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PREFACE

Blockchains are one of the most appealing technologies over the last years, both for scient-
ists and the general public. Blockchains are distributed ledgers that aim to o�er transparency,
integrity and many more advantages over their centralised counterparts. Blockchains were
“revealed” and became popular thanks to the creation and rise of the cryptocurrency Bitcoin.
Over the years, blockchain technologies become more and more popular with an exceptional
peak in 2017. Blockchains are becoming mainstream technologies, as there is an observatory
for blockchains established by the European Commission, blockchain forums in many coun-
tries, blockchain start-ups are �ourishing, scienti�c conferences are discussing the topic, and
even some scienti�c conferences are now speci�cally dedicated to the technology, etc.

The blockchain technology promises, thanks to its integrity and transparency properties
to be useful and interesting in various domains, and not only for �nancial systems. However,
many questions and doubts �oat around it. Is it environmentally viable? Is the technology
even ensuring its promises? Can blockchains be used in real-life settings, etc. For instance,
Bitcoin, the most popular blockchain system is not environment friendly since it requires lot
of computing powers. It does also not o�er strong consistency, because participants may have
di�erent information at the same time, which is not desirable for critical systems.

Among Bitcoin’s alternatives, an interesting class is the committee-based blockchains, in
which updates are done by committees, i.e., subsets of participants. Committee-based block-
chains have many advantages, for example, they do not need huge computations to work, and
they guarantee consistency under known conditions by relying on research from distributed
systems. However, these blockchains were not formally studied. In this thesis, we de�ned
the problem they solve, and as use case, we analyse the correctness of one of the most used
committee-based blockchain; these contributions have been published in the proceedings of
peer-reviewed conferences [15, 16, 17].

The distribution of rewards to a committee when some of the participants may be faulty
is important but was not studied in the context of blockchains. In this thesis, we study that
question from a fairness point of view and provide a formal de�nition of the fairness problem
for committee-based blockchains. Furthermore, we study the impact of the communication
on the existence of fair reward distributions. This has been published in the proceedings of
the following peer-reviewed conferences [16, 18].

The costs and rewards also allow to exhibit rational and sel�sh behaviours in the system,
participants who want to maximise their gain while incurring minimal (or even no) cost. It
is important to ensure that the system is resilient to such participants. Our last and main
contribution of this thesis relies on the combination of approaches from computer science
and economics. We propose a model to analyse the behaviour of participants in committee-
based blockchains when participants can have di�erent interests; by using the model, we show
that even though blockchain properties cannot be always guaranteed, under some conditions,
there are situations where the blockchains’ properties are satis�ed. Part of these contributions
is published in the proceedings of peer-reviewed conferences [12, 13, 14].
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CHAPTER 1

INTRODUCTION

Contents

1.1 Blockchains & Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Interdisciplinarity and Applications of Blockchains . . . . . . . . . . 3

1.1.2 Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Contributions and Organisation . . . . . . . . . . . . . . . . . . . . . . 6

Alice sells cards, and Bob wants to purchase them, but they do not live in the same place.
Alice does not want to send the cards to Bob unless she has proofs that Bob indeed has enough
funds and made the payment. In the same fashion, Bob does not trust Alice and wants to
ensure that she is sending the cards. This is not an issue since there is a classical solution:
using an intermediary. To achieve the exchange between Alice and Bob, Carl will serve as an
intermediary and will verify if the operation can be done. Both Alice and Bob will send their
products to Carl and pay intermediation fee to Carl. Once Carl receives the goods, he can send
the cards to Bob, and the funds to Alice; the exchange is then over.

To make the operation going as smoothly as possible, Carl needs to be trusted by both Alice
and Bob, and he should correctly do his tasks. We can ask ourselves what happens when Alice
or Bob do not trust Carl. Such distrust can be explained by Carl’s history of bad behaviours,
or the distrust can be the result of fear over the big powers Carl has in hands; Carl can ask for
too much intermediation fee, or he can take the cards/the funds and then disappear.

The fear of Alice and Bob can be easily explained because Carl can do whatever he wants
once he receives the goods. The operation system is too centralised. To avoid that, one may
propose to use a huge number of people as intermediary at the same time, i.e., decentralising
and distributing the validity veri�cations. That is basically the proposition of Bitcoin [128]1:
make �nancial exchanges in an open setting between any set of individuals, where failures
can happen, participants can behave maliciously, and participants do not necessarily trust one
another. In Bitcoin, everyone can see and verify the validity of all transactions.

The cryptocurrency Bitcoin, as well as most of the other cryptocurrencies, relies on the
distributed ledger technology: blockchain. As of writing this manuscript, blockchain is one
of the most appealing technologies since its introduction in the Bitcoin’s white paper [128]
in 2008. Blockchain systems, similar to peer-to-peer systems in the early 2000s (e.g., Napster
[109]), take their roots in the non-academic research. After the release of the most popular

1 Actually, Bitcoin does only consider funds’ validity and �nancial exchanges; not real life objects.
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Figure 1.1: Example of an Ideal blockchain

blockchains (e.g., Bitcoin, Ethereum [159], etc.) which have a speci�c focus on �nancial trans-
actions, the huge potential of blockchains for various other applications ranging from notary
to medical data recording became evident. In fact, blockchains o�er, among other advantages,
transparency, and the information once stored in the ledger cannot be removed nor corrupted.

Even with all these proclaimed or promised advantages, can we really trust the blockchain
technology? To put it another way, do they work? Are they really useful? Do we have an
interest in using them? These are somehow the questions that drove this thesis. The main
questions addressed in this thesis, and presented in this manuscript are:

• whether blockchains are correct, i.e., do they achieve what they are expected to do; and

• whether blockchains can be used in an environment where each user wants to maximise
its personal gain.

In the following, we will explain what a blockchain is, the various interests in the technology,
and our contributions.

1.1 Blockchains & Context

In blockchain systems, the only way participants communicate is by exchanging messages,
and they aim to maintain a distributed ledger (fully decentralised, with no central authority),
i.e., all participants have locally the exact same ledger, and information added in the ledger of
one participant should be added in the ledger of all the other participants in the same order.
Blockchains should be resilient to malicious attacks. The distributed ledger should satisfy
some guarantees:

• Tamper-resistance: modi�cation of an information already in the ledger should be di�-
cult, even impossible to achieve;

• Append only construction: new information can be added only at the end.

In particular, it should not be possible to modify (remove, change, etc.) information already in
the blockchain, hence the advantages of the “append-only” guarantee.

To achieve the above properties, a blockchain consists of a continuously growing history of
ordered information, encapsulated in blocks. Information (blocks of data) can be anything de-
pending on the applications, for instance, it can be �nancial transactions as in Bitcoin, it can be
information about documents for tracking modi�cations, it can also be programs called smart
contracts [147] that can be executed by everyone locally, etc. Smart contracts may help to auto-
matically execute some set of instructions whenever an event happens (e.g., two con�ictual
information in the blockchain).
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Each block (pack of information) in the blockchain is linked to the prior block, as presented
in Figure 1.1. All the information in the blockchain is then always ordered. The blockchain
itself is a distributed ledger replicated among the di�erent participants.

To ensure that each block is uniquely identi�ed, and is linked to the prior block, block-
chains rely on mathematical functions providing the uniqueness of identi�cation: collision-
resistant hash functions, i.e., each block contains the hash of the previous block. Hash func-
tions basically allow producing a unique identi�er from a sequence of data such that any (even
slight) modi�cation in the input data results in a completely di�erent identi�cation. To pre-
serve the chain structure, the participants need to agree on the next block to append in order to
avoid the so-called forks, where two participants or more do not have locally the same chain.
When one participant adds some information in its ledger, all other participants should be
aware of that, and add the same information in the same order. Many techniques exist and
were proposed to select for each block one participant that will have the right to add the next
block. These techniques are diverse, and many have some issues, either technical or societal.
For example, Bitcoin, the most known blockchain application demands high energy consump-
tion, which is not good, especially concerning to the ongoing climate change. Bitcoin and its
variants do not provide strong consistency, i.e., forks can happen. Forks are an important issue
for the adoption of blockchain technologies in critical applications (e.g., �nance). Moreover, in
most applications, forks resolution is done only with probabilistic guarantees, where determ-
inistic guarantees are desirable in various applications.

In this thesis, we study techniques to add new information (blocks) in the blockchain by
ensuring that forks will not happen under clear and deterministic assumptions.

Even if all participants have the ability to add new blocks in the blockchain, not neces-
sarily everyone wants to do so, and not everyone is always selected to add the next block.
Participants that want to participate in the addition of new blocks in the blockchain are said
to maintain the blockchain, and we call them block creators. The creation of blocks and the
procedure to make a block accepted by the others may be costly for a participant; therefore, to
incentivise participants to serve as block creators, once a (set of) participant successfully adds
a block to the blockchain, it is rewarded for its work. Rewards should be given fairly to the
di�erent participants by respecting their work and investments; however, how to distribute
the rewards and whether the rewards are really an incentive are complicated questions that
we studied and discussed in this manuscript.

1.1.1 Interdisciplinarity and Applications of Blockchains

Although the �rst known blockchain system (Bitcoin) is a �nancial application, the research
questions blockchain systems raise span over multiple scienti�c �elds.

Medicine and Health. In health, for instance, for the management of sensible (personal
and health) related data, in particular, when such data should be used by di�erent services,
there is a need to protect both anonymity and integrity of the information [142]. Blockchains
are especially built to protect that. More speci�cally, the use of smart contracts to give reading
rights only to special users, for instance, only medical doctors from speci�c medical institu-
tions.

The Internet-of-Things (IoT) which connects multiple devices using the Internet (or other
communication protocols) is of interest in health [97]; it helps for tracking and tracing patients
for therapy monitoring, treatment follow-up, etc. Some blockchains are especially dedicated
to IoT devices (e.g., [137]). Studies show the advantages and research questions raised by using
blockchain systems for IoT in healthcare [67].
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Economics & Finance. Economics is the social science that studies the behaviours and
the di�erent interactions of participants in given situations. Since human takes big roles in
blockchain systems, and their behaviours may seem sometimes unexpected, it is important to
study what they are exactly doing, and understand why they are doing so [31]; this is a line of
research using tools from the �eld of game theory. Game theory is the branch of mathematics
whose goal is to study the optimal decision-making process in presence of multiple decision-
makers. Another topic of interest is the impact of blockchain systems in �nancial markets by
proposing models to match and then predict the evolution of the systems (e.g., [139]).

Finance is the topics where start-ups and most communication about blockchain are tar-
geted to. Blockchains will change the �nancial system is the promise from many “gurus”.
Blockchains emphasize some advantages decentralised and distributed solutions may have
over centralised solutions. The comparison between the advantages, drawbacks, and when
one approach is better than the other is highly studied. In particular, blockchains may give
rise to new �nancial applications that are impossible using traditional centralised approaches
[119], since they provide new tools [138].

Law. The link between law and blockchains may seem far-fetched. Especially when the
obvious link of smart contracts are neither smart nor are contracts. However, one can note
that in blockchains, it is wanted that information should not be removed. This kind of prop-
erty violates the law to be forgotten, and more generally the General Data Protection Regulation
(GDPR) [71] of the European Union. The usability of such technology is then highly studied.
We can however see many applications that can be managed more e�ciently with blockchains.
For example, notary or real estate, where information can be secretly kept in a non-violable
fashion and the ownership can always be proved. In the same line, we can also name identity
management. The question of code is law, i.e., whether code can be regarded as law [114], or
how code should be considered by law has taken a renewed interest with the rise of block-
chains.

Computer science. Computer science is probably the science that has the most �elds
interested in blockchains. We can highlight for instance cryptography [100], which is at the
core of blockchains, to guarantee the veracity of information sent, and of sharing securely
information. Network science is also highly touched; participants in blockchain systems com-
municating to one another usually over the Internet, or other means that are studied by net-
work scientist. Distributed systems [117] have a lot to say related to blockchains; multiple
participants agreeing on common information is one of the most studied questions in the
�eld. Formal methods [158], in particular formal language, is also interested in blockchains
and more speci�cally in smart contracts [147]; smart contracts are written in languages, and
having a good and useful language is important to guarantee that things can be e�ectively
done as expected.

Video Games. Less of a science, the video game industry is also interested in the topic
[125]. First, the existence of a currency existing only in their ecosystem is something they
aim to do for a long time. Moreover, the fact that information can be stored and checked by
anyone having the correct access, and that such information cannot be modi�ed may be a
good addition to ranking competitions in video games.

Traceability. We �nish o� this short listing with traceability. We can take the example of
supply chain in the food industry [49], where food scandals are the main topics of the media
every once in a while, mostly due to lack of frequent and systematic quality control. With
the use of blockchains and smart contracts, we can foresee the automation of the veri�cation
processes [98]; all new information added can be certi�ed and the veri�cation of their control
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validity can be done every time and automatically, allowing to give more con�dence in the
�nal product, and hence avoiding scandals.

Most of these research questions cannot be replied by one �eld alone, since none of them
has the full legitimacy regarding blockchains, they need insights from one another. We note
that blockchain systems can be a great pretext to promote and to achieve more interdisciplin-
ary research.

There are many more topics that show interest around blockchains. In the above descrip-
tions, we just highlight some of them. Blockchains are quite a nice and strong candidate to
foster multidisciplinary work. We present the following example that drove this thesis.

In all applications targeting the use of blockchains, decentralisation is a key point of why
they are interested in the technology. Being interested in studying the correctness of block-
chain systems, because of their intrinsic decentralised nature, techniques from distributed
systems should be considered, since they are perfect and made for those analyses. Being also
interested in studying the behaviours of participants in blockchain systems, the available tools
from distributed systems are not su�cient alone; techniques from other �elds such as game
theory should be considered. Therefore, during this thesis and in this manuscript, we studied
blockchain systems by combining methodologies from the following two �elds: distributed
systems and game theory detailed below.

1.1.2 Distributed Systems

In distributed systems, many participants communicate to achieve common goals. Participants
locally use the same algorithm, called a distributed algorithm [117]. The algorithm is said to
be correct with respect to a given problem or a task when the task is completed successfully.
Some participants may fail (computer bugs, malicious behaviours, etc.) and not execute the
algorithm; therefore, a desirable property is to ensure that the algorithms designed are tol-
erant and resilient to such failures. The design and analyses of distributed algorithms are
fundamental and complex, and is a research �eld on its own: distributed computing, which can
broadly be de�ned as the study of distributed systems.

Distributed systems usually deal with two kinds of systems, (i) on the tiny or small scales,
shared memory also called concurrent systems, where all participants have access to the same
shared memory where they can read and write; and (ii) in large scales, message-passing distrib-
uted systems, where the only interactions between participants are done by sending messages
to one another. Blockchain systems are exactly message-passing systems, and so the decades
of research in the �eld of distributed systems are useful to study and analyse blockchains from
a technical and correctness point of view.

1.1.3 Game Theory

Although works in game theory existed in the 1930s, the �eld of game theory was really
introduced by the book Theory of Games and Economic Behavior from the mathematician John
von Neumann and the economist Oskar Morgenstern in 1944 [156].

Even though game theory is mostly used in economics, it has multiple applications in
many other sciences, whenever interactions may happen. That is exactly the case of distrib-
uted systems such as blockchains. Using game theory, we can represent the multiple inter-
actions existing between participants, and make predictions about the rational behaviours of
the participants in the blockchain, where rational is taken to mean, “does the best for one-
self”. Analysing the behaviour of participants in a system can allow making predictions about
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how participants may behave in the system; it also allows responding to the question: can
blockchains be really used in real-life scenarios?

It is important to mention that game theory is studied in computer science. The �eld of al-
gorithmic game theory [130] is a �eld at the interface of both computer science and economics.
However, the works in algorithmic game theory are mostly algorithmic, i.e., they study ques-
tions like (i) how complex is the computation of stable situations, (ii) does there exist optimal
or stable situations given some settings, etc. They also use game-theoretical tools to design
algorithms for given problems. We have to stress out that in (classical/economical) game the-
ory, the study is about the participants’ behaviours, whereas in algorithmic game theory the
analyses use the behaviours of participants to design algorithms. Once these algorithms are
designed, one can actually do a game-theoretical analysis of them. To understand and analyse
the behaviours of participants in blockchain systems, as studied in this thesis, the economical
approaches �t the best.

More generally, one can wish to see extended and more generalised collaborations between
computer science and economics. Such collaborations will give the necessary insights between
the behaviours of both computers and humans in a society where they are more and more
intertwined. We take a step in that direction by analysing algorithms inspired by real life
(currently in use) blockchain algorithms in the presence of rational decision-makers.

1.2 Contributions and Organisation

Recall that all participants in the blockchain systems although having the ability to add new
blocks in the blockchain, do not necessarily want to do so; and not everyone is always selected
to add the next block. The ones who add, try to add, or simply have the rights to add new blocks
in the blockchains are the block creators.

Many mechanisms exist for selecting which participant(s) has/have the right to add the
next blocks in the blockchain; similarly, di�erent mechanisms and proposals are made on how
rewards should be given to ensure some desirable properties. The key component to handle for
using properly a distributed system such as a blockchain is agreeing on common and shared
information. Participants need to have consensus on the blockchain. In this doctoral thesis,
we study generally how to use distributed consensus, and speci�cally decades of work from
the distributed systems community, to build a blockchain. We are moreover interested in
the impact of sel�sh participants (wanting to maximise their gain with minimal e�ort) of the
consensus.

This manuscript is organised as follows. Chapter 2 presents the di�erent models and no-
tions used throughout the manuscript; Chapter 3 provides a state-of-the-art of the research
related to the studies done in this thesis; the technical results of this thesis are presented in
Chapters 4 - 6; Chapter 7 summarises the di�erent results, and gives an overview of interesting
research questions opened by or closely linked to the results from this thesis.

Before going to the next chapter, we �rst give a glance of our contributions.

Committee-based Blockchains. Building a blockchain is quite challenging, even if the
number of new blockchains is following an exponential growth. To verify if a blockchain
proposal is correct, one needs �rst to understand what a correct blockchain means. In this
thesis, we focus on a speci�c type of blockchains called committee-based blockchains. In these
blockchains, for each block, there is a subset of participants, a committee that produces that
block, while in most other blockchains such as Bitcoin, the goal is to delegate that work to
exactly one participant. Under some assumptions, they o�er guarantees of consistency of
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the blockchain, i.e., the blockchain will always have the ideal chain structure (Figure 1.1).
Moreover, committee-based blockchains rely on committees to maintain the blockchain, they
use techniques from decades of research in the �eld of distributed systems, speci�cally on
the problem of consensus. Committee-based blockchains were more often used in consortium
settings, where the block creators are known and clearly de�ned.

In open settings where anyone can participate, committee-based blockchains were not
studied. In this thesis, we analyse how committee-based blockchains can be used in open set-
tings. In more details, we formally de�ne the problem committee-based blockchains are solv-
ing: the Byzantine repeated consensus problem; we then examine a popular committee-based
blockchain against this problem and study its correctness. Committee-based blockchains are
now considered as an important class of blockchains that are used or plan to be used in many
applications.

These contributions have been presented and published in the proceedings of peer-reviewed
conferences [15, 16, 17].

Fairness De�nition and Analysis. Participants in blockchain systems, and in particular
block creators (those maintaining the system by adding new information) are rewarded for
their work. Knowing that some participants can have unintended, malicious, or faulty beha-
viours; to prevent rewarding them more than their correct counter-parts, the designer of the
protocol needs to guarantee a certain fairness in the reward distribution, in the sense that each
participant has a share of the rewards proportional to its e�orts.

The rewarding is a new aspect introduced by blockchain that was not really considered
and not studied in distributed systems. More speci�cally, in committee-based blockchains, re-
wards need to be shared inside the committee, a fair repartition is a good property users may
like. However, there was a lack of studies on the topic, and there was no clear de�nition of the
problem. Our �rst contribution regarding the fairness of committee-based blockchains is to
formally de�ne the fairness of reward distribution in committee-based blockchains. Re�ect-
ing on when fairness can be achieved, our second contribution is to show the impact of the
communication delays on fairness.

Our contributions on the fairness of committee-based blockchains have been presented and
published in the proceedings of peer-reviewed conferences [17, 18].

In Chapter 4, we present both our contributions related to the correctness of committee-
based blockchains, as well as analyses and discussions about fairness in those blockchains.

Game Theoretical Analysis of Committee-based Blockchains. As said above, block
creators are rewarded for their work. However, it should be noted that executing the protocol
might be costly. One may ask what are the behaviours of “sel�sh” participants, i.e., participants
that want to have more reward when at the same time paying little or no cost.

To understand the impact of these “sel�sh” participants on the system, we model their be-
haviours in committee-based blockchains. Using economical approaches and game theory, we
study the outcome of systems where the participants are sel�sh. The system studied is inspired
by real-life committee-based blockchain protocols. We theoretically analyse the behaviours of
the participants under di�erent reward schemes and show that there are situations where the
blockchain properties are guaranteed, however, there are many other outcomes where the
properties are violated; moreover, our analysis shows that rewarding all the committee once
they produce a block seems to be a better scheme than rewarding only committee members
whose works are visible. These contributions are accepted and will be presented and published
in the proceedings of the following peer-reviewed conference [13].
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Furthermore, as done in distributed systems, and since they are present in real settings, it is
interesting and important to consider the presence of malicious participants in the system. To
do such analysis, it is important to have the necessary tools. In fact, malicious behaviours and
obedient participants are not often considered in economical analyses. Our �rst contribution
on the question is to present a model that can encompass all three types of participants: (i)
malicious who wants to prevent the blockchain properties to be achieved, (ii) obedient who
always follows the prescribed algorithms, and (iii) strategic/sel�sh participants who want to
increase their personal gain.

Using that model, we study outcomes resulting from the di�erent types of behaviour
in committee-based blockchain systems where both malicious and sel�sh participants are
present. A major contribution is to show that under certain conditions, i.e., bounds on the
number of malicious participants, etc., there are outcomes where the blockchain properties
can be guaranteed, however, there are other outcomes where the properties are violated.

Part of these contributions have been presented and published in the proceedings of peer-
reviewed conferences [12, 14], and has been awarded the best student paper award of [12].

Chapters 5 & 6 address the analyses of rational behaviours in committee-based block-
chains.
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John von Neumann said “the sciences . . .mainly make models”. Models are an essential part
in the scienti�c knowledge. A proved result is applicable only in the model that was used. If
one wants its result to be applied in real environments, it has to use a model that re�ects or
captures the essence of what is studied and its environment. Once such a model is de�ned,
some realistic interpretations of the results can be done, and some predictions can be proposed.

In this thesis, we did not intend to create new models for blockchains systems. Blockchain
systems being in nature distributed systems, they mainly inherit models from the distributed
systems literature. The literature of distributed systems is quite vast, and realistic models
have been proposed. In this chapter, we introduce the di�erent models that we will use. All
following chapters will recall the model they use and for more in-depth details, the reader can
come back to this chapter.

The models take into account the number of participants in the systems, their behaviour,
how connected they are, how they can exchange information, etc. This chapter also aims at
providing the basis and notations used in the following chapters.

9
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2.1 Notations

We introduced in this section some notations we use throughout the manuscript.
Let S be a set, we denote by |S| the cardinality of S; and 2S or℘(S) is the power set of S,

the set of all subsets of S.
Let b ∈ {false, true} be a boolean value. 1b denotes the indicator function, which

outputs the value 1 if b = true, and 0 if b = false. Let b1, b2 ∈ {false, true} be two
boolean variables. The formula b1 ∧ b2 is evaluated at true if and only if b1 = true and
b2 = true, and at false otherwise. The formula b1 ∨ b2 is evaluated at true if b1 = true
or b2 = true; if b1 = b2 = true, b1 ∨ b2 is also evaluated at true, i.e., b1 ∨ b2 is evaluated
at false if and only if b1 = b2 = false. The formula ¬b is evaluated at true if and only if
b = false.

LetA be a non-empty set. We denote byA∗ the set of all �nite concatenations of elements of
A, i.e., if u ∈ A∗, then either u = ε, or ∃k ≥ 1 : u = u1 · . . . ·uk, where ∀i ∈ {1, . . . , k}, ui ∈ A.
The operation · represents the concatenation, the empty word ε is such that ∀a ∈ A, a · ε =
ε · a = a, and we write A+ for the set A∗ \ {ε}. Note the following exception, N = {0, 1, . . . }
is the set of natural numbers, and N∗ = N \ {0} = {1, 2, . . . } is the set of all positive natural
numbers.

LetA andB be two events of probability. We denote by ¬A or Ā the complementary event
of A. We denote by P[A|B] the probability of having event A assuming that eventB happens.
Let λ be a random variable, we write E[λ] for the expected value or the average value of λ,
and we denote by E[λ|A] the expected value of λ assuming that event A happens.

2.2 System Model

2.2.1 Participants

A blockchain system is composed of a set Π of participants or players, or processes communic-
ating by exchanging messages over a network. Messages represent (a batch of) transactions.
We consider that messages have �nite length and can be arbitrary sequences of information.

A participant models a computer program, the couple human/machine, etc., that takes part
in the blockchain system. In this manuscript, we will use the term participant to refer both to
players and processes. The use of a single term throughout the manuscript is for the sake of
consistency.

2.2.1.1 Execution Model

Each participant has an internal state and proceeds in rounds. At the end of each round, the
participant goes to the next round and so on. A round is composed of three phases:

• A send phase at the beginning of the round. It is during the send phase that a participant
can send messages to the other participants. The message to send should be prepared
during the previous rounds, and as for the send phase of the �rst round, an initial (de-
fault) value may be sent. We consider that the send phase is executed atomically no
matter the number of messages or the size of each message. Atomically means that if
one message is sent then all messages prepared for this phase are also sent. After the
send phase, the participant goes to the delivery phase.

• A delivery phase: During this phase, a participant collects from the network messages
previously sent. These messages can be from the current round or the previous rounds.
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We consider that participants have an unbounded memory, i.e., they can store all mes-
sages they collect. When a participant e�ectively collects a whole message and can pro-
cess it, we say that it has delivered the message, otherwise, even if part of the message is
collected, it has not delivered the message. The delivery phase has a �nite and positive
duration. The duration represents the time the participant plans to wait for collecting
messages sent. After its delivery phase, the participant goes to the compute phase.

• A compute phase at the end of the round. In compute phases, a participant uses all
messages it delivered to update its internal state and to prepare the messages for the
next round. After the compute phase, the participant goes to the send phase of the next
round.

Hence, participants receive information from their environment by means of messages, they
use the received information in their computations and they produce messages to the envir-
onment.

The duration of the send phase and the duration of the compute phase are negligible since
they are absorbed by the duration of the messages exchanges. We then consider the duration
of one round as being exactly the duration of its delivery phase. For the same or for di�erent
participants, di�erent rounds can have di�erent duration.

Formally, the execution of each participant can be viewed as an input/output automaton
[117]. An input/output automaton A is a tuple (Signature, States, Init, Transition), where:

• Signature is the actions signature of the automaton. It is a non-empty set of internal,
input, and output actions;

• States is a non-empty set of states;

• Init ⊆ States is the set of initial states;

• Transition ⊆ States× Signature× States is the transition relation.

We assume that participants execute their automata in a sequential way, i.e., they execute
one step of instruction (computational or communication steps) at a time. This does not pre-
vent them from executing several threads of instructions with appropriate multiplexing.

Let n > 0 be a positive integer, and let Ai = (Signaturei, Statesi, Initi, Transitioni) be
some input/output automata, ∀i ∈ {1, . . . , n}. We say that the composition of the automata
A1, . . . ,An, is the automaton A = (Signature, States, Init, Transition) if and only if:

• Signature = tni=1Signaturei, where t is the disjoint union;

• States =
∏n

i=1 Statesi;

• Init =
∏n

i=1 Initi;

• If ((s1, . . . , sn), a, (d1, . . . , dn)) ∈ Transition, then ∃i ∈ {1, . . . , n} : a ∈ Signaturei and
(si, a, di) ∈ Transitioni, and ∀j 6= i, dj = sj .

When the automaton of a participant runs, it generates executions, where an execution is
a sequence of alternating states and actions. The execution of the composition of automata of
all participants in the system is called the global execution, or just the execution of the system.
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We consider, in Chapter 4 that participants are asynchronous, and in Chapters 5 & 6 that
they are synchronous. The notion of participant synchrony refers to the speed of execution of
the participants [62]. The participants are synchronous if they all take the same amount of
time to execute an instruction. The participants are asynchronous if they are not synchronous;
in more details, one or many participants can remain at the same instruction for an arbitrary
long but �nite amount of time, while the others continue their execution. In asynchronous
systems, the speed of execution of one participant can di�er from the speed of execution of
another participant; the relative speeds of participants are not common knowledge and are
unbounded.

We assume that there is a �ctional global clock that takes values in T, i.e., where T = N,
the system evolves in discrete time. When we refer to a point in time or to a date, it is with
respect to the global clock. To represent the possible di�erences in participants’ speed, we
assume that each participant has a local clock. We note that participants do not have access to
the global clock. When the participants are synchronous, their local clocks are synchronized
among each other. When the participants are asynchronous on the other hand, their local
clocks are not necessarily synchronized among the participants.

2.2.1.2 Merit of Participant

In blockchain systems, for a given time, some participants may have special roles. To have
such role, some blockchain systems consider the computing power of participants, and other
blockchain systems use other metrics. To generalise that idea, we introduced in this thesis the
notion of merit of a participant.

When a participant is part of a blockchain system, it has a certain merit represented by
a real number between 0 and 1. The merit of a participant is an abstraction of its e�ort in
constructing and maintaining the blockchain. The merit of a participant is represented by the
proportion of its e�ort over all e�orts in the system. The merit of a participant may vary over
time. At any time, the sum of the merit of all participants is equal to 1. ∀t ∈ T, ∀i ∈ Π, and
let µ(i, t) be the merit of participant i at time t, we have µ(i, t) ∈ [0, 1] and

∑
i∈Π µ(i, t) = 1.

2.2.2 Communication Network

In order to communicate, participants are linked to each other over a network. A network is
a couple (Π, E) where Π is the set of participants in the system, and E ⊆ Π× Π is the set of
bidirectional communication channels (edges) between participants, i.e., ∀i, j ∈ Π, if (i, j) ∈
E, then (j, i) ∈ E. Let i, j be two participants, if (i, j) ∈ E, there exists a communication
channel between them; we say that i is a neighbour of j and vice-versa. If (i, j) /∈ E, there is
no direct communication channel between i and j, they are not neighbours of each other.

We say that there is a path between two participants i and j if i and j are neighbours, or if
there exists a �nite sequence of participants π1, π2, . . . , πn, where n is the length of the path,
such that the following conditions hold:

• π1 = i, called the source;

• πn = j, called the recipient; and

• ∀k ∈ {1, . . . , n− 1}, (πk, πk+1) ∈ E.

When between any two participants there exists a path, we say that the network is connected.
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We say that two paths are (node) disjoint if they do not share any participant in common
except the source and the recipient. A network is k-connected if and only if it contains at least
k disjoint paths between any two participants.

We assume that the networks considered in this manuscript are always connected. We
also consider that the participants do not knowE: they do not know the exact topology of the
network.

Participants can send messages to their neighbours through this network. We assume that
the network does not create nor drop messages. A message sent cannot get lost.

The networks presented are called static. A more general class of network exists where
the communication channel between participants can vary over time (being present or not).
We say that the network is dynamic. Dynamic networks can be modelled using Time Varying
Graphs as de�ned by Casteigts et al. [44]. A Time Varying Graph is a tuple (Π, E, ρ, ζ), where:

• (Π, E) is the underlying static graph. If ∃i, j ∈ Π such that (i, j) ∈ E, it means that
there is a point in time when i and j are neighbours.

• ρ : E × T+ → {0, 1}, is the presence function, such that ρ(e, t) = 1 if and only if the
communication channel is active at time t.

ρ indicates whether the channel given in parameters is active at the given time.

• ζ : E × T → T, is the latency function. It indicates the time it takes to cross a given
communication channel at a given time.

We note that the latency of a communication channel can vary over time.

The above notion of path cannot be applied in Time Varying Graph. The notion of time should
be taken into account. We say that π1, . . . , πn is a dynamic path between participant i and j if
∃t1, . . . , tn ∈ T such that:

• π1 = i, πn = j, and ∀k ∈ {1, . . . , n− 1}, (πk, πk+1) ∈ E;

• ∀k ∈ {1, . . . , n−1},∀t ∈ [tk, tk+ζ((πk, πk+1), tk)], ρ((πk, πk+1), t) = 1; for all k ≤ n−1
at date tk, there exists for a su�ciently long enough time a channel for πk to send a
message to πk+1;

• ∀k ∈ {1, . . . , n − 1}, ζ((πk, πk+1), tk) ≤ tk+1 − tk, for all k ≤ n − 1, messages sent by
πk to πk+1 are received before tk+1.

A static network (Π, E) is a special class of a Time Varying Graphs (Π, E, ρ, ζ) where ∀t ∈
T,∀e ∈ E, ρ(e, t) = 1, the communication channels if they exist are always active. The
latency or message transmission delay is discussed in Section 2.3.2.

2.2.3 Dynamicity of the System

The number of participants in a blockchain system can be known or not, and �nite or not
bounded. Blockchain systems can be classi�ed into di�erent classes, depending on who can
access the system, and who can participate in maintaining it. In particular, blockchain systems
are often open, i.e., new participants can enter in the system at any point in time.

A dynamic distributed system is a continuously running system in which an arbitrarily large
number of participants are part of the system during each interval of time and, at any time, any
participant can directly interact with only an arbitrary small part of the system [25]. Dynamic
distributed systems can be categorised by the number of participants that can arrive (enter)
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in the system during its execution. That number is referred to as the arrival model [6] of the
system. Participants can always leave the system. The arrival models are classi�ed into three
di�erent categories:

• n-arrival model, where n is a positive integer: the system is composed of exactly n
participants, and n is known by the system. Therefore, n can be used by the protocols.

• Finite arrival model: there is an in�nite number of participants, but in each execution
of the system, only a �nite number of participants can arrive (enter in the system). The
number of arrivals is however not known.

• In�nite arrival model: there is an in�nite number of participants, and at each time in the
execution of the system, new participants can always arrive in the system.

2.2.4 Failure Models

A distributed protocol or a sequence of instructions can be viewed as an assignment of auto-
mata to every participant in the system. When a participant executes its assigned automaton,
we say that the participant follows the protocol; otherwise, we say that it deviates from the
protocol. In this manuscript and in particular, in Chapter 4, we consider that participants can
fail [140] at executing a given protocol. A participant can fail in di�erent ways: for example, it
can crash: from a point in time, it is not executing the protocol any more; it can fail by omission:
it is not able to send or to receive messages any more; it can fail by sending contradictory mes-
sages, etc. More generally, a participant can fail in any arbitrary way. A participant that can
fail in the system is called a faulty or a Byzantine participant [136]; Byzantine participants can
control the network by modifying the order in which messages are received, but they cannot
postpone forever message receptions. Moreover, Byzantine participants can collude to “pol-
lute” the computation (e.g., by sending messages with di�erent contents, while they should
send messages with the same content if they were non-faulty). Participants that always fol-
low the protocol are called correct. In particular, a correct participant is always present in the
system since its beginning, and for the whole execution.

Since Byzantine participants can behave arbitrarily from a prescribed protocol, we do not
make any assumption on their behaviour in our analyses. Byzantine faults are the worst faults
that can occur and the most general, hence an interesting class of study. In particular, when
a protocol is tolerant to Byzantine participants, we have the assurance that no fault can break
it.

Sometimes, as in Section 4.3.2 of Chapter 4, we are interested in participants that are correct
during a special fragment of their execution, and not necessarily during the whole execution
of the system. Let χ be a fragment of execution of a participant i. We say that i is χ-correct
if at the beginning of the fragment χ the internal state of the participant is valid and during
χ it follows the protocol. We say that a state q of a participant i is valid at a time t if there
exists a correct participant i′ such that replacing i by i′ in the system, and all other participants
behaving as before, i′ is in state q at time t. If a participant is not χ-correct, we say that it is
non χ-correct. Note that a participant is correct if ∀χ, it is χ-correct.

2.2.5 Cryptographic Assumptions

In blockchain systems, cryptography is used at various places. Cryptography can be seen
as the scienti�c study of techniques for securing digital information, transactions, distributed
computations [100]. It is used, for instance, to ensure the integrity of the blockchain, the
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authenticity and security of the transactions, to preserve the anonymity of the human behind
each participant, to ensure secure communication between participants, etc.

Asymmetric Cryptography. In blockchain systems, the paradigm of asymmetric crypto-
graphy is often used; intuitively, each participant has a pair of keys:

• A private key: which is a string of alphanumerical characters that is known only by the
participant.

• A public key: which is another string of alphanumerical characters, di�erent from the
private key of the participant. The public key of a participant may be shared and may
be known by all other participants.

The pair private/public key has to satisfy some mathematical properties depending on the
cryptosystem1 used. All participants use the same cryptosystem. To compute the pair of keys,
one may use a one-way function. A one-way function f : X → Y is a function such that: (i)
f(x) is “easy” to compute (i.e., possible in polynomial time), and (ii) inverting f , i.e., knowing
y = f(x), �nd x is “di�cult” to compute (i.e., is not possible in polynomial time). It is an open
question to prove whether such functions exist or not, in fact, their existence will be a proof
of P 6= NP . However, there exist some candidates for such functions, e.g., prime factoring,
discrete logarithm, etc. There is, in the state of the art, no proof that these candidate functions
cannot be inverted in polynomial time on a classical computer.

Using these keys (private/public), participants can have unique digital identities and can
sign messages. The identity of a participant or its address depends only on its public key. In this
manuscript, we consider the address as being exactly the public key, and we assume that each
participant has a unique public key, i.e., if two participants i and j have the same public key,
then i and j are the same participant. We also consider in this manuscript that a participant
can have only one pair of public/private keys.

When a participant sends a message, it sends it with a digital signature. A digital signature
is a mathematical scheme to ensure the authenticity of a message and its sender. A participant
i signs a message by using its private key and the content of the message it will send. When a
participant j receives the message and the associated signature, j can verify that the message
was created with the private key of i. Formally, a digital signature scheme is a triple (K,S, V ),
where:

• K , is the key generator function, the cryptosystem used;

• S, the signing function, takes as input a private key sk and a message m, and S(sk,m)
is a string, the signature s of m using the private key sk;

• V , the verifying function, takes as input a public key pk, a messagem and a string s and
returns true if s is a signature of m using the associated private key of pk, and returns
false otherwise.

