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Abstract

The main theorem of this PhD thesis states the following: the genus 0 coefficients of the quantum Witten-
Kontsevich series defined by Buryak, Dubrovin, Guéré, and Rossi are equal to the coefficients of the
polynomials defined by Goulden, Jackson, and Vakil in their study of double Hurwitz numbers. We also
prove several other results on the quantum Witten-Kontsevich series.

The classical Witten-Kontsevich series is a generating series of intersection numbers on the moduli
spaces of stable curves. The Witten conjecture, proved by Kontsevich, asserts that this series is the
logarithm of a tau function of the KdV hierarchy. In 2016, Buryak and Rossi introduced a new way to
construct quantum integrable hierarchies, including a quantum KdV hierarchy. Buryak, Dubrovin, Guéré
and Rossi then defined quantum tau functions, one of which is the quantum Witten-Kontsevich series.
This series depends on two parameters: the genus parameter ε and the quantization parameter ~. It
reduces to the Witten-Kontsevich series when we plug ~ = 0.

One-part double Hurwitz numbers count non-equivalent holomorphic maps from a Riemann surface of
genus g to P1 with a prescribed ramification profile over 0, a complete ramification over ∞, and a given
number of simple ramifications elsewhere. Goulden, Jackson and Vakil proved that these numbers are
polynomial in the orders of ramification over 0. We show that the coefficients of these polynomials are
equal to the coefficients of the quantum Witten-Kontsevich series with ε = 0.

In Chapter 1, we present the setting of the classical and quantum integrable hierarchies that we will
use. We also present the construction of classical and quantum tau functions.

In Chapter 2, we present the moduli spaces of curves Mg,n and their tautological rings. We briefly
review the Witten conjecture. Then we introduce the double ramification cycle and discuss various methods
for computing it. This cycle is needed to define the Hamiltonians of quantum integrable hierarchies.

In Chapter 3, we present the quantum KdV hierarchy and some of its properties. We then define the
quantum Witten-Kontsevich series as a particular quantum tau function of this hierarchy.

In Chapter 4, we introduce Hurwitz numbers. We first present a remarkable link between the quantum
KdV hierarchy and the cut-and-join equation. Then we introduce the so-called one-part double Hurwitz
numbers. Their relation with the quantum Witten-Kontsevich series is the main result ot this thesis.

In Chapter 5, we present Eulerian numbers. These numbers appear in the computations of the coeffi-
cients of the quantum Witten-Kontsevich series. Their properties are crucial for our proofs.

In Chapter 6, we formulate and prove our main theorem and other results on the quantum Witten-
Kontsevich series.

Keywords: moduli space of curves; classical and quantum integrable systems; deformation quantization;
Hurwitz numbers; Eulerian numbers.
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Résumé

Le théorème principal de cette thèse établit le lien suivant : les coefficients de genre 0 de la série de
Witten-Kontsevich quantique définie par Buryak, Dubrovin, Guéré et Rossi sont égaux aux coefficients
des polynômes définis par Goulden, Jackson et Vakil dans leur étude des nombres de Hurwitz doubles.
Nous prouvons aussi d’autres résultats concernant la série de Witten-Kontsevich quantique.

La série de Witten-Kontsevich classique est une série génératrice de nombres d’intersections sur les
espaces de module des courbes. La conjecture de Witten, prouvée par Kontsevich, affirme que cette série
est le logarithme d’une fonction tau de la hiérarchie de KdV. En 2016, Buryak et Rossi ont introduit
une nouvelle façon de construire des hiérarchies intégrables quantiques, ils ont en particulier construit
une hiérarchie de KdV quantique. Buryak, Dubrovin, Guéré et Rossi ont ensuite défini des fonctions
tau quantiques, l’une d’entre elles est la série de Witten-Kontsevich quantique. Cette série dépend de
deux paramètres : le paramètre de genre ε et le paramètre quantique ~. Elle se restreint à la série de
Witten-Kontsevich lorsque l’on substitue ~ = 0.

Les nombres de Hurwitz double polynomiaux comptent le nombre d’applications holomorphes non
équivalentes d’une surface de Riemann de genre g à P1 avec un profil de ramification fixé au dessus de
0, une ramification complète au dessus de ∞, et un nombre donné de ramifications simples au dessus de
P1\ {0,∞}. Goulden, Jackson et Vakil ont prouvé que ces nombres sont polynomiaux en les ordres de
ramification au dessus de 0. Nous montrons que les coefficients de ces polynômes sont égaux aux coeffi-
cients de la série de Witten-Kontsevich quantique avec ε = 0.

Dans le Chapitre 1, nous présentons le cadre des hiérarchies intégrables classiques et quantiques que
nous utiliserons. Nous présentons aussi la construction des fonctions tau classiques et quantiques.

Dans le Chapitre 2, nous présentons les espaces de module des courbes Mg,n et leurs anneaux tau-
tologiques. Nous présentons brièvement la conjecture de Witten. Ensuite, nous introduisons le cycle de
double ramification et discutons de quelques méthodes pour le calculer. Ce cycle est nécessaire pour définir
les hamiltoniens des hiérarchies intégrables quantiques.

Dans le Chapitre 3, nous présentons la hiérarchie de KdV quantique et quelques-unes de ses pro-
priétés. Nous définissons ensuite la série de Witten-Kontsevich quantique comme une certaine fonction
tau quantique de cette hiérarchie.

Dans le Chapitre 4, nous introduisons les nombres de Hurwitz. Nous présentons d’abord un lien
remarquable entre la hiérarchie de KdV quantique et l’équation de cut-and-join. Ensuite, nous introduisons
les nombres de Hurwitz doubles polynomiaux. Leur relation avec la série de Witten-Kontsevich quantique
est le résultat principal de cette thèse.

Dans le Chapitre 5, nous présentons les nombres Eulériens. Ces nombres apparaissent dans le calcul des
coefficients de la série de Witten-Kontsevich quantique. Leurs propriétés sont cruciales pour nos preuves.

Dans le Chapitre 6, nous formulons et prouvons notre théorème principal ainsi que d’autres résultats
sur la série de Witten-Kontsevich quantique.

Mots-clefs: espace de module des courbes; hiérarchie intégrable classique et quantique; quantification
par déformation; nombres de Hurwitz; nombres Euleriens.
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Chapter 1

Classical and quantum integrable
hierarchies with their tau functions

1.1 Introduction

We first review classical integrable systems on a finite dimensional manifold. We then define some inte-
grable systems on an infinite dimensional space called the loop space. The approach is formal, we define
formal objects that mimic the finite dimensional description of integrable systems. We also define the
tau functions associated to such integrable systems. We then use deformation quantization to define a
quantization of integrable systems on the loop space. By analogy with classical integrable systems, we
introduce quantum tau functions.

1.2 Finite dimensional integrable system

1.2.1 Poisson structure

Definition 1. Let P be a smooth manifold. A Poisson structure on C∞ (P ) is a Lie bracket

{·, ·} : F (P )×F (P )→ F (P )

(f, g)→ {f, g}

that satisfies the Leibniz rule {f, gh} = {f, g}h+ g {f, h}.
A manifold P endowed with a Poisson bracket is a Poisson manifold.

Let
(
x1, . . . , xn

)
be a system of local coordinates on P . In these coordinates, the Poisson structure

reads
{f, g} =

∑
1≤i,j≤n

πij (x)
∂f

∂xi
∂g

∂xj
,

where πij satisfies πij = −πji (antisymmetry) and
∑n

s=1

(
∂πij

∂xs π
sk + ∂πjk

∂xs π
si + ∂πki

∂xs π
sj
)

= 0 (Jacobi iden-
tity).
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Definition 2. A Poisson structure is non degenerate if π (x) is invertible for every x ∈ P .

Example 3. On R2, denote by (q, p) the system of canonical coordinates. Let f, g ∈ C∞
(
R2
)
, a Poisson

structure is given by

{f, g} =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
.

According to Darboux’s theorem, any non degenerate Poisson structure on R2 locally looks like this one.

1.2.2 The Hamilton equation

Definition 4. A Hamiltonian system is the data of a Poisson manifold with the choice of a function
h ∈ C∞ (P ) . The function h is called the Hamiltonian of the system.

A Poisson bracket defines an morphism

Φ : C∞ (P )→ Γ (TP )

h→ Xh := {·, h}

which satisfies [Xh, Xg] = −X{h,g}.

Definition 5. Let (P, h) be an Hamiltonian system. The vector field Xh is the Hamiltonian vector field
of the system. It defines a first order differential equation called Hamilton’s equation:

dp

dt
= Xh (p) =

{
xi (p) , h

} ∂

∂xi
,

where
(
x1, . . . , xn

)
is a system of local coordinates on P and xi (p) is the ith coordinate of p ∈ P .

A Hamiltonian system is used to describe the evolution of a physical system. The points of P represent
the physical states of the system. In the physics terminology, P is called the phase space. The solutions
of the system are given by the flow of Xh. Its trajectories describe how the physical system evolves along
time.

Example 6. Consider one particle evolving in R. The physical state of the particle is described by the
its position q and its momentum p. The space of states is then R2 and we denote by (q, p) the system of
canonical coordinates. We endow this space with the Poisson bracket of Example 3. Let h : R2 → R be a
smooth function, then the equation of motions are

q̇ =
∂h

∂p
and ṗ = −∂h

∂q
.
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A remark towards deformation quantization

Solving Hamilton’s equations is equivalent to solving

df

dt
= Xh (f) = {f, h} , for any f ∈ C∞ (P ) .

Indeed, by applying this equation to f = xi, where xi is a local coordinate, we recover Hamilton’s equations
in coordinates. Conversely, let (t, p)→ p (t) be the flow of Xh on P . The unique solution f t of dfdt = {f, h}
starting at f is given by f (p (t)).

Hence, the solutions of a Hamiltonian system can be view in two equivalent ways : (i) the flow
(t, p)→ p (t) of Xh on the manifold P itself ; (ii) the flow (t, f)→ f t on the space F (P ) of functions on
P , satisfying f t (p) = f (p (t)) . The first point of view describes the evolution of the states of the system.
The second describes the evolution of quantities (e.g. position, components of the angular momentum...).
Deformation quantization uses the second point of view.

1.2.3 Arnold-Liouville integrable systems

1.2.3.1 Conserved quantities

In physics, a function f ∈ C∞ (P ) corresponds to a measurable physical quantity. For example, the
Hamiltonian function h measures the energy of the Hamiltonian system and the points of h−1 (E) are the
physical states of energy E. The time evolution of a physical quantity f is given by

df

dt
= {f, h} .

Definition 7. A conserved quantity of the Hamiltonian system (P, h) is a function f ∈ F (P ) such that

df

dt
= {f, h} = 0.

In other words, f is a conserved quantity if it is constant along the trajectories of Xh.

1.2.3.2 Integrable systems

Definition 8. A Hamiltonian system (P, h) on manifold P of dimension 2n with a non degenerate Poisson
bracket is integrable if there exists n conserved quantities h1 := h, h2, . . . , hn in involution

{hi, hj} = 0

such that the their differentials are linearly independent.

In this case, the following theorem shows that the equations of motion are particularly simple.
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Proposition 9 (Arnold-Liouville, [Arn13]). Suppose (P, h = h1, . . . , hn) is an integrable system. Fix
E = (E1, . . . , En) ∈ Rn. Suppose ME = {x ∈ P |hi (x) = Ei} is compact and connected. Then ME is
diffeomorphic to the torus Tn = {(φ1, . . . , φn) mod 2π}. Moreover, ME is invariant under the flow of Xh

and the motion on ME is given by
dφi
dt

= ωi (E)

for some constants ωi (E) ∈ R, with 1 ≤ i ≤ n.

1.3 Integrable systems on the loop space and their tau functions

1.3.1 A formal poisson structure on the loop space

We define an algebra of formal functions and a Poisson structure used to give a formal Hamiltonian
presentation of partial differential equations such as the Korteweg-de-Vries (KdV) equation

∂u

∂t
= u∂xu+

ε2

12
∂3
xu.

The intuitive idea behind the following construction is to describe such an equation as a vector field
on the space P of loops u : S1 → C. We suppose that these periodic maps have a Fourier transform
u (x) =

∑
a∈Z pae

iax, this gives a system of coordinates {pa, a ∈ Z} on P . We define an algebra of power
series in the coefficients pa and interpret it as the algebra of functions on P . The loop space P is not
properly defined but we only need an algebra of functions and a Poisson structure in order to decribe
partial differential equation such as the KdV equation.

Definition 10. Let F (P ) be the algebra C [p>0] [[p≤0, ε]], where the indeterminates p>0 (resp. p≤0) stands
for pa, with a ∈ Z>0 (resp. a ∈ Z≤0).

The formal parameter ε is not necessary to write the equations, however it will be convenient in the
study of tau functions.

As in the finite dimensional case, a Poisson structure on F (P ) is a Lie bracket on F (P ) that satisfies
the Leibniz rule.

Definition 11. A Poisson structure on F (P ) is given by

{pa, pb} = iaδa+b,0,

and we extend it to F (P ) by the Leibniz rule.

Let f, g ∈ F (P ), we obtain the following expression for the Poisson bracket

{f, g} =
∑
a∈Z

ia
∂f

∂pa

∂g

∂p−a
.

13



Let f ∈ F (P ), the Hamilton equation associated to f reads in coordinates ∂pa
∂t = {pa, f} ,where a ∈ Z.

To obtain the Hamilton equation on u (x) =
∑

a∈Z pae
iax, we combine these equations

∂u

∂t
= {pa, f} eiax.

In order to write the Hamilton equation as a polynomial in u and its derivatives, as for the KdV
equation, we have to make a particular choice of Hamiltonians. These Hamiltonians are expressed in term
of differential polynomial.

1.3.2 Differential polynomials

We give two equivalent definitions of differential polynomials and explain how to identify them.

Notation 12. From now on, we adopt the notation us = ∂sxu with s ≥ 0

Definition 13. A differential polynomial is an element of A := C [u0, u1, . . . ] [[ε]].

Definition 14. Let d be a positive integer. Let (φ0, . . . , φd) be a list where
φk (a1, . . . , ak) ∈ C [a1, . . . , ak] [[ε]] is a symmetric polynomial in its k indeterminates a1, . . . , ak for 0 ≤
k ≤ d. The formal Fourier series associated to (φ0, . . . , φd) is

φ (x) =
∑
A∈Z

 d∑
k≥0

∑
a1,...,ak∈Z∑

ai=A

φk (a1, . . . , ak) pa1 . . . pak

 eixA ∈ F (P )
[[
e−ix, eix

]]
.

The set of formal Fourier series associated to any d ∈ N and any (φ0, . . . , φd) is an algebra that we denote
by Ã.

Lemma 15. The algebras A and Ã are isomorphic.

Proof. By substituting the formal Fourier series us (x) =
∑

a∈Z (ia)s pae
iax, with s ∈ N, of u and its

derivatives in a differential polynomial, we obtain an element of Ã. By this application, the differential
monomial us1 . . . usn yields the formal Fourier series associated to φn (a1, . . . , an) = 1

n!

∑
σ∈Sn a

s1
σ(1) . . . a

sn
σ(n)

and φi = 0 if i 6= n.

The element of A and of Ã will be called differential polynomials. When precision will be needed,
we will refer to the elements of Ã as Fourier series associated to a differential polynomial. In the rest of
the text, we will mainly use the notation A to refer to differential polynomials and Fourier transform of
differential polynomials.

Definition 16. The derivative ∂x of a differential polynomial φ is the differential polynomial obtained by
multiplying the A-th mode of φ by A.

The integration along S1 of a differential polynomial φ is the 0-th mode of φ. We denote by
∫
S1 φ (x) dx =

φ this integral.
The primitive of a differential polynomial φ is a differential polynomial ψ such that ∂xψ = φ.

14



Poisson structure and differential polynomials

We deduce from the definition of the Poisson structure the following lemma.

Lemma 17. Let φ, ψ ∈ A, then {
φ, ψ

}
∈ A.

Moreover, the constant term vanishes {
φ, ψ

} ∣∣∣
p∗=0

= 0.

Remark 18. The Poisson bracket of differential polynomials has the following expression in the variables u:

{
φ, ψ

}
=
∑
r,s≥0

(−1)s
∂φ

∂ur
∂r+s+1
x

∂ψ

∂us
,

where ∂x =
∑

i≥0 ui+1
∂
∂ui

. The classical integrable hierarchies are mostly presented in the variables u.
However, the variables p offer a direct way to quantize such systems.

1.3.3 The Hamilton equation

From now on, we will only use Hamiltonians that are obtained by integration of a differential polynomial.

Definition 19. Let h ∈ A. The Hamilton equation associated to the Hamiltonian h ∈ F (P ) is

∂u

∂t
=
∑
a∈Z

{
pa, h

}
eiax.

The differential polynomial h is called Hamiltonian density.

Lemma 17 ensures that the RHS of Hamilton’s equation is a differential polynomial.

Example 20. Consider the Hamiltonian density h =
u30
3! + ε2

(
u0u2

12 +
u21
24

)
+ ε4 u4

240 . The associated Hamil-

tonian is h = 1
3!

∑
a+b+c=0 papbpc + ε2

24

∑
a∈Z (ia)2 pap−a and the Hamilton equation is the KdV equation

∂u

∂t
=
∑
a∈Z

{
pa, h

}
eiax = uu1 +

ε2

12
u3.

1.3.4 Integrable hierarchies and solutions

In infinite dimension, there is no exact analog of Arnold-Liouville’s theorem. In particular, there are
different notions of integrability.

Definition 21. An integrable hierarchy in (F (P ) , {·, ·}) is an infinite collection of Hamiltonians densities
{hi ∈ A, i ≥ 0} satisfying {

hi, hj
}

= 0.
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The corresponding equations of the hierarchy are

∂u

∂ti
=
{
u, hi

}
, for any i ≥ 0.

According to the commutativity of the Hamiltonians, we can solve these equations simultaneously.

Example 22. The KdV hierarchy is an integrable hierarchy containing the KdV equation. The first
Hamiltonian densities of the KdV hierarchy are

hKdV0 =
u2

0

2!
+ ε2

u2

12
,

hKdV1 =
u3

0

3!
+ ε2

(
u0u2

12
+
u2

1

24

)
+ ε4

u4

240
,

hKdV2 =
u4

0

4!
+ ε2

(
u2

0u2 + u0u
2
1

24

)
+ ε4

(
u0u4

240
+

u2
2

160
+
u1u3

120

)
+ ε6

u6

6720
.

In Chapter 3, we will present a formula for these Hamiltonian densities and a recursive way to construct
them from h

KdV
1 .

From these Hamiltonian densities, we obtain the first equations of the KdV hierarchy:

ut0 = u1,

ut1 = u0u1 + ε2
u3

12
,

ut2 =
u2

0u1

2
+ ε2

(u0u3

12
+
u1u2

6

)
+ ε4

u5

240
.

Remark 23. The algebra of functions F (P ) and the Poisson structure we defined are sufficient to give
a Hamiltonian presentation of integrable hierarchies such as the KdV hierarchy. However, there exists
a more general definition of the space of functions and various Poisson structures on it, see [DZ05].
These structures are used to define two families of integrable hierachies: the Dubrovin-Zhang hierarchies
[BPS12a, BPS+12b, DZ05] and the double ramification hierarchies [Bur15]. The KdV hierarchy is a
particular element of each of these two families. More generally, the DR/DZ conjecture [BGR19] asserts
that any Dubrovin-Zhang hierarchy is a double ramification hierarchy up to a change of coordinates.

Definition 24. A solution of the integrable hierarchy {hi ∈ A, i ≥ 0} with initial condition uinitial ∈ C [[x]]
is an element u (x, t) ∈ C [[ε, x, t0, t1, . . . ]] satisfying the equations of the hierarchy.

We think of uinitial ∈ C [[x]] as an element of P . We will only consider solutions with initial conditions
in C [[x]].

Lemma 25. The unique solution of the integrable hierarchy {hi ∈ A, i ≥ 0} with initial condition uinitial ∈
C [[x]] is given by

u (x, t) = exp

∑
i≥0

ti
{
·, hi

}u

∣∣∣∣∣
u=uinitial

. (1.3.1)

By this notation, we mean that we evaluate exp
(∑

i≥0 ti
{
·, hi

})
u ∈ A [[ε, t0, t1, . . . ]] at uk (x) = ∂

(k)
x uinitial (x).
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Proof. It is clear that Eq (1.3.1) is a solution of the hierarchy. The ith equation of the hierarchy is a first
order derivative in ti. Since a solution is a power series, we can construct the solutions by solving degree
by degree the equations of the hierarchy in a unique way.

We are interested in formal solutions even if they do not converge. For example, the coefficients of
the following formal solution of KdV are related with intersection numbers on the moduli space of curves.
This is the content of the famous Witten conjecture (see Section 2.2).

Example 26 (The string solution). The first terms of the solution of the KdV hierarchy starting at
u (x) = x are given by

u (x, t) = (x+ t0) + ε2
t3
24

+ . . .

+ (x+ t0) t1 +
(x+ t0) t2

2
+ ε2

(
(x+ t0) t4

24
+
t1t3
8

+
t22
12

)
+ . . .

+ . . .

This particular solution is called the string solution of the KdV hierarchy. This terminology will be
explained in Section 2.2.

A remark towards deformation quantization.

The equations describing the evolution of elements of F (P ) are given by

df

dti
=
{
f, hi

}
, with i ≥ 0.

Definition 27. A solution of these equations is an element of F (P ) [[t0, t1, . . . ]] satisfying the equations.

The unique solution starting at f initial ∈ F (P ) is given by

f t = exp

∑
i≥0

ti
{
·, hi

} f initial ∈ F (P ) [[t0, t1, . . . ]] .

It follow from the Leibniz property of the Poisson bracket that

f t
(
uinitial (x)

)
= f (u (x, t)) , (1.3.2)

where (x, t) → u (x, t) is the solution of the hierarchy starting at uinitial. In particular, as in the finite
dimensional case, the solutions of an integrable system are equivalently given by a flow on P and a flow
on F (P ).
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1.3.5 Tau functions

Tau functions were first introduced by the Kyoto school in their study of the Kadomtsev-Petviashvili
(KP) hierarchy, see [DJKM82, Sat83] and [MJJD00] for a more recent introduction to the subject. There
are now various definitions of tau functions depending on the notion of integrability we consider. We
present in this section the definition of tau functions given by Dubrovin and Zhang [DZ05] in the context
of Hamiltonian integrable systems.

Tau functions turn out to be key objects at the interplay between integrable systems, the cohomology
ofMg,n and Hurwitz theory. In this thesis, we will be particularly interested in these relations, example
will be given in the next sections.

Definition 28. A tau structure is a collection of Hamiltonian densities {hi ∈ A, i ≥ −1} such that

1. the Hamiltonians commute {
hi, hj

}
= 0, for any i, j ≥ −1,

2. the Hamiltonian densities are tau symmetric{
hi−1, hj

}
=
{
hj−1, hi

}
, for any i, j ≥ 0,

3. the evolution given by the Hamiltonian h−1 is trivial

∂f

∂t−1
=
{
f, h−1

}
= 0, for any f ∈ F (P ) ,

4. the Hamiltonian h0 generates the translations in space

∂φ

∂t0
=
{
φ, h0

}
= ∂xφ for any φ ∈ A.

Let {hi ∈ A, i ≥ −1} be a tau structure. We present the construction of the tau functions associated to
the hierarchy

{
hi, i ≥ −1

}
. Note that the third condition of the tau structure ensures that the Hamiltonian

h−1 does not play any role in the hierarchy.
First, there exists a unique differential polynomial Ωi,j , for any i, j ≥ 0, such that

∂xΩi,j =
{
hi−1, hj

}
and Ωi,j

∣∣
p∗=0

= 0. This follows from the commutations of the Hamiltonians and Lemma 17. We then
define the time dependent two-point function

Ωt
i,j := exp

∑
k≥0

tk
{
·, hk

}Ωi,j ∈ A [[ε, t0, t1, . . . ]] .
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Lemma 29. Let (x, t)→ u (x, t) be the solution of the integrable hierarchy with initial condition uinitial ∈
C [[x]] . There exists a series F ∈ C [[ε, t0, t1, . . . ]] uniquely defined up to the choice of the constant and
linear terms in t∗ such that

∂2F

∂ti∂tj
= Ωt

i,j

(
uinitial (x = 0)

)
.

The notation Ωt
i,j

(
uinitial (x = 0)

)
means that we substitute uk := ∂

(k)
x uinitial (x = 0) in the differential

polynomial depending of the times Ωt
i,j.

Definition 30. The function F is the logarithm of the tau function (log τ function) associated to the
solution (x, t)→ u (x, t).

The log τ function associated to a given solution is not completely determined since we have to specify
the constant and linear terms in t∗ of F . We usually fix these terms by imposing additional equations
on F depending on the context. Once this choice is made, the exponent of the log τ function is the tau
function. However, we will only be interested in the log τ function.

Proof. We use twice the Poincaré lemma.

1. The 1-forms
αi :=

∑
i≥0

Ωt
i,jdt

j

are closed. Indeed the commutativity of the Hamiltonians implies that ∂x
{

Ωi,j , hk
}

= ∂x
{

Ωi,k, hj
}
.

Moreover the differential polynomials
{

Ωi,j , hk
}
and

{
Ωi,k, hj

}
have no constant terms according to

Lemma 17. We deduce that
{

Ωi,j , hk
}

=
{

Ωi,k, hj
}
and then

∂Ωt
i,j

∂tk
=
{

Ωt
i,j , hk

}
=
{

Ωt
i,k, hj

}
=
∂Ωt

i,k

∂tj
,

that is the 1-forms are closed. Thus, there exist fi ∈ A [[ε, t0, t1, . . . ]], with i ≥ 0, such that ∂fj∂tj
= Ωt

i,j .

2. The 1-form ∑
i≥0

fit
i

is closed. Indeed, the tau symmetry ensures that Ωi,j = Ωj,i so that ∂fi
∂tj

= Ωt
i,j = Ωt

j,i =
∂fj
∂ti

. Thus,

there exists a series F̃ ∈ A [[ε, t0, t1, . . . ]] such that ∂2F̃
∂ti∂tj

= Ωt
i,j .

We obtain the series F ∈ C [[ε, t0, t1, . . . ]] by the evaluation of F̃ at the point uinital ∈ C [[x]] and then
substituting x = 0,

F := F̃
(
uinitial (x = 0)

)
.
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Remark 31. We deduce from Eq. (1.3.2) the equality Ωt
i,j

(
uinitial (x)

)
= Ωi,j

(
u (x, t)

)
, where (x, t)→

u (x, t) is the solution starting at uinitial. Thus, we could define the log τ function by

∂2F

∂ti∂tj
= Ωi,j

(
u (x = 0, t)

)
,

that is by evaluating Ωi,j at the solution (x, t) → u (x, t) and then substituting x = 0. This was the
original definition of the log τ function associated to the solution (x, t)→ u (x, t) (see [BDGR18, DZ05]).
However, the generalization of the definition of log τ functions to quantum integrable systems is more
straightforward from our presentation.

Remark 32. The two-point functions with a 0-insertion are closely related to the Hamiltonian densities.
Indeed, according to the fourth condition of the tau structure, we have ∂xΩi,0 =

{
hi−1, h0

}
= ∂xhi−1 so

that
Ωi,0 = hi−1 + C, whereC ∈ C.

For example the Hamiltonian densities of the KdV hierarchy (and, more generally, the Hamiltonian densi-
ties of the double ramification hierarchies, see [BDGR18]) have no constant term in u∗ so that the constants
vanish.

Remark 33. One may wonder why we forget about the x dependency in the definition of the log τ func-
tion. Let φt be the time-dependent differential polynomial with initial condition given by the differential
polynomial φ. The fourth condition of the tau structure ensures that ∂φt

∂t0
= ∂xφ

t, hence

φt (x) = exp

∑
k≥0

tk
{
·, Hk

}
+ x

{
·, H0

}φ (0) .

In particular, the evolutions along x and t0 are the same. We can then recover the x dependency in the
log τ function by substituting t0 := t0 + x. It is then confusing since x ∈ S1. Once again, the space P is
not rigorously defined and only serves as a motivation for the definition of F (P ), we chose to take x ∈ S1

in order to make the Fourier transform and the x-integration more natural.

Remark 34. The Hamiltonian densities of the KdV hierarchy together with hKdV−1 = u0 form a tau
structure (see Section 3.1.2). Let F be the log τ function of KdV associated to the solution (x, t)→ u (x, t).
We obtain this solution from F by

∂2F

∂t0∂t0
=
(
hKdV−1

)t (
uinitial (x = 0)

)
= u (x = 0, t) .

The 0th KdV equation reads ∂t0 = ∂x, thus we can replace ∂x by ∂t0 in every equation of KdV. We deduce
that t→ ∂2F

∂t0∂t0
satisfies every equation of the KdV hierarchy except the 0th.

This relation between log τ functions and solutions of the hierarchy is quite general, for example it is
satisfied by any log τ function of the double ramification hierarchy (see [BDGR18]).
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Example 35. The log τ function FWK of the KdV hierarchy associated to the string solution is the
Witten-Kontsevich series. Its first terms are

FWK =
t30
6

+
t30t1
6

+ ε2
t1
24

+ ε2
t0t2
24

+ ε2
t21
24

+ ε2
t20t3
48

+ ε2
t20t1t3

16
+ . . .

Dubrovin and Zhang gave a construction of the Hamiltonian densities of the KdV hierarchy from the only
input of this power series (see [DZ05, BPS12a, BPS+12b]).
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1.4 Quantum integrable systems and their tau functions

By a deformation quantization procedure we define quantum integrable hierarchies and quantum tau
functions following [BDGR16].

1.4.1 Idea of deformation quantization

Start with a Hamiltonian system: the space of physical states is given by a manifold P , the physical
quantities are given by the commutative algebra of functions F (P ) which is endowed with a Poisson
structure, and there is a particular function h giving the equations of motion

df

dt
= {f, h} .

In quantum mechanics, a physical system is described by a Hilbert space H and the physical states
of the system are the vectors of norm 1 in H. The physical quantities are related to a non commutative
algebra of operators from H to H called observables. The choice of a particular observable H yields the
evolution of the system. There are two “pictures” giving equivalent formulations of the evolution of the
system. In the Schrödinger picture, the equations of motion give the evolution of the physical states on
the Hilbert space. In the Heisenberg picture, the physical states do not evolve but the physical quantities
(i.e. the observables) do. In our context of deformation quantization, the evolution of the system is given
in the Heisenberg picture. The evolution of an observable Ot is given by

dOt
dt

=
1

~
[Ot, H] ,

where [·, ·] is the commutator of the operators. The evolution ofOt is then given byOt = exp
(
t
~ [·, H]

)
Ot=0.

A quantum system is a more accurate version of its classical counterpart. Moreover, the physics that
these systems describe should be the same at a “classical scale”. This scale is parametrized by ~. At the
classical limit ~ → 0, a quantum system should look like its classical counterpart: we recover a Poisson
manifold and the Hamilton equations. Of course there are many quantum systems corresponding to the
same classical system.

An approach to quantize is to find a map ρ : f → ρ (f) which maps an element of F (P ) to an operator
acting on some Hilbert space. In order to recover the Poisson structure at the classical limit, we add the
constraint

[ρ (f) , ρ (g)] = ~ρ ({f, g}) +O
(
~2
)
.

