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Résumé

Dans le domaine de la fabrication, la détection d’anomalies telles que les défauts et les

défaillances mécaniques permet de lancer des tâches de maintenance prédictive, qui visent

à prévoir les défauts, les erreurs et les défaillances futurs et à permettre des actions de main-

tenance. Avec la tendance de l’industrie 4.0, les tâches de maintenance prédictive bénéfi-

cient de technologies avancées telles que les systèmes cyberphysiques (CPS), l’Internet des

objets (IoT) et l’informatique dématérialisée (cloud computing). Ces technologies avancées

permettent la collecte et le traitement de données de capteurs qui contiennent des mesures

de signaux physiques de machines, tels que la température, la tension et les vibrations.

Cependant, en raison de la nature hétérogène des données industrielles, les connais-

sances extraites des données industrielles sont parfois présentées dans une structure com-

plexe. Des méthodes formelles de représentation des connaissances sont donc nécessaires

pour faciliter la compréhension et l’exploitation des connaissances. En outre, comme les

CPSs sont de plus en plus axées sur la connaissance, une représentation uniforme de la con-

naissance des ressources physiques et des capacités de raisonnement pour les tâches analy-

tiques est nécessaire pour automatiser les processus de prise de décision dans les CPSs. Ces

problèmes constituent des obstacles pour les opérateurs de machines qui doivent effectuer

des opérations de maintenance appropriées.

Pour relever les défis susmentionnés, nous proposons dans cette thèse une nouvelle

approche sémantique pour faciliter les tâches de maintenance prédictive dans les proces-

sus de fabrication. En particulier, nous proposons quatre contributions principales: i) un

cadre ontologique à trois niveaux qui est l’élément central d’un système de maintenance

prédictive basé sur la connaissance; ii) une nouvelle approche sémantique hybride pour

automatiser les tâches de prédiction des pannes de machines, qui est basée sur l’utilisation

combinée de chroniques (un type plus descriptif de modèles séquentiels) et de technolo-

gies sémantiques; iii) a new approach that uses clustering methods with Semantic Web Rule

Language (SWRL) rules to assess failures according to their criticality levels; iv) une nou-

velle approche d’affinement de la base de règles qui utilise des mesures de qualité des règles

comme références pour affiner une base de règles dans un système de maintenance prédic-

tive basé sur la connaissance. Ces approches ont été validées sur des ensembles de données

réelles et synthétiques.

Mots-clés : Industrie 4.0, Maintenance prédictive, Prévision des défaillances de ma-

chines, Évaluation de la criticité des défaillances, Ingénierie de l’ontologie, Rule-based Rea-

soning, Rule Base Refinement, Extraction des chronicles
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Abstract

In the manufacturing domain, the detection of anomalies such as mechanical faults and

failures enables the launching of predictive maintenance tasks, which aim to predict future

faults, errors, and failures and also enable maintenance actions. With the trend of Indus-

try 4.0, predictive maintenance tasks are benefiting from advanced technologies such as

Cyber-Physical Systems (CPS), the Internet of Things (IoT), and Cloud Computing. These

advanced technologies enable the collection and processing of sensor data that contain

measurements of physical signals of machinery, such as temperature, voltage, and vibra-

tion.

However, due to the heterogeneous nature of industrial data, sometimes the knowledge

extracted from industrial data is presented in a complex structure. Therefore formal knowl-

edge representation methods are required to facilitate the understanding and exploitation

of the knowledge. Furthermore, as the CPSs are becoming more and more knowledge-

intensive, uniform knowledge representation of physical resources and reasoning capabili-

ties for analytic tasks are needed to automate the decision-making processes in CPSs. These

issues bring obstacles to machine operators to perform appropriate maintenance actions.

To address the aforementioned challenges, in this thesis, we propose a novel semantic

approach to facilitate predictive maintenance tasks in manufacturing processes. In partic-

ular, we propose four main contributions: i) a three-layered ontological framework that is

the core component of a knowledge-based predictive maintenance system; ii) a novel hy-

brid semantic approach to automate machinery failure prediction tasks, which is based on

the combined use of chronicles (a more descriptive type of sequential patterns) and seman-

tic technologies; iii) a new approach that uses clustering methods with Semantic Web Rule

Language (SWRL) rules to assess failures according to their criticality levels; iv) a novel rule

base refinement approach that uses rule quality measures as references to refine a rule base

within a knowledge-based predictive maintenance system. These approaches have been

validated on both real-world and synthetic data sets.

Keywords: Industry 4.0, Predictive Maintenance, Machinery Failure Prediction, Fail-

ure Criticality Assessment, Ontology Engineering, Rule-based Reasoning, Rule Base Refine-

ment, Chronicle Mining
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Synthèse de la thèse en français
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Chapitre 1

État de l’art

1.1 Contexte de la thèse

1.1.1 Contexte du projet

Durant la fabrication, la détection précoce d’anomalies permet de lancer des tâches

de maintenance prédictive, qui visent à prédire les défauts, erreurs et pannes futurs

et permettent également de planifier des actions de maintenance. Normalement,

une tâche de maintenance prédictive est basée sur la surveillance d’un paramètre

de diagnostic mesurable du système, qui identifie l’état d’un système [GDBR02]. De

cette façon, des décisions de maintenance, telles que l’appel d’un opérateur, sont

proposées en fonction de la gravité des anomalies afin d’éviter les arrêts de la chaîne

de production et de minimiser les pertes économiques. Plusieurs techniques ont été

utilisées pour détecter l’usure des unités mécaniques et pour prédire les conditions

futures des machines, telles que l’apprentissage machine, fouille de données, les

statistiques et la théorie de l’information [CBK09].

Toutefois, à mesure que les données recueillies deviennent plus hétérogènes et

complexes, il devient difficile pour les opérateurs de réagir aux défaillances méca-

niques en temps utile et avec précision. Dans le contexte de l’industrie 4.0, des tech-

niques avancées telles que l’internet industriel des objets (IIoT), les systèmes cyber-

physiques (CPS) et l’informatique en nuage (Cloud Computing) permettent d’inter-

connecter les machines et les systèmes de production dans des usines intelligentes

pour échanger des données en continu. Cette tendance a donné aux fabricants la

capacité de gérer et d’utiliser efficacement de grandes collections de données. En

même temps, cette tendance a induit la demande de méthodologies permettant de
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détecter automatiquement les anomalies sur les lignes de production.

Au sein de cette perpective de l’Industry 4.0, cette thèse est réalisée dans le cadre

du projet européen Interreg HALFBACK 1. L’objectif principal du projet HALFBACK

est d’assurer la haute disponibilité des processus de fabrication en anticipant les dé-

faillances des machines et des outils, la perte de qualité des produits, les problèmes

de flux de ressources, etc. et en programmant la maintenance, le remplacement des

composants, la replanification des processus, voire la reprise de la production par

une autre usine, de manière optimisée et intelligente. La figure 1.1 montre l’archi-

tecture globale du projet.

FIGURE 1.1 – L’architecture globale du projet HALFBACK.

Dans le cadre du projet, de grandes quantités de données industrielles sont

recueillies à l’aide de capteurs situés sur les machines et les outils. Des informa-

tions supplémentaires sont collectées à partir de divers outils, de l’environnement

de fabrication, du produit lui-même ainsi que de l’expérience de l’opérateur de

la machine. Des algorithmes d’apprentissage adaptés aux mégadonnées analysent

les données collectées, et sont associés à des technologies sémantiques pour com-

prendre le processus en prenant en compte l’expérience des opérateurs, permet-

tant finalement de prédire les dommages aux machines, la perte de qualité ou les

demandes de maintenance dans le futur. Cela permet aux entreprises d’agir avant

que le processus de fabrication ne s’arrête.

En outre, les profils virtuels des machines (empreintes) sont agrégés dans le

1http ://halfback.in.hs-furtwangen.de/home/
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nuage et enregistrés auprès d’un “courtier en machines à haute disponibilité”. L’en-

registrement de l’empreinte de la machine avec, en autre, son emplacement et de

sa disponibilité, permet au courtier de proposer la machine comme un service à

d’autres entreprises. En cas de panne inévitable d’une machine, le logiciel HALF-

BACK utilise le “Courtier en machines à haute disponibilité” pour rechercher un

remplacement adéquat de la machine afin de transférer la production dans une

autre usine pour garantir une haute disponibilité.

Le projet HALFBACK vise à améliorer la compétitivité des petites et moyennes

entreprises (PME) manufacturières le long du Rhin par leur mise en réseau avec

cette approche innovante de la fabrication en tant que service.

Dans le cadre du projet HALFBACK, cette thèse est réalisée au Laboratoire d’In-

formatique, du Traitement de l’Information et des Systèmes (LITIS) de l’Institut Na-

tional des Sciences Appliquées (INSA Rouen)/Normandie Université, France. Les

travaux sont menés en collaboration avec le Laboratoire des Sciences de l’Ingénieur,

de l’Informatique et de l’Imagerie (ICUBE) à l’INSA de Strasbourg, France, et le la-

boratoire de recherche Could (Institute for Cloud Computing and IT Security (IFC-

CITS)) à l’Université de Furtwangen (HFU), Allemagne.

1.1.2 Contributions de cette thèse

Pour répondre à ces défis, cette thèse a du aborder des problématiques appartenant

à plusieurs domaines de recherche. C’est pourquoi ses principales contributions,

esquissées ci-dessous, ont été proposées dans de multiples domaines :

• Développement de l’ontologie : dans cet axe de travail, un cadre ontologique,

coeur du système de maintenance prédictive basé sur la connaissance, a

été développé. Ce cadre se focalise sur une représentation ontologique des

connaissances en matière de maintenance prédictive dans le domaine de

la fabrication. Il comprend une ontologie de référence pour représenter les

concepts et les relations générales de maintenance prédictive et un ensemble

d’ontologies de domaine pour formaliser les connaissances spécifiques au

domaine de la fabrication et de la surveillance des conditions.

• Prévision de la défaillance des machines : pour automatiser les tâches de pré-

vision de la défaillance dans l’industrie, une nouvelle approche sémantique

hybride basée sur l’utilisation combinée de la fouille de données et des tech-

nologies sémantiques a été introduite. Dans le cadre de l’approche séman-
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tique, l’extraction de données est utilisée pour prédire les futures défaillances

des machines industrielles surveillées, et les ontologies de domaine avec leurs

extensions basées sur des règles sont utilisées pour prédire les contraintes

temporelles des défaillances et pour représenter les résultats prédictifs de ma-

nière formelle.

• Classification des défaillances de machines : en plus de prédire les contraintes

temporelles des défaillances de machines, nous nous intéressons également

à l’identification de la criticité des défaillances. La classification de la criticité

des défaillances permet de lancer des signaux d’alerte à différents niveaux,

grâce auxquels les opérateurs de machines peuvent hiérarchiser les actions

de maintenance pour les défaillances de niveau de criticité supérieur par rap-

port à celles de niveau inférieur. Dans cette thèse, une nouvelle approche pour

classer les défaillances selon leur niveau de criticité est proposée. L’approche

est mixte : basée sur des algorithmes de classification et des technologies sé-

mantiques : les algorthmes de classification sont utilisés pour apprendre la

criticité des défaillances en se basant sur les données historiques de la ma-

chine, et les technologies sémantiques utilisent les résultats de l’apprentis-

sage de la machine pour prédire le moment des défaillances et leur criticité.

• Affinement de la base de règles : Lorsque le nombre de règles extraites des

données historiques des machines est important, cela peut réduire l’efficacité

du raisonnement basé sur les règles d’un système basé sur la connaissance.

Pour réduire le nombre de règles extraites et pour obtenir une meilleure qua-

lité de la base de règles, une approche basée sur l’optimisation multi-objectifs

est proposée. L’approche vise à maximiser les critères Précision et Couverture

pour élaguer une base de règles.

• Capitalisation de l’expérience : les modèles de connaissance dans un système

basé sur la connaissance peuvent souffrir de la question de l’incomplétude.

Pour surmonter ce problème, une nouvelle approche de la capitalisation de

l’expérience qui saisit l’expérience des experts sous forme de règles d’experts

a été proposée. Dans le cadre de l’approche proposée, une méthode d’inté-

gration de la base de règles pour combiner les règles de chronique et les règles

d’experts est développée. Des critères fondés sur la Redondance, la Contradic-

tion, et la Subsomption sont définis et devront être détectés pour permettre

une intégration cohérente de la base de règles.
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1.2 Maintenance prédictive dans le contexte de l’indus-

trie 4.0

Dans ce chapitre, nous donnons les connaissances de base de la maintenance pré-

dictive pour l’industrie 4.0. Nous présentons d’abord les principaux composants de

l’industrie 4.0. Nous démontrons ensuite le concept de systèmes cyberphysiques

(CPS) et présentons l’architecture à 5 niveaux d’un CPS. Enfin, nous abordons l’uti-

lisation d’un CPS dans le contexte de la maintenance prédictive de l’industrie 4.0.

Le terme “Industrie 4.0” désigne la tendance actuelle de l’échange et du trai-

tement automatiques des données dans les usines de fabrication. Introduit à l’ori-

gine en Allemagne, le terme est rapidement devenu un mot à la mode à l’échelle

mondiale [WSJ17]. Suivant la notion de technologie d’automatisation introduite

lors de la troisième révolution industrielle, l’industrie 4.0 vise à utiliser les tech-

nologies Internet pour créer des produits intelligents, une production intelligente

et des services intelligents [WSJ17]. La figure 1.2 montre l’histoire des révolutions

industrielles et les techniques clés au sein de chaque révolution. Avec la tendance

actuelle de l’industrie 4.0, les CPS, l’internet des objets, le "Cloud Computing" et

les techniques d’analyse des “mégadonnées” sont devenus les composants clés qui

permettent l’interconnexion automatique et l’échange de données entre les entités

manufacturières.

FIGURE 1.2 – Histoire de la révolution industrielle. 2

2https ://www.netobjex.com/how-humans-are-empowering-digital-transformation-in-industry-
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Dans le secteur manufacturier actuel, la concurrence mondiale croissante, l’évo-

lution rapide des technologies et la perception qu’ont les clients de la qualité des

produits nécessitent des plans stratégiques d’évolution pour utiliser des techniques

de fabrication avancées. Dans l’industrie 4.0, l’échange et l’analyse automatiques

des données ouvrent aux fabricants des possibilités d’optimiser davantage les pro-

cessus de production. La collecte de données provenant de divers composants

d’une chaîne de production et leur analyse dans une infrastructure Cloud évolu-

tive peut améliorer considérablement la productivité, la fiabilité et la disponibilité

des systèmes de production dans des environnements hétérogènes [LBK15]. Avec

la tendance actuelle à l’automatisation et à l’échange de données dans les techno-

logies de fabrication, les usines de fabrication traditionnelles se transforment en

usines dites "intelligentes", qui appliquent des technologies de détection et de cal-

cul de pointe à différents processus de fabrication et systèmes de production.

1.3 Modèles existants pour la maintenance prédictive

industrielle

Au cours des dernières décennies, un nombre considérable d’efforts de recherche

ont été entrepris pour aborder le développement de différents modèles pour la

maintenance prédictive industrielle. Pour une tâche de maintenance prédictive, le

choix d’un modèle approprié est vital pour les fabricants. Une sélection appropriée

d’un modèle nécessite non seulement une compréhension mathématique appro-

fondie de celui-ci, mais aussi la connaissance de la manière de le mettre en œuvre

dans des scénarios du monde réel.

Dans ce chapitre, nous classons les modèles existants pour la maintenance pré-

dictive industrielle en quatre catégories : i) les modèles basés sur la connaissance ;

ii) les modèles physiques ; iii) les modèles basés sur les données; et iv) les modèles

hybrides. Nous présentons également les avantages et les inconvénients de chaque

type de modèles [SHM11].

La Fig. 1.3 résume notre classification des approches de maintenance prédic-

tive les plus courantes, où les approches existantes sont structurées en quatre ni-

veaux, marqués par des couleurs différentes. Le rectangle de couleur bleue repré-

sente la super classe abstraite de l’ensemble des méthodes de maintenance prédic-

4-0/
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CHAPITRE 1. ÉTAT DE L’ART

tive.Nous la divisons en quatre sous-classes principales (les rectangles de couleur

verte). Ensuite, des modèles plus spécifiques sont présentés par les rectangles de

couleur jaune. Enfin, les modèles sont classés en techniques plus spécifiques, qui

sont représentées par les rectangles gris.

FIGURE 1.3 – Classification des approches communes en maintenance prédictive.

1.4 Systèmes fondés sur la connaissance : fondements

théoriques

Un système fondé sur la connaissance (KBS knowledge-based system) maintient une

base de connaissances qui stocke les symboles d’un modèle de calcul sous forme

d’énoncés sur le domaine, et effectue un raisonnement en manipulant ces symboles

[Gri09]. Les systèmes basés sur la connaissance utilisent des représentations expli-

cites de la connaissance sous forme de mots et de symboles, ce qui facilite la com-

préhension de la connaissance par un humain ou un ordinateur. De plus, ils aident

à résoudre le problème du fossé sémantique (articulation entre les données numé-

riques et les connaissances conceptuelles) et assurent l’interopérabilité sémantique

entre les différents systèmes et utilisateurs.
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De nos jours, les organisations et les entreprises du secteur manufacturier sont

de plus en plus axées sur la collaboration et la connaissance [OBGM11]. Cependant,

une grande partie de ces précieuses connaissances sont cachées et ne sont pas di-

rectement accessibles aux utilisateurs. Récemment, de nombreuses entreprises et

organisations ont réalisé l’importance de la saisie, de la structuration, de la repré-

sentation et de la réutilisation des connaissances pour parvenir à des prises de déci-

sion intelligentes [Lei10]. Dans ce contexte, les systèmes basés sur la connaissance

sont des outils puissants pour résoudre des problèmes complexes du monde réel.

Dans cette thèse, nous visons à développer un système basé sur la connaissance

pour faciliter les tâches de maintenance prédictive. Dans ce chapitre, nous présen-

tons les bases théoriques et les concepts de base des systèmes basés sur la connais-

sance, y compris l’architecture classique et la nouvelle architecture KREM (Know-

ledge, Rules, Experience, and Meta-Knowledge) [ZM15, ZMS19].

1.5 Systèmes de maintenance prédictive basés sur la

connaissance : état de l’art

Dans ce chapitre, nous faisons un examen complet des systèmes existants de main-

tenance prédictive basés sur la connaissance. Nous accordons une attention parti-

culière aux modèles ontologiques et à leurs extensions basées sur des règles qui sont

pertinents pour la maintenance prédictive. L’examen des travaux de recherche exis-

tants est classé en trois catégories : i) modèles ontologiques et systèmes à base de

règles pour la modélisation du domaine de la fabrication; ii) modèles ontologiques

et systèmes à base de règles pour la modélisation du domaine de la maintenance

conditionnelle ; iii) modèles ontologiques et systèmes à base de règles pour la mo-

délisation du contexte de fabrication.

L’examen est effectué selon la méthodologie proposée dans [TDS03]. La métho-

dologie adoptée fournit une approche systématique pour guider l’examen d’un su-

jet particulier. Cette approche comporte trois étapes : i) la planification de l’examen;

ii) la réalisation de l’examen; et iii) la communication et la diffusion des résultats

[TDS03]. Nous commençons par mener une étude de cadrage pour identifier la per-

tinence de la littérature dans le domaine de la maintenance prédictive. L’étude de

cadrage comprend l’identification des mots clés, la clarification des règles d’inclu-

sion et d’exclusion et la sélection des bases de données. En conséquence, les travaux

10



CHAPITRE 1. ÉTAT DE L’ART

connexes qui sont pertinents pour la maintenance prédictive sont collectés et syn-

thétisés.

Après l’examen approfondi de la littérature, nous présentons dans les sous-

sections suivantes l’état de l’art des modèles ontologiques et de leurs extensions

basées sur des règles qui sont liées à la maintenance prédictive. Nous précisons

la portée de ces systèmes en identifiant le domaine (fabrication, surveillance des

conditions ou contexte) qu’ils servent.

Nous résumons la couverture du domaine par les modèles de connaissance exis-

tants (ontologies et leurs extensions basées sur des règles) dans le tableau 1.1. Nous

évaluons la couverture du domaine et la portée de ces modèles en examinant si

les concepts clés nécessaires pour décrire le domaine de la maintenance prédictive

sont couverts et décrits formellement. Si un concept est couvert par un modèle de

connaissance, une coche est placée dans le tableau. Dans le cas contraire, une croix

est apposée.

Après avoir examiné les modèles de connaissances mentionnés ci-dessus,

nous voyons qu’aucun d’entre eux ne fournit une représentation satisfaisante des

connaissances des trois sous-domaines. Certains de ces modèles de connaissance

se concentrent sur un domaine étroit, tel que la planification des ressources de fa-

brication, et ils ne formalisent pas les concepts liés à la maintenance prédictive, par

exemple, les états Failure et Fault. En outre, aucun des modèles de connaissance

existants ne fournit une représentation des concepts liés à Signal d’alerte dans les

tâches de maintenance, par exemple, Alerte et Alarme. Pour effectuer une tâche de

maintenance prédictive sur une machine, la base de connaissances d’un système

basé sur la connaissance devrait incorporer non seulement les connaissances in-

terprétables par la machine pour caractériser les entités ou les processus de fabri-

cation qui sont surveillés, mais aussi les connaissances sur la détection et le pro-

nostic des défauts ou des défaillances. Cela nous motive à développer un modèle de

connaissance plus expressif et plus complet qui fournit une représentation riche des

connaissances du domaine dans les domaines de la fabrication, de la surveillance

des conditions et du contexte.
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Chapitre 2

Contributions

2.1 Un cadre ontologique pour les systèmes de mainte-

nance prédictive basés sur la connaissance

Dans ce chapitre, un cadre pour le développement d’un système de maintenance

prédictive fondé sur la connaissance est présenté. Ce cadre est centré autour d’une

représentation ontologique des connaissances en matière de maintenance condi-

tionnelle dans le domaine de la fabrication. Cette représentation comprend une

ontologie de référence pour les concepts et relations générales de la maintenance

conditionnelle, ainsi qu’un ensemble d’ontologies de domaine pour formaliser les

connaissances plus spécifiques liées en particulier au contexte de la fabrication.

L’ontologie de référence centrale est alignée sur l’ontologie UFO (Unified Foun-

dational Ontology), qui est une ontologie de niveau supérieur fournissant des

concepts généraux et des relations à un niveau d’abstraction élevé [GW10]. Les on-

tologies de domaine spécialisent l’ontologie de référence dans les domaines de la

fabrication et de la surveillance des conditions, avec la représentation des connais-

sances spécifiques aux aspects tels que le contexte, le produit, le processus ou les

ressources.

La figure 2.1 montre l’ensemble du cadre ontologique. Les ontologies y sont

structurées dans l’architecture à trois niveaux représentée par les rectangles avec

des lignes pointillées, et correspondant, du bas vers le haut, à des degrés d’abstrac-

tion croissants. Les rectangles arrondis avec des lignes pleines sont des ontologies

ou des modèles conceptuels différents. Les flèches pleines indiquent l’alignement

entre les ontologies.
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FIGURE 2.1 – Le cadre ontologique à trois niveaux.

Le cadre ontologique est élaboré selon une approche “Middle-Out” [RPKC11]. Il

comprend une ontologie qui modélise les concepts et les propriétés de base pour

la surveillance des conditions, appelée CM-core. L’ontologie CM-core contient les

concepts de base liés à la surveillance des conditions, tels que le Système, la Struc-

ture, le Comportement, la Fonction, le Défaut et la Défaillance. La généralité de l’on-

tologie CM-core assure la possibilité de sa spécialisation dans des ontologies de do-

maine plus spécifiques, telles que les ontologies pour la surveillance des conditions

des machines dans l’industrie. Ainsi, l’ontologie CM-core peut être étendue et per-

sonnalisée pour mieux satisfaire les besoins dans des domaines individuels où les

ontologies doivent être utilisées pour renforcer les systèmes d’information. L’on-

tologie CM-core est alignée avec l’ontologie fondamentale UFO, pour obtenir une

conceptualisation rigoureuse. De plus, l’ontologie CM-core est spécialisée dans les

ontologies de domaine, pour intégrer et représenter les connaissances spécifiques

à un domaine.

2.2 Une nouvelle approche sémantique hybride pour la

maintenance prédictive

Comme le domaine de la maintenance prédictive devient de plus en plus axé sur

la connaissance, les tâches effectuées dans ce domaine peuvent souvent bénéfi-

cier de l’incorporation de la connaissance du domaine et du contexte, grâce à la-

quelle la sémantique des résultats de la recherche de chroniques par fouille de

donnée peut être explicitement représentée et clairement interprétée. Les chro-
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niques sont un type de modèles séquentiels, où les événements sont ordonnés, et les

contraintes temporelles parmi ces événements sont décrites comme des intervalles

de temps [SMS+19]. Toutefois, à notre connaissance, aucun travail n’a été proposé

pour combiner l’extraction de chroniques et la sémantique afin de faciliter la main-

tenance prédictive des processus de fabrication. De plus, la plupart des travaux de

recherche existants sur la maintenance prédictive dans le domaine de la fabrica-

tion se concentrent simplement sur la classification des conditions de fonctionne-

ment des machines (par exemple, condition de fonctionnement normal, condition

de panne...), tout en manquant d’extraction d’informations temporelles spécifiques

sur l’occurrence des pannes [SMS+19]. Cela crée des obstacles pour les utilisateurs

qui doivent effectuer des actions de maintenance en tenant compte des contraintes

temporelles.

Ce chapitre propose une nouvelle approche sémantique hybride. L’approche sé-

mantique utilise des ontologies (présentées au chapitre 2) avec leurs extensions ba-

sées sur des règles pour représenter les résultats de l’extraction des chroniques dans

un format sémantique riche, qui améliore la représentation et la réutilisation des

connaissances. En spécifiant la sémantique du domaine et en annotant les données

industrielles avec une sémantique riche et formelle, les ontologies avec leurs exten-

sions basées sur des règles aident à résoudre les problèmes décrits ci-dessus. Plus

précisément, ce chapitre décrit les contributions suivantes :

• Une nouvelle approche sémantique hybride pour automatiser les tâches de

prédiction des pannes de machines, qui est basée sur l’utilisation combinée

de chroniques et de technologies sémantiques.

• Un nouvel algorithme pour transformer les chroniques en règles logiques ba-

sées sur le SWRL, par lequel les résultats prédictifs sont formalisés, donc inter-

prétables à la fois par l’homme et les machines. La transformation proposée

permet la génération automatique de règles SWRL à partir des résultats de la

recherche des chroniques par fouille de données, permettant ainsi une ap-

proche sémantique automatique pour la prédiction des défaillances des ma-

chines.

• Une évaluation de la faisabilité et de l’efficacité de l’approche sémantique

proposée en menant des expériences sur un ensemble de données indus-

trielles réelles. La performance de la construction des règles SWRL et la qua-

lité de la prédiction des défaillances sont évaluées par rapport à l’ensemble
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des données industrielles.

Le lancement d’un tel ensemble de règles prédictives basées sur le SWRL per-

met de prévoir les contraintes temporelles des futures défaillances des machines.

Cela permet aux utilisateurs de prendre d’autres mesures de maintenance, comme

le remplacement des machines-outils utilisées sur la chaîne de production. La per-

formance de la prédiction des défaillances pourrait être améliorée en envisageant

un nouvel ensemble de règles qui raisonnent sur les niveaux de criticité des dé-

faillances. Dans le chapitre suivant, des techniques d’apprentissage automatique

sont utilisées pour classer les niveaux de criticité des défaillances, en fonction des

contraintes temporelles parmi les défaillances et autres événements.

2.3 Évaluation des défaillances de machines sur la base

des niveaux de criticité

Dans le domaine de la maintenance prédictive, la prédiction et l’évaluation de la cri-

ticité des défaillances est une question cruciale pour les fabricants. En obtenant les

niveaux de criticité des différentes défaillances, les opérateurs de machines peuvent

hiérarchiser les actions de maintenance pour les défaillances de niveau de criticité

plus élevé par rapport à celles de niveau inférieur. De cette façon, les résultats de la

prédiction des défaillances peuvent être utilisés pour planifier la maintenance des

machines. Cependant, les approches de maintenance prédictive existantes dans le

domaine de la fabrication se limitent au déploiement de systèmes de surveillance

de l’état des machines pour détecter les anomalies et prévoir le moment des futures

défaillances des machines, tout en ne disposant pas des solutions pour identifier

la criticité des défaillances des machines [AGN19]. Il en résulte un lien manquant

entre les informations temporelles d’une anomalie (par exemple, le moment d’une

future panne de machine) et la criticité de l’anomalie. Pour évaluer la disponibilité

des systèmes de fabrication, la durée de l’arrêt est une considération clé qui indique

la criticité d’une défaillance mécanique [ALRL04]. Par conséquent, la prévision des

moments de défaillance des machines est cruciale pour calculer la durée de l’arrêt

et la criticité des défaillances.

Dans ce chapitre, les travaux du chapitre 2.2 sont prolongés par l’introduction

de deux approches hybrides basées sur l’ontologie pour les tâches de prédiction

et de classification des défaillances. Les approches hybrides basées sur l’ontologie
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sont basées sur l’utilisation combinée de techniques de regroupement et de raison-

nement ontologique. Dans le cadre des approches proposées, nous abordons l’in-

certitude de la criticité des défaillances en adoptant deux cadres d’incertitude : le

regroupement flou de c-means (FCM) [BEF84] et le regroupement probabiliste de

c-means (ECM) [MD08b]. Ces outils sont utilisés pour classer les défaillances en

fonction de leur niveau de criticité.

Les apports de ce chapitre résident tout d’abord dans la formalisation des

connaissances de maintenance prédictive basée sur des ontologies, par lesquelles

les résultats des ECM sont formalisés et la criticité des défaillances est déduite.

Deuxièmement, la classification des défaillances est réalisée par la mise en œuvre

d’une approche d’apprentissage non supervisée. L’approche d’apprentissage non

supervisé utilise des algorithmes FCM et ECM pour regrouper les défaillances en

fonction de leur moment d’occurrence, reflétant leur criticité. Ensuite, chaque

groupe est étiqueté avec un indice de criticité (élevé, moyen ou faible) pour clas-

ser les défaillances en fonction de leurs contraintes de temps et du coût de main-

tenance estimé. Troisièmement, des ontologies et des règles SWRL sont proposées

pour formaliser les résultats de la classification, afin de faciliter la représentation et

l’interprétation des connaissances pour la maintenance prédictive.

L’approche a été validée sur un ensemble de données industrielles réelles et plu-

sieurs ensembles de données synthétiques.

2.4 Utiliser les mesures de qualité des règles pour l’éla-

gage et l’intégration des règles

Comme nous l’avons présenté dans les chapitres 2.2 et 2.3, l’extraction de chro-

niques fréquentes est une technique prometteuse pour prédire non seulement

l’ordre des événements non défaillants mais aussi les intervalles temporels entre

eux. Le résultat de l’extraction de chroniques fréquentes est un ensemble de chro-

niques de défaillances qui se présentent sous la forme de règles logiques. Ce type

de règles (dans ce chapitre, elles sont définies comme règles de la chronique) dé-

crit différents événements ainsi que leurs contraintes temporelles et prédit le temps

d’apparition des futures défaillances.

Normalement, le nombre de règles de chroniques extraites de l’extraction des

chroniques fréquentes est important. En raison d’un certain degré d’impréci-
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sion dans les données du monde réel, certaines des règles de chronique extraites

peuvent souffrir d’une mauvaise qualité. En conséquence, les règles de chronique

de faible qualité (par exemple, les règles avec une faible précision dans la prédic-

tion des échecs) peuvent réduire l’efficacité et la précision du raisonnement basé

sur des règles. Il est donc nécessaire d’utiliser une méthode d’élagage basée sur les

règles pour obtenir un sous-ensemble de règles de haute qualité.

D’autre part, comme les mégadonnées industrielles sont collectées à partir

d’une variété d’appareils et d’environnements, les règles de décision qui en sont ex-

traites peuvent être obtenues à partir de sources hétérogènes. Cela peut causer un

ensemble de problèmes (par exemple, contradiction de règles, subsomption et re-

dondance) lorsque des règles hétérogènes sont combinées pour obtenir un niveau

satisfaisant de performance de raisonnement. L’utilisation d’une base de règles de

faible qualité peut entraîner des décisions de maintenance inappropriées, ce qui

affaiblit les performances des systèmes de maintenance basés sur la connaissance.

Dans ce chapitre, une nouvelle approche d’affinement de la base de règles est

proposée. L’approche proposée consiste en deux méthodes d’affinement des règles

qui visent à améliorer progressivement la qualité d’une base de règles :

• Une méthode d’élagage et de réduction des règles appliquée à la base de

règles obtenue à partir de l’extraction des chroniques fréquentes. Pour réduire

le nombre de règles extraites et obtenir une meilleure qualité de la base de

règles, une approche d’optimisation multi-objectifs est appliquée. L’approche

vise à maximiser la précision et la couverture des règles pour obtenir un en-

semble de règles qualité maximale.

• Une méthode d’intégration des règles pour combiner les règles de chronique

et les règles d’expert. Pour améliorer la performance de la prédiction des dé-

faillances, l’expérience des experts doit être capitalisée sous forme de règles

d’experts lorsque les règles de chronique ne permettent pas de prendre des

décisions correctes. Dans ce travail, nous considérons des règles d’experts qui

ont une structure similaire à celle des chroniques. Lorsque ces règles d’ex-

perts sont intégrées aux règles de chronique, elles peuvent souffrir de pro-

blèmes liés à la redondance, à la contradiction, ou à la subsomption. Dans

ce contexte, une méthode d’intégration des règles permettant de détecter ces

trois problèmes est proposée.
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Les deux méthodes proposées ont été validées sur un ensemble de données in-

dustrielles réelles.

2.5 Le prototype du software : KSPMI

Pour réaliser et automatiser le pipeline de maintenance prédictive susmentionné,

nous avons développé un prototype de logiciel appelé Knowledge-based System for

Predictive Maintenance in Industry 4.0 (KSPMI). Le logiciel utilise à la fois des ap-

proches inductives (exploitation minière chronique et apprentissage machine) et

des approches déductives (ontologies de domaine et raisonnement ontologique)

pour analyser les données industrielles et prévoir les défaillances futures. Dans ce

chapitre, nous présentons d’abord l’environnement et les outils de développement

du prototype du logiciel. Ensuite, nous introduisons les fonctionnalités de base de

celui-ci en suivant les étapes clés de la chaîne de maintenance prédictive : extrac-

tion de chroniques, transformation/génération de règles SWRL, élagage de règles

SWRL, capitalisation de l’expérience/intégration de règles d’experts et prédiction

des défaillances.

2.6 Conclusions et travaux futurs

2.6.1 Contributions de ce travail de thèse

Avec la vision "industrie 4.0", l’industrie manufacturière bénéficie aujourd’hui

d’une tendance à l’automatisation des échanges de données. Les CPS sont au centre

de cette vision et au coeur des usines intelligentes, où les installations de produc-

tion sont capables d’échanger des informations de manière autonome et intelli-

gente. Dans les usines intelligentes, les machines de production sont connectées

pour construire des CPS, qui constituent une nouvelle catégorie de systèmes tech-

niques offrant une interaction étroite entre les composants cybernétiques et phy-

siques. L’échange et l’analyse automatiques des données offrent aux fabricants la

possibilité d’optimiser davantage les processus de production. La collecte de don-

nées provenant des différents composants d’une chaîne de production et leur ana-

lyse dans une infrastructure Cloud évolutive peut améliorer considérablement la

productivité, la fiabilité et la disponibilité des systèmes de production dans des

environnements hétérogènes. Toutefois, l’utilisation de ces technologies avancées
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offre non seulement les avantages susmentionnés aux fabricants, mais leur pose

également des défis, tels que la gestion de données volumineuses et hétérogènes

générées par des machines et des capteurs en réseau.

Cette vision a été réalisée dans le cadre du projet européen Interreg HALFBACK
1, qui vise à assurer des processus de fabrication hautement disponibles, en pré-

voyant les pannes de machines, d’outils, la perte de qualité des produits, les pro-

blèmes de flux de ressources, etc. et en programmant la maintenance, le remplace-

ment des composants, la replanification des processus, voire la reprise de la pro-

duction par une autre usine, de manière optimisée et intelligente.

À mesure que les CPS deviennent de plus en plus complexes, les connaissances

requises pour l’exploitation et la maintenance des systèmes deviennent elles aussi

de plus en plus complexes. Dans ce contexte, des modèles standard et bien définis

pour la saisie de ces connaissances complexes sont requis. Pour développer un tel

modèle, la connaissance du domaine de la fabrication et de la maintenance prédic-

tive doit être structurée de manière formelle, rendant ainsi cette connaissance uti-

lisable par un CPS. En outre, le domaine de la fabrication étant de plus en plus axé

sur les connaissances, une représentation uniforme des ressources physiques et des

capacités de raisonnement est nécessaire pour automatiser les processus décision-

nels dans les CPS. Ces processus décisionnels comprennent l’intégration automa-

tique des ressources, la prédiction et le diagnostic des anomalies, la programmation

de la maintenance et la replanification des processus. Pour réaliser cette vision, les

technologies sémantiques ont montré des résultats prometteurs en formalisant les

connaissances sur les tâches de maintenance prédictive dans divers domaines.

La nouvelle approche sémantique proposée dans cette thèse permet la repré-

sentation des résultats de la fouille de données dans un format formel et structuré,

facilitant ainsi la compréhension et l’exploitation des connaissances extraites. De

cette façon, les résultats des données peuvent être interprétés à la fois par les utili-

sateurs et les machines pour enrichir et améliorer les bases de connaissances dans

les systèmes de maintenance prédictive basés sur la connaissance.

2.6.2 Perspectives

Au delà des contributions résumées dans la section précédente cette thèse ouvre

des perspectives de recherches futures, en particulier :

1http ://halfback.in.hs-furtwangen.de/home/
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• Le premier travail futur est l’évolution de l’ontologie et de la base de règles. Le

domaine de la fabrication étant très dynamique, un système de maintenance

prédictive devrait être capable de s’adapter à des situations dynamiques dans

le temps, par exemple, le changement de contexte. Pour cela, l’ontologie et

la base de règles doivent être capables de faire face à l’évolution dynamique

des connaissances. Pour traiter cette question, des solutions d’évolution de

la base de connaissances vont être proposées : l’ontologie développée dans

le chapitre 2 devrait être capable de s’adapter efficacement aux changements

grâce à l’utilisation de techniques d’évolution de l’ontologie [SMMS02], et la

base de règles extraite de l’extraction de chroniques (introduite dans le cha-

pitre 2.2) devrait être mise à jour en fonction du changement de contexte, en

mettant en œuvre un raisonnement contextuel [BBH+10].

• Le deuxième travail futur est la prise en compte d’un plus grand nombre de

mesures de la qualité des règles. Au chapitre 2.3, une approche d’optimisation

multi-objectifs qui vise à sélectionner des règles avec un maximum de préci-

sion et de couverture a été proposée. À l’avenir, nous souhaitons impliquer

davantage de mesures de qualité des règles pour l’élagage des règles, telles

que Association, Information, et Suffisance logique [AC01].

• La troisième perspective d’avenir est l’évaluation de la qualité des règles pour

les règles d’experts. En effet, en raison des caractéristiques dynamiques et in-

certaines du domaine de la fabrication, les experts peuvent fournir des règles

d’experts erronées pour la prédiction des défaillances. Les règles d’experts er-

ronées peuvent conduire à des résultats de prédiction de défaillance incor-

rects. Pour résoudre ce problème, un processus d’évaluation est nécessaire

pour examiner la performance des règles d’expertise. De cette façon, un en-

semble de règles de meilleure qualité est sélectionné non pas à partir de la

base de règles des chroniques, mais à partir de la base de règles intégrées, ce

qui assure une meilleure performance dans la prédiction.

