a flat casing single or double
curved casing
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remote control have to lay in your hand and right hand users
asked if w they would if people would pay more for speech recognition function
would not make the remote control
start by choosing a case
innovativeness this means functions which are not featured in other remote con-
trols
top of that the lcd screen would help in making the remote control easier
changing channels and changing volume button on both sides that would cer-
tainly yield great options for the design of the remote
personally i dont think that older remotes are flat board smartboard
button on your docking station which you can push and then it starts beeping
case supplement and the buttons it really depends on the designer
surveys have indicated that especially wood is the material for older people will
recognise the button
speak speech recognition and a special button for subtitles for people which c f
who cant read small subtitles
innovativeness was about half as important as the fancy design
pretty big influence

Our System (FluCovRank) (250 words)

elderly people can use the remote control
remote controls are using a onoff button still on the top
general idea of the concepts and the material for older people like to shake your
remote control
docking station and small screen would be our main points of interest
industrial designer and user interface designer are going to work
casing the manufacturing department can deliver single curved
changing channels and changing volume button on both side that would cer-
tainly yield great options for the design of the remote
button on your docking station which you can push and then it starts beeping
imagine that the remote control will be standing up straight in the docking sta-
tion will help them give the remote
asked if w they would if people would pay more for speech recognition in a re-
mote control you can call it and it gives an sig signal
research about bi large lcd sh display for for displaying the the functions of the
buttons
case the supplement and the buttons it really depends on the designer
pointed out earlier that a lot of remotes rsi
innovativeness was about half of half as important as the fancy design
push on the button for subtitles for peoplewhich c f who cant read small subtitles
efficient and cheaper to put it in the docking station could be one of the market-
ing issues
difficult to handle and to get in the right shape to older people
talk about the energy source is rather fancy





4
D IALOGUE ACT CLAS S I F I CAT ION

In this chapter, we dealwith the task ofDialogueAct (DA) classifica-
tion, whose goal is to assign each utterance a label to represent its
communicative intention. This task is considered as the first step-

ping stone for further discourse analysis and understanding. Recent
work approaches the task as a sequence labeling problem, using neural
network models coupled with a Conditional Random Field (CRF) as
the last layer. CRF models the conditional probability of the target DA
label sequence given the input utterance sequence. However, the task
involves another important input sequence, that of speakers, which
is ignored by previous work. To address this limitation, this work pro-
poses a simplemodification of the CRF layer that takes speaker-change
into account. Experiments on the SwDA corpus show that our modi-
fied CRF layer outperforms the original one, with very wide margins
for some DA labels. Further, visualizations demonstrate that our CRF
layer can learn meaningful, sophisticated transition patterns between
DA label pairs conditioned on speaker-change in an end-to-end way.
Code is publicly available 1.

4.1 in troduct ion

A conversation can be seen as a sequence of utterances. The task of
dialogue act classification aims at assigning to each utterance a DA la-
bel to represent its communicative intention. Dialogue acts originate
from the notion of illocutionary force (speaker’s intention in delivering
an utterance) introduced back in the theory of Speech Act (Austin,
1962; Searle, 1969). DAs are assigned based on a combination of syntac-
tic, semantic, and pragmatic criteria (Stolcke et al., 2000). As shown in
Table 4.1, some examples of DAs include stating, questioning, answer-
ing, etc. The full set ofDA labels is predefined. Anumber of annotation
schemes have been developed, varying from domain-specific, such as
VERBMOBIL (Alexanderssony et al., 1997), to domain-independent,
such as DAMSL (Allen and Core, 1997; Core and Allen, 1997) and Di-
AML 2 (Bunt et al., 2010, 2012).

Automatically detecting DA labels is an essential step towards de-
scribing the discourse structure of conversation (Jurafsky, Shriberg,
and Biasca, 1997). DAs are very useful annotations to a large variety
of spoken language understanding tasks, such as utterance clustering

1. https://bitbucket.org/guokan_shang/da-classification
2. accepted to be included in the ISO 24617-2 standard. https://www.iso.org/

standard/76443.html
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Change Speaker Utterance DA
- B Of course I use, sd

True A <laughter>. x
True B credit cards. +
False B I have a couple of credit cards sd
True A Yeah. b
True B and, uh, use them. +
True A Uh-huh, b
False A do you use them a lot? qy
True B Oh, we try not to. ng

Table 4.1 – Fragment from SwDA conversation sw3332. Statement-non-
opinion (sd), Non-verbal (x), Interruption (+), Acknowl-
edge/Backchannel (b), Yes-No-Question (qy), Negative non-no
answers (ng).

(Shang et al., 2019), real-time information retrieval (Meladianos et al.,
2017), conversational agents (Higashinaka et al., 2014; Ahmadvand,
Choi, and Agichtein, 2019), and summarization (Shang et al., 2018).

It is difficult to predict the DA of a single utterance without having
access to the other utterances in the context. For instance, for an utter-
ance such as “Yeah”, it is hard to tell whether the associated DA should
be ‘Agreement’, ‘Yes answer’ or ‘Backchannel’. Plus, different labels
have different transition probabilities to other labels. E.g., an initial
greeting DA is very likely to be followed by another greeting DA. Like-
wise, a question DA is more likely to be followed by an answer DA.
To summarize, it is necessary for a DA classification model to capture
dependencies both at the utterance level and at the label level. Recent
works (Li and Wu, 2016; Liu et al., 2017; Tran, Zukerman, and Haf-
fari, 2017; Chen et al., 2018; Kumar et al., 2018; Li et al., 2019b; Raheja
and Tetreault, 2019) treat DA classification as a sequence labeling prob-
lem. The BiLSTM-CRFmodel (Huang, Xu, and Yu, 2015; Lample et al.,
2016), originally introduced for the tasks of POS tagging, chunking
and named entity recognition, is the most widely used architecture. In
it, a bidirectional recurrent neural network with LSTM cells is first ap-
plied to capture the dependencies among consecutive utterances, and
then, a Conditional Random Field (CRF) layer is used to capture the
dependencies among consecutive DA labels.

CRF is a discriminative probabilistic graphical framework (Koller
and Friedman, 2009; Sutton, McCallum, et al., 2012) used to label se-
quences (Lafferty, McCallum, and Pereira, 2001). It models the condi-
tional probability of a target label sequence given an input sequence.
General CRF can essentially model any kind of graphical structure to
capture arbitrary dependencies among output variables. For NLP se-
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quence labeling tasks, linear chain CRF is the most common variant.
The labels are arranged in a linear chain, i.e., only neighboring labels
are dependent (first-order Markov assumption). The BiLSTM-CRF ar-
chitecture employs a linear chain CRF. Hence, for brevity, in the rest
of this chapter, the term CRF is short for linear chain CRF.

Recently, neural versions of the CRF have been developedmainly for
NLP sequence labeling tasks (Collobert et al., 2011; Huang, Xu, and Yu,
2015; Lample et al., 2016). While traditional CRF requires defining a
potentially large set of handcrafted feature functions (each weighted
with a parameter to be trained), neural CRF has only two parameter-
ized feature functions (emission and transition) that are trained with
the other parameters of the network in an end-to-end fashion.

4.2 mot i vat ion

Most sequence labeling tasks in NLP, such as POS tagging, chunk-
ing, and named entity recognition, involve only two sequences: in-
put and target. In DA classification however, we have access to an
additional input sequence, that of speaker-identifiers. This extra in-
put could, in principle, greatly improve DA prediction. Indeed, re-
search on turnmanagement (Sacks, Schegloff, and Jefferson, 1974) has
shown that dialogue participants do not start or stop speaking arbitrar-
ily, but follow an underlying turn-taking system to occupy or release
the speaker role (Petukhova and Bunt, 2009). For instance, the last two
utterances in Table 4.1 illustrate a non-arbitrary change of speakers,
following a turn-allocation action (here, a question). In this conversa-
tional situation, speaker B has to take the turn, to respond to speaker
A. To sum up, the sequences of DAs and speakers are tightly intercon-
nected.

However, state-of-the-artDAclassificationmodels ignore the sequence
of speaker-identifiers (Chen et al., 2018; Kumar et al., 2018; Li et al.,
2019b; Raheja and Tetreault, 2019). This is a clear limitation. To ad-
dress this limitation, we propose in this work a simple modification
of the CRF layer where the label transition matrix is conditioned on
speaker-change. We evaluate ourmodifiedCRF layerwithin the BiLSTM-
CRF architecture, and find that on the SwDA corpus, it improves per-
formance compared to the original CRF. Furthermore, visualizations
demonstrate that sophisticated transition patterns between DA label
pairs, conditioned on speaker-change, can be learned in an end-to-end
way.

4.3 r e lat ed work

In this section, we first introduce the two major DA classification
approaches, and then focus on previous work involving the use of
BiLSTM-CRF and speaker information.
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Multi-class classification. In this first approach, consecutive DA la-
bels are considered to be independent. The DA label of each utter-
ance is predicted in isolation by a classifier such as, e.g., naive Bayes
(Grau et al., 2004), Maxent (Ang, Liu, and Shriberg, 2005; Venkatara-
man et al., 2005), or SVM (Liu, 2006). Since the first application of
neural networks to DA classification by Ries (1999), deep learning has
shown promising results even with some simple architectures (Khan-
pour, Guntakandla, and Nielsen, 2016; Shen and Lee, 2016). More re-
cent work developed more advanced models, and started taking into
account the dependencies among consecutive utterances (Kalchbren-
ner and Blunsom, 2013; Lee and Dernoncourt, 2016; Ortega and Vu,
2017; Bothe et al., 2018). For example, in Bothe et al. (2018), the repre-
sentations of the current utterance and the three preceding utterances
are fed into a RNN, and the last annotation is used to predict the DA
label of the current utterance.

Sequence labeling. In the second approach, the DA labels for all the
utterances in the conversation are classified together. Traditional work
uses statistical approaches such as Hidden Markov Models (HMM)
(Stolcke et al., 2000; Surendran and Levow, 2006; Tavafi et al., 2013)
and CRFs (Lendvai and Geertzen, 2007; Zimmermann, 2009; Kim,
Cavedon, and Baldwin, 2010) with handcrafted features. In HMM
based approaches, the DA labels are hidden states and utterances are
observations emanating from these states. The hidden states are evolv-
ing according to a discourse grammar, which essentially is an n-gram
languagemodel trained onDA label sequences. Following advances in
deep learning, neural sequence labeling architectures (Huang, Xu, and
Yu, 2015; Reimers and Gurevych, 2017; Yang, Liang, and Zhang, 2018;
Cui and Zhang, 2019; Chapuis et al., 2020; Colombo et al., 2020) have
set new state-of-the-art performance. Two major architectures have
been tested: BiLSTM-Softmax (Li and Wu, 2016; Liu et al., 2017; Tran,
Zukerman, and Haffari, 2017) and BiLSTM-CRF. This study focuses
on the BiLSTM-CRF architecture.

BiLSTM-CRF. Kumar et al. (2018)were the first to introduce the BiLSTM-
CRF architecture for DA classification. Their model is hierarchical and
consists of two levels, where at level 1, the text of each utterance is sep-
arately encoded by a shared bidirectional LSTM (BiLSTM) with last-
pooling, resulting in a sequence of vectors. At level 2, that sequence is
passed through another BiLSTM topped by a CRF layer. At test time,
the optimal output label sequence is retrieved from the trained model
by Viterbi algorithm (Viterbi, 1967). Chen et al. (2018) and Raheja and
Tetreault (2019) improved on the previous model by adding different
attention mechanisms. Li et al. (2019b) discovered that performing
topic classification as an auxiliary task, can assist in predicting DA la-
bels. The topic of each utterance is automatically determined using La-
tentDirichletAllocation (Blei, Ng, and Jordan, 2003). Theirmodel con-
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sists of two BiLSTM-CRF architectures for predicting simultaneously
the target DA label sequence and the target topic label sequence. This
model represents the state-of-the-art in DA classification.

Speaker information. There are only a few previous works that con-
sider the sequence of speaker-identifiers for DA classification. In Bothe
et al. (2018), the utterance representation is the concatenation of the
one-hot encoded speaker-identifier, e.g., A as [1, 0] and B as [0, 1],
with the output of the RNN-based character-level utterance encoder.
By contrast, Li and Wu (2016) and Liu et al. (2017) choose to con-
catenate the speaker-change vector with the representation obtained
via their CNN-based and RNN-based word-level utterance encoders.
Speaker-change is binary as shown in Table 4.1, obtained by checking
if the current utterance is from the same or different speaker as the pre-
vious one. Venkataraman et al. (2005) also include speaker-change as
one of the handcrafted features for their Maxent classifier.

Apart from the naive concatenation approaches described above, Kalch-
brenner and Blunsom (2013) proposed to let the recurrent and output
weights of the RNN cell be conditioned on speaker-identifier, i.e., a
speaker-aware RNN cell. Stolcke et al. (2000) proposed to train dif-
ferent discourse grammars for different speakers, to guide DA label
transitions in HMM.

4.4 model and our contr i but ion

We first describe the general BiLSTM-CRF model for DA classifica-
tion, shown in Figure 4.1. Then, in the second subsection, we present
our modification of the CRF layer that takes speaker-change into ac-
count.

4.4.1 BiLSTM-CRF model

Notation. Let us denote by {(x𝑡, 𝑦𝑡)}𝑇
𝑡=1 a conversation of length𝑇. 𝑋 =

{x𝑡}𝑇
𝑡=1 is the sequence of utterances, where each utterance x𝑡 = {𝑥𝑡

𝑛}𝑁
𝑛=1

is itself a sequence of words of length 𝑁. 𝑌 = {𝑦𝑡}𝑇
𝑡=1 denotes the target

sequence, where 𝑦𝑡 ∈ 𝒴 is the set of all possible DA labels of size |𝒴| =
𝐾. We use 𝑦𝑡 to denote the label and its integer index interchangeably.

Utterance encoder. Each utterance is separately encoded by a shared
forward RNNwith LSTM cells. Only the last annotation u𝑡

𝑁 is retained
(last pooling). We are left with a sequence of utterance embeddings
{u𝑡}𝑇

𝑡=1.

BiLSTM layer. The sequence of utterance embeddings {u𝑡}𝑇
𝑡=1 is then

passed on to a bidirectional LSTM, returning the sequence of conversation-
level utterance representations {v𝑡}𝑇

𝑡=1.
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Figure 4.1 – BiLSTM-CRF, for an example with {u𝑡}𝑇=4
𝑡=1 (utterance embed-

dings) as input and 𝑄,𝐴,𝑆,𝑆 (DA labels) as target. Three pos-
sible labels {𝑄,𝐴,𝑆} stand for Question, Answer, and Statement,
respectively.

CRF layer. v𝑡 can already be used to predict locally the label at each
time step in isolation, through a dense layer with softmax activation,
which results in the BiLSTM-Softmax architecture. However thismight
lead to a non-optimal global solution, if we consider the output DA la-
bel sequence as a whole.

On the other hand, CRF models the conditional probability 𝑃(𝑌|𝑋)
of an entire target sequence 𝑌 given an entire input sequence 𝑋. Thus,
it guarantees an optimal global solution, under the first order Markov
assumption. More precisely:

𝑃(𝑌|𝑋) = exp(𝜓(𝑋,𝑌))
∑𝑌̃ exp(𝜓(𝑋, 𝑌̃))

(4.1)

where 𝜓(𝑋,𝑌) is a feature function that assigns a path score to the la-
bel sequence 𝑌, giving 𝑋. Then, a softmax function is used to yield
the conditional probability, where 𝑌̃ denotes one of all possible label
sequences (paths).

𝜓(𝑋,𝑌) is defined as the sum of emission scores (or state scores) and
transition scores over all time steps (Morris and Fosler-Lussier, 2006;
Chen and Moschitti, 2019):

𝜓(𝑋,𝑌) =
𝑇

∑
𝑡=1

ℎ(𝑦𝑡,𝑋) +
𝑇−1
∑
𝑡=1

𝑔(𝑦𝑡, 𝑦𝑡+1) (4.2)

Emission (state) scores are assigned to the dashed top-down edges
(nodes) in Figure 4.1, computed as follows:

ℎ(𝑦𝑡,𝑋) = (Wv𝑡 + b)[𝑦𝑡] (4.3)
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where the conversation-level utterance representation v𝑡 is converted
into a vector of size 𝐾 and [𝑦𝑡] denotes the element at index 𝑦𝑡. Higher
values of ℎ(𝑦𝑡,𝑋) indicate that the model is more confident in predict-
ing the output label 𝑦𝑡 at time step 𝑡.
Transition scores are assigned to the solid left-to-right edges in Figure
4.1, computed as follows:

𝑔(𝑦𝑡, 𝑦𝑡+1) = G[𝑦𝑡, 𝑦𝑡+1] (4.4)

where G is the label transition matrix of size 𝐾 × 𝐾. E.g, the element
G[𝑦𝑡, 𝑦𝑡+1] is the transition score from label 𝑦𝑡 to label 𝑦𝑡+1. Note that
the transition matrix is shared across all time steps.

