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May the winds guide you.

Que les vents vous guident.
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Abstract

Wind energy is one of the fastest-growing renewable technologies. The working environ-
ments of wind turbines are filled with uncertainties, for example, from foundation vibration,
structure degradation, wind turbulence, or ocean waves for offshore wind turbines. Malfunc-
tions or failures may occur during their serving time when facing these uncertainties. To
address this problem, Uncertainty Quantification (UQ) and Machine Learning (ML) tech-
niques are widely used for the evaluation of turbine performances. In this thesis, three parts of
work are conducted: First, the uncertainty propagation of inflow winds to response loads on
the tower is discussed using different surrogate models; Next, the Reliability-based Design
Optimization (RBDO) of wind turbine tower is realized with a Kriging assisted Single Loop
Approach (KSLA). Last, Time-variant Reliability Optimization (TvVRBDO) methodology is
achieved using a nested double-loop Kriging approach. The uncertainty propagation results
have first shown the mean value and maximum value of response loads under Normal Turbu-
lent Model (NTM) wind condition can be approximated respectively with Normal and Extreme
distribution. Then 6 surrogate models are used for the uncertainty propagation of inflow wind,
whose results demonstrate the adaptability of Kriging (KRG) surrogate. The results of RBDO
using Kring-SLA (KSLA) show that the proposed method needs fewer sample points than
other double-loop-based approaches. The accuracy of KSLA is at the same level as other
First Order Reliability Methods (FORM). The results of TVRBDO validate the feasibility of
the proposed method, after the inner-loop is built, the computational cost for optimization is

minimum.

Keywords: Wind turbine energy, uncertainty propagation, machine learning techniques,

time-variant reliability design optimization.



Résumé

L’éolien est I’une des énergies renouvelables a la croissance la plus rapide. L’environnement
de travail des €oliennes est rempli d’incertitudes, par exemple, les vibrations des fondations, la
dégradation de la structure de la turbine, le turbulence du vent. Des dysfonctionnements ou des
pannes peuvent survenir durant leur temps de service en raison des incertitudes. Pour quantifier
ces problemes, les techniques de quanlification des incertitudes et d’apprentissage automatique
sont largement utilisées pour 1’évaluation des performances de I’éolienne. Dans cette these,
trois parties du travail sont menées: Premierement, la propagation de I’incertitude (UQ) du
vent aux chargements des réponses est discutée en utilisant différents métamodeles; ensuite,
I’optimisation, basée sur la fiabilité (RBDO), de la tour de I’€olienne est réalisée avec une
approche en boucle-unique assistée par Krigeage. Enfin, la méthodologie d’optimisation de la
fiabilité dépendant du temps (TVRBDO) est réalisée en utilisant une approche de Krigeages a
double-boucle. Les résultats de I’'UQ ont d’abord montré que la valeur moyenne et la valeur
maximale des charges des réponses dans des conditions de vent de modele turbulent normal
peuvent étre estimées, respectivement, par une distribution Normale et par une distribution
Extréme. Les résultats démontrent 1’adaptabilité du métamodele de Krigeage. Les résultats
de la RBDO utilisant Krigeage-SLA (KSLA) ont montré que la méthode proposée nécessite
moins de points d’échantillonnage que les autres approaches a double boucle. La précision de
KSLA atteint le méme niveau que les autres méthodes de FORM. Les résultats de TVRBDO
ont validé la faisabilité de la méthode proposée. Apres la construction de la boucle interne, le

cofit de calcul pour I’ optimisation est minimum.

Mots clés: Energie éolienne, propagation de 1’incertitude, les techniques d’apprentissage

automatique , optimisation de la fiabilit€ dépendant du temps.
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Résumé étendu

Introduction générale

Le besoin croissant des sociétés modernes en énergie électrique a engendré 1’ utilisation accrue
des combustibles fossiles (pétrole, charbon, etc.). Cependant, ces combustibles fossiles
provoquent des dégats importants a I’environnement. Depuis le protocole de Kyoto en 1995,
les Etats ont pris conscience que la lutte contre le changement climatique est liée 2 la réduction
des gaz a effet de serre. Les énergies renouvelables permettent de réduire le rejet des gaz a effet
de serre pour la production de I’électricité. D’ailleurs, I’Union Européenne vise a atteindre la
production d’électricité a partir de sources renouvelables a 27 % en 2030. L’énergie éolienne
est considérée comme la plus prometteuse et la plus viable des sources d’énergie renouvelable.

Pour augmenter la production d’électricité et éviter 1’opposition des résidents, les parcs
éoliens sont installés dans des régions €loignées, montagneuses ou au large des mers. Un parc
éolien est soumis a des vents violents, a I’usure des turbines et a d’autres incertitudes telles que
des pertes de disponibilité. Pour la planification de nouvelles installations ou I’amélioration de
parcs €oliens existants, la connaissance des incertitudes liées aux €éoliennes est tres importante.
Le sujet de cette these se concentre sur ce sujet, dans cette introduction de premiere partie, la
portée et la motivation de cette étude sont abordées, puis un resume étendu de ce travail est

présenté.

Motivation

Le secteur des énergies renouvelables et en particulier de 1’énergie éolienne est une industrie
a croissance rapide [1]. L’€olienne est un systéme complexe comprenant principalement la

fondation de la plate-forme, la tour d’éolienne, les pales et la nacelle, la transmission, le
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rotor et le systeme de contrdle. Ces systemes sont incorporés pour maximiser la production
d’électricité et augmenter la fiabilité des parcs €oliens. Pour améliorer leurs performances
(agencement des éoliennes, conception des composants des €oliennes, etc.), certains codes de
simulation ont été développés. Cependant, les données d’entrée de ces codes de simulations
sont entachées d’incertitudes. Pour cela, un cadre mathématique est nécessaire pour analyser
les performances des éoliennes en tenant compte de I’aléa. Ce travail de these vise d’une part
a mieux comprendre la propagation des incertitudes du vent dans la simulation des systemes
éoliens, d’autre part, a utiliser les approches fiabilistes pour 1I’optimisation de la conception

des tours d’éoliennes.

Objectif

L’ objectif de cette these est de mieux comprendre la propagation des incertitudes des systemes
d’éoliennes et d’appliquer les méthodes basées sur la fiabilité pour optimiser la conception
des tours. Les objectifs de cette these sont

1. Propagation de I’incertitude du vent entrant. Pour le vent entrant turbulent, les réponses
du systeme éolien sont également stochastiques, la relation entre I’incertitude d’entrée
et la réponse doit étre discutée.

2. Optimisation fiabiliste de la conception de la tour de I’éolienne. L’ optimisation de la
conception basée sur la fiabilit¢ (RBDO Reliability-Based Design Optimization) est
largement utilisée dans les problemes d’ingénierie, qui recherchent un équilibre entre le
colit et la fiabilité. Le plus grand inconvénient des méthodes d’optimisation fiabiliste
(RBDO) est leur colit de calcul, en particulier lorsque les probabilités de défaillance
sont faibles. De nouvelles méthodes ont été développées pour réduire le colit de calcul
tout en conservant une précision suffisante.

3. Méthodologie d’optimisation fiabiliste dépendante du temps. En raison de la dégradation
des structures (dégradation matérielle ou structurelle) et des incertitudes des parametres
d’entrée, la fiabilité du systeme dépend du temps. Elle doit étre évaluée a I’aide de
méthodes de fiabilité dépendante du temps. L’ optimisation tenant compte de la fiabilité

dépendante du temps doit étre proposée.
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La premiere partie sur la propagation de I’incertitude du vent entrant est comme un
probleme de boite noire qui est considéré en termes de parametre d’entrée et de sortie. Dans
ce cas, les métamodeles sont largement utilisés. Il existe de nombreux types de métamodeles,
donc dans la premiere partie, plusieurs métamodeles sont comparés, puis appliqués a la
quantification de 1I’effet du vent sur les comportements des €oliennes.

La deuxieme partie concerne I’ optimisation fiabiliste de la conception de la tour d’éolienne.
Les méthodes traditionnelles utilisent une approche en double boucle, ou la boucle externe
modifie les variables de conception et la boucle interne analyse la fiabilité. Ces méthodes sont
tres coliteuses en temps de calcul. Dans le cadre de cette these, une nouvelle méthode est
proposée. Elle utilise une approche en boucle unique couplée au métamodele de Krigeage
pour réduire le colit de calcul.

Dans la troisieme partie, une nouvelle méthode pour I’optimisation fiabiliste dépendante
du temps est proposée. En raison de la non-linéarité des fonctions de performance, la fiabilité
dépendante du temps est calculée en utilisant les simulations de Monte Carlo avec le méta-
modele de Krigeage. Deux métamodeles de Krigeage a double boucle sont développés pour
réaliser I’optimisation fiabiliste dépendante du temps.

Cette these est structurée comme suit:

* Le but et la portée de cette these sont résumés dans 1’introduction.

* Dans Chapitre 1, les développements récents de 1’énergie éolienne sont d’abord revu.
Ensuite, les théories fondamentales pour calculer la réponse de I’€olienne: les équations
de BEM (BEM: Blade Element Momentum theory) et de Kane sont passées en revue.
Enfin, les méthodologies de conception des structures d’éoliennes sont résumées.

* Dans Chapitre 2, les théories de la quantification des incertitudes utilisées dans 1’énergie
éolienne sont passées en revue, y compris un large éventail de sujets tels que les
méthodes de simulation, les métamodeles, I’analyse de sensibilité, I’analyse de fiabilité,
etc. Ce chapitre sert de base théorique aux prochains chapitres.

» Dans Chapitre 3, la propagation des incertitudes du vent entrant en utilisant différents
métamodeles est discutée. Les caractéristiques probabilistes des réponses des forces
sur la tour sont d’abord discutées, puis différents métamodeles sont appliqués pour la

propagation des incertitudes du vent stochastique.
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* Dans Chapitre 4, I’optimisation fiabiliste de la conception en utilisant I’approche de
boucle unique assistée par le Krigeage est discutée. Une nouvelle méthodologie est
proposée pour mettre a jour le métamodele de Krigeage. Cette méthode est d’abord
validée sur des problemes mathématiques puis elle est appliquée a la conception fiabiliste
de la tour d’éolienne.

* Dans Chapitre 5, I’optimisation fiabiliste dépendante du temps en utilisant un méta-
modele de Krigeage en double boucle est proposée. Cette méthode consiste en deux
métamodeles de Krigeage, 1a boucle interne calcule la fiabilité dépendante du temps et
la boucle externe conduit I’optimisation fiabiliste, deux applications numériques sont
utilisées pour valider la méthode proposée.

Les dernieres parties sont la conclusion et la perspective de la these, qui résument les contribu-

tions de cette these ainsi que les travaux futurs de cette étude.

Organisation de la These

Chapitre 1

Les systemes d’éoliennes se réferent désormais principalement aux appareils qui convertis-
sent I’énergie cinétique du vent en énergie électrique. Les éoliennes peuvent tourner autour
d’un axe horizontal (HAWT) ou vertical (VAWT). Basés sur la position d’installation, les
systemes d’€oliennes peuvent tre classés comme systemes d’éoliennes onshore ou offshore.
Les éoliennes offshore ont considérablement miri au cours de la derniere décennie, leur coft
diminuant rapidement. La figure 1.3 montre la turbine V164-8.4 Mw pour le programme
WindFloat Atlantic a Ferrol (nord de I’Espagne). Comme indiqué, une éolienne horizontale
se compose principalement des pales d’éolienne, de la nacelle (y compris le groupe moto-
propulseur et du générateur), du moyeu (la connexion pour les pieds des pales), de la tour
, de la fondation (onshore ou offshore) et des systemes auxiliaires (systeme de controle et
réseau électrique, etc.). Dans les sections suivantes, les théories fondamentales pour des
simulations d’éoliennes sont discutées. Ensuite, les méthodologies de conception détermin-

istes et fiabilistes de structures d’éoliennes sont résumées. Pour I’analyse déterministe, les
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facteurs de sécurité sont largement adoptés. Cependant, les multiples facteurs de sécurité
peuvent entrainer une conception trop conservatrice. Dans ce cas, de nombreux chercheurs ont
appliqué des méthodes probabilistes pour caractériser la fiabilité ou optimiser la conception
des structures d’éoliennes. L’optimisation de la conception basée sur la fiabilit¢ (RBDO)
est ensuite appliquée aux structures sensibles a la fatigue pour réduire la conception trop
conservatrice. En raison du cofit de calcul pour la réalisation de la RBDO, la méthodes
d’approximation par métamodele de substitution sont largement utilisés. Ceux-ci sont discutés

plus en détail dans les chapitres suivants.

Figure 1: Turbine V164-8,4 MW de MHI Vestas

Chapitre 2

Ce chapitre se concentre sur les théories qui sont largement utilisées pour la quantification
des incertitudes dans la modélisation des réponses des structures. Le contexte principal du

chapitre est résumé comme suit:

Méthodes de simulation

Pour obtenir les caractéristiques probabilistes de la réponse de f(X), par exemple les moments

statistiques de la distribution de X, différentes méthodes peuvent étre utilisées. Cette section
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donnera une introduction des méthodes de simulation les plus utilisées.

Modeéles de substitution par régression

Pour les probléemes d’ingénierie complexes, la réponse précise Y (X) de I’entrée X peut étre
difficile a obtenir, ou tres coliteuse en calcul. Donc I'utilisation d’approximations est tres

populaire.

Analyse de sensibilité

L’ objectif de I’analyse de sensibilité (Sensitivity Analysis: SA) est de décider comment la
variabilité de la réponse du modele est affectée par les variables d’entrée, ou leurs combinaisons.
De nombreuses méthodes sont disponibles pour les analyses de sensibilités. Par exemple: la
méthode de criblage, la méthode de mesure de I’'importance et la méthode d’exploration en

profondeur [2].

Analyse de fiabilité

Si nous définissons une fonction d’état limite notée comme g(X), par exemple, g(X) =
F(X) = fiimit> frimir €st 1a limite de la réponse. g(Xr) < 0, indique le domaine de défaillance

Dy, tandis que g(X;) > 0 indique le domaine de sfireté, comme le montre la Figure 2.
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Figure 2: Analyse de fiabilité

La probabilité de défaillance Py peut étre définie comme:

Pr=P(g(X) <0) D

Des méthodes de simulation basées sur les métamodeles de substitution peuvent étre
utilisées pour I’évaluation de I’équation (1). Cependant, cela nécessite un tres grand échan-
tillon lorsque la probabilité de défaillance est faible. Les méthodes d’approximation sont
donc largement utilisées, comme les méthodes de fiabilité du premier ordre (FORM: First
Ordre Reliability Method) et du second ordre (SORM: Second Ordre Reliability Method).
Avant d’appliquer FORM ou SORM, les variables aléatoires d’entrée X sont transformées
de I’espace physique vers les variables U dans 1’espace standard a ’aide des transformations
isoprobabilistes.

Dans I’espace standard (normé et centré), le probleme de fiabilité est simplifi€ par la

recherche de la distance minimale par rapport a 1’origine de cet espece et 1’état limite:

mingp = u"u]

st.g(u) =0

)
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Comme le montre la Figure 2, f est I’indice de fiabilité selon lequel la probabilité de
défaillance py est approchée par (—f3), U* est le point de défaillance le plus probable (MPP)

dans I’espace standard.

Chapitre 3

Dans ce chapitre, la propagation des incertitudes du vent dans les réponses des actions au
sommet de la tour de I’éolienne est obtenue en utilisant les outils de simulation d’éoliennes
Turbsim et FAST développés par le National Renewable Energy Laboratory (NERL). Les
cinq parametres suivant sont considérés entachés d’incertitudes : la vitesse moyenne du
vent entrant (Vj,eqn), I'intensité de la turbulence (7'7), le coefficient d’exposant de la loi
de cisaillement (), I’angle vertical d’entrée () et I’angle horizontal d’entrée (y,). Des
simulations de Monte Carlo de plusieurs profils du vent conformes au modele de turbulence
normale (NTM) recommandé par I’IEC61400-1 sont effectuées. Les résultats montrent que,
pour des simulations indépendantes sous les mémes variables de profil de vent, en raison
des propriétés turbulentes du champ de vent, la valeur moyenne et la valeur maximale des
actions sont également stochastiques. Pour mieux étudier la propagation de I’incertitude
du vent entrant, 6 métamodeles de substitution aux simulations de FAST sont utilis€s et
comparés : La méthode des splines de régression adaptative (MARS), le krigeage (KRG),
I’expansion du chaos polynomial (PCE), la régression vectorielle de support (SVR), le réseau
neuronal profond (DNN) , la régression aléatoire des foréts (RFR). Ces métamodeles de
substitution sont d’abord appliqués a plusieurs fonctions mathématiques. Le temps CPU de
calcul, I’erreur relative par rapport a la réponse réelle (eg), le taux de divergence de Kullback-
Leibler (dxz) et le coefficient de détermination (R2) sont utilisés comme criteres de validation

et de comparaison.

Comparaison des métamodeles

Dans cette section, les modeles de substitution sont comparés a plusieurs problémes mathéma-

tiques basés sur certains criteres standard.
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Figure 3: Distribution des caractéristiques de réponse
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Caractérisation de la densité de probabilité des actions du vent

En raison de la propriété stochastique du vent entrant, la distribution de la réponse est d’abord
discutée. Les résultats montrent que pour la vitesse du vent turbulent (16m / s dans ce test), la
valeur moyenne peut étre approximée avec une distribution normale et le maximum avec une
distribution extréme de type III . Ensuite, la propagation de I’incertitude du vent entrant est
discutée sous cette hypothese. L' objectif est d’établir une relation entre les parametres du vent
entrant et la valeur moyenne de la distribution de la valeur moyenne et la valeur maximale des

forces de réponse au sommet de la tour de 1’éolienne.

Propagation de ’incertitude du vent entrant

Les résultats de 500 échantillons d’apprentissage (chacun prenant la valeur moyenne de 100
simulations) pour le Fx moyen et le Fx maximum sont comparés. La comparaison de la
distribution de la valeur maximale de Fx est illustrée sur la Figure 4. D’apres les résultats,
MARS, KRG, PCE et RFR peuvent obtenir une erreur relative plus faible que DNN et SVR
avec KRG comme la plus faible. Pour RFR, la divergence Kullback-Leibler (dky) est élevée,
ce qui indique une plus grande différence dans la distribution de sortie, comme le montre la
Figure 4. MARS et DNN prennent beaucoup plus de temps a s’entrainer que KRG et PCE

pour cette taille de données de 500 échantillon. Donc, apres toute les comparaisons, le KRG
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est la méthode adaptée pour la propagation des incertitudes du vent entrant.

Figure 4: Distribution et comparaison des différents métamodeles
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Chapitre 4

Les modeles de substitution ont €té€ largement utilisés dans 1’optimisation fiabiliste de la
conception (RBDO) pour résoudre des problemes d’ingénierie complexes. Cependant, la
précision et I’efficacité de la RBDO, basées sur les métamodeles de substitution, dépen-
dent en grande partie de la taille de I’échantillon, des méthodes d’échantillonnage et de la
probabilité de défaillance a estimer. Pour cette raison, les méthodes d’échantillonnages suc-
cessifs sont plus prometteuses, qui mettent a jour le métamodele successivement. De nos
jours, plusieurs approches RBDO basées sur le krigeage ont été proposées avec différentes
techniques d’échantillonnages successifs. Cependant, ces approches sont basées sur des simu-
lations de Monte-Carlo et des approches a double boucle. La plupart d’entre elles prennent
beaucoup de temps de calcul pour un niveau de fiabilité cible élevé ou pour des problemes
a dimension élevée. Pour améliorer I’efficacité de la RBDO basée sur le métamodele de
substitution, cette these propose une approche en boucle unique (SLA) combinée avec le méta-
modele de substitution de Krigeage. Le métamodele de Krigeage est mis a jour efficacement
en utilisant les points les plus probables (MPP) de la derniere itération de la méthode SLA

(Single Loop Approach). Un critere d’arrét tres simple et efficace est proposé. Par rapport a
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d’autres méthodes d’échantillonnage, le Krigeage initial peut étre démarré avec tres peu de
points d’entrailnement et converge vers 1’optimum appropri€¢ de maniere tres efficace. Trois
exemples mathématiques et un probleme d’ingénierie sont utilisés pour démontrer 1’efficacité,

les avantages et les limites de cette méthode.

Approche en boucle unique

La formulation du SLA peut étre écrite comme suit:

min : C(d, 1(X))
Pr[G,-(d,X)ﬁO]ngTi i=1,....m (3)

S.t. .
hi(d) <0 j=m+1,....M

RBDO assisté par Krigeage utilisant SLA

L’organigramme peut étre résumé comme suit:

Etape 1. Transformation des variables aléatoires X de I’espace physique en variables normées
U dans I’espace standard en utilisant la transformation iso-probabiliste U = T'(X).

Etape 2. Un plan d’expérience de taille N, U" avec un échantillonnage en grille ou un
échantillonnage en latin hypercube (LHS), et les réponses correspondantes G;(U"),i =
1,2,...,m, sont utilisés pour entrainer le premier Krigeage.

Etape 3. ko =0, 0uk=k+ 1. Début la boucle SLA, calcul des points les plus probables (MPP)

(k) GuquAi(d(k_l)yl—lgk_l)) a
oy VyGid® D wE )|

U l(k) , avec U l(k) (k) B!, ot a ) est calculé avec o,
partir de la dérivée du métamodele de Krigeage.

