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Abstract

In this thesis, a multi-scale and multi-physics coupling computation procedure for
a 2D and 3D setting is presented. When modeling the behavior of a structure by a
multi-scale method, the macro-scale is used to describe the homogenized response
of the structure, and the micro-scale to describe the details of the behavior on
the smaller scale of the material where some inelastic mechanisms, like damage
or plasticity, can be taken into account. The micro-scale mesh is defined for
each macro-scale element in a way to fit entirely inside it. The two scales are
coupled by imposing a constraint on the displacement field over their interface.
The computation is performed using the operator split solution procedure on
both scales, using the standard finite element method.

In a 2D setting, an embedded discontinuity is implemented in the Q4 macro-
scale element to capture the softening behavior happening on the micro-scale. For
the micro-scale element, a constant strain triangle (CST) is used. In a 3D setting,
a macro-scale tetrahedral and hexahedral elements are developed, while on the
micro-scale Timoshenko beam finite elements are used.

This multi-scale methodology is extended with a multi-physics functionality,
to simulate the behavior of a piezoelectric material. An additional degree of
freedom (voltage) is added on the nodes of the 3D macro-scale tetrahedral and
hexahedral elements. For the micro-scale element, a Timoshenko beam element
with added polarization switching model is used. Also, a multi-scale Hellinger-
Reissner formulation for electrostatics has been developed and implemented
for a simple electrostatic patch test.

For implementing the proposed procedure, Finite Element Analysis Program
(FEAP) is used. To simulate the behavior on both macro and micro-scale, FEAP is
modified and two different version of FEAP code are implemented - macroFEAP
and microFEAP. For coupling, the two codes are exchanging information between
them, and Component Template Library (CTL) is used.

The capabilities of the proposed multi-scale approach in a 2D and 3D pure
mechanics settings, but also multi-physics environment have been shown. The
theoretical formulation and algorithmic implementation are described, and the
advantages of the multi-scale approach for modeling heterogeneous materials
are shown on several numerical examples.
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Résumé

Dans le cadre de cette thèse, une approche de calcul de couplage multi-échelle et
multi-physique en 2D et en 3D est présentée. La modélisation multi-échelle d’une
structure consiste de l’échelle macro qui représente la réponse homogénéisée
de la structure entière, tandis que l’échelle micro peut capturer les détails du
comportement à la petite échelle dumatériau, où des mécanismes inélastiques, tels
que la plasticité ou l’endommagement, peuvent être pris en compte. L’intérieur de
chaque macro-élément est rempli par le maillage à l’échelle micro qui s’y adapte
entièrement. Les deux échelles sont couplées à travers le champ de déplacements
imposé à l’interface. Le calcul par éléments finis est effectué, en utilisant une
procédure de solution operator-split sur les deux échelles.

En 2D, une discontinuité dans le champ de déplacements est introduite à
l’échelle macro dans un élément fini Q4, pour pouvoir capturer l’adoucissement
qui se produit à l’échelle micro, où des éléments finis triangulaires (CST - Constant
Strain Triangle) sont utilisés. En 3D, des éléments finis de tétraèdre et d’hexaèdre
sont développés à l’échelle macro, pendant que des poutres de Timoshenko
sont utilisées à l’échelle-micro.

Cette méthodologie multi-échelle est étendue avec des fonctionnalités multi-
physiques pour simuler le comportement d’un matériau piézoélectrique. Un
degré de liberté supplémentaire qui représente le voltage est ajouté aux nœuds
des macro-éléments de tétraèdre et d’hexaèdre en 3D. La poutre de Timoshenko
comportant un modèle de commutation de polarisation est utilisée à l’échelle
micro. Également, une formulation multi-échelle de Hellinger-Reissner a été
développée et implémentée pour un simple patch test en électrostatique.

La procédure proposée estmise enœuvre dans le logiciel de calcul par éléments
finis FEAP - Finite Element Analysis Program. Pour simuler le comportement aux
deux échelles, FEAP est modifié, et deux versions différentes du code sont
obtenues - macroFEAP et microFEAP. Le couplage de ces codes est réalisé avec
Component Template Library - CTL qui rend possible l’échange d’informations
entre les deux échelles.

Les capacités de cette approche multi-échelle en 2D et en 3D sont démontrées
dans un environnement purement mécanique, mais aussi multi-physique. La
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formulation théorique et l’application algorithmique sont présentées, et les
avantages de la méthode multi-échelle pour la modélisation des matériaux
hétérogènes sont illustrés avec plusieurs exemples numériques.
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Introduction

Contents

1.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Multi-scale coupling . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Multi-physics coupling . . . . . . . . . . . . . . . . . . . . 8
1.3.3 Software code coupling . . . . . . . . . . . . . . . . . . . 11

1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 13

In this chapter, the motivation and research objectives of this thesis are
stated. A general introduction and a literature review are given in the
following three sections related to the multi-scale coupling, multi-physics
coupling and software code coupling. Finally, the structure of the thesis
is outlined in the last section.



CHAPTER 1. INTRODUCTION

1.1 Context and motivation

The study of smart systems and smart materials is an interdisciplinary field that
includes different domains, from mechanics, electromagnetics and thermodynam-
ics, to fluid mechanics and chemistry. In smart materials, some multi-physics
coupling is present, i.e. in a piezoelectric material, mechanical and electrical
domains are coupled. They are integrated in smart systems that take advantage of
these effects to deliver the desired behavior, which is different from the traditional
non-smart materials. For instance, piezoelectric materials can be used for vibration
dampening and precise control of movement in machine tools, lenses, and mirrors
(Bengisu and Ferrara, 2018).

Smart material behavior can be modeled from different aspects, and can have a
focus on different material properties. Experts from each domain put an accent on
the domain they know the best, and try to describe the other domain in terms of
notions more familiar to them, which is often not the best or the most natural way.
When experts from different domains collaborate and work on the same multi-
physics coupling problems, it is often hard for them to find and define the same
notation, formulation, methods and tools to be able to obtain optimal solutions.

Smart materials can also be modeled on different scales, from the atomic
and crystal structure scale, through the micro and meso-scale, up to the macro-
scale, where the behavior of the whole or a part of the structure is modeled.
Multi-scale modeling of the material stipulates that the model is defined and
that the simulation is carried out for two or more different scales. These scales
can communicate during the simulation, or the results from one scale can be
used to obtain better results on the other. Each of the scales can be modeled in
a different way, using different methods, approximations or material behavior
models, which presents a great advantage of this approach.

Numerical multi-scale and multi-physics modeling is carried out by using
specialized scientific or commercial software. Some software allows to include
different physics in the model, despite the fact that it is not always done in an
optimal way. Other software does not have the possibility to include any other
physics, and it is designed to tackle only problems from one specific domain.
Nevertheless, such software is usually well tested, and gives optimal results for the
chosen domain. Developing a newmulti-scale ormulti-physics formulation brings
a question of which software to choose to implement it, and whether it is even
possible to do it in a desirable way following the proposed theoretical formulation.

The general motivation and idea behind this thesis is to asses the problem
of multi-scale and multi-physics numerical modeling for smart materials in an
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1.2. Research objectives

interdisciplinary environment. In that way, the behavior of thematerial is modeled
in each particular domain, and the formulation is posed according to the literature
from that domain. A coupling solution procedure is then defined that allows for
different domains or scales to communicate. Finally, software codes specialized
for each domain are used and modified in such a way as to allow them to execute
in parallel and provide the final solution of the problem.

There is a special focus on the software aspect, since the final goal is to
develop a general software framework that is modular and is able to handle
different numerical models, while coupling different scales and physical domains.
That can be achieved by using and modifying existing software solutions rather
then starting from scratch and writing a completely new software code. The
development of such a framework would require many steps, and the work
undertaken within the scope of this thesis, together with the achieved scientific
contributions, will be exposed in the following chapters.

1.2 Research objectives

This thesis deals with code coupling for the multi-scale and multi-physics
numerical modeling. The general idea is to reuse existing software codes, and
couple them to execute in parallel to obtain the final solution. The starting point is
to develop a numerical formulation for the multi-scale and multi-physics solution
procedures using a partitioned approach.

Specifically, the research goals and objectives of this thesis are:

• Develop a multi-scale solution procedure for localized failure where an
embedded discontinuity is implemented in the macro-scale element, and
which is able to capture the softening behavior happening on themicro-scale;

• Extend the multi-scale solution procedure and implement it in a 3D setting,
including the support for the localized failure on the macro-scale;

• Explore the possibilities of coupling different software codes for different
physics for a multi-physics solution procedure;

• Develop a multi-scale solution procedure for a 3D setting that is able to
capture the electro-mechanic coupling behavior on the micro-scale;

• Develop a modular multi-scale software that is easily upgradeable for new
behavior models.

3



CHAPTER 1. INTRODUCTION

1.3 Literature review

1.3.1 Multi-scale coupling

Multi-scale coupling methods are numerical homogenization methods that are
usually used to model the behavior of heterogeneous materials. The micro-
scale is used to capture the details of the micro-structure and local fluctuations,
while the macro-scale represents the homogenized behavior of the material for
computing the global structural response (Ibrahimbegovic, 2009; Gloria, 2012).
The homogenized macro-scale model is supported by the micro-scale model that
can capture fine microscopic details. Macro-scale constitutive laws and equations
are computed by averaging over the micro-scale values (Mei and Vernescu, 2010).
There can be many scales defined, based on the characteristics of the material or
structure. Those scales can be weakly or strongly coupled. In weak coupling, the
scales do not communicate all the time during the analysis. The results obtained
on one scale are used as averaged values for calculations on the other scale. In
strong coupling, there is a constant communication between the scales and the
computations on all of them progress simultaneously. Later in this thesis, strong
coupling is used, but both weak and strong coupling will be described in this
section, together with advantages and disadvantages of each approach.

Weak coupling

Numerous works in multi-scale coupling have been done using the weak coupling
between the scales. One of the multi-scale homogenization methods that is often
used to describe nonlinear material behavior of heterogeneous materials is the FE2

method, like in (Feyel and Chaboche, 2000) or (Kouznetsova et al., 2001), where the
scales are weakly coupled and the final solution can be constructed in two separate
steps byusing standardfinite elements onboth scales. Once the results are obtained
on the micro-scale, a macro-scale analysis can be started using these results. This
is one of the advantages of weak coupling, as there is no need for the scales to
communicate during the whole analysis and exchange information, leading to
simpler implementation. The main assumption when modeling the scales is that
the micro-scale length scale is much smaller than the characteristic length over
which the macro-scale loading varies in space as stated in (Geers et al., 2010).

The first and the most important step in the FE2 method is to properly
define a micro-structural representative volume element (RVE) that represents
the constitutive behavior of the material, meaning that the constitutive equations
are defined only on the micro-scale (Ibrahimbegovic, 2009). The representative
volume element can be defined as a piece of the matrix material containing one
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1.3. Literature review

single heterogeneity (Kouznetsova et al., 2001). The macro-scale deformation
gradient tensor is then transferred to the micro-scale in order to define a boundary
value problem on a representative volume element. The micro-scale boundary
value problem is then solvedwith a standard procedure, and after, themacroscopic
stress tensor can be extracted using standard mathematical averaging equations,
as shown in detail in (Geers et al., 2010) and (Kouznetsova, 2004). For example, in
(Fish and Yu, 2001) three scales are defined: micro, meso and macro, as an attempt
to account for the evolution of damage in heterogeneous microphases. The RVE
is defined for the macro-scale and meso-scale, where the fields on each of these
scales are calculated as the average over the RVE on the scale below. The FE2

method can be used to model both plastic behavior as in (Feyel and Chaboche,
2000), and damage behavior as in (Ghosh et al., 2001).

The representative volume element is usually defined for a single point,
typically chosen as the Gauss point of the macro element, as presented in (Feyel
and Chaboche, 2000). For each of the Gauss points, a micro-scale mesh is defined
(as shown in Figure 1.1a), where the micro-scale computations are executed. In
this way, a heterogeneous material’s behavior can be modeled in more detail
and can be defined differently for each of the Gauss points, like presented in
(Feyel and Chaboche, 2000) and (Geers et al., 2010). To compute the material
response in a Gauss point, the macro-scale values of the stress and strain are
calculated by averaging the values of the micro-scale stress and strain over the
RVE volume, as shown in (Belytschko et al., 2008) and (Ladeveze and Nouy, 2003).
The extension of the RVE multi-scale theory for taking into account the inertia
and body forces is proposed in (De Souza Neto et al., 2015). It shows that the
macro-scale inertia and body forces can be also computed as the volume average
of the micro-scale inertia and body force fields over the representative volume
element. In works of (De Souza Neto et al., 2015) and (Blanco et al., 2016), the
Method of Multiscale Virtual Power is developed, where the energetic consistency
between the two scales is established by requiring the stress virtual power to
coincide with the volume average of the micro-scale.

Using weak coupling, different methods and finite element elements can be
used on different scales, like the Voronoi cell finite element on the micro-scale in
(Raghavan and Ghosh, 2004) or the XFEMmethod on both scales in (Loehnert and
Belytschko, 2007). Also, in (Feyel, 2003), the FE2 method is used to describe the
response of highly non-linear structures using generalized continua. It was shown
that the FE2 method is adequate to build material models for generalized continua,
as it does not need to solve difficult macro-scale analytical equations, but only the
ones at the micro-scale which are modeled using a classical Cauchy continuum.
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CHAPTER 1. INTRODUCTION

In (Özdemir et al., 2008), the FE2 method is used for thermo-mechanical
analysis of heterogeneous solids, where a temperature dependent non-linear
thermo-mechanical response is accounted for by solving a boundary value problem
at the micro-scale. The FE2 method has been successfully applied to model a
thermo-mechanical coupling problem in (Sengupta et al., 2012). In (Ladevèze
et al., 2001), a multi-scale computational strategy is described that is based on the
decomposition of the structure into an assembly of substructures and interfaces.
An interface between the scales can transfer both the displacements and forces, and
this model can successfully represent the linear-elastic behavior of the material.

In (Guidault et al., 2007), a multi-scale strategy for the analysis of cracked
structures is presented, with the main focus on separating the local effects from
the global effects in order to keep a macro-scale mesh unchanged during the
crack’s propagation, and to enable the use of a proper fine-scale description only
where required. The method was able to represent the crack happening on the
micro-scale, but the crack propagation aspect was not addressed.

Strong coupling

Another multi-scale homogenization method, that is used later in this thesis, is the
strong coupling approach. In this approach, two scales communicate constantly
during the analysis, and computations advance simultaneously at each scale to
produce the final result (Markovic and Ibrahimbegovic, 2004). The standard
finite element method is used on both scales. The micro-scale mesh, finitely
smaller than the macro-scale mesh, is placed inside the macro elements, as shown
in Figure 1.1b (Ibrahimbegovic and Markovic, 2003; Niekamp et al., 2009). In
this way, the macro element does not need any constitutive equation, and its
element arrays are obtained from the micro-scale calculations. Strong coupling,
in contrast to weak coupling, can be used in cases where the characteristic size
of heterogeneities is not small enough compared to the structure size at the
macro-scale (Ibrahimbegovic, 2009).

When modeling the behavior of a structure by a multi-scale method, the
macro-scale is used to describe the homogenized response of the structure, and
the micro-scale to describe the details of the behavior on the smaller scale of
the material, where some inelastic mechanisms, like damage or plasticity, can
be defined. Scales can be coupled by imposing that the displacements are the
same over the interface, as in (Ibrahimbegovic et al., 2014) or (Ibrahimbegovic
and Markovic, 2003), or by imposing that the variation of the stresses is the
same over the interface, as in (Markovic and Ibrahimbegovic, 2004). In this thesis,
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1.3. Literature review

displacement based coupling is used, where themicro-scale displacements comply
with the macro-scale displacements on the interface.

(a) (b)

Figure 1.1: (a) FE2 model with the macro-scale mesh and the micro-scale mesh defined
for each macro-scale Gauss point; (b) strong coupling multi-scale model with macro-scale
mesh and micro-scale mesh defined for each macro-scale element (Ibrahimbegovic and

Markovic, 2003)

The localized Lagrange multiplier method can be used for scale coupling, as
in (Markovic et al., 2005). Lagrange multipliers allow to replace the standard
computation of the element tangent stiffness matrices and residual vectors by
an assembly of micro-scale contributions which are statically condensed at the
macro-scale (Hautefeuille et al., 2012). The localized multipliers enforce the
condition that the micro-scale interface displacements are calculated as a linear
interpolation of the macro-scale displacement.

The scales communicate all the time during the analysis, through the exchange
of the values ofmacro-scale displacements, and themicro-scale condensed stiffness
matrix and residual. The finite element models representing the micro-structure
communicate between each other exclusively through the degrees of freedom of
the macro-scale model, so the advantage is that the micro-scale computations are
independent of each other and can be executed in parallel. The negative side is
that the scales have to exchange the information after each iteration or time step,
increasing the implementation complexity and execution time.

The implementation of the strong coupling multi-scale method applied on
modeling of the heterogeneous structures with inelastic constitutive behavior can
be found in (Markovic et al., 2005) and (Niekamp et al., 2009). The strong coupling
with both displacement based and force based interface is implemented, and it
is shown to work for linear-elasticity and hardening, but not for the softening
case, which is an issue that will be addressed in this thesis.

In (Hautefeuille et al., 2012) a computational strategy for a strong coupling
multi-scale method for heterogeneous material analysis with localized failure is
presented, where a cylindrical arc-length procedure at the micro-scale enables
the softening phase representation. It does not have a continuous macro-scale
displacement representation, and in the case ofmore complexmicro-scale structure
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representation, a cylindrical arc-length procedure at the micro-scale is not enough
to allow it to enter into the softening phase.

In (Gitman et al., 2008), a multi-scale procedure called coupled-volume
approach is developed, where the macro-scale finite element size is the same as
the micro-scale cell size. The micro-scale cell size is not linked to an infinitely
small macro-scale material point like in the FE2 method. The scales are coupled
in a similar way like the strong coupling method that will be presented in this
thesis, through the micro-scale displacements imposed by the macro-scale values.
This approach has been developed only for a 1D setting and it has been shown
that it works for linear-elasticity, hardening and softening case.

The open question that is addressed later in this thesis is how to allow for the
multi-scale strong coupling procedure with displacement based interface to enter
into the softening phase, and how to represent the displacement jump on the
macro-scale. More details and the complete formulation of the proposed strong
coupling multi-scale approach are presented in Chapter 2.

1.3.2 Multi-physics coupling

Multi-physics coupling implies modeling of the behavior of the material that is not
described only by mechanical properties, but is also influenced by other physics
and fields, like electrical, magnetic, temperature or fluid. It allows integration of
complex and smart mechanical sub-systems into interconnected coupled systems
(Ibrahimbegovic, 2009). Different domains can be coupled to simulate the behavior
of smartmaterials like piezoelectric, magnetostrictive, shape-memory, electroactive
polymers and similar materials (Bengisu and Ferrara, 2018).

Coupled multi-physics systems interact with each other and it is impossible
to find a solution for one without solving the other simultaneously. Different
physics that are interacting can use different numerical methods to find the final
solution, or can have different discretization techniques and meshes used. All this
can result in a non-matching interface between them, as it can be seen in Figure
1.2a, and a solution to make these two physics to communicate has to be found.
The interfaces are non-matching when the node locations do not coincide, degrees
of freedom are not the same, or when the boundary motions are not conforming.
Matching meshes on the interface have the same location of the interface nodes,
the same number of degrees of freedom per node, and element boundary motions
are conforming. In (Park et al., 2002), a non-matching interface treatment is
presented, which guarantees preservation of the constant-stress interface patch
test when the partitioned sub-domains are connected.
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1.3. Literature review

There are two main approaches to solve coupled multi-physics problems:
monolithic and partitioned approach. In the monolithic approach, both physics
are solved simultaneously, together with the coupling conditions between the
domains. Only one set of equations is defined for both physics in the monolithic
approach. One example in this thesis is solved using the monolithic approach,
although the main focus is on the partitioned approach. The partitioned approach
is based on domain decomposition, where the domains can be solved separately,
but coupled over the interface. This allows for each domain to be solved using the
optimalmethod, discretization and approximations, as it can be seen in Figure 1.2b.

Some physics, when coupled, share the same spatial domain, while with
others there is a clear distinction between the two domains. For example, in fluid-
structure interaction, there is a clear interface between the fluid and the structure
domain, while in electro-magneto-mechanical coupling the spatial domain is
shared by fields from all domains which are present at the same time.

One the most researched multi-physics problems is fluid-structure interaction.
The main advantage of using the partitioned approach in this kind of problems is
that the standard discretization technique which is most suitable for a particular
domain can be used, as shown in (Kassiotis et al., 2011a). The finite elementmethod
can be used for the solid, and the finite volume method for the fluid. The solution
of the fluid and the structure problems can be decoupled from one another thanks
to a suitable splitting of the interface conditions. Information that are passed on
the interface are the displacement field (from the structure to the fluid), and the
stress field (from the fluid to the structure) (Lombardi et al., 2013). Amulti-physics
strong coupling solution procedure for fluid–structure interaction is proposed in
(Matthies et al., 2006) and simulated on several examples, showing that it achieves
the same results as a mono-scale approach. A partitioned solution approach
for nonlinear fluid–structure interaction with matching interface, handled by
the fixed-point strategy with an adaptive relaxation parameter, is proposed in
(Kassiotis et al., 2011b), and demonstrated on a lid driven cavity flow with a
flexible bottom example. This code, developed in (Kassiotis et al., 2011b) and
provided by the author, was executed and analysed during this thesis, as it
was considered for possible improvements by using the mortar element method
instead of the radial basis functions, which would guarantee the conservation
of the stresses along the interface.
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(a) (b)

Figure 1.2: (a) Non-matching interface between the fluid and the structure; (b) Different
spatial discretizations - finite elements used in the structure part, cell centered finite

volumes in the fluid part (Lombardi et al., 2013)

One of the biggest challenges of multi-physics problems is the interface
treatment between the domains. The Lagrange multiplier method is on of the
most used, like in (Kassiotis et al., 2011a). This method reduces the problem
complexity, as the coupled systems become visible to each other only through the
global Lagrange multiplier (Ibrahimbegovic, 2009; Park et al., 2002). In (Klöppel
et al., 2011), the non-matching interface is treated using the mortar element
method. It is a domain decomposition technique which introduces a mortar
element between two domains in interaction, as defined in (Belgacem et al., 1998).
In this way, a domain is decomposed into two sub-domains, where each of the sub-
domains is in interaction only with the mortar element. This approach allows for
the use of non-matching meshes and for the connection of different discretizations
across the interface in an optimal way, as shown in (Belgacem, 1999).

When different approximations are used in coupled domains, they have to be
connected using some of the interface interpolation techniques (Ibrahimbegovic
et al., 2014). For example, in fluid-structure interaction, approximations are made
on nodal values for the finite element method in the mechanics domain, and on
cell centers for the finite volumes method in the fluid domain. The radial basis
functionmethod is often used as a technique to interpolate data over non-matching
interface grids, as shown in (Lombardi et al., 2013). The main characteristic of
radial basis functions is that the value of the function depends only on the
Euclidean distance of the argument from the origin (Buhmann, 2003). Radial basis
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function implementation guarantees the conservation of the total energy along the
interface, but does not guarantee conservation of the stresses, which would lead to
better quality results for the stress and displacements for the mechanical domain.

In (Fu et al., 2017), a multi-scale computational method based on the extended
multi-scale finite element framework (X-FEM) that simulates the geometrically
nonlinear behaviors of heterogeneous piezoelectric materials is developed. The
thermal fields are also included in (Lv et al., 2014) to simulate thermo-electro-
mechanical coupling behavior of a piezoelectric smart material. In these two
works, the thermal, electrical and mechanical fields are described with multi-scale
numerical base functions which can capture the micro-scale behavior, and based
on that, the response of the heterogeneous piezoelectric smart material is obtained
on the macro-scale. A general thermodynamic approach to material constitutive
equations for solids and fluids is developed in (Ferrari andMittica, 2013), and it can
be applied to simulate the behavior of piezoelectric andmagnetostrictive materials.

Other numerical simulations of piezoelectric material behavior by coupling
electrical and mechanical fields and solving the equations simultaneously using a
monolithic formulation are shown in (Rochus et al., 2006), (Hansbo and Hansbo,
2004) and (Kamlah and Tsakmakis, 1999).

Multi-physics coupling can be used to perform simulations in many dif-
ferent domains, like a simulation of aortic blood flow in the cardiovascular
system in (Crosetto et al., 2011). Here, finite element method is used to model
a fluid–structure interaction between blood flow and arterial wall deforma-
tion of an aorta.

In (Rukavina and Ibrahimbegovic, 2017), a general fluid-structure interaction
coupling problem overview and software-based coupling approach is given.
In Chapter 4, electro-mechanic coupling for the simulation of piezoelectric
material behavior is presented.

1.3.3 Software code coupling

Scientific software code for a specific problem is usually developed by experts
from the same domain. The knowledge about the domain and the internal
implementation is often hidden inside the code, and the code is not well
documented. Extending existing code to allow it to be applied to some other
problems is usually challenging. Also, developing a new software code from
scratch is a complex task that is often time consuming. In these cases, for multi-
scale and multi-physics coupling, a better solution is to reuse existing code as a
software component. This component can then be used as a black box that solves
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the desired problem from a specific domain, and couple it with other components
to solve complex multi-scale and multi-physics problems (Groen et al., 2013).

The main focus in component based software engineering is the development
of software designed for reusability. Existing legacy codes that are developed by
domain experts and which are well tested can be reused in some other cases. In
the context of numerical modeling for multi-scale and multi-physics problems,
this means that the optimal software can be used for each domain or physics.
For example, a multi-physics problem of fluid-structure interaction (FSI) can be
solved using two software specialised for each domain, as shown in (Kassiotis
et al., 2011b). In this work, a FSI problem software solution is implemented in the
Finite Element Analysis Program (FEAP) (Taylor, 2014) for structural mechanics
and in OpenFOAM (Jasak et al., 2007) for fluid mechanics.

