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Abstract

With the climate change emergency, pollutant and fuel consumption reductions are now a priority for
aircraft industries. In combustion chambers, the chemistry and soot modeling are critical to correctly
quantify engines soot particles and greenhouse gases emissions. This thesis aimed at improving aircraft
numerical pollutant tools, in terms of computational cost and prediction level, for engines high fidelity
simulations. It was achieved by enhancing chemistry reduction tools, allowing to predict CO emissions
of an aircraft engines at affordable cost for the industry. Next, a novel closure model for unresolved
terms in the LES filtered transport equations is developed, based on neural networks (NN), to propose
a better flame modeling. Then, an original soot model for engine high fidelity simulations is presented,
also based on NN. This new model is applied to a one-dimensional premixed sooted flame, and finally to
an industrial combustion chamber LES with measured soot comparison.
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S Strain tensor s−1

S Flame sensor −
Sij Strain tensor component s−1

Sk Mass entropy of species k J.kg−1.K−1

Sm Mixture molar entropy J.mol−1.K−1

Smk Molar entropy of species k J.mol−1.K−1

S0
L Laminar flame speed m.s−1

T Temperature K

Teq Equilibrium temperature K

T0 Fresh gases temperature K

T ◦ Reference temperature K

T∞ Temperature in the ambient atmosphere surrounding a particle K

Tl Threshold for lumping −
TQSS Threshold for the QSS analysis −
Tr Threshold for the DRGEP reaction analysis −
Ts Threshold for the DRGEP species analysis −
t Time s

u Velocity vector m.s−1

ui Component i of the velocity vector m.s−1

Vc,i Correction velocity of species k in direction i m.s−1

Vk,i Diffusion velocity of species k in direction i m.s−1

W Mean molecular weight kg.mol−1

Wk Species k molecular weight kg.mol−1

x Vector of position m

xi Component i of the position vector m

Xk Species k mole fraction −
[Xk] Species k concentration mol.m−3
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Yk Mass fraction of species k −
Yk,∞ Mass fraction of species k in the ambient atmosphere of a particle −
YF,0 Fuel mass fraction in fresh gases −
YO,0 Oxidiser mass fraction in fresh gases −
YF,eq Fuel mass fraction at equilibrium −
Z Mixture fraction −

Greek letters

Symbol Description Unit

βj Temperature exponent for reaction j −
βk Third body coefficient of species k −
δij Kronecker symbol −
δL Laminar flame thickness m

δthL Thermal thickness m

∆ Mesh size m

∆h◦,mf,k Molar standard enthalpy of species k at reference conditions J.mol−1

∆G◦j Gibbs free energy change per mole of reaction j J.mol−1

ε Viscous dissipation of the turbulent kinetic energy m2.s−3

θk Thermal diffusion coefficient of species k m2.s−1.K−1

θ Source term for the Lagrangian phase Variable

λth Mixture thermal conductivity W.m−1.K−1

µ Dynamic viscosity coefficient kg.m−1.s−1

ν Kinematic viscosity coefficient m2.s−1

νkj ν
′′
kj − ν

′
kj −

ν
′
kj Species k stoichiometric coefficient in the reactants of reaction j −
ν
′′
kj Species k stoichiometric coefficient in the products of reaction j −
ρ Density kg.m−3

ρ0 Fresh gases density kg.m−3

ρk Partial density of species k kg.m−3

ρp Density of particle p kg.m−3

τ Characteristic time s

τij Viscous tensor kg.m−1.s−2

χj Thermal diffusion ratio of species j K−1

χq Quenching dissipation rate s−1

ω̇k Mass reaction rate of species k kg.m−3.s−1
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ω̇T Combustion heat release J.m−3.s−1

Mathematical operators

Symbol Description

< φ > Statistical averaging

φ Spatial filtering

φ̂ Fourier transform

φ̃ Favre averaging

φ
′

Deviation from the mean: φ
′

= φ− < φ >

φ
′′

Fluctuations: φ
′′

= φ− φ

Non dimensional numbers

Symbol Description

BM Mass Spalding number

BT Thermal Spalding number

Da Damköhler number

Ka Karlovitz number

Lek Lewis number associated to species k

Nu Nusselt number

Pr Prandtl number

Re Reynolds number

Sc Schmidt number

Sh Sherwood number

Principal chemical species

Symbol Description

CH Methylidyne

CH2 Methylene

CH3 Methyl radical

CH4 Methane

CH2O Formaldehyde

CH3O Methoxy radical

C2H2 Acetylene
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C2H3 Vinyl radical

C2H4 Ethylene

C2H5 Ethyl radical

C2H6 Ethane

CO Carbon monoxide

CO2 Carbon dioxide

H Hydrogen atom

H2 Dihydrogen

H2O Water

HCO Formyl radical

HO2 Hydroperoxyl radical

H2O2 Hydrogen peroxide

O Oxygen atom

OH Hydroxyl radical

N2 Nitrogen

NO Nitric oxide

N2O Nitrous oxide

NO2 Nitrogen dioxide
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1.1 Context

We are living in a troubled yet passioning time. The development of humanity in term of knowledge,
technical skills, economy, has led on one hand to deeply negative consequences on biosphere, pollution
that are now endangering human species among several others.

On the other hand, along with the progress of research, our comprehension of the world around us,
from the proof of existence of Higgs boson in 2012 [1] to the first detection of gravitational waves on 14
September 2015 [2], has never been so advanced.

In consequence, humanity has to face more and more complex and critical problems, with more and
more performant tools and knowledge.

1.1.1 Machine learning algorithms : A powerful tool for modern problems

With the rapid increase of computational resources and data storage capabilities in recent years, the
powerful tools that are developed based on artificial intelligence have now a tremendous impact in our
society.
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It is in the early 1950s that several scientists like Alan Turing asks the question “can machines
think ?" [3]. In other words, can computers replace human decision or analysis ? But it is only in the late
80s that machine learning appeared, introducing new types of algorithms. Machine learning algorithms
can learn from many examples to make predictions. Several models can be trained by machine learning,
to cite only a few, regression analysis to which an example is given Fig. 1.1, decision trees or even
artificial neural networks, described more deeply in chapter 3.

Figure 1.1: Illustration of a linear regression on a dataset.

There are also different learning paradigms for the training of these models, the main ones being:

• Supervised learning, the model is given the inputs X associated with their desired outputs Y, also
called labels. Is is like finding the probability density p(Y|X), finding Y knowing X.

• Unsupervised learning, where no labels are given, only datas, so the algorithm can find all kind
of unknown patterns in data. In other terms it is like finding something to say on the probability
density p(X).

• Reinforcement learning, where datas are given with a certain goal or rule such as driving a vehicle.
Models are given feedbacks of predictions and will try to learn by themself to complete the given
rules.

Over the years, these algorithms illustrated themselves, by defeating the world chess champion Gary
Kasparov in 1996 with the supercomputer IBM’s Deep Blue, and more recently by beating Go champion
Lee Seedol in March 2016, with the computer program AlphaGo, based on supervised learning.

In order to understand how those algorithms can perform better than humans, we can first consider
in chess that given enough computing power, every move can be considered including the ones allowing
to win the party, without talking about training. For the Go game, this technique is not possible because
despite its simple rules, Go has, compared to chess, both a larger board with more scope and many more
alternatives to consider per move.

AlphaGo, developed by Google, learned to play with 160 000 cases with 30 Millions moves played
only by the best Go players.

More interestingly, AlphaZero was then developed in 2017 [4] and learned Go and chess with re-
inforcement learning: It was given only the rules, and self-played millions of time without any human
example. AlphaZero then played against AlphaGo 100 times and won every time, showing the force of
reinforcement learning against supervised one. It was also showed that AlphaZero developed strategies
different from human ones, which is interesting as we can say that this algorithm is creative and have the
capacity to solve problem with strategies never thought before.
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Today, machine learning models and their ability to treat large amount of data are already employed
for many applications, such as economics, financial market analysis, speech recognition, medical diag-
nosis, agriculture, insurance among many others.

Also, machine learning algorithms are keys for unsolvable problems, one may cite the treatment of
datas send by telescopes. The current generation of telescopes like the VLT or the SDSS are already
recording several gigaoctets of data per night, and the future generation of telescopes, among those the
200 South Africa paraboly of the SKA observatory, will be recording several teraoctets of data per sec-
ond, starting in 2022 [5]. Those extremely high quantities of data raise issues on the storage capacity,
suggesting algorithm treatments to eliminate unwanted noised data, and on the other hand the treatment
and classification of celestial objects. Historically, humans have classified manually the space picture,
one may cite the Map of the Sky project, vast project to catalogue and map the positions of millions
of stars as faint as 11th or 12th magnitude, initiated in 1887 by Amédée Mouchez, director of the Paris
Observatory, and abandoned in 1970, which employed several “human computers" to classify the photo-
graphic plates and calculate the stars position. More recently, in 2007, because of the data deluge from
telescopes, several projects appeared, Stardust@home from NASA, or even Galaxy Zoo from the Oxford
University, asking the internet community to assist the morphological classification of galaxies. These
solutions which allow today to gain years of data processing won’t maybe enough for the next deluge.

Nevertheless, these methods also bring ethical questions and drawbacks. We already know the ca-
pacity of the digital conglomerates (Alphabet, Apple, Facebook, Amazon and Microsoft) to collect be-
havioural data on individuals for profit purpose. Machine learning algorithms are, since early 2000s with
Google patented methods called “AdSense", used to extract, analyse and predict web people behaviours
for targeted advertising purposes. The new quote in the economic field could be “Data is the new oil" [6]
. Indeed, just taking the example of Facebook in 2018, 98.5 % of its 55 billions revenues comes from
target advertising, according to their annual report [7]. For Google, target advertising generated 85 % of
their 136 billions 2018 revenues [8].

Moreover, machine learning prediction capacity associated to big data analyses leads to ethically
questionable researches. One may cite the capacity to link criminality to physiology thanks to machine
learning [9], or even to predict a person’s health and sexuality based on its face [10].

1.1.2 Pollutants

Let’s talk about one of the critical issues that endangers our species: pollutants. What is it ? Where does
it come from ? Why is it problematic and how ?

The most common definition retained for pollutants is their negative impact, chemical or physical,
on ecosystem and organisms. Pollution is mainly, directly or not, generated by human activities, and is
classified into three categories.

• Light pollutants, not substances but energy introduced in the environment through artificial lights
that now completely modify the landscape, see image 1.2. Synonym of security and progress,
their negative impact became more and more present. First on biodiversity, nocturnal species are
disturbed in their reproduction, their migration, leading to their diminution. Light-sensitive species
are now endangered and more deeply the whole food chain is modified [11]. Light pollutants also
impact human organism. With a day-night circle modified, it causes change of metabolism, growth
and mood disorder [12].

• Background pollutants, that react with the environment and have limited impacts if they don’t
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Figure 1.2: Nocturnal sky with and without light pollution. These photos were taken in Goodwood,
Ontario, a small town about 45 minutes northeast of Toronto during (left) and the night after the region
wide 14 August 2003 blackout (right). The lights inside the house in the blackout picture were created
by candles and flashlights. [11]

overpass the environment’s absorptive capacity. Fund pollutants can be easily converted and are
not harmful in small quantities. Let’s take the example of the Greenhouse gases (GHG), in which
carbon dioxide CO2 is the major element. They have several sources of anthropogenic emission,
see figure 1.3, and can be absorbed by plants and oceans, but as the emission / absorption ratio
increases since the Industrial Revolution, see 1.4, the GHG atmospheric concentration is becoming
critical, leading to successive irreversible disasters too numerous to be all cited. The major ones
are:

– Sea and atmospheric temperature increase,

– Snow and glacier decrease,

– Sea level increase,

– Extreme natural disaster frequencies increase (tornado, tsunami, drought, floods),

– Biodiversity disappearance,

– Forest fires more abundant,

– Reduced soil fertility and drinkable water ... etc, see the 5th IPCC report [13].

• Stock polluants, characterised by their low degradation. The environnement have difficulties to
absorb them so they accumulate over time and continue to impact negatively their surrounding
long after they are emitted. For example, non-biodegradable plastics with a life time between one
hundred and one thousand years, have a long term effect on ocean biodiversity, also persistent
organic pollutants (POPs) resulting from pesticides and industrial chemicals, impacting human
health and environnement, with the capacity to travel far from the initial emission location and
also the capacity to be stocked in living tissues (bioaccumulation) [14], or polycyclic aromatic
hydrocarbons (PAHs), leading to particulates and soots described in the next section.
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Figure 1.3: Total (direct and indirect) anthropogenic greenhouse gas (GHG) emissions (gigatonne of
CO2- equivalent per year) from economic sectors in 2010 [13]. Emissions are converted into CO2-
equivalents based on 100-year Global Warming Potential (GWP100), taken from the IPCC Second As-
sessment Report (SAR).

Figure 1.4: Atmospheric concentrations of the greenhouse gases carbon dioxide (CO2, green), methane
(CH4, orange) and nitrous oxide (N2O, red) determined from ice core data (dots) and from direct atmo-
spheric measurements (lines) [13].

1.1.3 Soot

Soot, that provides the orange/red light of a flame 1.5, is essentially composed of carbon and has many
properties, wanted and unwanted.

There are several paths for soot production. It is a natural component of interstellar dust, that is
studied in order to understand many phenomenon like the mass loss on star’s evolution and fate [15], or
in the star’s formation process in nebulae like the one in Fig. 1.6, essentially composed of interstellar
dust [16].

On earth, soot production is caused by humans through several activities, see figure 1.7, like mining
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Figure 1.5: Radiative soot properties wanted for candle lightening.

Figure 1.6: The Pillars of Creation in the Eagle Nebula, taken on 04/02/95 by the Hubble telescope,
NASA, Jeff Hester and Paul Scowen, Arizona university.

industries, domestic heating, fire, and also car, maritime and aircraft transports. Fig. 1.8 shows the main
atmospheric soot concentration over the planet. The values are still debated, nevertheless the tendencies
clearly show that the main concentrations are located in Southeast Asia where the strong growth of energy
demand has caused increase of soot production by domestic solid combustion and Chinese coal mine
development. The strong particulates concentrations in Africa also show coal combustion dependencies.
Another important cause of soot production is the biomass burning in South America and central Africa.
More generally, in industrialised countries (Europe, United States), the soot emissions are principally
linked with densely populated areas [17].

Soot applications are numerous. They are part of rubber and newsprint fabrication, but are mostly
used with their radiative properties for lighting and in industrial burners and furnaces.

Soot has nevertheless mostly negative impacts, their radiative effect largely contribute to fire prop-
agation, and their transport and incrustation are known to accelerate climate change through several
mechanisms. Their direct effect are linked to radiation forcing, the difference between energy emission
and received energy in a climate system in Watt by unit area. In the case of climate change, this param-
eter gives the ability of a factor to disturb the energy equilibrium of the earth. In other words it is the
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Figure 1.7: Main soot emission source and climatic consequences, [17].

Figure 1.8: Global atmospheric soot concentration distribution model, AeroCom red [18]

equilibrium between entering solar radiation and leaving infrared radiation from the atmosphere [13].

Atmospheric soot has a unique impact on the total radiation forcing. Reports from the IPCC [13] re-
veal cooling effect due to negative soot radiation forcing, see Fig 1.9. This effect is partially compensated
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by solar radiative absorption by soot, creating a warming.

Figure 1.9: radiation forcing of the main climate factors, IPCC AR5 [13].

As for indirect impacts, soot is linked to the cloud lifetime, but this effect is hardly quantifiable.
Moreover, another widely studied effect is their incrustation on glaciers, diminishing the albedo of the
glaciers and accelerating their melting [17]. The difficulty of quantifying such effects stay the main
uncertainties in the modelling of global radiative forcing.

One may also note the inconvenient of soot incrustation on historical landmarks, threatening their
conservation, see Fig 1.10.

Figure 1.10: Soot incrustation on glaciers and landmarks.

Another negative effect is on human health. The small size of soot particles allows them to penetrate
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deeply in the respiratory system and then in all the organs through the bloodstream. Studies are also on
going about the soot penetration through skin. The result is 19 000 deaths per year in Europe because
of fines particles, that mostly trigger or aggravate cardiovascular diseases. According to WHO [19] the
World Health Organization, 3 million people die each year around the world because of soot, witch cause
important expenses in the health field.

At last, soot is unwanted in many industries as they are evidence of incomplete combustion, thus of
efficiency loss.

All these issues have led to a progressive inclusion of soot in anti-pollution norms. For example, the
European norms euro 5b and euro 6b impose the soot particle counting for diesel engines since 2011 and
for gasoline engines since 2014.

1.1.4 Aeronautical field

In the aeronautical field, pollutants like GHGs are mainly caused by aircraft engines, and more specif-
ically inside the combustion chamber. The use of carbon-based fuels, see chapter 5, in the combustion
chamber produces unwanted combustion products like soot but also nocive gaseous species like NOx,
CO and CO2.

In 2010, aircraft traffic was responsible of 1.49 % of the total anthropogenic GHG emissions, see
1.11. It may seems quite small compared to the part that car take (72.6% of the total transport sector and
10.16 % of the total GHG emissions) or even the livestock farming responsible for 14.5 % of the total
emissions [20].

Figure 1.11: Total (direct and indirect) anthropogenic greenhouse gas (GHG) emissions (gigatonne of
CO2- equivalent per year) from the transport sector [13]

But if we look closer to the traffic demand and forecast, see figure 1.12, it has proven to double every
15 years. Despite the current crisis, companies such as Airbus forecast a constant growth in the near
future due to emerging countries, middle class and low cost companies development. ICAO standard
values for emission limits are imposed for aero-jet certification and projects like CAEP and ACARE are
targeting pollutant reduction and fuel consumption reduction over the next decades. Moreover, with the
official launch of the CORSIA project on 22 June 2020, ICAO stands by its pollution reduction program
even in such challenging time for the aeronautical field.
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Concerning soots, a new norm has been discussed for engines certification on February 2016 during
the 10th ICAO meeting, and was agreed by the ICAO’s environment committee in February 2019.

Manufacturers have to develop experimental and numerical tools to face these challenges. These de-
velopments have already led to significant combustion chamber improvement, see the fuel burn reduction
since the 60s on Fig. 1.13, even if they don’t compensate the energy demand growth.

Figure 1.12: World annual traffic in term of RPK (revenue passengers kilometers) [21]

Figure 1.13: Average fuel burn for new aircraft [22]

1.2 Thesis objectives

1.2.1 CFD tools

Computational Fluid Dynamics (CFD) is a part of fluid mechanics that uses numerical methods to solve
fluid flow problems. It is an essential tool for a large variety of field such as air and naval transportation,
energy generation, chemical processing, medical research, meteorology and astrophysics. Thanks to the
constant increase of computational ressources, numerical solving of the equations allows for accessing
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any physical quantity at every point of the discretised calculation domain for more and more complex
problems. CFD tools in the manufacture industries are part of development process, in complement of
test campaigns, as they shorten the number of necessary physical experiments, thus the design cost and
time of the whole chain process, and give access to physical quantities unreachable otherwise.

This is the case for the study and the design of combustion systems, as experiments are difficult and
expensive to operate essentially because of the temperature and pressure levels achieved. The operation
of a burner is piloted by a complex multi-physics that couple fluid mechanics to chemistry under a
variety of different time-scales. Depending on the application, the problem may be complicated by
introducing liquid atomisation, evaporation, radiation effects, heat transfer through the combustor walls.
The majority of these phenomena are already difficult to quantify when seen separately. Capturing a
detailed interaction of these physical effects within a real geometry is a true challenge than can be solved
only with simulation. In that context, most of the industries relying on combustion share the interest of
being able to perform reactive flow simulations at reasonable costs.

1.2.2 The role of chemistry

In combustion chambers, fuel combustion leads to complex chemical processes including heat release
and change of mixture composition, from reactants to burnt gases products including pollutants. The
accurate modelling of these processes is then primordial for achieving reliable simulations including
pollutant prediction. Chemists work on the elaboration of detailed kinetic mechanisms, with the numer-
ous chemical species and reactions appearing in the combustion process. These detailed mechanisms
allow for obtaining accurate predictions of complex combustion phenomena and are generally valid un-
der a large range of operating conditions in term of pressure, temperature, equivalent ratio found in
industrial combustion chambers. However, when it comes to the implementation of these mechanisms in
high fidelity CFD simulation of industrial burners, two issues arise, as detailed below.

First, an additional transport equation is needed for every species in the detailed mechanism.
Secondly, an important number of species implies a large variety of different chemical time-scales. In

order to capture the tiniest ones, the whole flow domain needs to be discretised with smaller mesh sizes.
As a result, actual available computational ressources are not enough for industrial 3D simulations of
real combustion systems with detailed chemistry, this approach can be only used for studying simplified
reactive flow problems.

Several solutions have been proposed to overcome this limitation in industry. One typical approach
relies on a simplified description of the chemical system with a limited number of species and reactions.
This is the approach the present thesis is focused on, with the improvement of an automated tool for
detailed mechanisms reduction and optimisation. The obtained mechanism needs to be as reliable as the
detailed one for important species, and at reasonable cost for its introduction into 3D simulations.

1.2.3 Soot modelling in industry

Soot formation modelling is a difficult and challenging task. The involved processes differ from those
entering in the formation of gaseous chemical species, because they include longer characteristic times
and heterogeneous phase reactions. The need for predictive models in various conditions of combustion,
at different levels of pressure and using different fuels has driven the work on soot modelling in the last
decades [23]. Although some sooting phenomena are still not explained, numerous models with different
levels of complexity have been elaborated. The research field is still on-going, but when it comes to meet
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the industrial simulation constraints, limited options are available today. This thesis focus on developing
an accurate soot model for industrial aircraft engine simulations at reasonable costs. In order to do so,
machine learning algorithms are introduced, to propose an innovative alternative to implement detailed
soot models in high fidelity simulations.

1.2.4 Manuscript content

Chapter 2: Equations and models for reacting turbulent and two-phase flows
The manuscript first introduces the equations of aerothermochemistry used to model reactive turbulent
flows. The methods employed for the calculation of the species thermodynamic, of the associated chemi-
cal equilibrium and of the source terms are highlighted. The combustion regimes are then presented with
their specific characteristics. The chapter ends with a presentation of the interaction between turbulence,
combustion and evaporating liquid droplets. The CFD solvers used in this thesis are presented.

Chapter 3: Turbulent combustion models in LES formalism : The potential of neural networks
Chapter 3 first presents a review on turbulent combustion models for Large Eddy simulations. Then,
machine learning algorithms are presented. A unified modelling framework for all unresolved terms in
the filtered progress variable transport equation in large-eddy simulations of turbulent premixed flames
is proposed, using convolutional neural networks. A direct numerical simulation database of a turbulent
premixed jet flame is used in order to train convolutional neural networks to predict both the filtered
progress variable source term and the unresolved scalar transport terms. A single variable readily avail-
able from the large-eddy simulation is required in order to calculate all inputs to networks, namely the
Favre-filtered progress variable c̃ .

Chapter 4: Chemical schemes reduction for industrial applications
In chapter 4, a review on chemical scheme reduction methodologies is shown. The automatic Optimised
and Reduced Chemistry code ORCh is then presented along with its embedded reduction stochastic con-
figuration, and improvements for ORCh reduction capacity is provided. These improvements are then
validated on an industrial air-kerosene 3D Lemcotec simulation.

Chapter 5: Review on soot and fuel model issues
Chapter 5 provides a review on jet fuel models, how they are different from real fuel, how they are used
in industrial simulations and what are their impacts on chemistry and soot prediction. Also, a review of
soot characterisation and evolution is made, and few models are presented.

Chapter 6: Soot prediction in a real combustion chamber
This last chapter presents a new strategy using neural networks in order to offer an alternative way to
obtain accurate soot evolution predictions for industrial 3D simulation at limited costs. This strategy
is first tested on a 1D premixed flame, secondly on a 0D representative stochastic configuration of an
industrial chamber operating point.

Chapter 7: Conclusion
The final chapter resumes the general conclusions on this thesis and the perspective to this work.
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2.1 Balance equations for reactive turbulent flows

2.1.1 Mixture properties

The subsequent composition and thermodynamical properties will be used to describe the mixture. They
will serve for the definition of the aerothermochemical conservation equations.

2.1.1.1 Mixture composition

The mixture composition that is considered is assumed to rely on Nsp chemical species referenced by
letter k. The mixture density is estimated from the sum of the partial density ρk of each chemical
species,

ρ =

Nsp∑

k=1

ρk . (2.1)

The species k mass fraction Yk is defined by the species individual density to the mixture density
ratio,

Yk =
ρk
ρ
. (2.2)

The definitions of equations 2.1 and 2.2 ensure that species mass fractions are bounded between zero and
unity and that the sum of the Nsp mass fractions equals unity:

Nsp∑

k=1

Yk = 1 . (2.3)

W is defined as the mean molecular weight of the mixture that is considered. It is computed from
each species molecular weight Wk and from their mass fractions through the relation:

1

W
=

Nsp∑

k=1

Yk
Wk

. (2.4)

The molar fraction Xk of species k is then deducted from relation 2.5:

Xk =
W

Wk
Yk , (2.5)

and its concentration (number of moles per unit volume), from relation 2.6:

[Xk] =
ρk
Wk

. (2.6)

2.1.1.2 Thermodynamic of the mixture

The molar heat capacity at constant pressure Cmp,k(T, P
◦) of the species k is computed at standard pres-

sure P ◦ = 1 atm according to the temperature T using the so-called NASA polynomials (relation 2.7)
which have been designed in the early seventies to fit with experimental measurements:

Cmp,k(T, P
◦)

R = a1,k + a2,kT + a3,kT
2 + a4,kT

3 + a5,kT
4 , (2.7)

whereR = 8.314 J.mol−1.K−1 is the ideal gas constant.
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Molar enthalpy and entropy of species k are expressed as a function of the heat capacity at constant
pressure through the relations:

Hm
k (T, P ◦) =

∫ T

θ=T ◦
Cmp,k(θ, P

◦)dθ + ∆h◦,mf,k , (2.8)

Smk (T, P ◦) =

∫ T

θ=T ◦

Cmp,k(θ, P
◦)

θ
dθ , (2.9)

in which ∆h◦,mf,k refers to the molar standard enthalpy of formation of species k at reference pressure P ◦

and reference temperature T ◦. The standard temperature is commonly set to the atmospheric conditions
(T ◦ = 298.15 K) at which experiments are easier to perform. The NASA polynomials approximation is
extended to the enthalpy and entropy properties through the relations,

Hm
k (T, P ◦)
RT = a1,k + a2,kT + a3,kT

2 + a4,kT
3 + a5,kT

4 +
a6,k

T
, (2.10)

Smk (T, P ◦)
R = a1,k log(T ) + a2,kT +

a3,k

2
T 2 +

a4,k

3
T 3 +

a5,k

4
T 4 + a7,k . (2.11)

Note that the coefficient a6,k = ∆h◦,mf,k /R, which gives the relationHm
k (T ◦, P ◦) = ∆h◦,mf,k when species

k is at standard pressure and temperature. For each chemical species, there is two sets of polynomials
corresponding to low temperatures commonly ranging from 300 K to 1000 K and high temperatures
which corresponds to variations between 1000 K and 5000 K.

The following mixture laws are used to find the molar thermodynamic properties of the mixture from
species individual properties.

Cmp (T, P ◦) =

Nsp∑

k=1

XkC
m
p,k(T, P

◦) , (2.12)

Hm(T, P ◦) =

Nsp∑

k=1

XkH
m
k (T, P ◦) , (2.13)

Sm(T, P ◦) =

Nsp∑

k=1

Xk

(
Smk (T, P ◦)−R log

(
P

P ◦

)
−R log (Xk)

)
. (2.14)

Finally the mixture heat capacity at constant pressure expressed per unity of mass Cp, the mixture
mass specific enthalpy H and mass specific entropy S are given by:

Cp =
Cmp
W

, (2.15)

H =
Hm

W
, (2.16)

S =
Sm

W
. (2.17)

2.1.1.3 Equation of state

The ideal gas law is an hypothesis that is frequently used in combustion and that relies on the assumptions
that the molecules (1) behave as rigid spheres that are (2) homogeneously distributed on the macroscopic
scale, that are (3) sufficiently separated from each other leading to negligible intermolecular forces and
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that these molecules are submitted to (4) perfectly elastic collisions. Following this hypothesis, the
following equation of state will be used all along this thesis:

P = ρ
R
W
T = ρ




Nsp∑

k=1

Yk
Wk


RT , (2.18)

where ρ stands for the mixture density,W is the mixture mean molecular weight andR = 8.314 J.mol−1.K−1

is the ideal gas constant.

2.1.2 Conservation equations

Combustion takes place under the coupling effects of transport by velocity and diffusion, chemical ki-
netic and thermodynamic. First, the equations describing aerothermochemistry are given along with the
associated thermodynamic and equilibrium principles. The derivation of the conservation equations is
reported in [24, 25]. The balanced equations express mass, momentum and energy conservations.

2.1.2.1 Mass conservation

The continuity equation that describes mass conservation reads:

∂ρ

∂t
+
∂ρui
∂xi

= 0 . (2.19)

with ui, the velocity projected on the ith axis.

2.1.2.2 Momentum conservation

The equation of momentum expressed neglecting the volume force that acts on the fluid reads:

∂ρuj
∂t

+
∂ρuiuj
∂xi

= − ∂P
∂xj

+
∂τij
∂xi

, (2.20)

where τij refers to the viscous tensor and is defined for Newtonian fluids by:

τij = −2

3
µ
∂uk
∂xk

δij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.21)

in which µ describes the mixture dynamic viscosity and δij is the Kronecker symbol.

2.1.2.3 Species conservation

Mass conservation applied to the conservation of the Nsp chemical species is written:

∂ρYk
∂t

+
∂

∂xi
(ρ (ui + Vk,i)Yk) = ω̇k , (2.22)

where ω̇k is the species k chemical source term which must verify the relation:

Nsp∑

k=1

ω̇k = 0 . (2.23)
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Vk,i represents the diffusion velocity of species k in the direction i. The Vk diffusion velocities are
obtained by solving the Nsp linear system :

Nsp∑

j=1

XkXj

Dkj
(Vj − Vk) = ∇Xk + (Xk − Yk)

∇P
P

+
ρ

P

Nsp∑

j=1

YkYj(Fext,j − Fext,k)

+

Nsp∑

j=1

XkXj

ρDkj
(
Dth,k

Yk
− Dth,j

Yj
)
∇T
T

The last term is neglected since the Soret effect (the diffusion of mass due to temperature gradients)
is not accounted for.

The high cost associated to the resolution of this system often leads to the use of a “mixture averaged”
simplified estimation proposed by Hirschfelder and Curtiss [26]:

DH
k =

1− Yk∑
j 6=kXj/Dkj

(2.24)

Using this approximation, the diffusion velocity Vk,i reads:

Vk,i = −D
H
k

Xk

∂Xk

∂xi
+ Vc,i . (2.25)

Vc,i is a correction velocity introduced to ensure mass conservation.

Vc,i =

Nsp∑

k=1

DH
k

Wk

W

∂Xk

∂xi
. (2.26)

2.1.2.4 Energy conservation

The conservation equation for the energy is written in terms of sensible enthalpy. The sensible enthalpy
is expressed through the relation:

hs(T ) =

∫ T

θ=T ◦
Cp(θ)dθ , (2.27)

and the corresponding conservation equation reads:

∂ρhs
∂t

+
∂

∂xi
(ρuihs) =

DP

Dt
+
∂Qi
∂xi

+ τij
∂ui
∂xj

+ Q̇+ ω̇T . (2.28)

The term Qi represents the heat flux:

Qi = λth
∂T

∂xi
−

Nsp∑

k=1

ρhs,kYkVk,i , (2.29)

where λth refers to the thermal conductivity of the mixture. The term Q̇ represents the external heat
sources (for instance, coming from a spark or from radiative fluxes) and ω̇T is the chemical heat source
term written:

ω̇T = −
Nsp∑

k=1

∆h0
f,kω̇k (2.30)
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where ∆h0
f,k is the formation enthalpy of species k. The operatorD ·/Dt is called the material derivative

which corresponds to D · /Dt = ∂ · /∂t+ ui∂ · /∂xi
Several approximations are set. The studied cases do not account for external heat sources, hence the

source term Q̇ is neglected. The viscous forces term τij
∂ui
∂xj

is not taken into account since it varies like
the square of the Mach number and only low Mach number flows are considered in this work. Finally,
without accounting for the Soret and Dufour effects, the initial formulation of the energy equation is
simplified to:

∂ρhs
∂t

+
∂

∂xi
(ρuihs) =

DP

Dt
+

∂

∂xi

(
λth

∂T

∂xi

)
− ∂

∂xi


ρ

Nsp∑

k=1

hs,kYkVk,i


+ ω̇T . (2.31)

2.2 Introduction to chemical kinetics

In reactive flows, the species source terms ω̇k that appear in equation 2.22 and the sensible enthalpy
source term ω̇T of equation 2.30 are modelled from chemistry. Although in a global manner, the com-
bustion of any hydrocarbon may be cast in the form of equation 2.32, in reality hundreds of species are
involved interacting together over thousands of different reactions.

CnHm +
(
n+

m

4

)
O2 → nCO2 +

m

2
H2O (2.32)

Some of these chemical reactions occur in both direct and reverse directions. From a macroscopic point
of view, a system appears to be at equilibrium when the concentrations of the species are stable. How-
ever, on a microscopic level, both forward and backward reactions occur but at equal rates. The balance
between the direct and reverse rates is described using an equilibrium constant computed from thermo-
dynamic considerations.

Detailed mechanisms describing these chemical paths are found in the literature and are reliable
today for the simulation of a large range of operating conditions (pressure, temperature, equivalence
ratio). Unfortunately, these mechanisms cannot be directly used to compute for 3D turbulent combustion
essentially because of the amount of chemical species, i.e. the amount of transport equations, involved
and because of the very small time and space resolutions necessary to capture the intermediate species
that are present within these mechanisms (typically a few µm and µs). Several alternatives to lower the
costs associated to the computation of such chemical schemes are found in the literature including the
chemistry reduction and tabulation methodologies. The two approaches are briefly introduced below.
The reduction approach will be discussed in detail over the chapter 4 since it is the retained approach in
this manuscript. First, the overall equations that govern chemical kinetics are given.

2.2.1 Species source terms

A chemical mechanism is made up of Nsp chemical species combined over Nr reversible reactions. The
jth reaction is associated to ν

′
kj and ν

′′
kj which are respectively the reactants and products stoichiometric

coefficients associated to the chemical species k with molecular formulaMk.

