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Abstract
The propagation of shock waves involves complex interactions between waves and

surrounding media, which gives rise to several phenomena such as reflection, diffraction,
etc. To shed more light into the fundamental physics associated with these phenomena,
high resolution numerical simulations were carried out. In particular, analysis of shock
diffraction over double concave cylindrical wedges revealed that the transition angles,
from regular to Mach reflection, increase with the Mach number, whereas they are
found to be almost the same over the two concave surfaces for the transonic Mach
regimes and relatively larger on the second surface for high ones showing that the flow
is capable of retaining the memory of the past events over the entire process for the
high Mach numbers. The analysis of the vorticity equation balance showed, for the first
time, that the diffusion of the vorticity due to the viscous effects is quite important
compared to the baroclinic term for low Mach numbers, while this trend is inverted for
higher Mach numbers. The study also showed that the stretching of the vorticity due
to the compressibility effects plays an important role in the vorticity production. On
the basis of these numerical simulations, an approximate universal relation is proposed,
allowing to predict the incident-shock trajectory and velocity as a function of the
incident-shock Mach number, the radius of curvature of the geometry, and the gas
properties. Afterward, the study of shock-waves propagation and their attenuation
in channel flow having different heights and exhibiting a hollow circular cavities with
different depths has been done. The results also showed the importance of reducing the
height of the channel and changing the position of the reduced section in addition to
the diffraction angle and the cavity depth for better shock-waves attenuation. A subtle
arrangement of channel position/height and a cavity location/depth was found.

Keywords Shock waves, vorticity, attenuation, reflection and diffraction, numerical sim-
ulations, supersonic flows.

Résumé
La propagation des ondes de choc implique des interactions complexes entre ondes

et milieux environnent, ce qui engendre plusieurs phénomènes tels que la réflexion, la
diffraction, etc. Pour clarifier davantage la physique associée à ces phénomènes, des
simulations numériques hautes résolutions ont été réalisées. En particulier l’analyse de
la diffraction des ondes de choc sur deux surfaces concaves cylindriques a révélé que
les angles de transition, d’une réflexion régulière à une réflexion de Mach, augmentent
avec le nombre de Mach, alors qu’ils sont presque égaux sur les deux surfaces concaves
pour les régimes de Mach transsoniques et relativement plus important sur la deuxième
surface pour les nombres de Mach plus élevés. Ceci prouve que l’écoulement est en
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mesure de conserver l’historique des événements passés sur l’ensemble du processus pour
des nombres de Mach élevés. L’analyse de l’équation de transport de vorticité a montré,
pour la premiére fois, que la diffusion de la vorticité dûe aux effets visqueux est assez
importante par rapport au terme baroclinic pour les faibles nombres de Mach, alors
que cette tendance est inversée pour les nombres de Mach les plus élevés. L’étude a
également montré que le stretching de la vorticité dû aux effets de compressibilité joue un
rôle important dans la production de vorticité. Á la base de ces simulations numériques,
une relation universelle a été proposée, permettant de prédire la trajectoire et la vitesse
de l’onde incidente en fonction du nombre de Mach incident, du rayon de courbure de
la géométrie et des propriétés du gaz. Par la suite, l’étude de la propagation des ondes
de choc et leur atténuation dans des conduites de différentes hauteurs et présentant
des cavités circulaires creuses de différentes profondeurs a été effectuée. Les résultats
ont montré l’importance de la réduction de la hauteur du canal et le changement
de la position de la section réduite en plus de l’angle de diffraction et de la pro-
fondeur de la cavité pour une meilleure atténuation des ondes. Un arrangement optimal
de la position/hauteur du canal et de l’emplacement/profondeur de la cavité a été trouvé.

Mots clés Ondes de choc, atténuation, réflexion et diffraction, vorticité, simulations
numériques, écoulements supersoniques.
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1 Contenu de la thèse  
 
La propagation des ondes de choc  implique des interactions d'ondes complexes avec 
les structures en raison de plusieurs phénomènes mis en jeux tels que la réflexion, la 
diffraction, l'atténuation/l'amplification, la focalisation des chocs et l'interaction choc-
turbulence. La compréhension de ces phénomènes est cruciale pour un large éventail 
d'applications d'ingénierie dans la biomédecine, la gestion des catastrophes, la 
détonation, l'exploitation minière, l'industrie de l'aviation et des transports et autres. 
     La nécessité d'une meilleure compréhension des différents phénomènes physiques 
présents lors de l'interaction d'une onde de choc avec des obstacles de géométries 
complexes a été établie. Une attention particulière a été portée à la propagation des 
ondes de choc dans les zones confinées, compte tenu des configurations complexes 
d'écoulement et d'onde de choc suite à la propagation d’une onde de choc plane à 
travers des conduits. 
     L'atténuation des ondes de choc est importante pour de nombreuses applications 
pratiques, telles que la propagation des ondes de souffle à travers les tunnels, les 
accidents industriels non intentionnels et la mécanique structurelle aérospatiale à 
grande vitesse. Dans certains scénarios, des changements brusques dans les sections de 
canaux peuvent fournir une solution d'atténuation économique et facile à mettre en 
œuvre. Les changements soudains dans les sections des tunnels permettent une 
protection passive des personnes et des structures sans recourir à une technologie 
intégrée coûteuse. Ces changements peuvent soit amplifier ou atténuer les effets des 
ondes de choc en fonction de leur configuration, de leur disposition et de la direction 
de l'onde de choc. Par conséquent, il est devenu d'un intérêt vital et d'actualité de 
comprendre les différents mécanismes conduisant à l'atténuation des ondes de choc. 
     Le travail suivant vise à mettre en évidence les configurations d’écoulements et 
d'onde de choc se propageant dans des zones confinées, en utilisant des simulations 
numériques directes (DNS) comme principal outil pour générer les données. Les 
données sont ensuite analysées dans le but d'éclairer quelques questions 
fondamentales, concernant l’effet de divers paramètres physiques sur les phénomènes 
liés à l’interaction des ondes de choc avec les structures. En particulier, nous visons à: 
 

Ø Comprendre le mécanisme et le processus de production de vorticité et 
l'influence de différents paramètres physiques sur le taux de production de 
vorticité. 

 
Ø Étudier l’implication de différents paramètres physiques dans la 

détermination des différentes configurations d'écoulement et d'ondes de 
choc résultant de la propagation d'ondes de choc à travers des zones 
confinées aux géométries complexes. 

 



Ø Déterminer les différents paramètres physiques et géométriques conduisant 
à une atténuation optimale des ondes de choc dans les conduits. 

 
2 Aperçu de la thèse  
 
La vue d'ensemble de l'organisation par chapitre de la thèse est donnée ci-dessous : 
 
     Chapitre 2: Ce chapitre commence par la description des équations gouvernantes, 
y compris l'équation linéaire de transport, ainsi que les équations non linéaires d'Euler 
et de Navier-Stokes. De plus, la méthode multirésolution à valeur de point pour 
effectuer l'adaptabilité dynamique de l'espace est expliquée avec ses éléments 
pertinents. La méthode des frontières immergées (IB), qui facilite la réalisation de 
simulations sur des grilles non conformes, est également présentée. De plus, une 
technique d'infographie appelée lancer de rayons est élaborée, qui complète la 
méthode IB pour localiser tout modèle solide complexe dans les grilles cartésiennes. 
 
     Chapitre 3: Dans ce chapitre, la diffraction des ondes de choc sur des surfaces 
cylindriques à double concave a été étudiée numériquement à différents régimes 
d'écoulement en variant le nombre de Mach de l'onde de choc incidente de Ms = 1,6 
(régime transsonique) à Ms = 4,5 (régime supersonique). L'objectif principal de cette 
étude est de mieux comprendre la dynamique de la structure des ondes de choc et les 
configurations d'ondes associées. En outre, une relation universelle approximative est 
dérivée, qui prédit la trajectoire de l'onde de choc transmise en fonction du nombre de 
Mach du choc incident dans la plage de 1,6 <Ms <4,5, pour un rapport de chaleur 
spécifique de 1,4 et un rayon de surface de 50 mm. Les résultats sont publiés dans: 
Acta Astronautica (Brahmi et al. 2020a). 
 
     Chapitre 4: En complément du chapitre précédent, ce chapitre traite l'aspect 
instationnaire des structures d'écoulement turbulent générées par la diffraction d'onde 
de choc sur des doubles surfaces cylindriques, avec un angle de diffraction initial de 
75°. La production de vorticité est quantifiée pour différents nombres de Mach, allant 
des régimes transsoniques aux régimes supersoniques. Contrairement aux études 
précédentes où seule la production totale de vorticité est évaluée, ce chapitre offre plus 
d'informations sur le comportement spatio-temporel de la circulation en évaluant 
l'évolution de l'équilibre instantané de l'équation de vorticité. L’intensité du choc est 
également évaluée dans ce chapitre en calculant les impulsions de pression dynamique 
ainsi que statique et la surpression normalisée. Les résultats sont publiés dans: Acta 
Astronautica (Brahmi et al. 2020b). 
 
     Chapitre 5: Au chapitre 3, une relation universelle approximative est dérivée, qui 
prédit la trajectoire de l'onde de choc transmise en fonction du nombre de Mach du 



choc incident pour un rapport thermique spécifique fixe de 1,4 (l'air comme gaz). Dans 
ce chapitre, la géométrie ainsi que le nombre de Mach de l'onde de choc sont 
maintenus constants tels que Ms = 1,6, tandis que le gaz est varié. Quatre gaz, avec des 
masses moléculaires différentes, des rapports thermiques spécifiques et des 
impédances acoustiques en plus de l'air, sont utilisés comme gaz de travail, à savoir, 
He, Ar, CO2 et SF6. La relation proposée au chapitre 3 a été généralisée à différents 
gaz ayant des rapports thermiques spécifiques différents. Les résultats sont soumis à: 
Shock waves Journal. 
 
     Chapitre 6: Ce chapitre consiste en une étude numérique de la propagation des 
ondes de choc et de leur atténuation dans un canal de différentes hauteurs et présentant 
des cavités circulaires creuses avec des profondeurs et des angles de diffraction 
différents à l'intérieur. Une attention particulière a été portée à l'atténuation des ondes 
de choc se propageant dans ce type de canal. Une configuration optimale avec la 
position/hauteur du canal et une profondeur de cavité menant à une atténuation 
efficace de la pression se trouve dans ce chapitre. Les résultats sont publiés dans: 
Theoretical and Applied Mechanics Letters Journal.  

     Chapitre 7: Le résumé des travaux de recherche entrepris ainsi que les remarques 
de conclusion et les perspectives de l'étude sont présentées dans ce chapitre. 
 
3 Conclusions et perspectives 
 
L'objectif principal de cette thèse est d'utiliser des simulations numériques à haute 
résolution pour clarifier davantage la physique des écoulements liés à la propagation et 
à l'atténuation des ondes de choc dans des milieux confinées. Un accent particulier est 
mis sur l'étude de différentes géométries complexes. 
Les résultats de la présente étude peuvent être résumés comme suit : 
 
   3.1 Diffraction des ondes de choc sur des surfaces cylindriques 
doubles concaves 
 
La diffraction des ondes de choc sur des surfaces cylindriques doubles concaves est 
d'abord étudiée à différents régimes d'écoulement en variant le nombre de Mach de 
l'onde de choc incidente de Ms = 1,6 (régime transsonique) à Ms = 4,5 (régime 
supersonique). La dynamique des ondes de choc est analysée  profondément, 
l'évaluation de l'angle de transition, θtr, d'une réflexion régulière à une réflexion de 
Mach (RR → MR) a montré que θtr augmente avec le nombre de Mach. L'analyse a 
également révélé que θtr est presque le même sur les deux surfaces pour les nombres 
de Mach faibles, jusqu'à Ms = 2,5, et qu'il est relativement plus grand sur la deuxième 
surface pour les nombres de Mach élevés, Ms = 3,5 et 4,5. Le suivi de la trajectoire du 



point triple a montré des comportements d'ondes de choc différents, en particulier au 
niveau de la seconde moitié de la seconde surface. En fonction du nombre de Mach de 
l'onde de choc, différentes configurations de choc sont observées: 
 
- Pour Ms ≤ 2,5: apparition d'une configuration simple point triple, dite STP (single 
triple point). 
 
- Pour Ms = 3,5: après l'apparition du premier point triple, un second se forme, 
provoquant une transition des configurations STP vers DTP (transition STP → DTP). 
 
- Pour Ms = 4,5: après la formation du premier et du deuxième points triples, les deux 
configurations se confondent et donnent naissance à nouveau à une configuration STP, 
conduisant à une transition STP → DTP → STP. 
 
Une analyse plus approfondie concerne l'étude de la vorticité générée par la diffraction 
des ondes de choc sur des surfaces cylindriques doubles concaves. Il a été démontré 
que l’intensité des chocs augmente la production de la vorticité. La production de 
vorticité a été étudiée plus en détail en évaluant l'évolution de l'équation de transport 
de vorticité instantané. Il a été constaté que l'étirement du tourbillon dû à la 
compressibilité de l'écoulement joue un rôle important dans la dynamique de la 
vorticité. Les résultats montrent également que la diffusion de la vorticité dûe aux 
effets visqueux est assez importante par rapport au terme baroclinique pour les 
régimes à faibles nombres de Mach, Ms ≤ 2,5, alors que cette tendance est inversée 
pour les régimes à nombres de Mach plus élevés, Ms ≥ 3,5. À la connaissance de 
l’auteur, ce résultat n’a pas encore été rapporté. En termes d’intensité des chocs, l'effet 
de la première surface concave s'est avéré efficace pour diminuer suffisamment les 
impulsions de pression dynamique et statique. En termes de vitesse de choc, la 
décélération du choc s'est avérée augmenter avec le nombre de Mach de l'onde de 
choc. Des comparaisons quantitatives entre les résultats numériques pour différentes 
conditions initiales (intensités des ondes de choc, propriétés des gaz) sont effectuées 
pour trouver les paramètres physiques affectant la trajectoire et la vitesse du choc 
incident. Une relation universelle approximative est dérivée, qui prédit la trajectoire et 
la vitesse de l'onde de choc incidente en fonction du nombre de Mach de l'onde de 
choc incidente. La relation proposée a été testée dans la gamme Ms (1,6 ≤ Ms ≤ 4,5) et 
différents gaz, ayant différentes masses moléculaires, rapports thermiques spécifiques 
et impédances acoustiques, principalement: air, He, Ar, CO2 et SF6. En trouvant le 
temps sans dimension approprié, il était possible de montrer les données de différentes 
simulations avec différentes conditions initiales se regroupant en une seule courbe. 
 
    3.2 Propagation des ondes de choc à l'intérieur d’un canal à cavités 
cylindriques 



 
Dans une seconde partie, la dynamique des écoulements instationnaires complexes à 
l'intérieur d’un canal avec des cavités cylindriques de différentes profondeurs et angles 
de diffraction est étudiée. Au fur et à mesure que le processus de diffraction évolue, les 
vortex des coins d'extrémité de la paroi se forment avec un enroulement de vortex qui 
sont convectés quasi-linéairement à l'écart de l'entrée de la cavité. Ces instabilités de 
coin se caractérisent par la formation d'un vortex primaire qui est suivi d'un vortex 
secondaire pour les cavités ayant un angle de diffraction θw ≤ 90°. Les mécanismes 
clés derrière l'apparition de cette instabilité secondaire proche de la paroi sont la 
vitesse d'avance suffisamment grande générée par la couche limite de la cavité. On 
constate que l'interaction de cette instabilité secondaire avec le vortex primaire dans la 
partie amont de la cavité est l'une des principales sources d'excitations et de transition 
possible vers la turbulence. Des configurations sans instabilités secondaires étaient 
également présentes, principalement pour des angles de diffraction supérieurs à 90°, 
où la vitesse d'advection n'est pas suffisante pour déstabiliser la couche limite de paroi. 
Les résultats mettent également en évidence l'effet des angles de diffraction sur 
l'évolution et la trajectoire du vortex principal dans lequel les instabilités secondaires 
jouent un rôle important. La production totale de vorticité a été quantifiée. L'effet des 
angles de diffraction sur la production de vorticité est étudié et s'avère négligeable au 
moins au stade antérieur du processus de diffraction. De plus, la contribution de l'onde 
de choc à la production de vorticité a été évaluée à l'aide d'un indicateur de choc basé 
sur le capteur Ducros, et la contribution s'est avérée négligeable (∼ 10% de la vorticité 
total). 
     En termes d'atténuation des chocs, une meilleure atténuation des chocs est obtenue 
avec un angle de diffraction de θw = 90°, où l'énergie totale de choc est réduite 
d'environ 38%. L'effet de la hauteur du tunnel sur l'atténuation des chocs pour deux 
angles de diffraction a été examiné. Une analyse minutieuse des structures 
d'écoulement a révélé qu'en plus de la variation de la hauteur du canal, la position de 
ces modifications joue un rôle important dans l'atténuation des chocs. Une disposition 
subtile de la position/hauteur du canal et de la profondeur de la cavité a été trouvée, 
conduisant à un facteur d'atténuation significatif d'environ 57% à la sortie du canal. 
Pour θw = 60°, une disposition arbitraire peut avoir des conséquences dramatiques sur 
l'amplification de l'onde de choc d'un facteur d'environ 30% en bout du canal, ce qui 
n'est pas souhaitable du point de vue de la sécurité et de la gestion de la prévention des 
risques. 
En résumé, l'atténuation des ondes de choc dans un canal semi-ouvert avec une cavité 
à l'intérieur peut être associée aux mécanismes suivants: 
 



   - Diffraction des chocs sur la cavité qui se traduit par la formation d'un vortex à 
l'extrémité de la paroi, conduisant à une grande région dissipative responsable de la 
diminution de la pression derrière le choc. 
 
   - Apparition d'une réflexion de Mach inverse (InMR) due à la réflexion de choc qui 
se traduit par la formation d'une réflexion régulière transitoire (TRR) sur la cavité qui 
conduit à la formation des chocs supplémentaires. 
 
   - Apparition d'une réflexion de Mach Direct (DiMR) due à la réflexion du choc au 
coin supérieur droit de la cavité. 
 
   - Formation de multiples ondes transversales dues aux réflexions de choc des parois 
supérieure et inférieure du canal du fait de l'effet de confinement. 
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Introduction

Shock/blast wave propagation involves complex wave interactions with structures and
surface boundaries owing to several phenomena such as shock reflection, shock diffrac-
tion, shock mitigation/amplification, shock focusing and shock-turbulence interaction.
Understanding of these phenomena is crucial for a wide range of engineering applications
in bio-medicine, disaster management, detonation, mining, aviation/transport industry
and others. Knowledge of such complex dynamics is integral part of the design and opti-
mization of devices for shock-wave lithotripsy, shock/blast-wave attenuation, suppression
of tunnel sonic boom, etc.

1.1 Shock-wave reflection

The shock reflection phenomenon dates back to the 19th century. Ernest Mach (1878),
who reported his discovery as early as 1878, was the first scientist to notice and record
the shock waves reflection phenomenon with his pioneering work, where he discovered the
regular and the Mach reflection structures. Intensive research of the shock wave reflection
phenomena was re-initiated in the early 1940s by von Neumann (1963). Later, Smith
(1945) and White (1951) discovered two new reflection structures, namely complex Mach
reflection (CMR), known nowadays as transitional Mach reflection (TMR) and double
Mach reflection (DMR). Intending to shed more light on the shock reflection phenomena,
a sizable amount of work has been done (Heilig (1969), Ben-Dor & Glass (1979), Ben-Dor
(1980), Ben-Dor et al. (1980), Itoh et al. (1981), Gvozdeva et al. (1982), Skews & Kleine
(2007), Geva et al. (2013), Shadloo et al. (2014), Soni et al. (2017)).

There are many types of shock wave reflection, the type generated will depend on
the flow conditions and the surface inclination. Reflections can broadly be broken down
into two different categories: regular reflection (RR) and irregular reflection (IR). The
RR wave configuration consists of two shock waves, the incident shock wave, I, and the
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(a) (b)

(c) (d)

(e)

Figure 1.1: Schematic illustration of, (a): a regular reflection, (b): a stationary-Mach re-
flection, (c): an inverse-Mach reflection, (d): a direct-Mach reflection, (e): a transitioned
regular reflection. I: incident shock, r: reflected shock, R: reflection point, m: Mach
stem, TP : triple point, s: slipstream
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reflected one, r, that meet at the reflection point, R, which is located on the reflecting
surface. A schematic illustration of a RR is shown in Figure1.1(a). The IR can be divided,
in general, into two categories: von Neumann reflection ,vNR, and Mach reflection, MR.
The Mach reflection (MR) consists of three shock waves, the incident shock wave, I, and
the reflected shock, r, the Mach stem, m, and the slipstream, s. These four discontinuities
meet at a single point known as triple point, TP , which is located above the reflecting
surface. Depending on the direction of propagation of the triple point, TP , with respect
to the reflecting surface, three different types of MR configurations are possible:

- The MR is stationary, StMR, if the triple point moves parallel to the reflecting
surface, schematic illustration of a StMR is shown in Figure1.1(b).

- The MR is inverse, InMR, if the triple point moves towards the reflecting surface,
schematic illustration of an InMR is shown in Figure1.1(c).

- The MR is direct, DiMR, if the triple point moves away from the reflecting surface,
schematic illustration of a DiMR is shown in Figure1.1(d).

Since the InMR is a MR in which the triple point moves towards the reflecting surface,
it terminates as soon as its triple point collides with the reflecting surface. The termina-
tion of the InMR leads to the formation of a new wave configuration. This configuration
consists of a RR followed by a MR. A schematic illustration of this wave configuration is
shown in Figure1.1(e). Since this configuration is formed following a transition from an
InMR, and since its main structure is a RR, it is called transitioned regular reflection,
TRR.

The 13 possible shock wave reflection configurations are presented in the Ben-Dor di-
agram in Figure 1.2, with: IR: irregular reflection; RR: regular reflection; vNR/VR/GR:
von Neumann, Vasilev, Guderley reflections, respectively; MR: Mach reflection; StMR:
stationary-Mach reflection; InMR: Inverse-Mach reflection; InMR: Inverse-Mach reflec-
tion; TRR: transitioned regular reflection; DiMR: direct-Mach reflection; SMR: single-
Mach reflection; DMR: double-Mach reflection; PTMR: pseudo-transitional-Mach re-
flection; TMR: transitional-Mach reflection; DMR+; positive double-Mach reflection;
DMR−: negative double-Mach reflection; TerDMR: terminal double-Mach reflection.

The transition from regular to non-regular reflection has been studied by many au-
thors. Von Neumann theoretically became interested in this subject as early as 1943 (von
Neumann 1943a,b). In their review, Bazhenova et al. (1984) considered transitions be-
tween one type of reflection and another. They proposed three types of transitions namely,
transition from single to complex Mach reflection, transition from complex Mach reflec-
tion to double Mach reflection and transition from regular to Mach reflection for weak
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Types of Shock Wave Reflections

�� ��
IR
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��
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Figure 1.2: Diagram of the 13 possible shock reflections, Ben-Dor (2007)

and strong shock waves. Ben-dor used shock polars to explain the various proposed RR
⇀↽ IR transition criteria, namely, detachment criterion, mechanical-equilibrium criterion,
sonic criterion and length-scale criterion. It should be noted here that von Neumann
initiated most of these criteria already in the early 1940s Ben-Dor (2007). In a re-
cent study, Soni et al. (2017) investigated the shock-wave reflections over double-concave
cylindrical surfaces. In this study, for the first time, a single-TP→double-TP→single-
TP→double-TP transition has been observed on the same reflector. Moreover, for the
same wedge reflector, the flow features exhibit strong differences in shock-wave reflection
patterns over the first and the second reflectors. In addition, contrary to past studies
where SMR→TMR→DMR transition process has been observed, an SMR→DMR→TMR
transition process is observed in their study for the first time.

1.2 Shock-wave diffraction

A common phenomenon that is encountered by a shock wave is diffraction process. This
occurs when a shock wave traverse over a convex curved wall. The shape, strength and
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the orientation of the planar shock change with time as a result of the disturbances prop-
agated by a change in wall geometry. Diffraction of planar shock waves has been treated
analytically by Whitham (1957), Whitham (1959) in the method now famously known as
Geometrical Shock Dynamics (GSD). This method was compared to experimental shock
wave profiles by Skews (1967b), who found that the theory under predicted weak shock
wave propagation and over predicted that of strong shock waves. The Mach number
of diffracting weak shock waves were predicted to quickly vanish to Ms = 1 whereas, in
reality, this takes significantly longer to occur. As the shape of a diffracted shock wave is
interesting in its own right, several researches have been conducted to complete Witham’s
work, Rosciszewski (1960), Oshima et al. (1965a). etc. This point is discussed in Section
1.6.

The diffraction of a normal shock wave motivates the compression of the gas particles
adjacent to the shock. This compression process is unsteady with region of flow pertur-
bation behind the diffracted shock. Within this region the flow separates from the wall
surface due to the presence of adverse pressure gradient. Shear layer evolved from the
separating region with other flow features. Understanding of the complex flow features
behind a diffracted shock wave plays a very important role in the design of supersonic flow
devices such as blast wave attenuator, exhaust nozzles of an internal combustion engine,
gas transmission line, supersonic jet engines, selection of optimum profile for missiles,
etc.

The shock diffraction over sharp geometries had significant interest by researchers. An
overview of unsteady shock wave interactions is given in the excellent review by Bazhen-
ova et al. (1984). This review covers shock wave interactions with concave and convex
corners as well as with curved surfaces, shock wave diffraction at a curved convex surface
and wave systems arising from shock diffraction at a convex corner. Modifications to
Whitham’s theory for the calculation of the shape of diffracting waves are also proposed.
The pioneering work on the perturbed region behind a diffracting shock wave over sharp
geometries was conducted by Skews (1967a), in which he showed experimentally the flow
features present behind a diffracting shock wave. In this work he showed how complex flow
features varied with differing corner angle and Mach number. The research highlighted
that past a critical corner angle of θ > 75◦, the flow features are largely independent of
corner angle for a given incident shock speed. Past this value of θ > 75◦ the flow becomes
dependent only on incident shock Mach number. Many researchers have investigated the
flow generated by a shock wave diffracting around a 90◦ corner. Notable experimental
works were carried out by Skews (Skews (1967b), Skews (1967a), Skews et al. (2012)),
Bazhenova et al. (1973), Sun & Takayama (1997).

Baird & Stollery (1987) visualized vortices emitted from the exit of a circular cross
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sectional shock tube and found that the resulting vortex ring moved at nearly constant
speed. Broadbent & Moore (1987), testing a similar flow, showed that the jet driving
the vortex ring was subjected to an adverse pressure gradient. Brouillette et al. (1995)
further determined the threshold of the secondary shock wave formation behind a shock
wave moving out of a circular cross-section shock tube. The threshold value of incident
shock strength was Ms = 1.34 in air. Hillier produced his well-known numerical work on
shock wave diffraction around a sharp corner Hillier (1991). In this work he discussed
the applicability of an Euler simulation to shock diffraction around a 90◦ sharp corner.
He states that sharp-edged separation (i.e. separation from sharp edge where attached
flow would create completely non-physical gradients in the flow) can be captured and
resolved well by the Euler equations. To the author’s knowledge, Hillier’s work was the
first to show what has now become known as the vortex shock. Sun & Takayama (1997)
showed very similar wave structures to Hillier. In their study they were interested to the
formation of a secondary shock wave behind the shock wave diffracting at convex corner.
As in Brouillette et al. (1995), the threshold incident-shock-wave Mach number at which
a secondary shock wave appears is found to be Ms = 1.32 at an 81◦ corner and Ms = 1.33
at a 120◦ corner. According to them, these secondary shock waves are formed because of
the existence of a locally supersonic flow behind the diffracting shock wave. Behind the
diffracting shock wave, the subsonic flow is accelerated and eventually becomes locally
supersonic. A simple unsteady flow analysis revealed that for gases with specific heats
ratio γ = 1.4 the threshold shock-wave Mach number was Ms = 1.346. Kleine et al. (2016)
investigated the flow field behind a diffracting shock for a small shock Mach number range
of 1.33 < Ms < 1.37. In this study they concluded that there are, indeed, embedded local
supersonic areas in the flow field where the fluid returns to a subsonic flow without being
decelerated by a shock wave, hence going through an isentropic supersonic-to-subsonic
transition. Good agreement is found when comparing the threshold for these processes
with the analytical prediction made by Sun & Takayama (1997). Their results confirmed
that for Ms = 1.33 the flow is on the verge of establishing these supersonic pockets while
for Ms = 1.37 the local flow Mach number can be as high as 1.06, without any opti-
cal evidence for a shock wave. The results are therefore interpreted as illustrating the
theoretically possible but rarely observed isentropic deceleration of a supersonic flow to
subsonic levels. In a recent numerical study, Chaudhuri & Jacobs (2017) analyzed shock
wave diffraction over a convex sharp splitter geometry. Their Simulations capture the
essential wave diffraction, transverse wave interaction with the deforming and growing
primary vortex, and weaker secondary vortices arising from the Kelvin-Helmholtz insta-
bility. The analysis reveals the mechanism of unwinding of vortices and its link with
the divergence of the Lamb vector. In the same study, the authors revisited the shock



1.2. Shock-wave diffraction 7

(a) (b)

Figure 1.3: Features of shock diffraction pattern over a corner: (a) small angles and (b)
large angles. From Skews (1967a).

diffraction over 90◦ convex corner and addressed some intricate features of resolving the
viscous and turbulent flow features. The main issues related to the 2D numerical pre-
dictions of this flow dynamics are to address the experimentally observed (i) secondary
viscous vortex associated with the wall shock interaction with the boundary layer and
(ii) the shear layer behavior, so, they suggested that 3D DNS or LES study is required
to substantiate the existence of smaller scales and shear layer instabilities. Accordingly
Soni et al. (2019) have conducted a very powerful and interesting 3D large eddy simula-
tion (LES) of the turbulent structures and long-time flow dynamics of shock diffraction
over 90◦ convex corner. The study, performed with 3.3× 109 mesh points, captures the
3D turbulent scales, embedded shocks/shocklets within the main vortex and the shear
layer behavior and boundary layer interactions in the viscous vortex region. The spatio-
temporal growth of the shear layer is strongly influenced by the lambda shock as well as
by the counterclockwise rotating viscous vortex near the diffraction corner. It was also
shown that the lambda-shock- shear-layer interaction at the upper side of the shear layer
is more intense than that of the interaction of the contact surface at the bottom side
of the shear layer. It was also noted that the foot of the lambda shock more effectively
perturbs the shear layer and increases its growth. This aspect is clearly resolved in their
LES study. The shape and large-scale structures of the turbulent envelop at the wall
viscous vortex region is also satisfactorily predicted by the LES.

Figure 1.3(a) represents the shock diffraction pattern for a convex corner for angles
(θw) lower than 45◦. The shock diffraction takes place by a series of expansion waves
N. The flow turns parallel to the wall. Therefore, the slipstream and vortex are almost
absent up to angles of 45◦. The increase of the Mach number leads to the formation of
a secondary shock, Sv. This is due to the difference between the accelerated flow in the
expansion wave and the flow behind the diffracted shock, D. When the convex corner is
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(a) (b)

Figure 1.4: 2D shock diffraction over 90◦ corner: numerical schlieren images at (a) t= 48
µs and (b) t = 104 µs using Ms = 1.5, I: incident shock wave, EW : expansion wave,
V V : viscous-vortex, LS: lambda-shock, SL: shear layer, V S: vortex shocks, V : vortex,
SS: slipstream, DS: diffracted shock, KHI: Kelvin-Helmholtz instability. By Soni et al.
(2017).

greater than 45◦, Figure 1.3(b), the flow behind the diffracted shock wave turns through a
smaller angle than that of the convex wall which leads to the appearance of a slipstream.
The slipstream, SL, separates the region of expanding flow from the region almost at
rest. The vortex, V, is produced by the roll-up of the slipstream Skews (1967a). The
position of the slipstream, tail of the Prandtl-Meyer fan, N, and the velocities of the
contact surface and the second shock are almost independent of corner angle for angles
greater than 75◦. The shape of the diffracted shock curve, D, is not a single curve. The
diffracted shock portion attached to the wall is perpendicular to it and tangential to the
tangent to the diffracted shock wave. This portion of the diffracted shock is referred to
as the wall shock. Independent of the corner angle, the diffracted shock wave forms an
envelope around the flow. However, the wall shock is not part of this envelope.

An example of shock diffraction around a 90◦ corner is shown in Figure 1.4. As
the shock propagates along the wall, it encounters a sudden expansion which causes the
flow to separate at the corner. This leads to complex flow features. Some of these flow
structures are highlighted in Figures 1.4(a), 1.4(b), where a slipstream, SS, is emanating
from the junction of the incident shock, I, the diffracted shock, DS, and the expansion
wave, EW. The flow separation leads to the generation of a highly sheared layer, SL,
which rolls up to form a large vortex, V. The latter consists of a pair of vortex shocks,
VS, and the flow above the shear layer becomes supersonic, allowing a lambda-shock, LS,
system to form. As a result of the inviscid-viscous interaction, the viscous-vortex, VV,
is also observed at the corner beneath, SL, Soni et al. (2017). In contrast to the findings



1.2. Shock-wave diffraction 9

of Tseng & Yang (2006), as the flow evolves, the SL becomes unstable and breaks down
into small vortices that are mainly driven by the Kelvin-Helmholtz instability, KHI, as
found by Skews et al. (2012).

1.2.1 Vorticity generation in shock-wave diffraction

The formation and the evolution of the vortex rings produced by a shock diffraction
are also one of the phenomena that has been studied in the past Howard & Matthews
(1956), Skews (1967a), Gnani et al. (2014). Sun & Takayama (2003a) used Euler and
Navier-Stokes solvers to investigate the secondary vortex generation in shock diffraction.
Both solvers detected the small vortices formed along the slip-stream. Although the past
studies provided qualitative descriptions of the flow structures in the shock diffraction
and vortices generation, no quantitative measurement of the vorticity production has
been performed. Consequently, Sun & Takayama (2003b) numerically quantified, using
an Euler solver, the vorticity production in shock diffraction over convex corner. Their
results indicated that, for a given gas, the vorticity production is dependent only on the
incident-shock Mach number and the diffracting angle. Their data also showed that the
slipstream represents a large amount of the total vorticity and it can be the more dominat-
ing factor in producing vorticity in compressible flows than baroclinic effects. Moreover,
Sun and Takayama used only an Euler simulation in their study, Tseng & Yang (2006)
used both the Euler and the laminar Navier-Stokes solvers to investigate the vorticity
production and the subsequent reflected shock/main-vortex-core interaction during the
shock-wave diffraction. Different circulation production rates are observed between the
Euler and Navier-Stokes solutions as a result of the boundary layer and the secondary
vortex contribution in vorticity production. It was found that the shock reflection influ-
ences the rate of vorticity production that depends on the incident shock strength and
the diffracting angle. Abate & Shyy (2002) studied the dynamics of shock diffraction
using the vorticity transport equation. They discussed the link between high strain rates
resulting from the expansion corner to the solenoidal dissipation rates and the stress rates
to the dilatational dissipation rates of turbulent kinetic energies. The baroclinic torque
enhances the vorticity generation in such interactions. The viscous effects and small-
scale turbulent dissipations are important for longtime evolution of a primary vortex and
smaller vortices generated from the Kelvin-Helmholtz instability and their interactions
with shocks and shocklets. Reeves & Skews (2012) have investigated both numerically
and experimentally the unsteady aspects of three-dimensional shock-wave diffraction phe-
nomena. They found that the trends of circulation production correlated quite well with
those obtained from the two-dimensional diffraction case. Furthermore, they showed that
the rate of vorticity production tends to be constant once the incident shock wave had
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fully diffracted over the surface edge. Recently, Chaudhuri & Jacobs (2017) performed
a numerical study with a new detailed analysis of shock-wave diffraction over a sharp
splitter plate. The shock dynamics and the evolution of the flow topology were studied
using the probability density functions of various parameters in addition to the enstro-
phy transport equation and the invariants of the velocity gradient tensor. Their analysis
reveals the mechanism of unwinding of vortices and its link with the divergence of the
Lamb vector. Soni et al. (2019) numerically investigated the turbulent structures of shock
diffraction over 90◦ convex corner. The analysis of the budget terms of the mean vor-
ticity transport equation reveals that the stretching of vorticity due to compressibility
and stretching of vorticity due to velocity gradients play an important role compared to
diffusion of vorticity due to viscosity as well as the baroclinic term. In a recent study,
Zhu et al. (2020) analyzed the SF6 bubble evolution in shock-accelerated flow with a
transverse density gradient. Their analysis showed that impingement by incident and
reflected shocks induces additional vorticity in the bubble region and promote increased
bubble volumes. The increased bubble volumes could weaken the average vorticity. Upon
increasing the incident shock Mach number, the vorticity was strengthened. They further
analyzed the vorticity kinetics equation of the two-dimensional compressible fluid. This
analysis reveals that the absolute value of each transport term increases when the incident
shock intensity is enhanced. They showed that the influence of the viscosity term on the
vorticity evolution is nearly negligible. Conversely, the compression term has a greater
influence on vorticity evolution in the SF6 bubble region than the baroclinic term.