The CRF layer is parameterized by W, b, and G. To learn these pa-
rameters and those of the previous layers, maximum likelihood esti-
mation is used. For a training set of 𝑀 conversations, the loss can be
written as:

ℒ =
𝑀
∑
𝑚=1

− log𝑃(𝑌𝑚|𝑋𝑚) (4.5)

At test time, the optimal output label sequence, i.e., 𝑌∗ = argmax𝑌̃ 𝑃(𝑌̃|𝑋)
for unseen 𝑋, is obtained with the Viterbi decoding algorithm (Viterbi,
1967). Due to theMarkov property of the linear chain CRF, the compu-
tations of Viterbi algorithm and the normalization term in Equation 4.1
can be broken down into a series of sub-problems over time in a recur-
sive manner, which are solved via dynamic programming (Bellman,
1966), with polynomial complexity 𝒪(𝑇𝐾2).

4.4.2 Our contribution

Given the sequence of speaker-identifiers 𝑆 = {𝑠𝑡}𝑇
𝑡=1, we can in-

stantly derive the sequence of speaker-changes 𝑍 = {𝑧𝑡,𝑡+1}𝑇−1
𝑡=1 by com-

paring neighbors. E.g., 𝑧2,3 = 0 means the speaker does not change
from time 𝑡 = 2 to 𝑡 = 3.

We extend the original CRF so that it considers as additional input,
the sequence 𝑍. That is, CRF now models 𝑃(𝑌|𝑋,𝑍) instead of just
𝑃(𝑌|𝑋). In other words, the prediction of the DA label sequence is now
conditioned both on the utterance sequence and the speaker-change
sequence. Specifically, transition scores in our modified CRF layer are
computed as follows:

𝑔(𝑦𝑡, 𝑦𝑡+1, 𝑧𝑡,𝑡+1) =(1 − 𝑧𝑡,𝑡+1) ∗ G0[𝑦𝑡, 𝑦𝑡+1]+
𝑧𝑡,𝑡+1 ∗ G1[𝑦𝑡, 𝑦𝑡+1] (4.6)

whereG0 andG1 are label transitionmatrices of size 𝐾×𝐾, correspond-
ing respectively to the “speaker unchanged” and “speaker changed”
cases.
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Figure 4.2 – Counts and frequencies of the 10 most represented DA labels in
the SwDA dataset.

4.5 ex p er imental s e tup

Dataset. We experiment on the widely-used SwDA 3 (Switchboard Di-
alogue Act) dataset (Jurafsky, Shriberg, and Biasca, 1997; Stolcke et
al., 2000). This corpus contains telephone conversations recorded be-
tween two randomly selected speakers talking about one of various
general topics (air pollution, music, football, etc.). In this dataset, ut-
terances are annotated with 42 mutually exclusive DA labels, based
on the SWBD-DAMSL annotation scheme (Jurafsky, Shriberg, and Bi-
asca, 1997). Inter-annotator agreement is 84%. The frequency of the
10 most represented DA labels are illustrated in Figure 4.2. We can see
that labels are highly imbalanced and follow a long-tailed distribution.
Detailed statistics for all 42 labels are provided in Table 4.2.

We adopt the same training, validation and testing partition as pre-
vious work (Lee and Dernoncourt, 2016) 4, consisting of 1003, 112, and
19 conversations, respectively.

A note about the ‘+’ tag. The ‘+’ tag, as shown in Table 4.1, accounts
for 8.1% of the total annotations, but is not part of the default label
set. That tag is used to mark the remaining parts of an utterance that
has been interrupted by the other speaker. While most of the previous
works did not predict, or even mention this tag, some efforts consid-
ered it as a 43𝑟𝑑 DA label and predicted it (Lee and Dernoncourt, 2016;
Raheja and Tetreault, 2019).

In thiswork, we followed the approach of (Webb, Hepple, andWilks,
2005; Milajevs and Purver, 2014; Kim et al., 2017), and used the ‘+’ tag
to reconnect, bottom-up, all the parts of an interrupted utterance to-
gether. E.g., in Table 4.1, the parts “Of course I use,” and “credit
cards.”, uttered by speaker B, are reconnected into “Of course I use,
credit cards.”, which becomes the new first utterance. It is followed

3. https://github.com/cgpotts/swda
4. https://github.com/Franck-Dernoncourt/naacl2016

https://github.com/cgpotts/swda
https://github.com/Franck-Dernoncourt/naacl2016
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Dialogue Act (label) count frequency Dialogue Act (label) count frequency

Statement-non-opinion (sd) 73873 36.85% Collaborative Completion (^2) 709 0.35%

Acknowledge/Backchannel (b) 37727 18.82% Repeat-phrase (b^m) 677 0.34%

Statement-opinion (sv) 25810 12.88% Open-Question (qo) 647 0.32%

Abandoned/Uninterpretable (%) 15294 7.63% Rhetorical-Questions (qh) 566 0.28%

Agree/Accept (aa) 10987 5.48% Hold before answer/agreement (^h) 546 0.27%

Appreciation (ba) 4702 2.35% Reject (ar) 341 0.17%

Yes-No-Question (qy) 4679 2.33% Negative non-no answers (ng) 296 0.15%

Non-verbal (x) 3565 1.78% Signal-non-understanding (br) 295 0.15%

Yes answers (ny) 2995 1.49% Other answers (no) 284 0.14%

Conventional-closing (fc) 2562 1.28% Conventional-opening (fp) 225 0.11%

Wh-Question (qw) 1954 0.97% Or-Clause Question (qrr) 208 0.10%

No answers (nn) 1363 0.68% Dispreferred answers (arp_nd) 207 0.10%

Response Acknowledgement (bk) 1299 0.65% 3rd-party-talk (t3) 115 0.06%

Hedge (h) 1204 0.60% Offers, Options, Commits (oo_co_cc) 109 0.05%

Declarative Yes-No-Question (qy^d) 1203 0.60% Maybe/Accept-part (aap_am) 105 0.05%

Backchannel in question form (bh) 1036 0.52% Self-talk (t1) 103 0.05%

Quotation (^q) 948 0.47% Downplayer (bd) 101 0.05%

Summarize/reformulate (bf) 928 0.46% Tag-Question (^g) 92 0.05%

Other (ot) 876 0.44% Declarative Wh-Question (qw^d) 80 0.04%

Affirmative non-yes answers (na) 841 0.42% Apology (fa) 78 0.04%

Action-directive (ad) 740 0.37% Thanking (ft) 74 0.04%

Table 4.2 – Counts and frequencies of the 42 DA labels in the SwDA dataset.
There are 200444 utterances in total.



56 d ialogue act cla s s i f i cat ion

by “<laughter>”, uttered by speaker A. We opted for this approach
as predicting the DA of a broken utterance sometimes does not make
sense. For instance, in this situation with three utterances: (1) “A: so,
(Wh-Question)”, (2) “B: <throat_clearing> (Non-verbal)”, and (3) “A:
what's your name? (+)”, it is very difficult to correctly predict that ut-
terance 1 is a question. And predicting anything other than a question-
related tag for utterance 3 does not reallymake sense. Reconstructing 1
and 3 into a single utterance “A: so, what's your name? (Wh-Question)”
solves both issues.

Implementation and training details. Disfluency markers (Meteer
et al., 1995) were filtered out and all characters converted to lower-
case. We used some optimal hyperparameters provided by Kumar et
al. (2018). E.g., 0.2 dropout was applied to the utterance embeddings
and conversation-level utterance representations, and all LSTM lay-
ers had 300 hidden units. The embedding layer was initialized using
300-dimensional word vectors pre-trained with the gensim (Řehůřek
and Sojka, 2010b) implementation of word2vec (Mikolov et al., 2013a)
on the utterances of the training set, and was frozen during training.
Vocabulary size was around 21K, and out-of-vocabulary words were
mapped to a special token [UNK], randomly initialized.

Models were trained with the Adam optimizer (Kingma and Ba,
2015). Early stopping was used on the validation set with a patience
of 5 epochs and a maximum number of epochs of 100. The best epoch
was selected as the one associatedwith the highest validation accuracy.
Usually, the best epoch was within the first 10. We set our batch-size
to be 1, i.e, one conversation for one training step. Batch sizes of 1, 2, 4,
8, and 16 were also tried, without observing significant differences.

4.6 quant i tat i v e r e sult s

Performance comparison. Table 4.5 reports the results in terms of clas-
sification accuracy, averaged over 10 runs to account for the random-
ness of SGD. Model a) uses our modified CRF layer. Model b) has
exactly the same architecture as a), but uses a vanilla CRF layer.

Results show that, in terms of overall accuracy on the test set of 42
DA labels, our model a) outperforms the base model b) by 1%. More-
over, the small standard deviations highlight the consistency of this im-
provement over the 10 runs. Note that this performance gain is solely
caused by our modified CRF layer capturing speaker-change, and is
greater than the gains of 0.26% (Liu et al., 2017) and 0.09% (Bothe et
al., 2018) reported by previous attempts at leveraging speaker informa-
tion.

To interpret the results in more detail, we show in Figure 4.3 the con-
fusion matrices of our model and the base model, for the 10 most fre-
quent DA labels, representing close to 91% of all annotations. The rows
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sd b sv % aa ba qy x ny fc

Statement-non-opinion (sd)

Acknowledge/Backchannel (b)

Statement-opinion (sv)

Abandoned/Uninterpretable (%)

Agree/Accept (aa)

Appreciation (ba)

Yes-No-Question (qy)

Non-verbal (x)

Yes answers (ny)

Conventional-closing (fc)

86.4 0.0 9.5 2.3 0.2 0.2 0.1 0.1 0.0 0.0

0.0 91.0 0.0 2.5 4.0 0.4 0.1 0.0 0.8 0.1

26.6 0.0 67.4 2.1 0.9 1.9 0.0 0.0 0.0 0.1

3.9 7.6 3.9 81.3 1.1 0.5 0.3 0.0 0.3 0.0

2.6 21.4 3.3 0.3 67.9 3.1 0.2 0.0 0.6 0.1

1.4 1.2 6.8 1.4 4.1 82.0 0.0 1.6 0.0 0.0

2.5 0.0 2.7 0.6 0.2 0.0 81.7 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 98.9 0.0 1.1

0.0 22.1 0.0 0.0 4.9 0.0 0.0 0.0 73.0 0.0

1.7 2.1 0.4 0.0 0.5 0.0 0.0 0.0 0.0 93.8

sd b sv % aa ba qy x ny fc

88.3 0.0 7.8 2.0 0.2 0.2 0.1 0.0 0.0 0.1

0.0 89.4 0.0 2.9 4.9 0.3 0.1 0.0 1.0 0.1

32.4 0.0 61.5 1.8 1.0 2.4 0.1 0.0 0.0 0.1

4.9 8.1 3.8 79.5 1.6 0.4 0.3 0.0 0.2 0.0

3.6 25.3 2.3 0.2 63.8 3.2 0.4 0.0 0.9 0.1

2.9 1.1 5.5 1.3 4.5 82.4 0.0 1.1 0.0 0.0

3.0 0.0 2.6 0.2 0.0 0.0 81.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 98.9 0.0 1.1

0.0 21.6 0.0 0.0 4.0 0.0 0.0 0.0 74.2 0.0

1.5 2.5 0.1 0.0 0.4 0.0 0.0 0.0 0.0 93.6
0
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Figure 4.3 – Normalized confusion matrices, averaged over 10 runs, for the
10 most frequent DA labels (90.9% of all annotations). Left: our
model, right: base model. Rows (columns) correspond to true
(predicted) classes.

correspond to true classes, and the columns to predicted classes. 5 By
looking at the diagonals, we can see that our model (on the left) better
predicts 6 labels out of 10 with absolute accuracy gains of up to 5.9%
(for statement-opinion, sv) 6 and is on par with the baseline model
for one label (non-verbal, x), at 98.9%. By looking at off-diagonal val-
ues, miss rates are decreased up to 5.8% (for svmisclassified as sd) by
our model. Also, our model provides a large boost for the (Acknowl-
edge/Backchannel, Agree/Accept), or (b, aa) pair. It increases the re-
spective accuracies by 1.6% (89.4%→91.0%) and 4.1% (63.8%→67.9%).
The respective miss rates are decreased by 0.9% (4.9%→4.0%) and
3.9% (25.3%→21.4%), respectively for bmisclassified as aa and aamis-
classified as b. This is to be noted, as these two labels are among the
most frequently confused pairs (Chen et al., 2018; Kumar et al., 2018).

Although our model achieves significant gains on a majority of the
most frequent labels, it decreases performance for themost frequent la-
bel, sd, which accounts for 36.9% of all labels, as shown by Figure 4.2.
This explains why, in terms of overall accuracy, our improvements are
modest. In addition, the performance drop regarding sd can be inter-
preted as a consequence of the trade-off between sd and sv, since the
distinction between them was very hard to make even by annotators
(Jurafsky, Shriberg, and Biasca, 1997). This can be demonstrated in
terms of precision, recall, and F1 score, as shown in Table 4.3. We can
observe that, as opposed to the base model, our model has lower sd
and higher sv recall values. A similar observation can be made for

5. Note that our confusion matrices were row-wise normalized by class size. So
we use the terms accuracy (per class) to denote diagonal values (equivalent to recall
or hit rate), and miss rate for off-diagonal values.

6. Themargins are even larger (up to 20%) on some less frequent labels, as shown
by the results in Section 4.7.
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P R F1
Our sd 80.49 86.36 83.32

sv 71.54 67.41 69.42
Vanilla sd 77.83 88.32 82.74

sv 73.24 61.48 66.84

Table 4.3 – Precison, Recall, and F1 score (%) of our model vs. base model on
the sd and sv labels.

Ours Vanilla Diff.
10 best DAs 37.08 31.70 + 5.38
10 worst DAs 59.67 64.54 - 4.87

Table 4.4 – Average accuracy (%) of our model vs. base model on the 10 DAs
best and worst predicted by our model (resp. representing 20%
and 40% of all annotations).

precision scores. Thus, the prediction between sd and sv is a trade-off
made bymodels. It is also interesting to note that ourmodel is superior
for both labels in terms of F1 score.

We can observe in Table 4.4 that our model brings improvement
where it is most necessary, i.e., for the most difficult and rare DAs
(20%). Full details are provided in Section 4.7, along with the corre-
sponding confusion matrices.

The benefits of considering speaker information vary across DA la-
bels. Our model and the base model performed very closely on 4 la-
bels: Non-verbal (x), Conventional-closing (fc), Appreciation (ba),
and Yes-No-Question (qy). We found that the utterances of these la-
bels contain clear lexical cues that can bemapped to correspondingDA
labels in a non-ambiguousway. Some examples include “<laughter>” →
x, “Bye-bye.” → fc, “That's great.” → ba, and “Do you …?” → qy. In
other words, predicting well these four DAs does not require having
access to speaker information. It can be done solely from the text of
the current utterance. Having access to context is not even required.
This explain why our speaker-aware CRF is not helpful here.

This interpretation is supported by the fact that, as explained in Sec-
tion 4.7, our model is most useful for the DAs that require speaker-
change awareness.