Nsp∑

k=1

ν
′
kjMk 


Nsp∑

k=1

ν
′′
kjMk, with j = 1, Nr . (2.33)
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The rate associated to a given reaction j quantifies the mass variation of the chemical species involved
within this reaction per unit of time:

Q̇j =
ω̇kj
Wkνkj

, (2.34)

where νkj = ν
′′
kj − ν

′
kj . Species variation rates over every jth reaction are deduced from relation 2.34,

and the total reaction rate of species k corresponds to the sum of the ω̇kj over the Nr reactions of the
mechanism:

ω̇k =

Nr∑

j=1

ω̇kj = Wk

Nr∑

j=1

νkjQ̇j . (2.35)

Summing the ω̇k source terms over the Nsp chemical species of the mechanism returns a null value, thus
ensuring mass conservation.

2.2.2 Reaction rates

The reaction rate Q̇j of every reaction is computed from both direct and reverse rates.

Q̇j = Q̇fj − Q̇rj (2.36)

The forward rate of the jth reaction is modeled through the use of a relation that correlates the concen-
tration of the reactants to a chemical constant Kfj . Same applies to the backward rate using this time,
the products concentrations and Krj , the reverse chemical constant of reaction j:

Q̇fj = Kfj

Nsp∏

k=1

[Xk]
ν
′
kj , Q̇rj = Krj

Nsp∏

k=1

[Xk]
ν
′′
kj , (2.37)

where [Xk] = ρYk/Wk refers to the molar concentration of species k.

2.2.2.1 Arrhenius law

The determination of the rate constant of a reaction has driven many experimental studies which have
led to the description of empirical laws based on a temperature dependency. Conventionally, a modified
Arrhenius form is used in combustion:

Kfj = AjT βj exp

(
− Ej
RT

)
(2.38)

where the rate of the reaction Kfj is computed from the absolute temperature T of the mixture related
to an activation energy Ej expressed in J.mol−1, an exponent βj used to properly address the range of
temperatures found in combustion, a pre-exponential collision frequency factor Aj and R, the ideal gas
constant. The importance of the activation energy term Ej is illustrated on figure 2.1. To dissociate the
initial reactants into intermediate and radical species a sufficient amount of energy must be provided to
the system. The dissociated species then recombine into more stable products while delivering energy
through the form of heat. The process is called combustion, because in all cases, the amont of energy nec-
essary to ensure the dissociation of the molecules is lower than the energy released by the recombination
step.
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Energy

Energy barrier

Gain in energy,
Formation enthalpy 

Reactants
Products

Figure 2.1: Activation energy diagram Ej

2.2.2.2 Reverse reaction rate constant and equilibrium

The backward rate is balanced with the forward one defining an equilibrium constant. Equilibrium is
achieved when the forward rate Q̇fj equals the backward rate Q̇rj , hence when:

Kfj

Nsp∏

k=1

[Xk]
ν
′
kj = Krj

Nsp∏

k=1

[Xk]
ν
′′
kj (2.39)

The equilibrium constant is defined as the ratio of the reactants concentrations by the products concen-
trations at equilibrium:

Keq,j =

Nsp∏

k=1

[Xk]
νkj =

Kfj

Krj
(2.40)

The reverse reaction rate constant is deduced from Krj = Kfj/Keq,j after computing the equilibrium
constant that is deduced from the thermodynamic properties of the species involved within reaction j.
These thermodynamic properties are given from the computation of the Gibbs free energy.

2.2.2.3 Gibbs free energy

The estimation of the chemical equilibrium of a reaction necessitates the definition of the standard Gibbs
free energy change. This reference state is used to describe the chemical potential of species and en-
ables to quantify the difference in potential that exists between the reactants and the products of a given
reaction. This is expressed, for the jth reaction, through:

∆G◦j = −RT lnKp,j , (2.41)

where index ◦ refers to all the products and reactants in their standard state and Kp,j is the equilibrium
constant of reaction j expressed from the partial pressure of the species involved within reaction j.
Note that the more negative is ∆G◦j , the larger is the equilibrium constant of reaction j and the more
spontaneous is the reaction. In addition, if the Gibbs free energy of the reactants of j is similar to the one
of its products, the reaction has no tendency to proceed (∆G◦j = 0). The equilibrium constant in pressure
relates to the one in concentration terms Keq,j by:

Kp,j = Keq,j

(RT
P ◦

)∑Nsp
k=1 νkj

(2.42)
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with P ◦, the reference pressure. Combining this relation with equation 2.41 allows to get an expression of
the equilibrium constant in terms of concentrations Keq,j as a function of the standard Gibbs free energy
variation across the jth reaction, here expressed in terms of entropy and enthalpy change, respectively
noted ∆S◦j and ∆H◦j .

Keq,j = exp

(
∆S◦j
R −

∆H◦j
RT

)(
P ◦

RT

)∑Nsp
k=1 νkj

(2.43)

In practice, the entropy and enthalpy change necessary to calculate the equilibrium constants are com-
puted from the NASA relations introduced in 2.10 and 2.11.

2.2.2.4 Reactions orders

Rate equations are mathematical expressions that describe the relationship between the rate of a chemical
reaction and the concentration of its reactants. The exponents in a rate equation describe the effects of
the reactant concentrations on the reaction rate and define the reaction order.

The unit for the chemical rate constant and the unit for the pre-exponential factor Aj varies with
the order of the reaction. The Aj in a reaction of 1st order is expressed in s−1.K−βj , of 2nd order
in m3.mol−1.s−1.K−βj and the pre-exponential factor have the unit m6.mol−2.s−1.K−βj for 3rd order
reactions .

2.2.2.5 Third-body reactions

Three-body reactions involve two species ‘A’ and ‘B’ as reactants and a third body ‘M’. They yield as
products, the species ‘AB’ and the unchanged catalyst species ‘M’ which is used to stabilise the excited
product ‘AB∗’ through the release of heat. On the contrary, in the reverse direction, heat provides the
energy necessary to break the link between ‘A’ and ‘B’. Although three-body reactions are described
by only one Arrhenius equation, the chemical process undergoes the 3 steps detailed within table 2.1.
The third body ‘M’ can be any inert molecule. The notation usually is A + B + M 
 AB + M. The

Forward direction Backward direction

A + B→ AB∗

AB∗ + M→ AB + M∗

M∗ → M + heat

M + heat→ M∗

AB + M∗ → AB∗ + M

AB∗ → A + B

Table 2.1: Forward and backward decomposition of a three-body reaction.

concentration of the third body can be defined from either a single species or from a combination of
species. In the first case, the notation usually takes the form A+B+N2 
 AB+N2 (here with the azote
species). In the second case, each of the species is seen as a more or less effective collisional partner.
Third body efficiencies βk are thus defined and the calculation of the concentration [XM] is done on the
basis of equation 2.44. Species which are associated to a high efficiency are given a value above 1.0; on
the contrary a value below 1.0 is defined for the species which are not effective collisional partners. A
default efficiency of 1.0 is declared for all the other species.

[XM] =

Nsp∑

k=1

βk[Xk] (2.44)



Equations and models for reacting turbulent and two-phase flows 43

2.2.2.6 Fall-off correction

Under specific conditions, some reaction rate expressions are dependent on pressure and temperature.
This is especially true for the rate associated to unimolecular/recombination fall-off reactions which
increases with pressure. As an example, let us consider the unimolecular/recombination reaction that
describes the methyl recombination (table 2.2). If the chemical process takes place at either a low or high-

High pressure limit CH3 + CH3 
 C2H6

Low pressure limit CH3 + CH3 + M 
 C2H6 + M

Table 2.2: Low and high-pressure reactions for methyl recombination

pressure limit, typical Arrhenius laws are applicable to the reactions described in table 2.2. However,
if the pressure is in between, an accurate description of the phenomenon requires a more complicated
rate expression. In such a case, the reaction is said to be in the “fall-off" region. Common practice is

Figure 2.2: Lindemann form and Troe form applied to the methyl recombination [27]

to write the overall reaction as CH3 + CH3 (+M) 
 C2H6 (+M). Several formulas (derived from
the Lindemann description [28]) are available to smoothly relate the limiting low and high-pressure rate
expressions. With the Lindemann approach, Arrhenius parameters need to be given for both the low
pressure limit K0 and the high pressure limit K∞.

K0 = A0T
β0 exp

(
− E0

RT

)
(2.45)

K∞ = A∞T β∞ exp

(
−E∞RT

)
(2.46)

The expression taken at any pressure is based on a combination of both K0 and K∞ (see equation 2.47).
The term Pr is here equivalent to a pressure and [M] represents the concentration of the mixture, possibly
estimated from third-body efficiencies.

K = K∞

(
Pr

1 + Pr

)
F (2.47)
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Pr =
K0[M]

K∞
(2.48)

The expression for the F coefficient is equal to unity with the Lindemann description. Other descriptions
of F such as the Troe form have been proposed:

log(F ) =

[
1 +

(
log(Pr) + c

n− d(log(Pr) + c)

)2
]−1

log(Fcent) (2.49)

where the coefficients c, n and d are estimated through:

c = −0.4− 0.67 log(Fcent) (2.50)

n = 0.75− 1.27 log(Fcent)

d = 0.14

and Fcent through the equation 2.51 where the parameters α, T ∗, T ∗∗, T ∗∗∗ have to be specified as inputs
(T ∗∗ is not always used).

Fcent = (1− α) exp

( −T
T ∗∗∗

)
+ α exp

(−T
T ∗

)
+ exp

(−T ∗∗
T

)
(2.51)

2.2.3 Reducing the costs for solving chemistry

As introduced earlier, the detailed combustion mechanisms available in the literature require the use
of a high resolution both in time and space. Typically, the size of the cells found within the flame
thickness, at atmospheric pressure, should be of the order of ten micrometers to properly solve for the
intermediate and radical species. Moreover the time steps necessary to capture the entire chemistry of the
flame are always smaller than the time steps used to solve for turbulence by several orders of magnitude.
The actual computer resources are not sufficient enough to support the expensive and long simulations
resulting from these tiny time and space resolutions. As a result, the use of detailed chemistry is limited
to a very small number of academic studies and as of today such large mechanisms are seldom employed
in industry. Accordingly, most of the reactive computations are today performed from either a tabulation
or from a reduction of the chemistry. The two approaches are briefly discussed here.

2.2.3.1 Chemistry reduction

The reduction of chemistry consists in lowering the complexity of the combustion mechanism by remov-
ing chemical species and reactions without significantly modifying the results for the conditions under
study. A large amount of methodologies have been developed for the derivation of reduced mechanisms.
A brief review of some of these techniques employed in the present thesis is proposed in Chapter 4.

2.2.3.2 Chemistry tabulation

Another largely employed methodology for the reduction of the costs associated to chemistry consists in
storing the chemical responses obtained from canonical 1D flame simulations into a library relying on a
reduced number of parameters. The mixture composition, temperature and species source terms are thus
obtained from this library also called a lookup chemical table. The sub-space coordinates (table input
parameters) are either expressed from one thermochemical variable or from the linear combination of
independent variables.
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Maas and Pope [29] observed that there exist a composition sub-space called manifold in which
the evolution of the reactive system converges towards a group of similar trajectories. This set is called
Intrinsic Low Dimensional Manifold (ILDM) or variety attractor. Knowing the trajectory for the attractor
enables the reconstruction of the evolution of the entire system. The validity range of the attractor is
directly related to the number of dimensions of the composition sub-space.

Two main models have been constructed from the ILDM methodology and from the flamelet (dis-
cussed in section 2.3.1) hypothesis namely the FPI (Flamelet Prolongation of ILDM) model developed
by Gicquel [30] and the FGM model (Flamelet Generated Manifold) of Van Oijen [31]. These models
rely on the assumption that there is an analogue response between the local flame front and the tabu-
lated laminar canonical flamelet. The laminar flame responses are computed for given conditions and
projected in the reduced space: tabulated as a function of a few parameters.

2.3 Combustion regimes

Two canonical combustion regimes exist. A premixed configuration is characterised by a perfect mixing
of the fuel and of the oxidiser before combustion while a diffusion regime is achieved when combustion
occurs at the interface between the fuel injection and the oxidiser injection.

Premixed flames are interesting in the sense that they provide high burning efficiency because the
mixing between the fuel and the oxidiser is done prior to the combustion. The temperature of the burnt
gases is also easily monitored through the equivalence ratio of the mixture. This exhaust temperature
is a key parameter for a number of industrial applications and also controls the pollutants formation.
Unfortunately because of the premixing, these flames are difficult to design and finally, the reaction may
accidentally be initiated which poses real safety problems.

On the other hand, diffusion flames are much easier to design and also much safer to operate. Indeed,
because no premixing is present, the flame cannot propagate in the fuel stream since the oxidiser is
missing and vice versa. Notwithstanding these facts, non-premixed flames have drawbacks because
the mixing governed by molecular diffusion is less efficient and because the maximum temperature is
difficult to control.

Most industrial applications cannot be simply described by these two ideal cases. Real systems lie
in a regime that is neither strictly premixed nor non-premixed flames and that shares characteristics with
both of them. This last regime is referred as partially-premixed combustion. The three regimes are
introduced and illustrated in this section.

2.3.1 Canonical problem: The perfectly premixed flame

2.3.1.1 Premixed flame structure

The unstretched premixed flame is the most common canonical model employed to describe combustion
processes at constant pressure. Premixed combustion is characterised by a fresh mixture of reactants
separated from the burned gases by a flame front that freely propagates in the direction of the fresh gases
at a velocity S0

L, as illustrated on figure 2.3. The structure of a premixed flame is characterised by three
regions:

• A preheat zone, where fresh reactants are heated by the thermal diffusion fluxes,
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• A reactive layer defined by a reaction thickness in which the fuel is first decomposed in series of
intermediate fuels which in turn are decomposed to form radical species as for instance H, O and
OH,

• A post-flame region where the intermediates are combined together to form major combustion
products such as CO2 and H2O.

Figure 2.3: Structure of a laminar premixed flame [32].

2.3.1.2 Simplified equations for freely propagating 1D flames

The conservation equations introduced within section 2.1.2 are further simplified in the context of 1D
premixed flames propagating in the x direction (at constante pressure). For a steady flame in the reference
frame of the flame, mass is conserved at each point so that:

∂ρu

∂x
= 0 −→ ρu = ρ0S

0
L , (2.52)

where ρ0 is the fresh gases density and S0
L is the laminar flame speed defined in section 2.3.1.4. Thanks

to the relation 2.52, the momentum equation is no more necessary. Regarding the species conservation,
the steady evolution of the chemical species along the x axis is simplified to the relation:

∂

∂x
(ρ(u+ Vk)Yk) = ω̇k , (2.53)

and finally, in this context, the enthalpy conservation reads:

∂

∂x
(ρuhs) =

∂

∂x

(
λth

∂T

∂x

)
− ∂

∂x


ρ

Nsp∑

k=1

hs,kYkVk


+ ω̇T . (2.54)

2.3.1.3 Controlling variables

The chemical process taking place within the reactive front of a premixed flame may be described using
a progress variable c which is normalised in order to be equal to 0 in the fresh gases and 1 in the burned
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gases region. On the basis of the temperature variation across the flame, this progress variable reads:

c =
T − T0

Teq − T0
. (2.55)

with Teq the equilibrium temperature. Under the hypothesis of unity Schmidt and Lewis numbers, it
is also commonly expressed from Yc which is estimated from a linear combination of the combustion
products:

c =
Yc − Yc,0
Yc,eq − Yc,0

. (2.56)

Typically Yc = YCO + YCO2 + YH2O, Yc,eq being Yc at equilibrium. This definition is valid for the
great majority of premixed combustion problems, however it does not apply well for some specific cases
including the capture of the NOx levels. The progress variable c is particularly suitable for the analysis
of the flame structure, to estimate the location of the reactive layer and to define the normal to the flame
front through the relation:

n =
−∇c
|∇c| . (2.57)

For a premixed flame, the perfect mixing of the fuel and oxidiser is characterised by an equivalence
ratio which is computed from relation:

φ = s
YF,0
YO,0

, (2.58)

where YF,0 and YO,0 respectively represent the fuel and oxidiser mass fractions in the fresh gases. The
term s is the stoichiometric ratio defined by relation 2.59.

s =
νOWO

νFWF
, (2.59)

where WF and WO are the fuel and oxidiser molecular weights. The terms νF and νO respectively stand
for the fuel and oxidiser stoichiometric coefficients within the global reaction:

νFF + νOO → νPP , (2.60)

with F, O and P the species formula of the fuel, oxidiser and the product of the global reaction. The
equivalence ratio equals unity for a stoichiometric mixture. The mixture is said to be “lean" when the fuel
mass fraction in the fresh gases YF,0 is lower than in stoichiometric conditions i.e. when the equivalence
ratio is lower than 1. On the other hand it is called “rich" for higher fuel mass fractions in the fresh gases
i.e. for φ greater than 1.

2.3.1.4 Flame speed, flame thickness

Multiple definitions of the flame speed are commonly employed whether the combustion is analysed in
an absolute reference frame (absolute speed), relatively to the local flow velocity (displacement speed)
or considering the speed at which the the fuel reacts (consumption speed). The so-called laminar flame
speed is the only one studied in this thesis. It corresponds to the speed at which the fuel is consumed. It
is computed from the integral of the burning rate across the flame brush:

S0
L = − 1

ρ0(YF,0 − YF,∞)

∫ +∞

−∞
ω̇Fdx , (2.61)
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where x corresponds to the direction of the flame domain, and ρ0, YF,0 are respectively the density and
the fuel mass fraction in the fresh gases and where YF,∞ is the fuel mass fraction in the burned gases.

The laminar flame is also described through its thickness which varies according to the composition
of the burning mixture (fuel and oxidiser type, equivalence ratio), the initial temperature and pressure.
Several definitions exist including the thermal thickness δthL , the diffusive thickness δdL, the blint thickness
δbL and the reaction zone thickness δrL. The thermal thickness [33] is computed from the temperature
gradient:

δthL =
Teq − T0∣∣∣∣
∂T

∂x

∣∣∣∣
max

, (2.62)

where T0 and Teq are respectively the temperature in the fresh and in the burned gases. The diffusive
thickness [33] provides an a priori estimation of the flame thickness that relies on the thermal diffusion
of the fresh gases δdL = D0

th/S
0
L. It is easy to compute although it usually underestimates the thickness

value in comparison to δthL . The blint thickness [34] is a corrected version of the diffusive thickness which
relies on equilibrium thermochemistry δbL = 2δdL(Teq/T0)0.7. It provides a much closer estimation of
the thickness of the thermal layer. Finally the reaction zone thickness [35] is estimated from the region
where the heat is released. It is usually one order of magnitude smaller than the thermal thickness. Along
this thesis, only the thermal thickness will be employed using the relation 2.62.

2.3.2 Canonical problem: The diffusion flame

Diffusion flames are characterised by a separated injection of fuel and oxidiser. The flame develops inside
of the diffusion layer and is stabilised exactly at the stoichiometric line. In opposition to the premixed
flame, the diffusion one is not associated to auto-propagative effects and is not characterised by
any specific thickness since it is largely piloted by the mixing of the reactants. The diffusion flame is
illustrated on figure 2.4. The maximum temperature is located inside of the reaction zone and diffuses
towards the fuel and the oxidiser streams. The structure inside of the diffusion flame is piloted by the
external streams which influence the local stretch.

Figure 2.4: Structure of a laminar diffusion flame [32].
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2.3.2.1 Passive mixture fraction

The mixing state is locally described using a mixture fraction Z. The use of the atomic conservation is
one way to define Z as a passive scalar in a multi-species environment. Bilger [36] provides a description
of the mixture fraction for hydrocarbon species of type CmHn:

Z =
ZC/(mWC) + ZH/(nWH) + 2(YO2,2 − ZO)/(νOWO2)

ZC,0/(mWC) + ZH,0/(nWH) + 2YO2,2/(νOWO2)
, (2.63)

within which YO2,2 represents the oxygen mixture fraction in the oxidiser inlet. Zj corresponds to the
mass fraction of the jth atom and is computed for C, H and O atoms from relation:

Zj =

Nsp∑

k=1

αjkWj

Wk
Yk , (2.64)

where αjk is the number of jth atom into species k, Wj is the molecular weight associated to the atom j

and Wk represents the species k molecular weight.

2.3.2.2 Steady strained diffusion flame

One relevant canonical problem for the study of non-premixed combustion is the steady strained one
dimensional diffusion flame. It is illustrated on figure 2.5. This approach is used frequently for the
tabulated methodologies employed in non-premixed combustion.

Figure 2.5: Counter-flowing diffusion flame [32]

2.3.3 Partially premixed combustion

2.3.3.1 Combustion regimes in real systems

Higher performances are reached for premixed combustion than for diffusion flames. However, in real
systems for which efficient, easy and safe to operate strategies are necessary, the fuel and oxidiser cannot
meet outside of the combustion chamber. For that reason, separated injections of the fuel and of the
oxidiser are frequently retained and the actual design tendency is towards the development of technolo-
gies to enhance the mixing of the reactants before they enter the combustion zone. This may be done
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by increasing turbulence (introducing a swirl) or by enhancing the interaction between the fuel and the
oxidiser directly through the injection system. Nevertheless, a great majority of the industrial systems
operate under conditions in which the reactants are not perfectly mixed together when they start burning
or in conditions where local flame extinctions favour the mixing between the fuel and the oxidiser while
they react in the flame zone. Accordingly, a point situated within the reactive layer faces a combustion
regime that varies from perfectly premixed combustion to non-premixed combustion. In that case, the
flame is said to operate in a partially premixed regime. This combustion mode has a drastic impact on
the reaction rate. It moreover plays an important role in the stabilisation of a flame which is the result
of an intense mixing between the fuel, the oxidiser and the burned gases that leads to the creation and
propagation of partially premixed flamelets.

In order to locally identify the combustion regime, several indexes have been developed, from the
Takeno index [37], based on fuel and oxidizer gradients, to the gradient free GFIR index [38, 39] based on
mixture fraction and heat release rate. Eventually, a method based on convolutional neural networks [40]
have also been proposed for a reliable combustion regime index based on thermochemical properties.

2.3.3.2 Stratified combustion

Figure 4. Instantaneous isosurface of filtered reaction rate
r ḟwYc = 10 kg.s�1.m�3 colored by the filtered mixture frac-
tion ez for the non-adiabatic LES.
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Figure 2.6: LES of a stratified turbulent flame colored by the filtered mixture fraction, by Mercier et al.
[41].

A specific application of partially premixed flames is stratified combustion. It can be seen as a
propagation of a flame within several layers of premixed fuel-air mixtures at different equivalence ratios.
An example of stratified methane-air LES is presented Fig. 2.6. Stratified combustion is typically found
in gas turbines, and internal combustion engines as well as in the majority of the industrial furnaces. This
type of combustion mode is of interest thanks to its ability to provide high efficiencies while reducing
the pollutants emissions. Typically CO and NOx levels are minimised because of overall lean conditions
and thanks to the lowering of the temperature. Stratification is also frequently encountered in premixed
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combustion involving a dilution with cold air. The flamelet hypothesis, described in the next chapter, is
usually employed to model stratified combustion.

2.4 Aerothermochemical equations in the LES formalism

2.4.1 Introduction to turbulence

In the flows characterised by low velocities, the small perturbations are instantly smoothed by the molec-
ular viscosity which tends to maintain organisation. In that case, the flow is called laminar and is char-
acterised by regular parallel trajectories. When the velocity increases, the viscosity is not strong enough
to dissipate the perturbations which are furthermore amplified by several instabilities. The flow moves
towards a turbulent state characterised by a disorganised appearance which is associated to a large range
of macroscopic scales. The same set of equations is used to describe both states. The transition between
the laminar and the turbulent state is explained by the non-linearity of these equations. Most of the flows
encountered in industrial processes, in transportation or even in nature are non stationary and turbulent.

The turbulent nature of a flow may be quantified comparing the inertial forces that tend to disrupt
the flow and create new turbulent scales to the viscous forces which have the tendency to dissipate
the movement and restore a laminar regime. The Reynolds number is a non-dimensional number that
provides such a comparison:

Re =
uL

ν
. (2.65)

It is expressed respectively from the velocity u and characteristic size L of the flow and from ν which
represents the kinematic viscosity of the fluid. Small Reynolds numbers are representative of laminar
flows while large Re correspond to turbulent conditions. The Kolmogorov theory [42] introduces the
concept of turbulent energy cascade towards the small scales which is one way to describe the turbulent
energy spectrum. It is illustrated within figure 2.7 by expressing the turbulent kinetic energy as a function
of the wave number. Three different scales are used to describe this spectrum and then to calibrate the
direct and large scales simulations.

• Macroscopic scale: The largest scales of the turbulence are geometry dependant. These are the
most energetic turbulent structures. The turbulent kinetic energy is defined from the relation:

kt =

3∑

i=1

1

2
u
′2
i . (2.66)

Two scales may be employed to describe the macroscopic turbulent structures, namely the ener-
getic length scale Le and the integral length lt. The energetic length Le is expressed through the
relation:

Le =
k

3/2
t

ε
, (2.67)

where ε corresponds to the turbulent dissipation. The integral length lt is computed through:

lt =
u
′3

ε
. (2.68)

with u
′

defined under the hypothesis of local isotropy:
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u
′

=

√
2

3
kt (2.69)

The turbulent Reynolds number Ret is expressed from this integral scale using:

Ret =
u′lt
ν

. (2.70)

And the relation between the length scales Le and lt is simply:

lt
Le

=

(
2

3

)3/2

. (2.71)

• Intermediate scale: The largest eddies become unstable and break to form smaller eddies. This
transfer is done following the k−5/3

t law. The Taylor scale λ to which this is associated is the most
dissipative scale.

• Viscous dissipation scale: This scale refers to the the smallest structure of the flows and is limited
by the molecular agitation. It is referred as the Kolmogorov scale in which length and velocity are
expressed from:

lK =
(ν
ε

)1/4
and uK = (νε)1/4 . (2.72)

ε refers to the dissipation rate through the formation of heat of the turbulent kinetic energy. A
turbulent Reynolds number associated to the Kolmogorov length scale appearsReK = u

′
K lK/ν ≈

1.

2.4.2 Strategies for the simulation of turbulent flows: RANS, LES, DNS

The Computational Fluid Dynamics (CFD) aims at simulating numerically the flows by solving for the
discretised conservative equations. The large variety of scales observed while numerically solving for
the flows depends on the viscosity of the simulated fluid. The turbulence modelling consists in the
modification of the viscosity of the studied fluid to limit the scales to the ones that can be solved on the
employed mesh.

Three different approaches are used to simulate turbulent flows, namely DNS, RANS and LES.

• The introduced set of conservative equations allows for solving directly the aerothermochemistry
over all the space and time scales of the flow. This approach is called DNS for Direct Numerical
Simulation. Such a method is expensive because it requires the use of a mesh capable of capturing
the smallest scales of the flow through a resolution ∆ = 2lK (see [44]). This condition is expressed
from the turbulent Reynolds number and the integral scale through the relation:

∆ ≈ lt

Re
3/4
t

(2.73)

Because of this elevated cost, DNS is today exclusively employed for the simulation of academic
configurations limited to reasonably low Reynolds number.
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2. GOVERNING EQUATIONS FOR LARGE EDDY SIMULATION

Computed in LES

Computed in DNS

Modeled in 
LES

Modeled in RANS

Large Eddies

Small dissipative 
eddies

Inertial Range

Figure 2.1: Sketch of energy density E vs wavelength k in an homogeneous

isotropic turbulence (log-log scale).

scale lt and the computational size are of the same order, the number of grid points

needed to correctly resolve all the turbulent scales scales as

Npoints −
(

lt
��

)3

= Re
9�4
t (2.23)

Therefore for high Reynolds number practical applications, this number rapidly be-

comes out of reach of todayΓs and tomorrowΓs computational power. To circumvent

these limitations, two approaches have been extensively used in the last decades in

CFD.

The fundamental idea of the Reynolds-Averaged Navier Stokes (RANS) ap-

proach is to decompose the turbulent flow into two contributions, a mean flow and its

fluctuations. Formally, an averaging operator is applied to each quantity Q leading to

the Reynolds decomposition

Q =< Q > +Q′ with < Q′ >= 0 , (2.24)

where < Q > is the mean of the quantity and Q′ is the deviation from the mean. The

RANS equations are obtained by applying this averaging operator to the whole set of

Navier-Stokes equations. Thus only the mean quantities are solved. Because of the

non-linear terms of the Navier-Stokes equations, unclosed higher order terms appear

in the transport equations of the mean quantities. They can be modelled or resolved

through additional transport equations in which even higher order unclosed terms will

appear. First or second order closures are generally employed in practice. Closure mod-

els were designed to be suitable for specific configurations (e.g. isotropic turbulence,

flow on a flat plate) but the largest scales of turbulence are largely dependent on the

configuration geometry. Since the whole turbulent spectrum is modelled in RANS, it

might limit the prediction capability of this approach, especially in turbulent combus-

tion applications where interactions between the flow and the flame lead to complex

34

Figure 2.7: Illustration of the turbulent energetic spectrum along the energetic cascade. The solved and
modelled scales are given for RANS, LES and DNS approaches. Image extracted from [43].

• To numerically solve for fluid dynamics at reasonable costs, time averaged equations have been
derived. This approach is referred as RANS for Reynolds Averaged Numerical Simulation. The
entire set of turbulence fluctuations are modelled and no scale from the turbulent energy spectrum
is solved. Using this approach, the extracted informations concern only the mean behaviour of the
flow. Since it allows for dealing with coarse meshes hence giving short runback times, the method-
ology has been largely studied in academia over the last decades and is still today a reference for
most CFD based applications in industry.

• Finally, the LES for Large-Eddy Simulation consists in the solving of the non stationary large
structures of the flow and on the modelling of the smallest scales. This approach still requires
the introduction of specific models but these can be constructed from the information about the
large scales of the flow which are numerically solved. The introduction of such models lies on
the assumption that the cutting point between the solved and modelled informations is located
within the inertial scale (as illustrated on figure 2.7). In practice, this cutting point is dependant on
the used mesh. The added viscosity is of the order of the Reynolds number corresponding to the
cutting length scale, hence of the order of the mesh size ∆.

2.4.3 Filtered equations for LES

The separation between the solved scales for LES and the scales that are modelled is given by a filtering
operation of the equations that are solved for a DNS. For a scalar φ(x, t), the filtering is performed
through a spatial convolution that gives,

φ(x, t) =

∫

R3

φ(y, t)G∆(y− x)dy , (2.74)

where G∆ is the filter associated to the scale ∆ that provides the filtered quantity φ(x, t). The filter must
be normalised so that, ∫

R3

G∆(x)dx = 1 , (2.75)
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and must verify the commutativity of both spatial and temporal derivation operators, so that:

∂φ

∂t
=
∂φ

∂t
and

∂φ

∂xi
=

∂φ

∂xi
. (2.76)

After the filtering separation, the φ variable may be seen in two parts: (1) a part φ evolving above the
scale ∆ and (2) a fluctuating unresolved part φ′ evolving at scales lower than ∆.

φ(x, t) = φ(x, t) + φ′(x, t) . (2.77)

Because the density ρ of the flow varies from one point to another, the Favre filtered variable φ̃ is intro-
duced. It corresponds to a filter weighted by density.

φ̃ =
ρφ

ρ
. (2.78)

The Favre convolution is applied to the system of conservative equations (2.19)-(2.20)-(2.22) and (2.28)
leading to the following set of filtered relations:

• Filtered mass conservation
∂ρ

∂t
+
∂ρũi
∂xi

= 0 . (2.79)

• Filtered momentum conservation

∂ρũj
∂t

+
∂ρũiũj
∂xi

= − ∂

∂xi
[ρ(ũiuj − ũiũj)]︸ ︷︷ ︸

(1)

− ∂P
∂xj

+
∂τ ij
∂xi

. (2.80)

• Filtered species conservation

∂ρỸk
∂t

+
∂ρũiỸk
∂xi

= − ∂

∂xi

[
ρ(ũiYk − ũiỸk)

]

︸ ︷︷ ︸
(2)

− ∂

∂xi

(
−ρVk,iYk

)
︸ ︷︷ ︸

(3)

+ ω̇k︸︷︷︸
(4)

. (2.81)

• Filtered energy conservation

∂ρh̃s
∂t

+
∂ρũih̃s
∂xi

= − ∂

∂xi

[
ρ(ũihs − ũih̃s)

]

︸ ︷︷ ︸
(5)

+
DP

Dt
+

∂

∂xi

(
λth

∂T

∂xi

)

︸ ︷︷ ︸
(6)

(2.82)

− ∂

∂xi


ρ

Nsp∑

k=1

hs,kYkVk,i




︸ ︷︷ ︸
(7)

+ ω̇T︸︷︷︸
(8)

. (2.83)

Unresolved terms (1)-(8) appear in the filtered conservative equations. Each of them is closed by intro-
ducing several models:

• The sub grid Reynolds stress tensor (1) τ ′ij = ρ(ũiuj − ũiũj) requires the introduction of a
turbulence model for the transport of momentum by unresolved velocity fluctuations and account
for the energy transfert between resolved and unresolved structures. The Boussinesq [45] approach
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is employed in this thesis: turbulent fluxes are modelled using an expression similar to the laminar
definition 2.21 and using a turbulent viscosity µt = ρνt so that:

τ
′
ij = µt

(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 2

3
µt
∂ũk
∂xk

δij , (2.84)

Several models may be introduced from this approach. The one employed in this thesis is discussed
in the next section.

• The sub grid species (2) and enthalpy fluxes (5) respectively written:

F ′k,i = ρ(ũiYk − ũiỸk) (2.85)

Q′i = ρ(ũihs − ũih̃s) (2.86)

are modelled using a similar approach to the one for the sub grid Reynolds stress tensor. A turbu-
lent Prandtl number Prt is introduced for the enthalpy fluxes:

Q′i = − µt
Prt

∂h̃s
∂xi

. (2.87)

and for the species fluxes, a turbulent Schmidt number is used Sct, so that:

F ′k,i = − µt
Sct

∂Ỹk
∂xi

. (2.88)

These Prandtl and Schmidt may be constant over the entire domain or may vary in space and time
depending on the formulation.

• The filtered laminar diffusive fluxes of species (3) and enthalpy (6)-(7) are usually expressed
from their resolved part, neglecting their sub-grid scale contribution.

