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Abstract

3D acquisition techniques like photogrammetry and laser scanning are commonly used in

numerous fields such as reverse engineering, archeology, robotics and urban planning. The

main objective is to get virtual versions of real objects in order to visualize, analyze and process

them easily. Acquisition techniques become more and more powerful and affordable which

creates important needs to process efficiently the resulting various and massive 3D data.

Data are usually obtained in the form of unstructured 3D point cloud sampling the scanned

surface. Traditional signal processing methods cannot be directly applied due to the lack of

spatial parametrization. Points are only represented by their 3D coordinates without any par-

ticular order.

This thesis focuses on the notion of scale of analysis defined by the size of the neighbor-

hood used to locally characterize the point-sampled surface. The analysis at different scales

enables to consider various shapes which increases the analysis pertinence and the robustness

to acquired data imperfections.

We first present some theoretical and practical results on curvature estimation adapted to

a multi-scale and multi-resolution representation of point clouds. They are used to develop

multi-scale algorithms for the recognition of planar and anisotropic shapes such as cylinders

and feature curves. Finally, we propose to compute a global 2D parametrization of the under-

lying surface directly from the 3D unstructured point cloud.
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Résumé

Les techniques d’acquisition numérique 3D comme la photogrammétrie ou les scan-

ners laser sont couramment utilisées dans de nombreux domaines d’applications tels que

l’ingénierie inverse, l’archéologie, la robotique, ou l’urbanisme. Le principal objectif est

d’obtenir des versions virtuels d’objets réels afin de les visualiser, analyser et traiter plus facile-

ment. Ces techniques d’acquisition deviennent de plus en plus performantes et accessibles,

créant un besoin important de traitement efficace des données 3D variées et massives qui en

résultent.

Les données sont souvent obtenues sont sous la forme de nuage de points 3D non-

structurés qui échantillonnent la surface scannée. Les méthodes traditionnelles de traitement

du signal ne peuvent alors s’appliquer directement par manque de paramétrisation spatiale,

les points étant explicités par leur coordonnées 3D, sans ordre particulier.

Dans cette thèse nous nous focalisons sur la notion d’échelle d’analyse qui est définie par

la taille du voisinage utilisé pour caractériser localement la surface échantillonnée. L’analyse

à différentes échelles permet de considérer des formes variées et ainsi rendre l’analyse plus

pertinente et plus robuste aux imperfections des données acquises.

Nous présentons d’abord des résultats théoriques et pratiques sur l’estimation de courbure

adaptée à une représentation multi-échelle et multi-résolution de nuage de points. Nous les

utilisons pour développer des algorithmesmulti-échelle de reconnaissance de formes planaires

et anisotropes comme les cylindres et les lignes caractéristiques. Enfin, nous proposons de

calculer une paramétrisation 2D globale de la surface sous-jacente directement à partir de son

nuage de points 3D non-structurés.
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Introduction

The development of 3D acquisition techniques have progressed rapidly during past decades.

Mature technologies and devices now exist: photogrametry, Lidar systems, Kinect devices,

etc... Many technical fields such as reverse engineering, archeology and urban planning use

them more and more often. The objective is usually to obtain virtual copies of physical ob-

jects. These "digital twins" are easier to control and manipulate than their physical counter-

parts. Their visualization, analysis and processing are non-intrusive and can be automated.

Acquisition techniques are now able to digitize elements with a wide range of sizes from small

molecular structures to whole cities. Their popularity is also empowered by recent advances

of autonomous cars, drones and smart-phones that can embed 3D captors. In addition, digital

fabrication, 3D printing and the entertainment industry need more virtual 3D contents than

ever. The increasing power and accessibility of acquisition technologies thus create a high

demand for efficient algorithms to process 3D acquired data that become various and massive.

The raw 3D data is often represented in a regular grid structure like depth images, but af-

ter the registration of multiple acquisitions, the data become a point cloud without any spatial

organization. The point cloud corresponds to a discrete set of 3D coordinates sampling the

scanned objects surface. Its unstructured nature forbids the direct use of standard signal pro-

cessing tools such as the Fourier transform and wavelets. The discrete convolution and other

fundamental operations are difficult to perform on points only. Contrary to audio signals or

images, there is no underlying temporal nor spatial parametrization represented by time se-

ries or regular grids. The set of points has no particular order, so a point cannot be referenced

by its index since it can be set arbitrarily. There is not even triangles nor edges linking the

sampled points as we can find on polygonal meshes. In geometry processing, this surface rep-

resentation is extreme in a sense that parametric models contain few high orders polynomials

as B-Splines, and polygonal meshes contain many smaller linear pieces as triangles. But point

clouds have a high number of infinitesimal points that explicitly tell where the surface is lo-

cated without any topological structure. Acquisition noise and outliers, partially missing data

Figure 1: Point clouds examples. Loudun tower (top), Lans church (bottom left) and Euler building

(bottom right) contain respectively 35M, 1M and 4M points. Different shapes are observed depending

on the scale of observation.
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2 Introduction

due to occlusion, and sampling irregularities are common artefacts found in point clouds that

also make their processing difficult.

Figure 2: Twisted cable at two scales.

This shape can be seen either as one straight

vertical cylinder at large scale, or as 10 in-

dividual cylinders twisted together at low

scale.

Despite the lack of structures, another chal-

lenge concerns the notion of scale that intuitively

corresponds to the lens size used to look at the point

cloud. As shown by Figure 1, 3D models often ex-

hibit shapes with a wide range of sizes. There are

small details as tiles and stairs steps, medium de-

tails such as furnitures, as well as global elements

like roofs andwalls. Largemodels (see Figure 1-top)

can even contain several nested levels of scale at

the same time. In the context of pattern recognition

for instance, the scale is a critical parameter since

it determines directly the type of detected shapes.

An algorithm performing at a single scale would be

able to extract features with an equivalent spatial

extent only. This is true even for relatively simple

shapes as the twisted cable shown in Figure 2 that

is made of two levels of scale.

The concept of scale is very general as it takes its origin from biological perception. In

visual computational models, the scale is defined by the size of a Gaussian kernel that mimics

the retinal receptive fields size [Lindeberg 2013a]. This model is the fundamental principle

of the so called scale-space framework [Iijima 1963, Witkin 1987] widely used in computer

vision [Lindeberg 2013b]. Varying the scale generates more or less blurry images and enables

the consideration of various features with different sizes in an image.

In computer graphics, several methods leverage the scale-space for meshing [Digne 2011]

and registration [Gelfand 2005] for instance. Many local 3D shape signatures correspond

to multi-scale features that are extracted from the point cloud at several scales [Pauly 2003,

Pottmann 2007, Mellado 2012]. Multi-scale algorithms have additional advantages other than

handling details as well as global features in the same framework. Real data coming from 3D

scans frequently contain acquisition artefacts such as noise and outliers. If at small scale a

point cloud is particularly noisy, then we can still rely on clean detected features at a higher

scale. In addition, multi-scale representations of discrete 3D surfaces are useful in a wide range

of computer graphics applications as real-time rendering and interactive editing. However, the

question of scale is not always tackled by pattern recognition methods in 3D point clouds. Few

approaches in the literature are able to associate a point to different patterns depending on the

scale of observation. When an intuitive parameter exists, its setting is often left to the user. If

the scale information is not known a priori, setting this parameter usually results in a tedious

trial and error process.



Introduction 3

Contributions of this thesis

In this thesis we focus on the notion of scale applied to unstructured 3D point cloud analysis.

We provide in Chapter 1 a method to characterize the geometry of the input sampled-surface

at multiple scales. This method is then used for geometric pattern detection in order to abstract

the shapewith planes, cylinders and curves (Chapters 2 and 3). To address the lack of structure,

we also present in Chapter 4 a preliminary method for finding a global parametrization of the

point cloud, i.e. a mapping from a 2D domain to the input 3D points.

In Chapter 1, we first perform a theoretical analysis of the algebraic sphere regres-

sion [Guennebaud 2007] used to locally characterize the shape. We demonstrate that the fitted

sphere directly gives access to important properties of the point-sampled surface such as its

mean curvature, a measure of its anisotropy and a higher order differential quantity. We then

introduce an algorithm to estimate principal curvatures and show its numerical accuracy and

robustness to noise in practice. This estimator is then integrated in an efficient multi-scale and

multi-resolution representation of point clouds that is used in all our work.

The multi-scale differential quantities estimation provides effective descriptors well

adapted to abstract the shape with geometric primitives. We propose in Chapter 2 a multi-

scale algorithm to detect planar regions in point clouds. A persistence analysis of regions

sharing the same differential properties at multiple scales enables the extraction of meaning-

ful planes. A point can thus belong to different planar primitives depending on the scale of

analysis.

In Chapter 3, we investigate the use of principal curvature lines drawn at several scales to

extract anisotropic features. Instead of looking only at point-wise differential properties, the

curvature lines bring some spatial coherence and decrease the sensitivity to data imperfections.

Feature curves are located at curved locations where a large number of lines pass through.

Moreover, cylindrical regions are segmented at any scale where curvature lines are mostly

aligned with each other.

In order to process smoother shapes that potentially lack of prominent planar or

anisotropic features, we propose in Chapter 4 to determine a global 2D parametrization of

the input 3D point cloud. In this ongoing research project, we let the scale grow until it

reaches the size of the whole shape while keeping points on their local surface approximation.

In the end, all the points are flattened onto one plane or sphere, producing a planar or spher-

ical parametrization. This mapping between a 2D domain and the set of 3D points makes a

powerful structure that could be useful for many shape analysis tasks.

In general, we show the importance of the notion of scale in point cloud analysis. It pro-

vides robustness to pattern recognition algorithms and enables to detect geometric features

of highly varying sizes (see Chapters 2 and 3). In our scale-space point cloud parametriza-

tion algorithm (Chapter 4), the scale is the key element to unfold the unstructured 3D points

onto a 2D domain. Considering the scale is thus one step toward more powerful algorithms

processing 3D acquired data, which contributes to improve the overall acquisition pipeline.
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1.1 Introduction

The reconstruction of a surface and the estimation of its differentiable properties from unstruc-

tured point clouds is a fundamental problem in shape analysis. The algorithms we propose

in the following chapters rely on this step to locally characterize the surface. Detecting geo-

metric features (Chapters 2 and 3) or mapping the 3D point cloud to a 2D domain (Chapter 4)

both need an accurate approximation of the underlying surface. As discussed in the intro-

duction, the notion of scale is essential and needs to be part of the analysis. Details must be

reconstructed at low scales, but do not necessarily appear in the surface approximation when

the scale grows. Robustness to noise and computational efficiency are two other mandatory

constraints to be able to handle large point clouds obtained from acquired data. This means

5
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that differential estimators should imply as few numerical operations as possible to be fast

enough. They also must remain efficient at any scale. In the same time, their estimations have

to stay accurate even if some noise perturbs the point cloud.

The state-of-the-art presented in Section 1.2 identifies the Algebraic Point Set Sur-

faces (APSS) [Guennebaud 2007] as a relevant method for multi-scale approximation of point

sampled surfaces. As a particular Point Set Surfaces (PSS) [Alexa 2001], the APSS approxi-

mate a smooth 2D manifold from discrete points and include an intuitive scale parameter in

the form of a neighborhood radius. Thanks to its algebraic sphere regression, this technique

shows in practice an advantageous robustness to data imperfections. However, no theoretical

results yet exist in the literature that relates the best fitting algebraic sphere to the differential

properties of the surface. As the APSS method involves the regression of an isotropic prim-

itive, another question comes up: how to accurately estimate the principal curvatures of the

APSS? Finally, a practical issue occurs at high scale. Although the APSS work locally, con-

ventional space partitioning data structures quickly get overworked when the neighborhood

radius become too large.

Contributions of this chapter

• Section 1.3 describes an asymptotic analysis of the algebraic sphere fitting and pro-

jection used in the APSS. Using this integral invariant viewpoint [Pottmann 2007], we

prove that the fitted algebraic sphere properly captures the mean curvature as well as

higher derivatives of the surface. We also show how this isotropic primitive still contains

information about the anisotropy of the shape. We also define the associated geometric

flow to obtain a robust analog to the mean curvature flow of plane fitting [Digne 2011].

• Wepropose in Section 1.4 a newmethod to calculate principal curvatures from the APSS.

Prior work [Guennebaud 2007, Mellado 2020] only use partial shape operators (defined

by Equation 1.28) while ours performs the complete differentiation of the algebraic

sphere fit. A comparative study demonstrates the accuracy and the robustness to noise

of our approach.

• Inspired from previous work on multi-scale shape analysis [Pauly 2003], we introduce

in Section 1.5 an efficient multi-resolution representation combined to the multi-scale

APSS. Our algorithm successfully balances between smoothing and decimation and

drastically increases the performance compared to traditional APSS.

1.2 State-of-the-art

Surface reconstruction from a 3D point cloud is a vast and heavily studied scientific

area. Several families of approaches are dedicated to specialized domains of application,

e.g. urban [Musialski 2013] and indoor [Pintore 2020] scenes. They often focus on specific

type of data such as shapes composed of simple primitives [Kaiser 2019], structured ob-

jects [Pauly 2008] or general defect-laden point clouds [Berger 2017]. Another substantial

body of work tackles surface interpolation problems with a computational geometry point of
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view [Cazals 2006]. In Section 1.2.1, we only focus on the fundamental problem of local sur-

face approximation from unstructured point clouds. These methods are general enough to be

implemented for a wide range of applications and on various types of shapes. They allow us to

compute the low-level geometric features used as basic building block of all the methods de-

scribed in the following chapters. In addition, local surface approximation methods are often

naturally compatible with an intuitive notion of scale.

The notion of scale is a commonly known concept in the digital signal processing field.

The idea of separating the small details from the global elements, in other words the high from

the low frequencies, is well used for image compression, denoising and pattern recognition.

Section 1.2.2 reviews the different approaches of multi-scale analysis of discrete 3D shapes and

especially of point clouds.

1.2.1 Local surface approximation

Local surface approximation aims at finding a mathematical model of a smooth and regular

surface embedded in IR3 from a discrete set of points. They are local in the sense that they

are used around a point and its neighborhood, and they do not require to process the whole

point cloud at once. In contrast to interpolation, approximation is well suited to point clouds

coming from an acquisition process due to the inherent presence of noise. In our context, the

ultimate goal of these techniques is to project a point on the surface estimated around it, and

to calculate differential invariants to pertinently describe the geometry nearby that point.

Taylor approximations In the vicinity of a point, an infinitely differentiable function can

be expanded as Taylor series involving its successive derivatives. When the series are trun-

cated to a finite order, the resulting Taylor polynomial only approximates the function up

to some known errors. The Osculating Jets [Cazals 2005a] find the coefficients of the trun-

cated Taylor expansion, also called jets, that best match the neighborhood of a point. They

locally express the surface as a bivariate function over a plane that does not include the sur-

face normal. Computing the K-order Osculating Jets from N points boils down to solve a

Vandermonde system of size N × (K + 1)(K + 2)/2. The result corresponds to the nor-

mal vector of the surface, its principal curvatures, as well as other higher order differential

quantities. The dependence of the size of the system to the number N of neighboring points

is the main issue for using this method in our context. Two different options are possible to

query the neighbors. A k-nearest neighbors graph gathers a fixed number of neighbors for

each point, but it is inappropriate for point clouds with a highly irregular sampling, strong

noise or a large amount of outliers. On the other hand, radius-based neighborhoods that are

more appropriate to defect-laden data lead to varying size systems across the point cloud. This

second option is less appropriate for GPU implementations and potentially introduces large

systems that become slower to solve.

Recently, Béarzi et al. (2018) decompose the bivariate Taylor approximation into a radial

polynomial and angular oscillations, creating a new set of basis function called Wavejets. A

local frequency analysis of the surface is possible, and differential invariants are also available.

Furthermore, Wavejets come with stability properties so that the initial and potentially wrong

tangent plane can be corrected afterward. However, they also suffer from the same issue as
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the Osculating Jets [Cazals 2005a]. A system of the size of the neighborhood has to be solved

which can significantly decrease the performance.

Covariance analysis Principal Component Analysis (PCA) is a popular method to locally

characterize discrete data. When performed on a set of 3Dpoints {pi}i=1...N , the PCA consists

in the eigendecomposition of the covariance matrix Σ of the points coordinates

Σ =
1

N

N
∑

i=1

(pi − p̄)(pi − p̄)T =
1

N

N
∑

i=1

pip
T
i − p̄p̄T , (1.1)

where p̄ = 1
N

∑N
i=1 pi is the average position. The eigenvalues λ0 ≥ λ1 ≥ λ2 ≥ 0 correspond

to the variance of the coordinates distribution along their associated orthonormal eigenvectors

v0, v1 and v2. The vector v2 associated to the eigenvalue of least magnitude is often taken as

the normal direction of the surface while v0 and v1 span the tangent plane.

Besides normal estimation [Liang 1990, Mitra 2003, Sanchez 2020], many other meth-

ods use this approach for surface reconstruction [Hoppe 1992], shape approxima-

tion [Cohen-Steiner 2004], dimensionality analysis [Demantké 2011, Brodu 2012], smooth-

ing [Digne 2011], denoising [Narváez 2006] and so on. Note that a PCA is also an essen-

tial step for estimating an initial tangent plane for the Jets-based approaches [Cazals 2005a,

Béarzi 2018] introduced in the previous paragraph. In addition, various combinations of

eigenvalues give rise to several features encoding the local shape. Such covariance-based

features appear in point cloud processing as the Surface Variation [Pauly 2002, Equation 5]

and in machine-learning methods for semantic classification [Kalogerakis 2010, Kim 2013,

Thomas 2018]. Apart from unstructured point clouds, local covariance analysis is success-

fully applied to 3D voxels [Coeurjolly 2013] and 2D images when using the Structure Ten-

sor [Harris 1988] for instance. The PCA of normal vectors around a point is also a common

way to estimate the principal curvatures and their directions [Berkmann 1994].

One great advantage of the PCA is its efficiency. The size of the covariance matrix Σ to

be diagonalized corresponds to the dimension of the ambient space and does not depend on

the number of neighboring points. Note that the right-hand side of Equation 1.1 highlights

the advantageous fact that visiting the points pi is required only once to build Σ. However, as

shown by the integral invariant analysis [Pottmann 2007, Theorem 6], the eigenvalues of the

PCA calculated on an infinitesimal surface patch asymptotically contain only a mix of princi-

pal curvatures. Two of the three eigenvalues do not even have surface curvatures appearing in

their preponderant term. As such, these eigenvalues do not tend toward any curvature-related

quantity when the size of the surface patch tends to zero. Therefore, many covariance-based

features of 3D point clouds do not pertinently characterize the geometry since two different

shapes in terms of curvature can have similar PCA eigenvalues. Furthermore, the PCA and

other integral invariants in general are particularly stable for structured data such as 2D pix-

els and 3D voxels [Coeurjolly 2014], but they easily fail on not evenly spaced data like point

clouds. Indeed, a varying density in the neighborhood of a point effects the coordinates vari-

ance giving a false sense of curvature in that direction.
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Point Set Surfaces The Moving Least Squares (MLS) [Levin 1998] is a popular technique to

approximate a function from scattered data. Contrary to other approximations that use Radial-

Basis-Functions [Carr 2001] or spline fitting [Böhm 1984], the MLS approximation takes in-

spiration from differential geometry. Each spatial position has its own local coordinate system

containing its own mapping. It avoids the difficult task of finding global reference domains, so

partitioning the point cloud into multiple patches to get a piecewise parametrization is not re-

quired. The MLS is actually akin to local weighted least squares regressions where the weight-

ing function depends on where the regression takes place and has a limited influence in space.

The result of the MLS approximation of a set of points in IRd is a smooth surface [Levin 1998]

corresponding to a (d− 1)-manifold [Levin 2004].

TheMLS approximation is the main ingredient of the Point Set Surfaces (PSS) [Alexa 2001]

where the surface S is defined as the stationary points of a projection operator φ : IR3 → IR3

S =
{

x ∈ IR3, φ(x) = x
}

. (1.2)

In its original form, the projection operator is a two-step procedure. First, a reference plane is

found via a non-linear optimization. Then, a bivariate polynomial is fitted to the local neigh-

borhood expressed over the reference plane. The operator φ(x) is in this case the projection

of x onto this polynomial approximation.

A simpler and more efficient PSS is provided with an implicit formula-

tion [Adamson 2003a] using weighted average position and covariance analysis (Equa-

tion 1.1). Another similar but slightly more general PSS is defined by the critical points of an

energy function along lines determined by a vector field [Amenta 2004]. Many other variants

exist [Cheng 2008] including Progressive PSS [Fleishman 2003] that builds a multi-resolution

surface, Anisotropic PSS [Adamson 2006], which is more robust to irregular sampling and

Parabolic-cylindrical PSS [Ridel 2015] enforcing developability. More global approaches

based on PSS are also common [Avron 2010, Guillemot 2012, Huang 2019], but their global

optimization process does not scale well for very large point clouds. From a PSS perspective,

the Osculating Jets [Cazals 2005a] could be viewed as a first unweighted iteration of a MLS

approximation without any further fitting steps to reach convergence. The absence of local

weighting and iterations loose respectively the smoothness and manifoldness properties

obtained with the MLS [Levin 2004].

Sharp features are known to be challenging for PSS because of their smooth aspect. They

can be preserved with a forward-search algorithm [Fleishman 2005] where neighboring points

are iteratively added to the regression process until their residual is too high. Although this

method is able to preserve sharp edges and corners, it has several disadvantages such as the

manually selected threshold that locally classifies outliers and that adapts poorly to noise.

Performance is another issue since a priority list must be used locally, making parallelization

difficult. In another way, iteratively re-weighted least squares simply adjusts the weighting

kernel of the MLS approximation [Oztireli 2009]. Neighbors far from the current fitted model

contribute less to the next fit by decreasing their weights. This method is robust and is well

adapted to the MLS framework. We thus use it in the reaserches presented in this thesis.

Most of PSS methods use the PCA to estimates a first tangent plane. If this stage breaks

down due to irregularities present in the data, then the rest of the approximation algorithm
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certainly fails too. To avoid this, the Algebraic Point Set Surfaces (APSS) [Guennebaud 2007]

directly fit an algebraic sphere [Pratt 1987]. This implicit surface is expressed as the following

quadratic scalar field

fu(x) = uc + uℓ .x+ uq x .x =
[

1 xT x .x
]

u, (1.3)

where uc, uq ∈ IR and uℓ ∈ IR3 are the parameters of the algebraic sphere compactly

represented in the vector u =
[

uc uT
ℓ uq

]T
. The surface is defined by the 0-isosurface

S0 =
{

x ∈ IR3, fu(x) = 0
}

. Contrary to PSS based on an implicit plane defined by the lin-

ear equation uc + uℓ .x = 0 [Shen 2004, Kolluri 2008], the algebraic sphere is more robust

to irregular and noisy point clouds, especially near curved regions where the plane fitting is

usually problematic [Guennebaud 2007, Figures 13-15]. The APSS thus directly fit a quadratic

primitive without the need of the local linear basis obtained from the PCA. In case of a purely

planar shape, the quadratic term uq is null and the sphere smoothly changes into a plane.

The least squares regression of an algebraic sphere to points equipped with oriented normals

has a closed-form expression [Guennebaud 2008]. Two criteria are used in the form of two

objective functions given in Equations 1.4 and 1.5. The first criterion ensures that the spatial

gradients ∇fu(pi) match the normals ni of the point cloud. The second criterion brings the

surface as close as possible to the pointspi byminimizing the squared scalar fieldmagnitude at

these points. Note that the scalar field magnitude at a given point corresponds to its algebraic

distance to the sphere.

E1(u,x) =
∑

i

wt(pi − x) ‖∇fu(pi)− ni‖2 (1.4)

E2(u,x) =
∑

i

wt(pi − x) fu(pi)
2 (1.5)

In sens of the MLS fit, x is the "moving" evaluation point of the regression and wt is the

weighting function of compact support size t ∈ IR given by

wt(x) = K

(‖x‖
t

)

, (1.6)

where K : (0, 1) → (0, 1) is a smooth decreasing kernel, typically defined by the polynomial

K(x) = (x2 − 1)2. Minimizing E1 and E2 with respect to the parameters u leads to the

following results [Guennebaud 2008, Equation 6]

uq(x) =
1

2

∑

iwi

∑

iwi pi.ni −
∑

iwi pi.
∑

iwi ni
∑

iwi

∑

iwi pi.pi −
∑

iwi pi.
∑

iwi pi
, (1.7)

uℓ(x) =
1

∑

iwi

(

∑

i

wi ni − 2 uq(x)
∑

i

wi pi

)

, (1.8)

uc(x) = − 1
∑

iwi

(

uℓ(x).
∑

i

wi pi + uq(x)
∑

i

wi pi.pi

)

, (1.9)
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where wi = wt(pi − x). If uq is null, then a plane is fitted, which corresponds to averaging

neighboring positions and normals.

The projection ϕy(x) ∈ IR3 of a point x onto the surface defined by fu(y) fitted at point

y is given by

ϕy(x) =







x− fu(y)(x)

‖∇fu(y)(x)‖2∇fu(y)(x) if uq(y) = 0,

x− ‖∇fu(y)(x)‖−
√

∆u(y)

2uq(y)‖∇fu(y)(x)‖ ∇fu(y)(x) otherwise,
(1.10)

where ∇fu(y)(x) = uℓ(y) + 2uq(y)x is the gradient of the scalar field evaluated at x, and

∆u is the discriminant of the quadratic form fu

∆u = ‖uℓ‖2 − 4 uquc =
1

∑

iwi

∑

i

wi ∇fu(pi) .ni. (1.11)

It is equal to the squared norm of the gradient of the points lying on the 0-isosurface, and also

to the average dot products between the normals ni and the scalar field gradients at pi (right-

hand side of Equation 1.11). In the literature,∆u is referred to as a normalization [Pratt 1987],

or as fitness [Mellado 2012]. Note that if∆u ≤ 0 then the scalar field is degenerated and does

not describe any surface, but this extreme situation is never met in practice. In the end, the

complete orthogonal projection [Alexa 2004] of the APSS defining the surface of Equation 1.2

is the limit

φ(x) = lim
n→∞

ϕn
x
(x), (1.12)

where the exponent denotes the composition of function. In practice, the iterative projec-

tions stop when a maximal number of steps is reached, or when the difference between two

successive projections is negligible.