These software can be then executed in parallel and can exchange information
during the analysis. An additional software component has to be developed that
can coordinate the execution of each software component, help them communicate
and exchange data during the analysis. Software codes do not need to be
initially developed to work in parallel. For example, in (Kassiotis et al., 2011b),
Component Template Library (CTL) (Niekamp, 2005) is used to provide the
coupling between two codes.

A component model is a definition of standards for software component imple-
mentation, documentation and deployment. An example of component models
are Common Object Request Broker Architecture (CORBA), Component Object
Model (COM), JavaBeans, or Component Template Library (CTL). Component
model implementations provide platform services that allow components written
according to themodel to communicate. In thisway, different software components
can be set to communicate and execute in parallel. To use services provided by a
model, components are deployed in a container, which provides a set of interfaces
to access the service implementations of a component (Sommerville, 2011).

When the existing software is deployed as a software component, and
interfaces are defined, they can be coupled and executed in parallel. For this
purpose, a specific formulation has to be developed using a partitioned approach.
Formulation for each physics (in a multi-physics problem) or for each scale (in a
multi-scale problems) has to be implemented to be able to run for each software
component. Then, a method for interface treatment between the domains has to be
defined, as shown in the previous section. The interface treatment method is then
implemented using a component model to allow the two software components
to exchange information on the interface during the execution.
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There are many works where different software is used and coupled together
to solve the multi-scale and multy-physics problems, like in (Sengupta et al., 2012)
where the thermo-mechanical coupling problem is modeled and implemented in
FEAP and using theOpenMPI (Gabriel et al., 2004) version of the classicalMessage
Passing Interface (MPI). In (Peszynska et al., 2000), a multi-physics coupling of
codes using a partitioned approach is presented and used to simulate the flow
and transport in a porous reservoir. It is built in Integrated Parallel Accurate
Reservoir Simulator (IPARS) framework (Lacroix et al., 2001) where the interface
algorithm is merged with the framework, allowing each physical model to execute
in parallel. MPI implementation is used for parallel execution of the codes.

In (Anciaux et al., 2006), a parallel implementation of a multi-scale coupling
method for crack propagation in amaterial is presented. It uses Lammps (Plimpton
et al., 2011) to simulate molecular dynamics on the micro-scale, and a custom
developed finite element code based on LibMesh (Kirk and Peterson, 2003) library
for continuum mechanics on the macro-scale. MPICH (Gropp and Lusk, 1996)
version of MPI specification is used for the communication and parallel execution.
In (Guo and Zhao, 2014), two different codes are coupled – Escript (Gross et al.,
2007) for finite element method (FEM) analysis, and YADE (Šmilauer et al., 2010)
for discrete element method (DEM), to model the behavior of granular media.

A component-based execution environment for multi-scale and multi-physics
coupling named Multiscale Coupling Library and Environment (MUSCLE 2) is
developed and presented in (Borgdorff et al., 2014). It has programming interfaces
for Java, C++, C, Python and Fortran, and it is compatible with MPI, OpenMP
and threading codes. It is lightweight and portable, and can be used to execute
different codes in parallel. It could be a good solution for code coupling in this
thesis, but CTL was chosen due to its simplicity and ease of implementation.

Some other code coupling frameworks worth noting are Common Component
Architecture (CCA) (Bernholdt et al., 2006), Model Coupling Toolkit (MCT) (Larson
et al., 2005), or OpenPALM coupler (Morel et al., 2019).

In this thesis, Component Template Library (CTL) is used for code coupling
because it is lightweight, easy to implement, and it supports FORTRAN program-
ming language. For the mechanical domain, Finite Element Analysis Program
(FEAP) is used, and the possibility of using GetDP (Dular and Geuzaine, 2013)
for the electrical domain was studied.

1.4 Structure of the thesis

In this thesis, a multi-scale and multi-physics coupling computation procedure
for a 2D and 3D setting is developed and presented. It is divided into six chapters,
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including the first introductory part. In Chapter 2, the 2D multi-scale coupling
procedure is presented. The previously developed multi-scale formulation is
shown, and then extended to take into account localized failure. The extension
of a 2D multi-scale coupling procedure to a 3D setting is carried out in Chapter
3. In Chapter 4, the 3D multi-scale formulation for electro-mechanical coupling
formulation is presented. In every chapter, a description of the micro-scale models
used in the multi-scale computations is given. Also, results of several numerical
examples are presented in each of the chapters for the proposed formulation. In
Chapter 5, software implementation details are presented. Finally, in Chapter
6, some concluding remarks are given, and the perspectives for future work
and extensions are outlined.
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In this chapter, a 2D multi-scale coupling computation procedure is
presented. The previously proposed version of the multi-scale formu-
lation is presented in the first section. This model is adequate for
representing elastic behavior and hardening, but not for localized failure.
To overcome this problem, a multi-scale procedure for localized failure
is presented in the second section, where an embedded discontinuity is
implemented in themacro-scale element to capture the softening behavior
happening on the micro-scale. The proposed procedure represents the
main contribution and novelty in this work. In the third section, a damage
model used on the micro-scale is described. Finally, the results of several
numerical examples are presented in the last section.



CHAPTER 2. 2D MULTI-SCALE COUPLING

2.1 Multi-scale formulation

The previously proposed version of the multi-scale formulation presented in this
section was first developed and described in (Ibrahimbegovic andMarkovic, 2003),
(Ibrahimbegovic, 2009) and (Markovic et al., 2005).

In the proposed multi-scale coupling the two scales are strongly coupled.
They are exchanging information during the whole analysis, and the computation
advances simultaneously on both scales. At each time step, both macro and micro-
scale computations are executed. Only when convergence is obtained at both
scales, computations advance to the next time step. The finite element method is
used at both scales, which adds to the generality of themethod and simplicity of its
implementation. The computation is performed using the operator split solution
procedure on both scales. The constitutive equations are not defined on the macro
element, and its element arrays are obtained from themicro-scale computations. A
micro-scale mesh, finitely smaller than the macro-scale mesh, is placed inside each
of the macro-scale elements as shown in Figure 2.1. The two scales are strongly
coupled using displacement based coupling, where the micro-scale displacements
on the interface are imposed by the macro-scale displacements.

For scale coupling, the localized Lagrange multiplier method (Park et al.,
2002) is used. It allows to replace the standard computation of the element
tangent stiffness matrices and the residual vectors by an assembly of micro-scale
contributions which are statically condensed at the macro-scale (Hautefeuille
et al., 2012). The finite element models on the micro-scale communicate between
each other only through the degrees of freedom defined at the macro-scale. In
this way, micro-scale computations are completely independent of each other and
can be executed in parallel, significantly reducing execution time and allowing
the code to be executed on different processors.

Figure 2.1: Multiscale model with FE mesh at both the macro (on the left) and the
micro-scale (on the right) (Ibrahimbegovic and Markovic, 2003)
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2.1. Multi-scale formulation

The formulation for the multi-scale method starts with defining the variational
formulation and equation for the total energy of the system that can be written
as the sum of energies

Π(uM , um , λ, ξ̄k) � ΠM
+Πm

+ΠΓ
Mm (2.1)

where ΠM is the strain energy at the macro-scale, Πm is the strain energy at the
micro-scale, and ΠΓMm is the energy at the interface between the two scales.

The external forces are defined and assumed to apply only at the macro-scale,
while the constitutive laws and the internal variables are defined only at the micro-
scale. Energies for both scales and energy on the interface can be then defined as

ΠM
� −

∫
ΩM

uM · bM dV −
∫
ΓM
σ

uM · t̄ dA

Πm
�

∫
Ωm
ψm(um , ξk)dV (2.2)

ΠΓ
Mm

�

∫
ΓMm

λ · (uM − um)dA

where uM and um are macro and micro-scale displacement vectors respectively,
bM represents volumetric forces, t̄ is the traction force vector, λ is the Lagrange
multiplier that is used to couple the scales, ψm is the micro-scale strain energy
density and ξk is the micro-scale internal variable. The macro-scale domain
is denoted as ΩM , the micro-scale domain as Ωm , ΓM

σ is part of the macro-
scale boundary where tractions are applied and ΓMm is the interface between
the two scales.

Since nonlinear inelastic behavior is considered, an incremental-iterative
analysis (e.g. (Ibrahimbegovic, 2009)) is used to obtain the final solution. In any
typical increment, the central problem of multi-scale analysis can be posed as

For given uM
n � uM(xM , tn), um

n � um(xm , tn), λn � λ(xM , tn), ξk ,n � ξk(xm , tn),
h � tn+1 − tn

find uM
n+1, um

n+1, λn+1, ξk ,n+1, such that

0 �
d

dε

���
ε�0
Πm(um

n+1 + εwm , ·) ≡ Gm(um
n+1 , λn+1 , ξk ,n+1; wm) �

�

∫
Ωm
∇swm · σ̂m(um

n+1 , ξk ,n+1)dV −
∫
ΓMm

wm · λdA
(2.3)
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0 �
d

dε

���
ε�0
ΠM(uM

n+1 + εwM , ·) ≡ GM(uM
n+1 , λn+1; wM) �

�

∫
ΓMm

wM · λdA −
∫
ΩM

wM · bdV −
∫
ΓM
σ

wM · t̄dA
(2.4)

0 �
d

dε

���
ε�0
ΠMm(λn+1 + εν, ·) ≡ GMm(uM

n+1 , u
m
n+1 , ν) �

�

∫
ΓMm

ν · (uM
n+1 − um

n+1)dA
(2.5)

with ξk ,n+1 � ξk ,n + h f̂ (uM
n+1 , u

m
n+1 , λn+1 , ξk ,n+1)

where wm , wM and ν are the variations of the micro-scale displacements, macro-
scale displacements and Lagrange multipliers, respectively.

At the macro-scale, a isoparametric Q4 element is used as shown in Figure 2.2.
The standard finite element shape functions for Q4 element are used

NM
a (ξ, η) �

1
4 (1 + ξaξ)(1 + ηaη), a � 1, 2, 3, 4 (2.6)

where ξa and ηa are the natural coordinates of node a.

Figure 2.2: Macro-scale Q4 isoparametric element with two degrees of freedom in each
node

At themicro-scale, a constant strain triangle (CST) elementwith one integration
point is used, but any other element with the same number of degrees of freedom
canbeused for the formulation to be still valid. TheCST elementwith implemented
damage model is used and described in detail in Section 2.3.
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The displacement field approximations at the micro and macro-scale, and
the localized Lagrange multipliers are calculated using standard finite element
approximations, which can be written as

um
n+1

���
Ωm ,e
(xm) �

nm
el∑

a�1
Nm ,e

a (xm)dm
a ,n+1

uM
n+1

���
ΓMm ,E
(xm) �

∑
a∈ΓMm ,E

NM,E
a (xm)dM,E

a ,n+1

λn+1

���
ΓMm ,E
(xm) �

∑
a∈ΓMm ,E

PM,E
a (xm)βa ,n+1

(2.7)

where dm
a ,n+1 and dM,E

a ,n+1 are nodal value of micro and macro-scale displacements
in time step n + 1, PM,E

a is the Lagrange multipliers’ interpolation function, and
βa ,n+1 is the nodal value of Lagrange multipliers in time step n + 1.

Keeping in mind the approximations stated above, the central problem can
now be rewritten as follows

For given dM,E
n , dm

n , βn , ξk ,n ; ∀ΩM,E

find dM,E
n+1 , dm

n+1, βn+1, ξk ,n+1,

such that (∀e ∈ [1, nm
el ], ∀E ∈ [1, nM

el ])

0 � rm(dm
n+1 , βn+1 , ξk ,n+1) �

� A
nm

elem
e�1

[ ∫
Ωm ,e

BmT · σ̂(dm
n+1 , ξk ,n+1)dV

]
−

∫
ΓMm ,E

Nm ,eT PM,Eβn+1dA
(2.8)

0 � rM(dM
n+1 , βn+1) �

� A
nM

elem
E�1

[ ∫
ΓM,E

NM,ET PM,Eβn+1dA −
∫
ΩM,E

NM,ET bdV −
∫
ΓM,E

NM,ET t̄dA
] (2.9)

0 � pM,E(dM,E
n+1 , d

m
n+1 , βn+1) �

∫
ΓMm ,E

PET (NM,EdM,E −Nmdm)dA (2.10)

with ξk ,n+1 � ξk ,n + h f̂ (dM,E
n+1 , d

m
n+1 , λn+1 , ξk ,n+1)

The localized Lagrange multipliers enforce that the displacements of the
interface nodes at the micro-scale are calculated as a linear interpolation of
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the nodal values of displacements at the macro-scale, as shown in Figure 2.3.
This can be achieved by choosing the Dirac delta functions δ(x − xa) centered
upon the micro-scale interface nodes xa ∈ ΓM,E. By introducing the Dirac delta
function into (2.10), it can be obtained

pM
a � d̄m

a ,n+1 −
∑

b

NM,E
b (xa)dM,E

b ,n+1 � 0 (2.11)

Finally, the micro-scale nodal displacement vector on the interface can be writ-
ten as

d̄m
n+1

���
ΓM,E

� TEdM,E
n+1 (2.12)

whereTE is the connectivitymatrix, and dM,E
n+1 aremacro-scale nodal displacements.

Figure 2.3: Micro-scale interface nodal displacements calculated as a linear interpolation
of the macro-scale nodal displacements

The connectivity matrix TE is based on the particular values of macro-scale
shape functions which correspond to the interface nodes. Namely, that matrix is
constructed by simply introducing the isoparametric coordinates of each micro-
scale node on the interface into the macro-scale shape functions NM

a , as it will
be explained on an example in the next section.

The standard finite element system of equations for computing the increment
of the displacement field on the micro-scale can be written as[

s

sK sKT

sK K

] [
∆sd
∆d

]
� −

[
sr
r

]
(2.13)

where s

sK is the part of the stiffnessmatrix related only to interface nodes, sK is related
to interface nodes in relation to free nodes, andK is related only to free nodes. In the
same way, ∆sd andsr are the displacement increments and residuals of the interface
nodes, and ∆d and r are displacement increments and residuals of free nodes.
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Static condensation (e.g. (Ibrahimbegovic, 2009)) can be performed on the
previous system of equations. First, the displacement field increment of free
nodes can be expressed as

∆d � K−1(−r − sK∆sd) (2.14)

Introducing (4.29) to the first equation in (4.27) it is obtained(
s

sK − sKTK−1
sK
)
∆sd � −sr + sKTK−1r (2.15)

Then, the statically condensed stiffness matrix and residual obtained at the
micro-scale can be written as

K̃m
�

(
s

sK − sKTK−1
sK
)

r̃m
� −sr + sKTK−1r

(2.16)

After the computations on the micro-scale have converged, the final values of
the condensed stiffness matrix and residual are used to compute the values of the
stiffness matrix and residual that is going to be used at the macro-scale

KM,E
n+1 � TE,TK̃m

n+1TE

rM,E
n+1 � TE,T r̃m

n+1

(2.17)

When the values of the macro-scale stiffness matrix and residual are computed,
they are used to update the values of the macro-scale displacement field. The
standard finite element system of equations that needs to be solved is

KM
n+1∆dM

n+1 � −rM
n+1 (2.18)

2.2 Multi-scale formulation for localized failure

The multi-scale formulation described in the previous section cannot take into
account the crack propagation. When a localized failure happens on the micro-
scale, it cannot be properly transfered to the macro-scale. The multi-scale
formulation with localized failure proposed in this section, together with the
numerical examples from Section 2.4, are first presented in (Rukavina et al., 2019).

In order to allow for the multi-scale model to represent localized failure,
the corresponding incompatible mode function that describes the embedded
discontinuity is introduced inside the macro-scale element. In this way, the
localized failure can be properly transfered from micro to macro-scale. The
discontinuity is positioned at the center of the Q4 isoparametric element. Vectors
n and m are the normal and the tangential vector at the discontinuity. In this
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CHAPTER 2. 2D MULTI-SCALE COUPLING

work, for simplicity, a model for a tension test is illustrated, where only the
crack opening in mode I is taken into account. As a result, only n, the normal
vector at the discontinuity, will have a non-zero value. The element domain is
divided into two sub-domains, Ωe− and Ωe+, as shown in Figure 2.4a. Hence,
the incompatible mode function can be written as

M(ξ, η) � HΓs (ξ, η) −
∑

b∈Ωe+

NM
b (ξ, η) (2.19)

where HΓs is the Heaviside step function defined as

HΓs �

{
0, (ξ, η) ∈ Ωe−

1, (ξ, η) ∈ Ωe+
(2.20)

(a)
(b)

Figure 2.4: (a) Q4 isoparametric element with two sub-domains related to the
displacement jump; (b) Incompatible mode shape function M for the discontinuity in the

middle of the element

Now, the macro-scale displacement field from (2.7) can be rewritten as

uM
n+1

���
ΓMm ,E
(xm) �

∑
a∈ΓMm ,E

NM,E
a (xm)dM,E

a ,n+1 + MM,E(xm)αM,E
n+1 (2.21)

where αM,E
n+1 is the displacement discontinuity vector.

Now the macro-scale displacement field approximation can be introduced into
(2.10)

0 � pM,E(dM,E
n+1 , d

m
n+1 , βn+1) �

�

∫
ΩM,E

PET (NM,EdM,E
+ MM,EαM,E −Nm ,edm)dA

(2.22)
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2.2. Multi-scale formulation for localized failure

The displacement field on the micro-scale interface nodes is now a function of
both the macro-scale displacement field and the displacement discontinuity

pM
a � d̄m

a ,n+1 −
∑

b

NM,E
b (xa)dM,E

b ,n+1 −MM,E(xa)αM,E
n+1 � 0 (2.23)

The final expression used to compute the micro-scale nodal displacement
field on the interface can be written as

d̄m
n+1

���
ΓM,E

� TEdM,E
n+1 + SEαM,E

n+1 (2.24)

where SE is the transformation matrix for the incompatible mode, and αM,E
n+1 is the

displacement discontinuity vector. The transformation matrix SE is constructed
based on the macro-scale incompatible mode function, in a similar way as the
transformation matrix TE. The isoparametric coordinates of each micro-scale
interface node are introduced into the macro-scale incompatible mode function M.

On the micro-scale, damage model computations are executed, and after
convergence the condensed stiffness matrix K̃m and residual r̃m are obtained as
explained in (4.31). After the micro-scale computations are finished, the system of
equations that needs to be solved on the macro-scale can be written as[

KM FM

FM,T HM

] [
∆dM

∆αM

]
� −

[
rM

hM

]
(2.25)

where the vector hM represents the residual at the discontinuity.
To construct themacro-scale stiffnessmatrix needed for solving themacro-scale

system of equations, submatrices KM , FM and HM are computed as

KM,E
n+1 � TE,TK̃m

n+1TE

FM,E
n+1 � TE,TK̃m

n+1SE

HM,E
n+1 � SE,TK̃m

n+1SE

(2.26)

This corresponds to the way submatrices are computed in the standard finite
element procedure on the global level for the incompatible mode method

Ke
n+1 �

∫
Ωe Be ,TCed ,(i)

n+1 Be dΩ

Fe
n+1 �

∫
Ωe Be ,TCed ,(i)

n+1 G̃e dΩ

He
n+1 �

∫
Ωe G̃e ,TCed ,(i)

n+1 G̃e dΩ

(2.27)

where Be is the matrix containing the shape functions derivatives, G̃e is the
matrix containing incompatible mode function derivatives, and Ced is the tangent
elasto-damage tensor.
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CHAPTER 2. 2D MULTI-SCALE COUPLING

Figure 2.5: The macro-scale and micro-scale data transfered between the scales in every
time step (according to (Ibrahimbegovic and Markovic, 2003) with added localization

failure)

Also, the macro-scale residuals are computed using the values of micro-scale
residuals and transformation matrices T and S

rM,E
n+1 � TE,T r̃m

n+1

hM,E
n+1 � SE,T r̃m

n+1

(2.28)

which correspond to the standard finite element procedure, where the values
of residuals are computed as

re
n+1 �

∫
Ωe

Be ,Tσ(d , α)dΩ

he
n+1 �

∫
Ωe

G̃eσ(d , α)dΩ
(2.29)

The system of equations (2.25) is solved using the operator split procedure (e.g.
(Ibrahimbegovic, 2009)). First, the values of the macro-scale displacements are
fixed, while the correct value of αM has to be calculated iteratively. Each iteration
consists of calling the micro-scale computations with the imposed micro-scale
interface displacement field as a function of the macro-scale displacement field
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2.2. Multi-scale formulation for localized failure

and displacement discontinuity field. After each micro-scale iteration, the value
of the macro-scale displacement jump increment is computed from the equation

HM,E(i , j)
n+1 ∆α

M,E(i , j)
n+1 � hM,E(i , j)

n+1 (2.30)

and then the value of the macro-scale displacement jump is updated as

α
M,E(i , j+1)
n+1 � α

M,E(i , j)
n+1 + ∆α

M,E(i , j)
n+1 (2.31)

If the value of the residual hM,E(i , j)
n+1 obtained by the micro-scale computations

is smaller than the chosen tolerance, the iterations are stopped, since the correct
value of αM,E(i)

n+1 is reached. If the residual hM,E(i , j)
n+1 is greater than the tolerance,

another micro-scale iteration ( j) is started to update the value of αM,E(i)
n+1 . The

micro-scale computation is then executed with the updated value of αM,E(i , j+1)
n+1

from the current iteration, so the micro-scale interface displacement field can be
updated again using (2.24). The detailed flow-chart of the proposed multi-scale
operator split solution procedure for localized failure is shown in Algorithm 1.

After the value of αM has converged, the second step of the operator split
procedure is activated. In the second step, the value of αM is fixed and the values
of the macro-scale displacement field iterative contributions are computed using[

KM(i)
n+1 − FM(i)

n+1 (H
M(i)
n+1 )

−1FM(i)T
n+1

]
∆dM(i)

n+1 � −rM(i)
n+1 (2.32)

followed by the corresponding update of the macro displacements

dM(i+1)
n+1 � dM(i)

n+1 + ∆dM(i)
n+1 (2.33)
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for n=0,1,2,... do
for (i)=1,2,... do

for (j)=1,2,... do
for E=1,2,...,nM

el do
d̄m(i , j,1)

n+1

���
ΓM,E

� TEdM,E(i)
n+1 + SEα

M,E(i , j)
n+1

for (k)=1,2,... do
A

nm
el

e�1

[
Km ,e(i , j,k)

n+1

(
dm ,e(i , j,k+1)

n+1 − dm ,e(i , j,k)
n+1

)
� −rm ,e(i , j,k)

n+1

]
if | |rm ,e(i , j,k+1)

n+1 | | > tol then
(k) = (k) + 1

else
rM,E(i , j)

n+1 � TE,T r̃m
n+1

hM,E(i , j)
n+1 � SE,T r̃m

n+1
KM,E(i , j)

n+1 � TE,TK̃m
n+1TE

FM,E(i , j)
n+1 � TE,TK̃m

n+1SE

HM,E(i , j)
n+1 � SE,TK̃m

n+1SE

exit loop
end

end
E = E + 1

end
if

������hM,E(i , j)
n+1

������ > tol then

∆α
M,E(i , j)
n+1 � HM,E(i , j)−1

n+1 hM,E(i , j)
n+1

α
M,E(i , j+1)
n+1 � α

M,E(i , j)
n+1 + ∆α

M,E(i , j)
n+1

(j) = (j) + 1
else

exit loop
end

end

A
nM

elem
E�1

[(
KM,E(i)

n+1 − FM,E(i)
n+1 HM,E(i)−1

n+1 FM,E(i)T
n+1

) (
dM,E(i+1)

n+1 − dM,E(i)
n+1

)
�

−rM,E(i)
n+1

]
if

������rM,E(i)
n+1

������ > tol then
(i) = (i) + 1

else
exit loop

end
end
n = n + 1

end
Algorithm 1: Operator split multi-scale iterative solution procedure for
localized failure
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2.2. Multi-scale formulation for localized failure

2.2.1 Transformation matrix T

To illustrate the construction of transformation matrices T and S that are used to
transfer the information between the scales, a simple 2D multi-scale example is
given. On the macro-scale, there is a Q4 element with two degrees of freedom
in each node. Inside the macro-element, a micro-mesh that consists of 18 CST
(constant strain triangle) elements is created, as shown in Figure 2.6.

Figure 2.6: Macro-scale Q4 element with 18 CST micro-scale elements that fit inside

To compute the transformation matrix T, the isoparametric macro-scale
coordinates of each micro-scale node (the position of a micro-scale node inside
the macro-scale element) are introduced into the macro-scale shape functions.