Etape 4. min f(d, pty;), sous les contraintes G;(d*,U*) > 0,i=1,2...,m, et calcul du nouveau
d et “gc)'

Etape 5. Calcul de la réponse G;(U¥),i=1,2...,m a U* a I'aide du modele Krigeage, utiliser
le point U} comme MPP pour la mise a jour du Krigeage, si [G1(U?}), G2 (U?), ..., Gn(U?)]
a 1’élément le plus proche de zéro.

Etape 6. Calcul de la vraie réponse de U, comme G;(U E*)), i=1,2,...,m, ajouter de cet

ensemble de données dans I’ensemble d’apprentissage, actualisation du Krigeage.

Etape 7. Comparerd*), ug() avec d 1), ug_l), si||d® —d* V|| <eet||p® —pk-D|| <
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€, stop; sinon, passez a I’étape 3 et continuez.

Exemples

Dans cette section, la méthode Krigeage-SLA est d’abord validée a partir de plusieurs prob-
lemes mathématiques utilisées dans la litérature, puis elle est appliquée a 1’optimisation d’une
tour d’éolienne.

Les résultats de I’exemple de Liang’s sont présentés dans la Figure 5:

Figure 5: L’exemple de Liang

First Kriging First Update
10— . . . : 10 — . ; ;
I/ ® |Initial Sample 4 ® |nitial Sample
9 |- - -G2(x1,x2) 9t | 4 u,
G1(x1,x2) ® MPP
8|~ ~G3x1x2) 81 |- - -G1(x1,x2)
—krigG1 G2(x1,x2)
e krigG2 71 |- - -G3(x1,x2)
——krigG3 ——krigG1
\ 6l kiigG2
——krigG3
] ] 1
x x
(a) First Krigeage (b) First update
0 - Elnal Krlglng objF histqry 6.722_5
L| ® Initial Sample
9| <+ Points SLA 1 6
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ghl-—-G1x1x2) |« ] I
G2(x1,x2) \\ 8%
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——krigG1 4r
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(c) Final result (d) Iteration history
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RBDO de la tour de ’éolienne

La méthode proposée pour la RBDO (SLA-Krigeage) est utilisée pour 1’optimisation de la
tour d’éoliennes basée sur une éolienne de référence de SMW donnée par NREL [3], mais
avec plus de détails dans la tour. On peut voir que les résultats de la conception obtenus par
I’ optimisation déterministe en utilisant les fractiles de 30 sont beaucoup plus elevés que les

résultats de la RBDO pour un indice de fiabilité cible de 4.2.

Chapitre 5

Ce chapitre traite de I’optimisation fiabiliste dépendante du temps a I’aide d’un métamodele
de krigeage a double boucle. Cette méthode utilise la méthode SILK pour I’analyse de fiabilité

dépendante du temps [4].

Approche a boucle unique pour une fiabilité dépendante du le temps (SILK)

' if G (Xm, t(j)) >0
Ue
Unin (X(i)> — and U (X(i)J(j)) >25,3j=1,2,---,N, 4)
jzlﬁii_r_l_ N {U(k) <X(i),t(j)> } ,autrement

\

TvRBDO utilisant le Krigeage a double boucle

Cette section présente le processus de TVRBDO. Cette méthode consiste a construire deux
métamodeles de Krigeage séparés, le Krigeage de la boucle intérieure est utilisé pour effectuer
I’analyse de fiabilité dépendant du temps avec la méthode SILK, le Krigeage de la boucle
extérieure est utilisé pour conduire I’optimisation. Deux applications numériques sont utilisées
pour valider I’efficacité de la méthode. La méthode est simple, précise et facile a mettre en
ceuvre. Le colit de calcul provient principalement de la recherche de points pour mettre a jour
le Krigeage dela boucle intérieure, apres la construction du Krigeage externe, le cofit de calcul

pour I’optimisation est faible.
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General Introduction

Electric energy is essential for the development of modern society, yet over relying on fossil
fuels in the past decades have caused serious environmental problems. So clean energy
technologies have been increasingly valued, for example, solar, hydro and wind power. Wind
energy is considered as a very promising source of energy and has thus attracted growing
attention. To increase the power production and avoid the opposition from nearly residents,
wind farms are normally installed in remote areas or offshore seas. During their lifetime, wind
farms are subjected to many sources of uncertainties such as volatile winds, turbine wear and
availability losses. For the planning of new installations or improving the capacities of exiting
wind farms, the knowledge of uncertainties related with wind turbines is very important. So
this thesis is focusing on the analyses of uncertainties related to wind turbine systems. In this
part, the scope and motivation of this study is firstly explained, then a brief outline of this

thesis is summarized.

Aim and Scope

The renewable sectors and particularly wind energies have become fast growing industries over
the past few years [1]. Wind turbines are wind energy converters that convert the winds’ kinetic
energy into electrical energy. A large wind turbine is a complex system, mainly consisted
of the platform foundation, the wind turbine tower, the blades and the nacelle (including the
drive train, the generator, etc ) and the control systems. These systems are incorporated to
maximize the power production and increase reliability of the wind turbine systems. To better
research on the performance of wind turbine system in aspects of the arrangement of wind

turbines, structure designs, external uncertainties, some simulation tools have been developed.
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The work of this thesis is mostly based on computational simulations. The objective is to have
a better understanding of the uncertainty propagation of the wind turbine systems, and apply
reliability-based methods to optimize the design of wind turbine tower. The aims of this thesis
are:

1. Uncertainty propagation of inflow winds. For turbulent inflow winds, the statistical
moments of response loads on the wind turbine tower are also stochastic, the relationship
between the input uncertainties and load responses should be discussed.

2. Reliability design optimization of wind turbine tower. Reliability-based Design Op-
timization (RBDO) is widely used in engineering problems, which seeks a balance
between cost and reliability. The biggest traverse for realizing RBDO analyses comes
from its high computational cost, especially when the failure rate is low. New methods
should be developed to reduce the computational cost while maintaining sufficient
accuracy.

3. Time-variant Reliability Optimization (TVRBDO) methodology. Due to system degrada-
tion and input uncertainties, the reliability of a system dependent of time (TvR) should
be studied. To reduce the calculation time needed for TVRBDO, surrogate models can
be added to replace both those physical models and the TvR constraints.

The first part of work is about the uncertainty propagation of inflow winds. This problem
is like a black-box problem that is viewed in terms of inputs and outputs. In this case,
surrogate models can be used. There exist various surrogate models, so firstly, several popular
surrogate models are compared. To establish a relationship between the inputs and outputs,
wind uncertainty parameters and output response loads should be characterized. Then those
surrogate models are applied to the uncertainty quantification of the response loads.

The second part of work is about the reliability-based design optimization (RBDO) of
wind turbine tower. Traditional methods use double-loop approaches, where the outer-loop
changes the design variables and the inner-loop calculates their corresponding reliability.
These methods are time-consuming when facing high-reliability problems, so in this study a
new method is proposed, which utilizes a Kriging-based Single Loop Approach (KSLA) to
reduce the computational cost.

The third part of work is about Time-variant Reliability Optimization (TVRBDO). Due to
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the high non-linearity of performance functions, the Time-variant Reliability (TvR) is often

calculated with simulation methods, which become computational expensive when facing

high reliability problems. TvRBDO involves multiple iterations of searching from the design

space, so the computational costs are multiplied. To reduce the computational costs, this study

utilizes double-loop Kriging surrogates to conduct TvRBDO.

Thesis Outline

This thesis is organised in six chapters:

In the introduction, the goal and scope of this thesis are summarized.

In Chapter. 1, the recent developments of wind energy are firstly reviewed. Then
the fundamental theories to calculate the wind turbine responses: BEM and Kane’s
equations are reviewed. Next, deterministic and reliability-based wind turbine structure
design methodologies are explained, mentioning the wind turbine classes, the wind
conditions, and different design load cases.

In Chapter. 2, the uncertainty quantification methods applied to wind energy are re-
viewed, including a wide scope of subjects such as simulation methods, surrogate models,
sensitivity analyses, reliability analyses, etc. This chapter serves as the theoretical bases
for the latter chapters.

In Chapter. 3, the uncertainty propagation of inflow wind using different surrogate
models are discussed. In this chapter, the probabilistic characteristics of the load
responses on the tower are firstly discussed, then different surrogate models are applied
for the uncertainty propagation of the stochastic inflow winds.

In Chapter. 4, Reliability-Based Design Optimization (RBDO) using Kriging-assisted
Single Loop Approach (KSLA) is presented. In this chapter, a new updating methodol-
ogy is proposed for updating the Kriging surrogate. This method is first validated by
several mathematical problems and then applied to the RBDO of a SMW reference wind
turbine tower.

In Chapter. 5, TvRBDO analysis using double-loop Kriging surrogates is proposed.

This method consists two Kriging surrogates, the inner-loop calculates the time-variant
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reliability and the outer-loop conducts TVRBDO, several mathematical problems are
used to validate the method.
The last part are the conclusions and perspectives of the thesis, which summarized the

contributions of this thesis and also the future works for this study.
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Chapter 1

State of Art of Wind Turbine Simulation

Wind energy is considered to be a very promising source of clean energy and has draw
growing attentions in recent years. In this chapter, the state of the art of wind energy is
reviewed. In Section.1.1, recent developments of wind energy are firstly introduced, which
sees a steady growth in last decades. For a better understanding of the performances of
wind turbine structures, in Section.1.2, the simulation methods for wind turbine systems and
simulation codes are introduced. Based on these analytical relations or simulation codes, in
Section.1.3, the structure design methodologies for wind turbine systems: semi-deterministic

and reliability-based methods are discussed and compared. Section.1.4 is the summary.

1.1 General introduction

1.1.1 Wind energy development

Wind energy is the use of wind to provide the mechanical power through wind turbines to turn
electrical generators or to do other traditional work like milling or pumping. Wind energy is
a sustainable and renewable source of energy, and has much smaller environmental impacts
compared to fossil fuels. Wind energy has developed rapidly in recent years that sees a steady
increasing of new installations each year. The cumulative installed capacity of top 5 countries
is shown in Table. 1.1.

In 2018, global wind power capacity has grown 9.6% to 591 GW [5], reaching 4.8% of the

worldwide electric power usage [6] and has provided 15% electricity presumption in European
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Table 1.1: Top 5 countries cumulative installed capacity 2014-2018

S.No. Country MW (2014) MW (2015) MW (2016) MW (2017) MW (2018)
1 China 114,609 145,362 168,690 188,232 211,392
2 USA 65,879 74,471 82,184 89,077 96,665
3 Germany 39,165 44,947 50,018 56,132 59,560
4 India 22,456 25,088 28,700 32,848 35,129
5 Spain 22,987 23,025 23,074 23,170 23,484
# Global 369,695 432,680 487,657 539,581 591,549

Union in 2019 [7].

International Energy Agency (IEA) reported in 2015 that the wind energy

supplied more new power generation than any other technologies. China is the leading nation

in wind power installed capacity that accounts 35.7% [8], [9]. The top 5 countries contribute

more than 50% share of world total installation. 2018 was a solid year with 51.3GW installed,

a decrease of 4% compared to last year, with total installed capacity of S91GW ( a growth

9% compared to 2017). New installations in the onshore wind market reached 46.8 GW, and

global offshore market installed 4.5 GW, bring the share in the global market to 8%.

In Figure.1.1 and Figure.1.2, the cumulative wind energy capacity and the global annually

installed capacity are shown respectively.
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Figure 1.2: World annual installed capacity (GW)
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1.1.2 Wind turbine system

Wind turbine hubs can rotate about either a horizontal axis (HAWT) or a vertical axis (VAWT),
the former being more common and competent. Based on installation positions, the wind
turbine systems can be classified as onshore or offshore wind turbine systems. Offshore wind
turbine systems have greatly matured during the last decade, with their cost decreasing rapidly.
The average Levelized Cost Of Electricity (LCOE) has decreased from from 120€/MWh in
2000 to about 100€/MWh in 2015 with average anticipation for 2021 reaching 70€/MWh
[10]. Figure.1.3 shows the V164-8.4 Mw turbine for Wind-Float Atlantic program in Ferrol
(northern Spain). A typical configuration of a modern large scale wind turbine is shown in
Figure.1.4. As is shown, a horizontal wind turbine tower system mainly consists of wind
turbine blades, a nacelle (including the drive shafts, and the electrical generator), a hub (for
the connection for blade roots), the wind turbine tower, the tower foundation (onshore or

offshore), and auxiliary systems (such as control systems, power grids, etc.).



CHAPTER 1. STATE OF ART OF WIND TURBINE SIMULATION 4

Figure 1.3: V164-8.4 MW turbine from MHI Vestas

Figure 1.4: A typical configuration of a modern large scale wind turbine.
Source: Tchakoua et al., https://ieeexplore.ieee.org/abstract/document/6618706
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1.2 Wind turbine system simulation

For the analyses of wind turbine systems, Blade Element Momentum theory (BEM) and Kane’s

equations are widely used for their efficiency and accuracy. In this section, the fundamental
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theories for the aerodynamics, support platform kinematics, system kinetic modeling methods
are summarized. Based on these methods, and taking into consideration of other auxiliary

systems, some simulation codes are developed.

1.2.1 Aerodynamics of wind turbine blades

Though there exist various levels of complexity to calculate the aerodynamics loads on
the wind rotor, the BEM is the most commonly used method in simulation codes, for its
efficiency and accuracy [11]. BEM was proposed by Glauert [12] by combining the momentum
balance theory with blade element theory. The detailed derivation of the theory is shown in

Appendix.A.

Momentum balance theory

The momentum balance theory or classical Rankine-Froude theory considers the balance of
axial-momentum far-up and downstream of the rotor for a uniformly loaded disc, the theory is
established under the following assumptions [13]-[15]:

1. Air is stable, homogeneous, in-compressible without friction.
There are infinite number of blades.
There is no rotational component of the flow.

The velocity through the disc is continuous.

A

The pressure per unit over the disc is constant.
In momentum balance theory, the thrust force and power output are expressed in dimen-

sionless coefficients Cy and Cp:

Cr =4a(l—a)
(1.1)
Cp=4a(1 —a)?
a is defined as the ratio between the fractional speed decrease at the rotor plane and far
downstream. Note that the thrust coefficient Cp has a global optimum C}** at a = 1/3. This

Cp™ is called Betz limit, indicating the maximum theoretical power output from wind turbine

blades.
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Generalized momentum theory

The Rankine-Froude actuator disc theory is generalized to include the effect of wake rotation
of the wind turbine rotor. The thrust 7" and torque Q exerted on the rotor are then represented
as differentials:

dT =4d (1+d) s pQ2r22mrdr

(1.2)
dQ = Amwr?* = pVg2rrdror?

' is angular induction factor; r is the radius of the disc; p is the density of air; Q is the angular
velocity of inflow air relative to the disc; @ is the angular speed imparted by the rotor; Vg is

the horizontal wind speed at the disk position.

Blade element method

The blade element method is another method for analyzing the forces on the turbine blade
based on its geometry. As shown in Figure.A.3, along the blade, the blade is divided into small
independent sections, with the width of each section being dr, the length of the section being
c. o 1s the angle between inflow wind and the chord line, 0 is the sum of the pitch angle and
the blade twist angle; ¢ is the angle between inflow wind with respect to plane rotation, which
is the sum of 0 and & . On an airfoil, the forces are resolved into two forces: drag force Fp

and lift force Fy. These forces are then expressed as drag and lift coefficients Cp and Cy :

Fp/Element
C - 9
0.5pV2 ¢

C — Fy /Element
—05pVc

(1.3)

Vier is the incoming flow velocity relative to the airfoil, which can be derived from the

geometry relationship of the blade:

(1.4)

For a wind turbine rotor consists of B rotors, the differential thrust d7 and differential



CHAPTER 1. STATE OF ART OF WIND TURBINE SIMULATION 7

torque dQ can be expressed as:

dT = BYpV2,[Crcos(¢) +Cpsin(¢)] cdr

dQ = sz 21 |Crsin(¢) —Cpcos(¢)]crdr

(1.5)

Blade element momentum theory

As the name indicates, the blade element momentum theory (BEM) is established by com-
bining the thrust and torque equations from momentum theory and blade element theory
(Equation.A.13, Equation.A.14, Equation.A.18). Before applying BEM theory, the thrust
and torque of Equation.A.13 and Equation.A.14 are multiplied by a tip-loss factor F' that is
summarized by Wilson [16] to account for the finite number of blades and finite radius of

blades.

2 [ —B&n
F = p cos |e 2rsin(9) (1.6)

Then the equations result in:

(lae] -G @)asd] o

() [50) (%) = o) () e -] 09

To derive from the equations above for the induction factor a and &', the drag coefficient

Cp is set to zero to simplify the problem. According to Wilson [16], this will add negligible
errors. After algebraic manipulation, considering Cp = 0, the drag force coefficient C; and

the power coefficient of each blade element C,, are summarized as:

__4Fsin(¢) (cos(@)—sin(¢))
CL= 6 (sin(¢)+Arcos(¢)) (1
in? — A, sin in
CP:;/A Fsin’(9) (cos(9) —Arsin(9)) (sin(9) | - (1.10)

| (o) [1- 2] 22



CHAPTER 1. STATE OF ART OF WIND TURBINE SIMULATION 8

here 0 = Bc/2xr is the solidity radio; A = QR/V., is tip speed radio; A, = Ar/R is the local
speed ratio.

The lift coefficient and power coefficient are functions of angle attack o, annular radius
r, wind speed Vj, number of blades B, blade radius R, pitch, twist, chord distribution ¢, and

rotation speed €. These are used to calculate the responses of wind turbine blades.

1.2.2 Structure kinematics of wind turbine system

Once the applied loads on wind turbine structures are calculated, the structural kinematics
expressions for wind turbine structure systems can be derived from Kane’s equations [17],
which are widely used for calculating the system responses with complex structural interactions.

In this section, Kane’s equation is reviewed.

Kinetic modeling with Kane’s equations

Essentially, all methods to derive the equations of motions are equivalent. Newton-Euler
method is the most comprehensive to obtain all forces and kinematics for each body. It requires
balancing forces and moments for each part by taking consideration of all interactive and

external forces. The Newton’s law can be expressed as:

Fi—mii‘,-:O (111)

here F; are the total forces on the particle i; r; is the position of particle i ; ¥; are corresponding
accelerations.

Multiply Equation.1.11 with a infinitesimal displacement or;, Equation.1.11 becomes:

(F,--6r,-—m,»i‘,--5r,-) =0 (1-12)
1

v
1=
Equation.1.12 is called principle of virtual work, where v is the number of particles.

By combining virtual work with Newton’s law, Lagrange’s equations disregard the in-

teractive forces that do not provide work, while requiring evaluations of kinetic energy and

preforming differentiation. Compared with Newton’s method, Lagrange’s method provides a
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simpler way to handle complex problems. The Lagrange’s equation can be expressed as:

d (dK\ JK
a’t(&q‘) P =05+ Z?LA,S (s=1,2,....n) (1.13)

here ¢; comes from the coordinate transformation that ZV:Fi -Or; = Zn: 050¢s; Qy are the
n generalized forces; K is the kinetic energy; A, are lt:hle m(m < ri):lconstraints so that
i As0qs = 0; A, are Lagrange multipliers.

- For modern engineering problems, like wind turbine structure systems, more complex
interactions are involved. To solve these kinds of problems, a modern method is developed by
Kane [17]. This method reduces the labor needed to derive equations of motions, so compared

with Newton and Lagrange’s methods, this method is simpler and more numerically efficient.

The Kane’s formula is expressed as:
FF+F'=0 (i=1,2,...,n) (1.14)

where F; are the generalized active forces; F;* are the generalized inertia forces:

F-Yy (a)f-fk>+§‘, (7% F) (1.15)
k=1

k=1

:ké [a)l.k. (—Ikak—a)kxﬁk>] +§1 [v’;-(—mkak)] (1.16)

here, (?)lk is the ith angular velocity in the kth reference frame; T} is the torque; \71-" is the
velocity; Fk is the force; N is the number of rigid bodies; /; is the moment of inertia; o is the
angular acceleration; FIk is the angular momentum; m is the mass, d is the acceleration. After

regrouping, Kane’s equation can be expressed as:
N ~ N
Z[ 18— 6 x H) + Z[, (F —ma)] =0 (1.17)

It can be seen that in Equation.1.17, the first part and the second part are respectively

Euler’s law and Newton’s law of motion.
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Support platform kinematics

The wind turbine system can be simulated with a combination of rigid and flexible components,
for example, in FAST simulator [18], a three-bladed HAWT is simulated with 24 degree of
freedoms (DOF). These DOFs includes 6 DOFs from the base foundation, 4 DOFs from the
tower flexibility, I DOF from the nacelle yaw, 2 DOFs from the generator and the rotor speed,
1 DOF from the blade teetering, 6 DOFs from the blade flexibility, 2 DOFs from the rotor-furl
and the tail-furl. These DOFs are necessary for characterizing the displacements and forces of
the wind turbine components.

For offshore wind turbine systems, hydrodynamic-added forces should be considered to
account for the influence of the water mass. So the external forces on the base foundation

should be written as [19]:

F;_Platform — Aij ‘I] T EHydro + F}Lin“ (1.18)

here A;; is the added-mass from hydrodynamics, Fl—Hydro is the ith hydrodynamic load, E-Lines

is the loads from mooring lines.

1.2.3 Simulation tools

The dynamic analysis of wind turbine system relates to flexible multi-body dynamics, aero-
dynamics, control strategies, mooring and hydrodynamics (for offshore). There exist several
simulation codes, for example HAWC2 [20],Bladed [21] and FAST [18] which are widely
used by industries and academic researches. Several parts of this thesis are based on FAST

simulation code.

