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Résumé : Des opérations de renforcement ou réparation sont souvent nécessaires pour garantir l'intégrité des structures en Béton Armé (BA) vis-à-vis du risque sismique. Dans ce cadre, le Polymère Renforcé de Fibres (PRF) stratifié au contact a démontré son efficacité pour améliorer le comportement en flexion des éléments de structures tant en termes de résistance que de ductilité. Afin d'en améliorer la liaison en proximité des jonctions, les ancrages noyés dans le béton représentent une solution avantageuse en termes de performances et de facilité de mise en place. Néanmoins, leur comportement mécanique est fréquemment associé à des mécanismes locaux de déformation qui peuvent affecter la réponse globale de la structure. Un nouveau montage expérimental a donc été conçu pour réaliser des essais de flexion in-situ sur des poutres renforcées de petite échelle avec l'utilisation de la tomographie 3D et étudier l'interaction entre le béton et les ancrages. L'objectif principal est de suivre grâce à la Corrélation d'Images Volumiques (CIV) l'évolution de la dégradation du matériau pendant le chargement et de reconstruire la cinématique de la zone renforcée. D'un point de vue numérique, un modèle éléments finis enrichis inspiré par la Méthode des Discontinuités Fortes (SDA) a été développé dans le but d'améliorer la représentation de l'interface. De cette façon, des comportements mécaniques complexes comme les phénomènes d'arrachement peuvent être facilement reproduits, en limitant en même temps le coût de calcul. La calibration du comportement d'interface est faite enfin grâce aux résultats des essais in-situ qui permettent de valider le modèle dans le cas de problèmes non-linéaires.
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Problem 2. Structure with embedded fibre of arbitrary orientation β and varying length according to [START_REF] Fkf Radtke | A partition of unity finite element method for obtaining elastic properties of continua with embedded thin fibres[END_REF]. . . . . . Figure 5. [START_REF] Besnard | Finite-element" displacement fields analysis from digital images: application to Portevin-Le Châtelier bands[END_REF] Convergence curves of the reaction force F computed by the enhanced model, the PUFEM and the standard model with interface finite elements for β = 0 • and = 3.8 mm. Plot with respect the total number of dofs (a), plot with respect the additional dofs (b). . . . . . . . . . . . . . . . . . Figure 5. [START_REF] Biddah | Modelling of shear deformation and bond slip in reinforced concrete joints[END_REF] Convergence curves of the reaction force F computed by the enhanced model, the PUFEM and the standard model with interface finite elements for for β = 30 • and = 3.8 mm. Plot with respect the total number of dofs (a), plot with respect the additional dofs (b). . . . . . . . . . . . . . Figure 5. [START_REF] Bleyer | Multiphase continuum models for fiber-reinforced materials[END_REF] Comparison between the enhanced model, the PUFEM and the standard model with interface finite elements for k en s = 7 × 10 3 N/mm 2 , k pu f em s = 5 × 10 4 N/mm 2 and k std s,0 = 1.5 × 10 4 N/mm 2 . Bond slip profiles and interface stress profiles for β = 0 Comparison between properties of fibres, resin and steel [START_REF]Guide for the design and construction of externally bonded FRP systems for strengthening existing structures[END_REF]. Table 2. [START_REF] Dj Allman | A compatible triangular element including vertex rotations for plane elasticity analysis[END_REF] Influence of the anchor configuration on its behaviour. . . Table 3 In the last three decades, the tragic seismic events that took place in different regions of the world have obliged the scientific community to face one of the major challenges in the history of structural engineering, i.e. the re-engineering of Gravity Load Designed (GLD) Reinforced Concrete (RC) structures for whitstanding a seismic loading. Retrofitting techniques aim at answering to this problem through the strenghtening of an existing structure instead of its rebuilt from scratch. Economic reasons are the most obvious causes for their spreading, which has significantly intensified during the last two decades. A crucial role is played by the constant updating of the design norms on the basis of historical seismic recordings. Increasing seismic accelerations have, indeed, been applied in many areas that were previously considered as safe. This is the case of France, for which the previous seismic hazard map elaborated in 1991 has been updated in 2011, as can be seen in figure (1.1). As a consequence, an increasing number of civil engineering structures, such as nuclear installations and bridges, require Figure 1.2: Reinforcement strategy according to Colomb et al. [START_REF] Colomb | Seismic retrofit of reinforced concrete short columns by CFRP materials[END_REF] to be brought in conformity with the new regulations considering the increased possibility of seismic events. Such interventions can, of course, be extended to other common scenarios involving either deteriorated structures or more severe loading conditions. Let us recall, for instance, the case of bridges, which due to the intensification of road traffic must withstand higher stresses and deformations. Without a performance upgrade, some catastrophic falures are likely to take place, as it has happened in Italy recently with the collapse of the Morandi bridge in Genoa (2018). Besides the economic considerations, there exist, however, other important factors which justify the need for developing retrofitting solutions, above all environmental ones. For these reasons, precise design recommendations and numerical models are still nowadays under developement in order to provide clear indications and design tools for stregthening applications.

In the case of earthquakes, there is strong evidence that the weakness of the connection between horizontal and vertical elements is one of the main sources of the fragility of RC structures [START_REF] Mh Arslan | What is to be learned from damage and failure of reinforced concrete structures during recent earthquakes in Turkey?[END_REF][START_REF] Saatcioglu | The August 17, 1999, Kocaeli (Turkey) earthquake damage to structures[END_REF][START_REF] Sezen | Performance of reinforced concrete buildings during the August 17, 1999 Kocaeli, Turkey earthquake, and seismic design and construction practise in Turkey[END_REF][START_REF] Subramanian | Seismic design of joints in RC structures-A review[END_REF]. For these reasons, several efforts have been devoted to the comprehension of the main mechanisms that structural joints undergo during a seismic excitation. Various retrofitting techniques have then been proposed. Especially, Externally Bonded (EB) Fibre Reinforced Polymers (FRP) have proven great effectiveness in enhancing the perfomances of RC beams and columns. They show, however, some drawbacks related with debonding issues which can lead to a loss of ductility. Moreover, their application to structural joints is still nowadays under investigation since it requires the introduction of suitable anchorage systems, which are therefore object of both experimental and numerical studies. Such systems represent a key ingredient for ensuring an effective stress transfer between the composite reinforcements and concrete. The prevention of premature debonding is therefore essential in order to guarantee sufficient ductility levels during a seismic event and avoid non-dissipative failure [START_REF] Colomb | Seismic retrofit of reinforced concrete short columns by CFRP materials[END_REF]. 

presentation of the ilisbar project

In the aforementioned framework, the ILISBAR ( 2 and the IFSTTAR mainly focus on studying the experimental behaviour of slab-wall and beam-column joints (see figure 1.3), respectively, the LMT deals with the development of finite element tools based on in situ experimental evidence while the CEA is responsible for validating the numerical strategy by means of real-life applications simulated on Cast3M [START_REF] Verpeaux | Cast3M-CEA[END_REF].

The main goal of the project is to study from a multiscale point of view the conjugated effects of different reinforcement layouts, i.e. standard steel rebars and stirrups, and nonconventional ones, i.e. EB FRP reinforcements and anchorage systems, on the strengthened behaviour of RC joints. Indeed, it turns out that in most cases retrofitted structures are over-strengthened to avoid any failure, i.e. the structural assessment process is based on the assumption of a linear elastic behaviour. Such hypothesis, which is acceptable for increasing the structural strength, is, however, less suited for the ductility enhancement, as it can be clearly seen in figure 1.2. In this context, the problem of ductility in FRP strengthened RC joints must be intended in the sense of moving towards high levels of the strength hierarchy, i.e. by tranforming the failure mode from brittle (e.g. column failure) to ductile (e.g. formation of plastic hinges in the beams) without incurring in undesired debonding issues [START_REF] Prota | Selective upgrade of beam-column joints with composites[END_REF]. The effect of nonlinearities and complex material interactions developing at the interface must therefore be taken into account.

This ongoing research, which consists of both experimental and numerical investigations at different scales of observation, should then be able to provide engineers with useful abaci for design purposes and numerical tools for simulating the behaviour of RC joints retrofitted with EB FRP.

objectives of the thesis

Many experimental data are available in the literature concerning the behaviour of retrofitted reinforced concrete columns and beams by means of FRP materials. On the contrary, fewer researches who assess the performances of retrofitted RC joints can be found. In particular, the multiscale interaction between the anchorage systems and the rest of the structure seems to be not yet sufficiently well investigated. This lack of knowledge has implications on the developement of dedicated numerical tools which are becoming more and more essential both in the design and verification process. Especially, reproducing the observed deformation mechanisms defining the behaviour of FRP-retrofitted RC joints provided with embedded ancors is a challenging task in computational structural engineering.

For the above reasons, the first objective of the thesis is to design a novel experimental setup which allows to perform in-situ tests in the LMT tomograph on small-scale FRP-strengthened beams provided with an embedded FRP anchor. The evolution of the material degradation and bonding conditions in the Region of Interest (ROI) is analysed by means of Digital Volume Correlation (DVC) and Digital Image Correlation (DIC). The measured quantities are, in this case, 3D kinematic fields (displacements and strains), crack-opening and anchor debonding. The aim is to reconstruct the behaviour of the anchorage system during the loading history and identify the relevant mechanisms responsible for the specimen failure, to be included in the numerial model.

On the basis of the in-situ experiments, the second objective is to develop a new finite element that allows to reproduce the local interaction between the matrix (concrete) and the inclusion (FRP anchor). The representation of pull-out mechanisms and interfacial behaviours is considered in the present case in an implicit modelling framework, i.e. by means of a unique background mesh. The proposed approach is addressed to simulate the behaviour of FRP-retrofitted RC joints provided with embedded anchorage systems. The derivation of the model is achieved by considering different level of refinements, starting from a linear elastic behaviour and perfect material bonding to the nonlinear case with bond-slip effects.

organisation of the dissertation

The dissertation is organised into three parts. The first part is devoted to the bibliography. In particular, the objective of chapter 2 is twofold: on one hand, to introduce the main aspects of FRP strenghtening procedures with special focus to the case of RC joints, on the other to present some modelling strategies that have been adopted (or could be considered) to take into account the presence of local heterogeneities associated with anchorage systems.

The second part (chapter 3) presents the in situ experiments realised at LMT by means of a novel test apparatus designed specifically to realise bending tests on FRP strengthened beams inside the LMT tomograph. The behaviour of the embedded FRP anchor is here studied by means of DVC and DIC. The experimental results are therefore corrected of the spurious rigid body motions detected during the experiments, thus providing useful informations regarding the specimen behaviour.

The third part (chapter 4 and chapter 5), deals with the numerical modelling of embedded anchorage systems. The developed finite element formulation consists in an enhanced implicit model obtained through a kinematic enrichement aimed at reproducing the local interaction between the matrix and the inclusion.

In chapter 4, the main theoretical framework is therefore established in the case of perfect bonding between the materials. Elementary and structural case studies are here simulated in order to validate the model and compare it to other strategies. Chapter 5 then extends the analysis to debonding settings. Further numerical simulations finally allow to fully prove the model performances and conclude the study.

S TAT E O F T H E A R T

introduction

In order to provide a global picture of the FRP-strengthening of RC joints, the fundamental elements concerning their unstrengthened seismic behaviour are firstly recalled in this chapter. The main retrofitting techniques are then presented, with particular focus on the adopted materials and available layouts. The importance of FRP reinforcement anchorages is therefore discussed. Once all the experimental elements have been given, a survey of different modelling approaches that can be employed for simulating their behaviour is presented.

unstrengthened behaviour of rc joints

It often happens that joints of framed civil engineering structures undergoes the most critical loading during a sesimic excitation [START_REF] Subramanian | Seismic design of joints in RC structures-A review[END_REF]. It is shown that for this configuration, the failure of the joint is a more frequent cause of global collapse rather than the failure of the linked structural members. As for many GLD structures, designed for carrying only vertical loads, one of the main sources of damage are inadequate design provisions. Especially in the case of RC joints, this deficiency can lead to the formation of plastic hinges in the columns instead of in the beams [START_REF] Altoontash | Simulation and damage models for performance assessment of reinforced concrete beam-column joints[END_REF]. Insufficient lateral ties can, indeed, lead to beam-column joint failures, as it has been reported by Sezen et al. in [START_REF] Sezen | Performance of reinforced concrete buildings during the August 17, 1999 Kocaeli, Turkey earthquake, and seismic design and construction practise in Turkey[END_REF] and by Arslan et al. in [START_REF] Mh Arslan | What is to be learned from damage and failure of reinforced concrete structures during recent earthquakes in Turkey?[END_REF] concerning the Kocaeli (Turkey) earthquake (1999). Weak reinforcement lapping and splicing, as well as rebar discontinuities can also play a major role.

In general, severe damage situations are often related with poor detailing in the joint region, connection between strong beams and weak columns (reduced cross section and/or insufficient longitudinal reinforcement), as well with soft and weak stories. In the latter two situations, during an earthquake, the beams remain elastic whereas the columns undergoe shear failure or compression crushing [START_REF] Mh Arslan | What is to be learned from damage and failure of reinforced concrete structures during recent earthquakes in Turkey?[END_REF]. Under earthquakes loading conditions, RC structures are subjected, indeed, to high shear deformations which can reduce significantly the overall stiffness. For this reason, it is essential to design sufficiently ductile joints which must be able to withstand reversed cyclic actions [START_REF] Liang | Seismic performance of fiberreinforced concrete interior beam-column joints[END_REF]. As a basic principle, failure should not occur neither in the joint region nor in the column. If at all, the formation of plastic hinges and flexural cracking shall be taken into account [START_REF] Subramanian | Seismic design of joints in RC structures-A review[END_REF]. As basic principle, the contribution of the joint distortion to the total drift should decrease with the formation of plasting hinges in the beams and inelastic phenomena in the core region [START_REF] Biddah | Modelling of shear deformation and bond slip in reinforced concrete joints[END_REF]. Among the most common recommendations, the following provisions can be cited:

(i) Fulfilment of the strong column-weak beam requirement (high level of the strength hierarchy).

(ii) Definition of suitable transverse reinforcement ratios and spacing in the core zone.

(iii) Limitation of the dimensions of the joint core zone.

(iv) Accurate definition of the anchorage reinforcements and their placement.

(v) Ease of realisation and concrete compaction.

In design practices, the amount of steel reinforcements should be defined such that, at failure, steel reaches its yield limit and concrete attains its compressive strength, whereas anchor debonding should be avoided. In the case where bond/anchorage failure is expected within the joint, the minimum of the two capacities (steel and concrete resistances vs. anchor debonding) must be then considered.

Corner joints

This is the case of external joints. They can be classified whether they are subjected to an increase (opening joints) or a decrease (closing joints) of the angle between the horizontal and vertical elements. Therefore, during a seismic deformation, corner joints experience an alternation of opening and closing forces [START_REF] Subramanian | Seismic design of joints in RC structures-A review[END_REF]. The most critical situation, is, in particular, the one encountered by opening joints, since the latter must withstand high stress levels. Their effectiveness is thus defined as the ratio between the ultimate moment of the connection and the capacity of the connected members [START_REF] Ihe Nilsson | Reinforced concrete corners and joints subjected to bending moment[END_REF].

Internal joints

These elements, ensuring (in 2D) a four-member connection, are mainly characterised by diagonal shear cracks relying two closing corners, as depicted in figure 2.2. This phenomenon is associated with the dilation of the joint core generated by its inner compression. Diagonal stirrups can therefore be introduced along with steel ties, which ensure the confinement of the core [START_REF] Biddah | Modelling of shear deformation and bond slip in reinforced concrete joints[END_REF]. Moreover, if rebars are anchored within the joint, anchorage failure can take place, as well as bond failure of column/beam rebars passing through the joint. However, as previously mentioned, the connection should be dimensioned such that failure does not occur inside the joint, i.e. its should resist to the yielding of the linked members.

frp retrofit

Retrofitting procedures can be divided into local (or selective) and global operations, depending on their level of intrusiviness.

Global retrofitting operations consist in enhancing the mechanical performance by means of additional structural elements, such as shear walls, steel braces, post tensioned cables and base isolators [START_REF] Qazi | Comportement mécanique sous sollicitations alternées de voiles béton armé renforcés par matériaux composites[END_REF]. Shear walls are added to reduce the lateral drift and increase the structural stiffness, they may, however, add further dead load and provoke stress concentrations in other elements. Especially, the strengthening of foundations is often recommended in this case. On the contrary, steel bracing represents a less intrusive solution but it is characterised by important initial and maintenance costs. Base isolation aims at damping part of the seismic excitation, although it is not always easy to employ.
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Conversely, local retrofitting operations aim at enhancing the mechanical behaviour without modifying the original structural layout. Among the principal techniques, one can cite RC jacketing, steel jacketing, steel plates, steel cable and FRP solutions. This strengthening approach is adopted to recover (or improve) the design specifications of isolated structural members. Especially, FRP retrofit, thanks to its numerous advantages, such as its lightweight, ease of transport and application, resistance to corrosion and many others, has arguably become the most popular technique.

Materials

FRP materials are characterised by two main phases, namely the fibres and a matrix (polymeric resin), providing, respectively, resistance and cohesion to the composite. Moreover, a third component (an interphase) is introduced at the fibre boundary in order to provide adhesion between the phases. They can be found in the form of both single-layer FRP (lamina) and multi-layer FRP (laminates) [START_REF]Guide for the design and construction of externally bonded FRP systems for strengthening existing structures[END_REF].

Fillers and additives can also be added in order to obtain specific properties. 

Matrix

It consists of an organic polymeric resin whose properties are summarised in table 2.1. It may be considered as an isotropic material. Two main types of matrices can be distinguished, namely thermoplastic resins and thermoset resins. The latter variety is the most common in structural applications since they do not melt with high temperatures by showing a softening behaviour. Initially liquid, they polymerise when a reagent is added, thus becoming a solid, vitreous material. Among thermoset resins, epoxy resins and polyester resins can be cited. The former present, in particular, excellent adhesive properties and a good behaviour both in tension and compression, whereas the latter are more versatile, even though they show lower mechanical strength. Hence epoxy resins are the most popular solution for reparation of concrete structures.

Fibres

Fibres are composed of filaments with a diameter ≈ 10µm that are arranged together to form different shapes such as tows, yarns and rowings. Due to the lower sensitivity to defects, the unidimensional geometry provides FRP with higher mechanical strength with respect to three-dimensional geometries. Glass, carbon and aramid fibres are the most common solution used in FRP. Their main properties are summarised in table 2.1.

Composite

The resulting composite material is considered as heterogenous and anisotropic, with a prevalent elastic behaviour up to failure (see figure 2.3). The level of anysotropy then depends on the fibre layout, whereas the overall strength depends on the fibre volume fraction. Let us note that the hypothesis that its behaviour is isotropic must rely on the attentive analysis of the way the structure is loaded. Unidirectional and bidirectional fabrics are the most common solutions, where angles of ±45 • and ±90 • are often adopted in case of bidirectional composites [START_REF] Qazi | Comportement mécanique sous sollicitations alternées de voiles béton armé renforcés par matériaux composites[END_REF].

For what concerns the mechanical strength and stiffness of FRP, these are provided by the fibres, while the matrix ensures protection against the environment. For unidirectional FRP fabrics, the Young's modulus E FRP and strength at failure f FRP can be computed by applying the rule of mixtures as:

E FRP = V f ib E f ib + (1 -V f ib )E m (2.1)
f FRP ∼ = V f ib f f ib + (1 -V f ib ) f m (2.2)
with V f ib the volumetric fraction of fibres, E f ib and E m the Young's moduli of fibres and matrix, respectively. In relation 2. C at most [START_REF] Freyssinet | Avis Technique Foreva TFC / TFC H -Foreva WFC 100[END_REF]. In order to improve the FRP performance with respect to fire exposure, sufficiently thick coatings can be applied. However, it still exists a lack of knowledge concerning the actual behaviour of coatings and resins during fire events. For such reason, the existing norms recommend to limit the FRP contribution to the member capacity.

Common layouts for RC joints

The main goal in the seismic upgrading of GLD structures, is the enhancement of the member strength and, even more importantly, the increase of the overall ductility and energy dissipation. The basic principle is therefore to shift the strength hierarchy from the lower bound, represented by the crisis of the column, towards the upper bound associated with the formation of plastic hinges in the beam [START_REF] Prota | Selective upgrade of beam-column joints with composites[END_REF]. For this purpose, the strengthening of the panel should also be considered. Among the most common configurations for flexural enhancements, two main layouts can be distinguished, namely Externally Bonded (EB) techniques and Near-Surface Mounted (NSM) techniques. In the first case, the FRP reinforcement is applied directly to the support, whereas in the second case it is bonded through pre-cut grooves filled with epoxy. In the latter case, FRP bars are mostly adopted as reinforcement. By focusing on EB systems, the following classification can be given:

• Wet lay-up systems: the fibre fabric is impregnated with the resin directly on site and then applied to the support.

• Pre-preg systems: the dry fabric, consisting of unidirectional or multidirectional fibre sheets, is pre-impregnated with the resin at the manifacturing plan and delivered in rolls.

• Pre-cured system: various FRP shapes are pre-fabricated in the industry by pultrusion or lamination. It employs unidirectional disposition of fibres.

Due to their high adaptability and ease of installation, EB configurations are better suited for strengthening beam/column and slab/wall RC joints with respect to NSM systems.

A combination of EB and NSM FRP systems applied to interior beam-column joints has been proposed by Prota et al. in [START_REF] Prota | Selective upgrade of beam-column joints with composites[END_REF][START_REF] Prota | Selective upgrade of underdesigned reinforced concrete beam-column joints using carbon fiberreinforced polymers[END_REF]. Four configurations have been here compared. Type 1 configuration represents the first level of upgrade, which aims at moving the strength hierarchy from the lower bound (column failure) to an intermediate level, corresponding to the panel failure. Column wrapping was therefore applied by means of CFRP fabrics, as depicted in figure 2.6a. In Type 2 configuration, 4 CFRP rods were added to the column prior to wrapping. Thanks to the reinforcement continuity through the joint, the flexural enhancement of the column is then achieved. In order to strengthen the panel against shear stresses, longitudinal NSM bars were added to the panel in specimen Type 3, while U-wrapping was applied in the transversal direction, without extending to the column in order to reproduce the presence of a slab, as it happens in reality. Type 4 configuration is analogous to the previous one except for the adoption of CFRP fabrics instead of NSM bars for the strengthening of the panel. The joint is therefore subjected to a combination of axial load applied to the column and shear forces applied cyclically on the beams, in order to simulate the seismic action. The experimental results confirm that the upgrading procedure allows to influence the level of strength hierarchy and the resulting failure modes. In particular, it is shown that it is necessary to reinforce the joint if both an increase in strength and in ductility is sought. Moreover, both material properties and axial load level appear to play an important role on the global performances.

