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Spécialité : Énergetique
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Abstract
The need for a better understanding of the driving mechanism for the observed low-

frequency unsteadiness in an over-expanded nozzle flows was discussed. The unsteady
character of the shock wave/boundary layer remains an important practical challenge
for the nozzle flow problems. Additionally, for a given incoming turbulent boundary
layer, this kind of flow usually exhibits higher low-frequency shock motions which are
less coupled from the timescales of the incoming turbulence. This may be good from an
experimenter’s point of view, because of the difficulties in measuring higher frequencies,
but it is more challenging from a computational point of view due to the need to obtain
long time series to resolve low-frequency movements. In excellent agreement with the
experimental findings, a very-long LES simulation run was carried out to demonstrate
the existence of energetic broadband low-frequency motions near the separation point.
Particular efforts were done in order to avoid any upstream low-frequency forcing, and it
was explicitly demonstrated that the observed low-frequency shock oscillations were not
connected with the inflow turbulence generation, ruling out the possibility of a numerical
artefact. Different methods of spectral analysis and dynamic mode decomposition have
been used to show that the timescales involved in such a mechanism are about two orders
of magnitude larger than the time scales involved in the turbulence of the boundary
layer, which is consistent with the observed low-frequency motions. Furthermore, those
timescales were shown to be strongly modulated by the amount of reversed flow inside
the separation bubble. This scenario can, in principle, explain both the low-frequency
unsteadiness and its broadband nature.

Keywords:
Nozzle flows, Wall modeling, Supersonic Turbulent Boundary Layer, Large-Eddy

Simulation, Low-frequency shock Oscillations, Separation bubble, Planar nozzle, Super-
sonic conical diffuser, Shock unsteadiness, Side-loads, Spectra analysis, Dynamic mode
decomposition.
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Résumé
La nécessité d’une meilleure compréhension du mécanisme d’entrâınement pour

l’instabilité à basse fréquence observée dans un écoulement dans une tuyère sur-détendue
a été discutée. Le caractère instable de l’onde de choc/couche limite reste un défi
pratique important pour les problèmes des écoulements dans les tuyères. De plus,
pour une couche limite turbulente incidente donnée, ce type d’écoulement présente
généralement des mouvements de choc à basse fréquence plus élevés qui sont moins
couplés aux échelles de temps de la turbulence en amont. Cela peut être bon du point
de vue d’un expérimentateur, en raison de difficultés à mesurer des fréquences plus
élevées, mais c’est plus difficile d’un point de vue calcul numérique en raison de la
nécessité d’obtenir des séries temporelles plus longues pour résoudre les mouvements
à basse fréquence. En excellent accord avec les résultats expérimentaux, une série de
calcul LES de très longue durée a été réalisée, il a été clairement démontré l’existence de
mouvements énergétiques à basse fréquence et à large bande prés du point de séparation.
Des efforts particuliers ont été faits pour éviter tout forçage à basse fréquence en amont,
et il a été explicitement démontré que les oscillations de choc à basse fréquence observées
n’étaient pas liées à la génération de turbulence d’entrée, excluant la possibilité d’un
artefact numérique. Différentes méthodes d’analyse spectrales, et en décomposition en
mode dynamique ont été utilisées pour montrer que les échelles de temps impliquées dans
un tel mécanisme sont environ deux ordres de grandeur plus grandes que les échelles
de temps impliquées dans la turbulence de la couche limite, ce qui est cohérent avec
les mouvements de basse fréquence observés. En outre, ces échelles de temps se sont
avérées être fortement modulées par la quantité de flux inversé à l’intérieur de la bulle
de séparation. Ce scénario peut, en principe, expliquer à la fois l’instabilité des basses
fréquences et sa nature à large bande.

Mots clés:
Écoulements dans les tuyères, Modèle de parois, Couche limite turbulente superson-

ique, Large-Eddy Simulation, Oscillations de chocs à basse fréquence, Bulle de séparation,
Tuyére planaire, Diffuseur conique supersonique, Instabilité du choc, Charges latérales,
Analyse spectrale, Décomposition en mode dynamique.
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1 Contenu de la thèse
La nécessité d’une meilleure compréhension du mécanisme d’entraînement, des

instabilités à basse fréquence observées dans un écoulement dans une tuyère sur
détendue, a été établie. Il a été démontré que cela a alimenté la recherche dans ce
domaine pendant plusieurs décennies. Le caractère instable des interactions Onde
de choc/couche limite reste un défi pratique important pour les problèmes des
écoulements dans les tuyères. En fait, ce type d’écoulement présente généralement
des mouvements de choc à très basse fréquence qui sont plus difficiles à étudier
d’un point de vue calcul numérique, en raison de la nécessité d’obtenir des séries
temporelles plus longues à résoudre. Le travail suivant vise à mettre en évidence
ce problème, en utilisant des simulations à grands échelle (LES) comme outil prin-
cipal pour générer les données. Les données sont ensuite analysées dans le but
d’éclairer quelques rares questions fondamentales concernant les impacts de divers
paramètres physiques sur ces phénomènes. En particulier, nous visons de :

— Valider l’approche du modèle de paroi utilisée à travers des études de sen-
sibilité et des comparaisons avec l’expérimental. Cela permettra d’étudier
les phénomènes de basse fréquence à travers de longs signales LES.

— Étudier les implications de différents paramètres physiques en amont et en
aval tels que le rapport de pression de la tuyère, la température des parois
et les variations des conditions avales sur les oscillations de choc à basse
fréquence.

— Étudier les phénomènes de basse fréquence en utilisant à la fois l’analyse
spectrale et la décomposition en mode dynamique.

2 Aperçu de la thèse
Un aperçu complet de la littérature révèle que de nombreuses questions im-

portantes concernant la séparation des écoulements dans les tuyères ainsi que les
phénomènes accompagnés, sont encore ouvertes. Par conséquent, le courant aborde
certains d’entre eux. Cette thèse est organisée comme suit :

Chapitre 2 : présente les équations gouvernantes en utilisant à la fois des
formes cartésiennes et curvilinéaires en mettant l’accent sur les équations de Navier
– Stokes compressibles 3D filtrées. Les stratégies numériques utilisées sont décrites
après.

Chapitre 3 : Dans ce chapitre, la méthodologie du modèle de paroi est pré-
sentée, en particulier la manière dont le modèle est implémenté dans le code LES.
Ensuite, l’évaluation de ses performances à travers un ensemble d’exemples com-
prenant des simulations d’une plaque plane, avec et sans gradient de pression, et

1



une comparaison avec une DNS précédente. Le modèle est ensuite testé sur un
long WM-LES sur un écoulement dans une tuyère supersonique pour démontrer
sa capacité à reproduire avec précision la séparation de la couche limite, ainsi que
le mouvement de choc à basse fréquence. Les principaux résultats sont soumis à
International Journal of Heat and Fluid Flow.

Chapitre 4 : Le problème de la séparation d’un écoulement, induits par le choc
dans une tuyère plane supersonique sur détendue, est étudié numériquement, dans
ce chapitre, au moyen d’une très longue simulation tridimensionnelle à grands
échelle avec paroi modélisée (WM-LES). L’objectif est d’identifier l’origine des
oscillations de choc basse fréquence ainsi que la génération de charges latérales as-
sociée dans les tuyères planes. Les résultats des calculs sont comparés aux données
expérimentales pour validation. Un scénario des oscillations de choc à basse fré-
quence, confirmant les conclusions d’études antérieures, est décrit dans ce chapitre.
Les résultats sont publiés dans AIAA Journal.

Chapitre 5 : Dans la continuité, l’étude se concentre sur différents mécanismes
conduisant aux oscillations de choc à basse fréquence (LFO) dans une tuyère plane.
Ainsi, nous nous concentrons principalement sur l’effet de la bulle de recirculation,
sa taille et sa localisation dans la génération du LFO. Une attention particulière
est portée à l’étude du choc et de ses oscillations. Enfin, une formule est faite
empiriquement afin de prédire le ton principal. Les résultats sont en considération
pour la publication dans Physique des fluides.

Chapitre 6 : Dans le présent chapitre, nous utilisons à la fois la WM-LES et la
WR-LES pour simuler l’écoulement dans une tuyère conique sur détendue. L’ob-
jectif est d’étudier en détail les différents phénomènes d’écoulement complexes tels
que la couche limite turbulente, le choc interne et la couche de mélange séparée,
dans le but de fournir une compréhension perspicace des phénomènes de basse fré-
quence, se produisant au sein d’une tuyère conique. L’analyse de décomposition en
mode dynamique (DMD) est utilisée pour mieux comprendre le comportement de
ces phénomènes. Les résultats sont publiés dans Aerospace science and technology.

Chapitre 7 : Ce chapitre présente les effets de la température de la paroi
sur un écoulement dans une tuyère. L’accent est mis sur les changements dans la
structure du choc et le rôle de ces changements dans le contrôle de son mouvement.
Les résultats ne sont pas encore publiés.

Chapitre 8 : Un résumé des travaux de recherche entrepris ainsi que les re-
marques finales sont donnés dans le dernier chapitre. Cela ouvre également de
multiples possibilités pour différentes œuvres en perspective.

2



3 Conclusions et perspectives
Cette thèse est consacrée à l’analyse de l’interaction onde de choc/couche limite

(SWBLI) dans les tuyères sur-détendue. Le phénomène SWBLI est généralement
associé à une instabilité de choc à basse fréquence qui entraîne la génération ou
l’amplification des charges dynamiques agissant sur la paroi de la tuyère. Ces
charges, appelées charges latérales, sont préjudiciables à l’intégrité de la structure
mécanique de la tuyère et peuvent provoquer de graves dommages. Cette étude vise
à clarifier la physique des écoulements complexes liée à SWBLI dans les tuyères su-
personiques, en utilisant une technique de simulation numérique haute-fidélité, ca-
pable de reproduire les aspects instationnaires de l’écoulement turbulent, la struc-
ture tridimensionnelle de l’interaction ainsi que les oscillations de choc, dans les
gammes d’énergie basse fréquence, avec des excursions à grande échelle. Le manus-
crit commence par une section d’introduction qui résume les aspects physiques les
plus pertinents de la séparation de des écoulements dans les tuyères, avant de pré-
senter les différents scénarios de phénomènes d’oscillations de choc basse fréquence
dans SWBLI. L’influence des perturbations aval / amont qui interviennent lors de
la SWBLI est également soulignée, en plus des différentes instabilités post-choc,
se produisant principalement dans les bulles de recirculation et dans la couche de
mélange en aval de la zone d’interaction. La comparaison entre les écoulements
de tuyères planaires et axisymétriques est fournie en mettant l’accent sur l’aspect
symétrie / non-symétrie de la séparation.

En termes de simulations numériques, un effort particulier est fait pour éva-
luer l’outil numérique utilisé dans le cadre de la présente étude. Ce code, appelé
CHOC-WAVES (Compressible High-Order Code using Weno AdpatiVE Stencils),
résout les équations de Navier-Stocks compressibles en trois dimensions avec la
méthode de décomposition de domaine dans le système de coordonnées curvilignes
généralisées (pour les géométries complexes). Le code est validé par un ensemble
de test, y compris (mais sans s’y limiter) la couche limite supersonique, l’écou-
lement du canal compressible, l’écoulement autour d‘un cylindre, les jets et la
couche de mélange. Dans le cadre de l’étude LES, un modèle de paroi, basé sur des
équations de couches limite minces (TLBLE), est utilisé pour rendre compte des
effets proches de la paroi, permettant de gagner un temps CPU significatif et de
réaliser de très longues intégrations. Une présentation complète de ce modèle est
fournie, ainsi qu’une qualification des paramètres du modèle par des tests apriori
et apostériori. On constate qu’en plus de sa relative simplicité de mise en œuvre
dans un code LES existant, le modèle de paroi LES est capable d’économiser un
temps de calcul considérable, tout en fournissant des résultats assez satisfaisants
en termes de vitesse d’écoulement moyenne et de turbulence. En examinant à la
fois les tuyères supersoniques plane et conique, les résultats du LES ont permis de
tirer les principales conclusions :
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3.1 Oscillations de choc dans les tuyères planes

- L’objectif initial était de vérifier s’il existe ou non une instabilité de bascu-
lement du jet entre les parois de la tuyère supérieure et inférieure dans la plage
du rapport de pression de tuyère sélectionné (NPR de 1,7). Si ce phénomène se
produisait, il aurait une basse fréquence très caractéristique. Pour cela, des simu-
lations très longues ont été réalisées sur un temps d’intégration 18 fois plus long
que Piquet (2017), Olson & Lele (2011) et Papamoschou & Johnson (2006). Le
temps d’intégration était suffisamment long pour capturer plusieurs excursions de
choc, offrant ainsi une meilleure convergence des statistiques. À la connaissance de
l’auteur, il s’agit de la durée d’intégration la plus longue jamais atteinte à ce jour
dans des écoulements de tuyères séparées. Au cours de cette longue simulation, le
jet s’est avéré stable, collant d’un côté de la paroi de la tuyère, sans basculer de
l’autre côté pendant toute la simulation.

- Diverses configurations d’écoulement avec différents modèles de chocs sont
ensuite étudiées. Toutes les simulations ont clairement établi le comportement de
symétrie/asymétrie du jet ainsi que l’oscillation de choc à basse fréquence (LFO)
trouvée dans les expériences. L’activité LFO est considérée comme la plus impor-
tante au voisinage du pied de choc réfléchi et caractérisée par un spectre couvrant
plus de trois décennies de fréquences.

- Il a été établi que le pic, correspondant aux mouvements à basse fréquence
dans le spectre pondéré, se situe trois ordres de grandeur en dessous du pic associé
à la turbulence de la couche limite amont. Cela confirme que la couche limite
amont n’est pas responsable de la génération du LFO.

De plus, une étude paramétrique a été réalisée dans le but de mettre en évidence
l’effet du rapport de pression de la tuyère sur les oscillations de choc à basse
fréquence. À la lumière de cette étude, il a été constaté que :

- Les mouvements à basse fréquence sont liés aux contractions et dilatations
successives de la bulle de séparation. Plus la bulle est large, plus la durée des
oscillations est grande. - De plus, l’écoulement de retour s’avère fortement corréler
aux mouvements de choc à basse fréquence, confirmant les conclusions précédentes
des écoulements avec un lambda choc plus important. - Pour le mouvement du
choc, une différence dans le comportement de l’ensemble de la structure du choc
est notée. Il a été constaté que le Mach stem se déplace en réponse à un pur forçage
à basse fréquence. Cependant, le mouvement du pied du choc est affecté à la fois
par les perturbations basse fréquence et certaines perturbations haute fréquence
provenant des régions entièrement turbulentes, y compris la couche limite et de
mélange. - Une analyse attentive du champ d’écoulement instantané a indiqué que
la Mach stem se déplace à une vitesse presque constante lors de ses mouvements de
va-et-vient, confirmant les observations antérieures de Gonsalez Dolling (1993).

- Plus de détails sont également fournis concernant le mouvement de choc. Par
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exemple, dans son mouvement de va-et-vient, le choc progresse de manière discon-
tinue avec une pause (pauses), jusqu’à ce qu’il atteigne sa position maximale. Le
nombre de ruptures effectuées dans un sens (amont) est supérieur à celui réalisé
dans l’autre sens (aval). Ainsi, pendant un temps donné (t1), le choc peut parcourir
une plus grande distance en aval du fait de moins de ruptures. Sachant que le choc
a une vitesse constante dans les deux sens, cela fait apparaître la vitesse moyenne
du choc en aval supérieure à celle en amont. - Enfin, une relation empirique est
proposée pour modéliser la tonalité acoustique principale. En ce qui concerne les
effets de la température des parois sur les oscillations de choc à basse fréquence,
il a été constaté que : - Le refroidissement de paroi conduit à une réduction consi-
dérable des échelles de longueur d’interaction, affectant ainsi la taille de la bulle
de séparation, alors que l’inverse vaut pour le transfert de chaleur avec chauffage
de paroi. - En termes de structure de choc, on remarque que le refroidissement de
la paroi transforme en fait le choc lambda du cas adiabatique en un choc lambda
quasi symétrique, avec un Mach stem plus large. Cela crée un équilibre entre l’écou-
lement rentrant par le bas et le haut de la tuyère. Le choc est donc plus stable et
fait des oscillations plus courtes. Par conséquent, de basses fréquences oscillations
de faible énergie sont présentes dans les spectres de la paroi refroidie.

3.2 Oscillations de choc dans les tuyères coniques (axisymé-
triques)

Une comparaison entre un écoulement dans une tuyère conique et le même
écoulement dans une tuyère plane équivalent montre que : - Alors que les deux
configurations partagent certaines caractéristiques d’écoulement communes, telles
que des structures turbulentes à grande échelle et des modèles d’ondes de choc,
elles présentent des contrastes sur la symétrie de l’écoulement et la dynamique
des chocs. - L’amplitude de l’emplacement de séparation est moins importante
dans le cas cylindrique en raison du gradient de pression accru, en amont du col,
du fait de la section réduite par rapport au cas plan. - L’analyse fréquentielle
de l’écoulement révèle l’existence de phénomènes à basse fréquence résultant de
l’oscillation du système de choc. L’analyse DMD met en évidence l’existence de
deux modes distinctifs ; i) le mode non hélicoïdal (flopping) qui est principalement
un mode de basses fréquences, clairement visible dans le spectre des forces axiales.
ii) le mode hélicoïdal qui est un mode basé sur les hautes fréquences, apparaissant
principalement dans les spectres des charges latérales. - Sur la base de l’analyse
actuelle, une classification des différents modes est proposée, basée sur le nombre
de Strouhal :

— St 2]..., 0.017] : Le mode dans cet intervalle est flopping, qui est à l’origine de
l’amplification des forces axiales par le mouvement oscillatoire du système
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de choc.
— St 2]0.017, 0.10] : Le mode dans cette plage se révèle être hélicoïdal, ce

qui représente des structures tourbillonnaires de différentes tailles qui de-
viennent plus fines lorsque la fréquence augmente. Ces structures appa-
raissent très proches de la paroi de la tuyère en aval de la zone de choc,
conduisant à considérer ces modes comme les principaux responsables de
l’amplification des charges latérales.

— St 2 [0.10, 0.40] : Ce mode est causé par les structures tourbillonnaires à
haute énergie, en raison des activités de la couche de mélange. Ce mode est
moins impliqué dans le spectre des charges latérales.
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Introduction

The objective of this chapter is to present the state-of-the-art related to supersonic
over-expanded nozzle flows. Through which, the different flow aspects are presented.
Particular interest is focused on the study of shock wave/turbulent boundary layer
interaction (SWBLI) and different physical mechanisms that induce/influence the
low-frequency shock oscillations.

1.1 Main types of propulsive nozzles

Before approaching the different operating modes of a nozzle and in particular the phe-
nomenon of separation in an over-expanded regime, it is important to recall the charac-
teristics of conventional nozzles. Indeed, the separation is dependent on the geometry
of the divergent. Two main nozzle-geometry families can be distinguished (Mouronval
(2004) (see figure 1.1):

1. The conical nozzles which were very widely used in the design of the first rocket
engines due to their simplicity and ease of construction. Generally, these nozzles
have angles of divergence between 15 and 25 degrees. They are currently still used
to equip very small engines (used, for example, to control the altitude of satellites).

2. The curved nozzles, which form the second family of conventional nozzles, offering
serious advantages over the previous ones in terms of size and performance
although, like the previous, they perform optimally only at a given altitude.

Furthermore, this latter nozzle family can itself be divided into sub-families. So,
we distinguish:

(a) The truncated ideal nozzles (called TIC, Truncated Ideal Contoured).

1
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An ideal nozzle, if not truncated, would produce a uniform flow profile at the
nozzle exit. The last part of their outline presents only a slight inclination,
which gives them a large length. However, the slight slope at the exit only
makes a negligible contribution to the thrust. Consequently, truncating these
nozzles facilitates their use for rocket engines, without significant loss in per-
formance due to the non-uniformity of the outlet flow. Using this approach,
Ahlberg et al. (1961) proposed an optimization method which results in a con-
tour presenting a maximum performance for a given section ratio. The nozzles
of the Russian RD-0120 and European Viking engines are of this type.

(b) The optimized thrust nozzles (called TOC, Thrust-Optimized Contoured).

Rao (1958) proposed a method for optimizing the performance of a nozzle for
a given length. The typical length of a Rao’s nozzle is 75 to 85% of the length
of a 15-degree conical nozzle with the same section ratio.

(c) The parabolic optimized nozzles (known as TOP, Thrust-Optimized
Parabolic).

It has also been shown by Rao (1960) that the profile of the nozzle obtained
by this method could be approached by a parabola, without significant loss of
performance. This approach is frequently used for the design of modern rocket
engine nozzles such as the American SSME or European Vulcan engine.

Other non-conventional nozzles can exist such as annular aerospike nozzles and TICTOP
nozzles. The latter represents a new concept that combines two types of nozzles; TIC
and TOP Frey et al. (2017).

1.2 Nozzle flow

After the brief description of the different characteristics of conventional nozzles. One
would recall some of the different aspects of a nozzle flow.
In fact, when starting a rocket engine on the ground, the chamber pressure is not high
enough for the flow to be supersonic in the entire nozzle: the flow is recompressed through
a shock wave so to adapt to the external pressure. This recompression is accompanied
with a boundary layer separation and a loss of symmetry of which generates lateral
forces. This phenomenon, already observed on several real engines, can have serious
consequences linked to its random nature. Thus, these forces can cause deformations of
the nozzle and movements relative to its attachment system. The constraints generated
by these efforts, unsteady in module and direction, are likely to be amplified by dynamic
effects. They, therefore, constitute a constraining factor in the design of the structure of
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Figure 1.1: Simplified diagrams of different generic nozzle configurations and their flow
effects from Sutton & Biblarz (2016)

the nozzle since they require having thicker nozzle walls, therefore heavier or shorter and
consequently entail a reduction in the payload transported. When the nozzle is primed
(amorced), the flow regime depends only on the ratio between the ambient pressure pa
and the total pressure at the inlet. In practice, for these operating modes, a distinction is
made between non-separated flows and separated flows. When the flow in the divergent
remains attached to the wall, the wall pressure profile is not influenced by the external
ambient pressure but mainly depends on the chamber pressure, pc, and the geometry of
the nozzle used. This type of flow occurs when the engine is operating at/or beyond
the altitude for which it has been adapted. In terms of pressure ratio, this corresponds
to pa/pe = 1 the nozzle is said to be adapted to ambient or external pressure, or it
corresponds to pa/pe < 1 then the nozzle is said to be under-expanded nozzle. If the
downstream pressure continues to increase and exceeds a certain threshold, the nozzle
will be in a regime of high over-expansion (pa/pe >> 1), see figure 1.2.

There comes a time when the boundary layer can no longer counter the adverse pres-
sure gradient which has become too important and separates. It should be emphasized
at this point hat the prediction of this pressure threshold is an important issue for en-
gine manufacturers since they often wish to avoid or control separation. Several types
of shock structure can be observed in the jet. When the evolution of the nozzle profile
is smooth (case of the TIC type rocket engine nozzles), the separated shock is reflected
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Figure 1.2: Nozzle flow regime during flight.

on the axis of symmetry. Two types of reflection can then occur, (see figure 1.3): the
first is so-called ”regular” where the incident shock (IS) is reflected directly on the axis of
symmetry forming a reflected oblique shock (IR) (observed only in the planar nozzles);
the other, known as ”singular” or ”Mach”, in which the incident shock (IS) is reflected
by forming a normal shock called the Mach disc (see figures 1.4). From the triple point
(TP), where the incident shock, the reflected shock and the Mach disc meet, emanates
a slip line (SL) (see figure 1.4). This isobar discontinuity separates the subsonic pocket,
downstream of the strong shock, from the supersonic region located downstream of the
reflected shock (IR).
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Figure 1.3: (a) Different shock reflections found in a nozzle flow from left to right: normal
shock Papamoschou & Johnson (2006), regular-reflection (RR) and Mach-reflection (MR)
Grossman & Bruce (2018), (b) A schematic showing different shock reflections found in
nozzle flows.
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Figure 1.4: Isovolume of |∇u| showing the topology of a λ-shock Olson & Lele (2011).

It is noted that getting one of these reflections strongly depends on the pressure
ratio and the contour of the nozzle. Moreover, the transition phenomenon between these
reflections can involve a hysteresis effect. When the evolution of the nozzle profile is
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(a) (b)

Separated shear layer Reattached shear layer

Figure 1.5: Color schlieren images of the exhaust flow from Verma & Manisankar (2014)
showing flow topology with (left) Free Shock Separation (FSS) and (right) Restricted
Shock Separation (RSS).

boundary layer

�-shock
mixing layer

Recirculation bubblewall

Figure 1.6: A schematic representation of (left) Free Shock Separation (FSS) and (right)
Restricted Shock Separation (RSS).

strongly optimized in thrust (TOC and TOP), an internal focusing shock (IS) is formed.
This shock is due to the change in curvature of the wall at the level of the throat. The
interference of this internal shock with the separation shock (I) can lead to a complex
shock structure known as ”a hat”. This structure would be the result of the interference
between the separation shock and the inverse Mach reflection of the internal shock on the
axis of symmetry. Finally, concerning the separation itself, two configurations, observed
experimentally then confirmed numerically, are represented in both figures 1.5 and 1.6.
Most often, the separation encountered is a Free Shock Separation type (FSS) in which
the jet separates from the nozzle wall before its outlet lip and is ejected freely therefrom.
However, for certain types of nozzles, the second type of separation, called Restricted
Shock Separation (RSS), may be encountered. The latter is characterized by a rapid
reattachment of the separated boundary layer as shown in figure 1.6. The evolution of
the wall pressure pw can be considered as partly governed by the physics of the shock
wave/boundary layer interactions (SWBLI) in supersonic flow. The first deviation of the
wall pressure from its evolution in a vacuum is called the incipient separation pressure.
It is denoted pi. The wall pressure then increases rapidly until a plateau pressure pp,
generally lower than the ambient pressure pa.

It appears that the FSS involves two very distinct mechanisms. The first is associated
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with the separation of the jet from the wall and governed by the pressure jump pi/pp

while the second is linked to the ambient flow sucked into the recirculation zone and
controls the evolution of the pp/pa ratio. In the 1970s, a second type of separation was
observed by Nave & Coffey (1973) during tests on models of the J-2S engine supplied with
cold gases. The existence of this new type of separation, known as ”restricted” (RSS)
due to the small extent of the recirculation zone, was confirmed in 1994 by the numerical
simulations of Chen et al. (1994). Subsequently, it was encountered on other models on
a reduced scale but also on real engines, although originally the scientists thought that
this configuration only took place for models on a reduced scale operating in cold gases.
In fact, this configuration is mainly influenced by the profile of the nozzle and not by
its size. For this flow regime, occurring only at certain pressure ratios, the flow quickly
separates and then reattaches on the wall of the nozzle. The evolution of the wall pressure
downstream of the separation is irregular, with wall pressure exceeding sometimes the
ambient pressure. This phenomenon is attributed to the reattachment of the separated
flow. Indeed, this induces compression and expansion waves in the supersonic jet.

The transition from free separation to restricted separation occurs at a well-defined
pressure ratio pc/pa. The FSS→ RSS transition is accompanied by a sudden downstream
movement of the separation point. When the pressure increases further, the recirculation
bubble moves downstream and the point of reattachment finally reaches the outlet of the
nozzle. The recirculation zone then opens to the ambient. This is accompanied by an
increase in pressure in the recirculation zone. As a result, the separation point is pushed
upstream. Thus, the recirculation zone can be closed, resulting in a new pressure drop and
a downstream movement of the separation location. A cyclic movement, connected to the
opening and closing of the recirculation zone, is then observed Pilinski (2002). This RSS
→ FSS transition is known in the literature as the ”end effect”. The same phenomena can
be observed during the engine shutdown phase. Frey & Hagemann (2000) proposed an
explanation for the restricted detachment from experimental observations and numerical
simulations. According to their results, the hat shock structure described before would
be the key element of the FSS → RSS transition. They conclude that this transition
can only occur in the nozzles presenting an internal shock. The existence of a hysteresis
phenomenon concerning the shift between the two configurations was firstly demonstrated
by Sellam et al. (2014).

Shock-induced boundary-layer separation in transonic and supersonic flows are of
great importance in many practical applications, such as rocket propulsion systems, tran-
sonic airfoils, refrigeration ejectors, etc. These unsteady phenomena are associated with
undesirable effects such as shock oscillations, wall-pressure fluctuations, boundary-layer
separation and vortex shedding, which are the major causes of vibration, noise and side-
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load generations. A comprehensive review of this topic can be found in Hadjadj & Onofri
(2009). Flow separation in supersonic nozzles has been the subject of several experimen-
tal and numerical investigations, with the aim to understand the different shock patterns
occurring in overexpanded nozzle regime Papamoschou & Johnson (2006), Xiao et al.
(2007), Hunter (2004), Bourgoing & Reijasse (2005), Johnson & Papamoschou (2010),
Olson & Lele (2011), Verma et al. (2018), Dussauge et al. (2006), Dupont et al. (2005),
Shimshi et al. (2015), Chaudhuri & Hadjadj (2016). According to these studies, three
typical flow separation configurations can be identified: i) incipient boundary-layer sepa-
ration with normal shock (observed only in planar nozzles), ii) symmetric boundary-layer
separation with two-symmetric λ-shocks and iii) asymmetric boundary-layer separation
with two-asymmetric λ-shocks. As for the separation location, it was found to be sensi-
tive to the flow disturbances, that may originate from the roughness of the wall Shimshi
et al. (2015) or from the improper initialization of the flow Chaudhuri & Hadjadj (2016).
To address the problem of nozzle flow separation, Papamoschou & Johnson (2006) in-
vestigated a planar nozzle experimentally with a flexible geometry and different nozzle
pressure ratios (NPR ∈ [1.269− 2.4]). They found that the flow could be asymmetric
without flipping during the test run, but the jet flow could change direction from one
nozzle side to another during a restart of a run. According to their study, the shock
selects its orientation at the nozzle starting and retains it throughout the run. Addi-
tionally, RANS simulations were performed by Xiao et al. (2007), in which they roughly
confirmed the experimental findings of Papamoschou & Johnson (2006). For a fixed noz-
zle area ratio and over a wide range of NPR (1.269 - 2.4), they found that the flow can be
asymmetric for NPR (1.5 - 2.4), which is consistent with the experiments of Papamoschou
& Johnson (2006). Xiao et al. (2007) demonstrated that the asymmetric behavior of the
flow separation could be forced on either the top or the bottom wall by means of per-
turbations placed near one of the nozzle walls. They also found that the separated-flow
region is largely enhanced within the core of the nozzle flow, which exhibits a higher
level of unsteadiness. Detailed investigations of flow separations were made by Hunter
(2004), who studied experimentally and numerically an overexpanded planar nozzle and
found that the flow is mainly dominated by the shock-boundary layer interaction dynam-
ics. He proposed a scenario in which the separation could be a natural response of the
flow in its tendency to reach a thermodynamically stable state. Based on his study, the
author suggested to classify the separation into two categories according to the NPR;
i) a non-stationary three-dimensional separation with a partial re-attachment and ii) a
stationary two-dimensional separation with an abrupt transition existing between the
two. The origin of the flow asymmetry was also investigated experimentally by Verma &
Manisankar (2014) using three different Mach 2 planar nozzles with a fixed area ratio and
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different divergent-wall angles. In their study, the authors found that the boundary-layer
transition is one of the main reasons for the flow asymmetry. They also showed that the
transition from free-shock separation (FSS) to restricted-shock separation (RSS) could
initiate the flow asymmetry, but later the transition from (RSS) to (FSS) seems to make
the flow symmetric again. Similarly, the presence of (RSS), was pointed out by Fournier
et al. (2018) as one of the causes of the asymmetry in nozzle flows. Another origin of
asymmetry, reported by Verma & Manisankar (2014), was the proximity of the separated
shear layer to the nozzle wall.

1.3 Nozzle flow unsteadiness

1.3.1 Shock wave/boundary layer interaction (SWBLI)

Due to their ubiquity in high speed applications and their impact on flight performance
and component safety, shock wave/boundary layer interactions phenomon, represented
in figure 1.7, have been studied for about 70 years. The story begins with Ferri (1940) in
1939 who made the first observations of this phenomenon during a test of an air profile in
a high-speed wind tunnel. These observations were the beginning of decade of research
in this area. Shortly after, the importance of the phenomenon was underlined by several
studies, specifying that the nature of these interactions depends critically on the state of
the incoming boundary layer. Among these studies, we cite the work of Fage & Sargent
(1947), Ackeret et al. (1947) and Liepmann (1946). Unfortunately, little information was
collected during these tests which lacked precision. As these experiments were, generally,
made for a transonic regime and in the presence of a downstream pressure gradient, it
was too difficult to investigate the properties systematically. To overcome this problem,
late 1940 and early 1950 experienced a series of experiments made for a true supersonic
boundary layer. These works were done on basic geometries such as: flat plates with
steps and axisymmetric bodies. These works provided very useful data on the effects of
Mach number, Reynolds number and reinforced previous observations of the importance
of the state of the boundary layer. Much of the work up to 1955 has been summarized
by Holder et al. (1954). This period was marked by the famous work of Chapman et al.
(1958) in which they were able to show several very important new knowledge on laminar,
transitional and turbulent interactions. Their results gave birth to the concept of free
interaction. They subsequently showed that pressure distributions through separation
for different model configurations and at different Reynolds numbers could be collapsed
when the pressure and distance axes were scaled appropriately in terms of the skin-
friction coefficient. Their technique worked very well for both laminar and turbulent
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Figure 1.7: Schematic representation of the SWBLI.

flows, suggesting that the same physical processes occurred in both.
In their quest to support the experimental work, the researchers embarked on nu-

merical simulations. The aim of these attempts was above all to try to understand the
deep details of this phenomenon as well as the desire to control the conditions of the
experiment, whether they are initial or limit conditions. These attempts were affected by
the strict standards of Aeschliman & Oberkampf (1998), of which they specify that each
experiment had to be designed from the beginning in order to be validated by a simu-
lation afterwards and that each isolated attempt to validate an experimental work that
had not been designed for this purpose is unacceptable. Given their very strict criteria,
at the beginning of the 90s, only 105 experiments specifically fulfilled these conditions,
among them 5 experiments in hypersonic regime.

Given this very limited number of accepted experiments, these two researchers called
for carrying out numerous experiments verifying the criteria in order to cover the serious
shortage in the following themes: 1) interactions involving real gas effects, 2) turbulence
data and unsteady phenomena 3) more complex types of building block experiments and
4) emphasis on three-dimensional rather than two-dimensional interactions. Regarding
the unsteadiness which is perhaps the most significant breakthroughs in understanding
the phenomenology and the physics of SWBLI. The SWBLI has been the area of numerous
studies to understand the genesis of the prominent low-frequency component inherent in
SWBLI. Recently, brilliant works proposed several physical mechanisms to shed more
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Low-frequency shock oscillations sources
Upstream conditions Downstream conditions
- Coherent structures of the incoming
TBL Andreopoulos & Muck (1987).

- The breathing of the separation bub-
ble Piponniau et al. (2009).

- Passage of turbulence fluctuations
through the interaction Erengil &
Dolling (1993).

- The eddies in the separated region
Dussauge & Piponniau (2008).

- Thickening and thinning of the up-
stream BL Ünalmis & Dolling (1994)

- The acoustic resonance Zaman et al.
(2002).

- Upstream velocity fluctuations Beresh
et al. (2002).

- pressure imbalance between the pres-
sure level downstream the shock and
the ambient Martelli et al. (2019).

- The existence of very long coherent
structures Ganapathisubramani et al.
(2007).

- The acoustic disturbance resulting
from the interaction of the coherent
structures Pirozzoli & Grasso (2006).