λ
∂T

∂xi
= λ

∂T̃

∂xi
, (2.89)

Vk,iYk = −Dk
Wk

W

∂X̃k

∂xi
, (2.90)

ρ

Nsp∑

k=1

hs,kYkVk,i = −ρ
Nsp∑

k=1

Dk
Wk

W

∂X̃k

∂xi
h̃s,k . (2.91)

• The filtered species chemical rate (4) enthalpy source term (8) respectively ω̇k and ω̇T are
critical points regarding the modelling of turbulent combustion. They will be discussed later in
chapter 3.

2.4.4 Sub grid scale modelling for turbulence

Several approaches exist in the literature, however only the Boussinesq approximation is employed in
this thesis. It relies on the assumption that the effect of the unresolved small structures are similar to an
increase of the turbulent viscosity. The main difficulty lies in the calculation of this additional viscosity.
It is at the origin of several modelling developments. Three of them are shortly described below.
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• The Smagorinsky model relies on an equilibrium hypothesis between production and dissipa-
tion of kinetic energy at the scale of the filter. The turbulence is therefore only considered as a
dissipative phenomena.

νt = (CS∆)2 |S̃| = (CS∆)2
√

2S̃tijS̃
t
ij , (2.92)

where CS is the Smagorinsky constant (with a typical value CS = 0.17 calculated from the Kol-
mogorov spectrum), ∆ is the characteristic filter width and S̃ the filtered strain tensor that is ex-
pressed:

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
. (2.93)

• The dynamic Smagorinsky model is derived by Germano [46] and Lilly [47]. This approach
relies on a dynamic and local estimation of the CS constant. The sub grid behaviour is estimated
from the resolved small structures which require the filtering written (̂·) of the solved velocity field
at a size ∆′ that is larger than the size ∆. The sub grid tensor and the sub grid tensor based on the
velocity field may be expressed from the Smagorinsky model through the following formulations:

τ
′
ij = 2ρ (CS∆)2 |S̃|S̃ij , (2.94)

τ
′′
ij = 2ρ̂

(
CS∆′

)2 |̂̃S|̂̃Sij . (2.95)

The Germano identity is used to link both tensors through a term that depend on the solved field
and which may be explicitly computed:

Lij = τ
′
ij − τ

′′
ij = ρ

(
̂̃uî̃uj − ̂̃uiũj

)
. (2.96)

Combining the equations (2.94), (2.95) and (2.96) allows for computing the Smagorinsky constant
from the filtered velocity field at two different scales. The dynamic Smagorinsky model applies to
a large range of conditions, however it is more difficult and more expensive to use, since it requires
an explicit filtering operator. This approach is the one retained for the LES simulations showed in
chapter 4 and 6.

• The WALE model for Wall-Adaptating Eddy-Viscosity [48] aims at predicting the correct be-
haviour at walls and the transition to the turbulence. With this model the turbulent viscosity is
computed from relation:

νt = C2
W∆2

(sdijs
d
ij)

3/2

(S̃ijS̃ij)5/2 + (sdijs
d
ij)

5/4
, (2.97)

in which the CW constant equals 0.5. The tensor sdij reads,

sdij =
1

2

(
h̃ij + h̃ji

)
− 1

3
h̃kkδij with h̃ij = g̃ikg̃kj and g̃ij =

∂ũi
∂xj

. (2.98)

2.5 Numerical description of the liquid phase

2.5.1 Two-phase flows modelling

A flow composed of particles rely on the presence of a carrying phase which may either be liquid or gas
and on a dispersed phase composed of either liquid particles (such as kerosene droplets), solid particles
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(such as coal) or bubbles into a gaseous phase. The interaction of the dispersed phase with the flow
highly depends on the fraction of the volume occupied by the particles in the fluid domain. In the context
of this thesis, only a diluted suspension phase is considered. It requires a two-way coupling [49] which
means that the influence of the moving particles on the fluid also have to be accounted for in addition to
the inclusion of the impact of the fluid on the dispersed phase.

Two different descriptions are found in the literature: (1) The Euler-Euler approach consists of con-
sidering the dispersed phase as a continuous environment similar to a fluid which is given the mean
properties of the droplets mist. The characteristics of the dispersed phase are thus transported on a Eu-
lerian mesh using a set of flow equations similar to the ones employed for the carrying phase. (2) The
Lagrangian approach consists of following particles individually in the flow domain. The mass trans-
fer, momentum and energy phenomena are solved in interaction with the carrying phase. Each droplet
(particle) has its own properties (temperature, velocity and diameter). Efficient interpolation methods
are required with this approach since the position of the particles does not coincide with the mesh nodes.
The Lagrangian description is the methodology employed for the simulation presented in chapter 4.

2.5.2 Equations for the Lagrangian description

2.5.2.1 Kinematic of the droplets

Each particle is assumed to have a spherical form, the mass mp of a particle thus reads:

mp = ρp
π

6
d3

p , (2.99)

where dp refers to the diameter of the particule and ρp to its density. The equations for the transport of
the particles are as follows:

• The particle kinematic formalism expresses the evolution of the position xp
i of the particle p

moving with the velocity up
i from relation:

dxp
i

dt
= u

p
i . (2.100)

• The momentum conservation is written as a function of F p
i which represents the projection onto

the ith axis of the forces acting on the particle.

mp
du

p
i

dt
= F

p
i where F

p
i = F

p
i,G + F

p
i,A + F

p
i,I , (2.101)

F
p
i is associated to three contributions: F p

i,G stands for the gravity and buoyancy forces, F p
i,A for

the aerodynamical and drag forces and F p
i,I represents the interaction forces with the wall and the

other Lagrangian particles.

– Gravity: The gravitational and buoyancy forces acting on the particle may be written from
the relation:

F
p
i,G = (ρp − ρ)

π

6
d3

pgi (2.102)

where ρ is the density of the carrier-phase and gi is the acceleration due to gravity. In strongly
turbulent flows, the gravity force is often neglected in comparison to the aerodynamical
forces. Furthermore, ρp >> ρ for liquid droplets into a gaseous phase. The buoyancy
forces will thus be neglected thereafter.
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– Aerodynamic: The drag force induced by the gas on the particle reads:

F
p
i,A = mp

1

τp
(u

p
i − ui) , (2.103)

where τp is the time it takes to a particle to respond to the velocity fluctuations. This charac-
teristic time is dependent on the flow regime that is defined by the particle Reynolds number
Rep expressed:

Rep =
dp|up

i − ui|
ν

, (2.104)

τp is described as a function of the drag coefficient CD from the relation,

τp =
4ρpd

2
p

3CDRepρν
. (2.105)

A large variety of correlations have been proposed for the drag coefficient CD [50]. The
correlation for numbers of the particle Reynolds Rep lower than 1 is the Stokes law.

CD =
24

Rep
. (2.106)

For intermediate values, the correlation by Schiller and Naumann is employed [51],

CD =
24

Rep
+

3.6

Re0.313
p

. (2.107)

For values of the particle Reynolds number higher than 1000, the coefficient is considered to
be constant and equal to 0.44.

2.5.2.2 Evaporation

Hypotheses of the evaporation model

The temperature and the composition of the droplet are estimated from the presented conservative
equations. They are highly dependent on the ambient conditions. The composition at the surface of the
droplet (particle) is defined by the subscript p while the subscript notation∞ refers to the condition of the
surrounding gas. This is illustrated on figure 2.8. Several hypotheses are here formulated in the context
of a single-component droplet.

1. The droplet is considered to be perfectly spherical and isolated i.e. its interaction with the other
droplets is not accounted for.

2. The temperature of the droplet is considered uniform, its thermal conductivity being infinite.

3. The surface of the droplet is assumed to be thermodynamically in equilibrium with the environ-
ment. The Clausius-Clapeyron law is therefore employed for the estimation of the saturation
vapour pressure at the surface of the droplet.

4. Except for the evaporated portion, the properties of the surrounding gas are considered constant
from the surface of the droplet up to infinity.
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FIGURE 3.3: Schéma d’une particule liquide qui s’évapore dans un milieu ambiant gazeux

3.2.2.1 Evolution de la masse

Le taux d’évaporation massique de l’espèce i d’une particule isolée est obtenu par intégration de
l’équation de conservation de la fraction massique évaporée entre la surface de la goutte et l’environne-
ment ambiant (Kuo (1986), Sirignano (2010)).

ṁpi = �⇡dp(⇢Di)Shi log(1 + BM i) (3.13)

Le taux d’évaporation massique total de la particule est donc :

ṁp =

nspX

i

ṁp,i (3.14)

Les trois principaux termes caractérisant les effets de la convection, du gradient de composition et de
la diffusion massique sur le transfert de masse sont décrits ci-après.

Effets convectifs - Nombre de Sherwood

Le nombre de Sherwood (Sh) représente le rapport entre le flux de masse convectif et le flux de masse
diffusif. Dans le cas d’un environnement ambiant stagnant (u1 = 0), seule la convection naturelle agı̂t,
alors Sh = 2. Hors, de façon générale, u1 6= 0. La corrélation de Ranz & Marshall (1952) est alors
utilisée pour prendre en compte l’effet de la convection forcée sur les transferts de masse autour d’une
sphère.

Shi = 2 + 0.55Re1/2
p Sc

1/3
i (3.15)

Transfert de masse - Nombre de Spalding massique

Le nombre de Spalding massique BM caractérise le transfert de masse par rapport aux fractions
massiques à la surface de la goutte et dans l’environnement ambiant.

Particle Surrounding  
environment

Yk,1
Yk,1/3Yk,p

T1/3Tp

T1

r = 0 rp
r = 1

Figure 2.8: Illustration of a droplet p characterised by a temperature Tp and a composition Yk,p evaporat-
ing into its surrounding gaseous environment at conditions T∞ and Yk,∞ [52].

5. The formulation proposed by Hubbard et al. [53] also referred as the 2/3-1/3 law is retained to
consider the properties of the gas in the small layer that forms around the droplet. The composition
and temperature in this small region are computed from the surface conditions and from the infinite
conditions considering different ponderations. The formulation is illustrated on figure 2.8.

T1/3 =
2

3
Tp +

1

3
T∞ , (2.108)

Yk,1/3 =
2

3
Yk,p +

1

3
Yk,∞ . (2.109)

Mass evolution of the droplet
The mass evaporation rate of the droplet is computed from the integration of the conservation equations
of the evaporated species from the droplet radius up to infinity. See the work by Kuo [54] and Sirignano
[55] for more details.

ṁp = −πdp(ρD)Sh log (1 +BM ) , (2.110)

This formulation introduces several characteristic terms and numbers

1. The Spalding number expressed in terms of mass allows for describing the mass transfer effects
as a function of the evaporated species mass fraction studied both at the droplet surface and in the
surrounding gas. It is expressed from the relation:

BM =
Yk,p − Yk,∞

1− Yk,p
(2.111)

The mass fraction Yk,∞ is expressed from an interpolation of the Eulerian mesh. The following
expressions are employed for the estimation of the species mass fractions at the surface of the
droplet:

Yk,p =
Xk,pWk

Wp
(2.112)

The species molar fraction Xk,p is computed from the Dalton’s law:

Xk,p =
Pk,p
P

, (2.113)
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it is deduced from the Clausius-Clapeyron’s law that gives the relation between the total pressure
at saturation of a pure component as a function of its boiling temperature and of its latent heat of
vaporisation. The estimation of the molecular weight at the surface of the droplet is deduced from
the relation:

Wp = Xk,pWk + (1−Xk,p)W j 6=k,p . (2.114)

The computation of the term W j 6=k,p is achieved from the relation:

W j 6=k,p = W j 6=k,∞ =
1− Yk,∞

1− Yk,∞W∞
Wk

W∞ , (2.115)

which states, that the molecular weight of the gaseous phase except for the evaporated species is
constant from the surface of the droplet up to the infinity.

2. The Sherwood number Sh gives the ratio between the convective mass flux and the diffusive
mass flux. The correlation proposed by Ranz and Marshall [56] applies in the context of a forced
convection around a sphere. It reads:

Sh = 2 + 0.55Re
1/2
p Sc1/3 (2.116)

3. The diffusion term (ρD) in the equation 2.110 is usually simplified to the expression:

ρD =
µ1/3

Sc
(2.117)

Temperature evolution of the droplet
The temperature evolution of the droplet is computed from the integration of the energy conservative
equation from the droplet surface up to infinity. Doing so, the following expression is obtained;

dTp

dt
= − 1

τh

(
Tp −

(
T∞ −

LvBT
Cp,1/3

))
, (2.118)

where τh is the characteristic time associated to the heating of the spherical droplet and defined from:

τh =
ρpd

2
p

6

Sc

µ1/3Sh

Cp,k
Cp,1/3

BT
log 1 +BM

, (2.119)

where µ1/3 and Cp,1/3 are respectively the dynamic viscosity coefficient and the specific heat capacity
at constant pressure computed with the 2/3-1/3 law. An explanation on the derivation of relation 2.119
may be found in [55] or in Enjalbert’s thesis [57]. The thermal Spalding number BT is here expressed as
a function of the mass Spalding number through the relation,

BT = (1 +BM )
ShPr
NuSc − 1 (2.120)

The Nusselt number is used to describe the ratio between the convective and diffusive heat transfers. As
for the Sherwood number it may be expressed from the relation by Ranz and Marshall for a spherical
droplet:

Nu = 2 + 0.55Re
1/2
p Pr1/3 . (2.121)



Equations and models for reacting turbulent and two-phase flows 61

Boiling specific condition
The problem is simplified when the temperature of the carrying phase is higher than the boiling temper-
ature Tboil associated to the droplet composition. In that case, the gaseous layer that forms around the
droplet reaches saturation, hence Yk,p tends to unity and the Spalding number diverges towards infinity.

In that situation, the equation 2.118 is simplified to dT/dt = 0. The temperature of the droplet is
assumed to be equal to Tboil, which gives,

Bsat
T =

Cp,ref(T∞ − Tboil)

Lv
. (2.122)

The Spalding number at boiling conditions expressed in terms of mass is then extracted from 2.120:

Bsat
M = (1 +Bsat

T )
NuSc
ShPr , (2.123)

and the equation 2.110 is employed for the calculation of the mass variation of the droplet using the
Spalding number at saturation Bsat

M .

Diameter evolution
The diameter of the droplet evolves according to the formulation for the mass evolution 2.110.

dmp =

(
πρpd

2
p

2

)
ddp (2.124)

The time evolution of the particle diameter is computed from the characteristic time τm and the initial
diameter of the particle dp,0.

dd2
p

dt
=

d2
p,0

2dpτm
with τm =

ρd2
p,0Sc

4Shµ1/3 log (1 +BM )
(2.125)

2.5.3 Coupling with the gaseous phase

2.5.3.1 Interaction between the dispersed phase and the gas

Three source terms are introduced into 2.19, 2.20, 2.23 and 2.28 to account for the feedback information
from the particle to the gaseous phase. Namely θM for the mass conservation, θD for the momentum
conservation and θH for the enthalpy. They are computed locally where the particle is present. The
expressions associated to these three terms are:

θM (xi, t) =
1

∆V

Np∑

p=1

−ṁpδ(xi − xp
i (t)) , (2.126)

θD(xi, t) =
1

∆V

Np∑

p=1

−Ḟpδ(xi − xp
i (t)) , (2.127)

θH(xi, t) =
1

∆V

Np∑

p=1

(
−ṁpCp,l

dTp

dt
+ ṁpLv

)
δ(xi − xp

i (t)) , (2.128)

where δ corresponds to the Dirac distribution and ∆V to the control volume which theoretically should
be of the order of the particle size. In practice the volume control is defined from the size of the cell that
contains the particle.
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2.5.3.2 Formalism in LES

Influence of the sub-grid fluctuations on the particles.
The Lagrangian solver relies on the scalars that are solved on the Eulerian mesh. Using LES, the sub-
grid scales are unresolved. Therefore, the dispersed phase only knows about the filtered information φ̃.
A model should be introduced [58, 59] to account for the sub-grid information and rebuild φ from the
filtered value φ̃. It is reported in the literature that the introduction of such a model is important for
the drag term only when the unresolved velocity fluctuations are of the order of the particle velocity or
higher to the particle velocity. For an evaporating spray this condition is encountered only at the end of
the droplets life. The majority of the spray is therefore insensitive to the velocity fluctuations. Hence, in
the present case the effect is neglected.

Influence of the particles on the sub-grid scale turbulence.
The presence of the dispersed phase may impact the sub-grid fluctuations in two different manners:
(1) the particles may dissipate the scales with the same order of magnitude [60] hence modifying the
form of the energy spectrum, (2) the two-way coupling effects may be incorrectly estimated because the
segregation of the particles by the sub-grid fluctuations are not accounted for. Apart from a study by Yuu
et al. [61], most of the recent applications neglect this influence [62, 63]. The same assumption is made
in the present work.

2.6 Numerical solvers

The results presented in this thesis have been derived from computations performed with two different
community developed softwares namely CANTERA and YALES2. The ORCh methodology, described
in Chapter 4 and proposed for the reduction and the optimisation of combustion mechanisms employs
the CANTERA package.

2.6.1 Chemistry 1D solver: CANTERA

CANTERA is an open source suite of object-oriented software tools employed for the computation of
reacting flows involving detailed chemistry, thermodynamics and complex transport properties [64]. It is
used for the computation of chemical equilibrium, and for the simulation of networks of stirred reactors.
An adaptative mesh refinement algorithm is implemented in the code to optimise the mesh resolution in
the regions of strong gradients. The C++ version of the code is employed in this thesis.

2.6.2 Large-Eddy Simulation 3D solver: YALES2

YALES2 is a parallel CFD code which solves the three-dimensional Navier-Stokes equations on reactive
two-phase problems using DNS and LES approaches [65]. The code relies on the use of a finite volume
method based on unstructured meshes composed of triangles, tetrahedrons, prisms and pyramides hence
allowing for the simulation of complex geometries. YALES2 uses a low Mach number formulation which
avoid to deal with the compressible tiny time scales. It relies on the Courant Friedrichs Lewy (CFL)
criteria for the estimation of the time steps. The YALES2 solver is capable of dealing with complex
chemistry [66] and is well adapted to the most advanced massively parallel supercomputers [67].
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Chapter 3

Turbulent combustion models in LES
formalism & The potential of neural
networks
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A major problem associated to turbulent combustion appears in the closure of the filtered source term
ω̇k. This term which includes the interaction between the turbulence and the combustion is a key aspect
in the computation of reactive LES. In this chapter, few models from the literature are briefly introduced,
including the thickened flame model used for the LES results of this thesis, and a novel modelling
framework using machine-learning is presented for the particular case of premixed flames with tabulated
chemistry. A detailed description of the state of the art on the turbulent combustion models may be found
in the work by Veynante and Vervisch [32] or Pitsch [68]. The approaches to model turbulent combustion
may be organised into three groups:

• The algebraic approach: The reaction rate is controlled by the turbulent mixing described in
terms of scalar dissipation rate [69]. The smallest structures of the dissipation rate regulate the
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mixing between the reactants. This approach may be employed only when the characteristic time
associated to the turbulence is large compared to the time scales of the combustion i.e. for very
large Damköhler Da numbers.

• The statistical approach: The filtered scalars are evaluated from an a priori knowledge of the un-
resolved structures properties obtained from a PDF (Probability Density Function). This function
provides a statistical distribution of the sub grid scales properties. The greatest difficulty rests in
the solving of this PDF. This is addressed through several methodologies:

– PDF transport. The first approach proposed in the literature consists in the transport of
the PDF and on its solving. A transport equation is added to the original set of conserva-
tive equations for the estimation of the filtered PDF [70]. Pope [71] proposed the use of
a Monte Carlo approach to solve for the PDF: a set of stochastic lagrangian particles car-
ries thermochemical informations into the physical space. The joint PDF is then constructed
from the particles informations. Although theoretically the approach may be used with large
chemistries, in practice, the number of particles necessary to maintain precision increases
with the dimension of the problem making the problem unfit.

– Presumed PDF. This approach allows for lowering the cost related to the joint PDF methods.
This methodology relies on a reduction of the number of scalars necessary for the description
of the system and by presuming the shape of the PDF. For instance, this approach is com-
monly linked with the FPI in tabulated chemistry for which the problem is simplified to two
dimensions: the progress variable c and the mixture fraction Z.

• The geometric approach: The flame front is considered to be a thin moving geometric surface.
Several combustion models are derived from this approach. The majority of them is intended to
model perfectly premixed flames since they rely on the hypothesis that there exists a clear interface
between the fresh and the burned gases. First examples are the G-Equation and Levelset [72,
73] models which are defined from a level of potential. The species properties are reconstructed
depending on their distance to the potential interface. Other well employed approaches are the
flame surface density concept [74] and the thickened flame model. A few details on its derivation
are given in the next sub section.

3.1 The thickened flame model: TFLES

3.1.1 Overall principal

The size of the cells necessary to properly solve for the variations in the thin layer that forms the flame
is usually small in comparison to the size of the employed mesh. The concept of flame thickening was
introduced in the seventies by Butler et al. [75] and O’Rourke et al. [76] to tackle this issue. It aims at
increasing the number of points within the flame so as to capture its overall structure while conserving
its key properties.

Williams [77] and Kuo [54] stated that the velocity S0
L and the laminar flame thickness δ0

L can be
expressed from the reaction rate ω̇ and from the thermal diffusion coefficient Dth:

S0
L ∝

√
Dthω̇ and δL ∝

Dth

S0
L

∝
√
Dth

ω̇
. (3.1)
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Using this analysis Colin et al. [78] proposed to broaden the flame by a factor F from the relations,

DFth = DthF and ω̇F =
ω̇

F , (3.2)

hence thickening the flame while maintaining the proper laminar flame velocity since:

S0
L ∝

√
Dthω̇ −→ SFL ∝

√
Dthω̇ , (3.3)

δ0
L ∝

√
Dth

ω̇
−→ δFL ∝ F

√
Dth

ω̇
. (3.4)

In the TFLES context, the transport of any reactive scalar φ follows the conservative equation,

∂ρφ̃

∂t
+∇ · ρũφ̃ = ∇ · (ρFD∇φ̃) +

ω̇φ
F . (3.5)

3.1.2 Conditions for the thickening F
The objective of the TFLES approach is primarily to increase the number of points for the description
of the species source terms. This is dependent on the local mesh size and flame thickness. For a chosen
number n of points within the flame it appears that

n =
δ0
L

∆DNS
=
Fδ0

L

∆LES
, (3.6)

where ∆DNS corresponds to the size of the mesh necessary for a DNS on which the non-thickened
profiles would be properly resolved and ∆LES is the size of the LES mesh on which it is desirable to use
the TFLES approach. The thickening factor F is then deduced:

F =
∆LES

∆DNS
=

n∆LES

δ0
L(φ(x, t))

. (3.7)

3.1.3 Interaction between the flame and the turbulence

Modifying the thickness of the reactive layer impacts the interaction between the turbulence and the
flame. Poinsot et al. [79] and Meneveau et al. [80] demonstrated that the wrinkling of the flame under
the influence of an eddy decreases with the increase of the flame thickness. The impact of the turbulence
on the wrinkling of the flame was further studied by Angelberger et al. [81] and Colin et al. [78]. This is
illustrated on figure 3.1 which compares a perfectly resolved flame structure to a thickened flame LES.

It is demonstrated that the non dimensional numbers describing the interaction between the flame
and the turbulence are modified. For instance, the Dämkholer number Da which gives the ratio between
the integral scale (mixing) and the chemical time scale reads:

Da =
tt
tc

=
lt
u′
S0
L

δ0
L

hence leading to DaF =
Da

F , (3.8)

where tt is the turbulence characteristic time and tc is the characteristic time associated to the chemistry.
lt is the integral scale and u

′
represents the sub grid fluctuations. This effect is accounted for through the

introduction of an efficiency function E that increases the turbulent flame speed hence compensating for
the diminution of the flame surface. This function corresponds to the sub grid thickening factor defined
from [78, 82]:

E =
S0
t

S0
L

=
At
Al

(3.9)
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FIGURE 3.6: DNS de l’interaction flamme-turbulence : flamme non épaissie (gauche) et flamme épaissie
d’un facteur F = 5 (droite). La flamme artificiellement épaissie est clairement moins plissée par la
turbulence du fait de la modification de l’interaction flamme-tubulence due au facteur d’épaississement.
Figures tirées de [179].

retrouvent ainsi modifiés :

Da =
tt
tc

=
lt s0

L

u′ δ0L
donc DaF =

Da

F , (3.122)

avec tt le temps caractéristique de la turbulence, tc celui de la chimie, lt l’échelle intégrale et u′ les
fluctuations de sous-maille.

Pour prendre en compte cet effet, une fonction d’efficacité E a été introduite afin d’augmenter la
vitesse de flamme turbulente, compensant la perte de surface de flamme. Elle correspond au facteur de
plissement de sous-maille, défini selon [42, 32] :

E =
sT

s0
L

=
AT

AL
, (3.123)

où sT
0 désigne la vitesse de flamme turbulente, AL la surface de flamme laminaire et AT la surface de

flamme turbulente.
La fonction d’efficacité E est introduite dans l’équation de transport d’un scalaire réactif quelconque

φ :

∂ρφ̃

∂t
+ ∇ · ρũφ̃ = ∇ ·

Ä
ρ EFD∇φ̃

ä
+

E
F ω̇φ . (3.124)

Différentes expressions de cette fonction d’efficacité sont proposées dans la littérature. Colin [42]
introduit une fonction basée sur le rapport entre le facteur de plissement Ξ (i.e. la surface de flamme
divisée par sa projection dans la direction de propagation) de la flamme originelle d’épaisseur δ0L sur
l’épaisseur de flamme épaissie δF

0 :

E =
Ξ(δ0L)

Ξ(δF
0 )

=
1 + αΓ

Å
∆
δ0
L
, u′

s0
L

ã
u′
s0
L

1 + αΓ

Å
∆
δF
0

, u′
s0
L

ã
u′
s0
L

, (3.125)

où α et Γ sont respectivement un paramètre et une fonction donnés par le modèle, et ∆ est la taille du
filtre LES.

Figure 3.1: DNS of the interaction between the turbulence and the flame [33]. Left image: unthickened
flame. Right image: Flame thickened by a factor F = 5.

where S0
t is the turbulent flame speed, At is the turbulent flame surface and Al is the laminar flame

surface. Among the efficiency functions found in the literature, Colin et al. [78] introduced a function
based on the ratio of the wrinkling factor of the initial flame with thickness δ0

L by the wrinkling factor of
the thickened flame characterised by δ0

F :

E =
Ξ(δ0

L)

Ξ(δ0
F )

=
1 + αΓ

(
∆
δ0L

u′
S0
L

)
u′
S0
L

1 + αΓ
(

∆
δ0F
, u
′

S0
L

)
u′
S0
L

, (3.10)

where α and Γ are respectively a parameter and a function given by the model and where ∆ stands for the
filter size of the LES. This function may also be evaluated from a power law as introduced by Charlette
[82] which writes the ratio between the surface of the resolved flame and the surface of the unresolved
one from:

E =

(
1 +

∆

ηc

)β
, (3.11)

where ηc is the mean of the radius of curvature of the flame and β is a constant defined for the model.
The LES results showed in the manuscript rely on the use of a corrected version of this model proposed
by Wang et al. [83]:

E =

(
1 +min

[
∆

δ0
L

− 1,Γ
u′

S0
L

])γ
, (3.12)

where γ is a constant of the model. The value γ = 0.5 is used thereafter. Introducing this efficiency
factor into 3.5 gives:

∂ρφ̃

∂t
+∇ · ρũφ̃ = ∇ · (ρEFD∇φ̃) +

Eω̇φ
F . (3.13)

3.1.4 Dynamic TFLES

Unfortunately this formulation increases the overall diffusion of the domain. In the context of a perfectly
premixed flame, the model may be employed using a constant value for the thickening factor F . On the
contrary in the case of other combustion regimes, increasing the diffusion over all the domain provokes
modifications of the mixing. Légier et al. [84] introduced a dynamic formulation of the TFLES approach,
relying on the flame sensor S: a scalar which equals 1 in the reactive zones and 0 on the remaining zones
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of the domain. The filtered conservative equation for the scalar φ is rewritten with the flame sensor to
give:

∂ρφ̃

∂t
+∇ · ρũφ̃ = ∇ · (ρEFJ lami + (1− S)Jsgsi ) +

Eω̇φ
F . (3.14)

where J lami is the laminar diffusive flux and Jsgsi represents the sub grid diffusive flux. The coupling
between the flame sensor S and both the thickening factor F and efficiency function E are:

F = 1 + (Fmax − 1)S , (3.15)

E = 1 + (Emax − 1)S . (3.16)

where the maximum values Fmax and Emax are respectively computed from relations 3.7 and 3.11.
Several formulations have been proposed for the calculation of the flame sensor in the context of tabulated
chemistry and of global chemistry (1 or 2 steps). Recently, Benard [85] proposed a methodology adapted
from the one of Franzelli [86] for the implementation of a flame sensor that rely on the source terms of
species CO, CO2 and H2O:

{
S = 1 if ω̇ > ω̇S
S = 0 if ω̇ < ω̇S

with ω̇ = ω̇CO2 + ω̇CO + ω̇H2O , (3.17)

where ω̇S is a threshold value. This threshold is frequently defined from a percentage of the maximum
value of ω̇ within the flame. As illustrated on Figure 3.2, several steps are then employed to spread the
zone where the sensor S equals unity over the adjacent nodes and to filter the solution; so as to finally
get a smooth sensor that includes the entire flame zone. The threshold value ω̇S is often set to 10% of
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FIGURE 6.3: (a) : Procédure de filtrage du capteur de flamme : filtrage puis prise du maximum entre
profil initial et profil filtré. (b) : Capteur de flamme final obtenu.

Résolution [µm] Epaississement F [−] sL [m.s−1] δL [µm]

50 – 0.418 426.2

100 2 0.419 836.7

200 4 0.417 1675

400 8 0.418 3328

TABLE 6.1: Caractéristiques de flamme avec épaississement constant.

un coefficient de relaxation α entre la valeur de Sn calculée et la valeur utilisée à l’itération précédente
Sn−1 :

Sn = αSn + (1 − α)Sn−1 . (6.12)

Cela permet de limiter les forts gradients en temps du capteur de flamme, qui peuvent mener à des
difficultés numériques. Dans ces travaux, la valeur α = 0.7 est choisie.

6.1.3 Validation sur flammes laminaires 1D

L’implantation du modèle TFLES dans le code YALES2 a été validé dans un premier temps sur des
flammes laminaires 1D. Un épaississement constant en espace et en temps a d’abord été choisi. Ainsi,
l’épaississement constitue une dilatation en temps et en espace d’un facteur égal à l’épaississement F .
La vitesse laminaire et la structure de flamme doivent être identiques à celles de la flamme non-épaissie.

La flamme de référence est la flamme étudiée dans la section 5.1.2 : flamme méthane/air stœchio-
métrique avec température des gaz frais à 300 K avec une résolution homogène de 50 µm. Des facteurs
d’épaississement de 2 et 4 ont été testés, sur des résolutions 2 et 4 fois plus grossières. Les résultats sont
rassemblés dans le Tab. 6.1. On constate que la vitesse de flamme est parfaitement constante quelque
soit l’épaississement. L’épaississement correspond bien à une dilatation homogène de l’espace : la ré-
solution de la flamme reste identique. L’épaisseur thermique de flamme est bien multipliée d’un facteur
F comme attendu. Les profils de température et d’espèces majoritaires sont montrés dans l’espace phy-
sique dilaté et dans l’espace des phases c = Yc/Yc,eq sur la Fig. 6.4. Tous les profils sont parfaitement
superposés, quelque soit l’épaississement choisi. Cela valide l’implémentation du modèle TFLES pour
des épaississements constants.

Des épaississements variables sont ensuite testés sur ces flammes 1D afin de valider le capteur de
flamme défini dans la section 6.1.2.2. Les résultats sur les caractéristiques de flamme sont rassemblés
dans le Tab. 6.2. La vitesse de flamme reste quasiment constante avec moins de 1 % d’écart. L’épaisseur
de flamme est bien augmentée du facteur F , montrant que le capteur de flamme couvre correctement
l’ensemble de la zone réactive. Cette observation est démontrée sur les profils de température et d’espèce

Figure 3.2: Procedure to spread the flame sensor and to filter it. Left illustrations: Initial profile and
filtered profile. Right illustration: Final flame sensor. Image extracted from Benard [85].

the maximum source term computed with a 1D premixed laminar flame in similar operating conditions.
Using this procedure, note that the threshold value ω̇S must be compared with the unthickened value of
the source term that is obtained from F ω̇. Moreover, with a low Mach number formulation the time step
is large in comparison to that for a compressible approach. The flame sensor may then vary significantly
between two time steps which pauses some robustness issues. To address this limitation, the flame sensor
is smoothed in time introducing a coefficient of relaxation α between the value Sn and the value at time
n− 1, so that:

Sn = αSn + (1− α)Sn−1 . (3.18)

In the present work, α = 0.7 is used.
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3.2 Machine learning for turbulent combustion modeling

3.2.1 Machine learning algorithms

The modelling of unresolved terms in the highly non-linear transport equations of turbulent and reacting
flows being a challenging and daunting task, the ability to “learn" from the data directly, presents a
promising alternative given the abundance of data available both from simulations and experiments.
Direct Numerical Simulation (DNS) databases where all flow and time scales are resolved, are of the
order of Petabytes [87] and machine-learning methods, especially neural networks, are a natural tool for
extracting useful information from these databases and find patterns for modelling purposes.

The whole idea behind neural networks is to mimic biologic neurones, stylized in Fig. 3.3, using
simplified mathematical models, represented on Fig. 3.4, of what limited knowledge we have on their
inner workings: electric signals can be received from dendrites, and sent down the axon once enough sig-
nals were received. This outgoing signal can then be used as another input for other neurones, repeating
the process. The human brain consists of 1010 neurones, and there is about 1015 connections (synapses)
between. The neurone works with the frequency from 1 to 100 Hz. Consequently the approximated rate
equals about 1018 operations per second and is many times greater than the one of nowadays computers.

As defined by K. Gurney [88], artificial neural network is an interconnected assembly of simple
processing artificial neurones. The processing ability of the network is stored in the inter-unit connection
strengths, or weights, obtained by a process of adaptation to, or learning from, a set of training patterns.

Figure 3.3: Main components of a biological neurone [88].

Figure 3.4: Simpliest neurone model (Perceptron), it takes X inputs, sums them up with inner weights ω,
applies an activation function b and passes to the output layer Y.