1.2.1.1 Vortex strength in shock-wave diffraction

The strength of a vortex, in a domain S enclosed by contour L, can be represented by
circulation, Γ, which is the summation of vorticity ω in the domain,

Γ =
∫
s
ωds=

∫
L
udl (1.1)

The integral contour or path, L, is taken along the boundary that exactly encloses the
perturbed region behind a diffracting shock wave. In a practical evaluation, the integral is
calculated along the boundary of the whole computational domain to avoid the ambiguity
in determining the perturbed region in the numerical results. Since unperturbed flow
regions are uniform, their contribution to the integral is zero only if the inlet is parallel
to the incident shock front and there is no wave reflection from outside boundaries. A
better quantity to characterize the vorticity production in shock production is the ratio
of circulation to time, Γ/t, which is referred to as the rate of circulation production.
The rate of circulation production is related to the incident shock-Mach number Ms, the
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(a) (b)

Figure 1.5: (a): Effect of wall angle on the rate of circulation production, (b): Effect
of incident shock strength on the rate of circulation production. By Sun & Takayama
(2003b).

diffraction angle and the gas properties. For a given gas, the ratio Γ/t can be uniquely
determined as a function of shock wave strength and wall angle as:

Γ
t

= f(Ms, θ) (1.2)

where θ is the wall angle. Sun & Takayama (2003b) investigated the effect of both shock
wave strength and wall angle on the rate of circulation production. The obtained results
are shown in Figure1.5. Note that all the data of circulation production presented by Sun
and Takayama are dimensionless values. Since the rate has the dimension of the square
of the velocity, one may obtain dimensional data by multiplying the dimensionless value
with the square of the characteristic velocity,

Γ′
t′

=R×T0
Γ
t

(1.3)

where R is the universal gas constant divided by the molecular weight of air, and T0 is
the temperature in front of the incident shock.

1.2.1.2 The effect of wall angle on vorticity generation

It is seen from Figure1.5(a) that the rate of vorticity shedding always increases with the
wall angle for a given shock Mach number. The vorticity production increases sharply
near a wall angle of 30◦. For instance, the vorticity increases by approximately four
times when the wall angle changes from 15◦ to 45◦ for Ms = 1.5. However, for wall angles
over 90◦, the vorticity production hardly changes, and all curves tend to approach their
corresponding constant values. Sun & Takayama (2003b).
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(a) Ideal case (b) Real case

Figure 1.6: Schematic representation of a shock propagation, (a): Ideal case (without
boundary layer), (b): Real case (with boundary layer).

1.2.1.3 The effect of incident shock strength on vorticity generation

The effect of shock strength on the rate of vorticity production is investigated by changing
incident shock Mach number Ms. The results are presented in Figure1.5(b), the rate
basically increases with shock strength, and it increases much faster for wall angles greater
than 45◦. For wall angles over 90◦, the vorticity production hardly changes, and all curves
tend to approach their corresponding constant values. Sun & Takayama (2003b).

1.2.1.4 The effect of the boundary layer on vorticity generation

Tseng & Yang (2006) compared the circulation production results predicted by the Euler
solver with those obtained from the Navier-Stokes solver for the case of incident shocks
with Mach numbers of Ms = 1.5 and 2.5 diffracting around a 90◦ convex corner. The
results are shown in Figure 1.7. In the Navier-Stokes solutions, the rate of circulation
production increases linearly as a result of the boundary layer that developed before
the arrival of the incident shock wave at the corner (as shown in Figure 1.6). The
boundary layer that developed at the solid wall and the secondary vortex originating at
the diffraction corner cause the circulation production predicted by the Navier-Stokes
solver to be greater than that obtained using the Euler solver. Tseng & Yang (2006).

1.3 Shock-wave propagation and diffraction over
cavities

The interaction of shock waves with complex rigid boundaries has been the subject of
many investigations during the past decades. The shock-wave interaction with cavities
is truly non-stationary and possesses no similarity throughout its duration. Such in-
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Figure 1.7: Comparison of circulation production results obtained using Euler and Navier-
Stokes solvers for Ms = 1.5 and 2.5 and θ = 90◦. By Tseng & Yang (2006).

teractions involve all of the phenomena cited above, diffraction, reflection, etc. Several
attempts were made to study such flows, for example Gvozdeva et al. (1988) and Bazhen-
ova et al. (1990). In these investigations the flow field was studied experimentally, using
interferometric flow visualization technique. In addition, an attempt was made to predict
the post-shock flow pressure using the two-dimensional Whitham approximation. Igra
et al. (1996) studied experimentally and numerically the interaction of a planar shock
wave with a square cavity. They showed that the flow which started as a self-similar
one turned quickly into a really time-dependent flow in which no self-similarity existed.
According to them the flow developed inside and around the cavity depended on the
strength of the incident shock wave. In air, for Ms < 2 the post shock flow is subsonic
and the flow expansion into the cavity is via a vortex. For Ms > 2 the post-shock flow is
supersonic and the flow expansion into the cavity is through a centered expansion wave.
The interactions between the various waves reflected from the cavity walls, and between
them and the vortex or the centered expansion wave, produced a complex unsteady flow
in which no self-similar structure could be observed. Heilig (1975) conducted experimen-
tal investigations of shock wave propagation in a rectangular, two-dimensional branched
duct as well as in a configuration where the process was three-dimensional as the branched
duct had a circular cross section. Results from the 2D case appear in Igra et al. (1998)
and simulations of the 3D case appear in Igra & Igra (2012). In Igra et al. (1998) only
shadowgraph pictures were taken showing the wave pattern inside the branched duct, and
in Igra & Igra (2012) only static pressures were recorded at various locations along the
branched pipe walls, but no pressure records were made at the end wall of the branched
segment. Wang et al. (2001) studied the interaction between a planar shock wave and
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a square cavity filled with dusty gas, the loading ratios were taken equal to 1 and 5,
and particle diameters were taken equal to 1, 10 and 50 µm. The results show that
the diffraction patterns in the cavity were decisively attenuated by the dust suspension,
particularly for the higher loading ratio. The particle size has a pronounced effect on the
flow and wave pattern developed inside the cavity. They found that the presence of solid
particles inside the cavity brings about significant changes in the cavity flow relative to a
similar pure gas case. The speed of diffracted and reflected shock waves decreases as the
dust mass loading ratio increases, or the dust particle diameter decreases. However, no
observable changes are found for the flow above the cavity, and the passing shock wave
is almost unaffected by the mass loading ratio of the gas-particle suspension inside the
cavity. In the same context Igra & Igra (2016a) investigated numerically the case when
an incident shock wave propagates in a duct with a square cavity filled with different
gases mainly, helium, argon, air, or SF6, whereas the rest of the duct contained only
air. Their study reveals that although the presence of different gases inside the cavity
has significant effect on the flow-field evolved inside the cavity, it has negligible effect on
the prevailing pressure downstream of the cavity. Biamino et al. (2014) conducted an
experimental and numerical investigation examining the option of using branched duct
geometry for shock wave attenuation. The study reveals that the length of the branched
duct has a strong influence on the resulting flow. In a short branched segment, strong
pressure fluctuations are unavoidable. For longer pipes, a well-established shock wave
propagates downstream leaving behind it a fairly uniform high pressure zone.

An example of shock wave, at Ms = 1.3, interaction with a square cavity, presented by
Igra et al. (1996), is shown in Figure1.8. The sequence of Figures 1.8(a) to 1.8(h) shows
the evolution of the various waves which resulted from the interaction of the incident
shock wave S1, with the square cavity. The first stage of the interaction process is shown
in Figure 1.8(a) where the incident shock wave S1, starts diffracting over the cavity
upper-left corner, forming a vortex behind it. With advancing in time, S1 propagates
toward the cavity exit and its bottom, while the vortex grows in size and remains close
to the cavity upper-left corner as shown in Figure 1.8(b). In Figure 1.8(c), the incident
shock wave, S1, hits the cavity upper-right corner and splits into a transmitted, S1, and
a reflected, Sr1, shock waves. The vortex grows in size and its centre slowly moves away
from the cavity upper-left corner. In Figure1.8(d) the descending part of S1 has reached
the cavity bottom and is reflected upward as Sr2. S′1 is the part of S1 which is still
moving toward the cavity lower-right corner. The reflected shock wave Sr1 is also visible.
As time progresses, S′1, approaches the cavity lower-right corner and therefore its size
decreases while Sr2 and Sr1 become larger and weaker (the stronger the shock wave is,
the darker it appears in the photograph). Figure 1.8(e) shows an exceptional situation.
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(a) 40µs (b) 100µs

(c) 140µs (d) 160µs

(e) 180µs (f) 240µs

(g) 280µs (h) 340µs

Figure 1.8: Wave pattern during the interaction of a planar shock wave of Ms = 1.3 with
a square cavity. By Igra et al. (1996).
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This shadowgraph was taken at the exact moment when S′1 hits the cavity lower-right
corner, displaying a meeting between Sr1 and Sr2 at this corner. Sr1 grows in size and
its upper part, that starting from S1 immediately behind the end of the Mach stem, gets
still weaker. The vortex is growing up and continues its movement away from the cavity
upper-left corner. At t = 240 µs, Figure 1.8(f), three shock waves are present within
the cavity and their continued interactions with each other, with the cavity walls and
with the vortex, are exhibited in the following shadowgraphs. Such multiple interactions
lead to many reflections and distortions of the participating waves. The beginning of the
complex collision/reflection process which takes place inside the cavity is shown in Figure
1.8(g). As the process evolves, the flow and wave configuration inside the cavity become
more and more complex as can be seen from the shadowgraph shown in Figure 1.8(h), a
large amount of shock waves of various strengths is shown. The wave pattern is a result
of multiple interactions among the waves and between the waves and the cavity walls,
and also between waves and the vortex. Igra et al. (1996). The expanding flow evolves
into a complicated system of distorted and splitted shocks with separated regions and
vortices formation.

Note that the wave pattern and the flow behavior in such interactions depend on
numerous parameters mainly; the incident shock wave Mach number, the diffraction angle
and the shape of the cavity. Igra et al. (1996) observed a different wave pattern and flow
behavior when the incident shock wave Mach number is raised to a level that results in a
supersonic flow behind it, in their case they used Ms = 2.032. Since the post-shock flow is
sonic, instead of a vortex near the cavity upper-left corner (which characterized the flow
expansion for Ms = 1.3), they observed an expansion wave centered at the corner. They
also noticed the generation of a secondary, upstream-facing, shock wave. This secondary
shock wave is generated in order to match between the high-pressure zone which exists
behind the incident shock wave and the low pressure behind the expansion wave centered
at the cavity upper left corner.

1.4 Shock-wave mitigation

Research on shock wave mitigation is closely related to the development of effective
protection and disaster control, and it is motivated by the catastrophic damage that may
be caused by shock waves. Overall, the approaches to attenuate a shock wave can be
divided into three categories, in terms of mechanism, which are attenuating the shock
wave by i) breaking the incident shock wave into multiple shocks with different arrival
times, ii) dissipating energy through viscosity, and iii) transferring kinetic energy of the
shock-induced flow to the potential energy of a solid or a liquid barrier.
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Figure 1.9: Diagram of the shock-wave mitigation and amplification.

The literature shows various approaches to attenuate shock-waves, e.g., foams,
porous materials, granular filters, metallic grids, perforated plates/walls, rigid barriers,
branched/bend duct, duct with rough walls, etc. Some of the most used methods to
attenuate shock waves are shown in Figure 1.9, these methods are summarized in Table
1.1 with illustrations and some references.
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Shock attenua-
tion methods References Illustrations

Abrupt changes
in tunnel geome-
try

- Igra et al. (2001)
- Chaudhuri (2019)
- Marty et al. (2019)
- Kim et al. (2004)
- Igra & Igra (2016a)
- Chester (1953)
- Chisnell (1955)
- Whitham (1958)
- Igra et al. (2001)
- Nettleton (1973)
- Igra et al. (1998)

Figure 1.10: Numerical schlieren pictures,
Chaudhuri (2019).

Figure 1.11: Schlieren photographs,
Marty et al. (2019).

Figure 1.12: Numerical schlieren pictures,
Kim et al. (2004).

Figure 1.13: Numerical schlieren pictures,
Kim et al. (2004).

Figure 1.14: Density variation in cavity
filled with Helium, He, Igra & Igra (2016a).

Figure 1.15: Numerical schlieren pictures,
Kim et al. (2004).
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Shock attenua-
tion methods References Illustrations

Rigid obstacles
along the wave
path

- Wan & Eliasson (2015)
- Berger et al. (2010)
- Igra & Igra (2016b)
- Chaudhuri et al.
(2013)
- Skews et al. (1998)
- Chaudhuri et al.
(2012)
- Dosanjh (1956)

Figure 1.16: Numerical schlieren pictures,
Wan & Eliasson (2015).

Figure 1.17: Schlieren photographs,
Berger et al. (2010).

Figure 1.18: Geometry of barriers used in
Igra & Igra (2016b).

Figure 1.19: Numerical schlieren pictures,
Chaudhuri et al. (2013).

Non-rigid barri-
ers

- Wan et al. (2019)
- Hadjadj & Sadot
(2013)
- Chauvin et al. (2011)
- Jourdan et al. (2010)
- Yasuhara et al. (2006)
- Igra & Takayama
(2003)

Figure 1.20: Interaction of blast wave
with water cylinders, Wan et al. (2019).

Figure 1.21: Shock/aqueous foam interac-
tion, Hadjadj & Sadot (2013).
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Shock attenua-
tion methods References Illustrations

Porous and per-
forated walls

- Mortazawy et al.
(2019)
- Gongora-Orozco et al.
(2009)
- Gongora-Orozco
(2010)
- Skews (2005)
- Szwumoski (1971)
- Takayama et al. (1995)
- Sasoh et al. (1994)
- Igra et al. (2001)
- Sasoh et al. (1998)
- Abe et al. (2003)
- Jiang et al. (2014)

Figure 1.22: Numerical schlieren pictures,
Mortazawy et al. (2019).

Figure 1.23: Numerical shadowgrams,
Jiang et al. (2014).

Figure 1.24: Schlieren photographs,
Gongora-Orozco (2010).

Figure 1.25: Shadow images, Skews
(2005).
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Shock attenua-
tion methods References Illustrations

Protective barri-
ers

- Sochet et al. (2017)
- Sebastien (2013)
- Jiang et al. (2014)
- Allain (1994)
- Borgers (2010)
- Sochet et al. (2013)
- Zhou & Hao (2008)

Figure 1.26: Schematic diagram of a pro-
tection barrier, Sochet et al. (2017).

Figure 1.27: Numerical shadowgrams,
Jiang et al. (2014).

Figure 1.28: Shock wave interaction with
a protection barrier, Sebastien (2013).

Figure 1.29: Numerical shadowgrams,
Jiang et al. (2014).

Table 1.1: Shock-waves attenuation methods
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1.4.1 Shock-wave attenuation in ducts

Research on shock wave mitigation in channels has been a topic of much attention in
the shock wave community. Many approaches are adopted to attenuate shock wave in
channels, among them: the use of obstacles of various geometries arranged in different
patterns, branched/bend duct, perforated plates/walls, duct with rough walls, foams, etc.

Different factors are taken into consideration when choosing a geometry for shock
attenuation. One important factor which determines (or limits) the geometry for shock
wave attenuation in a confined area is the application. As high pressure jumps lead to
shock wave generation in various scenarios of industrial, daily and extreme conditions;
the geometry or process which causes these pressure jumps might be unavoidable. A
useful example of this is the barriers on tunnels where a high-speed train is traveling. In
this example, the most viable solution is to alter the inner walls of the tunnel, or attach
a damping geometry on the front of the moving train (Sasoh et al. (1994) Takayama
et al. (1995)). Several studies on shock attenuation have been carried out for different
geometries and Mach numbers. Porosity is a key factor for shock attenuation in channels.
When barriers are introduced as shock absorbers, the blockage ratio of the flow, the
geometry of the elements, and position of the barrier are taken into account to achieve
maximum shock attenuation. In the case of junctions or bends, the angle, length, number
of junctions (deflections of the flow), and expansion chambers, if there are any, play an
important role in pressure damping.

1.4.1.1 Shock-wave attenuation through abrupt changes in the geometry

When a planar shock wave propagates in a uniform-cross-section duct, it slowly attenuates
due to momentum and energy loses via friction and heat transfer. A much faster decay in
the shock wave strength and shape (pressure signature) is observed when it propagates
into a branched duct. In this case the main mechanism responsible for reducing the shock
wave strength, in addition to its diffraction over the bend corner, is multiple shock wave
reflections initiated by the bending, Igra et al. (2001). The propagation of a planar shock
wave and its subsequent interactions with the duct walls, result in a highly non-stationary
two-dimensional flow. Among many examples where this type of interaction occurs, we
are usually interested in quickly reducing the intensity (impulse) of the propagating shock,
or blast wave. It is therefore not surprising that numerous studies regarding ways to
attenuate propagating shock or blast waves in a complex ducts having area changes have
been published in the past decades e.g., Chester (1953), Chisnell (1955), Whitham (1958)
etc.
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Figure 1.30: Total energy contours in a square cavity with Ms = 1.5 at t = 348µs, I:
incident shock wave, MR: Mach reflection, TP: triple point, r: reflected shock from MR,
V: vortex, r1: reflected shock from the lower right cavity corner, current study.

Nettleton (1973) experimentally investigated the effect of the angle of divergence, the
magnitude of the area ratio, and the specific-heat ratio of the gas on the shock attenuation
in a two-dimensional area expansion. Igra et al. (1996) carried out a numerical and
experimental study of the interaction between a planar shock wave and a square cavity.
High peak pressures were experienced by the cavity wall on which a head-on collision with
the incident shock wave takes place in the lower right cavity corner. The lowest peak
pressures were found on the cavity wall along which the incident shock wave diffraction
took place. The study was expanded later on by Igra et al. (1998). In this study the
configuration of the cavity was replaced by a tube with a 90◦ branch. In the experiments
carried out, they observed that the planar shock-wave diffracted when the first bend
was encountered. The shock wave splitted into the main and branched tube forming a
cylindrical (two-dimensional) shock wave on both branches. The interaction with the
wall gave way to a complex reflection, where Mach reflections could be observed. The
pressure history presented several peak pressures as the reflected wave returned to the
branched duct. The shock wave transmitted down the 90◦ branch is weaker than the
one propagating along the original direction. Therefore, if one looks for protection from
the high pressure generated behind the incident shock wave, the best place to be is in
the 90◦ branching tunnel, preferably near its left wall. The worst place would be in
proximity to the branching segment right corner (as shown in Figure 1.30). In a later
study carried out by Igra et al. (2001), the configuration was modified as a double bent
duct. Four different models where studied which considered the smoothness of the wall
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Figure 1.31: Schematic descriptions of the double bent duct used by Igra et al. (2001)
and Chaudhuri (2019).

and the change of volume inside the duct. The incorporation of roughness to the tube
was simulated by including small cavities to the walls of the duct. The double bent
geometry proved effective for attenuating the transmitted shock wave. Furthermore,
they found a critical value, L/H, for which effective wave attenuation is obtained, where
L and H are the corresponding length (straight section) and height of the duct (see
Figure 1.31), which in this case was found to be L/H = 4, for incident shock wave
Mach number of 1.35. Chaudhuri (2019) numerically investigated the planar shock-wave
propagation through a double-bend duct having L/H = 16, and the shock-wave Mach
numbers were chosen similar to those presented in the experimental work of Igra et al.
(2001) as Ms = 1.3466 and 1.53. The normalized pressure signals (P/P1, where P1 is the
pressure of the stagnant state) at the bottom wall of the double-bend duct were analyzed
in order to highlight the attenuation aspect of the flow configuration. The value of P/P1

predicted from his simulations near the exit section of the domain was found to be about
1.5 for Ms = 1.3466 and 1.8 for Ms = 1.53. The author further estimated the overpressure
(defined as Π = P−P1

P2−P1
) at the duct exit, the results yield Π≈ 0.53 for Ms = 1.3466 and

0.551 for Ms = 1.53. The results showed the effectiveness of the double-bend duct in
shock-wave mitigation.

Marty et al. (2019) investigated the propagation of a planar shock wave through a
channel splitted into two symmetric secondary channels, for three different shock wave
Mach numbers ranging from about 1.1 to 1.7. A parametric numerical study was carried
out where the angular displacement of the two channels that define the bifurcation was
changed from 90◦, 45◦, 20◦, and 0◦. It was shown that the pressure prevailing behind
the reflected shock wave from the end wall of the Y-shaped duct is less than half of
what exists behind a reflected shock wave from a similar straight duct under the same
initial conditions. Therefore, such duct geometry is a suitable proposal for significantly
reducing the potential danger of a traveling shock/blast wave in tunnels. Moreover, they
also pointed out that the expansion ratio of the cross-sectional area is a preponderant
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parameter in attenuating the strength of a shock wave compared to the duct geometry.

1.4.1.2 Shock-wave attenuation using porous and perforated walls

Szwumoski (1971) explained the shock attenuation process with porous and perforated
walls. When a shock wave passes through a porous or perforated wall, the mass flow
through the perforated wall subsequently induces a loss of momentum and energy fluxes
and thereby decreases shock wave strength. Additionally, the porous wall affects the
energy distribution that slows down the formation of secondary shocks.

The work of Szwumoski (1971) was one of the earliest studies using perforated walls.
His study reveals the importance of the length of the perforated surface. It was reported
that the shock Mach number, Ms, changes with distance and the perforation coefficient of
the walls. For a finite perforated length, the shock Mach number increases when the shock
travels along the unperforated length (after the perforated surface). This is contrary to
the infinite case where shock Mach number decreased as it moves downstream along the
perforated surface.

The production and suppression of sonic boom on high-speed trains entering tunnels
has inspired research on weak shock attenuation in this area. Takayama et al. (1995) used
the same scaled train tunnel simulator constructed by Sasoh et al. (1994). In their study,
they directed their attention to add porosity to the tunnel walls in order to suppress or
attenuate the sonic boom. The walls were partially or completely covered with aluminum
plates. The porous wall effectively reduced the pressure peaks; however, this reduction
depends on the area and length covered by the porous surface. The velocity of the scaled
train speed simulated was 75 m/s which corresponds to Ms = 1.009.

A discussion of shocks reflecting from perforated plates was carried out by Ben-Dor
(2007). A more recent study of regular reflection on perforated plates has been conducted
by Skews (2005). In this work, the perforation ratio, the wedge angle, and the thickness
of the plate were varied in order to assess the effects of gap guidance and shock Mach
numbers. Both the pressure difference and the stagnation pressure loss across the plate are
evaluated. It is found that over the range tested the plate thickness has a minimal effect.
On the other hand, Igra et al. (2001), in a double-bend duct, studied the smoothness of
the wall inside the duct. The incorporation of roughness to the tube was simulated by
including small cavities to the walls of the duct. Furthermore, Igra et al. (2001) found
a critical value for which effective wave attenuation is obtained. The roughness in the
duct wall reduced the pressure jumps across the transmitted shock wave. The effects of
the flow field using two types of baffle plates, solid and rigid porous plates, were also
studied by Abe et al. (2003). The height of the baffle plates was either 30 mm or 50 mm.
The reflection and diffraction of shock waves over porous material generated a series of
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Figure 1.32: Schematic of behavior of transmitted waves inside grooves. Gongora-Orozco
(2010).

weak compression and expansion waves, which later on interacted with the incident shock
wave, causing the loss of momentum thereby leading to attenuation of the transmitted
shock wave.

Mortazawy et al. (2019) conducted experimental investigations and numerical simu-
lations of normal shock waves of different strengths propagating inside ducts with rough-
ness. The roughness is added in the form of grooves. The experimental and numerical
findings suggest that effective attenuation of shocks propagating in ducts can be achieved
when roughness in the form of grooves is incorporated. As expected, double-sided grooved
walls are more effective than single-sided grooves in terms of reducing the shock front
speed, hence the strength, and the pressure jump across it. Numerical simulations indi-
cated that the effect of the groove shape is also significant in shock attenuation.

Schematic of behavior of transmitted waves inside grooves is presented in Figure 1.32.
The diffracted, D, and reflected, R, waves are indicated with the corresponding groove
number which produces them after the incident shock wave encounter. In groove 3, the
diffracted shock wave is propagating downward and R4 is reflecting of the right corner
producing R’3. In the second groove the transmitted shock waves are traveling upwards,
and becoming normal to the side walls of the groove. By the third groove, the transmitted
shock wave has exited the groove forming a cylindrical compression wave growing radially
Gongora-Orozco (2010).

1.4.1.3 Shock-wave attenuation by introducing rigid obstacles along the wave
path

The simplest way of obtaining attenuation of a shock/blast wave propagating inside a
straight duct is by introducing rigid obstacles in the shock wave path. Effects on shock
wave attenuation by obstacles have been investigated by numerous research groups and
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among the first to publish results was Dosanjh (1956). Dosanjh performed shock tube
experiments with grids inserted in the path of the shock wave to study the reflected and
transmitted shock waves, using both shadowgraph visualizations and hot-wire anemome-
try. Various grids were used for a range of Mach numbers, and choking effects by obstacles
in supersonic flow were explained.

The use of wedges to dissipate the energy and momentum of a flow is studied using
numerical analysis by Skews et al. (1998). The barrier geometry used is based on the
fact that flow resistance, and reflected shock strength, are less for a triangular body with
the body positioned with its apex facing upstream than when the base faces the flow as
depicted in Figure 1.33(a). At the first instance when the shock wave enters the array,
multiple weak reflections are produced by the encounter. The wedge arrangement traps
the transmitted shock wave. The wave exits the array of wedges, strong internal reflections
are produced. The following parameters were taken into account in the arrangement of
the wedges. First is the angle of incidence of the wedge: 10◦, 20◦ and 30◦ angles, secondly
the size of the triangle arrangement in the duck blockage. The distance between each row
of elements is varied; and finally, the influence of staggering the elements was taken into
account. Two incident shock Mach numbers are studied Ms = 1.5 and 3. The reflected
shock wave with Mach number Ms = 3 moves slowly upstream because of the supersonic
flow behind it, the speed of the shock will decelerate forming a stable stationary shock
further upstream. When the horizontal distance between the wedges is shortened a
reduction of 8% on the shock strength is achieved for Ms = 3. The time for the reflected
shock wave to expand and strengthen at its edges is minimized in this case, leading to the
weakening of the shock. The effect of volume of the channel on shock wave attenuation
has been investigated. By increasing the volume ratio from 5:4 to 2:3 they observed a
significant reduction in the amount of disturbances egressing with the transmitted shock
wave. It was stated that the optimum design of the trap by wedges is by combining the
reduction and transmission characteristics of the following parameters: angle of incidence
of the wedges (10◦, 20◦ and 30◦), area ratio of the duct and distance between maze section.

Abe & Takayama (2001) studied the attenuation of a shock wave with Ms = 1.2 in
a two and three-dimensional flow. The corresponding geometries for the two- and three-
dimensional flows were 20 by 60 mm cylinders and 22 mm diameter spheres. The spheres
were arranged in a staggered equilateral formation. The blockage ratio of the test section
with this arrangement is 54% and 63% with the cylinder configuration. The array of
spheres shows a better attenuation of pressure history than that for the cylinders. This
study concluded that expansion waves formed by the interaction of waves with the sphere,
overtake the transmitted wave more efficiently than with the two-dimensional cylinder
array, even though the blockage ratio is higher in the case of the cylinder.
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(a) Flow around a triangular bar

(b) Maze of triangular rods in the path of a shock
wave

Figure 1.33: Array of triangular geometries for shock wave trapping used by By Skews
et al. (1998)

Chaudhuri et al. (2012) and Chaudhuri et al. (2013) provided a detailed numerical
study of shock wave propagation through different arrays of solid obstacles and its de-
gree of attenuation. Obstacles of cylindrical, square and triangular shape were placed
inside a shock tube using array-matrix arrangements in both non-staggered and stag-
gered columns. After the shock propagates through the obstacle arrays, time-averaged
pressures and velocities behind a wide range of array combinations were compared with
each other. The results showed that backward-facing triangular obstacles placed in a
staggered array pattern were the most efficient method among the ones investigated to
attenuate the incident shock.

In Chaudhuri et al. (2012), a comprehensive analysis of the interaction of the moving
shock through an array of cylinder matrix is then conducted by varying the number of
cylinders in the matrix block while keeping the same opening passage. The relaxation
length between two adjacent columns of cylinders is kept identical to study uniquely the
effect of surface-to-volume ratio of the obstacle matrix. The two cases adopted in this
study are shown in Figure 1.34. Their study showed that the pressure attenuation is
marginally higher for case 1. The computed shock speed in the presence of obstacles was
compared with the incident-shock speed. Because of the presence of the array of cylinders,
the transmitted incident shock wave experiences retardation and they observed little or
no differences in terms of shock-speed reduction between the two test cases. Their study
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Figure 1.34: Schematic representation of arrangement of obstacles for case 1 (top) and
case 2 (bottom), with Ms = 1.4, Lx = 400 mm, Ly = 46.7 mm, D1 = 4 mm, D2 = 2.67
mm, and λb = 6 mm. Chaudhuri et al. (2012).

reveals that although the average-pressure attenuation is less pronounced for case 2, the
shock speed is more or less equivalent for both cases. The effect of surface-to-volume
of the obstacle matrix is mainly manifested in terms of later stage evolution of the flow
field farther downstream to the obstacle matrix, and the influence of different geometrical
shapes on shock-wave attenuation is very small for higher percentage of open passage.

In Chaudhuri et al. (2013), shock-wave interaction with matrices of different geomet-
rical obstacles and its attenuation are numerically analyzed. Based on the previous study,
Chaudhuri et al. (2012), comparison among the different geometrical shapes of obstacles
was carried out for low percentage of open passage (ε = 0.25, where ε is defined as the
ratio of the available flow area to the total cross-sectional area). In total seven cases were
used and are depicted in Figure 1.35.

From their study Chaudhuri et al. (2013) have drawn important conclusions. At low
ε of the barrier configuration, the obstacles geometry influences the shock mitigation,
among the non-staggered formulations, approximately 13% of reduction in the transmit-
ted shock velocity is achieved with reverse triangular prism matrix arrangement, C4. It
was also shown that the staggered formulations of obstacles favor shock-wave attenua-
tion. Their results also reveals that the most effective configurations, in terms of shock
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Figure 1.35: Numerical schlieren for the different test cases used by Chaudhuri et al.
(2013), TS: transmitted shock, RS: reflected shock, C1, C2, C3, C4, C1S , C2S , C4S , from
top to bottom.

attenuation, is the reverse triangular prism, with staggered arrangement, C4S , with about
21% reduction in the transmitted shock velocity and highest pressure mitigation.

Wan & Eliasson (2015) were inspired by the study of Chaudhuri et al. (2013) to present
numerical simulations using a different obstacle pattern. Instead of using a matrix of
obstacles, an arrangement of square or cylindrical obstacles placed along a logarithmic
spiral curve was investigated. The results showed that a logarithmic spiral can be used to
attenuate a planar incident shock wave. The results indicated also that the logarithmic
spiral decreases the pressure and delays the shock velocity downstream of the obstacles for
certain ranges of Mach numbers. Additionally, the reflected shock is effectively delayed
but the pressure ratio remains relatively high. Therefore, when the reflected shock is
fully developed, much later than the time span shown in the presented simulations, it
may catch up with the reflected shocks in the other simulated cases. It might still be
a viable solution to use a logarithmic spiral compared to matrix arrangements, since
viscosity will act on the flow, and the longer the shock wave is delayed, the more it will
dissipate Wan & Eliasson (2015).
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1.4.1.4 Shock-wave mitigation using non-rigid barriers

Water has the potential to be successfully used to attenuate shock waves for several rea-
sons. Water is relatively easy to obtain and environmentally friendly. It has a large heat
capacity, where a large amount of heat could be absorbed by water when mitigating the
blast wave. On the other hand, taking account of the environment inside an underground
mining structure, solid barriers are hard to install in the narrow channels and may block
the lifesaving path during an explosion if collapsed. In comparison, a large bulk of water
will be broken into small droplets when impacted by a shock wave, but it will not block
the channel due to its fluidic properties. Water can be used in different forms, such as
mists, sprays and bulk, to mitigate shock and blast waves Kailasanath et al. (2002).

Chauvin et al. (2011) compared the pressure changes caused by the propagation of a
planar shock wave in a gas, gas with solid obstacles and gas with liquid obstacles. The
three cases are schematically summarized in Figure 1.36. In the homogeneous gaseous
medium, across a shock, there is always an extremely rapid, abrupt and almost discontin-
uous increase in the shock wave characteristics found to be quasi-identical at any point
of the flow (at S1 and S2) as represented in Figure 1.36(a). When an incident shock
wave (Isw) interacts with solid particles medium, the pressure traces obtained upstream
(S1) and downstream (S2) of the interaction show, respectively, a reflected shock wave
(Rsw) that goes back upstream and a refracted shock through the solid particle medium
leading to a weaker transmitted shock wave (Tsw) which propagates downstream with
an overpressure peak which decreases as the shock advances as shown in Figure 1.36(b).
The most complicated case is depicted in Figure 1.36(c), in the case of a liquid droplet
medium, the two-phase shock wave scheme is modified. It does not consist of a shock
directly followed by a relaxation zone in which the velocities of the two phases relax to
the mixture velocity and the pressure rises directly to a maximum. Here, the shock is
followed by rarefaction waves and by a pressure build-up leading to the same equilibrium
state. This tendency can be attributed to the process of atomization of droplets generally
divided in the literature into two stages Chauvin et al. (2011). According to Guilden-
becher et al. (2009), during the first stage, the droplets deform, increasing the exchange
surface between gas and droplets. In the second stage, the deformed droplets are broken
into smaller ones. The diminution of the mean diameter increases the exchange surface
between the gas phase and the dispersed phase. Moreover, the momentum and heat
exchanges between the two phases increase with the surface area of the water medium
leading to a diminution of the velocity, pressure, and temperature of the carrier gas.
Therefore, the fragmentation process, which induces an increase in the exchange surface,
leads to a diminution of the pressure and gas velocity due to momentum exchanges until
the stabilization of the global exchange surface area. When the droplets reach a stable
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(a)

(b)

(c)

Figure 1.36: Schematic diagrams illustrating the propagation of a planar shock wave in
a gas (a), in a dilute two-phase solid-gas mixture (b) and in a dilute two-phase liquid-gas
mixture (c), associated with the pressure traces recorded upstream (S1) and downstream
(S2) of the interaction. Isw, Tsw, and Rsw represent the incident, the transmitted shock
wave in the two-phase mixture, and the shock wave reflected off the cloud front respec-
tively. By Chauvin et al. (2011).

state, the classic behavior of the interaction between a shock wave and a solid medium
takes place: the velocity and temperature relaxation processes continue resulting in a
pressure rise to reach the equilibrium value. Finally, as the atomization of the droplets
generates rarefaction waves following the shock wave, these waves may catch up with the
shock wave reducing the pressure induced inside and after the water cloud Chauvin et al.
(2011).

Several investigations have shown that water spray under certain circumstances can
reduce explosion effects considerably. The most important studies that were performed
in this respect are the studies performed by Acton et al. (1990), Bjerkelvedt & Bjarkhaug
(1991), Thomas & Brenton (1993), Catlin et al. (1993), Wingerden et al. (1995) etc.