If such map is invertible, we can pull-back the the non commutative product on F (P ), this defines a star
product

f ? g = ρ−1 (ρ (f) ρ (g)) .

This star product is then sufficient to define the dynamics of the observables.
Motivated by this approach, the idea of deformation by quantization is to define a star product on

F (P ) [[~]] as power series in ~
f ? g =

∑
Cn (f, g) ~n

such that
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• the star product is a deformation of the usual product

f ? g = fg +O (~) ,

• we recover the Poisson bracket at the classical limit

[f, g] = ~ {f, g}+O
(
h2
)
,

• the star product is associative.

1.4.2 A star product on F (P )

Definition 36. Let R be a ring and A a commutative associative R-algebra with a unit. A formal
deformation of A is an associative algebra (A [[~]] , ?) over R [[~]] such that

f ? g = fg +
∑
n≥1

Cn (f, g) ~n,

where f, g ∈ A [[~]] and Cn (·, ·) : F ×F → F is a bilinear map for every n ≥ 1. Moreover, we require that
the unit 1 ∈ A remains the unit element : 1 ? f = f ? 1 = f .

Definition 37. Let A be a commutative associative algebra with a unit and endowed with a Poisson
structure {·, ·}. A star product ? on A [[~]] is such that (A [[~]] , ?) is a formal deformation of A satisfying

f ? g − g ? f = ~ {f, g}+O
(
~2
)
.

We say that the formal deformation is in the direction of the poisson bracket.

The following example describes a finite dimensional version of the star product we will define on
F (P ).

Example 38. Let the algebra C [q, p] endowed with the Poisson structure {f, g} = 1
i

(
∂f
∂q

∂g
∂p −

∂g
∂q

∂f
∂p

)
. A

star product on C [q, p] is given by

f ? g =
∑
k≥0

(i~)k

k!

∂kf

∂qk
∂kg

∂pk
= f exp

(
~
i

←−
∂

∂p

−→
∂

∂q

)
g, (1.4.1)

where f, g ∈ C [q, p].
We can realize this star product in the following way. Let H = {f ∈ C∞ (R,C) |supp (f) is compact}

be the Hilbert space endowed with the hermitian product

〈f, g〉 :=

∫
R
f (q)g (q) dq.
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Let Diffoppoly =
{∑N

k=0 fk (q) ∂k

∂qk
, fk (q) ∈ C [q]

}
be the space of observables. The star product can be

realized via

ρ : C [q, p]→ Diffoppoly

qnpm → qn
(
i~
∂

∂q

)m
.

The map ρ sends q on the operator of multiplication by q and p on the operator i~ ∂
∂q so that [ρ (p) , ρ (q)] =

~ρ ({p, q}) = i~. We also deduce that [ρ (f) , ρ (g)] = ~ρ ({f, g})+O
(
~2
)
. The choice of defining ρ (qnpm)

by the product ρ (qn) ρ (pm) i.e. with ρ (qn) on the left and ρ (pm) on the right is called a normal ordering.
The application ρ is invertible, we then define the star product on C [q, p] by

f ? g := ρ−1 (ρ (f) ρ (g)) .

That is we organize the product ρ (f) ρ (g) with ρ (q) on the left and ρ (p) on the right using the commu-
tation relation [ρ (p) , ρ (q)] = i~. This organization is a normal ordering of a unique element of C [q, p].
This element is the star product f ? g. One can easily check that Eq (1.4.1) is an explicit expression of
this star product.

The star product on F (P ) is defined using the same idea. Let f, g ∈ F (P ) [[~]] organized with the
p<0 on the left. Start with the concatenation fg, we commute the p<0 of g with the p>0 of f using the
commutation relation

[pa, pb] = i~aδa+b,0

and find an element of F (P ) [[~]] with the p<0 on the left, this is the star product. Note that this process
is well defined thanks to the polynomiality in the p>0 of f .

Explicitly, the star product on F (P ) have the following form.

Lemma 39. Let f, g ∈ F (P ) [[~]]. The star product on F (P ) is

f ? g = f exp

(∑
k>0

i~k
←−−
∂

∂pk

−−−→
∂

∂p−k

)
g, (1.4.2)

where f exp

(∑
k>0 i~k

←−
∂
∂pk

−−→
∂

∂p−k

)
g = fg + i~

∑
k>0

∂f
∂pk

∂g
∂p−k

+ (i~)2∑
k1,k2>0

∂2f
∂pk1∂pk2

∂2g
∂p−k1∂p−k2

+ . . .

Definition 40. We denote by F~ (P ) the deformed algebra obtained by endowing F (P ) [[~]] with this
star product.

1.4.3 Quantum differential polynomials

We extend the algebra of differential polynomials to the algebra of quantum differential polynomials A~ :=
A [[~]]. However, we will also call differential polynomial the elements of A~ to simplify the reading.
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Let Ã~ be the algebra of formal Fourier series

φ (x) =
∑
A∈Z

 d∑
k≥0

∑
a1,...,ak∈Z∑

ai=A

φk (a1, . . . , ak) pa1 . . . pak

 eixA ∈ F~ (P )
[[
e−ix, eix

]]
,

where φk (a1, . . . , ak) ∈ C [a1, . . . , ak] [[ε, ~]] and is symmetric in the indeterminates a1, . . . , ak.
The algebra A~ and Ã~ are isomorphic. The derivative with respect to x, the integration along S1 and

the primitive of a differential polynomial are defined similarly to Definition 16.

Quantum differential polynomials, commutator and Ehrhart polynomials

The commutator of differential polynomials is expressed in term of the following Ehrhart polynomials
studied by Buryak and Rossi.

Lemma 41 ([BR16]). Let r1, . . . , rq be nonnegative integers. The quantity

Cr1,...,rq (N) =
∑

k1+···+kq=N
kr11 . . . k

rq
q

is a polynomial in the indeterminate N of degree n−1+
∑n

i=1 ri. Moreover, if r1, . . . , rq ≥ 1 this polynomial
has the parity of n− 1 +

∑n
i=1 ri.

We explain how these coefficients appear in the commutator of the star product. Consider two differ-
ential polynomials

φ (x) =
∑
m≥0

∑
a1,...,am∈Z

φm (a1, . . . , am) pa1 . . . pame
i
∑
ajx

and
ψ (y) =

∑
n≥0

∑
b1,...,bn∈Z

ψn (b1, . . . , bn) pb1 . . . pbme
i
∑
bjy,

where φm and ψn are symmetric polynomials. We use the expression of the star product given by Eq. (1.4.2)
to get

φ (x) ? ψ (y) =
∑
q≥0

(i~)q

q!

∑
k1,...,kq>0

k1 . . . kq
∂qφ (x)

∂pk1 . . . ∂pkq

∂qψ (x)

∂p−k1 . . . ∂p−kq
.
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We then obtain[
φ (x) , ψ

]
= φ (x) ? ψ − ψ ? φ (x)

=
∑
q≥0

∑
m̃≥0

∑
ñ≥0

∑
a1,...,am̃∈Z

∑
b1,...,bñ∈Z

(m̃+ q)! (ñ+ q)!

m̃!ñ!q!

× pa1 . . . pam̃pb1 . . . pbñe
i(x

∑m̃
j=1 aj+

∑ñ
l=1 bl)

×

 ∑
k1,...,kq>0
k1+···+kq=B

k1 . . . kqφm (a1, . . . , am̃, k1, . . . , kq)ψn (b1, . . . , bñ,−k1, . . . ,−kq)

−
∑

k1,...,kq>0
k1+···+kq=−B

k1 . . . kqφm (a1, . . . , am̃,−k1, . . . ,−kq)ψn (b1, . . . , bñ, k1, . . . , kq)


where m̃ = m − q, ñ = n − q and B =

∑ñ
i=1 bi. Note that the condition imposed by the integration

with respect to y in ψ translates to the conditions k1 + · · · + kq = B and k1 + · · · + kq = −B. Since φm
and ψn are polynomials, the polynomials of Buryak and Rossi appear in the first line and in the second
line of the expression in parenthesis. Hence, the first (resp. second) line is a polynomial in the ai’s and
the bj ’s defined for B > 0 (resp. B < 0). One can check using the parity property of Buryak and Rossi
polynomials that these two piecewise polynomials combine in one polynomial in the indeterminates ai’s
and bj ’s. We deduce the following lemma.

Lemma 42. Let φ, ψ ∈ A~. We have [
φ, ψ

]
∈ A~.

and this differential polynomial has no constant term[
φ, ψ

] ∣∣∣
p∗=0

= 0.

The second point of the lemma, i.e.
[
φ, ψ

]
has no constant term, follows from the fact that Buryak

and Rossi polynomials has no constant term, which is clear from the definition.

Remark 43. In [BR16], Buryak and Rossi gave an explicit expression of this commutator in term of the
variables u, its derivatives and the polynomials Cr1,...,rq (N). In particular, it is clear from their expression
that [f, g] belongs to A~ and has no constant term.

1.4.4 Quantum integrable hierarchy

Definition 44. A quantum integrable hierarchy in F~ (P ) is an infinite collection of Hamiltonian densities{
Hi ∈ A~, i ≥ 0

}
satisfying [

H i, Hj

]
= 0.
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The equations of the quantum integrable hierarchy
{
Hi ∈ A~, i ≥ 0

}
are given by

∂f t

∂ti
=

1

~
[
f t, H i

]
, for any i ≥ 0.

According to the integrability condition, we can solve the equations of the hierarchy simultaneously.
Such a quantum hierarchy is a quantization of the classical hierarchy ∂u

∂ti
=
{
u,H i

∣∣
~=0

}
, with i ≥ 0, where

the Poisson structure is defined by {·, ·} = 1
~ [·, ·]

∣∣∣
~=0

.

Example 45. The first Hamiltonians densities of the quantum KdV hierarchy are

HKdV
−1 = u0,

HKdV
0 = hKdV0 − i~

24
,

HKdV
1 = hKdV1 − i~

(
u0

24
+
u2

12
+ ε2

1

2880

)
,

HKdV
2 = hKdV2 − i~

(
u2

0

48
+
u2

1

24
+
u0u2

12
+ ε2

( u0

2880
+

u2

288
+

u4

144

)
+ ε4

1

120960

)
.

In Chapter 3, we will present a formula for these Hamiltonian densities and a recursive way to construct
them from H

KdV
1 .

Remark 46. The algebra
(
F~ (P ) , ?

)
is sufficient to define the quantum KdV hierarchy. However, there

exists a bigger algebra (see [BR16]) used to define a family of quantum integrable hierarchies called the
quantum double ramification hierarchies. These hierarchies reduce to the double ramification hierarchies
of Remark 23 when ~ = 0.

Definition 47. A solution of the quantum integrable hierarchy
{
Hi ∈ A~, i ≥ 0

}
with initial condition

f initial ∈ F~ (P ) is an element of f t ∈ F~ (P ) [[t0, t1, . . . ]] satisfying the equations and such that f t=0 =
f initial.

Lemma 48. The unique solution of the hierarchy with initial condition f initial ∈ F~ (P ) is

f t = exp

∑
k≥0

tk
~
[
·, Hk

] f initial ∈ F~ (P ) [[t0, t1, . . . ]] .

This extends to differential polynomials: φt = exp
(∑

k≥0
tk
~
[
·, Hk

])
φinitial ∈ A~ [[t0, t1, . . . ]] is the

unique solution of the hierarchy associated to the initial condition φinitial ∈ A~.

Remark 49. Let t→ ut = exp
(∑

k≥0
tk
~
[
·, Hk

])
u be the solution of the quantum hierarchy associated

to u ∈ A~ (here u is not a point of P , it is an element of A~, that is a collection of elements of F~ (P )).
We recover the classical solution of the associated classical hierarchy given in Eq. (1.3.1) by

u (x, t) = ut
∣∣∣
u=uinitial, ~=0

,
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that is we evaluate de element ut ∈ A~ [[t0, t1, . . . ]] at uk = ∂(k)uinitial (x) and ~ = 0. We also point out
that ut

∣∣∣
u=uinitial

is not a solution of the quantum hierarchy since a quantum solution is a flow on F~ (P )

or A~.

Remark 50. In the quantum setting, the solutions are given by the flow (t, f)→ f t on F~ (P ). However,
this flow is no more equivalent to a flow on P because

f t 6= f
(
ut
)
,

where ut = exp
(∑

k≥0
tk
~
[
·, Hk

])
u and u ∈ A~. This quantum behavior is due to the fact that the

bracket
[
·, H

]
is not a derivation on F~ (P ) with respect to the usual product. Conceptually, this comes

from the fact that the space P is not the space of states in the quantum setting. Thus, it does not make
sense to think of the solutions as a flow on P .

1.4.5 Quantum tau functions

In [BDGR16], Buryak, Dubrovin, Guéré and Rossi generalized the definition of tau functions to quantum
integrable systems. We present this definition in this section.

Definition 51. A quantum tau structure is a collection of quantum Hamiltonian densities
{
hi ∈ A~, i ≥ −1

}
such that

1. the quantum Hamiltonians commute[
H i, Hj

]
= 0, for any i, j ≥ −1,

2. the quantum Hamiltonian densities are tau symmetric[
Hi−1, Hj

]
=
[
Hj−1, H i

]
, for any i, j ≥ 0,

3. the evolution given by the quantum Hamiltonian H−1 is trivial

∂f

∂t−1
=

1

~
[
f,H−1

]
= 0, for any f ∈ F~ (P ) ,

4. the quantum Hamiltonian H0 generates the translations in space

∂f

∂t0
=

1

~
[
φ,H0

]
= ∂xφ for any φ ∈ A~.

The construction of the quantum tau functions from the quantum tau structure is similar the con-
struction of classical tau functions. We point out the differences. The quantum two-point function Ω~

i,j is
the element of A~ defined by

∂xΩ~
i,j :=

1

~
[
Hi−1, Hj

]
,
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with a choice of the constant Ω~
i,j |u∗=0. In the classical case, we chose this constant to be 0. As we pointed

out in Remark 32, this choice is justified by the fact that the Hamiltonian densities of interest have no
constant term, we then had Ωi,0 = hi−1. In the quantum setting this is no longer true. For example, the
Hamiltonian densities of the quantum KdV hierarchy given in Example 45 have non constant terms. In
Section 3.2, we give a coherent choice of this constant in the example of quantum KdV, this leads to the
definition of the quantum Witten-Kontsevich series.

The time dependent quantum two-point functions

Ω~,t
i,j = exp

∑
i≥0

ti
~
[
·, H i

]Ω~
i,j ∈ A~ [[ε, ~, t0, t1, . . . ]]

satisfies the same symmetries than its classical counterpart: Ω~,t
i,j is symmetric with respect to the exchange

i, j and
∂Ω~,t

i,j

∂tk
is symmetric with respect to the exchange of i, j, k. As in the classical setting, the construction

of quantum tau functions follows from these symmetries by using twice the Poincaré lemma.

Lemma 52. Let uinitial ∈ C [[x]]. There exists a series F ~ ∈ C [[ε, ~, t0, t1, . . . ]] uniquely defined up to the
constant and linear terms in t∗ such that

∂2F ~

∂ti∂tj
= Ω~,t

i,j

(
uinitial (x = 0)

)
.

Definition 53. The quantum log τ function associated to uinitial is F ~.

The construction of quantum log τ functions is intended to satisfy the following proposition.

Proposition 54. The classical limit of the quantum log τ function F ~ associated to the point uinitial ∈ P
is the classical log τ function F associated to the solution starting at uinitial, that is

F ~
∣∣∣
~=0

= F .

A quantum log τ function is associated to a point uinitial ∈ C [[x]] and not a solution of the hierarchy
as it is the case classically. This point uinitial is not an initial condition of a quantum solution. We only
use this notation in order to match with the classical one.

Remark 55. The Hamiltonian densities of quantum KdV together with HKdV
−1 = u0 form a tau structure

(see Section 3.1.2). Let uinitial ∈ C [[x]] and F ~ the quantum log τ function associated to it. We still have
the relation

∂2F ~

∂t0∂t0
= ut

∣∣∣
u:=uinitial(x=0)

,

however the RHS is not a solution of the quantum hierarchy since we evaluate the solution t → ut at
uinitial (x = 0). The fact that ∂2F~

∂t0∂t0
is not a solution of the hierarchy is a major difference with the classical

case.

The definition of quantum log τ functions mimics the definition of classical log τ functions. The goal
of this thesis is to study the first example of quantum log τ function. Our results suggest that the other
examples deserve a further interest.
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Chapter 2

The geometry of Mg,n

2.1 The moduli space of curves

2.1.1 Definition of the moduli space of curves

2.1.1.1 Introduction

A moduli spaceM is roughly speaking a geometrical space that classify geometrical objects of the same
type. More precisely, we want that one point represents one object (and all the objects equivalent to it),
such that two objects that are closely related should be nearby. In the good cases, there exists a so-called
universal family π : F →M which is such that π−1 (p) is a realization of the object p.

Example 56. The moduli space classifying isomorphism classes of finite sets is N. Each point n ∈ N
corresponds to an isomorphism class of sets of cardinality n. Let U =

{
(n,m) ∈ N2|1 ≤ m ≤ n

}
, the

universal family is the projection on the first coordinate π : U → N.

Example 57. The moduli space classifying complex vectorial lines in C2 is P1. The universal family over
P1 is π : O (−1)→ P1 where O (−1) =

{
(l, x) ∈ P1 × C2|x ∈ l

}
is the tautological bundle.

2.1.1.2 The moduli space of curves

We will be interested in the moduli spaces classifying the following objects.

Definition 58. A curve of genus g with n marked points is a compact Riemann surface with n distinct
points. Two curves of genus g with n marked points (C, x1, . . . , xn) and

(
C
′
, x
′

1, . . . , x
′

n

)
are isomorphic if there

exists a biholomorphism φ : C → C
′
respecting the marked points φ (xi) = x

′

i, for all 1 ≤ i ≤ n.

We denote by Mg,n the set of isomorphism classes of curves of genus g with n marked points and
endow it with the following geometrical structure.

Proposition 59 ([ACG11]). Suppose 2g−2+n > 0. There exists a complex orbifold (or Deligne-Mumford
stack) structure on Mg,n, of dimension 3g − 3 + n, such that points are isomorphism classes of genus g
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curves with n marked points and the stabilizer of a point is the automorphism group of the corresponding
marked curve.

Remark 60. The condition 2g − 2 + n > 0, called the stability condition excludes four cases

(g, n) = (0, 0) , (0, 1) , (0, 2) and (1, 1) .

These four cases correspond to the marked curves with an infinite automorphism group. Thus, their
corresponding moduli spaces can not be endow with a orbifold struture.

Proposition 61 ([ACG11]). There exists a orbifold Cg,n, of dimension 3g − 2 + n, and a morphism of
orbifold π : Cg,n → Mg,n such that π−1 ([C, x1, . . . , xn]) is a genus g curve with n marked points in the
equivalence class [C, x1, . . . , xn].

Definition 62. The map π : Cg,n →Mg,n is called the universal curve.

The universal curve π : Cg,n →Mg,n is endowed with n sections σ1, . . . , σn. The section σi maps the
equivalence class of curves [C, x1, . . . , xn] to the marked point xi in π−1 ([C]).

Example 63. We describe the moduli spacesM0,3 andM0,4. By the Riemann-Roch theorem, any genus
0 curve is biholomorphic to P1. Moreover, the biholomorphisms from P1 to P1 are well know: these are the
Möbius transformations. From their explicit form, we see that there exists a unique Möbius transformation
sending any triplet (x1, x2, x3) of points of P1 to the triplet (0, 1,∞). Thus, every genus 0 curve with three
marked points is isomorphic to

(
P1, 0, 1,∞

)
, the moduli spaceM0,3 is then a point.

Similarly, P1 with four marked points (x1, x2, x3, x4) is isomorphic to
(
P1, 0, 1,∞, x

)
, where x is the

image of x4 by the unique Möbius transformation sending (x1, x2, x3) → (0, 1,∞). We deduce that
M0,4 ' P1\ {0, 1,∞}. Note that this space is not compact. We introduce a compactification in the next
section.

2.1.1.3 The Deligne-Mumford compactification

We introduce a compactification of the moduli space of curves. The idea of this compactification is to add
points to the moduli space that correspond to singular curves.

Definition 64. A nodal curve is a singular algebraic curve, with a finite number of nodal singularities,
i.e. a singularity locally given by

{
(x, y) ∈ C2|xy = 0

}
. The genus of a nodal curve is the genus of the

curve obtained by smoothing the singularities. A nodal curve with n marked points is such that its marked
points are pairwise distinct and distinct of the nodes.

Remark 65. Any Riemann surface is isomorphic to a smooth algebraic curve. In particular, a curve of
genus g with n marked points is a nodal curve (with no nodes).

Definition 66. A stable curve of genus g with n marked points is a nodal curve of genus g with n marked
points satisfying the stability condition

2g − 2 + n < 0.
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Proposition 67 ([ACG11]). There exist two compact smooth complex orbifolds Mg,n, Cg,n and a map
π : Cg,n →Mg,n such that

• Mg,n ⊂ Mg,n and Cg,n ⊂ Cg,n are open dense subsets such that π|Cg,n is the universal curve π :
Cg,n →Mg,n,

• if [C] ∈Mg,n, then π−1 ([C]) is a stable curve, this curve is nodal if and only if [C] ∈Mg,n\Mg,n,

• each stable curve is isomorphic to a unique fiber of π,

• the stabilizer of [C] ∈Mg,n is isomorphic to the automorphism group of C.

Definition 68. The orbifoldMg,n is called the Deligne-Mumford compactification ofMg,n and π : Cg,n →
Mg,n the universal curve.

Example 69. We describe the Deligne-Mumford compactification M0,4. We add three points to M0,4

corresponding to nodal curves defined by two genus 0 smooth components, each of them containing 2
marked points, intersecting in one node:

1

2

3

4

1

3

1

4

2

4

2

3

These stable curves describe what happen when marked points collide. For example, the leftmost curve
corresponds to the collision of x3 and x4. In this case, these two points “jump” on a new genus 0
component.

2.1.2 Natural morphisms between moduli spaces

2.1.2.1 The forgetful map

The forgetful map is the map π : Mg,n+1 → Mg,n defined in the following way. Start from a curve
([C] , x1, . . . xn+1) ofMg,n+1. We forget the (n+ 1)th marked point and obtain a genus g nodal curve with
n marked points. However the stability condition of this curve does not necessary hold. The pathological
cases happen when xn+1 is in a bubble (i.e. a genus 0 component) with 2 other special points (nodes or
marked points). In these cases, we contract the bubble to a point, this restore the stability condition.

i

n+ 1

i

n+ 1

We then obtain a stable curve of genus g with n marked points, that is an element ofMg,n.
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2.1.2.2 The glueing maps

We define two glueing maps.

1. The glueing map with one separating node

gl1 :Mg1,n1+1 ×Mg2,n2+1 →Mg1+g2,n1+n2

attaches a curve ofMg1,n1+1 with a curve ofMg2,n2+1 by identifying their lasts marked points

1 3
4

2

1

4

1 3

2

2

Figure 2.1.1: A glueing map fromM1,4 ×M2,2 toM3,4.

2. The glueing map with one non separating node

gl2 :Mg,n+2 →Mg+1,n

identifies the two last points of a curve of genus g with n+2 marked points. It gives a curve of genus
g + 1 with n marked points.

1

3

4

2

2

1

Figure 2.1.2: A glueing mapM1,4 →M2,2

2.1.3 Stable graphs

We associate to a stable curve the following combinatorial data.

Definition 70. A stable graph is the data of

Γ = (V,H, g : V → Z≥0, θ : H → V, ι : H → H)

such that
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• V is the set of vertices equipped with a genus function g : V → Z≥0,

• H is the set of half-edges equipped with a vertex assignment θ : H → V and an involution ι : H → H,

• the set of edges E is defined by the set of orbits of length 2 of ι,

• the set of legs L is defined by the set of fixed points of ι,

• (V,E) is a connected graph,

• on each vertex, the stability condition holds

2g (v)− 2 + n (v) > 0,

where n (v) = |H (v)|, where H (v) is the set of half edges assigned to v by the map θ.

The stable graph associated to a stable curve C is the following. Each vertex v corresponds to a connected
component of C and g (v) is the genus of the component. Each edge corresponds to a node and each leg
corresponds to a marked point.

We now describe the inverse operation which associates stable curves to a stable graph. To each graph
Γ we associate the product of moduli spaces

MΓ =
∏
v∈V
Mg(v),n(v)

and a map
ξΓ :MΓ →Mg(Γ),n(Γ),

where g (Γ) =
∑

v∈V g (v) + h1 (Γ) is the genus of the graph and n (Γ) = |L|. We recall that h1 (Γ) =
|E| − |V |+ 1. This map associates to a product of curves ofMΓ the stable curve inMg(Γ),n(Γ) obtained
by glueing the curves along the edges of Γ by the two glueing maps.

Remark 71. The image ξΓ

(
MΓ

)
is a codimension |E| locus called a boundary stratum. The set of

boundary strata gives a stratification ofMg,n.

2.1.4 The tautological rings

Definition 72. The minimal family of subrings R∗
(
Mg,n

)
⊂ H∗

(
Mg,n

)
containing 1 ∈ H0

(
Mg,n

)
and

stable under push-forwards by the forgetful map and by the two glueing maps is called the family of
tautological rings. A class in a tautological ring is called a tautological class.

Remark 73. The Poincaré duality works on compact orbifolds, so in particular on Mg,n. We will
sometimes use the same notation for a cohomology class and its Poincaré dual.

Example 74. The class of a boundary stratum associated to a graph Γ is a tautological class. Indeed, it
is the image of

∏
v∈V

[
Mg(v),n(v)

]
by the glueing maps.

The tautological rings contain most of the cohomology classes ofMg,n we are interested in. It is a hard
task to find a non tautological class, see e.g. [GP01, FP11, PZ18] for the construction of a non tautological
classes.
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2.1.4.1 The ψ-, κ- and λ-classes

We give three examples of tautological classes: the ψ-classes, the κ-classes and the λ-classes. We first need
to explain how to extend the cotangent bundle on stable curves.

Definition 75 ([ACG11]). Let L be the relative dualizing line bundle of π : Cg,n →Mg,n.

This line bundle L → Cg,n is identified with the cotangent line bundle over the smooth part of Cg,n.
Moreover, let [C] ∈ Mg,n be a stable curve, a section of L over π−1 ([C]) is a meromorphic differential
form on the normalization of C with at most simple poles at the preimages of the nodes with opposite
residues.

Let σi : Mg,n → Cg,n be the section of the universal curve at the ith point. Let Li = σ∗i (L) be the
pull back onMg,n of the restriction at the ith point of relative dualizing line bundle L.
Definition 76. The class ψi ∈ H2

(
Mg,n

)
is defined by the first Chern class of the bundle Li →Mg,n

ψi := c1 (σ∗i (L)) .

We justify that the ψ-classes are tautological. Let δ(i,n+1) := gl1∗
([
Mg,n

]
×
[
M0,3

])
∈ H2

(
Mg,n+1

)
where gl1 : Mg,n ×M0,3 → Mg,n+1 and such that the points i and n + 1 belong to the curve of M0,3.
The class δ(i,n+1) is represented by the curves

i

n+ 1

where the left component contains the genus g and n − 1 marked points. The self intersection formula
gives δ2

(i,n+1) = δ(i,n+1) · c1

(
N
(
δ(i,n+1)

))
, where N

(
δ(i,n+1)

)
is the normal bundle to the divisor δ(i,n+1).

Moreover, we have N
(
δ(i,n+1)

)
= p∗ (L∗i ) |δ(i,n+1)

, where Li is the cotangent bundle at the ith point on
Mg,n. We deduce that

ψi = −p∗
(
δ2

(i,n+1)

)
.

The ψ-classes are then tautological.

Definition 77. Let π :Mg,n+1 →Mg,n be the forgetful map. The κ-class is defined by κj = π∗

(
ψj+1
n+1

)
∈

H2j
(
Mg,n

)
.

Since the ψ-classes are tautological, the κ-classes are also tautological.
Let Eg := π∗ (L) be the rank g vector bundle overMg,n whose fiber over C is H0 (C,L|C). It is called

the Hodge bundle.

Definition 78. The λ-classes are the g + 1 Chern classes of the Hodge bundle

λj = cj (E) ∈ H2j
(
Mg,n

)
.

The Mumford formula [Mum83] expresses the Chern character of the Hodge bundle in term of ψ-classes,
κ-classes and push-forwards of stable graphes with one node decorated with ψ-classes. The λ-classes are
expressed in term of the Chern character of the Hodge, it follows that the λ-classes are tautological.
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2.1.4.2 Tautological relations

The boundary strata decorated with ψ- and λ-classes are known to additively generate the whole tau-
tological ring (see [FP11]). However there are relations between these generators. A relation between
tautological classes is called a tautological relation.

Example 79. InM0,4 = P1, the cohomology class of the point does not depend of the point. In particular,
we have the following equality in H2

(
M0,4

)
:

1

2

3

4

1

3

2

4
=

This tautological relation is called the WDVV relation. This very simple relation has non trivial conse-
quences, see e.g. [BSSZ15].

Example 80. As a consequence of Mumford formula, one can deduce (see [Mum83]) that

λ2
g = 0 in H∗

(
Mg,n

)
,

for all g, n satisfying 2g − 2 + n > 0.

In [Pix12], Pixton conjectured a collection of tautological relations called the Pixton-Faber-Zagier
relations. He also conjectured that these relations contain all the tautological relations. The Pixton-
Faber-Zagier relations were proved in [PPZ13].

2.1.5 Intersection numbers

A class α ∈ H2(3g−3+n)
(
Mg,n

)
is given by a number (recall that where 3g−3+n is the complex dimension

ofMg,n). By Poincaré duality, this number is given by∫
Mg,n

α.

We call intersection numbers the classes of H2(3g−3+n)
(
Mg,n

)
. Since we are dealing with numbers, the

ring R2(3g−3+n)
(
Mg,n

)
is in general the easiest tautological ring to study. Moreover these numbers, whose

properties come from the geometry of the moduli space of curves, are related to many other subjects.
In this thesis, we will be interested in the relations between intersection numbers, integrable systems
and Hurwitz theory. The first and striking example of such relation is given by the Witten conjecture
explained in the next section. More recently, Buryak recognized the coefficients of the KdV Hamiltonians
as intersection numbers. This is the starting point for the quantization of the KdV hierarchy which leads
to the definition of the quantum Witten-Kontsevich series. A direct link between intersection numbers
and Hurwitz numbers is given by the ELSV formula, see Section 4.2.
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Hodge integrals

As an example of intersection numbers, we will briefly discuss Hodge integrals. The Hodge integrals are
the intersection numbers ∫

Mg,n

λk1 . . . λkmψ
d1
1 . . . ψdnn ,

where g, n,m ≥ 0 satisfy 2g − 2 + n > 0 and k1, . . . , km, d1, . . . , dn ≥ 0. Using the Mumford formula,
any Hodge integral can be computed from the knowledge of intersection numbers involving only ψ-classes.
These numbers can then be computed using the Witten conjecture. However there are few explicit formulas
for Hodge integrals.