Among the various parameters determining the effectiveness of FRP strenghtening, anchorages play a fundamental role in preventing premature debonding, as pointed out by Antonopoulos et al. in [START_REF] Cp Antonopoulos | Experimental investigation of FRP-strengthened RC beam-column joints[END_REF]. T-shape connections, representative of exterior beam-column joints were tested with different reinforcements consisting of FRP sheets and strips, as described in figure 2.7. In particular, two anchorage layouts were adopted, notably FRP wraps and L-shaped steel anchors placed at the end of the beam. The column is therefore subjected to an axial load, while a shear force is applied to the beam under cyclic conditions. This investigation highlights how debonding dominates the performance of EB reinforcements. Moreover, it is found that flexible sheets are more effective than strips for the same reinforcement ratio, i.e. a stiffer reinforcement induces higher stresses at the interface thus increasing the risk of debonding. Moreover, the number of FRP layers seem to have a positive effect both on the strength and dissipated energy.

The upgrade of exterior RC joints have also been addressed by Shrestha et al. in [START_REF] Shrestha | Strengthening RC beam-column connections with FRP strips[END_REF]. The authors have tested two set-ups characterised by FRP strips anchored with column wraps and beam wraps, respectively, as depicted in figure 2.8. Similar loading conditions as for [START_REF] Cp Antonopoulos | Experimental investigation of FRP-strengthened RC beam-column joints[END_REF] were applied. The tests confirm, on the one hand, the importance of anchoring the FRP strips in order to prevent debonding, on the other hand, the development of localised debonding induced by shear cracks in the joint region. For this reason, the full capacity of FRP strengthening could not be completely exploited.

It then appears clear how bonding conditions influence the performance of RC joints retrofitted by means of EB FRP systems, which can underperform in the vicinity of L-shaped connections. Consequently, FRP anchoring can reveal advantageous in order to engage their full capacity. The problem of bonding and available anchorage solutions will be discussed in the following section. 

frp bonding

Along with jacketing, mainly focused on improving the level of reinforcement or confinement of weak columns, FRP bonding is the principal EB technique for enhancing the shear and flexural performances of slabs, beams, beam-column joints and walls. It consists in the application of FRP strips to tensioned concrete surfaces by means of adhesives, represented in most cases by epoxy resins. The latter present several advantages with respect to mechanical bonding, including their extreme versatility in connecting various kinds of materials and the lower intrusiviness with respect to the underlying structure. Since they rely on different bonding mechanism, i.e. physical, chemical and mechanical, an optimal preparation of the substrate prior to FRP application is essential to obtain good performances. Such treatment should, on the one hand, clean the surface from any contamination such as dust and moisture, on the other hand, it should achieve adequate surface roughness. Moreover, a dry support should be obtain before FRP bonding.

Three main types of fracture involving adhesive bonded materials can be distinguished [START_REF]Guide for the design and construction of externally bonded FRP systems for strengthening existing structures[END_REF]:

• Cohesive fracture: it takes place in the weakest of the materials linked by the adhesive. The fracture surface, is placed, in this case, close to the material boundary without interphase damage.

• Adhesive fracture: it corresponds to the interface failure. This situation is encountered when the interface stress exceed the adhesive strength. • Mixed fracture: it combines the previous two. In this case, the fracture surface is usually very irregular since it is characterised by a mix of adhesive and detached material.

In RC structures, local debonding of FRP strips is mostly associated with the first mechanism, determined by the reduced tensile strength of concrete. This phenomenon can therefore lead to a loss of ductility, which is of course undesired in seismic upgrading. Adhesive failure can also be encountered in case of weak interfaces or particular configurations. From the structural member point of view, the observed failure modes characteristic of FRP-strengthened beams can be gathered into the four following categories [START_REF]Guide for the design and construction of externally bonded FRP systems for strengthening existing structures[END_REF]:

• Mode 1: laminate/sheet end debonding, mainly associated with stress concentrations (peel and shear stresses, see figure 2.10).

• Mode 2: intermediate debonding, caused by flexural cracks. • Mode 3: debonding induced by shear cracks.

• Mode 4: debonding caused by irregularities and roughness of concrete surface.

Moreover, three further sources of failure can be identified, namely concrete crushing induced by the difference in strength between the materials (i.e. the tensile strength of FRP is greater than the compressive capacity of concreteas it also happens in the case of steel rebars), FRP rupture and shear failure at the reinforcement ends, as depicted in figure 2.11. In order to improve bonding, different anchorage systems can be adopted. A further advantage of FRP anchoring is the reduced sensitivity to the quality of surface preparation [START_REF] Sl Orton | Development of a CFRP system to provide continuity in existing reinforced concrete buildings vulnerable to progressive collapse[END_REF]. The main solutions are discussed hereinafter.

Anchorage systems

Among the various solutions documented in the literature, one can cite: mechanical fasteners [START_REF] Aj Lamanna | Flexural strengthening of reinforced concrete beams with mechanically fastened fiber reinforced polymer strips[END_REF], bolted steel plates [START_REF] Kk Antoniades | Cyclic tests on seismically damaged reinforced concrete walls strengthened using fiber-reinforced polymer reinforcement[END_REF], FRP sheet anchorages (U-wraps) and spike (or fan) anchors [START_REF] Sl Orton | Development of a CFRP system to provide continuity in existing reinforced concrete buildings vulnerable to progressive collapse[END_REF], U-shaped anchors [START_REF] Khalifa | Anchorage of surface mounted FRP reinforcement[END_REF]. A few examples are shown in figure 2.12. They can be subdivided into two main categories, namely, external systems and embedded systems. In order to avoid stress concentrations between the materials, it is often preferable to adopt the same material both for the reinforcement and the anchor. For this reason, FRP solutions are often preferred to mechanical ones. Both U-wraps and U-anchors represent effective strategies. However, the former usually require a considerable amount of material, while the latter, by anchoring the FRP into the concrete cover, may still present debonding issues associated with the formation of internal cracks [START_REF] Sl Orton | Development of a CFRP system to provide continuity in existing reinforced concrete buildings vulnerable to progressive collapse[END_REF].

Embedded FRP anchors, thanks to their reduced dimensions and ease of in- stallation, are effective solutions for anchoring FRP reinforcements, in particular, they appear well-suited for the strengthening of RC joints.

FRP anchors

FRP anchors can be fabricated from many type of fibres, namely, aramid, glass or carbon 1 . Two main configurations can be distinguished depending if they are in continuity with the reinforcement or if they are independent elements.

In the first case, the design consists in modifying the strip extremity in order to obtain either a cylindrical or prismatic shape, such that the strip and the anchor are a single element. This technique can be adopted for beam-column and column-foundation joints. The anchor is inserted in a hole drilled prior to FRP bonding. An example of this solution has been studied by Sadone in case of the lateral reinforcement of columns undergoing combined bending [START_REF] Sadone | Comportement de poteaux en béton armé renforcés par matériaux composites et soumis à des sollicitations de type sismique et analyse d'éléments de dimensionnement[END_REF].

The second solution (more frequent), introduced for the first time by the Shimizu Corporation in Japan [START_REF] Jinno | RC beams with slabs strengthened by CF sheets and bundles of CF strands[END_REF], consists in cutting a strip of FRP, forming a dowel to be inserted through the aid of a steel wire into a predrilled hole filled with epoxy and then fanning one extremity for bonding to the reinforcement sheet. ing conditions for the anchor-strip connection were tested by means of three-point bending tests on variable cross-section beams. The test configuration is shown in figure 2.17a. All the solutions proved their effectiveness by limiting FRP debonding and thus enhancing both the bearing capacity and the ductility. In addition, the research enlightens the importance that uniform bonding conditions have on the performance of the system. The authors also addressed in [START_REF] Qazi | Mechanical behaviour of slender RC walls under seismic loading strengthened with externally bonded CFRP[END_REF] the problem of strengthened slender RC walls subjected to seismic loading. Similar considerations to those made for the previous case are drawn, by confirming the benefits of FRP anchoring.

In the framework of the ANR ILISBAR, Chalot has recently studied in [START_REF] Chalot | Renforcement de liaison dalles/voiles par PRF, application au renforcement parasismique[END_REF] the behaviour of strengthened wall-slab connections under reversed cylic loading conditions. An extensive experimental campaign was realised by considering both reduced scale (T-shaped nodes) and full scale specimens. The investigation is based, on the one hand, on testing several retrofitting and anchorage solutions (similar to those employed in [START_REF] Qazi | Experimental investigation of CFRP anchorage systems used for strengthening RC joints[END_REF] and [START_REF] Qazi | Mechanical behaviour of slender RC walls under seismic loading strengthened with externally bonded CFRP[END_REF], as depicted in figure 2.17b), on the other hand, in comparing different experimental protocols (test configuration, loading conditions, instrumentation). For reduced scale specimens, it is shown that the increase in capacity is proportional to the fibre content of the anchor cross-section. However, the relation between the two quantities is non-linear due to the different observed failure mechanisms (anchor failure for lower fibre content, interface failure for higher fibre content). Similar considerations hold for full-scale specimens, in particular, it is pointed out that the FRP strengthening increases the amount of stored elastic energy by delaying the yield of steel reinforcements. Such evidence corresponds to a slightly lower ductility with respect to the unstrengthened case.

Failure modes of FRP anchors

Early studies on chemically bonded steel anchors subjected to pull-out tests, as the one conducted by Cook [START_REF] Cook | Behavior of chemically bonded anchors[END_REF], have revealed that these behaved differently with respect to headed cast-in-place mechanical anchors. As pointed out in this research, the most common failure mechanism observed experimentally is combined concrete cone-bond failure. The question of which of the two mechanisms (concrete cracking or interface delamination) occurs first turns out to be the main source of uncertainty. Several researches end with different conclusions, e.g. Luke et al. affirm in [START_REF] Pcc Luke | Use of Epoxies for Grouting Reinforcing Bar Dowels Concrete[END_REF] that bond failure takes place prior to the cone formation, whereas Cannon et al. in [START_REF] Rw Cannon | Guide to the Design of Anchor Bolts Other Steel Embedments[END_REF] suggest the opposite. A third possibility is that the two mechanisms occur simultaneously, as shown by Collins et al. [START_REF] Collins | Load-deflection behavior of cast-inplace and retrofit concrete anchors subjected to static, fatigue, and impact tensile loads[END_REF]. In figure 2.18a, the applied load is plotted against the displacements of both the anchor ends (top and bottom) and of the adjacent concrete surface. As one can see, the response is mostly linear elastic up to a load level of approximately 120 kN, followed by the appearance of non-linearities due to the steel yielding. At a load of ≈ 140 kN, the combined failure mode occurs as it can clearly be seen by comparing the three curves, which appear to change simultaneously.

In another research, Cook et al. [START_REF] Cook | Tensile Behavior and Design of Single Adhesive Anchors[END_REF] studied the behaviour of bonded steel anchors in confined pull-out tests. This configuration was chosen in order to avoid the formation of the concrete cone and induce bond failure. Moreover, the anchors were designed such that the steel yielding could be avoided. The force displacement curves corresponding to two identical specimens and measured at the anchor top end are shown in figure 2.18b. Two main observations can be made in this case. First, the linear elastic behaviour is the same for both samples. Second, once the elastic limit is reached, the response, governed mainly by friction, becomes unreliable. Especially, mechanical interlocking appears to play a major role, along with the roughness of the failure surface.

The behaviour of FRP anchors is similar in many aspect to the one reported by the aforementioned researches for bonded steel anchors. According to Del Rey Castillo et al. [START_REF] Del | Strengthening RC structures using FRP spike anchors in combination with EBR systems[END_REF], five different failure modes have been reported in the literature for independent anchors, as described in figure 2.19:

• Mode 1: conical concrete failure. • Mode 2: conical concrete failure with delamination of the concrete-dowel interface (combined failure).

• Mode 3: dowel pull-out.

• Mode 4: fan-strip pull-out.

• Mode 5: anchor rupture.

Combined failure is, along with anchor rupture, the main mechanism involving FRP anchors, as it has been shown by Ozdemir et al. in [START_REF] Ozdemir | Tensile capacities of CFRP anchors[END_REF] and Kim et al. in [START_REF] Kim | Pullout tests on FRP anchors[END_REF], where the tensile behaviour of straight anchors has been investigated. With reference to [START_REF] Kim | Pullout tests on FRP anchors[END_REF], different embedment depths [START_REF] Chalot | Renforcement de liaison dalles/voiles par PRF, application au renforcement parasismique[END_REF] failure or FRP rupture occurred for higher embedment depths (specimens P-40-12 and P-60-12). In order to prevent the anchor rupture, it is suggested that either a limitation of the embedment depth or a higher fibre content should be considered. Pure bond failure was observed in just a case, which the authors ascribe to poor workmanship in the anchor installation. The angle of the concrete cone with respect to the concrete surface varied between 20 • and 35 • . In the previous figures, the results obtained for equivalent steel anchors are also reported (specimens PT-40-12 and PT-60-12). Although Kim et al. addressed only the case of short anchors, the results confirm to a certain extent the evidences reported by Collins et al. in [START_REF] Collins | Load-deflection behavior of cast-inplace and retrofit concrete anchors subjected to static, fatigue, and impact tensile loads[END_REF] and Cook et al. in [START_REF] Cook | Tensile Behavior and Design of Single Adhesive Anchors[END_REF] for steel anchors. Another important observation made by the authors is that, due to the poor fibre alignement caused by the anchor manifacturing, the resulting tensile strength was approximatively 30% lower with respect to the FRP coupon. For this reason, the authors suggest that a reduced resistance should be adopted in practice. Ozbakkaloglu et al. in [START_REF] Ozbakkaloglu | Tensile behavior of FRP anchors in concrete[END_REF] have extended the analysis presented in [START_REF] Kim | Pullout tests on FRP anchors[END_REF] by considering the effect of additional parameters such as the angle of inclination of the anchor, the compressive strength of concrete and the quality of anchor installation.

It is shown that for anchors inclined up to 15 • , no considerable reduction of the pull-out capacity N u with respect to the straight configuration is observed. The difference becomes more important for angles greater then 15 • , as one can see in figure 2.21. The authors also investigate the effect of the bond depth h b = h e fh c , with h e f the total depth and h c the concrete cone depth, on the bond capacity

N b = N u -N c .
An almost linear relationtionship can be established between the two quantities, as can be seen in figure 2.22a, while a similar dependence can be observed in figure 2.22b between the N u and h e f . No particular influence of the concrete strength is observed on the bond capacity, whereas it determines the cone capacity. Moreover, the quality of anchor installation turns out to play a major role on anchor performances, as pointed out in [START_REF] Kim | Pullout tests on FRP anchors[END_REF].

The influence of geometric and material parameters, as well as of workmanship, on the behaviour of FRP anchors is still nowadays under investigation. On the basis of the available researches and recent experimental campaigns, such as the one realised by Del Rey Castillo et al. [START_REF] Del | Strengthening RC structures using FRP spike anchors in combination with EBR systems[END_REF], the following general observations can been made:

(i) The quality of fabrication and installation have great importance on the behaviour of the concrete-FRP anchor interface.

(ii) The dimensions of the anchor and its ultimate capacity are linked by a non-linear relation.

(iii) The anchorage inclination reduces the capacity and this dependency is non-linear.

(iv) For inclined anchors, these can undergo more important deformation as the angle is open. (v) The fan part must cover the totality of the width of the strip and it must be oriented towards the origin of the axial force in the strip. If more anchors are adopted, these must cover each other in order to ensure a good effort transmission.

Two other important parameters are represented by the fan opening angle (see figure 2.23a) and the anchor bend (figure 2.23b). Notably, the latter should be equal at least two times the anchor diameter in order to reduce the stress concentration at the connection [START_REF] Rd Morphy | Behavior of Fiber Reinforced Polymer (FRP) Stirrups as Shear Reinforcement for Concrete Structures[END_REF][START_REF] Sl Orton | Development of a CFRP system to provide continuity in existing reinforced concrete buildings vulnerable to progressive collapse[END_REF]. This value, which is diffult to obtain in real practice, is expected, however, to decrease when reducing the dowel inclination, i.e. when passing from transversal to longitudinal anchors.

The effects of some of the main parameters on the observed failure modes of FRP anchors are summarised in table 2.2.

modelling of embedded reinforcements

For several decades, matrix-inclusion problems have been object of extensive research in continuum mechanics [START_REF] Eh Brown | The diffusion of load from a stiffener into an infinite elastic sheet[END_REF][START_REF] Jd Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF][START_REF] Hill | Elastic properties of reinforced solids: some theoretical principles[END_REF][START_REF] Wt Koiter | On the diffusion of load from a stiffener into a sheet[END_REF][START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF][START_REF] Nemat-Nasser | Micromechanics: overall properties of heterogeneous materials[END_REF]. The case of linear inclusions has especially taken on great importance due to the wide range of engineering applications [START_REF] Tw Clyne | An introduction to composite materials[END_REF]. Besides FRP anchors, we recall, for instance, the case of fibre-reinforced materials and the large class of structures with embedded reinforcements, namely rebars and other types of reinforcement anchorages. Such broad variety ranges from the most common construction material, i.e. reinforced concrete, to the case of pile-raft foundations in civil engineering structures. Each specific problem is associated to one or more scales of observation and differs for the quantities of interest, while the common denominator is the fact that the cross sectional dimension of the inclusions (the dowel in FRP anchors) is much smaller compared to the other characteristic lengths [START_REF] Sudret | Modélisation multiphasique de matériaux renforcés par inclusions linéaires[END_REF]. The multiscale nature underlying this set of problems thereby governs the choice of suitable modelling strategies, especially the reinforcement architecture, i.e. its geometry, volume, orientation and packing arrangement as well as the applied loading and boundary conditions must be attentively analysed in the process.

Understanding how the specific inclusion interacts with the surrounding material is an essential element for determining what level of accuracy is required in simulations. When such interaction tends to be highly localised, the onset of singular behaviours in the local stress distribution may require the explicit modelling of interfaces. As described in the previous sections, this situation is very common in retrofitting applications by means of Externally Bonded (EB) and Near Surface Mounted (NSM) reinforcements [START_REF] Jf Chen | FRP or steel plate-to-concrete bonded joints: effect of test methods on experimental bond strength[END_REF][START_REF] Colomb | Seismic retrofit of reinforced concrete short columns by CFRP materials[END_REF][START_REF] De | Shear strengthening of reinforced concrete beams with near-surface mounted fiber-reinforced polymer rods[END_REF][START_REF] Qazi | Experimental investigation of CFRP anchorage systems used for strengthening RC joints[END_REF]. Crucially, this situation becomes even more pronounced when anchorage systems of limited extension and unaligned orientation are embedded into concrete [START_REF] Ceroni | Debonding strength and anchorage devices for reinforced concrete elements strengthened with FRP sheets[END_REF][START_REF] Qazi | Experimental investigation of CFRP anchorage systems used for strengthening RC joints[END_REF][START_REF] Sadone | Comportement de poteaux en béton armé renforcés par matériaux composites et soumis à des sollicitations de type sismique et analyse d'éléments de dimensionnement[END_REF][START_REF] St Smith | Strengthening of concrete, metallic and timber construction materials with FRP composites[END_REF][START_REF] St Smith | FRP-strengthened RC slabs anchored with FRP anchors[END_REF], as in the case of the FRP-strengthened RC joint represented in figure 2.24. Under these circumstances, compatibility is enforced along the inclusion length whereas concentrated forces and moments are applied at the extremities. The high stress gradients resulting from this configuration, may induce the local failure of the strengthening component and compromise the safety of the entire structure [START_REF] Kim | Pullout tests on FRP anchors[END_REF][START_REF] Ozbakkaloglu | Tensile behavior of FRP anchors in concrete[END_REF][START_REF] St Smith | Influence of FRP anchors on the strength and ductility of FRP-strengthened RC slabs[END_REF]. Simple stiffness-based computations of similar problems by means of traditional macroscopic approaches may be insufficient from a reliability point of view and more refined stress analysis are thereby required for evaluating the onset of early ruptures or debonding mechanisms.

Analytical solutions

Some analytical solutions have shown that linear stiffeners embedded in (semi-) infinite elastic media with loads applied at the inclusion ends induce jumps in the stress distribution and singularities at the extremities [START_REF] Eh Brown | The diffusion of load from a stiffener into an infinite elastic sheet[END_REF][START_REF] Wt Koiter | On the diffusion of load from a stiffener into a sheet[END_REF]. These results, although limited to very particular configurations and loading conditions, give useful informations regarding the main features that should characterise the numerical model.

Besides exact solutions, there exist also important approximations that have been developed in the framework of fibre composites. This is the case of the Shear-Lag theory introduced by Cox in [START_REF] Cox | The elasticity and strength of paper and other fibrous materials[END_REF] and subsequently developed by others (see for instance [START_REF] Dow | Study of stresses near a discontinuity in a filament-reinforced composite metal[END_REF][START_REF] Outwater | The mechanics of plastics reinforcement in tension[END_REF][START_REF] Bw Rosen | Mechanics of Fibre Strengthening in Fibre Composite Materials[END_REF]). 

Diffusion of load into an elastic sheet

In [START_REF] Eh Brown | The diffusion of load from a stiffener into an infinite elastic sheet[END_REF], Brown provided the exact solutions to a series of fundamental 2D plane stress problems consisting in the diffusion of load in an infinite elastic sheet to which a semi-infinite elastic stiffener is continuously attached throughout its length. In particular, three problems have been considered, namely:

1. Load applied to the end.

2.

Uniform tension at infinity parallel to the stiffener.

Uniform tension at infinity perependicular to the stiffener.

