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Abbreviations 

 

▪ Chemicals and Materials  
 

1-M-3-PP    1-methyl-3-phenylpropylamine 
AGU    Anhydroglucose unit 

BIB    α-bromoisobutyryl bromide 

CNCs    Cellulose nanocrystals  
CNC-1-M-3-PP   CNCs modified with 1-methyl-3-phenylpropylamine 

CNC-Br    CNCs modified with α-bromoisobutyryl bromide 

CNC-Lauric   CNCs modified with lauric acid  

CNC-PGMA-Br   CNCs polymerized with poly(glycidyl methacrylate) 
CNC-Rosin   CNCs modified with rosin mixture 

CNC-Stearic   CNCs modified with stearic acid 

CNFs    Cellulose nanofibrils  
CNF-Rosin   CNFs modified with rosin mixture 

DCM    Dichloromethane 

DMF    Dimethylformamide 
DPPH    2,2-diphenyl-1-picrylhydrazyl 

EBIB    Ethyl α-bromoisobutyrate 

EDC    N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimide 

EtOH    Ethanol 
GMA    Glycidyl methacrylate 

H2SO4    Sulfuric acid 

HCl    Hydrochloric acid 
NaBr    Sodium bromide 

NaClO    Sodium hypochlorite 

NaOH    Sodium hydroxide 

NHS    N-Hydroxysuccinimide 
PGMA    Poly(glycidyl methacrylate) 

PLA    Poly(lactic acid) 

TEMPO    2,2,6,6-Tetramethylpiperidine-1-oxyl 
TEMPO-CNCs   TEMPO-oxidized cellulose nanocrystals 

 

 

▪ Characterization tools 
 

AFM    Atomic force microscopy 

CI     Crystallinity index 
13

C-NMR    Carbon nuclear magnetic resonance 

DLS    Dynamic light scattering 
DMA    Dynamic mechanical analysis 

DO    Degree of oxidation 

DS    Degree of substitution 
DSC    Differential Scanning Calorimetry 

FTIR    Fourier transform infrared spectroscopy 
1
H-NMR    Proton nuclear magnetic resonance 

OTR    Oxygen transmission rate 
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QCM-d Quartz crystal microbalance with dissipation 

monitoring 
SEC    Size-exclusion chromatography 

SEM    Scanning electron microscopy 

SI-ATRP    Surface-initiated atom transfer radical polymerization 
TEM    Transmission electron microscopy 

TGA    Thermogravimetric analysis 

WVTR    Water vapour transmission rate 

XPS    X-ray photoelectron spectrometry 
XRD    X-ray diffraction 
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General Introduction  

In the current context, it is common to hear about pollution, sustainable development, recycling, and 

many other terms related to environmental issues. In addition, shocking images of beaches covered 

with plastic waste, or oceans of plastics, for example, are alarming. This pollution, both on land and in 

seas, is the logical result of an accumulation of plastic waste generated over the years. In fact, since the 

1950s, the production of plastics has continuously increased, with an average increase by around 9% 

per year1. Today, in Europe, the annual production of plastics represents 64.4 million tons (348 million 

tons all over the world), and is still on the rise, as presented in Figure 1. However, this evolution is not 

surprising, since it has followed the evolution of consumer society for decades, with an ever-

increasing consumption of products, and thus, related packaging materials. Today, packaging is the 

sector representing the greatest demand for plastics2. 

 

Figure 1. Total demand and production of plastics in Europe in 2018 (Data extracted from 2) 

However, with the society’s awareness of the alarming state of environmental problems, this 

production and consumption of fossil-based plastics is now becoming increasingly controversial. In 

this environmental context, the interest in biobased polymers, especially for packaging materials, is 

particularly important, and these materials are intended to compete with traditional petro-based 

plastics. However, such a competition is ambitious, since the traditional plastics (PET, PE, PP, PVC, 

PS, etc.) exhibit exceptional characteristics, due to their low cost, lightness, transparency, mechanical 

properties and barriers, making them excellent materials to meet packaging ─ and especially food 

packaging ─ specifications3–5.  
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Among biobased polymers, poly(lactic acid), also known as PLA, is a transparent, biobased and 

biodegradable (in compost) polymer, and is currently one of the best alternatives to fossil-based 

polymers. PLA is polymerized from lactic acid monomer, which is extracted from agricultural 

products (mainly corn, sugar cane, and beet)6,7. Although this point may be open to debate, as well as 

the lack of its recycling chain, PLA remains today one of the most interesting solutions. Figure 2 

illustrates its theoretical life cycle: after being produced from natural corn resources, PLA is processed 

for different applications, and the final products can then be recycled ─ although this recycling step is 

not always implemented ─, and finally industrially composted, leading ideally to a closed loop. Since 

several decades, PLA has attracted academic and industrial research interests, especially because of its 

other promising properties, like its high stiffness, transparency, printability, and ease of processing8. 

However, certain aspects still limit its entry into the packaging market, in particular its low thermal 

and barrier properties which can be very restrictive for food packaging applications7,9. Numerous 

research groups focused on the improvement of these thermal and barrier properties, especially 

through the introduction of nanometric fillers inside the polymer and so the development of 

nanocomposites. Various inorganic or organic nanofillers were thus introduced in PLA10,11, including, 

more recently, the incorporation of nanocellulosic materials. 

 

Figure 2. Theoretical life cycle of poly(lactic acid) (PLA)  
(Adapted from the website https://www.total-corbion.com (consulted in November 2019)) 
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These nanomaterials ─ called nanocelluloses ─ are extracted from numerous cellulosic sources (wood, 

cotton, sisal, flax, tunicates, algae, bacteria, etc.) via different routes, leading to different types of 

nanocelluloses, namely cellulose nanofibrils (CNFs)12–14, cellulose nanocrystals (CNCs)15–17, and 

bacterial cellulose18,19. Figure 3 provides an example of TEM images of CNCs and CNFs materials. 

Both CNCs and CNFs exhibit outstanding properties ─ among other, a high crystallinity, a low density, 

a high specific surface area, a high surface reactivity, etc. ─ making them excellent candidates for a 

wide range of innovative applications, particularly for biobased and biodegradable materials20–22.  

 

Figure 3. TEM images of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) 

Over the past decades, the interest in these cellulosic nanomaterials has significantly increased, in 

parallel with the environmental awareness. Moreover, as previously mentioned, the development and 

the optimization of PLA-based nanocomposites including cellulosic nanostructures have attracted a lot 

of researches23–25. Figure 4 represents the evolution of publications dealing with nanocelluloses and 

with PLA since the 1990s, confirming the previously mentioned trend.  

 

Figure 4. Non-cummulative evolution of the number of publications dealing with nanocelluloses and poly(lactic acid) 
(Source: SciFinder, November 2019 ─ Descriptors for “Nanocellulose”: cellulose nanocrystal, cellulose nanorod, rod-like 

cellulose, cellulose nanowire, cellulose crystallite, cellulose nanoparticle, cellulose whiskers, nanocrystalline cellulose, 
cellulose nanofibrils, cellulose microfibrils, nanofibrillated cellulose, microfibrillated cellulose, and descriptors for “PLA”: 

poly(lactic acid), PLA ─ Language: English) 

In order to produce high performance PLA-based materials designed for their use as food packaging 

applications (i.e. with interesting mechanical and barrier properties), a consortium of industrial and 
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academic partners was established to include fillers, and especially chemically modified cellulosic 

nanostructures. This collaborative research was carried out through the GASP project, supported by 

the French National Research Agency (ANR-16-CE08-0040), which started in January 2017, for a 

total duration of 48 months. The PhD project presented in this manuscript took place within the 

framework of this GASP project, and more particularly between two partners (LGP2 and ICMMO). In 

addition, many collaborative stays and constructive exchanges were realized thanks to the wide and 

complementary fields of expertise of the different partners.   

 

Figure 5. French National Research Agency (ANR, Agence Nationale de la Recherche) and GASP Project logos 

 

The main objectives of this PhD are as follows: 

1. Innovative chemical surface modifications of cellulose nanocrystals via grafting routes 

that are as environmentally friendly as possible 

2. Study of the influence of the CNCs surface modification on their adhesion with a PLA-

based matrix 

3. Development of active biobased materials including both PLA and nanocellulosic 

structures for food packaging applications 

Therefore, it is naturally that this thesis manuscript has been organized in three chapters, as presented 

in the general scheme (Figure 6). 

The Chapter I provides a literature review of the general context of this study, with a more detailed 

state of the art of the nanocelluloses field ─ particularly that of cellulose nanocrystals (CNCs) and 

their functionalization ─, as well as, that of multi-phasic materials including both poly(lactic acid) and 

nanocellulose materials, with a specific focus on food packaging applications.  

In Chapter II, different surface modifications of CNCs are proposed. The chapter is divided into three 

main sections, each dealing with increasing possible grafted CNCs quantities. In fact, the sub-chapter 

II.1 proposes a polymerization of a monomer bearing reactive epoxy functions from the surface of the 

CNCs. The sub-chapter II.2 is divided in two parts. The short section II.2.1 presents a comparison 

between a classical esterification procedure of long aliphatic chains on CNCs, and a novel 

esterification method with similar grafted compounds. This innovative esterification route is detailed 

in the section II.2.2, with the grafting of two fatty acids on the CNCs. The aim of the sub-chapter II.3 

is to introduce aromatic molecules at the surface of the CNCs via a two-step procedure. Finally, the 
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short sub-chapter II.4 briefly introduces the preparation of a rosin-based nano-emulsion, which is then 

adsorbed on both CNCs and CNFs.  

All these surface-modified CNCs are then used for the elaboration of PLA-based materials, whose two 

different strategies are presented in Chapter III. The sub-chapter III.1 exhibits the preparation and 

the characterization of PLA-based nanocomposites including modified CNCs previously studied in the 

sub-chapters II.1 and II.2.2, in order to compare their interfaces with the PLA matrix. In the sub-

chapter III.2, modified CNCs and CNFs presented in sections II.3 and II.4 are incorporated in PLA-

based multi-layered materials, and their structural, barrier, and active properties are investigated. 

The sub-chapters of this PhD project are based either on submitted scientific publications, or on 

additional parts structured as scientific publications. Some comments (in grey italic) are added and 

provide some complementary information about the PhD organization and/or guide the reader between 

the different sections of the manuscript.  
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Figure 6. General organization of the PhD manuscript 

 

The complete PhD study brings news understandings on cellulose nanocrystals surface modifications 

and their influence on PLA-based nanocomposites. Moreover, a proof a concept for the elaboration of 

food packaging materials is provided via the multi-layered materials produced from both PLA and 

modified –or not nanocelluloses. 
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Introduction to Chapter I 

Through the literature review presented in this first chapter, the global context of this PhD project will 

be introduced. Indeed, this chapter attempts to give an overview of the context, by providing 

definitions and references (more than 200). Moreover, this chapter is intended for both “expert” and 

“non-experts” scientists. In this sense, general knowledge, as well as, more specific data will be 

presented in different forms (tables, schemes, figures). In order to link each section with the PhD 

project, some comments (in grey and italic) are added.  

The first part of this chapter describes an overview of biobased polymers for food packaging. 

Generalities on current economic and environmental context will be provided. After having been 

defined, the place of biobased polymers in food packaging field, as well as, their requirements and 

main processing will be introduced. As poly(lactic acid) (PLA) is studied in this project, a part will be 

dedicated to this polymer.  

In the second part, nanocelluloses, and especially cellulose nanocrystals (CNCs) – the main raw 

materials of this project – will be introduced. Their extraction, properties and applications will be 

detailed. Moreover, as CNC surface modification is one of the main challenges of this PhD, a part will 

provide an overview of the different ways of CNCs grafting described in the literature.  

Finally, the third part will present the rising interest in combining CNCs with polymeric matrices, and 

especially with PLA. Thus, CNC/PLA nanocomposites will be the focus of this part. Their 

processing, properties and challenges will be detailed. A last part will describe multi-layered systems, 

which offer another way to produce polymeric systems by combining PLA and CNCs.  

Thus, this literature review will highlight the main scientific advances and challenges closely 

associated to the objectives of the PhD project for an easier reading of the next chapters.  
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1. Biobased polymer materials for food packaging 

This section aims to focus on current context of existing packaging materials and biopolymers, and 

on the requirements for the development of food packaging materials, as well as, their different 

processing routes. Moreover, one section will focus on poly(lactic acid) (PLA), the bio-based plastic 

used in this PhD project.  

1.1. Polymers in packaging: generalities 

Since the beginning of the 21st century, the current ecological situation is a priority in political and 

citizen spheres. Global warming, greenhouse gas emissions, ecosystem degradation, and plastic waste 

are the open-ended list of environmental challenges regularly referred in our society. All these issues, 

added to the global limited resources and the demographic growth, require -according to the European 

Commission- “new ways of producing and consuming that respect the ecological boundaries of our 

planet” and a “need to fit with sustainability”. It is part of the updated European Bioeconomy Strategy 

expressed in 2018, aiming at improving and innovating the way of production and consumption of 

food, products, and materials within healthy ecosystems through a sustainable bioeconomy, and 

implementing human and financial resources to reach their objectives, showing the large awareness on 

the part of the society. Fourteen actions are set out in this strategy, whose first is entitled “Strengthen 

and scale-up the bio-based sectors, unlock investments and markets”. Bio-based materials and 

products are described in order to substitute their fossil-based counterparts. One of the main sector 

concerned by the Bioeconomy strategy is plastic packaging material, which represents about 40 % of 

the total plastic demand (49.9 million of tons in 2016) in Europe1. Among this plastic demand, fossil-

based polypropylene (PP), polyethylene (PE), polyvinyl chloride (PVC), polyethylene terephthalate 

(PET), and polystyrene (PS) are widely and classically used in packaging industry1. The interest of the 

development of new biobased polymers for packaging applications thus makes sense. 

 

Figure I. 1.Packaging mondial market by sector, in 2015 (Adapted from Euromonitor International2) 
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1.1.1. Current context of packaging materials 

By definition, a packaging is all the elements delivered with a product, and which is designed for its 

presentation, information, conservation, handling, and transporting. Food, beverages, and tobacco 

packaging are the most important sectors of the global packaging market, followed by beauty and 

personal care, tissue and hygiene, and home care packaging2, as shown in Figure I. 1. Plastics are 

materials of choice in food packaging sector, representing over a quarter of the different materials 

used.3 Indeed, according to their outstanding mechanical and barrier properties, they allow a controlled 

and optimized distribution of products by preserving their aspect, shape, and, in the case of food 

packaging, the safety, taste, and shelf-life of the products. Currently, fossil-based plastics represent 

around 99% of the total plastic market4.  

The production of such fully synthetic polymers dates back to the end of 19th century, with the 1st 

polymerization of PVC in 1938. The mondial plastic production increases over the years and grows 

from 50 million tons in 1977 to 335 million in 2016, with 50% of plastics produced in Asia, 19% in 

Europe and 18% in North America1. Traditional plastic industry is based on the use of distilled crude 

oil, a limited resource extracted from oil reservoirs. Naphta, a mixture of hydrocarbons obtained from 

distilled crude oil, is essential for the further production of plastics, consisting in the polymerization of 

several monomers.  

Today, a wide variety of fossil-based plastics exists with interesting properties, applications, and low 

prices. Table I. 1 summarizes the main properties of produced plastics in European packaging field. 

At the end of their life, fossil-based synthetic plastics are left mostly as non degradable waste. 

Thermo-mechanical recycling is the most widely used treatement in Europe, reprensenting around 

99% of total recycling. It consits in two steps: first, the sorting (automatically or manually) of plastics 

to ensure the non presence of contaminants, and then, the melting of plastics into new pellets or 

granulates, without changing their chemical structure. The resulted recycled plastics can then be mixed 

with neat plastics, in order to reduce plastic consumption. Note that more and more companies are 

recycling internally their unused and cutting waste. In Europe, the collecting and recycling systems 

vary from a country to another, although all the countries seek to improve their system with innovative 

collect and society sensibilization. In 2016, in Europe, the total plastic packaging collected waste 

represented 16.7 million tons, and 41% were recycled, despite the huge effort in recycling loop 

regulations and waste management1. These data clearly show the larger society consideration for 

recycling.  
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Converter 

demand 

(million tons) 

Properties Applications 

Unit 

price 

(€/kg)5 

Polypropylene 

(PP) 
9.8 

Low moisture vapor transmission / 

Inertness towards acids, alkalis 

and most solvents / Optical clarity 

in oriented films and molded 

containers 

Containers for yogurts, takeout 

meals, butter / Medicine bottles 
0.90 

Low Density 

Polyethylene 

(LDPE) 

8.8 

Resistance to acids, bases and 

vegetable oils / Thoughness / 

Flexibility / Transparency 

Bags for frozen foods and fresh 

products / shrink wraps and stretch 

films / Coatings fro paper milk 

cartons and beverage cups 

1.12 

High Density 

Polyethylene 

(HDPE) 

6.1 
Resistance to solvents / High 

tensile strength / Stiffness 

Bottles for beverages, cosmetics, 

detergents and houshold cleaners / 

Bags 

1.21 

Polyvinyl 

Chloride (PVC) 
5   1.59 

Polyethylene 

Teraphthalate 

(PET) 

3.8 

Clear and optically smooth 

surfaces / Oxygen, water and CO2 

barrier / Resistance to solvents / 

Shatter restistance 

Plastic bottles / Food jars / 

Ovenable films and microwavable 

food trays 

1.05 

Polyurethane 

(PUR) 
3.8 

Versatile chemistry : Strength / 

Rigidity / Flexibility / Good 

resistance to oil, hydrocarbons, 

oxygen 

Versatile chemistry :  

Automotive industry(backs, 

armrests, door panels, bumpers) / 

Building / Refrigirators  / 

Skateboards  /  Adhesives  / 

Coatings / Sealants 

3 

Polystryene 

(PS) 
1.9 

Moisture barrier / optical clarity / 

Stiffness / Low density and low 

thermal conductivity in foamed 

form 

Food service items / Takeout 

containers / Meat trays / Rigid food 

containers 

0.57 

Table I. 1.  Main synthetic polymers converter demand in Europe, in 2016, and their properties and applications (Data from 
PlasticsEurope Market Research Group1) 

In parallel, plastic pollution, especially of the oceans and seas, is increasing, and is a disaster for the 

aquatic flora and fauna. Geyer et al.6 conducted a study on the total production and waste of  plastics 

within a period higher than 60 years over the world. According to this study, the total plastic waste 

was around 6300 Mt in 2015, taking into account primary and recycled plastic wastes, and only 9% of 

these resisudes have been already recycled. As shown in Figure I. 2, an accumulation of 4900 Mt of 

plastics produced between 1950 and 2015 are today accumulated in the nature. The projections 

concerning plastics waste are not optimistic. Indeed, considering similar production and use of plastics 

for the next decades, and validating the calculations done in the previously described study, 12000 Mt 

of  plastic will be discarded in the nature6, and recent studies consider there will be more plastic than 

fish in the ocean in 2050. This alert was the main driver in the launching of the new bioeconomy and 

circular economy European directives.  
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Figure I. 2. Accumulated amount (in million metric tons) of global production, stocks and waste of plastics between 1950 
and 2015 (Extracted and completed from 6) 

Packaging is a real need for a lot of applications, and fossil-based plastic polymers are today the 

best candidates in term of price and properties for the elaboration of such products. However, the 

awareness of the society about the environmental issues encourages research and development to 

focus on sustainable and bio-based materials for packaging. This last point is the purpose of the 

following section.  

1.1.2. Definitions of biopolymers 

First of all, it is essential to correctly define biopolymers, bio-based, biodegradable, and 

biocompostable (or compostable) terminologies. Indeed, in the current mass media and general 

discussions, generalisations are often carried out when it comes to sustainability and environmental 

issues. Note that a common confusion consists in the correlation between biodegradability and 

recyclability, the last term relating to the reintroduction of the materials in the production cycle at its 

end-of-life. Accordingly to the definition provided by IUPAC, a biopolymer is a macromolecule 

which is formed by living organisms. In 1999, Petersen et al.7 proposed the definition of biopolymers 

as biobased polymers. More recently, a bioplastic is defined as a family of polymeric materials 

comprising (i) bio-based, (ii) bio-based and biodegradable and (iii) fossil-based, and biodegradable 

plastics5. According to IUPAC (2012), a bio-based polymer is a polymer totally or partially composed 

or derived of biological products issued from biomass, such as plants, animals, marine or forestry 

materials. Bio-based polymers family is usually split into three groups: chemically synthesized from 

biomass monomers, produced by micro-organisms, or naturally occurring.  
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Note that bio-based polymers are not always biodegradable, biocompostable, biocompatible or 

environmentally-friendly. In short, bio-based character is opposed to fossil-based one. Both types of 

polymers can be biodegradable or biocompostable, and these terms need to be precisely defined. 

According to IUPAC definition, biodegradability is the capability of a material of being degraded by 

biological activity, by decreasing the polymer molar mass until bioassimilation, i.e. converting into 

H2O, CO2 or CH4. This aerobic or anaerobic degradation results in a chemical process due to 

microorganisms activity producing biomass, carbon dioxide, water and/or methane from degraded 

polymer5, under different conditions of temperature, humidity, light, and environment, according to 

several standards. This large number of standards demonstrates how complex the biodegradation 

process is, since biodegradation can occur in different environments (industrial or individual compost, 

soil, water), and standards provide required parameterized conditions to argue biodegradability8. 

Speaking about biodegradability, it is essential to indicate in which environment the biodegradation 

takes place.  

 

Table I. 2. Existing (bio-)polymers sorted according their properties (Extracted from 8) 

Thus, the term biocompostability relates to biodegradability occurring in compost conditions 

(temperature around 70-80 °C, high humidity rate around 70%), with a decomposition of the material 

carried out in a specific environment and time without residues. In order to avoid misunderstanding 

and common confusion between these terms, the European Standard EN 13432 entitled “Requirements 

for packaging recoverable through composting and biodegradation – Test scheme and evaluation 

criteria for the final acceptance of packaging” defines the characteristics and properties of a 
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compostable packaging polymer, which, in addition to being biodegradable, must respond to other 

characteristics, like disintegrability (less than 10% of the initial mass of residues larger than 2 mm), 

ecotoxicity (low levels of heavy metals, absence of ecotoxicological effects on the plant growth), 

composition, and quality of final compost9. Table I. 2 shows the properties of main (bio)-plastics 

currently used. Although the term fossil-based plastics (or petrochemical-based) suggests non-

biodegradability, this is not always the case. In fact, as shown in Table I. 2, fossil-based plastics like 

PBAT, PBS, PCL, and PVOH are biodegradable in compost, even they are not produced from biomass 

resources.  

Similarly, the term bio-based plastic leads to think about biodegradability, although these two 

properties are not necessarily linked. Moreover, as presented in Table I. 2, polylactide or poly(lactic 

acid) (PLA) is a bio-based and biodegradable polymer in industrial compost. Controversial place of 

PLA on current packaging market comes from this industrial compostability, needing specific 

conditions and infrastructures to be fully performed. This point is a current matter of controversy.   

In this project, PLA is studied and used as a polymer matrix, especially in food packaging sector, 

and therefore it will be described more precisely afterwards (section 1.2.5). 

1.2. Requirements for food packaging 

Among all the packaging sectors, that of food and beverages is the most preponderant, regarding the 

production and demand (Figure I. 1). Indeed, food is a vital, valuable and perishable resource, whose 

more than one billion of tons are thrown away every year, leading to food waste (more than one third 

of the global production of food consumption), and induced environmental impact. This food waste is 

considered as the second reason of gas emission (especially CO2) in the world, after transports. 

Innovation and research in packaging field has become one of the priorities of the European 

Commission since the beginning of the 2000s (Directive 2008/98/EC, Landfill Directive 1999/31/EC, 

Packaging and Packaging Waste Directive 94/62/EC). In parallel food plastic packaging generates a 

large amount of plastic waste. European Commission is releasing several calls aiming at finding new 

solutions to reduce the environmental footprint of packaging and ensure a better shelf life of food and 

specific indicators, less materials and energy use for packaging process, optimization of supply chain, 

better food safety and recyclability of materials. It is in this context that bio-based and biodegradable 

packaging, along with functional and active performance, has been at the centre of ongoing research 

on development of new food packaging systems.  

Following part aims to describe the main barrier and mechanical properties required in food 

packaging area, then the current development of new active packaging, and finally the use of 

biobased polymers in food packaging.  
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1.2.1. Barrier properties in food packaging 

A food packaging is produced and used in order to transport and protect the product against humidity, 

temperature, micro-organisms, to ensure its safety, and to inform the consumers. It correlates with the 

four basic functions of a packaging successively expressed by Paine10 and Robertson11 in the 1990s, 

namely: protection, communication, convenience, and containment. Packaging ensures the 

conservation of the product and limit food waste by constantly improving its shelf life. Among these 

utilities, protection against external environment is the main challenge in the development of food 

packaging. Traditionally, food packaging acts as an inert wall between the product and oxygen or 

others gas and moisture from outside environment. Investigation on barrier properties of a packaging 

material is crucial and necessary when speaking about food packaging.  

More precisely, oxygen and water vapor permeability are always studied. Indeed, these two permeants 

can largely influence and reduce the food conservation. Figure I. 3 represents the interactions between 

outside and inside gas molecules. The movement of gas molecules can be described in three steps: first, 

external gas molecules at high concentration are in motion, and some of them sorb into the packaging 

material. Then, they diffuse through the material, and are finally desorbed from the material inside the 

packaging, at a lower concentration. Same principle acts from internal gas molecules to outside 

environment.  

 

Figure I. 3. Schematic representation of gas permeant molecules through a packaging material 

OTR (Oxygen transmission rate) is the most relevant characterization presented in the literature when 

investigating barrier properties. It allows the quantification of the oxygen amount permeating the 

material per unit of area and time, and is expressed in cc.m-².day-1. Oxygen permeability (OP) is often 

expressed as a function of the thickness of the material, as well as, with respect to the oxygen partial 

pressure applied between the two sides of the sample material12 (Standard ASTM F1927-14). 
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Generally speaking, lower the OTR value is, better the conservation of the product is, if oxidation 

process is neglected. WVTR (Water vapor transmission rate) is extremely important since the status of 

the food product is closely linked to its moisture content. As well as for oxygen, the water vapor 

amount is quantified by the water vapor permeability  (WVP) indicating the amount of water vapor 

permeating the material per unit of area and time, normalized with the thickness of the material and 

the pressure difference between the two sides of the sample (Standard ISO 2528). The WVTR is then 

expressed in g.m-2.day-1 12. As well as for OTR, it is important for the majority of food products to 

have a low WVTR value, especially to avoid dehydration or moisturizing of the products. It is worth 

nothing that lot of different units can be found in the literature for OTR and WVTR, which may lead 

to some confusion. Moreover, for both oxygen and water vapor permeability, relative humidity (RH) 

at which the measure is carried out can affect the permeation of the gas, therefore this RH value is 

significant when speaking about barrier properties.  

  

Figure I. 4. Water vapor transmission rate (WVTR) and Oxygen transmission rate (OTR) for polymers traditionally used for 

packaging materials and ranges of barrier properties required for specific food products (adapted from 13 and E. Espino Perez 

PhD, 2014) 

Other gas permeability can be investigated, such as ethylene or carbon dioxide. Indeed, the importance 

of carbon dioxide relies in modified atmosphere packaging (MAP). A MAP consists in the change or 

replacement of initial gas inside the packaging by another (till the reaching of the equilibrium), 

including the use of a specifically chosen packaging material inducing the diffusion of gas through the 

material. Several techniques exist, with “passive” or “active” MAP, but they are all based of the 

previously described principle14. The gas inside the packaging and/or the material is chosen according 

to the product whose shelf life increases15. Carbon dioxide - produced by food products respiration - is 

one of the most common gases used in MAP, and equilibrium is established inside the packaging 

depending on its oxygen and carbon dioxide permeability16.  
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These barrier properties are crucial in the investigation of food packaging, since they largely influence 

the shelf life of the food products. Figure I. 4 correlates barrier properties (WVTR and OTR) of 

classical polymers used in packaging with the required area of barrier properties of some food stuffs. 

According to Figure I. 4, the choice of a packaging material is highly dependent of its application. 

Moreover, as previously mentioned (Figure I. 3), the transportation and the safety of the product are 

also essential, and are closely linked to the mechanical properties of the packaging. 

1.2.2. Mechanical properties of food packaging 

The mechanical properties of polymers used for packaging are relevant, mainly for their processability, 

as well as, for the use of an adapted process, as described further in this section. Moreover, the storage 

conditions of filled packaging can vary, especially concerning temperature and humidity. Indeed, high 

or low temperature comparing to standard room temperature and high humidity can negatively 

influence the mechanical properties of the materials, like their tensile strength, Young’s modulus, or 

elongation at break. These properties are also investigated under different conditions (temperature, 

humidity). Moreover, according to the targeted application (type of packaging, storage life and 

conditions, properties of the packaged product), required properties vary a lot. For example, meat or 

fish need to be stored between 0 and 5 °C, whereas pastas, spices or water can be stored at room 

temperature or even higher. According to the required gas composition and barrier properties, an 

adapted polymer has to be found. The following Table I. 3 summarizes the main barrier and 

mechanical properties of synthetic polymers classically used in food packaging.  

 Barrier properties Mechanical properties 

 

Oxygen permeability 

(cc.mm.m-2.d-1.atm-1) 

23 °C, 50%-0% RH 

WVTR 

(g.m-2.d-1) 

23 °C, 85% 

RH 

Tensile 

strength 

(MPa) 

Elongation 

at break 

(%) 

Young’s 

Modulus 

(GPa) 

Polypropylene (PP) 50-100 0.2-0.4 26 80 2 

Low Density 

Polyethylene 

(LDPE) 

≈60 ≈0.2 10 400 0.25 

High Density 

Polyethylene 

(HDPE) 

≈270 ≈0.5 32 150 1.25 

Plasticised 

Polyvinyl Chloride 

(PVC) 

2-8 1-2 14-20 280-95 0.007-0.03 

Polyethylene 

Teraphthalate 

(PET) 

1-5 0.5-2 55 300 2.3 

Polyurethane 

(PUR) 
/ / 24 700 0.003 

Polystryene (PS) 100-150 1-4 34 1.6 3 

Table I. 3. Barrier and mechanical properties of usual fossil-based polymers used in food packaging (data from 17) 
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These data correlate with the fact that fossil-based polymers are materials of choice for food packaging. 

Indeed, their properties  largely satisfy the mechanical and barrier properties requirements, in addition 

to their large industrialization, and low price. Moreover, current research is focusing of the 

development of packaging with innovative properties, also called active packaging. This last point is 

the topic of the following part. 

1.2.3. Development of new active packaging 

In packaging field, the term “intelligent and active packaging” is increasingly used by researchers, as 

well as, by producers. Indeed, the development of such new kind of packaging has been naturally 

apprehended since the beginning of the 2000s, in order to follow the change in the consumer habits, 

and especially his wish for healthier eat with reduced additives, preservatives, and food waste.  

 

Figure I. 5. Properties and examples of active and intelligent packaging : a) Respective functions of active and intelligent 
packaging (Extracted from 18), Active packaging : b) Oxygen absobers and ethylene scavengers (EU Guidance to the 

Commission Regulation (EC) No 450/2009), c) Ethylene absorbers (Blueapple®), d) Antibacterial hand towels (Cascades®), 
e) Antimicrobial plasters (Hansaplast®), f) CO2Pad for fish conservation (McAirlaid’s®), Intelligent packaging : g) & h) 

RFID readers for compagnies logistics and consumers (from StoraEnso www.storaenso.com), i) Time-temperature indicator 
(Fresh-Check® by Lifelines Technologies Inc. (extracted from 19), j) Freshness sensor (SensorQ®) (extracted from 20), k) 

Time-temperature indicator (OnVu®) (extracted from 20) 

There is no official definition for active packaging, even if active packaging can be defined as an 

extension of protection function of a packaging. More precisely, according to Yam et al.18, active 

packaging can be considered as the second generation of packaging, following the primary passive 

generation, acting only as an inert protection barrier against oxygen and water vapor among others. 
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Miltz et al.21 have considered this new active protection as a system where the product, the packaging, 

and the environment are in interaction, in order to improve the shelf life of the product, or to provide 

interesting new properties, better food safety, and quality. Active packaging are often associated to 

intelligent or smart ones, which can be defined as an extension of communication and identification 

function of packaging, including for example RFID, NFC, QR codes, or time or temperature sensors 

technologies. Intelligent packaging does not change or improve the properties of the product, but it 

aims to enhance the logistic, stocks management, traceability, safety and marketing related to a 

product. Moreover, numerous active packaging exist today, like moisture scavengers, antimicrobial 

agents, ethylene absorbers or antimicrobial tissues. Some of intelligent and active packaging 

applications are summarized in Figure I. 5, taking into account the European definition for both active 

and intelligent packaging, respectively a packaging increasing products shelf life, and giving 

information about the product.  

Today, the large majority of all active packaging are produced from fossil-based plastics. Indeed, the 

active packaging market is growing fast, and it still relies on the use of non-bio-based polymers.  

The use of bio-based materials for barrier or active packaging processing appears to be a more 

sustainable solution as existing products.  

1.2.4. Biobased polymers in food packaging and sustainability approaches  

Through their properties, low price and processability, fossil-based plastics are largely used in 

traditional and in more innovative packaging sector. But the use of bio-based polymers is relevant and 

more and more investigated. Indeed, according to the results of a study carried out by the Institute for 

Bioplastics and Composites in 201622, around 830.103 tons of bio-based plastics for flexible packaging 

and 2230.103 tons for rigid packaging will be produced in 2022, as presented in Figure I. 6. It’s 

almost twice more that the data for the year 2017, highlighting the large impact of bio-based polymers 

in packaging field. Moreover, bioplastics will represent around 10% of the global plastics market in 

2022, and most of them will be used in packaging industry. 

Moreover, as shown in Figure I. 6, biodegradable polymers, and especially PLA, are of high interest 

in flexible packaging (bags, films for example), and less present – although relevant – in rigid 

packaging (food cups and trays, bottles for example). Although other bio-based plastics are under 

development and still commercialized - like among others bio-based PET (e.g. Johnson & Johnson 

with the commercialization of sunscreen bottles in Brazil since 2009) or bio-based HDPE (e.g. Procter 

and Gamble with the commercialization of shampoo and cosmetics packaging in USA since 2011)23 - 

PLA presents interesting properties for food packaging applications. Indeed, despite its low thermal 

stability and brittleness which limits its access to a lot of applications, PLA presents interesting 
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mechanical properties, a controlled and easy processability24, as well as, a low cost comparing to other 

bio-based plastics.  

 

Figure I. 6.  Bio-based plastics production capacities by market segment, in 2017, and projections for the year 2022 
(Adapted from 22) 

A lot of researches are currently carried out in order to improve the poor thermal and mechanical 

properties (at temperatures higher than its glass transition temperature Tg) of PLA, as well as, its 

barrier properties. This point will be described later in this chapter. Moreover, as previously 

mentioned, interesting properties of PLA make it a promising and conceivable bio-based and bio-

degradable polymer for food packaging applications. Indeed, commercialized PLA packaging is 

currently accessible (bottles, cups, shopping bags etc.), as shown in Figure I. 7.  

By definition, sustainable development is the development of products combining and satisfying social, 

economic, and environmental concerns. Economic and social issues were previously mentioned, and 

regarding the environmental aspect, Life Cycle Assessment (LCA) is the most popular sustainability 

assessment tool used to assess the environmental impacts in whole life cycle of selected subject matter. 

It can be used to rate and compare a product with another with similar functionality, and is based on 

two main standards (EN ISO 14040 and EN ISO 14044). Several researches were interested in the 

LCA of different bio-based polymers25–28. Although all these studies are not using the same methods, 

criteria, assumptions, and boundaries for the LCA, all their conclusions are converging to the same 
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trend: the use of bio-based polymers has a more efficient sustainable impact than fossil-based ones, 

especially for what the non-renewable energy use and the global warming potential concerns28. 

Moreover, several categories are investigated in LCA (e.g. climate change, ozone depletion, human 

toxicity, water depletion, freshwater ecotoxicity, etc.) and bio-based polymers present not always the 

lower impacts in other categories, leading to difficult conclusions. It can be attributed to the lack of 

data for these emerging polymers, and even they are not only environmental friendly compared to 

fossil-based homologues, they tend to improve this last point. Spierling et al.26 concluded that an 

estimated 65.8% substitution of synthetic fossil-based polymers by bio-based counterparts can reduce 

the CO2 emissions by almost 25%.  

 

Figure I. 7. Examples of commercialized PLA-based food packaging : a) Sant'Anna water bottles (Italy), b) Carrefour 
grocery bags (Belgium, Romania), c) Noble Juice bottles (USA), and d) Activia (Danone) yogurt cups (Germany) 

Despite not always favorable environmental LCA results, bio-based polymers, and especially PLA27, 

seem to be environmentally relevant for what global warming potential and non-renewable energy use 

concerns. Nevertheless, industrial compostability and non-recyclability are once again negative points 

in the LCA of PLA. Indeed, in their critical review, Yates and Barlow28 compared different LCA 

analyses undertaken with different assumptions and criteria. In all cases, industrial composting is not 

the best option, especially because of generated oxidized carbon-based gases from compost produced. 

Several studies conclude that incineration of PLA or landfills (leading to anaerobic digestion 

producing methane) are preferred waste management solutions. Moreover, it is difficult to conclude 

about recycling, since several limitations of the analysis (infrastructures availability and adaptability, 

competition with incineration and other waste treatments, low amount of studies) are important. 

However, this option would be the best from the environmental point of view, although PLA recycling 

is currently not totally proved and industrially possible, only at pilot scale. LCA of PLA is still a 

matter of debate about PLA industrial use.    

1.2.5. Poly(lactic acid) : a relevant biopolymer 

Poly(lactic acid) or polylactide, usually called PLA is, as previously mentioned, a bio-based and 

biocompostable polymer. It is a thermoplastic bio-polyester, polymerized from 2-hydroxy propionic 

acid monomer units of lactic acid. This monomer was isolated for the first time in 1780 from sour milk, 

by a Swedish chemist, and its production has been industrialized since the end of 19th century, 
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especially as additive in food, cosmetics and pharmaceutical products. Lactic acid can be obtained by 

chemical synthesis or by carbohydrate bacterial fermentation. The latter is classically used for its 

industrial production, with moderate costs and a better control of the synthesis, under mild reaction 

conditions (pH around 6, temperature around 40 °C, low oxygen concentration). Indeed, according to 

the type of bacterial fermentation, different yields of synthesis, as well as, different ratio of the two 

stereo isomers of lactic acid - the L-LA and D-LA (Figure I. 8) – can be reached, leading to different 

properties of the final polymer. Different sources of carbohydrates are extracted and used as raw 

materials, like corn, potatoes, cane, and beet sugar. The obtained lactic acid is purified in various ways, 

according to its application. The polymerization of PLA was first carried out in 1845, by the French 

chemist Pelouze, who performed the poly-condensation route, leading to low molecular weight 

polymer (800-5000 g.mol-1). The polymerization of lactic acid into PLA has been then improved 

during the 20th century by Cargill Dow Company, leading to higher molecular weights via ring 

opening polymerization. Figure I. 8 schematizes the different ways of PLA syntheses.  

 

Figure I. 8. Three ways for the synthesis of high molecular weight PLA (extracted from 29) 

Another way of PLA synthesis consists in the dehydration-condensation of lactic acid monomer, 

leading to high molecular weight polymer, without any addition of chain extenders or additives. 

Actually, the main PLA production process is the intermediate formation of lactide, following by its 

ring-opening polymerization (ROP), and leading to high molecular weight PLA. At the industrial scale, 

PLA was first polymerized in the 1930s and patented twenty years later by DuPont industry.  

Currently, a lot of companies all around the world are producing PLA in large volumes, as presented 

in the non-exhaustive Table I. 4. The largest producer is NatureWorks, producing the brand Ingeo, 

following by the joint-venture between Total and Corbion companies. Note that other numerous 

companies are plastic converters, supplying converted PLA materials like bags, food trays, or others.  
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Supplier 

Product 

name / 

Brand 

Country Starting year of production  

Annual 

production 

capacity 

(x103 tons) 

NatureWorks Ingeo USA 2003 150 

Total Corbion 

(joint venture) 
Luminy®  Netherlands 2018 75 

Weforyou / Austria 2014 10 

Synbra 

Technology bv 

BioFoam® 

Synterra® 
Netherlands 

2011 

2011 

/ 

5 

Radici Group CornLeaf Italy / / 

Table I. 4. Main PLA producers with their starting year of production and their annual production capacity 

If PLA generates all this interest, especially in food packaging field, it is especially because of its 

transparency, and some interesting properties. Table I. 5 shows the main properties of PLA, as well as, 

those of PET and PP for the comparison. According to this non-exhaustive data table, it’s possible to 

confirm about the interesting mechanical properties of PLA. Indeed, its high elastic modulus allows its 

use as rigid packaging, reducing the required thickness compared to other less rigid usual polymers 

(PET, PS). However, its low elongation at break limits its use as flexible packaging. Note that a high 

elastic modulus generally induces a high brittleness, which is the case for PLA in its pure form. 

Natural colorless, brightness of amorphous PLA (which is more opaque in its crystalline form due to 

the presence of relatively big-size crystals), as well as, its low interactions with passing light make it 

relevant for food packaging applications. Due to its high surface energy, the printability of PLA is 

suitable and relevant for packaging applications. Nevertheless, PLA is highly permeable to water 

vapor allowing applications for textile, fresh vegetables (reduced condensation inside the packaging), 

but limiting those for dried and perishable products.  

 Properties Unit PLA PET PP 

Thermal 

properties 

Tg °C 50-60 75 10 

Tm °C 130-180 255-265 160 

Mechanical 

properties 

Elongation at 

brek 
% 3-30 50-300 10-600 

Modulus of 

elasticity 
GPa 2-4 2-3 1-2 

Tensile strength MPa 40-60 50-60 30-40 

Barrier 

properties 

Oxygen 

permeability 
m3.m.m-2.s-1.Pa-1 1-4 10-18 6-8 10-19 2-4 10-18 

 
Water vapor 

permeability 
kg.m.m-2.s-1.Pa-1 1-2 10-14 2-3 10-15 1-2 10-17 

Table I. 5. Main properties of PLA and comparison with PET and PP properties (data from 27,30–35) 

In addition, PLA is barrier to fatty substance and aroma and present a low toxicity. All these properties 

make the relevance of PLA in food packaging development27,31. Nevertheless, controversies 

surrounding industrial use of PLA exist. Indeed, as previously mentioned, the first one deals with its 

biodegradability in industrial compost and its non-recyclability, which can negatively influence its use 
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for packaging for example. In fact, during their industrial composting requiring fossil energies 

especially for heating, greenhouse methane is produced. Moreover, the use of natural alimentary 

resources needed for its production is controversial in current economic health global context. Those 

aspects must be borne in mind when speaking about PLA interests, especially in this project.   

1.3. Packaging processing 

Polymers must be transformed and shaped into packaging materials, whether or not they are bio-based 

or fossil-based. Indeed, according to the type and the use of packaging and its required properties, 

different ways of shaping exist. The most common processing are moulding (blow, injection or 

compression), film casting, blown film extrusion, thermoforming, and spinning.  

Since we are interested in PLA in this project, following part is focused on existing processing of 

PLA-based materials: composites and coating strategies are detailed, modifying bulk and surface 

properties of PLA, respectively.  

1.3.1. Extrusion and composites materials 

Extrusion processes are commonly used for PLA-based materials processing. Indeed, conventionally 

industrial extruders can be adapted for the PLA processing. The process temperature is generally set 

around 210 °C (40-50 °C above the PLA melting temperature), leading to an optimal controlled melt 

viscosity and homogeneity.  According to the final desired material, different types of melt processing 

exist, and are briefly described in this section.  

The casting of films and sheets leads to materials thickness from few micrometres to several 

millimetres, which can be co-extruded with other polymers or metallic films, in order to improve final 

properties. 

Film blowing extrusion allows the production of bi-axially oriented films through efficient process, 

with large amount of production. 

Injection stretch blow moulding is essentially used for bottles production, which is interesting in the 

case of PLA which has properties closed to those of PET, although parameters need to be adjusted.  

Spinning processes via extrusion of PLA lead to polymer fibers generally used in textile of filter 

industry.  

Another type of extrusion, called reactive extrusion (REX) is interesting in term of PLA synthesis 

and modification. Thus, REX uses existing extruders as continuous chemical reactors, and allows the 

production of highly viscous materials by reducing the heat and mass transfer issues generally 

involved. Moreover, additives can be easily added, like fillers and plasticizers. Modified produced 

PLA, with or without additives, is interested in term of properties for further applications36. 



CHAPTER I : Literature Review 

Manon LE GARS, 2020 
47 

All these processing methods (more precisely detailed in a recent review of Castro-Aguirre et al.27) 

require the adjustments of conventional parameters. In particular, PLA extrusion is an essential and 

required step for any further processing, as those presented just before. Extrusion is an optimized 

process which was developed at the end of the 19th and has been widely used in plastic industry, 

especially for polymer processing, shaping or compounding, and more recently reactive extrusion as 

previously mentioned. Briefly, the solid polymer resin is transported, melted and mixed with control 

of the temperature, pressure and rotation of the screw (single or twin screw). Figure I. 9 presents a 

general view of a twin-screw extruder. It is visible that the solid polymer is transported through 

rotating heated screw.  

 

Figure I. 9. Twin-screw extruder general scheme (extracted from 37) 

Numerous parameters have to be set (e.g. temperature, pressure, dimensions of the screws 

(length/diameter)) in order to optimize extrusion of the polymer. Moreover, PLA extrusion can be 

carried out using same screw profiles, as those used for polyesters or PS, which is interesting for an 

industrial point of view, since it avoids wasting the production time. Indeed, although properties of 

PLA are closed of those of PET for what processing concerns, it’s essential to modify some of them to 

ensure final mechanical and thermal properties of the materials.   

The main challenge of PLA extrusion is the degradation of the polymer. By definition, the degradation 

of a polymer is an irreversible phenomenon, leading to polymer changes and losses of properties. In 

case of PLA, its degradation can be hydrolytic or thermal. In the first case, the presence of water in the 

solid PLA resin leads to the hydrolysis of ester bonds from polymer chains, conducting to the decrease 

of the molecular weight of the polymer, and thus to the presence of oligomers and monomers in the 

mixture. This reaction can be avoided  with a previous drying step, in order to reach a water content 

lower than 0.01 wt% in the polymer27. Moreover, the PLA thermal degradation can occur during the 

extrusion process. Indeed, it can be correlated with the presence of water leading to hydrolysis reaction, 

or to other reactions, like random main-chain scissions, intra-and intermolecular transesterifications. 

These mechanisms are complex, but they lead to a decrease of the polymer molecular weight, as well 
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as, to the presence of other degradation products (CO, CO2, oligomers, acetaldehydes, methylketones) 

in the mixture. Optimization of extrusion processing parameters (e.g. polymer moisture, temperature, 

pressure, residence time in the extruder etc.) can reduce or avoid PLA degradation. Moreover, 

improving thermal properties of initial PLA has been a huge concern in literature since several 

years36,38. 

1.3.2. Coating strategy 

Although extrusion is the main process for PLA shaping, coating strategy can be another solution to 

surface modify the PLA, and by thus providing additional properties to PLA-based materials. Indeed, 

coating process allows the deposition of a controlled thin layer on a substrate (a polymer film, textile, 

cardboard or paper for example), as shown in Figure I. 10. Industrially, different coating devices exist 

according to the substrate (thickness, porosity, etc.), coating colors (viscosity, composition, etc.), and 

application (targeted coating layer thickness, drying, etc.). As presented in Figure I. 10, knife coating, 

roll coating, deeping coating, spray coating, hot-melt coating, or powder coating are some coating 

methods usually used in industry. General principle always consists in the deposition of a thin material 

layer on a specific substrate, whatever the coating process. Moreover, other laboratory devices exist in 

order to carry out lab-scale experiment (e.g. bar-coater, pilot-scale roll, spin-coater).  

 

Figure I. 10. Schematized coating principle and main industrial coating processes (processes schemes extracted from 39) 

The coating strategy is particularly interesting in active packaging field, since it allows the increasing 

of barrier properties, or the deposition of active compounds (antioxidant, antibacterial for example) at 

the surface of a material, in order to confer enhanced properties to the final packaging. Although 
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regulations of food packaging are very strict, coating strategy is also often employed in “sandwich 

materials”, in which the coated layer is surrounded by another substrate and hot-pressed for example, 

so that the coated layer is encapsulated and does not enter directly in contact with the food, but can 

keep its activity. For example, Reis et al.40 have recently shown that the coating of a natural wax 

emulsion on a tray made with a blend of PLA, and starch can improve the mechanical and barrier 

properties of the final product, which can be used as fresh fruits and vegetables packaging. In this case, 

coating layer is directly in contact with the food, but no release of any compound could occur. In 

another study of Pierleoni et al.41, it has been demonstrated that the incorporation of a graphene layer 

(0.25 g.m-2) between two PLA films leads to enhanced gas barrier properties of final multi-layered 

materials. In a same way, Goh et al.42 have developed a similar multi-layered material in which a 

graphene oxide (GO) or reduced graphene oxide (rGO) layer is encapsulated between two PLA films 

by applying a polymer PVP solution as a binder, and by heat-compressing all the layers. Figure I. 11 

shows the morphology of these different composite films, as well as, their barrier properties. 

 

Figure I. 11. a) FE-SEM images of cross-sections of reference, PLA-GO and PLA-rGO multi-layered films, b) Water vapor 
permeability, and c) Oxygen permeability of composites films (extracted from 42) 

The main challenge of PLA coating relies on its hydrophobic nature, which makes difficult the 

deposition of an aqueous coating without a previous surface treatment of the PLA substrate, aiming at 

improving its wettability, and thus its adhesion with the deposited layer. Generally, corona or plasma 

treatments are carried out39. In both cases, the surface energy of the substrate is modified once cold 

corona or plasma discharge has been applied, and induced partial ionization, leading to excited species 

oxidizing surface molecules of the polymer and creating new polar chemical groups. Such equipment 

is already widely used in printing and packaging industry43. In a recent study, Rocca-Smith et al.43 

have investigated the effect of corona treatment on PLA properties.  
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Figure I. 12. a) Surface properties of both faces of commercial untreated (NCT) and corona treated (CT) with (CT-treated) or 
without (CT-untreated) additional corona treatment (C=carbon, O=oxygen, Rrms=root mean squared roughness, γs=surface 

tension, γs
p=polar contribution, γsd=dispersive contribution), surface topography of b) treated surface PLA film, and c) 

untreated surface PLA film obtained by AFM (extracted from 43) 

They concluded about the efficiency of the PLA surface modification at the nanometer scale, whether 

physically (topography and especially roughness) or chemically (increasing of oxygen content at the 

surface), as summarized in Figure I. 12. It confirms theoretical aspects of corona treatment: 

decreasing of water contact angle of the substrate and increasing of the polar contribution to the 

surface tension (even if this increase is quite slight in their study), in parallel to an unexpected lower 

increasing of dispersive contribution, which should not change, theoretically. Surprisingly, these 

authors claimed that corona treatment influenced the bulk of the material (by increasing its 

crystallinity and thus its mechanical properties) and improved barrier properties. Nevertheless, these 

conclusions only concern laboratory samples, but they are to be taken with care, when rationalizing the 

PLA surface modifications. Anyway, corona treatment has to be optimized and controlled to monitor 

PLA properties before any coating or any processing. 

1.3.3. Composites materials 

Melt processes are interesting, since they allow the shaping of PLA-based materials. But as previously 

mentioned, PLA properties -and especially thermal, mechanical and barrier ones- are not fully suitable 

for food packaging applications. Consequently, composites are produced, in order to improve these 

properties, by introducing reinforcements or other dispersed components in the PLA-based matrix. 

Different techniques are usually used to prepare composites, but melt-compounding is the widely used 

one. Melt-compounding can be performed using different devices, like internal mixers, single-screw or 

twin-screw extruders. Process conditions (temperature, time, shear etc.) have to be optimized in order 

to avoid any degradation of the polymer, as previously mentioned38. Note that different fillers can be 

added, from cellulose, glass or carbon fibers, to mineral components (talc, kaolin etc.). Although melt-



CHAPTER I : Literature Review 

Manon LE GARS, 2020 
51 

compounding is the most used method, solvent-based methods are often used at lab-scale, although it 

does not always show the same final materials properties to compare with the previous method. 

Nevertheless, it’s useful to simulate in the laboratory the behavior of composites and their properties. 

Finally, other methods are employed for the preparation of PLA-based composites, like physical 

blending of PLA with fibers, co-extrusion, hot pressing (film-stacking method) and others.  

Table I. 6 summarizes the main PLA-based composites recently described in the literature, as well as, 

their production methods. It lists, in a non-exhaustive manner, some relevant examples, and shows the 

diversity of fillers introduced in PLA-based composites. Indeed, introduction of various natural or 

synthetic fibers (cellulose, glass, carbon, etc.), as well as, mineral fillers (clay, talc, hydroxyapatite, 

etc.) in PLA matrix allows the override of low properties of PLA for what food packaging applications 

concerns, particularly by improving the thermal and mechanical properties of final materials. 

Moreover, the barrier properties can be improved with the creation of tortuous pathways inside the 

materials to impede the passage of the gas molecules. Finally, it is important to bear in mind that 

biodegradation or biocompostability properties can be changed after addition of fillers inside the PLA, 

depending on the source and properties of the filler. 

Fillers Process Filler wt%  Improved properties Reference 

Poly(urea-formaldehyde) 

(plasticizer) 

microcapsules 

Solvent casting 5-20 % Mechanical properties (Meesorn et al., 2019)44 

Talc and biocarbon 

Melt-

compounding 

and 

compression-

molding 

10 % 
Abrasive resistance, barrier 

properties and flammability 
(Snowdon et al., 2019)45 

Talc and kaolinite 
Twin-screw 

extruding 
5-30% 

Morphology and 

thermomechanical properties 
(Ouchiar et al., 2015)46 

Basalt fibers 

Dry-blending 

and single-

screw 

extruding 

5-20% 
Mechanical properties and 3D 

printing feasability  
(Sang et al., 2019)47 

Cellulose fibers 

Dry-blending, 

twin-screw 

extruding and 

injection 

molding 

10% 
Thermal and mechanical 

properties 
(Kyutoku et al., 2019)48 

Mixing, twin-

screw 

extruding and 

injection 

molding 

5-20% 
Thermal and mechanical 

properties 
(Aliotta et al., 2019)49 

Woven jute fabric  

Hot pressing 

(film-stacking 

between two 

PLA films) 

/ Mechanical properties (Khan et. al., 2016)50 

Table I. 6. Examples of recent PLA-based composites found in literature (Completed and adapted from 38) 
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In this first part, bio-based materials were detailed. But another range of materials, called 

nanocomposites, have entered in the food packaging market. They aim to increase the properties of 

the materials by introducing nanometric materials in the packaging. Thus, the use of bio-based 

nanomaterials is interesting since it is consistent with the previously presented bioeconomy strategy. 

The following part focuses on a specific range of bio-based nanomaterials: the nanocelluloses.  
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2. Cellulose nanocrystals and functionalization  

The sections 2.1 and 2.2 are adapted from « Le Gars M., Douard L., Belgacem M. N., Bras J. 

Cellulose Nanocrystals: From Classical Hydrolysis to the Use of Deep Eutectic Solvents », Chapter 

of the book « Nanosystems », published in IntechOpen (2019) 

As renewable and biodegradable nanomaterials, nanocelluloses have raised a huge interest for the last 

decades. Indeed, their natural available and abundant sources – the biomass – as well as their 

interesting properties, make them materials of choice for new nanomaterials science, in a large panel 

of applications. As presented in Figure I. 13, the exponential evolution of the number of publications 

and patents dealing with nanocelluloses confirms the large interest generated by these nanomaterials. 

Only during this PhD project, about 2800 papers and 400 patents have been published on the topic. 

 

Figure I. 13. Non-cummulative evolution of the number of publications and patents dealing with nanocelluloses (CNC and 
CNF) (Source : SciFinder, April 2019 – Descriptors : cellulose nanocrystal, cellulose nanorod, rod-like cellulose, cellulose 
nanowire, cellulose crystallite, cellulose nanoparticle, cellulose whiskers, nanocrystalline cellulose, cellulose nanofibrils, 

cellulose microfibrils, nanofibrillated cellulose, microfibrillated cellulose – Language : English) 

Two types of nanocelluloses exist: cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs), 

differing from each other in their properties, as well as, in their isolation process. This part aims to 

describe their isolation from cellulose, properties, and applications. A third variety of nanocellulose is 

also available in the literature(bacterial cellulose)51.  

2.1. From cellulose to nanocelluloses 

2.1.1. Structure of cellulose 

Cellulose can be extracted from a large variety of sources, like wood (the main source), seed fibers 

(cotton), bast fibers (flax, jute, ramie), some animal species (tunicates), fungi and fruits, with different 

cellulose contents52. With around 1011-1012 tons of cellulose produced through photosynthesis each 

year53,54, whose less than 5% is extracted for applications, cellulose is the most abundant polymer on 
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our planet55. Historically, cellulose was discovered after being extracted with nitric acid from several 

plants by the French researcher Anselme Payen, in 1838, who characterized the residual compound 

with chemical formula C6H10O5
55,56. In 1939, the name cellulose was for the first time introduced in 

the scientific community. After almost 200 years of cellulose extraction, modification and industrial 

use, this sustainable and biodegradable polymer is currently used for several applications, from paper 

and cardboard to biomedical, building, textile, cosmetics, pharmacy and composites57,58. Indeed, 

intrinsic properties of cellulose fibers – abundancy, renewability, availability – as well as, its fibrillary 

structure or mechanical properties (strength, flexibility), make them materials of choice for such 

applications. Indeed, in their natural form, cellulose fibers are included in hemicellulose- and lignin-

based matrix like a natural composite, and act as the primary compound of plant cell walls, by 

providing high mechanical properties, and maintaining their structure.  

 

Figure I. 14. a) Chemical structure of cellulose chain and b) representation of some hydrogen bonds between two cellulose 
chains 

Looking more precisely at the cellulose structure, it is a linear homopolymer of β-D-glucopyranose 

(C6H12O6) units. These anhydro-D-glucose units (AGU) are linked by β-(1-4)-glycosidic linkage, a 

covalent bonding between equatorial OH group in C4 and the C1 carbon atom of the next unit. Every 

unit is twisted at 180° in respect to its surrounding environment, and is in chair conformation, with the 
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three hydroxyl groups in equatorial position. Cellobiose (C12H22O11) ─ the combination of two 

anhydroglucose units (AGU) ─ is the repeating unit of cellulose53,55. The general formula of cellulose 

is represented in Figure I. 14 a).  

End-groups of cellulose polymer are chemically different: one non-reducing end, and the other 

reducing bearing aldehyde group. Note that cellulose degree of polymerization (DP) is expressed as a 

function of the AGU unit number, and depends on the cellulose source and isolation process (DP 

between 300-1700 for wood pulp, 800-1000 for cotton for example)55. The numerous hydroxyl groups 

─ three per AGU ─ induce the possible functionalization of cellulose, as well as, intra- and 

intermolecular hydrogen bonds in and between the cellulose chains. These interactions form strong 

stabilized and flexible cellulose filaments: the cellulose microfibrils (Figure I. 15 a)).  

 

Figure I. 15. Schematization of a simplified a) composition of a cellulose fiber (extracted and adapted from 59) and b) 
arrangements of crystalline and amorphous domains in cellulose chains (extracted from 60) 

Moreover, the cellulosic chains are rearranged into different regions: the ordered crystalline, and the 

disordered amorphous ones. Indeed, a cellulose chain can be represented as a crystalline wire 

connected by amorphous areas (Figure I. 15 b)). It explains the aggregation of cellulose chains, and 

thus, their arrangement into microfibrils. These last are assembled in bundles, themselves assembled in 

cellulose fibers, with a semi-crystalline structure. Cellulose crystals present four polymorphs: 

Cellulose I, II, III and IV. Cellulose I is the most abundant form in nature, and is present under 

cellulose Iα and Iβ forms, whose ratio depends on the source. This ratio affects cellulose fibers 

properties55,56. Crystallinity of the cellulose varies according to the source, and is in the large range of 

40-80%55, leading to highly cohesive fibers. Looking more precisely at the level of the microfibrils, 
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they are composed of elementary fibrils, with a diameter around 5 nm. This general structure provides 

visualization of the different scales inside the cellulose fiber. In addition to being environmentally 

relevant, cellulose fibers present interesting mechanical properties, an ability for further surface 

chemical modification, low toxicity, low cost, and others properties making them outstanding 

materials for lot of traditional, as well as, for innovative applications. 

2.1.2. Nanomaterials from cellulose: cellulose nanofibrils and nanocrystals  

The hierarchical structure of cellulose fibers is at the origin of cellulosic nanomaterials: the 

nanocelluloses, having at least one dimension of nanometric scale, as their name suggests. Indeed, 

from elementary fibrils, two types of nanocellulose can be obtained, differing by their isolation 

procedure, as well as, by their properties and applications. Figure I. 16 shows their different 

morphologies. 