• La quatrième perspective est la capacité du système à traiter des données

en temps réel. Comme le domaine de la fabrication est très dynamique, la

possibilité de traiter des flux de données hétérogènes en temps réel est une

préoccupation cruciale pour les fabricants. Cependant, l’approche proposée

utilise les techniques classiques de raisonnement ontologique, qui ne per-

mettent pas de traiter des données hautement dynamiques en temps voulu.
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Pour faire face à ce problème, des techniques de raisonnement en flux de-

vraient être adoptées pour raisonner sur une variété de données hautement

dynamiques [DDVvHB17]. Dans le raisonnement par flux, des langages d’in-

terrogation riches sont fournis par les raisonneurs de flux pour interroger en

continu les flux de données. De cette façon, les systèmes de maintenance pré-

dictive pourront détecter et prévoir les pannes de machines en temps réel.
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CHAPTER 3. INTRODUCTION

This chapter gives a general introduction to this thesis. It starts with background

information for this thesis, followed by the motivation for conducting this research

work. After that, the main contributions of this thesis are presented. Finally, the

thesis structure is presented in detail.

3.1 Background

Manufacturing processes are sets of structured operations to transform raw mate-

rial or semi-finished product parts into further completed products. To ensure high

productivity, availability, and efficiency of manufacturing processes, the detection

of harmful tendencies and conditions of production lines is a crucial issue for man-

ufacturers. In general, anomaly detection on production lines is performed by ana-

lyzing data collected by sensors, which are located on machine components and

also in production environments. The collected data record real-time situations

and reflect the correctness of mechanical system conditions. When the tendency

of a mechanical failure emerges, experienced operators in factories are able to take

appropriate operations to prevent the outage situations of production systems.

However, as the collected data become more heterogeneous and complex, it is

conceivable that the machine operators may fail to respond to mechanical failures

timely and accurately. In the context of Industry 4.0, advanced techniques such

as the Industry Internet of Things (IIoT), Cyber-Physical Systems (CPS), and Cloud

Computing enable machines and production systems in smart factories to be inter-

connected to exchange data continuously. This trend has brought opportunities for

manufacturers to manage and use the collected big data effectively. Meanwhile, this

trend has triggered the demand for methodologies to automatically detect anoma-

lies on production lines.

In the manufacturing domain, the detection of anomalies such as mechanical

faults and failures enables the launching of predictive maintenance tasks, which aim

to predict future faults, errors, and failures and also enable maintenance actions.

Normally, a predictive maintenance task relies on the monitoring of a measurable

system diagnostic parameter, which identifies the state of a system [GDBR02]. In

this way, maintenance decisions, such as calling the intervention of a machine op-

erator, are proposed based on the severity of anomalies, to prevent the halt of the

production lines, and to minimize economic loss. Several techniques have been

used to detect wear and tear in mechanical units and to predict future machinery
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conditions, such as machine learning, data mining, statistics, and information the-

ory [CBK09].

With the vision of Industry 4.0, this thesis is carried out under the framework

of the European Interreg HALFBACK project 1. The main goal of the HALFBACK

project is to assure highly available manufacturing processes, by forecasting fail-

ures of machines, tools, product quality loss, resource flow problems, etc. and by

scheduling maintenance, component replacing, process re-planning, and even take

over the production by another factory, in an optimized and intelligent way. Fig. 3.1

shows the global architecture of the project.

Figure 3.1 – The global architecture of the HALFBACK project.

Within the project, big industrial data is gathered using sensors located on the

machines and tools. Additional information is collected from various tools, the

manufacturing environment, the product itself as well as the machine operator’s ex-

perience. Big data algorithms use the collected data to understand the process and

to learn from the experience of the operators, and semantic technologies are used

to predict machine damage, quality loss, or maintenance demands in the future.

This allows companies to act before the manufacturing process stops. Additionally,

virtual profiles of the machines (footprints) are aggregated in the cloud and regis-

tered at a “High Availability Machine Broker”. Registering the machine footprint, the

machine location, the machine availability, among other useful data to the broker,

allows it to offer the machine as a service to other companies. In case of unavoidable

1http://halfback.in.hs-furtwangen.de/home/
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machine failure, the HALFBACK software uses the “High Availability Machine Bro-

ker” to search for an adequate machine replacement to shift production to another

factory in order to guarantee high availability.

The HALFBACK project aims to improve the competitiveness of manufacturing

small and medium-sized enterprises (SMEs) along the river Rhine by their network-

ing with this innovative approach to manufacturing as a service.

Within the framework of the HALFBACK project, this thesis is realized at the

Laboratoire d’Informatique, du Traitement de l’Information et des Systèmes (LITIS)

at Institut National des Sciences Appliquées (INSA Rouen)/Normandie Université,

France. The work is conducted with the collaboration of the Laboratoire des Sci-

ences de L’ingénieur, de L’informatique et de L’imagerie (ICUBE) at INSA Stras-

bourg, France, and the Could Research Lab (Institute for Cloud Computing and

IT Security (IFCCITS)) at Furtwangen University (HFU), Germany. Considering the

goals of the HALFBACK project, the responsibilities of the teams at different labs are

described as follows:

• The team at IFCCITS lab is responsible for the development of the cloud data

analysis platform. The platform consists of software agents for collecting data,

a CPS gateway module that communicates with a cloud service, a preproces-

sor module for data preparation, and a data analysis module.

• The team at LITIS lab focuses on using knowledge engineering techniques,

especially conceptual representation and inference processes, to develop

knowledge-based predictive maintenance systems. This type of systems uses

formal conceptual models such as ontologies with a set of logical rules to fa-

cilitate predictive maintenance tasks in manufacturing processes.

• The team at ICUBE lab works on the development of data mining algorithms

for machinery failure prediction. The data mining algorithms aim to pre-

process, mine, and use frequent valuable patterns to predict the failures of

machines at appropriate time instants.

In this thesis, we focus on the second axis of work, which concerns the use

of knowledge engineering techniques for developing knowledge-based predictive

maintenance systems.
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3.2 Motivation

With the trend of Industry 4.0, predictive maintenance tasks are benefiting from a

cyber-physical approach. Within a cyber-physical system (CPS), production facili-

ties are able to exchange information with autonomy and intelligence, which enable

manufacturers to optimize the production processes. Fig. 3.2 shows the architec-

ture of a CPS designed for predictive maintenance tasks. Within a CPS, predictive

maintenance of manufacturing entities is performed based on a three-layer collab-

oration between the cyber space and the physical space:

Figure 3.2 – The layered cyber-physical approach for predictive maintenance in the HALF-
BACK project.

• The Physical Space, where machine operating data is gathered using sensors

located on the machines and machine components. Additional data is col-

lected from the products, manufacturing environments, as well as the ma-

chine operators’ experience.

• The Cyber-Physical Interface, where statistical techniques such as data min-
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ing and machine learning use the collected data to understand the manufac-

turing processes and to learn from operators’ experience.

• The Cyber Space, where decision-making about machine failure prediction

and maintenance are proposed. In this layer, machine degradation mod-

els, and knowledge base of machine health are employed to predict machine

damage, quality loss or maintenance demands in the future.

In the second layer of the architecture, data mining is normally performed by

collecting and processing sensor data that contain measurements of physical sig-

nals of machinery, such as temperature, voltage, and vibration. By identifying

events and patterns that are not consistent with the expected behavior, potential

hazards in production systems, such as power outage of the systems, could be de-

tected [GDBR02].

However, due to the 3Vs (volume, variety, and velocity) traits of big industrial

data, sometimes the knowledge extracted from data mining is presented in a com-

plex structure. Therefore formal knowledge representation methods are required

to facilitate the understanding and exploitation of the knowledge [RP16]. Fur-

thermore, as the CPSs are becoming more and more knowledge-intensive, uni-

form knowledge representation of physical resources and reasoning capabilities are

needed to automate the decision-making processes in CPSs [WXY+17]. These is-

sues bring obstacles to machine operators to perform appropriate maintenance

actions. To overcome these issues, semantic technologies have been used in sev-

eral research efforts to promote the interpretation and management of knowledge

[DWL15, RP16, GDBR02, CGZM+19, DZWL16]. In their works, semantic technolo-

gies devoted to enabling the encoding of semantics with the data in order to make

the data both machine and human-readable. For example, in [DZWL16], semantic

technologies are used to establish an ontology-based framework for construction

risk knowledge management in a Building Information Modelling (BIM) environ-

ment. The framework facilitates knowledge reuse during the construction risk anal-

ysis process.

Also, since semantic technologies ensure the explicit representations of

machine-interpretable domain semantics, they can support semantic interoper-

ability in a large heterogeneous environment of loosely coupled systems [Obr03]. In

the data mining domain, several stages can benefit from the involvement of formal

semantics, such as data transformation, algorithm selection, and post-processing
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[DWL15]. Moreover, the use of semantic technologies allows the capitalization of

experience of domain experts [ZM15]. For example, in a predictive maintenance

task of machine cutting tool, when data mining algorithms fail to identify the oc-

currence time of a future cutter failure, logic-based expert rules which capitalize

experience of domain experts can be applied to propose predictive decisions.

In the context of predictive maintenance in smart factories, pattern mining has

been widely used to discover frequently occurring temporally-constrained patterns,

through which warning signals can be sent to humans for a timely intervention

[DD99]. Among pattern mining techniques, chronicle mining has been applied to

industrial data sets for extracting temporal information of events [CMM12]. The ex-

tracted temporal information is valuable for predicting potential machinery failures

that may appear in the future [CMM12]. However, even though chronicle mining

results are expressive and interpretable representations of complex temporal infor-

mation, domain knowledge is required for users to have a comprehensive under-

standing of the mined chronicles [PHW02]. As the predictive maintenance domain

is becoming more knowledge-intensive, tasks performed in this domain can often

benefit from incorporating domain and contextual knowledge, by which the seman-

tics of the chronicle mining results can be explicitly represented and clearly inter-

preted. However, most of the existing research works about predictive maintenance

in the manufacturing domain merely focus on the classification of operating condi-

tions of machines (e.g., normal operating condition, breakdown condition), while

lacking the extraction of specific temporal information of failure occurrence. This

brings obstacles for users to perform maintenance actions with the consideration

of temporal constraints.

The aforementioned challenges motivate us to propose a novel semantic ap-

proach to facilitate predictive maintenance tasks in manufacturing processes

(shown as "Focus of this thesis" in Fig. 3.2). The proposed approach aims to com-

bine data mining and semantic technologies for automating the predictive mainte-

nance tasks. Within the approach, data mining technologies such as chronicle min-

ing is used to discover valuable patterns from industrial data. On the other hand,

semantic technologies, especially domain ontologies with their rule-based exten-

sions, are used to predict the temporal constraints of failures and to represent the

predictive results formally.

31



CHAPTER 3. INTRODUCTION

3.3 Contributions of this thesis

Based on the motivation, in this thesis, the following contributions have been pro-

posed in multiple research fields:

• Ontology development: in this axis of work, an ontological framework that

is the core component of a knowledge-based predictive maintenance system

has been developed. The framework is developed based on an ontological

representation of predictive maintenance knowledge in the manufacturing

domain. It includes a core reference ontology for representing general pre-

dictive maintenance concepts and relations and a set of domain ontologies

for formalizing domain-specific knowledge of manufacturing and condition

monitoring.

• Machinery failure prediction: to automate the failure prediction tasks in in-

dustry, a novel hybrid semantic approach that is based on combined use of

data mining and semantic technologies has been introduced. Within the se-

mantic approach, chronicle mining is used to predict the future failures of

the monitored industrial machinery, and domain ontologies with their rule-

based extensions are used to predict temporal constraints of failures and to

represent the predictive results formally.

• Assessment of failure criticality: in addition to predicting the temporal con-

straints of machinery failures, we are also interested in identifying the critical-

ity of the failures. The assessment of failure criticality enables the launching

of warning signals with different levels, by which machine operators can pri-

oritize maintenance actions for higher-criticality-level failures compared to

lower-level ones. In this thesis, a novel approach to classify failures according

to their criticality levels is proposed. The approach is based on clustering and

semantic technologies, within which clustering techniques are used to learn

the criticality of the failures based on machine historical data, and semantic

technologies use the machine learning results to predict the time of failures

and the criticality of them.

• Rule base refinement: When the number of rules extracted from machine his-

torical data is large, it may reduce the efficiency of rule-based reasoning of

a knowledge-based system. To reduce the number of extracted rules and to
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achieve the best quality of a rule base, a multi-objective optimization-based

approach is proposed. The approach aims to maximize rule Accuracy and

Coverage to prune a rule base, for obtaining a set of rules with the best quality.

• Experience capitalization: the knowledge models in a knowledge-based sys-

tem may suffer from the incompleteness issue. To overcome this problem,

a novel experience capitalization approach that captures the experts’ expe-

rience in the form of expert rules has been proposed. Within the proposed

approach, a rule base integration method for combining chronicle rules and

expert rules is developed. Rule Redundancy, Contradiction, and Subsumption

are considered as the crucial issues that needs to be detected and eliminated

during the rule base integration process.

3.4 Structure of the thesis

We use Fig. 3.3 to show the structure of this thesis. Organized into three main parts,

this thesis consists of ten chapters:

• Part I: Synthèse de la thèse en français gives the summary of this thesis in

French.

– Chapter 1 gives the context and state of the art of this thesis in French.

– Chapter 2 introduces the contributions of this thesis in French.

• Part II: Introduction and state of the art introduces the theoretical founda-

tions and gives a comprehensive review on existing research works. It is struc-

tured into four chapters.

– Chapter 3 gives a general introduction to background, motivation, re-

search scope, and main contributions of this thesis.

– Chapter 4 gives the background knowledge of Industry 4.0 predictive

maintenance. We first introduce the key components of Industry 4.0,

including CPS, the Internet of Things (IoT), Cloud Computing and Big

Data analysis techniques. We then pay special attention to CPS, which is

the central technology for Industry 4.0 predictive maintenance.
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– Chapter 5 introduces the existing approaches for Industry 4.0 predic-

tive maintenance. We classify the existing models for industrial predic-

tive maintenance into four categories: i) knowledge-based models; ii)

physical models; iii) data-driven models; and iv) hybrid models. We also

present the advantages and disadvantages of each type of models, as well

as typical applications.

– Chapter 6 gives the theoretical foundations and basic concepts of

knowledge-based systems. We mainly introduce the KREM architecture,

which is a novel and generic knowledge-based framework for problem-

solving in engineering disciplines.

– Chapter 7 presents a comprehensive review of the existing knowledge-

based predictive maintenance systems. In the review, we pay special at-

tention to the ontological models and their rule-based extensions that

are relevant to predictive maintenance.

• Part III: Contributions demonstrates the contributions of this thesis. It con-

sists of five chapters.

– Chapter 8 introduces the ontological framework that is developed for

the knowledge-based predictive maintenance system. The framework

includes a core reference ontology for representing general predictive

maintenance concepts and relations and a set of domain ontologies for

formalizing domain-specific knowledge of manufacturing and condition

monitoring.

– Chapter 9 introduces the novel hybrid semantic approach for machin-

ery failure prediction. Within the approach, chronicle mining is used

to predict the future failures of the monitored industrial machinery, and

domain ontologies with their rule-based extensions are used to predict

temporal constraints of failures and to represent the predictive results

formally. A case study on a real-world industrial data set shows the ap-

proach in detail.

– Chapter 10 demonstrates the failure criticality assessment approach. We

use machine learning techniques such as fuzzy c-means and evidential

clustering tools to identify failure criticality according to different pa-

rameters. The approach has been validated on one real-world industrial
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data set and several synthetic data sets.

– Chapter 11 corresponds to a novel rule base refinement approach. It

consists of a multi-objective optimization-based approach for rule base

pruning/reduction, and an rule integration approach for combining

chronicle rules with expert rules. For rule pruning, rule Accuracy and

Coverage are considered as reference measures for obtaining a set of

rules with the best quality. On the other hand, the rule integration ap-

proach refines the integrated rule base by detecting issues such as rule

Redundancy, Contradiction, and Subsumption. It ensures the rule base

is progressively updated and refined to achieve better performance for

failure prediction. The proposed approach is validated on a real-world

industrial data set, with several simulated expert rules as input.

– Chapter 12 introduces a software prototype we have developed to auto-

mate and facilitate predictive maintenance in industry 4.0. It is named

as Knowledge-based System for Predictive Maintenance in Industry 4.0

(KSPMI). The software uses both inductive approaches (chronicle min-

ing and machine learning) and deductive approaches (domain ontolo-

gies and ontology reasoning) to analyze industrial data and to predict

future failures.

– Chapter 13 concludes the thesis and outlines future perspectives.

• Part IV: Appendix gives the theory of three algorithms/tools that are used in

this thesis: the fuzzy c-means clustering algorithm, the theory of evidential

clustering, and the fast non-dominated sorting algorithm.
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Figure 3.3 – Structure of the thesis.
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4.1 Introduction

In this chapter, we give the background knowledge of Industry 4.0 predictive main-

tenance. We first introduce the key components of Industry 4.0. We then demon-

strate the concept of Cyber-Physical Systems (CPS) and present the 5-level archi-

tecture of a CPS. At last, we discuss the use of a CPS in the context of industry 4.0

predictive maintenance.

4.2 Key components of Industry 4.0

The term “Industry 4.0” stands for the current trend of automatic data exchange

and processing in manufacturing factories. Originally introduced in Germany, the

term quickly became a buzzword on a global scale [WSJ17]. Following the notion of

automation technology that is introduced in the third industrial revolution, Indus-

try 4.0 aims to use Internet technologies to create smart products, smart produc-

tion, and smart services [WSJ17]. Fig. 4.1 shows the history of industrial revolutions

and the key techniques within each revolution. With the current trend of Industry

4.0, CPS, the Internet of Things (IoT), Cloud Computing and Big Data analysis tech-

niques have become the key components that allow the automatic interconnection

and data exchange among manufacturing entities.

Figure 4.1 – History of industrial revolution. 1

1https://www.netobjex.com/how-humans-are-empowering-digital-transformation-in-industry-
4-0/
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In today’s manufacturing, increasing global competition, fast technology evolu-

tion and customers’ perceptions of product quality have triggered the demand for

future strategical plans and advanced manufacturing techniques. In Industry 4.0,

the automatic exchange and analysis of data open up opportunities for manufac-

turers to further optimize the production processes. Collecting data from various

components of a production line and analyzing them in a scalable Cloud infrastruc-

ture can significantly improve the productivity, reliability, and availability of pro-

duction systems in heterogeneous environments [LBK15]. With the current trend

of automation and data exchange in manufacturing technologies, traditional man-

ufacturing factories are transforming into so-called “smart factories”, which apply

high-tech sensing and computation technologies on different manufacturing pro-

cesses and production systems.

4.2.1 The Internet of Things (IoT)

In general, IoT refers to the networked interconnection of everyday objects, which

are often equipped with ubiquitous intelligence [XYWV12]. An IoT system consists

of a highly distributed network of devices, in which every device can communicate

and interact with human beings and other devices via embedded systems. By this,

IoT increases the ubiquity of the Internet [XYWV12]. It is estimated that by 2020, the

Internet of Things (IoT) will contribute $1.9 trillion to the global economy [McC15].

To address the demand for advanced digitalization within factories, the com-

bined use of Internet technologies and future-oriented technologies results in a new

fundamental paradigm shift in industrial production [LFK+14]. This has brought

the trend of using the Industrial Internet of Things (IIoT) technologies, within which

the data exchange and processing is undergoing a tremendous change. In IIoT,

industrial objects are equipped with electronics and smart devices. Technologies

such as Radio Frequency Identification (RFID) and smart wearables provide iden-

tification, smart computing, and communication capabilities for industrial objects.

By this, IIoT allows stakeholders to use everyday Internet-enabled devices as end-

points for accessing industrial data, thus enabling real-time monitoring and main-

tenance of the physical assets in smart factories [WSJ17]. Moreover, the IIoT pro-

vides a higher level of organization and management of industrial value chains and

enables highly flexible and resource-saving production services [SWW15].

To illustrate the use of IIoT in industry, we use Fig. 4.2 to show the architecture of
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an IIoT-based production system in a smart factory. Within the production system,

products are equipped with smart devices, and information related to the prod-

uct (e.g., identity, specification, process control, product optimization) is stored in

some backend-database [SWW15]. These smart devices are capable of storing and

processing the data that are generated not only during production but also during

the product deployment phase. In this way, the production system becomes self-

organizing, that they can optimize themselves with regard to resource planning,

availability, and consumption, even across multiple manufacturing companies.

Figure 4.2 – The architecture of an IIoT-based production system [SWW15].

By using wireless sensor devices to monitor equipment and product status, IIoT

systems can be pervasively used to collect, store and process data, thus improving

the productivity, reliability, and safety of production systems through advanced au-

tomatic processes [CBS+17]. Moreover, the use of smart wireless devices avoids the

delay caused by human-in-the-loop interactions. This is accomplished by adopt-

ing several communication standards that ensures the devices to interoperate. The

main communication protocols and standards include [DXHL14]: RFID (e.g., ISO

18000 6c EPC class 1 Gen2) [PLLL+08], IEEE 802.11 (WLAN) [PC03], IEEE 802.15.4

(ZigBee) [MBC+04], IEEE 802.15.1 (Bluetooth) [XP09], IETF Low power Wireless Per-

sonal Area Networks (6LoWPAN) [SB11], and traditional IP technologies such as

IPv6 [Hui98], etc.

4.2.2 Cyber-Physical Systems (CPS)

As another key component of Industry 4.0, Cyber-Physical Systems (CPS) have been

widely adopted in a variety of production processes. This type of systems tightly in-
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tegrate components in the physical space (physical assets, sensors, actuators) with

advanced software and algorithms in the cyber space, thus transferring the physical

world into the virtual one. Within a typical CPS, industrial data are collected by the

sensors located on entities in the physical space, while computational resources are

used to integrate and process the collected data. After that, data analysis and pro-

cessing results are used to provide feedback and decision makings. These results are

conveyed to the physical space to guide the real-world production processes.

In general, a CPS consists of two main functional components [LBK15]: i) the

advanced connectivity functionality that allows real-time data collection, process-

ing, and communication between the physical space and the cyber space; ii) intel-

ligent data management, analytics, and computational techniques that are capable

of providing decision makings in the cyber space. Normally, there are five layers

that communicate and interact with each other within a CPS: i) the Smart Connec-

tion Layer, where data acquisition procedure is performed to collect accurate and

reliable data from machines; ii) the Data-to-Information Conversion Layer, where

useful information is inferred from collected data; iii) the Cyber Layer, which acts

as a central information hub to gather information. Thereafter, specific analytics

is used to extract additional information and provide better insight over the status

of physical assets in the physical space; iv) the Cognition Layer, where a thorough

knowledge of the monitored system is generated; v) the Configuration Layer, which

provides feedback from cyber space to physical space. Based on the feedback, ap-

propriate actions are triggered in the physical space to respond to the feedback.

In Section 4.3, we give a more detailed description of the 5C architecture of a

CPS, with introducing applications and techniques associated with different layers.

4.2.3 Cloud Computing

Cloud Computing refers to both the applications delivered as services over the In-

ternet and the hardware in the data centers that are used to provide those services

[JKK+10]. The services are referred to as Software as a Service (SaaS) or IaaS (Infras-

tructure as a Service). Within this vision, a cloud performs as a data center. When a

cloud is not made available to the general public, it is referred to as a private cloud.

On the other hand, when a cloud is made available in a pay-as-you-go manner to

the general public, it is called a public cloud [JKK+10].

Within the current trend of Cloud Computing, computational resources are mi-
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grating from local PCs to distant data centers reached through the Internet. On the

Internet, a client computer can communicate with other servers efficiently at the

same time [JKK+10]. In industry, Cloud Computing not only provides scalable com-

puting capacity, but also enables the provision of services that are accessible glob-

ally via the Internet [SMH+15]. Because of these advantages, Cloud Computing has

become the basis for creating new business processes and models. Moreover, prod-

uct data that are integrated in the cloud can be used for predictive maintenance and

product optimization.

4.2.4 Big Data analysis technologies

As today’s global market is becoming more and more competitive, manufacturing

companies are forced to come up with solutions for smart and rapid decision mak-

ing. The utilization of advanced technologies such as CPS and Cloud Computing

not only offer the aforementioned benefits to manufactures but also brings them

challenges such as the management of big and heterogeneous data generated by

networked machines and ubiquitous sensors. Data management and analysis in a

Big Data environment is of vital importance for the self-awareness and self-learning

of machines. In this context, Big Data analysis technologies have been used within

a variety of manufacturing processes.

At the early stage of Big Data, plenty of research efforts were addressed in

the domain of social or commercial data mining. These works include sale and

customer behavior prediction, opinion mining, recommendation systems, etc.

[MBD+12, ANAH08, CSB06]. However, these research works focus on the analy-

sis of human-generated data. In industry, there are not only human-related data

but also the Big Data generated from machines and manufacturing environments.

These data are collected from smart sensors that are located on machine compo-

nents, machine tools, shop floors, etc. These sensors not only collect data but also

are equipped with advanced techniques for processing the collected data. They

measure the real-time system diagnostic parameters such as temperature, vibra-

tion, and pressure, etc. Also, machine historical data are collected to learn about

the past behavior of machines.

To deal with the challenge of industrial Big Data, manufacturers and researchers

have devoted themselves to come up with advanced data management and analysis

solutions. In terms of data management, Big Data technologies are using new pro-
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cessing models to extract valuable information from heterogeneous data sources

(e.g., product data, operational data, environment data). These technologies aim to

achieve in-depth understanding and gain insight from data for accurate and timely

decision making [ZLZ15]. Also, jointly used with Cloud Computing and CPS, Big

Data technologies allow production systems to be self-aware and self-maintained.

This ensures production systems to self-access their health conditions and the level

of degradation, for them to perform smart maintenance decisions to avoid potential

hazards and anomalies.

On the other hand, customers’ personalized data are collected from the Web in

real-time. These data are also uploaded to a cloud data center for analysis. The anal-

ysis of customers’ data helps to guide and optimize production processes. In this

way, Big Data analysis technologies help manufacturers to improve the efficiency of

production, reduce the cost, and optimize the manufacturing processes [ZLZ15].

4.3 The 5-level architecture of a CPS

As introduced in Section 4.2.2, a CPS consists of two main functional components

and is structured into a 5-level architecture. In this subsection, we introduce the

5-level architecture in detail and present the technologies that are used within each

level.

We use Fig. 4.3 to demonstrate the functionalities and technologies associated

with each level of the CPS architecture. As introduced before, a CPS is structured

into five layers:

• The Smart Connection Layer. This layer is responsible for data collection and

communication tasks. Industrial big data are collected from sensors, Enter-

prise Resource Planning (ERP), and Manufacturing Execution Systems (MES).

After that, communication protocols and standards are used to transfer data

to central servers in the cloud.

• The Data-to-Information Conversion Layer. At this layer, advanced technolo-

gies and tools such as data mining and machine learning algorithms are used

to extracted useful information from the collected data. Recently, special at-

tention has been paid to the development of prognostics and machine health

management applications [LBK15]. One notable implementation is the esti-

mation of the remaining useful life (RUL) of machines [SWHZ11].
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• The Cyber Layer. At this layer, information of connected machines is inte-

grated to form a machine network. Within the network, self-comparison ca-

pabilities are provided to estimate the condition of a machine by comparing

it with those of the same type. Also, similarities between machine real-time

data and machine historical data are measured to predict the future behavior

of them.

• The Cognition Layer. Knowledge is generated at this layer for a thorough

understanding of a monitored system. Proper presentation of the acquired

knowledge is needed for the system to propose appropriate decision makings

[LBK15].

• The Configuration Layer. This layer aims to provide feedback from the cyber

space and convey it to the physical space. The feedback includes predictive

and diagnostic decisions over machines. These decisions are proposed at the

Cognition Layer.

Figure 4.3 – The functionalities and technologies associated with each level of the 5C CPS
architecture [LBK15].
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4.4 Cyber-physical-based predictive maintenance

Manufacturing processes are sets of structured operations to transform raw mate-

rial or semi-finished product parts into further completed products. To ensure high

productivity, availability and efficiency of manufacturing processes, the detection

of harmful tendencies and conditions on production lines is of vital importance.

In general, anomaly detection on production lines is performed by analyzing data

collected by sensors, which are located on machine components and also in pro-

duction environments. The collected data record real-time situations and reflect

the correctness of mechanical system conditions. When the tendency of a mechan-

ical failure emerges, experienced operators in factories are able to take appropriate

operations to prevent the outage situations of production systems.

As today’s manufacturing market is becoming more competitive, how to im-

prove the availability, sustainability, and quality of manufacturing services in smart

factories has been a crucial concern for manufactures. This situation has triggered

the demand for implementing predictive maintenance on production lines, which

refers to the maintenance activities that are performed to avoid failure occurrences

and to improve the availability and safety of the maintained system. Within manu-

facturing processes, the detection of anomalies such as mechanical faults and fail-

ures enables the launching of predictive maintenance tasks, which aim to predict

future faults, errors, and failures and also enable maintenance actions. Predictive

maintenance is an important task by which the machine or mechanical system de-

terioration tendency and the location of a failure can be detected.

4.4.1 Predictive maintenance in industry

In industry, a predictive maintenance task relies on the monitoring of a measurable

system diagnostic parameter, which identifies the state of a system [GDBR02]. Ac-

cording to the current state of a machine, if any fault or failure exists, a diagnosis can

be launched to determine the causes of the fault or failure. Also, based on the char-

acteristics of the fault or failure, analysis about how they will propagate and evolve

over time can be performed. In this way, machine or mechanical system deteriora-

tion tendency and the location of a failure can be predicted. Based on the predic-

tion results, maintenance decisions, such as calling the intervention of a machine

operator are proposed according to the severity of anomalies, to prevent the halt of

the production lines and to minimize economic loss. The use of predictive main-
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tenance techniques has several advantages, such as improved machine availability,

improved production efficiency, and reduced maintenance cost [WY07, Rao96].

Normally, when a propensity of machinery fault or failure is detected, highly ex-

perienced machine operators are capable of performing appropriate actions to pre-

vent the outage situation of the production system. However, as the structure and

behavior of production systems are getting more and more complex, the volume of

machine operating data grows significantly. Thus it is possible that the domain pro-

fessionals fail to respond to a machinery fault or failure timely and accurately. For

this reason, manufacturing companies are searching for solutions through which

they can manage this big data efficiently and perform prognostics tasks intelligently.

Several techniques have been used to detect wear and tear in mechanical units and

to predict future machinery conditions, such as machine learning, data mining,

statistics, and information theory [KOK+17, LHT17, KITT17].

Recently, these techniques are integrated to construct a CPS, which is the cen-

tral technique of Industry 4.0. As the data generated by sensors and networked

machines gets higher in volume, a CPS is equipped with advanced technologies to

obtain the capabilities of self-awareness and self-maintenance. These capabilities

contribute significantly to the resilience, automation, and productivity of the CPS,

which ensures the CPS to propose predictive decisions in an intelligent and optimal

manner. Because of these benefits, CPS-based predictive maintenance has become

a promising approach to detect and predict anomalies in manufacturing processes

[LBK15].

Normally, a CPS-based predictive maintenance task is performed through a

three-layer collaboration. Fig. 4.4 shows the collaboration among different layers

and the architecture of a CPS-based predict maintenance system. We start with de-

scribing the physical space.

4.4.2 The physical space

The physical space is at the bottom layer of the architecture. At this layer, ma-

chine operating data is gathered using sensors located on the machines and tools.

The sensors measure system diagnostic parameters such as vibration, wear, length,

shape and temperature measurement, etc. Additional information are collected

from the manufacturing environment, the product itself as well as the machine op-

erator’s experience.
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Figure 4.4 – The predictive maintenance task based on a cyber-physical approach.

Additionally, machine historical data are collected over time. These data are

used to learn about the past behavior of machines and to extract predictive knowl-

edge. To ensure data integrity and confidentiality, notable research efforts have

been paid to provide lightweight cryptographic mechanisms [TS07, WKM04]. These

mechanisms have significantly improved the security of CPSs [CAS+09].

4.4.3 The cyber-physical interface

The collected sensor data are stored and processed at the intermediate layer, named

the cyber-physical interface. At this layer, statistical techniques such as machine

learning and data mining algorithms are used to process the collected data in order

to understand the manufacturing processes and to learn from operators’ experi-

ence. Also, big data techniques are implemented to ensure the efficient integration

and analysis of manufacturing data.

For the goal of predictive maintenance, valuable information is extracted from

the big industrial data, and it is used to establish a relationship between nominal

behavior and the current state of operation of machines [NB17]. By this, the cor-
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rectness of the current machine condition (normal or abnormal conditions) can be

inferred, which allows maintenance actions to be scheduled.

4.4.4 The cyber space

The cyber space provides decision-making about machine failure prognostics and

maintenance. At this layer, the virtual profiles of machines such as machine foot-

prints are connected to form a machine network. After that, machines can register

their virtual profiles into the network and exchange information within the cyber

space.

To ensure successful data and information exchange, it is necessary to have uni-

fied data analysis tools to process diversified industrial data. The diversified indus-

trial data include structured, semi-structured, and other unstructured data formats.

Within the cyber space, the data formats are converted to uniformed standards,

to improve the efficiency of data storage, query, retrieval, processing, and analysis

[ZQT+15].

On the other hand, advanced methods such as the Time Machine are developed

to track the changes of machine status, infer additional knowledge from historical

information, and apply peer-to-peer comparison among machines [LBK15].

Once the machine network is constructed, information is continuously pushed

from every machine to the machine network. At this layer, machine degradation

models are extracted from the mining of sensor data. Also, a knowledge base of

machine health is created to represent the machine condition at the cyber space.

By this, the health condition of machines can be accurately simulated and appro-

priately presented to stakeholders upon their demand without geographical limi-

tations [LBK14]. Leveraging the machine degradation models and the knowledge

base, the CPS is capable of providing precise machine health predictions and re-

quired maintenance decisions. After that, the predictive system uses these predic-

tion results and maintenance decisions to propose timely maintenance and avoid

downtime of manufacturing processes.

4.5 Summary

In this chapter, we have given the background knowledge of Industry 4.0 predictive

maintenance. We first introduced the four key components of Industry 4.0: the IoT,
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CPS, Cloud Computing, and Big Data analysis technologies. We then presented the

5C architecture of a CPS, which is the core technique of Industry 4.0. At last, we de-

scribed a predictive maintenance task in the context of Industry 4.0, which is based

on a cyber-physical approach. The approach is accomplished through a three-layer

collaboration between the physical space and the cyber space.
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5.1 Introduction

Over the last decades, a considerable amount of research efforts have been under-

taken to address the development of different models for industrial predictive main-

tenance. For a predictive maintenance task, appropriate model selection is vital to

manufactures. A proper selection of a model requires not only a thorough mathe-

matical understanding of it but also the knowledge of how to implement it in real-

world scenarios [SHM11].

In this chapter, we classify the existing models for industrial predictive mainte-

nance into four categories: i) the knowledge-based models; ii) the physical models;

iii) the data-driven models; and iv) the hybrid models. We also present the advan-

tages and disadvantages of each type of models.

5.2 Knowledge-based models

This type of models access the similarity between an observed situation and a

database of previously defined failures, and then deduce the future failures or the

life expectancy from previous events [SHM11]. The knowledge-based models can

be further categorized into expert systems and fuzzy systems.

5.2.1 Expert systems

An expert system is a computer program designed to simulate the problem-solving

behavior of an expert in a narrow domain or discipline [Nad13]. Normally, this type

of system consists of a knowledge base that contains accumulated knowledge ac-

quired from domain experts and a rule base for applying acquired knowledge to par-

ticular problems. A rule base contains a set of IF-THEN-based logical rules, which

are formulated based on heuristic facts acquired from previous system behavior or

domain experts. An inference engine is another key component of the system that

applies logical rules to the knowledge base to deduce new information. Expert sys-

tems are also called knowledge-based systems [Nad13].

There are several advantages of expert systems. Firstly, expert systems use ex-

plicit representations of knowledge in the form of words and symbols. This eases

the understanding of the knowledge by a human, comparing to the numerically de-

rived models in computational intelligence [JJ90]. Secondly, since knowledge-based

systems contain explicit semantics of the domain, it helps to solve the semantic gap
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issue, which stands for the incoherence between the knowledge extracted from in-

dustrial data and the interpretation of the knowledge from a user [DWL15]. Thirdly,

knowledge-based techniques ensure the semantic interoperability among different

systems. Since the production systems in industry are becoming more and more

complex, it is not easy to integrate heterogeneous resources that are developed with

different vocabularies and different perspectives on the data [HH00]. To address this

issue, knowledge-based systems ensures the data exchange with formal and rich se-

mantics. This provides the precise meaning of the data to different systems, which

eases the interpretation and management of the data.

However, expert systems suffer from two main disadvantages. Firstly, when

there is no domain experts available, it can be difficult to define a comprehensive set

of logical rules. Moreover, since the prediction outputs are determined by a discrete

set of rules, traditional expert systems are not feasible to be used for a continuous

variable prediction [SHM11]. To cope with this issue, advanced technologies such

as stream reasoning should be adopted to deal with real-time and continuous data

[DDVvHB17]. In stream reasoning, continuous queries and rules are used to reason

on real-time data streams.

5.2.2 Fuzzy systems

For the classic logic used in an expert system, a statement can be either true or false,

which means a piece of data is classified either inside or outside of a set. However, to

solve a real-world problem, sometimes it is not necessary to define a membership

with such precision. In this context, fuzzy systems are developed, within which the

IF-THEN-based logical rules are intentionally made imprecise. This type of systems

use fuzzy set theory to overcome the deficiency of traditional expert systems by as-

signing partial set membership to data based on their ‘degree of truth’ [SHM11]. In

this way, input data can belong to a fuzzy variable with a certain degree, allowing it

to be part of more that one fuzzy variable at the same time. This fuzzification ap-

proach assures a better description and expression of imprecise knowledge [BT97].

Fuzzy systems are feasible to provide results when the input data is imprecise

and incomplete. Also, compared to expert systems, fuzzy systems require less num-

ber of rules for the reasoning process. These advantages ensure them to have better

efficiency and easier implementation than expert systems. However, fuzzy systems

rely heavily on domain experts to define the fuzzy variables and to specify the fuzzy

53



CHAPTER 5. EXISTING MODELS FOR INDUSTRIAL PREDICTIVE MAINTENANCE

rules, thus making them hard to be adopted when no domain experts are available.

5.3 Physical models

Physical models use explicit mathematical representation to formalize the physical

understanding of a degrading machine or equipment [Pec10]. This type of mod-

els address a predictive maintenance task by solving a deterministic equation or a

set of equations derived from extensive empirical data [SHM11]. By using physical

models, predictive maintenance of a physical asset is achieved through the inter-

pretation of the acquired knowledge of a manufacturing process, and through the

analysis of possible hazards that may cause a failure. Normally, the main steps of a

physical model-based predictive maintenance approach include failure modes and

effects analysis (FMEA), feature extraction, and remaining useful life (RUL) estima-

tion [Pec09].

The advantages of physical models are their capability of direct incorporation

of existing physical mechanisms that have been proved and well-understood by ex-

tensive and exhaustive empirical testing [SHM11]. As the physical understanding

of a monitored system improves, a physical model can update itself to improve its

accuracy and quality. Furthermore, changes in the model outputs are described by

the residuals (the differences between the reality and the model), which normally

have a direct and translatable physical meaning. This eases the interpretation of

the outputs of a physical model [SHM11]. Because of these advantages, physical

models have been widely used in the predictive maintenance of different physical

assets, such as air vehicles [RNB01], turbine engines [HZTM09, SHM11], and mili-

tary systems [EPMC12], etc..