Table 1.1: A summary of the most pertinent sources of the LFO found in the literature.

light on the unsteady aspect of these phenomena. However, it is still a challenging task
to just distinguish the causation from the correlation. These efforts may be broadly
classified into two categories: The first category points out the upstream influence of
the incoming turbulent boundary layer while the second underscores the downstream
influence via the interaction between the separated boundary layer, the recirculation
region, and the shock system. Few hypotheses can be found for the first category. For
example, Andreopoulos & Muck (1987) try to point out the coherent structures of the
incoming turbulent boundary layer as the main reason. They found that the frequency
of the shock motion scales on the bursting frequency of the incoming boundary layer. It
appears that there exists a strong correlation between the eddies of the incoming turbulent
boundary layer and the shock displacements. More ideas about the relationship between
the shock-foot and the incoming turbulent boundary layer can be found in the literature.
Erengil & Dolling (1993) for example, have presented the small-scale motions of the shock
as a response to the passage of turbulence fluctuations through the interaction. While,
Hunt & Nixon (1991), Wu & Miles (2000) looked to the so-called hairpin structures as a
strong influencer that can significantly impact the shock motion. However, the hairpin
structures have a frequency higher than the low frequency of the shock motion and cannot
yet be directly related. For compression-corner flow, Ünalmis & Dolling (1994) argued
that the shock position oscillations could be driven by a low-frequency thickening and
thinning of the upstream boundary layer or by the upstream velocity fluctuations as found
by Beresh et al. (2002). These authors found significant correlations between upstream
velocity fluctuations and the shock motions at a frequency of 4-10 kHz which is one
order of magnitude lower than the characteristic frequency of the large-scale structure
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of the incoming turbulent boundary layer that they studied. It is worth mentioning
that, the frequency level, found by Beresh et al. (2002), is still far enough from the
one found in the recent studies of Dupont et al. (2005) which can reach 0.4 kHz. The
effect of a laminar boundary layer on the shock motion was investigated by Fournier
et al. (2015). They found that the boundary layer separates, then undergoes transition
towards turbulence, with a large-timescale periodic shedding of vortical structures. This
low-frequency vortical shedding was interpreted as the reason, at least partly, of the
oscillatory shock motion. Ganapathisubramani et al. (2007) reported the existence of
very long coherent structures of fifty boundary-layer thicknesses long. They were able
to find a correlation between the low-frequency response of the separation point and
these large-scale structures of the incoming turbulent boundary layer. Furthermore, the
structures are found to scale with ū1/λ where ū1 is the incomming freestream velocity
and λ is the size of the structure. This scale was confirmed when compared with the
work of Dupont et al. (2005).

More models can be found in the second category. They may differ in the mechanism
in which the low-frequency phenomena occur but they are all produced by the down-
stream conditions. Piponniau et al. (2009) propose a model in which they explained the
breathing of the separation bubble and the low-frequency shock motion in terms of fluid
entrainment in the mixing layer, whereby the fluid from the separation bubble is continu-
ously entrained in the mixing layer, shed downstream, and must be replenished at a time
scale corresponding to the low-frequency shock oscillations. In another study, Fournier
et al. (2018) pointed out that the flow unsteadiness is a result of the mass imbalance
between the reversed flow at the reattachment point and the scavenged flow from the
separation point. This imbalance is, thus, responsible for the breathing motion of the
separation bubble. Dussauge & Piponniau (2008) considered the eddies in the separated
region as the main excitation source of the Low Frequency Oscillations (LFO). Pirozzoli
& Grasso (2006) proposed that the LFO may be produced by acoustic disturbance result-
ing from the interaction of the coherent structures, shed by the mixing layer next to the
separation point, and the incident shock. Zaman et al. (2002) investigated experimen-
tally and theoretically the shock-wave oscillation in transonic diffusers. They concluded
that the mechanism creating those low-frequency oscillations is stimulated by an acoustic
resonance, where the low-frequency mode corresponds to the case when the one-quarter
wavelength is fitted within the approximate distance from the foot of the shock to the
nozzle exit. The same conclusions were made by Johnson & Papamoschou (2010) when
investigating, experimentally, the flow in a supersonic planar nozzle.

Simulations have also explored the phenomenology as well as the underlying mech-
anisms. Rizzetta et al. (2001) found similar LFO to the frequency of the incoming BL
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in terms of magnitude. A first detailed study of the LFO was presented by the DNS of
Pirozzoli & Grasso (2006). In which, they proposed an acoustics-based resonance mecha-
nism in which waves are generated by the interaction of the incident shock with coherent
structures. They also developed a simplified model based on similarities to cavity flows
and jet screech. Further elaborating on the dynamics are proposed by Prièbe & Martin
(2012), they confirm the breathing of the bubble and further show that shock motion is
more correlated to the downstream flow features. Agostini et al. (2012) connected the
shock motion to the kinematics of the vortical structures and the foot of the separation
shock. Touber & Sandham (2009) perturbed the mean flow obtained from LES with
white noise to reproduce the dynamics in the context of a global mode to explain the
broadband nature of the low-frequency phenomena. Olson & Lele (2011) investigated
numerically the same nozzle as Papamoschou & Johnson (2006) and confirmed the pre-
vious findings. Martelli et al. (2019) found, for the same nozzle, that the self-sustained
oscillation is driven by a pressure imbalance between the pressure level downstream the
shock and the ambient.

Moreover, the validity of many of the previous mechanisms was evaluated by Morgan
et al. (2013) through extensive LES database, but still no evident mechanism is found.
However, the second class becomes more evident since it has been demonstrated to exist
even in the absence of white noises in the boundary layer, as found by Touber (2010).

Additionally, stability analysis was applied to SWBLI in order to understand the
origin of low frequency shock unsteadiness. Robinet (2007) used BiGlobal linear-stability
analysis to find a 3D global instability leading to self-sustained LFO when exceeding
a critical angle. Touber (2010) also found an unstable 2D global mode with growth
time scale like the observed one in low frequency bubble breathing. Always by using
BiGlobal linear-stability analyses, Pirozzoli & Grasso (2006) identified several weakly
damped oscillatory modes resembling bubble breathing.

As Touber (2010) explained that the impact of the upstream turbulent events on the
shock motion is evident, since the shock will be inevitably displaced when impacted by an
upstream-eddy. However, such high-frequency dynamics is far to be thought to be related
to the low-frequency shock motion. Furthermore, the previous idea could be considered in
one case if we consider the shock to be a low-pass filter. The latter filters the fluctuations
in the incoming boundary layer up to a given cut-off frequency, which would lead to the
observed low-frequency unsteadiness as suggested by Dussauge & Piponniau (2008).

Indeed, to be compatible with the shock-motion timescales, those events must be at
least at an order of ten-boundary-layer-thicknesses long. For example, Ganapathisub-
ramani et al. (2007) have reported coherent superstructures of about fifty boundary-
thicknesses long. They reported also a significant low-frequency shock oscillations at
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about ū1/(115δ0), where δ0 is the upstream 99% boundary-layer thickness. Using the
above superstructure-scaling argument, different kinds of flow with SWBLI; compression
corner and shock-reflection experimental studies (Dolling 2001, Dussauge & Piponniau
2008, Dupont et al. 2005, Piponniau et al. 2009) are found to be consistent with the
previous scaling, making the upstream superstructures argument questionable unless the
shock is truly playing a low-pass filter role.

However, it is worth reminding the very important remarks made by Touber (2010).
First, it must have a deep look at the way in which these correlations are made. For
example, if we consider that the shock motions are detected first, then correlated to an
earlier event in the incoming boundary layer, traveling at a constant-local mean velocity.
In that case, the downstream events are likely excluded to be behind the low-frequency
motion. Second, involving arbitrary threshold values would directly influence the level
of correlations seen which is the case of Ganapathisubramani et al. (2007) who defines
the separation front every spanwise zones with a velocity less than 187 ms−1, due to
the difficulty in finding the zero-velocity contour line from the PIV and the impossibility
of using a criterion based on the zero skin-friction contour. The previous assumptions
led them to report the correlation of the shock motion to the presence of both low- and
high-speed regions. The previous findings were impossible to be verified experimentally,
but thanks to the DNS of Wu & Martin (2008) one can verify finally that the low-
momentum structures are less likely to affect the shock motion. To demonstrate the
effect of using arbitrary threshold values, Wu & Martin (2008) used the same criterion
as Ganapathisubramani et al. (2007). As a result, more important correlation between
the shock motion and the low-momentum structures is clearly noticed.

The three-dimensionality nature of the shock is of capital importance, nevertheless it is
often not documented and few are the studies considering this aspect. Mainly, the fewer
studies considering the way in which the shock moves are done on compression-ramps
trying to answer one question; does the shock oscillate as a block or does it wrinkle in the
spanwise direction? One of the existing answers can be found with Wu & Miles (2000)
and Edwards et al. (2008). All of them reported the existence of evident spanwise-shock
displacement due to the passage of turbulent structures.

After presenting the possible upstream correlation, in what follows we will present the
most relevant results concerning the possible correlation between the downstream condi-
tions and the low frequency movement of the shock. Starting with the vortical structures
emerging from the shear layer which are considered by Dussauge & Piponniau (2008) as
a source of excitation. Pirozzoli & Grasso (2006) take the same way as Dussauge et al.
(2006) and they went further by proposing a mechanism in which the vortical structures
generate low frequency motion. According to them, when the large coherent structures
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interact with the incident shock, an acoustic disturbance is produced and propagates
upstream in the subsonic layer, inducing low-frequency oscillatory motion of the shock.
The large-scale low-frequency unsteadiness would then be sustained by an acoustic res-
onance mechanism. The proposed model missed a small detail concerning the possible
decoupling between the acoustic field and the turbulence. The previous decoupling was
proven by Borodai & Moser (2001), thus the effect of the acoustic field on the turbulence
could be neglected. Always with the mixing layer as a source of low frequencies Pipon-
niau et al. (2009) proposed a model based on the mass-entrainment timescale in which
the main parameter controlling the low-frequency shock motions is the spreading rate of
the compressible mixing layer. The model is thus associated with the separation bubble
and the developing mixing layer. The authors denied any affluence of the geometry of
the flow on the low-frequency motions. On the other hand, they related them to the
presence of a separated region downstream of the shock in the presence of a separation-
bubble sufficiently large. Moreover, the authors find that the characteristic frequency
of the shock motions are affected by the shock intensity and not directly related to any
time scale from the upstream boundary layer. Yet more alternative approaches have been
suggested in the literature. One particularly interesting approach is based on Dallmann’s
conjecture Dallmann (1988), which states that multiple recirculation zones occur inside
the primary bubble which finally leads to a global structural flow change with ”multiple
structurally unstable saddle-to-saddle connections”, before unsteady vortex shedding oc-
curs. That is why Boin & Robinet (2004) believe that this extends to supersonic flows
and SWBLI and that it could explain the first stage of the establishment of the unsteady
low frequency. Finally, as Touber (2010) mentioned in his thesis we admit that ”despite
the numerous studies cited above, there remain uncertainties regarding possible external
sources of unsteadiness”.

Nerveless one must be cautious, either in his simulations or his experiments, about
the use of the different technics used. For instance, the Taylor’s hypothesis used on the
existence of the observed superstructures, as well as the turbulence-generation technique
which often introduces characteristic frequencies that could be of the same order of mag-
nitude as the observed low-frequency oscillations. Further attention must be payed when
using periodic boundary conditions, usually used with unsufficient spanwise extent which
may results in low-frequency ”span-wise tornadoes”, as found by Dussauge & Piponniau
(2008). These span-wise tornadoes may strength the SWBLI interaction by reducing
the effective cross section as reported by Garnier (2009) when simulating a wind tunnel.
Another problem that may be faced, when studying low-frequency shock motion, is the
integration time, which is usually too short to cover low-frequency oscillation, making
the interpretation of the correlation functions subject to caution.
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1.3.2 Post-shock region unsteadiness

Whether in the case of free or restricted separation, a recirculation bubble appears in the
divergent of the nozzle for a wide range of NPRs. The interface between this bubble and
the supersonic jet is characterized by a shear layer which results from the speed difference
between these two zones. This layer can be assimilated to a plane mixing layer and is
the seat of Kelvin-Helmholtz (KH) instabilities.

1.3.2.1 Development of Kelvin-Helmholtz instability

Flow instabilities may be broadly divided into two categories, convective and global.
Convective flow instabilities involve disturbances that undergo spatial growth as they
are convected away from their inception point. The resulting coherent structures are
responsible for the transport of mass, momentum and energy, and the radiation of acoustic
waves. In such cases, all regions of the flow eventually return to their equilibrium state,
once the disturbance has passed. In parallel or weakly non-parallel frameworks, the
dynamics of such flows are underpinned by local, convectively unstable, downstream-
traveling modes, such as the Kelvin–Helmholtz (KH) mode Martini et al. (2019).

This kind of instability is characterized by a dynamic of convective movement re-
sulting when two fluids move at different speeds. These structures, shown in figure 1.8,
are of major interest because of their influence on many flow properties, such as mixing,
acoustics, heat transfer, etc. For the flows with free sheared layers, the main instability,
from which originate large-scale organized structures, is the Kelvin-Helmholtz instability.
This instability is caused by the destabilizing effect of the shear when it becomes pre-
ponderant under the stabilizing effect of the stratification. This leads to an undulation
of the interface, creating concave and convex parts which lead to the amplification of the
undulation. Finally, the difference in the velocity of the two fluids causes a spiral rolling
up.

The KH mechanism has long been invoked to describe coherent structures in both
transitional and turbulent planar shear layers and jets. Various studies carried out were
able to highlight the two-dimensional character of these structures. It exists two types of
vortices in this kind of flow: two-dimensional cylindrical vortices aligned perpendicularly
to the direction of the flow: the so-called primary vortices. 2) the longitudinal counter-
rotating vortices superimposed on the main vortices which connect them together: so-
called secondary vortices.

Strictly speaking, the mechanism itself is not defined outside of the context of parallel/
quasi-parallel laminar shear layers, where, in the spatial stability theory, KH is an unsta-
ble modal solution with an associated spatial growth rate. For jets, the solution is typi-



1.3. Nozzle flow unsteadiness 17

cally a convective instability. Under spreading of the flow, an initially growing wave (at a
fixed frequency) will eventually become neutral and decay Crighton & Gaster (1976). For
the axisymmetric azimuthal wavenumber, m = 0, the resulting wavepacket has a nearly
constant phase speed as shown by Schmidt et al. (2018). According to the parallel theory,
the mode is unstable at low frequencies but with a growth rate that goes to zero faster
than the frequency. In more recent global stability Nichols & Lele (2011) and resolvent
analyses Lesshafft et al. (2019) found that the optimal resolvent response is related to
the KH mechanism from St ∈ [0.3,1], possessing similar characteristics described above
through quasi-parallel analysis. In free-shear flows, the downstream-travelling mode is
frequently a KH instability, whereas the nature of the upstream-travelling mode may
vary depending on the flow considered. Powell (1953) proposed that acoustic waves are
responsible for the feedback that underpins tonal behaviour observed in underexpanded
supersonic jets which screech, a concept later used to explain the tonal dynamics of
impinging jets and cavity flows. In these flows, upstream disturbances are spatially am-
plified up to some downstream point at which they undergo an interaction (with a solid
surface where impinging jets and cavities are concerned, with shock cells in the case of
screeching jets) that causes them to be scattered into, among other things, upstream-
travelling sound waves, which are then reflected in the nozzle plane. When the phases of
the upstream- and downstream-travelling waves are matched at the boundaries, and the
reflection conditions are such that positive gain is possible, one has resonance, as well as
global instability.

1.3.2.2 Vortex pairings

The development of turbulent structures in a mixing layer was studied by Ho & Huang
(1982). The authors conducted an analysis of the response of a free planar mixing layer to
a forcing frequency on either side of the separating plate. They observe that the response
frequency, fr, at which the vortices form in the sheared layer, is not necessarily that of the
forcing frequency ff . Indeed, the authors found that when the forcing frequency, ff , is
close to the most likely natural frequency (without forcing), fm, the response frequency,
fr, is identical to the frequency forcing. On the other hand, if the forcing frequency
becomes less than a threshold value, the response frequency switches discontinuously to
a higher frequency. The study shows that the forcing frequency influences the position
and the number of structures of the mixture layer which merge by modifying the growth
rate of the thickness of local vorticity and the associated characteristic frequencies. In
their study, the authors distinguish four ranges of response frequencies according to the
forcing frequency. The transition between each of the ranges, depending on the forcing
is done discontinuously.
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Figure 1.8: (a) Schematic of Kelvin-Helmholtz vortices originating from a separted mixing
layer in a planar nozzle. (b) Different topologies of the Kelvin-Helmholtz instabilities;
(a) a shadowgraph visualization of Kelvin-Helmholtz vortices originating from a subsonic
plane mixing layer Brown & Roshko (1974), (b) Kelvin–Helmholtz vortices emanating
from the triple point Hadjadj et al. (2004).

1.3.3 Recirculation bubble and lip vortex

It is well known that the existence of an adverse pressure gradient, in an over-expanded
nozzle, leads to the separation of the boundary layer and to the formation of a recircu-
lation zone. When this happens, a sheared layer is formed as a result of the interaction
between the recirculation bubble and the detached supersonic jet. The current situation
provokes a recirculating current which ensures the mass supply by the fluid return at the
nozzle exit lip. This recirculating current leads, also, to the formation of a lip vortex
having its own dynamic and fed by the return current.

1.3.3.1 Recirculation bubbles

The various studies, carried out so far, have highlighted the cycle of expansion and con-
traction of the recirculation bubble, shown in figure 1.9. This cycle is attributed to a
phenomenon of ”breathing” which results from an imbalance between the rate of en-
trainment of the fluid by the shear layer and the backflow. Interestingly, this breathing
is characterized by a very low frequency as reported by Piponniau et al. (2009). The
characteristic frequency of this phenomenon is representative of the convection of turbu-
lent structures of large scales. Indeed, the study Kiya & Sasaki (1983) highlighted an
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Figure 1.9: Schematic representation showing a recirculation zone in a planar nozzle.

increase in the size of the bubble due to an accumulation of the angular momentum in
the recirculation zone. When it reaches a critical size, part of the energy is released in
the form of vortex bundles, thereby reducing the volume of recirculation. In order to
prevent the formation of the recirculating flow, Boccaletto (2011) presents a process for
controlling the separation, called Boccajet. Thus, a small annular aerospike type nozzle
is installed at the level of the diverging outlet lip. This nozzle generates a supersonic jet
which prevents outside flow from entering the divergent. This maintains a low-pressure
level in the divergent and prevents the delamination of the boundary layer.

1.3.3.2 Lip vortex

As mentioned at the beginning of this section, the three-dimensional structures of the flow
show that the return current forms a recirculating ring at the level of the nozzle exit lip
(see figure 5.8). This ring, which has a significant influence on the recirculating flow rate,
is strongly conditioned by the geometry of the outlet lip. Indeed, this dynamic structure
directly influences the recirculation zone and can, therefore, be the cause of a change in
the position of the separation line. Pilinski (2002) has carried out a numerical study on
three different lip geometries to study the influence of lip thickness on recirculation. In
the case of an infinitely thick lip (wall), the author notes the appearance of a moderate
depression associated with a small vortex. Similarly, in the case of a lip having a thickness
equal to 0.1 Re, with Re the exit radius of the divergent, the author notes that the size
of the vortex and the associated depression are equivalent to those observed in the case
of the lip of infinite thickness. This configuration presents a small difference. Indeed, a
small swirl takes place on the lip edge. On the other hand, in the case of a lip of almost
zero thickness, the author notes the appearance of a much greater depression due to the
presence of a vortex of a significantly larger size. Thus, the air sucked undergoes two
successive very close expansion, and the fact that the thickness of the wall is almost zero
prevents the flow from gradually modifying its trajectory. This results in a greater angle
of velocity relative to the leading edge of the divergent, favoring the development of a
larger lip vortex.
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Figure 1.10: Trapped vortex at the nozzle lip, see Hadjadj et al. (2015).

1.3.3.3 Flapping movement of the jet

Among the unsteady phenomena occurring within the mixing layer, the low-frequency
flappy movement of the jet (FJ). This phenomenon refers to the intermittent-radial two-
dimensional flip-flop motion of the mixing layer, with respect to the major plane of
symmetry of the nozzle (see figure 1.11). It has many practical application, for instance
it is found in various control devices to disturb the shear layer or to enhance heat transfer,
not only for single-phase flows but also for multi-phase flows. As a result, there have been
numerous investigations of these flows following the pioneering work of Viets (1975).
The latter presented in his study, an experimental nozzle characterized by a significant
instability of the main jet at the outlet. This instability arises from the fact that a jet
confined by walls sufficiently close is unstable and may possibly oscillate between the
two walls. In addition, a small pressure fluctuation at the exit of the nozzle can lead
the jet to change its side. This highly fluctuating nature of the jet at the exit results
from a process of feedback of the fluid in the chamber which causes the deflection of
the jet on one side then on the other of the nozzle. Platzer et al. (1978) compared the
entrainment rates of an FJ with a non-flapping jet (NFJ) and found that the FJ is superior
over the NFJ in entrainment of the ambient fluid. Morris et al. (1992) reported data
describing the motion of air and particles in a FJ flow. More detailed experimental results
were provided by Raman & Rice (1994), who investigated not only the characteristics of
the flow outside the nozzle, but also the mechanism of the nozzle extended from Viets
(1975) and its geometric configuration. However, these previous investigations have only
provided limited measurements of the turbulent mixing characteristics of FJ flows. The
frequencies of such phenomena has been reported in the literature for instance Mi et al.
(2001) reported that the phenomon could be observed at a Strouhl number of the order
of 6.710−4, which is nearly one order of magnitude below the one found in Viets (1975)
(St= 5.010−4). In a preliminary investigation using a single hot-wire probe and a phase
averaging scheme, Mi et al. (2001) concluded that the nozzle produces a jet with a “flag-
like” flapping motion and that this easily detectable large-scale oscillation decays rapidly
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Figure 1.11: A sequence of images of an externe flapping jet at St= 7.010−4 obtained by
laser induced fluorescence, see Mi et al. (2001).

so that it could not be captured in the far field.

1.4 Planar vs. axisymmetric nozzle flow

Having described the different characteristics of a flow in a propulsive nozzle as well as
the most important types of instabilities that can be encountered in such flow, it is worth
remembering that all the phenomenology described before can be observed in all kinds
of nozzles whether curved, conical or planar. However, since the majority of the present
work deals with these instabilities in planar nozzles, as well as a conical nozzle, it is very
important to clarify; first, the peculiarity of these phenomena observed in planar nozzles
compared to the so-called realistic-geometry nozzles, secondly, the phenomena observed
exclusively in this type of nozzle.

1. The asymmetry of the jet

Starting with the asymmetry of the jet, it turns out that the asymmetry of the
jet is less present in the axisymmetric nozzles while it is very present in the planar
ones for very precise NPR intervals reported in the literature, such as Hunter (2004)
who found the jet to be axisymmetric for NPR interval ranging from 1.4 to 2.4, or
Verma & Manisankar (2014) who reported the asymmetry of the jet for NPR inter-
val ranging from 1.5 to 2.9. As for the direction of the asymmetry, it turns out to be
random and only the initial conditions can influence it,as reported by Papamoschou
et al. (2009). The natural change (i.e. without excitation) of the asymmetry direc-
tion, during the same run, is a phenomenon already seen in the curved nozzles, but
it is very rarely seen in the planar nozzles. But apart from Verma & Manisankar
(2014), no one has ever seen it. In the end, it is a phenomenon that happens at a
very low frequency, consequently it is very hard to be reproduced by computation
for reasons of the computation costs. In the literature, researchers report that this
phenomenon never occurs in the same run. However, the direction of the jet can
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Figure 1.12: z-averaged numerical “Schlieren” imaging contour ∇|ρ|; (a) planar nozzle,
(b)conical nozzle for identical flow conditions, from Piquet (2017).

switch from one side to the other for different runs Johnson & Papamoschou (2010).
In addition, it has been reported that the thermal or the dynamic forcing of the jet
can push the jet to change its direction Xiao et al. (2007). Many people have tried
to understand or formulate this asymmetry, such as Telega et al. (2019) who tried
to parametrize the shock waves topology finding that the normalized height of the
top and bottom λ-feet remain the same in both asymmetric and symmetric cases.
The authors have confirmed their observations through both experimental and CFD
results. Sun et al. (2020) developed a theoretical model for the asymmetry of the
shock train in supersonic flows base on the properties of the fluid entrainment in
the mixing layer and momentum conservation. Flow deflection angles downstream
of different SBLI regions were successfully deduced from this model. Finally, it is
important to remember that in the case of a conical nozzle undergoing the same
conditions (i.e. initial, limits and geometrical) as a planar nozzle, the jet turns out
to be symmetrical as reported by Piquet (2017) (see figure 1.12). A possible ex-
planation for this is as follows: we can say that having two separation zones (in
the upper wall and the lower wall) not communicating in the planar case and the
presence of the periodic conditions for the spanwise direction, reinforces the asym-
metry comparing to the conical case where there is one zone consequently the flow
establishes a certain thermodynamic equilibrium each time to keep the symmetry
of the jet.

2. The shock movement:

The shock movements are more important in the planar case. These movements
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are observed by several authors Hunter (2004), Verma & Manisankar (2014), Pa-
pamoschou et al. (2009), Martelli et al. (2019), Zaman et al. (2002), Bogar et al.
(1983). They are less important in the axisymmetric cases such that for the same
conditions (i.e. initials, limits and geometrical), wider shock oscillations are ob-
served in the planar case than the other cases Piquet (2017). The mechanism
generating these oscillations is always ambiguous. Indeed, they depend on several
parameters or physical phenomena as it was already shown at the beginning of this
introduction. In the planar case, the shock movements strongly depend on the re-
circulation bubbles, on the flow conditions either downstream or upstream, as well
as some acoustic phenomena. More details on this subject will be given later in this
work. The amplitude of the shock oscillations depends on the NPR, the geometry
of the nozzle and the configuration of the jet (i.e. symmetrical or asymmetrical).
Generally, the more asymmetrical is the jet, the greater is the distance swept by
the shock. Finally, it should be remembered that these movements have a very
important influence on the streamwise forces but they participate in a moderate
way in the side loads. This is mainly due to the fact that the amplitude of these
oscillations is greater in the streamwise direction than the other directions.

3. Recirculation bubbles:

Recirculation bubbles are found in all separated-nozzle flows regardless of their
types. Nevertheless, their influence is more remarkable in the planar nozzles. Gen-
erally, we found two bubbles in a separated planar-nozzle flow. The first is usually
very wide and opened while the second is small and closed. The two bubbles do
not communicate with each other. The largest of this bubble is often open to the
ambient. This difference in size is caused by the famous λ-asymmetric shock. It
has been shown that the activities of these bubbles, in particular, the largest one
generates low frequencies. To understand the mechanism through which these bub-
bles generate low frequencies, several scenarios have been proposed such as that of
Piponniau et al. (2009) in which they found that the bubble breathing mechanism
which results in the emptying of the recirculation region is responsible for the low-
frequencies. The mass of air in the bubble is progressively entrained by the vortex
structures of the mixing layer. This mass training continues until the volume of
dead air is greatly reduced. The bubble then sucks in a new mass of air downstream
to reform the detached bulb. The time of a drain-fill cycle constitutes the period of
oscillation of the bulb. For NPRs where the jet is symmetrical, the two bubbles are
almost identical. This situation is more stable and consequently fewer oscillations
are observed.
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4. Lip vortices:

A major difference between this phenomenon observed in a planar nozzle and that
observed in an other type of nozzle is its shape. Obviously, the lip vortex has a
toroidal shape in all types of nozzles Georges-Picot (2014) (see figure 1.13, apart
from the planar nozzle where it appears as a longitudinal cylinder at the exit of
the planar nozzle. In addition, it turns out that the height of the lips of the nozzle
plays an important role in the formation of this type of instability.

Figure 1.13: Iso-volume of pressure showing the toroidal shape of the lip vortices from
Georges-Picot (2014).

1.5 Scope of the present work

Based on the above discussion of the existing literature, the need for a better under-
standing of the driving mechanism, for the observed low-frequency unsteadiness in an
over-expanded nozzle flows, was established. This was shown to have been driving re-
search in this area for several decades. The unsteady character of SWBLI remains an
important practical challenge for the nozzle flow problems. In fact, this kind of flow
usually exhibits very low-frequency shock motions which are more challenging to study
from a computational point of view, due to the need to obtain longer time series to be
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resolved.
The following work intends to highlight this problem, using large-eddy simulations as

the primary tool to generate the data. the data are then analyzed with the intention of
shedding light on some scarce fundamental questions, concerning the impacts of various
physical parameters on the phenomena. In particular, we aim to:

1. Validate the wall model approach used through sensitivity studies and compar-
isons with experiment. This will allow to investigate the low-frequency phenomena
through long LES runs.

2. Investigate the implications of different upstream and downstream physical param-
eters such as the nozzle pressure ratio, the wall-temperature and the downstream
conditions variations on the low-frequency shock oscillations.

3. Study the low frequency phenomena using both spectral analysis and dynamic mode
decomposition.

1.6 Outline of the dissertation

As mentioned earlier, a comprehensive overview of the literature reveals that many im-
portant questions regarding the separation of the nozzle flow as well as the accompanied
phenomena are still open. Therefore, the present work addresses some of them. This
thesis is organized as follows:

Chapter 2: introduces the governing equations using both Cartesian and curvi-
linear forms with an emphasis on the filtered 3D compressible Navier–Stokes equations.
The numerical strategies used are described afterword.

Chapter 3: In this chapter, the wall-model methodology is presented, in particu-
lar the way in which the model is implemented in the LES code. Then, the assessment
of its performance through a set of examples including simulations of a flat plate, with
and without pressure gradient, and the comparison with a previous DNS results. The
model is afterwards tested through long Wall Modeled (WM)-LES on supersonic nozzle
flow to demonstrate its ability to accurately reproduce the separation of the boundary
layer, as well as the shock movement at low frequency. The main results are submitted
to: International Journal of Heat and Fluid Flow.

Chapter 4: The problem of shock-induced flow separation in an overexpanded
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supersonic planar nozzle is investigated numerically, by means of a very long three-
dimensional wall-modeled large-eddy simulations. The objective is to identify the origin
of the low-frequency shock oscillations and of the associated side-loads in planar nozzles.
The computational results are compared with the experimental data for validation. A
scenario of the driving low-frequency shock oscillations, confirming conclusions from
earlier studies, is described in this chapter. The results are published in: AIAA Journal
(Zebiri et al. 2020).

Chapter 5: The study focuses on different mechanisms leading to the low-frequency
shock oscillations (LFO) in a planar nozzle. Thus, we mainly focus on the effect of the
recirculation bubble, its size and its location on the generation of LFO. A particular
attention is made to study the shock and its back and forth oscillations. Finally, a
formula is made empirically in order to predict the main tone. The results are under
consideration for publication in: Physics of fluids.

Chapter 6: In this sixeth chapter, we use both wall-resolved-LES and wall-modeled-LES
to simulate the flow in an over-expanded conical nozzle. The objective is to study in
details the different complex flow phenomena such as the turbulent boundary layer, the
internal shock and the separated mixing layer, for the purpose of providing an insightful
understanding of the low-frequency phenomena, occuring in a conical nozzle. Dynamic
mode decomposition (DMD) analysis is used to better understand the behavior of these
phenomena. The results are published in: Aerospace science and technology.

Chapter 7: This chapter presents the effects of wall temperature in nozzle flows.
The focus is on the changes in shock structure and the role of these change in controlling
its movement. The results are not yet published.

Chapter 8: The summary of the research work undertaken along with the con-
cluding remarks are given in the last chapter. This also opens multiple possibilities for
different perspective works.
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Governing equations and numerical
methods

Highlights

• Three dimensional filtered Navier-Stocks equations are presented in a
conservative form in both Cartesian and generalized curvilinear coordi-
nates.

• The convective fluxes are discretized using a sixth-order central scheme
for smoothed solutions, and a sixth-order Weighted-Essentially-Non-
Oscillatory (WENO) for shocked regions.

• Time advancement is achieved through a fourth-order Runge-Kutta
(RK4) time stepping.

• The robustness of the overall numerical scheme is assessed through a
series of numerical test problems that include vortex advection, 2D su-
personic flow over a cylinder, Poiseuille flow and a 3D turbulent channel
flow.
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Introduction

This chapter presents the governing equations in both Cartesian and generalized curvilin-
ear forms along with the numerical methods used to perform the simulations. Meanwhile,
some code validation cases are presented and a brief description of the test case is given
at the end of this chapter.

2.1 Governing equations

The Large Eddy Simulation (LES) approaches are based on the idea of a distinction of
scale. The main idea is to completely solve the most energetic turbulence structures on
a large scale and to model only the effect of the smaller unresolved scales, in order to
reduce, as much as possible, the number of degrees of freedom of the continuous system
and to stay as truthful as possible to the continuous system. In the end, all of this is
done in order to reduce the cost of computation associated with the resolution. In reality,
the operation goes through several stages. First, we must define the computation grid.
Afterward, we choose, supposedly, the greatest distance existing between two successive
points in the grid, i.e. ∆x. This distance corresponds to the cutting off the highest
wavenumber k defined as follows: k = π/∆x, in a Fourier space. Finally, using this low-
pass Nyquist filter, all eddies smaller than 2∆x will be systematically modeled and will not
be computed. The present filter is applied to the three-dimensional compressible Navier-
Stokes equations (the conservation of mass, momentum and energy) initially defined, in
Cartesian coordinate xi = (x,y,z), as follows:

∂ρ

∂t
+ ∂ρuj
∂xj

= 0, (Continuity)

∂ρui
∂t

+ ∂ρuiuj
∂xj

=− ∂p

∂xi
+ ∂τij
∂xj

, (Momentum)

∂ρe

∂t
+ ∂(ρe+p)uj

∂xj
= ∂τijui

∂xj
− ∂q̇j
∂xj

, (Energy)

where ρ is the density, ui the velocity components, p the pressure, T the temperature,
e the total energy, τij the viscous stress tensor and q̇i the heat diffusion flux.

The perfect gas state is considered with

p= ρrT, (2.1)
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The total energy is expressed as:

e= ei+K = CvT + 1
2(uiui), (2.2)

the shear stress tensor:
τij = 2µSij +µ′′δij

∂uk
∂xk

, (2.3)

Sij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
, (2.4)

and the heat diffusion flux:
q̇j =−λ ∂T

∂xj
. (2.5)

The viscous stress tensor is composed of a viscous part and a dilatation part, where
Sij denotes the strain rate tensor and µ′′ the second viscosity. On the assumption of a
Newtonian fluid, the second viscosity can be expressed by the relation of Stokes (2.6)
where µb denotes the bulk viscosity:

µb = µ′′+ 2
3µ. (2.6)

The dynamic viscosity follows the Sutherland law:

µ(T ) = µref
T 2/3

S+T
, with S = 110.4K, (2.7)

where the constant µref depends on the fluid parameters.
The Prandtl number Pr is taken equal to 0.72, the heat capacity ratio γ = 1.4, the

viscosity constant µref = 1.456×10−6 [kg m−1s−1], the bulk viscosity µb = 0[kg m−1s−1]
and the specific gas constant r = 287[m2K−1s−2].

The error associated with the modeling of the unresolved scales is called the projection
error. In this kind of calculation, the projection error is often associated with two other
errors: the description error and the discretization resolution error. The origin of the
first is the approximation of the partial derivatives of the continuous problem by their
discrete counterparts. While the second is associated with the contribution of missing
scales via the non-linear terms.

Therefore, the best LES approach possible is where the description error cancels the
discretization error. This is generally attempted using one of the two different families of
approaches: either we introduce a forcing term (the sub-grid scale model) in the equations
to cancel the resolution error, or we design the numerical schemes in such a way that the
discretization error cancels the resolution error.
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In some how the LES problem is often treated as an application of a low-pass convolu-
tion filter to Navier-Stokes equations. The properties of such a filter are first described in
the following, then applied to the compressible Navier - Stokes equations. A spatial-scale
filtering is introduced using the convolution product:

~ϕ=
∫
D
G(~x−~z;∆)~ϕ(~z)d3~z, (2.8)

where ~ϕ is any vector field, G the convolution filter kernel and ∆ the characteristic
cutoff length scale. The convolution filter kernel can be any filter function but is often
assimilated to a top-hat function. Typically, the filter function is an infinitely differen-
tiable function of bounded support in a bounded domain and normalized to ensure the
conservation of constants such that:

∫
D
G(~x−~z;∆)d3~z = 1, (2.9)

It should be recalled that the grid filter, designated by the overline notation, must
be distinguished from the test filter, which corresponds to an explicit filtering operation,
performed on the resolved field in order to compute the subgrid-scale model terms.