Jourdan et al. (2010) experimentally investigated the mitigation of shockwave passing
through a cloud of water droplets. Experiments were conducted using a vertical shock
tube and water droplets were carefully controlled to be 120, 250 and 500 µm in diame-
ter. The attenuation of the shock was characterized by reducing the peak pressure after
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passing through the water cloud. Results showed that the attenuation is negligible for
droplets of 120 µm, while droplets of 500 µm significantly reduced the peak pressure
behind the transmitted shock by 65%. Chauvin et al. (2011) conducted similar exper-
iments using different heights of water droplets clouds while the droplet diameter was
fixed. It has been shown that the major factor of shock wave mitigation is the exchange
surface area of droplet atomization, which is defined as the effective area of the droplets
crossed by the shock wave at a given location, non-dimensionalized by the cross-section
of the shock tube. Cylindrical water obstacles have also been studied experimentally by
Igra & Takayama (2003). Water cylinders were placed in a tandem configuration and
results were presented in terms of acceleration terms and drag coefficients. The tandem
configuration was also compared to that of a single water cylinder and results showed
that the single water cylinder behaved virtually the same as the front cylinder in the
tandem case. The rear cylinder experienced less displacement, less acceleration and had
a lower drag coefficient compared to the front cylinder. Recently Wan et al. (2019) have
studied the possibility of attenuating shock waves by using a water spray obstacles. The
transfer of kinetic energy from the shock-induced flow to the water cylinders has been
quantified and it was found that the transfer rate of kinetic energy, in the early stage,
from the shock-induced flow to the water cylinders, increases as the cylinders number is
increased. According to their study, water drops have the potential to efficiently atten-
uate shock waves given the important amount of heat that could be absorbed by water
when mitigating the blast wave. In their study, shock attenuation effects of the water
spray have been compared to solid obstacles devices using the same geometrical setup.
Results showed that water like cylinders have a better capability to absorb the shock
energy compared to solid obstacles of the same blockage area.

1.4.2 Shock-wave mitigation using protective barriers

Protective barriers are widely used for attenuating shock waves. The presence of a pro-
tection barrier ensures the easy protection of buildings and people against the heating
effects of an explosion and the projection of fragments. However, protection from the
effects of overpressure is not guaranteed simply by the presence of a physical protection
barrier of unspecified form. Indeed, the interaction of a shock wave with a structure is
difficult to predict and depends on many parameters.

Sebastien (2013) summarized the precedent works of Allain (1994) and Borgers (2010)
in which they proposed different configurations shown in Figure 1.37. Allain (1994) com-
prised barriers with two inclined slopes of 45◦ without a flat crest and using a height of
H = 1.5 m ”Merlon N◦1” in Figure 1.37(a). These tests demonstrated that a barrier,
according to its geometry and form factors, can lead to various flow modes. The pro-
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(a) Merlon N◦1 Allain (1994) and
Borgers (2010)

(b) Merlon N◦2 Borgers (2010)

(c) Merlon N◦3 Borgers (2010)

Figure 1.37: Schematic diagrams illustrating the configurations studied by Allain (1994)
and Borgers (2010). schema reproduced from Sebastien (2013).

tective barrier considered in this case accentuated the positive overpressure of the shock
wave and thus did not show a protective effect. These results have been confirmed by
the simulations of Borgers (2010), who noted that the relaxation on the rear face of a
Mach stem results from reflection on the front face or from an incident wave (for a regular
reflection) for certain configurations. This can lead to an accentuation of the reflection
of the shock wave on the ground downstream of the obstacle (according to the nature of
the wave and the angle of inclination of the wall). The experimental work of Allain and
the numerical studies of Borgers have obtained different findings for this type of structure
without a thickness at the top and with one or two 45◦ slopes. These studies have shown
that the reflection on the upstream side (facing the explosion), regular or Mach reflec-
tion, is followed by rarefaction waves, the reflection is continued on the downstream face
(rear), which accelerates the front and the reflection on the ground, thus increasing the
pressure. The evolution of the pressure throughout the propagation of the shock wave
does not obey a linear function in terms of the distance from the centre of the explosive
charge. Therefore, the protective effects of the barrier are dependent on its geometry
(e.g., length and thickness at the top corners of the upstream and downstream sides).
Recently Sochet et al. (2017) studied the influence of the protective barriers geometry
on the propagation of shock waves. They designed the barriers geometrical configura-
tions and dimensions in such a way to analyze several physical phenomena (reflection,
relaxation and recombination of shock waves) as well as the protective effect of protective
barriers according to their geometry. Their study reveals that the ideal protective barrier
is a parallelepiped with significant height and thickness. According to them the optimal
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dimensioning of a protective barrier thus depends on the available resources and dimen-
sions of the configuration of interest (position of the zone to be protected with respect to
the blast load).

Figure 1.38(b) shows the phenomenon of blast wave recombination behind the barrier.
This phenomenon, generally, occurs for small barrier (small length), where the waves from
the side faces are combined with that from the top, leading to the formation of a Mach
stem and an increase in pressure downstream of the barrier. All of these studies converge
on the same conclusion, a protective barrier is only effective under certain conditions
and according to predefined parameters, mainly: charge mass (W), height of barrier (H),
thickness at crest of obstacle (e), angle of inclination of the barrier faces (α) and distance
between centre of charge and the front face (d) as shown in Figure 1.38(a).

A detailed review of different suggestions proposed for shock/blast attenuation dis-
cussed above is given in the interesting review of Igra et al. (2013). The Various methods
suggested for achieving shock/blast attenuation included introduction of abrupt geomet-
rical changes (in the flow direction or transverse to the flow cross-section) in the conduit
through which the shock/blast wave propagates, adding roughness to the conduit walls,
introducing small solid particles (dust) or liquid droplets to the gaseous phase. Other
options are introduction of rigid obstacles (barriers) having different shapes and orien-
tations along the considered wave path. The choice of a suitable option for a specific
case depends on both, the considered flow field geometry and the availability of mecha-
nism/resources needed for introducing the needed obstacles, i.e., dust/droplets or rigid
barrier(s) to the protected site Igra et al. (2013).

1.5 Shock-wave focusing

A shock wave the shape of which is concave to the direction of its propagation can
converge to a focal region. The focusing of shock waves produces localized high pressures
and temperature in the focal region, and the shock emerges from the focus with the front
geometry fundamentally changed. Understanding the mechanisms of focusing is critical
because converging fronts occur frequently, for example when passing through nonuniform
media or reflecting from curved surfaces. The high pressures localized near the focus
may be beneficial, as in shock wave lithotripsy, or detrimental, as in superbooms from
supersonic aircraft. The change in shock geometry downstream of the focus has significant
implications for shock stability, sonic boom propagation. Examples of application of shock
wave focusing include extracorporeal shock wave lithotripsy (ESWL). In this treatment
for kidney stone disease, weak converging shock waves are generated in water outside the
patient’s body and shaped to focus on the stone. In the focal region, the shock pressure
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(a)

(b)

Figure 1.38: (a): Schematic diagram of a protection barrier, W: charge mass, d: distance
between centre of charge and the front face (m), e: thickness at crest of obstacle (m), H:
height of barrier (m), α1: angle of inclination of front face, α2: angle of inclination of
rear face, (b): blast wave recombination behind the barrier. By Sochet et al. (2013)
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Figure 1.39: Numerical schlieren pictures for Ms = 1.35 at different time instants. C:
compressive acoustic waves, I: incident shock, R1: primary reflected shock, L1: primary
slipstream, TP1 and TP2: first and second triple points, F: new reflected shock, S1:
secondary slipstream, W: shock at the wall, M: main reflected shock, J1 and J2: primary
and secondary jets. By Shadloo et al. (2014).

increases to about 20 MPa, sufficiently strong to fragment the stone. Another example
consists to use the localized high pressures and temperature in the focal region to initiate
detonations and self-ignition in transport and power systems, such as liquid propellant
rocket engines and diesel engines.

The reflection of a planar shock over a concave surface has attracted the interest
of many researchers during the past few years because this type of reflection yields a
truly complex and unsteady flow. Guderley (1942) was the first to derive the self similar
solution for symmetrically converging cylindrical and spherical shock waves and showed
that the pressure at the center of convergence becomes infinite. The study of Guderley is
followed later by Perry & Kantrowitz (1951) who produced the first schlieren images of
the focusing process. Intending to shed more light on the shock focusing phenomena, a
large amount of work has been done using different reflector profiles such as, a log-spiral
duct by Inoue et al. (1995), a cavity with symmetrically placed plane walls by Bond et al.
(2009) and symmetrical cavities with curved walls, by Sturtevant & Kulkarny (1976),
Izumi et al. (1994), MacLucas et al. (2020). etc. The shock focusing was successfully
applied to disintegration of kidney stones, known as extracorporeal shock wave lithotripsy
(ESWL), by Russel (1986) and Sturtevant (1989). The phenomenon of self-ignition and
deflagration initiation under focusing conditions has been widely studied. Borisov et al.
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(1988) showed that the application of the curved end-wall instead of the planar wall gives
rise to a significant decrease of the intensity of the shock wave that causes self-ignition.
Chan et al. (1989) revealed that the realization of deflagration and detonation modes
of ignition in the highly sensitive oxygen-hydrogen mixture depends on incident-shock
Mach number. Gelfand et al. (2000) used different focusing elements shapes in order to
investigate their effects on the flame fronts configurations.

Numerical schlieren pictures, presented by Shadloo et al. (2014), highlighting the
shock focusing process from a cylindrical concave surface is shown in Figure 1.39.

1.6 Modeling of shock-wave propagation

The problem of determining the motion of shock waves has received considerable attention
over the last several decades. The development of simplified models, able to estimate the
position, shape, and strength of a shock, is of prime importance in several domains such
as the pyrotechnics industry, explosion hazards, or noise annoyance among others. The
ideal method should deal with the interaction of shock waves with complex obstacles and
provide an accurate estimate of the overpressure peak in a reduced computation time.
Among the models applicable to sustained shock waves, we can cite the Geometrical
Shock Dynamics and Kinematics models.

1.6.1 Geometrical Shock Dynamics model of Whitham

In 1957, Whitham published a hyperbolic model called geometrical shock dynamics
(GSD) (Whitham 1957, 1959) able to estimate at a moderate cost, but with reason-
able accuracy, the propagation of a shock interacting with geometrical elements. This
model consists in on the decomposition of the shock front into elementary ray tubes of
radius, of elementary section, A, evolving at the local speed, M. Assuming small changes
in the ray tube and neglecting the influence of the post-shock flow on the shock, a simple
relation linking the local curvature and velocity of the front, known as the A–M rule,
is obtained. The successive positions of the shock are given by a set of curves α = cst,
shown as full lines in Figure 1.40. The orthogonal trajectories of this set of curves, called
rays, are represented by curves β = cst and are drawn as dashed lines. The coordinate α
and the arrival time of the front, t, are related by α= c0t for a single pass front. Since c0
is constant, α is also called a pseudo-time for the sake of simplicity. Geometrical relations
in the local coordinates of the shock, (α, β), are straightforward (Whitham 1957):

∂θ

∂β
− 1
M

∂A

∂α
= 0 (1.4)
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∂θ

∂α
+ 1
A

∂M

∂β
= 0 (1.5)

where θ is the direct angle between the (Ox) axis and rays. Two neighboring rays
delimit a ray tube of cross-sectional area A. It is worth noticing that, since A measures
the distance between rays, the curvilinear abscissa along the shock, s, is determined by
the differential relation: ds = Adβ. By considering a ray tube as a channel with rigid
walls, a simple law linking A to M closes the system. This relation, called the A-M rule,
is obtained from the 1D Euler system with varying cross section Ridoux et al. (2019):

1
A

dA

dα
+ Mλ(M)
M2−1

dM

dα
+h(M)Q= 0 (1.6)

where,

λ(M) =
(

1 + 2
γ+ 1

1−µ2

µ

)(
1 + 2µ+ 1

M2

)
, h(M) = γ+ 1

2
µ(µ−1)
M2−1

and µ is the post-shock Mach number. The term Q contains all the post-shock flow terms.
Whitham chose to neglect this term under the assumption of the smallness of post-shock
effects. The resulting equation:

1
A

dA

dα
+ Mλ(M)
M2−1

dM

dα
= 0 (1.7)

Finally, the GSD model is composed of the geometrical system (1.4, 1.5) and the A-M
relation 1.7.

Although developed for strong shocks, many studies showed that the Whitham model
gives fairly good results even for weak shocks. It has been investigated for different
problems, in the past, for cases of converging flows (Schwendeman & Whitham 1987,
Schwendeman 2002), propagation through non-uniform media Catherasoo & SturteVant
(1983) and for outdoor propagation Besset & Blanc (1994). Nevertheless, the model
suffers from a limitation for the problem of shock diffraction over a convex wall. Skews
(1967b) found that the theory under predicted weak shock wave propagation and over
predicted that of strong shock waves. The Mach number of diffracting weak shock waves
were predicted to quickly vanish to Ms = 1 whereas, in reality, this takes significantly
longer to occur. For sufficiently weak shocks, no solution of the GSD model exists up to
the wall above a given deflection angle. While the experimental studies of Skews (1967b)
showed that the diffracted shock front should still exist at the wall, even for weak shocks
and at large deflection angles.

Some modifications of GSD were proposed. Best (1991) proposed an extension to
post-shock flow, T. V. Bazhenova & Zhilin (1979) proposed another treatment of the
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Figure 1.40: 2D shock wave propagation in the geometrical shock dynamics theory. The
solid black lines are the successive shock positions and correspond to α coordinates. The
dashed blue lines are the rays and correspond to β coordinates. θ is the direct angle
between the (Ox) axis and rays. Rays delimit ray tubes of area A. By Ridoux et al.
(2019).

wall conditions. The proposed modifications are able to recover the inflection point
experimentally observed for strong shocks, but do not remove the limitation.

1.6.2 Kinematic model

Another simplified model for shock front propagation is the kinematic model. The kine-
matic model was initially expressed by Wright (1976) in 1974 for a perfect gas. As is the
case with GSD, it describes only the leading shock front. It consists in assimilating the
shock wave to a singular surface. This mathematical point of view makes it possible to
define compatibility relations at the level of the front, and to give an intrinsic description
to the movement of the surface. This model is based on a combination of the 3D Euler
equations applied in the vicinity of the shock and the Rankine-Hugoniot relations at the
front. This allows the model to take into account the cross-flow at the shock, and no
assumption on the shock strength is necessary, which is a desirable property. The model
was studied in detail for an ideal gas by Sharma & Radha (1995) in 1994, and extended
to the case of real gases by Pandey & Sharma (2009) in 2009. The analysis of this model
is however limited to essentially theoretical considerations.

As the shock is considered as a singular surface moving with its normal velocity Un.
The shock position, xs, is then defined by

dxs
dt

= c0Mn (1.8)

The equation for the Mach number variation is given by:
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dM

dt
=−c0

M2−1
λK(M)

(
∇·n+fK(M)(∂nP )

P0

)
(1.9)

where ∇·n is the local curvature of the front and:

fK(M) = (γ+ 1)2

2γ(2γM2 + 1−γ)

The term (∂nP ) = (n · ∇P ) contains the post-shock flow effect. For the kinematic
model, the λ function reads,

λK(M) =
(γ+ 1)

(
2(2γ−1)M4 + (γ+ 5)M2 + 1−γ

)
(2γM2 + 1−γ)(2 + (γ−1)M2)

After some calculations we get:

dn

dt
=−∇U +n(n ·∇U) =−c0∇SM. (1.10)

Under the hypothesis that the post-shock flow influence over the shock (n · ∇P ) is
known, the kinematic model is thus composed of equations 1.8, 1.9, and 1.10.

1.6.3 Taking into account transverse flow in Whitham’s A-M
rule

Oshima et al. (1965b), Oshima (1965) proposed a generalized theory of GSD which in-
cludes shear effects. The correction of the A-M relation suggests a kind of interaction
between ray tubes which transposes into a transverse variation along the shock curve.
The study of this extension is limited to only a linearized solution which shows some im-
provement in the solution. Indeed, the correction increases the wall Mach number, which,
in the range from M0 = 1.5 to 2.8, is in better agreement with experiment. Nevertheless,
the modified A-M relation is complex to solve in general and there is no indication that
the limitation is removed. Furthermore, the transverse terms will modify the behavior
of the model for compressive waves (concave corner), which may lower the quality of the
model. Ridoux et al. (2019).

Ridoux (2017), Ridoux et al. (2019) proposed modifications of the GSD and Kinematic
models in order to remove their limitations for expansive shocks. This modification
consists in adhoc modeling of a transverse flow along the shock in the A-M relation. This
new closure is fitted against experimental observations, which ensures, by construction, a
correct behavior for expansive shocks. In the compressive zones, in particular at the level
of the shock-shocks, the A-M classic relation is applied. These models systematically lead
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to the formation of a Mach stem, even for a weak shock for which the reflection would be
theoretically regular. This results in a significant overestimation of the intensity of the
shock wave when reflecting a weak shock. According to Ridoux (2017) this limitation can
be removed by introducing a diffusion term in the A-M relation, for example, a term which
would be all the more active since the shock would be weak. Another perspective would
be to treat the boundary condition of the impact on the wall of the obstacle differently.

1.7 Scope of the present work

Based on the above discussion of the existing literature, the need for a better understand-
ing of the different physical phenomena present during the interaction of a shock wave
with obstacles of complex geometries was established. Special attention was paid to the
propagation of shock waves in confined areas, given the complex flow and shock-wave
patterns following an initially planar shock wave propagating through ducts.

Attenuation of shock waves is of importance for many practical applications, such
as blast wave propagation through tunnels, unintentional industrial accidents, and high-
speed aerospace structural mechanics. In some scenarios, abrupt changes in channels
sections may provide a cost-effective and easy-to-implement attenuation solution. Sud-
den changes in tunnels sections allow for passive protection of people and structures
without the need for expensive integrated technology. These changes can either amplify
or attenuate the shock wave effects depending on their configuration, arrangement and
the shock wave direction. Therefore, it has become of vital, topical interest to understand
the different mechanisms leading to shock mitigation.

The following work intends to highlight the flow and the shock-wave patterns prop-
agating in confined areas, using Direct-Numerical simulations as the primary tool to
generate the data. The data are then analyzed with the intention of shedding some
light on some scarce fundamental questions, concerning the impacts of various physical
parameters on the phenomena. In particular we aim to:

1. Understand the mechanism and the process of vorticity production and the influence
of different physical parameters on the rate of vorticity production.

2. Investigating the implications of different physical parameters in determining dif-
ferent flow and shock-wave patterns resulting from the propagation of shock waves
through confined areas with complex geometries.

3. Determine the different physical and geometrical parameters leading to an optimal
attenuation of shock waves in channels.
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1.8 Outline of the dissertation

The chapterwise organizational overview of the thesis is given below:

Chapter 2: This chapter starts with the description of the governing equations in-
cluding the linear equation of transport, as well as the nonlinear Euler and Navier-Stokes
equations. In addition, the point-value multiresolution method to perform dynamic space
adaptivity is explained together with its relevant elements. The immersed boundary (IB)
method, which facilitates to conduct simulations over non-conforming grids is also pre-
sented. Moreover, a computer graphic technique called ray tracing is elaborated, which
complements the IB method to localize any complex solid model in the Cartesian grids.

Chapter 3: In this chapter, Shock-wave diffraction over double concave cylindrical sur-
faces has been numerically investigated at different flow regimes by varying the incident-
shock-wave Mach number from Ms = 1.6 (transonic) to Ms = 4.5 (super- sonic regime).
The main objective of this study is to better understand the dynamics of shock-wave
structure and the associated wave configurations. In addition, an approximate universal
relation is derived, which predicts the transmitted-shock-wave trajectory as a function of
the incident-shock Mach number in the range of 1.6<Ms < 4.5, for specific heat ratio of
1.4 and concave surface radius of 50 mm. The results are published in: Acta Astronautica
(Brahmi et al. 2020a).

Chapter 4: As a complement to the previous chapter, this chapter deals with the
unsteady aspect of turbulent flow structures generated by a shock-wave diffraction over
double cylindrical wedges, with initial diffracting angle of 75◦. The vorticity produc-
tion is quantified for different incident-shock-Mach numbers, ranging from transonic to
supersonic regimes. Unlike previous studies where only the total vorticity production
is evaluated, this chapter offers more insights into the spatio-temporal behavior of the
circulation by evaluating the evolution of the instantaneous vorticity equation balance.
The shock strength is also evaluated in this chapter by computing the dynamic as well as
the static pressure impulses and the normalized overpressure. The results are published
in: Acta Astronautica (Brahmi et al. 2020b).

Chapter 5: In Chapter 3, an approximate universal relation is derived, which predicts
the transmitted-shock-wave trajectory as a function of the incident-shock Mach number
for a fixed specific heat ratio of 1.4 (air as working gas). In this chapter the geometry
as well as the shock-wave Mach number are kept constant such as Ms = 1.6, while the
working gas is changed. Four gases ,with different molecular weights, specific heat ratios,
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and acoustic impedances in addition to the air, are used as working gases, namely, He,
Ar, CO2 and SF6. The relation proposed in Chapter 3 has been generalized to different
working gas having different specific heat ratios. The results are submitted to: Shock
waves Journal.

Chapter 6: This chapter deals with a numerical study of shock-waves propagation and
their attenuation in channel flow having different heights and exhibiting a hollow circular
cavities with different depths and diffraction angles inside. Specific attention was paid
to the mitigation of the shock waves propagating in this kind of channel. An optimal
configuration with channel position/height and a cavity depth leading to an efficient
pressure attenuation is found in this chapter. The results are published in: Theoretical
and Applied Mechanics Letters.

Chapter 7: The summary of the research work undertaken along with the concluding
remarks and the perspectives of the study are given in this chapter.
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Governing equations and numerical
methods

Highlights

• Fully compressible Navier–Stokes equations in their conservative form are pre-
sented.

• The point–value multiresolution numerical method is described with the es-
sential details that include the tree structure, multiresolution representation,
etc.

• Inviscid and viscous fluxes are computed using a fifth-order weighted essen-
tially non-oscillatory (WENO5) scheme and a fourth-order central difference
formula, respectively.

• Time advancement is ensured using a third-order Runge-Kutta method (RK3).
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Abstract This chapter presents the governing equations and the core numerical meth-
ods used throughout the thesis. The point–value multiresolution method is described
with the essential details that include the tree structure, multiresolution representation,
thresholding, etc. The semi–adaptive multiresolution technique empowers the solver to
capture small flow details by dynamically adjusting the mesh resolution. Additionally,
the immersed boundary in the form of ghost–cell method together with the ray tracing
technique are given facilitating the study of flow around complex obstacles.

2.1 Governing equations

2.1.1 Advection scalar equation

The advection equation (LeVeque 1992) is one of the simplest forms of partial differential
equations (PDE) describing the advection of a scalar quantity into the medium. It is
given by

∂u

∂t
+v ·∇u= 0 (2.1)

where u is a given quantity and v is the velocity vector.

2.1.2 Euler equations

The compressible Euler equations for multi-dimensional compressible inviscid flows can
be written in conservative form as

∂U
∂t

+∇·F(U) = 0 (2.2)

where U is the conservative variable vector and F(U) is the inviscid flux, given by

U = [ρ,ρv,ρE]T (2.3)

F(U) = [ρv,ρv⊗v+pI,v(ρE+p)]T (2.4)

where ρ, v, p and E are the density, velocity vector, pressure and total energy per unit
of mass, respectively. The equation of state for ideal gas closes the system according to:

p= (γ−1)ρ
(
E− v2

2

)
(2.5)

with the specific heat ratio γ = 1.4 for air.
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2.1.3 Navier–Stokes equations

The Navier–Stokes equations can be obtained by adding the viscous terms to the Euler
equations as

∂U
∂t

+∇·FI(U) =∇·FV (U) (2.6)

where U is the conservative variable vector and FI(U) and FV (U) are the inviscid and
viscous flux tensors, respectively, given by

U = [ρ,ρv,ρE]T (2.7)

FI(U) = [ρv,ρv⊗v+pI,v(ρE+p)]T (2.8)

FV (U) = [0, τ, τv+λ∇T ]T (2.9)

where ρ, v, p, T , λ and E are the density, velocity vector, pressure, temperature, thermal
conductivity and total energy per unit of mass, respectively. The viscous stress tensor is
defined by

τ = µ
[
∇⊗v+ (∇⊗v)T − 2

3(∇·v)I
]

(2.10)

µ denotes the dynamic viscosity, and follows the Sutherland’s law as

µ= µref

(
T

Tref

)3/2
Tref +S

T +S
(2.11)

here, µref and Tref are the reference viscosity and temperature, and S is the Sutherland
temperature. The equation of state for ideal gas closes the system as

p= (γ−1)ρ
(
E− v2

2

)
(2.12)

with the specific heat ratio γ = 1.4 for air.
The inviscid and viscous flux computations are performed using a classical fifth–order

WENO and a fourth–order compact central differencing schemes, respectively along with
the Roe scheme for flux splitting. While explicit third–order TVD Runge–Kutta (RK3)
scheme is employed for time advancement. The details of these numerical schemes are
presented in Appendix A.

2.2 Multiresolution method

The idea of multiresolution analysis was first presented by Mallat (1989), and further
extended to point-value and cell-average representation of data by Harten (1993, 1995).
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A brief description about the general theory of wavelet and the multiresolution analysis
can be found in Appendix B.1.

The basic element of the multiresolution analysis is to represent the data on the finer
grid as data on the coarser grid, plus a series of differences at different levels of the grid.
These differences are smaller in regions of smooth solution, and higher otherwise.

2.2.1 Tree structure

In this part, the graded tree structure of the point–value multiresolution is explained
along with its relevant terminology:

• A tree structure, as the name suggests, has a root, a body and leaves. The connec-
tivity between the root and the leaves is ensured via the body.

• The root is the basis of the tree, which corresponds to the layer 0. And, it has 2d

points, where d denotes the dimension of the problem.

• The nodes are the points of the tree structure, which connect the leaves to the root.
In other words, all the points enclosed by the leaves are considered as nodes.

• The leaves are the top points above which there exist no nodes. These are the only
points where the fluxes are calculated.

• The whole tree structure consists of layers of points lying on top of each other.
There are

(
2l+ 1

)d
points in a grid of level l.

• The grids at any level of a one dimensional domain can be written as

Gl = {xl,i |i= 0,1,2, . . . ,2l} (2.13)

Here, for convenient notations, a specific analogy is used to distinguish some charac-
teristics of the tree structure and the operations performed during the grid adaptation.
They are explained below:

• The point at the beginning and the points at the end of the arrows are called parent
and children points, respectively. As illustrated by the tree structure, presented in
Figure. 2.1, the arrows represent the link between the lower and the upper level
points, which can be identified as a parent-child relationship.

• As it can be seen in 2.2.2 that the even points of the grid are ignored while per-
forming the adaptation. Hence, this peculiarity makes the whole algorithm faster
to some extent, as only the odd points are taken into account.
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Figure 2.1: Schematic diagram of a 1D tree structure with leaves (•), nodes (⊕) and
empty points (◦).

• The parent point with odd index has therefore 2d children points with odd indices
during the grid adaptation operation.

• If a child on the level l with odd index has its detail higher than a prescribed
tolerance, a split operation is performed, creating thereby 2d children (leaf) points
and marking the concerned point as a parent (node) point.

• Inversely, if all children points on the level (l+1) with odd indices have their details
lower than the prescribed tolerance, the combine operation is performed removing
all concerned children points and marking their parent point on level (l) as a child
(leaf) point.

• The uncle points are the neighboring points of the parent point.

The grid adaptation is carried out by performing different operations in between at
each time step. The following points explain the facts of the tree structure along with
some requirements that must be achieved to keep the tree structure graded:

• A coarser level grid can be obtained by removing the points with odd indices from
the finest grid and vice versa.

• The new points are always created or removed in the set of 2d (odd indexed) points.

• One level of security must always be added while executing the combine operation.
In other words, if parent and children points have smaller details than the tolerance,
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only the children points are removed at a time.

• The tree must be maintained perfectly graded. Hence, each leaf point must have
its uncle points as either nodes or leaves.

Since the tree structure changes dynamically depending on the solution, the fluxes
are computed only on the leaves in order to speedup the simulations. The neighbors of
the leaves i.e. node and empty points are physically present in the memory; and they
are taken into account as a part of the WENO stencils. The solution is updated at
the empty as well as at the node points by the means of prediction and/or projection
operators at every Runge–Kutta iteration. Hence, no special treatment is required for
the flux computations in the multiresolution method. In other words, the number of
operations required in the WENO scheme for the fine grid (FG) computations are almost
the same as in the multiresolution method. However, since the spatial distribution of the
grid points is very dense in the case of fine grid simulations, they need significantly more
time to compute the fluxes across the computational domain.

2.2.2 Multiresolution representation

The point–value multiresolution method is described in detail in what follows. Its exten-
sion to two– and three–dimensional cases is made using a tensor-product approach. The
corresponding coefficients are given in Appendix B.2.

The method consists of using two operators, named projection and prediction acting
as a carrier, to move the data in the tree structure from finer to coarser grids and vice
versa. The projection operator is used to estimate the point-values of a function from the
level l+ 1 to l:

Pl+1→l : Ul+1 7→ Ul (2.14)

where Ul is the ensemble of the point data u on level l.
In the case of point–value multiresolution, this operator is always exact and unique.

Furthermore, as given in subsection 2.2.1, the coarser grids are formed by simply removing
the odd points from the finer level of grids. This operator is simply a decimation of the
values from the finer grid, i.e.

Pl+1→l : ul,i = ul+1,2i (2.15)

Inversely, the prediction operator maps the point-values from level l to level l+ 1.

Pl→l+1 : Ul 7→ Ûl+1 (2.16)
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l

l+1

ul12i ul12i1 ul12i2

uli1uli

Figure 2.2: Schematic representation of the projection operator.

The prediction operator is neither exact nor unique, and it interpolates the values from
the coarser grid to the finer one. However, the key requirements of the prediction operator
are: i) it has to be local, and ii) consistent with the projection i.e. Pl+1→l ◦Pl→l+1 =
Id, where Id denotes the identity operator. In other words, the prediction operator
must give back the original value when projecting the predicted values. For the even
values, it returns the same quantity. The odd values can be obtained using a polynomial
interpolation of degree (r−1) from the coarser grid, as suggested by Harten (1995).

ûl+1,2i+1 = I(Ul; l+ 1,2i+ 1)

= ∑s
n=1φn(ul,i−n+1 +ul,i+n) (odd index)

ûl+1,2i = ul,i (even index)

(2.17)

l

ulim1 uli uli1 uli2

ul12i2ul12i

l+1

ul12i1

Figure 2.3: Schematic diagram illustrating the relationship between a child and its parents
and uncles in the prediction operator.

Here, the order r of the multiresolution is associated with the number of uncles s
required for the interpolation by the relation r = 2s. The corresponding coefficients of
different degrees of interpolation are shown below:


r = 2 ⇒ φ1 = 1/2
r = 4 ⇒ φ1 = 9/16, φ2 =−1/16
r = 6 ⇒ φ1 = 150/256, φ2 =−25/256, φ3 = 3/256

(2.18)

For our computations, we have used r= 4. Since the ghost points are added on each level
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of the tree, the polynomial interpolations of the prediction operator are not required to
be modified near the boundaries of the domain.

The difference between the exact values and the predicted ones is called the detail,
which can be written as

dl,i = ul,i− ûl,i (2.19)

Let us note that the details at even points become zero, since the projection and
prediction are just a copy from the finer and coarser grid, respectively. Hence, only the
odd points are relevant for the computation of details. Therefore, from equations (2.17)
and (2.19), one can write

ul+1,2i = ul,i

ul+1,2i+1 = ûl+1,2i+1 +dl+1,2i+1
(2.20)

Here, as per the theory of wavelet, it is possible to observe that the knowledge of
(Ul−1,Dl) is equivalent to the knowledge of Ul, which can be written as

Ul↔ (Dl,Ul−1) (2.21)

Applying this operation recursively on L levels of grids, one gets the point–value
multiresolution transform of UL (Harten 1995):

M : UL 7→ (DL,DL−1, . . . ,D1,U0) (2.22)

The point-value multiresolution method is a smart way of representing the data, since
the detail coefficients are the errors of prediction, which tend to zero when the solution
is regular.

The thresholding operation consists of removing points in smooth regions. Given a
global tolerance ε, a tolerance for each grid εl is defined, and checked against the detail
dl,i

|dl,i|< εl (2.23)

If the relation (2.23) is satisfied, the local data are considered as smooth and can be
removed. The term εl in the equation writes (Harten 1995, Cohen et al. 2003):

εl = 2d(l−L)ε (2.24)

where d is the space dimension and L denotes the highest level. In this work, the thresh-
olding operation is performed using `1 error of the conservative variables.

Finally, the entire multiresolution methodology is briefly presented hereafter in algo-
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rithm 1.

Algorithm 1 Multiresolution algorithm
1: procedure Initialize
2: initialize MR parameters, e.g., minimum (MinL) and maximum (MaxL) grid level,

tolerance (ε)
3: for each leaf on MaxL do
4: set values of u
5: for each point between MaxL to MinL do
6: if node point then
7: perform projection operator to set values of u
8: else if boundary point then
9: initialize boundary conditions

10: procedure Computation
11: for n= 1, Niterations do
12: for each grid point of odd index do
13: compute details on parent points dp and on children points dc
14: if dp < εl and dc < εl then
15: perform combine operation
16: else if any dc > εl then
17: perform split operation
18: if any leaf has a node uncle then
19: perform split (property of graded tree)
20: compute ∆t
21: compute time evolution (Runge-Kutta 3 - WENO5)
22: update grid:
23: use projection operator
24: compute values of u on each non-leaf point
25: compute boundary conditions
26: procedure Output
27: save data
28: release memory

2.3 Direct forcing technique – Immersed boundary
method

The direct forcing technique is one of the methods developed to study the flow around an
obstacle or a group of obstacles embedded in the Cartesian grids. This method extends
the usability of the solver using a simple Cartesian grid, since it does not need to have
conforming grids near the obstacle. The immersed boundary (IB) method term was
introduced by the pioneering work of Peskin (1972) who performed the cardiac mechanics
and the associated blood flow on the Cartesian grids imposing the immersed boundary on
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the flow. Since then, numerous research has been carried out proposing new modifications
and refinements for different flow physics (Fadlun et al. 2000, Iaccarino & Verzicco 2003,
Tseng & Ferziger 2003, Dadone & Grossman 2004, Gao et al. 2007, Ghias et al. 2007,
Kang et al. 2009, Chaudhuri et al. 2011, Schneider 2015). Extensive discussion can be
found in the review paper of Mittal & Iaccarino (2005). The underlying principle of this
method relies on reconstructing the boundary conditions at the interface between the
fluid and solid, where the fluid and the solid are the points embedded in the Cartesian
grids. Out of all variations of the IB method, the one implemented in this work is called
the direct forcing technique based on the ghost cell method.

The first step towards the implementation of IB is to define the grid points lying inside
the solid domain. Based on these points, the ghost points (GP) are flagged, which are
the nearest points to the fluid inside the solid. The image points (IP) are the mirrored
points of the GPs in the fluid, such that these points are normal to the physical interface,
and have the same distance from the interface as the GPs. The essential idea behind IB
technique is to interpolate the flow properties at IPs from their neighboring points (NP),
and reflect them to the GPs, whereby the fluid–solid interface is maintained.

NP3

NP2

IP
BP

NP1

IP

NP1 NP2

NP3NP4

GfGs

GP

GP

Figure 2.4: Schematic depicting the immersed boundary and the associated terms,
whereby (•) and (◦) points highlight the solid and fluid points, respectively, and (•)
represents the image point; the hatched region highlights the actual solid, while the
colored region shows the depth of GP layer.

Figure. 2.4 clarifies the various points and domains schematically. As it can be seen,
the two sets of points enclosed by the fluid and solid domains are flagged with the mask
as,
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Gs = {maski,j = 1 | i ∈ [0,Nx], j ∈ [0,Ny]}
Gf = {maski,j = 0 | i ∈ [0,Nx], j ∈ [0,Ny]}

(2.25)

The number of GPs created depends on the length of the stencils required by the
numerical scheme, which in the current work is 6 points, thereby the GPs are created
up to the depth of 3 points from Gf inside Gs, as shown by the colored part in Figure.
2.4. Each GP has its reflected point in Gf called IP, such that the mid point between
GP and IP lies on the fluid–solid interface represented as boundary point (BP). The
interpolation technique at the IPs is crucial in determining the quality and reliability of
the solution near the wall. For the current method, the solution at IPs are reconstructed
using a bi–linear/tri–linear interpolation from NPs. For a flow variable Q, it can thus be
approximated as,

Q(x,y) = C1xy+C2x+C3y+C4 (2.26)

where C1,C2,C3 and C4 are the weighting coefficients of the four NPs. These weighting
coefficients can be computed by inverting the Vandermonde matrix,


C1

C2

C3

C4

=


x1y1 x1 y1 1
x2y2 x2 y2 1
x3y3 x3 y3 1
x4y4 x4 y4 1



−1
Q1

Q2

Q3

Q4

 (2.27)

In this case, all NPs are found to be inside the fluid. However, it is quite often to
encounter one or more NPs to be in the solid domain (see Figure. 2.4), for which the
flow properties at the BP can be realized as,

QB(x,y) = C1xByB +C2xB +C3yB +C4 (2.28)

Since the velocity at the wall is zero for the no–slip condition, the velocity components
in such case can be found by modifying the weighting coefficient of the Vandermonde
matrix as,


C1

C2

C3

C4

=


x1y1 x1 y1 1
x2y2 x2 y2 1
x3y3 x3 y3 1
xByB xB yB 1



−1
Q1

Q2

Q3

Q4 = 0

 (2.29)

The no–slip condition applied to the pressure makes it to vary with zero pressure
gradient across the wall in the normal direction, hence using the gradient at wall becomes,
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∂Q

∂n
= C1(yBnx+xBny) +C2nx+C3ny = 0 (2.30)

which translates to the Vandermonde matrix as,


C1

C2

C3

C4

=


x1y1 x1 y1 1
x2y2 x2 y2 1
x3y3 x3 y3 1

yBnx+xBny nx ny 0



−1
Q1

Q2

Q3

Q4 = 0

 (2.31)

This can be easily extended to three dimensional problems in the similar way, whereby
the matrix would become of the size of 8×8.