In [GP98], Getzler and Pandharipande deduced from the degree 0 of the Virasoro constraints the
so-called λg-conjecture ∫

Mg,n

λgψ
d1
1 . . . ψdnn =

(
2g − 3 + n
d1, . . . , dn

)∫
Mg,1

λgψ
2g−2 (2.1.1)

and 1 +
∑

g≥1 z
2g
∫
Mg,1

λgψ
2g−2 = z/2

sh(z/2) . A direct proof can be found in [FP03a, GJV09, FP98]. The
dependency in d1, . . . , dn of the intersection number of the LHS is contained in a combinatorial factor
and the intersection number

∫
Mg,1

λgψ
2g−2 only depends of the genus. A similar formula exists for the

intersection number∫
Mg,n

λgλg−1ψ
d1
1 . . . ψdnn =

(2g − 3 + n)! (2g − 1)!!

(2g − 1)!
∏n
i=1 (2di − 1)!!

∫
Mg,1

λgλg−1ψ
g−1,

where
∫
Mg,1

λgλg−1ψ
g−1 =

|B2g |(g−1)!
2g(2g)! , see [Fab99]. We denoted by Bi the Bernoulli numbers.

Remark 81. The Hodge integrals with one and two λ-classes appear as the coefficients of the quantum
Witten-Kontsevich series (see Section 6.1.1 for the exact statement). The presence of Hodge integrals with
two λ-classes is still unexplained.

2.2 The Witten-Kontsevich series

In [Wit90], by identifying two models of quantum gravity, Witten conjectured that the generating series
of intersection numbers of monomials of ψ-classes

FWK (t0, t1, . . .) =
∑
g,n≥0

2g−2+n>0

ε2g

n!

∑
d1,...,dn≥0

〈τd1 . . . τdn〉g td1 . . . tdn ,

where 〈τd1 . . . τdn〉g =
∫
Mg,n

ψd11 . . . ψdnn , is the log τ function of the KdV hierarchy associated to the string
solution (recall that the string solution is the solution u (x, t0, t1, . . . ) of the KdV hierarchy with initial
condition u (x, 0, 0, . . . ) = x). This conjecture was then proved by Kontsevich in [Kon92]. The series
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FWK is called the Witten-Kontsevich series. The numbers 〈τd1 . . . τdn〉g are called the correlators of the
Witten-Kontsevich series.

This theorem is the first example of a link between the geometry ofMg,n and integrable hierarchies.
It is the starting point of many beautiful works. For example, Dubrovin and Zhang found a way to
build a Hamiltonian presentation of the KdV hierarchy with the only input of FWK . They generalized
this procedure by constructing an integrable hierarchy associated to the generating series of intersection
numbers of ψ-classes with any Cohomological Field Theory (a CohFT is a family of tautological classes on
Mg,n, for any g and n, compatible with the tautological maps, see [KM94]) that satisfy a certain property
called semi-simplicity. These integrable hierarchies associated to any semi-simple CohFT are called the
Dubrovin-Zhang hierarchies (see [DZ05, BPS12a, BPS+12b] for their constructions)

Remark 82. Specifying the genus in the notation 〈τd1 . . . τdn〉g is redundant since this number is non-zero
only if

∑
di = 3g − 3 + n. We use this notation in view of its quantum generalization.

String and dilaton equations

It follows from the pull-back property of ψ-classes

ψi = p∗ (ψi) + δ(i,n+1)

that intersection numbers of ψ-classes satisfy the two following equations.

Proposition 83 (String equation, [Wit90]). The correlators of the Witten-Kontsevich series satisfy the
string equation

〈τ0τd1 . . . τdn〉g =

n∑
i=1

〈τd1 . . . τdi−1 . . . τdn〉0,g.

This equation can be reformulated as an equation on FWK

∂

∂t0
FWK =

∑
i≥0

ti+1
∂

∂ti
FWK +

t20
2
.

TheWitten-Kontsevich series is related to the string solution by ∂2FWK

∂t0∂t0
(x+ t0, t1, . . . ) = ustring (x, t0, t1, . . . ),

see Remark 34. As a consequence of the string equation, we get ustring (x, 0, 0, . . . ) = x. Thus, the string
solution is the solution of the KdV hierarchy with initial condition given by the string equation. This
explains the terminology.

In [Wit90], Witten explained how to use the KdV hierarchy and the string equation in order to compute
any intersection intersection number of monomial of ψ-classes.

Example 84. As a consequence of the string equation, we find∫
M0,n

ψn−2 = 1

since
∫
M0,n

ψn−2 =
∫
M0,3

ψ andM0,3 is a point.
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Proposition 85 (Dilaton equation, [Wit90]). The correlators of the Witten-Kontsevich series satisfy the
dilaton equation

〈τ1τd1 . . . τdn〉g = (2g − 2 + n) 〈τd1 . . . τdn〉g.

This equation can be reformulated as an equation on FWK

∂

∂t1
FWK =

∑
i≥0

ti
∂

∂ti
FWK + ε

∂

∂ε
FWK − 2FWK .

Remark 86. Let α ∈ H∗
(
Mg,n+1

)
and β ∈ H∗

(
Mg,n

)
such that π∗ (β) = α. We can slightly generalize

the string and dilaton equation by∫
Mg,n+1

αψd11 . . . ψdnn =
n∑
i=1

∫
Mg,n

βψd11 . . . ψdi−1
i . . . ψdnn

and ∫
Mg,n+1

αψd11 . . . ψdnn ψn+1 = (2g − 2 + n)

∫
Mg,n

βψd11 . . . ψdnn .

This is clear from the proof of Witten [Wit90].

Remark 87. These two equations, string and dilaton, are the two first equations of the so-called Virasoro
constraints. In the more general context of Gromow-Witten theory, it is conjectured that the Virasoro
constraints are satisfied by the generating series of Gromov-Witten numbers, see [EHX97, Get99]. In
particular, the Witten-Kontsevich series satisfy the Virasoro constraints. Moreover, it is proved in [DVV93]
that being a solution to Virasoro constraints is equivalent to being a solution of the KdV hierarchy and
the string equation.

2.3 The double ramification cycle

2.3.1 Definition of the double ramification cycle

Fix two nonnegative integers g, n such that 2g− 2 +n > 0 and a list of integer A = (a1, . . . , an) such that∑n
i=1 ai = 0 . We define a tautological class depending on g, n and A called the double ramification cycle.

2.3.1.1 The double ramification cycle on Mg,n

Consider the locus inMg,n defined by

Z =

{
[C, x1, . . . , xn] |OC ' OC

(
n∑
i=1

aixi

)}
.

Definition 88. The Poincaré dual of Z is an element of H∗ (Mg,n) called the double ramification cycle
and denoted by DRg (a1, . . . , an).
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In order to extend the definition of the double ramification cycle to Mg,n, we first reformulate this
definition. A curve belongs to the locus Z if there exists a nonzero holomorphic map f : C → P1 with
div (f) =

∑n
i=1 aixi. Moreover two such maps differ by a nonzero constant or equivalently an isomorphism

of the target P1 fixing 0 and ∞. We define the set{
(C, x1, . . . , xn, f) |f : C → P1 s.t.div (f) =

n∑
i=1

aixi

}/
∼,

where two maps f1 : C1 → P1 and f2 : C2 → P1 are isomorphic if and only if there exist two isomorphisms
α : C1 → C2 and β : P1 → P1 respecting the markings (the image of a marked point of C by f is a marked
point) and such that β ◦f1 = f2 ◦α. We then obtain Z from this set by forgetting the maps f and keeping
the source curves.

2.3.1.2 The moduli space of rubber maps

The definition of the double ramification cycle on Mg,n follows the same idea. It is obtained from the
moduli space that parametrize the so-called rubber maps by forgetting the maps and keeping the source
curve.

We define two unordered lists µ = (a ∈ A, a > 0) and ν = (a ∈ A, a < 0). Note that µ and −ν are
two partitions of the same number. We denote by n0 the cardinal of A\ (µ ∪ ν) which corresponds to the
number of marked points with weight 0.

Definition 89. A prestable rubber map (C, x1, . . . , xn)
f→ (L, x0, x∞) consists of the following data.

• A connected genus g curve with nmarked points (C, x1, . . . , xn) possibly nodal such that the marking
are different from the nodes.

• A chain of P1 denoted by L. We suppose that each sphere is attached by the point ∞ to the point
0 of the next sphere by a nodal singularity. We denote by x0 the point 0 at one extremity of the
chain and x∞ the point ∞ of the other extremity.

• A degree map of degree d =
∑

a∈µ a = −
∑

a∈ν a such that

– the ramification profile over x0 is given by µ,
– the ramification profile over x∞ is given by −ν,
– the pre-images of a node of L are nodes of C. Moreover, the ramification orders of f at these

node of C are opposed (kissing condition).

Two maps f : (C, x1, . . . , xn)→ L and f ′ :
(
C
′
, x
′
1, . . . , x

′
n

)
→ L

′ and are isomorphic if there exist two

isomorphisms α : C → C
′ and β : L→ L

′ respecting the markings such that β ◦ f = f
′ ◦ α.

The automorphism group of f : (C, x1, . . . , xn) → L is determined by the curves automorphisms
α : C → C and β : L→ L commuting with f .

Definition 90. A rubber map is prestable rubber map with a finite automorphism group.
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Figure 2.3.1: A rubber map f of degree 6 with µ = (2, 3, 1), ν = (−2,−1,−3) and n = 7.

We denote by M∼g,n
(
P1, µ, ν

)
the moduli space parametrizing isomorphisms classes of rubber maps.

This moduli space, sometimes also called the moduli space of unparameterized relative stable maps to P1

was studied by Jun Li in [L+01] (see also [Li04]).

Proposition 91 ([L+01]). The moduli space of rubber maps M∼g,n
(
P1, µ, ν

)
has a virtual fundamental

class of virtual dimension 2g − 3 + n.

The moduli spaceM∼g,n
(
P1, µ, ν

)
is endowed with two maps.

• The map
ε :M∼g,n

(
P1, µ, ν

)
→Mg,n

forgets everything except the marked source curve. If the marked curve have non stable components,
i.e. bubbles with less than 3 special points, we contract them.

• The map
ρ :M∼g,n

(
P1, µ, ν

)
→ LMr+n0/Sr

forgets everything except the target curve. The target space LMr+n0 is called the Losev-Manin
space. It parametrize stable chains of P1 with r + n0 + 2 marked points. These r + n0 + 2 marked
points are of two types; (i) the two marked points x0 and x∞ at the extremities of the chain and (ii)
r + n0 other marked points. The marked points of type (ii) are allowed to collide with each others.
We refer to [LM00] for the construction of this space.
The marked points of type (ii) of the curves in the image of ρ have two origins: there are n0 of
them which correspond to the image of the marked points of C with weight 0 and r of them which
correspond to the branching points of the rubber map.
We finally quotient LMr+n0 by Sr since the branching points are not numbered.
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2.3.1.3 The double ramification cycle on Mg,n

Definition 92. The double ramification cycle onMg,n is

DRg (a1, . . . , an) = ε∗

([
M∼g,n

(
P1, µ, ν

)]virt
)
.

This cycle has virtual dimension 2g − 3 + n. It is proved in [MW13] that the restriction to Mg,n of
this cycle is the class [Z].

Proposition 93 ([FP03b]). The double ramification cycle is a tautological class.

The double ramification cycle satisfies the following pull-back property.

Proposition 94 ([BHP+20], Invariance II). We have

π∗ (DRg (a1, . . . , an)) = DRg (a1, . . . , an, 0) ,

where π :Mg,n+1 →Mg,n and
∑n

i=1 ai = 0.

2.3.2 Computations of the double ramification cycle

Since the double ramification cycle is tautological, a long standing question was to find an expression of the
double ramification cycle in term of the generators of the tautological ring. This question was answered
in [JPPZ17]. They found a tautological class denoted by P d,rg (A), of cohomological degree 2d, depending
on a parameter r and expressed as a sum of stable graphs decorated with ψ-classes. Pixton proved in
[Pix] that this class depends polynomially of r, when r is large enough. The double ramification cycle is
obtained via the constant term of this polynomial by

DRg (A) = P g,0g (A) .

This formula simplifies when A = (0, . . . , 0).

Proposition 95 ([JPPZ17]). We have

DRg (0, . . . , 0) = (−1)g λg.

In a paper to appear, Pixton and Zagier used the class P g,0g (A) to prove the polynomiality of the
double ramification cycle.

Proposition 96 ([PZ]). There exists a polynomial Qg,n (a1, . . . , an) ∈ H2g
(
Mg,n

)
[a1, . . . , an] of polyno-

mial degree 2g such that
DRg (a1, . . . , an) = Qg,n (a1, . . . , an)

for all (a1, . . . , an) ∈ Zn with
∑
ai = 0.

The expression of the double ramification cycle obtained by Janda, Pandharipande, Pixton and Zvonk-
ine is hard to use in general. Indeed, you have to sum over many graphs and P d,rg (A) is not explicitly
polynomilal in r. We give various ways to compute the double ramification cycle.

Remark 97. There exists a computer program made by Schmidt and van Zelm which computes in some
cases the double ramification cycle in terms of decorated stable graphs, see [SvZ].
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2.3.2.1 The double ramification cycle with ψ-classes

In [BSSZ15], the authors studied intersections of ψ-classes with the double ramification cycle. By pulling
back a simple tautological relation of the Losev-Manin space (the ψ-class is equivalent to the divisor
with one separating node) to the moduli space of rubber maps, they obtained various expressions of
intersections of ψ-classes with the double ramification cycle. In particular, they obtained an expression
for the intersection number ψ2g−2+n

s DRg (a1, . . . , an), with 0 ≤ s ≤ n .

Notation 98. Denote by S (z) the power series

S (z) =
sh (z/2)

z/2
=
∑
l≥0

z2l

22l (2l + 1)!
.

Proposition 99 ([BSSZ15]). We have

ψ2g−2+n
s DRg (a1, . . . , an) =

[
z2g
] ∏i 6=s S (aiz)

S (z)
. (2.3.1)

2.3.2.2 The double ramification cycle with the λg-class

Denote by Mct
g,n ⊂ Mg,n the moduli space of stable curves with only separating nodes. The class λg

vanishes on the complement ofMct
g,n inMg,n. Indeed, let gl2 =:Mg−1,n+2 →Mg,n be the glueing map

with one non separating node. We have the following exact sequence of vector bundles overMg−1,n+2:

0→ Eg−1 → gl∗2 (Eg)→ C→ 0,

where the first map is the identity and the second is the residue at the non separating node. It follows that
that gl∗2 (λg) = 0. We conclude by remarking that the map gl2 : Mg−1,n−2 →

(
Mct

g,n

)c ⊂ Mg,n, where(
Mct

g,n

)c is the complement ofMct
g,n inMg,n, is an isomorphism.

Thus, in order to compute λgDRg (a1, . . . , an), it is enough to use an expression of the DR cycle
restricted toMct

g,n. Hain obtained the following expression.

Proposition 100 ([Hai11]). We have

DRg (a1, . . . , an)
∣∣∣
Mct

g,n

=
1

g!

−1

4

∑
I⊂{1,...,n}

g∑
h=0

a2
Iδ
I
h

g

,

where aI :=
∑

i∈I ai, δ
{i}
0 = −ψi, δ

{1,...,̂i,...n}
g = −ψi and

. . .

. . .

genus h

I

. . .

. . .

genus (g − h)

Ic

δ
I
h =
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is the class of stable curves with one separating node, the left component is of genus h and contains the
marked points of I, the right component is of genus (g − h) and contains the rest of the marked points.

Remark 101. As a consequence of Hain’s formula, we get that λgDRg (a1, . . . , an) is a homogeneous
polynomial of degree 2g in the indeterminates a1, . . . , an.

Remark 102. Over Mct
g,n, the formula of [JPPZ17] for the double ramification cycle simplifies since

P d,rg (A)
∣∣
Mct

g,n
is a sum over stables trees and a constant polynomial in r. Using the intersection theory for

graphs (see [PPZ13]) in Hain’s formula, we obtain the same expression for the double ramification cycle
restricted onMct

g,n.

Example 103. We compute
∫

DR1(a,−a) λ1. By the Hain formula, we compute DR1 (a,−a)
∣∣∣
Mct

1,2

=

a2

2 (ψ1 + ψ2). Hence ∫
DR1(a,−a)

λ1 = a2

∫
M1,2

λ1ψ1 = a2

∫
M1,1

λ1,

where we used the string equation in the last equality. Finally, using the λg-conjecture, we find∫
DR1(a,−a)

λ1 =
a2

12
.
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Chapter 3

The quantum KdV hierarchy and the
quantum Witten-Kontsevich series

In [Bur15], Buryak identified the coefficients of the KdV Hamiltonians as intersection numbers on the
double ramification cycle. For example, the first Hamiltonian density of the KdV hierarchy is given as a
formal Fourier series by

h0 =
1

2

∑
a1,a2∈Z

∫
DR0(0,a1,a2,−a1−a2)

ψ0 pa1pa2e
i(a1+a2)x − ε2

∑
a∈Z

∫
DR1(0,a,−a)

ψ0 pae
iax.

Later, Buryak and Rossi [BR16] used deformation quantization to define a quantum version of the KdV
hierarchy. They found a collection of quantum Hamiltonians which commute with respect to the star
product of F~ (P ) and which restrict to the KdV Hamiltonians when ~ = 0. The coefficients of these
quantum Hamiltonians are also given in term of intersection numbers on the double ramification cycle.

The work of Buryak and Rossi is actually more general. They constructed a quantum integrable
hierarchy associated to any CohFT. These are the so-called quantum double ramification hierarchies. The
quantization of the KdV hierarchy we present in this section is the quantum double ramification hierarchy
associated to the trivial CohFT.

In [BDGR16], the authors proved that the Hamiltonians densities of the quantum KdV hierarchy form
a tau structure. We can then build its quantum tau functions. The quantum Witten-Kontsevich series is
a natural choice of such function which restricts to the Witten-Kontsevich series when ~ = 0.

In this section, we present the quantum KdV hierarchy and its properties. These properties are deduced
from the geometric properties of the DR cycle. We then present the quantum Witten-Kontsevich series.
The study of this series is the main goal of this thesis.
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3.1 The quantum KdV hierarchy

3.1.1 Hamiltonians and Hamiltonians densities

We define the Hamiltonian densities as a formal Fourier series of differential polynomials. The symmetric
polynomials of these formal Fourier series are defined by an integral of ψ- and λ- classes over the double
ramification cycle.

Definition 104. Fix d ≥ −1. The quantum Hamiltonian density Hd of the quantum KdV hierarchy is

Hd (x) =
∑

g≥0,m≥0
2g+m>0

(i~)g

m!

∑
a1,...,am∈Z

(∫
DRg(0,a1,...,am,−

∑
ai)
ψd+1

0 Λ

(
−ε2

i~

))
pa1 . . . pame

ix
∑
ai ∈ A~, (3.1.1)

where Λ
(
−ε2
i~

)
:= 1 +

(
−ε2
i~

)
λ1 + · · ·+

(
−ε2
i~

)g
λg.

The virtual dimension of DRg (0, a1, . . . , am,−
∑
ai) is 2g− 1 + n, hence the summation over g and n

is finite. According to the polynomiality of the double ramification cycle, the Hamiltonian densities are
indeed elements of A~.

Definition 105. The quantum Hamiltonians of the quantum KdV hierarchy are obtained by the x-
integration of the Hamiltonian densities:

Hd =

∫
S1

Hd (x) dx ∈ F~ (P ) ,

for d ≥ −1.

Notation 106. From now on, we will only use the quantum Hamiltonian densities and quantum Hamil-
tonians of the quantum KdV hierarchy. We then suppress the upper index KdV we used in Chapter 1.

Remark 107. In [BR16], Buryak and Rossi introduced the Hamiltonian densities of the quantum KdV
hierarchy (i.e. the double ramification hierarchy associated to the trivial CohFT) by

Gd =
∑

g≥0,m≥0
2g−1+m>0

(i~)g

m!

∑
a1,...,am∈Z

(∫
DRg(−

∑
ai,a1,...,am)

ψd0Λ

(
−ε2

i~

))
pa1 . . . pame

ix
∑
ai .

A simple use of the string equation shows that Gd = Hd yielding to the same hierarchy. However only the
Hamiltonian densities Hd are tau-symmetric.

In [BDGR16], the authors defined the Hamiltonian density of the quantum KdV hierarchy byHBDGR
d :=∑

s≥0 (−∂x)s
∂Gd+1

∂us
. One can check the equality

∑
s≥0 (−∂x)s ∂φ

∂us
=
∑

a∈Z e
−iax ∂φ

∂pa
for any differential

polynomial φ. We deduce that the two definitions are equivalent:

HBDGR
d =

∑
b∈Z

e−iax
∂Gd+1

∂pa
= Hd.
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Remark 108. When we substitute ~ = 0, we obtain the classical Hamiltonians densities hd (x) :=
Hd (x)

∣∣
~=0

and the classical Hamiltonians hd := Hd

∣∣
~=0

of the KdV hierarchy. This is proved in the
original paper of Buryak [Bur15].

Examples of computations of Hamiltonian densities

We first compute H−1 and H0. We will use these expressions to justify that the Hamiltonian densities of
the quantum KdV hierarchy form a tau structure. Then, we compute H1. In Section 3.1.4, we will present
a recursive formula which allows to compute each Hamiltonian density of the quantum KdV hierarchy
from the non constant terms of H1 and from H−1.

Example 109. Computation of H−1. We compute∫
DRg(0,a1,...,am,−

∑
ai)
λl

for every g,m satisfying the stability condition 2g+m > 0 and such that 0 ≤ l ≤ g. The virtual dimension
of the double ramification cycle DRg (0, a1, . . . , am,−

∑
ai) is 2g − 1 +m. Thus, the integral vanishes for

dimensional reason unless g + (g − l) +m = 1. The only stable solutions are

(g, l,m) = (0, 0, 0) and (1, 1, 0) .

• The case (g, l,m) = (0, 0, 0). In genus 0, the double ramification cycle is identified with the funda-
mental class of the moduli space of curves. We get

∫
M0,3

1 = 1.

• The case (g, l,m) = (1, 1, 0) vanishes since DR1 (0, 0) = −λ1 and λ2
1 = 0.

We then find
H−1 =

∑
a∈Z

pae
iax = u0.

We then deduce that H−1 = p0 commutes with any element of F~ (P ).

Example 110. Computation of H0. We compute∫
DRg(0,a1,...,am,−

∑
ai)
ψ0λl

for every g,m satisfying the stability condition 2g+m > 0 and such that 0 ≤ l ≤ g. The integral vanishes
for dimensional reason unless g + (g − l) +m = 1. The only stable solutions are

(g, l,m) = (0, 0, 2) , (1, 0, 0) , (1, 1, 1) and (2, 2, 0) .

• The case (g, l,m) = (0, 0, 2). We get
∫
M0,4

ψ = 1.
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• The case (g, l,m) = (1, 0, 0). We use DR1 (0, 0) = −λ1 and the string equation to obtain∫
DR1(0,0)

ψ0 = −
∫
M1,2

λ1ψ0 = −
∫
M1,1

λ1.

The λg-conjecture (see Section 2.1.5) gives
∫
M1,1

λ1 = 1
24 .

• The case (g, l,m) = (1, 1, 1). We first use the dilaton equation and the pull-back property of the
double ramification cycle (see Proposition 94) to obtain∫

DR1(0,a,−a)
ψ0λ1 = 2

∫
DR1(a,−a)

λ1.

This last integral was computed in Example 103 using Hain’s formula, we find 2
∫

DR1(a,−a) λ1 = a2

12 .

• The case (g, l,m) = (2, 2, 0) vanishes since DR2 (0, 0) = λ2 and (λ2)2 = 0.

We obtain

H0 =
u2

0

2
+ ε2

u2

12
− i~

24
.

We then deduce that H0 =
∑

a∈Z
pap−a

2 − i~
24 and it follows that 1

~
[
φ,H0

]
=
{
φ,H0

}
= ∂xφ, for any

φ ∈ A~.

Example 111. Computation of H1. We compute∫
DRg(0,a1,...,am,0)

ψ2
0λl, such that

∑
ai = 0

for every g,m satisfying the stability condition 2g+m > 0 and such that 0 ≤ l ≤ g. The integral vanishes
for dimensional reason unless g + (g − l) +m = 3. There are only a finite number of solutions

(g, l,m) = (0, 0, 3) , (1, 0, 1) , (1, 1, 2) , (2, 1, 0) , (2, 2, 1) and (3, 3, 0) .

• The case (g, l,m) = (0, 0, 3). We have
∫
M0,5

ψ2 = 1.

• The case (g, l,m) = (1, 0, 1). We have∫
DR1(0,0,0)

ψ2 = −
∫
M1,3

λ1ψ
2 = −

∫
M1,1

λ1 = − 1

24
.

• The case (g, l,m) = (1, 1, 2). We have∫
DR1(0,a,−a,0)

λ1ψ
2
0 =

∫
DR1(0,a,−a)

λ1ψ0 = 2

∫
DR1(a,−a)

λ1 =
a2

12
.
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• The case (g, l,m) = (2, 1, 0). Using the explicit formula for intersection number of ψ-classes with
λgλg−1 discussed in the paragraph on Hodge integral, we get∫

DR2(0,0)
λ1ψ

2 = − 1

2880
.

• The case (g, l,m) = (2, 2, 1) vanishes since (λ2)2 = 0.

• The case (g, l,m) = (3, 3, 0) vanishes since (λ3)2 = 0.

We can then write H1 as

H1 =

∫
S1

(
u3

0

6
− i~u0

24
+ ε2

u0u2

24
− i~ε2 1

2880

)
dx.

Of course, this expression is not unique since we can modify the integrand by a ∂x-term without modifying
the expression of H1.

3.1.2 Integrability and tau symmetry

We present the integrability and the tau symmetry of the quantum KdV hierarchy. These properties follow
from geometric properties of the double ramification cycle.

Proposition 112 (Quantum integrability, [BR16]). We have[
Hd1 , Hd2

]
= 0, for d1, d2 ≥ −1.

Idea of the proof. We justify a tautological relation involving the double ramification cycle, the quan-
tum integrability follows from this relation. Recall that the double ramification cycle is defined by
ε∗

([
M∼g,n

(
P1, µ, ν

)]virt
)
, see Section 2.3.1 for the notations. We also introduced the map ρ :M∼g,n

(
P1, µ, ν

)
→

LMr+n0/Sr. Suppose n0 ≥ 2. There is a map p : LMr+n0 →M0,4 which forgets every point except x0, x∞
and the two first numbered points. We then pull back the WDVV relation on LMr+n0 to obtain the relation

1 2
x0 x∞

2 1
=

x0 x∞

where on each side of the equality, we sum over the ways to distribute the r+n0− 2 marked points on the
two sides of the separating node. Then we pull-back this relation by ρ : M∼g,n

(
P1, µ, ν

)
→ LMr+n0/Sr

and push it forward by ε :M∼g,n
(
P1, µ, ν

)
→Mg,n. We obtain a tautological relation of type
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1

2

2

1

=

where we sum on the two sides over the ways to distribute the marked points different from 1 and 2, the
number of bridges between the two components and genera of each component to obtain a curve of genus
g. Each side of the equation is a sum of glueings by the glueing maps of products of double ramification
cycles.
If we add the class ψd1 on the marked point 1 and a class ψd2 on the marked point 2, this formula says that
we can exchange the two ψ-classes. This is exactly what is required to prove Gd1 ?Gd2 = Gd2 ?Gd1 (recall

thatGd = Hd). Indeed the qth order expansion of the star product
∑

k1,...,kq>0
k1...kq
q!

←−−
∂

∂pk1
. . .
←−−
∂

∂pkq

−−−→
∂

∂p−k1
. . .
−−−→
∂

∂p−kq

glues a double ramification cycle in Gd1 and in Gd2 by q bridges.

Remark 113. The substitution ~ = 0 in 1
~
[
Hd1 , Hd2

]
= 0 gives the integrability condition of the classical

KdV hierarchy.

Proposition 114 (Tau symmetry, [BDGR16]). We have[
Hd1−1 (x) , Hd2

]
=
[
Hd2−1 (x) , Hd1

]
, for d1, d2 ≥ −1.

Remark 115. The substitution ~ = 0 in 1
~
[
Hd1−1 (x) , Hd2

]
= 1

~
[
Hd2−1 (x) , Hd1

]
gives the tau symmetry

of the KdV hierarchy.

3.1.3 String equation for the Hamiltonian densities

From the pull-back property of the ψ-classes, we deduce the following property of the Hamiltonian densities.

Proposition 116. Fix a nonnegative integer d. The Hamiltonian density Hd satisfies the string equation

∂

∂p0
Hd = Hd−1.

The proof is analogous to the one of Lemma 2.7 in [BR16].

Proof. We have

∂

∂p0
Hd =

∑
g≥0,m≥0

2g+m+1>0

(i~)g

m!

∑
a1,...,am∈Z

(∫
DRg(0,a1,...,am,0,−

∑
ai)
ψd+1

0 Λ

(
−ε2

i~

))
pa1 . . . pame

ix
∑
ai .
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Let π :Mg,m+3 →Mg,m+2 be the map defined when (g,m) 6= (0, 0) that forgets the (m+ 1)-th marked
point (we start the numbering at 0). We use that π∗DRg (0, a1, . . . , am,−

∑
ai) = DRg (0, a1, . . . , am, 0,−

∑
ai),

π∗
(

Λ
(
−ε2
i~

))
= Λ

(
−ε2
i~

)
and ψd+1

0 = π∗
(
ψd+1

0

)
+δ(i,n+1)π

∗ (ψd0), where δ(i,n+1) is the divisor with a bub-
ble containing the marked points 0 and (m+ 1), to obtain

∫
DRg(0,a1,...,am,0,−

∑
ai)
ψd+1

0 Λ

(
−ε2

i~

)
=


∫

DRg(0,a1,...,am,−
∑
ai)
ψd0Λ

(
−ε2
i~

)
if 2g +m > 0 and d > 0

0 if 2g +m > 0 and d = 0
δd,0 if g = 0,m = 0 and d = 0.

This proves the lemma.

3.1.4 A recursive construction of the Hamiltonian densities

In [BR16], Buryak and Rossi explained how to recursively construct the differential polynomials Gd in-
troduced in Remark 107 from the non constant terms of G1 = H1 and with initial condition H−1 = u0.
Moreover, the Hamiltonian densities Hd are obtained from Gd+1 by Hd =

∑
a∈Z e

−iax ∂Gd+1

∂pa
. We construct

in this way the Hamiltonian densities Hd. Let us recall their construction.

Proposition 117 ([BR16]). Let d ≥ −1. We have

∂x (D − 1)Gd+1 =
1

~
[
Gd, G1

]
, (3.1.2)

where D =
∑
ε ∂∂ε + 2~ ∂

∂~ +
∑

a∈Z pa
∂
∂pa

and G−1 = H−1.

Recursive construction. Suppose we know Gd. We use Eq. (3.1.2) to construct Gd+1 up to a constant
term. Moreover, the constants commute with any element of F~ (P ). We then use this expression to
construct Gd+2 up to a constant. We can recover the constant term of Gd+1 using a string equation
∂
∂p0

Gd+2 = Gd+1 (see Lemma 2.7 in [BR16]). However we do not need them since Hd is obtained as a
derivative of Gd+1.