Several architectures of neural network exist, see Fig. 3.5, depending on their use. In the context of
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turbulent combustion modelling, Neural networks have been used mainly to deal with the introduction of
complex chemistry in the simulations [89, 90, 91, 92, 93], or to manage complex multi-physics phenom-
ena such as solid-fuel devolatilization [94]. Recently, Convolutional Neural Networks CNNs (or Deep
Convolutional Networks DCN), originally developed for analysing visual representations [95, 96], have
been introduced as a tool for the direct deconvolution of the filtered progress variable [97], which com-
bined with explicit filtering allowed the modelling of the unresolved variance, a key parameter in flamelet
modeling [98]. CNNs were also used for modelling the unresolved flame surface wrinkling in [99] sur-
passing state of the art explicit algebraic models. CNNs have also been used to extract the chemical
rate constant from shock-tube measurements [100] and for predicting the combustion activation energy
[101].

The Asimov Institute: http://www.asimovinstitute.org/neural-network-zoo/Figure 3.5: Mostly complete chart of neural network topologies, from the Asimov Institute [102].

The main idea behind CNNs is the image treatment before being proccessed by the neurones. As seen
in Fig. 3.6, the image pixels (yellow) are treated with classically two operations (pink) : convolutional
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layers that convolve the image with a set of N filters, giving N output features of the same size as the
image. With this operation, we facilitate the neural network process to find the inner properties of the
image. An example is given on Fig. 3.7 where an image A is being convolved by a filter K, randomly
initialised. Considering the complete step, Fk is applied to all regions of image A to create the output B.
The filtering overlaps the image size to get a feature of the same size (called padding)

Figure 3.6: Deep convolutional neural network.

image A feature B

Figure 3.7: One convolution operation example between a convolution kernel Fk 3x3 and the image A
6x6.

Then, pooling layers are used to simplify and reduce unnecessary features. Several pool functions
exist, the most common and used in this thesis being the "max pooling" function. For each input regions
delimited by the filter size, the maximum value is extracted to form a smaller feature. For example, in
Fig. 3.8, the feature B is reduced with a filter of size 3x3 and the output is a matrice of size 2x2.

At the end of the convolutional/pooling operations, the obtained features are then fed to a dense
neural network, in which all the neurones are inter-connected to process the features.

3.2.2 Methodology

A turbulent premixed stoichiometric methane/air jet flame is considered in this study performing a priori
evaluation of neural network based modeling from a fully resolved simulation following a strategy com-
bining CNNs with the pioneering works of Bray and co-workers [98, 103]. According to their analysis,
the departure between the non-linear chemical sources as computed from the node values resolved on a
coarse mesh (i.e., neglecting unresolved fluctuations) and their space-filtered (or averaged) counterparts
(i.e., accounting for unresolved fluctuations), evolves with the local three-dimensional flame topology,
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feature B feature C

Figure 3.8: A max pooling operation example between a pool function of size 3x3 and the feature B of
size 6x6. The result is a feature of size 2x2.

convoluted with the level of mesh resolution, which controls the amplitude of the unresolved fluctua-
tions of temperature and species. Along these lines, we propose to explore the relationships between
the three-dimensional distributions of chemical sources as computed from node values (thus a crude ap-
proximation of the filtered burning rates), and the filtered value of the non-linear source located at the
center of this three-dimensional distribution, using a DNS database. The same procedure is adopted for
the sum of the divergence of the unresolved part of the convective flux and of the molecular diffusive
flux. The DNS database is then used to train convolutional networks in order to directly reconstruct the
unresolved scalar sources and transport terms in the framework of tabulated detailed chemistry premixed
flamelet LES. The major advantage of such a direct reconstruction of unresolved sources and fluxes from
mesh-resolved quantities in the LES, is that by doing so there is no need for explicit filtering or solving
additional transport equations, both of which save computational time and mitigate possible resolution
issues [104].

In chemistry tabulation based on premixed flame generated manifolds, all thermochemical quantities
φ are uniquely related to the progress variable c, so that knowledge of the progress variable distribution
c(x, t) is sufficient to characterise the reaction zones, i.e. φ(x, t) = φ(c(x, t)) [105, 106, 107, 108],
including the burning rate

ω̇(x, t) = ω̇(c(x, t)) . (3.19)

The progress variable may be defined from a set of species mass fractions, temperature, derived from
optimisation [109, 110, 111] or following other strategies [112]. In any case, c should be a monotonic
function through the laminar flamelet. In the context of LES, a transport equation for ρ̄c̃ is solved,

∂ρc̃

∂t
+∇ · (ρũc̃) = ∇ · (ρDc(c̃)∇c̃) +∇ · τ + ω̇ , (3.20)

where ρ is the density, u is the velocity vector and Dc(c) is the tabulated molecular diffusion coefficient
of c, defined from the diffusion velocity of tabulated species (Eq. (15) in [113]). The notation Dc(c̃)

means that the diffusion coefficient is here computed from the resolved filtered progress variable. ω̇(x, t)

is the filtered burning rate of c. The sub-grid scale flux is

τ = τDc − τc , (3.21)

where τDc and τc are respectively the transport of c by unresolved fluctuations of molecular diffusive
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flux and momentum,

τD = ρDc(c)∇c− ρDc(c̃)∇c̃ , (3.22)

τc = ρuc− ρũc̃. (3.23)

Numerous modeling strategies have been proposed in the literature for the unresolved terms of Eq. (3.20)
in the context of tabulated chemistry, and a detailed review is given in [114]. Among those, many involve
gradient transport models with an eddy viscosity hypothesis to close τc while τD is usually neglected.

Flamelet models for the burning rate ω̇, are typically based on solving and additional balance equa-
tion for the variance of c, cv = c̃2 − c̃c̃. A function is then presumed for the progress variable prob-
ability density function (pdf), which is parameterised using the two moments of c namely c̃(x, t) and
cv(x, t) [115, 116, 117]. A chemical lookup table is constructed using results from 1D flame simula-
tions, and variables of interest are obtained using these two parameters from the table. For example, the
filtered burning rate in Eq. (3.20) is closed using

ω̇(x, t) =

1∫

0

ω̇(c?)P (c?; c̃(x, t), cv(x, t))dc
? , (3.24)

where P (c∗; c̃(x, t), cv(x, t)) is the presumed pdf. A characteristic length scale may also be added to
the modeling framework, by combining the pdf with the Flame Surface Density (FSD) concept [118,
119]. In an attempt to account for the time history of micro-mixing, it has been proposed in [120] to
include as a control parameter of the filtered thermo-chemistry lookup table, the age of fluid particles
since their injection. Simulations coupling flame-generated manifolds with pdf transport using Eulerian
stochastic fields have also been reported [121, 122]. The filtering of the tabulated one-dimensional flames
is another option, providing closed expressions for τc and τD, in addition to ω̇ [123, 113, 124]. More
recently, deconvolution-based approaches have also been discussed and applied to the three terms ω̇, τc
and τD [125, 126, 127, 128, 129].

Overall, these modeling approaches directly or indirectly relate c̃ and ∇c̃ to the unclosed terms. A
slightly different approach is explored in this work. First, the statistical properties of ω̇, τc and τD are
examined using the results from the DNS database. Specific features are observed in the data connecting
ω̇ and ∇ · τ = ∇ · (τD − τc) to ω̇(c̃) and ∇ · (ρDc(c̃)∇c̃) respectively, namely the burning rate and
the divergence of the diffusive flux as computed from the resolved LES fields, i.e. the node values over
the LES mesh. (∇ · (ρDc(c̃)∇c̃) is already calculated when solving for c̃ and is thus available without
additional computational cost.) These features suggest that image-type deep learning can be readily
applied to dynamically determine two mapping functions G and F from convolutional neural networks
such that,

ω̇(x, t) = G [ω̇(c̃(x1, t)), · · · , ω̇(c̃(xN , t))] , (3.25)

∇ · τ(x, t) = F [∇ · (ρDc(c̃)∇c̃) (x1, t), · · · ,∇ · (ρDc(c̃)∇c̃) (xN , t)] , (3.26)

where c̃(xj , t) is known from the LES, with xj the N points selected around x to build the input image
of the networks. Note that the above relations are expressed in progress variable space i.e., a single
variable, c̃, is required in order to calculate the terms on the right-hand side of Eqs. (3.25) and (3.26)
which constitute the inputs to the two networks F and G. Provided G and F are known, Eq. (3.20) is
fully closed without having to solve any additional transport equations. Also note that c̃ is a coordinate
in which turbulent premixed flame properties are strongly depended on and feature a generic character
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when studied in c-space [98]. As a result, the dependence of relations (3.25) and (3.26) to the flow
regime are expected to be weak as long as the networks are trained for conditions in a Borghi regime-
diagram [130] close to the ones of the flames subsequently addressed by LES. This is also more likely to
be the case, when G and F are determined from a reference turbulent premixed flame featuring a large
degree of flame wrinkling, as is the case for the turbulent premixed jet-flame DNS database used in this
study [127].

h ~ 150 µm

h = 50 µm

h ~ 150 µm

Well-resolved 
LES

DNS

Well-resolved 
LES

x/D = 4.5

x/D = 5.5

x/D = 0

up to x/D = 16

8D

h ~ 150 µm h ~ 150 µmh = 50 µm

Figure 3.9: LES-DNS snapshot of the jet-flame simulation [127]. Mesh and iso-progress variable c =

0.8. h: resolution. Red iso-surface: zoom of iso-c = 0.8 in the DNS zone (different angle view).

3.2.3 Direct simulation database

A previously developed methane-air stoichiometric premixed jet-flame DNS database [127, 131, 132]
is used for training the neural networks. The configuration is shown in Fig. 3.9. The DNS database
is obtained downstream of a well-resolved LES of a piloted premixed stoichiometric fuel-air jet, which
generates turbulent flame conditions for the DNS inlet plane located 4.5 diameters downstream of in-
jection. The LES and the DNS are run simultaneously and this is achieved by embedding, inside the
LES mesh, a zone where the resolution is sufficiently high so as to resolve the thin reaction zones and
the Kolmogorov length scale. The configuration is inspired from the experiment by Chen et al. [133].
This turbulent Bunsen burner has a nozzle diameter of D = 12 mm, the jet Reynolds number is 24,000
(bulk nozzle velocity of 30 m·s−1 and turbulent kinetic energy of 3.82 m2·s−2). The pilot is set to fully
burnt gases at Tb = 2200 K. The LES mesh consists of about 171 million nodes covering a domain
16D×8D×8D, with a resolution of the order of 150 µm (Fig. 3.9). The resolution in the DNS zone is
fixed at 50 µm, which was calibrated to ensure a full resolution of the flow and flame scales for this jet
flame having a Karlovitz number varying between 1 and 3 [127, 133]. Chemistry tabulation with a sto-
ichiometric premixed flamelet with fresh gases at To = 300 K (GRI-3.0 mechanism [134] and progress
variable defined from CO, CO2, H2O and NOx as in [135]) is used for both LES and DNS, without
any SGS modeling in the DNS part (SGS terms set to zero). The flame thermal thickness based on the
progress variable field is of the order of δL ≈ 400 µm. The DNS zone consists of 28.58 million nodes
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Figure 3.10: Thick-line: ω̇+(c̃) vs c̃ as obtained from a 1D laminar flame (tabulated chemistry).
〈
ω̇+ | c̃

〉

from DNS vs c̃ for filter sizes ×: 0.3 mm, �: 0.6 mm, ◦: 0.9 mm (δL = 0.4 mm).

(243×343×343), over a physical domain of 12 mm×18 mm×18mm. This DNS zone is located at 4.5D

downstream of the nozzle, and at 5.5D the mesh is coarsened again to progressively resume the simula-
tion using LES (Fig. 3.9). A progress variable presumed pdf approach is applied in the LES zones [115]
and the SGS momentum fluxes are approximated with the Vreman model [136]. These simulations have
been performed using the flow solver SiTCom [137], which solves the Navier-Stokes equations in their
fully compressible form together with the balance equation for the filtered progress variable. The con-
vective terms are discretised with a fourth-order centered skew-symmetric-like scheme [138] and the
diffusive terms with a fourth-order centered scheme. Time is advanced explicitly with a third order
Runge-Kutta method and NSCBC boundary conditions [139] are imposed at inlet and outlet, with the
measured profiles with synthetic turbulence [140] prescribed at inlet. More details on the development
and the use of this DNS database may be found in [127, 131, 132].

A Gaussian filtering operation, G(x) = (6/(π∆2))3/2 exp(−6x · x/∆2), with filter size ∆ =

0.3 mm = 0.75 δL, ∆ = 0.6 mm =1.50 δL and ∆ = 0.9 mm = 2.25 δL, is applied to the DNS variables
in order to generate a priori LES filtered quantities, thus varying the resolution of the a priori fields from
well-resolved to coarse LES (at least from the reaction zone point of view, ∆ = 0.9 mm is 18 times
larger than the DNS grid resolution).

3.2.4 Statistical analysis of unresolved terms

3.2.4.1 Turbulent flame properties

Figure 3.10 shows
〈
ω̇+ | c̃

〉
, the statistical mean over the DNS domain of the normalised filtered progress

variable source, conditioned on values of c̃. The subscript ‘+’ denotes source terms normalised by their
maximum value in the tabulated freely-propagating laminar premixed flame. The result obtained using
a 1D laminar flame, ω̇+(c̃), is shown as a solid line. As expected, the maximum of

〈
ω̇+ | c̃

〉
decreases

with increasing filter size and thus with increasing unresolved fluctuations [98]. Following the thickening
of the filtered flame front, the response of this conditional filtered source term also spreads in progress
variable space for increasing filter sizes, up to ∆ = 0.9 mm.

The statistical conditional means of 〈∇ · τc | c̃〉 and of 〈∇ · τD | c̃〉, the divergence of the convective
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Figure 3.11: Conditional statistical means vs filtered progress variable. (a): Divergence of SGS convec-
tive scalar flux. (b): divergence of SGS diffusive flux. (c): filtered diffusive flux. (d): diffusive flux
computed from the resolved quantities. Filter size ×: 0.3 mm, �: 0.6 mm, ◦: 0.9 mm.

and diffusive fluxes (Eqs. (3.22) and (3.23)), are shown in Fig. 3.11. The maximum level of velocity
fluctuations observed in the fresh gases in the experiment at the streamwise location of the jet where the
DNS zone is located (Fig. 3.9), is of the order of u′ = 1.80 m·s−1 [133]. Then, the ratio u′/SL for this
stoichiometric premixed methane-air flame is of the order of 5, with SL = 0.37 m·s−1.

The number NB = [(Tb − To)/To]SL/(2αu
′), as defined by Veynante et al. [141], which differ-

entiates between gradient transport, NB < 1, −τc ∝ ∇c̃, and counter-gradient transport, NB > 1,
−τc ∝ −∇c̃, in a Reynolds Averaged Navier Stokes context (RANS), is above unity in the present case
for an efficiency factor α ≤ 0.6. The factor α in NB accounts for the variability in the capability of
turbulent eddies to wrinkle the reaction zone [141].

Considering space-filtered (LES) quantities, for 1 ≤ ∆/δL ≤ 3, counter-gradient SGS transport
was recently reported from DNS analysis for the same level of u′/SL [129]. Overall, counter-gradient
transport is found when ∇ · τc and ∇2c̃ are of same sign. This is also what is observed in Fig. 3.11(a),
with 〈∇ · τc | c̃〉 negative on the burnt gas side where ∇2c̃ < 0 and 〈∇ · τc | c̃〉 positive on the fresh
side where ∇2c̃ > 0. Almost zero fluxes on the burnt gas side appear before c̃ = 1, because of the
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choice of the progress variable as in Godel et al. [135], which is designed as slowly varying approaching
burnt gases to preserve a single-valued response of NOx versus progress variable. This behaviour is
also observed in the scatter plot of the SGS convection divergence which is shown in Fig. 3.12, with
the occurrence however of some negative values of ∇ · τc around c̃ → 0, thus gradient transport in the
preheat zone ensures the local flame propagation. On these scatter plots, the bounds of ∇ · τc do not
change much with the filter size ∆, but the spreading of the data for a given value of c̃ decreases with ∆.
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Figure 3.12: Scatter plot of∇ · τc (1 every 100 DNS points shown).
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Figure 3.13: 〈∇ · τ | c̃〉 = 〈∇ · (τD − τc) | c̃〉 vs c̃. Filter size ×: 0.3 mm, �: 0.6 mm, ◦: 0.9 mm.

The contribution of the SGS diffusive flux, ∇ · τD, in Fig. 3.11(b) cannot be neglected compared
to the convective one, ∇ · τc, in Fig. 3.11(a). This would not be the case in the RANS context, where
the SGS diffusive contribution would be inversely proportional to the turbulent Reynolds number of
the flow, and thus could be neglected when compared to other transport terms [142]. The SGS diffu-
sive fluxes in LES are actually inversely proportional to the turbulent Reynolds numbers of the LES
mesh cells, based on the filter size and on the SGS velocity fluctuations. Therefore, the SGS turbulent
Reynolds number appears too small for neglecting the divergence of τD. The response of the amplitude of
〈∇ · τD | c̃〉 versus the filter size, is better understood by looking at the two terms

〈
∇ · (ρDc(c)∇c) | c̃

〉
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Figure 3.14:
〈
ω̇+(c) | c̃

〉
vs ω̇+(c̃). Filter size ×: 0.3 mm, �: 0.6 mm, ◦: 0.9 mm.

and 〈∇ · (ρDc(c̃)∇c̃) | c̃〉 in Figs. 3.11(c) and 3.11(d). As expected, following the decay of the gra-
dients with the increase of the filter size, these filtered transport terms decrease, leading to a decay of
the amplitude of both the filtered and node-resolved diffusive budgets when ∆ increases. In the case of
〈∇ · (ρDc(c̃)∇c̃) | c̃〉 an almost self-similar behaviour is observed against ∆ (Fig. 3.11(d)). This is not
the case for

〈
∇ · (ρDc(c)∇c) | c̃

〉
, for which the response is also shifted against c̃ when ∆ varies as

one may observe from the results in Fig. 3.11(c). As a result, the difference between these two terms,
∇ · τD, is not monotonic against ∆ (Fig. 3.11(b)). It is important also to note that the thickening of the
flame front in physical space resulting from filtering, directly impacts these budgets here visualised in
c̃-space. Finally, the sum of SGS fluxes 〈∇ · τ | c̃〉 = 〈∇ · (τD − τc) | c̃〉, which combines responses of
both unresolved convection and molecular diffusion, is shown in Fig. 3.13.
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Figure 3.15:
〈
ω̇+(c) | c̃

〉
vs ω̇+(c̃). Sketch of the construction of images and labels for training a CNN.

Filter size: 0.3 mm.



Turbulent combustion models in LES formalism & The potential of neural networks 79

3.2.4.2 Physical arguments for CNN training

As will be explained later in the text, two CNN will be used to approximate respectively the values of
∇ · τ(x, t) and ω̇(x, t) from an input composed of a set of data (images). In practice, this is done by
interpolating over a large number of relationships between ‘images’ and ‘labels’, which were the values
of ∇ · τ(x, t) and ω̇(x, t) “learned" during a training phase. Here the inputs (images) are composed of
ω̇(c̃(xj , t)) and ∇ · (ρDc(c̃)∇c̃) (xj , t) for j = 1, · · · , N , where N is the number of points surrounding
a point x, where the values of ω̇(x, t) and ∇ · τ(x, t) are sought.
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Figure 3.16: ω̇+ vs ω̇+(c̃).

The input set of data should feature specific topological properties, which can be extracted by convo-
luting the data points with a series of filters and specific operations described in section 3.2.1. Figure 3.14
shows

〈
ω̇+ | c̃

〉
versus ω̇+(c̃) for different filter sizes and Fig. 3.15 illustrates the image-label relation-

ship which could be implemented. Notice that the CNN will not operate on the statistical conditional
means in the end, but directly on the raw data, however initiating the analysis at the statistical level helps
to select the variables. As one may observe from Fig. 3.14, the filtered source term is not a single-valued
function of the node resolved source, nevertheless accounting also for the local curvature of the data set
as one of the features, should be sufficient to build a one-to-one response. Obviously, this constitutes
only a very preliminary condition to secure the determination of the function G of Eq. (3.25) and more
features will need to be extracted on the full set of turbulent data, as discussed thereafter. Because of
non-deterministic local sub-grid scale wrinkling of the flame surface, the relation between ω̇+(c̃) and ω̇+

is actually scattered as shown in Fig. 3.16, with some deviation from the response seen in Fig. 3.14, and
this scattering should be reproduced by a reliable physical model. This is where numerical modelling
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can take great benefit from deep learning, which automatically discovers the most relevant signal features
through elementary operations, to then allow for interpolating over the very large dataset learned.
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Figure 3.17: 〈∇ · τ | c̃〉 vs 〈∇ · (ρDc(c̃)∇c̃) | c̃〉.

Similarly, Fig. 3.17 shows 〈∇ · τ | c̃〉 versus 〈∇ · (ρDc(c̃)∇c̃) | c̃〉 and Fig. 3.18 the full set of data
∇ · τ versus ∇ · (ρDc(c̃)∇c̃), revealing a dataset which can easily be analysed by CNNs for identifying
the function F in Eq. (3.26). It will be seen thereafter that this is a valid option for the case considered.
Because momentum also contributes to∇ · τ , an alternative would consist of introducing information on
velocity in theF neural network (Eq. (3.26)). An option that was not found necessary in the present study
where both SGS convective and diffusive fluxes are combined to build a single CNN for the divergence of
fluxes. For this set of data, various options in terms of neural network layers number and filtering kernels
have been tried. Best results were obtained with two layers and the set of kernels and data organisation
now reported.

3.2.5 CNN training process

The LES mesh size required to resolve with n = 5 points the filtered progress variable signal, may

be estimated from h = (∆/n)
√
π/6 + δ2

L/∆
2 [128]. A three-dimensional test-box of size (2h)3 is

constructed around every of the M = 28.58 million DNS nodes. This test box is centered at x and contains
N = 27 points which hold the three-dimensional distributions of ω̇(c̃(xj , t)) and∇· (ρDc(c̃)∇c̃) (xj , t),
for j = 1, · · · , N . These data are stored and constitute the ‘images’ that will be processed by the
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Figure 3.18: ∇ · τ vs∇ · (ρDc(c̃)∇c̃).

CNN as shown in Fig. 3.19. The ‘labels’ of each i-th image are ω̇[i] = ω̇(x, t) and ∇ · τ [i] = ∇ ·
(τD(x, t)− τc(x, t)) for i = 1, · · · , NL. Two networks of similar structures (same number of layers,
convolution kernels, etc.) are trained, one for the chemical source and one for the SGS fluxes.

To reduce the computational cost, only part of the database is used for training. For each value of ∆,
the following procedure is applied:

• First, 1000 images with their associated i-th label are built. 20 values of c? uniformly distributed
between 0 and 1 (∆c? = 0.05) are defined. For each value of c?, 50 images are randomly selected
so that c̃(x, t) ∈ [c? −∆c?/2; c? + ∆c?/2] (x denotes the center of the test box, Fig. 3.19).

• Overfitting is avoided by adding uncorrelated random perturbations to the images, ω̇(c̃(xj , t)) and
∇· (ρDc(c̃)∇c̃) (xj , t), as 10% of their maximum in the test box, to build a second image for each
label. 2000 images are then available for 1000 labels.

Finally, the database used for training with two filter sizes contains 4000 images and NL = 2000 labels.
Hence, for every quantity studied, a set of 27×4000 =108000 data (ω̇(c̃(xj , t)) and∇·(ρDc(c̃)∇c̃) (xj , t))
is involved, associated to the 2000 reference labels (ω̇[i] and ∇ · τ [i] for i = 1, · · · , NL).

A series of convolution/sampling operations are done iteratively during the training phase, in which
the neural weights are adjusted until a satisfying minimal error is obtained between the value of∇·τ(x, t)

and ω̇(x, t) used for training (labels) and the values returned by the neural networks prediction. Convo-
lution/sampling operations are thus performed on the database to extract its features using a number of
different kernels [96, 95]:

1. Each image is convoluted with 32 different convolution filter initialized with random values from
a truncated normal distribution. Meaningful values of the obtained features are then extracted with
a max pooling non-linear function to avoid excessive computational costs.
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Figure 3.19: CNN training from DNS, sketch of the database construction.

2. The process is repeated with 64 filters, decomposing the image into several meaningful features,
which is useful for seeking out the inner properties of the fluxes and sources.

3. Two fully connected layers are built to process the 64 obtained features, and to classify the image
according to the learned labels. The probabilities linking this image to each of the learned labels
are then known in the form of coefficients ranging between zero and unity.

The training of the network was conducted using the TensorFlow (www.tensorflow.org) library and
breakdown of the network structure is given in Fig. 3.20. During this training phase, a 50% drop-out rate
is applied, i.e., 2000 images are randomly selected at every iteration and about 100 iterations (or ‘epoch’)
are needed to reach convergence. The error function used for training is based on cross entropy [143],
while the training is controlled by the Adam optimizer [144] for stochastic gradient descent, with a user-
defined learning rate of 10−4. Both normalised and non-normalised input (ω̇(c̃) and∇·(ρDc(c̃)∇c̃)) and
output values (ω̇ and ∇ · τ ) of networks have been used, without much difference, results are presented
for the non-normalised training.

3.2.6 CNN mapping of fluxes and sources from LES resolved fields

In using the networks, the N = 27 values of the chemical sources and of the divergence of the fluxes
computed from the resolved progress variable field in the test box surrounding the LES cell (Fig. 3.19),
constitute the input. In this feasibility study, for each filter size, 1000 filtered DNS fields are used for
a priori tests (the noised images introduced during the training phase do not enter these tests). The
unknown terms are then approximated from interpolation over the NL = 2000 labels values (ω̇[i] and
∇ · τ [i]) of the training phase,

ω̇(x, t) = G [ω̇(c̃(x1, t)), · · · , ω̇(c̃(xN , t))]

=

NL∑

i=1

Pi(x, t)× ω̇[i] , (3.27)

∇ · τ(x, t) = F [∇ · (ρDc(c̃)∇c̃(x1, t)) , · · · ,∇ · (ρDc(c̃)∇c̃(xN , t))]

=

NL∑

i=1

Ti(x, t)×∇ · τ [i] , (3.28)
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Figure 3.20: Structure of the convolutional neural network used (set of TensorFlow routines)
.

where Pi(x, t) and Ti(x, t), both ∈ [0, 1], are the probability that the image belongs to the label ‘i’, as
returned by the neural networks G and F . In practice, the modelled filtered sources and divergence of
SGS fluxes are thus non-linearly interpolated, according to the local LES resolved flame topology, over
2000 reference DNS values.

The training is performed for the smaller and largest filter sizes i.e., ∆ = 0.3 mm and ∆ = 0.9 mm.
Then, the prediction capabilities of the obtained CNN are tested a priori for these filter sizes and for
intermediate values of ∆ ∈ [0.3, 0.9], for which this network has not been trained (so-called ‘untrained
case’). Notice that the ratio of three between the filter sizes used for training can be considered large,
as these filters vary between 0.75 δL and 2.25 δL. This ratio of more than one flame thickness is here
intentional to test the method in the limit case where the neural networks are used for filter sizes far from
those of their training.

Using GPU ‘NVDIA Pascal’, the training of the fluxes requires 4 hours. Compared to the fluxes,
the filtered source terms have a larger range of variation between the two filter sizes used for training
and they require 24 hours of training on the same GPU. Once trained, the network may be used directly
in a flow-solver for a CPU cost of about the one required with a turbulent combustion closure based on
chemistry tabulation and presumed probability density function [115].

The averages of the predicted divergence of the unresolved fluxes conditioned on the progress vari-
able, 〈∇ · τ | c̃〉, are first compared against the filtered DNS in Fig. 3.21. The CNN reproduces the
expected behaviour and amplitude of ∇ · τ , the fluctuations are also well captured, as seen in Fig 3.22.
(Note that because the binning intervals to compute conditional means are different than in Fig. 3.13, the
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Figure 3.21: 〈∇ · τ | c̃〉 vs c̃. Symbols: DNS reference. Line: CNN prediction.

extrema also differ.) The test for the untrained filter level is performed with a filter size ∆ = 0.45 mm =

1.125δL. This constitutes a stringent test case, because neural networks are known to be prone to rapid di-
vergence when applied away from their training area. However, staying within the bounds of the training
filter sizes, Fig. 3.21(b) shows that the response of the divergence of the unresolved fluxes is well cap-
tured. The plots showing conditional fluctuations in Fig. 3.22(b) confirm this moderate deviation from
the reference filtered DNS. These results need to be put in perspective with predictions of unresolved
fluxes using most advanced SGS models, where sometimes even the sign is not properly returned (see
for instance Fig. 8 of [129] reporting strong departure from DNS in SGS transport modeling in turbulent
premixed flames).

Similar results are obtained for the filtered source terms, which are shown in Figs. 3.23 and 3.24.
For the trained filter sizes (∆ = 0.3 and 0.9 mm), the filtered chemical source as predicted by the CNN
matches the DNS reference, specifically for the largest filter, with a good reproduction of the parabolic
shape. The conditional fluctuations of filtered burning rates are also well captured (Fig. 3.24). For the
untrained case however, some departure from the DNS value is observed, but still reasonable, at least
comparable to what could be expected using classic models to estimate the filtered source terms. This
would particularly be the case against formulations where the Arrhenius form is kept at the resolved
scales after simply applying a scaling factor, thus far from the parabolic shape developing with the
increase in filter size. In a previous work [127], modeling of the filtered source based on 3D approximate
deconvolution and 1D flame deconvolution was tested against the same DNS database. As shown in
Fig.17(b) of [127], the error on the burning rate estimation conditioned on the progress variable could
reached up to 25% for ∆ = 3δL. In the present case with the neural network, the maximum error is of
the order of 1% on the trained database and of 16% for the untrained ones, confirming the potential of
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Figure 3.22: Solid line: 〈∇ · τ | c̃〉 vs c̃ from CNN. Gray: Range covered by the signal according to the
RMS in DNS, vertical bar: CNN prediction.

the approach.

3.3 Conclusion

A novel modelling framework using machine-learning is proposed for providing closures for all unre-
solved terms in the filtered transport equation of the progress variable in large-eddy simulations of turbu-
lent premixed flames in the context of flamelet tabulated chemistry. Convolutional neural networks are
trained using data from a direct numerical simulation database, in order to predict the filtered progress-
variable source term, and the unresolved fluxes in the filtered transport equation of the progress variable.
The advantage of the approach proposed in this study, is that a single variable distribution which is read-
ily available, the filtered progress variable, is sufficient. The convolutional neural networks are shown to
provide quantitatively accurate predictions of both the source and flux terms, which are two substantially
different terms and otherwise difficult to model in a single unified framework. The predictions capabil-
ities of the networks are also demonstrated to be only weakly insensitive to variations in filter width,
which is an important attribute for any sub-grid scale model. Because they are based on the progress
variable, a generic parameter of premixed flames, the networks are expected to perform well for any
turbulent premixed flame located in the Borghi regime-diagram close to the conditions used for training.

However, because the industrial LES combustors considered in this thesis are non-premixed, the use
of the dynamic TFLES model presented section 3.1.4 will be selected thereafter to serve as a basis for
soot modelling.
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This chapter introduces ORCh [145, 146], a kinetic reduction methodology relevant for aeronautical
combustion chamber, as detailed chemical mechanisms are too expensive in term of CPU cost for any
industrial simulation. This methodology has been used and improved in this thesis for pollutant predic-
tion, and tested in a Large Eddy Simulation (LES) of the industrial chamber Lemcotec, to capture the
CO concentration while maintaining equilibrium temperature and flame velocity profiles at reasonable
CPU cost.

4.1 Optimised and reduced chemistry

4.1.1 Context

ORCh [145, 146], for Optimised and reduced chemistry, is a fully automated method to reduce detailed
chemical schemes at a given operating point. It has been developed by N. Jaouen [147] during his
thesis, and improved in the present work. First, code restructuring and documentation with test cases
were done in order to prepare the ORCh industrialization. Secondly, the update version of the flame
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canonical generator CANTERA, coupled with ORCh, has allowed to gain CPU performances on flame
generation. The modifications have prepared the future coupling with the soot model HYPE, presented
in chapter 6, also running with this latest version of CANTERA. Finally, an Aj-optimisation strategy,
detailed thereafter, has been implemented in ORCh to overpass the current reduction limits. In parallel,
the Euclidian Minimum Spanning Tree mixing model has been implemented by Kaidi Wan to reduce
chemistry with ORCh coupled with machine learning [148].

4.1.2 Reduction strategy

Any canonical problem may be used as reference for the ORCh procedure. The present thesis uses
the ORCh canonical configuration [145], along with the flame canonical generator CANTERA. The
reduction process is mainly composed of three steps:

• First, species and reactions that contribute poorly to the production of defined important (target)
species are suppressed by directed relation graph methods introduced by Pepiot et al. [149].

• Next species respecting the quasi-steady state assumption can have their production analytically
calculated with the transported species, and then be present into the CFD simulation without being
transported.

• Eventually, the reduced chemical scheme obtained produces error on species predictions compared
to the detailed one. This is due to the previous step with the species and reaction removal. This
error is corrected with the last step, using genetic algorithm to optimise the Arrhenius constants
until the species and temperature profiles match those of the detailed mechanism, following the
procedure illustrated Fig. 4.1.
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Figure 4.1: ORCh optimisation flowchart. Extracted from [147].
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4.2 A more reduced kinetic mechanism using rates calibration versus equiv-
alence ratio

4.2.1 Kerosene chemistry reduction including liquid fuel injection

It is under a Lemcotec operating point described in [147] that the ORCh [145, 146] strategy is applied in
this chapter. To probe the chemical response in a CPU efficient manner and to allow for testing a large
population of chemical parameters with a genetic algorithm, the ORCh stochastic turbulent micro-mixing
canonical problem combined with kerosene droplets evaporation and chemical reactions is first used. The
evolutions of the stochastic particles cover the full range of equivalence ratios, temperature and mixing
with burnt gases, as encountered by fluid particles traveling in an aircraft engine. Moreover, to secure the
response of the flame speed in the zones where the combustion would be stabilised by flame propagation,
a freely propagating one-dimensional premixed flames canonical problem is also considered to test the
chemical response.

In the ORCh stochastic approach, a set φpk(t) of reference time evolutions of the thermochemical
quantities, is obtained prior to any flow simulations after solving for the evolution of a number of N
stochastic particles (p = 1, · · · , N ). These particles are distributed over a given number of inlets at
initial time and are let to interact according to a stochastic turbulent micro-mixing model and to react
following a chemical scheme.