The relation that can be used to calculate the displacements of a micro-scale
node nm

a based on the displacements of themacro-scale nodes is shown in equation
(2.12). Then, the sum of the shape functions with introduced coordinates of the
micro-scale nodes can be written as

Ta �

∑
b

NM
b (xa) (2.34)

or in matrix notation

Ta �
[
NM

1 (xa) NM
2 (xa) NM

3 (xa) NM
4 (xa)

]
(2.35)

In this way, micro-scale node nm
1 with coordinates xa � (−1,−1) will lead

to matrix T1 equal to

T1 �
[
1 0 0 0

]
(2.36)
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CHAPTER 2. 2D MULTI-SCALE COUPLING

and micro-scale node nm
2 with coordinates xa � (−1

3 ,−1) to matrix T2 equal to

T2 �
[ 2

3
1
3 0 0

]
(2.37)

The transformationmatrixTa is constructed for eachof themicro-scale elements
in the samemanner. The final values of the transformationmatrixT is then equal to

T �



1 0 0 0
2
3

1
3 0 0

1
3

2
3 0 0

0 1 0 0
2
3 0 1

3 0
0 2

3 0 1
3

1
3 0 2

3 0
0 1

3 0 2
3

0 0 1 0
0 0 2

3
1
3

0 0 1
3

2
3

0 0 0 1



(2.38)

To be able to write the equation for calculating the values of micro-scale
displacements in matrix notation, the transformation matrix T needs to be
expanded to take into account both degrees of freedom

d̄m

(24×1)

���
ΓM

� T
(24×8)

dM

(8×1)
(2.39)

Since the same shape functions are used to calculate transformation matrix
values for both degrees of freedom, the matrix T that is used to calculate the
displacements for both degrees of freedom equals to

T �



1 0 2
3 0 1

3 0 0 0 2
3 0 0 0 1

3 0 0 0 0 0 0 0 0 0 0 0
0 1 0 2

3 0 1
3 0 0 0 2

3 0 0 0 1
3 0 0 0 0 0 0 0 0 0 0

0 0 1
3 0 2

3 0 1 0 0 0 2
3 0 0 0 1

3 0 0 0 0 0 0 0 0 0
0 0 0 1

3 0 2
3 0 1 0 0 0 2

3 0 0 0 1
3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
3 0 0 0 2

3 0 0 0 1 0 2
3 0 1

3 0 0 0
0 0 0 0 0 0 0 0 0 1

3 0 0 0 2
3 0 0 0 1 0 2

3 0 1
3 0 0

0 0 0 0 0 0 0 0 0 0 1
3 0 0 0 2

3 0 0 0 1
3 0 2

3 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

3 0 0 0 2
3 0 0 0 1

3 0 2
3 0 1



T

(24×8)

(2.40)

2.2.2 Transformation matrix S

To compute the transformation matrix S, needed for the multi-scale computation
procedure with localized failure, the isoparametric macro-scale coordinates of
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2.2. Multi-scale formulation for localized failure

each micro-scale node (the position of a micro-scale node inside the macro-scale
element) are introduced into the macro-scale incompatible mode function M.

The key point here is to calculate the value of the incompatible mode function
(2.19). If the simplest case is taken into account, where the crack opening is only
in mode I, then the macro-scale nodes nM

1 and nM
3 are part of the domain Ωe−

and the macro-scale nodes nM
2 and nM

4 are part of the domain Ωe+. Then, the
incompatible mode function can be written as

M(ξ, η) � HΓ(ξ, η) −
1
2 (1 + ξ) (2.41)

or, taking into account the Heaviside function in (2.20), it can be written as

M(ξ) �
{
−1

2 (1 + ξ), ξ ∈ [−1, 0〉
1 − 1

2 (1 + ξ), ξ ∈ [ 0, 1]
(2.42)

In a more general case, when the crack opening is happening under a certain
angle, we need to determine if the micro-scale node is inside the domain Ωe−

or Ωe+ of the macro-scale element, before calculating the value of the Heaviside
function. The incompatible mode function will then be a function of both ξ and
η (the coordinate of a micro-scale node will be taken into account to calculate
the value of the Heaviside function).

Now, the relation used to calculate the displacements of a micro-scale node
nm

a based on the displacements of the macro-scale nodes and the displacement
jump α is shown in equation (2.23). Then, the incompatible mode function with
introduced coordinates of the micro-scale nodes can be written as

Sa � MM(xa) (2.43)

In this way, micro-scale node nm
1 with coordinates x1 � (−1,−1) will lead

to S1 that equals to

S1 � 0 (2.44)

and micro-scale node nm
2 with coordinates x2 � (−1

3 ,−1)will lead to S2 that equals
to

S1 � −1
3 (2.45)

The part Sa of the transformation matrix S is constructed for each of the
micro-scale element in the same manner. The final values of the transformation
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CHAPTER 2. 2D MULTI-SCALE COUPLING

matrix S is then equal to

S �



0
−1

3
1
3
0
0
0
0
0
0
−1

3
1
3
0



(2.46)

To be able to write the equation for calculating the values of micro-scale
displacements in matrix notation, the transformation matrix S needs to be
expanded to take into account both normal and tangential component of the
crack opening α

d̄m

(24×1)

���
ΓM

� T
(24×8)

dM

(8×1)

+ S
(24×2)

αM

(2×1)
(2.47)

Then, the transformation matrix S that is used to calculate the displacements
for both degrees of freedom and both components of crack opening equals to

S �

[
0 0 − 1

3 0 1
3 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1

3 0 1
3 0 0 0

0 0 0 − 1
3 0 1

3 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1
3 0 1

3 0 0

]T

(24×2)

(2.48)

2.3 Micro-scale damage model

The micro-scale model used in the multi-scale computation procedure is described
in this section for better understanding, although the theoretical formulation
is not developed or improved in any way in the scope of this thesis. The
existing formulation and software code developed in (Brancherie, 2003) has been
implemented and rewritten as a new software code to improve the efficiency,
make it more upgradeable and to better understand the model. The developed
code has been used for numerical examples in this thesis, and later further
upgraded and used in (Rukavina, 2018).

On the micro-scale, a 2D damage model with hardening and softening is used,
as described in (Brancherie, 2003) and (Rukavina, 2018). The chosen finite element
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2.3. Micro-scale damage model

Figure 2.7: CST element with two sub-domains related to the displacement discontinuity

is the constant strain triangle (CST). The hardening part is modeled with an
isotropic damage model, while the softening part has an embedded discontinuity
implemented in the displacement field that can represent localized failure.

The elasto-damage model with hardening and softening can give a realistic
description of the behavior of the material that leads to failure. First, the material
is described with a linear elastic behavior. In the hardening phase, the micro-
cracks are developing along the fracture process zone. Finally, when the micro-
cracks coalesce, a macro-crack appears and starts to propagate, and the material
enters into the softening phase (Brancherie and Ibrahimbegovic, 2009; Kucerova
et al., 2009). The softening is described with an exponential function. The
CST element has one Gauss integration point defined at the barycenter of the
triangle, and the discontinuity is positioned in the middle of the element, as
it can be seen in Figure 2.7.

The localized failure is formulated within an anisotropic multi-surface model
that can take into account the crack opening in mode I (traction), and in mode II
(shear) (Rukavina, 2018; Ibrahimbegovic and Wilson, 1991; Kozar et al., 2018).

The standard finite element shape functions for the CST element (as shown
in (Zienkiewicz et al., 2005)) are used

Na(x , y) � 1
2∆ (aa + ba x + ca y), a � 1, 2, 3 (2.49)

where coefficients aa , ba and ca are calculated as

a1 � x2 y3 − x3 y2 , b1 � y2 − y3 , c1 � x3 − x2

a2 � x3 y1 − x1 y3 , b2 � y3 − y1 , c2 � x1 − x3

a3 � x1 y2 − x2 y1 , b3 � y1 − y2 , c3 � x2 − x1

(2.50)

31



CHAPTER 2. 2D MULTI-SCALE COUPLING

and ∆ � (x1b1 + x2b2 + x3b3)/2 is the area od the triangle. Coordinates xa and
ya are the coordinates of the triangle nodes.

To be able to represent the displacement jump, the incompatible mode
function is introduced as

M(x) � HΓs (x) −
∑

a∈Ωe+

Na(x) (2.51)

where HΓs is the Heaviside step function defined as

HΓs (x) �
{

0, x ∈ Ωe−

1, x ∈ Ωe+
(2.52)

where sub-domains Ωe+ and Ωe− are part of the CST element domain Ω divided
by the discontinuity surface Γs as shown in Figure 2.7.

Now, with the incompatible mode function introduced, the total displacement
field can be written as the sum of the standard and the incompatible part

u(x) �
3∑

a�1
Na(x)da + M(x)α (2.53)

where Na is the standard linear shape function of the constant strain triangle
element node a, da is the standard displacement field of element node a, and
α is the displacement jump field at the discontinuity.

The strain field approximation is computed as a derivative of (2.53) and is also
written as a sum of the standard part and the incompatible part

ε(x) �
3∑

a�1
Ba(x)da + Gr(x)α (2.54)

whereBa is amatrix of the standard linear shape functionderivatives of the element
node a and Gr is a matrix of the derivatives of the incompatible mode function.

The matrix Ba is defined as

Ba �


∂Na
∂x 0

0 ∂Na
∂y

∂Na
∂y

∂Na
∂x

 (2.55)

The matrix Gr can be split into a regular part and a singular part

Gr(x) � sGr(x) + s

sGr (2.56)
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2.3. Micro-scale damage model

where the regular part is defined as

sGr �


∂M
∂x 0

0 ∂M
∂y

∂M
∂y

∂M
∂x

 (2.57)

and the singular part as

s

sGr � nδΓ (2.58)

where n is the normal vector at the discontinuity and δΓ is the derivative of the
Heaviside function at the discontinuity.

It has been shown in (Ibrahimbegovic and Wilson, 1991) that the function
Gr has to be modified in order to satisfy the patch test

Gv(x) � Gr(x) −
1

Ae

∫
Ωe

Gr(x)dΩe (2.59)

where Ae is the area of the CST finite element.
After (2.56) is introduced in (2.59), as shown in (Brancherie, 2003), the function

Gv can be written as

Gv(x) � −
le
Γ

Ae n + nδΓ (2.60)

where le
Γ
is the length of the discontinuity.

The function Gv(x) then satisfies the patch test condition∫
Ωe

Gv(x)dΩe
� 0 (2.61)

With the previous formulation defined, the system of equations to be fi-
nally solved is

An
e�1[fint

e − fext
e] � 0
he

� 0
(2.62)

where fint
e and fext

e are internal and external force vectors, respectively, and he

is the residual at the discontinuity. They can be defined as

fint
e
�

∫
Ωe

BTσdΩe

fext
e
�

∫
Ωe

NTbdΩe
+

∫
Γe
Ω

NTtΓe
Ω

dΓ

he
�

∫
Ωe

sGT
v σdΩe

+

∫
Γs

s

sGT
v tΓs dΩe

(2.63)
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where σ is the stress in the element, b is the volume forces vector, tΓe
Ω
is the

traction at the boundary of the element domain Γe
Ω
, and tΓs is the traction at

the discontinuity Γs .
When this system is linearized, as shown in (Rukavina, 2018), the following

set of equations is obtained[
K Fr
Fv H + Kα

] [
∆dn+1
∆αn+1

]
� −

[
fint,n+1 − fext,n+1

0

]
(2.64)

where the tangent stiffness matrices are defined as

Ke ,(i)
n+1 �

∫
Ωe Be ,TCed ,(i)

n+1 Be dΩ

Fe ,(i)
r,n+1 �

∫
Ωe Be ,TCed ,(i)

n+1
sGe

r dΩ

Fe ,(i)
v ,n+1 �

∫
Ωe

sGe ,TCed ,(i)
n+1 Be

v dΩ

He ,(i)
n+1 �

∫
Ωe

sGe ,T
v Ced ,(i)

n+1
sGe

r dΩ

K(i)α,n+1 � le
Γs

s

sCed ,(i)
n+1

(2.65)

where Ced ,(i)
n+1 and s

sCed ,(i)
n+1 are the elasto-damage modulus and tangent modulus for

the discontinuity, respectively, as explained in detail in (Simo and Taylor, 1985).
After performing static condensation on the set of equations (2.64), the

displacement jump can be computed as

∆αn+1 � −(H + Kα)−1Fv∆dn+1 (2.66)

To compute the increment of the displacement vector, a value of displace-
ment jump is introduced back into (2.64) so the final equation to calculate the
displacement vector increments can be written as[

K − Fr(H + Kα)−1Fv
]
∆dn+1 � −(fint ,n+1 − fext ,n+1) (2.67)

The finite element procedure is described in general, while the details can be
found in (Brancherie, 2003). The computations are divided into a bulk computation
and a computation at the discontinuity.

The bulk computations are governed by an isotropic damage model. The
damage evolution is described with a Lagrange multiplier γ̄ and a damage
function φ̄ that is used to test the admissibility of the stress in the bulk. The
conditions for loading and unloading can be presented in Kuhn-Tucker form
as stated in (Ibrahimbegovic, 2009)

φ̄(·) ≤ 0; Û̄γ ≥ 0; Û̄γφ̄(·) � 0 (2.68)
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2.3. Micro-scale damage model

where Û̄γ represents a derivative of the Lagrangemultiplierwith respect to time. The
internal variables used to describe the damage model are the damage compliance
tensor for the bulk D̄ and the hardening variable ξ̄. A linear hardening function
is used to describe the behavior of the material in the hardening phase where
the stress-like hardening variable is defined as

q̄ � −K̄ξ̄ (2.69)

where K̄ is the hardening modulus. The chosen value for the damage function,
as described in (Brancherie, 2003), is

φ̄(σ , q̄) �
√
σ · De · σ − 1√

E
(σ̄ f − q̄) ≤ 0 (2.70)

where σ is the stress tensor, De is the unchanged elastic compliance tensor for the
bulk material and is computed as the inverse of the elastic constitutive matrix, E is
the Young’s modulus, and σ̄ f is the limit stress. The bulk computation starts with
an elastic trial step, where there is no evolution of the internal variables. The trial
value of the damage function φ̄ is tested, to check if the elastic step is really valid
or the damage has already occurred. If the value of the damage function is less
than or equal to zero, that means the step is elastic and the trial values can be taken
as final. If the value of the damage function is greater than zero, the computations
for the damage step have to be executed. In the damage step computation, a new
value for the Lagrange multiplier γ̄ is computed, after which the value for the
elasto-damage modulus for the bulk can be computed. The evolution equations
of the internal variables in the damage step are calculated as in (Brancherie, 2003)

Û̄D � Û̄γ D̄√
σ · De · σ

Û̄ξ � Û̄γ 1√
E

(2.71)

When the value of stress inside the finite element becomes greater than the
value of the ultimate stress, the softening has started inside the element. In the
softening phase, the computation at the discontinuity has to be executed as the
macro-crack opening starts to form. Once the computation at the discontinuity
starts, the bulk computations are not executed any more. In the softening phase,
the stress is localized at the discontinuity, and the bulk of the material is unloading
elastically. The softening part is defined by an anisotropic multi-surface damage
model, and the crack opening can happen in mode I andmode II. For the softening
part, two Lagrange multipliers, ¯̄γ1 and ¯̄γ2, are defined to describe the damage
evolution at the discontinuity. Also, two damage functions, ¯̄φ1 and ¯̄φ2, are defined
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CHAPTER 2. 2D MULTI-SCALE COUPLING

to test the admissibility of the traction at the discontinuity in normal and tangential
direction. In the same way as for the hardening phase, the conditions for the
discontinuity in the softening phase are presented in Kuhn-Tucker form as

¯̄φ1(·) ≤ 0; Û̄̄γ1 ≥ 0; Û̄̄γ1
¯̄φ1(·) � 0

¯̄φ2(·) ≤ 0; Û̄̄γ2 ≥ 0; Û̄̄γ2
¯̄φ2(·) � 0

(2.72)

The internal variables used in the softening phase are the damage compliance
tensor for the discontinuity ¯̄Q and the softening variable ¯̄ξ. An exponential
softening function is used to describe the behavior of the material in the softening
phase where the traction-like softening variable is defined as in (Brancherie, 2003)

¯̄q � ¯̄σ f

[
1 − exp

(
−

¯̄β
¯̄σ f

¯̄ξ
)]

(2.73)

where ¯̄σ f is the ultimate stress in normal direction, and ¯̄β is a material parameter
that controls softening and is inversely proportional to the fracture energy. The
equations for the damage functions, as described in (Brancherie, 2003), are

¯̄φ1(tΓs , ¯̄q) � tΓs · n − ( ¯̄σ f − ¯̄q) ≤ 0

¯̄φ2(tΓs , ¯̄q) � |tΓs ·m | − ( ¯̄σs −
¯̄σs
¯̄σ f

¯̄q) ≤ 0
(2.74)

where tΓs is the traction at the discontinuity, n is the normal direction of the
discontinuity, m is the tangential direction of the discontinuity, and ¯̄σs is the
ultimate stress in the tangential direction. The evolution equations of the internal
variables for the softening part are calculated as in (Brancherie, 2003)

Û̄̄Q �
Û̄̄γ1

n ⊗ n
t · n +

Û̄̄γ2
m ⊗ m
|t ·m |

Û̄̄
ξ �
Û̄̄γ1 +
Û̄̄γ2

¯̄σs
¯̄σ f

(2.75)

The final solution is obtained using the operator split solution procedure
where the computations are divided into a local and a global phase. In the local
phase, evolution equations of internal variables defined locally at each Gauss
point are computed, using implicit backward Euler time integration scheme. In
the global phase, after the local phase has finished, the equilibrium equations
are solved and the values of the nodal displacements are computed using the
incremental and iterative Newton-Raphson procedure (Kozar et al., 2018).
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2.4. Numerical examples

2.4 Numerical examples

2.4.1 Validation examples for the proposed multi-scale approach

To validate the theoretical formulation with numerical examples, a simple tension
test is chosen. The results for the proposed multi-scale method with localized
failure are compared against themonolithic solution and the previously developed
multi-scale method. The goal is to prove that the multi-scale method with added
embedded discontinuity on the macro-scale can represent localized failure and
produce the same quality results as the monolithic solution. The simple tension
test with boundary conditions and imposed displacement is shown in Figure 2.8.

Figure 2.8: Simple tension test: boundary conditions

The mesh for the mono-scale example (shown in Figure 2.9a) consist of 18 x
18 CST elements. The weakened elements that are going to crack first are shown
in gray. Elements are weakened by simple change of material properties that
will cause them to enter softening phase much sooner than other elements. The
macro-scale mesh (shown in Figure 2.9b) of the multi-scale example has the same
dimensions as the mono-scale mesh, and consists of 3 x 3 Q4 elements.

(a) (b)

Figure 2.9: (a) Mono-scale mesh; (b) Macro-scale mesh
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CHAPTER 2. 2D MULTI-SCALE COUPLING

Inside each of themacro-scale elements there is amicro-scalemesh that consists
of 6 x 6 CST elements. In general, a different micro-scale mesh can be defined
for each macro-scale element. The three central macro-scale elements (where the
crack should appear) contain the micro-mesh shown in Figure 2.10a. The other
six macro-scale elements on the left and the right side contain the micro-mesh
without the weakened elements (shown in Figure 2.10b). For the multi-scale
example, the boundary conditions are imposed only on the macro-scale.

(a) (b)

Figure 2.10: (a) Micro-scale mesh with weakened elements; (b) Micro-scale mesh without
weakened elements

In this way, the mono-scale and the multi-scale examples have the same total
number of CST elements, the same position of the weakened elements and the
same dimensions, and therefore should behave in the same way. The central
column of the weakened CST elements inside the micro-scale mesh coincides with
the displacement discontinuity of the Q4 macro-scale element.

The following material parameters for the CST damage element are chosen:
Young’s modulus E = 38 000 MPa, hardening modulus K̄ = 1000 MPa, Poisson’s
ratio ν = 0, limit stress for hardening σ̄ = 2 MPa, ultimate stress ¯̄σ = 2.55 MPa, the
ratio between the softening parameter and the ultimate stress is 20, and the ratio
between the tangential and the normal direction ultimate stress is 0.3. For the
weakened elements, the ultimate stress ¯̄σ is set to 2.5 MPa. The dimensions of the
mesh are 300 x 300 mm and the imposed displacement ū = 1 mm.

The example is executed in the Finite ElementAnalysis Program (FEAP) (Taylor,
2014). On the macro-scale, the Q4 element with localized failure developed in
Section 2.2 is used, and the procedure described in Algorithm 1. is implemented.
On the micro-scale, the CST element with damage model presented in Section 2.3
is used, which is implemented in FEAP based on the work and previous code from
(Brancherie, 2003). The multi-scale framework is developed based on the work
from (Markovic, 2004), and upgraded for taking into account localized failure.
The software implementation is described in detail in Chapter 5.
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2.4. Numerical examples

Elastic response

When the stress is small enough and only elastic response is obtained, the results
for mono-scale and both multi-scale methods, standard and with localized failure,
produce the same force-displacement diagram as shown in Figures 2.11 and 2.12.
Both multi-scale methods are giving the same results since no crack appears on the
micro-scale, so there is no need to represent it on themacro-scale. Only the stiffness
matrix KM and the residual rM are transfered from the micro to the macro-scale.

(a) (b) (c)

Figure 2.11: Force-displacement diagrams for elastic response: (a) Mono-scale; (b)
Multi-scale; (c) Multi-scale with localized failure

Figure 2.12: Superposed force-displacement diagrams for elastic response computed by
three different methods

The multi-scale procedure has also been tested with a simple Q4 linear elastic
element implemented in FEAP on the micro-scale, which has produced the same
results for the elastic phase. This shows that the proposed multi-scale method can
work with different micro-scale elements with little or no modifications at all.

Elasto-damage with hardening

When the structure enters the hardening phase, the force-displacement diagrams
for all three methods are still the same, as shown in Figure 2.13. The only change
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compared to the elastic phase are the values of the stiffness matrix KM due to
the introduction of the hardening modulus K̄. These changes are successfully
captured and transfered from the micro to the macro-scale for both multi-scale
methods, as shown in Figures 2.13 and 2.14.

(a) (b) (c)

Figure 2.13: Force-displacement diagrams for elasto-damage with hardening: (a)
Mono-scale; (b) Multi-scale; (c) Multi-scale with localized failure

Figure 2.14: Superposed force-displacement diagrams for elasto-damage with hardening
computed by three different methods

Elasto-damage with softening

When the value of the ultimate stress in the micro-scale CST element is reached,
a crack appears and starts to propagate. The regular multi-scale method cannot
transfer the displacement jump on the macro-scale and therefore cannot produce
the correct results. The micro-scale nodal displacement field on the interface is not
computed correctly, which leads to a concentration of the stresses around the crack,
and finally a collapse of the whole structure. This results in a force-displacement
diagram shown in Figure 2.15b.
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2.4. Numerical examples

(a) (b) (c)

Figure 2.15: Force-displacement diagrams for elasto-damage with softening: (a)
Mono-scale; (b) Multi-scale; (c) Multi-scale with localized failure

Figure 2.16: Superposed force-displacement diagrams for elasto-damage with softening
computed by three different methods

The proposed multi-scale method with localized failure can transfer the

displacement jump on the macro-scale and therefore allow the crack opening to

increase until the stresses reach zero, as shown in Figure 2.15c. The comparison of

all three methods can be seen in Figure 2.16. The results for the mono-scale and

multi-scale with localized failure are the same for each time step of the analysis,

and the values differ only after the fifth significant figure.

In Figure 2.17a and 2.17b, the final results of FEAP multi-scale code execution

are shown for the displacement distribution in direction x for both macro and

micro-scale. The macro-scale results are shown for the micro-scale mesh that fits

in the macro-scale element positioned in the middle column of the macro-scale

mesh, one of those in which the crack appears.
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(a) (b)

Figure 2.17: (a) Macro-scale displacement distribution in direction x; (b) Micro-scale
displacement distribution in direction x with shown CST elements with crack in the

middle

Elasto-damage with softening - unloading

In this example the specimen is subjected to unloading after the initial 50% of

the load has been applied and the softening phase has started. In the unloading

phase the force goes back to zero as there are not any irreversible deformations

present. This linear response is different from the linear elastic response in the

loading phase as it can be seen in Figure 2.18a. The regular multi-scale method

does not produce the correct results starting from the softening phase, although

the force goes back to zero in the unloading phase.

(a) (b) (c)

Figure 2.18: Force-displacement diagrams for elasto-damage with softening - unloading:
(a) Mono-scale; (b) Multi-scale; (c) Multi-scale with localized failure
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2.4. Numerical examples

Figure 2.19: Superposed force-displacement diagrams for elasto-damage with softening
(unloading) computed by three different methods

The proposed multi-scale method with localized failure gives the same results
for the unloading phase as the mono-scale method, as shown in Figure 2.18c. The
comparison of all three methods can be seen in Figure 2.19.

2.4.2 Validation examples of mesh objectivity

To prove that the proposed multi-scale method with localized failure is not
mesh dependent, it is tested for two more examples with a different number of
micro-scale mesh elements. In Figure 2.20a, the micro-scale mesh consists of 6
x 6 CST elements, in Figure 2.20b of 18 x 18 elements and in Figure 2.20c of 54
x 54 CST elements. The weakened elements that are present only in the central
macro-scale elements are again shown in gray.

(a) (b) (c)

Figure 2.20: Micro-scale mesh: (a) 6 x 6 elements; (b) 18 x 18 elements; (c) 54 x 54 elements

After running the multi-scale examples with different micro-scale meshes,
identical results are obtained for all three cases, as shown in Figures 2.21 and 2.22.
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(a) (b) (c)

Figure 2.21: Force-displacement diagrams for elasto-damage with softening for
multi-scale with localized failure computed with a different number of micro-scale

elements: (a) 6 x 6 elements; (b) 18 x 18 elements; (c) 54 x 54 elements

Figure 2.22: Superposed force-displacement diagrams for elasto-damage with softening
for multi-scale with localized failure computed with a different number of micro-scale

elements

Conclusion

It has been shown that the proposed multi-scale procedure for localized failure
can efficiently deal with softening behavior happening on the micro-scale in a 2D
setting, all the while being mesh independent. The multi-scale procedure has
been implemented in FEAP, and it has been shown on the numerical examples
that it produces the same results as the mono-scale procedure for the elastic,
hardening and softening phase, as well as in unloading. The numerical examples
are performed with a CST damage element on the micro-scale, but the procedure
is easily extendable, as it allows for the choice of different finite elements on the
micro-scale that can simulate specific behaviors of heterogeneous materials. It can
be noted that the macro-scale and micro-scale elements have the same dimension
(2D) and the same degrees of freedom per node, which does not have to be the
case, as it will be shown in the following chapter.
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In this chapter, the multi-scale coupling computation procedure is
extended to a 3D setting. In the first section, the multi-scale formulation
is presented for a tetrahedral macro-scale element, and then extended
to take into account the localized failure for both the tetrahedral and
hexahedral macro-scale element. In the second section, a plasticity
model of Timoshenko beam with localized failure, which is used on
the micro-scale, is presented. Finally, numerical computations are
performed and presented in the last section, showing that the multi-
scale computation procedure can produce the same quality results as the
mono-scale computations.
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3.1 Multi-scale formulation

For the multi-scale computation procedure in a 3D setting, a macro-scale isopara-
metric tetrahedral and hexahedral elements are developed. Most of the equations
from the formulation described in Chapter 2 are still valid, and here will be listed
only the ones that are different, or the ones that are crucial for the understanding
of the procedure. In some cases, the dimensions of tensors are listed under
the symbols for more clarity. Adding the additional degree of freedom also
increases the complexity of the implementation into a software code, including
the manipulation of the data that has to be exchanged between the scales in
each iteration and time step.