3.2 The quantum Witten-Kontsevich series

The Hamiltonian densities of the quantum KdV hierarchy form a tau structure. Indeed, the integrability
and tau symmetry are presented in Section 3.1.2. The two last conditions of the tau structure are verified
in Examples 109 & 110. We can then build the quantum tau functions and in particular the quantum
Witten-Kontsevich. To define this quantum tau function, we have to specify our choice of constant terms
for the two-point functions and our choice of constant and linear terms in the log τ function.

Let d1, d2 ≥ 0. The two-point function is defined by

∂xΩ~
d1,d2 :=

1

~
[
Hd1−1, Hd2

]
,
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where we fix the constant using the recursive formula
∂Ω~

d1,d2
∂p0

∣∣∣∣
p∗=0

= Ω~
d1−1,d2

∣∣∣
p∗=0

+ Ω~
d1,d2−1

∣∣∣
p∗=0

with

the initial conditions Ω~
0,d

∣∣∣
p∗=0

= Ω~
d,0

∣∣∣
p∗=0

= Hd−1|p∗=0, with d ≥ 0. This convention differs from the

one used in [BDGR16]. We made this choice so that the quantum Witten-Kontsevich series satisfies the
string equation.

Definition 118. The quantum Witten-Kontsevich series F qWK is the log τ function of quantum KdV
associated to the point u (x) = x of P . Moreover we impose that the coefficient of ε2l~g−ltd is the coefficient
of ε2l~g−lt0td+1 for any 0 ≤ l ≤ g and d ≥ 0. We also impose that the constant coefficient of ε2l~g−l is
given by 1

2g−2 times the coefficient of ε2l~g−lt1.
Let k, g be two non negative integers, and a list (d1, . . . , dn) of non negative integers. The quantum

correlators 〈τd1 . . . τdn〉l,g−l is the coefficient of the quantum Witten-Kontsevich series written as

F qWK =
∑ 〈τd1 . . . τdn〉l,g−l

n!
ε2l (−i~)g−l td1 . . . tdn ∈ C [[ε, ~, t0, t1, . . . ]] .

Remark 119. We made the choice of the linear terms (resp. constant term) of F qWK so that the series
satisfies the string equation (resp. the dilaton equation).

Proposition 120. The classical limit of the quantum Witten-Kontsevich series is the classical Witten-
Kontsevich series

F qWK
∣∣∣
~=0

= FWK .

Indeed, the series F qWK
∣∣∣
~=0

is the log τ function of the classical KdV hierarchy associated to the
string solution (i.e. the solution of the KdV hierarchy starting at u (x) = x). It is then Witten-Kontsevich
series according to the Witten-Kontsevich theorem (see Section 2.2).

By definition, the correlator 〈τd1 . . . τdn〉l,g−l is obtained from(
∂n−2Ω~,t

d1,d2

∂td3 . . . ∂tdn

)∣∣∣∣∣
t∗=0

∈ A [[ε, ~, t0, t1, . . . ]]

by evaluating at u (x) = x, then substituting x = 0 and finally extracting the coefficient of εl (−i~)g−l.
This is equivalent to evaluate this expression at u0 = 0, u1 = 1, u2 = 0, u3 = 0 . . . and then extracting
the coefficient of εl (−i~)g−l. By definition of Ω~,t

d1,d2
, we obtain the following expression for the quantum

correlators.

Lemma 121. The quantum correlators are given by

〈τd1 . . . τdn〉l,g−l = ig−l
[
εl~g−l+n−2

] [
. . .
[
Ω~
d1,d2 , Hd3

]
, . . . ,Hdn

] ∣∣∣
ui=δ1,i

,

where the notation
[
εl~g−l+n−2

]
means that we extract the coefficient of εl~g−l+n−2.
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3.2.1 First terms of F qWK

We give the first terms of the quantum Witten-Kontsevich series. These terms are stored in an array in
order to emphasize their structure. This structure will be explained in Section 6.1.1. In the box of line l
and column k are stored some coefficients of ε2l (−i~)k of the quantum Witten-Kontsevich series.

In the first column are stored some terms of the classical Witten-Kontsevich series. The box of line l
corresponds to the genus l intersection numbers of ψ-classes on the moduli space of curves.

Starting from the second column, that is in the purely quantum part of F qWK , the boxes are di-
vided into levels. This division is realized by dashed lines. This level structure will be explained in the
Section 6.1.1.

The reader used to intersection number on the moduli space of curves will recognize typical intersection
numbers on the moduli space of genus g curves in the boxes of the diagonal l + k = g of the array.

~0 ~1 ~2

ε0 t30
6 +

t30t1
6 +

t40t2
24 + . . .

t2
24 + t0t3

24 + t1t2
24

+
t21t2
24 +

t0t22
24 + . . .

t0
24 + t0t1

24

+
t20t2
48 +

t0t21
24 + . . .

1
1920 t6 + 1

1920 t0t7 +
1

480 t1t6 + . . .

1
576 t4 + 1

576 t0t5 +
1

192 t1t4 + . . .

7
5760 t2 + 7

5760 t0t3 +
7

1920 t1t2 + . . .

ε2 t1
24 + t0t2

24 +
t21
48 + . . .

1
720 t5 + 1

720 t0t6 + 1
240 t1t5 +

. . .

1
576 t3 + 1

576 t0t4 + t1t3
192 + . . .

1
2880 t1+ 1

2880 t0t2+
t21

1920 +. . .

ε4
t4

1152 + 1
384 t1t4

+ 29
5760 t2t3 + . . .
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Chapter 4

Hurwitz numbers

In Section 4.1, we give two equivalent definitions of Hurwitz numbers. Then, we present the so-called
cut-and-join equations which allows to recursively compute Hurwitz numbers. We explain how to relate
this equation to the restriction at ε = 0 of the quantum KdV hierarchy. In the following sections, we
present two special cases of Hurwitz numbers. In Section 4.2, we present simple Hurwitz numbers and the
ELSV formula. This formula expresses simple Hurwitz numbers in term of intersection numbers onMg,n.
In Section 4.3, we present one-part double Hurwitz numbers. These numbers are closely related to the
quantum Witten-Kontsevich series restricted at ε = 0. We introduce the material to precisely state this
relation. We also give an explicit formula for one-part double Hurwitz numbers.

4.1 Definitions, the cut-and-join operators and quantum KdV

4.1.1 Definitions of Hurwitz numbers

Definition 122. Two maps of Riemann surfaces f : X → Y and f̃ : X̃ → Y are isomorphic if there is a
biholomorphism between Riemann surfaces α : X → X̃ such that f = f̃ ◦ α.

An automorphism of f is a biholomorphism β : X → X such that f = f ◦β. The automorphism group
of f will be denoted by Aut (f). Its cardinal will be denoted by |Aut (f)|.

Definition 123. Fix two nonnegative integers g,m, a positive integer d and m partitions µ1, . . . , µm of
d. We denote by l

(
µi
)
the length of the partition µi and we set r = 2d+ 2g − 2−md+

∑m
i=1 l

(
µi
)
. The

Hurwitz number Hg
µ1,...,µm

is defined by

Hg
µ1,...,µm

=
∑
[f ]

1

|Aut (f)|
,

where the summation is over isomorphism classes of degree d holomorphic maps f : C →
(
P1, b1, . . . , bm, x1, . . . , xr

)
such that

• C is a connected Riemann surface of genus g,
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• the target curve P1 has m+ r fixed and pairwise distinct marked points b1, . . . , bm, x1, . . . , xr,

• f is a ramified covering, its ramification profile over bi is given by µi, it has only one simple ramifi-
cation over each xi and no ramification elsewhere..

The map f is called a Hurwitz cover of type
(
g, µ1, . . . , µm

)
.

Remark 124. From the input of the genus g and the m partitions µ1, . . . , µm, we obtain the number of
simple ramifications r of the Hurwitz cover of type

(
g, µ1, . . . , µm

)
by the Riemann-Hurwitz formula.

Example 125. We compute the Hurwitz number H0
(d),(d). In the target P1, we fix b1 = 0 and b2 = ∞.

It follows from the Riemann-Roch theorem that any genus 0 curve is isomorphic to P1. The Riemann-
Hurwitz formula gives r = 0. Moreover, a holomorphic map from P1 to P1 completely ramified over 0 and
∞ and with no ramification elsewhere is isomorphic to z → zd. The cardinal of the automorphism group
of this map is d. Thus, we find H0

(d),(d) = 1
d .

We now give a combinatorial definition of Hurwitz numbers.

Definition 126. Fix two nonnegative integers g,m, a positive integer d and m partitions µ1, . . . , µm of
d. We denote by l

(
µi
)
the length of the partition µi and we set r = 2d + 2g − 2 − md +

∑m
i=1 l

(
µi
)
.

Moreover, we denote by (2) the partition of d given by (2, 1, . . . , 1). The list (σ1, . . . , σm, τ1, . . . , τr) is a
factorization of type

(
µ1, . . . , µm, (2) , . . . , (2)︸ ︷︷ ︸

r

)
if

• σi is permutation of Sd and its cycle decomposition has l
(
µi
)
cycles of lengths given by µi1, . . . , µil(µi),

• τi is a transposition of Sd,

• τr . . . τ1σm . . . σ1 = Id,

• the group generated by (σ1, . . . , σm, τ1, . . . , τr) acts transitively on {1, . . . , d}.

We denote by F g
(
µ1, . . . , µm, (2) , . . . , (2)

)
the number of factorization of type

(
µ1, . . . , µm, (2) , . . . , (2)

)
.

In this notation, the number of partitions of type (2) is not specified since we can obtain it from g and
and the partitions µ1, . . . , µm.

Proposition 127. The Hurwitz number Hg
µ1,...,µm

is given by

Hg
µ1,...,µm

=

∣∣F g (µ1, . . . , µm, (2) , . . . , (2)
)∣∣

d!
.

A proof can be found in [CM16]. It is clear from the combinatorial definition of Hurwitz numbers that
these numbers are finite.
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4.1.2 The cut-and-join operators and the quantum KdV hierarchy

Fix m ≥ 1. The generating series of Hurwitz numbers is

Hm =
∑

Hg
µ1,...,µm

q
(1)
µ1
. . . q

(m)
µm

ur

r!
z1−gsd,

where the summation is over the d, g, r and the partitions µ1, . . . , µm of d. If µi =
(
µi1, . . . , µ

i
l(µi)

)
is

a partition of d, then the notation q
(i)

µi
stands for q(i)

µi1
. . . q

(i)

µi
l(µi)

. The generating series of disconnected

Hurwitz numbers, i.e. Hurwitz numbers where the covering curve is not necessarily connected, is given by

H•m := exp (Hm) .

A disconnected Hurwitz number can be computed from disconnected Hurwitz numbers with a smaller
number of simple ramifications. This is the content of the cut-and-join equations.

Proposition 128. Fix an integer i between 1 and m. The ith cut-and-join operator is

M (i) =
1

2

∑
a,b≥1

abq
(i)
a+bz

∂2

∂q
(i)
a ∂q

(i)
b

+ (a+ b) q(i)
a q

(i)
b

∂

∂q
(i)
a+b

 ,

The generating series H•m satisfies the ith cut-and-join equation

∂

∂u
H•m = M (i)H•m.

A proof can be found in [CM16]. These equations determine any Hurwitz number from Hurwitz
numbers with no simple ramifications by

H•m = exp
(
uM (i)

)
H•m|u=0.

Example 129. Suppose m = 1, we then suppress the the upper index of the q variables. We deduce from
the Riemann-Hurwitz formula that H1|u=0 = q1zs. Thus H•1 = exp (uM) eq1zs.

We explain how to relate the Hamiltonian H1

∣∣∣
ε=0

of the quantum KdV hierarchy with a cut-and-join
operator. Let the map ρ from F (P ) [[~]] to the operators acting on C [[qa]] defined by

ρ (p0) = 0, ρ (p−a) = qa, ρ (pa) = ia~
∂

∂qa
,

for any a > 0 and f (q) ∈ C [[qa]], moreover we use a normal ordering procedure: we first write a monomial
in the p variables with the p<0 on the left and then replace the variable pa, for any a ∈ Z, by the operator
ρ (pa).
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Proposition 130. We have

ρ
(
H1

∣∣∣
ε=0

)
= (i~)

1

2

∑
a,b≥1

(
(i~) abqa+b

∂2

∂qa∂qb
+ (a+ b) qaqb

∂

∂qa+b

)
.

That is the image of H1

∣∣∣
ε=0

by ρ is a cut-and-join operator multiplied by i~, with z := i~.

Proof. In Example 111, we computed the expression of H1. Its restriction at ε = 0 is

H1

∣∣∣
ε=0

=

∫ (
u3

0

3!
− i~u0

24

)
dx

=
∑

a1+a2+a3=0

pa1pa2pa3
6

− i~p0.

Remark 131. Let f, g ∈ F (P ) [[~]], we have

ρ (f ? g) = ρ (f) ρ (g) ,

hence the commutator [ρ (f) , ρ (g)] is given by ρ (f ? g − g ? f). In particular, the image by ρ of the quan-
tum Hamiltonians of the quantum KdV hierarchy commute. We then obtain an alternative quantization
of the KdV hierarchy. It is not a deformation quantization procedure, we quantize here in the Schrödinger
picture.

Remark 132. This relation between H1|ε=0 and a cut-and-join operator could explain the presence of
Hurwitz numbers in the quantum Witten-Kontsevich series (see Theorem 1). A further investigation of
this remark will be carry out in a future work.

4.2 Simple Hurwitz numbers

Definition 133. Fix two nonnegative integer g, d and a partition µ of d. A simple Hurwitz number is a
Hurwitz number with only one ramification profile prescribed µ. We denote them by

Hg
µ.

In [ELSV00], Ekedahl, Lando, Shapiro and Vainshtein proved a remarkable formula expressing simple
Hurwitz numbers in term of Hodge integrals with one λ-class.

Proposition 134 (ELSV formula). Fix two nonnegative integers g and n such that 2g − 2 + n > 0. Fix
a positive integer d and let µ = (µ1, . . . , µn) be a partition of d. We have

Hg
µ = (2g − 2 + n+ d)!

(
n∏
i=1

µµii
µi!

)∫
Mg,n

1− λ1 + · · ·+ (−1)g λg∏n
i=1 (1− µiψi)

.
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Remark 135. This formula also proves the polynomiality of the Hurwitz number Hg
µ in the ramifications

µ1, . . . , µn.

As a consequence of the ELSV formula, we give two results.

• In [KL07], Kazarian and Lando deduced a proof of Witten’s conjecture from the ELSV formula.

• In [Kaz09], Kazarian deduced from the ELSV formula that the generating series of Hodge inte-
grals satisfy the KP hierarchy up to a change of variables. This gives another proof of the Witten
conjecture. He also deduced another proof of the Virasoro constraints for the Witten-Kontsevich
series.

4.3 One-part double Hurwitz numbers

Definition 136. Fix a nonnegative integer g a positive integer d and a partition µ = (µ1, . . . , µn) of d.
The one-part double Hurwitz numbers are Hurwitz numbers with two ramification profiles prescribed. One
profile of ramification is given by (d) and the other one by µ, we denote such a number by

Hg
(d),µ.

These numbers were studied by Goulden, Jackson and Vakil in [GJV05]. They proved the polynomiality
of Hg

(d),µ in the ramifications µ1, . . . , µn. Moreover, using the expression of Hurwitz numbers in term of
characters of the symmetric group, they obtained the following expression for the one-part double Hurwitz
numbers.

Proposition 137 (Goulden-Jackson-Vakil [GJV05]). We have

Hg
(d),µ = r!dr−1

[
z2g
] ∏n

i=1 S (µiz)

S (z)
,

where d = µ1 + · · · + µn is the degree of the ramified covering, r = 2g − 1 + n is the number of simple
ramifications and S (z) = sinh(z/2)

z/2 .

Remark 138. Comparing this formula with Eq (2.3.1), we obtain

Hg
(d),µ = r!dr−1 · ψ2g−2+n

1 DRg

(
−
∑

µi, µ1, . . . , µn

)
.

This link between one-part double Hurwitz numbers and intersection of ψ-class on the double ramification
cycle is the starting point of the proof of Theorem 1 relating the coefficients of one-part double Hurwitz
numbers with the coefficients of the quantum Witten-Kontsevich series.

Goulden, Jackson and Vakil also conjectured an ELSV-type formula for one-part double Hurwitz
numbers.
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Conjecture 1 ([GJV05]). Fix two nonnegative integers g and n such that 2g − 2 + n > 0. Fix a positive
integer d and let µ = (µ1, . . . , µn) be a partition of d. There exists a space Xg,n of dimension 4g − 3 + n,
with n classes ψ̃i ∈ H2 (Xg,n) and g + 1 classes λ̃i ∈ H4i (Xg,n) such that

Hg
(d),µ = rd!

∫
Xg,n

λ̃0 − λ̃1 + · · ·+ (−1)g λ̃g∏n
i=1

(
1− µiψ̃i

) ,

where r = 2g − 1 + n counts the number of simple ramifications of Hurwitz covers.

This conjecture is still open.

Remark 139. In a paper recently appeared [DL20], Do and Lewanski gave three formulas expressing
one-part double Hurwitz numbers in term of intersection numbers on certain moduli spaces. None of these
formulas answer the Goulden, Jackson and Vakil conjecture but each of them share some properties with
their formula.

Remark 140. A natural question is: can we generalize this conjecture and look for an ELSV type
formula for double Hurwitz numbers (i.e. Hurwitz numbers with two ramification profiles prescribed) ?
The answer is negative. Indeed, double Hurwitz numbers are not polynomial in their ramifications (see
[GJV05]). Thus, we can not hope to get an ELSV type formula for double Hurwitz numbers.

To justify this conjecture, Goulden, Jackson and Vakil studied the coefficients of the polynomial Hg
(d),µ

in the indeterminates µ1, . . . , µn and proved that they behave as the simple hodge integrals
∫
Mg,n

λkψ
d1
1 . . . ψdnn

appearing as the coefficients of the ELSV formula. We introduce the following notation for these coeffi-
cients.

Definition 141. Fix two nonnegative integers g and n such that 2g − 2 + n > 0. Let (d1, . . . , dn) be a
list of non negative integers. The number

〈〈τd1 . . . τdn〉〉g = (−1)
4g−3+n−

∑
di

2

[
µd11 . . . µdnn

](Hg
(d),µ

r!d

)
(4.3.1)

is called a Hurwitz correlator.

Remark 142. The conjectural formula of Goulden, Jackson and Vakil would imply

〈〈τd1 . . . τdn〉〉g =

∫
Xg,n

λ̃kψ̃
d1
1 . . . ψ̃dnn , (4.3.2)

where 2k = 4g − 3 + n−
∑
di.

Remark 143. Fix the nonnegative integers g and n. Form Proposition 137, it is clear that Hurwitz
correlators 〈〈τd1 . . . τdn〉〉g vanishes if

∑
di is outside the interval

[2g − 3 + n, 4g − 3 + n]

or if
∑
di has the parity of n. Hence the Hurwitz correlators can be non zero only if

∑
di only takes one

of these g + 1 values, this corresponds to the g + 1 conjectural classes λ̃k in Eq. (4.3.2).
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Proposition 144 ([GJV05]). The Hurwitz correlators satisfy the string equation

〈〈τ0τd1 . . . τdn〉〉g =

n∑
i=1

〈〈τd1 . . . τdi−1 . . . τdn〉〉g .

The Hurwitz correlators satisfy the dilaton equation

〈〈τ1τd1 . . . τdn〉〉g = (2g − 2 + n) 〈〈τd1 . . . τdn〉〉g .

The Hurwitz correlators corresponding to the conjectural intersection with λ̃g are expressed in term of
intersection numbers onMg,n.

Proposition 145. Fix two nonnegative integers g and n such that 2g−2+n > 0. The Hurwitz correlators
satisfying

∑n
i=1 di = 2g − 3 + n are given by

〈〈τd1 . . . τdn〉〉g =

∫
Mg,n

λgψ
d1
1 . . . ψdnn .

In particular, we can compute these numbers using the λg-conjecture see Section 2.1.5.

Remark 146. In [Sha08], Shadrin used an approach similar to Kazarian in [Kaz09] to prove that the
generating series of Hurwitz correlators properly arranged satisfies the KP hierarchy.
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Chapter 5

Eulerian numbers

One of the difficulties to obtain an expression for the quantum Witten-Kontsevich series is to compute
the commutator of the star product. In the first chapter, we explained that this amounts to study Buryak
and Rossi’s polynomials

Cr1,...,rq (N) =
∑

k1+···+kq=N
kr11 . . . k

rq
q =

[
tN
] q∏
i=1

∑
k≥1

kritk

 ,

where r1, . . . , rq and N are nonnegative integers numbers. In this section, we explain how to obtain an
expression for

∑
k≥1 k

rtk in term of the so-called Eulerian numbers. These numbers enjoy many properties.
They will particularly simplify our computation of the commutator of the star product.

In the first section, we present Eulerian numbers and some of their properties. In the second section,
we deduce from these properties a combinatorial formula. This formula is a key ingredient of the proof of
the main theorem (Theorem 1).

5.1 Generalities on Eulerian numbers

We present Eulerian numbers and prove some of their properties following [Pet15].

Definition 147. Fix two nonnegative integers k, n and a permutation σ ∈ Sn. A descent of the permuta-
tion σ is a pair (i, i+ 1) such that σ (i) > σ (i+ 1), where i ∈ {1, . . . , n− 1}. The Eulerian number

〈 n
k

〉
is the number of permutation of Sn with k descents.

Example 148. σ =

(
1 2 3 4
2 3 1 4

)
∈ S4 has one desent.
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σ(1)

σ(2)

σ(3)

σ(4)

1 2 3 4

1

2

3

4

σ

Figure 5.1.1: A descent of σ corresponds to an actual descent in the graph of σ.

Eulerian numbers satisfy the following recursive property.

Proposition 149. We have〈 n
k

〉
= (n− k)

〈
n− 1
k − 1

〉
+ (k + 1)

〈
n− 1
k

〉
.

Proof. Let σ be a permutation of Sn written as a list (σ (1) , . . . , σ (n)) and suppose σ has k descents.
If we delete n from this list, we obtain a permutation of Sn−1 with k or k − 1 descents. We prove the
recursive formula in the other way : start from a permutation of Sn−1 with k or k − 1 desents, we count
the number of possiblilities to add n in order to obtain a permutation of Sn with k descents.

• Let σ be a permutation of Sn−1 written as a list (σ (1) , . . . , σ (n− 1)) and suppose σ has k descents.
In order to get a permutation of Sn with k descents, you can add n at the end of the list or at the
middle of any of the k descents. Thus, there are k + 1 choices.

• Let σ be a permutation of Sn−1 written as a list (σ (1) , . . . , σ (n− 1)) and suppose σ has k − 1
descents. In order to get a permutation of Sn with k descents, you can add n at the begining of the
list or at the middle of any of the n− k − 1 ascents. Thus there are n− k choices.

Definition 150. The Eulerian polynomial En (t) is the generating polynomial of Eulerian numbers

En (t) :=
∑
σ∈Sn

tdes(σ) =
n−1∑
k=0

〈 n
k

〉
tk.
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The recursive property of Eulerian numbers translates to the following identity of the generating
polynomial.

Corollary 151. We have
En+1 (t) = (1 + nt)En (t) + t (1− t)E′n (t) . (5.1.1)

Proposition 152 (Carlitz identity). Let n be a nonnegative integer. Let t be a formal variable. We have∑
k≥1

kntk =
tEn (t)

(1− t)n+1 .

Proof. Define en (t) = (1− t)n+1∑
k≥1 k

ntk−1. This series satisfies Eq 5.1.1 and e0 (t) = 1 = E0 (t), we
then deduce en (t) = En (t) for any n ≥ 0.

Remark 153. Eulerian numbers have the nice symmetry
〈 n
k

〉
=
〈 n
n− k − 1

〉
. Indeed, let σ =

(σ (1) , . . . , σ (n)) be a permutation of Sn with k descents. We associate to σ the permutation σ̃ =
(σ (n) , . . . , σ (1)), i.e. we simply read σ in the opposite direction. The descents of σ̃ correspond to the
ascents of σ : there are n− k − 1 of them. This map is obviously a bijection.

We deduce from this symmetry of Eulerian numbers that they are palindromic: tn−1En (1/t) = En (t).
We re-prove from this symmetry, the parity property of the polynomials Cr1,...,rq (N). The proof is moslty
inspired by the one of [BR16]. We introduce the coefficients of the polynomial

Cr1,...,rq (N) =
∑
j≥0

C
r1,...,rq
j N j .

The LHS is given by
[
tN
]∏q

i=1

(∑
k≥1 k

ritk
)

and the RHS by
[
tN
]∑

j≥0C
r1,...,rq
j

(
1 +

∑
k≥1 k

jtk
)
, so

that we have the equality of series

q∏
i=1

∑
k≥1

kritk

 =
∑
j≥0

C
r1,...,rq
j

1 +
∑
k≥1

kjtk

 .

Using the Carlitz identity, we get

q∏
i=1

(
tEri (t)

(1− t)ri+1

)
=
∑
j≥0

C
r1,...,rq
j

(
1 +

tEj (t)

(1− t)j+1

)
.

The polindromicity of Er implies that tEr(t)

(1−t)r+1 = (−1)r+1 tEr(t)

(1−t)r+1 . Using this property in the preceeding

equation and extracting the coefficient of tN , we find

(−1)
∑
ri+q Cr1,...,rq (N) = (−1)Cr1,...,rn (N) .

Thus, Cr1,...,rq (N) has the parity of
∑
ri + q − 1.
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The exponential generating series of Eulerian polynomials has the following explicit form.

Proposition 154. Let t and z be two formal variables. We have∑
n≥0

En (t)

n!
zn =

t− 1

t− ez(t−1)
.

Proof. We construct a permutation σ = (σ (1) , . . . , σ (n)) with k descent in the following way. First choose

the position of n in the list. If n is at the last position, their are
〈
n− 1
k

〉
ways to construct such a

permutation. If n is at the ith position , where 1 ≤ i ≤ n − 1, we choose the i − 1 integers on the left

of n in the list (and then the n − i on the right), there are
(
n− 1
i− 1

)
possibilities. Since n is at the

position i, the pair (i, i+ 1) is a descent. We then have to distribute the k − 1 remaining desents : there
are

[
tk−1

]
Ei−1 (t)En−i (t) possibilities. We then find

En (t) = En−1 (t) + t
n−1∑
i=1

(
n− 1
i− 1

)
Ei−1 (t)En−1 (t) .

This equation translates to the following equation on E (t, z) =
∑

n≥0
En(t)
n! zn,

dE (t, z)

dz
= tE2 (t, z) + (1− t)E (z, t) .

Solving this differential equation with the initial condition E (t, 0) = 1 gives the result.

5.2 A combinatorial formula

We deduce from the explicit form of the generating function of Eulerian numbers a combinatorial formula.
Recall Notation 98, we have

S (z) =
sh (z/2)

z/2
=
∑
l≥0

z2l

22l (2l + 1)!
.

Proposition 155. Let A,B, t and z be some formal variables. We have

exp

(∑
k>0

ABz2kS (kAz)S (kBz) tk

)
=

(
1− te

A−B
2

z
)(

1− te−
A−B

2
z
)

(
1− te

A+B
2

z
)(

1− te−
A+B

2
z
)

= 1 + 4
∑
k>0

sh
(
A
2 z
)

sh
(
B
2 z
)

sh
(
A+B

2 z
) sh

(
k
A+B

2
z

)
tk.

The proof of this proposition is divided in two lemmas.
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Lemma 156. Let A,B, t and z be some formal variables. We have

∑
k>0

ABz2kS (kAz)S (kBz) tk = ln


(

1− te
A−B

2
z
)(

1− te−
A−B

2
z
)

(
1− te

A+B
2

z
)(

1− te−
A+B

2
z
)
 .

Proof. We start from the LHS. Use the developed expression of S (see Notation 98) to obtain

∑
k>0

ABz2kS (kAz)S (kBz) tk =
∑
k>0

∑
l1,l2≥0

A2l1+1B2l2+1z2(l1+l2)+2

22(l1+l2) (2l1 + 1)! (2l2 + 1)!
k2(l1+l2)+1tk.

Then, we use the Carlitz identity (Proposition 152) to compute the sum running over k. We obtain

∑
l1,l2≥0

A2l1+1B2l2+1z2(l1+l2)+2

22(l1+l2) (2l1 + 1)! (2l2 + 1)!

tE2(l1+l2)+1 (t)

(1− t)2(l1+l2)+2
.

Simplifying this expression using

∑
l1+l2=l

A2l1+1B2l2+1

(2l1 + 1)! (2l2 + 1)!
=

1

2

(A+B)2l+2 − (A−B)2l+2

(2l + 2)!
,

we obtain ∑
l≥0

(A+B)2l+2 − (A−B)2l+2

22l+1 (2l + 2)!
z2l+2 tE2l+1 (t)

(1− t)2l+2
.

Denote by F (z, t) := −z − ln (t− e−z) + ln (t− 1) . According to Corollary ??, we have

∑
l≥0

(A+B)2l+2

22l+1 (2l + 2)!
z2l+2 tE2l+1 (t)

(1− t)2l+2
= F

(
A+B

2
z, t

)
+

(
−A+B

2
z, t

)
and ∑

l≥0

(A−B)2l+2

22l+1 (2l + 2)!
z2l+2 tE2l+1 (t)

(1− t)2l+2
= F

(
A−B

2
z, t

)
+

(
−A−B

2
z, t

)
.

Finally, we remark that

F

(
A+B

2
z, t

)
+

(
−A+B

2
z, t

)
−
(
F

(
A−B

2
z, t

)
+

(
−A−B

2
z, t

))

= ln


(

1− te
A−B

2
z
)(

1− te−
A−B

2
z
)

(
1− te

A+B
2

z
)(

1− te−
A+B

2
z
)


to obtain the RHS of the Lemma.
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Lemma 157. Let A,B and t be some formal variables. We have(
1− teA−B

) (
1− teB−A

)
(1− teA+B) (1− te−A−B)

= 1 + 4
∑
k>0

sh (A) sh (B)

sh (A+B)
sh (k (A+B)) tk.

Proof. Start from the LHS of the equality. Develop the two geometric series of the denominators, we
obtain

1

(1− teA+B) (1− te−A−B)
=
∑
n,m≥0

e(n−m)(A+B)tn+m =
∑
k≥0

sh ((k + 1) (A+B))

sh (A+B)
tk.

Express the numerator as
(
1− teA−B

) (
1− teB−A

)
= t2− 2tch (A−B) + 1. We then obtain the following

expression for (1−teA−B)(1−teB−A)
(1−teA+B)(1−te−A−B)

:

1

sh (A+B)

∑
k≥0

(sh ((k − 1) (A+B))− 2ch (A−B) sh (k (A+B)) + sh ((k + 1) (A+B))) tk.

We use first the hyperbolic identity sh ((k − 1) (A+B))+sh ((k + 1) (A+B)) = 2ch (A+B) sh (k (A+B))
and then ch (A+B) ch (A−B) = 2sh (A) sh (B) to obtain the result.