 

Figure I. 16. TEM images of a) Microfibrillated cellulose (MFC), b) TEMPO-oxidized nanofibrillated cellulose (CNF) and 
c) wood cellulose nanocrystals (CNCs) (extracted from 60) 

In the 1980s, two research groups, headed by Herrick61 and Turbak62, developed for the first time what 

they called microfibrillated cellulose (MFC), after applying repeated high-pressure homogenization to 

cellulose fibers. Resulting 2% suspension showed the presence of both fibrils and microfibrils, and 

presented a gel-like behavior. Rheological, morphological, and chemical reactivity properties of MFC 

(also called cellulose nanofibrils (CNFs) since new standards ISO/TC 6, ISO/TC 229 and TAPPI 

(2013) for nanocelluloses terminologies standardization) were extremely promising at the beginning 

and at the root of many further researches until today. Indeed, CNFs are interesting nanomaterials 

widely characterized and used in a large panel of applications. In accordance with the first results 

obtained by Herrick and Turbak, CNFs are obtained by applying a high shear mechanical treatment to 

a cellulose suspension. Most common mechanical processes are homogenization63–65, ultrafine 

grinding66–68, and microfluidizing69, as broadly found in literature, and new innovative processes are 

presented since few years like extrusion70,71, ultrasonication or steam explosion, for example. Due to 

the numerous strong hydrogen bonds between cellulose chains, obtaining nanofibrillated cellulose by 

these mechanical treatments required a lot of energy. In this context, during the last years, research 
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focused on the decrease of energy used, especially by chemical or biological pre-treatment of cellulose 

fibers facilitating the defibrillation. Main steps of CNFs extraction are represented in Figure I. 17.  

 

 

Figure I. 17. General schematized procedures for the production of both cellulose nanofibrils (CNFs) and cellulose 

nanocrystals (CNCs) 

Numerous chemical pre-treatments have been reported in the literature, with among others some 

enzymatic pre-treatment72–75, cationization76,77 and oxidation using TEMPO78–80 or periodate81,82. A 

recent review by Rol et al. 83 describes the recent advances in cellulose nanofibrils pre-treatments. As 

their name suggests, CNFs have at least one dimension of nanometric scale (i.e. <100nm). Their 

dimension vary, depending on the cellulose source and the extraction process, but their length is 

comprised between 500 nm and 10 µm, and their width between 5 and 50 nm60 (see Figure I. 16). Note 

that chemical pre-treatments influence the morphology of CNFs by reducing their dimensions. Thus, 

CNFs composed of both crystalline and amorphous parts present a high aspect ratio which confers 

them, additionally to the hydrogen bonds between nanofibers, highly cohesive network properties. At 

low solid content, CNF water suspensions exhibit a gel-like properties75. CNFs can also be assembled 

in flexible self-standing dried films (also called nanopapers), with interesting transparency in visible 

domain (80-90%) due to the nanometric size of CNFs and their dense arrangement54. Their mechanical 

and thermal properties are also pretty high comparing to classical biopolymer. CNFs find application 

as rheological modifier, nanocomposites reinforcement, additives in paper, and cardboard industry, 

coating, barrier layer in packaging or biomedical applications84–86. Despite the high production energy 

costs, and the “nano risk” precautions industrialization of CNFs started in the 2010’s. Today, more 

than thirty CNFs producers can be listed all around the world, with production capacities up to 10000 

tons per year, as shown in Table I. 7. To overcome their industrialization issues, the development and 
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optimization of pre-treatments, as well as, the search for advanced applications, aim to develop the 

CNFs industrial production.  

 

Company Country 
Annual production 

capacity (tons) 

FiberLean® Technologies UK 12000 

Borregaard Norway 1000 

Tuners Falls Paper USA 700 

Fibria Brazil 700 

Nippon Paper Group Japan 500 (TEMPO) 

Norske Skog Norway 350 (Pilot) 

University of Maine – Process Development Center USA 350 

Daio Paper Corp.  Japan 100 (Pilot) 

American Process Inc.  USA 100 

CelluComp UK 50 

DKS Co., Ltd Japan 50 

RISE Bioeconomy Sweden 35 (Pilot) 

Sappi Netherlands 8 (Pilot) 

Kruger Biomaterials Inc. Canada 6 

InTechFibres (CTP/FCBA) France 4 

University of Queensland Australia 2 (Pilot) 

University of Alberta / InnoTech Alberta Canada 2 (Pilot) 

Betulium Oy Finland Pilot 

Forest Products Laboratory (FPL) USA Pilot 

Stora Enso Ltd. Sweden Recent investment for ~6000t 

Table I. 7. Non-exhaustive list of main CNFs producers and their country, as well as, their annual production capacity (data 
extracted from 87) 

Another class of nanocelluloses is cellulose nanocrystals (CNCs). Their first investigation was 

reported by Ranby et al. in 195088,89 : after carrying out a sulfuric acid hydrolysis to wood cellulose 

fibers, they observed rod-like particles, with two nanoscale dimensions. Indeed, by hydrolyzing 

cellulose fibers, most of the amorphous parts of cellulose are disintegrated, and final nanomaterials are 

highly crystalline. Cellulose nanocrystals have a length between 100 and 500 nm, and a width varying 

from 2 to 15 nm, depending on the cellulose source and the chemical treatment applied. Indeed, even 

if the use of sulfuric acid for hydrolysis is the most common process, other research groups have 

investigated the use of other acids, leading to CNCs with different properties. In any case, washing 

steps are essential to remove chemicals and to well-disperse the isolated CNCs, as presented in Figure 

I. 17.  

Regarding their industrialization, around thirteen CNCs producers can be recorded, with annual 

production capacity up to 400 tons per year. These productions are significantly lower than those of 

CNFs, but requirement of more chemicals and difficult industrial production steps (washing, dialysis, 

and sonication) can easily explain this difference. Table I. 8 shows the non-exhaustive list of CNCs 
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producers, and their annual production capacity. Note that the leader and pioneer CelluForce© has 

recently announced a new strategy for efficient industrialization90.  

Company Country 
Annual production 

capacity (tons) 

CelluForce Inc. Canada 400 

America Process Forest Industries Inc. USA 200 

Alberta Pacific Forest Industries Inc. Canada 180 (expected in 2021) 

Anomera Inc. Canada 11 

Forest Products Laboratory (FPL) USA 5 

University of Maine USA 4 

Blue Goose Biorefineries Inc. Canada 4 

Cellulose Lab Canada 4 

Advanced Cellulosic Material Inc. Canada 1 

FPInnovations Canada 0.5 

InnoTech Alberta Canada 0.3 

Embrapa/National Nanotechnology Laboratory for 

Agriculture 
Brazil Pilot 

Melodea Israel Pilot 

   

Table I. 8. Main CNCs producers, their location, and their annual production capacity (data extracted from 87,91) 

Although CNFs and CNCs are the two main types of nanocelluloses ─ and generally the only ones 

mentioned, another sort of nanocellulose exists ─ called bacterial cellulose. As its name suggests, 

bacterial cellulose is synthesize by some bacterial species forming characteristic nanofibrils, with 

ribbon shape with cross sections of 4-10 nm by 30-50 nm60,92. As it is produced by bacteria, this type 

of cellulose is very pure and does not contain lignin or hemicelluloses, as it is the case for other 

cellulose sources. It makes bacterial cellulose highly interesting for high value-added applications, 

especially in biomedical field93,94. This PhD is not focusing on bacterial nanocellulose, but some 

reviews provide more details on this nanomaterial51,95. 

As cellulose nanocrystals (CNCs) are the main materials investigated in this PhD, following 

sections are focused only on them. Their isolation, properties, and applications are more precisely 

detailed.  

2.2. Cellulose nanocrystals: nanomaterials with interesting properties 

2.2.1. Isolation of cellulose nanocrystals 

Cellulose nanocrystals (CNCs) are obtained by applying a chemical treatment to biomass, via a strong 

acid hydrolysis. Typically employing strong sulfuric acid H2SO4 is going to penetrate into accessible 

amorphous domains of cellulosic chains, and dissolve them, to release crystalline parts. The 

amorphous domains are randomly oriented and arranged, inducing a lower density of these domains, 

which are thus more vulnerable to acid hydrolysis96, and especially to the infiltration of hydronium 
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ions H3O
+, leading to hydrolytic cleavage of glycosidic bonds. In this sense, Ranby et al.88,89 were the 

first to prove the preparation and the presence of CNCs, the smallest cellulosic building blocks. 

Figure I. 18 synthesises the different steps of CNCs isolation using sulfuric acid hydrolysis.  

 

Figure I. 18. Schematic representation of sulfuric acid hydrolysis of cellulose fibers (extracted from E. Gicquel PhD, 2017) 

As previously mentioned, the cellulose fibrils are exposed to a sulfuric acid hydrolysis, with a defined 

concentration, temperature, and reaction time. Once amorphous domains are dissolved, a sonication 

step allows the separation between intact crystalline domains, leading to isolated CNCs bearing half-

sulfate ester groups on their surface. These charges come from the reaction between sulfuric acid and 

surface hydroxyl groups of cellulose, and induce repulsive forces between negatively charged CNCs, 

leading to colloidal stability and dispersion in water97. While sulfuric acid is the most common acid 

used for the cellulose fibers hydrolysis, other researches have focused on the use of other organic or 

mineral acids, like phosphoric acid, hydrobromic acid, or hydrochloric acid98–101, generally leading to 

less stable suspension, due to the lack of charges at the surface of the CNCs. Moreover, the use of 

deep eutectic solvents (DES) ─ a new class of green organic solvents ─ has been investigated too, and 

yielded cellulosic nanoparticles using less toxic and easier process102,103.  

When the cellulosic source is not totally pure, previous steps are required. Indeed, alkali treatment 

(generally NaOH) and bleaching steps (generally acetic acid, aqueous chlorite) are essential to remove 

impurities, especially lignin and hemicelluloses. Note that numerous studies have investigated the 

production of CNCs from less conventional sources like rice, soy, and others, in order to valorise food 

and organic waste104,105.  

Final yield and morphology of CNCs are highly dependent on the cellulosic botanic source and on the 

hydrolysis conditions. Indeed, optimization and control of the acid hydrolysis has been the subject of 

several publications. If common parameters are the hydrolysis with 64 wt% sulfuric acid at 40-45 °C 

during about 30 min, it has been proved that the variation of one of parameters can largely influence 
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the reaction yield, as well as, the final CNCs properties. For example, by increasing the time of 

hydrolysis by 10 min, it has been shown by Flauzino Neto et al.104 that crystalline parts are destructed, 

inducing a significant decrease in CNCs length. Beck et al.106 confirmed this point, admitting that too 

long times of reaction induce degradation of cellulose. In contrary, too short times induce only large 

and non-dispersible fibers and large aggregates. Only specific reaction times yield to a well-dispersed 

colloidal suspension of CNCs. Chen et al.99 confirmed that the best yield and CNCs properties are 

obtained with previously mentioned standard conditions. Moreover, the importance of acid 

concentration relative to cellulose fibers is highlighted too, since a too high concentration could be too 

drastic, and a too low concentration insufficient for the hydrolysis efficiency.   

At the end of the reaction, mixture media is first diluted with distilled water to quench the reaction, 

then submitted to several separation steps with centrifugation cycles and filtrations, and washed by 

dialysis against distilled water for several days, in order to remove unreacted compounds and 

chemicals. In some cases, NaOH is also used to neutralize pH, which can modify the crystallinity and 

the surface ions. After dialysis, a final centrifugation cycle or another filtration process aim to remove 

aggregates. CNC suspension is finally sonicated in order to well disperse the nanocrystals, and obtain 

a colloidal suspension thanks to dimensions and sulfate half ester groups bearing by CNCs.  

In this PhD, a commercial batch of CNCs is used, and was obtained via sulfuric acid hydrolysis 

from wood. It was supplied by CelluForce (Canada). More details will be provided in corresponding 

results chapters.   

2.2.2. Properties of cellulose nanocrystals 

In addition to their nanometric size, CNCs are unique biodegradable and renewable nanomaterials. 

Moreover, they result from a previously described optimized acid hydrolysis applied on various 

sources of cellulose, and exhibit many other interesting properties. Figure I. 19 summarizes the main 

CNCs properties, as well as, their potential applications. Regarding the surface properties of CNCs, 

they generally exhibit ─ in addition to –OH functions borne by cellulose macromolecules ─ half-

sulfate ester groups (-SO3
-) on their surface after being treated with sulfuric acid. Even if the amount 

of –SO3
- groups is pretty low (about 50-200 µmol.g-1), these negative charges are sufficient to induce 

repulsive forces between nanomaterials, and thus ensure colloidal stability in aqueous media. 

Moreover, as presented in Figure I. 19, due to the isolation process, other charged groups can be 

present on CNC surface, like carboxyl groups (-COO-), aldehyde groups (-CHO) and others107, leading 

to different charge amount inducing different CNC properties. Moreover, numerous hydroxyl groups 

(3 groups in each AGU) are reactive surface sites for the introduction of new functional groups via 

hydroxyl groups’ functionalization. Regarding the physical properties of CNCs, they have a low 

density (1.606 g.cm-3) compared to other organic materials, a high aspect ratio length/width (varying 

between 10-30 for CNCs extracted from cotton and around 70 for those extracted from tunicate for 
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example97), and a high surface area (between 150 and 800 m².g-1). Note that all their morphological 

and surface properties are highly dependent on their source, as well as, on their isolation process and 

conditions60,108. Moreover, CNCs exhibit highly interesting mechanical properties. In addition to their 

high crystallinity (between 54-88% according to the source109), their high elastic modulus (≈150 ± 50 

GPa), and tensile strength (≈7.5 ± 0.5 GPa)110 make them interesting materials as mechanical 

reinforcement in polymer matrices, for example. For comparison, their mechanical properties are 

similar to Kevlar® fibers111 widely used in high-performance composites materials.  

 

Figure I. 19. Main surface and physical properties of cellulose nanocrystals (CNCs) and inherent main applications 

At low solid content (<3 wt%), due to hydrogen bonds between cellulose chains and thus between 

each nanocrystals, CNC water suspension is in the form of a translucent gel. Rheological properties of 

CNCs are outstanding and concentration dependent. Thus, at low concentration (<3 wt%), CNC 

suspension presents shear thinning behavior at high shear rate, and at higher concentration (>3 wt%), 

the suspension presents shear thinning behavior explained by the nanocrystals alignment in the flow 

direction at a critical shear rate112. Source and isolation of CNCs influence these rheological properties 
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too. Besides all these properties, CNCs self-organize themselves in ordered structure, especially to 

form a nematic phase. Revol et al.113 described in the 1990s this self-organization of CNCs in water 

suspension into stable chiral nematic phases. The materials exhibit liquid crystalline properties, which 

added to intrinsic birefringence of CNCs, induce interesting optical properties. Moreover, when 

ordered CNC suspension is solvent evaporated, they yielded a self-standing film, conserving a chiral 

nematic structure (helicoidal structures), and an iridescent behavior of films is observed and monitored 

by CNC concentration and surface charge, as well as, the quality of suspension dispersion112,113. 

Figure I. 20 shows explicit pictures of these rheological and liquid crystalline properties.  

 

Figure I. 20. a) Translucent gel-like CNC suspension at 15 wt% in water (extracted from 114), b) Birefringence with shear-
inducing observed for an aqueous CNC suspension at 0.6 wt% in cross-polarized light (extracted from 115), c) Solvent-casted 
CNC film in diffuse light, normal to the surface (on the left part) and oblique to the surface (on the right part) (extracted from 
116), and d) Schematic representation of CNCs orientation in isotropic and anisotropic phases (extracted from R. Bardet PhD, 

2014) 

All these outstanding surface and physical properties of CNCs confirm their high and increasing 

interest in research and industrial field during the last decades. Although their isolation and 

characterization are currently well-advanced and optimized, applications field are at the center of 

ongoing researches, as described in the following section. 

2.2.3. Various applications of cellulose nanocrystals and their industrialization 

As exposed in Figure I. 19, CNCs found applications in various fields thanks to their outstanding 

morphological, mechanical, and rheological properties, as well as, their colloidal stability and high 

surface reactivity. All these properties, added to their biodegradability and renewability, make them 

highly interesting and innovative materials with many potential applications. Table I. 9 summarizes 

CNCs applications and the corresponding exploited properties, as well as, some literature references.  

Nanocomposites field is an emerging research area which finds applications in several domains like 

food packaging, medical devices, and building. The renewable aspect of CNCs is particularly 

interesting, since it correlates with the development of bio-based and biodegradable polymers, as 

mentioned in the first part of this chapter. Moreover, these materials possess interesting properties, and 

could be potential candidates in new fields of applications, such as coatings, electronics, filtration, 

biomedical, energy, cosmetics, and security. 
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Market Applications Exploited CNC properties References 

Composites / 

Films 

Nanocomposites 

Flexible packaging 

Optical films 

High mechanical properties 

Filmogenic properties 

Morphology 

(Mariano et al., 2014)117 

(Hube et al., 2017)84 

Coatings / Paints / 

Adhesives 
Coatings for flexible packaging 

Morphology 

Rheological properties 

(Kaboorani et al., 2012)118 

(Mascheroni et al., 2016)119 

Electronics / 

Sensors 

Flexible electronics 

E-paper 

Piezeoelectric sensors 

Electrical insulating 

Piezeoelectric properties 

Surface area 

(Hoeng et al., 2016)120 

(Csoka et al., 2012)121 

(Gaspar et al., 2014)122 

Filtration Mesoporous films and membranes 

High specific surface area 

High mechanical properties 

Hydrophilicity 

(Karim et al., 2014)123 

Biomedical 

Biocomposites for bone/tooth 

replacement 

Drug delivery 

Protein immobilisation 

Wound dressings 

Biosensors 

Low toxicity 

Colloidal stability 

High mechanical properties 

Surface reactivity 

(Domingues et al., 2014)124 

(Lin et al., 2014)125 

Energy 
Supercapacitors 

Flexible batteries 

Strength 

Large surface ara 
(Yang et al., 2015)126 

Cosmetics Hydrogels & foams 

Colloidal stablity 

Emulsion interfacial 

stabilization 

(Kalashnikova et al., 

2013)127 

(Tasset et al., 2014)128 

Security Security papers and inks 
Iridescent properties 

Morphology 
(Zhang et al., 2012)129 

Table I. 9. Main market applications of CNCs with related properties, and some literature references 

Note that for applications that may enter in contact with food or human body, and for any 

industrialization, toxicity of CNCs is a key challenge to investigate. Indeed, even if cellulose is known 

to be a non-toxic polymer, CNCs are nanomaterials ─ whose the “nano” prefix can be frightened for 

media and population ─ with specific morphology and surface properties. A recent review of Roman 

et al.130 explored the CNCs toxicity. The results of this study correlate with previous results of Lin et 

al.125 and Kovacs et al.131, who demonstrated that CNCs are not toxic by ingestion, or if a dermal 

contact is established. They were also considered as non-toxic for aquatic organisms. However, 

pulmonary diseases and cytotoxicity depend on CNCs properties and shapes (especially if they are in 

powder form, since they are more easily air-suspended). In any case, toxicity of CNCs is low, 

especially when they are in wet-state or in composites, films or coatings for example, not constraining 

the development of new CNC-based products. 

The wide range of CNCs applications is subjected to numerous research projects and publications 

and is achieved, in most cases, thanks to the surface functionalization of CNCs. The following part 

aims to describe the potential surface modifications applied to CNCs.  
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2.3. Functionalization of cellulose nanocrystals 

Through numerous hydroxyl groups on their surface and their high specific surface area, CNCs have 

been surface-modified through different techniques, in order to improve their properties and further 

potential applications. Recent reviews summarize the different ways of CNC surface functionalization, 

including those of Natterodt et al.132, Tang et al.107, Wohlhauser et al.133, Kedzior et al.134 and less 

recently those of Eyley et al135. and Habibi et al57. Through their high reactivity, CNCs thus can be 

modified via different reactions. Figure I. 21 shows the different possible ways for CNCs chemical 

modifications: by grafting or adsorbing single molecules or polymer chains at their surface. For each 

modification method, some examples are given, although the list is absolutely not exhaustive.  

 

Figure I. 21. Different paths of chemically modifying cellulose nanocrystals with some examples for each method. 
Synthesis: extraction with [1] sulfuric acid106, [2] hydrochloric acid101 and [3] phosphoric acid98, [4] TEMPO oxidized 

CNC136 – Single molecules grafting using:  [5] [6] long-chain aliphatic acid chlorides137,138, [7] malonic acid139, [8] acetic 
anhydride140, [9] benzylacetic acid141, [10] 4-(bromomethyl)benzoic acid142, [11] 1,4-diaminobutane143, [12] octadecyl 

amine138, [13] Jeffamine144, [14] propargylamine145,  [15] aminated-polyethylene oxide (PEO-NH2)146, [16] aminated-poly(N-
isopropylacrylamide) (PNIPAM-NH2) 147, [17] n-dodecyl and n-butyl dimethylchlorosilane148, [18] hexamethyldisilane149, 

[19] epichlorohydrin150, [20] glycidyltrimethylamonium chloride (EPTMAC) 151, [21] isocyanatepropyltriethoxysilane152 and 
[22] n-octadecyl isocyanate153 – Polymer chains : grafting-to : [23] PNIPAM-NH2

147, [24] polycaprolactone (PCL)154, [25] 
poly(ethylene oxide) (PEO)155, [26] polystyrene (PS) and poly(tert-butyl acetate) 156 and [27] chitosan157 – grafting-from : 
[28] PCL158, [29] 159,160 PS, [30] poly(methyl methacrylate) (PMMA) 161, [31] poly(n-butyl methacrylate) 162, [32] poly(4-
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vinylpyridine) 163 and [33] block copolymer of PNIPAM and poly(acrylic acid) 164 – Adsorption : [34] 
cetyltrimethylammonium bromide (CTAB) 165, [35] didecyldimethylammonium bromide (DMAB) 166, [36] acid phosphate 

ester of ethoxylated nonylphenol (Beycostat A B09) 167, [23] PNIPAM-NH2147, [37] poly(diallyldimethylammonium 

chloride) (polyDADMAC) 168 and [38] tannic acid169. 

In this section, the different types of surface modification exploited in this PhD are described: 

TEMPO-oxidation, surface polymerization, covalent (especially esterification and amidation) and 

non-covalent bonding. These chemical surface modifications are carried out in order to 

compatibilize the CNCs with a polymer matrix, in the case of nanocomposites applications, as 

detailed in the next part (3) of this chapter.  

2.3.1. TEMPO oxidation of cellulose nanocrystals 

Among CNCs chemical modifications, oxidation – and especially TEMPO-mediated oxidation – of 

CNCs is one of the most common and optimized one. In fact, besides being well-known as pre-

treatment of cellulose to facilitate the defibrillation in CNFs production170, TEMPO radical oxidation 

allows the introduction of carboxylate groups –COO- at the surface of CNC. These charges are highly 

reactive for further grafting or adsorption of molecules or polymers, and increase the stability of 

TEMPO-oxidized CNCs in water, leading to well dispersed nanosize particles, thus providing 

translucent suspension in water. This reaction was carried out on HCl hydrolyzed CNCs for the first 

time by Araki et al. in 2001146, and was subsequently optimized by different research groups, 

including Habibi et al.136, Montanari et al.171, and Fraschini et al.172, working with different types of 

CNC. Figure I. 22 represents the oxidation mechanism generally presented in the literature with the 

system TEMPO/NaBr/NaClO, where RCH2OH represents the CNC. Common chemicals used in 

TEMPO-assisted oxidation of cellulose are TEMPO radical (2,2,6,6-tetramethylpiperidin-1-yl)oxyl as 

oxidizing agent, sodium bromide (NaBr) and sodium hypocholorite (NaClO). The reaction is generally 

carried out in water, in basic conditions (pH=10), and follows different steps: a hypobromite ion BrO- 

is formed in situ from the reaction between a hypochlorite ion ClO- and NaBr. The BrO- ion reacts 

with TEMPO radical ((1) in Figure I. 22) to form the nitrosonium salt (2), which is an active 

oxidizing agent in the reaction. Then, this nitrosonium salt is going to react with CNCs, and oxidize 

primary alcohol groups into sodium carboxylate. The oxidation occurs in two steps: first, the alcohol 

groups are oxidized into aldehyde groups. TEMPO radical being continuously regenerated (by 

reaction between (3) and (2)), a second oxidation can take place on aldehyde groups, leading to acid 

carboxyl groups. Thus, 2 mol of NaClO are required to oxidize one mole of primary alcohol, and the 

introduced initial amount of NaClO is determinative for the oxidation yield172. 
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Figure I. 22. General reaction mechanism of TEMPO-mediated oxidation of CNC : regioselective oxidation of primary 
hydroxyl groups of cellulose using TEMPO/NaClO/NaBr system (in blue) and TEMPO oxidized CNC bearing carboxylate 

groups (in green) (extracted and adapted from 173) 

It has been proved that reaction occurs only on CNCs surface171, and on accessible primary alcohol 

carried by C6 carbons. Some studies have shown that this selectivity is kept when the oxidation occurs 

in neutral conditions with NaClO2
174. TEMPO-oxidized CNCs conserve their dimensions and 

crystallinity, and exhibit surface charge that may reach around 1600 µmol.g-1 136. If TEMPO-mediated 

oxidation is the most optimized and used method to introduce carboxylate charges on the CNCs 

surface, other techniques, like the sodium periodate oxidation, have been published in the literature175, 

leading to aldehyde groups on the surface.  

In any case, introduction of carboxylate charges at the surface of CNCs is interesting in terms of 

suspension stability and in surface reactivity, expanding the grafting possibilities from this carboxylate 

groups, or the adsorption strategies.  

2.3.2. Covalent grafting on cellulose nanocrystals 

Thanks to the numerous hydroxyl groups present at the surface of CNC and to their high specific 

surface area, the availability of these reactive sites is a key point in the functionalization of CNCs. 

Indeed, the chemical modifications allow the introduction of various functional groups, aiming to 

confer them new functionalities, like active properties (antimicrobial, antioxidant etc.) or, in most 

cases, to enhance their compatibility with different hydrophobic polymeric matrices. These 

modifications are covalent, meaning that hydroxyl groups of CNCs are chemically bonded to another 

molecule with which they share electron pairs. In the literature, different covalent grafting processes 

are presented, with among others oxidation, esterification, amidation, etherification, silylation, and 

nucleophilic substitutions, as previously presented in Figure I. 21.  
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In an amidation reaction, reactive carboxyl groups –COOH introduced on TEMPO-oxidized CNCs, 

can be activated by reacting with a primary amine via a peptidic linkage, meaning a covalent amide 

bond between a primary amine-terminated compound and carboxylate groups borne by CNCs. 

Commonly, EDC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and NHS (N-hydrosuccinimide) 

catalysts are used in amidation strategy as activators of the carboxyl groups. Figure I. 23 schematizes 

this activation occurring during the amidation reaction. In a first time, EDC gives an unstable O-acyl 

urea compound to the carboxylic function. In a second time, NHS is reacting with this compound by 

stabilizing it in a stable N-acyl urea compound. Finally, aminated molecule is going to react with the 

activated CNC surface.135  

 

Figure I. 23. General mechanism of an amine-terminated molecule at the surface of TEMPO-oxidized CNCs in presence of 
EDC/NHS coupling agents ((1):activation of oxidized TEMPO-CNC with EDC, (2): stabilization with NHS, (3) reaction 

with aminated compound / reagents in blue – final grafted CNC (CNC-g-amine) in green) 

Araki et al.146 were the first who introduced this method, using EDC/NHS as catalyst system, to graft 

amine-terminated-poly(ethylene glycol) on TEMPO-oxidized CNCs, in order to sterically stabilized 

CNC water suspensions. Around 20-30% of the total amount of previously introduced carboxyl groups 

was converted into amide groups, which was sufficient for suspension stabilization and redispersion146. 

Knowing that not all –COOH groups (on C6 carbons) are converted into amide groups during the 

amidation process and due to the previous low degree of oxidation of TEMPO-oxidized CNCs, the 

grafting density of an amidation is relatively low, generally lower than 0.2. The coupling reaction is 

pH dependent, and a pH between 7 and 10 has been reported to be efficient, in the case of CNC (R-

NH2 configuration)57. In the literature, several studies used the EDC/NHS reagents to decorate the 

CNC surface with an amine. For example, Bendahou et al.138 compared the efficiency of the amidation 

of aliphatic amine with that of the esterification of equivalent acid chloride molecules. Predictably, the 

esterification with highly reactive allyl chloride was highly efficient, although the amidation of 
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aliphatic amine was also proved, and selective at the level of C6 carbons. Note that the pH, the time of 

reaction, and the introduction order of EDC/NHS compounds influence the yield of the reaction. 

Studies have been carried out to optimize this amidation reaction143,176.  

The amidation reaction is long, compared to classical reactions (several days for CNCs), and leads to 

low yields (around 10-30%). Nevertheless, the low amount of grafted aminated compounds is 

generally good enough to modify desired properties. For example, in a recent study, Guo et al.176 

investigated EDC/NHS monitored amidation reaction of functionalized aminated carbon quantum dots, 

in order to confer fluorescence properties to modified CNCs. The surface composition analysis was 

established using XPS, and allowed to conclude that about a 36% conversion of carboxyl groups into 

amide groups and fluorescence of final modified CNCs was performed, as shown in Figure I. 24 a) 

and c). Moreover, although amidation reaction did not influence or damage CNCs morphology, 

grafted carbon quantum dots were visible by TEM imaging (Figure I. 24 b)). 

 

Figure I. 24. Evidence of fluorescent behavior of modified CNCs through EDC/NHS coupling amidation: a) 
Characterization of fluorescence by confocal microscopy : modified CNCs with carbon quantum dots on the top, unmodified 
TEMPO-CNCs at the bottom, b) TEM image of modified CNCs with carbon quantum dots (visible at the level of red arrows), 

and c) Fluorescence spectra of unmodified TEMPO-CNCs (TO-CNCs), aminated carbon quantum dots (NH2-CQDs) and 
grafted TEMPO-CNCs with carbon quantum dots (CQDs-CNCs) (extracted from 176) 

Nevertheless, the advantages of an amidation catalysed by EDC/NHS compounds are its possible 

occurring in water, at room temperature, and without highly toxic chemicals, which is interesting in 

current ecological context, and in terms of green chemistry. 

Esterification is another common CNCs grafting procedure. Different kind of esterification exist, with 

for example the sulfation and phosphorylation, occurring during the isolation of CNCs, according to 

the involved hydrolysis condition. Sulfate or phosphate half-ester groups are created on the surface of 

CNCs from secondary hydroxyl groups. Such in situ sulfation or phosphorylation allow colloidal 

stability of isolated CNCs. Several studies have taken advantage of the hydrolysis isolation process of 

CNCs by combining it with a Fischer esterification, in a one-step procedure, in order to obtain 

modified CNCs. Boujemaoui et al.177 have produced functionalized CNCs by combining hydrochloric 

acid hydrolysis with Fischer esterification, using different functional carboxylic acids, as presented in 

Figure I. 25 a).  



Cellulose nanocrystals and functionalization 

Manon LE GARS, 2020 
70 

 

Figure I. 25. a) Principle of the one-step procedure combining acid hydrolysis and esterification of cellulose fibers using 2-
bromopropionic acid / 3-mercaptopropionic acid / 4-pentenoic acid / 2-propynoic acid, b) Nomenclature of recovered CNCs 
with different acids, yield and dimensions, and c) obtained by AFM analyses, (A):HCl-CNC (unmodified), (B): 2-PyA-CNC, 

(C): 2-BPA-CNC, (D): 3-MPA-CNC and (E): 4-PA-CNC) (extracted from 177)  

The modified CNCs were recovered with yield comprised between 48 and 62%, which was consistent 

with the values found in the literature for CNC produced from cotton sources178. Functionalized 

CNCs with double and triple bonds, as well as with thiols and brominated groups, were also 

characterized. No significant differences in term of CNCs morphology were visible, with lengths 

between 170-200 nm and width between 13-18 nm, in agreement with the literature. In a same way, 

Spinella et al.139 modified CNC in a similar one-step procedure with natural carboxylic acid (citric, 

malonic and malic acids). Figure I. 26 a) shows the schematized process for the isolation of modified-

CNC. The grafting efficiency was highlighted by FTIR, among other techniques. First of all, all FTIR 

spectra showed the presence of intact cellulose (Figure I. 26 c)). Moreover, peaks related to ester 

groups (C=O stretches) and –CH2 carbons evidenced the presence of the introduced ester bonds 

between cellulose and acids moieties. The TEM images of unmodified CNCs obtained via common 

hydrochloric acid hydrolysis and those associated to modified CNCs obtained via the one-step 

hydrolysis/Fischer esterification process showed no significant differences in terms of dimensions. 

Degrees of substitution between 0.16 and 0.22 were obtained, which was lower than those obtained 

with classical esterification (generally around 1 – 2)135, but they still corroborated the literature values. 
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Figure I. 26.  a) General procedure of the one-step isolation/modification process of CNCs with different bio-based 
carboxylic acids (citric, malic and malonic acids), b) FTIR spectra of unmodified HCl CNCs and modified malonate / citrated 

/ malate CNCs, and c) TEM images of resulted unmodified (D) and modified (A, B, C) CNCs (extracted from 139) 

In their study, the compatibilization of modified CNCs with polymer was targeted, as it is often the 

case. In fact, several studies have investigated the grafting of long aliphatic chains on the surface of 

CNCs to increase their hydrophobic character, and thus their compatibility with hydrophobic polymers.  

Other post-esterification of CNCs are widely presented in literature, including acetylation140,179, 

transesterifications180 or the use of acid halide reagents159,181. The efficiency of these reactions was 

already proved in literature, with high degrees of substitution (generally higher than 0.4 and until 2-

3)135. Indeed, the surface high reactivity of the CNCs and the use of organic solvents are favourable 

conditions, and traditional method using fatty acid chlorides in organic solvents have been exposed in 

the literature135,153. Another way of esterification is to modify directly CNC aerogels with a vapor 

phase of the chosen acid chloride. For example, Fumagalli et al.182 exposed that the modification of 

CNC aerogels, prepared in a mixture of water and tert-butanol, and then dried, could efficiently 

performed with palmitoyl chloride vapors. The redispersion of these modified CNCs in organic 

solvents was also a success. The efficiency of the esterification on CNCs was controlled and proved, 
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but the question of green chemistry and limitation of organic solvent remain a key point in current 

research. Indeed, in a spirit of green chemistry with limitation of toxic and organic solvent, 

esterification of CNCs remains a challenge, since the presence of water shifts the equilibrium in the 

undesired direction.  

In the literature, more and more “solvent-free” or “green” methods are reported. Although these terms 

have to be understood properly, these methods have a common objective: the reduced use of toxic and 

organic solvents. Yoo and Youngblood183 proposed a method in which aqueous lactic acid solution 

was used as reactive solvent in the esterification process of CNCs with long chains carboxylic acids. 

Thus, intermediate CNCs-grafted-PLA possessed a hydroxyl function at their end and acted as reactive 

species for the further esterification of carboxylic acids. Low degrees of substitution were calculated, 

although they were suitable for such innovative esterification. In a same way, Espino-Perez et al.141,184 

presented a novel method for the esterification of CNCs. Figure I. 27 a) schematizes their protocol. 

Briefly, a CNC suspension in water was mixed with a water soluble acid, and heated above the acid 

melting point. After total evaporation of water, CNCs were in suspension in the melted acid and the 

reaction mixture was stirred for several hours, followed by washing steps. In this work, Espino-Perez 

et al. indirectly proved the enhanced dispersion of modified CNCs in organic solvents, like chloroform 

(Figure I. 27 b)), as well as, their increased hydrophobic character due to the introduction of 

hydrophobic groups at their surface, as suggested by the increasing of their water contact angle 

(Figure I. 27 c)). Generally speaking, chemical modifications of CNCs tend to turn to green and less 

toxic chemistry, although efficiency of such reaction is still lower than traditional reactions using 

organic and toxic chemicals.  

 

Figure I. 27. a) Solvent-free process ("SolReact") of the functionalization of CNCs with various carboxylic acids (benzoic 
acid (BA), phenylacetic acid (PhAA) and benzylacetic acid (BzAA)) and corresponding esterification mechanisms, b) 

Pictures of neat and esterified CNCs dispersed in chloroform at 0.5 wt%, and c) Contact angles of neat and modified CNCs 
(extracted from141) 
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2.3.3. Grafting of polymer chains at the surface of cellulose nanocrystals 

For some applications, the modification of the CNC surface is required, in order to make them more 

compatible with apolar medium and polymeric matrix, or to confer them new interesting properties. 

The covalent grafting of polymer chains on the surface of CNCs can be performed, according to two 

different methods, respectively called grafting-onto and grafting-from. Recent reviews well described 

the polymer chains grafting on CNCs, with among others those of Natterodt et al.132, Kedzior et al.134, 

and Wohlhauser et al.133. They all put in parallel the two strategies.  

The grafting-onto method is schematized in Figure I. 28. In this strategy, CNCs are used as such, or 

are pre-modified with functional groups. In the case of unmodified CNCs, the numerous reactive 

hydroxyl groups on their surface are used as functional groups. In the grafting-onto strategy, 

functional groups on the surface of the CNCs react with end-functionalized polymers (commercial 

grade or previously synthetized), generally in the presence of a coupling agent. Thus, the polymers are 

directly grafted onto the CNCs surface. Due to eventual steric repulsion between the grafted polymer 

chains ─ which can hindrance the polymer grafting ─ this method leads to quite low grafting densities. 

Nevertheless, it also presents benefits, since the grafted polymers, and especially its molecular weight, 

can previously be characterized, and the grafted surface of modified CNCs can thus be better 

controlled and modelled.  

According to Kedzior et al.134, the most common reactions generally used in the grafting-onto strategy 

are the carbodiimide coupling, the opening of epoxy groups and the grafting of isocyanate groups. In 

these cases, functional groups on the surface of CNCs are carboxylic acid –COOH (previously 

introduced by TEMPO-oxidation), deprotonated hydroxyl groups –O- and hydroxyl groups –OH, 

respectively. These reactive groups thus react with amine-terminated polymers, epoxy-terminated 

polymers, and various polymers like poly(caprolactone) or poly(urethane), respectively. Although 

most of these reactions occur in organic solvent with any trace of water due to the hydrophobic 

character of grafted polymers, some of them can take place in aqueous conditions. It’s the purpose, for 

example, of the research conducted by Araki et al.155, who grafted aminated-poly(ethylene glycol) in 

water onto TEMPO-CNCs surface146. Another example is the grafting of epoxy-terminated-

poly(ethyleoxide) on deprotonated CNCs, leading steric stabilization of grafted CNCs which are not 

ionic sensitive. Colloidal stability and compatibilization in apolar polymeric matrices are generally 

targeted, as well as, the development of new functional materials, like thermoresponsive behavior of 

amine-terminated PNIMPAM (poly(N-Isopropylacrylamide)) grafted on CNCs surface in aqueous 

medium, as presented by Gicquel et al.147 As previously mentioned, the main drawback of the 

“grafting-onto” strategy lies in the low grafting densities, mainly due to steric hindrance between the 

polymer chains.  
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Figure I. 28. Schematized principles of Grafting-onto and Grafting-from strategies 

The grafting-from method is a two-steps strategy, in which neat or previously grafted CNCs (with an 

initiator of the further reaction) are involved. The hydroxyl groups on the neat CNCs surface, or the 

grafted functional groups on the modified CNCs surface act, most of the time, as initiator of the 

polymerization. As its name suggests, the grafting-from strategy consists in the polymerization from 

the CNCs surface, by the addition of the monomer and potential coupling agents in the reaction 

mixture, as presented in Figure I. 28. This method allows higher grafting densities (between 100 and 

1000 polymer chains per CNC), since the steric hindrance between the polymer chains are generally 

limited, because of their living polymerization, and a better control of the grafting density and 

polymeric chains length.  

Several grafting-from strategies are known in the literature, where three main types are reported: the 

ring-opening polymerizations (ROP) of monomers bearing rings, the free radical polymerizations, and 

the controlled radical polymerizations.  

ROP is currently a well-known procedure to graft cyclic monomers (ε-Caproplactone, lactide, ethers) 

from hydroxyl groups acting as initiator groups at the surface of CNCs, and most of these 

polymerizations are highly water sensitive. Habibi et al.158 were the first to perform the ROP of ε-
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Caproplactone via ring-opening polymerization (ROP) from the surface of CNC, in toluene, and using 

Tin(II) ethylhexanoate (Sn(Oct)2) as catalyst. In their review, Kedzior et al134 presented recent 

advances and publications dealing with ROP on CNCs. The polymerization of lactic acid from the 

CNCs surface by ROP was proposed several times in the literature. Peltzer et al.185 performed the ROP 

of L-lactide in toluene, with a catalytic amount of Sn(Oct)2, and with different initial monomer/CNC 

weight ratios. More recently, Miao and Hamad186 carried out a similar in situ ROP with Sn(Oct)2 and 

zinc oxide as catalyst and initiator, respectively. In both studies, the efficiency of the polymerization 

was highlighted.  

Free radical polymerizations are generally performed in water and do not require the presence of 

attached surface initiators. In fact, these polymerizations involve water soluble radical initiators (for 

example, ceric ammonium nitrate (CAN), ammonium persulfate (APS), potassium persulfate (KPS), 

etc.) which mainly react with hydroxyl groups from CNC surface, allowing the chain growth of 

polymer from water soluble monomers. In 2013, Kan et al.187
  were among the first to carry out a free 

radical polymerization of poly(4-vinylpyridine) from the CNCs surface, using CAN as initiator. In the 

literature, numerous publications deal with the free radical polymerization from CNCs surface, like 

Kedzior et al.161 who polymerized poly(methyl methacrylate) from CNCs surface in water with CAN, 

or Zubik et al.188 who performed the free radical polymerization of N-isopropylacrylamide monomer 

from CNCs surface, in the presence of APS as initiator and 1,2-di-(dimethylamino)ethane, in water. 

Each time, the efficiency of the polymerization was highlighted, as well as the benefits of the such free 

radical polymerizations (i.e. aqueous media and one-step reaction). In a same way of green chemistry, 

Espino-Pérez et al.160 first activated the CNCs surface by ozonolysis, to create -O• radicals at their 

surface, and then performed the free radical polymerization of styrene from these radicals in the 

presence of APS. During free radical polymerizations, it is generally difficult to well control the 

polymer growth, which leads to heterogeneous chains lengths. Moreover, a significant amount of 

homopolymer ─ polymerized from the reaction media ─ is generally produced, and it is difficult to 

totally remove this free polymer.  

Various controlled radical polymerizations exist, like among others, the atom-transfer radical 

polymerization (ATRP), the reversible addition-fragmentation chain-transfer polymerization (RAFT), 

single electron transfer-living radical polymerization (SET-LRP), or the nitroxide-mediated 

polymerization (NMP). These polymerizations are reversible-deactivation radical polymerizations 

(RDRP). 

The atom transfer radical polymerization, referred to as the ATRP, was developed by Matyjaszewski 

et al.189 and Sawamoto et al.91 at the end of the 1990s. ATRP is defined as equilibrium between 

propagating radicals and dormant species. Figure I. 29 represents the ATRP principle.  
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Figure I. 29. General representation of the ATRP equilibrium with (Pn-X) the initiating alkyl halides/macromolecular 
dormant species and (Mtm/L) the transition metal complex, (Pn*) the propagatin radicals and (X-Mtm+1/L) the metal complex 

in the higher oxidation state (extracted from 190) 

Briefly, the initiating dormant species (Pn-X) react with a transition metal complex in their lower 

oxidation state (Mtm/L, generally CuI/L or X-CuII/L, with m the oxidation state and L the ligand) with 

a rate constant of activation kact. Thus, the growing radicals Pn* are formed, leading to the addition of 

monomers, and thus the growth polymer chains, with kp the rate constant of propagation. In parallel, 

the radicals react in a deactivation reaction with oxidized metal complex (X-Mtm+1/L) to recreate 

dormant species and transition metal complex in their lower oxidation state, and thus recreating the 

activator with the rate constant of deactivation kdeact. The rate constant of termination kt governs the 

termination of the polymerization. Several parameters influence the rate and yield of the 

polymerization : ligand and monomer/dormant species structure, reaction conditions like solvent, 

temperature, reaction time and reactive proportions190,191.  In the case of a grafting at the surface of 

CNC, surface-initiating ATRP (called SI-ATRP) is carried out. In a two-step procedure, CNC are first 

modified with an initiator of the polymerization, commonly the brominated initiator α-

bromoisobutyryl bromide (BIBB), whose grafting occurs generally in DMF in presence of 

trimethylamine and 4-(dimethylamino)pyridine. In 2008,  Yi et al.192 were the first to report the SI-

ATRP of polystyrene of functionalized CNC and performed acidic cleavage of grafted chains in a way 

of characterization. Since that date, numerous publications have presented SI-ATRP on CNC with 

different kind of polymers, especially hydrophobic polymers, in a way of CNCs compatibilization 

with hydrophobic polymeric matrices. Grafting-from polystyrene on CNCs has been optimized in the 

literature, especially by Morandi et al159. In their study, they polymerized polystyrene by ATRP from 

brominated initiator sites, and proved that the substitution degree of these initiator sites influenced the 

polymerization efficiency. The principle of their grafting-from strategy is presented in Figure I. 30. 

The homopolymer produced from sacrificial initiator in solution was recovered after each 

polymerizations carried out with different conditions (initial brominated sites content, initial 

monomer/sacrificial initiator ratio, polymerization time), and in each case, the control of the 

polymerization was proved at short reaction times.  
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Figure I. 30. Principle of the grafting-from of polystyrene on pre-functionalized CNC-Br proposed by Morandi et al. (1 = 
unmodified CNCs, 2= CNCs modified with BIB and 3=CNCs grafted with polystyrene / Reaction conditions : (a) = 2-

bromoisobutyrylbromide (BIB), Et3N (trimethylamine), DMF, 24h, 70 °C and (b) = [styrene]:[EBiB]:[CuBr]:[PMDETA] = 
100:1:0.5:0.5, anisole (50%v/v), 100 °C) (extracted and adapted from 159) 

The novel ARGET-ATRP method (Surface-Initiated Activator Re-Generated by Electron Transfer 

ATRP) is highly interesting, since it aims to reduce the amount of catalyst in the media, and can be 

performed with a better oxygen tolerance (presence of air). It clearly reduces the reaction time and the 

number of steps, especially for what the removal of metal salts concerns. Recently, Zhang et al.193 

polymerized styrene from the surface of CNCs (previously modified with BIB) by ARGET-ATRP, 

with CuBr2 and tris(2-(dimethylamino)ethyl)amine as catalyst system. Briefly, ARGET-ATRP 

involves an excess of reducing agent which regenerates the active species (Cu(I)) from the deactivate 

species (Cu(II)). These species are thus continuously formed. The authors compared the ARGET-

ATRP with the SI-ATRP procedure, and concluded that ARGET-ATRP allows the grafting of longer 

polymeric chains with a lower grafting density, with a reduced amount of catalysts and a reduced time 

of polymerization. In a recent publication, Lepoittevin et al.194 performed surface-initiated ARGET-

ATRP of 2-hydroxyethyl methacrylate (HEMA) on previously prepared chitosan-based 

polysaccharide films, in order to make them more hydrophobic. After having modified the films with 

the BIB as initiator, the reaction was performed at room temperature, using CuBr2 and tris(2-

pyridylmethyl)amine (TMPA) as catalyst system, and ascorbic acid as reducing agent. The authors 

confirmed that the presence of air in the reaction media didn’t influence the efficiency of the 

polymerization, which is also controlled. The polymerized chitosan films were then fluorinated using 

heptafluorobutyryl chloride, in order to enhance their hydrophobic behavior. In addition to the direct 

characterization of the simple ARGET-ATRP polymerization limiting the use of metallic salts, the 

hydrophobicity of the modified chitosan films was evidenced by the significant increase in the value 

of the water contact angle (from 87° to 101° after fluorination). Photo-induced ATRP is another kind 

of ATRP using less initiator and thus leading less washing steps195. In the review of Kedzior et al.134, a 

complete Table I summarizes all the different polymers grafted on CNCs via SI-ATRP, with the same 

pre-functionalization with BIBB in all cases. Among others, hydrophobic polymers like 

polystyrene159,192, poly(methacrylate)196, poly(butyl methacrylate)197, N-isopropylacrylamide198 were 
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efficiently grafted on CNCs. Most of the time, targeted properties is hydrophobicity and compatibility 

of CNC with hydrophobic systems.  

In the literature, in addition to the ATRP, other reversible-deactivation radical polymerizations 

(RDRP), like SET (or SARA ATRP) and RAFT are proposed. SET is carried out under the same 

conditions as the ATRP. Zoppe et al.181 were the first to use SET living radical polymerization for the 

grafting of poly(N-isopropylacrylamide) on CNCs, using Cu(I)Br copper salt as catalyst. Wang et 

al.196 also reported a SET polymerization, and grafted poly(methacrylate) on CNC by using Cu(O) 

copper wire as catalyst. Both of their studied aimed to simplify the washing procedure of grafted 

CNCs. On the other hand, the RAFT technique is more recent, and its use in the grafting-from strategy 

is much less reported in the literature. RAFT can be used with numerous monomers and reactions 

conditions, and ensure a well-controlled polymerization. The techniques requires first the attachment 

of chains transfer agents (mainly xanthates, trithiocarbonates, and dithioesters)134,199 on the surface of 

the materials200, leading to fast exchanges with the monomers. The initiation and termination steps are 

similar to those of classical radical polymerizations, and termination reactions are limited, due to the 

low amount of radicals in the media. In 2014, Zeinali et al.201 were the first to perform RAFT 

polymerization of N-isopropylacrylamide and acrylic acid copolymers from the CNCs surface 

previously modified with thiocarbonates (2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid, 

DDMAT) as chain transfer agents. More recently, Boujemaoui et al.202 immobilized a similar chain 

transfer agent (2-(ethoxycarbonothioylthio)-propanoic acid) on CNCs surface to perform the RAFT 

polymerization of vinyl acetate, as presented in Figure I. 31. 

 

Figure I. 31. Principle of the grafting-from of poly(vinyl acetate) (PVAc) using the RAFT polymerization from the CNCs 
surface modified with (2-ethoxycarbonothioylthio)-propanoic acid) as chain transfer agent (extracted from 202) 

Few other studies deal with the RAFT polymerization of various monomers from the surface of CNCs. 

For example, Liu et al.203 synthetized macro-agents, which were then covalently attached on the CNCs 

surface, and from which the RAFT polymerization of acrylamide was performed, in the presence of 

CAN and nitric acid.  

Another controlled radical polymerization is the NMP, which involves nitroxide compounds as control 

agents and thus, reversible termination equilibrium between these nitroxide moieties and the growing 
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propagating radicals. In 2016, Roeder et al.204 were the first to perform NMP from the surface of 

CNCs. They polymerized poly(methyl acrylate) and poly(methyl methacrylate) from the CNCs surface 

previously modified with N-(2-methylpropyl)-N-(1-diethylphosphono-2,2-imethylpropyl)-O-(2-

carboxylprop-2-yl)hydroxylamine (BlocBuilder®) initiators, and they highlighted the efficiency of the 

polymerization. Only few publications deal with this technique in the grafting-from CNCs strategy.  

More generally, the main grafting-from method’s difficulty lies in the fact that the determination of the 

molecular weight of the grafted polymer is challenging. It is commonly assumed that the 

homopolymer growth from sacrificial initiator in the media is very similar to that of the polymer from 

initiator sites at the CNCs surface, leading to very close values of molecular weight of grafted and free 

homopolymers205. Cleavage of grafted polymeric chains could be a solution, but this process is drastic 

and could certainly damage both CNCs and polymer, leading to distorted results. In a recent 

publication, Zhang et al.206 proposed different characterizations (DLS, DSC, TGA) to determine 

precisely the grafted polymer characteristics. However, they concluded that the commonly done 

assumption is coherent: free homopolymer and grafted polymer are very similar in term of molecular 

weight. Noteworthy, the main advantage of the “grafting-from” technique relies in the control of the 

chains grafting density and length.  

2.3.4. Physical adsorption of various molecules on cellulose nanocrystals 

The stronger type of non-covalent bond relies on an electrostatic phenomenon. Indeed, negative 

surface charges at the surface of CNCs, and positive charge on molecules thus establish ionic bonds. 

Other types of interactions can occur, such as hydrogen bonds, or Van der Waals forces, but these 

phenomena are even weaker than charge-charge interactions ones. Thus, the surface charges of CNCs 

can be exploited in order to simply attach moieties at their surface, without using harsh chemistry. 

Although adsorption mechanisms are not easy to model (as studied by Villares et al.207) and not 

sufficient for all applications, the adsorption strategy has been widely studied in the literature.  

In the case of surfactants acting as stabilizing compounds, their hydrophilic part can be adsorbed at the 

surface of hydrophilic CNCs, while their hydrophobic part aim to create a hydrophobic surface around 

the CNCs. Generally, the stabilization and dispersion of such decorated CNCs in organic solvents are 

targeted. Heux et al.208 were among the first to investigate the use of surfactant (in their case, a 

phosphoric ester of polyoxyethylene nonylphenyl ether anionic surfactant) in order to obtain a well-

dispersed suspension of coated CNC in non-polar solvents, such cyclohexane, via a simple procedure. 

More generally, CNCs and oxidized TEMPO-CNCs bear surface anionic groups, providing from 

residual components from fibers, or naturally oxidized or ionizated hydroxyl groups. The adsorption 

of anionic surfactants is thus interesting.209 

Abitbol et al.165 used cationic surfactant cetyltrimethylammonium bromide (CTAB) to adsorb via 

electrostatic interactions at the surface of CNCs, precisely on negatively charged half-sulfate ester 
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groups. According to their results, between 50% and 100% of surface charges were recovered by the 

CTAB, and this efficiency was mainly dependent on ionic strength, and to a lesser degree, on the 

surfactant concentration, and surfactants/anionic sulfur charges molar ratio. Indeed, by increasing the 

ionic strength of the reaction media, electrostatic interactions were screened, leading to a decrease in 

the adsorption efficiency. Figure I. 32 schematizes the different reaction conditions exposed by 

Abitbol et al.165 in their work. In case a), the pH was adjusted with NaOH, and electrostatic 

interactions between cationic surfactant and negative surface charges of CNC were more hindered than 

in case b), were pH was equal to 4. The concentration of CTAB varied between cases a) and b) (higher 

or equal to the critical micellar concentration).  

 

Figure I. 32. Scheme of the two adsorption reactions proposed by Abitbol et al. with a) a concentration of surfactant higher 
than the critical micelle concentration (CMC) and pH=10, and b) a concentration of surfactant equal to the CMC and pH=4 

(extracted from 165) 

Note that CTAB is commonly used as surfactant for the adsorption on CNCs, since it is not expensive, 

widely available and efficient, although other cationic surfactants have also been studied, like 

hexadecyltrimethylammonium bromide (HDTMA). More recentrly, Kaboorani and Riedl.210 have 

investigated the adsorption of HDTMA in a similar procedure as that previously proposed, varying the 

ratio HDTMA/CNC and the reaction time. The stability in water and THF of recovered modified 

CNCs at different conditions was studied, as shown in Figure I. 33. The AFM images clearly showed 

that by increasing the amount of HDTMA at the surface of CNCs, coated CNCs were more aggregated, 

which could be explained by the absence of repulsive negative charges which play a role in the 

stability of water suspensions. It was confirmed by the stability of water suspensions, as presented in 

Figure I. 33 a): modified CNCs were not stable in water and precipitated, whereas they were stable in 

THF (Figure I. 33 b)), depending on the initial surfactant concentration. It highlighted the 

hydrophobic behavior of CNCs once they have adsorbed long aliphatic chains surfactants. More 

generally, negatively charged groups at the surface of CNCs result from residual fibers components 

and/or chemical modifications like TEMPO oxidation or acid hydrolysis, and are interesting sites for 

adsorption of cationic surfactants.  



CHAPTER I : Literature Review 

Manon LE GARS, 2020 
81 

 

Figure I. 33. a) AFM images in hight (from left to right) of unmodified CNCs, modified CNC at 0.35mmol/g HDTMA for 2 
h and modified CNC at 1.4mmol/g for 4 h, b) Water suspensions, and c) THF suspensions of A) unmodified CNCs, B) 

modified CNCs at 0.35mmol/g for 2 h, C) modified CNCs at 0.35mmol/g for 4 h, D) modified CNCs at 1.4mmol/g for 2 h 
and E) modified CNCs at 1.4mmol/g for 4 h (extracted from 210) 

The use of non-ionic surfactants was also described in the literature. For example, Rojas et al.211 used 

non-ionic sorbitan monostearate surfactant to adsorb CNCs in order to introduce and disperse such 

modified CNC in a polystyrene matrix. Efficiency of the adsorption of anionic surfactant on CNCs 

was proved by the reduction of bead during the electrospinning process, because of the charges 

decreasing in the CNC/Polystyrene system. Another goal of the adsorption at the CNCs surface is the 

stabilization of emulsions. Capron et al.59 highlighted the stabilization effect of CNCs on oil-water 

interfaces, in order to create strongly stabilized emulsions. Kedzior et al.212 built their work on the 

emulsion stabilization properties of CNCs, by adsorbing different types of surfactants (anionic or 

cationic) on the CNCs. The polymerization in emulsion was the aim of their study, and it was 

controlled and tailored by the presence of adsorbed CNCs. More generally, CNCs can act as stabilizer 

in Pickering emulsions (particle-stabilized emulsions), in which they can adsorbed at the droplets 

interfaces. These Pickering emulsions have been widely studied in the literature, in particular with the 

use of surfactants to enhance their stabilization127,166,213.  

In the case of molecules or polymers adsorption, a similar principle is considered. Indeed, adsorbed 

molecule or polymer has to contain both hydrophilic and hydrophobic parts. The aim of 

macromolecules or polymer adsorption on CNCs is generally the enhancement of their 

compatibilization and dispersion in polymeric systems. In a recent publication of Boujemaoui et al.197 

the physisorption of the poly(n-butyl methacrylate) was carried out and compared with a covalent 

grafting strategy. Even if the covalent bonding was more efficient than the adsorption route, the final 

nanocomposites of modified-CNC in polycaprolactone matrix showed interesting properties. Cheng et 

al.214 have performed the adsorption of polyethylene oxide (PEO) with different molar masses on 

CNCs in order to improve their re-dispersion after drying. They proved that the presence of adsorbed 

PEO allowed the CNCs re-dispersion in water. They also assumed that the presence of adsorbed PEO 
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on CNCs induced steric hindrance, and thus led to the re-dispersion. Pereda et al.215 have mixed PEO 

solution with a CNC suspension, and investigated the evolution of the viscosity. They concluded, 

according to the trend of the viscosity curve function of the CNC content (decreasing of the viscosity 

when CNCs were added), that an optimum of CNCs amount, called “critical concentration”, existed 

and corresponded to the amount of CNCs needed for adsorbed all the PEO chains. Once CNCs have 

adsorbed PEO, the viscosity of the system increased. Final freeze-dried CNCs coated with PEO were 

then extruded with polyethylene and recovered films were more homogeneous than those prepared 

with unmodified CNCs, and more thermally stable. Thus, the PEO adsorption allows surface 

modification of CNCs via simple routes in water, with a wide range of possibilities. Nevertheless, 

since molecules are not covalently linked to CNCs, release or leaching phenomena have to be 

considered.  

 

In this second part, nanocelluloses were introduced, and especially cellulose nanocrystals (CNCs). 

Their isolation, properties, applications, and some of their chemical surface modifications were 

detailed. As presented in the first part, composites ─ and especially those using bio-based polymers 

─ are interesting materials in terms of barrier and mechanical properties. With the emergence of 

innovative nanomaterials such nanocelluloses, the research is focusing on outstanding 

nanocomposites materials. The following part focuses on the introduction of nanocelluloses in 

polymeric matrices, for food packaging applications. 
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3. Use of nanocelluloses in polymeric systems for food packaging 

applications 

Cellulose nanocrystals are of great interest in composites field, and especially for food packaging 

applications. The number of publications and patents dealing with cellulose nanocrystals in 

nanocomposites field increased over the years, and followed the same trend as the evolution of 

cellulose nanocrystals alone. Although CNCs present a wide range of applications and applied 

researches, composites field ─ and especially that of nanocomposites ─ is the most important targeted 

application area of CNCs. As schematized in Figure I. 34, around 450 papers have been published on 

the topic just since the beginning of this project (2017), and innovative aspect of CNC-based 

nanocomposites is also highlighted. Recent reviews reported the use of cellulose nanocrystals in 

nanocomposites field117,216–218.  

 

Figure I. 34. Schematic representation of number of publications dealing with CNCs and nanocomposite applications 
especially and number repartition before and after the starting year of this project (Source : SciFinder, April 2019 – 

Descriptors : cellulose nanocrystal, cellulose nanorod, rod-like cellulose, cellulose nanowire, cellulose crystallite, cellulose 
nanoparticle, cellulose whiskers, nanocrystalline cellulose combined with nanocomposites – Language : English) 

Although both CNFs and CNCs can be introduced in polymeric matrix and enhance the final 

properties of the materials, CNCs are in the center of this PhD project, and their use in composite 

field is described in this last section. Several reviews detailed the use of CNFs for composites 

applications
86,217,219,220

. Nanocomposites for food packaging applications will be first described, 

following by the interest of the CNCs introduction, and finally the properties of resulting CNC-

based nanocomposites. 