FAST code

FAST stands for Fatigue, Aerodynamics, Structures and Turbulence, is a non-linear time-
domain simulator developed by the National Renewable Energy Laboratory (NERL). It relates
22 degree of freedoms (DOFs) for two-bladed turbines or 24 DOFs for three-bladed horizontal

wind turbines. FAST employs a combined model and multi-body dynamics formulations, such
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as Aerodyn, HydroDyn, MAP, etc, as shown in Figure.1.5.

Figure 1.5: FAST workflow
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AeroDyn uses (BEM) theory with empirical corrections. HydroDyn is used to analyze

the wave loads. Mooring Analysis Program (MAP) is used to analyze the multi-segmented
quasi-static cable system. In FAST simulation, aerodynamic and structural responses to the
wind inflow conditions are determined in time space. Outputs of the simulations include
time-series data for aerodynamics loads, power output, as well as loads and deflections for

structural components of wind turbine components.

1.3 Design of wind turbine structures

Based on the analytical relations or simulation codes, this section focuses the design of wind
turbine structures. Firstly, the preconditions: wind turbine classes, wind conditions and design
load cases are summarized. Two types of design methodologies: semi-deterministic and

reliability-based methods are discussed.

1.3.1 Wind turbine class

Depending on installation sites, wind turbine classes are defined in terms of wind speeds and

turbulence parameters. The wind turbine classes are intended to cover the most applications
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and to represent different installation sites. The basic parameters that defines the wind turbine
classes are shown in Table.1.2.

Table 1.2: Basic parameters for wind turbine classes

Wind turbineclass | I~ II  TII | S
Vet (M/S) 50 42.5 37.5 | Installation
Al Lt 1.6 site
B | It 1.4 specified
C | ILer 1.2 value

The wind turbine classes 1, 11, I1I and § are defined according to the average reference
wind speed Vies . Ief is the expected turbulence intensity at 15m/s related with installation

sites A-C, that designate high, medium, and low turbulence characteristics respectively.

1.3.2 Wind conditions

Wind condition is the primary consideration for a wind turbine system. A wind turbine system
should be resistant to wind conditions defined by wind turbine classes. The wind regimes are
classified as normal wind conditions and extreme working conditions based on the frequency
of recurrence. The wind conditions include not only a constant mean value but in most cases
also turbulent components. The turbulent components should allow random changes in wind
speed, shears and directions. Three vector components that are longitudinal, lateral and upward
are defined for the wind velocity. For the standard wind turbine classes, the turbulence models
should satisfy [22]:

1. The turbulence standard deviation o7 is assumed to be independent with height, and the

lateral deviation 6, and the upward deviation 03 component satisfy:

oy > 0.70 (1.19)

03 > 0.50
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2. The longitudinal turbulence scale parameter A (m) is a function of hub height z:

0.7z z<60
A= (1.20)

42 z>60

The power spectral density of longitudinal S;(f), lateral S>(f), and upward S3(f)
components should asymptotically approach the following forms as the frequency f

increases:
S1(f) = 00.567 (A1 / Vi)™ £33

S2(f) = S3(f) = 0.7581(f)

(1.21)

Viupb 1s the wind speed at hub height.
Two recommended models are Mann uniform shear turbulent model [23] and Kaimal
spectrum and exponential coherence model [24].

Normal wind conditions

The mean value of wind speed at turbine hub height Vj,,, over a time period of 10 minutes

should be assumed to follow a Rayleigh distribution given by:

P(thb) =1- exp[—n(thb)/(OAme)] (1.22)

where Vir is the reference wind speed of wind turbine. Figure.1.6 is an example of Rayleigh
distribution with the mean value of V},;, being 13m/s.
The normal wind conditions include normal wind profile model (NWP) and normal

turbulence model (NTM). For NWP, the average wind speed is given as a function of height z:

V(z) = Vhub(2/zhub)* (1.23)

For NTM, the standard deviation of turbulence o7 is given as:

01 = Liet(0.75Vup + 5.6) (1.24)
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Figure 1.6: Rayleigh distribution
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Extreme wind conditions

The extreme wind conditions include wind shear events, peak wind speeds, rapid changes in
wind speed and direction. 6 types of extreme wind conditions are specified in IEC61400-1
design requirements for wind turbines, which are extreme wind speed model (EWM), extreme
operating gust (EOG), extreme direction change (EDC), extreme coherent gust with direction
change (ECD), extreme wind shear (EWS), and extreme turbulence model (ETM). For ETM,
the wind profile uses the same profile of NWP, while the standard deviation of the longitudinal

component O] is given by:

o] = Clref[0,072(Vave/C+ 3)(thb/c — 4) + 10];C = 2m/s (1.25)

To generate the random wind field, there are also simulation codes available. This thesis
uses Turbsim also developed by NREL [25]. TurbSim is a stochastic, full-field, turbulent-
wind simulator. It numerically simulates time series of three dimensional wind velocity
vectors at points in vertical rectangular grids. TurbSim output can then be used as input into

aerodynamic-based codes such as FAST.
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1.3.3 Design load cases

The design lifetime for wind turbine classes I, 11, I1] should at least last 20 years. Besides
wind conditions, other environmental conditions should also be taken into account to guarantee
the integrity and safety of wind turbines during their serving time. For example, thermal,
photo-chemical, corrosive, mechanical, electrical conditions.

The design load cases (DLCs) are used to verify a wind turbine can withstand the most
significant conditions during its lifetime with reasonable probability of occurrence. The design

situations of a wind turbine can be summarized in Figure.1.7.

Figure 1.7: Wind turbine lifetime design situations

Power Transport
Power Fouction Starti Normal Emergency Parked Parked installation
Production P P shutdown shutdown +fault maintenance
+fault
and repair

DLC1.1-DLC1.5 DLC2.1-DLC2.4 DLC3.1-DLC3.3 DLC4.1-DLC4.2 DLCs.1 DLC6.1-DLC6.4 DLC7.1 DLC8.1

For each phase of design situation, DLCs are defined according to environmental conditions.
For example, in the phase of power production, 5 DLCs are defined, which requiring different

types of analyses as shown in Table. 1.3.

Table 1.3: Design load cases for power production

DLC Wind condition Other conditions Type of analysis

For extrapolation

1.1 NTM U
of extreme events

1.2 NTM F

1.3 ETM U

1.4 ECD U

1.5 EWS U

Here, U denotes analysis of ultimate strength, F' denotes the analysis of fatigue .

1.3.4 Wind turbine semi-deterministic analysis

The wind turbine structures should be verified for all DLCs in Figure.1.7. To account for

uncertainties and variations in loads and materials, the design values of applied loads F; are
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multiplied by partial safety factors for loads yy. And the design values for materials f; are

divided by safety factors for materials 7,:

Fy = yrFy
fa = fi/Vm

(1.26)

For different types of analyses, the safety factors ¥y, ¥, may take different values. Four
types of mechanical analyses are used according to the IEC-61400 standards [22]:
1. Ultimate strength: For turbine structure design, the resistance of structure materials R
should be larger than the highest response S multiplied by a failure consequence factor
Yu:
WS(Fa) < R(fa) (1.27)

% is designated by the importance of the structure component, that whether the failure
of this component will result in the failure of a major part of the wind turbine.

2. Fatigue failure: Fatigue damage should be estimated with appropriate fatigue damage
calculation. For example, by adopting Miner’s rule, the cumulative damage M should
be less than 1.

WM (F) <1 (1.28)

3. Stability: Stability indicates that the structure components should not buckle or resonate
under design loads Fy.

4. Critical deflection: It should be verified that no structure deflections will affect the
integrity or functionality of wind turbine systems. For example, the maximum elastic
deflection in unfavourable direction should be examined to avoid interference between
blades and tower.

The flowchart of semi-deterministic analyses for wind turbine structures is summarized in
Figure.1.8:

Giving environmental conditions (Section.1.3.1), turbine classes (Section.1.3.2), design
load cases (Section.1.3.3) , the characteristic loads F; can be obtained from experimental data,
analytical results, or simulation codes (Section.1.2). This step of load characterization will

be further discussed in Chapter.3. The design load effects S; of wind turbine structures are



CHAPTER 1. STATE OF ART OF WIND TURBINE SIMULATION 17

Figure 1.8: Semi-deterministic analyses of turbine structures
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calculated with numerical analyses or simulation codes such as finite element method (FEM).
For method 1, the safety factor ¥y is applied to the characteristic loads Fy, so method 1 is
more suitable for non-linear analysis. While for method 2, the safety factor ¥y is applied to
the characteristic load effects Sy, so this method is more suitable for precise dynamic reaction
analysis. Based on the constraints of design load effects, semi-deterministic optimization can

be conducted, to achieve the lowest installation cost or highest annual profit, etc.

1.3.5 Wind turbine reliability analysis

Although using the partial safety factors is convenient to account for wind uncertainties, the
spatial and temporal wind load variations are not represented accurately. Besides, using
multiple safety factors may result in over conservative design. In this case, many researchers
[26]-[29] have applied probabilistic methods to characterize reliability and optimize the design

of the wind turbine structures. The flowchart for reliability analysis is shown in Figure.1.9.
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Figure 1.9: Reliability analyses of turbine structures
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In reliability analysis, the characteristic loads in semi-deterministic loads Fj is replaced
with load distributions Q(F}); the characteristic load distributions Q(F}) are not multiplied
with safety factors Y. The performance of a structure design is indicated by its reliability
index B¢, which is an indicator of failure.

The failure rates are defined as the probability of limit state of a turbine structure G(Q(Fy))
is smaller than zero:

1. Ultimate strength: For turbine structure materials, the highest response Sj from charac-

teristic loads, is bigger than the resistance of structure materials R :

GY(Fy) =R(fi) - S(F) <0 (1.29)

2. Fatigue failure: The cumulative damage M is bigger than 1.

GI(F)=1-M(F) <0 (1.30)
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3. Stability: The characteristic loads Fy lead to buckling of wind turbine components or
resonance of wind turbine system (G;";k < 0).

4. Critical deflection: The characteristic loads Fj lead to deflections that affect the integrity
or functionality of wind turbine systems (GlF)k < 0).

To calculate reliability, the most straightforward way is using crude Monte Carlo Sim-
ulation (MCS), this however requires large sample sets, which may become prohibitive for
high reliability problems (where failure rates are low). To alleviate this problem, different
simulation methods or approximation methods can be used. The surrogate models can also
be utilized to replace the complicated time consuming numerical analyses. These are further
discussed in Chapter.2. After getting the reliability, reliability-based design optimization
(RBDO) can be conducted, this part is focused in Chapter.4. If time is considered as a variable
in the analyses, then this reliability problem becomes time-variant reliability (TvR), and the
optimization becomes Time-variant Reliability Optimization problem (TvRBDO), which will

be further discussed in Chapter.5.

1.4 Summary

This chapter gives a brief introduction of wind energy, in Section.1.1, recent developments
of wind energy are introduced, which sees the cumulative installed capacity continuously
increasing. To better understand the responses of wind turbine systems under uncertainties,
simulation codes are developed based on the theories from Section.1.2. With the simulation
tools, in Section.1.3, researchers have tried to optimize the wind turbine structure design,
different methodologies are presented, such as semi-deterministic or reliability-based methods.
Reliability-based methods have the advantage of finding the most cost-effective design while
satisfying reliability expectation. In the next parts of the thesis, the objective is to focus on the

uncertainty effects of wind turbine systems and design optimization based on reliability.
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Chapter 2

Uncertainty Quantification Theory

The working environments of wind turbines are filled with uncertainties. Uncertainty quan-
tification (UQ) methods are powerful tools to analyze such problems. This chapter gives a
overview of UQ methods that are widely applied in wind turbine systems. In Section.2.1,
the framework or steps of UQ are firstly introduced. For the quantification of the probability
of certain rare events, in Section.2.2, reliability analysis is discussed. To characterize the
impact level of each input uncertainty to output responses, in Section.2.3, sensitivity analysis
is discussed. For calculating reliability and sensitivity, the most direct way is using the simula-
tion methods which are summarized in Section.2.4. To reduce computational cost, surrogate
models can be used. So in Section.2.5, the theories of different surrogate models are reviewed;

Section.2.6 is the summary.

2.1 Uncertainty quantification framework

All problems explicit or otherwise, can be mathematically represented by f, with their input
variables X belonging to a probability space (€, P). Q is its sample space; P is its probability
measure. X(x1,xy,...,X,) is the realization of X with dimension m, length n. The responding
output is represented with Y (y1,y2, ...,y,). The relation can be described as Equation.2.1, with

€ as the discrepancy between model prediction and real world reality:

YX)=fX)+eXeQCR"YCR" (2.1
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If the inputs of the system are perfectly known, this can be classified as deterministic
problems. If the inputs contain uncertainties, like uncertainties in material properties, or
incomplete knowledge of the systems, these kinds of problems should be treated as uncertainty
problems. The advantage of UQ over deterministic methods is that it can provide more
information on the trend and variability of a system state [30].

The working environments of wind turbine systems are filled with uncertainties due to
uncertainties in material properties, manufacturing processes and external loads [31]. So
uncertainty quantification (UQ) methods have been widely used to analyze the wind turbine
problems [28], [32], [33]. The framework or steps of uncertainty quantification discussed in

this thesis are shown in Figure.2.1. This framework is summarized as:

Figure 2.1: Uncertainty quantification framework
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1. Identifying the sources of input uncertainties. This step consists in identifying the
number of uncertainty sources and finding the parameters of their joint distributions.
For wind turbine systems, the input uncertainties mainly comes from wind uncertainties.

2. Select simulation methods. This step involves drawing samples from the uncertainty
joint distributions. This part will be presented in Section.2.4.

3. Evaluate physical models. In this step, the samples are evaluated by physical models,
such as FAST simulation code or Finite Element (FE) analysis. If the physical models
are time-consuming and the sample size is large, to save time, the physical models

are widely replaced by trained surrogates. Several popular surrogates are reviewed in
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Section.2.2.

4. Characterize the output responses. This step consists in the uncertainty propagation
of the input uncertainties. For example, in this thesis, the uncertainty propagation of
inflow winds to the load responses on the top of the wind turbine tower is discussed in
Chapter.3.

5. Conduct reliability analysis. This step consists in defining failure modes, and cal-
culating corresponding reliability. For wind turbine structures, the failure modes are
discussed before in Section.1.3. Reliability analysis is discussed in Section.2.2.

6. Conduct sensitivity analysis. Sensitivity analysis can provide information of the
impact levels of input uncertainties to response uncertainties. Sensitivity analysis is
discussed in Section.2.3.

7. Realize Reliability-based Design Optimization (RBDQ). This step consists in opti-
mizing design variables ( wind turbine tower geometry, for example) under reliability
constraints. This part is further discussed in Chapter.4 and Chapter.5.

The following sections will give more detailed introductions of UQ methods that are

widely used in wind turbine uncertainty analyses.

2.2 Reliability analysis

Reliability analysis of wind turbine systems often target specific wind sub-assemblies [31], for
example, rotor blades [34]—[39], gear box [40]-[43] or turbine tower [44], [45], etc.

The reliability problem is defined as follows: g(X) is the limit state of a component
under uncertainty X, for example, g(X) = f(X) — fjimir» fiimir 1S the limit for the component.
g(Xr) <0, indicates the failure domain D, while g(Xy) > 0 indicates the safe domain, as
shown in Figure.2.2. In the figure, the yellow part represents the failure domain and the
green part represents the safe domain. The meaning of a, 8, U*, FORM and SORM will be

explained below in this section.
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G
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Figure 2.2: Reliability analysis

The failure probability Py can be defined as:

Py =P(g(X) <0) (2.2)

For the evaluation of Equation.2.2, simulation methods or surrogate model based simulation
methods can be used, which are mentioned later in Section.2.4 and Section.2.5. This however,
requires a very large sample size when failure rate is low. So approximation methods are
widely used, for example, first order reliability method (FORM) and second order reliability
method (SORM). Before applying FORM or SORM, the input variables X are first transformed

from physical space to standard normal space with isoprobabilistic-transformation 7.

U=T(X) 2.3)

In standard normal space, the reliability problem is simplified to find the minimum distance

to the limit state:

minf} = HuTuH 2.4)
st.G(u) =0
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As shown in Figure.2.2, B is the reliability index that the probability of failure p is calcu-
lated with ®(—f3), where @ is the cumulative density function (CDF) of standard normal

distribution; U* is the so-called "Most Probable Point’ (MPP) in standard space.

2.2.1 First order reliability method

Many methods are available to solve Equation.2.4 that is a optimization problem. A dedicated
iterative method, called HLRF method is proposed by Rackwitz and Fiessler [46]. In HLRF,
at each iteration k, the limit state function Gy is approximated by its tangent hyper-plane at

current MPP U*:

ZFORM — G(U*) + VG, (UM (U - U*) (2.5)

In the next iteration, an improved MPP U**! is calculated with:

1
Uk — W [VG|7£] k (UK)Uk — G(Uk)] VGy, (U¥) (2.6)
Ui

2.2.2 Second order reliability method

Second Order Reliability Method (SORM) is a refinement of FORM [47], as shown in
Figure.2.2. The tangent hyper-plane in Equation.2.5 is replaced with second order Taylor

expansion at the MPP:

+;(U—U*)TH(U—U*) 2.7

250" = G(U*) + VGly. - (U -U")
Then Breitung [48] proposed a simple closed-form solution for the probability computation
using the theory of asymptotic approximation as:

n—1

Py~ ®(—Brorm ) [T (1 + Brorm &) '/ (2.8)
=1

where Brorwm is the reliability from FORM method; i is the number of variables, k; are the

principal curvatures at MPP.
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2.3 Sensitivity analysis

The working conditions of wind turbine systems consist in multiple sources of uncertainties.
To characterize the impact level of each input uncertainty to the response concerned, for
example, output power or fatigue of components, Sensitivity Analysis (SA) is widely used
by researchers [49]-[54]. The objective of sensitivity analysis is to characterize how the
variability of the model response is affected by each input variable or their combinations.
Many methods are available for SA, for example: screening method, importance measure
method, and deep exploration method, etc [2]. In this subsection, the widely used Morris

method and Sobol’s indices are reviewed.

2.3.1 Screening

Screening methods are based on discretization of inputs in levels, allowing a fast exploration,
which can be used before other finer yet more costly methods. There are also different kinds of

screening methods, the most widely used is Morris method [55], this method can be expressed

as:
Y XA, -Y
i) = LEL it : )~V () (2.9)
where A is a perturbation parameter ﬁ, p is the grid level parameter, ¢ € {1,...,p—1}isa

predetermined fixed number. The sensitivities are indicated by the mean value ; and standard
deviation 6; of d;(x):

e Mean value [i;: is a measure of importance of this input. A big mean value indicates that
the input x; is important, or otherwise if the mean value is small.

e Standard deviation 0;: is a measure of interaction. A big value suggests a linear
relationship, while a small value suggests a non-linear effect for interactions with itself or

other input variables.
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2.3.2 Sobol’s indices

Sobol’s indices [56] are based on the expansion of the response into sum of increasing
dimensions. Consider f(e) is a square-integratable function, defined on a d dimensional unit
hyper-cube [0, 1], and the input variables are independent, then the Sobol’s decomposition

can be expressed as:

d d
FX)=fo+ Y fita)+ Y fij (xixj) +- + fiz.a(x) (2.10)
i=

i<j

This expansion is unique if the integrals with respect to their own variables equals to zero :

1
/ i (e oxi )y, = 0,1 S k< 5, (i1, ris} € {1,...,d} 2.11)
0

and all the margin cumulative distribution function (CDF) of the expansion can be com-

puted using integrals:

fo= Ja, f(x)dx
fii) = Jo - Jo F0)dxi= fo (2.12)
fi (xi,x) = Jo - Jo F@)dxj) — fo— fi (i) — f; (%))

where ~ indicates that variables are excluded. The total variance is defined as:

_ 2 )
D— /Q s (2.13)

and partial variance is computed from the marginal CDF:

1<ii<..<ig<dys=1,....d (2.14)

B (2.15)
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There are many methods to evaluate Equation.2.14 and Equation.2.15 [57], for example,

Simulation-based methods, see Section.2.4, or surrogate-basd methods, see Section.2.5.

2.4 Simulation methods

To conduct reliability analysis and sensitivity analysis in Section.2.2 and Section.2.3, or to get
the probabilistic characteristics of the response of f(X) given in Equation.2.1, for example the
statistical moments of the response Y (X), different methods can be used. This section will

give a introduction of the mostly straightforward simulation methods.

2.4.1 Monte Carlo simulation

Monte Carlo simulation (MCS) is the most straightforward simulation method, which simply

draws large data samples following the input distribution X € (Q, P) as:

1 N
BU() = [ SEOPEd =y Y ) 2.16)

MCS can be very accurate if the sample size is large enough, according to the law of large
numbers, though it requires high computation cost, it still serves as the fundamental tool or

benchmark for various problems [58].