In the present work, the elementary mass flow rate q̇m = q̇pmL(t) + q̇pmG(t) carried by every p-th
particle is decomposed into liquid (q̇pmL(t)) and gas (q̇pmG(t)) phases. The evolution of φpk(t) reads

∂φpk(t)

∂t
= MIXp(τT) + ω̇pφk + ω̇pvφk

, (4.1)

where ω̇pφk is the gaseous phase chemical source and ω̇pvφk relates to the evaporation of the fuel (mass or
heat), computed from the particle properties. MIXp(τT) denotes the Curl [150] micro-mixing closure in
which τT is a characteristic mixing time.

To ease the graphic visualisation and limit the number of elements entering the fitness function con-
trolling the genetic algorithm, the information contained in the φpk(t) is compacted into a limited number
of deterministic trajectories φD

k (t) issued from the liquid fuel and air inlets. These deterministic trajec-
tories are obtained by solving the usual LMSE (or IEM) [151, 152] PDEs, with the inlet composition
serving as initial condition and the relaxation calculated toward the algebraic average of the stochastic
particles, see [146]:

∂φD
k (t)

∂t
=

1

τT

(
1

N

∑N
p=1 q̇

p
mGφ

p
k(t)∑N

p=1 q̇
p
mG

− φDk (t)

)
+ ω̇Dφk + ω̇Dvφk

. (4.2)

The number of stochastic particles taking the concentration of the j-th inlet,

NPj = N × (Q̇mj/

nI∑

`=1

Q̇m`), (4.3)

is proportional to the fraction of this inlet total mass flow rate. The total number of particles is
N = 880 and three inlets are here considered (nI = 3).

• The first inlet composed of liquid kerosene at T = 450 K, represents 3% of the total mass flow
rate Q̇m
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• Air is injected through the second inlet at T = 703 K, with a contribution of 52% to Q̇m. Because
in a typical aeronautical chamber part of this air actually reaches the reaction zone after the fuel
started to burn, only 60% of the total mass of air is introduced at the initial time, the rest of air
particles being released progressively over 1 ms.

• In the nominal operating condition, at initial time 45% of Q̇m is composed of burnt gases at chem-
ical equilibrium for the equivalence ratio of the engine. These stochastic particles injected at
T = 1877 K constitute the third inlet, which secures ignition of the fresh mixture and mim-
ics the presence of recirculating burnt gases feeding the reaction zone downstream of the swirled
injection. The amplitude (0.45Q̇m) of this flux of burnt gases toward the reaction zone was also
estimated from a preliminary large eddy simulation of a representative combustion chamber [147].

Figure 4.2 is a representative scatter plot of the temperature of the gas phase particles. Both fast
chemistry close to equilibrium and finite rate chemistry effects are observed. It is also seen that large
ranges of equivalence ratios and progress of reaction are present within the particles, a point that is of
premier importance when reducing and optimising chemistry for non-premixed liquid fuel combustion.

Zst

Figure 4.2: Scatter plot of stochastic particles temperature vs mixture fraction. Particles are coloured
depending on their initial condition. Blue: air. Orange: kerosene. Red: burned gases. Zst is the stoichio-
metric mixture fraction.

Several chemical mechanisms have been discussed for the combustion of jet fuels surrogates and
n-decane [153, 154, 155, 156]. Among those is the detailed mechanism by Dagaut [157], which is
composed of 225 chemical species and 3493 reactions. A simplified version of this mechanism was
developed by Luche et al. [158], accounting for 91 species and 991 elementary reactions, with a surrogate
fuel compostion described in table 4.1. This mechanism is employed as a starting point for both reduction
and optimisation.

Name Formula Mass fraction Molar mass (g/mol)
N-decane NC10H22 0.767388 142.284

Propylbenzene PHC3H7
1 0.131402 120.194

Propylcyclohexane CYC9H18 0.101210 126.241

Kero Luche C9.73957H20.0542 1 137.195

Table 4.1: Liquid Kerosene composition as proposed by Luche [159].
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In Jaouen thesis [147] the reduction capabilities of the ORCh strategy for the Lemcotec operating
point have been tested up to a mechanism accounting only for the reproduction of the CO level. This
obtained ‘C’ mechanism is composed of 222 elementary reactions, and 22 species, see table 4.2.

Transported species Analytically resolved species
H2, O2, CO, CO2, CH4, C2H6, CH2O, C2H2, C2H4,
C3H6, C4H6, NC10H22, H, O, OH, HO2, H2O, CH3, C3H3,
AC3H5, BC6H13, N2

HCO, CH3OH, C2H5, CH3O, CH2OH, CH2CO, C2H3,
CH2HCO, HCCO, NC3H7, PC4H9, AC6H13, AC8H17,
C10H21(L)

Table 4.2: Mechanism C. Species of the reduced mechanism composed of 22 transported species asso-
ciated to 14 QSS relations and 222 reactions [147].

This mechanism shows similar trajectories with the detailed mechanism for the stochastic reac-
tor (Fig. 4.3) as for the premixed flame (Fig. 4.4).
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Figure 4.3: Representative species and temperature trajectories [147]. Symbols: Reference chem-
istry [158]. Cross: Air inlet. Triangle: Liquid fuel inlet. Black-line: Reduced mechanism C after
optimisation (Genetic Algorithm). Solid-line: Air inlet trajectory. Dotted-Line: Liquid fuel inlet trajec-
tory.

Now let’s try to reduce even more this mechanism. By keeping only the 15 species found as the most
influential ones, with 72 elementary reactions, we obtain the reduced mechanism presented table 4.3.

Transported species Analytically resolved species
H2, O2, CO, CO2, CH2O, C2H4, C3H6, NC10H22, H, O,
OH, HO2, H2O, CH3, N2

HCO, C2H5, CH3O, C2H3, NC3H7, AC6H13, AC8H17,
BC6H13

Table 4.3: Mechanism D. Species of the reduced mechanism composed of 15 transported species asso-
ciated to 8 QSS relations and 72 reactions.
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Figure 4.4: Freely propagating premixed flames [147]. Response versus equivalence ratio. Temperature
taken in burnt gases. Symbols: Reference chemistry [158]. Black-line: Reduced mechanism C after
optimisation (Genetic Algorithm).

Figure 4.5 shows the trajectories for representative species and temperature, after reduction and op-
timisation (black-line). The optimisation step allows for bringing the response back to the reference de-
tailed mechanism along the trajectories for the target species, Fuel, CO, CO2, O2, H2O and temperature.
Moreover, for this reduced scheme, it was not found possible to converge toward a set of chemical rates
able to reproduce the premixed flame speed responses for the full range of equivalence ratios (Fig. 4.6(a))
unlike the associated temperatures (Fig. 4.6(b)).

4.2.2 Pre-exponential constants tabulated reduced chemistry

Because it is not possible to cover with accuracy all equivalence ratios with a single mechanism con-
taining 15 transported species, the optimisation is repeated with premixed flames, but considering in-
dependently every value of the equivalence ratio on the rich side (φ > 1.3). The fitness function f of
the optimisation process is based on the flame speed, the temperature, and the mass fractions of H2O,
CO, CO2, O2 and NC10H22, with f expressed as in [145]. Previous works have reported adjustments
of chemical constants to equivalence ratio variations [160, 161, 162]. The optimisation is limited here
to the pre-exponential constants, other parameters being kept fixed. Selecting a single equivalence ratio,
the genetic algorithm indeed converges towardsAj pre-exponential constants, which allows for perfectly
reproducing the major premixed laminar flame properties (Fig. 4.7).

Figure 4.8 shows the normalised variation, versus equivalence ratio, of the resulting pre-exponential
constants for several representative elementary reactions. Aside from the reaction

C2H4 + OH→ H2O + C2H3,

which features a linear growing behaviour of Aj versus φ, all other reactions require non-monotonic
variations ofAj to capture the laminar flame properties with the 15 species reduced scheme. For instance,
the Aj of the elementary reaction

H + C2H5→ H2 + C2H4

increases by more than 85% between φ = 1.5 and φ = 1.6, to then decrease again by 65% for
φ = 1.7 and φ = 1.8. These strong variations are in fact inherent to the optimisation by genetic
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Figure 4.5: Representative species and temperature trajectories. Symbols: Reference chemistry [158].
Cross: Air inlet. Triangle: Liquid fuel inlet. Lines: Reduced mechanism D. Black-line: After optimisa-
tion (Genetic Algorithm). Solid-line: Air inlet trajectory. Dotted-Line: Liquid fuel inlet trajectory.
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Figure 4.6: Freely propagating premixed flames. Response versus equivalence ratio. Temperature taken
in burnt gases. Symbols: Reference chemistry [158]. Black-line: Reduced mechanism D after optimisa-
tion (Genetic Algorithm).

algorithm applied in a sequential manner to the various φ values, thus without ensuring continuities of
the Aj versus φ.

The variations of the Aj may be compared when they are obtained by optimisation at a given equiv-
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Figure 4.7: Velocity distribution across freely propagating premixed flames. Symbols: Reference chem-
istry [158]. Dotted-line: Reduced mechanism D. Black-line: D optimised for the given equivalence ratio.
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alence ratio or by interpolation between two optimised sets of Aj(φ). Figure 4.9(a) shows for φ = 1.6

the normalised deviation of the Aj to the reference scheme for all the reactions. In this graph, the length
of the coloured line corresponds either to the optimised Aj (green) or to pre-exponential values linearly
interpolated (red) between the optimised Aj terms at φ = 1.5 and at φ = 1.7. It is observed that for most
of the reactions, the sign of the needed correction stays the same, except in the case of low variations
from the reference scheme, as for example the elementary reactions :

#14: O2 + OH→ HO2 + O,
#33: H + C2H5→ 2 CH3 ,
#34: CH3O + M→ CH2O + H + M,
#40: C2H5 + OH→ CH2O + H + CH3 ,
#65: H + C2H4 (+ M)→ C2H5 (+ M) and
#66: C2H5 + O2 (+ M)→ C2H4 + HO2 (+ M).
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Figure 4.9: (a) Normalised variations of the 72 pre-exponential constants (Aj − ARef
j )/ARef

j . Green:
optimised. Red: interpolated. φ = 1.6. (b): One-dimensional freely propagating premixed flame. Flame
speed versus equivalence ratio. (c) O2 mass fraction. (d): CO. φ = 1.55. (b)-(c)-(d): Symbol: Refer-
ence chemistry [158]. Grey dotted-line: Reduced mechanism D. Black-line: Reduced mechanism D-Aj-
Tabulated.
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Figure 4.10: Representative intermediate species trajectories. Square: Air inlet. Triangle: Liquid fuel
inlet. Symbols: Reference chemistry [158]. Black: Reduced mechanism D-Aj-Tabulated. Blue: Reduced
mechanism D. Solid-line: Air inlet trajectory. Dotted-Line: Liquid fuel inlet trajectory.

The fact that the sign is mostly the same conforts the possibility of obtaining the whole range of Aj

from interpolation in a lookup table. Nevertheless, to avoid the large variations to spread over too many
reactions, the discretisation in equivalence ratio should not be too coarse. In practice, ∆φ = 0.2 was
found as a good compromise for the present chemistry.

The flame speed computed over the full range of equivalence ratios with this procedure is plotted
in Fig. 4.9(b), confirming the possibility of reproducing the complex chemical decomposition of the
heavy fuel on the rich side, with only 15 transported species combined with tabulated pre-exponential
parameters for φ > 1.3 and fixed below. The chemical structure of the flame from fresh to burnt gases
is also captured, as seen in Figs. 4.9(c) and 4.9(d) for a premixed flame at φ = 1.55, values for which
the Aj have been interpolated. Applied back to the turbulent non-premixed micro-mixing problem with
liquid fuel injection, thus covering at once the full range of equivalence ratios, the D mechanism with
interpolated Aj on the rich side perfectly matches the response of the reference detailed mechanism
(Fig. 4.10). This is observed for the target species, as it was already the case for a single set of Aj
(Fig. 4.5), but also for intermediate species, which were not in the list of targets for optimisation and
which were not captured previously for rich equivalence ratios. These species such as H, OH, and O are
known to be essential for the prediction of the flame speed [163], it is therefore expected that they must
indeed be captured with accuracy when both the non-premixed turbulent micro-mixing and the premixed
laminar flame canonical problems are addressed.

4.3 Large Eddy Simulation of the LEMCOTEC combustor

4.3.1 Previous LES simulations

The Lemcotec operating point considered here was studied by T. Jaravel [43] using the LES code AVBP
with a mechanism composed of 27 species and 452 chemical reactions, and N. Jaouen [147] with the
LES code YALES2, using a reduced mechanism derived from Luche [159] with 26 species and 338
reactions. Both simulations were performed for Nox and CO predictions. In this section, the simulation
from N. Jaouen was retrieved, with the same domain, represented Fig. 4.11, and with the numerical set
up described in his thesis [147].



98 Chemical schemes reduction for industrial applications10. LES OF THE LEMCOTEC PROTOTYPE COMBUSTOR

Figure 10.2: LEMCOTEC: View of the experimental rig installed at ONERA.

αsplit φglob Zglob Zst

11.9% 0.440 0.028 0.062

Table 10.1: LEMCOTEC: Characteristics of the operating point.

as the ratio of pilot fuel mass flow rate to total fuel mass flow rate, is given in Tab. 10.1,

along with the global equivalence ratio φglob of the combustor, which is operated in

globally lean conditions. Again, the mixture fraction is based on the carbon atom and

is taken equal to 0 in the air stream and equal to 1 for pure fuel. The global mixture

fraction Zglob and stoichiometric mixture fraction Zst are also provided in Tab. 10.1.

10.3 Derivation of an ARC for aeronautical fuel with NOx

chemistry

Kerosene is composed of hundreds of chemical components, and varies significantly. Its

exact description is completely out of scope for numerical studies. Therefore, before

reducing chemistry, an appropriate surrogate must be determined to describe kerosene-

air combustion.

10.3.1 Surrogate fuel and kinetic scheme for kerosene

Commercial kerosenes are typically composed of parrafins, naphthens and aromatics.

The average chemical formula ranges from C10.9H20.9 to C12H23 [42]. They can be

generally represented by a surrogate fuel with a limited number of hydrocarbons, that

are chosen to suitably reproduce their physical properties (e.g. surface tension, boil-

ing temperature) and chemical properties (e.g. flame speed). Surrogates are typi-

cally composed of long hydrocarbon chains, from n-octane to n-hexadecane, along with

cyclic hydrocarbons such as methylcyclohexane. Simple surrogates initially consisted

244

Figure 4.11: The Lemcotec computational domain, from Jaravel [43].

As we are interested here to validate the Aj-tabulated reduced mechanism 4.3 for CO predictions,
we firstly changed the kinetic mechanism in the simulation. Secondly, we used the dynamic scheduler
in YALES2, a useful algorithm for CPU reduction due to chemistry. It consists of sharing the chemical
integration solving between all the available cores that will have the same amount of work. In a massively
parallel code, it is ideal to have a better synchronisation between the cores and allows to gain a significant
CPU time despite the increasing MPI connections. In this configuration, we gained a factor 2 on the CPU
time.

4.3.2 Simulation results and experiment comparison

We are interested here in the CO level prediction. Figure 4.12 shows the CO source term evolution at
different planes in the chamber. One can see the instantaneous CO level variation decreases drastically
from plane Y1 located in the flame zone, to the exit plane Y6. However CO instantaneous variations on
the exit plane Y6 are still present, and correlated with the temperature variation, see Fig. 4.13.

Y1 Y2

Y4Y3

Y5 Y6

T(K)

!
C

O

0

0

0

0

0

0

Figure 4.12: Instantaneous CO source term at 6 different planes, from plane Y1 to exit plane Y6.

In order to make comparison with the experimental CO levels, we are thus going to calculate the CO
emission index, averaged over the 6 probes and over the 20 ms used for statistics, see Fig. 4.14 with the
relation 4.4 :
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Figure 4.13: Instantaneous CO mass fraction and temperature in the exit plane. The isocontour represents
the injected mixture fraction.

< IECO >probes=
∑

t

∑6
i=1 YCOi∑6
i=1 Zi

(4.4)

The comparison between the experimental results and the averaged LES emissions (in g/kg of fuel)
are given in table 4.4 for both the present simulation and the previous one presented N. Jaouen thesis.
The CO emissions are predicted by both simulations, with a relative error of about 7%, and a CPU
time reduced by a factor 4 with the present procedure compared as the previous one with the 26-species
scheme.

Experiment (g/kg of fuel) LES (g/kg of fuel) Relative error (%)
Jaouen 26sp scheme
< EICO >probes

51.47 55.30 7,4%

Aj-tab 15sp scheme
< EICO >probes

51.47 47.66 7,4%

Table 4.4: Experimental and simulated CO index comparison, mean over time and the 6 probes on the
exit plane.

4.4 Conclusion

In this chapter, a strategy is discussed to enhance the reduction of a detailed kerosene chemical scheme.
With the ORCh reduction procedure, schemes of decreasing complexity are generated from a reference
detail mechanism, with the objective of finding the minimum level of complexity which allows for cap-
turing fixed target properties. A stochastic micro-mixing problem including liquid fuel evaporation is
built to probe the various chemical schemes generated and to perform the optimisation of the rates with
a genetic algorithm. The inlet mass fluxes and residence time are those of the Lemcotec aeronautical
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engine. It is shown that up to a given level of complexity, securing the accuracy in the reproduction of
the micro-mixing problem also allows for computing premixed laminar flame properties. The number
of species below which a single set of chemical parameters cannot secure accuracy over a large range of
equivalence ratios, typically in the rich side region, is then determined. To further reduce the chemistry,
still preserving the wanted flame properties, a different optimisation strategy in which the Arrhenius
pre-exponential constants are allowed to evolve with the equivalence ratio is adopted. The obtained Aj-
tabulated mechanism is applied back through cross validation between the micro-mixing problem and
premixed laminar flame calculations. Finally, the Aj-tabulation is tested on the 3D LES Lemcotec cham-
ber simulation, allowing to predict the CO level on the chamber exit with only 15 transported species,
and 72 associated elementary reactions. Compared to the 26 transported species by N. Jaouen [147] the
mechanism reduction resulted to a CPU reduction by a factor 2, leading with the dynamic scheduler, by
a total CPU reduction by a factor 4 without degrading the CO level prediction and thus confirming the
use of the strategy.
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Chapter 5

Review on soot and fuel model issues
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As the phenomena leading to the presence of soot in aircraft engines are deeply complex, the follow-
ing chapter will try to bring some key elements in order to prepare the introduction of the methodology
retained in Chapter 6 for soot prediction in a 3D LES simulation of a real aircraft engine. The first key
aspect is the fuel model and the gaseous description, both critical for soot formation. Secondly, as the re-
search on soot formation and evolution is still on-going, several hypothesis coexist along with a growing
number of soot population solving methods. A selection will be presented hereinafter.

5.1 Jet fuel models

When it comes to real fuel simulation, several issues appear. This section lists the industrial issues
and presents the methodology retained to model real fuel affordable for an industrial LES simulation
including soot description.

5.1.1 Real jet fuels

Jet fuels for airlines companies vary depending on the country and services, see Table 5.1. Common
standards have been establish after the World War II, and today the Jet A-1 is mostly used for the airlines
companies and refining industries in Europe. All these fuels are liquid kerosene-based, meaning the
carbon distribution varies from 8 to 16, and their complex mixture contains hundreds of hydrocarbons,
classed in groups presented Fig. 5.1, with the paraffin, synonym of saturated alcane CnH2n+2, n ∈ [8,19],
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representing 77% of the fuel composition, and aromatic hydrocarbons (naphtalenes and alkylbenzenes)
representing 20%.

Fuel name Use
Jet A-1 Standard commercial jet fuel
Jet A U.S. domestic jet fuel
JP-8 U.S. military jet fuel
JP-5 U.S. navy jet fuel
TS-1 Russian jet fuel

Table 5.1: Most common jet fuels around the world.

Large variations in these fuel compositions have been observed during an intensive measure cam-
paign, the “world fuel sampling program" [164], and if it is reasonable to consider an average composi-
tion for model purposes, see 5.2, it does not imply the different fuels have a similar behaviour in different
configurations. In typical gas turbine operating conditions, the fuel mixture does not impact the combus-
tion, but with recent technologies operating close to stability limits, typically in lean partially premixed
conditions, the sensitivity to the fuel composition may become of greater importance, especially con-
cerning the auto ignition properties. Soot production is also strongly dependent on chemical properties
according to Edwards et al. [165].

Figure 5.1: Hydrocarbon class distribution for Jet-A fuels [166].

5.1.2 Review of the detailed fuel models and associated issues

5.1.2.1 Surrogates

One of the main issues for the chemists, when it comes to model such complex fuels, is to determine
which and how many components the surrogate will need to simulate the real fuel thermo-physical prop-
erties. Surrogates can be built through the following methodologies [168]: First, starting from a real fuel
sample, a chemical analysis is performed in order to build a set of potential mixtures, mostly with com-
ponents representative of a group of chemical species. Secondly, these potential surrogates are computed
and the final one is chosen depending on his predictability on target properties. Early fuel models were
built on a physical property of the fuel: the distillation curve, which characterises the volatility of the
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Figure 5.2: Average properties for different jet fuels, Edward et al.(2003) [167].

fuel along the entire boiling range, see Fig. 5.3. Wood et al.[169] were the first to attempt a surrogate
model. They developed a 14-component fuel model, built to match the distillation curve of the JP-9 fuel.
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Figure 5.3: Representative distillation curves for three samples of Jet-A : Jet-A-3602 (blue) Jet-A-3638
(black) Jet-A-4658 (green). Presented in [170].

A non exhaustive list of the developed surrogates over the years are presented Tab. 5.2 .
In 1994, the kerosene combustion in low-temperature jet-stirred reactors, based on jet A-1, was

constructed with a single component, N-decane, by Dagaut et al.[171]. The authors argued that the
oxidation of the N-decane alone can predict the overall combustion behaviour of a kerosene fuel. Indeed,
alkanes constitutes the major fraction. The 20% aromatics mass fraction is shown to have a negligible
effect on the combustion chemistry. Good predictions of the major species were found with Dagaut’s
scheme, using jet-stirred reactors at elevated pressures.

Then, two other key phenomena, the real fuel distillation curve and the phase behaviour, have been
targeted by several studies [176, 177] to recover the physical properties of the fuel combustion such
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Authors date Fuel composition Size Validity
Dagaut et al.[171] 1994 100% n-decane 90 species, JSR 10-40 bars

573 reactions 750-1150 K
Voisin [172] 1997 78% n-decane, 12.2% toluene 225 species, JSR 10-40 bars

9.8% cyclohexane 1800 reactions
Cathonnet et al.[173] 1999 78% n-decane, 188 species, JSR 10-40 bars

9.8% cyclohexane, 12.2% toluene 1463 reactions
Patterson et al.[174] 2001 89% n-decane, 84 species, JSR 10-40 bars

11% toluene 440 reactions 1 bar Premixed flame
Luche [175] 2003 91 species, JSR 10-40 bars

991 reactions

Table 5.2: Non exhaustive list of different kerosene surrogates

as mixing, vaporisation, evaporation. Indeed, according to Slavinskaya et al.[177], the capacity of the
model to recover the phase-equilibrium properties is not sufficient and distillation curve must be taken
into account before considering chemical kinetic and gas phase transport properties. They point out that
the behaviour of the functional groups and their interactions that are key to chemical time scales result
in different intermolecular forces and molecular weight, properties to which physical properties are most
sensitive. In 2002, Violi et al.[166] produced a semi-detailed surrogate model for JP-8 and jet A fuels
with 6 hydrocarbons. The scheme was able to recover physical properties like distillation curve, flash
point, and chemical kinetics at atmospheric conditions.

In 2010, Bruno et al. [178, 179] presented a mixture evaluation tool to compare surrogates against
real fuel properties. Results showed that surrogates with a small number of component have difficulties
to reproduce the distillation curve and other thermo-physical properties. Generally a surrogate with only
two or three components tends to behave like a single component fuel, meaning that the fuel mixture
has to be composed by more than four components, which leads to significantly more complex kinetic
mechanisms to recover properly both physical and chemical kinetics properties.

5.1.2.2 Hybrid chemistry

Another approach has been suggested in 2017 by Xu et al.[180]. With the study of heavy fuels thermal
decomposition in lighter species when heated, they demonstrate that the thermal decomposition does not
depend on the exact fuel mixture, the thermodynamic properties nor the oxidiser composition. More-
over, the fuel decomposes entirely into pyrolysis products before diffusing in the flame zone, giving the
possibility to numerically separate the thermal decomposition and the oxidation. The timescale of the
pyrolysis products being 10 times smaller than the oxidation reactions, the decoupling of the two phe-
nomena can also be done in time. A simplified modelling of the high temperature oxidation of heavy
fuels called HyChem, for Hybrid Chemistry, has then been presented, with on one hand the kinetics of
the fuel thermal decomposition, and on the other hand a detailed reaction model for the oxidation of the
decomposed species, a simple representation is shown Fig. 5.4. The advantage of the HyChem method
is to propose a simplified fuel model with a single lumped component fuel.

Several applications have already been conducted [181], showing the potential of the HyChem
method. Pyrolysis products are found to be between 6 and 10, with ethylene being the major inter-
mediate for all conventional jet fuels.
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Figure 5.4: Schematic of the HyChem approach. Taken from [180].

The model for pyrolysis relies on global lumped reactions, described further, with empirical rates,
determined against Standford’s experimental data. Seven lumped reactions are needed to model a jet A
fuel pyrolysis, with one C-C fission like reaction and 6 H-abstraction followed by fuel radical breakdown
:

CmHn→ ed(C2H4 + λ3 C3H6 + λ4i i-C4H8 + λ4n 1-C4H8) + bd(χC6H6 + (1-χ)C7H8) + αH +
(2-α)CH3

CmHn + R→ RH + γ CH4 + ea(C2H4 + λ3 C3H6 + λ4i i-C4H8 + λ4n 1-C4H8) + ba(χC6H6 +
(1-χ)C7H8) + βH + (1-β)CH3

with R = H, CH3, O, OH, O2, HO2, and ea, ed, ba, bd, λ3, λ4i, λ4n, χ, α, β, γ 11 stoichiometric
parameters, found by experimental data.

Note that the coefficients ea, ed, ba, bd are linked because of elemental conservation.

5.2 Soot modeling

This section presents a description of soot stake, morphology, physical and chemical properties, and the
main theories about their creation, evolution and destruction in the conditions of an aircraft combustion
chamber. A brief review of soot models is shown, including the HYPE model [182] whose implementa-
tion in ORCh is presented in chapter 6.

5.2.1 Soot characterization

Because of their complex nature and their presence in such various and different fields, soot particles are
very difficult to be properly defined. Their physicochemical properties change depending on combustion
conditions, fuel or time residency in the atmosphere. A common definition can stand in that way: they are
solid components, essentially composed of carbon with a small percentage of hydrogen, formed through
an incomplete hydrocarbon combustion at elevated temperature. Soot particles are difficult to classify,
because of their highly various size and structure, see for example Fig. 5.5.

Soot present different structures, shown Fig. 5.6, the most common in their natural state being:
- Amorphous carbons, with chaotic structures,
- Hydrocarbon chains, in the form of linear particles,
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Figure 5.5: Soot formed by wood chip pyrolysis observed under a microscope [183].

- Polycyclic aromatic hydrocarbon PAH,
- Fullerene, with 3D spherical shape structures. The first, a C60, was discovered in laboratory in 1985
[184], and then in space in 2010 [185]. Fullerenes are found in very small quantities in soot from aircraft
and car combustion.
- Diamond and graphite, solid carbon having the most ordered structure. They are found in negligible
quantity in interstellar dust.

Figure 5.6: Main structures of carbon [186].

Along with their structure, the complexity of soot characterisation is also due to their morphology
and texture. Soot morphology is defined through the fractal dimension that characterises how the soot
fills the space. The fractal dimension is usually between 1 and 3, linked to the compactness of the soot
as described Fig. 5.7.

Soot morphology also varies with the time residency, the “older" the soot is, the more its morphology
is compact because of its interaction with other elements (HCl, H3PO4...) see Fig. 5.8. In the atmosphere,
soot can act like a transport vector for those elements, and studies are still on-going to determine the
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Figure 5.7: Different soot morphologies linked to their fractal dimension [187].

interaction effect on the soot absorption [188].

Figure 5.8: Atmospheric soot evolution: interaction with other elements.

An equally important soot property experimentalists are usually looking at to get to the radiative
transfer is the optical index. It is a complex macroscopic value strongly dependant on the soot compo-
sition, the H/C ratio, the absorbing property and structure. All these properties are changing during the
soot life.

At a nano-scale level, soot particles are also observed to be organised in PAH layers as shown Fig 5.9.

Figure 5.9: Soot nano-structures organised (left) and amorphous (right) for rich combustion conditions
[187].
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5.2.2 Soot evolution and formation

Soot formation steps can be relatively easily identified in laminar diffusion flames.
Fig 5.10 summarises the soot formation and size evolution steps that are described in this chapter:
- The inception, or the formation of the first soot precursors in the gaseous phase through the aromatics
growth.
- The nucleation, a mechanism that transforms heavy gaseous molecules into the first solid soot particles.
- The soot surface growth by chemical reaction.
- The coagulation, a collision mechanism between soot particles, from the coalescence to agglomeration,
leading to soot volume and surface increase.
- The soot oxidation, mainly through O2 and HO, leading to soot mass decrease.
- The fragmentation, a soot particle break-up mechanism.

Figure 5.10: Main evolution mechanisms considered in soot models [189].

5.2.2.1 Soot particle formation

Inception

It is usually poor oxygen combustion conditions that boost hydrocarbon radicals recombination.
These radicals are then evolving into bigger intermediate gaseous species that, by nucleation, will form
the first soot particles.
In the community, PAH have been recognised to be these intermediate gaseous species. However, several
studies are still ongoing concerning the importance of the first aromatic cycle formation, and on the exact
involved species in the PAH formation [190].
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The following section presents the main hypothesis of the PAH formation and growth.

Aromatics formation

For more than thirty years, the first aromatic species formation that leads to PAH has been and is still
an ongoing question. Some studies suggest that the formation of multi-cycle is directly done through
poly-acetylene condensation [191], other that it is done by C4Hx recombination [192], but the majority
of nowadays studies makes the hypothesis that PAH formation is directly controlled and limited by one-
cycle aromatics formation, typically the benzene C6H6, widely investigated.
Experimental [193] and numerical studies [194] have shown the importance of propargyl C3H3 and rad-
ical C3H5 in benzene formation. Several chemical pathways have then been proposed [195], despite
the difficulty given by the lack of experimental data. Among them, there is the reaction (5.1) involving
radical n-C4H3 and (5.2) involving n-C4H5 [196, 197], but also (5.3) involving propargyl and acety-
lene [190].

n-C4H3 + C2H2 → phenyle (5.1)

n-C4H5 + C2H2 → benzene + H (5.2)

C3H3 + C2H2 → c-C5H5 (5.3)

Acetylene being abundant in soot formation zones, the chemical pathways involving acetylene was
for a long time considered as the main benzene formation pathways. However, the reaction (5.4) has
recently been demonstrated [198, 199, 194] to be of the first importance, involving two propargyls
resonance-stabilized. Nevertheless, reactions (5.1), (5.2) and (5.3) are still being considered important
to the benzene formation in a less extent.

C3H3 + C3H3 → C6H6 (5.4)

Once benzene formed, it is supposed to evolve to PAH species through the HACA mechanism, illus-
trated Fig. 5.11 and described in the next section.

Figure 5.11: HACA mechanism scheme.
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Aromatic growth

A general agreement has been reached on the PAH growth via the HACA model, an H-abstraction
and C2H2 addition process, first introduced by Frenklach and Wang in 1991 [200]. A strong acetylene
concentration is observed in soot formation zones, making it the main species taken into account in all
aromatic growth models. The two-step HACA mechanism is also supported by several experimental
studies in shock tubes [196, 201, 202], in which the H-abstraction has been observed as followed:

First, a hydrogen atom is ripped of the PAH molecule surface by a gaseous hydrogen atom:

Ai + H↔ Ai− + H2

with Ai a peri-condensed i-cycles aromatic, in which two cycles have exactly either zero or two com-
mon atoms, and Ai− the corresponding radical. Next, the second step concerns the acetylene addition
with the present radical:

Ai−+ C2H2↔ AiC2H2.

When the pressure and the molecule size increase, a second reaction intervenes:

H + Ai−→ Ai

The acetylene addition is extremely reversible, and it is only with the formation of very stable aro-
matics, called stabilomers, that the reaction will become irreversible. The HACA mechanism is then
based on a thermodynamic and kinetic pairing, the most likely pathway being the one with the weakest
thermodynamic resistance. Finally, when the stabilomer, controlled by kinetic, is formed, the aromatic
growths through the reaction:

AiC2H2 + C2H2→ Ai+1 + H.

Surface migration

Theoretical chemical pathways have been highlighted in 1998 [203], that may double the PAH cycle
rate, mostly at high temperature [190]. This is due to hydrogen migration on carbon structures, see
Fig. 5.12. The 5-carbon cycle migration due to hydrogen atom travel, shown Fig 5.13, has important
consequences on soot growth. Indeed, as soon as the 5-carbon cycle meets a 6-carbon cycle, it promotes
the structure cyclisation.

Figure 5.12: Surface migration on a 5-carbon aromatic cycle.
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Figure 5.13: Reaction pathway of a 5-carbon cycle aromatic.

5.2.2.2 Nucleation

Nucleation is the transition phenomenon between the gaseous species and the solid soot, and one of the
less understood soot evolution mechanism. Over the years, several models have tried to approach nucle-
ation. The first kind considers the PAH growth until a given size for which the PAH shows condensed
phase properties and is then considered as a soot [196]. This kind of model, only based on growth by
chemical reaction, under predicts particle sizes.

A second type of nucleation model, first introduced by Frenklach et al.in 1994 [204], and mainly
used today in soot modeling, is based on chemical reaction and molecular growth. In this scenario, PAH
collide with other PAH when they grow up to a certain size. The impact of two PAH creates a dimer,
and when those dimers collide between themselves, trimers are created and so on until PAH clusters are
formed. In this model, the limit between gaseous species and soot is fixed at the PAH dimers, as shown
Fig. 5.14. Chemical and molecular growth happen simultaneously, and this model also takes into account
the condensation, i.e. the incrustation, of a dimer on a soot surface that then become more spherical.

The majority of nucleation models now uses the dimer description, either of a PAH set or the pyrene,
an extremely stable species, from both thermodynamic and kinetic points of view. The validation of the
dimer hypothesis can be found in several studies [205, 206].