The spatial-scale filter (2.8) is applied to the Navier–Stokes equations, where ϕ̃= ρϕ/ϕ

is the Favre-averaging, ϕ′′ = ϕ− ϕ̃ the Favre-fluctuation and ϕ′ = ϕ−ϕ the Reynolds-
fluctuation:

∂ρ

∂t
+ ∂ρũj

∂xj
= 0, (Continuity)

∂ρũi
∂t

+ ∂ρũi ũj
∂xj

=− ∂p

∂xi
+ ∂τij
∂xj
−
∂ρu′′i u

′′
j

∂xj
, (Momentum)

∂ρ ẽ

∂t
+ ∂(ρ ẽ+p) ũj

∂xj
= ∂τij ũi

∂xj
− q̇j−

∂ρe′′u′′j
∂xj

−
∂p′u′j
∂xj

−
∂τ ′ij u

′
i

∂xj
, (Energy)

q̇j =−λ ∂T
∂xj
−λ′∂T

′

∂xj
. (2.10)

The subgrid viscous term τij can also be split into a filtered part and a fluctuation
part. The subgrid-scale stress tensor τt=ρu′′i u′′j and the subgrid-scale Reynolds heat flux
λ′ ∂T

′
∂xj

which comes from the filtered equations, are known as the SubGrid-Scale terms
(or SGS). Some of the SGS terms are negligible compared to others. For instance, the
subgrid-scale pressure terms and viscous terms are known to be relatively small compared
to the other terms.

The most common approach is to model those terms by an eddy viscosity approach
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such as:

τt = 2µtSij +µ′′t δij
∂uk
∂xk

, (2.11)

λ′
∂T ′

∂xj
= λt

∂T

∂xj
= µtCp

Prt

∂T

∂xj
. (2.12)

2.1.1 Subgrid-scale model

The resolution of the full set of filtered equations cannot be achieved unless the subgrid-
scale terms are modeled and related to the computed variables. Among the multiple
models to compute the subgrid-scale viscosity existing in literature, the WALE model,
presented in this section, has been selected to be used in this work thanks to its ability
to simulate wall-bounded flow. The WALE model Nicoud & Ducros (1999) is based
on the square of the velocity gradient tensor, its spatial operator consists of mixing
both the local strain and the rotation rates. Thus all the turbulence structures relevant
for the kinetic energy dissipation are detected by the model. The model does not use
any constant adjustment or damping function since the eddy-viscosity goes naturally to
zero in the vicinity of a wall. In the case of pure shear, the model produces zero eddy
viscosity. Moreover, it is invariant to any coordinate translation or rotation and only local
information are needed so that it is well-suited for LES in complex geometries Nicoud &
Ducros (1999).

The WALE model has been developed to handle wall-bounded flow and transitional
problem. The form of the eddy viscosity term can be expressed as follows:

µt = ρ(Cm∆)2 (Sdij Sdij)3/2

(Sij Sij)5/2 + (Sdij Sdij)3/2 , (2.13)

Sdij = 1
2

(∂ui
∂xj

)2
+
(
∂uj
∂xi

)2− 1
3δij

(
∂uk
∂xk

)2
, (2.14)

where Cm =
√

10.6Cs is a model constant, proportional to the LES Smagorinsky’s con-
stant Cs defined by Cs = 1

π

(
3CK

2

)−5/4
and Sdij an operator based on the traceless sym-

metric part of the square of the velocity gradient. In a shear layer, the term Sdij S
d
ij tends

to zero near the wall to conserve the property of wall-bounded flow. The WALE model
has the advantage of reproducing the asymptotic scaling in O(y3) of the eddy viscosity
near the wall.
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2.1.2 Generalized curvilinear coordinates

In order to succeed in simulations with fairly complex geometries, it is necessary to
deploy the necessary tools which justifies the choice of the WALE model. However,
that is not enough because the Cartesian coordinates have trouble marrying complex
and arbitrary forms. This is why the present code used in this study is written in
generalized curvilinear coordinates. The generalized curvilinear coordinates are obtained
through the transformations from computational space to physical space. In general, the
transformation from physical space to computational space is not known a priori and the
physical mesh is directly described by the x, y and z space coordinates. It is common,
then, to use the inverse of the metrics, which represent the transformation from physical
to computational space, by numerically deriving the physical mesh coordinates (ξ, η and
ζ) through a finite difference scheme. More details can be found in Piquet (2017). To get
the LES in the transformed system, chain rule expansions are used:

(
∂
∂x

∂
∂y

∂
∂z

)T
= J

(
∂
∂ξ

∂
∂η

∂
∂ζ

)T
. (2.15)

where J = ∂(ξ,η,ζ)/∂(x,y,z) is the Jacobian matrix of the transformation. The equations
are then written in the conservative form as follows:

∂ρ

∂t
+ ∂ρŨj

∂ξj
= 0 (Continuity)

J∂ρũi
∂t

+ ∂ρũi Ũj
∂ξj

=−∂Jξji p
∂ξj

+
∂Jξkj τij
∂ξk

−
∂Jξkj τ ′ij
∂ξk

(Momentum)

J∂ρ ẽ
∂t

+ ∂(ρ ẽ+p) Ũj
∂ξj

= ∂Jξki τij ũj
∂ξk

−
∂Jξkj q̇j
∂ξk

−
∂Jξki τ ′ij ũj

∂ξk
(Energy)

τij = µ(T )
[(
ξli
∂ũj
∂ξl

+ ξlj
∂ũi
∂ξl

)
− 2

3δij ξ
l
m
∂Ũm
∂ξl

]
(2.17)

q̇j =−λ(T )ξlj
∂T

∂ξl
, (2.18)

where ξi = (ξ,η,ζ) for consistency and U = Jξjuj is called the contravariant velocity
which can be considered as the projection of the velocity components on the computa-
tional space. The subgrid shear-stress tensor, τ ′ij , and the subgrid heat-diffusion flux,
q̇j , are modeled according to the eddy-viscosity hypothesis Lilly (1992).
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2.2 Numerical method

The code used for this study is based on an existing in-house solver developed at the CO-
RIA laboratory in Rouen (Hadjadj & Kudryavtsev 2005, Chaudhuri, Hadjadj, Chinnayya
& Palerm 2011). The code, called ChocWaves (Compressible High-Order Code using
Weno AdaptatiVE Stencils), is a Cartesian explicit Navier–Stokes solver with WENO /
Central scheme for space discretization and compact RK3 for time integration. It uses the
Immersed Boundary Method (IBM) (Chaudhuri, Hadjadj & Chinnayya (2011), Piquet
et al. (2016)) to simulate compressible turbulent flows over complex geometries (Chaud-
huri et al. (2012), Chaudhuri & Hadjadj (2016), Hadjadj (2012), Shadloo & Hadjadj
(2017)).

The version of the code used for this work was developed by Piquet (2017). It is a
curvilinear explicit finite-difference Navier–Stokes solver with WCNS / Central / Hybrid
scheme for space discretization and RK4 for time integration. The solver uses the HDF5
library for IO and the MPI library for parallelization. Its scalability been tested on more
than 20k CPUs and shows a very good performance even for a large number of nodes
(see Piquet (2017)).

2.2.1 Spatial scheme

In supersonic flows, the use of sufficiently robust numerical schemes in regions of strong
gradients or close to a discontinuity (such as a shock wave) as well as in regions of
turbulence, is essential. The WENO (Weighted Essentially Non-Oscillatory) schemes
are based on the numerical flux construction, at a high order, from a convex linear
combination reconstructed on a weighting of lower-order polynomials (stencils). The
weighting of the stencils aims to maximize the accuracy of the diagram in the so-called
smooth regions (without gradients), while canceling the effect of the adaptive stencil near
the discontinuity.

Nevertheless, since the present solver is written in the general curvilinear coordinates,
it is worth remembering that the spatial scheme may deal with issues of freestream
preservation and metric cancelation. These errors arising from the finite-difference dis-
cretization of the terms in strong-conservative form can lead to unphysical behavior of
the flow and numerical instability.

The WENO (Weighted Essentially NonOscillatory) scheme applies a weighted averag-
ing procedure directly to the flux. It is then impossible both to evaluate the discretization
scheme used on the metrics and to force the freestream preservation. Thus, the WENO
scheme can only be used in the non-conservative form of the Euler equations which do
not impose global conservation on the set of equations. Deng & Zhang (2000) devel-
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oped a fifth-order Weighted Compact Nonlinear scheme (WCNS) where the conservative
variables are interpolated using a weighted averaging procedure similar to the WENO
scheme. In this formulation, the freestream condition can be imposed because the met-
rics are evaluated by the same numerical finite-difference scheme used in the WCNS.
Nonomura et al. (2010) compared WENO and WNCS schemes on curvilinear grid and
proved that the WCNS imposes the freestream preservation. Nonomura & Fujii (2013)
developed a compact form of the WCNS scheme to reduce the stencil and found a new
technique for freestream preservation of the WENO scheme (Nonomura et al. 2015).

2.2.1.1 Convective terms

Different methodologies are used to discretize the convective terms, whether by a local
conservative central difference scheme, by a WCNS scheme or by a hybrid scheme.
Conservative central difference scheme

Following the work of Pirozzoli (2010), the standard central difference formulas can
be applied to the convective term by using a split form which improves the stability and
the energy preservation properties. The convective term is discretized by a conservative
finite-difference scheme:

∂ϕ

∂ξ
= Fi+1/2−Fi−1/2, (2.19)

where Fi+1/2 is the numerical flux.
The 6th-order form of the central finite-difference scheme is used to match the WCNS’s

order (5th-order). The numerical flux is computed using a generalized curvilinear Euler
equation by the following (for the x-component):

Fi+1/2 = 2
6∑
l=1

al

l−1∑
m=0

(f,g,h)j−m,l, (2.20)

(f,g,h)j,l = 1
8(fj +fj+l)(gj +gj+l)(hj +hj+l), (2.21)

where a1 = 3/4, a2 = a3 = −3/20, a4 = a5 = a6 = 1/60 and (f,g,h) represents variables
used in the curvilinear Euler equation ((f,g,h) = (ρ,~u, ~U)).

WCNS scheme
Following the work of both Deng & Zhang (2000) and Nonomura et al. (2010), the 5th-
order WCNS is used to discretize the generalized curvilinear coordinates of the Euler’s
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equations as follows:

J
∂ ~Q

∂t
+

3∑
j=1

∂ ~Ej
∂ξj

= 0, (2.22)

where ~Q is the conservative vector ~Q= (ρ, ρu, ρv, ρw, ρe)t and ~Ej is convective terms
~Ej = (ρUj , ρuUj +J ξjx p, ρvUj +J ξjy p, ρwUj +J ξjz p, (ρe+p)Uj)t.

The spatial derivative ∂E/∂ξj can be evaluated by a sixth-order midpoint to
computational-node difference scheme,

∂E

∂ξ
= 75

64
(
EWCNS
i+1/2 − E

WCNS
i−1/2

)
− 25

384
(
EWCNS
i+3/2 − E

WCNS
i−3/2

)
+ 3

640
(
EWCNS
i+5/2 − E

WCNS
i−5/2

)
,

(2.23)

where EWCNS
i+1/2 is the WCNS numerical flux calculated at a midpoint.

The WCNS weighted averaging procedure is applied to the characteristic variables
Wi, to find the left and right interpolated fluxes, QWCNS,L

i+1/2 and QWCNS,R
i+1/2 , respectively.

The transformation from conservative to primitive variables is detailed in the following
equations:

J
∂Q

∂t
+Aj

∂Q

∂ξj
= 0, (2.24)

Aj = ∂Ej
∂Q

=RΛL, (2.25)

where A is the flux Jacobian, L the left eigenvector, R the right eigenvector and Λ the
diagonal matrix with the eigenvalues of A. By definition, L = R−1. The transformation
from conservative to characteristic is defined by the following equation:

Wi,m = Li?,mQi, (2.26)

where i? denotes the Roe’s averaging procedure (Roe 1981) at the ith grid point bounded
by (i, i+ 1) and m the mth characteristic variable.

Finally, the left and the right conservative variables can be reconstructed from char-
acteristic variables by:

QWCNS,L
i+1/2 =

∑
m
WWCNS,L
i+1/2,m Ri?,m. (2.27)

The WCNS numerical flux EWCNS
i+1/2 from equation 2.23 can be reconstructed by the

Roe’s flux difference splitting Roe (1981):

EWCNS
i+1/2 = 1

2
(
E?
(
QWCNS,L
i+1/2

)
+ E?

(
QWCNS,R
i+1/2

)
−Ri? Λi?Li?

(
QWCNS,R
i+1/2 −QWCNS,L

i+1/2

))
,

(2.28)
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where i? denotes the Roe’s averaging procedure at the ith grid point bounded by (L,R).
The left and right fluxes E

(
Q

WCNS,L/R
i+1/2

)
are computed using the interpolated metrics

from the following sixth-order Lagrange interpolation scheme:

(2.29)
(Jξx)WCNS

i+1/2 = 75
128 ((Jξx)i + (Jξx)i+1)

− 25
256 ((Jξx)i−1 + (Jξx)i+2) + 3

256 ((Jξx)i−2 + (Jξx)i+3) .

In order to preserve the freestream, the metrics are discretized by the same
computational-node to midpoint interpolation scheme (Eq. 2.23) and the same midpoint
interpolation scheme (Eq. 2.29).

Hybrid scheme
A hybrid scheme developed by Piquet (2017) is used to deal with the strong dissipation

of the WCNS / WENO scheme when capturing the shock. The hybrid scheme acts as
a switch between the WCNS scheme and the centered difference scheme. Thus, the
numerical dissipation of the WCNS scheme can be confined in the shocked regions and
the centered difference can be applied in the free shock region to ensure accuracy and
stability. The hybrid scheme is defined by:

∂ϕ

∂x

Hybrid
= (1−Θ)∂ϕ

∂x

Centered
+ Θ∂ϕ

∂x

WCNS
. (2.30)

However, the presence of a high gradient of pressure, velocity or temperature, in the
shock regions, can affect the stability of the centered scheme. For that reason, Ducros
et al. (1999) shock sensor θ is used, in the present code, as a switch Θ equal to 0 or 1
where θ0 is the limiter value:

θ = (~∇·~u)2

(~∇·~u)2 + (~∇×~u)2 + ε
, (2.31)

where ε= 10−30 is a positive real number chosen to prevent numerical divergence.


Θ = 1, if θ > θ0

0, otherwise
(2.32)

2.2.1.2 Viscous terms

The viscous terms in the curvilinear Navier-Stokes have been discretized by a 4th-order
central scheme. To improve the stability of the code, each derivative is separated into
two derivatives by a Laplacian operator. As an example, the first viscous term written
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with a Laplacian operator, from equation 2.3, gives:

∂ (µξxJξx) ∂u
∂ξ

∂ξ
= ∂ (µξxJξx)

∂ξ

∂u

∂ξ
+µξxJξx

∂2u

∂ξ2 . (2.33)

Equations 2.34 and 2.35 show the 4th-order central scheme for the first derivative and
the second derivatives, respectively.

∂ϕ

∂ξ
= −ϕi+2 + 8(ϕi+1−ϕi−1) +ϕi−2

12 , (2.34)

∂2ϕ

∂ξ2 = −(ϕi+2 +ϕi−2) + 16(ϕi+1 +ϕi−1)−10ϕi
12 . (2.35)

Because of the high number of viscous terms to be computed, a special care has been
taken with the viscous subroutine in term of optimization. The averaged consumption of
this routine is around 40% per iteration.

2.2.2 Temporal scheme

The temporal integration schemes implemented in the present solver are mainly explicit
algorithms of Runge-Kutta type. These diagrams act in concordance with the restriction
on the time increment which must be sufficiently small, taking into account the unsteady
nature of the flows studied. For the present study, the governing equations are advanced
in time by an explicit 4th-order Runge-Kutta (RK4) method, used by many for its broad
stability properties. The scheme uses four sub-integrations and two temporary arrays. A
low-storage method has been developed by Williamson (1980) to remove one temporary
array. The RK4 is described as follows, where ∆t is the time step:

∂F (t,~x)
∂t

=Q(t,~x), (2.36)
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•Fn+1/4 = Fn+ ∆t
6 Q(Fn)

F ?1 = Fn+ ∆t
2 Q(Fn)

•Fn+2/4 = Fn+1/4 + ∆t
3 Q(F ?1 )

F ?2 = Fn+ ∆t
2 Q(F ?1 )

•Fn+3/4 = Fn+2/4 + ∆t
3 Q(F ?2 )

F ?3 = Fn+ ∆tQ(F ?2 )

•Fn+1 = Fn+3/4 + ∆t
6 Q(F ?3 )

(2.37)

The drawback of time-explicit schemes comes from the constraint applied on the time
step for stability purpose Cinnella & Cedric (2015). To avoid the divergence of the
temporal scheme, two parameters have been used to compute the time step ∆t. From
the von Neumann analysis, one can find the Courant-Friedrichs-Lewy condition on the
convection terms and the Fourier condition on the viscous terms.

For the 3D curvilinear equations, the minimal physical time step ∆t is computed by:

C∆t = 1
J

∑
i

|uξi|+
∑
i

|vηi|+
∑
i

|wζi|+c
3∑
i=1

 3∑
j=1

∣∣∣ξji ∣∣∣
+ 1

γFoJ

(
µ

Pr
+ µt
Prt

) 3∑
i=1

∣∣∣∣ξii2∣∣∣∣
 ,

(2.38)

∆t= min
(

CFL
C∆t

)
, (2.39)

where CFL is a parameter of stability depending on the numerical schemes used and Fo
the critical Fourier number.

2.3 Code validation

In this section, four different test cases will be presented as the basis for the code vali-
dation, together with analytical and numerical/experimental results from earlier studies.
The main objective is to gain sufficient confidence with the numerical approach and to
justify the choices of grid methodology, to be used in the final nozzle flow simulations.
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Figure 2.1: Grid of the vortex test case

2.3.1 Vortex advection

The first test case consists in the advection of a circular, homentropic, zero circulation
vortex. This test is widely used in literature (Visbal & Gaitonde 2002, Kawai & Lele
2008). A curvilinear grid has been generated through the analytical function from Kawai
& Lele (2008) (figure 2.1).
The vortex is initialized using the same parameters as Pirozzoli (2011). The number of
grid points is set to Nξ = 81 and Nη = 45. Periodic boundary conditions are applied at the
left and the right sides. The vortex and the free-steam Mach numbers are set to Mv = 0.5
and M∞ = 0.5, respectively. This is equivalent to a strongly compressible vortex.

The simulations are run for fifteen flow through time. Figure 2.2 shows a comparison
between different orders of accuracy of the centered scheme presented in sec 2.2.1. The
numerical solutions for the 2th- and the 4th-order centered schemes exhibit an oscillatory
behavior while 6th- and 8th-order centered schemes highlight better results.

Hybrid scheme has also been applied to this test case. Since the hybrid sensor was
unable to activate the WENO scheme due to the smooth solution, the result was com-
parable to the centered solution. This lead to conclude that the implementation of the
Euler equations in the code is properly done as observed by the accurate results from
high-order schemes. For the next simulations, the 6th-order centered scheme is used to
discretize the convective terms, unless otherwise specified.
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Figure 2.2: Comparison of centered schemes with different order of accuracy; : 2th
order, : 4th order, : 6th order, : 8th order, ·: Exact solution.

2.3.1.1 Cylindrical grid

The implementation of the curvilinear terms, to be used within the present code, ought
to be validated. A simple test case which efficiently tests this is the advection of a zero
circulation homentropic vortex. At the center, the skewness angle of the cells becomes
critical and boundary conditions are difficult to apply. Periodicity along the circum-
ference is not possible and thus, the zero-gradient boundary condition is applied along
the circumference. Periodicity is used in the θ-direction. The grid (figure 2.3) has been
generated using:

x(ξ,η) =R
ξ

Nξ
cos(2π η

Nη
), (2.40)

y(ξ,η) =R
ξ

Nξ
sin(2π η

Nη
), (2.41)

where R is the radius of the external BC.
The flow is initialized with the same parameters as the first test. The vortex is

advected from left to right passing through the center of the mesh (figure 2.4).
The pressure field distribution at different time step is shown in figure 2.3, where the

normalized time is giving by t? = tu∞/rv with rv and u∞ are the cylinder radius and the
free stream velocity respectively. The x-axis is shifted for the sake of comparison, where
x′ = x− tu∞+ 0.6. The final solution shows good accuracy compared to the initial flow
field. The singularity at the axis in finite-differences solver does not lead to a spurious
solution of the flow as it would do in finite-volumes code due to the infinite flux at the
axis. Nonetheless, the singularity can cause spurious oscillations due to the small volume
at the center.
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2.3.2 Compressible flow over a circular cylinder

The description of this test case can be found in Burbeau & Sagaut (2002). A circular
cylinder of radius R is placed in a viscous compressible flow at Mach 2 and a Reynolds
number of Re = 100. A detached curved shock is formed ahead of this cylinder, while a
viscous wake is established downstream. This test case can validate the implementation
of the 2D viscous terms in generalized curvilinear coordinates. Burbeau et al. Burbeau &
Sagaut (2002) used a bidimensional unstructured meshes with high-order discontinuous
Galerkin method. The curvilinear grid (figure 2.5) used for this simulation has been
generated by:

x(ξ,η) =
(
R+ (Ra−R)

(
1 + tanh(rv(ξ/Nξ−1))/tanh(rv)

))
cos(2π η

Nη
), (2.42)

y(ξ,η) =
(
R+ (Ra−R)

(
1 + tanh(rv(ξ/Nξ−1))/tanh(rv)

))
sin(2π η

Nη
), (2.43)

where Ra = 25R is the external radius and rv = 3.0 the stretching parameter.
A stretching function has been used along r-direction to account for the viscous effect

along the cylinder wall. The number of grid points is set to Nξ = 128 and Nη = 256,
giving 32,768 cells. The boundary layer is correctly resolved in our case compared to the
unstructured mesh of Burbeau (N = 7,478). The WCNS scheme is used to account for
the presence of shock waves. Adiabatic no-slip condition is applied along the external
cylinder.

The obtained results are quite comparable to Burbeau & Sagaut (2002). The bow
shock is well captured and gives the same angle of deflection. The solution of Burbeau
& Sagaut (2002) was made to show the robustness of their Galerking methods applied
to unstructured meshes. Figure 2.6 shows a steady-state solution which is highlighted by
the Mach number contours. Compared to the Burbeau’s solution, the current one is less
noisy. Both the boundary layer and the shock wave are well captured.

2.3.3 Poiseuille flow

Originally, Poiseuille flow describes a laminar flow of a viscous liquid in a cylindrical pipe,
it has been widely investigated (Don et al. 2018, Schlichting & Gersten 2003). In this
test case, the Poiseuille flow from Schlichting & Gersten (2003) is used as a test case
for further validation. The analytical solution is used as a reference solution. The fully
developed laminar boundary layer solution is obtained for the case of steady flow in a
channel with two parallel plates where the pressure gradient ( dpdx) is set to:
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Figure 2.7: Grid representation for Mesh 1 (left) and Mesh 2 (right) showing every 4th
grid-line

dp

dx
= µ

d2u

dy2 . (2.44)

In this simulation, the pressure gradient is imposed by an external force, F = dp/dx.
Using the boundary condition, u= 0, one can find the following velocity profile:

u(y) =− 1
2µ

dp

dx

(
h2−y2

)
=− F2µ

(
h2−y2

)
, (2.45)

where Ly = 2h is the height of the channel.
Both velocity and temperature profiles are summarized as follows:

u(y) = um

(
1− y

2

h2

)
, (2.46)

T (y) = Tw + (Tm−Tw)
(

1− y
4

h4

)
, (2.47)

where um = −F h
2

2µ and Tm = Tw + µu2
m

3λ are the velocity and the temperature at the
centre of the channel, respectively.

In order to activate the curvilinear terms of the code, two meshes are computed
(figure 2.7). Mesh 1 is computed in the Cartesian coordinates and mesh 2 is inclined by
an angle α following Eqs. 2.48 and 2.49. The number of grid points is set to Nξ = 20 and
Nη = 128. The streamwise dimension is not important in this test case since the solution
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Figure 2.8: Streamwise velocity (left) and temperature (right) profiles; : Poiseuille
analytical solution, •: Mesh 1, ×: Mesh 2.

is fully developed (one dimensional). Periodic boundary condition and isothermal no-slip
condition are applied in the streamwise and spanwise directions, respectively.

x(ξ,η) = cos(α)(ξ/NξLx−η/Nη 2h), (2.48)

y(ξ,η) = sin(α)(ξ/NξLx+η/Nη 2h). (2.49)

The flow is initialized with a uniform flow field at a velocity um and a temperature
Tw. The results from figure 2.8 are showing and excellent agreement is obtained between
the current simulation and the analytical solution in terms of velocity and temperature.

2.3.4 Turbulent channel flow at Reτ = 220

For further validation and verification of the code, a turbulent channel flow at a friction
Reynolds number of 220 is performed by means of direct numerical simulation considering
isothermal walls. This problem is one of the classical test case of turbulent flow due to
the simplicity of the geometry and the boundary conditions. Turbulent statistics can be
explored to study near-wall turbulence behavior, such as first- (φ′ = φ−〈φ〉) or second-
order turbulent statistics (〈φ′iφ′j〉).

2.3.4.1 Test case description

As in Foysi et al. (2004), the flow is periodic in both x- (streamwise) and z- (spanwise)
directions. Figure 2.9 shows the actual configuration and table 2.1 summarizes the grid
and the geometry parameters.

This simulation uses a centred 6th-order scheme for convective terms and the 4th-order
scheme for the viscous terms. The grid is regularly spaced in the x- and z-direction and
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Figure 2.9: Configuration of the channel flow

Lx Ly Lz Nx Ny Nz h (mm)
4πh 2h 4/3πh 192 150 128 6.85

Table 2.1: Channel flow domain

the wall-normal direction grid is stretched in order to capture the viscous sublayer. A grid
sensitivity study has been conducted by Foysi et al. (2004), resulting in the parameters
shown in table 2.1. Flow properties are summarized in table 2.2.

The fully developed boundary layer is supersonic and the Mach number is set to 1.5.
The initial averaged velocity field follows a fully developed profile extracted from Foysi
et al. (2004). The Klein method has been used to initiate the turbulent fluctuations.
The Reynolds number, the friction Reynolds number, the bulk velocity and averaged
parameters are calculated as: Re = ρubh

µ
, Reτ = ρw uτ h

µw
, ub = 1

ρmh

∫ h
0 ρudy and ρm =

1
h

∫ h
0 ρdy respectively.
Since the flow is periodic in the streamwise direction, the pressure drops because of the

wall friction. To account for the pressure drop, additional terms in the momentum and
energy equations are used as in (Foysi et al. 2004, Taieb 2010). These terms are applied
to counteract the friction forces acting along the wall. Eq 2.50 shows the formulation of
this term added to the Momentum and Energy equations.

fx =

(
〈σ12〉

∣∣∣
y=0
− 〈σ12〉

∣∣∣
y=2h

)
2hρm

= 〈τw〉
hρm

. (2.50)

Re Reτ uτ (m/s) M ub(m/s) Tw(K)
3000 220 35 1.5 680 500

Table 2.2: Channel flow properties
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2.3.4.2 Statistical results

All the statistics have been averaged over approximately 150 non-dimensional time unit,
t? = tub/Lx. Several probes are located along the spanwise direction to collect data for
scatter plots. Figure 2.10 provides a comparison of the averaged-streamwise velocity
profile compared to the DNS of Foysi et al. (2004). Overall, the results are in good
agreement. Figure 2.11 is a similar comparison for temperature, pressure and density to
the DNS of Foysi et al. (2004). The three parameters are in a perfect good agreement
with the previous DNS.
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Figure 2.10: Averaged velocity profile along the wall-normal direction; •: Foysi et al.
(2004).
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Figure 2.11: Averaged temperature ( ), pressure ( ) and density ( ) profile along the
wall-normal direction; •: Foysi et al. (2004).

The law of the wall, represented in figure 2.12 with normalized velocity based on
van-Driest formulation (Eq. 2.52), denotes a satisfactory agreement between the present
results and the DNS of Foysi et al. (2004). The wall-unit normalization is based on
local-wall quantities. The wall-unit length y+ is given by:

y+ = ρw uτ y

µw
, (2.51)
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at t? ≈ 150 for different y+

where uτ =
√
τw/ρw is the friction velocity.

u+
V D =

∫ u+

0

(
ρ

ρw

)
du+ (2.52)

2.3.4.3 Turbulence structure

Figure 2.13 shows the fluctuating velocity field at different position in the wall-normal
direction. Those streaks, predicted by Coleman et al. (1995), can be seen in the buffer
layer of the boundary layer, where the viscous sublayer is connected to the log-law layer.

At y+ ∼ 10, the velocity fluctuations are maximum (figure 2.14) and the streaks are
clearly visible. Vortices are convected by the flow, creating the streak motions. The
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Figure 2.14: Reynolds stress tensor along y-direction along the wall-normal direction; :
〈ρ〉 ũ′′u′′/τw, : 〈ρ〉 ṽ′′v′′/τw, : 〈ρ〉 w̃′′w′′/τw, •: Foysi et al. (2004).

red values of figure 2.13 represent the ‘ejection’ process and the blue ones, the ‘sweep’
process. In the viscous sublayer (y+ < 5), molecular diffusion is dominant compared to
the convection (Re < 1) and thus, the flow is dominated by the viscosity, creating hence
a vorticity component in the velocity flowfield. In the streamwise direction, the flow
is separated into two regions: a low-speed region where ∂u′/∂y > 0 and a high-speed
region where ∂u′/∂y < 0. The ‘streaks’ can be seen as a rolling motion where particles
are ejected from the viscous sublayer to the outer layers in the low speed region and are
swept from the outer layer to the high-speed region.

The Reynolds stress along the wall-normal direction is plotted in figure 2.14. The
results show a good agreement of our DNS with the data of Foysi et al. (2004), which
gives confidence on our newly developed code.

2.4 Test case description

The flow considered in this work corresponds to the experiment performed by Pa-
pamoschou & Johnson (2006). It consists in two flexible plates forming the upper and
lower walls of a planar nozzle. A diagram for their experimental schematic is shown in
figure 2.15. The configuration of this experiment is well described in both Olson & Lele
(2011) and Piquet (2017). The experiments of Papamoschou & Johnson (2006) quanti-
fied integral quantities, such as shock location, mean pressure profiles and mean velocity
profiles. Spectra of the fluctuating pressure were calculated near the walls and in the sep-
arated shear layer. it reveals a large asymmetry in the two-dimensional shock structure
as well as in the region of separation downstream of the nozzle. Large scale unsteadiness
of the shock wave was also present. They found that the instability of the shock wave
position and the subsequent separated shear layer destabilized the exhaust jet exterior to
the nozzle and led to enhanced mixing. The calculation attempts to maintain the same
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Figure 2.15: Schematic of the Experimental setup.

Ht (mm) Ld (mm) NPR ε
17.8 117 [1.45 : 1.9] [1.4 : 1.7]

Table 2.3: The geometrical parameters of Papamoschou et al. ’s planar nozzle.

geometric and physical characteristics of the experiment, such as the ratio of the nozzle
throat height to boundary layer thickness (δ/Ht) , but exceeds the observed experimental
ratio by a factor of 2. While the experimental value of (δ/Ht) is approximately 1/20,
the present work value is about 1/10, even so, the large-scale features of the flow, such
as shock location and separation point are minimally affected by the modeled boundary
layer as shown by Olson & Lele (2011) and Piquet (2017). The nozzle throat-height based
Reynolds number is of Re= 9.104.

As for the problem setup, for all the cases treated in this work, the mesh is structured
and the incoming flow is generated using a synthetic turbulent boundary-layer inlet based
on the method of Xie & Castro (2008). To ensure a fully developed boundary layer at the
nozzle throat, the computational inlet is shifted upstream using a buffer zone. The flow in
the spanwise direction is assumed to be homogeneous with periodic boundary conditions.
The outlet boundary conditions are treated as non-reflective using the NSCBC method
from Poinsot & Lelef (1992) in conjunction with an external buffer zone with a stretched
grid to further damp the reflected waves. Unless otherwise stated, both upper and lower
walls are considered as adiabatic with no-slip boundary conditions.
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Highlights

• A wall-model based on simplified Thin-Boundary-Layer Equations (TBLE) for
large-eddy simulations is designed and applied to non-equilibrium turbulent
flows with boundary-layer separation.

• A-priori as well as a-posteriori tests are performed on a supersonic boundary
layer over a flat plate with and without pressure gradient.

• The prediction capability of the wall model, concerning the mean velocities
and Reynolds stresses, is satisfactory, even on relatively coarse LES grids.

• Applied to supersonic nozzle flow with boundary layer separation, the model
correctly reproduces the general flow trends. Particularly interesting when
varying the nozzle-pressure ratio, the boundary layer separation exhibits dif-
ferent flow patterns varying from symmetric to asymmetric flow configura-
tions, confirming earlier experimental findings.
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Abstract

The two-layer modeling approach has been identified as a promising wall modeling strategy
for large-eddy simulation (LES) in the past ten years. This paper concerns the use of
a wall model based on Thin boundary Layer Equations (TBLE) for high speed flows.
The model, used in this study, is a combination of the models from Kawai & Larsson
(2013) and from Duprat et al. (2011). It is destined for non-equilibrium flows and is
able to simulate high-Reynolds number boundary layer subjected to pressure gradient.
The modeling methodology is efficiently implemented into a compressible LES solver and
validated against Direct Numerical Simulations (DNS) of a spatially evolving compressible
boundary layer subjected to pressure gradient. The results show a good agreement with the
DNS. The velocity fluctuations are found to match the DNS profiles even with an adverse
pressure gradient, especially in the outer layer. The application of the wall model to more
complex flows, such as the flow separation in an over-expanded planar nozzle, brings
clear evidence of the existence of broadband and energetically-significant low frequency
oscillations (LFO) in the vicinity of the separation shock.

3.1 Introduction

Full numerical solutions of turbulent boundary layers (BL), at high-Reynolds number, is
prohibitive due to the excessive cost of computations, even with the current computation
power. To overcome this problem, large-eddy simulation (LES) can be used to reduce
the computational resources. For wall-bounded flows, very refined grids are needed close
to the wall and the resources are strongly dependent on the Reynolds number, Re. As
a result, at very high Re, the cost of the wall-resolved LES becomes prohibitive as ex-
plained Schumann (1975). Consequently, it is common to use a near-wall modelling in
order to decrease the grid point near the wall and thus the time step too. Various wall-
modeling approaches have been proposed in the literature (Spalding 1961, Schumann
1975, Grötzbach 1987, Cabot & Moin 2000, Piomelli & Balaras 2002). The objective is
to accurately predict the skin friction and the heat flux at the wall. These approaches can
generally be classified into two categories Kawai & Larsson (2013): (i) modeling the wall
shear stress, (ii) switching to a Reynolds-averaged Navier-Stokes (RANS) description in
the inner layer which include hybrid LES/RANS and detached eddy simulation (DES).
A third category for wall modeling, based on the so-called P-function, can be found in
the literature. The main concept of this approach is to relate the total flux of momen-
tum to the total flux of heat (Irrenfried & Steiner 2017, Steiner & Irrenfried 2019). It
concerns mainly RANS-type simulations and it has been well established for describing
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the logarithmic temperature profile inside the inertial sub-range.
The wall-modeling approach proposed in this study is suitable for non-equilibrium

turbulent boundary layer. It is based on the first approach in which the LES resolves
only the outer layer, giving the instantaneous velocity field. The thin boundary layer
equations (TBLE), that include the convection and pressure-gradient terms, are, then,
solved providing the instantaneous-modeled wall shear stress.

The effects of pressure gradient on the wall stress models have been studied by Man-
hart et al. (2008). Despite the fact that their model was adapted for streamwise pressure
gradient, they neglected the Reynolds stresses effects, which limits the range of validity
of the model to the viscous sublayer, i.e. y+ < 5. Later on, Duprat et al. (2011) have
extended the work of Manhart et al. (2008) by including the inertial layer, i.e. y < 0.1 δ.
They proposed an analytical formulation of the streamwise velocity taking into account
both streamwise pressure gradient and Reynolds stresses effects of the buffer layer. Their
model was validated using a periodic channel flow and a periodic arrangement of hills
subjected to both favorable and adverse pressure gradients. Good results are obtained for
the first-order statistics even when the first near-wall point was located in the logarithmic
region. Also, flow separation phenomenon was reproduced even on coarse grid. However,
the module was formulated for incompressible flows.

For compressible flows several models are proposed. For instance, Wang & Moin
(2002) have proposed a similar method where they added the energy equation to the model
in order to compute the temperature profile for compressible flow. In Kawai & Larsson
(2012, 2013) models, two equations (TBLE) are solved neglecting both pressure gradient
and convective terms, thus assuming that the boundary layer, below the exchanging
height of the wall model, is in an equilibrium state. It is believed that the lack of these
terms in the TBLE does not imply that the pressure gradients cannot be captured by the
coupled Wall-Modeled LES (WM-LES).