The first problem is depicted in figure 2.25. The stiffener is characterised by thickness h, cross-sectional area A and Young's modulus E s , whereas the elastic modulus and Poisson's ratio of the sheet are denoted with E and ν, respectively. The edge conditions for θ = 0 then read:

v + = 0 (2.3) 2hσ + xy = - dP dr (2.4) P = A E s du + dr (2.5)
where u and v are the displacements in the horizontal and vertical directions, respectively, σ xy the shear stress and P the axial force in the stiffener. For θ = 2π, one has:

v -= 0 (2.6) 2hσ - xy = dP dr (2.7) P = A E s du - dr (2.8) (a) + - + + (b)
Figure 2.26: Axial force in the stiffener (a), dimensionless stresses in the sheet for θ = 0 (b) [START_REF] Eh Brown | The diffusion of load from a stiffener into an infinite elastic sheet[END_REF].

Moreover, at infinity one must have:

σ xx = σ xy = σ yy = 0 and P = 0 (2.9)
with σ xx and σ yy the normal stresses in the x and y directions, respectively. Finally, for r = 0, it must be:

P = P 0 (2.10)
In order to solve the problem, a condition u = 0 at any arbitrarily chosen point is added to completely specify the problem. The resolution is then performed in the framework of the complex variable theory by means of Muskhelishvili's potentials [START_REF] Ni Muskhelishvili | Some basic problems of the mathematical theory of elasticity[END_REF] and series development. The results are shown in figure 2.26 in terms of the axial force P and stresses computed for θ = 0. Let us note that the distance from the origin has been normalised by the factor

r 0 = 2A E s /[(1 + k) 2 E h],
with k = (3ν)/(1 + ν), while the stresses have been multiplied by the factor µ = AE s /P 0 E. Their behaviours for θ = 0 are for r/r 0 → 0:

µσ + xx = 1 + k 4 1 + 3 -k π 1 -2 ∞ ∑ n=1 nA n = 0.937 (2.11) µσ + yy = 1 + k 4 -1 + 1 + k π 1 -2 ∞ ∑ n=1 nA n = -0.212 (2.12) µσ + xy = O(r/r 0 ) -1/2 (2.13)
where A n are the coefficients of the power series, while for r/r 0 → ∞: Especially, it is demonstrated that a logarithmic singularity arises in the potentials, giving a pole in the derivatives associated with σ xy . The latter, for r/r 0 → 0, is equal to O(r/r 0 ) -1/2 , while, for r/r 0 → ∞, it is equal to O(r/r 0 ) -3/2 .

µσ + xx = O(r/r 0 ) -1 (2.14) µσ + yy = O(r/r 0 ) -1 (2.15) µσ + xy = O(r/r 0 ) -3/2 (2.16) (a) (b)

Shear-Lag theory

The Shear-Lag model has been proposed for describing the behaviour of shortfibre composites [START_REF] Tw Clyne | An introduction to composite materials[END_REF]. A uniform stress σ 1 is therefore applied to the matrix at remote distance from the fibre. By means of interfacial shear stresses τ i developing at the boundary between the two phases, a tensile stress σ f is generated in the fibre.

The considered problem is depicted in figure 2.27. By following this approach, the radial variation of the shear stress in the matrix is written as:

τ = τ i r ρ (2.17)
with r and ρ defined as in figure 2.27b. Moreover, the derivative of the longitudinal displacement u with respect to the transversal coordinate ρ (i.e. the shear strain γ) can be expressed as:

du dρ = γ = τ G m = τ i G m r ρ (2.18)
where

G m = E m /[2(1 + ν m )]
denotes the shear modulus of the matrix, with E m and ν m the Young's modulus and Poisson's ratio, respectively. By integrating between ρ = r and ρ = R, with R some far-field location, one therefore obtains: For what concerns the axial stress in the fibre, this must be in equilibrium with the applied interfacial shear stresses, i.e.:

u R -u r = τ i G m ln R r (2.19) (a) (b)
dσ f dx = - 2τ i r (2.20) 
The model assumes that at the distance R, an uniform strain ε 1 = σ 1 /E m establishes in the matrix, i.e. as if the fibre was absent. By indicating with u R the far-field displacement, the following approximation is then introduced:

ε m = du m dx ≈ du R dx = ε 1 (2.21)
Thanks to the perfect bond assumption, i.e. u f = u m , after some developments, one finally obtains the governing equation:

d 2 σ f dx 2 = n 2 r 2 σ f -E f ε 1 (2.22) with n = 2E m E f (1 + ν m ) ln(1/ f ) 1/2 (2.23) and f = r R 2 (2.24)
Let us note that relation 2.24 corresponds to an approximation of the fibre volume fraction in case of an hexagonal array of fibres. Integrating equation 2.22 with the boundary conditions

σ f = 0 at x = ±L (2.25)
where L is the fibre half-length, finally allows to obtain the following expression of the axial stress and interfacial shear stress:

σ f = E f ε 1 1 -cosh nx r sech (ns) (2.26
)

τ i = n ε 1 2 E f sinh nx r sech (ns) (2.27)
where s = L/r denotes the fibre aspect ratio. The profiles of σ f and τ i are plotted in figure 2.28 for different values of s.

Among the main applications of the Shear-Lag theory, there is the possibility of determining the stress transfer length, which means the value of L that allows the fibre stress to reach the plateau in figure 2.28a associated with the condition ε f = ε m = ε 1 and vanishing interface shear stresses. Moreover, this approach has been widely used for predicting the stiffness of fibre composites and evaluating the onset of inelastic behaviours.

Behavioural models

Concrete cone models, bond-stress models and combined cone-bond models have been developed for predicting the pull-out capacity of adhesive-bonded anchors.

Concrete cone model

Among the first concrete cone models developed for adhesive threaded steel rods, one can cite the model proposed by Eligehausen et al. in [START_REF] Eligehausen | Befestigungen mit verbundankern (Fastenings with bonded anchors)[END_REF]. The cone capacity is here computed as:

N c = 0.92 f c h 2 c (2.28)
where h c (mm) is the cone depth and f c (MPa) is the concrete compressive strength.

The previous relationship has been derived from experimental data in which the ratio h c /d (with h e f the embedment depth and d the anchor diameter) was kept equal to 9.

Another important result is represented by the Concrete Capacity Design (CDD) model proposed by Fuchs et al. in [START_REF] Fuchs | Concrete capacity design (CCD) approach for fastening to concrete[END_REF] and incorporated in several design norms. Such model, based on a large amount of experimental data derived from pull-out tests of post-installed mechanical anchors, assumes that the concrete cone angle is ≈ 35 • with respect to the concrete surface. The cone capacity is, in this case, expressed as:

N c = 14.7 f c h 1.5 c (2.29)
The previous relationship has been obtained by assuming the 5% fractile with a coefficient of variation of 0.2 [START_REF] Eligehausen | Behavior and design of adhesive bonded anchors[END_REF].

(a)

Figure 2.29: Bond-stress models [START_REF] Cook | Behavior of chemically bonded anchors[END_REF].

In more recent years, Ozdemir et al. have proposed in [START_REF] Ozdemir | Tensile capacities of CFRP anchors[END_REF] an expression for computing the cone capacity in case of FRP anchors:

N c = 0.33 f c d 0 + h c tan θ πh c sin θ (2.30)
in which θ denotes the cone angle with respect to the free concrete surface and d 0 is the hole diameter.

Uniform bond-stress model

In uniform bond-stress models, the bond capacity is expressed in terms of the average shear stress τ 0 developing on the hole boundary at failure (see figure 2.29), i.e.:

N b = τ 0 πd 0 h e f (2.31)
The compatibility between the materials (concrete, adhesive and anchor) is not taken into account.

Elastic bond-stress model

Conversely, elastic bond stress models are formulated by considering the compatibility between the materials. By following the approach proposed by Doerr et al.

in [START_REF] Doerr | Adhesive anchors: behavior and spacing requirements[END_REF], the differential equation to solve is:

d 2 w dx 2 - Gπd 0 tEA w = 0 (2.32)
with G the shear modulus of the adhesive and t its thickness, E and A the Young's modulus and cross-section of the anchor, respectively, while w denotes the slip.

(a)

Figure 2.30: Comparison between bond-stress models in predicting the bond capacity [START_REF] Cook | Behavior of chemically bonded anchors[END_REF].

By imposing the boundary conditions, i.e. w = 0 at the bottom of the anchor and w = N b /AE at the top, one ends up with the following solution:

N b = τ max πd 0 √ d 0 λ tanh λ h e f √ d 0 (2.33)
where τ max is the maximum shear stress in the adhesive and λ is an experimentally determined parameter dependent on the bond shear stiffness and axial stiffness of the anchor. Such parameter can be determined from the slope of the load-displacement diagram [START_REF] Cook | Behavior of chemically bonded anchors[END_REF].

Let us note that relationships 2.31 and 2.33 are rather similar. In particular, h e f appearing in equation 2.31 is replaced in equation 2.33 by the last term in parentheses which varies between h e f for short embedment lengths and slightly lower values for deeper anchors. A comparison between the pull-out capacities computed by the two models is shown in figure 2.30. Cook et al. show in [START_REF] Cook | Behavior of chemically bonded anchors[END_REF] that both models perform well with respect to the experimental data obtained from 144 confined pull-out tests of steel threaded rods. In particular, the average ratio N exp /N calc between the real capacity and the computed one is close to 1 in both cases, while the standard deviation is approximately 14% for the uniform bond-stress model and 13% for the elastic bond-stress model. 

Combined cone-bond model

Cook et al. have proposed in [START_REF] Cook | Behavior of chemically bonded anchors[END_REF] a behavioural model for predicting the capacity of adhesive-bonded anchors experiencing cone-bond failure. The ultimate capacity is expressed in this case as:

N u = N c + N b (2.34)
If one combines the concrete cone model 2.28 and the uniform bond-stress model 2.31 (see also figure), he then obtains:

N u = 0.92 f c h 2 c + τ 0 πd 0 (h e f -h c ) (2.35)
In order to determine the concrete cone depth, N u is minimised with respect to h c , which gives:

dN u dh c = 0 → h c = τ 0 πd 0 1.84 f c (2.36)
By following the same approach, if one considers the elastic bond-stress model 2.33, the ultimate capacity reads:

N u = 0.92 f c h 2 c + τ max πd 0 √ d 0 λ tanh λ (h e f -h c ) √ d 0 (2.37)
and minimising with respect to h c therefore leads to:

h c = τ max πd 0 1.84 f c sech 2 λ (h e f -h c ) √ d 0 (2.38)
Let us note that alternative expressions similar to 2.35 and 2.37 can finally be obtained by considering different concrete cone models.

Multiscale and structural approaches

In large three-dimensional problems, as often occurs in civil engineering, the need to account for punctual material interactions and interface behaviours can easily become computationally prohibitive. Finite element implementations of multiscale approaches and 1D/2D structural theories have therefore been privileged in case of traditional reinforcement layouts.

Mixing theories

In the framework of mixing theories, Car et al. [START_REF] Car | An anisotropic elastoplastic constitutive model for large strain analysis of fiber reinforced composite materials[END_REF] have proposed a generalised model for describing the behaviour of long fibre-reinforced laminates. The composite material is here modeled in large strain settings as the compound of different phases homogeneously distributed in the volume (or in one of its portions) and contributing to the overall behaviour proportionally to their volume fraction. The assumed iso-strain hypothesis for enforcing compatibility between the compounding materials is then enhanced by considering anisotropic elastoplastic constituive laws for the phases. In the same context, a serial-parallel approach was proposed by Rastellini et al. [START_REF] Rastellini | Composite materials nonlinear modelling for long fibre-reinforced laminates: Continuum basis, computational aspects and validations[END_REF] where the closure equations of the problem now consist in the association of the iso-strain hypothesis in the fibre direction with an isostress condition in the transversal direction. An application of this model has been presented by Martinez et al. [START_REF] Martinez | A numerical procedure simulating RC structures reinforced with FRP using the serial/parallel mixing theory[END_REF] where the behaviour of reinforced concrete structures strengthened with FRP is simulated.

With reference to [START_REF] Rastellini | Composite materials nonlinear modelling for long fibre-reinforced laminates: Continuum basis, computational aspects and validations[END_REF] and [START_REF] Martinez | A numerical procedure simulating RC structures reinforced with FRP using the serial/parallel mixing theory[END_REF], the model formulation starts by postulating the existence, in a statistical sense, of a periodic Representative Volume Element (RVE). A two-phase material, namely the matrix and the fibres (superscript "m" and " f "), is considered by assuming that its macroscopic behaviour is transversely isotropic. By denoting with e 1 the direction determining the parallel behaviour (i.e. the fibre direction), the strain state is expressed as:

ε = ε P + ε S (2.39)
where ε P and ε S represent the parallel and serial parts of the strain tensor, respectively. The latter are defined as:

ε P = P P : ε and ε S = P S : ε (2.40)
with where the symbol "⊗" denote the dyadic product and I 4 is the fourth-order identity tensor. By means of the same decomposition, one can therefore compute the stress state by decomposing it into a parallel and serial contribution, i.e.:

P P = (e 1 ⊗ e 1 ) ⊗ (e 1 ⊗ e 1 ) (2.41) 
P S = I 4 -P P (2.42)
σ = σ P + σ S (2.43)
with σ P = P P : σ and σ S = P S : σ

In order to obtain the strain-stress state, the following hypothesis are then formulated:

(i) The two phases undergo the same strain in the parallel direction.

(ii) The materials experience the same stress in the serial direction.

(iii) The macroscopic behaviour is proportional to the volume fractions of its constituents.

(iv) The phases are homogeneously distributed.

(v) Perfect bonding between the phases.

By means of the previous assumptions, the compatibility and equilibrium equations of the composite read for the parallel behaviour:

ε c P = ε m P = ε f P (2.45)
σ c P = k m σ m P + k f σ f P (2.46)
where the superscript "c" refers to the composite and k i is the volume fraction of the phase i (i = m, f ). For what concerns the serial behaviour, one then obtains:

ε c S = k m ε m S + k f ε f S
(2.47) An example of application is described in figure 2.32, where the four-point bending test reported by Spadea et al. [START_REF] Spadea | Structural behavior of composite RC beams with externally bonded CFRP[END_REF] on a CFRP-strengthened RC beam is simulated.

σ c S = σ m S = σ f S (2.48) (a) (b)
The numerical results depicted in figure 2.33 show good agreement with the experimental ones. The authors do not discuss, however, the possibility to take into account the presence of anchorage systems and interface behaviours.

FE 2 approach

In the context of computational homogenisation, Sciegaj et al. [START_REF] Sciegaj | Twoscale finite element modelling of reinforced concrete structures: Effective response and subscale fracture development[END_REF] have studied bond-slip mechanisms occurring in reinforced concrete by means of the FE 2 approach. Under the scale separation assumption, a two-scale model has been developed. The macroscale response is herein computed by averaging the subscale solution obtained from the resolution of an auxiliary problem formulated on the RVE.

In particular, in the spirit of the Variational Multiscale Method (VMS) [START_REF] Hughes | Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods[END_REF], the local displacement field is additively decomposed into a unique macroscopic (smooth) part and a fluctuation term which depends on the microscopic space variable only. By referring with the subscripts "c" and "s" to concrete and steel, respectively, such decomposition reads:

u c = u M c + u m c (2.49) u s,l = u M s,l + u m s,l
(2.50)

u s,⊥ = u M s,⊥ + u m s,⊥ (2.51) 
where the superscripts "M" and "m" denotes the macroscale (large-scale) and microscale (sub-scale) problems, respectively, while the subscripts "l" and "⊥" refer to the reinforcement directions (see figure 2.34). This approach assumes that the macroscale terms are computed from a globally smooth field ū as:

u M c = ū(x) + [ ū ⊗ ∇]| x • [z -x] (2.52) u M s,l = e l • u M c (2.53) u M s,⊥ = e ⊥ • u M c (2.54)
with x and z representing the macroscopic and microscopic space variables, respectively. The two-scale model then consists in replacing local fields by homogenised ones. That means that, at each location x belonging to the overall domain Ω, these are approximated by the volume average taken on the sub-domain (RVE) Ω . Given two functions f Ω and f Γ defined on Ω c and Γ int , respectively, this procedure corresponds in performing the following operation:

Ω c f Ω dΩ + Γ int f Γ dΓ → Ω f dΩ (2.55)
where the subscale average f is equal to:

f = 1 |Ω | Ω c f Ω dΩ + Γ int f Γ dΓ (2.56)
By means of this approach, bond-slip behaviours can be therefore computed on the RVE problem. computationally expensive) finite element modelling provided that an appropriate choice of the Dirichlet and Neumann boundary conditions is made. Moreover, the applicability of this model to retrofitting problems with locally embedded anchorage systems has not been studied yet.

Multiphase models

An effective alternative to traditional homogenisation is represented by the multiphase model developed for inclusion-reinforced geostructures [START_REF] Bleyer | Multiphase continuum models for fiber-reinforced materials[END_REF][START_REF] Sudret | Modélisation multiphasique des ouvrages renforcés par inclusions[END_REF][START_REF] Sudret | Modélisation multiphasique de matériaux renforcés par inclusions linéaires[END_REF][START_REF] Sudret | Multiphase model for inclusion-reinforced geostructures: Application to rock-bolted tunnels and piled raft foundations[END_REF]. The matrix and the reinforcements are in this case spatially superposed and in mutual equilibrium with the applied boundary conditions and the exchanged interaction forces, treated here as volume densities. By assuming an uniaxial behaviour of each inclusion family i (with e i denoting its direction) and through an appro- priate writing of the virtual work principle, the equilibrium equations reads in quasi-static conditions:

div(σ 1 ) + ρ 1 F + N+1 ∑ i=2 I i = 0 (2.57) div(σ i e i ⊗ e i ) + ρ i F -I i = 0 ∀i = 2, . . . , N + 1 (2.58)
where:

• σ 1 is the stress state in the matrix and σ i the uniaxial stress in the phase i

• ρ i F (i = 1, . . . , N + 1)

are the external body forces

• I i is the interaction force density exchanged by each phase i to the matrix Equations 2.57 are then completed by the corresponding boundary (traction) conditions:

σ 1 • n = t 1 on ∂Ω T (2.59) σ i (e i • n)e i = t i on ∂Ω T ∀i = 2, . . . , N + 1 (2.60)
The key point of multiphase models is the fact that, if written for the whole domain Ω, by summing the contributions associated to each phase, the standard Cauchy's equilibrium equations for a one-phase continuum are recovered in terms of the total mass density ρ, total traction vector t and total stress Σ, i.e.:

div(Σ) + ρF = 0 (2.61) Σ • n = t on ∂Ω T (2.62)
with the following definitions:

ρ = N+1 ∑ i=1 ρ i (2.63) t = N+1 ∑ i=1 t i (2.64) Σ = σ 1 + N+1 ∑ i=2 σ i e i ⊗ e i (2.65)
One of the main characteristics of this approach is the possibility of considering different kinematics in a simplified manner via the expression of the interaction forces acting in the equilibrium equations of each phase. Indeed, the previous equations correspond to the following work density:

w de f = σ 1 : ε 1 + N+1 ∑ i=2 σ i e i ⊗ e i : ε i + I i • U i -U 1 (2.66)
where U i is the displacement of the phase i with compatible strain ε i = ∇ s U i , for i = 1, . . . , N + 1. In equation 2.66, it therefore appears the relative displacement V i = U i -U 1 with respect to the matrix, which represents the work conjugates to the interaction forces I i . In case of a linear elastic behaviour, by postulating the existence of a free energy density ψ i I , the following constitutive relation can be derived:

I i = c i I • V i (2.67)
where c i I is the interaction stiffness tensor. This term represents an interesting feature of multiphase models since it allows to account both for sliding and scaling effects. It can therefore been computed from the resolution of an auxiliary problem performed on the RVE [START_REF] Sudret | Modélisation multiphasique des ouvrages renforcés par inclusions[END_REF].

The multiphase approach has been applied for studying the behaviour of reinforced multilayered structures, as the one depicted in figure 2.36, where a reinforcement phase (superscript "r") is embedded in the matrix (superscript "m"). The structure is submitted to a vertical displacement such that an uniform vertical strain is established. On the contrary, the horizontal displacement varies between the phases. The latter is computed by means of the multiphase approach as a zero-order contribution (corresponding to standard homogenisation) plus a first-order correction obtained through an analytical resolution. The results are shown in figures 2.37 in terms of the horizontal displacement of the phase i (i = m, r) and reinforcement stress. Two different multiphase models, namely the one proposed by Sudret [START_REF] Sudret | Modélisation multiphasique des ouvrages renforcés par inclusions[END_REF] and the one proposed by Bleyer [START_REF] Bleyer | Multiphase continuum models for fiber-reinforced materials[END_REF], are compared to the heterogeneous finite element simulation for different numbers of layers N. As it can be seen, the results are very convincing, in particular, the performances of both multiphase models seem to improve for increasing values of N.

As in the case of the FE 2 approach, no application of the multiphase approach to FRP problems is found in the literature. In particular, the possibility of simulating isolated heterogeneities with applied end forces should be investigated.

Multi-layered plate elements

A different way of treating material heterogenities linked to embedded reinforcements is achieved by means of structural finite elements. Several authors have developed in the recent years multi-layered plate elements with high order kinematics able to reproduce complex mechanical behaviours in material stacks.

Teng and Zhang [START_REF] Teng | Nonlinear finite element analyses of FRP-strengthened reinforced concrete slabs using a new layered composite plate element[END_REF] and Teng et al. [START_REF] Teng | Two new composite plate elements with bond-slip effect for nonlinear finite element analyses of FRP-strengthened concrete slabs[END_REF] have developed a 4-node 24-DOFs and two 8-node 48-DOFs composite plate elements based on linear rectangular elements for modelling concrete, FRP lamina, adhesive layers and steel reinforce-ments. In the first case, the materials are supposed to be perfectly bonded, whereas in the second case bond-slip effects between concrete and FRP are integrated by means of an interconnecting zero-thickness finite element and through a smeared layer with finite thickness, respectively. For all the models, Timoshenko's composite beam functions are adopted for describing the transversal and rotational behaviour without occuring in shear-locking problems. A similar approach has been followed by Feldfogel and Rabinovitch [START_REF] Feldfogel | Full scale analysis of FRP strengthened plates with irregular layouts[END_REF], where a new multilayered plate element based on the Constant Strain Triangle (CST) is presented. The avantage of this model with respect to rectangular-shaped elements is the possibility to deal with irregular layouts as often happens in retrofitting applications by means of FRP.

