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Percolation et percolation de premier passage : constante isopérimétrique, con-
stante de temps et constante de flux

Résumé : Dans cette thèse, nous étudions les modèles de percolation et percolation de pre-
mier passage dans le graphe Zd, d ≥ 2. Dans une première partie, nous étudions les propriétés
d’isopérimétrie du cluster infini Cp de percolation pour p > pc. Conditionnons par l’événement
{0 ∈ Cp}, la constante isopérimétrique ancrée ϕp(n) correspond à l’infimum sur l’ensemble des
sous-graphes connectés de Cp, contenant 0 et de volume inférieur à nd, du ratio entre la taille
du bord et le volume. Nous montrons la convergence lorsque n tend vers l’infini de nϕp(n) vers
une constante déterministe ϕp qui est solution d’un problème isopérimétrique anisotrope continu.
Nous étudions également le comportement de la constante isopérimétrique ancrée en pc, ainsi que
la régularité de p 7→ ϕp pour p > pc. Dans une deuxième partie, nous considérons une première
interprétation du modèle de percolation de premier passage où chaque arête du graphe est munie
indépendamment d’un temps de passage aléatoire distribué selon une loi G. La percolation de
premier passage modélise des phénomènes de propagation, par exemple la propagation de l’eau
dans une roche poreuse. Une loi des grands nombres est connue : pour chaque direction x, on
peut définir une constante de temps µG(x) qui correspond à l’inverse de la vitesse asymptotique de
propagation dans la direction x. Nous étudions les propriétés de régularité de G 7→ µG. En par-
ticulier, nous étudions comment la distance de graphe dans Cp évolue avec p. Dans une troisième
partie, nous considérons une deuxième interprétation du modèle de percolation de premier passage
où chaque arête du graphe est muni indépendamment d’une capacité aléatoire distribuée selon une
loi G. La capacité d’une arête est la quantité maximale d’eau qui peut circuler dans l’arête par
seconde. Pour v ∈ Rd unitaire, une loi des grands nombres existe : on peut définir la constante
de flux νG(v) dans la direction v comme étant le débit asymptotique maximal d’eau qui peut être
envoyé dans la direction v par unité de surface. Nous montrons une loi des grands nombres pour le
débit maximal d’eau qu’une source convexe compacte peut envoyer à l’infini. Le problème dual du
flux maximal est celui des surfaces de coupures de capacité minimale, il s’agit d’ensembles d’arêtes
séparant les sources des puits qui limitent la transmission du flux en agissant comme un goulot
d’étranglement ; toutes leurs arêtes sont saturées. Dans le cas particulier où G({0}) > 1 − pc,
nous montrons une loi des grands nombres pour la taille des surfaces de coupure minimale liées au
flux maximal dans un cylindre plat où le haut et le bas du cylindre correspondent respectivement
à la source et au puits.

Mots-clés : Percolation, percolation de premier passage, constante isopérimétrique, flux maxi-
mal, coupure minimale, constante de temps
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Percolation and first passage percolation: isoperimetric, time and flow constants

Abstract: In this thesis, we study the models of percolation and first passage percolation on
the graph Zd, d ≥ 2. In a first part, we study isoperimetric properties of the infinite cluster Cp of
percolation of parameter p > pc. Conditioning on the event {0 ∈ Cp}, the anchored isoperimetric
constant ϕp(n) corresponds to the infimum over all connected subgraph of Cp containing 0 of size
at most nd, of the boundary size to volume ratio. We prove that nϕp(n) converges when n goes to
infinity towards a deterministic constant ϕp, which is the solution of an anisotropic isoperimetric
problem in the continuous setting. We also study the behavior of the anchored isoperimetric
constant at pc, and the regularity of the map p 7→ ϕp for p > pc. In a second part, we study a first
interpretation of the first passage percolation model where to each edge of the graph, we assign
independently a random passage time distributed according to a given law G. This interpretation
of first passage percolation models propagation phenomenon such as the propagation of water in
a porous medium. A law of large numbers is known: for any given direction x, we can define a
time constant µG(x) that corresponds to the inverse of the asymptotic propagation speed in the
direction x. We study the regularity properties of the map G 7→ µG. In particular, we study how
the graph distance in Cp evolves with p. In a third part, we consider a second interpretation of the
first passage percolation model where to each edge we assign independently a random capacity
distributed according to a given law G. The capacity of an edge is the maximal amount of water
that can cross the edge per second. For a given vector v of unit norm, a law of large numbers
is known: we can define the flow constant νG(v) in the direction v as the asymptotic maximal
amount of water that can flow per second in the direction v per unit of surface. We prove a law
of large numbers for the maximal flow from a compact convex source to infinity. The problem of
maximal flow is dual to the problem of finding minimal cutset. A minimal cutset is a set of edges
separating the sinks from the sources that limits the flow propagation by acting as a bottleneck:
all its edges are saturated. In the special case where G({0}) > 1 − pc, we prove a law of large
numbers for the size of minimal cutsets associated with the maximal flow in a flat cylinder, where
its top and bottom correspond respectively to the source and the sink.

Keywords: Percolation, first passage percolation, isoperimetric constant, maximal flow, mini-
mal cutset, time constant
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Chapter 1

Introduction

1 Percolation
1.1 Introduction of the model

The model of percolation was introduced in 1957 by Broadbent and Hammersley in [18]. It
aims to study the circulation of water in a porous medium at a microscopic level. A porous
medium is a rock with microscopic holes. We immerse the rock in the water. Given the density
of holes, will the center of the rock be wet ? The model of percolation was introduced to give
a rigorous answer to this question. This model may be defined on the lattice Zd as follows. Let
d ≥ 2. We consider the graph (Zd,Ed) having for vertices Zd and for edges Ed the set of pairs
of nearest neighbors in Zd for the Euclidean norm. To each edge e ∈ Ed we assign a Bernoulli
random variable B(e) of parameter p ∈ [0, 1] so that the family (B(e), e ∈ Ed) is independent. If
B(e) = 1, we say that the edge e ∈ Ed is open, i.e., the water can flow through e. Otherwise,
we say that the edge is closed. The parameter p may be interpreted as the density of microscopic
tubes that let the water flows through the rock. We can define the random graph Gp having for
vertices Zd and for edges the set {e ∈ Ed : B(e) = 1}.

Notice that this model is translation invariant in law. Any point in Zd sees in law the same
environment. Thus, without loss of generality, we can consider that 0 corresponds to the center
of the rock. Because the tubes are microscopic, from the point of view of the center of the rock,
the exterior of the rock is infinitely far away. If we denote by Cp(0) the connected component of 0
in Gp, we consider that the center of the rock is wet if Cp(0) is infinite. We define the probability
of percolation θ(p) as

θ(p) = P
(
|Cp(0)| =∞

)
.

The value θ(p) corresponds to the probability that the center of the rock is wet. One can prove (by
coupling) that the function p 7→ θ(p) is non-decreasing. Roughly speaking, the larger the density
p is, the more open edges there are, and so the bigger Cp(0) is. Define the critical parameter pc(d)
as

pc(d) = sup
{
p : θ(p) = 0

}
.

One can prove that pc(d) ∈]0, 1[. This model exhibits a phase transition at pc(d), i.e., there is a
change of behavior of the model whether p > pc(d) or p < pc(d):
− Sub-critical regime: When p < pc(d), we have θ(p) = 0 and almost surely there is no

infinite connected component in Gp. The water only circulates at a microscopic scale.
− Supercritical regime: When p > pc(d), we have θ(p) > 0 and almost surely there exists

a unique infinite cluster Cp in Gp. The existence of an infinite connected component implies
the circulation of the water through the medium at a macroscopic scale.

These results are classical and may be found for instance in the book of Grimmett [47].

Open question 1.1. For d = 3, prove the non-existence of an infinite connected component at
pc(3).

11



12 CHAPTER 1. INTRODUCTION

This question has already been solved for d = 2 and large d ≥ 11. This is probably one of the
most important question of the domain but it is still out of reach.

In the sub-critical regime, all the connected components are finite. We have the following result
on the size of the connected components (originally due to Aizenman-Barsky [8] and Menshikov
[58], and revisited by Duminil-Copin, Tassion [36] and Duminil-Copin, Raoufi, Tassion [35]).

Theorem 1.2 (Theorems (6.1) and (6.75) in [47])). Let p < pc(d), there exist positive constants
C1 and C2 such that

∀n ≥ 1 P (|Cp(0)| ≥ n) ≤ C1 exp(−C2n) .

In the supercritical regime, there exists a unique infinite cluster Cp, there exists also finite
connected components disjoint of Cp. The existence of a very big finite connected component is
very unlikely. We have the following theorem:

Theorem 1.3 (Cerf [19]). Let p > pc(d), there exist positive constants C1 and C2 such that

∀n ≥ 1 P
(
nd ≤ |Cp(0)| <∞

)
≤ C1 exp(−C2n

d−1) .

Intuitively, to isolate nd vertices of the cluster of Cp(0) from the whole infinite cluster, we
need a closed surface that separates 0 to infinity. The more likely configurations on the event
{nd ≤ |Cp(0)| <∞} are the ones with the closed surface of "minimal energy". Understanding the
geometry of surface of minimal energy is strongly linked to the study of isoperimetric problem
which is the purpose of the following section.

1.2 Isoperimetry of the infinite cluster
1.2.1 Isoperimetry in the continuous setting

Isoperimetric problems are among the oldest problems in mathematics. They consist in finding
sets that maximize the volume given a constraint on the perimeter or equivalently that minimize
the perimeter to volume ratio given a constraint on the volume. These problems can be formu-
lated in the anisotropic case. Given a norm ν on Rd and S a continuous subset of Rd having a
regular boundary, we define the tension exerted on S at a point x in the boundary ∂S of S to be
ν(nS(x))nS(x), where nS(x) is the exterior unit normal vector of S at x. The quantity ν(nS(x))
corresponds to the intensity of the tension that is exerted at x. We define the surface energy Iν(S)
of S as the integral of the intensity of the surface tension over the boundary ∂S of S, i.e.,

Iν(S) =
∫
∂S

ν(nS(x))Hd−1(dx) ,

where Hd−1 denotes the Hausdorff measure in dimension d − 1. An anisotropic isoperimetric
problem consists in finding sets that minimize the surface energy to volume ratio given a constraint
on the volume. Namely,

minimize Iν(S)
Ld(S) subject to Ld(S) ≤ 1

where Ld is the d-dimensional Lebesgue measure. To solve this problem, in [70], Wulff introduced
through the Wulff construction a shape achieving the infimum. This shape is called the Wulff
crystal Ŵν , it corresponds to the unit ball for a norm built upon ν. The set Ŵν is defined by

Ŵν =
⋂

v∈Sd−1

{
x ∈ Rd : x · v ≤ ν(v)

}
,

where · denotes the standard scalar product on Rd and Sd−1 is the unit sphere of Rd. Later,
Taylor proved in [66] that this shape properly rescaled is the unique minimizer, up to translations
and modifications on a null set, of the associated anisotropic isoperimetric problem.
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1.2.2 Isoperimetric constant of graphs

The study of isoperimetric problems in the discrete setting is more recent. In the continuous
setting, we study the perimeter to volume ratio, in the context of graphs, the analogous problem
is the study of the size of edge boundary to volume ratio. This can be encoded by the Cheeger
constant. For a finite graph G = (V (G), E(G)) with vertices V (G) and edges E(G), we define the
edge boundary ∂GA of a subset A of V (G) as

∂GA =
{
e = 〈x, y〉 ∈ E(G) : x ∈ A, y /∈ A

}
.

We denote by ∂A the edge boundary of A in (Zd,Ed) and by |B| the cardinal of the finite set B.
The isoperimetric constant, also called Cheeger constant, is defined as

ϕG = min
{
|∂GA|
|A|

: A ⊂ V (G), 0 < |A| ≤ |V (G)|
2

}
.

The continuous version of this constant was introduced by Cheeger in his thesis [29] in order to
obtain a lower bound for the smallest eigenvalue of the Laplacian. The discrete version of the
Cheeger constant was introduced by Alon, Milman [9] and Gabber, Galil [37]. The isoperimetric
constant of a graph gives information on its geometry.

Let d ≥ 2. Let p > pc(d). We want to study the geometry of Cp through its Cheeger constant.
However, if we minimize the isoperimetric ratio over all possible subgraphs of Cp without any
constraint on the size, one can show that ϕCp = 0 almost surely. For that reason, we shall
minimize the isoperimetric ratio over all possible subgraphs of Cp given a constraint on the size.
There are several ways to do it. We can for instance study the Cheeger constant of the graph
Cn = Cp ∩ [−n, n]d or of the largest connected component C̃n of Cn for n ≥ 1. As we have ϕCp = 0
almost surely, the isoperimetric constants ϕCn and ϕC̃n go to 0 when n goes to infinity. Benjamini
and Mossel [13], Mathieu and Remy [57], Rau [61], Berger, Biskup, Hoffman and Kozma [14],
Pete [59] proved that ϕC̃n is of order n−1. Roughly speaking, by analogy with the full lattice, we
expect that with high probability that subgraphs of C̃n that minimize the isoperimetic ratio have
an edge boundary size of order nd−1 and a size of order nd, this is coherent with the fact that
ϕC̃n

is of order n−1. This led Benjamini to conjecture that for p > pc(d), the limit of nϕC̃n when
n goes to infinity exists and is a positive deterministic constant. Dealing with the isoperimetric
ratio within Cn needs to be done with caution. Indeed, we do not want minimizers to be close to
the boundary ∂Cn of Cn because this boundary is artificial, it does not coincide with ∂CpCn. There
is another way to define the Cheeger constant of Cp, that is more natural in the sense that we do
not restrict minimizers to remain in the box [−n, n]d. This is called the anchored isoperimetric
profile ϕn and it is defined by:

ϕn = ϕn(p) = min
{ |∂CpH|
|H|

: 0 ∈ H ⊂ Cp, H connected, 0 < |H| ≤ nd
}
,

where we condition on the event {0 ∈ Cp}. We say that H is a valid subgraph if 0 ∈ H ⊂ Cp, H
is connected and |H| ≤ nd. We also define

∂oH =
{
e ∈ ∂H, e is open

}
.

Note that if H ⊂ Cp, then ∂CpH = ∂oH. To better understand the difference between the two
definitions, let us consider the following deterministic subgraph of (Zd,Ed),

F =
(
{x ∈ Zd : ∀i ∈ {2, . . . , d}xi = 0}, {e = {x, y} ∈ Ed : ∀i ∈ {2, . . . , d}xi = yi = 0}

)
.

Denote by Fn = F ∩ [−n, n]d. It is easy to check that ϕFn is of order 1/n whereas its anchored
isoperimetric constant is of order 1/nd. Roughly speaking, the fact that the anchored isoperimetric
constant is of order 1/n implies that the underlying graph looks like a d-dimensional object whereas
this does not necessarily hold for ϕFn , the isoperimetric constant restricted to the box. Even if
these two definitions lead to equivalent results for p > pc(d), the difference is crucial at pc(d). For



14 CHAPTER 1. INTRODUCTION

each n, let Gn be the set of the valid subgraphs that achieve the infimum in ϕn. In this context, a
minimizer Gn ∈ Gn can go potentially very far from 0. The minimizer Gn properly rescaled does
not belong anymore to a compact set. This lack of compactness is the main issue to overcome
to prove that the limit of nϕn exists. It was done in dimension 2 by Biskup, Louidor, Procaccia
and Rosenthal in [15], with a norm βp,2 which is specific to the dimension 2. Let dH denote the
L∞-Hausdorff metric on compact sets, i.e., for A,B compact sets in R2

dH(A,B) = max
(

sup
x∈A

inf
y∈B
‖x− y‖, sup

y∈B
inf
x∈A
‖x− y‖

)
.

They proved the following results:

Theorem 1.4 (Theorems 1.2 and 1.7 in [15]). There exists a constant ϕp that corresponds to the
solution of an isoperimetric problem associated with the norm βp,2 such that P(·|0 ∈ Cp)-almost
surely,

lim
n→∞

n1/2ϕ√n = θ(p)−1/2ϕp .

Moreover, we have uniform convergence of the minimizers of ϕ√n towards the dilate Wp,2 of Ŵβp,2

of volume 1 in the following sense

lim
n→∞

max
Gn∈ÛCp (

√
n)

inf
x∈R2

dH

(
n−1/2Gn, x+ θ(p)−1/2Wp,2

)
= 0

where ÛCp(n) is the set of minimizers for ϕn.

Remark 1.5. Note that the definition of the anchored isoperimetric constant ϕn we give here
is slightly different from the one of [15]. They constrain the size of subgraphs to be at most n,
whereas in the definition given here the size can be at most nd.

This result was extended by Gold in dimension d ≥ 3 in [44]. Gold worked on the modified
Cheeger constant ϕ̂n, defined by

ϕ̂n = min
{ |∂CpH|
|H|

: H ⊂ Cn, 0 < |H| ≤ |Cn|/d!
}
.

Instead of considering the open edge boundary of subgraphs within Cn, Gold considered the
open edge boundary within the whole infinite cluster Cp, this is more natural because Cn has
been artificially created by restricting Cp to the box [−n, n]d. The author also added a stronger
constraint on the size of subgraphs of Cn to ensure that minimizers do not touch the boundary of
the box [−n, n]d. The author built a norm βp,d that is directly related to the open edge boundary.
In some sense, this norm represents a surface tension in the percolation setting. We will explain
later how to build this norm that requires tools from first passage percolation. We will denote by
Ip the surface energy associated with βp,d. We define the Wulff crystal Wp,d as the dilate of Ŵβp,d

such that Ld(Wp,d) = 2d/d!. Gold proved the following theorem:

Theorem 1.6 (Theorems 1.2 and 1.3 in [44]). Let d ≥ 3 and p > pc(d). We have

lim
n→∞

nϕ̂n = Ip(Wp,d)
θ(p)Ld(Wp,d)

almost surely .

Moreover, we have L1-convergence of the minimizers Ĝn of ϕ̂n towards Wp,d in the following sense

lim
n→∞

max
Gn∈Ĝn

inf
x∈Rd

1
nd
∥∥1Gn − 1Cn∩(x+nWp,d)

∥∥
L1 = 0 almost surely .

The isoperimetric constant ϕ̂n properly renormalized converges when n goes to infinity to
the solution of an anisotropic isoperimetric problem associated to the norm βp,d. Moreover, any
subgraph Gn ∈ Ĝn converges towards the shape that solves the isoperimetric problem associated
with βp,d.
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2 First passage percolation: first interpretation
The model of first passage percolation was first introduced by Hammersley and Welsh [49] in

1965 as a model for the spread of a fluid in a porous medium. To each edge e ∈ Ed we assign a
random variable tG(e) with values in R+ or even R+ ∪{+∞} so that the family (tG(e), e ∈ Ed) is
independent and identically distributed according to a given distribution G. The random variable
tG(e) may be interpreted in several different ways and so model different problems.

One of the most commonly studied interpretation of the model of first passage percolation is
to say that the random variable tG(e) represents a passage time, i.e., the time needed to cross the
edge e. We can define a random pseudo-metric T on the graph: for any pair of vertices x, y ∈ Zd,
the random variable T (x, y) is the shortest time to go from x to y, that is,

T (x, y) = inf
{∑
e∈γ

tG(e) : γ path from x to y
}
,

where a path γ from x to y is a finite sequence (v0, e1, v1, . . . , en, vn) of vertices (vi)i=0,...,n ∈
(Zd)n+1 and edges (ei)i=1,...,n ∈ (Ed)n where v0 = x, vn = y and for any 1 ≤ i ≤ n, ei =
〈vi−1, vi〉 ∈ Ed (〈vi−1, vi〉 represents the edge whose endpoints are wi−1 and vi). We define |γ| = n
the length of the path γ.

2.1 Time constant
2.1.1 Subadditive ergodic theorem

A natural question is to understand how this random pseudo-metric behaves. In particular,
what is the asymptotic behavior of the quantity T (0, nx) when n goes to infinity ? Under some
assumptions on the distribution G, one can prove that asymptotically when n is large, the random
variable T (0, nx) behaves like nµG(x) where µG(x) is a deterministic constant depending only on
the distribution G and the point x ∈ Zd, i.e.,

lim
n→∞

T (0, nx)
n

= µG(x) almost surely and in L1

when this limit exists. This constant µG(x) is the so-called time constant in the direction x.
This constant may be interpreted as an inverse speed in the direction x. The convergence of this
quantity comes from the fact that the family (T (nx,mx))1≤n≤m is sub-additive. Sub-additivity
is a central notion in statistical mechanics. To get a better understanding of this notion, we can
start with the deterministic setting with Fekete’s lemma (whose proof is not complicated):

Lemma 2.1 (Fekete’s lemma). Let (un)n≥1 be a sub-additive sequence of real numbers, that is, a
sequence such that

∀n ≥ 1 ∀m ≥ 1 un+m ≤ un + um .

Then,
lim
n→∞

un
n

= inf
n≥1

un
n
∈ R ∪ {−∞} .

We claim that the sequence of real numbers (E[T (0, nx)])n≥1 is sub-additive. Indeed, using
the triangular inequality and taking the expectation, we get

∀n ≥ 1 ∀m ≥ 1 E[T (0, (n+m)x)] ≤ E[T (0, nx)] + E[T (nx, (n+m)x)]
= E[T (0, nx)] + E[T (0,mx)]

where we use in the last equality that the model is invariant in law under translations by a vector
in Zd. It follows using Fekete’s lemma that the limit of E[T (0, nx)]/n when n goes to infinity
exists and is finite when E[T (0, x)] < ∞. The proof of the convergence of T (0, nx)/n requires
more powerful tools. We need the following theorem that comes from ergodic theory (this version
of the theorem is due to Liggett [56]):
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Theorem 2.2 (Kingman’s subadditive ergodic theorem). Let (Xn,m, 0 ≤ n < m) be a collection
of random variables such that
(i) Xl,n ≤ Xl,m +Xm,n whenever 0 ≤ l < m < n,
(ii) For each m ≥ 0, the joint distributions of (Xm,m+k, k ≥ 1) are the same as those of

(Xm+1,m+k+1, k ≥ 1)
(iii) For each k ≥ 1, the sequence (Xnk,(n+1)k, n ≥ 0) is stationary and ergodic.
(iv) For each n ≥ 1, E[|X0,n|] <∞ and E[X0,n] ≥ −cn for some constant c.
Then

lim
n→∞

X0,n

n
= lim
n→∞

E[X0,n]
n

= inf
n≥1

E[X0,n]
n

a.s. and in L1.

Let x ∈ Zd, consider the sequence (T (nx,mx), 0 ≤ n < m). Thanks to the triangular inequal-
ity, this sequence satisfies the condition (i). Because the environment (tG(e))e∈Ed is i.i.d., the
sequence also satisfies the conditions (ii) and (iii). When the distribution G has a first moment,
i.e., E[tG(e)] <∞, then

E[T (0, nx)] ≤ ‖nx‖1E[tG(e)] < +∞

and condition (iv) is satisfied. It follows that

lim
n→∞

T (0, nx)
n

= lim
n→∞

E[T (0, nx)]
n

= µG(x) a.s. and in L1 .

The subaditive ergodic theorem is a powerful tool but it has two main limitations: it cannot be
applied to irrational x ∈ Rd (even with an extension of the definition of T (nx,mx), because of
properties (ii) and (iii)) and it cannot be applied to a distribution G without a first moment. We
review here the state of the art of how these issues have been circumvent.

2.1.2 Extend µG to Rd

Let us assume G is integrable, i.e.,∫
R+

x dG(x) < +∞ .

Let us start with rational points in Rd. Let x ∈ Qd and N ≥ 1 such that Nx ∈ Zd. It follows that

µG(Nx) = lim
n→∞

T (0, nNx)
n

= N lim
n→∞

T (0, nNx)
Nn

= N lim
n→∞

T (0, nx)
n

= NµG(x) .

Hence,

µG(x) = µG(Nx)
N

.

By the same arguments, one can prove that

∀r ∈ Q ∀x ∈ Qd µG(rx) = rµG(x) . (2.1)

Now that µG is defined on Qd, we need to prove that the map x 7→ µG(x) in order to define µG
is continuous on the whole Rd. Denote by (−→e1 , . . . ,

−→ed) the canonical basis of Rd. Let x ∈ Qd, we
can write

x =
d∑
i=1

λi
−→ei , λi ∈ Q, 1 ≤ i ≤ d .

By triangular inequality and inequality (2.1), we have

µG(x) ≤
d∑
i=1
|λi|µG(−→ei ) .
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Since µG is invariant under permutation of the coordinate axes, it yields that

µG(x) ≤
d∑
i=1
|λi|µG(−→e1) ≤ ‖x‖1µG(−→e1) .

Moreover, by triangular inequality, we have

∀x, y ∈ Qd µG(y) ≤ µG(x) + µG(y − x) .

It follows that

∀x, y ∈ Qd |µG(y)− µG(x)| ≤ µG(y − x) ≤ µG(−→e1)‖y − x‖1 .

The latter inequality enables to extend µG to Rd by continuity and density of Qd in Rd. We can
prove that for any r ≥ 0 and x ∈ Rd, we have µG(rx) = rµG(x).

2.1.3 Define µG for general distributions

Actually, it is possible to apply theorem 2.2 with a weaker condition than the integrability of
G. Kesten proved in theorem 2.18 in [51] that under the condition that

E[min (t1, . . . , t2d)] ≤ +∞ (2.2)

where (ti, 1 ≤ i ≤ 2d) are i.i.d. copies of tG(e), we can apply theorem 2.2. The condition (2.2) is
necessary for T (0, nx) to be integrable since any path that achieves the infimum in T (0, nx) has
to borough an edge incident to 0 and nx. One can prove that the condition (2.2) is a sufficient
condition for T (0, nx) to be integrable. Besides, this condition is also necessary to obtain the
almost sure convergence of T (0, nx)/n. Indeed, let us assume that

E[min (t1, . . . , t2d)] =∞ .

Let us denote by Xn the smallest passage times of the edges incident to 2ne1. It follows that
(Xn, n ≥ 1) is an i.i.d. sequence such that E[X1] = +∞. Let c > 0. We have

∑
n≥1

P(Xn > cn) =
∑
n≥1

E[1X1>cn] = E

∑
n≥1

1X1>cn

 ≥ E
[
X1

c
− 1
]

= +∞ .

Since the events {Xn > cn} are independent for n ≥ 1, it follows by Borel-Cantelli’s lemma that

lim sup
n→∞

Xn

n
> c

and
∀c > 0 lim sup

n→∞

T (0, ne1)
n

≥ lim sup
n→∞

T (0, 2ne1)
2n ≥ lim sup

n→∞

Xn

n
> c .

We would like to define µG even if the distribution G does not have good integrability prop-
erties. As we have seen above, the problem comes from the fact that a path between 0 and nx
cannot avoid edges incidental to 0 and nx. To circumvent this issue, we need to consider an
auxiliary distance T̃ with good integrability properties to be able to apply theorem 2.2. Next, we
compare T̃ and T to be able to deduce weaker convergence theorem for T . The auxiliary distance
T̃ will boil down to consider paths between points in the neighborhood of 0 and nx in such a way
that we avoid edges with large passage times.

Let M be large enough such that G([M,+∞[) < pc(d) ≤ 1/2. Since G([0,M ]) > 1 − pc(d) ≥
pc(d), there exists an infinite cluster CM made of edges whose passage times are smaller than M .
The idea of Cox and Kesten [33] is to build a good shell S(x) for x, which is a set of edges such
that any path from x to infinity has to use at least one edge of S(x). Moreover, the passage times
of edges in S(x) is strictly smaller than M and S(x) ∩ CM 6= ∅. We refer to [33] for a precise
definition of S(x).
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Remark 2.3. The construction of such shells is possible because G([M,+∞[) < pc(d). When
G([M,+∞[) > pc(d), with positive probability there exists a path from 0 to infinity made with
edges of passage time larger than M , in this case, we cannot build a shell S(0).

Finally, we set

∀x, y ∈ Zd T̃ (x, y) = inf
{
T (r) : r is a path that joins S(x) to S(y)

}
.

Since S(0), S(nx)∩ CM 6= ∅, there exists a path r in CM that joins S(0) and S(nx). One can then
prove that with high probability we can choose r such that |r| ≤ Cn‖x‖2 (see [10]) and

T̃ (0, nx) ≤ T (r) ≤M |r| ≤ CMn‖x‖2

for some positive constant C. It follows that the sequence (T̃ (nx,mx), 0 ≤ n ≤ m) satisfies
property (iv) of theorem 2.2. It is easy to check that the other properties are also satisfied.
Hence, there exists a constant µ̃G such that

∀x ∈ Zd lim
n→∞

T̃ (0, nx)
n

= lim
n→∞

E[T̃ (0, n)]
n

= µ̃G(x) a.s. and in L1 .

For distributions G that satisfy condition (2.2), the time to go from 0 to S(0) and to go from
S(nx) to nx is upper bounded by C1 logn with high probability, where C1 is a positive constant.
Besides, with high probability the total size of the shells S(0) and S(nx) are upper-bounded by
C2 logn where C2 is a positive constant. It follows that

lim
n→∞

|T̃ (0, nx)− T (0, nx)|
n

= 0 a.s. .

So actually, µG = µ̃G and we can write µG instead of µ̃G.
With this technique, we can still not give a sense to µG for distributions G with a large atom

in +∞. An edge with infinite passage time corresponds to a closed edge in the classical model
of percolation, that is an edge we cannot cross because it takes an infinite time to cross it. In
particular, the study of the pseudo-metric T for a distribution pδ1 + (1 − p)δ∞ for p > pc(d)
is equivalent to the study of the graph distance in Gp (the graph made of open edges in the
percolation of parameter p). In that context, if 1 − p > pc(d), then one cannot find an M such
that G([M,+∞[) < pc(d).

There is another way to define µG for any distribution such that G({+∞}) < 1−pc(d). To get
around the fact that the passage time between two points can take infinite values, we introduce a
regularized time T̂ . Instead of considering the time between two points x and y, we will consider
the time of regularized version of x and y. We can define the regularized time constant as in [28].
LetM be large enough such that G([0,M ]) > pc(d). We denote by CM the infinite cluster made of
edges of passage time smaller than M . We define x̂ as the vertex of CM which minimizes ‖x− x̂‖1,
with a deterministic rule to break ties. We next set

∀x, y ∈ Zd T̂ (x, y) = T (x̂, ŷ) . (2.3)

Let us denote by DCM the graph distance in CM , i.e.,

∀x, y ∈ CM DCM (x, y) = inf
{
|γ| : γ is a path between x and y in CM

}
.

It follows that for x, y ∈ Zd,

T̂ (x, y) = T (x̂, ŷ) ≤MDCM (x, y) <∞ .

The latter inequality ensures that condition (iv) of theorem 2.2 holds since DCM (0, nx) is with
high probability smaller than Cn‖x‖1 with C a positive constant (see [10]). For distributions G
that satisfy condition (2.2), one can prove that

lim
n→∞

|T̂ (0, nx)− T (0, nx)|
n

= 0 a.s. .
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It follows that for distributions G that satisfy condition (2.2), the limit µ̂G we obtain using theorem
2.2 for the sequence (T̂ (nx,mx), 0 ≤ n ≤ m) coincides with µG.

Actually one can prove that µ̂G does not depend on CM , the infinite cluster we use to regularize
the time, we could have used a different infinite cluster. This is done in lemma 2.11 in [42].

In [39], Garet and Marchand give another way to deal with infinite passage times. They
presented it as a model of first passage percolation in random environment: instead of considering
a first passage percolation with a distribution on [0,+∞], they consider first a Bernoulli percolation
on Ed of parameter p > pc(d), and then they associate to each remaining edge e a finite passage
time tG(e) such that the family (tG(e), e ∈ Ed) is stationary and ergodic. If x, y ∈ Zd don’t belong
to the same open cluster of percolation, then T (x, y) = +∞. To be able to define a limit of
T (0, nx)/n when n goes to infinity for x ∈ Qd, they work with P the probability conditioned on
the event {0 ∈ Cp}. For a given rational direction x ∈ Qd, they consider a sequence (xn, n ≥ 1) of
points in Zd in the direction of x (that is proportional to x) that belong to Cp such that ‖xn‖2 goes
to infinity when n goes to infinity. They proved that the limit of T (0, xn) properly renormalized
when n goes to infinity converges P-almost surely towards a deterministic constant µ′G(x).

2.2 Limit shape
In [51], Kesten proved the following theorem.

Theorem 2.4 (Kesten [51]). The time constant µG is a norm on Rd if and only if G({0}) < pc(d).

When G({0}) > pc(d), it is not hard to understand why µG = 0: there exists an infinite cluster
C of edges of null passage time. With high probability, the geodesic between 0 and nx is made of
null passage time edges except at most C logn edges, where C is a positive constant. It follows
that

lim
n→∞

T (0, nx)
n

= 0 almost surely and in L1.

The case G({0}) = pc(d) is much more delicate to handle. For t ≥ 0, denote B(t) the set of points
that can be reached starting from 0 before time t, i.e.,

B(t) =
{
x ∈ Zd : T (0, x) ≤ t

}
+
[
−1

2 ,
1
2

[d
.

This may represents the spread of an infection, the infection starts at the point 0 before time t
and propagates from neighbors to neighbors. The set B(t) ∩ Zd represents the vertices that have
been infected at time t. Fix x ∈ Qd. We have for large enough t depending on x, T (0, tx/µG(x)) ≈
µG(tx/µG(x)) = t. This means that for t large enough the furthest point attained in the direction
of x by B(t) is close to tx/µG(x). If the convergence is uniform in all directions, then an asymptotic
shape emerges. This was first proved by Cox and Durrett in [32].

Theorem 2.5 (Cox-Durrett [32]). Let G be a distribution on R+ such that G({0}) < pc(d) and

E[min(td1, . . . , td2d)] <∞ (2.4)

where ti, i = 1, . . . 2d, are independent copies of tG(e). Then there exists a deterministic convex
compact shape BµG in Rd such that

∀ε > 0 a.s. ∃t0 > 0 ∀t ≥ t0 (1− ε)BµG ⊂
B(t)
t
⊂ (1 + ε)BµG .

Furthermore, BµG is the unit ball for the norm µG, it has non-empty interior and is symmetric
about the axes of Rd.

To prove this theorem, we need to interpolate between the rational directions to obtain the linear
growth of B(t) for the irrational directions. We can apply the subadditive ergodic theorem to a
fixed rational direction to obtain the linear growth of B(t) in that direction. It follows that with
probability one, the linear growth holds simultaneously for the countable dense set of rational
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directions. To be able to interpolate, we need also a control on the time between two points
depending on their distance in the original graph.

Note that the condition (2.4) for G is necessary to obtain the theorem. However, this shape
theorem still holds in a weaker sense for distributions G that do not have good integrability
property using the pseudo-metric T̂ (that was defined in (2.3)). Define :

B̂(t) =
{
x ∈ Zd : T̂ (0, x) ≤ t

}
+
[
−1

2 ,
1
2

[d
.

In [28], Cerf and Théret obtained a strong theorem for B̂(t).

Theorem 2.6 (Cerf-Théret [28]). Suppose that G([0,+∞[) > pc(d) and G({0}) < pc(d), then

∀ε > 0, a.s., ∃t0 ∈ R+ s.t. ∀t ≥ t0 (1− ε)Bµ̂G ⊂
B̂(t)
t
⊂ (1 + ε)Bµ̂G .

They also proved a weak shape theorem for B(t).

Theorem 2.7 (Cerf-Théret [28]). Suppose that G([0,+∞[) > pc(d) and G({0}) < pc(d). Denote
C∞ the infinite cluster for the percolation (1tG(e)<∞, e ∈ Ed). On the event {0 ∈ C∞}, we have
a.s. the following weak convergence:

1
td

∑
x∈B(t)∩Zd

δx/t ⇀
t→∞

θ(G([0,+∞[))1Bµ̂GL
d .

There are a lot of open questions about this limit shape. Since there are not the purpose of
this thesis, we refer to [11] for open questions related to the limit shape.

2.3 Length of a geodesic
Let us first quickly present the background on the minimal length of a geodesic. We denote

by NG(x, y) the minimal length of a geodesic between x and y:

NG(x, y) = inf
{
|γ| : γ is a geodesic between x and y

}
.

One can ask how does NG(0, nx) grow when n goes to infinity. It is expected to grow at speed
n. This result was first proved by Zhang and Zhang in dimension 2 in [74] when G({0}) > pc(d)
(thus µG = 0). They proved the following theorem.

Theorem 2.8 (Zhang-Zhang [74]). Let d = 2. Let G be a distribution on R+ such that G({0}) >
pc(d). We have

lim
n→∞

NG((0, 0), (0, n))
n

= λG({0}) a.s. and in L1

where λG({0}) depends only on G({0}).

Zhang later extended this result to all dimensions under the condition that G({0}) > pc(d) in
[71]. When G({0}) < pc(d), the question of the convergence of NG(0, nx)/n is still open. However,
we know that with high probability NG(0, nx) is of order n. This result is due to Kesten, it is a
corollary of Proposition (5.8) in [51].

Theorem 2.9 (Kesten [51]). Let G be a distribution such that G({0}) < pc(d), then there exist
positive constants A,B,C depending on d and G only such that

∀n ≥ 1 P
(

There exists a path r starting from 0
such that |r| ≥ n and T (r) < Cn

)
≤ A exp(−Bn) .

Open question 2.10. Prove the convergence of NG(0, nx)/n when n goes to infinity when
G({0}) < pc(d).
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2.4 Regularity of the time constant
Since µG does not have an explicit expression, it is natural to ask how µG is affected by small

perturbations of the distribution G. Besides, the regularity result on µG gives also information
on the limit shape, namely, how the limit shape changes under small perturbations of G. As
mentioned in [11] before Theorem 2.7.: " If one could derive strong results in this direction,
perhaps the establishment of various conjectures about the limit shape (e.g., curvature) could be
made easier, or reduced to finding some special class of distributions for which the properties are
explicitly derivable." To be able to deduce results on the stability of the curvature under small
perturbations, we need to obtain regularity on the second derivative of G 7→ µG.

To prove the continuity of the map G 7→ µG, we often need to use the same technology we
have used to prove the existence of the time constant µG. The question of the continuity of the
map G 7→ µG started in dimension 2 with the article of Cox [31].

He proved the continuity of this map under the hypothesis of uniform integrability: if Gn
weakly converges toward G and if there exists an integrable law F such that for all n ∈ N, F
stochastically dominates Gn, then µGn → µG. In [33], Cox and Kesten proved the continuity of
this map in dimension 2 without any integrability condition. A key step to prove the continuity
is the proof of the following lemma:

Lemma 2.11. Let G be a distribution on R+ ∪{+∞} such that G([0,+∞[) > pc(d). For M > 0,
let GM = G1[0,M ] +G([M,+∞])δM , then

∀x ∈ Zd lim
M→∞

µGM (x) = µG(x) .

The idea of Cox and Kesten was to consider a geodesic for truncated passage times min(tG(e),M)
for a large M > 0, and along it to avoid clusters of closed edges, i.e., edges with a passage time
larger than M . They bypass these closed edges in their associated good shell (that were loosely
defined for the existence of µG in section 2.1.3). Note that by construction, the edges in the
boundary of the shells have passage time smaller than M . Thanks to combinatorial considera-
tions, they were able to obtain a precise control on the length of these bypasses. This idea was
later extended to all the dimensions d ≥ 2 by Kesten in [51], by taking a M large enough such
that the percolation of the edges with a passage time larger than M is highly sub-critical, i.e.,
G([M,+∞[) < pc(d). For such a M , the edges of passage time large than M are in a sub-critical
regime of percolation on Zd: the clusters of edges of passage time larger than M are all almost
surely finite. To each edge we can associate a shell made of edges of passage time smaller than
M . However, this idea does not work anymore when we allow passage time to take infinite values.
Indeed, if G({+∞}) > pc(d), we cannot find a positive M > 0 such that G([M,+∞]) < pc(d).
In [42], Garet, Marchand, Procaccia and Théret circumvent this issue and proved the continuity
of the map G → µG for general laws on [0,+∞] without any moment condition but satisfying
G([0,+∞[) > pc(d).

Theorem 2.12 (Garet-Marchand-Procaccia-Théret [42]). Let (Gn)n∈N, and G be probability mea-
sures on [0,+∞] such that Gn weakly converges toward G (we write Gn

d→ G), that is to say for
all continuous bounded functions f : [0,+∞]→ [0,+∞[, we have

lim
n→+∞

∫
[0,+∞]

fdGn =
∫

[0,+∞]
fdG .

Equivalently, we say that Gn
d→ G if and only if limn→+∞Gn([t,+∞]) = G([t,+∞]) for all

t ∈ [0,+∞] such that x→ G([x,+∞]) is continuous at t. If moreover for all n ∈ N, Gn([0,+∞[) >
pc(d) and G([0,+∞[) > pc(d), then

lim
n→∞

sup
x∈Sd−1

|µGn(x)− µG(x)| = 0

where Sd−1 is the unit sphere for the Euclidean norm.
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Again, the key step of this theorem lies in the proof of lemma 2.11 for distributions G on
[0,+∞] such that G([0,+∞[) > pc(d). They consider a geodesic for truncated passage times
min(tG(e),M) for M > 0. Here, instead of bypassing closed edges at a microscopic scale, they
do it at a macroscopic scale by building macroscopic shells (see figure 1.1). This idea finds its
inspiration in the works of Antal and Pisztora [60] and Cox and Kesten [33]. They have to consider
an appropriate renormalization and obtain a macroscopic lattice with good and bad sites. Good
and bad sites correspond to boxes of size N in the microscopic lattice. They do their bypasses
using good sites at a macroscopic scale that have good connectivity properties at a microscopic
scale. The remainder of the proof consists in getting probabilistic estimates of the length of the
bypass by upper-bounding the total size of connected bad components at a macroscopic scale that
the geodesic crosses.

a good N -box

an edge e such that tG(e) ≥M

a geodesic for passage times
min(tG(e),M)

a bypass with edges of passage
time less than M

Figure 1.1 – Bypassing edges with passage time larger than M of a geodesic for truncated times
at a macroscopic scale

3 First passage percolation: second interpretation
There exists another interpretation of the first passage percolation model whose study started

much later. It was introduced by Grimmett and Kesten in [45]. Now we interpret the random
variable tG(e) as a maximum flow rate, i.e., it corresponds to the maximal amount of water that
can cross the edge e per second. The study of this model enables to understand the maximal
amount of water per second -that we will call maximal flow- that can be spread through in a given
domain of the network.

3.1 Admissible streams, minimal cutsets and maximal flows
Let us give a more formal setting for the study of maximal flows. Let Ω = (VΩ, EΩ) be a finite

subgraph of (Zd,Ed). We can see Ω as a piece of rock through which water can flow. Let G1 and
G2 be two disjoint subsets of VΩ representing respectively the sources through which the water
can enter and the sinks through which the water can exit. A stream f is a function defined on Ed
that describes the way water flows in the lattice. Namely, for each edge e, the quantity f(e) gives
information on the rate of flow through the edge e and the orientation of the circulation of the
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water. Let the function f : Ed → Rd be a possible stream inside Ω between G1 and G2. For all
e ∈ Ed, ‖f(e)‖2 represents the amount of water that flows through e per second and f(e)/‖f(e)‖2
represents the direction in which the water flows through e. If we write e = 〈x, y〉 where x, y are
neighbors in the graph (Zd,Ed), then the unit vector f(e)/‖f(e)‖2 is either the vector −→xy or −→yx.
We say that our stream f inside Ω from G1 to G2 is G-admissible if and only if it satisfies the
following constraints.
· The node law : for every vertex x in VΩ \ (G1 ∪G2), we have∑

y∈Zd: e=〈x,y〉∈EΩ

‖f(e)‖2
(
1 f(e)
‖f(e)‖2

=−→xy − 1 f(e)
‖f(e)‖2

=−→yx

)
= 0 ,

i.e., there is no loss of fluid inside Ω.
· The capacity constraint: for every edge e in EΩ, we have

0 ≤ ‖f(e)‖2 ≤ tG(e) ,

i.e., the amount of water that flows through e per second is limited by its capacity tG(e).
Note that as the capacities are random, the set of G-admissible streams inside Ω between G1

and G2 is also random. For each G-admissible stream f , we define its flow by

flow(f) =
∑
x∈G1

∑
y∈Zd: e=〈x,y〉∈EΩ

‖f(e)‖2
(
1 f(e)
‖f(e)‖2

=−→xy − 1 f(e)
‖f(e)‖2

=−→yx

)
.

This corresponds to the amount of water that enters in Ω through G1 per second. By the node
law, as there is no loss of fluid, flow(f) is also equal to the amount of water that escapes from Ω
through G2 per second:

flow(f) =
∑
x∈G2

∑
y∈Zd: e=〈x,y〉∈EΩ

‖f(e)‖2
(
1 f(e)
‖f(e)‖2

=−→yx − 1 f(e)
‖f(e)‖2

=−→xy

)
.

The maximal flow from G1 to G2 in Ω for the capacities (tG(e))e∈Ed , denoted by φG(G1 →
G2 in Ω), is the supremum of the flow over all admissible streams through Ω:

φG(G1 → G2 in Ω) = sup
{

flow(f) : f is a G-admissible stream inside
Ω between G1 and G2

}
.

Dealing with admissible streams is not so easy, but hopefully we can use an alternative defini-
tion of the maximal flow which is more convenient. Let E ⊂ EΩ be a set of edges. We say that E
cuts G1 from G2 in Ω (or is a cutset, for short) if there is no path from G1 to G2 in (VΩ, EΩ \E).
More precisely, E cuts G1 from G2 in Ω if for any path γ from G1 to G2 in Ω, we have γ ∩E 6= ∅.
We associate with any set of edges E its capacity cap(E) defined by

cap(E) =
∑
e∈E

tG(e) .

The max-flow min-cut theorem, see [16], a result of graph theory, states that

φG(G1 → G2 in Ω) = min
{

cap(E) : E cuts G1 from G2 in Ω
}
.

The idea behind this theorem is quite intuitive. By the node law, the flow is always smaller than
the capacity of any cutset. Conversely, consider a maximal flow through Ω, some of the edges are
jammed. We say that e is jammed if the amount of water that flows through e is equal to the
capacity tG(e). These jammed edges form a cutset, otherwise we would be able to find a path
γ from G1 to G2 of non-jammed edges, and we could increase the amount of water that flows
through γ which contradicts the fact that the flow is maximal. Thus, the maximal flow is limited
by the capacity of these jammed edges: the maximal flow is given by one of the cap(E) where
E cuts G1 from G2 in Ω. It follows that the maximal flow is equal to the minimal capacity of a
cutset.
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In [52], Kesten interpreted the study of maximal flow as a higher dimensional version of the
study of geodesics in first passage percolation. A geodesic may be considered as an object of
dimension 1, it is a path with minimal passage time. On the contrary, the maximal flow is
associated (via the max-flow min-cut theorem) with cutsets of minimal capacity: those cutsets are
objects of dimension d− 1, that can be seen as surfaces. To better understand the interpretation
in term of surfaces, we can associate with each edge e a small plaquette e∗. The plaquette e∗ is an
hypersquare of dimension d − 1 whose sides have length one and are parallel to the edges of the
graphs, such that e∗ is normal to e and cuts it in its middle (see figure 1.2). We associate with the
plaquette e∗ the same capacity tG(e) as with the edge e. We also define the dual of a set of edge
E by E∗ = {e∗, e ∈ E}. Roughly speaking, if the set of edges E cuts G1 from G2 in Ω, the surface
of plaquettes E∗ disconnects G1 from G2 in Ω (see figure 1.2). Although this interpretation in
terms of surfaces seems more intuitive than cutsets, it is really technical to handle, and we will
never use it and not even try to give a rigorous definition of a surface of plaquettes. However, note
that in dimension 2, a surface of plaquettes is very similar to a path in the dual graph of Z2 and
thus the study of minimal cutsets is very similar to the study of geodesics and simpler to study.

3.2 Flow constant

We are interested in the maximal flow φG that can cross a cylinder oriented according to
−→v ∈ Sd−1 from its top to its bottom. A first issue is to understand if the maximal flow in the
box properly renormalized converges when the size of the box grows to infinity. This boils down
to understand the maximal amount of water that can flow in the direction −→v per second per unit
of surface. We consider distributions G on R+ ∪ {+∞} such that G({+∞}) < pc(d), i.e., the
edges of infinite capacity are in the sub-critical regime of percolation on Zd. Let us first define
rigorously the maximal flow from the top to the bottom of a cylinder. Let A be a non-degenerate
hyperrectangle, i.e., a rectangle of dimension d − 1 in Rd. Let −→v be one of the two unit vectors
normal to A. Let h > 0, we denote by cyl(A, h) the cylinder of basis A and height h defined by

cyl(A, h) =
{
x+ t−→v : x ∈ A, t ∈ [0, h]

}
.

We denote by ∂A the relative boundary of A. We define cyl(∂A, h) as

cyl(∂A, h) =
{
x+ t−→v : x ∈ ∂A, t ∈ [0, h]

}
.

The dependence on −→v is implicit in the notation cyl(A, h) and cyl(∂A, h). We have to define
discretized versions of the bottom B(A, h) and the top T (A, h) of the cylinder cyl(A, h). We
define them by

B(A, h) :=
{
x ∈ Zd ∩ cyl(A, h) : ∃y /∈ cyl(A, h), 〈x, y〉 ∈ Ed

and 〈x, y〉 intersects A

}

and

T (A, h) :=
{
x ∈ Zd ∩ cyl(A, h) : ∃y /∈ cyl(A, h), 〈x, y〉 ∈ Ed

and 〈x, y〉 intersects A+ h−→v

}
.
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e

e∗

Figure 1.2 – The dual of a cutset between the top and the bottom of a box

We denote by ΦG(A, h) the maximal flow from the top to the bottom of the cylinder cyl(A, h)
in the direction −→v , defined by

ΦG(A, h) = φG(T (A, h)→ B(A, h) in cyl(A, h)) .

In 1987, Kesten studied maximal flows in dimension 3 in [52] for straight boxes, i.e., in the
direction −→v = −→v0 := (0, 0, 1) and basis A = [0, k] × [0, l] × {0} with k ≥ l ≥ 0. He proved the
following theorem.

Theorem 3.1 (Kesten [52]). Let d = 3. Let G be a distribution that admits an exponential
moment and such that G({0}) is small enough. Let k ≥ l and m = m(k, l) ≥ 1. If m(k, l) goes to
infinity when k and l go to infinity in such a way there exists δ ∈]0, 1[, such that

lim
k,l→∞

1
kδ

logm(k, l) = 0 ,

then
lim

k,l→∞

ΦG
(
[0, k]× [0, l]× {0},m(k, l)

)
k l

= νG with probability 1 and in L1

where νG is a constant depending only on d and G.

The proof is very technical and tries to give a rigorous meaning to the notion of surface. Moreover,
it strongly relies on the fact that the symmetry of the straight boxes preserves the lattice, there
is no hope to extend this technique to tilted cylinders. In [73], Zhang generalized the result of
Kesten for d ≥ 3 and G({0}) < 1− pc(d).

To be able to define the flow constant in any direction, we would like to use a subadditive
ergodic theorem. However, the maximal flow φG(A, h) is not well suited to use ergodic subadditive
theorems, because we cannot glue two cutsets from the top to the bottom of two adjacent cylinders
together to build a cutset from the top to the bottom of the union of these two cylinders. Indeed,
the intersection of these two cutsets with the adjacent face of the two cylinders will very likely
not coincide.

To fix this issue, we need to introduce another maximal flow through the cylinder for which
the subadditivity would be recover. To define this flow, we will first define another version of the
cylinder which is more convenient. We define the cylinder cyl′(A, h) by

cyl′(A, h) =
{
x+ t−→v : x ∈ A, t ∈ [−h, h]

}
.
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The set cyl′(A, h) \A has two connected components denoted by C1(A, h) and C2(A, h). We have
to define a discretized version of the boundaries of these two sets. For i = 1, 2, we denote by
C ′i(A, h) the discrete boundary of Ci(A, h) defined by

C ′i(A, h) =
{
x ∈ Zd ∩ Ci(A, h) : ∃y /∈ cyl′(A, h), 〈x, y〉 ∈ Ed

}
.

We call informally C ′i(A, h), i = 1, 2, the upper and lower half part of the boundary of cyl′(A, h).
We denote by τG(A, h) the maximal flow from the upper half part to the lower half part of the
boundary of the cylinder, i.e.,

τG(A, h) = φG(C ′1(A, h)→ C ′2(A, h) in cyl′(A, h)) .

By the max-flow min-cut theorem, the flow τG(A, h) is equal to the minimal capacity of a set of
edges E that cuts C ′1(A, h) from C ′2(A, h) inside the cylinder cyl′(A, h) (see figure 1.3). If we
consider the dual set E∗ of E, the intersection of E∗ with the boundary of the cylinder has to be
close to the relative boundary ∂A of the hyperrectangle A.

−→v

A

Figure 1.3 – The blue dots (respectively green dots) correspond to the discretization from the
inside of the upper half boundary (resp. lower half boundary) of the cylinder of basis A oriented
in the direction −→v . The set of edges in red is a cutset between the upper and lower half of the
boundary in the cylinder. Any path between a blue and a green dot that remains inside the
cylinder has to cross at least one red edge.

The simplest case to study maximal flows is for a straight cylinder, i.e., when −→v = −→v0 :=
(0, 0, . . . , 1) and A = A(

−→
k ,
−→
l ) =

∏d−1
i=1 [ki, li]× {0} with ki ≤ 0 < li ∈ Z. In this case, the family

of variables (τG(A(
−→
k ,
−→
l ), h))−→

k ,
−→
l
is subadditive since minimal cutsets in adjacent cylinders can

be glued together along the common side of these cylinders. By applying ergodic subadditive
theorems in the multi-parameter case (see Krengel and Pyke [54] and Smythe [65]), we obtain the
following result.
Proposition 3.2. Let G be an integrable probability measure on R+. Let A =

∏d−1
i=1 [ki, li]× {0}

with ki ≤ 0 < li ∈ Z. Let h : N→ R+ such that limn→∞ h(n) = +∞. Then there exists a constant
νG(−→v0), that does not depend on A and h but depends on G and d, such that

lim
n→∞

τG(nA, h(n))
Hd−1(nA) = νG(−→v0) a.s. and in L1.

The constant νG(−→v0) is called the flow constant.
Remark 3.3. The fact that the constant νG(−→v0) does not depend on A and h is not a straightfor-
ward consequence of the multi-parameter ergodic subadditive theorem. However it is not hard to
prove it.
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Next, a natural question to ask is whether we can define a flow constant for any direction. When
we consider tilted cylinders, we cannot recover perfect subadditivity because of the discretization
of the boundary. Moreover, the use of ergodic subadditive theorems is not possible when the
direction −→v we consider is not rational, i.e., when there does not exist an integer M such that
M−→v has integer coordinates. Indeed, in that case there exists no vector −→u normal to −→v such
that the model is invariant under the translation of vector −→u . These issues were overcome by
Rossignol and Théret in [62] where they proved the following law of large numbers.

Theorem 3.4 (Rossignol-Théret [62]). Let G be an integrable probability measure on R+. For any−→v ∈ Sd−1, there exists a constant νG(−→v ) ∈ R+ such that for any non-degenerate hyperrectangle
A normal to −→v , for any function h : N→ R+ such that limn→∞ h(n) = +∞, we have

lim
n→∞

τG(nA, h(n))
Hd−1(nA) = νG(−→v ) in L1.

If moreover the origin of the graph belongs to A, or if
∫ +∞

0 x1+1/(d−1)dG(x) <∞, then

lim
n→∞

τG(nA, h(n))
Hd−1(nA) = νG(−→v ) a.s..

If the cylinder is flat, i.e., if limn→∞ h(n)/n = 0, then the same convergence also holds for
ΦG(nA, h(n)).

Moreover, either νG(−→v ) is null for all −→v ∈ Sd−1 or νG(−→v ) > 0 for all −→v ∈ Sd−1.

To prove this result, it is not possible to directly use an ergodic theorem, so the idea is to prove
in the spirit of the first step of the proof of an ergodic theorem that E[τG(nA, h(n))]/Hd−1(nA)
converges towards a constant when n goes to infinity and then prove concentration estimates for the
random variable τG(nA, h(n)), i.e., that with high probability the random variable τG(nA, h(n))
is close to its expectation E[τG(nA, h(n))].

Remark 3.5. When the cylinder is tilted and not flat, the limit of ΦG(nA, h(n))/Hd−1(nA) and
τG(nA, h(n))/Hd−1(nA) when n goes to infinity may likely not coincide. This has been proven for
the dimension 2 by Rossignol and Théret in [63]. Intuitively, when the cylinder is flat the minimal
surface looks like nA and at first order τG and ΦG coincide. On the opposite, if the cylinder is
not flat, there is a bigger region in which a cutset for ΦG(nA, h(n)) can be, the minimal surface
for ΦG(nA, h(n)) can very likely not coincide at all with nA, whereas at first order, the minimal
surface for τG(nA, h(n)) still coincide with nA: since the corresponding cutsets are anchored near
∂(nA), they stick to nA at first order.

The answer to the following question is still unanswered:

Open question 3.6. Let d ≥ 3. When the cylinder is tilted and not flat, prove that the limit
when n goes to infinity of ΦG(nA, h(n))/Hd−1(nA) is strictly smaller than νG(−→v ).

The existence of this limit is known when h(n) = Cn as a special case of [27]. Proving this result
requires to solve a deterministic optimization problem.

In [72], Zhang found a necessary and sufficient condition on G under which νG(−→v ) is positive.
He proved the following result.

Theorem 3.7 (Zhang [72]). Let G be an integrable probability measure on R+. Then, νG(−→v ) > 0
if and only if G({0}) < 1− pc(d).

Let us give an intuition of this result. If G({0}) > 1 − pc(d) then the edges of positive capacity
are in a sub-critical regime of bond percolation on Zd. With high probability, there exists no path
in cyl′(nA, h(n)) from the upper to the lower half part of its boundary such that all its edges have
positive capacity. It follows, that there exists a cutset of null capacity and so τG(nA, h(n)) = 0.
Thus, the fact that νG(−→v ) = 0 is linked with the fact that the edges of positive capacity do not
percolate. The main difficult part of this result is to study the critical case, i.e., G({0}) = 1−pc(d).
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Note that νG cannot be defined using τG for G without good integrability properties. We are
faced with the same issue that we encountered for the time constant. Indeed, when we define the
time constant with T (0, nx) for x ∈ Zd, we cannot avoid edges incident to 0 and nx. The same
issue arises here, with τG(nA, h(n)), we cannot avoid edges around ∂(nA) so if these edges have
large capacities we won’t have the integrability properties that we need in order to use subadditive
arguments. To overcome this issue, Rossignol and Théret introduced in [64] another alternative
flow with subadditive property. They are able to define the flow constant νG for any direction
and dimension for distributions G on [0,+∞] under the hypothesis G({+∞}) < pc(d). They
proved the following law of large numbers for the maximal flow from the top to the bottom of flat
cylinders.

Theorem 3.8 (Rossignol-Théret [64]). For any probability measure G on [0,+∞] such that
G({+∞}) < pc(d), for any −→v ∈ Sd−1, there exists a constant νG(−→v ) ∈ R+ such that for any
non-degenerate hyperrectangle A normal to −→v , for any function h such that h(n)/ logn→∞ and
h(n)/n→ 0 when n goes to infinity, we have

lim
n→∞

ΦG(nA, h(n))
Hd−1(nA) = νG(−→v ) a.s..

Moreover, for every −→v ∈ Sd−1,

νG(−→v ) > 0 ⇐⇒ G({0}) < 1− pc(d) .

Instead of directly considering maximal flows in cylinder, Rossignol and Théret studied a
different flow which is more convenient for two reasons: the flow introduced is subadditive and
has good integrability properties. Moreover, it is close to the flow τG.

Let −→v ∈ Sd−1, and let A be any non-degenerate hyperrectangle normal to −→v . We denote by
hyp(A) the hyperplane spanned by A defined by

hyp(A) =
{
x+−→w : x ∈ A, −→w · −→v = 0

}
where · denotes the usual scalar product on Rd. For any h > 0, we denote by slab(A, h,−→v ) (resp.
slab(A,∞,−→v )) the slab of basis the hyperplane spanned by A and of height h (resp. of infinite
height), i.e., the subset of Rd defined by

slab(A, h,−→v ) =
{
x+ r−→v : x ∈ hyp(A), r ∈ [0, h]

}
.

Suppose that G({+∞}) < pc(d). Let M ≥ 0 such that G([M,+∞]) < pc(d). We define the
random height HG,M (A) as follows

HG,M (A) = inf
{
h ≥ Hd−1(A)

1
2(d−1) : ∃E cutset from A to hyp(A+ h−→v ) in

slab(A, h,−→v ) such that ∀e ∈ E tG(e) ≤M

}
.

We can now define the alternative flow ΦG,M (A):

ΦG,M (A) = inf
{

cap(E) : E cutset from A to hyp(A+HG,M (A)−→v )
in slab(A,HG,M (A),−→v )

}
.

The idea is that the height HG,M (A) is large enough so that minimal cutsets from A to hyp(A+
HG,M (A)−→v ) in the slab can avoid edges with too large capacities. This ensures that the flow
ΦG,M has good integrability property: there exists C > 0 such that with high probability

ΦG,M (A) ≤ CMHd−1(A) .

Let us give an intuition of why this flow is subadditive. First notice that

A1 ⊂ A2 =⇒ HG,M (A1) ≤ HG,M (A2) .

To lighten the notations, from now on we write H instead of HG,M . Let −→v be a unit vector.
Consider two hyperrectangles A and B of disjoint interior normal to −→v such that the union A∪B
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is also an hyperrectangle. Let EA be a cutset from A to hyp(A + H(A)−→v ) in slab(A,H(A),−→v ).
Let EB be a cutset from B to hyp(B + H(B)−→v ) in slab(B,H(B),−→v ). It is easy to check that
EA∪EB is a cutset that separates A∪B from hyp(A∪B+H(A∪B)−→v ) in slab(A∪B,H(A∪B),−→v )
(see figure 1.4). Therefore, we have

ΦG,M (A ∪B) ≤ cap(EA ∪ EB) ≤ cap(EA) + cap(EB) ≤ ΦG,M (A) + ΦG,M (B) .

This yields the subadditivity.

A
B

EA EB

γ

hyp(A ∪B +H(A ∪B)−→v ) =
hyp(B +H(B)−→v )

hyp(A+H(A)−→v )

Figure 1.4 – Representation of EA and EB . Here H(A ∪B) = H(B).

We can prove that with high probability, the random height H(nA) is negligible compared to
n and minimal cutsets for ΦG,M (nA) and ΦG(nA, h(n)) have at first order the same capacity. It
follows that

lim
n→∞

ΦG,M (nA)
Hd−1(nA) = lim

n→∞

ΦG(nA, h(n))
Hd−1(nA) .

Remark 3.9. The flow ΦG,M is the perfect trade-off between the flows ΦG and τG. Indeed, the
advantage of τG is that the corresponding cutsets are anchored near the boundary of ∂A and so it
is a subadditive quantity. However being anchored near the boundary of ∂A requires that cutsets
must contain the edges near ∂A, this is an issue when G does not have good integrability property.
For the cutsets corresponding to the flow ΦG it is the opposite: the trace of the cutset on the
boundary is free so it can avoid edges with large capacities but we cannot recover subadditivity.
Here the cutsets corresponding to ΦG,M are anchored near ∂A in a looser way: the cutsets may
avoid edges with large capacities around ∂A and it has a subadditive property.

The flow constant νG satisfies a weak triangle inequality see proposition 3.4. in [64].

Proposition 3.10 (Weak triangle inequality for νG). Let (ABC) be a non-degenerate triangle in
Rd and let −→v A,−→v B ,−→v C be the exterior normal unit vectors to the sides [BC], [AC], [AB] in the
plane spanned by A,B,C. Then,

H1([BC])νG(−→v A) ≤ H1([AC])νG(−→v B) +H1([AB])νG(−→v C) .

3.3 Size of a minimal cutset
Among all the cutsets of minimal capacity we are interested in the ones with the minimal

cardinality:

ψG(A, h,−→v ) := inf
{
|E| : E cuts the top from the bottom of

cyl(A, h) and E has capacity ΦG(A, h)

}
.

The quantity ψG is the analog of NG in this context.
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The study of the quantity ψG(A, h,−→v ) was initiated by Kesten in [52] in dimension 3 for
straight boxes and distributions G such that G({0}) < p0 where p0 is a small constant. Let
k, l, m ∈ N, we define the straight box B(k, l,m) = [0, k] × [0, l] × [0, k]. Kesten proved the
following result.
Theorem 3.11 (Kesten [52]). Let k, l ,m ∈ N. There exists a p0 > 1/27 such that for all
distributions G on R+ such that G({0}) < p0, there exist constants θ, C1 and C2 depending on G
such that for all n ≥ 0,

P

 there exists a dual set E∗ of at least n plaquettes that cuts
the top from the bottom of the box B(k, l,m), which

contains the point (− 1
2 ,−

1
2 ,

1
2 ) and such that cap(E∗) ≤ θn

 ≤ C1e
−C2n .

Zhang in [73] extended this result in all dimensions and for distributions G such that G({0}) <
1− pc(d) and with an exponential moment. He obtained the following result.
Theorem 3.12 (Zhang [73]). Let G be a distribution on R+ such that for some η > 0,∫

R+

exp(ηx)dG(x) <∞

and G({0}) < 1−pc(d). Let k1, . . . , kd−1 ∈ N and h with log h ≤ k1 · · · kd−1. Let A =
∏d−1
i=1 [0, ki]×

{0}. There exist constants β ≥ 1 depending on G and d, C1 and C2 depending on G, d and β
such that for all λ > βHd−1(A),

P(ψG(A, h,−→v ) > λ) ≤ C1 exp(−C2λ) .

Roughly speaking, his proof strategy is the following. If ψG(A, h−→v ) is large, he can slightly modify
the configuration to create blocking surfaces, i.e., large surfaces of edges of null capacities. This
is very unlikely when G({0}) < 1 − pc(d) as edges of positive capacities percolate: it is indeed
unlikely to obtain two adjacent big clusters of edges of positive capacity that are not connected
because of this blocking surface. This proof relies crucially on the hypothesis G({0}) < 1− pc(d)
and cannot be adapted to the case G({0}) ≥ 1 − pc(d). Moreover, this proof does not able to
prove the existence of the limit of ψG properly renormalized when the size of the cylinder goes to
infinity.

3.4 Large deviations results for maximal flows
3.4.1 Upper large deviations results

We present here some result on upper large deviations for the maximal flows ΦG(nA, h(n)) in
cylinders and τG(nA, h(n)). The theorem 4 in [68] states upper large deviations results for the
variable ΦG(nA, h(n)) above the value νG(−→v ).
Theorem 3.13 (Théret [68]). Let us consider a distribution G on R+ that admits an exponential
moment. Let −→v be a unit vector and A be an hyperrectangle orthogonal to −→v , let h : N→ R+ be
a height function such that limn→∞ h(n) = +∞. We have for every λ > νG(−→v )

lim inf
n→∞

− 1
Hd−1(nA)h(n) logP

(
ΦG(nA, h(n))
Hd−1(nA) ≥ λ

)
> 0 .

Let us give an intuition of the speed of deviation. If ΦG(nA, h(n)) is abnormally large, there
are two possible scenarios. Either there are an order nd−1 of paths from the top to the bottom of
the cylinder that use edges of slightly abnormally large capacity, or there are a fewer number of
paths from the top to the bottom of the cylinder with edges whose capacities are extremely big
(with a capacity that goes to infinity with n). Both scenarios enable to transmit more water from
the top to the bottom than the expected value. Actually, when G has an exponential moment, the
first scenario is the most likely one. Since the paths from the top to the bottom have a cardinality
of order at least h(n), this implies that a positive fraction of edges inside the cylinder have a
slightly abnormally large capacity. This accounts for the speed of deviation of volume order.

The corresponding large deviation principle has been obtained in the case of straight cylinders
by Théret in [67].
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Theorem 3.14 (Théret [67]). Let h : N→ R+ be a height function such that

lim
n→∞

h(n)
logn = +∞ .

Set A = [0, 1]d−1 × {0}. Then for every λ ≥ 0, the limit

ψ(λ) = lim
n→∞

− 1
nd−1h(n) logP

(
ΦG(nA, h(n)) ≥ λnd−1)

exists and is independent of h. Moreover, the function ψ is convex on R+, finite and continuous
on the set {λ : G([λ,+∞[) > 0}. If G has a first moment then ψ vanishes on [0, νG((0, . . . , 0, 1))].
If G has an exponential moment then ψ is strictly positive on ]νG((0, . . . , 0, 1)),+∞[, and the
sequence (

ΦG(nA, h(n))
nd−1

)
n≥1

satisfies a large deviation principle with speed nd−1h(n) and governed by the good rate function ψ.

This result crucially depends on the symmetry of the lattice with regards to reflexion along
the vertical faces of the cylinders. The proof strategy may not be extended to tilted cylinders.
The upper large deviations results for τ are a bit different because the speed of deviation depends
on the tail of the distribution G. Indeed if the edges around ∂A have very large capacities it will
increase the flow τ in a non negligible way. Since the minimal cutsets corresponding to τG(A, h)
are anchored around ∂A, their capacity depends a lot on these edges. Théret proved in Theorem
3 in [68] upper large deviations of the variable τ .

Theorem 3.15 (Théret [68]). Let −→v be a unit vector and A be an hyperrectangle orthogonal to
−→v , let h : N→ R+ be a height function such that limn→∞ h(n) = +∞. The upper large deviations
of τG(nA, h(n))/Hd−1(nA) depend on the tail of the distribution of the capacities. We have

(i) If the law G has bounded support, then for every λ > νG(−→v ) we have

lim inf
n→∞

− 1
Hd−1(nA) min(h(n), n) logP

(
τG(nA, h(n))
Hd−1(nA) ≥ λ

)
> 0 .

(ii) If the law G is exponential of parameter 1, then there exists n0 such that for every λ > νG(−→v )
there exists a positive constant D depending on d and λ such that

∀n ≥ n0 P
(
τG(nA, h(n))
Hd−1(nA) ≥ λ

)
≥ exp(−DHd−1(nA)) .

(iii) If the law G satisfies

∀θ > 0
∫
R+

eθxdG(x) <∞ ,

then for every λ > νG(−→v ) we have

lim
n→∞

1
Hd−1(nA) logP

(
τG(nA, h(n))
Hd−1(nA) ≥ λ

)
= −∞ .

Let us give an intuition of why the speed is nd when h(n) ≥ n. Since the cutsets are anchored
in ∂(nA), they cannot deviate too far away from nA: as a result, most of the edges outside
cyl(nA, n) do not have an influence on τG(nA, h(n)). Note that there is no existing result of large
deviation principle for maximal flows τG or ΦG for tilted cylinder.
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3.4.2 Lower large deviations results

The order of large deviations is different in the case of lower large deviations which is of surface
order. Intuitively, to create a lower large deviations event, it is enough to decrease the capacities of
the edges along a surface. In [62], Rossignol and Théret proved the following theorem concerning
lower large deviations of the variable τG(nA, h(n)) below νG(−→v ).

Theorem 3.16 (Rossignol-Théret [62]). Suppose that G is integrable and such that G({0}) <
1 − pc(d). Let h : N → R+ be a height function such that limn→∞ h(n) = +∞. For every ε > 0
there exists a constant K(d,G, ε) such that for every unit vector −→v and every non-degenerate
hyperrectangle A orthogonal to −→v there exists a constant K ′(d,G,A, ε) such that

P
(
τG(nA, h(n))
Hd−1(nA) ≤ νG(−→v )− ε

)
≤ K ′(d,G,A, ε) exp(−K(d,G, ε)Hd−1(A)nd−1) .

Rossignol and Théret also proved a large deviation principle associated to τ in Theorem 3.10
in [62].

3.5 Maximal flow to infinity
Let us consider a compact convex subset A of Rd. We interpret the set A as a source of water.

We are interested in the maximal amount of water that can flow from the boundary ∂A of A to
infinity per second. This issue is in fact analogous to the study of the smallest capacity denoted
by mincut(A,∞) over sets of edges separating A from infinity: the amount of water that A can
send to infinity will be limited by a surface of minimal capacity that surrounds A and will act like
a bottleneck. We define C(A) the continuous capacity of ∂A as

C(A) =
∫
∂A

νG(nA(x))dHd−1(x) .

This problem was first studied in dimension 2 by Garet in [38], he proved the following theorem.

Theorem 3.17 (Garet [38]). Let d = 2. Let G be a distribution that admits an exponential
moment. Let ε > 0, there exist positive constants C1 and C2 such that

∀n ≥ 1 P
(∣∣∣∣mincut(nA,∞)

n
− C(A)

∣∣∣∣ ≥ ε) ≤ C1 exp(−C2n) .