Ensembling and joint training. Since the model using our CRF and
the model using the vanilla CRF appear to have their own strengths
and weaknesses, we tried combining them to improve performance.
More precisely, we experimented with two approaches. First, an en-
sembling approach that combines the predictions of the two trained
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BiLSTM CRF Accuracy
Model input extra input (% ± SD)

a) Our CRF u𝑡 SC 78.70 ± .37
a1) u𝑡 + SI SC 78.32 ± .28
a2) u𝑡 + SC SC 78.65 ± .47
b) Vanilla CRF u𝑡 - 77.69 ± .38
b1) u𝑡 + SI - 77.86 ± .61
b2) u𝑡 + SC - 78.33 ± .71
c) Softmax u𝑡 - 77.80 ± .48
c1) u𝑡 + SI - 77.73 ± .44
c2) u𝑡 + SC - 78.33 ± .49

a) + b) u𝑡 SC 78.89 ± .20
ensembling

a) + b) u𝑡 SC 78.27 ± .47
joint training

Table 4.5 – Results, averaged over 10 runs. SI: speaker-identifier, SC: speaker-
change, u𝑡: utterance embedding, ±: standard deviation.

models by averaging their emission and transition scores (respectively).
Second, a joint training approach that combines the two models into a
new one and trains it from scratch. In that secondmodel, our CRF and
the vanilla CRF are combined, and transition scores are computed as:

𝑔(𝑦𝑡, 𝑦𝑡+1, 𝑧𝑡,𝑡+1) = G𝑏𝑎𝑠𝑖𝑠[𝑦𝑡, 𝑦𝑡+1]+ (4.7)
(1 − 𝑧𝑡,𝑡+1) ∗ G0[𝑦𝑡, 𝑦𝑡+1] + 𝑧𝑡,𝑡+1 ∗ G1[𝑦𝑡, 𝑦𝑡+1]

where 𝐺𝑏𝑎𝑠𝑖𝑠 is the transitionmatrix as in the original CRF, used at each
time step, while G0/G1 are applied only when the speaker does not
change/changes, as in our modified CRF layer.

Results in Table 4.5 show that the ensemble model reaches new best
performance at 78.89, providing close to a 0.2 boost from our model,
and a 1.2 boost from the vanilla CRF model. On the other hand, the
jointly-trainedmodel does not outperformourmodel. After inspecting
the transition matrices for the two cases (G𝑏𝑎𝑠𝑖𝑠 + G0) and (G𝑏𝑎𝑠𝑖𝑠 +
G1), we found that the addition of G𝑏𝑎𝑠𝑖𝑠 blurred the label transition
patterns.

Ablation studies. Our results showed that considering speaker in-
formation improves DA classification. Then, we wanted to confirm
whether our way of taking speaker information into account (at the
CRF level) was the most effective. To this purpose, we trained two
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other base models, both using the vanilla CRF. These two models re-
spectively concatenate the one-hot encoded speaker-identifier vector
(noted SI, of size 2) and the binary speaker-change vector (noted SC,
of size 1) with the utterance embedding u𝑡. 7 Results, shown in rows
b1 and b2 of Table 4.5, show that while they bring improvement com-
pared to the basic base model (row b), these two approaches are not
able to yield as big of a gain as themodel using ourmodified CRF layer,
indicating that taking speaker-change into account at the CRF level is
superior.

For the sake of completeness, we repeated these experiments with
our model. Results, available in rows a1 and a2 of Table 4.5, show that
performance was not improved (78.32 and 78.65 vs. 78.70). Thus, it
seems that taking speaker information into account twice, both at the
BiLSTM level and at the CRF level, is not useful, or at least, not in this
way.

Results in Table 4.5 also show that SC is a better feature than SI in
general.

BiLSTM-CRF vs. BiLSTM-Softmax. To the best of our knowledge,
no previous study has compared BiLSTM-CRF to BiLSTM-Softmax on
the DA classification task. Hence, in this work, we decided to com-
pare between these two models. Results reveal that the models using
BiLSTM-Softmax (rows c, c1, and c2) are competitive with the ones
using BiLSTM-CRF (rows b, b1, and b2). More specifically, BiLSTM-
Softmax outperforms BiLSTM-CRF with text features only (rows b vs.
c), by a slight 0.11 margin, but it is the opposite for text + SI (b1 vs.
c1, 0.13 difference). With text + SC (b2 vs. c2), they achieve similar
performance.

These results are not very surprising, since, on other tasks than DA
classification, multiple recent works have reported that BiLSTM-CRF
does not always outperformBiLSTM-Softmax (Reimers andGurevych,
2017; Yang, Liang, and Zhang, 2018; Cui and Zhang, 2019). For exam-
ple, in Yang, Liang, and Zhang (2018), CRF brought improvement for
named entity recognition and chunking, but not for POS tagging. One
of the reasons might be that the simple Markov label transition model
of CRF does not give much information gain over strong neural encod-
ing (Cui and Zhang, 2019). That is, BiLSTMmay be expressive enough
to implicitly capture the obvious dependencies among labels.

In any case, the model equipped with our CRF layer (row a) outper-
forms all variants of BiLSTM-Softmax and BiLSTM-vanilla_CRF. This
suggests that our CRF layer can capture richer and not obvious label de-
pendencies given speaker information, which, in the end, makes the
use of a CRF layer valuable in assisting DA classification.

7. proposed in Liu et al. (2017) and Bothe et al. (2018), but not in the context of
BiLSTM-CRF.



4.7 worst and be st ca s e analys i s 61

t1 sv ^2 aa no b^m ar ft bf qh

Self-talk (t1)

Statement-opinion (sv)

Collaborative Completion (^2)

Agree/Accept (aa)

Other answers (no)

Repeat-phrase (b^m)

Reject (ar)

Thanking (ft)

Summarize/reformulate (bf)

Rhetorical-Questions (qh)

40.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 67.4 0.1 0.9 0.0 0.1 0.0 0.0 0.2 0.2

0.0 20.532.6 3.2 0.5 1.6 0.0 0.0 3.7 3.2

0.0 3.3 0.0 67.9 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 30.0 0.0 0.0 0.0 0.0 0.0

0.0 0.5 2.4 0.0 0.0 22.4 0.0 0.0 5.2 0.0

0.0 0.0 0.0 26.7 3.3 0.0 6.7 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 31.4 0.0 0.0

0.0 24.310.0 0.0 0.0 5.2 0.0 0.0 9.1 0.0

0.0 16.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 63.3

t1 sv ^2 aa no b^m ar ft bf qh

20.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 61.5 0.1 1.0 0.0 0.0 0.0 0.0 0.1 0.1

0.0 23.726.8 0.0 0.0 2.6 0.0 0.0 0.0 2.6

0.0 2.3 0.0 63.8 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 26.7 0.0 0.0 0.0 0.0 0.0

0.0 0.5 5.7 0.5 0.0 19.0 0.0 0.0 2.9 0.0

0.0 0.0 0.0 33.3 0.0 0.0 3.3 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.6 0.0 0.0

0.0 23.0 9.6 0.0 0.0 3.0 0.0 0.0 6.5 0.0

0.0 15.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 60.8
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Figure 4.4 – Normalized confusionmatrices, averaged over 10 runs, for the 10
DA labelsbestpredicted by ourmodel (20.2%of all annotations).
Left: our model, right: base model.

bd bh fp qrr ^q ^hqy^d ng sd ot

Downplayer (bd)

Backchannel in question form (bh)

Conventional-opening (fp)

Or-Clause-Question (qrr)

Quotation (^q)

Hold before answer/agreement (^h)

Declarative Yes-No-Question (qy^d)

Negative non-no answers (ng)

Statement-non-opinion (sd)

Other (ot)

90.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 60.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 78.0 0.0 0.0 0.0 0.0 0.0 2.0 20.0

0.0 0.0 0.0 90.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 40.0 0.0 1.8 0.0 30.0 0.0

0.0 0.0 0.0 0.0 0.0 18.6 0.0 0.0 52.9 0.0

0.0 0.8 0.0 0.0 0.0 0.0 19.2 0.0 27.8 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 58.320.0 0.0

0.0 0.0 0.0 0.0 0.2 0.0 0.3 0.0 86.4 0.0

0.0 0.0 2.5 0.0 1.2 6.9 0.0 0.0 9.4 56.2

bd bh fp qrr ^q ^hqy^d ng sd ot

100.00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 67.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 84.0 0.0 0.0 0.0 0.0 0.0 2.0 14.0

0.0 0.0 0.0 95.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 44.7 0.0 1.2 0.0 24.7 0.0

0.0 0.0 0.0 0.0 0.0 22.9 0.0 0.0 52.9 0.0

0.0 1.4 0.0 0.0 0.0 0.0 23.1 0.0 35.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 61.713.3 0.0

0.0 0.0 0.0 0.0 0.2 0.0 0.2 0.1 88.3 0.0

0.0 0.0 1.9 0.0 0.0 5.0 0.0 0.0 12.558.1
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Figure 4.5 – Normalized confusion matrices, averaged over 10 runs, for the
10 DA labels worst predicted by our model (39.6% of all annota-
tions). Left: our model, right: base model.

4.7 worst and be st ca s e analys i s

In addition to the comparison provided in the previous section for
the 10 most frequent DA labels. In this section, we interpret the confu-
sion matrices for the 10 DA labels that our model best predicted (Fig-
ure 4.4) andworst predicted (Figure 4.5), in comparisonwith the base
model, always on the right. Inspecting the matrices reveals that our
model is most useful for the DAs requiring speaker-change awareness,
which confirms the effectiveness of our modification of the CRF layer.
It also shows that our model brings improvement where it is most nec-
essary, i.e., for the most difficult and rare DAs.

Relative differences. For the 10 DA labels best predicted by ourmodel,
the average performance gain compared to the base model is equal to
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5.38 (shown in Table 4.4), whereas the drop in performance for the 10
DAs worst predicted by our model is lower, only equal to 4.87. Thus,
when it improves performance, our model does so with a greater mar-
gin than when it decreases performance. This fact is hidden when sim-
ply looking at the global accuracy over the 42 DA labels, because the
10 best DAs for our model only correspond to 20.2% of all annotations,
whereas the 10 worst account for almost 40% of all annotations.

Absolute differences. It is also interesting to note that the 10 DAs that
our model best predicted are all very difficult DAs, for which the per-
formance of the base model is very low in the first place: 31.7, on av-
erage. These DAs are also rare: they only correspond to 20.2% of all
annotations. Our model raises the average accuracy on these labels to
37.08. On the other hand, the 10 DAs that are worst predicted by our
model are more frequent DAs (40% of all annotations), for which the
performance of the base model is already quite high: 64.54, on aver-
age. And although ourmodel is not as good as the basemodel on these
DAs, it still reaches a decent average performance of 59.67. Therefore,
our model provides a performance boost where it is most necessary
(difficult and rare DAs), and wherever it fails, it still provides decent
accuracy levels.

10 best DAs for our model. Our model outperforms the base model
by a very large margin of 20.0% (20.0%→40.0%) for Self-talk (t1, the
speaker talks to him/herself). It makes a lot of sense, as the accu-
rate prediction of this DA obviously requires being aware of speaker-
change. Similar conclusions can be also drawn for Collaborative Com-
pletion (^2, one speaker completes the other speaker’s utterance), Repeat-
phrase (b^m, repeating parts ofwhat the previous speaker said), Thank-
ing (ft), Summarize/reformulate (bf, proposing a summarization or
paraphrase of another speaker’s talk/point), and Rhetorical-Questions
(qh, questions asked to make a statement or asked to produce an effect
with no answer expected).

10 worst DAs for our model. On the other hand, speaker informa-
tion does not seem to be crucial to predict the 10 DA labels most often
missed by our model. For instance, Conventional-openings (fp) are
always found among the first utterances in a conversation, so there is
only a small need for speaker-change awareness in that case. E.g., in
this situation with three utterances: (1) “A: Hi, Wanet (fp)”, (2) “A:
How are you? (fp)”, and (3) “B: I'm doing fine. (fp)”, utterances
2 and 3 are labeled with fp, regardless of speaker-change. Likewise,
the need for speaker-change awareness seems very little for the Quota-
tion (^q) and Other (ot) DAs. In other words, among the DAs worst
predicted by our model are DAs for which speaker information is not
necessary to make an accurate prediction. This makes sense, since the
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goal of our modified CRF layer is precisely to capture speaker informa-
tion.

4.8 qual i tat i v e r e sult s

Visualization of transition matrices. We illustrate, in Figure 4.6, the
transition matrices G0 and G1 of our CRF layer, together with the sin-
gle matrix G of the vanilla CRF layer. This visualization is done for 12
labels that are easy to interpret, such as statements, questions, answers,
etc. We can observe some interesting patterns, sometimesmatching in-
tuition, and sometimes harder to interpret. We report some of themost
interesting findings below:

— Overall, G0 and G1 are not identical, which means that different
transition patterns are associated with the “speaker unchanged”
and “speaker changed” cases. The dark diagonal of G0 shows
that when the speaker does not change, the majority of labels
tend to carry over to the next utterance. On the opposite, G1
clearly shows that changing speakers very often induce a change
in DA.

— questions starting with words including: ‘what’, ‘how’, etc. (qw
label) tend to transfer to statements (sd and sv) and to other an-
swers (no, e.g., “I don't know”) if the speaker changed, but to
other forms of questions, yes-no questions and questions start-
ing with the word ‘or’ (qy and qrr), or to acknowledgements (bk
and b) if the speaker did not change. This probably corresponds
to instances when the same speaker clarifies, elaborates on, or
answers, an original question.

— sv label (statementwith opinion) tends to transition toAgree/Ac-
cept aa and Reject ar if the speaker changed, while no such clear
pattern can be observed for the sd label (statement without opin-
ion).

— qy label (yes/no questions) tend to transfer to answer labels ny
(yes), nn (no), no (other) if the speaker changed, and to another
type of question (e.g., or-clause) if the speaker did not change.
Again, the latter surely corresponds to the case where a given
speaker elaborates on his or her original question.

— answer labels (ny, nn, no) tend to be followed by Response Ac-
knowledgement bk andAcknowledge/Backchannel b if the speaker
changed, but by themselves or statements (sd and sv) if the speaker
did not change.

As far as the transition matrix G of the vanilla CRF layer (right of
Figure 4.6), we can observe that it tries to capture, at the same time,
the transition patterns of both the “speaker changed” and “speaker
unchanged” cases. For example, sv equally tends to transfer to sv, aa
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and ar in G, while the transitions towards sv/aa,ar are only probable
if the speaker stays the same/changes, as clearly illustrated by G0/G1.
Obviously, using two matrices as in our approach gives much more
expressiveness to the model in capturing DA label transition patterns.
To summarize, visualizations show that the transitionmatricesG0 and
G1 in ourmodifiedCRF layer are able to encode speaker-change-aware,
sophisticated DA transition patterns.

4.9 d i s cu s s ion and conclus ion

Note that, for our utterance encoder, we also experimented with a
bidirectional LSTM (also with last pooling), as in Kumar et al. (2018),
and with a bidirectional LSTM with self-attention mechanism (Yang
et al., 2016a). However, since they were not giving better results, we
opted for the simplest option. One possible explanation for the self-
attention mechanism not being helpful could be the very short size
of the utterances in the SwDA dataset (68.7% of utterances are shorter
than 10 tokens). On such short sequences, a RNNwith a 300-dimensional
hidden layer is very likely able to keep the full sequence into memory.
As far as why a forward RNN suffices, it should be noted that with
last pooling, the last time step corresponds to the first annotation of
the backward RNN. This is not adding much information to the last
annotation of the forward RNN, which represents the entire sequence.

Our goal was not to exceed the state-of-the-art accuracy reported
in Li et al. (2019b), Raheja and Tetreault (2019) and Colombo et al.
(2020), this is why we used simple models in all of our experiments.
However, our improved CRF layer can be directly plugged into more
advanced architectures, such as Att-BiLSTM-CRF (Luo et al., 2018) or
Transformer-CRF (Chen, Zhuo, and Wang, 2019; Winata et al., 2019;
Yan et al., 2019; Zhang and Wang, 2019), and should in principle be
able to boost performance regardless of the model used.

In this work, we focused on demonstrating that taking speaker in-
formation into consideration was beneficial to the task of DA classifi-
cation, with the BiLSTM-CRF architecture. We proposed a modified
CRF layer that takes as extra input the sequence of speaker-changes.
Experiments conducted on the SwDA dataset showed that our CRF
layer outperforms vanilla CRF, and brings greater gains than previous
attempts at taking speaker information into account. Moreover, visual-
izations confirmed that our improved CRF was able to learn complex
speaker-change aware DA transition patterns in an end-to-end way.

Future research should be devoted to address the limitation of the
Markov property of CRF layer, by developing a model that is capable
of capturing longer-range dependencies within and among the three
sequences: that of speakers, utterances, and DA labels.





5
ABSTRACT IVE COMMUN I TY DETECT ION

In this chapter, we focus on the task of Abstractive Community De-
tection, in which utterances in a conversation are grouped accord-
ing to whether they can be jointly summarized by a common ab-

stractive sentence. Note that in Chapter 3, we approached this task by
applying the 𝑘-means clustering algorithm on TF-IDF vectors of utter-
ances. While this unsupervisedmethodwas somewhat successful in our
previously proposed framework, we felt it could be greatly improved.
First, for reasons that become clear if we look at the human-annotated
abstractive community examples in Section 5.1, we think that commu-
nities should capture more complex relationships than simple lexical/
semantic similarity, but this is far beyond the capabilities of TF-IDF
and 𝑘-means. Second, as mentioned earlier in Subsection 1.4, we be-
lieve that abstractive community detection plays a crucial role in bridg-
ing the gap between extractive and abstractivemeeting summarization,
but this is little explored in the literature. All these reasons ultimately
motivated and drove us to deeply rethink and investigate this task.