2.4.2 Importance sampling

To reduce the number of samples needed for MCS, or when sampling from P is difficult,
Important Sampling (IS) [59] can be used, which by its definition, focuses on more of the
input samples that have larger importance to the parameter being estimated. For the problem
in Equation.2.16, in stead of P(X), a well defined distribution Q(X), which assembles the

shape of Q(X) is chosen, so Equation.2.16 turns into:

_ P(X) LY P,
E(/(x)) = [ £(X) o) 20~y Y GEnI) (2.17)

By using Equation.2.17, data sets can be sampled from Q(X), avoiding from P(X).
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Table 2.1: Metropolis-Hastings Procedure

1. Initialise x°, 1 = 0.
2. Fori=0 to N-1
e Generate a sample x from Q(x|x')
1, P)0W) )

e Calculate ot(x |x') = min(1, PO )

3. Accept or Reject
e Generate « from Uniform distribution %/ (0, 1)
olfu< oc(x’ '), accept the candidate and x'*! = X, t=t+1
o If u > at(x |x') , reject the candidate and x' ! = X/

2.4.3 Subset sampling

When trying to find out the probability of a rare event of the response f(X), subset simulation
(SS) can be a very powerful tool, especially for high dimensional problems. Subset simulation
attempts to convert the rare event problem into a more frequent one. For example, a rare event

P(Y (X > D) has to be decided, with the theories of condition probability:

P(Y > D) =P (Y > by|Y >bp_1)P(Y >bpu_1|Y >bp_2)---
(2.18)

P<Y>b2|Y>b1)P<Y>b1)

where by < by < -+ < by, = b is a increasing sequence of intermediate threshold. The P(Y > D)
can be evaluated using MCS, for calculating the conditional probabilities in Equation.2.18,
Metropolis—Hastings Markov Chain Monte Carlo (MCMC) sampling can be used. The

Metropolis-Hastings step can be summarized in Table.2.1.

2.5 Surrogate models for regression

For wind turbine system problems, the accurate response Y (X) of input X may be hard to get
or very computationally expensive, such as Finite Element (FE) analysis. So using surrogate
models, for example ¥ (X) of the global performance based on some training sets, has been
very popular. In this section, several popular surrogate models are presented. Note that the

choice for these surrogates are quite problem oriented, so it’s not suitable trying to figure out
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which one is the best for all situations.

2.5.1 Multivariate adaptive regression splines

Multivariate adaptive regression splines (MARS) was first proposed by JH Friedman [60], the

MARS model can be described as:

M
YMARS(X) =aog+ Y. amBum(X) (2.19)

m=1
where M is the number non-constant basis; ag is the constant term; a,,, are the coefficients; B,

are the base functions also called as hinge functions, taking the form of:

Kﬂl
B ) =1 [+ (om) — tim) )% (2.20)
k=1

K, is the interaction order; x, (k,m) is the vth variable; #;,, is the knot location; ¢ is the order
of the basis function with ¢ = 1 as linear model and ¢ = 2 as cubic model; the + sign means
taking the positive part.

The optimal MARS is built in two stages: forward pass (selection) and backward pass
(pruning), in the selection phase, a pre-determined maximum number of basis functions are
added to model, which is normally larger than the optimal. In the pruning phase, the basis
functions that are associated with the smallest increase in the least square goodness-of-fit
are removed. The goodness of fit is measured by the so-called Generalized Cross Validation
(GCV):

_ MY, P )]
GCVIM) = =Ticonmp (221)

with C =M +cd

where N is the number of cases in data set; d is number of independent basis functions; ¢ is a

user-defined penalty for adding a basis.
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2.5.2 Response surface method

Response Surface Method (RSM) is first proposed by George E. P. Box and K. B. Wilson [61]
as:
PRM(x) =M(X)B +¢ (2.22)

here f is the vector of coefficients to be determined; € is the error to be minimized; and the

components of M is formed by quadratic products of x:

1 X11 X12 ... Xim
1 X21 X22 ... X2
M(x) = " (2.23)
| I Xp1 X2 ooo Xum i

where x17 = x1x2, m is the dimension of x, n is the length of x:

The mean square error is:

L= is} =ee= (Y -MB) (Y —MB) (2.24)
=1

By minimizing the square error, the best B is deduced as:
B=mm) "My (2.25)
So the approximation is given as:

PRSM — p (2.26)

2.5.3 Polynomial chaos expansion

Polynomial Chaos Expansion (PCE) was first proposed by Norbert Wiener [62], the random
response Y (X) is represented in a suitable functional space, like Hilbert space L?. Assume a

physical model with a finite second order measure, such that E (||Y (X)[|?) < 4o, then PCE
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Table 2.2: Distributions and associated orthonormal families

Distribution Support Polynomial

Normal .47(0,1) R Hermite
Uniform 7 (—1,1)  [-1,1] Legendre
Gamma I'(k, 1,0) (0,+00)  Laguerre
Beta B(ct,3,—1,1) (-1,1) Jacobi
Poisson (1) N Charlier
Binommial #(m,n) {0,...,m} Krawtchouk

approximation of this model can be expressed as:

PPEX) ~ Y yaPa(X) (2.27)
acy

W (X) is the given basis; y is the finite subsets of coefficients from a truncated basis .27 C N™,

Different truncation plan, with parameters p and g can be used:

P — {a e |all, < p} (2.28)

here n is the number of inputs and p is the maximum degree. For ¢ = 1, this corresponds a
standard truncation, and for ¢ < 1, this corresponds a hyperbolic truncation which includes
high-degree terms in each single variables, while avoiding high order interaction terms [63].
The basis can adopt different types, and their supported distributions are summarized as
Askey-Scheme [64] listed in Table.2.2.

Due to the orthonormality of the polynomial basis as respect to their joint probability

density function (PDF), the inner product of the basis satisfy:

(Wa(x),¥p(x)) = E(¥a(x),¥p(x)) = Sup (2.29)

where 5,1,3 = 1, only if @ = 3; otherwise, 6aﬁ =0.
For the calculation of coefficients, two types of methods are available, referred as intrusive
stochastic collocation method (SC) and non-intrusive Galerkin projection method, the perfor-

mance of these two methods are quite similar [65], and non-intrusive method is more used for
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its easier implementation. The projection method can be expressed as:

Yo =E[¥a(x)-¥(x)] (2.30)

This expectation of Equation.2.30 can be evaluated using Gaussian quadrature:

o Yol (x0) g (x0) @31
i=1

The weights in Equation.2.31 can be calculated using Golub-Welsch algorithm [66]. For

higher dimensional integration, the weights are derived from Smolyak’ sparse quadrature:

. d—1 . )
Alldy= Y (—1)lrdli U'®---oU) (2.32)
I+1<[i|<I+d l+d—|i
where d is the dimension of inputs; i = (iy,- - - ,iy) € Ny is the multi-index that |i|=i; +- - - +iy;

U'/ is the univariate linear operator; ® is the tensor product operation; / is the level parameter.

2.5.4 Gaussian regression

Gaussian Regression or Kriging is a surrogate model based on regression using observed data
sets [67]. Kriging tries to give a Gaussian estimation of an unmeasured location as well as an

estimate square error (MSE) of this point. The Kriging model can be described as:

YRRG(x) = f Bihi(X)+Z(X) (2.33)
i=1

where ¥ (X) is the estimation of input X, which is assumed to be a regression model. It’s a
linear combination of base function 4;(X) and their coefficients f3; plus a stochastic process
Z(X). Z(X) is assumed to be zero mean and the covariance between two points from Z(x;)

and Z(x;) is defined as:

Cov(Z(x;),Z(x})) = GZZRZ(G,x,-,xj) (2.34)
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here 0 is the parameter to be defined; GZZ is the variance of Z; R, is the correlation function that
can adopt different forms, such as, linear correlation, exponent correlation, cubic correlation,

etc. The Gaussian correlation is very commonly used, which is defined as [68]:

R.(6,x;,x}) = exp|— Z 0(x;i —x;)% (2.35)
j=1

To determine the value of 8, f; and 67 from observed data set [x, Y(x)], maximum likeli-
hood estimation (MLE) can be used. The likelihood function of Equation.2.33 is expressed

as [69]:

(0, B 02 Y(x) =~ In(2705) — ;ln(|R|) _ zi‘z(y _FBYR Y —FB) (236)

where R is a n x n correlation matrix with its elements R;(0,x;,x;); F is a n x 1 regression
matrix with its elements /;(x). The maximum likelihood estimates of f3; and Gzz by taking the

derivative equation with respect to f§; and GZZ, thus:

f=FTR'F)'FTR Y (2.37)

62 = 1(Y—F[%)TR—l(Y—FB) (2.38)

n

The post Bayesian MLE Kriging predictor at x is give as:

A

Y(x)=h" () +¥T ()R (Y —Fp) (2.39)
where W7 (x) is the correlation vector between observed value and the new prediction.

2.5.5 Support vector machine

Support Vector Machine (SVM) is developed by Vapnik [70] for classification and regression.

It is marked with significant generalization capacities, making them less likely to over-fit data.
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Figure 2.3: Illustration of SVM and penalty function

The simplest linear SVM is expressed as:

PSYM(x)=wIX +b (2.40)

where w and b are weight coefficients and offset parameters to be determined. The best w
and b should be the robustest, which allows the largest distance possible for the separation of
the training points. This is achieved by minimizing loss functions, such as the most popular

e-insensitive loss function [71] given as:

L (ry) = 0 if [VSM(x)—y|<e 2.41)
[7SYM(x) —y| —& otherwise

where € is the distance between the points and the separation surface. The points within this

tube will not be penalized, as shown in Figure.2.3.
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Then this problem is transformed into an optimization problem [72]:

min %||w||2 +eYN (&+E)

st. yi—wlixi—b<e+§ 2.42)
wixi+b—y; <e+&
él—aéi* Z O

where ¢ is a regularization parameter, and &;, & are deviations from the insensitive tube.

Equation.2.42 is generally solved by its dual form by introducing Lagrange multipliers as:

N N N N
pin 43 % (@) e )+ B e e
’ i=1j=1 i=1 i=1
N
st. Y (—af)=0 (2:43)

here ¢; and ¢ are Lagrange multipliers. Equation.2.43 can be easily solved with Quadratic
Programming (QP) method. After o, ¢ and b are decided, the SVM for regression can be

expressed as:

n
M) =wix+b=Y (04— o5 )x] x+b (2.44)
i=1

For a better accuracy and efficiency of SVM for highly non-linear or high-dimensional
problems, SVM are extended to non-linear SVM. The extension from linear SVM to non-linear
SVM is very simple, by mapping x in Equation.2.40, into a higher dimensional space ®(x),
so x'x becomes ®(x;)'®(x); or more conveniently, by using a kernel k (x;,x). The kernel
function can adopt different forms [73], as long as they satisfy Mercer’s condition [74], similar
with Kriging surrogate, such as Polynomial, Sigmoid, Gaussian, Exponential, etc.

Then the linear SVM in Equation.2.44 can be written as:

n

PSYM) =wix+b =Y (- of ) k(x1,x) +b (2.45)
i=1
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Table 2.3: k-Means Algorithm Procedure

1. Select k points as the initial clustering centers
2. repeate

o classify all the points into their nearest clustering centers

e use the mean value of each group as the new clustering center
until converge

2.5.6 Radial basis function network with k-Means

In the last subsection, SVM is discussed, with special interest on SVM with Gaussian kernel,
in fact, the Gaussian kernel SVM can be treated as a special case of Radial Basis Function

(RBF), the RBF Network can be expressed as [75]:

PRBE (x) = i‘, BiRBF (x,X,,) (2.46)
i=1

1
The RBF (x,xy,) is a function that only relies on the distance between x with x,,, that
r = ||x — x|, with x,,, being the center, for example, the Gaussian kernel in Equation.2.35.

Other types of basis can be used, like linear r, cubic P, Multi-quadlratic(r2 + 0'2)1/ 2

, etc.

If all the training points are seen as the centers, this kind of RBF network is called uniform
full RBF network. In reality, data are firstly divided into homogeneous classes or clusters and
to reduce the number of centers. k-Means [76] is one of the simplest and most widely used
clustering method. The step of k-Means can be summarized in Table.2.3.

After getting k centers from k-Means method, RBF can use these centers to reduce the

cost of calculation or avoid over-fitting.

2.5.7 Deep neural network regression

Deep Artificial Neural Networks (DNN) are computing systems inspired by the biological
neural networks. They are parts of a broader family of machine learning methods based on
artificial neural networks [77]. These tools are very versatile and powerful for solving complex

problems. For regression problems, the DNN structure can be described in Figure.2.4.
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Figure 2.4: Illustration of DNN

Input Hidden layer Output

The first column represents the inputs; the middle columns represent the neurons; the last
column is the output. The structure of DNN can adopt different forms, by changing the number
of layers and nodes, the way of the nodes are connected, and activation function types, etc.
The neurons can be binary or in more general cases a weight sum of their inputs associated
with a weight wy, and use a activation function ¢(-) to output a value. The activation function
can adopt different forms, for example, LTU, Relu, Sigmoid, leakyReLU etc. In Figure.2.4,
LeakyRelu is used, which is both efficient while avoiding the problem of dying neurons (stop

outputting anything other than 0) [77], the leakyReLu is given as:

LeakyRelu = max(az, z) (2.47)

where o define the slope angle.
The weights of the neurons for DNN are calculated with a so-called back-propagation
method, and to improve the efficiency, Adaptive moment estimation (Adam) optimization

method [78] is widely used to update the weights.
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2.5.8 Random forest

A Random Forest is an ensemble technique capable of performing both regression and
classification tasks with the use of multiple decision trees and a technique called Bootstrap
Aggregation, commonly known as bagging. An example of random forest regression is shown

in Figure.2.5.

Figure 2.5: Illustration of random forest

Input | X |

()

Prediction1 Prediction2 () Predictionn

Averaging

Output ()

There are many ways available for building a decision tree, for example, the Classification
And Regression Tree (CART) [79] is widely used. The CART algorithm splits the training set
into two subsets using a single feature k and a threshold #;, so that this pair (k,;) produces the
purest subsets. The node’s impurity (performance of separation) is measured by mean square
error of the separation, so the cost function of CART for regression to minimize is given as

[77]:

Meft
m

"
J (ki) = = S MSEie + — ** MSEiign (2.48)

where )
MSEo4e = Zie node (ynode _y(i)>
1

Mpode

)A’node = Zie node y(i)
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here my, f;yign 1S number of instances of left/right instances. The subsets will continue to split

using the same logic until predetermined max depth is reached.

2.6 Summary

Uncertainty is omnipresent in engineering problems. To deal with problems with uncertainties,
various uncertainty quantification methods have been proposed. In this chapter, the methods
of uncertainty quantification are summarized. To characterise the properties of uncertainties,
most straightforward methods are using simulation methods, but their convergence rely on
large data size, which may become unrealistic for complex engineering problems. Sensitivity
analysis can be used to find out which input parameters have the largest influence to the
response, this can be useful when facing high-dimensional problems. Reliability gives a
quantitative measure of system performance under uncertainties. Based on reliability analysis,
reliability-based design optimization can be realized. Surrogates are used to replace expensive
engineering simulations, which are widely used in sensitivity and reliability analyses. The

objective of chapter is to provide the theoretical bases for the following chapters.
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Chapter 3

Uncertainty Propagation of Inflow Wind

For Reliability-based Design Optimization (RBDO) of wind turbine structures, the knowledge
of the probabilistic characteristics of applied loads on the structures is indispensable. This
is possible with the help of simulation codes, such as Turbsim and FAST codes. In FAST
simulation, the load responses under given stochastic wind conditions are output in form of
time-history sequences. This chapter focuses on the mean values and maximum values of these
load histories under different wind uncertainty parameters. To get the statistical characteristics
of the load responses, each set of wind uncertainty parameters are run multiple times with
different random seeds in Turbsim. This however is very computationally expensive. it’s
impossible to run all wind scenarios for more comprehensive analyses. So surrogate models
are used to replace the time-consuming Turbsim and FAST simulations. There exist many
kinds of surrogate models, as reviewed in Chapter.2. Before applying the surrogates, the
performance of these surrogates should be compared. So this chapter is structured as follows:
in Section.3.1, the introduction of this study is firstly presented, in Section.3.2, the mean
values and maximum values of response loads of repeated FAST simulations under different
random seeds in Turbsim are discussed; next, in Section.3.3 the performance of 6 popular
surrogate models are compared with several mathematical problems; lastly, in Section.3.4,
these surrogates are applied to the uncertainty propagation of inflow winds; Section.3.5 is the

conclusion.
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3.1 Introduction

There have already been very extended studies on the structural modeling of wind turbine
tower components, such as the wind turbine blades, the turbine tower, the base foundation,
and the control system.

P.J, Schubel and R.J, Crossley [80] have discussed the blade design considering aerody-
namics design principles, for example, the optimal blade shape and attack angle. K.J, Smith
and D, Griffin [81] have studied the challenges associated with manufacturing and deploying
large, land-based wind turbine blades. X.D, WANG, W.Z, Shen [82] have optimized the blade
design based on structural dynamics of the blades using the Blade Element Momentum (BEM)
theory. P, Fuglsang, H.A, Madsen [83] have optimized the blade to minimize the unit cost of
energy. I, Lavassas, G, Nikolaidis [84] have discussed the design of an 1MW-wind turbine
tower. H.M, Negm and K.Y, Maalawi [85] have compared the tower optimization designs
based on different objectives such as light weight, high stiffness,etc. M, Muskulus, S, Schathirt
[86] have optimized the tower considering different constraints, like static loads, transit loads
and fatigue of the tower,etc.

Besides the mechanical components, the control system also play an important role in the
performance of wind turbine systems. F.D, Bianchi, De, Battista [87] have introduced the role
of control system in wind turbine systems to increase turbine capacities and protect the turbine
systems.

To better understand the overall behavior of wind turbine systems, taking into consideration
of the turbulent wind fields, component structure properties, and control strategies, several
wind turbine system simulators are developed. For example, A.D, Hansen [88] from National
Laboratory for Sustainable Energy have developed simulation tool DIgSILENT. J, Jonkman,
et al [18] from National Renewable Energy Laboratory (NREL) have developed a simulation
tool called Fatigue, Aerodynamics, Structures, and Turbulence code (FAST), which have been
widely used by researchers for wind turbine simulations [89], [90].

With the help of simulation codes, many researchers have tried to study the uncertainty
propagation of random input variables, for example, J.P, Murcia, P.E, Réthoré [91] have

used polynomial chaos expansion (PCE) to characterize the energy production and lifetime
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equivalent fatigue loads by taking the mean wind speed, turbulence intensity, yaw miss-
align, and shear law exponent as input random variables. J, Velarde, C, Kramhgft [92]
have investigated the sensitivity of fatigue loads with respect to structural, geotechnical and
metocean parameters using Morris screening method, the results show that the uncertainty
in fatigue is highly influenced by turbulence intensity. J, Quick, P.E, Hamlington [93] have
conducted multilevel, multi-fidelity Monte Carlo sampling considering the uncertainties in the
inflow wind conditions, and have reduced the variance of lift expectation over an airfoil. V,
Keshavarzzadeh, R.G, Ghanem [94] have presented a computation framework for the shape
optimization of blades under uncertainties, where Polynomial Chaos Expansion (PCE) is
used to estimate the stochastic performance. Its optimization result under uncertainties are
compared with deterministic optimization.

These researchers try to build a relationship between the input stochastic variables and the
responses of the turbine system. The goals of building such a relationship are eventually to
maximize wind turbine capacities with the lowest cost. However, there exist two problems:

1. The statistical characteristics of the response loads under stochastic wind fields

are not well characterized.
This study focuses on the mean values and maximum values of the time-history of the
response load sequences under different wind uncertainty parameters. The stochastic
wind fields are generated by Turbsim code with uncertainty wind parameters. For each
set of the wind uncertainty parameters, 1000 stochastic wind fields are generated with
different random seeds which are then input to FAST. The mean value and maximum
value distributions of the response load sequences are then characterized.

2. The accuracy and efficiency of different surrogate models are not compared. Due
to the stochastic wind fields and limited simulation time, the statistical characteristics
of response loads are very noisy. This noise will affect the performance of surrogate
predictions. A comparison should be made before apply these surrogates for the
characterization of the wind responses.

In this chapter, five sources of wind uncertainties: the mean inflow wind speed (Vyean), the

turbulence intensity (7'1), the shear exponent (), vertical inflow angle (7,), and horizontal

inflow angle (7;) are investigated. Monte Carlo simulations of wind profiles accordant with
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IEC61400-1 Normal Turbulence Model (NTM) and Extreme Turbulence Model (ETM) are
conducted. To better study the uncertainty propagation of the inflow wind, 6 popular and
representative surrogates: Multiple Adaptive Regression Splines (MARS), Kriging (KRG),
Polynomial Chaos Expansion (PCE), Support Vector Regression (SVR), Deep Neural Net-
work(DNN), Random Forest Regression (RFR) are used. These surrogates are first tested with
several mathematical functions, the computational CPU time, generalized Relative Error (eg)
and Kullback-Leibler Divergence (dg; ) are used as criteria to compare their capacities. Then
these models are applied for the uncertainty propagation of inflow wind. The flowchart of this

chapter is shown in Figure. 3.1.

Figure 3.1: Flowchart of uncertainty propagation of inflow wind
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MCS sampling is used to draw samples from the joint distribution of wind uncertainty

parameters. For each set of wind parameters, 1000 stochastic wind fields with different random
seeds generated by Turbsim. These stochastic wind fields are then input to FAST code, and
the mean values and maximum values of response loads on top of wind turbine tower are
drawn from the output time-history sequences. Next, distributions of the mean and maximum
values from the 1000 simulations are characterized. Then with the statistical parameters of

these distributions, a relationship can be established between the input wind parameters with
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the statistical response characteristics of the mean value and maximum value distributions.
Surrogates can also be trained using this relationship. Lastly, the prediction of the surrogates

are then validated with the Turbsim-FAST simulations.