The first equality of Proposition 155 is obtained from Lemma 156. The second is given by the formula
of Lemma 157 with A := A

2 z and B := B
2 z.
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Chapter 6

Study of the quantum Witten-Kontsevich
series

6.1 Statement of the results

6.1.1 The correlators of the Witten-Kontsevich series

The quantum Witten-Kontsevich series F qWK is an element of C [[ε, ~, t0, t1, . . . ]]. Its classical part,
obtained by plugging ~ = 0, is the Witten-Kontsevich series FWK of Section 2.2.

The following theorem concerns the restriction ε = 0 of the quantum Witten-Kontsevich series. The
coefficients of F qWK

∣∣
ε=0

are expressed in terms of one-part double Hurwitz numbers.

Theorem 1. Fix two nonnegative integers g, n and a list of nonnegative integers (d1, . . . , dn). We have

〈τd1 . . . τdn〉0,g = 〈〈τd1 . . . τdn〉〉g .

Thus we have a geometric interpretation for the coefficients of ε0~g and ε2g~0 of the quantum Witten-
Kontsevich series. So far there is no such interpretation for the other coefficients, but we have a conjecture
for some of them. Let us first explain some vanishing properties of the correlators.

Level structure

The correlators satisfy some vanishing properties similar to the Hurwitz correlators (see Proposition ??).

Proposition 158. Fix three nonnegative integers g, n, l such that l ≤ g. The correlator 〈τd1 . . . τdn〉l,g−l
vanishes if

n∑
i=1

di > 4g − 3 + n− l or if
∑

di ≡ n− l (mod 2) ,

where (d1, . . . , dn) is a list of nonnegative integers.
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Conjecture 2. Fix three nonnegative integers g, n, l such that l ≤ g. The correlator 〈τd1 . . . τdn〉l,g−l
vanishes if

n∑
i=1

di < 2g − 3 + n− l,

where (d1, . . . , dn) is a list of nonnegative integers.

Hence, the correlators are possibly nonzero only when
∑
di takes the g + 1 values of the interval

[2g − 3 + n− l, 4g − 3 + n− l] with the parity of its maximum (or minimum). We say that the correlators
〈τd1 . . . τdn〉l,g−l are structured in g + 1 levels.

Minimal level

We have the following geometrical interpretation for the minimal level of the correlators.

Conjecture 3. Fix three nonnegative integers g, n, l such that l ≤ g. When
∑
di = 2g − 3 + n − l, the

correlators are given by

〈τd1 . . . τdn〉l,g−l =

∫
Mg,n

λgλlψ
d1
1 . . . ψdnn .

Remark 159. Let us check the level structure and the minimal level property when ε = 0. In this case,
the correlators 〈τd1 . . . τdn〉0,g, with g ≥ 0 are equal to 〈〈τd1 . . . τdn〉〉g according to the main theorem. The
level structure of the correlators follows from the similar level structure described in Remark 143. The
minimal level property in this case reads

〈τd1 . . . τdn〉0,g =

∫
Mg,n

λgλ0ψ
d1
1 . . . ψdnn =

∫
Mg,n

λgψ
d1
1 . . . ψdnn ,

which follows from the analogous equality for Hurwitz correlators [GJV05, Proposition 3.12].

Remark 160. When l = g, the correlators 〈τd1 . . . τdn〉g,0 are the coefficients of the classical Witten-
Kontsevich series. They are given by

〈τd1 . . . τdn〉g,0 =

∫
Mg,n

ψd11 . . . ψdnn .

They correspond to the top level of the level structure :
∑
di = 3g− 3 +n. All the other levels vanish. In

particular, the bottom level is given by ∫
Mg,n

λ2
gψ

d1
1 . . . ψdnn = 0.
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Recap table

The following table presents the structure of the correlators of the quantum Witten-Kontsevich series
coming from Theorem 1, Proposition 158, Conjecture 2 and Conjecture 3. Fix three nonnegative integers
l, k and n. In the box corresponding to the l-th line and the k-th column we store the correlators

〈τd1 . . . τdn〉l,k

coming from the coefficients of ε2l~k of F qWK , where (d1, . . . , dn) is a list of nonnegative integers. We set
g := l + k in the table.

The first row and column in the table present proved facts, while the cells k, l ≥ 1 present new results
partially proved.
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~0 ~1 · · · ~k

ε0
∫
M0,n

ψd11 . . . ψdnn

〈〈τd1 . . . τdn〉〉1 s.t.∑
di = 4− 3 + n

〈〈τd1 . . . τdn〉〉1 =∫
M1,n

λ0λ1ψ
d1
1 . . . ψdnn

· · ·

〈〈τd1 . . . τdn〉〉g s.t.∑
di = 4g − 3 + n

〈〈τd1 . . . τdn〉〉g s.t.∑
di = 4g − 5 + n

...

〈〈τd1 . . . τdn〉〉g s.t.∑
di = 2g − 1 + n

〈〈τd1 . . . τdn〉〉g =∫
Mg,n

λgψ
d1
1 . . . ψdnn



k︸︷︷︸
=g

+ 1

ε2

∫
M1,n

ψd11 . . . ψdnn

0

?

?

∫
M2,n

λ1λ2ψ
d1
1 . . . ψdnn

· · ·

?

...

?

∫
Mg,n

λ1λgψ
d1
1 . . . ψdnn



k + 1︸ ︷︷ ︸
=g

+ 1

...
...

...
. . .

...

ε2l

∫
Mg,n

ψd11 . . . ψdnn

0

...

0

?

...

?

∫
Mg,n

λkλgψ
d1
1 . . . ψdnn

· · ·

?

...

?

∫
Mg,n

λlλgψ
d1
1 . . . ψdnn



k + l︸ ︷︷ ︸
=g

+ 1
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6.1.2 String and dilaton for the quantum Witten-Kontsevich series

In [GJV05], the authors prove the string and dilaton equations for the Hurwitz correlators. Hence Theo-
rem 1 implies that the ε = 0 restriction of the quantum Witten-Kontsevich series satisfies the string and
dilaton equations. These equations are actually satisfied by the full quantum Witten-Kontsevich series.

Theorem 2. The quantum Witten-Kontsevich series satisfies the string equation

∂

∂t0
F qWK =

∑
i≥0

ti+1
∂

∂ti
F qWK +

t20
2
− i~

24
.

Conjecture 4. The quantum Witten-Kontsevich series satisfies the dilaton equation

∂

∂t1
F qWK =

∑
i≥0

ti
∂

∂ti
F qWK + ε

∂

∂ε
F qWK + 2~

∂

∂~
F qWK − 2F qWK .

6.1.3 A geometric formula for the correlators

We give a formula for the correlator
〈τ0τd1 . . . τdn〉l,g−l,

where d1, . . . , dn, l and g are nonnegative integers. This formula expresses 〈τ0τd1 . . . τdn〉l,g−l as a sum over
stable graphs. One can deduce from it an expression for any correlators using the string equation (see
Section 6.3.1.1).

Definition 161. Fix the nonnegative integersm,n, g, l and n+1 integers a0, . . . , am such that
∑m

i=0 ai = 0.
Let G (m,n, g, l, a0, . . . , am) be the set of quadruplets

(Γ, l : V → Z≥0, σ : V → {+,−} , a : H → Z)

satisfying the following properties.

• Γ = (V,H, g : V → Z≥0, θ : H → V, ι : H → H) is a stable graph with n vertices (see Section 2.1.3
for the notations concerning stable graphs).

• Γ has m + n + 1 legs. We take a partition of the set of legs L in two subsets L = L1 q L2. There
are m+ 1 legs in L1 numbered from 0 to m distributed over all the vertices. There are n legs in L2

numbered from m + 1 to m + n, one on each vertex. Moreover the leg of L2 with number m + 1
should sit on the same vertex than the leg of L1 numbered by 0. The vertices are then indexed by
the legs of second type. The indexing map is

p : V → {1, . . . , n}
v → i−m,

where i is the index of the unique leg of second type on the vertex v.
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• The graph Γ is rooted, its root is the vertex incident to the leg of L1 numbered by 0 or equivalently
the vertex with index 1.

• Each vertex is linked with at least one smaller vertex, i.e. a vertex v with a smaller index p (v).

• There is no loop i.e. edge going from one vertex to itself.

• The genus of Γ is fixed to g: ∑
v∈V

g (v) + h1 (Γ) = g.

• The function l : V → Z≥0 satisfies
l (v) ≤ g (v) ,

for any v ∈ V , and ∑
v∈V

l (v) = l.

• Each vertex is equipped with a sign σ : V → {+,−}. The root is, by convention, equipped with a
positive sign.

• To each half edge h we associate an integer a (h) such that

– if h ∈ L1, we set a (h) = ai, where i ∈ {0, . . . ,m} is the index of the half edge h,

– if h ∈ L2, we set a (h) = 0,

– if h ∈ H\L, we set a (h) = −a (ι (h)), moreover, if h is attatched on a vertex equipped with
the sign + (resp. −) and connects this vertex to a smaller vertex, we set a (h) ∈ Z≤0 (resp.
a (h) ∈ Z≥0),

– for each vertex v, we impose the condition
∑

h∈H(v) a (h) = 0.
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1,+ 2,+3,− 4,+5,−

a0

a1

a2

a3

a4

Figure 6.1.1: An example of a graph with n = 5 and m = 4. The legs of L1 are represented by dashed
lines and the legs of L2 by full lines. We draw a genus on every vertex, corresponding to the map g. We
did not draw the map l or the weightings of the half-edges of H\L.

Remark 162. There is a finite choice of weightings for the half edges in H\L. Indeed, let v be the last
vertex (i.e. v is indexed by p (v) = n), if v is equipped with a + sign (resp. − sign), all the half edges in
H\L assigned to v are of negative (resp. positive) weight, since the sum of weights on a vertex should be
zero, we deduce that there is a finite number of choices of weightings for theses half edges. We repeat this
process on each vertex to prove the assertion.

We associate to (Γ, l, σ, a) ∈ G (m,n, g, l, a0, . . . , an) the cohomology class

(λ ·DR)Γ (a0, a1, ..., an) =

(∏
h∈E
|a (h)|

)
·ξΓ∗

(∏
v∈V

σ (v)λl(v)DRg(v)

(
a (h)h∈H[v]

))
∈ H2(l+g+n−1)

(
Mg,n+m+1

)
.

Proposition 163. Let g, l and n be nonnegative integers such that l ≤ g. Let d1, . . . , dn be nonnegative
integers. The correlator 〈τ0τd1 . . . τdn〉l,g−l is given by

[a1 . . . am]
∑

Γ∈G(m,n,g,l,a0=−
∑
ai,a1,...,an)

i2g+n−1−m

m!

∫
Mg,m+n+1

(λ ·DR)Γ

(
−
∑

ai, a1, . . . , am

)
ψd1m+1 . . . ψ

dn
m+n,

where m =
∑n

i=1 di + l − 2g + 1.

Remark 164. A reformulation of Proposition 158 and Conjecture 2 about the level structure of the
correlators is the correlators 〈τ0τd1 . . . τdn〉l,g−l vanish if

m > 2g + n− 1, m < n− 1, or m ≡ n (mod 2) .
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Proposition 158 is proved by studying the maximal degree and the parity of the polynomial in a1, . . . , am
in this formula.

Remark 165. At the classical limit, i.e. when l = g, this formula reduces to the formula of Lemma 6.9
in [BDGR18]. Indeed, we deduce from the condition l = g that h1 (Γ) = 0 and l (v) = g (v) for any v ∈ V .
Hence, we sum over trees and each vertex of genus g (v) is equipped with a class λg(v). Moreover, since
the graph is a tree, the conditions

∑
h∈H(v) a (h) = 0 on each vertex v ∈ V uniquely determine all the

weights a (h), for any h ∈ H. In particular, the sign of any vertex is determined. Furthermore, the class
on any vertex v of genus g (v) is λgDRg

(
a (h)h∈H[v]

)
. As a consequence of Hain’s formula, this class is a

homogenous polynomial of degree 2g. In addition, each of the n − 1 edges of the tree carries a weight a.
We deduce that

(λ ·DR)Γ

(
−
∑

ai, a1, ..., am

)
is a homogenous polynomial of degree 2(g1 + · · ·+ gn)︸ ︷︷ ︸

g

+n−1. Hence m is fixed to its maximum 2g+n−1

(or equivalently,
∑n

i=1 di must be equal to 4g − 3 + n). We hence recover the summation over the set of
admissible modified stable trees.

6.1.4 Plan of the sections

In Section 6.2, we first explain how to substitute ui = δi,1 in a differential polynomial written as a Fourier
series. We then give an expression for the correlators 〈τd〉l,g−l, for any nonnegative g, l, d, and check that
these correlators satisfy the level structure and the minimal level properties. Finally we give a proof of
the string equation that is Theorem 2.

In Section 6.3, we prove the main theorem that is Theorem 1.
in Section 6.4, we prove a combinatorial identity that is used in the last step of the proof of the main

theorem.
In Section 6.5, we prove the vanishing properties of the correlators stated in Proposition 158.

6.2 Preliminaries

6.2.1 On the substitution ui = δi,1

The construction of the quantum Witten-Kontsevich series uses differential polynomials as elements of A~

and Ã~, indeed you start with some Hamiltonian densities that belong to Ã~ and you perform at the end
the substitution ui = δi,1. We need to explain how to substitute ui = δi,1 in an element of Ã~. This is the
purpose of the following lemma.

Lemma 166. Let φ be a differential polynomial. We write φ as a formal Fourier series, that is

φ (x) =

d∑
k=0

∑
a1,...,ak∈Z

φk (a1, . . . , ak) pa1 . . . pake
ix(a1+···+ak)
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where φk(a1, . . . , ak) ∈ C [a1, . . . , ak] [[ε, ~]] is a symmetric polynomial in its k indeterminates a1, . . . , ak
for 0 ≤ k ≤ d. The substitution ui = δi,1 in φ is given by

φ
∣∣∣
ui=δi,1

=
∑
k≥0

(−i)k [a1 . . . ak]φk (a1, . . . , ak) .

Proof. The Fourier series of u and its s-th derivative is given by us (x) =
∑

a∈Z (ia)s pae
iax. Hence we get

φ (x) =
∑
k≥0

∑
a1,...,ak∈Z

 ∑
s1,...,sk≥0

as11 . . . askk
[
as11 . . . askk

]
φk (a1, . . . , ak)

 pa1 . . . pake
ix(a1+···+ak)

=
∑
k≥0

∑
s1,...,sk≥0

(−i)s1+...+sk us1 . . . usk
[
as11 . . . askk

]
φk (a1, . . . , ak) .

Hence φ
∣∣∣
ui=δi,1

=
∑

k≥0 (−i)k [a1 . . . ak]φk (a1, . . . , ak).

6.2.2 First example : computation of 〈τd〉l,g−l
We give an expression for 〈τd〉l,g−l, for any nonnegative integers g, l and d. From this expression, we check
the vanishing properties of the correlators 〈τd〉l,g−l leading to the level structure (see Proposition 158 and
Conjecture 2 ), the explicit expression of the minimal level (Conjecture 3) and that the level structure
disappears at the classical limit.

By definition of the linear terms in t∗ of the quantum Witten-Kontsevich series, we have

〈τd〉l,g−l = 〈τ0τd+1〉l,g−l.

Moreover, according to Lemma 121, this second correlator is given by

〈τ0τd+1〉l,g−l = ig−l
[
εl~g−l

]
Ω~

0,d+1

∣∣∣
ui=δi,1

.

Hence, to obtain an expression for 〈τd〉l,g−l, we need an expression of Ω~
0,d+1. This is the purpose of the

following lemma.

Lemma 167. Fix a nonnegative integer d. We have

Ω~
0,d = Hd−1.

Proof. This is an equality between two differential polynomials written as Fourier series, that is between
two lists of polynomials. The definition of the constant term of the two-point function is Ω~

0,d

∣∣∣
p∗=0

=

Hd−1

∣∣∣
p∗=0

, this proves the equality between the first polynomial of each list. To obtain the equality of the

rest of the polynomials, it is enough to check that ∂xΩ~
0,d = ∂xHd−1.
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Using the definition of the two-point function and the tau symmetry, we find

∂xΩ~
0,d =

1

~
[
H−1, Hd

]
=

1

~
[
Hd−1, H0

]
.

Since the Hamiltonian density of quantum KdV form a tau structure, the commutator of any differential
polynomial with H0 corresponds to the derivation with respect to x. Hence we get the equality

∂xΩ~
0,d = ∂xHd−1.

Using the definition of the Hamiltonian density Hd (see Eq (3.1.1) ), and the substitution lemma
(Lemma 166), we obtain the following expression for 〈τd〉l,g−l.

Lemma 168. We have

〈τd〉l,g−l =
(−1)

m+2g
2

m!
[a1 . . . am]

∫
DRg(0,a1,...,am,−

∑
ai)
ψd+1

0 λl, (6.2.1)

where m = d+ 2− 2g + l.

Verification of the level structure for the correlators 〈τd〉l,g−l. The double ramification cycle is an
even polynomial DRg (0, a1, . . . , am,−

∑
ai) = DRg (0,−a1, . . . ,−am,

∑
ai) of degree 2g. In Eq. (6.2.1),

we extract the coefficient of a1 . . . am from this polynomial. Thus, this coefficient can be non zero only
if m takes the even values between 0 and 2g. Recalling that m = d + 2 − 2g + l, this proves the level
structure: 〈τd〉l,g−l can be non zero only if d takes the g + 1 values of the interval

[2g − 2− l, 4g − 2− l]

with the parity of l.
We now verify the explicit expression conjectured for the minimal level of the correlators. The minimal

level is given by m = 0. Recalling that DRg (0, 0) = (−1)g λg, we find using the string equation that

〈τ2g−2−l〉l,g−l =

∫
Mg,1

ψdλgλl.

Classical limit : the correlator 〈τd〉g,0. We verify that the level structure disappears at the classical
limit. The classical limit of Eq. (6.2.1) is

〈τd〉g,0 = (−i)m (−1)g

m!
[a1 . . . am]

∫
DRg(0,a1,...,am,−

∑
ai)
ψd+1

0 λg, (6.2.2)

where m = d + 2 − g. To compute λgDRg, we use the Hain formula. It is clear from this formula that
λgDRg is a homogeneous polynomial of degree 2g. Since we extract the coefficient of a1 . . . am, we conclude
that the correlator is possibly nonzero only for m = 2g. We recover the level sructure in the classical limit.
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According to the Witten-Kontsevich theorem, we know that 〈τd〉g,0 is equal to∫
Mg,1

ψd1 .

However, is not easy to obtain this expression from Eq. (6.2.2) using Hain’s formula.

6.2.3 A proof of the string equation

We prove in this section that the quantum Witten-Kontsevich series satisfies the string equation

∂

∂t0
F qWK =

∑
i≥0

ti+1
∂

∂ti
F qWK +

t20
2
− i~

24
.

The string equation for the quantum Witten-Kontsevich series does not directly come from a compari-
son between the ψ-classes and their pull-backs as it usually does. Indeed, the quantum Witten-Kontsevich
series is defined by various commutations of Hamiltonians, that are themselves defined by integration of
ψ-classes over the double ramification cycle, and then the substitution ui = δi,1. We have to follow this
definition to prove the string equation and any other property of the quantum Witten-Kontsevich series.

Plan of the proof. The string equation is an equality of power series. In order to prove this equation, we
verify that the constant and linear terms of the power series on the LHS and RHS correspond, then we show
that the second derivative of this equation is true. From the definition of the quantum Witten-Kontsevich
series, we find that the derivative with respect to td1 and td2 of the string equation yields

∂

∂t0
Ω~,t
d1,d2

∣∣∣
ui=δi,1

=
∑
k≥0

tk+1
∂

∂tk
Ω~,t
d1,d2

∣∣∣
ui=δi,1

+ Ω~,t
d1−1,d2

∣∣∣
ui=δi,1

+ Ω~,t
d1,d2−1

∣∣∣
ui=δi,1

+ δ0,d1δ0,d2 , (6.2.3)

where d1 and d2 are two nonnegative integers.
Before proving Equation (6.2.3), let us focus on the constant and linear terms of the string equation.

Constant term of the string equation. The constant term in the RHS of the string equation is given
by − i~

24 . We then have to show that − i~
24 is also the coefficient of t0 in F qWK . By construction, the

coefficient of t0 is the coefficient of t0t1. The coefficient of t0t1 in F qWK is given by Ω0,1

∣∣∣
ui=δi,1

=
Lemma 167

H0

∣∣∣
ui=δi,1

. We use the expression of H0 computed in Example 110 to conclude.

Linear terms of the string equation. We now focus on the linear terms. The coefficient of t0 does
not appear on the RHS of the string equation. Let us show that it vanishes in the LHS. The coefficient of
t0 in the LHS of string equation is given by the coefficient of t0t0 in F qWK . This coefficient is

Ω0,0

∣∣∣
ui=δi,1

=
Lemma 167

H−1

∣∣∣
ui=δi,1

= u0

∣∣∣
ui=δi,1

= 0.
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The second equality is just the definition if H−1.
Fix an integer d ≥ 1. The coefficient of td on the LHS of the string equation is given by the coefficient

of t0td in F qWK . The coefficient of td on the RHS of the string equation is given by the coefficient of td−1

in F qWK . However, we made the choice that the coefficient of t0td is the coefficient of td−1 in F qWK .

Some necessary lemmas. We prove two lemmas used for the proof of Equation (6.2.3). The first one
is deduced from the string equation for the Hamiltonian densities.

Lemma 169. Fix d1, d2 two positive integers, we have

∂Ω~
d1,d2

∂p0
= Ω~

d1−1,d2 + Ω~
d1,d2−1 + δ0,d1δ0,d2 ,

where we use the convention that Ω~ vanishes if at least one of its indices is negative.

Proof. If (d1, d2) = (0, 0), we obtain Ω0,0 = H−1 = u0 from Lemma 167. Hence the equation is satisfied.
Otherwise, we want to prove an equality of elements of Ã~, that is an equality of two lists of symmetric

polynomials. The equality of the first polynomial of each list follows from the choice of the constant
Ω~
d1,d2

∣∣∣
p∗=0

in the definition of Ω~
d1,d2

. To obtain the equality for the rest of the polynomials, it is enough

to prove that the x-derivative of the equation is verified. From the definition of Ω~
d1,d2

, we have

∂x
∂

∂p0
Ω~
d1,d2 =

∂

∂p0
∂xΩ~

d1,d2 =
∂

∂p0

1

~
[
Hd1−1, Hd2

]
=

1

~

[
∂Hd1−1

∂p0
, Hd2

]
+

1

~

[
Hd1−1,

∂Hd2

∂p0

]
= ∂xΩ~

d1−1,d2 + ∂xΩ~
d1,d2−1.

We used the string equation for the Hamiltonian densities (Proposition 116) to obtain the last equality.

Lemma 170. Let φ be a differential polynomial, we have

∂xφ
∣∣∣
ui=δi,1

=
∂φ

∂p0

∣∣∣∣∣
ui=δi,1

.

Proof. Write φ as an element of Ã~, that is

φ (x) =
d∑

k≥0

∑
a1,...,ak∈Z

φk(a1, . . . , ak)pa1 . . . pake
ix(a1+···+ak),
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where φk(a1, . . . , ak) ∈ C [a1, . . . , ak] [[ε, ~]] is a symmetric polynomial in its k indeterminates a1, . . . , ak
for 0 ≤ k ≤ d. Then, thanks to Lemma 166, we have

∂xφ
∣∣∣
ui=δi,1

=
∑
k≥0

(−1)k ik+1 [a1 . . . ak]φk(a1, . . . , ak) (a1 + · · ·+ ak)

=
∑
k≥0

(−1)k ik+1
k∑
j=1

[a1 . . . âj . . . ak]φk (a1, . . . , aj−1, 0, aj+1, . . . , ak)

=
∂φ

∂p0

∣∣∣∣∣
ui=δi,1

.

Proof of Equation (6.2.3). We first recall this equation:

∂

∂t0
Ω~,t
d1,d2

∣∣∣
ui=δi,1

=
∑
k≥0

tk+1
∂

∂tk
Ω~,t
d1,d2

∣∣∣
ui=δi,1

+ Ω~,t
d1−1,d2

∣∣∣
ui=δi,1

+ Ω~,t
d1,d2−1

∣∣∣
ui=δi,1

+ δ0,d1δ0,d2 .

Proof. We prove this equality at every degree in the indeterminates (t0, t1, . . . ). Recall that Ω~,t
d1,d2

=

exp
(∑

k≥0
tk
~
[
·, Hk

])
Ω~
d1,d2

. Let n ≥ 0 and (d3, . . . , dn) be a list of nonnegative integers. Then the
coefficient of td3 . . . tdn of the LHS is given by

1

~n−1

[[
. . .
[
Ω~
d1,d2 , Hd3

]
. . . , Hdn

]
, H0

] ∣∣∣∣∣
ui=δi,1

=
1

~n−2
∂x

[
. . .
[
Ω~
d1,d2 , Hd3

]
. . . , Hdn

] ∣∣∣∣∣
ui=δi,1

=
1

~n−2

∂

∂p0

[
. . .
[
Ω~
d1,d2 , Hd3

]
. . . , Hdn

] ∣∣∣∣∣
ui=δi,1

.

We act with ∂
∂p0

on every elements of the commutators. Then we use Lemmas ?? and 169 to find

1

~n−2

([
. . .
[
Ωd1−1,d2 , Hd3

]
. . . , Hdn

] ∣∣∣∣∣
ui=δi,1

+
[
. . .
[
Ωd1,d2−1, Hd3

]
. . . , Hdn

] ∣∣∣∣∣
ui=δi,1

+
[
. . .
[
δ0,d1δ0,d2 , Hd3

]
. . . , Hdn

] ∣∣∣∣∣
ui=δi,1

+
[
. . .
[
Ωd1,d2 , Hd3−1

]
. . . , Hdn

] ∣∣∣∣∣
ui=δi,1

+ . . .+
[
. . .
[
Ωd1,d2 , Hd3

]
. . . , Hdn−1

] ∣∣∣∣∣
ui=δi,1

)
.

We recognize the coefficient of td3 . . . tdn of the RHS Equation (6.2.3).
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6.3 Proof of the main theorem

We give in this section the proof of Theorem 1, that is we prove the equality

〈τd1 . . . τdn〉0,g = 〈〈τd1 . . . τdn〉〉g ,

where g, n, d1, . . . , dn are some nonnegative integers. First, we explain the strategy of the proof.

6.3.1 Computing 〈τd1 . . . τdn〉0,g and 〈〈τd1 . . . τdn〉〉g
In the next section, we show that the string equation allows one to express 〈τd1 . . . τdn〉0,g and 〈〈τd1 . . . τdn〉〉g
from the the quantum and Hurwitz correlators with a τ0 insertion. We deduce that it is enough to prove
the equality

〈τ0τd1 . . . τdn〉0,g = 〈〈τ0τd1 . . . τdn〉〉g (6.3.1)

in order to prove Theorem 1. Then, we explain how to obtain an explicit expression for the RHS, and how
to compute the LHS. The two expressions are completely different, but can be used to prove the equality.

6.3.1.1 String Equation

Fix a nonnegative integer g. The correlators of the quantum Witten-Kontsevich and the Hurwitz correla-
tors satisfy the string equation

〈τ0τd1 . . . τdn〉0,g =
n∑
i=1

〈τd1 . . . τdi−1 . . . τdn〉0,g,

〈〈τ0τd1 . . . τdn〉〉g =
n∑
i=1

〈〈τd1 . . . τdi−1 . . . τdn〉〉g .

The first equation is the statement of Theorem 2 proved in Section 6.2. The second equation is Proposi-
tion 3.10 in [GJV05]. Let us define the following generating series

G̊(q)
g (s1, . . . , sn) :=

∑
d1,...,dn≥0

〈τ0τd1 . . . τdn〉0,gs
d1
1 . . . sdnn

and
G(q)
g (s1, . . . , sn) :=

∑
d1,...,dn≥0

〈τd1 . . . τdn〉0,gs
d1
1 . . . sdnn .

We also define G̊Hg and GHg by replacing the quantum correlators by the Hurwitz correlators. According
to the string equation, we have

G̊(q)
g = (s1 + · · ·+ sn)G(q)

g and G̊Hg = (s1 + · · ·+ sn)GHg .

We can inverse these two equations in the same way, we then obtain G(q)
g in terms of G̊(q)

g and GHg in
terms of G̊Hg . Hence, proving G̊

(q)
g = G̊Hg is equivalent to proving that G(q)

g = GHg .
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6.3.1.2 An explicit expression for 〈〈τ0τd1 . . . τdn〉〉g

In [GJV05], Theorem 3.1 gives the following explicit expression for the one-part double Hurwitz numbers

Hg
(d),µ = r!dr−1

[
z2g
] ∏n

i=1 S (µiz)

S (z)
,

where d = µ1 + · · · + µn is the degree of the ramified cover and r = 2g − 1 + n is the number of simple
ramifications. We also used Notation 98, that is S (z) = sh(z/2)

z/2 . Note that the polynomiality of the one-
part double Hurwitz numbers Hg

(d),µ in their ramifications µ1, . . . , µn is clear from this expression. From
the definition of the Hurwitz correlators given in Eq. (4.3.1), we find

〈〈τ0τd1 . . . τdn〉〉g = (−1)
−2+n−

∑
di

2

[
µd11 . . . µdnn

] [
z2g
]

(µ1 + . . .+ µn)2g−2+n S (µ1z) . . . S (µnz)

S (z)
, (6.3.2)

where we used S (0) = 1.

6.3.1.3 Computing 〈τ0τd1 . . . τdn〉0,g

From the construction of the quantum Witten-Kontsevich series (see Section ??), we get the following
expression of its correlators

〈τ0τd1 . . . τdn〉0,g = ig
[
ε0~g

] ( ∂n−1Ωt
0,d1

∂td2 . . . ∂tdn

)∣∣∣∣∣
t∗=0, ui=δ1,i

= ig
[
ε0~g

] 1

~n−1

[
. . .
[
Ω0,d1 , Hd2

]
, . . . ,Hdn

] ∣∣∣
ui=δ1,i

.

Lemma 167 gives Ω0,d = Hd−1. Thus we have to study

〈τ0τd1 . . . τdn〉0,g = ig
[
~g+n−1

] [
. . .
[
Hd1−1 , Hd2

]
, . . . ,Hdn

]∣∣
ui=δ1,i,ε=0

. (6.3.3)

We will compute this expression in the proof. To do so, we need a computable expression of Hd and
a computable expression of the commutator. We give these expressions in the next two paragraphs. The
computation will be carried out in Ã~. We will then need a way to perform the substitution ui = δi,1. To
do so, we use Lemma 166.

A computable expression of Hp. In [BSSZ15], Theorem 1 gives an explicit expression for the inter-
section number of a DR-cycle with the maximal power of a ψ-class. From this theorem we get∫

DRg(0,a1,...,am,−
∑
ai)
ψp+1

0 = δp+1,2g−1+m

[
z2g
] S (a1z) . . . S (amz)S (

∑m
i=1 aiz)

S (z)
.

We then obtain from the definition of Hp in Eq. (3.1.1),

Hp (x)
∣∣∣
ε=0

=
∑

g≥0,m≥0
2g+m>0

(i~)g

m!

∑
a1,...,am∈Z

(∫
DRg(0,a1,...,am,−

∑
ai)
ψd+1

0 Λ

(
−ε2

i~

))
pa1 . . . pame

ix
∑m
i=1 ai

=
∑
g≥0

(i~)g

m!