The first benefit of the APSS is its performance since one MLS iteration only involves sim-

ple summations over the neighborhood without any complex system to store nor to solve.

Secondly, the resulting algebraic sphere is analytically differentiable which gives access to

principal curvature directions although the sphere is originally an isotropic shape. The Ponca

library [Mellado 2020] provides an implementation of the shape operator following this idea.

As we show in Section 1.4, this shape operator is only partial, so we propose a more accu-

rate and more robust version. Derivatives with respect to the support size t of the weighting

function of Equation 1.6 are also available. This opens the door to an efficient multi-scale

framework [Mellado 2012] discussed in Section 1.2.2.

Primary usages of PSS include ray tracing [Adamson 2003a, Adamson 2003b], trian-

gulation [Scheidegger 2005], interactive modeling [Zwicker 2002] and real-time render-

ing [Alexa 2003, Guennebaud 2008]. This thesis adopts another point of view. The PSS

essentially aim at estimating differential quantities of the underlying surface such as nor-

mals [Alexa 2004] and curvatures [Yang 2007]. It is the fundamental basis of our higher level

of analysis for the extraction of planes (Chapter 2), lines and cylinders (Chapter 3). We slowly

leave the infinitesimal world of the MLS approach to reach a more local frame of analysis

composed of planar patches (Section 2.3.1) and flow lines (Section 3.3)). An even more global

viewpoint is also adopted in Chapter 4 where a global parametrization is computed for the
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whole point cloud. Besides the various advantages of the APSS presented previously, one of

the main reason for choosing them for local surface approximation is their ability to define an

intuitive parameter of scale as explained in the following section.

1.2.2 Multi-scale analysis

The notion of scale is widely spread in the digital signal processing community. The goal is

usually to separate noise, small details, and broader elements composing the signal. In our

context of geometric feature detection, a multi-scale representation of the point cloud has

several advantages. Noise and irregularities on the sampling are robustly handled. It also

enables more variety in the detected features, from small details to wider shapes. We review

in this section the main approaches to model a 3D surface at multiple scales and emphasize

their use on 3D unstructured point clouds.

Spectral methods Discrete 1D signals and 2D images can be decomposed into a sum of

basis functions of different frequencies using discrete Fourier transform or wavelets. Basi-

cally, noise would correspond to the highest frequencies, details to medium ones while global

variations are related to the lowest ones. The core element of spectral analysis of 3D triangu-

lar meshes [Taubin 1995] is the Laplace-Beltrami operator (LBO), which extends the Laplace

operator on surfaces. Eigenfunctions of the LBO that are usually called Manifold Harmon-

ics constitute an orthonormal basis in which the vertices coordinates are decomposed, and

its eigenvalues magnitude play the role of frequencies. Such extension of Fourier analysis to

surfaces is a fundamental tool in geometry processing [Zhang 2010]. It is the basis of sev-

eral multi-scale point-wise descriptors [Reuter 2006, Sun 2009, Aubry 2011] usually used for

shape retrieval [Bronstein 2011]. Other applications include mesh compression [Karni 2000],

shape matching [Ovsjanikov 2012], segmentation [Sharma 2009, Huang 2009, Reuter 2009]

and quadrangulation [Dong 2006, Huang 2008, Ling 2015] among others. A multi-scale rep-

resentation can also be obtained by reconstructing the shape using only specific ranges of

frequencies [Vallet 2008].

On unstructured point clouds, computing the LBO is not as clear as on manifold triangular

meshes [Meyer 2003]. The umbrella operator (or graph laplacian) [Taubin 1995, Desbrun 1999]

is the simplest option, but it is often subject to large errors due to its coarse approximation.

Better approximations are based on local [Belkin 2009, Liu 2012, Qin 2018] or global Delau-

nay triangulations [Sharp 2020]. They cast the LBO discretization problem from unstructured

point clouds to the more standard mesh domain. A completely mesh-free LBO can be ob-

tained using Smoothed Particle Hydrodynamics [Petronetto 2013] involving a computational

intensive optimization procedure. Another possibility is to decompose the point cloud onto

simpler patches and to perform spectral analysis on each of them [Pauly 2001]. The complex-

ity is largely reduced, but the patch decomposition and blending are crucial and not really

straightforward.

One of the main drawback of such spectral approaches is their global nature as the

whole data is processed at once. Even if the LBO is represented as a sparse matrix, the

eigendecomposition remains inefficient regarding both memory and time when processing

large point clouds. Only a subset of eigenvectors associated to the smallest eigenvalues
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magnitude are usually required which speeds up their computations thanks to shift-invert

solvers [Vallet 2008]. Still, computing 100 eigenvalues and eigenvectors for 600K points could

take several hours [Liu 2012, Table 1].

Recent work address the performance issue [Nasikun 2018] or the lack of local-

ity [Melzi 2018] for Laplacian mesh analysis. However, the LBO is intrinsic in essence as it

only considers geodesic distances along the surface. This feature explains the success of spec-

tral methods for isometric problems such as shape matching, deformation and segmentation.

On the other hand, it can be considered as a problem since isometric but very different surfaces

embedded in 3D cannot be distinguished. For pattern recognition on acquired point clouds,

discerning such shapes is important, which limits the use of spectral frameworks. Extrinsic

operators [Liu 2017, Wang 2018b] are proposed to solve this issue, but they are only defined

on triangular meshes and are costly to apply on data with more than a million of vertices.

Finally, the notion of scale used in spectral analysis is not truly intuitive. The magnitude

and the rank of an eigenvalue are difficult to link to some meaningful geometric properties of

the shape. Furthermore, the parameter controlling the size of the neighborhood used to com-

pute the LBO on point cloud defines an additional scale parameter on top of the eigenvalues

that is not studied in the previously mentioned references.

The scale-space theory The scale-space refers to a family of progressively smoothed ver-

sion of a digital signal where a scale parameter t ∈ IR+ controls the width of a Gaussian kernel

convolving the signal [Witkin 1987]. Applied to an image, it produces a discrete stack of im-

ages going from the original detailed data to a highly blurred image. The Gaussian scale-space

of an image F is actually the solution of the diffusion equation [Koenderink 1984]

Ḟ = ∆F, (1.13)

subject to initial condition F0 = F , where Ḟ is the temporal derivative and ∆F is the Lapla-

cian of F . It has the nice property of non-enhancement of local maxima [Lindeberg 1990],

meaning that the image is necessarily smoother as the scale grows. Differential properties of

the scale-space offer a large variety of features that are invariant to translation, rotation and

scaling [Lowe 1999]. Nevertheless, the scale-space is based on the regular grid structure of

images, which makes it non-trivial to apply on 3D meshes and point clouds.

A first extension to 3D point clouds proposes to compute a local geometric feature called

Surface Variation [Pauly 2002, Equation 5] from the k-nearest neighbors with several values

of k [Pauly 2003]. Similar scale-space methods with varying neighborhood size are also used

to detect interest regions in 3D point clouds [Unnikrishnan 2008], or for the analysis of vol-

umetric data [Levallois 2015]. However, the Surface Variation is not truly discriminative. It

mixes principal curvatures [Digne 2014, Theorem 4], so two different shapes can have a similar

descriptor. Nevertheless, projecting each point on their local PCA plane (Equation 1.1) asymp-

totically amounts to a mean curvature flow [Digne 2011] that corresponds to a discretization

of Equation 1.13. In this approach, the neighborhood size used to compute the PCA is fixed, so

the diffusion process is very slow. Overall, this kind of techniques suffers from the instabilities

of the covariance analysis.

The Point Set Surfaces [Alexa 2001] introduced in Section 1.2.1 are good candidates for a
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scale-space representation of a point cloud. They involve a scale parameter in their weight-

ing function [Pauly 2006] and can process scattered points without requiring any spatial

parametrization. The Growing Least Squares (GLS) [Mellado 2012] develop this idea and take

advantage of the analytical expression of the algebraic sphere fit (Equations 1.7-1.9) introduced

in the APSS [Guennebaud 2008]. The support size t ∈ IR+ of the weighting function given

in Equation 1.6 plays the role of the scale parameter. The combination of the APSS and the

scale-space theory results in a useful depiction of an unstructured 3D point cloud. The closed

form expressions of Equations 1.7-1.9 can be differentiated according to both scale and space.

This leads to pertinent GLS descriptors detecting geometric changes during scale variations,

which is used for shape matching [Mellado 2012], registration [Mellado 2015a] and model-

ing [Nader 2014]. Although the GLS characterize the shape at multiple scales, they follow

the MLS structure by considering one local surface approximation for each spatial position.

For this reason, they are essentially pointwise and make difficult the extraction of more re-

gional features such as planar and cylindrical parts. We thus propose in Chapters 2 and 3 a

higher level of analysis starting from this GLS-based multi-scale representation, and Chapter 4

investigates the limit of the scale-space when t tends to infinity.

One potential drawback of using the APSS as a scale-space approach comes from neighbor-

hood queries at high scale. The use of a kd-tree is very efficient for a small range query since

few nodes are visited. When the scale parameter t grows, we may loose the performance

advantage by visiting much more kd-tree nodes. To overcome this problem, we propose in

Section 1.5 a new multi-resolution approach coupled to the multi-scale representation.

Finally, a theoretical question arises regarding the projection on a fitted algebraic

sphere (Equation 1.10). While the projection of a point onto a PCA plane asymptotically cor-

responds to a mean curvature flow [Digne 2011, Theorem 2], we do not have such knowledge

on the algebraic sphere. Thanks to the closed form expression of the fit, we perform in Sec-

tion 1.3 an asymptotic analysis of the algebraic sphere regression and projection to get a better

understanding of the APSS from the integral invariant viewpoint [Pottmann 2007].

1.3 Asymptotic analysis of algebraic sphere regression

This section presents an asymptotic analysis of the algebraic sphere fit and projection involved

in the APSS. The regression has an analytical solution given in Equations 1.7-1.9 that only

requires local summations over the neighborhood of basic quantities related to positions and

normals. This simple observation leads to the following important remark: fitting an algebraic

sphere is actually linked to integral invariants that are well studied in the geometry processing

community [Manay 2004, Clarenz 2004, Pottmann 2007, Pottmann 2009, Digne 2014]. Many of

these work focus on PCA, but no result exist regarding the algebraic sphere fit. This clearly

raises the following question: what are the differential invariants linked to the coefficients uc,

uℓ and uq of the best fitting sphere? The same question applies for the projection of a point

onto the sphere for which an analytical solution is also available (Equation 1.10).

Section 1.3.1 first introduces the usual asymptotic framework adopted for the investiga-

tion of integral invariants. We prove in Section 1.3.2-Theorem 1 that the fitted sphere gives

access to the mean curvature, a measure of anisotropy, and higher order surface derivatives.
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Section 1.3.3 and Theorem 2 gives similar results but for the projection of a point onto the

algebraic sphere. We also determine the robust geometric flow defined by the iterative pro-

jection onto the algebraic sphere, which is the counterpart of the mean curvature flow for the

PCA plane [Digne 2011].

1.3.1 Asymptotic se�ings

We study a smooth regular surface S embedded in IR3 and focus the analysis to one of its point

p ∈ IR3 and its close neighborhood within a fixed distance t ∈ IR. The frame of analysis is the

so-called principal frame [Pottmann 2007] (also called local canonical frame [Do Carmo 1976,

Section 1.6] or local intrinsic coordinate system [Digne 2011]), where p = 0 is placed at the

origin, and the surface S is locally expressed as a height field over its tangent plane by using

the mapping

f(x, y) =
[

x y z(x, y)
]T

. (1.14)

The coordinates x and y on the plane are aligned with the directions of principal curvatures

κ1 and κ2. The height z is given by the following Taylor expansion of order 4

z(x, y) =
1

2

(

κ1x
2 + κ2y

2
)

+

4
∑

k=3

k
∑

j=0

(

k

j

)

xjyk−j

k!
aj,k−j + o

(

x4 + y4
)

. (1.15)

A lower order would not be sufficient to obtain the results presented in this section. The

coefficients aj,k−j =
∂kz

∂xj∂yk−j correspond to the successive derivatives of z evaluated atp. For

a better understanding, the principal curvatures are explicitly written as κ1 = a20 and κ2 =

a02, and the mean and Gaussian curvature are respectively denoted byH = (κ1 + κ2)/2 and

K = κ1κ2. Note that this local principal frame is chosen so that a00 = a10 = a01 = a11 = 0.

The Laplace operator applied to the mean curvature, which is also half of the bilaplacian of z,

is also explicitly denoted by∆H = 1
2∆

2z = 1
2(a40 +2a22 + a04). In this smooth setting, any

discrete sum appearing in Equations 1.7-1.9 is replaced by an integral over the surface patch

Pt = Bt(p) ∩ S =
{

(x, y) ∈ IR2, ‖f(x, y)‖ < t
}

, (1.16)

where Bt(p) is the ball of center p and radius t. Note that for simplicity, this study considers a

constant weighting wi = 1 instead of the smooth decreasing weighting kernel of Equation 1.6

that is used in practice. Apart from changing multiplicative constants, this modification does

not impact the results of the two following sections.
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1.3.2 Algebraic sphere fi�ing

Theorem 1 The parameters of the algebraic sphere fitted to the surface patch Pt have the fol-

lowing asymptotic expansions

uq = −H

2
+ o(1), (1.17)

uℓ =





0

0

1



−







a30+a12
8

a03+a21
8

H2−K
4






t2 + o(t2), (1.18)

uc = − 1

96
(9H3 − 5KH −∆H)t4 + o(t4). (1.19)

Moreover, the norm of uℓ is given by

‖uℓ‖ = 1− H2 −K

4
t2 + o(t2). (1.20)

The full proof is given in Appendix A.3.

Interpretation A first remark concerns the parameter uq that contains the mean curvature

H of the surface in its preponderant term. If we calculate the surface mean curvature H̃ from

the scalar field fu itself (Equation 1.3) as half the trace of its shape operator (see Equation 1.32

for more details), we obtain H̃ = 2uq/
√

‖uℓ‖2 − 4uquc = −H + o(t), which tends toH (up

to a sign convention). It means that the mean curvature estimated by the APSS not only is

the curvature of some geometric model fitted to the data as a proxy but also asymptotically

converges toward the actual mean curvature of the surface. Figure 1.1-right illustrates how

well uq is proportional to H .

The linear parameter uℓ converges to the normal of the surface according to Equation 1.18.

In addition, its norm deviates from 1 by a multiple of H2 −K = (κ1 − κ2)
2/4. This positive

quantity measures the anisotropy of the shape and is equal to zero only if κ1 = κ2, which

is true for the sphere and the plane. It can be seen on Figure 1.1-middle that 1 − ‖uℓ‖ takes

high values around very anisotropic regions such as the crease of the neck, the edge of the

ear and the outline of the hair curls. Medium values appear along the nose and the eyebrow.

Zero is reached on spherical regions like the tip of nose or the chin, and on mostly planar

areas like the jowl. The discriminant∆ of the algebraic sphere (Equation 1.11) is very similar

as its asymptotic expansion since ∆ = 1 − H2−K
2 t2 + o(t3). It also quantifies the deviation

of the surface from a sphere or a plane, which validates its role of fitness score used in prior

work [Mellado 2012].

Finally, the parameter uc, that is also the algebraic distance between the analyzed point

p and the surface, involves combination of H , K and ∆H . It gives access to higher order

derivatives of the surface through ∆H . It explains why uc exhibits higher frequencies than

uℓ or uq as shown by Figure 1.1-left. The extent of its variations are usually smaller than the

scale t used to gather the neighborhood of each point for the sphere fitting.

Similar features called the GLS parameters τ , η and κ [Mellado 2012] are equal to uc, uℓ

and uq divided by
√
∆ so that the gradient of fu is unitary on the 0-isosurface. They are
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uc 1− ‖uℓ‖ uq

t

Figure 1.1: Algebraic sphere parameters. Left: uc highlights high frequencies of the surface.

Middle: The deviation of ‖uℓ‖ from 1 measures the anisotropy of the shape. Right: uq estimates the

mean curvature H . Values are negative in blue, null in white and positive in red. These visualizations

are consistent with the asymptotic results of Theorem 1. The scale t used to fit the sphere is shown in

the middle top figure.

actually equivalent in this asymptotic setting except for η that loses its capacity to measure

anisotropy as uℓ does through its norm. This is not surprising because uℓ and ∆ describe

equivalently the surface anisotropy so their quotient cannot naturally maintain this property.

1.3.3 Algebraic sphere projection

Theorem 2 If uq = 0, a plane is fitted to the surface patch Pt and the projection ϕ(p) of the

origin point p asymptotically yields

ϕ(p) =
[

0 0 −∆H
96

]T
t4 + o(t4), (1.21)

otherwise the projection on the fitted sphere is

ϕ(p) =
[

0 0 1
96(9H

3 − 5KH −∆H)
]T

t4 + o(t4). (1.22)

The proof stems from Theorem 1 and Equation 1.10 and is detailed in Appendix A.4. Note

that since p is supposed to be the origin of the principal frame, the right-hand sides of Equa-

tion 1.21 and 1.22 are also equal to the displacement vectorsϕ(p)−p induced by the projection

operator.
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Figure 1.2: Geometric flows comparison. Three intermediate steps of iterative projections onto

PCA planes (top) and algebraic spheres (bottom). The first exhibits singularities near elongated regions

which is typical of the mean curvature flow. Our more stable flow avoids such extreme shrinkage.

Interpretation To better understand the meaning of Theorem 2, we can look at what hap-

pens when every points of a surface S are iteratively projected onto the algebraic sphere fit-

ted to their neighborhoods. This iterative procedure is equivalent to a forward Euler scheme

pn+1 = pn + ϕ(pn). Using Theorem 2 and the fact that if uq is null then H = 0 (Equa-

tion 1.17), the iterative projections on the best fitting algebraic spheres are the solution of the

following diffusion equation

Ṡ = λ(9H3 − 5KH −∆H)n (1.23)

where Ṡ is the derivative with respect to time, λ is a positive diffusion coefficient, and n is the

normal vector of S. If the surface evolves under this flow, each point moves along the normal

direction with a velocity proportional to (9H3 − 5KH −∆H). If H = 0, the flow amounts

to a bilaplacian flow. This results in a robust geometric fairing process that is compared to

the PCA-based mean curvature flow [Digne 2011] in Figure 1.2. The singularities of the mean

curvature flows happening near the medial axis of the shape are not present in our algebraic

sphere flow. Instead, the surface under our flow is more and more rounded and does not

excessively shrink as shown by Figure 1.2 near the extremities of the dragon tail and horns.

1.4 Robust differential properties estimation

Differential properties such as the normal vector and the curvatures of a surface plays an

important role in our studies. Their estimation needs to be as accurate as possible to avoid

any loss of quality in further processing. When dealing with acquired data, their robustness

to noise is one of the main critical aspect.

We develop in Section 1.4.2 an accurate method to estimate principal curvatures from the
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fu (Equation 1.3)

∇fu (Equation 1.29)

∇2fu (Equation 1.30)

∇ufu (Equation 1.33)

∇u∇fu (Equation 1.34) ∇2
u
fu (Equation 1.36)

[Guennebaud 2007] [Mellado 2020] (ours)

Figure 1.3: Scalar field differentiation. Dashed arrows represent partial differentiation denoted by

∇·where the algebraic sphere parametersu are considered as constant. Solid arrows represent complete
differentiation denoted by∇u· that considers space-varying u as a result of the fitting procedure. The

three Hessian matrices below lead to different shape operators given in Equations 1.31, 1.35 and 1.38.

APSS. The way the APSS scalar field is differentiated is the key element of our approach as

illustrated by Figure 1.3. The proposed estimator includes all the advantages of the APSS

such as its efficiency and its approximation power. A numerical evaluation is performed in

Section 1.4.3 on simple and dense points clouds to assess its robustness to different types

of noise. Compared to baseline techniques such as PCA, Osculating Jets [Cazals 2005a],

PSS [Alexa 2001] and prior APSS-based approaches [Guennebaud 2007, Mellado 2012] our

method is empirically more accurate and robust. Section 1.4.1 first introduces general cur-

vatures computations and then describes the existing curvature estimations on APSS.

1.4.1 Prior work on APSS curvatures

Since APSS represent the surface implicitly, we first give a brief background on curvature

computation on a generic implicit surface. Two existing methods are then described. The first

is the initial APSS [Guennebaud 2007] that estimates only the mean curvature using a simple

version of the shape operator. The second is implemented in the Ponca library [Mellado 2020]

where a better approximation of the shape operator is used.

Implicit surface curvatures The normal n of an implicit surface defined by an iso-surface

of a scalar field f : IR3 → IR is defined by the normalized gradient

n =
∇f

‖∇f‖ . (1.24)

The normal curvature κn in a tangent direction t ∈ IR3 is equal to the variation of the normal

in that direction. It is given by the following quadratic form

κn(t) = tT∇nt. (1.25)
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The spatial derivative of the normal ∇n is obtained from Equation 1.24 as

∇n =
(

I3 − nnT
) ∇2f

‖∇f‖ , (1.26)

where I3 is the 3-by-3 identity matrix and ∇2f is the Hessian matrix of the scalar field. By

computing an orthonormal basis {t1, t2,n} of the tangent plane, we express any 3D tangent

vector t by a linear combination Pu, with u =
[

u v
]T

its coordinates in the tangent space

and P =
[

t1 t2
]

the 3-by-2 transfer matrix from the 2D tangent plane to the 3D space. The

normal curvature of Equation 1.25 expressed in the tangent plane corresponds to the second

fundamental form of the surface

κn(u) = uTWu, (1.27)

whereW is the matrix of the shape operator that is simplified to

W = P T∇nP = P T ∇2f

‖∇f‖P. (1.28)

Finally, the principal curvatures κ1 and κ2 of the surface are the eigenvalues ofW , which cor-

respond to extrema of the normal curvature κn. Note that every quantities introduced in this

paragraph depend on the evaluation point x that is omitted for clarity. Computing the prin-

cipal curvatures of the APSS boils down to calculate the gradient ∇f and the Hessian matrix

∇2f of the scalar field fu of Equation 1.3. As illustrated by Figure 1.3, the different approaches

presented below differ by how they compute these first and second order derivatives.

Simple shape operator Considering the parameters u as constant when x varies is the

simplest way to differentiate the scalar field fu(x) = uc+uℓ .x+uqx .x (Equation 1.3). This

approach does not account for all the fitting procedure and considers the resulting scalar field

as a pure algebraic sphere only. This partial differentiation leads to the following approxima-

tion of the gradient and Hessian

∇fu = uℓ + 2uqx, (1.29)

∇2fu = 2uqI3, (1.30)

If uq is null, then the gradient is the orthogonal vector uℓ defining the plane, otherwise it is a

vector in the direction between the sphere center and x. Normalizing the gradient∇fu defines

the normal n of the surface and is also denoted by η in the GLS parameters [Mellado 2012].

The shape operator resulting from Equations 1.29 and 1.30 is

W1 =
2uqI2

‖uℓ + 2uqx‖
. (1.31)

This diagonal matrix makes the principal curvatures necessarily equal which is not surprising

since we only consider the plain algebraic sphere. Considering only the resulting sphere defi-

nitely leads to wrong principal curvatures unless the surface is isotropic. On the other hand,

it is still capable of estimating the mean curvature. Calculating W1 at ϕ(x) (the projection of
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H̃ Equation 1.32 [Guennebaud 2007] W2 Equation 1.35 [Mellado 2020] W3 Equation 1.38 (ours)

Figure 1.4: Mean curvature comparison. Our shape operator (right) produces more visually ac-

curate mean curvatures than previous methods. More details are visible in the eye hollow and on the

upper eyelid. Values range from −0.2 in blue to +0.2 in red via 0 in white.

x onto the sphere (Equation 1.10)) gives the mean curvature

H̃ =
2uq

√

‖uℓ‖2 − 4uquc
. (1.32)

It is equal to the inverse radius of the algebraic sphere as initially proposed by the APSS

method [Guennebaud 2007], and it also corresponds to the GLS parameter κ.