3.2 Characterization of load responses on top of the tower

Due to the stochastic properties of the input wind fields, the probabilistic properties of the
corresponding response loads are discussed in this section. First, the reference SMW wind
turbine system used in this study and the correlations between wind uncertainty parameters
are presented. Next, the mean value and maximum value distributions of the load responses
under stochastic wind parameters (different Turbsim random seeds) are fitted with several
common probabilistic distributions. Chi-square goodness-of-fit is used to test the fittings of

the distributions.

3.2.1 Reference SMW wind turbine and wind uncertainty parameters

The wind turbine tower is based on a SMW reference wind turbine [3] from NREL, the gross
properties are shown in Table.4.6.

Table 3.1: Gross Properties of SMW baseline wind turbine

Rating 5 MW

Rotor orientation, configuration upwind, 3 blades

Control variable speed, collective pitch
Drivetrain high speed, multiple-stage gearbox
Rotor, hub diameter 126 m, 3 m

Hub height 90 m

Cut-in, rated, cut-out wind speed 3 m/s, 11.4 m/s, 25 m/s
Cut-in, rated rotor speed 6.9 rpm, 12.1 rpm

Rated tip speed 80 m/s

Overhang, shaft tilt, precone 5m, 5°, 2.5°

Rotor mass 110,000 kg

Nacelle mass 240,000 kg

Tower mass 347,460 kg

Coordinate location of overall CM  (-0.2 m, 0.0 m, 64.0 m)

The wind profile is generated using a turbulence simulator Turbsim [25] from NREL

consistent with IEC-61400 [95] Normal Turbulence Model (NTM) and Extreme Turbulence
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Model with occurrence of 1 year (ETMx1) . In this study, Mann’s uniform shear turbulence
model [23] is used. As mentioned in Chapter.1, according to IEC61400 standards, the mean
value of the wind speed over a time period of 10 min shall be assumed to follow a Rayleigh

distribution at hub height given by:

P.(Vo) =1—exp [~ (Vo/2V,,)] 3.1

where, P, (Vp) is the cumulative probability function, Vj is the limit wind speed, V,ye is the
average wind speed.

The wind speed is considered as a function of height given by the power law exponent « :

V(2) = Vi (2/ 2hup)* (3.2)

where V(z) is the wind speed at height z, V},,,;, is the wind speed at hub height.
The dependency between wind speed and turbulence intensity is given by the local statisti-
cal moments based on ICE61400 standards. The turbulence intensity is considered to follow

Log-Normal distribution. Its mean value t7; and standard deviation or; are given as:

1.42 12
=1 : 1 3.3
orr= (1 vy 1)) (33)
Os
Urr = In (TIref<O.75Vmean + 38)) - TTI (34)

where T'l,.y is the reference turbulence intensity. For class 1A wind turbine tower, T,y =
0.16.
The power law exponent « is considered to follow normal distribution. Its mean value U

and standard deviation Oy, are given as:

Lo = 0.088(In(Vinean) — 1) 3.5)

Oq = 1/Vmean (3-6)
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3.2.2 Distribution of response loads on top of the tower

This study uses FAST [18] and Turbsim [25] codes from NERL to simulate the response
loads on top of wind turbine tower. In one simulation example, the response wind history
(mean speed 13m/s NTM, in x direction) and the response load (the force on top of tower in x

direction) from FAST are shown in Figure.3.2.

Figure 3.2: History of turbulent wind speed and response load
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The first 120 seconds of FAST simulation are ignored due to the instability of starting
simulation phase. In Figure.3.2(b), the mean value and maximum value of the load history are
shown.

For each set of wind parameters, 1000 repeated FAST simulations with different Turbsim
random seeds are conducted, to get the distribution of the mean and maximum values. Fig-
ure.3.4 shows the mean value distributions for NTM and ETM wind conditions with wind
speed being 16m/s (wind simulated time 10 minutes, other parameters of Turbsim are set
to be default). Figure.3.2 shows the maximum value distributions for NTM and ETM wind
conditions with wind speed being 16m/s (wind simulated time 10 minutes, other parameters

of Turbsim are set to be default).
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Figure 3.3: Mean Fx distribution
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These distributions are then fitted with 5 common distributions, that are Normal distribution,
Log-normal distribution, Gamma distribution, Weibull distribution, and Generalized Extreme
distribution . Chi-Square Goodness-of-fit is used to test the fittings with a parameter called p-
value. The p-value is used in hypothesis testing to help supporting or rejecting the distribution
hypothesis. A smaller p-value will support the rejection of this hypothesis. In this study, the
threshold p-value for rejecting a hypothesis is chosen to be 0.05. The p-values of Chi-Square
Goodness-of-fit of the distributions in Figure.3.4 and Figure.3.3 are shown in Table. 3.2.

Though the hypnosis test can only reject Weibull distribution for both NTM and ETM
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Table 3.2: p-value of Chi-Square Goodness-of-fit

Normal Lognormal

Gamma Weibull Extreme

NTM mean 0.38 0.29

NTM max O 0
ETM mean 0.24 0.17
ETM max O 0.02

0.23
0

0.14

0

0 0.20
0 0.16
0 0.22
0 0.37

mean distributions, this study will assume the mean value distributions follow normal distribu-

tion. While the maximum value distributions of NTM and ETM can only be fitted well by

generalized extreme distribution (Type III).

If the wind speed is taken as the only input variable (by setting other parameters default,

and the inflow angles to be zero), the relationship between the wind speed with the forces and

moments on top of the tower are shown in Figure.3.5 and Figure.3.6.
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Figure 3.5: Forces on top of tower with different wind speeds
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Figure 3.6: Moments on top of tower with different wind speeds
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As can be see, the forces and moments steadily increase before reaching wind turbine
rated wind speed. Then these loads will be stabilized by control system via adjusting the pitch
and yaw. The loads will quickly decrease when the wind speed surpass wind turbine cut-out
speed, when the turbine is shut down.

After the mean values and maximum values of response loads are fitted with normal and
generalized extreme distributions, relationships can be built between the input wind uncertainty
parameters and the statistical moments of the mean value and maximum value distributions.
However, getting the statistical moments of these distributions is very time-consuming, it’s
impossible to simulate all combinations of wind parameters. So surrogate models are used.

Before applying the surrogates, their performances are firstly compared.

3.3 Comparison of surrogates

As reviewed in Section.2.5, there exist different types of surrogates. The choice for these
surrogates are quite problem oriented, it’s not suitable trying to figure out which one is best
for all situations. So in this section, 6 surrogate models mentioned in Section.2.5: MARS,
KRG, PCE, SVR, RFR, and DNN are compared. Their performances are firstly tested with

several mathematical problems.
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3.3.1 Performance measure of surrogates

After the surrogates are built, measures are taken to evaluate their performance, in this section,
3 performance measures are used.

Generalized relative error

The error of the surrogate predictions can be assessed by generalized relative error (eg), the

generalized relative error is given by:

iy (Y (x) — P ()
i (Y (x0) — py)

where (ly is the mean value of the validation data Y (x), ¥ (x) is the prediction of Y (x).

3) (3.7)

Kullback-Leibler divergence

Kullback-Leibler divergence (dgy) is used to measure the difference between the true distribu-
tion and the predicted distribution. ¥ (X) and ¥ (X) follow the same distribution when dgy, = 0.

The dg;, is calculated as:

n . (i)
die (Y (X)[|7(x)) = Y ¥ (x) log (?" . )> (3.8)

CPU time

To compare the computational cost, the CPU time for building the surrogates are compared on

a Inte]®Core™ 6700hq CPU.

3.3.2 Hyper-parameters of the surrogates

The MARS surrogate is implemented in ARESLab toolbox[96]; the Kriging, PCE and SVR are
implemented in UQIlab [97], the RFR is implemented in scikit-learn [98], DNN is implemented
in Tensorflow [99]. The hyper-parameters will have a great impact for the performance of the

surrogate models, the hyper-parameters are shown in Table.3.3.
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Table 3.3: Hyper-parameters

Methods Hyper-parameters Values
MARS  Order g, Penalty ¢ q=2,c=0
KRG Correlation, Estimation method matern-5/2, ML

PCE Optimization method, Degree LARS, 2:15

SVR Order, QPsolver, Kernel 1, SMO, matern-5/2

RFR Max depth, Num trees, Validation range(2,6), range(200,800), CV
Type, Activation, Optimizer, Sequential fully-connected,

DNN
Layers, Nodes, Early-stop LeakyRelu, Adam, 3, 75, True

3.3.3 Comparison on mathematical problems
A simple one-dimensional problem

The surrogates are first tested with a non-noisy sinuous function of Equation.3.9. x ~ U (0, 15)

is uniformly distributed over [0 15].

y = xsin(x) 3.9

10 uniformly distributed points are firstly used to train the surrogates, the prediction tracks
from the 6 surrogates are shown in Figure.3.7(a). In the figure, the training points are marked
with red dots, and the true curve is marked with the blue dash line. It’s obvious that PCE and
RFR have bigger error compared with other models. The boxplot of the logarithm generalized
relative error(log;o(eg)) over 50 simulations is shown in Figure.3.7(b). For each box, the
central mark indicates the median, and the bottom and top edges of the box indicate the 25¢h
and 75th percentiles, respectively. The outliers are plotted individually using the ’+’ symbol.
It can be seen that for this example, the KRG has the lowest relative error when data size is

small, which is shown in Table.3.8.
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Figure 3.7: Surrogate prediction curve comparison
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Table 3.4: Comparison of mean logio generalized relative error

Methods MARS KRG PCE SVR DNN RFR
w(logioleg)) 073  -032 151 049 008 097

If there exists noise in the training data, and the training set is comparably large, the

performance of the surrogates may be worsened by over-fitting. So in this test, a arbitrary

noise € that follows N(2,1) is added into the response, and 32 training points are used to train

the surrogates.

Figure.3.8(a) shows the fitting curves of different surrogates. The box-plot of generalized

error comparison (eg) over 50 simulations is shown in Figure.3.8(b). Table.3.5 shows the

average er values. It can be observed that PCE has the best performance when facing noisy

data in this example, while the accuracy of KRG is strongly affected by over-fitting.
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Table 3.5: Comparison of mean generalized relative error

Methods MARS KRG PCE SVR DNN RFR
€r 0.027  0.085 0.019 0.052 0.039 0.037

Figure 3.8: 32 training points with noise
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Sobol’s function

This example uses a 8-dimension Sobol’s function, and X is uniformly distributed over the

interval [0, 1]. The Sobol’s function is given by:

H |4X; — 2| + ¢

3.10
1+c¢; ( )

where ¢ = (1,2,5,10,20,50,100,500) "

First, 128 training points sampled by Latin Hyper-cube Sampling (LHS) are used to
train the surrogates, and the predictions are shown in Figure.3.9(a). In the figure, the x axis
represents the true values Y; while the y axis represents the predictions from the surrogates V), .

For 50 simulations, the /og10 Kullback-Leibler divergence (dg; ) is shown in Figure.3.9(b)
and their average are given in Table.3.6. It can be seen that MARS, KRG, and PCE have

comparably better performance than SVR, DNN, and RFR.
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Table 3.6: Comparison of mean Kullback-Leibler divergence

Methods MARS KRG PCE SVR DNN RFR
logio(dxr) -0.902 -0.718 -0.818 -0.119 -0.6630 0.334

Figure 3.9: Sobol’s function
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Next, the CPU time and error comparisons with different sample size are shown in
Figure.3.10. It can be seen that all the surrogate models take more time to train when the
sample size increases, however, SVR, PCE, and KRG increase more dramatically, as shown in
Figure.3.10(a). As shown in Figure.3.10(b), for small data size, KRG has the best accuracy.
By increasing the data size, the accuracy for MARS and PCE surrogates may catch up, while
DNN will be advantageous when facing larger data sets for its lower computational cost as

shown in Figure.3.10(a).
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Figure 3.10: Sobol’s function with different data size
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3.4 Uncertainty propagation of inflow wind

To evaluate the uncertainty propagation of wind uncertainties to the characteristics of response
loads, 5 wind uncertainty variables mentioned in Section.3.2 are used to represent the turbulent
wind profile, namely, the mean inflow wind speed (WS, V,,cq,), the turbulence intensity (7'1),
the shear law exponent(SE, &), the vertical inflow angle (VA, %,), and the horizontal inflow
angle (HA, 7,). The vertical inflow angle and the horizontal inflow angle are considered
to be independent with other variables, and are assumed to follow Beta distribution. The
range of the Beta distribution are set to be -15 degrees to 15 degree, and the shape parameter
is chosen to be [4, 4]. The wind speed is considered to follow Rayleigh distribution, with
the mean value chosen to be 13m/s. These turbulence intensity and the shear law exponent
are assumed to follow log-normal distribution and normal distribution respectively. Their
moments are calculated with Equation.3.3 to Equation.3.6 in Section.3.2. The wind conditions
are summarized in Table.3.7.

Because the turbulence intensity and shear exponent are correlated with wind speed,

Rosenblatt transformation [100] is first used to transform the correlated input variables into
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Table 3.7: Variables of wind condition

Variable Distribution Moments

Wind Speed (Vinean) Rayleigh E(Vmean) = 13m/s
Turbulence Intensity (TT) Log-normal ury,ory

Shear Exponent (o) Normal Ug, O,

Vertical Inflow Angle (7,) Beta shape [4 ,4] Rangel[-15, 15]
Horizontal Inflow Angle(y,) Beta shape [4 ,4] Range[-15, 15]

uncorrelated standard Gaussian variables:

u=R(w) (3.11)

where R is the Rosenblatt transformation. Wind uncertainty parameters are then sampled with
LHS method. Each wind sample are run 1000 repeated times with different random Turbsim
seeds. The statistical mean of the response distributions that are discussed in Section.3.2.2 are
seen as target response loads. 500 samples are used to train the surrogates, and 1000 samples
are used to validate their performance.

The predictions for the mean Fx and maximum Fx from surrogates trained by 500 sam-
ples are shown in Figure.3.11(a), and Figure.3.11(b) respectively. In the figures, the x axis

represents the validation sets, while the y axis represents the predictions from the surrogates.

Figure 3.11: Comparison of surrogate prediction of load responses
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(a) Surrogate prediction for mean Fx (b) Surrogate prediction for max Fx

Their performances for the prediction are shown in Table.3.8 and Table.3.9.
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Table 3.8: Comparison of surrogates for wind loads of 500 samples for mean Fx

Criteria MARS KRG PCE SVR  DNN RFR
er(—0) 1.2e-2 9.5e-3 1.2e-2 7.3e2 9.4e-3 2.3e-2
dgr(—0) 0.7788 0.3610 0.3854 1.5041 1.1437 2.6242
CPUtime 17.41  9.73 9.32 52.65 30.61 93.09

Table 3.9: Comparison of surrogates for wind loads of 500 samples for maximum Fx

Criteria MARS KRG PCE SVR  DNN RFR
er(—0) 0.0303 0.0236 0.0363 0.0999 0.0377 0.0316
dgr(—0) 0.8486 0377 0.5053 1.5041 1.2626 3.1355
CPUiime  23.14 1137  6.75 60.66 31.61 96.36

The histogram of maximum Fx generated by surrogate predictions are compared with

validation sets in Figure.3.12.
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Figure 3.12: Histogram comparison of different surrogates for max Fx
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From the results, MAR, KRG, PCE, and RFR can achieve lower relative error than DNN

and SVR.

For RFR and DNN, the Kullback-Leibler divergence(dk;) is comparably high, which

indicates bigger difference in the output distribution, as shown in Figure.3.12. MARS and

DNN take much more time to train than KRG and PCE for this data size of 500. KRG and
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PCE have similar performance, KRG has lower eg (9.5e-3 and 2.4e-2 compared to 1.2e-2
and 3.6e-2), and smaller dg; (0.361 and 0.377 compared to 0.385 and 0.505). So after all the

comparison, KRG is the best for the uncertainty propagation of inflow wind.

3.5 Conclusion

This chapter uses Turbsim and FAST to simulate response loads on top of the wind turbine
tower. In the first step, the distributions of the mean and the maximum of the response load
sequences are characterized. It is shown that, for a given wind condition, the mean value, the
maximum of the response loads on the top of tower can be approximated with normal and
extreme distribution respectively. In the second step, 6 types of regression surrogates are used
to regenerate the characteristics of the distributions. These surrogates are first applied to several
mathematical functions, the computational CPU time, generalized Relative Error(eg), and
Kullback-Leibler Divergence (dky) are used as performance measures. These surrogates are
then applied to the uncertainty quantification of wind loads. The results show that, it’s possible
to build a relationship between input wind uncertainties and the statistical characteristics
of response loads on top of the tower. The surrogate comparison shows KRG can achieve
lower generalized relative error eg and smaller Kullback-Leibler divergence dk; for the wind

uncertainty propagation problem.
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Chapter 4

Reliability-based Design Optimization of Wind Tur-

bine Tower

To conduct reliability-based design optimization (RBDO), traditional methods use double-
loop approach where the outer-loop changes the design variable, and the inner-loop calculate
the reliability. This is computational expensive for high reliability problems. For complex
engineering applications, surrogate models are widely used to replace the time-consuming
limit states. So this chapter focuses on the reliability-based design optimization (RBDO) of
wind tower using Kriging-assisted double-loop approach. In Section.4.1, the state of the art
of RBDO is reviewed; in Section.4.2, the traditional RBDO, single -loop approaches and
decoupled methods are summarized; in Section.4.4, the procedures of single loop approach
(SLA) coupled with Kriging surrogate is proposed; in Section.4.5, the proposed method is
firstly applied to several mathematical problems and then to RBDO of wind turbine tower.

Section.4.6 is the conclusion.

4.1 States of the art

Structural optimization is considered as modern design, where is usually applied to find
the best design with reducing costs and improving structural performances. The optimal
design is generally searched by minimizing the structural cost while checking performance
criteria and particular design requirements [101]. However, Uncertainty is omnipresent in real

applications. For that purpose, a rational structural design involves considering uncertainty
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parameters related to design parameters due to manufacturing tolerances, material properties or
imperfect knowledge of the material behaviors, environmental conditions, operating conditions
including future degradation and model analyzes. All these uncertainties contribute to making
the structural performances different from the expected ones. The probability theory offers a
suitable framework for modelling such uncertain parameters [102]. The pioneers in this new
approach date from the last century [103], [104]. The concept of the reliability of structures
was first proposed by Freudenthal [105] that a rational structural design requires to consider
uncertainties, nowadays the safety of structures has become an indispensable part of designing
structures, such as industrial, civil engineering, automotive, spatial domains,etc. [106]. For
complex structures, the reliability and performance of mechanical system may be impacted by
several failure modes, such as ultimate limit states (stress, buckling, etc.), service limit states
(displacements, frequency, etc.) and fatigue.

The deterministic optimization does not lead to reliable solutions. When the deterministic
optimal design is significantly affected by uncertainties, optimization procedures often lead
to designs at the limits of some constraints, so their remaining margins are reduced to their
lower bounds. To alleviate this situation, the deterministic design optimization uses safety
factors to reduce the effects of uncertainty parameters. These safety factors are defined by
standard specifications or by engineering feedback. Nevertheless, the use of the safety factors
in optimizing the structural design is not adapted to determine the optimal with appropriate
reliability, as these factors are not directly linked to uncertainties and to the target safety level
[107]. Moreover, these safety factors often lead to either risky or over-conservative designs.

To address such shortcomings, the design optimization is formulated by considering the
probabilistic constraints. The Reliability-Based Design Optimization (RBDO) was developed
since the 1960’s. Hilton and Feigen [108], then Moses and Kinser [109] are considered as
the first works that are proposed the formulation of the design optimization under reliability
constraints. The RBDO considers uncertainties in the design optimization procedure, with a
way that the safety requirements are fulfilled. It consists in finding the best design ensuring
safety, where the performance constraints are replaced by failure probability constraints
with respect to these performance functions. Thus, the RBDO methodology involves the

evaluation of probabilistic constraints performed by reliability analysis, which can be done by
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moment methods, Monte-Carlo simulations or by approximation methods [110]. Optimization
procedures and reliability analysis demand the repeated evaluation of the structural response
for different sets of design variables and uncertain parameters, where the evaluation of the
structural response is often obtained by numerical models with costly computation. (e.g. Finite
Element models). Thereby, the approach to practical problems obviously involves several
difficulties, most of them related to the practical evaluation of probabilities of failure and
their sensitivities. Four difficulties of the RBDO methodology can be addressed: (i) The
computational cost required by the RBDO methodology and especially the reliability analysis
methods; (ii) The numerical convergence of the optimization procedure and the reliability
approach employed; (iii) The accuracy of the reliability analysis methods; (iv) Efficiency of
the optimization procedure to deal with complex problems [111].

To solve the RBDO problem, 3 levers have been used: (i) Several tools have been developed
for reducing the computational demand of the reliability analysis, as the development of the
moment methods and approximation methods for the reliability analysis [112]—-[114]; (ii)
The development of new strategies to deal the RBDO, single loop methods and decoupled
methods [115], [116] and parallel computing techniques [117] are proposed in this way; (iii)
The application of surrogate models in order to replace the costly numerical models by less
expensive ones [118].