3.1. Nanocomposites and legislation 

3.1.1. Interest of the introduction of nano-fillers in polymer matrices 

By definition, a nanocomposite is a multiphasic material, in which one of the phases present one or 

several nanometric scale, meaning less than 100 nm117. Okada et al.221 were the first to introduce 
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nanomaterials in a polymeric matrix. Indeed, by incorporating silicate in polyamide, they exhibited 

high mechanical properties and high temperature resistance of the final nanocomposites. Since this 

date, numerous studies have been investigated, and the incorporation of nanomaterials (especially 

inorganic ones) in polymer matrices for packaging applications has shown interesting results. Indeed, 

due to their nanometric size, nanomaterials allow to reach unique properties, when compared to 

properties of traditional composites, and this unique effect visible even at low filler content (few 

weight percentages)117. Safety, low cost, and enhanced barrier and mechanical properties, as well as 

antimicrobial activity, have stimulated the development of such nanocomposites, with among others 

the use of metal-based, oxide, carbon-based, or clay-based nanoparticles222. Numerous examples of 

industrialized and commercialized nanocomposites in food packaging sector with inorganic fillers can 

be provided: nanoclays in nylon or starch for beer bottles (Aegis® OXCE, USA) and thermoformed 

trays for chocolate (Plantic®Plastic Tray, Australia), silver nanoparticles in polypropylene or 

polyethylene for food containers (FinePolymer, Inc., South Korea or Cixi Mingxin Plastic & Rubber 

Factory, China), and other examples. In each case, the properties of the final products are improved, 

especially their barrier, mechanical, or antimicrobial (with silver) properties.  

As mentioned in the first part of this chapter, in the current economic and environmental context, 

development of innovative bio-based, biodegradable, active and intelligent food packaging is in the 

centre of researches in this field, especially with the use of renewable materials. Since the 1990s, the 

incorporation of bio-based nanomaterials into polymers has been of great interest.  

3.1.2. Nanocomposites and legislation 

When speaking about nanomaterials and nanocomposites, one spontaneous question is the health risk 

related to the presence of “nano”. Indeed, in consumers and media mind, the term “nano” refers to 

dangerous materials. Several studies have been carried out in order to get rid of this risk and this poor 

perception. European Union ─ the main European organization for nanotechnology and nanomaterials 

─ has published in January 2011 a Commission Regulation on plastic materials and articles intended 

to come into contact with food223. The regulations and specifications were given, with limit values of 

compounds migrations. In this legislation, the European Union aims to limit the amount of additives 

used in food packaging and results of migration studies have to be provided before any 

industrialization. Bumbudsanpharoke et al.224 published a recent review on the nano-food packaging 

market. According to their study, the nanoparticles presented in nanocomposites possibly migrate from 

the packaging, but it has been proved that the amount of migrated nanoparticles is lower than the 

legislated limitations. Nevertheless, consumers and media perception is still suspicious. As previously 

mentioned, low toxicity of CNCs has been demonstrated but question of potential migration of the 

nanocelluloses into the food products is still under question for what CNC-based nanocomposites 

concerns. However, taking into account the bio-based and renewable character of CNCs, as well as, 
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that of bio-based polymer used as template matrix, the strategy of the elaboration of bio-

nanocomposites is an innovative and promising strategy in food packaging science.  

3.2. Cellulose nanocrystals as fillers in nanocomposites 

 

After the first introduction of nanocelluloses in polymer in the beginning of the 1990s, lot of 

researches have been carried out to optimize and characterize the preparation of nanocellulose-based 

nanocomposites. Through their nanometric size and their high specific surface area, CNC exhibit 

outstanding properties when incorporated in a polymeric matrix. Moreover, use of renewable and bio-

based polymeric matrices is currently leading the research. 

 

3.2.1. Effect of cellulose nanocrystals on nanocomposites mechanical and barrier 

properties  

The presence of nanometric fillers, like CNCs, in a polymer matrix exhibit enhanced properties 

comparing to the presence of micrometric fillers, even at low content of nanofiller. Thus, in the case of 

CNCs, due to their high specific area, their interphase with the polymer is large, especially for well-

dispersed nanofillers. In fact, the molecular mobility of the polymer matrix is modified, leading to a 

relaxation behavior with improved thermal and mechanical properties225. In 1995, Favier et al.226 were 

the first to introduce CNCs in a copolymer of polystyrene/poly(butyl acrylate) and poly(acrylic acid). 

The study highlighted the improvement in mechanical and thermal properties when 6 wt% of CNCs 

are introduced into the matrix.  

 

Figure I. 35. Schematization of nanocomposites with various amounts of nanofillers in the matrix: a) low amount, b) 
percolation threshold, and c) higher amount than the percolation threshold (extracted from 84) 

Since this date, several studies have modelled the behavior of such nanocomposites. Intrinsic tensile 

properties of CNCs lead to the continuous network formed by the percolation mechanism. Indeed, 

above a critical CNCs concentration, called the percolation threshold, a large increasing of mechanical 

properties of nanocomposite is observed. This formalism allows predicting mechanical behavior of 

nanocomposites, considering that CNCs are organized into a rigid network inducing their reinforcing 
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effect178, and the optimum CNCs concentration in a polymer matrix for improvement of mechanical 

and thermal properties has been widely studied in the literature. This concentration does generally not 

exceed 10 wt%, in the case of rod-like particle shapes, and depends on the CNCs source and isolation 

process, as well as, on the polymer matrix. If CNCs are introduced in a too high concentration, 

dispersion and aggregation issues can occur, leading to a loss of mechanical properties. Figure I. 35 

schematizes this behavior.  

Furthermore, CNCs act as nucleating agent, and can thus enhance the crystallization kinetics of the 

polymer, improving the thermal properties of the final nanocomposites. Well-dispersed nanofillers ─ 

particularly disk-like particle shapes ─ in a polymeric host matrix can also improve the barrier 

properties of the final material. Indeed, as presented in Figure I. 36, gas molecules diffuse through the 

nanocomposite material with a certain diffusion coefficient. In the case of a simple polymer, the gas 

molecules diffuse with a diffusion coefficient D. In the case of a nanocomposite, they diffuse 

following a tortuous pathway, with a diffusion coefficient Dm. Theoretically, D and Dm are linked by 

the following equation227 :  

D=Dm/τ.  

Thus, one of the preponderant theories relies on the fact that the diffusion of gas molecules through a 

nanocomposite is slowed by the presence of nanofillers. In this sense, the enhancement of barrier 

properties of CNC-based nanocomposites is targeted, as a key property for food packaging application, 

as previously mentioned. 

 

Figure I. 36. Schematized representation of tortuous pathway of gas molecules inducing by the presence of fillers (CNCs) 
through a polymeric matrix 

However, all these assumptions are highly dependent on the properties of the introduced fillers 

(especially CNCs), and on their dispersion state. This dispersion of CNCs in a polymeric matrix is an 

important issue, which gives rise to a lot of studies. In fact, due to the inherent hydrophilic character of 

the CNCs, their introduction in hydrophobic polymer matrices is challenging, and requires generally 
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the surface modification of CNCs, as detailed in the previous part of this chapter. Due to the numerous 

hydroxyl groups at the surface of CNCs, their interfacial adhesion with hydrophobic polymers is too 

weak, and makes their dispersion difficult, which is cause for the limitation of their use in 

nanocomposites.  

Since PLA is the selected biobased polymer in this PhD project, the rest of this section will focus on 

PLA-based / CNCs nanocomposites.  

3.2.2. PLA-based / CNCs nanocomposites 

The production of PLA-based / CNCs nanocomposites is interesting, especially because of the 

advantageous properties of both CNCs and PLA, as previously mentioned. Different processing can 

lead to the elaboration of such nanocomposites, grouped into three main types: melt-processing, 

electrospinning, and casting / evaporation, as presented in Figure I 37.   

 

Figure I 37. Strategies for the elaboration of nanocomposites (Extracted from Espino-Perez E. PhD, 2014) 

The melt-processing methods include extrusion and injection molding, and are commonly used to 

process and shape thermoplastic polymers. Industrial equipment used for common polymers can also 

be used for PLA nanocomposites processing, which is interesting from an industrial point of view. 

CNC fillers can be classically introduced in dried form (solid feeding), or in suspension (liquid 

feeding). In the liquid feeding strategy, a well-dispersed suspension of CNCs is directly pumped, 

improving the final CNCs dispersion in the extruded material. Oksman et al.228 were the first to 
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prepare CNC/PLA nanocomposites by compounding extrusion, with 5 wt% of CNCs. A gravimetric 

feeding system was used to introduce the CNC suspension, whose solvent phase was removed by 

evaporation under vacuum. This method allowed a better dispersion of CNCs in final nanocomposites. 

They added poly(ethylene glycol) to improve the CNCs dispersion and, as a consequence, the 

mechanical properties were also significantly improved (increase of 800% of elongation at break). One 

year later, Bondeson and Oksman167 carried out the extrusion by introducing freeze-dried CNCs 

previously modified by adsorption with an anionic surfactant called Beycostat A B09 (Figure I. 38 a)). 

The improvement of the nanofillers dispersion was highlighted, as well as, the nanocomposite 

mechanical properties. Figure I. 38 a) confirms this improvement of dispersion, as well as, tensile 

strength and elongation at break (Figure I. 38 c)) when CNCs are introduced with the surfactant.  

 

Figure I. 38. a) Acid phosphate ester of ethoxylated nonylphenol anionic surfactant (Beycostat A B09) adsorbed on CNCs, 
b) TEM images of nanocomposites fractured surfaces : 1) unmodified CNCs(5 wt%)/PLA, 2) CNCs (5 wt%) + Surfactant (5 

wt%) / PLA, 3) CNCs (5 wt%) + Surfactant (10 wt%) / PLA and 4) CNCs (5 wt%) + Surfactant (20 wt%) / PLA, and c) 
Some mechanical properties of neat PLA, unmodified CNCs (5 wt%) /PLA (PLA-CNW), PLA with 5 wt% of surfactant 

(PLA-S5) and CNCs (5 wt%) + Surfactant (5 wt%) / PLA (PLA-CNW-S5) (extracted from167) 

The same research team investigated, the same year, the production of PLA/CNC nanocomposite by 

liquid feeding method229. First, they mixed CNCs and PVOH, and introduced the mixture directly 

during extrusion process. In order to prevent the challenging removal of water, they used different 

venting systems. Although CNCs were essentially located in the PVOH area, the improvement of 

CNCs dispersion and mechanical properties were highlighted. Nevertheless, PVOH reinforcement, at 

the cost of that of PLA, was proved.  

More recently, Yang et al.230 performed reactive extrusion, in order to modify in situ the PLA with 

glycidyl methacrylate, following a masterbatch approach to produce CNC/PLA nanocomposites. 

Tensile strength and modulus increased by 22% and 19%, respectively, confirming the efficiency of 

the method. Dhar et al.231 carried out reactive extrusion, by grafting CNCs onto PLA, using a 

crosslinking reagent (dicumyl peroxide, DCP). Briefly, dried PLA pellets were sprayed with DCP and 
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mixed with 3 wt% freeze-dried CNCs, and the mixture was extruded. The compatibilization between 

the PLA and the CNCs was enhanced, as well as, the ensuing mechanical properties, with an 

increasing in tensile strength and Young’s modulus of 41 and 490%, respectively. Moreover, the 

crystallinity was also improved, probably because of the presence of amorphous PLA chains on 

crystalline CNCs, which also act as nucleating surface. In order to improve the CNCs dispersion, Arias 

et al.232 have developed a two-step strategy, in which they first freeze-dried a poly(ethylene oxide) 

(PEO) solution containing CNCs, and then extruded the ensuing encapsulated CNCs into PEO with 

PLA. CNCs were well-dispersed in the nanocomposites, and the authors assumed that miscibility 

between PEO and PLA, in a certain composition, positively influenced this dispersion.   

The electrospinning is usually performed to produce polymer nanofibers. Briefly, by the action of 

electrostatic forces, polymer filaments from a polymer solution are formed, principally due to the 

evaporation of the solvent. Xiang et al.233 were the first to use electrospinning to produce CNC/PLA 

nanocomposites, with amounts of CNCs equal to 1 or 10 wt%. After having proved the presence of 

CNCs on the surface of nanofibers, they assumed that the CNCs behaved as nucleation agent, inducing 

an increase in the fibers crystallinity. Nevertheless, they noted a poor adhesion between CNCs and 

PLA, correlated with the theory. Shi et al.234 investigated the electrospinning of CNC/PLA 

nanocomposites from a mixture of DMF and chloroform. Efficient processing was highlighted, as well 

as, the improvement of the mechanical properties of electrospun fibers. Figure I. 39 shows SEM 

images of the fibers produced with different amount of nanofillers. Although thermal and mechanical 

properties of nanofibers were improved, they proved the presence of CNC aggregates too, leading to 

heterogeneity of morphology and properties of fibers.  

 

Figure I. 39. SEM images of electrospun nanocomposites fibers : PLA with a) 0 wt%, b) 1 wt%, c) 2 wt%, d) 5 wt%, e) 10 
wt%, and f) 5 wt% (higher magnification) of CNCs (extracted from 234) 

The casting / evaporation technique is commonly used at the laboratory level. A dispersed CNC 

suspension is introduced in a polymer solution, and the mixture is poured into a dish in order to 

evaporate the solvent. Thus, the dispersion of CNCs can be better conserved. It is important to have in 

mind that the prepared casted nanocomposite films are not fully representative of nanocomposites 

prepared at larger scale, by extrusion for example. Nevertheless, this efficient process is widely used 
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in the literature, especially to compare compatibilization between different kinds of CNCs. As 

schematized in Figure I 37, several systems exist, according to the matrix polymer: emulsion, 

hydrosoluble or non-hydrosoluble, and hydrodispersable and non-hydropdispersable systems. In 

hydrosoluble systems, the initial CNC aqueous suspension is well-dispersed, and CNCs are compatible 

with the host matrix which leads to well dispersed final systems, even if the water evaporation remains 

the main issue. In the case of CNC/PLA nanocomposite, the non-hydrosoluble system is a challenge 

which has to be overcome. Generally, previous surface modification is needed to enhance the 

compatibility and thus the adhesion between CNCs and PLA. 

Various CNCs surface chemical modifications can be performed, as previously detailed in section 2.3. 

Adsorption and covalent grafting of molecules, macromolecules or polymers on CNCs for CNC/PLA 

nanocomposites have already been performed in the literature. The adsorption of surfactant, especially 

the Beycostat A B09, as previously described, can improve the CNCs dispersion after extrusion. The 

results obtained by Fortunati et al.235 showed that nanocomposites produced with same anionic 

surfactant adsorbed on CNCs, and performed by casting method, exhibited enhanced CNCs dispersion. 

The polymerization of PLA on CNCs surface by grafting-from method ─ especially by ring-opening 

polymerization ─ has been widely investigated. Recently, Miao and Hamad186 have performed a 

similar polymerization of PLA on CNCs and produced CNC-g-PLA/PLA nanocomposites by both 

casting and extrusion methods. Free PLA used as matrix aimed to avoid the CNC-g-PLA aggregation 

and improved the interfacial adhesion between CNC-g-PLA and PLA homopolymer. Figure I. 40 b), 

c) and d) confirms the uniform dispersion of CNC in the PLA matrix. Moreover, the significant 

decrease of OTR values, presented in Figure I. 40 a), highlights the barrier effect induced by the 

presence of dispersed nanofillers in the PLA matrix.  

 

Figure I. 40. a) OTR (normalized with materials thickness) of unmodified PLA (neat PLA_E) and CNC/PLA with 1, 2 and 3 
wt% of CNC-g-PLA (CNC-PLA_1%E, CNC-PLA_2%E and CNC-PLA_3%E), b) c), and d) SEM images of co-extruded 

CNC-g-PLA/PLA nanocomposites with 3 wt% CNC-g-PLA at different magnifications (extracted from 186) 
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Similarly, the polymerization using same grafting-from procedure via the ROP of polycaprolactone 

(PCL) on CNCs was investigated by Lin et al.236 The polymerization was microwave assisted, and 

polymerized CNC-g-PCL was casted with a PLA solution. An optimal amount of 8 wt% of loaded 

CNCs was found, and the mechanical properties of the final nanocomposites were highly improved. 

According to this study, the grafted flexible PCL chains allow transferring a mechanical stress to the 

rigid reinforcing CNCs elements. Numerous other grafting of various compounds can be found in 

literature, as presented in Table I. 10. Indeed, acetylation, carbamylation, or other esterifications have 

been performed via classical methods, to enhance the compatibilization of CNCs with hydrophobic 

PLA. Generally, grafted molecules are composed of long aliphatic chains237,238 or other hydrophobic 

chemical groups.  
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Adsorption 

Anionic 

surfactant 

(Beycostat A 

B09) 

5 Extrusion 

CNCs dispersion 

Tensile modulus and strength 

Elongation at break 

(Bondeson and 

Oksman, 2007) 167 

5 (+1 wt% silver 

nanoparticles) 

Extrusion + 

film formation 

process 

CNCs dispersion 

Thermal and mechanical 

properties 

(Fortunati et al., 

2012) 239 

1 or 5 
Casting/evapo

ration 

CNCs dispersion 

Crystallinity 

OTR (decrease of 26% or 48%) 

WVTR (decrease of 34% for 

1%wt CNC) 

(Fortunati et al., 

2012)235 

PLA-based 

surfactant 

(PEO-b-PLLA 

or imidazolium-

PLLA) 

5- 10 - 20 

Extrusion and 

injection-

molding 

(masterbatch 

approach) 

CNCs dispersion 

Rheological properties 

(Mariano et al., 

2017)240 

Polymerization 

“Grafting-from” 

(ROP microwave 

assisted) 

Polycaprolacton

e (PCL) 
8 

Casting/evapo

ration 

Miscibility PLC chains / PLA 

matrix : CNCs dispersion 

Tensile strength and elongation 

(Lin et al., 

2009)236 

Acetylation 
Anhydride 

acetic 

6 
Casting/evapo

ration 

CNCs dispersion 

Interfacial adhesion CNC/PLA 

Thermal properties 

Crystallization 

(Lin et al., 

2001)140 

3 
Casting/evapo

ration 

Interface CNC/PLA adhesion 

Tensile strength (increase of 

20%) 

(Xu et al., 2016)241 

Urethanization 

(carbanylation) 

n-octadeceyl 

isocyanate 
10 

Casting 

combined 

with extrusion 

Crystallization 
(Bitinis et al., 

2013)237 

Toluene 

diisocyanate 
1 - 9 

Casting/evapo

ration 

CNCs dispersion 

Tensile strength 
 

Polymerization 

“Grafting-from” 

(ROP) 

PLA 

10 

Casting 

combined 

with extrusion 

Crystallization 
(Bitinis et al., 

2013)237 

2.5 / 5 /10 

Melt-blending 

(mini-

extruder) 

Mechanical properties 
(Habibi et al., 

2013)242 

 
  1 Melt-spinning 

Interfacial adhesion CNC/PLA 

Thermal stability 

Mechanical properties 

(Mujica-Garcia et 

al., 2016)243 
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1 / 3 Extrusion 
Crystallization 

Mechanical properties 

(Lizundia et al., 

2016)244 

1 

Casting 

evaporation or 

extrusion 

CNCs dispersion 

Barrier properties (WVTR and 

OTR improvement of 81% and 

87%) 

Mechanical properties 

(Miao et Hamad., 

2016)186 

1 

Extrusion 

(PLA/PCL 

blend) 

Blend compatibilization 

Mechanical properties 

(Sessini et al., 

2018)184 

 

Esterification 

Maleic acid 5 
Electrospinnin

g 

Fibers uniformity 

Thermal stability 

Mechanical properties 

(Zhou et al., 

2013)245 

Dodecanoyl 

chloride 
2 Extrusion 

Interaction CNC/PLA 

Tensile strength (increase of 

25%) 

Thermal properties 

(Robles et al., 

2015)238 

Hydrocinnamic 

and 

phenylacetic 

acid (In situ 

solvent 

exchange) 

2 / 6 
Casting/evapo

ration 

Compatibility CNC/PLA 

Barrier properties 

(Espino Perez et 

al., 2018) 184 

Radical grafting 
Glycidyl 

methacrylate 
1 / 6 

Masterbatches

/ Extrusion 

Thermal resistance 

Mechanical properties 

(Pracella et al., 

2014)246 

Acid 

hydrolysis/Fischer 

esterification 

HCl / Lactic 

acid 
3 / 5 Extrusion 

CNC dispersion 

Thermal properties 

(Spinella et al., 

2015)247 

P
L

A
 f

u
n

ct
io

n
a
li

za
ti

o
n

 

Radical grafting 
Glycidyl 

methacrylate 
1 / 6 

Masterbatches

/ Extrusion 

Thermal resistance 

Mechanical properties 

(Pracella et al., 

2014)246 

Reactive extrusion 
Glycidyl 

methacrylate 

1 (+15 wt% grafted 

PLA) 

Masterbatches

/ Extrusion 

Crystallization 

Tensile strength and modulus 

(improvement of 22% and 

19%) 

(Yang et al., 

2015)230 

Table I. 10. Main surface modifications performed on CNCs to enhance their compatibilization with PLA matrix, inducing 
improved nanocomposites properties and corresponding literature references 

As seen in Table I. 10, studies are generally focused on the improvement of mechanical and thermal 

properties of nanocomposites, and a lower amount of publications deal with the barrier properties, 

which are still required for numerous packaging applications. Figure I. 41 summarizes the main 

advances in CNC/PLA nanocomposites processing, and highlights the huge interest for such materials 

in scientific community.  
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Figure I. 41. Some recent advances in CNC/PLA nanocomposites processing : [1] Twin-screw extrusion with gravimetric 
feeding system228, [2] Compounding / Extrusion167, [3] Extrusion / Liquid feeding229, [4] Electrospinning233, [5]  Polymer 

grafting on CNC + PLA (Solvent casting)236, [6] Surface modification of CNC + PLA (Solvent casting) 140, [7] Melt 
extrusion + film formation239, [8] Electrospinning from solvent mixture234, [9] PLA grafted-from CNC + PLA by melt-

blending242, [10] Reactive extrusion / Masterbatches + film processing230, [11] Two-step process : solvent-mixing and melt-
mixing232, [12] Single step reactive extrusion231, [13] PLLA-based surfactants-CNC/PLA Twin-screw extrusion and injection 
molding240, [14] In-situ grafting of CNC + Solvent casting CNC-g/PLA184, [15] PLA-CNC masterbatch + PLA (Twin-screw 

extruder)248 

The elaboration of PLA/CNC nanocomposites with compatibilized CNCs is one of the main 

challenges of this PhD project. Although the casting/evaporation and extrusion methods are 

generally carried out, the development of multi-layered materials including CNCs and PLA 

structures is also investigated. The following part focuses on the state of the art associated to these 

multi-phase materials. 
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3.3. Multi-layered CNC-based materials 

3.3.1. Interest of nanocellulose-based multi-layered packaging materials 

In order to improve the polymer properties ─ especially for food packaging applications with required 

specific mechanical, thermal and, barrier properties ─ three main strategies are possible: i) the 

elaboration of (nano)composites, ii) the blending of different polymers, and iii) the elaboration of 

multi-layered materials. The first i) has been previously detailed (section 3.2). The second ii) is widely 

used in packaging industry, but is not described in this literature review. Here, we are concerned with 

the third iii) strategy, which has widely industrially increased over the past few years. This strategy 

consists in the incorporation of one or multiple layer(s) ─ generally more with enhance barrier 

properties when compared with those of the initial polymer ─ in order to improve final barrier and 

mechanical properties of the material. Figure I. 42 schematizes the transport of gas molecules (O2, 

CO2 etc.) through a material with an inner barrier layer.  

 

Figure I. 42. Schematized representation of gas molecules diffusion pathway through a simple multi-layered material 

As shown in Figure I. 42, the transport of gas molecules is longer, since the barrier layer significantly 

slowed the molecules diffusion. By comparison with a nanocomposite material inducing a 

discontinuous barrier (Figure I. 36), barrier properties are improved by the presence of a continuous 

layer, in the present case222. Furthermore, the mechanical properties can also be enhanced, according 

to the properties of the inner layer(s). The composition of layers has thus to be selected taking into 

account the required properties of the final packaging.  

Different technologies allow processing of such multi-layered materials. The most developed 

techniques are layer-by-layer (LbL) deposition, electrohydrodynamic processing (EHDP), microlayer 

co-extrusion, and coating222. In all cases, a thin layer of a selected material can be applied on a 

polymeric substrate, and another film can added in order to form a “sandwich” structure. Briefly, LbL 

is a promising technique, since it allows the deposition of a thin nanomaterials film on a substrate, by 

conserving a nanoscale organization. Podsliadlo et al.168 were among the first to deposit thin layers of 



CHAPTER I : Literature Review 

Manon LE GARS, 2020 
95 

CNCs on poly(diallyldimethylammonium chloride) using the LbL technology. All these processing 

strategies have the same challenges, like the compatibility between all the materials, explaining the 

addition of adhesive layers in most cases. Moreover, the recycling issue is another challenge, since 

layers with different composition generally don’t require the same recyclability processes. 

Introduction of nanocelluloses-based layers is highly interesting. Indeed, due to the entrapped 

nanostructured network once nanocelluloses are dried, as well as, their outstanding mechanical 

properties, final properties of the multi-layered material can be significantly enhanced, and the use of 

adhesive is not always needed, since the adhesion of nanomaterials with surrounding layers can act as 

an adhesive. Note that for now, only micro-sized structures have been industrially developed (by 

extrusion coating or lamination). In this sense, the development of multi-layered materials including 

nanostructures is highly challenging. Moreover, the interest of such multi-layered materials including 

nanocellulosic materials and poly(lactic acid) makes sense, since the barrier and mechanical properties 

of PLA can thus be enhanced, and get close to those of traditional packaging polymers. Nevertheless, 

the incompatibility between hydrophobic PLA and hydrophilic CNCs is still a huge issue.  

 

Figure I. 43. SEM images of cross-sectoins of LbL deposition of a) 20 layers and b) 50 layers of NFC/PEI, c) oxygen 
permeance and d) water vapor permeance of CNF/PEI coated on PLA (extracted from 249) 

Regarding the literature, Aulin et al.249 performed layer-by-layer deposition of cellulose nanofibrils 

(CNFs) combined with a cationic polymer polyethyleneimine (PEI) on a PLA substrate. After having 

proved the efficient deposition of the PEI/CNF mixture onto PLA, they concluded about the 

improvement of the barrier properties (towards both oxygen and water vapor) of the final coated 

materials, as presented in Figure I. 43. In this case, even if CNFs were used, it is possible to draw a 

parallel with a possible behavior of CNCs. This promising study was confirmed by the work of 

Meriçer et al.250. Thus, the authors developed multi-layered PLA/MFC (microfibrillated cellulose) 

structures by casting evaporation of both layers, and concluded also about the improvement of the 

mechanical and barrier properties, as shown in Figure I. 44. 
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Figure I. 44. a) Stress-strain curves and b) oxygen permeability (different temperatures, RH=0%) of amorphous or 
crystalline PLA film (PLA-Am or PLA), MFC self-standing film (MFC G2) and PLA/MFC multi-layered film (PLA/MFC 

G2) (extracted from 250) 

Thus, only few researches focused on multi-layered materials based on the introduction of 

nanocelluloses layers. However, they all concluded about the improvement of barrier and mechanical 

properties of the final materials.  

The multi-layered strategy is encouraging for the development of new renewable food packaging 

materials, by potentially improving the properties of bio-based polymers. Moreover, active 

packaging materials can be produced through this strategy, as presented in the following part.  

3.3.2. Absorbers and scavenging properties 

Active packaging concept was described in previous section 1.2.3. Moisture or specific compound 

absorbers, as well as, antimicrobial or antioxidant agents are some examples of active compounds 

aiming to improve specificities of a food packaging. A recent and complete review reported by 

Yildirim et al.251 summarizes the active compounds according to their properties for active food 

packaging. Other macromolecules exist, like calixarenes ─ modified or not ─ which present large 

cavities, able to entrap gas molecules like CO2, and thus to slow their diffusion through a packaging. 

Such molecules have already been immobilized onto a cellulosic substrate surface, and the entrapment 

of nitrogen oxide molecules were proved252. 

 

Figure I. 45. General principle of an active packaging (extracted from 253) 



CHAPTER I : Literature Review 

Manon LE GARS, 2020 
97 

Distinctions between absorbers (scavenging systems) and emitter (releasing systems) are clear. Figure 

I. 45 schematizes the behavior of an active packaging, with the two different systems, and the presence 

of an active layer is visible. Indeed, active compounds are generally introduced in multi-layered 

structure, in order to be released inside the packaging or to scavenge specific molecules from food 

products. In such a strategy, the presence of both nanocellulose and active compound in the active 

layer allow their entrapment or their possible release. In the literature, CNCs have been mixed with 

silver nanoparticles239 for antibacterial activity or with carvacrol254 for antioxidant for example. Even 

if nanocomposites were the aim of these studies, multi-layered strategies can also be considered.  

 

In this third part, the introduction of cellulose nanocrystals in a polymeric matrix, and especially in 

PLA, was detailed. The outstanding final barrier and mechanical properties of the materials are 

encouraging and open the door to new composites or multi-layered systems including 

nanocelluloses, whose compatibilization with the matrix is still a challenge. 
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Conclusions of Chapter I 

This chapter highlights the outstanding properties of cellulose nanocrystals (CNCs) for a wide range of 

applications. In particular, in current environmental context, in which bio-based materials are of high 

interest, cellulose nanocrystals can be combined with biobased poly(lactic acid) (PLA), in order to 

produce novel multi-component materials, especially for food packaging applications. Indeed, 

mechanical and barrier properties of PLA can thus be enhanced, and be competitive with those of 

traditional fossil-based polymers.  

The main challenge emerging of this first chapter is the poor compatibility between hydrophilic CNCs 

and hydrophobic PLA. In this sense, CNCs have to be modified in order to improve their adhesion 

with the PLA.  

This point is the main objective of this PhD project: the chemical modification of CNCs, in order to 

produce original PLA-based materials with improved barrier properties. Moreover, the use of toxic 

chemicals will be reduced as far as possible, in order to be consistent with environmental concerns.  
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Introduction to Chapter II 

As described in the Chapter I, surface chemical modifications of CNCs are made possible thanks to 

their high surface area and highly reactive surface. One of the main goals of this PhD project is the 

functionalization of the CNCs surface (objective 1), in order to enhance their compatibilization with a 

hydrophobic PLA polymeric matrix. The global project ─ in which the PhD is part of ─ involved 

different partners, with different needs in terms of quantities of grafted CNCs. It explains the division 

of the following Chapter II in four different sections, whose respective chemical modifications can be 

performed on increasing amounts of CNCs.  

More precisely, the Chapter II proposes four different new routes for the chemical modifications of 

CNCs, with related characterizations and discussions. The Figure II. 1 represents the organization of 

this chapter.  

▪ The section II.1 relates the polymerization of the glycidyl methacrylate (GMA) from the 

surface of previously functionalized CNCs, as well as, the characterization of the kinetics of the 

polymerization. The chosen route for the polymerization is the SI-ATRP (Surface-Initiated Atom 

Transfer Polymerization), in order to control the surface polymerization. Moreover, the choice of 

GMA as monomer is explained by the presence of numerous highly reactive epoxy groups all along 

the polymer chain, which could be potentially help for the incorporation of polymerized CNC-PGMA-

Br in a PLA matrix. This study was mainly performed in the laboratory ICMMO (Institut de Chimie 

Moléculaire et des Matériaux d’Orsay, in Orsay, France) 

 

▪ The section II.2 is divided in two sub-sections, and the first one (II.2.1) is a short additional 

part aiming to compare a classical esterification procedure using an acid chloride (10-Undecenoyl 

chloride) with that using a novel esterification using a similar carboxylic acid (10-Undecenoic acid). In 

the second sub-section (II.2.2), this new esterification procedure is more detailed, and its efficiency is 

investigated. Moreover, the preliminary study focusing on the role of the initial CNC dispersion state 

is also explained.   

 

▪ The section II.3 is dedicated to the modification of a large batch of previously oxidized 

TEMPO-CNC via an amidation reaction using an aromatic amine (1-methyl-3-phenylpropylamine). 

The efficiency of the two-step reaction is investigated, as well as, preliminary results of the parallel 

adsorption occurring in the reaction media.  
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▪ Finally, the short section II.4 presents the preliminary results related to the preparation of 

rosin nano-emulsion, and their adsorption on both cellulose nanocrystals and nanofibrils surface. This 

study includes results produced by the start-up INOFIB (Grenoble, France), with whom collaboration 

was carried out during this PhD project. 

All the modified nanomaterials described and characterized in this Chapter II will then be used for 

the preparation of PLA-based materials, whose results are described in the following Chapter III of 

this manuscript.  

 

Figure II. 1. General organization of the PhD manuscript 
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1. Surface-initiated transfer radical   

polymerization of glycidyl methacrylate from the 

surface of modified-cellulose nanocrystals 

This section is adapted from M. Le Gars, J. Bras, H. Salmi-Mani, M. Ji, D. Dragoe, H. Faraj, S. 

Domenek, M. N. Belgacem, P. Roger “Polymerization of glycidyl methacrylate from the surface of 

cellulose nanocrystals for the elaboration of PLA-based nanocomposites”, Carbohydrate Polymers, 

2020.   
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Abstract 

Cellulose nanocrystals (CNCs) are used to design nanocomposites because of their high aspect ratio 

and their outstanding mechanical and barrier properties. However, the low compatibility of 

hydrophilic CNCs with hydrophobic polymers remains a barrier to their use in the nanocomposite field. 

To improve this compatibility, poly(glycidyl methacrylate) (PGMA) was grafted from CNCs 

containing α-bromoisobutyryl moieties via surface-initiated atom transfer radical polymerization. The 

novelty of this research is the use of a reactive epoxy-containing monomer that can serve as a new 

platform for further modifications or crosslinking. Polymer-grafted CNC-PGMA-Br prepared at 

different polymerization times were characterized by XRD, DLS, FTIR, XPS and elemental analysis. 

Approximately 40% of the polymer at the surface of the CNCs was quantified after only 1 h of 

polymerization.  

Keywords: 

Cellulose nanocrystals ─ Chemical grafting ─ Surface-initiated atom transfer radical polymerization ─ 

Poly(glycidyl methacrylate)  
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1. Introduction  

Because of its abundance and availability from a wide variety of sources, cellulose is currently a 

polymer of choice in the field of bio-based materials. Recently, several novel nanomaterials have been 

extracted from this natural biopolymer. Indeed, cellulose nanofibrils (CNFs) have been classically 

obtained since the 1980s by applying a mechanical treatment to a cellulose suspension1. Conversely, 

since the 1960s, CNCs are produced by performing an acid hydrolysis, meaning removing the 

amorphous part of cellulose2,3. Such nanomaterials are relevant for a large number of research fields, 

like nanocomposites2,4–6, coatings7,8, packaging7,8 and biomedical applications9–11. They exhibit 

interesting properties like biodegradability, renewability and mechanical and barrier properties that 

endow them with particular advantages. In the past decade, accelerated industrialization and 

commercialization of such cellulosic nanomaterials has occurred, in parallel with an ever-increasing 

demand from industry.  

Among nanocelluloses, CNCs exhibit interesting properties. Acid hydrolysis of native cellulose from 

various sources (cotton, wood, natural fibers, etc.) using sulfuric acid H2SO4 leads to CNCs with 

different dimensions and aspect ratios. The resulting sulfuric-acid-hydrolyzed CNCs hold sulfate half 

ester groups (-OSO3
-) on their surface12,13, with a surface charge density generally in the range from 80 

to 350 µmol.g-1 12,14
. These surface charges combined with their nanometric size — 150-500 nm in 

length (up to 1000 nm), 5-20 nm in width according to their source2,12 — induce colloidal stability of 

aqueous suspensions12,13. In addition to their high aspect ratio, CNCs exhibit a high surface area12,15, 

high crystallinity16 and a large availability of hydroxyl groups on their surface12,15. Moreover, their 

rod-like shape, their high mechanical strength (Young’s modulus between 120 and 200 GPa)17,18, and 

their sustainability make them attractive materials as fillers in nanocomposites5,19–21. 

However, the hydrophilicity of CNCs, resulting from the three OH groups per anhydroglucose unit 

(AGU), limits their dispersion in several polymer matrices, especially non-polar matrices. Moreover, 

CNCs begin to degrade at approximately 200-300 °C22, depending on their morphology, crystallinity, 

and source. These two last points are challenging when such nanomaterials are used for 

nanocomposite processing, where high temperatures are reached with expected well-dispersed 

nanofillers23,24. These challenges can be overcome through chemical or physico-chemical 

modifications of CNCs4,15,25, by grafting single molecules19,20,25–28 or polymers chains21,29–32 at the 

surface of CNCs, or by adsorbing various molecules, involving ionic or low-energy bonding 

phenomena2,33–36.  

Chemical modifications are carried out by modifying multiple hydroxyl groups at the surface of CNCs 

to provide the nanomaterials with specific properties. To improve the compatibility of CNCs with a 

hydrophobic polymer matrix, grafting single molecules or polymer chains are classically described in 

the literature and in reviews. Focusing on the second strategy, two major approaches are commonly 
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used to introduce polymeric chains at the surface of CNCs. In the grafting-onto strategy, CNCs, ether 

pre-functionalized or not, are directly grafted with previously polymerized and characterized polymer 

chains30,37–39, leading to limited surface grafting density because of the steric hindrance between 

polymers. In the grafted-from approach — on which this study focuses — monomers are polymerized 

from pre-functionalized CNCs with initiator sites21,29,40,41. This two-step strategy leads to an overall 

controlled structure and higher surface grafting density because of the facilitated access to the 

activated initiator sites on CNCs, although characterization of grafted polymer chains is more 

challenging42. Ring-opening polymerization (ROP)32,40 and atom transfer radical polymerization 

(ATRP)29,41,43 are the most common types of polymerization used in the grafting-from strategy. 

Controlled surface-initiated ATRP (SI-ATRP) from the surface of CNCs has been described in the 

literature29,41,43,44. However, the major issues with SI-ATRP are the difficulty in characterizing grafted 

polymers and recovery of the free homopolymer. Control of the polymerization is generally studied 

using polymers obtained from a sacrificial initiator, from which the kinetics of the polymerization is 

considered similar to polymerization from the surface of CNCs. By recovering and characterizing the 

free homopolymer, information about the grafted chains can be acquired45. It should be noted that this 

step of cleaning is challenging and crucial for characterizing both grafted CNCs and free polymers. 

The aim of this study is to graft polymer brushes of various lengths on the surface of CNCs via 

grafting-from SI-ATRP. Numerous studies have focused on the polymerization of various polymers on 

CNCs, mostly in order to compatibilize these nanomaterials with various polymer matrices. Recently, 

Zoppe et al.46 studied the synthesis of poly(N,N-dimethylacrylamide) chains at the surface of CNCs 

and carried out an alkaline hydrolysis to remove and analyze the polymerized chains. Sessini et al.37 

reported the polymerization via grafting-from of L-lactide and ε-caprolactone at the surface of CNCs 

and studied the morphological, thermal, and mechanical properties of such modified CNCs in various 

polymer matrices.  

The objective of the present study is to graft the poly(glycidyl methacrylate) (PGMA) obtained from 

the polymerization of glycidyl methacrylate (GMA), an epoxy-functional and commercially available 

monomer47 on CNCs. The traditional method of polymerizing GMA in a controlled manner is by atom 

transfer radical polymerization (ATRP), with the use of an initiator and a catalyst system47. These 

methods aim to control the polymerization behavior. PGMA was selected for this study because of its 

hydrophobicity48 and the presence of the highly reactive epoxy functions, which can be an active 

attachment point for further modifications. To our knowledge, such a strategy is new in the field of 

CNC modification and with respect to this reactive polymer at the surface of CNCs. Control of the 

polymerization is essential to quantify the polymer and is conducted through SI-ATRP, as mentioned 

previously. To the best of our knowledge, PGMA has never been polymerized at the surface of CNCs 

via a grafting-from SI-ATRP approach. Martinez-Sanz et al.49 grafted PGMA via a non-controlled 

polymerization applied on bacterial cellulose nanowhiskers for PLA nanocomposites applications. 



CHAPTER II : Chemical modifications of CNCs 

Manon LE GARS, 2020 
123 

Hansson et al.50 grafted various polymers, including PGMA from a cellulosic filter paper substrate, via 

activators regenerated by electron transfer (ARGET) ATRP to limit the use of reducing reagents and 

avoid the use of a totally inert atmosphere. Malmström et al.51 presented different ways of 

functionalizing cellulose papers by controlling the surface grafting and grafted PGMA via SI-ATRP 

but the grafting was done at the surface of cellulose fibers to introduce a large amount of oxirane 

groups. More recently, Cheng et al.52 performed a similar SI-ATRP of GMA from a nanoporous 

cellulose gel (NCG) followed by a hydrophobic modification of polymerized NCG to produce 

functional materials based on NCGs.  

In the present paper, an efficient SI-ATRP polymerization of GMA from the surface of CNCs is 

described. The experiment method covers various steps. First, CNCs are functionalized with α-

bromoisobutyryl bromide (BIB), a brominated initiator commonly used in ATRP47,53. Then, GMA is 

polymerized from these initiator sites, with challenges like control and recovery of the homopolymer. 

Polymerized CNCs at different polymerization times are characterized using various techniques, from 

bulk characterization (FTIR, elemental analysis, TGA) to surface characterization (XPS). 
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2. Materials and methods 

 Materials 

Cellulose nanocrystals (CNC) were produced from wood pulp and purchased from CelluForce 

(Quebec, Canada), in spray-dried form. 4-(dimethylamino)pyridine (DMAP), triethylamine (TEA), α-

bromoisobutyryl bromide (BIB), ethyl α-bromoisobutyrate (EBIB), and N,N,N’,N’’,N’’-

pentamethyldiethylenetriamine (PMDETA) were supplied from Sigma-Aldrich Chimie (Saint-

Quentin-Fallavier, France) and were used as received. Copper (I) bromide (CuBr) was purchased from 

Sigma-Aldrich Chimie. CuBr was purified by washing in glacial acetic acid for 24 h at ambient 

temperature, filtered, rinsed extensively with ethanol and diethyl ether, dried under vacuum, and  

stored in an inert atmosphere before use54. Glycidyl methacrylate (GMA) was purchased from Fisher 

Scientific (France) and purified through a basic alumina column to remove stabilizers before use. N,N-

Dimethylformamide (DMF) was purchased from Sigma-Aldrich Chimie, stored, and used in 

anhydrous conditions. Dichloromethane (DCM) and ethanol (EtOH) were purchased from Sigma-

Aldrich Chimie and used as received. 

 Functionalization of CNCs with α-Bromoisobutyryl Bromide 

Functionalization of CNC with BIB was performed by esterification reaction according to the protocol 

adapted from Morandi et al.41. This protocol is as follows. First, 1.0 g of dry CNCs was dispersed in 

100 mL of anhydrous DMF and an ultrasonic treatment was applied. Then, 125 mg of DMAP (1.02 

mmol) was solubilized in 2 mL of anhydrous DMF and added to the CNC suspension. Thereafter, 2.1 

mL of TEA (14.9 mmol) was added, followed by 1.9 mL of BIB (14.9 mmol). The reaction was 

performed at room temperature for 24 h, under argon flow. At the end of the reaction, the 

functionalized CNC-Br were washed by successive cycles of centrifugation (9000 rpm, 10’, 5 °C): in 

DMF once, in DCM twice, in a mixture of DCM/EtOH (1/1, v/v) once, and in EtOH twice. CNC-Br 

were then dried under vacuum.  

 SI-ATRP of glycidyl methacrylate on functionalized CNC-Br 

The method for SI-ATRP of GMA onto CNCs was adapted from classical ATRP of this monomer47. 

First, 0.5 g of previously functionalized CNC-Br was redispersed in a Schlenk in 10 mL of anhydrous 

DMF and magnetically stirred under argon, before being treated with ultrasound. Then, 0.054 mL of 

EBIB, 0.076 mL of PMDETA, and 4.8 mL of purified GMA were successively added to the 

suspension ([GMA]0:[EBIB]0:[PMDETA]0:[CuBr]0 = 100:1:1:1). The sacrificial EBIB was added to 

react as a sacrificial initiator, assuming that the polymerization of GMA occurred from this initiator, in 

the same manner as from the surface of our CNC-Br. Next, 0.054 g of CuBr was introduced quickly 

and at the last moment, to avoid oxidation, noticeable by a color change. A flow of argon was set up in 

the closed Schlenk under magnetic stirring. A total of 7 freeze-thaw cycles were carried out to 
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completely remove oxygen from the suspension. The mixture was then magnetically stirred under 

argon at room temperature for 24 h. Study of the polymerization kinetics was performed by collecting 

aliquots of the reaction media with a purged argon syringe. At the end of the reaction, a small amount 

of DCM was added to recover all the mixture and a first centrifugation cycle (9000 rpm, 15’, 5 °C) 

was carried out. The supernatant containing PGMA polymerized from the sacrificial initiator was 

recovered for characterization. The centrifuged part was further washed in DCM with five cycles of 

centrifugation (9000 rpm, 15’, 5 °C) to eliminate all the free homopolymer and to only retrieve CNC-

PGMA-Br. The solubilized PGMA homopolymer recovered in the DCM supernatant was purified on a 

basic alumina column, precipitated in cold methanol, filtered, and dried under vacuum.  

 Polymerization of homopolymer PGMA 

The reference homopolymer PGMA was prepared by ATRP according to the previously described 

method. Indeed, the same protocol was used without CNC and a sacrificial initiator and with 

[GMA]0:[PMDETA]0:[CuBr]0 = 100:1:1. After 7 freeze-thaw cycles, polymerization occurred at room 

temperature for 1 h. At the end of the reaction, solubilized PGMA was purified on a basic alumina 

column and precipitated in cold methanol. After filtration and drying, PGMA homopolymer was 

characterized by 1H-NMR, and a conversion rate of 52% and a theoretical molar mass of 7300 g.mol-1 

was calculated. This homopolymer was used as reference PGMA in this study.   

 Characterization methods 

2.5.1. Atomic Force Microscopy (AFM) 

AFM images of CNC suspensions were recorded using a Dimension Icon Brucker equipped with a 

silicon-coated micro cantilever (O-TESPA) using tapping mode. Droplets of diluted CNC suspension 

(10-4 wt%) were deposited on clean mica plates, which were allowed to dry by evaporation overnight. 

Approximately ten scans of 10 µm x 10 µm and 3 µm x 3 µm were obtained for each sample to 

analyze the morphology of the nanoparticles by measuring the dimensions of at least 50 CNC samples 

using ImageJ software. 

2.5.2. Transmission Electron Microscopy (TEM) 

TEM copper grids with thin amorphous carbon films were submitted to glow discharge in an easiGlow 

station (Pelco). A 4-µL diluted CNC suspension droplet was deposited on the carbon film, followed by 

a droplet of uranyl acetate (2 wt%). Negative dye in excess was absorbed, and the remaining film was 

dried. The CNC suspension was observed through a transmission electron microscope FEI/Philips 

CM200 with the microscopy NanoBio-ICMG platform (Grenoble, France), under an acceleration 

voltage of 200 kV. Pictures were recorded with a digital camera TVIPS TemCam F216 (2040 x 2040 

pixels). Representative images were selected for the analysis. 
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2.5.3. X-Ray Diffraction and Crystallinity Index (CI) 

The crystallinity of CNCs was investigated with spectra obtained from wide-angle X-ray diffraction 

analyses. An X’Pert Pro MPD diffractometer supplied by PANalytical equipped with an X’ accelerator 

detector and a copper anode (Kα (Cu) = 1.5419 Å) was used for the symmetric scan of the reflection 

(theta/2theta in Bragg Brentano geometry) of the sample. Scans were performed from 5° to 60°. The 

crystallinity index of samples was determined according to the Segal height peak method 55–57 

(Equation II. 1). 

CI =
1 − Iam

I002
× 100 

Equation II. 1. Cristallinity index (CI) according to the Segal height peak method 

where Iam corresponds to the intensity at the minimum (at 2θ ≃ 18.3°) and I002 corresponds to the main 

crystalline peak (at 2θ ≃ 22.5°). This method is the most widely used, although it slightly 

overestimates the value of the crystallinity and provides qualitative values of the crystallinity. The 

measures were duplicated.  

2.5.4. Dynamic Light Scattering (DLS) 

The hydrodynamic diameters of CNCs were measured using a Zeta Sizer NanoZS supplied by 

Malvern Instruments (Orsay, France), operated with DTS software. Suspensions of CNCs at 10-2 wt% 

in DCM were freshly prepared before each measurement and treated in an ultrasonic bath. A total of 5 

acquisitions with 15 measurements at 25 °C were performed and particle size average values are 

presented. These values correspond to the diameter of the sphere diffusing at the same rate as the 

measured particle. Moreover, the Brownian motion-induced particle speed is correlated to the size of 

the particle by the Stokes-Einstein equation. Boluk and Danumah58 provided details of this principle 

applied to CNC analysis.  

2.5.5. Thermogravimetric Analysis (TGA) 

TGA thermograms were recorded using a thermal analyzer (NETZSCH STA 449 F3 Jupiter) from the 

LRMO team of the Commissariat à l'énergie atomique et aux énergies alternatives (CEA, Saclay, 

France). Dried samples were introduced in aluminum crucibles and were heated from 30 °C to 500 °C 

at 10 °C/min under helium flow at 60 mL/min. Data were at least duplicated and analyzed using 

Proteus software. 

2.5.6. Fourier-Transform Infrared Spectroscopy (FTIR) 

Infrared spectra of CNCs were performed on a Bruker IFS 66 spectrometer using an attenuated total 

reflectance (ATR) module composed of diamond crystals from Pike technologies. Absorbance spectra 

were registered between 600 and 4000 cm-1, with a resolution of 4 cm-1 and 300 scans. Spectra were 

visualized and normalized using OPUS software and were at least duplicated.  
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2.5.7. Elemental Analysis 

Elemental analyses of CNCs were performed by the “Institut des Sciences Analytiques” (Villeurbanne, 

France), using an ISA-CNRS micro analyzer. Based on elemental organic microanalysis, the carbon, 

hydrogen, oxygen and sulfur contents of the samples were determined with a precision of ±0.4% by at 

least duplicates. The data can be used for the determination of the degree of substitution (DS) of the 

grafted CNCs, equivalent to the number of functionalized hydroxyl groups per anhydroglucose unit 

(AGU), in accordance with Equation II. 226: 

DS =
M(C)AGU − ωC × (MAGU + DSSO3 × MSO3)

ωC × Mgrafted − M(C)grafted
 

Equation II. 2. Degree of substitution (DS) 

where M(C)AGU is the carbon molar mass of an AGU, MAGU is the molar mass of an AGU, ωC is the 

carbon weight fraction (in %) obtained from elemental analysis, Mgrafted is the molar mass of the 

grafted moieties, and M(C)grafted is the carbon molar mass of the grafted moieties. DSSO3 is the degree 

of substitution of sulfate half ester groups similarly calculated from the sulfur weight fraction (S%), 

MSO3 is the molar mass of –OSO3
- groups and MS the sulfur molar mass of –OSO3

- groups, as shown in 

the Equation II. 3:  

DSSO3 =
S% × MAGU

MS − %S × MSO3
 

Equation II. 3. Degree of substitution of half sulfate ester groups (DSSO3) 

Taking the presence of these groups into account allows the correction of the values of carbon and 

oxygen weight fractions by multiplying the experimental values by 1+((DSSO3.MSO3)/MAGU). Other 

correction methods have also been proposed in the literature26,59. 

2.5.8. X-Ray Photoelectron Spectroscopy (XPS) 

XPS measurements were carried out on a K-Alpha Thermo Fisher spectrometer, equipped with a 

monochromatic X-ray source (Al Kα, 1486.6 eV). A spot size of 400 mm was used for all 

measurements, and a hemispherical analyzer was operated in constant analyzer energy mode with a 

pass energy of 200 eV and a step size of 1 eV (for survey spectra) and a pass energy of 50 eV and a 

step size of 0.1 eV (for high-resolution spectra). To neutralize the accumulation of charge, a dual-

beam flood gun was used. Data treatment was carried out with Avantage software (Thermo Fisher). 

Background subtraction (Shirley type) and normalization of peak areas (using Scofield sensitivity 

factors) were performed before any calculation of elemental composition. Binding energies are 

referenced to the C1s neutral carbon peak at 285.4 eV. 
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2.5.9. 1H-Liquid State Nuclear Magnetic Resonance (1H-NMR) 

1H-NMR analyses were performed on a Bruker 360 MHz spectrometer in deuterated chloroform at 

room temperature, with a residual signal appearing at 7.24 ppm. Chemical shift values were calculated 

with TMS as the first reference. Spectra were analyzed using NMR Notebook software. 

2.5.10. Size-Exclusion Chromatography (SEC) 

Polymeric samples were dissolved in tetrahydrofuran (THF) at a concentration of 1 mg/mL. SEC 

analyses were carried out with a two-column ViscoGel mixed bed from Viscotek (7.8 x 300 mm, type 

GMHH r-H). This mixed bed was mounted on a device equipped with a refractive index detector 

(Waters 410). The injected volume of sample solution was equal to 50 µL. The calibration range 

corresponded to linear polystyrene standards. The process was duplicated.   
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3. Results and discussions 

 Characterization of cellulose nanomaterials 

Commercial spray-dried cellulose nanocrystal powder was used in this study (Figure II. 2 a)). These 

CNCs are produced from wood by sulfuric acid hydrolysis of bleached pulp14 and can easily be 

redispersed at low concentration in water and polar organic solvents (such as DMF or DMSO) using 

ultrasound treatment with an ultrasonic probe60.  

 

Figure II. 2. a) Spray-dried CNC from CelluForce, b) AFM height image of CNC, and c) TEM image of CNC 

Using the AFM and TEM images (Figure II. 2 b) and c)), morphology of the neat nanomaterials can 

be confirmed, and the average length is 108 +/- 33 nm and average diameter is 4 +/- 1 nm, confirming 

the values found in the literature12,14. The X-Ray diffractograms (Figure II. 3 a)) display three main 

peaks, at 16.2° (signal 110), 22.6° (signal 200), and 34.6° (signal 004), characteristic of the cellulose I 

crystalline form. Moreover, the CI calculated according to Equation II. 1 has a value equal to 91%, 

consistent with the high crystallinity of CNC presented in the literature3.  

 Preparation of initiator modified CNC 

BIB is a common reagent used in the CNC functionalization based on ATRP. As found in the 

literature41,44,48, this grafting introduces highly reactive brominated functionality at the surface of 

nanomaterials. These functionalized sites can then be used as initiator sites for further controlled 

radical polymerization reactions. In the present study, the brominated functionalized site at the surface 

of the CNC-Br served as initiators for the SI-ATRP applied to the GMA monomer. The 

functionalization of CNCs with BIB, leading to CNC-Br, is illustrated in Scheme II. 1.  
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Scheme II. 1. Procedure for to the preparation of CNC-Br and CNC-PGMA-Br materials 

Conservation of the structure of the CNCs after their functionalization is crucial and has been 

investigated by XRD analyses. Figure II. 3 a) shows wide-angle diffractogram of modified CNC-Br, 

whose spectra correspond to cellulose I beta. The calculated CI is equal to 86%, confirming the 

conservation of the crystalline structure of CNC-Br. Modified CNC-Br are well-dispersed in DCM, 

with a mean apparent diameter size of 122 nm, which is similar to that of neat CNC dispersed in DCM 

(Figure II. 3 b)). Even if the dispersion of CNC in DCM does not lead to conclusions regarding their 

dispersion in DMF, the dispersion state in DCM provides some insight about their dispersion in polar 
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DMF. This dispersion should theoretically be greater. Thus, it is likely that isolated CNC-Br in DMF 

would provide a large accessible surface for further polymerization. 

 

Figure II. 3. a) X-ray diffractograms of neat CNCs, pre-functionalized CNC-Br, CNC-PGMA-Br after 1 h and 24 h of 
polymerization and PGMA homopolymer, b) DLS curves of neat CNC, pre-functionalized CNC-Br and CNC-PGMA-Br 

after two different polymerization times in dichloromethane, and c) FTIR spectra of PGMA homopolymer, unmodified CNC, 
grafted CNC-Br, polymerized CNC-PGMA-Br-1h, and CNC-PGMA-Br_24h 

FTIR analyses carried out on neat CNC and modified CNC-Br clearly show the efficiency of the 

grafting of BIB. Indeed, in addition to the characteristic peaks of cellulose (i.e., large peak between 

3000 cm-1 and 3700 cm-1 corresponding to the stretching vibrations bands of the -OH bonds of 
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hydroxyl groups, as well as peaks at 1110 cm-1, 1060 cm-1 and 1035 cm-1 corresponding to the 

vibration of the -C-O bonds of carbons from the repeating unit of cellulose), the peak at 1730 cm-1 is 

correlates to the -C=O vibration band resulting from ester functional units introduced at the surface of 

CNC (Figure II. 3 c)).  

Moreover, no peak near 1760-1800 cm-1 corresponding to the (-C=O)-Br bond from unreacted BIB is 

observed. This confirms the efficiency of the washing steps after the reaction. Elemental analyses were 

carried out on unmodified CNC and grafted CNC-Br to confirm this grafting (Table II. 1). Corrected 

values were obtained by considering the presence of half-sulfate ester groups at the surface of CNCs, 

and the DS of the grafts on the CNCs that were equal to 0.17 was calculated according to Equation II. 

2. Differences between the corrected values for neat CNC and theoretical values for pure cellulose can 

be attributed to the presence of hemicelluloses and impurities in the raw materials. The calculations 

performed in this study are based on the values corrected according to the method proposed previously 

(Equation II. 2). 

Sample 
Experimental values 

DSSO3 

Corrected 

values 
Experimental 

O/C 

Theoretical 

O/C 
DS %PGMA 

%C %O %H %S %C %O 

Neat CNC 40.7 50.8 6.4 0.8 0.04 41.5 51.8 1.2 1.1 / 0 

CNC-Br 42.0 45.3 6.0 0.8 0.04 42.8 46.2 1.1 0.8 0.17 0 

CNC-PGMA-

Br_1h 
49.6 37.0 6.9 0.6 0.03 50.6 37.7 0.7 

0.7 

/ 48 

CNC-PGMA-

Br_24h 
53.2 36.7 6.9 0.2 0.01 54.2 37.4 0.7 / 70 

PGMA 

(theoretical) 
/ / / / / 59.1 33.8 / 0.6 / 100 

Table II. 1. Atomic composition of neat CNCs, CNC-Br, CNC-PGMA-Br_1h and CNC-PGMA-Br_24h obtained by 

elemental analysis 

To further determine and quantify the grafting at the surface of CNC-Br, XPS measurements were 

taken allowing the characterization of the surface of the materials as being approximately 10 nm in 

depth41. Figure II. 4 a) shows the XPS sureys of neat CNC and grafted CNC-Br. Both spectra are 

composed of two main peaks at approximately 534 and 288 eV corresponding to the oxygen and 

carbon components, respectively. A peak at 71 eV correlated with a bromine component is visible in 

the CNC-Br survey, and quantification of the Br3d spectrum leads to an atomic percentage of bromine 

equal to 1.0% at the surface of CNC-Br. Figure II. 4 b) and c) show the decomposition spectra of the 

C1s signal for both neat and grafted CNC-Br. 
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Figure II. 4. a) XPS survey of neat CNCs and grafted CNC-Br, and decomposition of the C1s peak of b) neat CNCs and             
c) CNC-Br spectra 

The neat CNC spectrum displays three peaks, at 285.4 eV, 287.0 eV (ΔeV= 1.6 eV), and 288.4 eV 

(ΔeV= 3 eV), corresponding to C1 (C-C/C-H), C2 (C-O), and C3 (O-C-O/C=O) bonds respectively. 

The C1 signal is present in the neat CNC spectrum but is related to the contribution of non-oxidized 

alkane-type carbon atoms and impurities, residual lignin, or extractive compounds, justifying its 

presence. The C2 signal is related to the presence of ether groups from pure cellulose, as well as the 

hydroxyl groups of the unmodified CNCs and of the end of the cellulose chains, explaining its 

presence in both samples. The C3 signal corresponds to acetal moieties from AGU units and should 

not change significantly after chemical modification, because the corresponding carbon is not affected. 

Subsequent to α-bromoisobutyryl bromide grafting, a C4 contribution appears in the CNC-Br 

spectrum and is correlated to the introduction of (O-C=O) bonds on the material with a ratio of 5%, 

which confirms the success of the bromide derivative grafting, as previously described in the 

literature61 (Figure II. 4 b) and Table II. 2) 
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Sample 

Experimental values C1s decomposition 

%C %O O/C 
C-C /  

C-H 
C-O 

O-C-O /  

C-O 
O-C=O C*-C-O 

C-O-C  

(epoxy ring) 

Neat CNC 56 44 0.79 7 72 21 / / / 

CNC-Br 57 41 0.72 8 69 18 5 / / 

CNC-PGMA-Br_1h 68 32 0.47 29 13 / 9 15 33 

CNC-PGMA-Br_24h 70 30 0.43 21 17 / 16 18 28 

PGMA homopolymer 72 28 0.39 30 31 / 13 13 13 

Table II. 2. Elemental molar compositions and surface functional group compositions obtained by XPS analysis 

In addition, the oxygen to carbon ratio (O/C) associated with the sample before and after modification 

changed from 0.79 (close to that of pure cellulose ≈0.83 17) for the neat CNCs to 0.72 for the CNC-Br 

as a result of the α-bromoisobutyryl bromide moiety grafted at the surface of CNCs (Table II. 2). 