∑
a1,...,am∈Z

([
z2g
] S (a1z) . . . S (amz)S (

∑m
i=1 aiz)

S (z)

)
pa1 . . . pame

ix
∑m
i=1 ai , (6.3.4)

with m = p+ 2− 2g.
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Explicit expression of the star product. Let f, g ∈ F~ (P ). One can check that the star product of
these elements is given by

f ? g = f exp

(∑
k>0

i~k
←−−
∂

∂pk

−−−→
∂

∂p−k

)
g. (6.3.5)

The notations
←−
∂
∂pk

and
−−→
∂

∂p−k
mean that the derivative acts on the left or on the right, that is on f or g.

6.3.2 Proof of the equality 〈τ0τd1 . . . τdn〉0,g = 〈〈τ0τd1 . . . τdn〉〉g
In Section 6.3.2.1, we prove the equality of Equation (6.3.1) for n = 1.

In Section 6.3.2.2, we prove the equality of Equation (6.3.1) for n = 2. This particular case is included
as an example to illuminate the proof of the general case.

In Section 6.3.2.3, we prove the equality of Equation (6.3.1) for n ≥ 2.

Convention. In the rest of the proof, we focus on the restriction ε = 0. Hence, we forget the formal
variable ε and always suppose it to be zero.

6.3.2.1 Proof for n = 1

Fix two nonnegative integers d and g. We prove in this section that

〈τ0τd〉0,g = 〈〈τ0τd〉〉g.

We start from the LHS, 〈τ0τd〉0,g. As explained in Eq. (6.3.3), we have 〈τ0τd〉g = ig [~g] Hd−1

∣∣∣
ui=δi,1

. Then

we use the expression of Hp in Eq. (6.3.4) and perform the evaluation ui = δi,1 with Lemma 166. We find

〈τ0τd〉0,g = ig
ig

m!
(−i)m [a1 . . . am]

[
z2g
] S (a1z) . . . S (amz)S (

∑m
i=1 aiz)

S (z)

with m = d + 1 − 2g. Note that there is no a-linear term in S (az) because S is an even function, hence
the expression of 〈τ0τd〉0,g simplifies to

〈τ0τd〉0,g =
(−i)d+1

m!
[a1 . . . am]

[
z2g
] S (

∑m
i=1 aiz)

S (z)
.

Let A =
∑m

i=1 ai. It is easy to check [a1 . . . am]S (
∑m

i=1 aiz) = m! [Am]S (Az). Hence we get

〈τ0τd〉0,g = (−i)d+1 [z2gAm
] S (Az)

S (z)
= (−i)d+1

[
z2gAd+1−2g

] S (Az)

S (z)
,

and we rewrite it as
〈τ0τd〉0,g = i−1−d

[
Ad
] [
z2g
]
A2g−1S (Az)

S (z)
.

We recognize the expression of 〈〈τ0τd〉〉g given by Eq. (6.3.2).
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6.3.2.2 Proof for n = 2

Fix three nonnegative integers d1, d2 and g. We prove in this section that

〈τ0τd1τd2〉0,g = 〈〈τ0τd1τd2〉〉g.

We start from the LHS. As explained in Eq. (6.3.3), we have 〈τ0τd1τd2〉0,g = [~g] ig~
[
Hd1 , Hd2

]∣∣
ui=δ1,i

.

In Step 1, we obtain an expression of i
g

~
[
Hd1−1 , Hd2

]
using the formulas of Hd1−1, Hd2 and of the star

product given in Section 6.3.1.3.
In Step 2, we first extract the coefficient of ~g in ig

~
[
Hd1−1 , Hd2

]
. Then we perform the substitution

ui = δi,1 in [~g] ig~
[
Hd1−1 , Hd2

]
and get a first expression of 〈τ0τd1τd2〉0,g. However this expression will be

totally different from the one of 〈〈τ0τd1τd2〉〉g given by Eq. (6.3.2).
In Steps 3,4 and 5, we will transform this last expression of 〈τ0τd1τd2〉0,g into the expression of

〈〈τ0τd1τd2〉〉g given by Eq. 6.3.2.

Step 1. We compute ig

~
[
Hd1−1 , Hd2

]
= ig

~
(
Hd1−1 ? Hd2 −Hd2 ? Hd1−1

)
. Recall that

Hd1−1 (x) =
∑
g1≥0

withm1=d1+1−2g1

(i~)g1

m1!

∑
a1,...,am1∈Z

([
z2g1

] S (a1z) . . . S (am1z)S (
∑m1

i=1 aiz)

S (z)

)
pa1 . . . pam1

eix
∑m1
i=1 ai

and
Hd2 =

∑
g2≥0

withm2=d2+2−2g2

(i~)g2

m2!

∑
b1,...,bm2∈Z∑

bi=0

([
w2g2

] S (b1w) . . . S (bm2w)

S (w)

)
pb1 . . . pbm2

.

The expression of Hd2 is obtained by a formal x-integration along S1 of Hd2 . Hence this imposes the
condition

∑m2
i=1 bi = 0 and then S (

∑m2
i=1 biw) = 1.

From the expression of the star product (6.3.5), we get

Hd1−1 ? Hd2 = Hd1−1 exp

(∑
k>0

i~k
←−−
∂

∂pk

−−−→
∂

∂p−k

)
Hd2

= Hd1−1

∑
q≥0

(i~)q

q!

 ∑
k1,...,kq>0

k1 . . . kq

←−−−
∂

∂pk1
. . .

←−−−
∂

∂pkq

−−−−→
∂

∂p−k1
. . .

−−−−→
∂

∂p−kq

Hd2 .

We first describe the action of the left-derivatives of the star product on Hd1−1. Fix g1 in Hd1−1. The

product of q left-derivatives
←−−
∂

∂pk1
. . .
←−−
∂

∂pkq
acts on the formal power series∑

a1,...,am1∈Z
S (a1z) . . . S (am1z)S (

∑m1
i=1 aiz) pa1 . . . pam1

yielding

m1 . . . (m̃1 + 1)
∑

a1,...,am̃1
∈Z
S (a1z) . . . S (am̃1z)S (k1z) . . . S (kqz)S

((
Ã+K

)
z
)
pa1 . . . pam̃1
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where m̃1 = m1 − q, Ã =
∑m̃1

i=1 ai and K =
∑q

i=1 ki. Indeed, each derivative ∂
∂pkj

may act on each factor

pai . Without loss of generality we can assume that i = m̃1 + j, multiplying the result by m1 . . . (m̃1 + 1)
to account for the number of equivalent choices. The derivative yields a nonvanishing result if and only if
ai = kj .

Similarly we describe the action of the right-derivatives of the star product on Hd2 . Fix g2 in Hd2 . The

product of q right-derivatives
−−−→
∂

∂p−k1
. . .
−−−→
∂

∂p−kq
acts on the formal series

∑
b1,...,bm2∈Z∑

bi=0

S (b1w) . . . S (bm2w) pb1 . . . pbm2

yielding
m2 . . . (m̃2 + 1)

∑
b1,...,bm̃2

∈Z
B̃=K

S (b1w) . . . S (bm̃2w)S (−k1w) . . . S (−kqw) pb1 . . . pbm̃2

where m̃2 = m2 − q and B̃ =
∑m̃2

i=1 bi.
Recall that S is an even function, hence S (−kiw) = S (kiw). Note that the condition

∑m
i=1 bi = 0

becomes K = B̃.
Finally, the expression of Hd1−1 ? Hd2 becomes∑
g≥0

∑
g1+g2+q=g

(i~)g

m̃1!m̃2!q!

[
z2g1w2g2

]
(6.3.6)

×
∑

a1,...,am̃1
∈Z

∑
b1,...,bm̃2

∈Z

∑
k1,...,kq>0

K=B̃

k1 . . . kq

×
S (a1z) . . . S (am̃1z)S (k1z) . . . S (kqz)S

((
Ã+ B̃

)
z
)

S (z)

S (b1w) . . . S (bm̃2w)S (−k1w) . . . S (−kqw)

S (w)

× pa1 . . . pam̃1
pb1 . . . pbm̃2

eix(Ã+B̃),

where m̃1 = d1 + 1− 2g1 − q and m̃2 = d2 + 2− 2g2 − q.
We can re-do this exercise to compute Hd2 ?Hd1−1. The main difference is the condition K = B̃ which
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becomes K = −B̃. Thus, the expression of i
g

~
[
Hd1−1 , Hd2

]
is

∑
g≥0

∑
g1+g2+q−1=g
g1,g2≥0, q≥1

i2g+1~g

m̃1!m̃2!q!

[
z2g1w2g2

]
(6.3.7)

×
∑

a1,...,am̃1
∈Z

∑
b1,...,bm̃2

∈Z

S (a1z) . . . S (am̃1z)S
((
Ã+ B̃

)
z
)
S (b1w) . . . S (bm̃2w)

S (z)S (w)

×

 ∑
k1+···+kq=B̃

k1 . . . kqS (k1z) . . . S (kqz)S (k1w) . . . S (kqw)

−
∑

k1+···+kq=−B̃

k1 . . . kqS (k1z) . . . S (kqz)S (k1w) . . . S (kqw)

 ,

× pa1 . . . pam̃1
pb1 . . . pbm̃2

eix(Ã+B̃).

where m̃1 = d1 + 1− 2g1 − q and m̃2 = d2 + 2− 2g2 − q.

Remark 171. The term q = 0 of the expression of Hd1−1 ? Hd2 in Eq. (6.3.6) corresponds to the
commutative part of the star product. This term disappears in the commutator 1

~
[
Hd1−1, Hd2

]
. We

can then suppose that q ≥ 1 in Eq. (6.3.7).

Change of notation. For convenience, we change the notation by removing the tildes, i.e. we set
m1 := m̃1, m2 := m̃2, A := Ã and B := B̃.

Step 2. We first extract the coefficient of ~g from ig

~
[
Hd1−1 , Hd2

]
. Then we evaluate this coeffi-

cient, which is a differential polynomial, at ui = δi,1. We will then get an expression for 〈τ0τd1τd2〉0,g =
[~g] ig~

[
Hd1 , Hd2

]∣∣
ui=δ1,i

.

We extract the coefficient of ~g in ig

~
[
Hd1−1 , Hd2

]
from its expression obtained in Eq. (6.3.7). This

85



only removes the summation over g. With our new notations, this coefficient is

[~g]
ig

~
[
Hd1−1 , Hd2

]
=

∑
g1+g2+q−1=g
g1,g2≥0, q≥1

i2g+1

m1!m2!q!

[
z2g1w2g2

]

×
∑

a1,...,am1∈Z

∑
b1,...,bm2∈Z

S (a1z) . . . S (am1z)S ((A+B) z)S (b1w) . . . S (bm2w)

S (z)S (w)

×

 ∑
k1+···+kq=B

k1 . . . kqS (k1z) . . . S (kqz)S (k1w) . . . S (kqw)

−
∑

k1+···+kq=−B
k1 . . . kqS (k1z) . . . S (kqz)S (k1w) . . . S (kqw)


× pa1 . . . pam1

pb1 . . . pbm2
eix(A+B),

where m1 = d1 + 1− 2g1 − q and m2 = d2 + 2− 2g2 − q.
This last expression is a differential polynomial thanks to Proposition ??. In order to substitute

ui = δi,1, we use Lemma 166. We get

〈τ0τd1τd2〉0,g =
∑

g1+g2+q−1=g
g1,g2≥0, q≥1

[
z2g1w2g2

]
[a1 . . . am1b1 . . . bm2 ]

× i−d1−d2

m1!m2!q!

S (a1z) . . . S (am1z)S ((A+B) z)S (b1w) . . . S (bm2w)

S (z)S (w)
(6.3.8)

×

 ∑
k1+···+kq=B

k1 . . . kqS (k1z) . . . S (kqz)S (k1w) . . . S (kqw)

−
∑

k1+···+kq=−B
k1 . . . kqS (k1z) . . . S (kqz)S (k1w) . . . S (kqw)

 ,

where m1 = d1 + 1− 2g1 − q and m2 = d2 + 2− 2g2 − q.

Remark 172. It can look confusing that in this expression, bi stands for a formal variable and an integer
when we write k1 + · · · + kq = B =

∑m2
i=1 bi. This is due to the the presence of Ehrhart polynomials.

Indeed, the coefficient of any power of z and w in∑
k1+···+kq=B

k1 . . . kqS (k1z) . . . S (kqz)S (k1w) . . . S (kqw)

is an Ehrhart polynomial in the indeterminate B =
∑m2

i=1 bi, see [BR16, Lemma A.1] for a proof. Hence,
when we write B as an integer, we use this lemma to justify that B can also be used as an formal
variable. The same phenomenon applies to

∑
k1+···+kq=−B k1 . . . kqS (k1z) . . . S (kqz)S (k1w) . . . S (kqw)

when B < 0.
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Plan of Steps 3, 4 and 5. This expression of 〈τ0τd1τd2〉0,g is completely different from the one of
〈〈τ0τd1τd2〉〉g given by Eq. (6.3.2). Moreover, it is difficult to compute the number 〈τ0τd1τd2〉0,g from this
expression. Let us point out the difficulties. The three last lines of Eq. (6.3.8) form a series depending on
the parameters d1, d2, g1, g2, q in the indeterminates a1, . . . , am1 , b1, . . . , bm2 , z, w. We denote this series by
Fd1,d2,g1,g2,q (a1, . . . , am1 , b1, . . . , bm2 , z, w) so that Eq. (6.3.8) becomes

〈τ0τd1τd2〉0,g =
∑

g1+g2+q−1=g
g1,g2≥0, q≥1

[
z2g1w2g2

]
[a1 . . . am1b1 . . . bm2 ]Fd1,d2,g1,g2,q (a1, . . . , am1 , b1, . . . , bm2 , z, w) .

Hence, for each choice of the parameters d1, d2, g1, g2, q, we have to extract the coefficient of
z2g1w2g2a1 . . . am1b1 . . . bm2 in Fd1,d2,g1,g2,q. Then we sum these coefficients over the parameters g1, g2, q.
The main difficulty is to extract the coefficient of bi from the expression appearing in parenthesis in
Fd1,d2,g1,g2,q, that is from∑

k1+···+kq=B
k1 . . . kqS (k1z) . . . S (kqz)S (k1w) . . . S (kqw)

−
∑

k1+···+kq=−B
k1 . . . kqS (k1z) . . . S (kqz)S (k1w) . . . S (kqw) .

As we explained in Remark 172, the coefficient of any power of z and w in each of the two sums is an
Ehrhart polynomial in the indeterminate B =

∑m2
i=1 bi. However we do not have an explicit expression

for the coefficients of these Ehrhart polynomials. Luckily, Eulerian numbers appear in the computation
of these coefficients, see Remark ??. The plan is to modify our expression of 〈τ0τd1τd2〉0,g in order to use
known properties of Eulerian numbers.

In Step 3, we will modify our expression of 〈τ0τd1τd2〉0,g using simplifications arising from extracting
the coefficient of a1 . . . am1b1 . . . bm2 in Fd1,d2,g1,g2,q (a1, . . . , am1 , b1, . . . , bm2 , z, w). These simplifications
mainly come from the fact that z → S (z) is even.

In Step 4, we use some changes of variables in order to get 〈τ0τd1τd2〉0,g as the coefficient of an
exponential generating series. This is the exponential of an expression that can be computed using Eulerian
numbers.

In Step 5, we finally we use a property of Eulerian number in order to get a simplified expression of
〈τ0τd1τd2〉0,g. We then recover from it the expression of 〈〈τ0τd1τd2〉〉g given by Eq. (6.3.2).

Step 3. The evaluation ui = δi,1 brings many simplifications that we explain now.

• First recall that S is an even power series so that the coefficient of α in S (αz)×F (α) where F is a
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formal power series in α is the coefficient of α in F (α). Hence, Expression (6.3.8) simplifies as

〈τ0τd1τd2〉0,g =
∑

g1+g2+q−1=g
g1,g2≥0, q≥1

i−d1−d2

m1!m2!q!

[
z2g1w2g2

]

× [a1 . . . am1b1 . . . bm2 ]
S ((A+B) z)

S (z)S (w)
(6.3.9)

×

 ∑
k1+···+kq=B

k1 . . . kqS (k1z) . . . S (kqz)S (k1w) . . . S (kqw)

−
∑

k1+···+kq=−B
k1 . . . kqS (k1z) . . . S (kqz)S (k1w) . . . S (kqw)

 .

• Fix g1, g2 and q in Expression (6.3.9) so that m1 and m2 are fixed. We extract the coefficient of
a1 . . . am1b1 . . . bm2 from a power series that only depends of the sums A = a1 + . . . + am1 and
B = b1 + . . .+ bm2 . This is equivalent to extracting the coefficient of A

m1Bm2

m1!m2! from the same power
series.

• Consider the expression in parenthesis in Eq. (6.3.9). This is a power series in the indeterminate B.
Moreover, when B ≥ 0 this power series becomes∑

k1+···+kq=B
k1 . . . kqS (k1z) . . . S (kqz)S (k1w) . . . S (kqw)

and when B < 0 it becomes

−
∑

k1+···+kq=−B
k1 . . . kqS (k1z) . . . S (kqz)S (k1w) . . . S (kqw) .

We are interested in the coefficients of this power series, so for simplicity we can suppose B > 0 .
Expression (6.3.9) becomes

〈τ0τd1τd2〉0,g =
∑

g1+g2+q−1=g
g1,g2≥0, q≥1

i−d1−d2

q!

[
z2g1w2g2

]
(6.3.10)

× [Am1Bm2 ]
S ((A+B) z)

S (z)S (w)

×
∑

k1+···+kq=B
k1 . . . kqS (k1z) . . . S (kqz)S (k1w) . . . S (kqw) .
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Step 4. We perform the changes of variables z := Az and w := Bw in Expression (6.3.10). Recall that
m1 = d1 + 1− 2g1 − q and m2 = d2 + 2− 2g2 − q, these changes of variables yield

〈τ0τd1τd2〉0,g =
∑

g1+g2+q−1=g
g1,g2≥0, q≥1

i−d1−d2

q!

[
z2g1w2g2Ad1+1−qBd2+2−q

]

× S ((A+B)Az)

S (Az)S (Bw)

×
∑

k1+···+kq=B
k1 . . . kqS (k1Az) . . . S (kqAz)S (k1Bw) . . . S (kqBw) .

We re-write this as

g+1∑
q=1

i−d1−d2

q!

[
Ad1+1−qBd2+2−q

]
×

∑
g1+g2=g−q+1

[
z2g1w2g2

] S ((A+B)Az)

S (Az)S (Bw)

∑
k1+···+kq=B

k1 . . . kqS (k1Az) . . . S (kqAz)S (k1Bw) . . . S (kqBw)

︸ ︷︷ ︸
G(z,w)

(6.3.11)

Note that for any formal power series G (z, w) =
∑

i,j≥0Gi,jz
iwj , we have

∑
g1+g2=h [zg1wg2 ]G (z, w) =∑

g1+g2=hGg1,g2 =
[
zh
]
G (z, z). Using this remark in Expression (6.3.11) with h = g + 1 − q and using

that G (z, w) is even in z and w , we get the following expression for 〈τ0τd1τd2〉0,g,

g+1∑
q=1

i−d1−d2

q!

[
Ad1+1−qBd2+2−qz2g−2q+2

]
× S ((A+B)Az)

S (Az)S (Bz)

∑
k1+···+kq=B

k1 . . . kqS (k1Az) . . . S (kqAz)S (k1Bz) . . . S (kqBz) .

Re-write this expression as

〈τ0τd1τd2〉0,g =i−d1−d2
[
Ad1Bd2z2g

] S ((A+B)Az)

S (Az)S (Bz)

×
g+1∑
q=1

1

q!
Aq−1Bq−2z2q−2

∑
k1+···+kq=B

q∏
i=1

kiS (kiAz)S (kiBz) . (6.3.12)

We can extend the range of summation to q running from 1 to ∞. Indeed, it is clear from the expression
that the terms with q > g + 1 vanishes, since we extract the coefficient of z2g from a power series with
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a factor z2q−2. Hence, the second line of Expression (6.3.12) can be re-written as the coefficient of an
exponential series. Expression (6.3.12) becomes

〈τ0τd1τd2〉0,g = i−d1−d2
[
Ad1Bd2z2g

] S ((A+B)Az)

S (Az)S (Bz)

× 1

AB2z2

[
tB
](

exp

(∑
k>0

ABz2kS (kAz)S (kBz) tk

)
− 1

)
(6.3.13)

Step 5. We use properties of Eulerian numbers in order to simplify the expression of the exponential
power series in Expression (6.3.13). Using first Proposition 155 and then the definition S (z) = sh(z/2)

z/2 , we
get

exp

(∑
k>0

ABz2kS (kAz)S (kBz) tk

)
= 1 + 4

∑
k>0

sh
(
A
2 z
)

sh
(
B
2 z
)

sh
(
A+B

2 z
) sh

(
k
A+B

2
z

)
tk

= 1 +
∑
k>0

ABkz2S (Az)S (Bz)

S ((A+B) z)
S (k (A+B) z) tk.

Thus, Expression (6.3.13) becomes after extracting the coefficient of tB

〈τ0τd1τd2〉0,g = i−d1−d2
[
Ad1Bd2z2g

] S ((A+B)Az)

S (Az)S (Bz)

× 4

AB2z2

sh
(
A
2 z
)

sh
(
B
2 z
)

sh
(
A+B

2 z
) sh

(
B
A+B

2
z

)
.

We re-write the second line as S(Az)S(Bz)
S((A+B)z) S (B (A+B) z) so that

〈τ0τd1τd2〉0,g = i−d1−d2
[
Ad1Bd2z2g

] S ((A+B)Az)S (B (A+B) z)

S ((A+B) z)
.

Finally, the change of variable z := z
A+B in this last expression gives 〈〈τ0τd1τd2〉〉g as expressed in

Eq. (6.3.2), that is

〈τ0τd1τd2〉0,g = (−1)
−d1−d2

2

[
Ad1Bd2z2g

]
(A+B)2g S (Az)S (Bz)

S (z)
.

6.3.2.3 Proof for n ≥ 2

Convention. Because of the multiple use of the index i, we choose to denote the imaginary unit i as√
−1 in this section.
Fix n+ 1 nonnegative integers d1, . . . , dn and g, we prove in this section that

〈τ0τd1 . . . τdn〉0,g = 〈〈τ0τd1 . . . τdn〉〉g
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for n ≥ 2. We start from the LHS. As explained in the strategy of the proof, we have

〈τ0τd1 . . . τdn〉0,g = [~g]
√
−1

g

~n−1

[
. . .
[
Hd1−1 , Hd2

]
, . . . ,Hdn

]∣∣
ui=δ1,i

.

We follow the steps of the previous section in this more general setting. The main difference occurs in
Step 5, where we need a combinatorial lemma which was obvious when n = 2. Let us recall these steps.

In Step 1, we obtain an expression of
[
. . .
[
Hd1−1 , Hd2

]
, . . . ,Hdn

]
using the formulas ofHd1−1,Hd2 , . . . ,Hdn

and of the developed expression of the star product.
In Step 2, we first extract the coefficient of ~g in

√
−1

g

~n−1

[
. . .
[
Hd1−1 , Hd2

]
, . . . ,Hdn

]
. Then we perform

the substitution ui = δi,1 in it and get a first expression of 〈τ0τd1 . . . τdn〉0,g. However this expression will
be totally different from the one of 〈〈τ0τd1 . . . τdn〉〉g given by Eq. (6.3.2).

In Steps 3,4 and 5, we will transform this last expression of 〈τ0τd1 . . . τdn〉0,g into the expression of
〈〈τ0τd1 . . . τdn〉〉g given by Eq. (6.3.2).

Step 1. We compute in the first step
[
. . .
[
Hd1−1 , Hd2

]
, . . . ,Hdn

]
. From the expression of the Hamilto-

nian density Eq. (6.3.4), we set

Hd1−1 (x) =
∑

g1,m1≥0
s.t. 2g1+m1=d1+1

(√
−1~

)g1
m1!

∑
a11,...,a

1
m1
∈Z

([
z2g1

1

] S (a1
1z
)
. . . S

(
a1
m1
z
)
S (A1z)

S (z)

)
pa11 . . . pa1m1

e
√
−1xA1 ,

and

Hdi =
∑

gi,mi≥0
s.t. 2gi+mi=di+2

(√
−1~

)gi
mi!

∑
ai1,...,a

i
mi
∈Z

Ai=0

([
z2gi
i

] S (ai1zi) . . . S (aimizj)
S (zi)

)
pai1

. . . paimi
, with 2 ≤ i ≤ n,

where Ai :=
∑mi

j=1 a
i
j and 1 ≤ i ≤ n. In these notations, we use the variables of summations a1

j in Hd1−1

and the variables of summations aij in Hdi , with 2 ≤ i ≤ n. Note that in the notation aij , i is just an upper
index. The expression of Hdi is obtained by a formal x-integration along S1 of Hdi . Hence, the sum over
ai1, . . . , a

i
mi has the constraint Ai = 0.

In Step 1.1, we give an expression for Hd1−1 ? Hd2 ? · · · ? Hdn . In Step 1.2 we explain why this is the
only term of the commutator

[
. . .
[
Hd1−1 , Hd2

]
, . . . ,Hdn

]
needed to compute 〈τ0τd1 . . . τdn〉0,g.

Step 1.1.
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Proposition 173. We have

Hd1−1 ? Hd2 ? · · · ? Hdn =
∑

qI≥0, I∈C

∑
g1,...,gn≥0

∑
m̃1,...,m̃n≥0

with conditionsα

(6.3.14)

n∏
i=1

(√−1~
)gi

m̃i!

[
z2gi
i

] ∑
ai1,...,a

i
m̃i
∈Z

Wi

(
ai1, . . . , a

i
m̃1
, zi
)
pa1 . . . pam̃ie

√
−1xÃi



×
∏
I∈C


(√
−1~

)qI
qI !

∑
kI1 ,...,k

I
qI
>0

with conditions β

kI1 . . . k
I
qI
W I

(
kI1, . . . , k

I
qI
, zI
)
 ,

where

• C is the set of pairs (2-element subsets) of {1, . . . , n}; we also denote by Ci ⊂ C the subset of pairs
that contain i,

• the conditions α on the summations running over g1, . . . , gn, m̃1, . . . , m̃n and qI , I ∈ C are

2g1 + m̃1 +
∑
I∈C1

qI = d1 + 1

and
2gj + m̃j +

∑
I∈Cj

qI = dj + 2, with 2 ≤ j ≤ n,

• the weight Wi with 1 ≤ i ≤ n is defined by

W1

(
a1

1, . . . , a
1
m̃1
, z1

)
:=

∏m̃1
j=1 S

(
a1
jz1

)
S (z1)

S
(
Ã1z1 + . . . Ãnz1

)
and

Wi

(
ai1, . . . , a

i
m̃1
, zi
)

:=

∏m̃i
j=1 S

(
aijzi

)
S (zi)

, for 2 ≤ i ≤ n,

• Ãj =
∑m̃j

i=1 ai,

• the conditions β are the following (n− 1) constraints over the summations:

Ãi −
i−1∑
j=1

K{j,i} +
n∑

j=i+1

K{i,j} = 0, 2 ≤ i ≤ n (6.3.15)

where KI = kI1 + · · ·+ kIqI , for I ∈ C,
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• the weight W I for I = {i, j} ∈ C is defined by

W I
(
kI1, . . . , k

I
qI
, zI
)

: = S
(
kI1zi

)
. . . S

(
kIqIzi

)
× S

(
kI1zj

)
. . . S

(
kIqIzj

)
,

note that the notation zI means zi, zj.

Proof. We use the expression of the star product given by

f ? g = f
∑
q≥0

(√
−1~

)q
q!

 ∑
k1,...,kq>0

k1 . . . kq

←−−−
∂

∂pk1
. . .

←−−−
∂

∂pkq

−−−−→
∂

∂p−k1
. . .

−−−−→
∂

∂p−kq

 g. (6.3.16)

The star product is associative as one can check from Eq. (6.3.16). We use this associativity in the following
way

Hd1−1 ? Hd2 ? · · · ? Hdn =
(
· · ·
(
Hd1−1 ? Hd2

)
? · · · ? Hdn

)
.

Each of the n−1 star products has couples of derivatives acting on the left and on the right with opposite
indices. Let 2 ≤ i ≤ n. The (i− 1)th star product acts on the left on Hd1−1, Hd2 , . . . ,Hdi−1

and on the
right only on Hdi . Fix a nonnegative integer q and q positive integers k1, . . . , kq. Consider the term(√

−1~
)q

q!
k1 . . . kq

←−−−
∂

∂pk1
. . .

←−−−
∂

∂pkq

−−−−→
∂

∂p−k1
. . .

−−−−→
∂

∂p−kq

in the development in ~ of the (i− 1)th star product. Among these q left derivatives, we denote by q{i,j},
with j < i, the number of derivatives acting on Hdj (or Hd1−1 if j = 1). We furthermore add an upper
index {i, j} on the corresponding k variables so that the q{i,j} left derivatives coming from the (i− 1)th
star product and acting on the jth Hamiltonian are denoted by

←−−−−−
∂

∂p
k
{i,j}
1

. . .

←−−−−−
∂

∂p
k
{i,j}
q{i,j}

.

The associate right derivatives
−−−−−→

∂
∂p
−k{i,j}1

. . .
−−−−−−→

∂
∂p
−k{i,j}q{i,j}

act on Hdi with opposite indices. With this notation,

we obtain

Hd1−1 ? Hd2 ? · · · ? Hdn

=
∑

qI≥0, I∈C

∑
kI1 ,...,k

I
qI
≥0, I∈C

∏
I∈C

(√
−1~

)qI
qI !

kI1 . . . k
I
qI

×
∏
J∈C1

∂qJ

∂pkJ1
. . . ∂pkJqJ

Hd1−1

×
n∏
i=2

i−1∏
j=1

 ∂q{i,j}

∂p−k{i,j}1

. . . ∂p−k{i,j}q{i,j}

 n∏
l=i+1

 ∂q{i,l}

∂p
k
{i,l}
1

. . . ∂p
k
{i,l}
q{i,l}

Hdi . (6.3.17)
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Let us explain this formula. The derivatives acting on Hdi have two different origins; the derivatives
coming from the (i− 1)th star product, these are the derivatives with negative indices in the product
running over the variable j, and the derivatives coming from the ith to the (n− 1)th star product, these
are the derivatives with positive indices in the product running over the variable l. Similarly, the derivatives
acting on Hd1−1 come from all the star products and have positive indices. Moreover, when we develop
the star products, we have to choose which derivative acts on which Hamiltonian so that multinomial
coefficients appear and simplify the factorials.

We now describe the action of the
∑n

j=1,j 6=i q{i,j} derivatives of the last line of Eq. (6.3.17) on Hdi .
We find

i−1∏
j=1

 ∂q{i,j}

∂p−k{i,j}1

. . . ∂p−k{i,j}q{i,j}

 n∏
l=i+1

 ∂q{i,l}

∂p
k
{i,l}
1

. . . ∂p
k
{i,l}
q{i,l}

Hdi

=
∑

gi,m̃i≥0
2gi+m̃i+

∑
I∈Ci qI=di+2

(√
−1~

)gi
m̃i!