The classical formulation of the RBDO approach is the double-loop methods, that consists
to solve the RBDO problem in two loops, the outer loop tries to solve the optimization problem
by changing the design variables, while the inner loop solves the reliability constraints. The
constraints can be evaluated with Monte-Carlo Simulations (MCS), which is straightforward,
but it needs large sample sets and becomes prohibitive when the probability of failure is
low [119]. Approximation methods are proposed to reduce the computation cost. The
reliability index defined by Hasofer and Lind [120] is widely used in the first formulation
of the RBDO, called the Reliability index approach (RIA) [112], [113]. Tu, Choi, and Park
[114] have proposed the performance measure approach (PMA), which has proven to be
more robust and efficient in evaluating inactive probabilistic constraints. These two first-order
reliability methods (FORM) are easy to implement but are time-consuming for complex

constraints, because for each time the design variables are changed, the inner loop must
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calculate the reliability constraints separately. Recently, new methods have been proposed,
using new sampling methods to reduce the number of simulations, Rashki, Miri, and Azhdary
Moghaddam [121] have proposed a new simulation method to approximate the probability of
failure and the most probable failure point, then this method is applied for RBDO [122]. Other
simulation approaches are also proposed for RBDO, like the weighted average simulation
techniques [123]. To reduce the computational cost of the double loop approach, single loop
approach methods and decoupled approaches have been proposed. Madsen and Hansen [124]
have proposed a method based on the Karush-Kuhn-Tucker(KKT) optimality conditions, where
the RBDO problems are transformed into KKT optimality conditions. Liang, Mourelatos, and
Tu [125] have based on KKT method, and have further developed a Single Loop Approach
(SLA) where, the nested RBDO problem is transformed into equivalent deterministic single-
loop processes. Du and Chen [126] have proposed the Sequential Optimization and Reliability
Assessment (SORA) method. Cheng, Xu, and Jiang [127] have proposed a Sequential
Approximate programming (SAP) method, these methods all try to separate the reliability
analysis from the optimization loop and transform the RBDO problem into deterministic
optimization loops to improve efficiency.

For complex engineering problems, metamodels are widely used to substitute complex
reliability constraints. Hyeon Ju and Chai Lee [128] have used Kriging metamodel and
moment method to solve RBDO problem. Lee and Jung [119] have proposed a constraint
boundary sampling(CBS) method, that adds more training points on the limit state functions
and have used MCS to solve the reliability problems. Chen, Qiu, Gao, et al. [129] have
proposed a local adaptive sampling (LAS) method, that will add points around current design
points to update the Kriging metamodel, and have used FORM to perform the reliability
analysis. Dubourg and Sudret [130] have used important sampling (IS) method to build the
Kriging model and have used MCS to perform the reliability analysis. Lv, Lu, and Wang
[131] have proposed a sequential sampling for Kriging using PMA method and add samples
using expected relative improvement (ERI) criterion, which focuses more points on current
most probable point (MPP). Zhang, Xiao, and Gao [132] have used U function to update the
Kriging and calculate the reliability using subset simulation(SS). These sampling methods

separate the processes of training the Kriging metamodels and the reliability analysis, they
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use double loop methods to solve RBDO problems. Several authors have found that the
single loop approach is more suitable for RBDO [115], [133], [134]. To further improve
the efficiency of Kriging-based RBDO, this section tries to combine the Kriging surrogate
with the Single Loop Approach (SLA). The Kriging metamodel is updated by using the Most
Probable Points (MPPs) calculated at each iteration of SLA [135]. This section is structured
as follows, in part 1, previous works of RBDO are discussed, in part 2, the theory of Kriging
metamodel is briefly introduced, in part 3 the Kriging-SLA method is introduced, in part
4, three well-known benchmark examples and an practical engineering problem are used to
demonstrate the efficiency and the limitations of the proposed method. The last part is the

conclusion.

4.2 Reliability-based design optimization methods

Reliability-based design optimization seeks to find the best compromise between cost and

reliability.

4.2.1 Classical RBDO

The classical RBDO consists in minimizing the objective function using double loop approach,
where the outer-loop minimizing the objective function and the inner-loop calculate the

reliability, the formulation can be written as:

min : C(d, u(X))
Pr(G;(d,X) <0] <P i=1,....m 4.1)
S.t. @
hj(d) <0 j=m+1,....M
here. d is the design variables, G; is the ith performance function, P, is the probability of
failure, h; is the jth constant constraint, Py, is the allowable probability of failure. The failure

rate Pr can be calculate with simulation methods shown in Section.2.4 or approximation

methods shown in Section.2.2.
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4.2.2 Single-loop and decoupled methods

To reduce the computational cost for the classical RBDO methods of double-loop approaches
in Section.4.2.1, single-loop and decoupled methods are proposed. In single loop methods,the
reliability constraints are transformed into equivalent optimality conditions such as SLA.
While, the decoupled methods seek to transform the reliability problems into sequences of
deterministic optimization problems such as SORA. So in section, these two representative

methods are summarized.

Single loop approach (SLA)

Single loop approach (SLA) is developed from FORM method (In Section.2.2), by adopting
the Karush-Kuhn-Tucker (KKT) condition of Equation.2.4:

VG(U)+AVH(U) =0 4.2)

Where U is X transformed in standard normal space, VH (U ) = ||U|| — B/, is the equality
constraint of PMA, A is the Lagrangian multiplier.

By considering VH(U) = 2U., the relation Equation 4.2 yields:

U =-[lIIVGU)[|/CMI(VGU)/[IVGU)]| 4.3)

The length of vector of U in the normal space is equal to 3/, Equation 4.3 is transformed
as:

U = —ﬁita (44)

Where a are the normalized gradient of the constraints. Finally, the formula of SLA can
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be summarized as:

minC(d(k) , ”gc)>

Gi(d(k),U(k)) >0
U~ g | @.5)

1
(k) _ GUVUGi(d(k_1)7I‘l,(k71))
E T leuVuGid® D pDy)|

d"<d<d’,pt<p<pv
\

St.

k) (k)

Where U l( is the random design variables in the normalized space, ;" is the statistical

(k)

i

, k is the iteration number of SLA, d %) is the deterministic design variables,
(k)

i

mean of U
Gi(d QN ()Y is the ith constraint, B! is the target reliability index for the ith constraint, o
is the normalized gradient vector of the ith constraint. f(d (k) ) ug{)) is minimized under the

deterministic constraints G;(d (k) U (k)) > 0.

Sequential optimization and reliability assessment (SORA)

The SORA method belongs to the kinds of decoupled methods, where the RBDO problem
is transformed into a sequence of deterministic optimizations. In each iteration, the design

variables are shifted under the deterministic constraints as:

min:C(dk)

Gi(a =8 1K) 20 i=1..m (4.6)
S.t. @

h;(d¥) <o j=m+1,....M

here dF is the design variable in the kz# iteration, )Ef_l is the minimum performance target

point (MPTP) in the physical space, 61-1‘_1 is the shift parameter, that are calculated as:

4.7)
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4.3 Surrogate assisted RBDO

For complex problems, where the evaluation of performance function involves computational
expensive simulations, surrogate models are widely used as summarized in Section.2.5. Hyeon
Ju and Chai Lee [128] have used Kriging metamodel and moment method to solve RBDO
problem. Lee and Jung [119] have proposed a constraint boundary sampling (CBS) method,
that adds more training points on the limit state functions and have used MCS to solve the
reliability problems. Similarly, Bichon, Eldred, Swiler, ef al. [136] uses Expected Feasible
Function (EFF) to find new points that are expected to better satisfy the equality constraints.
Echard, Gayton, and Lemaire [137] have proposed an active learning reliability method
combining Kriging and Monte Carlo simulation (AK-MCS). The AK-MCS method utilizes
EFF or U function to update the Kriging iteratively and uses the coefficient of variation (Cov)
of the probability of failure as its stopping criteria. Wang and Wang [138] have defined a
Cumulative Confidence Level (CCL) measure to search the points that increase the confidence
level. Sadoughi, Li, Hu, et al. [139] has proposed a high-dimensional reliability analysis
(HDRA) that employs sequential exploration-exploitation with dynamic trade-off method
(SEEDT) to alleviate the curse of dimensionality for conducting surrogate-based reliability
problems. Chen, Qiu, Gao, et al. [129] have proposed a local adaptive sampling (LAS) method,
that adds new points using Constraint Boundary Sampling (CBS) around current design points
which are calculated with MCS from last iteration. Li, Qiu, Chen, et al. [140] have proposed
a similar method that searches new sampling points around the current MPP. The current
MPP is calculated with reliability index approach (RIA). Dubourg and Sudret [130] have used
important sampling (IS) method to build the Kriging model and have used MCS to perform the
reliability analysis. Lv, Lu, and Wang [131] have proposed a sequential sampling for Kriging
using PMA method and add samples using expected relative improvement (ERI) criterion,
which focuses more points on current most probable point (MPP). Zhang, Xiao, and Gao
[132] have used U function to update the Kriging and calculate the reliability using subset
simulation(SS). In this section, The mostly commonly used EIF and EFF update methods are

introduced. The prediction that Gaussian surrogates give of a untrained point can be expressed
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as:

Y (x) ~ N[y (x), oy (x)] (4.8)

After the surrogate is built, measures should be taken to improve the accuracy of the

surrogate, especially at the optimum point.

4.3.1 Expected Improvement Function (EIF)

The EIF is defined as the expectation that a point that has the better solution than the current
optimum. To update the surrogate, the EIF should be maximized, the EIF can be expressed

as[141]:

EI(3(x)) = (8" — 1tg) P (g*;“ g) +0,0 (g;“g) 4.9)

8

here g* is the current best solution, u, and o, are the mean and standard deviation of the

prediction.

4.3.2 Expected Feasibility function (EFF)

The expected feasibility function (EFF) provides an indication of the well the function is

expected to have the value of z*, the EFF function is given by:

g T — Ug Z+—,ng
o) (Fo) e (5]
‘LL J—

where z~ denotes z* — £ ,z™ denotes z* + € and € can be set to be 20,[142].
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4.4 Kriging-based RBDO using SLA

Kriging is widely used for replacing reliability constraints, to update Kriging, EIF and EFF
can be used, however, these two methods still need more unnecessary points far away from
the optimum. To further reduce the number of sample points, in the next part the Kriging is
connected with SLA, in each loop of the SLA, the MPPs for each constraint are calculated.
For Kriging-SLA, these MPPs of each iteration are used to update the Kriging metamodel,
and the program will move the design value iteratively, until final convergence.

The flowchart can be summarized as:

Step 1. Transform X from physical space to standardized space U using iso-probabilistic
transformation U = T'(X).

Step 2. A design of experiment of size N, U" sampled with grid sampling or Latin Hypercube
Sampling (LHS), and correspondent responses G;(U"),i = 1,2,...,m , are used to train
the first Kriging.

Step 3. ko =0, or k = k+ 1. Start the SLA loop, calculate the Most Probable Points(MPPs)

B A a(k—1) ,, (k=1)
U l(k) ,withU l(k) =—q B!, where ¥ is calculated with @ V) = FuYvGild_p )

i i

: louVyGi(d ) )|
from the derivative of the Kriging metamodel.

Step 4. minC(d, py;) , under SLA constraints Gi(dk,Uk) >0,i=1,2...,m, and calculate
new d® and ugc).

Step 5. Calculate the responses G,-(U i-‘),i =1,2...matU f‘ using Kriging surrogate, choose
U as the MPP to update the Kriging, if [G{(U?),G2(U?),...,G,,(U7)] has the element
that is closest to zero.

Step 6. Calculate the true responses of U7, as G;(U g*)), i=1,2,...,m, add this set of data
into training set, N = N + 1, and retrain Kriging.

Step 7. Compare d®), p¥) with d*~1, p{~" it ||a® —a* || < g and ||p® — p&-D)| <
€, stop; else go to step 3 and continue.

The size N of the initial data set for building the Kriging can be very small, because, though
the first surrogate may failed to capture the main characteristics of the constraints, and the

SLA loop may converge in the infeasible domain, the point of the current MPP will be added

to the training set to update the metamodel, the program will continue moving forward, until
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the metamodel is trained better and better around the right optimum. The originality of the
proposed Kriging-SLA method resides in: 1) the use of gradient-based approach to estimate the
probabilistic constraints, without using Monte Carlo simulations, importance sampling method,
RIA and PMA approaches; 2) the updating procedure of the Kriging surrogate performed only
by using the MPPs of the previous iteration of SLA, it doesn’t require additional searching
points with the learning functions. The proposed Kriging-SLA is different to the approach
proposed in Li, Qiu, Chen, et al. [140], where the MPPs are estimated by the reliability index
approach (RIA) and the RBDO is realized by the double-loop approach.

4.5 Wind turbine optimization using Kriging-SLLA

In this section, the Kriging-SLA method is first applied to several mathematical problems,

then it is applied to the optimization of wind turbine tower.

4.5.1 Mathematical benchmark problems

4.5.2 Liang’s example

This is a well-known benchmark example [125], where there are two variables, their standard
deviations are same as 0] = o, = 0.3, the target reliability index f; for all three constraints are
set to be 3. The reference result with only SLA method is u = [3.4391;3.2864], the optimum
objective function value is 6.7255.

The problem is given as:

minC(fy) = pi + Hp
Gi(x) = —x}x2/20— 1
Go(x) = (x1 +x2 —5)2/30+ (x1 —xp — 12)2/12— 1

G3(x) =80/(x? +8xy+5) — 1

The results are shown in Figure.4.1:

In Figure.4.1(a), only 4 points using grid sampling method are used to train the first
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Figure 4.1: Liang’s example
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Kriging. The true constraints are marked as dash lines, while the mean value of Kriging

predictions u(G) are marked as solid lines. It can be seen that the first Kriging has a very poor

prediction for these three constraints.

In Figure.4.1(b), after the first iteration, a sample of the MPP point is added in the Kriging

model (marked with solid red dot). The mean values of the random variables u, is marked

with + in the figure, u? is the starting point.

The final result is shown in Figure.4.1(c). The program converges with 8 iterations, with 8

added points. The history of t, and objective function is shown in Figure.4.1(d). It is shown

that, the program has moved L, to the right optimum gradually. The active constraints G| and
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G, is very accurate around the final MPP.

In Table.4.1, the Kriging-SLA results are compared with simple SLA method (without
Kriging), the relative error is calculated with||f — f*||/||f*||, where f is the result from
Kriging-SLA method, f* is from the simple SLA result, it can be seen that the relative error

for Kriging-SLA is lower than 0.04%.

Table 4.1: Comparison of SLA and kriging-SLA results of Liang’s example

Method u f(u) Points [B',82,8%] R-Error

SLA [3.4391;3.2864] 6.7255 \  [2.973.05Inf]  \

(Liang et al. 2014)

Kriging-SLA  [3.4355;3.2870] 6.7225 12 [2.973.05Inf] 0.04%

Note the Relative error is compared with simple SLA method. Because the SLA is a
gradient-based FORM approximation method, it consists error in itself, as shown in Table.4.1,
the target reliability [2.97, 3.05, Inf], is not the accurate optimum. This may become a more
serious problem when facing highly nonlinear and non-convex problems, which will be shown
in example 3. The influence of different initial sampling size for the first Kriging is show in
Table.4.2. It’s shown that the program converges faster if the first Kriging is trained with more
sample points. However, the larger sample size will not reduce the final relative error, which
comes mainly from FORM approximation.

Table 4.2: Influence of initial sample number of Liang’s example

Initial Sample u f(u) Points [B!,82,8°] R-Error
4 [3.4355;3.2870] 6.7225 448 [2.973.05Inf] 0.04%
9 [3.4354;3.2869] 6.7223 9+4 [2.973.05Inf] 0.05%
16 [3.4390;3.2889] 6.7280 16+3 [2.973.06Inf] 0.04%

4.5.3 Cho and Lee’s example

This is a speed reducer benchmark problem [143]. It is a 7-dimension problem, the objective
is to minimize the weight, which is a function of the parameters of the bearings dy,d, ..., d7.

There are 11 constraints related to physical quantities, such as limit stress and maximum
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displacement. The random design variables are gear width(X7), gear module(X>), the number
of pinion teeth(X3), distance between bearings (X4, X5), and diameter of each shaft(Xg, X7). All
random variables are statistically independent and follow Normal distribution N (0,0.005?).
The target reliability index B’ for all constraints are set to be 3. The RBDO problem can be

summarized as:

d = [d\,ds,d3,dy,ds,dg,d7)"

minC(d) = 0.7854d,d(3.3333d5 + 14.9334d; — 43.0943)
— 1.5080d; (d? + d3) +7.4770(d3 + d3) + 1.5080d; (d2 + d7)
st.prob[G;(X) < 0] < ®(-B),i=1,2,..,11

Gi(X) =X X5X3 —27

G2(X) = X1X3X3 —397.5

G3(X) = XoX3X7 — 1.93X;

G4(X) = XoX3X5 — 1.93X2

Gs(X) = 110X3 — \/ (745X, / (X2X))? + 16.9 x 10°

Go(X) = 85X7 — / (745Xs / (X2X3))? + 157.5 x 109

G7(X) = 40 — X, X3

Gg(X) = X; —5X,

Go(X) = 12X, — X,

Go(X)=X4—1.5Xs—1.9

G (X)=Xs—1.1X,—1.9

2.6<d; <3.6,0.7<dr<08,17<d3<28,7.3<dy4<8.3,
73<ds<8.3,29<ds<3.9,

50<d; <55

X; ~N(d;,0.005%),j = 1,2,...,7

Pi=P=..=Pi =30
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Table 4.3: Comparison of RBDO results of Cho and Lee’s example

Methods Design variables p°r" f(u)er)  Points  Error

MCS!1291 [3.5765;0.70;17.0;7.3;7.7542;3.3652;5.3017] 3038.6347 \ \

K-SLA [3.5765;0.70;17.0;7.3;7.7542;3.3652;5.3017] 3038.6234 41.6  0.004%

CBSI?91  [3.5765;0.70;17.0;7.3;7.7541;3.3653;5.3017] 3038.6234 80 0.17%
[ ]
[ ]

SS [129] 3.5778;0.70;17.0;7.7;7.9371;3.3447;5.2993] 3040.6091 72 6.9%
LASI129] 3.5765;0.70;17.0;7.3;7.7543;3.3651;5.3017] 3038.6244 46 0.004%

Table 4.4: Comparison of reliability index at the optimum of Cho and Lee’s example

Methods Bl BZ B3 B4 BS B6 B7 B8 ﬁ9 BIO Bll
Kriging-SLA Inf Inf Inf Inf 2.9942 29951 Inf 3.0012 Inf Inf 2.9895

MCSH291 Inf Inf Inf Inf 2.9946 2.9948 Inf 3.0016 Inf Inf 2.9895
CBS!129] Inf Inf Inf Inf 3.4316 3.0045 Inf 2.9995 Inf Inf 3.0136
Ss [129] Inf Inf Inf Inf -1.2848 2.5114 Inf 3.0490 Inf Inf Inf
LAS [129] Inf Inf Inf Inf 2.9826 3.0122 Inf 2.9900 Inf Inf 2.9922

The first Kriging is built with 36 points sampled by LHS method. The program is run
for 20 times, to consider the randomness of the LHS sampling . The optimum results and
correspondent target reliability indices are compared with Chen et al. (2014)’s reference in
Table.4.3 and Table.4.4. Note the iteration number and optimum design point is the average of
the 20 simulations.

For this example, the proposed Kriging-SLA method is very accurate and efficient, it needs
the least number of sampling points compared to the other methods. It should also be noted
that, for CBS, SS, and LAS method, after building the surrogate, double loop approach RBDO
is needed to get the optimum design, which will increase the computational cost, especially

when the failure rate is low.

4.5.4 Lee and Jung’s example

Due to the fact that the SLA method is based on gradient method, as mentioned before, it
may not work well for highly-nonlinear problems or non-convex problems. As it is pointed
out [125], it may converge to a wrong minimum or even fail to converge. For example, in
this benchmark problem [144], it includes a highly nonlinear constraint around the MPP. This

problem is described as follows:
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minC(fy) = (11 —3.7)* + (1 — 4)
Gi(x)=x1+x-3

Ga(x) = —x; sin(4xy) — 1. 1xp sin(2x7)

x is the realization of random variable X, composed of two independent normal variables,
their standard deviation are 61 = 6, = 0.1. The objective function and constraints are given
below. The target reliability index for both constraints are set the same as ff{ = B} = 2. For
the comparison of the Kriging-SLLA method, a reference result of simple SLA method is
used. The optimum value from simple SLA is 1.3040 and the optimum design variables are
[2.8162;3.2769].

In Figure.4.2(a), 4 points using grid sampling method are used to train the first Kriging. It
can be seen that the first Kriging has a comparably better prediction of the linear constraint
G1(x), but has a very poor prediction of the nonlinear constraint G(x)(which can’t be seen in
Figure.4.2(a).

In Figure.4.2(b), after the first iteration, 1 samples of MPP point is added in the Kriging
model (marked with solid red dot). The mean values of the random variables u, is marked
with + in the figure, ;,LQ is the starting point. The first point 4! is not in the feasible domain,
which means the SLA to converge to a wrong point with the poorly trained Kriging.

The final result is shown in Figure.4.2(c), The program converges with 14 iterations,
with 18 sample points in total. The history of u, and objective function is shown in Fig-
ure.4.2(d). The Kriging-SLA method is compared with the SLA result and Chen et al. (2014)’s
results [130]. The comparisons are shown in Table 4.5.

From the comparison of Table.4.5, the accuracy of Kriging-SLA is in the same level of
SLA results. In fact, other gradient-based RBDO approaches tested for this example by Chen,
Qiu, Gao, et al. [145] converge to this optimum with reliability index of 1.86. This lack of
accuracy is due to the high-nonlinearity of constraint 2. The other methods (LAS, SS) that are
converged to the right optimum with checked reliability constraints are based respectively on

Monte Carlo and subset simulations, which greatly increase the total computational cost. A
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Figure 4.2: Lee and Jung’s Example
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possible improvement would be by using enhanced single loop approach[146], which promotes

the stability of simple SLA.