From these results, it is possible to conclude the efficient grafting of CNC-Br. Thus, the presence of 

initiator sites for the further polymerization of GMA on CNC-Br is clearly confirmed.  

 Kinetics of the SI-ATRP of GMA  

Prior to any polymerization and characterization, it is essential to determine that no parallel reaction 

— especially adsorption — occurs between cellulose and the monomer. This point was investigated by 

applying a similar treatment to that of SI-ATRP, but without an initiator, catalyst, or ligand. Only neat 

CNCs dispersed in anhydrous DMF in the same proportions and the GMA monomer were 

magnetically stirred for 24 h. CNCs were then recovered after five centrifugation cycles in DCM, and 

FTIR spectra were obtained after evaporation of the solvent (Figure II. 5 a)). There is no change in 

the FTIR spectra of neat CNC after being mixed with the monomer for 24 h; in particular, there is no 

peak related to a C=O bond from GMA at approximately 1720 cm-1. At this stage, it can be assumed 

that further evidence of the presence of characteristic groups of GMA and PGMA do not come from 

possible adsorbed monomer on CNC. 

After being grafted, CNC-Br were then polymerized at their brominated initiator sites with GMA, as 

illustrated in Scheme II. 1. Glycidyl methacrylate (GMA) is a monomer that has never been used as 

part of the polymerization from the surface of wood CNC, to the best of our knowledge. In the 

literature, only a few studies describe ATRP of GMA47,62 on cellulose, presented as a well-known and 

controlled polymerization. In our case, the difficulty of the polymerization lays in the high reactivity 

of the epoxy groups of PGMA which can rapidly open. Nevertheless, opening of these epoxy 

functional groups has been avoided by the reaction at room temperature, in anhydrous conditions, and 

with the absence of any reagents that can react with these groups. Moreover, it has been shown in the 

literature that a similar system for SI-ATRP of GMA on a substrate (CuBr/PMDETA) leads to the 

conservation of active epoxy groups on the polymer chains 63. Meanwhile, the presence of these epoxy 

groups at the surface of polymerized CNC is one objective of this polymerization and is precisely 
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investigated in this study. Kinetics is the key point in the understanding of a polymerization, and was 

investigated in this study. At different times during SI-ATRP of GMA initiated by CNC-Br materials, 

aliquots were withdrawn from the reaction media and analyzed by 1H-liquid NMR to determine the 

polymerization conversion by following the disappearance of peaks related to vinyl protons from the 

monomer and the appearance of peaks related to protons from the methyl groups of the polymer 

(Figure II. 5 b)).  

 

Figure II. 5. a) FTIR spectra of GMA, neat CNC and recovered CNC after mixing with GMA in conditions similar to 
polymerization, b) 1H-liquid NMR spectra of the recovered reaction media after three different polymerization times, where 
(a) and (a’) correspond to the protons of the end of the double-bond carbon-carbon of the monomer GMA and (B), (B’), and 

(B’’) to the protons of the methyl groups of the polymer PGMA, c) equation of the conversion rate X calculation with I 
corresponding to the integral related to the area below the curve of the peak a (I(a)) or of the three peaks B, B’ and B’’ 

(I(B,B’,B’’)), and d) representation of the evolution of conversion as a function of polymerization time 

The recorded NMR spectra show decreasing peak intensity at 5.6 and 6.1 ppm related to the vinyl 

protons of the monomer. In parallel, the intensity of the peaks between 0.9 and 1.2 ppm related to the 

protons from the methyl group from the growing polymer clearly increased. Conversion (p) of the 

GMA into PGMA can be calculated using the formula presented in Figure II. 5 c), where the value I 

corresponds to the integration of the peaks. The evolution of the conversion is represented by plotting 

the ratio ln(1/(1-p)) as a function of time (Figure II. 5 d)), showing the two rates of polymerization 
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with a higher rate in a shorter time period (between 0 and 4 h) and a slower rate after a longer 

polymerization time period. From each collected aliquot the PGMA homopolymer was recovered after 

filtration on basic alumina and precipitated in cold methanol. Each homopolymer sample was 

subjected to SEC analysis to obtain the value of its molar mass (according to the equivalent 

polystyrene). Polydispersity index Ð was calculated as the ratio of weight average molar mass (Mw) to 

the number average molar mass (Mn). The results are presented in Figure II. 6 a).  

 

Figure II. 6. a) Molar masses of homopolymer and dispersities obtained by conventional SEC analyses, b) FTIR spectra of 
recovered CNC-PGMA-Br at different polymerization times, and c) ratios of peak intensities related to epoxy 

groups/cellulose and ester groups/cellulose 

The evolution of the PGMA molar masses calculated by SEC analyses as a function of the conversion 

follows the same trend as previously mentioned with two different rates of polymerization. Indeed, in 

the first 3 h of polymerization, the molar masses increased from 8179 g.mol-1 to 9791 g.mol-1, 

followed by a slower rate of polymerization reaching molar masses equal to 10343 g.mol-1 after 24 h 

of reaction (Figure II. 6 d)). This behavior has been previously described for a similar system 

(GMA/CuBr/PMDETA) in the literature64, where it was attributed to the heterogeneous character of 

the system inducing side-reactions at high conversion rates. Indeed, radical bromine elements from the 
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cellulose surface could be lost, inducing termination at the level of the CNCs. Nevertheless, 

polymerization would continue in the system solution. Figure II. 6 b) shows the FTIR spectra of 

CNC-PGMA-Br at different polymerization times, recovered from the aliquots after centrifugation in 

DCM. Qualitative analysis of these spectra confirms the polymerization on CNCs, with an increase in 

the peak at 1725 cm-1 related to the C=O stretching of ester groups and the presence of a peak at 910 

cm-1 related to the C-O stretching from epoxy groups. It is interesting to note that ATRP 

polymerization applied on the GMA monomer, involving the present CuBr/PMEDETA catalytic 

system, ensures the preparation of an epoxy functional polymer. In fact, as shown in the the literature65, 

decribing the grafting of multiwalled carbon nanotubes with PGMA polymer using the same ATRP 

polymerization procedure, a further post modification to introduce molecules of interest is possible by 

taking advantage of the epoxy functional groups. 

Furthermore, to quantitatively analyze these spectra, the ratios of the absorbance values of both C=O 

and C-O peaks and cellulose (1110 cm-1) were plotted as a function of time. The obtained curves 

(Figure II. 6 c)) follow the previously mentioned trend: with short polymerization time (1 to 3 h), 

there is an increase in the polymer chain length at the surface of cellulose, which becomes slower at 

longer times (4 to 24 h). Taking into account these results (summarized in Table II. 3), one hypothesis 

might be that the decreasing polymerization rate is due to the deactivation of brominated active sites 

grafted at the surface of CNC as well as those from the sacrificial initiator. A transfer reaction 

resulting from the hydroxyl -OH groups of CNC could be an explanation for this deactivation. In the 

remainder of this study, we will focus on the characterization of CNC-PGMA-Br polymerized at two 

different polymerization times (1 h and 24 h): CNC-PGMA-Br_1h and CNC-PGMA-Br_24h, 

respectively. 

Time 

(h) 

1H-liquid NMR SEC (Conventional) FTIR absorbance ratio 

Conversion 

(%) 

Mntheoretical 

(g.mol-1) 

Mn 

(g.mol-1) 

Dispersity 

(Ð) 

Epoxy (intensity at 910 

cm-1) / Cellulose 

(intensity at 1110 cm-1) 

Ester (intensity at 1725 

cm-1) / Cellulose 

(intensity at 1110 cm-1) 

0 0 / / / 0.08 0 

0.3 35 4944 8200 1.2 0.45 1.13 

1 46 6600 8900 1.3 0.37 1.0 

2 53 7552 9800 1.3 0.65 1.33 

3 58 8209 9800 1.3 0.54 1.60 

17 80 11391 10000 1.4 0.59 1.85 

24 85 12145 10300 1.4 0.58 1.84 

Table II. 3. Summary of kinetics study data obtained from 1H-liquid NMR, SEC (conventional), and FTIR (* Mntheoretical = 
(p*([GMA]/[EBIB])*MGMA)+MEBIB with p the conversion, [GMA] the initial concentration in monomer, [EBIB] the initial 

concentration in initiator, MGMA the molar mass of GMA and MEBIB the molar mass of EBIB (the calculation takes into 
account the polymer chain extremities)) 
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 SI-ATRP of functionalized CNC-Br at different polymerization 

times 

CNC-PGMA-Br_1h and CNC-PGMA-Br_24h were polymerized in larger batches for characterization, 

according to the previously detailed protocol. Grafting-from of polymers at the surface of CNCs is a 

widely studied procedure that allows the grafting of a high density of polymer at the surface of CNCs. 

In the case of the PGMA grafted as an amorphous polymer, the morphology of the final materials was 

investigated. Figure II. 3 a) shows X-ray diffractograms of CNC-PGMA-Br_1h, CNC-PGMA-

Br_24h, and PGMA homopolymer, which is not crystallized and whose XRD signature corresponds to 

consecutive large humps. The CNC-PGMA-Br_1h diffractogram is a combination of diffractograms of 

PGMA and cellulose I beta, with the presence of characteristic peaks at 22.6° and 34.6°. Similar to 

CNC-PGMA-Br_1h, CNC-PGMA-Br_24h diffractogram shows characteristic peaks of cellulose I 

beta, but the presence of the amorphous PGMA polymer is more highlighted here. These results 

confirm the growth of the PGMA on CNCs with increasing polymerization time.  

Moreover, according to Figure II. 3 b), the diameter of polymerized CNC-PGMA-Br in DCM 

increases with the polymerization duration. Indeed, after 1 h, apparent diameter size is equal to 164 nm 

(122 nm for neat CNC and functionalized CNC-Br), which is reasonable for dispersed CNC 

suspension. Nevertheless, after 24 h, CNC-PGMA-Br_24h show a higher mean apparent diameter 

equal to 255 nm and a larger peak, leading to a worse dispersion of grafted nanoparticles in the 

suspension. Inter-particle coupling reactions between CNC-PGMA-Br is a possible explanation. 

The thermal properties of polymerized CNC were investigated through TGA analyses, whose 

thermograms and derivative thermogravimetry (DTG) curves are presented in Figure II. 7, showing 

that polymerization of PGMA at the surface of CNC enhances the thermal stability of the materials.  

 

Figure II. 7. TGA thermograms and DTG curves of neat CNC, CNC-PGMA-Br_1h, CNC-PGMA-Br_24h, and 
homopolymer PGMA 
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Indeed, the primary onset of the degradation temperature of CNCs before and after 1 and 24 h of 

polymerization increases from 305 °C to 314 °C and 326 °C respectively. Moreover, the CNC 

thermogram shows one weight loss peak between 250 °C and 350 °C. In a recent study, Zhang et al.42 

studied different ways to characterize grafted polymers on CNCs, including the use of TGA analysis. 

Their method appears to be not totally applicable in our case because of the presence of a weight loss 

peak of PGMA in the same temperature ranges as for cellulose. Moreover, the presence of a second 

weight loss peak for PGMA, polymerized CNC-PGMA-Br_1h, and CNC-PGMA-Br_24h between 

350 °C and 480 °C allows an approximation of the amount of PGMA polymerized on CNC. Indeed, 

taking into account the slight weight loss of cellulose in this second temperature range for calculation, 

and considering that samples are only composed of cellulose and polymer, a weight percentage of 

PGMA equal to 38% and 83% respectively for CNC-PGMA-Br_1h and CNC-PGMA-Br_24h are 

calculated (Table II. 4). The large amount of grafted polymer after 24 h of polymerization is 

confirmed. Moreover, even after a short polymerization time, nearly 40% by mass of the sample is 

PGMA, corresponding to the previous kinetic study of this polymerization.  

Sample % weight loss (350 °C – 480 °C) Thermal degradation onset Tonset (°C) PGMA (wt%) 

CNC 14 305 0 

CNC-PGMA-Br_1h 30 314 38 

CNC-PGMA-Br_24h 49 326 83 

PGMA homopolymer 56 319 100 

Table II. 4. Thermal degradation onset temperatures and calculated amount of PGMA in both CNC-PGMA-Br_1h and CNC-
PGMA-Br_24h 

By regarding only the morphology of polymerized CNC-PGMA-Br, 1 h of polymerization ensures the 

conservation of the crystallinity, which is critical for further applications, while introducing a 

significant amount of PGMA. 

 Efficiency of SI-ATRP on CNCs  

The efficiency of the polymerization of GMA from brominated initiator sites previously grafted on 

CNC was first investigated by FTIR analysis, whose spectra are shown in Figure II. 3 c). Results 

confirm the conclusion drawn from Figure II. 6 b), proving the efficiency of the polymerization and 

the growth of the polymer over time. Indeed, peaks at 910 cm-1, 906 cm-1, 1728 cm-1, and between 

2840 cm-1 and 3000 cm-1 are respectively characteristic of the epoxy groups, terminal vinyl groups and 

ester bonds from carbonyl groups, and -CH2 and -CH3
 carbons from the PGMA backbone polymer. 

The clear increase in those peaks for the CNC-PGMA-Br_1h and CNC-PGMA-Br_24h spectra 

demonstrates the polymerization of PGMA at the level of CNCs over time. These results are 

confirmed by elemental analyses (Table II. 1). Indeed, for both CNC-PGMA-Br_1h and CNC-

PGMA-Br_24h, an increase in the %C values and a decrease in the %O values are notable and 

consistent with the introduction of the polymer PGMA (C7H10O3)n on CNCs. This is reaffirmed by the 
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decrease in the O/C ratio for these polymerized CNCs, which is also similar to the corresponding 

theoretical calculated ratio and to those of pure PGMA. The slight difference between the O/C ratios 

of CNC-PGMA-Br and PGMA confirms the presence of cellulose in the sample. Note that values are 

corrected according to the previously described method by considering the presence of half-sulfate 

ester groups at the surface of CNCs, without however considering the presence of impurities like 

hemicelluloses in the samples, which could influence the values, so they must be interpreted 

comparatively. Moreover, considering that CNC-PGMA-Br_1h and CNC-PGMA-Br_24h are 

composed of cellulose and PGMA, an estimation of the weight percentage of PGMA may also be 

calculated in both cases, as presented in Table II. 1. Values are not totally equal to those previously 

calculated through TGA thermograms (Figure II. 7 b)), but the trend is similar, keeping in mind that 

TGA and elemental analysis have different sensitivities and involve different approaches. The amount 

of PGMA with increasing polymerization time, and approximately 48% and 70% by mass of PGMA is 

attached to CNCs after 1 h and 24 h respectively.   

One of the primary challenges to SI-ATRP on CNCs involves the characterization and quantification 

of the grafted polymer at the surface of the nanomaterials. Hansson et al.45 investigated this point by 

proving that the kinetics of the polymerization at the surface of CNCs is similar to those in the media 

from a sacrificial initiator. Previous characterizations allow the proof of the polymerization as well as 

an estimate of the calculated amount of polymer. The surfaces of polymerized CNC-PGMA-Br_1h 

and CNC-PGMA-Br_24h were investigated by XPS analyses; the decompositions spectra of the C1s 

signal are presented in Figure II. 8 c) and d). In Figure II. 8 b), the decomposition spectra of the C1s 

peak of PGMA homopolymer shows the presence of characteristic peaks of the polymer: at 285.4 eV, 

286.1 eV (ΔeV = 0.7 eV), 287.1 eV (ΔeV = 1.7 eV), 287.5 eV (ΔeV = 2.1 eV), and 289.5 eV (ΔeV = 

4.1 eV) for respectively the C-C/C-H, C*-C=O- , C-O, C-O-C (epoxy ring), and O-C=O bonds. The 

CNC-PGMA-Br_1h and CNC-PGMA-Br_24h (Figure II. 8 c) and d)) decomposition spectra show 

the same characteristics, as well as a peak characteristic of cellulose at 288.2 eV (ΔeV = 3.3 eV) 

related to the C3 signal (O-C-O or C=O) from the neat CNCs. It is important to note that the intense 

C2 signal from cellulose is also present but is superimposed over other C-O and C-O-C peaks. This 

result confirms the grafting of a PGMA polymer layer onto CNCs.  
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Figure II. 8. Decomposition of the C1s peak of a) CNC-PGMA-Br_1h, b) CNC-PGMA-Br_24h, and c) PGMA 
homopolymer obtained by XPS analyses 

Moreover, the determination of the O/C ratio (Table II. 2) leads to a value of 0.47 for CNC-PGMA-

Br_1h materials, whereas a ratio of 0.42 is observed for CNC-PGMA-Br_24h, which is similar to the 

theoretical value associated with pure PGMA polymer66. This result could explain the increasing 

grafted polymer weight with time, as shown in Figure II. 6 d). According to the XPS results, it is 

possible to make a conclusion about the presence of PGMA over the surface of CNC. Moreover, it is 

possible to observe in Figure II. 8 that after 1 h of polymerization, the intensity of the peak associated 
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with the epoxy C-O-C bond is less intense than that of the homopolymer reference. After 24 h of 

polymerization, this intensity is closer to that of the homopolymer, confirming that the amount of 

polymerized PGMA is more important. Quantification of the polymer is not possible considering these 

results, but the presence of PGMA at the surface of CNCs is clearly highlighted. Moreover, highly 

reactive epoxy rings are conserved during the polymerization and are available at the surface of both 

CNC-PGMA-Br_1h and CNC-PGMA-Br_24h.  
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4. Conclusion 

CNCs were initially modified with BIB as an initiator of SI-ATRP of PGMA; the efficiency of the 

functionalization was highlighted using bulk and surface characterization. After ensuring that only the 

polymerized monomer is present at the level of CNCs after washing, polymerized CNC at two 

different polymerization times were recovered and characterized using FTIR, XRD, TGA, XPS and 

elemental analysis. After only 1 h of polymerization, PGMA covers almost all the surface of CNCs, 

with a weight percentage of approximately 40% relative to CNC. After 24 h of polymerization, the 

weight proportion of PGMA represents almost 80% of the total weight, but the obtained polymerized 

CNCs are more aggregated in non-polar solvent. In both cases, the presence of characteristic bonds of 

the polymer, and especially carbonyl groups and epoxy rings are highlighted, although 1 h of 

polymerization seems to optimize the reaction conditions for the preparation of well-dispersed, 

polymerized, hydrophobized CNCs for further incorporation in hydrophobic polymer matrices or 

further chemical modification. The results presented in this study are encouraging, and further 

investigation of poly(lactic acid)-based nanocomposites including CNC-PGMA-Br as nanofillers 

would be interesting, in order to highlight the interest of the SI-ATRP of GMA at the surface of CNCs.  

 

  



Surface-initiated transfer radical  polymerization of glycidyl methacrylate from the surface of modified-cellulose 

nanocrystals 

Manon LE GARS, 2020 
144 

  



CHAPTER II : Chemical modifications of CNCs 

Manon LE GARS, 2020 
145 

2. Grafting of fatty acids on cellulose 

nanocrystals via a novel procedure 

2.1. 

Comparison between two different methods for the 

chemical modification of cellulose nanocrystals  

This short additional section aims to compare the efficiency of two CNC surface modification 

methods: a classically performed method involving an acid chloride and toxic solvents, and a novel 

procedure developed in this PhD using a carboxylic acid. This part intends to provide a first proof 

of concept of this new grafting method, which aims to limit the use of toxic chemicals and will be 

more detailed and described in the following section 2.2. 
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Abstract 

In addition to their outstanding intrinsic properties making them excellent candidates for a wide range 

of applications, high surface reactivity of cellulose nanocrystals (CNCs) is highly interesting for 

potential diverse surface modifications. In fact, the presence of reactive hydroxyl groups at their 

surface allows many chemical grafting to be performed. Among these chemical modifications, 

esterification procedures have been widely described in the literature, with an incredible number of 

various (macro)molecules grafted. Moreover, in a spirit of greener and less toxic chemistry, a novel 

procedure for the esterification of CNCs using 10-undecenoic acid as carboxylic acid (CNC-

10UndecenoicAcid) was developed in this work, and its efficiency was compared with that of a 

classical successful esterification method involving 10-undecenoyl chloride as acid halide (CNC-

10UndecenoylChloride). Although the crystallinity of modified CNCs slightly decreased in both cases, 

the grafting efficiency was highlighted by Fourier-transform infrared (FTIR) spectroscopy and 

elemental analyses, with calculated degrees of substitution values equal to 0.1 and 0.4 for CNC-

10UndecenoylChloride and CNC-10UndecenoicAcid, respectively. This study emphasizes the 

efficiency of such a novel greener procedure, as well as, its interest in the CNCs surface modification 

research field.    

Keywords: 

Cellulose nanocrystals ─ Esterification ─ Acid chloride ─ Carboxylic acid  
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1. Introduction 

At a time of developing sustainable materials, nano-size cellulosic materials are highly attractive 

materials2. In addition to being biobased and biodegradable, their crystallinity, density, high specific 

surface area, and high reactivity are outstanding properties which can be used for numerous and 

diverse applications2,7,8,22,67. Focusing on cellulose nanocrystals (CNCs), they exhibit a highly reactive 

surface due to the presence of numerous hydroxyl groups, which are beneficial for a large panel of 

surface modifications. In fact, in the literature, a large amount of publications deal with the chemical 

modifications of the CNCs’ surface4,15,18,68, attending to graft molecules, macromolecules, or 

polymeric chains at their surface. These surface modifications have different objectives: For example, 

the grafting of single molecules can confer new active properties to the CNCs, like antibacterial27,69,70, 

antioxidant71, or specific sorption properties72. On the other hand, the grafting of long aliphatic chains 

or hydrophobic polymer chains can lead to the CNCs hydrophobization, in order to enhance their 

compatibilization with an apolar polymeric matrix, for the purpose of nanocomposites preparation73–75.  

Among surface modifications of CNCs, esterification is commonly performed. In fact, numerous 

procedures are described in the literature, like the acetylation76,77, transesterification32, or the use of 

acid halide reagents41,43, and their efficiency was highlighted, with degrees of substitution generally 

comprise between 0.4 and 368. Furthermore, some authors performed a so-called “one-step” reaction, 

taking advantage of the hydrolysis isolation process of CNC by combining it with a Fischer 

esterification, in order to directly produce modified CNC. In this sense, Boujemaoui et al.44 combined 

hydrochloric acid hydrolysis with a Fischer esterification using several carboxylic acids and 

determined degrees of substitution comprised between 0.06 and 0.27, depending on the carboxylic 

acid used. However, all these previously described esterification procedures are generally carried 

out in organic and toxic solvents and require numerous reagents and multi-step procedures.  

In current environmental context, renewability and biodegradability of materials is a key point in 

the production and use of materials. The idea of green chemistry was born in the 2010s, and its 

principles were described by Anastas and Eghbali78, aiming to make greener chemicals, processes and 

products, and by applying these principles, ensuring the efficiency of the chemical modifications and 

reactions. In the literature, more and more authors propose greener methods for the surface grafting of 

CNCs4,79,80. Among these authors, Espino-Pérez et al.26 developed a procedure ─ called SolReact 

process ─ in which an aromatic carboxylic acid was added to a water suspension of CNCs. By heating 

the system at a temperature higher than the acid melting point, and after water evaporation, CNCs 

were suspended in the melted acid, which became the solvent. Highly interesting results were shown 

by the authors, and degrees of substitution between 0.3 and 0.5 were calculated, accordingly to the 

acid grafted.  
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In this study, a novel method, adapted from that proposed by Espino-Pérez et al.26, was carried out on 

CNCs, using the 10-undecenoic acid a long carbon chain molecule. In order to compare the efficiency 

of this developed method with that of a common esterification of CNCs surface, an esterification using 

the 10-undecenoyl chloride as acid chloride was performed, in parallel. Recovered modified CNCs, 

called CNC-10UndecanoicAcid and CNC-10UndecenoylChloride, respectively, were characterized by 

X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy and elemental analysis, in 

order to prove and compare their efficiency, and to give a proof of concept of the developed greener 

esterification procedure.  
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2. Materials and methods 

 Materials 

Cellulose nanocrystals (CNCs) were supplied by CelluForce (Canada) in spray-dried from. 10-

undecenoyl Chloride, 4-Dimethylaminopyridine (DMAP), 10-undecenoic Acid, and sulfuric acid 

(H2SO4 , 92 %) were supplied by Sigma-Aldrich Chimie (France), and used as received. Toluene was 

supplied by Sigma-Aldrich Chimie (France), and was stored and used in anhydrous conditions. 

Ethanol (95%) was purchased from Revol (France).  

 Classical esterification of CNCs using 10-undecenoyl chloride 

An aqueous suspension of 10 g of CNCs in water at 1 wt% was prepared by introducing a proper 

amount of dried CNC in water, following by 1 h of magnetic stirring, and an ultrasonic treatment 

(2500 J/g) using a Sonifier S-250A (Branson, USA). The suspension was then solvent exchanged. 

Briefly, the water suspension was first subjected to a centrifugation cycle (10 000 rpm, 5 °C, 15 min), 

and the supernatant was removed. The recovered CNCs were re-dispersed in ethanol using an 

ultrasonic treatment, and the suspension was then submitted to another centrifugation step (10 000 rpm, 

5 °C, 15 min). After recovery of the supernatant, the re-dispersion (this time in acetone) and 

centrifugation steps were carried out twice, following the same procedure as before. The two last 

centrifugations (10 000 rpm, 5 °C, 15 min) were similarly performed in toluene. The final 

concentration of the CNC suspension in toluene was adjusted to 1 wt%, sonicated (2500 J/g), and was 

then introduced into a three-neck flask. 2.26 g of DMAP (0.19 mol) were introduced in the flask, and 

the reaction mixture was left stirring at room temperature for 30 min. Thereafter, 3.75 g of 10-

undecenoyl chloride (0.19 mol) were added dropwise, using a dropping funnel, and the reaction media 

was stirred under reflux at 110 °C for 4 h. At the end of the reaction, the mixture was cooled at room 

temperature, and submitted to 5 successive centrifugation cycles (10 000 rpm, 5 °C, 15 min) in ethanol. 

Recovered CNC-10UndecenoylChloride were stored in a hermetically sealed vial in the fridge. 

 Esterification of CNCs with 10-undecenoic acid via a novel method 

An aqueous CNC suspension was prepared and solvent exchanged from water to ethanol, and then to 

acetone, as previously described in section 2.2. The concentration of the final suspension in acetone 

was adjusted to 1 wt%, and the suspension was poured into a round-bottomed flask equipped with a 

distillation system, and heated at 110 °C. The 10-undecenoic acid was then introduced into the flask in 

a ratio of 100:1 relatively to the dry mass of CNC, and a catalytic amount of sulfuric acid was also 

added. After the total acetone evaporation, the CNC suspension was dispersed in the melted 10-

undecenoic acid (melting point ~ 25 °C) and was magnetically stirred for 8 h at 110 °C. At the end of 

the reaction, the CNCs were extensively washed by six successive centrifugation and re-dispersion 
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cycles (10 000 rpm, 25 °C, 15 min) in acetone. Recovered CNC-10UndecenoicAcid were stored in a 

hermetically sealed vial in the fridge. 

 Characterization methods  

2.4.1. X-ray diffraction (XRD) 

XRD analyses were performed on dried powder samples of neat CNC (commercially spray-dried), and 

modified CNC-10UndecenoylChloride and CNC-10UndecenoicAcid. Diffractogram patterns were 

obtained using a PANalytical X’Pert PRO MPD diffractometer, equipped with an X’accelerator 

detector. A copper anode (Kα radiation of 1.5419 Å) allows a symmetric scan reflection (θ /2 θ, Bragg 

angle), in a range of 2 θ between 5° and 60°. Using the Segal height peak method55,57, the crystallinity 

indexes (CI) of each sample were calculated following the Equation II. 4: 

CI = (1 − 
Iam

I002
) × 100 

Equation II. 4. Crystallinity index (CI) calculation according to the Segal height peak method 

where Iam corresponds to the intensity at the minimum (2θ ≃ 18.3°) and I002 is the intensity associated 

with the main crystalline region of cellulose (2θ ≃ 22.5°). Measurements were repeated at least twice.  

2.4.2. Fourier transform infrared (FTIR) spectroscopy 

FTIR spectra of neat CNC, and modified CNC-10UndecenoylChloride and CNC-10UndecenoicAcid 

were performed on a Perkin Elmer Spectrum 65 spectrometer via the transmission method. By mixing 

and milling KBr and CNC powders (ratio 99:1 wt/wt), pellets were obtained by applying a 10 t/m2 

pressure for one min, and were left drying an oven (1 hour, 105 °C) before the analysis. The 

absorbance spectra were recorded between 600 and 4000 cm-1, with a resolution of 4 cm-1, and 32 

scans. All the spectra were normalized at 1110 cm-1 (characteristic peak of the pure cellulose). 

Measurements were at least duplicated for each sample.  
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2.4.3. Elemental analysis 

Elemental analyses were performed by the Institut des Sciences Analytiques (Villeurbane, France). 

The carbon, hydrogen, oxygen and sulfur contents were titrated by a micro analyzer (CNRS, France), 

and the relative error on the measurements was close to 0.4%. From the data, the degree of substitution 

(DS) of modified CNC — corresponding to the number of grafted hydroxyl groups per AGU — was 

calculated from the Equation II. 5, which was adapted from the previous work of Espino-Pérez et 

al.72: 

DS =
M(C)AGU − ωC. (MAGU + DSSO3

 . MSO3)

ωC. Mgrafted − M(C)grafted
 

Equation II. 5. Degree of substitution (DS) calculation 

where M(C)AGU corresponds to the carbon molar mass in an AGU (72.06 g.mol-1), MAGU is the total 

molar mass of an AGU (162.14 g.mol-1), ωC is the relative carbon content obtained from the analysis, 

Mgrafted the molar mass of the graft (154.1 g.mol-1) and M(C)grafted the carbon molar mass of the grafted 

acid (120.1 g.mol-1). Note that in the case of pure cellulose, weight fractions %C and %O are 

theoretically equal to 44.4% and 49.4%, with an O/C ratio equal to 1.11. In this study, 

experimental %C and %O values were corrected by taking the theoretical values for the neat CNC 

sample, as previously done in the literature26,59. DSSO3 corresponds to the degree of substitution linked 

to the presence of sulfate-half ester groups present the surface of CNC, and was calculated from the 

sulfur weight fraction %S obtained from the elemental analysis, accordingly to the Equation II. 6, 

where where MSO3 is the molar mass of the substituted –SO3
- groups (80.1 g.mol-1): 

DSSO3 =
S%. MAGU

MS − %S. MSO3
 

Equation II. 6. Degree of substitution of half sulfate ester groups (DSSO3) calculation 
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3. Results and discussions 

 Influence of the chemical modifications on the structure of the CNCs 

Chemical modifications carried out on CNCs can affect their crystallinity, mainly because of the 

reduction in hydrogen bonding or the change in polymorph to cellulose II68. In the present study, the 

evolution of the crystalline structure of the CNCs after the two different surface modifications was 

investigated via XRD analyses performed on powder-form samples. The corresponding X-ray 

diffractograms are presented in Figure II. 9. As expected, the unmodified CNC sample exhibits a 

crystalline organization. At 16.5°, 22.6° and 34.6°, peaks related to the signals (101) / (101̅), (002), 

and (040) are characteristic of the cellulose I β structure, and the crystallinity index (Equation II. 4) 

was determined to be equal to 86%, confirming the high crystalline behavior of neat CNCs. 

 

 

Figure II. 9. X-ray diffractograms of neat CNC, CNC-10UndecenoylChloride, and CNC-10UndecenoicAcid 

The X-ray diffractograms of CNC-10UndecenoylChloride and CNC-10UndecenoicAcid samples 

present similar peaks at 16.5°, 22.6° and 34.6°, confirming the conservation of their cellulose I β 

structure. The calculated crystallinity indexes of modified CNC-10UndecenoylChloride and CNC-

10UndecenoicAcid are equal to 81% and 78%, respectively. A slight decrease in crystallinity is thus 

observed in both cases, and can be assigned to the reactions conditions (time, temperature, etc.), as 

well as, to the manual grinding step. In fact, this step was particularly long, especially for the CNC-

10UndecenoicAcid. Moreover, it is essential to point out that the peak height method should only be 

taken as an approximation14, and it is therefore difficult to quantitatively conclude about these results. 

Nevertheless, the two methods of functionalization do not heavily affect the crystallinity of the grafted 

materials. More generally, the conservation of the materials crystallinity is highly important, 
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especially for specific applications like composites, in which crystallinity of the nanomaterials is one 

of the main reasons for their use.  

 Efficiency of the two surface modification methods 

The efficiency of the modifications, using a classical or a novel esterification procedure, was first 

investigated by FTIR, and the resulted spectra are presented in Figure II. 10. In both cases, the 

appearance of peaks related to the presence of ester bonds (O-C=O), aliphatic carbons (-CH2), and 

double bonds (C=C) was expected. As seen in Figure II. 10, FTIR spectra of unmodified CNC 

exhibits typical peaks of pure cellulose, for example those at 1105 cm-1 and 3000-3600 cm-1, related to 

the vibrations of C-O bonds and hydroxyl groups (I and II), respectively.  

 

Figure II. 10. FTIR spectra of neat CNC, CNC-10UndecenoylChloride, and CNC-10UndecenoicAcid 

Regarding the spectra of CNC-10UndecenoylChloride and CNC-10UndecenoicAcid samples, they 

exhibit a peak at 1735 and 1732 cm-1, respectively. In both cases, this peak can be attributed to the 

C=O bond from the created ester groups at the surface of modified CNC. It is clearly noticeable that 

this peak is more intense in the spectra related to the CNC-10UndecenoicAcid sample. Moreover, 

around 2800-2900 cm-1, the peak corresponding to the aliphatic -CH2 and/or alkenes =CH2 carbons is 

also visible in the CNC-10UndecenoicAcid spectra, and clearly evidences the presence of the long 

aliphatic chains (10 carbons) grafted at the surface of the CNCs. Although this peak cannot be clearly 

observed in the CNC-10UndecenoylChloride spectra, the presence of the peak related to the ester 

groups allows concluding about the presence of grafted chains at the CNCs surface. Thus, both CNC-

10UndecenoylChloride and CNC-10UndecenoicAcid spectra evidenced the efficiency of the grafting 

of long chains at the surface of modified CNC, with a supposed higher grafting density in the case of 

CNC-10UndecenoicAcid. Moreover, no peaks related to the presence of unreacted products (10-
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undecenoyl chloride or 10-undecenoic acid) are visible, confirming the efficiency of the washing steps 

at the end of each reaction.  

In order to quantify the amount of grafted molecules, elemental analyses were performed on the 

modified CNC-10UndecenoylChloride and CNC-10UndecenoicAcid samples, as well as, on neat CNC 

sample as reference. Results of these analyses are summarized in Table II. 5. As previously 

mentioned, the values of %C and %O were corrected accordingly to the theoretical values of pure 

cellulose. Note that differences between experimental and theoretical values can be attributed to the 

presence of some impurities in the samples. It could also have been interesting to treat the unmodified 

CNCs in the same way as CNC-10UndecenoylChloride and CNC-10UndecenoicAcid (same reaction 

times, temperature, solvent and, washing steps) without reagents, in order to have a more 

representative reference. Moreover, the DSSO3 was calculated for the three samples (Equation II. 6), 

and a decrease from 0.04 to 0.02 (50%) is observed for the CNC-10UndecenoicAcid sample, probably 

due to the desulphation of CNC occurring during the esterification reaction. One the other hand, the 

values of DSSO3 are equal for both neat CNCs and modified CNC-10UndecenoylChloride, indicating 

that the acylation reaction conditions do not induce desulphation of the CNCs. 

Sample 
Experimental values 

DSSO3 

Corrected 

values 
Experimental 

O/C 

Theoretical 

O/C 
DS 

%C %O %H %S %C %O 

Neat CNC 40.7 50.8 6.4 0.8 0.04 44.4 49.4 - 1.11 - 

CNC_10UndecenoylChloride 42.3 50.0 6.2 0.7 0.04 46.1 48.6 1.05 0.47 0.07 

CNC_10UndecenoicAcid 49.0 43.2 7.3 0.4 0.02 53.5 42.0 0.79 0.47 0.36 

Table II. 5. Atomic composition of neat CNC, CNC-10UndecenoylChloride and CNC-10UndecenoicAcid obtained by 

elemental analyses with corrected values, theoretical and calculated ratio O/C, and calculated degree of substitution (DS) 

Regarding the calculated O/C ratios, that of CNC-10UndecenoylChloride only slightly decreased from 

1.11 to 1.05, while CNC-10UndecenoicAcid sample exhibits a decrease around 0.79. It clearly 

highlights the efficient introduction of numerous carbons coming from the grafted long carbon chains. 

Note that in both cases, these experimental ratios were higher than the theoretical ones (equal to 0.47 

in both cases), clearly indicating that not all hydroxyl groups have been modified during the two 

reactions, as expected. It was confirmed by the calculated degrees of substitution DS (Equation II. 5), 

whose values were equal to 0.07 and 0.36, for modified CNC-10UndecenoylChloride and CNC-

10UndecenoicAcid, respectively. The low value obtained for CNC-10UndecenoylChloride was 

surprising, since high degree of substitution were reported in the literature for similar graftings using 

acid halide reagents68,81. However, some publications74,82 showed that such a grafting using long 

aliphatic chains led to lower degrees of substitution, in the range 0.2-0.1. In our study, the low DS 

obtained for the grafting of 10-UndecenoylChloride can thus be attributed to the length of the grafted 

moieties, the possible presence of water traces, or the kinetics of the reaction which could have lasted 

longer. The DS calculated for the CNC-10UndecenoicAcid was equal to 0.36, which is very satisfied, 
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especially for such a novel esterification procedure involving no toxic reagents and milder conditions. 

Regarding the literature, the efficiency of this second esterification method is comparable with that of 

other classical efficient esterification methods4,68.  
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4. Conclusion  

In the present short study, the efficiency of the two methods of esterification procedures was proved, 

and the presence of grafted 10-undecenoyl chloride and 10-undecenoic acid compounds on CNCs was 

highlighted by FTIR analysis. Moreover, their quantifications were performed via elemental analyses, 

and the calculated degree of substitutions values were consistent with those found in the literature, 

although the classical reaction involving an acid chloride was expected to be more efficient. 

Nevertheless, the satisfying degree of substitution of the 10-undecenoic acid compounds on the CNC 

via a novel esterification procedure aiming to reduce the use of toxic chemicals was highlighted. These 

results are encouraging as they allow the grafting of carboxylic acids on CNC, while limiting the use 

of organic toxic chemicals.  
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2.2. 

Role of solvent exchange in dispersion of cellulose 

nanocrystals and their esterification using acids as solvents  

This section is adapted from M. Le Gars, P. Roger, M. N. Belgacem, J. Bras “Role of solvent 

exchange in dispersion of cellulose nanocrystals and their esterification using fatty acids as 

solvents”, Cellulose, 2020. 
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Abstract 

The recent emergence of bio-based nanocomposites makes perfect sense from a technical and 

environmental point of view. Cellulose nanocrystals (CNC) are novel bio-based nanomaterials with a 

wide range of beneficial properties. Their biodegradability, crystallinity, high surface area, and 

mechanical strength, as well as their highly reactive surface, make them ideal materials as nanofillers 

in polymeric matrices. However, most the bio-based polymers are hydrophobic, and the hydrophilicity 

of CNC is therefore a challenge to their incorporation in such matrices. In this study, a new procedure 

for surface modification of CNC with long aliphatic chains (lauric acid (12 carbons) and stearic acid 

(18 carbons)) was developed that limits the use of petro-chemicals and facilitates their potential 

recycling. A study of the dispersion state of CNC in acetone was performed first. Then, grafting 

efficiency was highlighted by several techniques and quantification of the amount of grafted fatty 

chains was investigated. Degrees of substitution on the bulk and on the surface of the CNC were 

calculated between 0.1 and 0.3, which provided enough grafted functions to confer hydrophobic 

behavior to modified CNCs, as highlighted by the increasing of contact angle from 65° for neat CNC 

to 80° after modification. Finally, conservation of CNC crystalline structure and morphology was 

proved by both X-ray diffraction and transmission electron microscopy analyses. Modified CNCs 

exhibit a crystallinity index close to 86% and length of approximately 350 nm. Thus, crystalline 

hydrophobic cellulosic nanomaterials were prepared using a more environmentally friendly procedure 

than those classically found in the literature.  

Keywords: 

Cellulose nanocrystals ─ Chemical surface modification ─ Esterification ─ Green chemistry  
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1. Introduction 

Recently, novel nanomaterials extracted from cellulose sources have been developed and 

exponentially studied17. Two main types of nanocelluloses currently exist: cellulose nanofibrils 

(CNFs) and cellulose nanocrystals (CNCs). CNFs can be obtained by applying a mechanical treatment 

after biological or chemical pre-treatments on cellulose, resulting in nanofibrils with dimensional 

properties varying from 2 to 50 nm in width and 500 nm to 2 µm in length, depending on the isolation 

process and the source1. By chemically treating biomass using acid hydrolysis, CNCs are extracted. 

Ranby et al.83 were the first to discover that reacting cellulose with sulfuric acid leads to a 

disintegration of the amorphous parts of the cellulose polymer chains while keeping crystalline areas 

intact. Although several studies have demonstrated this method’s success with several different acids, 

sulfuric acid hydrolysis remains the most common, controlled and optimized method for CNC 

extraction3,84–87. CNCs classically present widths in the range of 2 to 15 nm and lengths between 100 

and 500 nm, leading to high aspect ratios, depending mainly on their source — some CNCs from 

tunicate can even achieve lengths of approximately 1500 nm3. As their name and isolation process 

suggests, CNCs have high crystallinity (up to 95%) depending on their specific source and isolation 

process18. They exhibit other interesting intrinsic properties like low toxicity, low density, high 

specific area, and high intrinsic mechanical properties3,12,16. Moreover, their isolation via sulfuric acid 

hydrolysis induces the presence of sulfate half ester groups (-OSO3-) on their surfaces. CNCs are 

therefore highly stable in aqueous media, leading to stable colloidal suspensions with interesting 

rheological properties88. This partly explains the enthusiasm for these novel nanocelluloses for use in 

the laboratory as well as on an industrial scale. Indeed, CNCs are studied for a wide range of 

applications, like biomedicine, cosmetics, paints, coatings, food additives, filtrations, and composites. 

Nonetheless, CNCs also have some drawbacks. Due to the numerous hydroxyl groups of cellulose 

chains and the resulting hydrogen bonds, dispersion of CNCs in organic solvents, as well as their re-

dispersion after drying is difficult60,89. This point can be an issue when working in non-aqueous 

solvents or in dried form. CNCs are hydrophilic, and their dispersion in hydrophobic compounds — 

solvents or polymers — is challenging and is the main obstacle for their use in nanocomposites, 

although they are the materials of choice for this kind of application. Indeed, their nano-scale 

dimensions, high crystallinity, and stiffness, as well as high specific area are extremely relevant for 

their use as nanofillers in a polymeric matrix3,90. Most polymeric systems used are hydrophobic 

(including polyethylene (PE), polypropylene (PP), and poly(lactic acid) (PLA), among others), and 

incorporation of CNCs as fillers requires a previous compatibilization step with the selected apolar 

matrix in order to render them hydrophobic. In literature, numerous publications deal with this 

compatibilization of CNC in order to enhance the mechanical and barrier properties of the final 

nanocomposites5,6,90,91. The abundance of reactive hydroxyl groups (three per anhydroglucose unit 

(AGU)) on the surface of CNCs offers a wide range of possible functionalizations and three main 
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types of surface modifications are presented in literature: physical adsorption, the grafting of polymer 

chains, and the grafting of single (macro)molecules. These functionalizations aim to maintain other 

intrinsic properties of CNCs, like their morphology and crystallinity. 

In this study, covalent grafting of long aliphatic chains via esterification on the surface of CNCs is 

investigated by the limited use of chemicals and organic solvents. Grafting fatty acids on 

nanocellulose for their hydrophobization has been a scientific challenge for several decades, and 

numerous strategies have been described in literature. Indeed, apart from surfactant adsorption92,93 or 

polymer adsorption94, covalent grafting of fatty acids has been the subject of many publications. 

Acylation of cellulose fibers and cellulose nanocrystals with various fatty acyl chlorides95–97 or surface 

modification of cellulose nanofibers using octadecyl isocyanate59 have been efficiently developed over 

the past several years. However, these surface modifications require the use of organic and often toxic 

solvents. Other modifications carried out in water have been described with the use of hydrophobic 

alkyl ketone dimer (AKD) molecule nano-emulsion to modify the surface of cellulose nanofibers98–100. 

However, this simple and efficient procedure has never been performed on CNCs because they would 

play an undesirable role as a surfactant. Currently, surface hydrophobization of CNCs traditionally 

involves multi-step procedures and toxic organic solvents, and these aspects are limiting factors for 

any industrialization. However, other hydrophobization procedures have been proposed through the 

use of fatty acid chlorides directly onto dried cellulosic substrate via a chromatogeny procedure 

involving liquid-vapor equilibrium101, or via a gas procedure on CNC aerogels102. Both methods, 

however, require already-formed cellulosic materials and cannot be performed on CNC suspensions.  

Though grafting of long aliphatic chains on CNC is a research topic that has already proposed several 

times in literature, it has always been performed with the use of organic solvents or on dried formed 

materials. In this work, we investigated a novel method of modification of suspended CNCs that 

makes limited use of toxic solvents. Recently, Espino-Pérez et al.20,26 described a novel method — 

called SolReact — for the surface functionalization of CNCs directly with carboxylic acids, using a 

“Green Process” for further incorporation of such modified CNCs in PLA matrices. In this method, a 

CNC-water suspension was briefly heated to a temperature greater than the melting point of the 

selected carboxylic acid, which was added in large excess. After complete water evaporation, the 

CNCs are dispersed in the melted acid, acting as the reaction solvent. Half sulfate ester groups on the 

surface of the CNC play the role of catalyst. After several hours of reaction, recovered washed CNCs 

were characterized, and the efficiency of the grafting was highlighted. This novel method was the 

starting point of our work. This technique is promising (limited solvent used) but cannot be used with 

fatty acids, as they are not soluble in water. Indeed, an emulsion is obtained and grafting would not be 

homogeneous on CNCs. Therefore we decided to investigate a possible pre-step to favor a good 

dispersion of CNC, and to avoid emulsification.  



CHAPTER II : Chemical modifications of CNCs 

Manon LE GARS, 2020 
161 

In this paper, a new and adapted method for the surface esterification of CNCs with aliphatic chains is 

described. Although the idea is still to use such natural fatty carboxylic acid as a solvent, it opens the 

door to the use of acids that are not soluble in water. The initial dispersion of CNCs is studied 

extensively, and its influence on grafting yield is analyzed. The efficiency of a novel esterification 

procedure in which a reagent acts as solvent and can be recycled is investigated. CNCs were modified 

with lauric or stearic acid — long aliphatic chains bearing 12 and 18 carbons respectively — and 

different characterization techniques were used to highlight the grafting efficiency in the bulk 

(Fourier-transform infrared spectroscopy (FTIR), 13C-solid state nuclear magnetic resonance (NMR), 

elemental analysis), as well as on the surface (X-ray photoelectron spectroscopy (XPS)).  
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2. Materials and methods 

 Materials  

Spray-dried cellulose nanocrystals supplied by CelluForce (Canada) were produced from bleached 

Kraft pulp by sulfuric acid hydrolysis. Sulfuric acid (H2SO4, 92%) was purchased from Revol (France). 

Lauric acid (≥98%) and stearic acid (Reagent grade 95%) were supplied by Sigma-Aldrich Chimie 

(France) and used as received. Acetone (95%) and ethanol (95%) were purchased from Revol (France) 

and used as received.  

 CNC suspensions preparation 

In order to study the dispersion of CNC suspensions, different suspension preparations with a common 

concentration equal to 1 wt% were investigated. In Suspension 1, CNC powder was introduced into 

distilled water and magnetically stirred for one hour at room temperature. Next, an ultrasonic 

treatment (2500 J/g) was applied to the suspension, maintaining the temperature with the use of an 

external ice water bath. Suspension 2 was prepared by following the same method, but water was 

replaced with acetone. After ultrasound treatment, the suspension was continuously stirred until 

further characterization occurred. Suspension 3 was prepared by solvent-exchange. First, suspension 

1 was centrifuged (10 000 rpm, 5 °C, 15 min), and the supernatant was recovered. Recovered CNCs 

were re-dispersed in ethanol, and ultrasonic treatment was applied (2500 J/g). This step was repeated 

twice, and the suspension was submitted to another centrifugation step (10 000 rpm, 5 °C, 15 min). 

After recovery of the supernatant, the re-dispersion (this time in acetone) and centrifugation steps were 

carried out twice, following the same procedure as before. Recovered CNCs were then re-dispersed in 

acetone with ultrasonic treatment after adjusting the final concentration to 1 wt%. Finally, suspension 

4 was prepared by evaporating acetone from suspension 3 at room temperature, re-dispersing the 

obtained dried CNCs in acetone following the described suspension 2 protocol, and adjusting 

concentration to 1 wt%. All suspensions were stored in perfectly closed vials in a refrigerator before 

any reaction or characterization. Figure II. 11 a) schematizes the different procedures for CNC 

suspension preparation. 
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Figure II. 11. a) CNC suspension preparation methods for their dispersion study and b) General procedure of 

CNC esterification using fatty acid reagent as solvent : (1) CNC suspension in acetone obtained after solvent 

exchange, (2) heating of the reaction media at 110 °C and addition of fatty acid, (3) 8 h of reaction after 

complete acetone evaporation, (4) washing steps by centrifugation-redispersion cycles in ethanol or acetone 

according to the fatty acid used, (5) recovering of washed grafted CNC in acetone. Green dashed lines represent 

recyclability of both acetone and fatty acid after the process  

 Esterification of CNCs with fatty acids 

The CNC esterification procedure was adapted from the protocol described by Espino-Pérez et al.26 

However, knowing that both lauric and stearic acid are not soluble in water, unlike the acids used in 

their work, this study’s procedure has been modified and optimized. Firstly, a CNC suspension was 

prepared according to the protocol previously described for suspensions 2 or 3. The suspension was 

introduced into a round-bottomed flask equipped with a distillation system to allow evaporation of the 

solvent. An oil bath was heated to 110 °C. A fatty carboxylic acid — lauric or stearic — was 

introduced into the flask in a ratio of 100:1 relative to the mass of CNC. A catalytic amount of sulfuric 

acid was also added to catalyze the esterification. After total evaporation of acetone, the CNC 

suspension was then dispersed in melted lauric acid (melting point 44—46 °C) or stearic acid (melting 

point 67—72 °C) and was magnetically stirred for 8 h at 110 °C. At the end of the reaction, CNCs 

were extensively washed with a solvent of the fatty acid (ethanol or acetone in the case of lauric or 

stearic acid, respectively) by six centrifugation and re-dispersion cycles (10 000 rpm, 25 °C, 15 min). 

To ensure effective washing of CNC, the supernatant from the last centrifugation was recovered and 

analyzed by FTIR. No trace of unreacted acid was found. After the last washing step, the CNC 
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suspension in acetone or ethanol was subjected to an ultrasonic treatment and stored in a hermetically 

sealed vial in the fridge. A scheme of the reaction is presented in Figure II. 11 b).  

 Characterization methods 

2.4.1. Dynamic light scattering (DLS) 

DLS analysis was carried out to determine the apparent size of CNCs. A VASCO particle size 

analyzer (Cordouan Technologies, France) was used for particle size measurement from nano- to 

micro-scales in liquid. A diluted suspension of CNCs around 10-2 — 10-3 wt% in a chosen solvent was 

prepared and introduced to the device. Ten measurements at 15 second time steps and a limit noise 

ratio of 0.7 were carried out for each sample. To correlate the result with the theoretical model used, 

the polydispersity index (PDI) must be less than 0.2. Measurements, that were at least triplicated, were 

collected and analyzed using nanoQTM software. The cumulative method allows for the calculation of 

the hydrodynamic diameter of particles.  

2.4.2. Fourier-transform infrared (FTIR) spectroscopy 

FTIR spectra of neat and modified CNCs were performed on a Perkin Elmer Spectrum 65 

spectrometer via the transmission method. KBr pellets were prepared by mixing and milling a 99:1 

ratio by mass of KBr:CNC, followed by 10 t/m2 pressure for one min. Pellets were dried in an oven (1 

hour, 105 °C) before any analysis to limit the presence of water. Absorbance spectra were registered 

between 600 and 4000 cm-1, with a resolution of 4 cm-1 and 32 scans. Spectra were normalized 

according to the characteristic peak of cellulose at 1110 cm-1, and were at least triplicated. The most 

representative spectrum was used for the discussion. 

2.4.3. Transmission electron microscopy (TEM) 

Diluted suspensions of neat and modified CNCs were prepared in water and acetone, respectively. 

Suspension drops were deposited on copper grids covered with a thin amorphous carbon film, which 

had been previously plasma cleaned (easiGlow Pelco). After a few minutes, liquid excess was 

absorbed with filter paper. If necessary, the preparation was negatively colored by placing a drop of 

2% uranyl acetate on the grid. After one min, the excess dye was absorbed with the filter paper. 

Samples were observed with a JEOL JEM 2100-Plus transmission electron microscope, operating at 

an acceleration voltage of 200 kV. Images were recorded using a Gatan Rio 16 digital camera. 

2.4.4. Atomic force microscopy (AFM) 

Diluted suspensions at approximately 10-3 — 10-4 wt% were prepared and dispersed using a sonication 

probe (2500 J/g). A suspension droplet was deposited on the surface of a cleaved mica plate which 

was left to dry overnight at ambient temperature. Images of dried CNC suspensions were analyzed 

using AFM and recorded using the tapping mode with a Dimension Icon Bruker equipped with a 
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silicon cantilever (O-TESPA, Bruker, USA). Scans of 10 µm² and 3 µm² were recorded and analyzed 

using Nanoscope Analysis and ImageJ software. Average dimensions with standard deviation were 

measured from at least 50 measurements of CNC for each sample, and the height was used to measure 

CNC width.  

2.4.5. X-Ray diffraction (XRD) 

XRD analysis was performed on dried powder samples obtained by drying neat or grafted CNC 

suspensions at room temperature, which were then gently ground with a mortar to obtain a very fine 

powder. Diffractogram patterns were obtained with a PANalytical X’Pert PRO MPD diffractometer, 

equipped with an X’accelerator detector. A copper anode (Kα radiation of 1.5419 Å) allows a 

symmetric scan reflection (θ /2 θ, Bragg angle), in a range of 2 θ between 5° and 60°. In accordance 

with the Segal height peak method55,57, the crystallinity index (CI) of each sample can be calculated 

according to the Equation II. 7: 

CI = (1 − 
Iam

I002
) × 100 

Equation II. 7. Crystallinity index (CI) calculation according to the Segal height peak method 

where Iam is the intensity at the minimum (2θ ≃ 18.3°) and I002 is the intensity associated with the main 

crystalline region of cellulose (2θ ≃ 22.5°). Measurements were repeated at least twice.  

2.4.6. Elemental analysis  

Elemental analyses were carried out by Institut des Sciences Analytiques (Villeurbane, France). 

Carbon, hydrogen, oxygen and sulfur contents were titrated with the use of a micro analyzer (CNRS, 

France). The relative error of our duplicated measurements was approximately 0.4%. Obtained data 

allowed the determination of the degree of substitution (DS) of modified CNC — corresponding to the 

number of grafted hydroxyl groups per AGU — according to Equation II. 8 and adapted from a 

previous study26.  

DS =
M(C)AGU − ωC. (MAGU + DSSO3

 . MSO3)

ωC. Mgrafted − M(C)grafted
 

Equation II. 8. Degree of substitution (DS) calculation 

where M(C)AGU is the carbon molar mass in an AGU (72.06 g.mol-1), MAGU the total molar mass of an 

AGU (162.14 g.mol-1), ωC the relative carbon content obtained from the analysis, Mgrafted the molar 

mass of the graft (173 g.mol-1 or 267 g.mol-1 respectively for lauric or stearic acid) and M(C)grafted the 

carbon molar mass of the grafted acid (144 g.mol-1 or 216 g.mol-1 respectively for lauric or stearic 

acid). DSSO3 — the degree of substitution related to the presence of sulfate half ester groups on the 

surface of CNC — was introduced in the equation and calculated from the sulfur weight fraction %S 

obtained by the analysis following Equation II. 9: 
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DSSO3 =
S%. MAGU

MS − %S. MSO3
 

Equation II. 9. Degree of substitution of half sulfate ester groups (DSSO3) calculation 

where MSO3 corresponds to the molar mass of the substituted –SO3
- groups (80.1 g.mol-1). Considering 

the presence of these sulfate half ester groups allows for the correction of the values of carbon and 

oxygen weight fractions, which has been determined by other methods in literature26,59.   

2.4.7. CP-MAS 13C-solid state NMR 

13C-NMR analyses were performed at Institut Nanoscience and Cryogénie, which is attached to the 

French Alternative Energies and Atomic Energy Commission. 13C-NMR spectra were obtained from a 

Bruker AVANCE 500 spectrometer. Dry CNC samples were placed in ZrO2 rotors and cross-

polarization, high power proton decoupling and magic angle spinning (CP/MAS) were applied. 

Spectra were provided at 298K, with a spinning speed equal to 12 kHz. For each sample, 40,000 scans 

with 300 ppm spectral width were recorded with relaxation and CP times equal to 2.0 seconds and 2.0 

milliseconds, respectively. Chemical shift values were calculated with tetramethylsilane as the first 

reference, and with glycine as the second. The carboxyl signal was set to 176.03 ppm. 

2.4.8. X-ray photoelectron spectroscopy (XPS) 

XPS experiments were carried out on a K-Alpha Thermo Fischer spectrometer installed with a 

monochromatic source (Al Kα, 1486.6 eV). A spot size of 400 mm was used for all measurements, 

and the hemispherical analyzer operated in constant analyzer energy mode (CAE), with pass energy of 

200 eV and a step of 1 eV for surveys spectra, and with pass energy of 50 eV and a step of 0.1 eV for 

high resolution spectra. To neutralize charge accumulation, a dual beam flood gun was used. Data 

treatment was carried out using Avantage software (Thermo Fischer). Background subtraction (Shirley 

type) and normalization of peak areas (using Scofield sensitivity factors) were performed before any 

calculation of elemental composition. Binding energies were referenced to C1s neutral carbon peak at 

284.8 eV. Measurements were performed on at least two zones of 0.12 cm² of the sample. 

2.4.9. Contact angle 

Contact angle measurements were carried out using a contact angle meter OCA20 equipped with a 

CCD camera and SCA20 software. A 5 µL droplet of distilled water was deposited on casted films of 

neat CNC or on pellets of modified CNC. Experiments were performed at room temperature and 

acquisition of contact angle and droplet volume evolution was recorded during the first 30 seconds, 

just after droplet deposition until its stabilization. All measurements were at least repeated five times.  
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3. Results and discussions 

 Different ways for the dispersion of CNC in acetone 

Although numerous methods have been described to functionalize CNC surfaces to favor their 

compatibilization with hydrophobic polymers, only a few of them were performed in non-toxic 

solvents. The SolReact method recently described by Espino-Pérez et al.26 was a novel strategy 

limiting solvent use. However, our use of lauric or stearic fatty acids did not allow the use of aqueous 

conditions due to their insolubility in water. Indeed, the use of water-suspended CNCs would lead to 

an emulsion. For this reason, a different solvent was needed for CNC suspensions, acetone was chosen 

because of its solubility with both lauric and stearic acids, as well as its low boiling point. The 

dispersion of CNC in such an organic solvent, however, is not as efficient as in aqueous media. The 

presence of half sulfate ester groups on the surface of CNC induces electrostatic repulsions between 

the nanoparticles in a diluted aqueous system, leading to an extremely well-dispersed and stabilized 

CNC. However, in non-polar organic solvents, these electrostatic repulsions are not sufficient to 

stabilize the CNCs which will aggregate and decant relatively rapidly60,103. Several studies have 

investigated the dispersion of CNCs in organic solvent by modifying their surface, particularly by the 

adsorption of surfactants104, or after the covalent grafting of low molecular weight polymers93 at the 

CNC surface. In our case, we aimed to avoid pre-functionalization or surfactants, and therefore 

dispersion of unmodified CNCs in acetone was required as the first step of the CNC esterification 

reaction. Thus, a study of the dispersion state of different CNC suspensions in both acetone and water 

(for the sake of comparison) was essential before any surface modification of CNCs could be done. 

Indeed, CNC dispersion is crucial for any chemical modification, because the larger their surface is, 

the more accessible the surface hydroxyl groups will be, and therefore the more efficient their 

modification will be. In this study, four different CNC suspensions were prepared, according to 

protocols previously described (Figure II. 11 b)).  