The present wall-model is designed to be able to reproduce phenomena that occur
in non-equilibrium flows such as supersonic nozzle flows, In particular, the separation of
the boundary layer as well as the low-frequency phenomena resulting from the movement
of the shock system. Taking advantage of the efficiency of the Kawai & Larsson (2013)
model, we introduced the pressure-gradient term following Duprat et al. (2011) model.
The wall model is being included, in an in-house curvilinear solver called ChocWaves-C
(Compressible High-Order Code using Weno AdaptatiVE Stencils written in Curvilinear
coordinates) Piquet et al. (2019), Sharma et al. (2019).

In this study, we present the working methodology, in particular the way in which
the model is composed. We start with the qualification of different parameters for equa-
tion 3.9 through multiple simulations of a flat plate by comparing with previous DNS.
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Afterward, a very long WM-LES of a supersonic nozzle-flow is performed to demonstrate
that the wall modeling is able to capture the unsteadiness of the shock wave motion,
while requiring far fewer grid points. The present work is organized as follows. The
next section introduces the governing equations followed by a complete description of
the wall-modeling methodology. Then, a sequence of DNS tests are presented, followed
by the validation of the wall model with discussion. The examination of the wall model
through nozzle flows is introduced afterwards. Finally, a summarizing conclusion ends
the present study.

3.2 Governing equations and numerical methodol-
ogy

Three-dimensional Navier-Stokes equations are solved using filtered compressible equa-
tions given by:

∂Q
∂t

+
3∑
i=1

∂φi
∂xi

+
3∑
i=1

∂qi
∂xi

= 0 (3.1)

with Q = {ρ̄ ρ̄ũi ρ̄Ĕ}t, (i = 1,2,3), is the vector of the filtered-conservative variables
and φi = {ρ̄ũi (ρ̄ũiũj + p̄) (ρ̄Ĕũi+ ũj p̄)}t,
qi = {0 (−σ̆ij + τij) (−ŭiσij + q̆j + ũiτij +Qj)}t are the advective and viscous fluxes in
the jth coordinate direction, respectively.

ρ̄, ũi, p̄ and T̆ are the filtered density, velocity, pressure and temperature, respectively.
The ‘breve’-symbol (̆) indicates that the quantity is based on primitive filtered variables.
Thus, Ĕ refers to the resolved total energy. The resolved viscous stress tensor, σ̆ij , and the
heat flux, q̆j are defined as σ̆ij = 2µ(T̆ )(S̃ij−∂kũkδij/3), and q̆j =−λ(T̆ )∂jT̆ respectively,
with µ(T̆ ) and λ(T̆ ) are the viscosity and the thermal conductivity corresponding to the
filtered temperature T̆ and S̃ij = (∂j ũi+∂iũj)/2. The low-pass filter procedure generates
several unclosed terms; most of these are neglected, except for the sub-grid heat flux Qj
and the sub-grid stress τij which are modeled according to the eddy-viscosity hypothesis
as:

Qj =−ksgs∂jT̆ , (3.2)

τij =−µsgs(∂j ũi+∂iũj−
2
3∂kũk δij) + 2

3ksgs δij , (3.3)

µsgs = Cd∆2 ρ̄ |S̆|, ksgs = CI∆2ρ̄ |S̆|2, κsgs = cpµsgs/Prsgs (3.4)

where cp is the heat capacity at constant pressure and ksgs the subgrid-scale kinetic
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energy. The modeling parameters Cd, CI , and Prsgs are determined through the dynamic
procedure of Lilly (1992), Moin et al. (1991) and Germano et al. (1991) with filtering and
averaging in the homogeneous (periodic) z-direction. ∆ is the filter-width associated with
the wavelength of the smallest scale retained by the filtering operation.

3.2.1 Wall modeling

The averaged Navier–Stokes equations are used to develop the wall-model. By following
the proposition of Piomelli & Balaras (2002) in which the filtered velocity is equivalent
to the averaged velocity close to the wall, the system of TBLE is given by:

∂tũi+∂j(ũiũj) =−1
ρ
∂ip̄+∂j [(ν+νt)∂j ũi], (3.5)

∂tĔ+∂jĔ ũj =− ũj
ρ
∂j p̄+∂j [(ν+νt) ũj ∂j ũj +Cp ( ν

Pr
+ νt
Prt

)∂jT̆ ], (3.6)

where ũi, ρ and p are the filtered parameters, νt the turbulent viscosity, Pr is the
Prandlt number and Prt the turbulent Prandlt number.

Wang et al. Wang & Moin (2002) neglected the advection terms in the vicinity of
the wall and they showed that the pressure gradient term is very important for non-
equilibrium flow and that its inclusion improves the model predictions. Duprat et al.
(2011) proposed to reduce the TBLE to the terms of the right-hand side. Under these
assumptions, the simplified velocity streamwise momentum can be computed as follows:

∂y(ũ) = ∂x(p)y+ τw
(µ+µt)

, (3.7)

where the wall-shear stress τw and the turbulent viscosity µt are the unknown variables of
the equation. Similarly, the temperature can be computed from the adiabatic boundary
conditions, using:

∂y(T ) = (µ+µt) ũ∂y(ũ) +∂x(p)y ũ
cp
(
µ
Pr

+ µt
Prt

) . (3.8)

The system of equations needs at least one predicted variable to be closed. The
turbulent viscosity defined by Nituch et al. (1978) and Balaras et al. (1996) is given by:

µt = µκy?[α+y? (1−α)3/2]β
(

1− exp
(
−y?

(1 +Aα3)

))2
. (3.9)

where α= u2
τ/u

2
τ,p is a non-dimensional parameter that quantifies the preponderant effect

between the shear stress and the streamwise pressure gradient, κ is the Von Karman
constant, A and β are two constants determined through a priori tests and y? is the
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non-dimensional length, given by Eq. 3.11.
In order to scale the boundary layer subjected to the pressure gradient, Manhart et al.

(2008) introduced new non-dimensional variables, taking into account the wall shear stress
and the streamwise pressure gradient so that the velocity u? and the length scale y? are
defined as follow:

u? = u

uτ,p
, (3.10)

y? = ρyuτ,p
ν

, (3.11)

where uτ,p =
√
u2
τ +u2

p is the combined velocity with uτ =
√
τw/ρ the friction velocity

and up =
∣∣∣µ/ρ2 ∂p/∂x

∣∣∣1/3 the pressure gradient based velocity as proposed by Simpson
(1983).

Near the wall, the TBLE model is solved using a fine mesh in the region below a
certain height y = ywm, while the LES approach is applied above this height on a regular
grid. Thus, ywm is defined as the exchanging height between the two models. An “input-
output” process starts in which the information extracted from the LES becomes the
upper boundary condition for the TBLE model. This latter is then resolved numerically,
using its own grid of length ywm , to compute the wall-shear stress and the heat flux;
that are injected back into the LES.

The model allows the use of a coarser grid where the first near-wall point has to lie in
the inertial layer, i.e. y < 0.1δ. Duprat et al. (2011) showed that their model was accurate
until roughly 100 wall units. Furthermore, they estimated that the best results are found
when the first near-wall cell lies in the buffer layer, i.e. y+

1 < 40. Kawai & Larsson (2013)
proposed a similar location for the first grid point, i.e. y+

1 > 50.
Due to the poor near-wall resolution in the LES mesh, errors coming from the accuracy

of the numerical method and subgrid modeling are expected to be large in the first grid
point of the LES. In order to deal with this problem, Kawai & Larsson (2013) proposed
to increase the length ywm, i.e. ywm 6= y1, while respecting the validity range of the
turbulent viscosity model where the wall-model top boundary needs to lie in the inertial
layer, i.e. ywm < 0.1δ.

A schematic representation of the TBLE near the wall using the off-set method of
Kawai & Larsson (2013) is shown in figure 3.2, with ywm/y1 = 3. In the following,
the model will be validated through a priori and a posteriori comparisons with direct
numerical simulations of the evolving boundary layer subjected to a favorable/adverse
pressure gradient (FPG/APG).
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Figure 3.2: Schematic representation of the TBLE and the WM-LES mesh.

3.3 DNS of a turbulent boundary layer under
APG/FPG.

A DNS of spatially-evolving supersonic boundary layer over an adiabatic flat plate at
M∞ = 2.25 is performed with zero pressure gradient using ChocWaves (see appendix A).
The computational domain varies from xin = 4′′, corresponding to Rex = 2.54× 106, to
xout = 9′′. The normal direction extends up to 0.5′′ and the grid is stretched in this di-
rection with a minimum spacing near the wall of ∆y+

min ∼ 1. The spanwise length of the
domain is 0.175′′ and the total number of points used is Nx×Ny×Nz = 3584×128×256.
This mesh resembles closely to the one used in the DNS of Pirozzoli et al. (2004). The
freestream-flow conditions are set to a static temperature of 169K and a momentum-
thickness Reynolds number past the transition equals to Reθ = 4260 (Rex = 4.5× 106).
The pressure is kept constant along the wall-normal direction. At the inlet, both tem-
perature and velocity profiles are prescribed according to the procedure given in White’s
book White & Corfield (2006). The perturbation model is similar to the one implemented
by Guarini et al. (2000) and follows the specification of Pirozzoli et al. (2004). The region
of perturbation extends from x= 4.5′′ to x= 5′′. The random numbers are created by a
normal/gaussian distribution using the Mersenne Twister random number generator with
a cycle of 2n−1 (n=199937) to avoid repetitive signal patterns.

The statistics have been averaged in space and time over 10 characteristic time
t? = U∞t/δi. Results are shown in appendix A. Then, a DNS of a turbulent bound-
ary layer under APG/FPG is performed using results from A. The simulation uses the
same parameters as A. The domain has been extended in the streamwise direction to
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allow the separation/reattachment phenomena to occur within the length of the domain.
The wall-normal length has been increased to Ly = 1′′ to avoid reflection of the separa-
tion shock on the boundary layer. The spanwise length is kept constant through which a
periodic boundary condition is imposed. Due to difficulties in predicting the response of
the pressure gradient to the imposed force, a first attempt to simulate the flow was made
using boundary layer informations from the previous DNS simulation (see appendix. A).
The amplitude of the adverse/favorable pressure gradient has been designed using the
Clauser’s parameter β from previous simulation of separated flow found in the literature
as following:

β = δ?

τw

dp̄

dx
, (3.12)

where δ? is the displacement thickness, τw the wall-shear stress and dp̄

dx
the streamwise

pressure gradient.
As shown in figure 3.3-top, this attempt led to a strong separation of the boundary

layer, with a very large recirculating bubble and a strong separation shock upstream
of the separation accentuating the separation phenomenon. More over, an instability
of the separation line was evidenced. This instability has been observed, in which the
separation line was constantly sliding upstream and reaching the transition zone. Despite
the fact that this simulation led to an interesting flow field, the reduction of the pressure
gradient, applied on the boundary layer in this simulation, has been decided because of
the instability observed. Figure 3.3-bottom shows that boundary layer handles, this time,
a moderate pressure gradient. Moreover, a weak oblique shock can be observed but it
does not lead to an unstable flow as in the first test.

For the current DNS, the pressure gradient is enforced by an additional force. This
additional force allows a better and more precise control of both the pressure gradient
location and its amplitude, than the wall-normal velocity BC i.e. dp

dy = 0. An additional
term is added both to the streamwise momentum and to the total energy equations,
i.e. ρf ∝ dp

dx .
The pressure gradient is set as a constant Fpg in the favorable and adverse zone. To

connect the three regions with zero, adverse and favorable pressure gradients, a smoothing
function has been used. Before the outlet, the pressure gradient is decreased to a zero
pressure gradient to avoid over-constraint boundary condition.

Figure 3.4 shows the Van Driest velocity for several x-positions (x/δin = 170, 250
and 330) corresponding to different values of the pressure gradient parameter ∆p+ =
ν/(ρu3

τ )dp/dx, i.e. ∆p+ = 0, 0.0075 and −0.0025, respectively. One can observe that the
self similar solution of the velocity profile, for both the adverse and favorable pressure
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Figure 3.3: Color maps of Mach-number flow field in the x−y plane (top) strong pressure
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Figure 3.4: Van Driest velocity along the wall-normal direction; : zero-pressure gradient
∆p+ = 0, : adverse pressure gradient ∆p+ = 0.0075, : favorable pressure gradient
∆p+ =−0.0025

gradients, is changing along the boundary layer. For both APG and FPG cases, the clas-
sical log-law, i.e. κ∼ 0.41 and C+ ∼ 5.0 Örlü et al. (2010), does not apply anymore. For
the adverse pressure gradient region, one could fit the log-law with different coefficients as
proposed by Nagano et al. (1993), Nagib & Chauhan (2008) and Lee & Sung (2009). One
could also confirm that the log-law zone is reduced compared to the zero-gradient region,
i.e. y+

log-law,APG = [30 : 90] and that it extends to the half-power law region from y+∼ 100.
For the favorable pressure gradient region, a log-law can also be fitted in a region slightly
shifted compared to the zero-pressure gradient region, i.e. y+

log-law,FPG = [60 : 200].
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Figure 3.5: Wall-shear stress over time with zero-pressure gradient(a) and adverse pres-
sure gradient (b); −: Wall-resolved data, −: Reconstructed data using the STBLE model.

3.4 Model validation

3.4.1 A priori test

The model is first validated by a priori tests using the DNS data. A and β coefficients
from equation 3.9 have to be determined through these a priori tests. The DNS data
along the wall-normal direction at two x-locations (ZPG and APG) are used as inputs
to feed the TBLE ODEs. The wall-shear stress and the wall temperature computed
by the wall model are then compared to the resolved wall-shear stress and the resolved
wall temperature. The streamwise pressure gradient, ∂p/∂x, computed by the LES and
injected into the TBLE, has been averaged in z-direction to avoid spurious fluctuations
of the wall-modeled solution due to the turbulence of the pressure field. The pressure
gradient, injected into equations 3.7 and 3.8, is computed by:

∂p

∂x
= 1
Lz

∂

∂x

∫ Lz

0
p̄ dz. (3.13)

Figure 3.5 shows a wall-shear stress comparison over time for zero- and adverse-
pressure gradient. For these tests, the length in wall-units y+

wm is set to 25, or equivalently
∆y+

wm = 50 for both zero and adverse pressure gradient regions. This means that the
dimensional length ywm is changed accordingly to the wall-shear stress to keep the wall
unit length constant.

The coefficient A and β have been setup in order to reduce the L1-error on the wall-
shear stress defined as L1-error = 〈(τwwm− τw)/τw〉. The best choice for β is found to
be β = 0.4 which is lower than the previously chosen value of β = 0.78 from Duprat
et al. (2011) but closer to the value used by Nituch et al. (1978) of 0.5. The damping
coefficient A is fixed at 18. The values proposed in the literature are similar for the
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+
〉

y+

(b)

Figure 3.6: Van Driest velocity along the wall-normal direction with zero-pressure gradi-
ent (a) and adverse pressure gradient (b); : Wall-resolved data ( : Subtracted data),
•: Reconstructed data using the STBLE model showing every 4th-grid line.

Pressure gradient ywm Nwm L1-error
Zero 25 50 1%
Adverse 15 50 −2.5%

Table 3.1: Results of the a priori test using the DNS results.

equilibrium flow, i.e. α = 1. The damping function from equation 3.9 is expressed by
(1− exp(−y?/(1 +Aα3))). Without pressure gradient, Wang & Moin (2002) and Cabot
& Moin (2000) used (1− exp(−y?/19)) and (1− exp(−y?/17)), respectively. Which is
almost the same as the value (1− exp(−y?/19)) computed in the a priori test. For
non-equilibrium flow, Duprat et al. (2011) found a similar value of (1− exp(−y?/18)).

The Van Driest velocity is presented in figure 3.6. The averaged profile computed by
the wall-modeled simulation is similar to the DNS data profile, especially for the zero-
pressure gradient case. In the APG region, the law of the wall is slightly over-predicted
at ywm by less than 1%. Table 3.1 shows the L1-error of the wall-shear stress prediction.
The L1-error gives good results for both regions therefore it has been used to determine
the unknown coefficients of the wall-model. The under-prediction of the wall-shear stress
RMS can be seen on figure 3.5, especially on the large fluctuation of the wall-shear stress
where the model cannot handle the spurious fluctuations of the inner layer turbulence.

3.4.2 A posteriori test

WM-LES is performed using a boundary layer configuration similar to the previous DNS.
The grid resolution and accuracy of the wall-model in (LES) have been discussed by
Kawai & Larsson (2012). They suggested that the inner layer of the boundary layer in
free-stream flow, i.e. y/δ < 0.1, can be modeled by a universal law. They assumed that



62 3. Wall modeling for LES of supersonic boundary layer with separation

Lx/δin Ly/δin Lz/δin Nx Ny Nz ∆x+ ∆y+
1 ∆z+ Reθ

WM-LES 80 13 2.5 768 64 64 67 45 45 4260
Kawai & Larsson (2013) 15 15 3 - - - 613 154 368 50×103

Table 3.2: Grid requirements for the WM-LES

the first near-wall grid point must be located in the log-layer, i.e. y+
1 > 40− 50. Using

the off-set method explained above, the first point where the wall-model takes as input
the instantaneous solutions from the LES should be at least y+

wm > 50. In this WM-LES,
the momentum thickness Reynolds number is lower than the simulation of Kawai and
Larsson, i.e. Reθ ∼ 4.3×103. Using the same grid resolution will end up with an under-
resolved boundary layer due to the reduced size of the boundary layer. The first grid
point in wall-unit, ∆y+

1 , is set to 45. For the streamwise and spanwise direction, the grid
spacing is ∆x+ = 67 and ∆z+ = 45. The grid requirements are summarized in table 3.2.
The WM-LES uses the WALE sub-grid scale model.

The inlet boundary layer is then generated by the same synthetic turbulence inflow
boundary condition as that used in DNS. The inlet profiles are extracted from the DNS
in the fully-turbulent zone (x/δin = 200). The streamwise length Lx is similar to the
previous DNS. The first part of the streamwise length is used as a buffer for the synthetic
inflow boundary condition. The figures are taken at a specific x where the flow is fully
turbulent, away from the synthetic inlet.

As for the DNS, the WM-LES uses an additional force to impose the pressure gra-
dient along the streamwise direction. The x-direction is normalized by the incoming
turbulent boundary layer thickness δin which is different from section 3.3 where the in-
coming boundary layer is laminar. The statistics are averaged over 200 non-dimensional
time units. The wall-model is implemented using the following algorithm:

Algorithm 1 WM-LES
1: procedure at each iteration
2: LES calculation
3: The LES solutions at a specific ywm is injected in the top TBLE BC
4: The TBLE is solved to compute τwwm and q̇wwm
5: τwwm and q̇wwm are injected back to LES through an additional force at y1.

Duprat et al. (2011) used an additional viscosity term to impose the wall-shear stress
at the wall. This corrective parameter assimilated to a viscosity is computed using the
wall-shear stress computed by the LES and the wall-shear stress predicted by the wall-
modeled simulation. This method is suitable for finite volume code but can lead to spu-
rious results with finite difference code. Other methods exist in the literature to impose
a wall-shear stress (BC). The method implemented in this study is an additional force
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integrated along the wall-normal direction following equation 3.14 (Piquet 2017). This
force is added to the x-momentum equation with an additional energy source computed
by the wall-modeled heat diffusion term (q̇wwm). The wall boundary condition uses the
regular no-slip condition with a fixed temperature computed by the wall-modeled heat
diffusion term.

Fx =
τwwm− τwLES

y1
. (3.14)

Figure 3.7 shows the normalized velocity profiles where the solution of the inner layer
is plotted using the previous DNS. It shows (a) the zero-pressure gradient solutions taken
at a similar Reθ and (b) the adverse pressure gradient profiles taken at a similar ∆p+.
The velocity has not been normalized by the Van Driest formulation, as it should be the
case in compressible flow, due to integration term along the wall-normal direction which
misses the information of the inner layer in the WM-LES. The grid resolution can be seen
in the plot at y+

1 = 22 and y+
2 = 68. These two first-points are slightly underestimated

due to the unavoidable numerical and sub-grid modeling errors emanating from the wall-
modeled simulation. For the ZPG, the outer layer is in good agreement with the DNS. For
the APG, the first part of the outer layer is well captured, while the normalized velocity
is underestimated outside of the boundary layer (the friction velocity uτ is over-predicted
in the APG zone). This behavior is due to the fact that we are comparing the profile at
a similar ∆p+ and not at a comparable Reθ.

Figure 3.8 shows the velocities RMS along the wall-normal direction for both ZPG
and APG. The region in the range 100 < y+ < 500 is under predicted in all directions
with a maximum difference of 6%. This behavior can be explained by the fact that
we are cutting the most energetic part of the fluctuations, i.e. y+ < 50. The upper
layer is then unresolved due to the lack of energy from the buffer layer that has been
removed by the grid near the wall. In the APG region, the wall-modeled boundary layer
is underestimated near the wall, especially for the wall-normal and spanwise velocities.
Despite that, the wall-model implemented from Kawai & Larsson (2013) and from Duprat
et al. (2011) shows reasonably good agreement with the previous resolved DNS. The
velocity fluctuations match the DNS profiles even with an adverse pressure gradient,
especially in the outer layer.
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Figure 3.7: Normalized velocity along the wall-normal direction, zero-pressure gradient
(a) and adverse pressure gradient (b); : WM-LES, : DNS.
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Figure 3.8: Normalized velocities RMS along the wall-normal direction, zero-pressure
gradient (a) and adverse pressure gradient (b); : WM-LES, : DNS.
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3.5 Boundary-layer separation in a supersonic planar
nozzle

We further investigate the ability of the wall model to reproduce the low-frequency
shock oscillations that are ubiquitous in most shock/boundary layer interaction prob-
lems. These phenomena involve different time and length scales and require a long-time
integration encompassing a large number of low-frequency cycles, which cannot be eas-
ily achieved by a wall-resolved LES approach. The considered test case is a transonic
planar nozzle investigated experimentally by Johnson & Papamoschou (2010) and com-
puted numerically by Olson & Lele (2011) and Zebiri et al. (2020). The nozzle has a
weak diverging-part angle of almost 4◦ (see figure 3.9) and is open to the atmosphere.
For comparison purposes, both wall-resolved (WR-) and wall-modeled WM-LES are per-
formed. The first objective is to assess the ability of the present WM-LES in reproducing
some mean quantities such as pressure and velocity for which existing numerical and
experimental data can be used for comparison. Table 3.3 summarizes the grid parame-
ters used in both WR- and WM-LES compared to the resolutions used by Olson & Lele
(2011) in their WR-LES. Compared to the WR-LES, the total number of grid points
of the present wall modeled LES is lower almost 5 times. An overall grid coarsening is
applied in all directions, keeping a minimum resolution near the wall as required by the
WR-LES specifications given by Kawai & Larsson (2012). As for the resolution of the
wall-model, a one-dimensional overlapped Cartesian grid with a constant mesh spacing
is setup orthogonally to the nozzle wall with a cell-Reynolds number equals to unity.
The computed test case corresponds to an over-expanded nozzle operating at a Nozzle-
Pressure Ratio (NPR) of 1.7 (NPR being the ratio of the chamber p0 to the ambient pa
pressure). Due to the relatively intense pressure gradient imposed between the inlet and
the outlet of the domain, the boundary layer inside the nozzle detaches from the wall,
creating thereby a strong interaction between the incident oblique shock and the bound-
ary layer. This separation occurs in an asymmetric manner forming two Lambda-shock
structures with different sizes acting on both upper- and lower-nozzle walls (see figure
3.10). Both simulations using WR- and WM-LES simulations reached a full convergence
of the main statistical quantities of interest, with the latter being 40 times faster than
the WR-LES counterpart. The obtained results are compared with the available LES
and experimental data in terms of mean-pressure distribution and velocity profiles.

Figure 3.11-a shows a comparison of the wall model pressure distribution at the center
of the nozzle with wall-resolved one. The averaged shock location is well predicted by the
wall-model. The expansion pressure at the throat is slightly lower in the wall-modeled
case, due to a stronger pressure gradient in the buffer section in the wall model. Globally,
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Figure 3.9: Grid representation of both WR nozzle (in black) and WM nozzle (in cyan)
test-cases showing every 10th grid-line. The nozzle throat is located at x= 0.

Nξ Nη Nζ Lz/Ht Lb/Ht ∆x+
i ∆y+

i ∆z+
i Nb cells

Olson et al. (B) 768 256 256 2 3 30 [1 : 23] 20 50.3 M
WR-LES 896 256 320 2 2.8 30 [1 : 29] 20 73.4 M
WM-LES 672 128 160 2 2.8 60 45 40 13.7 M

Table 3.3: Grid parameters for the WR/WM-LES of the planar nozzle flow.
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Figure 3.10: (a) Instantaneous z-averaged numerical “Schlieren” imaging contour |∇ρ| in
the x− y plane for npr=1.7, (b) Schematic representation of the density-gradient field
showing different phenomena occurring inside the nozzle.
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Figure 3.11: (a) Pressure distribution at the center of the nozzle; : WR-LES, :
WR-LES from Olson & Lele (2011), : WM-LES and : Experimental results from
Johnson & Papamoschou (2010). (b) Van Driest velocity along the wall-normal direction
at x/δi = −10; : WR-LES, : u+ = y+ : WM-LES, : WR-LES from Olson &
Lele (2011).

the pressure distribution is in an acceptable agreement with the experimental data as well
as with the wall-resolved simulations. Figure 3.11-b shows the normalized streamwise
velocity along the wall-normal direction at x/δi = −10. The first near-wall cells are
located at y+ ∼ 20, i.e. ∆y+ ∼ 40. The results are in good agreement with the previous
wall-resolved of Olson & Lele (2011), especially in the outer part of the boundary layer
and in the log-law region. An overall good agreement is observed between the modeled
and the resolved simulations.
Velocity-defect profiles, at the upper wall, for different nozzle locations (x/δi = −10,
x/δi = −5, x/δi = 0 and x/δi = 5) normalized by Uτ are shown in figure 3.12-a. The
present results for both the WR-LES and WM-LES display excellent collapse to a single
curve. In figure 3.12-b, the mean velocity slope diagnostic function for the log-law Ξ,
is shown. One can see that the plateau region, where the data can be approximated to
u+ = 1

κ ln(y+)+B, is very tiny which means that the previous expression is not an exact
description for this region, as we do not have a clear plateau in Ξ.

3.6 Varying the nozzle pressure ratio

More tests are performed to inspect the attitude of the model towards the low-frequency
phenomena. Thus, in this Section, we shed light on the flow physics for a fixed area ratio
and over a range of nozzle pressure ratio. The computations were carried out using three
different Nozzle Pressure Ratios (NPR ); 1.4, 1.7 and 2.5
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Figure 3.12: (a) Mean velocity-defect normalized by the friction velocity along the wall-
normal direction at : x/δi =−10; : x/δi =−5, : x/δi = 0 and : x/δi = 5 with dash
line representing WR-LES and solid line representing WM-LES. (b) WR-LES Log-law
diagnostic function Ξ = y+du+/dy+ at x/δi = 0.

3.6.1 Time-averaged and instantaneous flow-field

Figures 3.13-(a, c, e) show the numerical Schlieren of the instantaneous pressure flow-
field for the three cases, when the classical shock pattern expected in divergent nozzles
is a lambda shock-wave structure. This pattern consists of an incident shock (IS), a
reflected shock (RS) and a short Mach stem (MS). In this configuration, the separation
of the boundary layer, due to the high adverse pressure gradient, creates an separation
shock impinging the Mach stem at the triple point (TP). The reflected shock realigns the
incident flow in the original direction. The Mach stem, which is a stronger shock, reduces
substantially the flow velocity behind it to a subsonic state. Figures 3.13-(b, d, f) show
the mean density distribution contours, they show also the mean size of the recirculation
bubbles. The enlargement of this region is indicated by the red-colored region. For
NPR=1.4, the two regions of recirculation are not equivalent in size which confirms that
the flow in this case is asymmetric. For NPR=1.7, one of the two circulation regions
has large size while the other is very small, this is due to the reattachment of the jet at
the upper wall. For NPR=2.5, the two zone are equivalent. Furthermore, the numerical
simulation reveals the existence of small recirculation bubbles trapped between the wall
and the separated mixing layer (see figures 3.13-(b, d, f)). These small recirculation
bubbles are believed to play an important role in the amplification of the flow oscillations
and to involve a strong global unsteadiness with very large amplitude fluctuations.
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Figure 3.13: Numerical Schlieren pictures and mean density flows contours for: (a) and
(b) NPR=1.4, (c) and (d) NPR=1.7, (e) and (f)NPR=2.5. Red lines represent the trapped
recirculation bubbles

Figure 3.14-a shows the streamwise mean pressure along the lower wall, the pressure
is normalized by the inlet pressure. For the three NPRs the pressure profile have the
classical shape that consists of an expansion, a shock jump and a recovery. Downstream
of the shock the pressure recovery is done in a smooth way for NPRs 1.4 and 1.7, but for
NPR=2.5, it is more immediate compared to the latters. The raison for the immediate
recovery in the last case is the nearness of the shock to the exit, and the smooth recovery
for the NPR =1.4 and NPR=1.7 is due to the under-expansion observed downstream the
shock.

Figure 3.14-b shows the profile of pressure fluctuations RMS normalized by the inlet
pressure. One can notice that all the graphs consist of 3 zones. First, an initial zone with
very weak RMS value associated with the attached boundary layer, this zone extends
from the throat to the separation position. In this region, the intensities of the wall
pressure fluctuations for the three simulations are found to steadily increase with Reτ , at
least in the Reynolds number range accessible to simulations as shown in figure 3.14-c.
A curve fit of the WM-LES data gives: (PRMS/τw)2 = 131.7 log(Reτ )− 427.72. Then
a sharp peak with very intense pressure fluctuations which are in consistence with the
shock motion. Finally, a last part that extends all-over the separation zone, the pressure
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Figure 3.14: (a) Pressure distribution at the lower wall , (b) Prms distribution at the lower
wall and (c) Root-mean-square level of wall pressure fluctuations normalized by the wall
shear stress (τw), with pi is the inlet static pressure, (−) NPR=1.4, (−) NPR=1.7, (−)
NPR=2.5.

fluctuations in this part are small but larger than the attached boundary layer. It can
be noticed that the width of the peaks differs from an NPR to another because of the
difference in the distance traveled by the shock in its motion, one can notice also that the
value of the high peak is the same in both NPRs 1.4 and 2.5 but it is bigger for NPR=1.7
which indicates that more shock activities can be found in this NPR.

3.6.2 Spectra analyses

The unsteady character of the shock motion is further illustrated by the analy-
sis of the pressure fluctuations. Figure 3.15 shows the normalized pre-multiplied
spectra of the pressure fluctuations at the lower wall, defined as StF(p′

/prms)? =
StF(p′

/prms)/
∫
St StF(p′

/prms)dSt, as a function of the Strouhal number St and the
streamwise coordinates. The spectral map is characterized by three different zones; the
first one extends from x/δi = 0 to x/δi = 40, is a typical feature of turbulent boundary
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layer; the second zone is associated with the dynamics of the shock system, is identified
by means of a substantial energy at low frequency with a peak at St = 0.003 defined as
the main tone. The mechanism of low- frequency unsteadiness in over-expanded nozzle
flow has been observed by Zaman et al. Zaman et al. (2002) in their experiments of the
transonic diffuser. They show that the resonant tones happen; when the length between
the separation and the shock is similar to a quarter wavelength at the speed of sound;
for small opening angle; for transonic jet Mach number and for smooth nozzle walls
(roughness). Zaman et al. proposed the following correlation to compute the resonant
tone fr = (c20− u2

c)/4c0Ls,e. The last zone is the signature of the turbulent activities
in the after-separation zone. Figure 3.16 shows the pre-multiplied spectra (PSD) of the
pressure fluctuations at the lower wall in four different location (throat, nozzle exit, mean
separation position and the separation zone) as a function of the Strouhal number and
the stream-wise coordinates. Figures 3.16-a,-b show similar spectra for NPRs 1.4 and
1.7 for the both positions i.e. the throat and the exit. However, a small difference is ob-
served in the case of NPR=2.5 probably due to the proximity of the shock from the exit.
Figures 3.16-c and 3.16-d show pre-multiplied spectra of normalized fluctuating forces in
both x and y directions. The figures show a large range of frequency including very low
frequencies that go down to St= 10−4.

-20 -10 0 10 20 30 40 50 60
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Figure 3.15: Normalized pre-multiplied spectra of wall-pressure fluctuations distribution
along the streamwise direction for NPR = 1.7.

The results exhibit the development of low-frequency shock motion and significant

NPR x̄s/δi Main tone St
Measured theoretical

1.4 24.34 1.90 10−3 2.40 10−3

1.7 31.90 2.60 10−3 2.60 10−3

2.5 51.53 6.50 10−3 6.30 10−3

Table 3.4: Main tone comparison
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Figure 3.16: Normalized pre-multiplied spectra of the pressure fluctuations at the lower
wall at: (a) throat, (b) nozzle exit, (c) mean separation position, (d) the separation zone,
for different NPRs with(−) NPR=1.4, (−) NPR=1.7, (−) NPR=2.5.
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side-loads due to the evolving asymmetry. Consistent with the previous findings, no jet
flipping movement was observed even for very long runs. The mechanisms for the un-
steady shock motion is due to a transonic resonant tone between the shock location and
the exit as predicted by Zaman et al. (2002). In fact, for NPR = 1.7, the resonant tone
is captured in the separation region at St∼ 0.003 which is in quite good agreement with
the findings of Zaman. The rest of the results are shown in table 3.4. The subsonic flow
downstream of the separation is trapped between the mixing layer and the wall, which
produces small unsteady eddies oscillating at St = 0.01 (recirculation bubbles). This
phenomenon is strongly impacting the lateral forces (side-loads). The mixing layer devel-
oping from the separation is observed St = 0.1. The two-dimensional Kelvin-Helmholtz
rollup vortices impact the exit conditions, modifying thereby the effective exit area and
the position of the separation shock.

3.7 Concluding remarks

This study concerns the use of a two-layer model approach in the context of large-eddy
simulations of supersonic turbulent boundary layer subjected to both moderate and strong
pressure gradients. The latter induces flow separation and shock oscillations. The current
wall-modeling approach is based on the Thin-Boundary Layer Equations model proposed
by Kawai & Larsson (2013) in which a pressure correction term is added following Duprat
et al. (2011) model. A-priori as well as a-posteriori tests were first performed on a flat
plate supersonic boundary layer before addressing the complex problem of flow separation
in nozzles. The prediction capability of the developped model is shown to provide a quite
satisfactory results, in terms of mean-flow velocity and turbulent Reynolds stresses. The
main advantage of using such a model is its relative simplicity of implementation in an
existing LES code and more importantly its capability of saving a considerable amount
of computational time compared to the wall-resolved LES counterpart. This point is
essential when dealing with very low-frequency phenomena that are often encountered
in shock/boundary layer interaction problems. In this study, we addressed the problem
of supersonic boundary layer separation in a planar nozzle, with focus on the dynamics
of the separation shock and the associated low-frequency oscillations. It is shown that
when varying the nozzle-pressure ratio, by imposing different pressure gradients, the
separation exhibits different flow patterns with symmetric to asymmetric flow separations
at different pressure-fluctuations picks and shock-excursion extents. In particular, the
results showed that the shock wave is enhanced when the pressure is changed and that
the different flow scenarios are likely to occur depending on the extent of the recirculation
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bubble and its response to the outer flow perturbations. On the basis of the present
investigation, we intend to extend the study to include the effects of the far-field external
pressure oscillations and their influence on the separation location inside the nozzle.
These computations require the acquisitions of very long time series of data that could
be tediously achieved without the use of such a wall-modeling approach.
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Highlights

• Low-frequency shock oscillations are correctly captured using the wall-
modeled LES approach with less grid points compared to the wall-resolved
LES counterpart.

• A very long time integration is achieved (basically 18 times the one used in
Piquet (2017), Olson & Lele (2011) and in Johnson & Papamoschou (2010))
allowing to resolve several cycles of shock excursions, with a better statistics
convergence.

• The simulations bring clear evidence of the existence of broadband and ener-
getically significant LFO, essentially in the vicinity of the separation shock.

Instantaneous wall-pressure forces integrated along the upper and the lower walls, data
have been filtered with a cutoff Strouhal number of 0.2; : streamwise forces, : side loads.

WR-LES from Piquet (2017).