In order to give the main ingredients of these approaches, we focus for the sake of example on the model presented in [START_REF] Teng | Nonlinear finite element analyses of FRP-strengthened reinforced concrete slabs using a new layered composite plate element[END_REF]. The considered problem consists in a stack of n c concrete layers, n s steel layers (t s,j is the thickness of steel layer j), one FRP layer and an adhesive layer of thicknesses t FRP and t a , respectively. Constant material properties are assumed throughout each layer while the stresses are computed at the Gauss points located at the layer mid-height. A piecewise constant stress distribution is therefore reproduced. By following the Mindlin-Reissner plate theory, the displacement field components (u, v, w) in the three spatial directions (x, y, z) read:

     u(x, y, z) = u 0 (x, y) + zθ x (x, y) (2.68a) v(x, y, z) = v 0 (x, y) + zθ y (x, y) (2.68b) w(x, y, z) = w 0 (x, y) (2.68c)
with (u 0 , v 0 , w 0 ) the mid-plane displacements and (θ x , θ y ) the rotations around the x-axis and y-axis, respectively. Moreover, there exists an additional rotation (drilling) θ z around the z-axis (the reasons for its introduction are detailed in [START_REF] Dj Allman | A compatible triangular element including vertex rotations for plane elasticity analysis[END_REF] and [START_REF] Zhang | A layered shear-flexural plate/shell element using Timoshenko beam functions for nonlinear analysis of reinforced concrete plates[END_REF]). The compatible strain field then reads:

ε = ε m + ε b (2.69)
where ε m and ε b are the membrane and bending contributions, respectively, defined under the small displacement assumption as:

ε m = ∂u 0 ∂x , ∂v 0 ∂y , ∂u 0 ∂y + ∂v 0 ∂x T = B m q e m
(2.70)

ε b = ∂θ x ∂x , ∂θ y ∂y , ∂θ x ∂y + ∂θ y ∂x T = B b q e b (2.71)
where B i denotes the strain interpolation matrix and q e i the vector of the finite element degrees of freedom, for i = m, b. In the case of the developed four-node plate element (see figure 2.38), the unknown vectors are:

q e m = q 1 m , q 2 m , q 3 m , q 4 m T with q j m = u j , v j , θ zj T (2.72
)

q e b = q 1 b , q 2 b , q 3 b , q 4 b T with q j b = w j , θ xj , θ yj T (2.73)
where j = 1, . . . , 4. For what concerns the transversal shear strain, one has:

γ = θ x - ∂w ∂x , θ y - ∂w ∂y = B s q e b (2.74) 
As mentioned above, matrices B b and B s are computed by means of Timoshenko's beam functions for laminated composite beams, adopted for approximating the displacement w and rotation θ. This strategy allows, in particular, to fulfill the boundary conditions on w and θ at the ends of a beam [START_REF] Soh | A new twelve DOF quadrilateral element for analysis of thick and thin plates[END_REF][START_REF] Wanji | Refined quadrilateral element based on Mindlin/Reissner plate theory[END_REF][START_REF] Zhang | A layered shear-flexural plate/shell element using Timoshenko beam functions for nonlinear analysis of reinforced concrete plates[END_REF]. Finally, the constituive relationship is written as:

σ * = D * ε * (2.75) where σ * = [N, M, T] T , ε * = [ε m , ε b , γ] T (2.76)
and

D * =    D mm D mb 0 D bb 0 (sym) D ss    (2.77)
In the expression of the internal force vector σ * in equation 2.76, the following quantities have been introduced:

• Mid-plane membrane force vector:

N = N x , N y , N xy T • Bending moment vector: M = M x , M y , M xy T (a) (b)
Figure 2.39: Simulation of a FRP-strengthened RC plate by means of multi-layered plate finite elements [START_REF] Teng | Nonlinear finite element analyses of FRP-strengthened reinforced concrete slabs using a new layered composite plate element[END_REF]. Problem geometry (a), force-displacement curves (b).

• Transverse shear force vector:

T = Q x , Q y T
Moreover, in the definition of the composite material matrix D * , the following terms appear:

D mm = n c ∑ i=1 D c,i (z i+1 -z i ) + n s ∑ j=1 D s,j t s,j + D FRP t FRP + D a t a (2.78
)

D bb = n c ∑ i=1 D c,i (z 3 i+1 -z 3 i ) + n s ∑ j=1 D s,j z 2 j t s,j + D FRP t FRP z 2 FRP + D a t a z 2 a
(2.79)

D mb = n c ∑ i=1 D c,i (z 2 i+1 -z 2 i ) + n s ∑ j=1 D s,j z j t s,j + D FRP t FRP z FRP + D a t a z a (2.80) D ss = k n c ∑ i=1 D co,i (z i+1 -z i ) (2.81)
with D c,i , D s,j , D FRP , and D a the in-plane material matrices of the constituting layers (concrete, steel, FRP and adhesive) while D co,i is the out-of-plane material matrix of the i-th concrete layer.

An example of application is shown in figure 2.39. A central load is applied to a simply supported FRP-strengthened RC plate. A good agreement between the numerical results and the experimental ones reported by Agbossou et al. [START_REF] Agbossou | Strengthening slabs using externally-bonded strip composites: Analysis of concrete covers on the strengthening[END_REF] is observed.

Due to the bidimensional character of the multi-layered plate modelling, its utili- sation is limited to a plane, making it difficult to represent linear inhomogeneities developing in the transversal direction.

Mixed-modelling

Although appealing from a computational point of view, the aforementioned numerical strategies may results to be unsuitable for modelling locally embedded linear inclusion such those employed in retrofitting operations. On one hand, the derivation of an equivalent material behaving as a Cauchy's continuum is possible, indeed, on the assumption that a sufficiently small Representative Volume Element (RVE) can be identified. On the other hand, the three-dimensionality of the problem induced by particular inclusion topologies does not seems easily addressed by means of full 1D or 2D modelling. For these reasons, the so-called "mixed-modelling" approaches have been used for bridging the gap between macroscopic and mesoscopic analysis. They consists in the combination of 3D (2D, in case of plane problems) and 1D finite element models for concrete and inclusions, respectively.

In this context, Romdhane and Ulm [START_REF] Mr Ben | Computational mechanics of the steelconcrete interface[END_REF] have addressed the modelling in the thermodynamics framework of two major phenomena governing the non-linear behaviour of reinforced concrete, i.e. material bond degradation and bridge effects, by means of trusses with slip degrees of freedom and interface finite elements.

A similar problem has been considered by Ibrahimbegovic et al. [START_REF] Ibrahimbegovic | Modelling of reinforced-concrete structures providing crack-spacing based on X-FEM, ED-FEM and novel operator split solution procedure[END_REF] who have treated strain localisation in concrete and slip mechanisms at the steel-concrete interface by means of the Embedded Finite Element Method (E-FEM) [START_REF] Armero | An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids[END_REF][START_REF] Oliver | Strong discontinuities and continuum plasticity models: the strong discontinuity approach[END_REF][START_REF] Oliver | From continuum mechanics to fracture mechanics: the strong discontinuity approach[END_REF][START_REF] Roubin | Multi-scale failure of heterogeneous materials: A double kinematics enhancement for Embedded Finite Element Method[END_REF] and the Extended Finite Element Method (X-FEM) [START_REF] Belytschko | Elastic crack growth in finite elements with minimal remeshing[END_REF][START_REF] Dolbow | Discontinuous enrichment in finite elements with a partition of unity method[END_REF][START_REF] Moës | Extended finite element method for cohesive crack growth[END_REF][START_REF] Moës | A finite element method for crack growth without remeshing[END_REF], respectively. Applications of the previous approach have recently been extended by Rukavina et al. [START_REF] Rukavina | Fiber-reinforced brittle material fracture models capable of capturing a complete set of failure modes including fiber pull-out[END_REF] to the case of fibre-reinforced concrete. The fundamental advantage of this strategy is the possibility to model inclusion problems by avoiding the meshing process, as described in figure 2.40. A different strategy has been followed by Casanova et al. [START_REF] Casanova | Bond slip model for the simulation of reinforced concrete structures[END_REF] for modelling reinforced concrete structures by encapsulating non-coincident trusses in 8-node brick elements through a local bond stress-slip law governing the evolution of the interaction forces exchanged at the interface. In the same framework of [START_REF] Ibrahimbegovic | Modelling of reinforced-concrete structures providing crack-spacing based on X-FEM, ED-FEM and novel operator split solution procedure[END_REF] and [START_REF] Rukavina | Fiber-reinforced brittle material fracture models capable of capturing a complete set of failure modes including fiber pull-out[END_REF], a model based on the Partition of Unity Finite Element Method (PUFEM) has been proposed by Radtke et al. [START_REF] Fkf Radtke | A partition of unity finite element method for obtaining elastic properties of continua with embedded thin fibres[END_REF], allowing the discrete treatment of several embedded fibres. Notably, this model introduces a displacement discontinuity at the matrix-fibre boundary Γ f ib by means of an enrichement χ ũ of the total displacement field u, with χ an enrichment function defined as:

χ =    1, for Γ f ib 0, for Ω (2.82) 
The enriched displacement field therefore reads:

u = û + χ ũ (2.83)
where û denotes the regular contribution. The compatible strain field is then standardly computed as the symmetric gradient of u, i.e.:

ε = ∇ s u = ∇ s û + (∇χ ⊗ û) s + χ∇ s ũ (2.84)
where the term (∇χ ⊗ û) s is neglected (the derivative of χ is not defined on Γ f ib , while it vanishes elsewhere). With reference to figure 2.41, the displacement discontinuity assumes the form:

u = u Γ f ib+ -u Γ f ib-= χ Γ f ib+ ũΓ f ib+ -χ Γ f ib-ũΓ f ib- (2.85)
As one can see from the previous expression, the contribution of the regular part û to the discontinuity vanishes due to the fact that such quantity is continuous on Γ f ib . For what concerns the constitutive behaviour, a continuum stress-strain relationship is considered for the bulk of the materials, i.e.: for the matrix and fibres, respectively, whereas a discrete relationship is adopted for the fibre-matrix bond, namely:

σ mat = D mat : ε (2.86) σ f ib = D f ib : ε (2.87)
t f ib = D b u (2.88)
with D b the second order elasticity tensor of the fibre-matrix bond. From a numerical point of view, the finite element approximation of the displacement field 2.83 is written with respect to the background mesh as:

u h = Na + χNb (2.89)
where N is the shape function matrix while a and b are the nodal degrees of freedom. The approximated strain field then assumes the following expression:

ε h = Ba + χBb (2.90)
with B the standard strain interpolation matrix. Due to the previous considerations, in the previous equation, the contribution related with ∇χ has been omitted.

The PUFEM approach has been applied for simulating the behaviour of fibres randomly distributed into a matrix, as it is shown in figure 2.42. This model seems, in particular, very robust and effective in evaluating the local interaction between the phases for a broad variety of configurations and bonding conditions. Neverthless, the authors do not discuss the possibility of including the action of concentrated forces applied to the fibre ends (which should be, however, easily implementable) or to link the interface behaviour to the one of the phases.

A drawback of mixed-modelling is the fact that it can lead to large errors in the solution close to the inclusion zone when perfect bonding and refined meshes are adopted in the analysis. In such circumstances, being the physical cross sectional dimension of the reinforcement not taken into account by the 1D representation of the inclusion, the resulting geometrical singularity can lead to spurious stress concentrations in the matrix as pointed out by Llau et al. [START_REF] Llau | Finite element modelling of 1D steel components in reinforced and prestressed concrete structures[END_REF] and Vincent et al. [START_REF] Vincent | Yield design-based numerical analysis of three-dimensional reinforced concrete structures[END_REF]. This drawback can therefore represent a serious limitation when material non-linearities are included in the model since non-physical material degradations can take place. For these reasons, in order to recover the physical solution at the interface, in [START_REF] Llau | Finite element modelling of 1D steel components in reinforced and prestressed concrete structures[END_REF] a three-dimensional volume of the inclusion is superposed to the unidimensional one. The weak equilibrium between the interaction force distribution computed along the axis and the 3D stress distribution inside the volume is then enforced. By doing so, the interaction forces are locally treated as an averaged volume density, as proposed in the framework of multiphase models [START_REF] Bleyer | Multiphase continuum models for fiber-reinforced materials[END_REF][START_REF] Sudret | Modélisation multiphasique des ouvrages renforcés par inclusions[END_REF][START_REF] Sudret | Modélisation multiphasique de matériaux renforcés par inclusions linéaires[END_REF][START_REF] Sudret | Multiphase model for inclusion-reinforced geostructures: Application to rock-bolted tunnels and piled raft foundations[END_REF]. To the same goal, in the framework of the limit analysis of non-standard three dimensional reinforcement layouts, in [START_REF] Vincent | Yield design-based numerical analysis of three-dimensional reinforced concrete structures[END_REF] the volume containing the heterogeneous material is locally replaced by an homogenised one obeying to a macroscopic strength condition. The problems raised by the 1D modelling are therefore avoided and fewer difficulties are encountered in the meshing process.

The unwanted behaviours related to mixed-modelling simulations could be also mitigated by introducing a slip between the materials as the characteristic transversal mesh size tends to the characteristic dimension of the inclusion cross section.

In multiscale terms, this would allow to account for scale effects associated with the transition from the macroscopic space variable to the microscopic one [START_REF] Sudret | Modélisation multiphasique des ouvrages renforcés par inclusions[END_REF].

Summary of modelling of embedded reinforcements

In the previous sections, it has been shown that several approaches can be considered for modelling structures with embedded reinforcements and, more specifically, FRP anchorage systems. In order to identify the most suitable strategy, the main evidences concerning the experimental behaviour of both EB FRP reinforcements and anchors, along with their specific application (i.e. the strengthening of RC joints) must be taken into account.

On the one hand, it has been shown that FRP strips induce in the strengthened member highly localised deformations that can be associated with local failure mechanisms. Moreover, combined concrete cone-bond failure and fibre rupture seem to be the most common modes affecting the behaviour of embedded anchors. On the other, the large-scale settings related with RC structures can represent a serious limitation to ensuring an adequate level of refinement in the numerical modelling. For these reasons, a strategy that conjugates both a reduced computational effort and enhanced interface description should be considered for the purpose.

In the present case, the possibility of representing stress (and strain) discontinuity in the matrix and bond-slip behaviours at the interface is allowed either by the resolution of an auxiliary problem (such in the case of FE 2 approach and multiphase models) or by means of a mixed-modelling strategy, e.g. through the enrichement of the displacement field. The last option, in particular, seems to provide a higher level of freedom in representing embedded reinforcement layouts and implementing suitable interfacial behaviours with minimal meshing effort and a lower number of degrees of freedom. In the framework of mixed-modelling approaches, a novel enhanced finite element model is therefore developed with the specific aim of improving the representation of pull-out mechanisms associated with FRP anchors.

conclusions

Optimal bond conditions are essential to exploit the full potential of EB FRP systems applied to RC connections. Thanks to their ease of installation and low level of intrusiveness, FRP anchors represents an effective solution which can lead both to an increase in strength and ductility. This latter aspect, i.e. the capability to dissipate energy, remains, however, a subject of debate and ongoning investigations. As highlighted by Chalot [START_REF] Chalot | Renforcement de liaison dalles/voiles par PRF, application au renforcement parasismique[END_REF], the achievement of an appropriate ratio between FRP systems (and more specifically fibre content) and steel reinforcements is a difficult task, since an increase in capacity corresponds in many cases to a yield delay of steel. Both FRP strips and anchorages must then be attentively designed in order to prevent, on the one hand, premature debonding and brittle failure, on the other, to allow the formation of plastic hinges in the horizontal elements (beams or slabs).

Five failure modes have been indentified in the literature for embedded FRP anchors. Several research have shown that for well-installed systems, combined concrete cone-bond failure and anchor rupture are the most frequent ones. The former, especially, has been source of disagreement between the researchers concerning which mechanism (concrete cone formation or debonding) appears first. The researches of Collins et al. [START_REF] Collins | Load-deflection behavior of cast-inplace and retrofit concrete anchors subjected to static, fatigue, and impact tensile loads[END_REF] and Cook et al. [START_REF] Cook | Behavior of chemically bonded anchors[END_REF] on adhesive-bonded steel rods seem to suggest that the two mechanisms take place simoultaneously. However, the case of FRP is still not well documented. Moreover, due to the particular configuration of FRP-strengthened RC joints with longitudinal (or inclined) anchorages, a modification of the failure mode could be observed. For these reasons, experiments for studying the interaction between the materials are needed.

In order to support engineers both in the design and verification of retrofitted RC joints, a suitable numerical model is required to take into account the presence of embedded reinforcements (steel rebars and anchors) and EB FRP systems. Mixed-modelling approaches represent an interesting solution since they allow, on the one hand, to avoid complicated meshing procedures, on the other hand, to implement in a relatively simplified manner complex physical behaviours. They are thus well-suited for the present application and, for this reasons, a novel formulation will be proposed in following chapters.

I N -S I T U E X P E R I M E N T S

introduction

In this chapter, the in-situ bending tests on small scale FRP-strengthened beams are presented. In order to reproduce (with all the limitations associated with smallscale experiments) the RC joint configuration, specimens of variable cross-section are considered. The experimental lack of knowledge concerns in this case mostly the local interaction between concrete and FRP anchorages. One of the main problems related with standard experimental configurations is, indeed, the difficulty in obtaining informations of the embedded zone. As previously discussed in chapter 2, such understanding is essential in order to develop a suitable numerical model.

The quality of installation is among the main factors that can influence the performances of the retrofitting procedure. In particular, for embedded anchors, the main issues are related with material inhomogeneities such as air bubbles or dust and poor fibre alignment, as it has been reported by Kim et al. [START_REF] Kim | Pullout tests on FRP anchors[END_REF] and Ozbakkaloglu et al. [START_REF] Ozbakkaloglu | Tensile behavior of FRP anchors in concrete[END_REF]. Moreover, the anchor failure mode taking place in the joint region must be attentively studied. Indeed, the researches of Cook et al. [START_REF] Cook | Behavior of chemically bonded anchors[END_REF] have shown that, in case of adhesive-bonded steel rods, bond failure can take place either simultaneously with the concrete cone formation or at different stages of the loading process. Especially, such mechanism could be influenced by the particular configuration of RC joints, which is often associated with stress concentrations.

The chapter is structured as follows. The theoretical framework of the adopted experimental techniques, namely, X-ray computed micro-tomography, Digital Volume Correlation (DVC) and Digital Image Correlation (DIC), is briefly recalled. The experimental program, specimen geometry and test configuration are then described in detail. The test results, i.e. force-displacement curves and scans at different loading stages, are therefore shown and analysed by means of the aforementioned techniques (DVC and DIC). 

experimental techniques

X-ray computed micro-tomography

Tomography is a non-destructive imaging technique which consists in reconstructing a 3D volume from a stack of 2D radiographs [START_REF] Bouterf | Comportement mécanique de la plaque de plâtre étudié par tomographie et essais mécaniques in-situ[END_REF]. This is achieved thanks to the different absorption coefficients of the materials when these are crossed by beams of different nature, e.g. X-ray, neutron, electron, terahertz, optics, ultrasounds. Such technique, originally introduced for medical purposes, can be perfomed by means of synchotrons, medical scanners and laboratory tomographs.

In the latter case, this operation goes under the name of "Computed Tomography" (CT) and thanks to its increased access during the last two decades it is now possible to realise in-situ tests for characterising the microscopic mechanical behaviour of materials. Thanks to hardware developments, it is then possible to obtain very high resolution in resasonable times. Figure 3.1 shows the correlation between achievable spatial resolutions and time. The latter quantity is of crucial importance: indeed, tomography assumes that the sample remains static and that its absoption properties does not change during the acquisition process. For meeting such ideal conditions, the scanning time should be as small as possible. In addition, many factors can intervene and deteriorate the scanning quality. For this reasons, realising in-situ and in-vivo tests can represent a big challenge since in this conditions the system evolves. A good compromise between scanning duration and resolutions must be therefore sought.

In a material science framework, severals steps can be identified. In particu- lar, prior to any acquisition, a specific goal must be set. The latter can correspond, for instance, to the determination of the parameters of a constitutive model. Once the objective is clear and the suitable scanning settings are identified, a series of radiographs are taken from the sample. The 3D volume is then reconstruced by means of suitable algorithms. Some corrections are often performed in order to correct the artifacts affecting CT-scans. The following step is the mesurement procedure, during which the quantity of interest such as kinematic and thermal fields are computed. The last step corresponds to the identification of the quantities of interest. Three successive inverse problems are therefore performed. Understanding how the informations transit through the different phases of the analysis is essential in order to obtain accurate results. A schematisation of the overall process taken from [START_REF] Jailin | Projection-based in-situ 4D mechanical testing[END_REF] is shown in figure 3.2. As pointed out in [START_REF] Jailin | Projection-based in-situ 4D mechanical testing[END_REF], the number of unknowns tends to decrease once the 3D volumes are reconstructed.