We assume that signatures cannot be forged, i.e., if participant i is di�erent from participant
j, then j cannot impersonate i by using i’s digital signature. This assumption is equivalent to
saying that no subset of participants has enough power to �nd the private key of any other
participant. That assumption implies that if participant j receives a message signed by parti-
cipant i, it knows that i created and sent the message. i cannot deny the operations; no one
can alter the message between sending and receiving it, because signatures are unforgeable.

1 A cryptosystem describes how to compute the keys, and how to perform the cryptographic operations.
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Hash Functions. Other cryptographic functions are heavily used in blockchain systems:
the cryptographic hash functions, or simply the hash functions [141]. Let n be an integer, a
function hash : {0, 1}∗ → {0, 1}n is a hash function if it satis�es the following properties:

• Pre-image Resistance: hash is a one-way function;

• Second Pre-image Resistance: given x1, it should be “di�cult” to �nd a x2 6= x1 such that
hash(x1) = hash(x2);

• Collision Resistance: it should be “di�cult” to �nd two values x1 and x2 such that they
have the same image, i.e., hash(x1) = hash(x2).

Let x ∈ {0, 1}∗ be a message, if h = hash(x), we say that h is the hash of x. Intuitively, a hash
function is a function: (i) which maps data of arbitrary length to a �xed-sized length data, its
hash, and (ii) where changing even a little bit the input gives a completely di�erent output.
Hash functions give some con�dence that two data that have the same hash are actually the
same.

2.3 Communication

2.3.1 Communication Primitives

One of the needs in blockchain systems is to ensure that all participants have the same inform-
ation and messages. To this end, we consider a broadcast primitive. A broadcast is a technique
to send a message to all other participants. If a participant broadcasts a message m, it wants
all other participants to eventually deliver m.

It is often su�cient to have a Byzantine reliable broadcast [38]. We say that a broadcast is
reliable if the following two conditions hold: (i) safety: every message delivered by a correct
participant has been previously sent by a source, and (ii) liveness: every correct participant
eventually delivers every message sent by a correct source, and (iii) all correct participants
eventually share the same set of messages.

Formally, we say that a broadcast protocol is Byzantine reliable if it satis�es the following
properties, assuming that at least one participant broadcasts a message.

• brb-Validity. If a correct participant delivers a message m from a correct participant i,
then i broadcasted the message m;

• brb-Integrity. No correct participant delivers twice the same message from a participant;

• brb-Termination-1. If a correct participant broadcasts a message m, all correct parti-
cipants eventually deliver m;

• brb-Termination-2. If a correct participant delivers a messagem from a participant, then
all correct participants eventually deliver m.

This means that all other correct participants eventually deliver all messages sent or de-
livered by at least one correct participant. It does not necessarily imply that the order in which
messages are sent is the same order of messages delivered.

To disseminate a message to all participants, a dissemination protocol can be used. In such
a protocol, if one participant receives a message for the �rst time, it sends the message to all
its neighbours. Intuitively, if all participants are correct, eventually all participants will deliver
the message. In contrast, when there are some Byzantine participants, such approach does not
guarantee the property of reliable broadcast as shown by the following example.
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Example 2.1. Let the following dissemination protocol for broadcast: if one participant receives
a message for the �rst time, it sends the message to all neighbours. (Π, E) is the network such
that Π = {i, j, k} and E = {(i, j), (j, k)}. Let i and k be correct, and let j be Byzantine. i and
j are neighbours, and so are j and k, but i and k are not.

i j k

Figure 2.1: Communication Network of Example 2.1.

Participant i wants to broadcast the message m, and by following the protocol, it sends it to
j. j when receiving m deviates and does nothing. Here, k does not receive the message m.

However, with some hypotheses on the communication network, it is possible to achieve a
reliable broadcast in the presence of Byzantine participants as shown by the following remark.

Remark 2.2. Let n be the total number of participants and f be the maximum number of Byz-
antine participants. In a static network with Byzantine participants, [61] shows that when the
network is (2f + 1)-connected, it is possible to guarantee that all messages sent by correct sources
are delivered by correct participants. Similarly, [124] shows that there exists a class of Time Vary-
ing Graphs where it is possible to guarantee that all messages sent by a correct source are even-
tually delivered by correct participants; the result of [124] also depends on the maximum number
of Byzantine participants in the system. Both propositions however do not satisfy the property
brb-Termination-2. If n = 3f + 1, [37, 140] show that there exist broadcast protocols where all
participants share the same set of messages, satisfying brb-Termination-2. Hence, by combining
the results [61, 124] and [37, 140], Byzantine reliable broadcast is possible.

Intuitively, the results of [37, 61, 124, 140] require that the network is “su�ciently con-
nected”, such that there always exist enough (dynamic) paths with no Byzantine participants
between any two correct participants. In the same spirit, [107] proposes a protocol for dynamic
Byzantine reliable broadcast.

In this manuscript, we assume the existence of a reliable broadcast that is used by parti-
cipants, and we do not discuss the network nor the broadcast protocols. However, as explained
in Remark 2.2, the existence of such a primitive implies some restrictions on the connectivity
of the communication network. To broadcast a message m, a participant uses the primitive
broadcast(m) during one of its send phase m. During a delivery phase, a participant receives
a broadcast of a message by executing the primitive delivery().

2.3.2 Time Assumptions

When a participant sends a message, other participants do not deliver the message instant-
aneously, there is a message (transmission) delay or a transmission latency. Let ∆ ≥ 0 be the
maximum message delay between any two participants, i.e., ∀i, j ∈ Π, if i sends a message to
j at date (time) t, then at date t+ ∆, j has delivered the message. The communication can be
classi�ed into di�erent categories based on the �niteness of ∆ and whether the participants
know its value or not.

• Synchronous Communication: In synchronous communication systems, ∆ is �nite
and known by the participants. If a participant broadcasts a message at a time t, then at
time t+ ∆, all participants have delivered the message.
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Since the maximum delay ∆ is known, participants can use that information in their ex-
ecution; typically, they can match the duration of their delivery phase with ∆ to ensure
the reception of all messages sent at the beginning of the round.

• Asynchronous Communication: In asynchronous communication systems, ∆ is in-
�nite. That means that there is no upper bound on the message transmission delay.
Messages sent are eventually delivered, since messages sent cannot be lost; but no one
can predict an upper bound on when a message will be delivered.

• Semi-Synchronous Communication: Between synchronous and asynchronous com-
munications, there exists a class of communication systems called semi-synchronous. In
semi-synchronous systems, ∆ is �nite. We can further divide the class as follows:

– Partial Synchronous Communication. As de�ned by [68], a communication system
is partially synchronous if ∆ is �nite but unknown by the participants.

Since ∆ is not known, participants cannot use it directly, they may however try to
guess it during their execution.

– Eventual Synchronous Communication. A communication system is eventually
synchronous if there exists an unknown date t ∈ T, called the Global Stabilisa-
tion Time (GST) such that all messages sent after date t are received within the
bound ∆. There is no guarantee on message transmission delay for the messages
sent before GST; however, the message will be eventually delivered since messages
cannot be lost. The period before GST is called the asynchronous period, and the
time after GST is called the synchronous period. It is important to note that since
participants do not know when GST will be, they can only try to guess if GST is
already reached during their execution. That is the case whether ∆ the message
transmission delay (hereafter GST) is known or not.

Most works in the literature assume that ∆ is known, and only the GST is un-
known. However, to the best of our knowledge, it is not known if that model is
equivalent to having both ∆ and GST unknown. If ∆ is known, it seems that it can
be used with a certain multiplicative factor to design the duration of the delivery
phases of participants, while when ∆ is unknown, it is not possible.

In this work, to be the most generic as possible, when using an eventual synchron-
ous system, we assume that both GST and ∆ are �nite but unknown.

An important remark is that the synchrony assumptions of the communication hold no
matter the size (�nite) of the messages, i.e., no matter how long (but �nite) a message is, it is
delivered entirely with respect to the communication’s time assumptions.

Remark 2.3. [25] and [127] discussed and proved that in in�nite arrival models, only asyn-
chronous communication is possible, whereas in �nite arrival models it is possible to achieve a
semi-synchronous communication, and synchronous communication can only be achieved in n-
arrival models.

Intuitively, in �nite arrival models, there is a time from when no new participants enter
the system, hence the maximum number of communication channels between any two parti-
cipants can be bounded, and so can be the message transmission delay.
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2.4 Game Theory

One can de�ned Game theory as a mathematical formalisation of con�icts and cooperation
between rational decision-makers in a given environment. Game theory has various domains
of application as of computer science, economics, evolutionary biology, mathematics, political
science, etc. It is mainly used to model and study rational behaviours between di�erent par-
ticipants. Using game theory appears to be useful according to our goal of studying rational
behaviours in blockchain systems.

Formally, a game is a tuple G = (N, (Ai)i∈N , (θi)i∈N , (gi)i∈N), where:

• N is a non-empty set of participants;

• Ai is the set of actions of participant i;

• θi is the type of participant i;

• gi is the gain function of participant i;

Static Games. At a beginning of a static game, all participants choose simultaneously the
actions they will play, without knowing which actions the others will choose. The gain of
participant i is of the form gi : A1 × · · · ×An → R. Static games are also called simultaneous
game. The most popular simultaneous game is perhaps rock-paper-scissors.

Dynamic or Repeated Games. A repeated game is a sequence of static games where par-
ticipants may have some information thanks to the previous static games played. We say that
the �rst static game is the game at stage 1, the second is the game at stage 2, and so on. To
accommodate the information each participant has, we denote by hti the information set of
participant i at time t. At each time of the game, each participant has an information set
that contains information of what happened previously. LetHt

i be the set of information sets
participant i can have at time t.

A pure strategy or simply a strategy of a participant i at time t is a function σti : Ht → Ai.
A strategy of the participant is a family (σti)t≥1. However, in the rest of the manuscript, we will
write σi to represent the strategy of participant i, and we will denote by Si the set of strategies
of participant i. A vector of strategies for each participant σ = (σ1, . . . , σn) is called a strategy
pro�le. In repeated games, the gain of participant i is of the form gi : S1 × · · · × Sn → R.

2.4.1 Type of Participants

In a blockchain system, all participants do not necessarily have the same behaviour. Depending
on their executions, we can classify participants into di�erent types.

During the global execution of the system, participants do take actions, where an action
can be doing an instruction or not. For example, sending a message is an action; not sending
a message is also an action; doing another instruction instead of the prescribed one is also an
action, etc. Actions may have costs, and di�erent actions can have di�erent costs; note that
the cost of actions can be perceived di�erently from one type of participants to another.

We say that a participant follows a sequence of instructions (a protocol) if the actions the
participant takes are in line with that sequence of instructions. If the participant does not
follow the protocol, we say that it deviates from it. We can view a protocol as a sequence of
prescribed actions.
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2.4.1.1 Classical Participants

The �rst two types of participants, the only ones used in Chapter 4 are the classical types we
can �nd in the distributed systems’ literature, as described in Section 2.2.4: the correct and the
Byzantine participants. Both correct and Byzantine participants do not care about the costs of
their actions, nor the global execution of the system. In this manuscript, and for the sake of
clarity and consistency, we use the terminology obedient instead of correct. The term honest
can also be found in the blockchain literature to designate obedient participants.

De�nition 2.4 (Obedient Participant). A participant is obedient with respect to a protocol A if
it always follows protocol A.

When the protocol is clear from the context, we just say that the participant is obedient.
In particular, the above de�nition of an obedient participant encapsulates the fact that the
participant is always in the system and always follows the protocol.

De�nition 2.5 (Byzantine Participant). A participant is Byzantine with respect to a protocolA
if it can arbitrarily deviate from protocol A.

When the protocol is clear from the context, we just say that the participant is Byzantine.
A Byzantine participant represents all kinds of (unfortunate) situations that can happen, e.g., a
failure, or doing others actions than the prescribed. Any behaviour can be seen as Byzantine.

2.4.1.2 Rational Participants

A third class of participants is considered in Chapters 5 & 6: the rational participants. Rational
participants may care about the cost of their actions, and they have preferences over all the
di�erent global executions of the system. In more details, a rational participant assigns a
value to each possible execution of the system; between any two executions of the system, a
rational participant prefers the one having a higher value. The gain of a rational participant is
a function of (i) the global execution of the system, and of (ii) the actions the participant takes.
The gain has values in the set of real numbers, R. We recall that the actions of one participant
may have an e�ect on which global execution the system will have.

De�nition 2.6 (Rational Participant). A participant is rational if it is self-interested. It does an
action instead of another action if and only if doing so increases its expected gain.

A rational participant has preferences and takes actions to have its most preferred execu-
tion of the system, taking into account what the other participants do. It does not necessarily
want to hurt the system; it wants to bene�t from it.

We now introduce two re�nements of the rational participants: the strategic, and the ma-
licious participants. Having a property on the system’s executions, one can know whether a
given execution satis�es that property. In particular, a property de�nes a partition on the ex-
ecutions of the system; in one hand, the executions that satisfy the property and on the other
hand, the executions that do not satisfy the property.

De�nition 2.7 (Strategic Participant). A participant is strategic with respect to a property P if
it is rational, and it prefers executions that satisfy P , i.e., its assigns a positive value to executions
where P is satis�ed, and a negative value to executions where P is not satis�ed.

A strategic participant prefers the executions where the system achieves its properties, but
think about its own interest in the �rst place.
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De�nition 2.8 (Malicious Participant). A participant is malicious with respect to a property P
if it is rational, and it prefers executions that do not satisfy P , i.e., its assigns a positive value to
executions where P is not satis�ed.

A malicious participant’s objective is to hurt the system. A malicious participant takes all
actions it can to increase the chance of having a global execution that does not satisfy the
properties of the system.

The Byzantine-Altruistic-Rational (BAR) Model Aiyer et al. introduced the Byzantine-
Altruistic-Rational model or BAR model in [7]. In the BAR model, given a protocol, there are
three types of participants:

• Byzantine: Participants that can arbitrarily deviate from the protocol;

• Altruistic: Participants that always follow the protocol;

• Rational: Rational participants will deviate from the protocol if and only if doing so
increases their net utility from participating in the system; in particular, rational parti-
cipants receive a long-term bene�t from participating in the protocol.

[7] makes the following assumption “rational participants are conservative when computing
the impact of Byzantine participants on their gain”, meaning, rational participants assume
that the maximum number of Byzantine is present in the system and their goal is to minimise
rationals’ gain.

For completeness and correctness, we remove that assumption. Speci�cally, we introduce
the type of malicious participants that represents the above assumption, and since they are
rational, we consider them as such. The participants called rational by [7] are now called
strategic. Our de�nition of rational allows removing the assumption that rational participants
receive a long-term bene�t from participating in the protocol; being rational have the clas-
sical de�nition of having preferences, and taking actions to have a better outcome, as usually
de�ned in economics, philosophy, etc. [157]. Another di�erence is that we do not necessarily
need not to assume the exact number of malicious participants.

2.4.2 A Comparison of Possible Executions from Participants’ Type

LetA be a protocol. We can see from De�nition 2.6 that a rational participant can be viewed as
a special subclass of Byzantine participants, rational participants can deviate from the protocol,
but only if that deviation is bene�cial to them.

Let C be a class of rational participants such that their objective is to follow the protocolA
no matter what is the global execution of the system and what the other participants do. The
class C consists of exactly all the obedient participants with respect to A, and only them. We
can consider that some rational participants can behave as obedient, if their gain function is
de�ned in that case. That exhibits that the behaviour of rational participants depends really on
their gains. Therefore, the obedient participants are a subclass of rational participants where
their objective is to follow the protocol.

Usually, a protocol is designed to solve a problem, or equivalently to satisfy a property.
It can then happen for strategic participants to behave as obedient. However, if running the
protocol is (too) costly, strategic participants may deviate to improve their gain. The class of
obedient participants is not a subclass of strategic participants, but both can intersect.

As mentioned earlier, malicious and strategic participants are rational participants, but
they have opposing objectives, so they do not intersect. A summary of the comparison of
possible execution can be viewed in Figure 2.2.
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Figure 2.2: A Comparison of Participant’s Types

2.4.3 Completeness of Information in Games

2.4.3.1 Complete Information Games

In complete information games, all participants know the other participants’ information, their
types, their gain function, their actions set, etc. At each time in the game, all participants know
what actions the other participants did previously.

2.4.3.2 Incomplete Information Games or Bayesian Games

When a game is not with complete information, we say that it is an incomplete information
game. In incomplete information games, at least one participant is not sure about the type of
another participant. We can say that participants have private information that other parti-
cipants do not know about. For example, it can be known that there is a malicious participant
in the system, but except the malicious, no one else knows which participant it is.

An initial distribution of the type of participants is set at the beginning of the game, but
participants do not know it exactly. Participants only have at each time a probability dis-
tribution over the other participants’ type; the probability distribution is updated following
Bayes’ rule [27] and is kept in the information set of each participant. That is why incomplete
information games are also called Bayesian games.

Let A and B be two events such that P[B] > 0. Bayes’ theorem also called Bayes’ rule is
the following equality:

P[A|B] =
P[B|A] · P[A]

P[B]

The law of total probability states that P[B] = P[B|A] · P[A] + P[B|¬A] · P[¬A], we can then
rewrite Bayes’ theorem as:

P[A|B] =
P[B|A] · P[A]

P[B|A] · P[A] + P[B|¬A] · P[¬A]

Let us consider the following example to see how one updates its knowledge according to
Bayes’ rule.

Example 2.9 (An Application of Bayes’ Rule). Assume in a population of 1, 000, 000 people,
0.01% (100 persons) are of type I , and the rest (so 9, 900 persons) are of type H2. Assume also

2 I refers to Infected and H to healthy
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Test says yes Test says no
P[I] = 0.01% Being type I P[Yes|I] = 100% P[¬Yes|I] = 0%

P[¬I] = 99.99% Being type H P[Yes|¬I] = 0.1% P[¬Yes|¬I] = 99.9%

Table 2.1: Summary of the Probabilities of Example 2.9

that people are evenly distributed across the population: by picking one person at random, its
probability of being of type I is 1.10−4.

Imagine there is a test for examining if people are of type I or not, but unfortunately, the test
is not 100% accurate (speci�city). In details:

• If the person is of type I , the test says yes with probability 1;

• If the person is of typeH , the test says no with a probability of 0.999. There is a probability
of 0.001 of being a false positive, the test says yes for a person of type H .

The probabilities are summarised in Table 2.1. One person is picked at random in the population,
and its test says yes. By following Bayes’ rule, the probability of this person being of type I should
be updated from 10−4 (0.01%) to approximately 0.09 (9%).

In summary, even if the test is positive a person picked at random has less than 10% of being
of type I . That may seem counter-intuitive, but it follows Bayes’ rule as shown in the following.

Let i be the person picked at random in the population. Let I be the event “i is of type I”; the
event i is of type H is ¬I . We know that P[I] = 10−4. Let Yes be the event “i’s test says yes”; the
event i’s test says no is ¬Yes. What interest us is knowing what is the probability of i being of
type I knowing its test says Yes (P[I|Yes]), which by Bayes’ rule is:

P[I|Yes] =
P[Yes|I] · P[I]

P[Yes|I] · P[I] + P[Yes|¬I] · P[¬I]

=
10−4

10−4 + 10−3 · 0.9999

P[I|Yes] ≈ 0.09

An intuition is that, since the population is big, with the accuracy (speci�city) of the test, there
will be on average a lot more false-positive (people of type H but test says yes) than real positive
(type I).

If the probability of false positive was way lower, for example, P[Yes|¬I] = 0.01%, in case of
a positive test, the knowledge of i being of type I should be updated to approximately 50%. To
update the knowledge to over 99%, the false positive rate should be less than 0.0001%.

2.4.4 Solution Concept

Now that the game is de�ned, we can try to predict the behaviour of rational participants. To
do so, di�erent concepts exist, the main one being the concept of Nash equilibrium [129].

Intuitively, a strategy pro�le is a Nash equilibrium when each participant has a strategy
that maximises its gain with respect to the other participants’ strategies in the strategy pro�le.
A Nash equilibrium can also be seen as a strategy pro�le where no participant can increase its
gain by deviating alone from the strategy pro�le.

Let σ = (σ1, . . . , σn) be a strategy pro�le, and let σ′i ∈ Si be a strategy of participant
i. We denote the strategy pro�le (σ1, . . . , σi−1, σ

′
i, σi+1, . . . , σn) by (σ−i, σ

′
i). (σ−i, σ

′
i) is the

strategy pro�le where participant i deviates by doing σ′i instead of σi, and all other participants
continue with the same strategies. We can now formally de�ne a Nash equilibrium.
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De�nition 2.10 (Nash Equilibrium). A strategy pro�le σ is a Nash equilibrium if and only if

∀i ∈ N, gi(σ) ≥ gi((σ−i, σ
′
i)).

The de�nition of a Nash equilibrium can be seen as too restrictive in some games, and
the concept of approximate Nash equilibrium is used. An ε-approximate Nash equilibrium is a
strategy pro�le where if one participant deviates, it can gain at most ε more than its gain at
equilibrium. Formally, a strategy pro�le σ is an ε-approximate Nash equilibrium if and only if
∀i ∈ N, gi(σ) ≥ gi((σ−i, σ

′
i))− ε. Approximate Nash equilibria are not stable situations, since

a participant can prefer to deviate, even if its gain is just ε, so we do not consider them in this
manuscript.

On another hand, and especially in repeated games, the concept of Nash equilibrium allows
too many behaviours, and some are not interesting or coherent. The concept of subgame perfect
equilibrium [133] is de�ned to speci�cally capture equilibria that are coherent throughout the
whole game.

At any history, the “remaining game” can be regarded as a game on its own. We call such
a remaining game a subgame of the game. Note that the whole game is also its own subgame.

De�nition 2.11 (Subgame Perfect Nash Equilibrium). A strategy pro�le σ is a subgame perfect
Nash equilibrium if in all subgames, σ restricted to the subgame is a Nash equilibrium.

Bayesian Equilibria. In Bayesian games, the concept of Nash equilibrium is also not well
suited. In Bayesian game, since at least one participant is unsure of the type of other parti-
cipants, a strategy pro�le may give more than one execution, according to the type distribu-
tions. An analogous concept to Nash equilibrium, the Bayesian equilibrium [154] is de�ned for
Bayesian games. Contrarily to Nash equilibrium, in a Bayesian equilibrium, each participant’s
goal is to maximise its expected gain, given its knowledge about the types’ distribution; in par-
ticular, each participant’s beliefs are consistent with Bayes’ law when computing probabilities
conditional on events that have positive probability on the equilibrium path.

In Bayesian games, the gain function g is a probability distribution over the gain of all
di�erent executions that correspond to the given strategy pro�le.

De�nition 2.12 (Bayesian Equilibrium). A strategy pro�le σ is a Bayesian equilibrium at time
t if and only if

∀i ∈ N,∀i ∈ N,E[gi(σ)|hti] ≥ E[gi(σ−i, σ
′
i)|hti].

As for Nash equilibria, the concept of subgame perfection exists in Bayesian games, and
such equilibrium is called a perfect Bayesian equilibrium [79].

De�nition 2.13 (Perfect Bayesian Equilibrium). A strategy pro�le σ is called a subgame perfect
Bayesian equilibrium if in all subgames, σ restricted to the subgame is a Bayesian equilibrium.

2.5 Conclusion

In this chapter, we broadly introduced the models and the di�erent notions that we will use
throughout this manuscript.

In the next chapter, we give a state of the art of the blockchain literature related to the con-
struction of a blockchain and to the rational behaviours in blockchains, and we will highlight
our contributions to that state of the art.

In Chapter 4, we discuss how to build blockchains in systems prone to failure and under
di�erent communication systems. That chapter leans on Sections 2.2 & 2.3.

In Chapters 5 & 6, we study rational behaviours and use notions de�ned in Section 2.4.
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A global trend in research is the fast-growing of scienti�c production in the past years.
The literature in blockchains is no exception to this phenomenon; it seems to be even worse.
The literature concerning blockchain systems is enormous, it concerns several �elds, and is
growing rapidly. Speci�cally, on blockchains, there are many preprints from academics that
are not yet published; huge numbers of “white papers” from practitioners or non-academics
that present their technologies whose novelties are often hard to capture; there are more and
more peer-reviewed scienti�c papers, and conferences speci�cally dedicated to blockchains
and distributed ledger technologies.

Blockchains span among various scienti�c topics. To name few of them, we have arti�cial
intelligence, cryptography, data science, database systems, distributed systems, economics,
�nance, �nancial technology (�ntech), formal language, identity management, law, multiagent
systems, privacy, network, supply chain, traceability, etc. It is also considered in health science,
and in voting to guarantee non-falsi�ability. Please note that the above list is not exhaustive,
and even new disciplines start to be interested in the topic.

During this thesis, and in this manuscript we focus only on a few of these topics; mainly,
we use distributed systems, and game theory to study blockchains. More speci�cally, we study
committee-based blockchains, and how blockchains are built (state of the art in Section 3.1);
the fairness for the block creators in blockchains systems (state of the art in Section 3.2), and
on sel�sh behaviours in blockchain systems (state of the art in Section 3.3).
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3.1 Blockchains’ Construction

One of the most studied axes of research on blockchains is without a doubt how blockchains are
built if they are correct, and how they work exactly. The correctness of blockchain systems is
well studied, and formal proofs start to be interested in the topic. For example, in [51], Chaud-
hary et al. formally analyse Bitcoin against double-spending attacks using formal methods,
namely, model checking techniques; in [9], Alturki et al. proved the safety of the Algorand’s
blockchain (they did not prove the liveness) using a proof assistant; we can also cite Tezos
[8] whose code has been written in a language known by formal veri�cation specialists. The
models used in their tools are much more simplistic than the real-world environment of these
protocols. Blockchains are hence often “proved” correct using the classical “pen-and-papers”
technique.

Before the presentation of some techniques to build a blockchain, let us recall a de�nition
of blockchains. In a system where participants communicate only by exchanging messages
with each other, a blockchain is basically a tamper-resistant distributed ledger built in an
append-only manner. A blockchain is typically a chain of blocks, where a block is a collection
of information, and where each block is linked to the prior one by its hash [141].

To build a blockchain, the ideal will be to select one participant at random which will have
the task to add new information to the chain and then share it with the rest of the participants,
then a new (maybe the same) participant will be selected, and so on. However, that is com-
plicated since participants are not known in advance, the selected participants can be o�ine,
it can add “invalid” information, etc. Note that participants that add blocks to the blockchains
are rewarded as an incentive.

In this section, we present a glance at the state-of-the-art of techniques/algorithms used
to build blockchains.

Since Bitcoin is the most known and is the origin of all the hype and of the studies of
blockchain systems, we �rst describe how its blockchain is constructed.

3.1.1 Bitcoin & Proof-of-Work Blockchains

Bitcoin [128], the most known, and to the best of our knowledge, the �rst �nancial application
based on blockchain proceeds by using a technique called proof-of-work, which was introduced
by Dwork and Naor in 1992 [69]. Using this technique, Bitcoin’s participants aim to reach some
sort of agreement in an open and asynchronous system. In Bitcoin, some participants, called
miners want to add blocks to the blockchains. Miners are block creators. To add a new block
to the chain, each miner needs to prove that it worked to have the right to add a new block.
Proving that a miner worked is represented by solving �rst among the miners a cryptographic
puzzle. The best-known way to solve such a problem is by repeated trials, hence the more
computing power a miner has, the higher are its chances to solve the puzzle �rst.

. . .

hash(bh−1)

...

bh

hash(bh)

Transactions

Nonce

bh+1

. . .

Figure 3.1: Content of a block in a proof-of-work blockchain
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In proof-of-work, a participant needs to prove that it worked to have the right to add the
next block. In more details, for a participant to be selected to add a block in the blockchain,
it has to be the �rst to resolve a crypto-puzzle: the more computing power, the higher the
chances are to win. When a miner wins, it can send its block to the other participants, along
with the proof of its work. The other participants can then check if the proof is valid, then if
the block is valid, they will add the block in their chain, and the scenario restarts for the next
block.

More speci�cally, once a block, say bh is added to the blockchain, a miner creates directly
a new block and plans to add it to the blockchain. That new block contains besides of the
classical information of a block (hash to the previous block bh, list of transactions, etc.) a nonce
(Figure 3.1). The nonce is a value the miner should add such that the hash of its proposed
block bh+1 is lower than a given value, or equivalently, the hash of the new block should start
with a given number of zeroes. We can write bh+1 = hash(bh) · Transactions · Nonce, where
the symbol · represents the concatenation. The goal for each participant is then to �nd a value
Nonce such that hash(bh+1) = hash[hash(bh) · Transactions · Nonce] ≤ D, where D is called
the di�culty parameter. Note that the set of transactions a miner takes is not necessarily the
same set of transactions another miner takes (order, number, etc.). Additionally, each miner
adds its public key to its blocks; no two miners have the exact same blocks created. Therefore,
each miner tries to �nd a nonce corresponding to its block. The �rst miner to �nd the appro-
priate nonce for its block is the “winner”. Note that �nding a nonce value such that the block
satis�es a given property resembles the inversion of hash, which by de�nition of a hash func-
tion (Pre-image resistance property, Section 2.2.5) should be di�cult. The best-known way to
tackle such problem, and �nd an appropriate nonce is by repeated trials. Due to the “random
characteristics” of hash functions, if a miner has more computing power than another one, the
former has more chances to �nd its nonce �rst. That leads to miners paying more specialised
hardware [148]. The race to be the fastest and having more powerful machines leads to a high
energy-consumption; Bitcoin is not environment friendly, which is one of the �rst and main
problems of proof-of-work.

Another issue of proof-of-work closely related to the computing power is the creation and
existence of pools of miners. Speci�cally, to increase their gains and rewards over time, miners
gather in pools. All miners in a pool try to �nd the nonce for the exact same block, and so
there are more chances that a pool adds a block compared to a single miner. The computation
power of a pool is about the sum of the computing power of each of its members. Once a
block is found by a pool, the reward is redistributed among the pool members according to
speci�c and internal rules. The miners of Bitcoin tend to be more and more part of pools since
pools ensure more frequent payments than the current extremely low probability of winning
at the proof-of-work alone [135]. Pools of miners concentrate powers and make Bitcoin more
centralised than what was envisioned by its founder(s). The presence of pools and the more
and more centralised system is the second main critique of Bitcoin linked to the proof-of-work.

Note that more powerful machines lead to �nding the appropriate nonce value faster. To
approximately ensure that the interval between the addition of two consecutive blocks is con-
stant (10min in Bitcoin), the value of the di�culty parameter D changes over time to take
into account the changing computation power of all miners. The sum can be approximated by
carefully monitoring how fast blocks are produced. In particular, if new blocks are found faster
than expected, then the di�culty increases; and if new blocks are found at a speed slower than
the expected time interval, the di�culty decreases. The di�culty management is even more
subtle since it is designed such that with high probability, there is only one winner, i.e., the
probability of having two miners that �nd �rst and relatively at the same time a proper nonce
for their block is close to 0. However, even if extremely low, such a scenario is possible. When



28 CHAPTER 3. STATE OF THE ART

that happens, we say that there is a fork in the system. Participants do not necessarily know
which block to add to their blockchain. Depending on how connected the participants are,
some can receive the block of one miner �rst, others will receive the block of another �rst.
An example of fork is depicted on Figure 3.2; participant i receives the green block �rst, and
participant j receives the blue block �rst, as a global view, there is a fork for the block bh+1,
and how to solve the fork and select only one block should be clearly de�ned.

Gen

b0

Participant i · · ·

bh bh+1

GenParticipant j · · ·

b0 bh bh+1

(a) Forks Between Two Participants

Gen · · ·

bh+1bhb0

(b) Global View of a Fork

Figure 3.2: Example of a fork

Forks. The presence and management of forks are discussed in the original Bitcoin’s paper
[128]. The author, Satoshi Nakamoto, proposes to follow the Longest Chain’s Rule (Figure 3.3).
The longest chain’s rule says the following. When there is a fork, each miner should take at
random one block of the forks (e.g., between the blue and the green block on Figure 3.2) and
tries to create a new block on top of it, by computing a nonce, etc. The �rst block between
the forked that is extended (added to the chain) becomes the new block on which all miners
should work. Basically, the block that became the longest �rst, is the one that resolves the fork,
and is the branch of the chain on top of which miners should continue to work. It was then
added that if a block has 6 subsequent blocks, i.e., there is a depth of at least 6 after a block,
the former is considered �nalised and we say that it is on the main chain; the other block(s)
is called orphan. The reasons and origin of why 6 blocks are not clear and seems to be an
arbitrary value1. However, knowing when a block is �nalised is important for the end-user.
For a �nancial application for instance, the �nalisation of a block means the con�rmation
of payment, so the seller can send the good. If the good is sent but the block in which the
transaction becomes orphan, the sender loses the object and is not paid. Forks are another big
issue of Bitcoin’s proof-of-work.

Scienti�c approaches. While the “�rst” and most popular blockchain Bitcoin came in 2008,
the scienti�c community started to be interested around the mid-2010s.

It was only recently that distributed computing academics focus their attention on the
theoretical aspects of blockchains, motivated mainly by the intriguing claim of popular block-
chains that they implement consensus in an asynchronous dynamic and open system prone
to failures and to the presence of adversaries. Such a claim must not be true, since it is refuted
by the famous impossibility result in distributing computing [77]. In [77], Ficher et al. prove
that it is impossible to achieve consensus in an asynchronous environment prone to failures
(even with only 1 crash).

1 What if there is a fork of depth more than 6 for instance? Such case already happened, and the fork was
solved over an online forum; which contradict with the decentralised nature of the blockchain system.
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Gen . . .

Figure 3.3: Longest Chain’s Rule

The theoretical studies of Bitcoin and the proof-of-work protocols have been pioneered by
Garay et al. in [83]. Garay et al. study the pseudo-code of Bitcoin and analyse its agreement
aspects considering a synchronous communication model. This study was later extended by
Pass et al. in [134] to systems where messages sent in a round can be received later. [83] and
[134] among other things prove that with high probability, all participants of a proof-of-work
blockchain will share a growing common chain. Basically, the forks will be resolved with high
probability.

Bitcoin-NG. To overcome some of the drawbacks of Bitcoin, Eyal et al. propose in [73]
Bitcoin-NG, NG for next-generation. The idea of Bitcoin-NG is that the execution of the system
is organised in epochs. In each epoch, a leader elected via a proof-of-work mechanism will
decide the order of transactions that will be committed in the blockchain until the next epoch.
Although more scalable than Bitcoin, Bitcoin-NG, however, inherits the drawbacks of Bitcoin:
costly proof-of-work process, presence of forks, no guarantee that a leader in an epoch is
unique; Bitcoin-NG actually introduces a new drawback, which is that the leader can change
the history at will if it is corrupted.

Some Proof-of-Work based Protocols. On another line of research, Decker et al. pro-
pose in [59] the PeerCensus system that targets linearisability of transactions. PeerCensus
combines the proof-of-work blockchain and the classical results in Byzantine Fault Tolerant
(BFT) agreement area. However, being built on the Bitcoin’s blockchain, PeerCensus su�ers
from the same drawbacks as Bitcoin.

In the same spirit as PeerCensus, and decouple to Bitcoin, in [106], Kokoris-Kogias et al.
propose ByzCoin. Byzcoin is based on a leader-based consensus over a group of members
chosen based on a proof-of-membership mechanism. As in PeerCensus, when a miner suc-
ceeds to mine a block, the former is included in the set of voting members. ByzCoin enhanced
with a scalable collective signing process the classical consensus algorithm PBFT (Practical
Byzantine Fault-Tolerant) [45]. ByzCoin also inherits some of the Bitcoin problems and vulner-
abilities. It has to be noted that the distributed implementation of the core idea, the collective
signing, is still an open problem.

3.1.2 Proof-of-* – Alternatives to Proof-of-Work

To solve the high energy-consumption issue of proof-of-work, many proposals were made to
select the next participant that should add a new block to the chain. Speci�cally, most of the
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proposals replace the need for computing power by other things (such as memory, wealth,
etc.) keeping the main idea of proof-of-work, namely the random selection.

In this section, we give an overview of some of the proposals. Note that there are always
new mechanisms presented, therefore giving a complete and total snapshot of the proof-of-
work alternatives is not feasible.

Proof-of-stake. The main candidate alternative of proof-of-work is proof-of-stake. Even the
second most known blockchain system, Ethereum [159], plans to switch their proof-of-work
mechanism to proof-of-stake.

In proof-of-stake, the role of computing power is replaced by the number of stakes pos-
sessed by participants in the system. There exist many di�erent ways of using stakes. For
example, in PeerCoin [105] the �rst blockchain proposing proof-of-stake, the information con-
sidered is the “age” of the coin. If a participant holds a coin for a long time, it has more
chances to be the next to add a block relative to another participant that just received a new
coin. Other blockchain systems consider the number of coins a participant has, its stake, such
as Ouroboros [102], i.e., the higher stake a participant has, the higher are its chances to be
selected to add a block.

Note that usually in proof-of-stake, the selection of the next participant to add a block is
also random (to calque the behaviour of Bitcoin), but is proportional to the stake, i.e., it may
happen that multiple participants are selected. Forks do still exist in proof-of-stake.

There exist many more speci�c proof-of-stakes, for example, delegated proof-of-stake or
DPoS in which participants can delegate part of their stakes to other participants that have
more chances to be selected, the rewards are then shared among the winner and its delegators.
DPoS is used for instance in Tezos [8].

Proof-of-burn can also be considered as a variant of proof-of-stake. The main ingredient
of proof-of-burn is that the more stakes a participant burns (stakes that cannot be used any
more), the higher the chances of the participants to be selected.

Several academic works address proof-of-stake based blockchains. To the best of our know-
ledge, the �rst on this line is Snow White [58] authored by Daian et al.. Daian et al. propose a
protocol for semi-synchronous systems. The execution of the protocol is organised in epochs.
Similar to Bitcoin-NG [73] in each epoch a di�erent committee is elected, and inside the elected
committee a leader will be chosen. The leader is allowed to extend the blockchain by adding
blocks. The protocol in [58] is validated via simulations and only partial proofs of correctness
are provided. More recently, Kiayias et al. propose [102] Ouroboros. Ouroboros uses a sorti-
tion based proof-of-stake protocol and the article addresses mainly the security aspects of the
proposed protocol. Algorand [85] also uses proof-of-stake for the blockchain. In Algorand,
participants are selected to maintain the blockchain base only on their stakes and by relying
on cryptographic techniques.