This chapter provides a novel supervised approach to this task that
makes use of human abstractive-extractive linking annotations (see
Subsection 2.3 for more details). We first introduce a neural contex-
tual utterance encoder featuring three types of self-attention mecha-
nisms. We then train it using the siamese and triplet energy-based
meta-architectures. Moreover, we propose a general sampling scheme
that enables the triplet architecture to capture subtle clustering pat-
terns, such as overlapping and nested communities. Experiments on
the AMI corpus show that our system outperforms multiple energy-
based and non-energy based baselines from the state-of-the-art, and
visualization illustrates that our triplet sampling scheme is effective.
Code and data are publicly available 1.

5.1 in troduct ion

Today, large amounts of digital text are generated by spoken or writ-
ten conversations, let them be human-human (customer service, multi-
partymeetings) or human-machine (chatbots, virtual assistants). Such
text comes in the form of transcriptions. A transcription is a list of
time-ordered text fragments called utterances. Unlike sentences in tra-
ditional documents, utterances are frequently associated with meta-
information in the form of discourse features such as speaker ID/role,

1. https://bitbucket.org/guokan_shang/abscomm
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dialogue act, etc. Utterances are also often ill-formed, incomplete, and
ungrammatical, due to the nature of spontaneous communication.

Abstractive summarization of conversations is an open problem in
NLP. It requires the machine to gain a high-level understanding of the
dialogue, in order to extract useful information and turn it into mean-
ingful abstractive sentences. Previous work (Mehdad et al., 2013; Oya
et al., 2014; Banerjee, Mitra, and Sugiyama, 2015; Shang et al., 2018)
decomposes this task into two subtasks a and b as shown in Figure 5.1.

transcription abstractive 
communities

abstractive 
summary

extracted 
utterances

a1

a

a2 b

Figure 5.1 – Abstractive community detection: the first step towards summa-
rizing a conversation.

Subtask a, or Abstractive Community Detection (ACD), is the focus of
this work. It consists in grouping utterances according towhether they
can be jointly summarized by a common abstractive sentence (Murray,
Carenini, and Ng, 2012). Such groups of utterances are called abstrac-
tive communities. Once they are obtained, an abstractive sentence is
generated for each group (subtask b), thus forming the final summary.
ACD includes, but is a more general problem than, topic clustering. In-
deed, as shown in Figure 5.2, communities should capture more com-
plex relationship than simple semantic similarity. Also, two utterances
may be part of the same community even if they are not close to each
other in the transcription. Finally, a given utterance may belong to
more than one community, which results in nested and overlapping
groupings (e.g., D/C and A/D in Figure 5.2, resp.), or be a community
of its own, i.e., a singleton community (e.g., B in Figure 5.2).

In this work, we depart from previous work and argue that the ACD
subtask should be broken down into two steps, a1 and a2 in Figure
5.1. That is, summary-worthy utterances should first be extracted from
the transcription (a1), and then, grouped into abstractive communi-
ties (a2). This 𝑎1 → 𝑎2 → 𝑏 process is more consistent with the way
humans treat the summarization task. E.g., during the creation of the
AMI corpus (McCowan et al., 2005), annotators were first asked to ex-
tract summary-worthy utterances from the transcription, and then to
link the selected utterances to the sentences in the abstractive summary
(links in Figure 5.2), i.e., create communities. Abstractive summaries
comprise four sections: ABSTRACT, ACTIONS, PROBLEMS, and DECISIONS.
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Step a1 plays an important filtering role, since in practice, only a
small part of the original utterances are summary-worthy and are used
to construct the abstractive communities (17% on average for AMI).
However, this step is closely related to extractive summarization, which
has been extensively studied in the conversational domain (Murray,
Renals, and Carletta, 2005; Garg et al., 2009; Tixier, Meladianos, and
Vazirgiannis, 2017).

Rather, we focus in this work on the rarely explored a2 utterance clus-
tering step, which we think is an important spoken language under-
standing problem, as it plays a crucial role of bridge between twomajor
types of summaries: extractive and abstractive.

5.2 r e lat ed work

Priorwork performedACDeither in a supervised (Murray, Carenini,
and Ng, 2012; Mehdad et al., 2013) or unsupervised way (Oya et al.,
2014; Banerjee, Mitra, and Sugiyama, 2015; Singla et al., 2017; Shang
et al., 2018).

In the supervised case, Murray, Carenini, and Ng (2012) train a lo-
gistic regression classifierwith handcrafted features to predict extractive-
abstractive links, then build an utterance graph whose edges repre-
sent the binary predictions of the classifier, and finally apply an over-
lapping community detection algorithm to the graph. Mehdad et al.
(2013) add to the previous approach by building an entailment graph
for each community, where edges are entailment relations between ut-
terances, predicted by a SVM classifier trained with handcrafted fea-
tures on an external dataset. The entailment graph allows less infor-
mative utterances to be eliminated from each community.

On the other hand, unsupervised approaches to ACD do not make
use of extractive-abstractive links. Oya et al. (2014), Banerjee, Mitra,
and Sugiyama (2015), and Singla et al. (2017) assume that disjoint
topic segments (Galley et al., 2003; Eisenstein and Barzilay, 2008) align
with abstractive communities, while Shang et al. (2018) use the clas-
sical vector space representation with TF-IDF weights, and apply 𝑘-
means to the LSA-compressed utterance-term matrix.

To sum up, prior ACD methods either train multiple models on dif-
ferent labeled datasets and heavily rely on handcrafted features, or are
incapable of capturing the complicated structure of abstractive com-
munities described in the introduction.

Motivated by the recent success of energy-based approaches to sim-
ilarity learning tasks such as face verification (Schroff, Kalenichenko,
and Philbin, 2015) and sentence matching (Mueller and Thyagarajan,
2016), we introduce in this work a novel utterance encoder, and train
it within the siamese (Chopra, Hadsell, and LeCun, 2005) and triplet
(Hoffer and Ailon, 2015) energy-based meta-architectures. Our final
network is able to accurately capture the complexity of abstractive com-
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munity structure, while at the same time, it is trainable in an end-to-
end fashionwithout the need for human intervention and handcrafted
features. Our contributions are multifold:

— we formalize ACD, a crucial subtask for abstractive summariza-
tion of conversations, and publicly release a version of the AMI
corpus preprocessed for this subtask, to foster research on this
topic,

— we propose one of the first applications of energy-based learning
to spoken language understanding,

— we introduce a novel utterance encoder featuring three types of
self-attention mechanisms and taking contextual and temporal
information into account,

— we propose a sampling scheme that enables the triplet architec-
ture to capture subtle levels of similarity such as overlapping and
nested clusters. This is a major improvement over prior work, in
which only the usual similar/dissimilar case is tackled,

— through extensive experiments, we study the impact of themajor
components on performance.

5.3 energy- ba s ed l earn ing

Energy-Based Modeling (EBM) (LeCun and Huang, 2005; Lecun et
al., 2006) is a unified framework that can be applied to many machine
learning problems. In EBM, an energy function assigns a scalar called
energy to each pair of random variables (𝑋,𝑌). The energy can be in-
terpreted as the incompatibility between the values of 𝑋 and 𝑌. Train-
ing consists in finding the parameters 𝑊∗ of the energy function 𝐸𝑊
that, for all (𝑋𝑖,𝑌𝑖) in the training set 𝒮 of size 𝑃, assign low energy to
compatible (correct) combinations and high energy to all other incom-
patible (incorrect) ones. This is done by minimizing a loss functional 2
ℒ :

𝑊∗ = argmin
𝑊∈𝒲

ℒ(𝐸𝑊(𝑋,𝑌),𝒮) (5.1)

For a given 𝑋, prediction consists in finding the value of 𝑌 that mini-
mizes the energy.

5.3.1 Single architecture

In the EBM framework, a regression problem can be formulated as
shown in Figure 5.3a, where the input 𝑋 is passed through a regressor
model 𝐺𝑊 and the scalar output is compared to the desired output 𝑌
with a dissimilarity measure 𝐷 such as the squared error. Here, the
energy function is the loss functional to be minimized.

2. the loss functional is passed the output of the energy function, unlike a loss func-
tion which is directly fed the output of the model.
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X X Y X Y ZY
(a) (b) (c)

Figure 5.3 – Three EBM architectures. When all 𝐺s and 𝑊s are equal, (b) and
(c) correspond to the siamese/triplet cases.

ℒ = 1
𝑃

𝑃
∑
𝑖=1

𝐸𝑊(𝑋𝑖,𝑌𝑖) = 1
𝑃

𝑃
∑
𝑖=1

‖𝐺𝑊(𝑋𝑖) − 𝑌𝑖‖2 (5.2)

5.3.2 Siamese architecture

In the regression problem previously described, the dependence be-
tween 𝑋 and 𝑌 is expressed by a direct mapping 𝑌 = 𝑓 (𝑋), and there is
a single best 𝑌∗ for every 𝑋. However, when 𝑋 and 𝑌 are not in a pre-
dictor/predictand relationship but are exchangeable instances of the
same family of objects, there is no such mapping. E.g., in paraphrase
identification, a sentence may be similar to many other ones, or, in lan-
guage modeling, a given 𝑛-gram may be likely to be followed by many
different words.

Thereby, Lecun et al. (2006) introduced EBM for implicit regression
or constraint satisfaction (see Figure 5.3b), in which a constraint that 𝑋
and 𝑌 must satisfy is defined, and the energy function measures the
extent to which that constraint is violated:

𝐸𝑊1,𝑊2
(𝑋,𝑌) = 𝐷(𝐺𝑊1

(𝑋),𝐺𝑊2
(𝑌)) (5.3)

where 𝐺𝑊2
and 𝐺𝑊1

are two functions parameterized by 𝑊1 and 𝑊2.
When 𝐺𝑊1

= 𝐺𝑊2
and 𝑊1 = 𝑊2, we obtain the well-known siamese

architecture (Bromley et al., 1994; Chopra, Hadsell, and LeCun, 2005),
which has been appliedwith success tomany tasks, including sentence
similarity (Mueller and Thyagarajan, 2016).

Here, the constraint is determined by a collection-level set of binary
labels {𝐶𝑖}𝑃

𝑖=1. E.g., 𝐶𝑖 = 0 indicates that (𝑋𝑖,𝑌𝑖) is a genuine pair (e.g.,
two paraphrases), while 𝐶𝑖 = 1 indicates that (𝑋𝑖,𝑌𝑖) is an impostor
pair (e.g., two sentences with different meanings).
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The function 𝐺𝑊 projects objects into an embedding space such that
the defined dissimilarity measure 𝐷 (e.g., Euclidean distance) in that
space reflects the notion of dissimilarity in the input space. Thus, the
energy function can be seen as a metric to be learned.

We experiment with various deep neural network encoders as 𝐺𝑊 ,
and, following Mueller and Thyagarajan (2016), we adopt the expo-
nential negative Manhattan distance as dissimilarity measure and the
mean squared error as loss functional:

𝐸𝑊(𝑋,𝑌) = 1 − exp(−‖𝐺𝑊(𝑋) − 𝐺𝑊(𝑌)‖1) (5.4)

ℒ = 1
𝑃

𝑃
∑
𝑖=1

‖𝐸𝑊(𝑋𝑖,𝑌𝑖) − 𝐶𝑖‖2 (5.5)

5.3.3 Triplet architecture

The triplet architecture (Wang et al., 2014; Hoffer and Ailon, 2015;
Schroff, Kalenichenko, and Philbin, 2015), as can be seen in Figure 5.3c,
is a direct extension of the siamese architecture that takes as input a
triplet (𝑋,𝑌,𝑍) in lieu of a pair (𝑋,𝑌). 𝑋, 𝑌, and 𝑍 are referred to
as the positive, anchor, and negative objects, respectively. 𝑋 and 𝑌 are
similar, while both being dissimilar to 𝑍. Learning consists in jointly
minimizing the positive-anchor energy 𝐸𝑊(𝑋𝑖,𝑌𝑖) while maximizing
the anchor-negative energy 𝐸𝑊(𝑌𝑖,𝑍𝑖).

Here, we use the softmax triplet loss (Hoffer and Ailon, 2015) as our
loss functional:

ℒ = 1
2𝑃

𝑃
∑
𝑖=1

(‖𝑛𝑒+ − 0‖2 + ‖𝑛𝑒− − 1‖2) (5.6)

𝑛𝑒+ = 𝑒𝐸𝑊(𝑋𝑖,𝑌𝑖)

𝑒𝐸𝑊(𝑋𝑖,𝑌𝑖) + 𝑒𝐸𝑊(𝑌𝑖,𝑍𝑖) (5.7)

𝑛𝑒− = 𝑒𝐸𝑊(𝑌𝑖,𝑍𝑖)

𝑒𝐸𝑊(𝑋𝑖,𝑌𝑖) + 𝑒𝐸𝑊(𝑌𝑖,𝑍𝑖) (5.8)

where 𝑛𝑒 stands for normalized energy, and the dissimilarity measure
is the Euclidean distance, i.e., 𝐸𝑊(𝑋𝑖,𝑌𝑖) = ‖𝐺𝑊(𝑋𝑖) − 𝐺𝑊(𝑌𝑖)‖2. Essen-
tially, the softmax triplet loss is the mean squared error between the
normalized energy vector [𝑛𝑒+,𝑛𝑒−] and [0, 1].

We justify our choice of loss functionals in the next subsection.

5.3.4 On our choice of loss functionals

The softmax triplet loss (STL) performed better in our experiments
than the margin-based triplet loss used in Schroff, Kalenichenko, and
Philbin (2015) and Wang et al. (2014). One of the reasons may be that
STL is able to capture a finer notion of distance. Indeed, with amargin-
based loss, the Euclidean distance between the anchor and the negative
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(let us compactly denote it as 𝑑−) need to satisfy 𝑑− > 𝑑+ +𝑚, where 𝑚
is the margin (see Figure 5.4a). In other words, the distance between
the positive and the negative is at least 𝑚 (when all three points are
aligned).

E WE H0

(a)

+

m
-

+

m
-

(b)

Figure 5.4 – •, -, + denote anchor, negative, and positive.

However, the objective of STL is simply 𝑑− > 𝑑+, without imposing an
absolute lower bound on the distance between positives and negatives
(i.e., only the distance ratio is of interest, see Figure 5.4b), which gives
more freedom to the model.

For consistency, we also adopt amargin-free loss functional for siamese
(MSE, see Equation 5.5). It also performed better than the traditional
contrastive loss (Chopra, Hadsell, and LeCun, 2005; Neculoiu, Ver-
steegh, and Rotaru, 2016) in early experiments.

5.3.5 Sampling procedures

We sample tuples from the ground truth abstractive communities
to train our utterance encoder 𝐺𝑊 (see Section 5.5) under the siamese
and triplet meta-architectures as follows.

Pair sampling. All utterances belonging to the same community are
paired as genuine pairs, while impostor pairs are any two utterances
coming from different communities.

Triplet sampling. As explained in the previous subsection, the soft-
max triplet loss captures a finer notion of distance than margin-based
losses. This allows us to propose a novel, flexible triplet sampling scheme
that enables subtle patterns, such as overlapping and nested groupings
(e.g., human annotated abstractive communities, see Figure 5.2), to be
learned. Full details are provided in the next section.

5.4 propos ed tr i p l e t sampl ing scheme

Recall that for a given triplet (pos, anc,neg) (positive, anchor, nega-
tive), the objective of training is to make the distance between pos and
ancmuch smaller than the distance between anc and neg. We construct
triplets by considering community pairs. For ameeting that includes𝑁
unique communities, we have (𝑁

2 ) unique pairs of them. A given pair



5.4 propos ed tr i p l e t sampl ing scheme 75

of communities can either (1) be disjoint, i.e., not have any element
in common (Figure 5.5a), (2) be nested in one another (top of Figure
5.5b), or (3) overlap (Figure 5.5c). Our triplet sampling scheme needs
to account for these three cases so that the learned embedding space
encodes a meaningful distance that can recover such fine patterns.

p q

m n

u v

e f

g h

x y

a b

c d
(a) (b) (c)

Figure 5.5 – (a) communities {𝑎, 𝑏} and {𝑐, 𝑑} are disjoint (b) community {𝑔, ℎ}
is nested in community {𝑒, 𝑓 , 𝑔, ℎ} (c) communities {𝑝, 𝑞,𝑚,𝑛} and
{𝑚,𝑛,𝑢, 𝑣} overlap upon {𝑚,𝑛}.