75



Shock-Induced Flow Separation in an Overexpanded
Supersonic Planar Nozzle

B. Zebiri,∗ A. Piquet,† and A. Hadjadj‡

University of Rouen, 76000 Rouen, France

and

S. B. Verma§

Council of Scientific and Industrial Research–National Aerospace Laboratories,

Bangalore 560 017, India

https://doi.org/10.2514/1.J058705

Shock-induced flow separation in an overexpanded supersonic planar nozzle is investigated numerically bymeans

of three-dimensional wall-modeled large-eddy simulations (LES). The objective of this study is to identify the origin

of the low-frequency shock oscillations (LFO) and the associated side-loads generation in planar nozzles. The

computational results are compared with the experimental data for validation. The promise of the near-wall LES

modeling approach, adopted in this study, is supported by its satisfactory performance in correctly predicting

the shock-induced flow separation and offering amajor advantage of being 30–40 times faster than the wall-resolved

LES counterpart, allowing thereby the capture of very–low-frequency shock oscillations with much better statistics

convergence. The simulations bring clear evidence of the existence of broadband and energetically significant LFO in

the vicinity of the separated shock, whose forward and backward movements are mainly driven by changes in

the downstream flow conditions. The complex interactions between the backflow, the separation bubbles, and the

large-scale turbulent structures developing in the shear-layer region strongly influence the shock unsteadiness, which

in turn drives the LFO. A scenario of the LFO, confirming conclusions from earlier studies, is described in this work.

Nomenclature

A = nozzle effective area
c = speed of sound
E = total energy
F = force
Ht = nozzle-throat height
L = characteristic length
M = Mach number
p = static pressure
Qj = subgrid heat flux

_qj = heat-diffusion flux

Rαα = two-point correlation function
St = Strouhal number
T = temperature
t = time
ui = velocity components
x, y, z = Cartesian coordinates
δ = boundary-layer thickness
δij = Kronecker symbol

λ = thermal conductivity
μ = dynamic viscosity
ν = kinematic viscosity
ξ, η, ζ = generalized curvilinear coordinates

ρ = density
σij = viscous-stress tensor

τij = subgrid shear-stress tensor

Subscripts

a = ambient conditions
e = exit-nozzle variable
i = inlet-nozzle variable
r = resonant tone period
rms = root mean square
s = separation-point variable
sgs = subgrid scale
th = throat-based variable
w = wall variable
τ = friction variable
0 = total/stagnation variable
∞ = freestream condition

Superscripts

+ = wall-units variable
0 = fluctuating quantity
⋆ = normalized quantity

I. Introduction

S HOCK-INDUCED boundary-layer separation in transonic and
supersonic flows is of great importance in many practical appli-

cations, such as rocket propulsion systems, transonic airfoils, and
refrigeration ejectors. These unsteady phenomena are associated
with undesirable effects such as shock oscillations, wall-pressure
fluctuations, boundary-layer separation, and vortex shedding, which
are major causes of vibration, noise, and side-loads generation.
Comprehensive reviews of the topic can be found in [1].
Flow separation in supersonic planar nozzles has been the subject

of several experimental and numerical investigations, with the aim to
understand the different shock patterns occurring in the overexpanded
nozzle regime [2–13]. According to these studies, three typical flow
separation configurations can be identified: 1) incipient boundary-
layer separation with normal shock, 2) symmetric boundary-layer
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separation with two-symmetric λ shocks, and 3) asymmetric boun-
dary-layer separation with two-asymmetric λ shocks (see Fig. 1). As
for the separation location, it was found to be sensitive to the flow
disturbances,whichmay originate from the roughness of thewall [12]
or from the improper initialization or startup of the flow [13]. To
address the problem of nozzle flow separation, Papamoschou and
Johnson [2] investigated a planar nozzle experimentally with a flex-
ible geometry and different nozzle pressure ratios (NPR). They found
that the flow could be asymmetricwithout flipping during the test run,
but the jet flow could change the direction from one nozzle side to
another during a restart of a run. According to their study, the shock
selects its orientation at the nozzle startup and retains it throughout the
run. Additionally, Reynolds-averaged Navier–Stokes (RANS) simu-
lations were performed by Xiao et al. [3], in which they roughly
confirmed the experimental findings of [2]. For a fixed nozzle area
ratio and over a wide range of NPR (1.269–2.4), they found that the
flow can be asymmetric for NPR1.5–2.4,which is consistent with the
experiments of [2]. Xiao et al. [3] demonstrated that the asymmetric
behavior of the flow separation could be forced on either the top or the
bottom wall by means of perturbations placed near one of the nozzle
walls. They also found that the separated-flow region is largely
enhanced within the core of the nozzle flow, which exhibits a higher
level of unsteadiness. Detailed investigations of flow separations
were made by Hunter [4], who studied experimentally and numeri-
cally an overexpanded planar nozzle and found that the flow ismainly
dominated by the shock–boundary-layer interaction dynamics. He
proposed a scenario in which the separation could be a natural
response of the flow in its tendency to reach a thermodynamically
stable state. Based on his study, the author suggested to classify the
separation into two categories according to the NPR: 1) a nonsta-
tionary three-dimensional separation with a partial re-attachment and
2) a stationary two-dimensional separation with an abrupt transition
existing between the two. The origin of the flow asymmetry was also
investigated experimentally byVerma andManisankar [5] using three
different Mach 2 planar nozzles with a fixed area ratio and different
divergent-wall angles. In their study, the authors found that the
boundary-layer transition is one of the main reasons for the flow
asymmetry. They also showed that the transition from free-shock
separation (FSS) to restricted-shock separation (RSS) could initiate
the flow asymmetry, but later the transition from RSS to FSS seems
to make the flow symmetric again. Another origin of asymmetry,
reported by [5], was the proximity of the separated shear layer to the
nozzle wall.
In terms of unsteadiness, the separated flow often induces shock

oscillations, associated with low-frequency motions. Two main
origins of low-frequency shock oscillation (LFO) mechanisms can
be broadly reported: The first concerns the upstream influence of
the incoming turbulent boundary layer [14], whereas the second
one (which is the most consensual today) supports the idea of the
influence of the downstream conditions via the interaction between
the separated boundary layer, the recirculation bubble, and the shock-
train system [6–11,15,16]. Obviously, The ultimate question is the
following: According to which physical mechanisms can these

low-frequency phenomena occur? Many scenarios are proposed in
the literature. For instance, Zaman et al. [15], in their theoretical
and experimental studies of transonic diffusers, concluded that the
mechanism creating LFO is stimulated by acoustic resonance, where
the low-frequency mode corresponds to the case when the one-
quarter wavelength is fitted within the approximate distance from
the foot of the shock to the nozzle exit. The same conclusions were
made by Johnson and Papamoschou [7] when investigating exper-
imentally the flow in a supersonic planar nozzle. Olson and Lele [8]
investigated numerically the same nozzle and confirmed the previous
findings. An interesting study of the effects of forced downstream
conditions in a diffuser was conducted by Bruce and Babinsky [17].
The authors have found that the normal shock undergoes a coherent
and reproducible periodic motion with regard to the sinusoidal
variations of the downstream pressure. They also proposed a model
for the trajectory of the shock that can be easily calculated by
integrating the already predictable shock velocity. Thus, they define
the shock movement as a mechanism by which the shock system can
adapt itself to satisfy theNPRchange.As a result, the frequencyof the
disturbance has no effect on the shock velocity. The effect of geom-
etry was also studied through a nonviscous one-dimensional model.
The authorswere able to define a critical frequency, beyondwhich the
amplitude of the shock is largely dependent on the angle of the
divergent. Recently, Martelli et al. [18] found, for the same nozzle
as [7,8], that the self-sustained shock oscillations are mainly driven
by a pressure imbalance between the pressure level downstream of
the shock and the ambient flow. Based on the above discussion, it is
clear that the flow separation in supersonic planar nozzles with
unsteady flow conditions is still an active research topic where much
effort is still needed to better understand the physical mechanism of
the LFO. Intending to shedmore light on this complex fluid problem,
large-eddy simulations (LES), solving three-dimensional compress-
ible Navier–Stokes equations with wall modeling approach, are used
to study the flow separation in an overexpanded planar nozzle. The
present paper is organized as follows. The next section introduces the
governing equations followed by a complete description of bothwall-
modelingmethodology and numericalmethods. Then, the simulation
setup is presented, followed by the results and discussion. Finally,
conclusions are drawn at the end of the paper.

II. Governing Equations, Turbulence Modeling, and
Numerics

The filtered compressible Navier–Stokes equations are written as

∂t �ρ� ∂j��ρeuj� � 0 (1)

∂t��ρeui� � ∂j��ρeuieuj� � ∂i �p � ∂j �σij − ∂jτij (2)

∂t��ρ �E�� ∂j��ρ �Eeuj�� ∂i�eui �p� � ∂j� �uiσij�−∂j �qj −∂j�euiτij�−∂jQj

(3)

a)

b) c)

Fig. 1 Schematic representation of the typical flow regimes in a planar nozzle. MS: Mach stem; SS: separated shock; RS; reflected shock; TP: triple
point; SJ: supersonic jet.
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where �ρ,eui, �p, and �T are the filtered density, velocity, pressure, and
temperature, respectively. Unlike the “bar” (Reynolds) and the
“tilde” (Favre) filters, the “breve” symbol does not denote a filter
operation but indicates that the quantity is based on primitive filtered

variables. Thus, �E refers to the resolved total energy, which is not
equal to the filtered total energy. The resolved viscous stress tensor

�σij and the heat flux �qj are defined as �σij � 2μ� �T��eSij − ∂keukδij∕3�
and �qj � −λ� �T�∂j �T, respectively, where μ� �T� and λ� �T� are the

viscosity and the thermal conductivity corresponding to the filtered

temperature �T and eSij � �∂jeui � ∂ieuj�∕2. The low-pass filtering

procedure generates several unclosed terms; most of these are
neglected, except for the subgrid heat fluxQj and the subgrid stress

τij, which are modeled according to the eddy-viscosity hypothesis as

Qj � −ksgs∂j �T (4)

τij � −μsgs
�
∂jeui � ∂ieuj − 2

3
∂keukδij

�
� 2

3
ksgsδij (5)

μsgs � CdΔ2 �ρj �Sj; ksgs � CIΔ2 �ρj �Sj2; κsgs � cpμsgs∕Prsgs (6)

where cp is the heat capacity at constant pressure and ksgs is the

subgrid-scale kinetic energy. The modeling parameters Cd, CI , and
Prsgs are determined through the dynamic procedure of Lilly [19],

Moin et al. [20], and Germano et al. [21] with filtering and averaging
in the homogeneous (periodic) z direction. Δ is the filter width
associated with the wavelength of the smallest scale retained by the
filtering operation.

A. Near-Wall Turbulence Modeling

The near-wall turbulence modeling is required in order to reduce
the computational cost of fully resolving all turbulent scales in the
boundary layer. Various strategies have been reported in the literature
for the past decades, and many of those are case sensitive. The wall-
modeling approach, adopted in this study, consists of using a regular
LES grid near the wall combined with a wall model, to mimic the
dynamical effects of the turbulent eddies in the near-wall layer. In this
study, a thin-boundary-layer equations (TBLE) approach is adopted
as in Kawai and Larsson [22]. The TBLE model of Kawai and
Larsson [22] includes neither the pressure gradient nor the convective
terms. This assumes that the boundary layer, below the exchange
height of the wall model �ywm�, is in equilibrium and by assuming
that the pressure gradient from the LES domain is propagating
onto the wall model through its top boundary condition. For the
present study, a moderate pressure gradient is considered along the
diverging section of the nozzle flow. Additionally, we have included
a new formulation of the viscosity eddy, following the work of
Duprat et al. [23], to partially account for the pressure gradient using
a set of nondimensional variables derived from the work of Manhart
et al. [24].
The final formulation of the TBLE model used in this study is as

follows:

∂t��ρeui� � ∂j��ρeui euj� � −∂x �p� ∂y��μ� μt�∂yeui� (7)

∂t��ρ �E� � ∂x��ρ �E euj�
� −euj∂x �p� ∂y

�
�μ� μt�euj∂yeuj � cp

�
μ

Pr

� μt
Prt

�
∂y �T

�
(8)

where μt, Pr, and Prt are the eddy viscosity, the Prandtl number, and
the turbulent Prandtl number, respectively. Following the work of
Duprat et al. [23], the TBLE are reduced to the terms of the right-hand
side. Under these assumptions, the simplified velocity streamwise
momentum can be computed as follows:

∂y�eu� � ∂x� �p�y� τwwm

�μ� μt�
(9)

where the wall-modeled shear stress τwwm
and the turbulent viscosity

μt are the unknown variables of the equation. Similarly, for adiabatic
boundary conditions, the temperature can be computed using

∂y� �T� �
�μ� μt�eu∂y�eu� � ∂x� �p�yeu
cp��μ∕Pr� � �μt∕Prt��

(10)

The pressure gradient effect on the eddy viscosity is modeled by

a nondimensional parameter α � u2τ∕u2τ;p, which quantifies the bal-

ance between the shear stress and the streamwise pressure gradient.
The turbulent viscosity is defined by

μt � μκy⋆�α� y⋆�1 − α�3∕2�γ
�
1 − exp

�
−y⋆

�1� Aα3�
��

2

(11)

where κ is the vonKármán constant, y⋆ is the nondimensional length,
and A and γ are the wall-model constants.
Dimensionless variables have been introduced to scale the

boundary layer subjected to the pressure gradient, taking into account
the wall-shear stress and the streamwise pressure gradient. The
nondimensional velocity u⋆ and the length scale y⋆ are defined as

u⋆ � �u∕uτ;p and y⋆ � yuτ;p∕�ν, where uτ;p �
���������������������
�u2τ � u2p�

q
is the

combined velocity with uτ �
���������������
τwwm

∕�ρ
p

the friction velocity, and

up � j�μ∕�ρ2∂x� �p�j1∕3 the pressure-gradient-based velocity.

The wall model is characterized by an “input–output” exchange
process, where the information extracted from the LES becomes
the upper boundary condition for the TBLE model. The latter is
then resolved numerically using the local one-dimensional grid of
height ywm, to compute the wall-shear stress τwwm

� �μ∂yeu�y�0 and

the heat flux _qwwm
� −�λ∂y �T�y�0

, which are injected back into the

LES. Figure 2 shows a representation of thewall model methodology
near the wall using the off-set method proposed by Kawai and
Larsson [22].
Thewallmodel hasbeen implemented and assessed through aDirect

Numerical Simulation (DNS) of a spatially evolving compressible
boundary layer subjected to a pressure gradient. A comparison of
the existing DNS of Pirozzoli et al. [25] has been first done to generate
a developing boundary layer. The Reynolds number is taken as

Rex � 2.54 × 106, and the same perturbation model between x �
4.5 0 0 to x � 5 0 0 is used as [25]. The inlet flow is set at Mach 2.25
and a static temperature of 169.44K. The domain has been extended in
the streamwise direction to have enough space to capture the separa-
tion/reattachment phenomena of the TBL. Then, the numerical data
have been used to perform a DNS of a turbulent boundary layer under
both adverse and favorable pressure gradients. Finally, the DNS of
the nonequilibrium boundary layer was used to validate the correct
implementation of the model through both a priori and a posteriori
tests. The wall-model constants A � 17.2 and γ � 0.78 were deter-
mined through a priori tests (more details can be found in [26]).

B. Numerical Flow Solver

Numerical simulations are carried out using an in-house-validated
compressible code. The convective terms are discretized using a

Fig. 2 Schematic representation of the wall-resolved and wall-modeled
LES approaches.
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sixth-order weighted compact nonlinear scheme (WCNS) developed

by Deng and Zhang [27] in generalized curvilinear coordinates,

whereas the viscous terms are discretized using a fourth-order central

scheme with a split form of the Laplacian tensor for stability reason.

The time is advanced using a fourth-order Runge–Kutta (RK4)

scheme. The Courant–Friedrichs–Lewy (CFL) stability limit is near

unity for all calculations. The solver is explicit and fully parallelized

using MPI libraries.

III. Problem Setup

The test case considered in this study is the planar nozzle

used in Olson and Lele [8], which is based on the experiments

of Johnson and Papamoschou [7]. In the present simulations,

the mesh is structured (see Fig. 3) and the incoming flow is generated

using a synthetic turbulent boundary-layer inlet based on the method

of Xie and Castro [28]. Similarly to [8], the converging part

of the nozzle is not simulated here in order to reduce the computa-

tional cost of the overall simulations. To ensure a fully developed

boundary layer at the nozzle throat, the computational inlet is

shifted upstream using a buffer zone of length Lb � 2.8Ht, where

Ht is the throat height. The flow in the spanwise direction is assumed

to be homogeneous with periodic boundary conditions (Lz � 2Ht).

The outlet boundary conditions are treated as nonreflective

using the NSCBC method [29] in conjunction with an external

buffer zone with a stretched grid to further damp the reflected

waves.
Both upper and lower walls are considered as adiabatic with

no-slip boundary conditions applied on the wall model. An NPR

of 1.7 is considered, which corresponds to the experiments of

Johnson and Papamoschou [7], with stronger shock amplitude

and an asymmetric separation behavior. Olson and Lele [8]

performed their LES for the same NPR and captured the same

asymmetric separation behavior. The flow properties at the inlet

(mainly the boundary-layer thickness (δi) and the freestream veloc-

ity (ui;∞)) are used as scaling parameters for t⋆ � tui;∞∕δi and

Stδ � fδi∕ui;∞. Although the current study is based on the use of a

wall-modeled (WM-LES) approach, we have performed calcula-

tions using a wall-resolved (WR-LES) approach over a shorter

period of time to ensure that the WM-LES restores the main trends

of shock–boundary-layer interaction. Table 1 summarizes the grid

resolutions used in both WR- and WM-LES compared with the one

used by Olson and Lele [8].

IV. Results and Discussion

Mean flow quantities are collected from time averaging of
the instantaneous three-dimensional fields that are extracted from a
long-time series of the WM-LES data covering almost 70,000 char-
acteristic time scales (t⋆). This represents one of the longest time scale
ever reached in separated nozzle flow simulations so far. Part of the
WR-LES data is not shown here for concision. Figure 4 highlights an
instantaneous picture of the complex three-dimensional nozzle flow-
field showing the shock-wave–boundary-layer interaction pattern,
with an asymmetric λ-shock structure. The whole shock pattern con-
sists of an incident shock (IS), a reflected shock (RS), and aMach stem
(MS). In this configuration, the boundary-layer separation due to the
high adverse pressure gradient creates an incident shock impinging
the Mach stem at the triple-point TP. The reflected shock realigns the
incident flow to the original direction. The Mach stem, which is a
stronger shock, reduces the flow velocity substantially behind it to a
subsonic state. The sonic line that bounds the shear layer and the
recirculation zone can be seen as avirtualwall that defines the effective
geometry of the nozzle. Because the effective nozzle geometry is
shorter and has a lower expansion ratio, the resulting area reduction
acts as an additional confinement effect of the flow, which compresses
the flow and produces multiple shocks organized in a shock-train
structure that is typically present in planar nozzles or transonic ducts.

A. Mean Profiles

The WR/WM LES pressure distribution at the wall is presented
in Fig. 5a. The result agrees well with both experimental and
previous LES results. The concordance between the data shows that
the wall-modeled simulation is able to correctly reproduce the
pressure gradient effect on the boundary layer. One can also notice
a small difference in the separated region, where the experimental
data and the WR computation show a smoother pressure jump
compared with the wall-modeled simulation. This behavior is due
to the strong compression waves in the wall-modeled simulation
applying in the interaction zone upstream of the separation point.

Fig. 3 Grid representation of the wall-resolved nozzle test case showing every 10th grid line. The grid stretching function is defined as
f str;y � tanh�rv;y�2η∕Ny − 1��∕ tanh rv;y, whereNy is the number of point and η is the generalized curvilinear coordinate in wall-normal directionwith

rv;y � 2.3. For the WM-LES, the grid is regularly spaced following fstr;y � �2η∕Ny − 1�. The nozzle throat is located at x � 0.

Table 1 Grid parameters at the inlet of the nozzle

Δx�i Δy�i Δz�i Number of cells

Olson and Lele [8] 30 [1:23] 20 50.3M
WR-LES 30 [1:29] 20 73.4M
WM-LES 60 45 40 13.7M
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The coarse grid of the wall-modeled case reduces the length of the

interaction and increases the strength of the compression waves,

resulting in a slightly stronger separated shock. Figure 5b shows a

comparison of the normalized pressure gradient using the Clauser’s

parameter β � δ⋆∂x� �p�∕τw, where δ⋆ � δ∕δi is the normalized

boundary-layer thickness. Upstream of the nozzle throat, the exper-

imental data do not perfectly coincide with the simulations due to

the difference in the converging part of the nozzle geometry.Note that

the effect of the pressure gradient is accurately reproduced by the

simulations, except in a region near the throat, where a small differ-

ence is noticeable.

B. Shock Motion and Spectral Analysis

To study the shock dynamics, one can track the separation

position on both sides of the wall. The separation is found based

on the locationwhere the near-wall velocity becomes negative. Then,

the noisy data are smoothed using a moving-average filter. The

separation location is found to exhibit an oscillating behavior in

a low-frequency range. Broadband and energetically significant

LFO in the vicinity of the separated shock were also observed. The

magnitude of the observed oscillations is close to the value found in

[7], which is 8δi. The flow separation at this particular NPR exhibits

an asymmetric character with a jet flow being stuck on one side of the

nozzle without flipping, as reported in the experiments of Johnson
and Papamoschou [7].
The mechanism of low-frequency unsteadiness in overexpanded

nozzle flow has been described by Zaman et al. [15] in their
experiments of transonic diffuser. They showed that the resonant
tones occur when the length between the separation and the shock is
similar to a quarter wavelength at the speed of sound (c). This is true
for small opening angles, transonic jet-Mach number and smooth-
nozzle walls. Zaman et al. [15] proposed the following correlation to

compute the resonant tone, fr � �c2 − u2e�∕4cLs;e, where Ls;e is the

length between the averaged separation location and the exit of the
nozzle, c the speed of soundwithin the separated boundary layer, and
ue the velocity at the exit.
Zaman’s correlation provides a closer value to the resonant tone

in comparison with the present WM-LES (i.e., Stδ ∼ 0.003). In the
present case, the jet Mach number Mj is equal to 0.76 and

the maximum half-angle of the nozzle is about 4°, which fits the
transonic tone requirements. Similarly, Olson and Lele [8] concluded
that the unsteady mechanism was due to a transonic resonant tone
between the shock location and the nozzle exit. They found a two-
way coupling between the shock and the shear layer combined with a
time lag leading to the unsteady LFO.
Figure 6a highlights the correlation between the effective exit

area Ae and the velocity separation shock. It shows a time lag of

a) b)
Fig. 5 a) Normalizedmean wall-pressure distribution. b) Clauser’s parameter along the longitudinal direction. : WM-LES; :WR-LES from [26]; :
WR-LES from [8]; : experimental results from [7].

Fig. 4 Instantaneous three-dimensional nozzle flowfield showing isocontours ofQ-criterion colored by the velocity field (blue: slow; red: fast). Grayscale
surface represents schlieren imaging background in the x-y plane, whereas grayscale volume is the isovolume of the velocity gradient∇kuk. The image is
taken when the separated shock was moving upstream toward the throat. See Fig. 1 for other notations.
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approximately one-quarter wavelength, confirming the prediction of
Olson andLele [8]with respect to the resonant tone. Similarly, Fig. 6b

shows the anticorrelation between the exit pressure pe and the

separation location xs. When the shock is located at its downstream

position, the pressure is minimal because of the increased effective

area. Conversely, when the shock is at its upstream position, the

pressure is maximum considering the small effective area, which

confirms the findings of Martelli et al. [18]. A small delay of Δt⋆ ∼
40 can be observed between the shock location and the exit pressure

due to the acoustic waves that propagate upstream to the shock. In

the present LES, the observed lag time between the shock-position

signal and the effective-area signalwas about one-quarterwavelength

(i.e., Δt⋆ ∼ 150), confirming the resonance phenomenon observed

by Zaman et al. [15]. This difference is not due to the time needed for

the pressurewaves from the confined exit area to propagate upstream

of the shock (i.e.,Δt⋆ ∼ 40), as addressed by Olson and Lele [8], but

to the constant change of the effective area downstream of the shock.
The complex dynamics of the streamwise back and forth shock

movement shown in Fig. 7 are summarized hereby, confirming

previous scenarios of the following [8,18]:
1) The separated shockmoves downstreamwith amaximum shock

speed us;max. Because of the highly effective pressure at the nozzle
exit resulting from the change of the effective geometry of the nozzle,
the flow is then sucked up by the atmospheric pressure pe > pa. The
relative speed of the incident shock is reduced because of the suction
effects. At the end of this step, the incident shock vanishes to a series
of compression waves that transform the λ-shock pattern into one
normal shock.

2) At one-quarter wavelength, the exit pressure is lower than the
ambient pressure, creating a slight backflow from the exit. This
reversal flow starts to increase the deflection angle of the mixing
layer and changes the effective geometry of the nozzle. The effective
area starts to decrease with one-quarter delay compared with the
position of the shock. Because of inertia (flow resistance), the shock
is still moving toward the exit, whereas the backflow intensifies. At
this stage, the flow is mildly symmetric and a backflow occurs on
both sides of the nozzle.
3) When the shock is standing at its maximum position, the exit

pressure is weak and the backflow from the ambient pressure increases.
The mixing layer reattaches one of the nozzle walls (either upper or
lowerdependingon the initial condition).Theeffective area is decreased
compared with (2) and the flow is thermodynamically unbalanced,
forcing thereby the shock position to adapt to the new state.
4) The shockmoves upstreamwith aminimum shock speed us;min.

The mixing layer is fully attached to the lower wall, and the large
recirculation bubbles emerge along the upper wall. The backflow
acts only on the upper wall, which is opened to the atmosphere. The
effective geometry of the nozzle downstream of the shock behaves as
a convergent nozzle, where the subsonic flow accelerates to a super-
sonic stream and forms a series of shocks known as “shock train.”
5) After five quarters of wavelength, the shock is still moving

upstream but the exit pressure becomes higher than the atmospheric
one. As for the one quarter wavelength time step, the effective cross-
sectional area of the nozzle starts to increase, which unbalanced the
total pressure at the exit.
6) The shock is now at its most upstream location within the

cycle. The suction effect from the ambient pressure forces themixing

a) b)
Fig. 6 a) Time delay between the effective exit areaAe ( ) and the separation location xs ( ). b) Time delay between the exit pressure pe ( ) and the
separation location xs ( ).

Fig. 7 Shock excursionover one resonant toneperiodStr for different time steps.z-averaged schlierenpictures shown in grayscale, blue regionshighlight
negative x velocity, orange arrows indicate the direction of the shock movement, and black arrows indicate the backflow.
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layer to move closer to the walls, increasing the effective area. As for
(3), the flow is thermodynamically unbalanced, forcing the shock
position to move downstream. The acoustic lag due to the time taken
for the pressure waves to acoustically propagate from the back
pressure to the shock is maximal at this position, increasing thereby
the unsteadiness of the shock.

Hence, a restart cycle from (1)maintains the shock in a closed-loop

motion.

Figure 8 shows the normalized premultiplied spectra of pressure

probe signals in five different locations. The spectra, defined as

StF �p 0∕prms�⋆ � StF �p 0∕prms�∕∫ StStF�p 0∕prms� dSt, cover the
entire range of frequencies, from very low up to the boundary-layer

time scales (i.e., Stδ > 1). The spectrum at the throat shows no

low-frequency activities. The same remark holds for the probe at
the inlet and at x∕δi � −12 upstreamof the throat.However, themain
tone is captured both at the separation location and at the nozzle exit.
In the recirculation zone, most of the spectral energy is contained in a
region where Stδ ∼ 0.04 as observed by [30]. They showed that the
recirculating area exhibits large oscillations in the low-frequency
range. Most of the energy captured in the recirculating area is due
to the breathing phenomenon caused by an imbalance state between
the flow from the shear layer and the backflownear the nozzle lip. The
corresponding main tone is captured at the nozzle exit, where
both recirculation bubble and lip vortex phenomenon interact. The
later, having a small size compared with the main recirculation
zone, is created by the confluence of the recirculation zone and the
backflow.
Figure 9 shows the time-history of the WM-LES-integrated

wall-pressure force compared with the WR-LES results of Piquet
[26]. It is worth mentioning that the WM-LES integration time
represents 18 times the one found in Piquet [26], Olson and Lele
[8], and the experiments in [7]. Thus, the present integrated time is
large enough to resolve several shock excursions, therefore having
better statistics convergence.
The wall-pressure vector force is integrated along both upper and

lower walls asF � ∫ s�pw − pa�n ds, where pw is the wall pressure,

pa the ambient pressure, ds the local surface element where the force
is applied,n the normal vector to the surface, andS the total surface of
the nozzle including the upper and lower wall. The forces are decom-
posed into streamwise and lateral forces (side loads).
Figure 10 shows the normalized premultiplied spectra of the nor-

malized streamwise/side-loads force fluctuations StF �F 0
i∕hFi�⋆ �

StF�F 0
i∕hFi�∕∫ StStF �F 0

i∕hFi� dSt, compared with the results of

[26]. One can clearly notice that the two spectra are quietly converged
for the high frequencies, while the main tone is different. This differ-
ence is due to the shock position in both simulations as a direct result
of using the NSBC conditions at the outlet in the present simulation,
which prevents the reflected acoustic wave from affecting the
shock system and causing large-shock oscillations. Figure 10 shows
that the streamwise forces fluctuate at a low frequency, whereas
the side loads contain a broad range of frequency unsteadiness. In
the streamwise force spectrum, three peaks can be observed at
Stδ ∼ 0.003, Stδ ∼ 0.04, and Stδ ∼ 0.1, corresponding to the resonant
tone, the recirculation bubble, and the mixing layer phenomenon,
respectively. High-frequency peaks can be observed in the side-loads
spectrum at Stδ ∼ 0.04 and Stδ ∼ 0.15. It seems that the side loads are
highly sensitive to the high-frequency oscillations, whereas the
streamwise force is more sensitive to the main tone of the separation
line.
Each phenomenon occurring in the nozzle can be characterized by

a frequency range. To identify these frequencies (Fig. 10) and to link
them to the corresponding physical phenomena, a dynamic mode
decomposition (DMD) analysis is performed. Given the wide scale
of frequencies involved in this flow and in order to extract the

Fig. 9 a) Instantaneous wall-pressure forces integrated along the upper
and the lower walls. Data have been filtered with a cutoff Strouhal
number of 0.2. : streamwise forces; : side loads; WR-LES from
Piquet [26].

a) b)
Fig. 10 Normalized premultiplied spectra of dimensionless fluctuations: a) streamwise forces; b) side loads. : WR-LES from Piquet [26]; : present
WM-LES.

Fig. 8 Premultiplied spectrum of the normalized wall-pressure fluctua-

tions for different streamwise locations. : inlet; : x∕δi � −12
upstream of the throat; : throat region; : separation region; :
recirculation zone.
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corresponding low frequencies, we have used a multiresolution
DMD (MrDMD) developed by Kutz et al. [31]. The MrDMD is able
to separate robustly the complex systems into a hierarchy of multi-
resolution time-scale components. The method is applied to a series
of two-dimensional slices of pressure fluctuations p 0, where each
snapshot represents the full flowfield (the nozzle flow and the
ambient region). Equi-time spaced snapshots are used and sampled
at Stδ � 1, which gives a Nyquist frequency of Stδ � 0.5. Thus, the
entire frequency range can be captured. The results shown in Fig. 11
are summarized as follows:
1) Stδ ∈ � : : : ; 0.009�; a frequency range corresponds to the oscil-

lation of the shock system. Note that the resonant tone predicted by
Zaman et al. [15] is captured at the separation and downstream
at St � 0.003.
2) Stδ ∈ �0.01; 0.09�; the subsonic flow downstream of the sepa-

ration is trapped between the mixing layer and the wall, producing
small unsteady eddies that oscillate within this range of frequencies
(recirculation bubbles). This phenomenon is strongly affecting the
side loads.
3) Stδ ∈ �0.1; 0.5�; the mixing layer developing from the

boundary-layer separation to the nozzle exit is observed at these
frequencies. The large two-dimensional Kelvin–Helmholtz vortices
impact the exit conditions, modifying thereby the effective nozzle
exit area and the corresponding shock location.
4) Stδ ∼ 1; upstream of the separation, the pressure fluctuations

are dominant in the range of the turbulent boundary-layer
frequencies.

V. Conclusions

Awall-modeled LES approach is used to investigate the unsteady

behavior of three-dimensional flow separation in a supersonic planar

nozzle. The objective of the study is to provide a better understanding

of themainmechanisms driving the shock oscillations. The absence of

low-frequency phenomena upstreamof the boundary-layer separation

and their presence near the separation point and in the downstream

region confirm the role of the downstream flow conditions in driving

or at least in maintaining the shock oscillations at very low frequen-

cies. A scenario describing the way in which the LFO occur is

proposed confirming the earlier findings. The study shows that the

deflection angle of the separated shear layer, which represents the

effective geometry of the nozzle downstream of the shock, is strongly

coupled to the shock position. A phase shift between the motion of

these two features, that is, upstreamor downstreammovement, causes

the cycle to constantly overcompensate its pressure to match the exit

pressure, giving thereby the self-sustained shock motion behavior

alreadyobserved inmany experimental andnumerical setups.Regard-

ing the asymmetry behavior of the separation, the current simulations

show that the phenomenon is stable for the studied NPR and does not

switch fromasymmetric to symmetric flowseparation over a very long

run time, confirming the experimental findings. This confirmation

was possible thanks to the use of the current wall model strategy,

which allows, by its ability to correctly model the turbulent boundary

layer and consequently the reduction of the number of mesh points, to

have very long signals required for the study of the LFO.

Fig. 11 Reconstructed field of the real part of the pressure fluctuations, p 0, for different DMD modes at selected values of Stδ. Red is the highest
representative phenomenon of the mode.

a) b)
Fig. A1 a) Two-point correlation function of wall pressure fluctuations along the spanwise direction �Lz � 2Ht� at x∕δi � 0 ( : results at different x
locations in the preshock boundary-layer zone; : WR-LES from [8]). b) Instantaneous velocity fluctuations in the x–z plane at y� ∼ 20.
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Appendix A: Grid Sensitivity Study

A.1. Periodic Domain Extent and Boundary-Layer
Development

To ensure that the domain size in the z direction is large enough to
cover most of the length scales present in the flow, a two-point
correlation function based on the wall pressure along the spanwise

direction, Rp 0p 0 �rz� �
PNz

n�1 p
0
np

0
n�nr

, with nr � 0; : : : ; Nz;

rz � nrΔz, is computed and averaged over time for two x locations.
FigureA1a showsRp 0p 0 �rz�∕Rp 0p 0 �0� plotted at the throat. The decay
of correlation at z∕Lz � 0.1 demonstrates that the length in the
spanwise direction does not affect the dynamics and the development
of the coherent structure in the flow.
For the development of the boundary layer, the synthetic turbu-

lence injection starts at x∕δi � −28, giving 18 boundary-layer thick-
nesses length for the flow to relax to a converged boundary layer.
Xie and Castro [28] have demonstrated that the method of synthetic
injection needs at least 10 boundary-layer thicknesses to reach a fully
turbulent flow. FigureA1b shows the structure of the turbulence in the
boundary layer at the buffer layer through the velocity fluctuations
field. The synthetic eddy structures seem to extend toΔx∕δi ∼ 15, in
agreement with the streaky structures as observed by Xie and Castro
[28]. Past this recovery region, the velocity fluctuations exhibit more
coherent structures.

A.2. Mesh Grid Convergence

To establish the fidelity of the LES database, we conducted
an LES grid convergence study. Three different meshes are used
(see Table A1). The normal direction has been excluded from this
study because the Kawai and Larsson’s [22] recommendations are
strictly followed and we believe that it is sufficient for the conver-
gence in the wall-normal direction. Thus, the methodology consists
of changing the number of points in both streamwise and spanwise
directions. The obtained results are presented in Fig. A2b in terms
of normalized mean wall pressure distribution for different grid

resolutions. Although the statistics were not acquired over the same
amount of samples, the number of samples used in this study was
large enough to consider the results as statistically converged. From
Fig. A2b, it is seen that varying the grid resolution does not produce
significant differences in the wall pressure before the separation and
in the shocked region. Therefore, we consider that the grid resolution,
used in this study, is sufficiently fine to only have marginal effects on
the statistical results.
Figure 2 shows schematically the concept of WM-LES where

the TBLE equations are solved on a separate grid. In the present
simulation, the exchange of information between the LES and the
wallmodel occurs at ywm, corresponding to the secondLES cell away
from the wall. Kawai and Larsson [22] recommended to avoid
the log-layer mismatch of the WM-LES when the exchange occurs
in the first or in the second cell due to numerical errors in the LES
solution at those two first cells. Hence, we have considered adding
three cells below. The results are shown in Fig. A3. It is clear that
adding one more cell leads to a small underprediction of the wall
pressure. Note that all recommendationsmade byKawai and Larsson
[22] are respected, expect using four or five cells below the exchang-
ing height.