The standard finite element shape functions for the 3D isoparametric tetrahe-
dral element (e.g. (Ibrahimbegovic, 2009)) are used at the macro-scale

NM
1 (ξ, η, ζ) � 1 − ξ − η − ζ

NM
2 (ξ, η, ζ) � ξ

NM
3 (ξ, η, ζ) � η

NM
4 (ξ, η, ζ) � ζ

(3.1)

and the standard finite element shape functions for the 3D isoparametric hex-
ahedral element

NM
a (ξ, η, ζ) �

1
8 (1 + ξaξ)(1 + ηaη)(1 + ζaζ), a � 1..8 (3.2)

where ξa , ηa and ζa are the coordinates of node a, and can take values -1 or 1.
At the micro-scale, a Timoshenko beam element is used, but any other element

that has at least three translational degrees of freedom can be used for the
formulation to be valid. The Timoshenko beam element with implemented
plasticity model is used and described in detail in Section 3.3.

The displacement field approximations at the micro and macro-scale, and
localized Lagrange multipliers are computed with standard finite element ap-
proximations (2.7), which remain the same and are defined as

um
n+1

���
Ωm ,e
(xm) �

nm
el∑

a�1
Nm ,e

a (xm)dm
a ,n+1

uM
n+1

���
ΓMm ,E
(xm) �

∑
a∈ΓMm ,E

NM,E
a (xm)dM,E

a ,n+1

λn+1

���
ΓMm ,E
(xm) �

∑
a∈ΓMm ,E

PM,E
a (xm)βa ,n+1

(3.3)
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(a)
(b)

Figure 3.1: (a) 3D isoparametric tetrahedral element; (b) 3D isoparametric hexahedral
element

As explained in Section 2.1, the local Lagrange multipliers are introduced,
which enforce the condition that the micro-scale interface nodal displacements are
calculated as a linear interpolation of the macro-scale displacement nodal values.
This gives us the micro-scale nodal displacement field on the interface

d̄m
n+1

���
ΓM,E

� TEdM,E
n+1 (3.4)

By following the same procedure as in 2D, we arrive at the standard finite
element system of equations for computing the increment of the displacement
field on the micro-scale, as in (4.27)

s

sK
(nΓ×nΓ)

sKT

(nΓ×n f )
sK

(n f ×nΓ)
K

(n f ×n f )



∆sd
(nΓ×1)

∆d
(n f ×1

 � −


sr
(nΓ×1)

r
(n f ×1)

 (3.5)

Here, the dimensions of the submatrices are written below each element. The
value nΓ is the number of interface micro-scale nodes multiplied by the number of
the degrees of freedom in every node, and the value n f is the number of free micro-
scale nodes multiplied by the number of the degrees of freedom in every node.

The final values of the condensed stiffness matrix and residual at the macro-
scale are given in (2.17) and listed here with the value of N standing for the
number of macro-scale nodes for one element multiplied by the number of
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degrees of freedom in every node

KM,E
n+1
(N×N)

� TE,T

(N×nΓ)

K̃m
n+1

(nΓ×nΓ)

TE

(nΓ×N)

rM,E
n+1
(N×1)

� TE,T

(N×nΓ)

r̃m
n+1
(nΓ×1)

(3.6)

In the case of the tetrahedral element with three degrees of freedom in every
node the value of N, which defines the dimension of the matrix, equals 12. For
the hexahedral element, N is equal to 24.

As in (2.18), the standard finite element system of equations is solved

KM
n+1∆dM

n+1 � −rM
n+1 (3.7)

after which the corresponding values of the macro-scale displacement are
updated with

dM(i+1)
n+1 � dM(i)

n+1 + ∆dM(i)
n+1 (3.8)

Using this formulation, a multi-scale element is not able to take into account
the localized failure happening on the micro-scale. The improvement of the
multi-scale formulation with added embedded discontinuity is described in
the following section.

3.2 Multi-scale formulation for localized failure

The embedded discontinuity finite element method is implemented on the
macro-scale tetrahedral and hexahedral element. In order to allow the localized
failure representation on the macro-scale, the incompatible mode shape function
is introduced, as it has been already shown for a 2D setting in Section 2.2.
The discontinuity is positioned inside the macro-scale element with n and m
representing the normal and the tangential vector at the discontinuity. In the
scope of this work, only the crack opening in mode I is taken into account, so
only the normal direction vector at the discontinuity will have a non-zero value.
The element domain is divided into two sub-domains, Ωe− and Ωe+, as shown
in Figure 3.2a and 3.2b. The incompatible mode function for a macro-scale
element in 3D can be written as

M(ξ, η, ζ) � HΓs (ξ, η, ζ) −
∑

b∈Ωe+

NM
b (ξ, η, ζ) (3.9)

where HΓs is the Heaviside step function defined as

HΓs �

{
0, (ξ, η, ζ) ∈ Ωe−

1, (ξ, η, ζ) ∈ Ωe+
(3.10)
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3.2. Multi-scale formulation for localized failure

(a)
(b)

Figure 3.2: (a) 3D isoparametric tetrahedral element with discontinuity; (b) 3D
isoparametric hexahedral element with discontinuity

When the incompatible mode function M and displacement jump α are
introduced, the macro-scale displacement field from (3.3) can be then rewrit-
ten as in (2.21)

uM
n+1

���
ΓMm ,E
(xm) �

∑
a∈ΓMm ,E

NM,E
a (xm)dM,E

a ,n+1 + MM,EαM,E
n+1 (3.11)

The micro-scale nodal displacement field on the interface is the same as
for 2D setting

d̄m
n+1

���
ΓM,E

� TEdM,E
n+1 + SEαM,E

n+1 (3.12)

The final system of equations on the macro-scale can be defined as


KM

(N×N)
FM

(N×3)

FM,T

(3×N)
HM

(3×3)



∆dM

(N×1)

∆αM

(3×1)

 � −


rM

(N×1)

hM

(3×1)

 (3.13)

where the value N is equal to the number of macro-scale nodes for one element
multiplied by the number of degrees of freedom in every node on the macro-scale.

To construct themacro-scale stiffnessmatrix needed for solving themacro-scale
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system of equations, submatrices KM , FM and HM are computed as

KM,E
n+1
(N×N)

� TE,T

(N×nΓ)

K̃m
n+1

(nΓ×nΓ)

TE

(nΓ×N)

FM,E
n+1
(N×3)

� TE,T

(N×nΓ)

K̃m
n+1

(nΓ×nΓ)

SE

(nΓ×3)

HM,E
n+1
(3×3)

� SE,T

(3×nΓ)

K̃m
n+1

(nΓ×nΓ)

SE

(nΓ×3)

(3.14)

where the value nΓ is the number of interface micro-scale nodes multiplied
by the number of the degrees of freedom in every node, and the value n f is
the number of free micro-scale nodes multiplied by the number of the degrees
of freedom in every node.

In the same way, the macro-scale residuals are computed using the values of
micro-scale residuals and transformation matrices T and S

rM,E
n+1
(N×1)

� TE,T

(N×nΓ)

r̃m
n+1
(nΓ×1)

hM,E
n+1
(3×1)

� SE,T

(3×nΓ)

r̃m
n+1
(nΓ×1)

(3.15)

The final equations to be solved are the same as the ones described in (2.30)-
(2.33) and will be given here for completeness of the presented 3 formulation. The
local equation from which the macro-scale displacement jump is computed
is the following

HM,E(i , j)
n+1 ∆α

M,E(i , j)
n+1 � hM,E(i , j)

n+1 (3.16)

with the corresponding update

α
M,E(i , j+1)
n+1 � α

M,E(i , j)
n+1 + ∆α

M,E(i , j)
n+1 (3.17)

The detailed flow-chart of the proposed multi-scale operator split solution
procedure is the same as for 2D setting and is shown in Algorithm 1 in Section 2.2.

The global equation from which the values of the macro-scale displacements
are computed is

[KM(i)
n+1 − FM(i)

n+1 (H
M(i)
n+1 )

−1FM(i)T
n+1 ]∆dM(i)

n+1 � −rM(i)
n+1 (3.18)

with the corresponding update

dM(i+1)
n+1 � dM(i)

n+1 + ∆dM(i)
n+1 (3.19)
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3.3. Micro-scale Timoshenko beam plasticity model

The reason why both macro-scale tetrahedral and hexahedral elements are
developed is that they both have their advantages and disadvantages. The
discontinuity position and orientation is calculated in a different way. Calculations
for tetrahedral elements are more simple as they have only one Gauss point
compared to four Gauss points for hexahedral element. On the other side, for the
hexahedral element, it is easier to detect interface nodes between the scales, so it
is a better option for obtaining results in the elasticity and hardening phase. This
specificities together with the discussion of results for both types of macro-scale
elements will be shown in Section 3.4.

3.3 Micro-scale Timoshenko beam plasticity model

On the micro-scale, the Timoshenko beam finite element is used, developed in the
works of (Hadzalic, 2019), (Karavelic et al., 2017) and (Nikolic, 2015). The model is
described for a better understanding and interpretation of the numerical results
for the multi-scale solution procedure, although the theoretical formulation is
not improved in any way in the scope of this thesis. Also, for the numerical
examples, the FEAP code from (Hadzalic, 2019) is used for the micro-scale. The
plasticity model is able to represent localized failure using the embedded strong
discontinuity (Karavelic et al., 2017). A discrete beam lattice model is used,
which is based on the Voronoi cell representation of the domain with inelastic
Timoshenko beam finite elements acting as cohesive links.

To define a finite element mesh for a micro-scale problem, the following
procedure is used, as described in (Hadzalic, 2019). A 3D mesh is constructed
using the duality property between the Voronoi cell representation and Delaunay
tetrahedralization of the domain. First, the domain of the problem is divided
into polyhedral regions. Then, performing the Delaunay tetrahedralization, each
of the centers of the adjacent Voronoi cells are connected. In this way, a dual
mesh of tetrahedra is constructed. Along each edge of the tetrahedral element, a
cohesive link is placed that is modelled as a one-dimensional Timoshenko beam
finite element. The beam is perpendicular to the polygon shared between the
two Voronoi cells, and the polygon divides the beam in two equal parts. Due
to this, it is more practical to simulate the displacement jump in the middle
of the beam element as the crack is happening only at the intersection of the
Voronoi cells and the cell does not need to be divided. To calculate the cross-
section of a beam, a polygon area is used. To simplify the computation of the
area of the polygon, it is approximated with an equivalent circular cross-section
(Moreno-Navarro, 2019; Hadzalic, 2019).

51



CHAPTER 3. 3D MULTI-SCALE COUPLING

(a) (b)

Figure 3.3: (a) Two adjacent Voronoi cells connected by the cohesive link; (b) Timoshenko
beam element and the circular cross-section approximation (Moreno-Navarro, 2019)

It can be noted that there is a different number of degrees of freedom on the
micro and the macro-scale. The Timoshenko beam element has six degrees of
freedom (three displacements and three rotations), and the macro-scale elements
have just three degrees of freedom in each node. For the multi-scale formulation,
only the translational micro-scale degrees of freedom are taken into account,
while the rotations are ignored. The numerical examples and the mesh will have
to be constructed later with having this in mind, to limit the significance that
rotations have on the computations and the final result.

The behavior of cohesive links is modelled with inelastic Timoshenko beam
finite elements with embedded strong discontinuity, as shown in (Nikolic and
Ibrahimbegovic, 2015) and (Nikolic, 2015). They are capable of representing the
crack in mode I, mode II and mode III. Mode I relates to crack opening, mode II
relates to in-plane crack sliding, and mode III relates to the out-of-plane shear
sliding (Hadzalic, 2019). The Timoshenko beam finite element has one Gauss
integration point which is placed in the middle of the element.

Figure 3.4: Timoshenko beam finite element with 6 degrees of freedom in every node
(Hadzalic, 2019)
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3.3. Micro-scale Timoshenko beam plasticity model

The finite element interpolation of the total displacement field can be written
as the sum of the regular and the incompatible part

u(x) �
2∑

a�1
Na(x)da + M(x)α (3.20)

where Na is the standard linear shape function, da is the displacement vector
containing displacements in all three directions and three rotations of cross section
around local axes, M is the incompatible mode function for the Timoshenko beam,
and α is the vector of displacement jumps at the discontinuity in all three directions.

The shape functions for the Timoshenko beam are defined as

N1(x) � 1 − x
Le

N2(x) � x
Le

(3.21)

where Le is the length of the beam. The vector of displacements is defined as

da � [ua va wa ϕa ψa θa]T (3.22)

where ua , va and wa are the displacements of the node a along the local axes
x, y and z, and ϕa , ψa and θa are the rotations of the node a around the local
axes x, y and z, respectively.

The incompatible mode function is defined as

M(x) � Hx̄(x) − N2(x) (3.23)

The value of the Heaviside function depends on the position relative to
the discontinuity

Hx̄(x) �
{

0, x ≤ x̄

1, x > x̄
(3.24)

where x̄ is the position of the discontinuity, which is in this case placed in the
middle of the element. The final value of the incompatible mode function
can then be written as

M(x) �
{
− x

Le , x ≤ x̄

1 − x
Le , x > x̄

(3.25)

The vector of the displacement jumps is defined as

α � [αu αv αw 0 0 0]T (3.26)

where αu , αv and αw are the displacement jumps in axial, in-plane transverse
and out-of-plane transverse direction (Hadzalic, 2019). The rotations are not
concerned with the displacement jumps.
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For a geometrically linear Timoshenko beam, the strain field is defined as

ε � [εxx γx y γxz κx κy κz]T (3.27)

where εxx is the axial strain, γx y and γxz are the shear strains, and κx , κy and κz

are the curvatures. They are defined as in (Karavelic et al., 2017)

εxx �
du
dx

γx y �
dv
dx
− θz γxz �

dw
dx

+ θy

κx �
dϕ
dx

κy �
dψ
dx

κz �
dθ
dx

(3.28)

Then, the interpolated enhanced strain field can be written as

ε �
2∑

a�1
Bada + Gα (3.29)

where the matrix Ba is defined as

Ba �



Ba 0 0 0 0 0

0 Ba 0 0 0 −Na

0 0 Ba 0 Na 0

0 0 0 Ba 0 0

0 0 0 0 Ba 0

0 0 0 0 0 Ba


(3.30)

The values Ba are the derivatives of the linear shape functions of element
node a and can be written as

B1(x) � dN1
dx � − 1

Le

B2(x) � dN2
dx �

1
Le

(3.31)

The matrix G is defined as

G �



G 0 0 0 0 0

0 G 0 0 0 0

0 0 G 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(3.32)

where G is the derivative of the incompatible mode function that can be split
into a regular and a singular part

G(x) � sG(x) + s

sG(x), sG(x) � − 1
Le ,

s

sG(x) � δx̄(x) (3.33)
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3.3. Micro-scale Timoshenko beam plasticity model

where δx̄ is the derivative of the Heaviside function at the discontinuity

δx̄(x) �
{

0, x ∈ [ 0, x̄〉 ∪ 〈x̄ , Le]
∞, x � x̄

(3.34)

The patch test condition needs to be fulfilled by enforcing the orthogonality
between the enhanced strain and constant stress (Karavelic et al., 2017), so the
matrix Gv(x) is introduced and defined as

Gv(x) � G(x) − 1
Le

∫ Le

0
G(x)dx (3.35)

Since the Timoshenko beam has only one Gauss integration point it can be
proved that Gv � G (Karavelic et al., 2017).

The system of equations to be solved can be written as

A[f e
int − f e

ext] � 0 (3.36)
he

� 0 (3.37)

where f e
int is the internal force vector, f e

ext is the external force vector, and he is
the residual at the discontinuity. They can be defined as

f e
int �

∫ Le

0
BTσdx (3.38)

he
�

∫ Le

0
sGTσdx + t (3.39)

where σ is the stress in the element, and t is the traction vector at the discontinuity
sx. In order to have a smooth stress field, the condition he � 0 needs to be enforced,
which leads to the traction vector being defined as (Nikolic, 2015)

t � −
∫ Le

0
sGσdx (3.40)

To solve this problem, the system (3.36) is linearized and can be then written as[
K F

Fv + Kd H + Kα

] [
∆dn+1
∆αn+1

]
� −

[
fint ,n+1 − fext ,n+1

h

]
(3.41)

where the tangent stiffness matrices are defined as

Ke ,(i)
n+1 �

∫ Le

0 Be ,TC(i)n+1Be dx

Fe ,(i)
n+1 �

∫ Le

0 Be ,TC(i)n+1
sGe dx

Fe ,(i)
v ,n+1 �

∫ Le

0
sGe ,TC(i)n+1Be dx

He ,(i)
n+1 �

∫ Le

0
sGe ,TC(i)n+1

sGe dx

(3.42)
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where C(i)n+1 is the elasto-plastic modulus for the Timoshenko beam. The values of
the matrices Kd and Kα depend on the fact whether the current step in softening
is elastic or plastic. For an elastic step Kα � 0, and for a plastic step Kd � 0. The
procedure and the calculated values for Kd and Kα can be seen in (Hadzalic, 2019).

After performing the static condensation on the set of equations (3.41), the
displacement jump can be computed as

∆αn+1 � −(H + Kα)−1(Fv + Kd)∆dn+1 (3.43)

To compute the increment of the displacement vector, a value of displacement
jump is introduced back into (3.41) so the final equation to solve can be written as

[K − F(H + Kα)−1(Fv + Kd)]∆dn+1 � −(fint ,n+1 − fext ,n+1) (3.44)

The general finite element procedure for the plasticity model is described here,
while the details can be found in (Hadzalic, 2019). The computations are divided
into a bulk computation and a computation at the discontinuity.

The bulk computation starts with an elastic step in both axial and transverse
direction that is described with the elasto-viscoplastic constitutive model with
implemented linear hardening (Ibrahimbegovic, 2009) and Fredrick-Armstrong
nonlinear kinematic hardening law (Armstrong and Frederick, 1966). The behavior
of the element in bending and torsion is purely linear elastic (Karavelic et al., 2017).

When the value of the stress becomes greater than the value of the ultimate
stress, the computation at the discontinuity starts and the softening is described
with an exponential function. The displacement jump is then activated and
computed in each step. In the softening phase, the plastic deformation remains
localized at the discontinuity and the bulk of the material is unloading elastically
(Hadzalic, 2019).

The final solution is obtained using the operator split solution procedure.
The computation is divided into a local and a global phase. In the local phase,
evolution equations of internal variables defined locally at each Gauss point are
computed, using implicit backward Euler time integration scheme. In the global
phase, after the local phase is done, the equilibrium equations are solved, and
the values of the nodal displacements are computed using the incremental and
iterative Newton-Raphson procedure (Hadzalic, 2019; Kozar et al., 2018).

3.4 Numerical examples

Several numerical examples are designed to validate the multi-scale theoretical
formulation in a 3D setting. At first, a simple tension test with a cube shaped
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specimen is chosen, where the displacement at the top face is imposed as shown
in Figure 3.5. The multi-scale results are compared to the mono-scale solution.
The goal is to prove that the 3D multi-scale method can produce the same quality
results as the mono-scale solution. Timoshenko beam elements described in
Section 3.3 are used both for the mono-scale example and for the micro-scale
of the multi-scale example. First, a multi-scale numerical example with the
macro-scale tetrahedral element is shown, and after that an example with the
macro-scale hexahedral element.

The geometry of the specimen is a cube with sides of 5 cm. The top face has an
imposed displacement ū of 0.06 cm. The planes x � 0, y � 0 and z � 0, have fixed
displacements in the same direction to simulate symmetry boundary conditions.
All rotation degrees of freedom of the beams are set free.

The following material parameters for the Timoshenko beam element are
chosen: the Young’s modulus E = 210 000 MPa, the Poisson’s ratio ν = 0.3, the
axial and shear yield stresses σ̄x = 200 MPa, σ̄y = 50 MPa and σ̄z = 50 MPa, the
axial and shear hardening moduli K̄x = 0 MPa, K̄y = 0 MPa and K̄z = 0 MPa.
For the weakened elements, the axial and shear ultimate stresses are ¯̄σx = 300
MPa, ¯̄σy = 60 MPa and ¯̄σz = 60 MPa, and the axial and shear fracture energies
are G f ,x = 5 N/mm, G f ,y = 5 N/mm and G f ,z = 5 N/mm. Ultimate stresses and
fracture energies for non-weakened elements are set to high values that are never
reached, so they never enter into the softening phase.

Figure 3.5: Simple tension test - boundary conditions
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3.4.1 Numerical example for macro-scale tetrahedron

For the proposed geometry, six tetrahedral elements are used to define the macro-
scale mesh as shown in Figure 3.6a. A cube shaped specimen can be divided
into a minimum of six congruent tetrahedra (each tetrahedron can be obtained
from the other by translation, rotation or reflection). For each of the tetrahedral
elements, a micro-scale mesh is defined as shown in Figure 3.6b. It is composed of
Timoshenko beam elements formed so they can fit inside a tetrahedral element.
Since the tetrahedra are congruent, theoretically one micro-scale mesh can be
defined and used for each of the macro-scale tetrahedral elements. In this case,
microFEAP code should be changed in a way so that themicro-scale mesh conform
to the interface (rotation and translation of the mesh). In this example, for the
sake of simplicity, six different micro-scale meshes are defined.

(a) (b)

Figure 3.6: (a) Macro-scale mesh consisting of six tetrahedral elements; (b) micro-scale
mesh for one tetrahedral element consisting of Timoshenko beam elements

A micro-scale mesh composed of Timoshenko beam elements is created using
the procedure explained in Section 3.3. Weakened elements are positioned
around the middle of each macro-scale tetrahedral element parallel to the cube’s
facet with imposed displacement. Domain division into polyhedral regions
and Delauney tetrahedralization are done in Matlab using the existing code
developed as part of the work (Karavelic et al., 2017). An additional Matlab
code is developed to calculate the cross-section of beam elements and arrange
the mesh data into the FEAP input file format.

Finally, a mono-scale mesh is defined using Timoshenko beam elements, as
shown in Figure 3.7a. Weakened elements are positioned around the middle of
the specimen parallel to the cube’s facet with imposed displacement. Mono-scale
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and multi-scale meshes have approximately the same total number of beam
elements, the same position of the weakened elements and the same dimensions,
and therefore should behave in a similar way.

To be able to couple the two scales through the degrees of freedom, three
micro-scale rotations are ignored when the scales communicate. Due to this,
the micro-scale mesh has to be defined in such a way so that rotations do not
have a significant effect on computations.

(a) (b)

Figure 3.7: (a) Mono-scale mesh consisting of Timoshenko beam elements (b) Weakened
elements in the middle of the specimen (shown in green)

Elastic response

When the material is in the elastic phase, the same response is obtained using the
multi-scale and the mono-scale approach, as can be seen in the force-displacement
diagram shown in Figure 3.8. In the multi-scale code, only the stiffness matrix
KM and the residual rM are transfered from the micro to the macro-scale, and
no localized failure is activated.
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Figure 3.8: Force-displacement diagram for the elasticity phase obtained using the
mono-scale and the multi-scale method with macro-scale tetrahedral element

Elasto-plasticity with hardening

When the micro-scale beam elements enter into hardening, a similar response
is obtained for the mono and the multi-scale method, as shown on the force-
displacement diagram in Figure 3.9. Some of the micro-scale beams can enter into
the softening phase and crack, but the specimen has still not entered into softening
globally. Localized failure is not activated in the macro-scale tetrahedral elements.
In the multi-scale code, only the stiffness matrix KM and the residual rM are
transfered from the micro to the macro-scale, but this time with modified values
of stiffness matrix due to the micro-scale beams entering into the hardening
and softening phase.

Figure 3.9: Force-displacement diagram for the hardening phase obtained using the
mono-scale and the multi-scale method with macro-scale tetrahedral element
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Elasto-plasticity with softening

In the softening phase, the correct results cannot be obtained with the multi-scale
code, as shown on the force-displacement diagram in Figure 3.10 (dashed line).
The current formulation is not sufficient to allow the macro-scale tetrahedral
elements to enter into the softening phase when the crack is not perfectly parallel
to the cube’s facet with imposed displacement. To overcome this, it it necessary
to add the functionality of crack opening for both mode I and mode II for
the macro-scale element.

The crack opening is not parallel to the cube’s facet with imposed displacement
due to the geometry of the tetrahedra and the position of the crack in the
macro-scale tetrahedral elements. The crack is positioned in the center of each
tetrahedron, which is not the same as the position of the weakened elements
in the micro-scale mesh. A micro-scale mesh could be additionally modified
so that weakened elements fit perfectly with the macro-scale crack just to verify
that the formulation is working for this case.

Instead of that, a macro-scale hexahedral element is developed, where that
problem does not exist, and the results will be presented in the following section.

Figure 3.10: Force-displacement diagram for the softening phase obtained using the
mono-scale and the multi-scale method with macro-scale tetrahedral element

3.4.2 Numerical example for macro-scale hexahedron

For the proposed geometry, a hexahedral element is used to define the macro-
scale mesh as shown in Figure 3.11a. For this hexahedral element, a micro-scale
mesh is defined as shown in Figure 3.11b. The micro-scale mesh is composed of
Timoshenko beam elements formed so they can fit inside a hexahedral element.
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(a) (b)

Figure 3.11: (a) Macro-scale mesh consisting of a hexahedral element; (b) micro-scale
mesh for one hexahedral element consisting of Timoshenko beam elements

The micro-scale mesh of Timoshenko beams with weakened elements is
created using the same procedure as in the previous section. The mono-scale
and multi-scale meshes have the same total number of beam elements, the same
position of the weakened elements and the same dimensions; therefore, they
should behave in a similar way.