Other proof-of-*. We quickly present some other alternatives.
In proof-of-Elapsed-Time or PoET, (i) each participant has to wait a random amount of time,

and (ii) the �rst participant to �nish waiting its time gets to add the next block. To ensure that a
participant indeed waits its given duration, PoET considers the use of special CPU instructions
(called Trusted Execution Environment or TEE) like the Intel SGX. Intel SGX allows applications
to run trusted code in a protected environment, and a participant can prove that it really
executed some instructions (e.g., waiting). PoET was introduced by Intel with the blockchain
system Hyperledger Sawtooth [132]. Since PoET relies almost entirely on SGXs and the most
known SGX is Intel’s, such an approach de�es the decentralised nature of blockchains. It also
requires all participants to be equipped with SGXs.



3.1. BLOCKCHAINS’ CONSTRUCTION 31

Proof-of-space [70] is similar to proof-of-work, but instead of computing power, parti-
cipants have to provide the evidence that a certain amount of storage is available; proof-of-
authority or its improved variant proof-of-reputation [80], in which the more authority or the
more reputation a participant has in the system, the higher are its chances to be selected as
the next to add a block.

All these proof-of-∗ alternatives have the same fork issue as in proof-of-work, in part
because the selection relies heavily on random functions weighted with the *-speci�c com-
ponent. They did not receive much attention in the academic research. Among all these al-
ternatives, proof-of-stake protocols and speci�cally those using variants of PBFT [45] became
recently popular not only for in-chain transaction systems but also in systems that provide
transactions between di�erent blockchain systems. We review some in the next section.

3.1.3 Committee-based

As we have already seen quickly with PeerCensus or Byzcoin, some blockchain systems use
committee and variants of Byzantine fault-tolerant (BFT) algorithms. These blockchains are
called committee-based blockchains. In these blockchains, for each block, there is a subset of
participants, a committee that produces that block, while in other blockchains, the goal is to
delegate that work to exactly one participant.

The problem of agreeing over a distributed system is called the consensus problem. Form-
ally, we say that an algorithm implements the consensus, or the algorithm is a consensus
algorithm if the following properties hold:

• Termination. Every obedient participant decides on a value;

• Agreement. If two obedient participants decide respectively on values v and v′, then
v = v′;

• Validity. If all obedient participants have the same input v, then if an obedient participant
decides, it must decide on value v.

With the above de�nition of validity, if all participants do not have the same input, always
deciding a default value (not even in the input value) is a consensus algorithm. To avoid such
a scenario, variants of the validity de�nition were proposed, we can cite the following:

• a value decided by an obedient participant should be in the input of an obedient parti-
cipant (sometimes called strong validity).

• a value decided by an obedient participant should be in the input of a participant (called
uniform validity in [48]).

More variants of the validity property exist as well, for instance, vector validity de�ned in
[65], where each participant has as input a vector, and the decision of each participant must
be a vector instead of a single value. An algorithm satis�es the vector validity property if the
decided vector contains values from the vectors of enough obedient participants.
Instead of relying on the input values of the participants, depending on the application, the
concept of external validity may be of interest. External validity was de�ned by [41], and
requires that a value decided should be valid with respect to a given and known predicate. For
example, all �nancial transactions contained in blocks should be valid and maintain positive
balance considering the whole history of the blockchain up to that respective block.

When a consensus algorithm tolerates Byzantine participants, the algorithm is said to be
Byzantine fault-tolerant or BFT for short. In the blockchain realm, there exist several BFT
consensus-based blockchain proposals (e.g., [4, 21]).
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Figure 3.4: Committee-based Blockchain

Byzantine Agreement Protocols The Byzantine Agreement problem or BFT consensus
problem has been introduced in [113] where it has been proved that, in the presence of f
Byzantine participants, such problem cannot be solved with less than 3f + 1 participants in a
synchronous message-passing system (where the message delivery delay is upper bounded).
The consensus problem, as proved in the seminal FLP paper [77], cannot be solved in an asyn-
chronous message-passing system (when there are no upper bounds on the message delivery
delay) in the presence of at least one faulty participant.

In between those impossibility results, it is still possible to solve consensus in an asyn-
chronous setting, either adding randomness [30] (which also proved the impossibility result
for n ≤ 3f for any asynchronous solution) or partial synchrony as in Dwork et al. [68] (DLS)
where BFT consensus is solved in an eventual synchronous message-passing system (there is
a time τ after which there is an upper bound on the message delivery delay). DLS preserves
safety during the asynchronous period and the termination only after τ when the message
transfer delay becomes bounded. Finally, Castro and Liskov proposed PBFT [45], a leader-
based protocol that optimises the performances of the previous solutions.

In [76], Fisher and Lynch prove that it is not possible, in the worst case, to solve consensus
in less than f + 1 rounds. Those protocols (as their improvements [52]) work in eventual
synchronous systems evolving in a sequence of “views” or “epochs”, and in each of them, one
participant, the leader for that epoch, is responsible for the evolution of the execution. What
is important for safety is how the “view change” is managed, since between di�erent views
participants may deliver di�erent messages, which can lead to violation of the agreement
property.

In order to use BFT protocols in an open setting, recent research has been devoted to
either �nd secure mechanisms to select committees of �xed size over time (e.g., [85]) and/or
to propose incentives to promote participation (e.g., [4]). These researches revive the study of
the distributed problem of group membership [56], which is the task of creating a (dynamic)
subset of participants in a distributed fashion.

A way to use BFT protocols is to select whenever needed a committee that will run a BFT
consensus algorithm and produce a block. An example is shown in Figure 3.4, where commit-
tee C1 produces the block b1, the committee C2 produces the block b2, etc. Each committee
produces a block by using a Byzantine agreement protocol.

Such approach can guarantee the absence of fork under deterministic and known condi-
tions. Moreover, if the selection of the committee is done by using energy-e�cient techniques,
then the high energy-consumption problem is also avoided.

BFT-inspired Blockchain Protocols Several blockchains are based on Byzantine agree-
ment protocols: Algorand [85], ByzCoin [106], HotStu� [160], RedBelly [54], Solidus [4], Ten-
dermint [39], etc.

It is interesting to note that a leader-based approach is not necessary to implement con-
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sensus. In [36], Borran and Schiper implement a leader-free algorithm keeping an optimal
number of replicas. In the same spirit, Redbelly [54] proposes for the �rst time a leader-free
algorithm solving consensus among participants in a blockchain system. Interestingly the con-
sensus speci�cations have been adapted to the blockchain scenario. That is, a decided value
has to be valid with respect with the blockchain level rather than being one of the values pro-
posed at the beginning. Such speci�cation is then considered in DBFT [55], an evolution of
the consensus algorithm in RedBelly (now at the heart of the RedBelly blockchain), and in
the Tendermint consensus algorithm. DBFT works with a weak coordinator, meaning that the
execution can terminate even in presence of a faulty coordinator, while Tendermint and Hot-
Stu� are changing the coordinator at each view as in [155]. In the same blockchain context,
other consensus algorithm thought to be scalable, are SBFT [86] which optimises the perform-
ance of PBFT, and HotStu� [160] (inspired by Tendermint) which uses in addition threshold
signatures.

On a probabilistic side, Algorand uses sortition algorithms. The work of Gilad et al. in [85]
focuses mainly on the agreement aspects of blockchains using probabilistic ingredients and
providing probabilistic guarantees. More speci�cally, the set of participants that are allowed
to produce and validate blocks is randomly chosen and changes over time.

In any way, the objective of blockchain consensus algorithms is to ensure that all parti-
cipants agree on the same (ever-growing) blockchain as if they repeatedly do consensus on
each new block of the chain. This can be called a repeated consensus, and we de�ne it as fol-
lows. We say that an algorithm implements a Byzantine repeated consensus if and only if it
satis�es the following properties:

• brc-Termination. Every obedient participant has an in�nite blockchain;

• brc-Agreement. If the ith block of the blockchain of an obedient participant is B, and the
ith block of the output of another obedient participant is B′, then B = B′;

• brc-Validity. Each block in the blockchain of any obedient participant is valid; it satis�es
a prede�ned predicate.

It was shown by [91] and [89] that consensus is not needed for transferring �nancial assets,
and speci�cally, consensus is not needed to prevent double-spending. Intuitively, when there
are no relations between two transfers, there is no need to agree on their order. However,
for more general blockchain applications, for instance, when smart contracts are considered,
consensus is needed to guarantee consistency.

Complexity There exist many di�erent consensus algorithms, and many more are continu-
ously proposed. They usually have di�erent e�ciency or are more or less adapted to some
speci�c applications. To compare di�erent consensus algorithms, many factors can be taken
into account; the most popular comparison tool is the “complexity” of the algorithms. The
most famous for Byzantine agreement algorithms are bit, message, and round complexity.

Bit complexity refers to the number of information exchanged by participants in the agree-
ment process, for simplicity here, we refer to it as the number of information each participant
must store; message complexity is the worst-case number of messages sent during the syn-
chronous period before reaching an agreement; and the round complexity is the maximum
number of rounds, during the synchronous period, needed to reach an agreement.

Note that in PBFT in synchronous rounds, when the leader is obedient, the complexity of
the protocol is O(n2). Otherwise, a view change mechanism takes place to change the leader
and resume the computation. The view-change is used to avoid that, in case of a faulty leader,
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if some obedient participant decides on a value v, the other obedient participants cannot decide
on a value v′ 6= v when the new leader proposes a new value.

The view-change mechanism in classical consensus algorithms implies that when a leader
is suspected to be faulty, all participants have to collect enough evidence for the view-change.
That is, the view-change message contains at least 2f+1 signed messages and these messages
are sent from at least 2f + 1 participants which yield a message complexity of O(n2). These
messages are then sent to all participants, the view-change has then O(n3) message complex-
ity. Since the protocol terminates when there is an obedient leader, which may happen for the
�rst time in epoch f+1, then in the worst-case scenario it has a message complexity ofO(n4).

Interestingly, Tendermint, as well as similar recent approaches, uses an alternative mech-
anism for leader replacement that allows dropping message complexity to O(n3), and even
O(n2) when using threshold or collective signatures. Participants, instead of exchanging all
the messages they already delivered (used previously to trigger a view change), locally keep
track of potentially decided values.

Additionally, in these algorithms, each view (an attempt to have an agreement on a value)
is composed of multiple phases, where a phase is a sequence of send, delivery and compute.

In [108], Kowalski and Mostéfaoui propose an algorithm for consensus in synchronous
setting with a bit complexity ofO(n3 log n) for an optimal round complexity of f+1. There is
a trade-o� between the bit complexity and the round complexity of the Byzantine agreement.

Protocol Message
complexity

Rounds
complexity

Bit
complexity

Phases
per view

DBFT [55] O(n3) - ? -
PBFT [45] O(n4) f + 1 poly 3

HotStu� [160] O(n2) f + 1
O(n2 log n)∗

threshold signature 4

Tendermint [39] O(n3) n O(n2 log n) 3

Table 3.1: Comparison of BFT Consensus algorithms in the Eventual Synchronous System.

We present in Table 3.1 the complexity of some consensus algorithms that are developed
for eventual synchronous systems.

3.1.4 Our contributions to Blockchain’s Construction

In this thesis, we study how committee-based blockchains are built in a deterministic manner.
Speci�cally, we study the problem they are trying to solve in the sense of a distributed system
abstraction, i.e., we de�ne the Byzantine repeated consensus abstraction in Byzantine environ-
ment, which represents the construction of a blockchain. Additionally, we formalise for the
very �rst time the Tendermint algorithm, and prove its correctness; moreover, we compute its
complexity and compare it to state-of-the-art algorithms.

3.2 Fairness of Blockchains

To motivate participants to add and maintain the blockchain correctly, rewarding mechan-
isms are in place. Rewards are given to block creators for each block successfully added to the
blockchain. In blockchains such as Bitcoin, a reward is given to the block creator that suc-
cessfully adds its block to the blockchain, i.e., exactly one participant is rewarded at the time.
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Since only correct blocks are added to the blockchain, participants that are rewarded behave
correctly for that block.

In committee-based blockchains, rewards should be given to committees. In each commit-
tee, because only some committee members can be faulty but not all, rewarding mechanisms
are inherently more complex to handle than in other blockchains. The properties of reward
mechanisms for committee-based blockchains must be studied. Ad minimum, the rewarding
mechanism must be fair, i.e., distributing the rewards in proportion to the merit of participants,
where merit abstracts the notion of e�ort participants invest for the construction of the block-
chain.

A blockchain protocol is said to be fair if any obedient participant (a participant that fol-
lowed the protocol) that has a fraction α of the total merit in the system will get at least α
fraction of the total reward that is given in the system.

In the blockchain literature, chain-quality has been de�ned by [83] and was later on ex-
tended by [135]. In [83], Garay et al. de�ne the notion of chain-quality as the proportion of
blocks mined by obedient miners (block creators) in any given window; Garay et al. study
the conditions under which during a given window of time, there is a bounded ratio of blocks
in the chain that non-obedient participants produced, over the total blocks in the blockchain.
Chain-quality can be seen as a de�nition of fairness in Bitcoin-like systems, and even more
generally, in most forkable (proof-of-* based) blockchains. A blockchain system has the prop-
erty of chain-quality if the proportion of blocks produced by obedient participants in any given
window is proportional to their relative mining power. Intuitively, chain-quality ensures that
non-obedient participants do not produce more blocks than their proportion of mining power.

In [102], Kiayias et al. propose Ourobouros [102] and analyse its chain-quality property.
In [135], Pass and Shi propose a notion of fairness, which is an extension of the chain-quality
property still dedicated to Bitcoin-like blockchains; they address one of the vulnerabilities of
Bitcoin studied formally in [74]. In [74], Eyal and Sirer prove that if an adversary controls a
coalition of miners holding even a minority fraction of the total computing power, this coali-
tion can gain twice its share. Fruitchain [135] overcomes this problem by ensuring that no
coalition controlling less than a majority of the computing power can gain more than a factor
1 + 3δ by not respecting the protocol, where δ is a parameter of the protocol. We note that
in the model of Fruitchain, only one participant creates a block in the blockchain and that a
participant has a reward for the created block. In [90], Guerraoui and Wang study the e�ect of
the delays of message propagation in Bitcoin, and they show that in a system of two miners,
one can take advantage of the delays and be rewarded exponentially more than its share.

In [92, 93], Gürcan et al. study the fairness from the point of view of the participants
that do not participate in the construction of the blockchain but create transactions. Herlihy
and Moir do a similar work in [96] where the authors study users’ fairness and consider as
an example the Tendermint blockchain. Herlihy and Moir discussed how participants with
malicious behaviour could violate fairness by choosing transactions, and then they propose
modi�cations to the original Tendermint to make some violations detectable and accountable.
In [115], Lev-Ari et al. study the fairness of transactions in committee-based blockchains with
synchronous assumptions by using a detectable communication abstraction allowing them to
identify faulty and malicious participants.

Recent works consider the distribution of rewards in proof-of-stake based blockchains. In
[112], Lagaillardie et al. show that even if Tendermint is unfair, the presence of delegators
helps the growth of the system. In [75], Fanti et al. de�ne equitability, which represents the
evolution of the fraction of total stakes of participants, in particular, Fanti et al. compute the so-
called compounding e�ect where rewards are directly re-invested in stakes. In [99], Karakostas
et al. de�ne egalitarianism. Egalitarianism means that each participant, no matter its stake
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proportion, wins the election and is the participant to append a new block the same amount
of time as everyone else, no matter their stake proportion.

One of the main di�erences between Bitcoin-like systems and committee-based block-
chains is that in the former, one participant produces a block, whereas, in committee-based
blockchain, a committee (a set) of participants produces a block. A committee is not necessar-
ily composed only of obedient participants but can contain a mix of Byzantine and obedient
participants (with a correctness hypothesis of having some majority of obedient members).
From the point of view of block creators, the de�nition of chain-quality cannot be applied
to committee-based blockchains. The fairness should not be de�ned with respect to blocks
produced, but rather, it should be relative to the proportion of total rewards each participant
gets.

Our Contributions to Fairness of Blockchains. To study the fairness of committee-based
blockchain protocols, we extend the de�nition of [135] for systems where each block is pro-
duced by a subset of participants. This is the case of Hyperledger Fabric or Tendermint for
example, where for each block there is a subset of participants, a committee that produces
that block. We de�ne the fairness in two mechanisms: the selection mechanism and the re-
ward mechanism. Each participant has a given merit, which represents the e�ort it is putting
to maintain the blockchain, for instance, the merit can represent the mining power of a par-
ticipant in proof-of-work blockchains, or the stakes in proof-of-stake blockchains, etc. The
selection mechanism selects for each new height the committee members (the participants that
will run the consensus instance) for that height. The reward mechanism is in charge to dis-
tribute rewards to committee members that produce a new block. Intuitively, if the selection
mechanism is fair, then each participant will become committee member proportionally to its
merit, and if the reward mechanism is fair then for each height, only the obedient committee
members get a reward. By combining the two mechanisms, an obedient participant is rewar-
ded at least a number proportional to its merit parameter over the in�nite execution of the
system. In this thesis, we focus on fairness, where participants with higher merit should get
more rewards. Our notion of fairness is di�erent from egalitarianism since the goal of egal-
itarianism is to have all participants rewarded the same, no matter their merit. We discuss
how fair are few selection mechanisms, and we show the impact of time assumptions of the
communication on the fairness of reward mechanisms.

3.3 Rational Behaviours in Blockchain Systems

3.3.1 Proof-of-* Blockchains & Rational Participants

It is famously quoted that Bitcoin’s proof-of-work resists and works normally even if up to
50% of the computing power is held by malicious participants, and particularly also expected
that all obedient participants will be rewarded a share proportional to their computing power.
Note that when having more than 50% of control of the system, no distributed system can
o�er guarantees any more. The attacks that can happen in Bitcoin when a pool controls more
than 50% of the total computing power are called the 51% attacks. That claim of resilience up
to 50% was actually provided without any proof.

However, when considering rational arguments, it is possible to show that the above claim
does not hold. Many articles [74, 101, 144] prove that thresholds on the fraction of obedient
participants needed to guarantee security properties is lower than the 50% initially though,
and is more about 25%; in particular, they show that rational (sel�sh) participants can stra-
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tegically deviate from the proof-of-work protocol to gain more than their expected reward
share by following the protocol. In an earlier version of [74], Eyal and Sirer presented the
sel�sh mining attack. A sel�sh or rational participant does a sel�sh mining attack if instead of
presenting the blocks it succeeded to mine (winner of the proof-of-work), keeps them secret to
have an advance against the other participants, such that disclosing all blocks at the same time
yields the attacker more rewards. Eyal and Sirer presented their attack in a system composed
of 2 participants. They show that such an attack is always possible, but to be bene�cial, the
attacker needs to have at least a quarter of the total mining power of the system. In [101],
Kiayias et al. extend the study of Eyal and Sirer. Kiayias et al. present tighter bounds on com-
puting power where a sel�sh participant might do a sel�sh mining attack against an obedient
participant, and show when it is better to follow the prescribed protocol; speci�cally, Kiayias et
al. present the best response for a sel�sh participant against an obedient participant. In [144],
Sapirshtein et al. present multiple variants of sel�sh mining attacks, and by comparing them,
show that the initial sel�sh mining proposal of Eyal and Sirer is not the one giving the highest
outcome to the attacker. Moreover, Sapirshtein et al. consider instead of only 2 participants,
the more general case of multiple participants.

Although the works presented above, and many more, establish very pessimistic thresholds
on Bitcoin, in practice Bitcoin works, even when the obedient majority bounds proposed do
not hold. Following this observation, in [24], Badertscher et al. propose a rational analysis
of Bitcoin based on the rational protocol design framework [81]. The proposed framework
can be seen as a game; it is at an upper level of abstraction, proposing a two-player game
between the protocol designer and the adversary. The rational protocol design also models
the behaviour of (some of) the protocol participants as rational and studies the problem of
secure multi-party computation [43]. Secure multi-party computation is broadly the study of
problems where multiple participants aim to cooperate to solve given tasks without revealing
their private information.

Considering only rational participants, in [31] Biais et al. model Bitcoin as a coordination
game. Biais et al. prove that although playing the proof-of-work and following the longest
chain’s rule is an equilibrium, there exist multiple other equilibria where forks may persist.

Note that some results in these analyses may seem to be contradictory. This is mainly due
to the models considered. In [103], Kiayias and Stouka propose a framework in which most
prior results are presented, and in which the di�erent prior results may be compared.

Concerning behaviours inside or between di�erent pools of miners, in [72], Eyal provides
insight about the miners in�ltrating other pools such that the participants of targeted pool
earn less, and in [29], Belotti et al. study the behaviours of Bitcoin’s miners and show when
they are better o� switching to di�erent pools or staying in the current one.

As we sketched, many analyses have been made on strategic behaviours in blockchains.
However, they mainly focus on forkable (proof-of-* based) systems and even more speci�c-
ally on proof-of-work. Some works have studied some alternatives such as the work of Saleh
in [143] about proof-of-stake. Saleh studies proof-of-stake blockchains and shows that the
nothing-at-stake problem (where participants may extend every fork) is mitigated because par-
ticipants with large stakes on the main chain prefer not to add blocks on forking branches since
doing so must reduce the value of their stakes. About committee-based blockchains, and to the
best of our knowledge, very few works have been dedicated to analyse or discuss the presence
of rational behaviours among participants. We present them in the next section.
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3.3.2 Committee-based Blockchains & Rational Participants

Before presenting the state-of-the-art of studies related to rational behaviours in committee-
based blockchains, we �rst present the studies of rational behaviours in distributed systems.

In Distributed Systems. Rational participants have been considered in various works in
distributed computing, e.g., [1, 2, 3, 5, 7, 81, 88, 95, 118]. [1] shows some advantages of com-
bining game theory and distributed computing and presents some challenges. As for Byzantine
consensus, the utilities of rational participants take into account whether or not a decision is
reached. For the problem of Byzantine agreement for instance, Groce et al. in [88] consider an
environment with rational and obedient participants where they provide protocols that toler-
ate rational adversaries and proved lower bounds. In [95], Halpern and Vilaça prove that in a
full rational setting, if participants can fail by crashing, then there is no ex-post Nash equilib-
rium solving the fair consensus problem (where fair means that the input of every participant
is decided with equal probability), even with only one crash. They also present a protocol
satisfying fair consensus under some assumptions over the failures patterns. An ex-post Nash
equilibrium is a situation where the behaviours of the rational participants are the same, re-
gardless of their distribution in the set of participants.

In [5], Afek et al. propose building blocks for distributed algorithms and propose proto-
cols solving the problems of consensus and renaming in presence of rational participants. For
leader election, Abraham et al. in [3] show that in systems with only rational participants, un-
der certain conditions, it is possible to obtain a k-resilient equilibrium (resistant to a coalition
of up to k participants deviating).

In [118], Lysyanskaya and Triandopoulos consider rational and Byzantine participants
while studying the problems of secret sharing and multi-party computation. Lysyanskaya
and Triandopoulos propose an incentive-compatible protocol resistant to a coalition of up to
f faulty participants, where the utilities of participants take into account whether a decision
is reached or not, and on which value the decision is made; they also analysed the case where
the utilities of Byzantine participants may be unknown. Concurrently to [118], Abraham et al.
propose in [2] an incentive-compatible protocol for secret sharing with rational participants
where some utilities can be unknown.

We can now focus on the works done regarding rational behaviours in committee-based
blockchains.

In Committee-based Blockchains. In most analyses concerning committee-based block-
chains, it is assumed that participants are either obedient or Byzantine. These analyses fail to
thoroughly explore the e�ect of rational participants. In this line of work, the work of Abra-
ham et al. in [4] is probably, and to the best of our knowledge, the �rst to consider rational
participants in a committee-based blockchain. Abraham et al. have introduced in Solidus in-
teresting incentive mechanisms; however, they neither provide a formal framework for their
analysis nor consider the cost of the actions.

In the protocol proposed by Manshaei et al. in [121], multiple committees run in parallel
to validate a non-intersecting set of transactions (a shard). A static game approach for the
intra-committee protocol is taken, leading to the result that rational participants can free ride
when rewards are equally shared.

In [78], Fooladgar et al. propose an analysis showing that the proposed reward distribution
in Algorand [85] is not an equilibrium, i.e., some participants may deviate from the protocol
to increase their expected gain. Fooladgar et al. consider the cost of actions of the participants
and propose a better reward scheme for Algorand.
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3.3.3 Our Contributions to the Study of Rational Behaviours in Block-

chain Systems

Often as in [95], the studies from the distributed system’s literature focus on proposing proto-
cols that are Nash equilibria, which guarantee consensus if and only if the rational participants
do not deviate from the prescribed protocol. They do not fully analyse the system to �nd if
there exist other equilibria. Most of the studies also considered only two actions for the par-
ticipants, either following the protocol or not following it.

In this thesis, we speci�cally study these cases, i.e., we study di�erent equilibria in our
setting and check the conditions under which the consensus is possible, even in the presence
of rational participants. Moreover, we give to the participants �ne-grained actions such that
they can deviate at speci�c key points of the protocol. Since blockchains highlight the costs
and rewards, we consider them in our analyses.

3.4 Conclusion

Before concluding, we would like to acknowledge that we did not talk about all distributed
ledger technologies (DLTs); e.g., the directed acyclic graph based, or simply DAG-based DLTs
such as IOTA [137], where there are no blocks, but only links between transactions (specially
designed for IoT devices); or Sycomore [20], built upon proof-of-work, which adapts to user
transactions throughput by increasing the number of children a block can have.

In blockchain systems, many approaches exist to build a blockchain; in particular, the
proof-of-work which is the most popular mechanism. Although quite e�cient, and having
some advantages, proof-of-work has some (serious) drawbacks. To name a few, the existence
of pools make the system more centralised, which de�es the idea behind blockchains; the
huge energy consumption; and the presence of forks which lead to some (temporary) incon-
sistency in the blockchain. To �x or to avoid the drawbacks, many mechanisms were invented
and are considered; however, most of them resolve only few of the problems. Interestingly,
committee-based blockchains, which use results from decades of research from the distributed
systems community, are recently considered and studied for blockchains. Such blockchains
allow avoiding most of the problems inherent to proof-of-work. However, research is still
needed to answer many questions such as the fairness of these systems relative to the block
creators, and the behaviours of the participants.

In this thesis, we study and analyse committee-based blockchains. We provide a distributed
system abstraction, which captures the construction of a blockchain, and we study the cor-
rectness of one of the most popular committee-based blockchain, Tendermint. This analysis
is presented in Chapter 4. Moreover, in Chapter 4, we study these blockchains from a fairness
aspect. We de�ne the notion of fairness for these blockchains; we discuss the selection of the
committees, and the impact of synchrony of the communication on fairness.

To understand the behaviours of rational participants, we provide a framework to analyse
such behaviours in committee-based blockchains. We study the di�erent equilibria against
the consensus properties. Speci�cally, in Chapter 5, we provide the di�erent equilibria in
committee-based blockchains where all participants want to increase their expected gain; and
in Chapter 6, we do similar analyses considering the presence of malicious participants inside
the committees.

Note that many surveys, state-of-knowledge, and when-to-use articles are available on
many blockchain-related topics, e.g., [28, 34, 82, 116, 126, 145, 161]. They o�er more in-depth
descriptions and details of blockchain protocols, blockchain studies, and of their applications.
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CORRECTNESS AND FAIRNESS OF COMMITTEE-BASED
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In a nutshell, blockchain systems maintain a continuously-growing history of ordered in-
formation, encapsulated in blocks. Blocks are linked to each other by relying on collision-
resistant hash functions ([141]), i.e., each block contains the hash of the previous block. The
blockchain itself is a distributed data structure (distributed ledger) replicated among di�erent
peers. To preserve the chain structure, those peers need to agree on the next block to append
in order to avoid forks. The most popular technique to decide which block will be appended is
the proof-of-work mechanism of Dwork and Naor [69]. The block that will be appended to the
blockchain is owned by the participant (miner) having enough computing power to solve a
cryptographic puzzle �rst. The best-known way to solve this puzzle is by repeated trials. The
major criticism for the proof-of-work approach is the following: the generation of a block is
energetically costly, which yields to the creation of mining pools and �nally, multiple block-
chains might coexist in the system due to accidental or intentional forks. Many alternatives
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in the same spirit of drawing one participant at random exist. One can cite proof-of-activity,
proof-of-burn, proof-of-elapsed time, proof-of-space, proof-of-stake, etc. All these alternatives,
although they reduce the energy consumption problem, su�er from the fork issue.

Other classes of building blockchains exist. Instead of drawing one participant at random,
for each new block to be added, a committee is selected and is in charge of agreeing on which
block to append next. Among all these alternatives, those using variants of Practical Byzantine
Fault-Tolerant consensus [45] became recently popular not only for in-chain transaction sys-
tems but also in systems that provide cross-chain transactions. We can name the following
blockchain systems as example: Algorand [85], HotStu� [160], RedBelly [54], Tendermint [39],
etc. They have the purpose of avoiding forks by relying on a committee that has to agree on the
next block to add. The committees run blockchain consensus algorithms. Those algorithms
are inspired by well-known algorithmic techniques such as the ones from classical consensus,
e.g., [45, 68, 113, 122, 153]. Committee-based blockchains can guarantee the absence of fork.
They seem promising, but many questions are open and need to be addressed.

In this chapter, we focus on the study of committee-based blockchains. We �rst de�ne
the problem committee-based blockchain try to solve in a deterministic fashion: the repeated
consensus, by extending the existing de�nition to cover Byzantine failures. Additionally, we
study these blockchains from a fairness point of view.

4.1 System Model

In this section, the reader may refer to Chapter 2 for more in-depth details about the model.
The system is composed of an in�nite set Π = {1, 2, . . . i, . . . } of sequential participants; i

is the index of the participant i. Sequential means that a participant executes one step at a time.
This does not prevent the participants from executing several threads with an appropriate
multiplexing. As local processing time is negligible with respect to message transfer delays,
we consider it as being equal to zero.

Arrival model. We assume a �nite arrival model, i.e., the system has in�nitely many parti-
cipants but each run has only �nitely many. The size of the set Πρ ⊂ Π of participants in each
system run is not a priori-known.

Communication In the following, we assume the presence of a reliable byzantine broad-
cast, i.e., the broadcast protocol satis�es the following conditions:

• Validity. If an obedient participant delivers a message m from an obedient participant i,
then i broadcasted the message m;

• Integrity. No obedient participant delivers twice the same message from a participant;

• Termination-1. If an obedient participant broadcasts a message m, all obedient parti-
cipants eventually deliver m.

• Termination-2. If an obedient participant delivers a message m from a participant, then
all obedient participants eventually deliver m.

Messages are created with a digital signature, and we assume that digital signatures are un-
forgeable.
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Time assumptions on communication. The participants communicate by exchanging
messages through an eventually synchronous network. Eventually Synchronous means that
after a �nite unknown time τ there is an a priori unknown bound δ on the message transfer
delay. When τ = 0 and δ is known the network is synchronous.

Failure model. Some participants can exhibit a Byzantine behaviour in the system. A Byz-
antine participant is a participant that can deviate arbitrarily from the given protocol. We do
not assume any bound on the number of Byzantine participants in the system, but inside each
committee, the number of Byzantine participants is upper bounded. A participant that exhib-
its a Byzantine behaviour is called a Byzantine or a faulty participant, and a participant that
follows the given protocol is called obedient.

Let i be a participant, and let T be a fragment of i’s execution. If at the beginning of
the fragment T , the internal state of i is correct and i follows the given protocol during the
fragment T , then we say that i is T -obedient. A correct internal state is a state of the participant
that can be the result of i following the protocol. An obedient participant is T -obedient ∀T .

4.2 Consensus & Blockchains

4.2.1 Distributed Consensus

Recall that blockchain systems are distributed ledgers, where all participants should locally
have the same sequence of blocks. Blocks being added in an append-only manner, all parti-
cipants should agree on the next block to add. In the most popular blockchain system, Bitcoin
[128], it happens that participants “temporarily” disagree on which block is the next. When
two or more participants disagree on the next block, we say that there is a fork.

Agreeing in a distributed fashion among a set of participants has been intensively studied
in distributed systems with the abstraction of the deterministic distributed consensus [113], or
simply consensus de�ned in the following.

De�nition 4.1 (Consensus). An algorithm implements the consensus in presence of Byzantine
participants if and only if it satis�es the following properties:

• Termination. Every obedient participant decides on a value (a block);

• Agreement. If two obedient participants decide respectively on values B and B′, then
B = B′;

• Validity. A decided value by any obedient participant is valid; it satis�es a prede�ned
predicate.

We use the concept of external validity introduced by [41]. The validity predicate must be
known by all participants and is de�ned by the given application. External validity was later
adapted by [54] as a well-suited validity concept for blockchains.

Note that it is impossible to solve consensus in asynchronous systems when there is at
least one failure [77]. To solve consensus, it is necessary to have f ≤ bn/3c participants
that exhibit a Byzantine behaviour, where n is the total number of participants; equivalently,
n ≥ 3f + 1.

The claim that Bitcoin achieves consensus in an asynchronous system and is resilient to up
to n/2 Byzantine participants cannot be true. The presence of forks in the lifetime of Bitcoin
shows that consensus is not always guaranteed. For example, a participant does not know
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when a block is really considered decided. Bitcoin implements in some sense a probabilistic
consensus.

Using a consensus algorithm to reach decisions in blockchain systems is not simple. Of-
ten, we cannot directly use consensus algorithms to build blockchains. Blockchain systems
may be open, so new participants can always enter the system, all participants may not be
known in advance, and the number of participants may vary during the execution. Consensus
algorithms, however, assume the number of participants to be known and �xed. Another im-
portant fact is that blockchain systems are designed to have a lot of participants, but consensus
algorithms require a lot of exchanged messages to reach an agreement. Consensus is not really
scalable in the number of participants.

A way to circumvent the problem is to select a known and �nite subset of participants that
will run the consensus. We call that subset of participants a committee. The committee may
change during the system run, but its size is a priori known and �xed.

Committee-based blockchains (that are described in the next section) delegate the task of
consensus to selected committees.

4.2.2 Committee-based Blockchains in a Nutshell

We denote by B the set of blocks. A block contains, among other things, a header and a list of
transactions. The header contains the hash ([141]) of the previous block, the time at which the
block was created, some application dependant information, etc. Note that we use the broad
term “transactions” to designate the data inside the blockchain; transactions are application
dependant.

We denote by B∗ the set of all �nite sequences of blocks. Let bc ∈ B∗, be a �nite sequence
of blocks. |bc| is the length (the number of blocks) of bc. We say that bc is a blockchain if
∀k ∈ N∗ : 0 < k ≤ |bc|, in the header of the block at position k in bc there is the hash of the
block at position k − 1. The position of a block is also called its height. If additionally, the
list of transactions in each block in the blockchain is valid with respect to the given validity
predicate, we say that bc is a valid blockchain. The block at height 0 is the genesis block.

The genesis block initialises the blockchain, i.e., it de�nes the committee in charge of pro-
ducing the block at position 1 (a committee is a subset of participants), describes how rewards
will be distributed among committee members (which we call the reward mechanism), de-
scribes how participants will be selected for being part of committees with respect to the state
of the blockchain (the selection mechanism), etc. Ideally, all this information should be pub-
lic and known by all participants. In fact, with the history of the blockchain, all participants
should be able to compute and/or know the sets of committee members selected.

When a participant starts a new height, it computes the committee for that height. For a
height, participants that are not members of the corresponding committee just wait for the
decision from its committee members. The committee members for that height execute an
agreement procedure (e.g., a consensus algorithm, De�nition 4.1) to determine the block they
want to add for that height.

Once the committee members reach a decision, they each send the block decided to the
whole network, and move to the next height. Participants that were not part of the commit-
tee, the non-committee members, wait to collect the decided block from “enough” di�erent
committee members; waiting for su�cient period of time the decision allows to be tolerant
to failures. Once a non-committee member collects enough times the same decided block, it
considers that block as its decision for that height and then moves to the next height. When
moving to the next height, participants may wait a certain amount of time to collect more
messages from committee members. The decision messages from committee members are the
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Figure 4.1: State Machine of a Repeated Consensus Algorithm to Build a Committee-based
Blockchain.

ones used to reward previous committees. Intuitively, if a participant receives a decision mes-
sage for the block decided by a committee member, then probably that committee member
followed the protocol during that height1 and can be rewarded. A state machine describing
the generic execution is given in Figure 4.1.

We can note that using the consensus at each height allows having exactly one corres-
ponding block, hence the absence of forks. Many blockchains such as Algorand, HotStu�,
RedBelly, Tendermint, etc., use at their core such approach; sometimes by using variants of
the consensus abstraction; interestingly, the structure of the execution is the same. Note that
Algorand uses a probabilistic variant of the consensus, leading to the existence of forks with
very low probability.

4.3 Problem De�nition

In this section, we introduce and de�ne two abstractions studied during this thesis: the re-
peated consensus, which is the problem solved by committee-based blockchains; and the fair-
ness of the rewards distribution.

4.3.1 Blockchain Repeated Consensus

The repeated production of blocks by the di�erent committees can be seen as multiple in-
stances of agreement, where at each height, exactly one block should be decided.

Many abstractions relative to multiple consensus have been studied. The concept of multi-
consensus is presented in [26], where the authors assume that only the faulty participants can

1 That is not true in general, since Byzantine participants, for instance, can send the decided value at the end
without doing anything during their protocol execution.
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postpone the decision of obedient participants; additionally, the consensus is made a �nite
number of times. The long-lived consensus presented in [64] studies the consensus when the
inputs are changing over time, their speci�cation aims at studying in which conditions the
decisions of obedient participant do not change over time. However, none of the speci�cations
previously cited is appropriate for blockchain systems. In [60], Delporte-Gallet et al. de�ned
the repeated consensus as an in�nite sequence of consensus instances, where the inputs values
may be completely di�erent from one instance to another; but all obedient participants have
the same in�nite sequence of decisions.

Blockchain consensus can be viewed as a repeated consensus problem. However, in [60]
only crash failures were considered. We propose in De�nition 4.2 a generalisation of the re-
peated consensus resilient to Byzantine failures. The main di�erence is that we do not predicate
on the faulty participants, Byzantine included. Each obedient participant outputs an in�nite
sequence of decisions; each decision corresponds to a block with the blockchain analogy. We
call that sequence of decisions the output of the participant.

De�nition 4.2 (Repeated Consensus). An algorithm implements a Byzantine repeated con-
sensus if and only if it satis�es the following properties:

• brc-Termination. Every obedient participant has an in�nite output;

• brc-Agreement. If the ith value of the output of an obedient participant is B, and the ith

value of the output of another obedient participant is B′, then B = B′;

• brc-Validity. Each value in the output of any obedient participant is valid; it satis�es a
prede�ned predicate.

Alternatively, brc-Termination can be stated as follows: “∀k ∈ N, every obedient parti-
cipant eventually outputs the kth value”. However, we use the de�nition above to stick with
the de�nition of [60].