For giving an idea, the amount of data from a full power acquisition is of the order of 10 10 . This number then reduces to the number of degrees of freedom required for exploiting the scans, let us say of the order of 10 5 for a kinematic analysis. The number of computed parameters is finally of the order of 10 1 .

base principles X-ray CT scans exploits the interaction between an X-ray beam and the material. A typical configuration is depicted in figure 3.3. In particular, the absorption attenuation is considered in order to compute the resulting intensity I as function of the position r = [r, z] and rotation angle θ, with r and z perpendicular and parallel to the rotation axis, respectively. According to the Beer-Lambert law, the X-ray intensity I (r, t) at time t and position θ(t), proportional to the photon number N, is linked to the line integral of the absorption along the path L(r) through the following expression: where I 0 denotes the so called "Flat-field", i.e. intensity when entering the sample, and µ(x) is the linear attenuation coefficient which is a function of the material properties. The acquisition of the Flat-field, which is assumed to be invariant in time, can be performed in absence of the sample. Such quantity provides important informations which can be exploited for correcting artifacts related with detector or optic defects. Neverthless, it should be pointed out that the Flat-field may evolve during the sample aquisition. For this reason, its measumerement is often performed twice, i.e. prior and after the sample scanning and then averaged. Finally, the projections p(r, θ(t)) can be obtained by normalising the computed intensity by the Flat-field, i.e.:

I (r, r) = I 0 (r, t) exp - x∈L(r) µ (x) dx (3.1)
p (r, θ(t)) = -log I(r, t) I 0 (r, t) (3.2)
By combing n θ radiographies (the so-called "sinogram") taken for sufficiently small angle variations, it is possible to numerically reconstruct the three-dimensional volume of the sample. As already pointed out, such operation corresponds to the resolution of an inverse problem which is written as the following linear form:

p (r, θ) = Π θ f (x) (3.3)
where Π θ is a projection operator and f is the sought initial image. The inversion of such system is not an easy task due to the considerable problem dimensions. To this end, two main strategies are usually employed, namely Filtered Back-Projections (FBP) in the Fourier space and Algebraic methods. A detailed description of such algorithms is provided in [START_REF] Ac Kak | Principles of computerized tomographic imaging[END_REF]. As result of this operation, to each material point is therefore associated a "voxel" where the information is represented by a grey level and whose size depends on the resolution of the acquired images. The quality of the reconstructed image depends on many factors, in particular, some artifacts deriving from the acquisition and reconstruction procedures are added to the Flat-field evolution and can influence the final result (see, for instance, figure 3.4). The main ones are listed hereinafter: • The rings: Associated with detector inohomogeneity and defects, are often located close to the rotation axis, induced by detector inhomogeneity. Can be mitigated by eliminating defective pixels.

• Beam hardening: Derives from the polychromy of the X-ray source. It corresponds to a non-uniform attenuation of the different components of the energy spectrum when crossing the sample. In particular, lower energy contents are more easily attenuated and as a consequence a false information about the sample composition can be given. A possible way to mitigate this phenomenon is to "Pre-harden" the beam by filtering the low energy content of the incident radiation by means of metallic filters placed between the X-ray source and the sample.

• Phase mismapping: Usually induced by motion or evolution of the microstructure. It manifests as ghosting in the direction of phase-encoding.

Digital Volume Correlation

In order to determine the kinematic fields derived from mechanical testing, Digital Volume Correlation has been adopted [START_REF] Leclerc | Voxel-scale digital volume correlation[END_REF][START_REF] Roux | Three-dimensional image correlation from X-ray computed tomography of solid foam[END_REF] by means of the Correli software developed at LMT [START_REF] Hild | CorreliQ4: A software for finite element displacement field measurements by digital image correlation[END_REF]. Such technique corresponds to the 3D generalisation of traditional Digital Image Correlation developed for 2D problems [START_REF] Besnard | Finite-element" displacement fields analysis from digital images: application to Portevin-Le Châtelier bands[END_REF] and aims at computing the displacement field between two loading stages by comparing a pair of volumes (or images1 in case of DIC). Among the different approaches to perform DIC and DVC procedures, two main categories can be identified, namely local and global approaches. In the first case, the analysis is carried out by considering different "correlation windows", whereas in the second case the computation is performed over the entire Region of Interest (ROI). It has been

shown by several researches that this latter strategy enhances the performances of the correlation procedure (see for instance [START_REF] Hild | Comparison of local and global approaches to digital image correlation[END_REF]) and it will be considered in the following.

correlation procedure Les us consider a pair of images representing the reference and deformed configuration and let us denote them with f (x) and g(x), respectively, where x = [x, y, z] T is the position vector. The comparison between the two volumes is performed by assuming the conservation of the optical flow during the system evolution. Although the previous condition can be relaxed by means of suitable techniques (see for instance [START_REF] Am Quispe | Corrélation d'Images pour Descripteurs Textiles[END_REF]), the aforementioned hypothesis is considered in the following. The deformed image can therefore be approximated as:

g(x) ≈ f (x) = f (x + u(x)) (3.4)
where u denotes the (sought) displacement field. Moreover, by assuming that the reference image is differentiable, a first order Taylor expansion can be considered for function f :

f (x) ≈ f (x) + u(x) • ∇ f (x) (3.5) 
The displacement can therefore be obtained by minimising the squared norm of the residual Φ c = fg with respect to the displacement v belonging to a suitable solution space, namely:

u(x) = Arg min v Φ 2 c (3.6) with Φ 2 c = Ω [v(x) • ∇ f (x) + f (x) -g(x)] 2 dx (3.7)
Being the displacement measurable only in the direction of the intensity (grey level) gradient, the previous equation defines an ill-posed nonlinear problem whose solution can be obtained by introducing a regularisation. Such operation consists in most cases in restricting the unknown displacement field to a space of lower dimensionality defined by a chosen kinematic basis. The latter can correspond, for instance, to the one of the finite element method. After discretisation of the problem by means of a finite element mesh, the displacement field is therefore interpolated as:

v(x) = ∑ n a n ψ n (x) (3.8)
where ψ n are the considered vector basis functions and a n the degrees of freedom. By introducing equation (3.8) into equation (3.7), one obtains:

Φ 2 c = Ω ∑ n a n ψ n • ∇ f (x) + f (x) -g(x) 2 dx (3.9)
For solving problem (3.6), an iterative procedure is required. A Newton method can be adopted for the purpose. Let us denote then u i the displacement at iteration i and {a} i the vector of the unknown degrees of freedom. One therefore computes de increment du = u i+1u i by solving the linear system with respect to {da} = a i+1a i :

∂Φ 2 c ∂{a} = [M] {da} -{b} = {0} (3.10) with M mn = Ω ∇ f • ψ m ∇ f • ψ n dx (3.11) and b m = Ω ∇ f • ψ m g -f dx (3.12)
where f = f (x + u i ). In order to reduce the computational effort, matrix [M] can be computed once for all with respect to f or g. In such case, only vector {b} is updated during the irerations. Convergence is reached once the increment du reaches a sufficiently small value.

It is well know that the regularised functional (3.9) is in general sufficiently regular and convex for reaching convergence by means of a gradient method. In many cases, however, such condition is not met and the solution can be attracted by local minima. For a detailed treatment of the techniques improving the numerical resolution, the reader is referred to [START_REF] Hild | Comparison of local and global approaches to digital image correlation[END_REF][START_REF] Neggers | On image gradients in digital image correlation[END_REF][START_REF] Am Quispe | Complete mechanical regularization applied to digital image and volume correlation[END_REF]. Among them, rigid body motion initialisations and multiscale approaches are effective options. The first strategy consists in performing a phase shift operation in Fourier space, whereas the second technique aims at filtering the lower frequencies (Low Pass Filter -LPF) by Gaussian smoothing (blur) and superpixel generation. In the latter case, a pyramidal algorithm moving from blurred and coarse images to resolved ones can be an effective strategy for obtaining good results.

mechanical regularisation It can be shown that smaller the element size mesh , bigger is the correlation uncertainty [START_REF] Roux | Three-dimensional image correlation from X-ray computed tomography of solid foam[END_REF]. Consequently, if voxel-scale informations are sought in the analysis, refined discretisations must be adopted in conjuction with appropriate regularisation techniques. An appropriate choice in a finite element modeling framework is to regularise the correlation problem with respect to the mechanical equilibrium equations. This operation is known in the literature as "Equilibrium Gap Method" [START_REF] Claire | A finite element formulation to identify damage fields: the equilibrium gap method[END_REF]. It consists in considering the weak equilibrium equations of the finite element problem in case of an homogeneous elastic material, i.e.:

[K] {a} = {F} (3.13)

where [K] is the stiffness matrix, {a} the vector of nodal displacements and {F} the external force vector. Being the stiffness matrix different from the real one, an equilibrium residual is computed:

{R} = [K] {a} -{F} (3.14)
By considering the interior nodes and in absence of body forces, the Equilibrium Gap Method then consists in minimising the following quantity:

Φ 2 m = 1 2 {u} T [K] T [K] {u} (3.15)
where it appears that 2Φ 2 m corresponds to the squared norm of the equilibrium gap (3.14) computed for the bulk nodes. It is therefore possible to introduce such mechanical constraint in the correlation procedure by considering the total residual for the minimisation problem (3.6):

Φ 2 t = (1 -β) Φ2 m + β Φ2 c (3.16) with β ∈ [0, 1] and Φ2 m = Φ 2 m φ2 m , Φ2 c = Φ 2 c φ2 c (3.17) 
where φ2 m and φ2 c are the residuals computed for a unitary displacement field.

In addition to the mechanical regularisation of the bulk, it is also possible to regularise the boundary conditions [START_REF] Leclerc | Voxel-scale digital volume correlation[END_REF]. Indeed, the residual (3.15) is valid both in absence of body forces and boundary tractions. While the first quantity can, in most cases, be neglected, the second one may have a stronger influence on the results. For such reason, a further regularisation with respect to the boundary conditions can be added by considering a third objective functional:

Φ 2 b = 1 2 {u} T [L] T [L] {u} (3.18)
In the previous equation, L represents the Laplacian operator acting on the faces of the ROI. The residual Φ 2 b therefore vanishes for all rotation or rigid body motion. The total residual (3.16) now reads:

Φ 2 t = (1 -β -γ) Φ2 m + β Φ2 c + γ Φ2 b (3.19)
where β > 0, γ > 0 and β + γ < 1. As in relations (3.17 

experimental program

Specimens

The specimens have been realised by means of a 3D printed mold. Their geometry is shown in figure 3.5. Due to the reduced dimensions, micro-concrete has been adopted. Its formulation is similar to the one prescribed by EN 196-1 [START_REF]CEN (European Committee for Standardization[END_REF]. After 28 days, a mean resistance of 29.4 MPa and 6.6 MPa has been measured in compression and tension, respectively. For what concerns the mechanical properties of the FRP material, a unidirectional fabric has been employed. Its properties are: a tensile strength of 600 MPa, an elongation at break of 0.8%, Young's modulus of 60 GPa and thickness of 1 mm. The specimens are therefore fabricated through the following steps. Firstly, concrete is poured and cured for 28 days. After casting, concrete surfaces are smoothed for ensuring an uniform bonding of the FRP strip.

Once the anchor penetration hole is drilled into concrete, both the reinforcements are bonded to the specimen by means of an epoxy resin. Finally, the bonded FRP strip is impregnated with the resin and a curing period follows.

Once the specimen is completed, the steel elements required for the mechanical testing are glued onto the concrete surfaces by means of a two components epoxy adhesive Sikadur®-31 EF. The steel elements consist, on the one hand, of two hollow half cylinders (elements E-F in figure3.6b), designed for fixing the sample to the test apparatus (see next section), on the other hand, of two inclined supports (elements A-B in figure 3.6a), devoted to apply the displacement to the specimen. The supports are designed such that both a vertical and horizontal reaction is generated by sliding over elements C-D, which are fixated to the lower base. Such configuration is intended for the study of both the tensile and compressive behaviour of FRP reinforcements under reversed loading conditions. In the present work, however, only the tensile behaviour is investigated, i.e. only elements A and C have been used. In order to minimise friction, a special surface treatement has been applied to these parts. Finally, a thick layer of two components epoxy adhesive is added to the free cylindrical surface in order to improve the confinement of the free cylindrical part of the specimen. In figure 3.6c, the assembled specimen is compared a the beam-column joint strengthened with FRP and tested by IFSTTAR in 2019 in the framework of the ILISBAR project.

Test configuration

The tests have been carried out by means of the two devices available at LMT and depicted in figure 3.7, namely the Traction-Torsion-Compression (TTC) machine and the tomograph. The former consists in an uniaxial machine which is well suited for carrying out in-situ experiments: indeed, being the achievable resolution inversely proportional to the largest cross sectional dimension traversed by the X-rays, a vertical configuration is preferable with respect to an horizontal one. For such reason, in order to realise the bending test, a non-conventional layout has been designed. This is sketched in figure 3.8a and aims at describing the local mechanical behaviour of a FRP strengthened beam-column joint. As mentioned in the previous section, the base principle is to produce both a vertical and horizontal reaction by means of the sliding supports shown in figure 3.6a such that the reinforcements (strip and embedded anchor) are tensioned by the generated As one would imagine, such configuration produces significant efforts in the (y, z) plane, while the TTC machine depicted in figure 3.7a has been designed for wisthanding mainly vertical loads. In order to limit as much as possible the lateral drift of the upper base, allowing at the same time the rotation around the vertical axis as required for the tomographic acquisition, the strengthening system represented in figure 3.8b has been designed. It is constituted by a holed aluminium plate with a thickness of 12 mm which is bolted to the TTC frame.

A ball bearing is placed in the central hole and subsequently fixed to the test apparatus through a pair of disks. The upper base is therefore free to rotate, while the horizontal displacements are limited by the strengthening system. For its manifacturing, aluminium has been prefered to steel for reducing the overall weighted of the strengthened TTC, which should not exceed 100 kg. A 2D section of the test configuration is shown in figure 3.9.

Loading and scanning conditions

A vertical displacement δ v > 0 is prescibed to the lower base (see figure 3.9) at a speed of 5 µm/s, such that quasi-static conditions can be met. A vertical reaction F v is thus measured by the load cell. For what concerns the scanning process, an acquisition time of 1.25 hours per scan was required for obtaining a full resolution of ≈ 36 µm. For flat-field corrections, one flat field is acquired prior to the experiment. During the loading process, due to the support inclination, the deformation of the specimen is associated with an horizontal displacement component δ h , as depicted in figure 3.10. The latter can be computed as:

δ h = δ v tan α (3.21)
with α ≈ 26.6 • . At the same time, both a vertical and horizontal force is exchange between the elements. For determining their relationship, we consider the decomposition schematised in figure 3.11a in terms of the tangential and normal components denoted with F T and F N , respectively, and related through the following expression:

A ≡ B α (a) A B α δ v δ v -δ v δ h θ (b)
F T = F N tan φ (3.22)
where φ is the friction angle. By expressing the norm of the resultant force R in terms of its vertical component, it is therefore possible to compute the horizontal reaction as:

F h = F v tan β (3.23)
with β = π/2φα, as indicated in figure 3.11a. The variation of the proportionality coefficient tan β with respect to the friction coefficient µ = tan φ is depicted in figure 3.11b. Therefore, it is possible to see that such quantity plays an important role in the computation of F h . In the following, due to the fact that a special preparation of the sliding surfaces was achieved prior to the experiments, the condition µ ≈ 0 will be assumed.

F N F T R φ -F N -F T -R φ β ( 
We now consider the prescribed loading path, where the controlled quantity is the vertical displacement δ v . Its time-history is plotted in figure 3.12 for a reference test (see next section). The first step OA consists in pre-loading the specimen up to a load level of approximately 40 N, in order to ensure a uniform contact between elements A and C depicted in figure 3.6a. A first scan (AB) is then performed and assumed as undeformed configuration (time t 0 ), followed by a second one (BC) which is considered for computing the total experimental uncertainty by DVC. In such a way, it is possible, indeed, to include on the one hand the systematic error associated with sub-voxel displacements [START_REF] Hild | CorreliQ4: A software for finite element displacement field measurements by digital image correlation[END_REF][START_REF] Roux | Three-dimensional image correlation from X-ray computed tomography of solid foam[END_REF], on the other hand, the error arising from tomographic artifacts (see previous sections).

The next increment (CD) is prescribed in the elastic regime and a new scan is realised (time t 1 ). Three further loading steps and associated scans follow (times t 2 -t 4 ). From this procedure, it is therefore possible to obtain four 3D volumes describing the material state at times t 1 -t 4 . In addition, a continuous radiography acquisition is performed during the whole loading history, thus allowing to obtain precious 2D informations of the specimen evolution. The choice of restricting the number of scans was made in order to limit the perturbation of the system during the loading induced by potential misalignments and defects.

Image characteristics

After reconstruction, the computed volumes are characterised by 1723 × 1167 × 1723 voxels in the horizontal, vertical and transversal direction, respectively. The physical size of each voxel is 36 µm. The gray level was encoded on a 8-bit depth 
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of the undeformed sample is shown in figure 3.13, as well as the grey level histogram. Note that the latter is evaluated in the region of interest depicted in figure 3.13a by a dashed line. As one can see, some adjustments are required in order to enhance the images before performing DVC. The final result with the associated histogram is shown in figure 3.13c and 3.13d, respectively. The images appear very clear and characterised by good contrast levels. In particular, the cement and the aggregates can be clearly distinguished as well as several voids that were trapped during the specimen fabrication. Unfortunately, because of similar X-ray absorption coefficients, it is difficult to distinguish between the resin and the CFRP fabric. Being the computed volumes too big to be analysed in their interity at full resolution, a 4 × 4 binning is performed, thus obtaining a voxel size equal to 144 µm. In this case, the volumes are characterised by 430 × 291 × 430 voxels in the three directions whereas the occupied memory becomes 430.4 Mb. In figure 3.14, the first loading radiograph is shown prior and after image adjustments. These are aimed, in particular, to enhance the contrast in the bulk of the specimen. Both the original and adjusted radiographs will, however, be used in the following.

Experimental results

Five in-situ experiments have been carried out. A brief summary of the corresponding ultimate loads and observed failure modes is reported in table 3.2. Among the available data, the most representative and uncorrupted ones have been selected in the present work for extensive analysis. In particular, those pertaining to specimen 2 (reference test) are considered in the following. Let us note that in case of specimen 5, an atypical behaviour was observed during the test, as it appears in figure 3.15 by considering the significantly higher stiffness measured in the elastic regime with respect to the other cases. Such behaviour was associated with a non-optimal specimen preparation, in particular a non negligible misalignement between the specimen and the supports was detected. Therefore the loading was stopped prematurely, without reaching its ultimate value. For these reasons, the data corresponding to the aforementioned case have not been exploited for tracing the experimental envelopes since they are not considered to be sufficiently representative. For what concerns the reference test, a combined failure mode was observed.

The scans computed at the longitduinal midsection of the specimen and at the transversal cross section in proximity of the transition zone are shown in figures 3.16 and 3.17, respectively. From these images, it appears that the material is still completely sound until time t 1 . Between t 1 and t 2 , the two major cracks, namely the flexural crack (n. us note that the latter initiates on the free boundary of the reinforced region at a distance of ≈ 2.2 mm from the anchor interface while a circumferential crack pattern can be discerned in figure 3.17b. The start point of crack n.2 is presumably determined by the resin applied on the specimen surface, which therefore plays an important role at the initiation of the crack. Indeed, since the resin is characterised by an higher tensile strength than concrete, localisation occurs outside this region. At this stage, no significant stiffness reduction is measured up to δ v ≈ 3.5 mm and F v ≈ 305 N (δ h ≈ 1.8 mm, F h ≈ 609 N), after which the rate of propagation of crack n.2 increases, inducing an higher compliance of the system. A shear crack (n.3) with an inclination of approximately 45 • can equally be observed in the strip region. Two secondary cracks initiates at the anchor interface while some diffused cracking can be observed at the aggregate boundaries. Crack branching develops in the transversal cross section (figure 3.17c), notably 5 major branches initiate from crack n.2. An almost steady state propagation takes place after time t 3 . At time t 4 , it appears that the quality of the computed volume is corrupted by a spurious motion of the sample during the scanning procedure, as can be clearly seen from figures 3.16d and3.17d. For such reason, DVC could not be performed for this state. Nevertheless, it is still possible to see that crack n.2 is now fully developed and converges towards the anchor interface. At this stage, diffused From this first analysis, two main observation can be made. First, the different inclinations of the FRP strip and the mesh anchor induce a local perturbation with respect to an aligned pull-out configuration. Second, the resin may play an important role in the initiation of the crack. The main evidence of the effect exerted by the anchor inclination on propagation of crack n.2 is the fact that the latter presents both a longitudinal and normal opening components. Especially, it can be deduced that at the connection between the FRP strip and the mesh anchor, the crack formation is mainly associated with peeling stresses whose magnitude increases with the anchor inclination. Due to the reduced flexural rigidity of the latter, the effect of such perturbation vanishes quickly as the distance from the transition zone increases. In particular, the decay rate must be inversely proportional to the anchor inclination. At a certain distance, the most relevant quantity therefore becomes the interfacial shear stress developing along the anchor length. Such reasoning is corroborated by analysing the failure surfaces. The latter firstly branch, indeed, to form inclined planes close to the FRP anchor-strip connection up to a certain distance at which the lower semi-circumferential crack converges towards a pure interface debonded surface. An image of the failed specimen is shown in figure 3.18. The picture was taken after the specimen was heated for extracting the supports glued on its surface. Such operation allows to recycle the steel elements without providing damage to these components.

correlation analysis

A priori performance

Before performing DVC, it is important to realise an a priori analysis in order the quantify the systematic error and the standard uncertainty. Two main strategies can be followed in the present case, the first one is to generate an artificially translated image from the reference one and then perform the correlation procedure on this couple of images. This strategy allows to take into account the error related with inter-pixel interpolations generated by sub-pixel displacements. The second possibility, is to perform DVC on a couple images representing the same sample state but taken at different times. Such option is useful for quantifying errors related with sample movements during the scanning process and tomographic artifacts. In the following, both methods are considered.

First, a translation of 0.5 voxels in the three direction, (voxel size vox = 144 µm) is applied in the Fourier space to the reference image. One can therefore compute the overall systematic error δ u = u estu pre between the average value of the computed displacement u est and the prescribed displacement u pre , and the overall standard uncertainty σ u = u estu est 2 1/2 measured from the standard deviation of the computed displacement field about its mean value. The results obtained for the three spatial directions by considering an average mesh length mesh = 10 voxels and a uniform regularisation length of reg = 40 voxels are shown in table 3.3. The overall systematic error and standard uncertainty are in this case equal to δ u = 9.50 × 10 -4 voxels and σ u = 6.90 × 10 -3 voxels, respectively, which are very reasonable values. For what concerns the evaluation of the strain uncertainty, a possible way is to compute the maximum of the absolute value of the principal strain, for which one obtains δ ε = 6.24 × 10 -3 . This error seems to be acceptable to address the present case study.