To determine the state of CNC dispersion in the different suspensions, dynamic light scattering (DLS) 

measurements were performed. It is important to bear in mind that dynamic light scattering only 

provides qualitative information, because it uses a model based on spherical particles, as opposed to 

the rod-like CNC particles. In our case, DLS analyses allow quantitative and comparative studies of 

our different samples, as same has already been performed in literature58,60,105,106. As previously 

mentioned, CNCs are known to stabilize in an aqueous media, and therefore Suspension 1 is our 

positive reference for dispersion. Each suspension was analyzed by DLS, and recovered curves are 

presented in Figure II. 12 a). 
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Figure II. 12. a) Dynamic light scattering (DLS) curves of CNC suspensions in water with and without 

ultrasonication (dark and grey solid lines), in acetone after solvent exchange (---- line), in acetone after 

redispersion of dried CNC from acetone suspension (···· line) and in acetone after direct incorporation of dried 

CNC (-·-· line), b-e) Pictures of CNC suspensions at 1 wt% after four hours of rest, b) CNC in water 

(Suspension 1), c) CNC in acetone (Suspension 2), d) CNC in acetone after solvent exchange (Suspension 3) and 

e) CNC in acetone after re-dispersion of dried CNC from suspension in acetone (Suspension 4) 

As seen in Figure II. 12 a), all polydispersity indexes (PDI) were close to 0.2, which allows for 

validation of the model used by the acquisition software. Moreover, CNCs dispersed in water and 

ultrasonically treated exhibited an apparent mean diameter of 115 nm, which correlates with values 

found in the literature12. Note that without ultrasounds, this value increased to 165 nm, confirming the 

role of ultrasounds in CNC dispersion in water. By directly incorporating the dry powder of neat 

CNCs in acetone (Suspension 2), the apparent particle size reached 3100 nm, suggesting the presence 

of micrometric aggregates, and confirming the fact that CNCs are not stabilized by electrostatic 

repulsions in such an organic solvent. Suspension 4’s protocol was designed to avoid the solvent 
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exchange procedure, which is energy- and time-consuming on a larger scale. By firstly mixing CNCs 

in acetone, drying them, and finally re-dispersing them in acetone, an improvement of the dispersion 

due to a possible surface modification of CNC was expected. Although the apparent particle size was 

lower than that in Suspension 2, it was equal to 635 nm, suggesting the presence of large aggregates. 

On the other hand, by firstly dispersing CNCs in water and then performing a solvent exchange with 

ethanol and then acetone, the particle size observed by DLS was approximately equal to 300 nm. Even 

though this value was higher than those obtained for water-suspended CNCs, it was still in the range 

of nanometric particles, and we can speak about a dispersed nano-suspension. It could be explained by 

the fact that the electrostatic forces occurring in water between each CNC were not totally lost after 

the centrifugation cycles, leading to a more stable suspension in acetone than those obtained by direct 

mixing of CNC in acetone. Moreover, when CNCs in acetone were dried at ambient temperature and 

then re-dispersed in acetone, the mean diameter obtained by DLS was approximately 635 nm. This 

value was six times higher than for neat CNCs in water, but still lower than in suspension 2. This 

could be because acetone slightly modifies the surface layer of CNC, inducing a better 

compatibilization and dispersion with the solvent. These results are illustrated by Figure II. 12 b-e), 

showing the different suspensions 1, 2, 3 and 4 at 1 wt% four hours after dispersion. In Figure II. 12 

b), it is clearly visible that water-suspended CNC was highly stable and transparent, confirming the 

stability of CNC in water. Moreover, in Figure II. 12 c), it is observable that CNC sedimented at the 

bottom of the vial. This confirms the fact that CNCs directly introduced in acetone were not stabilized 

and dispersed, leading to their complete sedimentation. On the other hand, as observed in Figure II. 

12 d), the CNC suspension in acetone obtained after solvent exchange was much more stable. Indeed, 

even if a slight sedimentation is visible, a more homogeneous suspension is observed, although no 

transparency is reached. Finally, in Figure II. 12 e) corresponding to suspension 4, similar 

sedimentation to that of suspension 2 is observed. All these results confirm the fact that CNCs were 

well-dispersed in aqueous systems but their dispersion was more difficult in an organic solvent. 

Without surface modification, the most effective method to obtain the most dispersed suspension in 

acetone is to perform solvent exchange from a well-dispersed suspension in water to ethanol and then 

to acetone (suspension 3). In the remainder of this study, the aforementioned method was chosen and 

performed.  

 Influence of solvent exchange on the grafting efficiency 

In order to confirm the previous assertion (assuming that suspension 3 would be the most suitable for 

our protocol) and to highlight the role of the dispersion state of CNC suspensions before chemical 

modification, esterification reactions using both lauric and stearic acid were performed on CNC 

directly dispersed in acetone (suspension 2) (on aggregated CNC). Esterification was carried out 

according to the previously described protocol. After the washing steps, recovered CNCs respectively 
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named CNC_Lauric and CNC_Stearic were analyzed by FTIR. The obtained spectra are presented in 

Figure II. 13 a). 

 

Figure II. 13. FTIR spectra of recovered CNCs after esterification performed with lauric or stearic acid carried 

out on a) aggregated CNCs in acetone (suspension 2) and b) dispersed CNCs in acetone (suspension 3) 

According to these FTIR spectra (Figure II. 13 a)), no significant difference in peaks is visible. 

However, in both Figure II. 13 a) and b), all spectra present peaks of pure cellulose, among others: 

the large peak between 3000 and 3600 cm-1 is linked to stretching vibration bonds in hydroxyl groups 

(I and II), the peak at 1636 cm-1 is related to the presence of adsorbed water, and peaks at 1105, 1059, 

and 1028 cm-1 are linked to the vibrations of C-O bonds. The esterification reaction aims to create 

ester bonds with the hydroxyl groups of CNCs, and therefore the appearance of a peak related to the -

C=O bond in an ester bond (at approximately 1720-1730 cm-1) should be observed after reaction. Thus, 
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no evidence of grafting is seen here, which confirms the fact that grafting on poorly-dispersed CNC is 

not effective because of the limited available surface area of the nanoparticles. Furthermore, the peak 

at approximately 1700 cm-1 related to the -C=O bond from the acid is not visible on CNC_Lauric and 

CNC_Stearic spectra, which highlights the washing step’s efficiency in totally removing unreacted 

acid. In the rest of this study, it is therefore accepted that the washing steps were optimized and 

allowed us to perfectly remove all the unreacted acid.  

Thus, it has been proved that esterification carried out on aggregated CNC was not efficient. 

According to the preliminary study of CNC dispersion, a suspension of CNC in acetone obtained by 

solvent exchange (suspension 3) was prepared to achieve an esterification reaction. A kinetic follow-

up of the esterification of CNC was investigated. An aliquot of the reaction media was collected at 

different reaction times and analyzed by FTIR. This kinetics study was carried out for an esterification 

performed with stearic acid. It was considered that the kinetics of esterification using lauric acid would 

be quite similar. Obtained FTIR spectra are represented on Figure II. 14 a). 

 

Figure II. 14. Kinetics study of esterification of CNC with stearic acid : a) FTIR spectra of different 

CNC_Stearic in the time and b) evolution of the logarithm Ln of the ratio of absorbance values related to the 

peak of –C=O bond from ester (1728 cm-1) on the peak characteristic of cellulose (1110 cm-1) 
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The appearance and increase of the peak at 1728 cm-1 related to the –C=O bond from introduced ester 

groups is observed. In addition, the appearance of two intense peaks between 2900 and 2950 cm-1 

related to the –CH2 and –CH3 carbons correlates with the introduction of long aliphatic chains on the 

surface of CNC. Figure II. 14 b) was plotted as function of the time. The resulting curve exhibits a 

linear evolution with respect to time and evidences the first order of the esterification reaction with a 

velocity constant k equal to 6.4x10-6 s-1. Because the esterification proposed in this work follows a 

first-order kinetic law, it is possible to assume that the reaction takes place as long as there is a 

limiting reagent, which is the surface hydroxyl group of CNC. These first-order esterification kinetics 

have already been demonstrated in literature in a heterogeneous system consisting of flax fibers107. As 

part of our study, an 8-hour reaction time was chosen to be conscious of energy consumption. 

Moreover, in the spirit of greener, sustainable chemistry, washed unreacted acid was recovered and 

characterized. Figure II. 15 shows the FTIR spectra of both unreacted lauric and stearic acids 

recovered after the reaction and compared with their commercial received forms. For each of the acids, 

the two FTIR spectra are perfectly identical and in both cases the peak at 1700 cm-1 related to the –

C=O bond from the carboxylic groups remains unchanged. Thus, recycling and reuse of these acids 

after reaction is feasible and would be interesting from an economic and environmental point of view 

because it would reduce the cost and chemicals waste of this esterification reaction on CNC.  

 

Figure II. 15. FTIR spectra of commercial and recovered unreacted a) stearic acid and b) lauric acid 

The structure of modified CNC was investigated by TEM, AFM, and XRD analyses. TEM images 

were obtained with and without coloring in order to mitigate against possible artefacts, especially due 

to the presence of acetone. Nevertheless, coloring allows for a more accurate observation of the 

nanoparticles. Resulting images are presented in Figure II. 16 a), b) and c). It is clearly visible that 

both modified CNC_Lauric and CNC_Stearic were slightly aggregated at the end of the reaction. 

Indeed, neat CNC size was determined to be equal to 110 +/- 30 nm in length and 4 +/- 1 nm in width, 

whereas CNC_Lauric and CNC_Stearic exhibited lengths equal to 347 +/- 106 nm and 350 +/- 60 nm 

and widths equal to 29 +/- 8 nm and 30 +/- 10 nm respectively. It can then be assumed that several 

modified CNCs have aggregated together. 
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Figure II. 16. TEM images obtained with negative coloring using uranyl acetate (on the left) and without 

coloring (on the right) of a) unmodified CNC, modified b) CNC_Lauric and c) CNC_Stearic, d) XRD analyses 

of near CNC, CNC_Lauric and CNC_Stearic 

AFM images of modified CNC_Lauric recovered in acetone after modification are presented in Figure 

II. 17. Length dimensions were determined equal to 470 +/- 170 nm and are in adequacy with those 

measured from TEM. 
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Figure II. 17. AFM height images of modified CNC_Lauric 

Moreover, particle size of unmodified CNC in acetone determined by DLS (Figure II. 12 a)) was 

close to 300 nm. This suggests that the particle size of CNC after reaction would not change, and that 

CNCs would keep their initial dispersion state. This point was confirmed by DLS analyses performed 

on CNC_Lauric and CNC_Stearic diluted suspensions in acetone, presented in Figure II. 18. 

Measured particle sizes were equal to 373 +/- 18 nm (PDI = 0.2) and 402 +/- 5 nm (PDI = 0.2) for 

CNC_Lauric and CNC_Stearic, respectively. No significant differences with value obtained for neat 

CNC in acetone after solvent exchange (suspension 2) was observed. It can be assumed that the 

dispersion state and size of the CNC nanoparticles after reaction was unchanged. Moreover, the 

particle sizes obtained by DLS correlated with data obtained from the TEM analyses. Aggregation of 

esterified CNCs was thus evidenced, but aggregated modified particles are still on the nanoscale, 

which was satisfying for the study, because modified nanoparticles were obtained at this stage of the 

study.  

 

Figure II. 18. Dynamic light scattering (DLS) curves of CNC suspension in acetone after solvent exchange (grey line) and 
recovered CNC_Lauric (-·-· line) and CNC_Stearic (---- line) in acetone 
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The change in the crystalline structure of modified CNCs was investigated by XRD (Figure II. 19) 

and crystallinity indexes (CI) were determined according to Equation II. 7. Although this method 

provides overestimated values of crystallinity compared to other values like peak deconvolution or 

amorphous subtraction methods described by Park et al.56, it was chosen in this study to provide a 

qualitative comparison of samples crystallinity. For both neat and modified CNCs, the presence of 

signals 110 and 200 respectively at 16.5° and 22.6° was characteristic of cellulose I β.  

 

Figure II. 19. XRD analyses of near CNC, CNC_Lauric and CNC_Stearic 

Moreover, neat CNCs exhibit a CI equal to 86%, whereas both CNC_Lauric and CNC_Stearic have a 

CI equal to 83%. Considering the measurement error, the slight crystallinity decrease is not significant. 

Thus, cellulose I crystalline structure of CNC after esterification was conserved, which is critically 

important for further applications, especially for those of polymeric material reinforcement.   

Other indirect or qualitative methods can also highlight the grafting. After reaction and washing steps, 

modified CNCs were stored in an acetone suspension. A small amount of this suspension was added to 

distilled water, and the final concentration was adjusted to 1 wt%. Pictures of resulting water 

suspensions are presented on the right side of Figure II. 20. In Figure II. 20 a), a well-dispersed 

suspension of unmodified hydrophilic CNC in water was observed. In contrast, in Figure II. 20 b) 

and c), flotation of modified CNCs on the surface of the aqueous system was clearly observed. 



Role of solvent exchange in dispersion of cellulose nanocrystals and their esterification using acids as solvents 

Manon LE GARS, 2020 
176 

 

Figure II. 20. Water contact angle and pictures of water suspension at 1 wt% of a) neat CNC, modified b) 

CNC_Lauric, and c) CNC_Stearic 

It qualitatively proves that CNCs recovered after esterification with both lauric and stearic acids are 

more hydrophobic than neat CNCs and are not dispersible in water. It was further confirmed by water 

contact angle measurements, presented on the left side of Figure II. 20. Indeed, the water contact 

angle measured after the deposition of a water droplet on a neat CNC casted film was equal to 54° (+/- 

1°), while those measured on both CNC_Lauric and CNC_Stearic pellets were respectively equal to 

80° (+/- 2°) and 82° (+/-4°), clearly indicating an hydrophobization of modified CNC.  

 Influence of chain length on CNC grafting (Suspension 3) 

FTIR analyses were carried out on purified grafted CNCs recovered after 8 h of reaction with lauric 

and stearic acid, and spectra are presented in Figure II. 13 b). Peaks at 1728 cm-1, and between 2900 

and 2950 cm-1 were observed and associated to the presence of –C=O bonds from ester groups and –

CH2 and –CH3 aliphatic carbons respectively. Efficiency of the grafting of both lauric and stearic acid 

on initially-well-dispersed CNC in acetone was thus highlighted. 
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Figure II. 21. 13C-Solid NMR spectra of a) unmodified CNC, modified b) CNC_Lauric and c) CNC_Stearic 

Moreover, to more precisely investigate the grafting of these carboxylic acids on CNC, 13C-solid state 

NMR was carried out on neat and modified CNC. Spectra related to neat CNC and both CNC_Lauric 

and CNC_Stearic are presented on Figure II. 21. Characteristic peaks of cellulose are observed in 

Figure II. 21 a), with chemical shifts at 105 ppm, 88.7 ppm, and between 74.7 and 64.9 ppm for C1, 

C4 and C2, C3, and C5 carbons respectively, as summarized in a recent review12.  

In Figure II. 21 b) and c), new peaks between 22.9 and 34 ppm, and a single peak at 14.4 ppm are 

present and can be related to –CH2 and –CH3 carbons, respectively. The intensity of the peaks at 

approximately 30 ppm is higher for CNC_Stearic than for CNC_Lauric, due to the greater number of 

carbons comprising the aliphatic chains. Moreover, at 174.8 ppm and 173.8 ppm (respectively for 
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CNC_Lauric and CNC_Stearic), low peaks can be observed and correlated to ester bonds. They 

clearly evidence the covalent grafting of acids on CNC, even if the intensity of these peaks is low 

which could be explained by the low grafting density of acids and by the chain lengths introduced on 

the surface, making the detection of these ester bonds difficult. However, it is possible to ensure that 

there was a covalent grafting of fatty acids on the CNC surface, although quantification of the amount 

of grafted acid was not possible according to FTIR and NMR results.  

In order to investigate this point, elemental analyses were carried out on neat CNC and grafted CNC, 

and the results are presented in Table II. 6. For both CNC_Lauric and CNC_Stearic samples, the 

increase of %C values was significant, leading to a large decrease of experimentally calculated O/C 

ratio, and is explained by the introduction of long aliphatic chains. Values of %C and %O were 

corrected according to the previously described method taking into account the presence of sulfate half 

ester groups on the surface of CNCs and without considering the presence of other impurities which 

could influence the values. Note that the sulfur content %S decreased after esterification, which was 

probably due to the desulphation of CNC under the reaction conditions. Moreover, by comparing 

experimental and theoretical O/C ratios, experimental ratios are higher than theoretical ones, 

indicating that not all hydroxyl groups –OH of anhydroglucose units (AGU) are modified by the 

esterification, which was predictable. 

Sample 
Experimental values 

DSSO3 
Corrected values 

Experimental O/C Theoretical O/C DS 
%C %O %H %S %C %O 

Neat CNC 40.7 50.8 6.4 0.8 0.04 42.4 52.9 1.2 1.1 - 

CNC_Lauric 47.3 40.0 7.2 0.7 0.04 49.3 41.7 0.8 0.4 0.14 

CNC_Stearic 55.4 28.8 9.0 0.4 0.02 57.7 30.0 0.5 0.3 0.35 

Table II. 6. Atomic composition of neat CNC, CNC_Lauric and CNC_Stearic obtained by elemental analyses 

with corrected values, theoretical and calculated ratio O/C, and calculated degree of substitution (DS) 

Degrees of substitution (DS) were calculated according to the previously described Equation II. 5 for 

both CNC_Lauric and CNC_Stearic samples. These DS were equal to 0.13 and 0.31 for CNC_Lauric 

and CNC_Stearic respectively, which was in accordance with values generally found in literature for 

covalent grafting on a CNC surface12,20,108. However, it is important to keep in mind that experimental 

measurement errors are large, and there was some amount of difficulty in determining slight 

differences between carbon element contents before and after modifications due to the large presence 

of the cellulosic background signal12. Nevertheless, higher values of DS obtained for CNC_Stearic 

suggest better efficiency of the grafting using a longer fatty chain. One explanation for this could be 

the difference in viscosity between lauric and stearic acids in the molten state. However, rheological 

analyses were performed on both lauric and stearic acids to understand their rheological behavior as 

solvents during the esterification reaction. At the reaction temperature (110 °C), both of the acids 
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exhibited the same behavior of Newtonian fluids, because the evolution of the shear stress function of 

shear rate was linear in both cases, as presented Figure II. 22 a). Moreover, their viscosities are close 

to zero at a low shear rate as well as at a high shear rate (Figure II. 22 b)). These results confirmed 

that their low viscosities at 110 °C made them good solvents for the reaction but did not provide a 

better understanding of why grafting density of stearic acid is higher than that of lauric acid on CNC.  

 

Figure II. 22. Shear Rheological analyses of both lauric and stearic acids at 110 °C, a) apparent viscosity function of shear 
rate, and b) shear stress function of shear rate 

Another potential explanation is based on the difference in acidity between both acids. Indeed, the 

stronger an acid is, the smaller its pKa is. As found in literature109, pKa in solution of lauric acid (pKa 

= 4.80) and stearic acid (pKa = 4.75) are similar. This difference is very slight, and therefore other 

more relevant explanations should be found, including the repetition of the experiments in order to 

draw a clear conclusion. 

 Surface analyses of long chains onto CNC 

The efficiency of the grafting at the bulk level of both CNC_Lauric and CNC_Stearic has been 

previously studied and highlighted. It was interesting to investigate the grafting at the CNC surface 

level, because it is this modified interface that will influence further compatibilization of grafted CNC 

with a hydrophobic polymer matrix. Thus, to characterize just the surface of the materials with a 

penetration depth less than 5 nm, XPS analyses were carried out on the different samples. 

Decomposition spectra of the C1s signal are represented in Figure II. 23 a) c) and d). Neat CNC 

spectra exhibits four peaks at 285.4 eV, 287.0 eV (ΔeV= 1.6 eV), 288.4 eV (ΔeV= 3 eV) and 289.5 eV 

(ΔeV= 4.1 eV) corresponding to C1 (C-C/C-H), C2 (C-O), C3 (O-C-O/C=O) and C4 (O-C=O) bonds 

respectively. The C1 signal is related to the contribution of non-oxidized alkane-type carbon atoms 

and impurities, residual lignin or extractive compounds. The C2 signal is related to the presence of 

ether groups from pure cellulose, as well as the hydroxyl groups of the unmodified CNCs, and of the 

end of the cellulose chains. The C3 signal corresponds to acetal moieties from AGU units and should 

not change significantly after chemical modification because the corresponding carbon is not affected. 
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The C4 signal is present in low proportions in the neat CNC spectrum, and is attributed to presence of 

glucuronic acid from hemicelluloses residuals.  

 

Figure II. 23. Decomposition of the C1s peaks of a) neat CNC, c) CNC_Lauric, and d) CNC_Stearic, and b) 

Superposition of the C1s spectra of the three samples 

In the case of the grafting of long aliphatic chains inducing the introduction of a large number of 

carbons on the surface of CNC, the C1 peak was particularly interesting, because it was correlated to 

C-C and C-H bonds. Superposition of the C1s envelopes of neat CNC, CNC_Lauric, and CNC_Stearic 

was plotted on Figure II. 23 b), and the main difference between the three curves is clearly visible at 

the C1 peaks. In Table II. 7, the percentages of carbon and oxygen (molar compositions) are 

expressed, as well as, the different percentages for each peak of the C1s decomposition. 

Sample 

Experimental values C1s decomposition 
Ratio 

C1/C3 
DSS 

%C %O O/C 
C1 

C-C / C-H 

C2 

C-O 

C3 

O-C-O / C=O 

C4 

O-C=O 

Neat CNC 56 44 0.8 7 72 20 1 0.4 - 

CNC_Lauric 59 41 0.7 15 68 15 2 1 0.1 

CNC_Stearic 64 36 0.6 30 56 12 2 2.5 0.2 

Table II. 7. Elemental molar compositions and surface functional groups compositions obtained by XPS 

analysis and C1s decomposition 
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First, a large increase in %C was observed, correlated with previous bulk characterizations like 

elemental analysis. It was interesting to follow the evolution of the calculated ratio C1/C3, because C3 

carbons are normally not affected by the chemical grafting of cellulose. Therefore, this ratio reflected 

the increase of aliphatic carbons introduced on the surface of CNC. Indeed, the C1/C3 ratio was equal 

to 0.4 for neat CNC, and increased to 1 for CNC_Lauric, and finally to 2.5 for CNC_Stearic. The 

efficiency of the grafting on the surface of CNC was clearly seen here. Also, an increase in the 

percentage of the C4 carbon related to the ester bonds was also evidenced, although this evolution was 

less significant, possibly due to the steric hindrance on the surface of CNCs coated with long aliphatic 

chains. Nonetheless, the presence of a large number of aliphatic chains on the surface, as well as the 

covalent grafting of these compounds, was highlighted with these XPS spectra.  

It is important to mention that in this study, commercial neat CNCs were used as a reference. It would 

have been preferable to subject them to the same reaction conditions without acid (time, temperature, 

centrifugations in acetone) but the rapid, total evaporation of acetone would have led to their 

degradation. Thus, the elemental molar compositions expressed in Table II. 7 for neat CNCs probably 

would have been different from those of the neat CNCs after treatment, due to the potential removal of 

some sample impurities. In this sense, the results should be carefully analyzed. This also applies to the 

previous results of the elemental analyses. Despite errors in XPS values, surface degrees of 

substitution (DSS) were calculated for both CNC_Lauric and CNC_Stearic. This calculation was based 

on the evolution of the C1 ratio, which should increase significantly after the grafting of long aliphatic 

chains on CNC surface. However, because of the presence of impurities, the C1 signal is present in 

neat CNC sample. Calculation of the DSS has been adapted from the previous work of Espino-Pérez et 

al.26. First, it is possible to express %C1 of modified CNC_Lauric or CNC_Stearic by following 

Equation II. 10 : 

%C1 =
Number of C1 carbons

Number of total carbons
=

DSS × M(C1)grafted

M(C)AGU + DSS × M(C)grafted
 

Equation II. 10. General expression of the %C1 obtained from XPS analysis 

where M(C1)grafted corresponds to the molar mass of C1 carbons of the grafted acid (respectively 132.1 

g.mol-1, 204.2 g.mol-1 for lauric and stearic acid), M(C)grafted corresponds to the molar carbon mass of 

the grafted acid (respectively 144.1 g.mol-1 and 216.2 g.mol-1 for lauric and stearic acid), and M(C)AGU 

is related to the carbon molar mass of an anhydroglucose unit (AGU) (72.1 g.mol-1). It is then possible 

to propose Equation II. 11 for the calculation of the DSS from XPS data:   

𝐷𝑆𝑆 =
%C1 × M(C)AGU

M(C1)grafted − %C1 × M(C)grafted
 

Equation II. 11. General equation for the calculation of the degree of surface substitution from XPS data 
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Calculated DSS are expressed in Table II. 7 and are equal to 0.1 and 0.2 for CNC_Lauric and 

CNC_Stearic, respectively. To be consistent with the literature, it was expected that the values of DSS 

would be higher than those of the DS, because grafting normally takes place mainly on the CNC 

surface26,110. In our case, values of DS and DSS were similar for CNC_Lauric and CNC_Stearic, 

respectively. This can be explained by the fact that the neat CNC taken as reference should have 

endured the same treatment as described for our sample, in order to take into account the reference 

value of C1 signals to correct our equation.  
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4. Conclusion 

In this study, dried CNC powder was dispersed in acetone via different methods, and the dispersion 

state of each suspension was investigated. After accepting that the solvent exchange method was the 

most accurate procedure for the preparation of a well-dispersed CNC suspension in acetone, the aim of 

this study was to perform the esterification of neat CNC with natural fatty lauric or stearic acids 

following a SolReact procedure. The novelty of this grafting lies in the fact that the consumption of 

toxic solvents and chemicals is largely reduced, and that the fatty acids can be simply recycled and 

reused after the reaction. Esterification of the CNCs was characterized via FTIR, 13C-NMR, elemental 

analyses, and XPS, ensuring that a covalent grafting was performed. Quantification of the amount of 

aliphatic chains was completed, leading to a significant and satisfying degree of substitution results: 

between 0.1 and 0.3. Finally, structure conservation was assessed by TEM, AFM, and XRD 

techniques. These results are chemically and environmentally satisfying and open the way for further 

incorporation of modified CNCs in hydrophobic polymer matrices for nanocomposites applications. 
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3. Amidation of TEMPO-oxidized cellulose 

nanocrystals using aromatic aminated molecules 

This section is adapted from M. Le Gars, A. Delvart, P. Roger, M. N. Belgacem, J. Bras “Amidation 

of TEMPO-oxidized cellulose nanocrystals using aromatic aminated molecules”, Colloid and 

Polymer Science, 2020.   
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Abstract 

In this study, the grafting of 1-methyl-3-phenylpropylamine (1-M-3-PP) on cellulose nanocrystals 

(CNCs) via a two-step reaction route was investigated and compared with physico-chemical surface 

adsorption. The first step involved subjecting CNCs to a 2,2,6,6-Tetramethyl-1-piperidinyloxy 

(TEMPO)-mediated oxidation. The carboxylic groups present on recovered oxidized TEMPO-CNC 

were quantified by several characterization methods (conductometric titration, elemental analysis, and 

X-ray photoelectron spectroscopy) and a degree of oxidation close to 0.2 was found. The second step 

was an amidation reaction carried out in an aqueous medium under mild conditions and in the 

presence of N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide (EDC)/N-hydroxysuccinimide (NHS) 

as catalyst. The recovered modified CNCs after amidation reaction with 1-M-3-PP (CNC-1-M-3-PP) 

were extensively washed and then characterized. The amount of grafted molecules was determined by 

several techniques like X-ray photoelectron spectroscopy, and the calculated degree of substitution 

was found to be close to 0.05 with respect to the bulk CNC. This low amount is sufficient to enhance 

the modified CNC dispersion and their colloidal stabilization in organic solvents, allowing the 

preparation of nanocomposites. Furthermore, such CNC-1-M-3-PP units with aromatic molecules 

attached to it can find applications in barrier materials in which the sorption of aromatic molecules can 

be very useful.  

Keywords: 

Cellulose nanocrystals (CNCs) ─ Amidation ─ Aromatic molecule ─ 1-methyl-3-phenylpropylamine 

─ Adsorption  
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1. Introduction 

Cellulose is one of the most abundant natural polymers, with 1011 - 1012 tons of cellulose produced 

through photosynthesis per year1. Its large availability (wood, cotton, leaves, bacteria, algae, etc.) 

makes it a strong competitor against numerous traditional materials111. Thus, cellulose is an attractive 

biodegradable, renewable and biocompatible material. With the emergence and the development of 

nanotechnology, interest in nanoscale cellulose has widely increased in the last two decades. These 

nanoscale cellulose materials – also called nanocellulose – are produced in different ways. Three main 

types can be described, of which two are cellulose nanofibrils (CNFs) and cellulose nanocrystals 

(CNCs). They differ in morphology, crystallinity, surface charges and intrinsic properties. The third 

variety deals with bacterial cellulose112. 

CNC extraction from various cellulose sources was introduced by Rånby et al. in the 1950s113, and is 

currently being optimized and even industrialized. Traditionally, it involves sulfuric acid hydrolysis 

(under specific conditions of time, temperature, and concentration) of biomass which leads to CNC 

formation followed by several sonication and washing steps114. Other preparation procedures are also 

described in literature85,86. When prepared via sulfuric acid hydrolysis, the residual half-sulfate ester 

groups present on the surface of the recovered CNC allow for colloidal stability of the prepared 

nanomaterials in aqueous media103. CNCs exhibit a wide range of other outstanding properties as well, 

such as high crystallinity (until 90%18), high aspect ratio (length between 100 nm and several µm and, 

width between 2 and 15 nm2,17,114), high specific surface area (150 - 800 m².g-1)17, high viscosity even 

at low concentrations (liquid crystalline phase behavior, gelation properties91) and optical properties 

(iridescence capacity115,116). Due to these intrinsic properties, CNCs are excellent candidates for a large 

range of applications (such as for cosmetics, coatings, papers, paints, food additives, films, biomedical, 

composites)8,67,117,118. Furthermore, after having been prepared on a laboratory-scale for several years 

and with several studies aimed at the optimization and characterization of their production, CNCs are 

currently being produced on a larger scale and being industrialized, especially in North America (for 

example, CelluForce, Canada (yearly capacity of 365 tons)).  

Surface modification of CNCs has been the aim of numerous studies over the past few years. In fact, 

with increasing interest in nanocelluloses and their applications, providing them with new properties 

(like sorption, antioxidant, antibacterial, or compatibilization with hydrophobic matrices 

improvement)19,20,27,68,72,119 has been made possible by grafting molecules or polymers onto their 

surface. Thus, their chemical structure — especially the three reactive hydroxyl groups present on 

each anhydroglucose unit (AGU) — allows efficient chemical modifications. There are numerous 

publications and reviews dealing with these surface graftings of CNC, which can be classified in two 

main groups: grafting-from and grafting-onto strategies120. Grafting-from procedures consist of the 

functionalization of CNCs with initiator sites, followed by the polymerization of monomers from these 
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reactive sites. On the other hand, grafting-onto strategies aim to directly graft previously characterized 

molecules or polymers onto the surface of CNCs. These two approaches differ not only in their 

procedure, but also in the final grafting density and graft size, which makes the characterization of the 

grafted surfaces more or less easy. Moreover, contrary to the grafting-from procedure — in which 

organic and toxic solvents and reagents are generally needed —grafting-onto strategy opens the way 

to a more eco-friendly chemistry with limited use of polymerization coupling reagents and toxic 

chemicals.  

In this work, we decide not to graft polymers, but to directly graft aromatic molecules on the surface 

of the CNCs. More precisely, CNCs are first oxidized via a 2,2,6,6-tetramethyl-1-piperidinyloxy 

(TEMPO)-mediated oxidation process, which introduces carboxylate groups (–COO-) at their surface. 

TEMPO oxidation has been well described in the literature and its optimization leads to TEMPO-

CNCs bearing controlled surface charges121–123. Interest in the carboxylate groups’ introduction is due 

to the further potential chemical modifications possible by these groups as well as guaranteeing the 

colloidal suspension of the CNC. Thereby, in the second step, an amidation was carried out between 

these carboxylate groups (–COO-) and the amine functions (–NH2) borne by a reactive molecule. This 

reaction is performed through peptidic linkages using N-(3-dimethylaminopropyl)-N’-

ethylcarbodiimide (EDC)/N-hydroxysuccinimide (NHS) catalyst124, as sketched in Scheme II. 2. In 

literature, several studies have proved the efficiency of EDC/NHS catalyzed amidation on oxidized 

TEMPO-CNC125,126. Recently, Guo et al.127 performed a similar amidation in for grafting previously 

amino-functionalized carbon quantum dots on TEMPO-CNC in order to enhance photoluminescent 

hybrid materials. It was followed by Gicquel et al.124, who proved the efficiency of the peptidic 

linkage between amine terminated poly-N-isopropylacrylamide (PNIPAM) and oxidized TEMPO-

CNC obtained through grafting compared to those obtained through its adsorption. The limited use of 

chemicals and the aqueous conditions are the advantages of employing the amidation via EDC/NHS 

coupling.  

The purpose of this study was to investigate the grafting of 1-methyl-3-phenylpropylamine (1-M-3PP) 

on previously oxidized TEMPO-CNC. 1-M-3-PP is an amine-containing aromatic molecule, and the 

interest in it is due to the presence of aromatic rings, as already demonstrated by Espino-Pérez et al., 

who showed that the presence of aromatic functions on the surface of CNCs significantly improved 

the aromatic-ring-bearing molecules’ sorption, owing to the π -π interactions between the sorbent and 

the sorbate72. In their study, CNCs were modified via different procedures (esterification, silylation, 

and grafting using isocyanates), taking advantage of the presence of hydroxyl groups on the surface of 

CNCs. In short, amidation coupled with EDC/NHS was chosen to graft 1-M-3-PP on TEMPO-CNC 

because of the reaction’s efficiency and low toxicity, combined with the aim to introduce aromatic 

rings on the surface of CNCs.  
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In this study, we aim to develop an efficient and green method for the introduction of aromatic 

molecules on the surface of CNCs, in order to enhance their physico-chemical affinity towards 

aromatic compounds and apolar polymers, which in turn will enhance their sorption capacity. 

Moreover, the hydrophobic character of aromatic compounds could be interesting for the elaboration 

of nanocomposites with apolar polymeric systems, which can also exhibit barrier properties. The 

degree of oxidation of TEMPO-oxidized CNC is generally between 1000 and 2000 µmol.mg-1, 

depending on the oxidation conditions122. It naturally leads to low degree of substitution after 

amidation reaction, and thus to low amount of aromatic groups on the surface of CNC, considering 

that all –COOH groups will not be converted. However, it has been proved that even a low amount of 

hydrophobic grafts at the surface of nanocellulosic materials can induce positive effects on its barrier 

or compatibilization properties.  

In this work, TEMPO-mediated oxidation of a large batch of CNCs will be first described. After 

characterization of these oxidized TEMPO-CNCs, their amidation with aromatic 1-M-3-PP will be 

described and characterized (Fourier-transform infrared spectroscopy, conductometric titration, 

elemental analysis, X-ray photoelectron spectrometry). The presence of peptidic amide bonds will be 

highlighted, as well as, the effects associated with the presence of aromatic rings.  
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2. Materials and methods 

 Materials  

CNCs were supplied in spray-dried form by CelluForce© (Canada). Briefly, their extraction was 

processed via an acid hydrolysis process performed on wood pulp. 2,2,6,6-Tetramethyl-1-

piperidinyloxy (TEMPO, 98%), sodium bromide (NaBr, BioXra, >99.0%), sodium hydroxide (NaOH, 

BioXtra, >98%, pellets), hydrochloric acid (HCl, ACS reagent, 37%), N-(3-dimethylaminopropyl)-N’-

ethylcarbodiimide (EDC, >97%), N-hydroxysuccinimide (NHS, 98%), 1-methyl-3-phenylpropylamine 

(98%) and polyethylenimine (PEI, average Mn 10,000 g.mol-1) were supplied by Sigma-Aldrich 

Chimie (France) and used as received. Sodium hypochlorite solution (NaClO, 12% Cl) was provided 

by Carl Roth (France) and used as received. Ethanol (95%) was purchased from Revol (France) and 

used without further purification. 

 Oxidation of CNCs using TEMPO reagent 

In order to oxidize a large amount of CNCs, the oxidation was performed in a 15 L reactor 

(Büchiglasuster, Switzerland). Firstly, 150 g of dried CNCs were dispersed in 10 L of distilled water 

following the dispersion procedure provided by the supplier, i.e., one hour of magnetic stirring 

followed by sonication (2.5 kJ per g of dried CNC). In order to avoid the temperature rise during the 

sonication process, the suspension was maintained in an ice bath. Well-dispersed CNC suspension was 

then introduced into the reactor under moderate mechanical stirring at ambient temperature. 4.43 g of 

TEMPO and 48.6 g of NaBr were dissolved in 150 mL of water, and the solution was then added 

dropwise to the CNC suspension. 900 g of NaClO was then slowly introduced into the reaction media. 

The pH was set and adjusted to 10-10.5 with freshly prepared 1 M NaOH solution. At this stage of the 

reaction, coloration of the reaction switched from whitish to yellowish. After 3 h of oxidation at room 

temperature, the reaction was quenched with 550 mL of ethanol. In order to extensively wash the 

oxidized CNCs, three centrifugation cycles (10000 rpm, 15 min, 5 °C) were performed after adjusting 

the pH of the suspension to 2-3 using 0.5 M HCl which would make the separation of CNCs from the 

supernatant easier. Oxidized CNCs were then put into a dialysis membrane (molecular weight cut-off 

6-8 kD) against distilled water for one week with the water regularly changed until a neutral pH was 

attained. Recovered TEMPO-CNCs were dispersed in distilled water using a sonication probe (2.5 kJ 

per g of dried CNC) and were suitable for further characterizations and use. Scheme II. 2 presents the 

TEMPO-mediated oxidation.  

 Amidation of TEMPO-CNC 1-M-3-PP with EDC/NHS catalysis 

Concentration of lab-made TEMPO-CNC suspension was adjusted to 1 wt% with distilled water and 

dispersed using a sonication probe (2.5 kJ per g of dried CNC). The pH of the suspension was adjusted 
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to 4.5 with 0.5 M HCl in order to be in acidic form (-COOH). The TEMPO-CNC suspension 

underwent a controlled magnetic stirring at room temperature. Solutions of dissolved EDC and NHS 

in water were freshly prepared with molar ratios 4NCOOH: NEDC: NNHS, where NCOOH, NEDC and NNHS 

represent the molar amounts of carboxylic groups in TEMPO-CNC, EDC, and NHS, respectively. 

Firstly, EDC solution was added to the suspension, followed by the addition of NHS solution. After 30 

min of stirring, the pH was adjusted to 8-8.5 using 0.5M NaOH solution. Then, 1-M-3-PP was added 

to the suspension with the molar ratio 4NCOOH: NNH2, where NNH2 corresponds to the molar amount of 

amino groups in 1-M-3-PP. The suspension was left magnetically stirring at room temperature with 

the pH controlled at 8-8.5 using 0.5 M NaOH or HCl solutions. After 72 h, the amidation reaction was 

quenched by decreasing the pH to 1-2 with 0.5 M HCl, followed by three centrifugation cycles (10000 

rpm, 15 min, 5 °C) with distilled water. The suspension of the recovered modified CNC-1-M-3-PP 

was then put into dialysis (molecular weight cut-off 6-8 kD) against distilled water for at least one 

week to ensure a high quality washing step. Before stopping the dialysis, the water was characterized 

to prove there is no more 1-M-3-PP leaching. Scheme II. 2 shows the amidation reaction.  

 

Scheme II. 2. Procedure of the preparation of oxidized 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)-cellulose nanocrystals 
(CNC) and functionalized CNC-1-methyl-3-phenylpropylamine materials 
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 Characterization methods  

2.4.1. Atomic force microscopy (AFM)  

AFM images were obtained from a Dimension Icon Bruker equipped with a silicon cantilever (O-

TESPA, Bruker, USA). Well-dispersed CNC suspension was diluted to 10-3 or 10-4 wt%, and a drop 

was deposited on a cleaved mica plate, which was left drying overnight under a fume hood at ambient 

temperature until complete water evaporation. AFM analysis was performed in a tapping mode in air 

and scans of 10 µm² and 3.3 µm² were recorded. Image treatment and dimensional analyses were 

carried out by Nanoscope Analysis and ImageJ software, respectively. At least 40 measurements were 

needed to give representative dimensions with standard deviation values.  

2.4.2. Transmission electron microscopy (TEM)  

Diluted CNC suspension and uranyl acetate were deposited on a carbon film set on a TEM copper grid 

and were dried in ambient air. The suspension was observed using a transmission electron microscope 

FEI/Philips CM200 (acceleration voltage of 200 kV) of the microscopy platform from the NanoBio-

ICMG platform (Grenoble, France). The most relevant pictures were selected for the discussion.  

2.4.3. X-ray diffraction (XRD)  

X-ray diffraction analyses were carried out on an X’Pert Pro MPD diffractometer, PANalytical with an 

X’accelerator detector. A copper-based anode was used with Kα radiation of 1.5419 Å in order to 

obtain ϴ/2ϴ (Bragg angle) symmetric scan reflections between 5° and 60°. Crystallinity of dried 

powder samples was calculated using the Segal height peak method55,56, where crystallinity index (CI) 

of a sample is evaluated according to Equation II. 12, 

CI = (1 −
Iam

I002
) × 100 

Equation II. 12. Crystallinity index calculation according to the height peak method (Segal et al.) 

where Iam corresponds to the minimum value of intensity (2ϴ≈18.3°) and I002 to the value of intensity 

of the main crystalline area (2ϴ≈22.5°). The analyses were repeated twice for each sample.  

2.4.4. Fourier transform infrared (FTIR) spectroscopy  

A PerkinElmer spectrum was used to record FTIR spectra. Dried films of neat and modified CNCs 

were analyzed using Attenuated Total Reflectance (ATR) method. After performing background scans 

in air, absorbance spectra were recorded (600-4000 cm-1, 4 cm-1 resolution, 32 scans) and analyzed 

using Spectrum, PerkinElmer software. All spectra were normalized at 1110 cm-1 (characteristic peak 

of cellulose), and at least two spectra for each sample were recorded.  
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2.4.5. Conductometric titration 

To determine the carboxyl content of oxidized TEMPO-CNC and modified CNC-1-M-3-PP, 

conductometric titrations were performed on 200 mL of 7.5×10-3 wt% diluted well-dispersed 

suspensions (~15 mg of CNCs). The pH of the suspension was adjusted to 3 with 0.1 M HCl solution 

before being titrated with 0.01 M freshly prepared and titrated NaOH solution. Volumes of NaOH 

added were adjusted during the titration process according to the slopes of the obtained curve, and 

were reduced around the equivalence points. Measured conductivity was corrected with the total 

mixture volume. The resulting titration curves, as shown in Figure II. 24, exhibited two equivalent 

volumes related to strong and weak acid equivalence points, and were named V1 and V2, respectively.  

 

Figure II. 24. Schematized curve obtained from the titration of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)-cellulose 
nanocrystal (CNC) using NaOH solution 

Degree of oxidation (DO) — corresponding to the number of carboxylic groups per AGU — of 

oxidized CNC could be calculated from the titration curves according to Equation II. 13: 

DO =
MAGU × C × (V2 − V1)

w − 36 × C × (V2 − V1)
 

Equation II. 13. General equation for the calculation of the degree of oxidation (DO) of oxidized or modified CNC 

In Equation II. 13, C corresponds to the exact NaOH concentration (mol.L-1), V1 and V2 are 

equivalent volumes added NaOH (L), w is the initial dry amount of CNC (g), MAGU = 162.14 g.mol-1 is 

the molar mass of an AGU, and 36 g.mol-1 corresponds to the difference between the molar masses of 

an AGU and the sodium salt of a glucuronic acid moiety. Furthermore, the grafting rate or carboxyl 

group content, expressed in µmol.g-1, could be calculated, according to Equation II. 14: 

X =
C × (V2 − V1)

w
 

Equation II. 14. General equation for the calculation of the grafting rate (X) of oxidized or modified cellulose nanocrystals 

In Equation II. 14, terms used are similar to those in Equation II. 13. The obtained grafting rate 

could be used to quantify residual carboxyl groups and was named Xres, where V1 and V2 represented 

 

V2 V1 
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equivalent volumes of the titration performed on grafted CNC-1-M-3-PP. According to Equation II. 

15, the difference between the grafting rates before and after amidation can lead to the percentage of 

carboxylic groups converted during this reaction (%COOHreact):  

%COOHreact = (1 −
Xres

X
) × 100 

Equation II. 15. General equation for the calculation of the number of converted carboxylic groups during the amidation 
reaction 

In order to ensure repeatability of the measure, each titration was performed at least three times. 

2.4.6. Elemental analysis (EA) 

Carbon, hydrogen, oxygen, nitrogen and sulfur contents of dried CNC samples were sent to “Institut 

des Sciences Analytiques” in Villeurbanne (France) and quantified by a micro analyzer with a 

precision of 0.4%. The experiments were conducted on each sample. Weight percent of different 

atoms can be used to quantify the –COOH charges of oxidized TEMPO-CNC and the grafting degree 

of substitution of modified CNC. The degree of oxidation calculated from these data, DOelemental analysis, 

can be also determined according to Equation II. 16:  

DOelemental analysis =
M(C)AGU − %C × MAGU

%C × (MAGU−COONa − MAGU)
 

Equation II. 16. General equation for the calculation of the degree of oxidation of TEMPO-CNC from elemental analysis 
results 

In Equation II. 16, M(C)AGU, %C, MAGU and MAGU-COONa correspond to the molecular mass of carbon 

in an AGU (72.04 g.mol-1), the carbon content in CNC-TEMPO sample obtained by elemental analysis, 

the total molar mass of an AGU (162.14 g.mol-1), and the molar mass of an oxidized AGU with 

sodium salt as counter ion (35.93 g.mol-1), respectively.  Moreover, a degree of substitution (DSelemental 

analysis) can be calculated according to Equation II. 17:  

DSelemental analysis =  
%N × (MAGU + DO × (MAGU−COONa − MAGU)

M(N)grafted − %N × Mgrafted
 

Equation II. 17. General equation for the calculation of the degree of substitution of modified cellulose nanocrystals after 

amidation calculated from elemental analysis results  

In Equation II. 17, the terms MAGU and MAGU-COONa are similar to those used in Equation II. 16. 

Terms %N, M(N)grafted and Mgrafted correspond to the nitrogen content in modified CNC sample 

obtained by elemental analysis, the nitrogen molar mass of grafted moieties (14.0 g.mol-1), and the 

total molar mass of the grafted moieties (131.23 g.mol-1), respectively. Degree of substitution 

corresponds to the number of amine compounds introduced in each AGU.   
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2.4.7. X-ray photoelectron spectrometry (XPS)  

XPS measurements were carried out on a K-Alpha+ surface analysis spectrometer (Thermo Scientific), 

equipped with a monochromatic X-ray source (Al Kα, 1487.5 eV). Spots of diameter 400 µm were 

used for all the measurements and a hemispherical analyzer was operating in constant analyzer energy 

mode under ultra-high vacuum. Data treatments were carried out using Avantage software (Thermo 

Fisher). Background subtraction (Smart type) and normalization of peak areas (using Scofield 

sensitivity factors) were performed before any elemental composition calculation. Calibration of 

binding energies was carried out with the C1s neutral carbon peak at 285 eV. O/C ratios were 

calculated according to Equation II. 18, 

O

C
=

IO

SO
×

SC

IC
 

Equation II. 18. General equation for the calculation of oxygen to carbon ratio from X-ray photoelectron spectrometry data 

where IO and IC are intensities of oxygen and carbon peaks, and SO and SC are the atomic Scofield 

sensitivity factors of oxygen and carbon equal to 0.00477 and 0.00170, respectively. From O/C ratios, 

it is possible to determine the degree of oxidation of TEMPO-CNC. By knowing the O/C ratios for 

both neat CNC ((O/C)neat) and oxidized TEMPO-CNC ((O/C) TEMPO), their values can be linked to the 

degree of oxidation, DOXPS, as presented in Equation II. 19:  

DOXPS = ((
O

C
)

TEMPO
− (

O

C
)

Neat 
) ×

M(C)AGU

M(O)
 

Equation II. 19. General equation for the calculation of the degree of oxidation from X-ray photoelectron spectrometry data 

Moreover, from C1s spectra decompositions, it is possible to determine a degree of substitution at the 

surface (DSXPS) of CNC-1-M-3-PP according to Equation II. 20:  

DSXPS =
%C − N × M(C)AGU

M(C − N)grafted − %C − N × M(C)grafted
 

Equation II. 20. General equation for the calculation of the degree of substitution from X-ray photoelectron spectrometry 

data 

On the other hand, taking into account the geometry of CNC and the crystalline arrangement of their 

cellulosic chains, a ratio of the amount of surface chains to the total amount of chains has been 

proposed in literature. In fact, Eyley and Thielemans68 — based on the previous work of Habibi et 

al.128 — have determined the relation between the number of exposed cellulose chains on the surface 

of a CNC and its total number of cellulose chains, and named Rc. This relation takes into account the 

crystalline cellulose Iβ structure of a nanocrystal in which (110) and (110̅̅ ̅̅ ̅) planes are perpendicular to 

the crystal face, as presented in Scheme II. 3.  
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Scheme II. 3. Schematized section of an isolated cellulose nanocrystal, where black squares correspond to cellulose chains’ 

ends, d(110) and d(𝟏𝟏𝟎̅̅ ̅̅ ̅̅ ) the plane spacings of the crystal planes (Adapted from 68,128) 

According to the values found in literature and especially those presented by Lin et Dufresne129, mean 

values for d(110) and d(110̅̅ ̅̅ ̅̅ ) for CNC are on average equal to 0.66 and 0.53 nm, respectively. 

Moreover, the cross-section of an isolated CNC was supposed to be a square in our study, with l = L = 

6 nm. In their study, Eyley and Thielemans68 have proposed Equation 21 for the calculation of the 

previously defined ratio, Rc.  

Rc =
#surface cellulose chains of the CNC

#cellulose chains of the CNC
=

2 × (
L

d(110)̅̅ ̅̅ ̅̅ ) + 2 × (
l

d(110)
)

L × l

d(110)̅̅ ̅̅ ̅̅ × d(110)

 

Equation 21. General equation for the calculation of the ratio Rc, wich represents the number of cellulose chains at the 

surface to the total number of cellulose chains of a cellulose nanocrystal 

In our case, using our assumptions, Rc was equal to 0.39. Additionally, a simple relation links the 

degree of substitution with the degree of substitution (DS) at the surface (for example, calculated from 

XPS data), as presented by Equation II. 22: 

DS = Rc × DSsurface 

Equation II. 22. Relation between the degree of substitution, DS, and the degree of the substitution at the surface, DSsurface, 
of a cellulose nanocrystal 

It is important to keep in mind that only 1.5 OH groups are accessible for modification at the surface 

of an AGU. All these assumptions and calculations allow the modified groups to be quantified at the 

surface or in the bulk of CNCs.  
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2.4.8. Contact angle  

Casted films of unmodified, oxidized and modified CNCs were prepared, and a droplet of 4 µL of 

distilled water was deposited for the determination of the angle between the substrate and the droplet 

at room temperature. A contact angle meter OCA20 combined with a camera charge-coupled device 

(CCD) was used. Acquisition of the angle was performed for one min after the droplet’s deposition, 

and the collected data was processed on SCA20 software. All measurements were at least repeated 

five times.  

2.4.9. Quartz crystal microbalance with dissipation (QCM-d) 

Quartz crystals coated with gold (F-QSX-301) supplied by LOT-QuantumDesign (France) were 

washed in a piranha bath (H2O2:H2SO4 = 1:3) for 30 min, rinsed with deionized water, and dried with 

nitrogen steam. Spin-coating of the sensors with CNCs was performed just after cleaning. Sensors 

were introduced in a spin-coater (SPIN150i – POLOSTM) and a washing step (60 seconds off after 

drop deposition, acceleration of 360 rpm.s-1, and 3600 rpm for 60 seconds) was carried out with milliQ 

water. Sensors were then i) spin-coated with a 2.5 mg.mL-1 PEI solution (300 seconds off after drop 

deposition, acceleration of 360 rpm.s-1, and 3600 rpm for 60 seconds), ii) rinsed with milliQ water, iii) 

spin-coated with a 2 wt% CNC water suspension, and iv) finally rinsed with milliQ water. Sensors 

were then left in an oven for 2 h at 80 °C in order to ensure the stability of the created CNC film. AFM 

was used to observe the sensor surface before any analysis in order to ensure the formation of a 

homogeneous CNC film. Lastly, the sensors were put in milliQ water for 3 h before QCM-d analysis. 

Once the sensors were successfully prepared, they were mounted onto the QCM-d device (Biolin 

Scientific, Sweden) and exposed to a milliQ water flow (0.07 µL.min-1) until baseline stabilization. 

Measurement temperature was set at 20 °C. A 0.1 wt% 1-M-3-PP solution in milliQ water at pH 8 was 

passed through the device with a 100 µL.min-1 flow. After reaching a plateau, milliQ water was introduced 

(100 µL.min-1) until another plateau was observed. QCM-d analysis can be used for the investigation 

of the mass change of the sensor, and Rodhal et al.130 described the principle of the technique. They 

were among the first to relate the change in frequency to the mass added to the crystal and explained 

that the sensor vibration fluctuates with the adsorbed mass on its surface. Frequency and dissipation 

data were recorded and processed on QTools software (Biolin). Sauerbrey equation (Equation II. 23) 

was used for the calculation of the amount of molecules adsorbed on the CNC-coated gold sensor (Δm 

in mg per m² of CNC, or mg.m-2
CNC). This equation was proposed by Sauerbrey in 1959131 and 

required assumptions that have been proposed only more recently in literature. In order to ensure the 

validity of the equation, it has been clarified that the film created on the sensor should i) be rigid 

(dissipation change inferior to 10 times the frequency change), ii) be uniform, and iii) have a small 

mass compared to that of the crystal132,133.  
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∆m =  −C ×  
∆f

n
 

Equation II. 23. Sauerbrey equation for the calculation of the amount of adsorbed molecules from QCM-d analysis 

where C is a constant related to the quartz crystal parameters (density and thickness) and equal to 17.7 

ng.cm-2.Hz-1 (for a 5 MHz crystal), Δf the change in frequency, and n the overtone number. In this 

work, the third overtone number was used and the frequencies were normalized by the QTools 

software, so n was equal to 1. From Δm value, the amount (in mol) of molecules adsorbed per g of 

CNC was calculated, taking into consideration the theoretical specific surface area of a CNC which 

was equal to 500 m2.g-1 (value extracted from literature17). 
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3. Results and discussions 

 Characterization of TEMPO-CNC prepared on a large scale 

As presented in Scheme II. 2, commercially dried CNCs were oxidized via a TEMPO-mediated 

oxidation after being well-dispersed in water. The presence of negatively charged sulfate half ester 

groups on their surface (around 250 mmolR-OSO3H
/kgCNC)14 induced the colloidal stability of the 

supplied unmodified CNCs in water. AFM and TEM images obtained from the unmodified CNC in 

water, presented in Figure II. 25 a) and d), confirmed the well-dispersed behavior of the aqueous 

suspension. Isolated CNCs exhibited dimensions equal to 108 +/- 33 nm in length and to 4 +/- 1 nm in 

width, correlating to values commonly found in literature14,22. 

 

Figure II. 25. Atomic force microscopy (AFM) (height sensor) and transmission electron microscopy (TEM) images of neat 
cellulose nanocrystal CNC (a and d), TEMPO-CNC (b and e), and modified CNC-1-M-3-PP (c and f) 

Figure II. 25 b) and e) represent AFM and TEM observations of oxidized TEMPO-CNC. AFM image 

allowed to conclude about the dispersion of TEMPO-CNC in water, even if they were more 

aggregated compared to TEM images, probably because of a lack of sonication treatment before 

analysis. Moreover, the dimensions of TEMPO-CNCs were close to those of neat CNCs, with 127 +/- 

25 nm in length and 5 +/- 1 nm in width, meaning that TEMPO oxidation did not induce any 

significant change in terms of CNC dimensions. All the dimensions measured by TEM are 

summarized in Table II. 8. 
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  Neat CNC TEMPO-CNC CNC-1-M-3-PP 

Length (nm) 
Mean 108 127 111 

Std. dev. 33 25 19 

Width (nm) 
Mean 4 5 4 

Std. dev. 1 1 1 

Table II. 8. Summarized lengths and widths of neat CNC, TEMPO-CNC and CNC-1-M-3-PP measured by TEM 

In order to further investigate TEMPO oxidation’s influence on CNC’s morphology, XRD analyses 

were performed on both unmodified and oxidized CNCs. Figure II. 26 shows diffractograms obtained 

from XRD analyses. The three spectra exhibited classical cellulose crystalline structure, with peaks at 

2ϴ ~ 15.2° and  2ϴ = 22.6° related to the planes (101) / (101̅), and (002), respectively12. Additionally, 

a peak at 2ϴ = 34.6° was present only in the neat CNC sample, and can be related to the (040) 

crystalline cellulose contribution due to a textural effect of cellulose, as mentioned several times in the 

literature129,134,135. Note that the determination of samples’ crystallinity did not take into account this 

contribution. Crystallinity indexes (CI) calculated according to Equation II. 12 demonstrated that 

oxidative treatment did not induce any significant change in the crystallinity of CNC since CI 

decreases from 91% to 89%. These values corroborate those found in literature4,22, where it has been 

proved that an overly intensive oxidation can damage the crystallinity of CNC, contrary to the findings 

in another work136. At this stage, it was possible to conclude about the structure conservation of CNC 

after their TEMPO oxidation, which was crucial for further chemical modifications and applications.   

 

Figure II. 26. X-Ray diffractograms of neat cellulose nanocrystal (CNC), oxidized TEMPO-CNC, and modified CNC-1-M-
3-PP 

Further characterizations were performed in order to confirm and quantify oxidation efficiency. FTIR 

spectra were recorded for both unmodified and oxidized CNCs, as shown in Figure II. 27. After 

normalization at 1110 cm-1 for both spectra, a clear peak at 1730 cm-1 was visible and was correlated to 
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the presence of carboxylic –COOH groups introduced through the oxidation process. This peak was 

related to the C=O stretching vibrations from the acid form of carboxyl groups. 

 

Figure II. 27. Fourier transform infrared normalized spectra of neat cellulose nanocrystal (CNC) and oxidized TEMPO-CNC 

Thus, the efficiency of the grafting was proved by FTIR analysis, which in turn proved the presence of 

carboxyl groups in the TEMPO-CNC sample. To further modify these groups, their quantification was 

needed. In this sense, conductometric titrations were performed on TEMPO-CNC, and one of the 

titration curves is presented in Figure II. 28 as example.  

 

Figure II. 28. Conductometric titration curve of TEMPO-CNC with equivalent volumes V1 and V2 

The calculated values of degree of oxidation (DO) (Equation II. 13) and grafting rate (X) (Equation 

II. 14) are presented in Table II. 9. Oxidized TEMPO-CNC exhibited a calculated degree of oxidation 

equal to 0.22 +/- 0.03 and a grafting rate of 1295 +/- 147 µmol of –COOH group per g of dry TEMPO-

CNC, which was in agreement with the literature data128,137. However, although conductometric 
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titration is a simple and rapid method, it is highly dependent on the operator, especially during the 

titration. Thus, these results must be confirmed by other bulk or surface characterizations. 

Sample DO X (µmol.g-1) %COOHreact 

TEMPO-CNC 0.22 ± 0.03 1295 ± 147 / 

CNC-1-M-3-PP 0.19 ± 0.01 1138 ± 28 12% 

Table II. 9. Summarized values of the quantification of carboxylic groups on TEMPO-CNC and modified CNC-1-M-3-PP 

Elemental analyses were performed on each sample, and the obtained results are presented in Table II. 

10. Experimental values obtained from elemental analyses were corrected since presence of impurities 

or other species can largely influence the results. The experimental values were corrected with the 

degree of substitution of half-sulfate ester groups (DSSO3) calculated from the percentage of sulfur 

element in neat CNC sample. Several other methods to correct these values have been reported, by the 

likes of Siqueira et al.59 and Espino-Pérez et al.26, considering that the corrected value of %C for 

unmodified CNC sample was equal to the theoretical one (44.4%). In our study, calculated values of 

DSSO3
 (presented in Table II. 10) were equal to 0.04 for both CNC and TEMPO-CNC samples, 

showing that no release of sulfate groups occurred during TEMPO oxidation process, which was 

predictable from the mild conditions (temperature, pH, and reaction time) of TEMPO-mediated 

oxidation. 

Sample 
Experimental values 

DSSO3 

Corrected values 
DO DS %COOHreact 

%C %O %H %S %N %C %O 

Neat CNC 40.7 50.8 6.4 0.8 <0.1 0.04 42.4 47.1 / / / 

TEMPO-CNC 37.0 52.2 5.9 0.8 <0.1 0.04 38.6 48.4 0.68 / / 

CNC-1-M-3-PP 40.1 49.5 6.2 0.6 0.5 0.03 41.8 45.9 / 0.07 10 

Table II. 10. Atomic composition of neat cellulose nanocrystals (CNCs), oxidized TEMPO-CNC and modified CNC-1-M-3-
PP obtained by elemental analyses and calculations of DOelemental analysis, DSelemental analysis and %COOHreact elemental analysis 

From elemental analyses’ data, it was possible to determine the degree of oxidation, DOelemental analysis 

(Equation II. 16). Calculated DOelemental analysis was equal to 0.68, which was higher than that obtained 

from conductometric titrations (Table II. 9) Nevertheless, if corrections to %C and %O were made 

according to the previously described method in literature (i.e., considering %Ccorrected in neat CNC is 

equal to 44.4), a value of DO = 0.45 would have been obtained. It emphasizes the fact that data 

obtained from such analyses (elemental analyses or conductometric titrations) have to be handled with 

care, and that calculated values are highly dependent on corrections and formulas used. Therefore, 

comparative rather than purely quantitative analyses are preferred. However, when the correction of 

the values and the large errors in the values were taken into account, it was possible to conclude that 

the degree of oxidation values obtained from both conductometric titrations and elemental analyses 

were consistent. 
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In order to chemically investigate the surface of oxidized TEMPO-CNC, XPS analyses were carried 

out on both CNC and TEMPO-CNC. Figure II. 29 shows survey spectra of neat CNC and oxidized 

TEMPO-CNC. 