The main disadvantage of a physical model is the difficulty of assigning appro-

priate parameters used in the model. Since the massive and multivariate data re-

quired for the assignment of parameters are usually not available, it is hard to quan-

titatively characterize the system behavior [SHM11]. Also, since fault and failure

mechanisms may vary from one equipment to another, this type of models are nor-

mally equipment-dependent. Thus it is hard to identify the fault and failure mech-

anisms of a newly monitored machine component/machine without interrupting

system operation [HZTM09].
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5.4 Data-driven models

In recent years, rapid advances have been made in the research of data-driven mod-

els and approaches for accurate predictive maintenance. These models perform

like a black box that learn the behavior of physical assets directly from their opera-

tion data [JGZ17]. Within a data-driven approach, knowledge about machines are

extracted internally from machine operation data, instead of externally from do-

main experts. Normally, data-driven approaches are classified into machine learn-

ing techniques and statistical techniques [DGD+09, PDZ10].

5.4.1 Machine learning-based approaches

Recently, Machine learning (ML) approaches have been proven to be effective so-

lutions for predictive maintenance. The implementation of ML models have been

facilitated by the growing capabilities of hardware, cloud computing, and newly in-

troduced state-of-the-art algorithms [SSP+14].

Depends on the characteristics of data, the learning process of ML-based pre-

dictive maintenance can be categorized into three types [JGZ17]:

• Supervised learning which is applied to labeled data. This type of methods

aim to learn a function that maps an input to an output based on a set of la-

beled training examples. Typical learning algorithms for supervised learning

are Support Vector Machine (SVM) [SS01], Artificial Neural Networks (ANN)

[JMM96, JGZZ11], Logistic Regression [KDG+02], Naive Bayes [R+01], Random

Forests [LW+02], and Decision Trees [Qui86], etc.

• Unsupervised learning applied to unlabeled data. In unsupervised learning,

the training data is not associated with any corresponding target values. In

other words, no labels are given to the learning algorithm, leaving it on its

own to discover patterns and structure from the input data. The objective of

an unsupervised learning process is to segregate data points with similar traits

and assign them into clusters, which is known as clustering, or to construct an

estimate of the distribution of the input data, which is known as density esti-

mation. Common unsupervised learning methods include k-means Cluster-

ing [LVV03], Gaussian Mixture Models [Rey15], Self-organizing Maps [Koh97],

etc.
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• Semi-supervised learning applied to both labeled and unlabeled data. This

type of learning methods is a learning paradigm concerned with the study of

how computers and natural systems such as humans learn in the presence

of both labeled and unlabeled data [ZG09]. In addition to unlabeled data,

semi-supervised learning algorithms are provided with a certain level of su-

pervision, but not for all the training examples. Semi-supervised learning re-

quires less human effort than supervised learning, meanwhile giving higher

accuracy than unsupervised learning [ZG09]. Because of these advantages, it

has been pervasively implemented in real-world practices. Typical techniques

used in this field are Self-Training algorithms [RHS05], Generative Models

[KMRW14], Semi-supervised Support Vector Machines [BD99], Graph-Based

Algorithms [Bry86], and Multi-view Algorithms [BS04], etc.

Facilitated by the capabilities of the advanced techniques and state-of-the-art

algorithms, machine learning-based approaches have shown to be promising and

effective solutions for industrial predictive maintenance. The algorithms and tech-

niques introduced in this subsection have been widely used in real-world practices

to reduce the maintenance cost and production downtime [SSP+14].

5.4.2 Statistical learning-based approaches

Within this kind of approach, predictive maintenance is achieved by fitting the em-

pirical model (a function) as close as possible to the collected data and extrapolating

the fitted curve to failure criteria [JGZ17]. A typical statistical model is a regression

method for trend extrapolation, which is based on linear, exponential, or logarith-

mic functions. The common methods used in statistical learning-based approaches

are i) Stochastic filtering [Kal13]; ii) Particle filters and their variants [GGB+02]; iii)

Hidden Markov models [BGR02]; iv) Time series analysis [Ham94].

Because of the low cost of deployment and better applicability than physical

models, data-driven models have been widely applied to industrial predictive main-

tenance. However, the main disadvantage of this type of model is their demand for

higher volume data than physical models. To well train a data-driven model, suffi-

cient run-to-failure data ("sufficient" quantity means that data have been observed

for all fault modes of interest [UGL08]) needs to be collected for the model to cap-

ture complex relations among data [JGZ17]. This means a large amount of machine

historical data needs to be collected ahead of time for obtaining high-quality and
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accurate data-driven models.

5.5 Hybrid models

A hybrid model applies both physics-based and data-driven approaches. As men-

tioned in the previous subsection, data-driven models are feasible to be used when

the required big data is easy to collect. However, it is usually the case that only part

of machine historical data can be obtained [Wan16]. In this context, the data-driven

approach is jointly used with the physics-based approach for effectively identify-

ing machine conditions. Existing hybrid model-based predictive maintenance ap-

proaches can be classified into two types: i) Series approaches and ii) Parallel ap-

proaches.

In series approaches, physical models are combined with online parameter

estimation techniques to update model parameters when new data are available

[JGZ17]. Data-driven methods are used to tune the parameters of physical models.

This type of approaches have been applied to the predictive maintenance of vari-

ous equipments, such as power metal-oxide-semiconductor field-effect transistors

(MOSFETs) [CSSG11], printed circuit card assemblies [Pec10], and Lithium-ion (Li-

ion) batteries [SCR+12], etc.

Within parallel approaches, data-driven models are trained to predict the resid-

uals not explained by the first principle model [JGZ17]. Normally, the hybrid model

used in a parallel approach is created with an individual approach, which is either

physics-based or data-driven. Therefore, the accuracy of a parallel hybrid model

is normally higher than a series hybrid model [JGZ17]. However, implementing a

parallel hybrid model requires several steps, which leads to a higher modeling com-

plexity than series approaches-based models. Because of this, parallel hybrid mod-

els consume more computational time than series hybrid models.

In general, the different steps for implementing a parallel hybrid model for pre-

dictive maintenance are: parameter identification, condition monitoring, feature

extraction, healthy baseline creation, anomaly detection, parameter isolation, fail-

ure definition, parameter trending, and RUL estimation [CP09].
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5.6 Summary

Predictive maintenance is a key technique implemented in smart factories to im-

prove the availability, reliability, and productivity of manufacturing systems. In this

chapter, we have reviewed the existing models and approaches for industrial predic-

tive maintenance by classifying them into four categories: knowledge-based mod-

els, physical models, data-driven models, and hybrid models. The classification was

followed by the demonstration of the advantages and disadvantages of the existing

models.

We use Fig. 5.1 to summarize our classification of the common predictive main-

tenance approaches, where the existing approaches are structured into four levels,

marked with different colors. We first mark the common approaches with a super

class (the rectangle with blue color), and then further divide the super class into

four sub-classes (rectangles with green color). After that, the more specific models

are presented by the rectangles with yellow color. At last, the specific models are

are further classified into domain-specific techniques, which are represented by the

rectangles with gray color.

Figure 5.1 – Classification of the common predictive maintenance approaches.

Since the industrial domain is becoming more and more knowledge-intensive,

it is always beneficial to incorporate domain knowledge into the production pro-
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cess. Also, reasoning capabilities are required for the predictive maintenance sys-

tem to predict failures and propose maintenance decisions automatically. In this

context, we pay special attention to the knowledge-based models/systems. This

type of models/systems emulate the performance of a human expert in a specific

domain for solving real-world problems. In predictive maintenance, a knowledge-

based model/system uses knowledge management and knowledge representation

techniques (e.g., semantic technologies [DFH11]) to promote the prediction and

diagnosis of machinery failures and to propose intelligent maintenance strategies.

In this thesis, we develop knowledge-based predictive maintenance systems to ad-

dress the open challenges mentioned in Chapter 3.
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6.1 Introduction

A knowledge-based system maintains a knowledge base which stores the symbols

of a computational model in form of statements about the domain, and performs

reasoning by manipulating these symbols [Gri09]. As introduced in Chapter 5,

knowledge-based systems use explicit representations of knowledge in the form of

words and symbols, which eases the understanding of the knowledge by a human or

a computer. Also, they help to solve the semantic gap issue and ensure the semantic

interoperability among different systems and users.

Nowadays, organizations and companies in the manufacturing domain are be-

coming increasingly collaborative and knowledge-intensive [OBGM11]. However,

large part of valuable knowledge are hidden and not directly available to the users.

Recently, many companies and organizations have realized the importance of cap-

turing, structuring, representing, and reuse knowledge for coming up with intelli-

gent decision makings [Lei10]. In this context, knowledge-based systems are pow-

erful tools that use knowledge techniques to solve complex real-world problems.

In this thesis, we aim to develop a knowledge-based system to facilitate the pre-

dictive maintenance tasks. In this chapter, we introduce the theoretical foundations

and basic concepts of knowledge-based systems.

6.2 Knowledge-based systems: the classic architecture

Normally, the classic architecture of a knowledge-based system consists of four ba-

sic components. We use Fig. 6.1 to show the interaction among different compo-

nents. The four basic components are:

• A knowledge base that contains a collection of information and knowledge for

a certain domain.

• An inference engine that provides inference capabilities to deduce insights

from the information and knowledge that is structured in the knowledge base.

• A working memory that holds case-specific data/facts about the initial prob-

lem and intermediate inference results.

• An interface to the outside world that allows other computer systems or users

to interact with the knowledge-based system.
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By using the classic architecture, a knowledge-based system imitates the deci-

sion making process of a human brain, within which the new knowledge and experi-

ence are continuously updated in the knowledge base, while the control process (in-

ference engine) remains unchanged in their nature. Within a knowledge-based sys-

tem, the knowledge is explicitly structured and represented in the knowledge base,

rather than implicitly in the structure of a program. Because of this advantage, do-

main experts who may not have programming expertise can easily manipulate and

update the knowledge in the knowledge base.

Figure 6.1 – The classic architecture of a knowledge-based system [SS08].

According to different problem-solving objectives and approaches, the encod-

ing methods of knowledge in a knowledge-based system may also change. Some

knowledge-based systems encode expert knowledge in the form of logical rules,

which are referred to as rule-based systems [Ber88]. The main advantage of rule-

based systems lies in the easy and straightforward encoding of knowledge. Since

logical rules are generally written in a form that closely resembles natural language,

they are easy to be understood by novice users that do not have sufficient domain

knowledge.

Some knowledge-based systems use case-based reasoning techniques. A case-

based reasoning approach replaces logical rules with cases, within which the cases

are essentially the solutions to existing problems and can be used to solve new prob-

lems [Kol14]. Case-based reasoning provides inference capabilities based on previ-

ous experience. This allows a system to recall the solutions of similar past problems

and adopt the right strategy to solve new problems.
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However, the knowledge-based systems that use classic architecture do not al-

ways provide satisfactory results when solving real-world problems [ZM15]. The

main drawback of the classic architecture is that the conceptual model obtained

from the knowledge elicitation process is often incomplete [CWAM75]. Using a non-

complete conceptual model for reasoning may lead to the failure of inferring correct

knowledge (e.g., when real-time data does not match with any of the pre-defined

logical rules, a predictive maintenance system may fail to predict a machinery fail-

ure before the failure happens in the near future). To deal with this issue, the col-

lection of experience from domain experts is required. In this context, complemen-

tary approaches that provides the capability of experience capitalization needs to be

added to the classic architecture [ZMMZWdB15].

6.3 Knowledge-based systems: the KREM architecture

To address the drawbacks discussed in the previous subsection, a new modular ar-

chitecture for knowledge-based systems has been proposed recently, which is called

KREM (Knowledge, Rules, Experience, and Meta-Knowledge) [ZM15, ZMS19]. The

main advantage of the KREM architecture is its complement to the classic archi-

tecture with experience capitalized from domain experts and meta-knowledge. In

this way, the KREM architecture improves the level of completeness and flexibility

of knowledge-based systems.

There are four components in the KREM architecture [ZM15]:

• The Knowledge component. It contains domain knowledge to operate. Nor-

mally, the domain knowledge is structured and represented by formal con-

ceptual models, such as ontologies [Gru09]. We will introduce the concept of

ontologies in Section 6.4.1.

• The Rules component. Inside this component, different reasoning capabilities

(monotone, spatial, temporal, spatial–temporal, fuzzy, etc.) are supported.

• The Experience component. It allows the capitalization of experience and

reuse of previous knowledge. This component aims to complete the knowl-

edge model incorporated in the Knowledge component and the rule base for-

mulated in the Rules component.
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• The Meta-knowledge component. This component includes knowledge about

the other three bricks with regard to specific problems.

Because of its modular architecture, the KREM model has been adopted as a

design pattern for various knowledge-based systems [STV+07, BPERFM09, KS11,

CGZM+19, TSC+12]. In the KREM model, each component has specific function-

ality and is separated from each other. This design pattern ensures that a change

inside one component does not affect the operation of other components. This ad-

vantage facilitates the reusability and flexibility of the KREM architecture [ZM15].

In this thesis, the KREM architecture is used as a design pattern for developing

our intelligent predictive maintenance system. The development and implementa-

tion of different knowledge components will be demonstrated in Part II of the thesis.

6.4 KREM architecture: the Knowledge component

Within the Knowledge component of the KREM architecture, a formal conceptual

model performs a central role for knowledge representation and reuse. Among

the existing conceptual models, semantic technologies, especially ontologies, have

been widely used to formalize domain knowledge.

6.4.1 Concept of ontology

The term ontology originated in philosophy. It studies concepts that directly re-

late to being, in particular becoming, existence, reality, as well as the basic cate-

gories of being and their relations [Sim99]. In computer science, an ontology is

considered as "an explicit specification of a conceptualization for a domain of in-

terest [Gru93]. Within this definition, specification refers to an act of describing

or identifying something precisely. This requires the concepts and relationships in

ontolgies to be clearly defined by using formal logic. Conceptualization stands for

an intentional semantic structure that encodes implicit knowledge constraining the

structure of a piece of a domain [Aya18]. Normally, the conceptualization within an

ontology is formalized by a logic theory that is written in a certain language. Also,

ontologies provide reasoning capabilities, by which new knowledge can be inferred.

Since ontologies are developed based on formal logic foundations, they have

been pervasively used in industry to ensure the semantic interoperability among

different systems and users. In the predictive maintenance domain, ontologies
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play a key role in many distributed intelligent system as they provide a shared,

machine-understandable vocabulary for information exchange among dispersed

agents [AUM12]. Large ontologies are designed in a modular structure, to enhance

their reusability, extendability, and easy maintenance.

In the following subsections,the ontology-related background knowledge is in-

troduced, including ontology components, common ontology development meth-

ods, development languages, development tools and ontology reasoning tech-

niques.

6.4.2 Ontology components

Normally, there are four building blocks that construct an ontology:

• Individuals, which represent objects in the domain in which we are interested.

Fig. 6.2 shows an example of a set of individuals that represent the concept of

animal. In the figure, individuals are marked as a cross symbol.

Figure 6.2 – An example set of individuals.

• Classes, which provide an abstraction mechanism for grouping resources with

similar characteristics. They are considered as sets that contain individu-

als. Normally, classes are described using formal (mathematical) descriptions

that state precisely the requirements for membership of the class [HJM+09].

Classes may be organized into a superclass-subclass hierarchy, for example,

the class Mammal can be a subclass of the class Animal. In this case, Animal
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is the superclass of Mammal. Fig. 6.3 shows a group of classes that contain

individuals. There are three classes in the figure: Person, Animal, and Vegeta-

tion. They are represented by ellipses, with individuals inside them.

Figure 6.3 – An example of three classes: Person, Animal, and Plant.

• Properties, which are binary relations among individuals. Properties are used

to link individuals together, and to describe the features and attributes of

them. Properties are categorized into two types: Object Properties that link two

individuals, and Data Properties that link individuals to data values. Fig. 6.4

shows a set of Properties (arrows) that link individuals under different classes.

The names of these Properties are assigned beside the arrows.

• Restrictions, which describe a class of individuals based on the relationships

that members of the class participate in.

After introducing the four core components of an ontology, we give the formal

definition of an ontology [BDPH06]:

Definition 1 (Ontology). An ontology is a quadruplet O :< C,P,Sub, Appl i c >,

where:

• C is the set of the classes used to describe the concepts of a domain of interest.

• P is the set of properties used to describe the individuals of the C classes.

67



CHAPTER 6. KNOWLEDGE-BASED SYSTEMS: THEORETICAL FOUNDATIONS

Figure 6.4 – Properties among different individuals.

• Sub is the subsumption relation function defined as Sub : C → 2C, where 2c

denotes the power set of C. For a class ci in the ontology, it associates its direct

subsumed classes. Class C1 subsumes class C2 iff ∀x ∈ C2, x ∈ C1.

• Appl i c is a function defined as Appl i c : C → 2P. This function associates to

each ontology classes to those properties (object properties and data properties)

that are applicable for each instance of this class.

In chapter 8, we demonstrate the ontological framework that we developed

for the knowledge-based predictive maintenance system. Within the ontological

framework, main classes, properties, and their restrictions are introduced.

6.4.3 Ontology development methodologies

There are a number of methodologies that address the issue of ontology devel-

opment and maintenance. In this subsection, we give a brief review of the com-

monly used methodologies. These methodologies include: TOVE [GF94], the En-

terprise Model Approach [UK95], METHONTOLOGY [FLGPJ97], IDEF5 [PMM+94],

and CommonKADS [SWdH+94]. In the next subsections, these methodologies are

introduced in detail.
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The TOronto Virtual Enterprise (TOVE) methodology

The TOVE methodology was proposed during the development of ontologies for

enterprise engineering. It consists of six main steps [GF94]:

1) Motivating scenarios. It is the start point where a set of problems encountered

by a particular enterprise is clarified and described. Normally, the problems

are described in the form of stories or examples.

2) Informal competency questions. These questions are the requirements of the

ontology to be developed, which are proposed based on the motivation sce-

narios. They are in a form of informal questions that an ontology must be

able to answer. This step is also considered as an evaluation on the ontologi-

cal commitments that are made in the previous step.

3) Terminology specification. Within this step, the objects, properties, and at-

tributes are formally specified. Normally, the specification is done by first or-

der logic [Smu95].

4) Formal competency questions. The requirements of the ontology (proposed in

step 2) are formalized in a form of formally defined terminologies.

5) Axiom specification. Axioms that specify the definition of terms and con-

straints are given in first order logic. During this step, the axioms must be

necessary and sufficient to express the competency questions and their solu-

tions.

6) Completeness theorems. This step acts as an evaluation stage which assesses

the competency of the ontology. The evaluation is done by defining the con-

ditions under which the solutions to the competency questions are complete.

The main advantage of the TOVE methodology is its capability for ontology eval-

uation, with regard to the completeness theorems. This advantage facilitates its use

for assessing the extendibility of an ontology, for example, any extension of the on-

tology must also validate the completeness theorems [GF94].

The Enterprise Model Approach

The Enterprise Model Approach was proposed based on the experience of develop-

ing enterprise ontologies. After several rounds of improvement, the approach has

been refined into four main steps [UK95]:
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1) Identify purpose. This step determines the level of formality at which the on-

tology should be described.

2) Identify scope. This step aims to outline the range of information and knowl-

edge that an ontology needs to characterize. This step can benefit from

the motivating scenarios and informal competency questions (in the TOVE

methodology), such as producing a list of relevant concepts and relations by

brainstorming, after that deleting the irrelevant and synonymous ones.

3) Formalization. Formal definitions and axioms are created according to the

terms produced in step 2.

4) Formal evaluation. Use general criteria to evaluate the ontology, or check

against the competency questions.

METHONTOLOGY

Different from the previous two methods, METHONTOLOGY follows project man-

agement techniques and produce an ontology as a finality of the process. It starts

the ontology development process by identifying a set of activities [FLGPJ97]:

1) Specification. Identify the purpose of the ontology, such as the intended users,

the degree of formality required, etc.. After that, determine the scope of the

ontology including the set of terms to be represented, their characteristics and

the required granularity. The result of this step is a natural language-based

ontology specification document.

2) Knowledge acquisition. This step aims to extract and elicit knowledge from

heterogeneous knowledge sources, such as expert interviews, plain texts, or

online resources.

3) Conceptualization. Identify the domain terms as concepts, relations, in-

stances, and properties. The representation of the terms is in an informal way.

4) Integration. The objective of this step is to ensure the uniformity of concep-

tualization across ontologies. To achieve this goal, definitions of a concepts

from other ontologies should be incorporated.

5) Implementation. Within this step, the ontology is represented in a formal lan-

guage.
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6) Evaluation. This is one of the main steps in the METHONTOLOGY approach.

Techniques for the validation and verification of knowledge-based systems

are implemented. During validation and verification, the common quality is-

sues of knowledge-based systems are i) incompleteness, ii) inconsistency, and

iii) redundancy [JBCV98].

7) Documentation. The documents generated from the previous steps should be

collected and maintained.

Similar to TOVE, the most distinctive aspect of METHONTOLOGY is the main-

tenance of ontologies. Compared to TOVE, METHONTOLOGY proposes the idea

of evolving prototype during the ontology life cycle. In this way, it addresses more

maintenance issues throughout the maintenance stage [FLGPJ97].

The Ontology Description Capture Method (IDEF5)

IDEF5 methodology covers a wide range of ontology engineering topics, such as

creation, modification and maintenance [PMM+94]. This methodology is a general

procedure for developing ontologies, which includes five main steps:

1) Organizing and scoping. In this step, the purpose, viewpoint, and context for

ontology development is clarified. Purpose includes objectives and require-

ments, and scope defines the boundaries of the ontology.

2) Data collection. Raw data is acquired for ontology development. Traditional

knowledge acquisition techniques are used in this step, such as protocol anal-

ysis and expert interview.

3) Data analysis. The ontology is extracted from the data collection results. Ob-

jects are listed, followed by the identification of the boundaries of the ontol-

ogy.

4) Initial ontology development. A preliminary ontology is developed, including

initial descriptions of concepts, relations and properties.

5) Ontology refinement and validation. The developed ontology is iteratively re-

fined and tested. As the ontology is instantiated with real data, the results of

instantiation are compared with the original ontology structure.
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The key distinguishing characteristic of IDEF5 is the gradual refinement process

during ontology development. This advantage allows the developed ontology to

acts as an evolving prototype model, which ensures the ontology is progressively

enriched with real data while following its original structure.

CommonKADS

CommonKADS is a widely used methodology for developing knowledge-based sys-

tems, where ontologies play a central role [SWdH+94]. Instead of merely focusing

on how to extract knowledge from experts and transfer it to machines in a compu-

tational form, the CommonKADS methodology provides a structured development

approach for the modeling of knowledge-based systems. This modeling method-

ology not only takes expert knowledge into account but also investigates how that

expert knowledge is embedded and used in the organizational environment.

Following the CommonKADS methodology, a suite of templates for problem-

solving models were proposed, including Organization Model, Expertise Model,

Task Model, Agent Model, Design Model, and Communication Model. These for-

mal models are jointly used with project management and planning techniques to

serve as guidelines for the development of knowledge-based systems. By this, they

provide mechanisms for flexible project configuration and control [SWdH+94].

6.4.4 OWL: Web Ontology Language

The Web Ontology Language (OWL) is developed by the World Wide Web Consor-

tium (W3C) as a formal ontology language. It is a component of Semantic Web that

used to explicitly represent the meaning of terms in vocabularies and the relation-

ships between those terms. The representation of terms and their interrelationships

form an ontology.

As a key language in the Semantic Web stack, OWL facilitates greater ma-

chine interpretability of Web content than that supported by XML, RDF, and RDF

Schema (RDF-S) by providing additional vocabulary along with a formal semantics

[MVH+04]. To do this, OWL is proposed based on Resource Description Framework

(RDF) and Resource Description Framework Schema (RDFS), which are layered on

the top of the Extensible Markup Language (XML). Fig. 6.5 shows the hierarchy of

these Semantic Web languages, within the Semantic Web stack. Using this layered

architecture, OWL makes easier for machines to automatically process and integrate
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information available on the Web.

Figure 6.5 – The Semantic Web stack. 1

OWL provides three increasingly expressive sublanguages, they are [MVH+04]:

• OWL Lite, which supports users with their primary needing of a classifica-

tion hierarchy and simple constraints. Owl Lite has a lower formal complexity

than OWL DL, thus providing a quick migration path for thesauri and other

taxonomies.

• OWL DL, which supports users who want the maximum expressiveness while

retaining computational completeness and decidability. OWL DL includes all

OWL language constructs, but they can be used only under certain restrictions

(e.g., while a class may be a subclass of many classes, a class cannot be an

instance of another class).

• OWL Full, which is designed for users who want maximum expressiveness and

the syntactic freedom of RDF with no computational guarantees. For exam-

ple, in OWL Full a class can be treated simultaneously as a collection of indi-

1https://commons.wikimedia.org/wiki/File:Semantic_web_stack.svg
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viduals and as an individual in its own right. OWL Full allows an ontology to

augment the meaning of the pre-defined (RDF or OWL) vocabulary.

6.4.5 Ontology development tools

In the last decade, several software tools for developing and manipulating ontolo-

gies have been proposed by researchers in the semantic web community. Most of

these contributions were addressed for developing ontology editors and visualiza-

tion tools. We mention the most commonly used tools as follows:

• OntoEdit [SEA+02], which is an ontology editor integrating numerous aspects

of ontology engineering. It supports methodology-based ontology develop-

ment with capabilities for collaboration and inference.

• Ontolingua [FFR97], which is an ontology tool created the Knowledge System

Laboratory at Stanford University. Ontolingua consists of a set of tools and

services to support the process of achieving consensus on common shared

ontologies by geographically distributed groups. These tools make use of web

technologies to enable wide access and provide users with the functionalities

to publish, browse, create, and edit ontologies stored in an ontology server.

• OILEd [BHGS01], which is an ontology editor that has an easy to use frame in-

terface, yet at the same time allows users to exploit the full power of an expres-

sive web ontology language (OIL). OilEd uses reasoning to support ontology

design, facilitating the development of ontologies that are both detailed and

accurate.

• UBOT [KCH+02], which is a UML-based Ontology Tool set (UBOT) for build-

ing ontology engineering and natural language processing-based text anno-

tation tools for DARPA Agent Markup Language (DAML). The UBOT tool ex-

tends UML by defining a prototype UML profile for DAML. This UML profile

maps UML stereotypes to DAML-specific elements and for them to be used in

the development of DAML ontologies.

• Protégé [GMF+03], which is an open-source knowledge acquisition and on-

tology development tool, developed by Stanford University. It provides a intu-

itive graphic user interface to define ontologies, and also includes deductive
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classifiers to validate that models are consistent and to infer new information

based on the analysis of an ontology.

In this thesis, we choose Protégé ontology editor to development our ontolo-

gies in the ontological framework. We will show the ontology development phase in

Chapter 8.

6.5 KREM architecture: the Rules component

In the KREM architecture, the Rules component consists of different kinds of logical

rules that allow reasoning over the individuals of the ontologies in the Knowledge

component. Normally, these logical rules are in the IF-THEN format, which indi-

cates that if a set of conditions is satisfied, then new knowledge of the individuals is

inferred.

6.5.1 The Semantic Web Rule Language (SWRL)

Amenable to the Semantic Web standards, the Semantic Web Rule Language (SWRL)

is a widely used standard language, proposed by the W3C community. SWRL is

based on a combination of its sublanguages OWL DL and OWL Lite with the Rule-

Markup Language. A SWRL rule is in the form of implication between an an-

tecedent (body) and consequent (head), which can be interpreted in a way that

whenever the conditions specified in the antecedent hold, then the conditions spec-

ified in the consequent must also hold [HPSB+04]. In SWRL, a rule has the syntax:

Antecedent → Consequent , where both the antecedent (body) and consequent

(head) contains zero or more atoms. Atoms in SWRL rules can be the form of C(x),

P(x, y), where C(x) is an OWL class, P is an OWL property, and x,y are either vari-

ables, OWL individuals or OWL data values [HPSB+04].

In this work, we use SWRL rules to predict the machinery failures in manufac-

turing processes. During the prediction process, to improve the performance of the

system, we address the rule conflict, subsumption, and redundancy issues (intro-

duced in Chapter 11). The reason we choose SWRL rules is two-fold. Firstly, SWRL

provides model-theoretic semantics and has the advantage of its close association

with OWL ontologies, which enables the definition of complex rules for reasoning

about individuals in ontologies. Secondly, the use of SWRL to write rules is inde-
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pendent of rule implementation languages within rule engines, which has the ad-

vantage of the flexible selection of rule engines and inference platform.

To enable failure prediction, we use ontologies as well as SWRL rules to propose

predictive rules. We will introduce our proposed approach in Chapter 8 (developed

ontologies) and Chapter 9 (SWRL-based predictive rules).

6.5.2 Rule engines

A semantic reasoner, reasoning engine, rules engine, or simply a reasoner, is a piece

of software able to infer logical consequences from a set of asserted facts or axioms

[Abb12]. Rule engines provide mechanism to perform ontology reasoning, within

which the inference rules are commonly specified by means of an ontology lan-

guage (normally a description logic language).

In this subsection, we review the most recognized rule engines in the Semantic

Web community, they are:

• Jess, the rule engine for Java platform [FH+08]. It consists of a rule base, a

working memory, an inference engine and an execution engine. Jess uses

the Rete algorithm [WBG08] to match the declared facts in the working mem-

ory against the rules in the rule base. After the matching, system determines

which of the rules should fire based on the facts. Within the rule engine, rules

are written in the format of the Jess rule language or XML.

• Jena inference engine, a Java-based open-source application framework for

developing Semantic Web applications adopted by the Apache Software

Foundation [Jen15]. It is one of the development tools of the Jena framework.

The Jena framework provides a set of pre-define reasoners to support user-

defined rules in the Jena own syntax, and it support three execution strate-

gies for rule reasoners: forward-chaining, tabled backward-chaining, and hy-

brid. The framework also support additional reasoning features such as pre-

processing attachment, proof tracing, and proof explanation [Jen13].

• JBoss Drools, a rule engine that uses rule-based approach to implement Pro-

duction Rule Systems [Bro09]. JBoss Drools implement and extends the Rete

algorithm for object oriented systems. Within the rule engine, rules are stored

in the production memory and the facts that the inference engine matches
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against are kept in the working memory. To avoid conflict among a large num-

ber of rules, Drools implement the Agenda mechanism to manage the execu-

tion order of the conflicting rules, by using a Conflict Resolution strategy.

• OpenRules, an open source rule engine and a Business Decision Manage-

ment System (BDMS) to represent and maintain business logic in the form

of Executable Decision Models [DBRA+11]. It provide various tools for devel-

oping rule-based business decision support systems. Users can import and

edit business rules based on Microsoft Excel, Microsoft Word, OpenOffice or

Google Docs documents. This mechanism allows non-technical people to use

a guided text editor for drafting business rules from decisoin tables. Also, a

Eclipse plug-in is designed for technicians to edit rules in Java programming

language.

6.6 KREM architecture: the Experience component

The distinctive advantage of the KREM architecture lies in its incorporation of the

Experience component, which allows the capitalization and reuse of prior knowl-

edge. Indeed, the knowledge models constructed in the Knowledge component can

be incomplete [ZM15]. When the knowledge models suffer from the incomplete-

ness issue, the Experience component performs as a complementary model to deal

with the incomplete knowledge models. To do this, the Experience component col-

lects the experience that is learned during the use of the knowledge-based system.

In this way, the Experience component improves the knowledge model by progres-

sively completing it with the experience acquired from the interventions of human

experts. This process is termed as experience capitalization. By complementing the

traditional architecture with the Experience component, KREM improves the effi-

ciency of classic knowledge-based systems [ZM15].

There are two main techniques used in the literature for experience capital-

ization: case-based reasoning [Kol14] and Set of Experience Knowledge Structure

(SOEKS) [SS09].

6.6.1 Case-based reasoning

Case-based reasoning (CBR) is a kind of analogical reasoning that focuses on rea-

soning based on previous experience [Kol14]. A piece of experience can play dif-
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ferent kinds of roles in solving a specific problem, such as predict/warn a problem

that will appear in the future, suggest a solution for solving a problem, or predict the

potential effects of implementing a solution.

The main idea of CBR is to adapt the solutions that are used to solve old prob-

lems/cases for solving new problems/cases. During the problem-solving process,

CBR enables the capitalization of experience in two phases: the experience collec-

tion phase and the experience reuse phase. To solve a new problem, CBR aims to

find the old problems that are similar to the new one and construct a new solution

either by reusing old solutions or by adapting them. If the old solutions are adapted

for the new problem, they are stored in the case library for further use.

Normally, the cycle of CBR includes four steps [AP94]:

1) Retrieve the most similar case or cases to the new problem. When a new prob-

lem comes, it is standardized by case representation. After that, one or several

similar case(s) are retrieved from the case library.

2) Reuse the information and knowledge in that case. In this step, a solution of a

similar old problem is suggested for solving the new problem.

3) Revise the proposed solution. If the old solution can not be directly used

for the new problem, it is revised according to previous experience, domain

knowledge, and the context of the new problem.

4) Retain the parts of this experience likely to be useful for future problem-

solving. At last, the useful part (comprises the new problem and its solution)

of the new case is stored in the case library.

Case-based reasoning offers tremendous advantages over other AI-based tech-

niques in all those fields where experiential knowledge is readily available [MJ+10].

It has been widely used a many domains, such as business [CP05], industry

[BAB+03], medicine [HBSP05], and civil engineering [MRH02].

6.6.2 Set of Experience Knowledge Structure (SOEKS)

As another key technique for experience capitalization, SOEKS is a knowledge struc-

ture that combines organized information obtained from a formal decision event

[SS09]. It applies the Deoxyribonucleic Acid (DNA) structure and human brain
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mechanisms to store day-to-day experience that is collected from decision making

events.

SOEKS is structured into four basic components: Variables, Functions, Con-

straints, and Rules. We introduce these four components as follows [SS09]:

1) Variables are the source of the other components and are the center root or

the starting point of the structure. They are associated with cause and effect

values that reflect the current and desired states of a system. A set of Variables

usually involves representing knowledge with an attribute-value language.

2) Functions create links between dependent and non-dependent Variables for

constructing multi-objective goals. These links are created based on the rela-

tionships and associations among the Variables.

3) Constraints are a special kind of Functions. They are connected to variables to

specify their limits and boundaries. A set of Constraints also provide feasible

solutions for solving a problem.

4) Rules are conditional relationships that operate in the universe of Variables.

Normally, one Rule is a relationship that links a condition and a consequent

with logic statements.

SOEKS facilitates knowledge retrieval, representation, and acquisition in

decision-making processes. This structure has been used in a wide range of in-

dustrial applications, such as industrial maintenance systems [STV+07], virtual en-

gineering systems [TGP+09], geothermal systems [SMASC09], embedded systems

[ZSS10], and interactive TV [ZSS12], etc.

6.7 KREM architecture: the Meta-Knowledge compo-

nent

The Meta-Knowledge component includes knowledge about the other three com-

ponents. Meta-knowledge is the knowledge about domain knowledge, about rules,

or about experience. Meta-knowledge can be either about the form of the represen-

tation scheme itself (e.g., its syntax), or about the knowledge that is represented in a

knowledge base [B+79]. It can take the form of context, culture, or protocols to use

this knowledge.
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According to different contexts, the implementation of meta-knowledge may

vary from each other. For example, in the medical domain, meta-knowledge can

be the clinical terminologies that cover complex concepts such as diseases, opera-

tions, treatments, and medicines. When the symptoms and suspected disease of a

patient change, the medical protocols, and terminologies used by physicians may

also change. In the predictive maintenance domain, meta-knowledge can control

the firing of different sets of rules according to different contexts. For example, the

rules for identifying the dangerous threshold of machine temperature may change

according to the humidity of the working environment of the machine. As another

example, when a machine ages, the rules used for machinery failure prediction are

different from the rules used at the beginning time of machine operation. Thus the

rule base should be able to update itself concerning different environments. In this

way, the use of Meta-knowledge can steer the execution of knowledge-based sys-

tems [ZMS19].

6.8 Summary

This chapter gives the theoretical foundations of knowledge-based systems. It starts

with an introduction to the classic architecture of knowledge-based systems. After

that, we introduced the KREM architecture, which is a novel and generic knowledge-

based framework for problem-solving in engineering disciplines. At last, we gave a

detailed demonstration of the four basic components of the KREM architecture. The

demonstration includes the key methodologies, techniques, and real-world appli-

cations associated with each KREM component.

In the next chapter, we review the existing knowledge-based predictive mainte-

nance systems. We pay special attention to those systems that use Semantic Tech-

nologies to facilitate predictive maintenance tasks in industry.
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7.1 Introduction

The development of a knowledge-based predictive maintenance system requires

domain knowledge about manufacturing processes and predictive maintenance to

be represented in a formal way, thus making this knowledge usable by the sys-

tem. To achieve this goal, semantic technologies, especially ontologies with their

rule-based extensions, have shown promising capabilities for formalizing knowl-

edge about predictive tasks in various domains [PC09, SWWP10]. By providing

shared, rigorous, and machine-understandable vocabularies with robust structures,

ontologies with their rule-based extensions enhance the semantic interoperability

among different system components and system users.

In this chapter, we give a comprehensive review of the existing knowledge-based

predictive maintenance systems. We address special attention on the ontological

models and their rule-based extensions that are relevant to predictive maintenance.

The review of the existing research works are categorized into three facets: i) onto-

logical models and rule-based systems for modeling the manufacturing domain; ii)

ontological models and rule-based systems for modeling the condition monitoring

domain; iii) ontological models and rule-based systems for modeling the context.

The review is carried out following the methodology proposed in [TDS03]. The

adopted methodology provides a systematic approach to guiding the review of a

particular subject. This approach consists of three stages: i) planning the review;

ii) conducting the review; and iii) reporting and dissemination [TDS03]. We begin

with conducting a scoping study to identify the relevance of the literature with the

domain of predictive maintenance. The scoping study includes the identification of

keywords, clarification of inclusion and exclusion rules and selection of databases.

As a result, related works that are relevant to predictive maintenance are collected

and synthesized.

To clarify the scope and coverage of the review, we adapt the inclusion and exclu-

sion rules for resources introduced in [LBS13]. The modified strategy is as follows:

• Ontological models and their rule-based extensions that are concerned with

manufacturing system design, simulation, monitoring, planning and mainte-

nance should be included.

• Multiple types of ontological models should be considered. These models in-

clude, but are not limited to formal ontologies, meta-models and data models.

82



CHAPTER 7. KNOWLEDGE-BASED PREDICTIVE MAINTENANCE SYSTEMS:
STATE OF THE ART

• If a particular ontology has extensions, the most generic version should be

chosen for analysis.

After the extensive literature review, we present in the following subsections the

state-of-the-art of the ontological models and their rule-based extensions that are

related to predictive maintenance. We specify the scope of these systems with iden-

tifying which domain (manufacturing, condition monitoring, or context) they serve.

7.2 Ontological models and rule-based systems for

modeling the manufacturing domain

In the manufacturing domain, products are produced by manufacturing systems

that consists of several production lines. Martin [MD03] asserts that a typical man-

ufacturing system can be characterized according to three notions: i) Product; ii)

Process; and iii) Resources. These three notions are interrelated, for example, a Pro-

cess (e.g.,casting, melting, milling, drilling) can utilize Resources (e.g., machines, raw

materials, tools) in a production system, and a Process can also be used to define

Product qualification procedure [MD03].

Fig. 7.1 illustrates the integration of the three notions. Product, Process, Re-

sources are represented in ovals with their corresponding representative examples.

The three notions are integrated inside a single-line rectangle, indicating that un-

der the framework of a single manufacturing process, the representation of these

three notions is static. The double-line rectangles represent dynamic objects. To

optimize the dynamic production objectives (e.g., quality, precision, sustainability)

under different environments, the selection of models, methods and tools need to

be customized to generate appropriate and feasible solutions. The solutions include

the suitable design of production processes and test procedures, the correct selec-

tion of equipment, and validation of the producibility of products [MD03]. This

generation necessitates the consideration of product constraints, such as the struc-

ture and functions of Products. On the other hand, Resources can also influence the

quality of Products and Processes. In this way, the three notions are mutually related

and coherently integrated. Working with these three notions helps to identify the

inclusion and exclusion strategy of the reviewed research works.
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Figure 7.1 – Reference diagram of Product/Process/Resource integration [MD03].