The proof splits into two parts. The first part, the easiest one, consists in proving the upper
large deviation part that is upper-bounding

P(mincut(nA,∞) ≥ (1 + ε)C(A)n) .

To do so, on a high probability event we can build a set of edges separating nA from infinity whose
capacity is arbitrarily close to C(A)n. The lower large deviations, that is upper-bounding

P(mincut(nA,∞) ≤ (1− ε)C(A)n)

is more delicate. It consists in two steps. The first step is to prove that A minimizes C over
all sets containing A, i.e., for any S such that A ⊂ S then C(A) ≤ C(S). This property holds
because A is a convex set. On the lower deviation event, we need to localize a region where a
cutset (or equivalently the time of a path since d = 2) is too low. This section requires ingenious
combinatorial estimates to sum on all possible minimal cutsets.

Remark 3.18. In dimension 2, the flow constant νG is equal to the time constant µG. Indeed, in
dimension 2, the dual of a minimal cutset for the flow τG corresponds to a geodesic between two
points in the dual lattice. Garet used this equivalence and worked with the time constant.
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4 Contributions
In this section we present the results obtained during the thesis. The presentation of the results

follow the structure of the manuscript. The manuscript is split into three parts. In part I, we
present results on the isoperimetry of the infinite cluster. In part II, we present results on the
time constant and in part III, we present results on the flow constant.

4.1 Isoperimetry of the infinite cluster
4.1.1 Chapter 2 - Existence of the anchored isoperimetric profile

This chapter corresponds to the paper [5] that has been published in ALEA. Let p > pc(d).
We want to study the geometry of Cp through its Cheeger constant. We recall the definition of the
anchored isoperimetric profile ϕn(p). This is another way to define the Cheeger constant of Cp,
that is more natural in the sense that we do not restrict minimizers to remain in the box [−n, n]d.
It is defined as follows:

ϕn(p) = min
{ |∂CpH|
|H|

: 0 ∈ H ⊂ Cp, H connected, 0 < |H| ≤ nd
}
,

where we condition on the event {0 ∈ Cp}. We say that H is a valid subgraph if 0 ∈ H ⊂ Cp, H is
connected and |H| ≤ nd. The study of the minimizers in the definition of ϕn(p) is closely related
to the study of the Wulff cristal in [19]. Minimizing the open edge boundary to volume ratio is
equivalent to finding the interface of lowest energy that isolates a volume nd of the cluster of 0
from the outside world. Roughly speaking, the event {nd ≤ |Cp(0)| <∞} is very unlikely. On this
unlikely event, the cluster Cp(0) is isolated from the outside world by a closed interface of edges.
Conditioning on this event, the more likely configurations are the ones with an interface of lowest
energy, i.e., minimizing the surface tension. In both cases, at macroscopic order, the minimizers
of ϕn(p) and the cluster Cp(0) conditioned on the event {nd ≤ |Cp(0)| < ∞} are identical with
high probability.

Gn

x

nGn(x)

Figure 1.5 – A small box on the boundary ∂Gn of a minimizer Gn of ϕn(p)

Minimizing the open edge boundary is the analogue of minimizing a surface tension in the
continuous setting. We shall build a norm βp that represents the tension that is exerted on the
surface, i.e., any point x in a surface S having nS(x) as a normal unit exterior vector has a tension
βp(nS(x))nS(x) that is exerted at the point x. This the same norm than the norm βp,d used by
Gold in [44]. To build this norm, let Gn be a minimizer of ϕn(p). We zoom on the boundary
of Gn, we look at what happens in a small but macroscopic cube centered at a point x in the
boundary ∂Gn (see figure 1.5). The cube is located in such a way that its bottom intersects Gn
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and its top intersects Zd \Gn, and it is rotated so that its normal vector coincides with the normal
exterior vector of Gn at the point x. Since this cube is small, the portion of Gn in that cube
does not affect much |Gn|, the total volume of Gn. Thus, if one would like to minimize the open
edge boundary to volume ratio, one needs to minimize the number of open edges of ∂Gn in that
cube. This problem is equivalent to finding a set of edges that separates the top from the bottom
of the cube with a minimal number of open edges and by the max-flow min-cut theorem, it is
thus equivalent to the study of maximal flow. We denote by τp(n,−→v ) the capacity of the minimal
cutset that cuts the upper half from the lower half of the boundary of the cube of side-length
n oriented according to −→v for the distribution G = pδ1 + (1 − p)δ0. Thanks to [64], we know
that τp(n,−→v )/nd−1 almost surely converges towards a deterministic constant, that we denote by
βp(−→v ): βp(−→v ) is the flow constant νG(−→v ) associated with the distribution G = pδ1 + (1 − p)δ0.
Moreover, we know that βp is a norm because G({0}) < 1− pc(d) . In [5], we prove the following
theorem.

Theorem 4.1. Let d ≥ 2, p > pc(d). Let Wp be the dilate of Ŵβp such that Ld(Wp) = 1/θ(p).
Then, conditionally on {0 ∈ Cp},

lim
n→∞

nϕn(p) = Ip(Wp)
θ(p)Ld(Wp)

= Ip(Wp) a.s..

Moreover, we have L1-convergence of the minimizers Gn of ϕn(p) towards Wp in the following
sense

lim
n→∞

max
Gn∈Gn

inf
x∈Rd

1
nd
∣∣Gn∆(n(x+Wp) ∩ Cp)

∣∣ = 0 P( · |0 ∈ Cp)-a.s..

To prove the first statement of this theorem, we study separately upper large deviations and
lower large deviations. The techniques for the study of the upper large deviations are standard,
we can exhibit a valid subgraph whose isoperimetric ratio is arbitrarily close to ϕn(p) with high
probability. This is done using estimates on upper large deviations for the flow constant in cylinder
(see theorem 3.15).

nWp

nP
2δn

M(i, j)

a face nFi a face nFj

a minimal cutset for
τp(n(Fj + δvj), δn)

Figure 1.6 – Construction of a valid subgraph with isoperimetric ratio close to ϕn(p)

We shall build a valid subgraph that has an isoperimetric ratio close to ϕn(p). To do so, we
approximate the Wulff shapeWp from the inside by a convex polytope P , this is possible since the
set Wp is convex. We shall build a cutset Γn that cuts nP from infinity, whose number of open
edges is close to nd−1Ip(P ) and that is located close to ∂nP with high probability. For each face
F of P and v its associated exterior unit normal vector, we consider the cylinder cyl(n(F+δv), δn)
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of basis n(F + δv) and of height δn > 0. We build E by merging the cutsets from the top to
the bottom of minimal capacity in the cylinders cyl(n(F + δ)v, δn). The union of these cutsets is
not yet a cutset itself because of the potential holes between these cutsets. We fix this issue by
adding extra edges to fill the holes. In figure 1.6, the set M(i, j) represents a set of edges that
will fill the gap between the faces nFi and nFj . We control next the number of extra edges we
have added, i.e., the size of the sets M(i, j). We next build a valid subgraph Hn ⊂ Zd from Γn
by taking all the vertices of Cp ∩nP that are connected to 0 without using edges in Γn. We prove
that with high probability, |Hn| is of order θ(p)ndLd(P ). We can bound |∂CpHn| from above by
the number of open edges in Γn and so we control the isoperimetric ratio of Hn. Finally, we have

P(nϕn(p) > ϕp(1 + ε)) ≤ P
(
n
|∂CpHn|
|Hn|

≥ ϕp(1 + ε)
)
.

We conclude using upper large deviations estimates for τp in a cylinder of polyhedral basis derived
from the corresponding estimates in cylinders of hyperrectangle basis.

The next step is to obtain the large deviations result from below that is the most difficult
part. To study the upper large deviations, we needed to go from a continuous object to a discrete
object. For the lower large deviations, we do the opposite. We start with Gn ∈ Gn and we build
a continuous object Pn. Our goal is to build a continuous object of finite perimeter. Although it
seems natural to take the continuous object Pn = n−1(Gn + [−1/2, 1/2]d), this turns out to be a
bad choice because the exterior boundary of ∂Gn may be very entangled and its size may be of
higher order than nd−1. We also have to deal with the presence of holes in Gn that correspond
to holes of the infinite cluster Cp. These holes are present with a positive density and contribute
to the size of the boundary of Gn. Using a smoothing procedure by doing a coarse graining as in
[73], and by filling the small holes in Gn, we obtain a continuous object Pn that has a perimeter
less than some positive constant β with high probability and such that the measure associated to
Gn is close in some sense to the measure θ(p)1PnLd.

Here, conditionally on the event that the origin belongs to the infinite cluster, we only restrict
minimizers to be anchored at the origin, connected and of size at most nd. Although this definition
is more natural that the definition used by Gold in [44], the proof is more technical due to the lack
of compactness: the minimizers properly renormalized by a factor n are no longer contained in
the compact set [−1, 1]d. To solve this issue, we use the method developed by Cerf for the study
of the Wulff crystal. Consider Gn a minimizer of the isoperimetric constant and Pn its associated
continuous object, although Pn is not contained in a compact set, we can cover almost all Pn by a
finite number of disjoint balls centered at points of Zd of radii in N. Namely, for any δ > 0, there
exists a set E (see figure 1.7) corresponding to the finite union of the disjoint balls such that

Ld(Pn ∩ E)
Ld(Pn) ≥ 1− δ .
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0

a ball contained in E

Pn

Figure 1.7 – Covering almost all Pn by balls

The number of possible such balls is at most polynomial in n, so this term will be counterbal-
anced by the probability of the unlikely event we estimate (that decays exponentially fast with
n).

{F ⊂ E : F is a Borel set of perimeter smaller than β} .

The latter set is compact endowed with the topology associated to the distance d(F, F ′) =
Ld(F∆F ′). Using a covering of this compact set, this enables us to localize Pn ∩ E (and so
(Gn/n) ∩ E) close to some continuous set F . If the isoperimetric ratio of Gn is too small, this
implies that somewhere around the boundary of F , the surface tension that exerts on the bound-
ary of Gn/n is locally lower than its expectation. We can relate this unlikely event to lower large
deviations on maximal flows in order to upper-bound the probability of this unlikely event.

4.1.2 Chapter 3 - Vanishing of the isoperimetric constant at pc(d)

This chapter corresponds to a joint work with Raphaël Cerf that has been published in ECP
[2]. The most well-known open question in percolation theory is to prove that the percolation
probability vanishes at pc(d) in dimension three. In fact, the interesting quantities associated to
the model are very difficult to study at the critical point or in its vicinity. In [2], with Raphaël
Cerf, we studied a very modest intermediate question. We consider the anchored isoperimetric
profile of the infinite open cluster, defined for p > pc(d). We extend adequately the definition for
p = pc(d), in finite boxes: to do so, we need to extend the definition of the anchored isoperimetric
profile so that it is well defined at pc(d). We say that H is a valid subgraph of Cp(0), the open
cluster of 0, if H is connected and 0 ∈ H ⊂ Cp(0) and 0 < |H| ≤ nd. We define ϕ̃n(p) for every
p ∈ [0, 1] as

ϕ̃n(p) = min
{ |∂Cp(0)H|

|H|
: H valid subgraph of Cp(0), 0 < |H| ≤ nd

}
.

In particular, if 0 is not connected to ∂[−n/2, n/2]d by a p-open path, then |Cp(0)| < nd and
taking H = Cp(0), we see that ϕ̃n(p) is equal to 0. The techniques of [5] to prove the existence
of this limit rely on coarse-graining estimates which can be employed only in the supercritical
regime. Therefore we are not able so far to extend the convergence of nϕ̃n when n goes to infinity
at the critical point pc(d). Naturally, we expect that nϕ̃n(pc(d)) converges towards 0 as n goes
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to infinity, unfortunately we are only able to prove a weaker statement. We prove a partial result
which implies that, if the limit nϕ̃n(pc(d)) when n goes to infinity exists, it has to vanish.

Theorem 4.2. With probability one, we have

lim inf
n→∞

nϕ̃n(pc(d)) = 0 .

Note that this result becomes trivial if θ(pc(d)) = 0. We prove this theorem by contradiction. If
the statement of the theorem does not hold, then the cluster Cpc(d)(0) of 0 satisfies a d-dimensional
anchored isoperimetric inequality. There exists a positive constant c such that with positive
probability, for any n ≥ 1, we have nϕ̃n(pc(d)) > c. We first define an exploration process of the
cluster of 0 that remains inside the box [−n, n]d. The exploration process is very basic. We start
at 0, at the first step we reveal the open edges incident to 0. The set of activated points correspond
to the set of neighbors of 0 connected by an open edge. At each step, the set of activated vertices
corresponds to the set of vertices that were revealed at the previous step and such that they have
unrevealed incident edges. At each step, we reveal the state of the edges incident to the activated
vertices (see figure 1.8). Actually, if at the beginning of a step the revealed cluster is C the set of
open edges we will reveal during this exploration step is ∂Cpc(d)(0)C. Since C is a valid subgraph,
we have

|∂Cpc(d)(0)C|
|C|

≥ ϕ̃n(pc(d)) > c

n
.

0

Figure 1.8 – Exploration of the cluster of 0. In blue the edges of Cpc(d)(0) that are revealed during
the first eight steps of the exploration process. In green the activated vertices, that is the explored
vertices with unexplored incident edges. In red, the edges that have been revealed during the 9th
step of the exploration.

It follows that the number of sites that are revealed at each step in the exploration of the cluster
Cpc(d)(0) will be of order nd−1 when C will be of order nd. Then, we can prove that the intersection
of the cluster that we have explored with the boundary of the box [−n, n]d is of order nd−1. Since
during the exploration process we remain strictly inside the box, we have at least an order of nd−1

points in the boundary connected to 0 by a path that is contained in a half-space. Furthermore,
there is no percolation in a half-space at pc(d), consequently the probability that there exists a
path of length larger than n that remains in a half-space goes to 0 with n. It follows that the
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number of vertices in the boundary of the box [−n, n]d connected to 0 inside the box should be
negligible compared to nd−1, we obtain a contradiction. This result says that if there is an infinite
cluster at pc(d), then its geometry is different than the one of the infinite cluster for p > pc(d).

4.1.3 Chapter 4 - Regularity of the isoperimetric constant

This chapter corresponds to the paper [4] that has been published in ECP. The regularity
properties of the anchored isoperimetric profile was first studied by Garet, Marchand, Procaccia,
Théret in [42]. They proved that the modified Cheeger constant in dimension 2 is continuous on
(pc(2), 1]. In [4], we prove a better regularity in p for dimensions d ≥ 2 and deduce a regularity
on the limit shape. The first theorem asserts that the anchored isoperimetric profile is Lipschitz
continuous on every compact interval [p0, p1] ⊂ (pc(d), 1).

Theorem 4.3 (Regularity of the anchored isoperimetric profile). Let d ≥ 2. Let pc(d) < p0 <
p1 < 1. There exits a positive constant κ depending only on d, p0 and p1, such that for all
p, q ∈ [p0, p1], conditionally on the event {0 ∈ Cp0},

lim
n→∞

n|ϕn(q)− ϕn(p)| ≤ κ|q − p| .

Remark 4.4. We did not manage to obtain here that the anchored isoperimetric profile is Lipschitz
continuous on [p0, 1] for a technical reason that is due to a coupling we use in the proof of Theorem
4.3. However, this restriction is likely irrelevant. Furthermore, we think that the restriction given
by p0 is relevant.

Let p ∈ [0, 1]. We recall that τp(n,−→v ) is the capacity of the minimal cutset that cuts the upper
half from the lower half of the boundary of the cube of side-length n oriented according to −→v for
the distribution pδ1 + (1− p)δ0, and

βp(−→v ) = lim
n→∞

τp(n,−→v )
nd−1 a.s. .

The second theorem studies the Hausdorff distance between two dilated Wulff crystals Ŵβp and
Ŵβq of volume 1 associated with norms βp and βq.

Theorem 4.5 (Regularity of the anchored isoperimetric profile). Let d ≥ 2. Let pc(d) < p0 <
p1 < 1. There exits a positive constant κ′ depending only on d, p0 and p1, such that for all
p, q ∈ [p0, p1],

dH(Ŵβp , Ŵβq ) ≤ κ′|q − p| ,

where dH is the Hausdorff distance between non empty compact sets of Rd.

The key element to prove these two theorems is to prove the regularity of the map p 7→ βp.
By a straightforward corollary of [64], we obtain that the map p 7→ βp is continuous on (pc(d), 1].
We can even obtain a Lipschitz property.

Theorem 4.6 (Regularity of the flow constant). Let pc(d) < p0 < p1 < 1. There exists a positive
constant κ depending only on d, p0 and p1, such that for all p ≤ q in [p0, p1],

sup
x∈Sd−1

|βp(x)− βq(x)| ≤ κ|q − p| .

The proof of this theorem strongly relies on an adaptation of Zhang’s proof in [73].
Let p0 > pc(d) and let q > p ≥ p0. Our strategy is the following, we easily get that βp ≤ βq

by properly coupling the percolations of parameters p and q such that pc(d) < p < q. The second
inequality requires more work. We denote by En,p the random cutset of minimal size that achieves
the minimum in the definition of τp(n,−→v ). By definition, as En,p is a cutset, we can bound by
above τq(n,−→v ) by the number of edges in En,p that are q-open, which we expect to be at most
τp(n,−→v ) + C(q − p)|En,p| where C is a constant. We next need to get a control on |En,p| which
is uniform in p ∈ [p0, 1] of the kind cdn

d−1 where cd depends only on d and p0. In [73], Zhang
obtained a control on the size of the smallest minimal cutset corresponding to maximal flows in
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general first passage percolation, but his control depends on the distribution G of the variables
(tG(e))e∈Ed associated with the edges. We only consider probability measures Gp = pδ1 +(1−p)δ0
for p > pc(d), but we need to adapt Zhang’s proof in this particular case to obtain a control that
does not depend on p anymore.

4.2 First passage percolation: first interpretation
4.2.1 Chapter 5 - Regularity of the time constant

This chapter corresponds to the paper [3] that has been submitted. In continuation of the
work [42], we study the regularity of the map p 7→ µGp where Gp = pδ1 + (1−p)δ∞. This problem
is equivalent to study the regularity in p of the graph distance between two faraway vertices in
the infinite cluster Cp of supercritical percolation of parameter p. In [3], we manage to control the
gap between µGp and µGq to prove the following theorem.

Theorem 4.7. Let p0 > pc(d), there exists a positive constant C (depending on p0) such that

∀p, q ∈ [p0, 1] |µGp − µGq | ≤ C|q − p| log |q − p| .

To study the regularity of the map p 7→ µGp , our aim is to control the difference between the
graph distance in the infinite cluster Cp of a Bernoulli percolation of parameter p > pc(d) on Ed
with the graph distance in Cq where q ≥ p. The key part of the proof lies in the modification of a
path. We couple the two percolations such that a p-open edge is also q-open but the converse does
not necessarily hold. Let x ∈ Zd. We assume that 0 and x belong to Cp, this event happens with
positive probability. We consider a q-open geodesic γ between 0 and x. Some of the edges of this
path are p-closed, we want to build upon this path a p-open path by bypassing the p-closed edges.
In order to bypass them, we use the idea of [42] and we build our bypasses at a macroscopic scale.
This idea finds its inspiration in the works of Antal and Pisztora [60] and Cox and Kesten [33].
We have to consider an appropriate renormalization and we obtain a macroscopic lattice with
good and bad sites. Good and bad sites correspond to boxes of size 2N in the microscopic lattice.
We will do our bypasses using good sites at a macroscopic scale that will have good connectivity
properties at a microscopic scale (see figure 1.3). Let e be a p-closed edge in γ. We distinguish
two different cases; either e is in a good box and we can bypass e using the good connectivity
of the box by a path smaller than βN (where β is a positive constant and N is the size of our
renormalization blocks), or e is inside a bad box. In that case, we note C the connected component
of bad boxes containing e. The macroscopic boundary of C will be made of good boxes and we
will bypass e using the boundary of C. The length of the bypass will be at most 2dβ|C|N . We can
build upon γ a path γ̃ between 0 and x that is p-open. The set γ̃ \ γ corresponds to the bypasses,
we have

DCp(0, x)−DCq (0, x) ≤ |γ̃ \ γ| ≤ βN |{e ∈ γ : e is p-closed}|+ 2dN
∑

C bad component:
C∩γ 6=∅

|C| .

The quantity |{e ∈ γ : e is p-closed}| is with high probability at most C0‖x‖(q − p) where
C0 is a positive constant depending only on p0 and d. The remainder of the proof consists
in getting probabilistic estimates of the length of the bypasses. In this article we improve the
estimates obtained in [42]. We quantify the renormalization to be able to give quantitative bounds
on continuity. Namely, we give an explicit expression of the appropriate size of a N -box: for
N = log |q − p| with high probability when ‖x‖ is large, we have∑

C bad component:
C∩γ 6=∅

|C| ≤ c1(q − p)‖x‖

where c1 is a positive constant depending only on d and p0. To prove this estimate, we use the
idea of corridor that appeared in the work of Cox and Kesten [33] to have a better control on
combinatorial terms and derive a more precise control of the length of the bypasses than the one
obtained in [42]. Combining the previous inequalities, we obtain with positive probability that

DCp(0, x)−DCq (0, x) ≤ βC0 log |q − p|(q − p)‖x‖+ 2dc1 log |q − p|(q − p)‖x‖ .
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Dividing by ‖x‖ and letting ‖x‖ goes to infinity in such a way x/‖x‖ → −→v ∈ Sd−1, we obtain that
µGq (−→v ) − µGp(−→v ) ≤ c0(q − p) log(q − p). This result can be extended to irrational directions.
Besides, we can prove that µGq ≤ µGp using a coupling and the result follows.

4.2.2 Chapter 6 - An improvement on the regularity result

This chapter corresponds to a joint work with Raphaël Cerf [1] that is still in preparation. In
the proof of theorem 4.7, the renormalization was responsible for the presence of a logarithmic
term. The issue comes from the fact that all edges are bypassed at the same scale whereas some
of them may be bypassed at a smaller scale. In [1], we fix this issue by introducing several scales
and we improve the previous result by proving that the function p 7→ µGp is in fact Lipschitz
continuous strictly above pc.

Theorem 4.8. Let p0 > pc(d). There exists a constant κd depending only on d and p0 such that

∀p, q ∈ [p0, 1] sup
x∈Sd−1

|µGp(x)− µGq (x)| ≤ κd|q − p| .

To fix the issues that were encountered in [3], we use a new approach. Our aim is to understand
how the chemical distance in Bernoulli percolation depends upon the percolation parameter p.
The key part of the proof lies in a multiscale modification of an arbitrary path. Let us fix two
parameters p, q such that q > p > pc(d). We couple two percolation configurations at level p
and q in such way that a p-open edge is also q-open. Let x ∈ Zd. We assume that 0 and x
belong to Cp, this event happens with positive probability. We consider the geodesic γ joining
0 and x for the bond percolation of parameter q. Some of the edges in γ are p-closed, we want
to build upon this path a p-open path. To do so, we need to bypass the p-closed edges in γ.
Roughly speaking, the idea is to prove that, for ‖x‖ large enough, with high probability, the
average size of a bypass is smaller than a constant C and that the number of edges to bypass in γ
is at most (q − p)‖x‖. Therefore, with high probability the total length of the bypasses is smaller
than C(q − p)‖x‖. Whereas in [3], all the edges were bypassed at the same scale, here we use a
multiscale renormalization and each edge is bypassed at the appropriate scale. The crucial point is
to perform each bypass at an adequate scale and to pay the right price for it. By properly choosing
the different scales of the renormalization process, we can build a family of shells (shell(e))e∈γ
made of good boxes at scale 1 such that the total cardinality of the shells

∑
e∈γ | shell(e)| is at

most C‖x‖ with high probability. These shells of good boxes will possess all the desired properties
to build p-open bypasses of edges in γ. The shells are built without revealing the p-states of the
edges in γ so that they are independent of the p-states of the edges in γ. In the end, we will
not use all the shells but only the shells associated to p-closed edges in γ. In the coupling, the
probability that a q-open edge is p-closed is q − p. Therefore, we expect that the total length of
the bypasses ∑

e∈γ
| shell(e)|1e is p-closed

is at most C(q − p)‖x‖. We conclude as in the proof of theorem 4.7.

4.3 First passage percolation : second interpretation
4.3.1 Chapter 7 - Maximal flow to infinity

This chapter corresponds to the paper [6] that has been published in the Annals of Probability.
In [6], we study the maximal flow between a compact convex subset A of Rd and infinity for d ≥ 2
in the rescaled lattice Zd/n. Note that unlike the study of minimal cutset in a box, the existence
of a minimal cutset between A and infinity is not straightforward. We can prove the existence of
a minimal cutset between A and infinity in the rescaled lattice by adapting some arguments of
Zhang in [73]. We recall that C(A) denotes the continuous capacity of the boundary ∂A of A, i.e.,

C(A) =
∫
∂A

νG(nA(x))dHd−1(x)
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where nA(x) is the exterior unit normal vector of A at x ∈ ∂A. In [6], we extend the result of
Garet [38] to d ≥ 3. We recall that mincut(nA,∞) denotes the infimum of the capacity over sets
of edges separating nA from infinity

Theorem 4.9. Let d ≥ 3. Let G be a distribution on R+ that admits an exponential moment.
Let A be a compact convex subset of Rd. Let ε > 0. There exists positive constants C1 and C2
depending on A, d, G and ε such that

P
(
|mincut(nA,∞)− C(A)nd−1| ≥ εnd−1) ≤ C1 exp(−C2n

d−1) .

By applying Borel-Cantelli Lemma, we obtain the following corollary.

Corollary 4.10. We have

lim
n→∞

mincut(nA,∞)
nd−1 = C(A) almost surely .

We prove this theorem by studying separately the upper large deviations and lower large
deviations. The proof of the upper large deviations follows the same strategy than the proof of
Garet. Using large deviation estimates on the maximal flow in a cylinder, we can build a cutset
separating A from infinity whose capacity is arbitrarily close to C(A)nd−1 with high probability.
To do so, we approximate A by a polyhedral subset P such that A ⊂ P and C(P ) is close to C(A).
Finally, we build a cutset Γn that cuts nA from infinity such that the capacity of Γn is close to
nd−1C(P ) following a similar strategy as in the study of upper large deviations in [5] (see figure
1.7). Since Γn is a cutset we have cap(Γn) ≥ mincut(nA,∞). For any ε > 0, we can build Γn
such that cap(Γn) ≤ (1 + ε)nd−1C(A) with high probability and it follows that

mincut(nA,∞) ≤ (1 + ε)nd−1C(A)

with high probability.
To study the lower large deviations, we work on the rescaled lattice Zd/n. We denote by En

a minimal cutset between A and infinity in the rescaled lattice. The main difficulty we had to
deal with is the lack of compactness, the cutset En properly renormalized cannot be almost surely
contained in a compact. Garet handled this issue by doing ingenious combinatorial estimates on
possible minimal cutsets. However, in dimensions d ≥ 3, even ingenious combinatorial estimates
cannot work because the combinatorial term cannot be counterbalanced by the probability term.
To overcome this issue, we try to proceed as in the work of Cerf and Théret [24]. The idea is to
create from the minimal cutset En a continuous subset En of Rd whose edge boundary (i.e., the
edges that have one extremity in the continuous subset and the other one outside) corresponds to
the cutset En. As we can control the number of edges in a minimal cutset thanks to the work of
Zhang [73], we can consider a minimal cutset En in the rescale lattice from A to infinity of minimal
capacity and that has at most cnd−1 edges with high probability, for some positive constant c.
Thanks to this crucial result, the continuous set En we build has a perimeter at most c. In [24],
as the two authors work in a compact region Ω, the continuous object they obtain lives in the
compact space consisting of all subsets of Ω of perimeter smaller than or equal to c. In our context,
as our cutset En can go potentially very far from A, we cannot build from En a continuous set that
belongs to some compact space and therefore we cannot use the same method as in [24]. However,
as the capacity of En is smaller than nd−1C(A), we expect that En remains not too far from the
boundary ∂A of A. We can observe unlikely events just by inspecting what happens in a bounded
region, namely in the ball B(0, R) (that contains A) for a deterministic R depending on A. This
enables us to study only the portion of the cutset En in B(0, R) and to define a continuous version
of this portion that belongs the following set with high probability:{

F ⊂ B(0, R) : F is a Borel set of perimeter smaller than c+Hd−1(∂B(0, R))
}
.

The latter set is compact endowed with the topology associated to the distance d(F, F ′) =
Ld(F∆F ′). Note that the choice of R is such that the artificial boundary En ∩ ∂B(0, R) we
create is small enough such that the capacity of the boundary of En ∩B(0, R) is still abnormally
small. Using a covering of the latter compact set enables us to localize En ∩ B(0, R) and so
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En ∩ B(0, R) close to some continuous set F . The finite covering of this compact set replace the
combinatorial estimates. Starting from there, we can follow the strategy of [24]. We try to localize
a small region of En where the flow is abnormally small and relate this to lower large deviations
for the maximal flow in a cylinder (see theorem 3.16).

Let p > pc(d). Let us consider the distribution G = pδ1 + (1 − p)δ0 and a compact convex
subset A ⊂ Rd such that 0 ∈ A. Following the proof of Garet in [38], we can deduce from theorem
4.9 the following corollary on Bernoulli percolation.

Corollary 4.11. The maximal cardinality dis(A) for a collection of disjoint open paths from A
to infinity satisfies

∀ε > 0 ∃C1, C2 > 0 ∀n ≥ 0 P
(

dis(nA)
C(A)nd−1 /∈ (1− ε, 1 + ε)

)
≤ C1 exp(−C2n

d−1) .

4.3.2 Chapter 8 - Size of a minimal cutset

This chapter corresponds to a joint work with Marie Théret [7] that has been published in
Annales de l’IHP. In [7], Théret and I prove a similar statement than theorem 2.8 for the size of
minimal cutsets. We consider a distribution G such that G({0}) > 1 − pc(d) (thus νG = 0), i.e.,
the edges of positive passage time are in the sub-critical regime of percolation on Zd. Therefore,
minimal cutsets in a box are mainly made of edges of null capacity. We denote by ψG(n,−→v ) the
minimal size of a minimal cutset in the box of side-length n oriented in the direction −→v , that is,

ψG(n,−→v ) = inf
{
|E| : E is a minimal cutset in the cylinder of basis of

side-length n and height h(n) oriented in the direction −→v

}
where h(n) satisfies logn� h(n)� n. We study the asymptotic behavior of the minimal cardinal
ψG(n,−→v ) among cutsets of minimal capacity when the size of the box goes to infinity, that is n
goes to infinity. Using sub-additive arguments, Marie Théret and I prove a law of large numbers
for this quantity in [7].

Theorem 4.12. Let d ≥ 2. Let G be a probability measure on [0,+∞] such that G({0}) >
1− pc(d). Let −→v ∈ Sd−1. Let h : N→ R+ be an height function which satisfies logn� h(n)� n.
There exists a finite constant ζG({0})(−→v ) such that

lim
n→∞

ψG(n,−→v )
nd−1 = ζG({0})(−→v ) a.s..

The constant ζG({0})(−→v ) depends only the direction −→v , G({0}) and d but not on h.

The idea was to introduce an alternative flow that is inspired by [64]. There are two issues to
recover subadditivity: we need to study cutsets that may be merged together into a cutset and
that have null capacity. Although the cutsets corresponding to the flow τ in adjacent cylinders
may be glued together easily, these cutsets do not have null capacity in general: the union of
two cutsets of minimal capacity is a cutset but does not have minimal capacity. The flow τ is
subadditive but not the minimal cardinality of the minimal corresponding cutsets. The alternative
flow we build is such that the maximal flow is always null and if we merge two adjacent cutsets for
this flow it is still a cutset. It yields that if we merge two minimal cutsets, the union is necessarily
a minimal cutset. Note that without the hypothesis G({0}) > 1 − pc(d), minimal cutsets have
positive capacity and the union of two minimal cutsets may not be a minimal cutset. Let x ∈ Zd,
we denote by CG,0(x) the connected component of x in the percolation (1tG(e)>0)e∈Ed , which can
be seen as an edge set and as a vertex set. Since P(tG(e) > 0) < pc(d), the finite clusters CG,0(x),
x ∈ Zd are small. For A an hyperrectangle, −→v a unit vector normal to A and h > 0, we define the
random height HG(A, h) as follows

HG(A, h) = inf

h0 ≥ h : hyp(A+ h0
−→v ) ∩

⋃
x∈Zd:CG,0(x)∩A6=∅

CG,0(x) = ∅

 .
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One can prove that the set
E =

⋃
x∈Zd:CG,0(x)∩A 6=∅

∂eCG,0(x)

cuts A from hyp(A + HG(A, h)−→v ) in slab(A,HG(A, h),−→v ) and has null capacity (see figure
1.9). Hence, the height HG(A, h) is high enough to ensure that minimal cutset between A and
hyp(A+HG(A, h)−→v ) in slab(A,HG(A, h),−→v ) has null capacity.

E

−→vhyp(A+HG(A, h)−→v )

A

γ

Figure 1.9 – Representation of the dual of the set E

Moreover, with high probability using theorem 1.2, we have

|E| ≤
∑

x∈Zd:CG,0(x)∩A6=∅

|∂eCG,0(x)| ≤
∑

x∈Zd:CG,0(x)∩A6=∅

cd|CG,0(x)| ≤ CHd−1(A)

where C is a positive constant depending on G({0}) and d. Among all the cutsets that achieve the
minimal capacity, we are interested in the ones with the smallest size. We denote by χG(A, h,−→v )
the following quantity :

χG(A, h,−→v ) = inf
{
|E| : E cuts A from hyp(A+HG(A, h)−→v )

in slab(A,HG(A, h),−→v ) and cap(E) = 0

}
. (4.1)

This quantity is subadditive and has good integrability properties since

χG(A, h,−→v ) ≤ |E| ≤ CHd−1(A) .

Let h : N → R+ be a height function such that limn→∞ h(n) = ∞. If −→v is not rational, we
cannot apply a subadditive theorem. To overcome this issue, we first prove in the spirit of the
first step of the proof of an ergodic theorem that E[χG(nA, h(n)−→v )]/Hd−1(nA) converges towards
a deterministic constant ζ(−→v ) that does not depend on A nor h. Then we prove that when
h(n) is negligible compared to n but large compared to logn, the quantities E[ψG(n,−→v )] and
E[χG(nA, h(n),−→v )] are very close so that ψG(n,−→v )/nd−1 converges towards ζ(−→v ). By using a
generalization of Efron-Stein inequality for higher moments, we can prove that ψG(n,−→v ) is close
to its expectation. It follows that ψG(n,−→v )/nd−1 converges almost surely when n goes to infinity
towards the same deterministic constant ζ(−→v ).

Remark 4.13. Actually for technical reasons the real definition of χG we use in the proof is a bit
more complicated.
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Part I

Isoperimetry of the infinite cluster
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Chapter 2

Existence of the anchored
isoperimetric profile of the infinite
cluster in supercritical bond
percolation

Let d ≥ 2. We consider an i.i.d. supercritical bond percolation on Zd, every edge is open with
a probability p > pc(d), where pc(d) denotes the critical point. We condition on the event that 0
belongs to the infinite cluster C∞ and we consider connected subgraphs of C∞ having at most nd
vertices and containing 0. Among these subgraphs, we are interested in the ones that minimize the
open edge boundary size to volume ratio. These minimizers properly rescaled converge towards
a translate of a deterministic shape and their open edge boundary size to volume ratio properly
rescaled converges towards a deterministic constant.
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1 Introduction
Isoperimetric problems are among the oldest problems in mathematics. They consist in finding

sets that maximize the volume given a constraint on the perimeter or equivalently that minimize
the perimeter to volume ratio given a constraint on the volume. These problems can be formulated
in the anisotropic case. Given a norm ν on Rd and S a continuous subset of Rd, we define the
tension exerted at a point x in the boundary ∂S of S to be ν(nS(x))nS(x), where nS(x) is the
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exterior unit normal vector of S at x. The quantity ν(nS(x)) corresponds to the intensity of the
tension that is exerted at x. We define the surface energy of S as the integral of the intensity of
the surface tension ν(nS(x)) over the boundary ∂S. An anisotropic isoperimetric problem consists
in finding sets that minimize the surface energy to volume ratio given a constraint on the volume.
To solve this problem, in [70], Wulff introduced through the Wulff construction a shape achieving
the infimum. This shape is called the Wulff crystal, it corresponds to the unit ball for a norm built
upon ν. Later, Taylor proved in [66] that this shape properly rescaled is the unique minimizer,
up to translations and modifications on a null set, of the associated isoperimetric problem.

The study of isoperimetric problems in the discrete setting is more recent. In the continuous
setting, we study the perimeter to volume ratio, in the context of graphs, the analogous problem
is the study of the size of edge boundary to volume ratio. This can be encoded by the Cheeger
constant. For a finite graph G = (V (G), E(G)), we define the edge boundary ∂GA of a subset A of
V (G) as

∂GA =
{
e = 〈x, y〉 ∈ E(G) : x ∈ A, y /∈ A

}
.

We denote by ∂A the edge boundary of A in (Zd,Ed) and by |B| the cardinal of the finite set B.
The isoperimetric constant, also called Cheeger constant, is defined as

ϕG = min
{
|∂GA|
|A|

: A ⊂ V (G), 0 < |A| ≤ |V (G)|
2

}
.

The continuous version of this constant was introduced by Cheeger in his thesis [29] in order to
obtain a lower bound for the smallest eigenvalue of the Laplacian. The discrete version of the
Cheeger constant was introduced by Alon, Milman [9] and Gabber, Galil [37]. The isoperimetric
constant of a graph gives information on its geometry.

Let d ≥ 2. We consider an i.i.d. supercritical bond percolation on Zd, every edge is open
with a probability p > pc(d), where pc(d) denotes the critical parameter for this percolation. We
know that there exists almost surely a unique infinite open cluster C∞ [48]. In this paper, we
want to study the geometry of C∞ through its Cheeger constant. However, if we minimize the
isoperimetric ratio over all possible subgraphs of C∞ without any constraint on the size, one can
show that ϕC∞ = 0 almost surely. For that reason, we shall minimize the isoperimetric ratio over
all possible subgraphs of C∞ given a constraint on the size. There are several ways to do it. We
can for instance study the Cheeger constant of the graph Cn = C∞ ∩ [−n, n]d or of the largest
connected component C̃n of Cn for n ≥ 1. As we have ϕC∞ = 0 almost surely, the isoperimetric
constants ϕCn and ϕC̃n go to 0 when n goes to infinity. Benjamini and Mossel [13], Mathieu and
Remy [57], Rau [61], Berger, Biskup, Hoffman and Kozma [14], Pete [59] proved that ϕC̃n is of
order n−1. Roughly speaking, by analogy with the full lattice, we expect that subgraphs of C̃n
that minimize the isoperimetic ratio have an edge boundary size of order nd−1 and a size of order
nd, this is coherent with the fact that ϕC̃n is of order n−1. This led Benjamini to conjecture that
for p > pc(d), the limit of nϕC̃n when n goes to infinity exists and is a positive deterministic
constant.

This conjecture was solved in dimension 2 by Biskup, Louidor, Procaccia and Rosenthal in
[15] and by Gold in dimension d ≥ 3 in [44]. They worked on a modified Cheeger constant.
Instead of considering the open edge boundary of subgraphs within Cn, they considered the open
edge boundary within the whole infinite cluster C∞, this is more natural because Cn has been
artificially created by restricting C∞ to the box [−n, n]d. They also added a stronger constraint
on the size of subgraphs of Cn to ensure that minimizers do not touch the boundary of the box
[−n, n]d. Moreover, the subgraphs achieving the minimum, properly rescaled, converge towards
a deterministic shape that is the Wulff crystal. Namely, it is the shape solving the continuous
anisotropic isoperimetric problem associated with a norm βp corresponding to the surface tension
in the percolation setting. The quantity nϕCn converges towards the solution of a continuous
isoperimetric problem.

Dealing with the isoperimetric ratio within Cn needs to be done with caution. Indeed, we do
not want minimizers to be close to the boundary of Cn because this boundary does not exist in
C∞. There is another way to define the Cheeger constant of C∞, that is more natural in the sense
that we do not restrict minimizers to remain in the box [−n, n]d. This is called the anchored
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isoperimetric profile ϕn and it is defined by:

ϕn = min
{
|∂C∞H|
|H|

: 0 ∈ H ⊂ C∞, H connected, 0 < |H| ≤ nd
}
,

where we condition on the event {0 ∈ C∞}. We say that H is a valid subgraph if 0 ∈ H ⊂ C∞, H
is connected and |H| ≤ nd. We also define

∂oH =
{
e ∈ ∂H, e is open

}
.

Note that if H ⊂ C∞, then ∂C∞H = ∂oH. To better understand the difference between the two
definitions, let us consider the following deterministic subgraph of (Zd,Ed),

H =
(
{x ∈ Zd : ∀i ∈ {2, . . . , d}xi = 0}, {e = {x, y} ∈ Ed : ∀i ∈ {2, . . . , d}xi = yi = 0}

)
.

Denote by Hn = H ∩ [−n, n]d. It is easy to check that ϕHn is of order 1/n whereas its anchored
isoperimetric constant is of order 1/nd. Roughly speaking, the fact that the anchored isoperimetric
constant is of order 1/n implies that the underlying graph looks like a d-dimensional object whereas
this does not necessarily hold for ϕHn , the isoperimetric constant restricted to the box. Even if
these two definitions lead to equivalent results for p > pc(d), the difference will be crucial when
studying this constant at pc(d) in chapter 3.

For each n, let Gn be the set of the valid subgraphs that achieve the infimum in ϕn. In this
context, a minimizer Gn ∈ Gn can go potentially very far from 0. The minimizer Gn properly
rescaled does not belong anymore to a compact set. This lack of compactness is the main issue to
overcome to prove that the limit exists. It was done in dimension 2 in [15], with a specific norm
that cannot be extended to higher dimensions. We need to introduce some definitions to be able
to define properly a limit shape in dimension d ≥ 2. In order to build a continuous limit shape, we
shall define a continuous analogue of the open edge boundary. In fact, we will see that the open
edge boundary may be interpreted in term of a surface tension I, in the following sense. Given a
norm τ on Rd and a subset E of Rd having a regular boundary, we define Iτ (E) as

Iτ (E) =
∫
∂E

τ(nE(x))Hd−1(dx) ,

where Hd−1 denotes the Hausdorff measure in dimension d − 1. The quantity Iτ (E) represents
the surface tension of E for the norm τ . At the point x, the tension has intensity τ(nE(x)) in the
direction of the normal unit exterior vector nE(x). We denote by Ld the d-dimensional Lebesgue
measure. We can associate with the norm τ the following isoperimetric problem:

minimize Iτ (E)
Ld(E) subject to Ld(E) ≤ 1 .

We use the Wulff construction to build a minimizer for this anisotropic isoperimetric problem. We
define the set Ŵτ as

Ŵτ =
⋂

v∈Sd−1

{
x ∈ Rd : x · v ≤ τ(v)

}
,

where · denotes the standard scalar product and Sd−1 is the unit sphere of Rd. The set Ŵτ/Ld(Ŵτ )
is a minimizer for the isoperimetric problem associated with τ . We will build in section 3 an
appropriate norm βp for our problem that will be directly related to the open edge boundary
ratio. We will denote by Ip the surface tension associated with βp. We define the Wulff crystal
Wp as the dilate of Ŵβp such that Ld(Wp) = 1/θp, where θp = P(0 ∈ C∞).

In this paper, we adapt the proof of Gold to any dimension d ≥ 2 to give a self-contained proof
of the existence of the limit for the anchored isoperimetric profile. Note that this proof also holds
in dimension 2, it gives an alternative proof of [15] with a simpler norm. The interest of this result
is to prove the existence of the isoperimetric constant for a more natural definition. Although
proving the existence of the anchored isoperimetric profile involves more technical difficulties, the
anchored isoperimetric profile itself is a simpler object to study. Cerf and Dembin studied the
anchored isoperimetric profile ϕn at pc in [2]. Studying the behavior of ϕCn at pc would have
required much more work. The aim of this paper is the proof of the two following Theorems. The
first theorem asserts the existence of the limit of nϕn.
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Theorem 1.1. Let d ≥ 2, p > pc(d) and let βp be the norm that will be properly defined in section
3. Let Wp be the Wulff crystal for this norm, i.e., the dilate of Ŵβp such that Ld(Wp) = 1/θp.
Then, conditionally on {0 ∈ C∞},

lim
n→∞

nϕn = Ip(Wp)
θpLd(Wp)

= Ip(Wp) a.s..

The second theorem shows that the graphs Gn realizing the minimum converge in probability
towards a translate of Wp.

Theorem 1.2. Let d ≥ 2 and p > pc(d). Let ε > 0. There exists positive constants C1 and C2
depending on d, p and ε such that, for all n ≥ 1,

P
(

max
Gn∈Gn

inf
x∈Rd

1
nd
∣∣Gn∆(n(x+Wp) ∩ C∞)

∣∣ ≥ ε ∣∣∣ 0 ∈ C∞) ≤ C1 e−C2n
1−3/2d

,

where ∆ denotes the symmetric difference.

Remark 1.3. We emphasize the fact that when we restrict theorems 1.1 and 1.2 to dimension
two, we obtain a weaker version of already existing results. Namely, in [15], the authors used
methods specific to dimension two in order to derive a uniform convergence in the shape theorem.
Whereas here, we only obtain L1-convergence.

To prove Theorem 1.1, we first prove a large deviations result from above for nϕn stated in
the following Theorem.

Theorem 1.4. Let d ≥ 2. Let p > pc(d). For all ε > 0, there exist positive constants C1 and C2
depending on p, d, ε such that, for all n ≥ 1,

P
(
nϕn ≥ (1 + ε) Ip(Wp)

θp(d)Ld(Wp)

∣∣∣ 0 ∈ C∞) ≤ C1 exp(−C2n) .

The proof of Theorem 1.4 is inspired by the proof of Theorem 5.4 in [44]. We shall build a valid
subgraph that has an isoperimetric ratio close to ϕn. In order to do so, we approximate the Wulff
shape Wp from the inside by a convex polytope P . We shall build a cutset Γn that cuts nP from
infinity whose number of open edges is close to nd−1Ip(P ) with high probability. For each face
F of P and v its associated exterior unit normal vector, we consider the cylinder cyl(F + εv, ε)
of basis F + εv and of height ε > 0. We build E by merging the cutsets from the top to the
bottom of minimal capacity of the cylinders cyl(F + εv, ε). The union of these cutsets is not yet
a cutset itself because of the potential holes between these cutsets. We fix this issue by adding
extra edges to fill the holes. We control next the number of extra edges we have added. We also
need to control the capacity of the cutsets in a cylinder of polyhedral basis. We next build a valid
subgraph Hn ⊂ Zd from Γn by taking all the vertices of C∞ ∩nP that are connected to 0 without
using edges in Γn. We expect that |Hn| is of order θp(d)ndLd(P ). We can bound |∂C∞Hn| from
above thanks to the number of open edges in Γn and so we control the isoperimetric ratio of Hn.
Finally, we control the upper large deviations for this number of open edges thanks to the upper
large deviations for the flow in a cylinder of polyhedral basis. The next step is to obtain the large
deviations result from below.

Theorem 1.5. Let d ≥ 2. Let p > pc(d). For all ε > 0, there exist positive constants C1 and C2
depending on p, d, ε such that, for all n ≥ 1,

P
(
nϕn ≤ (1− ε) Ip(Wp)

θp(d)Ld(Wp)

∣∣∣ 0 ∈ C∞) ≤ C1 exp(−C2n
1−3/2d) .

Remark 1.6. The deviation order in Theorem 1.5 is not optimal due to technical details of the
proof. In this work we do not make any attempt to get the proper order of deviation. Our aim
is mainly to obtain Theorems 1.1 and 1.2. The study of the large deviations order would be an
interesting problem in itself.
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Theorem 1.1 follows from Theorem 1.4 and Theorem 1.5 by a straightforward application of the
Borel-Cantelli Lemma. Proving the large deviations result from below is the most difficult part
of this work. To be able to compare discrete objects with continuous ones, we shall encode each
optimizer Gn ∈ Gn as a measure µn defined as

µn = 1
nd

∑
x∈V (Gn)

δx/n .

We first need to build from a minimizer Gn an appropriate continuous object Pn. To do so, we
use the same method as in [44]. The main issue is that the boundary of Gn may be very tangled,
we will have to build a smoother boundary of size of order nd−1. This will enable us to build a
continuous object Pn of finite perimeter such that, with high probability, its associated measure
is close to µn in some sense to be specified later.

Let F be a Boreliean set of Rd. We define its associated measure νF :
∀E ∈ B(Rd), νF (E) = θpLd(F ∩ E) .

We now define the set W of the measures associated with the translates of the Wulff shape as
W =

{
νx+Wp : x ∈ Rd

}
.

Note that µn belongs toM(Rd), the set of finite measures on Rd. We cannot use a metric as in
[44] where µn was a measure on [−1, 1]d. In fact, we will not use a metric here. We first show that
all the minimizers Gn ∈ Gn are with high probability in a local neighborhood of W for a weak
topology. This is the key step before proving Theorem 1.5.
Theorem 1.7. Let d ≥ 2 and p > pc(d). Let u :]0,+∞[→]0,+∞[ be a non-decreasing function
such that limt→0 u(t) = 0. For all ζ > 0, there exist positive constants C1 and C2 depending on
d, p, u and ζ such that for all n ≥ 1, for any finite set Fn of uniformly continuous functions that
satisfies:

∀f ∈ Fn ‖f‖∞ ≤ 1 and ∀x, y ∈ Rd |f(x)− f(y)| ≤ u(‖x− y‖2) ,
we have

P

(
∃Gn ∈ Gn, ∀ν ∈ W, sup

f∈Fn
|µn(f)− ν(f)| > ζ

∣∣∣0 ∈ C∞) ≤ C1 e−C2n
1−3/2d

.

The main difficulty of this paper lies in the proof of this theorem. In our context, an issue
that was not present in [44] arises. Whereas the support of the measure µn was included in a
fixed compact set in [44], this is not the case here because we do not constrain Gn ∈ Gn to remain
in the box [−n, n]d. To fix this issue, we will use the method developed in [19]. We will first
localize the set Gn in a finite number of balls of radius of order n up to a set of small fractional
volume. We will study Gn only inside these balls, i.e., the intersection of Gn with these balls.
The intersection of Gn with the boundary of these balls will create an additional surface tension.
However, this surface tension is not related to the open boundary edges of Gn but to the fact that
we have cut Gn along these boundaries. Therefore, we should not take this surface tension into
account for the isoperimetric constant. In fact, we will cut Gn in such a way to ensure that we do
not create too much surface tension, i.e., we will cut in regions where Gn is not concentrated. To
conclude, we will link the probability that the measure µn corresponding to Gn ∈ Gn is far from a
weak neighborhood ofW with the probability that the surface tension of Gn is locally abnormally
small.

Finally, to prove Theorem 1.2, we exhibit a set Fn of uniformly continuous functions such that
we can bound from above the symmetric difference |Gn∆(n(x+Wp) ∩ C∞)| by supf∈Fn |µn(f)−
ν(f)| for some ν ∈ W and then apply the result of Theorem 1.7.

The rest of the paper is organized as follows. In section 2, we give some definitions and useful
results. We do the construction of the norm βp in section 3. In section 4, we prove the upper
large deviations in Theorem 1.4. We build a continuous object Pn from a minimizer Gn ∈ Gn and
prove that its associated measure is close in some sense to the measure µn of Gn in section 5.
Finally, in section 6, we prove Theorem 1.7 that is a preliminary work before proving the lower
large deviations Theorem 1.5 and the convergence of Gn properly rescaled towards a limit shape
in Theorem 1.2.
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2 Some definitions and useful results
2.1 Geometric notations

For x = (x1, . . . , xd), we define

‖x‖2 =

√√√√ d∑
i=1

x2
i and ‖x‖∞ = max

1≤i≤d
|xi| .

We say that x, y ∈ Zd are ∗-connected if ‖x− y‖∞ = 1. We say that γ = (x0, . . . , xn) is an ∗-path
of Zd if for any 0 ≤ i ≤ n− 1, the points xi and xi+1 belong to Zd and are ∗-connected. We say
that Γ is ∗-connected or a lattice animal if any x, y ∈ Γ are connected by an ∗-path in Γ. We
denote by Animalsx the set of lattice animals containing the point x ∈ Zd.

Lemma 2.1. [Kesten [51], p82 or Grimmett [48], p85] Let x ∈ Zd. For all positive integer l,

|{Γ ∈ Animalsx, |Γ| = l}| ≤ (7d)l .

Let S ⊂ Rd and r > 0, we define d2(x, S) = infy∈S ‖x−y‖2 and V(S, r) the open r-neighborhood
of S by

V(S, r) =
{
x ∈ Rd : d2(x, S) < r

}
.

Let x ∈ Rd, r > 0 and a unit vector v. We denote by B(x, r) the closed ball of radius r centered
at x, by disc(x, r, v) the closed disc centered at x of radius r normal to v, and by B+(x, r, v)
(respectively B−(x, r, v)) the upper (resp. lower) half part of B(x, r) along the direction of v, i.e.,

B+(x, r, v) =
{
y ∈ B(x, r) : (y − x) · v ≥ 0

}
,

and
B−(x, r, v) =

{
y ∈ B(x, r) : (y − x) · v ≤ 0

}
.

We denote by αd the Ld measure of a unit ball in Rd. We denote by Hd−1 the Hausdorff measure
in dimension d−1. In particular, the Hd−1 measure of a d−1 dimensional unit disc in Rd is equal
to αd−1. Let A be a non-degenerate hyperrectangle, i.e., a rectangle of dimension d − 1 in Rd.
Let −→v be one of the two unit vectors normal to A. Let h > 0, we denote by cyl(A, h) the cylinder
of basis A and height h defined by

cyl(A, h) =
{
x+ t−→v : x ∈ A, t ∈ [−h, h]

}
.

The dependence on −→v is implicit in the notation cyl(A, h). Note that these definitions of cylinder
may be extended in the case where A is of linear dimension d − 1, i.e., A is included in an
hyperplane of Rd, which is the affine span of A.

2.2 Sets of finite perimeter and surface energy
The perimeter of a Borel set S of Rd in an open set O is defined as

P(S,O) = sup
{∫

S

div f(x)dLd(x) : f ∈ C∞c (O,B(0, 1))
}
,

where C∞c (O,B(0, 1)) is the set of the functions of class C∞ from Rd to B(0, 1) having a compact
support included in O, and div is the usual divergence operator. The perimeter P(S) of S is
defined as P(S,Rd). The topological boundary of S is denoted by ∂S. The reduced boundary ∂∗S
of S is a subset of ∂S such that, at each point x of ∂∗S, it is possible to define a normal vector
nS(x) to S in a measure-theoretic sense, and moreover P(S) = Hd−1(∂∗S). Let ν be a norm on
Rd. We define its associated Wulff crystal Wν as

Wν =
{
x ∈ Rd : ∀y, y · x ≤ ν(y)

}
.

With the help of the Wulff crystal, we define the surface energy of a general set.
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Definition 2.2. Let ν be a norm on Rd. The surface energy Iν(S,O) of a Borel set S of Rd in
an open set O is defined as

Iν(S,O) = sup
{∫

S

div f(x)dLd(x) : f ∈ C1
c (O,Wν)

}
.

We will note simply Iν(S) = Iν(S,Rd).

Proposition 2.3 (Proposition 14.3 in [19]). The surface energy Iν(S,O) of a Borel set S of Rd
of finite perimeter in an open set O is equal to

Iν(S,O) =
∫
∂∗S∩O

ν(nS(x))dHd−1(x) .

We recall the following fundamental result.

Proposition 2.4 (Isoperimetric inequality). There exist two positive constants biso, ciso which
depend only on the dimension d, such that for any Cacciopoli set E, any ball B(x, r) ⊂ Rd,

min
(
Ld(E ∩B(x, r)),Ld((Rd \ E) ∩B(x, r))

)
≤ bisoP(E, B̊(x, r))d/d−1,

min
(
Ld(E),Ld(Rd \ E)

)
≤ cisoP(E)d/d−1 .

We refer to [43], for more details on Cacciopoli sets, isoperimetric inequality and other definitions
in geometric measure theory.

2.3 Approximation by convex polytopes
We recall here an important result, which allows us to approximate adequately a set of finite

perimeter by a convex polytope.

Definition 2.5 (Convex polytope). Let P ⊂ Rd. We say that P is a convex polytope if there exist
v1, . . . , vm unit vectors and ϕ1, . . . , ϕm real numbers such that

P =
⋂

1≤i≤m

{
x ∈ Rd : x · vi ≤ ϕi

}
.

We denote by Fi the face of P associated with vi, i.e.,

Fi = P ∩
{
x ∈ Rd : x · vi = ϕi

}
.

Any convex subset can be approximated from the outside and from the inside by a convex polytope
with almost the same surface energy.

Lemma 2.6. Let ν be a norm on Rd. Let A be a bounded convex set. For each ε > 0, there exist
convex polytopes P and Q such that P ⊂ A ⊂ Q and Iν(Q)− ε ≤ Iν(A) ≤ Iν(P ) + ε.

Proof. Let A be a bounded convex set. Let ε > 0. Let (xk)k≥1 be a dense family in ∂A. For
n ≥ 1, we define Pn as the convex hull of x1, . . . , xn, i.e., the smallest convex that contains the
points x1, . . . , xn. As A is convex, we have Pn ⊂ A and Pn converges towards A when n goes to
infinity for the L1 topology. The functional Iν is lower semi-continuous, thus

Iν(A) ≤ lim inf
n→∞

Iν(Pn) ,

so there exists n large enough such that

Iν(A) ≤ Iν(Pn) + ε

and we take P = Pn. The existence of Q was shown in Lemma 5.1. in [21] for the Wulff shape.
The proof may be easily adapted to a general convex bounded set A.
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3 Construction of the norm
Minimizing the open edge boundary is the analogue of minimizing a surface tension in the

continuous setting. We shall build a norm βp that represents the tension that is exerted on the
surface, i.e., any point x in a surface S having nS(x) as a normal unit exterior vector has a tension
βp(nS(x))nS(x) that exerts at the point x. To build this norm, let us consider Gn ∈ Gn. We zoom
on the boundary of Gn, we look at what happens in a small but macroscopic cube centered at a
point x in the boundary ∂Gn (see figure 2.1). The cube is located in such a way that its bottom
intersects Gn and its top intersects Zd \Gn, and it is rotated so that its normal vector coincides
with the normal exterior vector at the point x. As this cube is small, the portion of Gn in that
cube does not affect much |Gn|, the total volume of Gn. Thus, if one would like to minimize the
open edges to volume ratio, one needs to minimize the number of open edges of ∂Gn in that cube.
This problem is equivalent to finding a set of edges that separates the top from the bottom of the
cube with a minimal number of open edges.

Gn

x

n(x)

Figure 2.1 – A small box on the boundary ∂Gn of a minimizer Gn ∈ Gn

Let us give now a more precise definition of the norm βp. We consider a bond percolation on
Zd of parameter p > pc(d) with d ≥ 2. We introduce many notations used for instance in [62]
concerning flows through cylinders. Let A be a non-degenerate hyperrectangle, i.e., a rectangle of
dimension d− 1 in Rd. Let −→v be one of the two unit vectors normal to A. Let h > 0, we denote
by cyl(A, h) the cylinder of basis A and height 2h defined by

cyl(A, h) =
{
x+ t−→v : x ∈ A, t ∈ [−h, h]

}
.

The set cyl(A, h) \ A has two connected components, denoted by C1(A, h) and C2(A, h). For
i = 1, 2, we denote by C ′i(A, h) the discrete boundary of Ci(A, h) defined by

C ′i(A, h) =
{
x ∈ Zd ∩ Ci(A, h) : ∃y /∈ cyl(A, h), 〈x, y〉 ∈ Ed

}
.

We say that a set of edges E cuts C ′1(A, h) from C ′2(A, h) in cyl(A, h) if any path γ from
C ′1(A, h) to C ′2(A, h) in cyl(A, h) contains at least one edge of E. We call such a set a cutset. For
any set of edges E, we denote by |E|o the number of open edges in E. We shall call it the capacity
of E. We define

τp(A, h) = min
{
|E|o : E cuts C ′1(A, h) from C ′2(A, h) in cyl(A, h)

}
.

Note that this is a random quantity as |E|o is random, and that the cutsets in this definition are
pinned near the boundary of A. Finding cutsets of minimal capacity is equivalent to the study of
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maximal flows, see [16]. To each edge e, we can associate the random variable t(e) = 1e is open. In
the study of maximal flows, we interpret each t(e) as the capacity of the edge e, i.e., the maximal
amount of water that can flow through e per unit of time. We are interested in the maximal
amount of water that can flow through the cylinder given the constraint on the capacity. We refer
to [64] for a rigorous definition of maximal flows. In the following, we will use the term flow to
speak about the quantity τp. The following proposition is a corollary of Proposition 3.5 in [62], it
enables us to give a rigorous definition of the norm βp.

Proposition 3.1 (Definition of the norm βp). Let d ≥ 2, p > pc(d), A be a non-degenerate
hyperrectangle and −→v one of the two unit vectors normal to A. Let h be a height function such
that limn→∞ h(n) =∞. The limit

βp(−→v ) = lim
n→∞

E[τp(nA, h(n))]
Hd−1(nA)

exists and is finite. Moreover, this limit is independent of A and h and βp is a norm.

The norm βp is called the flow constant. Roughly speaking, βp(−→v ) corresponds to the expected
maximal amount of water that can flow in the direction −→v on average. Actually, we can obtain a
stronger convergence. A straightforward application of Theorem 3.8 in [62] gives the existence of
the following almost sure limit:

lim
n→∞

τp(nA, h(n))
Hd−1(nA) = βp(−→v ) .

We define
βmin = inf−→v ∈Sd−1

βp(−→v ) , βmax = sup
−→v ∈Sd−1

βp(−→v ) .

As βp is a norm on Rd, we have βmin > 0 and βmax <∞. We will need the following upper large
deviations result which is a straightforward application of Theorem 3 in [68].

Theorem 3.2. Let d ≥ 2 and p > pc(d). For every unit vector −→v , for every non-degenerate
hyperrectangle A normal to −→v , for every h > 0 and for every λ > βp(−→v ), there exist C1 and C2
depending only on λ and G, such that, for all n ≥ 0,

P
(
τp(nA, hn) ≥ λHd−1(A)nd−1) ≤ C1 exp(−C2hn

d) .

To ease the reading and lighten the notations, the value of the constants may change from
appearance to appearance.

4 Upper large deviations
The aim of this section is to prove Theorem 1.4. A convex polytope of dimension d − 1 is a

convex polytope F which is contained in an hyperplane of Rd and such that Hd−1(F ) > 0. We
have the following Lemma.

Lemma 4.1. Let p > pc(d). Let F be a convex polytope of dimension d−1. Let v be a unit vector
normal to F . There exist positive real numbers C1 and C2 depending on F , p and d such that for
all n ≥ 1, for all λ > βp(v)Hd−1(F ), for all h > 0

P(τp(nF, nh) ≥ λnd−1) ≤ C1 exp(−C2hn
d) .

Proof. Let p > pc(d). Let F be a convex polytope of dimension d− 1 and v a unit vector normal
to F . We shall cover F by a finite family of hypersquares and control the probability that the
flow is abnormally big in cyl(nF, nh) by the probability that the flow is abnormally big in one of
the cylinders of square basis. Let λ > βp(v)Hd−1(F ). Let κ > 0 be a real number that we will
choose later. We denote by S(κ) an hypersquare of dimension d− 1 of side length κ and normal
to v. We want to cover the following region of F by hypersquares isometric to S(κ):

D(κ, F ) =
{
x ∈ F : d(x, ∂F ) > 2

√
dκ
}
.
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There exists a finite family (Si)i∈I of closed hypersquares isometric to S(κ) included in F having
pairwise disjoint interiors, such that D(κ, F ) ⊂ ∪i∈ISi (see figure 2.2). Moreover, there exists a
constant cd depending only on the dimension d such that

Hd−1(F \D(κ, F )
)
≤ cdHd−2(∂F )κ . (4.1)

We have then

|I| ≤ Hd−1(F )
Hd−1(S(κ)) . (4.2)

SiF

D(κ, F )

An hypersquare of
side length κ

Figure 2.2 – Covering P with hypersquares

Let h > 0. We would like to build a cutset between C ′1(nF, nh) and C ′2(nF, nh) out of minimal
cutsets for the flows τp(nSi, nh), i ∈ I. Note that a cutset that achieves the infimum defining
τp(nSi, nh) is pinned near the boundary ∂nSi. However, if we pick up two hypersquares Si
and Sj that share a common side, due to the discretization, their corresponding minimal cutsets
for the flow τp do not necessarily have the same trace on the common face of the associated
cylinders cyl(nSi, nh) and cyl(nSj , nh). We shall fix this problem by adding extra edges around
the boundaries of the hypersquares ∂Si in order to glue properly the cutsets. We will need also
to add extra edges around n(F \ D(κ, F )) in order to build a cutset between C ′1(nF, nh) and
C ′2(nF, nh). For i ∈ I, let Ei be a minimal cutset for τp(nSi, nh), i.e., Ei ⊂ Ed cuts C ′1(nSi, nh)
from C ′2(nSi, nh) in cyl(nSi, nh) and |Ei|o = τp(nSi, nh). We fix ζ = 4d. Let E0 be the set of
edges of Ed included in E0, where we define

E0 =
{
x ∈ Rd : d

(
x, nF \

⋃
i∈I

nSi

)
≤ ζ

}
∪
⋃
i∈I

{
x ∈ Rd : d(x, ∂nSi) ≤ ζ

}
.

The set of edges E0 ∪
⋃
i∈I Ei separates C ′1(nF, nh) from C ′2(nF, nh) in the cylinder cyl(nF, nh),

therefore,

τp(nF, nh) ≤ |E0|o +
∑
i∈I
|Ei|o ≤ card(E0) +

∑
i∈I

τp(nSi, nh) . (4.3)
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There exists a constant c′d depending only on d such that, using inequalities (4.1) and (4.2),

card(E0) ≤ c′d
(
κnd−1Hd−2(∂F ) + |I|Hd−2(∂S(κ))nd−2)

≤ c′d
(
κnd−1Hd−2(∂F ) + Hd−1(F )

Hd−1(S(κ))H
d−2(∂S(κ))nd−2

)
≤ c′d

(
κnd−1Hd−2(∂F ) + H

d−1(F )
κ

nd−2
)
.

Thus, for n large enough,

card(E0) ≤ 2c′d κHd−2(∂F )nd−1 . (4.4)

There exists s > 0 such that λ > (1 + s)βp(v)Hd−1(F ). We choose κ small enough such that

2c′dκHd−2(∂F ) < s

2βminH
d−1(F ) . (4.5)

Inequalities (4.4) and (4.5) yield that

card(E0) ≤ s

2βp(v)nd−1Hd−1(F ) . (4.6)

Thanks to inequality (4.6), we obtain

P(τp(nF, nh) ≥ λnd−1)

≤ P

(
card(E0) +

∑
i∈I

τp(nSi, nh) ≥ (1 + s)βp(v)Hd−1(F )nd−1

)
≤
∑
i∈I

P(τp(nSi, nh) ≥ (1 + s/2)βp(v)Hd−1(Si)nd−1) . (4.7)

Thanks to Theorem 3.2, there exist positive real numbers C1, C2 such that, for all i ∈ I,

P(τp(nSi, nh) ≥ (1 + s/2)βp(v)Hd−1(Si)nd−1) ≤ C1 exp(−C2hn
d) . (4.8)

By combining inequalities (4.7) and (4.8), we obtain

P(τp(nF, nh) ≥ λnd−1) ≤ |I|C1 exp(−C2hn
d) ,

and the result follows.

We can now proceed to the proof of Theorem 1.4.

Proof of Theorem 1.4. Let ε > 0 and ε′ > 0. By Lemma 2.6, there exists a convex polytope P
such that P ⊂ Wp, Ip(P ) ≤ (1 + ε′)Ip(Wp) and Ld(P ) ≥ (1 − ε′)Ld(Wp). Up to multiplying P
by a constant α < 1 close to 1, we can assume without loss of generality that Ld(P ) < Ld(Wp).
We have, for small enough ε′ (depending on ε),

P
(
nϕn ≥ (1 + ε) Ip(Wp)

θp(d)Ld(Wp)

∣∣∣0 ∈ C∞)
≤ P

(
nϕn ≥ (1 + ε/2)

(
1 + ε′

1− ε′

)
Ip(Wp)

θp(d)Ld(Wp)

∣∣∣ 0 ∈ C∞)
≤ P

(
nϕn ≥ (1 + ε/2) Ip(P )

θp(d)Ld(P )

∣∣∣ 0 ∈ C∞) . (4.9)

Let us denote by F1, . . . , Fm the faces of P and let v1, . . . , vm be the associated exterior unit
vectors. Let δ > 0. For i ∈ {1, . . . ,m}, we define

Ci = cyl(Fi + δvi, δ) .
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All the Ci are of disjoint interiors because P is convex. Indeed, assume there exists z ∈ C̊i ∩ C̊j for
some i 6= j. Then there exist unique x ∈ Fi, y ∈ Fj and h, h′ < 2δ such that z = x+hvi = y+h′vj .
The points x and y correspond to the orthogonal projection of z on P . As P is convex, the
orthogonal projection on P is unique and so x = y = z. This contradicts the fact that z belongs
to the interior of Ci. We now aim to build a cutset that cuts nP from infinity out of cutsets of
minimal capacities for τp(n(Fi+δvi), nδ), i ∈ {1, . . . ,m}. The union of these cutsets is not enough
to form a cutset from nP to infinity because there are holes between these cutsets. We shall add
edges around the boundaries ∂(n(Fi + δvi)) to close these holes (see figure 2.3). As the distance
between two adjacent boundaries ∂(n(Fi + δvi)) decreases with δ, by taking δ small enough, the
size of the bridges and so their capacities are not too big. We recall that the capacity of a set,
namely the number of open edges in the set, may be bounded from above by its size. Next, we
control the maximal flow through the cylinders or equivalently the capacity of minimal cutsets in
the cylinders with the help of Lemma 4.1.

For i ∈ {1, . . . ,m}, let E′i be a minimal cutset for τp(n(Fi + δvi), nδ), i.e., E′i cuts C ′1(n(Fi +
δvi), δ) from C ′2(n(Fi + δvi), δ) and |E′i|o = τp(n(Fi + δvi), δn). We shall add edges to control the
space between E′i and the boundary ∂(n(Fi + δvi)). Let ζ = 4d. Let i, j ∈ {1, . . . ,m} such that
Fi and Fj share a common side. We define

M(i, j) = (V(nFi ∩ nFj , nδ + ζ) \ V(nFi ∩ nFj , nδ − ζ)) ∩ (nP )c .

Let Mi,j denote the set of the edges in Edn included in M(i, j) (see figure 2.3). There exists a
constant c′d depending only on the dimension d such that for all i, j ∈ {1, . . . ,m} such that Fi and
Fj share a common side,

card(Mi,j) ≤ cdδd−1nd−1 . (4.10)

We set
M =

⋃
i,j

Mi,j ,

where the union is over i, j ∈ {1, . . . ,m} such that i 6= j and Fi, Fj share a common side. The set
Γn = M ∪

⋃m
i=1E

′
i cuts nP from infinity. We define Hn to be the set of the vertices connected to

0 by open paths which do not use an edge of Γn, i.e.,

Hn =
{
x ∈ Zd, x is connected to 0 with open edges in Ed \ Γn

}
.

nWp

nP
2δn

M(i, j)

a face nFi a face nFj

a minimal cutset for
τp(n(Fj + δvj), δn)

Figure 2.3 – Construction of a cutset Γn from nP to infinity
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By definition, the set Hn is connected. As we condition on the event {0 ∈ C∞}, the set Hn is a
subgraph of C∞. As P is a polytope,

Ip(P ) =
m∑
i=1

βp(vi)Hd−1(Fi) .