 

Figure II. 29. a) X-ray photoelectron spectroscopy (XPS) survey of neat cellulose nanocrystal (CNC), oxidized TEMPO-
CNC and modified CNC-1-M-3-PP and b) Elemental molar compositions, surface functional groups compositions, DOXPS 

and DSXPS obtained by XPS analyses 

On both spectra, peaks at 532 eV and 285 eV have been related to the O1s and C1s elements, 

respectively. In addition, a peak at 400 eV (assigned to nitrogen atoms) appeared on the TEMPO-CNC 

spectra and was consistent with the presence of residual TEMPO reagent. No significant change was 

observed between the survey spectra of neat and oxidized CNCs, although a slight increase in O1s 

peak could be monitored and related to the introduction of –COOH groups.  
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DO DS 

Neat CNC 62.3 36.7 <0.1 0.58 16 66 15 2 / / / / / 

TEMPO-CNC 62.4 37.4 0.3 0.60 18 61 17 4 / / / 0.23 / 

CNC-1-M-3-PP 62.7 36.3 1 0.58 17 57 17 4 5 73 27 / 0.05 

Table II. 11. Elemental molar compositions, surface functional groups compositions, DOXPS and DSXPS obtained by XPS 
analyses 
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Surface DOXPS related to the amount of –COOH groups on the surface of CNC was calculated 

according to Equation II. 19 and found to be 0.09. Taking into account the relation expressed in 

Equation II. 22, the total degree of oxidation was found to be equal to 0.23, as presented in Table II. 

11. This value was consistent with the DO determined by conductometric titration. Here again, XPS 

measurement errors have to be taken into consideration, especially in the case of such surface 

modifications that introduce a low amount of carbon or oxygen elements. 

Figure II. 30 a) and b) present the decomposition spectra of C1s peaks of neat and oxidized CNCs, 

respectively. On the neat CNC C1s decomposition spectra, four peaks were displayed at 284.7 eV, 

286.3 eV (ΔeV= 1.6 eV), 287.8 eV (ΔeV= 3.1 eV) and 289.1 eV (ΔeV= 4.4 eV), and these correspond 

to C1 (C-C/C-H), C2 (C-O), C3 (O-C-O/C=O) and C4 (O-C=O) contributions, respectively.  

 

Figure II. 30. X-ray photoelectron spectroscopy decomposition of the C1s peak of a) unmodified cellulose nanocrystal 
(CNC), b) oxidized TEMPO-CNC, and c) modified CNC-1-M-3-PP, and d) decomposition of the N1s peak of modified 

CNC-1-M-3-PP 
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The C1 signal from neat CNC decomposition spectra was linked to the presence of non-oxidized 

alkane-type carbon atoms and some impurities like lignin residuals or other compounds. Therefore, its 

intensity should not increase after oxidation. The C2 signal was related to the ether groups or hydroxyl 

groups from pure cellulose as well as to the ends of cellulose chains. The C3 signal corresponded to 

the acetal entities present that bridged two AGUs. Its intensity should not increase after chemical 

modifications since the corresponding carbon will not be affected by chemical modifications. Finally, 

C4 signal was present in low proportions in the neat CNC spectra, and was attributed to the presence 

of glucuronic acid from hemicellulose residuals. Comparing Figure II. 30 a) and b), an increase in 

this C4 peak was observed and was consistent with the oxidation performed on CNC. This observation 

was confirmed by values of C4 contribution (Table II. 11) which increased by a factor of 2.  

Thus, the efficiency of TEMPO-mediated oxidation performed in a reactor on a large batch of CNCs 

was proved. The amount of –COOH groups on a CNC was quantified and confirmed via direct 

characterizations, and it was needed for further modifications for the groups with 1-M-3-PP molecule 

obtained through the amidation reaction.  

 Grafting efficiency of 1-M-3PP on TEMPO-CNC through amidation  

Taking advantage of the carboxylic groups previously introduced at the surface of CNC via different 

chemical reactions has been already proposed in literature4,68. In this study, efficiency and green 

aspects of amidation via EDC/NHS catalysis have been key elements for the choice of such an 

amidation procedure. 1-M-3-PP molecule has been widely used in the pharmaceutical industry for 

biotechnology, highlighting its potential for further applications, e.g. in barrier packaging with food 

contact. Moreover, as mentioned in literature, its possible interaction with aromatic compounds could 

be interesting in terms of organic compounds’ sorption.  

In a preliminary study, the kinetics of the EDC/NHS catalyzed amidation reaction was investigated. 

After the beginning of the reaction, aliquots of the system were collected at different times of reaction, 

washed by centrifugation cycles, and then dialyzed against water, as presented in the section 1.3. 

Aqueous suspensions of different modified CNC-1-M-3-PP were casted and dried films were analyzed 

by FTIR spectroscopy, whose spectra are presented in Figure II. 31. For each spectra of recovered 

CNC-1-M-3-PP at acidic pH, the presence of a peak at 1650 cm-1 was related to the presence of –

N(H)-C=O amide bonds introduced during amidation reaction. When the pH was changed from an 

acidic pH to a basic pH, this peak shifted to 1745 cm-1. Simultaneously, a peak at 1600 cm-1 appeared 

which was related to the presence of residual unreacted carboxylic groups. Moreover, between 2800 

and 3000 cm-1, peaks related to –CH2 and –CH3 groups from grafted 1-M-3-PP were observed and 

correlated with the same peaks present in the commercial molecule 1-M-3-PP. These peaks can also be 

attributed to the presence of =C-H and –C=C elongations from the aromatic rings of 1-M-3-PP 
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molecule, confirming the presence of 1-M-3-PP on the surface of CNC. Peaks related to amide bonds 

highlight the covalent grafting between TEMPO-CNC and 1-M-3-PP. After the kinetics study of the 

amidation performed on TEMPO-CNC, a reaction time of 72 h was selected for the reaction. 

Following this study, samples named “CNC-1-M-3-PP” were recovered after 72 h of reaction.  

 

Figure II. 31. Fourier transform infrared (FTIR) spectra of 1-M-3-PP molecule, oxidized TEMPO-CNC, modified CNC-1-
M-3-PP after 24h (at acid and basic pH, dashed and solid lines, respectively), 48h and 72h of amidation 

Regarding the AFM image of CNC-1-M-3-PP in Figure II. 25 c), a length of 150 +/- 50 nm was 

obtained, showing that no significant change in size was induced after the amidation. Furthermore, 

their crystallinity index (CI = 90%) was substantially the same. Thus, the morphology of CNCs did not 

change after amidation with 1-M-3-PP, which was once again predictable due to the mild conditions 

(pH, temperature) of the amidation reaction. This result was interesting since crystallinity and 

dimensions of CNCs are required properties for most applications.  

In order to quantify the amount of carboxylic groups converted into amide groups, conductometric 

titrations were performed on CNC-1-M-3-PP sample. Using both Equation II. 13 and Equation II. 14, 

the degree of oxidation and the residual grafting rate of –COOH were determined to be 0.19 +/- 0.01 

and 1138 +/- 28, respectively. The percentage of converted –COOH groups were deduced from the 

results obtained for TEMPO-CNC using Equation II. 15 and was equal to 12%, as presented in Table 

II. 9. The results of the elemental analysis performed on CNC-1-M-3-PP are presented in Table II. 10. 

The atomic percentage of nitrogen was found to be 0.5% (whereas, less than 0.1% was present in both 

neat and oxidized samples), confirming the presence of nitrogen compound in the CNC-1-M-3-PP 

sample. Moreover, a degree of substitution of 0.07 was obtained using Equation II. 17, corresponding 

to 10% of COOH groups converted into amide groups. This was in line with the values found through 
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the conductometric titrations. Finally, XPS analysis was performed on the amidated sample. 

Regarding the Figure II. 29, the survey spectra obtained from CNC-1-M-3-PP exhibited an intense 

peak at 400 eV, which clearly indicates the presence of nitrogen elements in the sample. From Table 

II. 11, it can be seen that the atomic percentage of nitrogen we found to be 1% the analysis, which was 

much higher than the percentage found in the TEMPO-CNC sample (0.3 %), correlating with the 

survey spectra. C1s decomposition spectrum of CNC-1-M-3-PP is presented in Figure II. 30 c). C1, 

C2, C3 and C4 peaks were clearly identified, and a new peak at 285.3 eV (ΔeV= 0.6 eV) which is 

related to the C-N bond was also identified. Although the determination of this peak was difficult 

because of its overlapping with C1 peak, it was clearly assigned to the C-N bond, as previously shown 

in literature33,138. However, at this stage, it was not possible to confirm the presence of any covalent 

amide linkage between nitrogen compound and oxidized TEMPO-CNC. In this sense, N1s 

decomposition spectrum of CNC-1-M-3-PP was performed as presented in Figure II. 30 d). The two 

peaks at 399.6 eV and 401.6 eV (ΔeV= 2 eV) were related to N-H/N-C and N-C=O bonds, 

respectively. In literature, it has already been seen that the second peak was decomposed in two 

peaks33. However, due to the close electronegativity of hydrogen and carbon elements, only one peak 

can be attributed to the two bonds N-H and N-C. According to the amidation reaction and as shown in 

Scheme II. 2, theoretical ratio between the peaks N-H/N-C and N-C=O should be equal to 2:1 if only 

amidation takes place. However, this ratio was higher in our case (2.7:1), suggesting that other 

nitrogen compounds were present in the sample. This opened the door to a possible case of adsorption 

of the 1-M-3-PP molecule at the surface of TEMPO-CNC. Nevertheless, a degree of substitution 

(DSXPS) was calculated according to Equation II. 20 and was equal to 0.6. This value was related to 

the –COOH groups present on the surface of TEMPO-CNC, and by taking into account the previously 

determined DOXPS as well as the relation presented in Equation II. 22, a degree of substitution of 0.05 

was obtained. It was consistent with the value previously found by conductometric titration and 

elemental analysis and in accordance — although lower —  with values found in literature for such 

amidation procedures124,125. It can be due to the heterogeneous reaction leading to lower grafting 

densities than those obtained in homogenous chemistry or the mild reaction conditions (i.e. aqueous 

system, ambient temperature) compared to traditionally performed organic chemistry reactions.  

 Indirect proofs of grafting efficiency  

We proved the presence of covalently attached 1-M-3-PP molecules at the surface of CNCs. Although 

the degree of substitution was quite low, it has been proved in literature that even if that is the case, 

grafting can lead to significant changes in properties like barrier or compatibilization properties20,72, 

and some indirect characterization can further confirm their grafting efficiency.  

Dispersion of modified CNC-1-M-3-PP in different organic solvents was investigated. Indeed, as 

shown in Figure II. 32, suspensions of both oxidized TEMPO-CNC and modified CNC-1-M-3-PP 
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were prepared by solvent exchange in acetone or dichloromethane at the same concentration (0.3 wt%) 

through successive centrifugation cycles (10000 rpm, 5 °C, 15’). Pictures presented in Figure II. 32 

were taken after 4 h following a sonication step (2500 J.gCNC
-1). As shown in Figure II. 32 a), 

TEMPO-CNC was less stable in acetone than in dichloromethane, and in both cases, sedimentation of 

CNC at the bottom of the vial was observed after 4 h of rest.  

 

Figure II. 32. Pictures of a) TEMPO-CNC and b) CNC-1-M-3-PP suspensions (0.3 wt%) in acetone and dichloromethane 
after 4 h without stirring 

In Figure II. 32 b), modified CNC-1-M-3-PP in acetone was also subjected to sedimentation, but it 

was significantly less than TEMPO-CNC in acetone. On the other hand, the suspensions of CNC-1-M-

3-PP in dichloromethane were stable after 4 h. Stabilization of CNCs in an organic solvent — acetone 

and dichloromethane in this study — after their modification with aromatic compounds highlighted 

the presence of the hydrophobic groups at their surface. Moreover, this dispersion in an organic 

solvent — especially in dichloromethane which is the solvent of numerous polymers — was 

encouraging in terms of application purposes, and especially for the preparation of nanocomposites, 

where the preparation of stable and well-dispersed CNC suspension in dichloromethane is generally 

the first step in the nanocomposites’ elaboration. Furthermore, in order to confirm the 

hydrophobization of CNC-1-M-3-PP, contact angles of neat CNC, TEMPO-CNC, and modified CNC-

1-M-3-PP were determined and the results are summarized in Table II. 12. 

  Neat CNC TEMPO-CNC CNC-1-M-3-PP 

Contact angle (°) 
Mean value 53 52 43 

Std. Dev. 3 2 1 

Table II. 12. Contact angles measured with a 4-uL water drop on neat cellulose nanocrystals (CNCs), TEMPO-CNC and 
CNC-1-M-3-PP casted films 

Measured contact angles of both unmodified CNC and oxidized TEMPO-CNC were close (53 +/- 3° 

and 52 +/- 2°, respectively). This result was predictable since oxidized hydroxyl groups were replaced 

by carboxyl groups after oxidation, which did not affect hydrophilicity of the TEMPO-CNC surface. 

After modification with 1-M-3-PP, surface behavior of CNC-1-M-3-PP was expected to change. As 

mentioned before, presence of aromatic hydrophobic groups would change polarity, and thus an 
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increase in the contact angle was expected. According to Table II. 12, contact angle measured for 

CNC-1-M-3-PP (43 +/- 1°) did not follow this trend. The reason could be the bad surface quality of 

the casted film or the presence of more pores leading to the absorption of water inside the film, which 

was confirmed by the significant decrease in water droplet volume during the experiment.  

All these characterizations helped determine the efficiency of the grafting of 1-M-3-PP molecules 

from carboxylic groups. Nevertheless, as deduced from quantitative analyses of the CNC-1-M-3-PP 

sample, parallel adsorption possibly occurred at the CNC surface. Several researchers have previously 

investigated the competition between covalent grafting and non-covalent phenomenon. Recently, 

Gicquel et al. reported that the adsorption of aminated PNIPAM-NH2 competed with its amidation on 

the TEMPO-CNC surface124. In the present study, this adsorption was also investigated, and QCM-d 

experiments were performed in a preliminary study, as presented in the remainder of this section.  

 Physico-chemical adsorption of 1-M-3-PP at the surface of TEMPO-

CNC 

The investigation of the adsorption of 1-M-3-PP occurring on oxidized TEMPO-CNC was firstly 

monitored by UV absorbance. In the first step, a calibration curve of the absorption of the molecule at 

258 nm as a function of the concentration was plotted, as shown in Figure II. 33 a). Beer-Lambert law 

is valid for values of absorbance comprised between 0.1 and 1. For a defined ratio NCOOH: NNH2, a 

specific amount of 1-M-3-PP was added to an aqueous TEMPO-CNC suspension, and the reaction 

mixture was left under magnetic stirring. At different stirring times, an aliquot was recovered and two 

centrifugation cycles (10000 rpm, 5 °C, 20’) were performed. Each recovered filtrate was then diluted 

in order to correlate with Beer-Lambert law and analyzed using an UV spectrophotometer. 

Concentration of 1-M-3-PP — corresponding to the non-adsorbed mass — was determined using its 

calibration curve presented in Figure II. 33 a). Finally, adsorbed mass of 1-M-3-PP was plotted as a 

function of the reaction time. In order to investigate the behavior of 1-M-3-PP molecules on TEMPO-

CNC, the adsorption was monitored within the time. Taking into account the number of carboxylic 

groups –COOH at the surface of TEMPO-CNC, as previously determined, a precise amount of 1-M-3-

PP was added to the TEMPO-CNC suspension with conservation of the molar ratio NCOOH:NNH2 (1:4) 

used in the amidation reaction. According to the previously described method, adsorbed mass of 1-M-

3-PP per g of dry TEMPO-CNC was determined and plotted as a function of the time, as presented in 

Figure II. 33 b). 
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Figure II. 33. a) Calibration curve of 1-M-3-PP absorbance function of its concentration in a water solution and b) Mass of 
1-M-3-PP adsorbed per grgam of dry TEMPO-CNC function on the time (with molar ratio 4NCOOH=NNH2) 

Figure II. 33 b) shows clearly that the adsorbed mass reached a plateau after 2 h. In this sense, it was 

difficult to assume if the previously determined %COOHreact was related only to the amidation 

reaction or to the adsorption phenomenon also. This point was relevant: indeed, as soon as a chemical 

modification is performed, competing adsorptions or other parallel modifications must be considered. 

Since one objective of this study was to introduce aromatic ring at the surface of CNCs for further 

barrier properties, this parallel adsorption did not hinder our work. 

In order to investigate more precisely the adsorption of 1-M-3-PP on TEMPO-CNC, QCM-d analyses 

were performed. Figure II. 34 shows the QCM-d measurements obtained after 1-M-3-PP adsorption 

on both unmodified CNC and oxidized TEMPO-CNC at pH 8, in order to be in -OSO3
- (neat CNC) or  

-COO- (TEMPO-CNC) configuration. In both Figure II. 34 a) and b), a long plateau can be observed 

at the beginning of the measurement recording, corresponding to the water flow, and thus the water 

swelling of cellulose. Just after 1-M-3-PP solution injection (indicated by arrows), a large increase in 

the frequency was observed which was related to the increase of the sensors’ mass and thus the 

adsorption of the molecule (Figure II. 34 a)). Note that this increase was much greater for TEMPO-

CNC than for unmodified CNC. In both cases, the rinsing (indicated by droplet symbols) and the 

subsequent increase in frequency followed by a stable plateau indicated a partial release of compounds 

from the CNC surface. 
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Figure II. 34. Shifts in a) frequency and b) dissipation plotted function of the time and obtained from the third overtone of 
QCM-d measurement data and normalized by n=3 (Arrows indicate when 1-M-3-PP solution was injected and droplet 

symbols correspond to the beginning of rinsing with milliQ water) 

The final frequency changes are presented in Table II. 13 and were equal to -11.6 Hz and -47.8 Hz for 

neat and oxidized CNC, respectively. In parallel, an increase in dissipation — much lower than 

frequency changes in both cases — was clearly observed and the final dissipation changes equal to 

2.8.106 and 9.7.106 for CNC and TEMPO-CNC, respectively, are presented in Table II. 13. Note that 

in both cases, dissipation changes were largely lower than 10 times the corresponding frequency 

changes, which allowed the use of Sauerbrey equation (Equation II. 23) as previously detailed.  

 Neat CNC TEMPO-CNC 

Δf3/3 (Hz) -11.6 -47.8 

ΔD3 (106) 2.8 9.7 

Δm (mg1-M-3-PP.m-2
CNC) 2.1 8.5 

Δn (mol1-M-3-PP.g-1
CNC) 7.0x10-3 2.8x10-2 

Table II. 13. Frequency (Δf/3) and dissipation (ΔD3) changes after 1-M-3-PP adsorption on both CNC and TEMPO-CNC 
with determined adsorbed amount (Δm and Δn) 

Table II. 13 presents the amounts of 1-M-3-PP molecule adsorbed (in mass or in mol, Δm and Δn 

respectively) per surface or mass of CNC and calculated using Sauerbrey equation (Equation II. 23). 

According to QCM-d experiments, 2.1 and 8.5 mg of 1-M-3-PP were adsorbed per m² of neat CNC 

and TEMPO-CNC, respectively, corresponding to 7.0×10-3 and 2.8×10-2 moles of 1-M-3-PP adsorbed 
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per g of CNC and TEMPO-CNC. Thus, adsorption occurred in both cases and was four times more 

efficient when CNCs were previously oxidized, which was predictable due to the presence of a large 

number of negative charges (-COO-) on their surface. Moreover, by comparing the value of DSXPS 

(0.05, or 3.10-4 moles of 1-M-3-PP per g of TEMPO-CNC) with the value of Δn, it can be assumed 

that adsorption allows the introduction of about 90 times more 1-M-3-PP molecules on the surface of 

CNCs, than the amidation procedure. This value is very high and confirms that the washing step 

applied during the QCM-d experiment is not adapted, since the value after the grafting is much lower. 

It also proves that the value of adsorbed molecules obtained from QCM-d is related to irreversibly 

adsorbed molecules. Unfortunately, QCM-d cannot simulate the same extensive washing steps as 

those performed in the amidation procedure. In this sense, it is not possible to conclude about the 

proportion of grafted and/or adsorbed molecules on the CNCs. 

Based on the literature and on the direct characterizations performed on the CNC-1-M-3-PP, it can be 

assumed that the washing steps performed in the grafting strategy is sufficient, and it is thus possible 

to assume that most of the quantified aminated molecules are covalently attached on the CNCs at the 

end of the reaction.  
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4. Conclusion  

In this study, a TEMPO-mediated oxidation was performed on a large batch of CNCs. Although this 

oxidation has been widely detailed in the literature, performing it efficiently on such a large volume is 

interesting and challenging. Quantification of carboxyl groups introduced on TEMPO-CNC was 

carried out by classic conductometric titrations, and confirmed by elemental analyses and XPS 

methods. In the second step, TEMPO-CNCs were subjected to an amidation reaction using 1-M-3-PP 

which bears aromatic groups. These chemically modified CNCs have been characterized by direct 

methods (FTIR spectroscopy, elemental analysis, XPS) as well as, by indirect methods. Dispersion 

and stabilization in organic solvents, such as dichloromethane, is an interesting feature since it opens 

the door to further applications for nanocomposites. Furthermore, with the investigation of sorption 

and barrier properties, it opens the road to nanocomposites’ applications in packaging materials. 
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4. Adsorption of rosin nanoparticles from a nano-

emulsion on both cellulose nanocrystals and 

nanofibrils 

This short section aims to briefly describe the preparation of modified nanocelluloses, whose 

application will be further discussed in Chapter III.2 of this manuscript.  

Moreover, this part is the result of a close collaborative work with the startup INOFIB (K. Missoum 

and B. Dhuiège), and the presented results are the subject of a patent registered by the startup.  
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Abstract 

Outstanding properties of nanocelluloses make them materials of choice for their use in 

nanocomposites or multi-layered materials. Indeed, besides their sources availability, renewability and, 

sustainability, their intrinsic properties (low density, morphology and, chemical reactivity) are of great 

interest for the enhancement of the final materials properties. In this short study, both cellulose 

nanofibrils (CNF) and cellulose nanocrystals (CNC) were modified by adsorption of rosin 

nanoparticles obtained from the preparation of a rosin-based nano-emulsion. The rosin mixture as a 

natural compound is of interest because of its low cost, renewability, hydrophobicity, as well as, its 

antimicrobial and antioxidant properties. Successfully prepared modified CNF-Rosin and CNC-Rosin 

aqueous suspensions can then be used for further applications, especially for the preparation of fully 

bio-based food packaging materials with improving active properties.   

Keywords: 

Cellulose nanofibrils ─ Cellulose nanocrystals ─ Rosins ─ Nano-emulsion ─ Adsorption  
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1. Introduction 

Sustainability, biodegradability, renewability and abundancy are the main exceptional advantages 

of the novel category of cellulosic materials: the nanocelluloses. These nanoscale materials, whether 

cellulose nanofibrils (CNF) or nanocrystals (CNC), have been the focus of numerous researches in 

recent decades. In fact, their outstanding intrinsic properties (i.e., low density compared to other 

organic materials, high specific surface area, surface chemical reactivity, high tensile strength, barrier 

properties towards oxygen)1,2,15–17 make them materials of choice for many different applications 

(hydrogels, composites, conducting materials, piezoelectric materials, biosensors, pharmaceuticals, 

biomedical devices, etc.)2,67. Among these applications, their use in the elaboration of multi-phasic 

materials (i.e. nanocomposites, multi-layers) is highly interesting and promising, especially for bio-

based food packaging applications. Moreover, conferring them active functionalities, like 

antimicrobial or antioxidant properties, could increase their interest in such applications7,8. In the 

literature, numerous publications focused on this topic, with the use of various active molecules and 

different procedures for their attachment on nanocelluloses27,139,140. 

Among exploitable and tunable natural materials, rosins are highly interesting because of their 

abundancy, sustainability and low cost. They are the main products from conifers, especially pine 

resin derived from pine trees, and more than 1 million metric tons of rosin are produced each year141,142. 

Abietic- and primaric-type acids are the main components of a natural rosin mixture, whose structure 

is presented in Figure II. 3512. These acids bear hydrophenanthrene ring structures, conferring them 

similar rigidity to that of fossil-based plastics, and Liu et al. took advantage of rosin rigidity to 

produce rosin-based thermosetting resins with properties comparable to synthetic materials143. 

Moreover, rosins find applications in inks, adhesives, cosmetics, varnishes, paints, coatings, medicines, 

paper-sizing agents and, emulsions142,144,145. It is worth to note that rosin is often used in growth 

polymerization in order to produce low molecular weight polymeric materials including rosin as 

natural compounds, and these polymerizations are generally performed via atom-transfer radical 

polymerization (ATRP)144. For example, Wang et al.141 performed ATRP to polymerize rosin 

monomers on the surface of lignin for surface functionalization. Moreover, antimicrobial activity of 

rosin is a major advantage, which has been widely exploited, as found in the literature. Indeed, 

Moustafa et al.142 recently focused on the fact that rosin can be used as food products shelf-life 

extender in packaging materials, and performed esterification of rosin on organoclay and introduced 

these modified organoclays in a blend of poly(lactic acid)/poly(butylene adipate-co-terephtalate). They 

concluded about the antibacterial activity of produced nanocomposites and their interest in food 

packaging applications. De Castro et al.27 performed an efficient green esterification of rosin on 

cellulose nanocrystals and highlighted the hydrophobic and antimicrobial behavior of the resulted 

grafted CNC. Note that insolubility of natural rosins in water may limit their use in numerous 

applications requiring water conditions, unless they are used in suspended form.  



Adsorption of rosin nanoparticles from a nano-emulsion on both cellulose nanocrystals and nanofibrils 

Manon LE GARS, 2020 
218 

One main advantage of the preparation of emulsions is the solubility of compounds in a solvent 

with which they are not soluble. In fact, by definition, an emulsion lies in the mixing of two 

immiscible liquids by using both mechanical shear and surfactant146. A nano-emulsion is defined as 

the dispersion of nano-sized particles (typically between 20 and 200 nm)147 prepared by mechanical 

forces. More precisely, nano-emulsions are clear and thermodynamically stable and their main 

application is the drug-delivery in various systems, as widely described in the literature147,148.  

The combination of both nanocelluloses and natural rosins has only recently been proposed in 

literature. Indeed, as previously mentioned, de Castro et al.27 performed a green esterification 

procedure, adapted from a previous study published by Espino-Pérez et al.26, to covalently link rosins 

on the cellulose nanocrystals surface. More recently, Niu et al. 149 performed a similar protocol on 

cellulose nanofibers and introduced modified CNF in a poly(lactic acid)/chitosan polymeric matrix. 

Both studies highlighted antimicrobial activity brought by the presence of rosin in the prepared 

systems. Although these grafting methods aimed to limit the use of organic and toxic solvents, they 

required time-consuming multi-steps procedure. In this sense, adsorption of rosin on nanocellulose can 

be considered, thus decreasing the use of chemicals and reaction steps.  

In this short part, a nano-emulsion of natural rosin was prepared and its stability and nano-size 

character were carefully investigated by Dynamic Light Scattering (DLS). In a second step, both CNF 

and CNC were modified by adsorption of rosin nano-particles from the nano-emulsion, leading to 

modified CNF-Rosin and CNC-Rosin. Films of the ensuing modified nanocelluloses were performed 

by filtration or solvent casting for CNF-Rosin and CNC-Rosin respectively, and the presence of rosins 

in each film was investigated by infrared spectroscopy and contact angle measurements.  
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2. Materials and methods 

 Materials 

Tetradecyltrimethylammonium Bromide (TTAB), Gum rosin (natural resin) and, Chloroform (>99%) 

were supplied by Sigma Aldrich and used as received. Spray-dried powder of cellulose nanocrystals 

(CNC) was supplied by CelluForce© (Canada). Cellulose nanofibrils suspension (2 wt%) was provided 

by INOFIB (Saint-Martin d’Hères, France). Figure II. 35 represents the main components found in 

commercial mixture of natural rosin.  

 

Figure II. 35. Main carboxylic acids found in rosin (extracted from 27) 

 Preparation of rosin nano-emulsion 

An aqueous and an oily phase were prepared according to the following protocols. Aqueous phase was 

prepared by total dissolving 0.606 g of TTAB in 50 mL of water, which corresponds to around 10 

times the TTAB Critical Micellar Concentration. Concerning the oily phase preparation, a solution of 

rosins in chloroform was prepared at the concentration of 550 g/L. Thereafter, 14.8 g of the oily phase 

were slowly introduced into 49.5 g of the aqueous phase previously put in a beaker, and the mixture 

was emulsified by using an ultrasonic probe for 2 min with a 25 W power. The reaction media was 

then heated at 65 °C using an oil bath until total evaporation of the chloroform. Final nano-emulsion 

was then recovered in a perfectly hermetically closed vial and stored at 4 °C until used. 

Preparation of rosin nano-emulsion was performed by the INOFIB startup (Karim Missoum and 

Benjamin Dhuiège).  
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 Adsorption of rosin nanoparticles on CNF  

A correct amount of previously prepared rosin nano-emulsion was added to a 2% (wt/wt) aqueous 

suspension of CNF in order to reach a rosin/CNF weight ratio equal to 0.11. The formulated 

suspension was then mixed under mechanical stirring for 30 min at room temperature to adsorb the 

nano-micelles of rosin onto the CNF surface. Final CNF-Rosin suspension was stored in a 

hermetically closed vial at 4 °C before being used.  

Adsorption of rosin nanoparticles on CNF was performed by the INOFIB startup (Karim Missoum 

and Benjamin Dhuiège).  

 Adsorption of rosin nano-emulsion on CNC  

Rosin nanoparticles were adsorbed on CNC, as previously described for CNF. Briefly, an aqueous 

suspension of CNC at 1% (wt/wt) was prepared by adding a correct amount of spray-dried CNC in 

water and by applying an ultrasonic treatment to the suspension (2.5 kJ/g of dried CNC). A precise 

amount of rosin nano-emulsion was then introduced in the suspension by keeping a rosin/CNC weight 

ratio equal to 0.11. After 30 min of magnetic stirring at room temperature, it was considered that rosin 

was adsorbed at the CNC surface. Recovered CNC-Rosin suspension was stored in a hermetically 

closed vial at 4 °C before use.  

 Elaboration of neat and modified CNF films by filtration 

Appropriate amounts of both neat CNF and formulated CNF-Rosin suspensions were diluted to 0.5 

wt%. and mixed for 10 min under magnetic stirring. The diluted suspensions were then filtered 

through a 1µm-cut-off Nylon web, dried at 90 °C for 12 min under vacuum to obtain the CNF and 

CNF-Rosin films. More precisely, 20 cm diameter sheets were prepared at 30 g/m², using a Rapid-

Köthen hand sheet former.  

Preparation of modified CNF-Rosin films was performed by the INOFIB startup (Karim Missoum 

and Benjamin Dhuiège).  

 Elaboration of neat and modified CNC-Rosin films by solvent 

casting 

Both neat CNC and modified CNC-Rosin suspensions were diluted at 0.5 wt% and sonicated (2.5 kJ/g 

of dried CNC). Correct amounts of both suspensions were introduced in petri dishes keeping the basis 

weight of targeted films equal to 40 g/m². Casted suspensions were left under fume hood at room 

temperature for several days until total water evaporation, in order to prepare the CNC and CNC-

Rosin films. 
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 Characterization methods 

2.7.1. Rosin nano-emulsion characterization by Dynamic Light Scattering (DLS) 

The particle size of the rosin nanoparticles from the nano-emulsion was determined by DLS using a 

VASCO Cordouan nanosizer. More precisely, three droplets of the nano-emulsion were introduced in 

the device with the dual thickness controller (DTC) in up position, diluted with distilled water and 

roughly homogenized. The laser intensity and the correlator settings were adjusted at 5 µs as time 

interval, and 600 as the number of channels. Data were recorded using NanoQ software at 25 °C for 15 

acquisitions of 30 s with a noise/signal ratio limit inferior to 0.5% (dual limits settings). Both the 

Pade-Laplace and the Cumulants method were used for data processing. At least triplicate 

measurements were performed.  

2.7.2. CNC and CNF film characterization by Fourier-transform infrared 

spectroscopy (FTIR) 

Fourier-transform infrared spectroscopy was performed on both unmodified and modified 

nanocellulose films using a Perkin-Elmer spectrum 65. Films were analyzed through 16 scans and 

with a resolution of 2 cm-1. The baseline of the FTIR spectra was corrected and the data tuned up. 

Each spectrum containing CNC or CNF was normalized at 1110 cm-1 (related to pure cellulose). Each 

measurement was at least duplicated, and most representative spectra were plotted.   

2.7.3. Contact angle measurements  

Contact angle measurements were carried out on neat and modified nanocellulose films by depositing 

5 µL-water droplets on the film surface at room temperature. An OCA20 DataPhysics (DataPhysics 

Instrument) system, equipped with a CCD camera, was used to record the angles between the solvent 

and the substrate. The acquisition of contact angle was collected for the first 60 s after deposition. At 

least five measurements were performed for each sample.  
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3. Results and discussions 

 Nanometric size of rosin particles 

The preparation of rosin nano-emulsion was based on the alkyl ketene dimer (AKD)-based nano-

emulsion production method patented by Missoum et al.99. By definition, as previously mentioned, 

nano-emulsions are nano-sized stable colloidal emulsions150. Rosin nano-emulsion was prepared 

following the protocol of mixing two immiscible liquids (water and chloroform) in the presence of a 

surfactant (TTAB), which resulted in a dispersed oil-in-water single phase. To avoid the aggregation 

and get the proper nanometric size of rosin particles in the prepared emulsion, DLS measurement was 

performed on a diluted sample. The size distribution of the intensity of rosin particles obtained with 

the cumulant method is presented in Figure II. 36. The size distribution of particles is Gaussian, with 

the particle diameter size equal to 186 nm measured by DLS, confirming the nanometric character of 

the rosin particles in the emulsion.  

 

Figure II. 36. Size distribution of relative intensity obtained from DLS measurement performed on rosin nano-emulsion 

The DLS measurement has been performed six months after the nano-emulsion preparation, which 

proves the stability of the nano-emulsions, that were used for further adsorption on both CNF and 

CNC.  
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 Efficiency of the rosin adsorption on both CNF and CNC 

Adsorption of rosin nano-emulsions on CNF and CNC was performed according to the previously 

described procedure. As discussed in the introduction, several acids are present in natural rosin 

mixture, the most predominant of which are shown in Figure II. 35. Both CNF and CNC contain 

many hydroxyl groups (–OH) at their surface, which can easily create hydrogen bonds with carboxyl 

groups in the acid mixture from rosin particles. In order to confirm the presence of rosin molecules on 

both CNF and CNC, FTIR analyses were performed on commercial rosin, as well as, neat CNF, CNF-

Rosin, neat CNC, and CNC-Rosins films. The resulting spectra are presented in Figure II. 37.  

 

Figure II. 37. FTIR spectra of commercial rosin (powder), and, neat CNF, CNF-Rosin, neat CNC, and CNC-Rosin films 

In the spectrum of the supplied neat rosin, an intense peak at 1695 cm-1 can be related to many 

carboxylic groups (–COOH) from the different acids composing the rosin mixture. Moreover, a large 

peak between 2900 and 3000 cm-1 can be attributed to the –CH carbons from alkene bonds of different 

acids. The spectra related to neat CNF and CNC both exhibit peaks classically observed for cellulosic 

samples, with, among others, peaks at 1105, 1059 and 1028 cm-1 linked to the vibrations of C-O bonds, 

and a large peak at approximately 3000 ─ 3600 cm-1 linked to stretching vibration of bonds of primary 

and secondary hydroxyl groups. In both CNF-Rosin and CNC-Rosin spectra, respectively, the peaks at 

1692 cm-1 and 1691 cm-1 are attributed to the carboxylic groups from the rosin mixture present in the 

samples. Note that this peak is more intense in the case of CNC, which could be explained by the loss 

of the not adsorbed rosin nano-emulsion during the filtration process of CNF-based film preparation. 
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However, from the FTIR spectra, it is possible to qualitatively conclude about the presence of rosin in 

both CNF-Rosin and CNC-Rosin samples. Modified CNF-Rosin and CNC-Rosin were thus efficiently 

produced, with a weight ratio of rosin to CNC or CNF close to 0.11.  

Water contact angle measurements were performed on both unmodified CNF and CNC films, as well 

as on modified CNF-Rosin and CNC-Rosin films. Neat CNC and CNF films exhibit water contact 

angle equal to 54° ± 1 ° and 36° ± 6°, respectively, and these values are consistent with values found 

in the literature151,152. After adsorption of rosin nanoparticles on CNC, CNC-Rosin casted film shows a 

visible decrease in the contact angle down to 32° ± 1.5°, probably due to the presence of hydrophilic 

properties of rosin molecules. The contact angle of the modified CNF-Rosin film is equal to 42° ± 5°. 

Taking into account the standard deviation of this value and the uncertainty of the neat CNF film 

contact angle, it is difficult to reach any conclusions about the evolution of the water contact angle, 

although a similar trend was observed for the CNC-Rosin sample.  
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4. Conclusion  

A stable nano-emulsion of rosins was successfully prepared by the INOFIB Startup. In order to confer 

new active properties (antibacterial, antioxidant, etc.) to nanocelluloses, rosin nanoparticles from the 

nano-emulsion were adsorbed on the surface of both CNF and CNC by a simple, fast and, low 

chemical consumption route. Finally, prepared aqueous suspensions of modified CNF-Rosin and 

CNC-Rosin can then be used for further applications.  
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Conclusions of Chapter II 

The aim of the Chapter II was to propose new routes for the CNCs surface chemical modification. 

Four different strategies were successfully performed on cellulose nanocrystals.  

▪ In the first section II.1, the grafting-from via a surface-initiated radical transfer polymerization 

(SI-ATRP) of the glycidyl methacrylate (GMA) was successfully performed, accordingly to an 

optimized protocol. The initial surface modifications of CNCs with the BIB ─ a common initiator of 

the SI-ATRP method ─ was efficiently performed, in accordance with values found in the literature. 

Furthermore, the kinetics study of the SI-ATRP led to an optimization of the reaction time. In fact, 

after only one hour of polymerization, around 50% of the total mass of recovered nanomaterials was 

related to the PGMA polymer. The presence of reactive epoxy groups at the surface of recovered 

polymerized CNCs at the end of the reaction was also highlighted, and this point is highly encouraging, 

since it could favor further reactions with a polymeric matrix, or more simply the compatibility 

between the polymerized CNCs and a hydrophobic polymeric matrix, like the poly(lactic acid).  

 

▪ The section II.2 was introduced in a first part (II.2.1) evidencing the efficiency of a novel 

esterification procedure compared to a well-known esterification involving an acid chloride as reagent. 

The degree of substitution of CNCs modified via the new esterification method was five times higher 

than that of CNCs obtained through the classical method. In the second following part (II.2.2), the 

novel esterification procedure was described and performed on CNCs using both lauric and stearic 

acids as reagents. The efficiency of the reaction was highlighted ─ with degrees of substitution equal 

to 0.1 and 0.3 for lauric and stearic acids, respectively ─, as well as, the hydrophobicity of the 

modified CNCs surface, and these results are encouraging for further use of the modified CNCs. 

Moreover, the possible recyclability of the chemicals, less toxic as usual, at the end of the proposed 

esterification method is an important matter, particularly in a spirit of more green chemistry. 

 

▪ In the section II.3, the characterization of TEMPO-CNC oxidized on a larger scale than those 

reported in the literature (~ 100 g) proved the efficiency of the oxidation (with an oxidation degree 

around 0.2), in accordance with values found in the literature. Furthermore, the grafting of the 1-

methyl-3-phenylpropylamine molecule ─ an aminated molecule bearing aromatic group ─ was 

performed on the TEMPO-CNCs through an amidation reaction, and the efficiency of the reaction was 

quantified, with a degree of substitution close to 0.1. Through multiple characterizations, it was 

assumed that another reaction ─ the adsorption ─ could take place at the surface of the TEMPO-CNCs. 

This adsorption phenomenon was thus investigated, and it was shown that it allowed the introduction 

of ninety times more aromatic molecules on the surface of the CNCs than the amidation reaction. This 
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result highlighted the potential bonding of numerous molecules on the TEMPO-CNC, in a simple and 

more environmentally friendly way.  

 

▪ Finally, the additional section II.4 was intended to briefly introduce the preparation of CNCs 

and CNFs adsorbed with rosin nanoparticles. The stable nanometric behavior of the prepared nano-

emulsion containing rosin nanoparticles, and the presence of rosin in final dried films composed of 

CNCs or CNFs were proved. This adsorption procedure did not involve toxic chemicals, and is 

interesting because of its simplicity and short duration (no washing steps required).  

The Table II. 14 summarizes the different grafting methods described in the Chapter II, as 

well as, their required reaction time, their efficiency, and the limitation in terms of quantity of 

grafted CNCs. This highlights the fact that in order to be able to functionalize the CNCs on a 

large scale ─ which is often necessary for many applications, such as the elaboration of 

packaging materials ─, it is necessary to move towards grafting or adsorption methods that 

consume less reaction steps, and thus less time and toxic chemicals. 

Chapter 
Grafted or adsorbed 

polymer/molecule 
Grafting method 

Reaction 

time 
Efficiency  

Maximum possible 

quantity of grafted 

CNCs at lab scale 

II.1 
Poly(glycidyl 

methacrylate) (PGMA) 

Surface-initiated transfer 

radical polymerization  

(SI-ATRP) 

1h  
50 % (w/w) 

of PGMA 
A few milligrams 

II.2(.2) Lauric & stearic acid 

Esterification  

(novel procedure: the acid 

acts as the solvent) 

8h 

Degree of 

substitution 

0.1-0.3 

A few tens of grams 

II.3 
1-methyl-3-

phenylpropylamine 

Amidation on oxidized 

TEMPO-CNC or 

adsorption 

72h 0.1 A few hundred grams 

II.4 Rosin nanoparticles Adsorption 30 min / A few hundred grams 

Table II. 14. Summary of the different grafting methods presented in the Chapter II 

 

By way of a detailed comparison between these different grafting methods, the Table II. 15. Main 

advantages and drawbacks of the different grafting methods proposed in the Chapter II presents 

the main advantages and main drawbacks of the latter, from the point of view of the reaction time, the 

cost of raw materials, the possible amount of modified material, and the industrial feasibility.   
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Procedure Main advantages Main drawbacks 

SI-ATRP  

(PGMA) 

▪ Entire CNCs surface covered with polymer 

▪ Quantified and controlled amount of grafted 

polymer 

▪ Short time of polymerization (1h) 

▪ Restricting amount of grafted CNCs (≈ 1g) 

▪ Organic & toxic chemicals 

▪ Oxygen free media required 

▪ 2-step procedure (1st surface-initiation with 

active sites) 

▪ Difficult industrial feasibility 

▪ Considerable cost 

Esterification  

(fatty acids) 

▪ Limiting use of toxic chemicals 

▪ Satisfying grafting densities 

▪ Possible recyclability of solvent/chemicals 

▪ Low cost of chemicals 

▪ Conceivable industrial feasibility 

▪ Limited amount of grafted CNCs at lab-scale 

(≈ 10-20g) 

▪ Large amount of solvent (acetone) required 

▪ Multi-step procedure 

▪ High energy consumption 

▪ Time-consuming washing steps 

▪ Long reaction times (solvent exchange + 8h) 

Amidation  

(1-M-3-PP) 

▪ Mild and aqueous conditions 

▪ Relative low cost and low energy 

consumption 

▪ Possible reaction on a larger scale (TEMPO 

oxidation performed on ≈ 100g) 

▪ Low grafting densities 

▪ Possible concurrent adsorption  

▪ Mutli-step procedure 

▪ Long reaction time (72h) 

Adsorption  

(Rosins) 

▪ Simple efficient route, no washing-step 

▪ Low energy consumption 

▪ Possible large amount of modified CNCs (≈ 

kg) 

▪ Short reaction time (≈ 30 min) 

▪ No control of the adsorption (reversible / 

irreversible?) 

▪ Preliminary step required for the preparation 

of the nano-emulsion 

Table II. 15. Main advantages and drawbacks of the different grafting methods proposed in the Chapter II 

 

As previously mentioned, all the modified nanocellulosic materials prepared and characterized were 

then used for the preparation of final materials based on a polymer matrix, whose results are presented 

in the following Chapter III. 
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Introduction to Chapter III 

As described in the Chapter I, surface modifications of CNCs are performed for two main reasons, in 

this PhD: (objective 2) their compatibilization with a PLA-based matrix for the development of 

nanocomposites including CNCs as nanofillers, or (objective 3) the preparation of final biobased 

materials (including both PLA and nanocelluloses) for food packaging applications. The global ANR 

project of this PhD is a collaborative project, and some of the results presented in the following 

Chapter III have been obtained after many collaborative exchanges between different partners 

(especially the partner AgroParisTech, INRA, in Massy, France).  

The Chapter III is divided in two sections, each presenting the final PLA-based materials of this PhD 

project, prepared through different strategies. The Figure III. 1 schematizes the organization of the 

Chapter III. 

▪ The section III.1 presents the results obtained from the preparation of PLA-based 

nanocomposites including the modified CNC-PGMA-Br and CNC-Lauric previously described in the 

sections II.1 and II.2.2 (Chapter II), respectively. The nanocomposites are performed by the solvent-

casting method at the laboratory scale. The main goal of this section III.1 is to compare the 

morphological behavior of the different nanocomposites, as well as, their barrier properties, in a spirit 

of food packaging applications. Moreover, this comparison aims to understand the role of each grafted 

moieties on the adhesion between the nanofillers and the matrix. The main difficulty encountered in 

this study (III.1) was the limited modified CNCs available for the sample’s preparation, and therefore, 

the limited number of nanocomposites samples.  

 

▪ In the section III.2, another strategy is adopted for the preparation of multi-phase materials. 

Indeed, in this part, multi-layered materials based on PLA are prepared. More precisely, a thin layer of 

modified CNC-1-M-3-PP (presented in Chapter II, section II.3) is coated on a PLA substrate, and 

another PLA sheet is heat-pressed on the coated materials, leading to a multi-layered material. 

Similarly, another protocol consists in the introduction in a modified CNF-Rosin or CNC-Rosin dried 

film (described in Chapter II, section II.4) between two PLA sheets, following by a similar heat-

pressing step. The different “sandwich” PLA-nanocelluloses-PLA materials are compared in terms of 

processability, and barrier properties. This section III.2 is therefore a proof of concept of the proposed 

multi-layered materials elaboration strategy.  
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Figure III. 1. General organization of the PhD manuscript 
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1. Elaboration of poly(lactic acid)-based 

nanocomposites including different designed 

cellulose nanocrystals: comparison of the 

interfaces 

This section is the result of a collaborative work with H. Faraj and S. Domenek (AgroParisTech, 

INRA, Massy, France). The nanocomposites samples were prepared by H. Faraj, and 

characterizations were performed by M. Le Gars and H. Faraj. This work will be subject of the 

writing of a common publication, after further characterization.  
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Abstract 

Cellulose nanocrystals (CNC) were previously functionalized by different original methods, and both 

surface polymerized CNC with poly(glycidyl methacrylate) (PGMA) and surface esterified CNC with 

long fatty lauric acid, respectively named CNC-PGMA-Br and CNC-Lauric, were used in the present 

study. These two types of modified CNC were introduced in an amorphous poly(lactic acid) (PLA) 

matrix at different concentrations. Their dispersion in the PLA matrix has been observed by several 

microscopic methods like scanning electron microscopy (SEM), transmission electron microscopy 

(TEM), and optical microscopy under polarized light. After having assumed that both CNC 

modifications enhanced the interfacial effects between CNC and PLA, thermomechanical and barrier 

properties of nanocomposites have been investigated by dynamic mechanical analysis (DMA), 

differential scanning calorimetry (DSC), oxygen and water vapor permeability. After having shown 

the reinforcing effect of CNC-PGMA-Br in related PLA-based nanocomposites, the positive influence 

of CNCs modifications on oxygen permeability has been highlighted.  

Keywords: 

Cellulose Nanocrystals ─ Compatibilization ─ Poly(lactic acid) ─ Nanocomposites ─ Barrier 

properties 
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1. Introduction 

In polymer composites science, the nanocomposites field has emerged since the late 1980s1. Indeed, 

over the last few decades, the development of such promising multi-phase materials has attracted 

particular interest, in both academic and industrial research. The introduction of various nanofillers 

into polymeric systems – synthetic or not – has thus made it possible to achieve interesting properties, 

whether at the barrier, conductive or mechanical level. These nanofillers can then be of an inorganic or 

organic nature. In the literature, many complete reviews deal with the development of nanocomposites, 

such as those of Thostenson et al.2 and Winey et al.3. Nanometric fillers (spheres, rods or plates) like 

among others carbon nanofibers, nanoclay or nano-TiO2 have been widely used in nanocomposites in 

order to enhance strength and stiffness mechanical properties of initial polymeric materials, for various 

applications (packaging, automotive, paints, adhesives etc.).  

However, current environmental context tends to limit the use of fossil-based synthetic plastics, and 

particularly for packaging applications. Thus, bio-based and biodegradable polymers have seen their 

interest increased significantly in recent years. Among these polymers, poly(lactic acid), known as 

PLA, has been at the centre of scientific discussions. Because of its bio-sourced and biodegradable 

nature, the PLA has long been chosen as a model for biobased plastic packaging. However, like many 

other bio-based polymers, this polymer exhibit poor barrier and thermal properties, although its 

mechanical properties are sufficient for most packaging applications. Indeed, PLA exhibit oxygen and 

water vapor permeability values respectively five and six times higher than traditionally used synthetic 

polyethylene terephthalate (PET)4–6, as well as, a low glass transition temperature (around 60 °C)4. 

The development of PLA-based – and more generally of bio-based polymers-based – nanocomposites 

then makes sense, and the elaboration of such materials makes it possible to comply with packaging – 

and especially food packaging – requirements. In the literature, numerous publications deal with the 

introduction of various fillers in PLA. Cabedo et al.7 have studied the introduction of modified 

kaolinite in a PLA/PCL (polycaprolactone) blend and concluded about the improvement of oxygen 

permeability of resulted nanocomposites. Thellen et al.8 investigated the presence of 5 wt% of 

montmorillonite layered silicate in PLA, and showed the increasing of resulted barrier properties. 

More recently, it was confirmed by Bouakaz et al.9 who studied the introduction of combined 

montmorillonite and graphene in PLA, and concluded about an improvement in both mechanical 

properties and water vapor permeability.  

Nevertheless, although these nanofillers can enhance the properties of polymers, and especially those 

of PLA, their inorganic and non-biodegradable character is not consistent with current ecological trend 

and the use of fully biodegradable materials. In this way, the introduction of bio-based and 

biodegradable nanofillers in polymeric matrices, and especially nanometric cellulosic materials 

(cellulose nanofibrils CNFs and nanocrystals CNCs), has been widely studied in recent years. More 
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generally, the properties of nanocomposites rely on the interface between the nanofillers and the 

matrix, and thus on their compatibility. The presence of a well-dispersed nanofillers network in a 

polymeric matrix induces a tortuosity in gas molecules diffusive pathway, and thus an improvement of 

the gas barrier properties. It has been demonstrated that above a specific amount of nanofillers, the 

latter percolate and mechanically reinforce the system. Several studies provided theoretical modeling 

approaches of this percolation10. More broadly, the interface between the fillers and a matrix is the 

main element governing the final nanocomposites properties. This point is the main issue when 

working with nanocellulosic fillers, and especially with CNCs. Indeed, although the latter exhibit 

outstanding properties, like a high crystallinity and large specific surface area, their hydrophilic 

character remains the main issue for their compatibilization with generally hydrophobic polymeric 

matrices. According to the book of Dufresne10, it is crucial to promote CNC homogenous dispersion in 

the matrix and favorable interactions between the two phases, while ensuring interactions between the 

fillers themselves in order to allow the percolation network formation.  

In order to ensure the dispersion of the CNC inside a hydrophobic matrix – especially the PLA – and 

to favour their interactions, a compatibilization step is generally required. Many research teams have 

worked on this point, and several literature reviews synthesize the elaboration of CNC/PLA-based 

nanocomposites11–13, in which several routes are proposed for this compatibilization strategy. Most of 

the time, surface modification – specifically hydrophobization – of the CNCs is performed, although 

the polymeric PLA matrix can also be modified14,15. The modification can be performed through 

surfactant adsorption16,17, or by covalent grafting of single molecules18–23 or polymers, as previously 

summarized in the Chapter I. Focusing on the covalent grafting of single molecules, Robles et al.21 

performed a similar protocol as that proposed by Freire et al.24 to graft dodecanoyl chloride on the 

surface of the CNCs. After having prepared PLA-based nanocomposites by twin-screw extrusion, they 

highlighted an increase in both mechanical and thermal properties of the nanocomposites. Spinella et 

al.23 have esterified CNCs with both lactic acid and acetic acid and produced PLA/CNC 

nanocomposites by melt-blending, and they also proved the increase in the mechanical properties. 

Focusing on the polymer grafting, the Grafting-from of lactic acid on the CNCs surface through ring-

opening polymerization (ROP), as described by Habibi et al.25 and more recently by Lizundia et al.26 

and Miao and Hamad27. This strategy was highly efficient in terms of CNCs dispersion and barrier 

properties of produced CNC-PLA nanocomposites. For their part, Lin et al.28 polymerized poly(ε-

caprolactone) (PCL) chains on CNCs via a ROP microwave-assisted, and proved the enhancement in 

nanocomposites mechanical properties. Looking more precisely on the molecules grafted on the CNCs, 

those containing epoxy groups have been particularly appreciated. Pracella et al.14 have grafted 

glycidyl methacrylate (GMA) on cellulose nanofibers, and the enhancement of such modified fibers 

dispersion in the PLA has been highlighted.  
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In this study, on the one hand, the CNCs were surface modified with poly(glycidyl methacrylate) 

(PGMA) polymer chains containing such epoxy groups. This modification was performed through a 

SI-ATRP method previously described in the Chapter II.1 of this manuscript, and CNC-PGMA-Br 

were recovered. On the second hand, the CNCs were surface grafted with long aliphatic lauric acid via 

a novel esterification procedure previously described in the Chapter II.2.2, and modified CNC-Lauric 

were recovered. Different amount of both CNC-PGMA-Br and CNC-Lauric were then introduced in 

PLA matrices by solvent casting method, in order to enhance barrier and/or thermomechanical 

properties of resulted nanocomposites. In the literature, it has already been proved that the presence of 

epoxy groups at the level of fillers could improve their compatibilization with a PLA matrix. Sun et 

al.29 modified nanoparticles of acrylonitrile-butadiene-styrene (ABS) with GMA, and investigated the 

properties of PLA/ABS-GMA nanocomposites. According to the improved mechanical properties of 

the materials, they concluded about the probable cross-linking reaction between the epoxy groups 

from GMA on particles surface and carboxyl or hydroxyl groups at the end of the PLA polymeric 

chains. This cross-linking reaction was confirmed by Juntuek et al.30 who used a copolymer composed 

of GMA as compatibilizing agent between poly(ethylene oxide) copolymers and PLA.  

Therefore, in the present work, the compatibility between a PLA matrix and both epoxy-containing 

and long aliphatic chains-bearing CNCs was expected to be enhanced. In order to avoid the 

crystallisation of the polymer due to possible nucleating effect of CNCs, an amorphous PLA ─ 

composed of a high D-Lactic acid content ─ was selected for this study22. PLA_CNC-PGMA-Br and 

PLA_CNC-Lauric nanocomposites were then characterized by various microscopic characterization 

techniques (SEM, TEM, polarized light microscopy) and thermo-mechanical analyses (DMA and 

DSC). Moreover, in order to investigate the effect of the introduction of modified cellulosic nanofillers 

in the PLA matrix, oxygen and water vapor permeability was determined. These last characterizations 

were performed for food packaging applications purposes, for which these barrier properties aspects 

are particularly required.  
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2. Materials and methods 

 Materials 

Cellulose nanocrystals (CNCs) were supplied by CelluForce (Quebec, Canada), in spray-dried form. 

4-(dimethylamino)pyridine (DMAP), triethylamine (TEA), α-bromoisobutyryl Bromide (BIB), ethyl 

α-bromoisobutyrate (EBIB), N,N,N’,N’’,N’’-pentamethyldiethylenetriamine (PMDETA) and 

Copper(I) bromide (CuBr) were purchased from Sigma-Aldrich Chimie (Saint-Quentin-Fallavier, 

France) and were used as received except CuBr which was purified. Glycidyl Methacrylate (GMA) 

was purchased from Fisher Scientific (France) and purified through a basic alumina column to remove 

stabilizers before use. N,N-Dimethylformamide (DMF) was purchased from Sigma-Aldrich Chimie 

and was stored and used in anhydrous conditions. Dichloromethane (DCM) and Ethanol (EtOH) were 

purchased from Sigma-Aldrich Chimie and used as received. Poly(lactic acid) INGEO pellets (4060D 

grade) were purchased from NatureWorks (France). 

 SI-ATRP of Glycidyl methacrylate on pre-functionalized CNCs 

CNCs were modified by a surface-initiated radical polymerization (SI-ATRP) of glycidyl methacrylate 

(GMA), previously described in the Chapter II.1. Briefly, the CNCs were first modified with α-

bromoisobutyryl bromide reagent (BIB), in order to introduce brominated initiator sites at their surface 

for further radical polymerization. Recovered CNC-Br were then subjected to several freeze-thaw 

cycles to remove oxygen, following by the SI-ATRP of GMA for one hour involving 

GMA/EBIB/PMDETA/CuBr reagents system with 100:1:1:1 composition ratio. At the end of the 

reaction, polymerized CNC-PGMA-Br were extensively washed by successive centrifugation cycles 

(9000 rpm, 15’, 5 °C) in dichloromethane to remove all unreacted reagents and homopolymer PGMA 

polymerized from EBIB as sacrificial initiator. CNC-PGMA-Br were stored in dichloromethane until 

further use and characterizations. Scheme III. 1 schematizes the recovered polymerized CNC-PGMA-

Br. 

 

Scheme III. 1. Schematic representation of polymerized CNC-PGMA-Br 
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 Surface esterification of CNC with lauric acid 

CNCs were modified according to the esterification procedure previously described in the Chapter 

II.2.2. Briefly, a CNC water suspension was solvent exchanged to acetone. This acetone suspension (1 

wt%) was then introduced in a flask mounted with a distillation system, and heated at 110 °C. A 

catalytic amount of sulfuric acid H2SO4, as well as, a large excess of lauric acid (weight ratio CNC: 

acid = 1: 100) were added to the reaction media. After total acetone evaporation, CNCs were dispersed 

in melted lauric acid, which thus acted as the reaction solvent, and the system was let under stirring for 

8 h. At the end of the reaction, CNCs were extensively washed with ethanol by successive 

centrifugation cycles (10000 rpm, 25 °C, 15 min). The recovered modified CNC-Lauric in ethanol 

where then stored in a perfectly hermetically closed container until further use and characterizations. 

Scheme III. 2 schematizes the recovered modified CNC-Lauric. 

 

Scheme III. 2. Schematic representation of esterified CNC-Lauric 

 PLA-CNC nanocomposites preparation 

First, a 10 wt% PLA solution was prepared by dissolving PLA pellets in dichloromethane under 

constant magnetic stirring overnight. Neat CNCs or polymerized CNC-PGMA-Br were solvent 

exchanged to dichloromethane, and introduced into the PLA solution. The mixture was then 

homogenized using an Ultra-Turrax homogenizer (IKA), following by an ultrasound treatment (10 

kJ.gCNC
-1), and then poured into a Teflon petri dish. The latter was left to evaporate under a fume hood 

for 48 h. The recovered films were then hot pressed between two Teflon sheets with the use of a 150-

µm-thick mould. Hot pressing was performed at 180 °C, first for 3 min without pressure, and then for 

1 min under 150 bar pressure. After the compression, the samples were cooled down to room 

temperature. The films prepared with 10 wt% of neat CNCs, with 2 wt%, 5 wt% and 10 wt% of 

polymerized CNC-PGMA-Br, and with 5 wt% and 10 wt% of modified CNC-Lauric were respectively 

referenced as PLA_CNC10, PLA_CNC-PGMA-Br2, PLA_CNC-PGMA-Br5 and PLA_CNC-PGMA-

Br10, and PLA_CNC-Lauric5 and PLA_CNC-Lauric10. Neat PLA reference was prepared following 

this protocol without any addition of CNCs.  
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 Characterization methods 

2.5.1. Scanning Electron Microscopy (SEM) 

Samples cross-sections of PLA_CNC10, PLA_CNC-PGMA-Br10 and PLA_CNC-Lauric10 were 

prepared by cryofracture or at ambient temperature. Briefly, each sample was fractured in liquid 

nitrogen and was allowed to return at room temperature. Fractured samples of 3 nm thickness were 

then metallized with gold/palladium. On the other hand, 90 nm-thick sample cuts at room temperature 

were performed using an ultra-microtome UC6 (LEICA) equipped with a diamond knife, and were 

then metallized as previously described. For each sample, both cuts obtained by cryofracture or with 

the microtome at ambient temperature were analyzed using a Quanta 250 FEG (Thermofischer) device 

at a 2.5 kV voltage in high vacuum mode. Images were processed using ImageJ software. 