7.2.1 Systems for modeling manufacturing products

During the physical product life cycle, the guarantee of information interoperability

is of paramount importance. Typically, product information is stored and processed

differently within distinct systems and enterprises. Inside these systems and enter-

prises, many participants and stakeholders have different domain engagement, do-

main knowledge and experience. This situation brings the issue of heterogeneity

information to the domain, which may lead to the failure of the application system

for achieving their intended design goals [CZMR18a]. This issue is a well-recognized

problem that has been studied in the research field of interoperability problems. In

this regard, many contributions about proposing common conceptual models for

shared product information have been made.

To deal with the issues discussed previously, Vegetti et al. [VHL05] makes one

significant contribution to developing the PRoduct ONTOlogy (PRONTO). Even

though Product Data Management (PDM) Systems enable different organizations to

share product data within the common product model, the lack of semantics inte-

gration has become a critical issue for heterogeneous systems. PRONTO is proposed
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to overcome this issue. The main idea of PRONTO is to represent product-related

concepts in different levels of abstraction. This multilevel formal representation en-

ables heterogeneous systems to perform product-related planning actions at differ-

ent aggregation levels [VHL05]. The ontology also specifies product structures with

two aspects: composition and decomposition. This specification has been adopted

to deal with complex product structure analysis in the industry.

However, PRONTO is not capable of referring to the existing standards related

to the modeling of product structure, processes and features [PDT12]. To over-

come this weakness, Panetto et al. [PDT12] makes remarkable efforts in developing

ONTO-PDM, which contains the development of a common reference-information

model. ONTOPDM harmonizes the product-related knowledge and standards, and

the harmonization has shown positive results in solving the interoperability prob-

lems among different enterprises and applications. ONTO-PDM has the advantage

of incorporating IEC 62264 and ISO 10303 standards, thus facilitates the manage-

ment of heterogeneous product information. However, when ontological extension

works need to be addressed, the required workload is high. Since other standard-

ization initiatives may be considered to enrich the ONTO-PDM model, the mapping

between different standards may require considerable efforts.

Like PRONTO and ONTO-PDM, the Process Specification Language (PSL) On-

tology [GM03] is another notable development work in the subject area of prod-

uct information modelling. PSL is developed by National Institute of Standards 6

and Technology (NIST), and it specifies logic terms with an ontology, for describing

processes. The PSL ontology covers several domains such as manufacturing, engi-

neering and business processes. In this section we only focus on the manufactur-

ing domain. Even though it mainly focuses on the conceptualization of a process,

the ontology also provides a basis for the formal description of elements and enti-

ties that constitute a Process. The foundation of the PSL ontology is four primary

and disjoint concepts: i) Activities; ii) Activity Occurrences; iii) Time Points; and iv)

Objects. From the manufacturing product point of view, the notion Product could

be deemed as a sub-concept under the core concept Objects in the ontology. The

PSL ontology provides a robust semantic foundation for modelling manufacturing

product information. Furthermore, as indicated by the name, the PSL ontology is a

powerful approach for the representation of manufacturing processes.

Another remarkable ontology dealing with manufacturing product modeling is

the Product Semantic Representation Language (PSRL). Patile et al. [PDS05] devel-
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oped this ontology-based framework for enabling semantic interoperability across

different application domains. The authors use mathematical logic along with the

standards-based approach to propose the semantic equivalence matrix. This ma-

trix has been approved to be reliable for determining semantic equivalences be-

tween application ontologies and PSRL. These efforts form the foundation of seam-

less communication between product development systems. However, when the

PSRL ontology is used to translate semantics of product information from one ap-

plication to another application, there may exist the problem of information loss.

To solve this issue, techniques such as text mining could be jointly used with PSRL,

to avoid the missing of interesting information.

Besides the representative ontologies showed aborve, there exist other ontolo-

gies that have been developed to enhance the performance of product information

modeling in the manufacturing domain. These ontologies and ontological models

are: Supply Chain Operations Reference (SCOR) ontology [LPNG13], PLM ontology

[BEC+10], Product Search Intent Representation Scheme (PSIRS) [KCP08], MSDL

[AD08], MAnufacturing ’ s Semantics Ontology (MASON) [LSD+], the ontology of a

product data and knowledge management semantic object model for PLM [MK10],

Parts Library Concept Ontology [MAP18] and Manufacturing System Engineering

(MSE) ontology model [LH07].

Among them, the PLM ontology, MASON and MSE ontology models are consid-

ered as pertinent. The goal of the PLM ontology is to facilitate the share of product

information by ensuring the transparent information interoperability among sys-

tems and people during the entire product lifecycle. The MASON ontology aims

at providing a common semantic network in the manufacturing domain, by con-

ceptualizing three core concepts: Entities, Operations, and Resources. The product

information is specified with the superclass Entities and with subclasses such as Ge-

ometric Entities for Manufacturing, Raw Material, and Assembly Entity. Because of

this, the MASON ontology presents a suitable approach for modeling product infor-

mation that is incorporated in manufacturing processes.

Like the MASON ontology, the MSE ontology also conceptualizes multiple man-

ufacturing domain notions. This ontology increases the level of cooperation among

engineering team members, and this advantage enhances the degree of information

autonomy in manufacturing processes. Among these three ontologies, the PLM on-

tology provides a more comprehensive and specific view of product information

modeling. Compared to other two ontologies, one significant advantage of PLM is
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the incorporation of Duration of Time concept into PLM models, which elevates the

synchronization of different information systems.

7.2.2 Systems for modeling manufacturing processes

A manufacturing process is a sequence of activities through which the raw materials

are assembled, integrated and transferred into a final product. These raw materials

are firstly transferred into required parts of the product, after that combined to form

the finished goods.

One notable approach to the formal representation of manufacturing processes

is the PSL ontology, proposed by Grüninger et al. [GM03]. We have mentioned

this ontology in the previous section from the manufacturing product point of view.

However, the primary objective of the PSL ontology is to formalize process informa-

tion. The formalism work covers subject areas related to process modeling, such as

scheduling, process planning, simulation, work flow and project management. The

PSL ontology framework incorporates a set of theories written in First-order Logic

(FOL) [Smu12], and the framework consists of two parts: i) PSL-Core ontology; and

ii) a set of extensions. The PSL-Core ontology is built upon a set of Foundational

Theories, which include set theory and situation calculus [SST+00]. It is a set of

intuitive semantic primitives written in the basic language of PSL [GM03]. These

semantic primitives show adequate competence for describing the basics of manu-

facturing processes.

The foundation of the PSL-Core ontology is four primary and disjoint concepts:

i) Activities; ii) Activity Occurrences; iii) Time Points; and iv). Objects. Making use

of the situation calculus’ own primitive "action", the concept Activities is defined

as a class or type of actions. The concept Activity Occurrences gives the place and

time of the occurred activity. In this regard, the concept Activity Occurrences con-

ducts another class Time Points, which is also a primary concept. At last, anything

that is not a Time Point or an Activity is treated as an Object. In this way, these four

concepts form the PSL-Core ontology. Besides the PSL-Core ontology, several ex-

tensions are developed to supplement it. These extensions could be classified into

two types: Definitional Extensions and Non-definitional Extensions. In the Defini-

tional Extensions, all new linguistic items could be completely defined based on

the Foundational Theories and the PSL-Core ontology. Non-definitional Extensions

contain one or more notions that could not be defined with regards to the Founda-
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tional Theories and the PSL-Core ontology. In this way, the PSL ontology provides a

robust semantic foundation for modeling manufacturing process information. Fig.

7.2 shows the framework of the ontology. Notations relevant to the PSL-Core ontol-

ogy are expressed with rounded rectangles. The role of Foundational Theories is to

give precise definitions of the four primary concepts. Ovals represent the two types

of extensions that were developed to describe the information which is not included

in the PSL-Core ontology.

Another example is the MASON ontology. Lemaignan et al. [LSD+] makes a

significant contribution when proposing this ontology for modeling manufactur-

ing processes. The MASON ontology formalizes the Process notion by introducing a

class named Operations. The ontology uses this class and its subclasses to specify a

set of manufacturing-related processes, including manufacturing operations (e.g.,

machining operations, control, assembly), logistic operations (e.g., maintenance,

handling), human operations (e.g., scheduling, programming) and launching oper-

ations (e.g., machine preparing).

Besides the PSL ontology and the MASON ontology, there exist other ontologies

developed for modeling manufacturing processes, such as MSDL ontology [AD08],

manufacturing reference ontology (MRO) [UYC+13], MSE ontology model [LH07]

and ADAptive holonic COntrol aRchitecture for distributed manufacturing systems

(ADACOR) ontology [BL07]. These ontologies have been successfully used for deal-

ing with process design, planning and scheduling issues in the manufacturing do-

main. Among all ontologies we have described in this section, the PSL ontology

provides the most general conceptualization of processes in various domains. How-

ever, because of the lack of manufacturing domain knowledge, this ontology is not

suitable to be directly used for describing manufacturing domain activities. Com-

pared to other ontologies, the MSDL ontology is a significant model for representing

manufacturing processes, as it captures more specific and rigorous manufacturing

domain knowledge.

7.2.3 Systems for modeling manufacturing resources

There are different definitions of the Resources notion. After the extensive survey,

under the framework of the Process notion, we define the Resources notion as phys-

ical objects that can execute a range of operations during a manufacturing process.

Among the existing works, Borgo and Leitão [BL07] develop an ontology to for-
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Figure 7.2 – The PSL framework.

mally describe manufacturing scheduling and control operations. They state that

entities such as producer, transporter, tool are some examples of specializations of

resources. In another influential ontology, Lin and Harding [LH07] build a link be-

tween the Resources and Process notions, by claiming that a Process uses Resources,

and Resources can be efficiently allocated with considering the strategies and objec-

tives of a Process.

Besides ontologies which merely give formal definition to the Resources notion,

some ontologies also address the categorization task of the notion. In the MASON

ontology, the Resources notion is classified into four sub-notions: i) Machine-tools

(e.g., turning machines, drilling machines, milling machines); ii) Tools (e.g., forg-

ing die and punch, turning tool, founding pattern and mould); iii) Human Resource

(e.g., procedure expert, handling operator, programming operator); and 4). Geo-

graphical Resources (e.g., plants, workshops). In a word, the Resources notion in

the MASON ontology stands for the whole set of physical objects that are related to

manufacturing [LSDS06].

In the MSDL ontology [AD06], the authors represent the Resources notion ac-

cording to different levels of abstraction. The top-down representation is Factory,

Shop, Cell, Workstation and Machine. The multiple-level abstraction of Resources

eases the representation work of manufacturing services. To support intelligent

supplier discovery, an SWRL rule-based extension of the MSDL ontology is devel-

oped in [AM14]. In their work, two categories of rules, namely, property infer-
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ence rules and classification rules are introduced and implemented. Among them,

the property inference rules are used for inferring new manufacturing capabilities

based on the explicitly stated knowledge in the ontology. On the other hand, the

classification rules are used for categorising suppliers under a certain class if they

possess one or more required manufactiromg capabilities [AM14].

There are a set of ontological models that conceptualize the Resources notion

with the aim of modeling domain knowledge in manufacturing. Other represen-

tative ontological models are the manufacturing core concepts ontology (MCCO)

[UYC+11], ADACOR ontology [BL07] and MRO [UYC+13]. In Table 7.1, we summa-

rize the representative ontologies and ontological models we have reviewed in this

section, with regard to their scopes and typical applications.

Table 7.1 – Scopes and typical applications of the reviewd ontologies and ontological models
in the manufacturing domain.

Ontology name Scope Typical application
PRONTO Product Material requirements planning
ONTO-PDM Product, Process, Resources Simulation of distributed activities for

manufacturing simple product prototypes
PSL Process, Resources Discrete-event simulation
MSDL Process, Resources Automation of various tasks throughout virtual

enterprise life cycle
MASON Product, Process, Resources Multi-agent systems for manufacturing
MSE Product, Process, Resources Resource e-planning
MRO Product, Process, Resources Development of application-specific ontologies
ADACOR Product, Process, Resources Development of manufacturing control

applications
MCCO Product, Process, Resources Explore interoperability across product lifecycle

domains

7.3 Ontologies and rule-based systems for modeling

the condition monitoring domain

In order to schedule maintenance for avoiding production downtime, condition

monitoring is a key technique to identify the functioning state of a machine or a

mechanical system. It is an important task by which the machine or mechanical

system deterioration tendency, and the location of failures can be detected. Gener-

ally aligned with fault diagnosis tasks, condition monitoring has appealed to deep
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attention from domain experts and engineers. In the context of Industry 4.0, dur-

ing the machine or mechanical system life cycle, condition monitoring activities are

performed by obtaining data from sensors that are located at the components of the

machines or mechanical systems, for identifying their operating state.

According to the current state of a machine, if any fault or failure exists, a diag-

nosis can be launched to determine the causes of it. Also, based on the characteris-

tics of the fault or failure, analysis of how they will propagate and evolve over time

can be performed. The use of condition monitoring techniques has several advan-

tages, such as improved machine availability, improved production efficiency, and

reduced maintenance cost [WY07, Rao96].

In recent years, ontologies and rule-based systems have attracted notable atten-

tion to enhance knowledge sharing in condition monitoring tasks, while offering a

logically defined and controlled vocabulary of domain entities. This type of ontolo-

gies and rule-based systems normally focus on the issues of fault or failure prognos-

tics and machine health monitoring.

Among the existing research efforts in the condition monitoring domain, the

ontology introduced in [EFJ+10] is one of the earliest contributions. In their work,

a domain-specific ontology [Fen01] is developed to streamline the implementation

of industrial condition monitoring and to standardize the exchange of condition

monitoring data. During the implementation of the condition monitoring system,

the developed ontology serves as a commonly accepted data and knowledge repre-

sentation schema for diagnosis-oriented maintenance.

The OntoProg Ontology [NB17] addresses the failure prediction of machines in

smart factories. The ontology is developed based on a set of international standards,

and a classification for severity criteria, detection, diagnostics, and prognostics of

failure modes is provided. The ontology standardizes the concepts that are neces-

sary for tackling machinery failure analysis tasks. SWRL rules are used together with

the ontology to address failure analysis in mechanical components. The OntoProg

Ontology is evaluated against the maintenance of a centrifugal pump. In the evalu-

ation phase, SPARQL queries are used for verifying the fidelity, completeness, level

of detail, robustness, and internal consistency of the ontology [NB17].

As another most recent contribution, the Sensing System Ontology [MBB+18] is

developed to define the embedded sensing systems for industrial Product-Service

Systems (PSSs). This ontology is used as the backbone of the PSS knowledge-based

framework, and it describes the sensors that are embedded in PSSs for the aim of
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providing customized services for users. The ontology is tested on an industrial use

case whose objective is to perform health monitoring on laser cutting machines.

In this use case, the Sensing System Ontology is used to support the knowledge

repository of a collaborative condition monitoring system named ICP4Life platform

[MBB+18].

The knowledge model for fleet condition monitoring, introduced in [MAVM11],

is developed to handle contextual knowledge within a fleet scale. In their work, the

authors develop a domain ontology to categorize fleet elements into three levels.

This categorization of fleet elements enables the analysis of contextual data from

different levels, thus enabling the analysis of abnormal health conditions from dif-

ferent components within a fleet system.

Knowledge-based systems are also used for condition monitoring in the wind

energy domain. In [PC09], an ontology is developed and used as a basis of fault

detection and diagnosis system for wind turbines’ condition monitoring. The ob-

jective of the ontology is to model vital characteristics of a Wind Energy Converter’s

(WEC’s) gearbox. It has been used together with SWRL rules and ontology queries

to detect possible failures and their exact positions inside the WEC’s gearbox.

In [ZYZ15], an intelligent fault diagnosis method is proposed based on ontolo-

gies and the Failure Mode, Effects, and Criticality Analysis (FMECA). Within the

method, authors use ontologies and SWRL rules to reason about failure causes,

the locations, and the diagnosis methods during the fault diagnosis process. The

FMECA method is tested on a 1500 Series wind power turbine of a wind farm, where

SWRL rules and JESS rule engine are jointly used to describe failure causality at dif-

ferent levels.

7.4 Systems for modeling the context

Due to the evolving nature of context-aware computing, computational entities in

the industry are required to be context-aware so that they can adapt themselves to

dynamically changing situations [WZG+04]. With the increasing need for formal

context models, ontologies have contributed significantly in this field by facilitating

context representation, context sharing and semantic interoperability of manufac-

turing systems. However, compared to the ontologies that model manufacturing

and condition monitoring domains, ontologies for modeling the context are much

less numerous.
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Among the existing research works, the CONtext ONtology (CONON) [WZG+04]

is one of the most recognized contributions. In their work, the authors summa-

rize that location, user, activity, and computational entity are the most fundamental

contextual elements for capturing the information about the executing situation of

an entity. These four concepts form a set of upper-level concepts, thus providing

flexible extensibility to add specific sub-concepts within different application do-

mains [WZG+04]. To perform context reasoning, SWRL rules are proposed to check

the consistency of context and deduce high-level context from low-level explicit

context. The CONtext ONtology is validated on a smartphone scenario where a mo-

bile phone can adapt its context according to different situations (location, activity,

time) of users.

Similar to CONON, the formal context model developed in [GWPZ04] aims to

address issues including semantic context representation, context reasoning and

knowledge sharing, context classification, and context dependency. In this work, a

wide range of contexts are classified into two main categories: direct context and

indirect context. Direct context is acquired from a context provider (e.g., person,

machine, system) directly. While indirect context is obtained by interpreting direct

context through aggregation and reasoning process. Within this process, context

reasoning is used to infer indirect context from other types of context. Based on

the formal context model, a Service-Oriented Context-Aware Middleware (SOCAM)

architecture is developed for building context-aware services [GWPZ04].

Another interesting work is the context ontology introduced in [PVdBW+04].

This adaptable and extensible context ontology is developed for creating context-

aware computing infrastructures, ranging from small embedded devices to high-

end service platforms. Using the developed ontology, the authors pay special at-

tention on solve several key challenges in Ambient Intelligence, such as application

adaptation, automatic code generation and code mobility, and generation of device

specific user interfaces [PVdBW+04].

7.5 Summary

In this chapter, we have reviewed the existing ontologies and their rule-based ex-

tensions that are developed for knowledge-based predictive maintenance systems.

The review is conducted with regard to three aspects: i) ontologies and rule-based

systems for modeling the manufacturing domain; ii) ontologies and rule-based sys-
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tems for modeling the condition monitoring domain; iii) ontologies and rule-based

systems for modeling the context. We have demonstrated the scopes and objectives

of different models, followed by introductions of typical applications of them.

We summarize the domain coverage of the existing knowledge models (ontolo-

gies and their rule-based extensions) in Table 7.2. We evaluate the domain coverage

and scopes of these knowledge models by examining whether the key concepts re-

quired for describing the predictive maintenance domain are covered and formally

described in these existing knowledge models. These key concepts can be catego-

rized into three subdomains: Manufacturing, Context, and Condition Monitoring.

For the Manufacturing subdomain, the key concepts are Product, Process and Re-

source. For the Context subdomain, the key concepts are Identity, Activity, Time, and

Location. While for the Condition Monitoring subdomain, Anomaly, Fault, Failure,

Severity, Prognostics, Diagnostics, Alarm, and Alert are the key concepts. These con-

cepts form the columns of the Table 7.2, and the knowledge models are enumerated

by rows. If a concept is covered by a knowledge model, a check mark is placed in the

table. Otherwise, a cross mark is assigned.

After reviewing the knowledge models mentioned above, we recognize that none

of them provides a satisfactory knowledge representation of the three subdomains.

Some of these knowledge models focus on a narrow field, such as manufacturing

resource planning, and they do not formalize predictive maintenance-related con-

cepts, e.g., machinery Failure and Fault. Also, none of the existing knowledge mod-

els provide knowledge representation of the concepts related to Warning Signal in

maintenance tasks, e.g., Alert and alarm. To perform a predictive maintenance task

on a piece of machinery, the knowledge base of a knowledge-based system should

incorporate not only the machine-interpretable knowledge for characterizing the

manufacturing entities or processes which are being monitored but also the knowl-

edge about fault or failure detection and prognostics. This motivates us to develop a

more expressive and complete knowledge model that provides a rich representation

of the domain knowledge in the fields of manufacturing, condition monitoring, and

context.
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8.1 Introduction

As discussed in Chapter 6, the development of a knowledge-based predictive main-

tenance system requires domain knowledge about system operation and mainte-

nance to be represented in a formal way, thus making this knowledge usable by the

system. To achieve this goal, ontologies have shown promising results when for-

malizing knowledge about predictive maintenance tasks in various domains [PC09]

[SWWP10]. However, as stated in Chapter 7, most of the existing ontologies and

ontological models merely focus on a narrow field, while lacking the formal repre-

sentation of all the knowledge required for predictive maintenance. This highlights

the necessity for developing a novel ontological model that covers a broad range of

concepts and relations that are necessary for describing the predictive maintenance

domain.

In this chapter, an ontology-based framework that is used for the development

of the knowledge-based predictive maintenance system is presented. The frame-

work is proposed based on an ontological representation of condition monitoring

knowledge in the manufacturing domain. The framework is presented by introduc-

ing an ontological structure which includes a core reference ontology for represent-

ing general condition monitoring concepts and relations, and a set of domain on-

tologies for formalizing manufacturing and condition monitoring domain-specific

knowledge. The core reference ontology is aligned with the UFO ontology (Unified

Foundational Ontology), which is an upper-level ontology providing general con-

cepts and relations at a high abstraction level [GW10]. The domain ontologies spe-

cialize the core reference ontology into the manufacturing and condition monitor-

ing domains, with representing domain-specific knowledge from different aspects

such as context, product, process, and resources.

This chapter is structured as follows. Section 8.2 presents the ontological frame-

work with its design methodologies. Section 8.3 shows the Condition Monitoring

Core ontology (CM-core), which is a core reference ontology inside the framework

that represents general condition monitoring knowledge. Section 8.4 introduces the

Manufacturing Predictive Maintenance Ontology (MCMO), which is the key com-

ponent of the ontological framework. Section 8.6 gives a case study on a conditional

maintenance task of bearings in rotating machinery. In this case study, the ontologi-

cal framework is jointly used with SWRL rules to perform rule-based reasoning. The

rule-based reasoning results enables the identification of the conditions of these
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bearings in rotating machinery. Section 8.7 introduces the evaluation of the devel-

oped ontologies according to their structure, function, and usability. Section 8.8

gives a summary of this chapter.

8.2 The proposed ontological framework

8.2.1 Ontology classification based on scope and domain granu-

larity

The ontological framework consists of a set of ontologies with different abstraction

levels. The abstraction levels of the ontologies are designed according to the ontol-

ogy classification criteria introduced in [RPKC11], where ontologies are categorized

into four layers according to their scope and domain granularity. Figure 8.1 shows

the different layers of the ontology classification. From the top layer to the bottom,

the scopes of ontologies become narrower, while the described concepts and rela-

tions in the ontologies become specific [CZMR18b].

Figure 8.1 – The four-layer classification of ontologies [RPKC11].

In this work, the four-layer ontology classification is modified to propose a re-

fined architecture. Within the refined architecture, only three layers of ontologies

are considered: Foundational ontology, Core (reference) ontology, and Domain on-

tology. Since the objective is to represent the concepts and relations of predictive

maintenance at a general level, Application/Local ontology in the four-layer struc-

ture is excluded. Fig. 8.2 shows the refined ontology architecture with three layers,
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as well as the definitions of each layer of ontologies. From top to bottom, the spe-

cialization levels of ontologies become higher.

Figure 8.2 – The three-layer architecture of ontologies: Foundational, Core, and Domain.

To develop the ontological framework, the three-layer architecture is used as

guidance for identifying the scopes and domain granularity of different ontolo-

gies. The following subsections show the development process and the key con-

cepts/relations of these ontologies in detail.

8.2.2 Development methodology

For the development of the ontological framework, the iterative ontology develop-

ment process introduced in [NM+01] is adopted. During this process, the following

seven steps have been accomplished:

• Determine the domain and scope of the ontologies. In this step, the scopes

of different ontologies in the framework are clarified, and the objectives and

the domain coverage of the ontologies are determined. For example, the CM-

core ontology demonstrates basic concepts that are common to a wide range

of monitoring domains. While the MCMO ontology should provide specific

domain concepts and relations. This step helps to clarify the abstraction levels

of different ontologies.

• Consider the reuse of the existing ontologies and other information resources.

The objective of this step is to determine which ontologies and resources are

appropriate to be reused, refined or extended. For the ontological framework,

the development work takes profit from a set of International Organization for
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Standardization (ISO) standards such as ISO 13372 [ISO04], ISO 9000 [ISO05],

ISO 9001 [SSGR09] and ISO 11783 [ISO07], as well as from the domain ontolo-

gies that are mentioned in Chapter 7.

• Enumerate all important terms in the ontologies. In the framework, the terms

are extracted from three resources: i). ISO standards; ii). domain ontologies

that are introduced in Chapter 7; and iii). relevant research papers and text-

books, such as [SSA+00] and [KM01].

• Define the classes and class hierarchy of the ontologies. This process includes

the reuse of concepts in existing ontologies, and also the proposition of new

concepts.

• Define the properties of classes. These properties give the internal structure

of the concepts.

• Define the restrictions of the class properties. The class properties can have

different restrictions on value types, allowed values, number of values and

other features that the properties can take.

8.2.3 The three-layer framework

Top layer: the foundational ontology

The development of the ontological framework starts with the choice of a founda-

tional ontology that defines general and basic notions across a wide range of do-

mains. The reuse of a foundational ontology enables the integration of other ontolo-

gies that represents more specific domain concepts and relationships. In this thesis,

the Unified Foundational Ontology (UFO) [GW10] is chosen, as it provides rigorous

and expressive representation of general concepts and relationships. The UFO on-

tology adopts the Endurant/Perdurant dichotomy, in which an Endurant represents

an entity comprising spatial components that is not dependent on any time frame

of occurrence, while a Perdurant stands for an entity containing temporal compo-

nents, and it presents only part of its temporal components at different time points.

The core ontology is then aligned to the UFO ontology, to ensure a rigorous con-

ceptualization. The UFO ontology is at the top layer of our ontological framework.
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Middle layer: the core reference ontology for condition monitoring

After determining the foundational ontology, a core reference ontology for condi-

tion monitoring, named CM-core, is developed. According to [RPKC11], core ref-

erence ontologies are built within the scope of a domain. Normally, they catch

central concepts and relationships of a domain and are considered as an integra-

tion of several domain ontologies [CZMR19]. During the development process, the

Middle-Out approach for concept taxonomy construction [RPKC11] is used. The

idea of this approach is to construct an ontology through the combination of the

Top-Down and Bottom-Up approaches. To do this, the central concepts in the con-

dition monitoring domain are identified. The central concepts are extracted from

three sources: i). ISO standards 13372 [ISO12], 9000 [ISO05] and 9001 [ISO00]; ii).

the domain ontologies relevant to condition monitoring; and iii). relevant research

papers and textbooks, such as [SSA+00] and [KM01]. These central concepts are

then generalized to the upper level, and the core reference ontology is aligned to

the UFO ontology. On the other hand, these central concepts are specialized into

different subdomains, for building domain ontologies. In this step, the upper-level

concepts and relations are specialized into lower-level ones.

The CM-core ontology contains taxonomies of core condition monitoring con-

cepts such as system, function, behavior, structure, process, state, failure, and fault,

with their interrelationships. For defining these concepts, the existing ontologies

such as the Semantic Sensor Network (SSN) Ontology [CBB+12], PSL Ontology

[GM03], and SWRL Time Ontology [HP06] are resued.

Bottom layer: domain ontologies for condition monitoring in manufacturing

A domain ontology represents specific domain knowledge and is only applicable to

a certain domain. In this work, the CM-core ontology is specialized into domain

ontologies using the Top-Down approach.

Among this level of ontologies, the Manufacturing Condition Monitoring Ontol-

ogy (MCMO) plays the central role among all the domain ontologies. This ontol-

ogy makes use of elements from other domain ontologies and represents knowl-

edge from both manufacturing and condition monitoring domains. To enhance the

reusability and extensibility of the MCMO ontology, the ontology partitioning and

module extraction approaches introduced in [dSSS09] is adopted, and the ontology

is structured into three modules. This ontology will be described in detail in Section
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8.4.

The other domain ontologies are either reused or modified to propose the

MCMO ontology. their main usage are as follows: the Product ontology aims to

provide a comprehensive representation of manufacturing products and product

components. The Manufacturing Process ontology gives a formal representation of

manufacturing processes, such as cutting, drilling, milling, and casting. The Man-

ufacturing Resource ontology provides knowledge about manufacturing resources

which are physical objects used for executing a range of operations during differ-

ent manufacturing processes. The Context ontology contains the representations

of contextual knowledge, including the formal definitions of context entities such

as person, activity, location and time. The Sensor ontology incorporates knowledge

about sensors. This ontology is specialized from the core reference ontology SSN. A

set of domain ontologies are reused in this step, including the MSDL ontology, PSL

ontology, MASON ontology, .etc.

Fig. 8.3 shows the whole ontological framework, where the domain ontologies

are presented at the bottom level. In the figure, ontologies are structured into the

three-layered architecture. Rectangles with solid lines are different ontologies or

conceptual models, and rectangles with dashed lines indicate different levels of do-

main granularity. Solid arrows indicate the alignment among ontologies. The align-

ment among ontologies is presented in the following subsections.

Figure 8.3 – The three-layer ontological framework.
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8.3 The Condition Monitoring Core ontology (CM-

core)

The CM-core ontology aims to cover general concepts in condition monitoring that

are common to many subdomains. To permit generality, the formal representation

of key condition monitoring entities in the CM-core ontology has been made as

generic as possible. In this subsection, the terms that are associated with the classes

of the ontology are presented. The global architecture of the ontology will be pre-

sented thereafter.

The terms are extracted from a set of ISO standards: ISO 13372 [ISO04], ISO 9000

[ISO05], ISO 9001 [SSGR09] and ISO 11783 [ISO07]. Also, relevant textbooks such

as [SSA+00] and [KM01] are reused. The definitions of these terms in the CM-core

ontology are given as follows:

• System: a set of interrelated elements that achieve a given objective through

the performance of a specified function [Ste16]. The definition of the class

OntoProg: System in [NB18] is refined, by using a qualitative characterization

model called Structure-Behavior-Function (SBF) [GRV09]. This class has been

aligned with the Object class in UFO, through the alignment

CM− cor e : Sy stem v UFO : Ob j ect .

In UFO, Object (Endurant) represents a set of entities that posses spatial-

temporal qualities. In CM-core, the System class contains different kinds of

physical systems in the manufacturing domain, and they all obtain spatial-

temporal qualities. Thus, the above alignment is proposed.

• Process: a set of interrelated or interacting activities that use inputs to deliver

an intended result [SSGR09]. This class has been aligned with the Complex

Event class in UFO, through the alignment

CM− cor e : Pr ocess v UFO : Complex Event .

In UFO, a Complex Event (Perdurant) stands for a set of combined events with

each consists of at least two single events. The Process class in CM-core repre-
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sents manufacturing processes that are structured as a series of simple activi-

ties.

• Parameter: a variable representing some significant measurable system char-

acteristics. The value of a Parameter is measured by sensors that are located

at different components of a System. When the domain changes, a different

set of Parameters could be selected for the condition monitoring task, such as

bearing temperature, oil debris, oil pressure, velocity, voltage, etc. The align-

ment for this class and the upper-level UFO class is

CM− cor e : Par ameter v UFO : Moment .

In UFO, the Moment (Endurant) class is a set of individuals that are existen-

tially dependent on individuals of Object, such as color, height and electronic

charge. In CM-core, a Parameter is also defined to be existentially dependent

on a System.

• State: the condition of a System at a specific time. The condition of a System is

associated with the values of a set of Parameters. Since a State is existentially

dependent on a System, the alignment

CM− cor e : St ate v UFO : Moment

has been proposed.

• Behavior: it is represented as a sequence of States and transitions among

them. The States together with transitions specify the evolution in the val-

ues of the Parameters [GRV09]. According to the definition, the Behavior of a

System is also existentially dependent on a System. Therefore, the alignment

CM− cor e : Behavi or v UFO : Moment

has been introduced for the CM-core ontology.

• Fault: a Fault is defined as a condition of a System that occurs when one of its

components or assemblies degrades or exhibits abnormally [ISO04]. The rep-

resentation of this class is adapted from OntoProg: Fault [NB18], with slight
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modification. Based on the definition, the alignment

CM− cor e : Faul t v UFO : Event

is proposed, for representing a Fault as an Event (Perdurant) that happens in

time.

• Failure: termination of the ability of an item to perform a required function

[ISO04]. A Failure is a manifestation of a Fault. For the definition of this term,

the definition of the class OntoProg: Failure [NB18] is adapted, with minor

alteration. This class is also algined with the UFO class Event, through the

alignment

CM− cor e : Fai l ur e v UFO : Event .

Based on these terms, the classes with their object properties and data proper-

ties are constructed. A class defines a group of individuals which share some prop-

erties, and individuals are instances of the class. Object properties are binary re-

lations between individuals, and data properties can relate individuals to concrete

data values. Fig. 8.4 shows the global architecture of the CM-core ontology. For the

purpose of clarity, only part of the classes and properties are shown. In Fig. 8.4,

rectangles are classes, solid lines represent object properties between classes. The

CM-core ontology is developed in OWL.
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Figure 8.4 – The global architecture of the CM-core ontology.

8.4 The Manufacturing Condition Monitoring Ontol-

ogy (MCMO)

At the bottom layer of the ontological framework shown in Fig. 8.3, a domain ontol-

ogy named MCMO is developed. However, the MCMO ontology consists of a large

number of domain concepts and relations, which hardens the management and

maintenance of the knowledge [CGZM+19]. To cope with this issue, designing an

ontology into separate knowledge components is an appropriate way to enhance its

reusability and extensibility [dSSS09]. This design methodology is called ontology

modularization, which stands for the method of structuring an ontology into differ-

ent modules. The separate, independent, and reusable modules can facilitate the

management and exploitation of the ontology. In this work, the ontology partition-

ing and module extraction approach introduced in [dSSS09] has been followed. As

a result, the MCMO ontology is structured into three modules: the Manufacturing

Module, the Context Module, and the Condition Monitoring Module.

The MCMO ontology consists of thirteen super-classes, assigned to three on-
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tology modules. In this section, the three modules and the descriptions of the key

classes are shown in detail, which enables the construction of the classes and the

class hierarchy. The axioms defining the main classes of our ontology will be pre-

sented below using the description logic (DL) syntax [KSH12]. The compactness of

this syntax is more suitable than its Web Ontology Language (OWL) counterpart for

human reading. Nevertheless, all the ontologies presented in this thesis have been

implemented in OWL.

8.4.1 The Manufacturing Module

The Manufacturing Module models the manufacturing domain according to three

notions: Product, Process, and Resource. Among them, the Product notion formal-

izes the manufacturing product information during the product life cycle, the Pro-

cess notion gives the conceptualization of a set of manufacturing processes, and

the Resource notion describes the knowledge about the resources, which are used

by production systems to produce manufacturing products. In our ontology, the

classes used for describing the Manufacturing domain are as follows.

• ManufacturingResource: this class describes the resources that are used for

performing manufacturing activities. It is further divided into three sub-

classes: FinancialResource, HumanResource, and PhysicalResource. Among

them, PhysicalResource is a key class which stands for a set of physical entities

that the condition monitoring tasks are performed upon, such as machines,

machine tools, and workpieces. To define this class, the definition of the class

MASON: Resource in MASON ontology [LSDS06] is extended. The DL axioms

for defining this class and the PhysicalResource class are

Manu f actur i ng Resour ce ≡ HumanResour ce tPhy si cal Resour cet
Fi nanci al Resour ce,

and

Phy si calResour ce v Manu f actur i ng Resour ce u∃hasLocati on.Locati on

u∃i sInsi deO f .Manu f actur i ng Faci l i t y u∀Exi st sIn−1.Faul t .

• ManufacturingProcess: this class describes different types of manufacturing

processes, which are structured sets of operations that transfer raw materi-
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als or semi-finished product segments into further completed product parts.

This definition is adapted from MSDL: Process [AD06], and the DL axioms for

defining this class are

Manu f actur i ng Pr ocess ≡ Assembl yPr ocess tFi ni shi ng Pr ocesst
For mi ng Pr oces tMachi ni ng Pr ocess tMoul di ng Pr ocess,

and

Manu f actur i ng Pr ocess ≡∃MakesUseO f .Manu f actur i ng Resour ceu
∃hasPr ocessInput .Wor kpi ece u∃hasPr ocessOut put .Real i zedPar t .

• ManufacturingFacility: this class consists of different places or areas that

ManufacturingProcesses are executed. The definition of this class and its sub-

classes are adatped from MRO: ManufacturingFacility [UYC+13]. The DL ax-

ioms for defining this class are

Manu f actur i ng Faci l i t y ≡ St ati on tCel l tShop uFactor y tEnter pr i se,

and

Manu f actur i ng Faci l i t y v∃hasCapabi l i t yFor.Manu f actur i ng Pr ocess

u∃Pr oduces.Real i zedPar t .

• RealizedPart: this class represents the physically existential parts of a prod-

uct, which are obtained after the execution of one or several Manufacturing-

Processes. This definition is adapted from the concept MRO: RealisedPart in

[UYC+13], with slight alteration. The DL axiom used for defining this class is

Real i zedPar t v∃hasPar tSt ate.Real i zedPar tSt ateu
∃Pr oduces−1.Manu f actur i ng Faci l i t y u∃Tr ans f or msInto−1.RawMat−

er i al uhasPr ocessOut put−1.Manu f actur i ng Pr ocess.

8.4.2 The Context Module

The Context Module formalizes the knowledge related to context. According to the

definition in [BDR07], the required concepts for describing the context are: Identity
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(a unique identifier for discriminating an entity), Activity (intrinsic characteristics of

an entity), Time (timestamps for recording an entity’s situation), and Location (an

entity’s position, co-location, or proximity) [DAS01]. In our ontology, classes used

for describing the context are given below.

• State: this class describes the condition of a manufacturing entity or process,

which is being monitored. A State is associated with a timestamp for pro-

viding temporal information, and with a set of Parameters which indicate the

correctness of it. The DL axioms for defining this class are

St ate ≡ Pr ocessSt ate tResour ceSt ate tReal i zedPar tSt ate,

and

St ate v∀hasPar ameter.Par ameter u (≥ 1 hasPar ameter.Par ameter )u
∃hasVal i dTi me.Val i dTi me u∀Indi cates.Er r or.

The definition of ValidTime and Parameter will be given later in this section.

• ValidTime: this class gives temporal information of a State. It has two sub-

classes, named ValidInstant and ValidPeriod. The description and definition

of this class is adopted from Temporal: ValidTime, in [OD10]. To define this

class, the following two DL axioms are introduced.

Val i dTi me ≡ Val i dInst ant tVal i dPer i od ,

and
Val i dTi me v∀hasGr anul ar i t y.Ti meGr anul ar i t yu

∀hasVal i dTi me−1.St ate.

• TimeGranularity: this class specifies the granularity of a ValidTime. Individu-

als of this class are Year, Month, Day, Hour, Minute, Second, and Millisecond.

The definition of this class is adapted from the concept Temporal: Granularity

[OD10], and the DL axiom is

Ti meGr anul ar i t y v∀hasGr anul ar i t y−1.Val i dTi me.

• Parameter: variable which represents some significant measurable character-
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istic of a monitored ManufacturingProcess, PhysicalResource or RealizedPart.

The value of a Parameter is measured by sensors which are located at different

components of the monitored entity. The DL axioms for defining this class are

Par ameter ≡ Machi nePar ameter tMachi ner yPar tPar ametert
Machi neToolPar ameter tPr ocessPar ameter tReal i zedPar tPar ameter,

and

Par ameter v∃hasPar ameter−1.St ate.

• Location: this class allows to specify the spatial information of a PhysicalRe-

source. The definition of this class is adapted from the concept Context: Loca-

tion in [BDR07]. Based on the definition, the following DL axiom is proposed.