5.2.2.3 Soot size growth

Soot particles are growing by collision with other particles and by mass adding through surface chemical
reaction. It is a difficult task to propose a growth mechanism as the phenomena are complex and the
species involved are plentiful. The main mechanisms found by experiment and modelled are described
bellow.

Surface growth

After the primary soot particle formation comes the soot mass growth by surface carbon addition.
This mechanism, first described with empirical approaches, has then been explained with the hypothesis
of chemical similarity [200], in which the chemical reactions at the soot surface are similar to the ones
one the gaseous PAH surface. Surface active sites are then associated to PAH ending C-H liaisons.
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Figure 5.14: Dimer nucleation and condensation.

Those sites are then activated by the abstraction on a hydrogen atom. Experimental studies [207]
demonstrated that the gaseous species mainly reacting with soot is acetylene, leading the community
to consider the HACA model for surface growth, that has been validated for experimental premixed
[208, 209, 210] and diffusive flames [211] and can be described as bellow:

Csoot - H + H↔ C∗soot + H2

C∗soot + H→ Csoot - H
C∗soot + C2H2→ Csoot - H + H

with Csoot - H the localised surface active site and C∗soot the corresponding radical.
One may note that in reality other gaseous species may participate to the surface growth.
In 2002, Frenklach [190] shows concerns about the hypothesis of chemical similarity that doesn’t

take into account the reactive sites influence in the surrounding area, changing the global kinetic of of
the surface migration.

Site deactivation

Several studies [191, 207] have noted a decrease of soot surface growth rate during time. This phe-
nomenon called “ageing surface" has several explanations supported by numerical studies of Frenklach
et al.[200, 204]:

• A first hypothesis links ageing surface to hydrogen concentration fall, stopping the kinetic and
reaching an equilibrium.

• The second one suggests a diminution of active sites, explained by surface migration. The 5-carbon
cycle migration could left empty spot behind, therefore conducting to active sites deactivation .

• At last, the mass adding on the soot surface could also be responsible, but this phenomenon has
not been modelled yet.



114 Review on soot and fuel model issues

Coagulation

Coagulation is a mechanical phenomenon between soot particles, that must imperatively be mod-
elled for accurate soot size prediction. Coagulation leads to soot size increase and soot number density
decrease. Experiments by Haynes et al.[191] have shown that the newly formed soot particles by co-
agulation are first spherical and then evolve into aggregates. Two different mechanisms contribute to
this evolution: The coalescence, describing two spherical particles merging into a bigger one, and the
agglomeration, for bigger soot particles agglutinating and forming aggregates, represented Fig. 5.15.

The transition between these two mechanisms is not fully understood yet and several hypothesis
have been made over the last decades: A first one suggests soot particles behave like liquid particles, the
smaller ones merge and the bigger ones have insufficient merging rate, thus creating aggregates. Zhao et
al.[212] have even showed experimentally that small soot particles act like liquid.

At last, Michel and Frenklach [213] proposed a second explanation. They saw through DNS stud-
ies that the spherical shape is caused by two factors: a fast surface increase and the size of colliding
particles. If particles are too big, surface reactions are not fast enough for the particles to merge. The
merging is then incomplete, causing aggregates. The spherical shape is then caused by a strong nucle-
ation coupled with fast surface reaction. This study shows the critical importance of the simultaneity of
all soot mechanisms: nucleation, surface reaction and agglomeration, that are usually separated in other
soot formation scenarios. This simultaneity has then been confirmed by latest soot formation simulations
[214] in agreement with the global evolution of experimental soot distribution. In terms of mathematical
description, the Smoluchowski equations are used for coagulation, with a Knudsen dependant collision
rate. Two opposite regimes can be distinguished, a first one called “free molecular", characterised by a
Knudsen number Kn > 1, corresponding to a pure coalescence regime, and a second one “continuous"
with Kn << 1, corresponding to pure agglomeration. Models usually use only these two limit cases,
whereas more complete descriptions like the one of Kazakov et al.[215] take into account the whole
spectrum of Knudsen values with harmonic functions.

Figure 5.15: The two limit cases of coagulation.

The whole set of soot evolution mechanisms leads to a bimodal particle size distribution (PSD),
observed in a vast majority of experiments, for example Zhao et al.[216] measured the PSD Fig. 5.16 at
different burner distances. Several conclusions can be made: A first peak of small particles is observed
whatever the position in the flame, and a second bigger size peak on the PSD is present in a higher
position, this peak moves toward bigger sizes as the distance from the burner grows.

These two particle types differ not only with the size but also with the chemical and structural prop-
erties. The bimodal distribution aspect may be explained by the competition between nucleation and
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Figure 5.16: PSD variation at different distances H from the burner [216].

coagulation. Moreover, soot property studies like the one of Commodo et al.[217] show that the sec-
ond peak appears not only by coagulation but also through surface reaction and condensation involving
gaseous species.

In 2012, K. Zhou [218] proposed a qualitative explanation for the distribution bimodal property. At
the flame base, only nucleation is involved, producing only one peak. Then, the particle number density
decreases by condensation. Surface reactions increase the particle size moving the peak to larger sizes,
where a concentration loss is observed. Meanwhile, nucleation still produces small particles so the first
peak is still present, and as for the second peak, nucleation is largely balanced by coagulation between
small and large particles.

5.2.2.4 Soot size reduction

Soot particles are also losing mass through two phenomena: Surface oxidation and large particle frag-
mentation into pieces.

Oxidation

Soot surfaces are mainly oxidised by hydroxy OH and oxygen O2, following the reactions:

C∗soot + O2 → products
Csoot− H + OH→ products
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For hydroxy, the most common oxidation rate, from Neoh et al.[219], is based on a collision rate
measured between OH and soot particles. As for oxygen, an oxidation model is proposed by Nagle et al
[220], based on O2 reaction with two types of active soot sites. A second one, the Kazakov model [221]
sometimes preferred because of its simplicity, describes soot oxidation with O2 and the radical C∗soot.

Fragmentation

Soot fragmentation is more rare than oxidation. It has been observed for the first time in rich methane
flame conditions by K. G. Neoh [222, 223], and in lean equivalent conditions by C.A. Echavarria [224]
with a number density particle increasing observed. Neoh et al.[223] have then suggested fragmentation
is caused by oxygen entering into the soot. The soot structure is first weakened by OH-oxidation and
then cracked by oxygen entering which has a longer reaction time than hydroxy.

There are very few fragmentation models, one from Harris and Maricq [225], based on shearing and
with good corresponding with experiment, another form Mueller et al. [226], based on oxygen entering
the soot particle. This model follows a linear fragmentation rate with O2 oxidation rate and it is matching
with the flames studied by Neoh [222, 223].

Through several numerical studies, Mueller et al.[226] have made several conclusions: In lean pre-
mixed flames, a soot number density increase is observed due to fragmentation, whereas in rich flames,
the soot number density remains constant because the lack of oxygen does not allow fragmentation.
Moreover, in diffusion flames, fragmentation rate is two, even three times lower than in premixed flames.
A possible explanation would be that in premixed flames soot coexists with oxygen while passing through
hydroxy zones, whereas in diffusion flames, soot and oxygen are separated by a hydroxy zone, and once
soot particles go through that zone being oxidized, there is no more aggregate to break in the oxygen
zone.

5.2.3 Soot models

Soot model implementation must take into account couplings between soot formation and flow. Soot
particles are transported and if there is turbulence, the impact won’t be negligible. In 2007, Yoo et
al.[227] have demonstrated with DNS simulations and a 2-equation soot model [228] that turbulence
increases soot rate by increasing flame surface and diminishing soot growth because of the smaller soot
time residency in hot zones where soot production is the most intense. Also, Olson et al.[229] made
several correlations for the critical temperature for which the soot particles appear.

The first steps of soot formation necessitate a precise gaseous phase description of the involved
species. The kinetic mechanism must be chosen carefully. Soot models to be designed for industrial
aircraft chamber simulations must take into account the combustion regime influence, partially premixed
and highly turbulent. Regarding those difficulties, the community have elaborated many strategies to
implement soot in the CFD field.

Soot models have been classified in three categories by Kennedy (1997) [23]:

• Empirical models, based only on experimental data.

• Semi-empirical models, coupling mathematical description of soot with empirical parameters.

• Detailed models, seeking to solve the reaction equations leading to soot formation.
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5.2.3.1 Empirical models

These models are the most simple and the less expensive to implement. They are widely used in aircraft
and automobile industries. These models are based on experimental configurations and validated on
configurations closed to the initial ones used for calibration. These models do not take into account
the fundamental phenomena that govern soot formation and reduction, so they cannot be used on other
configurations and are not predictive.

An example is the model of Khan et al.[230], widely represented in the literature, for diesel soot
emission. The formation rate depends on the pressure Pu, the temperature Tu and the equivalent ratio χ
of the studied case under the relation:

dCs
dt

= c
Vu

VNTP
Puχ

nexp
( −E
RTu

)
(5.5)

with Cs the motor load (kg · m−3), the other parameters being empirical values of the studied case.
In the aircraft field, we can find a more complete model, of Edelman and Harsha [231], which

includes soot oxidation. This model has been used for chamber simulation [232] with a similar relation
than the one of Khan, but with a second negative term for soot oxidation.

Empirical models are coupled with CFD through the temperature and the equivalence ratio without
taking account the fluctuations, and give soot quantities with no information on the particle size distribu-
tion (PSD).

5.2.3.2 Semi-empirical models

Usually, semi-empirical models are composed of two transport equations coupled with empirical param-
eters. These models do not have information on PSD or collision. Similar to empirical models, they
cannot be generalised for other fuels or other conditions.

Among them, the most complete model in term of formation mechanisms taken into account is the
Leung model [228], also easy to implement. This model transports two variables: the particle number
density and the soot mass fraction. The C2H2 species is used as a precursor, and the soot formation
is described by inception through reaction (5.6) and surface growth by C2H2 condensation on the soot
surface by the reaction (5.7).

C2H2 → 2 C(s) + H2 (5.6)

C2H2 + n C(s)→ (n + 2) C(s) + H2 (5.7)

The reaction constants are empirical, and different hypothesis are made like the soot sphericity and
the exclusion of surface ageing.

5.2.3.3 Detailed models

The complete description of PAH kinetic and soot growth is still mandatory for model generalisation. De-
tailed models have then been constructed to be applied in any configuration in which the main phenomena
occurs: fuel pyrolysis, nucleation, surface growth, coagulation and oxidation. Statistical methods have a
great success in the literature in the attempt of modelling soot formation and evolution. They are used
to obtain the number density function (NDF), in order to get the soot volume fraction and agglomeration
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properties. Two methods have been used to estimate the NDF: Monte Carlo models or discrete sec-
tions models that can give an approximate shape of the NDF, and moment method with mean quantities
prediction.

Direct methods

Monte Carlo simulations are based on random stochastic particle evolution generations, allowing for
a very precise prediction of the NDF. Unfortunately, the cost is high so it is impossible to apply those
simulations to an industrial configuration. Usually, those simulations are used to validate other models.

The second main method is based on discrete sections: the group of soot particles is represented by
an aerosol distribution divided into several finite elements. Each set of particles in each finite element of
the discretised NDF is solved, so the NDF can be approximate with a good precision. However, these
methods are still expensive and generally applied only to 1D cases.

Method of moments

In order to have a close prediction of the NDF, the method of moments has also been used. It was
introduced by Hulbert and Katz [233] for soot formation. Here, the resolution of mean quantities allows
a good coupling with CFD. Moreover this method uses less variables than direct methods, making it
cheaper. In detail, we start from the population balance equation (PBE) [234] describing the evolution
of a given soot particle set.

∂Mx,y

∂t
+∇ · (u−−→Mx,y) = Ṁx,y (5.8)

with Mx,y the soot bivariant moment (by unity of density) expressed as:

Mx,y =
∑

j

Vx
j SyjNj (5.9)

Vj being the volume variable, Sj the surface variable and Nj the j class probability density (with j=
1 or 2 depending on the mode).

The drawback of this method is that the source terms need another moments to be closed. Several
closure models were introduced, among which the Direct Quadrature Method of Moments (DQMOM)
[235], which shows good estimations with a NDF approximated by a multidimensional Dirac sum, but
causing numerical difficulties with the associated matrix inversion.

Another closing model, the Method of Moments with Interpolative Closure (MOMIC), uses a loga-
rithmic polynomial interpolation for closure, it is simple to implement but does not retrieve the bimodal-
ity of the PSD.

One last example would be the hybrid method of moment (HMOM) [236] that combine the two clo-
sure methods above. Here the mean quantities are predicted as well as with DQMOM and the bimodality
of the PSD is retrieved. Numerically, HMOM is more robust than DQMOM because even if the closure
is made by a polynomial interpolation, a Dirac function is added in order to capture the first nucleation
size.
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MHMOM
x,y = NoVx

oSyo + exp
( R∑

r=0

r∑

k=0

ar,kx
kyr−k

)
(5.10)

with No the Dirac function weight, Vo and So the fixed volumes and surfaces of the first nucleation
size.

Mueller et al. [236] have validated this model on Monte Carlo simulations for premixed and diffusion
flames. Moreover, the two expected particle sizes are predicted, see Fig. 5.17.

Figure 5.17: Bimodal particle size distribution retrieved by HMOM, with symbols size proportional to
the number of particles with the same size [236].

5.2.4 The hybrid stochastic/ fixed sectional method (HYPE)

The HYPE method [182] is a new approach (2019) which combines a Monte Carlo description and fixed-
sectional methods. The method is based on a fixed number of stochastic particles and sections, with a
numerical algorithm organised to minimise discretisation errors even for a moderate number of stochastic
particles and sections.

It relies on the resolution of the particle size distribution (PSD) n(v;x, t), number of particles of
characteristic size v (in terms of volume or mass, v is a continuous independent variable), per unit
of flow volume and per unit of characteristic size of an aerosol submitted to simultaneous nucleation,
surface variation and agglomeration. It is governed by a Population Balance Equation (PBE) [237]:

∂n(v;x, t)

∂t
+ u · ∇n(v;x, t) +

∂

∂v
[G(v)n(v;x, t)] = ḣ(vo;x, t) (5.11)

+
1

2

∫ v

0
β(v − v̄, v̄)n(v − v̄;x, t)n(v̄;x, t)dv̄ − n(v;x, t)

∫ ∞

0
β(v, v̄)n(v̄;x, t)dv̄ ,
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where usual notations are adopted. G(v) > 0 is the surface growth rate or G(v) < 0 the surface
loss rate. ḣ(vo) > 0 is the nucleation rate or ḣ(vo) < 0 the disappearance rate, seen at size vo. The
integral source term on the RHS accounts for agglomeration following the continuous counterpart of
Smoluchowski equation, with β(v, v̄) the collision kernel for two particles of volume v and v̄.

A summary of the method is presented on flowchart 5.18,

dvk(t)

dt
= G(vk(t))
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Figure 1: Flowchart of the hybrid stochastic/fixed-sectional method.

time evolution, a fractional-step method is followed. Starting at time tn,
surface growth/loss is first applied to advance the solution to time tn+ 1

2 =
tn + �t/2. This is applied in a deterministic way to every k-th particle, as a165

simple linear process proportional to G(vk(t)), which is the major advantage

of the proposed approach. Then from the time tn+ 1
2 , the solution is advanced

to tn+1 = tn+ 1
2 + �t/2 by applying nucleation and agglomeration e↵ects,

which are simulated by moving the stochastic particles between the defined
sections. The number of stochastic particles randomly selected to be removed170

from a section and dispatched over the others, are calculated according to the
nucleation and agglomeration rates controlling the PDF evolution (Eq. (12)).
At every instant tn, �t is determined so that stability is secured, di↵erent
amplitudes of �t may be required in practice to advance from tn to tn+ 1

2

(growth/loss) and from tn+ 1
2 to tn+1 (nucleation and agglomeration).175

9

Figure 5.18: HYPE flowchart. [182].

In recent simulations of a one-dimensional laminar sooting flame [238], the hybrid stochastic/fixed-
sectional method allowed for analysing the relation between the mobility diameter, measured in the
experiments, and the equivalent sphere diameter, introduced in the modelling. The influence of the
fractal particle shape on the simulated particle size distribution was also explored. This method offers
interesting PSD predictions but unfortunately, the CPU time required jeopardises the application to three-
dimensional unsteady simulations of real combustion chambers.
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Soot prediction in a real combustion
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In this final chapter, a strategy is proposed to predict a soot size distribution in the large eddy sim-
ulation of a turbulent flame. It relies on neural networks, applied to replace the HYPE complete soot
solving. First, this strategy is successfully tested on a well known 1D premixed sooted flame. The CPU
cost is discussed for further applications. The HYPE solving is next coupled with the ORCh 0D canoni-
cal problem for turbulent combustion. This coupling allows to obtain a dense database. A neural network
is then trained with this database, network that will be used for the Mermose 3D LES. Eventually, the
obtained soot description is discussed and compared to experiment.
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6.1 Strategy for reduction model

The HYPE model has been found interesting for the prediction of particle size distributions [238]. Nev-
ertheless, the complexity and the cost of this hybrid method make it unsuitable for complex applications.
Consequently, we now present a model reduction strategy based on neural networks, with three goals:

• Keeping the same predictions level as the HYPE solving.

• Reducing the computational cost to make it suitable for 3D LES simulations.

• Lowering the implementation complexity by getting rid of stochastic particles and growth/loss soot
phenomena modelling.

ANN CNN

Concatenation

Figure 6.1: Example of a functional API used here with two sub-models.

In order to do so, the HYPE solving simulations are considered as training databases, and an adequate
neural network architecture must be found to retrieve the whole complexity of soot formation.

For complex problems, sequential neural networks such as the ones presented in section 3.2.1 are
mostly not sufficient. So this time, we use the open source neural network library Keras (https://keras.io/)
based on Tensorflow, allowing to code complex neural networks in a very efficient way.

The architecture employed here is a functional API, see Fig. 6.1 , where each input series can be
handled by a separate neural network and the output of each of these sub-models can be combined
before a prediction is made for the output sequence. We can refer to this as a multi-headed NN model. It
may offer more flexibility or better performance depending on the specifics of the problem that is being
modelled. For example, it allows to configure each sub-model differently for each input series, such as
the number of filter maps and the kernel size. The elaboration of this architecture has been done with the
following 1D application.
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6.2 1D application

6.2.1 Test case

In order to elaborate the neural network architecture, a first test case is considered. It is a one-dimensional
fuel-rich (equivalence ratio φ = 2.07) laminar premixed ethylene-argon-oxygen flame from the litera-
ture [216] at ambient pressure. The velocity, temperature and mole fractions in the fresh gases are 8.26

cm/s, 300 K, XC2H4 = 0.133, XO2 = 0.193 and XAr = 0.674, respectively. Particles size distributions
measurements were obtained with SMPS based measures along the flame central axis, see Fig. 6.2.

x
x + �x

Figure 6.2: Flame from Zhao et al. [216]

This test case was investigated with the HYPE methodology, expanded in [238], in which the soot
distribution was accurately reproduced. In order to do so, the one dimensional flame was solved with the
101-species kinetic scheme from Appel et al. [239] with the measured temperature profile imposed, using
CANTERA. Figure 6.3 represents the main species mass fraction along with the PAH mass fraction. The
soot phase is coupled with the gaseous phase through the pyrene species.
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Figure 6.3: Main species and PAH species. Symbols: Reference from Zhao et al. [216], lines: CAN-
TERA simulation from A. Bouaniche [238]. Vertical red line: Maximum heat release rate. In the next
figures representing soot density, a shift by +0.25 cm of the computational distance above the burner is
added, to account for the probe cooling effect.

The problem begin stationary, the flame space domain is changed into a residency time through:

τ(x) =

∫ x

0

1

u (x+)
dx+,
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with u the velocity distribution.
In this chapter, we are working with the integral form of the equation 5.11, that reads:

u
dNi(x)

dx
=
dNi(x(τ))

dτ
=

∫

Ivi

(
− ∂

∂v∗
[G (v∗)n (v∗;x(τ), τ)] + Ȧ (v∗;x(τ))

)
dv∗ (6.1)

with G the surface growth/loss rate, A the agglomeration source and where the particle size space
is discretised in M sections of characteristic volume vi, representative of the mass in the i-th section
Ivi ≡ [vinfi , vsupi ]. The employed grid is geometric:

vinfi = voF
i
s ,

with Fs = 1.5. The corresponding mean primary soot diameter in the first section is equal to d0 =
0.87 nm.

The HYPE time step “δtH" is determined to secure the stability of the method, the thermochemical
properties are interpolated. The PSD initialisation in HYPE is done with a density of 1 [cm-3] for the
first section in which all the stochastic particles are concentrated and 0 [cm-3] for the other sections.

Once the HYPE solving done, a large database becomes available, with a PSD N at every “x"
location .This database can be used to train the neural network, so it can predict the PSD evolution at
“x+δx" from the one at “x", coupled with the thermochemical parameters controlling the soot modeling
at “x".

6.2.2 Neural network architecture

The neural network used for PSD prediction, represented by Fig. 6.4 is described as followed.
The neural network F is a combination of an artificial neural network (ANN), and a convolutional

neural network (CNN), see Fig. 6.4.

• The ANN tracks the evolution of the thermochemical parameters φ(x, t) controlling the soot mod-
elling, namely the temperature T(K), the C2H2, O2, OH and pyrene C16H10 mass fraction. These
quantities having very different scales, we chose to normalize them by their maximum value. Then,
they enter a recurrent long short-term memory neural layer (LSTM) composed of 100 neurones,
to which a 60-neurones layer is connected. This ANN features feedback connections, meaning it
keeps track of time history of the thermochemical evolution.

• The CNN is trained from the time PSD shape. It offers the possibility of analyzing in a single
inference the full PSD profile in size space. In this so-called “image segmentation” approach, the
input line is seen as a whole while the output classifies each pixel, thus preserving the locality of
the information. The CNN input is thus composed of the one-dimensional PSD profiles N(x, t).

Because of large scale differences of the PSD over the flame, the difficulty of the problem being
modelled is significantly increased. An inputs standardisation solution is applied as followed:

N standardised(x) = N(x)−mean(N))
std(N)

with “x" the flow position on the flame central axis and

mean(N) = 1
M

1
xtot

∑M
i=1

∑xtot
x=xinit

Ni(x),
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6.2.2 Neural network architecture
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Figure 6.4: Architecture of the employed neural network. Example with a PSD of M = 10 sections.

The neural network used for PSD prediction, represented by Fig. 6.4 is described as followed.
The neural network is a combination of F , an artificial neural network (ANN), and G, a convolutional

neural network (CNN), see Fig. 6.4.

• F tracks the evolution of the thermochemical parameters controlling the soot modelling, namely
the temperature T(K), the C2H2, O2, OH and pyrene C16H10 mass fraction. These quantities
having very different scales, we chose to normalize them by their maximum value. Then, they
enter a recurrent long short-term memory neural layer (LSTM) composed of 100 neurones, to
which a 60-neurones layer is connected. This ANN features feedback connections, meaning it
keeps track of time history of the thermochemical evolution.

• G is trained from the time PSD shape. This CNN offers the possibility of analyzing in a single
inference the full PSD profile in size space. In this so-called “image segmentation” approach, the
input line is seen as a whole while the output classifies each pixel, thus preserving the locality of
the information. The input of G is thus composed of the one-dimensional PSD profiles.

Because of large scale differences of the PSD over the flame, the difficulty of the problem being
modelled is significantly increased. An inputs standardisation solution is applied as followed:

xstandardised = x�mean(x)
std(x)

before being fed in the CNN G. Next the inputs go through 15 convolutional filters layers, a
dropout of 10% is applied, and a 100-neurone LSTM layer is connected to a 60-neurone dense
layer, also to keep track of the PSD time history.
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neural network (CNN), see Fig. 6.4.

• F tracks the evolution of the thermochemical parameters controlling the soot modelling, namely
the temperature T(K), the C2H2, O2, OH and pyrene C16H10 mass fraction. These quantities
having very different scales, we chose to normalize them by their maximum value. Then, they
enter a recurrent long short-term memory neural layer (LSTM) composed of 100 neurones, to
which a 60-neurones layer is connected. This ANN features feedback connections, meaning it
keeps track of time history of the thermochemical evolution.

• G is trained from the time PSD shape. This CNN offers the possibility of analyzing in a single
inference the full PSD profile in size space. In this so-called “image segmentation” approach, the
input line is seen as a whole while the output classifies each pixel, thus preserving the locality of
the information. The input of G is thus composed of the one-dimensional PSD profiles.

Because of large scale differences of the PSD over the flame, the difficulty of the problem being
modelled is significantly increased. An inputs standardisation solution is applied as followed:

xstandardised = x�mean(x)
std(x)

before being fed in the CNN G. Next the inputs go through 15 convolutional filters layers, a
dropout of 10% is applied, and a 100-neurone LSTM layer is connected to a 60-neurone dense
layer, also to keep track of the PSD time history.
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The neural network used for PSD prediction, represented by Fig. 6.4 is described as followed.
The neural network is a combination of F , an artificial neural network (ANN), and G, a convolutional

neural network (CNN), see Fig. 6.4.

• F tracks the evolution of the thermochemical parameters controlling the soot modelling, namely
the temperature T(K), the C2H2, O2, OH and pyrene C16H10 mass fraction. These quantities
having very different scales, we chose to normalize them by their maximum value. Then, they
enter a recurrent long short-term memory neural layer (LSTM) composed of 100 neurones, to
which a 60-neurones layer is connected. This ANN features feedback connections, meaning it
keeps track of time history of the thermochemical evolution.

• G is trained from the time PSD shape. This CNN offers the possibility of analyzing in a single
inference the full PSD profile in size space. In this so-called “image segmentation” approach, the
input line is seen as a whole while the output classifies each pixel, thus preserving the locality of
the information. The input of G is thus composed of the one-dimensional PSD profiles.

Because of large scale differences of the PSD over the flame, the difficulty of the problem being
modelled is significantly increased. An inputs standardisation solution is applied as followed:

xstandardised = x�mean(x)
std(x)

before being fed in the CNN G. Next the inputs go through 15 convolutional filters layers, a
dropout of 10% is applied, and a 100-neurone LSTM layer is connected to a 60-neurone dense
layer, also to keep track of the PSD time history.
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@n(v; x)

@x
+ u · rn(v; x) = ⌦̇{F [YC16H10 , YC2H2 , YO2 , YOH , T ]; G[n(v1; x), · · · , n(vM ; x)]} (6.1)

in order to validate the neural network prediction over a transport equation on variable time step.
Here, ⌦̇ is retrieved with the neural network prediction:

⌦̇(vi; x + �x) =
n(vi; x + �x) � n(vi; x)

�x
(6.2)

As performed into the HYPE model, thermochemistry variables profiles are constant over time and
the profile of the consumed pyrene from Fig. 6.3 is considered for neural network training and validation.

Figure 6.6 shows the results of the PBE 6.4 solved with the trained neural network over 30 sections.
It represents the PSD integrals evolution on each 30 size intervals along the x-abscissa, compared to the
one for HYPE simulation. The evolution is well predicted for all intervals of size.
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Figure 6.7: Particle Size Distribution for several heights above the burner. Symbols: HYPE simulation
with 1000 stochastic particles and 30 sections.Solid line: Neural network prediction.
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Figure 6.4: Architecture of the employed neural network. Example with a PSD of M = 10 sections.

std(N) = 1
M

1
xtot

∑M
i=1

∑xtot
x=xinit

(Ni(x)−mean(N))2

before being fed in the CNN. It allows to reduce the database range, for example from the database
presented Fig. 6.5(a) to the standardised one presented Fig. 6.5(b).
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Figure 6.5: Standardisation of the database before entering the CNN. Example with a PSD discretised
into M = 10 sections, among which 5 are presented. PSD mean diameters d1 = 0.87 nm , d3 = 2.02 nm
, d5 = 4.66 nm, d6 = 7.08 nm , d10 = 37.63 nm.
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Next the inputs go through 15 convolutional filters layers, a dropout of 10% is applied, and a 100-
neurone LSTM layer is connected to a 60-neurone dense layer, also to keep track of the PSD time
history.

• The 60 neurones of each branch are then concatenated, leading to a 120-neurone layer. Finally two
dense connected layers make the final prediction of the M sections at the following time.

6.2.3 Neural network training

The architecture described in section 6.2.2 is next trained using randomly selected 80% of the x-series
data, with an adam optimizer and a loss function based on mean absolute percentage error. The 20%
remaining data are used for neural network testing. At each epoch, the loss function of the trained
and the tested data is plotted, see for example the ones of the 30-section training Fig. 6.25(a), and the
predicted values are directly plotted against target ones, see Fig. 6.6(b), 6.6(c). Figure 6.25(a) shows the
error going down and stabilising for both train and test dataset up to less than 10% of mean error, after
1500 epochs. A total of 100 000 elements composes this database.

The time step variation of the training database is represented Fig. 6.7 with a mean of 1.03e-5 s and
a variance of 1.66e-5 s.

(a) Loss function evolution

(b) Train prediction (c) Test prediction

Figure 6.6: Training neural network results with trained (orange) and tested (blue) predictions at each
epoch.
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Figure 6.7: Database time step variation used for training, in second.
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Figure 6.8: Particle Size Distribution evolution in the central flame axis for different i-th fixed-section of
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HYPE simulation with 1000 stochastic particles and 30 sections.Solid line: Neural network prediction.
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6.2.4 Neural network validated with a 30 sections-discretised PSD

Once the neural network is fully trained, its prediction can replace the right side of the PBE 6.1 such as:

dNi(x(τ))

dτ
= Ω̇i(x(τ)) (6.2)

with

Ω̇i(x(τ)) =
(F [φ(τ), N(x(τ)), δtH ]−Ni(x(τ)))

δtH

F being the neural network and φ(τ) = [δtH , YC16H10 , YC2H2 , YO2 , YOH , T ] the ANN inputs. The
temporal integration of the PBE 6.2.4 is then done with a third order Runge-Kutta method [240] through:



Soot prediction in a real combustion chamber 129





Ni(x(τ ′)) = Ni(x(τ)) + 8
15 · δτ · Ω̇i(x(τ))

Ni(x(τ ′′)) = Ni(x(τ)) + 0.25 · δτ · Ω̇i(x(τ))

Ni(x(τ ′′′)) = Ni(x(τ ′′)) + 5
12 · δτ · Ω̇i(x(τ ′))

Ni(x(τ + δτ)) = Ni(x(τ ′′)) + 0.75 · δτ · Ω̇i(x(τ ′′′))

As performed into the HYPE model, thermochemistry variables profiles are constant over time and
the profile of the consumed pyrene from Fig. 6.3 is considered for neural network training and validation.

Figure 6.8 shows the results of the Runge-Kutta integration presented above, solved with the trained
neural network over 30 sections. It represents the PSD integrals evolution on each size ranges along the
x-abscissa, compared to the reference HYPE simulation with 30 sections. The evolution is well predicted
for all ranges of size.
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Figure 6.9: Particle Size Distribution for several heights above the burner. Symbols: HYPE simulation
with 1000 stochastic particles and 30 sections. Black line: ANN-CNN prediction with 30 sections. Red
line: ANN-CNN trained with 10 sections (red symbols). Grey line: Reference simulation from Zhao
[216]
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Figure 6.10: Soot number density and volume fraction vs height above burner. Blue-symbols: HYPE
simulation with 1000 stochastic particles and 10 sections. Solid line: ANN-CNN prediction with (black)
30 sections and (red) 10 sections used for training. (c) and (d) Black-symbols: experiments . [216].
Vertical red bar: Maximum heat release rate.

Methods CPU cost [s]
Sectional 30 sections 81.764
HYPE 30 sections 100.581
Neural network trained with 30 sections 18.014
Neural network trained with 10 sections 16.602

Table 6.1: Cost of the different soot methods to predict a 30-sectional PSD over the present 1D flame
test case.

Figure 6.9 represents the PSD evolution n(d) = = dN
dlog(d) = Nv

(log(dSup)−log(dInf )) against the soot diam-
eter size for several heights above the burner, for which the neural prediction fits well the HYPE solving
with 30 sections (black) with 5 % of mean error, and the reference stochastic simulation from Zhao [216]
(grey). A second training and validation is also done with a coarse PSD discretisation of 10 sections (red)
built from the reference HYPE solving. The neural network also shows predictions with a mean error of
64 % compared to the reference HYPE solving, allowing to describe this particle size distribution with
only 10 integrals. This behaviour is also retrieved for the total soot number density 6.10(a) and soot
volume fraction 6.10(b) plotted for all soot diameter.

Then, in order to directly compare with experimental datas, only soot sizes above 3 nm must be con-
sidered as it is the limit size detected in the experimental studies [216], like it was done in A. Bouaniche
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Figure 6.11: Normalised CPU cost as a function of the number of sections M. Dashed line: Sectional
method. Solid line: Hybrid method. Dash dotted line: Neural network method.

analysis [238]. The comparison versus experiment is shown Fig. 6.10(d), 6.10(c) with an accurate pre-
diction for the ANN-CNN trained with the reference HYPE database, showing a mean error of 20 %
compared to the HYPE reference, and an over prediction (mean error of 86 % compared to the HYPE
reference) observed for the ANN-CNN trained with the coarse 10 sections, that can be linked to the
over-prediction of this coarse database on the bigger soot diameters on Fig. 6.9.

When comparing the cost of the neural network-PBE solving against the HYPE solving and an
equivalent 2-point upwind sectional method, we can see from table 6.1 that not only the cost is is divided
by a factor 10 with the neural network approach, but also that the neural network CPU solving poorly
increases with the section number, presented Fig. 6.11.

6.3 Implementation of a soot model into a reduced kinetic mechanism

In this section, we describe the coupling between ORCh, allowing a significantly reduced finite rate
chemistry description, and HYPE, providing detailed soot population evolution. The final objective is to
create a precise and affordable kerosene-based kinetic mechanism with soot description.

6.3.1 Soot and gas phase coupling

The earlier mentioned ORCh stochastic configuration seems adequate to allow an implementation of
HYPE, as both configurations use stochastic methods to model fluid and soots.

The link between the gas phase and soot production goes through the pyrene density, as the nucleation
model chosen in HYPE is based on pyrene dimerisation. The pyrene species is consumed by HYPE
simulation, giving birth to the first soot particles.

It is then critical to use a detailed enough kinetic mechanism, at least with a PAH formation mech-
anism that forms the pyrene species. A study from Doute et al. [241] compared kerosene flames to
pure N-decane flames and showed how it is inevitable to take into account the fuel aromatic part for soot
formation, as it leads to PAH creation.

That is why we chose the PAH growth mechanism of Wang [242], based on the same light species
oxidation mechanism coupled to the pyrolysis part of HyChem [243]. In this mechanism, PAH species
grow until coronene, see Fig 6.12.