2.5.2. Transmission Electron Microscopy (TEM) 

Sample cuts of PLA_CNC10, PLA_CNC-PGMA-Br10 and PLA_CNC-Lauric10 were prepared at 

room temperature, using an ultra-microtome UC6 (LEICA) equipped with a diamond knife, and 

exhibit thicknesses of 90 nm. The cuts were then deposited on a copper grid covered with a carbon 

film and observed with a JEOL JEM 2100-Plus transmission electron microscope operating at an 

acceleration voltage of 200 kV. Images were recorded using a Gatan Rio 16 digital camera and were 

then processed using ImageJ software. 

2.5.3. Polarized Light Microscopy  

The surfaces of both PLA_CNC10 and PLA_CNC-PGMA-Br10 nanocomposites casted films were 

analyzed using an Axioplan 2 (ZEISS) microscope, operating under polarized light. Recorded images 

were processed using ImageJ software. 

2.5.4. Dynamic Mechanical Analysis (DMA) 

DMA analyses were performed on neat PLA, PLA_neatCNC10 and PLA_CNC-PGMA-Br 

nanocomposites casted films using a TA Instrument RSA 3 device. Samples of 10 mm length and 5 

mm width were carefully prepared and analyses were performed from 30 °C to 120 °C at 1 Hz with a 

heating rate equal to 2 °C per minute. Data were recorded and processed using a TA Orchestra 

software. As far as possible (limited number of samples), each analysis was duplicated or triplicated 

and the most representative curve was plotted.  

2.5.5. Differential Scanning Calorimetry (DSC) 

DSC analyses were carried out with a MT-DSC Q1000 (TA Instruments) device. Samples of neat PLA 

and PLA_CNC-PGMA-Br were deposited in hermetically closed aluminum pans. Heating rate was set 

at 2 °C per minute and analyses were performed from -20 °C to 260 °C under nitrogen flow (50 mL 
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per minute). Around 5 mg of each sample was weighted, and each mass was exactly determined at the 

beginning of each analysis. TA Universal Analysis software was used to process data. For each sample, 

measurement was at least duplicated.  

2.5.6. Oxygen Permeability  

The oxygen permeability of neat PLA and PLA_CNC-PGMA-Br nanocomposites cased films was 

investigated at 23 °C and 0% RH, using a Systech Illinois (USA) M8001 Oxygen Permeation 

Analyzer. Data were processed according to the ASTM-F 1927 standard. For each sample, masks with 

a specific exchange surface of 1.5 cm² were prepared and placed in the device chamber. Pure oxygen 

was used for the measure. The final value of oxygen transmission rate (OTR) was determined at the 

level of the reached plateau of the curve. The oxygen permeability coefficient (OP) was obtained 

according to the Equation III. 1, where l is the average thickness of the sample, in mm. 

OP = OTR × l 

Equation III. 1. General relation between oxygen permeability coefficient (OP) and oxygen transmission rate (OTR) 

according to ASTM-F 1927 standard 

Another sample of neat PLA, as well as PLA_CNC-Lauric samples, were analyzed using a GDP-C 

device from Brugger (Germany). Samples were outgassed under vacuum for 15 h, and then an oxygen 

pressure gradient was applied at 1 bar, 0% RH and 23 °C. Control samples were used to ensure 

measurement accuracy among different devices. All experiments should be at least duplicated as much 

as possible (limited number of samples). 

2.5.7. Water Vapor Permeability  

The water vapor permeability of both neat PLA and PLA_CNC nanocomposites cased films was 

determined at 23 °C and 50% RH, according to T 448 om-09 TAPPI standard. For each sample, masks 

with a specific exchange surface of 1.5 cm² were prepared, and installed on specific test dishes filled 

with dried CaCl2 as desiccant material. Regular weighing of the whole system was performed, and the 

water vapor transmission rate (WVTR), in g/m².day, was determined following the Equation III. 2 : 

WVTR =
24x

Ay
 

Equation III. 2. General equation for the calculation of the water vapor transmission rate (WVTR) according to T 448 om-

09 TAPPI standard 

where x is the gain in grams for the period y in hours, and A the exposed area of the sample (1.5 cm² in 

our study). The water vapor permeability coefficient (WVP) was determined according to the 

Equation III. 3, where l is the average thickness of the sample, in mm. 

WVP = WVTR × l 

Equation III. 3. General relation between water vapor permeability coefficient (WVP) and water vapor transmission rate 

(WVTR) 
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Taking into consideration the heterogeneity of the samples, each experiment should be at least 

duplicated as much as possible (limited number of samples). 
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3. Results and discussions 

 Morphological analyses of PLA-based nanocomposites 

In this study, bio-based PLA has been selected as the host matrix for the elaboration of CNC/PLA-

based nanocomposites. The surface-polymerized CNC-PGMA-Br were previously characterized in the 

Chapter II.1, and it was proved that their surface was covered with PGMA polymeric chains 

containing reactive epoxy functions. Although several methods exist to process CNC/PLA-based 

nanocomposites, as described in the literature review (Chapter I), the solvent casting method was 

selected in this study because of its lab-scale size and its adaptability to low amounts of material, as 

was the case for prepared CNC-PGMA-Br. Indeed, as presented in the Chapter II.1, only few grams 

of CNC-PGMA-Br were produced, limiting the quantity of produced nanocomposites films. Besides, 

even if the CNC_Lauric were produced at a larger scale (Chapter II.2), PLA_CNC-Lauric were also 

produced by the solvent casting method, in order to be able to compare their final properties. However, 

it is important to keep in mind that morphological properties can vary with the processing materials 

method, especially on a larger scale. These differences in the properties can result, for example, from 

the nanofillers orientation inducing by the process, or by the drying conditions. In their work, Yang et 

al.31 showed the differences in terms of mechanical properties of PLA-based nanocomposites prepared 

with lignin nanoparticles by both extrusion and solvent casting methods. In fact, they observed poor 

nanoparticles dispersion in PLA by solvent casting, whereas extruded nanocomposites samples 

exhibited a better fillers dispersion and adhesion, leading to better mechanical properties. Fortunati et 

al.32 confirmed these results, and observed better fillers dispersion in the nanocomposites prepared by 

extrusion, leading to a positive change in their elongation at break. A review of Oksman et al.33 

synthesizes and details the different cellulose/PLA-based nanocomposites processing techniques.    

The Figure III. 2 a) shows a photograph of a neat PLA casted film of 155 µm thickness, as presented 

in the Table III. 1. The neat PLA film is highly transparent and homogenous, as expected, according 

to the literature34. In fact, the transmittance of a PLA film is generally comprised around 95% at 700 

nm wavelength35, confirming its huge interest for food packaging applications.  



Elaboration of poly(lactic acid)-based nanocomposites including different designed cellulose nanocrystals: 

comparison of the interfaces 

Manon LE GARS, 2020 
258 

 

Figure III. 2. Photographs of a) neat PLA casted film, b) PLA_neatCNC10 nanocomposite, PLA_CNC-PGMA-Br 

nanocomposites with c) 2 wt%, d) 5 wt%, and e) 10 wt% of polymerized CNC-PGMA-Br, and PLA_CNC-Lauric 

nanocomposites with f) 5 wt% and g) 10 wt% of modified CNC-Lauric 

In the Figure III. 2 b), the transparency of 153 µm-thick nanocomposite film prepared with 10 wt% of 

unmodified neat CNC decreased, and this opacity can be attributed to the presence of large CNCs 

aggregates in the matrix, resulted from the poor compatibility between neat hydrophilic CNCs and 

hydrophobic PLA. Such a transparency reduction has been already observed several times in the 

literature22,36 and is related to the presence of non-dispersed micrometric materials. In Figure III. 2 c), 

d) and e), it is clearly observed that by increasing filler content of CNC-PGMA-Br from 2 wt% to 10 

wt%, the films coloration changed from light green to darker green. This color was attributed to the 

presence of copper salts residues from the SI-ATRP polymerization of GMA on CNC surface. 

However, the homogeneity of PLA_CNC-PGMA-Br nanocomposites films could be clearly confirmed 

from these photographs, as well as, their preserved transparency, suggesting a good dispersion of the 

cellulosic fillers inside the matrix. Moreover, relatively homogenous thicknesses were comprised 

between 120 and 130 µm (Table III. 1) and were ensured thanks to the use of normalized metal 

spacers during films heat-pressing. Note that this compression step is essential for the removal of 

residual solvent, as well as, for the erasing of the thermal history of each nanocomposite films, which 

was critical for further thermo-mechanical analyses of the materials. Nevertheless, the coloration of 

PLA_CNC-PGMA-Br films would be a major disadvantage for packaging applications, where perfect 

colorless transparency is a key requirement, especially with regard to consumers opinion37,38.  

The photographs of both PLA_CNC-Lauric5 and PLA_CNC-Lauric10 are presented in Figure III. 2 

f) and g), respectively. Both samples show a good transparency and any coloration, confirming also 

the well dispersion of modified CNC-Lauric in the PLA matrix. Table III. 1 summarizes the 

thicknesses measured for each sample. 
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Ref Sample Thickness (µm) 

a) Neat PLA 155 

b) PLA_neatCNC10 153 

c) PLA_CNC-PGMA-Br2 130 

d) PLA_CNC-PGMA-Br5 130 

e) PLA_CNC-PGMA-Br10 120 

f) PLA_CNC-Lauric5 182 

g) PLA_CNC-Lauric10 230 

Table III. 1. Measured thicknesses for each nanocomposite 

In order to investigate the morphological behavior of PLA-based nanocomposites in more details, 

SEM analyses were performed on PLA_neatCNC10, PLA_CNC-PGMA-Br10 and PLA_CNC-

Lauric10 samples. Figure III. 3 shows SEM images of PLA_neatCNC10 cross-sections prepared at 

ambient temperature (Figure III. 3 a) and b)) or by cryofracture (Figure III. 3 c) and d)). In Figure 

III. 3 a) and b), large micrometric aggregates are clearly visible. These aggregates exhibit apparent 

size equal to 11 µm +/- 8 µm, clearly confirming their micrometric size, as well as, their 

heterogeneous character. Moreover, regarding the repartition of these aggregates inside the PLA 

matrix, their sedimentation is observed, and is probably due to the deposition of the large and dense 

cellulosic aggregates at the bottom of the dish during solvent casting process. By regarding Figure III. 

3 c) and d), the cryofractured CNC_neatPLA10 sample highlights the presence of very distinguishable 

large aggregates, as well as, the poor adhesion between cellulosic materials and the PLA matrix. 

Indeed, the interface between PLA and the aggregates exhibits any adhesion, and several cavities can 

be observed, resulting from remnants of removed aggregates during the cryofracture process. It 

demonstrates the lack of adhesion between micrometric fillers and the polymeric matrix. Similar 

expected SEM observations of PLA/unmodified CNC have been already shown in literature17,22,39. 

 

Figure III. 3. SEM images of PLA-neatCNC10 cross-sections prepared a), b) at ambient temperature, and c), d) by 

cryofracture at different magnifications 
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Figure III. 4 a) and b) represent SEM images of PLA-based nanocomposites prepared with 10 wt% of 

polymerized CNC-PGMA-Br, whose cross-sections were prepared at ambient temperature. A more 

homogenous surface is observed compared to that PLA_neatCNC10 sample, since no micrometric 

aggregates are visible. Moreover, the cryofractured sample (Figure III. 4 c) and d)) also exhibits a 

homogeneous cross-section, as no micrometric particles or cavities are visible. This result emphasizes 

the enhancement of the fillers dispersion inside the matrix, and thus the improvement of the adhesion 

between the cellulosic nanofillers CNC-PGMA-Br and the PLA matrix. Such similar behavior 

between epoxy groups present on fillers and a PLA matrix has already been described in literature. In 

fact, Wang et al.40 introduced an epoxidized natural rubber in a PLA matrix, and concluded about a 

possible cross-linking reaction between the epoxy functional groups and the end-chains of PLA, as 

well as, about the enhanced adhesion between rubber and PLA. Highly comparable SEM images were 

presented in their study.  

Similar observations were made from cryofractured cross-sections of the PLA_CNC-Lauric10 sample 

presented in Figure III. 4 e) and f). In fact, no micrometric aggregates are distinguished, and a similar 

smooth surface as in the case of PLA_CNC-PGMA-Br10 is observed. In Figure III. 4 f), some 

spherical particles are observed and, although their interpretation is difficult, they probably result from 

residual unreacted lauric acid. However, cryofractured PLA_CNC-Lauric10 confirms the enhanced 

compatibilization between the modified CNC-Lauric and the PLA matrix.  

 

Figure III. 4. SEM images of nanocomposites cross-sections of PLA_CNC-PGMA-Br prepared a), b) at ambient 

temperature and c), d) by cryofracture; and e), f) of PLA_CNC-Lauric10 prepared by cryofracture at different magnifications 

In a recent publication, Rigotti et al.41 modified CNCs with lauryl chloride (same carbon chains as 

lauric acid used in our study) via a classical acylation procedure (i.e., anhydrous conditions, organic 

toxic solvents) and introduced the recovered modified CNCs in a PLA matrix via a solvent casting 
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method. They observed micrometric aggregates at fillers concentration higher than 6.5 wt%, resulting 

in the observation of large pores on the nanocomposites SEM images. This difference is probably due 

to the grafting, which was possibly less homogenous or less dense at the surface of their CNCs. 

However, numerous studies have presented results correlated with our SEM images. For example, 

Dong et al.42 modified CNC with acetic anhydride and Shojaeiarani et al.43 and Espino-Pérez et al.22 

esterified the CNCs with benzoic and hydrocinnamic acid, respectively, and in both cases, similar 

PLA-based nanocomposites cross-sections were observed. Both PLA_CNC-PGMA-Br10 and 

PLA_CNC-Lauric10 samples exhibit more homogenous cryofractured surfaces than that of 

PLA_neatCNC10 sample, clearly confirming that the interfaces between CNC-PGMA-Br or CNC-

Lauric and PLA were therefore improved.  

In order to observe the samples cross-sections on a smaller scale, TEM observations were performed 

on PLA_neatCNC10 (Figure III. 5 a)), PLA_CNC-PGMA-Br10 (Figure III. 5 b)) and PLA_CNC-

Lauric10 (Figure III. 5 c)). The PLA_neatCNC10 TEM picture presented in Figure III. 5 a) confirms 

the previous SEM observations, since large micrometric aggregates (15 µm +/- 4 µm) are clearly 

visible. Bagheriasl et al.44 prepared PLA_neatCNC nanocomposites (with 4 wt% of nanofillers) by 

solvent casting, and observed similar large micrometric aggregates on TEM images, although their 

nanocomposites preparation method seemed to be more efficient since aggregates were in the range of 

1-3 µm. These differences can result from the nanocomposites processing method, or from the CNCs 

source and preparation. In Figure III. 5 b), CNC-PGMA-Br are more dispersed in the matrix than the 

neat CNCs, although some CNC clusters are clearly observed, with heterogeneous nanometric size. It 

emphasizes the improved dispersion of CNC-PGMA-Br due to the presence of PGMA polymer at the 

CNCs surface, although nanometric aggregates are still present.  

 

Figure III. 5. TEM images of nanocomposites cross-sections prepared at ambient temperature: a) PLA_neatCNC10, b) 

PLA_CNC-PGMA-Br10, and c) PLA_CNC-Lauric10 

In Figure III. 5 c), CNC-Lauric seem to be more dispersed in the PLA matrix. Even if CNC-Lauric 

clusters are observed, they are smaller and more homogenously distributed throughout the matrix than 

those of CNC-PGMA-Br. It highlights the enhanced compatibilization of CNC-Lauric with the PLA 
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matrix, similarly to CNC-PGMA-Br. Espino-Pérez et al.22 obtained close results after having similarly 

made CNC hydrophobic with hydrocinnamic acid and introduced them in a PLA matrix.  

Another way to investigate the dispersion state of crystalline anisotropic CNCs inside an amorphous 

PLA matrix was the observation of nanocomposites surface by optical microscopy under polarized 

light. Briefly, as explained by Xu et al.45, the polarized light can pass through the nanocomposite 

sample, and observed birefringent zones thus correspond to the presence of CNC particle or aggregates 

perpendicularly to the light path. Although this observation method does not provide precision at the 

nano-scale, it makes it possible to conclude whether or not micrometric CNC aggregates are present in 

the sample. Only PLA_neatCNC10 and PLA_CNC-PGMA-Br10 nanocomposites were observed 

under polarized light in this study, as presented in Figure III. 6.  

 

Figure III. 6. Images of a), b) PLA_neatCNC10 and c), d) PLA_CNC-PGMA-Br10 obtained from optical microscope with 

polarized light at different magnifications 

In Figure III. 6 a) and b), large micrometric aggregates (12 µm +/- 4 µm) are visible on 

PLA_neatCNC10 sample, correlated with previously SEM results. In the literature, it is confirmed by 

Xu et al.45 who introduced CNC in an epoxy resin, and observed similar aggregation under polarized 

light. Kaboorani et al.46 also performed microscopy analyses under polarized light in order to detect 

CNC aggregates in a wood coating system. In Figure III. 6 c) and d), no large particles are visible, 

suggesting that CNC-PGMA-Br were more isolated and no clustered at micrometric scale, confirming 

the previous results obtained by SEM and TEM observations. Similar observations performed on 

PLA_CNC-Lauric10 would be interesting, in order to be able to compare the dispersion state and the 

clusters size of CNC-Lauric with that of CNC-PGMA-Br. 
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 Thermomechanical properties of PLA-based nanocomposites 

In order to investigate the potential reinforcing effect of nanofillers in a polymeric matrix, the DMA 

analysis is generally carried out on the nanocomposites samples. In our study, DMA tests were 

performed on neat PLA, PLA_neatCNC10 and PLA_CNC-PGMA-Br10 nanocomposites. The 

resulting evolution of the storage modulus E’ and the mechanical loss factor tan δ function of the 

temperature is presented in Figure III. 7 a) and b,) respectively. In Figure III. 7 a), the typical 

response of a neat amorphous PLA is visible (curve in solid dark line), and it is observed that above 

the alpha relaxation temperature associated to the glass transition temperature (Tg), the storage 

modulus of the polymer clearly decreases, and PLA becomes softer. A similar behavior is observed for 

all PLA_CNC-PGMA-Br samples, where crystallization in the rubbery plateau is absent. This 

behavior was expected and consistent with the results presented in the literature47. The curves were 

normalized in the glassy plateau at 30 °C, as proposed in the literature by Espino-Pérez et al.22 and 

Azizi Samir et al.48. This normalization allows the comparison of the different storage modulus values 

in the rubbery plateau (E’70 °C). The values of E’70 °C for each sample are presented in Table III. 2. For 

the neat PLA, E’70 °C is equal to 1.8 MPa, correlating with the values found in the literature for an 

amorphous PLA film49. This modulus is equal to 2.1 MPa after the addition of 10 wt% of unmodified 

CNC. Thus, no significant difference between the E’70 °C is observed, confirming the fact that 

unmodified CNC do not provide significant mechanical reinforcement to the nanocomposite material, 

probably because of their poor dispersion and their lack of adhesion with the PLA matrix.  

 

Figure III. 7. a) Storage tensile modulus (E') function of the temperature, and b) tan δ function of the temperature for neat 

PLA, PLA_neatCNC10 and PLA_CNC-PGMA-Br samples obtained from DMA analyses 

However, by increasing the amount of CNC-PGMA-Br in the PLA matrix from 2 wt% to 10 wt%, the 

value of E’70 °C significantly increased from 3.8 MPa to 9.5 MPa. According to Sullivan et al.39, this 

increasing in storage modulus– attributed to the decreasing of polymeric chains mobility - can be 

related to the tightening of polymeric chains displacements and to the reinforcing effects of CNC-
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PGMA-Br at a temperature higher than the Tg of the material. The presence of a percolated network of 

CNCs in the matrix could also be discussed, as presented by numerous authors10,17,50,51. Moreover, in 

Figure III. 7 b), it is observed that the values of the mechanical loss factor tan δ decreased by 

increasing the amount of fillers, which is expected since there is less PLA that can relax.  

In order to determine the glass transition temperatures Tg of neat PLA, PLA_CNC-PGMA-Br and 

PLA_CNC-Lauric nanocomposites samples, DSC analyses were performed. Note that a heat-pressing 

step was performed on each sample in same conditions before the analyses, in order to get rid of 

thermal history of the materials. Due to the amorphous grade of PLA, only the glass transition was 

analyzed in this study. Tg values are presented in Table III. 2.  

Sample E’70 °C (MPa) Tan δ Tg (°C)DSC 

Neat PLA 1.8 3.7 54.9 

PLA_neatCNC10 2.1 3.5 / 

PLA_CNC-PGMA-Br2 3.8 3.3 53.5 

PLA_CNC-PGMA-Br5 6.7 2.6 51.6 

PLA_CNC-PGMA-Br10 9.5 2.2 50.7 

PLA_CNC-Lauric5 / / 54.6 

PLA_CNC-Lauric10 / / 54.9 

Table III. 2. Storage modulus E' in rubbery region at 70 °C and intensity of the tan δ peak obtained from DMA results and 

glass transition temperature Tg obtained from DSC analyses for both neat PLA, PLA_neatCNC10, PLA_CNC-PGMA-Br and 

PLA_CNC-Lauric samples 

In the case of PLA_CNC-PGMA-Br samples, the Tg decreased by increasing the amount of nanofillers 

in the PLA matrix. Moreover, the Tg measured for PLA_CNC-Lauric5 and PLA_CNC-Lauric10 

samples do not show any significant change. This result has already been shown in the literature by, 

among others, Fortunati et al.35,52, who explained it by the good adhesion between the CNCs and the 

polymeric matrix. Moreover, both low molecular residues plasticizing the PLA from CNC-PGMA-Br 

and CNC-Lauric surfaces are different, which could explain the different values of Tg obtained for 

nanocomposites prepared with same amount of CNCs.  
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Figure III. 8. Evolution of the storage modulus (E') at 70 °C and the tanδ value function of the weight fraction (wt%) of 

CNC-PGMA-Br from DMA analyses 

Figure III. 8 graphically represents the values of E’70 °C and tan δ (expressed in the Table III. 2) for 

neat PLA and PLA_CNC-PGMA-Br, function of the filler content, in wt%. According to the previous 

discussion and Figure III. 8, it is possible to do the assumption that PLA_CNC-PGMA-Br10 sample 

is the best candidate in term of thermo-mechanical properties, although its Tg slightly decreased 

compared to the neat PLA casted film. Moreover, even if DMA analyses have not been performed on 

PLA_CNC-Lauric sample, it would be interesting to compare their thermomechanical response, in 

order to be able to conclude about the different CNCs filler content influence, since first 

thermomechanical properties are encouraging. Indeed, thermomechanical nanocomposites properties 

are essential, especially when thinking about packaging applications, since they allow being aware of 

the mechanical behavior of a nanocomposite material in a specific range of temperatures.  

 Barrier properties of PLA-based nanocomposites 

Besides the thermomechanical properties of the nanocomposites, their barrier properties are key points 

for their application as food packaging. Indeed, as previously mentioned in the Chapter I, the 

permeability towards oxygen and water vapor are main elements responsible for food products 

deterioration. In order to investigate this point, oxygen permeability measures were performed on neat 

PLA, PLA_neatCNC, PLA_CNC-PGMA-Br and PLA_CNC-Lauric nanocomposites, in order to 

understand the effect of the various CNC fillers and content. Table III. 3 summarizes the values of 

oxygen permeability (in m3.m/m².s.Pa) and water vapor permeability (in kg.m/m².s.Pa). Oxygen 

permeability of neat PLA is consistent with the values found in the literature4,53, and the P/P0 ratio has 

been calculated for each sample, in order to clearly understand the effect of each nanofillers on the 

nanocomposites. 
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Sample 

Oxygen permeability 

(x1018) 

(m3.m/m2.s.Pa) 

(23 °C, 0% RH) 

P/P0 

Water vapor permeability 

(x1014) 

(kg.m/m².s.Pa) 

(23 °C, 50% RH) 

Mean value Std. Dev.  Mean value Std. Dev. 

Neat PLA 5.60 1.0 1 1.8 0.02 

PLA_CNC-PGMA-Br2 5.10 1.2 0.91 1.1 0.15 

PLA_CNC-PGMA-Br5 5.13 / 0.92 0.9 / 

PLA_CNC-PGMA-Br10 3.25 / 0.58 0.4 / 

Neat PLA (2) 2.47 / 1 / / 

PLA_CNC-Lauric5 2.28 0.09 0.92 / / 

PLA_CNC-Lauric10 2.24 0.1 0.91 / / 

PLA_neatCNC10 2.81 0.22 1.14 / / 

Table III. 3. Summarized oxygen permeability and water vapor permeability values for both neat PLA, PLA_CNC-PGMA-

Br, PLA_CNC-Lauric and PLA_neatCNC nanocomposites 

Regarding the results presented in the Table III. 3 for neat PLA and PLA_CNC-PGMA-Br, it can be 

observed that the values of oxygen permeability of PLA_CNC-PGMA-Br decreased by increasing the 

nanofillers content from 2 wt% to 10 wt%. This decrease is hardly significant for low nanofillers 

contents (2 wt% and 5 wt%) but it en tcould be confirmed for the PLA_CNC-PGMA-Br10 sample. 

Furthermore, the value obtained for the neat PLA as reference (5.6 ±1 m3.m/m².s.Pa) is very high 

compared to the values found in the literature, and interpretations taking this value into account must 

therefore be treated with caution. In Figure III. 9 a), the P/P0 ratio was plotted function of the CNC-

PGMA-Br volumetric fraction (%vol). In the literature, several models have been proposed to predict 

the gas molecules permeability through a multiphasic polymer system, as recently synthesized in the 

review of Zid et al. 54. Among numerous models, that of Nielsen55 was used in this study for 

PLA/CNC systems. This model is expressed as follows: 

P

P0
=

1 − ϕ

1 + (
L

2D) × ϕ
 

Equation III. 4. Calculation P/P0 ratio according to Nielsen model55,56 

where ϕ is the volumetric fraction of nanofillers in the polymeric matrix and, L and D are respectively 

the average length and diameter of nanofillers. It is important to mention that this model considers the 

presence of ribbons nanofillers, which may not be the most suitable model for nanocomposites (for 

example, Maxwell's model for spherical particles could have been chosen). This inadequacy in the 

model could explain the difficult following interpretations. The Equation III. 4 was used to plot the 

predicted oxygen permeability evolution function of the CNC-PGMA-Br (taking L=600 nm and D=50 
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nm for CNC-PGMA-Br, according to previous results presented in Chapter II.1) and of the neat 

CNCs (taking L=110 nm and D=4 nm for neat CNC) volumetric contents. In Figure III. 9 a), it is 

observed that P/P0 ratios of PLA_CNC-PGMA-Br samples decreased by increasing the amount of 

CNC-PGMA-Br. Moreover, the results are relatively close to the Nielsen model plotted for CNC-

PGMA-Br as fillers (grey solid line), whereas the P/P0 ratio is far from the predicted model for 

unmodified CNCs (dashed line). It emphasizes the poor and heterogeneous dispersion of the 

unmodified CNCs in the matrix compared to that of CNC-PGMA-Br, inducing a positive effect on the 

oxygen barrier. It is thus possible to assume that the CNC-PGMA-Br network induces a tortuous 

pathway of oxygen gas molecules through the nanocomposites, and that this effect is reinforced at 

high CNC-PGMA-Br content (10 wt%). This notion of tortuosity has been widely used in the 

nanocomposites research field51,57,58. 

 

Figure III. 9. Evolution of the oxygen permeability P of PLA-based nanocomposites function of the a) CNC-PGMA-Br and 

b) CNC-Lauric volume fraction 

By regarding the PLA_CNC-Lauric oxygen permeability results (taking into account “neat PLA (2)” 

sample as a new reference), the influence of the CNC-Lauric is not significant, contrary to that of the 

CNC-PGMA-Br. In fact, the P/P0 ratio only shows a slight decrease, smaller than experimental 

uncertainty. In Figure III. 9 b), the values of P/P0 ratios are far above the predicted Nielsen model 

(taking L=350 nm and D=30 nm for CNC-Lauric, according to the previous results presented in the 
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Chapter II.2.2). This behavior was surprising, taking into consideration the well dispersion of the 

CNC-Lauric in the PLA matrix previously discussed. However, these results are consistent with the 

values found in literature. Indeed, in their publication, Espino-Pérez et al.22 concluded about the slight 

effect of the well dispersed CNCs in the PLA matrix on the oxygen permeability. However, other 

studies, like that of Sung et al.57, proved that the introduction of even a low amount of CNC in a PLA 

matrix can largely improve this oxygen permeability. It is confirmed by Fortunati et al.59 who 

quantified an OTR reduction around 50% after having introduced 5 wt% of CNC in a PLA matrix. 

Nevertheless, this result was surprising and could also be attributed to the presence of iron particles or 

the reference permeability. Such unexpected results for PLA_CNC-Lauric – although encouraging 

CNC dispersion was previously discussed – can found explanation in the interface between the PLA 

and the CNC-Lauric, which can differ from that between the PLA and the CNC-PGMA-Br. Indeed, it 

has been previously discussed that the epoxy groups from the surface of the CNC-PGMA-Br could 

react with the PLA chains, inducing a strong network inside the nanocomposite. This could largely 

influence the gas – and especially oxygen – permeation through the material. In this sense, it would be 

interesting to further investigate both PLA/CNC-Lauric and PLA/CNC-PGMA-Br interfaces, and 

confirm the effect of the CNC-PGMA-Br using a reference closer to the values found in the literature.  

 

Figure III. 10. Water vapor and oxygen permeabilites of both neat PLA casted film and PLA_CNC-PGMA-Br 

nanocomposites 

To deeply investigate the barrier properties of the prepared nanocomposites, the water vapor 

permeability of neat PLA and PLA_CNC-PGMA-Br samples was measured, and the results are 

presented in Figure III. 10, and are plotted function of oxygen permeability values previously 

described. All these water vapor permeability are presented in Table III. 3. According to Figure III. 
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10, it is difficult to conclude about the influence of nanofillers on the nanocomposites water vapor 

permeability at low content of CNC-PGMA-Br, although these values are consistent with values found 

in literature for neat PLA59. Furthermore, when a higher amount of CNC-PGMA-Br was introduced 

(i.e., 10 wt%), a significant decrease of 80% of water vapor permeability was measured. However, 

several studies showed that water vapor permeability of similar nanocomposites systems decreased by 

increasing the amount of nanofillers. In fact, Fortunati et al.59 modified CNCs by adsorbing a 

surfactant (Beycostat A B09) on their surface, and proved that by introducing only 1 wt% of these 

modified CNCs, the water vapor permeability decreased by 34%, whereas 5% of modified CNCs 

induced a decrease of only 15%. Follain et al.58 confirmed this result by showing that the water vapor 

barrier was negatively affected by increasing the amount of CNC from 3 wt% to 12 wt% in a poly(ε-

caprolactone) matrix. It was explained by the hydrophilic behavior of CNCs, leading to a better 

affinity of nanofillers to water molecules. This increase in water vapor permeability was limited when 

the CNCs were surface modified, although no improvement was observed. The affinity between 

hydrophilic CNCs and water molecules was also investigated by Espino-Pérez et al.60 who evidenced 

the increase in water vapour permeability according to the increasing content of neat CNC (increase of 

21.3%, 42.4%, and 195.8% for CNC contents equal to 2.5 wt%, 7.5 wt%, and 15 wt%, respectively). 

More recently, Espino-Pérez et al.22 confirmed this result, and proved that the surface 

hydrophobization of CNCs led to the improvement of the water vapour permeability of the related 

PLA/CNC nanocomposites. In our study, CNC-PGMA-Br were covered at their surface by 

hydrophobic PGMA chains, explaining the different trend observed by increasing nanofillers amount 

in the PLA matrix.  Moreover, it confirms the previously assumption, assuming that the CNC-PGMA-

Br introduced in the PLA matrix created a strong network, inducing a possible tortuosity through the 

material.  
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4. Conclusion 

Two different surface modifications were performed on the surface of CNCs. The first one, consisting 

in the surface-initiated radical polymerization of glycidyl methacrylate (GMA), led to polymerized 

CNC-PGMA-Br bearing functional epoxy groups on their surface. The second one consisted in the 

surface esterification of CNCs using long fatty acid (especially lauric acid), and led to modified CNC-

Lauric exhibiting a hydrophobic behavior. The introduction of both CNC-PGMA-Br and CNC-Lauric 

in a hydrophobic amorphous PLA matrix has been successfully carried out by the solvent casting 

method. Unmodified CNCs were also introduced in a PLA matrix, as a negative reference. In 

accordance with what can be found in the literature, the PLA_neatCNC nanocomposites prepared with 

10 wt% of neat CNC exhibited clear micrometric aggregates and a poor adhesion between the 

nanofillers and the polymeric matrix. However, both PLA_CNC-PGMA-Br and PLA_CNC-Lauric 

nanocomposites showed a clearly enhanced compatibilization. In fact, according to SEM and TEM 

observations of these nanocomposites cross-sections, the dispersion of both CNC-PGMA-Br and 

CNC-Lauric in PLA seemed to be improved, since no micrometric aggregates were distinguished, 

although the CNC-PGMA-Br were more aggregated at nanoscale than the CNC-Lauric. In case of 

CNC-PGMA-Br, their enhanced interface with the PLA can be attributed to cross-linking reaction 

between the highly reactive epoxy groups at their surface and the hydroxyl groups present at the end of 

the polymeric PLA chains. This reaction would occur during the nanocomposites preparation, and 

especially during the heat-pressing step. The hydrophobicity of CNC-Lauric was clearly evidenced by 

their enhanced dispersion in the PLA matrix. Regarding the barrier properties of the nanocomposites, 

and despite some surprising values obtained for the PLA references, the oxygen permeability was 

improved in both cases, although the influence of the CNC-PGMA-Br was more clearly distinguished 

than that of the CNC-Lauric, which could be explained by the formation of a strong network in 

PLA_CNC-PGMA-Br. These results are encouraging, especially in a scientific context, in which the 

development of bio-nanocomposites is currently challenging. In fact, although the preparation of 

CNC-PGMA-Br is more time-consuming and leads to small amount of materials, that of CNC-Lauric 

could be conceivable at a larger scale. It thus paves the way for the development of new bio-based 

nanocomposites with interesting properties, particularly for food packaging applications. In this 

perspective, it would be interesting to carry out further barrier properties towards other gases and 

organic molecules, in order to confirm their interest for specific food packaging applications.  
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2. Two distinct methods for the elaboration of 

multi-layered materials based on poly(lactic acid) 

and active cellulosic nanostructures 

The second part of this section is adapted from « M. Le Gars, B. Dhuiège, A. Delvart, P. Roger, M. 

N. Belgacem, K. Missoum, J. Bras – High barrier antioxidant PLA/nanocellulose multi-layered 

materials for packaging », submitted and under revisions in ACS Omega in April 2020. 
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Abstract 

In order to combine the outstanding properties of nanocellulosic materials (sustainability, crystallinity, 

high tensile strength, large specific surface area, low density, O2-barrier properties) with those of 

biobased poly(lactic acid) (transparency, stiffness, biodegradability), three-phase multi-layered 

materials (TML) were built up via two different methods. Indeed, two kinds of multi-layered materials 

were produced (i) by depositing in wet state a thin layer of nanocellulose from an aqueous suspension, 

or (ii) by introducing a thicker dry nanocellulosic film, both between two PLA sheets, and using a 

heat-pressing process. Furthermore, after having proved the efficiency of the two procedures, barrier 

properties of the materials towards both oxygen and water vapor were investigated, and results were 

highly encouraging. Indeed, even a very thin layer of cellulose nanocrystals inside the PLA-based 

material induced a reduction in oxygen and water vapor permeability of around 90% and 50%, 

respectively. Moreover, effect of the surface pre modification of the nanocelluloses with different 

active molecules (1-methyl-3-phenylpropylamine and natural rosins) was investigated. It was proved 

that the introduction of rosin-based nanoparticles inside the materials was responsible for their 

antioxidant activity. In a more general way, the presence of various amounts of nanocellulose as an 

inner layer between two PLA films led to an enhancement of the barrier and active properties of the 

final multi-layered materials. Owing to the simplicity and efficiency of the two proposed methods, this 

study opens the way to the elaboration of hybrid multi-materials which could be highly interesting, 

especially for food packaging applications. 

Keywords: 

Cellulose nanofibrils ─ Cellulose nanocrystals ─ Poly(lactic acid) ─ Multi-layered materials ─ Barrier 

properties ─ Antioxidant properties  
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1. Introduction 

Cellulose is a highly abundant biopolymer on earth, extracted most of the time from wood or annual 

plants. The cellulose fibers are composed of several fibrils, which were first isolated by Turbak et al.61 

in 1983, are currently presented as microfibrillated cellulose (MFC), nanofibrillated cellulose (NFC) 

or cellulose nanofibrils (CNFs), and are obtained after mechanical disintegration, generally preceded 

by an enzymatic or a chemical pretreatment. Such pretreatments aim to weaken the cellulosic fibers, 

and thus, to reduce the energy consumed during the mechanical step of their production62–64. Biobased 

CNFs materials are highly studied, and their production, as well as, their applications, were reported in 

several books and reviews10,65–67. Since the early 2010’s, CNF development has demonstrated 

exponential interest in scientific field, as well as, in industrial one, and there are currently nearly 60 

industrial producers all over the world. In 2016, CNFs were identified as the second bio-economy 

priority in Europe, thanks to their outstanding properties. Indeed, CNFs display high mechanical 

resistance and excellent barrier level, in addition to being biodegradable and biocompatible. All these 

properties make this bio-based material a prime candidate for many applications, such as packaging68, 

paper and board69, composites33, printed electronics70, biomedical devices71, etc. Another class of 

nanomaterials can be extracted from cellulosic biomass, by applying this time a chemical treatment. In 

fact, by subjecting biomass to a sulfuric acid hydrolysis, and thus by removing most of the amorphous 

parts of cellulose, cellulose nanocrystals (CNC) can be obtained. Their extraction was first reported by 

Ranby et al.72,73, and their production has been widely studied and optimized since last decades. 

Currently, the CNC annual production capacity is approximately close to 400 tons, and around 13 

companies already produce and market CNCs74,75. Like CNFs, CNCs exhibit outstanding mechanical 

and barrier properties76,77 and can find applications in similar fields, like among others, biomedical78,79, 

electronics70,80,81, coatings82 and composites82,83. Therefore, both CNFs and CNCs, owing to their 

exceptional intrinsic properties (morphology, crystallinity, large specific surface area, etc.), are nano-

sized renewable materials that can be used for many applications.  

Although nano-scale cellulosic materials present a wide range of applications and applied researches, 

composites field – and especially that of nanocomposites – is one of the most important targeted 

application in current ecological context. In fact, with consumer awareness of the use of biodegradable 

and synthetic plastic-free materials, packaging industry – and especially that of food packaging – has 

been constantly evolving for several years. Among biobased and biodegradable materials, poly(lactic 

acid) (PLA) is highly interesting because of its production from natural resources, as well as, its 

transparency, mechanical properties, and printability, making it a polymer of choice for replacing 

fossil-based plastics generally used in food packaging industry4,84. However, thermal and barrier 

properties of PLA are generally not sufficient for food packaging applications. In fact, its glass 

transition temperature is around 60 °C, and PLA is highly permeable to water vapor and oxygen, 

comparing to other food packaging traditional polymers. Inserting cellulosic nanostructures in PLA-
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based packaging makes it possible by combining their respective intrinsic properties, and thus, to 

produce packaging that is still biodegradable and more efficient in terms of mechanical and/or barrier 

properties. The elaboration of such multi-phasic materials has already been studied in literature, and 

the main type of process is based on the elaboration of nanocomposites. However, it is highly 

challenging, as the compatibilization between the hydrophilic nanocelluloses and the generally 

hydrophobic polymeric matrix needs to be highly improved, and numerous research groups proposed 

various procedures in order to enhance this compatibilization22,33,36,85. Another strategy consists in the 

incorporation of one or multiple layer(s) to improve final barrier and mechanical properties of the 

multi-layered system.  

The elaboration of multi-layered materials can be processed via different methods (like among others, 

layer by layer deposition, electrodynamic processing, microlayer co-extrusion, coating)38 which all 

aim to deposit a layer of a specific material on a polymeric substrate. As suggested, a multi-layered 

material is composed of at least two layers, but the thinnest layer is generally covered with another 

polymeric layer, different or not from the initial one. The compatibility between the layers is generally 

challenging, and that explains the common use of adhesive layers, especially in packaging industry. 

Regarding the literature, only few studies deal with the preparation of such PLA-based multi-layers 

materials. In 2013, Aulin et al.86 were among the firsts to perform the layer-by-layer deposition of 

CNFs combined with cationic polyethyleneimine (PEI) on a PLA substrate. They concluded about the 

efficient deposition of the nanocellulose/PEI mixture onto the PLA substrate, and highlighted the 

improvement of both oxygen and water vapor barrier properties of the final coated materials by 94% 

and 50%, respectively. This promising study was confirmed by the work of Meriçer et al.87 who 

produced multi-layered PLA-based materials including MFC by casting evaporation of both layer with 

improved mechanical- (increase in Young’s modulus by 60%) and barrier properties (decrease in 

oxygen permeability of one order of magnitude). Similarly, Hosseini et al.88 prepared multi-layered 

films based on PLA and fish gelatin by successive solvent casting procedures with enhanced oxygen 

and water vapor barrier properties compared to pristine PLA, by 87% and 91%, respectively.  

Furthermore, specific active compounds can be added to the food packaging to improve specificities of 

the packaging, like for example antibacterial, antimicrobial or antioxidant properties. This point was 

summarized in a recent review of Yildirim et al.89, describing the various active compounds generally 

used in food packaging and emphasizing the clear distinction between absorbers (scavenging systems) 

and emitter (releasing systems) compounds. In case of multi-layered materials, such active compounds 

are generally inserted inside the multi-layered structure, in order to be released through the packaging 

or to scavenge some specific molecules from food products. In a multi-layer strategy, the presence of 

both nanocelluloses and active compounds inside the active layer can help for their entrapment and/or 

their possible release. In the literature CNC have been mixed with silver nanoparticles52 or with 

carvacrol90 to confer them antibacterial or antioxidant properties, respectively. 
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Throughout this study, multi-layered materials based on PLA and nanocelluloses, including active 

molecules or not, were prepared following two different strategies. The first one consists in the wet 

deposition of a modified-CNC suspension on a PLA film, following by the heat-pressing with another 

PLA sheet above. Note that CNC were previously oxidized and covalently bound to aromatic 

molecules (1-methyl-3-phenyl-propylamine, or 1-M-3-PP) by an amidation procedure (previously 

detailed in Chapter II.3), leading to a low amount of 1-M-3-PP molecules on their surface. The 1-M-

3-PP molecule was chosen because of its aromatic rings, which are expected to bring sorption 

properties to the modified CNCs. The second strategy consists in the complexing of two PLA sheets 

with an inner layer consisting in a CNF or CNC casted film including adsorbed rosin nanoparticles 

(previously described in Chapter II.4). After processes optimization, all materials were characterized, 

and their structural, mechanical, barrier, and antioxidant properties were investigated.  
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2. Materials and methods 

 Materials 

Spray-dried cellulose nanocrystals (CNC) extracted from wood pulp were supplied from Canadian 

company Celluforce©. Cellulose nanofibrils (CNF) aqueous suspension (2 wt%) was provided by 

INOFIB (Saint-Martin d’Hères, France). 2,2,6,6-Tetramethyl-1-piperidinyloxy (TEMPO, 98%), 

sodium bromide (NaBr, BioXra, >99.0%), sodium hydroxide (NaOH, BioXtra, >98%, pellets), 

hydrochloric acid (HCl, ACS reagent, 37%), N-(3-Dimethylaminopropyl)-N’-ethylcarbodiimide (EDC, 

>97%), N-Hydroxysuccinimide (NHS, 98%), 1-methyl-3-phenylpropylamine (98%), 

Tetradecyltrimethylammonium Bromide (TTAB), Gum rosin (natural resin), Chloroform (>99%), and 

2,2-diphenyl-1-picrylhydrazyl (DPPH) were supplied by Sigma-Aldrich Chimie (France). Sodium 

hypochlorite solution (NaClO, 12% Cl) was provided by Carl Roth (France). Ethanol (95%) was 

purchased from Revol (France). Two different types of Earthfirst® PLA films (IndegeoTM) were 

supplied by Sidaplax (France) company. PLA film used in the section 3.1  exhibits a theoretical 

thickness equal to 75 µm, and that used in the section 3.2 exhibits a theoretical thickness equal to 25 

µm. 

 Elaboration of multi-layered materials by the wet way  

2.2.1. Modification of CNC via an amidation procedure using 1-M-3-PP 

molecules 

The grafting of 1-M-3-PP molecules on the surface of CNC was performed via a two-step procedure, 

previously described in Chapter II.3. Briefly, CNC were first TEMPO-mediated oxidized, and 

carboxylic groups were thus introduced on the surface of TEMPO-CNC. The amidation of 1-M-3-PP 

molecules on TEMPO-CNC was catalyzed by EDC/NHS reagents, and recovered CNC-1-M-3-PP 

were successfully surface modified, as detailed in Chapter II.3. 

2.2.2. Coating of the CNC suspension on a PLA substrate 

Before being coated, the PLA film was surface treated by corona effect, using a SG2 Generator 

(Société de Transfert Technologique, France), which was equipped with an ozone filter. By applying 

an electric discharge on the polymer surface, the corona treatment aims to create new polar carbonyl 

and hydroxyl groups, in order to increase the tension surface and the wettability of the film and thus, 

to facilitate the coating. Corona treatment was performed on the PLA film in motion at a speed equal 

to 2.5 m/min, and an intensity of 245 mA, with different number of passes under the generator.  

Once corona treated, the PLA film was coated using a bar coater device (LGP2, France). TEMPO-

CNC or CNC-1-M-3-PP suspension at 5 wt%, with a certain amount of isopropanol (5, 10 or 15 
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wt/wt) was deposited on the PLA substrate, with a coating speed equal to 3.5 m/min. Coated film was 

then dried at 40 °C, for 10 min in an oven. For each sample, two layers of CNC suspension were 

successively deposited in order to ensure a total recovering of the PLA film with the coating sauce.  

2.2.3. Heat-pressing of the coated PLA  

The multilayers materials were prepared by superposing previously coated PLA-TEMPO-CNC or 

PLA-CNC-1-M-3-PP films with another neat PLA film. The system was then heat-pressed (heat press 

device, Saint-Eloi Mécanique Outillage, France) between two metallic plates and two protective non-

adhesive paper sheets under 0.5 MPa pressure for 30 min at 110 °C.   

 Elaboration of multi-layered materials by complexing 

2.3.1. Preparation of rosin-based nano-emulsion 

The rosin-based nano-emulsion was prepared by the INOFIB startup, following a patented protocol91. 

This confidential protocol was previously described in Chapter II.4. 

2.3.2. Elaboration of neat and modified CNF and CNC films 

The neat and rosin-modified CNF and CNC films were prepared according to the procedure previously 

described in Chapter II.4. Briefly, a proper amount of the rosin nano-emulsion was added to an 

aqueous suspension of CNF (2 wt%) or of CNC (1 wt%) in order to respect a rosin/nanocellulose 

weight ratio equal to 0.11. Thirty minutes of magnetic stirring at room temperature was performed to 

adsorb rosin nano-emulsion onto the nanocellulose surface. The films were prepared by filtration and 

solvent casting in the case of CNF and CNC, respectively, and called CNF-Rosin and CNC-Rosin, 

respectively. 

2.3.3. Complexing of multi-layered materials by heat-pressing 

The multi-layered materials were prepared by incorporating one neat or modified CNC or CNF film 

between two PLA sheets. The 3-layer sandwich system was then heat-pressed, according to the same 

protocol as previously described in part 2.2.3, under 0.5 MPa pressure, for 10 min at 170 °C.  

 Characterization methods 

2.4.1. Contact angle and surface energy 

Contact angle measurements were carried out by depositing 5 µL-water droplets at the surface of the 

substrate at room temperature. OCA20 DataPhysics (DataPhysics Instrument) system equipped with a 

CCD camera was used to record the angles between the solvent and the substrate. The acquisition of 

contact angle and drop volume was collected for the first 60 s after deposition. At least five 

measurements were performed for each sample. The substrates surface energy was determined in 
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accordance with the Owens-Wendt model, and using four different solvents (water, ethylene glycol, 

glycerol and diiodomethane). Briefly, by decomposing the surface energy into a dispersive and polar 

parts, γd and γp, respectively, it is possible to express the total surface energy of the substrate s and a 

liquid l through γs=γs
d + γs

p and γl= γl
d + γl

p, respectively. These two surface energies are linked by the 

Equation III. 5. By plotting  γl ×
(1+cos θ)

2√γl
x

  as a function of √γs
p

γl
p
 with values obtained with the four 

different solvents, the curve slope can directly be linked to the substrate surface energy γs value. 

γl × (1 + cos θ) = 2√γs
dγl

d + 2√γs
p

γl
p
 

Equation III. 5. Owens-Wendt model for the determination of the substrate surface energy 

2.4.2. Surface tension 

The surface tensions of the different coating suspensions were measured using an Attension Sigma 

700 (Biolin Scientific) force tensiometer. Briefly, a platinum ring was tared and immersed in the 

suspension to be analyzed. The surface tension values were recorded and processed using 

OneAttension software. At least 5 measurements were performed for each sample.  

2.4.3. Oxygen permeability 

The oxygen permeability of the materials was investigated at 23 °C and 0% RH or 50% RH, using a 

Systech Illinois (USA) M8001 Oxygen Permeation Analyzer. Data were processed according to the 

ASTM-F 1927 standard. For each sample, masks with a specific exchange surface of 6.2 cm² were 

prepared and placed in the device chamber. Pure oxygen was used for the measurement. The final 

value of the oxygen transmission rate (OTR) was determined when a plateau was reached. The oxygen 

permeability coefficient (OP) was obtained from Equation III. 6, where l is the average thickness of 

the sample in mm.  

OP = OTR × l 

Equation III. 6. General relation between oxygen permeability coefficient (OP) and oxygen transmission rate (OTR) 

according to ASTM-F 1927 standard 

Because of the large error of measurement, all experiments should be at least duplicated, as much as 

possible (limited number of samples). 

2.4.4. Water vapor permeability  

Water vapor permeability of the materials was determined at 23 °C and 50% RH, according to the 

T448 om-09 TAPPI standard. For each sample, masks with a specific exchange surface of 6.2 cm² 

were prepared and mounted on specific test dishes filled with dried CaCl2 as desiccant material. A 

regular weighing of the whole system was performed, and the water vapor transmission rate (WVTR) 

in g/(m².day) was determined from Equation III. 7: 
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WVTR =
24x

Ay
 

Equation III. 7. General equation for the calculation of the water vapor transmission rate (WVTR) according to T 448 om-09 

TAPPI standard 

where x is the gain, in grams for the period y, in hours, and A is the exposed area of the sample (6.2 

cm² in our study). The water vapor permeability coefficient (WVP) was determined from Equation III. 

8: 

WVP = WVTR × l 

Equation III. 8. General relation between water vapor permeability coefficient (WVP) and water vapor transmission rate 

(WVTR) 

where l is the average thickness of the sample, in mm. Each experiment has been at least duplicated. 

2.4.5. Test on food product 

The influence of the multi-layered materials as packaging materials on the evolution of food product’s 

shelf-life was investigated. The protocol was inspired by the work of Bideau et al.93. Banana was 

selected as a food product reference because of its fast and colored degradation. Briefly, banana slices 

(~ 10 g) were freshly cut and placed in a sachet composed of the multi-layered, and hermetically 

closed with aluminum tape. The samples were stored for 72 h at 23 °C and 50% RH. Qualitative 

observations were performed on each sample.  

2.4.6. Scanning electron microscopy (SEM) 

SEM images were obtained from PLA films and multi-layered materials sections obtained by 

cryofracture, using a Quanta200 device. The working distance during the acquisition was between 9.8 

and 10.1 mm, with a voltage of 10 kV and at a magnification of x1000.  

2.4.7. Tensile tests 

Mechanical properties of the films were determined under specific conditions (23 °C, 50% RH) using 

an Instron Universal Testing Machine Model 4507 (Instron Engineering Corporation, Canton, MA) 

equipped with pneumatic. After its average thickness was measured, each sample (100 mm x 15 mm) 

endured a tensile cross-head speed of 10 mm/min, according to the French standard NF Q 03-004 

(July 1986). The samples were preconditioned at 23 °C and 50% RH at least one day before the 

experiment. At least five tests were carried out for each sample.  

2.4.8. UV-visible spectrophotometric direct transmission analysis  

Three samples of each film were prepared with dimensions equal to 15 mm x 50 mm. Direct 

transmittance, at a wavelength of 550 nm (T550nm), was measured at least three times for each sample, 

using a UV–vis spectrophotometer (UV-1800, Shimadzu). 
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2.4.9. Antioxidant activity characterization  

The DPPH assay (free radical 2,2-diphenyl-1-picrylhydrazyl DPPH•) was performed to determine the 

radical scavenging activity (RSA) of the samples. The method was adapted from the one recently 

proposed by Crouvisier-Urion et al.94. Samples of 100 mg of material previously prepared and placed 

in a closed vial containing 10 mL of a 50 mg/L solution of DPPH in ethanol, and were left under 

magnetic stirring in the dark and at room temperature. Aliquots of the medium solutions were 

collected at regular time intervals, and absorbance at 515 nm was measured (Asample), using a UV-vis 

spectrophotometer (UV-1800, Shimadzu). Note that in ethanol, DPPH• is purple and turns yellowish 

when it is in direct contact with an antioxidant molecule. The collected solutions were returned to the 

corresponding vial after each measurement. Absorbance measurement of the DPPH solution (ADPPH) in 

ethanol was performed at the same time, in order to correct for the auto-degradation of the DPPH• 

radical. From experimental data, the radical scavenging activity (RSA) at time t of each sample can be 

calculated from Equation III. 9: 

RSA(t) = 100 −
ADPPH(t) − Asample(t)

ADPPH(t)
× 100 

Equation III. 9. General equation for the calculation of the radical scavenging activity (RSA) of a material sample 

For each sample, the measurements of the RSA (in %) were duplicated and plotted as a function of the 

reaction time until a plateau was visible.  
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3. Results and discussions 

 Coating of wet CNC suspension for the elaboration of PLA-based 

multi-layered materials 

In this study, multi-layered materials based on two commercial poly(lactic acid) polymeric self-

standing films and an inner nanocellulose-based layer were performed via two different routes, as 

previously presented in parts 02.2 and 2.3. The first method consists, in a first step, in the deposition, 

via a coating procedure, of a CNC suspension on the surface of one of the PLA sheets. This step has 

been carefully optimized in order to ensure a homogenous deposition of the nanomaterials on the 

substrate. In this sense, four different single- or multi-layered materials were studied : a commercial 

PLA film (75 µm thick), a PLA-PLA film (160 µm thick) prepared by the heat-pressing of two single 

commercial PLA films, and two multi-layered PLA-CNC-PLA materials prepared by the coating of 

oxidized TEMPO-CNC or modified CNC-1-M-3-PP on one of the PLA film as an inner layer, and 

referenced as PLA-TEMPO-CNC (166 µm thick) and PLA-CNC-1-M-3-PP-PLA (177 µm thick), 

respectively. The theoretical and experimental thicknesses of all these materials are summarized in the 

Table III. 4. 

Sample Theoretical thickness (µm) Experimental thickness (µm) 

PLA 75 77 

PLA-PLA (thermopressed) 150 156 

PLA-TEMPO-CNC(coated)-PLA 150+coated layer thickness 156 

PLA-CNC-1-M-3-PP(coated)-PLA 150+coatd layer thickness 157 

Table III. 4. Theoretical and experimental thicknesses of each sample prepared following the wet multi-layer preparation 

3.1.1. Optimization of the coating step 

In the literature, only few publications deal with the coating of a CNC suspension on a PLA substrate. 

Indeed, due to intrinsic hydrophobic character of PLA, poor adhesion between aqueous polar coating 

sauce and PLA is generally observed. At both industrial- and lab-scales, corona treatment is frequently 

performed on the substrate in order to chemically modify its surface, especially by introducing polar 

functional groups at its surface. This chemical surface modification of PLA aims to improve its 

adhesion by enhancing its surface tension and polarity. Rocca-Smith et al.95 carried out a complete 

study on the effect of such a corona treatment on PLA sheet properties. They clearly proved the 

chemical modification of the PLA film after corona treatment, as well as, the increase in the surface 

energy of the film. In our study, in order to optimize corona treatment performed on our commercial 

film of PLA, its surface energy was determined after the film endured different corona treatments, and 
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results are presented in Figure III. 11. Note that the different corona treatments were quantified by the 

number of times the PLA film passed under the electrodes constituting the discharge generator.  

 

Figure III. 11. Dispersive and polar contributions of surface energies related to PLA films subjected to different corona 

treatments 

As expected, the total surface energy of PLA film does not change significantly by increasing the 

number of passes under the corona system. Indeed, as shown in Figure III. 11, this surface energy 

increased from 40 mN/m to 40.7 mN/m and 43.5 mN/m for 3 and 5 passes, respectively. However, the 

polar contribution increased from 2.9 mN/m to 12.9 mN/m and 20.7 mN/m for 3 and 5 passes, 

respectively. It clearly confirms the creation of polar groups on the PLA surface induced by the corona 

treatment.  

In order to investigate the behavior of the deposited coating sauces on the surface of the corona-treated 

PLA films, surface tensions of various aqueous CNC suspensions were determined. As described in 

part 2.2.2, different amount of isopropanol were added to the water TEMPO-CNC suspension, the 

latter being studied as a reference suspension. Indeed, taking into account the low amount of grafted 

molecules on the surface of modified CNC-1-M-3-PP (previously proved in Chapter II.3), it was 

assumed that the behavior of both TEMPO-CNC and CNC-1-M-3-PP aqueous suspensions was almost 

similar. Isopropanol was selected because of its common use in industry - especially in coating and 

printing industry - to reduce the surface tension of dampening solutions. Evolution of the TEMPO-

CNC suspension surface tension following the weight amount of isopropanol added to the suspension 

is plotted in Figure III. 12. 
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Figure III. 12. Surface tension of aqueous TEMPO-CNC suspensions prepared with various amount of isopropanol 

According to Figure III. 12, a clear decrease in TEMPO-CNC suspensions’ surface tension is 

observed by increasing the amount of isopropanol in the suspension, as expected. Indeed, due to its 

low surface tension, even a low amount of isopropanol can leads to a large decrease in the total surface 

tension of the suspension. As shown in Figure III. 12, by adding 15% (wt/wt) of isopropanol in the 

suspension, the surface tension decreases from 66.2 mN/m to 34.5 mN, or a decrease of almost 50%. 

These results are summarized in Table III. 5. Moreover, in order to concretely study the behavior of 

the suspensions deposited on PLA substrates, the adhesion work WA
T was calculated in each case, 

according to Equation III. 10: 

WA
T = γl × (1 + cos θ) 

Equation III. 10. General equation for the calculation of the adhesion work between a substrate and a liquid 

where 𝛾𝑙  is the surface energy of the liquid and θ the contact angle between the liquid and the 

substrate, more precisely between the TEMPO-CNC suspension with a certain amount of isopropanol 

and the corona-treated PLA. Measured contact angles and calculated adhesion work values are 

presented in Table III. 5. According to these results, the effect of corona treatment on the contact 

angle between the suspension and the PLA film is clearly visible. In fact, for a given suspension, the 

contact angle decreases by increasing the number of passes under the corona device. Moreover, by 

increasing the amount of isopropanol in the suspension, this contact angle decreases for a given 

number of passes under the corona device. By regarding calculated adhesion works, their values 

decrease by increasing the amount of isopropanol, but for a given suspension, the increasing of passes 

under corona led to an increase in adhesion work value. 
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Suspension 1 

wt% 

TEMPO-

CNC 

Surface 

tension 

(mN/m) 

Contact angle (°) Adhesion work (J) 

PLA 
PLA+ 

Corona*3 

PLA+ 

Corona*5 
PLA 

PLA+ 

Corona*3 

PLA+ 

Corona*5 

+0 wt% 

isopropanol 
66.2 ± 0.2 77 ± 2 51 ± 3 50 ± 1 81.1 ± 0.03 107.9 ± 0.06 108.8 ± 0.02 

+5 wt% 

isopropanol 
47.3 ± 0.0 65 ± 1 44 ± 2 44 ± 1 67.3 ± 0.02 81.3 ± 0.05 81.3 ± 0.02 

+10 wt% 

isopropanol 
39.6 ± 0.1 57 ± 1 33 ± 3 33 ± 2 61.2 ± 0.02 72.8 ± 0.09 72.8 ± 0.06 

+15 wt% 

isopropanol 
34.5 ± 0.1 44 ± 1 28 ± 2 27 ± 1 59.3 ± 0.03 65.0 ± 0.07 65.2 ± 0.04 

Table III. 5. Surface tensions of TEMPO-CNC suspensions prepared with various amount of isopropanol, contact angles of 

PLA substrates subjected to different corona treatments, and resulted calculated adhesion works between different previous 

substrates and suspensions 

All these results allowed the optimization of the coating process of a TEMPO-CNC suspension on a 

PLA substrate. In fact, after numerous trials and after having taken into account the visual aspects of 

the different coatings performed, it was assumed that the most homogeneous coating was achieved 

with a TEMPO-CNC suspension containing 15% (wt/wt) of isopropanol and a PLA substrate 

subjected to 5 passes under the corona generator. In a second step, the heat-pressing step was 

optimized too, and different parameters, like the temperature, pressure, and time, were tested. It was 

assumed that the best multi-layered materials were obtained at 110 °C and 0.5 MPa, with a contact 

time equal to 30 min. Materials previously presented in Table III. 4 were prepared following this 

optimized protocol.  