5.4.1 Disjoint case

As shown in Figure 5.5a, let us consider two communities {𝑎, 𝑏} and
{𝑐, 𝑑} that do not share any element. We can derive 8 triplets from these
two communities:
(𝑎, 𝑏, 𝑐), (𝑏, 𝑎, 𝑐), (𝑎, 𝑏, 𝑑), (𝑏, 𝑎, 𝑑), (𝑐, 𝑑, 𝑎), (𝑑, 𝑐, 𝑎), (𝑐, 𝑑, 𝑏), (𝑑, 𝑐, 𝑏).

As a result of passing these triplets to the network, the intra-community
distances are reducedwhile the inter-community distances are enlarged.
Note that (𝑎, 𝑏, 𝑐) and (𝑏, 𝑎, 𝑐) are considered different triplets, as they
involve different sides of the same triangle.

To formalize, we denote the set of all 2-permutations of a set S by
Permu(𝑆, 2) = {(𝑖, 𝑗) ∶ 𝑖, 𝑗 ∈ 𝑆, 𝑖 ≠ 𝑗}, and the number of such permuta-
tions as 𝑃|𝑆|

2 = (|𝑆|)!
(|𝑆|−2)! , where | ∗ | denotes cardinality. Note that when

|𝑆| = 1, (singleton community), we repeat the single element of 𝑆 = {𝑖},
thus Permu(𝑆, 2) = {(𝑖, 𝑖)}. The Cartesian product of two sets 𝑆1 and
𝑆2 is denoted as Carte(𝑆1,𝑆2) = {(𝑖, 𝑗) ∶ 𝑖 ∈ 𝑆1, 𝑗 ∈ 𝑆2}, the universal
set of all elements as Ω (union of all communities), and the empty set
as ∅.

For any two disjoint communities, i.e., 𝐴 ∩ 𝐵 = ∅, the complete set
of triplets we can sample from is:

{(pos, anc,neg) ∶ (pos, anc) ∈ Permu(𝐴, 2),neg ∈ 𝐵}
∪{(pos, anc,neg) ∶ (pos, anc) ∈ Permu(𝐵, 2),neg ∈ 𝐴}

(5.9)

The corresponding number of triplets is 𝑃|𝐴|
2 × |𝐵| + 𝑃|𝐵|

2 × |𝐴|.
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5.4.2 Nested case

Some communities are nested. E.g., as shown in Figure 5.5b, commu-
nity {𝑔, ℎ} is nested in community {𝑒, 𝑓 , 𝑔, ℎ}. In that case, we first create
triplets by comparing the nested part {𝑔, ℎ}with the difference between
the larger community and the smaller one, i.e., with {𝑒, 𝑓 , 𝑔, ℎ}⧵{𝑔, ℎ} =
{𝑒, 𝑓 }. These two parts are disjoint, so we can use the sampling scheme
previously described (Subsection 5.4.1). This ensures, e.g., that 𝑑ℎ𝑔 ≪
𝑑𝑔𝑒, 𝑑𝑒𝑓 ≪ 𝑑𝑓 ℎ, etc.

Second, we should apply an extra constraint to the edges linking
{𝑔, ℎ} and {𝑒, 𝑓 }, such as 𝑑𝑔𝑒, in order to guarantee that 𝑔 is closer to
𝑒 than to any object from any other disjoint community (e.g., 𝑥 or 𝑦).
That is, we want 𝑑𝑔𝑒 ≪ 𝑑𝑒𝑥. Therefore, we create the following extra
triplets:
(𝑒, 𝑔, 𝑥), (𝑔, 𝑒, 𝑥), (𝑒, 𝑔, 𝑦), (𝑔, 𝑒, 𝑦), (𝑒, ℎ, 𝑥), (ℎ, 𝑒, 𝑥), (𝑒, ℎ, 𝑦), (ℎ, 𝑒, 𝑦)
(𝑓 , 𝑔, 𝑥), (𝑔, 𝑓 , 𝑥), (𝑓 , 𝑔, 𝑦), (𝑔, 𝑓 , 𝑦), (𝑓 , ℎ, 𝑥), (ℎ, 𝑓 , 𝑥), (𝑓 , ℎ, 𝑦), (ℎ, 𝑓 , 𝑦).

To formalize, for any two nested communities, e.g. 𝐴 ⊂ 𝐵, the com-
plete set of triplets we can sample from is:

{(pos, anc,neg) ∶ (pos, anc) ∈ Carte(𝐴,𝐵 ⧵ 𝐴),neg ∈ Ω ⧵ 𝐵}
∪{(pos, anc,neg) ∶ (pos, anc) ∈ Carte(𝐵 ⧵ 𝐴,𝐴),neg ∈ Ω ⧵ 𝐵}
∪{(pos, anc,neg) ∶ (pos, anc) ∈ Permu(𝐴, 2),neg ∈ 𝐵 ⧵ 𝐴}
∪{(pos, anc,neg) ∶ (pos, anc) ∈ Permu(𝐵 ⧵ 𝐴, 2),neg ∈ 𝐴}

(5.10)

The corresponding number of triplets is |𝐴| × |𝐵 ⧵𝐴| × |Ω ⧵𝐵| × 2 + 𝑃|𝐴|
2 ×

|𝐵 ⧵ 𝐴| + 𝑃|𝐵⧵𝐴|
2 × |𝐴|.

5.4.3 Overlapping case

As shown in Figure 5.5c, two communitiesmayoverlap. E.g., {𝑝, 𝑞,𝑚,𝑛}
and {𝑚,𝑛,𝑢, 𝑣} overlap upon {𝑚,𝑛}. We first consider this overlapping
case as two nested cases: {𝑚,𝑛} nested in {𝑝, 𝑞,𝑚,𝑛} and {𝑚,𝑛} nested
in {𝑚,𝑛,𝑢, 𝑣}. We thus sample triplets as explained in Subsection 5.4.2.

However, here, we also have the extra constraint that the overlap
{𝑚,𝑛} be pulled in-between {𝑝, 𝑞} and {𝑢, 𝑣}, as shown by the dashed
arrow in Figure 5.5c. Note that here, in order to teach the model that
{𝑚,𝑛} should be placed between {𝑝, 𝑞} and {𝑢, 𝑣}, 𝑚 and 𝑛 can only be
used as positives. Indeed, if they were used as anchor or negatives, the
modelwould only learn to push them away fromother objects, (respec-
tively, from the negative and anchor). Thus, we sample the following
additional triplets:
(𝑚, 𝑝,𝑢), (𝑚,𝑢, 𝑝), (𝑚, 𝑝, 𝑣), (𝑚, 𝑣, 𝑝), (𝑚, 𝑞,𝑢), (𝑚,𝑢, 𝑞), (𝑚, 𝑞, 𝑣), (𝑚, 𝑣, 𝑞)
(𝑛, 𝑝,𝑢), (𝑛,𝑢, 𝑝), (𝑛, 𝑝, 𝑣), (𝑛, 𝑣, 𝑝), (𝑛, 𝑞,𝑢), (𝑛,𝑢, 𝑞), (𝑛, 𝑞, 𝑣), (𝑛, 𝑣, 𝑞).
For instance, adding triplets (𝑚, 𝑝,𝑢) and (𝑚,𝑢, 𝑝) imposes simultane-
ously 𝑑𝑚𝑝 ≪ 𝑑𝑝𝑢 and 𝑑𝑚𝑢 ≪ 𝑑𝑢𝑝, a constraint best fulfilled when 𝑚 is
placed in the middle of 𝑝 and 𝑢.
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To formalize, for any two overlapping communities 𝐴 and 𝐵, i.e., 𝐴∩
𝐵 ≠ ∅,𝐴 ≠ 𝐵,𝐴 ⊄ 𝐵,𝐵 ⊄ 𝐴, the additional triplets correspond to:

{(pos, anc,neg) ∶ (pos, anc) ∈ Carte(𝐴 ∩ 𝐵,𝐴 ⧵ 𝐵),neg ∈ 𝐵 ⧵ 𝐴}
∪{(pos, anc,neg) ∶ (pos, anc) ∈ Carte(𝐴 ∩ 𝐵,𝐵 ⧵ 𝐴),neg ∈ 𝐴 ⧵ 𝐵}

∪{(pos, anc,neg) ∶ (pos, anc) ∈ Permu(𝐴 ⧵ 𝐵, 2),neg ∈ 𝐵 ⧵ 𝐴}
∪{(pos, anc,neg) ∶ (pos, anc) ∈ Permu(𝐵 ⧵ 𝐴, 2),neg ∈ 𝐴 ⧵ 𝐵}

And, as was previously mentioned, we also consider two nested
cases:

∪{(pos, anc,neg) ∶ (pos, anc) ∈ Carte(𝐴 ⧵ 𝐵,𝐴 ∩ 𝐵),neg ∈ Ω ⧵ (𝐴 ∪ 𝐵)}
∪{(pos, anc,neg) ∶ (pos, anc) ∈ Carte(𝐴 ∩ 𝐵,𝐴 ⧵ 𝐵),neg ∈ Ω ⧵ (𝐴 ∪ 𝐵)}

(5.11)
∪{(pos, anc,neg) ∶ (pos, anc) ∈ Permu(𝐴 ⧵ 𝐵, 2),neg ∈ 𝐴 ∩ 𝐵}
∪{(pos, anc,neg) ∶ (pos, anc) ∈ Permu(𝐴 ∩ 𝐵, 2),neg ∈ 𝐴 ⧵ 𝐵}

∪{(pos, anc,neg) ∶ (pos, anc) ∈ Carte(𝐵 ⧵ 𝐴,𝐴 ∩ 𝐵),neg ∈ Ω ⧵ (𝐴 ∪ 𝐵)}
∪{(pos, anc,neg) ∶ (pos, anc) ∈ Carte(𝐴 ∩ 𝐵,𝐵 ⧵ 𝐴),neg ∈ Ω ⧵ (𝐴 ∪ 𝐵)}
∪{(pos, anc,neg) ∶ (pos, anc) ∈ Permu(𝐵 ⧵ 𝐴, 2),neg ∈ 𝐴 ∩ 𝐵}
∪{(pos, anc,neg) ∶ (pos, anc) ∈ Permu(𝐴 ∩ 𝐵, 2),neg ∈ 𝐵 ⧵ 𝐴}

The corresponding total number of triplets is therefore:

|𝐴 ∩ 𝐵| × |𝐴 ⧵ 𝐵| × |𝐵 ⧵ 𝐴| × 2
+𝑃|𝐴⧵𝐵|

2 × |𝐵 ⧵ 𝐴| + 𝑃|𝐵⧵𝐴|
2 × |𝐴 ⧵ 𝐵|

+|𝐴 ⧵ 𝐵| × |𝐴 ∩ 𝐵| × |Ω ⧵ (𝐴 ∪ 𝐵)| × 2 + 𝑃|𝐴⧵𝐵|
2 × |𝐴 ∩ 𝐵| + 𝑃|𝐴∩𝐵|

2 × |𝐴 ⧵ 𝐵|
+|𝐵 ⧵ 𝐴| × |𝐴 ∩ 𝐵| × |Ω ⧵ (𝐴 ∪ 𝐵)| × 2 + 𝑃|𝐵⧵𝐴|

2 × |𝐴 ∩ 𝐵| + 𝑃|𝐴∩𝐵|
2 × |𝐵 ⧵ 𝐴|

(5.12)

5.4.4 Visualization

Our triplet sampling scheme is effective if it can make the triplet ar-
chitecture learn an embedding space in which distances capture basic
community structure (disjoint case) and the two more subtle nested
and overlapping cases previously tackled. In order to test its effective-
ness, we inspect what happens for the IS1001cmeeting, which includes
12 abstractive communities and 48 unique utterances. For thismeeting,
23612 triplets can be sampled with our approach.

We trained our model (see Section 5.5) on this set of triplets for 5
epochs. The utterance embeddings projected onto the first two PCA
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dimensions are shown in Figure 5.6, in which the utterances belong-
ing to the same ground truth community are encircled by an ellipse
(marked with a letter in {𝐴,… ,𝐿}).

We can observe that utterances are placed at the right places as de-
sired. Overall, utterances belonging to the same community are close
to each other (small intra-community distances), and disjoint commu-
nities (e.g., A, B, andC) are far from each other (large inter-community
distances). In the upper corner of Figure 5.6, the nested community J
and the part I ⧵ J are well separated, but they are closer to each other
than to any other disjoint community. In the center of Figure 5.6, the
overlap K ∩ L has successfully been pulled in-between the two over-
lapping communities.
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Figure 5.6 – All 48 utterances of 12 abstractive communities from the meet-
ing IS1001c projected into 2-dimensional PCA of learned 32-
dimensional embedding space. Trained on 23612 triplets for 5
epochs. Converged 𝑃@𝑘 = 𝑣 is equal to 96.33%.

This provides evidence that, with well-designed triplets, it is pos-
sible to learn a space encoding very fine clustering patterns with the
triplet architecture. To the best of our knowledge, this is novel and has
never been proven by prior literature. Moreover, our proposed triplet
sampling scheme is general and can thus be applied to any task where
a rich metric needs to be learned to encode subtle grouping informa-
tion.

The embedding space can also be interactively explored. We pro-
vide below a link to Google’s Embedding Projector, corresponding to a
more complicated example with more elements and communities (the
ES2016bmeeting) learned in the sameway as in the previous example:
https://projector.tensorflow.org/?config=https://gist.githubusercontent.com/shangguokan/

fb859f90563369cc6b01e7897ec6fb37/raw/063f2429f46cee13896a66a9aae059934aef16a2/ES2016b.

json

https://projector.tensorflow.org/?config=https://gist.githubusercontent.com/shangguokan/fb859f90563369cc6b01e7897ec6fb37/raw/063f2429f46cee13896a66a9aae059934aef16a2/ES2016b.json
https://projector.tensorflow.org/?config=https://gist.githubusercontent.com/shangguokan/fb859f90563369cc6b01e7897ec6fb37/raw/063f2429f46cee13896a66a9aae059934aef16a2/ES2016b.json
https://projector.tensorflow.org/?config=https://gist.githubusercontent.com/shangguokan/fb859f90563369cc6b01e7897ec6fb37/raw/063f2429f46cee13896a66a9aae059934aef16a2/ES2016b.json
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utterance encoder

𝑢1𝑡−𝐶𝑢2𝑡−𝐶 𝑢𝑁𝑡−𝐶… 𝑢1𝑡−1𝑢2𝑡−1 𝑢𝑁𝑡−1…

…
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𝑈𝑡
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Figure 5.7 – Our proposed utterance encoder. Only the pre-context encoder
is shown. 𝐶 is the context size.

5.5 propos ed utt erance encoder

Notation. The time 𝑡 (as superscript) denotes the position of a given ut-
terance in the conversation of length 𝑇, and the position 𝑖 (as subscript)
denotes the position of a token within a given utterance of length 𝑁.
E.g., u𝑡

1 is the representation of the first token of U𝑡, the 𝑡𝑡ℎ utterance
in the transcription. Upper and lower case are used for matrices and
vectors. Vectors are distinguished from floats by using boldface.

5.5.1 Word encoder

As shown in the upper right corner of Figure 5.7, we obtainu𝑡
𝑖 by con-

catenating the pre-trained vector of the corresponding token with the
discourse features of U𝑡 (role, position and dialogue act), and passing
the resulting vector to a dense layer.

5.5.2 Utterance encoder

As shown in the center of Figure 5.7, we represent U𝑡 as a sequence
of 𝑁 𝑑-dimensional token representations {u𝑡

1,… ,u𝑡
𝑁}. In addition, be-

cause there is a strong time dependence between utterances (see Fig-
ure 5.2), we inform the model about the preceding and following ut-
terances when encodingU𝑡. To accomplish this, we prepend (resp. ap-
pend) toU𝑡 a context vector containing information about the previous
(resp. next) utterances, finally obtainingU𝑡 = {u𝑡

pre,u𝑡
1,… ,u𝑡

𝑁,u𝑡
post} ∈

ℝ(𝑁+2)×𝑑. We then use a non-stacked bidirectional Recurrent Neural
Network (RNN) with Gated Recurrent Units (GRU) (Cho et al., 2014)
to transform U𝑡 into a sequence of annotations H𝑡 ∈ ℝ(𝑁+2)×2𝑑.