Appendix B: Wall-Model Sensitivity Study

Several authors have shown that the error incurred by neglecting
both pressure gradient and convective terms in the TBLE equations
can be larger than the error incurred by an equilibrium formulation,
that is, not accounting for those two terms in the wall model. For
this purpose, a new simulation has been performed using the present
wall model without the pressure gradient term (PGT). The wall
pressure from the new simulation, togetherwith the previous data and
the experiment results from [7], is presented in Fig. B1. Indeed, a
quite small improvement is noticed in the recovery region down-
stream of the separated zone when the pressure gradient term is
included, whereas the separation location remains the same in both
formulations.

Table A1 LES grid parameters

Nx Ny Nz Number of cells

Mesh A 672 128 160 13.7M
Mesh B 750 128 160 15.4M
Mesh C 672 128 190 18.3M

Table A2 Wall model grid parameters

Exchanging cell Nwm

Case 1 2 50
Case 2 3 50
Case 3 3 100

a) b)
Fig. A2 a) Normalized mean wall-pressure distributions for different meshes. b) Normalized premultiplied spectra of the normalized pressure
fluctuations at the throat ( : mesh A; : mesh B.

Fig. A3 Normalized mean wall-pressure distribution ( : case 1; :
case 2; : case 3). See Table A2.
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Highlights

• More pronounced low-frequency shock oscillations, observed in the case of
large-asymmetric λ-shock, are related to the successive contractions and di-
latations of the large-opened separated bubble.

• For a wide range of nozzle pressure ratios, it was shown that the timescales
of the low-frequency oscillations are strongly correlated to the amount of the
reversal flow inside the separation bubble.

• A new formula is proposed to predict the main tones with a reasonable accu-
racy.

NPR x̄s/δi Max(∆(x̄s)
δi

) ūs Measured Calculated
main tone main tone

1.4 25.95 4.00 55.35 0.00152 0.00167
1.5 26.38 7.56 56.39 0.00196 0.00186
1.6 30.09 8.53 64.61 0.00235 0.00224
1.7 33.44 8.40 72.05 0.00275 0.00259
1.8 37.19 6.83 80.41 0.00308 0.00297
2.5 53.60 3.00 103.15 0.00438 0.00433

Summary of different test cases with a comparison between the measured main-tone
Strouhal number and those calculated using the presented formula.

87
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Abstract

Very-long LES runs were conducted to demonstrate the existence of energetic broad-
band low-frequency shock oscillation (LFO). The absence of any particular upstream
low-frequency forcing was evidenced and it was explicitly shown that the observed low-
frequency shock oscillations were not related to the incoming boundary layer. This led
to conclude that the low frequencies found are likely to be due to the downstream condi-
tion. The timescales involved in such a mechanism were shown to be about two orders
of magnitude larger than the timescales involved in the boundary-layer turbulence. Fur-
thermore, for large interval of nozzle pressure ratio (NPR), those timescales were shown
to be strongly correlated with the amount of reversed flow inside the separation bubble. A
parametric study was conducted in order to study the effect of increasing the NPR on the
LFO. In the light of this study, six different NPRs were used leading to distinguish three
different kinds of separation according to the form of the recirculation bubble and with
three different mechanisms. From a qualitative stand point, a description of the shock
motion is given and an empirical formula based on the one of Zaman (1991) is given.
The formula predicts quite well the main tones with a small rate of error.

5.1 Introduction

When starting a rocket engine on the ground, the chamber pressure is not high enough
for the flow to be supersonic in all the nozzle: the latter is recompressed through a shock
wave so to adapt to external pressure. This recompression is accompanied by a separa-
tion and a loss of symmetry which generates lateral forces. This phenomenon, already
observed on several real engines, can have serious consequences linked to its random na-
ture. The shock-induced boundary-layer separation, frequently found in over-expanded
nozzle flows, causes significant drawback on the aerodynamic performance. This unsteady
phenomenon is associated with more undesirable effects such as; shock oscillations, wall-
pressure fluctuations, boundary-layer separation and vortex shedding, mainly leading to
vibration, noise and side-loads generations. The side-loads can cause deformations of the
nozzle and movements relative to its attachment system. The constraints generated by
these efforts, unsteady in module and direction, are likely to be amplified by the dynamic
effects. They, therefore, constitute a constraining factor in the design of the structure of
the nozzle since they require having thicker nozzles, therefore heavier or shorter, which
entails a reduction in the payload transported. Comprehensive reviews of the topic can
be found in Hadjadj & Onofri (2009). Several models have been proposed in the literature
to define the source of the LFO. First, the researchers looked to the upstream boundary
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layer as an obvious source of the LFO, however, it was very difficult for them to recon-
cile the low frequency of the shock with the high frequency of the incoming boundary
layer. To overcome these difficulties, the researchers assumed that the time scale of the
incoming velocity fluctuations is much smaller than the shock motion (since the shock
speed is generally of the order of 3%). Thus, the link is established and the LFO could
be a result of the high-frequency incoming boundary layer Beresh et al. (2002). This
was the case of Plotkin (1975)’s model which assumes that the shock is convected by
the velocity fluctuations of the incoming boundary layer while the stability of the mean
flow ensures the shock’s mean location. Poggie & Smits (2001) confirmed the previous
findings except for the regions facing low-frequency pressure fluctuations where the tur-
bulent eddy time scale is less likely to be smaller than the shock motion. Further results
from Erengil & Dolling (1993) highlighted two possible reasons for the shock-foot motion.
First, the upstream boundary layer which causes a high- frequency smaller-scale motion
and second, the large-scale pulsations of the separation bubble which induces large-scale
motions of the separation shock foot. Another factor that may be considered is the thick-
ening/thinning motion of the incoming boundary layer as found by Beresh et al. (2002),
McClure (1992) and Gramann & Dolling (1992). The last possible reason to be reported
was proposed by Ganapathisubramani et al. (2007). The authors affirmed that the sepa-
ration line oscillates in a response to the upstream superstructures found in the incoming
boundary layer. That was said for the upstream models. Recently, many studies (Pipon-
niau et al. 2009, Pirozzoli 2010, Dupont et al. 2005, Clemens & Narayanaswamy 2014,
Martelli et al. 2019, Olson & Lele 2011, Zebiri et al. 2020) believe that the plausible
model is that the interaction responds as a dynamical system forced by the downstream
disturbance including recirculation bubbles, shear layer, acoustic feedback or effective ge-
ometry. Pirozzoli (2010) conducted a DNS of a Ma= 2.25 impinging shock interaction in
which he evoked the existence of an acoustic feedback mechanism playing an important
role in driving these low-frequency motions. Touber & Sandham (2011) conducted LES
of impinging SBLI reporting the absence of the superstructure found by Ganapathisub-
ramani et al. (2007) while the low-frequency motion still exists. Their observations led
to establish the minor role of these superstructures in deriving low-frequency motion.
Hence, they referred to the instability of the separation bubble to explain that kind of
motion precising the nature of the mode leading to low-frequency motion as global and
stationary. Confirming the previous results, Dupont et al. (2005) found that the sep-
aration bubble and the separation shock oscillate as a quasi-linear system. A different
model has been suggested by Piponniau et al. (2009) in which they consider the observed
LFO as the main result of the mass entrainment across the mixing layer zone. They also
suggested that there is a direct link between the Kelvin-Helmholtz convective structures
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and the low-frequency motion. Prièbe & Martin (2012) found that the low-frequency
dynamics of the flow could be driven by the low-frequency variations of the shear layer.
Recent studies of Agostini et al. (2012) and Chen et al. (1994) confirmed the implication
of the recirculation bubble in the low-frequency motion generation in one hand. In the
other hand, they exclude the white noise to be a possible source of these low-frequency
motions. Hence, a multitude of additional insights into the possible mechanisms gener-
ating the low-frequency motions, may be gained from the literature. Nevertheless, the
unsteady flow behavior conveyed by the SBLI is still not fully understood, remaining a
challenging research problem. Additional difficulties can be faced when studying this kind
of problem. For instance, when the incoming boundary layer is turbulent the flow usually
exhibits higher low-frequency shock motions which are less coupled from the timescales of
the incoming turbulence. This situation is more challenging from a computational point
of view due to the need to obtain longer time series to resolve the low-frequency motions
Touber (2010). Based on the above state-of-art survey, further studies are believed to
be appropriate, in particular, to enlarge the limited information about the mechanism
in which occur these LFO and to understand the influence of downstream parameters.
Hence, we believe that very long WM-LES based analysis can help achieving improved
physical understanding of such phenomenon. Hence, through the WM-LES we will try
to answer the numerous questions concerning, in particular, the different mechanisms
leading to LFOs. Thus, we mainly focus on the effect of the recirculation bubble, its
size, its position and its placement in the generation of LFOs. In addition, we study the
shock movement, trying to elucidate the way it moves. Finally, we try to formulate its
movement empirically in order to calculate a simple element that is the main tone. The
latter represents one of the element that we aim at their formulation with the future goal
of realizing a simple model for LFOs. The present chapter is organized as follows. The
next section introduces the computational strategy and domain followed by the results
and the discussion. Finally, a conclusion is drawn at the end of this chapter.

5.1.1 Computational strategy and domain

The curvilinear solver used for the present analysis is the same as that used in both
Piquet et al. (2019), Zebiri et al. (2020). For instance, three-dimensional Navier-Stokes
equations are solved with a molecular viscosity µ assumed to follow Sutherland’s law. The
thermal conductivity k is related to µ through k=Cpµ/Pr with Pr=0.72. The convective
fluxes are discretized using sixth-order central scheme for smoothed parts and fifth-order
Weighted-Compact-Non-Oscillatory (WCNS) for shocked regions, with a shock sensor
controlling the switch between the two. Time advancement is ensured using forth-order
Runge-Kutta algorithm (RK4). Then the wall is modeled using the wall model of Piquet
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Figure 5.1: Grid representation of the wall-modeled nozzle test-case showing every 5th
grid-line. For this WM-LES, the grid is regularly spaced following, fstr,y = (2η/Ny−1)
with η is the generalized curvilinear coordinate in wall-normal direction. The nozzle
throat is located at x= 0.

Piquet (2017). The computation mesh, shown in figure 5.1, is generated by mapping a
single structured curvilinear mesh. For this purpose, (C − 2) class functions were used
to ensure the continuity and the differentiability of these functions in order to avoid the
singular points resulting when resolving Navier-Stokes equations. Outside the nozzle, the
mesh diverges and grows to form a background mesh that models the conditions of a
far-field of the experience and to create a spongy zone to prevent/reduce the intensity of
the reflected waves. The grid is exponentially stretched in the vicinity of the divergent to
capture the physical phenomena. Further details about the computational domain, the
initial and limit boundary conditions can be found in Zebiri et al. (2020).

5.2 Results and discussion

The present LES attempts to reproduce the experimental results of Papamoschou et al.
(2009) and the numerical results of Olson (2012) and of Piquet (2017). Olson (2012)
performed WR-LES in which he showed the effects of the grid convergence while Piquet
(2017) followed the guidelines of Olson study. To reduce the computational cost, Piquet
(2017) performed a WM-LES simulation based on the results of his previous WR-LES,
where no grid convergence was found. Estimated as necessary and in order to establish
the fidelity of the LES database, a grid convergence study is conducted here in order to
highlight the effect of the mesh refinement in streamwise and spanwise directions. Table
5.1 shows the overall grid size of the three meshes.

It is important to accurately capture the boundary layer as its interaction with the
shock is driving the large-scale instability. Nevertheless in the present case, we can’t
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Table 5.1: grid parameters

Nx Ny Nz Nb cells
Mesh-A 672 128 160 13.7M
Mesh-B 750 128 160 15.4M
Mesh-C 750 128 190 18.3M

compare the Van Driest transformed mean velocity profiles and the fluctuating velocities,
near the wall, with what was done by Piquet (2017) and Olson (2012) because we do not
resolve the BL but we use a wall model instead. Therefore, we compare the mean pro-
files of pressure, the shock-position probability-density function (PDF) and the spectral
content of the shock-position.

5.2.1 Validation

Normalized mean wall pressure is shown in figure 5.2a. It is speculated that the wall-
pressure evolution would be closer to the experimental findings of Papamoschou et al.
(2009) as shown on the figure. It can be seen that the WM-LES predicts quite well the
static pressure in both attached and separated zones. Although a pressure plateau can
be observed in the WM-LES data towards the recovery zone, as a consequence of the
compression waves observed in the wall-modeled case, which does not coalesce within the
viscous sublayer because of the low resolution close to the wall ∆y+ ∼ 45. As explained
by Chapman et al. (1958) in the free-interaction theory, the separation length Ls reduces
linearly with the displacement thickness, which is the case in the present WM-LES due
to the unresolved part of the boundary layer. In fact, separation occurs when the viscous
sublayer cannot sustain the strong adverse pressure gradient imposed by the inviscid
flow. Removing the viscous sublayer of the incoming boundary layer results in stronger
compression waves that collapse rapidly into a strong separation shock which forms a
lambda shock pattern. From figure 5.2a, it is seen that varying the grid resolution does
not produce significant differences in the wall pressure before the separation and in the
shocked region. Therefore, we consider that the grid resolution of mesh-A is sufficiently
fine to only have marginal effects on the statistical results.

The shock-position probability-density functions are computed and shown in figure
5.2b. The PDF of both the experimental (Papamoschou et al. 2009) and the present
numerical shock-positions are found to agree unmistakably well. Interestingly, they both
seem to match a Gaussian-like distribution which proofs the accurate amplitude of the
shock excursion captured by the present WM-LES compared to the WR-LES of Olson &
Lele (2013). A comparison based on the spectral content of the shock-position is given
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(a) (b)

(c)

Figure 5.2: (a) Normalized mean wall pressure; (◦): experimental results Papamoschou
et al. (2009),(b) Probability density function (PDF) of the shock position; ( ) : present
LES, (◦): experimental results Papamoschou et al. (2009), (◦): previous LES Olson &
Lele (2013). (c) Cross power spectral density of the normalized shock position; (◦):
experimental results Johnson & Papamoschou (2010)

in figure 5.2c. The numerical results of the present WM-LES share similar low-frequency
dynamics with the experimental results. With the success in reproducing the nozzle flow,
LES are found capable of accurately reproducing the low-frequency shock motions.

5.2.2 The inlet influence

A preliminary check is necessary to verify the emptiness of the incoming boundary layer
from the low frequencies. To be more convinced of the absence of upstream low frequen-
cies, one can develop the time history of the velocity fluctuations seen along a line-probe
just before the throat position, as shown in figure 5.3a, where time is converted into
space assuming the fluctuations are convected at the local mean velocity, as in figure 4
in Ganapathisubramani et al. (2007) (Taylor’s hypothesis) and in figure 6.9 in Touber
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& Sandham (2011). Once inside the computational domain, one can see that structures
up to 40δi long may develop. Using the scaling argument of Ganapathisubramani et al.
(2007), one would thus need to have 120δi-long superstructures in the LES to explain
the observed energetic low-frequency oscillations. This is nearly three times the size of
the longest structures present in this LES, making the incoming superstructures an im-
probable origin for the observed low-frequency. This does not mean that long coherent
upstream disturbances are not important when present in practical applications but they
are not found to be necessary to observe the low-frequency shock motions as explained
by Touber (2010). Having established the absence of low frequencies in the incoming
boundary layer, we proceed to study the different aspect of this flow.

The autocorrelation functions Rϕ′ϕ′ =
Rϕ′(t0),ϕ′(t0+∆t)
Rϕ′(t0),ϕ′(t0)

, is computed and averaged over

time for 2 x-locations, obtained from the previous signal (u′) recorded at the wall (z/δi =
10), were computed and are provided in figure 5.3b. High levels of correlations are noticed
over a time lag of t? = 10. The correlation function is seen to drop to zero in about 10
boundary-layer thickness (10δi). Furthermore, the correlation function remains at zero
for large time intervals leading to conclude that no cyclic patterns have been enforced
at the inlet as explained Touber (2010). The shape of the autocorrelation function is of
particular interest. No wavy structures with clear local maxima and minima are found,
this indicates that the shock motions are broadband and not made of harmonic motions,
also it shows that the LES is well converged at low frequencies.

5.2.3 Wall pressure fluctuations

As known, the low-frequency pressure fluctuations near the shock foot are broadband in
nature. This implies that in order to guarantee the convergence of the spectral-analysis
results, one must capture several times the most significant period. Although the term
several times is relatively vague, we suggest that covering about 50 cycles can give a good
estimate Touber & Sandham (2011).

The wall-pressure signals were recorded at the lower wall. At each probe, the normal-
ized autocorrelation was computed to obtain the autocorrelation maps shown in figure
5.4. A clear band with large-scale black and white structures, corresponding to high lev-
els of correlation over large time lags, are noticed for the three NPRs. These large-scale
structures start from the mean separation location for each NPR, and to extend untill the
exit in the case of NPR= 1.7. A different configuration is noticed for the two other NPRs,
where the large-scale structures collapse just after the separation location. The streaky
structures seen afterward correspond to a richer/higher-frequency phenomena resulting
from the reattached boundary layer in the case of NPR= 1.4 and from the mixing layer
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Figure 5.3: (a) Reconstructed u′/u∞ field from a prob located at x/δi = −4 and y/δi =
0.78. (b) Normalized streamwise-velocity fluctuation (u′) autocorrelation at y/δi =−0.78
and z/δi = 10
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in the case of NPR = 2.5. This implies that the low-frequency motions are less present
upstream of the separation location and more energetic in the separated region. Further-
more, the fact that the large black and white bands, existing only downstream the mean
separation location, suggests that the source of the low-frequency is far to be upstream
of the separation. This is consistent with many previous findings like Touber & Sand-
ham (2011), Dussauge & Piponniau (2008), Dupont et al. (2005), where low-frequency
wall-pressure fluctuations were shown to originate downstream the separation.

The large bands are composed of two parts with small strangulation, clearly seen in
the figure, that separates the two regions. Where, the first region corresponds to the
movement of the shock often begins before the upstream-mean limit of the recirculation
bubble, while the second part corresponds to the recirculation bubbles. The low fre-
quencies spacial extension differs from one NPR to another because of the remarkable
difference in the size of the recirculation bubbles, as shown in Figure 5.5. It can also be
noticed that the nozzle exit is entirely dominated by high frequencies phenomena, except
for NPR = 1.7, where a large recirculation bubble opened to the ambient dominates the
entire distance between the separation position and the exit of the nozzle. For the upper
wall of the same NPR, the bubble closes before the exit which frees the way in front of the
high frequency phenomena to manifest towards the exit of the nozzle. Nevertheless, the
frequencies of these phenomena are still low compared to the frequency of the turbulent
boundary layer which is the case for all the phenomena behind the closed recirculation
bubble. (see figures 5.4a,5.4f).

Figure 5.6 was obtained from the high-spatial/high-temporal resolution pressure field
at the wall. A reference point is chosen inside the incoming boundary layer and centered at
the separation region. The two-point correlations function in space and time is computed
by,

Rϕ′ϕ′ =
Rϕ′(x0,t0),ϕ′(x0+∆x,t0+∆t)

Rϕ′(x0,t0),ϕ′(x0,t0)
(5.1)

where ϕ= p′/prms and x0 is the centered location according to each figure.
In the separation region, when looking more closely at the positive wave region of

both figures (5.6a and 5.6b), a mild ridge corresponding to positive waves propagating at
the velocity of cw seems to emerge. This ridge is related to the acoustic wave traveling
outside of the boundary layer. For the three cases, the wall shows the existence of a ridge
observed along the convection speed of the mixing layer u2 ∼ 0.45u∞ corresponding to
the development of coherent structures in the shear-layer at the bubble interface. The
subsonic acoustic waves u∞− cw seem to be strongly correlated in time for NPR = 1.7.
This behavior validates the assumption made by many (Bogar et al. 1983, Johnson &
Papamoschou 2010, Olson & Lele 2013) on the two-way coupling between the shock and
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Wall-pressure autocorrelation functions, as a function of streamwise location
for different NPRs; (a, b): NPR=1.4 lower and upper wall respectively, (c, d): NPR=1.7
lower and upper wall respectively, (e, f): NPR=2.5 lower and upper wall respectively.
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Figure 5.5: (a) Recirculation bubbles at the lower wall for different NPRs; red: NPR=1.4,
blue: NPR=1.7, black: NPR=2.5, (b) Recirculation bubbles for NPR=2.5 and (c) Re-
circulation bubbles at the lower wall for different NPRs; orange: NPR=1.5, sky− blue:
NPR=1.6, purple: NPR=1.7 and green: NPR=1.8
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(a) (b)

(c)

Figure 5.6: Space-time correlation of the normalized pressure field in the separated zone
at the separation location for different NPRs; (a): NPR=1.4, (b): NPR=1.7 and (c):
NPR=2.5.
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(a) (b)

(c)

Figure 5.7: Normalized pre-multiplied spectra map of wall-pressure fluctuations
StF(p′/prms) at the lower wall, for different NPRs; (a): NPR=1.4, (b): NPR=1.7 and
(c): NPR=2.5.
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the nozzle exit that leads to the unsteady oscillation of the shock.
Figure 5.7 shows Normalized pre-multiplied spectra map of wall-pressure fluctuations

along the streamwise direction. One can notice that the separation region clearly stands
out. More precisely, the energetic broadband low-frequency region is very localized near
the separation point for the three NPRs. In the remaining part of the separation bubble,
the energy is distributed over almost four decades of Strouhal number. Upstream of the
separation position, energetic low frequencies are absent whereas high-frequency phenom-
ena can be found leaving a footprint in the spectrum corresponding to the boundary-layer
turbulence.

5.2.4 Low-Frequency Oscillations (LFO)

Figure 5.5-a shows three different kind of recirculation bubbles which correspond to three
different low-frequency motion behaviors. For low NPRs i.e. (NPR < 1.5), the recircu-
lation bubble is located upstream far from the outlet of the nozzle, and it is closed, so it
communicates very little with the environment. In this situation, the LFO are therefore
not mainly governed by the change in the effective geometry of the nozzle resulting from
the change in the back flow entering the nozzle. The shock oscillations, in this case, are
very limited, they are done at a constant velocity as will be shown later in section 5.2.5.
The span of the distance travelled by the shock, during a cycle, is also limited and small
(see table 5.2). For NPR ∈ [1.5 : 2.3], the recirculation bubble takes place in the middle
of the divergent and it extends to the exit of the nozzle. In addition, it opens and often
communicates with the ambient. The LFO in this case are clear, large and have very low
frequency movement. For this case, the LFO are believed to be governed by the changes
in the back-flow rate. The amplitude of the oscillations, for this NPR range, is greater
being worth of ∼ 8δi which is in good agreement with the experiment (Papamoschou
et al. 2009) (see table 5.2). A precise explanation seems to be very complicated to give
but we can say that having a large recirculation bubble sitting on one side. By sucking
and discharging the air, the operation generates a significant change in the size of the
bubble and consequently the effective geometry of the nozzle. Last for NPR ∈ [2.4 : 2.5],
the recirculation bubbles are very close to the outlet, open to the ambient all the time.
This case is like the first case; fewer oscillations are observed (see table 5.2). This can be
explained by the presence of two large bubbles almost identical in the upper and lower
walls (see figure 5.5-b). This situation creates a certain balance between the two back
flows and causes less change in the symmetry of the nozzle effective geometry. As a result,
fewer LFO are noticed. Remains to remember that the jet was quasi-symmetrical in the
first and the third case and asymmetrical in the second case.

In what follows, we deeply analyse the second case. To do this, three NPRs in addition
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Table 5.2: Summary table of different cases treated.

NPR x̄s/δi Max(∆(x̄s)
δi

) ūs Measured Calculated
main tone main tone

1.4 25.95 4.00 55.35 0.00152 0.00167
1.5 26.38 7.56 56.39 0.00196 0.00186
1.6 30.09 8.53 64.61 0.00235 0.00224
1.7 33.44 8.40 72.05 0.00275 0.00259
1.8 37.19 6.83 80.41 0.00308 0.00297
2.5 53.60 3.00 103.15 0.00438 0.00433

(a)

Figure 5.8: (a) Mean shock velocity and (b) Main tone, as a function of the nozzle
pressure ratio; (�) theoretical values from Zaman et al. (2002), (�) empirical values.
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(i) (ii) (iii) (iv)

(d)

Figure 5.9: Normalized cross power spectral density of the shock position and the entering
mass flow rate; (a) NPR=1.5 (b) NPR=1.6 (c) NPR=1.7 (d) NPR=1.8.
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to our main case (NPR = 1.7) are developed: 1.5, 1.6 and 1.8. The figure 5.5-c) represents
the mean recirculation bubbles. The four bubbles are relatively large, the largest among
them is obtained for NPR = 1.5. The latter closes before the nozzle exit while the other
bubbles are open to the ambient. The largest of the bubbles opened to the ambient is
obtained for NPR = 1.6. At this NPR, the largest amplitude of oscillation is recorded.
Afterward, the bubble width necessarily decreases because of the average position of
the shock pushed forward by the increase in NPR. On the other hand, the thickness of
the bubble increases with the increase in NPR. Concerning the oscillations span shown
in the table 5.2, the maximum, as mentioned before, is obtained for NPR = 1.6, the
oscillations span tends to decrease and consequently less shock activity is recorded when
increasing the NPR. Regarding low frequencies, an increasing trend is noticed for the
main tones defined by Zaman et al. (2002) (see table 5.2). This was obvious because
the main tone is directly linked to the separation position. In their study, Zaman et al.
(2002) proposed a model consisting of a feedback loop within the diverging section of the
nozzle. First, they assumed a feedback loop consisting of a disturbance generated near the
throat, the disturbance growing (accompanied by the formation of discrete vortices) while
propagating downstream the diverging section. Then, an acoustic feedback occurring
when the vortex exits the nozzle to generate new disturbance at the throat. After that,
they assumed that the disturbance propagates downstream with a convective speed Uc,
and the feedback occurs at acoustic speed (through the boundary layer). Thus, they
found that the time needed for upstream information transmission through the subsonic
zones is given by the relation: T = L[ 1

Uc
− 1

c0
] with L is the length of the divergent and

c0 is the celerity of the sound. In this study, we proposed a similar model in which we
believe that disturbance is generated near the separation point and the convection speed
can be replaced by (u∞−c0,w)s with u∞ defined as the freestream speed and c0,w defined
as the celerity of sound at the wall in the separation level. The values of (u∞−c0,w)s are
given in the table 5.2 for each NPR. These values are used to calculate the main tones,
where very good agreement between the theoretical and numerical results is found (see
figure 5.8). Still with the aim of revealing the LFO mechanism, we are trying here to
find correlations between the shock movements and the various parameters likely to be
behind these LFOs. The figure 5.9 shows the normalized cross power spectral density
(cpsd) of the position of the shock and the back flow, the whole is plotted for 4 different
positions. We note that the oscillations of the shock are very well correlated with the
back flow. The degree of correlation varies according to the position and the NPR. The
two parameters show some similarities for the low-frequency phenomena more precisely
for the main tones obtained for each NPR. This guides us to consider the back flow as
a factor very involved in this mechanism. However, a good correlation between the two
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(a) (b)

Figure 5.10: (a) Probability density function for the shock velocity; (b) Shock position
vs. time; ( ) Mach stem, ( ) shock foot

parameters does not mean causation that is very difficult to find and there are fewer
mathematical tools to verify it.

5.2.5 Shock motion

For the shock movement, a small difference in the way they behave the two parts of the
shock, i.e. the Mach stem and the shock foot, is noticed. Figure 5.10-a represents the
PDF of the shock oscillation. One can noticed that the foot shock is governed by several
velocities among them, of course, the speed of the main shock to which is added other
velocities related to the location of the shock foot, obviously, they are related to the
incoming boundary layer as found by Erengil & Dolling (1993) and also to the mixing
layer. It is clear that both of them moves as a response to a low-frequency forcing but it
can be noticed that the shock foot movement is accompanied with more high-frequency
fluctuations. The figures 5.10-a and 5.11-a clearly show that the Mach stem moves at
almost a constant speed in both directions confirming the observation of Gonsalez &
Dolling (1993). Further details can be noticed by observing the displacement of the
shock. For instance, for the same distance, the Mach stem moves downstream more
quickly. This fact can be explained by the way in which this movement is done. Indeed,
the shock does not move forward or backward continuously but it pauses and it is this
number of pauses, shown in figure 5.11-c as a rate of the time taken by the shock to move
upstream/downstream one time. The rate of pauses can vary between the two directions
of movement, giving different average velocities (see figure 5.11-b)and thus making one
movement faster than the other. Figure 5.11-c shows that the rate of pauses was greater
in the upstream movement for ten of eleven oscillations making the shock looking faster
when moving downstream.
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(a)

(b)

(c)

(d)

Figure 5.11: (a) Mach stem oscillation velocity vs. time, (b) Averaged Mach stem span
by direction by cycle, (c) Mach stem oscillation velocity by direction by cycle and (d)
Pausing rate per direction.(�) Upstream-movement, (�) Downstream-movement

5.3 Concluding remarks

The behaviour and the characteristics of the shock induced separation flow in over ex-
panded planar nozzle with a mild divergent angle, has been analyzed by means of very
long three-dimensional WM-LES. Detailed flow statistics have been presented, including
steady and unsteady parameters. Particular effort has been made to understand the low
frequency phenomena occurring inside the nozzle. Consistently with the experiment and
the previous numerical simulations, the shock is found to oscillate at a very low frequency.
Confirming the previous findings, no low frequencies were captured in the upstream of
the separation zone. The present findings lead to consider that the origin of the LFO
is the interaction of the downstream conditions. A parametric study was conducted to
study the effect of increasing the NPR on the LFO. In the light of this study, the implica-
tion of the recirculation bubble in the low-frequency motion generation is proved. Thus,
through this study, we have been able to show that the quasi-symmetrical configuration
is stable while the asymmetrical configurations are unstable favoring LFOs. Additionally,
the reversal flow is found to be well correlated with the LFO leading to consider it as the
main factor causing the LFO for this regime. Finally, more light was shed on the shock
motion resulting in detailed description of the way in which it moves and an empirical
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formula similar to the one proposed by Zaman et al. (2002) was proposed to calculate
the main tone.
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Highlights

• Large-eddy simulations are employed to investigate the 3D unsteady
shock-wave boundary-layer interaction.

• Common and distinctive flow features of both conical and planar nozzle
flows are highlighted.

• The amplitude of the shock excursion is less pronounced in the conical
nozzle compared to the planar case.

• Two main unsteady modes are revealed in conical nozzles; non-helical
(low-frequency) and helical (high-frequency) modes.

(a) (b)

DMD mode reconstruction; (a) non-helical (b) helical mode in form of the isovolume of the
real part with negative and positive pressure fluctuations, p′, for two different frequencies.
Red to yellow color indicates positive pressure fluctuations, yellow being the highest. Dark
blue to light blue indicates negative pressure fluctuations, light blue being the highest.
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Large Eddy Simulations (LES) of an over-expanded conical nozzle are performed to study the complex 
interaction between the turbulent boundary layer, the internal shock wave and the separated mixing 
layer. Both wall-modeled (WM) and wall-resolved (WR) LES strategies are employed to investigate the 
three-dimensional unsteady aspect of shock-wave boundary-layer interaction (SWBLI). First, a comparison 
of flow behavior in a conical nozzle against an equivalent planar nozzle is made. It was found that whilst 
both configurations may share common flow features such as large-scale turbulent structures and shock-
wave patterns, they show contrasts on the symmetry of the flow and the shock dynamics. In particular, 
the latter was found to have a shorter excursion length in conical nozzle compared to the planar one. The 
strong adverse pressure gradient tends to reduce the amplitude of the shock movements in conical flows. 
Additionally, the dynamic mode decomposition (DMD) analysis showed the existence of two unsteady 
modes; the non-helical modes which are low-frequency based, appearing mainly in the streamwise forces 
and the helical modes which are high frequency dominated modes and are largely responsible for the 
side side-loads generation.

© 2020 Elsevier Masson SAS. All rights reserved.

1. Introduction

With the renewed interest in supersonic flights, studying super-
sonic nozzle flows is becoming of such importance especially for 
reusable rocket launchers. As a matter of fact, during the take-off 
and the first phase of flights, the ratio between the atmospheric 
pressure and the nozzle exit pressure is significantly higher than 
the nominal ratio. The nozzle then operates in an over-expanded 
regime. The boundary layer at the wall no longer withstand the 
adverse pressure gradient and separates from the wall, creating 
thereby an oblique shock. The distribution of this separation is 
often random, making the flow asymmetrical and promoting the 
appearance of lateral (or side) charges. Besides, the fluctuations in 
the values and directions induced by this separation can affect the 
characteristics of the resulting thrust vector and adversely affect 
the overall performance of the vehicle. These unsteady phenom-
ena occur at low frequencies which may involve scales that are 
likely to constitute a source of aerodynamic excitation of certain 
eigenmodes of the structure and be detrimental to its integrity. 
Lateral forces are therefore a limiting factor in the design of nozzle 
geometries, since they generally result in a choice of thicker (and 
therefore heavier) nozzles. In such nozzle flows, additional instabil-
ities may also occur resulting from different sources including the 

* Corresponding author.
E-mail address: boubakr.zebiri@insa-rouen.fr (B. Zebiri).

boundary layer, the mixing layer and the recirculation zones, which 
makes this flow quite complicated and challenging to study. To 
this end, many studies have been conducted to shed more light on 
these complex phenomena. In terms of flow separation, two types 
of configurations can be found; Free Shock Separation (FSS) and 
Restricted Shock Separation (RSS). The transition between them 
leads to a sudden change in the wall-pressure distribution result-
ing in strong side-loads generations [1–3]. A literature review of 
shock-wave boundary layer interaction (SWBLI) brings clear evi-
dence of the existence of broadband and energetically-significant 
low-frequency oscillation (LFO) in the vicinity of the separated 
shock. This phenomenon which is associated with complex flow 
structures, including vortex shedding, jet oscillations and multi-
ple shock reflections, was investigated by many researchers [4–13]. 
Two main categories of LFO mechanisms can be broadly found: The 
first points out the influence of the upstream boundary conditions 
through the incoming boundary layer [14], while the second con-
cerns the downstream influence via the interaction between the 
separated boundary layer, the recirculation region, and the shock 
system. In their experimental studies of SWBLI over a compres-
sion ramp, Ganapathisubramani et al. [14] reported the existence 
of very long coherent structures of fifty boundary-layer thicknesses 
long in the upstream boundary layer. They found a correlation 
between the low-frequency response of the separation point and 
these large-scale regions of the incoming turbulent boundary layer. 
Furthermore, the structures are found to scale with ū/2λ, where ū
is the upstream free-stream velocity and λ is the size of the struc-

https://doi.org/10.1016/j.ast.2020.106060
1270-9638/© 2020 Elsevier Masson SAS. All rights reserved.
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ture. This scale was confirmed when comparing with the work of 
[13]. In addition, Ünalmis et al. [15] considered the LFO as a result 
of thickening and thinning of the upstream boundary layer. This 
hypothesis as refused later by Beresh et al. [16]. The later found a 
correlation between the LFO of the shock and the upstream veloc-
ity fluctuations for the same configuration of a compression corner. 
However, many studies can be found in the second category. They 
may defer in the mechanism in which the low-frequency phenom-
ena occur but they are all produced by the downstream conditions. 
Piponniau et al. [17] propose a model which explains breathing of 
the separation bubble and low-frequency shock motion in terms 
of fluid entrainment in the mixing layer, whereby fluid from the 
separation bubble is continuously entrained in the mixing layer, 
shed downstream, and must be replenished at a time scale corre-
sponding to the low-frequency shock oscillations. Daussage et al.
[12] considers the eddies in the separated region as the main ex-
citation source of the LFO. Pirrozoli et al. [18] proposed that the 
LFO may be produced by acoustic disturbance resulting from the 
interaction of the coherent structures, shed by the mixing layer 
next the separation point, and the incident shock. Zaman et al.
[4] investigated experimentally and theoretically the shock-wave 
oscillation in transonic diffusers. They concluded that the mech-
anism creating those low-frequency oscillations is stimulated by 
acoustic resonance, where the low-frequency mode corresponds to 
the case when the one-quarter wavelength is fitted within the ap-
proximate distance from the foot of the shock to the nozzle exit. 
The same conclusions were made by Johnson et al. [9] when in-
vestigating, experimentally, the flow in a supersonic planar nozzle. 
Olson et al. [10] investigated the same nozzle as [9] numerically 
and confirmed the previous findings. Martelli et al. [19] found, for 
the same nozzle, that the self-sustained oscillation is driven by 
a pressure imbalance between the pressure level downstream the 
shock and the ambient. Based on the above, it is clear that super-
sonic nozzle flows, and in particular the associated low-frequency 
unsteadiness, are still an active research field where no consensus 
on their origin is found. Intending to shed more light on this com-
plex flow, three-dimensional large-eddy simulations are used in 
this study. Both wall-resolved WR-LES and wall-modeled WM-LES 
are used to simulate an over-expanded conical nozzle. A compar-
ison is made with an equivalent planar nozzle. The objective is to 
gain insightful understanding of the SWBLI phenomena and the 
LFO in nozzles by means of high-fidelity large eddy simulations. A 
dynamic mode decomposition is also performed for further analy-
sis of the unsteady aspects of the SWBLI phenomenon.