Moreover, we have
|∂C∞Hn| = |∂oHn| ≤ |Γn|o ,

where the last inequality comes from the fact that, by construction of Hn, if e ∈ ∂Hn \ Γn, then
e is necessarily closed. Using (4.10), we have

|Γn|o ≤ card(M) +
m∑
i=1
|E′i|o

≤ cdm2δd−1nd−1 +
m∑
i=1

τp
(
n(Fi + δvi), δn

)
. (4.11)

We choose δ small enough so that

m2cdδ
d−1 < δIp(P )/2 and Ld(V(∂P, 3δ)) ≤ δLd(P ) . (4.12)

Let us now estimate the probability that |Γn|o is abnormally big. Using inequalities (4.11) and
(4.12), we get

P(|Γn|o ≥ (1 + δ)Ip(P )nd−1 | 0 ∈ C∞)

≤ 1
θp

P
(

card(M) +
m∑
i=1

τp(n(Fi + δvi), δn) ≥ (1 + δ)
m∑
i=1

βp(vi)Hd−1(Fi)nd−1
)

≤ 1
θp

P

(
m∑
i=1

τp(n(Fi + δvi), δn) ≥ (1 + δ/2)
m∑
i=1

βp(vi)Hd−1(Fi)nd−1

)

≤ 1
θp

m∑
i=1

P(τp(n(Fi + δvi), δn) ≥ (1 + δ/2)βp(vi)Hd−1(Fi)nd−1) . (4.13)

By Lemma 4.1, there exist positive constants C1, C2 depending on d, p, P and δ such that, for all
1 ≤ i ≤ m,

P(τp(n(Fi + δvi), δn) ≥ (1 + δ/2)βp(vi)Hd−1(Fi)nd−1) ≤ C1 exp(−C2δn
d) . (4.14)

Finally, combining inequalities (4.13) and (4.14), we obtain

P(|Γn|o ≥ (1 + δ)Ip(P )nd−1|0 ∈ C∞) ≤ mC1

θp
exp(−C2δn

d) . (4.15)

We shall now estimate the number of vertices in Hn in order to check that Hn is a valid
subgraph. For that purpose, we use a renormalization argument. Let k > 0. We partition Rd into
disjoint cubes of side length 1/k. We define B′j as the union of Bj and all its 3d−1 ∗-neighbors (the
cubes B having at least one vertex at L1 distance less than 1 from Bj). We consider B1, . . . , Bl1
the cubes such that B′1, . . . , B′l1 are contained in P \ V(∂P, 2δ) and Bl1+1, . . . , Bl2 the cubes such
that B′l1+1, . . . , B

′
l2

intersect V(∂P, 2δ). We can choose k large enough such that

Ld
(

l2⋃
i=l1+1

Bi

)
≤ Ld(V(∂P, 3δ)) ≤ δLd(P ) . (4.16)

We say that a cube Bj is good if the following event E(j)
n occurs:

— There exists a unique open cluster of diameter larger than n/k in nB′j .
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— We have |C∞ ∩ nBj |
Ld(nBj)

∈ (θp − δ, θp + δ) .

There exist positive constants C1 and C2 depending on d, p, k and δ such that

P(E(j)c
n ) ≤ C1 exp(−C2n) . (4.17)

For a proof of the control of the probability of the first property see Theorem 7.68 in [48] or [60],
for the second property see [60]. If the cube Bj is good, we denote by Cj its unique open cluster
of diameter larger than n/k in nB′j , for 1 ≤ j ≤ l1. On the event

⋂
1≤j≤l1 E

(j)
n ∩

{
0 ∈ C∞

}
, the

set
⋃l1
j=1 Cj is connected without using edges of Γn and contains 0, therefore, it is a subgraph of

Hn. Furthermore, we claim that, on this event, we have C∞ ∩ (
⋃

1≤j≤l1 nBj) ⊂ Hn. Indeed, let
us assume that there exists x ∈ C∞ ∩ (

⋃
1≤j≤l1 nBj) that does not belong to Hn. Both 0 and x

belong to C∞, therefore, x is connected to 0 by a path γ = (x0, e1, . . . , el, xl) with x0 = 0 and
xl = x that uses edges in Γn. We define

r = sup
{
i ≥ 1, ei ∈ Γn

}
.

0

x

γ

nP

Γn

xr

nBj

nB′j

Figure 2.4 – Vertices in Hn

By construction, as el /∈ Γn, we have r < l. Let us denote γ′ = (xr, er+1, . . . , xl). The path γ′

is not connected to Hn without using edges in Γn (see figure 2.4). Let j be such that x ∈ nBj ,
by construction xr is outside nB′j . Moreover, on the event E(j)

n , the cube nB′j contains a unique
cluster of diameter larger than n/k. As the path γ′ starts outside nB′j and ends inside nBj , its
intersection with nB′j has a diameter larger than n/k. Besides, the path γ′ is not connected to
Hn in nB′j by an open path, so the cube nB′j contains two open clusters of diameter larger than
n/k. This is a contradiction with the first property of a good cube. Therefore, on the event⋂

1≤j≤l1 E
(j)
n ∩

{
0 ∈ C∞

}
,

|Hn| ≥ |C∞ ∩ (∪1≤j≤l1nBj)|

≥ (θp − δ)
l1∑
i=1
Ld(nBi) . (4.18)

Thanks to inequalities (4.16) and (4.18), we obtain

|Hn| ≥ (θp − δ)(1− δ)Ld(nP ) . (4.19)
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To ensure that Hn is a valid subgraph, it remains to check that |Hn| ≤ nd, yet we have

|Hn| ≤ (θp + δ)
l1∑
i=1
Ld(nBi) +

l2∑
i=l1+1

Ld(nBi)

≤ (θp + δ)ndLd(P ) + ndδLd(P )
≤ (θp + 2δ)ndLd(P ) .

As Ld(P ) < Ld(Wp), we can choose δ small enough such that

|Hn| ≤ θpLd(Wp)nd ≤ nd .

Finally, on the event ⋂
1≤j≤l1

E(j)
n ∩

{
|Γn|o ≤ (1 + δ)Ip(P )nd−1 } ∩ { 0 ∈ C∞

}
,

combining (4.11) and (4.19), we obtain, for small enough δ,

nϕn ≤ n
|Γn|o
|Hn|

≤ (1 + δ) Ip(P )
(θp − δ)(1− δ)Ld(P ) ≤ (1 + ε/2) Ip(P )

θpLd(P ) .

Combining the result of Lemma 4.1 and inequalities (4.9), (4.15) and (4.17), we obtain

P
(
nϕn ≥ (1 + ε) Ip(Wp)

θp(d)Ld(Wp)

∣∣∣0 ∈ C∞) ≤ l1C1

θp
exp(−C2n) + mC1

θp
exp(−C2δn

d) .

This yields the result.

5 Construction of a continuous object
The aim of this section is to build a continuous object Pn from a minimizer Gn ∈ Gn.

5.1 Some useful results on the minimizers
The following lemma ensures that the size of the minimizers Gn ∈ Gn are of order nd.

Lemma 5.1. Let d ≥ 2 and p > pc(d). There exist positive constants D1, D2 and η1 depending
only on d and p such that, for all n ≥ 1,

P
(
∃Gn ∈ Gn, |Gn| ≤ η1n

d
∣∣ 0 ∈ C∞ ) ≤ D1 exp(−D2n

(d−1)/2d)) .

To prove Lemma 5.1, we adapt the proof of Lemma A.8 in [44]. We need the following
proposition that ensures that the open edge boundary of a large subgraph is not too small.

Proposition 5.2 (Berger-Biskup-Hoffman-Kozma, Proposition 5.2. in [14]). Let d ≥ 2 and
p > pc(d). There exist positive constants c1, c2 and c3 depending only on d and p such that, for
all t ≥ 0,

P
(

There exists an open connected graph containing 0
such that |G| ≥ td/(d−1), |∂oG| ≤ c3|G|(d−1)/d

)
≤ c1 exp(−c2t) .

Proof of Lemma 5.1. Thanks to Theorem 1.4, there exist positive constants c′1, c′2 and c′3 depend-
ing only on p and d such that for all n ≥ 1,

P
(
ϕn ≥ c′3n−1 ∣∣ 0 ∈ C∞ ) ≤ c′1 exp(−c′2n) .

Let Gn ∈ Gn. If |Gn| ≤
√
n, as Gn ⊂ C∞ the set ∂oGn is non empty on the event {0 ∈ C∞} and

so ϕn ≥ n−1/2. This is impossible for large n. We now assume |Gn| >
√
n. Using Proposition



62 CHAPTER 2. EXISTENCE OF THE ANCHORED ISOPERIMETRIC PROFILE

5.2 with t = n(d−1)/2d, conditioning on {0 ∈ C∞}, we obtain that |∂oGn| ≥ c3|Gn|(d−1)/d with
probability at least 1−c1 exp(−c2n(d−1)/2d)/θp. Moreover, on the event

{
ϕn ≤ c′3n−1}∩{0 ∈ C∞

}
,

we obtain
c3|Gn|−1/d ≤ |∂

oGn|
|Gn|

= ϕn ≤ c′3n−1.

So we set η1 = (c3/c′3)d. Finally,

P
(
∃Gn ∈ Gn, |Gn| ≤ η1n

d
∣∣ 0 ∈ C∞ ) ≤ P

(
ϕn ≥ c′3n−1 ∣∣ 0 ∈ C∞ )+ c1

θp
exp(−c2n(d−1)/2d)

≤ c′1 exp(−c′2n) + c1
θp

exp(−c2n(d−1)/2d) .

This yields the result.

5.2 Construction of a continuous set
To study the upper large deviations, we needed to go from a continuous object to a discrete

object. In this section, we do the opposite. From now on, we will always condition on the event
{0 ∈ C∞}. We start with Gn ∈ Gn and we build a continuous object Pn. Our goal is to build a
continuous object of finite perimeter which is close to n−(d−1)|∂oGn|. Although it seems natural
to take the continuous object Pn = n−1(Gn + [−1/2, 1/2]d), this turns out to be a bad choice
because the boundary ∂Gn may be very tangled and its size may be of higher order than nd−1.
We will build from Gn a graph Fn with a smoother boundary Γn ⊂ Ed in order to build the
continuous object Pn. At this point, there is some work left. If we consider the subgraph Fn that
contains all the vertices in C∞ enclosed in Γn, the symmetric difference Fn∆Gn may be big due
to the presence of holes in Gn, more precisely portions of C∞ enclosed in Γn but not contained
in Gn (see Figure 2.5). Indeed, if these holes are too large, the symmetric difference Fn∆Gn
will be large too. However, we cannot keep all the holes in Gn to build Fn because when we
will pass to a continuous object Pn, these holes will considerably increase the perimeter of Pn so
that Pn may have a too large perimeter. The solution is to fill only the small holes to obtain Fn
so that the perimeter of Pn remains of the correct order and the symmetric difference Fn∆Gn
remains small. In order to do so, we shall perform Zhang’s construction in [73] to obtain a smooth
boundary Γn for Gn but also to surgically remove these large holes from Gn by cutting along a
smooth boundary. This work was done in [44]. We will only partially sketch Zhang’s construction
and we refer to [73] for a rigorous proof and more details about the construction. Although we
did the same construction as Gold in [44], we do not use the same argument to conclude. Gold
used a procedure called webbing to link all the different contours together in order to obtain
a single connected object, this simplifies the combinatorial estimates. Here, we do not perform
the webbing procedure, instead we use adequate combinatorial estimates. Avoiding the webbing
procedure enables us to extend the result to dimension 2.

Let us define a renormalization process. For a large integer k, that will be chosen later, we set
Bk = [−k, k[d∩Zd and define the following family of k-cubes, for i ∈ Zd,

Bk(i) = τi(2k+1)(Bk) ,

where τb denotes the shift in Zd with vector b ∈ Zd. The lattice Zd is the disjoint union of this
family: Zd = ti∈ZdBk(i). We introduce larger boxes B′k, for i ∈ Zd, we define

B′k(i) = τi(2k+1)(B3k).

Underscore will be used to denote sets of cubes. For any set of k-cubes A, the set A′ denotes
the set of the corresponding 3k-cubes. Let Gn ∈ Gn. We first use Zhang’s construction to build
a smooth cutset Γn that separates Gn from infinity. We denote by A the set of k-cubes that
intersect ∂eGn, the exterior edge boundary of Gn. We then modify the current configuration ω
into a configuration ω′ by closing all the open edges in ∂Gn. This procedure is only formal as
we will eventually reopen these edges. Zhang’s construction enables us to extract a set of cubes
Γ ⊂ A such that Γ is ∗-connected and in the configuration ω′, the union of the 3k-cubes of Γ′
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contains a closed cutset Γn that isolates Gn from infinity and a rare event occurs in every cube
of Γ. These rare events are due to the existence of a closed cutset that creates a large interface
of closed edges, this is a very unlikely event when p > pc(d). Of course, when we will eventually
switch back to the configuration ω, these rare events will not occur anymore in some cubes.

Several connected components of C∞ \Gn in Zd \ Γn are enclosed in Γn (see Figure 2.5). We
say that a connected component C of C∞ is surrounded by Γn if any path from C to infinity has
to use an edge of Γn. We will say that C is large if |C| ≥ n1−1/2(d−1). We enumerate the large
connected components L1, . . . , Lm and the small connected component S1, . . . , SN . We denote by
m(Gn) the number of large connected components of C∞ \Gn enclosed in Γn.

Remark 5.3. We insist here on the fact that these large components are not holes of the infinite
cluster but holes of Gn (see Figure 2.5). Intuitively, we do not expect that a minimizer contains
such holes because the graph obtained by filling all these holes have a smaller isoperimetric ratio.
Indeed, by filling these holes, we reduce the open edge boundary and increase the volume. However,
by filling these holes, the volume may exceed nd and the graph we obtain by filling these holes may
not be admissible. That is the reason why we cannot easily discard the presence of these large holes
inside Gn. To obtain the proper order of large deviations, one would have to fix this issue.

We then build Fn ⊂ C∞ by filling the small connected components S1, . . . , SN of Gn, i.e.,

Fn = Gn ∪
N⋃
i=1

Si . (5.1)

At this point, the boundary ∂Fn \ ∂eFn of Fn may be still tangled around the large components.
In the configuration ω′, for each 1 ≤ j ≤ m, there exists a closed cutset that separates Lj from
infinity. We can apply Zhang’s construction to each component Lj in order to build a smooth
closed cutset Γ̂(j)

n and its corresponding set of k-cubes Γ̂
(j)
n . Thanks to Zhang’s construction, the

set of cubes Γ̂
(j)
n is ∗-connected and in the configuration ω′, a rare event occurs in each of its

cubes. We denote the boundary of Fn by Γ̃n and its associated set of k-cubes Γ̃n as

Γ̃n = Γn ∪
m⋃
i=1

Γ̂(i)
n , Γ̃n = Γn ∪

m⋃
i=1

Γ̂
(i)
n .

Gn

Γn

a small
component Si

a large component Lj

Γ̂jn

Figure 2.5 – Construction of Γ̃n for a Gn ∈ Gn

The set of k-cubes Γ̃n is not ∗-connected. It only contains cubes where a rare event occurs in the
configuration ω′. Although for some cubes these events do not occur anymore in the configuration
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ω, we can bound from below the number of cubes that remain unchanged by |Γ̃n|−|∂oGn|. In these
cubes, rare events still occur when we switch back to the original configuration ω. Using a Peierls
argument, we can deduce that, with high probability, |Γ̃n| and |∂oGn| are of same order when
k is taken large enough. To perform the combinatorial estimates we will need the two following
propositions.

Proposition 5.4 (Lemmas 6, 7 in [73]). Let d ≥ 2 and let p > pc(d). There exist positive
constants C1 and C2 depending only on p and d such that for each k-cube Bk,

P(a rare event occurs in Bk) ≤ C1 e−C2k .

Moreover, this rare event depends only on the configuration of the 3k-cube B′k.

Remark 5.5. We do not define here what these rare events are, we refer to [73] for a precise
definition of these rare events. For our purpose we only need to know that the decay is exponential
in k. We say that a cube is abnormal if a rare event occurs in this cube.

Proposition 5.6. Let d ≥ 2 and p > pc(d). There exist positive constants c1, c2 and c3 such that

P
(
∃Gn ∈ Gn, m(Gn) > c3n

d−2+3/2d ∣∣ 0 ∈ C∞) ≤ c1 exp(−c2n1−3/2d) .

Proof. Thanks to Theorem 1.4, there exist positive constants C ′1, C ′2 and C ′3 depending only on p
and d such that for all n ≥ 1,

P
(
ϕn ≥ C ′3n−1 ∣∣ 0 ∈ C∞ ) ≤ C ′1 exp(−C ′2n) .

Let Gn ∈ Gn. We have with probability at least 1− C ′1 exp(−C ′2n) that

|∂oGn| ≤ C ′3n−1|Gn| ≤ C ′3nd−1 .

Thanks to Proposition 5.2, there exist positive constants c′1, c′2 and c′3 depending only on p and d
such that, for all t ≥ 0, we have

P
(

There exists an open connected graph containing 0
such that |G| ≥ td/(d−1), |∂oG| ≤ c′3|G|(d−1)/d

)
≤ c′1 exp(−c′2t) . (5.2)

In the following, we set t = n(1−1/2(d−1))(d−1)/d = n1−3/2d. First notice that by construction, each
Lj is contained in [−nd, nd]d ∩ Zd. We have

P
(
∃Gn ∈ Gn, ∃i ∈ {1, . . . ,m(Gn)}, |∂oLi| ≤ c′3n(1−1/2(d−1))d/(d−1) ∣∣ 0 ∈ C∞ )

≤ P
(
∃Gn ∈ Gn, ∃i ∈ {1, . . . ,m(Gn)}, |∂oLi| ≤ c′3|Li|d/(d−1) ∣∣ 0 ∈ C∞)

≤ 1
θp

P
(

There exists an open connected graph G contained in
[−nd, nd]d ∩ Zd such that |G| ≥ td/(d−1), |∂oG| ≤ c′3|G|(d−1)/d

)
≤ 1
θp

∑
x∈[−nd,nd]d∩Zd

P
(

There exists an open connected graph G containing
x such that |G| ≥ td/(d−1), |∂oG| ≤ c′3|G|(d−1)/d

)
.

Using the translation invariance together with inequality (5.2), we obtain

P
(
∃Gn ∈ Gn, ∃i ∈ {1, . . . ,m(Gn)}, |∂oLi| ≤ c′3n(1−ε)d/(d−1)

∣∣∣ 0 ∈ C∞ )
≤ (2nd)d

θp
P
(

There exists an open connected graph G containing 0
such that |G| ≥ td/(d−1), |∂oG| ≤ c′3|G|(d−1)/d

)
≤ (2nd)d

θp
c′1 exp(−c′2n1−3/2d) .
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By construction, for all i ∈ {1, . . . ,m(Gn)}, we have ∂oLi ⊂ ∂oGn and for all j ∈ {1, . . . ,m(Gn)}
such that i 6= j, we have ∂oLi ∩ ∂oLj = ∅. Thus, with high probability,

m(Gn) ≤ |∂oGn|
c′3n

(1−ε)d/(d−1) ≤
C ′3n

d−1

c′3n
1−3/2d ≤

C ′3
c′3
nd−2+3/2d .

Finally, by setting c3 = C ′3/c
′
3, we obtain

P
(
∃Gn ∈ Gn, m(Gn) > c3n

d−2+3/2d ∣∣ 0 ∈ C∞ )
≤ P

(
ϕn ≥ c′3n−1 ∣∣ 0 ∈ C∞ )+ P

(
∃Gn ∈ Gn, ∃i ∈ {1, . . . ,m(Gn)},
|∂oLi| ≤ c′3n(1−ε)d/(d−1)

∣∣∣ 0 ∈ C∞)
≤ C ′1 exp(−C ′2n) + (2nd)d

θp
c′1 exp(−c′2n1−3/2d) .

This yields the result.

Using the control on the number of large componentsm(Gn) of C∞ enclosed in Γn and a Peierls
argument, we obtain the following control of |Γ̃n|:

Proposition 5.7. Let d ≥ 2 and p > pc(d). There exist positive constants β0, C1, C2 depending
only on d and p such that, for all n ≥ 1, for all β ≥ β0,

P
(

max
Gn∈Gn

|Γ̃n| ≥ βnd−1 ∣∣ 0 ∈ C∞) ≤ C1 exp(−C2n
1−3/2d) .

Proof. Let k be a large integer that we will choose later. We consider a renormalization process
of parameter k. Let Gn ∈ Gn. First notice that as Γ̃n ⊂

⋃
B∈Γ̃

n

B′, we have

|Γ̃n| ≤ (6k)d|Γ̃n| .

Thus, it is enough to control the quantity |Γ̃n| to prove Proposition 5.7. We can rewrite Γ̃n as

Γ̃n =
m′⋃
i=1

Ai with m′ ≤ m(Gn)

where the Ai are pairwise disjoint ∗-connected sets of cubes. Thanks to Theorem 1.4, there exist
positive constants C ′1, C ′2 and C ′3 depending only on p and d such that for all n ≥ 1,

P
(
ϕn ≥ C ′3n−1 ∣∣ 0 ∈ C∞ ) ≤ C ′1 exp(−C ′2n) . (5.3)

Let Gn ∈ Gn. We have with probability at least 1− C ′1 exp(−C ′2n) that

|∂oGn| ≤ C ′3nd−1 .

We choose β large enough such that

C ′3 ≤
β

2 · 4d ,

so that

|∂oGn| ≤ C ′3nd−1 ≤ β

2 · 4dn
d−1 .

We now want to sum over the possible realizations of Γ̃n. Using Proposition 5.6 together with
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inequality (5.3), we get

P
(
∃Gn ∈ Gn, |Γ̃n| ≥ βnd−1

∣∣∣ 0 ∈ C∞)
≤ P

(
∃Gn ∈ Gn,

∑m′

i=1 |Ai| ≥ βnd−1, m′ ≤ c′3nd−2+3/2d,

|∂oGn| ≤ β
2·4dn

d−1

∣∣∣ 0 ∈ C∞)
+ c1 exp(−c2n1−3/2d) + C ′1 exp(−C ′2n)

≤
∑

j≥βnd−1

c′3n
d−2+3/2d∑
m′=1

∑
j1+···+jm′=j
j1>0, ...,jm′>0

∑
x1,...,xm′∈[−nd,nd]d

∑
A1∈Animalsx1
|A1|=j1

· · ·

· · ·
∑

Am′∈Animalsx
m′

|Am′ |=jm′

P
(
∃Gn ∈ Gn, Γ̃n =

m′⋃
i=1

Ai, |∂oGn| ≤
β

2 · 4dn
d−1

∣∣∣ 0 ∈ C∞)

+ c1 exp(−c2n1−3/2d) + C ′1 exp(−C ′2n) . (5.4)

Let us assume Γ̃n =
⋃m′
i=1Ai. We can extract from Γ̃n a set of k-cubes Γ̃′n such that |Γ̃′n| ≥

|Γ̃n|/4d and for any i 6= j such that Bk(i), Bk(j) ∈ Γ̃′n we have B′k(i) ∩ B′k(j) = ∅. As the
rare event depends only on the configuration in the 3k-cube B′k(j), the two following events{
a rare event occurs in Bk(i)

}
and

{
a rare event occurs in Bk(j)

}
are independent. Using Propo-

sition 5.4, we obtain

P

∃Gn ∈ Gn, Γ̃n =
m′⋃
i=1

Ai, |∂oGn| ≤
β

2 · 4dn
d−1

∣∣∣ 0 ∈ C∞


≤ P

∃Gn ∈ Gn, Γ̃n =
m′⋃
i=1

Ai, |Γ̃′n| ≥ j/4d, |∂oGn| ≤
β

2 · 4dn
d−1

∣∣∣ 0 ∈ C∞


≤ P

(
∃Gn ∈ Gn,

Γ̃n =
⋃m′
i=1Ai, |∂oGn| ≤

β
2·4dn

d−1,

|{B ⊂ Γ̃′n, B abnormal}| ≥ j/4d − |∂oGn|

∣∣∣ 0 ∈ C∞)

≤ P

∃Gn ∈ Gn, Γ̃n =
m′⋃
i=1

Ai, |{B ⊂ Γ̃′n, B abnormal}| ≥ j/(2.4d)

 · 1
θp

≤ 4d

θp

∑
l≥j/(2.4d)

(
C1 e−C2k

)l ≤ 2 · 4d

θp

(
C1 e−C2k

)j/(2.4d)

where k will be chosen large enough such that C1 e−C2k ≤ 1/2. So together with inequality (5.4)
and using Lemma 2.1, we obtain

P
(
∃Gn ∈ Gn, |Γ̃n| ≥ βnd−1 ∣∣ 0 ∈ C∞)
≤

∑
j≥βnd−1

c′3n
d−2+3/2d∑
m′=1

∑
j1+···+jm′=j
j1>0, ...,jm′>0

∑
x1,...,xm′∈[−nd,nd]d

∑
A1∈Animalsx1
|A1|=j1

· · ·

· · ·
∑

Am′∈Animalsx
m′

|Am′ |=jm′

2 · 4d

θp

(
C1 e−C2k

)j/(2.4d) + c1 e−c2n
1−3/2d

+C ′1 e−C
′
2n

≤ 2 · 4d

θp

∑
j≥βnd−1

(
C1 e−C2k

) j

2.4d

c′3n
d−2+3/2d∑
m′=1

∑
j1+···+jm′=j
j1>0, ...,jm′>0

(2n)d
2m′7dj1 · · · 7djm′
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+ c1 e−c2n
1−3/2d

+C ′1 e−C
′
2n

≤ 2 · 4d

θp

∑
j≥βnd−1

7dj
(
C1 e−C2k

)j/(2.4d)
c′3n

d−2+3/2d∑
m′=1

(2nd)dm
′
·

×
∣∣∣∣{ (j1, . . . , jm′) : j1 + · · ·+ jm′ = j,

j1 > 0, . . . , jm′ > 0

}∣∣∣∣+ c1 e−c2n
1−3/2d

+C ′1 e−C
′
2n

≤ 2 · 4d

θp
(2nd)d(c′3n

d−2+3/2d+2)
∑

j≥βnd−1

(2 · 7d)j
(
C1 e−C2k

)j/(2.4d)

+ c1 e−c2n
1−3/2d

+C ′1 e−C
′
2n .

We now choose k large enough such that

C1 e−C2k ≤ 1
2 and

(
(2 · 7d)2·4dC1 e−C2k

)1/(2.4d)
≤ e−1 .

Finally, we get

P
(
∃Gn ∈ Gn, |Γ̃n| ≥ βnd−1 ∣∣ 0 ∈ C∞)
≤ 2(2nd)d(c′3n

d−2+3/2d+2)4d

θp

∑
j≥βnd−1

(
(2 · 7d)2·4dC1 e−C2k

)j/(2.4d)

+ c1 e−c2n
1−3/2d

+C ′1 e−C
′
2n

≤
4d+1 exp

(
2d2c′3n

d−2+3/2d logn− βnd−1)
θp

+ c1 e−c2n
1−3/2d

+C ′1 e−C
′
2n .

This yields the result for β ≥ β0 where β0 is such that for all n ≥ 0, we have β0 > (4d2c′3 logn)/n1−3/2d.

We can now build the relevant continuous object Pn. Given a finite set of edges S, we define

hull(S) =
{
x ∈ Zd : any path from x to infinity has to use an edge of S

}
and

Hn = hull(Γn) \
(

m⋃
i=1

hull(Γ̂(i)
n )
)
.

We define Pn and its associated measure νn as

Pn = 1
n

(
Hn +

[
−1

2 ,
1
2

]d)
,

∀E ∈ B
(
Rd
)
, νn(E) = θpLd(Pn ∩ E) .

We obtain a control on the size of the perimeter of Pn by a straightforward application of Propo-
sition 5.7:

Corollary 5.8. Let d ≥ 2 and p > pc(d). There exist positive constants β0, C1, C2 depending
only on d and p such that for all n ≥ 1, for all β > β0,

P
(

max
Gn∈Gn

P(nPn) ≥ βnd−1 ∣∣ 0 ∈ C∞) ≤ C1 e−c2n
1−3/2d

.

The following Lemma will be useful to compare the measure νn with the measure associated to
Fn.

Lemma 5.9. Let Gn ∈ Gn and Fn as defined in (5.1). We have Fn = Hn ∩ C∞.
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Proof. Let Gn ∈ Gn. Let x ∈ Hn∩C∞, then x belongs to C∞∩hull Γn but is not in any of the large
connected components L1, . . . , Lm. Therefore, x belongs to Gn or to one of the small components
S1, . . . , SN and so x ∈ Fn.

Conversely, let x ∈ Fn. It is clear that x ∈ hull(Γn). Let us assume x ∈ Gn and that there
exists i such that x ∈ hull(Γ̂(i)

n ). As Gn is connected there exists an open path γ in Gn that joins
x with Gn \ Γ̂(i)

n . As the edges of Γ̂(i)
n \ ∂oLi are closed, γ must use an edge of ∂oLi and so go

through a vertex of Li. That is a contradiction as the path γ uses only vertices in Gn. Let us now
assume that x ∈ Sj and x ∈ hull(Γ̂(i)

n ) for some i and j. As x ∈ C∞, x is connected to infinity
by an open path γ′. However, by the same arguments, to exit hull(Γ̂(i)

n ), the path γ′ has to go
through a vertex of Li. Thus, there exist an open path in C∞ \Gn that joins x to Li. That is a
contradiction as x /∈ Li.

Finally, Fn ⊂ Hn ∩ C∞.

5.3 Closeness of measures
We shall show that for any ball of constant radius centered at a point x ∈ Zd, the measures

νn and µn restricted to this ball are close to each other in some weak sense.

Proposition 5.10. Let p > pc(d) and r > 0. Let u :]0,+∞[→]0,+∞[ be a non-decreasing
function such that limt→0 u(t) = 0. For all δ > 0, there exist C1 and C2 depending on d, p, u and
δ such that for all n ≥ 1, for any finite set Fn of uniformly continuous functions that satisfies:

∀f ∈ Fn ‖f‖∞ ≤ 1 and ∀x, y ∈ Rd |f(x)− f(y)| ≤ u(‖x− y‖2) ,

we have

P

(
max
Gn∈Gn

sup
f∈Fn

|µn(f1B(x,r))− νn(f1B(x,r))| > δ
∣∣∣ 0 ∈ C∞) ≤ C1 e−C2n

1−3/2d
.

Remark 5.11. We state here the result in a general form. In the following, we will apply this
Proposition for the particular case of sets of functions that are translates of the same function.
The function u is an upper bound on the modulus of continuity of the functions in Fn. If we think
of Fn as a set that grows with n, this condition may be interpreted as a sufficient condition to
obtain compactness for the set Fn in the limit.

To prove this result, we will need the following proposition that is a corollary of the results in [60]:

Proposition 5.12. Let d ≥ 2 and p > pc(d). Let r > 0, and let Q ⊂ Rd be a cube of side length
2r. Let δ > 0. There exist positive constants c1 and c2 depending on d, p and δ such that

P
(
|C∞ ∩Q|
Ld(Q) /∈ (θp − δ, θp + δ)

)
≤ c1 exp(−c2rd−1) .

Proof of Proposition 5.10 . Let δ > 0 and ε > 0 that we will choose later. Let u :]0,+∞[→]0,+∞[
be a non-decreasing function such that limt→0 u(t) = 0. Let n ≥ 1. Let Fn be a finite set of
uniformly continuous function that satisfies:

∀f ∈ Fn ‖f‖∞ ≤ 1 and ∀x, y ∈ Rd |f(x)− f(y)| ≤ u(‖x− y‖2) ,

We fix a minimizer Gn ∈ Gn. We define

µ̃n = 1
nd

∑
x∈V (Fn)

δx/n .

Thanks to Theorem 1.4, there exists a constant η3 depending only on the dimension such that

P
(
nϕn ≥ η3

∣∣∣ 0 ∈ C∞) ≤ C1 exp(−C2n) .
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Let Gn ∈ Gn, with probability at least 1− C1 exp(−C2n), we have

n|∂oGn|
|Gn|

≤ η3,

and so |∂oGn| ≤ η3n
d−1. As each small component Sj is such that ∂oSj ∩ ∂oGn 6= ∅, the number

N of small components is at most η3n
d−1 and by definition of Fn,

|Fn \Gn| ≤
N∑
j=1
|Sj | ≤ η3n

d−1/2(d−1) .

Finally, with probability at least 1− C1 exp(−C2n), for all f ∈ Fn,

|µn(f)− µ̃n(f)| ≤ 1
nd
‖f‖∞|Fn \Gn| ≤ η3n

−1/2(d−1) ,

and

P

(
max
Gn∈Gn

sup
f∈Fn

|µn(f1B(x,r))− µ̃n(f1B(x,r))| > η3n
−1/2(d−1)

)
≤ C1 e−C2n (5.5)

where P represents the probability measure conditioned on the event {0 ∈ C∞}. Let x ∈ Rd and
let r > 0. Let f ∈ Fn. We now would like to estimate the quantity

|µ̃n(f1B(x,r))− νn(f1B(x,r))| .

We adapt the proof of 16.2 in [20]. We use again a renormalization argument but at a different
scale L. We consider the lattice rescaled by this factor L. We say that a cluster C is crossing
in a box B if for any two opposite faces of B, the cluster C contains an open path in B that
joins these two faces. Let ε > 0. For y ∈ Zd, we define Bn(y) = (2Ly/n) + [−L/n,L/n]d and
B′n(y) = (2Ly/n) + [−3L/n, 3L/n]d. Let X(y) be the indicator function of the event En(y). This
event occurs if
• Inside nB′n(y), there is a unique crossing cluster C ′ that crosses the 3d sub-boxes of nB′n(y).
Moreover, C ′ is the only cluster in nB′n(y) of diameter larger than L.
• Inside nBn(y), there is a crossing cluster C∗ such that

|C∗| ≥ (θp − ε)Ld(nBn(y)) .

• We have
∣∣{x ∈ nBn(y) : x←→ ∂(nBn(y))}

∣∣ ≤ (θp + ε)Ld(nBn(y)).
On the event En(y), any cluster C ⊂ nBn(y) that is connected by an open path to ∂(nB′n(y))

is the unique crossing cluster, i.e., C = C ′ = C∗ and so it also satisfies

|C|
Ld(nBn(y)) ∈ [θp − ε, θp + ε] .

The family (X(y))y∈Zd is a site percolation process on the macroscopic lattice. The states of the
sites are not independent from each other but there is only a short range dependency. Indeed, for
any y and z such that |y− z|∞ ≥ 3, we have that X(y) and X(z) are independent. We define the
connected component C(y) of y as

C(y) =
{
z ∈ Zd : z is connected to y by a macroscopic open path

}
.

Let
D = {y ∈ Zd : Bn(y) ⊂ B(x, r)} .

We have

|D|Ld ≤ ndLd(B(x, r)). (5.6)
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There exists an integer n0 = n0(u(ε)) such that, for n ≥ n0(u(ε)), we have L/n ≤ u(ε) so that

Ld
B(x, r) \

⋃
y∈D

Bn(y)

 ≤ εLd(B(x, r)),

∀w, z ∈ Rd, ‖w − z‖2 ≤
L

n
⇒ |f(w)− f(z)| ≤ ε .

The last statement comes from the fact that f belongs to Fn. By decomposing |µ̃n(f1B(x,r)) −
νn(f1B(x,r))| on cubes of size L/n, we obtain:

|µ̃n(f1B(x,r))− νn(f1B(x,r))|

≤ 2Ld
B(x, r) \

⋃
y∈D

Bn(y)

+
∑
y∈D

∣∣∣∣∣
∫
Bn(y)

fdµ̃n −
∫
Bn(y)

fdνn

∣∣∣∣∣
≤ 4εLd(B(x, r)) +

∑
y∈D

∣∣µ̃n(Bn(y))− νn(Bn(y))
∣∣ . (5.7)

Let y ∈ D. We need to distinguish several cases:
• If Bn(y) ∩ Pn = ∅, then νn(Bn(y)) = µ̃n(Bn(y)) = 0. From now on we will only consider cubes
such that Bn(y) ∩ Pn 6= ∅.
• If Bn(y) 6⊂ Pn, then we bound

|µ̃n(Bn(y))− νn(Bn(y))| ≤ 1
nd
|Bn(y)|

and as Bn(y) ∩ Pn 6= ∅, the cube intersects the boundary of Pn. Thus,

Bn(y) ⊂
{
z ∈ Rd : d∞(z, ∂Pn ∩B(x, r)) ≤ L

n

}
.

Moreover,

Ld
({

z ∈ Rd : d∞(z, ∂Pn ∩B(x, r)) ≤ L

n

})
≤
∣∣∣{x ∈ Hn, ∃y ∈ Zd \Hn, ‖x− y‖1 = 1

}
∩B(nx, nr + d)

∣∣∣ (2L+ 2
n

)d
≤ P(nPn, B(nx, nr + d))

(
3L
n

)d
≤ P(Pn, B(x, r + d)) (3L)d

n
.

• If Bn(y) ⊂ Pn and |C(y)| =∞, then the crossing cluster C∗ of Bn(y) is a portion of C∞ and

νn(Bn(y)) = θp
Ld(nBn(y))

nd
and µ̃n(Bn(y)) =

|(nBn(y)) ∩ C∗|
nd

.

Thus, we have
µ̃n(Bn(y)) ∈

[
(θp − ε)Ld(Bn(y)), (θp + ε)Ld(Bn(y))

]
and

|µ̃n(Bn(y))− νn(Bn(y))| ≤ εLd(Bn(y)) .

• If Bn(y) ⊂ Pn and |C(y)| <∞, then we bound

|µ̃n(Bn(y))− νn(Bn(y))| ≤ Ld(Bn(y))1|C(y)|<∞ .
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By summing the previous inequalities over y ∈ D, thanks to inequality (5.6) and (5.7), we obtain

|µ̃n(f1B(x,r))− νn(f1B(x,r))|

≤ Ld(B(x, r))
(

5ε+ 1
|D|

∑
y∈D

1|C(y)|<∞

)
+ P(Pn, B(x, r + d)) (3L)d

n
.

Let c(r) = 6Ld(B(0, r)) + 3d, we get

P

(
max
Gn∈Gn

sup
f∈Fn

|µ̃n(f1B(x,r))− νn(f1B(x,r))| > c(r)ε
)

≤ 1
θp

P

 1
|D|

∑
y∈D

1|C(y)|<∞ ≥ ε

+ P
(

max
Gn∈Gn

P(Pn, B(x, r + d)) ≥ ε n
Ld

)
. (5.8)

Besides, using Corollary 5.8, for n large enough, we obtain

P
(

max
Gn∈Gn

P(Pn, B(x, r + d)) ≥ ε n
Ld

)
≤ P

(
max
Gn∈Gn

P(Pn) ≥ β
)
≤ c1 e−c2n

1−3/2d
. (5.9)

Let Λ be the cube centered at x of side length 2r. We define

Λ =
{
y ∈ Zd : Bn(y) ⊂ Λ

}
.

As B(x, r) ⊂ Λ, we have D ⊂ Λ and

1
|D|

∑
y∈D

1|C(y)|<∞ ≤
(2d)d

|Λ|
∑
y∈Λ

1|C(y)|<∞ . (5.10)

Let q ∈ [0, 1] be such that θq > 1−ε/(2(2d)d). As the family (X(y))y∈Zd is identically distributed,
has a short range dependency and is such that P(X(0) = 1) goes to 1 when L goes to infinity (see
for instance Chapter 9 in [19]), then we can apply Liggett Schonmann and Stacey’s result [55]:
for L large enough, the family (X(y), y ∈ Zd) stochastically dominates (X̃(y), y ∈ Zd) a family
of independent Bernoulli variable of parameter q. We denote by C̃∞ the unique infinite cluster of
the Bernoulli field (X̃(y))y∈Zd . Using inequality (5.10) and the stochastic domination, we get

P

 1
|D|

∑
y∈D

1|C(y)|<∞ ≥ ε

 ≤ P

 (2d)d

|Λ|
∑
y∈Λ

1|C(y)|<∞ ≥ ε


≤ P

 1
|Λ|
∑
y∈Λ

1
y/∈C̃∞

≥ ε

(2d)d


≤ P


∣∣∣Λ ∩ C̃∞∣∣∣
|Λ| /∈

(
θq −

ε

2(2d)d , θq + ε

2(2d)d

) .

Using Proposition 5.12, we obtain

P

 1
|D|

∑
y∈D

1|C(y)|<∞ ≥ ε

 ≤ c′1 exp
(
−c′2

(rn
L

)d−1
)
. (5.11)

We set ε = δ/(2c(r)). Finally, thanks to inequalities (5.5), (5.8), (5.9) and (5.11), we have for
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n ≥ n0(u(ε))

P

(
max
Gn∈Gn

sup
f∈Fn

|µ̃n(f1B(x,r))− νn(f1B(x,r))| > δ

)

≤ P

(
max
Gn∈Gn

sup
f∈Fn

|µn(f)− µ̃n(f)| > δ/2
)

+ P

(
max
Gn∈Gn

sup
f∈Fn

|µ̃n(f1B(x,r))− νn(f1B(x,r))| > c(r)ε
)

≤ C1 exp(−C2n) + c′1
θp

exp
(
−c′2

(rn
L

)d−1
)

+ c1 e−c2n
1−3/2d

.

The result follows.

6 Lower large deviations and shape Theorem
6.1 Closeness to the set of Wulff shapes

The aim of this section is to prove Theorem 1.7.

Proof of Theorem 1.7. Let ε > 0. Let ξ > 0 that we will choose later depending on ε. We define
λ such that

1− λ = 1
1 + ξ

.

We denote by Wξ:

Wξ =
{
νW+x : x ∈ Rd, W is a dilate of Wp such that

Ld((1− λ)Wp) ≤ Ld(W ) ≤ Ld((1 + 2ξ)Wp)

}
.

Let u :]0,+∞[→]0,+∞[ be a non-decreasing function such that limt→0 u(t) = 0. Let n ≥ 1. Let
Fn be a finite set of uniformly continuous function that satisfies for all f ∈ Fn,

‖f‖∞ ≤ 1 and ∀x, y ∈ Rd, |f(x)− f(y)| ≤ u(‖x− y‖2) .

We define the weak neighborhood V(Wξ,Fn, ε) of Wξ given Fn and ε as

V(Wξ,Fn, ε) =
{
ν ∈M(Rd) : ∃µ ∈ Wξ, sup

f∈Fn
|ν(f)− µ(f)| ≤ ε

}
.

Our goal is to show that µn is in the set V(Wξ,Fn, ε) with high probability.
Step (i): Let Gn ∈ Gn. Thanks to Proposition 5.10, the measures µn and νn associated with Pn
and Gn are locally close to each other. In the following, it will be more convenient to work with
the continuous object Pn instead of Gn. We can localize almost all the volume of Pn in a random
region that is a union of balls of constant radius. We follow the method in Chapter 17 in [19]. We
can cover Pn in Rd, up to a small fractional volume, by a finite number of random disjoint balls
of constant size. Thanks to the isoperimetric inequalities, we can then control the volume of Pn
outside of these balls. Let δ > 0 be a real number that we will choose later. We denote by X:

X =
{
x ∈ Zd : Ld(B(x, 1) ∩ Pn) ≥ δ

}
.

On the event
{
|Γ̃n| ≤ βnd−1 }, the set X is included in B(0, βnd−2) and is therefore finite. As

each point in Rd belongs to at most 2d balls among the B(x, 1), x ∈ Zd, then using Proposition
2.4

δ|X| ≤
∑
x∈X
Ld(B(x, 1) ∩ Pn) ≤ 2dLd(Pn) ≤ 2dcisoP(Pn)

d
d−1 ≤ 2dcisoβ

d
d−1
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and finally |X| ≤ M where M = 2dcisoβ
d
d−1 /δ. We now would like to control the volume of Pn

outside the balls B(x, 1) in X, i.e., to bound the measure of Pn \
⋃
x∈X B(x, 1). For x ∈ Zd \X,

by the isoperimetric inequality in Proposition 2.4, we obtain as in section 17 in [19]

Ld
(
Pn \

⋃
x∈X

B(x, 1)
)
≤

∑
x∈Zd\X

Ld(Pn ∩B(x, 1))

≤ δ1/db
d
d−1
iso

∑
x∈Zd\X

P(Pn, B̊(x, 1))

= δ1/db
d
d−1
iso

∑
x∈Zd\X

Hd−1(∂∗Pn ∩ B̊(x, 1))

≤ 2dδ1/db
d
d−1
iso H

d−1(∂∗(Pn)) = 2dδ1/db
d
d−1
iso P(Pn)

≤ 2dδ1/db
d
d−1
iso β. (6.1)

We note η = 2dδ1/db
d
d−1
iso β. Therefore, if P(Pn) ≤ β, then X ⊂ B(0, βnd−2), |X| ≤ M and

Ld(Pn \ ∪x∈XB(x, 1)) ≤ η.

0

A ball B(y, r) with
(y, r) ∈ E(X)

Pn

Figure 2.6 – Covering almost all the volume of Pn by balls of constant radius

We next would like to perform a kind of surgery between the balls. To do so, we shall first
build from the balls (B(x, 1))x∈X a family of balls that covers ∪x∈XB(x, 1) and such that the balls
are far apart (see Figure 2.6). This is the purpose of Lemma 17.1. in [19]. We obtain a subset

E(X) = {(y1, r1), . . . , (ym, rm)} ⊂ X ×
{

1, . . . , 3|X|
}

such that |E(X)| ≤ |X| and
— ∀(a, r) ∈ E(X), B(a, r) ∩X 6= ∅
— ∪x∈XB(x, 1) ⊂ ∪(a,r)∈E(X)B(a, r)
— ∀(a, r), (b, s) ∈ E(X), (a, r) 6= (b, s)⇒ B(a, r + 1) ∩B(b, s+ 1) = ∅
We set

ϕWp
= Ip(Wp)
θpLd(Wp)

.
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Let δ′ > 0 be a real number that we will choose later. By applying Corollary 5.8 and Theorem
1.4, we obtain by conditioning on E(X),

P
(
∃Gn ∈ Gn, µn /∈ V(Wξ,Fn, ε)

∣∣∣ 0 ∈ C∞)
≤ P( max

Gn∈Gn
P(nPn) ≥ βnd−1) + P(nϕn > (1 + δ′)ϕWp)

+ P(∃Gn ∈ Gn, µn /∈ V(Wξ,Fn, ε), P(Pn) ≤ β, nϕn ≤ (1 + δ′)ϕWp ])
≤ b1 exp(−b2n1−3/2d) + b′1 exp(−b′2n)

+
∑

1≤m≤M

∑
y1,...,ym

∑
r1,...,rm

P

 ∃Gn ∈ Gn, µn /∈ V(Wξ,Fn, ε),
E(X) = {(y1, r1), . . . , (ym, rm)}
P(Pn) ≤ β, nϕn ≤ (1 + δ′)ϕWp

 , (6.2)

where the second summation is over y1, . . . , ym in Zd ∩ B(0, βnd−2) and the third summation is
over r1, . . . , rm in {1, . . . , 3M}. The number of ways to choose m and r1, . . . , rm is bounded from
above by a constant depending only on M , while the number of ways of choosing the centers
y1, . . . , ym is polynomial in n. We next control the probability inside the sums. We will only focus
on what happens inside the balls.
Step (ii): Let {(y1, r1), . . . , (ym, rm)} be a value for the random set E(X) which occurs with
positive probability. We define Ω = Ω(E(X)) as

Ω =
m⋃
i=1

B̊(yi, ri + 1) ,

and the restriction Pn of Pn to the balls determined by E(X):

Pn = Pn ∩

(
m⋃
i=1

B̊(yi, ri + 1)
)
.

Thus, using inequality (6.1), we have

Ld(Pn \ Pn) ≤ η . (6.3)

We show now that νPn(f) is close to µn(f) with high probability on the event{
E(X) = {(y1, r1), . . . , (ym, rm)}

}
.

It is easy to check that Fn ∪{1} associated with the function u satisfies the conditions required in
Proposition 5.10. So that applying Proposition 5.10 for every r ∈ {1, . . . , 3M}, there exist positive
constants c1, c2 depending on M , u, and δ such that for all x ∈ Zd

max
r∈{1,...,3M}

P

(
max
Gn∈Gn

sup
f∈Fn∪{1}

|νn(f1B(x,r))− µn(f1B(x,r))| >
η

M

)
≤ c1 e−c2n

1−3/2d
.

Thus, using inequality (6.3), we obtain

P

(
max
Gn∈Gn

sup
f∈Fn∪{1}

|νPn(f)− µn(f)| > 2η, E(X) = {(y1, r1), . . . , (ym, rm)}
)

≤
m∑
i=1

P

(
max
Gn∈Gn

sup
f∈Fn∪{1}

|νPn(f1B(yi,ri))− µn(f1B(yi,ri))| > η/M

)

≤M max
r∈{1,...,3M}

P

(
max
Gn∈Gn

sup
f∈Fn∪{1}

|νn(f1B(y1,r))− µn(f1B(y1,r))| > η/M

)
≤Mc1 e−c2n

1−3/2d
. (6.4)
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In particular, on the event {E(X) = {(y1, r1), . . . , (ym, rm)}}, with probability at least 1 −
Mc1 exp(−c2n1−3/2d), we have ∣∣∣∣θpLd(Pn)− |Gn|

nd

∣∣∣∣ ≤ 2η . (6.5)

Moreover, by Lemma 5.1, there exist positive constants η1, D1 and D2 such that

P
(

min
Gn∈Gn

|Gn| ≤ η1n
d

)
≤ D1 exp(−D2n

(d−1)/2d)) .

We recall that η is a function of δ. We will choose δ small enough such that

η ≤ min
(
η1

4 ,
ξd

2 ,
ε

8 ,
η1

3θp

)
. (6.6)

Other conditions will be imposed later on δ.
On the event

{
minGn∈Gn |Gn| > η1n

d
}
, using inequalities (6.5) and (6.6), we obtain

Ld(Pn) ≥ 1
θp

(
|Gn|
nd
− 2η

)
≥ 1
θp

(η1 − 2η) ≥ η1

2θp
(6.7)

and as Ld(Wp) = 1/θp, using inequality (6.5), we have

Ld(Pn) ≤ 1
θp

(
|Gn|
nd

+ 2η
)
≤ 1
θp

(1 + ξd) = Ld(Wp)(1 + ξd) ≤ Ld((1 + ξ)Wp) . (6.8)

For ν ∈ Wξ, we have

sup
f∈Fn

|νPn(f)− ν(f)| ≥ sup
f∈Fn

|µn(f)− ν(f)| − sup
f∈Fn

|µn(f)− νPn(f)| ,

so that, together with inequalities (6.4) and (6.6), with high probability,

µn /∈ V(Wξ,Fn, ε) =⇒ νPn /∈ V(Wξ,Fn, 3ε/4) .

Thus, combining with inequalities (6.7) and (6.8), we have

P
(

∃Gn ∈ Gn, µn /∈ V(Wξ,Fn, ε), P(Pn) ≤ β ,
E(X) = {(y1, r1), . . . , (ym, rm)}, nϕn ≤ (1 + δ′)ϕWp

)
≤ P

(
∃Gn ∈ Gn, νPn /∈ V(Wξ,Fn, 3ε/4), nϕn ≤ (1 + δ′)ϕWp

,
η1
2θp ≤ L

d(Pn) ≤ Ld((1 + ξ)Wp), E(X) = {(y1, r1), . . . , (ym, rm)}

)
+Mc1 e−c2n

1−3/2d
+D1 exp(−D2n

(d−1)/2d) . (6.9)

We do not cover Pn directly but we cover separately each Pn ∩B(yk, rk + 1) for k ∈ {1, . . . ,m}.
For any r ∈ { 1, . . . , 3M }, we define the space

C(r)
β =

{
F ⊂ B̊(0, r + 1), P(F, B̊(0, r + 1)) ≤ β

}
endowed with the topology L1 associated to the distance d(F, F ′) = Ld(F∆F ′), where ∆ is the
symmetric difference between sets. For this topology, the space C(r)

β is compact. Suppose that we
associate to each F ∈ C(r)

β a positive number εF ≤ min(η,Ld(ξWp))/M . The collection of open
sets {

H Borel subset of B̊(0, r + 1) : Ld(H∆F ) < εF

}
, F ∈ C(r)

β ,
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is then an open covering of C(r)
β . By compactness, we can extract a finite covering (F (r)

i , ε
F

(r)
i

)1≤i≤N(r)

of C(r)
β . By union bound, we obtain

P

(
∃Gn ∈ Gn, νPn /∈ V(Wξ,Fn, 3ε/4), nϕn ≤ (1 + δ′)ϕWp ,

η1
2θp ≤ L

d(Pn) ≤ Ld((1 + ξ)Wp), E(X) = {(y1, r1), . . . , (ym, rm)}

)

≤
N(r1)∑
i1=1

· · ·
N(rm)∑
im=1

P(Fi1,...,im) (6.10)

where

Fi1,...,im =



∃Gn ∈ Gn : ∀ 1 ≤ k ≤ m,
Ld((F (rk)

ik
+ yk)∆(Pn ∩B(yk, rk + 1))) ≤ ε

F
(rk)
ik

,

νPn /∈ V(Wξ,Fn, 3ε/4), nϕn ≤ (1 + δ′)ϕWp ,
η1
2θp ≤ L

d(Pn) ≤ Ld((1 + ξ)Wp),
E(X) = {(y1, r1), . . . , (ym, rm)}


.

So we need to study the quantity P(F) for a generic m-uplet (F1, . . . , Fm) ∈ C(r1)
β × · · · × C(rm)

β

and their associated εF1 , . . . , εFm . By definition of the Cheeger constant ϕn, we obtain

P(F) = P

∃Gn ∈ Gn :

∀1 ≤ i ≤ m,
Ld((Fi + yi)∆(Pn ∩B(yi, ri + 1))) ≤ εFi ,

νPn /∈ V(Wξ,Fn, 3ε/4),
|∂oGn| ≤ (1 + δ′)n−1|Gn|ϕWp ,
η1
2θp ≤ L

d(Pn) ≤ Ld((1 + ξ)Wp),
E(X) = {(y1, r1), . . . , (ym, rm)}

 .

To lighten the notations, we set

F =
m⋃
i=1

(Fi + yi) .

We have

Ld(F∆Pn) =
m∑
i=1
Ld((Pn ∩B(yi, ri + 1))∆(Fi + yi))

≤
m∑
i=1

εFi ≤ min(η,Ld(ξWp)) . (6.11)

Whereas the surface tension of F in the interior of these balls corresponds to the surface tension of
our minimizer Gn, the surface tension of F along the boundary of the balls B(yj , rj + 1) does not
correspond to the surface tension of Gn because we have artificially created it. Roughly speaking,
F is the continuous object corresponding to the graph Gn intersected with the nB(yj , rj + 1).
This new graph has extra surface tension compared to Gn due to the fact that we have built it
by cutting Gn along the boundary of these balls. However, our hope is to cut along the boundary
of these balls in such a way that the surface tension we create is negligible. We do not work on
Gn but on the continuous object F , but we have to keep in mind that these two objects are close.
The idea is to cut F in the regions B(yi, ri+ 1)\B(yi, ri), i ∈ {1, . . . ,m}. These regions contain a
negligible volume of Gn and so of F , we want to cut F in these regions along a surface of negligible
perimeter and so of negligible surface tension. By Lemma 14.4 in [19], for i ∈ {1, . . . ,m}, for H1

almost all t in ]0, 1[,

I(F ∩B(yi, ri + t)) ≤ I(F ∩ B̊(yi, ri + t)) + βmaxHd−1(F ∩ ∂B(yi, ri + t)) . (6.12)

Let T be a subset of ]0, 1[ where all the above inequalities hold simultaneously. We recall that for
any i ∈ {1, . . . ,m}, εFi ≤ η/M . We have H1(T ) = 1 and when we integrate in polar coordinates,
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using inequality (6.11),∫
T

m∑
i=1
Hd−1(F ∩ ∂B(yi, ri + t))dt =

m∑
i=1
Ld(F ∩B(yi, ri + 1) \B(yi, ri))

≤
m∑
i=1
Ld((Fi + yi) \B(yi, ri))

≤ Ld
(
Pn \

m⋃
i=1

B(yi, ri)
)

+ Ld(Pn∆F )

≤ 2η .

Thus, there exists t ∈ T such that
m∑
i=1
Hd−1(F ∩ ∂B(yi, ri + t)) ≤ 3η . (6.13)

We next set

F = F ∩

(
m⋃
i=1

B(yi, ri + t)
)
.

Using inequality (6.13), we get

P(F ) ≤ P
(
F ,

m⋃
i=1

B̊(yi, ri + t)
)

+
m∑
i=1
Hd−1(F ∩ ∂B(yi, ri + t))

≤ P

(
F ,

m⋃
i=1

B̊(yi, ri + t)
)

+ 3η , (6.14)

and using Proposition 2.3,

Ip(F ) ≤ Ip

(
F ,

m⋃
i=1

B̊(yi, ri + t)
)

+ 3βmaxη . (6.15)

On the event F , using inequality (6.11), we obtain

Ld(F ) ≤ Ld(F ) + Ld
(
F \

m⋃
i=1

B(yi, ri)
)

≤ Ld(F ) + Ld(F∆Pn) + Ld
(
Pn \

m⋃
i=1

B(yi, ri)
)
≤ Ld(F ) + 2η . (6.16)

Finally, using inequalities (6.14) and (6.16), we obtain

Ip

(
F ,

m⋃
i=1

B̊(yi, ri + t)
)
≥ βmin P

(
F ,

m⋃
i=1

B̊(yi, ri + t)
)
≥ βmin(P(F )− 3η) . (6.17)

and using again inequality (6.11),

Ld(F ) ≥ Ld(Pn)− Ld(Pn∆F ) ≥ η1

2θp
− η . (6.18)

Using the isoperimetric inequalities of Proposition 2.4 and inequalities (6.16) and (6.18), we get

P(F ) ≥
(
Ld(F )
ciso

)1−1/d

≥
(
Ld(F )− 2η

ciso

)1−1/d

≥
(
η1 − 6ηθp

2θpciso

)1−1/d
. (6.19)
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Next, we choose δ small enough to obtain a η that satisfies the following inequalities:

3βmaxη ≤
λβmin

2

((
η1 − 6ηθp

2θpciso

)1−1/d
− 3η

)
, (6.20)

and also
η1 ≥ 6ηθp .

With this choice of δ, we obtain with high probability, using inequalities (6.15), (6.17) and (6.19),

Ip(F ) ≤ (1 + λ/2)Ip

(
F ,

m⋃
i=1

B̊(yi, ri + t)
)
≤ (1 + λ/2)Ip(F,Ω) . (6.21)

Let Gn ∈ Gn, on the event F , we have∣∣∣∣θpLd(Pn)− |Gn|
nd

∣∣∣∣ ≤ 2η .

So that, together with inequality (6.16),

|Gn| ≤ nd(θpLd(F ) + θpLd(Pn∆F ) + 2η)
≤ nd(θpLd(F ) + εF + 4η)

≤ ndθpLd(F )
(

1 + 5η
θpLd(F )

)
.

Let us now choose δ small enough so that

5η
η1/2− 3ηθp

≤ δ′ . (6.22)

Using inequalities (6.16) and (6.18), we obtain

|Gn| ≤ ndθpLd(F )
(

1 + 5η
η1/2− 3ηθp

)
≤ ndθpLd(F )(1 + δ′).

Finally, let r be such that Ld(F ) = Ld(rWp), we get

(1 + δ′)n−1|Gn|ϕWp ≤ (1 + δ′)2nd−1ϕWp

ϕF
Ip(F ) ≤ (1 + δ′)2 Ip(rWp)

Ip(F )
rnd−1Ip(F ) .

We now choose δ′ small enough such that

(1 + δ′)2(1− λ) ≤ 1− λ

2 . (6.23)

Using inequality (6.11), we obtain

Ld(F ) ≤ Ld(Pn) + Ld(Pn∆F ) ≤ Ld((1 + ξ)Wp) + Ld(ξWp) ≤ Ld((1 + 2ξ)Wp)

and so r ≤ 1 + 2ξ. We distinguish now two cases:
• If r ≤ 1− λ, using inequality (6.23)

(1 + δ′)2 Ip(rWp)
Ip(F )

rnd−1Ip(F ) ≤ (1− λ/2)nd−1Ip(F )

where we used the fact that the Wulff crystal is a minimizer for Ip, i.e., that Ip(rWp) ≤ Ip(F ).
• Let us assume that r ∈ (1− λ, 1 + 2ξ]. We recall that on the event F , for all ν ∈ Wξ,

sup
f∈Fn

|νPn(f)− ν(f)| ≥ 3ε/4 .
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Thus, for all x ∈ Rd, for f ∈ Fn we have

|νPn(f)− νrWp+x(f)| ≤

∣∣∣∣∣
∫
Pn\(rWp+x)

f(x)dLd(x)−
∫

(rWp+x)\Pn
f(x)dLd(x)

∣∣∣∣∣
≤
∫
Pn\(rWp+x)

|f(x)|dLd(x) +
∫

(rWp+x)\Pn
|f(x)|dLd(x)

≤
∫
Pn\(rWp+x)

1dLd(x) +
∫

(rWp+x)\Pn
1dLd(x)

≤ Ld
(
Pn∆(rWp + x)

)
,

and so,

Ld
(
Pn∆(rWp + x)

)
≥ sup
f∈Fn

|νPn(f)− νrWp+x(f)| ≥ 3ε/4

and as η satisfies inequality (6.6), we obtain

Ld
(
F∆(rWp + x)

)
≥ Ld

(
Pn∆(rWp + x)

)
− Ld

(
F∆Pn

)
≥ 3ε/4− η ≥ ε/2.

Moreover, as rWp is a minimizer for the isoperimetric problem, there exists a constant c(ε) > 0,
that is a non-decreasing function of ε depending also on p and r, that goes to 0 when ε goes to 0,
such that

inf
{
I(E) : ∀x ∈ Rd, Ld(E∆(x+ rWp)) ≥ ε/2, Ld(E) = Ld(rWp)

}
≥ Ip(rWp)(1 + c(ε)) .

Finally,
Ip(rWp)
Ip(F )

≤ 1
1 + c(ε)

and so,

(1 + δ′)2 Ip(rWp)
Ip(F )

rnd−1Ip(F ) ≤ (1 + δ′)2

1 + c(ε) (1 + 2ξ)nd−1Ip(F ) .

We choose ξ small enough depending on ε such that

1 + 2ξ
1 + c(ε) ≤ 1− λ = 1

1 + ξ
.

This is equivalent to choose ξ such that

3ξ + 2ξ2 ≤ c(ε) . (6.24)

We obtain using inequality (6.23)

(1 + δ′)2 Ip(rWp)
Ip(F )

rnd−1Ip(F ) ≤ (1− λ/2)nd−1Ip(F ) .

Finally, combining the two cases, with ε and δ′ properly chosen and inequality (6.21), we obtain

P(F) ≤ P

∃Gn ∈ Gn :

∀1 ≤ i ≤ m,
Ld((Pn ∩B(yi, ri + 1))∆(Fi + yi)) ≤ εFi ,
|∂oGn| ≤

(
1− λ2

4

)
nd−1Ip(F,Ω),

E(X) = {(y1, r1), . . . , (ym, rm)}

 . (6.25)

Step (iii): The remaining of the proof follows the same ideas as in [25]. We link the probability
defined in the right hand side of (6.25) with the probability that the flow is abnormally small in
some local region of ∂F ∩ Ω . We now want to cover ∂F by balls of small radius such that ∂F is
"almost flat" in each ball, this is the purpose of the following Lemma:
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Lemma 6.1. [Lemma 1 in [25]] Let R > 0. Let F be a subset of B̊(0, R) of finite perime-
ter. For every positive constants δ′ and η′, there exists a finite family of closed disjoint balls
(B(xi, ρi))i∈I∪K and vectors (vi)i∈I∪K , such that, letting Bi = B(xi, ρi) and B−i = B−(xi, ρi, vi),
we have for all i ∈ I

xi ∈ ∂∗F ∩ B̊(0, R), ρi ∈]0, 1[, Bi ⊂ B̊(0, R), Ld((F ∩Bi)∆B−i ) ≤ δ′αdρdi ,

and ∣∣∣∣∣Ip(F, B̊(0, R))−
∑
i∈I

αd−1ρ
d−1
i (ν(nF (xi))

∣∣∣∣∣ ≤ η′.
We recall that αd is the volume of the d-dimensional unit Euclidean ball.

We apply Lemma 6.1 to each Fk ⊂ B̊(0, rk + 1), with δ2 > 0 that will be chosen later and
η′ = λ4Ip(F,Ω)/16M . We obtain for each k, a family(

B
(k)
i

(
x

(k)
i , ρ

(k)
i , v

(k)
i

))
i∈I(k)

that does not depend on y1, . . . , ym, so that∣∣∣∣∣Ip(Fk, B̊(0, rk + 1))−
∑
i∈I

αd−1(ρ(k)
i )d−1(ν(nFk(x(k)

i ))

∣∣∣∣∣ ≤ η′. (6.26)

We now choose

εFk ≤ min
(

min
i∈I(k)

αd(ρ(k)
i )dδ2,

η

M
,
Ld(ξWp)

M

)
, (6.27)

for a fixed δ2 that we will choose later. Besides, as the balls B(yk, rk + 1) are disjoint, for
k ∈ {1, . . . ,m}, we have

Ip(F,Ω) =
m∑
k=1
Ip(F ∩B(yk, rk + 1),Ω) =

m∑
k=1
Ip(Fk, B̊(0, rk + 1)) .

Using inequality (6.26), we obtain∣∣∣∣∣∣Ip(F,Ω)−
m∑
k=1

∑
i∈I(k)

αd−1(ρ(k)
i )d−1ν(nFk(x(k)

i ))

∣∣∣∣∣∣ ≤ mη′ ≤ λ4Ip(F,Ω)/16 .

So, we get

Ip(F,Ω) ≤ 1
1− λ4/16

 m∑
k=1

∑
i∈I(k)

αd−1(ρ(k)
i )d−1ν(nFk(x(k)

i ))


and (

1− λ2

4

)
Ip(F,Ω) ≤ 1− λ2/4

1− λ4/16

 m∑
k=1

∑
i∈I(k)

αd−1(ρ(k)
i )d−1ν(nFk(x(k)

i ))

 .

Whence setting w = λ2/(4 + λ2) < 1,

(
1− λ2

4

)
Ip(F,Ω) ≤ (1− w)

 m∑
k=1

∑
i∈I(k)

αd−1(ρ(k)
i )d−1ν(nFk(x(k)

i ))

 . (6.28)

Since the balls (B(k)
i + yk)1≤k≤m, i∈I(k) are pairwise disjoint, we have

|∂oGn| ≥
m∑
k=1

∑
i∈I(k)

|(∂oGn) ∩ (n(B(k)
i + yk))| . (6.29)
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Using inequalities (6.28) and (6.29), we get

P

∃Gn ∈ Gn, Ld((Pn ∩B(yi, ri + 1))∆(Fi + yi)) ≤ εFi , 1 ≤ i ≤ m,
|∂oGn| ≤ (1− λ2/4)nd−1Ip(F,Ω),
E(X) = {(y1, r1), . . . , (ym, rm)}


≤ P

 ∃Gn ∈ Gn, L
d((Pn ∩B(yi, ri + 1))∆(Fi + yi)) ≤ εFi , 1 ≤ i ≤ m,∑m

k=1
∑
i∈I(k) |(∂oGn) ∩ (n(B(k)

i + yk))|
≤ (1− w)nd−1

(∑m
k=1

∑
i∈I(k) αd−1(ρ(k)

i )d−1ν(nFk(x(k)
i ))

)
 . (6.30)

Let k ∈ {1, . . . ,m}. We aim to control card((Gn ∩ n(B(k)
i + yk))∆(n(B(k)

i + yk)− ∩ Zd)). To do
so, it is more convenient to work with the graph Fn. In the following, we drop the superscript (k)
for clarity. With high probability, we have

card((Gn ∩ n(B(k)
i + yk))∆(n(B(k)

i + yk)− ∩ Zd))
≤ card((Fn ∩ n(Bi + yk))∆(n(Bi + yk)− ∩ Zd)) + card(Fn \Gn)
≤ card((Fn ∩ n(Bi + yk))∆(n(Bi + yk)− ∩ Zd)) + η3n

d−1/2(d−1) .

As Bi + yk ⊂ B(yk, rk + 1), we have

Ld((nPn ∩ n(Bi + yk))∆(n(Bi + yk)−)) ≤ Ld((nFk ∩ nBi)∆(nB−i ))
+ ndLd(Pn∆(Fk + yk))

≤ ndαdρdi δ2 + εFk ≤ 2ndαdρdi δ2 .

By the same arguments as in section 5.2 in [25],

card((Fn ∩ n(Bi + yk))∆n(Bi + yk)−))
≤ Ld(((nPn ∩ n(Bi + yk))∆n(Bi + yk)−) ∩ Zd + [−1/2, 1/2]d)
≤ 2ndαdρdi δ2 + nd−14d(Hd−1(∂Bi) +Hd−1(∂B−i )) .

Finally, for n large enough,

card((Gn ∩ n(Bi + yk))∆(n(Bi + yk)− ∩ Zd)) ≤ 4ndαdρdi δ2 .

Thus, using inequality (6.30), for large enough n,

P
(
∃Gn ∈ Gn,Ld((Pn ∩B(yi, ri + 1))∆(Fi + yi)) ≤ εFi , 1 ≤ i ≤ m,
|∂oGn| ≤ (1− λ2/4)nd−1Ip(F,Ω), E(X) = {(y1, r1), . . . , (ym, rm)}

)

≤
m∑
k=1

∑
i∈I(k)

P


∃Gn ∈ Gn,∣∣(Gn ∩ n(Bi + yk))∆(n(B−i + yk) ∩ Zd)

∣∣ ≤ 4δ2αdρdi nd,
|(∂oGn) ∩ n(Bi + yk)|

≤ (1− w)nd−1
(
αd−1ρ

d−1
i ν(nFk(x(k)

i ))
)


≤ 1
θp

m∑
k=1

∑
i∈I(k)

P(G(x(k)
i + yk, ρ

(k)
i , nFk(x(k)

i ), w, δ2)) (6.31)

where G(x, r, v, w, δ2) is the event that there exists a set U ⊂ B ∩ Zd such that:

card(U∆(nB−(x, r, v) ∩ Zd)) ≤ 4δ2αdrdnd

and
|(∂oGn) ∩ nB| ≤ (1− w)αd−1r

d−1ν(v)nd−1 .

This event depends only on the edges inside B(x, r, v) and is invariant under integer translation.
So that,

P
(
∃Gn ∈ Gn,Ld((Pn ∩B(yi, ri + 1))∆(Fi + yi)) ≤ εFi , 1 ≤ i ≤ m,
|∂oGn| ≤ (1− λ2/4)nd−1Ip(F,Ω), E(X) = {(y1, r1), . . . , (ym, rm)}

)
≤ 1
θp

m∑
k=1

∑
i∈I(k)

P(G(x(k)
i , ρ

(k)
i , nFk(x(k)

i ), w, δ2)) . (6.32)
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This event is a rare event. Indeed, if this event occurs, we can show that the capacity of the
minimal cutset that separates the upper half part of B(x, r, v) (upper half part according to the
direction v) from the lower half part is abnormally small. To do so, we build from the set U
an almost flat cutset in the ball. The fact that card(U∆B−(x, r, v)) is small implies that ∂eU is
almost flat and is close to disc(x, r, v). However, this does not prevent the existence of long thin
strands that might escape the ball and prevent U from being a cutset in the ball. The idea is to
cut these strands by adding edges at a fixed height. We have to choose the appropriate height
to ensure that the extra edges we needed to add to cut these strands are not too many, so that
we can control their capacity. The new set of edges we create by adding to U these edges will be
in a sense a cutset. The last thing to do is then to cover the disc(x, r, v) by hyperrectangles in
order to use the estimate that the flow is abnormally small in a cylinder. This work was done in
section 6 in [25]. It is possible to choose δ2 depending on F1, . . . , Fm, G and w such that for all
k ∈ {1, . . . ,m}, there exist positive constants CFk1,i and CFk2,i depending on G, d, Fk, i and w so
that for all i ∈ I(k),

P(G(xi, ρi, nFk(xi), w, δ2)) ≤ CFk1,i exp(−CFk2,in
d−1) .

Note that this upper bound is uniform on y1, . . . , ym but still depends on r1, . . . , rm. Together
with inequalities (6.25) and (6.32), we obtain

P(F) ≤ P

 ∃Gn ∈ Gn, Ld((Pn ∩B(yi, ri + 1))∆(Fi + yi)) ≤ εFi , 1 ≤ i ≤ m,
|∂oGn| ≤ (1− λ2/4)nd−1Ip(F,Ω),
E(X) = {(y1, r1), . . . , (ym, rm)}


≤ 1
θp

m∑
k=1

∑
i∈I(k)

CFk1,i exp(−CFk2,in
d−1) .