2.4 Ray tracing

Ray tracing technique is a powerful method of rendering a very high quality photo–
realistic images in the computer graphics. The readers are advised to refer to the book of
O’Rourke (1998) for exhaustive details about the ray tracing. The principle of this tech-
nique is adapted to define the mask function required in the use of IB method. As a result,
the ray tracing technique enhances the versatility of the flow solver to accommodate the
complex solid obstacles efficiently.

S1

S2

P1

P2

P3

P4

P6
P5

Figure 2.5: Schematic representation of the ray tracing method.

The basic essence of this method is to superimpose the solid over the grid, and cast the
rays from a far away location to the grid points and to verify the number of intersections
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they make with the solid. This idea makes the technique very flexible, since it enables
the use of any modeling tool, such as AutoCAD, FreeCAD, CATIA, etc., to generate the
complex geometric models of the solid easily. The computational geometry is decomposed
into triangular mesh elements; and are exported in the format of STereoLithography
(STL) from the modeling tool. The STL format includes the vertices and the surface
normals of each mesh element, which are essential to perform the ray tracing operation.

The ray tracing operation is illustrated schematically in Figure. 2.5, where Pn and
Sn denote the query points and source points, respectively. The method comprises some
simple algebraic manipulations to define the mask function, and it can be summarized as
in the pseudo–code 2.

Algorithm 2 Ray tracing algorithm
1: for each grid point P in Gi,j do
2: define line, l, passing through P and source S
3: count= 0
4: for each element, e, in stl file do
5: compute intersection point, PI , of l and a plane containing e
6: if PI lies inside e then
7: count= count+ 1
8: if count is odd number then
9: maski,j = 1

10: else
11: maski,j = 0

However, there are some precautions to be taken while performing the ray tracing.
Having the triangular mesh elements exported from a modeling tool, it is not uncommon
to find a few missing elements, or having some duplicated facets, or misplaced vertices.
Therefore, it is absolutely necessary to use a conditioning tool, such as MeshLab, to get
rid of these inconsistencies, and to obtain a watertight mesh to achieve reliable results.
Moreover, in certain cases, the rays from the source to the grid point could possibly
intersect with either an edge or a corner of the mesh element. In such scenarios, it is
imperative to use a secondary source of ray to confirm the intersection (see P4, P5 and
S2 in Figure. 2.5).

The results (mask function) of the ray tracing code for various complex geometries
are highlighted in Figure. 2.6. Here, the mask function is visualized by small spheres
corresponding to the solid points embedded in the Cartesian grids. As can be seen, even
for a very complex mesh, the ray tracing method exhibits excellent performance.
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Figure 2.6: Ray tracing: CAD stl mesh (left) of a car having 148046 elements, and its
corresponding ray tracing (right) result.

Figure 2.7: 2D shock prism interaction: problem set–up, Ms = 1.3, Lx = 150 mm, Ly =
100, mm θ = 30◦, b= 11 mm. By (Soni 2016).

2.5 Validation

The solver has been previously used and validated for simulating quite complex flow
scenarios such as the shock/obstacles interactions (Soni et al. 2017, 2019, Shadloo et al.
2014, Soni et al. 2017, Soni 2016). The multiresolution code is developed, validated
and used by (Soni 2016, Soni et al. 2017, 2019). Validation tests are given by (Soni
2016), using the classical test cases, where a planar shock–wave is propagated towards a
stationary obstacle. The results are compared with the experimental and numerical data
available in the literature.

2.5.1 2D shock prism interaction

The problem setup of this test case is shown in Figure 2.7 as used by Schardin (1957).
The multiresolution tolerance and the grid resolution are set by varying them until a
satisfactory comparison with the experimental schlieren and the triple point trajectories
have been obtained.

The shock–reflection phenomenon over the prism can be considered as the pseudo–
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Figure 2.8: 2D shock prism interaction: triple point trajectory of the MR solution is com-
pared with the previously reported experimental and numerical data, – Multiresolution,
3 Num. data (Chang & Chang 2000), © Exp. data (Chang & Chang 2000). By (Soni
2016).

Figure 2.9: 2D shock prism interaction: schlieren images are compared of the MR method
(upper) using analytical geometry with the experimental one (bottom) at t = 138µs. By
(Soni 2016).

steady flow, since the prism has a constant angle of incidence along its surface, which
results in the linear trajectory of TP over the reflector. The TP trajectories obtained
with MR method are compared with the experimental and numerical data in Figure 2.8.
As can be seen, a good agreement is found to exist for both TP1 and TP2.

Figure 2.9 highlights the numerical schlieren (upper half) compared with the experi-
mental (lower half) one, and a very good level of flow details are found to be preserved
conforming to the experimental result. (Soni 2016).
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Analysis of shock-wave diffraction
over double concave cylindrical
wedges. Part I: Shock dynamics.

Published in: Acta Astronautica journal

Highlights

• Dynamics of shock diffraction over double concave surface is studied.

• The transition angle is found to be larger on the second surface for high Mach
numbers.

• The flow is seen to be able to retain the past events history for high Mach
numbers.

• A new scaling law for shock-velocity propagation is proposed.

Schematic representation of a double-concave cylindrical surfaces. I: incident shock, SS:
secondary shock, r, r′: reflected shock on the first and the second cylinder respectively, R:
cylinder surfaces radius, TP : triple point.
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A B S T R A C T

Shock-wave diffraction over double concave cylindrical surfaces has been numerically investigated at different
flow regimes by varying the incident-shock-wave Mach number from =M 1.6s (transonic) to =M 4.5s (super-
sonic regime). The purpose of this study is to better understand the dynamics of shock-wave structure and the
associated wave configurations. A mesh-independent solution is obtained and the flow is assessed through
different physical quantities (transition angles, triple points trajectories, wall-pressure and skin-friction dis-
tributions, velocity and shock location). It is found that the transition angles, from regular to Mach reflection,
increase with the Mach number. This phenomenon remains almost the same over both concave surfaces for weak
Mach numbers (up to =M 2.5s ) and becomes relatively larger on the second surface for high Mach numbers. In
terms of shock dynamics, it is found that by increasing the incident incident-shock-wave Mach number to

=M 4.5s , unlike the first reflector, the transition from a single-triple-point (STP) wave configuration to a double-
triple-point (DTP) wave configuration and back occurred on the second reflector, indicating that the flow is
capable of retaining the memory of the past events over the entire process. For the shock velocity, the velocity
deficit is found to be increasing with increase in Ms. A best fitting scaling law is derived, to ensure a universal
decay of the shock velocity depending on the flow parameters.

1. Introduction

The interaction of shock-waves with rigid boundaries has been the
subject of many investigations, since shock-wave diffraction occurs and
takes place in the majority of important applications today, such as
design of inflow/outflow valves in an internal combustion engine and
aerospace propulsion systems. In order to understand the different
phenomena resulting from these interactions such as shock-diffraction,
shock-reflection, shock-focusing, shock-attenuation and the different
flow structures generated by the passage of the shock-wave, several
studies have been conducted (Whitham (1956) [1], Whitham (1957)
[2], Whitham (1958) [3], Bird (1958) [4], Bazhenova (1978) [5],
Henderson (1980) [6], Hilier (1991) [7], Sivier et al. (1992) [8], Skews
et al. (2011) [9]). . Two types of shock-reflection configuration namely
RR (regular reflection involving two shock waves configuration) and
MR (Mach reflection involving three shock waves configuration) were
first introduced by the pioneering experimental work of Ernest Mach
(1878). However, no significant progress was made until the eminent
work of von Neumann in the 1940s. Since then, a considerable amount
of work has been carried out in order to better understand the

phenomena of shock-waves reflection (Bryson and Gross [10]; Hen-
derson and Lozzi [11]; Krassovskaya and Berezkina [12]; Soni et al.
[13]; Chernyshov and Tolpegin [14]). Berezkina et al. were interested
in the diffraction of shock waves by cylindrical surfaces. In a first study
[23], they studied diffraction of a two-shock configuration by a convex
cylindrical surface with the diffraction angle varying continuously, as
opposed to [23], where the process, starting at small angles of dif-
fraction, develops at ever-increasing angles, diffraction in [24] starts at
a large angle, which progressively decreases. This distinction causes a
substantial difference in the formation and development of the struc-
tures within the perturbed flow-field. Gvozdeva et al. [15] have found a
new pattern of the triple-shock configuration with a negative angle of
shock reflection, which is formed in a steady supersonic flow within the
range of Mach numbers exceeding 3.0 and specific heat ratios below
1.4. Recently, Smirnov et al. ([16,17]) have investigated mixture igni-
tion and detonation onset in RAM engines due to focusing of a shock
wave reflected inside a cone in order to change the mode of flame
propagation from slow combustion to detonation. Soni et al. [13] have
conducted numerical simulations in order to understand the different
wave configurations associated with the shock-wave reflection over
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double-concave cylindrical reflectors. The double-concave cylinder
configuration is different than that presented in Ref. [13] in terms of the
orientation and entrance of the shock wave.

In this work, a parametric study is performed to determine the in-
fluence of the incident shock strength on shock-wave diffracting me-
chanism. We use the Navier-Stokes solver to quantify the shock
strength, the dynamics of shock-waves and the different wave config-
urations in shock-wave diffraction over double-concave cylindrical
surfaces. Furthermore, different grid resolutions are used to investigate
the grid size effect on the results. The paper is organized as follows.
Section 2 introduces the numerical methodology used in this study.
Section 3 is devoted to introduce the problem set-up and different
conditions used in this study. Section 4 is dedicated to discussing the
results obtained in this study. In §4.1, the effect of shock strength on
transition angle from regular to Mach reflection and triple point tra-
jectories is investigated. The effect of shock strength on shock position
and velocity is discussed in §4.2.

2. Governing equations and numerics

2.1. Governing equations

The numerical solution is obtained by solving compressible Navier-
Stokes equations for an ideal gas

+ =div v( ) 0t (1)

+ + =div pv v v( ) ( )t (2)

+ + = +E div E div Tv v v( ) ( ) ( ) ( )t (3)

= = +p e E ev( 1) , 1
2

2

(4)

= +µ v v v I( ) 2
3

( )T
(5)

where t stands for the time, ρ, v , p, E, T, , μ, e are the density, velocity,
pressure, total energy, temperature, thermal conductivity, dynamic
viscosity and internal energy. The working gas is air with = 1.4 and
Prandtl number =Pr 0.72. The fluid viscosity follows Sutherland's law.

To simulate the flow field, we used an in-house parallel compres-
sible solver equipped with the adaptive multi-resolution method
[18–20]. The code uses an immersed-boundary method (IBM) to handle
fluid-solid interaction problems [21]. The solid body is embedded in a
Cartesian grid tracked using a ray-tracing technique. Inviscid and vis-
cous fluxes were computed using a fifth-order weighted essentially non-
oscillatory (WENO 5) scheme and a fourth-order central difference
formula, respectively, while the time was advanced using a third-order
Runge-Kutta method [22]. The time step is computed as:

=t CFL
max t t( , )x y (6)

and

= +t max u c
x x

µ
Pr

, 2
.x 2 (7)

The computations are performed with a CFL number of 0.7, which
gives t s10 8 .

3. Problem set-up

Numerical simulations were conducted to understand the dynamics
of shock-wave undergoing a double-concave cylindrical surfaces, a
schematic representation of the solid is given in Fig. 1. As for the
computational specifications, the boundary conditions were set to inlet
and outlet at the left (with h ) and the right (with H ) (see Fig. 1), of the
computational domain, respectively, while the top boundary and the

bottom-right part of the domain are treated as symmetry plane, and the
solid surface is considered with a no-slip boundary condition. In all the
simulations, the geometric parameters such; = = =R R R mm501 2 and

= = 751 2 were kept constant, the incident Mach number was
varied in the range of M1.6 4.5s . Initially, the shock is located at

=x mm5 for all Mach numbers. Rankine-Hugoniot relations are used
to set the initial conditions for left (shocked state) and right (stagnant
state) states associated with the chosen Ms. Air is considered as working
fluid and the initial stagnant state is assigned with temperature

=T K300 and pressure =p kPa101. 3 , and the flow is initialized as
uniform flow. A grid dependency study is performed to determine the
effect of numerics on the results. Grid convergence studies were carried
out by using different levels of grid refinement. Five different meshes
were used for Mach number =M 1.6s . Table 1 summarizes the relevant
parameters for grid sensitivity analysis.

4. Results and discussion

All length scales are normalized by the concave radius
= = =R R R mm501 2 and the dimensionless time is defined as

=t t a R. /1 where a1 is the speed of sound of the gas initially at rest.
Fig. 1 shows a planar shock-wave (I) with a Mach number of Ms pro-
pagating downstream and diffracting around a corner with a diffracting
angle = = 751 2 . When the shock wave arrives on the edge of the
first concave, the diffraction process starts. As the diffraction process
evolves, the end-wall corner vortices are formed with a rolling-up of
eddies that are convected away from the cavity entrance. These corner
instabilities are characterized by the formation of a primary vortex that
is followed by a secondary one. The key mechanism behind the ap-
pearance of this secondary near-wall instability are a large enough
advection velocity generated by the cavity boundary layer. It is found
that the interaction of this secondary instability with the primary vortex

Fig. 1. Schematic representation of a double-concave cylindrical surfaces. I:
incident shock, SS : secondary shock, r: reflected shock on the first cylinder, r :
reflected shock on the second cylinder, R: cylinder surfaces radius, TP : triple
point, =h R0.32 , =H R1.8 , =L R3.4 , =x x R/ , =y y R/ .

Table 1
Different grid resolution used, for shock-wave Mach number =M 1.6s (MP:
million points).

Grid x µm( )min y µm( )min number of points (MP)

G0 95 88 1.83
G1 60 50 5.04
G2 40 40 8.84
G3 30 29 17.3
G4 20 21 33.55
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core in the upstream part of the cavity is one of the main sources of
excitations and possible transition to turbulence and appearance of
secondary shocks (SS). When the conditions are gathered (the angle
between the incident shock wave and the surface of the first concave
and the Mach number), reflection of the shock wave takes place and we
can see appearance of reflected shocks (r for the first concave, r for the
second concave) and triple points (TP1 for the first concave, TP2 for the
second concave), the details of shock reflection are discussed on section
4.1.

Fig. 2 shows density ratio evolution along the axis y 1.58 for
=M 2s , in the space-time diagram. Because of the area increase, the

flow and the shock-wave undergo an expansion, the propagation of the
incident or primary shock-wave (I) in the medium at rest can be clearly
observed. Eventually, a left-running (with respect to the fluid) sec-
ondary shock-wave (SS) appears and is carried to the right because of
the supersonic carrier flow.

4.1. Transition angle from regular to Mach reflection

In this section, we present the mesh sensitivity analysis with respect
to the transition angle for Regular to Mach reflection (RR MR).
Table 2 shows that the transition angle is the same in both surfaces for
all the cases, and it begins to be independent of grid resolution fromG3.
Where tr

1 and tr
2 are respectively the transition angles in the first and

second concave surfaces. Fig. 3 represents non-dimensional wall pres-
sure and skin friction distribution for different grid resolution for

=M 1.6s . It can be seen that the two parameters start to be mesh in-
dependent fromG3. Based on these observations a mesh resolution ofG4
is used for the rest of the study.

Fig. 4 shows the RR MR transition angles, tr , over the first and
the second concave surfaces. As it can be seen, tr increases for larger
shock-wave Mach numbers Ms. It is also interesting to note that tr is
almost the same for both surfaces, except for =M 3.5s and 4.5 in which

tr is relatively larger on the second surface (approximately 7% for
=M 4.5s and 4% for =M 3.5s ). Soni et al. in their study [13] found tr to

be larger on the second cylindrical reflector (for Mach numbers up to
=M 2.5s ) and they noted that this behavior can be perceived as re-

sulting from the fact that the flow regions behind the Mach stems are
subsonic, hence the information can be communicated through them.

In order to track the triple points, the 2- norm of the pressure
gradient is computed, which translates to the analytical formula for the
two-dimensional case at the nth time step as;

= +TP p
x

p
y

n

n n

2 2

(8)

Applying max TP TP( , )n n 1 for each time step would give the entire
trajectories of the triple points[13]. Figs. 5 and 6 show the shock re-
flection process on the second concave, for the Mach numbers: 3.5 and
4.5 respectively . In Figs. 5(a) and 6(a) we can see the presence of a
single triple point (TP2), this configuration is known as a STP (single
triple point) configuration. A little further a second triple point is
formed (TP3 in Fig. 5(b) and 6(b)). This makes a transition from a

Fig. 2. Evolution of density ratio along y 1.58 for =M 2.0s , with =t ta R/1 .

Table 2
Transition angles, from regular to Mach reflection (RR MR), over
the two concave surfaces for different grid resolution for =M 1.6s .

tr
1

tr
2

G0 9. 6 9. 7
G1 10. 7 10. 8
G2 11. 8 11. 8
G3 12. 7 12. 6
G4 12. 7 12. 6

Fig. 3. (a): Non-dimensional wall-pressure distribution, (b): skin friction distribution at t = 294 µs for different grid resolutions at =M 1.6s ( G0, G1, G2, G3, G4).

Fig. 4. Transition angles from regular to Mach reflection (RR MR), over: the
first concave surface; × the second concave surface; - fitting curve, vs . Incident-
shock-wave Mach numbers.
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single-TP configuration to a double-TP configuration (STP → DTP
transition) . Fig. 7 depicts the Triple Points trajectories obtained for the
five shock-wave Mach numbers used in this study

= = =M M M1.6; 2.5; 3.5s s s and =M 4.5s (result for =M 2.0s is not
shown as it is almost identical to that of =M 2.5s ). For the first surface
and for the relatively low shock-wave Mach number ( =M 1.6; 2.5s )
(Fig. 7(a) and (b)), a Mach reflection at the end of the surface is ob-
served with a weak reflected shock-wave. For the higher mach numbers
( =M 3.5; 4.5s ) (Fig. 7(c) and (d)) we observe a regular reflection (RR)
just at the beginning of the surface, a little further on, a transition to a
Mach reflection (MR) (RR MR) takes place to give rise to a Mach

reflection with stronger reflected shock-waves. For the second surface
there is a change in behavior for the two shock-wave Mach numbers;

=M 3.5s and 4.5 while for the shock-wave Mach numbers; =M 1.6s , 2.0
and 2.5 the behavior of the shock-wave remains the same as that of the
first surface. For the shock-wave Mach number =M 1.6s , 2.0 and 2.5,
we notice the apparition of a Mach reflection (MR) at the end of the
surface. By increasing the shock-wave Mach number to 3.5 and 4.5,
(Fig. 7(c) and (d)) the behavior is completely different. At the beginning
of the second surface, we notice the appearance of a regular reflection
(RR) followed by a transition to a Mach reflection (MR) (RR MR),
characterized by the formation of a triple point (it is a STP configura-
tion). Further, at the end of the surface, we notice the appearance of a
second triple point (which is a DTP configuration) appearing in this
case. This makes a transition from a STP to a DTP configuration. For

=M 4.5s and as the shock-wave moves further up, the two triple points
merge together to give birth to a single-TP configuration again. So, we
have STP DTP STP configuration. Another point to note is that the
Mach stem associated with TP3 for the =M 4.5s is more substantial than
the one seen for =M 3.5s .

4.2. Shock-wave propagation and its attenuation

Here we present the possible influence of grid resolution on the
shock front position and velocity by using different meshes. We com-
pared the values of xs and W W/s s

i (where Ws is the velocity of the in-
cident shock and Ws

i is the initial velocity of the incident shock) ob-
tained by using five different refinements, and found their difference to
be negligible (see Fig. 8(a) and (b) respectively). This indicates that the
obtained solution is mesh independent. Fig. 8(a) shows the time evo-
lution of the transmitted shock wave. After an initial linear evolution,
the evolution of the transmitted shock wave becomes non-linear the
velocity of the transmitted shock wave decreased as can be seen in
Fig. 8(b), where, in the beginning before reaching the corner, the
transmitted shock-wave moves with a constant velocity (equal to the
initial velocity (Ws

i), the value given by the shock-tube theory (black
line in Fig. 8(b), =W W/ 1s s

i )). Once the shock-wave reaches the corner
of the double concave, its velocity starts to decrease due to the decel-
eration of the transmitted shock-wave.

We will now discuss the evolution (speed and position) of the shock
wave propagating within the double concave surfaces, by changing the
incident shock-wave Mach number Ms and using the mesh resolutionG4.
Fig. 9(a) illustrates the evolution of the incident shock wave location
(xs ) as a function of dimensionless time (t ). By differentiating xs with
respect to t, one can easily obtain the dimensionless velocity (W W/s s

i) of
the shock (Fig. 9(b)), for all shock-waves strength, the speed of the
incident shock wave starts with a constant value (equal to the initial
velocity) ( =W W/ 1s s

i ), and decreases steadily in time. Furthermore, its
rate of change is at first very large, but becomes smaller as it propagates
through the double concave surfaces, and as we can see in Fig. 9(b), the
speed of the incident shock wave starts to decrease earlier for stronger
shock waves (highest shock-waves Mach numbers) and this result is
expected because the shock waves with high shock-wave Mach numbers
reach the corner of the double concave first, and the velocity deficit is
increasing with the shock-wave Mach number.

The shock trajectory and velocity are plotted using dimensionless
coordinates. By finding the appropriate dimensionless time, it was
possible to show the data from different simulations with different
Mach numbers collapse into a single curve. From the data analysis, the
following relationship is found:

=t W
R

M t˜ ( , )s
i

s (9)

The scaling function M( , )s is defined as:

= + +M M ln M M( , ) ( 1) ( 1) 1 ( 1)s s s s
1/ 2

(10)

Fig. 5. Numerical schlieren pictures for =M 3.5s for the second concave sur-
face, at different instant. r’ and d’: reflected and additional shocks created on
the second concave surface, respectively, I: incident shock, TP: triple point.

Fig. 6. Numerical schlieren pictures for =M 4.5s for the second concave surface
at different instant. For legend, see caption of Fig. 5.
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By applying this normalization (Equation (9)), all results (shock
position, shock velocity for different Mach numbers) collapse together
into single curve and the results are presented in Fig. 9(c) and (d) re-
spectively.

5. Summary

In this paper, shock-waves diffraction over double-cylindrical
wedges (the centre of the first concave surface is at higher y-cordinate
than the second one) have been investigated. Numerical simulations
were carried out to study the dynamics of shock wave with regards to
the incident-shock-wave Mach number. Different grid resolutions were
used to investigate the grid size effect on the numerical solutions and it
was found that the quantities studied (transition angle, pressure and
skin friction distributions at the wall, shock position and velocity) are
mesh independent from certain resolution ( =x µm20min ,

=y µm21min ). The transition angle increases with Mach number, and

was found to be almost the same over the two concave surfaces for
weak Mach numbers (up to =M 2.5s ) and to be relatively larger on the
second surface for high Mach numbers (approximately 7% for =M 4.5s ,
4% for =M 3.5s ), the behavior of the shock wave is completely different
for =M 4.5s , at the end of the second concave surface we have a
STP DTP STP configuration, indicating that the flow was capable of
retaining the memory of the past events over the entire process for high
Mach numbers. In terms of shock's velocity, the velocity deficit was
found to be increasing with Mach number. The shock position and
shock velocity are proportional to the shock initial velocity reduced by
a scaling function that depending on the incident shock-wave Mach
number, the heat capacity ratio and the concave surface radius. The
proposed scaling was tested in the range of Ms ( < <M1.6 4.5s ), for heat
ratio of 1.4 and concave surface radius of mm50 .

Fig. 7. Trajectories of the triple points for different shock-wave Mach numbers: (a): =M 1.6s ; (b): =M 2.5s ; (c): =M 3.5s ; (d): =M 4.5s ; ( : TP1; : TP2; : TP3).

Fig. 8. Non-dimensional; (a); shock position and (b); shock velocity for different mesh resolutions; ( G0, G1, G2, G3, G4, shock position and velocity given
by the piston theory).
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A B S T R A C T

The unsteady aspect of turbulent flow structures generated by a shock-wave diffraction over double cylindrical
wedges, with initial diffracting angle of ∘75 , are numerically investigated by means of two-dimensional high-
fidelity numerical simulation. Different incident-shock-Mach numbers, ranging from transonic to supersonic
regimes, are considered. Unlike previous studies where only the total vorticity production is evaluated, the
current paper offers more insights into the spatio-temporal behavior of the circulation by evaluating the evo-
lution of the instantaneous vorticity equation balance. The results show, for the first time, that the diffusion of
the vorticity due to the viscous effects is quite important compared to the baroclinic term for low Mach numbers
regimes, while this trend is inverted for higher Mach numbers regimes. It is also found that the stretching of the
vorticity due to the compressibility effects plays an important role in the vorticity production. In terms of
pressure impulses, the effect of the first concave surface on the shock strength has been quantified at both earlier
and final stages of the shock diffraction process. Unlike the overpressure, the static and the dynamic pressure
impulses are shown to be significantly reduced at the end of the first concave surface.

1. Introduction

The unsteady evolution of vortex rings produced by a shock dif-
fraction undergoing a sudden expansion area is one of the most fasci-
nating phenomenon in high-speed flows. This process was observed
many decades ago [1–3], with different levels of qualitative description
[4] and numerical modelling [5–7]. For instance, Skews [1] have dis-
cussed the behavior of disturbances produced in the perturbed region
caused by the passage of a shock wave, whose Mach number varies
from 1.0 to 5.0, through a convex corner. The experimental results of
this study have shown that the velocities of the contact surface and the
secondary shock become independent of the corner angles greater than
75°. Sun and Takayama [5] have evaluated numerically the vorticity
production in a shock-wave diffraction problem over convex corners,
with angles varied from 5° to 180°. The authors proposed an analytical
model to evaluate the total vorticity production generated by the slip-
stream. They found that the rate of vorticity production is always in-
creasing with the corner angle and the shock strength. They also re-
ported that the slipstream is at the origin of the total vorticity
generation and it can be the more dominating factor in producing
vorticity in compressible flows in comparison to baroclinic effects. In
another study, Sun and Takayama [8] have investigated the formation

of secondary shock waves behind the incident shock wave. Accordingly,
the threshold shock-wave Mach number was found to be =M 1.346s for
a gas with =γ 1.4, when neglecting viscous effects on the formation of
this secondary shock waves.

Quinn and Kontis [9] have investigated a shock-wave diffraction
around a 172° corner at =M 1.46s using both numerical simulations and
experimental visualizations. Their numerical study showed that al-
though the evolution of the shear layer was obtained for very fine mesh,
some very fine flow structures were under predicted. Cai et al. [10]
have investigated the effect of back-pressure on the shock train location
and its structure in a straight isolator. It is shown that the structure of
the shock train largely depends on the relative Mach number and is very
sensitive to it. Concerning the average back-pressure, it has a great
influence on the location of the shock train in the oscillating region,
while its amplitude has a noticeable effect on the size of this oscillating
region. Reeves and Skews [11] have investigated both numerically and
experimentally the unsteady aspects of three-dimensional shock-wave
diffraction phenomena. They found that the trends of circulation pro-
duction correlated quite well with those obtained from the two-di-
mensional diffraction case. Furthermore, they showed that the rate of
vorticity production tends to be constant once the incident shock wave
had fully diffracted over the surface edge. Finally, the shape of the
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diffracting edge appeared to have no significant impact on the results.
Abate and Shyy [12] studied the dynamics of shock-wave diffraction

using the vorticity transport equation. They discussed the link between
high-strain rates resulting from the expansion corner to the solenoidal
dissipation rates and the stress rates to the dilatational dissipation rates
of turbulent kinetic energies. The baroclinic torque enhances the vor-
ticity generation in such interaction. Their study indicates that both
viscous effects and small-scale turbulent dissipation are important for
the evolution of the primary vortex as well as the small vortices gen-
erated by the Kelvin-Helmholtz instability. Zhao et al. [13] have in-
vestigated the shock wave focusing process with shock-turbulence in-
teraction in a parabolic cavity with various intensity of shock and
vortex strength. Their numerical results show that the net dilatational
vorticity is the most dominant part in vorticity transport, followed by
the baroclinic vorticity and the viscous vorticity generation.

Gnani et al. [4] have used experimental schlieren photography to
qualitatively evaluate the development of a shock-wave diffraction
around sharp and curved splitters. Recently, Chaudhuri and Jacobs [7]
performed numerical analysis of shock-wave diffraction over a sharp
splitter plate. The objective was to address a detailed analysis of the
flow evolution using the probability density functions of various en-
strophy equation parameters as well as the invariants of the velocity
gradient tensor. Their study reveals the mechanism of unwinding of
vortices and its link with the divergence of the Lamb vector.

Additionally, Tseng and Yang [6] investigated numerically shock-
wave diffraction around a convex corner by solving both Euler and
Navier-Stokes equations. The vorticity production formed during the
shock-wave diffraction and the subsequent interaction between the
reflected shock and the main vortex core have been analyzed. Different
circulation production rates are observed between Euler and Navier-
Stokes solutions as a result of the vorticity contribution from the
boundary layer and the secondary vortex. It was also found that the
reflection influences the rate of vorticity production, which is found to
be dependent on the strength of the incident shock wave and the dif-
fracting angle.

Chaudhuri et al. [14] used an immersed boundary (IB) method to
study the interaction of the moving shock through an array of cylinder
matrix. Their analysis confirmed earlier findings of Sun and Takayama
[5], where the baroclinic production of the vorticity is found to be
feeble. Recently, Soni et al. [15] have conducted numerical

investigations of shock-wave reflection over double-concave cylindrical
reflectors, where new shock reflection topologies were found.

The aim of the present study is to further analyze the evolution of
the instantaneous vorticity production and the flow structure in shock
diffraction problem.

2. Governing equations and numerics

The compressible Navier-Stokes equations for an ideal gas are given
by:∂ + =ρ div ρ v( ) 0t (1)∂ + ⊗ + ∇ = ∇ρ div ρ p τv v v( ) ( )t (2)∂ + + = ∇ + ∇ρ E div ρ E div ρ τ λ Tv v v( ) ( ) ( ) ( )t (3)

= − = +p γ ρ e E ev( 1) , 1
2

2

(4)

= ⎡⎣∇ ⊗ + ∇ ⊗ − ∇⋅ ⎤⎦τ μ v v v I( ) 2
3

( )T
(5)

where t stands for the time, ρ, v , p, E, T, λ, μ, e are the density, velocity
vector, pressure, total energy per unit mass, temperature, thermal
conductivity, dynamic viscosity and internal energy, respectively. The
working gas is air with =γ 1.4 and Prandtl number =Pr 0.72. The fluid
viscosity follows Sutherland's law.

To simulate the flow field, we used an in-house compressible parallel
solver equipped with adaptive multi-resolution method [16,17] for
mesh refinement. The code uses an immersed-boundary method (IBM)

Nomenclature

E total energy per unit mass
e internal energy per unit mass
Ip static-pressure impulse
Ipd dynamic-pressure impulse
Ms incident-shock-Mach number
P normalized overpressure
Pr Prandtl number
p static pressure
R universal gas constant
R concave radius
T temperature
t time
v velocity vector

Greeks

Γ vorticity circulation
γ heat capacity ratio
λ thermal conductivity
μ dynamic viscosity
ρ density

ω local vorticity
ω1 angle of the first wedge
ω2 angle of the second wedge
ωc convection vorticity term
ωt unsteady vorticity term

Abbreviations

BAR baroclinic torque
DFV diffusion of vorticity due to viscosity
IBM immersed-boundary method
I incident shock wave
LS lambda shock
PV primary vortex
r reflected shock wave
SLI shear-layer instabilities
SS secondary shocks
SV secondary vortex
VSC stretching of vorticity due to compressibility
VSG stretching/tilting of vorticity due to velocity gradients
VTE vorticity transport equation
WENO weighted essentially non-oscillatory

Table 1
Different grid resolutions used for a given incident shock-wave Mach number of=M 1.6s (MP: million points).

Grid x μmΔ ( )min y μmΔ ( )min number of points (MP)

0G 95 88 1.83
1G 60 50 5.04
2G 40 40 8.84
3G 30 29 17.3

4G 20 21 33.55
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to handle fluid-solid interaction problems [14,18]. The solid body is
embedded into a Cartesian grid and tracked using a ray-tracing tech-
nique. Inviscid and viscous fluxes are computed using a fifth-order
weighted essentially non-oscillatory (WENO 5) scheme and a fourth-
order central difference formula, respectively, while the time is ad-
vanced using a third-order Runge-Kutta method [19].

3. Problem set-up

As in Brahmi et al. [20], a two-dimensional problem of shock dif-
fraction over double concave geometry, with constant radius of =R 50
mm and wedge angles = = ∘ω ω 751 2 , is considered. As for the compu-
tational specifications, the boundary conditions were set to inlet and
outlet at the left and the right sides of the computational domain, re-
spectively, while the top and the bottom-right boundaries are con-
sidered as symmetry planes. On the solid surface, no-slip boundary
conditions are applied. The incident-shock-Mach number was varied
from 1.6 to 4.5. For all those Mach numbers, the shock is initially lo-
cated 5 mm ahead of the first concave surface corner. Rankine-Hugo-
niot relations are used to fix the initial conditions for both left (shocked
gas) and right (stagnant flow) states at a given Ms. Air is considered as a
working fluid and the initial stagnant flow is assigned with temperature

=T 3000 K and pressure =p 101.30 kPa. Given the sensitivity of the
phenomena to the grid resolution, a grid dependency study is con-
ducted in order to determine the grid resolution effect on the results.
Five different meshes were used for =M 1.6s , as summarized in Table 1.

4. Results and discussion

Fig. 1(a) and (b) show the flow structures behind the diffracting
shock wave for the first and the second concave surfaces, respectively.
Shortly after the penetration of the shock into the cavity, the expanding
flow evolves into a complicated system of distorted and secondary
shocks with separated regions and vortices formation. As shown in
Fig. 1, an end-wall corner vortex (PV) is formed at =M 1.6s with a
rolling-up of eddies that are convected away from the concave entrance
as the diffraction process evolves. In addition to this important primary
vortex, a secondary instability (SV) appears along the surface wall. The
Reynolds number, based on the shocked flow properties (density, speed
of sound, viscosity in the upstream of the shock and the radius of cur-
vature R), is of the order of 106.

4.1. Vorticity production

In order to investigate the dynamics of the shear-layer formation,
the vorticity production is first analyzed in term of total circulation Γ
as: ∫ ∫= =ω ds u dlΓ

s L (6)

where the integral contour (path L) is taken along the boundary so that
to enclose the perturbed region behind the shock wave. The integral
contour is depicted in Fig. 2 by a dashed red line. For better char-
acterization of the vorticity production in shock-wave diffraction, the
ratio of circulation to time, tΓ/ , is used. The rate of circulation pro-
duction is related to the incident shock-Mach number Ms, the diffrac-
tion angle and the gas properties. For a given gas and diffraction angle,
the ratio tΓ/ can be uniquely determined as a function of Ms [5] as:=
t

f MΓ ( )s (7)

In this paper, the calculation of the circulation is directly obtained
from the summation of the vorticity over each individual surface area.
In general, the calculation of the circulation is performed only in the
perturbed region behind the shock. However, in this study the total
amount of circulation is calculated over the entire computational

Fig. 1. Numerical schlieren pictures for =M 1.6s (a): first concave at =t 184 μs (b): second concave at =t μs292 . PV: Primary vortex, SV: Secondary vortex, LS:
Lambda shock, SLI: Shear layer instabilities, SS: secondary shock (shocklets).

Fig. 2. Schematic representation of double concave surfaces, − −− integral
path L, I: incident shock wave, r: reflected shock wave.
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domain since the unperturbed flow regions (uniform flow) provides
almost no contribution to the circulation.