Locati on v∃hasLocati on−1.Phy si cal Resour ce.

8.4.3 The Condition Monitoring Module

Condition monitoring is a broad research topic. In this subsection, we focus on the

issue of prognostics and health management (PHM) in manufacturing. In [NB17],

the authors pointed out that under the context of PHM, condition monitoring is the

best way to minimize the probability of machinery failure occurrence and mainte-

nance cost. In this context, the Condition Monitoring Module in our ontology aims

to represent knowledge that is essential for describing condition monitoring tasks.

The classes under this ontology module are

• Fault: this class contains different types of Faults that may exist in Physical-

Resources. A Fault is a condition of a PhysicalResource under which the com-

ponents of the PhysicalResource degrades from the theoretically correct con-

dition. A Fault is considered to be active if it produces an Error, otherwise, it

is dormant [ALRL04]. This characteristic of Fault is described by defining the

DL axioms as follows.

Faul t ≡ Act i veFaul t tDor mantFaul t ,

Faul t v∀Exi st sIn.Phy si cal Resour ce,
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and

Act i veFaul t v∃Act i vates.Er r or.

• Error: this class specifies different types of Errors that could be activated by

Faults. An Error is the discrepancy between a measured value of a Parameter

and the theoretically correct value [ALRL04]. The DL axiom for defining the

Error class is as follows.

Er r or v∀Pr opag atesInto.Fai l ur e u∀Tr i g g er s.War ni ng Si g nalu
∃Act i vates−1.Act i veFaul t u∀Indi cates−1.St ate.

The description of the Failure and WarningSignal classes will be demon-

strated later on.

• Failure: this class represents the Failures that may occur in PhysicalResources.

A Failure is the inability of an entity to perform one required function, and it

can be the result of a propagation of an Error [NB17]. The axiom for defining

this class is

Fai l ur e v∀Pr opag atesInto−1.Er r or.

• WarningSignal: this class stands for the auditory or visual signals for revealing

the existence of one or several Errors, which indicate the reduction of the per-

formance of Physical Resources, if unattended. Alarm and Alert are two typical

types of WarningSignals in the manufacturing domain, between which Alarm

warns about a higher severity level problem than Alert. Based on the defini-

tion, the following two axioms are proposed.

War ni ng Si g nal ≡ Al ar mt tAl er t ,

and

War ni ng Si g nal v∃Tr i g g er s−1.Er r or.

Fig. 8.5 gives the global architecture of the proposed ontology, in which the

round rectangles denote classes, solid lines stand for is-a or subsumption relation-

ships, and dashed lines represent object properties. The classes are sorted into three

categories, among which the classes with grey background belong to the Manufac-

turing Module, classes with black background pertain to the Context Module, and
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classes with white background belong to the Condition Monitoring Module.

Figure 8.5 – Global architecture of the MCMO ontology.

8.5 An extension of MCMO: The Machinery Failure Pre-

diction Ontology (MFPO)

The MCMO ontology models domain knowledge about condition monitoring at a

general level. When the scope is limited in failure prediction, MCMO is not ca-

pable of providing specific knowledge about different types of events (non-failure

events, failure events) as well as their temporal information. This motivates us to

develop a more specific domain ontology named Machinery Failure Prediction On-

tology (MFPO), which extends the MCMO ontology and focus on the modelling of

essential knowledge for failure prediction. The MFPO ontology provides the foun-

dation to formally represent events with their time information, for the purpose of

failure prediction.

To describe the main classes in the MFPO ontology, UML notation is used

[KCH+02]. The UML diagram for describing the main classes is shown in Fig. 8.6,

where the boxes stand for ontology classes, and the arrows represent object prop-

erties. Data properties are indicated by class attributes. For the purpose of clarity,

only a subset of the whole classes and relationships are presented.

After demonstrating the UML diagram of the MFPO ontology, the axioms of the

main classes are introduced. Similar to the axioms describing the MCMO ontology,

the axioms defining the main classes are presented below using the description logic

(DL) syntax [KSH12].
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Figure 8.6 – The main classes in the MFPO ontology.
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• ManufacturingResource: This class describes the resources that are used

within manufacturing processes. It consists three subclasses: FinancialRe-

source, HumanResource, and PhysicalResource. Among the three subclasses,

PhysicalResource stands for a set of physical entities that the predictive main-

tenance tasks are performed upon, such as machine tools, workpieces, and

final products. The definition of this class is extended from the class MASON:

Resource, in the MASON ontology [LSDS06]. The DL axioms for defining this

class and the PhysicalResource class are

Manu f actur i ng Resour ce ≡ HumanResour ce t
Phy si cal Resour ce tFi nanci al Resour ce,

and

Manu f actur i ng Resour ce v∀MakesUseO f −1.Manu f actur i ng Pr ocess.

• ManufacturingProcess: It describes different types of structured sets of oper-

ations that transform raw materials or semi-finished product segments into

further completed product parts [CGZM+19]. The DL axioms for defining this

class are

Manu f actur i ng Pr ocess ≡ Assembl yPr ocess t
Fi ni shi ng Pr ocess tFor mi ng Pr oces t

Machi ni ng Pr ocess tMoul di ng Pr ocess,

and

Manu f actur i ng Pr ocess v∃MakesUseO f .Manu f actur i ng Resour ce

u∃hasPr ocessInput .Wor kpi ece u∃Pr oduces.Real i zedPar t .

• Chronicle: Chronicles are a special type of sequential patterns, in which tem-

poral orders of events are quantified with numerical bounds [SMS+19]. To
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introduce this concept in the MFPO ontology, the following axiom is used.

Chr oni cle v∀hasEvent .Event u (≥ 1hasEvent .Event )

u∀hasTi meInter val .Ti meInter valu
(≥ 1 hasTi meInter val .Ti meInter val ) u

∃i sLear nedFr om.Manu f actur i ng Pr ocess.

• Event: In predictive maintenance tasks, an Event is generally associated with

a set of ObservedProperties which indicate the correctness of the operation of

a piece of machinery. In this context, the DL axioms for defining this class is

Event ≡∀hasObser vedPr oper t y.Obser vedPr oper t y u
(≥ 1 hasObser ved .Pr oper t y).

• ObservedProperty: This is an attribute which represents some significant

measurable characteristic of a monitored ManufacturingProcess, Manufac-

turingResource or RealizedPart. The value of an ObservedProperty is measured

by sensors which are located at different components of the monitored entity.

This class is also called Attribute. The DL axioms for defining this class are

Obser vedPr oper t y v∃hasObser vedPr oper t y−1.Event u
∃Obser ves−1.Sensor.

• Failure: This class represents the Failures that are indicated by Events. A Fail-

ure is the inability of an entity to perform one required function, and it can

be the result of a propagation of a machinery error [ALRL04]. The following

axiom is used to define this class:

Fai l ur e v∀Pr opag atesInto−1.Er r or.

• TimeInterval: A temporal entity with an extent or duration. The definition of

this class is adopted from the Time Ontology [HP06]. The axiom for describing

this class is

Tempor al Inter val v∃hasPr oceedi ng Event .Event u
∃hasSubsequentEvent .Event u∃hasTi meInter val−1.Chr oni cle.
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By providing formal logical axioms and rich representations of machine-

interpretable semantics for databases, the MFPO ontology can support seman-

tic interoperability among different systems and system components. Also, the

MFPO ontology provides rich representations of machine-interpretable semantics

for knowledge-based predictive maintenance systems. This ensures the predictive

maintenance systems can interoperate with shared semantics and a high level of

semantic precision.

8.6 Rule-based reasoning for the condition monitoring

of rotating machinery: a case study

To enable ontology reasoning for the goal of machine defects prediction, SWRL rules

are used to perform reasoning tasks on individuals, through which new knowledge

about these individuals can be inferred. The SWRL rules are extracted from a real-

world experiment about bearing defects identification, introduced in [BDRC10].

With the goal of validation, we instantiate the MCMO ontology with different ex-

amples of bearings in rotating machinery, during which the ontology provided rig-

orous and formalized knowledge representation for modeling the condition moni-

toring tasks of these bearings. The proposed SWRL rules inferred about the correct-

ness of the bearing operating states, thus enabling further maintenance actions to

be scheduled.

During the operation stage of rotating machinery, vibration is a significant indi-

cator chosen for detecting the partial or complete degradation of machinery com-

ponents. In the literature [BDRC10], the authors summarize that the most relevant

indicators for detecting bearing defects are Kurtosis, Crest Factor, and the Root Mean

Square (RMS) value of the vibratory signal. Based on the analysis of the numeric

values of these three parameters, the bearing states can be categorized into four

classes, for representing their identities: Bearing without defect, Bearing with inner

race defect (Dir), Bearing with outer race defect (Dor), and Bearing with two defects

(Dor_ir). In this context, the proposed SWRL rules reason on the bearing individuals

and infer about the bearing states of them. The SWRL rule in Fig. 8.7 is used for the

identification of a Dir state:

The inference process of this SWRL rule is shown in Fig. 8.8. On the right side

of the figure, the data property in the red rectangle is inferred by the launching of
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Figure 8.7 – A SWRL rule for the identification of an inner race defect in a bearing.

this rule. This rule can be translated as: If a monitored bearing has a bearing state,

and this bearing state is characterized by three parameters which are Kurtosis, Crest

Factor, and RMS, and the values of these parameters satisfy the value ranges Kurto-

sis > 3.266, Crest Factor > 12.446, and RMS > 20 respectively, then the state of this

bearing is identified as Dir.

Figure 8.8 – The SWRL rule inference process for the identification of an inner race defect in
a bearing.

Another example of a bearing defects detection task includes the consideration

of temporal information. Normally, the behavior of a piece of machinery is repre-

sented as a combination of a sequence of states and the state transitions. During

a machinery life cycle, the machinery condition degrades due to aging and wear,

which decreases the performance of the machinery. This situation appeals to the

need for analyzing machinery degradation trends, which allows maintenance activ-

ities to be scheduled. In this context, the SWRL rule in Fig. 8.9 is proposed to infer

about the severity level of a bearing degradation trend.

Figure 8.9 – A SWRL rule for the identification of a minor error in a bearing.

Fig. 8.10 shows the result of the SWRL rule inference process. The inferred data

property in the red rectangle represents that the monitored bearing is identified as
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having a minor-severity-level error. This rule can be interpreted as: if there is a bear-

ing having a state at time t, and the state is characterized by the parameter Kurtosis

and the parameter RMS, and the values of the two parameters satisfy the condi-

tion 2.544 ≤ Kurtosis < 5.158 and RMS < 6 respectively, and after 0.23 time units the

same bearing experiences another state, which is also characterized by the param-

eter Kurtosis and the parameter RMS, and the values of the two parameters satisfy

the condition 3.435 ≤ Kurtosis < 6.974 and RMS ≤ 6, then this bearing is identified

with a minor error.

Figure 8.10 – The SWRL rule inference process for the identification of a minor error in a
bearing.

The results of SWRL rule inferences show how the ontology could be used to rea-

son about the machinery operation conditions. The reasoning capabilities of SWRL

rules allow the condition monitoring tasks such as machinery state identification

and error detection to be accomplished.

8.7 Ontology evaluation

Ontology evaluation enables users to assess the quality of ontologies. It is essen-

tial for the wide adoption of ontologies, since ontologies can be shared and reused

by different users, and the quality of ontologies such as the consistency, complete-

ness, and conciseness of taxonomies are key considerations when different users

reuse ontologies in specific contexts. In this thesis, to evaluate the quality of the

proposed MCMO ontology, we use OOPS!, which is an online ontology evaluation

tool [PVGPSF14]. The reason we choose this tool for ontology evaluation is two-fold.

Firstly, OOPS! allows automatic detection of common pitfalls in ontologies, and the

detection of pitfalls can be executed independently of the ontology development

software and platforms. Secondly, it enlarges the list of errors that can be detected

by most recent ontology evaluation tools, thus providing a broad scope of anomaly

detection in ontologies [PVGPSF14].
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In OOPS!, ontology pitfalls are classified into three categories: structural, func-

tional, and usability-profiling. Under each category, fine-grained classification cri-

teria is provided to cope with specific types of anomalies.

MFPO and MCMO ontologies share common classes and relationships. Since

MFPO is an extended version of the MCMO ontology with additional classes and re-

lationships, the evaluation of MFPO ensures the accessement of MCMO at the same

time. In this section, the MFPO ontology is examined according to the following

three categories [PVGPSF14]:

• Structural dimension: it focuses on anomaly detection on syntax and formal

semantics. Since the MCMO ontology consists of logical axioms, the syntax,

and logical consistency can be evaluated and validated through anomaly de-

tection within this category. To be more specific, This category is composed of

five criteria: i). modeling decisions, which evaluates whether users use the on-

tology implementation language in the correct way; ii). real-world modeling

or common sense, which evaluates the completeness of the domain knowl-

edge formalized by the MCMO ontology; iii). no inference, which checks

whether the desired knowledge can be inferred through ontology reasoning;

iv). wrong inference, which refers to the detection of inference that leads to er-

roneous or invalid knowledge; and v). ontology language, which assesses the

correctness of the ontology development language of the MCMO ontology.

• Functional dimension: it considers the intended use and functionality of the

MCMO ontology. Under this category, two specific criteria are used to evalu-

ate the MCMO ontology: i). requirement completeness, which evaluates cov-

erage of the domain knowledge that is formalized by the MCMO ontology; ii).

application context, which evaluates the adequacy of the MCMO ontology for

a given use case or application.

• Usability-profiling dimension: it evaluates the level of ease of communica-

tion when different groups of users use the same ontology. Within this cat-

egory, two specific criteria are applied for ontology evaluation: i). ontology

understanding, which evaluates the quality of information or knowledge that

is provided to users for easing the understanding of the ontology; ii). ontology

clarity, which assesses the quality of ontology elements for being easily recog-

nized and understood by users. These criteria are commonly used to check
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the quality of ontologies when users do not have sufficient domain knowl-

edge.

To evaluate the MCMO ontology according to the aforementioned categories,

we uploaded the ontology code to the OOPS! online tool. After loading the ontology

code, the ontology pitfall scanner is used to check the pitfalls that exist in the MCMO

ontology. Fig. 8.11 shows the evaluation result. The result shows that our ontology is

free of bad practices in the structural, functional, and usability-profiling dimensions

of evaluation. Moreover, the MCMO ontology is developed and formalized using

OWL, which is a widely used language for knowledge representation and ontology

development. This eases the reuse of the MCMO ontology in other contexts and also

simplifies the integration of the MCMO ontology with other knowledge components

that are developed with the same language.

Figure 8.11 – Screen shot of the MCMO ontology validation results through OOPS!.

8.8 Summary

This chapter presents an ontological framework which is the basis for the develop-

ment of a knowledge-based predictive maintenance system. The ontological frame-

work is developed using a Middle-Out approach. It includes an ontology that mod-

els the core concepts and properties for condition monitoring, named CM-core.
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The CM-core ontology contains core concepts related to condition monitoring,

such as system, structure, behavior, function, state, fault and failure. The generality

of the CM-core ontology ensures the possibility of its specialization into more spe-

cific domain ontologies, such as the ontologies for machine condition monitoring

in industry. Thus, the CM-core ontology can be extended and customized to satisfy

better the needs in individual domains where ontologies need to be used to em-

power information systems. The CM-core ontology is aligned with the foundational

ontology UFO, for obtaining a rigorous conceptualization. Also, the CM-core ontol-

ogy is specialized into domain ontologies, for integrating and representing domain-

specific knowledge.

At the bottom layer of the framework, a domain ontology is presented for the

formalization of knowledge that is related to condition monitoring tasks performed

upon manufacturing processes. The ontology consists of three modules, named the

Manufacturing Module, the Context Module, and the Condition Monitoring Module,

respectively. After the construction of the ontology, we instantiate it with bearing

examples in rotating machinery. A set of SWRL rules are proposed to reason about

the operating states and error severity of the bearings, which enable the launching

of condition monitoring activities.
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9.1 Introduction

In the context of predictive maintenance in smart factories, pattern mining has

been widely used to discover frequently occurring temporally-constrained patterns,

through which warning signals can be sent to humans for a timely intervention.

Among pattern mining techniques, chronicle mining has been applied to industrial

data sets for extracting temporal information of events and to predict potential ma-

chinery failures. However, even though chronicle mining results are expressive and

interpretable representations of complex temporal information, domain knowledge

is required for users to have a comprehensive understanding of the mined chroni-

cles [PHW02]. As the predictive maintenance domain is becoming more knowledge-

intensive, tasks performed in this domain can often benefit from incorporating do-

main and contextual knowledge, by which the semantics of the chronicle mining re-

sults can be explicitly represented and clearly interpreted. This helps to reduce the

semantic gap issue, which stands for the gulf between the rich meaning and inter-

pretation that users expect systems to associated with their queries to data, and the

low-level features (e.g., attribute values) that systems actually compute. However, to

the best of our knowledge, no work has been proposed to combine chronicle mining

and semantics to facilitate the predictive maintenance of manufacturing processes.

Also, most of the existing research works about predictive maintenance in the man-

ufacturing domain merely focus on the classification of operating conditions of ma-

chines (e.g., normal operating condition, breakdown condition...), while lacking the

extraction of specific temporal information of failure occurrence [SMS+19]. This

brings obstacles for users to perform maintenance actions with the consideration

of temporal constraints.

To address the aforementioned issues, in this chapter, a novel hybrid seman-

tic approach is proposed. The semantic approach uses ontologies (introduced in

Chapter 8) with their rule-based extensions to represent chronicle mining results

in a semantic rich format, which enhances the representation and reuse of knowl-

edge. By specifying domain semantics and annotating industrial data with rich and

formal semantics, ontologies with their rule-based extensions help to address the

issues described above. In more detail, the contributions of this chapter are as fol-

lows:

• This chapter proposes a novel hybrid semantic approach to automate ma-

chinery failure prediction tasks, which is based on the combined use of chron-
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icles and semantic technologies.

• This chapter presents a novel algorithm to transform chronicles into SWRL-

based logic rules, by which the predictive results are formalized, thus inter-

pretable for both human and machines. The proposed transformation en-

ables the automatic generation of SWRL rules from chronicle mining results,

thus enabling an automatic semantic approach for machinery failure predic-

tion.

• The feasibility and effectiveness of the proposed semantic approach is eval-

uated by conducting experimentation on a real industrial data set. The per-

formance of SWRL rule construction and the quality of failure prediction is

evaluated against the industrial data set.

9.2 Foundations and basic notions

This section introduces the foundations and basic notions of Sequential Pattern

Mining (SPM) and chronicles that are necessary for describing our approach. The

foundations include a formal description of the key concepts in these two research

fields.

9.2.1 Foundations of sequential pattern mining

In industry, data collected for predictive maintenance tasks are normally repre-

sented as sets of timestamped sequences [SMS+19]. To cope with this type of data

sets, SPM is one important technique to extract frequently occurring patterns. SPM

is first studied by [AS+94], to analyze customer purchase behavior sequences. One

SPM task could be described as follows: Given a data set containing a number of

sequences, the goal of SPM is to find sequential patterns whose frequency of occur-

rence (a.k.a support) exceed a threshold fixed by an expert.

This support threshold indicates the minimal number of occurrences of the se-

quential patterns, and the found patterns are called frequent sequential patterns.

For the output of SPM algorithms, each frequent sequential pattern is a sequence

which consists of a set of items in a certain order.

To give a formal description of sequential patterns, this subsection reviews the

definitions of key concepts. A sequence S is a set of ordered itemsets, denoted by
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Table 9.1 – An example sequence data set.

SID Sequences
10 < c(abe)(ac f ) >
20 < (bcd)(ac)(bd)(ad f ) f >
30 < (cd)(ab)(bc f )e >
40 < b(d f )(bd f )c(ab) >
50 < (ab)(be f )de >
60 < (abe)(cd)(ce) >

S =< SID,< I1 I2 I3 ... In >>, with SID standing for the index of the sequence with

I j representing a non-empty set of items. Given two sequences Sa =< SIDa ,<
a1 a2 a3 ...am >> and Sb =< SIDb ,< b1 b2 b3 ...bn >>, the sequence Sa is consid-

ered to be the subsequence of Sb , denoted as Sa ⊆ Sb , if there exists integers

1 ≤ k1 < k2 < ... < km ≤ n such that a1 ⊆ bk 1, a2 ⊆ bk 2, ..., am ⊆ bk m [SL13]. One

example of sequence data set is shown in Table 9.1. In the table, each row is a se-

quence of elements. The elements are presented with a certain order, showing the

precedence relationships among them. For example, regarding the definitions re-

called before, the sequence < ce(ac) > is the subsequence of < c(abe)(ac f ) >. If

the support is set to 3, we may check that < (ab)c > is a sequential pattern with the

support of 3.

Over the last decades, considerable contributions have been settled in the re-

search field of SPM [FVLK+17]. As a result, various SPM algorithms have been pro-

posed. Based on these proposed SPM algorithms, a variety of approaches and ex-

periments have been launched to improve the performance and efficiency of SPM

tasks.

9.2.2 Sequential pattern mining with time intervals

Even though sequential patterns contain information about the orders of items, the

algorithms introduced in the previous subsection can not specify the time inter-

vals between items. In real-world situations, the occurrences of events are often

recorded with temporal information, such as time points and time intervals be-

tween events. Thus, several contributions have been proposed to obtain the time

intervals between successive items in sequences. The notion of the time-interval

sequential pattern is first presented by Yoshida et al. [YISI00]. The authors name

this kind of patterns as “delta patterns". A delta pattern is an ordered list of itemsets
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with the time intervals between two neighboring itemsets. It can be represented as

A
[0,3]−−−→ B

[2,5]−−−→ C, where A −→ B −→ C is a frequent sequential pattern. The time inter-

vals [0,3] and [2,5] are bounding intervals, which means the transition time of A → B

is contained in the time interval [0,3], and the transition time of B → C is placed in

the time interval [2,5].

With the introduction of delta patterns, a group of algorithms were proposed

to facilitate the mining process in temporal sequence data sets. One signifi-

cant contribution is the work by Hirate et al. [HY06]. In this work, the au-

thors propose the Hirate-Yamana algorithm to mine all frequent time-extended

sequences. To do this, the authors generalize SPM with item intervals. In the

generalization, they define a set of time-extended sequences , denoted as St =<
SID,(t1,1, i1), (t1,2, i2), (t1,3, i3), ..., (t1,n , in) >>, where i j means an item, and tα,β is the

item interval between items iα and iβ, tα,β can be interpreted according to two as-

pects of conditions [HY06]:

• If the data sets contain timestamps, which indicate the time of occurrences of

items, then tα,β becomes the time interval and can be computed by the equa-

tion tα,β = iβ.t i me − iα.t i me, where iβ.t i me and iα.t i me are timestamps of

items iα and iβ respectively. For example, one time-extended sequence could

be < (0,c), (1, abe), (3, ac), (5, f ) >, which means item c occurs at time point

0, followed by itemset abe occurring at 1 time unit later. Itemset ac occurs 2

time unites after abe, and the last itemset f occurs 2 time unites after ac.

• If the data sets do not contain timestamps, then tα,β may become the item gap

and defined by the equation tα,β = β−α. In this case, the item gap is defined

as the number of items that occur between two items. This type of represen-

tation is suitable to be applied to data sets which contain fixed item intervals,

but it is not applicable to data sets which contain various length of time inter-

vals.

The study on existing notions and algorithms help to capture the core concepts

in the domain of time-interval SPM. These core concepts form the foundations of

chronicle mining.
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9.2.3 Foundations of chronicles

As introduced in the previous subsection, the sequential patterns considered in this

thesis are chronicles. Compared to normal sequential patterns that merely contain

a set of ordered events, chronicles also describe the temporal constrains of these

events. To give formal definition of chronicles, this section starts by introducing the

concept of Event, given by [CMM12].

Definition 2 (Event). Let E be a set of event types, and T a time domain such that

T⊆R, where R is the set of real numbers. E is assumed totally ordered and is denoted

≤E. According to [CMM12], an event is a couple (e, t ) where e ∈ E is the type of the

event and t ∈T is its time. In SPM, events represent itemsets of a single sequence.

A sequence contains a set of ordered events, which are timestamped. The events

contained in a sequence appear according to their time of occurrences.

Definition 3 (Sequence). Let E be a set of event types, and T a time domain such

that T ⊆ R. E is assumed totally ordered and is denoted ≤E. According to the defini-

tion in [CMM12], a sequence is a couple 〈SID,〈(e1, t1), (e2, t2), ..., (en , tn)〉〉 such that

〈(e1, t1), (e2, t2), ..., (en , tn)〉 is a sequence of events. ∀i,j ∈ [1,n], i < j ⇒ ti ≤ t j . If ti = t j

then ei <E e j .

When the events are time-stamped, how to describe the quantitative time inter-

vals among different events is vital important for the prediction of possible future

events. To achieve this goal, the notion temporal constraints is introduced in the

following definition. The definition of temporal constraints is adopted from the one

introduced in [CMM12].

Definition 4 (Temporal constraint). A temporal constraint is a quadruplet

(e1,e2, t−, t+), denoted e1[t−, t+]e2, where e1,e2 ∈ E, e1 ≤E e2 and t−, t+ ∈T.

t− and t+ are two integers which are called lower bound and upper bound of

the time interval, such that t− ≤ t+. A couple of events (e1, t1) and (e2, t2) are said to

satisfy the temporal constraint e1[t−, t+]e2 iff t2 − t1 ∈ [t−, t+].

It is defined that e1[a,b]e2 ⊆ e ′
1[a′,b′]e ′

2 iff [a,b] ⊆ [a′,b′], e1 = e ′
1, and e2 = e ′

2.

With introducing the events and temporal constraints among different events

within a sequence, the concept of chronicles [CMM12] is defined as follows.

Definition 5 (Chronicle). A chronicle is a pair C = (E ,T ) such that:
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1) E = {e1...en}, where ∀i ,ei ∈ E and ei ≤E ei+1,

2) T = {ti j }1≤i< j≤|E | is a set of temporal constraints on E such that for all pairs (i,

j) satisfying i < j , ti j is denoted by ei [t−i j , t+i j ]e j .

E is called the episode of C , according to the definition of episode’s discovery in

sequences [CMM12].

In the chronicle discovery process, support is used as a measure to compute

the frequency of a pattern inside a sequence. It can therefore be formalized by the

definition below.

Definition 6 (Chronicle support). An occurrence of a chronicle C in a sequence S is

a set (e1, t1)...(en , tn) of events of the sequence S that satisfies all temporal constraints

defined in C [SMS+19]. The support of a chronicle C in a sequential data set SD

is the number of its occurrences in SD with maximum one occurrence in each data

sequence S, or the percentage of its occurrences (with maximum one occurrence in

each S) over all data sequences in SD.

The relevance of a chronicle is essentially based on the value of its support.

To illustrate these basic definitions, an example including a sequence and a

chronicle extracted from it is presented. Assuming a sequence S contains three

events < A,B,C >, represented as follows:

Figure 9.1 – A sequence representing three events.

In Fig. 9.1, time constraints that describe the pattern {A, B, C} are noted by

A[2,5]B, B[1,5]C and A[6,7]C. Here [2,5], [1,4] and [6,7] lower and upper bounds of

the time intervals among events.

After the generation of temporal constraints, these events can be represented as

a graphical way, as shown in Fig. 9.2. In the figure, events are represented by the

circles, and temporal constraints are displayed through arrows among events. The
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Figure 9.2 – Example of a chronicle.

values above each arrow are quantitative numerical bounds of temporal constraints.

In the domain of predictive maintenance, frequent chronicle mining has been

used to detect machine anomalies in advance [SST18, SMS+19]. To combine fre-

quent chronicle mining and semantics for facilitating predictive maintenance tasks,

a special type of chronicles, called failure chronicles is introduced [SMS+19].

Definition 7 (Failure chronicle). For a chronicle CF = (E ,T ), CF is a failure chronicle

if and only if the events that describe it are set according to their order of occurrence

in the sequence, and within the chronicle there is a event that represents the failure,

i.e. for E = {e1 · · ·en |ei ≤E ei+1, i ∈ [1,n]}, en is the failure event.

Based on Definition 7, we propose the formal definition of a Chronicle rule:

Definition 8 (Chronicle rule). A chronicle rule is an implication R : EC∧TEC → TF

such that:

• EC = {ec1, ...,ecn}, which represents a set of non-failure events. The non-failure

events in EC are ordered and denoted as≤EC. For∀i,eci ∈ EC, and eci ≤EC eci+1.

• TEC = {ti j }1≤i< j≤|EC| is a set of temporal constraints on EC such that for all

pairs (i , j satisfying i < j , ti j is denoted by eci [t−i j , t+i j ]ec j .

• TF = {ti j }1≤i<k≤|EC+1| is a set of temporal constraints among the non-failure

events EC and a failure event F, such that for all pairs (i ,k) satisfying i < k, ti k

is denoted by eci [t−i k , t+i k ]F.

In [SMS+19], a new algorithm called CPM has been introduced to mine frequent

failure chronicles. Based on their work, in this chapter, a novel algorithm to auto-

matically generate chronicle (SWRL) rules from frequent failure chronicles is pro-
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posed. The generated SWRL rules aim to provide decision making for predictive

maintenance in industry. The algorithm is introduced in Chapter 11.3.

9.3 A novel hybrid semantic approach for predictive

maintenance

To propose the novel hybrid semantic approach for predictive maintenance, data

mining and semantic technologies are jointly used, within which chronicle min-

ing is used to predict the future failures of the monitored industrial machinery, and

domain ontologies with their rule-based extensions are used to predict temporal

constraints of failures and to represent the predictive results formally. The proce-

dure of the semantic approach is shown in Fig. 9.3. Firstly, data pre-processing is

implemented on raw industry data sets to obtain sequences in the form of pairs

(event, timestamp), where each sequence finishes with the failure event. Secondly,

a frequent chronicle mining algorithm mines the pre-processed data to discover

frequent patterns that indicate machinery failures. Thirdly, based on the mined

frequent patterns, semantic technologies are used to automate the generation of

SWRL-based predictive rules. These rules enable ontological reasoning over indi-

viduals in ontologies, thus facilitating decision making.

9.3.1 Domain knowledge

Within an intelligent system, ontologies contain the domain knowledge to operate.

In this work, the MFPO ontology introduced in Chapter 8.5 is used to describe the

concepts and relationships within chronicles. The definitions of key concepts and

Figure 9.3 – The procedure of the semantic approach for predictive maintenance.
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relationships in the MFPO ontology are formalized based on the basic notions in-

troduced in Chapter 8 and Chapter 9.2.

9.3.2 Rules

In the proposed semantic approach, different SWRL rules are used for predicting

machinery failures. The launching of these rules allows reasoning over individuals

contained in the MFPO ontology. In this subsection, SWRL rules which are used

to predict the time interval between a certain event and a future failure are intro-

duced. After that, an algorithm developed for transforming chronicles into SWRL

rules is demonstrated. The proposed rules and algorithm enable the automatic fail-

ure prediction in predictive maintenance tasks.

In this work, the reason SWRL rules are chosen is two-fold. Firstly, SWRL pro-

vides model-theoretic semantics and has the advantage of its close association with

OWL ontologies, which enables the definition of complex rules for reasoning about

individuals in ontologies. Secondly, the use of SWRL to write rules is independent

of rule implementation languages within rule engines, which has the advantage of

the flexible selection of rule engines and reasoning platforms. The generation of

SWRL rules is based on the SPM mining results. As the mining of industrial data

sets can generate frequent patterns which contain failure events, SWRL rules can

be proposed to reason about the criticality of machinery failures. Therefore, when

a failure is detected on a production line, SWRL rules can be launched to identify

the criticality of this failure, which enables appropriate maintenance actions to be

performed.

Failure time prediction rules

Even though the chronicle in Fig. 9.2 is represented in a structured format, it lacks

formal semantics and domain knowledge to be interpreted by humans and predic-

tive maintenance systems. For example, the meaning of events A, B, and C are miss-

ing, which may cause the semantic gap between chronicle mining results and users.

To overcome this issue, ontologies with their rule-based extensions are used to rep-

resent chronicles in a semantic rich format, which helps the sharing and reuse of

chronicle mining results.

As the mining of sequential data sets can generate frequent failure chronicles,

SWRL rules can be proposed to reason about temporal information of machinery
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failures. Therefore, when a new sequence of timestamped events arrives, SWRL

rules can be launched to predict the time intervals among different events and fu-

ture failures. As stated in Section 9.3.1, an event within a chronicle is determined

by a set of observed properties (with their associated values). Based on this defini-

tion, the antecedent of such a rule is constructed by describing quantitative values

of observed properties (attributes) and the temporal constraints inside a chronicle.

The consequent of such a rule comprises the lower and upper bounds of the time

intervals among certain events and the failure.

Figure 9.4 – Example of a SWRL-based predictive rule, generated from a chronicle.

Based on a failure chronicle, a SWRL rule can be elicited. Fig. 9.4 demonstrates

how the rule that describes different events and temporal constraints can be con-

structed from a failure chronicle. Within the rule, Chronicle stands for the root class

of all the chronicle individuals in the ontology. hasEvent is the object property that

links individuals of the class Chronicle and those under the class Event. hasA1V,

hasA2V, hasA3V, and hasA4V are data properties that assign quantitative values of

attributes to the two individuals A and B under the Event class. TimeInterval cor-

responds to the root class of all individuals of time intervals. There are two object

properties that link TimeInterval with Event: hasSubEvent and hasProEvent, among

which hasSubEvent corresponds to the subsequent event of a time interval, and

hasProEvent indicates the preceding event of a time interval. In this case, event A

is the preceding event of the time interval between A and B, and event B is the sub-

sequent event of this time interval. By describing the numerical values of different

attributes and the time interval with its preceding and subsequent events, temporal

constraints among events A, B with the failure C are indicated. The temporal con-

straints comprise the minimum time duration between an event with the failure,

described by the data property hasMinF, and the maximum time duration between

an event with the failure, described by another data property hasMaxF.
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Automatic rule generation based on chronicles

To enable the automatic generation of a SWRL rule, in this work, a novel algorithm to

transform chronicles into predictive SWRL rules is proposed. Algorithm 1 demon-

strates the general idea of our rule transformation method. The ∧ symbol stands for

the conjunction operator for rule atoms. It runs in four major steps:

1) The function LastNonfailureEvent extracts the last non-failure event within a

chronicle. As a chronicle contains a set of ordered events, the last non-failure

event stands for the event to which the subsequent event is a failure.

2) For each temporal constraint in a chronicle, the two functions PrecedingEvent

and SubsequentEvent extract the preceding and subsequent events of the time

interval that is defined in this temporal constraint. Then the two events and

this time interval forms different atoms in the antecedent of the rule, and they

are treated as conjunctions.

3) For each last non-failure event before the failure (there could be multiple last

events before the failure), extract the temporal constraint between this event

and the failure. The extracted temporal constraint is treated as a conjunction

with the last event, to form the consequent of the rule.

4) At last, a rule is constructed as an implication between the antecedent and the

consequent.

A sequence can be described by one or multiple chronicles. To improve the qual-

ity of failure prediction, only the most relevant chronicles for the rule transforma-

tion are kept. In this context, features of chronicles such as Chronicle Support are

selected as reference measures, to select the most relevant chronicles.
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Algorithm 1 Algorithm to transform a failure chronicle into a predictive SWRL rule.

Input: CF: A chonicle model within which the last event is a failure event, E : the
episode of CF which contains different types of events in a chronicle.

Output: R
1: EL ← LastNon f ai lur eEvent (CF,E ) . Extract the last non-failure event before

the failure within a chronicle.
2: R ←;, A ←;, C ←;, Atoma ←;, Atomc ←;.
3: for each ei [t−i j , t+i j ]e j ∈T do

4: pe ← Pr ecedi ng Event (ei [t−i j , t+i j ]e j ) . Extract the preceding event of this
time interval.

5: se ← SubsequentEvent (ei [t−i j , t+i j ]e j ) . Extract the subsequent event of this
time interval.

6: Atoma ← [t−i j , t+i j ]∧pe ∧ se
7: A ← Atoma ∧A
8: end for each
9: for each el ∈ EL do

10: f tc ← Fai l ur eTi meConstr ai nt (el ,TI) . Extract the time constraint
between the last event before the failure and the failure event.

11: Atomc ← el ∧ f tc
12: C ← Atomc ∧C
13: end for each
14: R ← (A → C) . A rule R is generated as an implication between the antecedent

and consequent.
15: return R

9.4 Experimentation

To evaluate the effectiveness of our approach, a software prototype is developed

based on Java 10.0.2, Protégé 5.5.0 [NCF+03], OWL API [HB11] and SWRL API

[OKTM05]. The reason Protégé and OWL API are chosen is their convenience of

creating, parsing, manipulating, and serializing OWL Ontologies. SWRL API allows

us to create and interact with SWRL rules and SQWRL queries. Also, the graphical

tools embedded in SWRL API ease the visualization and interpretation of rule-based

reasoning and querying results. Among these tools, OWL API is used to build and

manipulate the MFPO ontology. Different types of chronicles are created as indi-

viduals within the MFPO ontology, and SWRL-based predictive rules are proposed

using the transformation algorithm introduced in Chapter 9.3.2. To enable ontology

reasoning, the SWRL API, which includes a SWRL Rule Engine API, is used to create

the transformed rules and then execute them. Within this process, the Drools rule
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engine [Pro11] is used for rule execution. At last, the inferred knowledge is returned

to the OWL API, and stored in the new ontology. The running environment of the

software prototype is Microsoft Windows 10.

9.4.1 The SECOM data set

Our approach is validated by conducting experimentation on the SECOM data set

[MJ08], which contains measurements of features of semi-conductor production

within a semi-conductor manufacturing process. In the SECOM data set, 1567 data

records and 590 attributes are collected, with each recording being characterized

by a timestamp referring to the time that the data is recorded. Each recording is

also associated with a label, which is either 1 or -1. The label of every recording

explains the correctness of the event, with -1 corresponding to a non-failure event,

and 1 refers to a failure. Timestamps are associated with all the records indicating

the moment of each specific test point. In total, 104 number of records represent

the failures of production. The data is stored in a raw text file, within which each

line represents an individual example of recording with its timestamp. The features

are separated by spaces.

However, the data contained in SECOM data set do not have the same types of

attributes and values, that some of the information contained in the data is irrel-

evant to the failure prediction task thus is considered as noise. Moreover, due to

the inter-dependency among individual features and the complex behavior of com-

bined features, it is difficult to extract frequent patterns and rules based on the anal-

ysis of all the 590 attributes. Thus, in this context, instead of going through the entire

data set and use all 590 attributes for failure prediction, feature selection methods

[GE03] are used to identify and select the most relevant attributes in predicting the

failures. The selected attributes are subsequently used to extract the key factors and

patterns that lead to machine failures. This reduces the data processing time and

memory consumption.

9.4.2 The extraction of frequent failure chronicles

The main objective is to extract frequent failure chronicles and test the performance

of Algorithm 1 on the SECOM data set. To obtain frequent failure chronicles, the

frequent chronicle mining approach introduced in [SMS+19] is used. In [SMS+19],

an data pre-processing method is introduced, including data discretization and se-
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Figure 9.5 – Different steps used in the frequent failure chronicle mining approach, adapted
from [SMS+19].

quentialization. Fig. 9.5 shows different steps within the data mining, especially

the frequent chronicle mining approach. The steps presented in Fig. 9.5 elaborate

the data mining procedure which is described in Fig. 9.3. The approach starts with

the aforementioned feature selection method introduced in [GE03], after which a

feature subset of the SECOM data set is obtained while retaining a suitably high ac-

curacy in representing the original data set. As a result, 10 most relevant attributes

are selected as the optimal subset of all 590 attributes. After the feature selection,

data discretization [RGGMT+16] is employed to discretize continuous values for ob-

taining nominal ones. Thereafter, data sequentialization is used to transform the

data into the form of pairs (event, timestamp), where each sequence finishes with

a failure [SMS+19]. After that, the ClaSP algorithm [GCMG13] is applied to data se-

quences, to extract frequent sequential patterns. Also, the frequent chronicle min-

ing algorithm introduced in [SMS+19] is used to extract the temporal constraints

among these sequential patterns. Up to this step, frequent failure chronicles are

obtained and transformed into predictive rules.