Following the second approach, i.e. by correlating the volumes obtained after two subsequent specimen rotations and assuming u pre = 0, it emerges that there exist, in particular, a spurious displacement in the z-direction, whose average value is ≈ 0.26 voxels. Such quantity is associate to a standard deviation equal to ≈ 0.01 voxels, i.e. more than one order of magnitude smaller than its average value. One can therefore conclude that this perturbation corresponds mostly to a rigid body motion which may be due to several factors (misalignements, specimen/machine imperfections, etc.). Since one would expect its influence on the overall results to be small (at least in the elastic phase), no further investigation is addressed in the study. However, such quantity could play a more important role during the loading process, especially in presence of material nonlinearities. By means of the second approach, one therfore obtains an overall systematic error and standard uncertainty equal to δ u = 2.76 × 10 -1 voxels and σ u = 3.85 × 10 -2 voxels, respectively, whereas the strain uncertainty is δ ε = 7.30 × 10 -3 , i.e. coherent with the previous result and small enough for correlation purposes.

method δ u x δ u y δ u z σ u x σ u y σ u z 1 
The same operation is then run over the loading radiograph. In this case, being the data available only after state C in figure 3.12 throughout the loading phase, only the first method is investigated. For this reason, a translation of 0.5 pixels is therefore applied to the reference picture. The pixel size is px = 36 µm, the characteristic mesh length is mesh = 20 pixels while an uniform mechanical regularisation length reg = 100 pixels is adopted under the plane stress assumption. The overall systematic error and standard uncertainty are now equal to δ u = 6.90 × 10 -3 and σ u = 1.01 × 10 -2 pixels, respectively. If one computes the overall strain uncertainty, he obtains δ ε = 7.77 × 10 -4 . Such lower value could be ascribed to the higher image resolution with respect to the previous analysis.

DVC results

The correlation procedure is run by comparing the sample state at times t 1 -t 3 to the reference state at time t 0 identified by point B in figure 3.12. The same parameters reported in the previous section ( mesh = 10 voxels, reg = 40 voxels) are considered.

In figures 3.19 and 3.20, the grey level residuals normalised by the dynamic range of the reference scan are shown for the longitudinal midsection and transveral section of the specimen, corresponding to figures 3.16a-3.16c and 3.17a-3.17c, respectively. These quantities, which compute the difference between the reference and deformed images, are an useful tool for detecting cracks and tracking their development inside the sample. At first glance, one therefore finds confirmation of the fact that the material is still completely sound at time t 1 whereas cracking is already visible at time t 2 . In particular, cracks n. of DVC. Howevere, thanks to the load radiographs, it is still possible to derive some useful informations at this stage as it will be shown in the next sections. In figure 3.21, a three-dimensional plot of the residuals computed in the anchoring region is shown for scans 1-3. These fields corresponds to the nodal projection of the actual residual computed at the voxel level between the reference and the deformed volume. An adaptive meshing procedure with densities cromprised between 30 and 4 voxels, based on the deformation state, has been here adopted in order to provide a clear representation of the three-dimensional crack pattern. For this purpose, the small residuals have been filtered out in order to make the large values more visible. It is even easier, now, than in the previous figure to understand how the discontinuity surfaces propagate in the sample. The shape of the crack branching is well defined with the five branches starting from crack n.2 easily distinguishable. These reveal to be in perfect agreement with figure 3.18 depicting the failed specimen. It is interesting to observe that the flexural crack (n.1) is already fully extended at time t 2 , after which does not progress any further in the transversal direction due to the presence of a compression zone. The specimen failure then occurs when no further stress redistribution is possible.

The three-dimensional displacement field associated with the residuals depicted in figures 3.19 and 3.20 is shown in figure 3.22. At time t 1 , such field defines the typical bending behaviour in the elastic regime. Two further observations must also be made. First, even at this early stage, the cylindrical portion of the specimen manifests a positive displacement component u x close to the clamping section whose average value is ≈ 1.4 voxels (see figure 3.22a), i.e. the specimen undergoes a rigid body motion. Such quantity increases further during the loading process up to ≈ 4 voxels at time t 3 (see figure 3.22g). Second, the u z component at t 1 (figure 3.22c) is non-symmetric with respect to the plane of symmetry of the specimen, in particular it increases in the z-direction up to a value of ≈ 0.25 voxels. Such quantity, corresponding to a slight torsion of the specimen, does not seem, however, to evolve significantly until time t 2 . At this stage, a discontinuity appears in the three components of the displacement field which keeps evolving throughout the test. The fact that even u z is discontinuous is likely due to the lack of lateral confinement (see also figures 3.17b-3.17d, where a separation of the lower part of the specimen into two parts is observed). The anchor pull-out therefore keeps progressing up to the overall failure. Although these results already provides some useful informations of the sample behaviour, for a better understanding of the physical phenomena it is essential to dig deeper and distinguish between rigid body displacements and deformation modes.

Crack-opening

The study of the cracking process which takes place in the anchoring region is addressed in this section. Especially, the analysis of crack n.2 (figure 3.16) is considered. Indeed, since the latter developes near the anchor boundary, it is expected to have a strong influence on the specimen behaviour and its failure (see figure 3.18). For this purpose, the pictures representing the longitudinal midsection of the sample are analysed by means of DIC. In this case, the ROI is restricted to the aforementioned region. Since 2D images are studied, fully resolved images can be used ( px = 36 µm). The adopted strategy consists in the following steps. First, the position of the axis of the crack is determined manually with respect to the scan taken at time t 3 . This is shown in figure 3.23a, where the finite element mesh is represented as well. Second, the correlation procedure is run by comparing the sample state at time t 0 (reference state) and t 3 . A uniform regularisation length reg = 30 pixels is adopted. The computed displacement field is thus interpolated along the axis of the crack identified on the deformed configuration. It is therefore possible to determine the latter position in the reference (undeformed) configuration (figure 3.23b). Third, the crack axis position is shifted of ±d shi f t in the normal direction e n identified by the orientation of the anchor, whose tangent direction is denoted with e s . The idea is then to compute the displacement of the crack faces over this two lines, under the hypothesis that little deformation characterises the material between the crack axis and its shifted positions. For such reason d shi f t should be as small as possible. In the present case the value d shi f t = 10 pixels has been assumed. With this strategy, one can therefore perform DIC between two material states, compute the displacement field along the shifted crack axis and determine the crack faces by adding such quantities to the crack axis position. The results are shown in figures 3.23c and 3.23d for times t 2 and t 3 , respectively, and appear to be in good agreement with the computed scans. By denoting with u + and u -the displacements of the upper and lower side of the crack, respectively, one can compute the crack opening u = u +u -= u s e s + u n e n , where u s and u n are the longitudinal (sliding-Mode-2) and normal (Mode-1) components, respectively. The crack profiles at time t 2 (figure 3.24a) and t 3 (figure 3.24b) are plotted as a function of the distance to the boundary computed in the direction e s . It should be noted that negative normal values can be calculated whether the crack is not open yet, which is of course not meaningful from a physical point of view. This is however a good strategy for computing the crack-tip position. It can be observed that at time t 2 crack n.2 extends for a distance of ≈ 8 mm from the specimen boundary, with maximal values u s max ≈ u n max ≈ 50 µm, while at time t 3 the normal component is greater than the tangential one, in particular u s max ≈ 150 µm and u n max ≈ 250 µm. In the latter case, the crack is extended for a distance of ≈ 13 mm from the boundary.
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In order to characterise the cracking process throughout the loading history, it is useful to compute the maximal crack-opening from the loading radiographs. In such a case, being the specimen boundary more visible on the original pictures (see figures 3.14a and 3.14b), the latter have been considered for performing DIC. Two reference points, denoted as P + and P -, are chosen sufficiently close to the anchor by assuming that their displacement field is mainly driven by the crack-opening. These points are shown in figure 3.25 for the material states computed at time t 1 -t 4 . The overall curves are shown in figure 3.26. A good agreement is found with respect to figure 3.24. Moreover it can be observed that right after the third scan, a jump in the maximal crack opening is observed. This means that the specimen undergoes a deformation during the scanning procedure. Such drawback does not seem to have affected significantly the global response represented in figure 3.15, since the overall stiffness (the tangent to the curve) remains approximately the same prior and after t 3 . However, a more important perturbation of the system at the local level affecting the final experimental results can not be excluded.

Rigid body motion measurement

The correlation procedure presented in section 3.4.2 reveals that the computed displacement field includes, as expected, the rigid body motion of the clamping system, which adds a major contribution to the overall displacement of the sample. Notably, the latter undergoes a rigid rotation with respect to a pivot point whose position, due to the progressive interlocking between the different elements constituting the test configuration, shifts during the loading process.

In order to quantify accurately the kinematics of the deformed specimen, it is therefore important to quantify the aforementioned contribution. For this purpose, a DIC analysis is performed on the load radiographs (image resolution px = 36 µm). The adjusted images (figures 3.14c-3.14d), presenting an higher contrast level in the bulk of the specimen, are adopted. Let us then consider the scheme depicted in figure 3.27b, in which the displacements u A and u B of two points P A = (x A , y A ) and P B = (x B , y B ), respectively, belonging to a region principally characterised by the rigid body motion, are examined. We therefore introduce the unit vectors v A = u A / u A and v B = u B / u B describing the direction of the respective displacements and the normal vectors defined as:

n A = -v Ay , v Ax T , n B = -v By , v Bx T (3.24)
It is therefore possible under the small displacement assumption to compute the pivot coordinates (x C , y C ) by solving the following linear system at every time step t:

   y C -y A = m A (x C -x A ) y C -y B = m B (x C -x B ) (3.25) 
with m A = n Ay /n Ax and m B = n By /n Bx . The results are shown in figure 3.27 where the pivot coordinates are plotted as a function of the applied vertical displacement δ v (figure 3.27a) and the corresponding location with respect to the test configuration is shown for times t 2 -t 4 (figure 3.27b). The average mesh size is ≈ 20 pixels while a regularisation length reg = 100 pixels is considered in the analysis both for the bulk and the boundary. This parameter has little influence in the computation of the rigid body motion: indeed, the regularisation length acts mainly in filtering sharp variations of the displacement field associated, for instance, to the heterogeneity of the microstructure or cracking. It should, however, be large enough in order to break down the ill-posedness of the DIC problem. It can be seen that for δ v → 0, y C → -∞, which corresponds approximately to a rigid body translation in the x direction. Indeed, due to the TTC machine compliance, on the one hand, and to the looseness between the clamping system and the ball bearing, on the other, the system is initially weak in the horizontal plane. As the horizontal displacement increases, a better contact between the fixation elements is achieved and consequently the pivot point tends to converge towards a fixed position. The corrected displacement vector field u corr = uu RBM is shown in figure 3.28 at time t 1 -t 4 , where a magnification factor equal to 5 has been considered. Two main observations can be made. First, the opening of crack n.2 translates in a relative displacement of the left and right portions of the specimen crossed by the anchor. In particular, the magnitude of the left boundary displacement seem to be affected by the lack of lateral confinement of the cylindrical zone, which, on the contrary, characterises full scale structural joints. As a consequence, in the real case, the crack should open only in the positive direction identified by the normal vector e n indicated in figure 3 this quantity tends here to zero, i.e. the deformed image can be recovered from the reference one by only considering the displacement field u RBM . Of course, the situation is different where the specimen deformation is more important and the total displacement field must be considered for correcting the initial image.

Thanks to the previous analysis, it is possible to determine the corrected threedimensional displacement field. Let us note that the previous approach only provides a correction to the components u x and u y shown in figure 3.22, whereas the z-component keeps unchanged. The results are presented in figure 3.31 for times t 1 -t 3 and correspond to the case of perfecly clamped boundary conditions. It can indeed be easily checked that the component u coor 
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Computation of internal forces

In order to determine the axial force in the mesh anchor, it is useful to compute the neutral axis position ξ N in the specimen. The external actions, i.e. the bending moment M, the forces F v and F h acting in the vertical and horizontal direction, respectively, and the internal forces contributions F mesh and F c are depicted in figure 3.33. The positions ξ N and ξ c , where the latter denotes the point of application of the compression force F c acting in concrete, are represented as well. For the sake of simplicity, it is assumed that F c is applied at the center of gravity of the compression zone. In addition, due to the reduced dimension, the tensile contribution of concrete is assumed to be negligible. For such purpose, let us consider the longitudinal strain field ε y obtained by applying the DIC procedure to the load radiographs under the plane stress assumption. Hence, this field does not correspond to the real three-dimensional one but to an approximated one. In particular, due to the present geometry, it can be considered to be valid for the prismatic portion of the sample. The location of the neutral axis ξ N with respect to the anchor axis can then be computed by requiring ε y (ξ N ) = 0. An easy way to solve the problem is to trace the isovalues of the strain distribution. The latter is shown in figure 3.34 as well as the identified neutral axis coordinate ξ N for times t 1 -t 4 . In order to obtain meaningful results, especially for small displacement values, a regularisation length of reg = 200 pixels was adopted. Indeed, being the regularity of the strain field lower than the displacement one, a stronger mechanical regularisation is required with respect to the applications presented in the previous sections. It can be seen that during the loading the neutral axis shifts from the left towards the right. Such phenomenon is associated with the development of material nonlinearities, in particular to the onset of crack n.1 (figure 3.16) which nullifies the contribution of concrete to tensile stresses. The evolution of ξ N is depicted in figure 3.35a along the entire loading history. Let us note that the very first noisy values available from δ v = 0.4 mm have been omitted. An initial value of 2.1 cm has therefore been computed at time t 1 . As the flexural crack starts to propagate, the neutral axis moves towards the compression zone up to ξ N = 2.5 cm at time t 2 . After a slight relaxation phase and stress redistribution, it then reaches its final position ξ N = 2.6 cm at time t 3 .

Thanks to the previous analysis, it is therefore possible to determine the contributions F c and F mesh . First of all, the bending moment M with respect to the neutral axis position has to be determined. With reference to figures 3.9 and 3.35b, its expression is:

M = F h × 53 -F v × (26 + ξ N -14) (3.26)
where the dimensions are in this case expressed in millimeters and the value of F v and F h are shown in figure 3.15. Writing the moment equilibrium with respect to the point of application of F c (see figure 3.33) gives:

F mesh cos 20 • ξ c = M -F v (ξ c -ξ N ) → F mesh = M -F v (ξ c -ξ N ) cos 20 • ξ c (3.27)
while from the force equilibrium in the vertical direction one obtains:

F c -F mesh = F v → F c = F v + F mesh (3.28)
The evolution of F mesh and F c as a function of δ v is shown in figure 3.36a.

In order to conclude the analysis and to be able to simulate the in-situ test in the following chapters, the bond-slip response of the specimen is determined. The latter is expressed in terms of the anchor force F mesh and the slip s ≡ u s (see section 3.4.3). The resulting curve is plotted in figure 3.36b.

conclusions

In this chapter, the experimental part of the thesis has been presented. The aim was to study by means of X-ray CT, DVC and DIC the evolution of material degradation taking place in the embedded (anchor) region during the loading process. Several challenges had to be faced.

First of all, the realisation of it-situ experiments is already not an easy task. Indeed, it has been shown that in this situation both the specimen and the scanning conditions evolve throughout the test, i.e. several calibrations and adjustments must be performed prior and after the experiments. Moreover the quality of the computed scans depends on many factors that in most cases can not be kept under control or easily adjusted, such as detector defects or motion during the scanning procedure. All these elements can, therefore, affect the resolution of the inverse problem leading to the reconstructed volumes. Secondly, the realisation of in-situ bending tests is even more difficult with respect to usual tensile (or compressive) tests. Indeed, since a vertical layout is required in order to obtain sufficiently resolved images, an ad-hoc set-up had to be designed. The main constrains were the specimen dimensions, the horizontal stiffeness of the TTC machine and the possibility to allow the specimen rotation at constant load conditions. The choice of a standard pull-out configuration would have avoided many of the problems encountered in the design and during the experiments, although it would have been less representative of the behaviour of strengthened joints.

A reference sample has been selected in order to carry out the analysis of the experimental data. A complex crack pattern developing in the specimen is observed. Even though the material degradation is certainly influenced by the lack of lateral confinement, it presents, however, some of the main features characterising the behaviour of real joints, namely the flexural crack in the transition zone, the inclined shear crack in the strip region and above all the anchor debonding. The latter is associated with a partial concrete cone which converges towards the interface between the matrix and the inclusion. The reconstruction of the kinematics fields by means of DVC and DIC provides, then, a better understanding of the observed physical phenomena. In particular, the computation of the crack-opening in the anchor region represents an useful information that can be exploited in numerical simulations. Crucially, the results show also the presence of a spurious rigid body motion related with the looseness of the clamping system. Its determination is essential in order to obtain the corrected displacement fields and global responses.

Finally, the analysis conclude with the determination of the internal forces in concrete (compressive contribution) and in the anchor (tensile contribution). Thanks to the knowledge both of this latter quantity and the slip, the pull-out response can therefore be determined.

E N H A N C E D F I N I T E E L E M E N T M O D E L L I N G
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introduction

In this chapter, the modelling of embedded anchorages is dealt with. The problem is formulated as a matrix-inclusion problem in the framework of mixed-modelling approaches. An implicit interface description is achieved for the case of linear reinforcements by means of an enriched finite element formulation obtained from the Hu-Washizu functional. The Cauchy's equilibrium equations are firstly written in terms of the microscopic space variable. The corresponding equations are then derived at the macroscale through an upscaling procedure. By assuming that the inclusion works only in traction-compression, the interaction forces exchanged between the two phases appear as localised volume density distributions defined along the reinforcement axis. In order to deal with such inhomogeneity, an additive decomposition of the displacement field into a long distance regular contribution and a term associated to the interface kinematics is introduced. It is shown that, by computing the compatible strain field, the interface force governing the equilibrium of the reinforcement at the macroscale can be related to the discontinuity appearing in the cartesian Cauchy's stress field of the matrix. This result is operated for embedding the local interface behaviour in the macroscale response of the matrix, thus allowing an easier treatment of matrix-inclusion problems. For the sake of simplicity, the developments herein are presented in the framework of linear elasticity and perfect bond between the materials but can be extended to non-linear behaviours.

The chapter is organised as follows. In Section 2 the governing equations of the boundary value problem are derived for the case of a linear inclusion embedded into an homogeneous isotropic matrix, for which a decomposition of the displacement field is introduced. The weak formulation and the finite element approximation are then obtained. The numerical implementation is detailed in Section 3 for plane structural problems. Computational aspects are discussed in Section 4, where the assembly and integration procedures are detailed. In Section 5 elementary and structural case studies of pull-out configurations are simulated. The proposed formulation is here compared to traditional modelling strategies both in terms of local/global responses and convergence properties of the finite element approximation.

governing equations 4.2.1 Scale description

A bounded body Ω ∈ R 3 with characteristic length L is crossed by an inclusion I ∈ R 3 such that I ⊂ Ω. The latter is characterised by a constant cross section A I , axis Γ and characteristic lengths and D in the longitudinal and transverse direction, respectively (see figure 4.1). Introducing the physical space variable X of the medium and assuming D and ∼ L, we define the dimensionless microscopic and macroscopic space variables z = X/D and x = X/L. Due to these assumptions, at the macroscale we will consider that two opposite points belonging to the interface lie on Γ, i.e. x ± Γ ≈ x Γ . By means of such two-scale scale decomposition, a generic physical quantity e(X) can be expressed, for instance, in the form e(x, z) as: e(X) = e(x) + ∆e(z)

(4.1)
where ∆e is a fluctuation computed at the microscale. For an exhaustive treatment of multiscale problems, the reader is referred to [START_REF] Dormieux | Microporomechanics[END_REF].

Boundary value problem

Let us consider the case of linear homogeneous isotropic materials. By denoting with C 0 and C I the fourth-order elasticity tensors of the matrix and the inclusion, respectively, the Cauchy's stress tensor of the latter can be expressed at the microscale as:

σ I (z) = C 0 : ε (z) + τ (z) (4.2)
where ε = ∇ s u, with u the displacement field, and τ = (C I -C 0 ) : ε. The Cauchy's equilibrium equations can then be written as:

div (C 0 : ε (z)) + div (τ (z) χ I (z)) = 0, ∀z ∈ Ω (4.3)
with χ I the characteristic function of I. If we develop the second term, we obtain:

div (C 0 : ε (z)) + div (τ (z)) χ I (z) -τ (z) • n (z) δ ∂I (z) = 0, ∀z ∈ Ω (4.4) Ω Γ I n e I D L X 1 X 2 X 3 + - Figure 4.1: Matrix-inclusion problem.
where n denotes the outward normal to I (see figure 4.1) and δ ∂I is the Dirac delta centred on the inclusion boundary ∂I. Furthermore, the stress vector must be continuous at every discontinuity surface, i.e.:

n (z) • σ (z) = n (z) • (σ 0 (z) -σ I (z)) = -n (z) • τ (z) = 0, ∀z ∈ ∂I (4.5)
If we take into account equation (4.5) and the symmetry of the stress tensor, equation (4.4) therefore becomes:

div (C 0 : ε (z)) + div (τ (z)) χ I (z) = 0, ∀z ∈ Ω (4.6)
In order to write the macroscopic equilibrium, let us first consider the following integral of (•):

Ω (•) χ I (z) dV = I (•) dV I = Γ • A I ds A I = Ω • A I δ Γ A -1 I x dV (4.7)
where • A I is the cross-sectional average of (•), δ Γ is the line Dirac delta function centred on Γ and λ = A -1 I plays the role of a scale factor. Therefore, if we introduce the interaction forces f Γ exchanged at the interface, we can write the equilibrium at the macroscale as:

div (C 0 : ε (x)) + f Γ (x) δ Γ (λx) = 0, ∀x ∈ Ω (4.8)
where the term f Γ δ Γ must be interpreted in the sense of distributions, with f Γ corresponding to a force density. Such quantity ensures the equilibrium of the inclusion, i.e. in case of an uniaxial behaviour: with σ I the uniaxial stress of the inclusion in the longitudinal direction e I (see figure 4.1). By substituting Equation (4.9) into Equation (4.8), we end up with:

div (σ I (x) e I ⊗ e I ) -f Γ (x) = 0, ∀x ∈ I (4.9)
div (C 0 : ε (x)) + div (σ I (x) e I ⊗ e I ) δ Γ (λx) = 0, ∀x ∈ Ω (4.10)
or in a more compact form: 

div (C 0 : ε (x)) + f I (x) δ Γ (λx) = 0, ∀x ∈ Ω (4.
= ∂ u Ω ∪ ∂ t Ω such that ∂ u Ω ∩ ∂ t Ω = ∅: u (x) = u d (x) ∀x ∈ ∂ u Ω (4.13a) m (x) • σ (x) = h (x) ∀x ∈ ∂ t Ω (4.13b)
where m is the outward normal to ∂Ω as depicted in figure 4.2.