As it can be seen in Fig. 3, the flow topology of the primary vortex
changes with the mesh resolution, the global variation of the vorticity
production (Γ) and its rate ( tΓ/ ) are insensitive to the grid resolution
(see Fig. 4(a) and (b)). Indeed, the circulation Γ increases linearly in

time regardless of the grid resolution. The results for the rate of vorti-
city production ( tΓ/ ) are scaled by the product × T0R , where R is the
universal gas constant divided by the molecular weight of air taken as,= 287R − −J Kg K. .1 1 and T0 is the temperature in front of the incident
shock ( =T 3000 K). Since the rate has the dimension of the square of the
velocity ( −m s2 2), one may obtain dimensional results by multiplying the

Fig. 3. Numerical schlieren pictures for different grid resolutions at =t μs150 with =M 1.6s .
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dimensionless values by × T0R ,′′ = ×
t

T
t

Γ Γ
0R (8)

Note that all the results of the rate of vorticity production, tΓ/ ,
presented in this paper are dimensionless values.

The effect of shock strength on the vorticity production is in-
vestigated by changing Ms using the grid 4G . The results are shown in
Fig. 5(a) and (b). Basically both quantities increase with Ms. In other
words, the strength of the main vortex increases at higher values of
Mach number, and increases much faster for stronger shock waves as
reported by Sun and Takayama [5]. The vorticity production occurs
before the diffraction of the incident shock wave (at =t 12 μs for=M 2.0s ) as a result of the boundary-layer formation on the solid wall.
This demonstrates the role played by viscous effects in forming the
shock-wave diffraction structure as mentioned by Tseng and Yang [6].

Fig. 5(b) shows the rate of the circulation production. The five curves
reach different constant values of 1.78, 3.79, 5.72, 11.42 and 18.73 for=M 1.6, 2.0, 2.5, 3.5s and 4.5, respectively. Similar trends were ob-
served by Sun and Takayama [5] with constant values known as in-
variants of Euler equations in shock-wave diffraction.

Fig. 6 represents vorticity maps at different instants ( =t μs48 , μs78
and μs108 ) for =M 2.0s . As it can be seen, the main vortex and the
highly disturbed shear layer split when interacting with the secondary
shock waves. This results in a generation of fine scale turbulent eddies.
Note that the production of vorticity is mainly concentrated in this
turbulent region compared to the compression zone.

4.2. Vorticity transport equation

The vorticity transport equation provides further details on the
mechanism of the vortex dynamics, it can be written as follows:

Fig. 4. Time history of (a): circulation (b): rate of circulation production for =M 1.6s and different mesh resolutions (− 0G , − 1G , − 2G , − 3G , − 4G ).

Fig. 5. Time history of (a): circulation (b): rate of circulation production for different incident-shock-Mach numbers (− =M 1.6s , − =M 2.0s , − =M 2.5s ,− =M 3.5s , − =M 4.5s ).

Fig. 6. Vorticity maps for =M 2.0s . Column-wise (left-to-right): =t μs48 , μs78 and μs108 .
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⎜ ⎟= ⋅∇ − ∇⋅ + ∇ × ∇ + ∇ × ⎛⎝∇⋅ ⎞⎠Dω
Dt

ω u ω u
ρ

ρ p τ
ρ

( ) ( ) 1 ( )
VSG VSC

2

BAR DFV

 
     

   
(9)

where the left-hand side represents the material derivative expressed as
the sum of unsteady, ωt , and convection, ωc, terms. Here, = ∂ ∂ω ω t/t
and = ∂ ∂ + ∂ ∂ω U ω x V ω y( / ) ( / )c .

The first term in the right-hand side of Eq. (9) represents the
stretching or tilting of vorticity due to the flow velocity gradients, a
term that is null in two-dimensional cases. The second term expresses
the stretching of vorticity due to flow compressibility. The third con-
tribution represents the baroclinic term, which accounts for the changes
in the vorticity due to the intersection of density and pressure surfaces.
The last term represents the diffusion of vorticity due to the viscous
effects.

The different expressions appearing in the right-hand side of Eq. (9)
are shown in Fig. 7 (in Row-wise) at different time intervals for=M 2.0s . As one can see, the stretching of the vorticity due to flow
compressibility (VSC) has the most dominant contribution. Based on
the VSC contour, it is clear that there exist locally stretched structures
in the core region of the vortex due to compressibility effect arising
from local regions of compression/expansion. Additionally the results
show the existence of evolving large scale vortices which interact with
the different shock patterns present in the flow and finally split into

small-scale vortices.
Fig. 8 shows the temporal evolution of the vorticity transport

equation (VTE) terms. The stretching of vorticity due to flow com-
pressibility (VSC) is almost constant over time independently of Ms,
while its magnitude increases with Mach number. This contribution
represents the effects of expansion on the vorticity field and plays a
major role in the vorticity dynamics. The baroclinic term (BAR) is re-
sponsible of the generation of vorticity from unequal acceleration as a
result of nonaligned density and pressure gradients. The lighter density
fluid is faster accelerated than the high density one, which result in a
shear-layer formation, that contributes to the generation of vorticity.
The diffusion of vorticity due to the viscous effects (DFV) is essentially
enhancing the viscous diffusion process on the vorticity distribution. As
a result of viscosity, the vorticity tends to spread out spatially. Note that
the diffusion of vorticity due to viscous effects (DFV) is quite important
compared to the baroclinic term (BAR) for ≤M 2.5s , while this trends is
inverted for ≥Ms 3.5. As for the VSC term, the unsteady term, ωt, which
describes the rate of change in vorticity due to flow unsteadiness, is
found to be constant in time regardless of Ms. For the convection term,
ωc, we also notice that it is almost constant in time for all shock-wave
Mach numbers, and its magnitude increases at higher values of Ms. This
term represents the change of vorticity of the moving fluid particles due
to the motion of the fluid particle as it moves from one point to another.

Fig. 9 represents contours plots of ωc for =M 2.0s at different

Fig. 7. Color maps of vorticity terms for =M 2.0s . Row-wise (top-to-bottom): stretching of the vorticity due to flow compressibility (VSC), baroclinic (BAR) and
diffusion of vorticity due to the viscous effects (DFV) terms. Column-wise (left-to-right): =t μs μs48 , 78 and μs108 .
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Fig. 8. Time history of normalized vorticity transport equation terms for (a): =M 1.6s ; (b): =M 2.0s ; (c): =M 2.5s ; (d): =M 3.5s and (e): =M 4.5s (−: stretching of the
vorticity due to flow compressibility (VSC) term, −: baroclinic (BAR) term, −: diffusion of vorticity due to the viscous effects (DFV) term, −: convection term (ωc), −:
unsteady term (ωt)).

Fig. 9. Color maps showing the convection term of vorticity (ωc) for =M 2.0s . Column-wise (left-to-right): =t μs μs48 , 78 and μs108 .
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Fig. 10. Numerical schlieren pictures for =M 4.5s at =t 69 μs: (a) beginning of the first concave surface; (b) beginning of the second concave surface; I: incident
shock wave; r: reflected shock wave, P1 and P2 are two probes locations.

Fig. 11. Time history of (a): static pressure impulse, IP (b): dynamic pressure impulse, IPd and (c): normalized overpressure P , for different Ms at P1 (− =M 1.6s ,− =M 2.0s , − =M 2.5s , − =M 3.5s , − =M 4.5s ).
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instants. As we can see, this term is mainly concentrated in the turbu-
lent region as well as in the shear layer and in the near wall-region.

4.3. Static and dynamic pressure impulses and normalized overpressure

The effect of Ms on shock strength was investigated by computing
the static and the dynamic pressure impulses along with the normalized
overpressure, all defined as:∫=I p dtp t

tf

0 (10)∫=I ρ dtv1
2pd t

t 2f

0 (11)= −p p p( )/0 0P (12)

where p0 is the static pressure of gas at rest, p, ρ and v are the local
static pressure, density and velocity vector in the shocked region (t0 and
tf being the initial and the final times). These quantities are calculated
at two different space locations as shown in Fig. 10, with P x y( , )1 1

*
1
*

corresponding to the beginning of the first concave surface,= =x x R/ 0.261
*

1 and = =y y R/ 1.61
*

1 and P x y( , )2 2
*

2
* corresponding to

the beginning of the second concave surface, = =x x R/ 1.222
*

2 and= =y y R/ 0.862
*

2 . The results are presented in Figs. 11 and 12, for P1 and
P2, respectively.

At the upstream location, P1, both static and dynamic pressure

impulses are linearly increasing with time for all Ms. The passage of the
incident wave is characterized by a sudden jump in these last two
quantities (more visible for =M 4.5s as seen in Fig. 11(a) and (b)). This
linear increase is due to the fact that P1 is located at the inlet where no
perturbation exists behind the shock wave. Concerning the normalized
overpressure, one can see in Fig. 11(c) a sudden jump caused by the
passage of the incident shock. Afterwards, it remains constant, except
for =M 1.6s , where it starts to decrease gradually as the shock propa-
gates over the double concave surfaces.

At the downstream location, P2, the flow behavior is completely
different. The static pressure impulse is suddenly increased due to the
passage of the shock. At this early stage of the diffraction process, the
increasing rate is important. However, after the shock wave leads off
the end of the geometry, it decreases giving almost constant value (see
Fig. 12(a)). For the dynamic pressure impulse, we observe a sudden
increase induced by the passage of the shock, after this it remains
constant for a certain elapsed time until the arrival of the reflected
shock and formation of the shocklets which generate a second increase
due to the gas acceleration. Note that this behavior is more visible for=M 4.5s and =M 3.5s (see Fig. 12(b)). The arrival of the incident shock
wave causes a sudden increase of the normalized overpressure
(Fig. 12(c)). Afterwards, it remains almost constant until the reflected
wave (r in Fig. 10(b)) arrives and causes a second increase. Once the
reflected shock passed, the expanded gas gets driven away and causes a

Fig. 12. Time history of (a): static pressure impulse, IP (b): dynamic pressure impulse, IPd and (c): normalized overpressure P , for different Ms at P2 (− =M 1.6s ,− =M 2.0s , − =M 2.5s , − =M 3.5s , − =M 4.5s ).
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strong decrease. At the last stage of the diffraction, we can see a suc-
cession of peaks due to the passage of the shocklets and the emergence
of flow instabilities in this zone. These peaks are visible only for high
Mach numbers ( =M 4.5s , =M 3.5s ), for which the turbulent region is
highly perturbed. It is worth noticing that for high Ms the flow relaxes
until it reaches negative overpressure values, because of the strong
vortex suction acting on this highly perturbed turbulent zone.

In order to investigate the effect of the first concave surface on the
shock strength, the deficit of various parameters mentioned above is
calculated. This deficit is defined as the ratio of the impulses and
overpressure calculated at the two points: I P I P( )/ ( )p p2 1 , I P I P( )/ ( )pd pd2 1 ,

P P( )/ ( )2 1P P . For static pressure impulse, we can see that the deficit is
more important for the high Mach numbers because of the highly tur-
bulent region generated behind the strong shock wave and the intense

vortex suction exerted on the flow (see Fig. 13(a)). By comparing the
static and dynamic pressure impulses deficit (Fig. 13(a) and (b), re-
spectively) we can see that the deficit in dynamic pressure impulse is
more important because of the decrease of density and the square of
velocity together. For the overpressure deficit (Fig. 13(c)), the peaks are
exceeding unit, which means that the overpressure in P2 is greater than
in P1 and this is mainly caused by the passage of the reflected shock
which induces the formation of shocklets (small shocks embedded into
turbulent region).

5. Accumulation of numerical errors

Estimating accuracy and errors accumulation is necessary in CFD,
especially when dealing with high-fidelity numerical simulations.

Fig. 13. Time history of (a): static pressure impulse deficit (b): dynamic pressure impulse deficit and (c): overpressure deficit, for different Ms at P2 (− =M 1.6s ,− =M 2.0s , − =M 2.5s , − =M 3.5s , − =M 4.5s ).

Table 2
Error estimates.

Allowable error (%) Grid resolution Physical time simulated (μs) Number of time steps Accumulated error Allowable number of time steps Reliability =R η η/s max

5 1793 × 1025 294 4311 9.48 × −10 16 2.78 × 1027 6.45 × 1023

5 2817 × 1793 294 7854 5.84 × −10 17 7.33 × 1029 9.33 × 1025

5 3841 × 2305 294 10307 1.8 × −10 17 7.71 × 1030 7.48 × 1026

5 5633 × 3073 294 14061 6.94 × −10 18 5.19 × 1031 3.69 × 1027

5 7681 × 3585 294 18728 7.14 × −10 19 4.87 × 1033 2.61 × 1029
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Depending on the spatial resolution and on the numerical scheme, a
definite error occurs due to numerical integration at each time step
[21]. According to Smirnov et al. [21], the relative integration error for
one-dimensional problem is:

⎜ ⎟= ⎛⎝ ⎞⎠ +
S h

L

k

1
1

1

(13)

where h is the cell size, L1 is the domain length and k the order of
accuracy of the numerical scheme. For multi-dimensional problem, the
integration errors can be summed up as:∑= =S Serr

i
i

1

3

(14)

The maximal allowable number of time steps for solving a given
problem could be determined by the following formula:=η S S( / )max

max
err

2 (15)

where Smax is the allowable value of the total error, which is presumed
to be between 1% and 5%. Smirnov et al. [21] have introduced another
important measurement of numerical errors suitable for high-perfor-
mance computing, which is the ratio of the maximal allowable number
of time steps ηmax to the actual number of time steps used to obtain the
results η:=R η η/s max (16)

According to Smirnov et al. [21], the parameter Rs can characterize
the reliability of the numerical results, i.e. how far below the limit, the
simulations were finalized. Indirectly, this parameter characterizes the
accumulated error. The higher is the value of Rs, the lower is the error.
On tending Rs to unity, the error tends to a maximal allowable value.

Table 2 summarizes the results of different grid resolutions and
physical time in our simulations. As it can be seen, a quite high level of
reliability is achieved in our case.

6. Conclusions

In this paper, shock-wave diffraction over double cylindrical wedges
have been numerically investigated by means of two-dimensional high-
fidelity numerical simulation. The objective was to study the flow
structure and the vorticity formation with regards to the incident-
shock-wave Mach number. Different grid resolutions were used in order
to investigate the mesh sensitivity of the results. It was found that al-
though the upstream flow topology (shape of the eddies) changes with
the grid resolution, the vorticity production and the shock diffraction
process are quite independent from the grid resolution. In terms of rate
of vorticity production and circulation, it is shown that the shock
strength enhances the vorticity production and the rate of vorticity
production increases as the incident shock strength increases and re-
mains virtually constant after an elapsed time. For the vorticity trans-
port equation, it was found that the stretching of vorticity due to flow
compressibility plays an important role in the vorticity dynamics, for
low-Mach numbers regimes ( ≤Ms 2.5). The diffusion of the vorticity
due to the viscous effects is seen to be quite important compared to the
baroclinic term, while this trends is inverted for higher Mach numbers
regimes ( ≥Ms 3.5). In terms of shock strength, it was found that the

effect of the first concave surface is effective in decreasing sufficiently
the dynamic pressure impulse (up to 90% for =M 2.5s ) as well as the
static pressure impulse (up to 75% for =M 4.5s ). However for the
overpressure deficit, the peaks are accentuated by the passage of the
reflected shock and the formation of shocklets that tend to reduce the
overall overpressure deficit.
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• Shock propagation over double cylindrical wedges in different working gases
is studied.

• A new scaling of shock velocity propagation is proposed for different specific
heat ratios.

(a) (b)

Figure 5.1: (a): shock-wave Mach number, (d): shock-wave Mach number vs.
normalized time, for different gases (− air, − Argon, − Helium, − SF6, −
CO2).
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abstract

This paper deals with a numerical study of shock-wave propagation over double concave
cylindrical surfaces. The incident shock-wave Mach number is kept constant such as
Ms = 1.6. Four gases ,with different molecular weights, specific heat ratios, and acoustic
impedances in addition to the air, are used as working gases, namely, He, Ar, CO2 and
SF6. The shock wave velocity propagating in the heavy gases is always less than that
propagating in the light ones. An approximate universal relation is proposed, which
predicts the incident-shock trajectory and velocity as a function of the incident-shock
Mach number, the radius of the cylinder, and the gas properties. This relation is tested
for five different working gases. The shock position and velocity are proportional to
the shock initial velocity reduced by a scaling function that depending on the incident
shock-wave Mach number, the heat capacity ratio and the concave surface radius.

keyword

Shock waves, Shock velocity, Numerical simulation, scaling function

5.1 Introduction

Significant attention was given to shock wave (in air) interaction with liquid bubble(s)
and/or to the interaction of shock waves propagating in water with air bubbles. These
phenomena attracted attention due to their usage in applying shock and acoustic waves
in medicine. While less attention has been given to the interaction between shock and
blast waves propagating in air with bubbles containing a different gas or shock and blast
waves propagating in a gas other than air. The work of Haas & Sturtevant (1987) is one of
the typical publications appearing in the past century. They investigated experimentally
the interaction of a plane weak shock wave with a single gas bubble containing either he-
lium or R22. The wave configurations were predicted by geometrical acoustics, including
the effects of refraction, reflection, and diffraction, and were compared to the recorded
observations. Also, the pressure field on the axis of symmetry downstream of the bubble
was recorded. Falcovitz et al. (2012) considered a classical shock tube with Helium-filled
driver section, and a driven section filled with a He-Ar gaseous mixture of continuously
varying composition where the density either increases, or decreases, continuously. Their
study reveals that in the decreasing density case, a negative pressure gradient evolved
behind the shock front, accelerating the post-shock flow velocity to levels well above
that obtained in any of the single-species shock tube cases. In the increasing density
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case, the evolving flow pattern is reminiscent of the system of transmitted and reflected-
shock, in that a reflected smooth compression wave is formed instantly behind the shock
front. Siefert (2007) presented experimental study on the propagation of shock waves into
weakly ionized nitrogen, air, and argon glow discharges. They concluded that the main
mechanism for increasing shock velocity in weakly ionized gases is thermal heating of the
neutral gas species via elastic collisions with electrons. Luo et al. (2015) investigated the
interaction of a planar shock wave with different SF6 polygons shapes inhomogeneity sur-
rounded by air. Their study showed that the velocities and the trajectories of the triple
points are self-similar or pseudo-stationary. Si et al. (2012) experimentally investigated
the phenomena of a spherical helium or SF6 interface interacting with a planar shock
wave and the reshock in a shock tube environment. The shock waves velocities were es-
timated and compared with those calculated from one-dimensional gas dynamics model.
A discrepancy is observed between the estimated velocities and the calculated ones. Ac-
cording to them, the reasons of this discrepancy lie in two insights. On one hand, the
gas contaminations inside and outside the SF6 interface can change the shock velocities.
In general, the shock velocity in a heavy (light) gas will increase (decrease) when the
heavy (light) gas is contaminated by a light (heavy) gas according to the one-dimensional
gas dynamics model. On the other hand, the convergence (divergence) of the refracted
shock inside the SF6 (helium) bubble which is absent in the one-dimensional model may
increase (decrease) its velocity. Igra & Igra (2018) studied numerically the interaction
between a planar shock wave and different bubbles shapes containing either SF6, He, Ar,
or CO2. They showed that the difference in the physical properties between the ambient
air and the gas contained inside the investigated bubbles has a significant effect on the
evolved wave pattern and pressure distribution inside the bubbles during the interaction
process. They noticed that in the case of heavy gases, the velocity of the shock wave
propagating along the bubble inner surface is always less than that of the incident shock
wave and higher than that of the transmitted one. However, in the case of the light gas
(He), the fastest one is the transmitted shock wave and the slowest one is the incident
shock wave. Glazer et al. (2011) conducted experimental and numerical studies of a pla-
nar shock wave interaction with circular cylinders where they investigated the effects of
different initial conditions such as, shock-wave strength, cylinder diameter and working
gas on the reflected shock path. In this study an approximate universal relation is pro-
posed, which predicts the reflected-shock trajectory as a function of the incident-shock
Mach number, the diameter of the cylinder, and the gas properties. According to them,
the velocity is proportional to the reflected-shock velocity from a planar rigid wall reduced
by a factor that depends on the incident shock-wave Mach number and the specific heat
ratio. The proposed relation is limited to weak shock waves (Ms < 1.4). Accordingly, in
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a recent numerical study, Brahmi et al. (2020a) investigated shock-wave diffraction over
double concave cylindrical surfaces and proposed a scaling function which predicts the
incident-shock trajectory and velocity as a function of the incident-shock Mach number
and the cylinder radius. The proposed relation in Brahmi et al. (2020a) was tested in
the range of Ms (1.6<Ms < 4.5) but limited to air as working gas which has heat ratio
of 1.4. Accordingly, the main objective of the present study is to verify and generalize
the scaling function proposed in Brahmi et al. (2020a) to different working gases other
than air using the same geometry. The paper is organized as follows: Sect. 5.2 describes
the numerical methodology along with the problem setup. Results and discussion are
presented in Sect. 5.3, while concluding remarks with perspectives are given in Sect. 5.4.

5.2 Numerical methodology and problem setup

The numerical simulations carried out in this study are based on the use of an in-house
parallel compressible solver, called CHOC-WAVES. The code is equipped with an adap-
tive multi-resolution method for mesh refinement (Soni et al. 2017, 2019, 2017), along with
an immersed boundary method (IBM) to handle fluid-solid interaction problems Chaud-
huri et al. (2011). The solid body, identified using a ray-tracing technique, is embedded
into a Cartesian grid. Two-dimensional fully compressible Navier-Stokes equations are
solved assuming the gas as ideal and the viscosity obeying to Sutherland’s law. Inviscid
and viscous fluxes are computed using a fifth-order weighted essentially non-oscillatory
(WENO5) scheme and a fourth-order central difference formula, respectively. The time
is advanced using a third-order Runge-Kutta method Chaudhuri et al. (2011). The code
is validated through a variant of test problems including shock/shock, shock/turbulence
and shock/obstacles interactions (Soni et al. 2017, 2019, 2017).

As for the problem setup, a schematic illustration of the studied configurations is
depicted in Figure 5.2, where a planar shock travels at Ms = 1.6 through a double-concave
cylindrical surfaces. The geometry of the cavity flow configuration is taken similar to that
presented in the numerical study of Brahmi et al. (2020a) and Brahmi et al. (2020b). As
for the computational specifications, the boundary conditions were set to inlet and outlet
at the left and the right side of the computational domain, respectively, while the top
boundary and the bottom-right part of the domain are treated as symmetry plane, and the
solid surface is considered with a no-slip boundary condition. In all the simulations, the
geometric parameters such; R1 = R2 = R = 50mm and ω1 = ω2 = 75◦ are kept constant.
Initially, the shock is located at x= 5 mm for all gases. Rankine-Hugoniot relations are
used to set the initial conditions for the left (shocked state) and the right (stagnant state)
states associated with the chosen Ms. The different considered working gases and their
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Figure 5.2: Schematic representation of a double-concave cylindrical surfaces. I: incident
shock, r: reflected shock, DiMR: direct-Mach reflection, TP : triple point, R: cylinder
surfaces radius, w1 = w2 = 75◦: first and second diffraction angles.

physical properties are presented in Table D.1. The initial stagnant state is assigned
with temperature T0 = 300 K and pressure p0 = 101.3 kPa, and the flow is initialized as
uniform flow.

Gas Density Specific Sound speed Molecular weight
(kgm−3) heat ratio (ms−1) (gmol−1)

Air 1.27 1.4 346 29
SF6 6.03 1.1 135 146

Argon 1.75 1.67 323 40
Helium 0.17 1.66 1003 4
CO2 1.93 1.3 268 44

Table 5.1: Physical properties of the considered working gases.

5.3 Results and discussions

Trajectories of incident-shock waves computed for the five different working gases (air,
SF6, Ar, CO2, and He) are shown in Figure 5.3(a). It is clear from this figure that the
fastest wave is witnessed in the He case, while the slowest one is seen in the SF6 case.
In the Ar case, due to the similarity in the acoustic impedance between air and Ar, both
waves propagate with almost the same velocity. Based on these results, the velocities of
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(a) (b)

(c) (d)

Figure 5.3: (a): shock-wave position; (b): shock-wave Mach number; (c): shock-wave
position vs. normalized time and (d): shock-wave Mach number vs. normalized time, for
different gases (− air, − Argon, − Helium, − SF6, − CO2).

these shock waves can be obtained. The results are shown in Figure 5.3(b), for all gases,
the speed of the incident shock wave starts with a constant value (equal to the initial
velocity) then reduces dramatically in time. Furthermore, its rate of change is at first
very large, but becomes smaller as it propagates through the double concave surfaces, and
as we can see in Figure 5.3(b), the incident shock-wave Mach number starts to decrease
earlier for light gases (highest acoustic impedance) and this result is expected because
the shock waves in the case of light gases reach the diffracting edge of the double concave
first.

With regard to the scaling law, the objective is to construct a simple expression based
on the obtained data to normalize the incident-shock waves trajectories and velocities.
The incident-shock waves trajectories and velocities are plotted using dimensionless coor-
dinates. By finding the appropriate dimensionless time, it was possible to show the data
from different simulations with different working gases collapse into a single curve. From
the data analysis, the following relationship is found:
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(a) t̃≈ 3.3 (b) t̃≈ 5.26

Figure 5.4: Normalized pressure profiles at y/R = 1.8 and (a): t̃ ≈ 3.3, (b): t̃ ≈ 5.26 for
different gases (− air, − Argon, − Helium, − SF6, − CO2).

t̃= W i
s

R
ϕ(γ,Ms) t (5.1)

The scaling function ϕ(γ,Ms) is defined as:

ϕ(γ,Ms) = (Ms+ 1)
γ

(
ln(Ms+ 1)− (γ−1)(Ms−1)

)
(5.2)

Where, W i
s : is the initial incident-shock wave velocity depending on the working gas and

R: is the cylindrical concave surfaces radius.
By applying this normalization (Equation(5.1) and (5.2)), all results (shock position

and velocity for different working gases) collapse together into single curve and the results
are presented in Figures 5.3(c) and 5.3(d) respectively.

Normalized pressure variations are shown in Figure 5.4 for different gases, at two dif-
ferent normalized times, t̃. At t̃≈ 3.3, the normalized pressure is decreasing dramatically
for all the gases until reaching a minimum value at around x/R = 0.68. This minimum
value depends on the working gas, so that the gas with the lowest specific heat ratio
reaches the lowest value (SF6, CO2, air, Helium and Ar, from the lowest specific heat
ratio to the highest). After this decreasing part, compression or secondary shocks appear
(as we will see later) in order to increase the pressure ratio to reach its value behind the
transmitted shock wave. It is important to mention that, at this stage of evolution, the
pressure ratio profiles evolve almost similarly for Ar and Helium since they have almost
the same specific heat ratio. The observed pressure state behind the propagating shock
wave is fairly uniform, during the investigated time shown in Figure 5.4(a) for all the
gases.

At t̃≈ 5.26, shown in Figure 5.4(b), the pressure ratio behavior, in general, is almost
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(a) Air (b) Argon (c) Helium

(d) SF6 (e) CO2

Figure 5.5: Spatial distribution of Normalized pressure at y/R= 1.8 along with numerical
schlieren pictures for different gases at t̃≈ 5.26, p0 is the pressure of the gas at rest taken
as p0 = 101.3 kPa.

the same as the previous one. For, approximately, x/R < 0.68 the pressure level is
important for gases with a lower specific heat ratio, this behavior is reversed for the
second part of the graph, x/R > 0.68, where, this time, the pressure level is important
for gases with a higher specific heat ratio.

Intending to shed more light on the pressure ratio distribution, spatial evolutions of the
normalized pressures at y/R = 1.8 along with numerical schlieren pictures for different
gases at t̃ ≈ 5.26 are presented in Figure 5.5. As it can be seen, several secondary
shocks with different intensities appear in the range of 0.68< (x/R)< 1.36 for all gases.
These secondary shocks are formed because of the existence of a locally supersonic flow
behind the diffracting shock wave. Behind the diffracting shock wave, the subsonic flow is
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accelerated and eventually becomes locally supersonic Brouillette et al. (1995). A direct
Mach reflection (DiMR) is formed at the end of the first concave surface, inducing to the
formation of a reflected shock, r, (see Figure5.2). The reflected shock, r, hits the upper
boundary and this phenomenon is observed through the pressures jumps for air, Argon
and Helium at x/R ≈ 2.04. For the two remaining gases, SF6 and CO2, the observed
pressure state behind the propagating shock wave is fairly uniform.

5.4 Concluding remarks and perspectives

In this study, the propagation of planar shock wave over double-concave cylindrical sur-
faces is numerically investigated. The incident shock-wave Mach number is kept constant
such as Ms = 1.6. Five gases, with different physical properties, are used as working
gases, namely, air, He, Ar, CO2 and SF6. As expected, the fastest transmitted shock
wave is found in the He case, while the slowest one is seen in the SF6 case. In the Ar
case, due to the similarity in the acoustic impedance between air and Ar, both waves
propagate with almost the same velocity.

It has been found that the incident-shock wave trajectory and velocity can be approx-
imated by a simple universal relation. The shock position and velocity are proportional
to the initial shock velocity reduced by a scaling function that depending on the incident
shock-wave Mach number, the specific heat ratio and the concave surface radius. The
proposed scaling was tested in five different specific heat ratios and concave surface radius
of 50 mm and diffraction angles of w1 = w2 = 75◦.

Based on the present numerical results, and in order to make the scaling function,
proposed in this study and the previous one Brahmi et al. (2020a), universal, the effect
of the geometrical parameters, such as concave surfaces radius and diffraction angles, can
be investigated.
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• A shock-wave propagation and its attenuation in channel flows with cylindrical
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This paper deals with a numerical study of weak shock-waves propagation and their attenuation in
channel flow having different heights and exhibiting a hollow circular cavities with different depths
and diffraction angles  inside.  The effect  of  initial  diffraction angle and cavity  depth on the shock
mitigation is investigated. A better shock attenuation is achieved with diffraction angle  by
a factor of  approximately 17% in terms of  shock-Mach number and 38% in terms of  total  energy.
The  obtained  results  show  also,  in  addition  to  the  initial  diffraction  angle  and  cavity  depth,  the
importance  of  reducing  the  channel  heights  as  well  as  the  position  of  the  reduced  section  in
achieving an optimal shock-wave attenuation. The presence of a cavity inside the channel helps to
attenuate  faster  the  shock  wave.  The  underlying  physics  relies  on  the  shock  diffraction
phenomenon that generates large amount of vortical structures capable of dissipating part of the
shock  energy  by  inducing  a  pressure  loss  behind  it.  A  subtle  arrangement  of  channel
position/height and a cavity location leads to an efficient pressure attenuation by approximately a
factor of 57% for  and 16% for .
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The  propagation  of  planar  shock  waves  inside  channels,
mines of underground bunkers can create serious human injury
and installations damage due to several wave reflections that can
locally generate zones of dangerous high-pressure amplification.
Thus,  the  knowledge  of  shock-wave  propagation  in  confined
media  is  essential  for  engineering  applications  dealing  with
safety,  blast  wave  and  explosion  attenuation.  This  is  why  many
studies  regarding  ways  to  attenuate  oncoming  shock  or  blast
waves were conducted in the past.  Shock-wave attenuation can

be  achieved by  various  means,  e.g.  foams  [1–3], porous  materi-
als,  granular  filters,  metallic  grids,  perforated  plates,
branched/bend duct [4–6], duct with rough walls, etc. Other pos-
sibilities  consist  of  using  obstacles  with  appropriate  geometries
to attenuate shocks [7–9]. From a numerical point of view, atten-
uating a shock wave in a two-dimensional channel floor with ri-
gid  obstacles  has  been  investigated  by  Chaudhuri  et  al.  [10].
Obstacles of  different  shapes,  i.e.,  cylindrical,  square  and  trian-
gular  were  placed  in  either  staggered  or  non-staggered  matrix
forms. The pressure evolutions upstream and downstream of the
matrices  were  monitored  as  to  evaluate  the  attenuation  effect.
Results  showed  that  the  staggered  matrix  of  reversed  triangular
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prisms  is  the  most  efficient  combination  in  mitigating  shock
waves.  For  the  same  purpose,  Wan  et  al.  [11]  have  studied  the
possibility  of  attenuating  shock  waves  by  using  a  water  spray
obstacles. According to their study, water drops have the poten-
tial  to  efficiently  attenuate  shock  waves  given  the  important
amount of  heat  that  could  be  absorbed  by  water  when  mitigat-
ing the blast wave. In their study, shock attenuation effects of the
water spray  have  been  compared  to  solid  obstacles  devices  us-
ing  the  same  geometrical  setup.  Results  showed  that  water  like
cylinders  have  a  better  capability  to  absorb  the  shock  energy
compared to solid obstacles of the same blockage area. Britan et
al. [12] investigated the attenuation of an incident shock by por-
ous barriers having different geometries and porosities.  Using a
one-dimensional modeling approach, it was found that the over-
pressure acting on an end-wall protected by a barrier decreases
almost  linearly  with  increasing  distance  between  the  end-wall
and the barrier. Berger et al. [13] investigated experimentally the
effects of different types of obstacles on the load developed by a
shock  wave.  They  identified  the  most  influential  parameters,
noting that the geometry is the second most significant paramet-
er  in  attenuating/amplifying  the  shock  wave  loads.  It  turns  out
that  understanding  the  complex  wave  dynamics  and  the  flow
patterns is crucial for designing shock attenuators or shock amp-
lifiers.  Mortazawy  et  al.  [14]  presented  both  experimental  and
numerical  investigations  of  normal  shock  with  different
strengths propagating  inside  ducts  with  surfaces  roughness  ad-
ded in  the  form  of  grooves.  Their  results  showed  the  effective-
ness  of  roughness  in  terms  of  grooves  in  attenuating  shock
waves.  The  case  of  a  planar  shock-wave  propagation  through  a
double-bend  duct  was  investigated  numerically  by  Chaudhuri
[15]. Contrary to the shock-shear layer and shock-boundary lay-
er  dynamics,  the  principal  shock  wave  patterns  are  seen  to  be
less dependent  on  the  flow  Reynolds  number.  As  for  the  over-
pressure attenuation, a factor of about 0.51 was found for shock
wave Mach-number Ms = 1.53. Shi et al. [16] investigated the in-
fluence  of  high  temperature  effects  on  the  protrusion  of  Mach
stem in strong shock reflection over a wedge. The protrusion de-
gree depends on the thermal  energy buffer  capacity  of  the test-
ing gas that escalates the protrusion effect. In a recent numeric-
al  study,  Brahmi  et  al.  [17]  investigated  shock-wave  diffraction
over double concave cylindrical surfaces. This study reveals that
the  shock  velocity  deficit  increases  by  increasing  the  shock-
Mach number.  In  a  second study [18],  the  authors  showed that
the first concave surface is effective in decreasing sufficiently the
dynamic  as  well  as  the  static  pressure  impulses.  The  results
showed also the effect of the reflected and the secondary shocks
in increasing the overall overpressure.

For attenuating shock/blast  waves  propagating inside chan-
nels,  Igra  et  al.  [19] summarized  existing  experimental  and  nu-
merical studies  related  to  geometrical  aspects.  Examples  in-
clude abrupt  changes  in  the  channel  geometry,  and  introduc-
tion of rigid barriers along the shock wave path.

Based on the above discussion, it is clear that the attenuating
shock/blast  waves  propagating  inside  channels  is  still  an  active
research topic where much effort is still needed to better under-
stand the  physical  mechanism  of  the  shock  mitigation  in  con-
fined  areas.  Intending  to  shed  more  light  on  this  complex  fluid
problem, numerical simulations, solving two-dimensional com-
pressible  Navier–Stokes  equations,  are  used  to  study  the  shock
waves  propagation  inside  channels.  The  main  objective  of  the

present  study  is  to  better  understand  the  physical  aspects  of
shock  propagation  and  its  attenuation  in  confined  areas  with
embedded cavities inside. The optimization of the channel geo-
metry and dimensions for  better  shock wave attenuation is  one
of the main scope of the present contribution.

The numerical simulations carried out in this study are based
on  the  use  of  an in-house  parallel  compressible  solver,  called
CHOC-WAVES.  The  code  is  equipped  with  an  adaptive  multi-
resolution  method  for  mesh  refinement  [20–22],  along  with  an
immersed boundary method (IBM) to handle fluid-solid interac-
tion  problems  [23].  The  solid  bodies,  identified  using  a  ray-tra-
cing  technique,  are  embedded  into  a  Cartesian  grid.  Two-di-
mensional  fully  compressible  Navier–Stokes  equations  are
solved  assuming  the  gas  as  ideal  and  the  viscosity  obeying  to
Sutherland's law.  Inviscid  and  viscous  fluxes  are  computed  us-
ing  a  fifth-order  weighted  essentially  non-oscillatory  (WENO)
scheme and  a  fourth-order  central  difference  formula,  respect-
ively.  The  time  is  advanced  using  a  third-order  Runge–Kutta
method [24]. The code is validated through a variant of test prob-
lems  including  shock/shock,  shock/turbulence  and  shock/
obstacles interactions [20–22].