Figure 3.12: Mono-scale mesh consisting of Timoshenko beam elements

Elastic response

For the elastic phase, almost the same response is obtained for both mono-scale
and multi-scale approaches, as it can be seen on the force-displacement diagram
shown in Figure 3.13. There is a small difference between the obtained force values.
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Figure 3.13: Force-displacement diagram for the elasticity phase obtained using the
mono-scale and the multi-scale method with macro-scale hexahedral element

To test if the difference will get smaller as the number of elements increases,

another micro-scale and mono-scale mesh are created, with an increased number

of elements. Now, with a finer mesh, the difference between the obtained force

values is smaller than with the coarse mesh, as it can be seen in Figure 3.14.

Figure 3.14: Force-displacement diagram for the elasticity phase obtained using the
mono-scale and the multi-scale method with macro-scale hexahedral element for a finer

mesh

A superposed force-displacement diagram for both coarse and fine mesh

can be seen in Figure 3.15. It can be seen that the mono-scale method itself

returns slightly different results for different meshes. To conclude, mono-scale

and multi-scale methods are in a better agreement when a finer mesh is used.
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Figure 3.15: Force-displacement diagram for the elasticity phase obtained using the
mono-scale and the multi-scale method with macro-scale hexahedral element -

comparison of coarse and fine mesh

The multi-scale procedure has also been tested with a simple hexahedral
elastic element implemented in FEAP on the micro-scale, and it produces the
same results for the elastic phase, showing that the multi-scale procedure can
work with different micro-scale elements.

Elasto-plasticity with hardening

For the hardening phase, both multi-scale and mono-scale methods are giving
the same results, with the same small differences in obtained force values, as
can be seen in Figure 3.16.

Figure 3.16: Force-displacement diagram for the hardening phase obtained using the
mono-scale and the multi-scale method with macro-scale hexahedral element
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Elasto-plasticity with softening

In the softening phase, when beams start to crack and the specimen is entering
into the softening phase, the same behavior is captured with both mono-scale and
multi-scale codes, as it can be seen in Figure 3.17. Due to the weakened beam
element being aligned with the discontinuity position inside the macro-scale
hexahedral elements, the position of the crack is the same on both micro and
macro-scale. The crack opening is also parallel to the cube’s face with imposed
displacement. The macro-scale hexahedral element can enter into softening and
compute the proper value of the displacement jump on the macro-scale.

This shows that with the hexahedral element we are capable of overcoming the
limitations of the tetrahedra example, which allows us to obtain realistic results
for all the phases of material behavior, including softening.

Figure 3.17: Force-displacement diagram for the softening phase obtained using the
mono-scale and the multi-scale method with macro-scale hexahedral element

3.4.3 Validation examples of mesh objectivity

To prove that the proposed multi-scale method is mesh independent, it is tested
on several more examples – tension and compression test with a different number
of macro-scale and micro-scale elements.

3.4.3.1 Tension test

A simple tension test has the same geometry and boundary conditions as
presented in Section 3.4.

The following material parameters for the Timoshenko beam element are
chosen: Young’s modulus E = 210 000 MPa, Poisson’s ratio ν = 0.3, axial and
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shear yield stresses σ̄x = 200 MPa, σ̄y = 50 MPa and σ̄z = 50 MPa, axial and shear
hardening moduli K̄x = 0 MPa, K̄y = 0 MPa and K̄z = 0 MPa.

As the example is tested only for the elasticity and hardening case, there are
no weakened elements, so there is no need to define their material properties
(i.e. ultimate stress and fracture energy).

Mono-scale computation

Three meshes with different number of elements are generated and used for the
mono-scale computations. Themeshwith the smallest (coarsemesh) and themesh
with the biggest number of elements (fine mesh) are used for comparison with
the multi-scale computations. The mono-scale mesh is defined using Timoshenko
beam elements, as shown in Figure 3.18.

(a) (b) (c)

Figure 3.18: Mono-scale mesh consisting of (a) 1838 Timoshenko beam elements - coarse
mesh; (b) 3235 Timoshenko beam elements; (b) 3411 Timoshenko beam elements - fine

mesh

It can be seen in Figure 3.19 that for the mono-scale examples, the force
displacement diagram results are similar for elasticity and hardening phase. As
the number of elements in the mesh increases, the results are approaching
to the same value.

(a) (b)

Figure 3.19: Tension test: Force-displacement diagram obtained using the mono-scale
method for three different meshes (a) elasticity; (b) hardening
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Multi-scale computation

One macro-scale hexahedron - coarse micro-scale mesh

For the proposed geometry, a hexahedral element is used to define the macro-scale

mesh as shown in Figure 3.20a. The micro-scale mesh is defined so as to fit into a

macro-scale hexahedral element. It has the same number of Timoshenko beams

(1838) as the coarse mesh in the mono-scale example.

(a) (b)

Figure 3.20: (a) Macro-scale mesh consisting of one hexahedral element; (b) coarse
micro-scale mesh for one hexahedral element consisting of 1838 Timoshenko beam

elements

Multi-scale and mono-scale examples are executed and their results compared

for themesheswith the same number of Timoshenko beam elements. It can be seen

in Figure 3.21 that the results show a good fit for the elasticity and hardening phase.

(a) (b)

Figure 3.21: Tension test: Force-displacement diagram obtained using the mono-scale
and the multi-scale method for the coarse micro-scale mesh (a) elasticity; (b) hardening
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One macro-scale hexahedron - fine micro-scale mesh

A fine micro-scale mesh with the same number of Timoshenko elements (3411
elements) as the fine mesh in the mono-scale example is defined. Multi-scale and
mono-scale examples are executed and results compared.

(a) (b)

Figure 3.22: (a) Macro-scale mesh consisting of one hexahedral element; (b) fine
micro-scale mesh for one hexahedral element consisting of 3411 Timoshenko beam

elements

It can be seen in Figure 3.23 that the obtained forces are approximately the
same when the same number of Timoshenko elements are used on the mono-
scale and the micro-scale level.

(a) (b)

Figure 3.23: Tension test: Force-displacement diagram obtained using the mono-scale
and the multi-scale method for the fine micro-scale mesh (a) elasticity; (b) hardening
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Eight macro-scale hexahedra - coarse micro-scale mesh

Now, on the macro-scale, eight hexahedral elements are defined. Inside each of
the hexahedra, there is a micro-scale mesh defined in a way that the total number
of Timoshenko beams for the multi-scale example is approximately the same as
the number of beams in the mono-scale example (the elements on the boundaries
between the macro-scale elements are excluded).

(a)

(b)

Figure 3.24: (a) Macro-scale mesh consisting of eight hexahedral elements; (b) coarse
micro-scale mesh for one hexahedral element consisting of 376 Timoshenko beam

elements

Comparable force-displacement diagrams are obtained for the elasticity and
hardening case as shown in Figure 3.25.

(a) (b)

Figure 3.25: Tension test: Force-displacement diagram obtained using the mono-scale
and the multi-scale method for the coarse micro-scale mesh (a) elasticity; (b) hardening
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Eight macro-scale hexahedra - fine micro-scale mesh

For eight macro-scale elements, the micro-scale mesh is generated to be finer,
with a larger number of elements.

(a)

(b)

Figure 3.26: (a) Macro-scale mesh consisting of eight hexahedral elements; (b) fine
micro-scale mesh for one hexahedral element consisting of 769 Timoshenko beam

elements

(a) (b)

Figure 3.27: Tension test: Force-displacement diagram obtained using the mono-scale
and the multi-scale method for the fine micro-scale mesh (a) elasticity; (b) hardening
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Superposed diagram for multi-scale method examples

The following diagrams in Figures 3.28 and 3.29 show the results of the execution
for all the multi-scale computations, with one and eight macro-scale elements,
using both coarse and fine micro-scale meshes, for elasticity and hardening.

Keeping in mind that the mono-scale method itself gives slightly different
results for different meshes, the results obtained with the multi-scale method
are in agreement with it.

Figure 3.28: Tension test: Force-displacement diagram for the elasticity phase obtained
using the mono-scale method for one macro-scale hexahedron and eight macro-scale
hexahedra for both coarse and fine micro-scale mesh

Figure 3.29: Tension test: Force-displacement diagram for the hardening phase obtained
using the mono-scale method for one macro-scale hexahedron and eight macro-scale
hexahedra for both coarse and fine micro-scale mesh
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3.4.3.2 Compression test

The second numerical example is a compression test with the same geometry

as in the tension test. The displacement ū is imposed at the top face and has

a negative value of -0.06 cm. The other boundary conditions and the material

properties remain the same as in the tension test.

Mono-scale computation

Three meshes with a different number of elements are generated and used for

the mono-scale computations. The mesh with the smallest (coarse mesh) and the

mesh with the biggest number of elements (fine mesh) are used for comparison

with the multi-scale computations.

(a) (b) (c)

Figure 3.30: Mono-scale mesh consisting of (a) 1838 Timoshenko beam elements - coarse
mesh; (b) 3235 Timoshenko beam elements; (b) 3411 Timoshenko beam elements - fine

mesh

(a) (b)

Figure 3.31: Compression test: Force-displacement diagram obtained using the
mono-scale method for three different meshes (a) elasticity; (b) hardening
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Multi-scale computation

One macro-scale hexahedron - coarse micro-scale mesh

The micro-scale mesh is defined so as to fit into a macro-scale hexahedral element.
Multi-scale and mono-scale examples are executed and their results compared for
the meshes with the same number (1838) of Timoshenko beam elements.

(a) (b)

Figure 3.32: (a) Macro-scale mesh consisting of one hexahedral element; (b) coarse
micro-scale mesh for one hexahedral element consisting of 1838 Timoshenko beam

elements

(a) (b)

Figure 3.33: Compression test: Force-displacement diagram obtained using the
mono-scale and the multi-scale method for the coarse micro-scale mesh (a) elasticity; (b)

hardening
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One macro-scale hexahedron - fine micro-scale mesh

The micro-scale mesh is defined so as to fit into a macro-scale hexahedral element.
Multi-scale and mono-scale examples are executed and their results compared for
the meshes with the same number (3411) of Timoshenko beam elements.

(a) (b)

Figure 3.34: (a) Macro-scale mesh consisting of one hexahedral element; (b) fine
micro-scale mesh for one hexahedral element consisting of 3411 Timoshenko beam

elements

(a) (b)

Figure 3.35: Compression test: Force-displacement diagram obtained using the
mono-scale and the multi-scale method for the fine micro-scale mesh (a) elasticity; (b)

hardening
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Eight macro-scale hexahedra - coarse micro-scale mesh

The micro-scale mesh is defined so as to fit into each of the macro-scale hexahedral
elements. Multi-scale and mono-scale examples are executed and their results
compared for themesheswith approximately the same total number of Timoshenko
beam elements (the elements on the boundaries between the macro-scale elements
are excluded).

(a)

(b)

Figure 3.36: (a) Macro-scale mesh consisting of eight hexahedral elements; (b) coarse
micro-scale mesh for one hexahedral element consisting of 376 Timoshenko beam

elements

(a) (b)

Figure 3.37: Compression test: Force-displacement diagram obtained using the
mono-scale and the multi-scale method for the coarse micro-scale mesh (a) elasticity; (b)

hardening
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Eight macro-scale hexahedra - fine micro-scale mesh

The micro-scale mesh is defined so as to fit into each of the macro-scale hexahedral
elements. Multi-scale and mono-scale examples are executed and their results
compared for themesheswith approximately the same total number of Timoshenko
beam elements (the elements on the boundaries between the macro-scale elements
are excluded).

(a)

(b)

Figure 3.38: (a) Macro-scale mesh consisting of eight hexahedral elements; (b) fine
micro-scale mesh for one hexahedral element consisting of 769 Timoshenko beam

elements

(a) (b)

Figure 3.39: Compression test: Force-displacement diagram obtained using the
mono-scale and the multi-scale method for the fine micro-scale mesh (a) elasticity; (b)

hardening
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Superposed diagram for multi-scale method examples

Figure 3.40 shows the results of execution for all multi-scale computations for
compression for the elasticity phase, with one and eight macro-scale elements,
using both coarse and fine micro-scale meshes.

Figure 3.40: Compression test: Force-displacement diagram for the elasticity phase
obtained using the mono-scale method for one macro-scale hexahedron and eight macro-
scale hexahedra for both coarse and fine micro-scale mesh

The same results for hardening are shown in the Figure 3.41.

Figure 3.41: Compression test: Force-displacement diagram for the hardening phase
obtained using the mono-scale method for one macro-scale hexahedron and eight macro-
scale hexahedra for both coarse and fine micro-scale mesh
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3.4.4 Three point bending test

To test the ability of the multi-scale code to perform the calculations where

a heterogeneous stress field is present, a three point bending test numerical

example is executed. Also, here we tested how the multi-scale code is working

with a larger number of macro-scale elements. The results are compared to

the mono-scale computations.

The geometry of the specimen is a beam with a notch, as shown in Figure

3.42. There is an imposed displacement of 0.1 cm on the top of the specimen

above the notch. The specimen is supported on its ends on the bottom side. The

reaction forces are measured on the supports in z-direction.

The following material parameters for the Timoshenko beam element are

chosen: Young’s modulus E = 210 000 MPa, Poisson’s ratio ν = 0.3, axial and

shear yield stresses σ̄x = 200 MPa, σ̄y = 50 MPa and σ̄z = 50 MPa, axial and shear

hardening moduli K̄x = 0 MPa, K̄y = 0 MPa and K̄z = 0 MPa.

Figure 3.42: Three point bending test - geometry and boundary conditions

Mono-scale computation

The mono-scale mesh is composed of Timoshenko beam elements. In order to

simulate the existence of the notch, the elements shown in red in Figure 3.44 are

weakened, so they crack at the beginning of the simulation.
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Figure 3.43: Mono-scale mesh consisting of Timoshenko beam elements

Figure 3.44: Weakened elements inside the mono-scale mesh

The computations are performed for the elasticity and hardening phase and
the obtained force-displacement diagrams can be seen in Figure 3.45.

(a) (b)

Figure 3.45: Three point bending test: force-displacement diagram obtained using the
mono-scale method (a) elasticity; (b) hardening

Multi-scale computation

The macro-scale mesh consists of 34 hexahedral elements that exactly follow the
proposed geometry. There are no elements on the notch, and in this way there is
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no need to weaken the beams in order to simulate it. Inside each of the macro-scale
elements there is a micro-scale mesh of Timoshenko beams as shown in Figure 3.46.

(a) (b)

Figure 3.46: (a) Macro-scale mesh consisting of 34 hexahedral elements; (b) micro-scale
mesh for one hexahedral element consisting of Timoshenko beams

Keeping inmind that themesh density of the Timoshenko beams influences the
results, and that the notch in the mono-scale example is simulated by weakening
the elements, the result comparison between the two computations is only
qualitative. It can be seen in Figure 3.47 that the force-displacement diagrams
look approximately the same for the elasticity and hardening case.

(a) (b)

Figure 3.47: (a) Three point bending test: Force-displacement diagram obtained using
the multi-scale method, compared to mono-scale; (b) micro-scale mesh for one

hexahedral element consisting of Timoshenko beams
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Figure 3.48: Three point bending test multi-scale computation – displacements on the
macro-scale in z-direction

Conclusion

It has been shown that the multi-scale procedure with localized failure can capture
the micro-scale localized failure in a 3D setting. Two types of macro-scale elements
have been developed, a tetrahedral and a hexahedral element, for which the results
of numerical examples were presented. The macro-scale hexahedral element was
able to capture the softening behavior, with a condition that the crack opening
happens in mode I only, and that the micro-scale crack openings are aligned to
the macro-scale crack. Validation examples for the tension and compression test
are shown, followed by the three point bending test. The numerical examples
are performed with the previously developed Timoshenko beam finite element
with implemented plasticity model used on the micro-scale. The scales were
successfully coupled – the macro-scale element with three degrees of freedom in
each node and the micro-scale element with six degrees of freedom in each node.
The multi-scale solution procedure can be used with different types of micro-scale
elements, as long as they can be coupled through the corresponding degrees of
freedom on the interface. Also, different behavior models can be used on the
micro-scale, as it was demonstrated in Chapter 2.1 for the micro-scale damage
model, and in Chapter 3 for the the micro-scale plasticity model.
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In this chapter, the 3D multi-scale formulation without localized failure
is extended to a multi-physics setting, where different fields from
the mechanical and electrical domains can be coupled. In the first
section, the multi-scale electro-mechanic formulation is presented for
both tetrahedral and hexahedral macro-scale elements. A micro-scale
polarization switching model implemented for Timoshenko beams is
presented. Numerical examples are performed and presented, showing
that themulti-scale electro-mechanic computation procedure can produce
the same quality results as the mono-scale computations. In the second
section, a multi-scale Hellinger-Reissner procedure for electrostatic is
presented, where two independent fields are introduced – scalar electric
potential and electric displacement. Also, the mono-scale formulation
used on the micro-scale is described. Finally, a patch test for electrostatics
is performed, and the results are compared to the mono-scale and
analytical computations.



4.1. Multi-physics electro-mechanic coupling

4.1 Multi-physics electro-mechanic coupling

The previously developedmulti-scalemodel is able to capturemicro-scale behavior
through its three displacement degrees of freedom. In this way, it can simulate
the behavior of a material in the mechanical domain only. This model can be
further extended to accommodate additional degrees of freedom to implement
more complex behavior and capture a multi-physics behavior on the micro-
scale, where thermal, electric or magnetic fields can be present. Within the
scope of this thesis, to prove that the multi-scale model can be extended to take
into account additional physics, a multi-scale electro-mechanic formulation is
developed and tested on several examples.

4.1.1 Multi-scale electro-mechanic formulation

To be able to capture a micro-scale behavior where different fields frommechanical
and electrical domain are coupled, another degree of freedom is introduced
on the macro-scale. Besides the standard three displacements contained in the
displacement vector u, the electric potential V is added. It is defined with
the kinematic equation

E � −∇V (4.1)

where E is the electric field.
Regarding the multi-scale formulation, in addition to the field approximations

defined in (3.3) for a 3D setting, a macro-scale voltage approximation is defined
and calculated with standard finite element approximations

VM
n+1

���
ΓMm ,E
(xm) �

∑
a∈ΓMm ,E

NM,V,E
a (xm)vM,E

a ,n+1 (4.2)

where NM,V,E
a is the standard finite element shape function for a 3D tetrahedral or

hexahedral element. Both types of macro-scale elements are implemented and
tested with this formulation. The standard finite element shape functions for the
3D isoparametric tetrahedral element are given in (3.1) and (3.2).

The localized Lagrange multipliers enforce that the voltage on the interface
nodes at the micro-scale is calculated as a linear interpolation of the nodal values
of voltage at the macro-scale, the same as for the displacements, as explained in
Section 2.1. In addition to the micro-scale nodal displacements defined in (3.4)

d̄m
n+1
(3n×1)

���
ΓM,E

� TE

(3n×3N)
dM,E

n+1
(3N×1)

(4.3)
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(a)
(b)

Figure 4.1: (a) 3D isoparametric tetrahedral element with added voltage; (b) 3D
isoparametric hexahedral element with added voltage

the micro-scale voltage can be calculated as

v̄m
n+1
(n×1)

���
ΓM,E

� UE

(n×N)
vM,E

n+1
(N×1)

(4.4)

Here, TE is the connectivity matrix for displacements, as defined in Section
2.2.1, UE is the connectivitymatrix for voltage, the value n is equal to the number of
interface micro-scale nodes, and the value N is equal to the number of macro-scale
nodes for one element. In the case of the macro-scale tetrahedral element, N
equals 4, and in the case of the macro-scale hexahedral element, N equals 8.

The connectivity matrices are based on the particular values of macro-scale
shape functions which correspond to the interface nodes, as explained in detail in
Section 2.2.1. In thisway, themicro-scaled voltage on the interface is imposedby the
macro-scale voltage, as a linear interpolation between themacro-scale nodal values.

To simplify the calculations, three components of displacements and one
component of voltage can be written as a new vector representing four degrees
of freedom in a node na

d̂a � [u1,a u2,a u3,a va]T (4.5)

Since the transformation matrix values for three nodal displacement and
nodal value of voltage are calculated with the same shape functions, a new
transformation matrix RE can be constructed, which contains values from both
matrix TE and UE. It is constructed in the same way as transformation matrix TE,
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as described in detail in Section 2.2.1, but with added voltage as the fourth degree
of freedom. Then, the sum of the shape functions with introduced coordinates
of the micro-scale interface node nm

a can be written as

RE
a �

∑
b

NM
b (xa) (4.6)

for the three displacements degrees of freedom and for the voltage, where xa are
the coordinates of interface micro-scale node nm

a . The part of the transformation
matrix RE related to the micro-scale interface node nm

a for all four degrees of
freedom can be then written in matrix notation as

RE
a �



NM
1 (xa) 0 0 0

0 NM
1 (xa) 0 0

0 0 NM
1 (xa) 0

0 0 0 NM,V
1 (xa)

NM
2 (xa) 0 0 0

0 NM
2 (xa) 0 0

0 0 NM
2 (xa) 0

0 0 0 NM,V
2 (xa)

NM
3 (xa) 0 0 0

0 NM
3 (xa) 0 0

0 0 NM
3 (xa) 0

0 0 0 NM,V
3 (xa)

NM
4 (xa) 0 0 0

0 NM
4 (xa) 0 0

0 0 NM
4 (xa) 0

0 0 0 NM,V
4 (xa)



T

(4×4N)

(4.7)

where NM
b (xa) is the value of the standard shape function for displacements with

coordinates of the micro-scale node nm
a , and NM,V

b (xa) is the value of the standard
shape function for voltage with coordinates of the micro-scale node nm

a .
Taking this into account, (4.3) and (4.4) can be written in one expression as

sd̂
m
n+1
(4n×1)

���
ΓM,E

� RE

(4n×4N)
d̂

M,E
n+1
(4N×1)

(4.8)

Then, the standard finite element system of equations for computing the
increment of the displacement field and voltage on themicro-scale can bewritten as

s

sK
(4nΓ×4nΓ)

sKT

(4nΓ×4n f )
sK

(4n f ×4nΓ)
K

(4n f ×4n f )



∆

sd̂
(4nΓ×1)

∆d̂
(4n f ×1

 � −


sr
(4nΓ×1)

r
(4n f ×1)

 (4.9)
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where s

sK is the part of the micro-scale stiffness matrix related only to interface
nodes, sK is related to interface nodes in relation to free nodes and K is related
only to free nodes. In the same way, ∆ sd̂ is displacement and voltage increments
on the interface nodes, and sr is the residual on the interface nodes. Also, ∆d̂
is displacement and voltage increments on free nodes, and r is the residual on
free nodes. The value nΓ is the number of interface micro-scale nodes, and the
value n f is the number of free micro-scale nodes.

After performing the static condensation in the same way as in Section 3.1,
and after the computations on the micro-scale have converged, the final values of
the micro-scale condensed stiffness matrix and residual are used to compute the
values of the stiffness matrix and residual to be used at the macro-scale

KM,E
n+1

(4N×4N)

� RE,T

(4N×4nΓ)

K̃m
n+1

(4nΓ×4nΓ)

RE

(4nΓ×4N)

rM,E
n+1
(4N×1)

� RE,T

(4N×4nΓ)

r̃m
n+1

(4nΓ×1)

(4.10)

where K̃m
n+1 and r̃m

n+1 are the statically condensed stiffness matrix and residual
obtained at the micro-scale, as explained in Section 2.1.

When the values of the macro-scale stiffness matrix and residual are computed,
they are used to update the values of the macro-scale displacement field and
voltage. The standard finite element system of equations needs to be solved

KM
n+1∆d̂

M
n+1 � −rM

n+1 (4.11)

after which the corresponding values of the macro-scale displacement and
voltage are updated with

d̂
M(i+1)
n+1 � d̂

M(i)
n+1 + ∆d̂

M(i)
n+1 (4.12)

where d̂
M(i+1)
n+1 is a vector that contains three values of displacement and one value

of voltage in time step n + 1 and iteration (i + 1).
With the additional value of voltage stored on the macro-scale, the model is

able to capture any micro-scale behavior resulting in an altered value of voltage.
Its application will be shown in several examples with piezoelectric effect and
polarization switching model at the micro-scale.

It has to be noted that the multi-physics coupling is implemented in a multi-
scale setting in such a way that the macro-scale element itself does not simulate
the multi-physics behavior, and does not couple the mechanical and electrical
domain. It only serves as an empty macro-scale element, without any constitutive
equations defined, that is able to capture the micro-scale behavior that couples
the electrical and the mechanic fields. On the macro-scale, that effects have to
be detectable through four degrees of freedom - three values of displacement
and one value of voltage.
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4.1.2 Micro-scale polarization switching model

On the micro-scale, a Timoshenko beam finite element that can capture the
piezoelectric coupling along with a non-linear constitutive behavior for electric
and mechanic fields is used. It was developed as part of the work from
(Moreno-Navarro, 2019), where additional formulation and implementation
details can be found.

Kinematics equations are defined as

ε �
1
2
[
∇ ⊗ u + (∇ ⊗ u)T

]
� ∇s yu

E � −∇V
(4.13)

where ε is the strain tensor, u is the displacement field, E is the electric field
and V is electric potential.