In practice, the pre andpost-context vectors initialize the left-to-right
and right-to-left RNNs with information about the utterances preced-
ing and followingU𝑡. This is similar in spirit to the warm-start method
of Wang et al. (2017), that directly initializes the hidden states of the
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RNNswith the context vectors. Howwederive the pre andpost-context
vectors is explained in Subsection 5.5.3.

Self-attention. The self-attention mechanism (Yang et al., 2016b; Lin
et al., 2017; Vaswani et al., 2017), also called inner or intra attention,
emerged in the literature following the success of attention in the sequence-
to-sequence setting (Bahdanau, Cho, and Bengio, 2015; Luong, Pham,
and Manning, 2015). While self-attention deals with a single source
sequence (no decoder), the motivation is the same as with traditional
attention: rather than considering the last annotation of the RNN en-
coder as a summary of the entire input sequence, which is prone to in-
formation loss, a newhidden representation is computed as aweighted
sum of the annotations at all positions, where the weights are com-
puted by a trainablemechanism that performs a comparison operation.

While in seq2seq, the comparison involves the transformed input
and the current hidden state of the decoder, in the encoder-only set-
ting, the annotations H𝑡 are passed through a dense layer and com-
pared (dot product) with a trainable vector u𝛾, initialized randomly.
Then, a probability distribution over the 𝑁 + 2 tokens inU𝑡 is obtained
via a softmax:

𝛾𝛾𝛾𝑡 = softmax(u𝛾 ⋅ tanh(W𝛾H𝑡)) (5.13)

(bias omitted for readability). The attentional vector for U𝑡 is finally
computed as a weighted sum of its annotations, and, as shown in Fig-
ure 5.7, is finally passed to a dense layer to obtain the utterance embed-
ding u𝑡 ∈ ℝ𝑑𝑓 :

u𝑡 = dense(
𝑁+2
∑
𝑖=1

𝛾𝑡
𝑖h𝑡

𝑖) (5.14)

u𝛾 replaces the hidden state of the decoder in the traditional attention
mechanism. It can be interpreted as a learned representation of the
“ideal word”, on average. The more similar a token vector is to this
representation, the more attention the model pays to the token.

5.5.3 Context encoder: level 1

We now explain howwe derive the pre and post-context vectors that
we prepend and append to U𝑡 so as to inject contextual information
into the encoding process. They are obtained by aggregating informa-
tion from the 𝐶 utterances preceding and following U𝑡 (respectively):

u𝑡
pre ← aggregatepre({U𝑡−𝐶,… ,U𝑡−1}) (5.15)

u𝑡
post ← aggregatepost({U𝑡+1,… ,U𝑡+𝐶}) (5.16)

where 𝐶, the context size, is a hyperparameter. Since u𝑡
pre and u𝑡

post
will become part of utterance U𝑡 which is a sequence of token vectors,
and fed to the RNN, we need them to live in the same space as any
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other token vector. This forbids the use of any nonlinear or dimension-
changing transformation in aggregate, such as convolutional or recur-
rent operations. Therefore, we use self-attention only. More precisely,
we propose a two-level hierarchical architecture that makes use of a
different type of self-attention at each level (see left part of Figure 5.7).
The pre and post-context encoders share the exact same architecture,
so we only describe the pre-context encoder in what follows.

Content-aware self-attention. At level 1, we apply the same attention
mechanism to each utterance in {U𝑡−𝐶,… ,U𝑡−1}. E.g., for U𝑡−1:

𝛼𝛼𝛼𝑡−1 = softmax(u� ⋅ tanh(W�U𝑡−1 + W′
𝑁

∑
𝑖=1

u𝑡
𝑖)) (5.17)

This mechanism is the same as in Equation 5.13, except for two dif-
ferences. First, we operate directly on the matrix of token vectors of
the previous utterance U𝑡−1 rather than on RNN annotations. Second,
there is an extra input that consists of the element-wise sum of the
token vectors of the current utterance U𝑡. The latter modification is in-
spired by the coverage vectors used in translation and summarization
to address under(over)-translation and repetition, e.g., (Tu et al., 2016;
See, Liu, and Manning, 2017b). In See, Liu, and Manning (2017b), the
coverage vector is the sum, over all previous steps of the decoder, of the
attentional distributions over the source words. Its role is to decrease
repetition in the final summary, by letting the attention mechanism
knowwhich information about the source document has already been
captured, in the hope that the model will focus on other aspects of it.
In our case, we hope that by letting the model know about the tokens
in the current utterance U𝑡, it will be able to extract complementary
(rather than redundant) information from its context, and thus pro-
duce a richer embedding.

Bi-directional information pathway. To recapitulate, we consider U𝑡

when computing u𝑡
pre and u𝑡

post, and then prepend/append these vec-
tors toU𝑡 when encoding it. Therefore, in effect, information first flows
from the current utterance to its context to guide context encoding, and
then flows back to the current utterance encoding mechanism.

Weight sharing. The same content-aware self-attention mechanism is
applied to the entire context surrounding U𝑡, that is, to all preceding
and following utterances. We did experiment with separate pre/post
mechanisms, without significant improvements. This makes sense, as
there is no inherent difference between preceding and following utter-
ances. Indeed, the latter become the former as we slide the window
over the transcription from start to finish. In addition, sharing weights
makes for a more parsimonious and faster model. One should note,
however, that the pre and post-context encoders still differ in terms of
their time-aware attention mechanisms (at level 2).
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Dimensionality reduction. The content-aware attention mechanism
transforms the sequence of utterancematrices {U𝑡−𝐶,… ,U𝑡−1} ∈ ℝ𝐶×𝑁×𝑑

into a sequence of vectors {u𝑡−𝐶,… ,u𝑡−1} ∈ ℝ𝐶×𝑑. These vectors are
then aggregated into a single pre-context vectoru𝑡

pre ∈ ℝ𝑑 as described
next.

5.5.4 Context encoder: level 2

As can be seen in Figure 5.2, two utterances close to each other in
time are much more likely to be related (e.g., adjacency pair, elabo-
ration...) than any two randomly selected utterances. To enable our
model to capture such time dependence, we used the trainable univer-
sal time-decay attention mechanism of Su, Yuan, and Chen (2018).

Time-aware self-attention. The mechanism combines three types of
time-decay functions via weights 𝑤𝑖. The attentional coefficient for
u𝑡−1 is:

𝛽𝑡−1 = 𝑤1𝛽conv𝑡−1 + 𝑤2𝛽lin𝑡−1
+ 𝑤3𝛽conc𝑡−1 (5.18)

= 𝑤1
𝑎(𝑑𝑡−1)𝑏 + 𝑤2[𝑒𝑑𝑡−1 + 𝑘]+ + 𝑤3

1 + (𝑑𝑡−1

𝐷0
)𝑙 (5.19)

where [∗]+=𝑚𝑎𝑥(∗, 0) (ReLU), 𝑑𝑡−1 is the offset between the positions
ofU𝑡−1 andU𝑡, i.e., 𝑑𝑡−1 = |𝑡 − (𝑡 − 1)| = 1, and the 𝑤𝑖’s, 𝑎, 𝑏, 𝑒, 𝑘, 𝐷0, and
𝑙 are scalar parameters learned during training.
The convex (conv), linear (lin), and concave (conc) terms eachmodel
a different type of time dependence. Respectively, they assume the
strength of dependence to weaken rapidly, linearly, and slowly, as the
distance in time increases. The post-context mechanism can be ob-
tained by symmetry. It has different parameters.

To sum up, across the utterance and the context encoders, our archi-
tecture makes use of three different attention mechanisms.

5.6 commun i ty de t ec t ion

Once the utterance encoder 𝐺𝑊 presented in Section 5.5 has been
trainedwithin the siamesemeta-architecture or tripletmeta-architecture
(with the triplet sampling scheme of Section 5.4) presented in Section
5.3, it is used to project the summary-worthy utterances from a given
test transcription to a compact embedding space. We assume that if
training was successful, the distance in that space encodes community
structure, so that a basic clustering algorithm such as 𝑘-means (Mac-
Queen, 1967) is enough to capture it. However, since we need to detect
overlapping communities, we use a probabilistic version of 𝑘-means,
the Fuzzy c-Means (FCM) algorithm (Bezdek, Ehrlich, and Full, 1984).
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FCM returns a probability distribution over all communities for each
utterance.

Fuzzy c-Means algorithm. More specifically, the goal of the FCM algo-
rithm is to minimize the weighted within group sum of squared error
objective function:

𝐽(𝑀,𝑄) =
|𝑄|
∑
𝑞=1

𝑇
∑
𝑡=1

(𝑚𝑞𝑡)𝑓 𝑢𝑧‖u𝑡 − c𝑞‖2
2 (5.20)

where 𝑀 and 𝑄 are the sets of membership probability distributions
and community centroid vectors, 𝑚𝑞𝑡 ∈ [0, 1] is the probability that
the 𝑡-th utterance belongs to the 𝑞-th community (with ∑|𝑄|

𝑞=1 𝑚𝑞𝑡 = 1),
𝑓 𝑢𝑧 is a parameter that controls the amount of fuzziness, ‖.‖2 denotes
the Euclidean distance in the triplet case (we replace it withManhattan
distance ‖.‖1 in the siamese case), u𝑡 is the 𝑡-th utterance vector, and c𝑞
is the 𝑞-th community centroid vector.

𝑀 and 𝑄 are iteratively updated with equations:

𝑚𝑞𝑡 = (
|𝑄|
∑
𝑗=1

(
‖u𝑡 − c𝑞‖2

‖u𝑡 − c𝑗‖2
)

2
𝑓 𝑢𝑧−1 )

−1
(5.21)

c𝑞 =
∑𝑇

𝑡=1(𝑚𝑞𝑡)𝑓 𝑢𝑧u𝑡

∑𝑇
𝑡=1(𝑚𝑞𝑡)𝑓 𝑢𝑧

(5.22)

When 𝑓 𝑢𝑧 → +∞, ∀𝑞 ∈ |𝑄|, ∀𝑡 ∈ 𝑇, 𝑚𝑞𝑡 tends to be equal to 1/|𝑄|,
thus utterances have identical membership to each community. While
when 𝑓 𝑢𝑧 → 1, FCM becomes equivalent to traditional 𝑘-means, in
which 𝑚𝑞𝑡 is either 0 or 1 for a given utterance u𝑡 and community cen-
troid c𝑞. Usually in practice, 𝑓 𝑢𝑧 = 2 (Schwämmle and Jensen, 2010).
Learning stops until the maximum number of iterations is reached or
𝐽(𝑀,𝑄) decreases by less than a predefined threshold.

5.7 ex p er imental s e tup

5.7.1 Dataset

We experiment on the AMI corpus (McCowan et al., 2005), with the
manual annotations v1.6.2. The corpus contains data for more than
100 meetings, in which participants play 4 roles within a design team
whose task is to develop a prototype of TV remote control. Each meet-
ing is associated with the annotations described in the introduction
and shown in Figure 5.2. There are 2368 unique abstractive commu-
nities in total, whose statistics are shown in Table 5.1. We adopt the
officially suggested scenario-only partition 3, which provides 97, 20, and

3. http://groups.inf.ed.ac.uk/ami/corpus/datasets.shtml

http://groups.inf.ed.ac.uk/ami/corpus/datasets.shtml
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type abstract action problem decision total
unique 1147 247 380 594 2368
disjoint 528 124 69 45 766
nested 96 106 200 437 839

overlapping 349 17 163 149 678
singleton 49 162 38 244 493

Table 5.1 – Statistics of abstractive communities.

20 meetings respectively for training, validation and testing. We use
manual transcriptions, and do not apply any particular preprocessing
except filtering out specific ASR tags, such as vocalsound.

5.7.2 Baselines

First, we evaluate our utterance encoder against two baseline encoders
LD and HAN that are trained within the energy framework, as well as
4 variants of our model. Note that to be fair, we ensure that both LD
and HAN have access to context. We then compare our full pipeline
against unsupervised and supervised baseline systems. Full details are
provided in below.

Baseline encoders

— LD (Lee andDernoncourt, 2016) is a sequential sentence encoder
developed for dialogue act classification. The model takes into
account a fixed number of utterances only from the pre-context
when classifying the current one. More precisely, CNN or RNN
with max-pooling is first applied separately to the current utter-
ance and each pre-context utterance, and the resulting vectors
are then aggregated through two levels of dense layers, based
on two hyper-parameters, 𝑑1 and 𝑑2, which represent the history
size at level 1 and level 2 (respectively). Although the original
paper reported that the CNN encoder slightly outperforms the
RNNone (forDA classification), in our experiments, we used the
RNN variant, since our model and the HAN baseline are RNN-
based. Note that here, we used LSTM cells as Lee and Dernon-
court (2016) reported them towork better thanGRU cells in their
experiments.

— HAN (Yang et al., 2016b). The Hierarchical Attention Network,
developed for document classification, is a two-level architecture,
where at level 1, each sentence in the document is separately en-
coded by the same sentence encoder, resulting in a sequence of
sentence vectors. That sequence is then processed at level 2 by
the document encoderwhich returns a single vector representing
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the entire document. The sentence and document encoders are
both self-attentional bidirectional RNNs, with different parame-
ters. We give HAN access to contextual information by feeding
it the current utterance surrounded by the 𝐶𝑏 preceding and 𝐶𝑏
following utterances in the transcription, where 𝐶𝑏 denotes the
best context size reported in Section 5.8.

Variants of our model

We also considered 4 variants of our model: (1) CA-S: we replace
the time-aware self-attention mechanism of the context encoder with
basic self-attention. (2) S-S: we replace both the content-aware and
the time-aware self-attention mechanisms of the context encoder with
basic self-attention. (3) (0,0): ourmodel, without using the contextual
encoder. (4) (3,0): our model, using only pre-context, with a small
window of 3, to enable fair comparison with the LD baseline.

Unsupervised baseline systems

— tf-idf. A TF-IDF vector is used as the utterance embedding, com-
pressed to a dimension of 21 with PCA, and concatenated with
the 21-dimensional discourse feature vector, thus forming a vec-
tor of dimension 𝑑 = 42. This vector is then again compressed to
a 𝑑𝑓 = 32-dimensional vector. The compression steps are applied
for consistency with the energy-based systems, in which textual
and discourse features have the same dimensionality 𝑑/2 = 21,
and the output of the utterance encoder is 𝑑𝑓 -dimensional (see
Subsection 5.7.3). To make this baseline context-aware, the em-
beddings of the current utterance and the context utterances are
averaged. In the end, FCM is applied. Note that the TF-IDF
vocabulary is obtained from the entire conversation, giving this
baseline a competitive advantage over the others, which never
have access to the full transcription.

— w2v. Identical to the previous baseline, but using the average
of the word2vec vectors of a given utterance instead of TF-IDF
vector.

— LCseg is an unsupervised system adapted from previous work
(Oya et al., 2014; Banerjee, Mitra, and Sugiyama, 2015; Singla
et al., 2017), in which disjoint topic segments are assumed to
be abstractive communities. A lexical-cohesion based topic seg-
menter LCseg (Galley et al., 2003) is first applied on transcrip-
tions to get the desired number of segments (|𝑄| = 𝑣/11, see Sub-
section 5.7.4), and then only summary-worthy utterances within
segments are retained for evaluation.
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Supervised baseline systems

As discussed in the literature review (see Section 5.2), original ap-
proaches to ACD (Murray, Carenini, and Ng, 2012; Mehdad et al.,
2013) are supervised and non energy-based. They have no publicly
available implementations, and are hard to precisely reimplement due
to lack of details about handcrafted features and dependency on ex-
ternal textual entailment corpora. Nevertheless, we implemented two
baselines similar in spirit, taking as input the representations produced
by the tf-idf and w2v unsupervised baselines previously described.
More precisely, the two 𝑑𝑓 -dimensional representations of a pair of
utterances are fed into a 3-layer feed-forward neural network (with
2𝑑𝑓 , 𝑑𝑓 , and 1 hidden units) which is trained on the task of predict-
ing whether the two utterances belong to the same abstractive com-
munity or not (binary classification task). Then, like in the aforelisted
studies, an utterance graph is built, where utterances are linked based
on the predictions of the MLP. Finally, the CONGA algorithm (Gre-
gory, 2007), an extension of the well-known Girvan-Newman algo-
rithm (Girvan and Newman, 2002), is applied to detect overlapping
communities on the utterance graph.