If clear from the context, we simply write Termination, Agreement and Validity instead of
respectively brc-Termination, brc-Agreement and brc-Validity.

If an algorithm implements the repeated consensus then each obedient participant will
have an in�nite sequence of decisions (blocks); any two obedient participants will have the
exact same sequence (the same blockchain), and all blocks in the sequence will be valid with
respect to the application dependant predicate. This abstraction corresponds to the idea of a
blockchain, as the output of each participant is its local sequence of blocks.

We now understand how committee-based blockchains work, and speci�cally which prob-
lem they solve. Blockchain systems usually give rewards to block creators, here the commit-
tees. These rewards serve to give incentives to maintain and to build the blockchain. Rewards
are on top of the block agreement procedure: to know which participants to reward, the blocks
of these participants should be in the blockchain, as well as the reward. The question of fair-
ness is of interest in blockchain systems. In the next section, we propose a de�nition of fairness
for committee-based blockchains.

4.3.2 Fairness of Committee-based Blockchains

In the blockchain literature, a blockchain protocol is considered fair if “any obedient parti-
cipant having a fraction α of the total merit in the system gets at least α fraction of the total
rewards” that are given in the execution of the system or over a su�ciently long period of time.
Where intuitively, the merit is the e�ort the participant is putting to maintain the blockchain.
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Classical notions of fairness in blockchains such as chain-quality [83] do not apply for
committee-based blockchains. The chain-quality de�nition of fairness considers the number
of blocks an obedient participant adds to the blockchain over a long period of time; however,
since in committee-based blockchains, one block is produced by more than one participant,
such de�nition should be extended. Instead of de�ning the fairness by the number of blocks a
participant produces, we de�ne a notion of fairness with respect to the number of rewards a
participant gets over the execution of the system.

To tackle the fairness of committee-based blockchain protocols such as Algorand, HotStu�,
RedBelly, Tendermint, etc., we split the mechanism in two: the selection mechanism and the
reward mechanism. We say that each participant has a given merit, which represents the e�ort
the participant is putting to maintain the blockchain, for instance, it can represent the mining
power of a participant in proof-of-work blockchains, or the stakes in proof-of-stake block-
chains, etc. The selection mechanism selects for each new height the committee members (the
participants that will run the consensus instance) for that height. The reward mechanism is in
charge of distributing rewards to committee members that produce a new block. Informally,
if the selection mechanism is fair, each participant will become committee member propor-
tionally to its merit; and if the reward mechanism is fair, for each height, only the obedient
committee members get a reward. By combining the two mechanisms, an obedient participant
is rewarded at least a number proportional to its merit parameter over the in�nite execution
of the system.

4.3.2.1 Selection Mechanism

In a system where the size of the committees is strictly lower than the number of participants
in the system, there should be a way to select the members of the committees. Always selecting
the same participants leads to the centralisation of the system. The participants that are always
selected can exercise a power of oligarchy, and add in the blockchain only transactions they
want.

Note that the task of creating a subset of participants in a distributed fashion has been stud-
ied in distributed systems under the name of group membership problem [56]; group member-
ship is also about agreeing on the sequence of membership changes. The group membership
was proved not to be always possible; in particular, it is impossible in asynchronous systems
with crash failures [47]. However, the problem here seems slightly di�erent since new groups
should be formed for each height, and one can use a deterministic algorithm thanks to the
blockchain that serves as a share and common view.
∀h > 0, let Ch be the set of committee members for the height h. ∀h > 0, we assume that

|Ch| = n, the size of the committees is �xed and equal to n. When the height is clear from the
context, we simply write C for the set of committee members.

To analyse di�erent mechanisms of selection, we �rst need to de�ne it properly. Formally,
a selection mechanism is a function selection : B+ × N → Πn ∪ ∅; where n is the size of
committees, Π the set of participants, and B+ represents the set of non-empty blockchains. If
bc is a non-empty blockchain, then:

selection(bc, h) =

{
Ch, if |bc| ≥ h− 1
∅, otherwise

.

Recall that |bc| is the length of the blockchain bc.
Some information can be computed from and/or stored in the blockchain, e.g., the number

of time each participant has been committee member, the wealth of each participant, etc. Based
on this information, the selection mechanism can select according to some order, for instance,



48 CHAPTER 4. CORRECTNESS AND FAIRNESS OF COMMITTEE-BASED BLOCKCHAINS

wealthiest participants with the highest stakes, participants that were committee members
less often, always the same set of participants, etc.

To abstract the notion of the e�ort of a participant in the system to maintain the blockchain,
we denote by αi(t) ∈ [0, 1] the merit parameter of participant i at time t proportionally to the
total merit at time t, such that ∀t,

∑
i∈Πρ

αi(t) = 1.
If ∀t ∈ T, ∀i, αi(t) = αi(t0), we simply denote by αi the merit of the participant i. In that

case, the merits do not depend on the evolution of the blockchain nor its contents.
Let vi be the number of times i becomes committee member proportionally to the number

of blocks. This value is computed at the limit of the blockchain construction. Therefore, if
a participant j leaves the system at a point in time, then vj = 0. We have that vi ∈ [0, 1].
We propose the following de�nition of the fairness of selection mechanisms where merits are
�xed and do not change with time. The de�nition allows all participants with positive merit
to be a member of committees in�nitely often with respect to their merit.

De�nition 4.3 (Fairness of Selection Mechanism). Assume that the blockchain is built in�n-
itely, so ∀h ≥ 0, there is a block at position h. We say that a selection mechanism is fair if it
respects the following properties:

1. If αi 6= 0 then vi 6= 0; or equivalently, αi 6= 0 =⇒ ∀h ≥ 0,∃h′ ≥ h : i ∈ Ch′ ;

2. If αi ≥ αj then vi ≥ vj .

Informally, Condition 1 means that each participant with a positive merit parameter should
become a committee member in�nitely often. Condition 2 means that a participant with low
merit cannot be selected more than a participant with higher merit. Note that this de�nition
depends only on the merit and not on the behaviour of the participants (obedient or Byzantine).

A fairness de�nition of a generic selection mechanism (where merits do change over time)
is still an open question; however, such de�nition should encapsulate De�nition 4.3 as a special
case.

Remark 4.4. If the total number of participants in the system is equal to the size of commit-
tees, then all participants are always selected, therefore, the selection mechanism, in that case, is
trivially fair, although asking a huge set of participants to run the consensus is not scalable.

4.3.2.2 Reward Mechanism

In blockchain systems, participants that produce and add blocks to the blockchain are rewar-
ded. In committee-based blockchains, a committee is the producer of a block. Within that
committee, some participants may not behave as prescribed, therefore, rewarding all parti-
cipants may not be fair to those who followed the prescribed protocol. In particular, there
may be di�erent ways of rewarding members of committees. To do so, we de�ne the reward
mechanism. A reward mechanism consists of a function reward : B+×℘(Information)×N→
R|Πρ|∪ (⊥, . . . ,⊥); where℘(Information) is the power set of all messages, and B+ represents
the set of non-empty blockchains.

If bc is a blockchain and |bc| < h, reward(bc,M, h) = (⊥, . . . ,⊥); we do not reward com-
mittee members when there is no block produced for their corresponding height. Otherwise,
it assigns to each participant a given reward. In reward(bc,M, h), M represents the set of
messages used to compute the rewards, h the height of the blockchain bc where the reward of
committee members is computed.

A reward is considered allocated if it is written in the blockchain. The second part of the
reward mechanism is choosing when to allocate the reward corresponding to a given height.
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If a reward has been allocated at a height h, the participant can use it after a certain number
of blocks de�ned in the genesis block (e.g., [74, 83]). We consider that for each block produc-
tion, its rewards are allocated in one block and not split over di�erent blocks, such that after
the allocation of rewards a participant knows if it has been rewarded or not. Note that once
rewards are allocated, their values cannot change any more.

It is interesting to note that some blockchain systems consider punishment mechanism,
called slashing, to a�ict some costs to a participant if there is a proof of misbehaviour, as
described in [131]. We do not consider slashing in our mechanisms.

We recall the de�nition of T -obedient, with T being a fragment of execution of a parti-
cipant. Let i be a participant, and let T be a fragment of i’s execution. If at the beginning of
the fragment T , the internal state of i is correct and i follows the given protocol during the
fragment T , then we say that i is T -obedient. A correct internal state is a state of the parti-
cipant that can be the result of i following the protocol. An obedient participant is T -obedient
∀T . For example, i is considered h-obedient if during its execution of height h it followed the
protocol.

We de�ne the following properties for characterising the fairness of a reward mechanism.
Let h be a height. Each committee member has a boolean variable rhi , which we call reward
parameter de�ned as follows:

f1 – If i is a not a committee member for h, then rhi = 0;

f2 – h-completeness. If i is a committee member for h and i is h-obedient, then rhi = 1;

f3 – h-accuracy. If i is a committee member for h and i is not h-obedient, then rhi = 0.

If rhi = 0, it means that i is not rewarded for height h, and if rhi = 1, i has been rewarded
for h. The properties are inspired by the classical properties of failure detectors [48].

Remark 4.5. We do not reward non-committee members. Many committee-based blockchains
consider delegation, i.e., a participant delegates to a committee member, and once the committee
member is rewarded, all of its delegates are rewarded proportionally to what they delegated. We
do not consider delegations, but it can be nice to enrich our model with delegations. For rewards
in blockchains with delegations, the reward parameter for each participant rhi must contain more
information and not just be a boolean variable.

De�nition 4.6 (Complete Fairness of a Reward Mechanism). Let R be a reward mechanism.
If ∀h > 0, R satis�es Conditions f1 and h-completeness (Condition f2), we say that R satis�es
complete fairness.

If a reward mechanism satis�es complete fairness, it means that for all height h > 0, all
h-obedient committee members are rewarded, and non-committee members are not.

De�nition 4.7 (Accurate Fairness of a Reward Mechanism). LetR be a reward mechanism. If
∀h > 0,R satis�es Conditions f1 and h-accuracy (Condition f3), we say thatR satis�es accurate
fairness.

If a reward mechanism satis�es accurate fairness, it means that for all height h > 0, no
h-obedient committee member is rewarded.

De�nition 4.8 (Fairness of a Reward Mechanism). Let R be a reward mechanism. If ∀h > 0,
R satis�es Conditions f1, h-completeness (Condition f2) and h-accuracy (Condition f3), we say
thatR is fair.
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We say that a reward mechanism is fair when at each height h, all and only h-obedient
committee members are rewarded.

Our de�nition of fairness states that for any height Conditions f1 - f3 are satis�ed. Parti-
cipants should always receive all rewards they deserve. This de�nition can be weakened.

De�nition 4.9 (eventually fairness of a Reward Mechanism). Let R be a reward mechanism.
If ∃h0 > 0 : ∀h ≥ h0, R satis�es Conditions f1, h-completeness (Condition f2) and h-accuracy
(Condition f3), we say thatR is eventually fair.

A reward mechanism is eventually fair if after an a priori unknown but �nite time, the
rewards are allocated to and only to obedient committee members.

When a reward mechanism is fair, it is also eventually fair but the reverse (reciprocal) is
not necessarily true.

4.4 Fairness Analysis of Committee-based Blockchains

4.4.1 Examples of Selection Mechanisms

First, we quickly review from a fairness point of view two selections mechanisms based on
the wealth of participants. Let us assume that there are N > n participants during the whole
execution of the system, we also assume that no new participants can enter, and participants
cannot exit. Let us also assume that for all participants, merits do not change over time, and
all participants have the same merit: ∀i, j ∈ Πρ, αi = αj > 0. Recall that merits are not
necessarily stakes.

In the examples below, we consider selection mechanisms that depend on the stakes of
participants, while the merit is �xed and does not depends on the (evolution of) stakes. All
participants are obedient, and a committee member is rewarded when the committee it is part
of produces a block. When a participant is rewarded, its stakes increase, but its merit remains
the same.

For our analysis, we further consider that participants are ordered by their stake and their
id (public key). Let us assume that at the beginning of the execution, all participants have the
same amount of stakes. Without loss of generality, and up to renaming, we consider at any
point of the execution that if ∃i, j : i < j such that i and j have the same amount of stakes,
then i is selected before j.

Select the participants with the highest stake. This selection mechanism works as fol-
lows: for any height h, with respect to the blockchain up to height h − 1, the n participants
having the biggest amount of stakes are selected to be part of the committee.

This mechanism leads to a situation where only the n participants selected �rst will al-
ways be selected, and the other participants will never be. This mechanism is not fair, since
Condition 1 of De�nition 4.3 is not satis�ed. In fact, all not selected participants have positive
merit, and they should be selected in�nitely often according to the fairness de�nition.

Note that if we consider that the n selected participants are the only one with positive
merit, and the others have a merit equal to 0, then the selection is fair.

Select the participants with the lowest stake. This selection mechanism works as fol-
lows: for any height h, with respect to the blockchain up to height h − 1, the n participants
having the lowest amount of stakes are selected to be part of the committee.
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Recall that N is the total number of participants; the number of times each participant has
been selected after l blocks is on average l×n/N selections. This mechanism is fair according
to De�nition 4.3. In fact, all participants have the same positive merit, and they are all selected
in�nitely often and they are all selected about the same number of time.

Let us remark that this mechanism is fair in the model considered in this example since
participants cannot exit nor enter after the beginning of the execution. If that assumption
is removed, i.e., if participants could enter or leave, the following can happen. Once a parti-
cipant is selected and rewarded, it knows that it would not be selected before a long period of
time, on average after n/N blocks; one incentive could be to create new sub addresses (new
participants) such that they will have low stakes and will be selected faster and more often.
Another similar scenario is that if a participant has a big amount of stakes, it might not be
allowed to participate in committees for a long time until all the participants with small stakes
caught up. The participant might want to split into a lot of stakeholders with small stakes. In
such a way, the new stakeholders will always have the smallest stakes and be selected, if it
continues to do so, it might block other participants to be committee members. Although fair,
selecting the participants with the lowest stakes does not seem stable in an open setting.

Remark 4.10. An unfair selection mechanism can lead to a centralisation of the system, by
always letting the same participants decide on the blocks to add in the blockchain. Although the
assumption on the bound of Byzantine participants does not depend on the selection mechanism,
we note that when a selection mechanism selects the participants with the lowest amount of stakes,
and only obedient participants in committees are rewarded, at some point participants that were
not obedient will have the lowest stake, thus will be selected.

The existence of a fair and “good” selection mechanism is still an open question.

4.4.2 Analysis of Reward Mechanism’s Fairness

In this section, we review the time assumptions on communication needed to achieve fairness
in committee-based blockchains.

Complete Fairness. If a reward mechanism satis�es complete fairness, it means that for all
height h > 0, all h-obedient committee members are rewarded, and non-committee members
are not.

Proposition 4.11. There exists at least one reward mechanism satisfying complete fairness.

Once a block is in the chain, rewarding all committee members, in the next block, for that
block and only them satisfy Conditions f1 and f2. Condition f1 is satis�ed since, for all height,
non-committee members are not rewarded. Condition f2 also holds, for any given height h,
all committee members of h are rewarded, in particular all h-obedient committee members.

Accurate Fairness. If a reward mechanism satis�es accurate fairness, it means that for all
height h > 0, all non h-obedient committee members are not rewarded.

Proposition 4.12. There exists at least one reward mechanism satisfying accurate fairness.

Never allocating rewards satis�es Conditions f1 and f3. Condition f1 is satis�ed since non-
committee members are not rewarded. Condition f3 holds since no participant is rewarded; in
particular, for any given height h > 0, no non h-obedient committee members is rewarded.
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Fairness. Although simple and trivial to satisfy either complete fairness or accurate fairness,
a mechanism satisfying both at the same time is more complex and not always possible.

First, about the fairness of committee-based blockchains, we can highlight the following.

Remark 4.13. Recall that Ch is the set of committee members for height h. ∀h > 0, if |Ch| > 1,
then for a reward mechanism to be (eventually) fair, rewards cannot be allocated directly in the
corresponding block. For any height h > 0, the set of h-obedient committee members cannot be
known in advance. If ∀h > 0, |Ch| = 1, the reward can be directly allocated only to the committee
member, so in the block at height h; such is the case of Bitcoin-like blockchains.

Theorem 4.14. There exists a fair reward mechanism in a committee-based blockchain protocol
if and only if the system is synchronous.

Proof

We prove this theorem by double implication.

• If there exists a fair reward mechanism, then the system is synchronous.

LetR be a reward mechanism. By contradiction, we assume thatR is fair and that the
system is not synchronous.

Ch is the set of committee members for the height h. Let k > 0 be the �xed number
of blocks to wait before distributing the rewards for Ch. The reward is allocated by
the committee Ch′ , where h′ = h + k. Recall that k is de�ned in the genesis block.
Since the system is not synchronous, the committee members of height h′, Ch′ , may
not receive all messages from Ch before allocating the rewards. Reward allocation for
height h should be done at height h′ and not after.

Since the reward mechanism is fair, by Conditions f1 - f3, all and only the h-obedient
committee members of the height h have a reward parameter equal to 1. That means
that the h′-obedient committee members ofCh′ know exactly who were the h-obedient
committee members in Ch, so they got all the consensus messages of height h before
distributing the rewards. Contradiction, therefore the system is synchronous.

• If the system is synchronous, then there exists a fair reward mechanism.

We assume that the system is synchronous and ∀h > 1, all messages sent by h-obedient
participants at height h are delivered by all other obedient participants before the block
at height h + 1. Let R be the following reward mechanism: let h be a height, rewards
for a block at height h are allocated at height h+ 1 by the committee Ch+1.

– If a participant is not a committee member for height h, it sets its reward para-
meter to 0, this is known since participants are already at height h+ 1.

– By combining the messages from committee members of h participants, since
the communication system is synchronous, it is possible to di�erentiate between
h-obedient and non h-obedient committee members, then it sets the reward para-
meter of h-obedient committee members of h to 1 (this is possible since the system
is synchronous, therefore obedient participants of Ch+1 delivered the messages
from the consensus instance of height h); and it sets the reward parameter of non
h-obedient committee members of h to 0.

By construction, the committee members in h + 1 allocates rewards to all and only
h-obedient committee members, soR is fair, it satis�es all fairness Conditions f1 - f3.

�Theorem 4.14
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If there is no synchrony, there cannot be a fair reward mechanism for committee-based
blockchains.

eventually fairness. Before discussing eventually fairness, we introduce detectable Byz-
antine. In fact, we need to detect the behaviour of participants to have a chance to be fair.
The problem of detecting participants’ behaviours is however still an open problem. In the
following paragraph, we brie�y discuss some existing works on the topic.

Detecting Byzantine Failures. In synchronous systems, it is always possible to detect Byz-
antine participants, for example using the broadcast abstraction detectable all-to-all (DA2A)
de�ned in [115]. When Byzantine can be detected, it is possible to not reward them, therefore,
being able to satisfy Condition f3. If we cannot detect them, then it will be di�cult, if not
impossible, to distinguish between participants that should be rewarded and those that should
not be rewarded. In eventually synchronous systems, the problem of detecting Byzantine par-
ticipants is complex. For instance, Kihlstrom et al. in [104], propose a failure detector to solve
consensus in presence of detectable Byzantine. However, they distinguish between detectable
and non-detectable Byzantine; detectable Byzantine are the participants whose behaviours
can be detected, for instance by doing omission or commissions failures. Non-detectable Byz-
antine are Byzantine participants whose faults cannot be detected, for example participants
that alter their internal state. The basic idea is that all Byzantine faults cannot be detected.
Therefore, the focus can only be on detectable Byzantine. In [94], among other things, Hae-
berlen and Kuznetsov provide a formal framework for fault detections, and provide a formal
classi�cation of the various failures that can occur. In [87], Greve et al. extend the approach
and propose a failure detector for detectable Byzantine in dynamic networks.

Although Kihlstrom et al. proposed a failure detector for solving consensus, our problem
is not the same, and we cannot apply their failure detector as it is. In [104], once a Byzantine
behaviour is detected, the Byzantine participant should be suspected forever. In blockchain
systems, we do not want to punish inde�nitely participants who failed at one point, but be-
have correctly after and forever. In more details, we want for any height h to not reward only
participants that were not h-obedient. For example, let i be a participant such that it is part of
committees h and h′, such that h′ > h. Suppose also that during height h, i sent unintention-
ally contradictory messages (and so is Byzantine), but then i recovered before the beginning of
height h′ and follows the protocol during h′ and after. Even if i is not h-obedient, it recovered
before h′ and is h′-obedient. If i has been detected and not rewarded for height h, that should
not prevent it to be rewarded for its work during height h′, and since it follows the protocol,
it should be rewarded for height h′. The failure detector proposed by Kihlstrom et al. is not
appropriate for us.

Theorem 4.15. There exists an eventually fair reward mechanism in a committee-based block-
chain protocol if and only if the system is (eventually) synchronous and Byzantine participants
are detectable.

Proof

We prove this theorem by double implication.

• If there exists an eventually fair reward mechanism, then the system is eventually syn-
chronous or synchronous and Byzantine participants are detectable.

LetR be a reward mechanism. We assume thatR is eventually fair.
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If R is fair, by Theorem 4.14, the communication is synchronous and we can use the
DA2A abstraction [115] to detect the Byzantine participants, which ends the proof.
Otherwise, since R is eventually fair, that means that there is a point in time h from
which all the rewards are correctly allocated, so for any height h′ ≥ h, h′-obedient
committee members of committees at height h′ are able to distinguish between non-
obedient participants during the height they are distributing the rewards, the Byzantine
are then detectable. If we consider h as the beginning of the execution, then we have
thatR is fair, and by Theorem 4.14, the communication from height h is synchronous,
so the message delay is upper bounded. We have that after h, the message delay is upper
bounded, so the communication is eventually synchronous. Therefore, the Byzantine
are detectable and the communication is synchronous or eventually synchronous.

• If the system is eventually synchronous or synchronous, and Byzantine participants
are detectable, then there exists an eventually fair reward mechanism.

If the system is synchronous, the proof follows directly from Theorem 4.14. Consider
that the system is eventually synchronous, but not synchronous. LetR be the following
mechanism: Let h be a height, rewards for a block at height h are allocated at height
h+ 1 by the committee Ch+1.

– If a participant is not a committee member for height h, set its reward parameter
to 0, this is known since participants are already at height h+ 1.

– By combining the messages from committee members of h, if there is not su�cient
information to detect the behaviour of participants, reward only those detected
as h-obedient that are inCh, and the participants proposing the distribution of re-
ward increases their duration to wait (for more decisions) before starting the next
height. If there is enough information to detect the behaviour of all participants
in Ch, then we reward the h-obedient participants in Ch, and we do not reward
non h-obedient participants in Ch.

R is eventually fair.

�Theorem 4.15

Corollary 4.16. In an asynchronous system, there is no (eventual) fair reward mechanism in a
committee-based blockchain tolerating Byzantine participants.

Proof

Assume that the system is asynchronous, where there are good periods such that con-
sensus can be reached. By contradiction, letR be an eventually fair reward mechanism.

• If there are non-detectable Byzantine participants in the system,R is not fair (Theorem
4.15);

• If all Byzantine participants are detectable, then by Theorem 4.15, the system must be
synchronous, or eventually synchronous.

We have a contradiction, since the system is asynchronous. It is not possible to have an
(eventual) fair reward mechanism in an asynchronous system. �Corollary 4.16
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Note that if the protocol tolerates Byzantine faults, even if all the participants are obedient
but that is not known in advance, Corollary 4.16 holds. It is di�erent from the FLP impossibility
result of consensus in an asynchronous system with one faulty participant [77].

4.4.3 Numerical Examples of Reward Allocation

In this section, we examine the impact of di�erent communication models on the fairness
of reward mechanisms through several numerical examples that con�rm the results on the
fairness of reward mechanisms from Section 4.4.2.

Execution. In our analyses, participants run a committee-based blockchain protocol as de-
scribed in Section 4.5.1; and rewards for a block produced at a height h are allocated in the
block at height h+1. Note that the consensus module is Byzantine fault tolerant. We highlight
the environment’s important characteristics: the communication system, the total number of
participants in the system, the size of each committee, the di�erent type of participants and
their number at a given height, the rewarding mechanism, and the selection mechanism. We
must choose the value of these parameters before launching the execution. We consider dif-
ferent communication systems, and rewards are allocated by the next committee by using
messages they delivered from the previous height – they use the combination of all messages
and check if they correspond to the correct time and a possible value to send according to their
current state.

We consider a system where all participants are part of all committees. For clarity, and
without loss of generality, we consider a system with n ≥ 4 participants where they are all
selected. As stated in Remark 4.4, selecting all participants is a fair selection mechanism. We
can then focus on the impact of the network on rewards. For any height h, there can be at
most b(n− 1)/3c non h-obedient participants in each committee. For a committee, a quorum
of d2n/3e is needed for any decision. In the case where there are for any height h some non
h-obedient participants, we assume that participants have enough information to detect them
when allocating rewards. In particular, and for the experiments, the Byzantine participants
are specially tagged, and that tag is used only for allocating rewards. When an h-obedient
participant receives a message from a non h-obedient (which sends non correct information),
it suspects it, and broadcasts the information. When an h-obedient participant delivers at least
2bn/3c+1 suspicions for a participant, it considers it as non h-obedient, and does not propose
to reward it.

We use MATLAB [123] for the analyses. We analyse three di�erent communication mod-
els. First, a synchronous communication, where there is no delay. Then we consider the two
following semi-synchronous communication models: (i) the system alternates between good
and bad periods, where during good periods, message delays are upper bounded, and (ii) from
an unknown time, message delays are upper bounded (eventually synchronous model). We
note that in all these models, consensus can be reached. In the good/bad model, progress for
consensus instances is guaranteed during the good periods. Note that in the eventually syn-
chronous model, once the global stabilisation time (GST) happens all message delays are upper
bounded. If for a participant, the GST happens during height h, then for all height h′ > h, the
message delays are upper bounded, and participants do not know when GST occurs nor the
upper bound.

In each con�guration of the communication model, we ran the experiment 50 times and
took the mean. 0 represents if a participant did not receive a reward, and 1 if the participant
received a reward for the corresponding height. We only present the experiment of the even-
tually synchronous model.
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Figure 4.2: Evolution of Rewards in an eventually synchronous System, where GST happens
during height 10.

Eventually Synchronous Model. We consider an eventually synchronous model where all
participants are obedient, and all participants are part of each committee instances. Recall that
a system is eventually synchronous when after a �nite but unknown time (the GST), message
delay is upper bounded for the rest of the execution. In our examples, we consider that the
GST happens during height 10.

On Figure 4.2, we present the evolution of reward for each height. We draw the mean
of the average reward of each participant (red curve). The top (blue) and bottom (yellow)
curves represent the standard deviation. We can see the set in which the participants are
rewarded. When the blue and yellow curves converge, it means that all participants have
on average the same reward. We notice that from height 10, the evolution of the reward
is increasing. Approximately, from height 14, all participants are rewarded. Before height
10, there is a �uctuation in the evolution of rewards allocated because of the asynchronous
period: participants are not necessarily rewarded even if they participate. Their messages
were not received on time. Once the GST happens, message delay becomes upper-bounded but
some participants still have a timeout shorter than the bound. These participants still increase
their timeout until they receive all messages or detect non-obedient behaviours. When all
participants deliver messages during their corresponding rounds, they allocate the rewards to
all and only obedient participants; it means that the reward mechanism is eventually fair.

4.5 Case Study: Analysis of Tendermint

In this section, we formalise and analyse the correctness of one of the most popular and used
committee-based blockchain against the consensus abstraction (De�nition 4.1), the repeated
consensus abstraction (De�nition 4.2), and we analyse its reward mechanism (De�nition 4.9).

Tendermint [110] was the �rst having the merit to link the Practical Byzantine Fault-
Tolerant consensus to the proof-of-stake technique and to propose a blockchain where a dy-
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namic set of committee members (subset of the participants) decide on the next block to be
appended to the blockchain.

Tendermint is the most used underlying protocol for committee-based blockchains; and as
they called themselves on their website [151], as of June 2020, “The leading BFT engine for build-
ing blockchains” or “The world’s most popular blockchain framework”. As of writing this ma-
nuscript, more than 100 projects are using as core the Tendermint blockchain [53], including
Binance Chain [32], a software system developed by Binance, the world largest cryptocurrency
exchanges in terms of trading volume. Some techniques from Tendermint were inspirations
of other protocols such as HotStu� [160], which itself is what LibraBFT2 [149] is based on.

Tendermint has been intensively discussed (e.g., [40, 42, 96, 120]) and was (and still is) at the
core of many systems [53]; however, at the beginning of this thesis it was not formalised, and
its correctness not proven. During this thesis, we formalise for the �rst time Tendermint, and
we analyse the Tendermint consensus protocols. In our study, we found that the implemented
version of Tendermint (up to December 2018) was not correct [15]. After the release of our
report, the Tendermint team proposed a new version of their algorithm (that can be found
in [39]) that was eventually implemented; however, detailed proofs of the algorithm was not
provided. We proved correct the last version of Tendermint, showing that previous bugs have
been resolved. In this section, we present our works on the formalisation and the correctness
of Tendermint, as well as our study of its fairness.

4.5.1 Tendermint Consensus Algorithm

Although there exist many well-known and studied consensus algorithms such as PBFT [45],
or DLS [68], for the core layer of their blockchain, Tendermint proposes a new consensus
algorithm [39, 150]. We call this algorithm TendermintBFT. TendermintBFT is inspired by
classical consensus algorithms such as PBFT but is a bit more adapted for blockchains ap-
plications. TendermintBFT as the ones that followed (e.g., HotStu�) have smaller message
complexity, as it will be discussed in Section 4.5.1.4; intuitively, once the synchronous period
is reached, participants send fewer messages to reach consensus than in PBFT or DLS.

We note that we focus on a single committee at a time. TendermintBFT follows the rotat-
ing coordinator paradigm, i.e., for each new block to be appended there is a proposer (chosen
among the committee members) that proposes the block. If the block is not decided then a new
proposer is chosen (in a round-robin fashion) and so on, until a block is decided by obedient
committee members. In the following, we present variants of TendermintBFT in synchronous
and eventually synchronous communication models. Our presentation focuses on the import-
ant and key aspects of the algorithm; for clarity, we did not include some optimisations (for
example skipping some rounds if su�ciently many participants are in a higher round, etc). Re-
call that the number of participants in each committee is n = 3f+1, where f is the maximum
number of Byzantine participants in each committee.

Messages syntax. A committee member i broadcasts a message 〈TAG, h, e,m〉, where m
contains a value v, we say that i pre-proposes, proposes, or votes v if TAG=PRE-PROPOSE,
TAG=PROPOSE, TAG=VOTE, respectively. h represents the height or the consensus instance,
and e, the epoch, intuitively represents the number of rounds for that height since the begin-
ning of the consensus instance.

2 LibraBFT is the consensus protocol used by committees of the (in)famous Facebook’s Libra project. The
authors of LibraBFT work at Novi Financial (ex-Calibra) an independent subsidiary of Facebook, Inc.
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Algorithm 1 Messages management for participant i

1: upon reception of 〈TYPE, h, e,message〉 from participant j do

2: if @c : (〈TYPE, h, e, c〉, j) ∈ messagesSet then

3: messagesSet← messagesSet ∪ (〈TYPE, h, e,message〉, j)

Basic principles of the protocol. Recall that each block in the blockchain is characterised
by its height h, which is the distance in terms of blocks from the genesis block, which is at
height 0. For each new height, the two algorithms (Algorithm 2 for the synchronous case and
Algorithm 3 & 4 for the eventual synchronous case) share a common algorithmic structure,
they proceed in epochs; and each epoch e consists in three rounds: the PRE-PROPOSE round;
the PROPOSE round; and the VOTE round. During the PRE-PROPOSE round, the proposer of
the round pre-proposes a value v to all the other committee members. During the PROPOSE
round, if a committee member accepts v then it proposes such value. If a committee member
receives enough proposals for the same value v, then it votes for v during the VOTE round.
Finally, if a committee member receives enough votes for v, it decides on v. In this case, enough
means at least 2f+1 occurrences of the same value from 2f+1 di�erent committee members;
from each committee member, only the �rst value delivered for each round is considered (cf.
Algorithm 1).

If the proposer is obedient, it pre-proposes the same value to all the obedient committee
members (at least 2f + 1). If all the obedient committee members propose such value, it fol-
lows that all the obedient committee members will vote for such value and decide for it. If
the proposer is Byzantine it can pre-propose di�erent values to di�erent obedient committee
members, creating a partition in the pre-proposal value set collected by committee members.
Depending on what the remaining Byzantine committee members do, some obedient com-
mittee members may decide on a value v and some other may not (since there are 3f + 1
committee members, there cannot be two di�erent values that collect 2f + 1 distinct votes
in the same epoch), then a new epoch starts. To not violate the Agreement property of the
consensus (De�nition 4.1), obedient committee members that have not decided yet in the pre-
vious epoch must only decide for v, for this reason, committee members, before they vote for
some value v, lock on that value, i.e., they will refuse to propose a further pre-proposed value
di�erent than v.

Information from one epoch to the next. The two variables lockedValue and validValue3

carry the potentially decided value from one epoch to the next one. The variable lockedValue
represents the following. If one obedient committee member decides on v, it means that it
collected at least 2f+1 votes for v during the VOTE phase, since there are at most f Byzantine
participants among the committee members, thus there are at least f + 1 obedient committee
members that voted for v, and those committee members must not vote for any other value
di�erent than v. For this reason, when a committee member delivers at least 2f + 1 proposals
for a value v during the PROPOSE round, it sets its lockedValue to v, and we say that the
committee member is locked on the value v for the corresponding epoch. When an obedient
committee member is locked on a value, it can only vote for that value. It can eventually
change its locked value only if it delivers enough proposes for a new value more recent than
its lock. Hence, if f + 1 obedient committee members are locked on the same value v, they
can only propose and vote for v; any other value v′ 6= v can only receive at most 2f proposals,
which is not enough for both locking and voting, i.e., it is not possible to decide any value

3 validValue was not present in earlier versions of TendermintBFT [111], that was su�ering from the Live Lock
bug described in Appendix A.1.
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Figure 4.3: State machine Lock/Unlock

di�erent than v.
We depict in Figure 4.3 how a committee member updates its lock value.
On the other side, if no obedient committee members have decided yet, Byzantine com-

mittee members may force them to lock on di�erent values. Let us consider a scenario where
the proposer is Byzantine and pre-proposes v to f + 1 obedient committee members, such
that f Byzantine committee members make xv ≤ f of them lock on v; a similar scenario can
happen with another value v′ so that we can have di�erent obedient committee members, let
us say xv′ ≤ f locked on a di�erent value v′. If any new pre-proposal is checked only against
the lockedValue then an obedient committee member locked on a value v will refuse (does not
propose) any value di�erent from v, and the same for v′. When some obedient committee mem-
bers are locked, the proposer needs to propose a value on which obedient committee members
are locked on; but to be accepted, such value cannot be checked against the lockedValue only,
because we may never have enough obedient committee members proposing it. For example,
if xv + xv′ ≥ f + 1, no value can get the minimal 2f + 1 votes. For this reason, committee
members keep track of a variable validValue, which by construction of the algorithms is such
that all obedient committee members have the same validValue at the end of the epoch (in the
synchronous period). validValue represents the latest value on which an obedient committee
member may have locked on. Such value is then used to set the value to pre-propose and it is
further used along with lockedValue to accept or not a pre-proposed value.

Variables and data structures. h is an integer representing the consensus instance the
committee member is currently executing. ei is an integer representing the epoch where the
committee member i is in; we note that for each height, a committee member may have mul-
tiple epochs. decisioni will stock the decision of committee member i for the current consensus
instance. proposali is the value the committee member i proposes. votei is the value the com-
mittee member i votes. lockedValuei stores a value that is potentially decided by some other
committee member. If committee member i delivers more than 2f + 1 proposes for the same
value v during its PROPOSE round, it sets lockedValuei to v. validValuei stores a value that is
potentially decided by some other committee member. If the committee member i delivers at
least 2f + 1 proposes for the same value v (from di�erent committee members) whether, dur-
ing its PROPOSE round or its VOTE round, it sets validValuei to v. validValuei is the last value
that a committee member delivered at least 2f + 1 times, it can be di�erent from lockedValuei.
The latter two variables are used as follows: if i is the proposer then i pre-proposes validValuei
if di�erent from nil. Otherwise, if i is a committee member, it checks the new pre-proposal
against lockedValuei and validValuei if those are di�erent from nil.
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Functions. We denote as Value the set containing all values (blocks). Let Height = N∗ be
the set of all heights and let Epoch = N be the set of all epochs for a given height.

• proposer : Height × Epoch → C ⊆ Πρ is a deterministic function which gives the
proposer out of the set of committee members for a given epoch at a given height in a
round-robin fashion.

• isValid : Value→ {false, true} is an application-dependent predicate that is satis-
�ed if the given value is valid with respect to the blockchain. If there is a value v such that
isValid(v) = true, we say that v is valid. Note that we set isValid(nil) = false.
isValid is known and computable by all the committee members and depends on the
blockchain history and blockchain application.

• getValue() ∈ Value return a valid value.

• sentByProposer : Height × Epoch × Value → {false, true} is a predicate that gives
true if the given value has been pre-proposed by the proposer of the given height during
the given epoch, and false otherwise.

• Let X be the set either of possible proposals or of possible votes. The function 2f + 1 :
2X → {false, true}: checks if there are at least 2f + 1 proposals (resp. votes) in the
given set.

Everything de�ned above is common to the two algorithms. In each section, we specify
the data structures relative to a speci�c version of the algorithm.

4.5.1.1 TendermintBFT for Byzantine Synchronous System

In Algorithms 1 & 2 we describe the algorithm to solve consensus in a synchronous system
in the presence of Byzantine committee members. Recall that in synchronous systems, the
upper bound of message transfer delay is �xed and known by all participants. The algorithm
proceeds in 3 rounds for any given epoch at height h:

• Round PRE-PROPOSE (Lines 8 - 26 of Algorithm 2): If the committee member i is the
proposer of the epoch, it pre-proposes its proposal value, otherwise, it waits for the
pre-proposal from the proposer. The proposal value of the proposer is its validValuei if
validValuei 6= nil. If a committee member j delivers the pre-proposal from the proposer
of the epoch, j checks the validity of the pre-proposal and if valid to accept it with
respect to the values in validValuej and lockedValuej . If the pre-proposal is accepted and
valid, j sets its proposal proposalj to the pre-proposal, otherwise it sets it to nil.