The model of the beam is reduced in a way that it takes into account only
the axial direction. Then, the only strain tensor components that are left are the
axial strain εxx , shear strains γx y and γxz , the curvatures κx , κy and κz , and the
axial electric field Ex . The strain tensor calculation from the kinematics equation
(4.13) for the Timoshenko beam finite element, as shown in (Moreno-Navarro
et al., 2018), can be then written



εxx

γx y

γxz

κx

κy

κz

Ex



�



∂
∂x 0 0 0 0 0 0

0 ∂
∂x 0 0 0 −1 0

0 0 ∂
∂x 0 1 0 0

0 0 0 ∂
∂x 0 0 0

0 0 0 0 ∂
∂x 0 0

0 0 0 0 0 ∂
∂x 0

0 0 0 0 0 0 ∂
∂x





u

v

w

ϕ

ψ

θ

V



(4.14)

where u, v and w are the displacements along the local axes x, y and z, and ϕ,
ψ and θ are the rotations around the local axes x, y and z, respectively.

If the displacement and electric potential vector from (4.14) is compared to the
macro-scale displacement field defined in (4.5) it can be seen that the micro-scale
displacement field has additional three rotational degrees of freedom that are
ignored during the scale coupling, as explained in the examples in the next section.

Conservation equations for the beam where the body forces are neglected
and a quasistatic approach is taken can be written as

σ∇ � 0

∇ · D � 0
(4.15)
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where σ is the stress tensor and D is the electric displacement.
In the constitutive equations for the piezoelectric material, it can be seen

that the electrical and mechanical variables are coupled as they influence each
other. They can be derived from the free-energy potential as explained in
(Moreno-Navarro et al., 2018)

σ � Cε − eeE

D � εE + eeε
(4.16)

where C is the stiffness tensor, ee is the piezoelectric tensor, and ε is the permittivity
tensor. To simplify the constitutive equations applied to beams, some of the
components can be left our from the final equations. For the relation between the
strain and the electric variables, only the axial component is taken into account.
Then the constitutive equations for the beam can be written as

Nx

Ny

Nz

Mx

My

Mz

Qx



�



ĔA 0 0 0 0 0 −e11A

0 kcGA 0 0 0 −1 0

0 0 kcGA 0 1 0 0

0 0 0 GJ 0 0 0

0 0 0 0 ĔI 0 0

0 0 0 0 0 ĔI 0

e11A 0 0 0 0 0 ε1A





εxx

γx y

γxz

κx

κy

κz

Ex



(4.17)

where Ni is the force in direction i, Mi is the moment in direction i, Qx is the
electric charge in direction x, kcis the shear correction factor, G is the shear
modulus, J is the polar moment of inertia, I is the moment of inertia, ε1 is the
permittivity in axial direction, e11 is the piezoelectric coefficient and Ĕ is the first
term of the stiffness tensor that is defined as

Ĕ �
E(1 − ν)

(1 + ν)(1 − 2ν) (4.18)

where E is the Young’s modulus and ν is the Poisson’s coefficient.
Beams developed as a part of the work from (Moreno-Navarro, 2019) have

more complex constitutive equations where plasticity and ferroelectricity behavior
are modeled. Ferroelectricity is a property of certain dielectrics that exhibit
spontaneous electric polarization that can be reversed in direction by applying
an electric field (Schwartz, 2002). In the ferroelectric model, the polarization P is
introduced, a macroscopic magnitude that accumulates the microscopic electric
dipole moments in a material. The polarization P is a measure of the degree of
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piezoelectricity in thematerial. There are two types of polarization sources present
in the material. The first one is generated in the presence of the electric field and
it is proportional to the applied value. The second is a consequence of a specific
material microstructure and it is a permanent value called remanent polarization
Pr . Remanent polarization has only the possibility of domain switching or
changing the orientation (Moreno-Navarro et al., 2018; Schwartz, 2002).

There are three types of behavior regarding the polarization: dielectric,
paraelectric and ferroelectric. For both dielectric and paraelectric behaviors the
polarization depends only on the electric field. The first one is linear and the second
one is a non-linear dependency. In the ferroelectrics behavior, the polarization is
non-linearly dependent on the electric field, but also on the superposed remanent
polarization that causes hysteresis phenomena. This non-linearity in polarization
is defined as hysteresis. The existence of spontaneous polarization together with
polarization reversal is generally accepted as proof of ferroelectricity (Schwartz,
2002). Ferroelectricity always implies a coupling with the mechanical field, since
only piezoelectric materials can be ferroelectrics (Moreno-Navarro, 2019).

Ferroelectricity is a subset of pyroelectricity; it exhibits spontaneous po-
larization below a transition temperature known as the Curie temperature.
In ferroelectric materials, this spontaneous polarization can be reoriented by
application of an electric field. Full reversal of the polarization is called domain
switching. The direction of spontaneous polarization is defined by the crystal
symmetry of the material and is most significant well below the Curie temperature
(Said et al., 2017).

There are two switching types possible, 180◦ and 90◦ switching, and it depends
on the angle between the old and the new Pr vector. An electric field can induce
both switches, while stress can only induce a 90◦ switch. Domain switch criteria
are extracted from (Keip and Schröder, 2011), where the combination of both
electric field and stress is taken into account.

The model used to describe the polarization switching is able to represent the
180◦ switch, since beams can only take into account axial variations in voltage.
In this model, every beam is in non-polarized state at the beginning. When the
electric field has reached the coercive value Ec the beam gets positively polarized.
In the same way, if the electric field reaches the value −Ec the beam gets negatively
polarized. Once the beam is polarized, it cannot go back into a non-polarized
state any more. If the coercive electrical field reaches the opposite value, it can
switch to the opposite polarized state. The diagram of the polarization state
switching for a beam is shown in Figure 4.2.
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Figure 4.2: Diagram for the polarization switch model to determine the switch-state for
the next time step sn+1 based on the previous value sn and the current value of electric

field E1,n+1 (Moreno-Navarro, 2019)

Further description of the implementation details of finite element procedure
for ferroelectric, plasticity and softening behavior of the beam model can be
found in (Moreno-Navarro, 2019).

4.1.3 Numerical examples

4.1.3.1 Piezoelectric example

In this section, a simple piezoelectric mono-scale example is modeled, as presented
previously in (Rukavina et al., 2017). It is based on kinematics, conservation and
constitutive equations from Section 4.1.2, but without the polarization switching
model taken into account. There are three cases presented, one with imposed
displacement and two where a constant electric potential is imposed, where one
has the boundary conditions slightly modified.

Themono-scale formulation is implemented inGetDP software that is primarily
used for modeling electromagnetic problems, but can also be used for thermal,
mechanical and acoustic problems (Dular andGeuzaine, 2013). The initial ideawas
to test and analyze GetDP and its source code for possible coupling possibilities
with FEAP or other software. In this way, the electro-magnetic part of the
computations would be executed in GetDP, and the mechanical part would be
executed in FEAP. In the end, these examples are implemented in GetDP and
compared to the same formulation implemented in FEAP. The latter is presented
in (Moreno-Navarro et al., 2018).

The geometry of the specimen is represented as a rectangular cuboid of
dimensions 6 × 6 × 2 mm as shown in Figure 4.3. Specific values of the
Young’s modulus E, Poisson’s coefficient ν, piezoelectric tensor ee and dielectric
permittivity tensor ε for the proposed piezoelectric material BaTiO3 have been
taken from (Ramirez et al., 2006).
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Example with imposed voltage

In the first example, the electric potential V � 10 V is imposed at the top face of
the cuboid, and V � 0 V at the bottom face. The vertical component of electric
field E is present due to the electric potential gradient. Only an eighth of this
geometry is taken, since symmetry conditions have been taken in planes x � 0,
y � 0 and z � 0, as shown in Figure 4.3. As a result of the piezoelectric effect, a
linear distribution of displacements is present. The displacements are negative
on axis z and positive on axes x and y due to the piezoelectric tensor from the
material properties, as it can be seen in Figure 4.4.

Figure 4.3: A cuboid with imposed boundary conditions - voltage V � 0 at the bottom
face and V � 10 V at the top face

Example with imposed displacement

In the second example, a displacement u � 10−4 m is imposed at the top face of
the cuboid in the direction z. Also, only an eighth of the specimen geometry is
taken, as shown in Figure 4.3. Due to the imposed displacement, the piezoelectric
material generates linear electric potential distribution along the axis z, as it can
be seen in Figure 4.5. There are also negative displacements in the directions
x and y due to the Poisson effect.
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Figure 4.4: Example with imposed voltage: (a) Displacement in direction x; (b)
Displacement in direction y; (c) Displacement in direction z; (d) Electric potential
distribution

Figure 4.5: Example with imposed displacement: (a) Displacement in direction x; (b)
Displacement in direction y; (c) Displacement in direction z; (d) Electric potential
distribution
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Example with imposed voltage - modified boundary conditions

In the third example, a quarter of the specimen is taken where the left side face
and the back face are fixed in directions y and x respectively. Also, the electric
potential V � 10 V is imposed at the top face of the cuboid, and V � 0 V at the
bottom face. The boundary condition for the bottom face of the cuboid is changed,
and it is fixed in all direction as shown in Figure 4.6.

Figure 4.6: A cuboid with imposed boundary conditions - voltage V � 0 at the bottom
face and V � 10 V at the top face

In this example, the expansion in transversal directions is restricted at the
bottom, resulting in stresses being concentrated, as can be seen in Figure 4.7 The
irregular distribution of the displacements in direction z is a consequence of
the transversal direction displacement. The stress concentrations also appear at
the bottom for this component, as well. The electric potential may seem linear,
but it can be observed that near the bottom the isolines are closer than at the
top. Also, the isolines are not straight and they are diverging when closer to
the free edge as can be seen in Figure 4.8.

The results obtained in these examples are the same as the ones obtained with
FEAP software presented in (Moreno-Navarro et al., 2018) within tolerances that
depend on the chosen mesh and the finite element discretization technique.
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Figure 4.7: Example with imposed voltage - modified boundary conditions: (a)
Displacement in direction x; (b) Displacement in direction y; (c) Displacement in direction
z; (d) Total displacements

Figure 4.8: Example with imposed voltage - modified boundary conditions: (a) Electric
field in direction x; (b) Electric field in direction y; (c) Electric field in direction z; (d)
Electric potential distribution
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4.1.3.2 Polarization switching model example

For the polarization switching model, a simple numerical example is performed.
The results for the proposed multi-scale method with polarization switching are
compared against the monolithic solution from (Moreno-Navarro, 2019). The
goal is to prove that the multi-scale method with added degrees of freedom for
voltage can capture the micro-scale polarization switching behavior and produce
the same quality results as the monolithic solution.

On the micro-scale, a one-dimensional Timoshenko beamwith added polariza-
tion switching model is used, that is developed in (Moreno-Navarro, 2019). The
Timoshenko beam element has seven degrees of freedom, three displacements,
three rotations and one voltage. To be able to couple the two scales, three micro-
scale rotations are ignored when the scales communicate. Due to this, the micro-
scale mesh has to be defined in a way so that rotations do not have a significant
effect on computations. Also, the advantage of this kind of implementation is
that any other micro-scale element developed in FEAP that models some different
electro-mechanical coupling behavior can be used instead of the proposed model,
with little or no modifications at all.

The geometry of the specimen is a cube with sides of 20 cm as can be seen
in Figure 4.9. The bottom face has imposed voltage of V � 0 V , and the top
face V � V(t). The voltage at the top face is imposed in a triangular pattern in
time, starting from the value of 0 MV , increasing to 1 MV , then decreasing to
−1 MV , going back again to 1 MV , and finally decreasing down to 0 MV , as
shown in Figure 4.10. The planes x � 0, y � 0 and z � 0, have fixed displacements
in the same direction to simulate symmetry boundary conditions. There is a
constant force imposed at the top face. All rotation degrees of freedom of the
beams are set free. The polarization switch for each beam is set to zero. The
material properties are taken from (Hwang et al., 1995).
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Figure 4.9: A cube with imposed boundary conditions: voltage V � 0 at the bottom face
and V � V(t) at the top face

Figure 4.10: Imposed triangular voltage V � V(t) at the top face of the cube

For this example, two multi-scale simulations are executed. One with macro-
scale tetrahedral elements, and another with macro-scale hexahedral elements.

For the first example, six tetrahedral elements are used to define the macro-
scale mesh as shown in Figure 4.11a. For each of the tetrahedral elements, a
micro-scale mesh composed of Timoshenko beams is defined as shown in Figure
4.11b for one tetrahedral element. Timoshenko beam elements implement the
polarization switching model described in Section 4.1.2.
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(a) (b)

Figure 4.11: (a) Macro-scale mesh consisting of six tetrahedral elements; (b) micro-scale
mesh for one tetrahedral element consisting of Timoshenko beam elements

For the second example, eight hexahedral elements are used to define the
macro-scale mesh as shown in Figure 4.12a. For each of the hexahedral element, a
micro-scale mesh consisting of Timoshenko beam elements is defined as shown
in Figure 4.12b.

(a) (b)

Figure 4.12: (a) Macro-scale mesh consisting of six tetrahedral elements; (b) micro-scale
mesh for one tetrahedral element consisting of Timoshenko beam elements

Finally, a mono-scale mesh is constructed of Timoshenko beams described in
Section 4.1.2 (shown in Figure 3.7a). Mono-scale and multi-scale meshes have
approximately the same total number of beam elements and the same dimensions,
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and therefore should behave in a similar way.

Figure 4.13: Mono-scale mesh consisting of Timoshenko beam elements

For the mono-scale example, the electric and mechanic variables calculated
with the beam model have to be expressed in the global frame and averaged with
the volume to interpret the macro response of the material using (Moreno-
Navarro, 2019)

ξ̄ �

∫
Ωe ξdΩ∫
Ωe dΩ

(4.19)

In Figure 4.14, the averaged values of hysteresis loops for vertical electrical
displacement and strain obtained for the mono-scale example are shown.

(a) (b)

Figure 4.14: Polarization switching mono-scale example hysteresis loops: (a) electric
displacement; (b) strain
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This results are compared with the results obtained for two multi-scale
examples, using hexahedral and tetrahedral macro-scale elements. The hysteresis
loops for electrical displacement and strain are shown in Figure 4.15 andFigure 4.16.
It can be seen that similar loops are obtained for bothmacro-scale examples and the
mono-scale example. The biggest difference is the values of strain on the hysteresis
loop. This is due to the values of strain being approximated for the mono-scale
example, while for the multi-scale they are obtained directly on the macro-scale
for the whole specimen. The values of strain obtained for the multi-scale examples
are closer to the referent values computed in (Hwang et al., 1995).

(a) (b)

Figure 4.15: Polarization switching multi-scale example with macro-scale tetrahedral
element hysteresis loops: (a) electric displacement; (b) strain

(a) (b)

Figure 4.16: Polarization switching multi-scale example with macro-scale hexahedral
element hysteresis loops: (a) electric displacement; (b) strain

Superposed hysteresis loops for mono-scale example and both multi-scale
examples are shown in Figure 4.17.
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Figure 4.17: Polarization switching example with superposed mono-scale and
multi-scale examples - hysteresis loops for the electric displacement

4.2 Multi-scale electrostatics coupling

4.2.1 Multi-scale Hellinger-Reissner formulation for electrostatics

A mixed formulation that is based on the Hellinger-Reissner principle for
mechanics is adapted to electrostatics using two independent fields, V (scalar
electric potential) and D (electric displacement). It is developed in (Moreno-
Navarro et al., 2020) and will be briefly presented in following section.

The formulation is modified and applied in themulti-scale setting. It is used on
both macro and micro-scale while the scales are strong coupled, which means that
the solution has to be computed simultaneously. As in the previous multi-scale
formulations, there are no constitutive equations (in this case, the relation between
electric field E and electric displacement D) defined on the macro-scale. This
relation has to be obtained on the micro-scale where a complete Hellinger-Reissner
formulation for electrostatics with the constitutive equations is defined.

A 27-node isoparametric hexahedral element is defined on the macro-scale,
with eight electric potential degrees of freedom vM

i , i � 1..8 defined on the
hexahedron vertices, and six degrees of freedom dM

i , i � 1..6 that are associated
with the electric displacement D defined on each facet, as shown in Figure 4.18.
For this case, a theoretical definition of a 27-node hexahedron is used because it
can store the unknowns in the center of the facets. All the other nodes (except
the ones defined on the vertices and facets) are ignored and are not used in
the finite element computation.
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Figure 4.18: Macro-scale hexahedron with eight electric potential degrees of freedom and
six degrees of freedom for the electric displacement

On the micro-scale, a 15-node isoparametric tetrahedron is defined with the
degrees of freedom defined on the vertices, edges and facets, as shown in Fig
4.21 in the following section. This element is developed in FEAP and presented
in detail in (Moreno-Navarro et al., 2020).

The variational formulation and the equations for the total energy which is
a sum of macro-scale energy, micro-scale energy and energy on the interface
can now be written for electrostatics as

Π(VM ,Vm , dM , dm) � ΠM(VM , dM) +Πm(Vm , dm)
+ΠΓ

Mm (VM ,Vm , dM , dm)
(4.20)

The energy on the interface is defined as

ΠΓ
Mm (VM ,Vm , dM , dM) �

∫
ΓMm

λV (VM − Vm) + λd(dM − dm)dA (4.21)

where λV and λd are the Lagrange multipliers for electric potential and electric
displacement, respectively, that are used to couple two different scales, and ΓMm

is the interface surface between the scales.
Using the stationarity condition of the potential, δΠ � 0, the weak formulation

can be obtained for the interface condition and written as∫
ΓMm

νV (VM − Vm) + νd(dM − dm)dA � 0 (4.22)
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where νV and νd are the variations of the Lagrange multipliers for electric
potential and electric displacement, respectively.

UsingWhitney elements (as it will be explained more in detail in the following
section), electric potential and electric displacement approximation for bothmacro-
scale and micro-scale, and Lagrange multiplier approximations can be written as

VM
n+1

���
ΓMm
(xm) �

∑
a∈ΓMm

0NM
a (x)vM

a ,n+1

DM
n+1

���
ΓMm
(xm) �

∑
a∈ΓMm

2
N

M
a (x)dM

a ,n+1

Vm
n+1

���
Ωm
(xm) �

nm
el∑

a�1

0Nm
a (x)vm

a ,n+1

Dm
n+1

���
Ωm
(xm) �

nm
el∑

a�1

2
N

m
a (x)dm

a ,n+1

λV,n+1

���
ΓMm
(xm) �

∑
a∈ΓMm

PV,a(x)βV,a ,n+1

λd ,n+1

���
ΓMm
(xm) �

∑
a∈ΓMm

Pd ,a(x)βd ,a ,n+1

(4.23)

where vM
a ,n+1 and vm

a ,n+1 are nodal values of macro-scale and micro-scale electric
potential in time step n + 1, and dM

a ,n+1 and dm
a ,n+1 are the macro-scale and micro-

scale facet values associated with the electric displacement in time step n + 1.
0N and 2

N are shape functions as defined in the mono-scale formulation in
equations (4.36) and (4.37) in the following section. PM

V and PM
d are the Lagrange

multipliers’ interpolation functions, and βV,n+1 and βd ,n+1 are the nodal values
of Lagrange multipliers in time step n + 1.

By the choice of both Lagrange multipliers to be the Dirac delta function δ(x −
xa), it should be ensured that the the values of macro-scale andmicro-scale electric
potential fields coincide at the nodes, while the electric diplacements coincide at
the center of each facet on the interface. Keeping this in mind, and introducing
the approximations into equation (4.21), the interface term of the central problem
for the Hellinger-Reissner electrostatic multi-scale formulation can be written as

0 � pM,E(VM
n+1 ,V

m
n+1 , d

M
f ,n+1 , d

m
f ,n+1) �

�

∫
ΓMm

PT
V (0NM,EVM,E − 0NmVm)dA

+

∫
ΓMm

PT
d (

2
N

M,ET
dM,E − 2

N
m ,ET

dm)dA

(4.24)

where PM
V and PM

d are the Lagrange multipliers’ interpolation functions, and
0N and 2

N are 0-form and 2-form interpolation functions for the tetrahedral

102



4.2. Multi-scale electrostatics coupling

Whitney’s element. Introducing the values of Lagrange multipliers’ interpolation
of Dirac delta function, it can be obtained

V̄m
a ,n+1

����
ΓMm

�

∑
b

0NM,E
b (xa)VM

b ,n+1

d̄m
f ,a ,n+1

����
ΓMm

�

∑
b

2
N

M,E
b (x f ) · n f dM

b ,n+1

(4.25)

where xa is the nodal coordinate of the micro-scale node on the interface, x f

is the center coordinate of the micro-scale facet (calculated as the average of 3
corresponding nodal values) on the interface, and n f is the unit exterior normal
to the macro-scale element facet. V̄m are the values of electric potential on the
micro-scale interface nodes, and d̄m are the values of electric displacement on
the micro-scale interface facets. These values can be written in more compact
format by using the connectivity matrices

V̄m
a

����
ΓMm

� TabVM
b , b � 1..4

d̄m
a

����
ΓMm

� RabdM
b , b � 1

(4.26)

Connectivity matrices Tab and Rab are based on the particular values of
macro-scale shape functions (0NM and 2

N
M) which correspond to the interface

nodes and interface facets. Namely, the matrices are constructed by introducing
the isoparametric coordinates of each micro-scale node on the interface into
the macro-scale shape functions 0NM , and by introducing the isoparametric
coordinates of each micro-scale facet’s center on the interface into the macro-
scale shape functions 2

N
M .

In practice, this translates to the values of the micro-scale electric potential
values being calculated as follows

• If the micro-scale node has the same coordinates as the macro-scale node,
the value of electric potential is the same as for the macro-scale node;

• If the micro-scale node is on the macro-scale edge, its value is calculated
as a linear combination of the values of the electric potential of the two
macro-scale nodes that this edge is connecting;

• If the micro-scale node is on the macro-scale face, its value is calculated
as a linear combination of the values of the electric potential of the four
macro-scale nodes that this face is connecting;
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Figure 4.19: Micro-scale electric potential on the interface nodes calculated as a linear
interpolation of the macro-scale electric potential nodal values

In a similar way, the implementation of the micro-scale electric displacements’
calculations can be described as follows. It is first necessary to compute the areas
of the triangles that are the faces of the micro-scale tetrahedral elements on the
interface. The value of the micro-scale electric displacement is then a proportional
part of the total area of the macro-scale hexahedral element face multiplied by
the value of the macro-scale electric displacement on that face. The directions
of the micro-scale electric displacements are the same as the macro-scale electric
displacement on the corresponding face as shown in Figure 4.20.

Figure 4.20: Micro-scale electric displacements on the interface facets calculated from the
macro-scale electric displacement value, proportional to the micro-scale facets’ areas
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Finally, after all the values of electric potential and electric displacements
are calculated, the system of Hellinger-Reissner equations to be solved on the
micro-scale is 

s

sKDD s

sKDV
sKDD ,T

sKDV,T

s

sKVD 0 sKVD ,T 0
sKDD

sKDV KDD KDV

sKVD 0 KVD 0



∆sd
∆sV
∆d
∆V


� −


srd

srv

rd

rv


(4.27)

The system can bewrittenwith the stiffnessmatrix expressed in a compact form
as [

s

sK sKT

sK K

] 
∆sd
∆sV
∆d
∆V


� −


srd

srv

rd

rv


(4.28)

where each submatrix is defined as in the Hellinger-Reissner formulation for
the mono-scale case.

Submatrix s

sK is the part of the stiffness matrix related only to interface nodes
and facets, sK is related to interface nodes and facets in relation to free nodes and
facets, and K is related only to free nodes and facets. In the same way, ∆sd and srd

are the electric displacement increments and residuals of the interface facets, ∆sV
and srv are the electric potential increments and residuals of the interface nodes,
∆d and rd are the electric displacement increments and residuals of the free facets,
∆V and rv are the electric potential increments and residuals of the free nodes.

Static condensation can be performed on the previous system of equations
defined in (4.28). First, the electric potential and electric displacement field
increments of free nodes can be expressed as[

∆d
∆V

]
� K−1

(
−

[
rd

rv

]
− sK

[
∆sd
∆sV

] )
(4.29)

Introducing (4.29) to the first equation in (4.28) it is obtained(
s

sK − sKTK−1
sK

) [
∆sd
∆sV

]
� −

[
srd

srv

]
+ sKTK−1

[
rd

rv

]
(4.30)

Then, the statically condensed stiffness matrix and residual obtained at the
micro-scale can be written as

K̃m
�

(
s

sK − sKTK−1
sK
)

r̃m
� −

[
srd

srv

]
+ sKTK−1

[
rd

rv

] (4.31)
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After the computations on the micro-scale have converged, the final values
of the condensed stiffness matrix and residual are used to compute the values
of the stiffness matrix that is going to be used at the macro-scale

KDD ,M,E
n+1 � RE,TK̃m

n+1RE

KDV,M,E
n+1 � RE,TK̃m

n+1TE

KVD ,M,E
n+1 � TE,TK̃m

n+1RE

(4.32)

The macro-scale values of residuals are computed in the same manner as

rM,E
d ,n+1 � RE,T r̃m

n+1

rM,E
v ,n+1 � TE,T r̃m

n+1

(4.33)

When the values of the macro-scale stiffness matrix and residual are computed,
they are used to update the values of the macro-scale electric potential and electric
displacement field. The Hellinger-Reissner finite element system of equations
that needs to be solved on the macro-scale is[

KDD ,M
n+1 KDV,M

n+1

KVD ,M
n+1 0

] [
∆dM

n+1
∆VM

n+1

]
� −

[
rM

d ,n+1
rM

v ,n+1

]
(4.34)

The presented formulation is implemented in FEAP multi-scale code, where
the main contribution is the development of the macro-scale element. The
increased complexity in comparison to the formulations presented in previous
chapters arises from the additional nodes on the micro-scale tetrahedal element
defined on the faces. During the interface detection procedure and information
exchange, it was necessary to detect the type of the node (vertex or facet), to
know which degrees of freedom are related to that node on the interface, and
finally perform the appropriate interface interpolation (for the electric potential
or the electric displacement).