So there exist positive constants CF1
1 , . . . , CFm1 and CF1

2 , . . . , CFm2 such that

P(F) ≤
m∑
k=1

CFk1 exp(−CFk2 nd−1) . (6.33)

Combining inequalities (6.2), (6.9), (6.10) and (6.33), we obtain for small enough δ2,

P (∃Gn ∈ Gn, µn /∈ V(Wξ,Fn, ε) | 0 ∈ C∞ )

≤ b1 e−b2n
1−3/2d

+b′1 e−b
′
2n +

M∑
m=1

∑
y1,...,ym

∑
r1,...,rm

N(r1)∑
i1=1

· · ·
N(rm)∑
im=1

P(Fi1,...,im)

+M3M
2
Cdn

M(d−2)
(
Mc1 e−c2n

1−3/2d
+D1 e−D2n

(d−1)/2d
)

≤ b1 e−b2n
1−3/2d

+b′1 e−b
′
2n

+
M∑
m=1

∑
y1,...,ym

∑
r1,...,rm

N(r1)∑
i1=1

· · ·
N(rm)∑
im=1

m∑
k=1

C
F

(rk)
ik

1
θp

e−C
F

(rk)
ik

2 nd−1

+M3M
2
Cdn

M(d−2)
(
Mc1 e−c2n

1−3/2d
+D1 e−D2n

(d−1)/2d
)

≤ b1 e−b2n
1−3/2d

+b′1 e−b
′
2n

+
M∑
m=1

∑
y1,...,ym

3M
2

max
r1,...,rm

{
N(r1)∑
i1=1

· · ·
N(rm)∑
im=1

m∑
k=1

C
F

(rk)
ik

1
θp

e−C
F

(rk)
ik

2 nd−1

}
+M3M

2
Cdn

M(d−2)
(
Mc1 e−c2n

1−3/2d
+D1 e−D2n

(d−1)/2d
)

≤ b1 e−b2n
1−3/2d

+b′1 e−b
′
2n

+ Cdn
M(d−2)

M∑
m=1

3M
2

max
r1,...,rm

{
N(r1)∑
i1=1

· · ·
N(rm)∑
im=1

m∑
k=1

C
F

(rk)
ik

1
θp

e−C
F

(rk)
ik

2 nd−1

}
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+M3M
2
Cdn

M(d−2)
(
Mc1 e−c2n

1−3/2d
+D1 e−D2n

(d−1)/2d
)

(6.34)

where Cd is a constant depending only on the dimension and the maximum is over r1, . . . , rm ∈
{1, . . . , 3M}. We recall that M , N and the number of ways of choosing r1, . . . , rm are finite and
independent of n.

Remark 6.2. To obtain inequality (6.34), it is crucial to use a covering of Cβ that is uniform in
y1, . . . , ym.

Let us assume µn /∈ V(W,Fn, 2ε). Let ν ∈ Wξ, we can write ν = νx+rWp with x ∈ Rd and
r ∈ [1− λ, 1 + 2ξ]. We have for all f ∈ Fn

|νx+Wp
(f)− νx+rWp

(f)| ≤ max
(
Ld(Wp \ (1− λ)Wp), Ld((1 + 2ξ)Wp \Wp)

)
≤ c(p, d, ξ) (6.35)

where c(p, d, ξ) is a constant that goes to 0 when ξ goes to 0. So that

sup
f∈Fn

|νx+Wp
(f)− νx+rWp

(f)| ≤ c(p, d, ξ) .

As µn /∈ V(W,Fn, 2ε), we have

sup
f∈Fn

|µn(f)− νx+Wp
(f)| > 2ε .

So that up to choosing a smaller ξ, we have

c(p, d, ξ) ≤ ε (6.36)

and so

P(∃Gn ∈ Gn, ∀ν ∈ W, sup
f∈Fn

|µn(f)− νx+Wp
(f)| > 2ε)

≤ P(∃Gn ∈ Gn, ∀ν ∈ Wξ, sup
f∈Fn

|µn(f)− νx+Wp
(f)| > ε) .

Finally, using (6.34), there exist positive constants C1 and C2 depending on ε, u, p and d such
that for all n ≥ 1,

P
(
∃Gn ∈ Gn, µn /∈ V(W,Fn, 2ε)

∣∣ 0 ∈ C∞) ≤ C1 e−c2n
1−3/2d

and the result follows.
To conclude, let us sum up the order in which the constants are chosen. We first choose ε > 0.

Next, we choose ξ small enough such that it satisfies both inequalities (6.24) and (6.36), and δ′
such that it satisfies inequality (6.23). Next, we choose δ such that η(δ) satisfies inequalities (6.6),
(6.20) and (6.22). We choose δ2 depending on w (and so on ε) and G. The parameter δ2 has to
satisfy some inequalities that we do not detail here, we refer to section 7 in [25]. Finally, to each
r in {1, . . . , 3M}, to each F ∈ C(r)

β , we choose εF in such a way it satifies inequality (6.27).

6.2 Proof of theorem 1.5
In this section we prove Theorem 1.5. Thanks to Theorem 1.7, we know that with high

probability µn is close to the set W and so it is close to the measure of a translate of the Wulff
shape. In fact, as µn has its support included in B(0, nd−1), the measure µn is close to Wn, the
set of measures defined as:

Wn =
{
νx+Wp

, x ∈ B(0, nd−1)
}
.

The continuous set Wn can be approximated by a finite set W̃ containing a polynomial number
of measures such that µn is close to W̃ and so is close to at least one measure in W̃. Let ε > 0
and let w > 0 be a real number depending on ε that we will choose later. We first use Lemma
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6.1, to cover Wp by a finite number of balls of small radius such that Wp is almost flat in each
ball. Let δ2 that will be chosen later and let (B(xk, ρk, vk))k∈J be a family associated to Wp, δ2, ε
that satisfies the conditions stated in Lemma 6.1. We will use this covering for all the translates
of the Wulff shape. We set εW = mink∈J αdρdkδ2. We now cover Wn by a polynomial in n number
of balls of radius less than εW . Let ξ > 0 small enough such that

∀x, y ∈ Rd, ‖x− y‖2 ≤ ξ =⇒ Ld ((x+Wp)∆(y +Wp)) ≤
εW
4 .

By construction, µn has its support included in B(0, nd−1). We can cover B(0, nd−1) by a poly-
nomial in n number of balls of radius ξ. More precisely, there exist z1, . . . , zM ′ ∈ B(0, nd−1), such
that M ′ is polynomial in n and

B(0, nd−1) ⊂
M ′⋃
i=1

B(zi, ξ) .

We set
W̃ =

{
νzi+Wp

, i = 1, . . . ,M ′
}
.

Let δ > 0 we will choose later. We define W δ
p and W−δp as

W δ
p = {x ∈ Rd : d2(x,Wp) ≤ δ} and W−δp = {x ∈Wp : d2(x, ∂Wp) ≥ δ} .

Let us define g as

g(x) =
{

min(d2(x,Wp)/δ, 1) if x ∈ Rd \Wp

−min(d2(x, ∂Wp)/δ, 1) if x ∈Wp
.

The function g is uniformly continuous and satisfies ‖g‖∞ ≤ 1. For each i ∈ {1, . . . ,M ′}, we
define gi by gi(x) = g(x − zi) for x ∈ Rd, and F = {gi, 1 ≤ i ≤ M ′} ∪ {1}. The set F is a set
made of translates of g and the constant function equal to 1. If the measure µn is in the local
weak neighborhood V(W,F, εW4 ), then there exists νx+Wp in V(Wn,F,

εW
4 ) such that

sup
f∈F
|νx+Wp

(f)− µn(f)| ≤ εW
4 .

Moreover there exists an i ∈ {1, . . . ,M ′} such that x ∈ B(zi, ξ) and so

sup
f∈F
|νx+Wp(f)− νzi+Wp(f)| ≤ Ld ((x+Wp)∆(zi +Wp)) ≤

εW
4

and also
µn ∈ V

(
W̃,F, εW /2

)
.

Let us choose r > 0 large enough so that the ball B(0, r− 2d) contains Wp. For x ∈ Rd, we define
bxc to be the closest point to x in Zd for the Euclidean distance. For any i ∈ {1, . . . ,M ′}, we have

W + zi ⊂ B(bzic, r) .

Let us define the function u such that for all ι > 0,

u(ι) = min
(
sup

{
δ > 0, ∀x, y ∈ Rd, ‖x− y‖2 ≤ δ =⇒ |g(x)− g(y)| ≤ ι

}
, 1
)
.

As the function g is uniformly continuous, the function u is positive. Moreover, as F is made
of translated of g and the constant function equal to 1, it is clear that this set satisfies the
condition stated in Proposition 5.10 associated with the function u. Using Proposition 5.10 with
the function u, there exist positive constants C1, C2 depending only on r, u, p and εW such that
for all i ∈ {1, . . . ,M ′}

P

(
max
Gn∈Gn

sup
f∈F
|µn(f1B(bzic,r))− νn(f1B(bzic,r))| > εW /4

)
≤ C1 e−c2n

1−3/2d
. (6.37)
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The point of choosing such a set F is that we can deduce from the fact that the quantity
supf∈F |µn(f)−νW+zi(f)| is small that the associated symmetric difference Ld((Pn∩B(bzic, r))∆(zi+
Wp)) is small. Indeed, we have

Ld((Pn ∩B(bzic, r))∆(zi +Wp))

=
∫

(Pn∩B(bzic,r))\(zi+Wp)
1dLd(x) +

∫
(zi+Wp)\Pn

1dLd(x)

≤
∫

(Pn∩B(bzic,r))\(zi+Wp)
gi(x)dLd(x)−

∫
(zi+Wp)\Pn

gi(x)dLd(x) + Ld(W δ
p \W−δp )

= |νn(gi1B(bzic,r)))− νW+zi(gi1B(bzic,r)))|+ L
d(W δ

p \W−δp )
≤ sup
f∈F
|µn(f1B(bzic,r))− νn(f1B(bzic,r))|+ sup

f∈F
|µn(f1B(bzic,r))− νW+zi(f1B(bzic,r))|

+ Ld(W δ
p \W−δp ) . (6.38)

So we choose δ small enough so that

Ld(W δ
p \W−δp ) ≤ εW

4 . (6.39)

Moreover, we have

P
(
∃Gn ∈ Gn, |∂oGn| ≤ (1− w)Ip(Wp)nd−1, µn ∈ V

(
W̃,F, εW /2)

)
≤

M ′∑
i=1

P
(
∃Gn ∈ Gn, |∂oGn| ≤ (1− w)Ip(Wp)nd−1,

supf∈F |µn(f)− νW+zi(f)| ≤ εW /2

∣∣∣ 0 ∈ C∞) . (6.40)

Using inequalities (6.37), (6.38) and (6.39), we obtain

P
(
∃Gn ∈ Gn,

|∂oGn| ≤ (1− w)Ip(Wp)nd−1,
supf∈F |µn(f)− νW+zi(f)| ≤ εW /2

∣∣∣ 0 ∈ C∞)
≤ P

(
∃Gn ∈ Gn,

|∂oGn| ≤ (1− w)Ip(Wp)nd−1,
supf∈F |µn(f1B(bzic,r))− νW+zi(f1B(bzic,r))| ≤ εW /2

)
≤ P

(
∃Gn ∈ Gn,

|∂oGn| ≤ (1− w)Ip(Wp)nd−1,
Ld((Pn ∩B(bzic, r))∆(zi +Wp)) ≤ εW

)
+ C1 e−c2n

1−3/2d
. (6.41)

Finally, we proceed as in inequality (6.32) in the proof of Theorem 1.7:

P
(
∃Gn ∈ Gn,

|∂oGn| ≤ (1− w)Ip(Wp)nd−1,
Ld((Pn ∩B(bzic, r))∆(zi +Wp)) ≤ εW

∣∣∣ 0 ∈ C∞)
≤ 1
θp

∑
k∈J

P
(
G(zi + xk, ρk, nWp

(xk), w, δ2)
)
. (6.42)

It is possible to choose δ2 depending on W , G and w (see again section 6 in [25]) such that there
exist positive constants C1,k and C2,k depending on G, d, W , k and w so that for all k ∈ J ,

P(G(xk, ρk, nWp(xk), w, δ2)) ≤ C1,k exp(−C2,kn
d−1) .

So combining inequalities (6.40), (6.41) and (6.42), we obtain

P
(
∃Gn ∈ Gn, |∂oGn| ≤ (1− w)Ip(Wp)nd−1, µn ∈ V

(
W̃,F, εW /2)

)
≤M ′

(
C1 e−c2n

1−3/2d
+ 1
θp

∑
k∈J

C1,k exp(−C2,kn
d−1)

)
. (6.43)
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Moreover, we have

P
(
∃Gn ∈ Gn,

|Gn|
nd
≥ (1 + w)θpLd(Wp), µn ∈ V

(
W̃,F, εW /2)

)

≤
M ′∑
i=1

P
(
∃Gn ∈ Gn, |Gn|nd

≥ (1 + w)θpLd(Wp),
|µn(1)− νW+zi(1)| ≤ εW /2

∣∣∣ 0 ∈ C∞)

≤
M ′∑
i=1

P

(
∃Gn ∈ Gn, |Gn|nd

≥ (1 + w)θpLd(Wp),∣∣∣ |Gn|nd
− θpLd(Wp)

∣∣∣ ≤ εW /2
∣∣∣ 0 ∈ C∞) (6.44)

where we recall that θpLd(Wp) = 1, so up to choosing a smaller εW , we assume that εW ≤ 2w so
that the probability in the sum is equal to 0. Finally, combining inequalities (6.43) and (6.44), we
obtain

P
(
nϕn ≥

1− w
1 + w

Ip(Wp)
θpLd(Wp)

∣∣∣ 0 ∈ C∞) ≤ P
(
∃Gn ∈ Gn, µn /∈ V

(
W̃,F, εW /2

))
+M ′

(
C1 exp(−C2n) + 1

θp

∑
k∈J

C1,k exp(−C2,kn
d−1)

)
. (6.45)

Thanks to Theorem 1.7, there exist positive constants C ′1, C ′2, depending on p, u, εW and d such
that

P
(
∃Gn ∈ Gn, µn /∈ V

(
W̃,F, εW /2

) ∣∣∣ 0 ∈ C∞) ≤ C ′1 exp(−C ′2n1−3/2d) .

By choosing w small enough, we obtain

P
(
nϕn ≥ (1− ε) Ip(Wp)

θpLd(Wp)

∣∣∣ 0 ∈ C∞)
≤ C ′1 exp(−C ′2n1−3/2d) +M ′

(
C1 exp(−C2n) +

∑
k∈J

C1,k exp(−C2,kn
d−1)

)
.

As M ′ is polynomial in n, the result follows.

6.3 Proof of theorem 1.2
Let ε > 0. As in the proof of theorem 1.5, there exists an integer M ′ that is polynomial in n

and z1, . . . , zM ′ points of B(0, nd−1) such that for any finite set F of continuous functions of infinite
norm at most 1, if µn ∈ V(W,F, ε) then µn ∈ V(W̃,F, 2ε) where W̃ =

{
νzi+Wp

, i = 1, . . . ,M ′
}
.

Let δ > 0 we will choose later. Let us define f and g as

f(x) = min(d2(x,Rd \W δ
p )/δ, 1), for x ∈ Rd

and
g(x) = min(d2(x,Wp)/δ, 1), for x ∈ Rd .

The functions f and g are uniformly continuous and satisfy ‖f‖∞ ≤ 1 and ‖g‖∞ ≤ 1. For each
i ∈ {1, . . . ,M ′}, we define fi by fi(x) = f(x − zi) and gi by gi(x) = f(x − zi) for x ∈ Rd. We
define

F = {fi, 1 ≤ i ≤M ′} ∪ {gi, 1 ≤ i ≤M ′} .

Let Gn ∈ Gn. Let i ∈ {1, . . . ,M ′}. We have

|Gn∆((n(Wp + zi)) ∩ C∞)| = |Gn \ n(Wp + zi)|+ |(n(Wp + zi) ∩ C∞) \Gn| . (6.46)

Using a renormalization argument as in the proof of Theorem 1.4, there exist positive constants
C1 and C2 depending on p, ε and d such that for all i ∈ {1, . . . ,M ′},

P
(∣∣∣∣ |(n(W + zi)) ∩ C∞|

nd
− θpLd(Wp)

∣∣∣∣ ≥ ε ∣∣∣ 0 ∈ C∞) ≤ C1 exp(−C2n) .
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As Gn ∩ (n(Wp + zi)) ⊂ (n(Wp + zi)) ∩ C∞, we have with probability at least 1− C1 exp(−C2n),

|((n(Wp + zi)) ∩ C∞) \Gn| = |(n(Wp + zi)) ∩ C∞| − |Gn ∩ (n(Wp + zi))|
≤ θpLd(Wp)nd + ndε− ndµn(fi) + |n((W δ

p + zi) \ (Wp + zi)) ∩ Zd| .

We can find a constant c(δ) depending only on δ, p and d, such that c(δ) goes to 0 when δ goes
to 0 and for all z ∈ Rd

|n((W δ
p + z) \ (Wp + z)) ∩ Zd| ≤ c(δ)nd ,

so that,

|((n(Wp + zi)) ∩ C∞) \Gn| ≤ nd|νWp+zi(fi)− µn(fi)|+ (ε+ c(δ))nd

≤ nd sup
h∈F
|νWp+zi(h)− µn(h)|+ (ε+ c(δ))nd . (6.47)

Moreover, noticing that νWp+zi(gi) = 0, we obtain

|Gn \ n(W + zi)| ≤ ndµn(gi) + |n((W δ
p + zi) \ (Wp + zi)) ∩ Zd|

≤ nd|µn(gi)− νWp+zi(gi)|+ ndc(δ)
≤ nd sup

h∈F
|νWp+zi(h)− µn(h)|+ ndc(δ) . (6.48)

Combining inequalities (6.46), (6.47) and (6.48), with high probability, we have

inf
z∈Rd

1
nd
|Gn∆((n(Wp + z)) ∩ C∞)| ≤ min

1≤i≤M ′
1
nd
|Gn∆((n(Wp + zi)) ∩ C∞)|

≤ min
ν∈W̃

{
sup
h∈F
|ν(h)− µn(h)|+ sup

h∈F
|ν(h)− µn(h)|

}
+ ε+ 2c(δ)

≤ 2 min
ν∈W̃

sup
h∈F
|ν(h)− µn(h)|+ ε+ 2c(δ) .

Let us define for any ι > 0,

ug(ι) = min
(
sup

{
δ > 0, ∀x, y ∈ Rd, ‖x− y‖2 ≤ δ =⇒ |g(x)− g(y)| ≤ ι

}
, 1
)
,

uf (ι) = min
(
sup

{
δ > 0, ∀x, y ∈ Rd, ‖x− y‖2 ≤ δ =⇒ |f(x)− f(y)| ≤ ι

}
, 1
)

and u = min(uf , ug). This function is positive because the function f and g are uniformly
continuous. It is easy to check that F satisfies the condition required in Theorem 1.7 associated
with the function u. Thus, there exist positive constants c1 and c2 depending on p, u, ε and d
such that

P
(
∃Gn ∈ Gn, inf

ν∈W
sup
h∈F
|ν(h)− µn(h)| ≥ ε

∣∣∣ 0 ∈ C∞) ≤ c1 e−c2n
1−3/2d

and so

P

(
∃Gn ∈ Gn, min

ν∈W̃
sup
h∈F
|ν(h)− µn(h)| ≥ 2ε

∣∣∣ 0 ∈ C∞) ≤ c1 e−c2n
1−3/2d

.

We now choose δ small enough such that c(δ) ≤ ε so that

P
(
∃Gn ∈ Gn, inf

z∈Rd
1
nd
|Gn∆((n(Wp + z)) ∩ C∞)| ≥ 7ε

∣∣∣ 0 ∈ C∞)
≤ c1 e−c2n

1−3/2d
+M ′C1 exp(−C2n) .

As M ′ is polynomial in n, this yields the result.
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Chapter 3

Vanishing of the anchored
isoperimetric profile in bond
percolation at pc

This chapter is a joint work with Raphaël Cerf.
We consider the anchored isoperimetric profile of the infinite open cluster, defined for p > pc,

whose existence has been recently proved in [5]. We extend adequately the definition for p = pc,
in finite boxes. We prove a partial result which implies that, if the limit defining the anchored
isoperimetric profile at pc exists, it has to vanish.
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1 Introduction
The most well–known open question in percolation theory is to prove that the percolation

probability vanishes at pc in dimension three. In fact, the interesting quantities associated to the
model are very difficult to study at the critical point or in its vicinity. We study here a very
modest intermediate question. We consider the anchored isoperimetric profile of the infinite open
cluster, defined for p > pc, whose existence has been recently proved in [5]. We extend adequately
the definition for p = pc, in finite boxes. We prove a partial result which implies that, if the limit
defining the anchored isoperimetric profile at pc exists, it has to vanish.

The Cheeger constant. For a graph G with vertex set V and edge set E, we define the edge
boundary ∂GA of a subset A of V as

∂GA =
{
e = 〈x, y〉 ∈ E : x ∈ A, y /∈ A

}
.

We denote by |B| the cardinal of the finite set B. The Cheeger constant of the graph G is defined
as

ϕG = min
{
|∂GA|
|A|

: A ⊂ V, 0 < |A| ≤ |V |2

}
.

This constant was introduced by Cheeger in his thesis [29] in order to obtain a lower bound for
the smallest eigenvalue of the Laplacian.

The anchored isoperimetric profile ϕn(p). Let d ≥ 2. We consider an i.i.d. supercritical
bond percolation on Zd, every edge is open with a probability p > pc(d), where pc(d) denotes the

89
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critical parameter for this percolation. We know that there exists almost surely a unique infinite
open cluster C∞ [48]. We say that H is a valid subgraph of C∞ if H is connected and 0 ∈ H ⊂ C∞.
We define the anchored isoperimetric profile ϕn(p) of C∞ as follows. We condition on the event
{0 ∈ C∞} and we set

ϕn(p) = min
{
|∂C∞H|
|H|

: H valid subgraph of C∞, 0 < |H| ≤ nd
}
.

The following theorem from [5] asserts the existence of the limit of nϕn(p) when p > pc(d).

Theorem 1.1. Let d ≥ 2 and p > pc(d). There exists a positive real number ϕ(p) such that,
conditionally on {0 ∈ C∞},

lim
n→∞

nϕn(p) = ϕ(p) almost surely.

We wish to study how this limit behaves when p is getting closer to pc. To do so, we need to
extend the definition of the anchored isoperimetric profile so that it is well defined at pc(d). We
say that H is a valid subgraph of C(0), the open cluster of 0, if H is connected and 0 ∈ H ⊂ C(0).
We define ϕ̂n(p) for every p ∈ [0, 1] as

ϕ̂n(p) = min
{ |∂C(0)H|

|H|
: H valid subgraph of C(0), 0 < |H| ≤ nd

}
.

In particular, if 0 is not connected to ∂[−n/2, n/2]d by a p-open path, then |C(0)| < nd and taking
H = C(0), we see that ϕ̂n(p) is equal to 0. Thanks to theorem 1.1, we have

∀p > pc lim
n→∞

nϕ̂n(p) = θ(p)δϕ(p) + (1− θ(p))δ0 ,

where θ(p) is the probability that 0 belongs to an infinite open cluster. The techniques of [5] to
prove the existence of this limit rely on coarse–graining estimates which can be employed only
in the supercritical regime. Therefore we are not able so far to extend the above convergence at
the critical point pc. Naturally, we expect that nϕ̂n(pc) converges towards 0 as n goes to infinity,
unfortunately we are only able to prove a weaker statement.

Theorem 1.2. With probability one, we have

lim inf
n→∞

nϕ̂n(pc) = 0 .

We shall prove this theorem by contradiction. We first define an exploration process of the cluster
of 0 that remains inside the box [−n, n]d. If the statement of the theorem does not hold, then the
cluster of 0 satisfies a d-dimensional anchored isoperimetric inequality. It follows that the number
of sites that are revealed in the exploration of the cluster of 0 will grow fast enough of order nd−1.
Then, we can prove that the intersection of the cluster that we have explored with the boundary
of the box [−n, n]d is of order nd−1. Using the fact that there is no percolation in a half-space, we
obtain a contradiction. Before starting the precise proof, we recall some results from [5] on the
meaning of the limiting value ϕ(p).

The Wulff theorem. We denote by Ld the d-dimensional Lebesgue measure and by Hd−1

denotes the (d− 1)–Hausdorff measure in dimension d. Given a norm τ on Rd and a subset E of
Rd having a regular enough boundary, we define Iτ (E), the surface tension of E for the norm τ ,
as

Iτ (E) =
∫
∂E

τ(nE(x))Hd−1(dx) .

We consider the anisotropic isoperimetric problem associated with the norm τ :

minimize Iτ (E)
Ld(E) subject to Ld(E) ≤ 1 . (1.1)
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The famous Wulff construction provides a minimizer for this anisotropic isoperimetric problem.
We define the set Ŵτ as

Ŵτ =
⋂

v∈Sd−1

{
x ∈ Rd : x · v ≤ τ(v)

}
,

where · denotes the standard scalar product and Sd−1 is the unit sphere of Rd. Up to translation
and Lebesgue negligible sets, the set

1
Ld(Ŵτ )1/d

Ŵτ

is the unique solution to the problem (1.1).

Representation of ϕ(p). In [5], we build an appropriate norm βp for our problem that is directly
related to the open edge boundary. We define the Wulff crystal Wp as the dilate of Ŵβp such that
Ld(Wp) = 1/θ(p), where θ(p) = P(0 ∈ C∞). We denote by Ip the surface tension associated with
the norm βp. In [5], we prove that

∀p > pc(d) ϕ(p) = Ip(Wp) .

2 Proofs
We prove next the following lemma, which is based on two important results due to Zhang

[72] and Rossignol and Théret [64]. To alleviate the notation, the critical point pc(d) is denoted
simply by pc.

Lemma 2.1. We have
lim
p→pc
p>pc

(
θ(p)δIp(Wp) + (1− θ(p))δ0

)
= δ0 .

Proof. If limp→pc θ(p) = 0, then the result is clear. Otherwise, let us assume that

lim
p→pc
p>pc

θ(p) = δ > 0 .

Let B be a subset of Rd having a regular boundary and such that Ld(B) = 1/δ. As the map
p 7→ θ(p) is non-decreasing and Ld(Wp) = 1/θ(p), we have

∀p > pc Ld(Wp) ≤ Ld(B) .

Moreover as Wp is the dilate of the minimizer associated to the isoperimetric problem (1.1), we
have

∀p > pc Ip(Wp) ≤ Ip(B) .

In [72], Zhang proved that βpc = 0. In [64], Rossignol and Théret proved the continuity of the
flow constant. Combining these two results, we get that

lim
p→pc
p>pc

βp = βpc = 0 and so lim
p→pc
p>pc

Ip(B) = 0 .

Finally, we obtain
lim
p→pc
p>pc

Ip(Wp) = 0 .

This yields the result.

Proof of theorem 1.2. We assume by contradiction that

P
(

lim inf
n→∞

nϕ̂n(pc) = 0
)
< 1 .
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Therefore there exist positive constants c and δ such that

P
(

lim inf
n→∞

nϕ̂n(pc) > c
)

= lim
n→∞

P
(

inf
k≥n

kϕ̂k(pc) > c

)
= δ . (2.1)

Therefore, there exists a positive integer n0 such that

P
(

inf
k≥n0

kϕ̂k(pc) > c

)
≥ δ

2 . (2.2)

In what follows, we condition on the event{
inf
k≥n0

kϕ̂k(pc) > c
}
.

Note that on this event, 0 is connected to infinity by a pc-open path. For H a subgraph of Zd, we
define

∂oH =
{
e ∈ ∂H, e is open

}
.

Note that if H ⊂ C∞, then ∂C∞H = ∂oH. Moreover, if H is equal to C(0), the open cluster of
0, then ∂C(0)H = ∂oH = ∅. We define next an exploration process of the cluster of 0. We set
C0 = {0}, A0 = ∅. Let us assume that C0, . . . , Cl and A0, . . . ,Al are already constructed. We
define

Al+1 =
{
x ∈ Zd : ∃y ∈ Cl 〈x, y〉 ∈ ∂oCl

}
and

Cl+1 = Cl ∪ Al+1 .

We have
∂oCl ⊂ {〈x, y〉 ∈ Ed : x ∈ Al+1}

so that |∂oCl| ≤ 2d|Al+1|. Since Al+1 and Cl are disjoint, we have

|Cl+1| = |Cl|+ |Al+1| ≥ |Cl|+
|∂oCl|

2d . (2.3)

Let us set α = 1/nd0 so that |C0| = αnd0. Let k be the smallest integer greater than 2d+1d/c. We
recall that c and n0 were defined in (2.1) and (2.2). Let us prove by induction on n that

∀n ≥ n0 |C(n−n0)k| ≥ αnd . (2.4)

This is true for n = n0. Let us assume that this inequality is true for some integer n ≥ n0.
If |C(n+1−n0)k| ≥ nd, then we are done. Suppose that |C(n+1−n0)k| < nd. In this case, for any
integer l ≤ k, we have also |C(n−n0)k+l| < nd, and since C(n−n0)k+l is a valid subgraph of C(0) and
ϕ̂n(pc) > c/n, we conclude that

|∂oC(n−n0)k+l|
|C(n−n0)k+l|

≥ c

n

and so |∂oC(n−n0)k+l| ≥ αcnd−1. Thanks to inequality (2.3) applied k times, we have

|C(n+1−n0)k| ≥ α
(
nd + ck

2dn
d−1
)
.

As k ≥ 2d+1d/c, we get

|C(n+1−n0)k| ≥ α(nd + 2dnd−1) ≥ α(n+ 1)d .

This concludes the induction.
Let η > 0 be a constant that we will choose later. In [12], Barsky, Grimmett and Newman

proved that there is no percolation in a half-space at criticality. An important consequence of
the result of Grimmett and Marstrand [46] is that the critical value for bond percolation in a
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half-space equals to the critical parameter pc(d) of bond percolation in the whole space, i.e., we
have

P(0 is connected to infinity by a pc-open path in N× Zd−1) = 0 ,
so that for n large enough,

P(∃γ a pc-open path starting from 0 in N× Zd−1 such that |γ| ≥ n) ≤ η .

In what follows, we will consider an integer n such that the above inequality holds. By construction
the set Cn is inside the box [−n, n]d. Starting from this cluster, we are going to resume our
exploration but with the constraint that we do not explore anything outside the box [−n, n]d. We
set C′0 = Cn and A′0 = ∅. Let us assume C′0, . . . , C′l and A′0, . . . ,A′l are already constructed. We
define

A′l+1 =
{
x ∈ [−n, n]d : ∃y ∈ C′l 〈x, y〉 ∈ ∂oC′l

}
and

C′l+1 = C′l ∪ A′l+1 .

We stop the process when A′l+1 = ∅. As the number of vertices in the box [−n, n]d is finite,
this process of exploration will eventually stop for some integer l. We have that |C′l | ≤ nd and
nϕ̂k(pc) > c so that

|∂oC′l | ≥
c

n
|C′l | ≥

c

n
|Cn| .

Moreover, for n ≥ kn0, we have, thanks to inequality (2.4),

|Cn| ≥
∣∣Cbnk ck∣∣ ≥ ∣∣C(bnk c−n0)k

∣∣ ≥ α
(⌊n
k

⌋)d
.

We suppose that n is large enough so that n ≥ kn0 and bnk c ≥ n/2k. Combining the two previous
display inequalities, we conclude that

|∂oC′l | ≥
cα

2dkdn
d−1 .

Therefore, for n large enough, there exists one face of [−n, n]d such that there are at least
cαnd−1/(2dkd2d) vertices that are connected to 0 by a pc-open path that remains inside the
box [−n, n]d and so

P

 there exists one face of [−n, n]d with at least
cαnd−1/(2dkd2d) vertices that are connected to 0 by a
pc-open path that remains inside the box [−n, n]d

 ≥ δ

2 . (2.5)

Let us denote by Xn the number of vertices in the face {−n} × [−n, n]d−1 that are connected to
0 by a pc-open path inside the box [−n, n]d. We have

E(Xn) ≤
∣∣({−n} × [−n, n]d−1) ∩ Zd

∣∣ P
 ∃γ a pc-open path starting

from 0 in N× Zd−1 such that
|γ| ≥ n


≤ (2n+ 1)d−1η . (2.6)

Moreover, we have

E(Xn) ≥ cα

2d2dkdn
d−1 P

(
Xn >

cα

2d2dkdn
d−1
)
. (2.7)

Finally, combining inequalities (2.6) and (2.7), we get

P
(
Xn >

cα

2d2dkdn
d−1
)
≤ 2dη3d−12dkd

cα
.

Therefore, we can choose η small enough such that

P
(
Xn >

cα

2d2dkdn
d−1
)
≤ δ

10d
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and so using the symmetry of the lattice

P

 there exists one face of [−n, n]d such there are at least
cαnd−1/(2dkd2d) vertices that are connected to 0 by a pc-open

path that remains inside the box [−n, n]d


≤ 2dP

(
Xn >

cα

2d2dkdn
d−1
)
≤ δ

5 .

This contradicts inequality (2.5) and yields the result.



Chapter 4

Anchored isoperimetric profile of
the infinite cluster in supercritical
bond percolation is Lipschitz
continuous

We consider the standard model of i.i.d. first passage percolation on Zd given a distribution G
on R+. We consider a cube oriented in the direction −→v whose sides have length n. We study the
maximal flow from the top half to the bottom half of the boundary of this cube. We already know
that the maximal flow renormalized by nd−1 converges towards the flow constant νG(−→v ). We prove
here that the map p 7→ νpδ1+(1−p)δ0 is Lipschitz continuous on all intervals [p0, p1] ⊂ (pc(d), 1)
where pc(d) denotes the critical parameter for i.i.d. bond percolation on Zd. For p > pc(d), we
know that there exists almost surely a unique infinite open cluster Cp [48]. We are interested in
the regularity properties in p of the anchored isoperimetric profile of the infinite cluster Cp. For
d ≥ 2, using the result on the regularity of the flow constant, we prove here that the anchored
isoperimetric profile defined in [5] is Lipschitz continuous on all intervals [p0, p1] ⊂ (pc(d), 1).
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1 Introduction
1.1 Flow constant

The model of first passage percolation was first introduced by Hammersley and Welsh [49] in
1965 as a model for the spread of a fluid in a porous medium. In this model, mathematicians
studied intensively geodesics, i.e., fastest paths between two points in the grid. The study of
maximal flows in first passage percolation started later in 1984 in dimension 2 with an article
of Grimmett and Kesten [45]. In 1987, Kesten studied maximal flows in dimension 3 in [52].
The study of maximal flows is associated with the study of random cutsets that can be seen as
(d − 1)-dimensional surfaces. Their study presents more technical difficulties than the study of
geodesics. Thus, the interpretation of first passage percolation in terms of maximal flows has been
less studied.

95
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Let us consider a large box in Zd oriented according to a direction −→v , to each edge we assign
a random i.i.d. capacity with distribution G. We interpret this capacity as a rate of flow, i.e., it
corresponds to the maximal amount of water that can cross the edge per second. Next, we consider
the top half and bottom half of the boundary of the box. We are interested in the maximal flow
that can cross the box from its top half to its bottom half per second. A first issue is to understand
if the maximal flow in the box properly renormalized converges when the size of the box grows
to infinity. This question was addressed in [52], [62] and [73] where one can find laws of large
numbers and large deviations estimates for this maximal flow when the dimensions of the box
grow to infinity under some moments assumptions on the capacities. The maximal flow properly
renormalized converges towards the so-called flow constant νG(−→v ). In [64], Rossignol and Théret
proved the same results without any moment assumption on G, they even allow the capacities
to take infinite value as long as G({+∞}) < pc(d) where pc(d) denotes the critical parameter of
i.i.d. bond percolation on Zd. Moreover, the two authors have shown that the flow constant is
continuous with regard to the distribution of the capacities. Let us denote βp = νpδ1+(1−p)δ0 for
p > pc(d). Thanks to the result of Zhang in [72], we know that βp is a norm. This norm will be
properly defined in section 2. In this paper, we prove that the map p 7→ βp is Lipschitz continuous
on every compact interval included in (pc, 1).

Theorem 1.1 (Regularity of the flow constant). Let pc(d) < p0 < p1 < 1. There exists a positive
constant κ depending only on d, p0 and p1, such that

∀p, q ∈ [p0, p1] sup
x∈Sd−1

|βp(x)− βq(x)| ≤ κ|q − p| .

The proof of this theorem will strongly rely on an adaptation of the proof of theorem 1 Zhang in
[73].

1.2 Anchored isoperimetric profile
The study of isoperimetric problems in the discrete setting is more recent than in the continuous

setting. In the continuous setting, we study the perimeter to volume ratio; in the context of
graphs, the analogous problem is the study of the size of edge boundary to volume ratio. This
can be encoded by the Cheeger constant. For a finite graph G = (V (G), E(G)), we define the edge
boundary ∂GA of a subset A of V (G) as

∂GA =
{
e = 〈x, y〉 ∈ E(G) : x ∈ A, y /∈ A

}
.

We denote by |B| the cardinality of the finite set B. The isoperimetric constant of G, also called
Cheeger constant, is defined as

ϕG = min
{
|∂GA|
|A|

: A ⊂ V (G), 0 < |A| ≤ |V (G)|
2

}
.

This constant was introduced by Cheeger in his thesis [29] in order to obtain a lower bound for
the smallest eigenvalue of the Laplacian. The isoperimetric constant of a graph gives information
on its geometry.

Let d ≥ 2. We consider an i.i.d. supercritical bond percolation on the graph (Zd,Ed) having
for vertices Zd and for edges Ed the set of pair of nearest neighbors in Zd for the Euclidean norm.
Every edge e ∈ Ed is open with probability p > pc(d). We know that there exists almost surely
a unique infinite open cluster Cp [48]. In this paper, we want to study how the geometry of Cp
varies with p through its Cheeger constant. However, if we minimize the isoperimetric ratio over
all possible subgraphs of Cp without any constraint on the size, one can prove that ϕCp = 0 almost
surely. For that reason, we shall minimize the isoperimetric ratio over all possible subgraphs of
Cp given a constraint on the size. There are several ways to do it. We can for instance study the
Cheeger constant of the graph Cn = Cp ∩ [−n, n]d or of the largest connected component C̃n of
Cn for n ≥ 1. Since we have ϕCp = 0 almost surely, the isoperimetric constants ϕCn and ϕC̃n go
to 0 when n goes to infinity. Roughly speaking, by analogy with the full lattice, we expect that
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subgraphs of C̃n that minimize the isoperimetic ratio have edge boundary size of order nd−1 and
size of order nd with high probability.

In [15], Biskup, Louidor, Procaccia and Rosenthal defined a modified Cheeger constant ϕ̃Cn
and proved that nϕ̃Cn converges towards a deterministic constant in dimension 2. In [44], Gold
proved the same result in dimension d ≥ 3. Instead of considering the open edge boundary of
subgraphs within Cn, they considered the open edge boundary within the whole infinite cluster Cp,
this is more natural because Cn has been artificially created by restricting Cp to the box [−n, n]d.
They also added a stronger constraint on the size of subgraphs of Cn to ensure that minimizers do
not touch the boundary of the box [−n, n]d. Moreover, they proved that the subgraphs achieving
the minimum, properly rescaled, converge towards a deterministic shape that is the Wulff crystal.
Namely, it is the shape solving the continuous anisotropic isoperimetric problem associated with
the norm βp corresponding to the surface tension in the percolation setting. The quantity nϕ̃Cn
converges towards the solution of a continuous isoperimetric problem.

This modified Cheeger constant was inspired by the anchored isoperimetric profile ϕn(p). This
is another way to define the Cheeger constant of Cp, that is more natural in the sense that we do
not restrict minimizers to remain in the box [−n, n]d. It is defined as follows:

ϕn(p) = min
{ |∂CpH|
|H|

: 0 ∈ H ⊂ Cp, H connected, 0 < |H| ≤ nd
}
,

where we condition on the event {0 ∈ Cp}. We say that H is a valid subgraph if 0 ∈ H ⊂ Cp, H
is connected and |H| ≤ nd.

We need to introduce some definitions to be able to define properly a limit shape in dimension
d ≥ 2. In order to build a continuous limit shape, we shall define a continuous analogue of the
cardinality of the open edge boundary. In fact, the cardinality of the open edge boundary may
be interpreted in terms of a surface energy associate with the norm βp. Given a subset E of Rd
having a regular boundary, we define Ip as

Ip(E) =
∫
∂E

βp(nE(x))Hd−1(dx) ,

where Hd−1 denotes the Hausdorff measure in dimension d − 1 and nE(x) is the normal unit
exterior vector of E at x. The quantity Ip(E) represents the surface energy of E for the norm
βp. At the point x, the tension has intensity βp(nE(x)) in the direction of nE(x). To understand
the link between βp and the open edge boundary, we refer to sections 3 in [44] or [5]. We denote
by Ld the d-dimensional Lebesgue measure. We can associate with the norm βp the following
isoperimetric problem:

minimize Ip(E)
Ld(E) subject to Ld(E) ≤ 1 .

We use the Wulff construction to build a minimizer for this anisotropic isoperimetric problem (see
[70]). We define the set Ŵp as

Ŵp =
⋂

v∈Sd−1

{
x ∈ Rd : x · v ≤ βp(v)

}
,

where · denotes the standard scalar product and Sd−1 is the unit sphere of Rd. Taylor proved in
[66] that the set Ŵp properly rescaled is the unique minimizer, up to translations and modifications
on a null set, of the associated isoperimetric problem.

In [5], Dembin proves the existence of the limit of nϕn(p) and that it converges towards the
solution of the continuous isoperimetric problem associated with the norm βp.

Proposition 1.2. Let d ≥ 2, p > pc(d) and let βp be the norm that will be properly defined in
section 2. Let Wp be a dilate of the Wulff crystal Ŵp for the norm βp such that Ld(Wp) = 1/θp
where θp = P(0 ∈ Cp). Then, conditionally on the event {0 ∈ Cp},

lim
n→∞

nϕn(p) = Ip(Wp)
θpLd(Wp)

= Ip(Wp) a.s..
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In this paper, we aim to study the regularity properties of the anchored isoperimetric profile. This
was first studied by Garet, Marchand, Procaccia, Théret in [42], they proved that the modified
Cheeger constant in dimension 2 is continuous on (pc(2), 1]. We aim here to prove the two following
theorems. Theorem 1.3 asserts that the anchored isoperimetric profile is Lipschitz continuous on
every compact interval [p0, p1] ⊂ (pc(d), 1).

Theorem 1.3 (Regularity of the anchored isoperimetric profile). Let d ≥ 2. Let pc(d) < p0 <
p1 < 1. There exits a positive constant ν depending only on d, p0 and p1, such that

∀p, q ∈ [p0, p1] |Ip(Wp)− Iq(Wq)| ≤ ν|q − p| .

Remark 1.4. Actually, the map p 7→ Ip(Wp) is also continuous at 1, this is not a consequence
of theorem 1.3 but it comes from the fact that the map p → βp is continuous on (pc(d), 1]. This
result is a corollary of theorem 2.6. in [64].

Theorem 1.5 studies the Hausdorff distance between two Wulff crystals associated with norms βp
and βq.

Theorem 1.5 (Regularity of the anchored isoperimetric profile). Let d ≥ 3. Let pc(d) < p0 <
p1 < 1. There exits a positive constant ν′ depending only on d, p0 and p1, such that

∀p, q ∈ [p0, p1] dH(Ŵp, Ŵq) ≤ ν′|q − p| ,

where dH is the Hausdorff distance between non empty compact sets of Rd.

Theorem 1.2 is the key element to prove these two theorems.

Remark 1.6. In this paper, we choose to work on the anchored isoperimetric profile instead of
the modified Cheeger constant because the norm we use is the same for all dimensions d ≥ 2.
The existence of the modified Cheeger constant in dimension 2 uses another norm specific to this
dimension (see [15]). In [44], Gold proved the existence of the modified Cheeger constant for
d ≥ 3 with the same norm βp. Actually, we believe that his proof also holds in dimension 2 up to
using similar combinatorial arguments as in [5]. Therefore, the theorem 1.3 may be shown for the
modified Cheeger constant in dimension d ≥ 2 using the same ingredients as in this paper.

Here is the structure of the paper. In section 2, we define the norm βp. We prove that the map
p 7→ βp is Lipschitz continuous in section 3. We prove the main results on the regularity of the
anchored isoperimetric profile (theorems 1.3 and 1.5) in section 4. Finally, we write an adaptation
of the proof of Zhang [73] in section 5 that is necessary to prove theorem 1.2.

2 Definition of the norm βp

We introduce now many notations used for instance in [62] concerning flows through cylinders.
Let A be a non-degenerate hyperrectangle, that is to say a rectangle of dimension d − 1 in Rd.
Let −→v be one of the two unit vectors normal to A. Let h > 0, we denote by cyl(A, h) the cylinder
with base A and height 2h defined by

cyl(A, h) = {x+ t−→v : x ∈ A, t ∈ [−h, h]} .

The set cyl(A, h) \ A has two connected components, denoted by C1(A, h) and C2(A, h). For
i = 1, 2, we denote by C ′i(A, h) the discrete boundary of Ci(A, h) defined by

C ′i(A, h) =
{
x ∈ Zd ∩ Ci(A, h) : ∃y /∈ cyl(A, h), 〈x, y〉 ∈ Ed

}
.

We say that the set of edges E cuts C ′1(A, h) from C ′2(A, h) in cyl(A, h) if any path γ from C ′1(A, h)
to C ′2(A, h) in cyl(A, h) contains at least one edge of E. We call such a set a cutset. For any
cutset E, let |E|o,p denote the number of p-open edges in E. We shall call it the p-capacity of E.
Define

τp(A, h) = min {|E|o,p : E cuts C ′1(A, h) from C ′2(A, h) in cyl(A, h)} .
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Note that it is a random quantity as |E|o,p is random, and that the cutsets in this definition are
anchored at the border of A. This quantity is related to the fact that graphs that achieve the
infimum in the definition of ϕn(p) try to minimize their open edge boundary. To build a norm
upon this quantity, we use the fact that the quantity τp(A, h) properly renormalized converges
towards a deterministic constant when the size of the cylinder goes to infinity. The following
proposition is a corollary of proposition 3.5 in [62].

Proposition 2.1 (Definition of the norm βp). Let d ≥ 2, p > pc(d), A be a non-degenerate
hyperrectangle and −→v one of the two unit vectors normal to A. Let h be a height function such
that limn→∞ h(n) =∞. The limit

βp(−→v ) = lim
n→∞

E[τp(nA, h(n))]
Hd−1(nA)

exists and is finite. Moreover, the limit is independent of A and h and the homogeneous extension
of βp to Rd is a norm.

As the limit does not depend on A and h, in what follows for simplicity, we will take h(n) = n
and A = S(−→v ) where S(−→v ) is an hyper-square centered at 0, isometric to [−1, 1]d−1 × {0} and
normal to −→v . We will denote by B(n,−→v ) the cube cyl(nS(−→v ), n) and by τp(n,−→v ) the quantity
τp(nS(−→v ), n).

3 Regularity of the map p 7→ βp

Let p0 > pc(d) and let q > p ≥ p0. Our strategy is the following, we easily get that βp ≤ βq by
properly coupling the percolations of parameters pc(d) < p < q. The second inequality requires
more work. We denote by Ep(n,−→v ) the random cutset of minimal size that achieves the minimum
in the definition of τp(n,−→v ). By definition, as Ep(n,−→v ) is a cutset, we can bound τq(n,−→v )
from above by the number of edges in Ep(n,−→v ) that are q-open, which we expect to be at most
τp(n,−→v ) +C(q− p)|Ep(n,−→v )| where C is a constant. We next need to get a control of |Ep(n,−→v )|
which is uniform in p ∈ [p0, 1] of the kind c0n

d−1 where c0 depends only on p0 and d. In [73],
Zhang obtained a control on the size of the smallest minimal cutset that separates the top from the
bottom of a cylinder in the general first passage percolation model, but his control depends on the
distribution G of the passage times. We only consider probability measures Gp = pδ1 + (1− p)δ0
for p > pc(d), but we need to adapt Zhang’s proof in this particular case to obtain a control that
does not depend on p nor −→v anymore and a control for cutsets that separates the bottom half
from the top half of the boundary of the cylinder. More precisely, let us denote by Np(n,−→v ) the
total number of edges in Ep(n,−→v ). We have the following control on Np(n,−→v ).

Theorem 3.1 (Adaptation of theorem 2 in [73]). Let p0 > pc(d). There exist constants C1, C2
and α that depend only on d and p0 such that

∀p ∈ [p0, 1] ∀−→v ∈ Sd−1 ∀n ≥ 1 Pp
(
Np(n,−→v ) > αnd−1) ≤ C1 exp(−C2n

d−1) .

We postpone the proof of theorem 3.1 to section 5. We have now the key ingredients to prove
that the map p 7→ βp is Lipschitz continuous.

Proof of Theorem 1.1. Let pc < p0 < p1 < 1,−→v ∈ Sd−1, and p, q such that p0 ≤ p < q ≤ p1. First,
we fix a cube B(n,−→v ) and we couple the percolations of parameters p and q in the standard way,
i.e., we consider the i.i.d. family (U(e))e∈Ed distributed according to the uniform law on [0, 1]
and we say that an edge e is p-open (resp. q-open) if U(e) ≥ p (resp. U(e) ≥ q). Thanks to this
coupling, we easily obtain that τp(n,−→v ) ≤ τq(n,−→v ) and by dividing by Hd−1(nS(−→v )) = (2n)d−1,
taking the expectation and letting n go to infinity we conclude that

βp(−→v ) ≤ βq(−→v ) . (3.1)

Let Ep(n,−→v ) be a random cutset of minimal size that achieves the minimum in the definition
of τp(n,−→v ). We consider now another coupling. The idea is to introduce a coupling of the
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percolations of parameter p and q such that if an edge is p-open then it is q-open and Ep(n,−→v ) is
independent of the q-state of any edge. Unfortunately, we cannot find such a coupling but we can
introduce a coupling that almost has this property. To do so, for each edge e ∈ Ed, we consider
two independent Bernoulli random variables U(e) and V (e) of parameters p and (q − p)/(1− p).
We say that an edge e is p-open if U(e) = 1 and that it is q-open if U(e) = 1 or V (e) = 1. Indeed,

P ( {U(e) = 1} ∪ {V (e) = 1} ) = p+ (1− p)q − p1− p = q .

Let δ > 0. We have,

P
(
τq(n,−→v ) > τp(n,−→v ) +

(
q − p
1− p + δ

)
αnd−1, Np(n,−→v ) < αnd−1

)
≤ P

(
τq(n,−→v )− τp(n,−→v ) >

(
q − p
1− p + δ

)
|Ep(n,−→v )|

)
≤
∑
E

P
(
Ep(n,−→v ) = E, |{e ∈ E : (U(e), V (e)) = (0, 1)}| >

(
q − p
1− p + δ

)
|E|
)

≤
∑
E

P
(
Ep(n,−→v ) = E, |{e ∈ E : V (e) = 1}| >

(
q − p
1− p + δ

)
|E|
)

≤
∑
E

P(Ep(n,−→v ) = E)P
(
|{e ∈ E : V (e) = 1}| >

(
q − p
1− p + δ

)
|E|
)

≤ exp(−2δ2nd−1) (3.2)

where the sum is over sets E that cut C ′1(nS(−→v ), n) from C ′2(nS(−→v ), n) in B(n,−→v ) and where we
use in the last inequality Chernoff bound and the fact that |Ep(n,−→v )| ≥ nd−1 (uniformly in −→v ).
Finally, using inequality (3.2) and theorem 3.1, we get

E[τq(n,−→v )] ≤ E[τq(n,−→v )1Np(n,−→v )<αnd−1 ] + E[τq(n,−→v )1Np(n,−→v )≥αnd−1 ]

≤ E[τp(n,−→v )] +
(
q − p
1− p + δ

)
αnd−1 + |B(n,−→v )|

(
e−2δ2nd−1

+C1 e−C2n
d−1
)

≤ E[τp(n,−→v )] +
(
q − p
1− p + δ

)
αnd−1 + Cd(2n)d

(
e−2δ2nd−1

+C1 e−C2n
d−1
)
,

where Cd is a constant depending only on d. Dividing by (2n)d−1 and by letting n go to infinity,
we obtain

βq(−→v ) ≤ βp(−→v ) +
(
q − p
1− p + δ

)
α

2d−1 (3.3)

and by letting δ go to 0,

βq(−→v ) ≤ βp(−→v ) + κ(q − p) (3.4)

where κ = α/(2d−1(1− p1)). Combining inequalities (3.1) and (3.4), we obtain that

sup
−→v ∈Sd−1

|βq(−→v )− βp(−→v )| ≤ κ|q − p| .

4 Proof of theorems 1.3 and 1.5
Proof of theorem 1.3. Let pc < p0 < p1 < 1. We recall that, for p > pc(d), Wp denotes the Wulff
crystal for the norm βp such that Ld(Wp) = 1/θp. In this section we aim to prove that the map
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p 7→ Ip(Wp) is Lipschitz continuous on [p0, p1]. Notice that as the map p 7→ θp is non-decreasing,
we have

∀p, q ∈ (pc(d), 1] p < q =⇒ Ld(Wp) ≥ Ld(Wq)

and using the fact that Wq is a minimizer for Iq for sets of equal volume, it follows that

∀p, q ∈ (pc(d), 1] p < q =⇒ Iq(Wp) ≥ Iq(Wq) . (4.1)

Moreover, the map p 7→ θp is infinitely differentiable on [p0, p1], see for instance theorem 8.92 in
[48]. Therefore, there exists a constant L depending on p0, p1 and d such that

∀p, q ∈ [p0, p1] |θp − θq| ≤ L|q − p| . (4.2)

Let us compute now some useful inequalities. For any set E ⊂ Rd with Lipschitz boundary, by
theorem 1.1, we have for any p, q ∈ [p0, p1]

|Ip(E)− Iq(E)| =
∣∣∣∣∫
∂E

(βp(nE(x))− βq(nE(x)))Hd−1(dx)
∣∣∣∣

≤
∫
∂E

|βp(nE(x))− βq(nE(x))|Hd−1(dx) ≤ κ|q − p|Hd−1(∂E) (4.3)

where κ is the constant associated with p0 and p1 in the statement of theorem 1.1. We recall that
the map p → βp is uniformly continuous on [p0, p1]. We denote by βmin and βmax its minimal
and maximal value, i.e., we have

∀−→v ∈ Sd−1 ∀p ∈ [p0, p1] βmin ≤ βp(−→v ) ≤ βmax .

Together with inequality (4.1) and the fact that the Wulff crystal is a minimizer for an isoperimetric
problem, we get for p ∈ [p0, p1]

Ip(Wp) ≤ Ip(Wp0) =
∫
∂Wp0

βp(nWp0
(x))Hd−1(dx) ≤ βmaxHd−1(∂Wp0) . (4.4)

We also have

Hd−1(∂Wp) =
∫
∂Wp

Hd−1(dx) ≤
∫
∂Wp

βp(nWp
(x))

βmin
Hd−1(dx) ≤ Ip(Wp)

βmin

and so together with inequality (4.4), we get

∀p ∈ [p0, p1] Hd−1(∂Wp) ≤ Hd−1(∂Wp0)β
max

βmin
. (4.5)

Finally, we obtain combining inequalities (4.1), (4.3) and (4.5),

Ip(Wp) ≥ Iq(Wp)− κ|q − p|Hd−1(∂Wp) ≥ Iq(Wq)− κ|q − p|Hd−1(∂Wp0)β
max

βmin
. (4.6)

As Ld(Wp) = Ld(Wq) ·θq/θp = Ld(Wq(θq/θp)1/d) and asWp is the minimizer for the isoperimetric
problem associated with the norm βp, we have

Ip(Wp) ≤ Ip

((
θq
θp

)1/d
Wq

)
≤
(
θq
θp

)(d−1)/d
Ip(Wq) ≤

θq
θp
Ip(Wq)

and so using inequalities (4.2), (4.3), (4.4) and (4.5)

Ip(Wp) ≤
θq
θp

(
Iq(Wq) + κ|q − p|Hd−1(∂Wq)

)
≤
(

1 + L

θp0

|q − p|
)(
Iq(Wq) + κ|q − p|Hd−1(∂Wp0)β

max

βmin

)
≤ Iq(Wq) + βmaxHd−1(∂Wp0)

(
L

θp0

+ κ

βmin

(
1 + L

θp0

))
|q − p| . (4.7)
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Thus combining inequalities (4.6) and (4.7) together with Theorem 1.2, we get

|Ip(Wp)− Iq(Wq)| ≤ ν|q − p| (4.8)

where we set
ν = βmaxHd−1(∂Wp0)

(
L

θp0

+ κ

βmin

(
1 + L

θp0

))
.

Proof of theorem 1.5. Let pc < p0 < p1 < 1 and p, q ∈ [p0, p1]. We consider β∗p the dual norm of
βp, defined by

∀x ∈ Rd, β∗p(x) = sup{x · z : βp(z) ≤ 1} .

Then β∗p is a norm. The Wulff crystal Ŵp associated with βp is in fact the unit ball associated
with β∗p . Note that the supremum in the definition of β∗p is always achieved for a z such that
βp(z) = 1. Let x ∈ Sd−1. Let y ∈ Sd−1 be the direction that achieves the supremum for β∗p(x),
thus we have

β∗p(x) = x · y

βp(y)

and so using theorem 1.2,

β∗p(x)− β∗q (x) ≤ x · y

βp(y) − x ·
y

βq(y) ≤
‖x‖2‖y‖2
βp(y)βq(y) |βp(y)− βq(y)| ≤ κ

(βmin)2 |q − p|

where βmin was defined in the proof of theorem 1.3. We proceed similarly for β∗q (x) − β∗p(x).
Finally, we obtain

sup
x∈Sd−1

|β∗p(x)− β∗q (x)| ≤ κ

(βmin)2 |q − p| . (4.9)

We recall the following definition of the Hausdorff distance between two subsets E and F of Rd:

dH(E,F ) = inf
{
r ∈ R+ : E ⊂ F r and F ⊂ Er

}
where Er = {y : ∃x ∈ E ‖y − x‖2 ≤ r}. Thus, we have

dH(Ŵp, Ŵq) ≤ sup
y∈Sd−1

∥∥∥∥ y

β∗p(y) −
y

β∗q (y)

∥∥∥∥
2
.

Note that y/β∗p(y) (resp. y/β∗q (y)) is in the unit sphere for the norm β∗p (resp. β∗q ). Let x ∈ Sd−1.
Using the definition of β∗, we obtain

1
βmax

≤ x · x

βp(x) ≤ β
∗
p(x) .

Finally, using inequality (4.9), we obtain

dH(Ŵp, Ŵq) ≤ sup
y∈Sd−1

∣∣∣∣ 1
β∗p(y) −

1
β∗q (y)

∣∣∣∣
≤ sup
y∈Sd−1

1
β∗q (y)β∗p(y)

∣∣β∗p(y)− β∗q (y)
∣∣

≤ sup
y∈Sd−1

(βmax)2 ∣∣β∗p(y)− β∗q (y)
∣∣ ≤ κ(βmax)2

(βmin)2 |q − p| . (4.10)

The result follows.
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5 Proof of theorem 3.1
The proof of theorem 3.1 is going to be simpler than the proof of theorem 2 in [73], because

passage times in our context can take only values 0 or 1, i.e., to each edge we associate an i.i.d
random variable of distribution Gp = pδ1 +(1−p)δ0 whereas Zhang considers in [73] more general
distributions. Our setting is equivalent to bond percolation of parameter p by saying that an edge
is closed if its passage time is 0, and open if its passage time is 1. Let us briefly explain the idea
behind that theorem. Let p ≥ p0. We work on bond percolation of parameter p (equivalently on
first passage percolation with distribution Gp = pδ1 + (1 − p)δ0). We aim at bounding the size
of the smallest minimal cutset that cuts the set C ′1(nS(−→v ), n) from C ′2(nS(−→v ), n) in B(n,−→v ).
To do so we do a renormalization at a scale t in order to build a "smooth" minimal cutset. The
collection (Bt(u))u∈Zd is a partition of Zd into boxes of size t and B̄t(u) =

⋃
v
∗∼uBt(u) where

v
∗∼ u if ‖u − v‖∞ = 1. Let us now introduce some useful definitions. A connected cluster C is

B̄t(u)

Bt(u)

Figure 4.1 – On the left a box Bt(u) with a disjoint property, on the right a box with a blocked
property

said to be p-crossing for a box B, if for all d directions, there is a p-open path in C ∩B connecting
the two opposite faces of B. We define the diameter of a finite cluster C as

Diam(C) := max
i=1,...,d
x,y∈C

|xi − yi| .

Let Tm,t(p) be the event that Bt has a p-crossing cluster and contains some other p-open cluster
D having diameter at least m. We say that Bt(u) has a p-disjoint property if there exist two
disconnected p-open clusters in B̄t(u), both with vertices in Bt(u) and in the boundary of B̄t(u).
We say that Bt(u) has a p-blocked property if there is a p-open cluster C in B̄t(u) with vertices
in Bt(u) and in the boundary of B̄t(u), but without vertices in a t-cube of B̄t(u). We say that a
p-atypical event occurs in Bt(u) if it has a p-blocked property or a p-disjoint property (see Figure
4.1).

As the original proof is very technical, the adaptation of the proof is also technical. There
are two points that need to be adapted from Zhang’s proof. First, Zhang controls the size of a
minimal cutset from the top to the bottom of a box in theorem 2 but here we need to control the
size of a minimal cutset from the top half C ′1(nS(−→v ), n) to the bottom half C ′2(nS(−→v ), n) of a
box B(n,−→v ). The second point is that Zhang has a control on the size that holds for a fixed p,
but we need here to have a uniform control of the size for p ∈ [p0, 1].

Adaptation of the proof of theorem 1 in [73] to get theorem 3.1. We keep the same notations as in
[73]. The following adaptation is not self-contained. Let p0 > pc(d) and −→v ∈ Sd−1. In [73], the
author bounds the size of the smallest minimal cutset that cuts a given cylinder B(k,m) from
infinity. However, his construction of a linear cutset in section 2 of [73] is not specific to the set
B(k,m) and can be defined in the same way for any set of vertices. In particular we can replace
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B(k,m) by C ′1(nS(−→v ), n) and ∞ by C ′2(nS(−→v ), n) (as it is done by Zhang in Theorem 2 in [73]
with the top and the bottom of a cylinder). Note that given the configuration of passage times,
the construction of Zhang’s is totally deterministic. As we only focus on edges inside B(n,−→v ), we
can assume that all edges outside B(n,−→v ) are closed.

We denote by C(n) the set that corresponds to C(k,m) defined in Lemma 1 in [73]:

C(n) = {v ∈ Zd : v is connected to C ′1(nS(−→v ), n) by an open path } .

We denote by G(n) the event that C(n)∩C ′2(nS(−→v ), n) = ∅ (it corresponds to G(k,m) in [73]). On
this event, the exterior edge boundary ∆eC(n) of C(n) is a closed cutset that cuts C ′1(nS(−→v ), n)
from C ′2(nS(−→v ), n). The problem is that the cutset ∆eC(n) may be very entangled. We use
renormalization to be able to build a smooth closed cutset upon ∆eC(n). We denote by A the set
of t-cubes that intersect ∆eC(n) . By Zhang construction, we can extract from A a set of cubes
Γt such that Γt is ∗-connected and the union Γ̄t of the 3t-cubes in Γt (the cubes in Γt and their
∗-neighbors) contains a closed cutset that separates the set C ′1(nS(−→v ), n) from C ′2(nS(−→v ), n).
Moreover, each cube in Γt has a ∗-neighbor where a p-atypical event occurs.

The set E = {〈x, y〉 ∈ B(n,−→v ) : x ∈ C ′1(nS(−→v ), n) } cuts the set C ′1(nS(−→v ), n) from the set
C ′2(nS(−→v ), n) in B(n,−→v ) and there exists a constant cd depending only on d but not on −→v such
that |E| ≤ cdnd−1. Thus, we obtain that

τp(n,−→v ) ≤ |E| ≤ cdnd−1 .

We denote by Ep(n,−→v ) the cutset that achieves the infimum in τp(n,−→v ) and such that |Ep(n,−→v )| =
Np(n,−→v ) (Ep(n,−→v ) corresponds to W (k,m) the minimal cutset between the top and the bottom
of B(k,m) in [73]). For a configuration ω, we denote by e1, . . . , eJ(ω) the p-open edges in Ep(n,−→v ).
We have J(ω) = τp(n,−→v )(ω) ≤ cdnd−1. We denote by σ(ω) the configuration which coincides with
ω except in edges e1, . . . , eJ(ω) that are closed for σ(ω). Thus, the set Ep(n,−→v )(σ(ω)) is a p-closed
(for the configuration σ(ω)) cutset that cuts C ′1(nS(−→v ), n) from C ′2(nS(−→v ), n) in B(n,−→v ). Note
that the set of edges Ep(n,−→v )(σ(ω)) is determined by the configuration ω whereas we consider
the state of its edges is given by the configuration σ(ω). We recall that all the edges outside
B(n,−→v ) are closed so that the event G(n) occurs in the configuration σ(ω) and we can use the
construction of section 2 in [73] for the configuration σ(ω): there exists a set of cube Γt such that
Γ̄t contains a p-closed (for σ(ω)) cutset Γ that cuts C ′1(nS(−→v ), n) from C ′2(nS(−→v ), n) (see Lemma
4 in [73]). The set Γ∩B(n,−→v ) is a closed cutset that separates C ′1(nS(−→v ), n) from C ′2(nS(−→v ), n)
in B(n,−→v ).

We now change σ(ω) back to ω. For i ∈ {1, . . . , J(ω)}, the state of the edge ei changes from
closed to open. We write Γ(ω) when we consider the edge set Γ (the edge set Γ is determined
by σ(ω) with its edges capacities determined by the configuration ω. The set Γ(ω) exists as an
edge set, it is still a cutset but it is no longer closed, all edges in Γ(ω) \ {e1, . . . , eJ(ω)} are closed.
Therefore, |Γ(ω)|o,p ≤ J(ω), but by definition of Ep(n,−→v ), we have J(ω) = |Ep(n,−→v )(ω)|o,p ≤
|Γ(ω)|o,p ≤ J(ω) and so |Γ(ω)|o,p = J(ω) and {e1, . . . , eJ(ω)} ⊂ Γ. Moreover, for each ω, by
definition of Np(n,−→v )(ω), we get that |Γ(ω)| ≥ Np(n,−→v )(ω).

Note that for the t-cubes Bt(u) ∈ Γt such that B̄t(u) intersects the boundary of B(n,−→v ), we
cannot be sure that there exists a t-cube in B̄t(u) where a p-atypical event occurs. Thus, we need
to obtain a control of the numbers of such cubes. Since edges outside B(n,−→v ) are closed, the set
∆eC(n) \ B(n,−→v ) is included in the exterior edge boundary ∆eB(n,−→v ) of B(n,−→v ). Therefore,
the cubes Bt(u) in Γt such that B̄t(u) is not contained in the strict interior of B(n,−→v ) satisfy
B̄t(u) ∩ ∆eB(n,−→v ) 6= ∅. We deduce that there are at most Cd,tnd−1 such cubes in Γt where
Cd,t is a constant depending only on the dimension d and t. Thus, if the number of t-cubes
in Γt is greater than βnd−1, then the number of t-cubes Bt(u) in Γt that do not intersect the
boundary of B(n,−→v ) and such that Bt(u) do not contain any edge among e1, . . . , eJ is greater
than (β − Cd,t − 3dcd)nd−1. All these t-cubes have at least one ∗-neighbor with a blocked or
disjoint property for the configuration ω.

In the proof of theorem 1 in [73], Zhang sums over all possible sets Γt. To do so, he needs to
find at least one cube Bt(v) that belongs to Γt and then he will be able to sum over all possible
∗-connected sets that contained Bt(v) of a given size. In our case, any cube Bt(u) that intersects
the boundary ∆eC

′
1(nS(−→v ), n) \B(n,−→v ) belongs to A as it also intersects ∆eC(n) and by Zhang



5. PROOF OF THEOREM 3.1 105

construction, we can prove that the cube Bt(u) also belongs to Γt. Thanks to this remark, we
avoid the part of Zhang’s proof where he tries to find a vertex z in the intersection between the
cutset W (k,m) and a line L in order to find a cube that is in Γt. Thus, the term exp(β−1n) in
(6.19) in [73] is not necessary in our case. This leads to small modifications of constants in the
proof of [73]. The remainder of the proof is the same except that we need a uniform decay for
p ∈ [p0, 1] of the probability of a p-atypical event in Bt instead of using the control in [73]. We
need to prove the following lemma:

Lemma 5.1 (Uniform decay of the probability an atypical event occurs). Let p0 > pc(d). There
exist positive constants C1(p0) and C2(p0) depending only on p0 and d such that

∀p ≥ p0 ∀t ≥ 1 P (a p-atypical event occurs in Bt) ≤ C1(p0) exp(−C2(p0)t) . (5.1)

We would like to highlight the fact that in lemmas 6 and 7 in [73], Zhang proves the same result
but with constants C1 and C2 depending on p. Obtaining a decay that is uniform for p ∈ [p0, 1]
is the key element to adapt the proof of Zhang and show that the constant α in the statement of
the theorem 3.1 does depend only on p0 and d.

Let us now prove lemma 5.1. We need to adapt some existing proofs in order to obtain a decay
which is uniform in p.

Proof of lemma 5.1. First, note that if Bt has a p-disjoint property and B̄t has a p-crossing cluster,
then one of the two disjoint clusters is different from the p-crossing cluster. Therefore, there is a
p-open cluster of diameter greater than t different from the p-crossing cluster, so the event Tt,3t(p)
occurs in the box B̄t. Similarly, let us assume that Bt has a p-blocked property and B̄t and all of
its sub-boxes (i.e, boxes Bt(v) such that Bt(v) ⊂ B̄t) have a p-crossing cluster. We denote by C
the p-open cluster in the definition of the p-blocked property. Thus, there is at least one cluster
among C and the p-crossing clusters of the sub-boxes that are disjoint from the p-crossing cluster
of B̄t and so the event Tt,3t(p) occurs in the box B̄t. Thus,

P(a p-atypical event occurs in Bt ) ≤ P(B̄t does not have a p-crossing cluster)
+ 3dP(Bt does not have a p-crossing cluster]) + P (Tt,3t(p)) (5.2)

As the event {Bt doesn’t have a p-crossing cluster} is non-increasing in p, we have

P(Bt doesn’t have a p-crossing cluster ≤ P(Bt doesn’t have a p0-crossing cluster) .

The probability for a box Bt not to have a p0-crossing cluster is decaying exponentially fast with
td−1, see for instance theorem 7.68 in [48]. Therefore, there exist positive constants c1(p0) and
c2(p0) such that

P(Bt does not have a p-crossing cluster) ≤ c1(p0) exp(−c2(p0)td−1) . (5.3)

It remains to prove that there exist positive constants κ(p0) and µ(p0) depending only on p0 such
that for all p ≥ p0, for all positive integers m and N

P(Tm,N (p)) ≤ κN2d exp(−µm) . (5.4)

In dimension d ≥ 3, we refer to the proof of lemma 7.104 in [48]. The proof of lemma 7.104 requires
the proof of lemma 7.78. The probability controlled in lemma 7.78 is clearly non decreasing in
the parameter p. Thus, if we choose δ(p0) and L(p0) as in the proof of lemma 7.78 for p0 > pc(d),
then these parameters can be kept unchanged for some p ≥ p0. Thanks to lemma 7.104, we obtain

∀p ≥ p0 P(Tm,N (p)) ≤ d(2N + 1)2d exp
((

m

L(p0) + 1 − 1
)

log(1− δ(p0))
)

≤ d.3d

1− δ(p0)N
2d exp

(
−− log(1− δ(p0))

L(p0) + 1 m

)
.
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We get the result with

κ = d.3d

1− δ(p0) and µ = − log(1− δ(p0))
L(p0) + 1 > 0 .

In dimension 2, the result is obtained by Couronné and Messikh in the more general setting of
FK-percolation, see theorem 9 in [30]. We proceed similarly as in dimension d ≥ 3, the constant
appearing in this theorem first appeared in proposition 6. The probability of the event considered
in this proposition is clearly increasing in the parameter of the underlying percolation which have
parameter 1 − p, it is an event for the subcritical regime of the Bernoulli percolation. Let us fix
a p0 > pc(2) = 1/2, then 1 − p0 < pc(2) and we can choose the parameter c(1 − p0) and keep it
unchanged for some 1− p ≤ 1− p0. In theorem 9, we get the expected result with c(1− p0) for a
p ≥ p0 and g(n) = n. Finally, combining inequalities (5.2), (5.3) and (5.4), we get

P(a p-atypical event occurs in Bt)
≤ c1(p0) exp(−c2(p0)(3t)d−1) + 3dc1(p0) exp(−c2(p0)td−1) + κ(p0)(3t)2d exp(−µ(p0)t) .