Kinematics

The problem formulated at the macroscale in section 4.2.2 corresponds to the case of an elastic rod embedded into a matrix whose solution presents a logarithmic singularity at the inclusion ends [START_REF] Eh Brown | The diffusion of load from a stiffener into an infinite elastic sheet[END_REF][START_REF] Wt Koiter | On the diffusion of load from a stiffener into a sheet[END_REF]. For such reason, we express the displacement field solution of equation (4.8) as the sum of two contributions:

u (x) = ū (x) + û (x) , ∀x ∈ Ω (4.14)
where ū denotes a long distance regular contribution compatible with the strain field ε = ∇ s ū and satisfying the homogeneous equation:

div ( σ (x)) = div (C 0 : ε (x)) = 0, ∀x ∈ Ω (4.15)
with modified boundary conditions:

ū (x) = u d (x) -û (x) ∀x ∈ ∂ u Ω (4.16a) n • σ (x) = h (x) -n • σ (x) ∀x ∈ ∂ t Ω (4.16b)
and û the solution of equation (4.8). The strains ε = ∇ s û and the stresses σ are then derived from the displacement field û. For what concerns the microscopic displacement field, we will assume that it is characterised by a fluctuation ∆u(z) about its interface value u ± Γ and that the latter can be related to the macroscopic displacement by setting u ± Γ (z) ≈ u Γ (x). Such hypothesis allows us to state the equivalence between the microscopic and macroscopic interface strain fields, i.e.

ε ± Γ (z) ≈ ε ± Γ (x).

Interface behaviour

At the interface, due to the uniaxial behaviour of the inclusion (see figure 4.3), the displacement can be expressed in terms of its longitudinal component ûΓ s as:

Γ ε + Γ (x) = ∇ s ū| Γ + ∇ s û+ Γ (4.18)
where ∇ s û- Γ = ( ûΓ- s,ξ n ⊗ e I ) s and ∇ s û+ Γ = ( ûΓ+ s,ξ n ⊗ e I ) s with ûΓ- s,ξ > 0 and ûΓ+ s,ξ < 0, as can be checked in figure 4.3b. Indicial notation has here been adopted, with subscripts preceded by commas denoting partial derivatives with respect to the local spatial coordinates s and ξ. In particular, we will assume that ûΓ s is homogeneous in s, i.e. ûΓ s,s = 0, which corresponds to the case of a rigid inclusion 1 . Moreover, the interface force f Γ defined at the macroscale can be computed by requiring that the virtual work done by the density field f Γ δ Γ is equal to the work done by the microscopic boundary tractions t ∂I acting on the concrete phase:

Ω f Γ (x) δ Γ (λx) • u v (x) dV = ∂I t ∂I (z) • u v (z) dS , ∀ u v (z) , u v (x) ∈ U 0 (4.19)
1 Such hypothesis appears reasonable if the stiffness contrast between the matrix and the inclusion is high, as usually happens, for instance, in structures involving anchorage systems. with u v (z) and u v (x) belonging to the set of kinematically admissible displacements U 0 (see next section). After few developments, by considering a cylindrical inclusion of radius r = D/2 and denoting with t - 4.3b for a 2D section), the previous equation becomes:

Γ = t ∂I (θ) = n(θ) • σ 0 (θ) and t + Γ = t ∂I (θ + π) = -n(θ) • σ 0 (θ + π) (sign convention in figure
λ -1 Γ f Γ (x) • u Γv (x) ds = Γ π 0 t - Γ + t + Γ r dθ • u Γv (x) ds , ∀ u Γv (x) (4.20)
where the hypothesis u ± Γ (z) ≈ u Γ (x) made in section 4.2.3 has been taken into account. By deriving with respect to s and collecting the terms, one obtains:

λ -1 f Γ (x) - π 0 n • σ - 0 -n • σ + 0 r dθ • u Γv (x) = 0 , ∀ u Γv (x) (4.21)
By recalling that σ ± 0 (z) ≈ C 0 : ε ± Γ (x) (see section 4.2.3) and due to the arbitrariness of u Γv (x), we end up with:

f Γ (x) = π 0 n • C 0 : ∇ s û- Γ -n • C 0 : ∇ s û+ Γ r dθ λ = π 0 n • C 0 : ûΓ- s,ξ (n ⊗ e I ) s -n • C 0 : ûΓ+ s,ξ (n ⊗ e I ) s r dθλ = - π 0 τ r dθ e I λ = 2 r τ Γ e I (4.22) where τ = τ+ Γ -τ- Γ = n • σ+ Γ • e I -n • σ- Γ • e I
denotes the shear stress jump between two opposite sides of the interface and

τ Γ = - 1 2π π 0 τ dθ (4.23)
denotes the average interface shear stress computed over the boundary. As expected, it is shown that the stress σ associated with the long distance contribution ū does not participate in the computation of f Γ responsible for the equilibrium of the inclusion at the macroscale.

Weak formulation and finite element framework

We will start from the mixed Hu-Washizu variational principle applied to equation (4.11) by defining the three solution spaces for displacements

U = {u | u ∈ H 1 (Ω) , u = u d on ∂ u Ω}, strains E = {ε | ε ∈ L 2 (Ω)} and stresses S = {σ | σ ∈ L 2 (Ω)}. Therefore, for all arbitrary virtual field u v ∈ U 0 = {u | u ∈ H 1 (Ω) , u = 0 on ∂ u Ω}, τ
∈ S and γ ∈ E , the following system of equations is derived:

             Ω σ : ∇ s u v dV -A I Γ f I • u v ds - ∂ t Ω h • u v dS = 0 (4.24a) Ω τ • (∇ s u -ε) dV = 0 (4.24b) Ω γ • (C 0 : ε -σ) dV = 0 (4.24c)
with forces f I acting as external loads. We then introduce the Finite Element discretisations Ω h and Γ h of Ω and Γ, respectively, where the elementary segments Γ e ⊂ Γ h are defined by the intersections of Γ with the subsets Ω e ⊂ Ω h . By means of the matrix notation, we then introduce the following kinematic approximations for Ω h :

u ≈ u h = Nd + N α α ε ≈ ε h = Bd + B ζ ζ (4.25)
where d are the nodal displacements and α and ζ are kinematic enhancements defined at the element level. Furthermore, N and N α denote the displacement interpolation matrices, whereas B = LN and B ζ are the strain interpolation matrices, with L computing ∇ s . We make then the hypothesis that u h is compatible with the strains ε h , which requires α ≡ ζ and B ζ = B α = LN α . In addition, we will assume that the computed stresses satisfy the constitutive law, i.e. σ h = Dε h , with D denoting the stiffness matrix of the material. Due to these assumptions, equations (4.24b) and (4.24c) are identically satisfied. For what concerns the virtual fields, we make then the following choice:

u v ≈ u vh = Nd v + N * α α v ε v ≈ ε vh = Bd v + B * ζ ζ v (4.26)
where d v , α v and ζ v have the same meaning as in equation (4.25) and B * ζ is the interpolation matrix of the virtual strain enhancement. Also in this case, we make the hypothesis

α v ≡ ζ v and B * ζ = B * α = LN * α .
The proposed formulation therefore corresponds to a Petrov-Galerkin approach where the test functions and the solution functions belong to different spaces [START_REF] Brooks | Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations[END_REF][START_REF] Reddy | An introduction to the finite element method[END_REF]. A similar approach has been proposed in the framework of the E-FEM and it goes under the name of "Statically and Kinematically Optimal Non-symmetric" (SKON) formulation (see for instance [START_REF] Jirásek | Comparative study on finite elements with embedded discontinuities[END_REF]). The result is a non-conforming finite element model whose convergence is ensured by requiring that the elementary patch test is satisfied [START_REF] De Borst | Nonlinear finite element analysis of solids and structures[END_REF][START_REF] Ibrahimbegovic | Nonlinear solid mechanics: theoretical formulations and finite element solution methods[END_REF][START_REF] Wriggers | Nonlinear finite element methods[END_REF], i.e. by imposing:

Ω e (B * α ) T dV = 0 (4.27)
With the previous approximations, problem (4.24) is restated as:

∀(d v , α v ), d v Ω h B T σ h dV -A I Γ h N T f I ds - ∂ t Ω h N T h dS + + α v Ω h (B * α ) T σ h dV -A I Γ h (N * α ) T f I ds - ∂ t Ω h (N * α )
T h dS = 0 (4.28) where the term

∂ t Ω h (N * α )
T h dS may be neglected compared to the major contribution associated with f I according to usual embedded formulations [START_REF] Jirásek | Comparative study on finite elements with embedded discontinuities[END_REF]. Such hypothesis corresponds to say that the loads are applied outside the enhanced region. Due to the arbitrariness of d v and α v we end up with the following system of equations:

       Ω h B T σ dV = A I Γ h N T f I ds + ∂ t Ω h N T h dS (4.29a) Ω h (B * α ) T σ dV = A I Γ h (N * α ) T f I ds (4.29b)
To lighten the notation, the subscripts denoting the discretized problem and the elasticity of the matrix will be dropped when no confusion is likely to arise.

2d implementation

In the bidimensional setting, the inclusion I of length and inclination β cuts at the macroscale the elementary domain Ω e of thickness t into two subdomains Ω - Constant Strain Triangle (CST). We focus for the moment on the case of a single finite element, i.e. we set Ω ≡ Ω e and Γ ≡ Γ e .

Real fields

For what concerns the real fields, we define the interpolation matrix N α = N α I 2 , with I 2 the (2 × 2) identity matrix and function N α chosen such that the kinematic boundary conditions can still be expressed in terms of the sole nodal displacements, which consists in imposing N α (x i ) = 0 for all node i. We make, then, the following choice for function N α :

N α (x) = χ - N ∑ i=1 a i H Γ (x i )N i (x) + χ + N ∑ i=1 a i (1 -H Γ (x i ))N i (x) (4.30)
where N i is the shape function of node i, χ -and χ + are the characteristic functions of Ω -and Ω + , respectively, and H Γ (x i ) are the values at nodes of the Heaviside function centered on Γ. Coefficients a i are computed requiring N α x G Γ = 1 and such that a C 0 -continuity is ensured along Γ, i.e.:

N ∑ i=1 a i (1 -2H Γ (x i ))N i = 0, on Γ (4.31)
Note that condition (4.31) implies that the longitudinal component 4.5 shows function N α in case of CST elements for different orientations of the inclusion. From expression (4.30), it therefore appears that matrix N α is expressed as a linear combination of the standard shape function basis N i = N i I 2 with i = 1, . . . , N, as: Analogously, the strain interpolation matrix B α = LN α is computed by combining matrices B i = LN i :

N α ,s = e T I ∇N α evaluated on Γ is continuous, i.e. N - α ,s | Γ = N + α ,s | Γ . Figure
N α = χ - N ∑ i=1 a i H Γ (x i )N i + χ + N ∑ i=1 a i (1 -H Γ (x i ))N i (4.32) τ + τ - F I (x) F I (x + e I ) t (a)
B α = χ - N ∑ i=1 a i H Γ (x i )B i + χ + N ∑ i=1 a i (1 -H Γ (x i ))B i = χ -N - α ,s q + N - α ,ξ p + χ + N + α ,s q + N + α ,ξ p (4.33) 
where in the last expression we used the longitudinal and normal components N α ,s and N α ,ξ of the gradient ∇N α and adopted the matrices: 

q =    e Ix

Virtual fields

The virtual displacement interpolation matrix is computed as

N * α = N * α I 2 with function N *
α defined as follows:

N * α (x) = χ -1 + 1 k - x -x G Γ T n + χ + 1 - 1 k + x -x G Γ T n (4.35) 
where k -= A -/ , k + = A + / and A -, A + are the plane measures of Ω -and Ω + , respectively. Computing LN * α gives the expression of matrix B * α :

B * α = 1 k - χ -- 1 k + χ + p (4.36) 
It is easy to check that such matrix verifies condition (4.27), since we have: 1

Ω (B * α ) T dV = A - 1 k - p T dA t - A + 1 k + p T dA t = p T -p T = 0 (4.
A -A - p T σ -dA t - 1 A + A + p T σ + dA t = A I Γ f I ds (4.38)
with t denoting the finite element thickness. The previous result states the equilibrium between the resultant of the average stresses Σ -= 1 A -A -σ -dA and Σ (e),+ = 1 A + A + σ + dA acting on the discontinuity surface identified by the normal n and the increment of the axial force of the inclusion ∆F I = A I Γ f I ds and it can be rewritten in terms of the average stress jump Σ = Σ + -Σ -as:

-p T Σ t = ∆F I (4.39) 
Enforcing the equilibrium of the inclusion under the average interface shear stress distribution, i.e. ∆F I = τ Γ S lat e I , allows us to express τ Γ in terms of the stress field in the bulk:

τ Γ = -e T I p T Σ S lat t (4.40)
where S lat is the lateral surface of the inclusion. A representation of the local stresses developing in the bulk and at the interface is given in figure 5.22.

Global equation

Being the interface stress τ Γ defined by relation (4.40) constant along Γ, we replace f I = dσ I (x) ds e I by its average value2 , i.e. f I = ∆F I /(A I ). Such hypothesis would be equivalent to choose a linear interpolation of the inclusion stress and enforcing the verification of the static boundary conditions applied at its ends. Replacing the expression of f I into equation (4.29a) gives:

A B T σ dA t = Γ N T ds ∆F I + Γ t N T h ds t (4.41) 
We focus now upon the first term of the right-hand side of equation (4.41).

Recalling that the position of the center of gravity of segment Γ can be computed for iso-parametric finite elements both as x G = 1 Γ N dΓx N and x G = N G x N , with x N the vector of nodal coordinates, allows us to write:

Γ N dΓ -N G x N = 0 (4.42) 
Let us now consider the two systems of nodal forces:

F 1 = Γ N T dΓ ∆F I (4.43) 
F 2 = N G T ∆F I (4.44)
Thanks to the partition-of-unity property of the finite element shape functions, such systems have the same resultant equal to ∆F I and if we compute the difference between the moments generated by the two systems with respect to an arbitrary point O we obtain:

M 1 O -M 2 O = N ∑ i=1 Γ N i dΓ -N G i ∆F I (x i -x O ) = ∆F I Γ N dΓ -N G x N (4.45) 
which vanishes due to equation (4.42). We can therefore verify that systems F 1 and F 2 are statically equivalent and for such reason we restate the global equilibrium equation (4.41) as: Thus the effect of an embedded inclusion can be modeled at the global level through a force applied in the center of gravity of the segment Γ. In order to achieve such representation, truss elements can be adopted in the finite element model, as schematised in figures 4.7 and 4.8.

A B T σ dA t = (N G ) T ∆F I + Γ t N T h ds t (4.46) 
P I I Γ

numerical aspects

After introducing the material stiffness matrix D for plane linear elasticity, the overall system of equations can be derived by substituting the expression of the stress associated with the strain approximation (4.25): 

σ = DBd + DB α α (4.
K e αα = Ω e (B * α ) T DB α dV (4.52
)

F e ext = ∂ t Ω e N T h dS (4.53)
The force increment

∆F e I = F e+1 I -F e-1 I
is computed between adjacent elements in case of perfect bond by writing a kinematic relation between the displacement of the two phases computed at the center of gravity of the inclusion, resulting into the following expression of the axial forces:

   F e-1 I = k (e,e-1) T N G e d e + α e -N G e-1 d e-1 + α e-1 (4.54a) 
F e+1 I = k (e,e+1) T N G e+1 d e+1 + α e+1 -N G e d e + α e (4.54b) 
with k (e,e-1) = 2E I A I /( e + e-1 ) and k (e,e+1) = 2E I A I /( e + e+1 ) denoting the stiffness of the segments connecting the elements e -1, e and e + 1, whereas T = e I e T I denotes the rotation matrix. Substituting relations (4.54) into the expression of ∆F e I and setting k (e,e) = k (e,e-1) + k (e,e+1) , the assembled stiffness matrices are obtained:

K Γ dd = n en A e=1 K e dd ∪ e+1 i=e-1 (-1) e-i k (e,i) (N G e ) T T N G i (4.55) K Γ dα = n en A e=1 K e dα ∪ e+1 i=e-1 (-1) e-i k (e,i) (N G e ) T T (4.56) 
K Γ αd = n en A e=1 K e αd ∪ e+1 i=e-1 (-1) e-i k (e,i) T N G e (4.57) 
K Γ αα = n en A e=1 K e αα ∪ e+1 i=e-1 (-1) e-i k (e,i) T (4.58)
where n en denotes the number of elements in the enhanced region. With the previous notation, it should be pointed out that for e = 1 and e = n en no contribution arises from the elements e -1 and e + 1, respectively. The overall system of equations is therefore written as:

K Γ dd d + K Γ dα α = F I + F ext (4.59a) K Γ αd d + K Γ αα α = P I (4.59b)
with F ext = Ae F e ext and the terms P I and F I = Ae π (e) N G e T P e I denoting the contributions to the local and global external force vector, respectively, due to the loads applied at the inclusions ends (see figure 4.8), with π e defined as:

π e =    1 if ∂Ω e ∩ ∂ t Ω = ∅ 0 otherwise (4.60) 
Static condensation can be applied to system (4.59), in particular, if we solve equation (4.59b) with respect to α, we have:

α = K Γ αα -1 P I -K Γ αd d (4.61) 
and substituting (4.61) into equation (4.59a) yields:

K Γ dd -K Γ dα K Γ αα -1 K Γ αd d = F I + F ext -K Γ dα K Γ αα -1 P I (4.62) 
The nodal displacements can therefore be computed as:

d = KΓ dd -1 FΓ ext (4.63)
where we have introduced the enriched stiffness matrix and the enriched external force vector:

KΓ dd = K Γ dd -K Γ dα K Γ αα -1 K Γ αd (4.64) FΓ ext = F I + F ext -K Γ dα K Γ αα -1 P I (4.65)
remarks For the sake of simplicity, CST finite elements have been used in the implementation of the numerical model. In such case, matrices B α and B * expressed by relations (4.33) and (4.36), respectively, are piece-wise constant, therefore the standard integration rule for linear triangular elements applies for the bulk, with one Gauss-point at the element center of gravity. The contribution of the inclusion is taken into account by means of two additional integration points placed at the segment ends, as depicted in figure 4.9.

applications

In this section we discuss the numerical validation of the proposed model. The comparison with other modelling strategies is presented, namely the implicit and explicit methods based on standard Galerkin finite elements. Special attention is given to the analysis of the interface behaviour by means of both elementary and full-scale case studies.

Elementary example

A concrete structure with an embedded anchor modeled by means of truss finite elements, is submitted to the load P I = P e I = P cos β e x + P sin β e y , with P = 10 5 N, applied to the inclusion end, as described in figure 4.10. Linear springs with stiffness k s = 2.36 × 10 9 N m -1 are introduced to represent the interaction with the surrounding domain. We consider for concrete a Young's modulus E c = 30 GPa and a Poisson's ratio ν c = 0.2. Plane stress conditions are assumed for the computations, with thickness t = 0.1 m. The effect on the structural response of the inclusion properties (Young's modulus E I and transversal cross section A I ) as well its inclination β are studied while keeping the load application point fixed. Three approaches are considered as depicted in figure 4.10. First of all, the enhanced implicit model proposed herein applied to CST elements, then the standard implicit and explicit models (denoted as "standard" and "reference", respectively) based upon regular CST. In the explicit modelling, the domain Ω, discretised into three finite elements, is decomposed into

Ω + = Ω 1 ∪ Ω 2
and Ω -≡ Ω 3 , while a single finite element is adopted in the implcit modeling. For comparison purposes, in the first case, average local values will be considered for the bulk. In order to represent the inclusion, a two-node linear truss is perfectly bonded to concrete in the models depicted in figures 4.10b and 4.10c.

In figure 4.11 the longitudinal displacement u G s at the inclusion center of gravity and the strain energy of concrete are compared for the three modelling strategies. The results are shown for the interval E I A I ∈ 5 × 10 7 , 10 10 N in terms of envelope curves. If we assume, for instance, A I = 5 × 10 -4 m 2 , i.e. D I = 2.52 × 10 -2 m for a circular cross section, such interval corresponds to Young's modulus E I between 10 2 GPa and 10 3 GPa. In case of the enhanced model (figure 4.10a), the inclusion stiffness does not have any influence on the structural behaviour as can be seen from the global equilibrium equation (4.46) written for the enriched CST: a much less stiff behaviour translating in higher strain energy values which are computed as:

B T σ -A -t + B T σ + A + t = (N G ) T P I (4.66) with σ -= σ - d + σ - α and σ + = σ + d + σ + α as
W ε = 1 2 Ω ε T Dε dV = 1 2 Ω ( ε + ε) T D ( ε + ε) dV = 1 2 W ε + 2 W ε + W ε (4.68)
where the term W ε is dominant with respect to the others.