As introduced in Chapter 9.3, to improve the quality of failure prediction, Chron-

icle Support is chosen as a reference measure, to select the most relevant failure

chronicles for failure prediction. As a result, only a subset of all frequent chronicles

are used for predictive rule transformation. Table 9.3 shows the failure chronicles

that have the 10 highest chronicle support. These chronicles are used as examples

to demonstrate the predictive rule generation approach. In Table 9.3, each failure

chronicle is described by the number of events that it contains, the number of time

intervals among events, all the observed properties (attributes) that characterize the
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failure chronicle, and the chronicle support. For the ease of demonstration, the 590

attributes are labeled as A1, A2, A3...A590.

For an event within a failure chronicle, it is not only identified by a set of at-

tributes, but also the quantitative values of them. To obtain the corresponding

quantitative attribute values for describing each event, data discretization has been

applied to the SECOM data set. After data discretization, the quantitative data has

been translated into qualitative data. Also, an association between each numerical

value and a certain interval has been created. Taking the chronicle that is presented

in Fig. 9.4 as an example, Table 9.2 shows the numerical intervals for describing

the events within this failure chronicle. This chronicle is the failure chronicle CF5

introduced in Table 9.3.

Table 9.2 – Attributes with their numerical intervals within the failure chronicle CF5.

Event Attribute Numerical Value Interval
A 63 [89.2564, 94.8757)
A 204 [4925.1678, 4999.2456)
A 209 [20.1884, 23.0750)
A 347 [6.4877, 6.9573)
A 476 [125.1988, 137.4435)
B 58 [4.5537, 4.8994)
B 63 [89.2564, 94.8757)
B 64 [90.0196, 94.3934)
B 102 [-0.1188, 0.5231)
B 347 [6.2446, 6.9574)

9.4.3 The generation of SWRL-based predictive rules

Based on the descriptions of the failure chronicle CF5, the algorithm introduced in

Section 9.3.2 is used to generate a SWRL-based predictive rule. The result of this rule

generation is shown in Fig. 9.6. In this rule, hasA58V, hasA63V, hasA64V, hasA102V,

hasA204V, hasA209V, hasA347V, hasA476V are data properties in the MFPO ontol-

ogy that link individuals of the Event class with XML Schema Datatype values. They

correspond to the quantitative values of the attributes A58, A63, A64, A102, A204, A209,

A347, and A476 in the SECOM data set. To describe the numerical intervals which are

obtained by discretization, SWRL Built-Ins are used to specify the upper and lower

numerical boundaries. The consequent of this rule comprises the temporal con-

straints among Events A, B and C. The minimum time duration between an event
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with the failure is described by the data property hasMinF, and the maximum time

duration between an event with the failure is described by another data property

hasMaxF. By this way, the temporal constraints of a future failure is inferred by the

launching of such a predictive SWRL rule. This rule is an instantiation of the generic

rule introduced in Fig. 9.4.

Figure 9.6 – The SWRL-based predictive rule transformed from the failure Chronicle CF5,
with describing the attributes and their numerical value intervals.

143



CHAPTER 9. A NOVEL HYBRID SEMANTIC APPROACH FOR PREDICTIVE
MAINTENANCE

Tab
le

9.3
–

E
xtracted

failu
re

ch
ro

n
icles

th
ath

ave
th

e
h

igh
est10

ch
ro

n
icle

su
p

p
o

rt.

Failu
re

C
h

ro
n

icle
N

u
m

b
er

o
fE

ven
ts

N
u

m
b

er
o

fT
im

e
In

tervals
A

ttrib
u

tes
C

h
ro

n
icle

Su
p

p
o

rt
C

F
1

3
3

A
63 ,A

64 ,A
102 ,A

204 ,A
209 ,A

476
83.65%

C
F

2
3

3
A

63 ,A
64 ,A

102 ,A
204 ,A

209 ,A
347 ,A

476
82.69%

C
F

3
3

3
A

58 ,A
64 ,A

102 ,A
204 ,A

209 ,A
476

82.69%
C

F
4

3
3

A
58 ,A

63 ,A
102 ,A

204 ,A
209 ,A

347
81.73%

C
F

5
3

3
A

58 ,A
63 ,A

64 ,A
102 ,A

204 ,A
209 ,A

347 ,A
476

81.73%
C

F
6

3
3

A
58 ,A

102 ,A
204 ,A

209 ,A
347 ,A

476
80.77%

C
F

7
3

3
A

58 ,A
204 ,A

209 ,A
347 ,A

476
80.77%

C
F

8
4

4
A

63 ,A
64 ,A

102 ,A
204 ,A

209 ,A
347 ,A

476
78.84%

C
F

9
4

4
A

58 ,A
63 ,A

102 ,A
204 ,A

209 ,A
347

78.84%
C

F
10

4
4

A
58 ,A

204 ,A
209 ,A

347 ,A
476

78.84%

144



CHAPTER 9. A NOVEL HYBRID SEMANTIC APPROACH FOR PREDICTIVE
MAINTENANCE

9.5 Results evaluation

To evaluate the usefulness and effectiveness of our approach, an evaluation for

SWRL rule-based failure prediction is conducted. It should be noted that the focus

of results evaluation is on the quality of semantic enrichment to the chronicle min-

ing results, and the evaluation of the performance of the chronicle mining phase is

out of the scope of this thesis.

To perform results evaluation, the SWRL rules are applied to the data sequences

in the SECOM data set, and three measures are used to assess the quality of these

rules: the True Positive Rate (TPR), the Precision of failure prediction, and the F-

measure. The equations for computing these three measures are shown in Equation

9.1, 9.2 and 9.3. The number of generated SWRL rules are shown in Table 11.3.

TPR = TP

TP+FN
. (9.1)

Pr eci si on = TP

TP+FP
. (9.2)

F−measur e = 2TP

2TP+FP+FN
. (9.3)

Among them, the True Positive Rate aims to measure the percentage of positive

sequences that have been correctly classified. In Equation 9.1, TP (True Positive) is

the true positive results standing for the number of valid sequences that at least one

SWRL rule could predict the failures in these sequences, and FN (False Negative) is

the false negative results which stand for the number of sequences that no SWRL

rule could predict the failures in these sequences.

The Precision of failure prediction measures the percentage of sequences based

on which the SWRL rules are constructed correctly. For a given sequence, failure

chronicles are extracted through chronicle mining and SWRL rules are constructed

for failure prediction. After applying the SWRL rules, if the predicted failure tem-

poral constraints are out of the range of the failure occurrence time intervals in the

sequence, then it indicates that the SWRL rules could not predict the temporal con-

straints of the failure in this sequence. Thus, the failure is classified as False Positive.

In Equation 9.2, TP is the same definition as in Equation 9.1, and FP (False Posi-

tive) is the number of sequences for which the SWRL rules incorrectly predict the

temporal constraints of the future failures.
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With obtaining the above two measures, the F-measure can be computed ac-

cording to the Equation 9.3.

Table 9.4 shows the experimental results of the three measures. The three mea-

sures are computed according to different support thresholds of sequences in the

data set. f tmi n is used to denote the support of a chronicle/SWRL rule in the data

set.

Table 9.4 – True Positive Rate, Precision and F-measure of Failure Prediction Based on SWRL
Rules.

f tmi n True Positive Rate Precision F-measure
1 83.63% ±6.43% 84.62% ±6.55% 86.55% ±4.89%
0.9 85.45% ±4.98% 87.49% ±6.16% 88.54% ±6.06%
0.8 87.27% ±7.50% 84.58% ±6.55% 85.71% ±6.98%
0.7 89.09% ±6.68% 86.22% ±6.43% 87.52% ±6.51%
0.6 90.90% ±7.93% 88.71% ±5.26% 89.21% ±5.43%
0.5 90.90% ±7.93% 86.83% ±4.41% 87.88% ±5.77%

It can be seen from Table 9.4 that all computed values for the three measures

are above 80%, which shows the results are encouraging. As the support f tmi n val-

ues decreases, the values of three measures show an increase tendency. This can

be explained as follows: as f tmi n increases, the number of extracted chronicles de-

creases, which lead to the decrease of the number of transformed SWRL rules. For

this reason, each sequence for testing is less likely to be validated by the transformed

SWRL rules.

Since the SWRL rules are generated from chronicle mining results, the quality of

their prediction exclusively depend on the mined frequent chronicles. In this con-

text, the 10-fold cross validation principle [AC+10] is used to evaluate the quality of

failure prediction. To apply the 10-fold cross validation principle, the SECOM data

set is partitioned into two parts: the training set and the test set. Firstly, chronicles

are extracted from the training sequences in the training set. Then, for the test set, it

is checked for each sequence, its membership in at least one chronicle among those

extracted. The number of sequences validated by the chronicles is computed to

estimate its percentage of occurrence with respect to the whole data set. The com-

putation of True Positive Rate, Precision, and F-measure follows the same principle

for computing the recall rate, as introduced in [Sto74]. This procedure is repeated

10 times to validate all the sequences of the database.

The launching of such a set of SWRL-based predictive rules enables the predic-
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tion of temporal constraints of future machinery failures. This allows users to take

further maintenance actions, such as the replacement of the machine tools used on

the production line. The performance of failure prediction could be enhanced by

considering a new set of rules that reason about the criticality levels of failures. In

the next chapter, machine learning techniques are used to classify the criticality lev-

els of failures, according to the temporal constraints among the failures and other

events.

9.6 Summary

This chapter demonstrates a novel hybrid semantic approach for implementing

predictive maintenance in industry. The proposed semantic approach is a combina-

tion of frequent chronicle mining and semantics, within which chronicle mining is

used to extract frequent chronicles based on industrial data sets, and a knowledge-

based structure is used to automate the SWRL rule generation process and to for-

malize the predictive maintenance results.

The contributions of this chapter are three-fold. Firstly, chronicles are formally

represented with the use of ontologies and SWRL rules, by which the main concepts

and relationships for describing chronicles are formalized, then easing the knowl-

edge representation and interpretation of frequent chronicle mining results. Sec-

ondly, a novel algorithm for transforming chronicles into SWRL-based predictive

rules is introduced. The novel algorithm allows the automatic generation of SWRL

rules based on the mined frequent chronicles, thus enabling an automatic semantic

approach for predictive maintenance. Thirdly, the reasoning about temporal con-

straints of future machinery failures is enabled by the joint use of data mining and

semantics, which allows the implementation of maintenance actions such as alarm

launching.

However, the main problem of the proposed approach is the evolution of the

ontology and the rule base. Since the manufacturing domain is highly-dynamic,

the predictive maintenance system should be able to adapt itself to dynamic situ-

ations over time, for example, the change of context. Also, when the system fails

to provide satisfactory results through launching the rules, it is required to consult

domain experts for decisions about failure prediction and maintenance. In this sit-

uation, the domain experts use their expertise and experience to assess the current

state of the system and provide appropriate decisions. For example, when the tem-
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perature measured by a sensor located at a cutting tool exceeds its threshold and no

rule in the rule base is able to warn about his abnormal condition, domain experts

can use their experience to identify this abnormal condition and provide possible

solutions in order to avoid the production line to produce unqualified products.

In this way, new rules which capitalize experts’ experience need to be proposed to

update the initial set of rules in the rule base, in order to facilitate the quality of fail-

ure prediction. In this context, when the next time a similar situation needs to be

addressed, the rule which capitalizes domain experts’ experience will be launched

together with the initial rules to identify potential failures and to make predictions.

This requires the ontology and the rule base to be capable of coping with the dy-

namic change of knowledge. To cope with this issue, rule base update and refine-

ment solutions should be proposed: the rule base should be updated and refined

with each time of integration for one expert rule. During the integration process,

the conflict issue among different chronicle rules should also be addressed. In this

thesis, a rule base refinement approach is proposed to deal with these issues. This

part of contributions will be introduced in Chapter 11.
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10.1 Introduction

In the predictive maintenance domain, the prediction and assessment of failure

criticality is a critical issue for manufactures. By obtaining criticality levels of dif-

ferent failures, machine operators can prioritize maintenance actions for higher

criticality-level failures compared to lower level ones. In this way, the failure pre-

diction results can be further used for scheduling and planning the maintenance

of machines. However, existing predictive maintenance approaches in the manu-

facturing domain are limited to the deployment of condition monitoring systems

for detecting anomalies and predicting the time of future machinery failures, while

lacking the solutions for identifying the criticality of machinery failures [AGN19].

This causes a missing link between the temporal information of an anomaly (e.g.,

the occurrence time of a future machinery failure) and the criticality of the anomaly.

To assess the availability of computing systems, the outage duration is a key consid-

eration which indicates the criticality of a mechanical failure [ALRL04]. Therefore,

predicting the moments of machinery failures are crucial for computing the outage

duration and the criticality of the failures. In Chapter 9, a hybrid semantic approach

for predicting the time of failures has been introduced. However, the proposed ap-

proach and existing research works fail to support decision makings about the crit-

icality of machinery failures based on the time of occurrences of future machinery

failures. This brings obstacles to users for performing appropriate maintenance ac-

tions with considering time limitations.

On the other hand, since most of the existing ontologies and rule-based ap-

proaches are based on crisp logic, they are not competent in dealing with uncertain

situations in predictive maintenance. Comparing to approaches that use crisp logic,

a fuzzy approach allows better expression of imprecise relations. For the scheduling

of maintenance, using a fuzzy approach allows to associate each failure criticality

assessment with a fuzzy index, indicating the degree of its membership to a “low"

or “high" criticality level. By this, the crisp logic-based rules can be transformed

into fuzzy rules, which enhances the representation of imprecise criticality level of

machinery failures. In this way, the fuzzy approach provides a better solution for

solving the symbol anchoring problem [CS03] than crisp logic-based approaches.

Moreover, as the degradation process of a piece of machinery often involves inher-

ent randomness, techniques that can handle uncertainty are required to avoid the

outage situation of the machinery and to ensure the smooth operation of the pro-
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duction system.

In this chapter, the work of Chapter 9 is extended by introducing two hybrid

ontology-based approaches for the failure prediction and clustering tasks. The hy-

brid ontology-based approaches are based on the combined use of clustering tech-

niques and ontology reasoning. Within the proposed approaches, we address the

uncertainty of failure criticality by adopting two uncertainty frameworks: fuzzy c-

means (FCM) clustering [BEF84] and evidential c-means (ECM) clustering [MD08b].

These tools are used to assess failures according to their criticality levels. On the

other hand, domain ontologies and a set of SWRL predictive rules are proposed to

reason about the time and criticality levels of machinery failures. The approach has

been validated on one real-world industrial data set and several synthetic data sets.

10.2 The use of fuzzy clustering and ontology reason-

ing for machinery failure clustering

The first machinery failure clustering approach is based on the use of FCM cluster-

ing and ontology reasoning. It starts with the implementation of sequential pattern

mining (SPM) [AS+95] on raw industrial data sets, after which frequent sequential

patterns are obtained. The obtained frequent sequential patterns contain failure

events as well as the temporal information of these failures (e.g., the time stamp in-

dicating when the failure will happen). After that, FCM clustering is applied to the

extracted temporal information of failures, in order to cluster different failures ac-

cording to their time of occurrence. This clustering enables the identification of fail-

ure criticality. Then, domain ontologies with their rule-based extensions are used to

formalize the domain knowledge and enable the prediction of the time and critical-

ity of future failures. In this work, the failure chronicles that are in a rule format1 are

considered. This allows us to use these sequential patterns for ontology reasoning,

to facilitate failure prediction in industry. Fig. 10.1 shows the steps described above.

10.2.1 Fuzzy clustering of failure criticality

In Chapter 8, one issue encountered is the incorrect identification of failure critical-

ity. The incorrect identification is due to the reasoning with crisp logic, which fails

1In this work we consider rules in the format A −−−−→
[t1,t2]

Fai l ur e where A is the antecedent part of

the rule that predicts a failure in [t1, t2] time units.
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Figure 10.1 – Different steps of the hybrid ontology-based approach for predictive mainte-
nance (using FCM and ontology reasoning).

to identify the criticality of a failure into the correct category when there are uncer-

tain situations. For example, if a failure is predicted to happen within a considerably

short amount of time after a “normal” condition, then the criticality level of this fail-

ure is identified as “high”, meaning that maintenance actions need to be proposed

immediately. However, if the predicted time duration between a “normal” condition

and a failure falls into the “medium” category and the time duration is considerably

close to the numerical threshold between “medium” and “high”, then the system

failed to identify the criticality of this failure into the correct category. To cope with

this issue, a fuzzy approach which is able to handle such type of uncertainty situa-

tions is required. It should be noted that the failure criticality descriptor considered

in this section is the time duration among normal conditions and machinery fail-

ures. Other descriptors that may affect the failure criticality, such as the level of

mechanical component fracture and wear are out of the scope of this section.

To cope with the aforementioned uncertain situations, in this section, the FCM

algorithm is used for fuzzy clustering of failure criticality. After executing the SPM

step introduced in Chapter 9.3, the frequent sequential patterns which contain tem-

poral information (e.g., the time duration among “normal” events and the failure

events) of failure events are extracted. The temporal information is represented as

data points during the implementation of the FCM algorithm. Then the FCM al-

gorithm is used to cluster the failures by grouping similar data points into clusters.

This clustering is achieved by iteratively minimizing an objective function which is
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dependent on the distance of the data points to the cluster centers. The objective

function is computed by the following equation:

J =
N∑

j=1

C∑
i=1

um
i j || x j − ci ||2, (10.1)

where ui j represents the degree of membership of the data point x j in the i th

cluster, c j stands for the d-dimension center of the cluster, m is any real number

greater than 1, and || · || denotes any norm expressing the similarity between any

measured data and the center.

During the implementation of FCM algorithm, the objective function is mini-

mized with the update of membership ui j and the cluster centers c j . The update of

membership of the objective function is described by the following equation:

ui j = 1∑c
k=1(

||xi−c j ||
||xi−ck || )

2
(m−1)

. (10.2)

The update of the cluster centers c j is computed by:

c j =
∑N

i=1 um
i j · xi∑N

i=1 um
i j

. (10.3)

By this, the FCM algorithm starts with an initial guess for cluster centers, and

then iteratively updates the cluster centers and the degrees of membership for each

data point. The iteration stops when maxi j | u(k+1)
i j −uk

i j | < ε, where k is the num-

ber of iteration steps, and ε is a termination criterion [BEF84]. The whole process

converges when a local minimum value of J is obtained. The full theory of FCM

clustering algorithm is presented in Appendix A.

In this work, the time duration from normal conditions to failures are used as

training examples to FCM with three fixed clusters, and the three clusters indicate

three levels of failure criticality:

• High Criticality: time from a normal condition to the failure is relatively short

and the production line should be stopped for immediate maintenance.

• Medium Criticality: the failure may happen after a moderate amount of time

and machine operators need to plan maintenance in a limited time.

• Low Criticality: the failure may happen in the long future and machine oper-

ators will have sufficient time to plan maintenance actions.
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The results of the FCM algorithm are formalized by domain ontologies and SWRL

rules, which aim to predict the time of future failures and their criticality, thus facil-

itating the knowledge representation and interpretation in predictive maintenance

of industrial manufacturing process.

To handle uncertainty, the MFPO ontology (introduced in Chapter 8) has been

extented. Normally, classical ontologies apply classical set theory, which indicates

that elements either belong to a set or not [BS11]. This leads to the inability of clas-

sical ontologies for representing vague knowledge. This issue can be addressed by

the fuzzy set theory, in which elements can belong to a set to some degree. To give

a formal description, let us assume X a set of elements and x is an element within

the set X. In classical set theory, 0 means no-membership for a x ∈ X and 1 means

full membership. While in fuzzy set theory, a fuzzy subset of X, denotated as F, is

defined by a membership function F(X). F(X) assigns any x ∈ X to a value in the

interval of real numbers between 0 and 1 [BS11]. By this, the criticality of a failure

can be assess with multiple categories simultaneously, with each category assigned

with a degree of membership.

In this extension of the MFPO ontology, the nominal categories of classes are

described by data properties. In this way, the classes in the MFPO ontology are as-

sociated with membership degrees which range from 0 to 1. For example, in the

MCMO ontology introduced in [CGZM+19], hasFailureCriticality is an object prop-

erty whose domain is the class Failure, and range is the predefined individuals Low,

Medium and High. After applying the aforementioned method, this object prop-

erty is replaced by three data properties: hasFailureCriticalityLow, hasFailureCrit-

icalityMedium, and hasFailureCriticalityHigh, and the sum of the numeric values

of these three data properties is 1. By this, the Failure class in the MFPO ontology

is associated with membership degrees to three nominal categories, thus enabling

ontology reasoning of vague knowledge about this class.

10.2.2 Ontology reasoning for failure prediction

To predict the time of failures and also assess failure criticality with different cate-

gories based on their temporal information, SWRL rules are proposed for ontology

reasoning. The proposed SWRL rules reason on the individuals in the MFPO ontol-

ogy, and infer new knowledge about failure prediction.

As presented in Fig. 8.6, the State of a ManufacturingResource is determined by a
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set of ObservableProperties (with their associated values). Based on this definition,

the antecedent of a SWRL rule is constructed by describing quantitative values of

ObservableProperties (attributes) and the temporal information of the failure. The

consequent of such a rule comprises the time constraints of the failure and its criti-

cality.

After obtaining the failure chronicles, to enable the automatic generation of

SWRL rules, this subsection proposes a novel algorithm to transform failure chron-

icles (such as the one in Fig. 9.2) into predictive SWRL rules. The transformed

SWRL rules not only predict the temporal constraints of failures, but also gives the

memberships of failure criticality to differnet clusters (High, Medium, Low). The

proposed algorithm is an extension of the algorithm 1 in Chapter 9. Algorithm 2

demonstrates the general idea of our rule transformation method. The ∧ symbol

stands for the conjunction of rule atoms. It runs in five major steps:

1) The function LastNonfailureState extracts the last non-failure state (event)

within a chronicle, and the function LastNonfailureState extracts the failure

within a chronicle.

2) For each temporal constraint in a chronicle, the two functions PrecedingEvent

and SubsequentEvent extract the preceding and subsequent events of the time

interval that is defined in this temporal constraint. Then the two events and

this time interval forms different atoms in the antecedent of the rule, and they

are treated as conjunctions.

3) For the last non-failure state before the failure, extract the time interval and

its duration between this state and the failure. Then the descriptions of all

normal states and this time duration form different atoms in the consequent

of the rule, and they are treated as conjunctions. The extracted temporal in-

terval and its duration is treated as a conjunction with the last event, to form

the consequent of the rule.

4) FCM algorithm is applied to assess the failures according to their criticality.

The failures are assigned to three categories, and three object properties in the

MFPO ontology are used to represent the degrees of membership to different

clusters. The degrees of membership are treated as a conjunction, to form the

consequent of the rule.
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5) At last, a rule is constructed as an implication between the antecedent and the

consequent.

Algorithm 2 Algorithm to transform a chronicle into a predictive SWRL rule, based
on fuzzy-c means

Input: SF: a chronicle within which the last state (event) is a failure, E : a set of the
states that are described within a chronicle.

Output: R . R: the SWRL rule to be constructed.
1: l s ← LastNon f ai lur eSt ate(SF,E ) . Extract the last non-failure state before

the failure within a chronicle.
2: f ← theFai l ur e(E ) . Extract the failure within a chronicle.
3: R ← ;, A ← ;, C ← ;, Atoma ← ;, Atomc ← ;, FFai l ur eCr i t i cal i t yLow = 0,

FFai l ur eCr i t i cal i t yMedi um = 0, FFai l ur eCr i t i cal i t yHi g h = 0. . A: the an-
tecedent of the SWRL rule. C: the consequent of the SWRL rule. Atoma : a subset
of all atoms within the antecedent. Atomc : a subset of all atoms within the con-
sequent. FFai l ur eCr i t i cal i t yLow , FFai l ur eCr i t i cal i t yMedi um , FFai l ur eCr i t i cal i t yHi g h :
the three degrees of membership to the three categories of failure criticality.

4: for each ei ∈ E do
5: pe ← Pr ecedi ng St ate(ei ,SF) . Extract the preceding state
6: se ← SubsequentSt ate(ei ,SF) . Extract the subsequent state
7: Atoma ← pe ∧ se
8: A ← Atoma ∧A
9: end for each

10: f td ← Fai l ur eTi meDur ati on(l s, f ) . Extract the time duration between the
last non-failure state and the failure.

11: FFai l ur eCr i t i cal i t yLow ← Deg r eeo f Member shi pLow( f td)
12: FFai l ur eCr i t i cal i t yMedi um ← Deg r eeo f Member shi pMedi um( f td)
13: FFai l ur eCr i t i cal i t yHi g h ← Deg r eeo f Member shi pHi g h( f td) . Use the

FCM algorithm to compute the degrees of membership of this time duration to
the three clusters.

14: C ← FFai l ur eCr i t i cal i t yLow ∧ FFai l ur eCr i t i cal i t yMedi um ∧ FFai l ur eCr i t i cal i t yHi g h ∧
f td

15: R ← (A → C) . A rule is generated as an implication between the antecedent
and consequent.

16: return R

156



CHAPTER 10. ASSESSMENT OF MACHINERY FAILURES BASED ON CRITICALITY
LEVELS

10.3 The use of evidential clustering and ontology rea-

soning for machinery failure clustering

Although FCM uses fuzzy partition methods that allow each object data to belong

to two or more clusters with different degrees of membership, it is afflicted by the

poor robustness against noise and outliers. To overcome this drawback of FCM, the

evidential c-means (algorithm) was proposed. ECM extends the concept of fuzzy

partition in FCM by allocating, for each object, a “mass of belief”, not only to single

clusters, but also to any subsets of Θ = {ω1,ω2, ...,ωK} [MD08b]. In this way, ECM

has additional flexibility than FCM that allows users to gain a deeper insight from

the data. Also, ECM improves the robustness against noise and outliers.

This section studies the performance of ECM when applied to the assessment of

machinery failure criticality.

10.3.1 The evidence theory

The evidence theory [Dem67, SK94] is based on several fundamentals such as the

Basic Belief Assignment (BBA). A BBA m is the mapping from elements of the power

set 2Θ onto [0, 1]:

m : 2Θ −→ [0,1],

where Θ is the frame of discernment. It is the set of possible answers for a

treated problem and is composed of K exhaustive and exclusive hypotheses Θ =
{ω1,ω2, ...,ωK}. A BBA m is written as follows:

∑
A⊆Θ

m(A) = 1

m(;) ≥ 0.
(10.4)

Assuming that a source of information has a reliability rate equal to (1−α) where

(0 ≤ α≤ 1), such a meta-knowledge can be taken into account using the discounting

operation introduced by [Sha76a], and is defined by:mα(A) = (1−α)×m(A) ∀A ⊂Θ
mα(Θ) = (1−α)×m(Θ)+α.

(10.5)

A discount rate α equal to 1 means that the source is not reliable and the piece of
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information that is provided cannot be taken into account. On the contrary, a null

discount rate indicates that the source is fully reliable and the piece of information

that is provided is entirely acceptable.

Within the evidence theory, several combination rules have been introduced,

and this work focuses on the Dempster rule of combination [Dem67]. Assuming

two BBAs m1 and m2 modelling two independent reliable sources of information S1

and S2, the Dempster rule of combination is defined as follows:

m = m1 ⊕m2, (10.6)

so that :

m = 1

1−m(;)

∑
B∩C=A

m1(B)×m2(C) = 1

1−m(;)
m(A),

∀A ⊆Θ, A 6= ;, (10.7)

where m(;) is defined by:

m(;) = ∑
B′∩C′=;

m1(B′)×m2(C′) = m(;). (10.8)

m(;) represents the conflict mass between m1 and m2.

The pignistic probability, denoted BetP, is proposed by Smets et al. [Sme05]

within the Transferable Belief Model (TBM). In the decision phase, the pignistic

transformation consists in distributing equiprobably the mass of a proposition A

on its included hypotheses. Formally, the pignistic probability is defined by:

BetP(ωn) = ∑
A⊆Θ

|ωn ∩A|
|A| ×m(A), ∀ωn ∈Θ. (10.9)

where || is the cardinality operator.

10.3.2 Evidential c-means (ECM)

This subsection presents the ECM clustering algorithm [MD08a]. The ECM algo-

rithm is based on the concept of credal partition, which extends those of fuzzy and

possibilistic ones. To derive such a structure, the following objective function is
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minimized:

JECM(M,V),
d∑

i=1

∑
{ j /A j 6=;,A j⊆Θ}

cαj mβ

i j di st 2
i j +

n∑
i=1

δ2mβ

i;, (10.10)

subject to: ∑
{ j /A j 6=;,A j⊆Θ}

mi j +mi; = 1, ∀i = 1, . . . ,d , (10.11)

where mi; and mi j respectively denote mi (;) and mi (A j ). M is the credal partition

M = (m1, . . . ,md ) and V is a cluster centers matrix. cαj is a weighting coefficient and

di sti j is the Euclidean distance. In this work, the default values prescribed by the

authors in [MD08a] are used, i.e. α= 1, β= 2 and δ= 10. A more detailed introduc-

tion to the evidential theory and ECM can be found in Appendix B.

10.3.3 The hybrid evidential ontology-based approach for predic-

tive maintenance

This section introduces our proposed hybrid method for failure time and criticality

prediction. We follow the different steps introduced in Fig. 10.1. The only difference

is the selection of learning method. In the evidential ontology-based approach, the

evidential c-means algorithm is used for evaluating failure criticality, instead of the

fuzzy c-means algorithm in Fig. 10.1. The approach starts with the SPM on machine

historical data [AS+95]. Then, the ECM algorithm is applied to cluster the failures

according to their criticality, based on failure temporal constraints and estimated

maintenance cost. After the clustering, different clusters are labeled with criticality

Low, Medium, and High. With obtaining the results from ECM, MFPO with its SWRL

rule-based extensions are used to predictive the criticality of a future failure.

Evidential clustering for failure criticality

In Chapter 9, one ontology-based failure prediction method is proposed. However,

the method is based on crisp logic, and it fails to identify the criticality of a fail-

ure into the correct category when there are uncertain situations. To cope with this

issue, an evidential approach which is able to handle such type of uncertainty situa-

tions is required. To do so, the times to failures described in rules and the estimated

maintenance cost are used as training examples for ECM with 3 fixed clusters which

represents three levels of criticality: i) high criticality, which indicates the time from
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a normal condition to the failure is relatively short and the production line should

be stopped for immediate maintenance, or the estimated maintenance cost is rel-

atively high; ii) medium criticality, indicating the failure may happen after a mod-

erate amount of time, or the estimated maintenance cost is moderate; iii) low criti-

cality, indicating the failure may happen in the long future and machine operators

will have sufficient time to plan maintenance actions, or the estimated maintenance

cost is relatively low.

In this subsection, two factors are considered to evaluate the criticality of a fail-

ure. Assuming a prediction rule in a form R : A −−−−→
[ti ,t j ]

Fai l ur e that predicts the fail-

ure with a time interval with an Estimated Maintenance Cost EMC. The time to

failure and the cost of the failure are valuable descriptors to assess the criticality of

a failure. Each rule R has a value of support that evaluates its pertinence. The aim is

to use both predicted maintenance cost and predicted temporal constraints of the

failure within a rule to assess the criticality of a predicted failure.

Let us assume a sequence S classified by a rule R as a failure in [ti , t j ] with

an EMC. A BBA is computed from both parameters on the frame of discernment

{Low,Medui m,Hi g h} for each level of criticality, based on the ECM algorithm.

Both mS,Cost and mS,t i me are discounted using the support of the used rule R as

follows:

m1−Sup(R)
S = m1−Sup(R)

S,Cost ⊕m1−Sup(R)
S,t i me . (10.12)

m1−Sup(R)
S is the BBA obtained from the aggregation of the cost and the time to

failure BBAs using the Dempster rule of combination. 1−Sup(R) is seen as the re-

liability value used to discount the obtained BBAs. The final level of criticality is

decided upon the use of the arguments of the maxima of the pignistic probability as

follows:

Hn = argmax
ωn∈Θ

BetP(ωn). (10.13)

Ontology reasoning for failure time and criticality prediction

To predict time and criticality of future failures, SWRL rules are proposed for ontol-

ogy reasoning. The proposed SWRL rules reason on the individuals in the MFPO

ontology (introduced in Chapter 8.5), and infer new knowledge about failure pre-

diction.
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As introduced in Section 10.3.3, after the implementation of SPM on data sets,

the obtained frequent patterns are in a rule format A −−−−→
[t1,t2]

Fai l ur e. Within these

patterns, the State (Event) of a ManufacturingResource is determined by a set of Ob-

servableProperties (with their associated values). In this context, the antecedent of

such a rule is constructed by a conjunction of the time intervals among these events

and the quantitative values of ObservableProperties (attributes). The consequent of

such a rule comprises the temporal constraints of the failure and its criticality.

In this work, the frequent chronicle mining algorithm introduced in [SST18] is

used to obtain chronicles, which extract a special type of sequential patterns in a

rule format. After that, SWRL rules are proposed to formalize the mining results

and to predict failures. To enable the generation of SWRL rules, a novel algorithm

is proposed to transform chronicles into SWRL predictive rules. The pseudo-code

of the rule transformation algorithm is shown in Algorithm 3. Similar to previous

algorithms, the ∧ symbol means the conjunction of rule atoms. The algorithm is

executed in four major steps:

1) The function LastNonfailureState extracts the last non-failure state (event)

within a chronicle, and the function LastNonfailureState extracts the failure

event within a chronicle.

2) For each time interval in a chronicle, the two functions PrecedingEvent and

SubsequentEvent extract the preceding and subsequent events of it. Then the

two events and this time interval forms different atoms in the antecedent of

the rule, and they are treated as conjunctions. After that, the algorithm ex-

tracts the time interval and its duration between the last non-failure state and

the failure, to construct the atoms in the consequent. The constructed atoms

are also treated as conjunctions.

3) The ECM algorithm is applied to assess the failures according to their critical-

ity. The failures are assigned to three categories, and three object properties in

MFPO are used to represent the pignistic probability to different clusters. The

pignistic probabilities are treated as a conjunction, to form the consequent of

the rule.

4) At last, a rule is constructed as an implication between the antecedent and the

consequent.
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Algorithm 3 Algorithm to transform a chronicle into a predictive SWRL rule, based
on evidential c-means (ECM) algorithm

Input: SF: a chronicle within which the last state (event) is a failure, E : a set of the
states that are described within a chronicle.

Output: R . R: the SWRL rule to be constructed.
1: l s ← LastNon f ai lur eSt ate(SF,E ) . Extract the last non-failure state before

the failure within a chronicle.
2: f ← theFai l ur e(E ) . Extract the failure within a chronicle.
3: R ← ;, A ← ;, C ← ;, Atoma ← ;, Atomc ← ;, FFai l ur eCr i t i cal i t yLow = 0,

FFai l ur eCr i t i cal i t yMedi um = 0, FFai l ur eCr i t i cal i t yHi g h = 0. . A: the an-
tecedent of the SWRL rule. C: the consequent of the SWRL rule. Atoma : a subset
of all atoms within the antecedent. Atomc : a subset of all atoms within the con-
sequent. FFai l ur eCr i t i cal i t yLow , FFai l ur eCr i t i cal i t yMedi um , FFai l ur eCr i t i cal i t yHi g h :
the three pignistic probabilities to the three categories of failure criticality.

4: for each ei ∈ E do
5: pe ← Pr ecedi ng St ate(ei ,SF) . Extract the preceding state
6: se ← SubsequentSt ate(ei ,SF) . Extract the subsequent state
7: Atoma ← pe ∧ se
8: A ← Atoma ∧A
9: end for

10: f td ← Fai l ur eTi meDur ati on(l s, f ) . Extract the time duration between the
last non-failure state and the failure.

11: mc ← Mai ntenanceCost (SF) . Obtain the estimated maintenance cost for
the failure described in this the chronicle.

12: FFai l ur eCr i t i cal i t yLow ← Pi g ni st i cPr obabi l i t yLow( f td ,mc)
13: FFai l ur eCr i t i cal i t yMedi um ← Pi g ni st i cPr obabi l i t yMedi um( f td ,mc)
14: FFai l ur eCr i t i cal i t yHi g h ← Pi g ni st i cPr obabi l i t yHi g h( f td ,mc) .

Use the ECM algorithm to compute the pignistic probabilities of this criticality
to the three clusters.

15: C ← FFai l ur eCr i t i cal i t yLow ∧ FFai l ur eCr i t i cal i t yMedi um ∧ FFai l ur eCr i t i cal i t yHi g h ∧
f td

16: R ← (A → C) . A rule is generated as an implication between the antecedent
and consequent.

17: return R
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10.4 Experimentation and results evaluation

10.4.1 Experimental results for fuzzy clustering

The two hybrid ontology-based approaches are applied to the SECOM data set. To

improve the quality of failure prediction and criticality assessment, Chronicle Sup-

port is chosen as a reference measure, to select the most relevant failure chronicles.

As a result, the same set of chronicles are extracted from the SECOM data set, which

is shown in Table 10.2.

After applying the FCM algorithm to the numeric values of the minimum time

duration (Mi nTD) among the last normal events and the failures, the degrees of

membership of failure criticality to different categories are obtained. Table 10.1

gives the clustering results. For each failure chronicle, the assessment of failure crit-

icality is associated with a fuzzy index, indicating the degree of its membership to

Criticality High (CH) cluster, Criticality Medium (CM) cluster, and Criticality Low

(CL) cluster.

Table 10.1 – The failure criticality assessment results of the 10 failure chronicles.

Failure Chronicle Mi nTD (millisecond) CH CM CL
CF1 1020 0.988364 0.002024 0.009611
CF2 1560 0.998590 0.001052 0.000358
CF3 2280 0.998489 0.000231 0.001280
CF4 4320 0.588961 0.216887 0.194152
CF5 7440 0.256704 0.035270 0.708026
CF6 10500 0.069900 0.197297 0.732802
CF7 12840 0.056136 0.111810 0.818294
CF8 13800 0.034679 0.111810 0.832054
CF9 18640 0.029900 0.046937 0.918384
CF10 22380 0.000099 0.000303 0.999598

Based on Algorithm 2 and the failure assessment results in Table 10.1, the fail-

ure chronicles were transformed to SWRL rules. Fig. 10.2 presents an example

SWRL rule that is obtained after implementing the whole process. Firstly, one fre-

quent chronicle that contains a failure is extracted by applying the frequent chron-

icle mining approach. Secondly, after the mining of frequent failure chronicles, the

numeric value of the Mi nTD between the last normal state (event) inside a failure

chronicle and the failure is clustered by the FCM algorithm. The arrow at the right

side of the figure refers to the data point in the FCM clustering results that repre-
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sents the Mi nTD value contained in the failure chronicle. Thirdly, one SWRL rule

is constructed based on the degrees of membership to the three categories. In this

rule, hasA63V, hasA102V, hasA209V, hasA347V, hasA476V are data properties in the

MFPO ontology that link individuals of the State class with XML Schema Datatype

values. They correspond to the quantitative values of the attributes A63, A102, A209,

A347, and A476 in the SECOM data set. TimeInterval corresponds to the root class of

all individuals of time intervals. There are two object properties that link TimeInter-

val with State: hasSubState and hasProState, among which hasSubState corresponds

to the subsequent state of a time interval, and hasProState indicates the preceding

state of a time interval. In this case, state S1 is the preceding state of the time interval

between S1 and S2, and state S2 is the subsequent state of this time interval. To de-

scribe the numerical intervals which are obtained by discretization, SWRL Built-Ins

are used to specify the upper and lower numerical boundaries. The consequent of

this rule comprises time constraints of the failure, different categories of failure crit-

icality, and their degrees of membership. The minimum and maximum time dura-

tion between a state with the failure is described by the data property hasMinF and

hasMaxF. The degrees of membership to different criticality categories of the failure

is given by the FCM algorithm, and they are computed based on the minimum time

duration between a normal state to the failure. By this way, the assessment of failure

criticality is inferred by the launching of such a predictive SWRL rule.