5.7.3 Training details

Word encoder. Discourse features consist of two one-hot vectors of di-
mensions 4 and 16, respectively for speaker role and dialogue act. The
positional feature is a scalar in [0, 1], indicating the normalized posi-
tion of the utterance in the transcription. We used the pre-trained vec-
tors learned on the Google News corpus with word2vec by Mikolov,
Le, and Sutskever (2013), and randomly initialized out-of-vocabulary
words (1645 out of 12412). As a preprocessing step, we reduced the di-
mensionality of the pre-trained word vectors from 300 to 21 with PCA,
in order to give equal importance to discourse and textual features. In
the end, tokens are thus represented by a 𝑑 = 42-dimensional vector.

Layer sizes. For our model, and the LD and HAN baselines, we set
𝑑𝑓 = 32 (output dimension of the final dense layer).

LD. We set d1=3 and d2=0, which is very close to (2,0), the best con-
figuration reported in the original paper.

HAN. Again, for the sake of fairness, we give the HAN baseline ac-
cess to contextual information, by feeding it the current utterance sur-
rounded by the 𝐶𝑏 preceding and 𝐶𝑏 following utterances in the tran-
scription, where 𝐶𝑏 denotes the best context size reported in Section
5.8.

Optimization. The exact same token representations and settingswere
used for our model, its variants, and the baseline encoders. Models
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were trained on the training set for 30 epochs with the Adam (Kingma
and Ba, 2015) optimizer. The best epoch was selected as the one asso-
ciated with the lowest validation loss. Batch size and dropout (Srivas-
tava et al., 2014) were set to 16 and 0.5. Dropout was applied to the
word embedding layer only. To account for randomness, we average
results over 10 runs.

Tuple subsampling and resampling. When labeled tuples (pairs or
triplets) are not provided, but must be constructed from the dataset,
subsampling is critical for training amodelwithin the siamese or triplet
meta-architectures. For instance, in face verification (Chopra, Had-
sell, and LeCun, 2005), a virtually infinite number of impostor pairs
can be constructed, while only a limited number of genuine pairs are
available. Usually, one selects 𝑛 ≥ 1 times more impostor pairs than
genuine pairs, but 𝑛 must not be too large to avoid large imbalance
(Chopra, Hadsell, and LeCun, 2005; Neculoiu, Versteegh, and Rotaru,
2016). Subsampling is also a critical issue for triplets (Wang et al.,
2014; Schroff, Kalenichenko, and Philbin, 2015; Amos, Ludwiczuk, and
Satyanarayanan, 2016).

Following (Hoffer and Ailon, 2015; Liu et al., 2019), at the begin-
ning of each epoch, we sample one triplet from each pair of commu-
nities belonging to the same meeting, using the strategy explained in
Section 5.4. We thus obtain 15594 training triplets. This intelligently
maximizes data usagewhile preventing overfitting. To enable fair com-
parisonwith the siamese approach, 15594 genuine and 15594 impostor
pairs were sampled at the beginning of each epoch, since we consider
that one triplet essentially equates one genuine pair and one impostor
pair.

While the training tuples were resampled at each epoch, we used
a fixed validation set of 2891/5782 triplets/pairs. On the test set, no
(re)sampling is necessary: we simply get a vector for each utterance
by feeding them to the trained model 𝐺𝑊 .

5.7.4 Performance evaluation

We evaluate performance at the distance and the clustering level, us-
ing respectively precision, recall, and F1 score at 𝑘, and the Omega in-
dex.

Distance level

First, we test whether the distance in the final embedding space is
meaningful. To do so, for a given query utterance, we rank all other
utterances in decreasing order of similarity with the query. We then
use precision, recall, and F1 score at 𝑘 to evaluate the quality of the
ranking. A detailed example is provided in Subsection 5.9.2.
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Singleton communities are excluded from the evaluation at this stage.
We set 𝑘=10, which is equal to the average number of non-singleton
communities minus one (since the query utterance cannot be part of
the results). We also report results for a variable 𝑘 (𝑘=v), where 𝑘 is
equal to the size of the community of the query utterance minus one.
In that case, P=R=F1.

The same procedure is repeated for all utterances. To account for dif-
ferences in community size, scores are first averaged at the community-
level, and then at themeeting-level. Note that the distance is Euclidean
for triplet andManhattan for siamese (see Subsections 5.3.2 and 5.3.3).

Clustering level

Second,we compare our community assignments to the humanground
truth using the Omega index (Collins and Dent, 1988), a standardmet-
ric for comparing non-disjoint clustering, used in the ACD literature
(Murray, Carenini, and Ng, 2012). A detailed explanation is provided
in Subsection 2.2.3.

Since FCM yields a probability distribution over communities for
each utterance, we need to use a threshold to assign a given utterance
to one or more communities. We selected 0.2 after trying multiple val-
ues in [0, 0.5] with steps of 0.05 on the validation set. Whenever one
or more utterances were not assigned to any community, we merged
them into a new community. Furthermore, we set the number of clus-
ters |𝑄| to 11, which corresponds to the average number of ground truth
communities per meeting (after merging). We also report results with
a variable |𝑄| (|𝑄| = 𝑣), equal to the number of ground truth commu-
nities.

Note that since FCM does not return nested groupings, we merged
the ground truth communities nestedunder the same community. More-
over, due to its stochastic nature, we run the algorithm 20 times with
different random initializations and select the run yielding the smallest
objective function value.

5.8 quant i tat i v e r e sult s

Context sizes. Larger contexts bring richer information, but increase
the risk of considering unrelated utterances. Using our proposed en-
coder within the triplet meta-architecture, we tried different values
of 𝐶 on the validation set, under two settings: (pre,post) = (𝐶, 0),
and (pre,post) = (𝐶,𝐶). Results are shown in Figure 5.8. We can ob-
serve that increasing 𝐶 always brings improvement, with diminishing
returns. Results also clearly show that considering the following utter-
ances in addition to the preceding ones is useful. Note that the curves
look similar for 𝐹1@𝑘 = 10. In the end, we selected (11,11) as our best
context sizes.
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Figure 5.8 – Impact of context size on the validation 𝑃@𝑘 = 𝑣, for our model
trained within the triplet meta-architecture.

Performance comparison. Final test set results are shown in Table 5.2.
All variants of our model significantly outperform LD. While HAN
is much stronger than LD, our model and its variants using best con-
text sizes manage to outperform it everywhere, except in the siame-
se/P@k=v case (row j). One of the reasons for the superiority of our
utterance encoder is probably that it considers contextual information
while encoding the current utterance, while HAN and LD take as input
the context utterances together with the current utterance, without dis-
tinguishing between them. Moreover, we use an attention mechanism
dedicated to temporality, whereas HAN is only able to capture an im-
plicit notion of time through the use of recurrence (RNN), and LD,
with its dense layers, completely ignores it. Also, all variants of our
model using best context sizes (11,11) outperform the ones using re-
duced (3,0) or no (0,0) context, regardless of the meta-architecture.
This confirms the value added by our context encoder.

For siamese, our model outperforms its two variants (CA-S and S-S)
for all metrics, indicating that both the content-aware and the time-
aware self-attention mechanisms are useful. However, it is interesting
to note that when training under the triplet configuration, the CA-S
variant of our model is better, suggesting that in that case, the content-
aware mechanism is beneficial, but the time-aware one is not.

LCseg (row m) and tf-idf (11,11) (row n3) are the best of all unsu-
pervised/supervised baseline systems, but both perform significantly
worse than all energy-based approaches, highlighting that trainingwith
the energy framework is beneficial. In terms of Omega index, super-
vised baseline systems are logically better than unsupervised ones.

w2v generally outperforms tf-idf when there is no context (rows
k1,l1,n1,o1) or short context (k2,l2,n2,o2), but not with large contexts
(k3,l3,n3,o3). Results also show that overall, using larger contexts al-
ways brings improvement.
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(pre, P P R F1 Omega index ×100
post) @𝑘 = 𝑣 @𝑘 = 10 |𝑄| = 𝑣 |𝑄| = 11

a1) our model (0, 0) 54.59 46.05 62.45 43.18 49.09 48.81
a2) our model (3, 0) 55.17 46.17 62.80 43.25 49.78 49.70
a3) our model (11, 11) 58.58 46.73 63.82 43.83 49.90 49.28

Triplet b) our model (CA-S) (11, 11) 59.52⋆ 46.98⋆ 64.01⋆ 44.06⋆ 50.11 49.73
c) our model (S-S) (11, 11) 58.96 46.81 63.65 43.87 49.59 49.88
d) LD (3, 0) 52.04 44.82 60.41 41.82 48.70 48.14
e) HAN (11, 11) 58.72 45.76 62.60 42.89 49.32 48.88

f1) our model (0, 0) 53.01 45.10 60.97 42.12 50.56 49.65
f2) our model (3, 0) 53.78 45.54 61.33 42.48 51.01 50.00
f3) our model (11, 11) 56.64 46.47 62.54 43.40 52.44⋆ 51.88⋆

Siamese g) our model (CA-S) (11, 11) 56.46 46.08 61.92 43.02 51.60 50.98
h) our model (S-S) (11, 11) 55.68 45.64 61.17 42.53 52.26 51.11
i) LD (3, 0) 52.13 44.83 60.85 41.86 51.18 50.70
j) HAN (11, 11) 58.54 45.72 61.55 42.74 50.51 49.82

k1) tf-idf (0, 0) 29.28 26.67 34.69 24.19 13.12 13.66
k2) tf-idf (3, 0) 34.77 30.27 40.83 27.79 10.22 10.17
k3) tf-idf (11, 11) 58.94 43.94 61.36 41.45 38.09 39.47

Unsupervised l1) w2v (0, 0) 29.02 27.46 37.39 25.11 13.89 13.50
l2) w2v (3, 0) 34.11 29.92 39.55 27.32 10.61 10.77
l3) w2v (11, 11) 58.30 44.08 61.59 41.59 37.75 38.28
m) LCSeg - - - - - 38.98 41.57

n1) tf-idf (0, 0) - - - - 25.04 25.14
n2) tf-idf (3, 0) - - - - 27.33 26.95

Supervised n3) tf-idf (11, 11) - - - - 45.26 44.91
o1) w2v (0, 0) - - - - 25.32 25.25
o2) w2v (3, 0) - - - - 29.14 29.02
o3) w2v (11, 11) - - - - 43.31 43.08

Table 5.2 – Results (averaged over 10 runs). ⋆: best score per column. Bold:
best score per section. -: does not apply as the method does not
produce utterance embeddings.
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Simplified task. Finally, we also experimented on amuch simpler task,
where only the communities of type ABSTRACT were considered. This
makes ACD much simpler, because most of the overlapping commu-
nities are of the other types (see Table 5.1). For this simplified task,
we have 1147 unique communities, of which 78.99% are disjoint. our
model achieves 72.09 in terms of 𝑃@𝑘 = 𝑣 and 55.67 in terms of Omega
index when |𝑄| = 𝑣. 𝑃,𝑅,𝐹1@𝑘 = 15 are respectively equal to 55.07,
74.37, and 54.00, and the Omega index is 54.30 when |𝑄| = 8.

Usage of discourse features. Discourse features are very helpful through
our experiments. They are introduced into ourmodel by concatenating
at the word-level (see Section 5.5.1) instead of concatenating with the
output of self-attention 𝛾 at the sentence-level. The decision is made
based on empirical results, moreover this is also aligned with the na-
ture ofword being part of transcription, which has richermeaning than
just theword itself, thus its representation should be enrichedwith dis-
course features.

5.9 qual i tat i v e r e sult s

In this section, we first visualize that the three self-attention mecha-
nisms behave in a cooperative manner to produce a meaningful utter-
ance representation. We also visualize the attention coefficients of the
two time-aware self-attention mechanisms, and find that interestingly,
the distributions over the pre and post-context are not symmetric. We
then inspect the closest utterances to a given query utterance.

5.9.1 Attention visualization

The aim of this subsection is to show, with an example, what the
three self-attention mechanisms pay attention to while encoding the
current utterance U𝑡 (here, an utterance from the ES2011c validation
meeting). Figure 5.9 shows the attention distributions over U𝑡 (high-
lighted by the black frame), and over its pre-context {U𝑡−1,… ,U𝑡−11}
and post-context {U𝑡+1,… ,U𝑡+11} utterances. We use three colors that
are consistent with the ones used in Figure 5.7 to denote the three
different attention mechanisms: green for content-aware (𝛼), blue for
time-aware (𝛽), and red for basic self-attention (𝛾). Remember that
𝛼 and 𝛽 are both in the context encoder, while 𝛾 is in the utterance
encoder. Color shades indicate attention intensity (the darker, the
stronger).

We can observe in Figure 5.9 that:
— The content-aware self-attention mechanism 𝛼 (green) focuses

on the informative and complementary words in the contexts
that are central to understanding the utterance at time 𝑡, such
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as: “custom”, “design” from U𝑡−11, “material” from U𝑡−4, “rec-
ommend”, “titanium” from U𝑡−2, “wood” from U𝑡+1, etc.

— The time-aware self-attention mechanism 𝛽 (blue) places more
importance over the context utterances that are close to U𝑡, i.e.,
the importance decreaseswhen the timedistance increases. How-
ever, the patterns are different for the pre and post-contexts (see
Figure 5.10).

— The self-attention mechanism 𝛾 (red) focuses mainly on the spe-
cial pre-context token PRE, meaning that the pre-context is more
important than the post-context in the example considered. Gen-
erally speaking, the pre and post-context tokens contain richer in-
formation than any token from the current utterance, as the con-
text tokens originate from the fusion of {U𝑡−11,… ,U𝑡,… ,U𝑡+11}.
It is thus possible that the utterance encoder has learned to al-
ways paymore attention to these information-rich tokens than to
any regular token.

— It is also interesting to note that considerable attention is being
paid to punctuation marks. This makes sense, since they are im-
portant pieces of information indicative of utterance type (e.g.,
statement or question).

To summarize, the visualization results show that the three self-attention
mechanisms of our model are able to adaptively focus on different in-
formation, in order to cooperatively produce a meaningful representa-
tion.
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Figure 5.10 – Normalized time-aware self-attention weights for pre and post-
contexts, averaged over 10 runs.

We also inspect in Figure 5.10 the attention coefficients of the time-
aware self-attention mechanisms (see Equation 5.18) equipping the



94 ab stract i v e commun i ty de t ec t ion

pre and post-context encoders. It is interesting to observe that the dis-
tributions are not symmetric. Indeed, only the utterances immediately
followingU𝑡 (𝑡+1 → 𝑡+5) seem tomatter, while the attention weights
are much more uniform across the utterances preceding U𝑡. This sug-
gests that in dialogues, considering a long history of preceding utter-
ances helps understanding the current one.
It is also interesting to note that the parameters that have been learned
for the pre-context linear function make it increasing, rather than de-
creasing. This is counter-intuitive, but allowed by design. Overall
though, the three terms altogether do produce a function that slowly
decreases as time distance increases, which is in accordance with intu-
ition.

5.9.2 Ranking example

For the same utterance from the ES2011c meeting as used in Subsec-
tion 5.9.1, we show in Table 5.3 the closest and furthest utterances, in
terms of Euclidean distance in the embedding space. Recall that meet-
ing ES2011c belongs to the validation set. Utterances belonging to the
ground truth community of the query utterance are shown in bold.
Roles are ID: industrial designer, ME: marketing expert, UI: user in-
terface designer, PM: project manager. For this example, 𝑃@𝑘 = 𝑣 is
equal to 77.78 (where 𝑣 = 9), and 𝑃, 𝑅, and 𝐹1@𝑘 are 80.00, 88.89, 84.21
respectively (where 𝑘 = 10).

We can see that semantic similarity obviously plays a role, as most
of the closest utterances are about buttons and materials. But other
parameters come into play. E.g., the utterances "And al we also need
a beeper or buzzer or other sort of noise thing for locating the
remote", and "I don't know why we'd want to", respectively ranked
2nd and 7th, are not semantically related to the query utterance. Such
utterances might be placed close to the query utterance based on their
positional and discourse features (speaker role and dialogue act), but
also because their contexts are similar.

The community where the query utterance belongs to (utterances
shown in bold in Table 5.3) is associated with the following sentence
in the human abstractive summary: The Industrial Designer gave
her presentation on components and discussed which would have
to be custom-made and which were standard.

5.10 conclus ion and future work

Thisworkproposes one of the first applications of energy-based learn-
ing toACD.Using the siamese and tripletmeta-architectures, we showed
that our novel contextual utterance encoder learns better distance and
communities than state-of-the-art competitors. Results also show that
energy-basedmodeling is well-suited to ACD.Moreover, we show that
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dist pos DA role text

0 𝑡 inf ID Um , and the rubber case requires rubber buttons , so if we definitely
want plastic buttons , we shouldn’t have a rubber case .