Approximate shape operator Thanks to the analytical formulas of the fitted algebraic

sphere given in Equations 1.7-1.9, the scalar field parameter u is actually a function of x. By

taking into account this dependence we no longer see the resulting scalar field fu as only a

simple algebraic sphere. The Ponca library [Mellado 2012] performs this complete differentia-

tion of the scalar field that gives a second variant of the gradient

∇ufu = ∇uc + uℓ +∇uT
ℓ x+ 2uqx+∇uqx .x, (1.33)

where ∇uℓ is the Jacobian matrix of uℓ. The subscript u in ∇u means that a complete differ-

entiation is done (see Figure 1.3). The partial differentiation of ∇ufu is performed giving a

partial version of the Hessian matrix

∇u∇fu = ∇uT
ℓ + 2uqI3 + 2x∇uTq . (1.34)

Note that this is also equivalent to the complete differentiation of∇fu (see Figure 1.3). It leads

to the second approximate shape operator

W2 =
P T (∇uT

ℓ + 2uqI3 + 2x∇uTq )P

‖∇uc + uℓ +∇uT
ℓ x+ 2uqx+∇uqx .x‖ , (1.35)

where P is a tangent plane basis computed from ∇ufu (see Equation 1.28). Contrary to W1,

W2 is no longer diagonal, so its eigenvalues can be different, which enables the calculation of

principal curvatures.
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1.4.2 Accurate APSS shape operator

As shown by Figure 1.3, none of the two existing Hessian matrices and their associated shape

operators take completely into account the dependence of u to x. We thus propose a more

accurate form of Hessian matrix by performing the complete differentiation of the complete

gradient ∇ufu (Equation 1.33 [Mellado 2020]). We obtain the following Hessian matrix

∇2
u
fu = ∇2uc +∇uℓ +∇uT

ℓ +∇2uℓx+ 2∇uqx
T + x .x∇2uq + 2uqI3 + 2x∇uTq . (1.36)

In 3D, the term∇2uℓx is the product between the rank-3 tensor∇2uℓ and the 3 dimensional

vector x that is equal to

∇2uℓx = x∇2uℓx + y∇2uℓy + z∇2uℓz, (1.37)

where ∇2uℓx is the Hessian matrix of the first coordinate of uℓ. Plugging ∇2
u
fu in Equa-

tion 1.28 together with ∇ufu yields the complete shape operator

W3 = P T ∇2
u
fu

‖∇ufu‖
P. (1.38)

Its eigenevalues are not the curvatures of a simple algebraic sphere as those of W1 but cor-

respond to the actual curvatures of the reconstructed MLS surface. The difference between

W2 and W3 is difficult to appreciate by looking only at their equations. Figure 1.4 shows the

mean curvatures computed with the different methods, where we can already observe that

W3 produces more accurate mean curvatures on a clean shape. The numerical comparison

conducted in the next section validates that our shape operator produces curvatures that are

more accurate and more robust in the presence of noise than those obtained with previous

methods.

1.4.3 Numerical comparison

We perform a comparison between our approach to compute curvatures with several base-

line methods. Dense point clouds sampling smooth geometric primitives are used as input so

that the theoretical values of curvatures are known. The goal is to show that differentiable

properties calculated from the APSS, especially using our complete shape operator, are both

accurate and robust to noise on positions and normals. The main result is two plots of several

estimators as a function of noise presented in Figure 1.6 and 1.7.

Input data The comparison is performed on three primitives : the unit sphere, a cylinder

of radius 1 and an hyperbolic paraboloid corresponding to a saddle shape. The theoretical

principal curvatures (κ1, κ2) are (1, 1), (1, 0) and (2,−1), and the theoretical mean curvature

H is 1, 0.5 and 0.5 for the sphere, cylinder and saddle respectively. All the estimations take

place on the same point on these surfaces and uses a radius equal to 1 to define the neighbor-

hood. The primitives are randomly sampled as dense point clouds, and around 800K points

are located within the neighborhood ball. Sparser data could be tested but the goal here is to

measure the robustness to noise and not to sampling variation.



1.4. Robust differential properties estimation 23

sphere cylinder saddle
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Figure 1.5: Input data. Each sub-figure shows the clean point cloud on the left and the noisy version

on the right. Colors are determined by the distance to the evaluation point for the positions noise (top

row) or by the normal orientation for the normals noise (bottom row).

Two types of noise are introduced in order to measure the robustness of the different

estimators. In a first experiment (Figure 1.6), a Gaussian noise with zero mean and standard

deviation σp is added to the coordinates of the positions. The standard deviation σp varies

from 0 to 0.5. A second experiment (Figure 1.7) measures the robustness against noise on

the normal vectors of the point cloud. However, a basic Gaussian noise is not enough to

differentiate the accuracy between onemethod and another. So every normal is rotated around

a globally fixed direction that is diagonal to the principal directions of curvature. The angle

follows a Gaussian distribution of zero mean and standard deviation σn that is truncated to

constrain the angles to be positive. The standard deviation σn varies from 0 to 45 degrees. A

few examples of input data can be observed in Figure 1.5.

Selected methods The two existing approaches computing the principal curvatures from

the APSS algebraic sphere presented in Section 1.4.1 are included in the evaluation under

the name Sphere 1 for W1 (Equations 1.31 [Guennebaud 2007]) and Sphere 2 for W2 (Equa-

tions 1.35 [Mellado 2020]). Our method explained in Section 1.4.2 using the complete shape

operator W3 given by Equation 1.38 is called Sphere 3.

The PCA plane fitting gives another estimator of the mean curvature. Contrary to previ-

ous work [Pottmann 2007, Digne 2011], we use a weighted version of the PCA given in Equa-

tion 1.1 using the sameweighting function of the APSS (Equation 1.6). With this minor change,

the normal component of the projection displacement is asymptotically equal to Ht2

8 + o(t2),

where t is the neighborhood radius that is equal to 1 in our experiments. Therefore, we can

estimate H with 8d
t2

where d is the point-to-plane distance measured in practice. The same

asymptotic expansion holds for the neighborhood barycenter. Averaging the positions and

the normals is referred to as the Average method.

We also compare the pioneer PSS [Alexa 2001], the Osculating Jets [Cazals 2005a] and the

Wavejets [Béarzi 2018] referred to as Quadric, Jets and Wavejets respectively. These methods
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Method δH δκ1 δκ2 ∠n

Mean 0.190 - - 0.027

Mean (MLS) 0.304 - - 4.844

Plane 0.190 - - 0.082

Plane (MLS) 0.366 - - 0.101

Sphere 1 0.148 - - 0.020

Sphere 1 (MLS) 0.147 - - 0.021

Sphere 2 0.142 0.346 0.082 0.050

Sphere 2 (MLS) 0.139 0.341 0.084 0.049

Sphere 3 0.070 0.153 0.027 -

Sphere 3 (MLS) 0.067 0.149 0.027 -

Quadric 0.266 0.453 0.238 0.054

Quadric (MLS) 0.235 0.426 0.217 0.065

Jets 0.445 0.796 0.449 29.898

WaveJets 0.383 0.690 0.359 13.754

Table 1.1: Differential properties estimation errors. Average of absolute errors on mean curva-

ture δH , principal curvatures (δκ1, δκ2) and normals∠n (in degrees) for every shapes and every noise

strength used in Figure 1.6 and 1.7. Our method (Sphere 3) gives the best results for curvatures estima-

tion.

use the PCA plane as initial tangent plane and then fit a bivariate polynomials. The degree of

the polynomials is set to 2 because it is sufficient to calculate curvatures informations. Jets and

Quadric differ in the second step to perform the polynomials regression. The former solves a

Vandermonde system with a size equal to the number of neighbors whereas the PSS solve a

more compact system with a size equal to the dimension of the embedded space. Moreover,

the PSS solve a weighted least squares problem since it is a MLS method, which is not the case

for the Jet. Wavejets perform differently by considering polar coordinates decomposing the

polynomials into radial magnitudes and angular oscillations.

The PCA, the Quadric and the Jets methods cannot infer the actual sign of curvatures as

they do not take into account normals. Their resulting sign are modified a posteriori to match

the reference normal orientation. We still include them in the second experiment involving

noise on normals although they all give constant results.

Each method is tested after a single fitting step and several MLS quasi-orthogonal pro-

jections. The iterations stop when 20 steps are reached, or if the distance between two

iterations points is less than 0.001 (0.1% of the neighborhood radius). We implemented

our shape operator W3 in the Ponca library [Mellado 2020] using Eigen [Guennebaud 2010].

All the other implementations also come from Ponca except for the Jets that are part of

CGAL [The CGAL Project 2020], and the Wavejets that we coded in C++ from the authors

Matlab function.

Results For comparison we report the mean curvatureH , the principal curvatures (κ1, κ2)

as well as the deviation∠n in degree between the estimated and reference normal. These four

features are plotted as a function of the positions noise standard deviation σp in Figure 1.6,

and the normals noise standard deviation σn in Figure 1.7. Table 1.1 summarizes the average

errors for each method during all these experiments. It includes the average of absolute errors

on mean curvatures δH , principal curvatures (δκ1, δκ2), and on the normals deviations ∠n.
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Overall, the Sphere 3 that uses our complete shape operatorW3 (Equation 1.38) gives better

results. On average, we obtain the lowest errors of curvatures estimation as shown in bold

font by Table 1.1. Our estimations (in red on Figures 1.6 and 1.7) are always the closest to the

references and vary less than the others when both noise strengths increase. The response to

noise of Sphere 1 and 2 are closer to Sphere 3 than the other methods, but their values are a bit

farther from the references. Theses two experiments clearly show the accuracy and robustness

of the APSS curvatures especially when the complete differentiations of its scalar field are

considered as we proposed in Section 1.4.2. Although one exception is observed concerning

the normal deviation ∠n on Figures 1.6 and 1.7 (bottom) and on the right column of Table 1.1.

Sphere 1 gives slightly better results than Sphere 2 for the two types of noise. This counter

intuitive observation suggests that curvatures are better estimated using the most complete

shape operator W3 while the gradient ∇fu (Equation 1.29) of the plain algebraic sphere is

enough to estimate the normal vector in presence of noise.

Quadric, Jets and Wavejets methods show a comparable unstable behavior to deal with

noise. The former is usually more accurate which confirm the benefit of considering a compact

weighted least squares problem particularly when the data is noisy. The large systems that

the Jets and Wavejets have to solve may also introduce more numerical errors. One common

issue certainly comes from the PCA plane on which they are all based on. As shown in blue

by the bottom of Figure 1.6, the noise strongly affects the normal obtained from the PCA.

The MLS version of each method does not improve much the results in these two ex-

periments. This observation does not really reflect real cases where MLS approaches clearly

improve the accuracy of the surface approximation. Possible reasons to explain this inconsis-

tency are the simplicity of the shapes or the synthetic nature of the noise considered in these

experiments. The only techniques showing a noticeable difference are Average and Plane.

During the MLS iterations, the PCA plane and the barycenter gradually move away from the

initial point. This well known shrinking effect (see Figure 1.2 and [Guennebaud 2007, Fig-

ures 13-15]) inevitably increases the mean curvature since it is proportional to the distance

from the evaluation point to the plane or barycenter. With the Average method on the sphere,

the moving point progressively shifts in an arbitrary tangent direction due to the random

sampling. The neighborhood gathered around that point is no longer centered which explains

why the estimated normal of Average is so biased.

Performance Figure 1.8 plots the average time spent by each method to perform the esti-

mation at one point. It includes the three shapes and every noise type and strength used in

Figure 1.6 and 1.7. We recall that all the estimations are done for one neighborhood size, so

this parameter is not evaluated here although it can have an impact on the different methods.

As expected, the execution time of the single fit methods is roughly comparable to the degree

of the fitted shape (point, plane, sphere and quadric over plane).

Jets is the slowest due to the large system it has to solve. Although the single fitting of

Average and Plane are very efficient, their MLS variants are quite slow compared to Sphere 1

for instance. The reason comes from their shrinking effect that decreases their convergence

rate.

The performances for the different Sphere methods follow the complexity of their shape

operators. Our shape operator W3 (Equation 1.38) involves more terms than W1 and W2,
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which make it approximately four and two time slower respectively. Its single fit version is

slightly slower than the one of Quadric, but it is faster with the MLS version meaning that

APSS converge more quickly than PSS on average in these experiments. This performance

evaluation highlights one drawback of our method. Its accuracy and robustness are obtained

at the price of a performance overhead. Sphere 1, 2 and 3 take around 20, 33 and 63 seconds to

compute mean curvatures on 2M points in Figure 1.4. In case performance is critical, and only

the mean curvature is necessary, then Sphere 1 remains a good choice. Choosing between

Sphere 2 and 3 to get principal curvatures depends on the required level of accuracy and the

importance given to the execution time.

1.5 Efficient multi-scale representation

The scale-space representation of a 2D image is obtained by successive Gaussian convolutions

of varying support size [Witkin 1987], which corresponds to the solution of a diffusion equa-

tion [Koenderink 1984] (Equation 1.13). The diffusion-based approach can be implemented

for 3D point clouds [Digne 2011] as illustrated by Figure 1.2. High frequency details of the

shape are quickly removed, but it remains very slow to smooth out the low frequencies. In-

deed, more than 2minutes are required to obtain the barely smooth 30th iteration of 1Mpoints

in Figure 1.2. Another standard scale-space technique consists in the variation of the neigh-

borhood size t used for local features estimation [Pauly 2003, Yang 2006, Mellado 2012]. The

APSS can be used as a local reconstruction operator that provides the necessary differential

features such as normals and curvatures. When t tends toward the whole size of the shape, the

approach looses its local nature and many neighbors are considered for the APSS calculations

at each point. Although the APSS is fast to compute, the computational time at high scales is

still too high, even if a space partitioning data structure is used.

For this reason, we introduce in Section 1.5.2 a new multi-resolution representation inte-

grated within the scale-space framework. Taking inspiration from a prior work [Pauly 2003],

the idea is to consider a low resolution version of the point cloud at high scale, so that neigh-

bors queries maintain their efficiency. The main challenge is to appropriately link decimation

and scale together. While Pauly et al. first decimate the point clouds at several resolution and

then define the scale according to the local density, we take the apposite direction. We first de-

termine the scales as explained in Section 1.5.1, and the decimation we propose in Section 1.5.2

is done accordingly. An evaluation is conducted in Section 1.5.3 to show that our approach

produces an appropriate trade-off between the scale-space smoothing and themulti-resolution

decimation thanks only one parameter.

1.5.1 Discrete scale-space sampling

A set of M values must be selected in IR+ to define the scales. The method to determine the

interval (tmin, tmax) defining the scale-space bounds is first explained. Then, we describe how

the scales are sampled inside this interval.

Scale bounds Since the scale parameter t is simply a distance in the ambient space, these

values can be linked to the size of the analyzed 3D point cloud. The highest scale tmax can be
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reasonably bounded by the global size of the shape. We define it as the diagonal length of the

axis-aligned box bounding the point cloud.

The determination of the minimal scale tmin is more critical. A high value implies that

many smaller geometric details are smoothed and do not appear in the multi-scale representa-

tion. On the other hand, a too low value can be problematic for the APSS fitting that requires

at least a few points to be stable.

We describe two ways for specifying the minimal scale tmin. A first solution is to adapt

tmin to the local density of the point cloud [Pauly 2002]. Similarly to balloon estimators in

kernel density estimation [Terrell 1992], each point pi admits its own scale-space by using

the enclosing sphere radius ri,K of its K nearest neighbors as minimal scale. This adaptive

scale-space ensures that each APSS projection step is stable enough and is mainly employed

in Chapter 4. Linking the scale to the density is not optimal, especially when dealing with

acquired data showing strongly varying sampling and noise, and the choice of K could be

critical. But contrary to previous work [Pauly 2003], we perform this density-based scale se-

lection only once to determine tmin. However, varying sampling density still leads to very

different minimal scales for each point. Analyzing the shape at one particular level of scale

j leads to consider different scales at the same time. So we take the median of ri,K instead

as a common minimal scale tmin for every points. This homogeneous scale-space is used in

Chapters 2 and 3 as it is more appropriate in the context of analysis.

Scale sampling The simplest method to distribute M values in the scale interval

(tmin, tmax) is the arithmetic series

tj = tmin +

(

j − 1

M − 1

)

(tmax − tmin) , j ∈ {1, . . . ,M}, (1.39)

where the difference between two successive scales is constantly equal to tmax−tmin
M−1 . This linear

scale produces a uniform scattering of scale samples with as many low values as high values.

We use it in Chapter 4 to continuously map the point cloud to a common domain without too

high gaps from one scale to another.

If the goal is to analyze the geometric features of the underlying surface (Chapter 2 and 3),

geometric series are better used

tj =

(

tmin

tmax

)
j−1
M−1

tmin, j ∈ {1, . . . ,M}, (1.40)

where the ratio between two successive scales is constantly equal to
(

tmin
tmax

)
1

M−1
. This widely

used logarithmic scale in scale-space methods has several benefits. In practice, only few high

values are necessary because shapes usually vary less at a global scale. On the contrary, more

samples are required near the lowest scale to better represent every fine details. This is per-

fectly accomplished by Equation 1.40. Furthermore, the logarithm transforms multiplication

into addition, so scaling the geometry in the spatial domain is equivalent to a translation in the

logarithm scale-space. This useful property is widely used to design scale-invariant descrip-

tors [Kokkinos 2008, Bronstein 2010] and for data registration [Zokai 2005, Mellado 2015a].
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Figure 1.6: Differential properties with noise on positions. The mean curvature H , principal

curvatures (κ1, κ2) and normal deviation ∠n (in degree) are plotted as a function of the position noise

standard deviation σp with the neighborhood radius equal to 1. Our curvatures estimator (red) is the

least prone to noise and is very close to the reference curvatures in general.
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Figure 1.7: Differential properties with noise on normals. The mean curvature H , principal

curvatures (κ1, κ2) and normal deviation ∠n (in degree) are plotted as a function of the normal noise

standard deviation σn (in degree) with the neighborhood radius equal to 1. Our curvatures estimator

(red) is barely subject to noise on normals.
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time (ms)

Figure 1.8: Differential properties estimations times. Average time spent of each method to

compute curvatures and normals at one point for every shapes and every noise strength used in Fig-

ure 1.6 and 1.7.

1.5.2 Spatial sub-sampling

Although few high scales are sampled thanks to the logarithmic sampling (Equation 1.40),

computing the full scale-space representation remains extremely slow when the amount of

data become large. The reason comes from the costly neighborhood queries performed at

large t even though a spatial partitioning data structure is used. To overcome this performance

issue, we introduce a multi-resolution version of the point cloud inspired by a previous work

on multi-scale point cloud analysis [Pauly 2003]. The idea is to compute the APSS projection

of all initial points but using a different down-sampled version of the point cloud as illustrated

by Figure 1.9. The sub-sampling is progressive such that at a very low scale almost all the

points are considered whereas only a few points are treated at high scale.

The main challenge is to appropriately relate together the notion of scale and the down-

sampling strength. Otherwise, an excessively decimated point cloud relatively to a given scale

would result in a fast but inaccurate APSS, and a too conservative sub-sampling keeps too

many points, slowing down the overall process. Many techniques exist to decimate a point

cloud [Alexa 2001, Pauly 2002, Fleishman 2003] but the desired number of points or an error

tolerance are used as criterion to drive the decimation. They usually cannot directly use our

intuitive definition of scale as parameter.

Poisson disk sampling We propose to perform a Poisson disk sub-sampling [Yan 2015] of

the point cloud used to compute the APSS at each level of scale. The disk radius is defined as

a fraction of the current scale tj as

rj = α tj , (1.41)

where α ∈ (0, 1) is the only parameter involved that controls the final resolution. In case an

adaptive scale-space is used (Section 1.5.1), each point pi defines its own scale so Equation 1.41

is distinct for each i while α remains a single global parameter.

For the homogeneous scale-space, we use a simple algorithm to perform the Poisson disk

sampling using only a kd-tree to accelerate neighbors queries. Each point has the same prob-
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Figure 1.9: Multi-scale and multi-resolution representation. Top right: three results of the pro-

jections of 1M initial points (left) at scale levels 10, 20 and 30 among 50. Bottom right: the correspond-

ing sub-sampled point clouds with α = 0.1 (Equation 1.41). The heat map highlights the neighborhood

used to compute the APSS for the same blue point at the three scales.
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ability to be selected as candidate and is included in the resulting samples set if it is marked as

available. Each neighbor within a radius equal to 2rj of a selected candidate is then marked

as unavailable. The process is repeated until all the input points are treated. For the adap-

tive scale-space, a slightly more complex algorithm is required since rj depends on each point

pi. For each candidate, a first neighborhood query of radius rj checks if all neighbors are

available. The candidate is selected if the Poisson disk property is not violated, and another

neighborhood query of the same radius marks all the neighbors as unavailable.

Although this naive algorithm is greedy and the resulting Poisson disk sampling is never

maximal, it still produces an evenly spaced distribution of points appropriate in practice for

the APSS. The intrinsic link between the scale and the sub-sampling strength (Equation 1.41)

makes the overall algorithm well balanced between decimation and smoothing as shown in

Figure 1.9. The sequential nature of the sampling can also be a source of performance issue,

but since at each level of scale the previously sub-sampled point cloud is taken as input, the

process is faster when the scale grows and the number of samples decreases.

This progressive approach is conceptually close to restriction phases of multi-gridmethods

often used on regular grids [Briggs 2000] and on meshes [Botsch 2005] to quickly solve partial

differential equations. From this point of view, the Poisson disk sampling can be considered

as part of the V-cycle solving our diffusion equation defined in Equation 1.23. The APSS plays

the role of the smoothing operator that rapidly attenuates high frequencies such as noise and

small details of the surface. Its slow speed to smooth low frequencies corresponding to larger

shapes is then bypassed by a loss of resolution and an increase of scale.

Our multi-resolution representation can give a rough idea on the upper bound of the num-

ber of neighbors that can be visited to compute the APSS at each point and at a given scale t.

For example, it is conjectured that at most 91 disks of radius approximately equal to 0.095 can

be packed in a circle of radius 1 [Lubachevsky 1997]. If we imagine an infinitely dense point

cloud on a plane, then the Poisson disk sampling would select at most 91 points within a dis-

tance t from any point if we chose α ≈ 0.095. The next section provides a practical evaluation

of α and shows why we select α = 0.1 in all our following experiments.

1.5.3 Evaluation

This section gives some insights on the impact of the sampling factor α on both accuracy

and execution time. We also study the performance of the overall algorithm as the scale in-

creases and show how our multi-scale approach benefits from the use of massively parallel

implementations.

Impact of the sampling factor The main parameter that must be set is the sampling factor

α of Equation 1.41. If α = 0, the point cloud is kept unchanged so the APSS is computed as

usual but the execution time is very slow at high scale. In the other extreme case where α = 1,

each point would have no neighbor, which is a situation to avoid. An appropriate value for α

should give approximately the same APSS as if no sub-sampling is performed and should bring

a noticeable improvement in execution time. We evaluate these criteria in Figure 1.10 on the

1M points shown in Figure 1.9. Errors on positions and normals are measured between each

point on the resulting APSS obtained with a certain α and the same point but on the APSS of
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Figure 1.10: Impact of the sub-sampling. Left and middle: median errors on positions (relatively to

the scale) and on normals (in degrees) for each scale between the APSS obtained with different values

of sampling factor α and the APSS of reference (α = 0). The scale t is given as a factor of the point

cloud bounding box diagonal length. Right: total time in log-scale to compute the whole multi-scale

representation as a function of α. We always use α = 0.100 (yellow) for its sufficient trade-off between

accuracy and speed.

reference computed without any sampling (α = 0). The overall timings are recorded using an

implementation of the APSS projections parallelized using Cuda.

In the rest of this thesis we empirically chose the setting α = 0.100 (in yellow in Fig-

ure 1.10). It introduces no more than 2% of median error on positions with respect to the scale,

and the median error on the normals does not exceed 8 degrees. Moreover, the largest errors

tend to occur at high scales, which is not too limiting since we usually want more accuracy

near the low scale to better catch tiny details. The execution time is largely reduced from 18

hours for α = 0 to 40 seconds for α = 0.100, which is totally acceptable for processing 1M

points with 50 scales.

Performance study We study the detailed performance of our algorithm when the scale

grows. Figure 1.11-left shows the time spent in the Poisson disk sampling and in the APSS

projection at each level of scale. The sampling step is always done using one CPU thread and

only takes around 10% of the total time. Two parallel implementations of the APSS projections

are tested using either 8 threads parallelized using OpenMP with an Intel Xeon CPU 3.70GHz

or using Cuda with an NVIDIA GeForce GTX 1080. As expected the GPU implementation

outperforms the CPU one by a factor 2 in this experiment.

The main reason for using the Poisson disk sampling described in Section 1.5.2 is to re-

duce the number of points visited locally when computing the APSS. This is confirmed by the

timings discussed previously in Figure 1.10-right, but also by the Figure 1.11-right that plots

the number of neighbors visited at each level of scale. The average number of neighbors stays

relatively constant between 14 and 38 for any scale. The total number of samples decreases

logarithmically although we only control it indirectly via the logarithmic scale sampling of

Equation 1.40 and the Poisson disk radius of Equation 1.41.

1.6 Conclusion

This chapter introduces theoretical as well as technical contributions for the use of APSS in

multi-scale point cloud analysis. In asymptotic settings, Theorem 1 links the fitted algebraic

sphere to the surface derivatives and especially to its mean curvature. Higher order derivatives
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Figure 1.11: Timings and amounts of samples processed. Left: timings per step for 1M points

and 50 levels of scale (Figure 1.9). The sub-sampling (red) is always done using 1 CPU thread while

the APSS projections are parallelized either with 8 CPU threads using OpenMP (blue), or with a GPU

using Cuda (green). In the end, the GPU improves the performance by a factor 2. Right : the neighbors
count used for each APSS projection (blue) stays relatively constant while the total number of samples

(red) decreases logarithmically.

and a measure of anisotropy also appear in the asymptotic expansions of the algebraic sphere

parameters. We also propose a new shape operator (Equation 1.38) that completely considers

the fitting procedure. A numerical comparison shows that it is more accurate and more robust

to different types of noise than other existing methods. Finally, Section 1.5 explains how we

compute efficiently the APSS at different level of scale using a multi-resolution representation

of the input point cloud. The proposed Poisson disk sampling gives an appropriate trade-off

between speed and accuracy with a good balance between scale-space smoothing and multi-

resolution decimation.