4.2.2 Hellinger-Reissner electrostatics formulation for the micro-scale

On the micro-scale, a Hellinger-Reissner formulation for electrostatics whose
discrete approximation is based on Whitney’s interpolations for a tetrahedral
element is used. It is developed and presented in (Moreno-Navarro et al., 2020),
and only the important details of the finite element implementation will be
outlined in this section for a better understanding of the multi-scale procedure.

In the variational formulation, the fields V and D are independent. The finite
element discrete approximations for Whitney’s element are constructed by using
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differential forms (i-forms). 0-form are associated with vertices, 1-form with
edges, 2-form with faces and 3-form with volume of the tetrahedral Whitney’s
element, as it can be seen in Figure 4.21. To construct the discrete approximation
of a field for electric potential (defined on the vertices) and electric displacement
(defined on the faces), the following expressions can be used

V �

nv∑
a�1

0Na va

D �

n f∑
a�1

2
N a da

(4.35)

where nv and n f are the number of vertices and faces on the element, respectively,
and 0N and 2

N are interpolation functions for node and facet.

Figure 4.21: Macro-scale hexahedron with eight electric potential degrees of freedom and
six degrees of freedom for the electric displacement

The interpolation functions for 0-form are

0N1 � 1 − ξ − η − ζ
0N2 � ξ

0N3 � η

0N4 � ζ

(4.36)

The interpolation functions for 2-form, for facets, are computed as a com-
bination of 0-form and the cross product of the gradients. Facet a is defined
with a corresponding set of nodes i, j, k

2
N a �

2
N i→ j→k � 2

(
0Ni

0
B j × 0

Bk +
0Nj

0
Bk × 0

B i +
0Nk

0
B i × 0

B j

)
(4.37)
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where the gradient 0
B i for the node i is defined as

0
B i � j−1∇ξ0Ni (4.38)

where j is the Jacobian matrix and ∇ξ are gradients with respect to natu-
ral coordinates.

Whitney’s element implementation in FEAP is done using a 14-node isopara-
metric tetrahedronwith the approximation for the electric displacement defined as

D ≈
14∑

i�11

2
N i(x)di (4.39)

where di are the degrees of freedom associated with D which correspond to the
values on the faces of the tetrahedral element. Introducing this approximation
into the variational formulation, the residuals related to the electric potential
and the electric displacement can be computed. Linearizing this equation, the
finite element system to solve can be written as

K

[
d
v

]
�

[
0
f

]
(4.40)

where the stiffness matrix K can be written as

K ab �

[KDD
ab KDV

ab
KVD

ab 0

]
(4.41)

The sub-matrices can be calculated as

KDD
ab �

∫
Ω

2
N

T
a ε
−1 2

N b dΩ ; a , b � 11, 12, 13, 14

KDV
ab �

∫
Ω

2
N

T
a

0
Bb dΩ ; a � 11, 12, 13, 14; b � 1, 2, 3, 4 ;

KVD
ab �

∫
Ω

0
B

T
a

2
N b dΩ ; a � 1, 2, 3, 4; b � 11, 12, 13, 14

(4.42)

where ε is the permittivity of the material.
The force vector f for node a is calculated as

fa � −
∫
Ω

0Naρ
f
q dΩ +

∫
ΓD

0NaD̄dΓ ; a � 1, 2, 3, 4 (4.43)

where ρ f
q is the free electric charge density, and D̄ is the electric displacement

imposed at the Neumann boundary.
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4.2.3 Numerical examples

To test the proposed multi-scale Hellinger-Reissner formulation for electrostatics,
a simple validation test example is constructed and compared to the mono-scale
computation performed in (Moreno-Navarro et al., 2020). It is assumed that ρ f

q =
0, the electric field is the negative gradient of the scalar electric potential E � −∆V ,
and that the constitutive relation for the electric displacement is D � −ε∆V . The
example represents the patch test for electrostatics.

The geometry of the example is a cube with edge length of 0.002 m. At the
bottom face, there is an imposed electric potential of 0 V, and at the top face the
electric potential is set to 20V.The electric displacement is not allowed toflow in and
out of the lateral faces of the cube. The value of the permittivity ε is 15× 10−12 F/m.

On the macro-scale, the previously described hexahedral element is used. The
mesh is composed of 4x4x4 macro-scale elements, as shown in Figure 4.22a. On
the micro-scale, there is a Whitney tetrahedral element with Hellinger-Reissner
electrostatics formulation. For eachof themacro-scale elements, amicro-scalemesh
is defined which consists of 384 tetrahedral elements, as shown in Figure 4.22b.

(a)

(b)

Figure 4.22: (a) Macro-scale mesh of 64 hexahedral elements; (b) Micro-scale mesh of 384
tetrahedral elements that fits inside a macro-scale element

After performing the computations, it can be seen that the distribution of
electric potential is linear between the values of 0 V and 20 V. The value of
electric displacement in z-direction is homogeneous, with a value of −1.5 ×
10−7 C/m2. The results are in agreement with both analytical and mono-scale
computations obtained in (Moreno-Navarro et al., 2020). The same value of the
electric displacement in direction z is obtained by the analytical solution as

Dz � −εVz

lz
� −15 · 10−12 · 20

0.002 � −1.5 · 10−7 (4.44)
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where lz is the length of the cube edge in direction z.
In Figure 4.23 the linear distribution of the electric potential obtained on

the macro-scale is shown. The same results are obtained for the mono-scale
computation shown in Figure 4.24a.
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               Time = 2.00E+00

Figure 4.23: Multi-scale results for the macro-scale - linear distribution of the electric
potential

(a) (b)

Figure 4.24: Mono-scale results (a) electric potential distribution; (b) electric
displacement (Moreno-Navarro et al., 2020)

The value of the electric displacement is constant as shown in Figure 4.25b for
micro-scale mesh defined for one macro-scale element. The value of the electric
displacement is the same for micro-scale computations for every macro-scale
element, so they are not shown here.

It can be seen in Figure 4.25a that the values of the electric potential go
from 0 V to 5 V. This is due to the fact that the micro-scale mesh is taken for
the macro-scale element positioned in the bottom row of the macro-scale mesh.
Others micro-scale meshes also give linear distribution of the electric potential,

110



4.2. Multi-scale electrostatics coupling

but the values go from 5 V to 10 V, 10 V to 15 V, or 15 V to 20 V, depending
on their position in the macro-scale mesh.
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Figure 4.25: Multi-scale results for the micro-scale computation for one macro-scale
element (positioned in the bottom row of the macro-scale mesh) (a) electric potential

distribution; (b) electric displacement

Conclusion

By introducing the voltage on the macro-scale as an additional degree of freedom,
the multi-scale formulation has been successfully extended to a multi-physics
setting, and has been shown to work for the electro-mechanical coupling. Macro-
scale tetrahedral and hexahedral elements have been developed. It has been shown
that the multi-scale procedure with added voltage on the macro-scale produces
the same results for the simple piezoelectric effect and polarization switching
model as the mono-scale procedure. Without anymacro-scale constitutive relation
or direct coupling between the electrical and mechanical field, the macro-scale
element was able to capture the micro-scale behavior. Numerical examples
are executed with the previously developed Timoshenko beam finite element
with implemented polarization switching model used on the micro-scale. Also,
Hellinger-Reissner formulation for electrostatics has been applied in the multi-
scale settings. Two degrees of freedom, scalar electric potential and electric
displacement, are defined both on the macro and micro-scale, and used to couple
the scales on the interface. Whitney’s elements that are based on the differential
forms, which are previously developed, are used on the micro-scale. Numerical
example is executed and compared with the monoscale computations. This is
the first step in extending the multi-scale procedure for different multi-physics
couplings, like electro-magneto-mechanical or thermo-mechanical coupling.
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In this chapter, software implementation of the multi-scale and multi-
physics codes is presented. In the first section, FEAP software used
for multi-scale coupling is described. It includes the description of the
standard FEAP code and solution procedure, the differences introduced
by the multi-scale FEAP code, and the macro-scale and micro-scale FEAP
components. In the second section, a multi-physics fluid-structure code
coupling is presented, with the description of OpenFOAM, the software
components used for fluid mechanics and structural mechanics, and
also the control software component used for the interface coupling and
execution order. In the last section, CTL library, which is used for both
code couplings, is described



The coupling of different scientific codes is a subject of many recent research
papers. The complexity of such couplings lies in the need of understanding the
architecture of the existing codes and the knowledge of the physics behind them.
In this thesis, a multi-scale coupling is implemented using FEAP software code
that is used for both macro and micro-scale. The details of this implementation
are presented in section 5.1.

In general, such concept of coupling can be used and implemented using
more than one software code. In the scope of this thesis, several such codes are
examined, like OpenFoam (Jasak et al., 2007) and GetDP (Dular and Geuzaine,
2013). A fluid-structure interaction coupling implementation with OpenFOAM
and FEAP developed in (Kassiotis et al., 2011b) is executed, and possibilities for
its improvements are studied. This implementation for fluid-structure interaction,
that can also be applied to other multi-physics simulations using different codes,
is explained in section 5.2.

Scientific software code for a specific problem is usually developed by
domain experts and software developers with deep understanding of the physical
phenomena behind it, which means it should give optimal results for this domain.
It uses a particular discretization technique, method, programming language,
or any other choice that solves this problem in optimal way. To modify and
reuse this code for a partitioned approach where the domains can be solved
separately is a complex and challenging task.

The main idea behind the multi-physics code coupling is that both the
theoretical formulation that describe the systemand the component based software
development are divided in three parts: (Matthies et al., 2006)

• Software component that solves the first domain;

• Software component that solves the second domain;

• Software compoment for coupling between the domains on the interface
and data exchange.

This approach consists ofmodifying the existing software codes and/orwriting
additional components that encapsulate the behavior of such a code, and offer
an interface that can be used to interact with it. The interface coupling software
component has to be developed in order to exchange the data, and make data
interpolations or other data manipulations. It can be also used to control the
execution order of components for each domain. This makes it the entry point
of the execution, the component that is run first and which stores the logic of
when other components should be called.
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This approach makes software components loosely coupled which means
that they are not aware of the implementation details of each other and they
communicate only through the interface. To allow these software components to
communicate, a communication protocol is needed. The communication protocol
defines a set of rules and its software implementation allows the data transmission
between the components. The diagram of such an architecture is shown in Figure
5.1. This architecture is used in the fluid-structure interaction problem from
(Kassiotis et al., 2011b) and is presented in section 5.2.

Figure 5.1: Software component architecture for code coupling with control component

The interface coupling software component and the logic of execution order
can also be stored in one of the software components. In this case, that software
component is a master code, which sends requests and receives data from other
software components. This type of architecture is shown in Figure 5.2. It is used
in multi-scale software coupling of FEAP code implemented in this thesis and
explained more in detail in the following section.

Figure 5.2: Software component architecture for code coupling with master code
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5.1 FEAP software code coupling

The details of the software implementation are presented here for better under-
standing of the multi-scale solution procedure and to give an overview of the
implemented software code architecture. Although a technical aspect, it is a key
point for obtaining the results and proving that the multi-scale formulation is
valid. It can be used as a starting point for possible future developments, like
implementing new material models or including different physics. The code
snippets are not included, as it would be too long and specific, so it would
not contribute to the overall clarity.

5.1.1 FEAP

Before showing how the multi-scale FEAP implementation is working, a standard
FEAP code and solution procedure are described. Finite Element Analysis
Program (FEAP) (see (Zienkiewicz et al., 2005)) is a general purpose program to
solve problems using the finite element method, mostly in solid mechanics but
can be extended to other problems that can be solved using partial differential
equations. It is written in Fortran programming language and its source code
can be easily modified (Taylor, 2014).

A model of a problem to solve in FEAP is defined in a textual input file
that contains all the necessary steps to perform a finite element analysis. In
the input file, the problem is defined with a mesh specification and a problem
solution algorithm. The mesh specification consists of a definition of spatial
coordinates, elements, material definition for all the elements, and boundary
conditions. The problem solution algorithm defines how the finite element
analysis is going to be performed. Namely, it has commands to define the time
step increment, to compute the residuals for the governing equations, to loop to
repeat the execution of solution commands, and to compute the tangent matrix
or solve the set of partial differential equations. Each command defined in the
input file translates to a procedure call inside FEAP. To illustrate this, a flowchart
diagram for a typical problem executed in FEAP is shown in Figure 5.3, and
a typical input file is shown in Figure 5.4.

The standard FEAP code is taken and modified to work for both macro
and micro-scale solution procedures. In the micro-scale code, a CTL is used
to implement the interface in order to allow to communicate and exchange the
information between the two codes. CTL is also used to implement the coupling
of the two codes and execute them in parallel.
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Start FEAP

Define mesh

Define material properties

Define boundary conditions

Define time step

Time step incrementTime steps

Compute tangent matrixIterations

Compute residual

Solve equation

res <= tol?

last time step?

Post processing

Finish FEAP

Yes

No

Yes

No

Figure 5.3: Flowchart for standard FEAP problem execution
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1 FEAP
2 0, 0, 0, 2, 2, 4
3 ! node num, elem num, mat num, dim, dof/node, node/elem
4

5 COORdinates ! define nodal coordinates
6 ...
7

8 ELEMent ! define elements
9 ...

10

11 BOUNdary ! define boundary restraint conditions
12 ...
13

14 DISPlacements ! define nodal boundary displacements
15 ...
16

17 MATErial 1 ! define material properties
18 SOLId
19 ELAStic ISOTropic 38e3 0.18
20 PLANe STRAin
21

22 END
23

24 ! define problem solution algorithm
25 BATCh
26 dt,,0.1 ! define time step
27 loop,,100 ! time step loop
28 time ! time step increment
29 loop,,20 ! iteration loop
30 tang ! compute global tangent matrix
31 form ! compute global residual
32 solv ! solve equation
33 next
34 next
35 end
36

37 STOP ! finish FEAP
38

Figure 5.4: Standard FEAP input file example

5.1.2 Multi-scale FEAP

For implementing the proposedmulti-scale procedure, the Finite Element Analysis
Program (FEAP) is used. It is chosen because different material behaviors can
be easily implemented by changing the existing code. To simulate the behavior
on both the macro and the micro-scale, two different versions of FEAP code are
implemented, as explained in (Niekamp et al., 2009). macroFEAP is used on the
macro-scale, and its behavior is different from the standard version in the sense
that it can initiate the execution of microFEAP instances and use the obtained
results. It is used as a master code that initiates all the actions and communication
between the codes, as shown in the Figure 5.5.
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Figure 5.5: Software component architecture for code coupling with macroFEAP acting
as a master code

microFEAP was modified in a way that it implements an interface that can
take requests and its execution can be controlled from the macroFEAP code.
For coupling the two codes, developing the interfaces and allowing them to
exchange the information between them, Component Template Library (CTL)
is used (see (Niekamp et al., 2014)).

This code is developed based on the work of Damĳan Markovic (Markovic,
2004). In this thesis, the existing code was adapted, and mostly rewritten, to
work for the latest version of FEAP (version 8.4). This was important because
all the micro-scale elements that are developed in the scope of this thesis or
used from others’ work are developed for this version of FEAP, and therefore
could not work with the old multi-scale code. Also, the multi-scale code is
modified and partly rewritten in a way that it can work with the new version
of CTL, and compiled on a modern Ubuntu operating system with the latest
versions of Fortran and C++ compilers.

To solve a multi-scale problem example, one instance of macroFEAP process
and nM

elem instances of microFEAP processes are created, as shown in Figure
5.6, where nM

elem is the number of elements in the macro mesh. microFEAP
instances are executed in parallel, as they do not need any communication between
them, since they are not using the same data. Input data for the macro-scale
consists of defining the macro mesh and boundary conditions. The constitutive
properties of the material do not have to be defined, as they will be obtained
from the micro-scale computations. On the micro-scale, the mesh has to be
defined, but no boundary conditions, as those are automatically imposed by
the multi-scale solution procedure.
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Figure 5.6: Parallel execution and code coupling with CTL (according to (Niekamp et al.,
2009))

In each time step, the macroFEAP instance transfers the nodal displacement
field and displacement discontinuity field for each macro-scale element to the
corresponding microFEAP instance using CTL. Based on that input, microFEAP
instances solve the imposed problem in parallel. After obtaining the final values
of the stiffness matrix and residual, they transfer them back to macroFEAP.
Only when all microFEAP instances finished their execution and the results are
transfered, macroFEAP can continue with its execution.

The flowchart diagram of execution for a multi-scale problem is shown in
Figure 5.7. Starting activities that initiate each instance of FEAP are colored
in green. The activities that are a part of the standard FEAP code, and are
slightly modified or not modified at all, are colored in yellow. Newly developed
procedures are shown in blue. Everything that is related to the communication
between the scales and is controlled by CTL is shown in gray. Finally, end points
of each procedure is shown in red.

5.1.3 macroFEAP

macroFEAP is amodifiedversionof FEAPcode that is used formacro-scale analysis.
After defining the macro-scale mesh, it initializes an instance of microFEAP for
every macro-scale element. Instead of computing the tangent matrix and residual,
it calls the micro-scale computations and obtains the values from there. After the
micro-scale values are obtained, it continues the standard FEAP finite element
procedure by solving the equations and computing displacement increments.
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Figure 5.7: Flowchart for multi-scale FEAP problem execution
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A few additional input file commands are developed to be able to control the
course of execution. Namely, an input file commands for calling the procedures for
defining the micro-scale time step (sznj,tim,0.1), to increment the micro-scale time
step (sznj,tim), and to set the displacements and run the micro-scale computations
(sznj), as it can be seen in detail in Figure 5.8.

1 FEAP
2 0, 0, 0, 2, 2, 4
3 ! node num, elem num, mat num, dim, dof/node, node/elem
4

5 COORdinates ! define nodal coordinates
6 ...
7

8 ELEMent ! define elements
9 ...

10

11 BOUNdary ! define boundary restraint conditions
12 ...
13

14 DISPlacements ! define nodal boundary displacements
15 ...
16

17 ! define user element that is going to be used
18 ! instead of the material properties definition
19 MATErial 1
20 USER 1
21

22 END
23

24 ! define problem solution algorithm
25 BATCh
26 dt,,0.1 ! define time step
27 sznj,tim,0.1 ! define and set micro-scale time step
28 loop,,100 ! time step loop
29 time ! time step increment
30 sznj,tim ! micro-scale time step increment
31 loop,,20 ! iteration loop
32 sznj ! set the displacements and run the micro-scale

computations
33 tang ! compute global tangent matrix (assembled from the micro-

scale local tangent matrices)
34 form ! compute global residual (assembled from the micro-scale

local residual)
35 solv ! solve equation
36 next
37 next
38 end
39

40 STOP ! finish FEAP

Figure 5.8: Macro-scale FEAP input file example
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5.1.4 microFEAP

microFEAP is a modified version of FEAP code that is used for micro-scale
analysis. It can be run only programmatically and the only way to interact with
it is through the CTL defined interface. In Figure 5.9, the interface function
definitions are shown.

1 #ifndef _SIMURI_H_
2 #define _SIMURI_H_
3

4 #include <ctl.h>
5

6 # define CTL_ClassTmpl simuRI , (scalar1), 1
7 # include CTL_ClassBegin
8

9 // create simu with "filename" as starter file
10 # define CTL_Constructor1 (const string /*filename*/), 1
11 # define CTL_Method1 void, init, (const string /*filename*/), 1
12 // return parameter
13 # define CTL_Method2 array<scalar1> , getparam , (), 0
14 // set parameter p
15 # define CTL_Method3 void, setparam, (const array<scalar1> /*p*/),

1
16 // return primary variables
17 # define CTL_Method4 array<scalar1>, getstate , () const, 0
18 // set primary variables to x
19 # define CTL_Method5 void, setstate, (const array<scalar1> /*x*/)

, 1
20 // set load of system
21 # define CTL_Method6 void, setload, (const array<scalar1> /*load

*/), 1
22 // get coupling indices i and values y (boundary cond. or load or

...)
23 # define CTL_Method7 void, getcoupling , (array<int4> /*i*/, array

<scalar1> /*y*/) const, 2
24 // set coupling indices i
25 # define CTL_Method8 void, setcoupling , (const array<int4> /*i*/)

, 1
26 // return the residuum at given state
27 # define CTL_Method9 void, residual, (array<scalar1>/*r*/) const,

1
28 // solve with given param, load, coupling values with at least

accuracy
29 // and set new state; write the new state into x, and additional

rhs
30 # define CTL_Method10 array<scalar1>, solve, (const scalar1 /*

accuracy*/, const array<scalar1> /*rhs*/), 2
31 # include CTL_ClassEnd
32

33 #endif
34

35

Figure 5.9: microFEAP interface definition using CTL - simuri.h
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To bind the interface to the function implementations, a generic CTL header
function for Fortran is used, as shown in Figure 5.10. When the interface is bound
in this way, a function names has to follow the specific template simu_<function
name>_impl as it can be seen in a function implementation example in Figure 5.11.

1 #define CTL_ConnectF
2

3 #define CTL_ClassPrefix simu
4 typedef double scalar1;
5 #include <simuri.h>
6

7 void CTL_connect(){
8 ctl::connectF<simuRI<double>, ctl::Extern::simuRI >();
9 }

10

Figure 5.10: microFEAP binding CTL interface to function implementation - service.cpp

An interface function implementation is written in Fortran code and it follows
the function declaration (function name, return type and parameters). As this
code is compile with FEAP source code, it has access to all internal values and
functions, so it can be used, as in example from Figure 5.11, for setting the
displacements of the micro-scale nodes on the interface.
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1 subroutine simu_setstate_impl(s0,x0)
2 implicit none
3 include ’cdata.h’
4 include ’comblk.h’
5 include ’iofile.h’
6 include ’pointer.h’
7 include ’sdata.h’
8 include ’inc/inout.h’
9

10 integer*8 s0, i,j
11 real*8 x0(s0)
12 real*8 sub(4)
13 integer num
14

15 c.....setstate for 2D Q4 element
16 if (s0 .eq. 9) then
17 stps = 2 ! dofs
18 stvoz = 4 ! nodes
19 num = stps * stvoz + 1 ! 4nodes x 2dofs + alpha
20 do i = 1,stps*stvoz
21 makpom(i) = x0(i)
22 end do
23 makpom(9) = x0(9) ! set alpha
24 call pcontrbatch()
25

26 c.....setstate for 3D brick element with 3 dofs (or 3 dofs + alpha)
27 elseif (s0 .eq. 24 .or. s0 .eq. 26) then
28 stps = 3
29 stvoz = 8 ! nodes for macro brick element
30 num = stps * stvoz ! 8nodes x 3dofs
31

32 do i = 1,stps*stvoz
33 makpom(i) = x0(i)
34 end do
35

36 if (s0 .eq. 26) then
37 makpom(25) = x0(25) ! set alpha
38 end if
39

40 call pcontrbatch()
41

42 ...
43

44 end
45

46

Figure 5.11: microFEAP function implementation - simu_setstate_impl.f

The boundary conditions for the micro-scale problem are set from the code,
and not defined in the input file. For the displacement based interface, it sets all
the displacements obtained on the macro-scale and defines boundary restraint
conditions all over the interface nodes. Additionally, it computes all the tangent
matrices (K, H, F) and residuals (r, h) needed for the macro-scale analysis and
exports them back to the macro-scale. This can be seen in the multi-scale flowchart
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5.1. FEAP software code coupling

diagram in Figure 5.7, and the micro-scale input file example shown in Figure 5.12.

1 FEAP
2 0, 0, 0, 2, 2, 3
3 ! node num, elem num, mat num, dim, dof/node, node/elem
4

5 COORdinates ! define nodal coordinates
6 ...
7

8 ELEMent ! define elements
9 ...

10

11 MATErial 1 ! define material properties
12 SOLId
13 ELAStic ISOTropic 38e3 0.18
14 PLANe STRAin
15

16 END
17

18 batch
19 mesh vert.dat ! detect interface nodes
20 end
21

22 ! define problem solution algorithm
23 BATCh
24 zace ! allocate memory for tangent matrix and residual
25 inpu ! get macro-scale displacement values
26 loop,,20 ! iteration loop
27 tang ! compute tangent matrix
28 form ! compute residual
29 solv ! solve equation
30 next
31 expo ! export tangent matrix and residual to macro-scale
32 end
33

34 STOP ! finish FEAP

Figure 5.12: Micro-scale FEAP input file example

While computing the tangent matrices and micro-scale displacement field
interpolations on the interface, it uses the transformation matrices T and S.
Generation and usage of transformation matrices are simplified not to store all the
0 values and full dimensions of the matrices. Only non-zero values are calculated
in the software code and used to obtain the value of the micro-scale displacements,
and stiffness matrix and residuals for transfer them back to the macro-scale.
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5.2 OpenFOAM and FEAP software code coupling

For the software implementation of the fluid structure interaction problem,
OpenFOAM (version 1.7.1) is used for fluid mechanics, and FEAP (version 8.2)
for structural mechanics. The source code of both softwares is open, so they
can be used and modified for the purpose of a partitioned solving of fluid-
structure interaction problems. For the coupling of these softwares, Component
Template Library (CTL) is used. It allows to use different programming languages,
with FEAP written in Fortran and OpenFOAMwritten in C++. Implementation
details of this coupling and the results obtained are presented in (Kassiotis
et al., 2011a) and (Kassiotis et al., 2011b). Several software components were
developed to implement the coupling:

• ofoam - interface component based on OpenFoam, that is used to solve fluid
domain

• coFEAP - interface component based on FEAP, that is used to solve solid
domain

• cops - software component for coupling between the ofoam and coFEAP
and data exchange

and the diagram how they interact between each other is shown in Figure 5.13.
Detail of the procedure solution algorithm is shown in Figure 5.15 and the
implementation details for each component is outlined in the following sections.