0.11 -3 inf ID Um , we can use rubber , plastic , wood or titanium .
0.12 -5 inf ID And al we also need a beeper or buzzer or other sort of noise thing for

locating the remote .
0.38 -2 sug ID Um , I’d recommend against titanium
0.42 +7 inf ID Um and also we should note that if we want an iPod-style wheel button

, it’s gonna require a m qu slightly more expensive chip .
0.54 +5 ass ID Uh , well we can use wood .
0.57 -8 inf ID Um , standard parts include the buttons and the wheels , um the iPod-

style wheel .
0.68 +6 ass ID I don’t know why we’d want to .
0.96 -11 inf ID And we’ll need to custom desi design a circuit board ,
1.26 -13 inf ID Um , I assume we’ll be custom designing our case ,
1.27 -14 inf ID Um , so we need some custom design parts , and other parts we’ll just

use standard .
1.43 -17 inf ID So I’ve been looking at the components design .
1.66 +12 off ME Um , can I do next ? Because I have to say something about the material
2.24 +18 inf ME and the findings are that the first thing to aim for is a fashion uh , fancy

look and feel .
2.57 +19 inf ME Um . Next comes technologic technology and the innovations to do with

that .
3.21 +20 inf ME And th last thing is the easy to use um factor .
3.92 +69 inf UI Uh , so people are going to be looking at this little screen .
4.02 +92 inf ME But the screen can come up on the telly , the she said .

⋯
8.81 +623 inf ID It didn’t give me any actual cost .
8.84 +622 inf ID All it said was it gave sort of relative , some chips are more expensive

than others , sort of things .
8.89 +616 inf ME So if you throw it , it’s gonna store loads of energy , and you don’t need

to buy a battery because they’re quite f I find them annoying .
9.00 +617 sug ME But we need to find cost .
9.06 +621 el.inf ME Does anyone have costs on the on the web ?
9.95 +652 inf PM And you’re gonna be doing protu product evaluation .
9.96 +650 inf PM Ohwhen wemove on , you two are going to be playing with play-dough

.
10.15 +651 inf PM Um , and working on the look and feel of the design and user interface

design .

Table 5.3 – Ranking example.
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our general triplet sampling scheme enables the triplet architecture to
learn subtle clustering patterns, such as overlapping and nested com-
munities. This has many applications outside of ACD.

Futurework should focus on (1) summarizing each communitywith
an abstractive sentence (subtask b in Figure 5.1). New datasets such as
Dial2Desc (Pan et al., 2018) and SAMSum (Gliwa et al., 2019) for short
dialogue summarization , might be a remedy to the lack of a large-scale
summarization dataset for the conversation domain; (2) predicting
community types, i.e., ABSTRACT, ACTIONS, PROBLEMS, and DECISIONS,
which could be useful for summarization; (3) applying our contex-
tual utterance encoder to other tasks; (4) evaluating our triplet sam-
pling scheme, alongwith tackling overlapping andnested clustering or
multi-label classification tasks, on other datasets. In order to show the
general applicability of the scheme, we plan to conduct experiments
on graph, image and text synthetic/real-world datasets, and hopefully
obtained results may shed some light in related fields.



6
CONCLUD ING REMARKS

In this chapter, we conclude the dissertation by first summarizing
our main contributions reported in detail in the previous chap-
ters, and we then outline the promising future research directions

unexplored at the time of writing.

6.1 summary of contr i but ions

In the context of the LinTO meeting assistant project, this disserta-
tion has focused on teachingmachines to understandmulti-partymeet-
ing speech, and more specifically, to automatically generate meeting
summaries. Our contributions have been made along with developing
novel approaches to address three specific NLP/SLU tasks centered
around the main subject of this thesis:
a b stract i v e mee t ing summar i zat ion, which aims to take ameet-

ing speech transcription as input andgenerate an abstractive sum-
mary consisting of novel sentences. In Chapter 3 we introduced
a novel approach to this task, which is fully unsupervised, does
not rely on any particular annotations, and can be applied to any
language in an almost out-of-the-box fashion. More specifically,
we presented a graph-based NLG component MSCG, in which
1) a word graph is constructed based on a set of topically co-
herent utterances, 2) then graph edges and paths are weighted
and re-ranked according to novel scoring functions developed by
leveraging advances in word embeddings, graph-of-words, and
graph degeneracy, and 3) finally, the best path is retrieved from
the graph as a novel generated abstractive sentence. To form
the final summary of a certain size, we select the best elements
from the set of abstractive sentences by maximizing a custom
submodular quality function under a budget constraint. Exper-
iments showed that our system improves on the state-of-the-art
and generates reasonably grammatical abstractive summaries de-
spite taking noisy utterances as input.

d ia logue act cla s s i f i cat ion, whose goal is to assign each ut-
terance a dialogue act label to represent its communicative inten-
tion. In Chapter 4, we introduced a modified neural CRF layer
that takes speaker information into account for this task. More
specifically, we made the label transition matrix of the CRF to
be conditioned on speaker-change, i.e., two matrices that encode
differentDA transition patterns for the “speaker unchanged” and
“speaker changed” cases. Our modified CRF layer is general and
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can be plugged on top of any deep learning component to form
a DA classification model. In our experiments, we evaluated it
within the BiLSTM-CRFarchitecture, results showed that ourmod-
ified CRF layer outperforms the classical one, with very wide
margins for someDA labels. Further, visualizations demonstrated
that ourCRF layer can learnmeaningful, sophisticated, and speaker-
change-aware transition patterns between DA label pairs in an
end-to-end way. The empirical results of this work confirmed
our hypothesis that speaker information is indeed beneficial to
the task of DA classification.

ab stract i v e commun i ty de t ec t ion, in which utterances in a
conversation are grouped according towhether they can be jointly
summarized by a common abstractive sentence. In Chapter 5, we
introduced an energy-based or deepmetric learning approach to
this task. More specifically, 1) we first presented a neural con-
textual utterance encoder featuring three types of self-attention
mechanisms, which takes contextual and temporal information
into account when embedding a target utterance. 2) We then
trained it using the siamese and triplet architectures, whose ob-
jective is to project training utterances into an embedding space
in which the utterances from a given abstractive community are
close to each other. Here, weproposed a general sampling scheme
that enables the triplet architecture to capture subtle clustering
patterns, such as overlapping and nested communities. 3) Fi-
nally, we applied the Fuzzy c-Means clustering algorithm on the
trained utterance embeddings in order to obtain abstractive com-
munities. Experiments showed that our systemoutperformsmul-
tiple energy-based andnon-energy based baselines from the state-
of-the-art. Further, visualization results showed that the three
self-attention mechanisms of our utterance encoder are able to
adaptively focus on different information, in order to coopera-
tively produce a meaningful representation, and that our triplet
sampling scheme is effective.

6.2 future work

We firmly believe that in order to enable unsupervised/supervised
meeting summarization techniques to go one step further in perfor-
mance, the systems will need to have a deeper understating of meet-
ings and natural language.

de e p er under stand ing of mee t ing s . Current abstractivemeet-
ing summarization approaches mainly aim to produce general or topic
summaries: long paragraphs that give an overview of what a conversa-
tion is about. However, they are often too general to be useful espe-
cially for business meetings, where detailed or focused summaries (anal-
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ogous to human meeting minutes) are usually desired. Participants
might want a record of the arguments made for or against a claim and
who made them, for example, or to know the order in which it was
decided that certain actions would be performed and who is meant to
perform them. Generating such detailed summaries requires a thor-
ough understanding of meeting structures, which is currently beyond
the capabilities of state of the art summarization systems.

To accomplish this, we believe the systems need to exploit informa-
tion about rhetorical relations that hold between the contents of dialogue
acts in a conversation, together with the complex discourse structures
that they entail (Thompson and Mann, 1987; Asher, 1993; Asher et
al., 2003). For instance, instead of assuming that a conversation has a
flat chain structure (a linear sequence of utterances) as we do nowa-
days, we can represent it as a discourse graph—a directed weakly con-
nected graph reflecting the discourse structure—in which the nodes
represent utterances and the edges represent discourse relations (e.g.,
elaboration, clarification, completion). In a nutshell, we would like to
have a graph that encodes all aspects of the conversation, from low-
level to higher-level understanding. Providing such graph as input to
graph neural networks (Zhou et al., 2018) will allow a model to fully
explore the information carried by the nodes (utterances) and edges
(relations) and result in better abstractive summaries. A similar idea
to what we propose here has been explored and proven promising for
extractive summarization in the recent work of Xu et al. (2019), but
as of yet, there has been no attempt to apply it to abstractive meeting
summarization.

Apart from the discourse graph and going beyond the field of NLP,
we can take advantage of multi-modal sensing of the meeting envi-
ronment when building meeting summarization systems, such as mi-
crophones to capture speech and cameras to capture the individual
participants and their interactions. Leveraging advances in audio and
videoprocessing to incorporatemulti-modal information, such as head
poses, eye gazes, facial expressions, hand gestures, and vocal empha-
sises, may improve performance over a system that draws on textual
transcriptions alone. The recent work of Li et al. (2019a) has shown
that the visual focus of attention, which is estimated based on each par-
ticipant’s head orientation and eye gaze, can assist their multi-modal
summarization system in determining salient utterances and, conse-
quently, improve the quality of generated abstractive meeting sum-
maries. The assumption is that an utterance is more important if its
speaker receives more attention from other meeting participants. We
believe multi-modal systems can be one of the promising future re-
search directions for abstractive meeting summarization, yet this is lit-
tle explored in the literature (Erol, Lee, andHull, 2003; Li et al., 2019a).
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deep er under stand ing of natural language . Not only for
meeting summarization but also for all NLP tasks, using a better text
representation technique often yields a better performance. Recent ad-
vances in languagemodels pre-trained on a large unannotated text cor-
pus (e.g., BERT; Devlin et al., 2018) have brought many revolution-
ary advantages. For example, these models can provide word embed-
dings with an awareness of the context in which the word is used, so
that e.g., "apple" will have different representations in different texts.
Moreover, the pre-trained models can be easily plugged in as input to
subsequent neural components, and then fine-tuned for specific often-
low-resource tasks in a manner of transfer learning (Ruder et al., 2019).
The systems built upon these language models have shown state-of-
the-art performance on many NLP tasks, including summarization for
traditional documents (Liu and Lapata, 2019), however this has not
yet been confirmed on abstractive meeting summarization.

Moreover, Gururangan et al. (2020) have shown that instead of di-
rectly using a languagemodel pre-trained on amassive, heterogeneous,
and broad-coverage corpus, it is helpful in performance gains to first
tailor the model to the domain of a target task (domain-adaptive pre-
training), and to second adapt the model to the task’s unlabeled data
(task-adaptive pre-training). In our case, given an off-the-shelf pre-
trained language model (e.g., BERT), we can conduct the continued
pre-training of the model (e.g., masked language modeling objective)
on domain-specific unlabeled data, such as speech transcriptions (e.g.,
radio, TV, call center), and then on task-specific unlabeled data, such
as the meeting transcriptions of the AMI and ICSI corpora. The lan-
guagemodel obtainedwith themulti-phase adaptive pre-training strat-
egy above can be used in a sequence-to-sequence architecture and will
potentially offer large gains in task performance of abstractive meeting
summarization.

6.3 e p i logue

Meetings are increasingly a ubiquitous part of people’s lives; through-
out this dissertation we have presented our contributions to teach ma-
chines to understand multi-party meeting speech with a special inter-
est in automatically generating abstractive meeting summaries. While
important advances have been made in this field, a number of unan-
swered questions and challenging problems remain. I sincerely hope
that the work described in this dissertation will shed some new light
on constructing future studies that ultimately lead to resolving the task
of abstractive meeting summarization.
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Titre : Compréhension du Langage Parlé pour le Résumé Abstractif de Réunion

Mots clés : résumé abstractif de réunion, résumé automatique de texte, compréhension du langage parlé, trai-
tement automatique des langues, apprentissage automatique, intelligence artificielle

Résumé : Grâce aux progrès impressionnants qui ont
été réalisés dans la transcription du langage parlé, il est
de plus en plus possible d’exploiter les données trans-
crites pour des tâches qui requièrent la compréhension
de ce que l’on dit dans une conversation. Le travail
présenté dans cette thèse, réalisé dans le cadre d’un
projet consacré au développement d’un assistant de
réunion, contribue aux efforts en cours pour apprendre
aux machines à comprendre les dialogues des réunions
multipartites. Nous nous sommes concentrés sur le défi
de générer automatiquement les résumés abstractifs de
réunion.
Nous présentons tout d’abord nos résultats sur le
Résumé Abstractif de Réunion (RAR), qui consiste
à prendre une transcription de réunion comme en-
trée et à produire un résumé abstractif comme sor-
tie. Nous introduisons une approche entièrement non-
supervisée pour cette tâche, basée sur la compression
multi-phrases et la maximisation sous-modulaire bud-
gétisée. Nous tirons également parti des progrès récents
en vecteurs de mots et dégénérescence de graphes ap-
pliqués au TAL, afin de prendre en compte les connais-
sances sémantiques extérieures et de concevoir de nou-
velles mesures de diversité et d’informativité.
Ensuite, nous discutons de notre travail sur la Clas-

sification en Actes de Dialogue (CAD), dont le but
est d’attribuer à chaque énoncé d’un discours une éti-
quette qui représente son intention communicative. La
CAD produit des annotations qui sont utiles pour une
grande variété de tâches, y compris le RAR. Nous pro-
posons une couche neuronale modifiée de Champ Aléa-
toire Conditionnel (CAC) qui prend en compte non
seulement la séquence des énoncés dans un discours,
mais aussi les informations sur les locuteurs et en par-
ticulier, s’il y a eu un changement de locuteur d’un
énoncé à l’autre.
La troisième partie de la thèse porte sur la Détection
de Communauté Abstractive (DCA), une sous-tâche
du RAR, dans laquelle les énoncés d’une conversa-
tion sont regroupés selon qu’ils peuvent être résumés
conjointement par une phrase abstractive commune.
Nous proposons une nouvelle approche de la DCA dans
laquelle nous introduisons d’abord un encodeur neu-
ronal contextuel d’énoncé qui comporte trois types de
mécanismes d’auto-attention, puis nous l’entraînons en
utilisant les méta-architectures siamoise et triplette ba-
sées sur l’énergie. Nous proposons en outre une mé-
thode d’échantillonnage générale qui permet à l’archi-
tecture triplette de capturer des motifs subtils (p. ex.,
des groupes qui se chevauchent et s’emboîtent).

Title : Spoken Language Understanding for Abstractive Meeting Summarization

Keywords : abstractive meeting summarization, automatic text summarization, spoken language understanding,
natural language processing, machine learning, artificial intelligence

Abstract : With the impressive progress that has been
made in transcribing spoken language, it is becoming
increasingly possible to exploit transcribed data for
tasks that require comprehension of what is said in a
conversation. The work in this dissertation, carried out
in the context of a project devoted to the development
of a meeting assistant, contributes to ongoing efforts
to teach machines to understand multi-party meeting
speech. We have focused on the challenge of automa-
tically generating abstractive meeting summaries.
We first present our results on Abstractive Meeting
Summarization (AMS), which aims to take a meeting
transcription as input and produce an abstractive sum-
mary as output. We introduce a fully unsupervised
framework for this task based on multi-sentence com-
pression and budgeted submodular maximization. We
also leverage recent advances in word embeddings and
graph degeneracy applied to NLP, to take exterior se-
mantic knowledge into account and to design custom
diversity and informativeness measures.
Next, we discuss our work on Dialogue Act Classifica-

tion (DAC), whose goal is to assign each utterance in
a discourse a label that represents its communicative
intention. DAC yields annotations that are useful for
a wide variety of tasks, including AMS. We propose
a modified neural Conditional Random Field (CRF)
layer that takes into account not only the sequence of
utterances in a discourse, but also speaker information
and in particular, whether there has been a change of
speaker from one utterance to the next.
The third part of the dissertation focuses on Abstrac-
tive Community Detection (ACD), a sub-task of AMS,
in which utterances in a conversation are grouped ac-
cording to whether they can be jointly summarized by
a common abstractive sentence. We provide a novel
approach to ACD in which we first introduce a neural
contextual utterance encoder featuring three types of
self-attention mechanisms and then train it using the
siamese and triplet energy-based meta-architectures.
We further propose a general sampling scheme that
enables the triplet architecture to capture subtle pat-
terns (e.g., overlapping and nested clusters).
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