3.1.2. Barrier properties of multi-layered materials prepared by wet deposition of 

a CNC suspension 

The optimized protocol was applied to both TEMPO-CNC and CNC-1-M-3-PP aqueous suspension 

containing 15% (wt/wt) of isopropanol. Resulting PLA-TEMPO-CNC-PLA and PLA-CNC-1-M-3-

PP-PLA multi-layered materials were then characterized, as well as, a neat PLA film and a heat-

pressed PLA-PLA material without any inner coated layer, as reference. Investigation of the thickness 

of the coated layer was performed by different techniques (AFM, MEB) without success. In fact, due 

to the very low amount of deposited CNC, this investigation has proved highly difficult. However, 

regarding the literature,  Li et al.96  performed the coating of CNC on plastic substrates (poly(ethylene 

terephthalate, polypropylene, polyamide) using an automatic bar-coater, and the deposited CNC film 

thickness was determined equal to 600 nm. In our study, it is thus possible to similarly assume that the 

deposited layer thickness was around 500 nm, leading to a very low amount of CNC in the final 

material.  
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The barrier properties – especially towards oxygen and water vapor – of the prepared multi-layered 

materials were investigated. The oxygen and water vapor permeability values measured at 23 °C and 

50% RH are presented in Figure III. 13. Commercial PLA film exhibits an oxygen and water vapor 

permeability equal to 3.9 x 1018 +/- 0.3 x 1018 m3.m/m².s.Pa and 2.3 x 1016 +/- 0.3 x 1016 kg.m/m².s.Pa, 

respectively, which are consistent with values found in the literature4,6, although water vapor 

permeability values are much higher in our study. This significant difference can be attributed to the 

PLA degradation since its purchase, leading to a decrease of its barrier property. Moreover, by 

comparing the values obtained for single PLA with that of the heat-pressed PLA-PLA reference, it can 

be observed that oxygen permeability is slightly improved (equal to 2.4 x 1018 +/- 0.01 x 1018 

m3.m/m².s.Pa), whereas water vapor permeability value increases until 5.9 x 1016 +/- 0.9 x 1016 

kg.m/m².s.Pa. It can be attributed to the fact that both corona treatment and heat-pressing could 

degrade the structure of the PLA and thus create some holes inside the films, leading to a preferential 

path for gas molecules.  

 

Figure III. 13. Oxygen and water vapor permeability of neat commercial PLA film, PLA-PLA reference, PLA-TEMPO-

CNC-PLA, and PLA-CNC-1-M-3-PP-PLA multi-layered materials  

However, according to Figure III. 13, it can clearly be assumed that the presence of an inner TEMPO-

CNC layer between the two PLA films highly improves the barrier towards oxygen of the 

corresponding PLA-TEMPO-CNC-PLA sample, which exhibits an oxygen permeability value equal to 

0.45 x 1018 +/- 0.2 x1018 m3.m/m².s.Pa, or a decrease of almost 80% in regard to the PLA-PLA 

reference. Similar behavior is observed for PLA-CNC-1-M-3-PP-PLA sample, which exhibit an 

oxygen permeability equal to 0.15 x1018 m3.m/m².s.Pa, or a decrease of almost 94%. Note that for the 

PLA-TEMPO-CNC-PLA sample, no standard variation was obtained, and it is thus difficult to 

conclude about the specific influence of the 1-M-3-PP molecules grafted on CNC on the oxygen 
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permeability. Regarding the water vapor permeability, the values are equal to 2.7 x 1016 kg.m/m².s.Pa 

for either PLA-TEMPO-CNC-PLA and PLA-CNC-1-M-3-PP-PLA samples, or a reduction of almost 

54% compared to the PLA-PLA reference. This reduction was less significant that the reduction of the 

oxygen permeability and it can be related to the hydrophilic character of CNC, which have the ability 

to retain water. This phenomenon was observed by Fortunati et al.59 who prepared CNC/PLA 

nanocomposites by solvent casting, and observed that an increase in the amount of CNC led to a less 

important decrease in water vapor permeability. Similarly, Sanchez-Garcia et al.97 produced PLA-

based nanocomposites including cellulosic microfibers and observed that only 1 wt% of microfibers in 

the PLA matrix had an effect on water vapor permeability, higher amounts increasing this 

permeability. They assumed that poor dispersion of the fillers were responsible for lower tortuosity of 

water vapor molecules through the material. In our case, creation of cracks in the material during the 

heat-pressing can also be responsible for this increase in water vapor permeability. However, the 

highly significant decrease in oxygen permeability contradicts this assumption. 

 

Figure III. 14. Oxygen and water vapor permeability values required for food packaging materials according to specific 

foodstuffs and multi-layered materials (PLA-PLA, PLA-TEMPO-CNC-PLA, and PLA-CNC-1-M-3-PP-PLA) positioning 

(adapted from 98) 

Figure III. 14 shows the different oxygen and water vapor permeability values required for materials 

used for specific food packaging applications, and these values are compared to those determined from 

the materials studied and prepared in this work. According to Figure III. 14, it is confirmed that 

commercial PLA film is not enough barrier towards oxygen and water vapor for most of food 

packaging applications. Similar conclusions can be drawn for the PLA-PLA multi-layered reference 

material. However, by deposing even a very low amount of TEMPO-CNC or modified CNC-1-M-3-

PP between the two PLA sheets, corresponding multi-layered materials are clearly usable in food 

packaging, especially for meat products packaging applications. Figure III. 14 is highly interesting 
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since it exhibits the huge potential of such multi-layered materials including a very thin layer 

composed of nanocellulosic materials for food packaging applications.  

In order to simulate the influence of such a multi-layered material on the evolution of the shelf-life of 

a food product, small bags prepared from commercial polyethylene (PE) film, commercial PLA film 

and multi-layered material PLA-CNC-1-M-3-PP-PLA, containing banana slices were prepared and 

hermetically closed in order to avoid any opening to the external environment. In each case, visual 

aspect of the banana slice was qualitatively evaluated, and corresponded pictures are presented in 

Figure III. 15. 

 

Figure III. 15. Comparison on a banana slice shelf-life evolution with different materials simulating its packaging: 

polyethylene (PE), poly(lactic acid) (PLA), and multi-layered  PLA-CNC-1-M-3-PP-PLA, at 23 °C and 50% RH 

In this study, banana was chosen as food product because of its rapid and visual degradation. In the 

literature, Bideau et al.93 performed similar experiment using TEMPO-CNC combined with 

polypyrrole films to investigate banana preservation, related particularly to barrier and antioxidant 

properties of the films. In another study, Bideau et al.92 carried out antibacterial meat tests on pork 

liver in order to study the activity by contact of similar materials. In our case, even if test on meat 

product would have been interesting too, only banana products were tested. In Figure III. 15, the first 

line corresponds to the degradation of a banana at 23 °C and 50% RH without any packaging (negative 

reference). The second line corresponds to the evolution of a banana packaged in a polyethylene (PE) 

material, taken as positive reference, since PE is commonly used in food packaging industry. In the 

third line, banana slice was packaged in the commercial PLA material used in this study part, and no 

significant difference is observed between the PLA package and the PE one. However, by comparing 
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these pictures with the ones related to a packaging composed of PLA-CNC-1-M-3-PP-PLA materials 

(fourth line), it is possible to see a slight difference in terms of banana coloration. In fact, after 72 h in 

the PLA-CNC-1-M-3-PP-PLA packaging, the food product seems to be less brown colored. This 

could highlight the slower degradation of the banana induced by the package. However, at this stage, it 

is difficult to conclude about the role of the grafting of the 1-M-3-PP molecules at the surface of CNC, 

although the positive influence of CNC inside the package is confirmed once again. It is important to 

note that to investigate the role of the grafting of 1-M-3-PP aromatic molecules on the CNCs, sorption 

measures could have been performed. Indeed, in their study, Espino-Pérez et al.99 proved that the 

presence of even a low amount of similar aromatic molecules on the CNC surface leads to the sorption 

of aromatic compounds such as anisole and, to a lesser extent, cyclohexane.  

At this stage of the study, it is possible to conclude about the positive influence of a highly thin inner 

layer of nanocellulosic materials inside a PLA packaging on the barrier properties of the multi-layered 

materials. However, it is still difficult to clearly prove the role of the grafted 1-M-3-PP molecules on 

the material properties, and further experiments should be performed in this sense.  

 Multi-layered materials prepared by complexing  

In this second part, multi-layered materials (TML) based on both PLA and nanocellulose were built up 

via the complexing of three dry films: two commercial PLA films (different from the commercial PLA 

used in the first part) and a single neat or modified CNC or CNF self-standing film in between. As 

previously described in part 2.3.2, neat (or modified) CNC (or CNC-Rosin) and CNF (or CNF-Rosin) 

self-standing films were prepared by solvent casting or filtration processes, respectively, and were then 

heat-pressed between two PLA films (25 µm thick each) (see part 2.3.3), leading to TML-CNC (or 

TML-CNC-Rosin) and TML-CNF (or TML-CNF-Rosin) multi-layered materials. After several trials, 

the optimal conditions for the protocol of heat-pressing of multi-layered materials were determined. 

Indeed, it was observed that at a temperature lower than 150 °C, a delamination between the three 

layers occurred, and at 180 °C, a yellowing of the material was observed. It was found that setting the 

temperature at 170 °C allowed the preparation of homogenous and uncolored samples. Note that this 

process temperature was higher than the temperature used for the elaboration of multi-layered 

materials in the previous part (wet coating). It is due to the fact that CNC or CNF films are thicker (~ 

several tens of µm) than the CNC layer deposited by coating (~ 500 nm), and the temperature needs to 

be higher than the melting temperature of the PLA (approximately 150 °C) to permit the creep of the 

semi-crystalline polymer throughout the multi-layered system and to ensure good adhesion and sealing 

between the three layers. Table III. 6 summarizes all the samples with their respective references, as 

well as, their determined basis weight (in g/m²), and their theoretical and experimental thicknesses (in 

µm). 
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Sample 
Basis weight  

(g/m²) 

Theoretical 

thickness (µm) 

Experimental 

thickness (µm) 

Single films 

PLA 30 25 25 

CNC 67 40 40 

CNC-Rosin 61 40 44 

CNF 29 30 35 

CNF-Rosin 32 30 38 

Heat-pressed 

multi-layered 

(TML) materials 

TML-PLA 90 75 86 

TML-CNC 100 90 82 

TML-CNC-Rosin 121 94 94 

TML-CNF 90 85 78 

TML-CNF-Rosin 93 88 75 

Table III. 6. Samples references with corresponding basis weights (in g/m²), and theoretical and experimental thicknesses 

By comparing theoretical and experimental thicknesses presented in Table III. 6 for multilayers 

(TML) prepared with an inner layer composed of CNC or CNF, it is worth noting that the 

experimental thicknesses are lower than the theoretical ones (except for TML-CNC-Rosin sample). 

This discrepancy can be explained by the potential impregnation of the melted PLA through the CNF 

or CNC nanoporous films during the heat-compression process, leading to a decrease in the total 

thickness of the material.  

3.2.1. Structural and mechanical properties of complexed multi-layered materials 

In order to confirm the assumption made about the impregnation of the PLA layers within the 

cellulosic layer, the structure of the multi-layered (TML) materials was investigated using SEM 

imaging. The cross-sectional images are presented in Figure III. 16.  

In Figure III. 16 a) and b), the cross-sections of the commercial PLA film built up in the same heat-

pressing conditions as multi-layered materials and of the TML-PLA multi-layered system are 

respectively presented. Some defects can be observed on the PLA cross-section in Figure III. 16 a), 

that might have been generated by the heat-pressing process. The corresponding multi-layered TML-

PLA material (Figure III. 16 b)), composed of three heat-pressed PLA films, seems to be 

homogenous, and no separation between the three layers can be observed. However, some defects and 

cracks also appear, indicating that heat-pressing can affect the structure of the PLA-based materials. 

Figure III. 16 c) shows the cross-section of the TML-CNF. The inner CNF layer can be distinctly 

observed, although it seems to be impregnated with the top PLA layer. The boundary between the 

CNF and the lower PLA layer can be clearly distinguished, showing the poor compatibility between 

neat CNF and PLA. A similar boundary can be observed in the cross-section of the TML-CNC 

presented in Figure III. 16 d). The top PLA layer seems to be impregnated in the inner CNC layer, 

whereas the boundary between the CNC and the lower PLA layer is visible. 
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Figure III. 16. SEM images of a) commercial PLA heat-pressed film, b) reference TML-PLA multi-layered material, and 

multi-layered prepared with c) a CNF film, and d) a CNC film as the inner layer 

Figure III. 16 a) and b) are interesting since they allow the conclusion about the efficiency of the 

heat-pressing method to complex several PLA sheets together. The process is not entirely 

homogeneous, probably because of a difference in temperature and pressure in the heat-press device, 

and it requires further optimization. However, both TML-CNF and TML-CNC materials are self-

standing and uniform, without delamination between the layers. In their study, Sanyang et al.100 

prepared starch/PLA bi-layered materials using a casting procedure and observed, by SEM analysis, 

the interface between the two layers, probably due to the poor compatibility between the two 

components. However, they found the enhancement in mechanical and barrier properties in their bi-

layered materials.  

Regarding the transparencies of the different materials studied in this work, their transmittances were 

measured at the wavelength of 550 nm, corresponding to the visible light wavelength, and show the 

values in Figure III. 17 c). The commercial film of PLA exhibits a transmittance at 550 nm equal to 

91%, which is consistent with values found in the literature101. CNC and modified CNC-Rosin films 

have transmittances of 61% and 82%, respectively. The value obtained for neat CNC is consistent with 

the literature, although this value is highly dependent on the dispersion state and chirality of the CNC 

inside the film102,103. The transmittances of CNF and CNF-Rosin films are equal to 15% and 11%, 

respectively, and highlight the fact that CNF-based films are less transparent than CNC films. These 
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values are consistent with values found in the literature104 for similar CNF. In both cases, the presence 

of rosin nanoparticles in the film does not significantly influence the optical transparency of the CNC 

or CNF film. 

 

Figure III. 17. Photographs of films prepared by a) solvent-casting of a suspension of modified CNC-Rosin, and b) filtration 

of a suspension of a modified CNF-Rosin suspension, and c) Transmittance values of single films (PLA, CNC, CNC-Rosin, 

CNF, CNF-Rosin) and corresponding multi-layered materials 

Figure III. 17 shows photographs of prepared films of modified CNC-Rosin (Figure III. 17 a)) and 

modified CNF-Rosin (Figure III. 17 b)) and highlights their self-standing and transparency properties. 

The transmittance values of multi-layers indicate that their transparency decreases by incorporating a 

PLA, CNC or CNC-Rosin layer between two PLA films. The transmittances of TML-PLA, TML-

CNC and TML-CNC-Rosin are very close and equal to 47%, 47%, and 50%, respectively. Despite the 

lower transmittance values of CNC-based films compared to pure PLA film, the incorporation of the 

nanocellulosic films does not influence the entire multi-layered material transmittance. However, by 

incorporating a CNF or CNF-Rosin layer in the multi-layered system, transmittance slightly increases 

up to 21% and 17%, respectively. This result could be explained by the fact that the pores present in 

both CNF and CNF-Rosin films are closed and covered by transparent PLA during the heat-pressing 

procedure, leading to an increase in the transparency. Meriçer et al.87 combined one layer of PLA with 

a top layer of CNF through a casting procedure, and reported a similar trend in the transmittance 

values. For food packaging applications, transparency of materials is essential for aesthetic, marketing, 

and consumer satisfaction, as often mentioned in the literature related to this topic37,38.  
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The mechanical properties of both single- and multi-layered materials were also investigated. The 

values of Young’s modulus E are presented in Figure III. 18.  

  

Figure III. 18. Young's modulus values measured on single films (PLA, CNC, CNC-Rosin, CNF, CNF-Rosin) and 

corresponding multi-layered materials 

According to these values, commercial PLA film exhibits a Young’s modulus equal to 3.0 GPa. 

Although this value is highly dependent on the type of PLA and its processing, it is consistent with the 

literature values4,5. Young’s modulus of CNC and CNF films is not affected by the presence of 

adsorbed rosin nanoparticles at the nanocelluloses surface. In fact, from the values presented in Figure 

III. 18, Young’s modulus of CNC and CNC-Rosin is equal to 17 GPa and 13 GPa, respectively, and 

CNF and CNF-Rosin have the modulus equal to 8.1 GPa and 8.4 GPa, respectively. These values are 

consistent with the values found in the literature for CNF films, although the values obtained for the 

CNC films are somewhat higher10,105–107. Note that these values are highly linked to the nature of the 

nanocelluloses, as well as to their dispersion and orientation. Nevertheless, Young’s modulus values of 

multi-layered materials are lower than those of corresponding single films, probably due to the heat-

pressing process inducing some defects in the material structure and thus a relative fragility, as 

suggested by SEM images in Figure III. 16. However, the presence of nanocellulosic film between 

the two PLA sheets clearly improves the final mechanical properties. In fact, in each case, Young’s 

modulus of the multi-layered material (TML-CNC, TML-CNC-Rosin, TML-CNF or TML-CNF-

Rosin) is at least 2.5 times higher than the modulus of the TML-PLA sample. It can be explained by 

the higher Young’s modulus of the inner nanocellulosic layer compared to the pure PLA film, or by 

the relatively good adhesion between the three layers.  

The evaluation of the mechanical properties is crucial when thinking about packaging applications, 

and especially food packaging, since one of the purposes of the food packaging material is to protect 

the product during its transportation and handling, while ensuring its mechanical integrity until it 

reaches the consumer88,108.  
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3.2.2. Barrier and antioxidant properties 

Still focusing on food packaging applications, barrier properties of the multi-layered materials (TML), 

as well as, those of the commercial PLA film, were investigated. Values of oxygen and water vapor 

permeability are presented in Figure III. 19. As expected, CNC and CNF films have a high barrier 

against oxygen (with values equal to 0.02 and 0.01 x 1018 m3.m/m².s.Pa, respectively) but low barrier 

towards water vapor (with values equal to 8.9 ± 0.3 and 14.3 ± 0.2 x 1016 kg.m/m².s.Pa, for CNC and 

CNF films, respectively). These values are expected for such nanocelluloses. In fact, the dense and 

entangled network of nanomaterials created in the dry films causes their high oxygen barrier properties, 

whereas their hydrophilic behavior explains their high water vapor transmission rate. Furthermore, a 

commercial single PLA film - different from the one used in the preparation strategy for wet multi-

layered materials - exhibits an oxygen and water vapor permeability equal to 1.8 x 1018 m3.m/m².s.Pa 

and 3.7 ± 0.4 x 1016 kg.m/m².s.Pa, respectively, which is consistent with values found in literature4,6. 

The water vapor permeability value is still much higher in this study, which can be linked to the 

degradation of the commercial PLA in ambient conditions since its purchase (two years ago).  

 

Figure III. 19. Oxygen and water vapor permeability of neat commercial PLA film, and multi-layered materials with PLA, 

CNC, CNC-Rosin, CNF, and CNF-Rosin films as inner layers (TML-PLA, TML-CNC, TML-CNC-Rosin, TML-CNF, and 

TML-CNF-Rosin, respectively) 

As seen in Figure III. 19, oxygen and water vapor permeability values of multi-layered TML-PLA 

material increased to 8.1 x 1018 m3.m/m².s.Pa and 6.1 x ± 0.6 x 1016 kg.m/m².s.Pa, respectively. This 

increase is attributed to the heat-pressing process, during which some cracks or pores are created in the 

materials, inducing a preferential path for both oxygen and water vapor molecules. PLA crystallinity 
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might also be influenced by the heat-pressing step. The presence of a nanocellulosic layer between the 

two PLA films clearly decreases the oxygen permeability of the multi-layered materials. Indeed, TML-

CNC and TML-CNF exhibit an oxygen permeability equal to 0.1 x 1018 m3.m/m².s.Pa and 0.3 x 1018 

m3.m/m².s.Pa, respectively. The oxygen permeability is thus reduced by 80 and 27 times, respectively, 

which is highly promising. However, the presence of rosin on the nanocellulose surface seems to 

increase these values up to 0.9 x 1018 m3.m/m².s.Pa and 1.2 x 1018 m3.m/m².s.Pa, for TML-CNC-Rosin 

and TML-CNF-Rosin, respectively. This increase in oxygen permeability after the adsorption of rosin 

onto nanocellulosic materials could screen the hydrogen interactions, resulting in the spacing of the 

nanocrystals or the nanofibrils away from each other, and thus inducing a more porous cellulosic 

structure. The values obtained for water vapor permeability are equal to 2.3 ± 0.2, 2.9 ± 0.2, 4.5 ± 0.5, 

and 3.2 ± 0.5 x 1016 kg.m/m².s.Pa, for TML-CNC, TML-CNC-Rosin, TML-CNF, and TML-CNF-

Rosin, respectively. Water vapor permeability is enhanced in both cases with the introduction of 

nanocelluloses in the materials, compared to TML-PLA material, although any trend can be drawn for 

the presence of rosin in the sample. In addition, as the molecules composing the gum rosin mixture 

(previously detailed in Chapter II.4) are hydrophilic, their presence in both TML-CNC-Rosin and 

TML-CNF-Rosin should not positively influence the barrier properties against water vapor.  

However, it is interesting to position the multi-layered materials prepared in this study in relation to 

the polymers classically used in food packaging industry, as shown in Figure III. 20. Note that in 

Figure III. 20, neither oxygen and nor water vapor permeability values are normalized with respect to 

their thickness, unlike what has been done for values presented in Figure III. 19. These are not 

permeability but transmission rate. Moreover, values of oxygen permeability were measured at 0% RH, 

whereas all other materials in Figure III. 20 were characterized at 50% RH. However, since only a 

general trend is required here, this does not affect the conclusions made from this Figure III. 20. As 

expected and observed in the previous part (see Figure III. 14), the commercial PLA film used in this 

part is not a strong enough barrier against oxygen and water vapor to compete with the other synthetic 

polymers, in terms of the food packaging applications requirements.  
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Figure III. 20. Oxygen and water vapor permeability values required for food packaging materials according to specific 

foodstuffs and TML multi-layered materials (TML-PLA, TML-CNC, TML-CNC-Rosin, TML-CNF, and TML-CNF-Rosin) 

positioning (adapted from 98) 

Moreover, the multi-layered TML-PLA material ─ prepared with an inner PLA layer ─ exhibits 

somewhat interesting properties which are, in fact, close to those required for a packaging of low fat 

and dry food. The multi-layered materials prepared with a nanocellulosic inner layer come closer, in 

terms of barrier properties, to meat packaging materials. However, only the material containing a neat 

CNC casted film (TML-CNC) could be used as such a meat packaging material. Other materials 

(TML-CNC-Rosin, TML-CNF, and TML-CNF-Rosin) are not a strong enough barrier towards oxygen 

and water vapor, although they could also be used as materials for low fat and dry food packaging. In 

addition, it could be highly interesting to investigate the sorption properties of the materials containing 

rosins in relation to aromatic compounds. Indeed, the presence of aromatic groups brought by rosin 

molecules could interact with aromatic rings of volatile compounds99, and so enhance some specific 

sorption properties, interesting for special food packaging applications, as already studied in the 

literature109.  

In addition to their antimicrobial properties, widely demonstrated in the literature110,111, antioxidant 

properties of natural rosins was investigated. Indeed, oxidation is one of the main degradation 

processes occurring during food degradation. Several methods exist to characterize this antioxidant 

activity, as presented in the review of Gomez-Estaca et al.112. Among these methods, the DPPH assay 

is classically used to determine the efficiency of antioxidant-active materials, as previously detailed in 

part 2.4.9. Crouvisier-Urion et al.94 performed the DPPH assay on chitosan/lignin composites films. 

Lignin is a known antioxidant compound, and the authors investigated the kinetics of the radical 

scavenging activity (RSA) of the films. They found that, for any antioxidant compound, RSA kinetics 

always decreases and generally reaches a plateau, with the value of this plateau a characteristic of the 
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antioxidant. In our study, a similar protocol as that proposed by Crouvisier-Urion et al.94 was 

performed on commercial rosins, for the first time. In Figure III. 21, the RSA evolution of the rosins 

is plotted as a function of time, reaching a plateau leading to up to 90% decrease in the DPPH radical. 

It highlights the high antioxidant capacity of the rosin mixture.  

 

Figure III. 21. Evolution of the radical scavenging activity (RSA) as a function of time for different samples: neat CNC and 

CNF films, CNC-Rosin and CNF-Rosins films, TML-CNC-Rosin and TML-CNF-Rosin, and a rosin mixture 

Moreover, the DPPH test was then performed on neat CNC, neat CNF, modified CNC-Rosin, and 

modified CNF-Rosin films, as well as, on TML-CNC-Rosin and TML-CNF-Rosin multi-layered 

materials. The resulted RSA kinetics are plotted as a function of time in Figure III. 21. The 

antioxidant capacity of CNC-Rosin and CNF-Rosin films is clearly observed, with the RSA value at 

the plateau equal to 21% and 20%, respectively. The CNC and CNF films were studied as a negative 

reference, and the observed unstable values can be directly linked to the fact that nanocellulose films 

were slightly disintegrated in the ethanol medium. However, it is noteworthy that neither CNC nor 

CNF exhibit any antioxidant capacity, as expected. In this sense, it is assumed that rosin nano-

emulsion present in CNC-Rosin and CNF-Rosin films are still active against oxidation. Multi-layered 

materials TML-CNC-Rosin and TML-CNF-Rosin were also analyzed through the DPPH test. This 

experiment may be controversial and need some further explanations. Indeed, in DPPH assay, 

antioxidant compounds need to be in direct contact with radicals. An additional DPPH test was 

performed on samples fully sealed (no direct contact between the inner layer and the DPPH solution), 

and no significant decrease in RSA was observed. In this experiment, the inner cellulosic layer of the 

multi-layered materials is in direct contact with the DPPH solution, leading to the RSA values at the 
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plateau equal to 29% and 43% for TML-CNC-Rosin and TML-CNF-Rosin samples, respectively. 

These results highlight the activity of the rosin nanoparticles inside the multi-layered materials. 

However, it is difficult to deduce anything about the possible migration of the rosin nanoparticles 

through the films. Future release experiments should be performed on TML-CNC-Rosin and TML-

CNF-Rosin samples, as well as on CNC-Rosin and CNF-Rosin films, to determine whether the 

antioxidant properties are due to the surface activity of the films or not. Moreover, according to the 

type of application, different antioxidant phenomena can be envisaged. Nevertheless, at this stage of 

the study, it can be assumed that TML-CNC-Rosin and TML-CNF-Rosin films are antioxidants by 

direct contact with the inner layer, which emphasizes the role of rosin nanoparticles in the films. 

Although they do not significantly influence the barrier properties against oxygen and water vapor 

molecules, they bring the antioxidant behavior to the prepared films, which is highly sought after for 

many food packaging applications. In addition, to go further in the characterization of all the multi-

layered materials presented in this study, it would be interesting to investigate the possible phenomena 

of release and migrations of molecules from the materials, which are very critical for the elaboration of 

food packaging materials.  
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4. Conclusion 

This study highlights two different effective methods for the development of PLA-based multi-layered 

materials containing different amounts of cellulosic nanostructures. The first method, consisting of the 

wet deposition of a modified CNC aqueous suspension on a PLA substrate, and following by the heat-

pressing with another PLA film, allows concluding on the positive influence of even a very thin layer 

of CNC inside the material on the final barrier properties towards both oxygen and water vapor. The 

second method, consisting of the complexing of a dry CNC or CNF self-standing film modified with 

natural rosins by heat-pressing between two PLA sheets, clearly shows a significant improvement in 

oxygen barrier properties of the multi-layered materials. Moreover, presence of rosin nanoparticles in 

the inner cellulosic layer provides antioxidant properties to the materials. These two procedures make 

it possible to incorporate nanocelluloses – modified or not – into a PLA matrix quickly and easily, 

which opens the way to the development of hybrid-materials containing nanostructures and active 

compounds for, among others, food packaging applications.  
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Conclusions of Chapter III 

The aim of the Chapter III was the elaboration of poly(lactic acid)-based materials including 

designed nanocelluloses (previously described in the Chapter II) for final food packaging applications. 

Two main different strategies were thus developed, and related materials were characterized.  

▪ In the first section III.1, nanocomposites were produced at laboratory scale by introducing, at 

different charge contents, the modified CNC-PGMA-Br (described in Chapter II.1) and CNC-Lauric 

(described in Chapter II.2.2) in a PLA matrix, by solvent casting method. As detailed in the Chapter I, 

the dispersion of CNCs in a hydrophobic polymeric matrix is still a huge challenge. In this sense, the 

morphology of the PLA_CNC-PGMA-Br and PLA_CNC-Lauric nanocomposite materials was 

investigated by SEM and TEM. In both cases, the dispersion of nanofillers was enhanced, although the 

two samples exhibited different morphologies. In the case of PLA_CNC-PGMA-Br, a distinct network 

was clearly observed and related to the possible reaction between still reactive epoxy groups on 

polymerized CNC-PGMA-Br and hydroxyl groups present at the ends of PLA chains. On the other 

hand, hydrophobic behavior of CNC-Lauric seemed to clearly better enhance their dispersion in the 

PLA matrix. Furthermore, all the nanocomposites exhibited an improvement in the barrier properties 

towards oxygen and water vapor, with , respectively, the best reached decreasing equal to 40% and 

80%, respectively, for the PLA_CNC-PGMA-Br (with 10 wt% of charge content). These barrier 

properties are encouraging, especially for what the development of biobased food packaging materials 

concerns.  

 

▪ In the section III.2, another strategy was proposed for the preparation of materials based on 

both nanocelluloses and PLA. In fact, multi-layered materials were produced, with an inner layer 

composed of nanocelluloses ─ namely CNC-1-M-3-PP (described in Chapter II.3) and CNC-Rosin or 

CNF-Rosin (described in Chapter II.4) ─ previously modified with active molecules. Two routes were 

exposed for the introduction of the cellulosic layer: by coating (leading to a thin layer) or by 

complexing with a thicker dried film of nanocellulose. In both cases, final materials exhibited a 

decrease in oxygen permeability close to 90% (compared to the multi-layered PLA-PLA-PLA as 

reference). The decreasing in water vapor permeability of 50% was lower but also significant, and 

these barrier properties are highly encouraging. Moreover, the introduction of active molecules was 

carried out via their attachment (covalent or not) to the nanocelluloses. In fact, the antioxidant 

properties of rosins adsorbed on the CNC-Rosin or CNF-Rosin was found in the final multi-layered 

materials. Finally, the proposed multi-layered strategy allows the introduction of a huge panel of 

active molecules, and thus opens the way to the production of barrier and active food packaging 

materials. 
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The Table III. 7 summarizes the different materials prepared and presented in the Chapter III, as 

well as, their processing method, and the decrease in both oxygen and water vapor permeability 

determined for each samples.  

Chapter Strategy Method 
Designed  

nanostructures 

Barrier properties 

Decrease in 

oxygen 

permeability 

(%) 

Decrease in 

water vapor 

permeability 

(%) 

III.1 
PLA-based 

nanocomposites 

Solvent 

Casting 

CNC-PGMA-

Br_1h 

(Section II.1) 

10% or 40% 

(charge content:  

5 or 10 wt%) 

50% or 80%  

(charge content:  

5 or 10 wt%) 

CNC-Lauric 

(Section II.2.2) 

10%  

(charge content:  

5 wt% or 10 wt%) 

/ 

III.2 

PLA-based 

multi-layered 

materials 

Coating +  

Heat-pressing 
CNC-1-M-3-PP 

(Section II.3) 

90% 50% 

Dried films +  

Heat-pressing 

CNF-Rosin and 

CNC-Rosin  

(Section II.4) 

90%  

(for both CNC-

Rosin and CNF-

Rosin) 

50% 

(for both CNC-

Rosin and CNF-

Rosin) 

Table III. 7. Summary of the different final PLA-based materials presented in the Chapter III, and corresponding oxygen and 

water vapor barrier properties improvement 
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General conclusions and perspectives 

This PhD project focused on the surface modification of cellulose nanocrystals (CNCs), in order to 

enhance their compatibilization with a hydrophobic poly(lactic acid) (PLA) matrix. The main targeted 

application was the development of PLA-based materials for food packaging applications. The barrier 

and/or active properties of the final materials were thus the intended and targeted properties.  

The Chapter I presented, in a complete manner, the general context of this study, namely the desire 

for a transition from fossil-based plastic materials to biobased and/or biodegradable ones. Knowing 

that food packaging is one of the most demanding sectors in plastic materials, the Chapter I mainly 

focused on this field. To date, no ideal solution has been developed to replace packaging petroleum-

based materials, but a biobased material has stood out from the others for several years: the poly(lactic 

acid), also known as PLA. Furthermore, the use of nanocelluloses ─ cellulose nanocrystals (CNCs) or 

nanofibrils (CNFs) ─ to enhance the PLA properties has been the subject of numerous researches in 

the last decades, as presented in the Chapter I. Furthermore, the compatibilization of hydrophilic 

nanocelluloses, and especially CNCs, with the hydrophobic PLA remains a huge challenge.  

 

 

 

Figure 1. Main evolution in the number of publications and patents dealing with the main topics of the project 

(Functionalization of CNCs ─ CNCs and PLA ─ CNCs and PLA for food packaging applications) during the timeline of the 

project (Jan. 2017 – Jan. 2020) 
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The Chapter I synthesized the different chemical modifications of CNCs presented in the literature, as 

well as, the different routes for the preparation of PLA-based materials including the modified or not 

CNCs. The literature review also confirmed the recent CNCs use for food packaging applications. In 

fact, over this PhD project timeline (2017-2020), the number of publications and patents linked to the 

main PhD topics has largely increased, proving the innovativeness, as presented in Figure 1. 

It is therefore fluidly that this PhD project was divided into two main complementary parts. In the 

Chapter II, CNCs were modified via different routes, with the aim of effectively grafting various 

molecules or polymers onto their surfaces, and keeping in mind a more environmentally friendly 

chemistry. The question of feasibility on an industrial scale was also an important point in the progress 

of this project. Then, in a second step (Chapter III), the interest of the different chemical 

modifications of the CNCs has been studied, with the development of materials based on both PLA 

and modified CNCs, for food packaging purposes.  

This multi-disciplinary PhD project has allowed for a variety of experiments to be carried out, from 

chemical modifications and characterization of cellulose nanocrystals, to the development of final 

materials, including the investigation of their barrier properties. In order to have an overview of the 

work presented throughout this PhD manuscript, the main results obtained in the Chapters II and III 

are summarized in the Table 1 and Table 2, respectively, as well as, the main related perspectives.  

The Chapter II proposed different routes for the surface modification of cellulose nanocrystals, with a 

panel of four modification methods, resulting in the efficient production of CNCs decorated with the 

poly(glycidyl methacrylate) (PGMA) polymer (II.1), fatty acids (lauric and stearic acids) (II.2.2), 

aromatic 1-methyl-3-phenylpropylamine molecule (II.3), or rosin-nanoparticles (in a short additional 

part) (II.4). These modifications were efficiently performed after having optimized the reaction 

conditions, and led to interesting modified CNCs.  

First, the PGMA chains polymerized from the pre-functionalized CNC-Br via a controlled SI-ATRP 

procedure induced the presence of highly reactive groups at their surface. Two different times of 

polymerization led to different amount of polymer at the surface of the CNCs (50% w/w and 80% w/w, 

for 1h and 24h of polymerization, respectively). These results are encouraging since these epoxy 

groups could lead to the improvement of their compatibilization with a polymer matrix. Nevertheless, 

the SI-ATRP method induced the use of metallic salts during the polymerization, and a perspective 

would be the carrying of another novel polymerization (like the ARGET ATRP or another metal-free 

ATRP) in order to simplify the washing steps. Moreover, by controlling the grafting densities of the 

BIB initiator on the CNCs, it would be interesting to control the density of the PGMA chains on the 

CNC. Furthermore, another perspective would be to take advantage of the epoxy groups by reacting 

them with PLA chains or other compatibilizing agents, for example, and thus obtain multi-branch 
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structures, with a huge range of possibilities. However, this strategy only allows very small quantities 

of CNCs to be grafted, which will remain a barrier to their use in further applications.  

The novel procedure for the esterification of CNCs with long aliphatic chains (using both lauric and 

stearic acids) is highly encouraging, since by avoiding the use of organic toxic chemicals, satisfying 

grafting densities were achieved, and the hydrophobic behavior of modified CNCs was clearly 

evidenced. In perspective, this esterification route could be more optimized and performed at larger 

scale. To do this, the washing step would no longer have to be carried out by centrifugation (time-

consuming), but by filtration. This would make it possible to produce CNCs on a large scale, and 

would considerably expand the possible applications.  

Finally, the two-steps procedure, involving a well-known TEMPO-mediated oxidation followed by an 

amidation reaction (catalysed by EDC/NHS compounds) was also efficiently performed. The presence 

of aromatic grafted molecules on the CNCs surface was clearly highlighted and is encouraging for 

what sorption properties concerns, especially towards aromatic compounds. Moreover, the amidation 

procedure using the DMTMM (4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium 

chloride)) reagent through a one-step activation would be highly interesting in a spirit of time and 

chemicals reducing. Furthermore, the adsorption of the 1-methyl-3-phenylpropylamine on the CNCs 

was evidenced, although the washing step performed during the adsorption experiment (QCM-d) was 

not similar to that of the grafting procedure. The investigation of the adsorption of 1-M-3-PP on CNCs 

should therefore be further conducted. For this adsorption at higher scale, no toxic chemicals or long 

and tedious washing steps would be necessary, which are often two limiting steps in the up-scaling.  
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Chapter II.1 

▪ Efficient SI-ATRP of GMA onto the 

CNCs surface 

▪ Controlled polymerization 

▪ Presence of reactive epoxy groups on 

the polymerized CNCs 
 

▪ Polymerization of the PGMA via 

novel atom transfer radical 

polymerizations like ARGET ATRP 

or metal-free ATRP 

▪ Different grafting densities of the 

grafted BIB initiator on CNC-Br for a 

more controlled and optimized amount 

of PGMA polymer on CNCs 

▪ Functionalization of highly reactive 

epoxy groups bearing by CNC-

PGMA-Br with poly(lactic acid) 

chains or other compatibilizing agents 

(multi-branch structure) 
 

Chapter II.2 

▪ Novel process for the efficient 

esterification of CNCs with long 

aliphatic carboxylic acids (lauric and 

stearic acids) 

▪ Clear positive influence of the solvent 

exchange of CNCs suspension from 

water to acetone 

▪ No toxic chemicals 

▪ Hydrophobicity of modified CNCs 
 

▪ Optimization of the reaction 

conditions (i.e., initial CNCs 

concentration in acetone, amount of 

carboxylic acids) 

▪ Pilot-scale tests for the efficient 

grafting on a large amount of CNCs 
 

Chapter II.3 

▪ Optimized two-steps immobilization 

of aromatic 1-methyl-3-phenyl-

propylamine on CNCs (TEMPO-

mediated oxidation and EDC/NHS 

catalysed amidation) 
 

▪ Optimization of the reaction 

conditions (i.e., amine and EDC/NHS 

amounts, reaction time)  

▪ Aromatic molecules sorption capacity 

of grafted CNCs 

▪ Comparison with other amidation 

procedure, like that involving 

DMTMM (4-(4,6-dimethoxy-1,3,5-

triazin-2-yl)-4-methyl-morpholinium 

chloride)) common reagent 

▪ Adsorption of the 1-methyl-3-

phenylpropylamine on a large amount 

of CNCs (pilot-scale) 
 

Table 1. Main results and perspectives of the chemical modifications of CNCs performed in this PhD project (Chapter II) 

 

In order to investigate the behavior of the various modified CNCs in final materials, two types of 

PLA-based materials were prepared, and corresponding results were reported in the Chapter III, and 

summarized in the Table 2. 
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The first strategy for the elaboration of final materials was that of nanocomposites, involving PLA as 

the polymeric matrix, and the modified CNCs as nanofillers. Polymerized CNCs with PGMA chains 

on their surface, as well as, esterified CNC with lauric acid were thus introduced in the PLA by the 

solvent casting method, and in both cases, an improvement in their dispersion, compared to that of 

unmodified CNCs, was clearly observed. Moreover, a significant improvement of the barrier 

properties towards oxygen and water vapor was highlighted, confirming the well-dispersion state of 

the nanofillers in the matrix. In perspective, it would be interesting to explore more in detail the 

different interfaces between the fillers and the PLA, and also understand the visible network created 

by the introduction of polymerized CNC-PGMA-Br in the PLA. Finally, since a well dispersion of the 

CNCs was reached thanks to their surface modification, the increasing of their content in the matrix 

(higher than 10 wt%) could significantly enhance the final thermomechanical and barrier properties of 

the nanocomposites. 

The second strategy provided a proof of concept of the elaboration of multi-layered materials 

composed of two outer layers of PLA and one inner thin (deposited by coating) or thick (dried CNC or 

CNF film) layer of nanocelluloses previously modified by amidation or adsorption. Once the process 

was optimized, encouraging barrier properties were evidenced. This multi-layer strategy opened the 

way to a wide panel of materials, composed of various active molecules. In a further work, the 

structure of the multi-layered materials could be deeply understood, as well as, their active properties. 

Moreover, the elaboration of a demonstrator, in which the film would serve as a lid or a seal, could be 

an efficient tool to clearly highlight the barrier and/or antioxidant properties of the films.  

The question of the biodegradability of and/or recyclability of multi-phase materials remains a key 

issue. Indeed, after being modified, the biodegradability of the modified-CNC is not always 

maintained, and it is therefore essential to investigate their behavior to ensure the biodegradability or 

recyclability of the final materials.  
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Chapter III.1 

▪ Improved dispersion of CNCs 

(previously modified in chapters II.1 

and II.2) in PLA (solvent casting 

method) 

▪ Decrease in oxygen and water vapor 

transmission rates of final 

nanocomposites  

▪ Further investigation of the interfaces 

between both modified CNC-PGMA-

Br or CNC-Lauric and the PLA matrix 

▪ Highlighting the probable reaction 

between epoxy groups from CNC-

PGMA-Br and the –OH groups from 

the end-chains of the PLA 

▪ Introduce higher amount of modified 

CNCs in the PLA matrix (>10 wt%) 
 

Chapter III.2 

▪ Elaboration of PLA-based multi-

layered materials with an inner 

nanocellulosic layer (CNCs or CNFs 

previously modified in chapters II.3 

and II.4) 

▪ Barrier and antioxidant properties of 

multi-layered materials 

▪ Better understanding of the multi-

layered structures 

▪ Investigation of the sorption capacity 

towards organic molecules of multi-

layered including modified CNC-1-M-

3-PP (section I.3) 

▪ Further food testing (for example, 

elaboration of a biobased food tray 

with the multi-layered as a sealed lid) 
 

Table 2. Main results and perspectives of the PLA-based materials including modified CNCs performed in this PhD project 

(Chapter III) 

To conclude, the works provides new results regarding the surface modification of cellulose 

nanocrystals via novel routes. Once CNCs are introduced into a PLA matrix or inside a PLA-based 

multi-layered structure, their enhanced dispersion, as well as, the interesting barrier properties of the 

materials are encouraging for further investigations on this topic. Although PLA was selected for this 

PhD project, the study could also be transposed to other biobased polymers, which would open the 

way to a huge panel of possible materials.  

This study may is certainly useful for future work dealing with the surface modification of cellulose 

nanocrystals, and especially for their use in food packaging applications based on PLA or other 

biobased polymers. 
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Extended French abstract – Résumé en français 

Il est aujourd’hui courant d’entendre parler de pollution, de développement durable, de recyclage, 

ainsi que de nombreux autres termes étroitement liés à des questions environnementales majeures. Ces 

dernières ne sont pourtant que le résultat logique d’une accumulation croissante de déchets – entre 

autres, plastiques – au fil des années, parallèlement à leur production qui n’a cessé de croître depuis 

des décennies. Toutefois, depuis quelques années maintenant, une prise de conscience 

environnementale est apparue, aussi bien dans les sphères citoyennes que politiques, avec notamment 

la mise en place, par la Commission Européenne, d’une stratégie de la Bioéconomie circulaire, visant 

à développer l’utilisation durable des ressources renouvelables pour relever les défis 

environnementaux mondiaux et locaux.  

C’est dans ce contexte que les scientifiques et les industriels se tournent aujourd’hui vers des 

matériaux biosourcés, biodégradables et plus durables. Parmi eux, l’acide polylactique, ou PLA, a 

beaucoup fait parler de lui. En effet, le PLA (Figure 1) est produit à partir de ressources agricoles, 

telles que l’amidon de maïs, et présente des propriétés intéressantes (par exemple, sa rigidité, 

transparence, imprimabilité, ainsi que sa facilité de mise en forme). Bien que l’utilisation du PLA soit 

souvent controversée ─ notamment par le fait qu’il ne soit biocompostable qu’en milieu industriel, et 

qu’aujourd’hui, aucune filière ne permette son recyclage ─, il reste à ce jour l’une des meilleures 

solutions en termes de plastiques biosourcés. Toutefois, son utilisation dans le secteur de l’emballage 

(qui est actuellement l’un des secteurs les plus demandeurs en termes de matières plastiques) reste 

limitée, du fait des propriétés thermiques et barrières souvent insuffisantes du PLA.  

 

Figure 1. a) Structure chimique de l'acide polylactique (PLA), b) Billes de PLA utilisées pour la mise en forme de produits 
finaux c) 

Afin d’améliorer les propriétés de ce polymère, l’introduction de charges (organiques ou non) pour 

l’élaboration de matériaux composites a été sujet à de nombreuses recherches. Plus récemment, 

l’introduction de charges de tailles nanométriques dans une matrice PLA pour la préparation de 

nanocomposites a montré des résultats particulièrement intéressants, notamment en termes de 

propriétés barrières (à l’oxygène et à la vapeur d’eau). D’autre part, avec l’intérêt croissant des 

matériaux biosourcés, des nano-charges issues de la cellulose sont produites et étudiées depuis 

plusieurs décennies, et représentent une excellente solution pour l’élaboration de nanocomposites. 
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Ces nanomatériaux cellulosiques ─ les nanocelluloses ─ peuvent être extraits à partir de différentes 

sources de biomasse (comme le bois, le coton, le tunicier, le lin, etc.), et par différents procédés, 

comme représenté sur la Figure 2. Selon le procédé subi par les fibres de celluloses, différents types 

de nanocelluloses sont obtenus. Les nanofibrilles de cellulose (NFC) sont obtenues par traitement 

mécanique, et s’apparentent à de longs filaments flexibles, alors que les nanocristaux de cellulose 

(NCC), semblables à des bâtonnets rigides, sont obtenus à partir de l’hydrolyse acide de la biomasse.  

 

Figure 2. Schématisation de l'extraction des nanocelluloses (nanofibrilles (NFC) et nanocristaux (NCC)) à partir de fibres 
cellulosiques 

Outre leur caractère biosourcé et biodégradable, les nanocelluloses présentent des propriétés 

exceptionnelles, comme entre autres, une surface très réactive, un aspect de forme élevé, et de très 

bonnes propriétés mécaniques. Ces propriétés en font des matériaux uniques et intéressants pour une 

large gamme d’applications, comme le papier et l’emballage, la formulation d’encres et de peintures, 

la cosmétique, le bâtiment, le biomédical, ou encore, comme précédemment mentionné, les 

nanocomposites. 

 C’est à cette dernière application que s’intéresse ce projet de thèse. En effet, afin de produire 

des matériaux à partir d’acide polylactique pour des applications d’emballage alimentaire, il peut être 

intéressant d’inclure des nano-charges cellulosiques, hydrophiles, préalablement modifiées afin 

d’améliorer leur compatibilité avec la matrice polymère hydrophobe. C’est autour de cette idée que, en 
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2017, s’est établit un consortium composé de plusieurs partenaires académiques et industriels, et 

qu’une collaboration est née au sein du projet GASP, financé par l’Agence Nationale de la Recherche 

(ANR-16-CE08-0040), et qui débuta en janvier 2017. Les travaux de thèse présentés dans ce 

manuscrit ont été réalisés dans le cadre de ce projet GASP, et se sont attachés à approfondir les points 

suivants :  

1. La modification de surface des nanocristaux de cellulose par des voies innovantes et se 

rapprochant le plus possible des principes de la chimie verte 

2. L’étude de l’influence des modifications de surface des nanocristaux de cellulose sur leur 

adhésion avec une matrice polymère basée sur le PLA 

3. Le développement de matériaux actifs et biosourcés, basés sur le PLA et incluant des 

nanocelluloses, pour des applications d’emballages alimentaires 

Ce travail de thèse a été mené dans un contexte dynamique, et de nombreux échanges ont eu lieu entre 

les différents partenaires du projet, aux champs de compétences variés et complémentaires. La Figure 

3 présente l’organisation de la thèse telle qu’elle est présentée dans ce manuscrit.  

 

Figure 3. Schéma récapitulatif de l'organisation du manuscrit 
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Le Chapitre I s’applique à décrire, de la façon la plus complète possible, le contexte général de cette 

étude, avec une attention toute particulière portée sur l’acide polylactique (PLA), sur les nanocristaux 

de cellulose et leur modification de surface, ainsi que sur l’élaboration de matériaux biosourcés et 

multiphasiques pour l’emballage alimentaire.   

Le Chapitre II propose quatre différentes voies pour la modification chimique des nanocristaux de 

cellulose. Du fait de la pluridisciplinarité du projet GASP et des différentes attentes propres à chacun 

des partenaires, ce chapitre est organisé autour de stratégies conduisant à des quantités croissantes de 

NCC modifiés. Dans le Chapitre III, les différents NCC modifiés sont introduits dans des matériaux 

PLA au travers de deux méthodes différentes, et les propriétés barrières des matériaux finis sont 

présentées.  

Ainsi, dans une première stratégie, des NCC ont été fonctionnalisés, puis polymérisés depuis leur 

surface avec le poly(glycidyl methacrylate) (PGMA). Ces NCC polymérisés ont alors été introduits, à 

différents taux d’inclusion, dans une matrice de PLA par une méthode de moulage/évaporation, et 

l’observation des nanocomposites produits a permis de conclure quant à l’efficacité du greffage sur la 

dispersion des NCC dans le PLA (Figure 4). D’autre part, des résultats encourageants en termes de 

propriétés barrières à l’oxygène et à la vapeur d’eau ont été obtenus.  

 

Figure 4. Stratégie de polymérisation du PGMA sur les nanocristaux de cellulose (NCC) (Chapitre I.1) et leur introduction 
dans une matrice PLA (Chapitre II.1) 

a) Schématisation de la réaction en deux étapes de la polymérisation du PGMA sur les NCC préalablement modifiés avec un 
amorceur de la polymérisation radicalaire, et observations au microscope électronique à balayage des coupes des 

nanocomposites préparés avec des NCC non modifiés (b) et c)) et avec des NCC polymérisés avec le PGMA (d) et e)) 
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Dans une seconde stratégie visant à modifier les NCC à plus grande échelle, une méthode innovante 

d’estérification a été mise en place pour le greffage d’acides carboxyliques à longues chaines 

aliphatiques ─ l’acide laurique (12 carbones) et stéarique (18 carbones) ─ sur des NCC, tout en 

limitant l’utilisation de produits chimiques toxiques et polluants. Cette méthode de greffage efficace a 

donc conduit à des NCC modifiés hydrophobes, qui ont également pu être introduits dans une matrice 

PLA pour la préparation de matériaux nanocomposites. L’amélioration flagrante de la dispersion des 

NCC dans le PLA après leur modification est l’un des résultats clé de cette stratégie (Figure 5), 

induisant une amélioration des propriétés barrières à l’oxygène et à la vapeur d’eau des 

nanocomposites. 

 

Figure 5. Stratégie de greffage d'acides gras (acide laurique et stéarique) sur les NCC (Chapitre I.2.2) et leur introduction 
dans une matrice PLA (Chapitre II.1) 

 a) Schéma d’un NCC modifié à sa surface avec un acide gras, angles de contacts d’une goutte d’eau sur des NCC non 

modifiés (b)) et modifiés avec les acides gras (c) et d)) ainsi que leur introduction dans l’eau, et images obtenues par 
microscopie électronique en transmission des coupes de nanocomposites préparées avec des NCC non modifiés (e)) et 

modifiés (f)) 

Outre son efficacité, l’intérêt de cette méthode de greffage repose sur le possible recyclage des réactifs 

à la fin de la réaction, ainsi que sur la possibilité d’envisager ce greffage à une échelle plus large 

(échelle pilote). 

Une réaction d’amidation en conditions aqueuses, précédée d’une oxydation des NCC (Figure 6), a 

également été réalisée, et l’efficacité du greffage d’une molécule aromatique (1-methyl-3-

phenylpropylamine) a été prouvée. D’autre part, l’adsorption de ces molécules sur les NCC oxydés a 

également été mise en évidence, laissant envisager une possible adsorption de ces molécules sur une 

quantité bien plus large de NCC. L’intérêt d’un tel greffage repose sur l’utilisation limitée de produits 

chimiques organiques et toxiques, ainsi que sur la présence de groupements aromatiques à la surface 

des NCC greffés. En effet, il a déjà été montré que de tels cycles pouvaient induire une capacité de 
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sorption des NCC modifiés, notamment pour ce qui concerne l’adsorption des molécules aromatiques 

(par exemple l’anisole, le cyclohexane). De plus, cette stratégie ouvre la voie vers d’innombrables 

greffages de molécules aminées sur des NCC.  

 

Figure 6. Réaction en deux étapes effectuée lors du greffage du 1-methyl-3-phenylpropylamine sur les NCC (Chapitre I.3) 

Ces NCC modifiés ont ensuite pu être introduits dans des structures multicouches PLA, via le 

couchage de leur suspension aqueuse sur des films commerciaux de PLA. Après optimisation du 

procédé de thermopressage appliqué sur le PLA couché avec un second film de PLA, des matériaux 

multicouches aux propriétés barrières considérablement améliorées ont été obtenus et caractérisés.  

Cette stratégie a été transposée à l’élaboration de matériaux multiphasiques (TML) incluant, cette fois, 

des films secs de NCC ou NFC, préalablement adsorbés avec des nanoparticules de colophanes 

naturelles (Figure 7). Ces matériaux, présentant une couche interne de NCC ou NFC plus épaisse que 

dans le cas précédent, présentent également des propriétés très intéressantes en termes de barrières à 

l’oxygène ou à la vapeur d’eau, de même qu’une activité antioxydante apportée par le collophane. Ces 

résultats ouvrent ainsi la voie vers des matériaux multicouches totalement biosourcés pour des 

applications d’emballages alimentaires spécifiques. En effet, via ce procédé, de nombreuses molécules, 

actives par exemple, peuvent être introduites dans les matériaux après avoir été immobilisées sur les 

nanocelluloses. 

 

Figure 7. Stratégie de l'élaboration de matériaux PLA multicouches incluant une couche interne composée de NCC ou NFC 

préalablement adsorbés avec des nanoparticules de colophane (Chapitres I.4 et II.2) 
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L’étude des propriétés barrières à l’oxygène et à la vapeur d’eau des matériaux multicouches (TML) 

présentés dans la Figure 7  a été réalisée, et des résultats intéressants et encourageants ont été obtenus. 

En effet, la présence d’une couche interne de nanocellulose (NCC ou NFC) entre les deux films de 

PLA a conduit à diviser la perméabilité à l’oxygène d’un facteur 80 ou 27 par rapport à une référence 

PLA-PLA, et à maintenir celle à la vapeur d’eau. La Figure 8 situe les différentes perméabilités à 

l’oxygène et à la vapeur d’eau requises pour l’emballage d’aliments spécifiques. Les valeurs obtenues 

pour les matériaux multicouches produits dans cette étude ont été ajoutées, et permettent de conclure 

quant à l’intérêt de tels matériaux incluant des nanostructures cellulosiques pour une application 

d’emballage alimentaire, et plus particulièrement celui de produits carnés.  

 

Figure 8. Perméabilités à l'oxygène et à la vapeur d'eau requises pour des applications spécifiques d'emballage alimentaire et 
positionnement des valeurs obtenues pour les matériaux multicouches élaborés au Chapitre III.2 (TML-PLA, TML-CNC, 

TML-CNC-Rosin, TML-CNF et TML-CNF-Rosin) 

En conclusion, ce projet s’intéresse à la modification chimique de nanocristaux de cellulose pour leur 

utilisation dans des matériaux basés sur l’acide polylactique, pour des applications d’emballage 

alimentaire. Différentes méthodes de modification chimique, plus ou moins innovantes, des NCC sont 

présentées. Elles permettent toutes de venir greffer des molécules spécifiques à la surface des NCC, et 

sur différentes quantités. D’autre part, des matériaux ─ nanocomposites et multicouches ─ ont pu être 

efficacement mis en œuvre, et des résultats intéressants, notamment en termes de dispersion des 

nanocelluloses dans la matrice composée de PLA, ont pu être présentés. 

Ces travaux de thèse viennent ainsi étayer les possibilités de modifications chimiques des NCC en vue 

de leur application dans des matériaux biosourcés, à des fins d’emballage alimentaire. Ils confirment 

l’intérêt de tels nanomatériaux cellulosiques dans le développement de matériaux innovants et actifs. 



Manon LE GARS, 2020 
326 

 

 

 

 



 



English abstract – Résumé en anglais 
 

The purpose of this project is to develop new surface chemical modifications of cellulose nanocrystals 

(CNCs), in order to enhance their compatibility with biobased poly(lactic acid) (PLA) polymer, and to 

combine their respective outstanding intrinsic properties. Biobased PLA-based multi-phase materials, 

including the designed nanostructures, are produced. Furthermore, the final materials are expected to 

be used in food packaging sector, and the improvement of the barrier properties of the PLA, especially 

towards oxygen and water vapour, is a key point in the characterization of the materials. In this project, 

different routes are proposed for the grafting of various compounds ─ polymers or single molecules ─ 

on the surface of the CNCs. Their grafting efficiency has been confirmed and carefully characterized. 

The modified CNCs are then introduced in PLA-based materials via two different strategies. Indeed, 

they are either used as nanofillers in a PLA matrix with inclusion rates comprised between 2 and 10 

wt%, or as an inner layer of PLA-based multi-layered materials. In both cases, final PLA-based 

materials including various designed cellulosic nanomaterials exhibit enhanced and highly 

encouraging properties in terms of homogeneity, transparency, and barrier towards oxygen and water 

vapour, in accordance with required properties for food packaging materials. 

Keywords: nanocellulose, cellulose nanocrystals, surface functionalization, nanocomposites, barrier 

properties 

 

Résumé en français – French abstract 
 

Ce projet vise à développer de nouvelles modifications chimiques de surface des nanocristaux de 

cellulose (NCC), afin d’améliorer leur compatibilité avec le polymère biosourcé qu’est l’acide 

polylactique (PLA), afin de combiner leurs propriétés intrinsèques respectives. Ainsi, des matériaux 

multiphasiques ont été produits à partir du PLA en y incluant des nanomatériaux cellulosiques. 

L’application visée est celle de l’emballage alimentaire, et l'amélioration des propriétés barrières du 

PLA, notamment vis-à-vis de l'oxygène et de la vapeur d'eau, est alors un point clé dans la 

caractérisation des produits finis. Plus précisément, dans ce projet, différentes voies sont proposées 

pour le greffage de divers composés ─ polymères ou molécules ─ à la surface des nanocristaux de 

cellulose. Le succès de ces greffages a été confirmé et quantifié via diverses techniques de 

caractérisation. Les NCC ainsi modifiés sont ensuite introduits dans un matériau PLA à travers deux 

stratégies différentes : soit en tant que nanocharges dans une matrice PLA, avec des taux d'inclusion 

compris entre 2 et 10% massique, soit en tant que couche interne dans des matériaux multicouches de 

PLA. Dans les deux cas, les matériaux finaux, préparés à partir de PLA et de nanomatériaux 

cellulosiques modifiés, présentent des propriétés intéressantes et encourageantes en termes 

d’homogénéité, de transparence, et de barrière à l'oxygène et la vapeur d'eau, conformément aux 

propriétés requises pour les matériaux de conditionnement alimentaire.  

Mots-clés : nanocellulose, nanocristaux de  cellulose, fonctionnalisation de surface, nanocomposites, propriétés 

barrières 