Several reasons motivated our choice. First, as HyChem is mono-component fuel, it allows to go
further in the ORCh reduction strategy. Indeed, a multi-component surrogate reduction imposes to keep
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Figure 6.12: Kinetic pathways from benzene to coronene (A7) for fuel mixtures. A1: benzene, A2:
naphthalene, A3: phenanthrene, A4: pyrene, A5: benzo[e]pyrene, A6: benzo[ghi]pyrene, A7: coronene.
[242].

much more species for a sufficiently described oxidation. Moreover, a study from T. Zhang et al. [244]
which compared HyChem with the 4-component fuel MURIA [245] for soot prediction, showed similar
results, confirming the potential of HyChem. A second argument for the use of HyChem is the lack of
validation studies on multi-component kerosene-based surrogates for soot production. Most of the PAH
growth mechanism validations are made on ethylene and methane flames. In our case, the PAH formation
is independent of the fuel, and has been well validated on ethylene premixed and counterflow diffusion
flames, ethylene which is the major light species obtained by pyrolysis with HyChem description.

6.3.2 Interaction between HYPE and the ORCh canonical configuration for turbulent
combustion

In this section, we describe the coupling between ORCh and HYPE. The HYPE method is based on
the transport of stochastic particles representing a set of real soot particles at different sizes, and the
the ORCh canonical configuration for turbulent combustion relies on stochastic particles (called fluid
particles starting from now to avoid any confusion) that are mixed and react together.

Here we couple these two codes by calculating a soot population evolution for each ORCh fluid
particle that contain a pyrene density higher to a limit value, defined to obtain a reasonable large database.
Each fluid particle reacts during a time step defined in ORCh, and the associated soot particle population
is calculated during the same time step. Note that once a soot population is created, it will continue
to react in this fluid particle until the end of the simulation. The implementation strategy is resumed
Fig 6.13.

Concerning the impact of turbulence on soot, several studies report different soot production be-
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haviours in turbulent flames compared to laminar flames [246, 247], that can be explained by the PAH
gaseous species sensitivity to turbulent flow [248]. Morevover, F. Sewerin and S. Rigopoulos [249]
showed the weak impact of turbulence on soot formation compared to gaseous species micro-mixing,
confirming our decision to let solid particles not directly influenced by turbulence, but indirectly through
the PAH precursors response to turbulence.

Simulation step time Δt Δt'	

...

fluid particle
Mixing + reactions 

fluid particle
Mixing + reactions 

fluid particle
Mixing + reactions 

fluid particle
Mixing + reactions 

Soot particle
 evolution

Soot particle
 evolution

Soot particle
 evolution

ORCh ORCh ORCh ORChHypeHypeHype

=	Δt

Figure 6.13: HYPE implementation strategy in ORCh. white circle : fluid particles, grey circle : fluid
particle transporting a soot distribution. δt : ORCh time step, δt’ : HYPE total time step we put equal to
ORCh time step.

To conclude, the ORCh simulation allows the species density to evolve, including the pyrene species,
which at each ORCh time step will be send to HYPE for soot population simulation calculation that will
continue to evolve at the next ORCh time step. There is also a two-way coupling between gas and solid
soots through the pyrene density. This strategy, named ORCHydS (for Optimised and Reduced Chem-
istry with HYbriD Soot description), will be applied for the soot prediction in the industrial Mermose
configuration (see section 6.4.3).

6.4 Industrial application

6.4.1 The Mermose project

Figure 6.14: SaM146-1S17 turbofan, certified in 2010, based on RQL technology [250].

In the context of aircraft pollution reduction and soot prediction, the french DGAC founded several
projects, among which MERMOSE, led by ONERA and Safran in 2013, aimed to provide a modern
aircraft engine emission dataset. The goal was to completely characterise fine particles, first behind the
SaM146 turbofan, see Fig. 6.14, from Safran Aircraft Engines, secondly in a representative tubular com-
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bustor with the same injection system and the same air flow distribution. The combustor test estimated
cruise emissions in real conditions, following a LTO cycle, see Fig. 6.15.

Figure 6.15: Typical engine cycle conducted during the first MERMOSE test campaign [250].

The probe used to collect soot in the tubular combustor campaign was made by Safran aircraft En-
gines, and is constituted of a tube of 6 mm inner diameter and several holes of 0.5 mm, cooled down by
water. It is located right after the exit chamber. The particle size distribution, mass density and number
density were measured at each operating point, respectively by intrusive SMPS and PPS methods. The
CO2 percentage of the gas was simultaneously quantified. We are here interested in one operating point,
the climb of the LTO cycle, at 85 % thrust, at a pressure P = 18 bars, for which the mean primary particle
diameter was found to be around 20 nm, see Fig. 6.16(a), and the mean particle diameter around 40 nm,
with aggregates morphologies observed, see Fig. 6.16(b).

(a) Primary particle (b) Aggregate

Figure 6.16: Observation of soot particles at 85 % thrust of the tubular combustor campaign.

6.4.2 HyChem & PAH mechanism reduction

Choosing the PAH growth mechanism of Wang [242], coupled to the pyrolysis part of HyChem [243],
conducts to a 203 species and 1358 mechanism, that must necessarily be reduced for the later 3D simu-
lation of the Mermose combustor chamber.

The ORCh strategy described in Chapter 4 is once again applied in this section. This time the total
number of stochastic particle is N = 1414 for the three inlets considered (nI = 3). The first inlet is
composed of the gaseous fuel at T = 300 K, representing 3% of the total mass flow rate. The second
inlet, composed of air at T = 734 K, releases 80% of the air mass flow rate in the mixing, the rest being
introduced progressively starting at 37% of the total time simulation as we are trying to be representative
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of the air distribution in the chamber. The third inlet, injecting 40% of the mass flow rate, is composed
of burnt gases at chemical equilibrium for the equivalence ratio of the engine, at T = 1745 K.

Zst

Figure 6.17: Scatter plot of stochastic particles temperature vs mixture fraction. Particles are coloured
depending on their initial condition. Blue: air. Orange: kerosene. Red: burned gases. Zst is the stoichio-
metric mixture fraction.

Figure 6.17 shows a representative scatter plot of the temperature of the gas phase particles, using
the Curl model. A large range of equivalence ratios is observed, critical for the scheme reduction in this
configuration.

For the reduction and optimisation steps, we chose to target the essential species involved in the
HYPE soot production model, namely the pyrene C16H10 for nucleation, O2 and OH for oxidation and
C2H2 for soot mass adding, along with the main reactants, resumed in Table 6.2. By doing so, we obtain
a “H" mechanism, composed of 32 transported species with 16 QSS species and 240 reactions, presented
Table 6.3 . The still high number of transported species after reduction can be explained firstly because
of the 8 additional pyrolyse species contained in the jet-A HyChem version, and secondly because of the
pyrene. The kinetic pathways from Fig. 6.12 leading to pyrene shows numerous intermediate species,
which must be conserved in order to obtain pyrene density, becoming the reduction limiting species in
our case.

Nspecies Nreactions NQSS Targets
Detailed HyChem with PAH 203 1358 – fuel, T, O2, OH
Reduced mechanism 32 240 16 C2H2, C16H10

Table 6.2: Reduction summary of the HyChem model coupled to Wang mechanism with PAH descrip-
tion.

Transported species Analytically resolved species
N2, H, O, OH, HO2, H2, H2O, H2O2, O2, CH3, CH4,
CH2O, CO, CO2, C2H2, C2H4, C2H6, CH2CO, C3H3,
C3H6, i-C4H7, C4H8-1, i-C4H8, C5H4O, A1, C6H5CH3,
OC6H4O, A2R5, A3-4, A4, C9H7, POSF10325

A1CH2O, CH3O, HCO, C2H3, C2H5, A2R5-, A1-,
CH2CHO, CH2, HCCO, C6H5O, C-C5H5, C3H5-A, C9H8,
A1CHO, C6H4O

Table 6.3: Mechanism H. Species of the reduced mechanism composed of 32 transported species asso-
ciated to 16 QSS relations and 240 reactions.

When tested back in the ORCh stochastic case after optimisation, the reduced H mechanism shows
similar trajectories to the detailed HyChem mecanism, for the target species, see Fig. 6.18. It is noted
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that the pyrene trajectory of the H mechanism Fig. 6.18(f), does not fit perfectly the HyChem trajectory,
the observed error can be avoided by keeping 82 additional species in the reduced mechanism, which is
not compatible with the following 3D LES solving. Moreover, the error observed on the pyrene density
has been applied back in the trained neural network input of the 1D application of section 6.2, showing
that a maximum error of 70 % and a mean error of 35 % on the pyrene involves a maximum error of 2 %
on the total soot density prediction with a mean error of 0.13 %. The H mechanism is also able to predict
the same flame speed and temperature of premixed flames at different ratio, see Fig. 6.19.
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Figure 6.18: Representative species and temperature trajectories. Symbols: Reference HyChem mech-
anism. Cross: Air inlet. Triangle: Liquid fuel inlet. Lines: Reduced mechanism Solid-line: Air inlet
trajectory. Dotted-Line: Liquid fuel inlet trajectory.

Figure 6.20(a) represents the temperature profile of a freely propagating 1D flame with the H mecha-
nism on Yales2, in the physical space. As presented in chapter 5, the HyChem mechanism is fundamen-
tally different than any surrogate mechanism. Indeed the fuel first decomposes into pyrolysis species,
represented by the red zone in the figure where 99.9 % of the fuel disappears. The whole pyrolysis
species are showed Figure 6.20(b) in the c-space with Yc = | YCO | + | YCO2 | + | YH2O |. As the
pyrolysis reactions are endothermic, they need a heat adding, typically the burned gases, to be activated.
Those species are then oxidised in the flame zone, represented in blue in the figure 6.20(a) where the
maximum of O, H and OH term source are observed.

6.4.3 0D stochastic database with ORCHydS

In this section, we are presenting the database obtained with the coupling introduced in section 6.3, in
order to train the neural network architecture presented section 6.2.2.
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Figure 6.19: Freely propagating premixed flames. Response versus equivalence ratio. Temperature
taken in burnt gases. Symbols: Reference HyChem mechanism. Line: Reduced mechanism before after
optimisation (Genetic Algorithm).
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Figure 6.20: Freely propagating premixed flames computed with the H mechanism. Dotted-coloured
lines: Main pyrolysis species. Red zone: Pyrolyse zone where 99.9% od the fuel is consumed. Blue
zone: reaction zone defined by the production of H, O and OH species. (a) Physical space. Black-line:
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The reduced “H" mechanism has been used in the ORCh stochastic configuration at the operating
point presented above, during 200 iterations. The mixing EMST model (short for Euclidean minimum
spanning tree) [251] implemented in ORCh by K. Wang is used for database build.

The ORCh time step is δt = 0.01 ms for a total time of 2 ms. The total HYPE time at each ORCh time
step is equal to the ORCh time step, and the HYPE sub time steps are controlled by the agglomeration
and growth/loss source term variations. Over np = 10000 HYPE stochastic particles are considered for
accurate soot description, all placed in the first section for the PSD initialisation.

The soot primary particle is set to 21 nm, which is extracted from the experiment and consistent with
the literature for heavy fuels [252]. A first geometric grid of M = 10 sections is considered, with a factor
Fs = 1.8 over a soot diameter range from 21 to 140 nm.

Figure 6.21 represents the different soot density number created and transported by a total of 40 fluid
particles in the ORCh solving, as long with the mean soot density. Figure 6.21 also shows the pyrene
determinist trajectory for the same simulation without soot consumption. As the pyrene is consumed, the
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Figure 6.21: Black symbols: Soot density of 40 fluid particles in the ORCHydS simulation at different
times during the ORCh simulation. Line: Pyrene determinist trajectory of the ORCh air inlet. Blue line:
Mean soot density over the 40 fluid particles.
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Figure 6.22: Particle size distributions of the 40 soot descriptions in the ORCHydS simulation at different
times during the ORCh simulation.

soot density follows the pyrene pattern. Figure 6.22 shows the corresponding particle size distribution
n(d) with different behaviours over the simulation time. At t = 0.2ms, the abrupt pyrene density growth
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creates an important primary soot particle density (with a diameter d = 21 nm). As the simulation goes
forward, the particles size starts increasing, as seen at t = 0.40 ms. The different PSD then continue to
evolve, reaching a diameter of 140 nm at t = 1.3 ms.

All these soot densities, along with the thermochemical parameters of the corresponding fluid parti-
cles constitute the database used for the neural network training hereafter.

6.4.4 Neural network training

The neural network architecture elaborated in section 6.2.2 is once again trained, this time with the newly
database from ORCHydS, corresponding to the mermose operating point we are interested in. Unlike the
1D application section 6.2, the generated database is now 40 times more important, as 40 fluid particles
in ORCh contain a soot distribution, for a total of 5 millions elements. The database time step variation
∆δtORCHydS controlled by the hybrid method ranges from 1.73e-17 ms to 0.02 ms, as shown Fig. 6.24,
with a mean value of δtORCHydS,mean = 5.8e-5 ms and a variance of 0.1 ms. In comparison the typical
time step in the present YALES2 simulation stays constant at δtY 2 = 2e-7 ms.

Before entering in the CNN branch, each particle soot distribution Ni is rescaled by the minimum
and maximum values of the i-th section , in a defined range through the relations :

Ni,rescaled = Ni,std · (rangemax − rangemin) + rangemin, (6.3)

with

Ni,std = (Ni −Ni,min)/(Ni,max −Ni,min)

i ≡ [1 : 10], and range = [-50:50] . This rescale is essential to reduce the original range width of
the inputs from [0:1e14] to [-50:50] and eventually facilitate the training of the neural network. It also
changes the shape of the inputs, see Fig. 6.23. In further applications where the trained neural network
is used, two vectors Nmin and Nmax of size 10 need to be kept in order to rescale the N input before
entering the CNN.

The training is once again done on 80% of the data, and the remaining 20% are used for test. It took
100 epochs to obtain a 2 % of mean error on both trained and test datas. Then, once trained, the neural
network is validated with the balance equation:

dNi(t)

dt
= Ω̇i(t) (6.4)

with i ≡ [1 : 10]. This equation is solved with a temporal third order Runge-Kutta method described
in [240] with:

Ω̇i(t) =
F [φ(t),N(t),δtORCHydS ]−Ni(t))

δtORCHydS

This validation is presented on Fig. 6.26, in which the mean soot density and volume fraction pre-
dictions are compared to the mean soot density and volume fraction obtained over the HYPE database.
It is observed that the soot density is well recovered, except between 0.2 and 0.6 ms where it is over-
predicted. Looking at representative fluid particle distributions on Fig. 6.27 confirms over-predictions
at t = 0.2 ms and t=0.4 ms, which is caused by the shape complexity of the soot density learned by the
neural network, and especially the soot density peak observed at 0.17 ms. As the general soot behaviour
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Figure 6.23: PSD database rescaled through equation 6.3 before entering the neural network, at different
times.

is well recovered at the final time, this trained neural network will be used in the 3D LES, presented as a
work in progress in the perspectives, see 6.4.5.5.

6.4.5 3D simulation

6.4.5.1 Numerical settings

The simulation concerns the computational domain presented Fig. 6.28. The injector system is the one
from the SAM146 engine. The airflow in the combustor is splited into primary zone, dilution zone and
wall cooling.

The mesh was provided by CERFACS and is composed of 18 million cells and 5 million nodes. the
characteristic mesh size in the pilot injection system varies from 0.6 mm and 1.5 mm, as seen Fig. 6.29,
and goes up to 3 mm in the rest of the pilot region, except at the intermediate and dilution holes where
the characteristic size is about 1 mm. Near the exit, the cell size vary from 4 to 6 mm.

For this YALES2 simulation, the TFV4A time integration scheme is considered, developed by M.
Kraushaar [253], with a fourth-order centred scheme for space integration. The turbulence model used
here is the dynamic Smagorinsky presented section 2.4.4.

With the lack of experimental data on liquid fuel repartition for the injection system, it was chosen to
simulate the chamber with a gaseous fuel injected trough the venturi walls, as shown Fig. 6.31, in order
to respect the liquid film observed experimentally on these walls.
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Figure 6.24: Database time step variation used for training, in milisecond.

6.4.5.2 TFLES settings

The dynamic TFLES model described in section 3.1.4 is employed in this simulation , and the efficiency
function of Charlette et al. [82] is used with a filter size dependent of the mesh size with 5 points set in
the flame layer.

Considering the mechanism thermal decomposition before oxidation, the flame sensor from P. Benard
[85] appeared not well suited. Figure 6.30(a) represents the heat release rate and the corresponding flame
sensor ω, which fails to encompass the pyrolysis zone. Consequently, the flame thickening is piloted by
a newly defined flame sensor more adapted to the HyChem mechanism, based on:

ω̇P = 0.1× (ω̇CO2 + ω̇CO + ω̇H2O) + 7.0× (ω̇O + ω̇H + ω̇OH) + ω̇C2H4 (6.5)

with

S = 1 if ω̇P > ω̇S
S = 0 if ω̇P < ω̇S

(6.6)

and with a threshold set at 10% of the maximum laminar flame ω̇P . By taking into account the source
term of the main pyrolysis species C2H4, as well as the intermediate species O, H and OH, we are certain
to encompass the whole flame region, as shown Fig. 6.30(b).

6.4.5.3 Fuel decomposition and oxidation

Figure 6.31 represents the fuel mass fraction in an instantaneous middle plan, with two isocontours: The
first one in red is the zone where the source term of the main pyrolysis species, C2H4, is higher. 99% of
the C2H4 is produced in these zones. The second isocontour in black is the zone where 99% of the C2H4
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(a) Loss function evolution

(b) Train prediction (c) Test prediction

Figure 6.25: Training neural network results with trained (orange) and tested (blue) predictions at each
epoch.
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Figure 6.26: Mean soot density and volume fraction over the 40 ORCh fluids particles. Blue: HYPE
simulation with 10000 stochastic particles and 10 sections. Clear blue: Neural network prediction.

species disappears. As the rest of the pyrolyse species source terms follow the same pattern, the red zone
is representative on where the pyrolyse is located, and the black zone where the oxidation begins.

Figure 6.32 represents temperature profile, with a V shape flame, and in blue the pyrene mass fraction
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Figure 6.27: Soot prediction on representative fluid particle distributions. Line: reference. Symbols :
prediction with PBE 6.4.

Figure 6.28: Combustor computational domain.

field. The primary soot are expected to be created in the blue zone.

6.4.5.4 First validation: CO2 measures

Table 6.4 presents the comparison between the experimental CO2 percentage and the averaged LES CO2

percentage over the probe holes of the present simulation, presented Fig 6.33. The CO2 emissions are
predicted with a relative error of about 21.3%.
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Figure 6.29: Resolution of the mesh with 18 million cells.

(a) case with ω̇ (b) case with ω̇P

Figure 6.30: Instantaneous flame sensor field in the middle plan based on (a) ω̇ from P. Benard [85], (b)
ω̇P proposed here 6.5. The isocontour represents the heat release rate.

Experiment (Percentage in gas) LES (Percentage in gas) Relative error (%)
< CO2 % >probes 5.25 6.37 21.3%

Table 6.4: Experimental and simulated CO2 percentage comparison, mean over time and probes on both
sides of the central axis, on the exit plane.

6.4.5.5 Mermose soot prediction

Ten additional transport equations are added into the YALES2 solving for the particle size distribution
prediction:
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Figure 6.31: Instantaneous Heat Release Rate field in the middle plane. Fuel mass fraction in grey.
Isocontours: C2H4 term source, positive (red) and negative (black).

Figure 6.32: Instantaneous temperature field in the middle plane. Blue: Pyrene mass fraction field.

∂ρÑi

∂t
+∇ · ρũÑi = −∇

[
ρ(ũNi − ũÑi)

]

︸ ︷︷ ︸
(1)

−∇
(
−ρVk,iNi

)
︸ ︷︷ ︸

(2)

. (6.7)

with i ∈ [1 : 10] the size sections number. 2 unresolved terms appear in the filtered soot equations:

• The sub grid soot density (1) is modelled just like the sub grid species, see Chapter 2, same for
the species fluxes with a constant turbulent Schmidt number over the entire domain.
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Figure 6.33: CO2 mass fraction on the probe plane near the combustion chamber exit. The orange points
represent the 5 probe holes.

• The filtered laminar diffusive fluxes of soot density (2) is neglected because of the absence of
molecular particle diffusion, see [249].

After the transport solving, the obtained Ñi
∗

is taken as input for the neural network, along with the
corresponding thermochemical variables, to obtain the prediction of Ñi(t+ δt) for the next iteration.

For CPU purpose, the trained neural network is loaded for every group element in YALES2, allowing
a cost multiplied only by 1.4, due to the 10 added balance equations and the neural network call.

Figure 6.34 represents the obtained instantaneous soot density field at the 10 characteristic sizes
in the combustion chamber middle plane, as long with the corresponding total density and soot mass
fraction Fig. 6.35. The final comparison with experimental soot density and mass is done in the exit
probe plane, on table 6.5. A large over-prediction is observed, that must be investigated in regard of the
several hypothesis made on the kinetic mechanism and the soot transport model. However, LES soot
density and volume fraction are expected to be greater than measurements, as not all particles entering
the probe will actually be carried to the detector by the flow. Indeed even if the isokinetic hypothesis is
validated at the entrance of the probe, soot deposit occur in bends that separate particles from the flow,
also by thermophoresis due to the temperature gradient between the sampling tube and the flow [254].

Experiment LES Relative error

< fv >probes [mg/cm-3] 1.15e-6 1.57e-6 0.36

< N(dmean) >probes [cm-3] 1.28e7 2.43e7 0.92

< N >probes [cm-3] 1.28e7 3.24e8 24

Table 6.5: Total mean soot density, mean soot density of the mean diameter and soot volume fraction
over the 5 probes on the exit probe plane. Comparison with experiment.
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(a) Nk=1, daverage = 21 nm (b) Nk=3, daverage = 25 nm (c) Nk=3, daverage = 32 nm

(d) Nk=4, daverage = 39 nm (e) Nk=5, daverage = 48 nm (f) Nk=6, daverage = 60 nm

(g) Nk=7, daverage = 74 nm (h) Nk=8, daverage = 92 nm (i) Nk=9, daverage = 113 nm

(j) Nk=10, daverage = 140 nm

Figure 6.34: Density particles number of 10 characteristic diameter d, in cm-3. Instantaneous fields in
the middle plane.



148 Soot prediction in a real combustion chamber

(a) Total soot density in cm-3 (b) Soot volume fraction in mg/cm-3

Figure 6.35: Instantaneous soot (a) density and (b) volume fraction field in the middle plane.

6.5 Conclusion

With the future norms on soot production applied to aircraft engines, it is primordial to develop new
models, able to predict soot formation at low cost and compatible with industrial time scales. The
already available models in the literature are still struggling to merge prediction quality with low cost,
especially for the particle size distribution.

In this chapter, we propose to test an alternative solution, based on neural networks, allowing to
reduce an highly predictive soot model. This strategy is first employed to retrieve a particle size distribu-
tion of a premixed 1D sooted flame, and shows correct predictions when compared to the HYPE model.
This first test also allowed us to estimate the adding cost to employ this strategy further.

Next, we continued to develop this strategy for a 3D LES combustion chamber simulation with
complex chemistry. In order to train the neural network, we created a soot database, based on HYPE
coupled with the ORCh stochastic configuration.

The final goal here is to simulate a combustor representative of the turbofan SAM146, at one oper-
ating point. It is done with the HyChem complex chemistry model and the use of the neural network,
previously trained with the corresponding soot database. Eventually are able to predict the particle size
distribution along with the total soot mass in the chamber, for an extra cost only 1.4 times higher.
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Chapter 7

Conclusions and perspectives

7.1 Conclusions

This thesis can be detached into three different works, all distincts yet complementary. The main motive
in those works was to propose models and tools for LES of aircraft engines with real fuels, in order to
accurately predict and control greenhouse gas and particulates emissions, under affordable CPU cost.

7.1.1 Improvement on the kinetic reduction code ORCh

A major part of the thesis was dedicated to improve the ORCh code, to obtain highly reduced kerosene
kinetic mechanisms with the same predictability as detailed ones. In order to do so, the ORCh reduction
methodology is enhanced with pre-exponential coefficient ratio-tabulated. When the kinetic mechanism
is drastically reduced, it allows to secure the flame speed prediction, even in the rich zones.

Application: The CO prediction on the LEMCOTEC industrial chamber

This strategy was first applied to the air/kerosene Luche mechanism [175], in an industrial operating
point of the LEMCOTEC chamber. The pre-exponential tabulation allowed to derive a 15-species and
72-reactions mechanism from an already reduced mechanism of 22 species and 222 reactions. A final
3D LES simulation of the chamber demonstrated a fair CO prediction with the 15-species mechanism,
with the same percentage of error as a previous simulation with a less reduced mechanism [147], and for
a lower CPU cost.

7.1.2 Toward the modelling of unresolved non-linear terms

The second part of this work aimed at proposing a novel framework, allowing to bypass closure models
for unresolved terms in the LES filtered transport equations with a neural network. The idea was to use
the already available physical information in a DNS flame for training the neural network, to propose a
closure directly based on data analysis.

Application: The 3D tabulated turbulent flame

The DNS database used for the neural network training is a methane-air stoichiometric premixed
jet-flame [127, 131, 132], computed with the compressible flow solver SiTCom [137]. The GRI-3.0
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mechanism used for chemistry is tabulated with a progress variable defined from CO, CO2, H2O and
NOx as in [135]. The DNS zone consists of 28.58 million nodes with a resolution fixed at 50 µm.

The convolutional neural networks were shown to provide quantitatively accurate predictions of both
the source and flux terms, which are two substantially different terms and otherwise difficult to model
in a single unified framework. The predictions capabilities of the networks are also demonstrated to be
only weakly sensitive to variations in filter width, which is an important attribute for any sub-grid scale
model.

7.1.3 Reduction method for soot prediction

We once again use neural networks, this time for model reduction in the case of soot modelling, to
propose a reduction strategy able to cast a precise soot model into a more affordable one with the same
level of prediction accuracy. This strategy decomposed in two parts, first the building of a large enough
database, then the training of a functional API neural network architecture with this database. The
network output is the soot distribution prediction at one (time or space) step, and the inputs are the soot
distribution of the precedent step, processed with CNN layers, and meaningful species mass fractions
and the temperature, processed with ANN layers.

In order to build the database for one of the two applications below, the ORCh multi-inlet configura-
tion was merged with the hybrid soot modeling from A. Bouaniche [182], to obtain a large database of
fluid particules, mixing and reacting together, and transporting soot description (namely the ORCHydS
merging).

Applications

• 1D premixed flame: This strategy is first employed to retrieve the particle size distribution of
a 1D laminar premixed ethylene-argon-oxygen sooted flame. The neural network architecture is
calibrated during this first application. The neural network is first trained with the solution from
HYPE [238] and shows correct predictions when used back in a digital-twin PBE of the soot PSD.
This first test also allowed us to estimate the adding CPU cost of this strategy.

• 3D Mermose configuration: The final goal here is to predict soot production of a combustor rep-
resentative of the turbofan SAM146, at one operating point. The used reduced kinetic mechanism
was extracted from the HyChem complex chemistry model. Because of its differences with classic
surrogates mechanisms, this new chemistry model requires a modified flame sensor for the TFLES
model based on species covering both fuel pyrolysis and oxidation. The soot prediction was done
with a the neural network, previously trained with the corresponding soot database generated with
ORCHydS. This neural network was implemented in the YALES2 3D LES solver. Eventually we
expect to predict the particle size distribution along with the total soot mass in the chamber, for an
extra cost only 1.4 times higher than the computation without soot modelling. This still on-going
work is presented in the perspectives.
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7.2 Perspectives

7.2.1 Perspectives to conclude the CNN application

The trained networks being based on the progress variable, a generic parameter of premixed flames, we
hypotheses that they will perform well for any turbulent premixed flame located in the Borghi regime-
diagram close to the conditions used for training. Nevertheless, it is an application that must be done in
order to validate the generalisation of those networks.

7.2.2 Toward a less expensive pollutant prediction

The next step would be to gain CPU performances on the LES solving presented in this thesis, especially
with soot solving that necessitates relatively large kinetic mechanisms, and to prepare the future studies
with bio-fuels mechanisms. One solution is to use neural networks to directly predict species source
terms, as it was done in the work of Wan et al. [148], in which a major CPU reduction cost was obtained
by avoiding Arrhenius rates calculation and the direct integration of the stiff chemical system.

7.2.2.1 Soot modelling

The presented soot model strategy in this thesis has been deployed with several hypothesis that are worth
to be analysed in a future work.

Firstly, the soot radiation was not taken into account in this work. It would be wise to add a radiation
model to soot description in YALES2, in order to quantify its effect. Also there was only one-way
coupling with the temperature and the pyrene fraction in the 3D simulation. A future work would be to
code a two-way coupling. The soot transport model may at the same time be improved for the Mermose
case, for example by defining different Schmidt numbers per soot size section. Eventually, the impact of
gaseous modelling compared to liquid fuel on soot production should be quantified.

The 3D solving with the neural network should be directly compared, with a similar solving with
the Leung model, in term of soot density prediction and CPU cost. Also, the influence of the soot
discretisation grid should be more carefully analysed, as it conditioned greatly the PSD in this thesis.
Concerning the whole strategy validation, an ultimate application will be done, the Soprano burner.

7.2.3 A second application : The Soprano burner

The ORCHydS strategy will be applied for a different configuration, namely the SOPRANO (EC project)
burner of CORIA. It would allow to rely on less models and hypothesis, with a simpler kinetic mecha-
nism based on acetylene, a gaseous experiment and experimental soot distributions measured at different
operating points. As soot measurements were done with non intrusive methods, see the work by M.
Bouvier et al. [255], the soot distribution of the 3D LES solved with the ORCHydS strategy could be
directly compared to the experimental soot distributions in the reactive zone.
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[122] A. Avdić, G. Kuenne, and J. Janicka, “Flow physics of a bluff-body swirl stabilized flame and
their prediction by means of a joint eulerian stochastic field and tabulated chemistry approach,”
Flow Turbulence Combust., vol. 97, no. 4, pp. 1185–1210, 2016.

[123] B. Fiorina, R. Vicquelin, P. Auzillon, N. Darabiha, O. Gicquel, and D. Veynante, “A filtered
tabulated chemistry model for LES of premixed combustion,” Combust. Flame, vol. 157, pp. 465–
475, 2010.



162 BIBLIOGRAPHY

[124] R. Mercier, T. Schmitt, D. Veynante, and B. Fiorina, “The influence of combustion sgs submodels
on the resolved flame propagation. application to the les of the cambridge stratified flames,” Proc.
Combust. Inst., vol. 35, no. 2, pp. 1259–1267, 2015.

[125] P. Domingo and L. Vervisch, “Large Eddy Simulation of premixed turbulent combustion using
approximate deconvolution and explicit flame filtering,” Proc. Combust. Inst., vol. 35, no. 2,
pp. 1349–1357, 2015.

[126] Q. Wang and M. Ihme, “Regularized deconvolution method for turbulent combustion modeling,”
Combust. Flame, vol. 176, pp. 125–142, 2017.

[127] P. Domingo and L. Vervisch, “DNS and approximate deconvolution as a tool to analyse one-
dimensional filtered flame sub-grid scale modeling,” Combust. Flame, vol. 177, pp. 109–122,
2017.

[128] Z. Nikolaou and L. Vervisch, “A priori assessment of an iterative deconvolution method for les
sub-grid scale variance modelling,” Flow Turbulence Combust., vol. 101, no. 1, pp. 33–53, 2018.

[129] Z. Nikolaou, R. S. Cant, and L. Vervisch, “Scalar flux modelling in turbulent flames using iterative
deconvolution,” Phys. Rev. Fluids., vol. 3, no. 4, p. 043201, 2018.

[130] R. Borghi, “Mise au point sur la structure des flammes turbulentes,” J. Chimie Physique, vol. 81,
no. 6, pp. 361–370, 1984.

[131] L. Cifuentes, C. Dopazo, J. Martin, P. Domingo, and L. Vervisch, “Local volumetric dilatation
rate and scalar geometries in a premixed methane-air turbulent jet flame,” Proc. Combust. Inst.,
vol. 35, no. 2, pp. 1295–1303, 2015.

[132] L. Cifuentes, C. Dopazo, J. Martin, P. Domingo, and L. Vervisch, “Effects of the local flow topolo-
gies upon the structure of a premixed methane-air turbulent jet flame,” Flow Turbulence Combust.,
vol. 96, no. 2, pp. 535–546, 2016.

[133] Y.-C. Chen, N. Peters, G. A. Schneemann, N. Wruck, U. Renz, and M. S. Mansour, “The detailed
flame structure of highly stretched turbulent premixed methane-air flames,” Combust. Flame,
vol. 107, no. 3, pp. 223–244, 1996.

[134] G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T.
Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, and Z. Qin tech. rep., 1999.
http://www.me.berkeley.edu/gri-mech/.

[135] G. Godel, P. Domingo, and L. Vervisch, “Tabulation of nox chemistry for large-eddy simulation
of non-premixed turbulent flames,” Proc. Combust. Inst., vol. 32, pp. 1555–1561, 2009.

[136] A. W. Vreman, “An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory
and applications,” Phys. Fluids., vol. 16, no. 10, pp. 3670–3681, 2004.

[137] L. Bouheraoua, P. Domingo, and G. Ribert, “Large-eddy simulation of a supersonic lifted jet
flame: Analysis of the turbulent flame base,” Combust. Flame, vol. 179, pp. 199–218, 2017.



BIBLIOGRAPHY 163

[138] F. Ducros, F. Laporte, T. Soulères, V. Guinot, P. Moinat, and B. Caruelle, “High-order fluxes
for conservative skew-symmetric-like schemes in structured meshes: application to compressible
flows,” J. Comput. Phys., vol. 161, pp. 114–139, 2000.

[139] G. Lodato, P. Domingo, and L. Vervisch, “Three-dimensional boundary conditions for direct and
large-eddy simulation of compressible viscous flows,” J. Comput. Phys, vol. 227, no. 10, pp. 5105–
5143, 2008.

[140] M. Klein, A. Sadiki, and J. Janicka, “A digital filter based generation of inflow data for spatially
developing direct numerical or large eddy simulations,” J. Comp. Physics, vol. 186, no. 2, pp. 652–
665, 2002.

[141] D. Veynante, A. Trouvé, K. Bray, and T. Mantel, “Gradient and counter-gradient scalar transport
in turbulent premixed flames,” J. Fluid Mech., vol. 332, pp. 263–293, 1997.