4.5.5 RBDO of wind turbine tower

Introduction of the problem

This method is used for the optimization of wind turbine tower based on a reference SMW
turbine system given by NREL [3], but with more details in the tower. The simplified turbine

structure is shown in Figure.4.3(a).



CHAPTER 4. RELIABILITY-BASED DESIGN OPTIMIZATION OF WIND TURBINE TOWER 76

Table 4.5: Comparison of RBDO results of Lee and Jung’s Example

Method u J(W)(opry Points [B '.B%]  Error
MCS 2.8421;3.2320 1.3259 \ \

SLA 2.8162;3.2769 1.3040 \ [1.86 Inf] 1.65%
Kriging-SLA 2.8088;3.2855 1.3047 18 [1.83 Inf] 1.59%

S§ (Chen 2014) 2.8400:3.2339]  1.3264 29  [2.021Inf] 0.5%

[ |
[ ]
[ ]
CBS (Chen2014) 17 8485;3.2350]  1.3103 45  [1.93Inf] 1.18%
[ |
LAS (Chen 201913 8408;3.2334]  1.3259 22 [2.00Inf] 0.04%

Flange
Blade CM
Inflow Wind Shaft CM
" Nacelle CM
- 24m s
[ Stiffener
24m
Dt R7W1 R ¢t

(e) Wind turbine structure (f) Tower bottom section

Figure 4.3: Wind turbine tower optimization problem

The turbine system is mainly composed of a wind turbine tower, a nacelle, a shaft, an apex,
and 3 turbine blades. The mass of the nacelle, shaft, apex, and the blades are approximated
with mass points at their correspondent mass center(CM) to calculate the frequency of the
entire turbine system. Their coordinates and weights are given in Table 4.6.

The tower is made of material steel, the material properties are given in Table 4.7.

The total tower height H is 87.6 meters, it is a linearly tapering tower, with the diameter
at the bottom T'rpp, and top Trp, are 6 meters and 3.87 meters respectively. The thickness of
the tower is also linearly reducing from bottom to top ranging from 7'r;;, to Try;, which are
the design variables to be optimized. It is assembled with 4 sections, the length of the bottom
section Hj, is 15.6 meters, and the other sections H; are 24 meters. At each end of the sections,
there are flanges used for the connection, the flanges are with the same widths F,, (from the

middle of tower thickness to the edge of the flange) as 0.16 meters and thicknesses F; as 0.08
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Table 4.6: Properties of nacelle and blades

Parameter Name Value(kg) Coordinate Position(m) Description
Wthacelle 2.4E5 (1.9,0,89.25) weight of the nacelle
Wisha g 1.1E5 (0,0,89.46) weight of the shaft
Wiapex 5.678E4 (-5,0,90) weight of the apex
Wtpradel 1.744¢4 (-4.0415,0,112) weight of the bladel
Wtprade2 1.744¢e4 (-7.56,19,79.2) weight of the blade2
Wthiades 1.744¢e4 (-7.56,-19,79.2) weight of the blade3

Table 4.7: Material properties

Parameter Name Value Description

G 210(Gpa)  Young’s modulus
P 8.08(Gpa) Shear modulus
Density 7850(kg/m’)  Steel density

meters. Between the flanges, there are 3 stiffener rings, the widths of the rings R,, are same as
0.12 meters, and the thicknesses of the rings R; are the same as 0.02 meters.

At the bottom section, there is a door opening at the height of D, as 0.38m. The height
the door Dy, is 2 meters and the diameters of the semicircles at both ends D, are 0.7 meters.
Around the opening door, there is a reinforcing stiffener ring, the thickness of the door stiffener
Dy is 0.08m and the width of the door stiffener D,, is 0.21m. The constant parameters of the

tower are given in Table.4.8.



CHAPTER 4. RELIABILITY-BASED DESIGN OPTIMIZATION OF WIND TURBINE TOWER 78

Table 4.8: Constant geometry parameters

Parameter Name Value (m) Description

Trpp 6 Tower bottom diameter
Trp; 3.87 Tower top diameter

D, 0.38 Opening door height to the base
Dy, 2 Opening door height

Dy 0.7 Opening door diameter

D, 0.21 Opening door stiffener width
Dy 0.08 Opening door stiffener thickness
o 0.16 Flange width

F 0.08 Flange thickness

R, 0.12 Ring width

R; 0.02 Ring thickness

The loads on the top of the tower are considered to be stochastic, they are assumed to
follow Normal distribution. They are characterized from simulation results from a SMW
offshore turbine at rated wind speed(11.4m/s, normal turbulence), but are up-scaled to consider
more extreme conditions. The coefficient of variation is taken as 20% of the mean values.

These are given in Table 4.9.

Table 4.9: Statistical parameters of the random variables

Parameter Name Distribution Mean Value  Variance Description

Fx Normal 850(kN) 170 Force in direction x
Fz Normal -5500(kN) 1100 Force in direction z
My Normal 22500(kN.m) 4500 Moment in direction y

Mz Normal 22500(kN.m) 4500 Moment in direction z
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Objective and Constraints of RBDO and DO

When the inflow wind speed is higher than the cut in speed v;,,, the turbine starts to work.
To simplify this problem, only 4 stochastic variables and 2 most important design variables
are considered. The stochastic variables are 2 forces in the direction x, y: Fx and Fy and 2
moments in direction y, z: My and Mz on the top of the tower, The design variables are the
thickness at the bottom 7'r;;, and thickness at the top Try;.

The objective to minimize is the weight of the tower, by ignoring the opening door and
the flanges, the geometry of the tower can be very simple, which is a tapering cylinder with
constant diameters at bottom and top, so the objective function can be replaced by sum of
thicknesses of bottom and top, 8o f,;; = Try, + Try.

The RBDO constraints for the tower optimization are that the probability of failure should
be lower than 1 —®(f3;). The constraints considered in this paper are:

1. The maximum deflection of the tower d,,,, should be smaller than dy;,,;;, taking %1 of the
height of the tower, so djj;,,;; = 0.876.

2. The first eigen-frequency of the tower should higher than 1.2 times the maximum rotating
frequency of the blades, taking the maximum rotating speed as 16r/min, so the frequency
limit is taken as 0.32.

3. The first order buckling load factor should be bigger than b;;,;;, to avoid buckling, the
minimum buckling factor is 1, so by = 1.

For RBDO of the wind turbine tower, the problem can be summarized as:

minCppj = Tryp + Try
Pdeflection = PrOb(Gd(de) > 0) <1 _(I)(ﬁl)
Pfreql = PVOb(Gf(F,d) < 0) <1 —(I)(ﬁ,)

Pbuckling = PrOb(Gb(F7d) < 0) < 1—(13([3;)

where F is the stochastic loads of forces and moments, d is the design variables which
are the thicknesses of the tower. Gy = dyux — djimir 1S the performance function of deflection,
Gr = f1 — fiimi: 18 the performance function of frequency, G, = by — by;;; 1s the performance

function of buckling. Two target reliability indices f;: 3 and 3.5 are considered, which
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corresponding to failure probabilities of 1.3¢ — 3 and 2e — 4.

For deterministic optimization(DO), the empirical rule (30 rule) is adopted. The forces on
top of the tower are set to be u + 30 of their correspondent Gaussian distributions. It means
that the probability of having greater forces than these values Pr(X > u —30) is lower than

0.0013. The loads and limits for DO is given by Table 4.10.

Table 4.10: Deterministic constraints

Name Fx(kN) Fz(kN) My(kN.m) Mz(kN.m) = dipii(m)  bjimic  frimie

Value 1360  -8800 36000 36000 0.876 1 0.32

Simulation and results

The responses of the tower are calculated by finite element method (FEM)byusing ANSYS
Academic Research Mechanical, Release 18.1.The displacement response is evaluated by
linear static analysis. The eigen-frequency and buck-ling limit states are respectively evaluated
by eigenvalue analyses. There is no linear relationship between the input parameters and the
output re-ponses. The Finite Element model of the tower is established using Shell element,
the mesh of bottom section is show in Figure.4.4. The forces are applied at the top of the
tower, at the center with rigid connections with the notes at the top, the tower is fixed at the

bottom to the ground.
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ANSYS

ELEMENTS R18.0
FEB 20 2019
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Figure 4.4: Finite element analysis of the wind turbine tower

Analysis show that if the door stiffener is too small, the buckling will happen around the
door opening, which will greatly reduce the tower life. To avoid this, the door stiffener is set
to be 0.08 meters. In this case, the buckling will happen along the tower, and is constrained by
thicknesses of the tower.

For modal analysis, the mass of the nacelle, shaft, apex, blades should be connected to the
FEM model, these proprieties are given in Table.4.6, the module shapes of the first and the
second order of the tower are The first and the second mode shapes of the tower respectively.

The first Kriging metamodel is built with 64 points sampled by LHS method. The converge
criteria € is set to be 1e — 6. At the optimum point of Kriging-SLA, AK-MCS developed by
[137] and implemented in UQLAB codes [97] is used to calculate the reliability indices.

The RBDO and DO results are shown in Table.4.11. At optimum point of SLA, AK-
MCS[137] simulation is used to calculate the reliability indices. For DO result, the failure rate
is smaller than le-7, which becomes even prohibitive for AK-MCS. The constraint values in
the table: for RBDO, they represent the performance functions of deflection G4, frequency Gy,
and buckling G, at Most Probable Point(MPP); For DO, they represent the the deterministic
limits of deflection (dyax — djimir), frequency (f1 — fiimir), and buckling factor (b1 — byjir)-

The proposed Kriging-SLA method is run for 20 times, and the average value is taken. It
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Table 4.11: Comparison of DO and RBDO results

RBDO(B' = 3.0) RBDO(B' = 3.5) DO
Optimum [0.0418: 0.0114] [0.0417: 0.0123] [0.0522: 0.0273]
design(m)
Cost. 0.0532 0.054 0.0795
function(m)
Szﬁﬁitsramt [-0.413: 2E-5: 0.022] [-0.3:3E-6:0.111] [-le-4: 0.051: 3.598 ]
AK-MCS [Inf 3.050 Inf] [Inf 3.509 Inf] \

converges with only an averaged 10.6 SLA iterations.

It can be seen that the optimums from Kriging-SLA satisfy the reliability constraints, at
optimum points, the reliability indices have reached target reliability 7. The DO results is
much larger than RBDO results in this case, even larger than the design of reliability index
of 3.5, which may be too conservative. Another difference is that, for RBDO, the constraint
first violated is the frequency constraint, whereas, for DO, the constraint first violated is the

maximum deflection.

4.6 Conclusion

Traditional double loop RBDO approaches may become computational prohibitive when
facing problems with high dimensions or high target reliability level. In this paper, the single
loop approach is combined with Kriging metamodel to solve complex engineering problems.
This method uses the gradients from the Kriging metamodel to calculate the MPPs with
SLA method. These MPPs are then added to update the Kriging model. In other words, the
updating procedure of the Kriging surrogate does not require additional searching points with
the learning functions. A very simple but effective stopping criterion is proposed to check the
convergence. Three benchmark examples and an practical engineering application are used to
validate this method.

The proposed Kriging-SLA method is very efficient compared with other sampling meth-
ods. The accuracy of the proposed method is in accordance with the original SLA method
without surrogate models. This method needs fewer initial sample points and converges with

the minimum number of sample points, as it doesn’t seek to globally fit the constraints well, it
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seeks to add the best points that are currently available until meeting the convergence criteria.
However, this method suffers the same limitations of the gradient-based-method, like SLA or

SORA, which are less accurate for highly-nonlinear problems.
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Chapter 5

Time-variant reliability-based optimization using

double-loop Kriging surrogate

Due to material degradation, stochastic loads or system deterioration with time, the reliability
of system become time-dependent. The optimization under this circumstance becomes a
time-variant reliability optimization (TVRBDO) problem. The difficulty of TVRBDO lays
in the high computational cost for the evaluation of TvR constraints and lack of general
form of analytical TvR methods for all situations. This chapter discusses about Time-variant
Reliability optimization using Double-Loop Kriging surrogates (TRDLK). The outer-loop
conduct TVRBDO, and the so-called Single Loop Kriging (SILK) approach is used to calculate
the TvR of inner-loop. In Section.5.1, the background is discussed, in Section.5.2, the
time variant reliability method using Single Loop Kriging (SILK) approach is discussed. In
Section.5.3, a approach of TvRBDO using double-loop approach is proposed , In Section.5.4,

two examples are used to validate the method. Section.5.5 is the conclusion.

5.1 Introduction

Reliability-based design optimization (RBDO) has been widely used in engineering appli-
cations [115]. However in many engineering cases, due to degradation, stochastic loads,
or system deterioration with time, time-variant reliability (TvR) must be considered [147].
Time-variant reliability is the probability of failure that a product performs under its intended

functionality within its serving time. Time-variant reliability-based design optimization
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(TvRBDO) is the optimization under time-variant reliability constraints. The general form of

TvRBDO can be formulated as:

minC(d,OXd)

PrOb{Gi (d7Xd7XC7Y(I)7t) < 0} < P;k
st. (5.1

Hj(d,0y,)<0
i=1,2,..Np; j=1,2,..Ng

C is the cost function that can be a combination of deterministic variables d, and statistical
moments O of random variables X. G; is the ith performance function that may consist
in the design variables X4, the random variables X, the stochastic process F(t) and time
t. For each realization d, x;, and x. of d, X,, and X., G; < 0 when there exists a time
instant 7 in the trajectory of ¢ that makes G;(d ,xd,xc7Y(Z/)7t/) < 0. The cost function C is
minimized under N, constraints of cumulative probability of failure with respect to d, Xg,
and Xc, Prob{G;(d,X4,X.)} < p}, with p; being the allowable probability of failure and N,
deterministic constraints H;.

For the evaluation of TvR constraints, existing methods can be classified into two cate-
gories: out-crossing methods and extreme value methods [148], [149].

The out-crossing is defined as the events of performance function passing through a failure
threshold. The out-crossing methods are based on Rice’s formula [150] assuming that the
distribution of out-crossing events follows Poisson distribution. Under this assumption, the
probability of failure can be bounded by the sum of the initial failure plus the integral of

out-crossing rate over time as:
!
PH(0,T) < Py(0,0) + / V(t)di (5.2)
' ‘ 0

where v(¢) is the out-crossing rate defined as:

. .
v(t) = lim Probability (G(t) > 0N G(t +At) <0)

Ar—0 At (5-3)
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To calculate the out-crossing rate, the most popular method is the PHI2 method [151].
The PHI2 method calculates the outer-crossing rate using two component parallel systems
at successive time instants and estimates the bivariate normal integral with FORM method.
Later the PHI2 method is improved to integrate the analytical gradient solution of the bivariate
normal integral as PHI2+ method [152]. Compared with PHI2 method, the PHI2+ method
is less sensitive to the increments of time steps. Though the PHI2 and PHI2+ methods are
computationally efficient, their accuracy highly rely on the presumption that the out-crossings
are independent. When the reliability is low, or the failure rate is high, there may exist
dependence of out-crossings, these two methods may include large errors.

The extreme value based methods try to evaluate the performance functions at the maxi-
mum values of each trajectory of the random variables through time. In most cases, there is
no analytical solution for the extreme value of the performance functions, so it will become
prohibitive for complex engineering problems. In this case, surrogate models are used, for ex-
ample Zhen Hu(2015)[153] has proposed a mixed-EGO method that uses a Kriging surrogate
to approximate the extreme value. The Kriging is first updated with AK-MCS method [137]
and then MCS simulations are used to calculate the TvR [153]. Mixed EGO uses double-loop
Kriging surrogates with the inner-loop represents the performance functions and outer-loop
represents the extreme value of the inner-loop. This double-loop Kriging will amplify the
error of the inner-loop and it’s computational expensive to identify a new training point. To
alleviate these problems, a single-loop Kriging surrogate method (SILK) is proposed [4]. In
SILK, the time interval is discretized into small time steps along each random design variable
and uses a learning function U to decide whether to update the Kriging surrogate along this
variable track.

So far, not many papers have focused on TVRBDO, due to the high computational cost
for the evaluation of TvR constraints and lack of accurate analytical TvR methods. Zequn
Wang & Pingfeng Wang have proposed a nested extreme response surface method (NERS)
which uses a nested EGO approach to conduct TVRBDO. The TvR of NERS is calculated with
EGO method from the inner-loop [154]. ZHEN Hu & Xiaoping Du (2016) have expanded
the time-independent RBDO method SORA to solve TvR problems [155]. Lara Hawchar &

Charbel-Pierre EI Soueidy have based SILK and have proposed a global Kriging surrogate
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method that utilizes the Polak-He algorithm [156] to accelerate convergence. For NRES, EGO
method itself is a double-loop method, using TvR for TVRBDO may amplify the final error.
Though surrogates are used, the evaluation of TvR constraints is still very time-consuming,
and the TvVRBDO involves multiple iterations of searching in the design space. This will
become prohibitive for high reliability problems.

So this work is based on the SILK method and adds another Kriging as the outer-loop
to solve TVRBDO problems [157]. In this method, The inner-loop calculates the TvR using
SILK, some improvements are made to SILK to consider multiple-constraints; the outer-loop
is another Kriging surrogate trained by the results of inner-loop, after the outer-loop is trained,
Expected Feasible Function (EFF) is then used to update this outer-Kriging. The time-variant
reliability of all sample points of outer-loop are evaluated with the same inner Kriging with
SILK method. And after the outer-Kriging is built, the computational cost for TVRBDO is

minimal.

5.2 Brief review of time-variant reliability with SILK

In TRDLK, the TvR is calculated with the so-called single-loop Kriging surrogate method
(SILK). In this section, the SILK method is reviewed.

5.2.1 Kriging prediction

Kriging (KRG) is a surrogate model based on regression using observed data sets. The Kriging

model is discussed in Chapter.2, the prediction of the Kriging surrogate is given as:

(e x): O x) (5.4)

where Héx) is the estimation of input X, O4(x) is its corresponding standard deviation.
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5.2.2 Modified SILK to consider multiple constraints

The probability of failure in Equation.5.1 can be calculated with Monte Carlo Simulation

(MCS):

N
py (t0,1.) = Probability {G(X,) > 0,3 € [t9,1]} = Y 1, (x@) /N (5.5)
i=1

where N is the number of samples, /; is the indicator for failure for each random x during the

time interval of [to,z,]:

. (x(i)) Rt ifG(x@,z) > 0,3 € [tg,0,] ,Vi=1,2,--- \N 56

0, otherwise

For each random variable, the time is discretized into N; small time steps, Equation.5.6

becomes:

. (x(")) ) Lifanys (G <x(i>,r<f>)) —1,Vj=1,2,--- N, 5

0, otherwise

The fundamental idea of SILK is build a surrogate G(X,?) to evaluate Equation.5.5 to
Equation.5.7. To make sure the surrogate is accurate for the classification, a U criterion is

used:

‘H@(k) (x(0,40)

U® (X(i)’t(j)) (5.8)

O (x0,1)
here k is the number of constraints. The probability of making a mistake for the sign of

G (x(i),t(j)) 1s given by:

Porror = @ <—U (x(i),t(j))) (5.9)

In this work, the limit for U is set to be bigger than 2.5, which means the probability of

making a error is smaller than 0.62%.
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For the kth constraint, Equation.5.7 can then be rewritten as:

, 1, if G® (x<i>,z<f)> > 0and U® <x(i),t(j)) >253/=1,2,--- N,

A (x@) - (5.10)
0,if G (x,10) <0and U® (x0,1)) 22577 =1,2,-- N,

If a failure is identified in the track of x(), U®) (x(9) :), k = 1,....,N; will be replaced with

u, (a value bigger than 2.5), because no more updating is needed in this track of x(0):;

if G (Xa),m) =0
Unin (X(i)) - - and U &) (X(i),t(j)) >25,3;=12,--- N 5.11)
j:ln%i.l.l. N, {U(k) (X(i)yf(j)> } , otherwise

When the surrogate fails to find a accurate point that G() (X, ) > 0, or not accurate enough
to prove G (X,1) < 0 for all time steps. Points are needed to update the Kriging. The
updating points are decided by searching all the random x¥) by minimizing U (x\9,+\/)) for

each time step ¢ and for each constraint:

limins jmin] = min { min {U(k) <x(l’),r<f))}} (5.12)

=12, N | j=12, N,
To avoid the clustering of new points and current training points, a correlation criterion
is added before the searching. If the correlation between the points [x(i) Y )] and existing
training points are bigger than a limit value, for example 0.95, U <X(i) U )> will be replaced

with a big value, say U (X(i),[(j)) = 10. The correlation is calculated with:

P = max{(R(e, @ 0], [xS,tS]))} (5.13)

here R is the correlation function of Kriging, 6 is the parameter of current Kriging. [x*,t’]
are the existing training points. The procedures for identifying a new training point are
summarized as:

Step 1. Assume the MCS samples as x',i = 1,2,.., N, and the time interval [fo,,] is discretized
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into N; time steps.
Step 2. For each sample of MCS sample x;,i =1,2,..,.N
(a.) Compute U (x', j), and p.(t/) = max{p(xlj?xs)}, j=1,2,....N;, where x* are exist-
ing training points.
(b.) If there exists a time instant ¢/, that any constraint satisfying g*(x’,#/) > 0 and
U*(xi,17) > 2.5. Replace Uy, (x') with u, (a value bigger than 2.5) and jump to Step.3.
Otherwise, continue.
(c.) Find the indices d, that p.(¢/) > 0.95.
(d.) Replace U (x',d;) with 10.
Step 3. Identify the new training points by Equation.5.12 .
After identifying imin and jpin, a new sample [x{imin) /min] will be added into the current
training set . The stop criterion for the updating is that the maximum prediction error is lower

than a limit value, 5% for example. The maximum error is calculated as:

‘Nfz fz
g™ = max ———— x 100% (5.14)
N}, €[0.N2] Npy +Nf2

here Ny is the number of samples for all random x',i=1,---,Nand time steps 1) Jj=1,---N;
that satisfy U (k) (xi , t(j)) > 2.5, which are considered to be accurate; Ny = N * Nt — Ny is the
number of the other part of samples.