The result follows.
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Chapter 5

Regularity of the time constant
for a supercritical Bernoulli
percolation

We consider an i.i.d. supercritical bond percolation on Zd, every edge is open with a probability
p > pc(d), where pc(d) denotes the critical parameter for this percolation. We know that there
exists almost surely a unique infinite open cluster Cp [48]. We are interested in the regularity
properties of the chemical distance for supercritical Bernoulli percolation. The chemical distance
between two points x, y ∈ Cp corresponds to the length of the shortest path in Cp joining the
two points. The chemical distance between 0 and nx grows asymptotically like nµp(x). We aim
to study the regularity properties of the map p → µp in the supercritical regime. This may be
seen as a special case of first passage percolation where the distribution of the passage time is
Gp = pδ1 + (1 − p)δ∞, p > pc(d). It is already known that the map p → µp is continuous (see
[42]).
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1 Introduction
The model of first passage percolation was first introduced by Hammersley and Welsh [49] as

a model for the spread of a fluid in a porous medium. Let d ≥ 2. We consider the graph (Zd,Ed)
having for vertices Zd and for edges Ed the set of pairs of nearest neighbors in Zd for the Euclidean
norm. To each edge e ∈ Ed we assign a random variable t(e) with values in R+ so that the family
(t(e), e ∈ Ed) is independent and identically distributed according to a given distribution G. The
random variable t(e) may be interpreted as the time needed for the fluid to cross the edge e. We
can define a random pseudo-metric T on this graph: for any pair of vertices x, y ∈ Zd, the random
variable T (x, y) is the shortest time to go from x to y. Let x ∈ Zd \ {0}. One can ask what is the
asymptotic behavior of the quantity T (0, x) when ‖x‖ goes to infinity. Under some assumptions
on the distribution G, one can prove that asymptotically when n is large, the random variable

109
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T (0, nx) behaves like n · µG(x) where µG(x) is a deterministic constant depending only on the
distribution G and the point x. The constant µG(x) corresponds to the limit of T (0, nx)/n when
n goes to infinity, when this limit exists. This result was proved by Cox and Durrett in [32] in
dimension 2 under some integrability conditions on G, they also proved that µG is a semi-norm.
Kesten extended this result to any dimension d ≥ 2 in [51], and he proved that µG is a norm if
and only if G({0}) < pc(d). In the study of first passage percolation, µG is usually called the time
constant. The constant µG(x) may be seen as the inverse of the speed of spread of the fluid in the
direction of x.

It is possible to extend this model by doing first passage percolation on a random environment.
We consider an i.i.d. supercritical bond percolation on the graph (Zd,Ed). Every edge e ∈ Ed is
open with a probability p > pc(d), where pc(d) denotes the critical parameter for this percolation.
We know that there exists almost surely a unique infinite open cluster Cp [48]. We can define the
model of first passage percolation on the infinite cluster Cp. To do so, we consider a probability
measure G on [0,+∞] such that G([0,∞[) = p. In this setting, the p-closed edges correspond to
the edges with an infinite value and so the cluster Cp made of the edges with finite passage time
corresponds to the infinite cluster of a supercritical Bernoulli percolation of parameter p. The
existence of a time constant for such distributions was first obtained in the context of stationary
integrable ergodic field by Garet and Marchand in [39] and was later shown for an independent
field without any integrability condition by Cerf and Théret in [28].

The question of the continuity of the map G → µG started in dimension 2 with the article of
Cox [31]. He showed the continuity of this map under the hypothesis of uniform integrability: if
Gn weakly converges toward G and if there exists an integrable law F such that for all n ∈ N,
F stochastically dominates Gn, then µGn → µG. In [33], Cox and Kesten prove the continuity of
this map in dimension 2 without any integrability condition. Their idea was to consider a geodesic
for truncated passage times min(t(e),M), and along it to avoid clusters of p-closed edges, that
is to say edges with a passage time larger than some M > 0, by bypassing them with a short
path in the boundary of this cluster. Note that by construction, the edges of the boundary have
passage time smaller than M . Thanks to combinatorial considerations, they were able to obtain a
precise control on the length of these bypasses. This idea was later extended to all the dimensions
d ≥ 2 by Kesten in [51], by taking a M large enough such that the percolation of the edges with a
passage time larger than M is highly subcritical: for such a M , the size of the clusters of p-closed
edges can be controlled. However, this idea does not work anymore when we allow passage time
to take infinite values. In [42], Garet, Marchand, Procaccia and Théret proved the continuity of
the map G→ µG for general laws on [0,+∞] without any moment condition. More precisely, let
(Gn)n∈N, and G probability measures on [0,+∞] such that Gn weakly converges toward G (we
write Gn

d→ G), that is to say for all continuous bounded functions f : [0,+∞] → [0,+∞), we
have

lim
n→+∞

∫
[0,+∞]

fdGn =
∫

[0,+∞]
fdG .

Equivalently, we say that Gn
d→ G if and only if limn→+∞Gn([t,+∞]) = G([t,+∞]) for all

t ∈ [0,+∞] such that x→ G([x,+∞]) is continuous at t. If moreover for all n ∈ N, Gn([0,+∞)) >
pc(d) and G([0,+∞)) > pc(d), then

lim
n→∞

sup
x∈Sd−1

|µGn(x)− µG(x)| = 0

where Sd−1 is the unit sphere for the Euclidean norm.
In this paper, we focus on distributions of the form Gp = pδ1 +(1−p)δ∞, p > pc(d). We denote

by C′p be the subgraph of Zd whose edges are open for the Bernoulli percolation of parameter p.
The travel time given a law Gp between two points x and y ∈ Zd coincides with the so-called
chemical distance that is the graph distance between x and y in C′p. Namely, for x, y ∈ Zd, we
define the chemical distance DC

′
p(x, y) as the length of the shortest p-open path joining x and y.

Note that if x and y are not in the same cluster of C′p, DC
′
p(x, y) = +∞. Actually, when x and y

are in the same cluster, DC
′
p(x, y) is of order ‖y − x‖1. In [10], Antal and Pisztora obtained the
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following large deviation upper bound:

lim sup
‖y‖1→∞

1
‖y‖1

logP[0↔ y,DC
′
p(0, y) > ρ] < 0 .

This result implies that there exists a constant ρ depending on the parameter p and the dimension
d such that

lim sup
‖y‖1→∞

1
‖y‖1

DC
′
p(0, y)10↔y ≤ ρ, Pp a.s.

These results were proved using renormalization arguments. They were improved later in [39] by
Garet and Marchand, for the more general case of a stationary ergodic field. They proved that
DC
′
p(0, x) grows linearly in ‖x‖1. More precisely, for each y ∈ Zd \ {0}, they proved the existence

of a constant µp(y) such that

lim
n→∞
0↔ny

DC
′
p(0, ny)
n

= µp(y), Pp a.s. .

The constant µp is called the time constant. The map p→ µp can be extended to Qd by homogene-
ity and to Rd by continuity. It is a norm on Rd. This convergence holds uniformly in all directions,
this is equivalent of saying that an asymptotic shape emerges. Indeed, the set of points that are
at a chemical distance from 0 smaller than n asymptotically looks like nBµp , where Bµp denotes
the unit ball associated with the norm µp. In another paper [40], Garet and Marchand studied the
fluctuations of DC

′
p(0, y)/µp(y) around its mean and obtained the following large deviation result:

∀ε > 0, lim sup
‖x‖1→∞

lnPp
(

0↔ x, D
C′p (0,y)
µp(y) /∈ (1− ε, 1 + ε)

)
‖x‖1

< 0 .

In the same paper, they showed another large deviation result that, as a corollary, proves the
continuity of the map p→ µp in p = 1. In [41], Garet and Marchand obtained moderate deviations
of the quantity |DC

′
p(0, y)−µp(y)|. As a corollary of the work of Garet, Marchand, Procaccia and

Théret in [42] we obtain the continuity of the map p→ µp in (pc(d), 1]. Our paper is a continuation
of [42], our aim is to obtain better regularity properties for the map p→ µp than just continuity.
We prove the following theorem.

Theorem 1.1 (Regularity of the time constant). Let p0 > pc(d). There exists a constant κd
depending only on d and p0, such that for all p ≤ q in [p0, 1]

sup
x∈Sd−1

|µp(x)− µq(x)| ≤ κd(q − p)| log(q − p)| .

To study the regularity of the map p → µp, our aim is to control the difference between the
chemical distance in the infinite cluster Cp of a Bernoulli percolation of parameter p > pc(d) with
the chemical distance in Cq where q ≥ p. The key part of the proof lies in the modification of a
path. We couple the two percolations such that a p-open edge is also q-open but the converse does
not necessarily hold. We consider a q-open path for some q ≥ p > pc(d). Some of the edges of this
path are p-closed, we want to build upon this path a p-open path by bypassing the p-closed edges.
In order to bypass them, we use the idea of [42] and we build our bypasses at a macroscopic scale.
This idea finds its inspiration in the works of Antal and Pisztora [60] and Cox and Kesten [33].
We have to consider an appropriate renormalization and we obtain a macroscopic lattice with
good and bad sites. Good and bad sites correspond to boxes of size 2N in the microscopic lattice.
We will do our bypasses using good sites at a macroscopic scale that will have good connectivity
properties at a microscopic scale. The remainder of the proof consists in getting probabilistic
estimates of the length of the bypass. In this article we improve the estimates obtained in [42].
We quantify the renormalization to be able to give quantitative bounds on continuity. Namely,
we give an explicit expression of the appropriate size of a N -box. We use the idea of corridor that
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appeared in the work of Cox and Kesten [33] to have a better control on combinatorial terms and
derive a more precise control of the length of the bypasses than the one obtained in [42].

We recall that Bµp denotes the unit ball associated with the norm µp. From Theorem 1.1, we
can easily deduce the following regularity of the asymptotic shapes.

Corollary 1.2 (Regularity of the asymptotic shapes). Let p0 > pc(d). There exists a constant κ′d
depending only on d and p0, such that for all p ≤ q in [p0, 1],

dH(Bµq ,Bµp) ≤ κ′d(q − p)| log(q − p)|

where dH is the Hausdorff distance between non-empty compact sets of Rd.

Here is the structure of the paper. In section 2, we introduce some definitions and preliminary
results that are going to be useful in what follows. The section 3 presents the renormalization
process and how we modify a q-open path to turn it into a p-open path and how we can control
the length of the bypasses. In section 4 and 5, we get probabilistic estimates on the length of the
bypasses. Finally, in section 6 we prove the main Theorem 1.1 and its Corollary 1.2.

Remark 1.3. The section 3 is a simplified version of the renormalization process that was already
present in [42]. The simplification comes from the fact that we are not interested in general
distributions but only on distributions Gp for p > pc(d) which have the advantage of taking only
two values 1 or +∞. The original part of this work is the quantification of the renormalization
and the combinatorial estimates of section 5.

2 Definitions and preliminary results
Let d ≥ 2. Let us recall the different distances in Rd. Let x = (x1, . . . , xd) ∈ Rd, we define

‖x‖1 =
d∑
i=1
|xi|, ‖x‖2 =

√√√√ d∑
i=1

x2
i and ‖x‖∞ = max{|xi|, i = 1, . . . , d} .

Let G be a subgraph of (Zd,Ed) and x, y ∈ G. A path γ from x to y in G is a sequence
γ = (v0, e1, . . . , en, vn) such that v0 = x, vn = y and for all i ∈ {1, . . . , n}, the edge ei = 〈vi−1, vi〉
belongs to G. We say that x and y are connected in G if there exists such a path. We denote by
|γ| = n the length of γ. We define

DG(x, y) = inf{|r| : r is a path from x to y in G}

the chemical distance between x and y in G. If x and y are not connected in G, DG(x, y) =∞. In
the following, G will be C′p the subgraph of Zd whose edges are open for the Bernoulli percolation
of parameter p > pc(d). To get around the fact that the chemical distance can take infinite values
we introduce regularized chemical distance. Let C ⊂ C′p be a connected cluster, we define x̃C as
the vertex of C which minimizes ‖x− x̃C‖1 with a deterministic rule to break ties. As C ⊂ C′p, we
have

DC
′
p(x̃C , ỹC) ≤ DC(x̃C , ỹC) <∞ .

Typically, C is going to be the infinite cluster for Bernoulli percolation with a parameter p0 ≤ p
(thus Cp0 ⊂ C′p).

We can define the regularized time constant as in [41] or as a special case of [28].

Proposition 2.1. Let p > pc(d). There exists a deterministic function µp : Zd → [0,+∞), such
that for every p0 ∈ (pc(d), p]:

∀x ∈ Zd lim
n→∞

DCp(0̃Cp0 , ñx
Cp0 )

n
= µp(x) a.s. and in L1.

It is important to check that µp does not depend on p0, i.e., on the cluster Cp0 we use to regularize.
This is done in Lemma 2.11 in [42]. As a corollary, we obtain the monotonicity of the map p→ µp
which is non increasing, see Lemma 2.12 in [42].
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Corollary 2.2. For all pc(d) < p ≤ q and for all x ∈ Zd,

µp(x) ≥ µq(x) .

We will also need this other definition of path that corresponds to the context of site percola-
tion. Let G be a subset of Zd and x, y ∈ G. We say that the sequence γ = (v0, . . . , vn) is a Zd-path
from x to y in G if v0 = x, vn = y and for all i ∈ {1, . . . , n}, vi ∈ G and ‖vi − vi−1‖1 = 1.

3 Modification of a path
In this section we present the renormalization process. We are here at a macroscopic scale, we

define good boxes to be boxes with useful properties to build our modified paths.

3.1 Definition of the renormalization process
Let p > pc(d) be the parameter of an i.i.d. Bernoulli percolation on the edges of Zd. For a

large integer N , that will be chosen later, we set BN = [−N,N [d∩Zd and define the following
family of N -boxes, for i ∈ Zd,

BN (i) = τi(2N+1)(BN )

where τb denotes the shift in Zd with vector b ∈ Zd. Zd is the disjoint union of this family:
Zd = ti∈ZdBN (i). We need to introduce larger boxes that will help us to link N -boxes together.
For i ∈ Zd, we define

B′N (i) = τi(2N+1)(B3N ).

To define what a good box is, we have to list properties that a good box should have to ensure
that we can build a modification of the path as we have announced in the introduction. We have
to keep in mind that all the properties must occur with probability close to 1 when N goes to
infinity. Before defining what a good box is, let us recall some definitions. A connected cluster C
is crossing for a box B, if for all d directions, there is an open path in C ∩ B connecting the two
opposite faces of B. We define the diameter of a finite cluster C as

Diam(C) := max
i=1,...,d
x,y∈C

|xi − yi| .

Definition 3.1. We say that the macroscopic site i is p-good if the following events occur:
(i) There exists a unique p-cluster C in B′N (i) with diameter larger than N ;
(ii) This p-cluster C is crossing for each of the 3d N -boxes included in B′N (i);
(iii) For all x, y ∈ B′N (i), if x and y belong to C then DC

′
p(x, y) ≤ 12βN , for an appropriate β

that will be defined later.
C is called the crossing p-cluster of the p-good box BN (i).

Let us define a percolation by site on the macroscopic grid given by the state of the boxes, i.e.,
we say that a macroscopic site i is open if the box BN (i) is p-good, otherwise we say the site is
closed. Note that the state of the boxes are not independent, there is a short range dependence.

On the macroscopic grid Zd, we consider the standard definition of closest neighbors, that is
to say x and y are neighbors if ‖x − y‖1 = 1. Let C be a connected set of macroscopic sites, we
define its exterior vertex boundary

∂vC =
{

i ∈ Zd \ C : i has a neighbour in C and is connected
to infinity by a Zd-path in Zd \ C

}
.

For a bad macroscopic site i, let us denote by C(i) the connected cluster of bad macroscopic sites
containing i. If C(i) is finite, the set ∂vC(i) is not connected in the standard definition but it is
with a weaker definition of neighbors. We say that two macroscopic sites i and j are ∗-neighbors
if and only if ‖i− j‖∞ = 1. Therefore, ∂vC(i) is an ∗-connected set of good macroscopic sites see
for instance Lemma 2 in [69]. We adopt the convention that ∂vC(i) = {i} when i is a good site.
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3.2 Construction of bypasses
Let us consider pc(d) < p ≤ q, we fix N in this section. Let us consider a q-open path γ. In

this paper, we will consider two different couplings. We do not specify here what coupling we
use. However, for these two couplings a p-open edge is necessarily q-open. Thus, some edges in
γ might be p-closed. We denote by γo the set of p-open edges in γ, and by γc the set of p-closed
edges in γ. Our aim is to build a bypass for each edge in γc using only p-open edges. The proof
will follow the proof of Lemma 3.2 in [42] up to some adaptations.

As the bypasses are going to be made at a macroscopic scale, we need to consider the N -boxes
that γ crosses. We denote by Γ ⊂ Zd the connected set of all the N -boxes visited by γ. The set
Γ is connected in the standard definition. We denote by Bad the random set of bad connected
components on the macroscopic percolation given by the states of the N -boxes. The following
Lemma states that we can bypass all the p-closed edges in γ and gives a control on the total size
of these bypasses.
Lemma 3.2. Let us consider y, z ∈ Cp such that the N -boxes of y and z belong to an infinite
cluster of p-good boxes. Let us consider a q-open path γ joining y to z. Then there exists a p-open
path γ′ between y and z that has the following properties:
(1) γ′ \ γ is a set of disjoint self avoiding p-open paths that intersect γ′ ∩ γ at their endpoints;

(2) |γ′ \ γ| ≤ ρdN

( ∑
C∈Bad:C∩Γ6=∅

|C|+ |γc|
)
, where ρd is a constant depending only on the

dimension d.
Remark 3.3. Note that here we don’t need to introduce a parameter p0 and require that the
bypasses are p0 open as in [42]. Indeed, this condition was required because finite passage times
of edges were not bounded. This is the reason why it was needed in [42] to bypass p-closed edges
with p0-open edges. These p0-open edges were precisely edges with passage time smaller than some
constant M0. In our context, we can get rid of this technical aspect because passage times when
finite may only take the value 1.
Before proving Lemma 3.2, we need to prove the following lemma that gives a control on the
length of a path between two points in a ∗-connected set of good boxes.
Lemma 3.4. Let I be a set of n ∈ N∗ macroscopic sites such that (BN (i))i∈I is a ∗-connected set
of p-good N -boxes. Let x ∈ BN (j) be in the p-crossing cluster of BN (j) with j ∈ I and y ∈ BN (k)
be in the p-crossing cluster of BN (k) with k ∈ I. Then, we can find a p-open path joining x and
y of length at most 12βNn (with the same constant β as in Definition 3.1).
Proof of Lemma 3.4. Since I is a ∗-connected set of macroscopic sites, there exists a self-avoiding
macroscopic ∗-connected path (ϕi)1≤i≤r ⊂ I such that ϕ1 = j, ϕr = k. Thus, we get that
r ≤ |I| = n. As all the sites in I are good, all the N -boxes corresponding to the sites (ϕi)1≤i≤r
are good.

For each 2 ≤ i ≤ r − 1, we define xi to be a point in the p-crossing cluster of the box BN (ϕi)
chosen according to a deterministic rule. We define x1 = x and xr = y. For each 1 ≤ i < r, xi
and xi+1 both belong to B′N (ϕi). Using property (iii) of a p-good box, we can build a p-open
path γ(i) from xi to xi+1 of length at most 12βN . By concatenating the paths γ(1), . . . , γ(r− 1)
in this order, we obtain a p-open path joining x to y of length at most 12βNn.

Proof of Lemma 3.2. Let us consider y, z ∈ Cp such that the N -boxes of y and z belong to an
infinite cluster of p-good boxes. Let γ be a q-open path joining y to z. The idea is the following.
We want to bypass all the p-closed edges of γ. Let us consider an edge e ∈ γc and BN (i) its
associated N -box. There are two different cases:
— If BN (i) is a good box, we can build a p-open bypass of e at a microscopic scale by staying

in a fixed neighborhood of BN (i). We will use the third property of good boxes to control
the length of the bypass that will be at most 12βN .

— If BN (i) is a bad box, we must build a p-open bypass at a macroscopic scale in the exterior
vertex boundary ∂vC(i) that is an ∗-connected component of good boxes. We will use Lemma
3.4 to control the length of this bypass.
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Let ϕ0 = (ϕ0(j))1≤j≤r0 be the sequence of N -boxes γ visits. From the sequence ϕ0, we can
extract the sequence of N -boxes containing at least one p-closed edge of γ. We only keep the
indices of the boxes containing the smallest extremity of a p-closed edge of γ for the lexicographic
order. We obtain a sequence ϕ1 = (ϕ1(j))1≤j≤r1 . Notice that r1 ≤ r0 and r1 ≤ |γc|. Before
building our bypasses, we have to get rid of some pathological cases. We are going to proceed
to further extractions. Note that two ∗-connected components of (∂vC(ϕ1(j)))1≤j≤r1 can be ∗-
connected together, in that case they count as a unique connected component. Namely, the set
E = ∪1≤j≤r1∂vC(ϕ1(j)) has at most r1 ∗-connected component (Sϕ2(j))1≤j≤r2 . Up to reordering,
we can assume that the sequence (Sϕ2(j))1≤j≤r2 is ordered in such a way that Sϕ2(1) is the first
∗-connected component of E visited by γ among the (Sϕ2(j))1≤j≤r2 , Sϕ2(2) is the second and so
on. Next, we consider the case of nesting, that is to say when there exist j 6= k such that Sϕ2(j)

z

y

γ

: the boxes (ϕ1(j))1≤j≤r1

: the sets of good boxes (Sϕ4(j))1≤j≤r4

: the sets of good boxes (Sϕ2(j))1≤j≤r2 that do not belong to (Sϕ4(j))1≤j≤r4

Figure 5.1 – Construction of the path γ′ - First step

is in the interior of Sϕ2(k). In that case, we only keep the largest connected component Sϕ2(k):
we obtain another subsequence (Sϕ3(j))1≤j≤r3 with r3 ≤ r2. Finally, we want to exclude a last
case, when between the moment we enter for the first time in a given connected component and
the last time we leave this connected component, we have explored other connected components
of (Sϕ3(j))1≤j≤r3 . That is to say we want to remove the macroscopic loops γ makes between
different visits of the same ∗-connected components Sϕ3(j) (see Figure 5.1). We iteratively extract
from (Sϕ3(j))1≤j≤r3 a sequence (Sϕ4(j))1≤j≤r4 in the following way: Sϕ4(1) = Sϕ3(1), assume
(Sϕ4(j))1≤j≤k is constructed ϕ4(k + 1) is the smallest indice ϕ3(j) such that γ visits Sϕ3(j) after
its last visit to Sϕ4(k). We stop the process when we cannot find such j. Of course, r4 ≤ r3. The
sequence (Sϕ4(j))1≤j≤r4 is a sequence of sets of good N -boxes that are all visited by γ.

Let us introduce some notations (see Figure 5.2), we write γ = (x0, . . . , xn). For all k ∈
{1, . . . , r4}, we denote by Ψin(k) (respectively Ψout(k)) the first moment that γ enters in Sϕ4(1)
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(resp. last moment that γ exits from Sϕ4(1)). More precisely, we have

Ψin(1) = min
{
j ≥ 1, xj ∈ Sϕ4(1)

}
and

Ψout(1) = max
{
j ≥ Ψin(1), xj ∈ Sϕ4(1)

}
.

Assume Ψin(1), . . . ,Ψin(k) and Ψout(1), . . . ,Ψout(k) are constructed then

Ψin(k + 1) = min
{
j ≥ Ψout(k), xj ∈ Sϕ4(k+1)

}
and

Ψout(k + 1) = max
{
j ≥ Ψin(k + 1), xj ∈ Sϕ4(k+1)

}
.

Let Bin(j) be the N -box in Sϕ4(j) containing xΨin(j), Bout(j) be the N -box in Sϕ4(j) containing
xΨout(j). Let γ(j) be the section of γ from xΨout(j) to xΨin(j+1) for 1 ≤ j < r4, let γ(0) (resp
γ(r4)) be the section of γ from y to xΨin(1) (resp. from xΨout(r4) to z).

We have to study separately the beginning and the end of the path γ. Note that as the N -
boxes of y and z both belong to an infinite cluster of good boxes, their box cannot be nested in
a bigger ∗-connected components of good boxes of the collection (Sϕ4(j))1≤j≤r4 . Thus, if BN (k),
the N -box of y, contains a p-closed edge of γ, necessarily Sϕ4(1) contains BN (k), Bin(1) = BN (k)
and xΨin(1) = y. Similarly, if BN (l), the N -box of z, contains a p-closed edge of γ, necessarily
Sϕ4(r4) contains BN (l), Bout(r4) = BN (l) and xΨout(r4) = z.

γ

: Sϕ4(j)

γlink(j)xψin(j)

Bin(j)

B′in(j)

B′out(j)

Bout(j) xψout(j)

Figure 5.2 – Construction of the path γ′ - Second step

In order to apply Lemma 3.4, let us show that for every j ∈ {1, . . . , r4}, xΨin(j) (resp. xΨout(j))
belongs to the p-crossing cluster of Bin(j) (resp. Bout(j)). Let us study separately the case of
xΨin(1) and xΨout(r4). If xΨin(1) = y then xΨin(1) belongs to the p-crossing cluster of Bin(j).
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Suppose that xΨin(1) 6= y. As y ∈ Cp and y is connected to xΨin(1) by a p-open path, xΨin(1)
is also in Cp. By the property (i) of a good box applied to Bin(1), we get that xΨin(1) is in the
p-crossing cluster of Bin(1). We study the case of xΨout(r4) similarly. To study xΨin(j) (resp.
xΨout(j))) for j ∈ {2, . . . , r4 − 1}, we use the fact that by construction, thanks to the extraction
ϕ2, two different elements of (Sϕ4(j))1≤j≤r4 are not ∗-connected. Therefore, for 1 ≤ j < r4, we
have

‖xΨin(j+1) − xΨout(j)‖1 ≥ N
and so the section γ(j) of γ from xΨout(j) to xΨin(j+1) has a diameter larger than N and contains
only p-open edges. As Bout(j) and Bin(j + 1) are good boxes, we obtain, using again property
(i) of good boxes, that xΨout(j) and xΨin(j+1) belong to the p-crossing cluster of their respective
boxes.

Finally, by Lemma 3.4, for every j ∈ {1, . . . , r4}, there exists a p-open path γlink(j) joining
xΨin(j) and xΨout(j) of length at most 12βN |Sϕ4(j)|. We obtain a p-open path γ′ joining y and z
by concatenating γ(0), γlink(1), γ(1), . . . , γlink(r4), γ(r4) in this order. Up to removing potential
loops, we can suppose that each γlink(j) is a self-avoiding path, that all the γlink(j) are disjoint
and that each γlink(j) intersects only γ(j − 1) and γ(j) at their endpoints. Let us estimate the
quantity |γ′ \ γ|, as γ′ \ γ ⊂ ∪r4i=1γlink(i), we obtain:

|γ′ \ γ| ≤
r4∑
j=1
|γlink(j)|

≤
r4∑
j=1

12βN |Sϕ4(j)|

≤ 12βN |γc|+ 12βN
∑

C∈Bad:C∩Γ6=∅

|∂vC|

where the last inequality comes from the fact that each Sϕ4(j) is the union of elements of {∂vC :
C ∈ Bad;C ∩ Γ 6= ∅} and of good boxes that contain edges of γc. We conclude by noticing that
|∂vC| ≤ 2d|C|.

3.3 Deterministic estimate
When q − p is small, we want to control the probability that the total length of the bypasses

γ′ \ γ of p-closed edges is large. We can notice in Lemma 3.2 that we need to control the bad
connected components of the macroscopic site percolation. This will be done in section 5. We will
also need a deterministic control on |Γ| which is the purpose of the following Lemma (this Lemma
is an adaptation of Lemma 3.4 of [42]).

Lemma 3.5. For every path γ of Zd, for every N ∈ N∗, there exists a ∗-connected macroscopic
path Γ̃ such that

γ ⊂
⋃
i∈Γ̃

B′N (i) and |Γ̃| ≤ 1 + |γ|+ 1
N

.

Proof. Let γ = (xi)1≤i≤n be a path of Zd where xi is the i-th vertex of γ. Let Γ be the set of
N -boxes that γ visits. We are going to define iteratively the macroscopic path Γ̃. Let p(1) = 1 and
i1 be the macroscopic site such that x1 ∈ BN (i1). We suppose that i1, . . . , ik and p(1), . . . , p(k)
are constructed. Let us define

p(k + 1) = min {j > p(k) : xj /∈ B′N (ik)} .

If this set is not empty, we set ik+1 to be the macroscopic site such that

xp(k+1) ∈ BN (ik+1) .

Otherwise, we stop the process, and we get that for every j ∈ {p(k), . . . , n}, xj ∈ B′N (ik). As
n is finite, the process will eventually stop and the two sequences (p(1), . . . , p(r)) and (i1, . . . , ir)
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are finite. Note that the ij are not necessarily all different. We define Γ̃ = (i1, . . . , ir). By
construction,

γ ⊂
⋃
i∈Γ̃

B′N (i) .

Notice that for every 1 ≤ k < r, ‖xp(k+1) − xp(k)‖1 ≥ N , thus p(k + 1)− p(k) ≥ N . This leads to
N(r − 1) ≤ p(r)− p(1) ≤ n, and finally,

|Γ̃| ≤ 1 + |γ|+ 1
N

.

Remark 3.6. This Lemma implies that if Γ is the set of N -boxes that γ visits then

|Γ| ≤ 3d|Γ̃| ≤ 3d
(

1 + |γ|+ 1
N

)
.

4 Control of the probability that a box is good
We need in what follows to control the quantity

∑
|C| where the sum is over all C ∈ Bad such

that C∩Γ 6= ∅. We would like to obtain a control which is uniform in the parameter of percolation
p. To do so, we are going to introduce a parameter p0 > pc(d) and show that exponential decay
is uniform for all p ≥ p0. Indeed, the speed will only depend on p0.

Theorem 4.1. Let p0 > pc(d). There exist positive constants A(p0) and B(p0) such that for all
p ≥ p0 and for all N ≥ 1

P(BN is p-bad) ≤ A(p0) exp(−B(p0)N) .

Note that the property (ii) of the definition of p-good box is a non-decreasing event in p. Thus,
it will be easy to bound uniformly the probability that property (ii) is not satisfied by something
depending only on p0. However, for properties (i) and (iii) a uniform bound is more delicate to
obtain. Before proving Theorem 4.1, we need the two following lemmas that deal with properties
(i) and (iii). Let Tm,N (p) be the event that BN has a p-crossing cluster and contains some other
p-open cluster C having diameter at least m.

Lemma 4.2. Let p0 > pc(d), there exist ν = ν(p0, d) > 0 and κ = κ(p0, d) such that for all p ≥ p0

P(Tm,N (p)) ≤ κN2d exp(−νm) . (4.1)

The following Lemma is an improvement of the result of Antal and Pisztora in [10] that
controls the probability that two connected points have a too large chemical distance. In the
original result, the constants depend on p, we slightly modify its proof so that constants are the
same for all p ≥ p0. This improvement is required to obtain a decay that is uniform in p.

Lemma 4.3. Let p0 > pc(d), there exist β = β(p0) > 0, Â = Â(p0) and B̂ = B̂(p0) > 0 such that
for all p ≥ p0

∀x ∈ Zd P(β‖x‖1 ≤ DC
′
p(0, x) < +∞) ≤ Â exp(−B̂‖x‖1) . (4.2)

Remark 4.4. Note that this is not an immediate corollary of [10]. Although increasing the
parameter of percolation p reduces the chemical distance, it also increases the probability that two
vertices are connected. Therefore the event that we aim to control is neither non-increasing neither
non-decreasing in p.

Before proving these two lemmas, we are first going to prove Theorem 4.1.
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Proof of Theorem 4.1. Let us fix p0 > pc(d). Let us denote by (iii)′ the property that for all
x, y ∈ B′N (i), if ‖x− y‖∞ ≥ N and if x and y belong to the p-crossing cluster C then DC

′
p(x, y) ≤

6βN . Note that properties (ii) and (iii)′ imply property (iii). Indeed, thanks to (ii), we can find
z ∈ C ∩B′N (i) such that ‖x− z‖∞ ≥ N and ‖yz‖∞ ≥ N . Therefore, by applying (iii)′,

DC
′
p(x, y) ≤ DC

′
p(x, z) +DC

′
p(z, y)

≤ 12βN .

Thus, we can bound the probability that a N -box is bad by the probability that it does not satisfy
one of the properties (i), (ii) or (iii)′. Since we want to control the probability of BN being a
p-bad box uniformly in p, we will emphasize the dependence of (i), (ii) and (iii)′ in p by writing
(i)p, (ii)p and (iii)′p. First, let us prove that the probability that a N -box does not satisfy property
(ii)p, i.e., the probability for a box not to have a p-crossing cluster, is decaying exponentially, see
for instance Theorem 7.68 in [48]. There exist positive constants κ1(p0) and κ2(p0) such that for
all p ≥ p0

P(BN does not satisfies (ii)p) ≤ P(BN does not satisfies (ii)p0)
≤ κ1(p0) exp(−κ2(p0)Nd−1) . (4.3)

Next, let us bound the probability that a N -box does not satisfy property (iii)′p. Using Lemma
4.3, for p ≥ p0,

P(BN does not satisfy (iii)′p)

≤
∑
x∈B′

N

∑
y∈B′

N

1‖x−y‖∞≥NP
(

6βN ≤ DC
′
p(x, y) < +∞

)
≤
∑
x∈B′

N

∑
y∈B′

N

1‖x−y‖∞≥NP
(
β‖x− y‖∞ ≤ DC

′
p(x, y) < +∞

)
≤
∑
x∈B′

N

∑
y∈B′

N

1‖x−y‖∞≥N Â exp(−B̂N)

≤ (6N + 1)2dÂ exp(−B̂N) .

Finally, by Lemma 4.2,

P(BN is p-bad)
≤ P(BN does not satisfies (ii)p) + P(BN satisfies (ii)p but not (i)p)

+ P(BN does not satisfy (iii)′p)

≤ κ1 exp(−κ2N
d−1) + 3dκN2d exp

(
−ν N3d

)
+ (6N + 1)2dÂ exp(−B̂N)

≤ A(p0)e−B(p0)N .

For the second inequality, we used inequality (4.3) and the fact that the event that the 3d N -
boxes of B′N are crossing and there exist another p-open cluster of diameter larger than N in B′N
is included in the event there exists a N -box in B′N that has a crossing property and contains
another p-open cluster of diameter at least N/3d. The last inequality holds for N ≥ C0(p0), where
C0(p0), A(p0) > 0 and B(p0) > 0 depends only on p0 and on the dimension d.

Proof of Lemma 4.2. In dimension d ≥ 3 , we refer to the proof of Lemma 7.104 in [48]. The proof
of Lemma 7.104 requires the proof of Lemma 7.78. The probability controlled in Lemma 7.78 is
clearly non decreasing in the parameter p. Thus, if we choose δ(p0) and L(p0) as in the proof
of Lemma 7.78 for p0 > pc(d), then these parameters can be kept unchanged for some p ≥ p0.
Thanks to Lemma 7.104, we obtain

∀p ≥ p0, P(Tm,N (p)) ≤ d(2N + 1)2d exp
((

m

L(p0) + 1 − 1
)

log(1− δ(p0))
)

≤ d.3d

1− δ(p0)N
2d exp

(
−− log(1− δ(p0))

L(p0) + 1 m

)
.
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We get the result with κ = d.3d
1−δ(p0) and ν = − log(1−δ(p0))

L(p0)+1 > 0.
In dimension 2, the result is obtained by Couronné and Messikh in the more general setting of

FK-percolation in Theorem 9 in [30]. We proceed similarly as in dimension d ≥ 3, the constant
appearing in this theorem first appeared in Proposition 6. The probability of the event considered
in this proposition is clearly increasing in the parameter of the underlying percolation, it is an
event for the subcritical regime of the Bernoulli percolation. Let us fix a p0 > pc(2) = 1/2,
then 1 − p0 < pc(2) and we can choose the parameter c(1 − p0) and keep it unchanged for some
1 − p ≤ 1 − p0. In Theorem 9, we get the expected result with c(1 − p0) for a p ≥ p0 and
g(n) = n.

We explain now how to modify the proof of [10] to obtain the uniformity in p.

Proof of Lemma 4.3. Let p0 > pc(d) and p ≥ p0. First note that the constant ρ appearing in [10]
corresponds to our β. the proof of Lemma 2.3 in [10] can be adapted (as we did above in the proof
of Lemma 4.2) to choose constants c3, c4, c6 and c7 that depend only on p0 and d, we do not get
into details again. Thanks to this, N may be chosen in the expression (4.47) of [10] such that it
only depends on p0 and d and so is ρ. This concludes the proof.

5 Probabilistic estimates
We can now use the stochastic minoration by a field of independent Bernoulli variables to

control the probability that the quantity
∑
|C| is big, where the sum is over all C ∈ Bad such

that C ∩ Γ 6= ∅. The proof of the following Lemma is in the spirit of the work of Cox and Kesten
in [33] and relies on combinatorial considerations. These combinatorial considerations were not
necessary in [42].

We consider a path γ and its associated lattice animal Γ. We need in the proof of the following
Lemma to define Γ as a path of macroscopic sites, that is to say a path (ik)k≤r in the macroscopic
grid such that ∪k≤rBN (ik) = Γ (this path may not be self-avoiding). We can choose for instance
the sequence of sites that γ visits. However, it is difficult to control the size of this sequence by
the size of Γ. That is the reason why we consider the path of the macroscopic grid Γ̃ that was
introduced in Lemma 3.5.

Proposition 5.1. Let p0 > pc(d) and ε ∈ (0, 1 − pc(d)). There exist a constant Cε ∈ (0, 1)
depending only on ε and a positive constant C1 depending on p0, d and β, such that if we set
N = C1| log ε|, then for all p ≥ p0 , for every n ∈ N∗

P

∃γ starting from 0 such that |Γ̃| ≤ n,
∑

C∈Bad:C∩Γ6=∅

|C| ≥ εn

 ≤ Cnε
where Γ is the lattice animal associated with the path γ and Γ̃ the macroscopic path given by
Lemma 3.5.

Proof. Let us consider a path γ starting from 0, its associated lattice animal Γ, i.e., the set of
boxes γ visits and its associated path on the macroscopic grid Γ̃ = (Γ̃(k))0≤k≤r as defined in
Lemma 3.5. We first want to include Γ̃ in a subset of the macroscopic grid. Of course, Γ̃ is
included in the hypercube of side-length 2r centered at Γ̃(0), but we need to have a more precise
control. Let K ≥ 1 be an integer that we will choose later. Let v be a site, we denote by S(v) the
hypercube of side-length 2K centered at v and by ∂S(v) its inner boundary:

S(v) = {w ∈ Zd : ‖w − v‖∞ ≤ K} and ∂S(v) = {w ∈ Zd : ‖w − v‖∞ = K} .

We define v(0) = Γ̃(0), p0 = 0. If p0, . . . , pk and v(0), . . . , v(k) are constructed, we define if any

pk+1 = min
{
i ∈ {pk + 1, . . . , r} : Γ̃(i) ∈ ∂S(v(k))

}
and v(k + 1) = Γ̃(pk+1) .
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Γ̃Γ̃(0) = v(0)

Γ̃(r)

v(1)

v(2)

∂S(v(0))
∂S(v(1))

v(τ)∂S(v(τ))

2K

2K

Figure 5.3 – Construction of v(0), . . . , v(τ)

If there is no such index we stop the process. Since pk+1 − pk ≥ K, there are at most 1 + r/K

such pk. Notice that 1 + r/K ≤ 1 +n/K on the event {|Γ̃| ≤ n}. We define τ = 1 +n/K. On the
event {|Γ̃| ≤ n}, the macroscopic path Γ̃ is contained in the union of those hypercubes:

D(v(0), . . . , v(τ)) =
τ⋃
i=0

S(v(i)) .

If we stop the process for a k < τ , we artificially complete the sequence until attaining τ by setting
for k < j ≤ τ , v(j) = v(k). See figure 5, the corridor D(v(0), . . . , v(τ)) is represented by the grey
section. By construction, for all 1 ≤ k ≤ r, there exists a j ≤ τ such that Γ̃(k) is in the strict
interior of S(v(j)), so we have

Γ ⊂
r⋃

k=1

{
j, j is ∗-connected to Γ̃(k)

}
⊂ D(v(0), . . . , v(τ)) .

Thus, we obtain

P

∃γ starting from 0 such that |Γ̃| ≤ n,
∑

C∈Bad:C∩Γ6=∅

|C| ≥ εn


≤ P

 ⋃
v(0),...,v(τ)

{
∃γ starting from 0 such that∑

C∈Bad:C∩Γ6=∅
|C| ≥ εn, Γ ⊂ D(v(0), . . . , v(τ))

}
≤

∑
v(0),...,v(τ)

P

(
∃γ starting from 0 such that∑

C∈Bad:C∩Γ6=∅
|C| ≥ εn, Γ ⊂ D(v(0), . . . , v(τ))

)

≤
∑

v(0),...,v(τ)

P

 ∑
C∈Bad:

C∩D(v(0),...,v(τ))6=∅

|C| ≥ εn
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≤
∑

v(0),...,v(τ)

∑
j≥εn

P

 ∑
C∈Bad:

C∩D(v(0),...,v(τ)) 6=∅

|C| = j


where the first sum is over the sites v(0), . . . , v(τ) satisfying v(0) = Γ(1) and for all 0 ≤ k < τ ,
v(k+ 1) ∈ ∂S(v(k))∪{v(k)}. Since ∂S(v)∪{v} contains at most (cdK)d−1 sites where cd ≥ 1 is a
constant depending only on the dimension, the sum over the sites v(0), . . . , v(τ) contains at most

(cdK)(d−1)τ ≤ (cdK)
2n(d−1)

K := Cn2

terms for n large enough. For any fixed v(0), . . . , v(τ), D(v(0), . . . , v(τ)) contains at most

(τ + 1)(2K + 1)d ≤ (n/K + 2)(2K + 1)d ≤ 2n(3K)d := C3n

macroscopic sites. Let us recall that for a bad macroscopic site i, C(i) denotes the connected
cluster of bad macroscopic sites containing i. Let us notice that the following event

∑
C∈Bad:

C∩D(v(0),...,v(τ)) 6=∅

|C| = j


is included in the event: there exist an integer ρ ≤ C3n and distinct bad macroscopic sites
i1, . . . , iρ ∈ D(v(0), . . . , v(τ)), disjoint connected components C̄1, . . . , C̄ρ such that for all 1 ≤ k ≤
ρ, C(ik) = C̄k and

∑ρ
k=1 |C̄k| = j. Therefore, for any fixed v(0), . . . , v(τ),

P

 ∑
C∈Bad:

C∩D(v(0),...,v(τ)) 6=∅

|C| = j


=
C3n∑
ρ=1

∑
i1∈D(v(0),...,v(τ))

...
iρ∈D(v(0),...,v(τ))
∀k 6=l,ik 6=il

∑
j1,...,jρ≥1
j1+···+jρ=j

∑
C1∈Animalsj1i1...

Cρ∈Animalsjρiρ

P

 ∀1 ≤ k ≤ ρ
C(ik) = C̄k,∑ρ
k=1 |C̄k| = j

 (5.1)

where Animalskv is the set of connected macroscopic sites of size k containing the site v. We
have |Animalskv | ≤ (7d)k (see for instance Grimmett [48], p85). There are at most

(
C3n
ρ

)
ways of

choosing the sites i1, . . . , iρ. Thus, if we fix the sites i1, . . . , iρ the number of possible choices of
the connected components C̄1, . . . , C̄ρ such that for all 1 ≤ k ≤ ρ, C(ik) = C̄k and

∑ρ
k=1 |C̄k| = j

is at most: ∑
j1,...,jρ≥1
j1+···+jρ=j

(7d)j1 · · · (7d)jρ = (7d)j
∑

j1,...,jρ≥1
j1+···+jρ=j

1 .

Next we need to estimate, for given sites i1, . . . , iρ and disjoint connected components C̄1, . . . , C̄ρ,
the probability that for all 1 ≤ k ≤ ρ, C(ik) = C̄k. For all sites i ∈ ∪ρk=1C̄k, the N -box BN (i) is
bad. There is a short range of dependence between the state of the boxes. However, by definition
of a p-good box, the state of BN (i) only depends on boxes BN (j) such that ‖i−j‖∞ ≤ 13β. Thus, if
‖i− j‖∞ ≥ 27β the state of the boxes BN (i) and BN (j) are independent. We can deterministically
extract from ∪ρk=1C̄k a set of macroscopic site E such that |E| ≥ j/(27β)d and for any i 6= j ∈ E ,
the state of the boxes BN (i) and BN (j) are independent. Therefore, we have using Proposition
4.1

P

(
∀1 ≤ k ≤ ρ, C(ik) = C̄k,

ρ∑
k=1
|C̄k| = j

)
≤ P (∀i ∈ E , BN (i) is p-bad)

≤ P(BN (0) is p-bad)j/(27β)d

≤ (A(p0) exp(−B(p0)N(ε)))j/(27β)d
. (5.2)



5. PROBABILISTIC ESTIMATES 123

In what follows, we set α = α(ε) = (A(p0) exp(−B(p0)N(ε)))1/(27β)d in order to lighten the
notations. We aim to find an expression of α(ε) such that we get the upper bound stated in
the Proposition. The expression of N(ε) will be determined by the choice of α(ε). Combining
inequalities (5.1) and (5.2), we obtain

P

 ∑
C∈Bad:

C∩D(v(0),...,v(τ)) 6=∅

|C| = j

 ≤ (C3n

ρ

)
(7dα)j

∑
j1,...,jρ≥1
j1+···+jρ=j

1

and so

P

∃γ starting from 0 such that |Γ̃| ≤ n,
∑

C∈Bad:C∩Γ6=∅

|C| ≥ εn


≤ Cn2

∑
j≥εn

(7dα)j
C3n∑
ρ=1

(
C3n

ρ

) ∑
j1,...,jρ≥1
j1+···+jρ=j

1 .

Notice that

C3n∑
ρ=1

(
C3n

ρ

) ∑
j1,...,jρ≥1
j1+···+jρ=j

1 =
∑

j1,...,jC3.n≥0
j1+···+jC3.n=j

1 =
(
C3n+ j − 1

j

)
.

To bound those terms we will need the following inequality, for r ≥ 3, N ∈ N∗ and a real z such
that 0 < ez(1 + r

N ) < 1:

∞∑
j=N

zj
(
r + j − 1

j

)
≤ ν

(ez(1 + r
N ))N

1− ez(1 + r
N ) (5.3)

where ν is an absolute constant. This inequality was present in [33] but without proof, for
completeness we will give a proof of (5.3) at the end of the proof of Proposition 5.1. Using
inequality (5.3) and assuming 0 < e7dα(ε)(1 + C3

ε ) < 1, we get,

P

∃γ starting from 0 such that |Γ̃| ≤ n,
∑

C∈Bad:C∩Γ6=∅

|C| ≥ εn


≤ Cn2

∑
j≥εn

(7dα)j
(
C3n+ j − 1

j

)

≤ νCn2

[
e7dα(ε)(1 + C3

ε )
]εn

1− e7dα(ε)(1 + C3
ε )

.

Let us recall that C2 = (cdK)2(d−1)/K and C3 = 2(3K)d. We have to choose K(ε), α(ε) and a
constant 0 < Cε < 1 such that C2

[
e7dα(ε)(1 + C3

ε )
]ε
< Cε that is to say

(cdK)
2(d−1)
K

[
e7dα(ε)(1 + 2(3K)d

ε
)
]ε
< Cε . (5.4)

Note that the condition (5.4) implies the condition 0 < e7dα(ε)(1 + C3
ε ) < 1. We fix K the unique
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integer such that 1
ε ≤ K < 1

ε + 1 ≤ 2
ε . We recall that ε < 1. Thus,

(cdK)
2(d−1)
K

[
e7dα(ε)(1 + 2(3K)d

ε
)
]ε

≤ (cdK) 2d
K

[
e7dα(ε)4(3K)d

ε

]ε
≤ exp

[
2d
K

log(cdK) + ε log
(
e7dα(ε)4(3K)d

ε

)]
≤ exp

[
2dε log

(
2cd
ε

)
+ ε log

(
e7dα(ε)

4(3 2
ε )d

ε

)]

≤ exp
[
− 2dε log ε+ dε log(2cd) + ε log

(
4e(42)dα(ε) 1

εd+1

)]
.

We set
α(ε) = (2cd)d

εr

4e(42)d

where r is the smallest integer such that r ≥ 3d+ 2. We obtain

(cdK) dK
[
e7dα(ε)(1 + 2(3K)d

ε
)
]ε
≤ exp((r − (3d+ 1))ε log ε)

≤ exp(ε log ε) < 1 .

Therefore there exists a positive constant C1 depending on β, d, p0 such that

N(ε) = C1| log ε| .

It remains now to prove inequality (5.3) to conclude. To show this inequality, we need a version
of Stirling’s formula with bounds: for all n ∈ N∗, one has

√
2π nn+ 1

2 e−n ≤ n! ≤ e nn+ 1
2 e−n ,

thus,

∞∑
j=N

zj
(
r + j − 1

j

)
=
∞∑
j=N

zj
(r + j − 1)!
j!(r − 1)!

≤
∞∑
j=N

zj
e (r + j − 1)r+j− 1

2 e−(r+j−1)

2π jj+ 1
2 (r − 1)r− 1

2 e−(r+j−1)

=
∞∑
j=N

e

2π z
j

(
r + j − 1

j

)j (
r + j − 1
r − 1

)r− 1
2

j−
1
2

≤
∞∑
j=N

e

2π z
j
(

1 + r

N

)j (
1 + j

r − 1

)r−1(1
j

+ 1
r − 1

) 1
2

≤
∞∑
j=N

e

2π z
j
(

1 + r

N

)j
e(r−1) log(1+j/(r−1))

≤
∞∑
j=N

e

2π (ez)j
(

1 + r

N

)j
= e

2π
(ez(1 + r

N ))N

1− ez(1 + r
N )

where we use in the last inequality the fact that for all x > 0, log(1 + x) ≤ x.
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6 Regularity of the time constant
In this section, we prove the main result Theorem 1.1 and its Corollary 1.2. Before proving

this Theorem, we need to prove two lemmas. The following Lemma enables to control the number
of p-closed edges |γc| in a geodesic γ between two given points y and z in the infinite cluster Cp.
We denote by Fx the event that 0, x ∈ Cp and the N -boxes containing 0 and x belong to an infinite
cluster of p-good boxes.

Lemma 6.1. Let pc(d) < p ≤ q. Let us consider x ∈ Zd. Then, for δ > 0

P

Fx, DCp(0, x) > DCq (0, x)
(

1 + ρdN

(
q − p
q

+ δ

))
+ ρdN

∑
C∈Bad:
C∩Γ6=∅

|C|


≤ e−2δ2‖x‖1 .

where Γ is the lattice animal of N -boxes visited by an optimal path γ between 0 and x in Cq.

Proof. On the event Fx, we have 0, x ∈ Cp ⊂ Cq so there exists a q-open path joining 0 to x, let
γ be an optimal one. Necessarily, we have |γ| ≥ ‖x‖1. We consider the modification γ′ given by
Lemma 3.2. As γ′ is p-open,

DCp(0, x) < |γ′| ≤ |γ ∩ γ′|+ |γ′ \ γ|

≤ |γ|+ ρd

N |γc|+N
∑

C∈Bad:C∩Γ6=∅

|C|


≤ DCq (0, x) + ρd

N |γc|+N
∑

C∈Bad:C∩Γ6=∅

|C|

 . (6.1)

We want to control the size of γc. For that purpose, we want to introduce a coupling of the
percolations q and p, such that if any edge is p-open then it is q-open, and we want the random
path γ, which is an optimal q-open path between 0 and x, to be independent of the p-state of any
edge, i.e., any edge is p-open or p-closed independently of γ. This is not the case when we use
the classic coupling with a unique uniform random variable for each edge. Here we introduce two
sources of randomness to ease the computations by making the choice of γ independent from the
p-state of its edges. We proceed in the following way: with each edge we associate two independent
Bernoulli random variables V and Z of parameters respectively q and p/q. Then W = Z · V is
also a Bernoulli random variable of parameter p. This implies

P(W = 0|V = 1) = P(Z = 0|V = 1) = P(Z = 0) = 1− p

q
= q − p

q
.

Thus, we can now bound the following quantity by summing on all possible self-avoiding paths
for γ. For short, we use the abbreviation s.a. for self-avoiding.

P

(
|γc| ≥ |γ|

(
q − p
q

+ δ

))

=
∞∑

k=‖x‖1

∑
|r|=k

r s.a. path

P
(
γ = r, |γc| ≥ |γ|

(
q − p
q

+ δ

))

=
∞∑

k=‖x‖1

∑
|r|=k

r s.a. path

P
(
γ = r, |{e ∈ r : e is p-closed}| ≥ k

(
q − p
q

+ δ

))

=
∞∑

k=‖x‖1

∑
|r|=k

r s.a. path

P
(
γ = r, |{e ∈ r : Z(e) = 0}| ≥ k

(
q − p
q

+ δ

))
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=
∞∑

k=‖x‖1

∑
|r|=k

r s.a. path

P (γ = r)P
(
|{e ∈ r : Z(e) = 0}| ≥ k

(
q − p
q

+ δ

))

≤
∞∑

k=‖x‖1

∑
|r|=k

r s.a. path

P (γ = r) e−2δ2k ≤ e−2δ2‖x‖1 (6.2)

where we use Chernoff bound in the second to last inequality (see Theorem 1 in [50]). On the
event Fx ∩

{
|γc| < |γ|

(
q−p
q + δ

)}
, by (6.1), we get

DCp(0, x) ≤ DCq (0, x) + ρd

N |γ|(q − p
q

+ δ

)
+N

∑
C∈Bad:C∩Γ6=∅

|C|


= DCq (0, x)

(
1 + ρdN

(
q − p
q

+ δ

))
+ ρdN

∑
C∈Bad:C∩Γ6=∅

|C|

and the conclusion follows.

The proof of the following Lemma is the last step before proving Theorem 1.1.

Lemma 6.2. Let p0 > pc(d) and ε ∈ (0, 1− p0), we set N(ε) as in Proposition 5.1. There exists
p := p(ε, p0) > 0 such that for all q ≥ p ≥ p0, for all x ∈ Zd with ‖x‖1 large enough,

P
(
DCp(0̃Cp , x̃Cp) ≤ DCq (0̃Cp , x̃Cp)

(
1 + ρd

q − p
q

N(ε)
)

+ ηdε‖x‖1
)
≥ p(ε, p0)

where ηd > 0 is a constant depending only on d.

Proof. Let us fix ε > 0 and N(ε) as in Proposition 5.1. Fix an x ∈ Zd such that ‖x‖1 ≥ 3dN(ε).
We denote by BN(ε)(0) (respectively BN(ε)(x)) the N(ε)-box containing 0 (rep. x) and by Cp the
union of infinite cluster of p-good boxes. We recall that

Fx =
{

0 ∈ Cp, x ∈ Cp
}
∩
{
BN(ε)(0) ∈ Cp, BN(ε)(x) ∈ Cp

}
.

We have

P
(
DCp(0̃Cp , x̃Cp) ≥ DCq (0̃Cp , x̃Cp)

(
1 + ρd

q − p
q

N(ε)
)

+ 3εβρd‖x‖1
)

≤ P
(
Fx, D

Cp(0, x) ≥ DCq (0, x)
(

1 + ρd
q − p
q

N(ε)
)

+ 3εβρd‖x‖1
)

+ P(F cx) . (6.3)

We have
P(F cx) ≤ P({0 ∈ Cp, x ∈ Cp}c) + P({BN(ε)(0) ∈ Cp, BN(ε)(x) ∈ Cp}c) .

Using FKG inequality, we have

P(0 ∈ Cp, x ∈ Cp) ≥ P(0 ∈ Cp)P(x ∈ Cp) ≥ θ2
p0
.

Let us define Yi = 1{BN(ε)(i) is p-good}. First note that the field (Yi)i∈Zd has a finite range of
dependence that depends on β and d. Using the stochastic comparison in [55], for every p1, there
exists a positive constant α depending on β, d and p1 such that if P(Y0 = 0) ≤ α then the
field (Yi)i∈Zd stochastically dominates a family of independent Bernoulli random variables with
parameter p1. Let us choose p1 large enough such that

1− θ2
site,p1

≤
θ2
p0

2
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where θsite,p1 denotes the probability for a site to belong to the infinite cluster of i.i.d. Bernoulli
site percolation of parameter p1. Thanks to Theorem 4.1, there exists a positive integer N0
depending only on α, p0 and d such that for every N ≥ N0,

P(Y0 = 0) ≤ α .

For every ε ≤ 1 − p0, we have | log ε| ≥ | log(1 − p0)|. Up to taking a larger constant C1 in the
expression of N(ε) stated in Proposition 5.1, i.e., N(ε) = C1| log ε|, we can assume without loss
of generality that N(ε) ≥ N0 so that using the stochastic domination and FKG we obtain

P(BN(ε)(0) ∈ Cp, BN(ε)(x) ∈ Cp) ≥ θ2
site,p1

.

Finally, we get

P(F cx) ≤ 1− θ2
p0

+ 1− θ2
site,p1

≤ 1−
θ2
p0

2 . (6.4)

On the event Fx, we have 0, x ∈ Cp ⊂ Cq, we can consider γ a geodesic from 0 to x in Cq, and
let Γ be the set of N -boxes that γ visits.
By Lemma 6.1, we have for every δ > 0

P
(
Fx, D

Cp(0, x) ≥ DCq (0, x)
(

1 + ρd
q − p
q

N(ε)
)

+ 3εβρd‖x‖1
)

≤P

Fx, ρdN(ε)

DCq (0, x)δ +
∑

C∈Bad:C∩Γ6=∅

|C|

 ≥ 3εβ‖x‖1


+ P

 Fx, D
Cp(0, x) > DCq (0, x)

(
1 + ρdN(ε)

(
q−p
q + δ

))
+ρdN(ε)

∑
C∈Bad:
C∩Γ6=∅

|C|


≤P

Fx, |γ| ≤ β‖x‖1, ∑
C∈Bad:C∩Γ6=∅

|C| ≥ 3εβ‖x‖1
N(ε) − δ|γ|


+ P (Fx, |γ| > β‖x‖1) + e−2δ2‖x‖1

≤P

Fx, |γ| ≤ β‖x‖1, ∑
C∈Bad:C∩Γ6=∅

|C| ≥ β‖x‖1
(

3ε
N(ε) − δ

)
+ P (Fx, |γ| > β‖x‖1) + e−2δ2‖x‖1 . (6.5)

We set δ = ε/N(ε). We know by Lemma 3.5 that |Γ̃| ≤ 1 + (|γ| + 1)/N(ε). Moreover as
|γ| ≥ 3dN(ε), we have |Γ̃| ≤ 2|γ|/N(ε). Using Proposition 5.1,

P

Fx, |γ| ≤ β‖x‖1, ∑
C∈Bad:C∩Γ6=∅

|C| ≥ β‖x‖1
(

3ε
N(ε) − δ

)
≤ P

 ∃γ starting from 0 such that |Γ̃| ≤ 2β‖x‖1
N(ε) ,∑

C∈Bad:C∩Γ6=∅
|C| ≥ ε 2β‖x‖1

N(ε)

 ≤ C2β‖x‖1/N(ε)
ε (6.6)

where Cε < 1. Moreover, by Lemma 4.3, we get

P (Fx, |γ| > β‖x‖1) ≤ P(β‖x‖1 ≤ DCq (0, x) < +∞) ≤ Â exp(−B̂‖x‖1) . (6.7)

Finally, combining (6.3), (6.4), (6.5), (6.6) and (6.7), we obtain that

P
(
DCp(0̃Cp , x̃Cp) ≥ DCq (0̃Cp , x̃Cp)

(
1 + ρd

q − p
q

N(ε)
)

+ 3εβρd‖x‖1
)

≤ 1−
θ2
p0

2 + C2β‖x‖1/N(ε)
ε + Âe−B̂‖x‖1 + e−2ε2‖x‖1/N(ε)2

≤ 1− p(ε, p0)
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for an appropriate choice of p(ε, p0) > 0 and for every x such that ‖x‖1 is large enough.

Proof of Theorem 1.1. Let ε > 0, δ > 0, p0 > pc(d) and x ∈ Zd, consider N(ε) = C1| log ε| as
in Proposition 5.1, p = p(ε, p0) as in Lemma 6.2 and q ≥ p ≥ p0. With the convergence of the
regularized times given by Proposition 2.1, we can choose n large enough such that

P

(
µp(x)− δ ≤ DCp(0̃Cp , ñxCp)

n

)
≥ 1− p

3

P

(
DCq (0̃Cp , ñxCp)

n
≤ µq(x) + δ

)
≥ 1− p

3

P
(
DCp(0̃Cp , ñxCp) ≤ DCq (0̃Cp , ñxCp)

(
1 + ρd

q − p
q

N(ε)
)

+ ηdεn‖x‖1
)
≥ p .

The intersection of these three events has positive probability, we obtain on this intersection

µp(x)− δ ≤ (µq(x) + δ)
(

1 + ρd
q − p
q

N(ε)
)

+ ηdε‖x‖1 .

By taking the limit when δ goes to 0 we get

µp(x) ≤ µq(x)
(

1 + ρd
q − p
q

N(ε)
)

+ ηdε‖x‖1 .

By Corollary 2.2, we know that the map p → µp is non-increasing. We also know that µp(x) ≤
‖x‖1µp(e1) for e1 = (1, 0, . . . , 0), for any p > pc(d) and any x ∈ Zd. Thus, for every ε > 0,

µp(x)− µq(x) ≤ µq(x)ρd
q − p
q

N(ε) + ηdε‖x‖1

≤ µp0(e1)‖x‖1ρd
q − p
pc(d)N(ε) + ηdε‖x‖1

≤ η′d(p0)‖x‖1(N(ε)(q − p) + ε)

where η′d(p0) is a constant depending on d and p0. Using the expression of N(ε) stated in Propo-
sition 5.1, we obtain

µp(x)− µq(x) ≤ η′d‖x‖1 (C1| log ε|(q − p) + ε) . (6.8)

By setting ε = q − p in the inequality, we get

µp(x)− µq(x) ≤ η′′d‖x‖1(q − p)| log(q − p)|

where η′′d > 0 depends only on p0 and d. Thanks to Corollary 2.2, we have µp(x)− µq(x) ≥ 0, so
that

|µp(x)− µq(x)| ≤ η′′d‖x‖1(q − p)| log(q − p)| . (6.9)

By homogeneity, (6.9) also holds for all x ∈ Qd. Let us recall that for all x, y ∈ Rd and p ≥ pc(d),

|µp(x)− µp(y)| ≤ µp(e1)‖x− y‖1 , (6.10)

see for instance Theorem 1 in [28]. Moreover, there exists a finite set (y1, . . . , ym) of rational
points of Sd−1 such that

Sd−1 ⊂
m⋃
i=1

{
x ∈ Sd−1 : ‖yi − x‖1 ≤ (q − p)| log(q − p)|

}
.
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Let x ∈ Sd−1 and yi such that ‖yi − x‖1 ≤ (q − p)| log(q − p)|. Using inequality (6.10), we get

|µp(x)− µq(x)|
≤ |µp(x)− µp(yi)|+ |µp(yi)− µq(yi)|+ |µq(yi)− µq(x)|
≤ µp(e1)‖yi − x‖1 + η′′d‖yi‖1(q − p)| log(q − p)|+ µq(e1)‖yi − x‖1
≤ (2µp0(e1) + η′′d ) (q − p)| log(q − p)| .

This yields the result.

Proof of Corollary 1.2. Let p0 > pc(d). We consider the constant κd appearing in the Theorem
1.1. Let p ≤ q in [p0, 1]. We recall the following definition of the Hausdorff distance between two
subsets E and F of Rd:

dH(E,F ) = inf
{
r ∈ R+ : E ⊂ F r and F ⊂ Er

}
where Er = {y : ∃x ∈ E, ‖y − x‖2 ≤ r}. Thus, we have

dH(Bµp ,Bµq ) ≤ sup
y∈Sd−1

∥∥∥∥ y

µp(y) −
y

µq(y)

∥∥∥∥
2
.

Note that y/µp(y) (resp. y/µq(y)) is in the unit sphere for the norm µp (resp. µq). Let us define
µminp = infx∈Sd−1 µp(x). As the map p → µp is uniformly continuous on the sphere Sd−1 (see
Theorem 1.2 in [42],) the map p → µminp is also continuous and µmin = infp∈[p0,1] µ

min
p > 0.

Finally

dH(Bµp ,Bµq ) ≤ sup
y∈Sd−1

∣∣∣∣ 1
µp(y) −

1
µq(y)

∣∣∣∣
≤ sup
y∈Sd−1

1
µq(y)µp(y) |µp(y)− µq(y)|

≤ sup
y∈Sd−1

1
(µmin)2 |µp(y)− µq(y)|

≤ κd
(µmin)2 (q − p)| log(q − p)| .

This yields the result.

Remark 6.3. At this stage, we were not able to obtain Lipschitz continuity for p → µp. The
difficulty comes from the fact that we do not know the correlation between γ and the state of the
boxes that γ visits. At first sight, it may seem that the renormalization is responsible for the
appearance of the log terms in Theorem 1.1. However, when p is very close to 1, we can avoid
renormalization and bypass p-closed edges at a microscopic scale as in [32] but even in that case,
we cannot obtain Lipschitz continuous regularity with the kind of combinatorial computations made
in section 5. A similar issue arises, it is hard to deal with the correlation between p-closed edges
of γ and the length of the microscopic bypasses.
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Chapter 6

The time constant is Lipschitz
continuous strictly above pc

This chapter is a joint work in preparation with Raphaël Cerf.
We consider the standard model of i.i.d. first passage percolation on Zd given a distribution

G on [0,+∞] (+∞ is allowed). When G([0,+∞]) < pc(d), it is known that the time constant µG
exists. We are interested in the regularity properties of the map G 7→ µG. We first study the
specific case of distributions of the form Gp = pδ1 + (1 − p)δ∞ for p > pc(d). In this case, the
travel time between two points is equal to the length of the shortest path between the two points
in a bond percolation of parameter p. We show that the function p 7→ µGp is Lipschitz continuous
on every interval [p0, 1], where p0 > pc(d). We extend this result to more general distributions G
on [0,+∞]. We define classes of distributions on which the map G 7→ µG is Lipschitz continuous
for a specific distance.
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1 Introduction
The model of first passage percolation was first introduced by Hammersley and Welsh [49]

as a model for the spread of a fluid in a porous medium. Let d ≥ 2. We consider the graph
(Zd,Ed) having for vertices Zd and for edges Ed the set of the pairs of nearest neighbors in Zd for
the Euclidean norm. To each edge e ∈ Ed, we assign a random variable t(e) with values in R+

such that the family (t(e), e ∈ Ed) is independent and identically distributed with distribution
G. The random variable t(e) may be interpreted as the time needed for the fluid to cross the
edge e. We define a random pseudo-metric T on this graph: for any pair of vertices x, y ∈ Zd,
the random variable T (x, y) is the shortest time to go from x to y. We are interested in the
asymptotic behavior of the quantity T (0, x) when ‖x‖ goes to infinity. Under some assumptions
on the distribution G, one can prove that

lim
n→∞

1
n
T (0, nx) = µG(x) ,

131
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where µG(x) is a deterministic constant depending only on the distributionG and the point x. This
result was proved by Cox and Durrett in [32] in dimension 2 under some integrability conditions
on G, they also proved that µG is a semi-norm. Kesten extended this result to dimensions d ≥ 2
in [51], and he proved that µG is a norm if and only if G({0}) < pc(d). The constant µG(x) may
be seen as the inverse of the speed of spread of the fluid in the direction of x. It is usually called
the time constant.

It is possible to extend this model by doing first passage percolation in a random environment.
We consider an i.i.d. supercritical bond percolation on the graph (Zd,Ed). Every edge e ∈ Ed is
open with probability p > pc(d), where pc(d) denotes the critical parameter for this percolation.
We know that there exists almost surely a unique infinite open cluster Cp [48]. We can define the
model of first passage percolation on the infinite cluster Cp. To do so, we consider a probability
measure G on [0,+∞] such that G([0,∞[) = p. In this setting, the p-closed edges correspond to
the edges with an infinite value while the infinite cluster made of the edges with finite passage
times corresponds to the infinite cluster Cp of a supercritical Bernoulli percolation of parameter
p. The existence of a time constant for such distributions was first obtained in the context of
a stationary integrable ergodic field by Garet and Marchand in [39] and was later shown for an
independent field without any integrability condition by Cerf and Théret in [28].

The question of the continuity of the map G 7→ µG was first addressed in dimension 2 with the
article of Cox [31]. He showed the continuity of this map under the following hypothesis of uniform
integrability: if Gn converges weakly towards G and if there exists an integrable law F such that,
for all n ∈ N, F stochastically dominates Gn, then µGn converges towards µG. In [33], Cox and
Kesten proved the continuity of this map in dimension 2 without any integrability condition. Their
idea was to consider a geodesic for the truncated passage times min(t(e),M) for someM > 0, and
then to avoid the clusters of G([0,M [)-closed edges crossed by the geodesic, that is the clusters
of edges with a passage time larger than some M > 0. The clusters of G([0,M [)-closed edges
intersecting the geodesic are then bypassed with a bypass included in their boundaries. Note
that, by construction, the edges in the boundaries of G([0,M [)-closed clusters have a passage time
smaller than M . Thanks to combinatorial considerations, Cox and Kesten were able to obtain a
precise control on the length of these bypasses. This idea was later extended to all the dimensions
d ≥ 2 by Kesten in [51], by taking a M large enough such that the percolation of the edges with a
passage time larger than M is highly subcritical: for such a M , the size of the clusters of p-closed
edges can be controlled. However, this idea does not work any more when we allow passage times
to take infinite values. In [42], Garet, Marchand, Procaccia and Théret proved the continuity of
the map G 7→ µG for general laws on [0,+∞] without any moment condition. More precisely,
they proved the following. Let (Gn)n∈N and G be probability measures on [0,+∞] such that Gn
converges weakly towards G, that is, for all continuous bounded functions f : [0,+∞]→ [0,+∞[,
we have

lim
n→+∞

∫
[0,+∞]

fdGn =
∫

[0,+∞]
fdG .

This convergence will be simply denoted by Gn
d→ G. Equivalently, we have that Gn

d→ G if and
only if for any t ∈ [0,+∞] such that x 7→ G([x,+∞]) is continuous at t, we have

lim
n→+∞

Gn([t,+∞]) = G([t,+∞]) .

If moreover Gn([0,+∞[) > pc(d) for all n ∈ N, and G([0,+∞[) > pc(d), then

lim
n→∞

sup
x∈Sd−1

|µGn(x)− µG(x)| = 0 ,

where Sd−1 is the unit sphere of Rd for the Euclidean norm.
The regularity result on µG yields also some information on the limit shape, namely, on the

way the limit shape changes under small perturbations. As mentioned in [11] before Theorem
2.7: " If one could derive strong results in this direction, perhaps the establishment of various
conjectures about the limit shape (e.g., curvature) could be made easier, or reduced to finding some
special class of distributions for which the properties are explicitly derivable." To be able to deduce
a result on the stability of the curvature under small perturbations, we would need to obtain a
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regularity result on the second derivative of G 7→ µG. Therefore, there is still a lot of work to
do in that direction. Our goal here is to improve the existing regularity result. We wish to go
beyond the mere continuity and to obtain a Lipschitz property. We consider first the specific case
of distributions of the form

Gp = pδ1 + (1− p)δ∞, p > pc(d) .

Let Gp be the subgraph of Zd whose edges are open for the Bernoulli percolation of parameter
p. The travel time for the law Gp between two points x and y in Zd coincides with the chemical
distance between x and y, that is the graph distance between x and y in Gp. Namely, we define
the chemical distance DGp(x, y) as the length of the shortest p-open path joining x and y. As
a corollary of the work of Garet, Marchand, Procaccia and Théret in [42], we see that the map
p 7→ µGp is continuous over ]pc(d), 1]. In [3], Dembin obtained a better regularity property.
Theorem 1.1 (Theorem 1 in [3]). Let p0 > pc(d). There exists a constant κd depending only on
d and p0, such that

∀p, q ∈ [p0, 1] sup
x∈Sd−1

|µGp(x)− µGq (x)| ≤ κd|q − p|| log |q − p|| .

To prove this theorem, Dembin used a renormalization process in which she controlled the scale of
the renormalization. The renormalization was responsible for the presence of a logarithmic term.
In this paper, we improve this result by proving that the function p 7→ µGp is in fact Lipschitz
continuous.
Theorem 1.2. Let p0 > pc(d). There exists a constant κd depending only on d and p0, such that

∀p, q ∈ [p0, 1] sup
x∈Sd−1

|µGp(x)− µGq (x)| ≤ κd|q − p| .