In the rest of this thesis, we adopt the APSS, the new shape operator and the new multi-

resolution algorithm as a multi-scale representation of the point cloud. Chapter 2 that focuses

on plane detection uses normals and curvatures computed from our shape operator to group

similar points together. In Chapter 3, the directions of principal curvatures are used to generate

flow lines in order to extract anisotropic geometric features. The planar segmentations and

the flow lines both take advantage of our efficient multi-resolution algorithm especially at

high scale. Finally, Chapter 4 proposes a geometric flow inspired from the one described in

Equation 1.23 to smoothly project the point cloud onto a plane or a sphere, resulting in a global

2D parametrization.

Future work The asymptotic analysis of the algebraic sphere fit performed in Section 1.3

could integrate noise on positions or normals to obtain stability proof similar to the integral

invariant [Pottmann 2007]. Asymptotic expansions of many more quantities would also be

interesting to derive such as the scale derivatives used in the GLS method, the spatial deriva-

tives, our shape operator, etc... The algebraic sphere fit without normals [Guennebaud 2007]

or with only non-oriented normals [Chen 2013] are also other methods to investigate using

such asymptotic settings.

The numerical comparison of Section 1.4.3 includes only 3 densely sampled shapes, 2 types

of noise, and 1 single scale. The few methods that are compared are either close to the APSS,

such as the PSS [Alexa 2001] and the Osculating Jets [Cazals 2005a], or their asymptotic expan-

sions exists as for the PCA plane and the barycenter method [Pottmann 2007]. It could be in-
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teresting to perform an extensive comparison of differential properties estimators on unstruc-

tured point clouds using more complex shapes and noise. Different settings could be tested

with multiple scales and various sampling densities and patterns. The comparison should in-

clude more existing methods including those based on statistical fitting [Kalogerakis 2007],

Voronoi diagram [Mérigot 2010] and machine-learning [Guerrero 2018].

Another possible research direction is to consider algebraic quadrics. Its scalar field de-

fined as uc+uT
ℓ x+xTUqx is similar to the algebraic sphere scalar field (Equation 1.3), but the

quadratic parameter Uq is now a 3-by-3matrix. In some sens, this trivariate Taylor polynomi-

als of order 2 corresponds to the implicit version of the Osculating Jets (or the PSS) of degree

2. The direct regression to oriented points using the same least squares problems of Equa-

tions 1.4 and 1.5 [Guennebaud 2008] is also possible. It leads to a small simplified Sylvester

equation [Bartels 1972] to obtain Uq . The parameters uℓ and uc are obtained using similar

formulas as Equations 1.8 and 1.7. Principal curvatures are directly accessible from the scalar

fields itself contrary to the simple shape operator of Equation 1.31. Its asymptotic analysis and

its numerical comparison to the other methods are left as future work.
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Figure 2.1: Planar shapes. Planes are ubiquitous especially in man-made objects.

2.1 Introduction

Many existing 3D shapes can be abstracted by arrangements of planes as shown by Figure 2.1,

e.g. cities and buildings, indoor rooms, furniture and stairs, as well as most of computer-aided

designed objects. Therefore, point clouds obtained from these scanned elements can be rep-

resented by a set of planar primitives. Such compact description also offers the possibility to

link the geometry of the sampled surface to its semantic, e.g. floors, roofs, tables and desks.

For these reasons, detecting planar primitives from point clouds is an important problem for

many technical fields as reverse engineering, robot locomotion and urban planning to name a

few.

Although planes are one of the simplest shape to characterize, their recognition in 3D

point clouds remains challenging. The unstructured nature of the data, the large amount of

points and the acquisition artifacts are common issues. Moreover, the notion of scale has a

critical impact on the detected primitives. As shown in Figure 1, one point can be considered

as part of either a large roof or a small tile depending on the scale of analysis. This ambiguity

shows that a recognition algorithm may be exhaustive if a multi-scale approach is used.

Key observation Our approach is based on the key observation that smoothing a surface at

increasing scale generates stable areas that are characterized by similar differential properties

at different locations and scales. In Figure 2.2, we illustrate this concept on a 2D parametric

curve (Figure 2.2(a)). The curvature scale-space [Witkin 1987] of this curve is plotted in Fig-

ure 2.2(b), where the color represents the curvature value (blue positive, orange negative and

white null), the abscissa is the curve parameter, and the ordinate is the scale of analysis.

Areas of similar curvature values are revealed by this plot. Figure 2.2(c) illustrates these

stable curvature areas in space and scale using a few colors for the representative curvature

values. Figure 2.2(d) finally shows the shape components of corresponding curvature value for

each of the stable areas. Aswe can see, these shape components are particularlymeaningful for

interpreting the curve shape, depending on the scale of observation (large scale in Figure 2.2(d-

top), medium scale in Figure 2.2(d-middle) and low scale in Figure 2.2(d-bottom)). While multi-

scale methods usually focus on peaks of curvatures along the scale-space to find meaningful

salient features [Witkin 1987, Pauly 2003], we look instead for stable areas that persist over

scale to robustly extract planes that potentially exist at different scales.
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(a)

(b)

(c)

(d)

Figure 2.2: Curvatures at multiple scales. Illustration of the curvature scale-space of a curve and

its application to meaningful components detection. (a) Plot of a parametrized 2D curve. (b) Curva-

ture scale-space of the curve, where the color represents the curvature value (blue-white-orange for

positive-null-negative). The abscissa is the curve parametrization, and the ordinate is the scale of anal-

ysis. (c) We define components as stable areas in scale-space. (d) Components represent the geometrical

structures at different scales, and any part of the curve can belong to several components at different

scales.

(a) Per-scale segmentation (b) Component extraction

Figure 2.3: Segmentations atmultiple scales. (a) Visualization of the segmentation result per scale.

The abscissa represents the points of the point cloud, the ordinate is the scale, and colors denote the

different segmented regions. (b) Following the key observation presented in Section 2.1 and Figure 2.2,

the colors show the resulting components defined by stable regions over scales.

Contributions of this chapter

• A new algorithm is developed in Section 2.3 to automatically extract planes based on

our multi-scale representation and our differential property estimations introduced in

Chapter 1. Meaningful planar regions are extracted even if they exist at different scales.

• In Section 2.4, we propose several interactive tools exploiting our proposals of planes.

They provide an intuitive user-guided exploration of 3D point clouds improving inter-

active selection, segmentation, and reconstruction.

2.2 State-of-the-art

We review two classes of method for detecting geometric primitives and especially planes in

3D point clouds. The former class only detects simple primitives whereas the latter considers

how they relate to each other in order to extract their underlying structure.

2.2.1 Primitive detection

Decomposing a raw 3D point cloud into patches corresponding to simple geometric prim-

itives is a basic first step in many 3D processing pipelines [Chauve 2010, Mattausch 2014,

Monszpart 2015]. Since real-world entities (man-made objects in particular) can be approx-

imated in a piece-wise planar way, planes are among the most common primitives considered.

Several methods [Rabbani 2006, Poppinga 2008] extract planar patches using region growing.
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They expand a patch from a starting seed point by aggregating neighbors that have low off-

set and low normal deviation. To increase efficiency, small planar patches can be represented

as voxels on which a similar region growing is performed [Vo 2015]. Other requirements

can be used such as a minimum fitting quality or bounds on the number of points inside a

region [Lafarge 2012]. Note that these thresholds are normally specified as fixed input pa-

rameters, making these approaches effective only in the presence of low or known levels of

noise.

Stochastic method effectively handle noise and other defects of point clouds. They

are often based on randomly generating a large set of primitive hypotheses (not re-

stricted to planes) from the input data. In some pipelines inspired by the Ransac algo-

rithm [Fischler 1981], the primitives that best explain the input data in terms of number of

inliners are selected [Schnabel 2007]. Other approaches based on the well-known Hough

Transform [Hough 1962], let each candidate primitive cast a vote in a discretization of

the parameter space and select the primitives corresponding to the most voted parameter

sets [Borrmann 2011]. Though robust and not restricted to planar primitives, such randomized

approaches require testing a high number of primitives to ensure that all relevant features are

captured.

Some approaches use the output of both region growing and randomized algorithms as

starting point for a more global formulation [Pham 2016, Dong 2018, Guinard 2019]. These

approaches aremostly based onminimizing an energy function designed to penalize the fitting

error to the underlying data while favoring the use of a reduced number of models to explain

the data [Yu 2011, Isack 2012]. Similar techniques are used when the input is an RGB-D image

[Silberman 2012] or a sparse point cloud [Sinha 2009]. However, this strategy significantly

increases the technical and computational complexity of the processing while only partially

improving the initial segmentation.

Although effective in many specific use-cases, the success of the primitive detection tech-

niques presented so far is highly dependent on the correct setting of their parameters, which

is often unintuitive. In addition, fixing these parameters implicitly defines one single scale at

which the detection is performed. In our pipeline, we rather apply a simple region growing

approach with fixed parameters and vary the scale at which the underlying features are com-

puted. This leads to results that reflect different scales of observation by simply varying an

intuitive parameter like the scale of observation.

For a more in-depth review of primitive extraction approaches we refer the reader to the

recent survey by Kaiser et al. (2019).

2.2.2 Structure detection

The output of the previous methods can be used to build more structured abstractions of the

input data. The detected primitives can be arranged in a topological graph based on spatial

proximity [Schnabel 2008]. The connectivity of this graph combines adjacent primitives in a

hierarchical way, either starting from unrefined planar regions and merging them based on

planarity [Feng 2014], or by considering individual points as initial primitives and aggregating

them into more general shapes [Attene 2010]. The hierarchical nature of this graph makes it

amenable for scale-aware reasoning, though this direction is not explored in these work. In
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contrast, we build a hierarchical graph that represents the planar primitives at several scales

of analysis and use their persistence inside this graph to discover relevant structures across

different scales.

Other techniques detect global relationships between simple fitted primitives and use

them to guide an optimization-based fitting. Some approaches detect non-planar primitives

(e.g. cylinders, spheres, cones) as well as planar parts [Li 2011b], while others only focus on

planes and extract both the primitive parameters and their inter-relationships in a joint man-

ner, maximizing robustness [Monszpart 2015, Oesau 2016]. These approaches capture global

regularities, but do not convey any explicit information on the scale at which the analysis is

performed. Rather than focusing on regularity relations, our goal is to discover the relevance

of the structures at different scales of observation.

In fact, the extraction of scale-aware representations of raw 3D models has only recently

emerged as a meaningful research problem. Using a data-driven approach, Hu et al. (2018)

learn a patch-based label assignment, extracting the patches at a single scale and using the

available labels to constrain their boundaries. During testing, the segmentation into patches

is performed at several geometric scales and the scale that best matches the learned patch-

based labeling is selected. This approach yields a scale-aware segmentation, but it heavily

relies on the availability of labeled input data and it does not consider the problem of how to

convert the output segmentation to a suitable representation.

Fang et al. (2018) observe that the different scales of abstraction of a model can be obtained

by exploring the 2D space defined by the shapes size σ and their fitting tolerance ε. Since the

pairs (ε, σ) corresponding to meaningful scales are located on the diagonal of this space, they

generate a redundant set of abstractions corresponding to samples on this diagonal, arguing

that this amounts to repeatedly applying local geometric contractions to the input model.

Finally, they select a fixed number of abstractions, optimally matching them to the learned

preferences of a group of users. While we move from similar motivations, we do not rely

on greedy simplifications to generate the meaningful abstractions and extract a large set of

candidate meaningful parts at different scales of analysis. In addition, instead of relying on

a learnt definition for the meaningful scale, we automatically propose meaningful parts by

analyzing their persistence across different scales of analysis and allow the user to explore

and refine our proposals interactively using a variety of intuitive tools.

2.3 Automatic extraction of multi-scale planar structures

We present a new algorithm to automatically extract meaningful planar regions at multiple

scales from 3D unstructured point clouds following a procedure inspired by the multi-scale

analysis presented in Section 2.1. The first step of our pipeline illustrated in Figure 2.4 builds

the multi-scale representation of the input point cloud as we explain in Section 1.5. Recall that

the scale is defined as the size of the neighborhood used to calculate the Algebraic Point Set

Surfaces (APSS) [Guennebaud 2007]. We sample M = 50 scale values logarithmically (Equa-

tion 1.40) and uniformly over the whole point cloud (see Section 1.5.1). Since we focus on

planes, a more robust version of the APSS is used as illustrated by Figure 2.5. We enhance the

APSS algebraic sphere regression by an iteratively re-weighted least squares fit [Oztireli 2009]
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(b) Graph nodes(a) Smoothed input (d) Persistence diagram(c) Component extraction

Figure 2.4: Pipeline. Our approach starts by (a) reconstructing the point cloud at different scales

using robust APSS. (b) The reconstructed surfaces provide parameters for segmenting the point cloud

in planar regions at multiple scales. Regions are stored as nodes in a hierarchical graph where each

level corresponds to a scale. (c) Edges in the graph link the stable regions at successive scales and

the colors show the different corresponding components. (d) The persistence analysis of the extracted
components enables the characterization of planar structures at multiple scales.

improving the surface approximation near sharp features.

The differential informations obtained from the APSS (Section 1.4) parametrize a region

growing algorithm that groups points in planar regions at each scale (Section 2.3.1). Points in

abscissa of Figure 2.3(a) are grouped in regions (different colors) by scale in ordinate. Then

we store regions as nodes of a graph and create edges between regions extracted at successive

scales if they share enough points (Section 2.3.2). In Section 2.3.3, we define components as

stable regions linked in the graph from which a persistance analysis is done. Figure 2.3(b)

shows with different colors the components obtained from the per-scale region segmentations

illustrated in Figure 2.3(a).

2.3.1 Planar segmentations

Our method defines a planar region as a set of points sharing similar normal vectors and pre-

senting a low curvature. Normal vectors are estimated at any scale from the APSS as presented

in Section 1.4. They are the main features to steer the segmentation and provide the per-scale

planar regions. Figure 2.5 illustrates the reconstructed surface at four different scales using a

robust version of the APSS [Oztireli 2009]. Our expectation is that the segmentation at two

successive scales generates similar regions where the underlying scale-space is stable. We thus

seek a simple, yet stable region segmentation algorithm.

Region growing By construction, seedless region growing offers strong stability as the seg-

mentation result is uniquely defined for a given local threshold criterion. We could grow re-

gions fromneighbors to neighbors if their normals are approximately the same [Rabbani 2006].

However, this approach cannot control any global property of a region, and thus the planarity

of a region cannot be guaranteed. For instance, a sphere can be detected as a single region, as

long as the normals vary under the threshold over it. Curvature may also drive the segmen-

tation, but it would add an additional threshold difficult to parametrize in the local criterion.

For these reasons, we rather use a seed-based region growing. The principal curvatures

(κ1, κ2) of a point pi at scale tj are estimated from our shape operator introduced in Equa-
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Figure 2.5: Robust APSS. Comparison between standard APSS (top) and robust APSS (bottom). Re-

constructions are done at 3 increasing scales from left to right. Colors are determined by normals

orientations.

tion 1.38. They define a planarity measure for this point as (κ21 + κ22)
−1 that is used to select

seeds over the point cloud. For each scale, we rank the points based on their planarity and start

the region extraction from the most planar points. Spatially neighboring points are inserted

in the currently growing region until their normal vector deviate too much.

In practice, considering the seed point p
j
seed with the highest planarity at the j

th scale, and

with normal vector n
j
seed, we define an initial region Rj

seed. The region is then expanded by

visiting the spatially close points using the k-nearest neighbors graph. A point pi is inserted

in Rj
seed if it is not already assigned to another region, and if the angle between its normal

n
j
i and the seed normal n

j
seed is lower than an angle θ. This process is repeated on the non

assigned points until all points of the cloud belong to a region. In our experiments, we set

θ = 5◦ and k = 10 for all scales. Note that the same value of k is used to select the minimum

scale tmin (see Section 1.5.1). This value is also a good compromise as using a smaller value

might separate points that are in practice similar to the reconstructed surface. In contrast, a

higher value might lead to unwanted jumps during the region growing, where distant points

are assigned to the same region even though they are separated by another thin region. Note

that range-based neighborhoods could be considered instead but their performance are worse

for equivalent results.

Filtering Each region obtained with this process represents a spatial aggregation of points

considered as a planar structure at a specific scale tj . As we use neighborhoods of size tj ,

regions can only be representative of structures whose spatial extent is at least comparable to

tj . For this reason, we discard all regionsRj
i that have a surface area a

j
i < 2 · tj , with aji being

the area of the α-shape of Rj
i [Edelsbrunner 1983], computed using α = 2 · tj .

For a given scale tj , the planar segmentation yields a set of regions Sj = {Rj
1, . . . ,Rj

Nj
}.

These regions form by construction a partition of the input point cloud P at scale tj . By

repeating in an independent manner the region growing at each tj , we obtain a set of output

segmentations S = {S1, . . . ,Sm}, which corresponds to collection of regions sampling the

scale-space of the input point cloud. Figure 2.4(b)-left shows several segmentations at four

scales.
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2.3.2 Multi-scale region graph

Our goal is now to extract the planar components from the evolution of regions of S along

scales. Each of them corresponds to a set of similar regions persisting at several consecu-

tive levels of scale. We describe in this section the hierarchical graph structuring the regions

contained in S in order to relate them to each other. We then propose a similarity measure

between two regions to compare and collect them into distinct clusters.

Hierarchical graph We structure the segmentation set S in a multi-scale region graphG =

(V,E) in which each region Rj
i is associated to exactly one node in V , denoted vji . As each

node vji holds at a specific scale value, we treatG as a hierarchical structure in which all nodes

corresponding to the same scale tj form the jth level of the graph and levels are ordered by

increasing scale. Figure 2.4(b) shows the nodes of a multi-scale region graph sorted by level.

Once regions are organized by levels in the graph, we connect by an edge all pairs of regions

computed at successive scales.

Similaritymeasure As we designed our segmentation to give similar results at consecutive

scales in stable areas of the scale-space, we expect that regions in stable areas share a sufficient

number of points. Tomeasure the overlap between two regions vji and v
j+1
k , we use the Jaccard

index J(vji , v
j+1
k ). It is defined as the sum of points in the intersection over the sum in the

union of the regions

J(vji , v
j+1
k ) =

|Rj
i ∩Rj+1

k |
|Rj

i ∪Rj+1
k |

. (2.1)

The Jaccard index J(vji , v
j+1
k ) is symmetric, is equal to 1 when two regions share exactly the

same set of points, and drops to 0 for non-overlapping regions. It has the particular advantage

to remain only combinatorial, which makes it fast to evaluate and trivial to implement. It is

also generic as it does not depend on the type of considered primitives.

Components In our settings, two regions at the same level tj+1 cannot overlap, so a node

at level tj has at most one node at level tj+1 for which J(vji , v
j+1
k ) > 0.5. According to this

observation, we only connect in the graphG all pairs of nodes laying at consecutive scales and

having a Jaccard index strictly greater than 0.5 (Figure 2.4(c)). As illustrated in Figure 2.6, this

simple rule connects nodes corresponding to regions with similar coverage, while preventing

the connection of nodes having an ambiguous relation. One could consider using a stricter

threshold in the range (0.5, 1), but from our experiments this does not improve the method.

Each set of connected nodes in the graph finally define a component in the topological sense.

Each component C is characterized by a birth level lb and a death level ld (respectively, the

lowest and highest levels of its regions), as well as all the regions
{

Rlb , . . . ,Rld
}

it contains.

As demonstrated by Figure 2.4(c), considering these components clearly helps to interpret the

raw graph shown in Figure 2.4(b).
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Figure 2.6: Nodes similarity. Examples of relations between nodes. We connect nodes when their

Jaccard index is strictly superior to 0.5. Connected nodes are colored with the same color and belong

to the same component.

2.3.3 Persistence analysis

With this new graph representation, we propose a new analysis tool for multi-scale plane

detection in point clouds. As our graph is organized as a collection of components with birth

and death scales, we directly benefit from the toolbox developed in the domain of Topological

Data Analysis (TDA) [Chazal 2017]. More specifically, we consider the concept of persistence

(inspired by the more formalized notion of topological persistence [Edelsbrunner 2000]) and

define it for a component C as the difference between its death and birth scales: pers(C) = ld−
lb. The persistence of components can be easily described using a persistence diagram. This 2D

diagram displays each component C as a point with coordinates (lb, ld). In such diagrams, as

illustrated in Figure 2.7(a), components of equal persistence pers(C) are on the same diagonal

line. Those having the lowest scale of birth appear on the left side whereas those with the

highest scale of birth appear on the right side. The diagonal y = x in the middle of the plot

contains components of null persistence. They only have one region at one scale that is not

similar enough to any other regions above nor below in the scale-space. These mono-region

components generally correspond to noisy part of the point cloud. The bottom-right part of the

persistent diagram is empty since ld > lb by definition. The components of lower persistence

(pers(C) = 11 in the figure) are those on the first diagonal line above the middle one, and

those with the highest possible persistence are on the top-left corner.

Following these observations, we can see in Figure 2.4(d) that we have three sets of com-

ponents grouped by equal persistence. All of them have a birth scale at the lowest scale and

those having the lowest death scale are those with the lowest persistence (the closest to diag-

onal in the diagram). These components have a large enough persistence, meaning that they

are stable over scales and they define meaningful planes explaining the data for the scales they

cover. The slightly higher ones have a larger scale of death. They are also representative and

define planes explaining the data up to higher scales. Finally, a single component exhibits a

high scale of death with a very large persistence. These components explain data from small

to large scales: at a very high scale, the single component of the overall plane is prominent,

while at lower scales, the components of the parts of this plane that have no detail are more

representative.

Figure 2.7(b) shows two components of identical persistence. The blue one is representa-

tive up to the lowest scales because the point cloud is very clean in this part. The orange one

has a higher birth scale. This is due to the noise slightly degrading this part of the point cloud.

Similarly to TDA, components with larger persistence are more likely to represent promi-
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Figure 2.7: Persistence diagram. (a) Persistence diagram breakdown for the Tri scene (see Fig-

ure 2.4). (b)-(d) Comparison between two components with equal persistence on the Lans scene. The

surface covered by the orange component (c) is more noisy at small scales than the blue one (d), which

delays its level of birth and shifts it to the right in the persistence diagram (b).

nent structures in the graph. In particular, as illustrated in Figure 2.4(d), the persistence di-

agram of the components of a graph G allows to easily discriminate between the relevant

geometric structures associated to persistent components. In Figure 2.14, we show how per-

sistence diagrams are affected by noise with increasing variance.

2.4 Interactive tools

We propose new interactive tools for user-guided exploration of point clouds. They are based

on the automatic extraction of multi-scale planar structures described in the previous section.

To analyze a point cloud, the planar segmentations (Section 2.3.1) and the graph (Section 2.3.2)

are pre-computed. The tools we describe next leverage our persistence analysis proposed in

Section 2.3.3.

2.4.1 Persistence-based thresholding

In TDA, persistent structures are considered as meaningful, and non-persistent structures as

noise. We propose a simple tool where the user selects a minimum persistence value and the

system visualizes on the input point cloud the components C for which the persistence pers(C)
is greater than this minimal value. The unique threshold is an integer between 0 and M (the

number of scales). As shown in Figure 2.8, this approach is effective for point clouds whose

components are distinctly clustered in the persistence diagram.

2.4.2 Scale-based point cloud segmentation

This tool performs a segmentation of the whole input point cloud with respect to a scale value

t given by the user as illustrated in Figures 2.15 and 2.16. For every point p, this tool selects the

most persistent component among all the components including a region at the given scale t

and holding the point p. Points that are not associated to any component are kept unlabeled.

The scale threshold gives control on the level of detail of the segmentation.
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2.4.3 Interactive brush-based component selection

In order to let the user focus on a subset of the point cloud, we propose a brush-based interface

to select specific planar components in real-time. With this tool, the user defines a set of query

points PQ by directly painting on the point cloud. Interactively, our system returns a set of

components that best match the selected points in terms of overlapping and persistence (see

Figure 2.9). More formally, we list all the components that hold any of the selected points, and

rank them using the following score

s(C) = αpoints(C) · αpers(C), (2.2)

with αpoints(C) = |PQ ∩ PC |/|PQ| and αpers(C) = pers(C)/M . The score function s(C) ∈
(0, 1) accounts both for the fraction of selected points that are held by the component C and

for the persistence of C. As the persistence score αpers(C) is normalized by the total number

of scale M , it acts as a penalty factor modulating the overlap ratio between the query and

the component. Once a component is selected, the user can either colorize the point cloud

accordingly or keep its α-shape for further use.

2.4.4 Interactive similarity search

Another interesting aspect of the components C is that they offer a high level descriptor that

can be used for similarity queries. We propose an interactive search where components are

matched with respect to a query and presented to the user as shown in Figure 2.17. The tool

performs as follows. The user selects a component using the brush-based selection tool. Then,

a second brush is used to select a set of points defining the search area. As for the selection tool,

all the components that hold a point belonging to the search area are considered as similarity

candidate. In order to verify if a candidate component Cc matches the query component Cq ,
we propose to combine multiple criteria depending on the usage case (any criterion can be

adjusted interactively):

1. the birth and death levels of Cc coincidewith those of Cq , plus orminus a given threshold,

2. the planes approximating the components Cc and Cq are parallel at an angular threshold,
3. the ratio between the surface area of the α-shapes reconstructing the components Cc

and Cq is lower than a given threshold, expressed as a percentage of the area of the

query α-shape.

2.5 Experiments

This section presents the experimental results we obtain with our approach and com-

pares it to prior work. We have developed the prototype of our pipeline in C++, using

Eigen [Guennebaud 2010] for linear algebra operations and CGAL [The CGAL Project 2020]

for α-shapes computation.