After the Kriging is built, MCS is used to calculate the reliability.

1fG()<()()>>
I,
It<x(i)>: >andU (x )225 3i=1,2,--- N, 515
0,1 if Gk (xl )SO
and U ( ,t’)EZ.S,Vj:I,Z,---,Nt
\ \

Coefficient of variation is used as the stopping criterion of the the calculating of time-variant

reliability, taking to be 0.02 in this work:

COfo = \/(1 —Dr (t(),te)) / (pf (t(),te)) /NMCS (5.16)
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The Flowchart of calculating TvR using SILK is summarized as:

Step 1. Generate initial training points x and evaluate the responses at these training points.
Set Cov,,r = 1. Set xycs = || -

Step 2. Generate N samples of X and add into xyscs.

Step 3. Construct the surrogate g(x,7).

Step 4. Compute Uy, using Equation.5.12, and then """ using Equation.5.14.

Step 5. If €"* > 0.05, searching new samples to update the Kriging with Equation.5.12 and
Equation.5.13 and go back to Step.3.

Step 6. Calculate probability of failure using the the surrogate ¢(X,t) with the samples of
XMcCs-

Step 7. Calculate the coefficient of variation Cov, s with Equation.5.16. Nycs is the number
of samples in x;cs.

Step 8. If Cov,r < 0.02, py converges, else go to Step.2.

5.3 TvRBDO using double-loop Kriging

This section proposes the TVRBDO using double loop Kriging surrogates. This method
consists in building two separate Kriging surrogates, the inner-loop Kriging is used to calculate

the TvR with SILK method, the outer-loop Kriging is used to conduct TvRBDO.

5.3.1 [Initial Sampling from augmented reliability space for inner loop

In this work, the lower and upper bound for augmented probability density function (PDF) is

used [158], which is given as:

i 9eDo i (5.17)

where gy and q;gi are the lower and upper bound respectively, where Fy ! is the quantile

function of the margin of X;, ® is the CDF of normal distribution, f ; is the reliability level
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the ith constraint. After the bound is calculated, the training samples are drawn uniformly
using Latin Hypercube Sampling (LHS), to train the initial inner-loop Kriging. This Kriging
is then updated with SILK method reviewed in Section.5.2. After the inner-loop converges, it

is then used to calculate time-variant reliability for the outer-loop.

5.3.2 Updating the Kriging for outer-loop optimization

To build the outer-loop Kriging, first LHS sampling is used to train the outer-Kriging, the

failure rate is calculated using SILK in the inner loop:

pr=SILK(d,Xq,?) (5.18)

After the outer-loop Kriging is built, expected feasible function (EFF) is used to update

the outer-Kriging. The EFF function is re-mentioned here as:

EFIG(x)] = (15— 2) {ch (H‘e) o (z—ua) ° (ﬁ—%)

O¢ e 04
A Z— MU _ T — Mg _ Z+—,UG
_GG[Z(P( oG ) ¢( oG ) (P( oG )] G-19
celo(o) o (5]
O¢ O¢

z is taken to be p™ in this case. The updating stops when the maximum EFF is smaller than

le — 6 or the maximum number of samples is reached. After the outer surrogate is built, it’s
then used to realize TVRBDO. At each iteration of TYRBDO of the outer-loop, the optimum
point of this iteration is added into the outer-loop Kriging training set to update the outer-loop
Kriging. The TvRBDO process stops when the change of optimum is smaller than €.

The Flowchart the TVRBDO can be summarized as:
Step 1. Calculate gy and q;g, from Equation.5.17. After, the inner Kriging is built by drawing

sample uniformly from the the bound of [gy, q;gl]

Step 2. Draw LHS samples for the design variables X, from design space 0, .

Step 3. Calculate the vector of failure rate p related X, with SILK method.
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Step 4. Build the outer Kriging with X, and p.

Step 5. Update the outer-Kriging by maximize the EFF function of Equation.5.19. The EFF
update stops when the maximum EFF is smaller than 1e — 6 or the maximum number of
samples are added.

Step 6. Conduct optimization using the outer-Kriging, the optimum design are added into the
outer-Kriging data set in Step.4.

Step 7. The optimization stops when the change of optimum design is lower than € .

5.4 Example and Results

In this section, two examples are used to validate the proposed method.

5.4.1 A two-variable example

The first example is a numerical example that consists in two random variables: Xj ~
N(u1,0.6) and X, ~ N(u5,0.6). The design variables are the mean values of the two variables.
The time interval for this problem is set to be [0,5]. The objective function and constraints are

summarized as follows:

minC (U, o) = W1 + o
Prob{G; (X1,X2,t) <0} <pf ,i=1,2,3 (5.20)

St.
0<u; <10 =12

The limit failure rate p* is set to be 0.1 for all probability constraints. The performance

functions are given as:

G (X1,Xa,1) = X?Xo — 5Xit + (Xo + 1) 12 — 20
Gy (X1,X2,1) = (X1 + X2 — 0.1 = 5)* /30 + (X; — X2 + 0.2t — 12)*/120— 1 (5.21)
Gs (X1, X, 1) = 90/((X1 40.051)2 + 8 (X> +0.17) —sin(z) +5) 1

The three performance functions with different time instants are shown in Figure.5.1.
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Figure 5.1: Performance functions with different time instants

10

outer

The program starts by sampling 64 LHS samples [x{"", x"**"] for outer-loop and 36 LHS
samples [xll‘mer,xlznner,t] for inner-loop from the augmented PDF. The failure rates f of the
samples of outer-Kriging are evaluated with SILK method from the inner-loop Kriging, then
the failure rates and the outer-loop samples are used to train the outer-Kriging. Before the
TvRBDO optimization, the outer-loop is first updated with points that maximize EFF function,
the maximum number for updating outer-loop is set to be 50. After the EFF updating of the
outer-loop, this outer-Kriging is used to conduct TVRBDO.

The optimum results from each iteration of TVRBDO of the outer-loop is also added
into the outer-loop Kriging training sets. The TVRBDO optimization stops when the change
between iterations smaller than 1e-6. The final results are shown in Table.5.1.

The Time-variant Reliability-based optimization using Double-Loop Kriging (TRDLK)
proposed in this work converges with less function evaluations (137) than NERS (which is
based on the extreme value of the double-loop EGO TvR method). This advantage comes from
the advantage of SILK. TRDLK uses more function evaluations and iterations to converge,

but compared with NERS, it should be noted that, after the outer-loop Kriging is built, the

computational cost for TVRBDO will be minimal.
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Table 5.1: Comparison of Results with NERS and TRDLK

NERS TRDLK
Initial Design ~ [2.5000, 4.3555] [0,0]
Optimal Design  [3.6390, 4.0352] [3.6243 4.1553]
Optimal Cost 7.6642 7.7797
P1(0,5) 0.1216 0.0983
P#(0,5) 0.0836 0.0580
P}(0,5) 0 0
Nfunc 336 137
Niter 4 9

5.4.2 Two-bar frame structure

Another example is a two-bar frame structure subject to stochastic force F'(¢) taken from Hu &

Du[155] as shown in Figure.5.2. The two distances of 0103 and OO, are random variables

Figure 5.2: A two-bar frame structure

A-A B-B
D1

)

O3

F(t)

denoted as L and L,. Failure occurs when the maximum stresses in either bars are larger than
their material yield stress S| and S;. The design variables are the diameters of the two bars D
and D;. The distribution parameters of the random variables are listed in Table.5.2.

F (1) is considered as a stationary Gaussian process with exponential square auto-correlation
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Table 5.2: Random parameters of two-bar frame structure

Parameters Distribution Mean  Standard deviation

D, Normal Up, le-3
D, Normal Up, le-3
Ly Normal 0.4m le-3
L Normal 0.3m le-3
S1 Log-normal 1.7e8Pa 1.7¢7Pa
S Log-normal 1.7e8Pa 1.7¢7Pa

function given by:

(t01)) = oxp | — (L1 2 (5.22)
PF \li,tj) = exXp 01 .

The mean value and standard deviation of the Gaussian process are stationary as Ur = 2.2e¢6

and o = 2.0e5. The problem can be summarized as:

minC (p, up,) = Tz, 13, /4-+ 7 /122, + 7 13, /4
Prob {G; (X;,F(t),r) <0} <p; ,i=1,2 (5.23)

St.
0.07 < up, <0.25 =12

The limit failure rate p; for two performance functions are set to be 0.01 and 0.001 that

are given as:

Gi(X,t) = nD3S /4 — /L3 +L3F (1) /Ly
G2(X,t) = D382 /4 — LiF(1)/Ls

(5.24)

Similar to example 1, the TVRBDO is started by 64 LHS samples [x3™°", x2""] for outer-
loop Kriging and 64 LHS samples [xJiner, xinner| pinher) for jnner-loop. The stochastic process
F; is discretized over 10 intervals. The final results are shown in Table.5.3. As shown from the
results, this method uses fewer function evaluations than t-SORA[155] and the accuracy is

similar.
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Table 5.3: Comparison of Results with t-SORA and TRDLK

t-SORA TRDLK Analytical
Optimal Design  [0.2102 0.1964] [0.2017 0.1886] [0.2027 0.1894]
Optimal Cost 0.0290 0.0267 0.0270
PL(0,5) 0.0094 0.0102 0.01
P2(0,5) 0.0009 0.0009 0.001
Niunc 715 471 \

5.5 Conclusion

This chapter proposed a double-loop Kriging surrogate method to conduct time-variant relia-
bility optimization. This method consists in two separate Kriging surrogates, the inner-loop
Kriging evaluates the time-variant reliability using SILK method, and the outer-loop Kriging
is trained with the results of the inner-loop. After the out-loop Kriging is built, it is then
updated with EFF function at allowable failure rate . Two examples are used to validate the
effectiveness of the method. Compared to other existing methods, this method is simple,
accurate and easy to implement. The computational cost mainly comes from the searching of
points to update the inner-Kriging. After the outer-Kriging is built, the computational cost
for optimization will be minimal. However, due to Kriging is less competent for high-linear
problems and high-dimensional problems, this method may be less effective for such problems.
Also the inner-loop Kriging error will be accumulated to outer-loop Kriging, it’s recommended
to use a smaller Coefficient of variation (Cov) value, while this will inevitably increase the

total computational cost.
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Conclusion and Perspective

In this thesis, the subjects around the uncertainty quantification for wind turbine tower are
discussed. Wind turbine is a complex system, and the working environment includes multiple
sources of uncertainties. The thesis try to cover wide aspects from the fundamental mechanical
theories to applications of reliability-based design optimization. This final chapter gives a

summary about what are mentioned in the whole thesis.

Conclusions

During the lifespan of wind turbines, there exist multiple failure scenarios caused by the
existence of uncertainties. In Chapter.1, the fundamental theories of the structure dynamics of
wind turbine system and the design requirements of wind turbine structure are introduced ,
from the fundamental theories of BEM method to the structure Kinetic modeling of Kane’s
equations. With the help of these theories and simulation tools, many researchers try to
optimize the design of wind turbine structures considering different installation sites and
design load cases. Two types of methodologies :safety-factor-based and reliability-based
methodologies are compared. Reliability-based design optimization has the advantage of
balancing cost and reliability, avoiding risky or over-conservative designs.

Due to the uncertainties mentioned in Chapter. 1, uncertainty propagation methods widely
used in wind energy are summarized in Chapter.2, covering simulation methods, surrogate
models, sensitivity analysis and reliability analysis. To carry out reliability analysis or
sensitivity analysis, the most straightforward way is using simulation methods. However
simulation methods are time-consuming when facing complex engineering problems. So

surrogate models are widely used to replace the complex engineering models. Currently,
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different surrogate models are available, the choice for surrogate is very problem- oriented,
this is further discussed in Chapter.3.

In Chapter.3, the uncertainty propagation of inflow wind is discussed. 6 surrogate models
mentioned in Chapter.3 are firstly compared with several mathematical problems, the results
shown the capacities of each surrogate model , among which Kriging surrogate has shown its
adaptation to various problems. For the probabilistic characterization of loads on top of wind
turbine tower, it’s shown that the mean, maximum of the load responses can be approximated
with Normal distribution and Extreme distribution respectively. Then the surrogate models
are used for the propagation of inflow wind uncertainties. The results show that, it’s possible
to build a relationship between input wind uncertainties to the statistical characteristics of
response loads on top of the tower. The surrogate comparison shows KRG can achieve
lower generalized relative error e, and smaller Kullback-Leibler divergence dg . for the wind
uncertainty propagation problem. Once again Kriging has shown superiority in aspects of eg
and dgy criteria.

In Chapter.4, the RBDO problems is discussed, the SLA method is coupled with Kriging
surrogate, the design points of each RBDO optimization is used to update the Kriging surrogate.
The proposed Kriging-SLA method is very efficient compared with other sampling methods.
The accuracy of the proposed method is in accordance with the original SLA method without
surrogate models. This method needs fewer initial sample points and converges with the
minimum number of sample points. However, this method suffers the same limitations of
the gradient-based-method, like SLA or SORA, which are less accurate for highly-nonlinear
problems.

In Chapter.5, a method of TVRBDO using double-loop Kriging surrogates is proposed.
This method consists in two separate Kriging surrogates. The inner-loop evaluates the time-
variant reliability using SILK method, and the outer-loop Kriging is trained with the results of
the inner-loop. Before conduct TvRBDO, the outer-loop is firstly updated with EFF function
at allowable failure rate before TVRBDO. Two examples are used to validate the effectiveness
of the method. The method is simple, accurate and easy to implement. The computational cost
mainly comes from the searching of points to update the inner-Kriging, after the outer-Kriging

is build, the computational cost for optimization is minimal. However, due to Kriging is
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less competent for high-linear problems and high-dimensional problems, this method may be
less effective for such problems. Also the inner-loop Kriging error will be accumulated to
outer-loop Kriging. It’s recommended to use a smaller coefficient of variation value, however

this will inevitably increase the total computational cost.

Perspective

This paper focuses on the reliability-based design optimization of wind turbine tower, various
subjects are discussed. However the author thinks there exist several issues needed future
work.

Firstly, for the uncertainty propagation of wind turbine loads, besides prediction of the
probabilistic characteristics of responses, further study can be focused on the sensitivity of
inputs, the fatigue prediction of components, for example fatigue prediction of blade, tower,
etc.

Secondly, for the RBDO using SLA, this method is less effective for high-dimensional or
high-linearity problems. Additional work may ameliorate these drawbacks, for example using
gradient enhanced-Kriging [159] for the constraints or enhanced-SLA method [146].

Thirdly, for the TVRBDO, suitable engineering problems can be added, for example
the TVRBDO of wind turbine components considering fatigue and erosion. However, the
TvRBDO for wind turbine components is monochrome decreasing problem, so setting the

objective function as life cost or profit would be more interesting.
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Appendix A

Blade Element Momentum theory

A.1 Rankine-Froude actuator disc theory and Betz limit

The classical Rankine-Froude theory considers the balance of axial-momentum far-up and

downstream of the rotor for a uniformly loaded disc, the theory is established under the

following assumptions[13]-[15]:

1.
2.

The air is stable, homogeneous, in-compressible without friction.
There are infinite number of blades.
There is no rotational component of the flow.

The velocity through the disc is continuous.

. The pressure per unit over the disc is constant.

The model is shown in Figure.A.1.

Ve -
Po Pu |
-

Figure A.1: Idealized flow through a wind turbine modeled by an actuator disc

In the Figure.A.1, p, V are the pressure and speed at different locations, from far-up, to

far-wake.

For a 1D, uncompressed, steady flow, by applying the balance of axial momentum from
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far-up and downstream of rotor, the force of wind on the turbine, the thrust 7', can be expressed
as:

T = (Vo — Vi) (A.1)

where m = pA,V; is the air flow rate through the disk, A, is the area at rotor, p is density
of air, using the mass conservation and uncompressed presumption, A,V, = A, V,,.
Considering the conservation of kinetics, the Bernoulli function for each side of the rotor
are given:
Po+3PVa=putspV? A2)
pa+ 3PV =po+ 3PV

The pressure decrease at the rotor, Ap = p, — pd is calculated from Equation.A.2:
1
Ap=5p (V2-V7) (A3)

The thrust also be expressed by the decrease of pressure with the area at the rotor:

T = ApA, (A.4)

By equating Equation.A.1 and Equation.A .4, also considering i1 = pA,V,, the air speed at

rotor plane is:

V, = (A.5)

An axial induction factor a is defined as the ratio between the fractional speed decrease at

the rotor plane and far downstream:

Voo - Vr
= A.6
TV (A.0)
The power output equal to the thrust times the flow speed at rotor:
P=TV, (A.7)

Combining Equation.A.3 ~ Equation.A.7, the resultant thrust force and power output are
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given as:

T =2pA,a(l —a)V2
pAra(l —a) (A8)
P =2pA,a(l —a)*V3

Dividing the thrust force and power output in Equantion.A.8 by 0.5pA,V2 and 0.5pA, V2
respectively, the thrust force and power output are expressed in dimensionless coefficients Cr
and Cp:

Cr =4a(1—a)
(A9)
Cp = 4a(1 —a)?

Note that thrust coefficient Cp has a global optimum Cp™ at a = 1/3. This Cj** is called

Betz limit, indicating the maximum theoretical power output from a wind turbine tower.

A.1.1 Generalized momentum theory

The Rankine-Froude actuator disc theory is generalized to include effect of wake rotation of
wind turbine rotor as shown in FigureA.2: R is the radius at the rotor tip. The flow behind the
rotor rotates in the opposite direction of the rotor, while the axial component of the velocity
remains constant. The angular velocity the air relative to the blade increases from Q to Q + w,
where o is the speed imparted by the rotor. Similar to Equation.A.3, the pressure decrease

Ap' can be calculated as:

Figure A.2: Effect of wake rotation

Ap' = ;p((Q+(o)2—Qz)r2 (A.10)
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where r is the radius of the disc as shown in Figure.A.2.

Then the thrust introduced by angular momentum can be calculated by:

T = Ap'A, (A.11)

A similar angular induction factor @’ is defined as:

d=0/29Q (A.12)

The thrust can then be expressed as:

1
dT =4d (1+4d) 5,ogzrzzmdr (A.13)

Applying the conservation of angular momentum, the torque exerted on the rotor dQ can

be expressed by the change in angular momentum of the wake:

dQ = Amor* = pV2rrdror? (A.14)

The power of each blade element dP can be calculated as:

dP =QdQ (A.15)

A.2 Blade Element method

The blade element method is another method of analyzing the forces of blades based on the
geometry of the blade. As shown in Figure.A.3, along the blade, it is divided into small
independent sections, with the width of the section being dr, the length of the section being c.
o is the angle between the inflow and the chord line, 0 is the sum of pitch angle and blade
twist angle, ¢ is the angle between inflow with respect to plane rotation, which is the sum of

0 and ¢ .
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Figure A.3: Blade element geometry

On an airfoil, the forces are resolved into two forces: drag force Fp , and lift force F , and

one moment M. These forces are then expressed as coefficients:

C — Fy /Element

0.5pV2,c (A.16)
Cr— Fp/Element

0.5pV?2

rel €

Here V. is the incoming flow velocity relative to the airfoil, which can be derived from

geometry relationship and Equation.A.6 :

Vref = V°°(1 —a)/SiIl((P)

. (A.17)
tan(¢) = QD;((H_—((;’))

For a wind turbine rotor consists of B rotors, the differential thrust 47 and differential

torque dQ can be expressed as:

dT = B3pV2 [CLcos(9) +Cpsin(9)] cdr (A.18)

dQ = B3pV2,[Crsin(¢) — Cpcos(¢)] crdr

A.3 Blade element momentum theory

As the name indicates, the blade element momentum theory (BEM) is established by com-
bining the thrust and torque equations from momentum theory and blade element theory
(Equation.A.13, Equation.A.14, Equation.A.18). Before applying BEM theory, the thrust
and torque of Equation.A.13 and Equation.A.14 are multiplied by a tip-loss factor F' that is

summarized by Wilson[16] to account for the finite number of blades and finite radius of
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blades.
F= <2> cos™! [e_m] (A.19)
T
Then the equations results in:
a sin?(¢)] [ Bc\ (CL Cpsin(¢)
(o) oo = o) () [ aess] o

B B @) daads] o

To the equations above for the induction factor a and @', the drag coefficient Cp is set to
zero to simplify the problem, which according to Welson[16], this will add negligible errors.
The final results that after algebraic manipulation, considering Cp = 0 and Equation.A.15,

Equation.A.17 is summarized as:

__4Fsin(¢) (cos(@)—sin(¢))
CL=—% (sin(@) +A,cos(¢)) 422
Cp= fz | ) o) “Ain@) (@) | (A23)
| a1 ] 2

Here 6 = Bc/27r is the solidity radio, A = QR /V. is tip speed radio, A, = Ar/R is the
local speed ratio.

The lift coefficient and power coefficient are functions of angle attack &, annular radius
r, wind speed Vj, number of blades B, blade radius R, pitch, twist, chord distribution ¢, and
rotation speed Q. These are used for calculating the response of wind turbine system and

optimizing the performance of wind turbine tower.