The present paper is organized as follows. The governing equa-
tions and the numerical method are presented in the next sec-
tion 2. Then, the simulation setup will be presented. Right after, 
the results and the discussion will be introduced. The last sec-
tion will be devoted to the DMD analyses, performed based on 
the spectral analysis results. Concluding remarks are given at the 
end of the paper.

2. Governing equations and numerical method

In this section, an LES methodology in curvilinear coordinates 
is developed in which a curvilinear coordinate system and domain 
decomposition are used to treat accurately complex geometries. 
The starting point is the filtered Navier-Stokes equations written 
in arbitrary curvilinear coordinate systems, which implies a trans-
formation from the computational to the physical space. However, 
the computational space needs an additional transformation to 
reconstruct the physical space employing the following mapping 
transformation ξ i = (ξ , η, ζ ). By mapping the chain rule and using 
metrics, we have:

(
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where J = ∂(ξ,η, ζ )/∂(x, y, z) is the Jacobian matrix of the trans-
formation. The governing equations are then written in the conser-
vative form as follows:
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where ρ , ũi , Ũ j , p, T and ̃e are the filtered density, velocity com-
ponents, jth contravariant velocity component, pressure, tempera-
ture and total energy, respectively.

The subgrid shear-stress tensor, τ ′
i j , and the subgrid heat-

diffusion flux, q̇ j , are modeled according to the eddy-viscosity 
hypothesis [20,21]. µ(T ) and λ(T ) are the viscosity and the ther-
mal conductivity corresponding to the filtered temperature T and 
δi j is the Knonecker’s symbol. Note that the generalized form of 
the equations contains three times more terms than the Carte-
sian ones, implying an extra computational time. Although the 
conical nozzle is best described in cylindrical coordinates, this 
choice comes with the centerline-singularity issue and the asso-
ciated time-step restriction. A possible compromised solution is 
to use a domain decomposition (DD) method. The basic idea of 
the DD method used in this work is detailed in [22]. As for the 
wall modeling strategy, we use a wall model which combines two 
well-known wall models of Kawai et al. [23] and Duprat et al. [24]. 
The first model is suitable for equilibrium boundary layers at high 
Reynolds number and non-equilibrium shock/boundary-layer inter-
action problem, while the second one allows to better account 
for the presence of streamwise pressure gradient. Following the 
present methodology, improvements of the mean pressure profile 
have been obtained, mainly in the recovery regime downstream of 
the separation zone [25].

3. Simulation setup

The code used in this work is a curvilinear explicit finite-
difference Navier Stokes solver with WCNS (Weighted Compact 
Nonlinear Scheme) /Central hybrid scheme for space discretization 
and RK4 (4th-order Runge Kutta) for time integration. The code 
uses the HDF5 library for IO and the MPI library for parallelization, 
it also uses the wall-model developed in [26]. Fig. 1 shows the 
wall-resolved grid representation with the two overlapping grids. 
The internal grid, )1, uses constant spacing in both y and z direc-
tions, while the external grid )2 is stretched in the radial direction 
to ensure WR-LES grid resolution close to the wall. The overlapping 
limit between the two grid is set to R)1 = 0.6 R(x), where R(x) is 
the outer radius of the cross section at the streamwise position x. 
The buffer zone between the inlet and the throat is approximately 
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Fig. 1. (a) Schematic of the nozzle geometry, (b) Grid representation from the Wall-Modeled case showing every 5th grid-line, with )1 is the internal mesh (Cartesian 
coordinates) and )2 is the external mesh (cylindrical coordinates).

28 inlet BL thickness δi , allowing sufficient extent for the bound-
ary layer to develop. The outside domain is similar to the planar 
nozzle flow of [26] with 25Ht length where Ht is the nozzle-throat 
height. For convenience, all figures presented in this paper will use 
the classical wall-normal notation y equivalent to the radius coor-
dinates y = (r − R)1 ) cosθ . The angular/spanwise direction θ will 
be represented by the z-direction with z = (r − R)1 ) sinθ , unless 
otherwise specified.

The incoming boundary layer characteristics are similar to the 
planar case [26]. The Reynolds number Re = ui,∞ Rt

νi,∞
≃ 90000, 

where ui,∞ , νi,∞ and Rt are the inlet freestream velocity, the 
kinematic viscosity and the nozzle throat radius, respectively. The 
boundary layer conditions at the inlet, use in this work, are the 
same as [26], using the inflow technique of Xie and Castro [27] ex-
tended to compressible flows by [7]. The method has been adapted 
for the cylindrical coordinates r-θ . For the outlet boundary condi-
tion, we use a buffer area combined with pressure far-field bound-
ary conditions to damp the acoustic waves. Both wall-resolved and 

wall-modeled simulations are conducted using the same boundary 
layer parameters compared to the planar flow [26].

The product δ R ′ (R ′ being the curvature of the wall and δ the 
boundary layer thickness at the point of maximum curvature) is 
close to zero due to the high radius of curvature of the diver-
gent section. Thus, the present wall-model from [25,26] can be 
used for the present configuration as long as the transverse cur-
vature compared to the boundary layer thickness is low enough, 
i.e. δ R ′ < 0.25. In the present study, the characteristic surface-
curvature parameter is about δth R ′ = 0.05.

To make the comparison more meaningful, we kept the same 
incoming boundary layer as in the planar case of [26]. Also, the 
shock position must be similar for both nozzles. In order to fit the 
shock position of the planar case, two solutions are proposed: (i)
the nozzle geometry is kept but the pressure gradient across the 
boundary layer will be changed. (ii) The pressure gradient follows 
the planar case while the geometry (area ratio ε) is decreased. 
Since reducing the divergent angle to the adequate value (second 
solution) leads to a pipe flow (ε = 1.2), the first solution is de-
cided. Furthermore, the NPR is adjusted according to the isentropic 
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Table 1
Grid parameters of the cylindrical nozzle flows.

Nξ N)1
η N)1

ζ N)2
η N)2

ζ Lb/Ht -x+
i -y+

i R-θ+
i Nb cells

WR-LES 896 99 99 72 512 2.8 36 [1 : 30] 20 41 M
WM-LES 672 81 81 26 256 2.8 60 45 40 8.8 M

relation and set to 2.0, so that the isentropic profiles between the 
planar and the cylindrical nozzles are the same.

The grid configurations for both WR- and WM-LES are shown
in Table 1. The wall-unit grid spacing is similar to the planar case 
of [26]. The angular spacing in wall units R-θ+ = 20 is set up 
to match the value of the planar nozzle flow. From the literature 
[28–31], the angular spacing in LES of pipe flow should be in the 
range of 15-40. The number of points of the internal grid )1 is set 
as an odd integer, so that we get the centerline aligned with the 
grid. The wall-normal r-direction is stretched in the wall-resolved 
case to match the resolution near the wall, i.e. -y+ < 1.

As for the planar case of [26], the WR- and WM-LES are initial-
ized using the Klein method [32]. The results are averaged using 
slices extracted from the simulation during a dimensionless time 
(t⋆ = t.ui,∞/δi ) t⋆ ∼ 4000 for the wall-resolved simulation and 
t⋆ ∼ 18000 for the wall-modeled simulation.

4. Results and discussion

4.1. Incoming boundary layer

In the present LES, the incoming boundary layer is not fully-
developed across the section. The boundary layer thickness is 
about 5% of the radius at the throat. Fig. 2-a shows the Van Dri-
est velocity profiles downstream of the inlet at x/δi = −10 for the 
wall-resolved simulation. The velocity in the overlap region and 
the outer layer is shifted upward compared to the planar flow but 
the slope of the log-law follows the planar case. It confirms the 
conclusions on the pipe flow of [22] where the Von Karman con-
stant κ of the log-law is constant and the coefficient C is affected 
by the transverse curvature effects.

Conversely, Fig. 2-b shows the second-order statistics along the 
wall-normal direction where all the solutions show a good agree-
ment between the cylindrical and the planar flow from [26]. For 
fully-developed pipe flow, the effect of transverse curvature can be 
important on the wall-normal Reynolds stress and the wall-normal 
r.m.s fluctuations [33]. In the present wall-resolved simulation, the 
wall-normal Reynolds stress is similar to the planar nozzle flow. 
Second-order statistics do not seem to be influenced by the wall 
curvature.

Fig. 3 shows the wall turbulent structures at y+ ∼ 20. The 
streaks observed in [26] are again captured by the wall-resolved 
LES. The effect of the synthetic boundary condition is captured in 
the region extending from the inlet to x/δi ∼ −15 corresponding 
to the length of the coherent structure observed by [27] of about 
10-15 δ. Downstream of the throat, the turbulent structures seem 
to be affected by the favorable pressure gradient present in the di-
vergent section of the nozzle.

Fig. 4-b shows the Clauser’s parameter β = δ⋆

τw

dp
dx along the x-

direction. The pressure gradient is increased by 25-40% compared 
to the planar case. The buffer section, upstream of the throat, is 
subjected to a stronger pressure gradient due to the reduced cross-
section of the nozzle compared to the planar case which does not 
use side walls. Clauser’s parameter is about 0.35 at x/δi = −10, 
while the planar case was about 0.2. The profiles in Fig. 4-b are 
subjected to more pronounced pressure gradient compared to the 
planar solution which could explain the gap observed in the log-
law Fig. 2-a.

Fig. 2. (a) Van Driest velocity profiles along the wall-normal direction at x/δi = −10; 
: cylindrical WR-LES, : planar WR-LES, : u+ = y+ and : the log-law 

(u+ = 1
κ ln(y+) + C ) with κ = 0.41 and C = 6.2. (b) WR-LES: Normalized velocity 

RMS along the wall-normal direction at x/δi = −10; : u+
rms , : v+

rms , : w+
rms , 

: turbulent shear stress, : planar WR-LES [26]. (For interpretation of the col-
ors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. WR-LES: Instantaneous velocity fluctuations in x-θ plane at y+ ∼ 20.
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Fig. 4. (a) WR-LES: Boundary layer thickness along the x-direction; : planar WR-
LES, : cylindrical WR-LES. (b) WR-LES: Normalized pressure gradient along the 
x-direction; : planar WR-LES, : planar WR-LES from [10], : cylindrical WR-
LES, : cylindrical WM-LES, : planar experimental results from [9].

Fig. 5-a shows the grid resolution near the wall in wall-unit. 
The first grid spacing along the nozzle wall of the wall-resolved 
case satisfies the condition of -y+

min ≤ 1. Fig. 5-b shows the wall 
pressure distribution for the wall-resolved and the wall-modeled 
simulation. The concordance between the two solutions shows that 
the wall-modeled simulation is able to properly capture the pres-
sure gradient effect. One can also notice a small difference in the 
separated region where the wall-resolved distribution is smoother 
than the wall-modeled one. This behavior is due to stronger com-
pression waves in the wall-modeled simulation in the interaction 
zone upstream of the separation point. As explained in [26], the 
coarse grid of the wall-modeled case reduces the length of inter-
action and increases the strength of the compression waves.

Fig. 6 shows the root mean square (r.m.s) of wall pressure p′ for 
the WM-LES. The p′ is slightly reducing along the boundary layer 
upstream of the separation. At the separation, i.e. x/δi = 37.1, the 
p′ is intermittent in the interaction zone, as explained by [34]. In 
fact, the wall pressure jumps back and forth between a lower mean 
value p1 in the region ahead of the separation and a higher value 
p2 in the separated region as observed by [34]. The instantaneous 
fluctuations about p1 and p2 are denoted p′

1 and p′
2, respectively. 

The mean pressure at the point of interest follows:

p = ϵ p2 + (1 − ϵ) p1 (5)

where ϵ = (p̄/p1 − 1)/(p2/p1 − 1) is the intermittent factor with 
p̄ is the mean pressure at the point of interest.
The mean-square fluctuation p′2 around the wall mean pressure 
can be predicted using Kistler’s equation from [34]:

Fig. 5. (a) WR-LES: Wall-unit length -y+ at the first near-wall cell along the x-
direction; : planar WR-LES, : cylindrical WR-LES. (b) WR-LES: Normalized wall 
pressure along the x-direction; : cylindrical WR-LES, : cylindrical WM-LES.

Fig. 6. WM-LES: Normalized pressure r.m.s at the wall along the x-direction; : 
present WM-LES, •: Normalized pressure r.m.s located in the separation area given 
by Kistler’s function (Eq. (6)).

p′2 = ϵ(1 − ϵ) (p2 − p1)
2

︸ ︷︷ ︸
low-frequency part

+

shear layer
︷︸︸︷
ϵ p′2

2 +
boundary layer
︷ ︸︸ ︷
(1 − ϵ) p′2

1︸ ︷︷ ︸
high-frequency part

(6)

Kistler’s function is plotted along with the present WM-LES com-
putation (Fig. 6), the result indicates that the theoretical function 
is accurately capturing the fluctuations of the pressure field within 
the interaction length.
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Fig. 7. (a) Separation location over time; : WM-LES, : WR-LES. (b) Normalized 
pre-multiplied spectrum of the separation location from; : time-resolved WM-
LES, : WR-LES.

Fig. 7-a shows the separation location for both wall-resolved 
and wall-modeled simulations. The separation location xs is given 
by the location where the near-wall velocity becomes negative; 
uw(xs(t), t) < 0 with uw is the θ -averaged streamwise velocity at 
the first point near the wall [26]. The amplitude of the separation 
line is moderate compared to the planar nozzle. In the cylindrical 
nozzle flow, the amplitude of the separation line is of the order 
of two boundary-layer thickness magnitude compared to eight in 
the planar case. The difference of the separation magnitude is due 
to the strong adverse pressure gradient developing upstream of 
the separation that acts on the boundary layer in the planar case. 
Fig. 7-b shows the normalized spectrum of the separation location. 
Three peaks of energy can be extracted from this spectrum. The 
tone at a Strouhal number (St = f .δi/ui,∞) of St = 0.0067 is the 
most energetic one and can be assimilated to the resonant tone 
illustrated in [26]. Zaman proposed the following correlation to 
compute the resonant tone:

fr = c2
0 − u2

e

4 c0 Ls,e
, (7)

with Ue and c0 are the averaged velocity at the nozzle exit and the 
speed of sound, respectively. Ls,e is the length between the mean 
separation location and the nozzle exit. This equation can be used 
for the present cylindrical nozzle as it fits the requirements pro-
posed by Zaman (mild opening angle of divergent, low-Reynolds 
number, subsonic Mach jet). The predicted Strouhal number of res-
onance can be computed by:

Table 2
Averaged/r.m.s forces of the cylindrical WM-LES compared to WR-LES scaled by the 
isentropic normal force F⃗ isn =

∫
S (pisn − pa) · n⃗ ds.

Case ⟨Fx⟩/Fisen ⟨Fn⃗⟩/Fisen Fx,rms/Fisen F y,rms F z,rms/Fisen

WR-LES 0.440 0.780 0.008 0.590 0.590
WM-LES 0.500 0.840 0.014 0.670 0.670

St = 1 − M2
e

Me

δi

4Ls,e
, (8)

where Me is the averaged Mach number at the nozzle exit.
The computed Strouhal number of resonance is about 0.007 

which is close to the peak of energy observed in Fig. 7-b. The two-
way coupling between the separation and the nozzle exit seems to 
fit one-quarter wavelength as observed in the planar nozzle flow 
[26].

A second peak can be observed around Strouhal number 0.015 
is due to the recirculation bubbles developing in the separated 
zone upstream of the nozzle exit. Above St = 0.015, the spectrum 
collapses and no energy can be extracted from the high-frequency 
range.

4.2. Side-loads analysis

The streamwise force (Fx) and side-loads (wall-normal force F y , 
span-wise forces F z) are computed using the following relation 
[26]:

F⃗ =
∫

S

(pw − pa) · n⃗ ds, (9)

where pw is the wall pressure, pa the ambient pressure, ds the 
local surface element where the force applies, n⃗i the normal vector 
to the surface and S the total surface of the nozzle. The forces 
are integrated along the azimuthal direction θ from the inlet to 
the exit of the nozzle. Table 2 shows averaged and r.m.s forces in 
each direction. The averaged y- and z-direction forces are close to 
zero, which means that the exhaust plume is, on average, mostly 
symmetric. The side-loads, i.e. y-direction and z-direction forces, 
can be combined to form a resultant vector (Fn⃗).

Fn⃗ =
√

F 2
y + F 2

z . (10)

The angle (2F ) between F y and F z using:

2F = tan−1
(

F z

F y

)
. (11)

Fig. 8-a shows the streamwise force and the side-loads as func-
tion of time. One can notice that the fluctuations of the stream-
wise force are weak compared to the side-loads. The mild opening 
angle of the divergent and the small fluctuations of the separa-
tion line result in a weak r.m.s of the streamwise force. Fig. 8-b 
shows a typical polar plot of the side-loads. One can notice the 
isotropic and random behavior of the fluctuating side-loads. Both 
y-direction and z-direction forces are uncorrelated. They follow 
a two-dimensional Gaussian distribution with equal variance, and 
zero mean which fits the Rayleigh distribution:

f (x;σ ) = x
σ 2 exp

(
−x2/(2σ 2)

)
, (12)

with x is a random value of the side-loads amplitude and σ is the 
r.m.s level of the amplitude.
The computed side-loads probability density function, depicted in 
Fig. 9, is compared with experimental results and URANS data from 
[35]. The present LES seems to indicate that the distribution of 
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Fig. 8. (a) WM-LES: Forces over time; : streamwise direction Fx , : wall-normal 
direction Fn⃗ . (b) WM-LES: Polar plot of the side-loads over time.

the side-loads amplitude follows a Rayleigh distribution as pro-
posed by many authors [35–38]. The scale parameter σ ∼ 0.8862
fits reasonably the prediction of the Rayleigh distribution function 
(< 0.1%) where the URANS computations of [35] was about 2%. 
These correlations show that the two components of side-loads 
are not correlated. Thus, the side-loads do not have any twirling 
movement and the angle of the force is acting randomly on the 
structure of the nozzle.

Fig. 10 and 11 show the normalized spectrum of the stream-
wise force and the side-loads, respectively. The normalized spec-
trum StF(φ)∗ of a function φ is computed using the following 
equation:

St F(φ)∗ = St F(φ)∫
St St F(φ)dSt

. (13)

As observed in the planar case [26], the streamwise force is sensi-
tive to the low-frequency oscillations of the separation line while 
the side-loads seems to be receptive to the higher frequency 
ranges. The same peaks observed in Fig. 7b are captured in the 
streamwise force spectrum. The main tone computed by the spec-
trum is about St = 0.0067, similarly to the previous analysis of the 
separation location. The second peak at St = 0.016 is also captured 
within the streamwise force. Another peak of energy is observed 
in the high-frequency range at St = 0.1. As observed in the pla-
nar nozzle [26] and according to literature [7,39], the fluctuations 
of about a tenth of the Strouhal number originate from the mixing 
layer downstream of the separation.

A mild peak is also noticeable in the low-frequency range at 
St ≃ 2 × 10−3. This tone originates from the outlet boundary con-
dition reflecting some of the acoustic waves created by the sep-

Fig. 9. Probability Density Function of the side-loads Fn⃗; : current WM-LES, : 
Rayleigh distribution, •: experiment from [35], : URANS from [35].

Fig. 10. WM-LES: Normalized pre-multiplied spectrum of the fluctuating streamwise 
force F ′

x/Fx,rms .

aration unsteadiness. The length between the exit of the nozzle 
and the outlet boundary condition is about 200 δi . Using the aver-
aged speed of sound in the ambient region, one can compute the 
time/frequency of a wave to propagate and reflect from the out-
let which ends up to a tone at St ≃ 2 × 10−3. Despite the use of 
a far-field boundary condition and a sponge layer close to the out-
let boundary condition, a part of the acoustic waves created by the 
separation is reflected by the outlet condition creating this mild 
peak in the spectrum. This issue has been corrected by implement-
ing non-reflecting boundary conditions.

The side-load spectrum is plotted in Fig. 11. Similarly to the 
planar nozzle flow [26], the side-loads are affected by the high-
frequency range oscillations arising from the separated flow down-
stream of the shock. The two side-loads components have similar 
spectrum abroad the frequency range of study. The main peaks 
around St = 4 × 10−2. When using the Strouhal number based on 
the nozzle exit conditions defined as StD = εDe/(δi Me)St , with ε, 
De , δi and Me are the area ratio, the exit diameter, the bound-
ary layer thickness at the inlet and the Mach number at the exit, 
respectively, the main peak is found at StD ≃ 1. According to 
the previous studies [40–42], the nozzle lip is known to generate 
trailing-edge noises at StD = 1. This noise affects the exit pres-
sure field which generates acoustic waves upstream through the 
subsonic recirculation area (Fig. 15). Changing the lip curvature or 
reducing the flange width could lead to a shifted range of frequen-
cies as observed by [43].

Based on the side-load spectra, one can characterize and iden-
tify the origin of the peaks. As for the planar flow [26], time-
resolved probs along the circular wall are used. The probs capture 
a large range of frequencies from Strouhal number 10−4 to 10. 
Fig. 12 shows the spectra of the normalized fluctuating pressure 
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Fig. 11. WM-LES: Normalized pre-multiplied spectra of the fluctuating side-loads; 
: F ′

y/F y,rms , : F ′
z/F z,rms .

Fig. 12. WM-LES: Normalized pre-multiplied spectra of the fluctuating pressure field 
at the wall; : in the incoming boundary layer x/δi = 0, : at the separation 
x/δi ∼ 37.1, : at the exit x/δi = 66.

field at the wall for different x-locations. One can notice from the 
spectrum at the throat that the energy is centered around St = 1, 
following the definition of the Strouhal number based on the 
boundary-layer characteristics. At the separation location, the peak 
captured at St = 6.7 × 10−3 similar to the peak observed in the 
separation spectrum (Fig. 7). The resonant tone is also captured at 
the nozzle exit along with the recirculation bubble St = 1.6 ×10−2

and with the trailing-edge noises at St = 4 × 10−2.
Fig. 13 shows the frequency analysis using the centerline slice. 

For each point in the x-y plane, the Strouhal number associated 
with the maximum energy from the normalized pressure field 
spectrum is displayed using iso-contours values of the different 
phenomena captured. A color is associated with each phenomenon,

• St = 0.0067, the resonant tone predicted by [4] is captured at 
the separation, in the λ-shock and in the second shock train 
at x/δi ∼ 50. It is interesting to notice that the second shock 
oscillates at the same resonant tone compared to the first λ-
shock (Fig. 14).

• St = 0.016, the subsonic flow downstream of the separation, 
at x/δi ∼ 60, is trapped between the mixing layer and the 
wall producing small unsteady eddies oscillating at this spe-
cific frequency. This phenomenon is strongly impacting the 
lateral forces (side-loads).

• St = 0.04, the trailing-edge noises from the lip are captured at 
the nozzle exit and in most of the atmosphere, as explained 
by [42]. The frequency at which noises are captured is similar 
to the vortex shedding phenomenon taking place outside of a 
nozzle jet plume.

Fig. 13. WM-LES: Frequency analysis in the x-y plane showing the Strouhal number 
associated with the most dominant frequencies extracted from the normalized pres-
sure field spectra StF(p′/prms); Orange zone (St ∼ 1): boundary layer turbulence,
yellow zone (downstream the shock) (St ∼ 0.1): mixing layer unsteadiness, (up-
stream the shock): inlet profile unsteadiness, green zone (St ∼ 0.04): trailing-edge 
noises, cyan zone (St ∼ 0.016): recirculation bubbles and blue zone (St ∼ 0.0067): 
resonant tone.

• St = 0.1, the mixing layer developing from the separation to 
the exit is observed at this frequency as explained in sec-
tion 4.2. The large 2-dimensional Kelvin-Helmholtz vortices 
impact the exit conditions, modifying the effective exit area 
and the position of the separation shock.

• St = 1, upstream of the separation, the pressure fluctua-
tions are dominant in the range of turbulent boundary layer 
(Fig. 14) frequencies. The position of the shock is slightly cor-
related with the upstream condition. However, the asymme-
try of the separation is strongly influenced by the incoming 
boundary layer turbulence, particularly observed in the planar 
flow.

5. Dynamic mode decomposition

A DMD analysis is conducted in order to identify the selected 
frequencies in the spectra and to link them with the corresponding 
physical phenomena.

Given the wide range of frequencies involved in this flow (see 
Fig. 10 and 11) and in order to focus mainly on the low frequen-
cies, a dedicated Multi-resolution DMD (MrDMD) [49] is used. The 
algorithm is able to split robustly the complex systems into a hi-
erarchy of multi-resolution time-scale components.

Over 500 equid-time spaced snapshots of pressure fluctuations 
p′ are used and sampled at St = 1 which gives a Nyquist frequency 
of St = 0.5. Each snapshot is a full 3D flow field (the entire flow; 
inside, outside, and downstream of the nozzle). Thus, the entire 
range of frequency from Fig. 10 and Fig. 11 is covered.

The objective of this analysis is indeed to look for the energetic 
modes which appear in the different spectra presented, more par-
ticularly, we look for the ways in which these modes behave, how 
and where they act precisely.

First, let us take a quick look at the shape of the modes that 
we found. In fact, one distinguishes mainly two varieties of mode; 
non-helical modes and helical modes. Non-helical modes (flopping 
modes) are low-frequency modes which appear in the spectra of 
the stream-wise forces Fig. 10. However, helical modes are high-
frequencies modes compared to the first type; they appear in the 
spectra of the side-loads Fig. 11. The degree of torsion of struc-
tures, in this type of modes is noticed to be a function of fre-
quency, the higher is the frequency, the greater is the torsion. 
Fig. 16-c, 20, 21-c Another important remark to be mentioned con-
cerns the shape of the structures of the modes outside the nozzle. 
One can notice that for some modes the structures are larger and 
united whereas for some it is the opposite, in fact, the structures 
are smaller and divided into several parts, these modes are har-
monies of the first type of modes.

Now, we try to truck the frequency peaks appearing in both 
Fig. 10, 11 and highlight the physical meaning of each mode.
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Fig. 16. Isovolume of the real part with negative and positive pressure fluctuations, 
p′ , for DMD mode at St = 0.0028. Red to yellow color indicates positive pressure 
fluctuations, yellow being the highest. Dark blue to light blue indicates negative 
pressure fluctuations, light blue being the lowest.

The mode corresponding to St = 0.0028: This mode observed at 
a very low frequency is essentially related to the shock structures 
as shown in Fig. 16. With the presence of a Mach disc rotation 
and a very slow convection downstream, this mode can be con-
sidered as a standing mode as already explained by Larusson [45]. 
The structures observed in this mode are initially normal, but little 
by little, they will form under elongated helical structures which 
stretch between the downstream of the shocked zone and the exit 
of the nozzle. Fig. 16-c.

The mode corresponding to St = 0.0068: This mode, defined as 
the main tone, is a witness of many physical phenomena such as 
shock system oscillations and the Mach disc rotation Fig. 17-a,-b. 
It is also a witness of the presence of some acoustic waves that 
propagate downstream. The way in which these waves move was 
already described by [46]. Worthy of being recalled, the hopping 
movement of the waves starts from this frequency and becomes 
more and more important as the frequency increases.

The mode corresponding to St = 0.0168: the animation of this 
mode reveals the presence of a very intense convective activity 
outside the nozzle, with structures that hop, more clearly, when 
moving downstream towards the atmosphere. This mode can be 
associated mainly with the shock train and some recirculation bub-
bles located downstream of the shocked region as shown in Fig. 18. 
The structures observed, here in this mode, show a tendency to be 
helical from the beginning, but with a lesser degree of torsion.

The mode corresponding to St = 0.019: This mode is very sim-
ilar to the previous mode but it is more energetic, as a result, it is 
strongly damped. The only remarkable difference comparing to the 
previous mode is the presence of more evident helical structures 
and more explicit hopping movement Fig. 19.

Fig. 17. Isovolume of the real part with negative and positive pressure fluctuations, 
p′ , for DMD mode at St = 0.0068. Red to yellow color indicates positive pressure 
fluctuations, yellow being the highest. Dark blue to light blue indicates negative 
pressure fluctuations, light blue being the lowest.

Fig. 18. Isovolume of the real part with negative and positive pressure fluctuations, 
p′ , for DMD mode at St = 0.0168. Red to yellow color indicates positive pressure 
fluctuations, yellow being the highest. Dark blue to light blue indicates negative 
pressure fluctuations, light blue being the highest.

Fig. 19. Isovolume of the real part with negative and positive pressure fluctuations, 
p′ , for DMD mode at St = 0.0190. Red to yellow color indicates positive pressure 
fluctuations, yellow being the highest. Dark blue to light blue indicates negative 
pressure fluctuations, light blue being the highest.
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Fig. 20. Isovolume of the real part with negative and positive pressure fluctuations, 
p′ , for DMD mode at St = 0.0396. Red to yellow color indicates positive pressure 
fluctuations, yellow being the highest. Dark blue to light blue indicates negative 
pressure fluctuations, light blue being the highest.

Fig. 21. Isovolume of the real part with negative and positive pressure fluctuations, 
p′ , for DMD mode at St = 0.0471. Red to yellow color indicates positive pressure 
fluctuations, yellow being the highest. Dark blue to light blue indicates negative 
pressure fluctuations, light blue being the highest.

The mode corresponding to St = 0.0396: Several physical phe-
nomena can be noticed during the animation of this mode, starting 
with the back flow noticed in the atmospheric part and which goes 
up until the interior of the nozzle. This back flow is essentially 
due to the imperfect none-reflective-boundary-condition used at 
the outlet of the nozzle. The reason behind the use of this type of 
condition was explained by [26]. In addition to that, there is a re-
markable acoustic activity at the exit of the nozzle. The structures 
belonging to this mode are clearly helical. Fig. 20.

The mode corresponding to St = 0.0471 and St = 0.0596: Al-
most the same physical phenomena observed in the previous mode 
can be found in these modes. But, they are clearer and stronger 
Fig. 21. The back flow is now easy to be distinguished especially, 
inside the nozzle. Also, the hopping movement of the waves is also 
obvious.

The mode corresponding to St = 0.1002: A very energetic mode 
but strongly damped Fig. 22-b, the same remarks made for the 

Fig. 22. Isovolume of the real part with negative and positive pressure fluctuations, 
p′ , for DMD mode at St = 0.1002. Red to yellow color indicates positive pressure 
fluctuations, yellow being the highest. Dark blue to light blue indicates negative 
pressure fluctuations, light blue being the highest.

Fig. 23. Isovolume of the real part with negative and positive pressure fluctuations, 
p′ , for DMD mode at St = 0.1662. Red to yellow color indicates positive pressure 
fluctuations, yellow being the highest. Dark blue to light blue indicates negative 
pressure fluctuations, light blue being the highest.

two previous modes can be made here except the helical structures 
which are transformed into small structures organized in the form 
of a spring.

The mode corresponding to St = 0.1662: This mode is linked to 
the activities of the mixing layer, the animation of which shows 
that within the nozzle the helical structures are gradually de-
stroyed and replaced by some vortex shedding. Fig. 23-b.

The mode corresponding to St = 0.2753: this mode is also as-
sociated with the activities of the mixing layer, it is a convective 
mode with vortex shedding becoming more and more finer. A 
stronger acoustic activity towards the exit of the nozzle is clearly 
noticed. Fig. 24.

The mode corresponding to St = 0.3753: This mode is convec-
tive. It mainly represents mixing layer instabilities. When we look 
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Fig. 24. Isovolume of the real part with negative and positive pressure fluctuations, 
p′ , for DMD mode at St = 0.2753. Red to yellow color indicates positive pressure 
fluctuations, yellow being the highest. Dark blue to light blue indicates negative 
pressure fluctuations, light blue being the highest.

to the form of the structures just downstream of the exit of the 
nozzle, we can easily note that this mode is a harmonic mode.

After describing each mode, one can link them to their corre-
sponding phenomena. To do that, we will compare the results of 
the DMD with the different spectra. As a result, Modes can be clas-
sified into three categories:

- St ∈ [..., 0.0168]: the modes in this interval are flopping 
modes, they are at the origin of the streamwise forces ampli-
fication through the oscillatory movement of different struc-
tures of the shock.

- St ∈ ]0.0168, 0.10]: The modes are found to be helical for this 
frequency range. They represent vortical structures of differ-
ent sizes that become finer when increasing the frequency. 
These structures appear very close to the wall of the nozzle 
downstream of the shocked area which leads to consider these 
modes as the major responsible for side-loads amplification.

- St ∈ [0.10, 0.40]: These modes represent high energy vorti-
cal structures, of which the origin is the mixing layer. These 
modes manifest close to the axis of the nozzle and they par-
ticipate less in the spectrum of the side-loads.

6. Conclusion

In this paper, we have presented results from large-eddy sim-
ulations of supersonic conical nozzle flow. A good agreement of 
the second-order statistics, in the normal direction, between both 
the cylindrical and the planar nozzle from [26] can be remarked. 
Thus, second-order statistics seems not to be influenced by the 
curvature. The turbulent structures seem to be influenced by the 
favorable pressure gradient present in the divergent section of the 
nozzle. Furthermore, the amplitude of the separation line is less 
important in the cylindrical case because of the increased pressure 
gradient, upstream the throat, resulting from the reduced cross-
section in this case compared to the planar one which does not use 
side walls. The frequency analysis of the flow shows the existence 
of low-frequency phenomena resulting mainly from the oscillation 
of the shock system. The same analysis shows that the side-loads 
are affected by the high-frequency range oscillations arising from 
the separated flow downstream of the shock. The DMD analysis 

was able to capture the same frequencies as the spectral analysis. 
Also, it shows the existence of two varieties of modes; the non-
helical modes (flopping modes) which are low-frequency modes 
that appear mainly in the spectra of the stream-wise forces and 
the helical modes which are high frequencies modes compared to 
the first type, and they appear especially in the spectra of the side-
loads.
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Appendix A

Multiple studies on Dynamic Mode Decomposition applied to 
nozzles have been performed by several researchers [44–46]. The 
studies were mainly focused on the acoustic of the issuing jet from 
the nozzle.

For instance, Larusson et al. [44,45] investigated a supersonic 
jet using a DMD method. In their case, the algorithm was applied 
on a set of data resulting from a series of LES simulations of a 
conical nozzle as well as 2D RANS simulations.

The authors reported that the LES DMD results are compara-
ble to those of RANS DMD. In addition, the modes resulting from 
the LES DMD are found to be more damped compared to those 
resulting from the RANS DMD and the Arnoldi method. The au-
thors also noted that the damping of low frequencies decreases by 
increasing the cycle of perturbations added to the sampling aver-
age. The modes extracted in this study mainly correspond to the 
shock-cell movement and acoustic radiations. Further flow features 
have been studied throw DMD analysis, such as the shear layer 
which has been studied using the spatio–temporal DMD method 
developed by Lu et al. [48]. The proposed method can capture the 
dominant unsteady vortices in the flow field and obtain the quan-
titative information of the streamwise development. The DMD was, 
also, applied to the mixing layer [47]. It was found that there is a 
certain dominant frequency in the flow structure, which can pro-
vide a reference for the active mixing enhancement method.

Another interesting study was conducted by Jovanovic et al.
[46] in which the screech mode was identified, and described as 
a flopping mode. Jovanovic et al. linked the upstream propagation 
of acoustic waves to the time-periodic-compression caused by the 
oscillations of the shock. They also noticed that acoustic waves 
propagate upstream by jumping between negative spots. In fact, 
the mixing layer rotates the shock cells. In this case, the outer end 
of the cell will pass from upstream to downstream, generating an 
impulse for the exterior acoustic perturbation which will push it 
upstream to the next cell.