[142] D. Veynante and L. Vervisch, “Turbulent combustion modeling,” Prog Energy Combust Sci,
vol. 28, pp. 193–266, 2002.

[143] P.-T. de Boer, D. P. Kroese, S. S. Mannor, and R. Y. Rubinstein, “A tutorial on the cross-entropy
method,” Annals Operations Research, vol. 134, no. 1, pp. 19–67, 2005.

[144] D. P. Kingma and J. L. Ba, “ADAM: A method for stochastic optimization.”
https://arxiv.org/pdf/1412.6980, 2017.

[145] N. Jaouen, L. Vervisch, P. Domingo, and G. Ribert, “Automatic reduction and optimisation of
chemistry for turbulent combustion modeling: Impact of the canonical problem,” Combust. Flame,
vol. 175, pp. 60–79, 2017.

[146] N. Jaouen, L. Vervisch, and P. Domingo, “Auto-thermal reforming (ATR) of natural gas: An
automated derivation of optimised reduced chemical schemes,” Proc. Combust. Inst., vol. 36,
no. 3, pp. 3321–3330, 2017.

[147] N. Jaouen, An automated approach to derive and optimise reduced chemical mechanisms for
turbulent combustion. Phd thesis, INSA Rouen, 2017.

[148] K. Wan, C. Barnaud, L. Vervisch, and P. Domingo, “Chemistry reduction using machine learning
trained from non-premixed micro-mixing modeling: Application to dns of a syngas turbulent oxy-
flame with side-wall effects,” Combustion and Flame, vol. 220, pp. 119–129, 2020.

[149] P. Pepiot and H. Pitsch, “Systematic reduction of large chemical mechanisms,” in 4th joint meeting
of the US Sections of the Combustion Institute, Philadelphia, PA, 2005.

[150] R. I. Curl, “Dispersed phase mixing. Theory and effects in simple reactors,” AIChE, vol. 9, no. 2,
pp. 175–181, 1963.

[151] C. Dopazo and E. O’Brien, “Functional formulation of nonisothermal turbulent reactive flows,”
Phys. Fluids, vol. 17, pp. 1968–1975, 1974.

[152] R. Borghi, “Turbulent combustion modelling,” Prog. Energy Combust. Sci., vol. 14, pp. 245–292,
1988.



164 BIBLIOGRAPHY

[153] K. Narayanaswamy, H. Pitsch, and P. Pepiot, “A component library framework for deriving kinetic
mechanisms for multi-component fuel surrogates: Application for jet fuel surrogates,” Combust.
Flame, vol. 165, pp. 288–309, 2016.

[154] C. Montgomery, S. Cannon, M. Mawid, and B. Sekar, “Reduced chemical kinetic mechanisms for
JP-8 combustion,” in 40th AIAA Aerospace Sciences Meeting, 2002.

[155] Z. Zhao, J. Li, A. Kazakov, F. L. Dryer, and S. P. Zeppieri, “Burning velocities and a high-
temperature skeletal kinetic model for n-decane,” Combust. Sci. Tech., vol. 177, no. 1, 2004.

[156] S. Vasu, D. Davidson, and R. Hanson, “Jet fuel ignition delay times: Shock tube experiments over
wide conditions and surrogate model predictions,” Combust. Flame, vol. 152, no. 12, pp. 125–143,
2008.

[157] P. Dagaut, “On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel
fuel,” Physical Chemistry Chemical Physics, vol. 4, no. 11, pp. 2079–2094, 2002.

[158] J. Luche, M. Reuillon, J.-C. Boettner, and M. Cathonnet, “Reduction of large detailed kinetic
mechanisms: application to kerosene/air combustion,” Combust. Sci. and Tech., vol. 176, no. 11,
pp. 1935–1963, 2004.

[159] J. Luche, Elaboration of reduced kinetic models of combustion. Application to a kerosene mecha-
nism. PhD thesis, LCSR Orleans, 2003.

[160] L. Vervisch, B. Labegorre, and J. Réveillon, “Hydrogen-sulphur oxy-flame analysis and single-
step flame tabulated chemistry,” Fuel, vol. 83, no. 4-5, pp. 605–614, 2004.

[161] E. Fernández-Tarrazo, A. L. Sánchez, A. Liñán, and F. A. Williams, “A simple one-step chem-
istry model for partially premixed hydrocarbon combustion,” Combust. Flame, vol. 147, no. 1-2,
pp. 32–38, 2006.

[162] B. Franzelli, E. Riber, M. Sanjosé, and T. Poinsot, “A two-step chemical scheme for kerosene-air
premixed flames,” Combust. Flame, vol. 157, no. 7, pp. 1364–1373, 2010.

[163] G. Tsatsaronis, “Prediction of propagating laminar flames in methane, oxygen, nitrogen mixtures,”
Combust. Flame, vol. 33, pp. 217–239, 1978.

[164] O. Hadaller and J. Johnson, “World fuel sampling program,” Coordinating Research Council, Inc.,
CRC Report, no. 647, 2006.

[165] T. Edwards, M. Colket, N. Cernansky, F. Dryer, F. Egolfopoulos, D. Friend, E. Law, D. Lenhert,
P. Lindstedt, H. Pitsch, et al., “Development of an experimental database and kinetic models for
surrogate jet fuels,” in 45th AIAA Aerospace Sciences Meeting and Exhibit, p. 770, 2007.

[166] A. Violi, S. Yan, E. Eddings, A. Sarofim, S. Granata, T. Faravelli, and E. Ranzi, “Experimental
formulation and kinetic model for jp-8 surrogate mixtures,” Combustion Science and Technology,
vol. 174, no. 11-12, pp. 399–417, 2002.

[167] T. Edwards, “Liquid fuels and propellants for aerospace propulsion: 1903-2003,” Journal of
propulsion and power, vol. 19, no. 6, pp. 1089–1107, 2003.



BIBLIOGRAPHY 165

[168] M. L. Huber, E. W. Lemmon, and T. J. Bruno, “Surrogate mixture models for the thermophysical
properties of aviation fuel jet-a,” Energy & Fuels, vol. 24, no. 6, pp. 3565–3571, 2010.

[169] C. Wood, V. McDonell, R. Smith, and G. Samuelsen, “Development and application of a surrogate
distillate fuel,” Journal of propulsion and Power, vol. 5, no. 4, pp. 399–405, 1989.

[170] B. L. Smith and T. J. Bruno, “Improvements in the measurement of distillation curves. 4. applica-
tion to the aviation turbine fuel jet-a,” Industrial & engineering chemistry research, vol. 46, no. 1,
pp. 310–320, 2007.

[171] P. Dagaut, M. Reuillon, J.-C. Boettner, and M. Cathonnet, “Kerosene combustion at pressures up
to 40 atm: Experimental study and detailed chemical kinetic modeling,” in Symposium (Interna-
tional) on Combustion, vol. 25, pp. 919–926, Elsevier, 1994.

[172] D. Voisin, Cinétique chimique d’oxydation d’hydrocarbures et obtention d’un modèle pour la
combustion du kérosène. PhD thesis, Université d’Orléans, 1997.

[173] M. Cathonnet, D. Voisin, A. Etsouli, C. Sferdean, M. Reuillon, J. Boettner, and P. Dagaut,
“Kerosene combustion modelling using detailed and reduced chemical kinetic mechanisms,” in
RTO Meeting proceedings, 1999.

[174] P. Patterson, A. Kyne, M. Pourkashanian, A. Williams, and C. Wilson, “Combustion of kerosene
in counterflow diffusion flames,” Journal of Propulsion and Power, vol. 17, no. 2, pp. 453–460,
2001.

[175] J. Luche, Obtention de modèles cinétiques réduits de combustion-Application à un mécanisme du
kérosène. PhD thesis, Université d’Orléans, 2003.

[176] T. Edwards and L. Q. Maurice, “Surrogate mixtures to represent complex aviation and rocket
fuels,” Journal of Propulsion and Power, vol. 17, no. 2, pp. 461–466, 2001.

[177] N. A. Slavinskaya, A. Zizin, and M. Aigner, “On model design of a surrogate fuel formulation,”
Journal of Engineering for Gas Turbines and Power, vol. 132, no. 11, p. 111501, 2010.

[178] T. J. Bruno and B. L. Smith, “Evaluation of the physicochemical authenticity of aviation kerosene
surrogate mixtures. part 1: Analysis of volatility with the advanced distillation curve,” Energy &
Fuels, vol. 24, no. 8, pp. 4266–4276, 2010.

[179] T. J. Bruno and M. L. Huber, “Evaluation of the physicochemical authenticity of aviation kerosene
surrogate mixtures. part 2: Analysis and prediction of thermophysical properties,” Energy & Fuels,
vol. 24, no. 8, pp. 4277–4284, 2010.

[180] R. Xu, H. Wang, R. Hanson, D. Davidson, C. Bowman, and F. Egolfopoulos, “Evidence sup-
porting a simplified approach to modeling high-temperature combustion chemistry,” in 10th US
National Meeting on Combustion, College Park, MD, 2017.

[181] R. Xu, D. Chen, K. Wang, Y. Tao, J. Shao, T. Parise, Y. Zhu, S. Wang, R. Zhao, D. Lee, et al.,
“Hychem model: application to petroleum-derived jet fuels,” in 10th US National Meeting on
Combustion, College Park, MD, vol. 69, pp. 70–77, 2017.



166 BIBLIOGRAPHY

[182] A. Bouaniche, L. Vervisch, and P. Domingo, “A hybrid stochastic/fixed-sectional method for solv-
ing the population balance equation,” Chemical Engineering Science, vol. 209, p. 115198, 2019.

[183] J. McKinnon and J. Howard, “The roles of pah and acetylene in soot nucleation and growth,”
in Twenty-Fourth Symposium (International) on Combustion. The Combustion Institute, pp. 965–
971, 1992.

[184] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminster-
fullerene,” nature, vol. 318, no. 6042, pp. 162–163, 1985.

[185] J. Cami, J. Bernard-Salas, E. Peeters, and S. E. Malek, “Detection of c60 and c70 in a young
planetary nebula,” Science, vol. 329, no. 5996, pp. 1180–1182, 2010.

[186] P. Ehrenfreund and B. H. Foing, “Fullerenes and cosmic carbon,” Science, vol. 329, no. 5996,
pp. 1159–1160, 2010.

[187] J. Nyons, “Advanced diagnostics and experimentally derived optical properties,” in GDR Suie,
2017.

[188] D. Liu and al., “Black-carbon absorption enhancement in the atmosphere determined by particle
mixing state,” Nature Geoscience, vol. 10, pp. 184–188, 2017.

[189] M. R. Kholghy, A. Veshkini, and M. J. Thomson, “The core-shell internal nanostructure of soot -
a criterion to model soot maturity,” Carbon, vol. 100, pp. 508–536, 2016.

[190] M. Frenklach, “Reaction mechanism of soot formation in flames,” Phys. Chem. Phys. Chem.,
vol. 4, pp. 2028–2037, 2002.

[191] B. S. Haynes and H. G. Wagner, “Soot formation,” Prog. Energy Combust. Sci., vol. 7, pp. 229–
273, 1981.

[192] H. Bockhorn, F. Fetting, and H. W. Wenz, “Investigation of the formation of high molecular
hydrocarbons and soot in premixed hydrocarbon-oxygen flames,” Phys. Chem., vol. 87, pp. 1067–
1073, 1983.

[193] C. S. McEnally and L. D. Pfefferle, “Improved sooting tendency measurements for aromatic hy-
drocarbons and their implications for naphthalene formation pathways,” Comb. Flame, vol. 148,
pp. 210–222, 2007.

[194] J. A. Miller and S. J. Klippenstein, “The recombination of propargyl radicals and other reactions
on a c6h6 potential,” The Journal of Physical Chemistry A, vol. 107, pp. 7783–7799, 2003.

[195] P. Westmoreland, The prehistory of soot: small rings from small molecules in: Combustion Gen-
erated Fine Carbonaceous Particles. KIT Scientific Publishing, Chap. 3, 2009.

[196] M. Frenklach and D. W. Clary, “Detailed kinetic modeling of soot formation in shock-tube pyrol-
ysis of acetylene,” Symposium (International) on Combustion, vol. 20, pp. 887–901, 1985.

[197] J. D. Bittner and J. B. Howard, “Composition profiles and reaction mechanisms in a near-sooting
premixed benzene/oxygen/argon flame,” Symposium (International) on Combustion, vol. 18,
pp. 1105–1116, 1981.



BIBLIOGRAPHY 167

[198] J. A. Miller and C. F. Melius, “Kinetic and thermodynamic issues in the formation of aromatic
compounds in flames of aliphatic fuels,” Comb. Flame, vol. 91, pp. 21–39, 1992.

[199] U. Alkemade and K. H. Homann, “Formation of c6h6 isomers by recombination of propynyl in
the system sodium vapour/propynylhalide,” Z. Phys. Chem. N. F., vol. 161, pp. 19–34, 1989.

[200] M. Frenklach and H. Wang, “Detailed modeling of soot particle nucleation and growth,” Sympo-
sium (International) on Combustion, vol. 23, pp. 1559–1566, 1991.

[201] H. Wang and M. Frenklach, “A detailed kinetic modeling study of aromatics formation in laminar
premixed acetylene and ethylene flames,” Comb. Flame, vol. 110, pp. 173–221, 1997.

[202] M. Frenklach and J. Warnatz, “Detailed modeling of pah profiles in a sooting low-pressure acety-
lene flame,” Combust. Sci. Technol., vol. 51, pp. 265–283, 1987.

[203] M. Frenklach, N. W. Moriarty, and N. J. Brown, “Hydrogen migration in polyaromatic growth,”
Symposium (International) on Combustion, vol. 27, pp. 1655–1661, 1998.

[204] M. Frenklach and H. Wang, Soot Formation in Combustion: Mechanisms and Models. Springer
Science, pp. 165, 1994.

[205] C. A. Schuetz and M. Frenklach, “Nucleation of soot: Molecular dynamics simulations of pyrene
dimerization,” Proc. Comb. Inst., vol. 29, pp. 2307–2314, 2002.

[206] D. Wong, R. Whitesides, C. A. Schuetz, and M. Frenklach, Combustion Generated Fine Carbona-
ceous Particles. Karlsruhe University Press, pp. 247-258, 2009.

[207] S. J. Harris and A. M. Weimer, “Chemical kinetics of soot particle growth,” Annu. Rev. Phys.
Chem., vol. 36, pp. 31–52, 1985.

[208] F. Xu, P. B. Sunderland, and G. M. Faeth, “Soot formation in laminar premixed ethylene/air flames
at atmospheric pressure,” Comb. Flame, vol. 108, pp. 471–493, 1997.

[209] F. Xu, K.-C. Lin, and G. M. Faeth, “Soot formation in laminar premixed methane/oxygen flames
at atmospheric pressure,” Comb. Flame, vol. 115, pp. 195–209, 1998.

[210] F. Xu and G. M. Faeth, “Structure of the soot growth region of laminar premixed methane/oxygen
flames,” Comb. Flame, vol. 121, pp. 640–650, 2000.

[211] F. Xu and G. M. Faeth, “Soot formation in laminar acetylene/air diffusion flames at atmospheric
pressure,” Comb. Flame, vol. 125, pp. 804–819, 2001.

[212] B. Zhao, K. Uchikawa, and H. Wang, “A comparative study of nanoparticles in premixed flames
by scanning mobility particle sizer, small angle neutron scattering, and transmission electron mi-
croscopy,” Proc. Comb. Inst., vol. 31, pp. 851–860, 2007.

[213] P. Mitchell and M. Frenklach, “Monte carlo simulation of soot aggregation with simultaneous sur-
face growth-why primary particles appear spherical,” Symposium (International) on Combustion,
vol. 27, pp. 1507–1514, 1998.



168 BIBLIOGRAPHY

[214] N. Morgan, M. Kraft, M. Balthasar, D. Wong, M. Frenklach, and P. Mitchell, “Numerical simu-
lations of soot aggregation in premixed laminar flames,” Proc. Comb. Inst., vol. 31, pp. 693–700,
2007.

[215] A. Kazakov and M. Frenklach, “Dynamic modeling of soot particle coagulation and aggregation:
Implementation with the method of moments and application to high-pressure laminar premixed
flames,” Comb. Flame, vol. 114, pp. 484–501, 1998.

[216] B. Zhao, Z. Yang, M. Johnston, H. Wang, A. Wexler, and M. Balthasar, “Measurement and numer-
ical simulation of soot particle size distribution functions in a laminar premixed ethylene-oxygen-
argon flame,” Comb. Flame, vol. 133, pp. 173–188, 2003.

[217] M. Commodo, A. D’Anna, G. D. Falco, R. Larciprete, and P. Minutolo, “Illuminating the earliest
stages of the soot formation by photoemission and raman spectroscopy,” Comb. Flame, vol. 181,
pp. 188–197, 2017.

[218] K. Zhou, “Monte carlo simulation for soot dynamics,” Thermal Science, vol. 16, no. 5, pp. 1391–
1394, 2012.

[219] K. G. Neoh, J. B. Howard, and A. F. Sarofim, Particulate Carbon Formation during Combustion.
Plenum Press, pp. 261-277, 1981.

[220] J. Nagle and R. F. Strickland-Constable, Proceedings of the fifth Carbon Conf., vol. 1. Pergamon
Press, pp. 154-164, 1962.

[221] A. Kazakov, H. Wang, and M. Frenklach, “Detailed modeling of soot formation in laminar pre-
mixed ethylene flames at a pressure of 10 bar,” Comb. Flame, pp. 111–120, 1995.

[222] K. Neoh, Soot Burnout in Flames. PhD thesis, Massachusetts Institute of Technology, 1981.

[223] K. Neoh, J. Howard, and A. Sarofim, “Effect of oxidation on the physical structure of soot,”
Symposium (International) on Combustion, vol. 20, pp. 951–957, 1985.

[224] C. Echavarria, I. Jaramillo, A. Sarofim, and J. Lighty, Studies of soot oxidation on a two-stage
burner under fuel-lean conditions. Western States Section/Combustion Institute, pp. 357-367,
2009.

[225] S. J. Harris and M. M. Maricq, “The role of fragmentation in defining the signature size distribu-
tion of diesel soot,” J. Aerosol Sci., vol. 33, pp. 935–942, 2002.

[226] M. E. Mueller, G. Blanquart, and H. Pitsch, “Modeling the oxidation-induced fragmentation of
soot aggregates in laminar flames,” Proc. Comb. Inst., vol. 33, pp. 667–674, 2011.

[227] C. S. Yoo and H. G. Im, “Transient soot dynamics in turbulent nonpremixed ethylene–air counter-
flow flames,” Proc. Comb. Inst., vol. 31, pp. 701–708, 2007.

[228] K. M. Leung and R. P. Lindstedt, “A simplified reaction mechanism for soot formation in non-
premixed flames,” Comb. Flame, vol. 87, pp. 289–305, 1991.

[229] D. Olson, J.C.Pickens, and R.J.Gill, “The effects of molecular structure on soot formation II.
diffusion flames,” Comb. Flame, vol. 62, pp. 43–60, 1985.



BIBLIOGRAPHY 169

[230] I. M. Khan, G. Greeves, and D. M. Probert, “Air pollution control in transport engines,” The
institution of Mechanical Engineers, vol. C142/71, pp. 205–217, 1971.

[231] R. B. Edelman and P. T. Harsha, “Laminar and turbulent gas dynamics in combustors – current
status,” Prog. Energ. Combust. Sci., vol. 4, pp. 1–62, 1978.

[232] N. K. Rizk and H. C. Mongia, “Three-dimensional analysis of gas turbine combustors,” J.
Propuls., vol. 7, pp. 445–451, 1991.

[233] H. M. Hulburt and S. Katz, “Some problems in particle technology - a statistical mechanical
formulation,” Chem. Eng. Sci., vol. 19, pp. 555–574, 1964.

[234] A. Randolph and M. Larson, “Theory of particulate processes,” Academic Press, 1971.

[235] D. L. Marchisio and R. O. Fox, “Solution of population balance equations using the direct quadra-
ture method of moments,” Aero. Sci., vol. 36, pp. 43–73, 2005.

[236] M. E. Mueller, G. Blanquart, and H. Pitsch, “Hybrid method of moments for modeling soot for-
mation and growth,” Comb. Flame, vol. 156, pp. 1143–1155, 2009.

[237] D. Ramkrishna, “Theory and applications to particulate systems in engineering,” Population Bal-
ances. Academic Press, San Diego, 2000.

[238] A. Bouaniche, J. Yon, P. Domingo, and L. Vervisch, “Analysis of the soot particle size distribution
in a laminar premixed flame: A hybrid stochastic/fixed-sectional approach,” Flow, Turbulence and
Combustion, vol. 104, pp. 753–775, 2020.

[239] J. Appel, H. Bockhorn, and M. Frenklach, “Kinetic modeling of soot formation with detailed
chemistry and physics: laminar premixed flames of c2 hydrocarbons,” Combustion and flame,
vol. 121, no. 1-2, pp. 122–136, 2000.

[240] A. A. Wray, “Minimal storage time advancement schemes for spectral methods,” NASA Ames
Research Center, California, Report No. MS, vol. 202, 1990.

[241] C. Doute, J.-L. Delfau, R. Akrich, and C. Vovelle, “Chemical structure of atmospheric pressure
premixed n-decane and kerosene flames,” Combustion Science and Technology, vol. 106, no. 4-6,
pp. 327–344, 1995.

[242] Y. Wang, A. Raj, and S. H. Chung, “A PAH growth mechanism and synergistic effect on PAH
formation in counterflow diffusion flames,” Combustion and flame, vol. 160, no. 9, pp. 1667–
1676, 2013.

[243] R. Xu, K. Wang, S. Banerjee, J. Shao, T. Parise, Y. Zhu, S. Wang, A. Movaghar, D. J. Lee, R. Zhao,
et al., “A physics-based approach to modeling real-fuel combustion chemistry–II. reaction kinetic
models of jet and rocket fuels,” Combustion and Flame, vol. 193, pp. 520–537, 2018.

[244] T. Zhang, L. Zhao, M. R. Kholghy, S. Thion, and M. J. Thomson, “Detailed investigation of
soot formation from jet fuel in a diffusion flame with comprehensive and hybrid chemical mecha-
nisms,” Proceedings of the Combustion Institute, vol. 37, no. 2, pp. 2037–2045, 2019.



170 BIBLIOGRAPHY

[245] S. Dooley, S. H. Won, J. Heyne, T. I. Farouk, Y. Ju, F. L. Dryer, K. Kumar, X. Hui, C.-J. Sung,
H. Wang, et al., “The experimental evaluation of a methodology for surrogate fuel formulation
to emulate gas phase combustion kinetic phenomena,” Combustion and Flame, vol. 159, no. 4,
pp. 1444–1466, 2012.

[246] I. M. Kennedy, “The suppression of soot particle formation in laminar and turbulent diffusion
flames,” Combustion science and technology, vol. 59, no. 1-3, pp. 107–121, 1988.

[247] M. Lucchesi, A. Abdelgadir, A. Attili, and F. Bisetti, “Simulation and analysis of the soot particle
size distribution in a turbulent nonpremixed flame,” Combustion and Flame, vol. 178, pp. 35–45,
2017.

[248] F. Bisetti, G. Blanquart, M. E. Mueller, and H. Pitsch, “On the formation and early evolution
of soot in turbulent nonpremixed flames,” Combustion and Flame, vol. 159, no. 1, pp. 317–335,
2012.

[249] F. Sewerin and S. Rigopoulos, “An les-pbe-pdf approach for predicting the soot particle size dis-
tribution in turbulent flames,” Combustion and Flame, vol. 189, pp. 62–76, 2018.

[250] D. Delhaye, F.-X. Ouf, D. Ferry, I. K. Ortega, O. Penanhoat, S. Peillon, F. Salm, X. Vancassel,
C. Focsa, C. Irimiea, et al., “The mermose project: Characterization of particulate matter emis-
sions of a commercial aircraft engine,” Journal of Aerosol Science, vol. 105, pp. 48–63, 2017.

[251] S. Subramaniam and S. Pope, “A mixing model for turbulent reactive flows based on euclidean
minimum spanning trees,” Combustion and Flame, vol. 115, no. 4, pp. 487–514, 1998.

[252] F. Douce, N. Djebaïli-Chaumeix, C.-E. Paillard, C. Clinard, and J.-N. Rouzaud, “Soot formation
from heavy hydrocarbons behind reflected shock waves,” Proceedings of the Combustion Institute,
vol. 28, no. 2, pp. 2523–2529, 2000.

[253] M. Kraushaar, Application of the compressible and low-mach number approaches to large-eddy
simulation of turbulent flows in aero-engines. PhD thesis, INPT, 2011.

[254] C. Pio, “General sampling techniques,” in Handbook of Air Pollution Analysis, pp. 1–93, Springer,
1986.

[255] M. Bouvier, J. Yon, G. Lefevre, and F. Grisch, “A novel approach for in-situ soot size distribution
measurement based on spectrally resolved light scattering,” Journal of Quantitative Spectroscopy
and Radiative Transfer, vol. 225, pp. 58–68, 2019.



BIBLIOGRAPHY 171



French summary

Face à l’urgence climatique, la réduction des polluants et de la consommation de carburant sont dev-
enues une priorité pour l’industrie aéronautique. Les motoristes doivent maintenant développer des outils
numériques précis pour quantifier les émissions de suie et de GES en sortie moteur, dans lesquels la mod-
élisation de la chimie joue un rôle critique. Cette thèse propose une amélioration des outils numériques
de réduction de la chimie, pour sa prise en compte dans des simulations haute fidélité. Ces outils sont
validés avec la prédiction du CO dans un calcul LES. Les réseaux de neurone ont ensuite été proposés
pour la fermeture des termes LES non résolus. Puis, une stratégie de réduction de modèle, basée sur un
réseau de neurone, est présentée afin d’inclure une description détaillée de suies dans des simulations
haute fidélité. Cette stratégie est testée sur une flamme prémélangée 1D, puis dans une simulation de
chambre industrielle, et comparée à des mesures expérimentales.

Résumé du chapitre 3

Un nouveau cadre de modélisation utilisant l’apprentissage automatique est proposé pour fournir une
fermeture pour tous les termes non résolus dans l’équation de transport de la variable de progrès filtrée
dans les simulations grandes échelles de flammes turbulentes prémélangées, avec chimie tabulée. Les
réseaux de neurones convolutifs sont entraînés à l’aide de données provenant d’une base de données
de simulation numérique directe, afin de prédire le terme source filtré de la variable de progrès et les
flux non résolus dans l’équation de transport filtrée de la variable de progrès. L’avantage de l’approche
proposée dans cette étude est qu’une seule distribution de variable, facilement disponible, la variable
de progrès filtrée, suffit. Les réseaux de neurones convolutifs ont montré qu’ils pouvaient fournir des
prédictions quantitativement précises à la fois des termes source et des flux de transport de sous-maille,
qui sont deux termes sensiblement différents et classiquement difficiles à modéliser dans un seul cadre. Il
a également été démontré que les capacités de prédiction des réseaux n’étaient que faiblement insensibles
aux variations de largeur de filtre, ce qui est un attribut important pour tout modèle de sous-maille. Parce
qu’ils sont basés sur la variable de progrès, un paramètre générique des flammes prémélangées, les
réseaux de neurone devraient bien être tout aussi prédictifs pour toute flamme prémélangée turbulente
située dans le diagramme de régime de Borghi, proche des conditions utilisées pour l’entraînement.

Cependant, comme les chambres de combustion industrielles LES considérées dans cette thèse ne
sont pas prémélangées, l’utilisation du modèle TFLES dynamique a été par la suite retenue.

Résumé du chapitre 4

Dans ce chapitre, une stratégie est discutée pour améliorer la réduction d’un schéma chimique détaillé du
kérosène. Avec la procédure de réduction ORCh, des schémas de complexité décroissante sont générés à
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partir d’un mécanisme détaillé de référence, dans le but de trouver le niveau minimum de complexité qui
permet de capturer des propriétés des espèces cibles. Un problème de micro-mélange stochastique inclu-
ant l’évaporation du carburant liquide est construit pour sonder les différents schémas chimiques générés
et pour effectuer l’optimisation des constantes d’Arrhénius avec un algorithme génétique. Les flux mas-
siques d’entrée et le temps de séjour sont ceux du moteur aéronautique Lemcotec. On montre que jusqu’à
un niveau de complexité donné, la sécurisation de la précision dans la reproduction du problème de
micro-mélange permet également de calculer les propriétés de flamme laminaire prémélangée. Le nom-
bre d’espèces en dessous duquel un seul ensemble de paramètres chimiques ne peut garantir l’exactitude
sur une large gamme de rapports d’équivalence, typiquement dans la région riche, est ensuite déter-
miné. Pour réduire davantage le schéma cinétique, tout en préservant les propriétés de flamme voulues,
une stratégie d’optimisation différente dans laquelle les constantes pré-exponentielles d’Arrhenius peu-
vent évoluer avec la richesse du mélange est adoptée. Le mécanisme Aj-tabulé obtenu est appliqué en
retour par validation croisée entre le problème de micro-mélange et les calculs de flamme laminaire
prémélangée. Enfin, l’Aj-tabulation est testée sur la simulation de chambre 3D LES Lemcotec, perme-
ttant de prédire le niveau de CO en sortie de chambre avec seulement 15 espèces transportées, et 72
réactions élémentaires associées. Par rapport aux 26 espèces transportées par N. Jaouen [147], la réduc-
tion du mécanisme s’est traduite par une réduction du CPU d’un facteur 2, entraînant avec l’ordonnanceur
dynamique de YALES2, par une réduction totale du CPU d’un facteur 4 sans dégrader la prédiction du
niveau de CO et ainsi confirmer l’utilisation de la stratégie.

Résumé du chapitre 6

Avec les futures normes de réduction de suie appliquées aux moteurs d’avion, il est primordial de
développer de nouveaux modèles, capables de prédire la formation de suie à faible coût et compatibles
avec les délais industriels. Les modèles déjà disponibles dans la littérature peinent encore à combiner la
qualité de la prédiction avec un faible coût CPU, en particulier pour la distribution de taille de particules
de suie.

Dans ce chapitre, nous proposons de tester une solution alternative, basée sur des réseaux de neu-
rones, permettant de réduire un modèle de suie hautement prédictif HYPE. Cette stratégie est d’abord em-
ployée pour récupérer une distribution de taille de particules de suie d’une flamme de suie 1D prémélangée,
et montre des prédictions correctes par rapport au modèle HYPE. Ce premier test a également permis
d’estimer le surcoût pour poursuivre l’utilisation de cette stratégie dans une configuration industrielle.

Ensuite, le développement de cette stratégie a continué pour une simulation de chambre de combus-
tion LES 3D avec chimie complexe. Afin d’entraîner le réseau de neurones, une base de données de suie
a été créé, basée sur le modèle HYPE couplé à la configuration stochastique ORCh.

Le but final ici a été de simuler une chambre de combustion représentative du turboréacteur SAM146,
à un point de fonctionnement. Cela s’est fait avec le modèle de chimie complexe HyChem et l’utilisation
du réseau de neurone, préalablement entraîné avec la base de données de suie correspondante. Finale-
ment, une prédiction la distribution de taille de particules de suie ainsi que la masse totale de suie dans la
chambre a été possible, pour un coût supplémentaire seulement de 40%. La fraction volumique de suie
est relativement correcte comparée aux essaies ainsi que la density de suie au diamètre moyen mesuré.



174 French summary

Résumé des perspectives

Perspectives de l’application CNN

Les réseaux entraînés étant basés sur la variable de progrès, paramètre générique des flammes prémélangées,
nous émettons l’hypothèse qu’ils fonctionneront bien pour toute flamme prémélangée turbulente située
dans le diagramme-régime de Borghi proche des conditions utilisées pour l’entraînement. Néanmoins,
c’est une application qu’il faut faire pour valider la généralisation de ces réseaux.

Vers une prévision des polluants moins coûteuse

La prochaine étape serait de gagner des performances CPU sur la résolution LES présentée dans cette
thèse, en particulier avec la résolution de suie qui nécessite des mécanismes cinétiques relativement im-
portants, et de préparer les études futures avec les mécanismes des biocarburants. Une solution consiste
à utiliser des réseaux de neurones pour prédire directement les termes sources des espèces, comme cela
a été fait dans les travaux de Wan et al. [148], dans lesquels un coût de réduction du processeur majeur a
été obtenu en évitant le calcul des taux d’Arrhenius et l’intégration directe du système chimique rigide.

Modélisation des suies

La stratégie du modèle de suie présentée dans cette thèse a été déployée avec plusieurs hypothèses qui
méritent d’Ítre analysées dans un futur travail.

Premièrement, le rayonnement des suies n’a pas été pris en compte dans ces travaux. Il serait judi-
cieux d’ajouter un modèle de rayonnement à la description des suies dans YALES2, afin de quantifier son
effet. De plus, il n’y avait qu’un couplage unidirectionnel avec la température et la fraction pyrène dans
la simulation 3D. Un travail futur serait de coder un couplage bidirectionnel. Le modèle de transport de
suie peut en mÍme temps Ítre amélioré pour le cas Mermose, par exemple en définissant différents nom-
bres de Schmidt par section de taille de suie. à terme, l’impact de la modélisation gazeuse par rapport au
carburant liquide sur la production de suie devrait Ítre quantifié.

La résolution 3D avec le réseau neuronal doit Ítre directement comparée, avec une résolution sim-
ilaire avec le modèle de Leung, en termes de prédiction de densité de suie et de coût CPU. Aussi,
l’influence de la grille de discrétisation des suies doit Ítre analysée plus attentivement, car elle condi-
tionne grandement la PSD dans cette thèse. Concernant l’ensemble de la validation de la stratégie, une
ultime application sera faite, le graveur Soprano.

Une deuxième application : Le brûleur Soprano

La stratégie ORCHydS sera appliquée pour une configuration différente, à savoir le brûleur SOPRANO
(projet EC) de CORIA. Cela permettrait de s’appuyer sur moins de modèles et d’hypothèses, avec un
mécanisme cinétique plus simple basé sur l’acétylène, une expérience gazeuse et des distributions de
suie expérimentales mesurées à différents points de fonctionnement. Comme les mesures de suie ont
été effectuées avec des méthodes non intrusives, voir les travaux de M. Bouvier emph et al. [255], la
distribution de suie du LES 3D résolu avec la stratégie ORCHydS pourrait Ítre directement comparée à
la suie expérimentale distributions dans la zone réactive.
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