Datasets Our test scenes, presented in Table 2.1, consist of 10 point cloud datasets of

varying complexity. In these models, 4 were obtained by Multi-View Stereo (MVS), 3
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Model #Points Data source Surf. Recon. Segm. Filtering Graph Comp. Total

Tri 0.5M Synthetic 77.78 1.59 27.19 3.42 0.00 109.98

Stairs 1M Synthetic 194.62 4.22 22.51 5.41 0.00 226.76

Cubes 10M Synthetic 1884.62 47.87 922.09 67.85 0.00 2922.43

Lans 1.2M LiDAR 310.85 6.31 15.87 4.37 0.01 337.41

Pisa 2.5M MVS 719.91 6.84 33.96 6.25 0.02 766.98

Church 4.3M MVS 1490.85 15.29 92.02 14.65 0.03 1612.84

Loudun 35.5M MVS 12299.40 147.15 606.82 126.43 0.84 13180.64

Room 1.1M MVS 372.93 2.31 20.90 5.77 0.00 401.91

Euler 3.9M LiDAR 1052.24 10.14 62.48 33.74 0.09 1158.69

Munich 6.5M LiDAR 1664.66 33.00 260.93 50.63 0.07 2009.29

Empire 1M Synthetic 383.72 2.21 15.87 4.24 0.00 406.04

Table 2.1: Timings. Description of our test datasets and of the computing time in second required in

preprocess for each subroutine: APSS surface reconstruction, planar segmentations, regions filtering,

graph construction, and components extraction.

by LiDAR scans of indoor and outdoor scenes, and 4 are synthetic point clouds gen-

erated by sampling hand-modeled meshes. These synthetic models represent relatively

simple arrangements of geometric shapes and can be easily corrupted with controlled

levels of noise. The real-world point clouds represent large-scale building structures

(Loudun, Lans [Falcidieno 2004], Pisa [Mellado 2015b]), groups of buildings and their sur-

roundings (Church [Sketchfab 2020], Munich [Hackel 2016]), and indoor environments

(Euler [Monszpart 2015], Room [Armeni 2016]). We applied our different tools to all of our

datasets, and we present a subset of our experiments in the following sections.

2.5.1 Results

We give a visual overview of the results obtained with our various interactive tools described

in Section 2.4. An example of use is also shown within the context of polygonal surface re-

construction in order to validate the practicality of our method. Appendix B provides more

results.

Extraction of prominent structures The persistence-based thresholding (Section 2.4.1)

and the scale-based segmentation (Section 2.4.2) tools provide an immediate insight into the

most relevant structures of a point cloud at different scales.

We show in Figure 2.8 the extracted components for all our test data, filtered by increasing

minimum persistence. The Pisa model is a particularly good example to showcase the capa-

bilities of our method. At the lowest persistence level, all the main roof sections and all the

alcoves of the facade are captured. When increasing the persistence threshold, only the larger

alcoves persist, until reaching the highest level, at which the largest roof sections are the only

highlighted structures. A similar, yet even clearer trend is shown by Cubes, a synthetic model

consisting of four nested levels of planar structures. At the lowest persistence value, all pla-

nar faces of the boxes appear. As the threshold is increased, the smaller faces progressively

disappear, as their features are more and more smoothed out due to the influence of the larger

surrounding planes at higher scales of observation.
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Figure 2.8: Persistence thresholding. Persistent components for five scenes (from top to bottom:

Cubes, Stairs, Lans, Church, Pisa) with three increasing persistence thresholds (a, b and c), illustrated

on the persistence diagrams (Section 2.4.1).

In Figure 2.15 and 2.16, the structures of the test models are highlighted through the seg-

mentation induced by the persistent components that include a given scale. Note in particular

how the individual tiles on the roof of Lans are selected as individual segments at low scale,

while for larger scales of interest they are merged into larger individual roof segments and

eventually into a single one. Likewise, the alcoves in the lower part of Pisa, which appear as

single entities at low and medium scales, are fused into a single structure at the highest scale

value considered.

Interactive reconstruction and similarity search Further insights into specific parts of

the model can be obtained using the brush-based reconstruction (Section 2.4.3) and similar-

ity search (Section 2.4.4) tools. Using the first tool on the Lans model (Figure 2.17(a)), one

can select individual structures on a facade with very rough sketches and replace them with

low-complexity polygonal proxies, built based on their most representative associated com-
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Figure 2.9: Interactive reconstruction. Brush-based reconstruction tool on models Lans (left) and

Loudun (right). With just a few rough sketches, the user selects some points (orange strokes) and the

tool automatically reconstructs their low-complexity polygonal proxies.

initial extended initial extended

Figure 2.10: Coverage increase. Effect of extending the initial regions at medium scale (left) and

high scale (right).

ponents. Thanks to the specific score function used in this process (see Equation 2.2), the

proxies approximate well the geometry of the selected structures. Figure 2.9 presents a similar

reconstruction for Loudun: remarkably, the reconstructed polygons correctly represent the

underlying structures despite the high amount of clutter and outliers.

Alternatively, instead of reconstructing a surface, a selection can be used as a template in

the search for matching structures. In Figure 2.17, we show a typical result of this workflow.

On the model Lans, the similarity search tool allows to sketch a first selection on a single

roof tile (which becomes the query of our search) and then a second one roughly covering

the whole roof segment (which represents the domain of the search). By matching the most

persistent component underlying the query with the best matching component of the domain,

the tool extracts the components representing all the other tiles in the roof (Figure 2.17(a)),

without requiring that the user is engaged in a tedious and error-prone selection process.

Proceeding in a similar way, one can easily extract the individual steps from the staircase of

Stairs (Figure 2.17(b)) and the individual arches in an arcade of Pisa (Figure 2.17(c)).

Point cloud coverage With our technique, large portions of points may not be labeled.

This is due to the segmentation of the APSS that tends to shrink at higher scales as the edges

get rounded. The regions may be extended to the points that are close to the plane that best

fits a region and that has a compatible normal. Figure 2.10 illustrates the coverage obtained

with a distance threshold set to 20% of the bounding box diagonal length and an orientation

threshold set to 45 degrees.
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Figure 2.11: Polygonal reconstruction. Polygonal reconstruction of Lans using PolyFit with our

planes detected at 3 different scales (a)-(c) and with those detected by Ransac (d). Planar segmentations

are shown above the reconstructed meshes.

Application to polygonal reconstruction We considered the sets of planes obtained with

our method at three different scales and used them as input for a polygonal reconstruction

algorithm (PolyFit) [Nan 2017]. This algorithm reconstructs a watertight polygonal surface

from a set of input planes, optimizing three energy terms related to data fidelity, reconstruc-

tion complexity and coverage, under hard constraints that ensure that the resulting mesh is

manifold and closed. The resulting meshes for the Lans and Empire models are shown in Fig-

ures 2.11 and 2.12, respectively. We used the Polyfit implementation provided by CGAL with

default parameters, adding an extra plane at the bottom side of the bounding box to obtain a

closed surface. We compare our results against those obtained by extracting the input planes

using the CGAL implementation of Ransac [Schnabel 2007] with default parameters. Com-

pared to this baseline, using our approach for the input planes selection allows to naturally

generate a sequence of meshes at different levels of detail. This is possible thanks to our unique

definition of scale, which is not accounted for by Ransac.

2.5.2 Evaluation

Comparisons The fundamental difference between our approach and the multi-scale plane

fitting proposed by Fang et al. (2018), Ransac [Schnabel 2007] and RAPter [Monszpart 2015]

is that we do not fit the best planes considering tolerance, coverage and eventually scale as

parameters. We rather find planes faithfully representing the data at different scales. With

our approach, one point belongs to zero, one or several planes identified at different range of

scales. At a fixed range of scales, the coverage of our planes significantly varies depending

on the data and the considered scales. We ran a comparison on the Empire scene, as done by

Fang et al. (2018)-Table 3 with Ransac and RAPter. To avoid a corrupted APSS reconstruction

at higher scales, we filtered outliers, computing for each point the covariance matrix with a

neighborhood ball of radius = 1% of the aabb diagonal and keeping only points with planar

neighborhood using standard heuristics (points kept: 79.3%). We have extracted planes (our
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(a) (b) (c) (d)

Figure 2.12: Polygonal reconstruction. Polygonal reconstruction of Empire using PolyFit with our

planes detected at 3 different scales (a)-(c) and with those detected by Ransac (d). Our planar segmen-

tations (a)-(c) correspond respectively to scales 2, 3 and 4 of Figure 2.13 and Table 2.2.

stable regions) at four different scales. Figure 2.13, as well as the coverage, root mean square

error and number of planes presented in Table 2.2 at each scale highlight the difference of

our approach: it aims at finding planes that explain the surface at different scales, rather than

fitting planes that approximate the points. As such, our tool produces planes with lower cov-

erage and very low geometric error (several orders of magnitude lower than previous work),

even at high scales.

Method # scale % aabb coverage RMS error planes

[Schnabel 2007] - - 0.808 0.034 128

[Monszpart 2015] - - 0.817 0.042 163

[Fang 2018]

1 - 0.816 0.017 239

2 - 0.816 0.290 40

3 - 0.816 1.030 9

Ours

1 0.452 0.767 0.0001 128

2 0.890 0.753 0.0002 92

3 1.018 0.688 0.0006 49

4 5.880 0.434 0.0060 4

Table 2.2: �alitative comparison. Comparison of our method with Ransac [Schnabel 2007],

RAPter [Monszpart 2015] and Fang et al. (2018) on the Empire scene. For our method, stable regions

are extracted at four scales set to different percentages of the axis-aligned bounding box (aabb) (see

Figure 2.13). The two last columns give the corresponding Root Mean Square (RMS) error and the

number of extracted planes. The coverage, RMS error and number of planes values for Ransac, RAPter

and Fang et al. (2018)-Table 3.

Processing time In this chapter, all our experiments are done on an Intel(R) Xeon(R) CPU

E5-2640 v4 clocked at 2.40GHz with 40 cores and 128G of RAM. The recorded timings for all
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Figure 2.13: Segmentation at four scales. Planes (stable regions) extracted at the four scales pre-

sented in Table 2.2. From left to right, scale 1, 2, 3 and 4.

test models are presented in Table 2.1, which provides a detailed breakdown of the individual

steps. The total processing time ranges from about 110 seconds for our simplest synthetic

model Tri (0.5M points) to about 3.6 hours for Loudun (35.5M points). It is worth noticing

that all these steps need to be completed only once to generate the components, which are

stored and simply loaded at the beginning of each interactive exploration stage. The step that

requires the most computational power is the multi-scale robust APSS surface reconstruction,

although it could be speed up by at least a factor 2 thanks to the GPU implementation used

in Section 1.5. Note that the method by Fang et al. (2018) and RAPter require respectively

12 minutes and a couple of hours to process 1M points. In contrast, our approach requires

around 6 minutes for 1M points, and processes a 35M point cloud in 3.6 hours. In addition,

more than 90% of the processing time is spent on the APSS pre-computations, which could be

locally recomputed in case of local editing.

Impact of noise We evaluated how noise affects our results by corrupting the synthetic

model Cubes with increasing noise and analyzing the corresponding changes in the persis-

tence diagram. In particular, we consider 4 levels of increasing Gaussian additive noise, cor-

responding to a standard deviation σnoise equal to 0.001%, 0.005%, 0.01% and 0.025% of the

diagonal of the axis-aligned bounding box. As shown in Figure 2.14, at low levels of noise the

main planar structures emerge already early in the scale-space, since even at the lowest scales

the APSS reconstruction is not affected. For this reason, the corresponding components appear

on the left of the diagram. As noise is increased, the point-wise surface reconstruction at low

scales becomes unreliable. Hence, there is no region that can be detected as associated to those

components at those scales, resulting in higher birth levels. Overall, as noise increases, the di-

agrams become more cluttered with new points (corresponding to noisy structures), which

also appear more spread out and generally shifted towards the right. Nevertheless, the main
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Figure 2.14: Impact of noise. Impact of positional Gaussian noise on the component extraction for

the Cubes scene. The standard variation of the noise is a factor of the bounding box diagonal and is set

to 1, 5, 10 and 25 times 10−5 from left to right.

planes can still be recognized as fairly localized clusters in each diagram.

2.6 Conclusion

This chapter introduces a novel method for the extraction of the meaningful structures of a 3D

point cloud at multiple scales. We improve the interactive analysis and exploration of complex

acquired data. Our approach is based on computing planar regions with similar differential

properties at individual scales. We analyze their stability across the scale-space by studying

the topological persistence of a hierarchical graph that stores the regions at different scales.

Furthermore, we provide intuitive tools for visualizing the most stable structures discovered,

as well as to segment, reconstruct and perform part-based queries on the input model based

on these structures. The resulting pipeline is effective and can be applied efficiently to inputs

consisting of several millions of unstructured points.

Future work A direct extension of our method would be to handle other geometric primi-

tives than planes. One advantage of our algorithm is its predominant combinatorial and topo-

logical aspects. The graph, the components and the persistence analysis can be directly gener-

alized to any other shapes. Indeed, the geometry of the sampled surface is taken into account

only during segmentation (Section 2.3.1) where a curvature-based planarity measure defines

how seeds are selected, and the normals orientation controls the region growing. This step
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(a)

(b)

(c)

(d)

Figure 2.15: Scale thresholding. Segmentation ofmodelsChurch (a), Lans (b), Loudun (c) and Pisa (d)

based on themost persistent components that include scales 5, 15, 20 and 25 out of the 50. (Section 2.4.2).
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(a)

(b)

(c)

Figure 2.16: Scale thresholding. Segmentation of models Room (a), Euler (b) and Munich (c) based

on the most persistent components that include a given scale (with increasing given scale from left to

right) (Section 2.4.2).
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(a)

(b)

(c)

Figure 2.17: Similarity search. Interactive similarity search tool on models Lans (a), Stairs (b) and

Pisa (c): with two simple sketches, the user selects a query part (left) and a larger domain part (middle)

and the tool automatically extracts all the components of the domain that match the query. Corre-

sponding diagrams highlight matching components in color.
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could include other criteria that involve principal curvatures and their directions to segment

spheres, cones and cylinders for instance. The challenge would be to manage different types

of segmentation together without increasing too much the overall combinatorics.

Finally, while we illustrate the behavior of our pipeline under both synthetic and realistic

real-world noise, we do not estimate specifically the maximum levels of noise and outliers that

our approach can tolerate. A theoretical analysis of the robustness to such artifacts makes an

interesting future work.
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Figure 3.1: Cylindrical shapes. Most of the points on these objects are locally characterized by a

high curvature in one direction and an almost zero curvature in the other direction along the cylindrical

shape.

3.1 Introduction

Cylindrical shapes are widely present in man-made objects such as pipes, cables and pil-

lars as shown in Figure 3.1. They are mainly characterized by one local principal direction

along which the shape does not change much, hence the name anisotropic feature. Similar

anisotropic features can be seen in the nature on crests and valleys or along the fractures of

a geological site (Figure 3.2). Many archaeological artifacts and CAD objects also show re-

markable curves corresponding to contours and sharp edges. One major difference between

a pipe and a crest is that the former is smooth while the other corresponds to a discontinuity.

Cylindrical shapes are spanned by several regular lines, whereas feature curves are made of

salient ones. In any case, both of them share the anisotropy property. They can be highlighted

along their entire length by drawing lines following their principal directions. The goal of this

chapter is to develop this idea in order to detect these anisotropic shapes in 3D unstructured

point clouds acquired from the aforementioned objects.

The question of scale remains an important issue. The cable of Figure 2 can be seen as

either one straight vertical cylinder or several curved twisted cylinders. Both observations are

true depending on the scale of analysis. As indicated in the state-of-the-art of Section 3.2, few

existing methods are capable of jointly detecting these two configurations.

The scale can also help to robustly detect features. A feature detected at more scale than

another is probably more pertinent. This idea can be used to extract feature curves on meshes

and on point clouds for 3D shape abstraction. High frequency noise and insignificant details

are thus avoided.

Finally, feature curves are not necessarily an end in itself. Lines following locally the prin-

cipal directions of cylinders and feature curves at different scales could greatly improve many

geometry processing tasks that are based on characteristic lines such as point cloud mesh-

ing [Kalogerakis 2009], quadrangulation [Alliez 2003], symmetry detection [Bokeloh 2009],

segmentation [Zhuang 2017], simplification [Gehre 2016] and artistic rendering [Bénard 2019,

Section 1.5]. For these reasons, extracting scale-aware characteristic lines on unstructured data

is an important challenge we address in this chapter.
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Figure 3.2: Feature curves. Many shapes are characterized by apparent curves. Similarly to Fig-

ure 3.1, such feature locally shows an an almost zero curvature along the line and a strong curvature

in the other direction.

input shape

minimal curvature lines

regular lines

salient lines votes feature curves

cylindrical regionsanisotropy

Figure 3.3: Line-based feature detection concept. Regions of the input shape are classified as

either cylinders or feature curves. For both of these geometric features, we generate minimal principal

curvature lines and filter them to obtain regular or salient lines. Cylinders correspond to regions where

the regular lines are mostly aligned, which is measured by a local anisotropy measure. The feature

curves are classified based on the votes accumulated locally on the shape from the salient lines.

Key ideas We propose to detect anisotropic geometric features using curvature lines ex-

tracted on the sampled surface. As illustrated by Figure 3.3, the idea is to generate many min-

imal curvature lines scattered over the input shape. Two different filters discard unwanted

lines and only keep regular or salient ones. The first type corresponds to clean and smooth

lines, whereas salient lines only span highly curved areas of the surface. The anisotropy mea-

suring the alignment of the regular lines over the shape highlights the cylindrical regions. To

detect feature curves, we propose a voting system from the salient lines to the shape, so that

regions that are close to many salient lines are classified as feature curves. Note that the gen-

eral method illustrated in Figure 3.3 can be performed at multiple scales to add robustness the

the voting approach, and to detect cylinders of variable size. In the end, we can obtain two

different segmentations of the input 3D point cloud or mesh, where each point is classified as

part of either a cylindrical shape or a feature curve.

Contributions of this chapter

• In Section 3.3, we propose a newmethod to extract curvature lines from 3Dunstructured

point clouds at multiple scales. We mainly rely on the scale-space framework intro-
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duced in Chapter 1 by using our shape operator (Section 1.4.2) and our multi-resolution

algorithm (Section 1.5.2). The resulting 3D polylines are smooth, scale-aware, and well

scattered over the input shape.

• We propose in Section 3.4 a new approach to extract feature curves based on our multi-

scale curvature lines. They are first filtered to keep only salient ones. A voting approach

at multiple scale and a region growing finally extract regions corresponding to signifi-

cant feature curves of the input 3D shape. We present a detailed comparison with other

existing methods on a specific set of labeled meshes.

• We introduce in Section 3.5 a cylindrical regions segmentation algorithm using minimal

curvature lines. After a dedicated filtering, the most regular lines are kept, and a local

anisotropy measure quantifies how much the lines are aligned with each other. Thanks

to a region growing algorithm, various smooth cylindrical regions can be extracted de-

pending on the scale of analysis. They could be used as input to our persistence analysis

framework of Chapter 2.

3.2 State-of-the-art

We first summarize the existing methods that extract various type of characteristic lines from

3D shapes. We then review the problem of cylindrical shapes detection.

3.2.1 Feature curves detection

The problem of abstracting a 3D shape by line-shaped features can be tackled by different ap-

proaches. Sharp edges [Koch 2019], crests and valleys (or ridges and ravines) [Ohtake 2004],

principal curvature lines [Kalogerakis 2009] and contours [DeCarlo 2003] are definitions re-

ferring to the same general idea of a salient anisotropic feature that have one distinguishable

principal direction along the surface.

Many methods exist to detect crest and valley lines on triangular meshes [Yoshizawa 2005,

Hildebrandt 2005, Cazals 2005b, Weinkauf 2009] among others. Their goal is to find local ex-

trema of principal curvatures along their directions. The usual challenge is to compute third

order derivatives (curvature variation) that are often sensitive to noise. But meshes have the

crucial advantage that differential quantities can be interpolated on edges and faces, which

facilitate zero-crossing localization. This may explain why there exist only a few methods

working with unstructured point clouds [Stylianou 2005, Wang 2018a]. They generate rel-

atively sparse and noisy lines even though the input point cloud is fairly clean. Neverthe-

less, principal curvature lines can be robustly extracted from point clouds under the form of

3D polylines [Kalogerakis 2009], which is the kind of approach we follow in Section 3.3.

Sharp edges in point clouds are widely studied. Local covariance analysis of the points

distribution (see Equation 1.1) is a well established approach [Gumhold 2001, Pauly 2003,

Mérigot 2010, Bazazian 2015]. Different other strategies exist such as normals cluster-

ing [Weber 2010], multi-view image processing [Lin 2015], RANSAC [Ni 2016] and the Hough

transform [Torrente 2018] among others. Recently, Hackel et al. (2016) and Yu et al. (2018) pro-

posed to use machine learning in order to avoid any user parameters.
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Line recognition can also be cast as a dimensionality detection problem [Brodu 2012,

Digne 2018] where the point cloud is segmented in regions of 1, 2 and 3 dimensions corre-

sponding to curves, surfaces and volumes respectively.

Except for a few multi-scale methods [Pauly 2003], the notion of scale is not really taken

into consideration when detecting feature lines on 3D shapes. In this work, we take inspira-

tion from the method of [Kalogerakis 2009] to extract curvature lines on 3D point clouds, but

we use the Algebraic Point Set Surfaces (APSS) [Guennebaud 2007] as underlying model of

surface, which enables multi-scale feature extraction.

3.2.2 Cylinders detection

Detecting cylinders from point clouds is a long-standing problem [Kaiser 2019]. Among many

other methods, RANSAC [Schnabel 2007] and the Hough transform [Rabbani 2005] are two

widely famous frameworks that produce satisfactory results especially when the data contain

outliers. But they aremainly limited to simple cylindrical primitives with very few parameters.

Cylinders of varying radii and curved cylinders cannot be correctly detected.

Recognition of tubular structures have been an active area of research this last decade.

These structures containing straight and curved cylinders as well as connecting parts

such as junctions and elbows usually appear in industrial sites scans for as-build mod-

eling. Various approaches are proposed based on region growing, Hough transform and

circle fitting [Patil 2017], curvature-based thresholding and RANSAC [Kawashima 2014],

normal-based clustering and circle fitting [Qiu 2014], and region growing and B-spline fit-

ting [Dimitrov 2016]. These processing pipelines are composed of several successive algo-

rithms involving in the end many user parameters which reduce their flexibility. Most of them

also contain ad hoc rules to recognize pipes junctions in very specific point clouds. Identifying

a known CAD model in a 3D point cloud is also addressed [Bey 2011, Czerniawski 2016], but

this knowledge is not always available a priori.

Finding first a skeleton can also help to detect cylindrical shapes [Tagliasacchi 2016].

Zhou et al. (2015) decompose a mesh into generalized cylinders solving en exact cover prob-

lem from multiple candidate cylindrical regions. They introduce a cylindricity measure to

quantify how much a piece of surface and its skeleton deviate from a right cylinder in terms

of quantity of information needed to describe them. Skeleton-based pipes detection from un-

structured 3D point clouds can be achieved using Voronoi diagrams [Lee 2013] or accumulated

votes in a voxel grid [Kerautret 2015] for instance. Bauer et al. (2009) use local cylinders fit-

ting [Lukács 1998] to reconstruct the spin curve of one single bent tube.

All of the above-mentioned methods analyze the point cloud at only one single scale. To

our knowledge, only the Plumbermethod [Mortara 2004] uses different radii of analysis. How-

ever, the scale is used to intersect the mesh with a sphere in order to determine the local

topology of the surface, which cannot be easily extended to unstructured data.

3.3 Curvature lines extraction

The key element of the methods presented in this chapter is the extraction of lines of minimal

curvature on the surface defined by the APSS. By definition, at each point of such line, the line
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tangent is aligned with the direction of minimal principal curvature of the surface. Curvature

lines actually correspond to streamlines where the velocity vector field is the field of principal

curvature directions. If we denote by s the line parameter (intuitively the time), by |κ1| > |κ2|
the two principal curvatures, and by vmin the direction of minimal curvature κ2, then the

coordinates q(s) ∈ IR3 of the line satisfy the following differential equation

∂sq(s) = vmin(q(s)), (3.1)

with the initial condition q(0) = q0. Since the APSS is defined by a projection operator φ (see

Equations 1.2), the additional condition φ(q(s)) = q(s)must also be respected so that the line

stays on the surface.

Similarly to a previous work [Kalogerakis 2009], each line is represented as a piecewise

linear curves (polylines) using discrete series {qi}i∈IN of vertices qi ∈ IR3. The principal

curvatures directions are computed using our shape operator proposed in Equation 1.38. We

generate a line starting from a seed point q0 and following iteratively the directions vmin on

the APSS

qn+1 = φ (qn + δ vmin(qn)) , (3.2)

where δ is a step size parameter (vmin is normalized). It corresponds to a modified forward

Euler scheme integrating Equation 3.1 with a projection step led by φ (Equation 1.12) that is

performed at each iteration to keep the line vertices on the surface. Kalogerakis et al. (2009) use

a statistical curvatures estimator [Kalogerakis 2007] and a projection operator [Lipman 2007]

that are conceptually different. Instead, we estimate the curvatures of the same surface on

which we project the vertices, which leads to a unified framework for curvature lines extrac-

tion on unorganized point clouds.

As in the previous chapters, the size t of the neighborhood used to calculate the APSS (see

Equation 1.6) defines the scale parameter. Different scales yields various kind of lines as shown

by Figure 3.4. Figure 3.5 shows that we successfully highlight the two level of scale of the

twisted cable we discussed in the introduction (see Figure 2). A low scale produces lines fol-

lowing details of the surface whereas smoother lines are obtained using a high scale. Note that

at high scale, we use our multi-resolution algorithm of Section 1.5 to improve the execution

time.