As for the computational specifications, the boundary condi-
tions  are  set  to  inlet  and  outlet  at  the  left  and  the  right  sides  of
the  computational  domain,  respectively.  The  solid  boundaries
(top and bottom) are treated as no-slip walls (see Fig. 1).

The problem setup of the simulations is shown in Fig. 1. In all
the considered simulations, the cavity radius, R, is kept constant
as R = 50 mm. Since R is kept constant and the cavity depth, d, is
varied, the initial cavity angle, θw, must necessarily vary in order
to  keep  the  circular  shape  of  the  cavity.  In  this  study  we  chose
three  different  values  of  60°,  90°  and  140°.  Two  shock  wave
Mach-numbers  are  used namely, Ms  =  1.6  and 1.1.  The moving
normal shock wave is initiated by imposing the Rankine–Hugo-
niot relations across an initial discontinuity. The simulations are
carried  out  using  a  structured  mesh  with  more  than  80  million
points  with  28  processors.  A  single  simulation  took  on  average
200 hours which makes 5600 CPU hours.

Figure  2 shows a  schematic  illustration of  the  shock diffrac-
tion process  past  cylindrical  cavities.  Shortly  after  the  penetra-
tion of the shock into the cavity, the expanded flow evolves into a
complicated system of distorted and secondary shocks with sep-
aration regions (depending on the diffraction angle) and an end-
wall corner vortex is formed with a rolling-up of eddies that are
convected  quasi-linearly  away  from  the  cavity  entrance  as  the
diffraction process evolves. In addition to this important primary
vortex,  a secondary instabilities appear along the cavity wall  for
θw ≤ 90°.

Here, we present the effect of different cavity depths and dif-
fraction angles  on the  shock-wave patterns  by  comparing them
to the case without cavity (a straight tube).

Figure 3a shows the space-time evolution of the shock wave.
One can see that the transmitted shock reaches the channel exit
earlier  for  the  straight  tube  then  for θw  =  60°  and  later  for  140°
and 90°, respectively. These results are also highlighted through
the  variation  of  the  shock-wave  speed,  presented  in Fig.  3b in
terms of Ms  and total  energy  presented in Fig.  3c.  For  all  cases,
we first notice a constant shock wave Mach-number and energy.
After  the  diffraction  process  starts,  an  end-wall  corner  vortex  is
formed with a  rolling-up of  eddies.  The formation of  these  vor-
tices  leads  to  a  shock  velocity  and  energy  drop,  except  for  the
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Fig. 1.   Schematic representation of the problem setup. θw: initial cavity angle, R: cavity radius, d: cavity depth.
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straight  tube  for  which  the  shock  velocity  and  energy  remain
quasi-constant. As  this  process  evolves  in  time,  the  shock  pat-
terns  differ  from  one  case  to  another  depending  on  the  cavity
geometry.

For θw  = 60°,  we notice a  drop in the shock velocity  and en-
ergy until three successive peaks appear at t ≈ 280, 305, and 360
μs, respectively. In order to understand the origin of these peaks
we will  discuss the shock reflection phenomenon in the second

half  of  the  cavity  (depicted  in Fig.  4).  Roughly  in  the  middle  of
the cavity,  an inverse-Mach reflection (InMR) configuration ap-
pears. A bit further, in the second half of the cavity (rising part),
the  InMR  terminates  to  a  transitioned  regular  reflection  (TRR),
with two additional  shocks, r'  and d'  (as  shown in Fig.  4b).  The
additional shock, d' ,  catches the incident shock (I) at the exit  of
the  cavity  and  merge  together  into  a  single  shock  (see Fig.  4c).
This process increases the shock velocity and energy and forms a
new  transmitted  shock, I' ,  hence  the  first  velocity  and  energy
jumps of the graphs. Note that r'  will  catch the new transmitted
shock  (I'),  and  increases  the  velocity  and  the  energy  behind  by
forming  a  new  transmitted  shock, I'' . This  phenomenon  is  ob-
served  through  the  second  velocity  and  energy  jumps  of  the
plots.  The additional  shocks, r'  and d' , from the TRR configura-
tion,  will  successively  be  reflected  from  the  upper  boundary
forming  new  reflected  shocks, r''  and  d'' , which  will  merge  to-
gether into a more intense shock, d*. The new shock, d*, catches
the incident shock, I'', and merge together into a single stronger
shock, I* ,  at  the exit  of  the channel  (see Fig.  4(d,  e)).  The speed
and the  energy  of  the  resulting  shock  are  enhanced.  This  phe-
nomenon  is  observed  through  the  third  velocity  and  energy
jumps.

For θw  = 90°,  we notice a  drop in the shock velocity  and en-
ergy towards a  lower value.  A peak appears  at t  ≈  310 μs.  At t  ≈
216 μs, the incident shock, hits the upper right corner of the cav-
ity  giving  birth  to  a  direct-Mach  reflection  (DiMR)  inducing  to
the  formation  of  a  reflected  shock r1.  r1  catches  the  incident
shock  at  the  channel  exit  and  merge  into  a  single  shock.  This
process  increases  the  shock  velocity  and  energy  and  forms I',
hence the  velocity  and  energy  jumps  of  the  graphs.  The  reflec-
tion process is highlighted in Fig. 5.

For θw = 140°, two successive peaks appear at t ≈ 260 and 350
μs,  respectively.  As for θw  = 90°,  the incident shock, hits the up-
per right corner of the cavity leading to the formation of a DiMR
inducing to  the formation of  a  reflected shock r1.  r1  catches  the
incident shock I and merge together into a single shock (see Fig.
6(a,  b)) increasing  the  shock  velocity  and  energy  by  the  forma-
tion  of I' , hence  the  first  velocity  and  energy  jumps.  The reflec-
ted shock r1  is  again reflected by the upper  boundary.  The new
reflected  shock, r'1  catches  the  transmitted  shock, I' ,  hence  the
second  velocity  and  energy  jumps.  The  reflection  process  is
highlighted in Fig. 6.

Figure 7 represents spatial  distribution, at y/R  = 2,  of  energy
along with  numerical  schlieren  pictures  for  different  configura-
tions at t = 378 μs. For θw = 60°, presented in Fig. 7a, the energy is
decreasing until  a  series  of  peaks appears.  These peaks are due
to the formation of secondary and reflected shocks. The most in-
tense peak is located at x/R ≈ 0.6, which is caused by the merger
of the secondary shock, SS, and the reflected shock, r*.

As for θw = 60°, for θw = 90°, presented in Fig. 7b, the energy is
decreasing until  a  secondary  shock  appears  to  increase  the  en-
ergy  level.  A  bit  further,  at x/R  ≈  1.6  ,  an  intense  peak  appears
due  the  reflected  shock r  thus  increasing  the  energy  level  to  a
higher  value.  After  this  important  peak,  a  series  of  less  intense
peaks  appears  due  to  the  reflected  shocks  from  the  upper  and
the lower boundaries.  It  is  important to mention that the trans-
mitted shock energy for θw = 90° at the channel exit is reduced by
32% compared to that of θw = 60°.

For the last configuration, θw = 140°, presented in Fig. 7c, the
energy decreases towards the lower value of the three configura-
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Fig. 3.   Time history of a shock position, b shock Mach number, and
c shock energy for different diffraction angles (blue dash line: θw =
60°, red dot line: θw = 90°, black line: θw = 140°, dash-dot line: straight
tube).
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Fig. 5.   Numerical schlieren pictures for θw = 90°. I: incident shock; r: reflected shock; InMR: inverse-Mach reflection; TP: triple point; TRR:
transitioned regular reflection; r' and d': additional shocks created from TRR state; DiMR: direct-Mach reflection, r1: reflected shock; TP2: second
triple point.
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tions. At x/R ≈ 1.2, secondary shocks appear and increase the en-
ergy level to a quasi-constant value. No more considerable peaks
are seen in the channel.

Although the energy level reaches its minimum for θw = 140°
in the cavity zone, a better shock attenuation, in the channel exit,
is achieved for the second configuration, θw  = 90°, by a factor of
approximately  38%,  and  this  is  due,  as  explained  above,  to  the
different reflection  phenomena  from  one  case  to  another,  spe-
cially at the cavity exit.

In the first part of this study, we were interested in the effect
of the cavity depth (d) and the initial diffraction angle (θw) while
keeping  the  tunnel  height  (h)  constant.  In  this  second  part  we
kept d and θw constant while varying h, for that we have defined:
ζ =  h/d ,  and  we  took  two  different  values  of  the  latter,  namely:
0.25 and 2.36. Six different cases are considered where basically
the  inlet  and  the  outlet  volumes  have  been  varied  to  cover  the
most  relevant  situations.  The  problem  setup  is  shown  in Fig.  8.
According  to  the  results  obtained  in  the  first  part,  we  chose  to
use the case with θw = 90° and d = 50 mm,.

Figure  9 presents  numerical  schlieren  pictures  for  different
configurations  at t  =  288  μs.  The  incident  shock  wave  starts  to
diffract over the top left corner of the cavity resulting in the form-
ation of an end-wall corner vortex with a rolling-up of coherent
structures. Roughly in the middle of the cavity, an InMR appears,
whose termination leads to the formation of a TRR. More details
are shown in Figs.5(a, b). At approximately t  = 216 μs the incid-
ent shock wave I  hits  the upper right corner of  the cavity giving
birth  to  a  DiMR  inducing  to  the  formation  of  a  reflected  shock.
More  details  are  shown  in Fig.  5(c–e).  After  the  passage  of  the
shock, vortices are formed at the upper right corner of the cavity,
and at the lower right end of the upper wall for C3 and C4 config-
urations.  When  the  transmitted  shock  propagates  further  away
from the cavity and approaching the channel exit, the developed
flow  field  can  be  divided  into  two  separated  zones.  In  the  first
one, noted Zone A, the compressed gas expands over the cavity
and forms a series of vortices that dominate the flow features in
this region. The second region, named Zone B, is mostly charac-
terized by a quasi-uniform flow, followed by a series of wave re-
flections arising from both InMR and TRR. Transverse waves are
then  created  due  to  the  reflection  of  the  shock  on  upper  and
lower channel walls, for C2 and C4. These observations confirm

the earlier findings of Berger et al. [25].
Here, we present the effect of the channel height and the po-

sition of the expanding area on the shock wave patterns. Figure
10a shows the space-time evolution of the shock wave. One can
see  that  the  transmitted  shock  reaches  the  channel  exit  earlier
for  C1,  C5,  C4,  C6  and  later  for  C2  and  C3,  respectively.  These
results  are  also  highlighted  through  the  variation  of  the  shock-
wave speed, presented in Fig. 10b in terms of shock Mach-num-
ber Ms. For all cases, we first notice a constant shock speed and
then a  decrease  just  after  the  beginning  of  the  diffraction  pro-
cess.  As  this  process  evolves  in  time,  the  shock  dynamics  differ
from  one  case  to  another  depending  on  the  channel  geometry.
Thus, in order to understand the shock behavior,  some import-
ant  physical  parameters  are  discussed,  such  as  the  variation  of
the pressure ratio, ps/p1 (ps being the pressure behind the shock
wave and p1 the initial pressure in the shocked gas taken as, ps =
285.7 kPa). The results are presented in Fig. 11.

For  case C1,  depicted in Fig.  11a,  the flow structures  can be
divided into three main parts. The first one (part I), identical for
all cases, highlights the shock dynamics before the startup of the
diffraction  process  which  is  represented  by  a  short  horizontal
line corresponding to the initialization values of the shock. After
the diffraction process starts (part II), an end-wall corner vortex
is formed with a rolling-up of eddies. The formation of these vor-
tices leads to a pressure decrease and the more this disturbed re-
gion spreads over the diffraction volume, the more the pressure
decreases (see cases C2 and C3). At approximately t ≈ 216 μs the
incident shock wave (I)  hits  the upper right corner of  the cavity
giving  birth  to  a  DiMR  inducing  to  the  formation  of  a  reflected
shock, r1.  The later catches up the incident shock (I) and merge
into a single shock, the phenomenon is depicted in Fig. 12(a–c).
This process  increases  the  pressure  ratio,  hence  the  first  pres-
sure  jump  for  the  third  phase  (part  III)  of  the  graph.  After  that,
the observed pressure state behind the propagating shock wave
is fairly uniform.

As  for  the  first  case,  the  pressure  ratio  evolution  for  the
second one C2 can be divided into three parts (see Fig. 11b). Part
I is identical to that of case C1. For part II, we notice a drop in the
pressure  ratio  towards  a  lower  value.  By  reducing  the  channel
height to h1/d  = 0.25,  the formed vortex at the upper left  corner
of the cavity occupies a much larger volume, thus lowering fur-
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ther the pressure level in the cavity and behind the shock as well.
For part III, we observe a presence of a series of successive three
pressure jumps. The first pressure jump is caused by the DiMR,
phenomenon  as  mentioned  before.  The  two  following  pressure
peaks are essentially due to the multiple shock reflections arising
from  the  upper  and  the  lower  channel  walls.  These  reflected
shocks  successively  catch  the  transmitted  shock  and  merge  all
together into a single stronger shock, the phenomenon is depic-
ted in Fig.  12(d–f). The pressure as well  as the speed of  the res-
ulting shock are bit enhanced.

As depicted in Fig. 1c, stages I and II of C3 are similar to that
of C2. Indeed in stage III, we notice an additional decrease in the
pressure ratio due to the formation of two vortices. The first one
is  initiated  at  the  lower-right  corner  of  the  top  wall  and  the
second one takes place at the top-right corner of the cavity. The
decrease of the pressure is followed by a small jump, at the start
of  the fourth phase IV,  which is  due,  as  explained above,  to the
reflected shock resulting from the DiMR configuration (r1). After
this  jump,  the  pressure  ratio  decreases  quasi-linearly  and
reaches a value of approximately 0.43 at the channel exit.

Phases I  and II  in the fourth case,  C4,  presented in Fig.  11d,
which in terms of geometry, is the inverse of the third case (C3),
are similar to those in case C1. Phase III is similar to that of case
C3. For part  IV,  we notice the presence of  a series of  successive
pressure jumps.  As reported previously,  the first  peak is  caused
by  the  reflected  shock  resulting  from  the  DiMR  configuration
(r1). The other peaks are due to the multiple wave reflections as
explained for C2.

In order to to shed more light  on the effect  of  the cavity,  we
realized  a  case  similar  to  C3  but  without  cavity.  The  results  for
this case, C5, are presented in Fig. 11e. As we can see, the pres-
sure  ratio  evolution  for  this  case  is  divided  into  two  parts.  The
first one, I, is similar to the previous cases, the second one, II, is
characterized by a drop in the pressure ratio. This pressure drop
is caused by the shock-wave diffraction and the formation of vor-
tex at the lower right corner of the upper boundary. The effect of
the cavity is clearly visible by comparing the two cases where the
best pressure attenuation is achieved with the cavity for C3. Note
that the only difference between C3 and C5 is the absence of the
cavity, all the other geometrical dimensions are kept the same.

The effect of another geometrical parameter has been invest-
igated,  namely  the  length  of  the  tunnel  at  the  inlet.  The  results
for this case, C6, are presented in Fig. 11f. Compared to the pre-
vious case, the pressure ratio for this case starts decreasing earli-
er because of the early shock-wave diffraction and the formation
of vortex  at  the  lower  right  corner  of  the  upper  boundary.  Al-
though the pressure started decreasing earlier for C6, at the exit
of  the tunnel  it  reaches a  value almost  equal  to  that  of  C5.  This
configuration confirms the role played by the cavity in the pres-
sure attenuation.

dp/dt = (pe −pmin)/(te − tpmin
) pe

pmin

te

tpmin

Table 1 shows the time variation of  the pressure,  defined as
.  Here,  is  the  pressure  behind

the transmitted shock at the exit of the channel,  is the min-
imum  pressure  behind  the  shock,  is  the  instant  when  the
shock  arrives  at  the  end  of  the  channel  and  is  the  instant
when the pressure behind the shock reaches its minimum value.
As shown in Table 1, the only configuration where a pressure re-
duction is  achieved  is  C3.  The  most  critical  case  is  the  one  re-
lated  to  configuration  C1,  where  an  increase,  of  approximately
426  MPa/s,  is  obtained. Table  1 shows also  the  shock  attenu-
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Fig. 7.   Spatial distribution of energy along with numerical schlier-
en pictures for different configurations at t = 378 μs.
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A

A= (p1 −ps )/p1 p1

ps

ation  factor  defined as  the  ratio  of  the  relative  pressure  be-
hind the transmitted shock (at the exit of the channel) to the ini-
tial  shocked gas  pressure such as, ,  where  =
285.7  kPa  and  is  the  exit  pressure.  Comparison  between  all
configurations  indicates  that  the  height  and  the  expanded  area

position of the channel significantly affect the shock wave atten-
uation. The  results  show  that  a  better  attenuation  factor  is  ob-
tained for C3 (about 57%). However, for case C1 the attenuation
effects are minor, about 3%.

The  effect  of  different  configurations  on  shock  strength  is
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Fig. 9.   Numerical schlieren pictures for different flow configurations C1, C2, C3, and C4 at t = 288 μs.
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Fig. 14.   Time history of a shock position, b shock Mach-number,
and c shock energy for different diffraction cases. Black line: C3, red
dash line: C4 for Ms = 1.1.

dp/dt ATable 1   Pressure variation  and attenuation factor  for Ms

= 1.6.

C1 C2 C3 C4 C5 C6

dp/dt  (MPa/s) 426 55 –111 197 – –

A (%) 3 40 57 21 42 46
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Ip

Ipd

P

also investigated by computing the static, , as well the dynam-
ic, , pressure  impulses  along  with  the  normalized  over  pres-
sure, . These three parameters are defined as,

Ip =
∫ t f

t0

p dt , Ipd =
∫ t f

t0

1

2
ρv 2 dt , P = p/p1,

where p,  ρ  and  v  are  the  pressure,  density  and  velocity  in  the
shocked  region,  respectively.  The  initial  time t0  is  picked  when
the  transmitted  shock  wave  reaches  the  channel  exit  (x/d =  4)
and tf is the final time of the simulations. The obtained pressure
impulses are presented in Fig. 13(a, b). The general trends show
that these quantities increase quasi-linearly after the passage of
the  shock.  The  exit  of  the  channel  is  mostly  comprised  by  a
quasi-uniform gas, hence the quasi-linear behavior of static and
dynamic  impulses.  As  expected  from  previous  results,  the
minimum value for both static and dynamic pressure impulses is
obtained  for  C3.  As  for  the  normalized  overpressure, Fig.  13c
shows a sudden jump due to the passage of the incident shock,
which remains almost constant later for C1, C5, and C6. For C2,
C3, and C4, a successive peaks can be seen, these peaks are due
to  the  reflection  phenomena  at  the  cavity  exit  as  explained
before.  The intensity  of  the normalized overpressure at tf  varies
between a maximum value for C4 and a minimum value for C3.
Note that, except the shock delay, no remarkable differences are
seen between the normalized overpressure of C5 and C6.

Then  we  investigated  the  effect  of  the  incident-shock  Mach
number by setting Ms  = 1.1 for C3 and C4. Figure 14a shows the
space-time  evolution  of  the  shock  wave.  One  can  see  that  the
transmitted shock reaches the end of  the channel  earlier  for  C4
and  later  for  C3.  These  results  are  also  highlighted  through  the
variation of the shock-wave speed, presented in Fig. 14b in terms
of shock-wave Mach number, Ms. For the two cases, we first no-
tice a constant shock speed and then a decrease just after the be-
ginning  of  the  diffraction  process.  As  this  process  evolves  in

ps p1 ps

p1

p1

time, the  shock  dynamics  differ  from  one  case  to  another  de-
pending on the channel geometry and the shock reflection phe-
nomena  at  the  cavity  exit.  Thus,  in  order  to  understand  the
shock behavior,  some  important  physical  parameters  are  dis-
cussed, such as the variation of the pressure ratio, /  (  be-
ing the pressure behind the shock wave and  the initial  pres-
sure  in  the  shocked  gas  taken  as  =  126.15  kPa)  along  with
schlieren pictures. The results are presented in Fig. 15. As we can
see  in  this  figure,  no  significant  effect  of  reducing  the  shock
Mach  number.  Among  the  remarkable  effects,  the  reduction  in
the number of peaks for phase IV of C4. This reduction is mainly
linked to the reduction of the speed of the shock wave as well as
those of the reflected waves and their intensities as shown in Fig.
16c and 16d. The reduction of the shock Mach number does not
affect the reflection process in the upper right corner of the cav-
ity  where  a  direct-Mach  reflection  takes  place  as  seen  for Ms  =
1.6, the reflection process is depicted in Fig. 16.

A

Table 2 shows the time variation of the pressure. As for Ms =
1.6 a  pressure reduction is  achieved with C3 and a  pressure in-
crease  is  obtained  with  C4.  As  for  the  attenuation  factor, ,  a
shock  mitigation  is  achieved  with  both  cases.  The  results  show
that, as for Ms = 1.6, a better attenuation factor is obtained for C3.

In summary, this paper reports new computational results on
weak shock-waves propagation and their attenuation in channel
flows with  different  heights.  A  circular  section  cavities  with  dif-
ferent depths and diffraction angles are added to the channel as
to induce shock diffraction and to generate vortices responsible
for the  pressure  drop  behind  the  shock.  A  better  shock  mitiga-
tion is  achieved with diffraction angle θw  =  90°,  where,  the total
shock energy is reduced by approximately 38%. A careful analys-
is of the flow structures reveals that in addition to the variation of
the  channel  height,  the  position  of  these  modifications  play  an
important role in the shock mitigation. A subtle arrangement of
channel position/height and cavity is found, leading to a signific-
ant attenuation factor of about 57% for Ms = 1.6 and 16% for Ms =
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Fig. 15.   Spatial distribution of the normalized shock pressure along with numerical schlieren pictures for different flow configurations at
 μs for .  is the initial pressure taken as  = 126.15 kPa and  is the pressure behind the shock.
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1.1. In  summary,  the  shock  wave  attenuation  in  an  open  chan-
nel with a cavity inside can be associated to the following mech-
anisms:  (1)  shock  diffraction  over  the  cavity  that  results  in  the
formation of an end-wall corner vortex, leading to a large dissip-
ative  region  responsible  for  the  pressure  decrease  behind  the
shock,  (2)  appearance  of  an  InMR  due  to  the  shock  reflection
which result  in  the  formation  of  a  TRR  over  the  cavity,  (3)  ap-
pearance of  a  DiMR due to the shock reflection from the upper
right corner  of  the  cavity,  and  (4)  formation  of  multiple  trans-
verse waves due to shock reflections from top and bottom chan-
nel walls owing to the confinement effect.

Based on the present numerical results, other forms of cavity
can  be  proposed  to  further  attenuate  shocks  in  channel  flows.
The  idea  is  to  avoid  the  formation  of  the  DiMR.  This  can  be
achieved by suppressing the rising part of the cavity.
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7

Conclusions and perspectives

The main purpose of this thesis is to use high resolution numerical simulations to further
clarify the flow physics related to shock-wave propagation and attenuation in confined
areas. Particular emphasis is put in the study of different complex geometries.

The outcomes of the present study can be summarized as follows:

- Shock-wave diffraction over double concave cylindrical surfaces

The shock-wave diffraction over double concave cylindrical surfaces is first investigated
at different flow regimes by varying the incident-shock-wave Mach number from Ms = 1.6
(transonic regime) to Ms = 4.5 (supersonic regime). The shock-wave dynamics are deeply
analyzed, the evaluation of the transition angle, θtr, from a regular reflection to a Mach
reflection (RR→ MR) has shown that θtr increases with the Mach number. The analysis
revealed also that θtr is almost the same for both surfaces for weak Mach numbers, up
to Ms = 2.5, and to be relatively larger on the second surface for high Mach numbers,
Ms = 3.5 and 4.5. The tracking of the triple point trajectory showed different shock-
wave behaviors, especially at the second half of the second surface. Depending on the
shock-wave Mach number, different shock patterns are observed:

- For Ms ≤ 2.5: appearance of a single triple point configuration, known as a STP
(single triple point).

- For Ms = 3.5: after the appearance of the first triple point, a second one is formed,
provoking a transition from STP to DTP configurations (STP → DTP transition).

- For Ms = 4.5: after the formation of the first and the second triple points, the two
configurations merge together and give birth again to a STP configuration, leading
to STP → DTP → STP transition.

Further analysis concerns the study of the vorticity generated by the shock-wave
diffraction over double concave cylindrical surfaces. It was shown that the shock strength
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enhances the vorticity production as found by Sun & Takayama (2003b). The vorticity
production has been further investigated by evaluating the evolution of the instantaneous
vorticity transport equation. It was found that the stretching of vorticity due to the flow
compressibility plays an important role in the vorticity dynamics. The results show also
that the diffusion of the vorticity due to the viscous effects is quite important compared to
the baroclinic term for low Mach numbers regimes, Ms ≤ 2.5, while this trend is inverted
for higher Mach numbers regimes, Ms ≥ 3.5. To the best of the author’s knowledge, this
result has not been reported so far. In terms of shock strength, the effect of the first
concave surface was found to be effective in decreasing sufficiently the dynamic as well
as the static pressure impulses. In terms of shock velocity, the shock deceleration was
found to be increasing with the shock-wave Mach number. Quantitative comparisons
between the numerical results for different initial conditions (shock-wave strengths, gas
properties) are made to find the physical parameters affecting the incident shock path and
velocity. An approximate universal relation is derived, which predicts the incident-shock-
wave trajectory and velocity as a function of the incident-shock-wave Mach number. The
proposed relation was tested in the range of Ms (1.6 ≤Ms ≤ 4.5) and different working
gases, having different molecular weights, specific heat ratios, and acoustic impedances,
mainly: air, He, Ar, CO2 and SF6. By finding the appropriate dimensionless time, it
was possible to show the data from different simulations with different initial conditions
collapsing into a single curve.

- Shock-wave propagation inside channel with cylindrical cavities

In a second part, the dynamics of the complex unsteady flows inside channel with cylindri-
cal cavities of different depths and diffraction angles are investigated in a second part. As
the diffraction process evolves, the end-wall corner vortices are formed with a rolling-up
of eddies that are convected quasi-linearly away from the cavity entrance. These corner
instabilities are characterized by the formation of a primary vortex that is followed by
a secondary one for cavities having a diffraction angle θw ≤ 90◦. The key mechanisms
behind the appearance of this secondary near-wall instability are the large enough ad-
vection velocity generated by the cavity boundary layer. It is found that the interaction
of this secondary instability with the primary vortex core in the upstream part of the
cavity is one of the main sources of excitations and possible transition to turbulence.
Configurations with no secondary instabilities were also present, mainly for diffraction
angles higher than 90◦, where the advection velocity is not sufficient to destabilize the
wall-boundary layer. Also the results highlight the effect of the diffraction angles on the
evolution and the trajectory of the main vortex in which the secondary instabilities play
an important role. The total vorticity production has been quantified. The effect of initial
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diffraction angles on the vorticity production is investigated and is found to be negligible
at least in the earlier stage of the diffraction process. Furthermore, the contribution of
the shock wave in vorticity production has been evaluated using a shock indicator based
on Ducros sensor, and the contribution was found to be negligible (∼ 10% of the total
vorticity).

In terms of shock mitigation, a better shock attenuation is achieved with a diffraction
angle of θw = 90◦, where the total shock energy is reduced by approximately 38%. The
effect of the tunnel height on the shock mitigation for two diffraction angles was examined.
A careful analysis of the flow structures revealed that in addition to the variation of the
channel height, the position of these modifications play an important role in the shock
mitigation. A subtle arrangement of channel position/height and cavity depth was found,
leading to a significant attenuation factor of about 57% at the channel exit.

For θw = 60◦, an arbitrary arrangement may have a dramatic consequences on the
amplification of the shock wave by a factor of approximately 30% at the end of the
channel which is undesirable from safety and risk prevention management point of view.

In summary, the shock wave attenuation in a half-open channel with a cavity inside
can be associated to the following mechanisms:

- Shock diffraction over the cavity that results in the formation of an end-wall corner
vortex, leading to a large dissipative region responsible for the pressure decrease
behind the shock.

- Appearance of an inverse-Mach reflection (InMR) due to the shock reflection which
results in the formation of a transitioned regular reflection (TRR) over the cavity
that leads to additional shocks.

- Appearance of a Direct-Mach reflection (DiMR) due to the shock reflection from
the upper right corner of the cavity.

- Formation of multiple transverse waves due to shock reflections from the top and
the bottom channel walls owing to the confinement effect.

- Perspectives
This section provides future work that can be conducted to further strengthen the

present study. Hence the following items can be considered:

- Further assessment of the validity of the scaling low proposed in this study for the
prediction of both shock-wave position and velocity for different geometries and
shapes of the two concave surfaces.



108 7. Conclusions and perspectives

- Other cavity depths, diffraction angles and forms like triangular, elliptical, square.
etc. could be proposed in order to investigate their effects on the shock-wave miti-
gation/amplification.

- As an improvement, a better shock-wave mitigation in tunnels with circular cavity,
would be achieved by: i) adding grooves to the channel walls, ii) avoiding the for-
mation of the Direct-Mach reflection (DiMR) and the transitioned regular reflection
(TRR) by suppressing the rising part of the cavity.

- Investigation of the effect of the dynamic and/or the thermal boundary layer up-
stream of the incident shock on the vorticity generation and the shock attenuation.
This leads to the study of the Reynolds number on the shock-wave propagation.

- Extension of the study for spherical and semi-spherical shock waves in order to verify
the effectiveness of the geometries proposed in the attenuation of shock waves from
real explosions.



Appendix A

Numerical method

A.1 Inviscid flux computations

A.1.1 WENO5

The space discretization is achieved through higher–order finite differences. The fluxes
are discretized using a fifth-order WENO scheme (Liu et al. 1994, Jiang & Shu 1996). The
underlying principle of the WENO scheme is to superpose of many sub–stencils with adap-
tive coefficients to get a high-order approximate solution, preventing oscillations across
discontinuities and retaining a high-order of accuracy throughout the smooth solutions.
For the sake of clarity, we present here the WENO scheme for the one-dimensional scalar
equation. It can be straightforwardly extended to higher dimensions. For the fifth-order
WENO scheme, let us consider third-order polynomial reconstructions on three different
stencils

u
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2
= 1

3ui+
5
6ui+1−

1
6ui+2

u
(1)
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7
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The convex combination of the fifth-order WENO flux corresponds to

ui+ 1
2

=
2∑
j=0

wju
(j)
i+ 1

2
(A.2)

where the nonlinear weights wj are given by

wj = αj
α0 +α1 +α2

, with αj = γj
(βj + ε)2 . (A.3)
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Here, ε is a constant set to 10−6 in order to prevent the denominator from becoming
zero. The smoothness indicators of the function u are defined by the coefficients βj ,
j ∈ {0,1,2}, as

β0 = 13
12 (ui−2ui+1 +ui+2)2 + 1

4 (3ui−4ui+1 +ui+2)2

β1 = 13
12 (ui−1−2ui+ui+1)2 + 1

4 (ui−1−ui+1)2 (A.4)

β2 = 13
12 (ui−2−2ui−1 +ui)2 + 1

4 (ui−2−4ui−1 + 3ui)2

The linear weights γj , j ∈ {0,1,2} of the fifth-order WENO scheme are provided as

γ0 = 3
10 , γ1 = 3

5 , γ2 = 1
10 . (A.5)

To compute the numerical flux for ui− 1
2
, the procedure is simply the mirror symmetry

of the one mentioned above.

A.1.2 Roe flux differencing scheme

In this section, an overview of the Roe approximate (Roe 1981) Riemann solver is given
in continuation with the WENO scheme. Applying the chain rule to Eq. 2.2 for one-
dimensional case

∂U
∂t

+ ∂F
∂U︸︷︷︸
A

·∂U
∂x

= 0 (A.6)

where A in the above equation forms a Jacobian matrix, which together with Eq. 2.12,
can be written as,

A=


0 1 0

1
2(γ−3)u2 (3−γ)u γ−1(

1
2(γ−1)u2−h

)
u h− (γ−1)u2 γu

 (A.7)

where

h= e+ p

ρ
= c2

γ−1 + 1
2u

2 (A.8)

denotes the total enthalpy per unit of mass, and c is the speed of sound. Now, since the
Jacobian matrix can be diagonalized, it can be written as,

A=RΛL (A.9)
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where R and L(=R−1) are the right and left eigenvector matrices, and Λ is the eigenvalue
matrix. These matrices are given by,

Λ =


u 0 0
0 u+ c 0
0 0 u− c

 (A.10)

R =


1 1 1
u u+ c u− c
u2

2 h+uc h−uc

 (A.11)
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 (A.12)

where h′ denotes the internal enthalpy given by

h′ = h− u
2

2 = c2

γ−1 (A.13)

Roe averaging
The Roe averaging method is a type of Godunov scheme; and its formulation for the

point–based finite difference scheme on the uniform grids reduces to the same form of
the cell averaged one. The Roe averaging for the density, velocity and enthalpy can be
written as

ρi+ 1
2

=√ρLρR ui+ 1
2

=
√
ρLuL+√ρRuR√
ρR+√ρL

hi+ 1
2

=
√
ρLhL+√ρRhR√
ρR+√ρL

(A.14)

where, the left and right states are derived from Eq. A.2 of WENO computation. Now,
using these averaged form of equations and applying them in Eq. A.10, A.11 and A.12,
the Jacobian matrix can be found as

∣∣∣∣Ai+ 1
2

∣∣∣∣=Ri+ 1
2
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(A.15)

This makes the flux computation equation as
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A.2 Viscous flux computations

The viscous fluxes given in Eq. 2.9 are computed using a fourth–order compact cen-
tral differential scheme. The classical form of a fourth–order scheme is depicted in one
dimension as

∂F

∂x
= −Fi+2 + 8Fi+1−8Fi−1 +Fi−2

12∆x (A.17)

The derivatives of the elements of Fv vector are computed using a five point stencils
as follow

(
∂f

∂x

)
i−2

= −25fi−2 + 48fi−1−36fi+ 16fi+1−3fi+2
12∆x +O(∆x4)(
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= 3fi−2−16fi−1 + 36fi−48fi+1 + 25fi+2
12∆x +O(∆x4)

(A.18)

As can be seen, the primary advantage of using a compact numerical scheme is that it
works with a very narrow interval of points. Since the current solver uses ghost points near
the edges and corners, this numerical scheme delivers a fourth–order accurate solution
without requiring additional memory.

A.3 Time integration

The explicit third-order TVD Runge-Kutta (RK3) (Butcher 2008) scheme is used for the
time integration. The system (2.1) - (2.2) can be reduced to the following ODE:

∂tU =D(U) , (A.19)

where D is the divergence operator. Using the RK3 scheme, the temporal discretization
of the above equation is given bellow, with ∆t denotes the time step.

U∗ = Un+ ∆tD(Un)

U∗∗ = 1
4 [3 Un+U∗+ ∆tD(U∗)] (A.20)

Un+1 = 1
3 [Un+ 2 U∗∗+ 2 ∆tD(U∗∗)] (A.21)



Appendix B

Wavelet theory and coefficients of
the prediction operator

B.1 Wavelet theory and multiresolution analysis

The concept of wavelet has found its applications in many disciplines such as image
processing, signal analysis, statistics, numerical analysis, etc. The readers are advised
to refer to Mallat (1989), Daubechies (1992), Cohen (2003), Müller (2003) for detailed
explanation on the multiresolution analysis and wavelet theory.