[
z2gi

]
×

∑
ai1,...,a

i
m̃i
∈Z

with condition β

Wi

(
ai1, . . . , a

i
m̃1
, zi
)
pa1 . . . pam̃i

×
i−1∏
j=1

S
(
k
{i,j}
1 zi

)
. . . S

(
k{i,j}q{i,j}

zi

) n∏
l=i+1

S
(
k
{i,l}
1 zi

)
. . . S

(
k{i,l}q{i,l}

zi

)
. (6.3.18)

Indeed, when the
∑n

j=1,j 6=i q{i,j} derivatives act on
S(ai1zi)...S(aimizj)

S(zi)
pai1

. . . paimi
in Hdi , it remains m̃i =

mi −
∑n

j=1,j 6=i q{i,j} variables p. The part of this expression which is not reached by the derivatives is
contained in the third line while the part reached by the derivatives with negative and positive indices is the
content of the last line. Finally, the condition Ai = 0 inHdi becomes Ãi+

∑n
j=i+1K

{i,j}−
∑n−1

j=1 K
{j,i} = 0,

this is the ith equation of conditions β.
Similarly, there are only derivatives with positive indices acting on Hd1−1. We find∏

J∈C1

∂qJ

∂pkJ1
. . . ∂pkJqJ

Hd1−1 =
∑

g1,m1≥0
s.t. 2g1+m̃1+

∑
I∈C1 qI=d1+1

(√
−1~

)g1
m̃1!

[
z2g1

]

×
∑

a11,...,a
1
m̃1
∈Z

W1

(
a1

1, . . . , a
1
m̃1
, z1

)
pa1 . . . pam̃1

e
√
−1x

∑n
i=1 Ãi (6.3.19)

×
∏
J∈C1

S
(
kJ1 z1

)
. . . S

(
kJqJ z1

)
.

Note that A1 becomes after the action of the derivatives

Ã1 −
n∑
j=2

K(1,j) =

n∑
i=1

Ãi.
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We obtained this equality by summing the (n− 1) equations of conditions β (see Eq. (6.3.15)).
By combining Eq. (6.3.17), (6.3.18) and (6.3.19) we obtain Eq. (6.3.14). This proves the proposition.

Step 1.2. Similarly to the expression of Hd1−1 ? Hd2 ? · · · ? Hdn obtained in Step 1.1 , we can get
the expressions of the 2n−1 − 1 others terms appearing in

[
. . .
[
Hd1−1, Hd2

]
, . . . ,Hdn

]
. To each term

we associate a permutation σ ∈ Sn such that σ (i) is the index of the Hamiltonian appearing at the
ith position (the index of Hd1−1 is 1 and the index of Hdi is i). Then, the expression of the term in[
. . .
[
Hd1−1, Hd2

]
, . . . ,Hdn

]
corresponding to the permutation σ is given by Expression (6.3.14) with one

modifications: conditions β become

Ãi −
σ−1(i)−1∑
j=1

K{i,σ(j)} +

n∑
j=σ−1(i)+1

K{i,σ(j)}, 2 ≤ i ≤ n.

However, it is not necessary to compute these 2n−1− 1 other terms in order to obtain 〈τ0τd1 . . . τdn〉0,g.
Indeed,

[
. . .
[
Hd1−1, Hd2

]
, . . . ,Hdn

]
is a power series in the indeterminates a1

1, . . . , a
1
m̃1
, . . . , an1 . . . , a

n
m̃n

.
In Step 2 we extract one coefficient of this power series. Then, we can restrict to compute the terms in[
. . .
[
Hd1−1, Hd2

]
, . . . ,Hdn

]
such that

Ãi > 0, with i ≥ 2.

The only term in
[
. . .
[
Hd1−1, Hd2

]
, . . . ,Hdn

]
satisfying these inequalities is Hd1−1?Hd2?· · ·?Hdn . Indeed,

in the other terms, the condition coming from the Hamiltonian on the leftmost in the star product, say
Hdi , is

Ãi +
∑
1<j

K{1,j} = 0,

that is Ãj < 0.
Although, we will use one simplification coming from the commutators. A commutator simplifies the

constant term in ~ in the star product, that is the term coming from the commutative product. These
terms correspond in the expression of Hd1−1 ?Hd2 ? · · · ?Hdn given by Eq. (6.3.14) to the terms satisfying

i−1∑
j=1

q{i,j} = 0, for 2 ≤ i ≤ n.

Indeed,
∑i−1

j=1 q{i,j} counts the number of left (or right) derivatives coming from the (i− 1)th star product
and the commutative term in the star product is the one without derivatives. We call conditions γ the
inequalities

i−1∑
j=1

q{i,j} ≥ 1, for 2 ≤ i ≤ n.

Change of notation. We remove the tildes in our notations, i.e. we set mi := m̃i and Ai := Ãi for any
1 ≤ i ≤ n.

95



Step 2. We first extract the coefficient of ~g from
√
−1

g

~n−1

[
. . .
[
Hd1−1 , Hd2

]
, . . . ,Hdn

]
. Then we evaluate

this coefficient, which is a differential polynomial, at ui = δi,1. We will then get an expression for
〈τ0τd1 . . . τdn〉0,g = [~g]

√
−1

g

~n−1

[
. . .
[
Hd1−1 , Hd2

]
, . . . ,Hdn

]∣∣
ui=δ1,i

.

We want to extract the coefficient of ~g in
√
−1

g

~n−1

[
. . .
[
Hd1−1 , Hd2

]
, . . . ,Hdn

]
. As explained in Step 1.2,

we only need to study the term Hd1−1 ? Hd2 ? · · · ? Hdn in
[
. . .
[
Hd1−1 , Hd2

]
, . . . ,Hdn

]
. The coefficient

of ~g in
√
−1

g

~n−1 Hd1−1 ? Hd2 ? · · · ? Hdn is easily obtained from Expression (6.3.14). We get with our new
notations

[~g]
√
−1

g

~n−1

[
. . .
[
Hd1−1 , Hd2

]
, . . . ,Hdn

]
=

∑
g1+···+gn+

∑
I∈C qI=g+n−1

with conditions γ

√
−1

2g+(n−1)

×
n∏
i=1

 1

mi!

[
z2gi
i

] ∑
ai1,...,a

i
m1
∈Z

Wi

(
ai1, . . . , a

i
m1
, zi
)
pa1 . . . pamie

√
−1xAi



×
∏
I∈C

 1

qI !

∑
kI1 ,...,k

I
qI
>0

with conditions β

kI1 . . . k
I
qI
W I

(
kI1, . . . , k

I
qI
, zI
)


+ 2n−1 − 1 other terms,

where we used conditions α to fix

m1 = d1 + 1− 2g1 −
∑
I∈C1

qI , and mi = di + 2− 2gi −
∑
I∈Ci

qI , when 2 ≤ i ≤ n.

This last expression is a differential polynomial thanks to Proposition ??. In order to substitute
ui = δi,1, we use Lemma 166. We get

〈τ0τd1 . . . τdn〉0,g =
∑

g1+···+gn+
∑
I∈C qI=g+n−1

with conditions γ

√
−1

n−2−|d|

×
n∏
i=1

(
1

mi!

[
ai1 . . . a

i
m1

] [
z2gi
i

]
Wi

(
ai1, . . . , a

i
m1
, zi
))

×
∏
I∈C

 1

qI !

∑
kI1 ,...,k

I
qI
>0

with conditions β

kI1 . . . k
I
qI
W I

(
kI1, . . . , k

I
qI
, zI
)


+ 2n−1 − 1 other terms,
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where we simplified the power of
√
−1 usingm1 := d1+1−2g1−

∑
I∈C1 qI andmi := di+2−2gi−

∑
I∈Ci qI ,

when 2 ≤ i ≤ n. We used the notation |d| =
∑n

i=1 di.

Remark 174. It can look confusing that in this expression, aij for 2 ≤ i ≤ n and 1 ≤ j ≤ mi stands for
a formal variable and an integer when we write the ith constraint

Ai −
i−1∑
l=1

K{l,i} +
n∑

l=i+1

K{i,l} = 0

of conditions β. This is due to the presence of Ehrhart polynomials. Indeed, according to [BR16, Lemma
A.1], for any list of integers A2, . . . , An, the coefficient of any power in z1, . . . , zn of

∏
I∈C

 1

qI !

∑
kI1 ,...,k

I
qI
>0

with conditions β

kI1 . . . k
I
qI
W I

(
kI1, . . . , k

I
qI
, zI
)


is a polynomial in the variables A2, . . . , An. We will then use the Ai’s and the aij ’s as integers and formal
variables.

Step 3. We use the same simplification than Step 3 in Section 6.3.2.2, that is we consider the simplifi-
cations coming from extracting the coefficient of ai1 . . . aim1

in each factor of the product over i.

• Recall that S an even power series so that the coefficient of α in S(αz)× F (α) is the coefficient of

α in F . Hence, we can replace, in our expression of 〈τ0τd1 . . . τdn〉0,g, W1 by S(
∑n
i=1 Aiz1)
S(z1) and Wi by

1
S(zi)

, when 2 ≤ i ≤ n.

• Thanks to these simplifications, we see that we extract the coefficient of
∏n
i=1 a

i
1 . . . a

i
m1

from a
power series which only depends in the aji ’s through their sums Ai =

∑mi
j=1 a

i
j , for 1 ≤ i ≤ n. This

is equivalent to extracting the coefficient of
∏n
i=1

A
mi
i
mi!

from the same power series.

• For simplicity (see Step 1.2), we can suppose that Ai > 0, with i ≥ 2.

Thanks to these three points, we get

〈τ0τd1 . . . τdn〉0,g =
∑

g1+···+gn+
∑
I∈C qI=g+n−1

with conditions γ

√
−1

n−2−|d|

×
n∏
i=1

(
[Amii ]

[
z2gi
i

] 1

S (zi)

)
S (|A| z1)

×
∏
I∈C

 1

qI !

∑
kI1 ,...,k

I
qI
>0

with conditions β

kI1 . . . k
I
qI
W I

(
kI1, . . . , k

I
qI
, zI
)
 , (6.3.20)
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where we used the notations |A| =
∑n

i=1Ai.

Step 4. We perform some change of variable in our expression of 〈τ0τd1 . . . τdn〉0,g. We will then organize
this expression to see 〈τ0τd1 . . . τdn〉0,g as the coefficient of a product of exponential power series. This will
allow us to use known properties of Eulerian numbers.

We perform the change of variables zi := Aizi, with 1 ≤ i ≤ n in Expression (6.3.20). We get

〈τ0τd1 . . . τdn〉0,g =
∑

g1+···+gn+
∑
I∈C qI=g+n−1

with conditions γ

√
−1

n−2−|d|

×
n∏
i=1

([
Ami+2gi
i

] [
z2gi
i

] 1

S (Aizi)

)
S (|A|A1z1)

×
∏
I∈C

 1

qI !

∑
kI1 ,...,k

I
qI
>0

with conditions β

kI1 . . . k
I
qI
W̃ I

(
kI1, . . . , k

I
qI
, zI
)
 ,

where we used the notation

W̃ I
(
kI1, . . . , k

I
qI
, zI
)

: = W I
(
kI1, . . . , k

I
qI
, Aizi, Ajzj

)
= S

(
kI1Aizi

)
. . . S

(
kIqIAizi

)
S
(
kI1Ajzj

)
. . . S

(
kIqIAjzj

)
for any pair I = {i, j} of C.

Using that m1 = d1 +1−2g1−
∑

I∈C1 qI and mi = di+2−2gi−
∑

I∈Ci qI , when 2 ≤ i ≤ n, we re-write
this expression as

〈τ0τd1 . . . τdn〉0,g =
∑

∑
I∈C qI≤g+n−1

with conditions γ

√
−1

n−2−|d|
[
A
d1+1−

∑
I∈C1

qI
1 A

d2+2−
∑
I∈C2

qI
2 . . . A

dn+2−
∑
I∈Cn qI

n

]

×
∑

g1+···+gn=g+n−1−
∑
I∈C qI

[
z2g1

1 . . . z2gn
n

]

× S (|A|A1z1)

n∏
i=1

(
1

S (Aizi)

)∏
I∈C

 1

qI !

∑
kI1 ,...,k

I
qI
>0

with conditions β

kI1 . . . k
I
qI
W̃ I

(
kI1, . . . , k

I
qI
, zI
)


︸ ︷︷ ︸
G(z1,...,zn)

.

We use in this expression that∑
g1+···+gn=g+n−1−

∑
I∈C qI

[
z2g1

1 . . . z2gn
n

]
G (z1, . . . , zn) =

[
z2g+2n−2−

∑
I∈C 2qI

]
G (z, . . . , z)
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to obtain

〈τ0τd1 . . . τdn〉0,g =
∑

∑
I∈C qI≤g+n−1

with conditions γ

√
−1

n−2−|d|
[
A
d1+1−

∑
I∈C1

qI
1 A

d2+2−
∑
I∈C2

qI
2 . . . A

dn+2−
∑
I∈Cn qI

n

]

×
[
z2g+2n−2−

∑
I∈C 2qI

]

× S (|A|A1z)
n∏
i=1

(
1

S (Aizi)

)∏
I∈C

 1

qI !

∑
kI1 ,...,k

I
qI
>0

with conditions β

kI1 . . . k
I
qI
W̃ I

(
kI1, . . . , k

I
qI
, zI
)
 .

Then, we rewrite this expression as

〈τ0τd1 . . . τdn〉0,g =
√
−1

n−2−|d| [
Ad11 A

d2
2 . . . Adnn z

2g
]
S (|A|A1z)

n∏
i=1

(
1

S (Aizi)

)
1

A1A2
2 . . . A

2
nz

2n−2

×
∑

∑
I∈C qI≤g+n−1

with conditions γ

∏
I={i,j}∈C

A
qI
i A

qI
j z

2qI

qI !

∑
kI1 ,...,k

I
qI
>0

with conditions β

kI1 . . . k
I
qI
W̃ I

(
kI1, . . . , k

I
qI
, zI
)
 .

We can extend the range of summation to
∑

I∈C qI running from 0 to ∞. Indeed, it is clear from this
expression that the terms with

∑
I∈C qI > g + n− 1 vanishes, since we extract the coefficient of z2g from

a power series with a factor z2
∑
I∈C qI

z2n−2 . Hence, we rewrite the second line of the expression in the following
way

〈τ0τd1 . . . τdn〉0,g =
√
−1

n−2−|d| [
Ad11 A

d2
2 . . . Adnn z

2g
]
S (|A|A1z)

n∏
i=1

(
1

S (Aiz)

)
1

A1A2
2 . . . A

2
nz

2n−2

(6.3.21)

×
n∏
i=2


i−1∏
j=1


∑

q{i,j}≥0

A
q{i,j}
i A

q{i,j}
j z2q{i,j}

q{i,j}!

∑
kI1 ,...,k

I
q{i,j}

>0

with conditionsβ

k
{i,j}
1 . . . k{i,j}q{i,j}

W̃ {i,j}
(
k
{i,j}
1 , . . . , k{i,j}q{i,j}

, zi, zj

)
− 1

 .

Note that when
∑i−1

j=1 q{i,j} = 0, for any 2 ≤ i ≤ n, the product running over j equals 1 so that conditions γ
are satisfied. Then we rewrite the last line of this expression as the coefficient of an exponential series.
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Using the expression of W̃ {i,j}
(
k
{i,j}
1 , . . . , k

{i,j}
q{i,j} , zi, zj

)
and conditions β, we get

n∏
j=2


j−1∏
i=1


∑

q{i,j}≥0

A
q{i,j}
i A

q{i,j}
j z2q{i,j}

q{i,j}!

∑
kI1 ,...,k

I
q{i,j}

>0

with conditionsβ

k
{i,j}
1 . . . k{i,j}q{i,j}

W̃ {i,j}
(
k
{i,j}
1 , . . . , k{i,j}q{i,j}

, zi, zj

)
− 1


=
[
tA2
2 . . . tAnn

] n∏
i=2

i−1∏
j=1

exp

(
AiAjz

2
∑
k>0

kS (kAizi)S (kAjzj)

(
ti
tj

)k)
− 1

∣∣∣∣∣∣
t1=1

.

Substituting this expression in Eq. (6.3.21), we get

〈τ0τd1 . . . τdn〉0,g =
√
−1

n−2−|d| [
Ad11 A

d2
2 . . . Adnn z

2g
]
S (|A|A1z)

n∏
i=1

(
1

S (Aiz)

)
1

A1A2
2 . . . A

2
nz

2n−2

×
[
tA2
2 . . . tAnn

] n∏
i=2

i−1∏
j=1

exp

(
AiAjz

2
∑
k>0

kS (kAizi)S (kAjzj)

(
ti
tj

)k)
− 1

∣∣∣∣∣∣
t1=1

.

(6.3.22)

Step 5. The second line of Eq. (6.3.22) is simplified using the following property.

Proposition 175 (The products of exponentials formula). Fix n positive integers A1, ..., An. Fix n formal
variables t1, . . . , tn ; by convention, let t1 = 1. We have

[
tA2
2 . . . tAnn

] n∏
i=2

i−1∏
j=1

exp

(
AiAjz

2
∑
k>0

kS (kAiz)S (kAjz)

(
ti
tj

)k)
− 1


=A1A

2
2 . . . A

2
nz

2n−2

(
n∑
i=1

Ai

)n−2 ∏n
i=1 S (Aiz)

S (A1z + · · ·+Anz)

n∏
r=2

S (Ar (A1z + · · ·+Anz)) .

This proposition is proved in Section 6.4 using properties of Eulerian numbers.
According to this proposition, we get

〈τ0τd1 . . . τdn〉0,g =
√
−1

n−2−|d| [
Ad11 A

d2
2 . . . Adnn z

2g
]
S (|A|A1z)

n∏
i=1

(
1

S (Aiz)

)
1

A1A2
2 . . . A

2
nz

2n−2

×A1A
2
2 . . . A

2
nz

2n−2 |A|n−2

∏n
i=1 S (Aiz)

S (|A| z)

n∏
r=2

S (Ar |A| z)
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that we simplify as

〈τ0τd1 . . . τdn〉0,g =
√
−1

n−2−|d| [
Ad11 A

d2
2 . . . Adnn z

2g
] |A|n−2

S (|A| z)

n∏
r=1

S (Ar |A| z) .

Finally, with the change of variable z := z
|A| , we get

〈τ0τd1 . . . τdn〉0,g =
√
−1

n−2−|d| [
Ad11 A

d2
2 . . . Adnn z

2g
]
|A|2g+n−2 1

S (z)

n∏
r=1

S (Arz)

and we recognize the expression of 〈〈τ0τd1 . . . τdn〉〉g given by Expression (6.3.2).

6.4 Proof of the products of the exponentials formula

The purpose of this section is to prove Proposition 175 which ends the proof of the main theorem. To do
so, we first use Corollary 155 which follows from Eulerian numbers properties. We get

[
tA2
2 . . . tAnn

] n∏
i=2

i−1∏
j=1

exp

(
AiAjz

2
∑
k>0

kS (kAiz)S (kAjz)

(
ti
tj

)k)
− 1


=
[
tA2
2 . . . tAnn

] n∏
i=2

i−1∏
j=1

1 + 4
∑
k>0

sh
(
Ai
2 z
)

sh
(
Aj
2 z
)

sh
(
Ai+Aj

2 z
) sh

(
k
Ai +Aj

2
z

)(
ti
tj

)k− 1

 ,

where we used the convention t1 = 1. Recall that A1, . . . , An are positive integers and t2, . . . , tn, z are
formal variables.

Proposition 176. Fix (n− 1) positive integers a2, ..., an and n formal variables Ã1, ..., Ãn. Fix (n− 1)
more formal variables t2, . . . , tn ; by convention, let t1 = 1. We have

[ta22 . . . tann ]
n∏
i=2

i−1∏
j=1

1 + 4
∑
k>0

sh
(
Ãi

)
sh
(
Ãj

)
sh
(
Ãi + Ãj

) sh
(
k
(
Ãi + Ãj

))( ti
tj

)k− 1


= 22(n−1)

∏n
i=1 sh

(
Ãi

)
sh
(
Ã1 + · · ·+ Ãn

) ( n∏
r=2

(
sh
(
ar

(
Ã1 + ...+ Ãr

)
+ Ãr (ar+1 + ...+ an)

)))
.

Before proving this proposition, let us end the proof of the products of exponentials formula. According
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to this proposition by substituting Ãi := Ai
2 z and ai := Ai, we find

[
tA2
2 . . . tAnn

] n∏
i=2

i−1∏
j=1

1 + 4
∑
k>0

sh
(
Ai
2 z
)

sh
(
Aj
2 z
)

sh
(
Ai+Aj

2 z
) sh

(
k
Ai +Aj

2
z

)(
ti
tj

)k− 1


= 22(n−1)

∏n
i=1 sh

(
Ai
2 z
)

sh
(
A1+···+An

2 z
) n∏
r=2

sh

(
Ar (A1 + ...+An)

2
z

)

= A1A
2
2 . . . A

2
nz

2n−2

(
n∑
i=1

Ai

)n−2 ∏n
i=1 S (Aiz)

S (A1z + · · ·+Anz)

n∏
r=2

S (Ar (A1z + · · ·+Anz)) ,

where we used the notation S (z) = sh(z/2)
z/2 to obtain this equality. This proves the products of exponentials

formula.

Convention. In the rest of this section, we make no use of the positive integers A1, . . . , An. However we
will intensively use the formal variables Ã1, . . . , Ãn. For convenience, we change the notation by removing
the tildes on these formal variables.

Proof of Proposistion 176 . We prove this formula by induction over n. The first step n = 2 is obvious.
Suppose this induction is proved until step n. We prove the (n+ 1)-th step. Start from the LHS

[
ta22 . . . t

an+1

n+1

] n+1∏
i=2

i−1∏
j=1

(
1 + 4

∑
k>0

sh (Ai) sh (Aj)

sh (Ai +Aj)
sh (k (Ai +Aj))

(
ti
tj

)k)
− 1

 .

We decompose the product in order to use the induction hypothesis ; we move the terms corresponding
to i = n+ 1 on a second line and get[

ta22 . . . tann t
an+1

n+1

]
×

n∏
i=2

i−1∏
j=1

(
1 + 4

∑
k>0

sh (Ai) sh (Aj)

sh (Ai +Aj)
sh (k (Ai +Aj))

(
ti
tj

)k)
− 1


×

(
n∏
s=1

(
1 + 4

∑
l>0

sh (As) sh (An+1)

sh (As +An+1)
sh (k (As +An+1))

(
tn+1

ts

)l)
− 1

)
.

We simplify the series on the second line of the expression using the induction hypothesis. We get[
ta22 . . . tann t

an+1

n+1

]
× 22(n−1)

∏n
i=1 sh (Ai)

sh (A1 + · · ·+An)

∑
i2,...,in>0

n∏
r=2

sh (ir (A1 + ...+Ar) +Ar (ir+1 + ...+ kn)) tirr

×

(
n∏
s=1

(
1 + 4

∑
k>0

sh (As) sh (An+1)

sh (As +An+1)
sh (k (As +An+1))

(
tn+1

ts

)k)
− 1

)
.

102



We obtain the result using the following proposition with

u := tn+1, b := an+1, B := An+1, and Xr = 0 for 2 ≤ r ≤ n.

Proposition 177 (The sinh formula). Fix n positive integers a2, . . . , an, b and 2n formal variables A1, . . . , An, B,X2, . . . , Xn.
Fix n more formal variables t2, . . . , tn, u ; by convention, let t1 = 1. Then the coefficient of ta22 . . . tann u

b in
the formal power series

∑
i2,...,in>0

n∏
r=2

sh (ir (A1 + · · ·+Ar) +Ar (ir+1 + · · ·+ in) +Xr) t
ir
r

×


n∏
s=1

1 + 4
∑
js>0

sh (As) sh (B)

sh (As +B)
sh (js (As +B))

(
u

ts

)js− 1


is

4
sh (A1 + · · ·+An) sh (B)

sh (A1 + · · ·+An +B)

n∏
r=2

(
sh (ar (A1 + · · ·+Ar) +Ar (ar+1 + · · ·+ an + b) +Xr)

)
sh (b (A1 + · · ·+An +B)) .

The purpose of the rest of this section is to prove the sinh formula. The proof goes by induction. We
prove the case n = 2 in Section 6.4.1. The heredity is proved in Section 6.4.2.

6.4.1 Proof by induction of the sinh formula: initialization

We prove in this section, the case n = 2 of the sinh formula. We begin by a series of lemmas.

Lemma 178. Let α, β and γ be some formal variables. We have

ch (α) sh (β + γ)− ch (β) sh (α+ γ) = sh (α− β) sh (γ) .

Proof. One can check this formula using the basic hyperbolic identities.

Lemma 179. Let µ and ν be some formal variables. We have

b∑
j=0

sh (µj + ν) =
sh (µ (b+ 1) /2) sh (µb/2 + ν)

sh (µ/2)

=
ch (µ/2)

sh (µ/2)
sh (bµ/2) sh (bµ/2 + ν) + ch (bµ/2) sh (bµ/2 + ν) .

Proof. Using the exponential form of the hyperbolic sine and geometric sums, we obtain the first equality.
The second equality is obtained by using sh

(
µb
2 + µ

2

)
= ch

(µ
2

)
sh
(
bµ
2

)
+ ch

(
bµ
2

)
sh
(µ

2

)
and simplifying.
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Lemma 180. Fix two integers a, b and four formal variables A1, A2, B,X. We have

b∑
j=0

sh
(

(a+ j) (A1 +A2) +X
)

sh
(

(b− j) (A1 +B)
)

sh
(
j (A2 +B)

)
=

ch (A1)

sh (A1)
sh (bA1) sh (a (A1 +A2)− bB +X)

+
ch (A2)

sh (A2)
sh (bA2) sh (a (A1 +A2) + b (A1 +A2 +B) +X)

+
ch (B)

sh (B)
sh (bB) sh (−a (A1 +A2)− bA1 −X)

+
ch (A1 +A2 +B)

sh (A1 +A2 +B)
sh (b (A1 +A2 +B)) sh (−a (A1 +A2)− bA2 −X) .

Proof. We start from the LHS of this formula. We first linearize the product of the three hyperbolic sine
using

sh (u) sh (v) sh (w) = sh (u+ v + w) + sh (u− v − w) + sh (−u+ v − w) + sh (−u− v + w) (6.4.1)

with

u = (a+ j) (A1 +A2) +X

v = (b− j) (A1 +B)

w = j (A2 +B) .

Then, we use the formula of Lemma 179

b∑
j=0

sh (µj + ν) =
ch (µ/2)

sh (µ/2)
sh (µb/2) sh (µb/2 + ν) + ch (µb/2) sh (µb/2 + ν)

to compute the finite sum of each of the four terms in the RHS of Eq. (6.4.1). We find
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b∑
j=0

sh (u− v − w) =
ch (A1)

sh (A1)
sh (bA1) sh (a (A1 +A2)− bB +X) (6.4.2)

+ ch (bA1) sh (a (A1 +A2)− bB +X)

b∑
j=0

sh (u+ v + w) =
ch (A2)

sh (A2)
sh (bA2) sh (a (A1 +A2) + b (A1 +A2 +B) +X) (6.4.3)

+ ch (bA2) sh (a (A1 +A2) + b (A1 +A2 +B) +X)

b∑
j=0

sh (−u− v + w) =
ch (B)

sh (B)
sh (bB) sh (−a (A1 +A2)− bA1 −X) (6.4.4)

+ ch (bB) sh (−a (A1 +A2)− bA1 −X)

b∑
j=0

sh (−u+ v − w) =
ch (A1 +A2 +B)

sh (A1 +A2 +B)
sh (b (A1 +A2 +B)) sh (−a (A1 +A2)− bA2 −X) (6.4.5)

+ ch (b (A1 +A2 +B)) sh (−a (A1 +A2)− bA2 −X) .

Finally, we prove that the sum of the seconds terms in the RHS of Equations (6.4.2), (6.4.3), (6.4.4),
(6.4.5) vanishes. This will end the proof.

We sum the second term of the RHS of Eq. (6.4.2) and the second term of the RHS of Eq. (6.4.4).
Using Lemma 178, that is

ch (α) sh (β + γ)− ch (β) sh (α+ γ) = sh (α− β) sh (γ)

with α = bA1, β = −bB and γ = a (A1 +A2) +X, we find

ch (bA1) sh (a (A1 +A2)− bB +X) + ch (bB) sh (−a (A1 +A2)− bA1 −X)

= sh (b (A1 +B)) sh (a (A1 +A2) +X) .

We sum the second term of the RHS of Eq. (6.4.3) and the second term of the RHS of Eq. (6.4.5). Using
Lemma 178 with α = bA2, β = b (A1 +A2 +B) and γ = a (A1 +A2) +X, we find

ch (bA2) sh (a (A1 +A2) + b (A1 +A2 +B) +X) + ch (b (A1 +A2 +B)) sh (−a (A1 +A2)− bA2 −X)

= −sh (b (A1 +B)) sh (a (A1 +A2) +X) .

Hence,

0 =ch (bA1) sh (a (A1 +A2)− bB +X) + ch (bB) sh (−a (A1 +A2)− bA1 −X)

+ ch (bA2) sh (a (A1 +A2) + b (A1 +A2 +B) +X) + ch (b (A1 +A2 +B)) sh (−a (A1 +A2)− bA2 −X)
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Lemma 181. Let α, β and γ be some formal variables. We have

sh (α) sh (β) + sh (γ) sh (α+ β + γ) = sh (α+ γ) sh (β + γ) .

Proof. One can check this formula using the usual hyperbolic identities.

Lemma 182. Let A1, A2 and B be some formal variables. We have

ch (A1) sh (A2) sh (B) sh (A1 +A2 +B)

+sh (A1) ch (A2) sh (B) sh (A1 +A2 +B)

+sh (A1) sh (A2) ch (B) sh (A1 +A2 +B)

−sh (A1) sh (A2) sh (B) ch (A1 +A2 +B)

=sh (A1 +B) sh (A2 +B) sh (A1 +A2) .

Proof. We start from the LHS. We use the hyperbolic identity sh (α+ β) = sh (α) ch (β) + ch (α) sh (β).
We sum the two first lines using α = A1 and β = A2, we obtain

sh (A1 +A2) sh (B) sh (A1 +A2 +B) .

We sum the two last lines using α = −B and β = A1 +A2 +B, we obtain

sh (A1) sh (A2) sh (A1 +A2) .

Finally we sum these two terms. We factor sh (A1 +A2) and use Lemma 181 to obtain the expected
result.

We now prove the case n = 2 of the sinh formula.

Proposition 183. Fix two integers a2, b and four formal variables A1, A2, B,X. Fix two more formal
variables t2, u. Then the coefficient of ta22 u

b in the formal power series∑
i>0

sh (i (A1 +A2) +X) t2
1 + 4

∑
j1>0

sh (A1) sh (B)

sh (A1 +B)
sh (j0 (A1 +B))uj1

1 + 4
∑
j2>0

sh (A2) sh (B)

sh (A2 +B)
sh (j1 (A2 +B))

(
u

t2

)j2
− 1

}

is
4

sh (A1 +A2) sh (B)

sh (A1 +A2 +B)
(sh (a2 (A1 +A2) +A2b+X)) sh (b (A1 +A2 +B))
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Proof. We re-write the power series of the LHS of the proposition as

Φ {(1 + ∆1) (1 + ∆2)− 1}

with

Φ =
∑
i≥0

sh (i (A1 +A2) +X) t2

∆1 = 4
∑
j1≥0

sh (A1) sh (B)

sh (A1 +B)
sh (j0 (A1 +B))uj1

∆2 = 4
∑
j2≥0

sh (A2) sh (B)

sh (A2 +B)
sh (j1 (A2 +B))

(
u

t2

)j2
.