• Round PROPOSE (Lines 27 - 39 of Algorithm 2): During the PROPOSE round, each com-
mittee member broadcasts its proposal, and collects the proposals sent by the other com-
mittee members. After the Delivery phase, committee member i has a set of proposals,
and checks if v, pre-proposed by the proposer, was proposed by at least 2f + 1 di�erent
committee members, if it is the case, and the value is valid, then i sets votei, validValuei
and lockedValuei to v, otherwise, it sets votei to nil.

• Round VOTE (Lines 40 - 57 of Algorithm 2): In the round VOTE, an obedient committee
member i votes votei, then i collects all the messages that were broadcasted. First i
checks if it has delivered at least 2f + 1 of proposal for a value v′ pre-proposed by the
proposer of the epoch, in that case, it sets validValuei to that value then it checks if a
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Algorithm 2 Synchronous TendermintBFT for height h executed by i
1: Initialisation:

2: ei := 0 /* This current epoch number */
3: decisioni := nil /* This variable stocks the decision of the committee member i */
4: lockedValuei := nil; validValuei := nil
5: proposali := getValue() /* This variable stocks the value the committee member will (pre-)propose */
6: vi := nil /* Local variable stocking the pre-proposal if delivered */
7: votei := nil

8: Round PRE-PROPOSE(ei) :

9: Send phase:

10: if decisioni 6= nil then

11: ∀v, j : (〈VOTE, h, ei, v〉, j) ∈ messagesSeti, broadcast〈VOTE, h, ei, v〉
12: return
13: if proposer(h, ei) = i then

14: broadcast 〈PRE− PROPOSE, h, ei, proposali〉 to all committee members
15: Delivery phase:

16: while (timerPrePropose not expired) do

17: if ∃v : sentByProposer(h, ei, v) then

18: vi ← v /* v is the value sent by the proposer */
19: Compute phase:

20: if !isValid(vi) then

21: proposali ← nil /* Note that isValid(nil) is set to false */
22: else

23: if lockedValuei = nil ∨ vi ∈ {lockedValuei, validValuei} then

24: proposali ← vi
25: else

26: proposali ← nil

27: Round PROPOSE(ei) :

28: Send phase:

29: if proposali 6= nil then

30: broadcast 〈PROPOSE, h, ei, proposali〉 to all committee members
31: Delivery phase:

32: while (timerPropose not expires) do{} /* Collect messages */
33: Compute phase:

34: if ∃v : 2f+1(〈PROPOSE, h, ei, v〉) ∧ isValid(v) ∧ sentByProposer(h, ei, v) then

35: lockedValuei ← v
36: validValuei ← v
37: votei ← v
38: else

39: votei ← nil

40: Round VOTE(ei) :

41: Send phase:

42: if votei 6= nil then

43: broadcast 〈VOTE, h, ei, votei〉
44: Delivery phase:

45: while (timerVote not expires) do{} /* Collect messages */
46: Compute phase:

47: if ∃v′ : 2f+1(〈PROPOSE, h, ei, v′〉) ∧ isValid(v′) ∧ sentByProposer(h, ei, v′) then

48: validValuei ← v′

49: if ∃vd, ed : 2f+1(〈VOTE, h, ed, vd〉) ∧ isValid(vd) ∧ decisioni = nil then

50: decisioni ← vd
51: else

52: ei ← ei + 1
53: vi ← nil
54: if validValuei 6= nil then

55: proposali ← validValuei
56: else

57: proposali ← getValue()

value v′ pre-proposed by the proposer of the current epoch is valid and has at least 2f+1
votes, if it is the case, then i decides v′ and goes to the next height; otherwise it increases
the epoch number and updates the value of proposali with respect to validValuei.

4.5.1.2 TendermintBFT for Byzantine Eventual Synchronous System

This section presents the Algorithms 1, 3 & 4 that solve consensus in an eventually syn-
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Algorithm 3 (part 1) Eventual Synchronous TendermintBFT for height h executed by i
1: Initialisation:

2: ei := 0 /* Current epoch number */
3: decisioni := nil /* This variable stocks the decision of the committee member i */
4: lockedValuei := nil; validValuei := nil
5: lockedEpochi := −1; validEpochi := −1
6: proposali := getValue() /* This variable stocks the value the committee member will (pre-)propose */
7: vi := nil /* Local variable stocking the pre-proposal if delivered */
8: validEpochj := nil /* Local variable stocking the proposer’s validEpoch */
9: votei := nil /* This variable stock the value the committee member will vote for */
10: timeoutPrePropose := ∆Pre-propose; timeoutPropose := ∆Propose; timeoutVote := ∆Vote

11: Round PRE-PROPOSE :

12: Send phase:

13: if decisioni 6= nil then

14: ∀v, j : (〈VOTE, h, ei, v〉, j) ∈ messagesSeti, broadcast〈VOTE, h, ei, v〉
15: return
16: if proposer(h, ei) = i then

17: broadcast 〈PRE− PROPOSE, h, ei, proposali, validEpochi〉
18: Delivery phase:

19: set timerPrePropose to timeoutPrePropose
20: while (timerPrePropose not expired) ∧ ¬(∃vj , ej : sentByProposer(h, ei, vj , ej)) do

21: if ∃vj , ej : sentByProposer(h, ei, vj , ej) then

22: vi ← vj /* vj is the value sent by the proposer */
23: validEpochj ← ej /* ej is the validEpoch sent by the proposer */
24: if ¬(∃v, epochProp : sentByProposer(h, ei, v, epochProp)) then

25: timeoutPrePropose← timeoutPrePropose + 1
26: Compute phase:

27: if 2f+1(〈PROPOSE, h, validEpochj , vi〉) ∧ validEpochj ≥ lockedEpochi ∧ validEpochj < ei ∧ isValid(vi) then

28: proposali ← vi
29: else

30: if ¬isValid(vi) ∨ (lockedEpochi > validEpochj ∧ lockedValuei 6= vi) then

31: proposali ← nil /* Note that isValid(nil) is set to false */
32: if isValid(vi) ∧ (lockedEpochi = −1 ∨ lockedValuei = vi) then

33: proposali ← vi

chronous model in the presence of Byzantine committee members. To achieve consensus in
this setting two additional variables need to be used: (i) lockedEpochi, which is an integer rep-
resenting the last epoch where committee member i updated lockedValuei, and (ii) validEpochi,
which is an integer representing the last epoch where i updates validValuei. These two new
variables are used to not violate the agreement property during the asynchronous period.
During such period, di�erent epochs may overlap for di�erent committee members, it is then
needed to keep track of the relative epochs when a committee member locks such that it
does not accept “outdated” information or information generated during a previous epoch.
Moreover, round duration management mechanism needs to be introduced, i.e., increasing
timeouts. In the algorithm in a synchronous setting (Algorithm 2), rounds were lasting δ, the
known message delay. In an eventually synchronous system, such an approach is not feasible,
since, during the asynchronous period, messages may take an unbounded period of time be-
fore being delivered. It follows that, since there are at most f Byzantine committee members
when a committee member delivers messages from n− f di�erent committee members it can
terminate the delivery phase, but such phase may last an unbounded time. On the contrary,
in the PRE-PROPOSE round, only the proposer is sending a message, and generally, messages
may take a lot of time before being delivered, for such reasons timeouts need to be used to
manage the duration of the rounds and adapted to message delays, such that once the system
enters in the synchronous period, rounds last enough for messages sent during the current
round to be delivered before the end of it.

The algorithm proceeds in 3 rounds for any given epoch e at height h. The description is
mainly the same as in Section 4.5.1.1, thus in the following, we just underline the di�erences:

• Round PRE-PROPOSE (Lines 11 - 33 of Algorithm 3): The description of this round is
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Algorithm 4 (part 2) Eventual Synchronous TendermintBFT for height h executed by i

1: Round PROPOSE :

2: Send phase:

3: if proposali 6= nil then

4: broadcast 〈PROPOSE, h, ei, proposali〉
5: broadcast 〈HeartBeat,PROPOSE, h, ei〉
6: Delivery phase:

7: set timerPropose to timeoutPropose
8: while (timerPropose not expires) ∧ ¬2f+1(〈HeartBeat,PROPOSE, h, ei〉) do{} /* Note that the HeartBeat messages should be

from di�erent committee members */
9: if ¬2f+1(〈HeartBeat,PROPOSE, h, ei〉) then

10: timeoutPropose← timeoutPropose + 1
11: Compute phase:

12: if ∃v′ : 2f+1(〈PROPOSE, h, ei, v′〉) ∧ isValid(v′) ∧ sentByProposer(h, ei, v′) then

13: lockedValuei ← v′

14: lockedEpochi ← ei
15: validValuei ← v′

16: validEpochi ← ei
17: votei ← v′

18: else

19: votei ← nil

20: Round VOTE :

21: Send phase:

22: if votei 6= nil then

23: broadcast 〈VOTE, h, ei, votei〉
24: broadcast 〈HeartBeat,VOTE, h, ei〉
25: Delivery phase:

26: set timerVote to timeoutVote
27: while (timerVote not expires) ∧ ¬2f+1(〈HeartBeat,VOTE, h, ei〉) do{}
28: if ¬2f+1(〈HeartBeat,VOTE, h, ei〉) then

29: timeoutVote← timeoutVote + 1
30: Compute phase:

31: if ∃v′′ : 2f+1(〈PROPOSE, h, ei, v′′〉) ∧ isValid(v′′) ∧ sentByProposer(h, ei, v′′) then

32: validValuei ← v′′

33: validEpochi ← ei
34: if ∃vd, ed : 2f+1(〈VOTE, h, ed, vd〉) ∧ isValid(vd) ∧ decisioni = nil then

35: decisioni ← vd
36: else

37: ei ← ei + 1
38: vi ← nil
39: if validValuei 6= nil then

40: proposali ← validValuei
41: else

42: proposali ← getValue()

mainly the same as before. We highlight the fact that an obedient committee member i
also takes into account lockedEpochi to accept a pre-proposed value.

• Round PROPOSE (Lines 1 - 19 of Algorithm 4): When an obedient committee member i
updates lockedValuei (resp. validValuei), it also updates lockedEpochi (resp. validEpochi)
to its current epoch.

• When an obedient committee member i updates validValuei, it also updates validEpochi
to its current epoch.

We recall that each committee member has a timeout for each round. If during a round com-
mittee member i does not deliver at least 2f + 1 messages sent during that round (or the
pre-proposal for the PRE-PROPOSE round), the corresponding timeout is increased. Those
messages can be values or heartbeats, in the case in which an obedient committee member
has not a value to propose or vote.
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4.5.1.3 Correctness of TendermintBFT in Eventual Synchronous Setting

In this section, we prove the correctness of TendermintBFT (Algorithm 3 & 4) in an eventually
synchronous system.

Lemma 4.17 (Validity). In an eventually synchronous system, TendermintBFT veri�es the fol-
lowing property: A decided value satis�es the prede�ned predicate denoted as isValid().

Proof

The proof follows by construction. When an obedient committee member decides a value
(Line 35 of Algorithm 4), it checks before if that value is valid (Line 34 of Algorithm 4).
Therefore, an obedient committee member only decides a valid value. �Lemma 4.17

Lemma 4.18. In an eventually synchronous system, TendermintBFT veri�es the following prop-
erty: An obedient committee member proposes and votes only once per epoch.

Proof

We prove this lemma by construction. In Algorithm 4, an obedient committee member
proposes (Line 4) and votes only once during the corresponding round (Line 23). At the end of
the VOTE round, a committee member changes epoch (Line 37). Therefore, it cannot propose
nor vote for that epoch any more. �Lemma 4.18

Lemma 4.19. In an eventually synchronous system, TendermintBFT veri�es the following prop-
erty: At most one value can be proposed by at least 2f + 1 committee members per epoch, and at
most one value can be voted at least 2f + 1 times by epoch.

Proof

We prove this lemma by contradiction. Let v, v′ such that v 6= v′. Since there are 3f + 1
committee members in the system, if v or v′ gets at least 2f + 1 proposals (resp. votes), it
means that at least f + 1 committee members propose (resp. vote) for both v and v′. By
assumption, there are less than f Byzantine participants by committee, so at least 1 obedient
committee member proposes (resp. votes) for both v and v′. That is a contradiction to Lemma
4.18. Therefore, two di�erent values cannot be proposed (resp. voted) at least 2f + 1 times
during the same epoch. �Lemma 4.19

Lemma 4.20. Let v be a value, e an epoch, and the set Lv,e = {i : i obedient ∧ lockedValuei =
v∧lockedEpochi = e at the end of epoch e}. In an eventually synchronous system, TendermintBFT
veri�es the following property: If |Lv,e| ≥ f + 1 then no obedient committee member i will have
lockedValuei 6= v ∧ lockedEpochi ≥ e, at the end of each epoch e′ > e; moreover, a committee
member in Lv,e only proposes v or nil for each epoch e′ > e.

Proof

Let v be a value, e an epoch, andLv,e = {i : i obedient∧lockedValuei = v∧lockedEpochi =
e at the end of epoch e}, we assume that |Lv,e| ≥ f + 1. We prove the theorem by induction:
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• Initialisation: At the end of epoch e, by assumption, we have that |Lv,e| ≥ f + 1. There
is an obedient committee member in that set, say i (i ∈ Lv,e). It means that i updates
lockedValuei to v during epoch e, therefore i delivered 2f + 1 proposals for the value
v (Lines 12 - 14 of Algorithm 4). By Lemma 4.19, at most one value can have at least
2f + 1 proposals during epoch e, and since v has at least 2f + 1 proposals, no obedient
committee member j can update lockedValuej to a value v′ 6= v during epoch e. At the
end of e, lockedValuej 6= v ∨ lockedEpochj < e.

• Induction: Let a ≥ 1, we assume that ∀i ∈ Lv,e, lockedValuei = v at the end of each
epoch between e and e+ a, we also assume that if a value was proposed at least 2f + 1
times during these epochs it was either v or nil. We prove that at the end of epoch
e+a+1, no obedient committee member j will have lockedValuej = v′∧lockedEpochj =
e+ a+ 1 with v′ 6= v.

Let i ∈ Lv,e such that i delivers a pre-proposal for v, then iwill set proposali to v; it will
propose v since lockedValuei = v (Lines 27 - 33 of Algorithm 3 & Line 4 of Algorithm
4), in any other case, if i does not deliver a pre-proposal, or delivers a pre-proposal for
a value v′ 6= v, it will set proposali to nil and will propose nil (Lines 27 - 33 of Algorithm
3 & Line 4 of Algorithm 4), since isValid(nil) = false and by assumption, there is
no e′ ∈ {e, . . . , e + a} where there were at least 2f + 1 proposals for a value v′ 6= v,
and lockedEpochi ≥ e. All committee members in Lv,e will then propose v or nil during
epoch e + a + 1. By Lemma 4.18, obedient committee members only propose once
per epoch, at least f + 1 committee members (the ones in Lv,e) propose v or nil; since
messages cannot be forged, the only values that can get at least 2f + 1 proposals for
the epoch e+ a+ 1 are v and nil. If an obedient committee member j delivers at least
2f + 1 proposals for v, it sets lockedValuej to v and lockedEpochj to e + a + 1 (Lines
12 - 14 of Algorithm 4); otherwise, it does not change lockedValuej nor lockedEpochj
(Line 19 of Algorithm 4). At the end of epoch e+a+ 1, there is no obedient committee
member j such that lockedValuej 6= v∧ lockedEpochj = e+a+1. Moreover, committee
members in Lv,e, only propose v or nil during epoch e+ a+ 1.

We proved that if |Lv,e| ≥ f + 1, no obedient committee member i will have lockedValuei 6=
v ∧ lockedEpochi ≥ e; moreover a committee member in Lv,e only proposes v or nil for each
epoch e′ > e.

�Lemma 4.20

Lemma 4.21 (Agreement). In an eventually synchronous system, TendermintBFT veri�es the fol-
lowing property: If there is an obedient committee member that decides a value v, then eventually
all the obedient committee members decide v.

Proof

Let i be an obedient committee member. Without loss of generality, assume that i is the
�rst obedient committee member that decides, and assume that it decides value v during
epoch e. At time t where i decided, no other participant has decided, even those having a
bigger epoch number. To decide, i delivered at least 2f+1 votes for v for epoch e. Since there
are less than f Byzantine committee members, and by Lemma 4.18 obedient committee mem-
bers can only vote once per epoch, so at least f + 1 obedient committee members voted for
v during epoch e, so we have |Lv,e| = |{j : j obedient ∧ lockedValuej = v ∧ lockedEpochj =
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e at the end of epoch e}| ≥ f + 1. By Lemma 4.20 committee members in Lv,e only pro-
pose v or nil during each epoch after e, and no obedient committee member j will have
lockedValuei 6= v ∧ lockedEpochi ≥ e. Thanks to the broadcast guarantees, all obedient com-
mittee members will eventually deliver the 2f + 1 votes for v from epoch e; since when an
obedient committee member decides, it sends back all votes it delivered than makes it decided
(Line 13 of Algorithm 3).

If an obedient committee member j does not decide before delivering these votes, when
eventually it delivers them, it will decide v (Lines 34 - 35 of Algorithm 4). Otherwise, it means
that j decides before delivering the votes from epoch e.

By contradiction, we assume that j decides a value v′ 6= v during an epoch e′ > e, so j
delivered at least 2f + 1 votes for v′ during epoch e′ (Lines 34 - 35 of Algorithm 4). Since an
obedient committee member only votes once by Lemma 4.18, there are less than f Byzantine
committee members and the messages are unforgeable, at least f + 1 obedient committee
members voted for v′ during epoch e′. An obedient committee member votes a non-nil value
if that value was proposed at least 2f + 1 times during the current epoch (Lines 12 - 23
of Algorithm 4). By Lemma 4.18 an obedient committee member only proposes once, there
are less than f Byzantine committee members and the messages are unforgeable, so at least
f +1 obedient committee members proposed v′ during e′. Since e′ > e and |Lv,e| ≥ f +1, by
Lemma 4.20 there are at least f + 1 committee members that proposed v or nil during epoch
e′. Even if all the 2f committee members remaining proposes v′, there cannot be 2f + 1
proposals for v′, which is a contradiction. So j cannot decide v′ 6= v after epoch e and we
assume that e is the �rst epoch where an obedient committee member decides. �Lemma 4.21

Lemma 4.22. In an eventually synchronous system, if there is an epoch after which when an
obedient committee member broadcasts a message during a round, it is delivered by all obedient
committee members during the same round, TendermintBFT veri�es the following property: If an
obedient committee member i updates lockedValuei to a value v during epoch e, then at the end
of the epoch e, all obedient committee members have validValue = v and validEpoch = e.

Proof

We prove this lemma by construction.
Let e be the epoch after which when an obedient committee member broadcasts a message

during a round r, it is delivered by all obedient committee members during the same round
r. Let i be an obedient committee member, we assume that at the end of epoch e′ ≥ e, i has
lockedValuei = v and lockedEpochi = e′, it means that i delivered at least 2f+1 proposals for
v during epoch e′ (Lines 12 - 14 of Algorithm 4). Thanks to the reliable broadcast guarantees,
and since all messages are propagated, all obedient committee members will deliver these
proposals for v, in the worst-case in the VOTE round. Let j be an obedient committee member
since j will deliver at least 2f + 1 proposals for v and epoch e′ during the VOTE round, it
will set validValuej = v and validEpochj = e′ (Lines 31 - 33 of Algorithm 4). �Lemma 4.22

Lemma 4.23 (Termination). In an eventually synchronous system, TendermintBFT veri�es the
following property: Every obedient committee member eventually decides some value.

Proof
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By construction, if an obedient committee member does not deliver more than 2f + 1
messages (or 1 from the proposer in the PRE-PROPOSE round) from di�erent committee
members during the corresponding round, it increases the duration of its round, so eventually
during the synchronous period of the system all the obedient committee members will deliver
the pre-proposal, proposals and votes from obedient committee members respectively during
the PRE-PROPOSE, PROPOSE and the VOTE round; and messages delivered by obedient an
obedient committee member will be delivered by the others at most in the following round.
Let e be the �rst epoch after that time.

If an obedient committee member decides before e, by Lemma 4.21 all obedient committee
members eventually decide, which ends the proof. Otherwise, at the beginning of epoch e, no
obedient committee member decides yet. Let i be the proposer of epoch e. First, we assume
that i is obedient and pre-propose v; v is valid since getValue() always return a valid value
(Line 6 of Algorithm 3 & Line 42 of Algorithm 4), and validValuei is always valid (Lines 12 &
31 of Algorithm 4). We have 2 cases:

• Case 1: At the beginning of epoch e, |{j : j obedient ∧ (lockedEpochj ≤ validEpochi ∨
lockedValuej = v)}| ≥ 2f + 1.

Let j be an obedient committee member where the condition lockedEpochj ≤
validEpochi∨ lockedValuej = v holds. After the delivery of the pre-proposal v from
i, j will update proposalj to v (Lines 27 - 33 of Algorithm 3). During the PROPOSE
round, j proposes v (Line 4 of Algorithm 4), since there are at least 2f+1 similar obed-
ient committee members, they will all propose v, and all obedient committee members
will deliver at least 2f + 1 proposals for v (Line 7 of Algorithm 4).

Obedient committee members will set their variable vote to v (Lines 12 - 4 of Algorithm
4), then will vote v, and they will deliver all the votes (at least 2f + 1) from this epoch
(Lines 23 & 25 of Algorithm 4). Since we assume that no obedient committee members
decided yet, and since they each deliver at least 2f + 1 votes for v, they will decide v
(Lines 34 - 35 of Algorithm 4).

• Case 2: At the beginning of epoch e, |{j : j obedient ∧ (lockedEpochj ≤ validEpochi ∨
lockedValuej = v)}| < 2f + 1.

Let j be an obedient committee member where the condition lockedEpochj >
validEpochi∧ lockedValuej 6= v holds. When i will make the pre-proposal, j will set
proposalj to nil (Line 31 of Algorithm 3) and will propose nil (Line 4 of Algorithm 4).

By counting only the proposed values of the obedient committee members, no value
will have at least 2f + 1 proposals for v. There are two cases:

– No obedient committee member delivers at least 2f + 1 proposals for v during
the PROPOSE round, so they will all set their variable vote to nil, then they will
vote nil and go to the next epoch without changing their state (Lines 19 & 23 - 25
& 36 - 42 of Algorithm 4).

– If some obedient committee members delivers at least 2f+1 proposals for v during
the PROPOSE round, i.e., some Byzantine committee members send proposals for
v to those committee members.
As in the previous case, they will vote for v, and since there are 2f + 1 of them,
all obedient committee members will decide v. Otherwise, there are less than
2f + 1 obedient committee members that deliver at least 2f + 1 proposals for v.
Only them will vote for v (Line 23 of Algorithm 4). Without Byzantine committee
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members, there will be less than 2f+1 votes for v, no obedient committee member
will decide (Lines 34 - 35 of Algorithm 4) and they will go to the next epoch; if
Byzantine committee members send votes for v to an obedient committee member
such that it delivers at least 2f + 1 votes for v during VOTE round, then the
obedient committee member will decide (Lines 34 - 35 of Algorithm 4), and by
Lemma 4.21 all obedient committee members will eventually decide.
Let k be one of the obedient committee members that delivers at least 2f + 1
proposals for v during the PROPOSE round, it means that lockedValuek = v and
lockedEpochk = e. It follows by Lemma 4.22 that at the end of epoch e, all obedient
committee members will have validValue = v and validEpoch = e.

If there is no decision, either no obedient committee member changes its state, or all
obedient committee members change their state and have the same validValue and
validEpoch; therefore, eventually a proposer of an epoch will satisfy Case 1, and that
ends the proof.

If i, the proposer of epoch e, is Byzantine and more than 2f + 1 obedient committee
members delivered the same message during PRE-PROPOSE round, and the pre-proposal is
valid, the situation is like i was obedient. Otherwise, there are not enough obedient commit-
tee members that delivered the pre-proposal, or if the pre-proposal is not valid, then there
will be less than 2f + 1 obedient committee members that will propose that value, which is
similar to the case 2.

Since proposers are selected in a round-robin fashion, an obedient committee member
will eventually be the proposer, and obedient committee members will decide. �Lemma 4.23

Theorem 4.24. In an eventually synchronous system, TendermintBFT implements the consensus
speci�cation.

Proof

The proof follows directly from Lemmas 4.17, 4.21 and 4.23. By Lemma 4.17, we show that
the TendermintBFT satis�es Validity, by Lemma 4.21, we show that the TendermintBFT satis-
�es Agreement, and by Lemma 4.23, we show that the TendermintBFT satis�es Termination.

�Theorem 4.24

4.5.1.4 TendermintBFT Message Complexity

Let us consider the following scenario after the asynchronous period (i.e., after τ ), in which in
the �rst f epochs, ei+1, . . . , ei+f , there are f Byzantine proposers that cause f obedient com-
mittee members (one for each epoch ei+1, . . . , ei+f ) to lock on f distinct values. Let j be the
last obedient committee member that locked, and let v be its locked value (lockedValuej = v
with lockedEpochj = ei+f ); all the other obedient committee members have their validValue
set to v and validEpoch set to ei+f . This happens thanks to the fact that when an obedient com-
mittee member locks on a value, at the end of the epoch every obedient committee member
sets its validValue to that value. The algorithm terminates when a pre-proposal is proposed
and voted by more than 2f + 1 committee members, i.e., when the pre-proposed value has
validEpoch greater or equal than the committee member lockedEpoch. Thus, during the syn-
chronous period, the �rst obedient proposer that proposes will lead the algorithm to terminate
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in f + 1 rounds. Let us consider the case in which there are f obedient committee members
locked on f di�erent values with di�erent lockedEpoch before τ . Let us assume that j is the
last obedient committee member that locked on a value v, thus it has the highest lockedEpoch
but not all the obedient committee members necessarily have their validValue set to v (due
to the asynchronous communication). Let us now consider that after τ the �rst f proposers
are Byzantines and stay silent. The following proposers are obedient but their pre-propose
value might not be accepted by enough obedient committee members as long as j, with the
highest validEpoch and lockedEpoch proposes. That eventually happens due to the round-robin
selection function. Thus, the protocol terminates in a number of epochs proportional to the
number of committee members O(n), while the lower bound to solve Byzantine consensus in
the worst-case scenario is f + 1 [76].

As for message complexity, since at each epoch, all committee members broadcast mes-
sages, it follows that during one epoch the protocol uses O(n2) messages, thus in the worst-
case scenario, the message complexity isO(n3). This improved theO(n4) message complexity
of PBFT [45]. In PBFT, if the leader is obedient, the complexity boils down to O(n2). Other-
wise, a view-change mechanism takes place to change the leader and resume the computation.
The view-change is used to avoid that, in case of a faulty leader, if some obedient participant
decides on a value v, the other obedient participants cannot decide on a value v′ 6= v when the
new leader proposes a new value v′. Such a mechanism implies that when a leader is suspected
to be faulty, all participants have to collect enough evidence for the view-change. That is, the
view-change message contains at least 2f + 1 signed messages and these messages are sent
from at least 2f+1 participants, which yields a message complexity ofO(n2). These messages
are then sent to all participants, therefore, the view-change has O(n3) message complexity.
Since the protocol terminates when there is an obedient leader, which may happen for the �rst
time in epoch f + 1, then in the worst-case scenario it has a message complexity of O(n4).
Contrary to the classical view-changed based approaches such as PBFT, instead of exchanging
all the messages they already delivered, in TendermintBFT and subsequent proposals like Hot-
Stu�, participants in the consensus locally keep track of potentially decided values to preserve
the safety, and so reduce the message complexity, hence they avoid the view-change phases,
but need some locking mechanisms. That has been called Linear View Change by the authors
of HotStu�.

In the following, we address the bit complexity of TendermintBFT. As explained in Section
3.1.3, and for simplicity, we can view the bit complexity of a protocol is the number of mes-
sages each participant stores while running the protocol. In TendermintBFT, each message is
composed as follows:

• PRE-PROPOSE: The marker that the message is from the round PRE-PROPOSE; two
integers, one for the current height, and the second for the current epoch; the proposed
value, and an integer representing the epoch on which the proposer last updated its
validValue.

• PROPOSE: The marker that the message is from the round PROPOSE; two integers rep-
resenting the current height and the current epoch; and a value that represents the pro-
posed block.

• VOTE: The marker that the message is from the round VOTE; two integers representing
the current height and the current epoch; and a value that represents the voted block.

• HeartBeat: The marker that the HeartBeat is from the round VOTE or PROPOSE; two
integers representing the current height and the current epoch.
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Function repeatedConsensus(Π); %Repeated consensus for the set Π of participants%

Init:
(1) h← 1 %Height%; B ← ⊥; C ← ⊥ %Set of committee members%;
(2) commitsReceivedhi ← ∅; toRewardhi ← ∅; TimeOutCommit← ∆Commit;
—————————————————————————————————————

while (true) do

(3) B ← ⊥;
(4) C ← committeeMembers(h); %Application and blockchain dependant%
(5) if (i ∈ V ) then

(6) B ← consensus(h, V, toRewardh−1
i ); %Consensus function for the height h%

(7) trigger broadcast 〈COMMIT, (B, h)i〉;
(8) else

(9) wait until (∃B′ : |MoreThanThird(B′, commitsReceivedhi )|);
(10) B ← B′;
(11) endif

(12) set timerCommit to TimeOutCommit;
(13) wait until(timerCommit expired);
(14) trigger decide(B);
(15) h← h+ 1;
endwhile

—————————————————————————————————————
upon event delivery 〈COMMIT, (B′, h′)j〉:
(16) if (((B′, h′)j /∈ commitsReceivedh

′
i ) ∧ (j ∈ committeeMembers(h′))) then

(17) commitsReceivedh
′
i ← commitsReceivedh

′
i ∪ (B′, h′)j ;

(18) toRewardh
′
i ← toRewardh

′
i ∪ j;

(19) trigger broadcast 〈COMMIT, (B′, h′)j〉;
(20) endif

Figure 4.4: Tendermint Repeated Consensus algorithm for Obedient Participant i.

An obedient committee member keeps in memory, for each epoch for a given height, one
message for each type (PROPOSE, VOTE), and at most 2 messages of type HeartBeat from each
committee member, and only one PRE-PROPOSE message. An obedient committee member
may have at most 1 message from PRE-PROPOSE, n messages from PROPOSE, n messages
from VOTE, and 2n messages of type HeartBeat. Hence, for each epoch at any given height, a
committee member stores at most 4n+ 1 messages of size O(log n). In the worst-case, for the
whole execution, a committee member may store O(n2) messages. Therefore, the worst-case
bit complexity is O(n2 log n). A summary of the complexity can be found in Table 3.1.

4.5.2 Tendermint Repeated Consensus Algorithm

We now present the Tendermint algorithm for repeated consensus.

Detailed description of the algorithm. We describe in Figure 4.4 the Tendermint al-
gorithm for the repeated consensus (De�nition 4.2). For a participant i, the algorithm proceeds
as follows:

• i computes the set of committee members for the current height;

• If i is a committee member, then it calls the consensus function solving the consensus
for the current height, then broadcasts the decision, and sets B to that decision;

• Otherwise, if i is not a committee member, it waits for at least n/3, or equivalently f+1,
commits from the same block and sets B to that block;

• In any case, it sets the timer to TimeOutCommit to collect more commits and lets it
expire. Then i decides B and goes to the next height.

Whenever i delivers a commit, it broadcasts it (Lines 16 - 20 of Figure 4.4).
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Data structures. The integer h represents the current height of the participant. C is the
current set of committee members. B is the variable that will be set to the block to be appended.
commitsReceivedhi is the set containing all the commits i delivered for the height h. toRewardhi
is the set containing the committee members from which i delivered commits for the height
h. TimeOutCommit represents the time a committee member has for collecting commits after
an instance of consensus. TimeOutCommit is set to the default value ∆Commit.

Functions. Let Height = N∗ be the set of all heights, let Commits be a set of all possible
commits, and let B be the set containing all possible blocks. We also recall that Πρ is the set
of participants in the system run.

• committeeMembers : Π×Height → 2Πρ is an application dependent and deterministic
selection function which gives the set of committee members for a given height with
respect to the blockchain history. We have ∀h ∈ Height, |committeeMembers(h)| = n.

• consensus : Height × 2Πρ × 2Commits → B is a consensus algorithm. It outputs for the
participant the decision of the consensus (De�nition 4.1) among the committee mem-
bers.

• MoreThanThird : B × 2Commits → {false, true} is a predicate which checks if there
are commits from at least f + 1 di�erent committee members for a given block in the
given set.

• isValid : B → {false, true} is an application-dependent predicate that is satis�ed
if the given block is valid. If there is a block B such that isValid(B) = true, we
say that B is valid. We note that for any non-block, we set isValid to false, (i.e.,
isValid(⊥) = false), the validity of the block depends on the blockchain and the
application, and isValid is known by all participants.

Note that in Tendermint, the reward for the height h is allocated during the height h+ 1,
and to a subset of committee members who committed the block for h (Line 18 of Figure 4.4).

4.5.2.1 Correctness of Tendermint Repeated Consensus

In this section, we prove the correctness of the Tendermint algorithm for repeated consensus,
when assuming that the consensus algorithm used (Line 6 of Figure 4.4) is correct (De�nition
4.1). In the proofs here, the lines mentioned refer to the lines in the algorithm presented in
Figure 4.4.

Lemma 4.25 (brc-Termination). In an eventually synchronous system, and assuming that the
consensus function is correct, the Tendermint Repeated Consensus algorithm veri�es the following
property: Every obedient participant has an in�nite output.

Proof

By contradiction, let i be an obedient participant and we assume that i has a �nite output.
Two scenarios are possible, either i cannot go to a new height, or from a certain height h it
outputs only ⊥.

• If i cannot progress, one of the following cases is satis�ed:
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– The function consensus does not terminate (Line 6), which is a contradiction since
it violates the Termination property of the consensus (De�nition 4.1).

– i waits an in�nite time for receiving enough commits (Line 9), which cannot be
the case thanks to the broadcast guarantees and the eventual synchronous as-
sumption, all the obedient committee members terminate the function consensus
and broadcast their commit.

• If i does not decide at each height (Line 14), it means that from a given height, i only
outputs ⊥. Let height h be the �rst such height, and let h′ > h; it means (i) either i is
a committee member for h′ and the function consensus returns ⊥ (Lines 5 & 6), or (ii)
i is not a committee member for h′ but delivered at least f + 1 commits for ⊥ (Lines 9
& 19).

(i) If consensus returns the value ⊥, it means by the Validity property (De�nition
4.1) of the consensus that isValid(⊥) = true, which is a contradiction with
the de�nition of the function isValid.

(ii) Only committee members commit, and each of them broadcasts its commit (Lines
5 - 7), and f < n/3. Since non-committee members collect at least n/3 commits,
it means that i delivered a commit from at least one obedient committee member.
By the Validity property of the consensus (De�nition 4.1), obedient participants
only decide/commit on valid value, and ⊥ is not valid, which is a contradiction.

Therefore, if i is an obedient participant, then it has an in�nite output. �Lemma 4.25

Lemma 4.26 (brc-Agreement). In an eventually synchronous system, and assuming that the
consensus function is correct, Tendermint Repeated Consensus Algorithm veri�es the following
property: If the hth value of the output of an obedient participant is B, then B is the hth value of
the output of any other obedient participant.

Proof

We prove this lemma by construction. Let i and j be two obedient participants, and let h
be a height. Two cases are possible:

• i and j are committee members for the height h, so both calls the function consensus
(Lines 5 & 6). By Agreement property of the consensus (De�nition 4.1), i and j decide
the same value and then output that same value (Line 14).

• At least one of i and j is not a committee member for the height h. Without loss
of generality, we assume that i is not a committee member for the height h. Since
all the obedient committee members commit the same value, let say B, thanks to the
Agreement property of the consensus (De�nition 4.1), and since they broadcast their
commit (Line 7), eventually there will be more than 2f + 1 commits for B. So no
other value B′ 6= B can be present at least f + 1 times in the set commitReceivedhi .
Therefore, i outputs the same value B as obedient committee members (Line 9). If j
is a committee member, that ends the proof. If j is not a committee member, then by
the same argument, j outputs the same value B. Hence, both i and j output the same
value B for height h.

�Lemma 4.26



4.5. CASE STUDY: ANALYSIS OF TENDERMINT 73

Lemma 4.27 (brc-Validity). In an eventually synchronous system, and assuming that the con-
sensus function is correct, Tendermint Repeated Consensus Algorithm veri�es the following prop-
erty: Each value in the output of any obedient participant is valid; it satis�es the prede�ned
predicate denoted isValid.

Proof

We prove this lemma by construction. Let i be an obedient participant, and assume that
the hth value of the output of i is B. If i decides a value (Line 14), then that value has been
set during the execution and for that height (Line 3).

• If i is a committee member for the height h, then B is the value returned by the func-
tion consensus. By the Validity property of the consensus (De�nition 4.1), we have
isValid(B) = true.

• Let h be a height, and B be the hth value of the output of a participant j. If j is not a
committee member for the height h, it means that it delivered more than f + 1 signed
commits from the committee members for the value B (Lines 5 - 7 and 16 - 20), hence
at least one obedient committee member committed B, and by the Validity property of
the consensus (De�nition 4.1), we have isValid(B) = true.

Each value in the output of an obedient participant satis�es the predicate isValid.
�Lemma 4.27

Theorem 4.28. In an eventually synchronous system, and assuming that the consensus function
is correct, the Tendermint Repeated Consensus algorithm implements the Repeated Consensus.

Proof

Assuming that the function consensus is correct, the proof follows directly from Lemmas
4.25, 4.26 and 4.27. By Lemma 4.25, we show that the Tendermint Repeated Consensus al-
gorithm satis�es brc-Termination, by Lemma 4.26, we show that the Tendermint Repeated
Consensus algorithm satis�es brc-Agreement, and by Lemma 4.27, we show that the Tender-
mint Repeated Consensus algorithm satis�es brc-Validity. �Theorem 4.28

4.5.3 Fairness of Tendermint

The committee members’ selection of Tendermint is part of a separate module. The selection
mechanism is today left con�gurable by the application; therefore, in the following, we do not
address this part. The rewarding mechanism, on the other hand, referred as the Tendermint’s
reward mechanism is part of the Tendermint protocol (Lines 13 and 16 - 20 of Figure 4.4).

Recall that in Tendermint, the reward for the height h is allocated during the height h+ 1,
and to a subset of committee members who committed the block for h (Line 18 of Figure 4.4).
In more details, Tendermint’s reward mechanism works as follows:

• Once a new block is decided for height h, the participants wait for a default duration of
TimeOutCommit to collect the decision from the other committee members for h, and
put them in their set toReward (Lines 13 and 16 - 20 of Figure 4.4).
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• During the consensus for height h, let us assume that the committee member i proposes
the block that will be decided in the consensus. i proposes to reward participants in its
set toReward (Line 6 of Figure 4.4). Therefore, only participants from which i delivered
a commit will get a reward for the block at height h− 1.