Figure 5.13: Software component architecture for code coupling (ofoam and coFEAP)
with control component (cops) (Kassiotis et al., 2011b)

The fluid-structure interaction software coupling was tested on a lid-driven
cavity flow problem with a flexible bottom in 2D in a square domain, as shown in
Figure 5.14. This problem is often used as a validating example for computational
fluid dynamics codes. A control component calls each of the software codes for
solving the corresponding domain, exchanges the information between them and
finds the final solution. It transfers the displacement field from the solid to the
fluid domain and the forces from the fluid to the solid domain. Interpolations
also need to be made over the values calculated on the interface, and for that an
interpolation function based on the radial basis function is used.

The main challenge is to exchange the information consistently and accurately
on the fluid-structure interface. In the FSI framework, a classical way to couple
the fluid and structure domains consists in imposing the continuity of stress
and displacement (or, equivalently, velocity) at the interface. In order to ensure
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5.2. OpenFOAM and FEAP software code coupling

Figure 5.14: Lid-driven cavity flow problem with a flexible bottom (Kassiotis et al., 2011a)

stability of the coupling algorithm, it is important to ensure the correct energy
transfer at the interface (Lombardi et al., 2013). This has been achieved in (Kassiotis
et al., 2011b) by using radial basis function for mesh motion and interpolation of
numerical values on the interface grid. With this approach, if a constant normal
stress is acting on the fluid interface, the stress imposed on the structure side of the
interface is not constant (Lombardi et al., 2013). In this thesis, the mortar element
method was considered to achieve the conservation of stresses and displacements
on the interface. With this approach, a better quality solution could be obtained
with the main focus being to guarantee stability, computational efficiency and
robustness (Rukavina and Ibrahimbegovic, 2017).
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5.2. OpenFOAM and FEAP software code coupling

5.2.1 OpenFOAM

OpenFOAM is an object-oriented software code and library for Computational
Fluid Dynamics (CFD) and structural analysis (Jasak et al., 2007).

Figure 5.16: OpenFOAM input file directory (Jasak et al., 2007)

OpenFOAM input files for a specific problem are divided into several folders as
shown inFigure 5.16. Aproblem isdefinedby itsmeshand solutionprocedure. The
folder system consists setting parameters associated with the solution procedure as

• controlDict - run control parameters are set including start/end time, time
step and parameters for data output

• fvSchemes - discretisation schemes used in the solution may be selected at
run-time

• fvSolution - the equation solvers, tolerances and other algorithm controls are
set for the run

The folder constant contains a full description of the mesh in a subdirectory
polyMesh and files specifying physical properties (Jasak et al., 2007). The time
directories are a set of folders containing individual files of data for particular fields
for each simulated time step, names as a time step value. The same input file
format and directories are used for the multi-physics code example.

OpenFOAM implements many different solvers that are each designed to solve
a specific problem in computational continuum mechanics. A transient solver
for incompressible, turbulent flow of Newtonian fluids on a moving mesh, called
pimpleDyMFoam, is used in the presented example.

5.2.2 ofoam

ofoam is developed by Martin Krosche and more details can be found in (Krosche,
2009). It is a software component based on OpenFOAM and can be used to run the
fluid mechanics problems. It can communicate with other software components
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through a well defined interface (Niekamp, 2005) defined in CTL. The basic
methods for interaction with the execution flow of a solver are defined, like setting
or getting the values of the fluid velocity, pressure or force, setting the time step
or running the computations, as shown in Figure 5.17.

1 /* CI for a CFD simulator */
2

3 #ifndef __CFDSIMU_CI_
4 #define __CFDSIMU_CI_
5

6 #include <ctl.h>
7

8 #define CTL_Class CFDSimuCI
9 #include CTL_ClassBegin

10

11 #define CTL_Constructor1 ( const string /*case control file
containing required data*/ ), 1

12 /*set the values of velocity , pressure or mesh*/
13 #define CTL_Method1 void, set, ( const string /*fieldName*/, const

array<real8> /*field*/ ), 2
14 /*get the values of veocity, pressure , force*/
15 #define CTL_Method2 void, get, ( const string /*fieldName*/, array

<real8> /*field*/ ), 2
16 /*run the computations for the current time step*/
17 #define CTL_Method3 int4, solve, ( const real8 /*timeStep*/ ), 1
18 /*set the timestep to n-1*/
19 #define CTL_Method4 int4, goback, (), 0
20 /*get coordinated of the mesh nodes*/
21 #define CTL_Method5 void, getnodes, ( int4 /*dimension*/, array<

real8> /*nodes*/ ) const, 2
22

23 #include CTL_ClassEnd
24 #endif
25

Figure 5.17: ofoam CTL interface definition - cfdsimu.ci

The interface is separated from the implementation, and each interface function
has to be bound to specific implementation. To bind the interface to function
declarations from a header file, CTL code shown in Figure 5.18 is used. It shows
how each method from the interface cfdsimu.ci is bound to a function name
from header file pimpleDyMFoam.H.
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5.2. OpenFOAM and FEAP software code coupling

1 #define CTL_Connect
2

3 #include <cfdsimu.ci>
4 #include <pimpleDyMFoam.H>
5

6 struct connectDetailsCI {
7 CTL_Constructor( 1, ( const std::string& ), 1 );
8 /*bind function set to interface CTL method 1*/
9 CTL_Method( 1, void, ofoam::pimpleDyMFoam::set, ( const std::string

&, const std::vector<double >& ), 2);
10 /*bind function get to interface CTL method 2*/
11 CTL_Method( 2, void, ofoam::pimpleDyMFoam::get, ( const std::string

&, std::vector<double >& ), 2);
12 /*bind function solveLoop to interface CTL method 3*/
13 CTL_Method( 3, int, ofoam::pimpleDyMFoam::solveLoop , ( const double

& ), 1);
14 /*bind function goBack to interface CTL method 4*/
15 CTL_Method( 4, int, ofoam::pimpleDyMFoam::goBack, (), 0 );
16 /*bind function getNodes to interface CTL method 5*/
17 CTL_Method( 5, void, ofoam::pimpleDyMFoam::getNodes, ( int&, std::

vector<double >& ) const, 2 );
18 };
19

20 void CTL_connect() {
21 ctl::connect<CFDSimuCI , ofoam::pimpleDyMFoam , connectDetailsCI >();
22 }
23

Figure 5.18: ofoam binding CTL interface to function implementation - connectpimpleDyM-
Foam.cc

Finally, the functions declared in the interface binding has to be implemented
in a C++ code. It has to follow the function declaration (function name, return
type and parameters). This code is compiled together with OpenFOAM code
so it has access to all internal details, so it can control the execution flow, get
and set the values of variables. An example of such a function implementation
(goBack()) is given in Figure 5.19.

131



CHAPTER 5. SOFTWARE IMPLEMENTATION

1

2 int ofoam::pimpleDyMFoam::goBack(){
3

4 // pointers required
5 Time& runTime = runTime_();
6

7 // redirect output
8 std::ofstream Out( outputName_.c_str(), std::ios::app );
9 OldBuf_ = std::cout.rdbuf(Out.rdbuf());

10

11 if( !parallel_ )
12 Info << "<ofoam::pimpleDyMFoam::goBack> go back from "
13 << runTime.timeName() << " to " << timeOld_ << endl;
14

15 runTime.setTime( timeOld_, timeIndexOld_ );
16

17 // clean directories for time greater than _timeOld
18 if ( !parallel_ ){
19 string cmd = "cleanTimeDir -d \"" + dirCase_ + "\" -T \"" +
20 runTime.timeName() + "\"";
21 int ret = std::system( cmd.c_str() );
22 if( ret == -1 )
23 {
24 FatalErrorIn("ofoam::pimpleDyMFoam::goBack")
25 << "Error in system call: " << cmd << nl << nl
26 << exit(FatalError);
27 }
28 }
29

30 // go back to old value
31 imposeSavedMesh();
32 cumulativeContErr = cumulativeContErrOld_ ;
33 imposeSavedFields( surfaceScalarFieldGoBack_ );
34 imposeSavedFields( volScalarFieldGoBack_ );
35 imposeSavedFields( surfaceVectorFieldGoBack_ );
36 imposeSavedFields( volVectorFieldGoBack_ );
37

38 std::cout.rdbuf(OldBuf_);
39

40 return 1;
41 }
42

Figure 5.19: ofoam function implementation - pimpleDyMFoam.C
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5.2.3 coFEAP

coFEAP is a software component developed byMartinHautefeuille andChristophe
Kassiotis, and more details can be found in (Kassiotis and Hautefeuille, 2008).
It is an interface component based on FEAP (version 8.2), implemented using
CTL and it can be used to run structural mechanics problems defined in FEAP. It
implements all the basic methods for interaction with FEAP, like getting or setting
the residuals, displacements or getting the values of the stiffness matrix.

The simulation interface is implemented in CTL and it can be used by other
software components written in different programming languages in order to
interact with coFEAP code. This software component has the same concept and a
very similar implementation as microFEAP code defined in the previous section.
In Figure 5.20, the interface function definitions are shown.

To bind the interface to function implementations, a generic CTL header
function for Fortran is used, as shown in Figure 5.21. When the interface is bound
in this way, a function name has to follow the specific template simu_<function
name>_impl as it can be seen in Figure 5.22.
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1 #ifndef __SIMU_CI_
2 #define __SIMU_CI_
3 #include <ctl.h>
4

5 #define CTL_ClassTmpl SimuCI, ( scalar1 ), 1
6 #include CTL_ClassBegin
7 # define CTL_Constructor1 (const string), 1
8 # define CTL_Constructor2 (const string, const array<scalar1 >), 2
9 /*get and set parameters from control file*/

10 # define CTL_Method2 array<int4>, get_param ,(const string) const, 1
11 # define CTL_Method3 void, set_param , (const array<int4>), 1
12 /*get and set the value of each selected dofs and nodes*/
13 # define CTL_Method4 void, get_state , (array<scalar1 >) const, 1
14 # define CTL_Method5 void, set_state , (const array<scalar1 >), 1
15 # define CTL_Method6 void, set_load, (const array<scalar1> ), 1
16 # define CTL_Method7 void, get_coupling , (array<int4>, array<scalar1

>) const, 2
17 # define CTL_Method8 void, set_coupling , (const array<int4>), 1
18 /*get the residual values*/
19 # define CTL_Method9 void, get_residual , (array<scalar1 >) const, 1
20 /*run the computations until convergence*/
21 # define CTL_Method10 int4, solve, (), 0
22 /*increment the time step*/
23 # define CTL_Method11 void, time_step , (const scalar1), 1
24 # define CTL_Method12 void, pre_cond, (const array<scalar1>, array<

scalar1 >) const, 2
25 # define CTL_Method13 void, dir_derivative , (const array<scalar1>,

const array<scalar1>, array<scalar1 >) const, 3
26 # define CTL_Method14 void, command, (const string) const, 1
27 # define CTL_Method15 void, get_nodes , (array<scalar1>, int4) const,

2
28 /*get the mass matrix */
29 # define CTL_Method16 void, get_mass, (array<int4>, array<int4>,

array<scalar1 >) const, 3
30 /*get the stiffness tangent matrix */
31 # define CTL_Method17 void, get_stiff , (array<int4>, array<int4>,

array<scalar1 >), 3
32 # define CTL_Method18 void, set_activity , (const array<int4>), 1
33 # define CTL_Method19 void, get_activity , (array<int4>) const, 1
34 # define CTL_Method20 void, get_connectivity , (array<int4>, int4)

const, 2
35 # define CTL_Method21 void, reaction, (array<scalar1 >) const, 1
36 /*get Dirichlet and VonNeumann bound conditions*/
37 # define CTL_Method22 void, get_load, (array<scalar1 >) const, 1
38 # define CTL_Method23 void, plot, (int4) const, 1
39 /*put a vector r in the residual array */
40 # define CTL_Method24 void, set_residual , (const array<scalar1 >), 1
41 # define CTL_Method25 void, get_state2 , (const string, array<scalar1

>) const, 2
42 # define CTL_Method26 void, set_state2 , (const string, const array<

scalar1 >), 2
43 #include CTL_ClassEnd
44 #endif
45

Figure 5.20: cofeap CTL interface definition - simu.ci
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1 #define CTL_ConnectF
2

3 #define CTL_ClassPrefix simu
4 typedef double scalar1;
5

6 #include <simu.ci>
7

8 void CTL_connect()
9 { ctl::connectF<SimuCI<double>, ctl::Extern::SimuCI >(); }

10

Figure 5.21: cofeap binding CTL interface to function implementation - connectcofeap.cc

1 subroutine simu_set_residual_impl(s0,x0)
2

3 implicit none
4

5 include ’iofile.h’
6 include ’cdata.h’
7 include ’pointer.h’
8 include ’comblk.h’
9 include ’control.h’

10

11

12 integer s0, i
13 real*8 x0(s0)
14

15 write(ioc,1000)
16 if(s0.ne.neq) then
17 write(ioc,2000) s0,neq
18 write(*,2000) s0,neq
19 call plstop()
20 else
21 do i =1,neq
22 hr(np(26)+i-1) = - x0(i)
23 enddo
24 endif
25

26 1000 format(/3x,’M e t h o d s e t - r e s i d u a l’)
27

28 2000 format(6x,’*ERROR* [set-residual]: bad activ DOFs number’/
29 . 6x, i10.10, ’ > ’, i10.10, ’ = #activ DOFs’/
30 . 6x, ’call PLSTOP’)
31

32 end
33

Figure 5.22: cofeap function implementation - simu_set_residual_impl.f
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5.2.4 cops

The COupling COmponents by a Partitioned Strategy (cops) is a software compo-
nent developed for the coupling between the domains and exchanging the data.
Also, it provides a generic implementation of the explicit and implicit DFMT-BGS
algorithms (Direct Force-Motion Transfer/Block-Gauss-Seidel) for fluid–structure
interaction (Kassiotis et al., 2011b). The coupling component cops creates the
instances of the two solvers - coFeap for the structure and ofoam for the fluid
problem, and it stores the logic of execution order.

cops software component is used to communicate with ofoam and cofeap
components and execute them in order to construct the final solution. It also
implements a CTL interface that is used as an entry point of the simulation, as
shown in Figure 5.23. It has only onemethod solve that is used to run the simulation.

The implementation details of each component that it is calling are unknown,
it interacts with them through the interface SimuCI for coFEAP and CFDSimuCI
for ofoam. By executing the methods available through each interface, it can
construct the final solution.

1 #ifndef _COPS_CI_
2 #define _COPS_CI_
3

4 #include <ctl.h>
5

6 #define CTL_Class copsCI
7 # include CTL_ClassBegin
8

9 #define CTL_Constructor1 (const string /*controlFile*/), 1
10 #define CTL_Constructor1Throws ( std::string ), 1
11

12 #define CTL_Method1 int/*1 if success*/, solve, (), 0
13 #define CTL_Method2Throws ( std::string ), 1
14

15 # include CTL_ClassEnd
16

17 #endif

Figure 5.23: cofeap function implementation - cops.ci

To bind the cops interface to a function header, a CTL is used as shown
in Figure 5.24.

cops implementation consists of running the ofoam and coFEAP solver
iteratively for fluid and mechanical domain until the convergence occurs. In
each time step it transfers the information about the displacement field from
the mechanical domain to the fluid domain, and the stress field in the opposite
direction. The implementation of function solve is given in Figure 5.25. It uses a
template class partitionedSolver that consists of both fluid and solid solvers.

The final outcome of running the cops simulation is a set of time directories
folders for each time step consisting of values of thephysical fields for bothdomains,
like displacement, stress and velocity, and also mesh points coordinates. It can
be run and visualised using some post-processing software like paraFoam that is
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using ParaView (Ahrens et al., 2005), an open source visualisation application.

1 #define CTL_Connect
2

3 #include "cops.h"
4 #include "cops.ci"
5

6 struct connectDetail
7 {
8 CTL_Constructor(1, (const std::string&), 1);
9 CTL_Method(1, int, cops<>::solve, (), 0);

10 };
11

12 void CTL_connect()
13 {
14 ctl::connect<copsCI, cops<>, connectDetail >();
15 }
16

Figure 5.24: cops binding CTL interface to function implementation - connectcops.cc
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1 template <class VecVecReal , class VecInt>
2 inline typename cops<VecVecReal , VecInt >::integer
3 cops<VecVecReal , VecInt >::solve () {
4 VecReal nodesF, nodesS;
5 integer dim;
6 _Solid.get_nodes( nodesS, dim );
7 _Fluid.getnodes( dim, nodesF );
8

9 field<VecReal> disp( "disp", nodesS.size(), dim, _caseDir );
10 field<VecReal> velo( "velo", nodesS.size(), dim, _caseDir );
11 field<VecReal> forc( "forc", nodesS.size(), dim, _caseDir );
12 residual <VecReal> res( nodesS.size(), dim, _caseDir );
13

14 if( _verbose > 1 )
15 std::cout << "<cops::solve> init partitioned solver" << std::endl

;
16

17 partitionedSolver <CFDSimuCI ,SimuCI<real>,VecReal> solver (_Fluid,
_Solid, res, _vm, _caseDir, (_verbose > 1));

18

19 while( _time < _timeEnd ){
20 _time += _timeStep;
21

22 if( _verbose == 1 ) std::cout << "Time: " << _time << std::endl;
23 else if( _verbose > 1) std::cout << "<cops::solve>: Time: " <<

_time << std::endl;
24

25 solver( disp, velo, forc, _timeStep );
26 if( _verbose > 0 ) std::cout << solver.convergenceInfo() << std::

endl;
27 }
28

29 return 1;
30 }
31

32

Figure 5.25: cops implementation - cops.inl

5.3 CTL

Component Template Library (CTL) is a C++ template library designed to create
distributed component-based software systems. It can be used to createmonolithic
code by joining different existing codes at link-phase, even if each code is written
and compiled in a different programming language (C, C++, Fortran, Java, Python).
It supports different linkage types: library, threads, tcp/ip, pipes, mpi (Message
Passing Interface), daemons and files. It was developed at the Institute of Scientific
Computing of the University of Braunschweig (Niekamp, 2005).

Existing software components are connected through a communication channel
and exchange data through a well defined interface. Software code does not
have to be initially designed for parallel computing. Interaction between the
codes depends only on the interface and not on the internal implementation.
Due to all this, it can be used for both multi-physics and multi-scale problems,
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coupling codes from the different domains.

(a)

(b)

Figure 5.26: (a) CTL and FEAP used for multi-scale problems; (b) CTL with different
software codes used for multi-physics problems

CTL allows to select which implementation and which linkage type are used
at the run time. When running the application, the binding of the function
signature to an implementation must be selected. The dependence graph for
the classical monolithic linkage and the component linkage is given in Figure
5.27. The main difference is that in the monolithic linkage, the application
depends directly on the used module. In the component linkage, the application
depends only on the interface, so it allows flexibility of choosing the appropriate
implementation and also allows the modification of the module without the need
to compile again the whole code. At run-time the application can decide, which
components and how many instances of these components on which hardware
is to be used (Niekamp et al., 2009).

A static software component exists both as executable and as dynamic library
that has implemented interface classes and functions. A component interface
(CI) declares the functionality that a software component may implement. It
defines all the necessary information that two components have to know to be
able to communicate and exchange information. For example, using CTL, a
modified FEAP code can implement a component interface and provide service
to any other software component. The functions in this component interface
could be: set time step, increment time step, set displacements or get tangent
matrix. The interface specification must define which functions can be called,
and what are the input and output data.
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Figure 5.27: Monolithic and component linkage dependence graph (Niekamp et al., 2009)

Conclusion

In this chapter, the software implementation details for the multi-scale and multi-
physics coupling have been shown. The multi-scale FEAP software architecture
has been described, and together with the main differences compared to the
standard FEAP code and execution procedure. Flowcharts were shown for both
mono and multi-scale code procedure executions. The code is developed based
on the previous work, adapted and rewritten for new versions of FEAP, CTL,
and compilers. The original scientific contribution relates to the part of the
implementation of the localized failure, both for 2D and 3D settings, as well as the
introductionof an additional degree of freedom tobe able to capture themicro-scale
electro-mechanical coupling. The multi-scale code can be easily upgraded with
new functionalities, micro-scale models or multi-physics coupling, to be finally
able to simulate more complex behaviors of smart materials. Also, with the CTL
interface for FEAP defined, microFEAP can be also used with some other software
code that can call it and use the obtained results for its calculations. In the second
section of the chapter, a fluid-structure interaction coupling implementation using
OpenFOAM and FEAP software code has been presented. Furthermore, the
implementation details for each of the components have been described.
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6
Conclusion and perspectives

In this chapter, the final conclusion and comments on the previously presented
work are stated. The original scientific contributions are underlined, and
perspectives for future work and possible improvements are given.



CHAPTER 6. CONCLUSION AND PERSPECTIVES

In this thesis, an improved version of a multi-scale coupling procedure has
been presented. First, the procedure has been extended with the embedded
strong discontinuity on the macro-scale to take into account localized failure.
With this addition, the crack opening that happens in the softening phase on the
micro-scale can be successfully transfered and represented on the macro-scale.
This is the main novelty and contribution of this work. It has been shown, on a
simple 2D tension test, that the proposed method produces the same results as
the mono-scale method, and shows a significant improvement for the softening
phase compared to the previously developed multi-scale method.

Next, the multi-scale method has been extended to a 3D setting, where
macro-scale tetrahedral and hexahedral finite elements have been developed.
The biggest challenge in applying the multi-scale coupling procedure to a 3D
setting was not developing a new theoretical formulation, as it stays mostly the
same as for a 2D setting, but implementing it in a software code that needs to
be changed to accommodate an additional spatial dimension. This increases
the complexity of the implementation, like storing and handling the element
arrays data, or detecting the nodes on the interface between the scales. This is
also one of the original contributions of this work, as a 3D multi-scale coupling
implementation did not exist in this form before. It has been shown that the multi-
scale coupling procedure with localized failure with the hexahedral macro-scale
element can produce the same results in the softening phase as the mono-scale
method for this specific example.

Both in the 2D and the 3D multi-scale formulation, the localized failure is
implemented in a way that the crack can only occur in mode I and parallel to
the imposed displacement. This has been done to prove that the method can
successfully enter into the softening phase and represent the localized failure
on the macro-scale. To make the method more generalized, mode I and mode
II should be added, so the crack would be described with both the normal
and the tangential vector at the discontinuity. In this way, a crack could occur
and propagate at a certain angle, and some more complex examples, like the
three-point bending test for softening, could be executed.

The method could be additionally improved in several possible ways. One
approach is to implement a dissipation based coupling, which would enforce
that the sum of the micro-scale elements’ dissipations is the same as the macro-
scale element dissipation. An adequate way of calculating the dissipation on
the micro-scale, which is a function of the displacement discontinuity and other
internal variables, should be established. This would imply the introduction of
internal variables on the macro-scale, for both hardening and softening phase,
and differentiate the dissipation in the fracture process zone and the dissipation
along the discontinuity surface. Relevant criteria for entering into the hardening
and the softening phase on the macro-scale should also be defined.

Furthermore, in the scope of this thesis the multi-scale method has been
successfully extended to a multi-physics setting, which allows to capture the
electro-mechanical coupling behavior on the micro-scale. An additional degree of
freedom for electric potential is added, accompanied by the respective changes
in the multi-scale formulation. Numerical computations of an example with a
micro-scale polarization model are performed, and the results obtained are shown
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to correspond to the mono-scale computation results. Also, Hellinger-Reissner
formulation for electrostatics has been applied in the multi-scale setting. In
this formulation, two degrees of freedom are used to couple the scales on the
interface – scalar electric potential and electric displacement. This is the first
step in the application of the multi-scale computation procedure to describe
the behavior of smart materials. In the future, additional degrees of freedom
could be added and different fields introduced, such as temperature or magnetic
field. Also, some more complex multi-physics coupling models can be developed
based on the proposed approach.

Through the implementation of the multi-scale andmulti-physics computation
procedures listed above, a general software framework that is modular and able
to handle different numerical models has been developed. This means that a new
micro-scale element describing a different material behavior can be executed with
this multi-scale code with little or no modifications at all. The only constraint
is that the element has to be implemented in FEAP, allowing the macro-scale
element to capture the behavior through the imposed interface conditions and
obtained micro-scale element arrays.

The main advantage of the developed computation procedure and accompa-
nying software code is that it can give a reliable representation of the behavior
that is defined on the micro-scale, without having to go into its implementation
details. Several different micro-scale behavior models can be used at the same
time, and they can be defined for different parts of the heterogeneous macro-scale
specimen. The trade-off is the higher execution time, as it takes additional steps
for the scales to communicate, and to prepare and exchange data.

To summarize, some of the future work and possible improvements are listed
here, grouped by the estimated time needed for its realization. A short term
goal, that could be done in several months and would require a larger number
of processors like in a computer cluster, is

• Perform the multi-scale code execution analysis, based on the number of
distributed processors, mesh size, micro-scale processes, and compare it to
the equivalent mono-scale code.

Medium term goals, that could be done as a part of a post-doctoral research
requiring several months to one year for each goal, are:

• Develop a formulation to implement mode I and mode II crack opening, and
random orientation of the discontinuity in the 2D multi-scale computation
procedure;

• Develop a formulation to implement mode I, mode II and mode III crack
opening, and random orientation of the discontinuity in the 3D multi-scale
computation procedure;

• Implement and test the proposed multi-scale formulation with random
orientation of the discontinuity on several examples, including a three-point
bending test for the softening phase;
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• Develop a multi-physics formulation with included temperature and mag-
netic field to be able to capture thermo-electro-magneto-elastoplastic cou-
pling behavior on the micro-scale.

Long term goals, that could be a part of another doctoral thesis and the
continuation of this work, are:

• Explore the possibilities of adding additional physics in a multi-physics
coupling formulation (like fluids for fluid-structure interaction) to be able
to model the behavior of smart materials for specific applications, like an
aircraft wing with piezoelectric sensors and actuators;

• Explore the possibilities of coupling another software code to allow for
additional multi-scale or multi-physics coupling.
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