The seed points Pseed that start the lines drawing are a subset of the input points. We use

a Poisson disk sub-sampling (see Section 1.5.2) to select the seeds with a disk radius equal to

r = β · t. Contrary to a uniform random sampling, the Poisson disk sampling better scatters

the seeds over the shape and is adapted to the scale. The step size δ of the lines can also be set

accordingly to t using δ = γ · t. Note that these parameter settings follow the same idea as

for the sampling factor used in Equation 1.41. We empirically choose β = γ = 0.5 in all our

experiments.

3.4 Feature curves detection

Feature curves are widely present on natural and man-made objects (see Figure 3.2). These

anisotropic features correspond to a normal discontinuity that occurs along a demarcation
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Figure 3.4: Minimal curvature lines. Low to high scale from bottom to top. Colors are based on

|κ1| − |κ2| from 0 in blue to 3 in red.
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Figure 3.5: Minimal curvature lines. Left: input shape (already introduced in Figure 2). Middle: a

low scale produces lines following the small twisted cables. Right: at high scale, the minimal curvature

lines follow a vertical straight cylinder. Colors are based on |κ1| − |κ2| from 0 in blue to 3 in red.

line. At each point on such curve, the surface has one principal direction along which the

surface varies only a little and a theoretically infinite curvature in the other direction. In

practice, we consider the feature curve as a highly curved region that spreads over a relatively

significant distance in a given direction. In this way, we take into account not only extremely

sharp edges but also smoother feature curves. This more fuzzy definition allows us to process

damaged objects that have lost their initial sharpness. It also takes into account the fact that

acquisition devices have a limited resolution, and it is quite unlikely that the acquired data

contain points exactly on a sharp feature.

Following these ideas, this section presents a new method that was developed in the con-

text of a contest on feature curves extraction from triangle meshes [Thompson 2019]. The

goal is to automatically classify the feature curve vertices that have been manually labeled on

the 15 meshes shown in Figure 3.7. One challenge is to adapt the recognition to the different

anisotropic feature sizes, from the rough and smooth demarcation lines of model 3 to the more

detailed curves of model 10. Our minimal curvature lines obtained on the APSS at multiple

scales provide a relevant approach to this issue. We first explain our method in Section 3.4.1

and then present the numerical results in Section 3.4.2. For this contest, we consider a trian-

gulated mesh as input and output data, but our method also handles unstructured point clouds

data.

3.4.1 Multi-scale curvature lines voting

Our method is illustrated in Figure 3.6 (see also Figure 3.3). It extracts feature curves from

meshes by generating a set of 3D polylines in the direction of minimal curvature at multiple

scales (Section 3.3). We filter the lines to keep the salient ones, i.e. those that span highly

curved regions of the estimated surface. Mesh vertices accumulate votes from neighboring

lines, and a region growing process delineates individual set of vertices based on these votes.

The resulting feature curves are the set of vertices around which most of the lines of minimal

curvature are located. Using multiple scales ensures that all the various prominent feature

curves are extracted. The following paragraphs explain in detail the algorithm.

Curvature lines We first sample the initial mesh M as a dense point cloud P to avoid

potential artifacts caused by an irregular topology. The sampling is uniform and weighted by
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Figure 3.6: Feature curves detection pipeline. (a) Input mesh. (b) Minimal curvature lines ex-

tracted as explained in Section 3.3 at 5 scales, filtered, and classified as convex and concave lines in

orange and blue. (c) Each line vertices gives a signed vote to its neighboring mesh vertices. (d) Individ-

ual feature curves are finally obtained using region growing based on the accumulated votes.

each face area. Sampled points of P are equipped with a unit normal vector, which is required

for the APSS. The normal of a sampled point is the normalized interpolation of the vertices

normal in the associated face. The point cloud P is composed of P = 100 ·V points, where V

is the vertex count of M. If the input is not a triangle mesh, then P is simply the input point

cloud.

We select 5 scales in (tmin, tmax) with tmin = e and tmax = 3 e, where e is the median

edge lengths in the initial mesh M, or the average distances to the k-nearest neighbors of

each points in P if there is no edges. With this setting, we are able to handle the variety of

feature size of all input meshes displayed in Figure 3.7. The minimal curvature lines are drawn

as explained in Section 3.3. They are classified as convex and concave lines depending on the

sign of κ1 as shown in orange and blue in Figure 3.6(b).

We filter the lines vertices to only keep those where ||κ1| −K| /K > 0.5. The curvature

bound K is the 90th centile of maximal curvature in absolute value calculated on P at scale

ti. The threshold is fixed to 0.5 in all our experiments. In other words, these salient lines

propagate only through areas that are curved enough relatively to the most curved location

in the point cloud.

Votes accumulation Each vertex of each salient line accumulates a vote in its neighboring

vertices of the initial data. The size of the spherical neighborhood is set to e. The absolute

value of a vote ranges from 0 to 1 according to the distance between the salient line vertex

that emits the vote and the neighborhing vertex in the input mesh or point cloud that receives

and accumulates it. Its sign is negative for concave lines (κ1 < 0), and positive for convex

lines (κ1 > 0). This opposition in sign balances the sum of votes at vertices that are close to

both convex and concave lines. In the end, each mesh vertex receives a signed sum of votes as

shown by Figure 3.6(c). A feature curve on the mesh that is very significant persists at all the

scales and thus receives a lot of votes.
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Feature curves segmentation The set of vertices labeled as curve are extracted with a

region growing based on the previous sum of votes at each vertex and performed on the mesh

or the k-nearest neighbors graph if a point cloud is considered as input. A region grows from

a vertex to its neighbor if their sum of votes have the same sign, and if they are either greater

than +v, or lower than −v. The voting threshold is set to v = 0.05 · Vmax where Vmax is the

maximal absolute value of votes on the initial vertices. With this setting, a vertex belongs to

a region if its sum of votes is high enough compared to the vertex that received the largest

number of votes in absolute value. The result is a set of individual regions corresponding to

the feature curves of the mesh (Figure 3.6(d)).

3.4.2 Results

This section reports the results obtained during the contest of feature line extraction on trian-

gle meshes [Thompson 2019].

Input data The dataset displayed in Figure 3.7 consists in 15meshes characterized by at least

one feature curve. Both scanned and synthetic data are considered. Some models come from

Aim@Shape [Falcidieno 2004] and the web [Turbosquid 2020]. The original models of the or-

naments fromwhich are derived models 4 to 10 are courtesy of the prof. Rodriguez Echavarria.

The number of vertices ranges from 5K to 215K.

Groundtruth The definition of a groundtruth for this task is a challenging job sincemultiple

definitions of feature curve on surfaces exists (see Section 3.2). They can be formally defined in

terms of curvature derivatives [Ohtake 2004]. Normals angles could also help to define sharp

edges [Koch 2019]. Moreover, artistic aspect could also be considered [Cole 2008]. In this

contest, the groundtruth shown as colored regions in Figure 3.7 is manually defined by several

computer scientists from the IMATI-CNR laboratory (Italy) who where asked to highlight the

vertices of eachmodel if, in their opinion, they are part of a feature curve. For a givenmodelM ,

the groundtruth is a set of curves f∗
M = {fM ∗

i }i=1...n∗

M
where each curve fM

∗
i is represented

as a set of mesh vertices fM
∗
i = {vM

∗
i,j}j...nMi

(∗ denotes the groundtruth).

Evaluation metric Two types of evaluation are conducted. The overall comparison does

not consider individual lines but their union of vertices over each mesh. In this case, the

groundtruth of a modelM can be seen as one single curve which is the union of all the feature

curves vertices ∪ifM
∗
i . The detailed comparison compares the results curve-by-curve where

each curve produced by a method is matched to its closest curves in the groundtruth. The

matching is done manually by the same people who determine the groundtruth. In case a

different number of curves are detected than in the groundtruth, only the matched ones are

evaluated.

Two evaluation metrics are used to compare a groundtruth curve f∗
Mi

to a resulting curve

fMi. The Hausdorff distance [Deza 2009, Section 1.5] is a positive distance expressed in global

coordinates

dH(f∗
Mi, fMi) = max

{

max
v∗∈f∗

Mi

min
v∈fMi

d(v∗,v), max
v∈fMi

min
v∗∈f∗

Mi

d(v∗,v)
}

, (3.3)
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where dH = 0 occurs for a perfect alignment between the two curves. The Dice coeffi-

cient [Deza 2009, Section 17.1] is a value in (0, 1) measuring the overlap of the two sets

D(f∗
Mi, fMi) = 2

|f∗
Mi

∩ fMi|
|f∗

Mi
|+ |fMi|

, (3.4)

where D = 1 means that the two sets are equal.

Methods The first method to be evaluated is proposed by Hoang-Xuan et al. and is called

point aggregation based on angle and curvature saliency (PCs). They calculate discrete curva-

tures at each vertex, and vertices with curvature higher than a fixed threshold finally define a

unique feature curve. Two versions are proposed according to how they estimate the curva-

tures at vertices, using either edges angles (PCs:A) or edges curvatures (PCs:C). This method

is not evaluated in the detailed comparison since only one feature curve is extracted for each

model.

The second method of Arvanitis and Moustakas adopts a spectral based saliency estima-

tion (SBSE). They define a vertex saliency measure as 1/
√

λ2
1 + λ2

2 + λ2
3, where λi are the

eigenvalues of the covariance matrix of the 15 neighboring normal vectors. Five k-means al-

gorithms are executed on the point-wise normalized saliency with k ranging from 1 to 5. The

value of k that maximize the Calinsky-Harabasz index (inter-cluster over intra-cluster vari-

ance) produces the resulting k feature curves while ignoring the first two clusters associated

to the lowest curvatures.

The last technique proposed by Romanengo et al. is called feature curve characterization via

mean curvature and algebraic curve recognition via Hough transforms (MHT)[Torrente 2018].

The mesh vertices that have a low minimal curvature and a high maximal curvature are first

selected using two thresholds set to 15% and 85%with respect to curvatures distributions. The

feature curves are obtained with the DBSCAN algorithm using the k-nearest neighbors graph

as underlying topology with k = 15 for MHT1 and k = 4 for MHT2. Note that the Hough

transform is not used for the feature curve extraction but is rather used to compare curves

with each other, which is another task.

Numerical results The results of our method are illustrated in Figure 3.8. We summarize

the comparison results in Table 3.1 where the average of the two metrics over all models and

all curves are reported. The complete comparison results can be found in Appendix C. In the

detailed comparison, we excluded all the Hausdorff distances greater than 2 corresponding to

3 outliers of SBSE and 1 outlier of our method for the model 10.

Our method gives the best results on average for the Hausdorff distances, while MHT is

better with respect to the Dice coefficient. As we can see in Figure 3.8, almost all the feature

curves of the groundtruth are detected by one or more curves with our method. However,

our curves are larger than the groundtruth which decreases the Dice coefficient more than it

increases the Hausdorff distances. The resulting curves of MHT are more thin and thus more

accurate in terms of Dice coefficient, but some of their curves are spatially farther than the

groundtruth increasing the average Hausdorff distances.

The other twomethods give largely inferior results. PCs only uses a hard and global thresh-



70 Chapter 3. Anisotropic features detection using curvature lines

1

2

3

4

5

6

7

8

9

10

11

13

14

15

12

Figure 3.7: Groundtruth. Manually annotated feature curves depicted in different colors.
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Figure 3.8: Results. The resulting feature curves obtained with our method explained in Section 3.4.1.
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Comparison Metric PCs:A PCs:C SBSE MHT1 MHT2 ours

Overall dH 0.879 0.711 0.966 0.915 0.925 0.604

Overall D 0.518 0.525 0.374 0.553 0.552 0.504

Detailed dH - - 0.448 0.187 0.086 0.084

Detailed D - - 0.207 0.541 0.530 0.466

Table 3.1: Numerical comparison. Numerical comparison between the results of each method and

the groundtruth in overall (curves union) and in details (curve-by-curve) using the Hausdorff distance

dH (0 is better) and the Dice coefficientD (1 is better) averaged over all the 15models (see Appendix C

for the complete comparison).

olding on curvatures, which poorly adapts for each model, and SBSE performs the k-means

in curvature space without any locality criterion. On the other hand, MHT and our method

both take into account spatial positions of the feature curves thanks to the DBSCAN and our

minimal curvature lines extraction. Since our method uses multiple scales to generate the

curvature lines, we are able to extract almost all the various feature curves of the meshes.

3.5 Multi-scale cylinders detection

We present a method to detect cylindrical shapes (Figure 3.1) in 3D unstructured point clouds

using our minimal curvature lines introduced in Section 3.3. We formally define cylindrical

shapes as regions of a 3D surface where the minimal curvature lines are sufficiently regular

and aligned with each other. The method illustrated in Figures 3.9 and 3.3 first generates the

minimal curvature lines (Section 3.3). In a second step, they are filtered in order to keep the

regular ones, where the regularity criterion involves the total length, curvature and scale-

space stability of the lines (Section 3.5.1). In order to highlight point cloud regions where

curvature lines are well aligned, we propose a local linear anisotropy measure in Section 3.5.2.

Finally, Section 3.5.3 explains how the final regions (sets of points) are segmented using a

region growing algorithm.

Our method can detect any number of cylinders that do not need to be closed nor straight.

The algorithm can be performed at multiple scales so that various kind of cylindrical regions

can be detected from detailed to global ones. This approach is also a potential research di-

rection to include cylindrical primitives in our persistence analysis framework presented in

Chapter 2.

3.5.1 Curvature lines filtering

We first filter the minimal curvature lines introduced in Section 3.3 in order to keep only the

most regular ones, i.e. those which travel along smooth and clean cylindrical regions. For the

filtering, we consider the length L, the total curvature K (sum of vertex angles), and the total
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(a) (b) (c) (d)

Figure 3.9: Cylinders segmentation pipeline. (a) Input point cloud. (b) Minimal curvature lines

introduced in Section 3.3 and filtered in Section 3.5.1. (c) Linear anisotropy (Section 3.5.2). (d) Segmen-

tation (Section 3.5.3). This algorithm can be run at different scales.

geometric variation V of a line {qi}i=1...n,qi ∈ IR3

L =

n−1
∑

i=1

‖qi+1 − qi‖, (3.5)

K =

n−1
∑

i=2

arccos

(

(qi − qi−1) . (qi+1 − qi)

‖qi − qi−1)‖‖(qi+1 − qi‖

)

, (3.6)

V =

n
∑

i=1

ν̃i, (3.7)

where ν̃i is a normalized version of the the geometric variation ν [Mellado 2012, Equation 5]

mapped in (0, 1) using ν̃i = tanh(νi). Three thresholds Lmin, Kmax and Vmax are set by the

user depending on the point cloud.

3.5.2 Curvature lines anisotropy

The goal is to quantify how much the minimal curvature lines are aligned near the points of

the input point cloud. To do that, we propose to compute the following covariance matrix at

scale t and at point x

Σt(x) =
∑

qi∈Nt(x)

(1− ν̃i) wt(x− qi) viv
T
i , (3.8)

where wt is the spatial weighting function defined by Equation 1.6 using support size t (the

scale), vi is the line tangent at qi (minimal curvature direction), and Nt(x) are the lines ver-

tices within a distance t from x. Σt corresponds to a weighted covariance matrix of the lines

tangents close to x. The weighting involves the distance between the points x and qi so that

the closer a line vertex the greater its influence. The normalized geometric variation ν̃ also

penalizes tangents that are too unstable in the scale-space.

We calculate the linear anisotropy [Peeters 2009, Table 1] to quantify the local lines align-

ment

σ =
λ1 − λ2

λ1 + λ2 + λ3
, (3.9)
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ν̃
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Figure 3.10: Filteredminimal curvature lines. Minimal curvature lines filtered based on attributes

of Equations 3.5-3.7 at 4 increasing scales from bottom to top. The large pipe (a) is spanned by stable

lines at high scale only. The small pipe (b) is spanned by stable lines at low scale and unstable lines

at high scale. The medium pipe (c) is spanned by stable lines at many scale except at the highest one

where the lines become unstable.
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0

1
σ

Figure 3.11: Curvature lines anisotropy. Linear anisotropy σ (Equation 3.9) computed at 4 increas-
ing scales from left to right, based on the minimal curvature lines of Figure 3.10.

Figure 3.12: Cylinder segmentations. Results of the region growing performed at 4 increasing

scales from left to right, based on the linear anisotropy of Figure 3.11.

where λ1 > λ2 > λ3 are the (positive) eigenvalues of Σt. This scalar coefficient takes its

values in (0, 1). If σ = 1 then all the lines tangents at points qi ∈ Nt(x) are perfectly

aligned meaning that the point x is likely on a cylindrical region. Figure 3.11 shows the linear

anisotropy computed at each input points.

3.5.3 Multi-scale cylinders segmentation

In the end, the input point cloud is segmented in different regions in which all the points

share the same linear anisotropy, and the line tangents and normals are smooth. To achieve

this, an unseeded region growing is performed on the k-nearest neighbors graph of the 3D

point cloud. A region grows from a point pi to a neighbor pj if and only if

‖σi − σj‖ < ε and |vi .vj | > 1− ε and ni .nj > 1− ε, (3.10)

where ε is a unique threshold set to 0.1. Note that the linear anisotropy coefficients σi, σj and

the two dot products appearing in Equation 3.10 are all in (0, 1), so a common threshold ε is

well adapted. As we can see on the bottom right of Figure 3.12, two small pipes close to each

others are joined in a unique region at high scale whereas they form two distinct regions at a

lower scale.
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3.6 Conclusion

We propose a method to generate curvature lines from unstructured point clouds in 3D. The

originality lies in the intuitive scale parameter coming from the weighting kernel support of

the APSS that controls the level of details of the resulting lines. Considering only the salient

lines permits to robustly detect feature curves on 3D shapes using a voting approach. We also

introduced a point-wise anisotropy measure computed from regular minimal curvature lines.

Then, a region growing segments the input point cloud in cylindrical regions. This process

can be done at different scales in order to detect a wide range of cylindrical shapes.

Future work Using our detected cylindrical regions in our persistence analysis framework

of Chapter 2 is a possible research direction. The segmentationmethod presented in Section 3.5

could replace the planar segmentation of Section 2.3.1. The resulting cylindrical regions can

be used to build a hierarchical graph, and persistent components would represent important

anisotropic parts of the point cloud.

A strong limitation that must be addressed is the need of several user parameters to filter

the minimal curvatures (see Equations 3.5-3.7). Thresholds are also present in our feature

curves detection algorithm. To avoid these issues, different solutions can be considered such

as the use of machine learning. It would avoid the trial and error approach implied by the

thresholdings.

Memory is another limitation of the methods of this chapter. For now, multi-scale curva-

ture lines are computed and stored before any further processing. The required memory can

be significant depending on the number of scales, the number of lines and their resolution.

We wonder if their storage is necessary for the anisotropy computation and the voting sys-

tem. Processing the lines as they are generated is a technical challenge we also would like to

address in the future.

Crest and valley lines detected on the surface of the APSS are a possible future work since

very fewmeshless techniques exist to generate such salient lines. The shape operator of Equa-

tion 1.38 could be differentiated again in order to obtain principal curvature derivatives. The

main question is whether or not these third order differential properties show strong sen-

sitivity to small perturbations as it is usually the case with high order derivatives. Another

objective could be to derive theoretical guarantees for such characteristic lines extraction with

respect to noise and sampling irregularity. Moreover, the anisotropy measure asymptotically

derived from the algebraic sphere regression (see Section 1.3.2) could be further investigated

in the context of feature line generation.

We believe that many geometry processing applications could benefit from feature lines

drawn on 3D shapes. Recognizing complex geometric patterns over 3D surfaces [Biasotti 2018]

is one example. Analyzing, matching and simplifying 3D curves is indeed simpler then pro-

cessing directly the surface itself thanks to the low dimension and the natural parametrization

of curves.
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4.1 Introduction

In geometry processing, it is common to assume that the analyzed surface is a 2-manifold

embedded in 3D. This hypothesis is motivated by the intuitive observation that a simple object

defined by its interior volume has a boundary surface infinitely thin and that looks like a plane

from an infinitely close viewpoint. It also has an advantageous practical aspect since data

structures and algorithms are often easier to develop than if the surface is considered as non-

manifold. The smooth setting is better translated into the discrete one, and special cases near

non-manifold regions are thus avoided.

In the context of 3D point cloud analysis, many methods make this hypothesis for the

underlying surface represented by the acquired samples. They include the integral invari-

ants [Pottmann 2007], the Osculating Jets [Cazals 2005a] and the WaveJets [Béarzi 2018], the

Point Set Surfaces [Alexa 2001] including the Algebraic Point Set Surfaces [Guennebaud 2007],

several spectral approaches [Belkin 2009, Liu 2012], many methods computing local ge-

ometric features [Pauly 2003, Mérigot 2010, Mellado 2012], most of triangulation algo-

rithms [Amenta 2001, Ohtake 2003, Kazhdan 2006], etc...

Parametrization is a powerful tool to process discrete 2-manifolds as triangle meshes. It

provides a map between a 2D parameter domain and the 3D coordinates of the surface. Appli-

cations involving parametrizations of 3D shapes are numerous. In rendering, fine details can

be efficiently encoded in textures as color and displacement maps. Details transfer, morphing

and re-meshing are other examples of edition that usually benefit from parametrization. In

addition to shape analysis, it also plays an important role in fabrication and simulation for

instance.

77
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Various techniques have been proposed to compute a parametrization of a triangle

mesh [Botsch 2010, Chapter 5]. Since they are all based on triangles, they cannot be directly

used on unstructured point clouds. In the acquisition pipeline, one solution could be to first tri-

angulate the points, and then compute the parametrization. But the triangulation step remains

difficult and could potentially impact the quality of the parametrization. Our goal is thus to

directly obtain a mapping from a 2D domain to the input 3D points without any intermediate

mesh.

In practice, the goal of a point cloud parametrization method is to find a point u ∈ IR2

lying in a flat parameter domain for each point p ∈ IR3 of the input point cloud. Depending

on the application, interesting properties are often required on the resulting map between

IR2 and IR3, such as being fold-free (injective), conformal (angle preserving), authalic (area

preserving), isotropic (length preserving) or harmonic (minimizing stretch).

As described in the state-of-the-art (Section 4.2), few methods exist to process a raw point

cloud. They are dedicated to either planar or spherical parametrization, but not both. They

usually use local Delaunay triangulations in tangent spaces or k-nearest neighbors graph in

order to adapt existing mesh parametrization algorithms. These approaches often suffer from

strong noise and sampling irregularity that are commonly found in acquired data. To our

knowledge, no meshless method exists to measure the distortion of a point cloud parametriza-

tion.

Key idea The key element of our meshless parametrization method is the Point Set

Surfaces [Alexa 2001] already discussed in Section 1.2. Moving Least Squares (MLS) fit-

ting [Levin 1998] approximate locally and for each point in space a smooth 2-manifold from

scattered data. The locality is controlled by a scale parameter defining the neighborhood used

for the fitting. Progressively increasing the scale while keeping points onto their evolving

MLS surface approximation leads to a situation where all the points are finally projected onto

the same global surface. We use this iterative scale-space approach with the Algebraic Point

Set Surfaces [Guennebaud 2007] so that points converge toward a common sphere or plane

automatically. The result is thus a global planar or spherical 2D parametrization of the input

points.

This chapter corresponds to a preliminary work carried out during an ongoing research

project. We search for a method that would map any 3D point cloud to a 2D domain. The long

term objective is to ensure that the resulting parametrization has useful properties such as

preserving angles or areas. In this thesis, we only provide an algorithm that flatten a genus-0

point-sampled surface in 2D, and a method to calculate the parametrization distortions. These

distortion measures are a first step toward computing optimal maps of point cloud which is

left as future work.

Contributions of this chapter

• We propose in Section 4.3 a new algorithm to automatically flatten a point-sampled

surface to a sphere or a plane producing a planar or spherical parametrization. The

sampled surface needs to be of genus 0, but it can be closed or open, with any number
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of holes boundaries that are implicitly handled. Calculations remain local, so ourmethod

can process several millions of points in a reasonable time.

• Meshless parametrization distortion measures are then introduced in Section 4.4. They

quantify at any scale the distortion of angles and areas induced by the resultingmapping

between the points in 3D and their 2D counterparts. These measures could be used in

the future to optimize our results to obtain conformal or authalic parametrizations.

4.2 State-of-the-art

We review in Section 4.2.1 the existing methods that compute a global parametrization of

unstructured point clouds. Since our method uses an iterative scheme that makes the point-

sampled surface evolve under a specific flow, we also discussed the literature on geometric

flows in Section 4.2.2.

4.2.1 Point cloud parametrization

Meshless parametrization methods aim at finding a discrete map from a 2D parameter domain

to the 3D input points without using any global triangulation.

Barycentric mapping introduced for graphs [Tutte 1963] and triangular

meshes [Floater 1997] can be used to map a point cloud on a plane [Floater 2001]. The

input point cloud is splitted into two disjoint sets of interior and boundary points. The

boundary points are first mapped to a convex planar polygon, and a sparse linear system

is then solved to map the interior points so that each point is a convex combination of

its neighbors. However, an ordered and cyclic list of boundary points is required, which

is difficult to automatically identify on unstructured point clouds. For closed surface, this

method is adapted to map the points on a sphere [Hormann 2002], but the point cloud

must be partitioned into several charts, which is also difficult when dealing with complex

point-sampled shapes.

Laplacian graph embedding of the k-nearest neighbors graph on the unit sphere is also

possible using an iterative procedure [Zwicker 2004]. All the 3D points are first projected onto

the unit sphere. Then, each point moves on the sphere toward the center of gravity of its initial

k-nearest neighbors. However, the first orthogonal projection on the sphere leads to important

folds in the parametrization if the input shape is not already close to a sphere which is often

the case. A similar approach makes use of stereographic projections to compute a conformal

map [Choi 2016]. Laplace operators recently introduced for point clouds [Sharp 2020] can also

help to compute a spectral conformal parametrization [Mullen 2008].