Note that in Tendermint, the duration of TimeOutCommit is �xed, and is not updated at all
during the execution.

Lemma 4.29. In an eventually synchronous system, the reward mechanism of Tendermint is not
eventually fair.

Proof

We assume that the system becomes synchronous and that TimeOutCommit < ∆, where
∆ is the maximum message delay in the network. For any height h, let i be a committee
member for the height h − 1 and j the committee member whose proposal get decided for
the height h. It may happen that j did not receive the commit from i before proposing its
block. Hence, when the block is decided, i does not get a reward for its e�ort, which contra-
dicts Condition f2 (h-completeness) of the reward mechanism fairness. Tendermint’s reward
mechanism is not eventually fair. �Lemma 4.29

Let us observe that to make Tendermint’s reward mechanism at least eventually fair (De�n-
ition 4.9) it is necessary to increase TimeOutCommit for each round until it catches up the
message delay. We refer to this variant as the Tendermint’s reward mechanism with modulable
timeouts. Moreover, the commit message should contain enough information to keep track of
the participation of the participants in each phase, i.e., to distinguish Byzantine from obedient
participants.

Proposition 4.30. In an eventually synchronous system, when the commit messages are su�-
cient to detect Byzantine participants, Tendermint’s reward mechanism with modulable timeouts
is eventually fair.

Proof

We change the reward mechanism in Tendermint as follows:

• Once a new block is decided, say for height h, participants wait for at most
TimeOutCommit to collect the decision from the other committee members for that
height, and put them in their set toReward.

• If a participant did not get the commits from all the committee members for that height
before the expiration of the timeout, it increases the timeout for the next height.

• During the consensus at height h, let us assume that i proposes the block that will be
decided in the consensus. i gives the reward to the participants in its toReward.

In this reward mechanism, TimeOutCommit is increased whenever a participant does not
have the time to collect all the commits for the previous round. We prove that this reward
mechanism is eventually fair.

There is a point in time t from when the system will become synchronous, and all the
commits will be delivered by obedient participants before the next height. From the time t, at
height h all obedient participants know the exact set of committee members that committed
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the block from h−1 the previous height, and from those commit messages, they can exclude
the set of participants that were not (h − 1)-obedient. They give to the (h − 1)-obedient
committee members a reward parameter equal to 1, and to the non (h−1)-obedient a reward
of 0. The committee members in h give the reward to the obedient committee members that
committed and which are the only one with a reward parameter greater than 0 for h − 1,
which satisfy the fairness Conditions f1, f2, and f3, so the reward mechanism presented is
eventually fair. �Proposition 4.30

4.6 Conclusion

We discuss committee-based blockchains. In committee-based blockchains, committees are in
charge of deciding the next block to be added to the chain. The participants know who are
the committee members, and inside a committee, the committee members run an agreement
procedure such that exactly one block is produced. Committee-based blockchain can be used
to avoid forks if they implement a deterministic consensus. In this chapter, we have 3 main
contributions.

First, we de�ne the problem committee-based blockchains tackle and try to solve: the
Byzantine repeated consensus. Our de�nition is a generalisation of the repeated consensus
where only crash failures can occur, and we describe how consensus can be used to build a
blockchain in an open setting, providing guarantees of the absence of forks.

Given that, in blockchains, participants creating blocks are rewarded for their e�ort, we
discuss the distribution of rewards. In particular, we are interested in whether participants
can fairly be rewarded with respect to the e�ort they are putting in the system. The second
main contribution of this chapter is a de�nition of fairness for committee-based blockchains.
Once de�ned, we analyse the importance of the communication model (in particular the time
assumption) for fairness.

Lastly, we study Tendermint, one of the most used committee-based blockchain systems
against the two abstractions, i.e., (i) the repeated consensus for proving the correctness of
Tendermint, and (ii) the fairness. In this thesis, we formalise the Tendermint’s algorithms for
the �rst time ever. By our formalisation of the protocol, we exhibited bugs in the earlier version
of Tendermint leading to its correction. Tendermint shows e�ciency compared to classical
consensus algorithms such as PBFT. Our analysis of the fairness of Tendermint shows that the
current version of Tendermint is not fair; however, a small twist can make it fair. This allows
to show that attention should be put on the design of the blockchain protocols.

The question of fairness of blockchain systems highlight another particular question: par-
ticipants may want to pro�t from the system and gain more than their e�ort. In Chapters 5 &
6, we study the behaviours of participants that aim to pro�t from the system, and we analyse
whether the consensus properties are still guaranteed in their presence.
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Blockchain systems usually have some economical or �nancial advantages. Hence, parti-
cipants may try to maximise their pro�t in the system. Those participants do not necessarily
want to harm the system; they often want to stay in the system but gain the most from it. Many
articles studied the strategic behaviours of participants in blockchain systems, focusing mainly
on proof-of-work Bitcoin-like systems (e.g., [31, 74]). To the best of our knowledge, very few
works have been dedicated to analyse or discuss the strategic behaviours in committee-based
blockchains, exceptions to be noted are [4] which introduced interesting incentive mechan-
isms but did not provide a formal framework for their analysis, and [78] that speci�cally study
some behaviours in Algorand. [78] is however too speci�c, and the participants have few
actions. The results presented in this chapter present a more re�ned and general setting.

In this chapter, we study the strategic behaviours in committee-based blockchains, spe-
ci�cally against the consensus properties. We focus on one committee and study the beha-
viour inside that committee. We consider a simpli�ed consensus algorithm based on existing
or proposed blockchains such as Algorand [85], HotStu� [160], Tendermint [39], etc., which
encapsulates the main actions of the participants: sending a message and checking validity.
Knowing that those actions have costs, and achieving the consensus gives rewards to the
participants, we study using game theory how strategic participants behave while trying to
maximise their gains.
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5.1 Model

In this section, the reader may refer to Chapter 2 for more in-depth details about the model.

5.1.1 System Model

We consider a system composed of a �nite and ordered set Π of n participants, a committee,
of synchronous sequential participants, namely Π = {1, . . . , n}, where participant i is said to
have index i. Except if stated otherwise, in this chapter, all participants are in the set Π.

Communication. Participants communicate by sending and receiving messages through a
synchronous network. We assume that each participant proceeds in rounds. A round consists of
three sequential phases, in order: the send, the delivery, and the compute phases. The delivery
phase has a �xed duration that allows collecting all the messages sent by the participants. At
the end of a round, a participant exits from the current round and starts the next one. We
assume the existence of a reliable broadcast primitive. Messages are created with a digital sig-
nature, and we assume that digital signatures cannot be forged. When a participant i delivers
a message, it knows the participant j that created the message.

Participants Behaviour. In this chapter, we consider that participants are strategic (De�n-
ition 2.7). Recall that they are a subclass of rational participants (De�nition 2.6).

Strategic participants are self-interested and their objective is to maximise their expected
gain. They will deviate from a prescribed protocol if and only if doing so increases their
expected gain. They di�er from obedient participants (De�nition 2.4) who always follow the
prescribed protocol.

We also consider trembling participants. With low probability, an external function can
return an unexpected value. They do not want such value, but are not in control of that;
therefore, they are not aware when the returning value is “normal” or not. They only know the
probability of such an event happening. A trembling participant is also a strategic participant.

We assume that the behaviour of participants is perceived identically by all other par-
ticipants, that is, a message sent by a participant in a given round is received by all in the
delivery phase of that round.

5.1.2 Consensus in Presence of Strategic Participants

As discussed and studied in Chapter 4, committee-based blockchains can be developed using
a consensus algorithm. In particular, at each height, the protocol used by the correspond-
ing committee must implement the consensus. In this section, we adapt the de�nition of the
consensus properties in the presence of strategic participants.

We say that a protocol is a consensus algorithm in the presence of strategic participants if
the following properties hold:

• s-Termination: every strategic participant decides on a value (a block);

• s-Agreement: if two strategic participants decide respectively on values B and B′, then
B = B′;

• s-Validity: a decided value by any strategic participant is valid; it satis�es the prede�ned
predicate.
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If clear from the context, we simply write Termination, Agreement and Validity instead of
respectively s-Termination, s-Agreement and s-Validity.

Problem. In this chapter, we study the behaviour of strategic participants in a consensus
protocol. The goal is to know whether consensus is possible in committee-based blockchains
in the presence of strategic participants.

In the study, we use the notion of Nash equilibrium, which is intuitively a “stable” situation
where no participant has an incentive to unilaterally deviate. Nash equilibrium is formally
de�ned in Section 2.4.4 of Chapter 2.

Formally, the question we answer in this chapter is: What are the di�erent Nash equilib-
ria and do they satisfy the consensus properties? It is important to note that our goal is not
to propose a protocol such that all strategic participants behave as obedient, but rather to
study the behaviour of strategic participants in a consensus algorithm under di�erent reward
mechanisms.

5.1.3 Protocol Studied

Generally, in committee-based blockchains, the protocol to reach the consensus for one block
at a given height is as follows: a proposer proposes a block, and the other members of the
committee will check the validity of the block. If the block is valid, the committee members
will vote for it and will announce their vote through a message to the other members; if the
block is invalid, they will not vote for it. Votes are collected and, if a given threshold is reached,
then the block is decided (produced), otherwise, a new proposer will propose another block
and the procedure restarts.

As explained above, these two phases encapsulate the main and important ideas of con-
sensus protocol for committee-based blockchains. Moreover, Chan and Shi in [46], extended
this two phases approach (Propose and Vote) to present multiple algorithms for di�erent com-
munication and failure models; pointing out the importance and su�ciency of these phases in
consensus algorithms for blockchains.

In the following, we �rst present in details the prescribed protocol. Most use a similar
skeleton.

The Prescribed Protocol. The protocol proceeds in rounds. For the sake of simplicity, we
consider the height h of the blockchain passed as a parameter to the protocol. Algorithm 5
presents the pseudo-code of the protocol.

For each round t a committee member is designated as the proposer for the round in a
round-robin fashion. The isProposer(t, h) function returns the identi�er of the proposer
for the current round (Line 7 of Algorithm 5), the function, by taking as parameter the cur-
rent height, deterministically selects the proposer based on the information contained in the
blockchain up to h (discussions about selection mechanisms can be found in Section 4.3.2 of
Chapter 4). Each round is further divided into two sub-rounds: the PROPOSE and the VOTE
rounds.

While in PROPOSE, the proposer of the round uses the function createValidValue(h)
to generate a block. Because a valid block must include the identi�er of the hth block in the
blockchain, the height h is passed as parameter (Line 8 of Algorithm 5). Once the block is
created, a message broadcasting the proposal is sent (Line 9 of Algorithm 5). At Line 11, the
proposal is received through a delivery function. Each participant checks if the proposal is
valid (Line 13 of Algorithm 5). If so, the participant sets its vote to that value (Line 14 of
Algorithm 5).
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Algorithm 5 Prescribed protocol for a participant i at a given height h
1: Initialisation:

2: vote := nil
3: t := 0 /* Current round number */
4: decidedV alue := nil

5: Round PROPOSE(t) :

6: Send phase:

7: if i == isProposer(t, h) then

8: proposal← createValidValue(h) /* The proposer of the round generates a block, i.e. the value to be proposed */
9: broadcast 〈PROPOSE, h, t, proposal〉
10: Delivery phase:

11: delivery 〈PROPOSE, h, t, v〉 from proposer(h, t) /* The participant collects the proposal */
12: Compute phase:

13: if isValid(v) then

14: vote← v /* If the delivered proposal is valid, then the participant sets a vote for it */

15: Round VOTE(t) :

16: Send phase:

17: if vote 6= nil then

18: broadcast 〈VOTE, h, t, vote〉 /* If the proposal is valid, the participant sends the vote to the others */
19: Delivery phase:

20: delivery 〈VOTE, h, t, v〉 /* The participant collects all the votes for the current height and round */
21: Compute phase:

22: if |〈VOTE, h, t, v〉| ≥ ν ∧ decidedV alue = nil ∧ vote 6= nil ∧ vote = v then

23: decidedV alue← v; exit /* The valid value is decided if the threshold is reached */
24: else

25: vote← nil
26: t← t+ 1

While in VOTE, any participant that sets its vote to the current valid proposal sends a
message (of type vote) to the other members of the committee (Line 18 of Algorithm 5). During
the delivery phase, every participant collects sent messages. During the compute phase, each
participant veri�es if a quorum of ν votes for the current proposal has been reached. Let us
note that ν, the majority threshold, is a parameter here because it is the object of our study to
establish the quorum ν in presence of the participants. If the quorum is reached, the participant
voted for the value and did not already decide for the current height, then it decides for the
current proposal (Line 23 of Algorithm 5) and the protocol ends; in that case, we say that the
block (or the proposal) is produced. If the quorum is not reached, then a new round starts
(Line 26 of Algorithm 5).

Remark 5.1. Let us note that the protocol in an environment assuming only obedient and Byz-
antine participants trivially implements consensus if f , the number of Byzantine participants, is
such that f < ν, and n−f ≥ ν. If f ≥ ν, on the other hand, the consensus cannot be guaranteed.

In the following, we describe the actions strategic participants have. We present it as a
protocol shown in Algorithm 6. The de�nition of the game and of the actions is done in the
next section. We consider the choice of (i) checking or not the validity of a block and (ii)
sending or not the vote for a proposed block. We consider that the actions of checking the
validity of blocks and of sending the message (of type vote) are costly.

Protocol of Strategic Participants. Strategic participants choices are explicitly represen-
ted in Algorithm 6 by dedicated variables, namely, actioncheck and actionsend. Each action,
initialised at a default value of nil, can take values from the set {false, true}. For parti-
cipant i, the values of actioncheck and actionsend are set by calling respectively the functions
σcheck
i , and σsend

i , returning its strategy.
Note that an obedient participant (who always follow the prescribed protocol) takes its

actions such that Algorithm 6 corresponds to Algorithm 5, i.e., actioncheck = actionsend =
true.
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Algorithm 6 Pseudo-code for a given height h modelling the strategic participant i’s beha-
viour
1: Initialisation:

2: vote := nil
3: t := 0 /* Current round number */
4: decidedV alue := nil
5: actioncheck := nil
6: actionsend := nil
7: validValue[] := {⊥,⊥, . . . ,⊥} /* ∀t, validValue[t] ∈ {⊥, false, true} */

8: Round PROPOSE(t) :

9: Send phase:

10: if i == isProposer(t, h) then

11: proposal← createValidValue(h)
12: broadcast 〈PROPOSE, h, t, proposal〉
13: Delivery phase:

14: delivery 〈PROPOSE, h, t, v〉 from proposer(h, t)
15: Compute phase:

16: actioncheck ← σcheck
i () /* σcheck

i () ∈ {false, true} sets the action of checking or not the validity of the proposal */
17: if actioncheck == true then

18: validValue[t]← isValid(v) /* The execution of isValid(v) has a cost ccheck */
19: actionsend ← σsend

i (validValue[t]) /* σsend
i : {⊥, false, true} → {false, true} sets the action of sending the vote or not */

20: if actionsend == true then

21: vote← v /* The participant decides to send the vote, the proposal might be invalid */

22: Round VOTE(t) :

23: Send phase:

24: if vote 6= nil then

25: broadcast 〈VOTE, h, t, vote〉 /* The execution of the broadcast has a cost csend */
26: Delivery phase:

27: delivery 〈VOTE, h, t, v〉 /* The participant collects all the votes for the current height and round */
28: Compute phase:

29: if |〈VOTE, h, t, v〉| ≥ ν ∧ decidedV alue = nil ∧ vote 6= nil ∧ vote = v then

30: decidedV alue = v; exit

31: else

32: vote← nil
33: t← t+ 1

The strategy σcheck
i determines if i, the receiving participant chooses to check the validity

of the proposal or not, which is a costly action. If the participant chooses to check the validity
(Line 17 of Algorithm 6), it will also update the knowledge it has about the validity of the
proposal and it will pay a cost ccheck. Otherwise, the participant keeps not knowing if the
proposal is valid or not (validValue[t] remains at ⊥). Note that this value remains at ⊥ even
if the participant is the proposer. This is because we assumed, without loss of generality, that
checking validity has a cost and that the only way of checking validity is by executing the
isValid(v) function.

Note that, as it will be de�ned in Section 5.1.4, the strategy σsend
i depends on the knowledge

the participant has about the validity of the proposal. The strategy determines if the participant
chooses to send its vote for the proposal or not (Line 19 - 25 of Algorithm 6). If the participant
chooses to send a message for the proposal, it will pay a cost csend.

Let us note that a strategic participant that did not check the validity of the block could
consider as the decision of the committee an invalid value if it collects more than ν votes for
an invalid proposal. We also note that in our model, the Agreement property always holds,
since, at the end of each round, all participants have the same set of messages delivered.

We now de�ne the game that represents the protocol.

5.1.4 Game

Action space. After receiving the proposal block, each participant �rst decides whether to
check the block’s validity or not (at cost ccheck), and second decides whether to send a message
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Figure 5.1: Decision Tree of One Participant after Reception of the Proposal.

(at cost csend) or not.

Information sets. At the beginning of each round t > 1, the information set of the parti-
cipant, ηti , includes the observation of the round number t, the participant’s own type θi, as
well as the observation of what happened in previous rounds, namely (i) whether the parti-
cipant decided to check validity, and in that case, it knows the validity of the block, (ii) how
many messages were sent, and (iii) whether a block was produced or not.

Then, in each round t > 1, the participant decides whether to check the validity of the
current block. At this point, denoting by bt the block proposed at round t, when the participant
does not decide to check validity, the isValid(bt) function is set to the null information
set, while if the participant decides to check, isValid(bt) is equal to true if the block is
valid and false otherwise. Therefore, at this stage, the participant information set becomes
H t
i = ηti ∪ isValid(bt), which is ηti augmented with the validity information participant i

has about bt, the proposed block.

Strategies. At each round t ≥ 1, the strategy of participant i is a mapping from its in-
formation set into its actions. At the point at which the participant can decide to check block
validity, its strategy is given by σcheck

i (ηti). Finally, after making that decision, the participant
must decide whether to send a message or not, and that decision is given by σsend

i (H t
i ). The

decision tree of a participant is depicted in Figure 5.1. We note that when the participant does
not check the validity of the proposal, it does not know if the block is valid or not.

We denote by σ = (σ1, . . . , σn), the strategy pro�le where ∀i ∈ {1, . . . , n}, participant i
uses strategy σi, where σi(H t

i ) is the pair (σcheck
i (ηti), σ

send
i (H t

i )).

Rewards and Costs for Strategic Participants. In this chapter, we study the cases in
which:

1. when a block is produced, only the participants which sent a message are rewarded (and
receive R), as it is done in some blockchain systems (e.g., [15]);

2. whenever a block is produced, all committee members are rewarded (and receive R).

In our analysis, we will explicitly state the case we are studying.
In addition, we assume that when an invalid block is produced, all strategic participants

incur a cost κ. The reward R, given to the participants when a block is produced, is larger than
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the cost ccheck of checking validity, which in turn is larger than the cost csend of sending a message.
Additionally, we assume that the reward obtained when a block is produced is smaller than the
cost κ of producing an invalid block. That is,

κ > R > ccheck > csend > 0.

Objective of Strategic Participants. Let T be the endogenous round at which the game
stops. If a block is produced at round t ≤ n, then T = t. Otherwise, if no block is produced,
T = n+ 1. In the latter case, the termination property is not satis�ed.

As explained above, we study two type of rewards. The analyses are done independently.
In each setting, all strategic participants have the same gain function.

1. Reward Only Sender: When the reward is given only to participants that vote for
the produced block, at the beginning of the �rst round, the expected gain of strategic
participant i is:

Ui = E

[
(R× 1(σsend

i (HT
i )=true) × 1(block produced at T ) − κ× 1(invalid block produced))

−
∑T

t=1

(
ccheck × 1σcheck

i (ηti)=true) + csend × 1(σsend
i (Ht

i )=true)

) |η1
i

]
,

(5.1)
where 1(.) denotes the indicator function, taking the value 1 if its argument is true, and
0 if it is false.

2. Reward All: When the reward is given to the whole committee once a block is produced,
at the beginning of the �rst round, the expected gain of strategic participant i is:

U all
i = E

[
(R× 1(block produced at T ) − κ× 1(invalid block produced))

−
∑T

t=1

(
ccheck × 1σcheck

i (ηti)=true) + csend × 1(σsend
i (Ht

i )=true)

) |η1
i

]
. (5.2)

Equilibrium concept. In this chapter, we consider that the participants are playing Nash
equilibria, and we focus only on their behaviour during the �rst round. The following sections
present our results.

In Sections 5.2 & 5.3, we do not have trembling hand e�ects; therefore, we cannot have
invalid blocks since the proposal should be valid (Line 11 of Algorithm 6). Focusing on liveness
issues, we study whether participants vote or not in equilibrium.

In Section 5.4, trembling e�ects are considered, and the proposal may be invalid. Therefore,
for safety reasons, participants may check the proposal’s validity before voting or not.

5.2 Reward Only Committee Members that Vote

In this section, we consider that only committee members that voted for a produced block are
rewarded. Equation (5.1) describes the gain of each strategic participant. We note that, since
we focus only on the �rst round, Equation (5.1) can be simpli�ed as:

E
[
(R1(block produced at round 1) − csend)1σsend

i (H1
i ) − ccheck1σcheck

i (h1i )
− κ1(invalid block produced at round 1)

]
.

We study the di�erent equilibria with respect to the value of ν, the minimum number of
votes required to consider a block as produced.

First, we analyse the case where 1 vote for a proposed block is su�cient to consider it as
produced, i.e., ν = 1.
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Proposition 5.2. In one round, with only strategic participants in the committee, if ν = 1, and
when only participants that vote for the produced block are rewarded, there is only one Nash
equilibrium. In the unique equilibrium, all participants vote for the proposed block.

In this equilibrium, all participants vote, and the block is produced. No participant has an
incentive to deviate and not send, such deviation will mean for the participant that it will not
be rewarded while the block is produced.

Proof

We �rst prove that the strategy pro�le where all participants vote for the proposed block
is a Nash equilibrium. In that strategy pro�le, the gain of a participant is R − csend. If a
participant deviates and does not send a vote, the block is produced in any case (ν = 1),
therefore the gain of the deviating participant is 0, which is lower than the gain at equilibrium.
The strategy pro�le is indeed a Nash equilibrium.

We now prove that there is no more Nash equilibrium. Let i, j be two participants such
that σsend

i 6= σsend
j . Without loss of generality, we assume that σsend

i = false and σsend
j =

true. In this case, the block is produced since ν = 1. The gain of participant i is 0, while the
gain of j is R− csend. If instead i votes, it will have a gain of R− csend > 0.

If no participant votes, the block is not produced, and all participants have a reward of
0. If instead a participant deviates and votes, the block will be produced, and the deviating
participant will have a reward of R − csend > 0. The only Nash equilibrium is the strategy
pro�le where all participants vote. �Proposition 5.2

Remark 5.3. Note that in the Nash equilibrium of Proposition 5.2, the consensus properties are
satis�ed, in particular, there is always a block produced at the end of the �rst round.

We now consider the situation where strictly more than one vote is needed to consider a
block as produced, i.e., ν ∈ {2, . . . , n}.

Proposition 5.4. In one round, with only strategic participants in the committee, if ν > 1,
and when only participants that vote for the produced block are rewarded, there are two Nash
equilibria; either (i) all participants vote, or (ii) no participant votes.

In the �rst equilibrium, if a strategic participant anticipates that no participants will vote,
its only vote will not make the proposal produced, since ν > 1, therefore, the participant is
better o� not voting. In the second type of equilibrium, if a participant anticipates that all
other participants are voting, it is better o� voting as well; otherwise, if the participant does
not send, it will not have a reward.

Proof

We prove that the strategy pro�les described in the proposition are Nash equilibria.

• First, we prove that the strategy pro�le where no participant votes is a Nash equilib-
rium. The gain at equilibrium of any participant is 0. If one participant deviates and
does vote, only it sends a vote, and the block is not produced since ν > 1, its gain at
deviation is −csend, which is lower than the gain at equilibrium. The strategy pro�le is
indeed a Nash equilibrium.

• We now prove that the strategy pro�le where all participants vote is a Nash equilibrium.
The gain at equilibrium of any participant is R − csend. If one participant deviates and
does not send a vote, its gain at deviation is 0 < R−csend. The strategy pro�le is indeed
a Nash equilibrium.
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Moreover, considering one round at a time, there is no more equilibrium. To prove that,
let Xσsend

= {i : σsend
i = true} be the set of all participants that decided to vote.

• When |Xσsend| < ν − 1: Assume by contradiction that there exists a Nash equilibrium
such that participant i votes, i.e., σsend

i = true. Since |Xσsend| < ν − 1, the block is not
produced, so the gain of i is −csend; if instead i decides not to vote, its gain would be
0 > −csend. Contradiction, the strategy pro�le is not a Nash equilibrium.

• When |Xσsend| ≥ ν − 1: Assume by contradiction that there exists a Nash equilibrium
such that participant i does not vote, i.e., σsend

i = false. The gain at equilibrium of i
is 0. If instead, i deviates and votes, its gain will be R − csend > 0, since the block will
be produced in any case. Contradiction, the strategy pro�le is not a Nash equilibrium.

�Proposition 5.4

Remark 5.5. There are two Nash equilibria in Proposition 5.4. In the equilibrium where no
participant votes, Termination is not guaranteed at round 1. In the second equilibrium where
there are n votes, the consensus properties are satis�ed in the �rst round.

5.3 Reward All Committee Members

In this section, we consider that all committee members are rewarded once a block is produced.
Equation (5.2) describes the gain of each strategic participant. We note that, when focusing
only the �rst round, Equation (5.2) can be simpli�ed as:

E
[
R1(block produced at round 1) − csend1σsend

i (H1
i ) − ccheck1σcheck

i (h1i )
− κ1(invalid block produced at round 1)

]
.

We study the di�erent equilibria with respect to the value of ν, the minimum number of
votes required to consider a block as produced.

First, we analyse the case where 1 vote for a proposed block is su�cient to consider it as
produced, i.e., ν = 1.

Proposition 5.6. In one round, with only strategic participants in the committee, if ν = 1, and
when all participants are rewarded once a block is produced, in the Nash equilibria, exactly one
participant votes, and the others do nothing.

If the participant supposed to vote does not vote, no block is produced, and hence it does
not have any reward, therefore, it prefers voting. Since a block is always produced in equilib-
rium, if a participant not supposed to send deviates and votes, it will pay the cost of sending
for nothing since it will be rewarded even without voting.

Proof

We �rst prove that the strategy pro�le where exactly one participant votes for the pro-
posed block is a Nash equilibrium. Without lack of generality, assume that the participant
with index 1 votes, so σsend

1 = true. In that strategy pro�le, the gain of participant 1 is
R − csend, and the gain of the other participants is R. If participant 1 deviates and does not
send a vote, the block is not produced and its gain at deviation is 0 < R−csend. If another par-
ticipant not supposed to send deviates and votes, its gain at deviation will be R− csend < R.
The strategy is indeed a Nash equilibrium.

Moreover, we show that in all equilibria in this setting, there is only one participant that
necessarily votes.
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• The strategy pro�le where no participant votes is not a Nash equilibrium. In fact, the
gain at equilibrium of a participant is 0, while if it deviates, its gain will beR−csend > 0.

• By contradiction, assume that there is a Nash equilibrium such that two participants i
and j vote. The gain of i and j at equilibrium is R − csend; if (let us say) i deviates and
does not send, its gain at deviation will be R > R − csend. Contradiction, the strategy
pro�le where strictly more than one participant votes is not a Nash equilibrium.

�Proposition 5.6

Remark 5.7. Note that there exists at most n equilibria corresponding to Proposition 5.6. In all
the equilibria corresponding to Proposition 5.6, the consensus properties are satis�ed.

We now consider the situation where strictly more than one vote is needed to consider a
block as produced, i.e., ν ∈ {2, . . . , n}.

Proposition 5.8. In one round, with only strategic participants in the committee, if ν > 1, and
when all participants are rewarded once a block is produced, in the Nash equilibria, either (i)
exactly ν participants vote, or (ii) no participant votes.

If a strategic participant anticipates that no participants will vote, since ν > 1, its only
vote will not make the proposal produced, therefore, it is better o� not voting. In the other
type of equilibrium, exactly ν participants vote; if a participant supposed to send does not
vote, the block is not produced and the deviating participant is not rewarded any more; if a
participant not supposed to send deviates (by voting) it will incur a cost of sending, when it
will be rewarded in any case, so it prefers not to send.

Proof

We prove that the strategy pro�les described in Proposition 5.8 are Nash equilibria.

• First, we prove that the strategy pro�le where no participant votes is a Nash equilib-
rium. The gain at equilibrium of any participant is 0. If one participant deviates and
does send a vote, only it sends a vote, and the block is not produced since ν > 1, its
gain at deviation is −csend, which is lower than the gain at equilibrium. The strategy
pro�le where no one sends is indeed a Nash equilibrium.

• We now prove that the strategy pro�le where exactly ν participants vote is a Nash equi-
librium. Without loss of generality, assume that the ν �rst participants are supposed to
send, and participants with index bigger than ν do not send. The gain at equilibrium
of a participant supposed to send is R − csend. If it deviates and does not send a vote,
its gain at deviation is 0 < R− csend. The gain of a participant not supposed to send is
R. If it deviates and sends a vote, its gain at deviation is R− csend < R. The strategy is
indeed a Nash equilibrium.

Moreover, considering one round at a time, there is no more equilibrium. To prove that,
let Xσsend

= {i : σsend
i = true} be the set of all participants that decided to vote.

• When 1 ≤ |Xσsend| < ν: Assume by contradiction that there exists a Nash equilibrium
such that participant i votes, i.e., σsend

i = true. Since |Xσsend| < ν, the block is not
produced, so the gain of i is −csend; if instead i deviates and does not vote, its gain
would be 0 > −csend. Contradiction, the strategy pro�le is not a Nash equilibrium.
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Reward All Reward Only Senders

ν = 1

Proposition 5.6

In equilibrium, exactly one message is sent:
Consensus

Proposition 5.2

In equilibrium, All participants send a message:
Consensus; but ine�cient: too costly

ν > 1

Proposition 5.8

In equilibrium, either:
- No message is sent:

No Termination: Coordination failure, or
- Exactly ν messages are sent.

Consensus

Proposition 5.4

In equilibrium, either:
- No message is sent:

No Termination: Coordination failure, or
- All participants sent a message:

Consensus; but ine�cient: too costly

Table 5.1: Summary of the Equilbria with Strategic Participants

• When |Xσsend| > ν: Assume by contradiction that there exists a Nash equilibrium such
that participant i does vote, i.e., σsend

i = true. The gain at equilibrium of i is R− csend.
If instead, i deviates and does not vote, its gain will beR, which is bigger thanR−csend.
Contradiction, the strategy pro�le is not a Nash equilibrium.

�Proposition 5.8

Remark 5.9. There are two types of Nash equilibria in Proposition 5.8.

• The equilibrium where no participant votes do not guarantee Termination at round 1.

• In the second type of equilibrium in this setting, there are exactly ν messages sent. There can
be at most

(
n
ν

)
1 + 1 equilibria corresponding to that setting. In each of them, the consensus

properties are satis�ed.

A summary of the di�erent equilibria in Sections 5.2 & 5.3 can be found in Table 5.1. We
note that when only 1 vote is required to consider a proposal as produced, in all equilibria,
blocks are always produced. When we require strictly more than 1 vote to consider a block
as produced, although there are equilibria where the consensus is guaranteed, there is also an
equilibrium where no participant votes, anticipating that the others will not vote as well: that
is a coordination failure, leading to a violation of the Termination property. This is true in the
two reward mechanisms: reward all committee members, or reward only the members that
voted. However, in the equilibria where all committee members are rewarded, fewer messages
are sent, making it a more e�cient mechanism with respect to the number of messages sent.

5.4 Trembling Strategic Participants

Now, we assume that there is some negligible probability p for the createValidValue func-
tion (Line 11 of Algorithm 6) to return an invalid proposal, and all participants are aware of
the trembling e�ect.

When proposing a value, there is a probability that the hand of the participant trembles
and proposes an invalid block instead of a valid block; i.e., in some sense, we take into ac-
count the possibility of making a mistake for the proposal. The idea of trembling hand and
acknowledging errors has been studied in economics (e.g., [57]).

1
(
n
ν

)
= Cνn is the number of combinations for choosing ν out of n elements.
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Note that now, checking the validity of a block may be important, there is a risk of pro-
ducing an invalid block, breaking the validity property of the consensus. To ensure that the
reward covers the costs of checking and sending in this setting we assume that (1 − p)(R −
csend) − ccheck > 0, that is, the reward covers the costs. We also note that it is better for the
participants to send (resp. not to send) without checking than checking and sending (resp.
not sending) irrespective to the block validity; that would mean incurring a cost −ccheck for
nothing. It is also not in their best interest to check the validity of the proposal and vote if
the proposal is invalid, that would mean increasing the chances of producing an invalid block
and incurring a cost −κ. In the analyses, we then consider only the three relevant strategies:
a strategic participant can (i) vote without checking proposal validity, (ii) not vote nor check
proposal validity, and (iii) check the proposal validity and vote only if the proposal is valid.

In the following, we make the same analyses as in Sections 5.2 & 5.3, i.e., we analyse the
behaviours of strategic participants when only voters are rewarded, and their behaviours when
all committee members are rewarded.

5.4.1 Reward Only Committee Members that Vote

In this subsection, we consider that only committee members that voted for a produced block
are rewarded. Equation (5.1) describes the gain of each strategic participant.

We study the di�erent equilibria with respect to the value of ν, the minimum number of
votes required to consider a block as produced.

First, we analyse the case where 1 vote for a proposed block is su�cient to consider it as
produced, i.e., ν = 1.

Proposition 5.10. In one round, with only strategic participants in the committee, if ν = 1,
when only participants that vote for the produced block are rewarded, and if there is a probability
p that the proposer proposes an invalid block, there are two Nash equilibria. In equilibrium, either
(i) if κ ≥ R− csend + ccheck/p, all participants check the validity of the proposal and vote only if it
is valid; or (ii) all participants vote for the proposal without checking the validity of the proposal.

As in Proposition 5.2, one can note that in equilibrium, all participants do (try to) vote.

Proof

We prove that the strategy pro�les described in the proposition are Nash equilibria.

• First, we prove that the strategy pro�le where all participants check the proposal valid-
ity and vote only if the proposal is valid is a Nash equilibrium.

The expected gain at equilibrium of any participant is (1−p)(R− csend)− ccheck > 0. If
one participant deviates and does not send a vote nor checks, its gain at deviation is 0; if
it deviates and votes without checking, its expected gain at deviation is R− csend− pκ,
which is lower than the gain at equilibrium if and only if κ ≥ R − csend + ccheck/p,
which is our assumption, therefore, the gain at equilibrium is better than the gain if
the participant deviates. The strategy pro�le where all participants check the proposal
validity and vote only if the proposal is valid is a Nash equilibrium.

• We now prove that the strategy pro�le where all participants vote without checking
the proposal validity is a Nash equilibrium.

The gain at equilibrium of any participant is R − csend − pκ. Even if one participant
deviates, the block will be produced in any case, no matter its validity. If a participant
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deviates by checking validity and votes only if the proposal is valid, its gain at devi-
ation is (1− p)(R− csend)− ccheck − pκ; if the participant deviates and does not check
proposal’s validity nor votes, its expected gain at deviation is −pκ. In any case, the
gain at deviation is lower than the gain at equilibrium. The strategy pro�le is indeed a
Nash equilibrium.

Moreover, considering one round at a time, there is no more equilibrium.
First, we prove that in equilibrium, at least one participant should choose to vote. If no

participant votes, no block is produced and the gain of each participant is 0; if a participant
deviates and checks the proposal validity and votes only if it is valid, its gain at deviation is
(1− p)(R − csend)− ccheck > 0. Let i, j be two participants such that σsend

i 6= σsend
j . Without

loss of generality, we assume that σsend
i = false and σsend

j = true. In this case, the block is
produced since ν = 1. The gain of i is 0 if the proposal is valid (resp. −κ if the proposal is
invalid); if instead i votes, it will have a gain of R − csend (or resp. R − csend − κ), i is better
o� by deviating.

Now we can prove that in equilibrium, participants have the same strategy for checking
validity. Let i, j be two participants such that σcheck

i 6= σcheck
j , without loss of generality, we

assume that σcheck
i = true. The expected gain of i is (1−p)(R− csend)− ccheck−pκ if instead

it deviates and does not check, but its expected gain is R− csend − pκ, which is greater than
the gain before deviation. �Proposition 5.10

Remark 5.11. There are two Nash equilibria in Proposition 5.10. In the equilibrium where all
participants check, if the proposal is invalid, there is no Termination at the �rst round, however,
Validity is always ensured. While in the second equilibrium where no participant checks, Ter-
mination is always guaranteed at the end of the �rst round, even if the proposal is invalid, which
violates the Validity.

We now consider the situation where strictly more than one vote is needed to consider a
block as produced, i.e., ν ∈ {2, . . . , n}.

Proposition 5.12. In one round, with only strategic participants in the committee, if ν > 1, when
only participants that vote for the produced block are rewarded, and if there is a probability p that
the proposer proposes an invalid block, there are three Nash equilibria. Either (i) no participant
votes nor checks the proposal validity; or (ii) if ν < n, all participants vote for the proposal without
checking the validity of the proposal; or (iii) if κ ≥ R − csend + ccheck/p, n − ν + 1 participants
check the validity of the proposal and vote only if it is valid, and the ν−1 remaining participants
only vote without checking the validity of the proposal.

Proof

We prove that the strategy pro�les described in the proposition are Nash equilibria.

• First, we prove that the strategy pro�le where no participant votes is a Nash equilib-
rium. The gain at equilibrium of any participant is 0. If one participant deviates and
does send a vote, there is only 1 vote and the block is not produced since ν > 1, the
gain at deviation is −csend < 0. If the participant deviates by checking block validity,
it will pay the cost −ccheck − (1 − p)csend < 0. The strategy pro�le is indeed a Nash
equilibrium.