To fix the issues that were encountered in [3], we use a new approach. Our aim is to understand
how the chemical distance in Bernoulli percolation depends upon the percolation parameter p.
The key part of the proof lies in a multiscale modification of an arbitrary path. Let us fix two
parameters p, q such that q > p > pc(d). We couple two percolation configurations at level p and q
in such way that a p-open edge is also q-open. We consider the geodesic γ joining 0 and x ∈ Zd for
the bond percolation of parameter q. Some of the edges in γ are p-closed, we want to build upon
this path a p-open path. To do so, we need to bypass the p-closed edges in γ. Roughly speaking,
the idea is to prove that, for ‖x‖ large enough, with high probability, the average size of a bypass
is smaller than a constant C and that the number of edges to bypass in γ is at most (q − p)‖x‖.
Therefore, with high probability the total length of the bypasses is less than C(q−p)‖x‖. Whereas
in [3], all the edges were bypassed at the same scale, here we use a multiscale renormalization and
each edge is bypassed at the appropriate scale. The crucial point is to perform each bypass at
an adequate scale and to pay the right price for it. By properly choosing the different scales of
the renormalization process, we can build a family of shells (shell(e))e∈γ made of good boxes at
scale 1 such that the total cardinality of the shells

∑
e∈γ | shell(e)| is at most C‖x‖ with high

probability. These shells of good boxes will possess all the desired properties to build p-open
bypasses of edges in γ. The shells are built without revealing the p-states of the edges in γ so
that they are independent of the p-states of the edges in γ. In the end, we will not use all the
shells but only the shells associated to p-closed edges in γ. In the coupling, the probability that
a q-open edge is p-closed is q − p. Therefore, we expect that the total length of the bypasses∑

e∈γ
| shell(e)|1e is p-closed

is at most C(q − p)‖x‖.
We extend next theorem 1.2 to general distributions.

Theorem 1.3. Let p1 < pc(d), p0 > pc(d), M > 0, ε0 > 0 and ε 7→ δ(ε) be a non-decreasing
function. We define Cp0,p1,M,ε0,δ as

Cp0,p1,M,ε0,δ =


G distribution on [0,+∞] : G({0}) ≤ p1,
G([0,+∞[) > p0, ∀ε < ε0 G(]0, ε]) ≤ δ(ε),

G([0,M ]) ≥ (1− δ0(p0)
2 )G([0,+∞[)

 ,
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where δ0 = δ0(p0) is a positive constant depending on p0 and d. For F a distribution on [0,+∞],
we denote by F the distribution F conditioned to [0,+∞[, defined by

∀x ∈ R+ F ([0, x]) = F ([0, x])
F ([0,+∞[)

and by F−1 the pseudo inverse of F , defined by

∀t ∈ [0, 1] F
−1(t) = inf

{
x ∈ R : F (x) ≥ t

}
.

The map G 7→ µG is Lipschitz continuous on Cp0,p1,M,ε0,δ in the following sense. There exists a
constant κ depending on the parameters of the class Cp0,p1,M,ε0,δ such that

∀F,G ∈ Cp0,p1,M,ε0,δ

sup
x∈Sd−1

|µG(x)− µF (x)| ≤ κ
(∣∣F ({+∞})−G({+∞})

∣∣+ sup
t∈[0,1]

∣∣F−1(t)−G−1(t)
∣∣) .

In order to understand better where this class of distributions comes from, let us consider two
distributions G and F on [0,+∞[ and the standard coupling of these two distributions, in which
a uniform random variable on [0, 1] is associated to each edge. Let us consider the geodesic γG for
the distribution G between 0 and x ∈ Zd. The time TF (0, x) to go from 0 to x for the distribution
F is bounded from above by

TG(0, x) + |γG| sup
t∈[0,1]

|F−1(t)−G−1(t)| .

Conversely, the same inequality holds for TG(0, x). We seek a class C of distributions on which the
size of γG is uniformly bounded from above, i.e., for which there exists a constant C such that,
for all distributions G in C, we have |γG| ≤ C‖x‖ with high probability when ‖x‖ goes to infinity.
The inequality |γG| ≤ C‖x‖ ensures that

|TG(0, x)− TF (0, x)|
‖x‖

≤ C sup
t∈[0,1]

|F−1(t)−G−1(t)| .

When we consider distributions that may take infinite values, we add another difficulty. For some
edges in γG the passage time for the law F may be infinite. To overcome this issue, we apply the
same strategy as in the proof of theorem 1.2: we bypass these edges with edges of passage time
smaller than some constant M for the law F . The number of edges that we need to bypass is
of order at most |F ({+∞}) − G({+∞})||γG| and the average size of a bypass is constant. This
accounts for the term |F ({+∞})−G({+∞})| in the statement of theorem 1.3.

We do not claim that the constraints on the distributions given by the class C are optimal.
However, for each condition, we can exhibit a family of distributions for which it is unclear whether
we can obtain a uniform control on the size of the geodesic:
— The family

(
(pc − 1/n)δ0 + (1 − pc + 1/n)δM

)
n≥1 for some large M > 0 accounts for the

condition G({0}) < p1.
— The family

(
pcδ1/n + (1 − pc)δM

)
n≥1 for some large M > 0 accounts for the condition ∀ε <

ε0, G(]0, ε]) ≤ δ(ε).
— The family

(
(pc + 1/n)δ1 + (1− pc − 1/n)δ∞

)
n≥1 accounts for the condition G([0,+∞[) > p0.

— The family
(
pcδ1 + (1− pc)δn

)
n≥1 accounts for the condition

G([0,M ]) ≥ (1− δ0/2)G([0,+∞[) .

At pc, we know that the size of a geodesic is super linear in dimension 2 [34] and the nature of
the problem is very different.

Here is the structure of the paper. In section 2, we introduce some definitions and preliminary
results. The section 3 presents the multiscale renormalization process and the construction of the
shells. In this section, we explain how we modify a q-open path to turn it into a p-open path with
a control on the length of the bypasses. In section 4, we derive probabilistic estimates on the total
size of the shells. Finally, in section 5, we prove theorem 1.2 and theorem 1.3.
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2 Definitions and preliminary results
Let d ≥ 2. Let x = (x1, . . . , xd) ∈ Rd, we define

‖x‖1 =
d∑
i=1
|xi|, ‖x‖2 =

√√√√ d∑
i=1

x2
i and ‖x‖∞ = max

1≤i≤d
|xi| .

Let A and B be two finite subsets of Zd, we define the distance d(A,B) between the sets A and
B as

d(A,B) = inf
{
‖a− b‖1, a ∈ A, b ∈ B

}
.

We extend this definition to sets of edges A,B ⊂ Ed. Let Ã (respectively B̃) be the set of the
endpoints of the edges in A (respectively B), we set

d(A,B) = d(Ã, B̃) .

Let G ⊂ Zd and x, y ∈ G. We say that the sequence γ = (v0, . . . , vn) is a ∗-path from x to y
in G if v0 = x, vn = y and for all i ∈ {1, . . . , n}, vi ∈ G and ‖vi − vi−1‖∞ = 1. We say that x and
y are ∗-connected in G if such a path exists. Let G be a subgraph of (Zd,Ed) and let x, y ∈ G. A
path γ from x to y in G is a sequence γ = (v0, e1, . . . , en, vn) such that v0 = x, vn = y and for
all i ∈ {1, . . . , n}, the edge ei = 〈vi−1, vi〉 belongs to G. The length of such a path is n and it
is denoted by |γ|. We say that x and y are connected in G if such a path exists. We define the
chemical distance between x and y in G by

DG(x, y) = inf
{
|r| : r is a path from x to y in G

}
.

If x and y are not connected in G, then we have DG(x, y) = ∞. In what follows, the graph G
will be the subgraph Gp of Zd whose edges are open for the Bernoulli percolation of parameter
p > pc(d). To get around the fact that the chemical distance can take infinite values, we introduce
a regularized chemical distance. We denote by Cp the unique infinite connected component of
Gp. Let C be a subset of Cp, we define x̃C as the vertex of C which minimizes ‖x − x̃C‖1, with a
deterministic rule to break ties. Typically, we will take for C the infinite cluster of a configuration
of Bernoulli percolation with a parameter smaller than p so that C ⊂ Cp ⊂ Gp and therefore

DGp(x̃C , ỹC) ≤ DC(x̃C , ỹC) <∞ .

We can define the regularized time constant as in [41] or as a special case of [28].

Proposition 2.1. Let p > pc(d). There exists a deterministic function µp : Zd → [0,+∞[ such
that, for every p0 ∈ (pc(d), p],

∀x ∈ Zd lim
n→∞

DCp(0̃Cp0 , ñx
Cp0 )

n
= µp(x) a.s. and in L1.

It is important to check that µp does not depend on Cp0 , the infinite cluster we use to regularize the
chemical distance. This is done in lemma 2.11 in [42]. As a corollary, we obtain the monotonicity
of the map p 7→ µp, see lemma 2.12 in [42].

Corollary 2.2. For all pc(d) < p ≤ q, we have

∀x ∈ Zd µp(x) ≥ µq(x) .

The following lemma is an improvement of the result of Antal and Pisztora in [10] controlling the
probability that two connected points have a too large chemical distance. In the original result,
the constants depend on p, the adaptation of the proof is written in lemma 4.2. in [3].

Lemma 2.3. Let p0 > pc(d). There exist β = β(p0) ≥ 1, Â = Â(p0) and B̂ = B̂(p0) > 0 such
that, for all p ≥ p0,

∀x ∈ Zd P(β‖x‖1 ≤ DCp(0, x) < +∞) ≤ Â exp(−B̂‖x‖1) .
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3 Renormalization
In this section, we present the multiscale renormalization process, the construction of the

shells and the method to build bypasses. Let q > p ≥ p0 > pc(d) be fixed. We consider two
configurations of Bernoulli percolation on the edges of Zd, one with parameter p and one with
parameter q.

3.1 Definition of the renormalization process
For a positive integer N , we define the N -box

BN =
[
−N2 ,

N

2

[ d
∩ Zd

and the family of translated N -boxes:

∀i ∈ Zd BN (i) = iN +BN .

The lattice Zd is the disjoint union of this family: Zd = ti∈ZdBN (i). We introduce also larger
boxes that will help us to link N -boxes together. We define

∀i ∈ Zd B′N (i) = iN +B3N .

Let B be a box. A connected cluster C of the configuration restricted to B is said to be crossing,
if for any pair of opposite faces of B, there is an open path in C connecting them. We define the
diameter of a cluster C as

Diam(C) := max
x,y∈C

‖x− y‖∞ .

We construct the multiscale renormalization process by induction. Let (lk)k∈N∗ with l1 ≥ 3 be
an increasing sequence of integers which will be specified later. This sequence will define the
successive scales. For a positive integer k, we define Nk as

Nk = l1 · · · lk .

We also define the box Bk+1 of side length lk+1 at scale k that is made of sites at scale k. More
precisely, for i ∈ Zd, we define

Bk+1(i) = Blk+1(i) and B′k+1(i) = B′lk+1
(i) .

Thus, we have |Bk+1(i)| = ldk+1 and |BNk+1(i)| = Nd
k+1. The definition of what a good box is

will differ at scale 1 and at larger scales. We first have to define what a good box is at scale
1. To do so, we list the properties that a good box should have to ensure that we can build a
suitable modification of a path. We have to keep in mind that all the properties must occur with
probability converging to 1 when N1 = l1 goes to infinity. Let β = β(p0) be the constant defined
in lemma 2.3.

Definition 3.1. We say that the site i is (p, q)-good at the scale 1 if the following events occur:
(i) There exists a unique p-cluster C in B′N1

(i) with diameter larger than N1;
(ii) This p-cluster C is crossing for each of the 3d N1-boxes included in B′N1

(i);
(iii) For all x, y ∈ B′N1

(i), if x and y belong to C, then DGp(x, y) ≤ 12βN1;
(iv) If γ is a q-open path in B′N1

(i) such that |γ| ≥ N1, then γ and the p-cluster C in B′N1
(i)

have a vertex in common.
The cluster C is called the crossing p-cluster of the (p, q)-good site i. We say that the box BN1(i)
is (p, q)-good at scale 1 if the site i is (p, q)-good at scale 1.

We introduce next the notion of a cluster of bad sites.
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Definition 3.2. Let k ≥ 1. Let us assume that we have already defined what a (p, q)-good box is
at scale k. For a (p, q)-bad site j ∈ Zd at scale k, we denote by C(k)(j) the connected cluster of
the (p, q)-bad sites at scale k which contains j (if j is a (p, q)-good site, then C(k)(j) is empty).
Equivalently, the cluster C(k)(j) is the set of the vertices of Zd which are connected to j by a path
visiting only sites which are bad at scale k.

We define now by induction what is a good site at scale k.

Definition 3.3. Let k ≥ 1. Let us assume that we have already defined what a (p, q)-good site is
for scales from 1 to k. Let i ∈ Zd. We say that the site i is (p, q)-good at scale k + 1 if

∀j ∈ B′k+1(i) |C(k)(j)| ≤ lk+1 .

We say that the box Bk+1(i) is (p, q)-good at scale k + 1 if the site i is (p, q)-good at scale k + 1.

To abbreviate, we will often say good site instead of (p, q)-good site. On the grid Zd, we use the
standard definition of closest neighbor, i.e., we say that x and y are neighbors if ‖x − y‖1 = 1.
Let C be a connected set of sites of Zd, we define its exterior vertex boundary

∂vC =
{

i ∈ Zd \ C : i has a neighbour in C and is connected
to infinity by a path in Zd \ C

}
.

The set ∂vC is not Zd-connected in general, however it is ∗-connected (see for instance lemma 2
in [69]). Besides, we have

|∂vC| ≤ 2d|C| .

We adopt the convention that ∂vC(k)(i) = {i} when i is a good site at scale k. We shall define
a multiscale site percolation process given by the states of the boxes at the different scales. Note
that, on a given scale, the states of the boxes are not independent but there is a short range
dependence.

3.2 Construction of the detours
We will consider different couplings between the percolation processes with parameters p and

q. These couplings are variants of the usual coupling built with the help of i.i.d. random variables
uniformly distributed on [0, 1]. For the time being, we do not specify which coupling we use. The
most important property of the coupling is that a p-open edge is always q-open. Let us consider
a q-open path γ between 0 and a point x ∈ Zd. Some edges in γ might be p-closed and our goal is
to bypass these p-closed edges. To each edge e in γ we will associate a shell made of good boxes
at scale 1 such that the edge e lies in the interior of the shell. The properties of the good boxes
will guarantee that the edge e can be bypassed by a p-open path lying in the internal boundary of
its associated shell. To control the lengths of the bypasses, we shall bound from above the total
size of the required shells, depending on the bad sites that γ crosses. Let us first rigorously define
what a shell is. Let C be a ∗-connected set. We define the interior int(C) of C by

int(C) =
{
i ∈ Zd \ C : i is not connected to infinity

by a Zd-path in Zd \ C

}
.

Definition 3.4. Let e ∈ Ed. A set C of ∗-connected good boxes at scale 1 is a shell for e if it
satisfies

∂v int(C) = C and e ∈
⋃

i∈int(C)

(BN1(i) ∩ Ed) .

The condition ∂v int(C) = C says that C is indeed a sort of shell. The second condition says that
e is in the interior of the shell.

For k ≥ 1 and a path γ, we denote by nk(γ) the number of bad boxes at scale k that γ crosses,
i.e.,

nk(γ) =
∣∣{i ∈ Zd, i is bad at scale k and γ ∩BNk(i) 6= ∅

}∣∣ .
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The following proposition builds shells for edges in a path γ and bounds from above the sum of the
squares of the sizes of these shells in function of the number of the bad sites that γ visits at every
scale. Note that we do not build shells for edges around the extremities of γ. Due to technical
details, for the edges at the extremities of γ, we cannot guarantee that we can build shells such
that γ enters and exits each shell at least once.

Proposition 3.5 (Construction of the shells). Let pc(d) < p < q. Let x ∈ Zd. Let us assume that
0, x ∈ Cq. We consider a q-open path γ between 0 and x. Let M = M(γ) be the smallest positive
integer such that nM (γ) = 0. We set

γ = γ \ (B4NM ∪ (x+B4NM )) .

(If M is too large or infinite, then γ is empty). To each edge e ∈ γ, we can associate a shell
shell(e) such that we have

d

( ⋃
i∈shell(e)

BN1(i), {e}
)
≥ (14β + 2d)N1 ,

d

( ⋃
i∈int(shell(e))

BN1(i), {0, x}
)
≥ N1 ,

∑
e∈γ

| shell(e)|2 ≤ 32d4d2

(
(3d)4|γ|N2

3N
2d
2 +

M−1∑
k=3

nk(γ)N2
k+1N

3d
k (3d)2kd

)
.

Proof of proposition 3.5. Let γ be a q-open path joining 0 and x and let M and γ be defined
as in the statement of the proposition. Let e ∈ γ. For k ≥ 1, we denote by ek the site of Zd
such that the box BNk(ek) contains the smallest extremity of e in the lexicographic order. Let us
assume that there exists an integer k ∈ {2, . . . ,M − 1} such that e3, . . . , ek are (p, q)-bad at their
respective scales but ek+1 is (p, q)-good at the scale k + 1 (if e3 is good then k = 2). We define
B′, Λk, Λ̃k and Λk by

B′ =
{
i ∈ Zd : ‖i− ek‖∞ ≤ 1

}
, Λk =

⋃
i∈∂vB′

C(k)(i) ∪B′,

Λ̃k =
⋃

i∈Λk

Bk(i) and Λk =
⋃

i∈Λk

BNk(i) .

The sets B′ and Λk are made of sites at scale k. The set Λ̃k is made of sites at scale k − 1. The
set Λk is made of sites belonging to the initial lattice Zd. Since ek+1 is a good site at scale k + 1
and ∂vB′ ⊂ B′k+1(ek+1), we have

∀i ∈ ∂vB′ |C(k)(i)| ≤ lk+1 ,

and, using the fact that |∂vB′| ≤ 2d|B′|, we obtain

|Λk| ≤ (2dlk+1 + 1)|B′| ≤ 3d+1dlk+1 .

Moreover, we claim that the set ∂vΛk is made of good sites at scale k. Let i ∈ ∂vΛk. Since

∂vΛk ⊂
⋃

l∈∂vB′
∂vC

(k)(l) ,

there exists l ∈ ∂vB′ such that i ∈ ∂vC(k)(l) and so i is indeed a good site at scale k.
Let us assume that l2 ≥ (14β + 2d). By construction of B′ and since e ∈ Λk, we have

d({e},Zd \ Λk) ≥ Nk ≥ N2 ≥ (14β + 2d)N1 . (3.1)
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The set Λk is included in the box B2(lk+1+2)(ek) of sites at scale k. Thus, we have

d({e}, ∂vΛk) ≤ sup
x∈B2(lk+1+2)Nk

d(x,Zd \B2(lk+1+2)Nk)

= d(0,Zd \B2(lk+1+2)Nk(0)) ≤ (lk+1 + 2)Nk = Nk+1 + 2Nk .

Moreover, as e ∈ γ, we have d({e}, {0, x}) ≥ 2NM and using the fact that e ∈ Λk, we have

d({e}, {0, x}) ≤ d({e}, ∂vΛk) + d(∂vΛk, {0, x}) ≤ d({e}, ∂vΛk) + d(Λk, {0, x}) ,

thus
d(Λk, {0, x}) ≥ 2NM −Nk+1 − 2Nk .

We define next iteratively a sequence of sets Λk, Λ̃k, . . . ,Λ1, Λ̃1. Let j ≥ 2. Let us assume that

:Λj−1

Λ̃j

C(j−1)(i), i ∈ ∂vΛ̃j

Figure 6.1 – Construction of Λj−1

we have already defined Λk, Λ̃k, . . . ,Λj , Λ̃j . We define Λj−1, Λ̃j−1 (see Figure 6.1) and Λj−1 by

Λj−1 =
⋃

i∈∂vΛ̃j

C(j−1)(i) ∪ Λ̃j , Λ̃j−1 =
⋃

i∈Λj−1

Bj−1(i)

and
Λj−1 =

⋃
i∈Λj−1

BNj−1(i) .

Let us prove by decreasing induction that, for 1 ≤ j ≤ k, the following holds:
(i) We have |Λj | ≤ 3d(3d)k+1−j lk+1 (Nk/Nj)d+1.
(ii) The set ∂vΛj is made of good sites at scale j.

(iii) We have d(Λj , {0, x}) ≥ 2NM − 2Nk −
∑k+1
l=j+1Nl.

These properties are true for k. Let us now assume that these properties hold for some integer
2 ≤ j ≤ k. Let i ∈ ∂vΛ̃j be a site such that C(j−1)(i) 6= ∅. There exists l ∈ Λ̃j such that i is a
neighbor of l. Let l (respectively i) be such that l ∈ Bj(l) (respectively i ∈ Bj(i)). Since i /∈ Λ̃j
and l ∈ Λ̃j , then we have i /∈ Λj and l ∈ Λj . Since the sites i and l are neighbors, it follows that
i ∈ ∂vΛj . Thanks to (ii), the site i is a good site at scale j and so we have |C(j−1)(i)| ≤ lj and

|Λj−1| ≤ (2dlj + 1)|Λ̃j | ≤ 3dld+1
j |Λj | .
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Iterating this inequality, we obtain property (i):

|Λj−1| ≤ 3d(3d)k+2−j lk+1

(
Nk
Nj−1

)d+1
.

Let i’ ∈ ∂vΛj−1. There exists l’ ∈ ∂vΛ̃j such that i’ ∈ ∂vC(j−1)(l’) and so i’ is a good site at scale
j − 1 and the property (ii) holds.
We have Λj ⊂ Λj−1 and

d(Λj , {0, x}) ≤ min
y∈∂vΛj−1

d(Λj , y) + d(y, {0, x}) . (3.2)

We claim that

∀y ∈ ∂vΛj−1 d(Λj , y) ≤ Nj + 1 . (3.3)

:Λj−1

Λj

y

z

BNj−1(m)

BNj−1(m’)

Figure 6.2 – Representation of y, z and m, m’

Let y ∈ ∂vΛj−1. Let z such that z ∈ Λj−1 and ‖y − z‖∞ = 1. Let m ∈ Zd such that z ∈
BNj−1(m) (see figure 6.2). Since y ∈ ∂vΛj−1, there exists m’ ∈ ∂vΛ̃j such that m ∈ C(j−1)(m’).
Thanks to property (ii) of the induction hypothesis, we have |C(j−1)(m’)| ≤ lj . It follows that

d(Λj , y) ≤ d(Λj , z) + d(z, y) ≤ |C(j−1)(m’)|Nj−1 + 1 ≤ ljNj−1 + 1 ≤ Nj + 1 .

Combining inequalities (3.2) and (3.3), we obtain

d(Λj , {0, x}) ≤ Nj + 1 + d(∂vΛj−1, {0, x})
= Nj + 1 + d(Λj−1, {0, x})− 1
≤ Nj + d(Λj−1, {0, x}) . (3.4)

Combining inequalities (3.4) and property (iii) of the induction hypothesis, it follows that

d(Λj−1, {0, x}) ≥ d(Λj , {0, x})−Nj ≥ 2NM − 2Nk −
k+1∑
l=j

Nl . (3.5)
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The property (iii) follows and this concludes the induction. We set finally

shell(e) = ∂vΛ1 .

Thanks to property (i), we get

| shell(e)| ≤ 2d3d(3d)klk+1

(
Nk
N1

)d+1
. (3.6)

Since Λk ⊂ Λ1, we deduce from inequality (3.1) that

d

{e}, ⋃
i∈shell(e)

BN1(i)

 ≥ (14β + 2d)N1 .

Moreover, property (iii) for l = 1, together with the facts that k ≤M − 1 and lM ≥M + 2 (since
the sequence (lk)k≥1 is increasing), imply that

d(Λ1, {0, x}) ≥ 2NM − 2NM−1 − (M − 1)NM−1 −NM
= (lM −M − 1)NM−1 ≥ NM−1 ≥ N1 .

Therefore, the path γ enters and exits ∂vΛ1 at least once. For e ∈ γ, we denote by k(e) ≥ 2 the
largest integer k such that e3, . . . , ek are (p, q)-bad at their respective scales (if e3 is good, then
we set k(e) = 2). By construction, we have that k(e) < M(γ). For k ≥ 3, the number of edges
e ∈ γ such that k(e) = k is at most nk(γ)|BNk ∩Ed| = nk(γ)dNd

k . The number of edges in γ such
that k(e) = 2 is at most |γ|. Finally, using inequality (3.6), we have

∑
e∈γ

| shell(e)| ≤
M−1∑
k=2

∣∣{e ∈ γ : k(e) = k}
∣∣ 2d3d(3d)klk+1

(
Nk
N1

)d+1

≤ 2d3d
(

(3d)2|γ|N3N
d
2 +

M−1∑
k=3

nk(γ)Nk+1N
2d
k (3d)kd

)

and similarly

∑
e∈γ

| shell(e)|2 ≤
M−1∑
k=2

∣∣{e ∈ γ : k(e) = k}
∣∣(2d3d(3d)klk+1

(
Nk
N1

)d+1
)2

≤ 4d232d

(
(3d)4|γ|N2

3N
2d
2 +

M−1∑
k=3

nk(γ)N2
k+1N

3d
k (3d)2kd

)
.

This concludes the proof.

Note that in the proof of proposition 3.5, even if the site e1 or e2 is good, we do not bypass
the edges of its box at that scale because we have to make sure that the bypass we build do not
use the edge e. To avoid this problem, we build shell(e) in such a way that it is far enough from
the edge e.

Once the shells are built, we build the bypasses. Given a set E of edges in γ we would like
to bypass, we control the total length of the bypasses with the help of the total size of the shells
associated to the edges in E.

Proposition 3.6 (Construction of the bypasses). Let pc(d) < p < q. Let x ∈ Zd. Let us assume
that 0, x ∈ Cq. We consider a q-open path γ between 0 and x. Let M be the smallest positive
integer such that nM (γ) = 0 and let γ and (shell(e))e∈γ be defined as in proposition 3.5. Let E be
a subset of γ. There exists a path γ′ between 0 and x such that γ′ ∩E = ∅, the edges in γ′ \ γ are
p-open and

|γ′ \ γ| ≤ 12βN1
∑
e∈E
| shell(e)| .



142 CHAPTER 6. THE TIME CONSTANT IS LIPSCHITZ CONTINUOUS

We will need the following lemma to prove proposition 3.6. To guarantee that we bypass an edge
e without using e with the renormalization scheme, we build our bypass far enough from the edge
e. The following lemma enables us to build a p-open path between two points in a ∗-connected set
I of good boxes at scale 1 in such a way that it avoids a given set of vertices A. When applying
this lemma, we will take for the set A the set of the endpoints of the edges we wish to bypass.
The lemma provides a control on the length of the bypass depending on |I|.

Lemma 3.7. [Adaptation of lemma 3.2 in [3]] Let A be a subset of Zd. Let I be a finite ∗-connected
set such that

d
(
A,
⋃
i∈I

BN1(i)
)
> (14β + 2d)N1 .

Suppose that all the sites in I are (p, q)-good at scale 1. Let j, k ∈ I, x ∈ B′N1
(j) be in the p-

crossing cluster of BN1(j) and y ∈ B′N1
(k) be in the p-crossing cluster of BN1(k). There exists a

p-open path joining x and y of length at most 12βN1|I| that does not visit any point of A.

Proof of lemma 3.7. Since I is a ∗-connected set of sites, there exists a self-avoiding ∗-connected
path (il)1≤l≤r ⊂ I such that i1 = j, ir = k. Necessarily, we have r ≤ |I|. As all the sites in I are
good at scale 1, all the sites in (il)1≤l≤r are good at scale 1. We define x1 = x and xr = y. For
l ∈ {2, . . . , r − 1}, we choose a point xl in the p-crossing cluster of the box BN1(il). The point
x (respectively y) is at distance at most 2dN1 from BN1(j) (respectively BN1(k)), therefore the
points x and y are at distance at least 14βN1 from A. For l ∈ {2, . . . , r− 1}, the point xl belongs
to BN1(il) and so it is at distance at least 14βN1 from the set A. For l ∈ {1, . . . , r − 1}, both
points xl and xl+1 belong to B′N1

(il). Using property (iii) of a p-good box, we can build a p-open
path γ(l) from xl to xl+1 of length at most 12βN1. As the points xl and xl+1 are both at distance
at least 14βN1 from A, the path γ(l) does not go through a vertex in A. By concatenating the
paths γ(1), . . . , γ(r − 1) in this order, we obtain a p-open path joining x to y of length at most
12βN1|I| that does not visit any point in A.

0

x

γ

: ∂vCi, 1 ≤ i ≤ r

: Λe, e ∈ E

: E

C1

C2

C3

Figure 6.3 – Construction of C1, . . . , Cr

Proof of proposition 3.6. Let (shell(e))e∈γ be the family of the shells built in proposition 3.5. For
any e ∈ E, we denote

Λe = int(shell(e)) , Λe =
⋃

i∈Λe

BN1(i) .
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We write ⋃
e∈E

Λe =
r⋃

k=1
Ck

where C1, . . . , Cr are disjoint connected components of sites, ordered in such a way that C1 is
the first component visited by γ, C2 is the second and so on (see Figure 6.3). We set, for
k ∈ {1, . . . , r},

Ck =
⋃

i∈Ck

BN1(i) , ∂vCk =
⋃

i∈∂vCk

BN1(i) .

Thanks to the second inequality of proposition 3.5, for every e ∈ E, we have d({0, x},Λe) ≥ N1
and thus, for every k ∈ {1, . . . , r}, we have also d({0, x}, Ck) ≥ N1. This implies that γ enters
and exits each connected component Ck at least once. Let us introduce some further notations
(see Figure 6.4). We write γ = (x0, . . . , xn) . We define

τin(1) = min
{
j ≥ 1 : xj ∈ ∂vC1

}
,

τout(1) = max
{
j ≥ τin(1) : xj ∈ ∂vC1

}
.

Let k ∈ {1, . . . , r}. Suppose that τin(1), . . . , τin(k) and τout(1), . . . , τout(k) are defined. We define
then

τin(k + 1) = min
{
j ≥ τout(k) : xj ∈ ∂vCk+1

}
,

τout(k + 1) = max
{
j ≥ τin(k + 1) : xj ∈ ∂vCk+1

}
.

Let us fix k ∈ {1, . . . , r}. Let Bin(k) be the N1-box in ∂vCk containing xτin(k), Bout(k) be
the N1-box in ∂vCk containing xτout(k). Since Bin(k) (respectively Bout(k)) is a good box, it
contains a unique crossing cluster Cin (respectively Cout). Moreover, we have |γ ∩ B′in(k)| ≥ N1
(respectively |γ ∩B′out(k)| ≥ N1), thus by property (iv) of a good box, there exists a vertex yin(k)
in γ ∩B′in(k) ∩ Cin (respectively yout(k) in γ ∩B′out(k) ∩ Cout). We select such a vertex according
to some deterministic rule. Thanks to the first inequality of proposition 3.5, we have

∀e ∈ E d({e}, ∂vCk) ≥ d({e}, ∂vΛe) ≥ (14β + 2d)N1 ,

whence
d(E, ∂vCk) ≥ (14β + 2d)N1 .

We apply lemma 3.7 by taking the extremities of the edges of E for the set A and ∂vCk for the set
I: there exists a p-open path γlink(k) joining yin(k) and yout(k) of length at most 12βN1|∂vCk|
which does not visit any edge in E. For k in {1, . . . , r − 1}, we denote by γ(k) the portion of γ
between yout(k) and yin(k + 1). Let γ(0) (respectively γ(r)) be the portion of γ from y to yin(1)
(respectively from yout(r) to z). We obtain a path γ′ joining y and z by concatenating the paths
γ(0), γlink(1), γ(1), . . . , γlink(r), γ(r) in this order. We can extract from γ′ a self-avoiding path
γ′′. By construction, the edges in γ′′ \γ are p-open. Let us estimate the number of edges in γ′′ \γ.
Since

γ′′ \ γ ⊂
r⋃

k=1
γlink(k) ,

then

|γ′′ \ γ| ≤
r∑

k=1
|γlink(k)| ≤

r∑
k=1

12βN1|∂vCk| ≤ 12βN1
∑
e∈E
| shell(e)| .

This yields the desired result.
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γ

: ∂vCk

γlink(k)xτin(k)

Bin(k)

B′in(k)

B′out(k)

Bout(k) xτout(k)

yout(k)

yin(k)

Figure 6.4 – Construction of γlink(k), 1 ≤ k ≤ r

4 Control of the probability of being a bad box
In this section, we prove that the probability of being a (p, q)-bad N1-box at scale 1 decays

exponentially fast with N1. The main difficulty is to get an exponential decay which is uniform
in p. For that purpose, we introduce a parameter p0 > pc(d) and we obtain an exponential decay
which is uniform for all p ≥ p0. We recall that (p, q)-good boxes at scale 1 were defined in definition
3.1.

Theorem 4.1. Let p0 > pc(d). There exist constants N0(p0), δ0(p0) and C(p0) such that

∀p ≥ p0 ∀N ≥ N0 ∀q ∈ [p, p+ δ0]
P(BN is (p, q)-bad at scale 1) ≤ exp(−C(p0)N) .

Proof. We prove here only the exponential decay for the property (iv), as the exponential decay
for the other properties (i), (ii), (iii) were already proven in [3]. We refer also to the proof of
lemma 3.5 in [42]. For given parameters p, q satisfying pc(d) < p0 ≤ p ≤ q ≤ 1, we denote by Pp,q
the probability associated to two coupled Bernoulli percolations of parameters p, q. As usual, the
coupling is such that the edges are independent and every p-open edge is also q-open. We define
AN as the event that there exists a p-crossing cluster C in B′N and a q-open path γ ⊂ B′N such
that |γ| = N and γ does not intersect C. The following inequality was proven in [42]:

Pp,q(AN ) ≤ Pp,p(AN ) exp
(
N log

(
1 + q − p

p

))
.
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The quantity Pp,p(AN ) decays exponentially with N , as it satisfies property (ii) but not (i) (see
lemma 3.5. in [42]). Thus there exist positive constants κ1(p0) and κ2(p0) depending on p0 and
N0 such that

∀N ≥ 1 Pp,p(AN ) ≤ κ1(p0) exp(−κ2(p0)N) .

Now there exists a constant δ0 > 0 depending only on p0 such that, if the parameters q and p are
such that p0 ≤ p ≤ q and q − p ≤ δ0, then

κ2(p0) > log
(

1 + δ0
p0

)
≥ log

(
1 + q − p

p0

)
,

and so
Pp,q(BN is a (p, q)-bad box) ≤ A(p0) exp(−B(p0)N) ,

with A(p0) = κ1(p0) and B(p0) = κ2(p0)− log(1 + (q − p)/p0) . The result follows.

We prove in the following theorem that it is possible to tune the scales lk, k ≥ 1, in such a
way that the probability of being a bad site at scale k ≥ 1 decays at least exponentially fast with
Nk. We recall that good sites at scale k ≥ 2 were defined in definition 3.3.

Theorem 4.2. Let p0 > pc(d). There exist positive constants δ0(p0), C(p0), R and l0 such that,
for any non-decreasing sequence of scales (lk)k≥1 satisfying l1 ≥ l0, we have

∀p ≥ p0 ∀q ∈ [p, p+ δ0] ∀k ≥ 1

P(0 is (p, q)-bad at scale k) ≤ exp
(
−C(p0) Nk

(2R)d(k−1)

)
.

Proof. Let p0 > pc(d). We start with scale 1. Let N0(p0), δ0(p0), B(p0) associated to p0 as in
theorem 4.1. Let R be the smallest integer larger than 52β. We choose l1 ≥ max(N0, (2R)d) large
enough to ensure that

d log 7 ≤ C(p0) l1
4Rd (4.1)

and

∀l ≥ l1 log 2 + d log(3l) ≤ d(log 7)l . (4.2)

For i ∈ Zd, the event {i is good at scale 1} depends only on the edges in B26βN1(i). Thus, for
i, j ∈ Zd, if ‖i− j‖∞ ≥ R ≥ 52β, the events

{i is good at scale 1} and {j is good at scale 1}

are independent. Thanks to theorem 4.1, there exist positive constants C(p0), N0(p0) and δ0(p0)
such that

∀q ∈ [p, p+ δ0] ∀N ≥ N0 P(BN is (p, q)-bad) ≤ exp(−C(p0)N) .

Let now k ≥ 1 be fixed and suppose that the first k scales l1, . . . , lk have been chosen, and that
the following inequality holds:

P(0 is (p, q)-bad at scale k) ≤ exp
(
−C(p0) Nk

(2R)d(k−1)

)
, (4.3)

and that two sites i, j at scale k are independent whenever ‖i− j‖∞ ≥ R. For the scale k + 1, we
have

P(0 is (p, q)-bad at scale k + 1)

= P
(
∃i ∈ B′k+1(0) : |C(k)(i)| > lk+1

)
≤

∑
i∈B′

k+1(0)

∑
m>lk+1

∑
Γ∈Animals(m)

P (∀j ∈ i + Γ j is bad at scale k) ,
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where Animals(m) is the set of ∗-connected sets of cardinality m containing the site 0. We have
the following bound (see for instance Grimmett [48], p85):

|Animals(m)| ≤ 7dm .

Using the translation invariance of the model, we obtain

P(0 is (p, q)-bad at scale k + 1)

≤ |B′k+1(0)|
∑

m>lk+1

∑
Γ∈Animals(m)

P (∀j ∈ Γ j is bad at scale k ) .

To bound from above the previous probability, we will use the fact that distant sites at scale k
are independent. The following lemma allows us to extract from Γ a subset Γ0 in which sites are
at mutual distances larger or equal than R.

Lemma 4.3. Let Γ be a finite subset of Zd. There exists a subset Γ0 of Γ such that |Γ0| ≥ |Γ|/Rd
and

∀ i, j ∈ Γ0 i 6= j =⇒ ‖i− j‖∞ ≥ R .

Proof. The following collection of sets forms a partition of Zd:

i+RZd, i ∈ BR .

Therefore the set Γ can be partitioned as follows:

Γ =
⋃
i∈BR

(
(i+RZd) ∩ Γ

)
.

Since |BR| = Rd, then there exists i0 such that the set Γ0 = (i0 +RZd)∩Γ satisfies the conditions
stated in the lemma.

Let Γ be a fixed lattice animal. Let Γ0 be a subset of Γ that satisfies the conditions stated in
lemma 4.3. Let i 6= j ∈ Γ0. By the induction hypothesis, the events {i is good at scale k} and
{j is good at scale k} are independent. Using the inequality of the induction hypothesis, we have
thus

P(0 is (p, q)-bad at scale k + 1)

≤ (3lk+1)d
∑

m>lk+1

∑
Γ∈Animals(m)

P (∀j ∈ Γ j is bad at scale k )

≤ (3lk+1)d
∑

m>lk+1

∑
Γ∈Animals(m)

P (∀j ∈ Γ0 j is bad at scale k )

≤ (3lk+1)d
∑

m>lk+1

∑
Γ∈Animals(m)

exp
(
−C(p0) Nk

(2R)d(k−1)
m

Rd

)

≤ (3lk+1)d
∑

m>lk+1

7dm exp
(
−C(p0) Nk

(2R)d(k−1)
m

Rd

)
.

Since l1 ≥ (2R)d and l1 ≤ · · · ≤ lk, then Nk ≥ (2R)dk. Using (4.1), we see that

∀m ≥ 1 7dm exp
(
−C(p0) Nk

4(2R)d(k−1)
m

Rd

)
≤ 1 (4.4)

and
exp

(
−C(p0) 3Nk

4(2R)d(k−1)Rd

)
≤ 1

73d ≤
1
2 .
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It follows that

P(0 is (p, q)-bad at scale k + 1)

≤ (3lk+1)d
∑

m>lk+1

exp
(
−C(p0) 3Nk

4(2R)d(k−1)
m

Rd

)

≤ 2(3lk+1)d exp
(
−C(p0) 3Nk

4(2R)d(k−1)
lk+1

Rd

)
. (4.5)

The condition (4.2) on l1 and the fact that l1 ≤ · · · ≤ lk+1 imply that

log 2 + d log(3lk+1) ≤ d(log 7)lk+1 . (4.6)

Thanks to inequalities (4.4) and (4.6), we obtain

2(3lk+1)d exp
(
−C(p0) Nk+1

4(2R)d(k−1)Rd

)
≤ 1 . (4.7)

Finally, combining inequalities (4.5) and (4.7), we obtain

P(0 is (p, q)-bad at scale k + 1) ≤ exp
(
−C(p0) Nk+1

(2R)dk

)
.

This yields the inequality at rank k + 1.
For i ∈ Zd, the event {i is good at scale k + 1} depends on the states of the sites in

Bk+1(i) =
{
l ∈ Zd : ‖l− j‖∞ ≤ 2lk+1, j ∈ B′k+1(i)

}
.

Indeed, for j ∈ B′k+1(i), in order to determine whether |C(k)(j)| ≤ lk+1 or not, we only need to
reveal the states of the sites in Bk+1(i). By the induction hypothesis, two sites l,m at scale k are
independent whenever ‖l−m‖∞ ≥ R. Now, if ‖i− j‖∞ ≥ R, then

∀l ∈ Bk+1(i) ∀m ∈ Bk+1(j) ‖l−m‖∞ ≥ Rlk+1 − 8lk+1 ≥ R

and the events {i is good at scale k + 1} and {j is good at scale k + 1} are independent. This
concludes the induction.

For k ≥ 1, we define the trace γ(k) of γ on the lattice at scale k as

γ(k) =
{
i ∈ Zd : BNk(i) ∩ γ 6= ∅

}
.

The following lemma gives a deterministic control on the length of this trace.

Lemma 4.4. [lemma 3.4 in [42]] For any path γ in Zd, we have

∀k ≥ 1 |γ(k)| ≤ 3d
(

1 + |γ|+ 1
Nk

)
.

The following proposition shows that we can choose adequately the sequence (Nk)k≥1 in order to
control the quantity that appears in proposition 3.5.

Proposition 4.5. Let p0 > pc(d). There exist positive constants l0(p0), n0, δ0(p0), A1(p0) such
that, if we define the sequence of scales (lk)k≥1 by setting N1 = l0 and

∀k ≥ 1 Nk+1 = N2d
k

and we define M = M(γ) as the smallest integer such that nM (γ) = 0, then we have

∀p ≥ p0 ∀q ∈ [p, p+ δ0] ∀n ≥ n0

P


There exists a path γ starting
from 0 such that |γ| ≤ n and∑M
k=3 nk(γ)N2

k+1N
3d
k (3d)2k ≥ n

or NM(γ) > n1/3d

 ≤ exp
(
−A1(p0)n

1
6d2+1

)
.
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Proof of proposition 4.5. Let p0 > pc(d). Let δ0(p0), C(p0), l0 be the constants given by theorem
4.2. We can assume that l0 ≥ 2(3d)2 (if this is not the case, we replace l0 by max(l0, 2(3d)2)). Let
p > p0 and q ∈ [p, p+δ0]. Let (Nk)k≥1 be the sequence defined in the statement of the proposition.
We have l1 ≥ l0 and l1 ≥ 2(3d)2. We set

∀k ≥ 1 δk = 1
N2
k+1N

3d+1
k

.

We have then
M(γ)−1∑
k=3

(3d)2kN2
k+1N

3d
k δk =

M(γ)−1∑
k=3

(3d)2k

Nk
≤
∞∑
k=3

(
(3d)2

l1

)k
≤
∞∑
k=3

(
1
2

)k
< 1 .

We choose n0 large enough so that N1 ≤ n
1/3d
0 . Let n ≥ n0. Let M be the largest integer such

that NM ≤ n
1/3d. Therefore NM+1 = (NM )2d ≤ n2/3 < n. We have

P
(

There exists a path γ starting from 0 such that |γ| ≤ n
and

∑M(γ)−1
k=3 nk(γ)(3d)2kN2

k+1N
3d
k ≥ n or NM(γ) > n1/3d

)

≤ P

 There exists a path γ starting from 0 such that |γ| ≤ n and∑M(γ)−1
k=3 nk(γ)(3d)2kN2

k+1N
3d
k ≥

∑M(γ)−1
k=3 (3d)2kN2

k+1N
3d
k δkn

or M(γ) > M


≤ P

 There exists a path γ starting from 0 such that |γ| ≤ n and∑M(γ)−1
k=3 nk(γ)(3d)2kN2

k+1N
3d
k ≥

∑M(γ)−1
k=3 (3d)2kN2

k+1N
3d
k δkn

and M(γ) ≤M


+ P

(
There exists a path γ starting from 0

such that |γ| ≤ n and M(γ) > M

)

≤
M−1∑
k=3

P
(

There exists a path γ starting from 0
such that |γ| ≤ n and nk(γ) ≥ δkn

)
+ P

(
There exists a path γ starting from 0

such that |γ| ≤ n and nM (γ) 6= 0

)
. (4.8)

Let k ∈ {3, . . . ,M(γ)− 1}. To control the probability that there exists a path γ such that nk(γ)
exceeds δkn, a natural strategy would be to sum over all the possible traces γ(k) of γ at scale
k. However, this would lead to a combinatorial term that grows too fast with n. Instead of
summing over all possible traces γ(k) at scale k, we sum over all possible traces γ(k+2) at scale
k+2 (summing over all possible traces γ(k+1) at scale k+1 also leads to a too large combinatorial
term). Let Γ be a set of sites at scale k+ 2, we denote by Γ(k) the set of the sites at scale k which
are contained in Γ, i.e.,

Γ(k) =
⋃
i∈Γ

⋃
j∈Bk+2(i)

Bk+1(j) .

Let γ be a path starting from 0 such that |γ| ≤ n. With the previous notation, we have that

γ(k) ⊂ γ(k+2)
(k) .

We can therefore bound from above the number of bad sites nk(γ) at scale k that γ crosses by the
number of bad sites at scale k contained in γ(k+2)

(k). We denote this number by nk+2
k (γ(k+2)),

namely,
nk+2
k (γ(k+2)) =

∣∣∣{ i ∈ γ(k+2)
(k) : i is bad at scale k

}∣∣∣ .
We denote by bxc the greatest integer smaller than or equal to the real number x. Using lemma
4.4 together with the fact that Nk+2 < n, we obtain

|γ(k+2)| ≤ 3d
(

1 + |γ|+ 1
Nk+2

)
≤ 3d

(
1 + 2n

Nk+2

)
≤ 3d+1 n

Nk+2
.
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We have thus

P
(

There exists a path γ starting from 0
such that |γ| ≤ n and nk(γ) ≥ δkn

)
≤ P

(
There exists a path γ starting from 0
such that |γ| ≤ n, nk+2

k (γ(k+2)) ≥ δkn

)
≤ P

( ⋃
Γ∈Animals

(⌊
3d+1n
Nk+2

⌋)
{

There exists a path γ starting from 0 such
that |γ| ≤ n, nk+2

k (Γ) ≥ δkn, γ(k+2) ⊂ Γ

})

≤
∑

Γ∈Animals
(⌊

3d+1n
Nk+2

⌋)P
(

There exists a path γ starting from 0 such
that |γ| ≤ n, nk(Γ(k))) ≥ δkn and γ(k+2) ⊂ Γ

)

≤
∑

Γ∈Animals
(⌊

3d+1n
Nk+2

⌋)P(nk(Γ(k)) ≥ δkn
)
. (4.9)

Let Γ be a fixed ∗-connected set of sites at scale k+ 2 containing 0 and of size b3d+1n/Nk+2c. We
have

|Γ(k)| ≤ (lk+2lk+1)d|Γ| ≤ (lk+2lk+1)d
⌊

3d+1n

Nk+2

⌋
.

On the event {nk(Γ(k)) ≥ δkn}, using the same arguments as in lemma 4.3, we can extract a
subset Γ̃ of Γ(k) such that nk(Γ̃) ≥ δkn/Rd and

∀ i, j ∈ Γ̃ i 6= j =⇒ ‖i− j‖∞ ≥ R ≥ 3 .

This implies that the events {i is good at scale k} and {j is good at scale k} are independent for
i 6= j ∈ Γ̃. From the proof of lemma 4.3 and the way Γ̃ is constructed, we see that there are at
most Rd choices for the set Γ̃. Let us set

p = P(0 is bad at scale k) .

Let (Xi)i≥1 be a sequence of i.i.d. Bernoulli random variables with parameter p. From the
previous discussion, we have

P
(
nk(Γ(k)) ≥ δkn

)
≤ P

(
nk(Γ̃) ≥ δkn

Rd

)

≤ Rd P


(lk+2lk+1)d

⌊
3d+1n
Nk+2

⌋
∑
i=1

Xi ≥
δkn

Rd



≤ Rd P


(lk+2lk+1)d

⌊
3d+1n
Nk+2

⌋
∑
i=1

Xi ≥
δkNk+2

3(3Rlk+1lk+2)d (lk+2lk+1)d
⌊

3d+1n

Nk+2

⌋ . (4.10)

Let us set
δ′ = δkNk+2

3(3Rlk+1lk+2)d = 1
3(3R)dNd−1

k+2N
2
k+1N

2d+1
k

<
1
2 .

Using theorem 4.2, we have

δ′

p ≥
1

3(3R)dNd−1
k+2N

2
k+1N

2d+1
k

exp
(
C(p0)Nk

(2R)d(k−1)

)
.
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Since Nk+1 = N2d
k , we have

δ′

p ≥
1

3(3R)dN4d2(d−1)+6d+1
k

exp
(
C(p0)Nk

(2R)d(k−1)

)

= 1
3(3R)dl(2d)k(4d2(d−1)+6d+1)

0

exp
(
C(p0)l(2d)k

0
(2R)d(k−1)

)
.

We can choose l0 large enough depending on d, β and p0 such that

∀k ≥ 1 δ′

p ≥ 8 .

As δ′ > p, we can use the Cramér-Chernoff inequality, we obtain

P


(lk+2lk+1)d

⌊
3d+1n
Nk+2

⌋
∑
i=1

Xi ≥ δ′(lk+2lk+1)d
⌊

3d+1n

Nk+2

⌋
≤ exp

(
−(lk+2lk+1)d

⌊
3d+1n

Nk+2

⌋(
δ′ log δ

′

p + (1− δ′) log 1− δ′

1− p

))
.

Using the convexity of the function x 7→ − log(1− x), we have

∀x ∈ [0, 1/2] − log(1− x) ≤ 2(log 2)x .

Since δ′ < 1/2, we have

−(1− δ′) log 1− δ′

1− p ≤ − log(1− δ′) ≤ 2(log 2)δ′ .

We have also Nk+2 ≤ n2/3, whence ⌊
3d+1n

Nk+2

⌋
≥ 3dn
Nk+2

.

As δ′/p > 8, we have

exp
(
−(lk+2lk+1)d

⌊
3d+1n

Nk+2

⌋(
δ′ log δ

′

p + (1− δ′) log 1− δ′

1− p

))
≤ exp

(
−(lk+2lk+1)d

⌊
3d+1n

Nk+2

⌋
(3(log 2)δ′ − 2(log 2)δ′)

)
≤ exp

(
− (3lk+2lk+1)d

Nk+2
(log 2)δ′n

)
≤ exp

(
−(log 2) δk

3Rdn
)
.

Coming back to (4.10), we have then

P
(
nk(Γ(k)) ≥ δkn

)
≤ Rd exp

(
−(log 2) δk

3Rdn
)
.

Finally, inequality (4.9) and the previous inequality yield

P
(

There exists a path γ starting from 0
such that |γ| ≤ n and nk(γ) ≥ δkn

)
≤

∑
Γ∈Animals

(⌊
3d+1n
Nk+2

⌋)Rd exp
(
−(log 2) δk

3Rdn
)

≤ Rd(7d)
3d+1n
Nk+2 exp

(
−(log 2) δk

3Rdn
)
. (4.11)
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Since d ≥ 2, we have

Nk+2 = N4d2

k ≥ N7d+2
k = N2

k+1N
3d+1
k Nk = Nk/δk ≥ l0/δk .

We can assume that l0 satisfies furthermore

d(log 7) 3d+1

l0
≤ log 2

6Rd .

If it is not the case we take a larger l0. We have then

P
(

There exists a path γ starting from 0
such that |γ| ≤ n and nk(γ) ≥ δkn

)
≤ Rd exp

(
− log 2

6RdN2
k+1N

3d+1
k

n

)
. (4.12)

By construction, NM+1 = (NM )2d > n1/3d and so NM > n1/6d2 . We are going to bound from
above the number of bad NM -boxes that γ crosses by the number of bad NM -boxes in the box
B4n. Using theorem 4.2, we have

P
(

There exists a path γ starting from 0
such that |γ| ≤ n and nM (γ) 6= 0

)
≤ P

(
There exists i ∈ Zd such that BN

M
(i) ⊂ B4n

and the box BN
M

(i) is bad

)
≤
(

4n+ 1
2NM + 1

)d
exp

(
−C(p0)

NM
(2R)d(M−1)

)

≤ (4n+ 1)d exp
(
−C(p0) n1/6d2

(2R)d(M−1)

)
. (4.13)

Since NM = l
(2d)M
0 ≤ n1/3d, there exist positive constants C and C ′ depending on l0, d and p0

such that
M ≤ C log logn and (2R)d(M−1) ≤ (logn)C

′
.

Thus, there exist positive constants C1 and C2 depending on d and p0 such that, for all n ≥ n0,

P
(

There exists a path γ starting from 0
such that |γ| ≤ n and nM (γ) 6= 0

)
≤ C1 exp

(
− C2n

1/(6d2+1)) . (4.14)

We recall that Nk+1 ≤ NM and Nk = N
1/2d
k+1 ≤ N

1/2d
M

. Since NM ≤ n1/3d, combining inequalities
(4.8), (4.12) and (4.14), we obtain that for l1 ≥ l0, for n ≥ n0,

P
(

There exists a path γ starting from 0 such that |γ| ≤ n
and

∑M(γ)−1
k=3 nk(γ)N2

k+1N
3d
k (3d)2k ≥ n or NM(γ) > n1/3d

)

≤
M−1∑
k=3

Rd exp
(
− log 2

6RdN2
k+1N

3d+1
k

n

)
+ C1 exp

(
−C2n

1/(6d2+1)
)

≤
M−1∑
k=3

Rd exp
(
− log 2

6Rd
n

n2/3d+(3d+1)/6d2

)
+ C1 exp

(
−C2n

1/(6d2+1)
)

≤ RdC(log logn) exp
(
− log 2

6Rd n
1/3
)

+ C1 exp
(
−C2n

1/(6d2+1)
)
.

This yields the desired result.
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5 Conclusion
In this section, we prove the main theorems 1.2 and 1.3.

5.1 Bernoulli case: Proof of theorem 1.2
Let p0 > pc(d). Let δ0(p0) be given by theorem 4.2. Let p, q be such that p0 ≤ p < q ≤

p + δ0(p0). Let x ∈ Zd \ {0}. Let (Nk)k≥1 be a sequence, n0 and M(γ) as given by proposition
4.5. Let us denote

λ = 32d4d2β
(3d)4N2

3N
2d
2 + d

p0
.

Let n ≥ n0. Let us assume that 0 and nx belong to Cp0 . This implies that 0 and nx belong also
to Cq. We denote by γ a geodesic between 0 and nx in Cq, i.e., γ is a q-open path such that
|γ| = DCq (0, nx). If there are several possible choices for γ, we choose one according to some
deterministic rule. Using proposition 4.5, we have

P
(
DCp

(
0̃Cp0 , ñx

Cp0
)
−DCq

(
0̃Cp0 , ñx

Cp0
)
≥ 25N1βλ(q − p)‖x‖1n

)
≤ P

(
0 ∈ Cp0 , nx ∈ Cp0 , |γ| ≤ βn‖x‖1,

DCp (0, nx)−DCq (0, nx) ≥ 25N1βλ(q − p)‖x‖1n

)
+ (1− P(0 ∈ Cp0 , nx ∈ Cp0)) + P

(
βn‖x‖1 < DCq (0, nx) <∞

)
≤ P

 0 ∈ Cp0 , nx ∈ Cp0 , |γ| ≤ βn‖x‖1,
DCp (0, nx)−DCq (0, nx) ≥ 25N1βλ(q − p)‖x‖1n,∑M(γ)−1

k=3 nk(γ)N2
k+1N

3d
k (3d)2k < βn‖x‖1, NM(γ) ≤ n1/3d


+ (1− P(0 ∈ Cp0 , nx ∈ Cp0)) + P

(
βn‖x‖1 < DCq (0, nx) <∞

)
+ exp(−A1n

1/(6d2+1)) . (5.1)

Using the FKG inequality, we have

P(0 ∈ Cp0 , nx ∈ Cp0) ≥ P(0 ∈ Cp0)2 > 0 . (5.2)

Using lemma 2.3, we have

P
(
βn‖x‖1 < DCq (0, nx) <∞

)
≤ Â exp(−B̂n) . (5.3)

We set
γ̃ = γ \ (B4n1/3d ∪ (B4n1/3d + nx)) .

Note that on the event {NM(γ) ≤ n1/3d}, we have γ̃ ⊂ γ. On the event
M(γ)−1∑
k=3

nk(γ)N2
k+1N

3d
k (3d)2k ≤ βn‖x‖1, |γ| ≤ βn‖x‖1

 ,

using proposition 3.5, we obtain

∑
e∈γ̃

| shell(e)|2 ≤ 32d4d2

(3d)4|γ|N2
3N

2d
2 +

M(γ)−1∑
k=3

nk(γ)N2
k+1N

3d
k (3d)2kd


≤ 32d4d2β‖x‖1

(
(3d)4N2

3N
2d
2 + d

)
n ≤ λ‖x‖1p0n .

Hence

P

 0 ∈ Cp0 , nx ∈ Cp0 , |γ| ≤ βn‖x‖1,
DCp (0, nx)−DCq (0, nx) ≥ 25N1βλ(q − p)‖x‖1n,∑M(γ)−1

k=3 nk(γ)N2
k+1N

3d
k (3d)2k < βn‖x‖1, NM(γ) ≤ n1/3d


≤ P

 0 ∈ Cp0 , nx ∈ Cp0 , |γ| ≤ βn‖x‖1,
DCp (0, nx)−DCq (0, nx) ≥ 25N1βλ(q − p)‖x‖1n,∑

e∈γ̃ | shell(e)|2 ≤ λp0‖x‖1n, NM(γ) ≤ n1/3d

 . (5.4)
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We would like to introduce a coupling of the percolation processes with parameters q and p such
that, if an edge is p-open, then it is q-open, and we would like that the random path γ and the
shells associated to the edges in γ are in some sense independent from the p-state of the edges in
γ̃. This is not the case when we use the classical coupling with a unique uniform random variable
associated to each edge. For a fixed path r, given a family of shells associated with the edges of
r and a subset E of r̃, we do not use the p-state of the edges in r to build the bypasses of the
edges in E, because the existence of p-open bypasses for the edges in E does not depend on the
p-states of the edges in r. Indeed, a bypass is a p-open path of edges which connects two vertices
of r but which does not go through an edge of r. To clarify the computations, we introduce three
sources of randomness in order to ensure that the choice of γ and its shells are independent from
the p-states of the edges in γ̃. To each edge we associate three independent Bernoulli random
variables V , W and Z of respective parameters q, p/q and p/q. The random variables ZV and
ZW are Bernoulli random variables of parameter p and we have

P(ZV = 0 |V = 1) = P(Z = 0 |V = 1) = P(Z = 0) = 1− p

q
= q − p

q
.

The q-states of the edges is given by the family (Ve)e∈Ed . Once we know the q-states of the edges,
we find a geodesic γ. The p-states of the edges outside γ is given by the family (VeZe)e∈Ed , while
the p-states of the edges belonging to γ is given by the family (VeWe)e∈Ed . More precisely, on
the event {γ = r}, an edge e ∈ r̃ is p-open if We = 1, whereas an edge e in Ed \ r̃ is p-open if
VeZe = 1. We denote by E the set of the p-closed edges in γ̃. The event {γ = r} depends only
on the family (Ve)e∈Ed , the event {shell(e) = Se} depends on the families of random variables
(Ve)e∈Ed and (Ze)e∈Ed . Finally the event {E = E} depends on the random variables (We)e∈r̃. We
sum over all possible realizations of γ, (shell(e))

e∈γ̃ and E :

P

 0 ∈ Cp0 , nx ∈ Cp0 , |γ| ≤ βn‖x‖1,
DCp (0, nx)−DCq (0, nx) ≥ 25N1βλ(q − p)‖x‖1n,∑

e∈γ̃ | shell(e)|2 ≤ λp0‖x‖1n, NM(γ) ≤ n1/3d


=

∑
r path

|r|≤βn‖x‖1

∑
Se,e∈r̃∑
e∈r̃
|Se|2

≤λp0‖x‖1n

∑
E⊂r̃

P

 γ = r, E = E, ∀e ∈ r̃ shell(e) = Se
DCp (0, nx)− |r| ≥ 25N1βλ(q − p)‖x‖1n,

NM(γ) ≤ n1/3d

 . (5.5)

By proposition 3.6, we can build a path r′ such that r′ does not contain any edge of E, the edges
in r′ \ r are p-open and

|r′ \ r| ≤ 12βN1
∑
e∈E
|Se| .

We recall that we work on the event {NM(γ) ≤ n1/3d}. At this stage, the edges in

r′ ∩ (B4n1/3d ∪ (B4n1/3d + nx))

are not necessarily p-open. We denote by y (respectively z) the first intersection of r′ with ∂B4n1/3d

(respectively the last intersection of r′ with ∂B4n1/3d +nx). Let Cp(w) denotes the p-open cluster
of w ∈ Zd. From the previous construction, we see that Cp(y) and Cp(z) have cardinality at least
n− 8n1/3d. Using the result of Kesten and Zhang in [53], we get

P(y /∈ Cp) ≤ P(n− 4n1/3d < |Cp(y)| <∞)

≤
∑

y∈∂B4n1/3d

P(n− 8n1/3d < |Cp(y)| <∞)

≤ |∂B4n1/3d |C1 exp(−C2n
(d−1)/d) . (5.6)
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Therefore, with probability at least 1 − 2|∂B4n1/3d |C1 exp(−C2n
(d−1)/d), the vertices y and z

belong to Cp. Applying lemma 2.3, we have

P(∃y ∈ ∂B4n1/3d , β‖y‖1 ≤ DCp(0, y) <∞)

≤
∑

y∈∂B4n1/3d

P(β‖y‖1 ≤ DCp(0, y) <∞) ≤ |∂B4n1/3d |Â exp(−2B̂n1/3d) . (5.7)

Thus with probability at least 1−2|∂B4n1/3d |Â exp(−2B̂n1/3d), we can join 0 and y (respectively z
and nx) by a p-open path rfirst (respectively rlast) of length at most 4dβn1/3d. By concatenating
rfirst, the portion of r′ between y and z, and rlast in this order, we obtain a p-open path r′′ that
joins 0 and nx such that

|r′′ \ r| ≤ |rfirst|+ |rlast|+ |r′ \ r| ≤ 8dβn1/3d + 12βN1
∑
e∈E
|Se| . (5.8)

Therefore, combining inequalities (5.5), (5.6), (5.7) and (5.8), we get for n large enough

P

 0 ∈ Cp0 , nx ∈ Cp0 , |γ| ≤ βn‖x‖1,
DCp (0, nx)−DCq (0, nx) ≥ 25N1βλ(q − p)‖x‖1n,∑

e∈γ̃ | shell(e)|2 ≤ λp0‖x‖1n, NM(γ) ≤ n1/3d


≤

∑
r path

|r|≤βn‖x‖1

∑
Se,e∈r̃∑
e∈r̃
|Se|2

≤λp0‖x‖1n

∑
E⊂r̃

P
(

γ = r, E = E, ∀e ∈ r̃ shell(e) = Se
12N1

∑
e∈E |Se| ≥ 24N1(q − p)λ‖x‖1n

)

+ 2|∂B4n1/3d |
(
C1 exp(−C2n

(d−1)/d) + Â exp(−2B̂n1/3d)
)
. (5.9)

Using the definition of our coupling, we get∑
r path

|r|≤βn‖x‖1

∑
Se,e∈r̃∑

e∈r̃
|Se|2≤λp0‖x‖1n

∑
E⊂r̃

P
(
γ = r, E = E, ∀e ∈ r̃ shell(e) = Se∑

e∈E |Se| ≥ 2λ(q − p)‖x‖1n

)

≤
∑
r path

|r|≤βn‖x‖1

∑
Se,e∈r̃∑
e∈r̃
|Se|2

≤λp0‖x‖1n

P
(

γ = r, ∀e ∈ r̃ shell(e) = Se∑
e∈r̃(1−We)|Se| ≥ 2λ(q − p)‖x‖1n

)

=
∑
r path

|r|≤βn‖x‖1

∑
Se,e∈r̃∑
e∈r̃
|Se|2

≤λp0‖x‖1n

P
(
γ = r, ∀e ∈ r̃ shell(e) = Se

)

× P

∑
e∈r̃

(1−We)|Se| ≥ 2λ(q − p)‖x‖1n

 . (5.10)

In the last step, we used the fact that the random variables (We, e ∈ r̃) are independent from the
event {γ = r} and the shells (shell(e), e ∈ r̃). Let us set

U =
∑
e∈r̃

(1−We)|Se| .

We have

E (U) = q − p
q

∑
e∈r̃

|Se| ≤ λ(q − p)‖x‖1n (5.11)
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and

Var (U) ≤ Var(1−W )
∑
e∈r̃

|Se|2 ≤ λ
p0

4 ‖x‖1n . (5.12)

Using the Markov inequality and inequalities (5.11) and (5.12), we get

P

∑
e∈r̃

(1−We)|Se| ≥ 2λ(q − p)‖x‖1n

 ≤ P
(
|U − E(U)| ≥ λ(q − p)‖x‖1n

)
≤ Var(U)

(λ(q − p)‖x‖1n)2 ≤
p0

4λ(q − p)2‖x‖1n
. (5.13)

Finally, combining inequalities (5.1), (5.2), (5.3), (5.9), (5.10) and (5.13), we deduce the existence
of a real number p(p0, p, q) > 0 such that, for n large enough,

P
(
DCp

(
0̃Cp0 , ñx

Cp0
)
−DCq

(
0̃Cp0 , x̃Cp0

)
≤ 25N1βλ(q − p)‖x‖1n

)
≥ p(p0, p, q) .

Let δ > 0. Thanks to the convergence of the regularized times given by proposition 2.1, we can
also choose n large enough such that

P

(
µp(x)− δ ≤ DCp(0̃Cp0 , ñx

Cp0 )
n

)
≥ 1− p(p0, p, q)

3 ,

P

(
DCq (0̃Cp0 , ñx

Cp0 )
n

≤ µq(x) + δ

)
≥ 1− p(p0, p, q)

3 .

The intersection of the three previous events has positive probability. On this intersection, we
have

µp(x)− δ ≤ µq(x) + δ + 25N1βλ(q − p)‖x‖1 .

This inequality occurs with positive probability, yet all the quantities in it are deterministic. By
taking the limit when δ goes to 0, we get

µp(x) ≤ µq(x) + 25N1βλ(q − p)‖x‖1 .

Thus for all p ≥ p0 and p < q ≤ p+ δ0, there exists a positive constant C ′(p0) such that

∀x ∈ Zd µp(x)− µq(x) ≤ C ′(p0)(q − p)‖x‖1 .

We recall that the map p 7→ µp is non-increasing. We consider now the case q > p+ δ0. We write
q − p = kδ0 + r with k ∈ N and 0 ≤ r < δ0. We obtain

µp(x)− µq(x) =
k−1∑
i=0

µp+iδ0(x)− µp+(i+1)δ0(x) + µq−r(x)− µq(x)

≤
k−1∑
i=0

C ′(p0)δ0‖x‖1 + C ′(p0)r‖x‖1 = C ′(p0)(kδ0 + r)‖x‖1

= C ′(p0)(q − p)‖x‖1 . (5.14)

By homogeneity, (5.14) also holds for all x ∈ Qd. Let us recall that for all x, y ∈ Rd and p ≥ pc(d),
we have (see for instance theorem 1 in [28])

|µp(x)− µp(y)| ≤ µp(e1)‖x− y‖1 . (5.15)
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Moreover, by compactness of Sd−1, there exists a finite set (y1, . . . , ym) of rational points of Sd−1

such that

Sd−1 ⊂
m⋃
i=1

{
x ∈ Sd−1 : ‖yi − x‖1 ≤ (q − p)

}
.

Let x ∈ Sd−1 and yi such that ‖yi − x‖1 ≤ (q − p), using inequality (5.15), we get

|µp(x)− µq(x)| ≤ |µp(x)− µp(yi)|+ |µp(yi)− µq(yi)|+ |µq(yi)− µq(x)|
≤ µp(e1)‖yi − x‖1 + C ′(p0)(q − p) + µq(e1)‖yi − x‖1
≤ (2µp0(e1) + C ′(p0)) (q − p),

where we use the monotonicity of the map p → µp in the last inequality. Finally, for any p, q ∈
[p0, 1],

sup
x∈Sd−1

|µp(x)− µq(x)| ≤ (2µp0(e1) + C ′(p0)) |q − p| .

This yields the result.

5.2 General distributions case
In this section, we prove theorem 1.3. The following proposition relies on a result of Kesten

(proposition (5.8) in [51]).

Proposition 5.1. Let p1 < pc(d), p0 > pc(d), M > 0, ε0 > 0 and ε 7→ δ(ε) be a non-decreasing
function such that δ(ε0) ≤ 1 − p1. Let Cp0,p1,M,ε0,δ be the class of functions defined in theorem
1.3. There exist positive constants A, B and C depending on these parameters such that, for any
distribution G in Cp0,p1,M,ε0,δ,

∀n ≥ 1 P
(

There exists a path r starting from 0
such that |r| ≥ n and TG(r) < Cn

)
≤ A exp(−Bn) .

Proof of theorem 1.3. Let H be the distribution such that H({0}) = p1, for every ε ≤ ε0, we have
H(]0, ε]) = δ(ε) and H({ε0}) = 1 −H([0, ε0[). Using proposition 5.8 in [51], there exist positive
constants A, B and C depending on the distribution H such that

∀n ≥ 1 P
(

There exists a path r starting from 0
such that |r| ≥ n and TH(r) < Cn

)
≤ A exp(−Bn) .

By construction, any distribution G in Cp0,p1,M,ε0,δ stochastically dominates H. Let n ≥ 1. Using
the stochastic domination, we have

P
(

There exists a path r starting from 0
such that |r| ≥ n and TG(r) < Cn

)
≤ P

(
There exists a path r starting from 0
such that |r| ≥ n and TH(r) < Cn

)
≤ A exp(−Bn) .

This yields the result.

The proof of theorem 1.3 uses the same strategy as the proof of theorem 1.2, so we will only
sketch the arguments.

Proof. Let p1 < pc(d), p0 > pc(d) M > 0, ε0 > 0 and ε 7→ δ(ε) be a function. Let G and F be
two distributions on [0,+∞[ in Cp0,p1,M,ε0,δ. Let p < q ∈ [p0, 1]. We define Gp and Fq as

Gp = pG+ (1− p)δ∞ and Fq = q F + (1− q)δ∞ .

We write q − p = kδ0/2 + r with k ∈ N and 0 ≤ r < δ0/2. We have

|µFq (x)− µGp(x)|

≤ |µFq (x)− µGq−r (x)|+
k−1∑
i=0
|µGp+(i+1)δ0/2(x)− µGp+iδ0/2(x)| . (5.16)
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Let i ∈ {0, . . . , k − 1}. We introduce next a coupling between Gp+iδ0/2 and Gp+(i+1)δ0/2. To each
edge e ∈ Ed, we associate three random variables: one uniform random variable U(e) on [0, 1],
two Bernoulli random variables V (e) and W (e) of parameters p+ (i+ 1)δ0/2 and δ0/2. We set

tGp+(i+1)δ0/2(e) =
{
G−1(U(e)) if V (e) = 1
+∞ otherwise

and
tGp+iδ0/2(e) =

{
G−1(U(e)) if V (e)W (e) = 1
+∞ otherwise, .

With this coupling, we have

∀e ∈ Ed tGp+iδ0/2(e) ≥ tGp+(i+1)δ0/2(e),

thus µGp+iδ0/2 stochastically dominates µGp+(i+1)δ0/2 . Since G ∈ Cp0,p1,M,ε0,δ, we have G([0,M ]) ≥
1− δ0/2 and therefore

Gp+(i+1)δ0/2([0,∞[)−Gp+iδ0/2([0,M ])

≤ p+ (i+ 1)δ02 −
(
p+ i

δ0
2

)(
1− δ0

2

)
≤ δ0 .

Let n ≥ 1. Let us assume that 0 and nx belong to Cp0,M , the infinite cluster made of edges e such
that tGp0

(e) ≤M . Let γ be a geodesic between 0 and nx for the passage times (tGp+(i+1)δ0/2(e))e∈Ed .
For some edges e ∈ γ, we have tGp+iδ0/2(e) =∞. We would like to bypass these edges using only
edges e ∈ Ed such that tGp+iδ0/2(e) ≤ M . We control the length of the bypasses using the same
strategy as in the Bernoulli case. Up to choosing a smaller δ0, we can assume that

Gp+iδ0/2([0,M ]) =
(
p+ i

δ0
2

)(
1− δ0

2

)
≥ p0

(
1− δ0

2

)
> pc(d) .

We say that the edge e is Gp+iδ0/2([0,M ])-open (respectively Gp+(i+1)δ0/2([0,∞[)-open) if

tGp+iδ0/2(e) ≤M (respectively tGp+(i+1)δ0/2(e) <∞).