A set of functions, {φr,s(x)} lying in the square integrable real space, L2(R) can be
written as,

φr,s(x) = 2r/2φ(2rx− s) , r,s ∈ Z (B.1)

where φ,r and s denote the scaling function, scaling parameter and the shifting parameter,
respectively. Let us consider a subspace associated with the set of scaling functions
V0 : {φ0,s(x)}. Now, if the scaling parameter is increased by a unity, it represents the
subspace V1 : {φ1,s(x)} such that it becomes the superset of the subspace V0. This can
be interpreted as whatever is analyzed using the set of functions {φ0,s(x)} can also be
analyzed using {φ1,s(x)}, as the latter encompasses the former. This can be illustrated
pictorially as in Fig. B.1. Since the only variation between each set of scaling function
is the scaling parameter, it can be understood from Eq. B.1 that the amplitude is the
only change found from one scale to another scale of the scaling functions for given shift
parameter s. Hence, it can be implied that each scaling function in this case is covered
by the next higher scaling function. This can be written is the form of nested subspaces
as,
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V−∞ ⊂ . . .⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . .⊂ V∞ (B.2)

Since the scaling function in V0 can be approximated from the different weighted
summation of the shifted versions of the next higher scaling function, it can written in
the form of the scaling function series as,

φ(x) =
∑
s
hφ(s)

√
2 φ(2x− s) (B.3)

where hφ is called the scaling coefficient. Now, if a function spans in the V1 but not in
the V0 subspace, the subspace forms with the difference between the V1 and V0 subspaces
can be called W0 (see Fig. B.1). In this case,

V1 = V0⊕W0 V2 = V1⊕W1 = V0⊕W0⊕W1 (B.4)

V2

V0

V1

V1

V0V2

W0

W0
W1

W1

Figure B.1: Schematic representation of the subspaces associated with the scaling (color)
and wavelet (pattern) functions.

where the symbol ⊕ represents the union of subspaces.
The class of functions which cover the difference subspaces are called the wavelet

functions; and they are given similar to Eq. B.1 by,

ψr,s(x) = 2r/2ψ(2rx− s) , r,s ∈ Z (B.5)

These functions hold the following properties: 1) the shifted versions of these functions
should be orthogonal to each other, and 2.) the oscillatory nature of these functions
should have zero area under them. Now, the relationship between the wavelet and scaling
functions can be established as W0 ⊂ V1 by,

ψ(x) =
∑
s
hψ(s)

√
2 φ(2x− s) (B.6)
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Suppose given a set of scaling functions {φr0,s} and a set of wavelet functions {ψr,s},
where r ≥ r0, a continuous function f(x) ∈ L2 can be approximated by,

f(x) =
∑
s
ar0,sφr0,s(x) +

∞∑
r=r0

∑
s
br,sψr,s(x) , r,s ∈ Z (B.7)

As the set of {φr0,s} is orthogonal for a fixed value of r0 and the set of {ψr,s} is
orthogonal itself from its property, the coefficients ar0,s and br,s can be derived as

ar0,s =
∫
f(x)φr0,s(x)dx

br,s =
∫
f(x)ψr,s(x)dx

B.2 Coefficients of the prediction operator

Multiresolution prediction operators are given in one, two and three dimensional form.

B.2.1 One–dimensional case

The polynomial of degree (r−1) used for the interpolation of the prediction operator in
one dimension writes

ûl+1,2i+1 = ∑r/2
n=1φn

(
ul,i−n+1 +ul,i+n

)
(odd index)

ûl+1,2i = ul,i (even index)
(B.8)

B.2.2 Two–dimensional case

The prediction operator for two dimensions writes

ûl+1,2i+ζ,2j+η =
ζr/2∑
n=ζ

φn

ηr/2∑
m=η

φm
(
c1ul,i−n+1,j−m+1 + c2ul,i+n,j−m+1

+ c3ul,i−n+1,j+m+ c4ul,i+n,j+m
) (B.9)

In Eq. (B.9), the coefficients change with the index of x and y coordinates, where
ζ,η ∈ {0,1}. The different terms are
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if(ζ = 1,η = 1) then c1 = c2 = c3 = c4 = 1

if(ζ = 1,η = 0) then c3 = c4 = 1; c1 = c2 = 0

if(ζ = 0,η = 1) then c2 = c4 = 1; c1 = c3 = 0

if(ζ = 0,η = 0) then ûl+1,2i,2j = ul,i,j

B.2.3 Three–dimensional case

The prediction operator in 3D can be written in the following way

ûl+1,2i+ζ,2j+η,2k+κ =
ζr/2∑
n=ζ

φn

ηr/2∑
m=η

φm

κr/2∑
p=κ

φp
(
c1ul,i−n+1,j−m+1,k−p+1

+ c2ul,i+n,j−m+1,k−p+1 + c3ul,i−n+1,j+m,k−p+1

+ c4ul,i+n,j+m,k−p+1 + c5ul,i−n+1,j−m+1,k+p

+ c6ul,i+n,j−m+1,k+p+ c7ul,i−n+1,j+m,k+p

+ c8ul,i+n,j+m,k+p
)

(B.10)

Eq. (B.10) is a generalized form of the prediction operator. It varies with the index
of each dimension depending on ζ,η,κ ∈ {0,1}. Following are the details associated with
the prediction operator:
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if(ζ = 1,η = 1,κ= 1) then c1 = c2 = . . .= c8 = 1

if(ζ = 1,η = 0,κ= 0) then c7 = c8 = 1; c1 = c2 = . . .= c6 = 0

if(ζ = 0,η = 1,κ= 0) then c6 = c8 = 1; c1 = . . .= c5 = c7 = 0

if(ζ = 0,η = 0,κ= 1) then c4 = c8 = 1; c1 = c2 = c3 = c5 = c6 = c7 = 0

if(ζ = 1,η = 1,κ= 0) then c5 = . . .= c8 = 1; c1 = . . .= c4 = 0

if(ζ = 0,η = 1,κ= 1) then c3 = c4 = c7 = c8 = 1; c1 = c2 = c5 = c6 = 0

if(ζ = 1,η = 0,κ= 1) then c2 = c4 = c6 = c8 = 1; c1 = c3 = c5 = c7 = 0

if(ζ = 0,η = 0,κ= 0) then ûl+1,2i,2j,2k = ul,i,j,k

The interpolation coefficient φ for second-, fourth- and sixth-order polynomial inter-
polations used in Eqs. (B.8), (B.9) and (B.10) write (see Harten (1995))


r = 2 ⇒ φ0 = 1, φ1 = 1/2
r = 4 ⇒ φ0 = 1, φ1 = 9/16, φ2 =−1/16
r = 6 ⇒ φ0 = 1, φ1 = 150/256, φ2 =−25/256, φ3 = 3/256

(B.11)
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Appendix C

Vorticity production in shock-waves
diffraction over circular cavities

Abstract The dynamics of complex unsteady flows inside channel with cylindrical cavi-
ties at incident-shock Mach number Ms = 1.6 are numerically investigated. As the diffrac-
tion process evolves, end-wall corner vortices are formed with a rolling-up of eddies that
are convected quasi-linearly away from the cavity entrance. These corner instabilities are
characterized by the formation of a primary vortex that is followed by a secondary one for
cavities having a diffraction angle θw ≤ 90◦. The key mechanism behind the appearance
of this secondary near-wall instability are a large enough advection velocity generated by
the cavity boundary layer. It is found that the interaction of this secondary instability
with the primary vortex core in the upstream part of the cavity is one of the main sources
of excitations and possible transition to turbulence. Configurations with no secondary
instabilities are also present, mainly for diffraction angles higher than 90◦, where the
advection velocity is not sufficient to destabilize the wall-boundary layer. In order to
investigate the effect of initial diffraction angle on the vorticity field, the total vorticity
production is first evaluated by integrating the local vorticity ω over the entire domain.
The spatio-temporal evolution of the vorticity is further analyzed through the balance
of the vorticity transport equation. The results show that the diffusion of vorticity due
to viscous effects is dominated by the other mechanisms (stretching of vorticity due to
flow compressibility and baroclinic term), while the stretching of the vorticity due to the
compressibility effects and the convection term play a major role in the vorticity dynam-
ics. A shock sensor is used to evaluate the contribution of shocks in vorticity production,
which is found to be negligible.
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C.1 Primary vortex evolution

Initially, the shock is located at x/R= 0,06. Shortly after the penetration of the shock into
the cavity, the expanded flow evolves into a complicated system of distorted and secondary
shocks with separation regions (depending on the diffraction angle). An end-wall corner
vortex is formed with a rolling-up of eddies that are convected quasi-linearly away from
the cavity entrance as the diffraction process evolves. In addition to this important
primary vortex, a secondary instability appears along the cavity wall for θw ≤ 90◦.

Figure C.1 shows the trajectory of the primary vortex centroid. The vortex emerges
not at the time the diffraction begins but after the gas velocity at a certain point on
the surface has vanished. Up to certain time t, the vortex trajectory is almost linear,
and then its motion becomes oscillatory for the three diffraction angles. After this time,
for θw ≤ 90◦, the position of the primary vortex centroid is difficult to detect. As the
diffraction process evolves, a laminar boundary layer takes place in the reversing flow
near the cavity wall. This boundary layer interacts with the secondary shocks giving
a transition to a highly perturbed one with large scale coherent vortices, thus making
detection of the primary vortex centroid complicated. Figure C.1(d) shows the evolution
of the angle between the vortex centroid trajectory and the horizontal, θv, as a function
of the diffraction angle, θw. The θv is increasing with θw, this shows the effect of the
diffraction angle on the primary vortex evolution and trajectory.

C.2 Vorticity production

The circulation Γ is defined as the summation of vorticity ω in the domain S,

Γ =
∫
s
ωds=

∫
L
udl (C.1)

The integral contour or path L is taken along the boundary that exactly encloses the per-
turbed region behind the shock wave. The vorticity production in shock-wave diffraction
can also be characterized by the time history of the ratio of circulation rate, Γ/t.

The numerical calculation of the circulation is directly obtained from summing the
vorticity over each individual surface area. In general, the circulation calculation is
performed only in the perturbed region behind the diffracted shock. However, in this
study the circulations are calculated over the complete computational domain because
the unperturbed flow regions (uniform regions) provides no contribution to the circulation
effect (Brahmi et al. (2020b)). Note that in all the present study, the circulation is
presented by its absolute value.

Figure C.2 represents the space vorticity distribution for different diffraction angles
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(a) θw = 60◦ (b) θw = 90◦

(c) θw = 140◦ (d) θv

Figure C.1: Trajectory of the primary vortex centroid for different diffraction angles, θw.
The red line represents an averaged linear regression.

in two different instants (t= 123 µs and t= 228 µs). As it can be seen, the main vortex
and the shear layer split due to the interaction with the secondary shocks resulting in
small vortices. The main production of vorticity remains concentrated in the shear layer
region, the vortex cores, the secondary shocks and the secondary vortices formed near
the cavity wall (for θw ≤ 90◦). Depending on the flow direction of rotation, the vorticity
is negative in the primary vortex region and positive near the cavity wall where the
secondary vortices are formed.

The effect of the initial diffraction angle on the vorticity production is investigated.
Figure C.3(a) represents the time history of circulation, Γ, for different initial diffrac-
tion angles. The vorticity production occurs before the shock diffraction begins as a
result of the boundary layer that develops behind the incident shock on the solid wall.
This demonstrates the role played by viscous effects in forming the shock-wave diffrac-
tion structures as mentioned by Tseng & Yang (2006). As it can be seen, the vorticity
production is monotonically increasing with more or less a steep slope, until the shock
leaves the computational domain, at t≈ 250 µs, thus inducing a decrease in the vorticity
production. The decrease in the vorticity production is more important for θw = 60◦.
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Figure C.3(b) shows the rate of circulation production, Γ/t. The three curves reach the
same constant value of approximately 1.8. Sun & Takayama (1997) noticed the similar
behavior and they called this as invariant of the Euler equations in shock-wave diffraction.
At t≈ 250 µs, the shock leaves the computational domain and this causes a decrease in
the rate of circulation production. The decrease in the rate of circulation production is
more important for θw = 60◦. As we can see in Figure C.2, vorticity is composed of two
components; negative and positive vorticity. The time history of these two components
is presented in Figure C.4 and as we can see, the negative vorticity, mainly concentrated
in the primary vortex region, is the dominant component for all diffraction angle.

C.2.1 Ducros sensor

In order to evaluate the shocks contribution in vorticity production, the Ducros sensor
Ducros et al. (1999) is used as:

Θ = (∇·u)2

(∇·u)2 + (∇×u)2 + ε
, 0≤Θ≤ 1 (C.2)

The values of this sensor vary between 0 for weakly compressible regions to about 1
in shock regions. Ducros et al. (1999), took ε = 10−30 as a positive real number chosen
to avoid numerical divergence when both (∇×u) and (∇·u) are null. Pirozzoli (2011),
noted that the Ducros sensor in its original formulation does not perform properly outside
of the wall layer, where ∇×u≈ 0, due to excessive sensitivity to dilatational fluctuations.
The sensor can be conveniently adapted to this case by setting ε = (u1/δ0)2. Where δ0

denotes the incoming boundary layer thickness and u1 the uniform velocity of the shocked
gas.

The performance of shock sensors in practical computations can be seen in Figure
C.5, which illustrates results of the application of the Ducros sensor mentioned above
to the instantaneous flow field obtained from simulation of shock-wave diffracting over
cylindrical cavities. The results presented in Figure C.5 suggest that Ducros sensor is
capable of selectively isolating shocks.

Ducros sensor is applied to the instantaneous vorticity field in order to estimate the
shocks contribution in the vorticity production. The results are presented in Figure C.6
as time evolution of circulation Γ, and in Figure C.7 as vorticity distribution. Figures
C.6(a), C.6(b) and C.6(c) represent time evolution of circulation Γ for different diffraction
angles, with and without Ducros sensor. For the first stage of diffraction process, the
two curves are almost superposed for all diffraction angles which means that the shocks
contribution on vorticity production is quasi-null for this stage. The effect of shocks on
vorticity production appears after the diffraction of the incident shock and development
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Figure C.2: Instantaneous vorticity contours for different diffraction angles. Column-wise
(left-to-right): t= 123 µs and t= 228 µs. Row-wise (top-to-bottom): θw = 60◦, θw = 90◦,
θw = 140◦.
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(a) (b)

Figure C.3: Time history of (a): circulation Γ and (b): rate of circulation production
(Γ/t) for different diffraction angles, (− θw = 60◦, − θw = 90◦, − θw = 140◦).

(a) θw = 60◦ (b) θw = 90◦

(c) θw = 140◦

Figure C.4: Time history of: − negative circulation, − positive circulation, for different
diffraction angles.
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Figure C.5: Shock sensor at t= 228 µs. Column-wise (left-to-right): θw = 60◦, θw = 90◦,
θw = 140◦.

of the flow behind it, but the shocks contribution on vorticity production still negligible.
Note that the maximum of this contribution is around 10% as shown in Figure C.6(d).
Figure C.7 shows vorticity distribution in the field, in row-wise, for all diffraction angles,
and in column-wise, with and without Ducros sensor at t = 228 µs. As opposed to the
left column, where the Ducros sensor is deactivated, the vorticity on shocks region in the
right column, where the Ducros sensor is activated, is null.

C.2.2 Vorticity transport equation

A vorticity transport equation is developed to describe the space and time evolution of
the vorticity as follows:

Dω

Dt
= (ω ·∇)u︸ ︷︷ ︸

VSG

−ω (∇·u)︸ ︷︷ ︸
VSC

+ 1
ρ2 (∇ρ×∇p)︸ ︷︷ ︸

BAR

+∇×
(
∇· τ
ρ

)
︸ ︷︷ ︸

DFV

(C.3)

where Dω
Dt : is the material derivative of the vorticity vector. It describes the rate of change

of vorticity of the moving fluid particle. This change can be attributed to unsteadiness
in the flow, ωt = ∂ω

∂t , or to the convection, ωc = u · (∇ω). VSG: stretching or tilting of
vorticity due to the flow velocity gradients (VSG = 0 in two-dimensional flows). VSC:
is the stretching of vorticity due to flow compressibility. BAR: is the baroclinic term. It
accounts for the changes in the vorticity due to the intersection of density and pressure
surfaces. DFV: is the diffusion of vorticity due to the viscous effects.

Eq. C.3 provides further details on the dynamics of the vorticity generation. Time
evolution of different normalized terms of vorticity transport equation is presented in
Figure C.8. The stretching of vorticity due to flow compressibility (VSC) term, represents
the effects of expansion on the vorticity field and plays a major role in the vorticity
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(a) θw = 60◦ (b) θw = 90◦

(c) θw = 140◦ (d) ∆Γ

Figure C.6: Time history of circulation Γ for different diffraction angles, θw. For (a), (b)
and (c); − Ducros sensor deactivated, . Ducros sensor activated, for (d); − θw = 60◦, −
θw = 90◦, − θw = 140◦.
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Figure C.7: Vorticity contours at t= 228 µs. Column-wise (left-to-right): Ducros sensor
deactivated and Ducros sensor activated. Row-wise (top-to-bottom): θw = 60◦, θw = 90◦,
θw = 140◦
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(a) θw = 60◦ (b) θw = 90◦

(c) θw = 140◦

Figure C.8: Time history of VTE terms, (a): θw = 60◦, (b): θw = 90◦, (c) θw = 140◦ (−
VSC, − BAR, − DFV, − ωc, − ωt).
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dynamics. The baroclinic term (BAR) results in a generation of vorticity from unequal
acceleration as a result of nonaligned density and pressure gradients. The lighter density
fluid will be accelerated faster than the high density fluid, resulting in a shear layer,
thus the generation of vorticity. Diffusion of vorticity due to the viscous effects (DFV)
highlights the effects of viscous diffusion on the vorticity distribution. Due to viscosity, the
vorticity formed in the flow tends to diffuse in space and time. The diffusion of vorticity
due to viscous effects (DFV) is dominated by the other mechanisms (VSC, BAR) in the
vorticity transport equation because of the high Reynolds number (which is of order of
106). The effects of viscosity on the large-scale vortex structures in a turbulent flow are
generally small.

The different terms of vorticity transport equation are shown in Figure C.9(b) (in Row-
wise), for different diffraction angles (in Column-wise) by contours pictures at t= 228 µs.
As one can see, the dominant term is the stretching of vorticity due to flow compressibility
(VSC). The figure also clearly shows the existence of the evolving vortices and their inter-
action with multiple secondary shock-waves resulting in split vortices for θw ≤ 90◦. From
the VSC contour, it is clear that there are locally stretched structures in the core vortex
region due to compressibility effect arising from local regions of compression/expansion.
Figure C.9(a) represents contours pictures of ωc and ωt (in Row-wise, ωc and ωt, top-
to-bottom respectively), for different diffraction angles (in Column-wise) at t = 228 µs.
As we can see, the convection term is concentrated in the turbulent region, shear layer,
shocks and viscous vortices formed near the wall (for θw ≤ 90◦). This term represents
the change of vorticity of the moving fluid particle due to its motion as it moves from
one point to another and plays a major role in the vorticity dynamics. The unsteady
term (ωt) represents the change of vorticity of the moving fluid particle attributed to
unsteadiness in the flow.
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Figure C.9: VTE budget at t = 228 µs. Row-wise (top-to-bottom): (a): ωc and ωt
terms, (b): VSC, BAR and DFV terms. Column-wise (left-to-right): θw = 60◦, θw = 90◦,
θw = 140◦.
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C.3 Conclusion

In this part, a shock-wave, at incident-shock Mach number Ms = 1.6, propagation over
cylindrical cavities was numerically investigated. The objective was to study the vortex
formation with regards to the initial diffraction angle. An end-wall corner vortex is seen
to be formed with a rolling-up of eddies that are convected quasi-linearly away from the
cavity entrance as the diffraction process evolves. In addition to this important primary
vortex, a secondary instability appear along the cavity wall for θw ≤ 90◦. The trajectory
of the center of the primary vortex is captured and found to be quasi-linear, with some
oscillatory behavior that is more or less pronounced depending on the diffraction angle,
θw. For θw > 90◦, the position of the center of the primary vortex is easy to detect.

The total amount of vorticity expressed in terms of circulation produced by shock
diffraction has been quantified. The effect of initial diffraction angle on the vorticity
production is investigated and found to be negligible at least in the earlier stage of the
diffraction process. A shock indicator based on Ducros sensor showed that the contribu-
tion of shocks in vorticity production is negligible. A detailed analysis of the vorticity
transport equation showed that the stretching of vorticity due to flow compressibility
(VSC) and the convection term (ωc) play the most important role in the vorticity dy-
namics.
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Appendix D

Shock mitigation/amplification
inside channels with circular cavity
with diffraction angle, θw = 60◦

Abstract This appendix discusses about shock-wave propagation and its attenua-
tion/amplification in tunnels having different heights and circular cavity with diffraction
angle of θw = 60◦ inside. A schematic illustration of the studied configurations is depicted
in Figure D.1, where a planar shock travels at Ms = 1.6 inside a channel. The later has
different inlet and exit heights. A cylindrical cavity with a given depth d is placed at
the bottom of the channel as to increase the volume of discharge. Four different cases
are considered where basically the inlet and the outlet volumes have been varied to cover
the most relevant situations. In all considered cases, the cavity depth is kept constant
(d= 25mm) along with the initial diffraction angle, θw = 60◦, while varying the height of
the tunnel (h), for that we have defined ζ = h/d and we took two different values of the
latter, namely: 0.5 and 5.36. In the precedent chapter 6 the effect of the containment was
investigated for the cavity with θw = 90◦ and d = 50mm where an optimal arrangement
was found and a shock-wave mitigation is achieved by approximately a factor of 57%.

D.1 Primary vortex evolution

First, we investigated the effect of ζ on the primary vortex centroid trajectory. The
results are presented in Figure D.2. At the early stages of the diffraction process, the
vortex trajectory is almost linear and easy to detect. As the diffraction process evolves,
the vortex trajectory becomes more difficult to detect, specially for low ζ values. The
channel height is reduced, so the shock waves are quickly reflected by the upper boundary
and interacts with the main vortex resulting in highly perturbed region with large scale
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diffraction angle, θw = 60◦

(a) (b)

(c) (d)

Figure D.1: Schematic illustration of the geometrical setups, (a): C1, (b): C2, (c): C3
and (d): C4, Ms: Incident shock Mach, d = 25 mm: cavity depth, h: height of the first
channel, h1: height of the second channel, (Lx = 200 mm, Ly = 165 mm): the dimensions
of the computation domain in x and y directions, respectively, 1©: shocked gas, 0©: gas
at rest.
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(a) (b)

Figure D.2: Trajectory of the primary vortex centroid for different ζ; (a): ζ = 0.5, (b):
ζ = 5.3. The red line represents an averaged linear regression.

coherent vortices, thus making detection of the primary vortex centroid complicated.

D.2 General flow evolution

Figure D.3 presents numerical schlieren pictures for different configurations at t= 273 µs.
The incident shock wave starts to diffract over the top left corner of the cavity resulting
in the formation of an end-wall corner vortex with a rolling-up of coherent structures.
Roughly in the middle of the cavity, an inverse-Mach reflection (InMR) appears, whose
termination leads to the formation of a transitioned regular reflection (TRR). More details
are shown in Figures D.7(b) and D.7(c). After the passage of the shock, vortices are
formed at the upper right corner of the cavity, and at the lower right end of the upper
wall for C3 and C4 configurations. When the transmitted shock propagates further away
from the cavity and approaching the channel exit, the developed flow field can be divided
into two separated zones. In the first one, noted Zone A, the compressed gas expands
over the cavity and forms a series of vortices that dominate the flow features in this
region. The second region, named Zone B, is mostly characterized by a quasi-uniform
flow, followed by a series of wave reflections arising from both inverse-Mach reflection
(InMR) and transitioned regular reflection (TRR). Transverse waves are then created
due to the reflection of the shock on upper and lower channel walls, for C2 and C4.
These observations confirm the earlier findings of Berger et al. (2015).

D.3 Shock-wave characteristics

Here, we present the effect of the channel height and the position of the expanding area on
the shock wave patterns. Figure D.4(a) shows the space-time evolution of the shock wave.
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diffraction angle, θw = 60◦

(a) (b)

(c) (d)

Figure D.3: Numerical schlieren pictures for different flow configurations C1, C2, C3 and
C4 at t= 273 µs.

One can see that the transmitted shock reaches the end of the channel earlier for C1 and
C4 and later for C2 and C3, respectively. These results are also highlighted through the
variation of the shock-wave speed, presented in Figure D.4(b) in terms of Mach number
Ms. For all cases, we first notice a constant shock speed and then a decrease just after the
beginning of the diffraction process. As this process evolves in time, the shock dynamics
differ from one case to another depending on the channel geometry. Thus, in order to
understand the shock behavior, some important physical parameters are discussed, such
as the variation of the pressure ratio, ps/p1 (ps being the pressure behind the shock wave
and p1 the initial pressure in the shocked gas taken as, p1 = 285.7 kPa). The results are
presented in Figure D.5.

For case C1, depicted in Figure D.5(a), the flow structures can be divided into three
main parts. The first one (I), identical for all cases, highlights the shock dynamics
before the startup of the diffraction process which is represented by a short horizontal
line corresponding to the initialization values of the shock. After the diffraction process
starts (part II), an end-wall corner vortex is formed with a rolling-up of eddies. The
formation of these vortices leads to a pressure decrease and the more this disturbed region
spreads over the diffraction volume, the more the pressure decreases (see cases C2 and
C3). Roughly in the middle of the cavity, an InMR configuration appears, which induces
the formation of a reflected shock (r) as depicted in Figure D.7(a). A bit further, in the
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second half of the cavity (rising part), the triple point (TP ) of the inverse-Mach reflection
(InMR) collides with the reflecting surface. The termination of the InMR configuration
leads to the formation of a transitioned regular reflection (TRR), with two additional
shocks, r′ and d′ (as shown in Figure D.7(b)). The additional shock, d′, catches up the
incident shock (I) at the exit of the cavity and merge into a single shock (see Figure
D.7(c)). This process increases the pressure ratio and forms a new transmitted shock
(I ′), hence the first pressure jump for the third phase (III) of the graph. Note that r′

will catch the new transmitted shock (I ′), and increases the pressure behind by forming
a new transmitted shock (I ′′). This phenomenon is also observed through the second
pressure jump in the third phase (III) of the plot.

As for the first case, the pressure ratio evolution for the second one C2 can be divided
into three parts (see Figure D.5(b)). Part (I) is identical to that of case C1. For part (II),
we notice a drop in the pressure ratio towards a lower value. By reducing the channel
height to h1/d = 0.5, the formed vortex at the upper left corner of the cavity occupies
a much larger volume, thus lowering further the pressure level in the cavity and behind
the shock as well. For part (III), we observe a presence of a series of successive pressure
jumps that increase the pressure ratio from a minimum value, at the exit of the cavity,
up to a value approximately equal to the initial one at the exit of the channel. The first
two pressure jumps are caused by the inverse-Mach reflection (InMR) phenomenon and
the associated transitioned regular reflection (TRR) as mentioned before. The following
pressure peaks are essentially due to the multiple shock reflections resulting from the Mach
reflection (r) and the TRR (r′ and d′) arising from the upper and the lower channel walls.
These reflected shocks successively catch the transmitted shock and merge all together
into a single stronger shock (see Figure D.7). The pressure as well as the speed of the
resulting shock are enhanced.

As depicted in Figure D.5(c), stages I and II of C3 are similar to that of C2. Indeed
in stage (III), we notice an additional decrease in the pressure ratio due to the formation
of two vortices. The first one is initiated at the lower-right corner of the top wall and the
second one takes place at the top-right corner of the cavity. The decrease of the pressure
is followed by two successive jumps, at the start of the fourth phase (IV ), which are
due, as explained above, to the additional shocks resulting from the TRR configuration
(r′ and d′). After these jumps, the pressure ratio decreases quasi-linearly and reaches a
value of approximately 0.5 at the exit of the channel.

Phases I and II in the last case, C4, presented in Figure D.5(d), which, in terms of
geometry, is the inverse of the third case (C3), are similar to those in case C1. Phase III
is similar to that of case C3. For part IV , we notice the presence of a series of successive
pressure jumps that increase the pressure ratio from a minimum value, at the cavity exit,
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(a) (b)

Figure D.4: Time variation of (a): Shock location; (b): Shock Mach number at y/d= 1.28
for: .... C1, −−− C2, − C3, . . C4.

up to a value of approximately 1.18 at the end of the channel. As reported previously, the
first two peaks are caused by the inverse-Mach reflection (InMR) and the transitioned
regular reflection (TRR). The other peaks are due to the multiple wave reflections as
explained for C2.

Table D.1 shows the time variation of the pressure, defined as dp/dt= (pe−pmin)/(te−
tpmin). Here, pe is the pressure behind the transmitted shock at the exit of the channel,
pmin is the minimum pressure behind the shock, te is the instant when the shock arrives at
the end of the channel and tpmin is the instant when the pressure behind the shock reaches
its minimum value. As shown in Table D.1, the only configuration where a pressure
reduction is achieved is C3. The most critical case is the one related to configuration
C4, where an increase, of approximately 798 MPa/s, is obtained. Table D.1 shows also
the shock attenuation (positive) or amplification (negative) factor A defined as the ratio
of the relative pressure behind the transmitted shock (at the exit of the channel) to the
initial shocked gas pressure such as, A = (ps− p1)/p1, where p1 = 285.7 kPa and ps is
the exit pressure. Comparison between all configurations indicates that the height and
the expanded area position of the channel significantly affect the shock wave attenuation
(or amplification). The results show that a better attenuation factor is obtained for C3
(50%) and an amplification factor is attained for C4 (−31%). However, for cases C1 and
C2 the attenuation/amplification effects are minor, about −3% for C1 and 4% for C2,
respectively.

The effect of different configurations on shock strength is also investigated by comput-
ing the static, Ip, as well the dynamic, Ipd, pressure impulses along with the normalized
over pressure, P . These three parameters are defined as, Ip =

∫ tf
t0 pdt, Ipd =

∫ tf
t0

1
2ρv

2 dt,
P = p/p1, where p, ρ and v are the pressure, density and velocity in the shocked region,
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(a) (b)

(c) (d)

Figure D.5: Spatial distribution of the normalized shock pressure along with numerical
schlieren pictures for different flow configurations at t= 273 µs. p1 is the initial pressure
taken as p1=285.7 kPa and ps is the pressure behind the shock.
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(a) (b)

(c)

Figure D.6: Time evolution of (a): Static impulses (b): Dynamic impulses (c): Normal-
ized overpressures at y/d= 1.28 and x/d= 7.8 for: .... C1, −−− C2, − C3, . . C4.
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C1 C2 C3 C4
dp/dt [MPa/s] 337 655 −37 798
A −3% 4% 50% −31%

Table D.1: dp/dt: pressure variation, A: attenuation (positive) /amplification (negative)
factor, for θw = 60◦.

respectively. The initial time t0 is picked when the transmitted shock wave reaches the
channel exit (x/d= 7.8) and tf is the final time of the simulations. The obtained pressure
impulses are presented in Figures D.6(a) and D.6(b). The general trends show that these
quantities increase quasi-linearly after the passage of the shock. The exit of the channel
is mostly comprised by a quasi-uniform gas, hence the quasi-linear behavior of static and
dynamic impulses. As expected from previous results, the minimum value for both static
and dynamic pressure impulses is obtained for C3, while the maximum is reached for
C4. As for the normalized overpressure, Figure D.6(c) shows a sudden jump due to the
passage of the incident shock, which remains almost constant later. The peak intensity
of the normalized overpressure varies between a maximum value for C4 and a minimum
value for C3.

Further analysis of the pressure signals at y/d= 1.28 highlights the attenuation aspect
in different configurations. For instance, the effect of the additional shocks resulting from
the InMR and the TRR shock patterns (r, r′ and d′, respectively) is clearly visible in
Figure D.8 at t= 213 µs, 228 µs, and 243 µs. Peaks with different intensities appear
for different configurations. Once the shock leaves the cavity and propagates over the
second half of the channel, the effect of reducing the height of the channel appears. For
cases C2 and C4, this part is characterized by the emergence of additional peaks visible
for t > 243 µs and x > 0.13 m due to multiple shock reflections (see Figures D.8(b) and
D.8(d)). The normalized pressure profiles are in accordance with the results presented
above, where we can see that the case C3 attenuates the shock with a peak of p/p1 ≈
0.5 at the exit, while case C4 amplifies it up to p/p1 ≈ 1.3. Finally, a shock retardation
is also noticed as a result of the pressure drop.
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(a) 138 µs (b) 183 µs (c) 213 µs

(d) 231 µs (e) 255 µs

Figure D.7: Numerical schlieren pictures at different time intervals for C2. I: incident
shock, r: reflected shock, TP : triple point, InMR: inverse-Mach reflection, TRR: tran-
sitioned regular reflection, r′ and d′: additional shocks created from TRR state, d∗ and
r∗ and r′′: reflected shocks from the upper boundary, I ′: new incident shock resulting
from the merger of d′ and I, I ′′: new incident shock resulting from the merger of r′ and
I ′.
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(a) (b)

(c) (d)

Figure D.8: Normalized pressure profiles at y/d = 1.28 for; (a): C1; (b): C2; (c): C3
and (d): C4, at different time intervals: −t= 213 µs, −t = 228 µs, −t = 243 µs, −t =
273 µs, −t=303 µs, −t = 333 µs, −t=369 µs.
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D.4 Effect of the diffraction angle and the
cavity depth on the shock wave attenua-
tion/amplification

In this section and in order to further clarify the effect of the diffraction angle and the
depth of the cavity on the attenuation/amplification of the shock waves we present a
comparison between two different cavities, namely: θw = 60◦ and θw = 90◦. The results
are presented in Figures D.9 for shock position and D.10 for shock Mach number. As
we can see in the Figures, the curves collapse during the early stages of the propagation
process. At the exit of the cavities, the curves behave differently. For the four studied
cases, we note that the shock wave propagating over the cavity with the diffraction
angle θw = 60◦ arrives at the exit of the tunnel first. This result is also noticed by the
variation of the shock Mach numbers. The shock wave propagating over the cavity with
the diffraction angle θw = 60◦, propagates faster in the second half of the domain. This
difference is due to the dynamics of the shock at the exit of the cavity that depends on the
right angle of the cavity. The shock dynamics for the both angles are depicted in Figure
D.11. For θw = 60◦, the TRR configuration leads to the formation of two additional
shocks, r′ and d′. These shocks and their successive reflections from the upper and lower
walls of the tunnel (depending on the geometry), as shown in Figure D.11(a), contribute
to significantly increase the shock Mach number as well as the strength of the transmitted
wave. For θw = 90◦, the incident shock, I, hits the upper right cavity corner leading to
the formation of a direct Mach reflection with a single reflected shock, r1. This wave and
its successive reflections from the upper and lower walls of the tunnel (depending on the
geometry), as shown in Figure D.11(b), increase slightly the shock Mach number as well
as the strength of the transmitted shock. Unlike θw = 60◦, the shock wave propagating
through the cavity with the diffraction angle of θw = 90◦ is always attenuated at the exit
of the tunnel, the level of attenuation varies from one case to another. The best shock
attenuation is achieved with C3 and θw = 90◦, while a shock amplification is achieved
with C4 and θw = 60◦.

Table D.2 confirms the previous results. The attenuation factor for θw = 90◦ varies
between a minimum value for C4, of 3%, and a maximum value, of 57%, for C3. Whereas
for θw = 60◦ an amplification of the shock wave is obtained with two cases; C4 and C1.
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(a) C1 (b) C2

(c) C3 (d) C4

Figure D.9: Time variation of shock location at y/d = 1.28 for: (a): C1, (b): C2, (c):
C3, (d): C4. With, − θw = 60◦ and − θw = 90◦.

D.5 Conclusion

An optimal arrangement of channel position/height for cavity with diffraction angle of
θw = 60◦ is found, leading to a significant attenuation factor of about 50%. On the other
hand, the results showed that an arbitrary arrangement may have a dramatic consequence
on the amplification of the shock by a factor of approximately 30% at the end of the
channel.
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(a) C1 (b) C2

(c) C3 (d) C4

Figure D.10: Time variation of shock-Mach number at y/d= 1.28 for: (a): C1, (b): C2,
(c): C3, (d): C4. With, − θw = 60◦ and − θw = 90◦.