Figure 10.2 – The procedure of transforming a failure chronicle into a SWRL rule, based on
the failure criticality assessment results.

Following this procedure, the failure criticality assessment presented in Table.
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10.1 are formalized by the MFPO ontology and SWRL rules, which aim to facilitate

the predictive maintenance of the semi-conductor manufacturing process.

10.4.2 Experimental results for evidential clustering

The evidential clustering approach is validated on several synthetic data sets and

the SECOM data set. The experimentation starts with the preprocessing of data,

followed by the chronicle mining step. Similar to the fuzzy clustering approach,

the frequent chronicle mining algorithm introduced in [SMS+19] is used to extract

frequent chronicles.

Experimentation on synthetic data sets

After obtaining the chronicles, synthetic data is generated for the estimated mainte-

nance cost. To do this, the maintenance cost is generated as uniformly distributed

random numbers between [0,100]. In the generated data, each value of mainte-

nance cost is associated with a failure, indicating the estimated maintenance cost

caused by the failure. In addition to the temporal constraints of failures, mainte-

nance cost is considered as the second descriptor for the failure criticality. The third

step is to apply ECM on the synthetic data set, for determining the criticality of fail-

ures based on their temporal constraints and estimated maintenance cost. Follow-

ing the evidential clustering approach introduced in Chapter 10.3.3, the final levels

of criticality of the failures are obtainted. At last, the extracted frequent chronicles

are transformed into SWRL predictive rules (using Algorithm 3), and the ECM clus-

tering results are also formalized by these rules.

Table 10.2 shows the 10 failure chronicles (FC) which have the highest chronicle

support (CS) among all the extracted ones. In this figure, the numeric values of the

minimum time duration (Mi nTD, time unit: second) among the last normal events

and the failures, the EMC for each chronicle, and the pignistic probability of the

final criticality (PPFC) are presented. For the clustering results, the final level of a

failure’s criticality is shown inside the brackets within the last column of the table.

The Generation of SWRL Rules Based on Chronicles and ECM Results

To formalize the failure criticality assessment results and to predict the criticality of

future failures, SWRL rules are generated based on the obtained chronicles and ECM

clustering results. To do this, Algorithm 3 is used to transform the failure chronicles
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Table 10.2 – Failure chronicles that have the 10 highest chronicle support, and their failure
criticality assessment results.

CF Mi nTD EMC CS PPFC
CF1 10 33.4163 96.19% 0.6652 (Medium)
CF2 7 50.0472 95.61% 0.5049 (Medium)
CF3 3 14.9865 94.48% 0.6140 (High)
CF4 4 17.3388 94.21% 0.8739 (Medium)
CF5 21 81.8148 92.94% 0.3921 (Low)
CF6 3 65.9605 91.06% 0.8796 (High)
CF7 11 68.1971 90.27% 0.4722 (Medium)
CF8 24 9.6730 90.01% 0.6871 (Low)
CF9 10 64.8991 86.93% 0.4266 (Medium)
CF10 18 66.6338 86.87% 0.4030 (Low)

and ECM clustering results into predictive SWRL rules. Fig. 10.3 presents an exam-

ple SWRL rule that is generated following our approach. Within this rule, the pig-

nistic probability of the final criticality category of the failure is given by the ECM

algorithm. In this way, the assessment of the failure criticality is inferred by the

launching of such a predictive SWRL rule.

Figure 10.3 – An example SWRL rule generated from a chronicle.

To evaluate the quality of the SWRL rules, two measures are computed. We iden-

tify Accuracy and Coverage as the two rule measures for evaluating the quality of

SWRL rules, as these two measures are the important indicators of a rule’s reliability

[AC99]. These two measures can be derived based on the analysis of a 2×2 contin-

gency table. A contingency table for a rule R : A → F is computed as follows:

In Table 10.3, na f denotes the number of training examples for which both the

antecedent and the consequent of the rule are true. na f̄ denotes the number of

training examples for which the antecedent of the rule is true, and the consequent of

the rule is not true. On the other hand, nā f denotes the number of training examples
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Table 10.3 – The contingency table for computing rule quality measures.

F is true F is not true
A is true na f na f̄ na

A is not true nā f nā f̄ nā

n f n f̄ N

for which the antecedent is not true, and the consequent of the rule is true. nā f̄

denotes the number of training examples for which neither the antecedent and the

consequent of the rule is true. na , nā , n f , n f̄ are marginal totals, and N is the total

number of training examples.

Based on the information provided by the contingency table, two basic evalu-

ation measures can be computed: Accuracy and Coverage. Among them, the rule

accuracy is defined as

Accur ac y(R) = na f /na , (10.14)

and rule coverage is defined as

Cover ag e(R) = na f /n f . (10.15)

The above two equations are used to obtain the average value of Accuracy and

Coverage for the SWRL rules. Table 10.4 presents the two measures under different

chronicle support. It can be observed from the table that as the chronicle support

increases, the accuracy of rules also increases. It is reasonable as the support of

extracted chronicles increases, more relevant chronicles are extracted. On the other

hand, as the number of extracted rules decreases, the sequences that are covered by

the rules decreases. This is the reason why the average value of coverage shows a

downtrend.

Table 10.4 – Two rule quality measures under different chronicle support.

Chronicle support Accuracy Coverage
0.5 76.52% 74.26%
0.6 74.14 % 75.71%
0.7 76.98 % 74.35%
0.8 79.33% 70.49%
0.9 82.56% 68.10%
1 84.45% 67.71%
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Experimentation on a real-world data set

To evaluate the performance of the prediction and failure criticality assessment,

ECM is applied on the SECOM data set [MJ08], which contains measurements of

features of semi-conductor productions within a semi-conductor manufacturing

process.

As a result, the hard credal partition on the SECOM data set is computed. In

total, at most 2Θ focal sets could be obtained through credal partition, where Θ is

the frame of discernment. In our experimentation, Θ represents the three levels

of failure criticality. For the SECOM data set, the temporal constraints of failures

are considered as the descriptor for criticality. The data points on the empty set

which have the highest masses are removed as outliers before they are assigned to

the clusters. Since cluster ωl is labeled as low criticality, ωm as medium criticality,

and ωh as high criticality, there is no hesitation between the clusters ωl and ωh . At

last, since the outliers are removed before the credal partition, 23 −2 = 6 focal sets

are obtained.

Fig. 10.4 shows the hard credal partition computed on the SECOM data set with

the following parameters: α = 1, β = 2, δ = 10, and ε = 10−3. The X axis stands for

the temporal constraints of the failures, Y axis indicates the number of training ex-

amples that have been assigned to different clusters. As results, 6 focal elements are

obtained, including the universal set Θω = {ωl ,ωlm ,ωm ,ωmh ,ωh}. Among them, ωl

is the focal set representing the low criticality class, ωm is the focal set representing

the medium criticality class, and ωh is the focal set representing the high critical-

ity class. ωlm is the hesitation between the ωl and ωm clusters, which is {ωl ,ωm}.

ωmh is the hesitation between the ωm and ωh clusters, which means {ωm ,ωh}. The

center of each class is marked as a cross.

It can be observed that theωh class has the highest number of training examples,

and over half of the failures are assigned to the ωh and ωmh clusters. As the value of

a temporal constraint increases, the criticality level of the failure decreases. It also

can be seen that the evidential-based clustering extends the fuzzy and possibilistic

methods by not only assigning data points to single clusters but also to all subsets

of the universal set Θω. In this way, ECM provides more insights into failures than

classical clustering methods. This advantage of ECM facilitates the reasoning about

uncertainty that may exists within the overlapping among different clusters.

To obtain the final level of criticality, the pignostic probability BetP and the max-

ima of BetP are computed. After comparing the BetP of the three clusters, the class

168



CHAPTER 10. ASSESSMENT OF MACHINERY FAILURES BASED ON CRITICALITY
LEVELS

Figure 10.4 – Hard credal partition for the SECOM data set.

with the maximum BetP is selected to represent the final level of criticality. Fig. 10.5

shows the final criticality for the training examples in the SECOM data set. ωl , ωm ,

ωh represents the low criticality class, medium criticality class, and high criticality

class respectively. It can be seen that there is no hesitation among different clusters,

which ensures the final criticality to be determined based on a maximum of BetP of

the three clusters.

Figure 10.5 – Final criticality levels of failures in the SECOM data set.

An example of the ECM clustering results on the training data is shown in Table

10.5. Within this example, rule #45 is selected to show the obtained BBAs and the

pignistic probability of the final criticality (PPFC) of the failure which is described

within this rule. Since the high criticality class is assigned with the highest PPFC,
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the final decision on the criticality level of this failure is high.

Table 10.5 – Experimental results of a training example in the SECOM data set.

Failure index BBAs of the failure PPFC
#45 m({ωh}) = 0.3174

m({ωmh}) = 0.2219
m({ωm}) = 0.2929
m({ωlm}) = 0.0181
m({ωl }) = 0.0485
m({Θω}) = 0.1012

BetP(ωh) = 0.4683
BetP(ωm) = 0.4391
BetP(ωl ) = 0.0926

10.5 Summary

In this chapter, we tackle the assessment of failure criticality levels by introducing

two hybrid ontology-based approaches. The proposed approaches are based on the

combined use of clustering techniques and semantics, where fuzzy and evidential

clustering techniques are used to learn the criticality of failures based on machine

historical data, and semantic technologies use the results of clustering to predict

the time of failures and the criticality of them. The contributions of this chapter lie

firstly in the formalization of the predictive maintenance knowledge based on on-

tologies, by which the SPM results are formalized and the criticality of failures are

inferred. Secondly, the assessment of failure criticality levels is achieved by imple-

menting an unsupervised learning approach. The unsupervised learning approach

uses FCM and ECM algorithms to cluster failures according to their time of occur-

rences, which reflects the criticality of them. After that, each cluster is labeled with a

criticality index (high, medium, or low) to assess failure criticality according to their

temporal constraints and estimated maintenance cost. Thirdly, the SWRL rules are

proposed to formalize the assessment results, in order to enable ontology reasoning

for predictive maintenance.

As future work, we aim to consider more failure descriptors for criticality levels.

Also, we plan to study the impact of different parameter values on the final criticality

within the two clustering algorithms. This will allow us to choose more flexible sce-

nario for assessing the failure criticality according to different real-world contexts.
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11.1 Introduction

Within a knowledge-based system, a rule describes how axioms (domain knowl-

edge) can be combined to derive new information [Ste85]. It is a conditional state-

ment that links given conditions to actions or outcomes. Essentially, rules are if-

then statements, which are used to formulate the conditional statements that com-

prise the knowledge base [Abr05]. In the domain of predictive maintenance, rule-

based condition monitoring and diagnostic systems are employed to detect incipi-

ent anomalies. Within such a system, decision rules are used to represent the rela-

tions among real-world machinery conditions with each possible anomaly, such as

machinery fault and failure.

As introduced in Chapter 9 and 10, frequent chronicle mining is a promising

technique for predicting not only the order of the non-failure events but also the

temporal intervals among them. The output of frequent chronicle mining is a set

of failure chronicles that are in the form of logical rules. This type of rules (in this

chapter, they are defined as chronicle rules) describes different events as well as their

temporal constraints and predicts the time duration within which the future failures

occur.

Normally, the number of chronicle rules extracted from frequent chronicle min-

ing is large. Due to a certain degree of imprecision in real-world data, some of

the extracted chronicle rules may suffer from low-quality. As a result, low-quality

chronicle rules (e.g., rules with low accuracy in failure prediction) may reduce the

efficiency and accuracy of rule-based reasoning. Therefore, a rule base pruning

method for obtaining a high-quality subset of rules is needed.

On the other hand, as industrial big data are collected from a variety of devices

and environments, the decision rules that are extracted from them may be obtained

from heterogeneous sources. This may cause a set of problems (e.g., rule contradic-

tion, subsumption, and redundancy) when heterogeneous rules are combined to

achieve a satisfactory level of reasoning performance. Using a rule base of low qual-

ity may result in inappropriate maintenance decisions, thus weakening the perfor-

mance of knowledge-based maintenance systems.

In this chapter, a novel rule base refinement approach is proposed. The pro-

posed approach consists of two rule refinement methods that aim to progressively

improve the quality of a rule base:

• A rule pruning/reduction method applied to the rule base obtained from fre-
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quent chronicle mining. To reduce the number of extracted rules and to

achieve the best quality of the rule base, a multi-objective optimization ap-

proach is applied. The approach aims to maximize rule Accuracy and Cover-

age for obtaining a set of rules with the best quality.

• A rule integration method for combining chronicle rules and expert rules. To

enhance the performance of failure prediction, experts’ experience needs to

be capitalized in the form of expert rules when the chronicle rules fail to pro-

vide correct decisions. In this work, we consider the expert rules that have a

similar structure as chronicles. When these expert rules are integrated with

the chronicle rules, they may suffer from problems such as Redundancy, Con-

tradiction, and Subsumption. In this context, a rule integration method for

detecting the three problems is proposed.

11.2 Related work and existing challenges

Given the importance of rule quality measures for the refinement of a rule base, a

number of related research works have been proposed. In this section, a literature

review is presented with focus on those contributions that use rule quality measures

to guide the pruning and integration processes of rule bases.

The first work to mention is proposed by An and Cercone, which formalizes rule

quality measures in the form of statistical and empirical formulas [AC99]. In their

work, the authors perform a comparison among different rule quality formulas by

evaluating the predictive accuracy upon several standard data sets. To do this, a

set of rule quality measures is applied to 27 data sets. Moreover, a meta-learning

method is introduced to discover the relationships among the characteristics of data

sets and rule quality formulas. As a result, meta-rules that represent the learned re-

lationships are proposed to guide the selection of rule quality formulas before in-

ducing rules from data sets. In the same topic, Marek Sikora pays special attention

to two rule quality measures: Accuracy and Coverage [Sik06]. Based on these two

measures, a rule ranking method is presented to select a subset of rules that are

characterized by good generalization capabilities. Experimental results show that

their method can be used in the rule induction and reduction processes. However,

the rules are ranked according to different quality measures separately, thus lacking

the capability of considering multiple quality measures at the same time. In another
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work of Sikora and Wróbel, a data-driven adaptive selection method for rule quality

measures is introduced [SW11]. To determine and select the appropriate measures,

an evaluation of the quality of the qualifier is performed. After comparing the per-

formance of the adaptive selection method with the arbitrary selection method, the

authors concluded that their method shows statistically better results that the arbi-

trary ones.

The evaluation and refinement of rules bases are also studied as in the optimiza-

tion research field. Normally, this type of methods treats the selection of rules with

specific properties as a multi-objective optimization problem. The objectives to be

optimized are several rule quality measures such as Accuracy, Coverage, Surprising-

ness, and Logical Sufficiency. Within this topic, the first work to be mentioned is pro-

posed in [DLIPBRS03] and [dlIRRS05]. In their works, multi-objective optimization

evolutionary algorithms are used to select several interesting measures and to pro-

pose an approximation to the Pareto-optimal set according to those measures. The

authors use rule Accuracy and Coverage as interesting measures and implement the

Fast Elitist Non-Dominated Sorting Genetic Algorithm (NSGA) to derive the Pareto-

optimal set. To improve the quality of obtained rule sets, they combine the use of

the crowding mechanism in NSGA-II and the innovative approaches to cluster rules

according to dissimilarity measures. The results have shown that the rule sets ob-

tained by NSGA-II in the standard implementation do not contain many cases of

rules that are close in the objective space but far apart in terms of their support sets

[dlIRRS05]. To overcome this issue, the authors introduce the concept of rule dis-

similarity in the crowding measure in NSGA-II. This allows to increase the diversity

of obtained rules. Following this work, Ishibuchi and Namba propose a three-stage

rule extraction method based on data [IN04]. In their method, the number of se-

lected rules and the length of a rule are selected as the optimization criterion. The

experimental results show the method is applicable to high-dimensional pattern

classification problems with many continuous attributes. The main characteristic

feature of the their approach is that many rule sets with different accuracy and dif-

ferent complexity are simultaneously obtained from its single run [IN04]. Martin et

al. extend the NSGA and NSGA-II to perform evolutionary learning of the intervals

of the attributes and a condition selection for each rule [MRAFH14]. Comprehensi-

bility, Interestingness, and Performance are selected as three objectives to optimize

the performance of quantitative association rules. The algorithm is compared with

other mono-objective and multi-objective algorithms. Results show the rules ob-
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tained from the proposed algorithm have higher interesting measure and higher

coverage.

The review of the existing research works posts two main challenges. Most of

the existing research works analyze rule quality measures according to the contin-

gency table. These research works lack the capability of resolving other problems

such as rule Redundancy, Contradiction, and Subsumption. Moreover, most of the

rule quality analysis and rule base refinement methods focus on a single source of

rule extraction (e.g., association rule induction from a single data set). These meth-

ods may fail to address rule the three issues when decision rules are obtained from

heterogeneous sources and in various formats. Therefore, a rule base refinement

method that is not only capable of pruning a single rule base but also detecting the

three issues among heterogeneous rules should be proposed.

11.3 Rule quality measures for chronicle rules

To introduce the rule quality measures for pruning a chronicle rule base, we use

rule Accuracy and Coverage as two important measures for evaluating the reliability

of chronicle rules. The definition of these two measures are introduced in Chapter

10.4.2.

Since the data set from where the chronicles are mined may not cover all real-

world conditions, it is conceivable that the chronicle rules may fail to predict a fail-

ure. In this case, it is required to consult domain experts for decisions about failure

prediction and maintenance. In this way, domain experts use their experience to as-

sess the current state of the system and provide appropriate decisions, in the form

of expert rules. By this, when there is a similar situation needs to be addressed, the

rule which capitalizes domain experts’ experience will be launched together with

the initial rules to identify potential failures and to make predictions. This strategy

may enrich the Experience component of the KREM architecture, which performs as

a complementary model to deal with incomplete knowledge models in the Knowl-

edge component.

However, when the expert rules are integrated into the initial rule base, a set of

issues such as rule redundancy, conflict and subsumption may occur, thus reduc-

ing the reliability and performance of the rule-based reasoning process. Therefore,

a rule base verification step is required to check any possible issues within an inte-

grated rule base. In this chapter, Redundancy, Conflict, and Subsumption are con-
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sidered as three important issues for the integration of the chronicle rule base and

the expert rules. Based on the definition of chronicle rules in Definition 8, the for-

mal definition of these three issues are given as follows:

Definition 9 (Chronicle rule redundancy). A chronicle rule R : EC∧TEC → TF and

a rule R′ : EC′∧TEC′ → TF′ are considered as redundant when the two rules have the

same sets of events, and the events have the same temporal constraints, denoted as

Chr oRedund anc y(R,R′) ⇐⇒ (EC = EC′)∧ (TEC = TEC′)∧ (TF = TF′). (11.1)

Definition 10 (Chronicle rule conflict). A chronicle rule R : EC ∧TEC → TF and a

rule R′ : EC′∧TEC′ → TF′ are considered to have conflict when the two rules succeed

in the same sets of non-failure events and the same temporal constraints for these

non-failure events, but with conflicting temporal constraints of a failure, denoted as

Chr oCon f l i ct (R,R′) ⇐⇒ (EC = EC′)∧ (TEC = TEC′)∧ (TF 6= TF′). (11.2)

Definition 11 (Chronicle rule subsumption). A chronicle rule R : EC ∧TEC → TF

subsums the chronicle rule R′ : EC′∧TEC′ → TF′ when they have the same tempo-

ral constraints of a failure, but rule R contains additional restrictions on the set of

non-failure events or on the temporal constraints of these non-failure events. This

subsumption relationship is denoted as

Chr oSubsums(R,R′) ⇐⇒ (TF = TF′)∧ ((EC′∧TEC′) |= (EC∧TEC)). (11.3)

These definitions are used to detect issues with regard to rule base verification.

They provide foundations for the rule base refinement approach.

Fig. 11.1 shows the different steps of the whole approach proposed in this chap-

ter. The whole process starts with the frequent chronicle mining applied to indus-

trial data sets. After that, SWRL rules are generated from the chronicles using algo-

rithm 1. Then the chronicle rule base is pruned to select the best quality rules based

on their Accuracy and Coverage.

In case the selected chronicle rule base fails to make a prediction, the experi-

ence capitalization step is triggered to capture experts’ experience in the form of
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Figure 11.1 – Different steps of the rule base refinement approach.

expert rules. After that, rule Redundancy, Conflict, and Subsumption issues are ex-

amined among the chronicle rules and expert rules. If there is no issue, the expert

rules are integrated into the chronicle rule base for failure prediction. Otherwise,

the integrated rule base is refined according to different situations. The refinement

may include discarding the expert rule, or replacing a chronicle rule with an expert

rule. By this, the machinery failures are predicted by a refined rule base within a

knowledge-based predictive maintenance system.

11.4 The multi-objective optimization approach for

pruning chronicle rules

To select the set of best quality rules, a multi-objective optimization approach is

proposed to prune the chronicle rule base. To do this, we aim to maximize rule

Accuracy and Coverage. The parameters used by the multi-objective optimization

algorithm are shown in Table 11.1.

As the aim is to maximize both rule Accuracy and Coverage, the first objective

function is defined as

f1(Ri ) =−Accur ac y(Ri ) =−na f /na . (11.4)

The second objective function is computed as

f2(Ri ) =−Cover ag e(Ri ) =−na f /n f . (11.5)

With obtaining the above two objective functions, a mathematical model for
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Table 11.1 – Parameters of the proposed multi-objective optimization approach.

Parameter Definition
R A chronicle rule
p The number of individuals (chronicle rules)
v The number of objective functions
R= {R1,R2, ...,Ri } A chronicle rule base of i rules
F The front matrix that stores the individuals at each Pareto front
T The column vector with the rank of each individual
TECR The temporal constraints of the non-failure events that are described in R
TFR The temporal constraints of the failure that are described in R
Accur ac y(R) The accuracy of R
Cover ag e(R) The coverage of R

chronicle rule base pruning is proposed. The model is shown in Table 11.2. Based

on the proposed model, the goal of finding a set of best-quality chronicle rules be-

comes the search for the set of Pareto-optimal solutions. In this work, the fast non-

dominated sorting approach introduced in [OFGC17] is used to obtain the ranking

of Pareto dominance for chronicle rules. The pseudocode of this algorithm is shown

in Algorithm 4 (A more detailed description of the fast non-dominated sorting pro-

cedure is given in Appendix C). After that, the rules within the first front are selected

to perform rule-based reasoning. In this way, a set of chronicle rules that have the

best quality are launched for failure prediction.

Table 11.2 – The mathematical model for chronicle rule base pruning.

Objective function: f1(Ri ) =−Accur ac y(Ri ) =−na f /na

Objective function: f2(Ri ) =−Cover ag e(Ri ) =−na f /n f

Minimize (f1(Ri ))
Minimize (f2(Ri ))
subject to

i É |R|
f1(Ri ) ∈ [−1,0]
f2(Ri ) ∈ [−1,0]

Fig. 11.2 shows the process of the chronicle rule pruning approach for the chron-

icle rule base. Firstly, the rule Accuracy and Coverage measures are computed for

each run of the chronicle mining algorithm, under different thresholds of chronicle

support. The process stops when the number of mined chronicles stays unchanged.

After that, the fitness value of each chronicle rule R is computed. The fitness func-

tion is introduced in [SSS82], which is described by the equation:
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Figure 11.2 – Different steps within the rule base pruning process.

Fi tness(R) = Accur ac y(R)×Cover ag e(R). (11.6)

The fitness value of a chronicle rule indicates the reliability of it. Rules that have

high coverage may cover a large number of positive examples. However, these rules

may cover negative examples at the same time, which causes the low accuracy of

them. On the other hand, only considering high-Accuracy rules may result too few

rules to be selected. This may lead to poor predictive performance of the rules since

they may overfit the data. Therefore, the fitness function described above aims to

consider these two quality measures at the same time for selecting a set of best-

quality rules.
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Algorithm 4 The fast non-dominated sorting procedure, adopted from [OFGC17].

Input:
1: n: the dimension of the search space.
2: p: the number of individuals (chronicle rules).
3: v : the number of objective functions.
4: P(p×(n+v+1)): population.
5: #Mi : the column vector with the number of dominators (i ) of each individual.
6: #Di : the column vector that contains the element i .

Output:
7: F: the front matrix.
8: T: the rank of each individual.
9: Phase 1: Unidirectional Dominance Comparison (UDC)

10: for i ← 1 to p do
11: Di ← {;}
12: #Mi ← 0
13: for j ← 1 to p do
14: for k ← 1 to v do
15: . Check dominance between individuals Pi and P j for the objective k.
16: if Pi Â P j then
17: Di Â Di ∪ { j }
18: . Add P j to the set of individuals dominated by Pi .
19: else if P j Â Pi then
20: #Mi Â #Mi +1
21: . Increase dominators counter for Pi .
22: Phase 2: Assign front to the individuals of the 1st front
23: for i ← 1 to p do
24: if #Mi = 0 then . If individual Pi belongs to the 1st front.
25: Ti = 1 . Set individual i to the 1st front.
26:

27: F1 ← F1 ∪ {i }
28: Phase 3: Front Assignment
29: t = 1
30: while Ft 6= {;} do
31: Q ← {;} . Temporary set used to store individuals of the next front.
32: for each i ∈ Ft do
33: for each j ∈ Di do
34: #Mi ← #Mi −1
35: if #Mi = 0 then
36: Ti ← t +1 . Set individual j to the t +1 front.
37: Q ← Q∪ { j }
38: t ← t +1 . Increase the front counter.
39: Ft ← Q
40: tmax ← t
41: return F,T . Returns the Pareto Dominance Ranking and the Front Matrix.
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11.5 The algorithm for rule base integration with de-

tection of the three issues

To automate the rule base integration and refinement process, we propose an al-

gorithm to detect the issues when an expert rule is integrated into the chronicle

rule base. The algorithm checks Redundancy, Conflict, and Subsumption among

the chronicle rules and an expert rule. The pseudocode is shown in Algorithm 5.

The algorithm runs into six major steps:

• For an expert rule Re , three functions extract different sets of atoms from

it. The function Non-failureEvent extracts all the non-failure events inside

Re . The function Non-failureTemporalConstraints extracts the temporal con-

straints of these non-failure events, and the function FailureTemporalCon-

straints extracts the temporal constraints of the failure.

• For each chronicle rule R in the chronicle rule base R, the three functions that

are described in the previous step extract the same types of atoms from it

(non-failure events, temporal constraints of the non-failure events, and the

temporal constraints of the failure).

• For each chronicle rule R and the expert rule Re , redundancy issue is checked

by the algorithm. If they are redundant, the expert rule is removed whilst the

redundant chronicle rule is retained in the rule base.

• Rule Subsumption is examined after the check of Redundancy. For each

chronicle rule R and the expert rule Re , if R subsumes Re , then discard Re ;

If Re subsumes R, then remove R from the rule base R and integrate the expert

rule Re into R.

• After the Redundancy and Subsumption issues are inspected, the last issue to

be examined is rule Conflict. If the expert rule Re is in conflict with a chroni-

cle rule R, then remove R and integrate Re into the rule base. The reason for

doing this is based on the assumption that the reliability of an expert rule is

always higher than or equal to a chronicle rule when they have Conflict. In

this context, when there is a rule Conflict issue, the expert rule always have

the priority of being integrated into the rule base.

• Return the refined rule base R′ as the algorithm output.
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By taking the expert rules as input, Algorithm 5 is applied to check whether there

exist issues among the expert rules and chronicle rules. As a result, the chronicle

rule base is refined and verified progressively for each input expert rule. At last, a

refined rule base is obtained, which consists of best-quality chronicle rules as well

as expert rules.
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Algorithm 5 The algorithm to detect the three issues when an expert rule is inte-
grated into the chronicle rule base.

Input:
1: R: a chronicle rule base which contains a set of failure chronicles.
2: Re : an expert rule which is in the form of a failure chronicle.

Output:
3: R′: the integrated rule base.
4: EE ←;, TEE ←;, TFE ←;, EC ←;, TEC ←;, TFC ←;, R′ ←;.
5: EE ← Non − f ai lur eEvent (Re )
6: . Extract all the non-failure events of this expert rule.
7: TEE ← Non − f ai lur eTempor alConstr ai nt s(Re )
8: . Extract the temporal constraints of these non-failure events.
9: TFE ← Fai l ur eTempor al Constr ai nt s(Re )

10: . Extract the temporal constraints of the failure.
11: for each R ∈R do
12: EC ← Non − f ai lur eEvent (R)
13: . Extract all the non-failure events of this chronicle rule.
14: TEC ← Non − f ai lur eTempor alConstr ai nt s(R)
15: . Extract the temporal constraints of the non-failure events in the chronicle

rule.
16: TFC ← Fai l ur eTempor al Constr ai nt s(R)
17: . Extract the temporal constraints of the failure in the chronicle rule.
18: if EE = EC,TEE = TEC,TFE = TEC, then
19: Chr oRedund anc y(Re ,R) . Rule redundancy issue is detected.
20: Remove(Re ,R) . Remove the redundant expert rule.
21: else if TFE = TFC,EC = EE,TEC ⊆ TE, then
22: Chr oSubsumes(Re ,R) . Rule subsumption issue is detected.
23: Remove(R,R) . Remove the subsumed chronicle rule from the rule

base.
24: Integ r ate(Re ,R) . Integrate the expert rule into the rule base.
25: else if EE = EC,TE ⊆ TEC,TFE 6= TFC, then
26: Chr oCon f l i ct (Re ,R) . Rule conflict issue is detected.
27: Remove(R,R) . Remove the conflict chronicle rule from the rule base.
28: Integ r ate(Re ,R) . Integrate the expert rule into the rule base.
29: else
30: Integ r ate(Re ,R)
31: end if
32: end for each
33: R′ ←R

34: return R′
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11.6 Experimentation

11.6.1 The pruning of chronicle rules

The proposed approach was validated on the UCI SECOM data set. At first, the fit-

ness values of the chronicle rules are computed. Fig. 11.3 shows the fitness values

with different Accuracy and Coverage values. As the fitness of a rule is computed by

a product by the two quality measures, its value increases as the values of Accuracy

and Coverage become higher.

With obtaining the fitness values for each chronicle rule, the average fitness

value is computed for the set of extracted chronicle rules under specific chronicle

support values. After that, the set of rules with the highest average fitness is selected

as the input of the fast non-dominated sorting algorithm. The reason to do this is

to ensure the rule base obtained from frequent chronicle mining is the most reli-

able and relevant one. After this step, the fast non-dominated sorting algorithm 4 is

applied to the most reliable and relevant chronicle rule base, to discover the best-

quality rules out of it. The aim of using this algorithm is to find the rules for which

the Accuracy and Coverage values are larger than others. Thus as output, only the

chronicle rules in the first Pareto front are selected.

Table 4 shows the results we get after applying the fast non-dominated sort-

ing algorithm. With different chronicle support thresholds (CST), the table shows

the number of extracted rules (NER), the number of rules in the first Pareto front

(NRFPF), and the average fitness value for the rules in the first Pareto front (AFFPF).

Table 11.3 – Two rule quality measures under different chronicle support.

Support(R) NER NRFPF AFFPF
0.5 8254 18 0.7036
0.6 1258 8 0.7026
0.7 283 7 0.7220
0.8 30 3 0.7983
0.9 16 3 0.7639
1.0 1 1 0.7895

As shown in Table 11.3, the highest AFFPF value is obtained when CST =0.8, and

NRFPF = 3. Fig. 11.4 shows the three chronicle rules within the first Pareto front. In

the figure, A1, A2, and A3 are non-failure events before the failures, and F indicates a

failure event. These rules are in the SWRL rule format that are transformed from the
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Figure 11.3 – The fitness values of a chronicle rule with different Accuracy and Coverage.

mined chronicles using Algorithm 1. The nominal attributes are obtained by data

discretization, similar to the data pre-processing appraoch introduced in Chapter

9.4.2. In this context, these three rules are used to construct the final chronicle rule

base for failure prediction. This allows to make prediction with a set of best-quality

chronicle rules.

After rule pruning, the detection process for Redundancy, Conflict, and Sub-

sumption issues is simulated by integrating expert rules into the chronicle rule base.

11.6.2 Detection of the three issues for expert rules

Since the frequent chronicle mining algorithm aims to extract closed patterns

[SMS+19], Redundancy, Conflict, and Subsumption issues are eliminated for the

mined chronicles. These closed patterns are more frequent and informative than

the filtered patterns. Therefore, the three rule issues do not apply to the chronicle

rule base. In this context, to simulate the expert rules, SWRL rules are created with

the aforementioned three issues against the chronicle rules, to evaluate the perfor-

mance of Algorithm 5.

By applying Algorithm 5, we successfully detect expert rules that have Redun-

dancy, Conflict, and Subsumption issues against the three chronicle rules. Fig. 11.5

shows one expert rule, and the chronicles rules with rule Redundancy issue. In this

case, both chronicle rule 1 and expert rule 1 have the same sets of events, and the
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Figure 11.4 – The three chronicle rules with best quality, extracted with
chr oni cl esuppor t = 0.8.
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Figure 11.5 – Rule Redundancy issue detected between a chronicle rule and an expert rule.

events have the same temporal constraints. Thus a rule Redundancy issue is de-

tected.

Fig. 11.6 shows one expert rule and the chronicle rule whom there is a Conflict

issue with. In the figure, both rules succeed in the same sets of non-failure events

and the same temporal constraints for these non-failure events, but with different

temporal constraints of a failure. Thus a Conflict issue is detected.

Fig. 11.7 presents one expert rule, and the chronicle rule whom there is a Sub-

sumption issue with. In this case, they have the same temporal constraints of a fail-

ure, but Chronicle Rule 3 contains additional restrictions on the set of non-failure

events. Thus Expert Rule 3 subsumes Chronicle Rule 3.

11.6.3 The integration of expert rules with the chronicle rule base

After checking the Redundancy, Conflict, and Subsumption issues, the expert rules

are integrated with the mined chronicle rule base. To simulate expert rules, the UCI

SECOM data set is split into a training set (80%) and test set (20%). The training set

is used to extract chronicle rules and to construct the chronicle rule base and expert
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Figure 11.6 – Rule Conflict issue detected between a chronicle rule and an expert rule.
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Figure 11.7 – Rule Subsumption issue detected between a chronicle rule and an expert rule.

rule base. After that, we select a set of chronicle rules that have the highest fitness

values. Since these high-fitness chronicle rules are likely to have a higher chance to

validate the data sequences in the test set, they are considered as expert rules.

To simulate the rule base integration process, the frequent chronicle mining

algorithm is applied to the training set. Then the fast non-dominated sorting al-

gorithm is used to obtain a set of best-quality chronicle rules. We then select

the chronicle rules within the first Pareto front. Since the selected rules Pareto-

dominate all the rest ones, we treat them as expert rules. All the rules in the other

Pareto fronts construct a chronicle rule base.

After that, the expert rules are integrated into the chronicle rule base. During

the integration process, Algorithm 5 is used to detect Redundancy, Conflict, and

Subsumptionissues. If no aforementioned issues are detected, the expert rule is in-

tegrated into the chronicle rule base. After that, the average fitness of the updated

rule base is computed. With each integration, the updated rule base is launched for

failure prediction against the test set. Fig. 11.8 shows the obtained average fitness

values with different number of expert rules as input. For the ease of visualization,

we choose chr oni cl esuppor t = 0.6 and show the change of fitness values. It can

be observed that as more expert rules are integrated into the chronicle rule base,
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the average fitness increases. This is because as more expert rules are integrated

into the rule base, there are more chances for the updated rule base to validate the

data sequences in the test set. As a result, as more expert rules are launched for rea-

soning, the integrated rule base has more chances to predict the failures correctly.

Thus the overall fitness of the integrated rule base increases.

However, there is one exception where the average fitness of the updated rule

base does not increase (number of expert rules = 4). It is because the fitness value

of the new expert rule for the test set is lower than the average value of the whole

rule base. Thus the fitness value of the updated rule base is decreased. When the

antecedent of the input expert rule only covers a few data sequence in the test set, or

most of the temporal constraints of the failures are out of the range that is predicted

in the expert rule, the input expert rule shows a low fitness value.

Figure 11.8 – The average fitness values of the rules in the integrated rule base with different
number of expert rules.

In this way, Algorithm 5 checks issues that may occur when an expert rule is

proposed by domain experts. After each check, the proposed algorithm ensures the

rule base is updated progressively according to different conditions. This mecha-

nism ensures the rule base is verified and validated with each time of update.
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11.7 Summary

In this chapter, a novel rule base refinement approach for knowledge-based predic-

tive maintenance systems is proposed. The proposed approach uses rule quality

measures as criteria to refine rule bases that consist of rules collected from hetero-

geneous sources. Within the approach, a multi-objective optimization method for

the pruning and reduction of rule bases is used, with Accuracy and Coverage as the

two considered criteria for it. A fast non-dominated sorting algorithm is used to ob-

tain the ranking of Pareto dominance for chronicle rules. After that, the rules within

the first front are selected to perform rule-based reasoning. In this way, a set of

chronicle rules that have the best quality are launched for failure prediction.

After rule pruning, a rule integration method for combining chronicle rules and

expert rules is introduced. The integration method detects rule Redundancy, Con-

flict, and Subsumption issues among expert rules and chronicle rules. After that,

the expert rules that do not have these three issues are integrated with the chronicle

rules. In this way, the rule bases are progressively updated to achieve better perfor-

mance for failure prediction. The proposed approach is validated on a real-world

industrial data set.
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From chapter 8 to chapter 11, we have introduced different steps within a pre-

dictive maintenance process. In chapter 8, an ontology-based framework is de-

veloped as the foundation of a knowledge-based predictive maintenance system,

which contains a domain-level ontology named MFPO. In chapter 9, a novel hybrid

semantic approach is proposed to automate machinery failure prediction tasks,

which is based on the combined use of chronicles and semantic technologies. In

chapter 10, the severity levels of failures are assessed by two clustering tools: fuzzy

c-means (FCM) clustering [BEF84] and evidential c-means (ECM) clustering. In

chapter 11, a novel rule base refinement approach is proposed to update the rule

base with expert rules as input.

To realize and automate the aforementioned predictive maintenance pipeline,

we have developed a software prototype named Knowledge-based System for Pre-

dictive Maintenance in Industry 4.0 (KSPMI)1 2. The software uses both inductive

approaches (chronicle mining and machine learning) and deductive approaches

(domain ontologies and ontology reasoning) to analyze industrial data and to pre-

dict future failures. In this chapter, we first introduce the development environment

and tools for the software prototype. Then we introduce the core functionalities of

it by following the key steps within the predictive maintenance pipeline: chroni-

cle mining, SWRL rule transformation/generation, SWRL rule pruning, experience

capitalization/expert rules integration, and failure prediction.

12.1 Software development environment and tools

During the development of KSPMI, several software and tools are used. They are

listed as follows:

• Java Platform, Standard Edition (Java SE) 3. Java SE is a computing platform for

developing and deploying portable codes for desktop and server applications.

Java is an object-oriented programming language designed for building up

mobile applications, data processing tools, and embedded systems.

• Eclipse4. It is an integrated development environment (IDE) for computer

1The souce code of KSPMI can be found at: https://github.com/caoppg/KSPMI.git
2A demonstration video for KSPMI can be found at: https://sites.google.com/view/qiushi-phd-

thesis/home
3https://www.oracle.com/java/technologies/javase-downloads.html
4https://www.eclipse.org/
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programming. With its primary use for developing Java applications, Eclipse

consists of a workspace and an extensible plug-in system for users to cus-

tomize their development environment.

• Protégé5. Developed by Stanford University, Protégé is a free and open-source

software for developing knowledge-based systems and editing ontologies. It

can be extended by a set of plug-in applets and can be transferred into a Java-

based Application Programming Interface (API) for the development of Java-

based intelligent systems. During our development phase, three Protégé-

based APIs have been used: OWL API6, SWRL API7, and SQWRL API8.