As explained in the section 5, the DMD method used in this 
work is the Multi-resolution DMD (MrDMD) [49]. The reason we 
make this choice is the wide range of frequencies involved in this 
flow and in order to focus mainly on the low frequencies. The algo-
rithm is able to split robustly the complex systems into a hierarchy 
of multi-resolution time-scale components. It consists of applying a 
simple DMD by Schmidt [50] to the given set of snapshots, initially 
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organized in a matrix, where n is the number of spatial measure-
ment par time snapshot and m is the number of snapshots.

Q m−1
0 = {q0,q1,q2, ...,qm−1} (14)

The eigen-decomposition approximation of the best fit linear op-
erator A, that relates two successive states, is given by q j−1 ≃
Aq j . Considering the previous, one can write that Q m−1

1 =
{q1, Aq1, A2q2, ..., Am−2q1}. By choosing A that minimizes the 
Frobenius norm of [Q m

2 − A Q m−1
1 ]F , one can write according to 

Kutz [49] Q m
2 ≃ A Q m−1

1 Using reduced SVD factorization, Q m−1
0

is written as following Q m−1
0 = U5W ∗ where U contains the 

left singular vectors (POD modes), W contains the right singu-
lar vectors and the singular values are in 5. The A matrix and its 
projection onto POD modes ( Ã) are given by:

A = Q m
2 V 5−1U∗ (15)

Ã = U∗ AU = U∗ Q m
2 V 5−1 (16)

The eigenvectors (W ) and the corresponding eigenvalues (λk) are 
then computed by eigendecomposing Ã, ( ÃW = W 6), where 6
is a diagonal matrix containing λk . The damping factor ξ and the 
frequency f are given by arg(µ) = 2π f -t + 2πb and ξ = ln∥µ∥

-t
where b is an integer that can be safely assumed to be zero [44]. 
The solution at a given instant t , qDM D (t), is given by

qDM D(t) = ∑m
k=1 bk(0)ψk(ξ)e(wt) (17)

= 9diag(e(wt))b (18)

where ξ is the spatial coordinates, bk(0) is the initial ampli-
tude of each mode, 9 is a matrix containing the eigenvectors ψk , 
diag(e(wt)) is a diagonal matrix containing the eigenvalues e(wkt)

and b is the vector of the coefficients bk .
From the initial pass through the data, the slowest modes (m1) 

are removed, and the set of data is divided into two sets. The size 
of each set is m/2. A DMD is once again performed on each set 
and again the lowest modes (m2) for each set are removed. The 
algorithm is repeated next until the desired termination. Mathe-
matically, one can write:

qDM D(t) = ∑m
k=1 bk(0)ψ

(1)
k (ξ)e(wkt) (19)

=
m1∑

k=1

bk(0)ψ
(1)
k (ξ)e(wkt)

︸ ︷︷ ︸
Slow modes.

+
m∑

k=m1+1

bk(0)ψ
(1)
k (ξ)e(wkt)

︸ ︷︷ ︸
Fast modes.

(20)

The first sum represents the slow mode dynamic, whereas the 
second one is everything else. The second part Q m/2 is divided into 
two parts:

Xm/2 = X (1)
m/2 + X (2)

m/2 (21)

For each level, slow modes are computed, the process continues 
by splitting in half each time, Xm/2, Xm/4, Xm/8, ..., and performing 
DMD on each part until the desired decomposition is achieved.
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7

Wall temperature effects on shock
wave/turbulent boundary layer
interactions
Not yet published work.

Highlights

• Consistently with previous numerical simulations, the wall cooling leads to
a considerable reduction in the interaction length scales, mainly through the
size of the separation bubble, whereas the opposite holds for the wall heating.

• More pronounced λ-shock structure is observed when cooling/heating the
walls with a larger Mach stem compared to the adiabatic case.

• An energy decrease at low-frequency shock oscillations is observed when cool-
ing/heating the nozzle walls.

Z-averaged instantaneous numerical ”Schlieren” contours showing the extreme positions
reached by the shock for NPR = 1.7; (left) adiabatic case, (middle) cooled case, (right)
heated case.
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Abstract

Large-eddy simulation (LES) of supersonic planar-nozzle flow is carried out in this study.
Two nozzle-flow configurations, with adiabatic and with isothermal walls, are presented.
The effect of the wall-temperature variations on the shock structure as well as on the
low-frequency oscillations and on the side loads is demonstrated. The effects of wall-
temperature variations on the side loads is also demonstrated.

7.1 Introduction

The problem of shock interactions in the presence of a fixed or mobile wall presents
an undeniable interest in aeronautical and space applications. The field of application
covers all supersonic aviation and particularly relates to flows in supersonic air intakes,
in nozzle flows with separation or in external flows along the fuselage. In fact, when a
spacecraft flys at a very high Mach number, shock waves get formed and give rise to very
complex flows such as shock wave/turbulent boundary layer interactions (SWBLI). The
SWBLI have a large impact on the aerodynamic and thermodynamic design, and being
responsible for many problems such as: the increased internal machine losses, the thermal
and the structural fatigue due to the increased heat transfer rates, in addition to many
flow unsteadiness and the broadband noise emission Bernardini et al. (2016).

Previous studies on SWBLI, whether experimental Piponniau et al. (2009), Souverein
et al. (2010) or numerical Pirozzoli & Grasso (2006), Touber & Sandham (2009), Morgan
et al. (2013), Bernardini et al. (2016), have focused on the cases with adiabatic walls, with
more effort invested in characterizing large scales as well as low-frequency instabilities
found in this type of flow. However, less attention has been paid to the wall thermal
conditions, even though, the wall thermal conditions are known to have an influence on the
characteristics of the flow, moreover its influence on the SWBLI can be considerable. For
instance, the strong cooling is capable of (i) shifting the laminar-turbulent boundary layer
transition toward higher Reynolds numbers, (ii) producing a fuller incoming boundary
layer velocity profile, and (iii) reducing the thickness of the subsonic layer by decreasing
the local speed of sound as reported by both Delery J (1986), Bernardini et al. (2016).
The same last remark was reported by Sciacovelli et al. (2017) in the case of dense gas,
where the high specific heat leads to negligible temperature variations and thus leading
to a wall cooling-like situation.

Regrettably, fewer are the studies on this topic and rare are those treating this problem
in nozzle flows. For instance, the effect of wall cooling, relative to the adiabatic condition
for an oblique shock wave impinging on a turbulent boundary layer at M∞ = 3.5, is to
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increase the separation angle and to decrease the separation distance as found by Back &
Cuffel (1976). Delery (1992) showed that heating the surface greatly increases the extent
of the interaction zone and the separation point move much farther upstream than under
adiabatic conditions. Jaunet et al. (2014) reported, forM∞= 2.3 shock-induced boundary
layer separation, that a hot wall increases the interaction length scales and influences the
onset of separation. This scale change due to wall thermal conditions also has an effect
on the flow unsteadiness, with the lower frequencies becoming more and more important
by heating the wall. Bernardini et al. (2016) performed a direct numerical simulation
to investigate the effect of the wall temperature on the behavior of oblique shock wave
turbulent boundary layer interactions at free-stream Mach number 2.28. They found
that cooling the walls decreases the characteristic scales of the interaction in terms of
the upstream influence and extends the separation bubble. The opposite behavior is
observed in the case of heating, which produces a marked dilatation of the interaction
region. Beyond that, all studies addressed the case of adiabatic wall conditions, and to
our knowledge, no high-fidelity simulations have been carried out to explore the effect of
either wall-nozzle heating or cooling on the shock structure as well as on its low-frequency
oscillations and side loads.

In the present study, we look at the effects of wall temperature in nozzle flows by
means of both wall-resolved/modeled three dimensional LES simulations. The focus is
on the changes in shock structure and the role of these change in controlling the shock
movement.

The present chapter is organized as follows. The next section introduces the com-
putational strategy and domain followed by the results and the discussion. Finally, a
conclusion is drawn at the end of the chapter.

7.1.1 Computational strategy and computational domain

The curvilinear solver used for the present analysis is the same as the one used in both
Piquet et al. (2019) and Zebiri et al. (2020). Three-dimensional Navier-Stokes equations
are solved with a molecular viscosity µ assumed to follow Sutherland’s law. The ther-
mal conductivity k is related to µ through k = Cpµ/Pr with Pr=0.72. The convective
fluxes are discretized using sixth-order central scheme for smoothed parts and five-order
Weighted-Compact-Nonlinear Scheme (WCNS) for shocked regions, with a shock sensor
controlling the switch between the two. Time advancement is ensured using forth-order
Runge-Kutta algorithm (RK4). The wall is modeled using the wall model of Piquet
(2017), Zebiri et al. (2020). The computation mesh used for this study is the same as
that used in Zebiri et al. (2020). More flow conditions for this case are reported in Zebiri
et al. (2020).
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Table 7.1: Flow parameters for LES simulations; NPR is the nozzle pressure ration and
ε is the nozzle area ratio. The subscript w refers to the wall properties, ∞ to the free
stream properties and th to the throat.

Test case Line style NPR ε (Tw/T∞)th Wall conditions
Mesh-A 1.7 1.6 1.2 adibatic
Mesh-B 1.7 1.6 1.0 isothermal
Mesh-C 1.7 1.6 1.4 isothermal

7.2 The Influence of heating/cooling the walls

7.2.1 Mean flow parameters

For the present study, three wall-resolved LES (WR-LES) and their wall-modeled LES
(WM-LES) have been carried out. For, three different wall temperature (Tw) correspond-
ing to adiabatic-, cold-, and hot-wall thermal conditions. The turbulent boundary layer
develops under the same nominal adiabatic conditions up to the throat where local cooling
or heating started to be effective. The Reynolds number of the incoming boundary layer
based on the momentum thickness, evaluated at the inlet, is Reθ,i ∼ 1100. The present
cases are labeled: case-A, case-B and case-C, for the adiabatic, cooled and heated cases
respectively. Some flow parameters for the WR-LES simulations are reported in table
7.1.

The main effect of the heating the wall on the incoming flow can be understood
by looking at figure 7.2a, where the temperature-velocity relationship in the boundary
layer is reported for the three cases at the throat along the streamwise direction. This
representation is very suited for describing the adaptation process of the boundary layer to
the new thermal conditions at the wall. The shape of the profiles suggests that the outer
region of the boundary layer significantly deviates from the equilibrium Walz solution
Bernardini et al. (2016) in both adiabatic and heated cases. A good agreement is observed
between the cooled case and Walz solution. This leads to conclude that the boundary
layer is strongly perturbed by the heating. The total temperature profiles, for the three
cases, are given in figure 7.2b. The profiles were measured at the throat i.e. x/δi = 0.
The internal thermal layer grows relatively rapidly such that it fills up the boundary layer
thickness.

The spatial distribution of the mean skin friction coefficient for the three cases is
depicted in figure 7.3a. Upstream of the throat, the same behavior is observed for the
three cases. When moving downstream, the presence of the shock decreases the skin
friction coefficient sharply just before the beginning of the interaction, and for all cases
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(a) (b)

Figure 7.2: (a) Distribution of the temperature-velocity relationship at the throat with
the circles indicating the equilibrium solutions , (b) Distribution of total temperature
profiles at the throat, with case-A, case-B and case-C.

mean flow separation is well observed. As observed before by Bernardini et al. (2016), the
skin friction in the interaction region exhibits, generally, a typical W shape, characterized
by two minima, however only one minimum appears for each case. The increase of the
wall temperature produces a slight upstream displacement of this minimum, associated
with the upstream shift of the separation shock. The influence of cooling/heating the
nozzle walls on the mean wall pressure is presented in figure 7.3b. Heating the wall
shifts upstream the separation position, leading to a slightly smoother pressure rise. The
opposite behavior occurs when cooling the walls (case-B), resulting in a slight downstream
shift of the separation position and a steeper variation of pw within the interaction zone.
Similarly, the pressure jump due to the shock that must be sustained in a narrower region,
thus, cooling the wall increases the root-mean-square wall pressure prms , as shown in
figure 7.3c.

The WM-LES is introduced through figure 7.4 where the normalized streamwise ve-
locity along the wall-normal direction (at x/δi = −10), for the adiabatic case (case-A).
The normalized streamwise velocity is compared to previous numerical studies of Ol-
son & Lele (2011) and Piquet (2017). The first near-wall cells are located at y+ ∼ 20,
i.e. ∆y+∼ 40. The results are in good agreement with the wall-resolved case, especially in
the outer layer of the boundary layer and in the log-law region. The first near-wall point
seems to be slightly under-resolved. Having established the properties of the incoming
boundary layer, we proceed to describe the main features of the flow. For that purpose,
instantaneous three-dimensional flow field is shown in figure 7.5. The flow exhibits for
the three cases a similar overall organization, showing interesting shock-wave patterns.
The classical shock pattern expected in divergent nozzles exhibits a lambda shock-wave
structure. This pattern consists of an incident shock, IS, a reflected shock, RS and a
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(a) (b)

(c)

Figure 7.3: (a) skin friction coefficient distribution over the lower wall (Cf ), (a)
Normalized-mean wall pressure distribution (pw/pa) and (c) Normalized root mean square
of the wall pressure at the lower wall (prms/pa) with case-A, case-B and case-C.
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Figure 7.4: Van Driest velocity along the wall-normal direction at x/δi =−10; : WM-
LES, : WR-LES from Piquet (2017), : u+ = y+ and the log-law with κ= 0.41 and
C+ = 6.2, •: WR-LES from Olson & Lele (2011).
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Mach stem, MS (very short in the adiabatic case and larger for the cooled/heated cases)
as shown in figure 7.6. In this configuration, the separation of the boundary layer, due to
the high adverse pressure gradient, creates an incident shock impinging the Mach stem
at the triple point TP. The reflected shock realigns the incident flow to the original di-
rection. The Mach stem is a strong shock which creates a subsonic flow behind it. The
slip line that delimits the shear layer is involved in the confinement on the flow, which
reaccelerates and produces multiple shocks. The succession of shocks is called a shock
train and has been observed in many nozzle flows. The dynamical character of the shock
system, which oscillates back and forth may be clearly appreciated in figure 7.6 where we
present the two extreme positions of the shock.

reversed flow

recirculation bubbles

�-shock

turbulent
boundary
layer

mixing layer

Figure 7.5: 3D representation of the different phenomenon observed in the nozzle flow;
the shock system and the turbulent boundary layer represented using the iso-volume of
the ∇||ρ|| and the reversed flow using ∇||u||.

To better characterize the unsteady behavior of the flow we show in figure 7.7 contours
of the instantaneous skin friction Cf and the instantaneous Stanton number Sr in the
lower wall for the three cases. When crossing the interaction zone, where flow patches of
the instantaneous reversed flow are found, starting from the beginning of the interaction
and extending to the exit of the nozzle. In this region, the local Stanton number exhibits a
strong intermittent behavior, characterized by scattered spots with extremely high heat
transfer rate. This behavior is more pronounced in the heated case (case-C) and less
present or almost absent in the cooled case.

Compared to the adiabatic case (case-A), wall cooling (case-B) pushes the separation
location downstream resulting in a significant reduction of the recirculation zone, whereas
heating the wall leads to the opposite effect. The location of the separation point is mostly
affected by the wall heating. The present observations are in good agreement with those
of Bernardini et al. (2016) made for a flat plate.
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Figure 7.6: Z-averaged instantaneous numerical ”Schlieren” contours with the extreme
positions reached by the shock are shown below; (left) case-A, (middle) case-B, (right)
case-C.

7.2.2 Low-frequency oscillations

To further characterize the flow unsteadiness and to assess the possible influence of
heating/cooling the walls on the low-frequency unsteadiness, figure 7.8 shows the pre-
multiplied spectra of the pressure fluctuations at the lower wall as a function of Strouhal
number and streamwise coordinates. For the three cases, the spectral map is character-
ized by three different zones. The first one extends from the throat to the separation
position. This zone is a typical feature of a turbulent boundary layer. The second zone
is associated with the dynamics of the shock system and it is identified by means of
substantial energy at low frequency with a broad peak defined as the main tone.

More details can be found in figure 7.9a representing the premultiplied spectra of
the shock position. Thus, the figure clearly shows that the cooling/heating of the walls
causes a drop in the energy of what is called the main tone. This is essentially due
to the change in the structure of the shock caused by the cooling/heating of the walls.
In addition to the immediate proximity of the shock from the nozzle exit in the cooled
case (case-B) which supposed to reduce the separation length and therefore it decreases
the main tone. As for the shock structure, we notice that the cooling/heating actually
transforms the λ-shock of the adiabatic case into a more pronounced λ-shock, with a
wider Mach stem and with a smaller degree of asymmetry (see figure 7.6). The previous
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(a) (b)

(c) (d)

(e) (f)

Figure 7.7: Contours of instantaneous skin friction (left) and Stanton number (right);
(a,b) case-A, (c,d) case-B, (e,f) case-C.
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(a) (b) (c)

Figure 7.8: Normalized pre-multiplied spectra map of the pressure fluctuations at the
lower wall, with blue regions being the most energetic and the white regions the less
energetic; (a) case-A, (b) case-B and (c) case-C.

remarks result in more stability for the shock, basically, with less asymmetrical λ-shock,
which gives more balance between the reverse flow entering at the bottom and at the top.
The shock is, thus, more stable and makes shorter oscillations. Consequently, fewer low
frequencies are present in the graph of figure 7.9a. For the graph figure 7.9b representing
the premultiplied spectra of side-loads, a drop in the energy of low frequency phenomena
falling into the interval St ∈ [10−3 : 10−2] is noticed. Behind this drop, we also found
the drop in oscillation span resulting from cooling/heating the walls. For the frequencies
going on the interval St ∈ [10−2 : 0.5], we notice that the graphs are perfectly the same.
The phenomena belonging to this interval are mainly due to the activities of the mixing
layer, clearly, not affected by cooling/heating the walls.

(a) (b)

Figure 7.9: Normalized pre-multiplied spectra of: (a) shock position, (b) side loads with
case-A, case-B and case-C.
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7.3 Concluding remarks

The behavior and the characteristics of the shock induced separation flow under cool-
ing/heating conditions in over expanded planar nozzle with a mild divergent angle, has
been analyzed by means of very long three-dimensional WM-LES. Detailed flow statis-
tics have been presented, including steady and unsteady parameters. Particular effort has
been made to understand the response of the low frequency phenomena to cooling/heating
the walls. Wall cooling leads to a considerable reduction of the interaction scales and of
the size of the separation bubble, whereas the opposite holds for wall heating. The mul-
tiple premultiplied spectra presented show a small influence of cooling/heating the walls
on the low-frequency shock motion, mainly a drop in the energy of very low-frequency
phenomena representing the shock motion is observed. The energy drop is more pro-
nounced in the cooled case where the span of the oscillation is less important. However,
the decrease in the span oscillation is caused by the modification of the shock structure
resulting from the cooling/heating. Interestingly, more pronounced λ-shock is observed
when cooling/heating the walls with a larger Mach stem compared to the adiabatic case.
This configuration promotes less asymmetry and thus more stability.
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Conclusions and perspectives

This thesis is devoted to the analysis of unsteady shock wave/boundary layer interaction
(SWBLI) in over-expanded nozzles. The SWBLI phenomenon is usually associated with
a low-frequency shock unsteadiness that drives the generation or amplification of the
dynamic loads acting on the nozzle wall. These loads, known as side-loads, are prejudicial
for the integrity of the mechanical structure of the nozzle and can cause severe damages.
This study aims to shed more light into the complex flow physics related to SWBLI in
supersonic nozzles, by employing high-fidelity numerical simulations technique, that are
capable of reproducing the unsteady aspects of the turbulent flow, the three-dimensional
structure of the interaction as well as the shock oscillations, in the low-frequency energy
ranges, with large scale excursions.

The manuscript begins with an introduction section that summarizes the most rele-
vant physical aspects of the nozzle flow separation (NFS), before presenting the differ-
ent scenarios of low-frequency shock oscillations phenomena in SWBLI. The influence
of the downstream/upstream disturbances that take place during the SWBLI is also
underlined, in addition to the different post-shock instabilities, occurring mainly in the
recirculation bubbles and in the mixing layer downstream of the interaction region. Com-
parison between planar and axisymmetric nozzle flows is provided with emphasis on the
symmetry/non-symmetry aspect of the separation.

In terms of numerical simulations, a special effort is made to assess the numerical tool
used in the context of the current study. This code, called CHOC-WAVES (Compressible
High-Order Code using Weno AdpatiVE Stencils), solves three-dimensional compressible
Navier-Stocks equations with domain decomposition method in the generalized curvilin-
ear coordinates system (for complex geometries). The code is validated through a set
of test problems, including (but not limited to) supersonic boundary layer, compressible
channel flow, flow over a cylinder, jets and mixing layer. In the context of the LES study,
a wall-model, based on a Thin-Layer Boundary-Layer Equations (TLBLE), is used to
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account for the near-wall effects, allowing to gain a significant CPU time and to achieve
very long integrations. A complete presentation of this model is provided, along with a
qualification of the model parameters through a-priori as well as a-posteriori tests. It
is found that, in addition to its relative simplicity of implementation in an existing LES
code, the LES wall model is capable of saving a considerable amount of computational
time, while providing quite satisfactory results in terms of mean-flow velocity and turbu-
lent Reynolds stresses, boundary-layer separation and shock unsteadiness. Investigating
both planar and conical supersonic over-exapanded nozzles, the LES results allowed to
draw the main concluding remarks:
Shock oscillations in planar nozzles

- The initial objective was to check whether or not a flip-flop jet instability between
the top and bottom nozzle walls exists in the range of the selected nozzle pressure
ratio (NPR of 1.7). If this phenomon would happen, it would have a very character-
istic low-frequency. For that purpose, very long simulations were carried out over an
integration time that is 18 times longer than Piquet (2017), Olson & Lele (2011),
and Papamoschou & Johnson (2006). The integration time was large enough to
capture several shock excursions, therefore having better statistics convergence. To
the best of the author’s knowledge, this is the longest time integration in separated
nozzle flows never reached so far. During this long simulation, the jet was seen to
be stable, sticking on one side of the nozzle wall, without switching to the other
side during the entire simulation.

- Various flow configurations with different shock patterns were then investigated.
All the simulations clearly established the symmetry/asymmetry behavior of the jet
flow as well as the low-frequency shock oscillation (LFO) found in the experiments.
The LFO activity is seen to be most prominent in the vicinity of the reflected-
shock foot and characterized by a broadband spectrum covering more than three
frequencies decades.

- It was established that the peak, corresponding to the low-frequency motions in the
weighted spectrum, is located three orders of magnitude below the peak associated
with the upstream boundary-layer turbulence. This confirms that the upstream
boundary layer is not responsible for the LFO generation.

Furthermore, a parametric study was performed aiming to highlight the effect of the
nozzle pressure ratio on the low-frequency shock oscillations. In the light of this study,
it was found that:
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- The low-frequency motions are related to the successive contractions and dilata-
tions of the separated bubble. The wider is the bubble the larger are the span of
oscillations.

- Additionally, the reversal flow is found to be strongly correlated to the low-frequency
shock motions, confirming previous conclusions of flows with larger λ-shock.

- For the shock movement, a difference in the way the whole shock structure behaves
(including the Mach stem and the shock foot) is noticed. It was found that the
Mach stem moves as a response to a pure low-frequency forcing. However, the
shock foot movement is affected by both the low-frequency and some high-frequency
perturbations arising from the fully turbulent regions including the boundary and
the mixing layers.

- Careful analysis of the instantaneous flow field indicated that the Mach stem moves
at almost a constant speed during its back and forth movements, confirming earlier
observations of Gonsalez & Dolling (1993).

- More details are also provided regarding the shock motion. For instance, in its
back-and-forth movement, the shock progresses discontinuously with a time break
(pause), until it reaches its maximum position. The number of breaks made in one
direction (upstream) is greater than that made in the other direction (downstream).
Thus, for a given time (t1), the shock can travel a longer distance going downstream
because of fewer breaks. Knowing that the shock has a constant speed in both
directions, this makes that the mean speed of the shock downstream appears greater
than that upstream.

- Finally, an empirical relationship is proposed to model the main acoustic tone
similar to the one proposed by Zaman et al. (2002).

As for the wall-temperature effects on the low-frequency shock oscillations, it was found
that:

- The heat transfer by a wall cooling leads to a considerable reduction of the interac-
tion length scales, affecting thereby the size of the separation bubble, whereas the
opposite holds for heat transfer with wall heating.

- In terms of shock structure, we notice that the wall cooling actually transforms the
λ-shock of the adiabatic case into a quasi-symmetric λ-shock, with a wider Mach
stem. This creates a balance between the reversal flow entering from the bottom
and the top sides of the nozzle. The shock is, thus, more stable and makes shorter
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oscillations. Consequently, less low frequencies energy content is present in the
spectra of the cooled wall.

Shock oscillations in conical (axisymmetric) nozzles
A comparison between a conical nozzle flow and an equivalent planar nozzle flow

shows that:

- Whilst both configurations may share some common flow features, such as large-
scale turbulent structures and shock-wave patterns, they show contrasts on the
symmetry of the flow and the shock dynamics.

- The amplitude of the separation location is less important in the cylindrical case
because of the increased pressure gradient, upstream of the throat, as a results of
the reduced cross-section compared to the planar case.

- The frequency analysis of the flow reveals the existence of low-frequency phenomena
arising from the oscillation of the shock system. The DMD analysis highlights
the existence of two distinctive modes; i) the non-helical mode (flopping) which is
mostly a low-frequency based mode, clearly visible in the spectra of the streamwise
forces and ii) the helical mode which is a high-frequency based mode, appearing
mainly in the spectra of the side-loads.

- Based on the current analysis, a classification of different modes is proposed, based
on the Strouhl number:

* St ∈ [...,0.017]: The mode in this interval is a flopping one, which is at the
origin of the streamwise forces amplification through the oscillatory movement
of the shock system.

* St ∈]0.017,0.10]: The mode in this range is found to be helical, which repre-
sents vortical structures of different sizes that become finer when increasing the
frequency. These structures appear very close to the nozzle wall downstream
of the shocked area, leading to consider these modes as the major responsible
for side-loads amplification.

* St ∈ [0.10,0.40]: This mode is caused by the high energy vortical structures,
due to the mixing layer activities. This mode is less involved in the side-loads
spectrum.

Perspectives

In a future work, it would be of particular interest to study the following points:
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• Taking into account the very huge LES data build during this study, one immediate
possible work would consist in further analysis of this database to investigate the
implications of the ambient conditions (the far field conditions) on the asymmetry
of the jet, more precisely in the choice of the asymmetry side. In fact, we have
observed that the jet can change its asymmetry side as a result of shortening the
ambient region. Also, it was found that bringing the jet from an asymmetric to
symmetric then on asymmetric configurations by increasing then decreasing the
NPR would push the jet to change its initial asymmetry side.

• In the course of this study, we have observed, when visualizing the sonic lines, that
a sonic envelope was formed each time the shock moves downstream, preventing the
communication between the two boundary layers (i.e. upper and lower). But when
the shock starts to return back to its upstream position, this envelope opens and a
subsonic zone connecting the two boundary layer was formed. Thus, the question of
the communication between both the upper and the lower boundary layers, in the
presence of spanwise periodic conditions, was raised and it would be of interest to
run simulations that account for the flow traceability over time. Also, the presence
of the side walls would also be relevant for practical applications.

• The observed mechanism which drives the shock instability implies that the coupling
between the shear layer and the shock wave position is governed by one-dimensional
flow quantities. To this end, a simple one-dimensional model could be constructed
to capture the unsteadiness of the shock over a range of parameters. This simple
model would use the LES data to reproduce the streamwise shock oscillation. In
addition, the integration of the viscosity effects as well as the heat transfer, at the
wall in the wall-normal direction, would improve this model.

• Finally, the large database is generated during this thesis, can be used to train a
machine learning algorithm that can help modeling subgrid scales which will further
reduce the simulation time.
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Appendix A

DNS of a turbulent boundary layer
with zero-pressure gradient (ZPG)

A DNS of spatially-evolving supersonic boundary layer with ZPG over an adiabatic flat
plate at M∞ = 2.25 is performed. The computational domain extends from xin = 4′′,
corresponding to Rex = 2.54× 106, to xout = 9′′. The normal direction extends up to
0.5′′ and the grid is stretched with a minimum spacing near the wall of ∆y+

min ∼ 1. The
spanwise direction of the domain is 0.175′′, resulting in a number of points of Nx×Ny×
Nz = 3584×128×256. The freestream flow conditions are set at a static temperature of
169K with a momentum-thickness Reynolds number post transition equals to Reθ = 4260
(Rex = 4.5×106).

Both temperature and velocity inlet profiles are generated according to procedure
given in White’s book White & Corfield (2006), while the pressure is kept constant.
The imposed perturbation at the wall is similar to the one implemented by Guarini
et al. Guarini et al. (2000) and is extended from x = 4.5′′ to x = 5′′. The random num-
bers are created by a normal/gaussian distribution using the Mersenne Twister random
number generator with a cycle of 2n− 1 (with n = 19937) to avoid repetitive patterns.
The perturbation model follows the specifications of Pirozzoli et al. (2004).

The statistics have been averaged in space and time over 10 characteristic time. Figure
A.1a shows the Van Driest transformed velocity profile, (Rex = 4.8× 106), compared to
the classical log-layer formulation and to DNS data Pirozzoli et al. (2004) and Gatski &
Erlebacher (2002). An overall good collapsing between the data is obtained, showing the
ability of the wall model to adequately restore the boundary layer velocity profile.

The mean temperature profile is plotted in figure A.1b. The adiabatic wall temper-
ature is also correctly captured by the model. The theoretical temperature is obtained
using the Crocco–Busemann relation (Pirozzoli et al. 2004).

Figure A.2 shows the normal Reynolds stress components and the shear stress tensor.
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Figure A.1: (a) Van Driest normalized velocity at Rex = 5 × 106; •: Pirozzoli
et al. Pirozzoli et al. (2004), : Guarini et al. Gatski & Erlebacher (2002), : Log-
wall with C+ = 5.5, (b) Averaged temperature profile at Rex = 5× 106; •: Pirozzoli
et al. Pirozzoli et al. (2004).

0

2

4

6

8

10

1 10 100 1000

R+
11

R+
33

R+
22

y+

(a)

0.0
0.2
0.4
0.6
0.8
1.0

1 10 100 1000

R+
12µ

µw
∂u+
∂y+

y+

(b)

Figure A.2: Streamwise, wall-normal and spanwise Reynolds stress tensor (a) and nor-
malized shear tensor terms (b) at Rex = 5×106; •: Pirozzoli et al. Pirozzoli et al. (2004).

A good agreement with the DNS data of Pirozzoli is found. However, the magnitude
of the streamwise component is slightly over-predicted in this case (approximately 8%).
This difference can be explained by the extra-term 〈ρ′u′iu′i〉, resulting from the difference
between the Reynolds fluctuating field, i.e. 〈ρ〉〈u′iu′i〉 used by Pirozzoli and the Favre
averaging operator, i.e. 〈ρ〉 ũ′′i u′′i used in the current simulation, which is not negligible
in the outer part of the boundary layer. The shear stress tensor shows a good agreement
with the results of Pirozzoli and confirms their findings on the fact that the density scaled
Reynolds stress does not exceed unity as predicted by Maerder et al. (2001). As expected,
the total stress is almost constant in the inner layer.



Appendix B

Multi-resolution Dynamic Mode
Decomposition.

Multiple studies on Dynamic Mode Decomposition applied to nozzles have been per-
formed by several researchers Larusson et al. (2017), Jovanovic et al. (2014), Hiroshi
et al. (2017). The studies were mainly focused on the acoustic of the issuing jet from the
nozzle.

For instance, Larusson et al. (2017) investigated a supersonic jet using a DMD method.
In their case, the algorithm was applied on a set of data resulting from a series of LES
simulations of a conical nozzle as well as 2D RANS simulations.

The authors reported that the LES DMD results are comparable to those of RANS
DMD. In addition, the modes resulting from the LES DMD are found to be more damped
compared to those resulting from the RANS DMD and the Arnoldi method. The authors
also noted that the damping of low frequencies decreases by increasing the cycle of per-
turbations added to the sampling average. The modes extracted in this study mainly
correspond to the shock-cell movement and acoustic radiations. Further flow features
have been studied throw DMD analysis, such as the shear layer which has been studied
using the spatio–temporal DMD method developed by Weiyu et al. (2019). The proposed
method can capture the dominant unsteady vortices in the flow field and obtain the quan-
titative information of the streamwise development. The DMD was, also, applied to the
mixing layer Yang et al. (2019). It was found that there is a certain dominant frequency
in the flow structure, which can provide a reference for the active mixing enhancement
method.

Another interesting study was conducted by Jovanovic et al. (2014) in which the
screech mode was identified, and described as a flopping mode. Jovanovic et al. (2014)
linked the upstream propagation of acoustic waves to the time-periodic-compression
caused by the oscillations of the shock. They also noticed that acoustic waves propa-
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gate upstream by jumping between negative spots. In fact, the mixing layer rotates the
shock cells. In this case, the outer end of the cell will pass from upstream to downstream,
generating an impulse for the exterior acoustic perturbation which will push it upstream
to the next cell.

As explained in 6, the DMD method used in this work is the Multi-resolution DMD
(MrDMD)(Kutz et al. 2016). The reason we make this choice is the wide range of fre-
quencies involved in this flow and in order to focus mainly on the low frequencies. The
algorithm is able to split robustly the complex systems into a hierarchy of multi-resolution
time-scale components. It consists of applying a simple DMD by Schmid (2010) to the
given set of snapshots, initially organized in a matrix, where n is the number of spatial
measurement par time snapshot and m is the number of snapshots.

Qm−1
0 = {q0, q1, q2, ..., qm−1} (B.1)

The eign-decomposition approximation of the best fit linear operator A, that relates two
successive states, is given by qj−1 ' Aqj . Considering the previous, one can write that
Qm−1

1 = {q1,Aq1,A2q2, ...,Am−2q1}. By choosing A that minimizes the Frobenius norm
of [Qm2 −AQm−1

1 ]F , one can write according to Kutz et al. (2016):

Qm2 ' AQm−1
1 (B.2)

Using reduced SVD factorization, Qm−1
0 is written as following

Qm−1
0 = UΣW ∗ (B.3)

where U contains the left singular vectors (POD modes), W contains the right singular
vectors and the singular values are in Σ. The A matrix and its projection onto POD
modes (Ã) are given by:

A=Qm2 V Σ−1U∗ (B.4)

Ã= U∗AU = U∗Qm2 V Σ−1 (B.5)

The eigenvectors (W ) and the corresponding eigenvalues (λk) are then computed by
eigendecomposing Ã, (ÃW = WΛ), where Λ is a diagonal matrix containing λk. The
damping factor ξ and the frequency f are given by

arg(µ) = 2πf∆t+ 2πb (B.6)
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ξ = ln‖µ‖
∆t (B.7)

where b is an integer that can be safely assumed to be zero (Larusson et al. 2017). The
solution at a given instant t, qDMD(t), is given by

qDMD(t) =∑m
k=1 bk(0)ψk(ξ)e(wt) (B.8)

= Ψdiag(e(wt))b (B.9)

where ξ is the spatial coordinates, bk(0) is the initial amplitude of each mode, Ψ is a
matrix containing the eigenvectors ψk , diag(e(wt)) is a diagonal matrix containing the
eigenvalues e(wkt) and b is the vector of the coefficients bk.

From the initial pass through the data, the slowest modes (m1) are removed, and the
set of data is divided into two sets. The size of each set is m/2. A DMD is once again
performed on each set and again the lowest modes (m2) for each set are removed. The
algorithm is repeated next until the desired termination. Mathematically, one can write:

qDMD(t) =∑m
k=1 bk(0)ψ(1)

k (ξ)e(wkt) (B.10)

=
m1∑
k=1

bk(0)ψ(1)
k (ξ)e(wkt)

︸ ︷︷ ︸
Slow modes.

+
m∑

k=m1+1
bk(0)ψ(1)

k (ξ)e(wkt)

︸ ︷︷ ︸
Fast modes.

(B.11)

The first sum represents the slow mode dynamic, whereas the second one is everything
else. The second part Qm/2 is divided into two parts:

Xm/2 =X
(1)
m/2 +X

(2)
m/2 (B.12)

For each level, slow modes are computed, the process continues by splitting in half
each time, Xm/2,Xm/4,Xm/8, ..., and performing DMD on each part until the desired
decomposition is achieved.
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