Direction fields can guide the computation of global parametrization for a point-sampled

surface of any genus in the context of quadrangulation [Li 2011a]. The point cloud is cut in

region topologically equivalent to a disk, and amixed integer solver guarantees that the result-

ing parametrization is seamless across the cut lines [Bommes 2009]. The result is dependent

on the cross field of principal curvature directions computed from the k-nearest neighbors

graph.
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Discrete one-forms enable to map a genus-1 point cloud to a toroidal do-

main [Tewari 2006], taking inspiration from a method applying to meshes [Gu 2003].

On meshes, this approach attempts to preserve edges length under the constraint that

edges of a face on the 2D domain form a closed triangle. On unstructured point clouds,

the k-nearest neighbors graph edges are considered for the length preservation, and the

closedness constraint is modified so that all trivial graph cycles are closed in the parameter

domain.

A few machine learning approaches have been proposed such as a Radial Basis Function

neural network [Meng 2013] that uses unsupervised self-organizing map to parametrize range

images, and AtlasNet [Groueix 2018] that learns how to generate an atlas from a sampled

surface in order to reconstruct surfaces from images.

Performance is a common limitation to these techniques since they often involve solving

large systems or costly optimization algorithms, which is not compatible with point clouds

of several millions of samples. In addition, many meshless algorithms use either a local tri-

angulations in tangent spaces or a k-nearest neighbors graph that are both sensitive to noise,

outliers and highly varying densities.

4.2.2 Geometric flows

Several discrete geometric flows morph a surface to a sphere at convergence. The mod-

ified mean curvature flow [Kazhdan 2012] updates at each iteration the mass matrix but

keeps the initial stiffness matrix in order to avoid any singularities. The volumetric viscous

flow [Cohen 2019] takes inspiration from fluid dynamics to move a star-like closed surface on

a sphere. Each intermediate surface is included in the previous one creating a foliation of the

volume enclosed by the mesh. Another alternative consists in diffusing the mean curvature,

and then integrating the underlying triangular mesh to match the current curvature, which

corresponds to a Willmore flow [Crane 2013]. A similar method integrates the mesh to match

the averaged neighboring faces normal [Zhao 2020]. This flow converges toward a sphere or

a plane depending on the geometry of the mesh.

On unstructured point clouds, projecting a point onto a local PCA plane (Equation 1.1)

implements a mean curvature flow [Digne 2011]. Digne et al. perform some iterations of

PCA projection to produce a smoother point cloud used to generate a triangular mesh with

the ball pivoting algorithm [Bernardini 1999]. We take inspiration from this approach to map

a point cloud onto a 2D domain with two significant differences. First, the plane fitting is re-

placed by an algebraic sphere fitting, which enables the surface to converge on a plane or on a

sphere. Important singularities are also avoided as already demonstrated in Figure 1.2. Then,

we progressively increase the neighborhood size (the scale) to ensure a faster convergence on

the final planar or spherical domain.

4.3 Scale-space point cloud parametrization

We propose a new method to automatically flatten a 3D point cloud onto a sphere

or a plane, which provides a global parametrization of genus-0 point-sampled surfaces.

The idea illustrated in Figure 4.1 consists in iteratively projecting each point onto their
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Figure 4.1: Parametrization overview. From left to right: initial point clouds, 3 intermediate pro-

jection steps (out of 50), converged points on a plane (top) or on a sphere (bottom), and the initial point

clouds colored according to their planar or spherical parametrization.

Moving Least Squares (MLS) approximation [Levin 1998]. We progressively increase the

scale (neighborhood size) until the whole point cloud is considered for the local surface fit-

ting. At the end, a last fitting step is performed globally, without any MLS weighting, so that

all the points finally lie on a single canonical surface. Thanks to the Algebraic Point Set Sur-

faces (APSS) [Guennebaud 2007] and its internal algebraic sphere fit procedure already intro-

duced in Chapter 1, the point cloud necessarily converge toward a sphere or a plane depending

only on the shape of the sampled surface.

We sample M scale values using the heterogeneous scale-space sampling introduced in

Section 1.5.1 in order to handle varying point densities across the point cloud. The scale-space

is linear (Equation 1.39) meaning that the scales are uniformly sampled between the local point

spacing of each point and the global cloud size. Contrary to the logarithmic sampling used in

the previous chapters, it avoids too large gaps between two iterations, decreasing the chances

to produce unwanted folds in the resulting parametrization. At each step, the projected points

resulting from the previous iteration are used to compute the APSS for the next one. The

multi-resolution approach of Section 1.5.2 is used to progressively decimate the point cloud

when the scale grows.

Our method does not explicitly manage boundaries since they are well handled by the

APSS without any special treatment. Point clouds having several boundaries due to missing

acquisition data and holes in the scanned surface are correctly flattened. The underlying sur-

face can be closed or open, with disk or sphere topology, as long as its genus is equal to 0. The

main limitation is thus the lack of guarantee about folds and any parametrization distortion

minimization.

Results Various point clouds and their flattened version on a plane and on a sphere are

shown in Figures 4.2 and 4.3 respectively. We set the number of scales to 50 in all these

experiments. As expected, mostly planar point clouds such as those of Figure 4.2 converge

toward a plane. But it is not necessarily the case as demonstrated by the fountain point cloud

in Figure 4.3-bottom-left. This point cloud is quite planar but is flattened onto a sphere with

a high radius. On average, the 50 iterations take 75 seconds per million points using an Intel

Xeon CPU 3.70GHz and a NVIDIA GeForce GTX 1080.
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Figure 4.2: Planar parametrization. Point clouds and their planar parametrization.

4.4 Meshless distortion measures

Distortions induced by a map between a parametrization domain and a smooth regular surface

can be determined by comparing a unit circle in the first domain and its associated ellipse on

the surface. They can be quantified using the eigenvalues λ1 and λ2 of the 1st fundamental

form of the map. Indeed, a unit circle in the initial domain is mapped to an ellipse on the

tangent space of the surface whose semi axis are
√
λ1 and

√
λ2. An ideal parametrization

without any distortion, also called isometric or length-preserving map, associates circles to

identical circles, meaning that λ1 = λ2 = 1 everywhere on the surface. A parametrization is

authalic, or area-preserving, if λ1λ2 = 1, and it is conformal, or angle-preserving, if λ1 = λ2.

When considering the parametrization of meshes, the 1st fundamental form and its eigen-

values can by analytically calculated on a pair of mapped triangles [Sander 2001, Section 3].

Variousmethods propose different distortionmeasures based on this eigendecomposition such

as the Green-Lagrange deformation [Maillot 1993], the Most Isometric Parametrization of Sur-

face [Hormann 2012], the stretchmeasure [Sander 2001], the symmetric energy [Sorkine 2002]

or the combined energies [Degener 2003]. This does not hold with unstructured point clouds

since there is no equivalent of triangle as minimal piece of surface on which these calculations

can be performed.

We propose a meshless approach that compares an ellipse representing locally the

3D points distribution in the tangent space with its associated ellipse computed with the same

2Dflattened points. To achieve this, we gather the neighboring points indicesNi near a 3D ini-

tial point pi in order to compute the two weighted covariance matrices

Σ3D
i =

1
∑

j∈Ni
wij

Pi

∑

j∈Ni

wij(pj − p̄i)(pj − p̄i)
TP T

i , (4.1)

Σ2D
i =

1
∑

j∈Ni
wij

∑

j∈Ni

wij(uj − ūi)(uj − ūi)
T , (4.2)

where p̄i and ūi are the weighted average of 3D and 2D points respectively, Pi is the transfor-

mation matrix that projects a 3D point onto the 2D tangent plane at pi, and wij is a smooth

decreasing weight function depending on the distance between pi and pj . The objective is to

quantify the deformation between these two ellipses. By denoting λ3D
1 ≥ λ3D

2 the two eigen-

values of Σ3D
i , we can calculate the anisotropy σ3D = λ3D

2 /λ3D
1 and the area a3D = πλ3D

1 λ3D
2

of the ellipse that represents the covariance matrix Σ3D
i . The anisotropy σ2D and the area a2D

of the ellipse in 2D are similarly calculated. Intuitively, the map has no distortion at all if these
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Figure 4.3: Spherical parametrization. Point clouds and their spherical parametrization.
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two ellipses are equal. It is conformal if one ellipse is just a scaled and rotated version of the

other, so that their anisotropy is the same. Finally, it is authalic if the two ellipses areas are

equal. This leads to a conformal and an authalic distortion measures for a map between point

clouds

εconf = ratio
(

σ3D, σ2D
)

, (4.3)

εauth = ratio
(

a3D, a2D
)

, (4.4)

where ratio(a, b) = max(a, b)/min(a, b). Each of them is greater or equal to 1, and the map

is conformal if εconf = 1, and authalic if εauth = 1. For instance, if εconf = 2, then it means

that one ellipse is twice stretched in one direction compared to the other one.

Results Figure 4.4 shows the conformal distortion εconf and the authalic distortion εauth of

Equations 4.3 and 4.4 calculated on the two point clouds already shown on Figure 4.1. At low

scale, these measures show a lot of variation since a very small neighborhood is used. On

the contrary, the ellipses calculated at high scale are likely to be more similar, so measured

distortions are less important.

These experiments show that the scale-space parametrization is not authalic nor confor-

mal. Optimizing the resulting parametrization with respect to one of these properties is left as

future work. The covariance matrices of Equations 4.1 and 4.2 could help to develop optimiza-

tion procedures to modify the 3D flattened point cloud so that one of the distortion measures

of Equations 4.3 and 4.4 is minimized.

4.5 Conclusion

Wepropose ameshless parametrization algorithm that flatten a genus-0 point-sampled surface

with disk or sphere topology on a 2D domain. Each point is iteratively projected onto a local

surface approximation while the neighborhood size increases until reaching the global point

cloud size, which finally leads to a planar of spherical global parametrization. Our method

automatically handle holes in the surface as well as several boundaries. We also introduce two

new multi-scale conformal and authalic measures that quantify the distortion of the resulting

map in therms of preservation of angles and areas respectively.

Future work Developing optimization algorithms to minimize our conformal or authalic

distortions is a promising future work. Our current results can be used as initial solution to

optimize afterward the parametrization by modifying the flattened point cloud in 2D. One

challenge is either to choose one appropriate scale, or to consider all of them in the minimiza-

tion process. Another possibility is to add an optimization step after each APSS projection in

3D on each tangent space, so that distortions are minimized at any iteration of our algorithm.

To achieve this, we consider using the two covariance matrices of Equation 4.1 and 4.2 that

reflect the points distribution in the initial 3Dpoint cloud and the 2Dflattened one respectively.

By representing them as ellipses, we know the transformation that must be applied to one

ellipse to match the area or the anisotropy of the other. We could compute this transformation



4.5. Conclusion 85

Figure 4.4: Meshless distortions. For the two data: distortions εconf (left) and εauth (right) of Equa-

tions 4.3 and 4.4. From bottom to top: low to high scale (50% of the bounding box diagonal length).

Values range from 1 in blue (no distortion) to 2 in red.
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as two scaling factors along the two eigenvectors at each 2D points and then apply it to its

neighborhood. Points in the parametrization domain would move in directions to match the

initial distribution leading to a more conformal parametrization in case ellipses anisotropy is

considered. Our current experiments show that the distortion are not necessarily minimized

and instabilities may occur, so a deeper analysis of this approach is required.

Parameterizing shapes of higher genus and preventing any folds in the parametrization

are other challenging research directions. At least, detecting when the surface genus is not 0

or when a fold happens could be helpful. Many properties of the algebraic sphere fit such as its

least squares residuals, the geometric variation [Mellado 2012], and its discriminantmeasuring

anisotropy (see Section 1.3) may help to achieve this.

Another limitation we would like to address is the number of iterations that needs to be

manually fixed. The scale could be updated locally depending to the shape itself and not

according to the pre-sampled scale-space. For instance, if the algebraic sphere fit is reliable

enough and the surface is quite flat, then the scale could grow more quickly than situations

where the fitted sphere is far from the points and the surface is highly curved and noisy. It

could lead to a suitable trade-off between a fold-free but costly parametrization, and a fast but

self-overlapping one.

Finally, many 3D shape analysis tasks such as pattern recognition, segmentation, classifi-

cation and meshing may be improved using a 2D parametrization. The benefit of our global

parametrization directly obtained from the unstructured point cloud remains to be demon-

strated, especially using more complex scanned data.



Conclusion

In this thesis we propose a multi-scale approach for geometric patterns detection in point

clouds. Despite the lack of structure and the presence ofmany artefacts in the data, we robustly

and efficiently estimate differential properties in order to characterize the sampled surface at

any scale. We show the theoretical link between the local regression of an algebraic sphere

and the surface derivatives including the mean curvature and a measure of shape anisotropy.

We also compute accurate and robust principal curvatures from the algebraic sphere fit. A

combined multi-resolution and multi-scale representation of the input point cloud can effi-

ciently process several millions of points. This work leads to a fundamental tool that we show

to be useful for pattern recognition and promising for meshless surface parametrization. We

believe that it could also be valuable for many other geometry processing tasks analyzing large

unstructured point clouds.

Point-wise differential measurements are pertinent but remain valid only for infinitesimal

points in space and for one value of scale. It makes difficult the description of larger regions on

the shape. We thus propose to structure the point cloud using these differential properties. A

first solution gathers nearby points that share a similar differential property. To detect planes,

a region growing process based on normal vectors generates these planar segmentations. A

second solution focusing on cylinders and feature curves generates flow lines. It iteratively

follows the principal curvature directions resulting in interesting discrete lines covering the

sampled surface.

We generate these structures at many scales to be able to handle a wide range of feature

sizes. With the multi-scale segmentations, we link similar regions from scale to scale leading

to a hierarchical graph. The persistence analysis we propose to perform on this graph extracts

the regions that persist the most. They correspond to meaningful planar regions of the point

cloud. From the curvature lines, a voting approach performed at all scales robustly selects the

points that most likely belong to the feature curves of the shape.

The lack of structure can also be addressed by directly finding a 2D parametrization of the

3D points. To flatten the input points on a 2D domain, we progressively increase the scale

until all the points are globally projected onto a sphere or a plane. Our algorithm is able to

map any genus-0 sampled surface, closed or open, without using any mesh topology. Our ap-

proach thus provides a continuous link between local and global calculations, from very small

neighborhoods to the whole shape size. With more control on the mapping bijectivity and dis-

tortions, it could be leveraged for several shape analysis applications as regularity detection,

abstraction and meshing by working in 2D instead of 3D.

In general, we find that differential geometry is a powerful tool to characterize 3D point

clouds. Calculations are local which improves efficiency and scales up well to process a large

amount of data. Links between concrete algorithms and the well understood continuous the-

ory is an important element to better explain numerical behaviors in practice. We overcome

the point-wise nature of differential geometry by adding spatial structures to the points such as

discrete salient lines and segmentations. They link points in space sharing similar differential

properties. In a second time, we link these structures in the scale-space by using a combi-
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natorial graph and a vote-based approach. The persistence analysis finally offers a flexible

framework to extract meaningful information from these underlying structures.

To conclude, we extend the toolbox available to efficiently and robustly analyze a large

amount of 3D acquired data. Our algorithms directly run on point clouds avoiding the difficult

step of mesh reconstruction. They do not require structured data which make them practical

for a potentially wider type of shape representation as range images, meshes and voxel grids.

They could thus increase the interoperability between heterogeneous data coming from dif-

ferent captors which is becoming more needed in practice. Our research in computer science

increases the efficiency of 3D acquisition techniques, which shortens the geometry processing

pipeline between the acquisition of a real element and its usages in a virtual environment. In

a near future, scanning an object and re-printing it in 3D should become as easy as a copy-

and-past operation in a text editor. Adding an existing object or place (or even ourselves)

in our favorite video game will certainly be open to everyone, without the need of tedious

manual editing nor costly automatic process. This thesis contributes to break the separation

between our real environment and its digital counterpart, allowing us to better understand

the complexity of the world around us.

Future work

Designing a unified multi-scale framework for geometric pattern recognition is a relevant per-

spective. A first challenge concerns the combination of our different algorithms to simultane-

ously detect planes, cylinders and feature curves on 3D shapes. Extensions to handle spheres,

corners and other basic features could also be interesting to investigate. Another future work

could be to describe and recognize at multiple scales more complex patterns as parts assem-

blies since many man-made shapes are made of these structured primitives. They pose a more

complicated problem since they cannot be characterized by just a few point-wise differential

quantities. Persistence analysis has shown to be effective and should be further used in the

context of pattern recognition. Giving back structures to unorganized point clouds would en-

able easier processing of acquired 3D shapes for interactive editing, visualization and physical

simulation for instance.

Deep learning is another promising research direction. Many neural networks have been

recently introduced to process unstructured points [Qi 2017a, Qi 2017b, Boulch 2017, Li 2018,

Thomas 2019] to name a few. Our multi-scale and multi-resolution representation proposed

in Section 1.5 could be an appropriate tool for machine learning. Differential quantities as a

function of the scale produce time series that are well adapted to traditional neural networks.

We experimented this kind of approach to classify points belonging to sharp features in point

clouds (This work has been submitted to a journal and is under review at the time of writ-

ing). For each point, the GLS parameters [Mellado 2012] as well as the principal curvatures

computed from our accurate shape operator (Section 1.4.2) produce a one-dimensional multi-

channel signal given as input to a simple neural network. This lightweight network trained on

a small synthetic dataset quickly gives high quality results on real data as shown by Figure 4.5.

Being able to quickly learn from a small set of examples is crucial when computational re-

sources are limited. Our approach could be used for real-time applications, embedded in small
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computer architectures, and using few manually annotated data. It contributes to make deep

learning affordable as it considerably decreases the buying andmaintenance price of hardware

and the time required for labeling examples. We wonder if these multi-scale differential prop-

erties remain pertinent to describe semantic informations for object classification as they are

for low level geometric features like sharp edges.

Figure 4.5: Sharp features classification.

In addition to deep learning, the differential

estimators we propose in Chapter 1 lead to fun-

damental geometric descriptors that are poten-

tially useful for more applications other than ge-

ometric feature detection and parametrization.

Indeed, we demonstrate that they are pertinent

to describe the geometry of a surface as they

asymptotically converge toward its mean curva-

ture among other differential quantities. In prac-

tice, they are shown to be efficient, accurate, and

stable with respect to noise, which may corre-

spond to the most important qualities of an esti-

mator. In theory, showing that they are provably

stable makes an interesting perspective. Keeping

the link between differential geometry theory and

numerical algorithms is essential to offer strong

guaranties and a clear understanding of what the descriptors represent. Examples of appli-

cation where such multi-scale differential descriptors may be useful include shape matching,

retrieval, registration, re-sampling, etc...

In the long term, we wish to bring our analysis tools to higher dimensions. In data

analysis, points do not sample the surface of a physical object, but still sample a low-

dimensional manifold embedded in a higher dimensional space. The data of interest usu-

ally lie onto this manifold that is challenging to extract from the high dimensional point

cloud. Manifold learning is a well established scientific domain that may benefit from

our point cloud parametrization algorithm that remains valid in any dimension for mani-

folds of co-dimension 1. Traditional methods often involve costly eigendecomposition of

large systems [Tenenbaum 2000, Roweis 2000, Belkin 2003] or expensive optimization algo-

rithms [Zhang 2004, Maaten 2008]. During these last decades, many computational geometry

tools have been used in this context in order to analyze the data geometry instead of geo-

metric data [Boissonnat 2017]. Following this transition, our approach could be an efficient

and robust alternative with a useful geometric point of view that enables to process massive

data. It could open our multi-scale differential methods developed for 3D shapes to even wider

scientific fields as medicine and dynamical systems analysis.
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This appendix contains all the detailed calculations related to the asymptotic analysis of

the algebraic sphere fitting of Section 1.3. Section A.1 details the Taylor polynomials of fun-

damental quantities such as coordinates and normals that are required for the calculations of

the algebraic sphere fit (Equation 1.7-1.9). In Section A.2, we perform the integration of these

quantities. Finally, Section A.3 and A.4 compute the asymptotic expansions of the parame-

ters uc, uℓ and uq , and the projection operator ϕ, leading to the results of Theorems 1 and 2

respectively.

A.1 Differential quantities

We first give the Taylor polynomials of the coordinates f , the normals n and their dot product

in the local principal frame. Using polar coordinates (r, θ) ∈ (0, t)× (0, 2π), these quantities

are given in the form of a polynomial of variable r with coefficients depending on variable θ.

The coefficients also contain the different derivatives ak,j−k of the surface height defined by

Equation 1.15.

Coordinates The surface of Equation 1.14 is expressed in polar coordinates by

f(r, θ) =
[

r cos(θ) r sin(θ) z(r, θ)
]T

. (A.1)

The Taylor expansion of the height field function z in Equation 1.15 is written in polar coor-

dinates as z(r, θ) =
∑5

k=2 r
kbk(θ) + o(r5) with the coefficients bk equal to

b2(θ) =
1

2

(

κ1 cos
2(θ) + κ2 sin

2(θ)
)

,

b3(θ) =
1

6

(

a30 cos
3(θ) + 3a21 cos

2(θ) sin(θ) + 3a12 cos(θ) sin
2(θ) + a03 sin

3(θ)
)

,

b4(θ) =
1

24

(

a40 cos
4(θ) + 4a31 cos

3(θ) sin(θ) + 2a22 cos
2(θ) sin2(θ)+

93
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4a13 cos(θ) sin
3(θ) + a04 sin

4(θ)
)

,

b5(θ) =
1

120

(

a50 cos
5(θ) + 5a41 cos

4(θ) sin(θ) + 10a32 cos
3(θ) sin2(θ)+

10a23 cos
2(θ) sin3(θ) + 5a14 cos(θ) sin

4(θ) + a05 sin
5(θ)

)

.

Note that although the order 4 is sufficient to obtain the results of Theorems 1 and 2, one

order higher is considered in this appendix. It gives some insight on the higher order terms of

every Taylor expansion, which could be certainly useful for future work. The squared height

which is required latter is z(r, θ)2 =
∑7

k=4 ck(θ)r
k + o(r7) with coefficients c4(θ) = b2(θ)

2,

c5(θ) = 2b2(θ)b3(θ), c6(θ) = b3(θ)
2 + 2b2(θ)b4(θ), and c7(θ) = 2b2(θ)b5(θ) + 2b3(θ)b4(θ).

Tangents Before introducing the normals, the Taylor polynomials of the tangents are re-

quired. In the principal frame, they are the partial derivatives of f with respect to x and

y that are given by ∂xf(x, y) =
[

1 0 ∂xz(x, y)
]T

and ∂yf(x, y) =
[

0 1 ∂yz(x, y)
]T

.

In polar coordinates, the partial derivatives of z with respect to x and y are ∂xz(r, θ) =
∑4

k=1 dxk(θ)r
k + o(r4) and ∂yz(r, θ) =

∑4
k=1 dyk(θ)r

k + o(r4) with the following coef-

ficients

dx1(θ) = κ1 cos
2(θ),

dx2(θ) =
1

2

(

a30 cos
2(θ) + 2a21 cos(θ) sin(θ) + a12 sin

2(θ)
)

,

dx3(θ) =
1

6

(

a40 cos
3(θ) + 3a31 cos

2(θ) sin(θ) + 3a22 cos(θ) sin
2(θ) + a13 sin

3(θ)
)

,

dx4(θ) =
1

24

(

a50 cos
4(θ) + 4a41 cos

3(θ) sin(θ) + 6a32 cos
2(θ) sin2(θ)+

4a23 cos(θ) sin
3(θ) + a14 sin

4(θ)
)

.

dy1(θ) = κ2 sin
2(θ),

dy2(θ) =
1

2

(

a21 cos
2(θ) + 2a12 cos(θ) sin(θ) + a03 sin

2(θ)
)

,

dy3(θ) =
1

6

(

a31 cos
3(θ) + 3a22 cos

2(θ) sin(θ) + 3a13 cos(θ) sin
2(θ) + a04 sin

3(θ)
)

,

dy4(θ) =
1

24

(

a41 cos
4(θ) + 4a32 cos

3(θ) sin(θ) + 6a23 cos
2(θ) sin2(θ)+

4a14 cos(θ) sin
3(θ) + a05 sin

4(θ)
)

.

The squared partial derivative of z with respect to x in polar coordinates is ∂xz(r, θ)
2 =

∑5
k=2 exk(θ)r

k+o(r5)with coefficients ex2(θ) = dx1(θ)
2, ex3(θ) = 2dx1(θ)dx2(θ), ex4(θ) =

dx2(θ)
2+2dx1(θ)dx3(θ), and ex5(θ) = 2dx1(θ)dx4(θ)+2dx2(θ)dx3(θ). The formula for ∂yz

and its associated coefficients eyk are the same as ∂xz and exk using y subscript instead of x.
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Normals We denote by v a vector orthogonal to the surface v(x, y) = ∂xf(x, y)×∂yf(x, y),

which is equal to
[

−∂xz(x, y) −∂yz(x, y) 1
]T

, so that the normal vector n is given by

n(x, y) = v(x,y)
‖v(x,y)‖ . The squared norm of v is ‖v(r, θ)‖2 = 1 +

∑5
k=2 fk(θ)r

k + o(r5),

with fk(θ) = exk(θ) + eyk(θ). Using the Taylor expansion of 1/
√
1 +X , the inverse of the

norm is approximated by 1/‖v(r, θ)‖ = 1 +
∑5

k=2 gk(θ)r
k + o(r5), with g2(θ) = −1

2f2(θ),

g3(θ) = −1
2f3(θ), g4(θ) = 1

8

(

3f2(θ)
2 − 4f4(θ)

)

, and g5(θ) = 1
4 (3f2(θ)f3(θ)− 2f5(θ)).