θw C1 C2 C3 C4

dp/dt [MPa/s] 60◦ 337 655 −37 798
90◦ 426 55 −111 197

A 60◦ −3% 4% 50% −31%
90◦ 3% 40% 57% 21%

Table D.2: dp/dt: pressure variation, A: attenuation (positive)/amplification (negative)
factor.
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(a) θw = 60◦

(b) θw = 90◦

Figure D.11: Numerical schlieren pictures at different time intervals for C2. (a): θw = 60◦,
(b): θw = 90◦. I: incident shock, r: reflected shock, TP : triple point, DiMR: direct-
Mach reflection, TRR: transitioned regular reflection, r′ and d′: additional shocks created
from TRR state, d∗ and r∗ and r′′: reflected shocks from the upper boundary, I ′: new
incident shock resulting from the merger of d′ and I, r1: reflected shock from the DiMR
r′1: reflected shocks from the upper boundary.
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ABSTRACT
The turbulent structures and long-time flow dynamics of shock diffraction over 90○ convex corner associated with an incident shock Mach
number Ms = 1.5 are investigated by large eddy simulation (LES). The average evolution of the core of the primary vortex is in agreement with
the previous two dimensional studies. The Type-N wall shock structure is found to be in excellent agreement with the previous experimental
data. The turbulent structures are well resolved and resemble those observed in the experimental findings. Subgrid scale dissipation and
subgrid scale activity parameter are quantified to demonstrate the effectiveness of the LES. An analysis based on turbulent-nonturbulent
interface reveals that locally incompressible regions exhibit the universal teardrop shape of the joint probability density function of the second
and third invariants of the velocity gradient tensor. Stable focus stretching (SFS) structures dominate throughout the evolution in these
regions. Stable node/saddle/saddle structures are found to be predominant at the early stage in locally compressed regions, and the flow
structures evolve to more SFS structures at later stages. On the other hand, the locally expanded regions show a mostly unstable nature. From
the turbulent kinetic energy, we found that the pressure dilatation remains important at the early stage, while turbulent diffusion becomes
important at the later stage. Furthermore, the analysis of the resolved vorticity transport equation reveals that the stretching of vorticity due to
compressibility and stretching of vorticity due to velocity gradients plays an important role compared to diffusion of vorticity due to viscosity
as well as the baroclinic term.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5113976., s

NOMENCLATURE
General description and validation
I incident shock wave
DS diffraction shock wave
EW expansion shock wave
CS contact surface
SL shear layer
KHI Kelvin-Helmholtz instabilities
V vortex core
VV viscous vortex
VS vortex shock
LS lambda shock

Local flow topology
P first invariant of the velocity gradient tensor
Q second invariant of the velocity gradient tensor

R third invariant of the velocity gradient tensor
Qw second invariant of the rotation-rate tensor
UFC unstable focus compressing
UN/S/S unstable node/saddle/saddle
SN/S/S stable node/saddle/saddle
SFS stable focus stretching
SFC stable focus compressing
UFS unstable focus stretching

Vorticity transport equation (VTE)
VSC (Vc) stretching of vorticity due to compressibility
VSG (Vg) stretching/tilting of vorticity due to velocity gradi-

ents
B Baroclinic torque
DFV (Dv) diffusion of vorticity due to viscosity
E enstrophy
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I. INTRODUCTION

Study of shock diffraction over various geometries has been
an active research field for several decades. For example, Grif-
fith and Bleakney1 addressed the complexity involved in unsteady
shock dynamics related to such shock-wave diffraction phenomenon
in early 50’s. Understanding shock diffraction is important for
internal/external compressible flows involving the propagation of
shock waves over solid surfaces, e.g., applications like mitigating
shock/blast wave with designing effective shock resistant struc-
tures. The flow dynamics of these applications involves complex
coupled interactions such as shock-shock, shock-vortex, vortex-
vortex, and shock-turbulence interactions. Along with experimen-
tal approaches, with the advent of numerical techniques, numerical
studies gained popularity for addressing intricate issues associated
with such complex flow dynamics. Two-dimensional (2D) inviscid
simulations2–5 are capable of resolving the general features asso-
ciated with shock-wave diffraction. Most of the studies in the lit-
erature relied upon the inviscid predictions to establish the basic
wave characteristics. Among these, Baum et al.4 presented a 2D
numerical study of complex geometry canisters using an adaptive
finite element based shock capturing scheme. Subsequently, several
qualitative studies addressed the shock wave interaction with the
compressible vortex associated with shock diffraction6–10 problems.
Viscous effects are important to resolve the long-time evolution of
shock-vortex dynamics and shock-boundary layer/shock-shear layer
interactions. High-order scheme based numerical solvers equipped
with robust shock capturing capabilities are essential to resolve the
shock dynamics as well as the wide range of length/time scales of
the turbulence. In this regard, several studies utilized high-order
Weighed Essentially Non Oscillatory (WENO) based schemes11–17

or Discontinuous spectral element method (DSEM) with artifi-
cial viscosity18–20 to address complex flow features associated with
shock diffraction, shock propagation, shock focusing, shock obstacle
interaction, etc. Unsteady three-dimensional (3D) studies of shock
diffraction are not abundant in the literature. Reeves and Skews21

studied the evolution of spiral vortex for 3D edges (“V,” “inverted-
V,” “parabolic,” and “inverted parabolic” types). A general and
preliminary three-dimensional study of the merging of vortices
resulting from shock diffraction and vortex shedding off a discon-
tinuous edge is presented by Cooppan and Skews.22 Also, Skews and
Bentley23 addressed a 3D analysis of the merging of two diffracting
shocks.

In a recent study,19 the authors revisited the shock diffraction
over 90○ convex corner and addressed some intricate features of
resolving the viscous and turbulent flow features. The main issues
related to the 2D numerical predictions of this flow dynamics are
to address the experimentally observed (i) secondary viscous vor-
tex associated with the wall shock interaction with the boundary
layer and (ii) the shear layer behavior (see, e.g., Refs. 24 and 6 for
detail of this canonical benchmark case). These are addressed with a
high-order numerical scheme based predictions by Chaudhuri and
Jacobs.19 It can be realized from the relatively recent experiments
(e.g., Refs. 25 and 26) that the shear layer structures associated with
the long-time evolution exhibit fine turbulent flow structures.

It is evident that 3D simulations and analysis are required to
shed light into the turbulent structures and shear layer instabili-
ties observed in these experiments. To the best of our knowledge,

analysis of 3D flow features associated with shock diffraction over
sharp corners has never been reported before. The objective of this
work is to perform large eddy simulation (LES) to explore the 3D
turbulent flow structures and analyze the long-time behavior of the
shock diffraction over 90○ convex corner with incident shock Mach
number Ms = 1.5. The paper is organized as follows. In Sec. III, a
brief description of the methodology is described. The numerical
setup is presented in Sec. II followed by the results and discussions
in Sec. IV. Finally, conclusions are drawn in Sec. V.

II. PROBLEM SETUP
Moving shock wave of shock Mach number Ms = 1.5 is allowed

to pass through a 90○ convex corner having a rectangular cross sec-
tion of 35 mm × 25 mm. The step height h is taken as 140 mm, and
the step length is set to 25 mm. The problem setup of the simula-
tion is shown in Fig. 1. The mesh resolution of the computational
domain of 200 mm × 175 mm × 35 mm (length-height-width) is
summarized in Table I. The initial location of the moving shock is
positioned at 75% of the step length. Rankine-Hugoniot relations are
used to set the initial conditions for left (shocked state) and right
(stagnant state) states associated with the chosen Ms. Air is con-
sidered as working fluid, and the initial stagnant state is assigned
with temperature T = 288 K and pressure p = 101 325 Pa. The
spanwise (z-direction) direction is considered as the homogeneous
direction, and periodic boundary conditions are applied at these
boundaries. The left and right boundaries (x-direction) are kept as
the initial conditions, and simulations are executed avoiding any
reflections from these boundaries. We apply the symmetry condi-
tion at the top boundary, and adiabatic no-slip boundary conditions
are set for the remaining solid walls. To assign realistic velocity
fluctuations, homogeneous isotropic turbulent velocity fluctuations
are superimposed with the initial velocity field in the shocked gas
region.

III. METHODOLOGY
We solve the filtered compressible Navier Stokes system of

equations to simulate the diffraction of the moving shock, over a
convex corner. The definition of any filtered quantity with a fil-
tered function GΔ and filter width Δ = (Δx × Δy × Δz)1/3 is
given by ϕ̄(x⃗, t) = ∫R3 ϕ(η⃗, t)GΔ(x⃗ − η⃗)dη⃗. Favre averaged quantities
ϕ̃ = ρϕ/ρ̄ are used to reduce subgrid scale (SGS) terms. The in-
house parallel compressible flow solver equipped with the immersed
boundary method is used for this purpose. The fifth-order WENO
scheme is used for inviscid fluxes, and the sixth-order central dif-
ference scheme is used for viscous fluxes. A third-order explicit
Runge-Kutta method is used to advance in time. The SGS stress
and SGS heat flux terms are closed by the wall adapting the local
eddy viscosity (WALE) model. For brevity, the filtered governing
equations, LES model, and the immersed boundary methodology
are not presented here, and the details are available in our previ-
ous works.12,27–29 The immersed boundary method (we use trilinear
interpolation; see Ref. 29) in 3D simulations and LES model con-
stants are essentially similar to those mentioned in these references.
The flow solver is validated with relevant standard benchmark prob-
lems and is reported in our previous works. It is to be noted that
only resolved quantities are used for the analysis and discussions
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FIG. 1. Schematic diagram of the prob-
lem setup.

below. The resolved fluctuating component of any parameter is
obtained by subtracting the spatially averaged (along the homoge-
neous z-direction) resolved quantity from the corresponding instan-
taneous resolved parameter as defined as ϕ′′ = ϕ̃ − ⟨ϕ̃(x, y, t)⟩, where⟨ϕ̃(x, y, t)⟩ = 1

Lz ∫Lz ϕ̃dz.
To reduce the complexity of the notation, the resolved quanti-

ties are expressed without overbar (⋅) or tilde (̃⋅) notation in most
of the discussions below. This means ϕ̃i ≡ ϕi. To have better clarity,

TABLE I. Simulation parameters.

Total no. of meshes Δx (μm) Δy (μm) Δz (μm) Final time t (μs)

3.3 × 109 52.6 51.4 136.7 757.75

only the notations for the turbulent kinetic energy budget equation
are presented with actual notations.

IV. RESULTS AND DISCUSSIONS
A. General description and validation

The shock diffraction over 90○ diffraction corner is associ-
ated with complex coupled interactions like shock-vortex, shock-
boundary layer, vortex-vortex, and shock-shock interactions. Stud-
ies in the literature show that, 2D Euler predictions sufficiently
agree with the early stage of the general shock dynamics but
suffers from inability to resolve secondary vortex formation due
to boundary layer interactions with the wall shock. Nevertheless,
high-resolution 2D Navier-Stokes simulations with consideration of
viscous/turbulent effects can predict these behaviors well.19,29 This
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canonical benchmark problem of diffraction is being studied in
the literature by several authors, but no 3D numerical studies are
available to account for the long-time behavior of turbulent flow
structures. Experimental observations show existence of these 3D
structures (see Refs. 25 and 26). The LES performed in this study
demonstrates these structures. The early and later stages shock
dynamics and the complex interactions are presented in Fig. 2 and
compared favorably with the experimental results. Especially, the
present LES resolved the intricate turbulent structures illustrated
by the numerical schlieren pictures. A detailed analysis of turbulent
flow features is presented in Secs. IV B–IV E.

The convective Mach number (Mc = U1−Uc
a1
= Uc−U2

a2
) at vari-

ous locations at t = 757.75 μs is found to be 0.53 at A∗, 0.43 at
B∗, 0.29 at C∗, and 0.16 at D∗ (see Fig. 3 for the locations of
the measurements of Mc). Here, Uc = a1U2+a2U1

a1+a2
. Also, U1 and U2

are the free stream velocities across the shear layer, and a1 and a2
are the respective speeds of the sound. The shear layer behavior
shows prominent compressibility effects near the diffraction cor-
ner (A∗) and progressively shifts toward near incompressible regime
around D∗.

We analyze the sufficiency of the domain length in the homo-
geneous direction via two-point autocorrelation function given by

FIG. 2. Comparison of the flow features of the shock wave diffraction: top row: at
early stage and bottom row: at later stage. See nomenclature. Figure (a) exper-
iment, Takayama and Inoue.24 [Reproduced with permission from K. Takayama
and O. Inoue, “Shock wave diffraction over a 90 degree sharp corner–posters
presented at 18th ISSW,” Shock Waves 1, 301–312 (1991). Copyright 1991
Springer-Verlag.] (b) Schlieren: present LES. Figure (c) experiment, Skews et al.25

[Reproduced with permission from Skews et al., “Shear layer behavior resulting
from shock wave diffraction,” Exp. Fluids 52, 417–424 (2012). Copyright 2012
Springer-Verlag.] (d) Schlieren: present LES.

FIG. 3. Locations of probes/segments over a turbulent-nonturbulent interface
(TNTI) contour for the computation of convective Mach number, two-point correla-
tion, and normalized energy spectra.

Rϕϕ(rz) = Nz∑
n=1

ϕ′′n ϕ′′n+nr, nr = 0, . . . ,Nz − 1; rz = nrΔz. (1)

Figure 4 shows the autocorrelation distributions for velocity fluctu-
ations at different probe locations A to D (see Fig. 3). The curves
degenerate to near zero values within the half of the domain length
in the homogeneous direction. The domain size is thus sufficient
enough so that the periodic boundary condition does not inhibit the
turbulence in the spanwise z-direction.

The accuracy of the LES is further checked by computing the
normalized energy spectra of the fluctuating velocity components.
These are shown in Fig. 5 together with the −5/3 law. These spec-
tra show similar behavior of the peak values and exhibit drop off
of about two decades. The large turbulent scales of the flow fea-
tures are well resolved by the current LES, and SGS dissipation
takes into account the dissipation effects of very fine scales. The
effectiveness of the WALE model and SGS activity are illustrated in
Subsection IV B.

Figure 6 shows the locus of the vortex centroid and the compar-
ison with the previous 2D numerical results of Sun and Takayama.6

The wall shock for the present case is of Type-N as classified in
the work of Matsuo et al.3 Note that an excellent agreement of the
shape of the wall shock with the experimental results of Skews30 is
predicted by the present simulation. The circulation, Γ = ∫sω ds, is
computed over the 3D interaction region and is illustrated in Fig. 7.
The circulation rate is nondimensionalized with the property of the
air at the stagnant state, RT = 287 × 288 m2/s2. The nondimensional
circulation is found to be attaining a saturation value of ≈1.2. How-
ever, Sun and Takayama7 reported a circulation rate of 1.36 based
on their 2D study.
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FIG. 4. Two-point correlation evaluation at t = 757.75 μs: (a) location A, (b) location
B, (c) location C, and (d) location D. Violet solid curve: u, dark green solid curve:
v, and light green solid curve: w.

FIG. 5. Normalized energy spectra with wavenumber κ, at t = 757.75 μs in the
homogeneous direction: (a) location A, (b) location B, (c) location C, and (d) loca-
tion D. Violet solid curve: u, dark green solid curve: v, light green solid curve: w,
and red short-dashed curve: −5/3 law.

FIG. 6. (a) Location of the vortex centroid. Black plus sign: centroid path (sim-
ulation), gray solid curve: mean path, and red open circle: numerical data.6 (b)
Diffracted shock wave location (here, α = a0t, where a0 is the speed of sound
at the stagnant state). Black solid curve: simulation data and green open circle:
experimental data.30

The turbulent and nonturbulent regions for different turbulent
flows are separated by a distinct boundary having several interesting
characteristics like entrainment, abrupt changes in turbulence prop-
erties and intermittency. The shape of this interface is influenced
by all scales of turbulence, in general. Vorticity norm or passive
scalar concentration or concentration field can be used to define this
turbulent-nonturbulent interface (TNTI).31–36 To do this, we use the
mean magnitude of the vorticity at each x-y plane. The 30% of it
is then set as the threshold value to define a TNTI parameter as
TNTIz = 0.3∣ω∣z , z = 1, . . . ,Nz . A location is considered inside the
turbulent region if the magnitude of its local vorticity is higher than
the TNTIz in that x-y plane. Figure 3 depicts the inner turbulent
region covered by the TNTI surface at t = 757.75 μs. The choice of
the threshold value is intuitive, and these contours effectively iden-
tify the vortex dominated turbulent regions for further analysis. The
irrotational engulfed pockets are also visible in this figure. Rota-
tional dominated regions of the flow field can be illustrated from the
normalized Q-criteria,37,38 Λ = WijWij−SijSij

WijWij+SijSij
, where Sij = 1/2(∂ui/∂xj +

∂uj/∂xi) is the strain-rate tensor and W ij = 1/2(∂ui/∂xj − ∂uj/∂xi)
is the rotation-rate tensor. The positive isosurfaces of Λ shown in
Fig. 8 illustrate the vortex tubes and 3D turbulent flow features.

FIG. 7. Time evolution of (a) circulation (Γ) and (b) circulation rate (Γ/t).
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FIG. 8. Isosurfaces of Λ = 0.5 at t = 757.75 μs colored with
the enstrophy.

B. SGS model assessment
In this section, we present the relative contribution of SGS dis-

sipation and assess the effectiveness of the WALE model. The ratio
of μsgs/μ is the measure of effectiveness of the LES model. Figure 9
shows the time evolution of the spatially averaged contours of μsgs/μ
(averaged in the homogeneous z-direction) in the interaction zone.
The ratio, μsgs/μ ≤ 5, indicates that the grid resolution and the contri-
bution of SGS viscosity are in the acceptable range for well resolved
LES. The SGS modeled dissipation εsgs can be defined as28 the sum-
mation of contribution of fluctuating flow-field to SGS dissipation
and the contribution of mean flow-field to SGS dissipation as

εsgs = ε′′sgs + ε⟨sgs⟩. (2)

The contribution of fluctuating flow-field to SGS dissipation approx-
imated as

ε′′sgs ≈ −2⟨μsgsS′′∗ij S′′ij ⟩, (3)

where S′′ij = 1
2(∂u′′i∂xj

+
∂u′′j
∂xi
) and S′′∗ij = S′′ij − 1

3S
′′
kkδij.

The contribution of mean flow-field to SGS dissipation can be
expressed as

ε⟨sgs⟩ ≈ −2⟨μsgs⟩⟨S∗ij ⟩⟨Sij⟩, (4)

where ⟨Sij⟩ = 1
2(∂⟨ui⟩∂xj

+ ∂⟨uj⟩
∂xi
) and ⟨S∗ij ⟩ = ⟨Sij⟩ − 1

3 ⟨Skk⟩δij.
The details of these approximations can be found in the work

of Ben-Nasr et al.28 and Davidson.39

Figure 10 shows the different SGS dissipation parameters (aver-
aged in the homogeneous z-direction) in the interaction zone at
different time instants. It can be seen from this figure that ε′′sgs con-
tributes more toward εsgs compared to ε⟨sgs⟩. The contours of εsgs

ε
show a similar range of values of μsgs/μ as mentioned before. This
corroborates the fact that the mesh resolution in the shear layer
region is sufficient for this LES study. The modeling effectivity of a
LES can also be quantified with the SGS activity parameter as defined
by

ζ = εsgs
εsgs + ε

, (5)

where the resolved molecular dissipation ε = ⟨τ′′ij ∂u′′i
∂xj
⟩. Evidently, 0≤ ζ < 1, and the lower the value of ζ the more resolved is the LES.

It could be noted that the vortex core region is very well resolved
by the current LES. These are in accordance with the 3D flow

FIG. 9. μsgs/μ of a slice at t = 339.75,
537.75, and 757.75 μs column-wise,
respectively.
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FIG. 10. Different subgrid-scale dissipa-
tion terms at t = 339.75, 537.75, and
757.75 μs column-wise, respectively.

visualization of resolved flow structures illustrated with the isosur-
faces of Λ = 0.5 in Fig. 8.

C. Analysis on the local flow topology
The flow topology analysis based on the turbulent/nonturbulent

interface (TNTI) which separates the inner core of the turbulent
region from the neighborhood of the irrotational regions is much
revealing and enriching to characterize the zonal turbulent flow
structures. The literature shows that the locally compressed regions
in a turbulent flow field are dominated by stable topological struc-
tures, while the locally expanded regions are mainly unstable in
nature and more dissipative. In this section, we present the flow
topology associated with the dynamics of the shear layer at the 90○
diffraction corner. The invariants of the velocity (resolved) gradient
tensor (P, Q, and R) are given by

P = −Sii, (6)

Q = 1
2
(P2 − SijSji −WijWji), (7)

R = 1
3
(−P3 + 3PQ − SijSjkSki − 3WijWjkSki), (8)

where Sij and W ij are strain-rate tensor and rotation-rate tensor as
defined before.

It is well known that the P − Q − R space is divided into several
regions.40–45 The discriminant surface L1, of the characteristic equa-
tion of the eigenvalues of the velocity gradient tensor, separates the

region of real and complex eigenvalues. This can be further split into
L1a and L1b. All eigenvalues are real and equal at a location where
these surfaces form a cusp. On the other hand, purely imaginary
eigenvalues lie on the surface L2 [see Eq. (13)].

The second invariant of W ij is given by

FIG. 11. PDF plot of the normalized first invariant of velocity gradient tensor in the
entire turbulent region at t = 251.75 (violet solid curve), 449.75 (pink solid curve),
and 757.75 (yellow solid curve) μs.
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TABLE II. Quantification of the flow topology enclosed by TNTI as a percentage of their sample size.

Quantity
Dilatation Time (μs) (% of TNTI) Sample (×106) UFC UN/S/S SN/S/S SFS SFC UFS

P = 0 ± 0.05
251.75 10.4 2.7 5.0 6.3 7.8 80.7 . . . . . .
449.75 9.8 8.5 3.2 3.7 2.2 90.9 . . . . . .
757.75 14 33.4 1.1 1.6 1.6 95.6 . . . . . .

P = 3 ± 0.25
251.75 0.2 0.05 11.6 7.1 48.1 21.8 9.8 . . .
449.75 0.3 0.2 12.3 10.4 24.8 44.5 6.9 . . .
757.75 0.2 0.4 10.8 10.2 17.2 55.9 5.8 . . .

P = −3 ± 0.25
251.75 0.1 0.03 18.7 25.1 4.7 24.8 . . . 23.9
449.75 0.2 0.2 17.7 30.8 2.6 30.7 . . . 16.9
757.75 0.1 0.3 16.9 34.1 3.3 31.1 . . . 12.9

Qw = −1
2
WijWji. (9)

The surfaces dividing the P − Q − R space are

L1 = 27R2 + (4P3 − 18PQ)R + (4Q3 − P2Q2) = 0, (10)

L1a = 1
3
P(Q − 2

9
P2) − 2

27
(−3Q + P2)3/2 − R = 0, (11)

L1b = 1
3
P(Q − 2

9
P2) +

2
27
(−3Q + P2)3/2 − R = 0, (12)

L2 = PQ − R = 0. (13)

We summarize the nomenclature of the invariants and various
3D critical points in the nomenclature section.

The evolution of the probability density function (PDF) of the
first invariant of the velocity gradient tensor is shown in Fig. 11. A

self-similar behavior with highly peaked distribution has been
found. A large positive skewness of the distributions clearly depicts
the similar behavior observed in the compressible isotropic turbu-
lence and compressible mixing layer turbulence of the literature.42

The JPDFs of the Q − R are shown for constant P planes. Three
representative values of P are chosen to distinguish the features of
locally incompressible, compressed, and expanded regions in the
flow-field. Here, Q and R are normalized with Qw and Q3/2

w in these
figures. Table II summarizes all the quantities of the local flow topol-
ogy for different dilatation levels at different time instants. Evidently,
the sample size is large at a later time instant. Note that the percent-
age of TNTI is large for P = 0 compared to locally compressed and
expansion regions. This corroborates with highly peaked distribu-
tion of PDF of P mentioned before. For incompressible turbulent
flows (P = 0), the JPDF of second and third invariants (Q and R) of

FIG. 12. JPDF plot of the normalized second and third
invariants of velocity gradient tensor in the entire turbu-
lent (TNTI) region at t = 251.75, 449.75, and 757.75 μs for
P = 0 ± 0.05.

Phys. Fluids 31, 086103 (2019); doi: 10.1063/1.5113976 31, 086103-8

Published under license by AIP Publishing



Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 13. JPDF plot of the normalized second and third
invariants of velocity gradient tensor in the entire turbu-
lent (TNTI) region at t = 251.75, 449.75, and 757.75 μs for
P = 3 ± 0.25.

the velocity gradient tensor exhibits a typical tear drop shape (see
Fig. 12). This signifies the universal small-scale structures of turbu-
lence. The similar universal tear drop shape is also being found for
compressible flows when the JPDF of second and third invariants

of the anisotropic part of the deformation rate tensor is analyzed.
This is similar to the characteristics of incompressible turbulence,
compressible isotropic turbulence, compressible turbulent bound-
ary layer, and compressible mixing layer turbulence. Clearly, the SFS

FIG. 14. JPDF plot of the normalized second and third
invariants of velocity gradient tensor in the entire turbu-
lent (TNTI) region at t = 251.75, 449.75, and 757.75 μs for
P = −3 ± 0.05.
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FIG. 15. TKE budget. Row-wise (top-
to-bottom): production and dissipa-
tion terms. Column-wise (left-to-right):
t = 339.75, 537.75, and 757.75 μs.

structure dominates throughout the evolution with an increasing
trend of the SFS structure with time (95.5% at 757.75 μs).

Figure 13 depicts JPDFs of Q − R for locally compressed
regions. The shape of these distributions evolves to nearly tear drop
shape. However, it can be seen from Table II, that a dramatic distri-
bution of the topologies is existent. Initially, we observe dominant

nonfocal stable structures (48.1% of SN/S/S). Most of the structures
remain stable for compressed regions. Nevertheless, the unstable
structures are also found to be present. The initial SN/S/S structures
shifts toward SFS structures. Although, there exist some more unsta-
ble structures compared to locally incompressible regions, the stable
structures are predominant in locally compressed regions.

FIG. 16. TKE budget. Row-wise (top-
to-bottom): diffusion, pressure-dilatation,
and pressure-work terms. Column-wise
(left-to-right): t = 339.75, 537.75, and
757.75 μs.
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FIG. 17. TKE budget—advection term.
Column-wise (left-to-right): t = 339.75,
537.75, and 757.75 μs.

Figure 14 shows the JPDFs for locally expanded regions. The
distributions are found to be skewed toward the surface L2, and
most of the flow structures show unstable nature. The present anal-
ysis reveals the absence of UFS for the locally compressed region
and the absence of SFC for locally expanded regions. UN/S/S struc-
tures eventually become predominant in these regions. The unstable
structures indeed become significant for locally expanded regions. It
can be realized that the local streamlines in stable topologies are con-
vergent toward critical points, and for unstable topologies, the local
streamlines are divergent from the critical points.

D. Analysis of the turbulent kinetic energy
The Favre averaged transport equation of turbulent kinetic

energy (TKE) is given by

∂ρ̄k
∂t

+
∂ρ̄ũjk
∂xj´¹¹¹¹¸¹¹¹¹¶
A

= −⟨ρu′′i u′′j ⟩∂ũi
∂xj´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

P

−⟨τji ∂u′′i
∂xj
⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
D

+
∂

∂xj
(⟨τjiu′′i ⟩ − ⟨ρu′′j 1

2
u′′i u′′i ⟩ − ⟨p′u′′j ⟩)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Df

−⟨u′′i ⟩ ∂p̄
∂xi´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Pw

+⟨p′ ∂u′′i
∂xi
⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Pd

, (14)

FIG. 18. Norm of TKE budget terms as a function of time (a) linear-scale and
(b) logarithmic-scale. Blue solid curve: pressure-dilatation, orange solid curve:
pressure-work, green solid curve: production, red solid curve: dissipation, and
violet solid curve: diffusion.

where P is the production term, D is the dissipation term, Df is the
diffusion term, Pw is the pressure-work term, Pd is the pressure-
dilatation term, and A is the advection term. Note that we kept the
overbar (⋅) or tilde (̃⋅) notation here for better clarity.

FIG. 19. Spatial cross-correlation of (a) pressure-dilatation (Pd), (b) pressure-
work (Pw), (c) production (P), (d) diffusion (Df ), (e) dissipation (D), and (f)
advection (A) terms of TKE budget with each other in time. Blue solid curve:
pressure-dilatation, orange solid curve: pressure-work, green solid curve: produc-
tion, red solid curve: dissipation, violet solid curve: diffusion, and brown solid curve:
advection.
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The spatially averaged contours of these resolved terms are
shown in Figs. 15–17. The behavior of the TKE budget terms of
the shear layer region is found to be typically similar to the com-
pressible mixing layers (see Ref. 38). These contours also show the
out of equilibrium behavior of the turbulent flow linked with the
transient flow evolution. The pressure dilatation and pressure work
terms are associated with the regions of the shear layer near the
diffraction corners (having high convective Mach numbers) as well
as regions where the interactions of the shocklets and the core of the
vortex are significant. It can be seen that sporadic patches of negative
production of turbulent kinetic energy are also predicted. These are
associated with the regions with shear layer/vortex interactions with
local compressions/expansions.27,46,47 We analyze the time evolution
of the magnitude of these terms and their cross-correlations within
the spatially averaged two dimensional turbulent region bounded by

the TNTI. These are shown in Figs. 18 and 19. At the early stage, the
pressure dilatation term remains important, and the diffusion term
plays a major role in the later stage. Diffusion, production, and pres-
sure dilatation terms are found to be nearly one order of magnitude
higher than pressure work and dissipation. Note that the pressure
dilatation is more correlated with dissipation term at the beginning
and evolves to a state with more correlated with pressure work at the
later stage. The overall anticorrelation is evident between production
and dissipation terms. Pressure dilatation and pressure work remain
linked with dissipation. Noticeably, the diffusion term is found to
be anticorrelated with the pressure dilatation term throughout the
evolution. It can be realized that the diffusion terms interact with
the outer regions of the shear layer through the edges of the shear
layer. The advection term is found to be predominantly linked with
pressure work apart from the other terms.

FIG. 20. VTE budget. Row-wise (top-
to-bottom): VSC, VSG, baroclinic, and
DFV terms. Column-wise (left-to-right):
t = 339.75, 537.75, and 757.75 μs.
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FIG. 21. Enstrophy contour. Column-
wise (left-to-right): t = 339.75, 537.75,
and 757.75 μs.

E. Analysis of the vorticity transport equation
We further analyze the budget terms of the mean vorticity

transport equation [Eq. (15)] to shed light into the large scale struc-
tures and the mechanism of the complex flow evolution associated
with the shock diffraction phenomena. The contribution of SGS
terms can be assumed to be negligible for the mutual interactions
among the relatively large vortical structures. The nomenclature of
the different terms of the transport equation is summarized in the
nomenclature section,

∂ω
∂t

+ (u ⋅ ∇)ω = (ω ⋅ ∇)u´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
Vg

−ω(∇ ⋅ u)´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
Vc

+
1
ρ2∇ρ ×∇p´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B

+∇× (∇ ⋅ τ
ρ
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Dv

.

(15)

The evolution of the contours of these terms is shown in Fig. 20.
VSC, VSG, DFV, and baroclinic terms interplay during the evolu-
tion process. From the VSC contour, it is clear that there are locally
stretched structures in the core region of the vortex due to compress-
ibility effect arising from local regions of compression/expansion.
The evolution of enstrophy is illustrated in Fig. 21. This corroborates
to saturation of the magnitude of the enstrophy. The time evolution
of the magnitude of these terms and their cross-correlations within
the 3D turbulent region bounded by the TNTI are analyzed further.
Note that the magnitude of the VSG term and VSC term is nearly
one order of magnitude higher compared to the baroclinic term and
DFV term (see Fig. 22). Indeed, VSG plays a major role transfer-
ring the turbulent energy from large scales to small scales in flows
at high Reynolds number as found in the work of Cottet et al.48

FIG. 22. Norm of VTE budget terms as a function of time (a) linear-scale and (b)
logarithmic-scale. Pink solid curve: enstrophy, gray solid curve: VSC, light green
solid curve: VSG, sky blue solid curve: baroclinic, and blue solid curve: DFV.

Positive correlation of VSG and VSC is observed (see Fig. 23). How-
ever, enstrophy is found to be predominantly correlated with VSG
compared to VSC. Furthermore, viscous effects via DFV term are
anticorrelated with enstrophy. DFV is also found to be anticorre-
lated with VSG, which is in accordance with the contours shown in
Fig. 20.

FIG. 23. Spatial cross-correlation of (a) enstrophy (E), (b) VSC (Vc), (c) VSG (Vg ),
(d) baroclinic (B), and (e) DFV (Dv ) terms of VTE budget with each other in time.
Pink solid curve: enstrophy, gray solid curve: VSC, light green solid curve: VSG,
sky blue solid curve: baroclinic, and blue solid curve: DFV.
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V. CONCLUSION

In this work, we presented a 3D analysis of turbulent flow fea-
tures originating from a shock wave diffraction over 90○ convex
corner that has never been attempted before. The intricate features
of the viscous effects, shock boundary layer interactions, and shock
shear layer interactions are well addressed by this analysis. LES with
the WALE model together with high-order numerical schemes (fifth
order WENO for inviscid, sixth order central differencing for vis-
cous fluxes, and third order explicit Runge-Kutta scheme for the
time advancement) is chosen to resolve the complex flow scales. The
in-house parallel solver used 3.3 × 109 cells to resolve the flow struc-
tures. The general dynamics of vortex core and shape of the Type-N
wall shock has been compared with the literature data30 favorably.
The chosen domain size in the spanwise direction is demonstrated to
be sufficient enough through the behavior of autocorrelation func-
tions. The effectiveness of the LES model and the mesh resolution
characteristics are quantified by SGS viscosity and SGS dissipation.
The 3D flow visualization with rotation dominated regions by nor-
malized Q criteria shows the quality of the current well resolved LES.
The 3D instantaneous field resembles the turbulent scale structures
observed in the experimental findings.25 We performed a flow topol-
ogy analysis based on TNTI. The JPDFs of the second and third
invariants (Q and R) of the velocity gradient tensor are used for
constant (first invariant) P planes for this purpose. Locally, incom-
pressible regions exhibit the teardrop shape of the PDF of Q and R
indicating the universal nature of the resolved smaller scales of the
turbulence. We found that SFS structures are dominating through-
out the flow transients in these regions. SN/S/S structures remain
predominant at the early stage in locally compressed regions, and
at the later stage, the flow structures evolve to more SFS structures.
Although unstable structures are found to be present relatively more
compared to locally incompressible regions. On the other hand, we
found mostly unstable structures at the locally expanded regions.
The present analysis also reveals the absence of UFS for locally com-
pressed region and the absence of SFC for locally expanded regions.
Neglecting the SGS contributions, the turbulent kinetic energy bud-
get terms are analyzed with only resolved parameters. This reveals
that the pressure dilatation is important at the early stage, while
turbulent diffusion becomes important at later stages and the dif-
fusion term exhibits anticorrelation with the pressure dilatation
term throughout the flow evolution. Furthermore, the relative con-
tribution of the constituent terms of the resolved mean vorticity
transport equation is analyzed. The VSC and VSG plays an impor-
tant role compared to DFV, and baroclinic term and enstrophy are
predominantly correlated with VSG compared to VSC.

The 2D viscous simulations of shock-wave diffraction over 90○
sharp corner with a high resolution numerical scheme can predict
the basic shock diffraction wave pattern, main vortex, secondary
viscous vortex associated with the wall shock interaction with the
boundary layer, shear layer, and lambda shocks observed in the
experiments specially at the early stage of the evolution. However,
2D simulations are limited to resolve the inherent 3D nature of the
turbulent flow features and together with the small-scale dissipation.
The present 3D LES captures the 3D turbulent scales, embedded
shocks/shocklets within the main vortex and the shear layer behav-
ior and boundary layer interactions in the viscous vortex region. The
spatio-temporal growth of the shear layer is strongly influenced by

the lambda shock as well as by the counterclockwise rotating viscous
vortex near the diffraction corner. Apparently, the lambda-shock-
shear-layer interaction at the upper side of the shear layer is more
intense than that of the interaction of the contact surface at the
bottom side of the shear layer. Note that the foot of the lambda
shock more effectively perturbs the shear layer and increases its
growth. This aspect is clearly resolved in the present LES. The shape
and large-scale structures of the turbulent envelop at the wall vis-
cous vortex region is also satisfactorily predicted by the LES. A fur-
ther investigation regarding the mechanism and possible influence
(upstream and downstream) of the contact surface at the underside
of the shear layer could be addressed in future work.

Future works will be undertaken to address the performance
of different LES models resolving this complex flow dynamics. A
detailed analysis of the local entrainment across the TNTI can be
explored for the compressible turbulent shear layer. The present LES
is performed with 3 × 109 mesh points and can be considered as well
resolved; however, further ensemble averaging could be attempted27

with phase-incohorence in the initial isotropic turbulence to make
stable flow statistics and detailed analysis toward the local mecha-
nisms of the complex evolution. From the large-scale tests of Skews
et al.,25 it appears that several lambda shocks could play an impor-
tant role toward large-scale KH instabilities at the later stage of the
shear layer development. Also, the onset of the decay of the turbu-
lence in the viscous vortex zone due to viscous dissipation is evident
from the experimental findings. These long-time flow features could
be investigated further to enhance the understanding of the complex
flow dynamics.
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kugelmittelpunktes bzw der zylinderachse’, Luftfahrt forschung 302. (Cited on page
37).
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