We begin by expanding the expression

Φ {(1 + ∆1) (1 + ∆2)− 1} = ∆1Φ︸︷︷︸
term (i)

+ ∆2Φ︸︷︷︸
term (ii)

+ Φ∆1∆2︸ ︷︷ ︸
term (iii)

.

Then we extract the coefficient of ta22 u
b :

in term (i) = 4
sh (A1) sh (B)

sh (A1 +B)
sh (b (A1 +B)) sh (a2 (A1 +A2) +X) ,

in term (ii) = 4
sh (A2) sh (B)

sh (A2 +B)
sh (b (A2 +B)) sh ((a2 + b) (A1 +A2) +X) ,

in term (iii) = 16
sh (A1) sh (B)

sh (A1 +B)

sh (A2) sh (B)

sh (A2 +B)

×
b∑

j=0

sh ((a2 + j) (A1 +A2) +X) sh ((b− j) (A1 +B)) sh (j (A2 +B)) .

Observing that 4sh (B) appears in terms (i), (ii) and (iii) but also in the result, we factor it out. For
reasons that will become clear, we also factor out 1

sh(A1+B)sh(A2+B)sh(A1+A2+B) . Hence, we re-define our
three terms by

term (i) := sh (A1) sh (A2 +B) sh (A1 +A2 +B) sh (b (A1 +B) sh (a2 (A1 +A2) +X)) ,

term (ii) := sh (A2) sh (A1 +B) sh (A1 +A2 +B) sh (b (A2 +B) sh ((a2 + b) (A1 +A2) +X)) ,

term (iii) := 4sh (A1) sh (B) sh (A2) sh (A1 +A2 +B)

+

b∑
j=0

sh ((a2 + j) (A1 +A2) +X) sh ((b− j) (A1 +B)) sh (j (A2 +B)) .

In Step 1, we develop terms (i) and (ii) using a basic hyperbolic identity. We also compute the sum of
term (iii) using Lemma 180. We obtain 8 terms from terms (i), (ii) and (iii). Then in Step 2, we combine
7 of these terms using Lemma 181. Finally, in Step 3, we combine all the terms and we use Lemma 182
to obtain the result.
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Step 1. Term (i) : using the hyperbolic identity sh (A2 +B) = sh (A2) ch (B) + sh (B) ch (A2), we split
term (i) in a sum of two terms. We get

sh (A1) sh (A2) ch (B) sh (A1 +A2 +B)× sh (b (A1 +B)) sh (a2 (A1 +A2) +X) (ia)
+ sh (A1) ch (A2) sh (B) sh (A1 +A2 +B)× sh (b (A1 +B)) sh (a2 (A1 +A2) +X) . (ib)

Term (ii) : using the same hyperbolic identity for sh (A1 +B), we split term (ii) in a sum of two
terms. We get

sh (A1) sh (A2) ch (B) sh (A1 +A2 +B)× sh (b (A2 +B)) sh ((a2 + b) (A1 +A2) +X) (iia)
+ ch (A1) sh (A2) sh (B) sh (A1 +A2 +B)× sh (b (A2 +B)) sh ((a2 + b) (A1 +A2) +X) . (iib)

Term (iii) : we use Lemma 180 to compute the sum. This gives four terms

ch (A1) sh (A2) sh (B) sh (A1 +A2 +B)× sh (bA1) sh (a2 (A1 +A2)− bB +X) (iiia)
+ sh (A1) ch (A2) sh (B) sh (A1 +A2 +B)× sh (bA2) sh (a2 (A1 +A2) + b (A1 +A2 +B) +X) (iiib)
+ sh (A1) sh (A2) ch (B) sh (A1 +A2 +B)× sh (bB) sh (−a2 (A1 +A2)− bA1 −X) (iiic)
+ sh (A1) sh (A2) sh (B) ch (A1 +A2 +B)× sh (b (A1 +A2 +B)) sh (−a2 (A1 +A2)− bA2 −X) . (iiid)

Step 2. We now combine the terms (ia) until (iiic). We will do so using the formula of Lemma 181,
that is

sh (α) sh (β) + sh (γ) sh (α+ β + γ) = sh (α+ γ) sh (β + γ) .

• We sum terms (iiia) and (iib). They have the common factor ch (A1) sh (A2) sh (B) sh (A1 +A2 +B).
We get

ch (A1) sh (A2) sh (B) sh (A1 +A2 +B)

× [sh (bA1) sh (a2 (A1 +A2)− bB +X) + sh (b (A2 +B)) sh ((a2 + b) (A1 +A2) +X)] .

Then simplify the expression appearing inside the brackets using Lemma 181 with α = bA1, β =
a2 (A1 +A2)− bB +X and γ = b (A2 +B). We find

ch (A1) sh (A2) sh (B) sh (A1 +A2 +B)× sh (b (A1 +A2 +B)) sh (a2 (A1 +A2) + bA2 +X) .
(6.4.6)

• We sum terms (ib) and (iiib) using the same computation. They have the common factor
sh (A1) ch (A2) sh (B) sh (A1 +A2 +B). We get

sh (A1) ch (A2) sh (B) sh (A1 +A2 +B)

× [sh (b (A1 +B)) sh (a2 (A1 +A2) +X) + sh (bA2) sh (a2 (A1 +A2) + b (A1 +A2 +B) +X)] .

Then simplify the expression appearing inside the brackets using Lemma 181 with α = b (A1 +B),
β = a2 (A1 +A2) +X, γ = bA2. We find

sh (A1) ch (A2) sh (B) sh (A1 +A2 +B)× sh (b (A1 +A2 +B)) sh (a2 (A1 +A2) + bA2 +X) .
(6.4.7)
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• We sum the terms (ia) and (iia) and (iiic). They have the common factor
sh (A1) sh (A2) ch (B) sh (A1 +A2 +B). First re-write (ia) + (iiic) as

sh (A1) sh (A2) ch (B) sh (A1 +A2 +B)

× [sh (b (A1 +B)) sh (a2 (A1 +A2) +X) + sh (bB) sh (−a2 (A1 +A2)− bA1 −X)] .

We then apply Lemma 181 with α = b (A1 +B), β = a2 (A1 +A2) +X and γ = −bB. We get

sh (A1) sh (A2) ch (B) sh (A1 +A2 +B)× sh (bA1) sh (a2 (A1 +A2)− bB +X) .

Then, we add the term (iia) to this expression, we get

sh (A1) sh (A2) ch (B) sh (A1 +A2 +B)

× [sh (bA1) sh (a2 (A1 +A2)− bB +X) + sh (b (A2 +B)) sh ((a2 + b) (A1 +A2) +X)] .

Finally, we use Lemma 181 with α = bA1, β = a2 (A1 +A2)− bB +X and γ = b (A2 +B). We find

sh (A1) sh (A2) ch (B) sh (A1 +A2 +B)× sh (b (A1 +A2 +B)) sh (a2 (A1 +A2) + bA2 +X) .
(6.4.8)

Step 3. We sum the three terms (6.4.6), (6.4.7) and (6.4.8) obtained in Step 2 with the remaining term of
Step 1, that is term (iiid). These four terms have the common factor sh (b (A1 +A2 +B)) sh (a2 (A1 +A2) + bA2 +X).
We factor it. The sum of the four remaining terms is the sum of the LHS of Lemma 182. Using this Lemma,
we get

sh (A1 +B) sh (A2 +B) sh (A1 +A2)× sh (b (A1 +A2 +B)) sh (a2 (A1 +A2) + bA2 +X) .

Before re-defining terms (i) , (ii) and (iii) we factored out 4sh(B)
sh(A1+B)sh(A2+B)sh(A1+A2+B) . Multiplying

this factor with the expression we just obtained, we get the result.

6.4.2 Proof by induction of the sinh formula: heredity

Let us recall the sinh formula before proving it.
Fix n positive integers a2, . . . , an, b and 2n formal variables A1, . . . , An, B,X2, . . . , Xn. Fix n more

formal variables t2, . . . , tn, u ; by convention, let t1 = 1. The coefficient of ta22 . . . tann u
b in the formal power

series ∑
i2,...,in>0

n∏
r=2

sh (ir (A1 + · · ·+Ar) +Ar (ir+1 + · · ·+ in) +Xr) t
ir
r

×


n∏
s=1

1 + 4
∑
js>0

(As) sh (B)

sh (As +B)
sh (js (As +B))

(
u

ts

)js− 1


is

4
sh (A1 + · · ·+An) sh (B)

sh (A1 + · · ·+An +B)

n∏
r=2

(
sh (ar (A1 + · · ·+Ar) +Ar (ar+1 + · · ·+ an + b) +Xr)

)
sh (b (A1 + · · ·+An +B)) .
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Proof. We prove this formula by induction over n. The first step, for n = 2, is proved by Proposition 183 in the
preceding section.

We now prove the nth step by induction. We can schematically write the formula of the LHS of the proposition
as

Φ {Ψ (1 + Σ)− 1} ,

with

Φ =
∑

i2,...,in>0

n∏
r=2

sh (ir (A1 + · · ·+Ar) +Ar (ir+1 + · · ·+ in) +Xr) t
ir
r

Ψ =

n−1∏
s=1

1 + 4
∑
js>0

sh (As) sh (B)

sh (As +B)
sh (js (As +B))

(
u

ts

)js
Σ = 4

∑
jn>0

sh (An) sh (B)

sh (An +B)
sh (jn (An +B))

(
u

tn

)jn
.

We split the expression in three terms :

Ψ (1 + Σ)− 1 = Σ︸︷︷︸
term 1

+ (Ψ− 1)︸ ︷︷ ︸
term 2

+ Σ (Ψ− 1)︸ ︷︷ ︸
term 3

.

We now extract the coefficient ta22 . . . tann ub in the three terms coming from this development, that is from ΦΨ,
Φ (Ψ− 1) and ΦΣ (Ψ− 1). In the second and third term, we will need the (n− 1)th step of the induction to extract
this coefficient. Then, we will sum these three coefficients, see this sum as the coefficient of a series and use the
first step of the induction to conclude.

Term 1. We extract the coefficient of ta22 . . . tann ub in ΦΣ. To do this, we remove the summations and
substitute i2 := a2, . . . , in−1 = an−1, in = an + b, jn = b, we get

n∏
r=2

sh (ar (A1 + · · ·+Ar) +Ar (ar+1 + · · ·+ an + b) +Xr)

× 4
sh (An) sh (B)

sh (An +B)
sh (b (An +B)) .

For reasons that will become clear later, we move the factor r = n of the product to the second line :

n−1∏
r=2

sh (ar (A1 + · · ·+Ar) +Ar (ar+1 + · · ·+ an + b) +Xr)

× sh ((an + b) (A2 + · · ·+An) +Xn)× 4
sh (An) sh (B)

sh (An +B)
sh (b (An +B)) .
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Term 2. We want to extract the coefficient of ta22 . . . tann ub in Φ (Ψ− 1). First we extract the coefficient of
tann . We get∑

i2,...,in−1>0

n−1∏
r=2

sh (ir (A1 + · · ·+Ar) +Ar (ir+1 + · · ·+ in−1) +Aran +Xr) t
ir
r × sh (an (A1 + · · ·+An) +Xn)

×


n−1∏
s=1

1 + 4
∑
js>0

sh (As) sh (B)

sh (As +B)
sh (ks (As +B))

(
u

ts

)ks− 1


and we re-arrange the product as

sh (an (A1 + · · ·+An) +Xn)×

 ∑
i2,...,in−1>0

n−1∏
r=2

sh (ir (A1 + · · ·+Ar) +Ar (ir+1 + · · ·+ in−1) +Aran +Xr) t
ir
r

×


n−1∏
s=1

1 + 4
∑
js>0

sh (As) sh (B)

sh (As +B)
sh (ks (As +B))

(
u

ts

)ks− 1


 .

We then have to extract the coefficient of ta22 ...t
an−1

n−1 u
b of the term in squared the bracket. Using the recursion

hypothesis on this term with

A1 := A1, . . . , An−1 := An−1, B := B, Xr := Xr +Aran

we get

sh (an (A1 + · · ·+An) +Xn)×
[
4

sh (A1 + · · ·+An−1) sh (B)

sh (A1 + · · ·+An−1 +B)
n−1∏
r=2

(
sh (ar (A1 + · · ·+Ar) +Ar (ar+1 + · · ·+ an + b) +Xr)

)
sh (b (A1 + · · ·+An−1 +B))

]
.

Finally, we re-arrange the product as
n−1∏
r=2

sh (ar (A1 + · · ·+Ar) +Ar (ar+1 + · · ·+ an + b) +Xr)

× 4
sh (A1 + · · ·+An−1) sh (B)

sh (A1 + · · ·+An−1 +B)
sh (an (A1 + · · ·+An) +Xn) sh (b (A1 + · · ·+An−1 +B)) .

Term 3. We want to extract the coefficient of ta22 ...tann ub in ΦΣ (Ψ− 1). Here we start by re-arranging the
product as follows :4

∑
jn>0

sh (An) sh (B)

sh (An +B)
sh (jn (An +B))

(
u

tn

)jn(∑
in>0

sh (in (A1 + · · ·+An) +Xn) tinn

)
 ∑

i2,...,in−1>0

n−1∏
r=2

sh (ir (A1 + · · ·+Ar) +Ar (ir+1 + · · ·+ in−1) +Arin +Xr) t
ir
r


{
n−1∏
s=1

(
1 + 4

∑
ks>0

sh (As) sh (B)

sh (As +B)
sh (ks (As +B))

(
u

ts

)ks)
− 1

}]
.
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Now we extract the coefficient of tann ub. Note that tn is only present in the first line of the previous expression. In
Σ, 1/tn appears with the same exponent as u, that is jn. We then extract the coefficient of ta22 . . . t

an−1

n−1 u
b−jn from

the expression in the square brackets. This is done using the recursion hypothesis with

A1 := A1, . . . , An−1 := An−1, B := B, Xr := Xr +Ar (an − jn) ,

we get

b∑
jn=0

(
4

sh (An) sh (B)

sh (An +B)
sh (jn (An +B))

)(∑
in>0

sh ((an + jn) (A1 + · · ·+An) +Xn)

)
[
4

sh (A1 + · · ·+An−1) sh (B)

sh (A1 + · · ·+An−1 +B)
n−1∏
r=2

(
sh (ar (A1 + · · ·+Ar) +Ar (ar+1 + · · ·+ an + b) +Xr)

)
sh ((b− jn) (A1 + · · ·+An−1 +B))

]

Again, we re-arrange the product

n−1∏
r=2

sh (ar (A1 + · · ·+Ar) +Ar (ar+1 + · · ·+ an + b) +Xr)(
16

sh (A1 + · · ·+An−1) sh (B)

sh (A1 + · · ·+An−1 +B)

sh (An) sh (B)

sh (An +B)

b∑
jn=0

sh (jn (An +B)) sh ((an + jn) (A1 + · · ·+An) +Xn) sh ((b− jn) (A1 + · · ·+An−1 +B))

)
.
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We now combine terms 1, 2 and 3. We factor out
∏n−1
r=2 sh (ar (A1 + · · ·+Ar) +Ar (ar+1 + · · ·+ an + b) +Xr) in

these three terms. We present the rest as the coefficient of a formal series in x and y as follows(
sh ((an + b) (A2 + · · ·+An) +Xn)× 4

sh (An) sh (B)

sh (An +B)
sh (b (An +B))

)

+

(
4

sh (A1 + · · ·+An−1) sh (B)

sh (A1 + · · ·+An−1 +B)
sh (an (A1 + · · ·+An) +Xn) sh (b (A1 + · · ·+An−1 +B))

)

+

(
16

sh (A1 + · · ·+An−1) sh (B)

sh (A1 + · · ·+An−1 +B)

sh (An) sh (B)

sh (An +B)

b∑
jn=0

sh (jn (An +B)) sh ((an + jn) (A1 + · · ·+An) +Xn) sh ((b− jn) (A1 + · · ·+An−1 +B))

)
= [

xanyb
]∑
i>0

sh (i (A1 + · · ·+An) +Xn)xi
1 + 4

∑
j>0

sh (A1 + · · ·+An−1) sh (B)

sh (A1 + · · ·+An−1 +B)
sh (j (A1 + · · ·+An−1 +B)) yj


(

1 + 4
∑
k>0

sh (An) sh (B)

sh (An +B)
sh (k (An +B))

(y
x

)k)
− 1

}
.

We recognize the recursion hypothesis for n = 2 with t1 := x, t2 := y, A1 := an, A2 := b and

A1 := A1 + · · ·+An−1, A2 := An, B := B, X2 := Xn.

Thus the expression above simplifies to

4
sh (A1 + · · ·+An) sh (B)

sh (A1 + · · ·+An +B)
sh (an (A1 + · · ·+An) +Anb+Xn) sh (b (A1 + · · ·+An +B)) .

This ends the proof.

6.5 Proof of the level structure of the correlators

In this section we prove Proposition 158 that is the vanishing of the correlator 〈τd1 . . . τdn〉l,g−l if
∑
di >

4g − 3 + n − l of if
∑
di has the parity of n − l. In Section 6.5.1, we explain why it is sufficient to prove

these vanishings when the correlator has a τ0 insertion. The correlator 〈τ0τd1 . . . τdn〉l,g−l is expressed in
term of Ehrhart polynomials that we study in Section 6.5.2. We then deduce the proof of Proposition 158
in Section 6.5.3.
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6.5.1 String equation

We can rewrite the string equation (Theorem 2) as the following infinite system of equations

〈τ0τd1 . . . τdn〉l,g−l =

n∑
i=1

〈τd1 . . . τdi−1 . . . τdn〉l,g−l,

where g, l, d1, . . . , dn ≥ 0 and such that a correlator vanishes if τ has a negative index. In these equations,
the quantity defined by the sum of the indices of τ minus the number of τ insertions does not depend on
the correlator and is equal to

∑n
i=1 di − n − 1. Moreover, the correlators of the LHS and RHS depend on

the same indices l and g − l. We use this system of equations to express any correlator 〈τd1 . . . τdn〉l,g−l as
a sum of correlators with a τ0 insertion. Our two remarks are still valid: 〈τd1 . . . τdn〉l,g−l is expressed as a
sum of correlators with a τ0 insertion such that each correlator is indexed by l and g − l and the quantity
defined by the sum of the indices of τ minus the number of τ insertions does not depend of the correlator
and is equal to

∑
di−n (see Section 6.3.1.1 to solve explicitly this system using of generating series). It is

then sufficient to prove that the correlators 〈τ0τd1 . . . τdn〉 vanish if
∑
di > 4g − 2 + n − l or if

∑
di has the

parity of n− l + 1 in order to prove Proposition 158.

6.5.2 Properties of the Ehrhart polynomials of Buryak and Rossi

The vanishing of the correlators come from the properties the following Ehrhart polynomials.

Lemma 184 ([BR16]). Fix a list of q positive integers (r1, . . . , rq). The function

Cr1,...,rq (N) =
∑

k1+···+kq=N

kr11 . . . krqq

is a polynomial in N of degree q − 1 +
∑
ri. Moreover, this polynomial has the parity of q − 1 +

∑
ri.

We then deduce the following lemma.

Lemma 185. Let P (k1, . . . , kq) ∈ C [k1, . . . , kn] be an even (resp. odd) polynomial. Then∑
k1+···+kq=N

k1 . . . kqP (k1, . . . , kq)

is an odd (resp. even) polynomial in the indeterminate N of degree 2q − 1 + degP .

By induction, we obtain the following lemma.

Lemma 186. Fix an integer n ≥ 2 and a list A2, . . . , An of nonnegative integers. Let C be the set of pairs (2-
element subsets) of {1, . . . , n}. Fix another list of nonnegative integers (qI , I ∈ C). Let P

(
kIi , I ∈ C, 1 ≤ i ≤ qI

)
be
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an even (resp. odd) polynomial in the inderterminates kIi , where I ∈ C and 1 ≤ i ≤ qI . Then∑
∑n−1
i=1 K{i,n}=An

∏
I∈Cn

kI1 . . . k
I
qI

×
∑

∑n−2
i=1 K{i,n−1}=An−1+K{n−1,n}

∏
I∈Cn−1\Cn

kI1 . . . k
I
qI

× . . .

×
∑

K{1,2}=A2+
∑n
j=3K

{2,j}

k
{1,2}
1 . . . k{1,2}q{1,2}

× P
(
kIi , I ∈ C, 1 ≤ i ≤ qI

)
,

is a polynomial in the indeterminates A2, . . . , An with the parity of degP − (n− 1) (resp. degP − n) of degree
2
∑
I∈C qI − (n− 1) + degP . We used the notation KI =

∑qI
i=1 k

I
i .

6.5.3 Proof of the level structure

We now prove Proposition 158. We first obtain an expression of the correlators 〈τ0τd1 . . . τdn〉l,g−l in term
of the polynomials of Lemma 186. The level structure follows from the vanishing properties of these
polynomials.

Proposition 187. Fix three nonnegative integers n, g, l and a list (d1, . . . , dn) of nonnegative integers. We have

〈τ0τd1 . . . τdn〉l,g−l

=
√
−1

n−2−3l−
∑
di

∑
g1+···+gn+

∑
I∈C qI=g+n−1

with conditionsα and γ

∑
l1+···+ln=l

li≤gi

[
a1

1 . . . a
1
m1

. . . an1 . . . a
n
mn

]

×
∑

kIi>0, I∈C, 1≤i≤qI
with conditions β

∏
I∈C

1

qI !
kI1 . . . k

I
qI

× 1

m1!
Pd1−1,g1,l1

(
a1

1, . . . , a
1
m1
, k
{1,2}
1 , . . . , k{1,2}q{1,2}

, . . . , k
{1,n}
1 , . . . , k{1,n}q{1,n}

,−
∑

Ai

)
(6.5.1)

×
n∏
i=2

1

mi!
Pdi,gi,li

(
ai1, . . . , a

i
m1
,−k{1,i}1 , . . . ,−k{1,i}q{1,i}

, . . . , k
{i,n}
1 , . . . , k{i,n}q{i,n}

, 0
)
,

where

• C is the set of pairs (2-element subsets) of {1, . . . , n}; we also denote by Ci ⊂ C the subset of pairs that contain
i,

• the conditions α are
g1 + (g1 − l1) +m1 +

∑
I∈C1

qI = d1 + 1

and
gi + (gi − li) +mi +

∑
I∈Ci

qI = di + 2, when i ≥ 2,
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• the conditions β are

Ai −
i−1∑
j=1

K{j,i} +

n∑
j=i+1

K{i,j} = 0, 2 ≤ i ≤ n,

where KI =
∑qI
i=1 k

I
i ,

• the conditions γ are
i−1∑
j=1

q{i,j} ≥ 1, for 2 ≤ i ≤ n,

• the polynomial Pd,g,l (x1, . . . , xm+1), with d, g, l,m ≥ 0, is of degree 2g and defined by

Pd,g,l (x1, . . . , xm+1) =

∫
DRg(0,x1,...,xm+1)

λlψ
d+1
0 ,

where
∑m+1
i=1 xi = 0 and the ψ-class sits on the marked point with weight 0 of the double ramification cycle.

Proof. To obtain this formula we use the definition of the correlators

〈τ0τd1 . . . τdn〉l,g−l =
[
ε2l~g−l

] √−1
g−l

~n−1

[
. . .
[
Hd1−1 , Hd2

]
, . . . ,Hdn

] ∣∣∣
ui=δi,1

and proceed as in Section 6.3.2.2.
We first need an expression of Hd1 ? Hd2 ? · · · ? Hdn . Start from the following expression of the Hamiltonians

Hdi =
∑

gi,mi,li≥0

ε2li
(√
−1~

)gi−li
mi!

∑
ai1,...,a

i
mi
∈Z

Pdi,gi,li

ai1, . . . , aimi ,− mi∑
j=1

aij

 pai1 . . . paimi
ex
√
−1

∑mi
j=1 a

i
j , (6.5.2)

where the first summation satisfies gi + (gi − li) +mi = di + 2 and li ≤ gi. We proceed as in the proof of Proposi-
tion 173: we use the associativity of the star product and its developed expression to obtain Eq. (6.3.17). We then
plug the expression of the Hamiltonian given by Eq (6.5.2) in Eq. (6.3.17). When the

∑n
j=1,j 6=i q{i,j} derivatives

act on
∑
ai1+···+aimi=0 Pdi,gi,li

(
ai1, . . . , a

i
mi , 0

)
pai1 . . . paimi

in Hdi , it remains m̃i := mi −
∑n
j=1,j 6=i q{i,j} variables p.

Similarly, it remains m̃1 := m1 −
∑n
j=2 q{1,j} variables p when the derivatives act on Hd1−1. We then obtain

Hd1 ? Hd2 ? · · · ? Hdn

=
∑

qI≥0, I∈C

∑
g1,...,gn≥0

∑
m̃1,...,m̃n≥0

with conditionsα

∑
l1,...,ln≥0

∑
kIi>0, I∈C, 1≤i≤qI

with conditions β

×
∏
I∈C

(√
−1~

)qI
qI !

kI1 . . . k
I
qI

×
ε2l1

(√
−1~

)g1−l1
m̃1!

Pd1−1,g1,l1

(
a1

1, . . . , a
1
m̃1
, k
{1,2}
1 , . . . , k{1,2}q{1,2}

, . . . , k
{1,n}
1 , . . . , k{1,n}q{1,n}

,−
n∑
i=1

Ãi

)
pa11 . . . pa1m̃1

ex
√
−1

∑n
i=1 Ãi

(6.5.3)

×
n∏
i=2

ε2li
(√
−1~

)gi−li
m̃i!

Pdi,gi,li

(
ai1, . . . , a

i
m̃1
,−k{1,i}1 , . . . ,−k{1,i}q{1,i}

, . . . , k
{i,n}
1 , . . . , k{i,n}q{i,n}

, 0
)
pai1 . . . paim̃i

,

where
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• Ãi =
∑m̃i
j=1 a

i
j , with 1 ≤ i ≤ n,

• the conditions α are
g1 + (g1 − l1) + m̃1 +

∑
I∈C1

qI = d1 + 1

and
gi + (gi − li) + m̃i +

∑
I∈Ci

qI = di + 2, when i ≥ 2,

• the conditions β are

Ãi −
i−1∑
j=1

K{j,i} +

n∑
j=i+1

K{i,j} = 0, 2 ≤ i ≤ n.

We now modify the notations by removing the tildes, i.e. we set mi := m̃i and Ai := Ãi for any 1 ≤ i ≤ n.
In Step 1.2 of Section 6.3.2.2 we explained why such an expression of Hd1 ? Hd2 ? · · · ? Hdn is enough to get an

expression for 〈τ0τd1 . . . τdn〉l,g−l. We also explained that the commutators offer some simplifications given by the
conditions γ.

We now proceed as in Step 2 of Section 6.3.2.2: we extract the coefficient of ε2l~g−l in the expression of√
−1

g−l

~n−1 Hd1 ? Hd2 ? · · · ? Hdn given by Eq. (6.5.3), then we use the Lemma 166 to substitute ui = δi,1 in this
coefficient. We get Eq. (6.5.1).

We now prove that the correlator 〈τ0τd1 . . . τdn〉l,g−l vanishes when
∑
di > 4g − 2 + n − l or when

∑
di

has the parity of n+ 1− l. According to Section 6.5.1, this proves Proposition 158.

Proof of Proposition 158. The three last lines of Eq. (6.5.1) form a polynomial the indeterminates a1
1, . . . , a

1
m1
, . . . ,

an1 , . . . , a
n
mn depending of the set of parameters S = {di, gi, li,mi|1 ≤ i ≤ n}, we denote this polynomial by QS .

The parity and the degree of this polynomial is described by Lemma (186). Since the polynomial Pd,g,l is even and
of degree 2g, we deduce that QS is a polynomial of degree

2
∑
I∈C

qI − (n− 1) +

n∑
i=1

2gi = 2g + n− 1

and has the parity of n − 1. We used the constraint
∑
I∈C qI +

∑n
i=1 gi = g + n − 1 of the first summation in

formula (6.5.1) to obtain this equality.
We then extract the coefficient of a1

1 . . . a
1
m1

. . . an1 . . . a
n
mn in QS . This coefficient vanishes if

n∑
i=1

mi > 2g + n− 1 (6.5.4)

or if
∑n
i=1mi has the parity of n. However conditions α give

∑n
i=1mi =

∑n
i=1 di−2g+ l+1. Hence, this coefficient

vanishes if ∑
di > 4g − 2 + n− l

or if
∑
di has the parity of n− l + 1. This proves the proposition.
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6.6 Proof of the geometric formula

According to Lemma 121, we have

〈τ0τd1 . . . τdn〉l,g−l = ig−l
[
εl~g−l+n−1

] [
. . .
[
Ω~

0,d1 , Hd2

]
, . . . ,Hdn

] ∣∣∣
ui=δ1,i

,

and we justified that Ω~
0,d = Hd−1 (see Lemma 167). Moreover, Lemma 166 explains how to extract the

coefficient ui = δi,1 from a differential polynomial in the p variables. We justify that

1

~n−1

[
. . .
[
Hd1−1, Hd2

]
, . . . ,Hdn

]
=∑

m≥0

∑
g≥0

g∑
k=0

∑
a1,...,am

∑
Γ∈G(k,g,m,n)(

−ε2

i~

)k
(i~)

g

m!
in−1

∫
Mg,m+n+1

(λ ·DR)Γ

(
−
∑

ai, a1, . . . , am

)
ψd1m+1 . . . ψ

dn
m+n pa1 . . . pame

ix
∑
ai .

In view of the previous proofs, this formula should be pretty clear. We briefly justify this formula by
induction over n. The expression for n = 1 is clear. By induction, suppose we add a (n+ 1)th Hamiltonian.
The term [

. . .
[
Hd1−1, Hd2

]
, . . . ,Hdn

]
? Hdn+1

corresponds to all the graphs such that the vertex v indexed by p (v) =n + 1 is equipped with a + sign
(resp. a − sign for the other term Hdn+1

?
[
. . .
[
Hd1−1, Hd2

]
, . . . ,Hdn

]
). Since the commutative term of the

commutator vanishes, one can see that this vertex is linked with at least one smaller vertex.
We then use the evaluation lemma (Lemma 166) to obtain

〈τ0τd1 . . . τdn〉l,g−l =∑
m≥0

[a1 . . . am]
∑

Γ∈G(m,n,g,l,a0=−
∑
ai,a1,...,an)

i2g+n−1−m

m!

∫
Mg,m+n+1

(λ ·DR)Γ

(
−
∑

ai, a1, . . . , am

)
ψd1m+1 . . . ψ

dn
m+n .

Then, since (λ ·DR)Γ (−
∑
ai, a1, . . . , am) ∈ H2(l+g+n−1)

(
Mg,n+m+1

)
, the dimensional condition of the inte-

gral (the degree of the integrand is equal to the dimension of the space) yields

m =

n∑
i=1

di + l − 2g + 1.
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