• Drools9. It is a business rule engine that provides forward and backward

chaining inference capabilities. Drools have been widely used for develop-

ing production rule systems. In KSPMI, Drools is used to execute SWRL rules

for ontology reasoning, which aims to predict the time of machinery failures.

• SPMF10. SPMF is an open-source data mining library written in Java, and it

provides a set of pattern mining algorithms to discover patterns out of data.

The main advantage of using SPMF is the source code of each algorithm in it

can be easily integrated with other programs that are written in Java.

In the next sections, we introduce the key functionalities and main Graphical

User Interfaces (GUI) of KSPMI.

12.2 The chronicle mining GUI

The running of KSPMI starts with the chronicle mining phase on input data. Within

this phase, the frequent chronicle mining algorithm introduced in [SMS+19] is used

to extract failure chronicles out of data. These failure chronicles describe a set of or-

dered events and the temporal constraints of failures. Fig. 12.1 shows the chronicle

mining GUI of KSPMI.

5https://protege.stanford.edu/
6http://owlapi.sourceforge.net/
7https://github.com/protegeproject/swrlapi
8https://github.com/protegeproject/swrlapi/wiki/SQWRL
9https://www.drools.org/

10https://www.philippe-fournier-viger.com/spmf/
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Figure 12.1 – The chronicle mining GUI of KSPMI.

The software takes sequential data sets as input. In the input data set, it is re-

quired that events are associated with timestamps, and each test point is given a

binary label (e.g., –1 corresponds to a normal status and 1 corresponds to a failed

status). Fig. 12.2 shows an excerpt from an input data set. The rows in the data set

stand for test points. Every test point consists of 589 attributes, where each attribute

is associated with its numerical value. The values in the second last column are the

timestamps when these test points are recorded. Since the timestamps are in the as-

cending order, the test points are considered as a sequence of events that are timely

ordered. A binary label is given in the last column for each row, which indicates a

pass (0) or fail (1) of the recorded test point.

In the chronicle mining interface, a set of extracted failure chronicles are dis-

played in the table within Figure 12.1. There are three attributes associated with

each failure chronicle: support, accuracy, and coverage. Among them, the support

value is calculated based on Definition 6. Accuracy and coverage are computed by

equation 10.14 and 10.15. With clicking on each table entry, the values of these two

rule quality measures are shown on the right side. At the same time, the graph struc-

ture of the selected failure chronicle is also displayed. Within each graph, the event

with integer 0 indicates a failure. The integers in other events are the nominal at-

tributes we obtain after data discretization.

At the bottom of the chronicle mining interface, users can press the button to
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Figure 12.2 – An excerpt of an input data set.

trigger the SWRL rule transformation phase. After clicking this button, Algorithm 1,

which is introduced in Chapter 9, is used to generate a set of predictive SWRL rules

from the extracted failure chronicles. These SWRL rules construct a chronicle rule

base.

12.3 The SWRL rules transformation and rule pruning

GUI

After the chronicle mining step, the extracted failure chronicles are transformed into

a set of SWRL rules. The SWRL rules transformation and rule pruning GUI allows

users to visualize the transformed rules and to select the best-quality rules by using

a multi-objective optimization approach. Fig. 12.3 shows this GUI.

Within this interface, users can first display the transformed rule base by clicking

“Display”. Then, the syntax of rules is presented in the text area on the left side.

After that, the fitness function of the multi-objective optimization approach can be

shown by clicking the “Fitness Function” button. The fitness function we use in this

phase is the product of rule accuracy and coverage, as introduced by Equation 11.6.

The button “Rule pruning” launches the pruning of the rule base by using the

fast non-dominated sorting algorithm on rule quality measures. After the pruning

phase, a subset of best-quality rules are displayed on the left side, and the objective

function values of them can be plotted by clicking the button “Plot the Best Rules”.

Fig. 12.4 shows the rule pruning results obtained after clicking the “Plot the Best
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Figure 12.3 – The SWRL rules transformation and rule pruning GUI.

Rules” button.

Up to this step, we have completed rule transformation and pruning.

Figure 12.4 – The rule pruning results.
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12.4 The experience capitalization GUI

After obtaining a set of best-quality rules, we can proceed to the experience capi-

talization phase, where expert rules are taken as input to the program. The goal of

integrating expert rules into the system is to improve the overall fitness of the whole

rule base. To enable this step, an experience capitalization GUI has been developed

to allow users to interact with the expert rule base. Also, the system detects possi-

ble issues that may occur during this integration process, such as rule redundancy,

conflict, and subsumption.

Fig. 12.5 shows the experience capitalization GUI of KSPMI. Users can first open

the expert rule file, which is stored separately from the chronicle rules. Fig. 12.6

shows an example of an expert rule file. The expert rules are the same format as the

chronicle rules, with differences of rule atoms within either antecedent or conse-

quent part.

The expert rules can be integrated into the chronicle rule base by clicking the

“Input Expert Rule” button. After clicking this button, the system tries to push the

input expert rule into the chronicle rule base. If there is an issue detected, cor-

responding actions are automatically performed according to the decision making

process in Algorithm 5.

On the other hand, if no issue detected, the input expert rule is directly inte-

grated into the chronicle rule base. At last, the integrated rule base is updated. Fig.

12.5 shows a situation where a conflict issue is detected. The system automatically

removes the conflict chronicle rule, and add the expert rule into the rule base. The

reason for is action is based on the assumption that we assign the fitness value of

all expert rules to 1, which means the expert rules are always more reliable than

chronicle rules.
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Figure 12.5 – The experience capitalization GUI.

Figure 12.6 – An example expert rule base.

200



CHAPTER 12. THE SOFTWARE PROTOTYPE: KSPMI

12.5 The ontology reasoning and failure prediction

GUI

After the experience capitalization process, we can proceed to the failure predic-

tion step. The failure prediction work is achieved by using the Drools rule engine

to perform ontology reasoning on the data that is populated in the MFPO ontology

(introduced in Chapter 8). After prediction, a SQWRL query is created to retrieve

the prediction results. The SQWRL language takes an antecedent of a SWRL rule

and effectively treats it as a pattern specification for a query. To extract the results, a

SQWRL query replaces a rule consequent with a retrieval specification.

Fig. 12.7 shows the first round of prediction results. In this round, five expert

rules are taken as input to the experience capitalization process. After the rule issue

detection step, the updated rule base used for prediction consists of 6 rules. As a

result, 13 rows of prediction have been obtained after ontology reasoning. They are

shown in the table at the bottom part of the GUI.

After the first round of prediction, we continue integrating more expert rules

into the rule base. In the second round, the updated rule base consists of 9 rules

(2 chronicle rules and 7 expert rules), as shown in Fig. 12.8. Then we use this new

rule base to perform the second round of prediction. As a result, we obtain 39 rows

of results indicating 39 failures. This proves that as more expert rules are integrated

into the rule base, the coverage of the whole rule base improves. In this way, the rule

base is progressively updated with expert rules as input, and more potential failures

are detected.
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Figure 12.7 – The failure prediction results with 6 rules.

Figure 12.8 – The failure prediction results with 9 rules.
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12.6 Summary

This chapter introduces a software prototype we have developed for the HALFBACK

project. The software enables the whole predictive maintenance process by starting

with chronicle mining on industrial data sets, after which a set of failure chronicles

are extracted. Then, the novel semantic approach introduced in Chapter 9 is used to

transform the chronicles into predictive SWRL rules. The SWRL rules reason on the

data that is populated in the domain ontologies developed in Chapter 8. At last, the

rule base pruning and integration approach in Chapter 11 are used to update the

rule base automatically. Simulated expert rules are taken as input to the rule base

integration process. At last, the integrated rule base is used together with domain

ontologies to perform ontology reasoning, for the goal of failure prediction.
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In the manufacturing domain, anomalies such as machinery faults and failures

may cause a company high economic costs. To ensure high productivity, availabil-

ity, and efficiency of manufacturing processes, the detection of harmful tendencies

and conditions of production lines is a crucial issue for manufacturers. This appeals

to the implementation of predictive maintenance tasks, which aims to identify the

operating conditions of machinery in production lines. Predictive maintenance is

crucial for improving the productivity and availability of production systems. Ac-

cording to the current state of machinery, if any fault or failure exists, a diagnosis

task can be launched to determine the causes of it. Also, based on the characteris-

tics of the fault or failure, analysis of how they will propagate and evolve over time

can be performed. The use of predictive maintenance techniques has several ad-

vantages, such as improved machine availability, improved production efficiency,

and reduced maintenance cost.

With the vision of Industry 4.0, the manufacturing industry today is benefiting

from a trend of automation in data exchange. Cyber-Physical Systems (CPS) are

central to this vision and are entitled to be part of smart factories, and production

facilities are able to exchange information with autonomy and intelligence. In smart

factories, manufacturing machines are connected building CPSs, which are a new

class of engineered systems that offer close interaction between cyber and physi-

cal components. The automatic exchange and analysis of data open up opportu-

nities for manufacturers to further optimize the production processes. Collecting

data from various components of a production line and analyzing them in a scal-

able Cloud infrastructure can significantly improve the productivity, reliability, and

availability of production systems in heterogeneous environments. However, the

utilization of these advanced technologies not only offers the aforementioned ben-

efits to manufactures but also brings them challenges, such as the management of

big and heterogeneous data generated by networked machines and sensors.

This vision has been realized within the European Interreg HALFBACK project
1, which aims to to assure highly available manufacturing processes, by forecasting

failures of machines, tools, product quality loss, resource flow problems, etc. and

by scheduling maintenance, component replacing, process re-planning, and even

take over the production by another factory, in an optimized and intelligent way.

Within the HAFLBACK Project, the management of heterogeneous industrial

data is considered as a challenging task in the context of predictive maintenance.

1http://halfback.in.hs-furtwangen.de/home/
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Normally, when a deterioration trend of a machine is detected, highly experienced

machine operators are capable of performing appropriate actions to prevent the

outage situation of the production system. However, as the structure and behavior

of production systems are getting more and more complex, the volume of machine

operating data grows significantly. Thus it is possible that the domain professionals

fail to respond to a machinery fault or failure timely and accurately. For this rea-

son, manufacturing companies are searching for solutions through which they can

manage this heterogeneous industrial data efficiently and perform prognostic and

diagnostic tasks intelligently.

On the other hand, as CPSs become more and more complex, the knowledge re-

quired for system operation and maintenance increases in complexity. In this con-

text, standard and well-defined models for capturing this complex knowledge is in

high demand. To develop such a model, domain knowledge of manufacturing and

predictive maintenance is required to be structured in a formal way, thus making

this knowledge usable by a CPS. Furthermore, as the manufacturing domain is be-

coming more and more knowledge-intensive, uniform knowledge representation of

physical resources and reasoning capabilities are needed to automate the decision-

making processes in CPSs. These decision-making processes include automatic

resource integration, anomaly prediction and diagnosis, maintenance scheduling,

and process re-planning. To realize this vision, semantic technologies have shown

promising results when formalizing knowledge about predictive maintenance tasks

in various domains.

To address the aforementioned challenges, in this thesis, a novel semantic ap-

proach has been proposed to automate and facilitate predictive maintenance tasks

in manufacturing processes. It enables the representation of data mining results in

a formal and structured format, thus facilitating the understanding and exploita-

tion of the extracted knowledge. In this way, data results are capable of being inter-

preted by both users and machines for it to further enrich and improve the knowl-

edge bases in knowledge-based predictive maintenance systems.

13.1 Contributions of this thesis work

In this subsection, the contributions of this thesis are recalled. For each part of the

contribution, the achieved results and general conclusions are presented.

In Chapter 8, an ontological framework is presented. The ontological frame-
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work is the core component of a knowledge-based predictive maintenance system.

It is developed based on an ontological representation of predictive maintenance

knowledge in the manufacturing domain. Inside the framework, a set of ontologies

with different levels of specialization has been developed. It includes a core refer-

ence ontology for representing general predictive maintenance concepts and rela-

tions and a set of domain ontologies for formalizing domain-specific knowledge of

manufacturing and condition monitoring. A case study on a conditional mainte-

nance task of bearings in rotating machinery is presented. In this case study, the

ontological framework is jointly used with Semantic Web Rule Language (SWRL)

rules to perform rule-based reasoning. The rule-based reasoning results enables

the identification of the conditions of these bearings in rotating machinery.

In Chapter 9, a novel hybrid semantic approach for machinery failure predic-

tion is proposed. Within the approach, chronicle mining is used to predict the fu-

ture failures of the monitored industrial machinery, and domain ontologies (intro-

duced in Chapter 8 with their rule-based extensions are used to predict temporal

constraints of failures and to represent the predictive results formally. A case study

on a real-world data set is used to demonstrate our approach in detail. The evalua-

tion of results shows that the developed domain ontologies are free of bad practices

in structural, functional, and usability-profiling dimensions. The constructed SWRL

rules posses more than 80% of True Positive Rate, Precision, and F-measure, which

show promising performance in failure prediction.

Chapter 10 is devoted to the assessment of failure criticality. The assessment

of failures criticality levels enables the launching of warning signals with different

levels. By then, machine operators can prioritize maintenance actions for higher-

criticality-level failures compared to lower-level ones. In this thesis, a novel ap-

proach to classify failures according to their criticality levels is proposed. The ap-

proach is based on clustering and semantic technologies, within which fuzzy and

evidential clustering techniques are used to learn the criticality of the failures based

on machine historical data, and semantic technologies use the machine learning

results to predict the time of failures and the criticality of them.

Chapter 11 introduces a novel rule base refinement approach for integrating

rule bases that are obtained from heterogeneous sources. It consists of a rule prun-

ing/reduction method that is applied to the rule base obtained from frequent chron-

icle mining, and a rule base refinement method for integrating chronicle rules with

expert rules. From the work of Chapter 9, a set of chronicle rules are mined from
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industrial data sets. To reduce the number of extracted rules and to achieve the best

quality of the rule base, a multi-objective optimization approach is applied. The

approach aims to maximize rule Accuracy and Coverage for obtaining a set of rules

with the best quality. Within the approach, a fast non-dominated sorting procedure

is used to obtain the ranking of Pareto dominance for chronicle rules. After that, the

rules within the first front are selected to perform rule-based reasoning. In this way,

a set of chronicle rules that have the best quality are launched for failure prediction.

On the other hand, to enhance the performance of failure prediction, experts’ expe-

rience is capitalized in the form of expert rules when the selected chronicle rules fail

to provide correct decisions. When these expert rules are integrated with the chron-

icle rules, they may suffer from several issues such as Redundancy, Contradiction,

and Subsumption. In this context, the rule integration method aim to detect the

three issues and update the rule base. Experimental results show that the proposed

approach ensures a rule base to be progressively updated, and a better failure pre-

diction performance is achieved, compared to the rule base obtained merely from

chronicle mining. The proposed method is validated on a real-world data set, which

is collected from a semi-conductor manufacturing process.

Chapter 12 presents KSPMI, which is a software prototype using both inductive

approaches (chronicle mining and machine learning) and deductive approaches

(domain ontologies and ontology reasoning) to analyze industrial data and to pre-

dict future failures. KSPMI is an expert system developed in Java, and it uses sequen-

tial data sets as input to extract frequent patterns and predictive rules for failure pre-

diction. The prototype aims to implement all the proposed approaches on indus-

trial data sets, for automating the predictive maintenance of manufacturing pro-

cesses. The software enables the whole predictive maintenance process by starting

with chronicle mining on industrial data sets, after which a set of frequent chron-

icles are extracted. Then the novel semantic approach introduced in Chapter 9 is

used to transform the chronicles into predictive SWRL rules. The SWRL rules rea-

son on the data that is populated in the developed ontologies (Chapter 8). At last,

the rule base pruning and integration approach in Chapter 11 are used to refine and

update the rule base automatically. Simulated expert rules are taken as input for the

rule base integration process. At last, the integrated rule base is used together with

domain ontologies to perform ontology reasoning, for the goal of failure prediction.
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13.2 Perspectives

The contributions summarized in the previous section may induce potential future

research. In this section, we detail the following perspectives:

• The first future work is the evolution of the ontology and the rule base. Since

the manufacturing domain is highly-dynamic, a predictive maintenance sys-

tem should be able to adapt itself to dynamic situations over time, for exam-

ple, the change of context. This requires the ontology and the rule base to be

capable of coping with the dynamic change of knowledge. To deal with this

issue, knowledge base evolution solutions are going to be proposed: the on-

tology developed in Chapter 8 should be able to adapt itself efficiently to the

changes with using ontology evolution techniques [SMMS02], and the rule

base extracted from chronicle mining (introduced in Chapter 9) should be

updated according to the change of context, by implementing contextual rea-

soning [BBH+10]. By this, a knowledge-based predictive maintenance system

is able to be context-aware, by adapting itself to different physical context,

computational context, and user context. For example, the chronicles rule

bases extracted from a same machine may differ from each other due to the

different humidity and temperature levels of a manufacturing cell. By imple-

menting contextual reasoning, different sets of rules can be selected for on-

tology reasoning, according to the specific physical context of the operating

machine. This ensures a more precise and accurate predictive maintenance

strategy.

• The second future work is the consideration of more rule quality measures.

In Chapter 10, a multi-objective optimization approach which aims to select

rules with maximum Accuracy and Coverage has been proposed. In the future,

we aim to involve more rule quality measures for rule pruning, such as Associ-

ation, Information, and Logical Sufficiency [AC01]. Among them, Association

is a measure for indicating a relationship between the classification for the

columns and the rows in the contingency table. By computing a rule Associ-

ation, a G2 likelihood ratio measure can be obtained. This measure evaluates

the distance between two distributions: the observed frequency distribution

of examples among classes satisfying the rule R and the expected frequency

distribution of the same number of examples under the assumption that the
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rule R selects examples randomly [AC01]. It helps to derive the levels of associ-

ation between the antecedent and consequent of a rule R. Information mea-

sures the amount of entities a R needs to encode for correctly classifying an

instance into a certain class. Statistical values such as Information Score can

be computed for a rule R, to evaluate how much information it can contribute

for a classification problem [KB91]. It is computed as QIS =−log Na
N + log

Na f

Na
,

where the values of Na , Na f , and N can be computed from the contingency ta-

ble 10.3. Logical Sufficiency is a standard likelihood ratio statistics that aims to

measure whether a rule R is suitable to be used for classifying a certain class. If

the Logical Sufficiency value of a rule R is large with regard to class C, then this

rule is considered encouraging for classifying the training examples to class C.

Logical Sufficiency is computed as QLS = na f /n f

na f̄ /n f̄
.

• The third future perspective is the evaluation of rule quality for the expert

rules. In Chapter 11, a rule base refinement approach is proposed for in-

tegrating rules that are obtained from heterogeneous sources. However, the

proposed approach is based on the hypothesis that the expert rules are more

reliable than the chronicle rules. Indeed, due to the dynamic and uncertain

characteristics of the manufacturing domain, experts may provide erroneous

expert rules for failure prediction. The erroneous expert rules may lead to in-

correct failure prediction results. To address this issue, an evaluation process

is needed to examine the performance of the expert rules. In this way, a set

of best-quality rules is selected not from the chronicle rule base, but from the

integrated rule base, which ensures higher performance in prediction.

• The fourth perspective is the capability of the system to handle real-time

data. Since the manufacturing domain is highly-dynamic, how to process

real-time and heterogeneous data streams is a crucial concern to manufac-

tures. However, the proposed approach uses the classical ontology reasoning

techniques, which can not deal with highly dynamic data in a timely fashion.

To cope with this issue, stream reasoning techniques should be adopted to

reason upon a variety of highly dynamic data [DDVvHB17]. In stream reason-

ing, rich query languages are provided by stream reasoners to continuously

query data streams. In this way, predictive maintenance systems will be able

to detect and predict machinery failures in real-time.
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Appendix A

The fuzzy c-means clustering

algorithm

This Appendix gives the theory of fuzzy c-means (FCM) clustering algorithm. The

notions and concepts presented in this Appendix are taken from the research papers

[BEF84] and [PB95].

Similar to k-means algorithms [ARS97], the FCM algorithm aims to minimize

the objective function defined as

J =
N∑

j=1

C∑
i=1

um
i j || x j − ci ||2, (A.1)

where

• ui j represents the degree of membership of the data point x j in the i th cluster.

• c j stands for the d-dimension center of the cluster.

• m is the fuzzifier which is any real number greater than 1.

• || · || denotes any norm expressing the similarity between any measured data

and the center.

The variable ui j is defined as the following equation:

ui j = 1∑c
k=1(

||xi−c j ||
||xi−ck || )

2
(m−1)

. (A.2)

ui j indicates the degree of membership of a data point to certain clusters. It is

assigned inversely to the distance from data point x j to the i th cluster center. That
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is to say, the larger the distance is, the degree of membership of x j to the i th cluster

center is smaller.

The parameter m(1 < m <∞) defines the level of cluster fuzziness. As the value

of m gets closer to 1, the cluster solution becomes increasingly similar to the solu-

tion in hard clustering techniques such as k-means clustering. On the other hand,

when the value of m approaches to infinite, the clustering solution leads to com-

plete fuzziness.

The centroid of a cluster is defined by

c j =
∑N

i=1 um
i j · xi∑N

i=1 um
i j

, (A.3)

where

• c j is the d-dimension center of the cluster.

• ui j is the degree to which an observation xi belongs to a cluster c j .

In FCM, fuzzy partitioning is carried out through an iterative optimization of the

objective function shown in equation A.1, with the update of membership ui j and

the cluster centers c j . The algorithms runs into the following steps:

1) Specify a number of clusters C.

2) Assign randomly to each point the degrees of membership for being in the

clusters.

3) Repeat the iteration until the maximum number of iterations is reached,

or the change of degree of membership between two iterations is no more

than ε (the given sensitivity threshold). This stoping criteria is denoted as

maxi j | u(k+1)
i j −uk

i j | < ε.
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The theory of evidential clustering

This Appendix presents the theory of evidential c-means (ECM) clustering algo-

rithm. The following basic notions and theory are taken from the research paper

[MD08b].

B.1 The evidence theory

The evidence theory [Dem67, SK94] is based on several fundamentals such as the

Basic Belief Assignment (BBA). A BBA m is the mapping from elements of the power

set 2Θ on to [0, 1]:

m : 2Θ −→ [0,1],

where Θ is the frame of discernment. It is the set of possible answers for a

treated problem and is composed of K exhaustive and exclusive hypotheses Θ =
{ω1,ω2, ...,ωK}. A BBA m is written as follows:

∑
A⊆Θ

m(A) = 1

m(;) ≥ 0.
(B.1)

Assuming that a source of information has a reliability rate equal to (1−α) where

(0 ≤ α≤ 1), such a meta-knowledge can be taken into account using the discounting

operation introduced by[Sha76a], and is defined by:mα(A) = (1−α)×m(A) ∀A ⊂Θ
mα(Θ) = (1−α)×m(Θ)+α.

(B.2)
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Discounting rates allow to correct raw data, based on learned decisions given

by belief functions [ELM10]. There are several approaches for discounting, such

as classical discounting of information [Sha76b], contextual discounting [MQD08],

and contextual discounting with error rate [Mer10].

A discount rate α equal to 1 means that the source is not reliable and the piece of

information that is provided cannot be taken into account. On the contrary, a null

discount rate indicates that the source is fully reliable and the piece of information

that is provided is entirely acceptable.

Within the evidence theory, several combination rules have been introduced,

and this work focuses on the Dempster rule of combination [Dem67]. Assuming

two BBAs m1 and m2 modelling two independent reliable sources of information S1

and S2, the Dempster rule of combination is defined as follows:

m = m1 ⊕m2, (B.3)

so that :

m(A) = 1

1−m(;)

∑
B∩C=A

m1(B)×m2(C) = 1

1−m(;)
m(A),

∀A ⊆Θ, A 6= ;, (B.4)

where m(;) is defined by:

m(;) = ∑
B∩C=;

m1(B)×m2(C) = m(;). (B.5)

m(;) represents the conflict mass between m1 and m2.

The pignistic probability, denoted BetP, is proposed by Smets et al. [Sme05]

within the Transferable Belief Model (TBM). In the decision phase, the pignistic

transformation consists in distributing equiprobably the mass of a proposition A

on its included hypotheses. Formally, the pignistic probability is defined by:

BetP(ωn) = ∑
A⊆Θ

|ωn ∩A|
|A| ×m(A), ∀ωn ∈Θ. (B.6)

where || is the cardinality operator.
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B.2 Evidential c-means (ECM)

B.2.1 Credal partition

In section B.1, the partial knowledge regarding the class membership of an object

i by a bba mi on the set Θ = {ω1,ω2, ...,ωi }. This representation allows to model all

situations ranging from complete ignorance to full certainty concerning the class of

i .

A credal partition is defined as the n-tuple M = (m1, ...,mn). It can be seen as a

general model of partitioning [MD08b]:

• when each mi is a certain bba, then M defines a conventional, crisp partition

of the set of objects. This identifies a situation of complete knowledge;

• when each mi is a Bayesian bba, then M specifies a fuzzy partition, as defined

in [BKKP99];

• when the focal elements of all bbas are restricted to be singletons of Θ or the

empty set, a partition similar to the one of [Dav96] is recovered.

A credal partition M = (m1, ...,mn) is considered to have size c if [MD08b]:

• each bba mi , i = 1, ...,n is defined on a frame Θ of c elements, and

• each class has a strictly positive degree of plausibility for at least one object,

i.e., for all ω ∈ Θ, we have pli (ω) > 0 for some i ∈ 1, ...,n, where pli is the

plausibility function associated to mi . pl is defined as:

pl (ω),
∑

B∩A6=;
m(B), ∀A ⊆Θ. (B.7)

B.2.2 Objective function

A credal partition from object data is computed through determining, for each ob-

ject i , the quantities mi j = mi (A j )(A j 6= ;, A j ⊆ Θ) in such a way that mi j is low

(with regard to high) when the distance di j between i and the focal set A j is high

(with regard to low). Similar to fuzzy clustering, ECM assumes that each class ωk is

represented by a center vk ∈ Rp . For each subset A j of Θ, the barycenter v̄ j of the

centers are associated to the classes composing A j . More specifically, by introduc-

ing the notation
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Sk j =
1, if ωk ∈ A j ,

0, else.
(B.8)

The barycenter v̄ j associated to A j is computed by

v̄ j = 1

c j

c∑
k=1

Sk j vk , (B.9)

where c j = |A j | denotes the cardinal of A j . The distance di j is then defined by

d 2
i j , ‖xi − v̄ j‖2. (B.10)

Based on the definition of a credal partition, a separate treatment of the empty

set is proposed. This particular focal element is indeed assimilated to a noise clus-

ter, which allows to detect atypical data. Thus, an additional term for describing

the credal partition for empty set is introduced in the objective function. This noise

cluster the computation of the objective function depending on a fixed distance δ

between all objects and the empty set.

Finally, the credal partition M = (m1, ...,md ) ∈Rn×2c
and the matrix V of size (C×

P) of cluster centers are computed to minimize the following objective function:

JECM(M,V),
d∑

i=1

∑
{ j /A j 6=;,A j⊆Θ}

cαj mβ

i j d 2
i j +

n∑
i=1

δ2mβ

i;, (B.11)

subject to: ∑
{ j /A j 6=;,A j⊆Θ}

mi j +mi; = 1, ∀i = 1, . . . ,d , (B.12)

where mi; and mi j respectively denote mi (;) and mi (A j ). M is the credal parti-

tion M = (m1, . . . ,md ) and V is a cluster centers matrix. cαj is a weighting coefficient

and di j is the Euclidean distance. In this work, the default values prescribed by the

authors in [MD08a] are used, i.e. α= 1, β= 2 and δ= 10.

B.2.3 Optimization

To minimize JECM, an alternate optimization scheme is designed similar to the fuzzy

c-means (FCM) algorithm. First, the cluster centers matrix V is considered as fixed.

To solve the constrained minimization problem with regard to M, the n Lagrange

multipliers λi is introduced:
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L (M,λ1, ...,λd ) = JECM(M,V)−
n∑

i=1
λi

( ∑
{ j /A j 6=;,A j⊆Θ}

mi j +mi;−1

)
. (B.13)

Then we differentiate the Lagrangian with respect to the mi j , mi;, and λi . After

that, the derivatives are set to zero. Then it can be obtained that:

∂L

∂mi j
= βcαj mβ−1

i j d 2
i j −λi = 0, (B.14)

∂L

∂mi;
= βδ2mβ−1

i j −λi = 0, (B.15)

∂L

∂λi
= ∑

{ j /A j 6=;,A j⊆Θ}
mi j +mi;−1 = 0. (B.16)

From Equation B.14, it can be computed that

mi j =
(
λi

β

)1/(β−1)
(

1

cαj d 2
i j

)1/(β−1)

. (B.17)

And from Equation B.15, it can be obtained that

mi; =
(
λi

β

)1/(β−1) ( 1

δ2

)1/(β−1)

. (B.18)

Using the Equations B.16-B.18:

(
λi

β

)1/(β−1)

=
∑

j

1

cα/(β−1)
j

1

d 2/(β−1)
i j

+ 1

δ2/(β−1)

−1

. (B.19)

Then return to Equation B.17, the necessary condition of optimality for M can

be obtained:

mi j =
c−α/(β−1)

j d 2/(β−1)
i j∑

Ak 6=;
c−α/(β−1)

k d 2/(β−1)
i j +δ−2/(β−1)

,∀i = 1,n,∀ j /A j ⊆Θ, A j 6= ;, (B.20)

and
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mi; = 1− ∑
A j 6=;

mi j ,∀i = 1,n. (B.21)

Then, the credal partition M is considered as fixed. The minimization of JECM

with respect to V is an unconstrained optimization problem. The partial derivatives

of JECM with respect to the centers are given by

∂JECM

∂vl
=

d∑
i=1

∑
A j 6=;

cαj mβ

i j

∂d 2
i j

∂vl
. (B.22)

∂d 2
i j

∂vl
= 2(sl j )(xi − v̄ j )

(
− 1

c j

)
. (B.23)

From Equation B.22 and B.23,

∂JECM

∂vl
=−2

d∑
i=1

∑
A j 6=;

cα−1
j mβ

i j sl j (xi−v j ) =−2
d∑

i=1

∑
A j 6=;

cα−1
j mβ

i j sl j

(
xi − 1

c j

∑
k

sk j vk

)
,∀l = 1,c.

(B.24)

when setting these derivatives to zero, linear equations are given to l in vk :

∑
i

xi
∑

A j 6=;
cα−1

j mβ

i j sl j =
∑
k

vk

∑
i

∑
A j 6=;

cα−2
j mβ

i j sl j sk j , l = 1,c. (B.25)

Let B be a matrix of size (c ×p), which is defined by

Bl q =
d∑
i

xi q
∑

A j 6=;
cα−1

j mβ

i j sl j =
d∑
i

xi q
∑

A j3ωl

cα−1
j mβ

i j , l = 1,c, q = 1, p, (B.26)

and let H be a matrix of size (c × c) given by

Hlk =∑
i

∑
A j 6=;

cα−2
j mβ

i j sl j sk j =
∑

i

∑
A j⊇{ωk ,ωk }

cα−2
j mβ

i j ,k, l = 1,c. (B.27)

Based on the above notions, V is solution of the following linear system:

HV = B, (B.28)

which can be solved using a standard linear system solver.
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The fast non-dominated sorting

algorithm

This Appendix gives the theory of multi-objective optimization and the fast non-

dominated sorting algorithm. The theory is taken from research papers [OFGC17]

and [Mie12].

C.1 Multi-objective optimization

Assume having v Ê 2 conflicting objectives, described by functions

f1(x), f2(x),..., fv (x), where x = (x1, x2, ..., xn) is a vector of variables (decision vector)

and n is the number of variables or dimension of the problem. A multi-objective

minimization problem is formulated as follows [Mie12]:

mi n
x∈S

f (x) = [ f1(x), f2(x), ..., fv (x)]T, (C.1)

where z = f (x) is an objective vector, defining the values for all objective functions,

fi : S ⊆Rn →R, i ∈ {1,2, ..., v}, where v is the number of objective functions, and S ⊆
Rn is an n-dimensional euclidean space, which defines all feasible decision vectors.

The feasible set is typically defined by some constraint functions. If some objective

function is to be maximized, it is equivalent to minimize its negative. Typically, in

multi-objective optimization, there exists no solution for minimizing all objective

functions simultaneously. Therefore, Pareto optimal solutions are considered and

optimization results are provided to the decision maker.

In mathematical terms, a feasible solution x ′ ∈ S is a Pareto optimal solution
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that Pareto dominates another solution x ∈ S if fi (x ′) É fi (x) for all x ∈ S and f j (x ′) <
f j (x) for at most one j . Objective vectors are defined as optimal if none of their

elements can be further improved without worsen at least one of the other elements.

An objective vector z ′ = f (x ′) is Pareto optimal if the corresponding decision vector

x ′ is Pareto optimal. The set of all the Pareto optimal decision vectors is called the

Pareto set. The region defined by all the objective function values for the Pareto set

points is called the Pareto front [OFGC17].

An objective vector z ′ ∈Rv dominates another objective vector z ∈Rv (or z ′ Â z)

if z ′ É z for all i = 1, ..., v and there exists at least one j such that z ′
j < z j .

In multi-objective optimization algorithms, the subset of solutions in a pop-

ulation whose objective vectors are not dominated by any other objective vec-

tor is called the non-dominated set, and the objective vectors are called the non-

dominated objective vectors. The algorithms involve more than one objective func-

tion that are to be minimized or maximized, and the generated solution is set of

solutions that define the best trade-off between competing objectives. The main

aim of the multi-objective optimization algorithms is to generate well-distributed

non-dominated objective vectors as close as possible to the Pareto front [OFGC17].

C.2 Fast non-dominated sorting

The fast non-dominated sorting algorithm assigns ranks to the individuals, and clas-

sifies the population into several non-dominated levels (so-called fronts) (Fig. C.1).

The population is sorted into a hierarchy of sub-populations based on the ordering

of Pareto dominance. According to Pareto dominance, the individuals with the same

rank are considered non-dominated among each other. These individuals can only

be dominated by the solutions in a lower rank. Dominance comparisons between

the individuals is the most repeated operation in non-dominated sorting with a high

computational burden, which determines the algorithm efficiency [OFGC17].

Algorithm 6 (FNDS-UDC) shows the pseudocode of the fast non-dominated

sorting algorithm. The presented algorithm can be divided into three phases

[OFGC17]: Phase 1-Unidirectional Dominance Comparison, where comparisons be-

tween individuals of initial population P are computed and the information about

their dominance is collected. Phase 2, where the individuals of the first front are

classified, and Phase 3-Front assignment, where the initial population P is classi-

fied in several fronts by the usage of dominance information. The algorithm sorts
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Figure C.1 – Pareto fronts and dominance among individuals in a two dimensional space
[OFGC17].

the population (P) in ranks (or fronts) (Ri ) starting from the front 1. The following

notations are used [OFGC17]:

• n: the dimension of the search region S ∈Rn .

• p: the number of individuals.

• v : the number of objective functions.

• X(p×n): the matrix of individuals’ decision vectors.

• V(p×v): the matrix of the individuals’ objective vectors.

• r ank(Pi ): the rank of Pi .

• T(p×1): the column vector with the rank of each individual, i.e., Ti = r ank(Pi ),

i = 1, ..., p.

• P = [X|V|T](P×(n+v+1)): the matrix of individuals, as the result of the con-

catenation of the columns of X, V and T.
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• F(p×p): the front matrix. It stores the individuals at each front or rank. Each

row Fi of F stores the set of indices of individuals at front i , i.e., Fi = { j :

r ank(P j ) = i }.

• #F(p×1): the column vector with the number of individuals at each front. #Fi =
|{ j : r ank(P j ) = i }|.

• tm ax: the number of fronts, i.e. the number of non zero rows of #F.

• R = [#F|F](p×(p+1)): the rank matrix, as the result of the concatenation of the

columns of #F and F.

• #M(p×1): the column vector with the number of dominators (masters) of each

individual.

• #D(p×1): the column vector with Di = |{ j : P j ≺ Pi }|, i.e, the element i stores

the number of individuals dominated by Pi .

• D(p×p): the dominated matrix. The row i stores the indexes of individuals

dominated by Pi , i.e., Di = { j : P j ≺ Pi }.

• MD = [#M|#D|D](p×(p+2)): the masters-dominated matrix, as the result of the

concatenation of the columns of #M, #D, and D.

Each i th iteration of the FNDS-UDC algorithm is unique because it contains

conditional instructions that can change the program trace. When assuming the

population to be sorted by the algorithm is large enough, the workload for several

sets of iterations can be considered to be near to their average value [OFGC17].

The input of the FNDS-UDC is the population P and the output is the rank ma-

trix R and the update of T in the P structure. As a result, FNDS-UDC generates

the dominance matrix D which is very sparse to calculate R. P, MD and R matri-

ces have been defined as static data structures of size (p × (n + v +1)), (p × (p +2)),

and (p × (p +1)), respectively. It means that the sizes of these matrices are invariant

throughout their lifetime, and they are set to their maximum size. Because the num-

ber of fronts (or ranks) is unknown when FNDS-UDC starts, the number of rows of

R is set to the number of individuals p. When considering P and MD, these two

matrices have been stored column-wise, which presents a better computation con-

sumption than the row-wise approach.
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The advantage of the FNDS-UDC algorithm is its low computation memory re-

quirement. On one hand, the dominance checking between every individual and

the population is computed with a high spatial locality in the access to P. On the

other hand, first columns of MD are frequently acceded to update the number of

dominators and dominated of an individual [OFGC17]. In a CPU or GPU, the al-

gorithm sorts MD in column order. This increases the probability of maintaining

first columns in cache memory and the number of cache misses is consequently

reduced. This sorting strategy has significantly improves the performance of FNDS-

UDC when the population is very large, since most of the running time consumed

by the algorithm is due to the memory access performed in the dominance compar-

ison [OFGC17].

Compared to traditional non-dominated sorting algorithms, the FNDS-UDC al-

gorithm overcomes their drawback of oversizing MD and R due to the unknown

dominance patterns (for guaranteeing enough memory for them). However, the

memory requirements for R could be greatly reduced if the number of fronts is a

priori known [OFGC17].
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Algorithm 6 Fast non-dominated sorting procedure - Unidirectional Dominance
Comparison (FNDS-UDC) [OFGC17].

Input:
1: n: the dimension of the search space.
2: p:the number of individuals.
3: v :the number of objective functions.
4: P(p×(n+v+1)): population.
5: #Mi : the column vector with the number of dominators (i ) of each individual.
6: #Di : the column vector that contains the element i .

Output:
7: F: the front matrix.
8: T: the rank of each individual.
9: Phase 1: Unidirectional Dominance Comparison (UDC)

10: for i ← 1 to p do
11: Di ← {;}
12: #Mi ← 0
13: for j ← 1 to p do
14: for k ← 1 to v do
15: . Check dominance between individuals Pi and P j for the objective k.
16: if Pi Â P j then
17: Di Â Di ∪ { j }
18: . Add P j to the set of individuals dominated by Pi .
19: else if P j Â Pi then
20: #Mi Â #Mi +1
21: . Increase dominators counter for Pi .
22: Phase 2: Assign front to the individuals of the 1st front
23: for i ← 1 to p do
24: if #Mi = 0 then . If individual Pi belongs to the 1st front.
25: Ti = 1 . Set individual i to the 1st front.
26:

27: F1 ← F1 ∪ {i }
28: Phase 3: Front Assignment
29: t = 1
30: while Ft 6= {;} do
31: Q ← {;} . Temporary set used to store individuals of the next front.
32: for each i ∈ Ft do
33: for each j ∈ Di do
34: #Mi ← #Mi −1
35: if #Mi = 0 then
36: Ti ← t +1 . Set individual j to the t +1 front.
37: Q ← Q∪ { j }
38: t ← t +1 . Increase the front counter.
39: Ft ← Q
40: tmax ← t
41: return F,T . Returns the Pareto Dominance Ranking and the Front Matrix.
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