• We now prove that the strategy pro�le where all participants vote without checking
the proposal validity is a Nash equilibrium. Let ν < n, the gain at equilibrium of any
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participant isR−csend−pκ. Even if one participant deviates, the block will be produced
in any case (since ν < n) no matter its validity. If a participant deviates by checking
validity and sending if the proposal is valid, its gain will be (1−p)(R−csend)−ccheck−pκ;
if the participant deviates and does not check proposal’s validity nor votes, its expected
gain at deviation is −pκ, the gain at deviation is lower than the gain at equilibrium.
The strategy pro�le is indeed a Nash equilibrium.

• It remains to prove that the strategy pro�le where some participants are supposed to
check the proposal validity and check only if the block is valid and the remaining par-
ticipants vote without checking block validity is also a Nash equilibrium.

We can �rst note that only valid blocks can be produced following the equilibrium, and
invalid blocks do not have the necessary ν votes, since only ν − 1 participants vote
without checking, and so for invalid proposal.

– The expected gain of a participant not supposed to check is (1− p)(R− csend). If
it deviates and does not send, its gain at deviation is 0; if it deviates by checking
and sending a message only if the proposal is valid, its expected gain at deviation
is (1− p)(R− csend)− ccheck, which is lower than the gain at equilibrium.

– The expected gain of a participant supposed to check is (1−p)(R− csend)− ccheck.
If it deviates and does not send, its gain at deviation is 0. If it deviates by voting
without checking the proposal’s validity, any block proposed will be produced, no
matter its validity since ν votes are sent in any case, so the expected gain of the
deviating participant isR−csend−pκ, which is lower than the gain at equilibrium
if and only if κ ≥ R− csend + ccheck/p.

The strategy pro�le is indeed a Nash equilibrium.

Moreover, considering one round at a time, there is no more equilibrium. We sketch the proof
by exhibiting the main other equilibrium candidates.

• Let x ≥ 0. Assume by contradiction that there exists an equilibrium where n− ν − x
participants check the block validity and vote only if the proposal is valid, and the
remaining ν + x participants vote without checking the block validity.

That means any block proposed will be produced since ν + x ≥ ν participants vote
without checking validity. Let i be a participant supposed to check. It expected gain is
R− csend− ccheck− pκ, while if i deviates and send without checking proposal validity,
its expected gain will be R − csend − pκ. Contradiction, the strategy pro�le is not an
equilibrium.

• Let x > 1. Assume by contradiction that there exists an equilibrium where n− ν + x
participants check the block validity and vote only if the proposal is valid, and the
remaining ν − x participants vote without checking the block validity.

Let i be a participant supposed to check. It expected gain is (1−p)(R−csend)−ccheck. If
i deviates and send without checking proposal validity, there will be ν−x+1 < ν votes
for an invalid block proposed, and so it will not be produced, where there will be n votes
for a valid block proposed; the expected gain at deviation for i is (1 − p)(R − csend).
Contradiction, the strategy pro�le proposed is not an equilibrium.

�Proposition 5.12
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Remark 5.13. There are three types of Nash equilibria in Proposition 5.12.

• The equilibrium where no participant votes do not guarantee Termination at round 1.

• In the equilibrium where no participant checks, Termination is always guaranteed at the
end of the �rst round, even if the proposal is invalid, which violates the Validity property.

• In the last equilibrium, valid blocks are produced and invalid blocks are not. Termination
is not guaranteed at round 1 but Validity is always ensured. There can be at most

(
n

n−ν+1

)
equilibria corresponding to that setting.

5.4.2 Rewarding All Committee Members

In this section, we consider that all committee members are rewarded once a block is produced.
Equation 5.2 describes the gain of each strategic participant.

We study the di�erent equilibria with respect to the value of ν, the minimum number of
votes required to consider a block as produced.

First, we analyse the case where 1 vote for a proposed block is su�cient to consider it as
produced, i.e., ν = 1.

Proposition 5.14. In one round, with only strategic participants in the committee, if ν = 1,
when all participants are rewarded once a block is produced, if there is a probability p that the
proposer proposes an invalid block, and if κ ≥ R− csend + ccheck/p, in all Nash equilibria, exactly
one participant checks the validity of the proposal and votes only if it is valid, while the other
participants do nothing.

As in Proposition 5.6, one can note that in equilibrium, the task of validating (checking)
and producing a block is delegated to one participant.

Proof

We prove that the strategy pro�le described in the proposition is a Nash equilibrium. We
prove that the strategy pro�le where exactly one participant votes for the proposed block
is a Nash equilibrium. Without lack of generality, assume that the participant with index
1 is the one supposed to check the proposal validity and to vote only if it is valid, and all
other participants do not send nor check. In that strategy pro�le, the gain of participant 1 is
(1− p)(R− csend)− ccheck, and the gain of the other participants is R.

If participant 1 deviates and sends a vote without checking, the block is always produced,
even if it is invalid, so its gain at deviation is R − csend − pκ which is lower than the gain at
equilibrium if κ ≥ R− csend + ccheck/p. If participant 1 deviates and does not send a vote nor
checks, the block is never produced, therefore, the gain of i at deviation is 0, which is lower
than the gain at equilibrium. The other participants having a reward of R cannot do better,
since R is the maximum reward a participant can get.

The strategy pro�le is indeed a Nash equilibrium.
Moreover, we now prove that in all equilibria in this setting, there is exactly one parti-

cipant that necessarily checks and votes.

• The strategy pro�le where no participant checks nor votes is not a Nash equilibrium.
In fact, the gain at equilibrium of a participant is 0, while if it deviates by checking the
block validity and voting only if the proposal is valid its gain will be (1−p)(R−csend)−
ccheck > 0.
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• By contradiction, assume that there is a Nash equilibrium such that two participants i
and j check the proposal validity and vote only if the block is valid. The gain of i and
j at equilibrium is (1− p)(R− csend)− ccheck; if i deviates and does not send nor check,
its gain at deviation will be (1− p)R > (1− p)(R− csend)− ccheck. Contradiction, the
strategy pro�le is not a Nash equilibrium.

• By contradiction, assume that there is a Nash equilibrium where there are two parti-
cipants i that checks the proposal validity and vote only if the block is valid, and j that
votes without checking validity. The gain of i at equilibrium isR−(1−p)csend−ccheck−
pκ; since the block will be produced anyway, if i deviates and does not send nor check,
its gain at deviation will be R− pκ > R− (1− p)csend− ccheck− pκ. Contradiction, the
strategy pro�le is not a Nash equilibrium.

• By contradiction, assume that there is a Nash equilibrium such that two participants i
and j vote without checking validity. The gain of i at equilibrium is R − csend − pκ;
if i deviates and does not send nor checks, its gain at deviation will be R − pκ >
R− csend − pκ. Contradiction, the strategy pro�le is not a Nash equilibrium.

�Proposition 5.14

Remark 5.15. Note that there exists at most n equilibria corresponding to Proposition 5.14. In all
the equilibria corresponding to Proposition 5.14, if the proposal is invalid, there is no Termination
at the �rst round, however, Validity is always ensured.

We now consider the situation where strictly more than one vote is needed to consider a
block as produced, i.e., ν ∈ {2, . . . , n}.

Proposition 5.16. In one round, with only strategic participants in the committee, if ν > 1,
when all participants are rewarded once a block is produced, if there is a probability p that the
proposer proposes an invalid block, and if κ ≥ R − csend + ccheck/p, in all Nash equilibria, either
(i) no participant votes, or (ii) 1 participant checks the proposal validity, and votes only if it is
valid, exactly ν − 1 other participants vote without checking validity, and the others do nothing.

Proof

We prove that the strategy pro�les described in the proposition are Nash equilibria.

• First, we prove that the strategy pro�le where no participant votes is a Nash equilib-
rium. The gain at equilibrium of any participant is 0. If one participant deviates and
does send a vote, there is only 1 vote, and the block is not produced since ν > 1, the gain
at deviation is −csend < 0. If the participant deviates by checking block validity, it will
pay the cost of checking for nothing and will have the gain −ccheck − (1− p)csend < 0.
The strategy pro�le is indeed a Nash equilibrium.

• It remains to prove that the strategy pro�le where some participants are supposed to
check the proposal validity, and send only if the block is valid; some participants vote
without checking block validity; and the others do nothing is a Nash equilibrium.

We can �rst note that only valid blocks can be produced following the equilibrium, and
invalid blocks do not have the necessary ν votes, since only ν − 1 participants vote
without checking.
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– First, the participants that do not send nor check validity have an expected gain
of (1− p)R. Let i be such a participant. If i deviates and votes without checking,
any proposal will be produced, no matter its validity, therefore, the gain of the
participant at deviation is R− csend− pκ, which is lower than the gain at equilib-
rium. If instead, i deviates and checks the validity of the proposal and votes only
if it is valid, only valid blocks will be produced, so the gain at deviation will be
(1− p)(R− csend)− ccheck,
which is lower than the gain at equilibrium.

– Now, turns to the participants not supposed to check but supposed to send. Their
expected gain at equilibrium is (1 − p)R − csend. Let i be such a participant. If i
deviates and does not send nor checks, no block will be produced and its gain at
deviation is 0 < (1− p)R− csend. If it deviates by checking and sending vote only
if the proposal is valid, its expected gain at deviation is (1− p)(R− csend)− ccheck,
which is lower than the gain at equilibrium since csend < ccheck.

– Finally, we can analyse the one participant supposed to check. Without loss of
generality, assume that it is the participant with index 1. The expected gain of
participant 1 is (1 − p)(R − csend) − ccheck. If it deviates and does not send, no
block will be produced, so its gain at deviation is 0 < (1−p)(R− csend)− ccheck; if
it deviates by voting without checking the proposal’s validity, any block proposed
will be produced, no matter its validity since ν votes are sent in any case; therefore,
the expected gain of participant 1 at deviation is R − csend − pκ, which is lower
than the gain at equilibrium if and only if κ ≥ R− csend + ccheck/p.

The strategy pro�le is indeed a Nash equilibrium. No participant can increase its gain
by deviating.

Moreover, considering one round at a time, there is no more equilibrium in this setting.
First, let us note that in any case, exactly ν participants should vote (counting also those

supposed to send after checking). If there are less than ν participants supposed to send (but at
least one), no block is produced so one such participant can deviate and not send, economising
its cost. If there are more than ν participants supposed to send, one can deviate by not voting
and economising that cost.

We can show that the other main equilibrium candidates are not equilibria.

• By contradiction, assume that there exists an equilibrium where ν participants vote
without checking the proposal’s validity and the others do not send nor check.

Let i be a participant supposed to send. Its expected gain at equilibrium isR−csend−pκ,
while if i deviates by checking the proposal validity and sending only if valid, only valid
proposals will be produced, so its expected gain will be: (1−p)(R−csend)−ccheck which
is greater than the equilibrium. Contradiction, the strategy pro�le is not an equilibrium.

• By contradiction, assume that there exists an equilibrium where ν participants vote
(counting also those supposed to send after checking) and the others do not send nor
check. Suppose that in the set of participants supposed to send, at least two i and j
check the validity of the proposal and vote only if it is valid. In this strategy pro�le,
only valid proposals will be produced. The expected gain at equilibrium of i is (1 −
p)(R− csend)− ccheck. If instead, i deviates and always send without checking validity,
its expected gain at deviation is (1 − p)R − csend, which is greater than the gain at
equilibrium. Contradiction, the strategy pro�le is not an equilibrium.

�Proposition 5.16
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Reward All Reward Only Senders

ν = 1

Proposition 5.14

In the equilibrium, one message sent if valid:
Validity

Proposition 5.10

In the equilibrium, either
- n messages sent only if valid: Validity

- n messages always sent:
Validity not guaranteed

ν > 1

Proposition 5.16

In equilibrium, either:
- No message is sent: No Termination

- ν − 1 messages always sent + 1 if valid:
Validity

Proposition 5.12

In equilibrium, either:
- No message is sent: No Termination

- ν − 1 messages always sent + (n− ν + 1) if valid: Validity

- (if ν < n) n messages always sent:
Validity not guaranteed

Table 5.2: Summary of the Equilbria with “Trembling” Strategic Participants

Remark 5.17. There are two types of Nash equilibria in Proposition 5.16.

• Termination is not guaranteed at round 1 in the equilibrium where no participant votes.

• In the second type of equilibrium in this setting, there are exactly ν votes when the proposal
is valid, but ν − 1 votes when the proposal is invalid. Termination is not guaranteed at
round 1 but Validity is ensured. There can be at most n ×

(
n−1
ν−1

)
equilibria corresponding

to that setting.

A summary of the di�erent equilibria of this Section 5.4 can be found in Table 5.2.
We note that when all participants are rewarded once a block is produced, there is no “bad”

equilibrium, i.e., an equilibrium where Validity is violated, while when only participants that
send a vote for a produced block are rewarded when ν < n, there exists a “bad” equilibrium
(Propositions 5.10 & 5.12).

5.5 Discussions

Before concluding, we discuss some interesting points that are not directly addressed in the
core of this chapter.

Fixed amount of Reward for the Committee

First, we quickly highlight what happens if there is a �xed reward for the committee members
that is shared by them. Let µ be the number of participants that are rewarded in the committee,
and let R/µ be the fraction of the reward each rewarded participant gets. Our equilibrium
analyses still hold, but attention should be given to the bounds. For example, in Proposition
5.10, instead of κ ≥ R− csend + ccheck/p, we should have κ ≥ R/n− csend + ccheck/p, since all
participants vote in case of a valid proposal (here, µ = n).

Obedient Participants

Recall that obedient participants always follow the prescribed protocol; they take actions such
that Algorithm 6 corresponds to Algorithm 5, i.e., they always check the validity of the pro-
posal, and vote only if the proposal is valid.



5.6. CONCLUSION 95

We did not include obedient participants in our analyses for the following reason: their
presence does not change the di�erent equilibria we have; they may, however, change the
bounds under which some equilibria exist.

Denote by o the number of obedient participants in the committee. Generally, if there are
o obedient participants and ν messages are required for the production of a block, o votes are
guaranteed for valid blocks only; then for the strategic participants, the goal is to give the ν−o
remaining votes.

5.6 Conclusion

In this chapter, we analyse the behaviours of strategic participants in committee-based block-
chains. Strategic participants are sel�sh, they are self-interested, and the question of whether
the consensus properties are guaranteed in their presence was of interest. We study the be-
haviours of strategic participants under the assumption of synchrony of messages and under
di�erent mechanisms of rewards: (i) reward only the senders of votes when a block is pro-
duced; and (ii) reward all committee members once a block is produced. Our study took into
account the number of votes required to consider a block produced. Once a block is proposed,
a participant has the choice of checking the validity of the proposal and then can vote or not
for the proposal, knowing that sending a message and checking validity are costly.

When 1 message is required for producing a block, in equilibrium the consensus is always
guaranteed at the �rst round. When strictly more than 1 message is required for the production
of a block, there exist equilibria where the consensus is guaranteed at the �rst round, but there
can be coordination failures, no one sends a vote and no block is produced. These equilibria
hold with the two mechanisms of rewards, with a di�erence that when all participants are
rewarded, fewer messages are sent.

We moreover investigate the case where an invalid block may be proposed, we found that
although the equilibria seem to resemble those in the case where all blocks are valid, there is
a slight but important di�erence. In the case of rewarding only the voters, there are equilibria
where invalid blocks could be produced. These latter equilibria exist whenever the number
of messages required to consider a block produced is strictly lower than the number of parti-
cipants; it resembles the veri�er’s dilemma [146] in proof-of-work blockchains, but not exactly,
since there is no tension with other sources of allocation (e.g., mining in Bitcoin).

While the assumption of trembling strategic is not that generic and can raise questions
about its usage, it leads us to consider participants that purposely proposes invalid blocks,
or more generally participants that aim to prevent the consensus properties. We call such
participants malicious, and in the next chapter, we study whether consensus is possible in the
presence of both malicious and strategic participants.
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Chapter 5 started an analysis of the behaviours of strategic participants in committee-based
blockchains. That important analysis does not take into account the presence of adversarial
behaviours in the committees. As in Chapter 4 and more generally in distributed systems,
some participants may have adversarial or arbitrary behaviours: the Byzantine participants.
To take part of those behaviours into account, in this chapter we consider in our analyses the
presence of malicious and strategic participants, where malicious participant’s objective is to
prevent consensus in the blockchain system, and the strategic participants want to maximise
their expected gain. We then analyse the behaviour of the participants in such a system. Note
that a malicious participant is not fully a Byzantine. Malicious participants have an objective
and do their best to achieve it at each moment, while Byzantine participants are more general
and can behave arbitrarily. A small comparison is proposed in Section 2.4.2 of Chapter 2.

In this chapter, we do focus on the behaviour inside one committee at a time, and we do
not consider what happened before that committee, what will happen after that committee,
and how the committee members are selected.

6.1 Model

In this section, the reader may refer to Chapter 2 for more in-depth details about the model.

6.1.1 System Model

We consider a system composed of a �nite and ordered set Π, called committee, of n synchron-
ous sequential participants, namely Π = {1, . . . , n}, where participant i is said to have index

97
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i. Except if stated otherwise, in this chapter, all participants are in the set Π.

Communication. Participants communicate by sending and receiving messages through a
synchronous network. We assume that each participant proceeds in rounds. A round consists of
three sequential phases, in order: the send, the delivery and the compute phases. The delivery
phase has a �xed duration that allows collecting all the messages sent by the participants. At
the end of a round, a participant exits from the current round and starts the next one. We
assume the existence of a reliable broadcast primitive. Messages are created with a digital sig-
nature, and we assume that digital signatures cannot be forged. When a participant i delivers
a message, it knows the participant j that created the message.

Participants Behaviour. In this chapter, we consider two types of participants. A parti-
cipant is either malicious (De�nition 2.8) or strategic (De�nition 2.7). Note that both types of
participants can be seen as rational (De�nition 2.6).

Strategic participants are self-interested and their objective is to maximise their expected
gain. They will deviate from a prescribed protocol if and only if doing so increases their
expected gain. We denote by s the number of strategic participants in the committee. The
malicious participants’ objective is to prevent the protocol from achieving its goal, no matter
the cost. We denote by m the number of malicious participants in the committee. We have
that m, s ∈ N and m + s = n.

We assume that the behaviour of participants is perceived identically by all other par-
ticipants, that is, a message sent by a participant in a given round is received by all in the
delivery phase of that round.

6.1.2 Consensus in Presence of Rational Participants

As discussed and studied in Chapter 4, committee-based blockchains can be developed using
a consensus algorithm. In particular, at each height, the protocol used by the correspond-
ing committee must implement the consensus. In this section, we adapt the de�nition of the
consensus properties in the presence of rational participants.

We say that a protocol is a consensus algorithm in the presence of rational participants if
the following properties hold:

• r-Termination: every rational participant decides on a value (a block);

• r-Agreement: if two rational participants decide respectively on values B and B′, then
B = B′;

• r-Validity: a decided value by any rational participant is valid; it satis�es the prede�ned
predicate.

If clear from the context, we simply write Termination, Agreement and Validity instead of
respectively r-Termination, r-Agreement and r-Validity.

Problem. In this chapter, we study the behaviours of rational participants in a consensus
protocol. The goal is to know whether consensus is possible in committee-based blockchains
in the presence of rational participants. Formally, the question this chapter tackles is: Are there
equilibria where the consensus properties are satis�ed? It is important to note that our goal is
not to propose a protocol such that all rational participants behave as obedient, but rather
studying the behaviour of rational participants in a consensus algorithm.
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Recall that, from Section 2.4.4, an equilibrium is a “stable” situation where no rational
participant has an incentive to unilaterally deviate.

Protocol of Rational Participants. The protocol studied in this chapter is slightly di�er-
ent from the protocol in Chapter 5. In this chapter, as it can be noted in Algorithm 7, the
participants also have the choice of sending a valid or an invalid proposal (Lines 12 - 16). Both
malicious and strategic participants have the same action space, i.e., both follow Algorithm 7.

Rational participants’ choices are explicitly represented in Algorithm 7 by dedicated vari-
ables, namely, actionpropose, actioncheck, and actionsend. Each action, initialised at a default
value of nil, can take values from the set {false, true}. For participant i, the values of
actionpropose, actioncheck, and actionsend are set by calling respectively the functions σpropose

i ,
σcheck
i , and σsend

i , returning the strategy of the participant i.

Algorithm 7 Pseudo-code for a given height hmodelling the rational participant i’s behaviour
1: Initialisation:

2: vote := nil
3: t := 0 /* Current round number */
4: decidedV alue := nil
5: actionpropose := nil
6: actioncheck := nil
7: actionsend := nil
8: validV alue[] := {⊥,⊥, . . . ,⊥} /* validV alue[r] ∈ {⊥, false, true} */

9: Round PROPOSE(t) :

10: Send phase:

11: if i == isProposer(t, h) then

12: actionpropose ← σ
propose
i () /* σpropose

i () ∈ {false, true} sets the action of proposing a valid block or an invalid one */
13: if actionpropose == true then

14: proposal← createValidValue(h)
15: else if actionpropose == false then

16: proposal← createInvalidValue()
17: broadcast 〈PROPOSE, h, t, proposal〉
18: Delivery phase:

19: delivery 〈PROPOSE, h, t, v〉 from proposer(h, t)
20: Compute phase:

21: actioncheck ← σcheck
i () /* σcheck

i () ∈ {false, true} sets the action of checking or not the validity of the proposal */
22: if actioncheck == true then

23: validValue[t]← isValid(v) /* The execution of isValid(v) has a cost ccheck */
24: actionsend ← σsend

i (validValue[t]) /* σsend
i : {⊥, false, true} → {false, true} sets the action of sending the vote or not */

25: if actionsend == true then

26: vote← v /* The participant decides to send the vote, the proposal might be invalid */

27: Round VOTE(t) :

28: Send phase:

29: if vote 6= nil then

30: broadcast 〈VOTEi, h, t, vote〉 /* The execution of the broadcast has a cost csend */
31: Delivery phase:

32: delivery 〈VOTE, h, t, v〉 /* The participant collects all the votes for the current height and round */
33: Compute phase:

34: if |〈VOTE, h, t, v〉| ≥ ν ∧ decidedV alue = nil ∧ vote 6= nil ∧ vote = v then

35: decidedV alue = v; exit

36: else

37: vote← nil
38: t← t+ 1

Strategy σpropose
i determines if the proposer i chooses to produce a valid proposal or an

invalid one (Lines 12 - 16 of Algorithm 7). In both cases, the proposal is sent in broadcast (Line
17 of Algorithm 7).
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6.1.3 Game

Action Space. As proposer, the participant decides which block to send to each of the other
participants. This means to choose whether to send valid or invalid blocks. Then, at each
round t, after receiving a block, each participant �rst decides whether to check the block’s
validity or not (at cost ccheck), and second decides whether to send a message (at cost csend) or
not.

Information Sets. At the beginning of each round t > 1, the information set of the parti-
cipant, ηti , includes the observation of the round number t, the participant’s own type θi, as
well as the observation of what happened in previous rounds, namely (i) whether the parti-
cipant decided to check validity, and if it did, the knowledge of whether the block was valid
or not, (ii) how many messages were sent, and (iii) whether a block was produced or not.
At round 1, if i is strategic, η1

i only includes the participant’s private information about its
own type, θi, if i is a malicious participant, it knows which participants are malicious, η1

i also
includes the private information of all participant’s type.

Then, during each round t > 1, the participant decides whether to check the validity of the
current block. At this point, denoting by bt the block proposed at round t, when the participant
does not decide to check validity, the isValid(bt) function is set to the null information
set, while if the participant decides to check, isValid(bt) is equal to true if the block is
valid and false otherwise. Therefore, at this stage, the participant information set becomes
H t
i = ηti ∪ isValid(bt), which is ηti augmented with the validity information participant i

has about bt, the proposed block.

Strategies. At each round t ≥ 1, the strategy of participant i is a mapping from its informa-
tion set into its actions. If the participant is selected to propose the block, its choice is given by
σ

propose
i (ηti). Then, at the point at which the participant can decide to check block validity, its

strategy is given by σcheck
i (ηti). Finally, after making that decision, the participant must decide

whether to send a message or not, and that decision is given by σsend
i (H t

i ).

Rewards and Costs for Strategic Participants. In this chapter, we study the case where
when a block is produced, only the participants which sent a vote message are rewarded (and
receive R).

In addition, we assume that when an invalid block is produced, all strategic participants
incur a cost κ.

The reward R, given to the participants when a block is produced, is larger than the cost
ccheck of checking validity, which in turn is larger than the cost csend of sending a vote message.
Additionally, we assume that the reward obtained when a block is produced is smaller than the
cost κ of producing an invalid block. That is, κ > R > ccheck > csend ≥ 0.

Payo� of Malicious Participants. Let ω be an outcome of the game. If ω does not satisfy
Termination, then the malicious participants have a payo� of κ̃Termination. If ω does not satisfy
Validity, then the malicious participants have a payo� of κ̃Validity.

κ̃(ω) =


κ̃Validity, if ω does not satisfy Validity
κ̃Termination, if ω does not satisfy Termination
0, if ω satis�es Agreement, Validity and Termination

,

The malicious participants have lexicographic preferences on the outcome of the game, in
order, they prefer:
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1. Outcomes that do satisfy Termination, but not Validity;

2. Outcomes that do satisfy Validity, but not Termination;

3. Outcomes that do satisfy Termination and Validity;

which is summarised by the following assumption, κ̃Validity > κ̃Termination > 0. We also assume
that malicious participants do not incur any costs, no matter their actions.

Objective of Strategic Participants. Let T be the endogenous round at which the game
stops. If a block is produced at round t ≤ n, then T = t. Otherwise, if no block is produced,
T = n+ 1. In the latter case, the Termination property is not satis�ed. At the beginning of the
�rst round, the expected gain of strategic participant i is:

Ui = E

[
(R× 1(σsend

i (HT
i )=true) × 1(block produced at T ) − κ× 1(invalid block produced))

−
∑T

t=1

(
ccheck × 1σcheck

i (ηti)=true) + csend × 1(σsend
i (Ht

i )=true)

) |η1
i

]
,

where 1(.) denotes the indicator function, taking the value 1 if its argument is true, and 0 if
it is false.

Then, at the beginning of round t > 1, if T ≥ t, the continuation payo� of the strategic
participant with the information set ηti is:

Wi,t(η
t
i) = E

[
(R× 1(σsend

i (HT
i )=true) × 1(block produced at T ) − κ× 1(invalid block produced))

−
∑T

s=t

(
ccheck × 1(σcheck

i (hsi )=true) + csend × 1(σsend
i (Hs

i )=true)

) |ηti

]
.

(6.1)

Objective of Malicious Participants. Let T be the endogenous round at which the game
stops. If a block is produced at round t ≤ n, then T = t. Otherwise, if no block is produced,
T = n+ 1. In the latter case, the Termination property is not satis�ed. At the beginning of the
�rst round, the expected payo� of malicious participant i is:

Ũi = E
[
κ̃Validity × 1(invalid block produced at T ) |η1

i

]
,

and if no block is produced at round n, the expected payo� of malicious participant i is:

Ũi = κ̃Termination,

Then, at the beginning of round t > 1, if T ≥ t, the continuation payo� of the malicious
participant with the information set ηti is:

W̃i,t(η
t
i) = E

[
κ̃Validity × 1(invalid block produced at T ) + κ̃Termination × 1(T=n+1) |ηti

]
.

Equilibrium concept. We assume in this Chapter that there is at least one malicious in the
system (m ≥ 1). If there are no malicious, the results from Chapter 5.2 apply, if not (i.e., m ≥ 1)
let m be a random variable in {1, . . . , n}, it means that the number of malicious participants
in the committee may not be known in advance.

In this section, as opposed to Chapter 5 we study the case of multiple rounds. Meaning, if
there is no decision at round 1, the participants go to round 2 and so on. Moreover, strategic
participants do not know the indices of the malicious participants. The game is then dynamic
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and with asymmetric information. The relevant equilibrium concept to consider is Perfect
Bayesian Equilibrium (De�nition 2.13 of Chapter 2) intuitively de�ned as follows:

A Perfect Bayesian equilibrium is such that all participants 1) choose actions maximising
their objective function, 2) rationally anticipate the strategies of the others, and 3) draw rational
inferences from what they observe, using their expectations about the strategies of the others and
Bayes law, whenever it applies.

In a perfect Bayesian equilibrium, participants best-respond to one another. It imposes
additional restrictions to take into account the fact that the game is dynamic and that parti-
cipants can have private information, and therefore, must draw rational inferences from their
observation of actions and outcomes. The rationality of inferences in perfect Bayesian equi-
librium implies that (i) each participant has rational expectations about the strategies of the
others, and (ii) each participant’s beliefs are consistent with Bayes law when computing prob-
abilities conditional on events that have strictly positive probability on the equilibrium path.
Perfection in perfect Bayesian equilibrium implies that at each node starting a subgame the
participants’ strategies form a Nash equilibrium of that subgame. In this context, to show that
a strategy is optimal it is su�cient to show that it dominates any one-shot deviation [33].

6.2 Equilibrium where Validity is not Guaranteed

First, we show that �nding an equilibrium satisfying the consensus properties is not easy.
We show in the next proposition that there exists an equilibrium where any proposed block is
produced at the end of the �rst round. This equilibrium in the proposition violates the Validity
property.

Proposition 6.1. Let m be a random variable such that m ≤ n − ν − 1, then there exists a
Perfect Bayesian equilibrium described as follows:

• As proposer:

– a strategic participant proposes a valid block;

– a malicious participant proposes an invalid block.

• When receiving a proposed block,

– strategic participants do not check the block validity and always send a message;

– malicious participants can either do not check and always send, or do check and send
a message if and only if the block is invalid.

Since m + s = n, the condition of the proposition which can be rewritten as s ≥ ν + 1
implies that, when all strategic participants but one send a message, they meet the majority
threshold ν, such that the block is produced. The condition also means that m ∈ {1, . . . , n−
ν−1}, which implies that, if all participants send a message, no strategic participant is pivotal,
so the block is produced with or without its vote. Under these conditions, each strategic par-
ticipant understands it is not pivotal: if the block is invalid, strategic participants will send
messages, so that the block will be produced irrespective of the strategic participant’s own ac-
tion. Moreover, if the block is valid, malicious participants have no preference about checking
or not a block validity, since the blocks proposed will be produced at the end of the �rst round.

Thus, strategic participants understand that they are not pivotal and that whatever they
do, given the equilibrium behaviour of the other strategic participants and of the malicious
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participants, all blocks will be produced. Consequently, they have no interest in checking the
validity of the block. In fact, their expected gain when they send a message is:

R− csend − Pr(θ1 = θm)κ.

Since no strategic participant by itself is pivotal, if a strategic participant decides to check the
block’s validity and check if and only if the block is valid, then its expected gain is

−ccheck + (1− Pr(θ1 = θm))(R− csend)− Pr(θ1 = θm)κ,

which is lower than the gain at equilibrium.
Finally, note that, in the equilibrium of Proposition 6.1, a block is produced at round 1, so

the Termination property is satis�ed, but, when the proposer is a malicious participant, invalid
blocks are produced, so the Validity property is not satis�ed.

Proof

• First, we study the strategic participants’ behaviours. If a strategic participant is selec-
ted to be the proposer, it prefers to propose a valid block than to propose an invalid
block. Indeed, if it proposes an invalid block, that block will be produced. In that case,
the gain of the proposer is R − ccheck − csend − κ. If instead, the strategic participant
proposes a valid block, this block will be produced and his gain will beR−ccheck−csend.

Now, turn to the actions of strategic participants who are not proposers. The equilib-
rium gain of these participants is

R− csend − Pr(θ1 = θm)κ.

If instead of playing the equilibrium strategy, a strategic participant does not send a
message, its expected gain is −Pr(θ1 = θm)κ, which by assumption (R > csend) is
lower than the equilibrium expected gain.

Another deviation is to check the block’s validity and send a message only if the block
is valid, which brings expected gain equal to

−ccheck + (1− Pr(θ1 = θm)) (R− csend)− Pr(θ1 = θm)κ.

This is lower than the equilibrium expected gain if

−csend +R−Pr(θ1 = θm)κ > −ccheck +(1− Pr(θ1 = θm)) (R−csend)−Pr(θ1 = θm)κ,

which holds since it is equivalent to

0 > −ccheck − Pr(θ1 = θm)(R− csend).

The other possible deviations are also dominated: Checking the block’s validity and
sending a message only when the block is invalid, yields expected gain

−ccheck + Pr(θ1 = θm)(R− csend − κ),

which is lower than the equilibrium expected gain. Checks the validity of the block
and always sending a message yields

R− csend − Pr(θ1 = θm)κ− ccheck,

which is again dominated, as is also checking and not sending, which yields −ccheck −
Pr(θ1 = θm)κ.
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• Now, we focus on malicious participants. If a malicious participant is selected to be the
proposer, it prefers to propose an invalid block than to propose a valid block. Indeed,
if it proposes a valid block, that block will be produced. In that case, the gain of the
proposer is 0. If instead, the malicious proposer proposes an invalid block, this block
will be produced and his gain will be κ̃Validity.

If a malicious participant is not a proposer, its expected gain at equilibrium is:

Pr(θ1 = θm)κ̃Validity.

All its deviations yield the same expected gain since ν < n.

�Proposition 6.1

In some sense, the situation where too many participants are supposed to check the pro-
posal validity than needed is not stable. In fact, a single strategic participant will prefer not to
check since the others are supposed to do so, leading to the disastrous situation of producing
invalid blocks.

6.3 Equilibrium where Termination is not Guaranteed

Even if the previous equilibrium (Proposition 6.1) does violate the Validity property, it does
ensure the Termination property. In contrast, we may as well have an equilibrium where the
Termination property is violated. We present the latter in the following proposition.

Proposition 6.2. Let m be a random variable such that m < ν and n−m ≥ ν, then there exists
a Nash equilibrium in which strategic participants never check blocks’ validity nor send messages,
and malicious participants check validity but send a message only if the block is invalid, so that
no block is ever produced.

Condition m < ν in Proposition 6.2 implies that malicious participants cannot reach the
threshold on their own. This precludes producing invalid blocks. Therefore, the Validity prop-
erty is satis�ed. Unfortunately, the condition also implies that there exists an equilibrium in
which the Termination property also fails to hold. The intuition is the following:

In Proposition 6.2, each strategic participant anticipates that no other participant will send
a message when the block is valid1. In this context, each strategic participant knows that, if it
were to send a message in favour of a valid block, it would be the only one to do so. Because
the threshold ν is strictly larger than 1, the block would not be produced. Therefore, sending a
message is a dominated action for the strategic participant. The equilibrium in Proposition 6.2
re�ects that strategic participants’ actions are strategic complements and they must coordinate
on sending messages to have valid blocks produced. Proposition 6.2 shows that, in equilibrium,
there can be a coordination failure, such that no block is ever produced.2

Note that even if malicious participants also do not check validity nor check, the resulting
strategy pro�le is still an equilibrium.

1 Malicious participants send messages but only when the block is invalid.
2 If m = 0, and with ν = 1, there exists a unique equilibrium (Proposition 5.2), in which all participants

check validity and send a message if and only if the block is valid. In that equilibrium Validity and Termination
are satis�ed. However, this obtains only if there are no malicious participants. As soon as m ≥ 1, if ν = 1,
Proposition 6.1 applies and validity is not satis�ed.
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Proof

Consider a strategic participant who anticipates that other strategic participants will not
send any message at any round. If it follows the equilibrium strategy and does not send a
message, its gain is 0. This must be compared to the gain of the participant if its deviates:

• If it sends a message without checking its expected gain is

−csend + Pr(invalid) Pr(m = ν − 1)(R− κ).

• If it checks the block’s validity and sends a message only when the block is valid, its
expected gain is

−ccheck − Pr(valid)csend.

• If it checks the block’s validity and sends a message only when the block is invalid, its
expected gain is

−ccheck + Pr(invalid)(Pr(m = ν − 1)(R− κ)− csend).

• If it checks the validity of the block and always sends a message, its expected gain is

−csend − ccheck + Pr(invalid) Pr(m = ν − 1)(R− κ).

• If it checks and does not send a message, its gain is −ccheck.

Clearly, the participant is better o� following the equilibrium strategy.
Consider now a malicious participant. It payo� at equilibrium is κ̃Termination. No matter

its action, no block can be produced and the payo� of the malicious participant will remain
κ̃Termination. So it weakly prefers following the equilibrium strategy.

�Proposition 6.2

6.4 Equilibrium where both Termination and Validity are

Guaranteed

While there exists an equilibrium in which either termination (Proposition 6.2) is not veri�ed
or validity (Proposition 6.1) is not guaranteed, this does not necessarily imply there is no equi-
librium that satis�es both termination and validity. To have both properties, it must be that, in
equilibrium, while malicious participants propose and send messages for invalid blocks, suf-
�ciently many strategic participants �nd it in their own interest to check the validity of the
block and to send vote messages in support of valid blocks. The problem is that some strategic
participants might be tempted to free ride and let the others bear the cost of checking. To
avoid this situation, it must be that (at least some) strategic participants anticipate they are
pivotal, i.e., if they fail to check block validity and send messages in support of valid blocks,
this may derail the participant at their own expense.

To make this point, we look for an equilibrium in which some strategic participants check
the validity of the block and send a message if and only the block is valid, and this results in
valid blocks being immediately produced and invalid blocks being rejected. Before proving
that such an equilibrium exists, we characterise the expected continuation payo�s to which it
would give rise.
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Lemma 6.3. Consider a candidate equilibrium in which some strategic participants check the
validity of the block and send a message if and only if the block is valid, while the other stra-
tegic participants send messages without checking validity, and this results in valid blocks being
immediately produced and invalid blocks being rejected. In such an equilibrium, if it exists, the
expected payo� of malicious participants is

πmalicious = 0,

while the continuation payo�, at round t, of the strategic participants who are supposed to check
block validity is

πcheck(t) = R− csend − φ(t)ccheck,

while the expected continuation payo�, at round t, of the strategic participants who are not sup-
posed to check block validity is

πsend(t) = R− ψ(t)csend,

where φ(m) = 1, ψ(m + 1) = 1 and both φ and ψ satisfy property P de�ned below.

De�nition 6.4. A function g satis�es property P , if g(t) = 1 + m−t+1
n−t+1

g(t+ 1),∀t < m.

In the candidate equilibrium, participants will reach a point at which the block is valid
and all strategic participants send a message so that the block is produced. This gives rise
to a payo� R − csend, the �rst part of πcheck(t). The second part of πcheck(t), φ(t)ccheck, is
the expected cost of checking the block validity, where φ(t) is the expected number of times
the participant expects to check validity before a block is produced. Similarly, in πsend(t),
ψ(t)ccheck is the expected cost of sending messages, where ψ(t) is the expected number of
times the participant expects to send messages before a block is produced.