The shells are now made of (Gp+iδ0/2([0,M ]), Gp+(i+1)δ0/2([0,∞[))-good boxes. Let (shell(e))e∈γ
be a family of shells as in proposition 3.5. We can build γ′ and γ′′ as in the Bernoulli case, where
γ′′ is a path between 0 and nx whose edges have finite passage times for the distribution Gp+iδ0/2.
With this coupling, the passage times coincide for the two distributions on γ′′ ∩ γ. Thus, we have

TGp+iδ0/2(γ′′)

≤ TGp+iδ0/2(γ(first)) + TGp+iδ0/2(γ(last)) + TGp+iδ0/2(γ ∩ γ′′) + TGp+iδ0/2(γ′ \ γ)

≤ 4dMβn1/3d + TGp+(i+1)δ0/2
(γ) + 12βN1M

∑
e∈γ

| shell(e)|1W (e)=0 .

We need then to control the length of γ. We have

Gp+(i+1)δ0/2([0,M ]) ≥ p0 .

Since 0 and nx belong to Cp0,M , then 0 and nx also belong to Cp+(i+1)δ0/2,M , the infinite cluster
made of edges e such that tGp+(i+1)δ0/2(e) ≤ M . Using lemma 2.3, we obtain that, with high
probability,

DCp+(i+1)δ0/2,M (0, nx) ≤ βn‖x‖1,

which implies further that
TGp+(i+1)δ0/2(γ) ≤Mβn‖x‖1 .

Since Gp+(i+1)δ0/2 belongs to Cp0,p1,M,ε0,δ, we have, with high probability,

|γ| ≤ M

C
βn‖x‖1 ,
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where C is the constant defined in proposition 5.1 corresponding to the class Cp0,p1,M,ε0,δ. As in
the Bernoulli case, we have, with high probability,∑

e∈γ

| shell(e)|1W (e)=0 ≤
δ0
2
M

C
A′(p0)βn‖x‖1 .

In the same way than in the Bernoulli case, we conclude that there exists a positive constant κ
that depends on p1, p0, ε0, M , δ and d such that

sup
x∈Sd−1

|µGp+iδ0/2(x)− µGp+(i+1)δ0/2(x)| ≤ κδ02 .

Therefore
k−1∑
i=0
|µGp+iδ0/2(x)− µGp+(i+1)δ0/2(x)| ≤ κ k δ02 .

The last step of the proof consists in controlling the quantity |µFq (x)− µGq−r (x)|. We use again
the same strategy. We introduce a specific coupling. To each edge e ∈ Ed, we associate three
random variables: a uniform random variable U(e) on [0, 1], two Bernoulli random variables V (e)
and W (e) of parameters q and r. We set

tFq (e) =
{
F−1(U(e)) if V (e) = 1
+∞ otherwise

and
tGq−r (e) =

{
G−1(U(e)) if V (e)W (e) = 1
+∞ otherwise.

We consider the geodesic γ between 0 and nx for the passage times (tFq (e))e∈Ed . For some edges
e ∈ γ, we have tGq−r (e) = ∞. We shall bypass these edges using only edges e ∈ Ed such that
tGq−r (e) ≤M . We build γ′′ as before. The main difference is that, for edges in γ′′∩γ, the passage
times for the distributions Fq and Gq−r do not coincide any more. For e ∈ γ′′ ∩ γ, we have

|tFq (e)− tGq−r (e)| =
∣∣F−1(U(e))−G−1(U(e))

∣∣ ≤ sup
t∈[0,1]

∣∣F−1(t)−G−1(t)
∣∣ .

Thus, we obtain

TGq−r (0, nx) ≤ TGq−r (γ′′) ≤ TGq−r (γ′′ ∩ γ) + TGq−r (γ′′ \ γ)

≤ TFq (γ) + |γ| sup
t∈[0,1]

|F−1(t)−G−1(t)|+ 12βN1M
∑
e∈γ

| shell(e)|1W (e)=0 ,

where the shells are made of (Gq−r([0,M ]), Fq([0,∞[))-good boxes. We can show as above that
there exists a positive constant κ′ depending on the parameters of the class C such that

sup
x∈Sd−1

(
µGq−r (x)− µFq (x)

)
≤ κ′

(
sup
t∈[0,1]

|F−1(t)−G−1(t)|+ r

)
.

To prove the converse inequality, we consider the geodesic π between 0 and nx for the law Gq−r.
Given the coupling, any edge in π has finite passage time for the law Fq. Therefore, we have

TFq (0, nx) ≤ TFq (π) ≤ TGq−r (π) + |π| sup
t∈[0,1]

|F−1(t)−G−1(t)| . (5.17)

We obtain the converse inequality and therefore

sup
x∈Sd−1

|µGq−r (x)− µFq (x)| ≤ κ′
(

sup
t∈[0,1]

|F−1(t)−G−1(t)|+ r

)
. (5.18)

Finally, combining inequalities (5.16) and (5.18), we get

sup
x∈Sd−1

|µFq (x)− µGp(x)| ≤ max(κ, κ′)
(
|q − p|+ sup

t∈[0,1]
|F−1(t)−G−1(t)|

)
.

This yields the result.
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Chapter 7

The maximal flow from a compact
convex subset to infinity in first
passage percolation on Zd

We consider the standard first passage percolation model on Zd with a distribution G on R+

that admits an exponential moment. We study the maximal flow between a compact convex subset
A of Rd and infinity. The study of maximal flow is associated with the study of sets of edges of
minimal capacity that cut A from infinity. We prove that the rescaled maximal flow between nA
and infinity φ(nA)/nd−1 almost surely converges towards a deterministic constant depending on
A. This constant corresponds to the capacity of the boundary ∂A of A and is the integral of a
deterministic function over ∂A. This result was shown in dimension 2 and conjectured for higher
dimensions by Garet in [38].
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1 Introduction
The model of first passage percolation was first introduced by Hammersley and Welsh [49] in

1965 as a model for the spread of a fluid in a porous medium. In this model, mathematicians
studied intensively geodesics, i.e., fastest paths between two points in the grid. The study of
maximal flows in first passage percolation started later in 1984 in dimension 2 with an article
of Grimmett and Kesten [45]. In 1987, Kesten studied maximal flows in dimension 3 in [52].
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The study of maximal flows is associated with the study of random cutsets that can be seen as
(d − 1)-dimensional surfaces. Their study presents more technical difficulties than the study of
geodesics. Thus, the interpretation of first passage percolation in terms of maximal flows has been
less studied.

To each edge in the graph Zd, we assign a random i.i.d. capacity with distribution G on
R+ that admits an exponential moment. We interpret this capacity as a rate of flow, i.e., it
corresponds to the maximal amount of water that can cross the edge per second. Let us consider
a compact convex subset A of Rd. We interpret the set A as a source of water. We are interested
in the maximal amount of water that can flow from the boundary ∂A of A to infinity per second.
This issue is in fact analogous to the study of the smallest capacity mincut(A,∞) over sets of
edges separating A from infinity. This issue was first studied in dimension 2 by Garet in [38], he
proved that the rescaled maximal flow between nA and infinity φ(nA)/n almost surely converges
towards an integral of a deterministic function ν over ∂A.

Several issues arise when we study this problem in higher dimensions. Garet proves his result
in [38] by proving separately upper and lower large deviations. Although the proof of the upper
large deviations may be adapted to higher dimensions, the proof of lower large deviations strongly
relies on combinatorial estimates that fail in higher dimensions. Moreover, in dimension 2, the
function ν is actually simpler to study. Thanks to the duality, it is related to the study of geodesics,
whereas in higher dimensions, we cannot avoid the study of random surfaces to define the function
ν. To get a better understanding of this deterministic function in higher dimensions, we first study
the maximal flow in a box. Let us consider a large box in Zd oriented along a given direction v.
Next, we consider the two opposite sides of the box normal to v that we call top and bottom. We
are interested in the maximal flow that can cross the box from its top to its bottom per second.
More precisely, we can ask if this maximal flow properly renormalized converges when the size of
the box grows to infinity. This question was addressed in [52], [62] and [73] where one can find
laws of large numbers and large deviation estimates for this maximal flow when the dimensions of
the box grow to infinity under some moments assumptions on the capacities and on the direction
v. The maximal flow properly renormalized converges towards the so-called flow constant ν(v).
In [64], Rossignol and Théret proved the same results without any moment assumption on G for
any direction v. Roughly speaking, the flow constant ν(v) corresponds to the expected maximal
amount of water that can flow per second in the direction of v. Let us consider a point x in
∂A with its associated normal unit exterior vector nA(x) and infinitesimal surface S(x) around x.
When we consider nA, an enlarged version of A, the surface S(x) becomes nS(x) and the expected
maximal amount of water that can flow in the box of basis nS(x) in the direction nA(x) is of order
nd−1ν(nA(x))CS where CS is a constant depending on the area of the surface. Heuristically, when
we sum over points in ∂A, we obtain that the maximal flow between nA and infinity φ(nA) is
roughly nd−1 times the integral of ν over ∂A. We define

I(A) =
∫
∂A

ν(nA(x))dHd−1(x) .

The quantity I(A) may be interpreted as the capacity of ∂A.
The aim of this paper is to prove the following theorem that was conjectured by Garet in [38].

Theorem 1.1. Let d ≥ 3. Let A be a compact convex subset of Rd. Let G be a probability measure
on [0,+∞[ such that G({0}) < 1 − pc(d). Let ν be the flow constant associated to G. For each
ε > 0, there exist positive constants C1 and C2 depending only on ε and G, such that for all n ≥ 0,

P
( ∣∣∣∣mincut(nA,∞)

nd−1 − I(A)
∣∣∣∣ ≥ ε) ≤ C1 exp(−C2n

d−1) .

As a corollary, mincut(nA,∞)/nd−1 converges in probability towards φA when n goes to
infinity. Roughly speaking, the rescaled maximal flow that can go from nA to infinity is limited
by the capacity of ∂A, or equivalently, the rescaled minimal capacity of a cutset between nA and
infinity is equal to the capacity of ∂A. In addition, we shall prove that there exists a minimal
cutset E between the set nA and infinity, i.e., such that the capacity of E is equal to φ(nA) and
E separates nA from infinity. This is far from obvious, but it is a natural consequence of Zhang’s
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result [73]. Indeed, for a fixed n, there may exist a sequence of sets (Ep)p∈N of growing size such
that Ep ⊂ Ed cuts A from infinity and

lim
p→∞

V (Ep) = mincut(nA,∞) .

There is no direct argument that allows to extract a sequence from (Ep)p∈N which would converge
to a cutset realizing the minimum. When we consider cutsets in a bounded region, the existence
of a cutset achieving the infimum becomes trivial as the number of possible cutsets is finite. We
define the edge boundary of A as

∂eA =
{
e = 〈x, y〉 ∈ Ed : x ∈ A ∩ Zd, y ∈ Zd \A

}
.

Theorem 1.2 (Existence of a minimal cutset and control of its size). Let A be a compact convex
subset of Rd containing the origin. Let G be a probability measure on [0,+∞[ such that G({0}) <
1− pc(d) and G admits an exponential moment.

1. With probability 1, there exists a minimal cutset from A to infinity in the original lattice
(Zd,Ed).

2. There exist constants β0, C1, C2 and λ depending only on d and G such that for any β > β0,
for any n ≥ λ|∂eA|,

P(All the minimal cutsets E are such that |E| ≥ βn) ≤ C1e
−C2βn .

We prove Theorem 1.1 by proving separately the upper large deviations above the constant
I(A) in Theorem 1.3 and the lower large deviations below the constant φA in Theorem 1.4. It will
be more convenient in the following to work in the graph (Zdn,Edn) having for vertices Zdn = Zd/n
and for edges Edn, the set of pairs of points of Zd at distance 1/n from each other. In this setting,
the set A remains fixed and the lattice shrinks. We denote by mincutn(A,∞), the minimal capacity
over sets of edges in Edn separating A from infinity.

Theorem 1.3 (Upper large deviations). Let A be a compact convex subset of Rd containing the
origin. Let G be a probability measure on [0,+∞[ such that G({0}) < 1− pc(d) and G admits an
exponential moment. For each λ > I(A), there exist positive constants C1 and C2 depending only
on λ, A and G, such that for all n ≥ 0,

P
(
mincutn(A,∞) ≥ λnd−1) ≤ C1 exp(−C2n

d−1) .

The proof of Theorem 1.3 is inspired by the proof of the enhanced large deviations upper bound
in [38] and the proof of the upper large deviations for the maximal flow through a domain of Rd
done in [22]. Roughly speaking, the idea is to build a cutset E from A to infinity whose capacity
is close to I(A)nd−1 and next to bound the probability that mincutn(A,∞) is abnormally big,
i.e., greater than I(A)nd−1, by the probability that the capacity of E is abnormally big. To do so,
we first approximate A from the outside by a convex polytope P . For each face F of P and v its
associated exterior unit normal vector, we consider the cylinder cyl(F + εv, ε) of basis F + εv and
of height ε > 0 and a cutset from the top to the bottom of the cylinder having minimal capacity.
We build E by merging the cutsets associated to all the faces of the polytope. The union of these
cutsets is not yet a cutset itself because of the potential holes between these cutsets. We fix this
issue by adding extra edges to fill the holes. We next control the number of extra edges we have
added. We also need to control the capacity of the cutsets in a cylinder of polyhedral basis to
obtain the desired control.

Theorem 1.4 (Lower large deviations). Let A be a compact convex subset of Rd. Let G be a
probability measure on [0,+∞[ such that G admits an exponential moment and G({0}) < 1−pc(d).
We define

φA = inf
{
I(S) : A ⊂ S and S is compact

}
.

For each λ < φA, there exist positive constants C1 and C2 depending only on λ, A, and G, such
that for all n ≥ 0,

P
(
mincutn(A,∞) ≤ λnd−1) ≤ C1 exp(−C2n

d−1) .
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To study the lower large deviations, we try to proceed as in the work of Cerf and Théret in
[25]. The idea is to create from a cutset E ⊂ Edn that cuts A from infinity a continuous subset
of Rd whose edge boundary (i.e., the edges that have one extremity in the continuous subset and
the other one outside) corresponds to the cutset E. As we can control the number of edges in
a minimal cutset thanks to the work of Zhang [73], we can consider a cutset from A to infinity
of minimal capacity and that has at most cnd−1 edges with high probability, for some positive
constant c. Thanks to this crucial result, the continuous set we build has a perimeter at most c.
In [25], as the two authors work in a compact region Ω, the continuous object they obtain live
in the compact space consisting of all subsets of Ω of perimeter less than or equal to c. In our
context, as our cutset E can go potentially very far from A, we cannot build from E a continuous
set that belongs to some compact space and therefore we cannot use the same method as in [25].
However, as the capacity of E is small, we expect it to remain close to the boundary of ∂A. We
should observe unlikely events just by inspecting what happens near the boundary of A. This will
enable us to study only the portion of the cutset E near ∂A and to define a continuous version
of this portion that belongs to a compact set. Starting from there, we can follow the strategy of
[25].

Finally, we prove in Proposition 1.5 that the two constants I(A) and φA appearing in Theorems
1.3 and 1.4 are equal. This yields the result stated in Theorem 1.1.
Proposition 1.5. Let A be a compact convex subset of Rd. The minimal capacity φA for the flow
from A to infinity is achieved by I(A), the capacity of the boundary of A, i.e.,

φA = inf
{
I(S), A ⊂ S and S is compact

}
= I(A) .

The rest of the paper is organized as follows. In section 2, we present the model. In section 3
and 4, we give all the necessary definitions and background. In section 5, we prove the upper large
deviations Theorem 1.3. We prove the existence of a minimal cutset Theorem 1.2 in section 6 and
the lower large deviations Theorem 1.4 in section 7. Finally, we conclude the proof of Theorem
1.1 by proving Proposition 1.5 in section 8.

2 The model
2.1 The environment

Let n ≥ 1 be an integer. We consider the graph (Zdn,Edn) having for vertices Zdn = Zd/n and
for edges Edn, the set of pairs of points of Zd at distance 1/n from each other. We use the subscript
n to emphasize the dependence on the lattice (Zdn,Edn). With each edge e ∈ Edn we associate
a random variable t(e) with value in R+. The family (t(e))e∈Edn is independent and identically
distributed with a common law G. Throughout the paper, we work with a distribution G on R+

satisfying the following hypothesis.
Hypothesis. The distribution G is such that G({0}) < 1 − pc(d) and G admits an exponential
moment, i.e., there exists θ > 0 such that∫

R+
exp(θx)dG(x) < +∞ .

2.2 Maximal flow
For x = (x1, . . . , xd), we define

‖x‖2 =

√√√√ d∑
i=1

x2
i .

We denote by · the standard scalar product in Rd. A stream is a function f : Edn → Rd such that
the vector f(e) is colinear with the geometric segment associated with e. For e ∈ Edn, ‖f(e)‖2
represents the amount of water that flows through e per second and f(e)/(n‖f(e)‖2) represents
the direction in which the water flows through e. Let A be a compact convex subset of Rd. We
say that a stream f between A and infinity is admissible if and only if it satisfies the following
constraints.
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· The node law : for every vertex x in Zdn \A, we have∑
y∈Zdn: e=〈x,y〉∈Edn

f(e) · −→xy = 0 .

· The capacity constraint: for every edge e ∈ Edn, we have

0 ≤ ‖f(e)‖2 ≤ t(e) .

The node law expresses that there is no loss or creation of fluid outside A. The capacity constraint
imposes that the amount of water that flows through an edge e per second is limited by its capacity
t(e). As the capacities are random, the set of admissible streams between A and infinity is also
random. For each admissible stream f , we define its flow in the lattice (Zdn,Edn) by

flow(f) =
∑

x∈A∩Zdn

∑
y∈Zd: e=〈x,y〉∈Edn

f(e) · −→xy .

This corresponds to the amount of water that enters in Rd \ A through ∂A per second for the
stream f . The maximal flow between A and infinity for the capacities (t(e))e∈Edn , denoted by
φn(A→∞), is the supremum of the flows of all admissible streams between A and infinity:

φn(A→∞) = sup
{

flow(f) : f is an admissible stream between
A and infinity in the lattice (Zdn,Edn)

}
.

2.3 The max-flow min-cut theorem
Dealing with admissible streams is not so easy, however we can use an alternative interpretation

of the maximal flow which is more convenient. Let E ⊂ Edn be a set of edges. We say that E
separates A from infinity (or is a cutset, for short), if every path from A to infinity goes through
an edge in E. We associate with any set of edges E its capacity V (E) defined by

V (E) =
∑
e∈E

t(e) .

The max-flow min-cut theorem, a classical result of graph theory [16], states that

φn(A→∞) = inf
{
V (E) : E separates A from infinity in (Zdn,Edn)

}
.

We recall that mincutn(A,∞) is the infimum of the capacities of all cutsets from A to infinity
in the lattice (Zdn,Edn). Note that it is not even obvious whether this infimum is attained. This
theorem originally concerns finite graphs but it can be extended to infinite graphs (see for instance
section 6.1. in [38]). We extend the notation φn to any connected subgraph G ⊂ Zdn and G1, G2
disjoint subsets of G:

φn(G1 → G2 in G) = inf
{
V (E) : E separates G1 from G2 in G

}
.

3 Some notations and useful results
3.1 Geometric notations

Let S ⊂ Rd. We define the distance between a point and S by

∀x ∈ Rd d2(x, S) = inf
y∈S
‖x− y‖2

and for r > 0, we define the open r-neighborhood V(S, r) of S by

V(S, r) =
{
x ∈ Rd : d2(x, S) < r

}
.
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Let x ∈ Rd, r > 0 and a unit vector v. We denote by B(x, r) the closed ball of radius r centered
at x, by disc(x, r, v) the closed disc centered at x of radius r normal to v, and by B+(x, r, v)
(respectively B−(x, r, v)) the upper (resp. lower) half part of B(x, r) along the direction of v, i.e.,

B+(x, r, v) =
{
y ∈ B(x, r) : (y − x) · v ≥ 0

}
,

and
B−(x, r, v) =

{
y ∈ B(x, r) : (y − x) · v ≤ 0

}
.

We denote by Ld the d-dimensional Lebesgue measure. We denote by αd the Ld measure of a
unit ball in Rd. We denote by Hd−1 the Hausdorff measure of dimension d− 1. In particular, the
Hd−1 measure of a d− 1 dimensional unit disc in Rd is equal to αd−1. Let A be a non-degenerate
hyperrectangle, i.e., A is included in an hyperplane of Rd and of codimension 1. Let −→v be one of
the two unit vectors normal to A. Let h > 0, we denote by cyl(A, h) the cylinder of basis A and
height h defined by

cyl(A, h) =
{
x+ t−→v : x ∈ A, t ∈ [−h, h]

}
.

The dependence on −→v is implicit in the notation cyl(A, h). We also define the infinite cylinder of
basis A in a direction −→u (not necessarily normal to A):

cyl(A,−→u ,∞) =
{
x+ t−→u : x ∈ A, t ≥ 0

}
.

Note that these definitions of cylinder may be extended in the case where A is a set of linear
dimension d− 1, i.e., A is included in an hyperplane of Rd, which is the affine span of A.

3.2 Sets of finite perimeter and surface energy
The perimeter of a Borel set S of Rd in an open set O is defined as

P(S,O) = sup
{∫

S

div f(x)dLd(x) : f ∈ C∞c (O,B(0, 1))
}

where C∞c (O,B(0, 1)) is the set of the functions of class C∞ from Rd to B(0, 1) having a compact
support included in O, and div is the usual divergence operator. The perimeter P(S) of S is
defined as P(S,Rd). The topological boundary of S is denoted by ∂S. The reduced boundary ∂∗S
of S is a subset of ∂S such that, at each point x of ∂∗S, it is possible to define a normal vector
nS(x) to S in a measure-theoretic sense, and moreover P(S) = Hd−1(∂∗S). We denote by ν the
flow constant that is a function from the unit sphere Sd−1 of Rd to R+ as defined in [64]. We
denote by νmax and νmin its maximal and minimal values on the sphere. The flow constant ν(v)
corresponds to the expected maximal amount of water that can flow per second in the direction
of v. A more rigorous definition will be given later. We can define the associated Wulff crystal
Wν :

Wν =
{
x ∈ Rd : ∀y, y · x ≤ ν(y)

}
.

The homogeneous extension of ν is convex (we refer to proposition 4.2 for a precise statement).
As a consequence, we have the following proposition.

Proposition 3.1 (Proposition 14.1 in [19]). The function ν is the support function of its Wulff
crystal Wν , that is,

∀v ∈ Sd−1 ν(v) = sup{x · v : x ∈ Wν} .

With the help of the Wulff crystal, we can define the surface energy of a general set.

Definition 3.2. The surface energy I(S,O) of a Borel set S of Rd in an open set O is defined as

I(S,O) = sup
{∫

S

div f(x)dLd(x) : f ∈ C1
c (O,Wν)

}
.

We will note simply I(S) = I(S,Rd).



3. SOME NOTATIONS AND USEFUL RESULTS 167

Proposition 3.3 (Proposition 14.3 in [19]). The surface energy I(S,O) of a Borel set S of Rd of
finite perimeter in an open set O is equal to

I(S,O) =
∫
∂∗S∩O

ν(nS(x))dHd−1(x) .

We recall the two following fundamental results.

Proposition 3.4 (Isoperimetric inequality). There exist two positive constants biso, ciso which
depend only on the dimension d, such that, for any Cacciopoli set E, any ball B(x, r) ⊂ Rd,

min
(
Ld(E ∩B(x, r)),Ld((Rd \ E) ∩B(x, r))

)
≤ bisoP(E, B̊(x, r))d/d−1,

min
(
Ld(E),Ld(Rd \ E)

)
≤ cisoP(E)d/d−1

where for X ⊂ Rd, X̊ denotes the interior of the set X.

Theorem 3.5 (Gauss-Green theorem). For any compactly supported C1 vector field f from Rd to
Rd, any Caccioppoli set E,∫

E

div f(x)dLd(x) =
∫
∂∗E

f(x) · nE(x)dHd−1(x) .

3.3 Approximation by convex polytopes
We recall here an important result, which allows to approximate adequately a set of finite

perimeter by a convex polytope.

Definition 3.6 (Convex polytope). We say that a subset P of Rd is a convex polytope if there
exist v1, . . . , vm unit vectors and ϕ1, . . . , ϕm real numbers such that

P =
⋂

1≤i≤m

{
x ∈ Rd : x · vi ≤ ϕi

}
.

We denote by Fi the face of P associated with vi, i.e.,

Fi = P ∩
{
x ∈ Rd : x · vi = ϕi

}
.

Any compact convex subset of Rd can be approximated from the outside and from the inside
by a convex polytope with almost the same surface energy.

Lemma 3.7. Let A be a bounded convex set in Rd. For each ε > 0, there exist convex polytopes
P and Q such that P ⊂ A ⊂ Q and

I(Q)− ε ≤ I(A) ≤ I(P ) + ε.

Proof. Let A be a bounded convex set in Rd. Let ε > 0. Let (xk)k≥1 be a dense family in ∂A. For
n ≥ 1, we define Pn as the convex hull of x1, . . . , xn, i.e., the smallest convex set that contains
the points x1, . . . , xn. As A is convex, we have Pn ⊂ A and Pn converges towards A when n goes
to infinity for the L1 topology. The functional I is lower semi-continuous, thus

I(A) ≤ lim inf
n→∞

I(Pn) ,

so there exists n large enough such that

I(A) ≤ I(Pn) + ε

and we take P = Pn. The existence of Q was shown by Cerf and Pisztora in Lemma 5.1 in [21]
for the Wulff shape. The proof may be easily adapted to a general convex bounded set A. The
proof of Lemma 5.1 only uses the fact that the function ν is continuous and that the set A is
convex.
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4 Background on maximal flow
We now consider two specific maximal flows through a cylinder for first passage percolation on

Zdn where the law of capacities is given by the distribution G. We are interested in the cutsets in a
cylinder. Let us first define the maximal flow from the top to the bottom of a cylinder. Let A be a
non-degenerate hyperrectangle and let −→v be one of the two unit vectors normal to A. Let h ≥ 0.
In order to define the flow from the top to the bottom, we have to define discretized versions of
the bottom Bn(A, h) and the top Tn(A, h) of the cylinder cyl(A, h) in the lattice (Zdn,Edn). We
define

Bn(A, h) :=
{
x ∈ Zdn ∩ cyl(A, h) : ∃y /∈ cyl(A, h), 〈x, y〉 ∈ Edn

and 〈x, y〉 intersects A− h−→v

}
and

Tn(A, h) :=
{
x ∈ Zdn ∩ cyl(A, h) : ∃y /∈ cyl(A, h), 〈x, y〉 ∈ Edn

and 〈x, y〉 intersects A+ h−→v

}
.

We denote by φn(A, h) the maximal flow from the top to the bottom of the cylinder cyl(A, h) in
the direction −→v in the lattice (Zdn,Edn), defined by

φn(A, h) = φn

(
Tn(A, h)→ Bn(A, h) in cyl(A, h)

)
.

This definition of the flow is not well suited to subadditive arguments, because we cannot glue
together two cutsets from the top to the bottom of two adjacent cylinders in order to get a
cutset from the top to the bottom of the union of these two cylinders. The reason is that the
trace of a cutset from the top to the bottom of a cylinder on the boundary of the cylinder is
totally free. We go around this problem by introducing another flow through the cylinder which is
genuinely subadditive. The set cyl(A, h) \A has two connected components, denoted by C1(A, h)
and C2(A, h). We define discretized versions of the boundaries of these two sets in the lattice
(Zdn,Edn). For i = 1, 2, we define

C ′i,n(A, h) =
{
x ∈ Zdn ∩ Ci(A, h) : ∃y /∈ cyl(A, h), 〈x, y〉 ∈ Edn

}
.

We call informally C ′i,n(A, h), i = 1, 2, the upper and lower half part of the boundary of cyl(A, h).
We denote by τn(A, h) the maximal flow from the upper half part to the lower half part of the
boundary of the cylinder, i.e.,

τn(A, h) = φn

(
C ′1,n(A, h)→ C ′2,n(A, h) in cyl(A, h)

)
.

By the max-flow min-cut theorem, the maximal flow τn(A, h) is equal to the minimal capacity of
a set of edges E ⊂ Edn that cuts C ′1,n(A, h) from C ′2,n(A, h) inside the cylinder cyl(A, h). We have
the following law of large number.
Theorem 4.1 (Rossignol-Théret [62]). Let G be an integrable probability measure on R+. For
any v ∈ Sd−1, there exists a constant ν(v) ∈ R+ such that for any non-degenerate hyperrectangle
A normal to −→v , for any h > 0, we have

lim
n→∞

τn(A, h)
Hd−1(A)nd−1 = ν(v) in L1.

The constant ν(v) is the so-called flow constant in the direction v. The flow constant ν satisfies
a weak triangle inequality see proposition 3.4. in [64].
Proposition 4.2 (Weak triangle inequality for ν). Let (ABC) be a non-degenerate triangle in Rd
and let vA, vB , vC be the exterior normal unit vectors to the sides [BC], [AC], [AB] in the plane
spanned by A,B,C. Then,

H1([BC])ν(vA) ≤ H1([AC])ν(vB) +H1([AB])ν(vC) .

The homogeneous extension ν0 of ν to Rd defined by ν0(0) = 0 and

∀w ∈ Rd \ {0} ν0(w) = ‖w‖2ν
(

w

‖w‖2

)
is a convex function.
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We will need the following upper large deviation result.

Theorem 4.3 (Upper large deviations of the maximal flow in a cylinder). Let G be a probability
measure on [0,+∞[ such that G({0}) < 1−pc(d) and G admits an exponential moment, i.e., there
exists θ > 0 such that

∫
R+ exp(θx)dG(x) < +∞. For every unit vector v, for every non-degenerate

hyperrectangle A normal to v, for every h > 0 and for every λ > ν(v), there exist positive real
numbers C1 and C2 depending only on λ and G, such that, for all n ≥ 1,

P
(
τn(A, h) ≥ λHd−1(A)nd−1) ≤ C1 exp(−C2n

d−1) .

This theorem may be proven by adapting the arguments in the proof of Theorem 3 in [68]. To
ease the reading, constants may change from appearance to appearance.

5 Upper large deviations

The goal of this section is to prove Theorem 1.3.

5.1 The case of a cylinder

In this section, we will use Theorem 4.3 which is the main probabilistic estimate needed to
prove Theorem 1.3. A convex polytope of dimension d − 1 is a convex polytope F which is
contained in an hyperplane of Rd and such that Hd−1(F ) > 0. We have the following Lemma.

Lemma 5.1. Let F be a convex polytope of dimension d− 1. Let v be a unit vector normal to F .
Let h > 0. Let λ > ν(v)Hd−1(F ). There exist positive real numbers C1 and C2 depending on F ,
G, λ and d such that, for all n ≥ 1

P(τn(F, h) ≥ λnd−1) ≤ C1 exp(−C2n
d−1)

Proof. Let F be a convex polytope of dimension d− 1 and v a unit vector normal to F . We shall
cover F by a finite family of hypersquares and control the probability that the flow is abnormally
big in cyl(F, h) by the probability that the flow is abnormally big in one of the cylinders of square
basis. Let λ > ν(v)Hd−1(F ). Let κ > 0 be a real number that we will choose later. We denote
by S(κ) an hypersquare of dimension d− 1 of side length κ and normal to v. We shall cover the
following subset of F by hypersquares isometric to S(κ):

D(κ, F ) =
{
x ∈ F : d(x, ∂F ) > 2

√
dκ
}
.

There exists a finite family (Si)i∈I of subsets of F , which are translates of S(κ) having pairwise
disjoint interiors and such that D(κ, F ) ⊂ ∪i∈ISi (see figure 7.1). Moreover, we have

|I| ≤ Hd−1(F )
Hd−1(S(κ)) (5.1)

and there exists a constant cd depending only on the dimension such as

Hd−1(F \D(κ, F )
)
≤ cdHd−2(∂F )κ .
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SiF

D(κ, F )

An hypersquare of
side length κ

Figure 7.1 – Covering P with hypersquares

Let h > 0. We want to build a cutset between C ′1(F, h) and C ′2(F, h) out of minimal cutsets
for the flows τn(Si, h), i ∈ I. Note that a cutset that achieves the infimum defining τn(Si, h) is
anchored near the boundary ∂Si. However, if we pick up two hypersquares Si and Sj that share a
common side, their corresponding minimal cutsets for the flow τn do not necessarily have the same
trace on the common face of the associated cylinders cyl(Si, h) and cyl(Sj , h). We shall fix this
problem by adding extra edges in order to glue properly the cutsets. Due to the discretization, we
will need also to add extra edges around the boundaries of the hypersquares ∂Si and in the region
F \ D(κ, F ) in order to build a cutset. For i ∈ I, let Ei be a minimal cutset for τn(Si, h), i.e.,
Ei ⊂ Edn separates C ′1(Si, h) from C ′2(Si, h) in cyl(Si, h) and V (Ei) = τn(Si, h). We fix ζ = 4d/n.
Let E0 be the set of the edges of Edn included in E0, where we define

E0 =
{
x ∈ Rd : d(x, F \ ∪i∈ISi) ≤ ζ

}
∪
⋃
i∈I

{
x ∈ Rd : d(x, ∂Si) ≤ ζ

}
.

The set of edges E0 ∪
⋃
i∈I Ei separates C ′1(F, h) from C ′2(F, h) in cyl(F, h) therefore

τn(F, h) ≤ V (E0) +
∑
i∈I

V (Ei) = V (E0) +
∑
i∈I

τn(Si, h) . (5.2)

There exists a constant c′d depending only on d such that:

|E0| ≤ c′d
(
κnd−1Hd−2(∂F ) + |I|Hd−2(∂S(κ))nd−2) .

Using (5.1), we obtain

|E0| ≤ c′d
(
κnd−1Hd−2(∂F ) + Hd−1(F )

Hd−1(S(κ))H
d−2(∂S(κ))nd−2

)
≤ c′d

(
κnd−1Hd−2(∂F ) + 2dH

d−1(F )
κ

nd−2
)
.

Thus, for n large enough,

|E0| ≤ 2c′d κHd−2(∂F )nd−1 . (5.3)
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There exists s > 0 such that λ > (1 + s)ν(v)Hd−1(F ). Thanks to inequality (5.2), we obtain

P(τn(F, h) ≥ λnd−1) ≤ P

(
V (E0) +

∑
i∈I

τn(Si, h) ≥ (1 + s)ν(v)Hd−1(F )nd−1

)
≤
∑
i∈I

P(τn(Si, h) ≥ (1 + s/2)ν(v)Hd−1(Si)nd−1)

+ P
(
V (E0) ≥ s

2ν(v)nd−1Hd−1(F )
)

≤
∑
i∈I

P(τn(Si, h) ≥ (1 + s/2)ν(v)Hd−1(Si)nd−1)

+ P

2c′dκH
d−2(∂F )nd−1∑
i=1

ti ≥
s

2ν(v)nd−1Hd−1(F )

 , (5.4)

where (ti)i∈N is a family of i.i.d. random variables of common probability distribution G. We use
inequality (5.3) in the last inequality. We can choose κ small enough so that

2c′dκHd−2(∂F )E(ti) < sνminHd−1(F )/2 .

Moreover, as G admits an exponential moment, the Cramér theorem in R gives the existence of
positive constants D and D′ depending on G, F , s and d such that, for any n ≥ 1,

P

2c′dκH
d−2(∂F )nd−1∑
i=1

ti ≥
s

2ν(v)nd−1Hd−1(F )

 ≤ D exp(−D′nd−1) . (5.5)

Thanks to Theorem 4.3, there exist positive real numbers C1, C2 depending on s such that for
i ∈ I, for any n ≥ 1,

P(τn(Si, h) ≥ (1 + s/2)ν(v)Hd−1(Si)nd−1) ≤ C1 exp(−C2n
d−1). (5.6)

By combining inequalities (5.4) and (5.5) and (5.6), we obtain

P(τn(F, h) ≥ λnd−1) ≤ D exp(−D′nd−1) + |I|C1 exp(−C2n
d−1) ,

and the result follows.

5.2 Proof of theorem 1.3
Let A be a compact convex subset of Rd. Let λ > I(A) and let s > 0 be such that λ >

(1 + s)I(A). By Lemma 3.7, there exists a convex polytope P such that A ⊂ P and

(1 + s)I(A) ≥ (1 + s/2)I(P ) . (5.7)

Let us denote by F1, . . . , Fm the faces of P and let v1, . . . , vm be the associated exterior unit
vectors. Let ε > 0. For i ∈ {1, . . . ,m}, we define Ci = cyl(Fi + εvi, ε). The sets Ci, 1 ≤ i ≤ m,
have pairwise disjoint interiors. Indeed, assume that there exists z ∈ C̊i ∩ C̊j for some i 6= j.
Then there exist unique x ∈ Fi, y ∈ Fj and h, h′ < 2ε such that z = x+ hvi = y + h′vj . In fact,
the point x (respectively y) is the orthogonal projection of z on the face Fi (resp. Fj). As P is
convex, the orthogonal projection of z on P is unique so x = y and x ∈ Fi ∩ Fj . In particular,
the point x is in the boundary of Fi. This contradicts the fact that z belongs to the interior of
Ci. We aim now to build a cutset that cuts P from infinity out of cutsets of minimal capacities
for τn(Fi + εvi, ε), i ∈ {1, . . . ,m}. The union of these cutsets is not enough to form a cutset from
P to infinity because there might be holes between these cutsets. For i ∈ {1, . . . ,m}, a minimal
cutset for τn(Fi + εvi, ε) is pinned around the boundary of ∂(Fi + εvi). We need to add bridges
around ∂(Fi + εvi) to close the potential holes between these cutsets (see figure 7.2). As the
distance between two adjacent ∂(Fi + εvi) decreases with ε, by taking ε small enough, the size
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of the bridges and so their capacities is not too big and may be adequately controlled. Next, we
shall control the maximal flow through the cylinders or equivalently the capacity of the minimal
cutsets in the cylinders thanks to Lemma 5.1.

For i ∈ {1, . . . ,m}, let E′i ⊂ Edn be a minimal cutset for τn(Ci, ε), i.e., E′i cuts C ′1(Fi, ε) from
C ′2(Fi, ε) and V (E′i) = τn(Fi + εvi, ε). We shall add edges to control the space between E′i and
the boundary ∂(Fi + εvi). Let i, j ∈ {1, . . . ,m} such that Fi and Fj share a common side. We
denote byM(i, j):

M(i, j) = V(Fi ∩ Fj , ε+ ζ) \ V(A, ε− ζ) .

A

P

2ε

M(i, j)

a face Fi a face Fj

the dual of a minimal
cutset for
τG,n(Fj + εvj , ε, vj)

Figure 7.2 – Construction of a cutset from P to infinity

Let Mi,j denote the set of the edges in Edn included in M(i, j) (see figure 7.2). There exists a
constant c′d depending only on the dimension d such that, for all i, j ∈ {1, . . . ,m} such that Fi
and Fj share a common side,

|Mi,j | ≤ cdεd−1nd−1 .

We set
M =

⋃
i,j

Mi,j ,

where the union is over i, j ∈ {1, . . . ,m} such that Fi and Fj share a common side. The set
M ∪ (

⋃m
i=1E

′
i) cuts P from infinity, therefore

mincutn(P,∞) ≤ V (M) +
m∑
i=1

V (E′i) = V (M) +
m∑
i=1

τn(Fi + εvi, ε) . (5.8)

As P is a polytope,

I(P ) =
m∑
i=1

ν(vi)Hd−1(Fi) ,
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and as A ⊂ P , we have mincutn(A,∞) ≤ mincutn(P,∞). Then, using inequalities (5.7) and (5.8),
we obtain

P
(
mincutn(A,∞) ≥ λnd−1) ≤ P

(
mincutn(A,∞) ≥ (1 + s)nd−1I(A)

)
≤ P

(
mincutn(P,∞) ≥ (1 + s/2)nd−1I(P )

)
≤ P

(
V (M) +

m∑
i=1

τn(Fi + εvi, ε) ≥ (1 + s/2)nd−1I(P )
)

≤ P(V (M) > sI(P )nd−1/4)

+
m∑
i=1

P
(
τn(Fi + εvi, ε) ≥ (1 + s/4)nd−1I(Fi)ν(vi)

)
. (5.9)

Moreover, we have

P
(
V (M) > sI(P )nd−1/4

)
≤ P

cdm
2εd−1nd−1∑
i=1

ti ≥ sI(P )nd−1/4

 , (5.10)

where (ti)i∈N is a family of i.i.d. random variables of common probability distribution G. We
choose ε small enough so that

cdm
2εd−1E(ti) < sI(P )/4 .

Since G admits an exponential moment, then the Cramér theorem in R gives the existence of
positive constants D and D′ depending on G, P , s and d such that

P

cdm
2εd−1nd−1∑
i=1

ti ≥ sI(P )/2nd−1

 ≤ D exp(−D′nd−1) . (5.11)

By Lemma 5.1, there exist positive real numbers C1 and C2 depending on P , s, G and d such that
for all i ∈ {1, . . . ,m},

P
(
τn(Fi + εvi, ε) ≥ (1 + s/4)nd−1I(Fi)ν(vi)

)
≤ C1 exp(−C2n

d−1) . (5.12)

We conclude by combining inequalities (5.9), (5.10), (5.11) and (5.12) that

P(mincutn(A,∞) ≥ λnd−1) ≤ D exp(−D′nd−1) +mC1 exp(C2n
d−1) .

This yields the desired conclusion.

6 Existence of a minimal cutset
In this section, we recall the fundamental result of Zhang which enables to control the cardi-

nality of one specific cutset. We use this opportunity to point out an important fact, namely we
prove in addition that there exists a minimal cutset E between a convex A and infinity. We here
prove Theorem 1.2 using the work of Zhang [73].

Throughout the proof we work on the lattice (Zd,Ed). Let A be a convex compact subset
of Rd. As any path from A to infinity has to go through an edge of ∂eA, the set ∂eA cuts A
from infinity and mincut(A,∞) ≤ V (∂eA). Let E be a cutset between A and infinity such that
V (E) ≤ V (∂eA). We want to control the probability that E has too many edges. To do that we
distinguish three types of edges that we will handle differently. Let ε be a positive constant that
we will adjust later. We define:
• The ε+ edges are the edges e ∈ E such that t(e) > ε. We denote by N+(E) the number

of ε+ edges in E. We can control N+(E) thanks to the fact that V (E) ≤ V (∂eA) and so
εN+(E) ≤ V (∂eA).
• The ε− edges that are the edges e ∈ E such that 0 < t(e) ≤ ε. We denote by N−(E) the

number of ε− edges in E. As the probability of being an ε− edge goes to 0 when ε goes to 0, we
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can choose ε so that, with high probability, N−(E) does not exceed a certain proportion of |E|,
the number of edges in E.
• The closed edges or zero edges that are the edges of null passage times. Once we have

controlled the number of ε+ and ε− edges, the size of E cannot be too big otherwise the number
of closed edges, would be also big and this would mean that there exist large surfaces of closed
edges which is an unlikely event when G({0}) < 1− pc(d).

We start now with these estimates. Let n ≥ 1. Let E be a cutset from A to infinity such that
V (E) ≤ V (∂eA) and |E| = n. We start by controlling the ε+ edges by controlling the capacity of
∂eA:

P
(
∃E ⊂ Ed, E cuts A from infinity, V (E) ≤ V (∂eA) and |E| = n

)
≤ P

(
∃E ⊂ Ed, E cuts A from infinity, V (E) ≤ ε2n and |E| = n

)
+ P

(
V (∂eA) ≥ ε2n

)
≤ P

(
∃E ⊂ Ed, E cuts A from infinity, N+(E) ≤ εn and |E| = n

)
+ P

(
V (∂eA) ≥ ε2n

)
.

(6.1)

As G admits an exponential moment, we obtain

P
(
V (∂eA) ≥ ε2n

)
= P

(
θV (∂eA) ≥ θε2n

)
≤ exp(−θε2n)E(exp(θV (∂eA)))

= exp(−θε2n)
(∫

R+
exp(θx)dG(x)

)|∂eA|
. (6.2)

We take
λ = 2 ln

(∫
R+

exp(θx)dG(x)
)
/θε2 .

For n > λ|∂eA|, we have, using (6.2),

P
(
V (∂eA) ≥ ε2n

)
≤ exp

(
−1

2θε
2n

)
. (6.3)

Combining inequalities (6.1) and (6.3), we get

P
(
∃E ⊂ Ed, E cuts A from infinity, V (E) ≤ V (∂eA) and |E| = n

)
≤ P

(
∃E ⊂ Ed, E cuts A from infinity, N+(E) ≤ εn and |E| = n

)
+ exp

(
−1

2θε
2n

)
.

(6.4)

We control next the number of ε− edges. We define δ1 = δ1(ε) = G(]0, ε]) the probability that an
edge e is an ε− edge. The probability δ1(ε) goes to 0 when ε goes to 0. We bound the number
of cutsets of size n with the help of combinatorial arguments. As in the original proof of Zhang,
we fix a vertex belonging to an edge of E. Since E is a cutset, then at least one edge of E has
an extremity on the vertical line L = { (0, . . . , 0, xd), xd ∈ R }. Moreover, the set E is finite. Let
z = (0, . . . , 0, xd) be the highest vertex of L belonging to an extremity of an edge of E. Since
|E| ≤ n, then certainly xd ≤ n. We denote by Ê the set of the vertices of Zd that are connected
to a vertex in A without using an edge in E, i.e.,

Ê =
{
x ∈ Zd : there exists a path from x to A which

does not go through an edge in E

}
We denote by ∂vÊ the exterior vertex boundary of Ê, defined as

∂vÊ =
{
x ∈ Zd \ Ê : x has a neighbour in Ê and there exists

a path from x to infinity in Rd \ Ê

}
.
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This set is the analogue of ∂eẐ(k,m) in [73]. By Lemma 10 in [73], the set ∂vÊ is Zd connected,
it contains z and moreover

|∂vÊ| ≤ 3d+1n .

Once the vertex z is fixed, the set ∂vÊ is a Zd connected set and we can apply the bound (4.24)
in [47], there are at most 7d3d+1n possible choices for ∂vÊ. We recall that each vertex has at most
2d adjacent edges. Once the set ∂vÊ is fixed, we bound the number of possible choices for the set
E by

3d+1n∑
k=1

(
3d+1n

k

)
(2d)k ≤ (2d+ 1)3d+1n .

Let D be a positive constant that will be adjusted later. By summing on the coordinate xd of z,
on the choice of ∂vE and E, we have

P(∃E ⊂ Ed, E cuts A from infinity, N−(E) ≥ −(D/ ln δ1)|E| and |E| = n)

≤
n∑
i=0

P
(

∃E ⊂ Ed, E cuts A from infinity,
N−(E) ≥ −(D/ ln δ1)n, xd = i and |E| = n

)
≤ n7d3d+1n(2d+ 1)3d+1n max

Γ
P
(
|Γ| = n, N−(Γ) ≥ −Dn/ ln δ1

)
, (6.5)

where the maximum is over all the cutsets Γ from A to infinity with n edges. For δ1 small enough
and D large enough, depending only on the dimension d, we have

P
(
|Γ| = n, N−(Γ) ≥ −Dn/ ln δ1

)
≤ 2 exp(−Dn/2) . (6.6)

We refer to the proof of Theorem 1 in [73] for the proof of this result. Thus, by taking δ1 small
enough and D large enough and combining (6.5) and (6.6), there exist two constants C1 and C2
depending only on G, d and δ1 such that

P(∃E ⊂ Ed, E cuts A from infinity, N−(E) ≥ −(D/ ln δ1)|E| and |E| = n) ≤ C1 exp(−C2n) .
(6.7)

Finally, combining inequalities (6.4) and (6.7), we obtain

P(∃E ⊂ Ed, E cuts A from infinity, V (E) ≤ V (∂eA) and |E| = n)

≤ P
(
∃E ⊂ Ed, E cuts A from infinity, |E| = n,
N+(E) ≤ εn and N−(E) ≤ −(Dn)/ ln δ1

)
+ C1 exp(−C2n) + exp

(
−1

2θε
2n

)
.

(6.8)

We have controlled the numbers of ε+ edges and ε− edges in the cut. We have now to control the
number of closed edges in the cut. We denote by J the number of edges in E of positive capacities.
On the event {

|E| = n, N+(E) ≤ εn, N−(E) ≤ −(Dn)/ ln δ1
}
,

we have

J ≤ N+(E) +N−(E) ≤ (ε−D/ ln δ1)n . (6.9)

Thanks to inequalities (6.8) and (6.9), we obtain for n ≥ λ|∂eA|,

P
(
∃E ⊂ Ed, E cuts A from infinity, V (E) ≤ V (∂eA) and |E| = n

)
≤ P

(
∃E ⊂ Ed, E cuts A from infinity, |E| = n and J ≤ (ε−D/ ln δ1)n

)
+ C1 exp(−C2n) + exp

(
−1

2θε
2n

)
.

The remaining of the proof consists in controlling the zero edges. We will not write the details
but only sketch the main ideas of the control. We say that an edge is closed if it has null
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capacity, otherwise we say that the edge is open. Let us consider the set C(A) that contains all
the vertices that are connected to A by an open path. On the event that there exists a cutset
of null capacity that cuts A to infinity, the set C(A) is finite and its edge boundary ∂eC(A) is
a cutset of null capacity. However, this cutset may be very tangled and may contain too many
edges. From this cutset, we want to build a "smoother" cutset, which has smaller cardinality. We
use a renormalization procedure at a scale t (which is defined later), and we exhibit a set of boxes
Γt that contains a cutset of null capacity and such that each box of Γt has at least one ∗-neighbor
in which an atypical event occurs (an event of probability that goes to 0 when t goes to infinity).
As these events are atypical, it is unlikely that Γt contains too many boxes.

As we are in a supercritical Bernoulli percolation, i.e., G({0}) < 1−pc(d), it is very unlikely that
a cutset from A to infinity has null capacity and that C(A) is finite. To achieve the construction
of Γt, we modify the configuration ω. We first choose ε small enough such that

J ≤ (ε−D/ ln δ1)n ≤ n

(2(36dt))3d .

For the edges e1, . . . , eJ in E such that t(ei) > 0, we modify ω by setting t(ei) = 0 for i ∈ {1, . . . , J}.
This modification of ω is only formal, it is a trick to build Γt. Later we will switch back the
capacities to their original values, the boxes of Γt that does not contain any e1, . . . , eJ remain
unchanged, yet atypical events still occur in the vicinity of these boxes. The number of boxes in
Γt that have changed when we switch back to the configuration ω is bounded by the number of
edges J that we have closed. We obtain an upper bound on |Γt| with the help of Peirls estimates
on the number of boxes where an atypical event occurs. We finally control the probability that
there exists a cutset of size n with J ≤ n/(2(36dt))3d. These tricky computations are detailed
in Zhang’s paper [73], so we do not reproduce them here. In the end, we obtain the following
estimate: there exist constants C ′1 and C ′2 depending on ε, A and G such that

P
(
∃E ⊂ Ed, E cuts A from infinity,
V (E) ≤ V (∂eA) and |E| = n

)
≤ C ′1 exp(−C ′2n) .

By the Borel-Cantelli Lemma, we conclude that, for n large enough, there does not exist any
cutset E from A to infinity of size larger than n and such that V (E) ≤ V (∂eA). Thus, there exists
almost surely a minimal cutset from A to infinity and for n ≥ λ|∂eA|,

P(∃E ⊂ Ed, E is a minimal cutset from A to infinity and |E| ≥ n)

≤
∞∑
k=n

P
(
∃E ⊂ Ed, E cuts A from infinity,
V (E) ≤ V (∂eA) and |E| = k

)
≤ C exp(−C ′n)

where C,C ′ are positive constants depending only on G, A and d.

7 Lower large deviations
In this section we prove Theorem 1.4. If φA = 0, we do not have to study the lower large

deviations. We suppose that φA > 0. Let λ < φA. We denote by En ⊂ Edn a cutset from A to
infinity of minimal capacity, i.e., V (En) = mincutn(A,∞) and having minimal cardinality (if there
is more than one such set we pick one according to a deterministic rule). The existence of such
a cut is ensured by Theorem 1.2. The aim of this section is to bound from above the probability
P(V (En) ≤ λnd−1).

With high probability, the cut En does not have too many edges. In the lattice (Zdn,Edn), the
cardinality of ∂eA is of order nd−1, and by applying Theorem 1.2, we obtain the existence of
constants β, C1 and C2 depending on A, G and d such that

P
(
|En| ≥ βnd−1) ≤ C1 exp(−C2n

d−1) .

In the proof, we will use the relative isoperimetric inequality in Rd. To do so, we define continuous
versions of the discrete random sets. We define the set Ẽn ⊂ Zdn by

Ẽn =
{
x ∈ Zdn \An : there exists a path from x to A visiting

only edges that are not in En

}
.
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Let C be the unit cube in Rd. We define a continuous version En of Ẽn by

En =
⋃
x∈Ẽn

(
x+ C

n

)
\A.

If |En| ≤ βnd−1 then P(En,Rd \ A) ≤ β and P(En) ≤ β + P(A). Moreover if |En| ≤ βnd−1 then
En ⊂ V(A, 2d βnd−2).

The set En is a random bounded subset of Rd. However, the diameter of En might be very
large, of polynomial order in n, and there is no compact region of Rd that almost surely contains
En. Therefore, we cannot proceed as in [25]. However, as the capacity of En is small, we expect
it to remain close to the boundary of ∂A. As moving too far away from ∂A is too expensive for
En, we should observe unlikely events just by inspecting what happens near the boundary of A.
Let R be a real number we will choose later such that A ⊂ B(0, R). We set

Ω = B̊(0, R) ∩Ac .

Note that the set Ω is open. In the following, we will only work with the portion of En in Ω. For
F a Borel subset of Rd such that P(F,R) < +∞, we define

IΩ(F ) =
∫
∂∗F∩Ω

ν(nF (x))dHd−1(x) +
∫
∂∗A∩∂∗(Ω\F )

ν(nA(x))dHd−1(x).

The quantity IΩ(F ) may be interpreted as the capacity of the subset F ∪ A in Ω. By definition,
we know that φA ≤ I(A ∪ F ) but it is not easy to compare φA with IΩ(F ) because IΩ(F ) does
not take into account the capacity of ∂F \ Ω. In other words, the capacity in Ω ∪ A does not
coincide with the capacity in Rd. To go around this problem, we shall remove some regions of F
in the neighborhood of ∂Ω, thereby obtaining a new set F̃ , whose closure is included in Ω, and
which therefore satisfies I(F̃ ) = IΩ(F̃ ). The delicate point is to build the set F̃ in such a way
that I(F̃ ) is only slightly larger than IΩ(F ). We will perform a geometrical surgery by choosing
cutting surfaces which do not create too much extra perimeter.

We introduce the space

Cβ =
{
F Borel subset of Ω : P(F,Ω) ≤ β

}
endowed with the topology L1 associated to the following distance

d(F, F ′) = Ld(F∆F ′),

where ∆ is the symmetric difference between sets. For this topology, the space Cβ is compact. Let
us set

En = En ∩ Ω .

The set En belongs to Cβ . Suppose that we associate to each F ∈ Cβ a positive number εF . The
collection of open sets {

H Borel subset of Ω : Ld(H∆F ) < εF

}
, F ∈ Cβ ,

is then an open covering of Cβ . By compactness, we can extract a finite covering (Fi, εFi)1≤i≤N
of Cβ . This compactness argument enables us to localize the random set En near a fixed set Fi of
Cβ . The number εF associated to F will depend on the set F . We will explain later in the proof
how it is chosen. For the time being, we start the argument with a covering (F, εF ) of Cβ . Let
δ > 0 be a real number to be adjusted later. To be able to operate the geometrical surgery, we
will localize a region of Ω that contains a volume of En less than δ. As A is compact, there exists
a real number ρ > 0 such that

A ⊂ B̊(0, ρ) and Ld(B(0, ρ)) ≥ 3ciso(P(A) + β)
d
d−1 . (7.1)
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Moreover, using Proposition 3.4, we get

Ld(En) ≤ Ld(En ∪A) ≤ biso(P(A) + β)d/d−1 . (7.2)

Let us define for i ≥ 0 the i-th annulus Ai:

Ai = B(0, ρ+ i+ 1) \B(0, ρ+ i) .

We also define
i = min

{
i ≥ 1 : Ld(En ∩ Ai) ≤ δ

}
.

We write i in bold to emphasize that it is a random index. Thanks to inequality (7.2), we obtain

i ≤ biso(P(A) + β)d/d−1/δ

and the minimum in the definition of i is always attained. We set

M = biso(P(A) + β)d/d−1/δ

and
R = ρ+ 1 +M .

Thus, the region Ai is included in Ω and contains a volume of En less than δ. We sum over
(Fi, εFi)1≤i≤N of Cβ and condition on i and we get

P(V (En) ≤ λnd−1) ≤ P(|En| ≥ βnd−1) + P(V (En) ≤ λnd−1, |En| ≤ βnd−1)

≤ C1 exp(−C2βn
d−1) +

N∑
i=1

∑
1≤j≤M

P
(
Ld(En∆Fi) ≤ εFi ,

V (En) ≤ λnd−1, i = j

)
, (7.3)

We control next the probability inside the sums for a generic F in Cβ and for j a value for the
random set i which occurs with positive probability. By definition of i, we have

Ld(En ∩ Aj) ≤ δ .

A

B(0, ρ)
En

Ai

Figure 7.3 – The set En and its associated Ai
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We want to build from F a set F̃ of finite perimeter such that its boundary ∂F̃ \ A is in Ω
and IΩ(F̃ ) is close to IΩ(F ). Of course, cutting F inside Ω creates some extra capacity along the
cutting. The idea is to cut F in the annulus Aj . As the volume of F in this region is small, we
shall be able to find cutting surfaces having small perimeter. If we choose εF small enough such
that εF ≤ δ for all F ∈ Cβ , it follows that

Ld(F ∩ Aj) ≤ δ + εF ≤ 2δ, .

By Lemma 14.4 in [19], for i ∈ J , for H1 almost all t in ]0, 1[,

I(F ∩B(0, ρ+ j + t)) ≤ I(F ∩ B̊(0, ρ+ j + t)) + νmaxHd−1(F ∩ ∂B(0, ρ+ j + t)) . (7.4)

Let T be the subset of ]0, 1[ for which the above inequality holds. We have H1(T ) = 1. Integrating
in polar coordinates, we get∫

T

Hd−1(F ∩ ∂B(0, ρ+ j + t)) = Ld(F ∩B(0, ρ+ j + 1) \B(0, ρ+ j))

≤ Ld(F ∩ Aj) ≤ 2δ .

Thus, there exists t ∈ T such that

Hd−1(F ∩ ∂B(0, ρ+ j + t)) ≤ 3δ . (7.5)

We next define
F̃ = F ∩B(0, ρ+ j + t) .

By construction, we have ∂F̃ \A ⊂ Ω. Combining inequalities (7.4) and (7.5), we obtain

φA ≤ IΩ(F̃ ) ≤ I
(
F, B̊(0, ρ+ j + t)

)
+ νmax3δ ≤ IΩ(F ) + 3δνmax (7.6)

We show next that is possible to choose δ such that, uniformly over F , we have sIΩ(F ) ≥ 3δνmax.
We have

IΩ(F ) ≥
∫
∂∗(F∪A)∩B̊(0,ρ)

ν(nA∪F (x))dHd−1(x) ≥ νminP
(
F ∪A, B̊(0, ρ)

)
.

We apply the isoperimetric inequality relative to the ball B(0, ρ):

P
(
F ∪A, B̊(0, ρ)

)
≥

(
min

(
Ld((A ∪ F ) ∩B(0, ρ)), Ld((Rd \ (A ∪ F )) ∩B(0, ρ))

)
biso

) d−1
d

.

Since F is in Cβ , we have Ld(A ∪ F ) ≤ ciso(P(A) + β)
d
d−1 . Together with inequality (7.1), we

conclude that

P
(
F ∪A, B̊(0, ρ)

)
≥
(
Ld(A)
biso

) d−1
d

.

There exists s > 0 such that λ ≤ (1− s)φA. We choose δ such that

2δνmax = sνmin

(
Ld(A)
biso

) d−1
d

. (7.7)

Using inequality (7.6), we have then, for any F in Cβ ,

Ld(En∆F ) ≤ δ =⇒ sIΩ(F ) ≥ 3δνmax =⇒ λ ≤ (1− s)φA ≤ (1− s2)IΩ(F ) .

So we get,

P(V (En) ≤ λnd−1, Ld(En∆F ) ≤ εF , i = j)
≤ P(V (En ∩ Ω) ≤ (1− s2)IΩ(F )nd−1, Ld(En∆F ) ≤ εF }) . (7.8)
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The remaining of the proof follows the same ideas as in [25]. We study the quantity

P(V (En ∩ Ω) ≤ (1− s2)IΩ(F )nd−1, Ld(En∆F ) ≤ εF })

for a generic F in Cβ and its corresponding εF . We will need the following lemma to cover F by
balls of small radius such that ∂F is "almost flat" in each ball. This lemma is purely geometric,
the covering depends only on the set F .

Lemma 7.1. [Lemma 1 in [25]] Let F be a subset of Ω of finite perimeter such that ∂F ∩ ∂Ω =
∅. For every positive constants δ′ and η′, there exists a finite family of closed disjoint balls
(B(xi, ρi))i∈I∪K and vectors (vi)i∈I∪K , such that,

∀i ∈ I, xi ∈ ∂∗F ∩ Ω, ρi ∈]0, 1[, Bi ⊂ Ω \A, Ld((F ∩Bi)∆B−i ) ≤ δ′αdρdi ,

and letting Bi = B(xi, ρi) and B−i = B−(xi, ρi, vi), we have

∀i ∈ K, xi ∈ ∂∗A ∩ ∂∗(Ω \ F ), ρi ∈]0, 1[, ∂Ω ∩Bi ⊂ ∂∗A \ ∂∗F,
Ld((A ∩Bi)∆B−i ) ≤ δ′αdρdi ,

and finally ∣∣∣∣∣IΩ(F )−
∑
i∈I

αd−1ρ
d−1
i (ν(nF (xi))−

∑
i∈K

αd−1ρ
d−1
i (ν(nA(xi))

∣∣∣∣∣ ≤ η.
First notice that

φA ≤
∫
∂∗A

ν(nA(x))dHd−1(x) < +∞ .

We choose η = s4IΩ(F ) and δ′ > 0 will be chosen later. Let (Bi)i∈I∪K be a family as in Lemma
7.1, we obtain

IΩ(F ) ≤ 1
1− s4

(∑
i∈I

αd−1ρ
d−1
i (ν(nF (xi)) +

∑
i∈K

αd−1ρ
d−1
i (ν(nA(xi))

)

whence, setting w = s2/(1 + s2),

(1− s2)IΩ(F ) ≤ (1− w)
(∑

i∈I
αd−1ρ

d−1
i (ν(nF (xi)) +

∑
i∈K

αd−1ρ
d−1
i (ν(nA(xi))

)
.

Since the balls (Bi)i∈I∪K are pairwise disjoint, we have

V (En ∩ Ω) ≥
∑
i∈I∪K

V (En ∩Bi) .

It follows that

P(V (En ∩ Ω) ≤ (1− s2)IΩ(F )nd−1, Ld(En∆F ) ≤ εF })

≤ P

 ∑
i∈I∪K V (En ∩Bi) ≤ (1− w)nd−1

(∑
i∈I αd−1ρ

d−1
i (ν(nF (xi))

+
∑
i∈K αd−1ρ

d−1
i (ν(nA(xi))

)
and Ld(En∆F ) ≤ εF

 . (7.9)

We now choose

εF ≤ min
i∈I∪K

αdρ
d
i δ
′ (7.10)

We wish to control card((En ∩Bi)∆B−i ) ∩ Zdn), it is equivalent to evaluate

ndLd((En ∩Bi)∆B−i ) ∩ Zdn + [−1/2n, 1/2n]d) .
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This was done in [25]. We will not redo the computations here, but only state the results: for n
large enough, for i ∈ I,

card((En ∩Bi)∆B−i ) ∩ Zdn) ≤ 4δ′αdρdi nd .

We recall that Ẽn = En ∩ Zdn. We define

Ẽ′n = Ẽn ∪ (A ∩ Zdn) and E′n = Ẽ′n + [−1/(2n), 1/(2n)]d .

For n large enough, for i ∈ K, it was proven in section 5.2 in [25] that

card((E′n ∩Bi)∆B+
i ) ∩ Zdn) ≤ 4δ′αdρdi nd .

Thus, for n large enough, thanks to inequality (7.9),

P(V (En) ≤ λnd−1, Ld(En∆F ) ≤ εF )

≤
∑
i∈I

P

(
V (∂eẼn ∩Bi) ≤ (1− w)αd−1ρ

d−1
i (ν(nF (xi))nd−1,

card((Ẽn ∩Bi)∆(B−i ∩ Zdn)) ≤ 4δ′αdρdi nd

)

+
∑
i∈K

P

(
V (∂eẼ′n ∩Bi) ≤ (1− w)αd−1ρ

d−1
i (ν(nA(xi))nd−1,

card((Ẽ′n ∩Bi)∆(B−i ∩ Zdn)) ≤ 4δ′αdρdi nd

)
≤
∑
i∈I∪K

P(G(xi, ρi, vi, w, δ′)) , (7.11)

where G(x, r, v, w, δ′) is the event that there exists a set U ⊂ B(x, r) ∩ Zdn such that:

card(U∆B−(x, r, v)) ≤ 4δ′αdrdnd

and
V (∂eU ∩B(x, r)) ≤ (1− w)αd−1r

d−1(ν(nF (x))nd−1 .

This event depends only on the edges inside B(x, r, v). This event is a rare event. Indeed, if this
event occurs, we can show that the maximal flow from the upper half part of B(x, r, v) (upper
half part according to the direction v) and the lower half part is abnormally small. To do so, we
build from the set U an almost flat cutset in the ball. The fact that card(U∆B−(x, r, v)) is small
implies that ∂eU is almost flat and is close to disc(x, r, v). However, this does not prevent the
existence of long thin strands that might escape the ball and prevent U from being a cutset in
the ball. The idea is to cut these strands by adding edges at a fixed height. We have to choose
the appropriate height to ensure that the extra edges we need to add to cut these strands are
not too many, so that we can control their capacity. The new set of edges we create by adding
to U these edges will be in a sense a cutset. The last thing to do is then to cover disc(x, r, v)
by hyperrectangles in order to use the estimate that the flow is abnormally small in a cylinder.
This work was done in section 6 in [25]. It is possible to choose δ′ depending on F , G and w such
that there exist positive constants CF1,k and CF2,k depending on G, d, F , k and w so that for all
k ∈ I ∪K,

P(G(xk, ρk, vk, w, δ′)) ≤ CF1,k exp(−CF2,knd−1) .

Using inequality (7.11), we obtain

P(V (En) ≤ λnd−1, Ld(En∆F ) ≤ εF ) ≤
∑

k∈I∪K

CF1,k exp(−CF2,knd−1) . (7.12)

Combining inequalities (7.3), (7.8) and (7.12), we obtain that, for small enough δ′,

P(V (En) ≤ λnd−1) ≤ C1 exp(−C2βn
d−1) +

N∑
j=1

M∑
i=1

∑
k∈IFj∪KFj

C
Fj
1,k exp(−CFj2,kn

d−1)

≤ C1 exp(−C2βn
d−1) +M

N∑
j=1

∑
k∈IFj∪KFj

C
Fj
1,k exp(−CFj2,kn

d−1) .
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As M , N , |IFj | and |KFj |, for 1 ≤ j ≤ N , are finite and independent of n, we obtain the expected
result and this proves Theorem 1.4.

To conclude, let us sum up the order in which the constants are chosen. We first choose δ such
that it satisfies equality (7.7). Next, we choose δ′ depending on λ and G. The parameter δ′ has
to satisfy some inequalities that we do not detail here, we refer to section 7 in [25]. Finally, to
each F in Cβ , we choose εF such that it satifies both εFi ≤ δ and inequality (7.10).

8 Identification of φA
In this section, we prove Proposition 1.5, the last ingredient needed to prove Theorem 1.1.

S

A

Q

the face H1 ∩ S0

S0 \ S1

v1

F1

Figure 7.4 – Construction of S1 for a bounded set S such that A ⊂ S

Proof of Proposition 1.5. Let A be a compact convex subset of Rd. We shall show that any
bounded set S that contains A satisfies I(A) ≤ I(S). Let S be such a set, we can assume that S
has finite perimeter otherwise the inequality is trivial. Let ε > 0. As A is convex, by Lemma 3.7,
there exists a convex polytope P such that P ⊂ A and I(A) ≤ I(P ) + ε. There exist v1, . . . , vm
unit vectors and ϕ1, . . . , ϕm real numbers such that

P =
⋂

1≤i≤m

{
x ∈ Rd : x · vi ≤ ϕi

}
.

We denote by Hi the hyperplane associated with vi, i.e.,

Hi =
{
x ∈ Rd : x · vi = ϕi

}
and H−i the associated half-space containing P , i.e,

H−i =
{
x ∈ Rd : x · vi ≤ ϕi

}
.
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We shall successively chop off portions from S thereby reducing its surface energy by using
the family of half-spaces (H−i , 1 ≤ i ≤ m). We define by induction this sequence of sets. We set
S0 = S. Let us assume Si is already defined for some i < m, we set

Si+1 = Si ∩H−i+1 .

We next show that I(Si) ≥ I(Si+1) for all 0 ≤ i ≤ m. We shall apply the Gauss-Green theorem to
each Si in order to compare the capacity of the face Hi+1∩Si with the capacity of Fi = ∂Si \H−i+1
(see figure 7.4). For i ∈ {0, . . . ,m− 1}, let yi+1 ∈ Wν such that yi+1 achieves the supremum in

sup
x∈Wν

{
x · vi+1

}
.

There exists a C1 vector field fi+1 : Rd →Wν having compact support such that fi+1(x) = yi+1 ∈
Wν on V(Si, 1). We recall that Si is bounded and we do not go into the details of the existence
of such a vector field. Applying Theorem 3.5 to Si \ Si+1 and fi, we obtain∫

Si\Si+1

div fi+1(x) =
∫
∂∗(Si\Si+1)

fi+1(x) · nSi\Si+1(x)dHd−1(x) .

By definition of yi+1 and proposition 3.1, we obtain∫
Hi+1∩Si

yi+1 · (−vi+1)dHd−1(x) = −ν(vi+1)Hd−1(Hi+1 ∩ Si) .

As fi+1 is constant on Si \ Si+1, we get

0 =
∫
Fi

fi+1(x) · nS(x)dHd−1(x)− ν(vi+1)Hd−1(Hi+1 ∩ Si) ,

and therefore

ν(vi+1)Hd−1(Si ∩Hi+1) =
∫
Fi

fi+1(x) · nS(x)dHd−1(x)

≤
∫
Fi

ν(nS(x))dHd−1(x) .

The last inequality comes from the fact that fi+1(x) ∈ Wν , therefore we have

fi(x) · nS(x) ≤ ν(nS(x))

for any x in Rd. Finally we obtain as P ⊂ A ⊂ S that Sm = P and so I(P ) ≤ I(S), hence

I(A) ≤ I(P ) + ε ≤ I(S) + ε .

As this inequality is true for any ε > 0, we conclude that I(A) ≤ I(S) and the result follows.

Combining Theorem 1.3, Theorem 1.4 and Proposition 1.5, we obtain Theorem 1.1.
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Chapter 8

Size of a minimal cutset in
supercritical first passage
percolation

This chapter is a joint work with Marie Théret.
We consider the standard model of i.i.d. first passage percolation on Zd given a distribution

G on [0,+∞] (including +∞). We suppose that G({0}) > 1 − pc(d), i.e., the edges of positive
passage time are in the subcritical regime of percolation on Zd. We consider a cylinder of basis
an hyperrectangle of dimension d − 1 whose sides have length n and of height h(n) with h(n)
negligible compared to n (i.e., h(n)/n→ 0 when n goes to infinity). We study the maximal flow
from the top to the bottom of this cylinder. We already know that the maximal flow renormalized
by nd−1 converges towards the flow constant which is null in the case G({0}) > 1 − pc(d). The
study of maximal flow is associated with the study of sets of edges of minimal capacity that cut
the top from the bottom of the cylinder. If we denote by ψn the minimal cardinality of such a set
of edges, we prove here that ψn/nd−1 converges almost surely towards a constant.
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1 Introduction
The model of first passage percolation was first introduced by Hammersley and Welsh [49] in

1965 as a model for the spread of a fluid in a porous medium. In this model, mathematicians
studied intensively geodesics, i.e., fastest paths between two points in the grid. The study of
maximal flows in first passage percolation started later in 1984 in dimension 2 with an article
of Grimmett and Kesten [45]. In 1987, Kesten studied maximal flows in dimension 3 in [52].
The study of maximal flows is associated with the study of random cutsets that can be seen as
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(d − 1)-dimensional surfaces. Their study presents more technical difficulties than the study of
geodesics. Thus, the interpretation of first passage percolation in term of maximal flows has been
less studied.