Finally the normal n is asymptotically equivalent to

n(r, θ) =





nx(r, θ)

ny(r, θ)

nz(r, θ)



 =





∑4
k=1 hxk(θ)r

k + o(r4)
∑4

k=1 hyk(θ)r
k + o(r4)

1 +
∑5

k=2 gk(θ)r
k + o(r5)



 , (A.2)

with hx1(θ) = −dx2(θ), hx2(θ) = −dx3(θ), hx3(θ) = −dx4(θ) − g2(θ)dx2(θ), hx4(θ) =

−dx5(θ)−g2(θ)dx3(θ)−g3(θ)dx2(θ), and using similar formula for hyk(θ) using y subscript.

Dot products The asymptotic dot product between the coordinates and the normals is

f(r, θ) .n(r, θ) =
∑5

k=2mk(θ)r
k + o(r5) with the following coefficients

m2(θ) = cos(θ)hx1(θ) + sin(θ)hy1(θ) + b2(θ),

m3(θ) = cos(θ)hx2(θ) + sin(θ)hy2(θ) + b3(θ),

m4(θ) = cos(θ)hx3(θ) + sin(θ)hy3(θ) + b4(θ) + g2(θ)b2(θ),

m5(θ) = cos(θ)hx4(θ) + sin(θ)hy4(θ) + b5(θ) + g2(θ)b3(θ) + g3(θ)b2(θ).

The dot product of the coordinates with themselves, which is the squared norm of the posi-

tions, is ‖f(r, θ)‖2 = f(r, θ) . f(r, θ) = r2 + z(r, θ)2 = r2 +
∑7

k=4 ck(θ)r
k + o(r7).

A.2 Integration

We now give results of the integration of the previous quantities over the surface patch

Pt (Equation 1.16). In order to calculate these integrals, the integration domain considered

is the cylindrical neighborhood instead

Ct =
{

(x, y) ∈ IR2, ‖x2 + y2‖ < t2
}

, (A.3)

that gives equivalent results in these asymptotic settings [Digne 2011, Lemma 1]. These calcu-

lations are fairly straightforward since they only involve polynomials integrations. Moreover,

many integrals containing coefficients of the form cosp(θ) sinq(θ) are discarded if p or q are

odd. On the other hand, the coefficients are often tedious to write so we only give the results.

Coordinates The integration over Ct of the coordinates f of Equation A.1 results in
∫∫

Ct f(r, θ) r drdθ =
[

0 0 n4t
4 + n6t

6 + o(t7)
]T

, with n4 = πH
4 and n6 = π∆H

96 . The

coefficient n4 agrees with prior work on integral invariants [Pottmann 2007, Theorem 6].
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Normals The integration over Ct of the normals n of Equation A.2 yields

∫∫

Ct
n(r, θ) r drdθ =





px4t
4 + px6t

6 + o(t6)

py4t
4 + py6t

6 + o(t6)

pz2t
2 + pz4t

4 + pz6t
6 + o(t6)





with the following coefficients

px4 = −π

8
(a30 + a12),

py4 = −π

8
(a03 + a21),

px6 =
π

48
(a30(2H

2 −K + 4κ21) + a12(6H
2 −K)− (a50 + 2a32 + a14)/4),

py6 =
π

48
(a03(2H

2 −K + 4κ22) + a21(6H
2 −K)− (a41 + 2a23 + a05)/4),

pz2 = π,

pz4 = −π

8
(κ21 + κ22),

pz6 =
π

192
(144H2(H2 −K) + 24K2 − 4(a22 + a40)κ1 − 4(a22 + a04)κ2

− 3(a230 + a203)− 2(a12a30 + a03a21)− 7(a221 + a212)).

Dot products The last quantities to integrate are the two dot products introduced in the

previous section. Their integrals are
∫∫

Ct f(r, θ) .n(r, θ) r drdθ = q4t
4 + q6t

6 + o(t7) and
∫∫

Ct f(r, θ) . f(r, θ) r drdθ = r4t
4 + r6t

6 + r8t
8 + o(t9), with the coefficients equal to

q4 = −πH

4
,

q6 =
π

96
(24H3 − 16KH −∆H)

r4 =
π

2
,

r6 =
π

24
(3H2 −K),

r8 =
π

4068
(3(5a40 + 6a22 + a04)κ1 + 3(a40 + 6a22 + 5a04)κ2

+ 2(5a230 + 9a221 + 6a30a12 + 6a03a21 + 9a212 + 5a203)).

A.3 Algebraic sphere fi�ing (proof of Theorem 1)

The goal of this section is to gather together the previous integrals following the smooth

version of Equations 1.7-1.9 to obtain the asymptotic equivalents of uc, uℓ and uq of the fitted

algebraic sphere. These final results are summarized in Theorem 1.

Dot products Before calculating the parameters of the sphere, two intermediate ele-

ments need to be developed. The dot product of the coordinates and normals integrals
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is
∫∫

Ct f(r, θ) r drdθ .
∫∫

Ct n(r, θ) r drdθ = s6t
6 + s8t

8 + o(t9) with s6 = π2H
4 and

s8 = π2

96 (−12H3 + 6KH + ∆H). The second dot product that is applied to the coordi-

nates integral with itself is
∫∫

Ct f(r, θ) r drdθ .
∫∫

Ct f(r, θ) r drdθ = u8t
8 + u10t

10 + o(t11)

with u8 =
π2H2

16 and u10 =
πH∆H
192 .

�adratic parameter To calculate uq using Equation 1.9, we rewrite it as a fraction

uq = 1
2
n
d
with n the numerator and d the denominator of uq (up to the constant 1/2). In

the continuous setting, the numerator of uq is expressed by

n = At

∫∫

Ct
f(r, θ) .n(r, θ) r drdθ −

∫∫

Ct
f(r, θ) r drdθ .

∫∫

Ct
n(r, θ) r drdθ,

where At = πt2 is the area of Ct. Its asymptotic polynomials is n = v6t
6 + v8t

8 + o(t9) with

v6 = −π2H
2 and v8 =

π2

48 (18H
3 − 11KH − 2∆H). The denominator of uq is

d = At

∫∫

Ct
f(r, θ) . f(r, θ) r drdθ −

∫∫

Ct
f(r, θ) r drdθ .

∫∫

Ct
f(r, θ) r drdθ,

which asymptotically leads to d = π2

2 t6
(

1 + w2t
2 + w4t

4 + o(t5)
)

, with the coefficients

w2 =
1

24
(3H2 − 2K),

w4 = 3(5a40 + 6a22 + a04)κ1 + 3(a40 + 6a22 + 5a04)κ2

+ 2(5a230 + 9a221 + 6a30a12 + 6a21a03 + 9a212 + 5a203).

The inverse of the denominator obtained using the Taylor expansion of 1/(1 + X) is 1
d
=

2
π2t6

(1− w2t
2 + o(t3)). Finally, the quadratic parameter uq of the algebraic sphere is asymp-

totically expressed as

uq =
1

2

n

d
= uq0 + uq2t

2 + o(t3) (A.4)

with the following coefficients

uq0 = −H

2
,

uq2 =
1

48
(21H3 − 13HK − 2∆H).

This polynomial truncated at order 1 gives the result shown by Equation 1.17 in Theorem 1.

Linear parameter The linear parameter uℓ of the sphere is

uℓ =
1

At

(
∫∫

Ct
n(r, θ)− 2uq

∫∫

Ct
f(r, θ)

)

=





uℓx2t
2 + uℓx4t

4 + o(t4)

uℓy2
t2 + uℓy4

t4 + o(t4)

1 + uℓz2t
2 + uℓz4t

4 + o(t5)



 , (A.5)
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with

uℓx2 = −a30 + a12
8

,

uℓy2
= −a03 + a21

8
,

uℓx4 =
1

48

(

2(a30 + 3a12)H
2 − (a12 + a30)K + 4a30κ

2
1 − (a50 + 2a32 + a14)/4

)

,

uℓy4
=

1

48

(

2(a03 + 3a21)H
2 − (a03 + a21)K + 4a03κ

2
2 − (a41 + 2a23 + a05)/4

)

,

uℓz2 = −H2 −K

4
,

uℓz4 =
1

192
(165H4 − 157KH2 + 24K2 − 4(a40 + a22)κ1 − 4(a04 + a22)κ2

− 3a230 − 2a12a30 − 7a221 − 2a03a21 − 7a212 − 3a203),

which gives the polynomial truncated at order 3 of Equation 1.18 in Theorem 1.

Constant parameter The constant parameter uc is expressed in the smooth setting by

uc = − 1

At

(

uℓ .

∫∫

Ct
f(r, θ) r drdθ + uq

∫∫

Ct
f(r, θ) . f(r, θ) r drdθ

)

(A.6)

Its asymptotic expansion is simply uc = uc4t
4 + o(t4) with uc4 = − 1

96(9H
3 − 5KH −∆H)

which is the resulting Equation 1.19 of Theorem 1.

A.4 Algebraic sphere projection (proof of Theorem 2)

Once the asymptotic versions of uc, uℓ and uq are obtained, we determine now the Taylor

polynomials of the projection operator ϕ of Equation 1.10. Since the point p to be projected

is located at the origin of the principal frame, the projection is simplified to

ϕ(p) =







− uc

‖uℓ‖2uℓ if uq = 0

−‖uℓ‖−
√
∆

2uq‖uℓ‖ uℓ otherwise
(A.7)

In the following we denote by ϕ̄ the planar projection (if uq = 0) and by ϕ̃ the spherical one.

Norm of uℓ The squared norm of uℓ (Equation A.5) is expanded as ‖uℓ‖2 = 1 + α2t
2 +

α4t
4 + o(t5) with

α2 = −H2 −K

2
,

α4 =
1

192

(

2(171H4 − 169H2K + 30K2)− 8(a40κ1 + a04κ2 + 2a22H)

−3(a230 + a203)− 11(a221 + a212) + 2(a21a03 + a12a30)
)

, (A.8)
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hence the Equation 1.20. The norm, inverse norm and inverse squared norm of uℓ required

for the projection are obtained using Taylor expansion of
√
1 +X , 1/

√
1 +X and 1/(1+X)

respectively

‖uℓ‖ = 1 +
α2

2
t2 +

1

8
(4α4 − α2

2)t
4 + o(t5),

1

‖uℓ‖
= 1− α2

2
t2 +

1

8
(3α2

2 − 4α4)t
4 + o(t5),

1

‖uℓ‖2
= 1− α2t

2 + (α2
2 − α4)t

4 + o(t5).

Planar projection In this paragraph, the parameter uq is assumed to be null, so the projec-

tion operator we analyze is the planar projection ϕ̄. We first compute the intermediate value

of the ratio of uc and ‖uℓ‖2. It is approximated by uc/‖uℓ‖2 = uc4t
4 + o(t5) where uc4 is the

coefficient of uc (Equation A.6). Finally the expression of the planar projection is

ϕ̄ =





ϕ̄x6t
6 + o(t7)

ϕ̄y6t
6 + o(t7)

ϕ̄z4t
4 + o(t5)



 , (A.9)

with the following coefficients

ϕ̄x6 = − 1

768
(a30 + a12)(9H

3 − 5KH −∆H),

ϕ̄y6 = − 1

768
(a03 + a21)(9H

3 − 5KH −∆H),

ϕ̄z4 =
1

96
(9H3 − 5KH −∆H).

Since uq evaluates to zero, all its coefficients in Equation A.4 are null, which implies H = 0.

Therefore, the truncation of ϕ̄ to the order 5 gives the Equation 1.21 in Theorem 2.

Spherical projection We now analyze the projection when uq 6= 0 that corresponds to

the projection on a sphere denoted ϕ̃. We first calculate the asymptotic expansion of several

intermediate variables before the resulting Equation A.10. The algebraic sphere discriminant

∆ defined by ‖uℓ‖2 − 4uquc (Equation 1.11) and its square root are

∆ = 1 + β2t
2 + β4t

4 + o(t5),
√
∆ = 1 + γ2t

2 + γ4t
4 + o(t5).

The last equation is obtained using the Taylor expansion of
√
1 +X . The associated coeffi-

cients are β2 = uℓz2, β4 = α4 − 4 uq0 uc4, γ2 = β2/2, and γ4 = (4β4 − β2
2)/8. They include

uℓz2 (Equation A.5), α4 (Equation A.8), uq0 (Equation A.4), and uc0 (Equation A.6). The prod-

uct of uq and the norm of uℓ as well as its inverse are given by uq‖uℓ‖ = δ0 + δ2t
2 + o(t3)

and 1
uq‖uℓ‖ = η0 + η2t

2 + o(t3) which is obtained using the Taylor expansion of 1/(1 +X).

Their coefficients are δ0 = uq0, δ2 = uq2 + uq0 uℓz2, η0 = 1/δ0, and η2 = −δ2/δ
2
0 .
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Finally, the previous results can be gathered to calculate the spherical projection (in case

uq 6= 0), which results in

ϕ̃ =





ϕ̃x6t
6 + o(t7)

ϕ̃y6t
6 + o(t7)

ϕ̃y4t
4 + o(t5)



 , (A.10)

with the coefficient ϕ̃z4 = 1
96(9H

3 − 5KH − ∆H). To conclude, the truncation of Equa-

tion A.10 to the order 5 gives the Equation 1.22 in Theorem 2.
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Supplemental results of Chapter 2
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This appendix provides more results on the different interactive tools we propose in Sec-

tion 2.4.

B.1 Persistence exploration

Figure B.1: Tri. Persistence thresholds : 20, 25, 30

Figure B.2: Stairs. Persistence thresholds : 10, 15, 20, 25, 30
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Figure B.3: Lans. Persistence thresholds : 5, 10, 15, 20, 25

Figure B.4: Church. Persistence thresholds : 5, 10, 15, 20, 25

Figure B.5: Pisa. Persistence thresholds : 5, 10, 15, 20, 25

Figure B.6: Euler. Persistence thresholds : 10, 15, 20, 25, 30, 35

Figure B.7: Cubes. Persistence thresholds : 10, 15, 20, 25, 30
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B.2 Scale-Space exploration

Figure B.8: Stairs. Scale threshold : 0, 15, 20, 25, 30

Figure B.9: Lans. Scale threshold : 5, 10, 15, 20, 25

Figure B.10: Church. Scale threshold : 5, 10, 15, 20, 25, 30

Figure B.11: Pisa. Scale threshold : 5, 10, 15, 20, 25
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Figure B.12: Loudun. Scale threshold : 5, 10, 15, 20, 25, 30

B.3 Brush Reconstruction

Figure B.13: Lans. Brush reconstruction

Figure B.14: Loudun. Brush reconstruction
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B.4 Similarity Search

Figure B.15: Stairs. Similarity Search with parameters : 5,5,100,90

Figure B.16: Lans. Similarity Search with parameters : 5,5,100,5
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Figure B.17: Pisa. Similarity Search with parameters : 5,5,100,10



Appendix C

Complete comparison of Chapter 3

The following tables detail the numerical comparison of Table 3.1 (see also [Thompson 2019]).

Model PCs:A PCs:C SBSE MHT1 MHT2 ours

1 5.924 0.225 0.225 1.570 1.570 0.675

2 0.128 1.643 1.407 0.071 0.060 0.079

3 0.006 0.184 0.388 0.061 0.061 0.278

4 3.694 2.771 3.047 3.555 3.555 0.258

5 1.019 2.100 0.887 1.019 1.019 0.921

6 1.101 1.101 1.399 1.101 1.276 2.246

7 0.043 0.031 0.018 0.078 0.078 0.026

8 0.039 0.028 0.062 0.044 0.044 0.037

9 0.260 1.699 4.288 1.442 1.442 1.716

10 0.723 0.582 2.427 4.585 4.585 2.348

11 0.043 0.035 0.091 0.045 0.045 0.039

12 0.036 0.064 0.062 0.040 0.038 0.220

13 0.060 0.091 0.068 0.067 0.067 0.070

14 0.019 0.027 0.024 0.010 0.010 0.008

15 0.090 0.077 0.090 0.030 0.030 0.145

Average 0.879 0.710 0.966 0.915 0.925 0.604

Table C.1: Overall Hausdorff distances.

Model PCs:A PCs:C SBSE MHT1 MHT2 ours

1 0.352 0.354 0.345 0.452 0.452 0.479

2 0.494 0.475 0.421 0.210 0.213 0.482

3 0.492 0.508 0.411 0.292 0.292 0.383

4 0.496 0.513 0.342 0.449 0.449 0.392

5 0.586 0.582 0.427 0.555 0.555 0.563

6 0.446 0.467 0.279 0.445 0.451 0.525

7 0.426 0.508 0.306 0.501 0.501 0.550

8 0.412 0.498 0.316 0.518 0.518 0.543

9 0.533 0.502 0.221 0.474 0.474 0.447

10 0.466 0.498 0.425 0.402 0.402 0.516

11 0.579 0.554 0.389 0.562 0.562 0.562

12 0.711 0.727 0.548 0.667 0.637 0.666

13 0.553 0.537 0.298 0.976 0.976 0.405

14 0.565 0.517 0.304 0.882 0.882 0.512

15 0.659 0.631 0.584 0.917 0.917 0.536

Average 0.518 0.525 0.374 0.553 0.552 0.504

Table C.2: Overall Dice coefficients.
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Model Curve SBSE MHT1 MHT2 ours

1

1 0.604 0.013 0.013 0.014

2 0.601 0.034 0.034 0.036

3 0.575 0.110 0.110 0.084

4 - 0.064 0.064 0.041

5 0.555 0.035 0.035 0.056

6 0.527 0.118 0.118 0.128

7 0.541 0.062 0.062 0.027

8 - - - 0.049

10 0.547 0.081 0.081 0.082

2

1 0.673 0.674 0.016 0.171

2 0.467 0.468 0.013 0.081

3 0.461 0.461 0.015 0.013

4 0.681 0.681 0.019 0.118

5 0.686 0.688 0.019 0.155

6 0.473 0.475 0.018 0.127

7 0.461 0.462 0.017 0.166

8 0.475 0.476 0.022 0.146

9 0.453 0.454 0.017 0.169

10 0.674 0.674 0.018 0.185

11 0.686 0.686 0.022 0.146

12 0.683 0.685 0.016 0.131

3
1 - - - 0.172

2 0.414 0.062 0.062 0.097

4
1 0.048 0.036 0.036 0.313

2 0.124 - - 0.027

5 1 0.887 1.086 1.086 0.470

6
1 - - 0.561 0.079

2 0.060 1.213 1.213 0.279

7 1 0.070 0.048 0.048 0.22

8 1 0.064 0.046 0.046 0.314

9 1 - 0.071 0.071 0.228

10
1 - 0.049 0.049 0.15

2 - - - -

11

1 0.102 0.033 0.033 0.035

2 0.028 0.048 0.048 0.062

3 - 0.015 0.136 0.013

4 0.171 0.062 0.062 0.039

5 - 0.006 0.006 0.028

12

1 0.137 0.065 0.143 0.083

2 - 0.069 0.155 0.008

3 - 0.019 0.078 0.023

4 0.027 0.029 0.029 0.051

5 0.082 0.031 0.097 0.026

13 1 0.035 0.067 0.067 0.076

14

1 0.716 0.003 0.003 0.006

2 0.464 0.011 0.011 0.006

3 0.464 0.003 0.003 0.007

4 0.470 0.006 0.006 0.007

5 0.672 0.006 0.006 0.008

6 0.654 0.015 0.015 0.007

7 0.655 0.010 0.010 0.007

8 0.667 0.069 0.069 0.006

9 0.721 0.012 0.012 0.007

10 0.703 0.006 0.006 0.007

11 0.708 0.004 0.004 0.007

12 0.500 0.012 0.012 0.007

13 0.494 0.011 0.011 0.007

14 0.513 0.004 0.004 0.007

15 0.519 0.004 0.004 0.007

16 0.470 0.009 0.009 0.006

15
1 0.260 0.030 0.030 -

2 0.151 0.013 0.013 0.022

Average 0.448 0.187 0.086 0.084

Table C.3: Detailed Hausdorff distances.

Model Curve SBSE MHT1 MHT2 ours

1

1 0.121 0.636 0.636 0.650

2 0.145 0.413 0.413 0.450

3 0.244 0.503 0.503 0.435

4 - 0.445 0.445 0.499

5 0.180 0.578 0.578 0.434

6 0.214 0.481 0.481 0.458

7 0.041 0.338 0.338 0.382

8 - - - 0.447

10 0.126 0.334 0.334 0.354

2

1 0.094 0.025 0.048 0.296

2 0.194 0.147 0.449 0.542

3 0.164 0.119 0.332 0.633

4 0.265 0.176 0.461 0.457

5 0.060 0.033 0.082 0.102

6 0.077 0.009 0.029 0.537

7 0.041 0.016 0.035 0.076

8 0.062 0.018 0.044 0.337

9 0.029 0.015 0.019 0.339

10 0.104 0.022 0.038 0.032

11 0.078 0.037 0.044 0.248

12 0.174 0.107 0.282 0.474

3
1 - - - 0.443

2 0.586 0.497 0.497 0.487

4
1 0.300 0.426 0.426 0.126

2 0.159 - - 0.590

5 1 0.381 0.414 0.414 0.304

6
1 - - 0.046 0.663

2 0.318 0.516 0.516 0.357

7 1 0.333 0.528 0.528 0.479

8 1 0.313 0.533 0.533 0.454

9 1 - 0.390 0.390 0.270

10
1 - 0.311 0.311 0.394

2 - - - -

11

1 0.497 0.680 0.680 0.627

2 0.367 0.404 0.404 0.393

3 - 0.553 0.553 0.546

4 0.043 0.489 0.489 0.511

5 - 0.705 0.705 0.778

12

1 0.190 0.535 0.230 0.588

2 - 0.713 0.131 0.817

3 - 0.286 0.237 0.137

4 0.553 0.514 0.514 0.572

5 0.557 0.774 0.450 0.766

13 1 0.574 0.976 0.976 0.567

14

1 0.227 0.979 0.979 0.559

2 0.224 0.987 0.987 0.529

3 0.219 0.978 0.978 0.509

4 0.002 0.942 0.942 0.450

5 0.001 0.795 0.795 0.489

6 0.027 0.646 0.646 0.657

7 0.178 0.739 0.739 0.655

8 0.153 0.667 0.667 0.576

9 0.002 0.897 0.897 0.478

10 0.227 0.919 0.919 0.516

11 0.004 0.952 0.952 0.465

12 0.000 0.956 0.956 0.446

13 0.226 0.954 0.954 0.510

14 0.225 0.983 0.983 0.465

15 0.000 0.980 0.980 0.464

16 0.002 0.907 0.907 0.466

15
1 0.512 0.913 0.913 -

2 0.732 0.921 0.921 0.662

Average 0.207 0.541 0.530 0.466

Table C.4: Detailed Dice coefficients.
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Abstract

3D acquisition techniques like photogrammetry and laser scanning are commonly used in

numerous fields such as reverse engineering, archeology, robotics and urban planning. The

main objective is to get virtual versions of real objects in order to visualize, analyze and process

them easily. Acquisition techniques become more and more powerful and affordable which

creates important needs to process efficiently the resulting various and massive 3D data.

Data are usually obtained in the form of unstructured 3D point cloud sampling the scanned

surface. Traditional signal processing methods cannot be directly applied due to the lack of

spatial parametrization. Points are only represented by their 3D coordinates without any par-

ticular order.

This thesis focuses on the notion of scale of analysis defined by the size of the neighbor-

hood used to locally characterize the point-sampled surface. The analysis at different scales

enables to consider various shapes which increases the analysis pertinence and the robustness

to acquired data imperfections.

We first present some theoretical and practical results on curvature estimation adapted to

a multi-scale and multi-resolution representation of point clouds. They are used to develop

multi-scale algorithms for the recognition of planar and anisotropic shapes such as cylinders

and feature curves. Finally, we propose to compute a global 2D parametrization of the under-

lying surface directly from the 3D unstructured point cloud.

Résumé

Les techniques d’acquisition numérique 3D comme la photogrammétrie ou les scanners laser

sont couramment utilisées dans de nombreux domaines d’applications tels que l’ingénierie

inverse, l’archéologie, la robotique, ou l’urbanisme. Le principal objectif est d’obtenir des

versions virtuels d’objets réels afin de les visualiser, analyser et traiter plus facilement. Ces

techniques d’acquisition deviennent de plus en plus performantes et accessibles, créant un

besoin important de traitement efficace des données 3D variées et massives qui en résultent.

Les données sont souvent obtenues sont sous la forme de nuage de points 3D non-

structurés qui échantillonnent la surface scannée. Les méthodes traditionnelles de traitement

du signal ne peuvent alors s’appliquer directement par manque de paramétrisation spatiale,

les points étant explicités par leur coordonnées 3D, sans ordre particulier.

Dans cette thèse nous nous focalisons sur la notion d’échelle d’analyse qui est définie par

la taille du voisinage utilisé pour caractériser localement la surface échantillonnée. L’analyse

à différentes échelles permet de considérer des formes variées et ainsi rendre l’analyse plus

pertinente et plus robuste aux imperfections des données acquises.

Nous présentons d’abord des résultats théoriques et pratiques sur l’estimation de courbure

adaptée à une représentation multi-échelle et multi-résolution de nuage de points. Nous les

utilisons pour développer des algorithmesmulti-échelle de reconnaissance de formes planaires

et anisotropes comme les cylindres et les lignes caractéristiques. Enfin, nous proposons de

calculer une paramétrisation 2D globale de la surface sous-jacente directement à partir de son

nuage de points 3D non-structurés.