Proof

We prove this Lemma in 3 parts:

1. Proof of the �rst part of the lemma, concerning the malicious participants: Since in
the candidate equilibrium there is always a valid block produced, then the malicious
participants have a gain of 0.

2. Proof of the second part of the lemma, concerning the strategic participants who are
expected to check validity:

At round t = m, participants know that all m − 1 previous proposers were malicious
and that there are now n−m+1 potential proposers, out of which only one is malicious
and n − m > ν are strategic. The expected gain of the strategic participants who are
supposed to check is

−ccheck +
n−m

n−m + 1
(R− csend) +

1

n−m + 1
(R− csend),

where the �rst term is the cost of checking validity, the second term corresponds to the
case in which the current proposer is strategic and proposes a valid block that is imme-
diately produced, and the third term corresponds to the case in which the proposer is
malicious, the block is rejected, and we move to the next round, at which a valid block is
�nally produced (without needing any further validity check). This equilibrium payo�
simpli�es to

R− csend − ccheck,
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re�ecting that eventually a valid block will be produced, and that from round m on the
participant will need to check validity only once. This equilibrium payo� implies that

φ(m) = 1.

Now turn to round t < m. If round t ≤ m is reached, the previous t−1 proposers were
malicious. There remains n− (t− 1) potential proposers. Out of them a fraction

m− (t− 1)

n− t+ 1

is malicious, while the complementary fraction

n−m

n− t+ 1

is strategic. This fraction being the probability that the next proposer is strategic.

To prove the property stated in the Proposition by backward induction, we now prove
that if this property is satis�ed at round t+ 1, that is if

πcheck(t+ 1) = R− csend − φ(t+ 1)ccheck,

then it is satis�ed at round t.

Suppose the strategic participant follows the equilibrium strategy of checking and
sending if and only if the block is valid. Its expected gain from round t on is

−ccheck +
n−m

n− t+ 1
(R− csend) +

m− (t− 1)

n− t+ 1
π(t+ 1),

where the �rst term is the cost of checking the block at round t, the second term is the
probability that the block is valid and produced multiplied by the payo� in that case,
and the third term is the probability that the block is invalid and rejected multiplied by
the payo� in that case. Substituting the value of πcheck(t + 1), using that the property
is veri�ed at round t+ 1, the expected gain writes as

−ccheck +
n−m

n− t+ 1
(R− csend) +

m− (t− 1)

n− t+ 1
(R− csend − φ(t+ 1)ccheck).

That is

R− csend −
(

1 +
m− (t− 1)

n− t+ 1
φ(t+ 1)

)
ccheck,

which, using the de�nition of φ(t), is R− csend − φ(t)ccheck.

3. Proof of the third part of the lemma, concerning the strategic participants who are just
expected to send messages:

Again, we prove that if the property is satis�ed at round t + 1, i.e., πsend(t + 1) =
R − ψ(t + 1)csend, then it is satis�ed at round t. Suppose the strategic participant
follows the equilibrium strategy of not checking blocks’ validity and always sending a
message. Its expected gain from round t on is

csend +
n−m

n− t+ 1
R +

m− t+ 1

n− t+ 1
πsend(t+ 1),
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where the �rst term is the cost of sending a message at round t, the second term is the
probability that the block is valid and produced multiplied by the payo� in that case,
and the third term is the probability that the block is invalid and rejected multiplied by
the continuation payo� in that case. Substituting the value of πsend(t+1), the expected
gain writes as

−csend +
n−m

n− t+ 1
R +

m− t+ 1

n− t+ 1
(R− ψ(t+ 1)csend).

That is

R−
(

1 +
m− t+ 1

n− t+ 1
ψ(t+ 1)

)
csend,

which, using the de�nition of ψ(t), is R− ψ(t)csend.

�Lemma 6.3

Relying on Lemma 6.3, we now establish that our candidate equilibrium is indeed an equi-
librium. To do so, denote the highest index of all malicious participants by iM ; formally,
iM = max{i : θi = θm}. We recall that each participant knows its own index in the committee.

Proposition 6.5. Let m the number of malicious participants be a constant such that m < ν and
n−m > ν; let also m be known by all participants. If the cost κ of producing an invalid block is
large enough, in the sense that

κ > α(t)ccheck − β(t)csend, ∀t < m, (6.2)

where

α(t) =
(n− t+ 1)φ(t)− (m− t+ 1) Pr(iM ≥ n− ν + m + 2|T ≥ t)φ(t+ 1)

(m− t+ 1) Pr(iM < n− ν + m + 2|T ≥ t)

and
β(t) =

Pr(iM ≥ n− ν + m + 2|T ≥ t)

Pr(iM < n− ν + m + 2|T ≥ t)
,

in addition, if the reward is large enough relative to the costs in the sense that

R ≥ max

[
n

n−m
csend, csend +

n

n−m
ccheck

]
,

there exists a Perfect Bayesian equilibrium in which the strategy of participants is the following:

• As proposer, a strategic participant proposes a valid block, while a malicious participant
proposes an invalid block.

• At any round t ≤ m, when receiving a proposed block, (i) the strategic participants with
index i ∈ {t, . . . , n− ν + m + 1} check the block validity and send a message only if the
block is valid, while (ii) the strategic participants with index i ∈ {n− ν + m + 2, . . . , n}
do not check the validity of the block but send a message, and (iii) malicious participants
check the blocks’ validity and send a message if and only if the block is invalid.

• If round t = m + 1 is reached, strategic participants send a message without checking if
the block is valid. At this point, the block is valid and produced.
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Hence, in equilibrium, termination occurs no later than at round m + 1.

On the equilibrium path, invalid blocks (proposed by malicious participants) are rejected,
while valid blocks (proposed by strategic participants) are produced. This implies that, if round
t = m + 1 is reached, the participants know that during all the previous (m) rounds the pro-
posers were malicious (to draw this inference, the strategic participants use their anticipation
that all participants play equilibrium strategies; hence the perfect Bayesian nature of the equi-
librium). Consequently, at round m + 1, the proposer must be strategic, and all participants
anticipate the proposed block is valid. Therefore, no strategic participant needs to check the
validity of the block but all send a message, which brings them expected gain equal toR−csend.
This is larger than their gain from deviating (e.g., by not sending a message or by checking
the blocks).

At previous rounds t ≤ m, participants know that all t− 1 previous proposers were mali-
cious and that there remains m − t + 1 malicious participants with index strictly larger than
t−1 (as above, this rational inference is a feature of the perfect Bayesian equilibrium we char-
acterise). Do the equilibrium strategies of the strategic participants preclude the production
of an invalid block by malicious participants? To examine this point, consider the maximum
possible number of messages that can be sent if the proposer is malicious. In equilibrium the
ν −m− 1 participants with indexes strictly larger than n− ν + m + 1 are to send a message
without checking it. The worst-case scenario (maximising the number of messages sent when
the block is invalid) is that none of these participants is malicious. In that case, in equilib-
rium, the number of messages sent when the block is invalid is m + (ν − m − 1) = ν − 1,
so that we narrowly escape production of the invalid block. In contrast, if one of the stra-
tegic participants deviated from equilibrium and sent a message without checking the block,
in the worst-case scenario, this would lead to producing an invalid block. Thus, in that sense,
the strategic participants with index strictly lower than n − ν + m + 1 are pivotal. Hence,
they check block validity, because, under the condition stated in the proposition, the cost of
producing an invalid block is so large that strategic participants do not want to run that risk.

Proof

For clarity, we decompose the proof in 6 steps.

1. The �rst step concerns the possible deviations of malicious participants. At equilibrium,
the gain of a malicious participant is 0. The malicious participants weakly prefer the
equilibrium strategy, since all deviations of a malicious participant yield to a payo� of
0. In fact, in equilibrium, if a malicious participant deviates by sending a valid block, the
block will be immediately produced, hence a gain of 0. Since checking has no cost for
the malicious participants, they prefer to check, since it gives them information about
the block’s validity. For a malicious participant, in equilibrium, sending a message
does not have an impact on which block is decided or not, valid blocks are immediately
produced, and invalid blocks are never produced, but since sending a message does
not cost anything for the malicious participant, it can send messages for invalid blocks
with no impact.

2. This step is to note that strategic proposers strictly prefer to propose a valid block
than an invalid one. This is because, when they follow their equilibrium strategy of
proposing a valid block, it is produced and the proposer gets R− ccheck− csend, while if
they propose an invalid block, it is rejected, and we move to the next round, in which, in
equilibrium, the participant gets at mostR−ccheck−csend (and possibly less). Indeed, this
participant incurs the cost of checking validity at the next round, because the strategic
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participants who are not expected to check validity have indexes above n− ν +m+ 1,
which are above m + 1, so that they do not get to propose blocks.

3. The next step concerns the actions of the strategic participants when round t = m + 1
is reached. At that round, all participants know the proposer must be strategic and
the proposed block valid. In equilibrium, no strategic checks validity but all send a
message. Any other action would be dominated.

4. The fourth step concerns the most relevant deviation, in which a strategic participant
expected to check block validity fails to do so. If at round t a strategic participant
supposed to check, deviates and sends a message without checking block validity, its
expected continuation payo� is(

1− m− (t− 1)

n− t+ 1

)
(R− csend) +

m− (t− 1)

n− t+ 1
Pr(iM < n− ν + m + 1|T ≥ t) (R− csend − κ)

+
m− (t− 1)

n− t+ 1
Pr(iM ≥ n− ν + m + 1|T ≥ t) (π(t+ 1)− csend) .

The �rst term is the payo� obtained by the deviating strategic participant if the current
block is valid, and therefore immediately produced. The second term is the payo�
obtained by the deviating participant when he was pivotal and triggered production of
an invalid block. To see this, consider the number of messages when the block is invalid,
the strategic participant is deviating and the indexes of all the malicious participants
are strictly lower than n−ν+m+2: m messages are sent by the malicious participants,
1 message is sent by the deviating strategic participant, ν − m − 1 messages are sent
by the strategic participants with an index above than or equal to n − ν + m + 2.
The resulting total number of messages is ν and the block is produced. The last term
corresponds to the case in which the deviating strategic participant is not pivotal, and
the invalid block is not produced, so that we move to the next round.

Substituting the value of πcheck(t+ 1) = R− csend−φ(t+ 1)ccheck from Lemma 6.3, the
expected continuation value of the deviating participant is

(
1− m− (t− 1)

n− t+ 1

)
(R− csend) +

m− (t− 1)

n− t+ 1
Pr(iM < n− ν + m + 2|T ≥ t) (R− csend − κ)

+
m− (t− 1)

n− t+ 1
Pr(iM ≥ n− ν + m + 2|T ≥ t) (R− csend − φ(t+ 1)ccheck − csend) .

Or

(R− csend)−
m− (t− 1)

n− t+ 1
Pr(iM < n− ν + m + 2|T ≥ t)κ

−m− (t− 1)

n− t+ 1
Pr(iM ≥ n− ν + m + 2|T ≥ t) (φ(t+ 1)ccheck + csend) .

The equilibrium condition is that this deviation payo� must be lower than the equilib-
rium continuation payo� of the participant

R− csend − φ(t)ccheck.
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That is

m− (t− 1)

n− t+ 1
Pr(iM < n− ν + m + 2|T ≥ t)κ > φ(t)ccheck

−m− (t− 1)

n− t+ 1
Pr(iM ≥ n− ν + m + 2|T ≥ t) (φ(t+ 1)ccheck + csend) .

Note that

φ(t) ≥ m− (t− 1)

n− t+ 1
Pr(iM ≥ n− ν + m + 2|T ≥ t)φ(t+ 1),

since by the de�nition of φ(t) this inequality is equivalent to

1 +
m− (t− 1)

n− t+ 1
φ(t+ 1) ≥ m− (t− 1)

n− t+ 1
Pr(iM ≥ n− ν + m + 2|T ≥ t)φ(t+ 1),

which indeed holds. Thus, we can write the equilibrium condition as

κ > α(t)ccheck − β(t)csend, ∀t < m,

as stated in the proposition.

5. Other possible deviations for strategic participant supposed to check block’s validity
are easier to rule out:

First, the participant could do nothing (neither check nor send). Relative to the equi-
librium payo�, this deviation economises the cost of checking (ccheck). If the current
proposer is malicious, the participant then obtains the same payo� after a one-shot de-
viation as on the equilibrium path (πcheck(t + 1)). If the current proposer is strategic,
the block is produced, but the participant does not earn any reward. Therefore, the
deviation is dominated if

n−m

n− t+ 1
(R− csend) ≥ ccheck,

which holds under the condition, stated in the proposition, that R ≥
max

[
n

n−mcsend, csend + n
n−mccheck

]
.

Second, the participant could check the block validity, and then send a message irre-
spective of whether the block is valid or not. This would generate a lower payo� than
the main deviation, shown above (in 4.) to be dominated.

Third, the participant could check validity but then send no message. When the current
proposer is a malicious participant, this one-shot deviation yields the same payo� as
the equilibrium strategy. When the current proposer is strategic, this deviation yields
a payo� of −ccheck, which is lower than the equilibrium payo� R− csend − ccheck.

Fourth, the participant could check the block’s validity and send a message only if the
block is invalid, which is trivially dominated.

6. Finally, turn to deviations of strategic participants supposed to send messages without
checking blocks’ validity.

First, consider the possibility to abstain from sending a message. This economises the
costs csend, but, in case the block is valid and produced, this implies the participant loses
the reward R. The deviation is then dominated if

n−m

n− t+ 1
R ≥ csend,
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which holds under the condition, stated in the proposition, that R ≥
max

[
n

n−mcsend, csend + n
n−mccheck

]
.

Second, consider the possibility of checking validity and sending a message only for
valid blocks. This deviation would imply the participant would have to incur the cost
of checking (ccheck), but it would economise the cost of sending a message when the
block is invalid. The deviation is dominated if

ccheck ≥
m− t+ 1

n− t+ 1
csend,

which holds, since by assumption ccheck ≥ csend.

Other deviations, such as checking validity but never sending messages, or checking
validity and always sending messages, or checking validity and sending only if the
block is invalid, are trivially dominated.

�Proposition 6.5

6.4.1 Estimation of κ in Proposition 6.5

Recall that from Lemma 6.3, ∀t < m, φ(t) = 1+ m−t+1
n−t+1

φ(t+1) and φ(m) = 1. The distribution
of malicious participants in the committee is given by a Bernoulli distribution. The repetition
of binomial here is not a Bernoulli since the draws are dependent. If all malicious participants
are already placed in the committee, say with indices lower than t, then at index t + 1 the
participant is not a malicious any more. We need to compute ∀t ≤ n,Pr(iM ≥ n−ν+m+2).

Note that ∀t < m,Pr(iM = t) = 0.
Let a ≥ 0 such that m + a ≤ n, the probability Pr(iM = m + a) is equal to:

∑
i0=0<i1<i2<···<ia≤m+a−1

(
a−1∏
λ=0

iλ+1−1∏
k=iλ+1

m− k + (λ+ 1)

n− k + 1
× n−m− λ
n− iλ+1 + 1

)

×
m+a−1∏
k=ia+1

m− k + (a+ 1)

n− k + 1
× 1

n− (m + a) + 1
(6.3)

If the last malicious is at position m + a, it means that all m − 1 �rst malicious have an
index strictly lower than m− a as well as a strategic participants.

The last term “1/(n − (m + a) + 1)” represents that the last (ultimate) malicious parti-
cipant is placed at position m + a. ∀λ > 0, iλ and iλ+1 corresponds to the positions of two
consecutive strategic participants, i.e., the participants with index iλ and iλ+1 are strategic
(θiλ = θiλ+1

= θs) and all participants with index k ∈ {iλ + 1, . . . , iλ+1 − 1} are malicious,
θk = θm. The penultimate product corresponds to the sequence of malicious participants im-
mediately followed by the last one (at position m + a). Note that if ia = m + a − 1, then
θm+a−1 = θm, the penultimate product collapses to 1.

The formula represents the sum over all con�gurations where the malicious participant
with the highest index is placed at position m + a.

Using Equation (6.3), we compute the probabilities needed, and thenα and β from Equation
(6.2). Note that the conditions of Proposition 6.5 imply that m < n/2.

Table summarising the value of α and β for di�erent values of n,m and ν can be found in
Appendix A.2. It has to be noted that values of α and β have been computed only at round 1,
giving us not a tight bound for κ, but only a lower bound.
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For example, in a committee of 40 participants, if there are 10 malicious participants in the
committee, for di�erent values of ν, we have:

• If ν = 11, i.e., the smallest possible value for ν, a lower bound for κ is 5.29× ccheck;

• If ν = 20 = n/2, then a lower bound for κ is 77.74× ccheck − 18.11× csend;

• If ν = 30, i.e., the highest possible value for ν, then a lower bound for κ is 9, 614.24 ×
ccheck − 2, 402.24× csend.

The minimal value of κ is increasing with the number of required messages needed for
block’s production. One can interpret that as follows: for a good equilibrium to exist, the
more messages are required to consider a block as valid, the higher the cost of producing
invalid blocks should be.

That can be explained since the more messages are required, the fewer participants sup-
posed to check are pivotal, hence not checking validity may be an interesting deviation. To
avoid that, the corresponding cost of invalid should be high to avoid such behaviours, e.g., free
riding. The same reasoning applies when the number of malicious participants is �xed and
the size of the committee is increasing.

6.5 Conclusion

In this chapter, we introduced malicious participants. Malicious participants want to prevent
consensus, and they are rational in the sense that they do take action maximising the chance
of breaking the consensus. In particular, they prefer making an invalid block produced, or
making no block produced. To study malicious behaviours in a system prone to malicious and
strategic behaviours, we extend the model that allows studying strategic participants to mali-
cious participants. We then study the behaviours of both malicious and strategic participants
in committee-based blockchains when rewards are given only to participants that vote for the
produced block. Strategic participants incur the costs of their actions, while malicious parti-
cipants do not care about such costs. At any round, a participant in the committee is selected
to be the proposer in a round-robin fashion. The proposer has the choice of proposing a valid
or an invalid block, then upon receiving the proposal, each participant can check or not the
validity of the proposal and then send a vote message for the block or not. If the number
of votes for the proposal is higher than a given threshold, the block is considered produced,
otherwise, the next round starts with the next proposer.

In these settings, focusing on one height at the time, and under the assumption of syn-
chrony of communication between participants, we found multiple equilibria. We show that
while there exists a good equilibrium where the consensus properties are always satis�ed,
there also exists an equilibrium where the Termination property is not satis�ed or an equilib-
rium where the Validity property is not guaranteed.
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7.1 General Conclusions of the Thesis

Blockchain systems promise many advantages related to classical centralised systems. Many
problems or rather questions are however raised by these systems. The scienti�c community
is lately highly interested in the topic. The main questions we tackle in this thesis can be
summarised in the following: “Do blockchains even work? Are they usable in real-life settings?”.

In this thesis, we mainly focus on committee-based blockchains: blockchains in which
committees are used to update the blockchains, and they rely on decades of research from the
distributed systems community to ensure the absence of forks. The interest in these block-
chains is still increasing.

To answer the question, “Do blockchains even work?”, we �rst need to know what they are,
and what they are trying to achieve. To do so, we �rst describe the abstraction that committee-
based blockchains are solving, namely, the Byzantine repeated consensus, by extending the
de�nition and incorporating Byzantine participants. Once the problem formally de�ned, we
can prove whether committee-based blockchains are correct against the abstraction or re-
peated consensus. That is what we did, taking as use case the Tendermint blockchain. About
Tendermint, our �rst contribution is the formalisation of its algorithms. Although already in
use, before this thesis, Tendermint was not formalised nor proved. Our �rst work shows that
the Tendermint consensus algorithm su�ers from many bugs, and one of the bug was inher-
ent to a bad design of the algorithm. Our work led to the correction and the proposal of a
new algorithm by Tendermint, which solved the bugs and that we present in this manuscript
(acknowledged in [39]). These contributions are detailed in Chapter 4.

The second question we tackle “Are blockchains usable in real-life settings?”, do not have
a simple response. In fact, giving a meaning to that question is the �rst step. Knowing that
participants that produce blocks in the blockchain are rewarded, we �rst try to respond to
the question by understanding if these blockchains are fair, i.e., if participants are rewarded
proportionally to their e�ort. If a participant produces less e�ort that another one, the latter
should not be rewarded less than the former. The de�nition of fairness in blockchains such as
Bitcoin cannot be applied to committee-based blockchain. In this thesis, we de�ne the notion
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of fairness for committee-based blocks and split the two key components, the selection mech-
anism, and the reward mechanism. Discussing the fairness in Chapter 4, we show that ensuring
fairness, at least in the sense of reward mechanism, needs some (eventual) synchrony of the
communication. We moreover show that the (eventual) synchrony of the communication is
not a su�cient condition for fairness as we presented a mechanism that evolves in (eventual)
synchronous communication, but which is not fair. A sort of summary of this study can be,
fairness is hard to ensure. Furthermore, we can think of participants that want to gain the most
reward possible, for as little e�ort as possible. That is the second meaning we may give to the
question “Are blockchains usable in real-life settings?”. If participants are rational, in the sense
that they want to maximise their expected gain, is the system still correct? To respond to that
latter question, we model the blockchain consensus algorithms inside committees as a game
between the participants in committees. Our model combines approaches from distributed
systems by considering malicious and obedient behaviours and approaches from economics
by considering strategic participants. We show in Chapters 5 & 6 that although there exists at
least an equilibrium satisfying all consensus properties, there exist many other equilibria in
which either the Termination or the Validity properties cannot be guaranteed.

These works particularly show what remains to be done. Quoting Marie Skłodowska-
Curie, “One never notices what has been done; one can only see what remains to be done”.

7.2 Perspectives / Future Works

In this section, we present research questions opened up from the works presented in this
manuscript.

The Problem Solved by Blockchains. In this thesis, we propose an abstraction for the
problem solved by committee-based blockchains, it is interesting to know how other block-
chains cope with such abstraction. Generalising blockchains needs to be done, and the prob-
lem solved by blockchains such as Bitcoin, or Ethereum needs to be de�ned. It has to be noted
that works are being done on this line of research. Some e�ort to specify and formalise gen-
eric blockchain systems are being done [19, 22]. When committee-based blockchains need and
should solve consensus to guarantee the absence of forks, blockchains like Bitcoin do not have
that requirement. The problem solved may probably need to take into account probability and
exponential convergence.

Correctness of Blockchain Protocols. Once the problem solved by blockchains (speci�c-
ally forkable blockchains) is clearly and formally de�ned, one can think of their correctness
against such de�nition.

More generally, managing the full expressiveness of distributed systems is still an ongoing
work and formal techniques have been used to study some general problems (e.g., [50, 66]). [9]
is a step in that direction, proving a simpli�ed variant of Algorand using formal tools. Hope-
fully, the advances in formal tools, coupled with interests from distributed systems researchers
will allow to easily and quickly formally verify and prove complex distributed system applic-
ations such as blockchains, as claimed in [152]. Formally veri�ed algorithms will be free of
bugs. However, formally verifying already implemented codes is even harder. Usually, the key
components are re-encoded, and the proof is done on the encoding. One can note that between
the (proved) encoding and the code really implemented, there can be slight di�erences, due
to the programmer or the programming environment. An even better idea will be to generate
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correct-by-construction algorithms ready to be executed. The path for that is quite exciting,
and e�orts are already being done [10].

Complexity of Consensus Algorithms. In this manuscript, we gave a small glance at the
complexity of consensus algorithms (Table 3.1), and some improvements that have been done
lately, thanks to the interest in the scalability of blockchain systems. In synchronised setting,
it was proved [63] that the lower bound on bit complexity for Byzantine consensus is Ω(n2).
There exist trade-o�s between round complexity and bit complexity, and there may be trade-
o�s between the many concepts of complexity. It can be interesting to found the theoretical
lower bound of rounds needed to achieve consensus using the linear view change paradigm of
Tendermint and HotStu�, without using additional rounds nor threshold signatures as done in
HotStu�. Such additional mechanisms yield to an increase of other complexity concepts such
as the bit complexity.

Fairness. An important next step in the sense of fairness will be to integrate the variation
of the merit of participants during the execution of the blockchain. Merit parameters vary-
ing over time should be considered. In fact, our proposal copes with systems where merits
do not vary, or where the merit is �xed only after an in�nite time. This is a big limitation
of the de�nition for real-life applications where in�nity is more of a mathematical concept.
When considering that blockchains may evolve for only a �nite time, or that participants take
part in the system for a �nite time, it is more interesting and realistic to extend the fairness
de�nition to su�ciently long period of time, and not only over an in�nite duration. Research
from returns to scale [84] in economics may help. Basically, our notion of fairness implies
constant returns to scale. However, in real life, when a participant invests more, it should
gain more than another one investing less. There are needs to investigate such concepts and
study it against decentralisation speci�cally. The collaboration between computer science and
economics must be greater, more developed, and strengthen.

The selection of committee members is also a hard question. To guarantee equal chances
or even equity among the di�erent participants, the selection mechanism is really important.
It will be interesting to propose and analyse di�erent mechanisms and show what can be done,
and what cannot, in a deterministic manner, in a probabilistic one, etc.

Censorship is another big question that needs more research. How to make sure that the
transactions of all users are eventually in the blockchains. This can be viewed as a fairness
question, but from the point of view of the users, the transaction issuers, and not the block
creators. All participants, and speci�cally block creators do not necessarily have the exact
same view and order of the transactions issued, the problem of ensuring user fairness is not
trivial. It may even be impossible in a general setting. Proving if such property can be guar-
anteed or not is an interesting research topic; and in case of impossibility, �nding the minimal
conditions needed to guarantee fairness of users is a challenging question.

Rational Behaviours. Our work raises an immediate research question that needs to be
answered. As we have seen, using di�erent reward schemes lead to di�erent equilibria. In
committee-based blockchains speci�cally, and in presence of malicious participants, it is in-
teresting to study the di�erent equilibria when all participants are rewarded when a block
is produced, and not only the participants that voted. That mechanism is interesting since,
with no malicious, we show that there is no equilibrium violating the Validity property of the
consensus.

Another direct question that may follow from our work considering rational behaviour is
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the impact of the time assumptions. The time assumption guaranteeing agreement, it may
be interesting to consider analyses with softer assumptions on communication delay between
participants. Such analyses may highlight whether the Agreement property can always be
guaranteed, which we think not.

More puzzling questions are whether it is possible to �nd blockchain systems where there
is unicity of equilibrium, or rather if there are mechanisms that can prevent the existence of
bad equilibria.

More generally, a complex yet interesting path is to model blockchain systems with fewer
assumptions, meaning model real-word consensus protocols. These analyses are much more
complex to handle and quite delicate, but they will probably have huge impacts on the �eld,
and on the understanding of the systems. It is also important to analyse the whole block-
chain system and not just one committee at the time. If the selection mechanism is known,
participants can try to strategically be part of committees. There are many interesting paths
around this topic, and all of them need to be investigated.

Another quite exciting question is how our results and theoretical analysis compare to real
behaviours of participants. To do such comparison, behavioural sciences need to be integrated,
which again will request more collaboration among di�erent research �elds.

Solution Concept. In this manuscript, when dealing with rational participants, we use
the notion of pure Nash equilibrium, and when we consider dynamic Bayesian games, we
consider re�nement of Nash equilibrium. It can be interesting to analyse our system with
other solution concepts. We can foresee many paths of research. We mention some of them.

First, by considering mixed strategies, i.e., each participant instead of choosing determin-
istically one strategy to play for the game, chooses a distribution of the di�erent strategies.
The di�erent equilibria that may arise can teach many lessons. Note that this is di�erent from
the concept of approximate equilibria.

Another path can be to consider cooperation between strategic participants. In this ma-
nuscript, we consider that only malicious do cooperate. Allowing cooperation may help par-
ticipants to achieve higher gains; that needs investigation.

Other Interesting Problems. In this manuscript, we do not really discuss some topics. The
next problems discussed are still related to blockchains; they are interesting and need to be
investigated as well. Importantly, most of the problems existed before blockchains, but the
blockchain technology increases the research on the topics. We just give a brief description of
some of them.

Communication, Dynamicity and Network. We assume throughout this thesis that
the communication network is reliable, no loss of messages, and the existence of a reliable
broadcast. We should point that such assumptions require a lot of communication and re-
dundancy. Research is still being done about the requirement for this reliability (e.g., [35]).
Extensions of results presented in this manuscript can be to consider less demanding assump-
tions about the reliability of the underlying network and communication. It would be inter-
esting to provide protocols that work with fewer assumptions. Such protocols will o�er more
resilience to real-life issues. We should note that recent works (e.g., [23]) consider relaxed
assumptions on the network, where messages can be lost, with the guarantee that messages
sent in�nitely often, are eventually delivered by obedient participants. However, the tech-
niques used require a lot of messages to be exchanged. It will be interesting to analyse the
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intrinsic impact of the network assumptions on the complexity of the agreement algorithm,
as well as for the behaviour of rational participants in such systems.

In the same topic of the underlying network assumption, we recall that we consider a dy-
namic setting in this manuscript. However, we impose a quite strong de�nition of correctness
(obedient) for the participants, which is: a participant is obedient if it is part of the system
since the beginning, do not leave it at any point in time, and always follows the prescribed
protocol. That de�nition can, for good reason, be seen as strong. In particular, for blockchains,
participants can enter at any point in time, since the system is dynamic. We need such par-
ticipants to eventually have the blockchain from its beginning as well. Mechanisms ensuring
that need to be analysed to guarantee good information in the system.

Last but not the least; we would like to mention the following two topics. Notions of smart
contracts (and hence scalability, cross chains interactions and interoperability, decentralised
applications, formal language and veri�cation, etc.) were not discussed in this manuscript,
but we cannot point out enough how important and interesting these topics are, in particular
since they de�ne what can be done with blockchain systems. The same goes to cryptography,
which is at the core of blockchain systems, without which there cannot be such systems. These
are currently hot topics of research, and they do provide interesting and promising results for
the usability, and the common good that blockchains are. For example, analyses done in this
manuscript need to be extended with less constrains on the cryptographic hypotheses.

“We can only see a short distance ahead, but we can see plenty there that needs to be done.”
– Alan Turing
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The works presented in this manuscript gave rise to multiple publications.
The contributions of Chapter 4 have been published in the proceedings of the following

international conferences:

• Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and Sara
Tucci-Piergiovanni. On Fairness in Committee-based Blockchains. In 2nd International
Conference on Blockchain Economics, Security and Protocols (Tokenomics 2020), October
26-27, 2020, Toulouse, France, [18].

• Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and Sara
Tucci-Piergiovanni. Dissecting Tendermint. In Networked Systems - 7th International
Conference (NETYS 2019), Marrakech, Morocco, June 19-21, 2019, [17].

• Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and Sara
Tucci-Piergiovanni. Correctness of Tendermint-Core Blockchains. In 22nd International
Conference on Principles of Distributed Systems (OPODIS 2018), December 17-19, 2018,
Hong Kong, China, 2018, [15].

The contributions of Chapter 5 have been published in the proceedings of following inter-
national conference:

• Yackolley Amoussou-Guenou, Bruno Biais, Maria Potop-Butucaru, and Sara Tucci-Pier-
giovanni. Rational Behaviors in Committee-Based Blockchains. In 24th International
Conference on Principles of Distributed Systems (OPODIS 2020), December 14-16, 2020,
Strasbourg, France and Online, [13].

Part of the contributions of Chapter 6 has been published in the proceedings of the follow-
ing international conference:

• Yackolley Amoussou-Guenou, Bruno Biais, Maria Potop-Butucaru, and Sara Tucci-Pier-
giovanni. Rational vs Byzantine Players in Consensus-based Blockchains. In Proceedings
of the 19th International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS 2020), Auckland, New Zealand, May 9–13, 2020, 2020, [14].

The contributions of Chapters 4 and 6 have also been presented in the proceedings of the
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• Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and Sara
Tucci-Piergiovanni. Blockchains basées sur du Consensus Répété. In ALGOTEL 2019 –
21èmes Rencontres Francophones sur les Aspects Algorithmiques des Télécommunications,
Saint Laurent de la Cabrerisse, France, June 2019, [16].

• Yackolley Amoussou-Guenou, Bruno Biais, Maria Potop-Butucaru, and Sara Tucci-Pier-
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APPENDIXA

APPENDIX

A.1 Some TendermintBFT Earlier Bugs

The bugs reported here were present in the earlier version of TendermintBFT formalised and
analysed in [15].

Timeout Management. In an earlier version of TendermintBFT, the timeout management
was sometimes sloppy. In more details, at certain points, the timeouts were not increasing to
allow participants to collect su�ciently many messages, even when the synchronous period
is reached, and therefore violating the Termination property. This bug seemed to be an imple-
mentation omission and was easily �xed.

Unlock Management. In an earlier version of TendermintBFT, a participant could unlock
when it receives enough proof messages from a more recent epoch than the one it is locked
on. Intuitively, when a participant locked on an epoch e, for a block B, it means that it had
delivered proposals for B from at least 2f + 1 participants during epoch e. When a new block
is proposed for a new epoch, with 2f + 1 proposals from an epoch e′ > e, the participant
should unlock, since there is a much recent lock value. However, the algorithm allowed to un-
lock even on the same block the participant is locked on. The problem is that the participants
may lock and vote for B at epoch e such that B got 2f + 1 proposals/votes, and some parti-
cipant decides. At epoch e′ the block B is again proposed in addition to the 2f + 1 proposals
from epoch e. The participants locked on epoch e can unlock, but because of asynchronous
communication, they may not lock again, nor decide. When a new epoch starts, assume in the
synchronous period, say e′′, a completely di�erent value B′ can be pre-proposed, such that all
remaining participants will propose, eventually vote and decide on B′. Therefore, some obed-
ient participants decide on B, and some others decide on B′, the Agreement property could
be violated. For that bug, we proposed a simple �x as well; the problem as before seems to be
an omission.

Live-lock Issue. Another bug was present in the earlier version of TendermintBFT pre-
venting the Termination property. This bug lied in the design of the locking mechanism.
Basically, whenever a new value is proposed, the participants increase the value of the epoch
they locked on. Even during the synchronous periods, Byzantine participants may collude
to split the obedient participants into two groups locked on two di�erent values, and force
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them to alternatively increase the value of their locked epoch. When it is the time for one
group to propose a new block, the second group rejects it since they have higher lock value;
and the same for the second group, because Byzantine make each group increase their locked
value at the end of a round without impacting the messages sent during the corresponding
phases. Therefore, each group refuse the proposal of the other, and no obedient participant
ever decides, which violates the Termination property.

Exploiting this bug requires a strong collaboration between Byzantine participants, and
needs Byzantine participants to send messages at the right time such that it does not di�use
too fast to other participants. The problem was that obedient participants are not aware even
during synchronous rounds when other obedient participants lock. That was solved in the
most recent version of TendermintBFT (presented in Chapter 4), where two new variables
are used to keep track of the latest locked value and epoch a participant heard of from other
obedient participants.

A.2 Table Containing Values of α and β from Proposition

6.5

ν α(1) β(1) ν α(1) β(1) ν α(1) β(1)
f 1 2 3 0 f 1 2 4 0 f 1 3 5.33 0.33
n = 3 where ν = 2 n = 4 n = 4

ν α(1) β(1) ν α(1) β(1) ν α(1) β(1)

f
1 2 5 0

f
1 3 6.25 0.25

f
1 4 8.33 0.67

2 3 3.5 0 2 3 3.5 0 2 3 3.5 0
n = 5 and ν is minimal n = 5 and ν = 3 n = 5 and ν is maximal

ν α(1) β(1) ν α(1) β(1) ν α(1) β(1)

f

1 2 10 0

f

1 5 14.29 0.43

f

1 9 33.33 2.33
2 3 6 0 2 5 9.04 0.61 2 8 23.5 3.5
3 4 4.56 0 3 5 5.98 0.43 3 7 12.65 2.43
4 5 3.92 0 4 5 3.92 0 4 6 5.83 0.67

n = 10 where ν is minimal n = 10 where ν = 5 n = 10 where ν is maximal

ν α(1) β(1) ν α(1) β(1) ν α(1) β(1)

f

1 2 20 0

f

1 10 33.33 0.67

f

1 19 133.3 5.67
2 3 11 0 2 10 25.36 1.44 2 18 191 18
3 4 7.77 0 3 10 21.98 2.132 3 17 218.2 31.57
4 5 6.18 0 4 10 18.92 2.55 4 16 194.4 37.45
5 6 5.25 0 5 10 15.45 2.55 5 15 135.5 32.56
6 7 4.67 0 6 10 11.77 2.13 6 14 76.62 21.59
7 8 4.29 0 7 10 8.39 1.44 7 13 35.85 11.05
8 9 4.04 0 8 10 5.71 0.67 8 12 14.49 4.18
9 10 3.89 0 9 10 3.89 0 9 11 5.71 0.82

n = 20 where ν is minimal n = 20 where ν = 10 n = 20 where ν is maximal
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ν α(1) β(1) ν α(1) β(1) ν α(1) β(1)

f

1 2 40 0

f

1 20 72.73 0.82

f

1 39 533.33 12.33
2 3 21 0 2 20 62.66 2.08 2 38 1,561 77
3 4 14.38 0 3 20 66.14 3.88 3 37 3,764.86 281.29
4 5 11.08 0 4 20 73.33 6.22 4 36 7,254.26 724.32
5 6 9.11 0 5 20 81.14 9 5 35 11,395.19 1,423.26
6 7 7.81 0 6 20 87.59 11.97 6 34 14,913.26 2,235.82
7 8 6.89 0 7 20 91.15 14.75 7 33 16,556.67 2,402.21
8 9 6.21 0 8 20 90.8 16.92 8 32 15,818.71 3,162.5
9 10 5.69 0 9 20 86.19 18.11 9 31 13,156.81 2,959
10 11 5.29 0 10 20 77.74 18.11 10 30 9,614.24 2,402.24
11 12 4.97 0 11 20 66.49 16.92 11 29 6,218.84 1,708.81
12 13 4.71 0 12 20 53.87 14.75 12 28 3,582.49 1,073.33
13 14 4.51 0 13 20 41.33 11.97 13 27 1,847.31 598.91
14 15 4.34 0 14 20 30.06 9 14 26 1,847.38 298.22
15 16 4.21 0 15 20 20.80 6.22 15 25 856.39 298.22
16 17 4.1 0 16 20 13.8 3.88 16 24 358.45 132.84
17 18 4.02 0 17 20 8.92 2.08 17 23 47.68 18.56
18 19 3.96 0 18 20 5.78 0.82 18 22 16 5.42
19 20 3.92 0 19 20 3.92 0 19 21 5.83 0.9

n = 40 where ν is minimal n = 40 where ν = 20 n = 40 where ν is maximal