Let us consider a large box in Zd, to each edge we assign a random i.i.d. capacity with
distribution G. We interpret this capacity as a rate of flow, i.e., it corresponds to the maximal
amount of water that can cross the edge per second. Next, we consider two opposite sides of the box
that we call top and bottom. We are interested in the maximal flow that can cross the box from its
top to its bottom per second. A first issue is to understand if the maximal flow in the box properly
renormalized converges when the size of the box grows to infinity. This question was addressed in
[52], [62] and [73] where one can find laws of large numbers and large deviation estimates for this
maximal flow when the dimensions of the box grow to infinity under some moments assumptions
on the capacities. The maximal flow properly renormalized converges towards the so-called flow
constant. In [64], Rossignol and Théret proved the same results without any moment assumption
on G, they even allow the capacities to take infinite value as long as G({+∞}) < pc(d) where
pc(d) denotes the critical parameter of i.i.d. bond percolation on Zd. We can interpret infinite
capacities as a defect of the medium, i.e., there are some edges where the capacities are of bigger
order. Moreover, the two authors have shown that the flow constant is continuous with regard to
the distribution of the capacities.

The flow constant is associated with the study of surfaces with minimal capacity. These
surfaces must disconnect the top from the bottom of the box in a sense we will precise later. We
want to know if the minimal size of these surfaces of minimal capacity grows at the same order
as the size of the bottom of the box. When G({0}) < 1 − pc(d), Zhang proved in [73], under
an exponential moment condition, that there exists a constant such that the probability that all
the surfaces of minimal capacity are bigger than this constant times the size of the bottom of the
cylinder, decays exponentially fast when the size of the box grows to infinity. The main result
of this paper is that under the assumption G({0}) > 1 − pc(d), the minimal size of a surface of
minimal capacity divided by the size of the bottom of the cylinder converges towards a constant
when the size of the box grows to infinity.

The rest of the paper is organized as follows. In section 2, we give all the necessary definitions
and background, we state our main theorem and give the main ideas of the proof. In section 3,
we define an alternative flow which is more adapted for using subadditive arguments. The proof
is made of three steps that correspond to sections 4, 5 and 6.

2 Definition, background and main results
2.1 Definition of maximal flows and minimal cutsets

We keep many notations used in [64]. We consider the graph (Zd,Ed) where Ed is the set of
edges that link all the nearest neighbors for the Euclidean norm in Zd. We consider a distribution
G on [0,+∞]. To each edge e in Ed we assign a random variable tG(e) with distribution G.
The variable tG(e) is called the capacity (or the passage time) of e. The family (tG(e))e∈Ed is
independent.

Let Ω = (VΩ, EΩ) be a finite subgraph of (Zd,Ed). We can see Ω as a piece of rock through
which water can flow. Let G1 and G2 be two disjoint subsets of VΩ representing respectively the
sources through which the water can enter and the sinks through which the water can exit.

Let the function f : Ed → Rd be a possible stream inside Ω between G1 and G2. For all
e ∈ Ed, ‖f(e)‖2 represents the amount of water that flows through e per second and f(e)/‖f(e)‖2
represents the direction in which the water flows through e. If we write e = 〈x, y〉 where x, y are
neighbors in the graph (Zd,Ed), then the unit vector f(e)/‖f(e)‖2 is either the vector −→xy or −→yx.
We say that our stream f inside Ω from G1 to G2 is G-admissible if and only if it satisfies the
following constraints.
· The node law : for every vertex x in VΩ \ (G1 ∪G2), we have

∑
y∈Zd: e=〈x,y〉∈EΩ

‖f(e)‖2
(
1 f(e)
‖f(e)‖2

=−→xy − 1 f(e)
‖f(e)‖2

=−→yx

)
= 0 ,
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i.e., there is no loss of fluid inside Ω.
· The capacity constraint: for every edge e in EΩ, we have

0 ≤ ‖f(e)‖2 ≤ tG(e) ,

i.e., the amount of water that flows through e per second is limited by its capacity tG(e).
Note that as the capacities are random, the set of G-admissible streams inside Ω between G1

and G2 is also random. For each G-admissible stream f , we define its flow by

flow(f) =
∑
x∈G1

∑
y∈Zd: e=〈x,y〉∈EΩ

‖f(e)‖2
(
1 f(e)
‖f(e)‖2

=−→xy − 1 f(e)
‖f(e)‖2

=−→yx

)
.

This corresponds to the amount of water that enters in Ω through G1 per second. By the node
law, as there is no loss of fluid, flow(f) is also equal to the amount of water that escapes from Ω
through G2 per second:

flow(f) =
∑
x∈G2

∑
y∈Zd: e=〈x,y〉∈EΩ

‖f(e)‖2
(
1 f(e)
‖f(e)‖2

=−→yx − 1 f(e)
‖f(e)‖2

=−→xy

)
.

The maximal flow from G1 to G2 in Ω for the capacities (tG(e))e∈Ed , denoted by φG(G1 →
G2 in Ω), is the supremum of the flows of all admissible streams through Ω:

φG(G1 → G2 in Ω) = sup
{

flow(f) : f is a G-admissible stream inside
Ω between G1 and G2

}
.

Dealing with admissible streams is not so easy, but hopefully we can use an alternative def-
inition of maximal flow which is more convenient. Let E ⊂ EΩ be a set of edges. We say
that E cuts G1 from G2 in Ω (or is a cutset, for short) if there is no path from G1 to G2 in
(VΩ, EΩ \ E). More precisely, let γ be a path from G1 to G2 in Ω, we can write γ as a finite
sequence (v0, e1, v1, . . . , en, vn) of vertices (vi)i=0,...,n ∈ V n+1

Ω and edges (ei)i=1,...,n ∈ EnΩ where
v0 ∈ G1, vn ∈ G2 and for any 1 ≤ i ≤ n, ei = 〈vi−1, vi〉 ∈ EΩ. Then, E cuts G1 from G2 in Ω
if for any path γ from G1 to G2 in Ω, we have γ ∩ E 6= ∅. Note that γ can be seen as a set of
edges or a set of vertices and we define |γ| = n. We associate with any set of edges E its capacity
TG(E) defined by

TG(E) =
∑
e∈E

tG(e) .

The max-flow min-cut theorem, see [16], a result of graph theory, states that

φG(G1 → G2 in Ω) = min
{
TG(E) : E cuts G1 from G2 in Ω

}
.

The idea behind this theorem is quite intuitive. When we consider a maximal flow through Ω,
some of the edges are jammed. We say that e is jammed if the amount of water that flows through
e is equal to the capacity tG(e). These jammed edges form a cutset, otherwise we would be able
to find a path γ from G1 to G2 of non-jammed edges, and we could increase the amount of water
that flows through γ which contradicts the fact that the flow is maximal. Thus, the flow is always
smaller than the capacity of any cutset. It can be proved that the maximal flow is equal to the
minimal capacity of a cutset.

In [52], Kesten interpreted the study of maximal flow as a higher dimensional version of the
classical problem of first passage percolation which is the study of geodesics. A geodesic may be
considered as an object of dimension 1, it is a path with minimal passage time. On the contrary, the
maximal flow is associated (via the max-flow min-cut theorem) with cutsets of minimal capacity:
those cutsets are objects of dimension d − 1, that can be seen as surfaces. To better understand
the interpretation in term of surfaces, we can associate with each edge e a small plaquette e∗. The
plaquette e∗ is an hypersquare of dimension d− 1 whose sides have length one and are parallel to
the edges of the graphs, such that e∗ is normal to e and cuts it in its middle. We associate with
the plaquette e∗ the same capacity tG(e) as with the edge e. We also define the dual of a set of



188 CHAPTER 8. SIZE OF A MINIMAL CUTSET

edge E by E∗ = {e∗, e ∈ E}. Roughly speaking, if the set of edges E cuts G1 from G2 in Ω, the
surface of plaquettes E∗ disconnects G1 from G2 in Ω. Although this interpretation in terms of
surfaces seems more intuitive than cutsets, it is really technical to handle, and we will never use it
and not even try to give a rigorous definition of a surface of plaquettes. Note that, in dimension
2, a surface of plaquettes is very similar to a path in the dual graph of Z2 and thus the study of
minimal cutsets is very similar to the study of geodesics.

We consider now two specific maximal flows through a cylinder for first passage percolation
on Zd where the law of capacities is given by a distribution G such as G([−∞, 0)) = 0 and
G({0}) > 1−pc(d), i.e., the edges of positive capacity are in the sub-critical regime of percolation
on Zd. We are interested in the study of cutsets in a cylinder. Among all the minimal cutsets,
we are interested with the ones with minimal size. Let us first define the maximal flow from
the top to the bottom of a cylinder. Let A be a non-degenerate hyperrectangle, i.e., a rectangle
of dimension d − 1 in Rd. We denote by Hd−1 the Hausdorff measure in dimension d − 1: for
A =

∏d−1
i=1 [ki, li] × {c} with ki < li, c ∈ R we have Hd−1(A) =

∏d−1
i=1 (li − ki). Let −→v be one of

the two unit vectors normal to A. Let h > 0, we denote by cyl(A, h) the cylinder of basis A and
height h defined by

cyl(A, h) =
{
x+ t−→v : x ∈ A, t ∈ [0, h]

}
.

We denote by ∂A the relative boundary of A. We define cyl(∂A, h) as

cyl(∂A, h) =
{
x+ t−→v : x ∈ ∂A, t ∈ [0, h]

}
.

The dependence on −→v is implicit in the notation cyl(A, h) and cyl(∂A, h). We have to define
discretized versions of the bottom B(A, h) and the top T (A, h) of the cylinder cyl(A, h). We
define them by

B(A, h) :=
{
x ∈ Zd ∩ cyl(A, h) : ∃y /∈ cyl(A, h), 〈x, y〉 ∈ Ed

and 〈x, y〉 intersects A

}
and

T (A, h) :=
{
x ∈ Zd ∩ cyl(A, h) : ∃y /∈ cyl(A, h), 〈x, y〉 ∈ Ed

and 〈x, y〉 intersects A+ h−→v

}
.

We denote by ΦG(A, h) the maximal flow from the top to the bottom of the cylinder cyl(A, h)
in the direction −→v , defined by

ΦG(A, h) = φG(T (A, h)→ B(A, h) in cyl(A, h)) .

This definition of the flow is not well suited to use ergodic subadditive theorems, because we
cannot glue two cutsets from the top to the bottom of two adjacent cylinders together to build
a cutset from the top to the bottom of the union of these two cylinders. Indeed, the intersection
of these two cutsets with the adjacent face will very likely not coincide. We can fix this issue by
introducing another flow through the cylinder for which the subadditivity would be recover. To
define this flow, we will first define another version of the cylinder which is more convenient. We
define the cylinder cyl′(A, h) by

cyl′(A, h) =
{
x+ t−→v : x ∈ A, t ∈ [−h, h]

}
.

The set cyl′(A, h) \A has two connected components denoted by C1(A, h) and C2(A, h). We have
to define a discretized version of the boundaries of these two sets. For i = 1, 2, we denote by
C ′i(A, h) the discrete boundary of Ci(A, h) defined by

C ′i(A, h) =
{
x ∈ Zd ∩ Ci(A, h) : ∃y /∈ cyl′(A, h), 〈x, y〉 ∈ Ed

}
.

We call informally C ′i(A, h), i = 1, 2, the upper and lower half part of the boundary of cyl′(A, h).
We denote by τG(A, h) the maximal flow from the upper half part to the lower half part of the
boundary of the cylinder, i.e.,

τG(A, h) = φG(C ′1(A, h)→ C ′2(A, h) in cyl′(A, h)) .
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By the max-flow min-cut theorem, the flow τG(A, h) is equal to the minimal capacity of a set of
edges E that cuts C ′1(A, h) from C ′2(A, h) inside the cylinder cyl′(A, h). If we consider the dual set
E∗ of E, the intersection of E∗ with the boundary of the cylinder has to be close to the relative
boundary ∂A of the hyperrectangle A.

Remark 2.1. Note that here we will work only with the cylinder cyl(A, h) whereas the authors of
[64] work mainly with the cylinder cyl′(A, h).

2.2 Background on maximal flows
The simplest case to study maximal flows is for a straight cylinder, i.e., when −→v = −→v0 :=

(0, 0, . . . , 1) and A = A(
−→
k ,
−→
l ) =

∏d−1
i=1 [ki, li]× {0} with ki ≤ 0 < li ∈ Z. In this case, the family

of variables (τG(A(
−→
k ,
−→
l ), h))−→

k ,
−→
l
is subadditive since minimal cutsets in adjacent cylinders can

be glued together along the common side of these cylinders. By applying ergodic subadditive
theorems in the multi-parameter case (see Krengel and Pyke [54] and Smythe [65]), we obtain the
following result.

Proposition 2.2. Let G be an integrable probability measure on [0,+∞[, i.e.,
∫ +∞

0 xdG(x) <∞.
Let A =

∏d−1
i=1 [ki, li]× {0} with ki ≤ 0 < li ∈ Z. Let h : N→ R+ such that limn→∞ h(n) = +∞.

Then there exists a constant νG(−→v0), that does not depend on A and h but depends on G and d,
such that

lim
n→∞

τG(nA, h(n))
Hd−1(nA) = νG(−→v0) a.s. and in L1.

The constant νG(−→v0) is called the flow constant. Next, a natural question to ask is whether we
can define a flow constant for any direction. When we consider tilted cylinders, we cannot recover
perfect subadditivity because of the discretization of the boundary. Moreover, the use of ergodic
subadditive theorems is not possible when the direction −→v we consider is not rational, i.e., when
there does not exist an integer M such that M−→v has integer coordinates. Indeed, in that case
there exists no vector −→u normal to −→v such that the model is invariant under the translation of
vector −→u . These issues were overcome by Rossignol and Théret in [62] where they proved the
following law of large numbers.

Theorem 2.3. Let G be an integrable probability measure on [0,+∞[ , i.e.,
∫ +∞

0 xdG(x) < ∞.
For any −→v ∈ Sd−1, there exists a constant νG(−→v ) ∈ [0,+∞[ such that for any non-degenerate
hyperrectangle A normal to −→v , for any function h : N → R+ such that limn→∞ h(n) = +∞, we
have

lim
n→∞

τG(nA, h(n))
Hd−1(nA) = νG(−→v ) in L1.

If moreover the origin of the graph belongs to A, or if
∫ +∞

0 x1+1/(d−1)dG(x) <∞, then

lim
n→∞

τG(nA, h(n))
Hd−1(nA) = νG(−→v ) a.s..

If the cylinder is flat, i.e., if limn→∞ h(n)/n = 0, then the same convergence also holds for
ΦG(nA, h(n)).

Moreover, either νG(−→v ) is null for all −→v ∈ Sd−1 or νG(−→v ) > 0 for all −→v ∈ Sd−1.

In [72], Zhang found a necessary and sufficient condition on G under which νG(−→v ) is positive.
He proved the following result.

Theorem 2.4. Let G be an integrable probability measure on [0,+∞[. Then, νG(−→v ) > 0 if and
only if G({0}) < 1− pc(d).

Let us give an intuition of this result. If τG(nA, h(n)) > 0, then there exists a path in cyl′(nA, h(n))
from the upper to the lower half part of its boundary such that all its edges have positive capacity.
Indeed, if there does not exist such a path, there exists a cutset of null capacity and it contradicts
τG(nA, h(n)) > 0. Thus, the fact that νG(−→v ) > 0 is linked with the fact that the edges of positive
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capacity percolate, i.e., G({0}) < 1− pc(d). The main difficult part of this result is to study the
critical case, i.e., G({0}) = 1− pc(d).

In [64], Rossignol and Théret extended the previous results without any moment condition on
G, they even allow G to have an atom in +∞ as long as G({+∞}) < pc(d). They proved the
following law of large numbers for the maximal flow from the top to the bottom of flat cylinders.

Theorem 2.5. For any probability measure G on [0,+∞] such that G({+∞}) < pc(d), for any
−→v ∈ Sd−1, there exists a constant νG(−→v ) ∈ [0,+∞[ such that for any non-degenerate hyperrect-
angle A normal to −→v , for any function h such that h(n)/ logn→∞ and h(n)/n→ 0 when n goes
to infinity, we have

lim
n→∞

ΦG(nA, h(n))
Hd−1(nA) = νG(−→v ) a.s..

Moreover, for every −→v ∈ Sd−1,

νG(−→v ) > 0 ⇐⇒ G({0}) < 1− pc(d) .

Remark 2.6. Note that if G({0}) > 1 − pc(d), then G({+∞}) < pc(d) and the flow constant is
well defined according to Theorem 2.5.

In [52], Kesten proved a result similar to Proposition 2.2 for the rescaled maximal flow in a
straight cylinder ΦG(nA, h(n))/Hd−1(nA). He worked in dimension 3 and considered the more
general case where the lengths of the sides of the cylinder go to infinity but at different speeds in
every direction, under the technical assumption that G({0}) is smaller than some small constant.
He worked with dual sets, and he had to define properly the notion of surface. He had to deal with
the fact that the flow ΦG is not subadditive. His work was very technical and cannot be easily
adapted to tilted cylinders because the arguments crucially depend on some symmetries of the
model for straight cylinders. Zhang extended Kesten’s result in higher dimensions and without any
hypothesis on G({0}) in [73]. The asymptotic behavior of maximal flows ΦG(nA, h(n)) through
tilted and non-flat cylinders was studied by Cerf and Théret in [23, 24, 26, 27]. In those papers,
they even considered maximal flow through more general domains than cylinders.

The results we have gathered here concerning maximal flows are the analogues of known results
for the time constant in the study of geodesics in first passage percolation (see for instance Kesten’s
lecture note [51]). We summarize here a few of them. In this paragraph, we interpret the random
variable tG(e) as the time needed to cross the edge e. The passage time TG(γ) of a path γ
corresponds to the time needed to cross all its edges, i.e., TG(γ) =

∑
e∈γ tG(e), and a geodesic

between two points x and y of Zd is a path that achieves the following infimum:

TG(x, y) = inf
{
TG(γ) : γ is a path from x to y

}
.

As the time needed to cross the edges are random, a geodesic is a random path. Under some
moment conditions, for all x ∈ Zd, TG(0, nx)/n converges a.s. to a time constant µG(x). The
time constant µG is either identically null or can be extended by homogeneity and continuity into
a norm on Rd. Kesten investigated the positivity of µG and obtained that µG > 0 if and only if
G({0}) < pc(d), see Theorem 1.15 in [51]. Intuitively if the edges of null passage time percolate,
there exists an infinite cluster C made of edges of null passage time. A geodesic from 0 to nx tries
to reach the infinite cluster C as fast as possible, then travels in the cluster C at infinite speed and
exits the cluster at the last moment to go to nx. Under some good moment assumptions, the time
needed to go from 0 to C and from C to nx is negligible compared to n . We can show in this case
that µG(x) = 0.

2.3 Background on the minimal length of a geodesic and the minimal
size of a minimal cutset

Let us first present the background on the minimal length of a geodesic. We denote by NG(x, y)
the minimal length of a geodesic between x and y:

NG(x, y) = inf
{
|γ| : γ is a geodesic between x and y

}
.
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One can ask how does NG(0, nx) grow when n goes to infinity. If G({0}) > pc(d), it is expected
to grow at speed n. This result was first proved by Zhang and Zhang in dimension 2 in [74].

Theorem 2.7. Let d = 2 and let G be a distribution on [0,+∞[ such that G({0}) > 1/2. We
have

lim
n→∞

NG((0, 0), (0, n))
n

= λG({0}) a.s. and in L1

where λG({0}) depends only on G({0}).

Zhang later extended this result to all dimensions under the condition that G({0}) > pc(d) in
[71].

Remark 2.8. These works can be extended to all directions. To extend it to rational directions we
can use a subadditive ergodic theorem and instead of considering the points 0 and nx, it is more con-
venient to consider their regularized version 0̃ and ñx, i.e., their projection on the infinite cluster
of null passage time (see [28]). We can show that limn→∞NG(0, nx)/n = limn→∞NG(0̃, ñx)/n.
By continuity, we can also extend it to irrational directions.

When G({0}) < pc(d), the question of the convergence of NG(0, nx)/n is still open. However,
we know that with high probability NG(0, nx) is of order n. This result is due to Kesten. As a
corollary of Proposition (5.8) in [51], we have

Theorem 2.9. Let G be a distribution on [0,+∞[ such that G({0}) < pc(d). There exist positive
constants C1, C2 and λ depending on G such that for all n ≥ 0,

P
(

There exists a path r starting from 0
such that |r| ≥ n and TG(r) < λn

)
≤ C1 exp(C2n) .

If G admits an exponential moment, we can get an exponential control on the probability

P(TG(0, nx) > Cn)

for a large enough C depending on G and so we obtain that there exist positive real numbers A
and B such that for every x ∈ Zd,

P
(
NG(0, nx) ≥ C

λ
n‖x‖

)
≤ A exp(−Bn‖x‖) .

When G({0} = pc(d), NG(0, nx) is expected to grow super linearly in n. However, this critical
case is much more difficult to study, and results have been obtained only for d = 2 (see for instance
Damron and Tang’s paper [34])

We now come back to the study of minimal cutsets. By the max-flow min-cut theorem, we
know that ΦG(A, h) is equal to the minimal capacity of cutsets that cut the top from the bottom
of cyl(A, h). Among all the cutsets of minimal capacity we are interested in the ones with the
minimal cardinality:

ψG(A, h,−→v ) := inf
{

carde(E) : E cuts the top from the bottom of
cyl(A, h) and E has capacity ΦG(A, h)

}
where carde(E) denotes the number of edges in the edge set E. The quantity ψG is the analog of
NG in this context.

The study of the quantity ψG(A, h,−→v ) was initiated by Kesten in [52] in dimension 3 for
straight boxes and distributions G such that G({0}) < p0 where p0 is a small constant. Let
k, l, m ∈ N, we define the straight box B(k, l,m) = [0, k]× [0, l]× [0, k].

Theorem 2.10. Let k, l ,m ∈ N. There exists a p0 > 1/27 such that for all distributions G on
[0,+∞[ such that G({0}) < p0, there exist constants θ, C1 and C2 depending on G such that for
all n ≥ 0,

P

 there exists a dual set E∗ of at least n plaquettes that cuts
the top from the bottom of the box B(k, l,m), which

contains the point (− 1
2 ,−

1
2 ,

1
2 ) and such that TG(E∗) ≤ θn

 ≤ C1e
−C2n .
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Zhang in [73] extended this result in all dimensions and for distributions G such that G({0}) <
1− pc(d) and with an exponential moment. He obtained the following result.

Theorem 2.11. Let G be a distribution on [0,+∞[ such that for some η > 0,
∫ +∞

0 exp(ηx)dG(x) <
∞ and G({0}) < 1 − pc(d). Let k1, . . . , kd−1 ∈ N and h with log h ≤ k1 · · · kd−1. Let A =∏d−1
i=1 [0, ki] × {0}. There exist constants β ≥ 1 depending on G and d, C1 and C2 depending on

G, d and β such that for all λ > βHd−1(A),

P(ψG(A, h,−→v ) > λ) ≤ C1 exp(−C2λ) .

Roughly speaking, his proof strategy is the following. If ψG(A, h−→v ) is large, he can slightly modify
the configuration to create blocking surfaces, i.e., large surfaces of edges of null capacities. This
is very unlikely when G({0}) < 1 − pc(d) as edges of positive capacities percolate: it is indeed
unlikely to obtain two adjacent big clusters of edges of positive capacity that are not connected
because of this blocking surface. This proof relies crucially on the hypothesis G({0}) < 1− pc(d)
and cannot be adapted to the case G({0}) > 1 − pc(d). Moreover, this proof does not able to
prove the existence of the limit of ψG properly renormalized when the dimension of the cylinder
goes to infinity.

The aim of this article is to understand the behavior of ψG(A, h,−→v ) in the supercritical case,
that is G({0}) > 1 − pc(d) (the critical case G({0}) = 1 − pc(d) is expected to be much more
delicate to study as it is for NG).

2.4 Main result and idea of the proof

In what follows, if a function h : N → R+ satisfies h(n)/ logn → ∞ and h(n)/n → 0 when n
goes to infinity, we say that h satisfies condition (?). The main result of this paper is the following.

Theorem 2.12. Let d ≥ 2. Let G be a probability measure on [0,+∞] such that G({0}) >
1 − pc(d). Let −→v ∈ Sd−1. There exists a finite constant ζG({0})(−→v ) such that for all function h
satisfying condition (?), for all non-degenerate hyperrectangle A normal to −→v ,

lim
n→∞

ψG(nA, h(n),−→v )
Hd−1(nA) = ζG({0})(−→v ) a.s..

The constant ζG({0})(−→v ) depends only the direction −→v , G({0}) and d and not on A itself nor h.

To prove Theorem 2.12, we need to introduce an alternative flow in section 3 that is inspired
from [64]. There are two issues: we need to study cutsets that may be merged together into a
cutset and that have null capacity. Although the cutsets corresponding to the flow τ in adjacent
cylinders may be glued together easily, these cutsets do not have null capacity in general: the
union of two cutsets of minimal capacity is a cutset but does not have minimal capacity. The
flow τ is subadditive but not the minimal cardinality of the minimal corresponding cutsets. The
alternative flow we build in section 3 is such that the maximal flow is always null and if we merge
two adjacent cutsets for this flow it is still a cutset. The aim is to work only with cutsets of null
capacity so when we merge two cutsets together the union has null capacity and is therefore of
minimal capacity.

Let χG be the minimal cardinality of a minimal cutset for the alternative flow we will define
in section 3. First, we show the convergence for the expected value of χG, properly renormalized,
by using subadditive arguments in section 4. The proof enables us to say that the limit does not
depend on h nor on A. Next, we prove that the alternative flow we have defined is actually very
similar to the flow through the cylinder. We prove in section 5 that the limit obtained in 4 is
equal to the limit of the renormalized expected value of ψG. In section 6, we use a concentration
inequality on ψG to show that this random variable is close to its expectation and thus we prove
Theorem 2.12.
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2.5 More notations and useful results
For z = (z1, . . . , zd) ∈ Rd, we define the Euclidian distance ‖z‖2 of z by

‖z‖2 =

√√√√ d∑
i=1

z2
i .

For r > 0, we define the r-neighborhood V(H, r) of a subset H of Rd by

V(H, r) =
{
x ∈ Rd, d(x,H) < r

}
where

d(x,H) = inf
{
‖x− y‖2, y ∈ H

}
.

For any vertex set C ⊂ Zd, we define its diameter Diam(C) by

Diam(C) = sup{‖x− y‖2 : x, y ∈ C},

its cardinality cardv(C) by the number of vertices in C, and its exterior edge boundary ∂eC by

∂eC =
{
〈x, y〉 ∈ Ed : x ∈ C, y /∈ C and there exists a path from y to infinity in Zd \ C

}
.

The notation 〈x, y〉 corresponds to the edge of endpoints x and y. We recall that for any edge set
E ⊂ Ed, carde(E) denotes the number of edges in E. There exits a constant cd such that for any
finite connected set C of vertices, carde(∂eC) ≤ cd cardv(C). Note that when there is no ambiguity
we will denote by |E| the cardinality of the set E. We define the exterior ext(E) of a set of edges
E:

ext(E) =
{
x ∈ Zd : there exists a path from x to infinity in Ed \ E

}
.

Let x ∈ Zd, we denote by CG,0(x) the connected component of x in the percolation (1tG(e)>0)e∈Ed ,
which can be seen as an edge set and as a vertex set. The following theorem is a classical result
on percolation that enables us to control the probability that an open cluster CG,0(x) is big in the
subcritical regime, i.e., when P(tG(e) > 0) < pc(d) (see for instance Theorem (6.1) and (6,75) in
[47]).

Theorem 2.13. Let us assume G({0}) > 1− pc(d). There exist two positive constants κ1 and κ2
depending only on G({0}) such that for all x ∈ Zd, n ∈ N,

P(cardv(CG,0(x)) > n) ≤ κ1 exp(−κ2n) . (2.1)

2.6 Concentration inequality
We introduce here notations and a concentration result that will be useful in section 6. The

following concentration result is a generalization of Efron-Stein inequality for higher moments.
Let X = (X1, . . . , Xn) be a vector of independent random variables taking values in a set X and
f : Xn → R be a measurable function. Let Z = f(X). Let X ′1, . . . , X ′n be independent copies of
X1, . . . , Xn. We introduce the random variable V − as

V − =
n∑
i=1

E[(Z − Z ′i)2
−|X]

where Z ′i = f(X1, . . . , X
′
i, . . . , Xn) and for any real number t, t+ = max(0, t) and t− = max(0,−t).

We have the following result by taking q = 4 in Theorem 15.5 and Theorem 15.7 (and also by
replacing Z by −Z in Theorem 15.7) in [17].

Theorem 2.14. There exists a positive constant C such that

E[(Z − EZ)4
−] ≤ C E[(V −)2] .

Moreover, suppose that for every i ∈ {1, . . . , n}, (Z −Z ′i)− ≤M for a random variable M . Then,
we have

E[(Z − EZ)4
+] ≤ C max

(
E[(V −)2],E[M4]

)
.
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3 Definition of an alternative flow
Instead of directly considering a smallest minimal cutset for the cylinder, we are going to study

a different object which is more convenient for our purpose.
Let −→v ∈ Sd−1, and let A be any non-degenerate hyperrectangle normal to −→v . We denote by

hyp(A) the hyperplane spanned by A defined by

hyp(A) =
{
x+−→w : x ∈ A, −→w · −→v = 0

}
where · denotes the usual scalar product on Rd. For any h > 0, we denote by slab(A, h,−→v ) (resp.
slab(A,∞,−→v )) the slab of basis the hyperplane spanned by A and of height h (resp. of infinite
height), i.e., the subset of Rd defined by

slab(A, h,−→v ) =
{
x+ r−→v : x ∈ hyp(A), r ∈ [0, h]

}
(resp. slab(A,∞,−→v ) = {x+r−→v : x ∈ hyp(A), r ≥ 0} ). We are going to consider a thicker version
of A, namely cyl(A, d), that we will denote by Ā for short. Let W (A, h,−→v ) be the following set
of vertices in Zd, which is a discretized version of hyp(A+ h−→v ):

W (A, h,−→v ) :=
{

x ∈ Zd ∩ slab(A, h,−→v ) :
∃y ∈ Zd ∩ (slab(A,∞,−→v ) \ slab(A, h,−→v )), 〈x, y〉 ∈ Ed

}
.

We say that a path γ = (x0, e1, x1, . . . , en, xn) goes from Ā to hyp(A+ h−→v ) in slab(A, h,−→v ) if :
— ∀i ∈ {0, . . . , n}, xi ∈ slab(A, h,−→v )
— x0 ∈ Ā
— xn ∈W (A, h,−→v ).

−→v
h

the dual of a set of edges
that cuts A from
hyp(A+ h−→v ) in
slab(A, h,−→v ) A

slab(A, h,−→v )

hyp(A+ h−→v )

a path γ from A to
hyp(A+ h−→v ) in
slab(A, h,−→v )

W (A, h,−→v )

A

Figure 8.1 – Dual of a set of edges that cuts A from hyp(A+ h−→v ) in slab(A, h,−→v ).

We say that a set of edges E cuts Ā from hyp(A+h−→v ) in slab(A, h,−→v ) if E contains at least one
edge of any path γ that goes from Ā to hyp(A+ h−→v ) in slab(A, h,−→v ), see Figure 8.1.

If all the clusters CG,0(x) for x ∈ Ā have a diameter less than h/2, then there exists a set of edges
that cuts Ā from hyp(A+h−→v ) in slab(A, h,−→v ) of null capacity (take for instance the intersection of
the set

⋃
x∈Ā∩Zd ∂eCG,0(x) with slab(A, h,−→v )). Working with cutsets of null capacity is interesting

because the union of two cutsets of null capacity is of null capacity and therefore achieves the
minimal capacity among all cutsets. This is not the case if one of them has positive capacity.
Thus instead of considering a deterministic h, we are going to consider a random height HG,h(A)
as

HG,h(A) = inf

t ≥ h :

 ⋃
x∈cyl(A,h/2)∩Zd

CG,0(x)

 ∩W (A, t,−→v ) = ∅

 .
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The definition ofHG,h(A) ensures the existence of a null cutset between Ā and hyp(A+HG,h(A)−→v )
for h ≥ 2d.

Lemma 3.1. Let G be a distribution on [0,+∞] such that G({0}) > 1 − pc(d). Let −→v ∈ Sd−1.
Let A be a non-degenerate hyperrectangle normal to −→v and h > 2d a positive real number. The
set

E =
⋃

x∈Ā∩Zd
∂eCG,0(x)

cuts Ā from hyp(A+HG,h(A)−→v ) in slab(A,HG,h(A),−→v ) and has null capacity.

Proof. Let −→v ∈ Sd−1, let A be a non-degenerate hyperrectangle and h > 2d. Let γ be a path
from x ∈ Ā to y ∈ W (A,HG,h(A),−→v ) in slab(A,HG,h(A),−→v ). By definition of HG,h(A), we
have W (A,HG,h(A),−→v ) ∩

(
∪z∈ĀCG,0(z)

)
= ∅, thus y ∈ ext(∂eCG,0(x)) and γ must contain an

edge in ∂eCG,0(x). We conclude that E is indeed a cutset between Ā and hyp(A+HG,h(A)−→v ) in
slab(A,HG,h(A),−→v ). As all edges in the exterior edge boundary of a CG,0(x) have null capacity,
the set E is a cutset of null capacity.

Remark 3.2. This definition of HG,h(A) may seem complicated, but the idea behind is simple.
The aim was initially to build a random height HG,h(A) in such a way the minimal cutset between
A and hyp(A+HG,h(A)−→v ) has null capacity. This idea finds its inspiration from the construction
of the subadditive object in section 4 in [64]. However, because of technical issues that appear in
the section 4, we could not choose HG,h(A) as the smallest height such that there exists a cutset of
null capacity between A and hyp(A+HG,h(A)−→v ). The definition of HG,h(A) needs to also depend
on the finite clusters CG,0(z) of z ∈ cyl(A, h/2).

For the rest of this section, we will work with cutsets of null capacity and we do not need to
check if cutsets have minimal capacity. Among all the cutsets that achieve the minimal capacity,
we are interested in the ones with the smallest size. We denote by χG(A, h,−→v ) the following
quantity :

χG(A, h,−→v ) = inf
{

carde(E) : E cuts Ā from hyp(A+HG,h(A)−→v )
in slab(A,HG,h(A),−→v ) and TG(E) = 0

}
. (3.1)

Remark 3.3. Because of another technical difficulty that appears in section 4 we choose to make
appear Ā instead of A in the definition of χG(A, h,−→v ). We need the cutset not to be to close from
A in the proof of Proposition 4.1, taking Ā instead of A prevents this situation from happening.

As a corollary of Lemma 3.1, we know that χG(A, h,−→v ) is finite. Let E =
⋃
x∈Ā∩Zd ∂eCG,0(x).

We have the following control

χG(A, h,−→v ) ≤ carde(E) ≤
∑

x∈Ā∩Zd
carde(∂eCG,0(x)) ≤

∑
x∈Ā∩Zd

cd cardv(CG,0(x)) . (3.2)

Thanks to Theorem 2.13, as G({0}) > 1− pc(d), almost surely for all x ∈ Zd, the cluster CG,0(x)
is finite thus χG(A, h,−→v ) ≤

∑
x∈Ā∩Zd cd cardv(CG,0(x)) < +∞ a.s..

We expect χG(A, h,−→v ) to grow at order Hd−1(A) when the side lengths of A go to infinity.
We aim first to prove that limn→∞ E(χG(nA, h(n),−→v ))/Hd−1(nA) exists, is finite and does not
depend on A nor on h but only on −→v and G({0}).

4 Subadditive argument
In this section, we prove the convergence of E(χG(nA, h(n),−→v ))/Hd−1(nA), see Proposition

4.1 below. This proof relies on subadditive arguments. However, we do not use a subadditive
ergodic theorem for two reasons: we want to study this convergence for all directions (included
irrational ones) and all hyperrectangles, and we aim to show that the limit does not depend on
the hyperrectangle A nor on the height function h.
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Proposition 4.1. Let G be a distribution on [0,+∞] such that G({0}) > 1 − pc(d). For every
function h satisfying condition (?), for every −→v ∈ Sd−1, for every non-degenerate hyperrectangle
A normal to −→v , the limit

ζG({0})(−→v ) := lim
n→∞

E(χG(nA, h(n),−→v ))
Hd−1(nA)

exists and is finite. It depends only the direction −→v , on G({0}) and on d but not on A itself nor
h.

The proof of this proposition is inspired by the proof of Proposition 3.5. in [62]. This idea was
already present in [19]. In fact we mimic the beginning (i.e., the easy part) of the proof of the
subadditive ergodic theorem.

nA′

NA

2nDiam(A′)

D(n,N)

T (i)

Figure 8.2 – Decomposition of NA in translates of nA′

Proof. Let −→v ∈ Sd−1. Let us consider two non-degenerate hyperrectangles A and A′ which are
both orthogonal to the unit vector −→v , and two height functions h, h′ : N → R+ that respect
condition (?). As limn→∞ h(n) = limn→∞ h′(n) = ∞, if we take n ∈ N, there exists an N0(n)
such that for all N ≥ N0(n), we have h(N) ≥ h′(n) + 2d+ 1 and N Diam(A) > nDiam(A′). Our
goal is to cover the biggest hyperrectangle NA by translates of nA′. We do not want to cover the
whole hyperrectangle NA but at least the following subset of NA:

D(n,N) :=
{
x ∈ NA | d(x, ∂(NA)) > 2nDiamA′

}
,

where ∂(NA) denotes the relative boundary of NA.
There exists a finite collection of hyperrectangles (T (i))i∈I such that T (i) is a translate of nA′,

each T (i) intersects D(n,N), the collection (T (i))i∈I have pairwise disjoint interiors, and their
union ∪i∈IT (i) contains the set D(n,N) (see Figure 8.2). By definition of D(n,N), we also have
that the union ∪i∈IT (i) is contained in NA.

The quantities E(χG(T (i), h′(n),−→v )) and E(χG(nA′, h′(n),−→v )) are not necessarily equal. In-
deed, T (i) is the translate of nA′ by a non-integer vector in general. Thus, instead of considering
T (i), let us consider T ′(i) which is the image of nA′ by an integer translation, and T ′(i) is the
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translated of T (i) by a small vector. We want to choose T ′(i) such that T ′(i) ⊂ slab(NA, h,−→v ).
More precisely, for all i ∈ I, there exist two vectors −→ti ∈ Rd and −→ti ′ ∈ Zd such that

‖−→ti ‖∞ < 1, −→
ti · −→v ≥ 0, T ′(i) = T (i) +−→ti and T ′(i) = nA′ +−→ti ′ .

As for all i ∈ I, −→ti ·−→v <
√
d, the union ∪i∈IT ′(i) is contained in slab(NA, d,−→v ) (see Figure 8.3).

Since for all i ∈ I, T ′(i) ∈ slab(NA, d,−→v ) and h′(n) + 2d < h(N), then we have

cyl(T ′(i), h′(n)/2) ⊂ cyl(NA, h(N)/2) ,

and by definition of the random height

slab(T ′(i), HG,h′(n)(T ′(i)),−→v ) ⊂ slab(NA,HG,h(N)(NA),−→v ) .

The family (χG(T ′(i), h′(n),−→v ))i∈I is identically distributed but not independent. For all i ∈ I,
let Ei be a set that satisfies the infimum in the definition of χG(T ′(i), h′(n),−→v ). We want to build
from the family (Ei)i∈I a set of null capacity that cuts NA from hyp(NA + HG,h(N)(NA)) in
slab(NA,HG,h(N)(NA),−→v ) on the event

Fn,N =
⋂

x∈cyl(NA,h(n)/2+d)

{
cardv(CG,0(x)) < h(N)

4

}
. (4.1)

D(n,N)nA′

hyp(NA+HG,h(N)(NA)−→v )

a path γ from NA to
hyp(NA+HG,h(N)(NA)−→v ) in
slab(NA,HG,h(N)(NA),−→v )

NA

T ′(i)

a T (i) for i ∈ I

−→v

Figure 8.3 – Representation of the T ′(i) for i ∈ I.

We fix r = 4d. Let V 1
0 (respectively V 2

0 , V 3
0 , V0) be the set of vertices included in E1

0 (resp.
E2

0 , E3
0 , E0), where we define

E1
0 =

⋃
i∈I
V(∂T ′(i), r), E2

0 = V(NA \D(n,N), r),

E3
0 = V(cyl(∂(NA), h(N)/2), r) and E0 = E1

0 ∪ E2
0 ∪ E3

0 .

The set
E =

⋃
i∈I

Ei ∪
⋃
x∈V0

∂eCG,0(x)

cuts NA from hyp(NA+HG,h(N)(NA)−→v ) in slab(NA,HG,h(N)(NA),−→v ) and is of null capacity
on the event Fn,N . We postpone the proof of this result until the end of the proof of Proposition
4.1, see Lemma 4.2. Thus, we can upperbound the quantity χG(NA, h(N),−→v ) by the size of E
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on the event Fn,N and by the size of
⋃
x∈NA∩Zd ∂eCG,0(x) on the event Fcn,N (by Lemma 3.1):

χG(NA, h(N),−→v ) ≤ χG(NA, h(N),−→v )1Fn,N + χG(NA, h(N),−→v )1Fc
n,N

≤
∑
i∈I
|Ei|+

∑
x∈V0

|∂eCG,0(x)|+

 ∑
x∈NA∩Zd

|∂eCG,0(x)|

1Fc
n,N

≤
∑
i∈I

χG(T ′(i), h′(n),−→v ) +
∑
x∈V0

|∂eCG,0(x)|+

 ∑
x∈NA∩Zd

|∂eCG,0(x)|

1Fc
n,N

.

Taking the expectation we get

E(χG(NA, h(N),−→v ))
Hd−1(NA)

≤
∑
i∈I

E(χG(T ′(i), h′(n),−→v ))
Hd−1(NA) +

∑
x∈V0

E(|∂eCG,0(x)|)
Hd−1(NA) +

∑
x∈NA∩Zd

E(|∂eCG,0(x)|1Fc
n,N

)
Hd−1(NA)

≤ |I|E(χG(nA′, h′(n),−→v ))
Hd−1(NA) + cardv(V0)

Hd−1(NA)E(|∂eCG,0(0)|) +
∑

x∈NA∩Zd

√
E(|∂eCG,0(x)|2)P(Fcn,N )

Hd−1(NA)

≤ E(χG(nA′, h′(n),−→v ))
Hd−1(nA′) + cardv(V0)

Hd−1(NA)E(|∂eCG,0(0)|) + card(NA ∩ Zd)

√
E(|∂eCG,0(0)|2)P(Fcn,N )

Hd−1(NA)
(4.2)

where we use in the second inequality Cauchy-Schwartz’ inequality. By definition of Fn,N (see
(4.1)) and using Theorem 2.13, we obtain the following upperbound:

P(Fcn,N ) ≤
∑

x∈cyl(NA,h(n)/2+d)∩Zd
P(cardv(CG,0(x)) ≥ h(N)/4)

≤ cardv(cyl(NA, h(n)/2 + d) ∩ Zd)P(cardv(CG,0(0)) ≥ h(N)/4)
≤ c′dHd−1(NA)h(n)κ1 exp(−κ2h(N)/4)

where c′d is a constant depending only on the dimension d. We recall that as G({0}) > 1−pc(d), by
Theorem 2.13, we have E(|∂eCG,0(0)|) <∞ and E(|∂eCG,0(0)|2) <∞. Moreover, as h(N)/ log(N)
goes to infinity when N goes to infinity, the third term in the right hand side of (4.2) goes to
0 when N goes to infinity. We now want to control the size of V0. There exists a constant cd
depending only on the dimension d such that:

cardv(V 1
0 ) ≤ cd

Hd−1(NA)
Hd−1(nA′)H

d−2(∂(nA′)) ,

cardv(V 2
0 ) ≤ cdHd−2(∂(NA)) Diam(nA′)

and
cardv(V 3

0 ) ≤ cdHd−2(∂(NA))h(N) .

Thus,

cardv(V0) ≤ cd

(
Hd−1(NA)
Hd−1(nA′)H

d−2(∂(nA′)) +Hd−2(∂(NA))(Diam(nA′) + h(N))
)

and finally since h(N)/N goes to 0 as N goes to infinity we obtain

lim
n→∞

lim
N→∞

cardv(V0)
Hd−1(NA) = 0 .
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By first sending N to infinity and then n to infinity in inequality (4.2), we get that

lim sup
N→∞

E(χG(NA, h(N),−→v ))
Hd−1(NA) ≤ lim inf

n→∞

E(χG(nA′, h′(n),−→v ))
Hd−1(nA′) .

By setting A = A′ and h = h′, we deduce the existence of the following limit

lim
n→∞

E(χG(nA, h(n),−→v ))
Hd−1(nA)

and the inequality

lim
n→∞

E(χG(nA, h(n),−→v ))
Hd−1(nA) ≤ lim

n→∞

E(χG(nA′, h′(n),−→v ))
Hd−1(nA′) .

Exchanging the role of A, h and A′, h′, we conclude that the two limits are equal. Note that χG
does not depend on all the distribution G but only on G({0}). Indeed, let us couple (tG(e))e∈Ed
with a family (t̂(e))e∈Ed of Bernoulli of parameter 1 − G({0}) in the following way: for an edge
e ∈ Ed, t̂(e) = 1tG(e)>0. With this coupling, the value of χG is the same for the two families
of capacities. Therefore, the limit does not depend on A nor h but only on the direction −→v , on
G({0}) and on d, we denote it by ζG({0})(−→v ). Moreover, thanks to inequality (3.2), we know that
there exists a constant c′d depending only on the dimension d such that

E(χG(nA, h(n),−→v ))
Hd−1(nA) ≤ c′dE(cardv(CG,0(0))) <∞ ,

thus ζG({0})(−→v ) is finite.

To complete the proof of Proposition 4.1, it remains to prove that the set E is a cutset on the
event Fn,N . We do not recall the notations that were introduced in the proof of Proposition 4.1.

Lemma 4.2. The set E = (∪i∈IEi) ∪ (∪x∈V0∂eCG,0(x)) is a cutset of null capacity that cuts NA
from hyp(NA+HG,h(N)(NA)−→v ) in slab(NA,HG,h(N)(NA),−→v ) on the event Fn,N .

Proof. Let γ be a path from x ∈ NA to y ∈W (NA,HG,h(N)(NA),−→v ) in slab(NA,HG,h(N)(NA),−→v ),
we denote it by γ = (v0, e1, v1, . . . , em, vm) where v0 = x and vm = y. Let us consider p the last
moment when γ exits NA, i.e.,

p = inf
{
i ∈ {0, . . . ,m} : ∀j > i, vj /∈ NA

}
.

We distinguish several cases.

Case (i): If the edge ep+1 cuts cyl(∂(NA), d) ∪ (NA \ D(n,N) + d−→v ), then vp ∈ V 2
0 . Besides,

we have vp ∈ cyl(NA, h(N)/2) and by definition of HG,h(N)(NA), the point y is not contained in
CG,0(vp). Therefore, we have γ ∩ ∂eCG,0(vp) 6= ∅ and so as vp ∈ V0, we get that γ ∩ E 6= ∅.

Case (ii): We consider now the case where the edge ep+1 cuts (D(n,N) + d−→v ) \ (
⋃
i∈I T

′(i)), we
define π the orthogonal projection on hyp(NA) and z = ep+1∩hyp(NA+d−→v ). As π(z) ∈ D(n,N),
there exists an i ∈ I such that π(z) ∈ T (i), π(z) /∈ π(T ′(i)) and so π(z) ∈ T (i) \ π(T ′(i)). More-
over, as T ′(i) = T (i) + −→ti where ‖−→ti ‖∞ < 1, we get that π(z) ∈ V(π(∂T ′(i)), d) ∩ hyp(NA) and
vp ∈ V(∂T ′(i), r) ⊂ E1

0 . Therefore, we have vp ∈ V0 and we can conclude as in the previous case
that γ ∩ E 6= ∅.

Case (iii): We consider the case where there exists an i ∈ I such that vp /∈ T ′(i) and the
edge ep+1 cuts T ′(i) ∩ hyp(NA + d−→v ). Therefore the vertex vp is close to the boundary of
T ′(i). Actually, the vertex vp is close to the lateral boundary cyl(∂T ′(i), d) of T ′(i). Indeed, as
T ′(i) ⊂ slab(NA,

√
d,−→v ), the vertex vp cannot be "under" T ′(i), i.e., in slab(NA,−→ti · −→v ,−→v ).

Therefore, the vertex vp belongs to V(∂T ′(i), d) ⊂ E1
0 , we conclude as in the previous cases that
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γ ∩ E 6= ∅.

Case (iv): Finally, we consider the case where there exists an i ∈ I such that the edge ep+1 cuts
T ′(i) ∩ hyp(NA + d−→v ) and vp ∈ T ′(i) (see Figure 8.4). Let us consider the first time after p
when γ cuts hyp(T ′(i) + HG,h′(n)(T ′(i))−→v ) ∪ cyl(∂(NA), h(N)/2). On the event Fn,N , we have
the three following events:

slab(T ′(i), HG,h′(n)(T ′(i)),−→v ) ⊂ slab(NA, h(N)/2,−→v ) ,

vp+1 ∈ slab(T ′(i), HG,h′(n)(T ′(i)),−→v ) ∩ cyl(NA, h(N)/2) ,
y /∈ slab(T ′(i), HG,h′(n)(T ′(i)),−→v ) ∩ cyl(NA, h(N)/2) .

Moreover, by definition of vp, the path γ cannot exit slab(T ′(i), HG,h′(n)(T ′(i)),−→v ) by hyp(T ′(i)),
otherwise, γ would come back in NA. Therefore, the index

l = inf
{
j > p : ej cuts hyp(T ′(i) +HG,h′(n)(T ′(i))−→v ) ∪ cyl(∂(NA), h(N)/2)

}
is well defined. If the edge el cuts cyl(∂(NA), h(N)/2), then vl−1 ∈ V 3

0 and by definition of
HG,h(N)(NA), we get y /∈ CG,0(vl−1) and it follows that

γ ∩ ∂eCG,0(vl−1) 6= ∅ .

Otherwise, the edge el cuts hyp(T ′(i)+HG,h′(n)(T ′(i))−→v ) and vl−1 ∈W (T ′(i), HG,h′(n)(T ′(i)),−→v ).
Therefore, the portion of γ from vp to vl−1 is a path from T ′(i) to hyp(T ′(i) +HG,h′(n)(T ′(i))−→v )
that stays in slab(T ′(i), HG,h′(n)(T ′(i)),−→v ) (by definition of vl−1). Thus by definition of Ei, we
have γ ∩ Ei 6= ∅.

nA′

hyp(NA+HG,h(N)(NA)−→v )

NA

T ′(i)
a T (i) for i ∈ I

x
vp

y

h(N)
2

HG,h′(n)(T ′(i))

hyp(T ′(i) +HG,h′(n)(T ′(i))−→v )

slab(T ′(i), HG,h′(n)(T ′(i)),−→v ) ∩
cyl(NA, h(N)/2)

a path γ from NA to
hyp(NA+HG,h(N)(NA)−→v )

Figure 8.4 – A path from NA to hyp(NA+HG,h(N)(NA)−→v ) in slab(NA,HG,h(N)(NA),−→v ) such
that vp ∈ T ′(i) for an i ∈ I .

Therefore, we conclude that, on the event Fn,N , the set E cuts NA from hyp(NA+HG,h(N)(NA))
in slab(NA,HG,h(N)(NA),−→v ). Since for all i ∈ I, the set Ei has null capacity and for any x ∈ Zd,
the set ∂eCG,0(x) contains only edges with null capacity, the set E itself has null capacity.

5 From slabs to cylinders
We recall that the quantity of interest is the flow through the cylinder, and that we have

studied the flow from a thick rectangle to an hyperplane for technical reasons. In this section we
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are going to show that these flows are quite similar, more precisely we want to show the following
proposition.

Proposition 5.1. Let G be a distribution on [0,+∞] such that G({0}) > 1 − pc(d). For any
−→v ∈ Sd−1, for any non-degenerate hyperrectangle A normal to −→v , for any height function h that
satisfies condition (?),

lim
n→∞

E(χG(nA, h(n),−→v ))
Hd−1(nA) = lim

n→∞

E(ψG(nA, h(n),−→v ))
Hd−1(nA) = ζG({0})(−→v ) .

Proof. Let A be a non-degenerate hyperrectangle and h a height function satisfying condition
(?). Let −→v be one of the two unit vectors normal to A. We prove Proposition 5.1 in two steps.
In the first step, we obtain an upper bound for E(χG(nA, h(n),−→v )) by building a cutset of null
capacity between the top and the bottom of cyl(nA, h(n)) from a cutset in slab(nA, h(n),−→v )
that achieves the infimum in ψG(nA, h(n),−→v ). In the second step, we obtain a lower bound for
E(χG(nA, h(n),−→v )) by doing the reverse, i.e., we build a cutset between a translate of nA and
hyp(nA + h(n)−→v ), from a cutset in cyl(nA, h(n)) that achieves the infimum in the definition of
χG(nA, h(n),−→v ).

−→v
h(n)

the dual of a set of edges that cuts
nA from hyp(nA+ h(n)−→v ) in
slab(nA, h(n),−→v )

nA

slab(nA, h(n),−→v )

hyp(nA+ h(n)−→v )

a path γ from T (nA, h(n)) to
B(nA, h(n)) in cyl(nA, h(n))

cyl(nA, h(n))

nA

Figure 8.5 – A cutset that cuts nA from hyp(nA+h(n)−→v ) in slab(nA, h(n),−→v ) and the top from
the bottom of the cylinder cyl(nA, h(n)) on the event En.

Step (i): We denote by En the following event

En =
⋂

x∈cyl(nA,h(n)/2)∩Zd

{
cardv(CG,0(x)) < h(n)

2

}
.

On the event En, we have thatHG,h(n)(nA) = h(n). By definition, we have B(nA, h(n)) ⊂ nA ∩ Zd
and T (nA, h(n)) ⊂W (nA, h(n),−→v ). On the event En, as any path from the top to the bottom of
cyl(nA, h(n)) is also a path from hyp(nA + h(n)−→v ) to nA in slab(nA, h(n),−→v ), any cutset that
cuts hyp(nA + h(n)−→v ) from nA is also a cutset from the top to the bottom in the cylinder (see
Figure 8.5). Finally, any cutset that achieves the infimum in χG(nA, h(n),−→v ) is a cutset of null
capacity (and therefore of minimal capacity) for the flow from the top to the bottom in cylinder
cyl(nA, h(n)). Thus, on the event En,

ψG(nA, h(n),−→v ) ≤ χG(nA, h(n),−→v ) .
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Finally, for a constant Cd depending only on the dimension d.

E(ψG(nA, h(n),−→v ))
Hd−1(nA) ≤ E(ψG(nA, h(n),−→v )1En)

Hd−1(nA) +
E(ψG(nA, h(n),−→v )1Ecn)

Hd−1(nA)

≤ E(χG(nA, h(n),−→v ))
Hd−1(nA) + carde(cyl(nA, h(n)) ∩ Ed) · P(Ecn)

Hd−1(nA)

≤ E(χG(nA, h(n),−→v ))
Hd−1(nA) + Cdh(n)2Hd−1(nA)κ1 exp(−κ2h(n)/2) ,

where we use in the last inequality Theorem 2.13. As h satisfies condition (?) the second term of
the right hand side goes to 0 when n goes to infinity and we obtain

lim sup
n→∞

E(ψG(nA, h(n),−→v ))
Hd−1(nA) ≤ lim

n→∞

E(χG(nA, h(n),−→v ))
Hd−1(nA) = ζG({0})(−→v ) . (5.1)

Step (ii): There exists an hyperrectangle T ′, a small vector −→t and an integer vector −→u such
that T ′ = nA + −→u , T ′ = nA − d−→v + −→t , ‖−→t ‖∞ < 1 and −→t · −→v ≤ 0. Therefore, we have
−d −

√
d ≤ −→u · −→v < −d and T ′ ⊂ slab(A,∞,−→v )c. We now want to build a set of edges of null

capacity that cuts T ′ from hyp(T ′ +HG,h(n)−−→u ·−→v (T ′)−→v ) starting from a cutset between the top
and the bottom of the cylinder cyl(nA, h(n)). We define

E ′n =
⋂

x∈V(cyl(nA,h(n)/2),2d)∩Zd

{
cardv(CG,0(x)) < h(n)

2

}
.

On the event E ′n, the minimal capacity of a cutset for the flow from the top to the bottom
of the cylinder cyl(nA, h(n)) is null (the set of null capacity ∪x∈nA∩Zd∂eCG,0(x) is a cutset)
and as the cylinder cyl(T ′, (h(n) − −→u · −→v )/2) is included in V(cyl(nA, h(n)/2), 2d), we obtain
HG,h(n)−−→u ·−→v (T ′) = h(n)−−→u · −→v so that hyp(T ′+HG,h(n)−−→u ·−→v (T ′)−→v ) = hyp(nA+h(n)−→v ). We
denote by E one of the sets that achieve the infimum in ψG(nA, h(n),−→v ). In order to build a set
that cuts T ′ from hyp(nA+h(n)−→v ) from E, we need to add to E edges to prevent flow from escap-
ing through the vertical sides of cyl(nA, h(n)). Let V be a set that contains a discretized version of
the vertical sides of cyl(nA, h(n)). More precisely, we define by V = V(cyl(∂(nA), h(n)), 2d)∩Zd.
On the event E ′n, the following set

F = E ∪

(⋃
x∈V

∂eCG,0(x)
)

cuts T ′ from hyp(nA+h(n)−→v ) and is of null capacity (see Figure 8.6). We postpone the proof of
this fact until the end of the proof of Proposition 5.1, see Lemma 5.2. For a constant C ′d depending
on d, we obtain

E(χG(T ′, h(n)−−→u · −→v ,−→v ))
Hd−1(nA)

≤
E(χG(T ′, h(n)−−→u · −→v ,−→v )1E′n)

Hd−1(nA) +
E(χG(T ′, h(n)−−→u · −→v ,−→v )1E′cn )

Hd−1(nA)

≤ E(|F |)
Hd−1(nA) +

E(
∑
x∈T ′∩Zd |∂e(CG,0(x))|1E′cn )

Hd−1(nA)

≤ E(ψG(nA, h(n),−→v )) + C ′dh(n)Hd−2(∂(nA))E(|∂e(CG,0(0))|)
Hd−1(nA)

+
C ′dHd−1(T ′)

√
E(|∂e(CG,0(0))|2)Cdh(n)Hd−1(nA)κ1 exp(−κ2h(n))

Hd−1(nA)

≤ E(ψG(nA, h(n),−→v ))
Hd−1(nA) + C ′dh(n)Hd−2(∂(nA))E(|∂e(CG,0(0))|)

Hd−1(nA)

+ C ′′d

√
Hd−1(nA)E(|∂e(CG,0(0))|2)h(n)κ1 exp(−κ2h(n)) (5.2)
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where we use in the second inequality the control of χG(T ′, h(n)−−→u · −→v ,−→v ) obtained in Lemma
3.1 and Cauchy-Schwartz’ inequality in the third inequality.

As Hd−1(nA) is of order nd−1, Hd−2(∂(nA)) is of order nd−2 and h satisfies condition (?),
the second and the third terms of the right hand side of the inequality (5.2) go to 0 as n goes to
infinity. Moreover, thanks to Proposition 4.1, using the invariance of the model by the translation
by an integer vector and the fact that the limit ζG({0})(−→v ) does not depend on the height function,

lim
n→∞

E(χG(T ′, h(n)−−→u · −→v ,−→v ))
Hd−1(T ′) = lim

n→∞

E(χG(nA, h(n)−−→u · −→v ,−→v ))
Hd−1(T ′)

= lim
n→∞

E(χG(nA, h(n),−→v ))
Hd−1(nA) = ζG({0})(−→v ) .

Thus, we obtain from (5.2)

ζG({0})(−→v ) = lim
n→∞

E(χG(nA, h(n),−→v ))
Hd−1(nA) ≤ lim inf

n→∞

E(ψG(nA, h(n),−→v ))
Hd−1(nA) . (5.3)

Combining inequalities (5.1) and (5.3), we get that

lim
n→∞

E(χG(nA, h(n),−→v ))
Hd−1(nA) = lim

n→∞

E(ψG(nA, h(n),−→v ))
Hd−1(nA) = ζG({0})(−→v ) .

To complete the proof of Proposition 5.1, it remains to prove that the set F is a cutset on the
event E ′n. We recall that all the notations were introduced in the proof of Proposition 5.1.

Lemma 5.2. On the event E ′n, the following set

F = E ∪

(⋃
x∈V

∂eCG,0(x)
)

cuts T ′ from hyp(nA+ h(n)−→v ) and is of null capacity (see Figure 8.6).

−→v

h(n)−−→u · −→v

the dual of a set of edges
that cuts B(nA, h(n))
from T (nA, h(n)) in
cyl(nA, h(n))

nA

slab(T ′, h(n)−−→u · −→v ,−→v )

hyp(nA+ h(n)−→v )

a path γ from
hyp(nA+ h(n)−→v ) to T ′ in
slab(T ′, h(n)−−→u · −→v ,−→v )

cyl(nA, h(n))
the dual set of a
∂eCG,0(x), x ∈ V

T ′−→u

Figure 8.6 – Construction of a cutset from T ′ to hyp(nA+ h(n)−→v ) from a cutset from the top to
the bottom in the cylinder cyl(nA, h(n)) on the event E ′n

Proof. Let γ = (y = v0, e1, v1, . . . , em, vm = x) be a path from y ∈ W (nA, h(n),−→v ) to x ∈
T ′ that stays in slab(T ′, h(n) − −→u · −→v ,−→v ). Let us consider the first moment p when γ exits
slab(nA, h(n),−→v ), i.e.,

p = inf
{
i ∈ {0, . . . ,m}, vi /∈ slab(nA, h(n),−→v )

}
.
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We distinguish several cases.
• Suppose that vp−1 ∈ B(nA, h(n)) and γ′ = (v0, e1, · · · , ep−1, vp−1), the portion of γ between

v0 and vp−1, stays in cylinder cyl(nA, h(n)). Then γ′ is a path from the top to the bottom of
cyl(nA, h(n)) that stays in cyl(nA, h(n)), thus γ′ ∩ E 6= ∅ and γ ∩ E 6= ∅.
• Suppose that vp−1 ∈ B(nA, h(n)) and that γ′ does not stay in the cylinder cyl(nA, h(n)).

Thus γ′ must intersect the boundary of the cylinder cyl(nA, h(n)). As γ′ stays in slab(nA, h(n),−→v ),
γ′ can only intersect the vertical sides of the cylinder, i.e., cyl(∂(nA), h(n)), we obtain γ′∩V 6= ∅.
There exists z ∈ V such that γ′ ∩ {z} 6= ∅. On the event E ′n, γ′ cannot be included in CG,0(z).
Indeed, if γ′ ⊂ CG,0(z), then γ′ ⊂ CG,0(x) and CG,0(x) has a diameter at least h(n), it is impossible
on the event E ′n. Therefore we obtain γ′ ∩ ∂eCG,0(z) 6= ∅ and γ ∩ F 6= ∅.
• Suppose now that vp−1 /∈ B(nA, h(n)), thus vp−1 /∈ cyl(nA, h(n)). If x ∈ V , we conclude as

in the previous case that on the event E ′n, γ ∩ ∂eCG,0(x) 6= ∅ and γ ∩ F 6= ∅. Otherwise ,if x /∈ V ,
then x ∈ cyl(nA− 2d−→v , h(n) + 2d). Since we have vp−1 /∈ cyl(nA− 2d−→v , h(n) + 2d) and the path
γ stays in slab(nA − 2d−→v , h(n) + 2d,−→v ),it follows that γ cuts cyl(∂(nA − 2d−→v ), h(n) + 2d) and
γ ∩ V 6= ∅. We conclude as in the previous cases that γ ∩ F 6= ∅.

On the event E ′n, we obtain that γ ∩ F 6= ∅. Moreover, the set E has null capacity so it is also
the case for the set F . Thus, the set F cuts T ′ from hyp(nA+ h(n)−→v ) and has null capacity on
the event E ′n.

6 Concentration
We aim here to prove Theorem 2.12. To prove this theorem, we will need Proposition 5.1 and

the concentration inequality stated in Proposition 2.14 for ψG that is a function of the capacity
of the edges inside the cylinder.

Remark 6.1. The advantage of using a concentration inequality on ψG rather than on χG is
that ψG depends on the capacity of a finite deterministic set of edges whereas χG depends on an
infinite set of edges (the edges in slab(A,∞,−→v )). Therefore ψG is more appropriate to apply this
concentration inequality.

Proof of Theorem 2.12. Let p < pc(d). Let −→v ∈ Sd−1. Let A be a non-degenerate hyperrectangle
normal to −→v and h an height function that satisfies condition (?). We consider the cylinder
cyl(nA, h(n)) and we enumerate its edges as e1, . . . , emn . We define

(tG(e1), . . . , tG(emn), t′G(e1), . . . , t′G(emn))

a family of independent random variables distributed according to distribution G. The quantity
ψG(nA, h(n),−→v ) is a random variable that depends only on the capacities of the edges e1, . . . , emn .
We define

X = (tG(e1), . . . , tG(emn)) ,

∀i ∈ {1, . . . ,mn} X(i) = (tG(e1), . . . , t′G(ei), . . . , tG(emn))

and f the function defined by ψG(nA, h(n),−→v ) = f(X) = Z. We define Z ′i = f(X(i)). We denote
by Fn and Gn the following events that depend on tG(e1), . . . , tG(emn),

Fn =

 ∑
x∈B(nA,h(n))∩Zd

cardv(CG,0(x)) ≤ Cnd−1


and

Gn =
⋂

x∈cyl(nA,h(n))∩Zd

{
cardv(CG,0(x)) ≤ min

(
h(n)

4 , n1/5
)}

.

Since P(cardv(CG,0(x)) > n) ≤ κ1 exp(−κ2n) (see Theorem 2.13), we can find C large enough such
that there exist positive constants C1 and C2 depending on A such that

P(Fcn) ≤ C1 exp(−C2n
d−1) . (6.1)
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This fact is proven in the proof of Proposition 2.3 in [64]. Moreover, using again Theorem 2.13,
we obtain

P(Gcn) ≤ mnκ1 exp
(
−κ2 min

(
h(n)

4 , n1/5
))

. (6.2)

On the event Gn, the minimal capacity of a cutset from the top to the bottom of the cylinder
cyl(nA, h(n)) is null. Let i ∈ {1, . . . ,mn}, let us assume that f(X) < f(X(i)). If t′G(ei) < tG(ei),
then we have tG(ei) > 0. On the event Gn, there exists a cutset of null capacity E (thus E does not
contain ei) that achieves the infimum in f(X). It is still a cutset of null capacity in cyl(nA, h(n))
for the distribution X(i). Thus, we obtain the following contradiction f(X(i)) ≤ |E| = f(X), so if
f(X) < f(X(i)) then t′G(ei) ≥ tG(ei) on the event Gn.

Let us now assume that f(X) < f(X(i)), then we have tG(ei) ≤ t′G(ei) on the event Gn.
Let us denote by Rn the intersection of all the minimal cutsets that achieve the infimum in
ψG(nA, h(n),−→v ). If ei /∈ Rn, then there exists a cutset E that does not contain ei and that
achieves the infimum in ψG(nA, h(n),−→v ), i.e., f(X) = |E|. On the event Gn, all the cutsets that
achieve the infimum in f(X) are of null capacity. Since E is a cutset of null capacity that does not
contain the edge ei, it is still a cutset of null capacity in cyl(nA, h(n)) for the capacitiesX(i). Thus,
f(X(i)) ≤ f(X), which is a contradiction. Thus on Gn, if f(X) < f(X(i)) then tG(ei) ≤ t′G(ei)
and ei ∈ Rn. We denote by E a cutset that achieves the infimum in f(X). We have ei ∈ E, let
us define

Ẽ = (E ∪ ∂eCG,0(e+
i ) ∪ ∂eCG,0(e−i )) \ {ei}

where we write ei = 〈e−i , e
+
i 〉. This set has null capacity for both distributions X and X(i). Let

us prove that on the event Gn, the set Ẽ cuts the top from the bottom of cylinder cyl(nA, h(n)).
Let γ be a path from x ∈ T (nA, h(n)) to y ∈ B(nA, h(n)). If ei /∈ γ then as E is a cutset, we

have that γ∩E \{ei} 6= ∅ thus γ∩ Ẽ 6= ∅. We now assume that ei ∈ γ. On the event Gn, γ cannot
be included in CG,0(e+

i )∪CG,0(e−i ). Thus, either x /∈ CG,0(e+
i )∪CG,0(e−i ) or y /∈ CG,0(e+

i )∪CG,0(e−i ).
We study only the case y /∈ CG,0(e+

i )∪CG,0(e−i ), the other case is studied similarly. We denote by
g the edge γ takes to finally exit CG,0(e+

i ) ∪ CG,0(e−i ), i.e., if we write γ = (v0, e
′
1, v1, . . . , e

′
m, vm)

and we denote by
p = max

{
j : vj ∈ CG,0(e+

i ) ∪ CG,0(e−i )
}

then g = e′p+1. By definition of p, we must have g 6= ei and g ∈ ∂eCG,0(e+
i ) ∪ ∂eCG,0(e−i ) \ {ei}.

As g ∈ Ẽ, we finally obtain that γ ∩ Ẽ 6= ∅ and that on the event Gn, Ẽ is indeed a cutset in the
cylinder of null capacity for the distribution X(i).

Thus on the event Gn and when f(X) < f(X(i)), we have f(X(i)) ≤ |Ẽ| and ei ∈ Rn so that

f(X(i))− f(X) ≤ carde(CG,0(e+
i ) ∪ CG,0(e−i ))1ei∈Rn

≤ cd
[
cardv(CG,0(e+

i )) + cardv(CG,0(e−i )
]
1ei∈Rn ≤ 2cdn1/51ei∈Rn . (6.3)

Therefore, we have

V − =
mn∑
i=1

E[(f(X)− f(X(i)))2
−|X] ≤

(
mn∑
i=1

(2cdn1/5)21ei∈Rn1Gn

)
+m3

n1Gcn

≤ (2cdn1/5)2|Rn|1Gn +m3
n1Gcn . (6.4)

Notice that 1Gn1Gcn = 0. On the event Fn, we have |Rn| ≤ Cnd−1 and so

E[(V −)2] ≤ (2cdn1/5)4E[|Rn|2] +m6
nP(Gcn) ≤ (2cdn1/5)4(C2n2(d−1) +m2

nP(Fcn)) +m6
nP(Gcn) .

(6.5)

Using inequality (6.3), we have for all i ∈ {1, . . . ,mn}

(f(X)− f(X(i)))− ≤ 2cdn1/51Gn +mn1Gcn := M .

We have

E
[
M4] ≤ (2cdn1/5)4 +m4

nP(Gcn) . (6.6)
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Using Theorem 2.14, we obtain

E[(Z − EZ)4
−] ≤ CE[(V −)2] (6.7)

and

E[(Z − EZ)4
+] ≤ C max(E[(V −)2],E

[
M4]) . (6.8)

Combining inequalities (6.1), (6.2), (6.5), (6.6), (6.7) and (6.8), we obtain that

E[(Z − EZ)4] = O
(
n2(d−1)+4/5

)
.

Let ε > 0. Using Markov inequality we obtain

P
(∣∣∣∣ψG(nA, h(n),−→v )

Hd−1(nA) − E
(
ψG(nA, h(n),−→v )
Hd−1(nA)

)∣∣∣∣ > ε

)
≤ E[(Z − EZ)4]
Hd−1(nA)4ε4 .

As the right hand side of the previous inequality is of order at most n−2(d−1)+4/5, we can conclude
that for d ≥ 2, the sum

∞∑
n=1

P
(∣∣∣∣ψG(nA, h(n),−→v )

Hd−1(nA) − E
(
ψG(nA, h(n),−→v )
Hd−1(nA)

)∣∣∣∣ > ε

)
is finite. By Borel-Cantelli Lemma, we deduce that almost surely

lim sup
n→∞

∣∣∣∣ψG(nA, h(n),−→v )
Hd−1(nA) − E

(
ψG(nA, h(n),−→v )
Hd−1(nA)

)∣∣∣∣ ≤ 0 ,

and finally,

lim
n→∞

ψG(nA, h(n),−→v )
Hd−1(nA) = ζG({0})(−→v ) a.s. .

This yields the result.

Remark 6.2. With the standard Efron-Stein inequality, we did not manage to obtain a bound
that is summable in dimension 2. That is the reason why we investigated for a higher moment (the
fourth moment turned out to be enough). Note that, an exponential type concentration inequality
does not work with the bound of V − we obtained in (6.4) since the probability P(Gcn) does not
counterbalance the term exp(m3

n).
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