In figure 4.12 the two contributions ūG s and ûG s expressed by equation (4.14) are plotted for the enhanced and reference models. Since the single standard CST element is not provided with internal degrees of freedom, in this case we have ûstd = 0, i.e. u std ≡ ūstd . The respective deformed shapes, shown in figure 4.13, reveals that the proposed formulation is able to reproduce the major contribution to the overall kinematics given by the longitudinal component ûΓ s of the inter- face displacement ûΓ . However, from the analysis of figure 4.13, it appears that there exists a normal component ûΓ ξ (much smaller with respect to ûΓ s ) that is not captured by the enhanced model. To check this, it is convenient to switch to the tensor notation and write the expression of the stress σ by computing ∇ s û = ∇ s ( ûs e I + ûξ n) with ûs = N α α s and ûn = N α α ξ , i.e.:

∇ s û = N α ,s e I ⊗ e I + N α ,ξ n ⊗ e I s α s + N α ,s e I ⊗ n + N α ,ξ n ⊗ n s α ξ ( 4.69) 
Being in our case N - α ,s = N + α ,s (see the remarks made in section 4.3.1), only N α ,ξ acts in the computation of the stress jump:

σ = C ps : N α ,ξ n ⊗ e I α s + n ⊗ n α ξ s (4.70)
where C ps denotes the elasticity tensor in plane stress conditions. The stress vector finally reads: Consequently, no coupling between the longitudinal and the normal direction is reproduced by the proposed formulation in case of CST finite elements. Moreover, being α ξ = 0, we also have that the longitudinal stress σ I I is continuous across Γ:

n • σ = N α ,ξ c nI α s e I + c nn α ξ n = N α ,ξ c nI 0 0 c nn α s α ξ
σ nn = N α ,ξ c nn α n = 0 ⇐⇒ α ξ ≡ ûG ξ = 0 (4.
σ I I = N α ,ξ c I I α ξ = 0 (4.73) with c I I = e I • C ps : (n ⊗ n) s • e I .
On the contrary, since α s = 0, a jump arises in the shear stress σnI and it is equal to:

σnI = N α ,ξ c nI α s (4.74)
The total stress field is depicted in figure 4.14 where average values have been considered for the reference simulation (Σ ±,en ≡ σ ±,en and Σ ±,std ≡ Σ std ≡ σ std for the single CST). A good agreement is observed between the simulations, especially the evaluation of the shear stresses is satisfying, with small dependence on the inclusion stiffness which, on the contrary, is more relevant in the computation of the normal stresses (figures 4.14b and 4.14c). In figure 4.15 the interface shear stress (4.40) is shown. Its expression for a circular cross section reads:

τ Γ = -σnI πD I t (4.75) 
It can be seen that the average interface stress τ ave Γ = P/(πD I ) is exactly evaluated by the proposed formulation, in particular in the present case it is symmetric with respect to the angle β due to the fact that (

β) = (-β), ∀β ∈ [-45 • , 45 • ].
Such result is achieved thanks to the fulfilment of the local static equation (4.67), which is not the case for the reference solution, based on a standard displacement approach. For what concerns the inclusion kinematics, two displacement fields are modeled, a global one which is compatible with the applied Dirichlet boundary conditions (but not with the interface kinematics and stresses) and a local one 

σ and global strain energy W

(2) ε for A I = 5 × 10 -4 m 2 and E I = 300 GPa.

which is incompatible but statically admissible with respect to the applied loads and the shear stress τ Γ acting on the lateral surface. The latter can be obtained by integration of the axial strain which, being σ I = E I ε I linear under the constant stress τ Γ , reads:

u I s = Ps E I A I ds = Ps 2 2E I A I + C (4.76)
where the static boundary conditions σ I (0) = 0 and σ I ( ) = P/A I have been imposed. The integration constant C corresponds to a rigid body motion which can be computed by setting

u I (x G ) = u G : C = u G s - P 8E I A I (4.77) 
The displacement fields are shown in figure 4.16 as well as the complementary strain energy associated to the local displacement field W

σ = P 2 /(6 E I ) and the strain energy derived from the global displacement field W

(2) ε = P 2 /(4 E I ).
The results obtained from this elementary example shows that the enhanced implicit model is suitable for achieving a good accuracy with respect to an explicit approach. The kinematic enrichment allows, indeed, to reproduce the local deformation mode induced by an embedded rod. Both the displacement and strain energy evaluation appears to be significantly improved with respect to the standard CST as well as the static quantites computed at the interface. Moreover, a double kinematic description of the inclusion is achieved by means of a local and global field computed from static and kinematic variables, respectively. 

Structural example

We consider now the generalisation of the elementary case study presented in section 4.5.1 and representing a pull-out configuration. The material parameters for concrete are kept unchanged, i.e. the Young's modulus E c = 30 GPa and the Poisson's ratio ν c = 0.2, as well as the thickness t = 0.1 m and the applied force P I = P e I with P = 10 5 N acting as depicted in figure 4.17. The Young's modulus of the rod and its transversal cross section are set equal to E I = 300 GPa and A I = 5 × 10 -4 m 2 , respectively. For the latter, a circular shape with diameter D I = 2.52 × 10 -2 m has been assumed. A sensitivity analysis with respect to the spatial discretisation is carried out with focus on the local fields developing in the inclusion and at the interface as well as the convergence properties of the finite element approximation. A CPU time comparison between different approaches is also carried out. For such purposes, unstructured meshes with constant densities have been adopted for the analysis. More efficient strategies could be adopted for the discretisation, such as considering a variable mesh density. This operation would be, however, problem-oriented and difficult to apply in case of several inclusions and more complex reinforcement layouts. In order to keep the analysis as general and objective as possible, such option is not considered here. In the following, we will denote with h en c the average concrete mesh size and h en I = /n en the average inclusion size defined by the cutting of the concrete mesh (h en I < h en c ). Four discretisations comprising 4 (h en I = 1.35 × 10 -1 m), 17 (h en I = 3.17 4.18b for the proposed formulation and in figure 4.18d and 4.18e for the explicit model, respectively. In the first case, the evaluation of σ I seems to be more accurate even for large element sizes, in particular the static boundary conditions at the inclusion ends, i.e. σ I (0) = 0 and σ I ( ) = P/A I , are exactly satisfied. Such fulfilment is therefore independent of the spatial discretisation, whereas their violation is observed (as expected) in figure 4.18d since they are only asymptotically fulfilled when n I → ∞. From the analysis of figure 4.18b, it appears that the stress singularities from the extremities of the inclusion are effectively reproduced. In the same figure, one may also note that, when Γ is close to solitary nodes, the computation of the interface stress may be less accurate. However, such drawback does not appear to affect significantly the axial stress distribution. Indeed, in such circumstances, since the elementary axial force increment ∆F I in equation (4.39) is proportional to the segment length e , such contribution is bounded and does not induce jumps in the overall distribution. An equivalent explanation is that, being τ Γ related with the derivative of σ I through combination of equations (4.9) and (4.19), the first quantity has a lower degree of regularity than the second one and it is consequently more sensitive to the spatial discretisation. In figure 4.19 we show the local and global longitudinal displacement profiles as described in section 4.5.1 for the enhanced model, while in figure 4.19c the results are shown for the explicit model. In the first case, it appears that the displacement at the right end of the inclusion is overestimated for low density values, whereas it is underestimated in the second case. A confirmation of the good performances of the proposed formulation is found by computing the relative errors with respect to such quantity. For the comparison, standard implicit modeling sharing the same concrete mesh of figure 4.18c but with a uniform inclusion size and all the nodes bonded to concrete (see figure 4.10b) is also considered. The benefits deriving from the enhanced formulation and the double displacement representation are in this case evident, especially for large mesh sizes. In figure 4.20 the stresses in the upper and lower concrete layers are shown, as well as the absolute difference around the inclusion with respect to the explicit model for h en I = h re f I = 7.69 × 10 -3 m (n en = n I = 139). A good agreement is found for σ nI and σ nn , whereas some discrepancy is observed near the ends for σ I I . This can be attributed to the different way boundary conditions are applied to the structure (see figure 4.10).

We now study the convergence properties of the finite element approximation. with u = uu h , where u is the assumed exact solution and u h the finite element approximation, and the strain energy norm error compute the interface forces f I in equation (4.24a) from the L 2 projection of the displacement field. On the other hand, the fact that the adopted Petrov-Galerkin approximation corresponds to an oblique projection of the exact solution u onto the subspace of u h , translating into the inequality B * α = B α and the following asymmetry of the global stiffness matrix (K e dα = (K e αd ) T in definitions (5.42), (5.43) and (4.64)). Hence both for Galerkin and Petrov-Galerkin methods the strain energy error includes the error of the approximation of the boundary condition associated with the interface tractions, i.e. the strain energy convergence will not be necessarily monotonic [START_REF] Hs Oh | The method of auxiliary mapping for the finite element solutions of elasticity problems containing singularities[END_REF]. Perturbations related with stress singularities are expected as well. In figure 4.21a it appears that the errors en u L 2 and 2) ε E converge in average faster than the other strategies, despite showing some oscillations. It can be also seen that the convergence of std ε E is rather poor up to h I ≈ 10 -2 m. In case of the enhanced model, the most benefits are observed, in particular, for coarse and intermediate descretisations: indeed, how one would expect from the fulfilment of the patch-test condition (equation (4.37)), the value of the kinematic enhnancement α goes to zero when the increment ∆F I vanishes. This situation takes place for h I → 0 as shown in figures 4.23a and 4.23b where both the kinematic enhancement and the axial force increment are depicted for the right end element where the load is applied. In order to compare the performance level of the different approaches, in figure 4.24 we finally plot the reinforcement energy norm error against the CPU time required for the computation, for which h en c = h re f c = h std c has been set. The total number of concrete elements is therefore the same. In this case, the advantages of the enhanced formulation become even more pronounced, in particular, two main observations can be made. First, if we set a constant error value for an intermediate discretisation, the gain in the CPU-time can be estimated being almost one order of magnitude with respect to the other simulations. Second, in the range t CPU > 1 s, the additional time required for solving the enriched problem is only a small portion of the overall computation time. This observation translates into slightly shifted points along the x-axis, whose distance tends to vanish as t CPU increases. To conclude the analyisis, it should be also pointed out that a further time gain is achieved by the implicit approaches with respect to an explicit one in the realisation of the mesh.

ε E = 2|W ε -W h ε | = Ω ε : C : ε dV + 2 Ω | ε : C : ε h | dV

conclusions

In this chapter a novel enhanced implicit finite element model has been proposed for simulating the mechanical behaviour of structures with embedded linear inclusions. The considered formulation is based on the enrichment of the macroscopic displacement field through a contribution representing the local kinematics induced by the interaction between the materials. It is shown that the interface forces provoke jumps in the cartesian Cauchy's stress tensor computed in the matrix and that such discontinuity can be linked to the average bond stress developing at the inclusion boundary. A non-symmetric Petrov-Galerkin approximation is then derived for the bidimensional case. The main ingredients are the possibility of reproducing the discontinuity in the stress field induced by the heterogeneity and the fulfillement of the patch test ensuring the convergence of the finite element model. A global and local equilibrium equations are thus derived, in particular, the contribution of the inclusion can be modeled at the global level by means of linear trusses, whose action is equilibrated at the local level by the interface tractions computed from the stress field in the bulk. Under the perfect bond assumption, a kinematic relation between the materials is then written in order to reduce the number of unknowns and the overall stiffness matrix and external force vector are derived. Through a static condensation procedure, the nodal displacements are firstly computed, followed by the local enhancements associated with the interface behaviour.

Elementary and structural case studies involving pull-out configurations show that the proposed formulation is able to improve substantially the performances of implicit finite element models based on CST elements and allow to account for the presence of interfaces in a much easier way with respect to standard methods. A good agreement is found with the results given by explicit approaches where the reinforcement layout is considered in the meshing process. A convergence study reveals that the inclusion strain energy computed by the enhanced model converges in average faster with respect to the other approaches, despite some oscillations that may occur both due to the asymmetric formulation and to the non-uniform finite element decomposition. Such feature does not seem to impact substantially on the evaluation of the main quantities related with the interface and inclusion behaviours. In addition, it has been shown that the overall CPU time for a fixed computation precision in terms of the inclusion strain energy is sensibly reduced.

D E B O N D I N G S E T T I N G S

governing equations

The non-linear behaviour of structures with embedded anchors is often associated with slip mechanisms, i.e. there exists a relative displacement between the matrix and the inclusion. In particular, two different behaviours can be observed at the microscale depending whether the bond between the reinforcement and the surrounding material is ensured by the presence of an adhesive layer. In its absence, as in the case of rebars in reinforced concrete structures, a neat separation between the two phases takes place. The slip mechanism therefore initiates once the matrix interfacial stress reaches its limit value. Such quantity is determined, on the one hand, by the chemical adhesion and friction between the materials, on the other hand, by the geometry of the boundary. On the contrary, if the inclusion is glued to the matrix, a relative displacement can be observed already in the elastic regime, i.e. prior to cracking and debonding. Notably, the magnitude of this "elastic slip" is linked to the mechanical properties of the adhesive layer and its thickness. Therefore, fracture can take place either in the surrounding matrix or in the adhesive layer. However, a clear distinction can rarely be made, since the interfacial voids of the matrix are mostly filled by the glue, which implies that a more or less thick layer of matrix can detach with the inclusion. Such situation is frequent in the case of FRP strengthening systems bonded to concrete. From a modelling point of view, however, at least for structural applications, the macroscopic representation of pull-out mechanisms in the presence or absence of an adhesive layer is mostly similar. The main difference lies in the choice of the interface constitutive law which depends on the considered situation.

In the following, we consider the case where debonding occurs due to delamination. The explicit representation of the adhesive layer will not be given in the framework of the two-scale decomposition presented in section 4.2 of the previous chapter. In this perspective, the problem is firstly formulated at the microscale by means of a revised version of the Strong Discontinuity Approach. It is then reformulated at the macroscale by relaxing the perfect bond assumption previously considered. 

Microscale boundary value problem

Let us start from the microscale problem formulated in terms of the dimensionless space variable z (see section 4.2). Hence we consider the case where a displacement discontinuity u appears on a surface ∂I disc in proximity of the inclusion, with clearly ∂I disc ≡ ∂I if no material rest attached to the inclusion. The overall displacement field then assumes the following form:

u (z) = ū (z) + û (z) + χ I disc -1 u(z) , ∀z ∈ Ω (5.1)
with ū, û the displacement contributions defined in section 4.2.3 and χ I disc the characteristic function of the volume sorrounded by the inner crack surface embedding the inclusion (see figure 5.1). The compatible strain then reads:

ε (z) = ∇ s ū (z) + ∇ s û (z) + χ I disc -1 ∇ s u(z) regular -δ ∂I disc ( u (z) ⊗ n I disc ) s singular (5.2)
having denoted with δ ∂I disc the Dirac delta located on ∂I disc and n I disc the outward normal to the inner crack surface. Let us note that in the previous expressions the dependence on z of χ I disc , δ ∂I disc and n I disc has been omitted for the sake of compactness. As already pointed out by several researches (see for instance [START_REF] Jc Simo | An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids[END_REF]), the singularity associated with the last contribution in equation 5.2 brings inconsistencies in the constitutive equations. For this reason, a continuum stress-strain relationship is formulated for the bulk (matrix and inclusion) by considering only the regular part ε reg of the compatible strain field, while an interface constitutive law is introduced in the discontinuity region [START_REF] Wells | A new method for modelling cohesive cracks using finite elements[END_REF][START_REF] Wells | Three-dimensional embedded discontinuity model for brittle fracture[END_REF]. The latter is expressed in terms of the traction vector t acting between the crack faces and the discontinuity u . In this framework, the set of governing equations outside the crack is the following:

• Equilibrium div (σ (z)) = 0, ∀z ∈ Ω\disc (5.3)

• Constitutive law σ (z) = F (ε reg (z)), ∀z ∈ Ω\disc (5.4)

• Compatibility ε (z) = ∇ s u (z) , ∀z ∈ Ω (5.5)

• Boundary conditions

u (z) = u d (z) ∀z ∈ ∂ u Ω (5.6a) m (z) • σ (z) = h (z) ∀z ∈ ∂ t Ω (5.6b)
where h and u d are the applied boundary tractions and displacements, respectively, m is the outward unitary normal vector to the boundary, while F in equation 5.4 denotes a generic continuum constituive relationship. In the previous equations, no distinction has been made between the phases, i.e. (σ, ε) = (σ I , ε I ) in the inclusion and (σ, ε) = (σ 0 , ε 0 ) in the matrix. For what concerns the cracking region, the interface law is expressed by a traction-discontinuity relation by means of a constitutive operator G:

t(z) = G ( u(z) ) , ∀z ∈ disc (5.7)
Such boundary tractions must be in equilibrium with the stress field in the bulk, i.e.: n (z) • σ (z)t(z) = 0, ∀z ∈ disc (5.8) where n denotes the outward normal to the crack surfaces.

Macroscale boundary value problem

At the macroscale, the crack surfaces can be confused with the inclusion boundary and therefore with its axis Γ, i.e. x disc ≈ x Γ . The displacement field previously expressed at the microscale by equation 5.1, now becomes:

u (x) = ū (x) + û (x) + (1 Γ -1) u(x) , ∀x ∈ Ω (5.9)
where 1 Γ is a function vanishing outside Γ. The compatible strain field reads in this case: having denoted with δ Γ the Dirac delta centred on Γ. Let us note, in particular, that the product -n Γ δ Γ defines a radial distribution pointing towards the inclusion. Also in this case, a continuum relationship between the stress and the strain is formulated in terms of the sole regular contribution in equation 5. [START_REF] Besnard | Finite-element" displacement fields analysis from digital images: application to Portevin-Le Châtelier bands[END_REF]. By extending the results presented in the previous chapter to the present case, the set of governing equations in the bulk is:

ε (x) = ∇ s ū (x) + ∇ s û (x) + (1 Γ -1) ∇ s u(x) regular -δ Γ ( u (x) ⊗ n Γ ) s singular ( 5 
• Equilibrium div (σ 0 (x)) + f Γ (x) δ Γ (λx) = 0 ∀x ∈ Ω (5.11a) f I (x) -f Γ (x) = 0 ∀x ∈ I (5.11b) with f I (x) = div (σ I (x) e I ⊗ e I ) (5.12) 
and λ = A -1 I (A I is the cross sectional area of the inclusion -see section 4.2).

• Constitutive law σ (x) = F (ε reg (x)), ∀x ∈ Ω (5.13)

• Compatibility ε (x) = ∇ s u (x) , ∀x ∈ Ω (5.14) • Boundary conditions u (x) = u d (x) ∀x ∈ ∂ u Ω (5.15a) m (x) • σ (x) = h (x) ∀x ∈ ∂ t Ω (5.15b)
At the interface, the traction vector t is defined by a discrete traction-separation law as:

t(x) = G ( u(x) ) , ∀x ∈ Γ (5.16)
Finally, a traction continuity condition must hold along Γ: n (x) • σ (x)t(x) = 0, ∀x ∈ Γ (5.17)

Scale transition

As done in the previous chapter, we firstly establish a relationship between the microscopic and macroscopic displacements of the interface crack surfaces. By denoting with the superscript "0" the kinematics of the crack face belonging to the matrix and with the superscript "I" the kinematics of the crack face embedding the inclusion, we can write:

u 0 disc (z) ≈ u 0 Γ (x) u I disc (z) ≈ u I Γ (x) ≡ u I (x) (5.18)
where u I represents the displacement of the inclusion. Moreover, the interaction term f Γ in equation 5.11, can be determined by enforcing the equivalence between the virtual work done by the density field f Γ δ Γ and the work done by the microscopic boundary tractions t reg = n • σ(ε reg ) computed on the boundary ∂I ≈ ∂I, with small enough, embedding the crack surfaces (see figure 5.1): [START_REF] Ceroni | Debonding strength and anchorage devices for reinforced concrete elements strengthened with FRP sheets[END_REF]) with u reg v (z), u v (x) the virtual displacements and U 0 defined as in section 4.2.5. Such approximation is therefore valid if the discontinuity is located close to the inclusion boundary and its shape is sufficiently regular. This is the case of inclusion debonding associated with delamination. With the same reasoning as in the previous chapter, for a cylindrical cross section of radius r we therefore end up with:

Ω f Γ (x) δ Γ (λx) • u v (x) dV = ∂I t reg (z) • u reg v (z) dS, ∀ u reg v (z) , u v (x) ∈ U 0 (5.
λ -1 f Γ (x) - π 0 n • σ --n • σ + r dθ • u 0 Γv (x) = 0 , ∀ u 0 Γv (x) (5.20)
having denoted with σ -= σ (θ) and σ + = σ (θ + π). By assuming that such quantities can be computed at the macroscale, in presence of a linear elastic behaviour one finally obtains: with (s, ξ) the coordinate system given in figure 5.2. In the expression of τ , both the contribution associated with û and u now appear, while the average interface stress is defined as

f Γ (x) = π 0 n • C 0 : ∇ s û- Γ -u --n • C 0 : ∇ s û+ Γ -u + r dθ λ = π 0 n • C 0 : ûΓ- s,ξ -u - s,ξ -ûΓ+ s,ξ -u +
τ Γ = - 1 2π π 0 τ dθ (5.22)
Let us note that relation 5.22 holds independently on the assumed constitutive behaviour.

5.2 finite element modeling

Variational formulation

By applying the Hu-Washizu variational principle, the system of equations 4.24 is recovered for the present case. The following choice is then made for approximating the real kinematic fields:

u ≈ u h = Nd + N α α + N c e ε ≈ ε h = Bd + B α α + B c e (5.23) 
where d are the nodal displacements, α the element-wise enrichement associated with û and e the slip variable related with u . The compatibility has been enforced by requiring that B c = LN c . These matrices are built from the interpolations associated with α, namely:

N c = 1 Γ -N α B c = p ± δ Γ -B α (5.24)
with the normal matrix p -= p on Ω -and p + = -p on Ω + , respectively. Let us note that in 3D, such decomposition is referred to the generic longitudinal section with respect to the inclusion (see figure 5.2). Similarly, the virtual fields are approximated as:

u v ≈ u vh = Nd v + N * α α v + N * c e v ε v ≈ ε vh = Bd v + B * α α v + B * c e v (5.25) 
Once again N * c and B * c are chosen such that B * c = LN * c . In particular, they read:

N * c = 1 Γ -N * α B * c = p ± δ Γ -B * α (5.26)
Being B * c built from matrix B * α and thanks to the Dirac delta properties, the verification of the patch-test is then automatically fulfilled, i.e.:

Ω e (B * c ) T dV = 0 (5.27)
With definitions 5.24 and 5.26, the kinematic approximations therefore become, respectively:

u h = Nd + N α (α -e) + 1 Γ e ε h = Bd + B α (α -e) regular +p ± δ Γ e (5.28) 
and

u vh = Nd v + N * α (α v -e v ) + 1 Γ e v ε vh = Bd v + B * α (α v -e v ) regular +p ± δ Γ e v (5.29)
where the regular part of the strain field has been highlighted. For what concerns the stress field, we assumes that it satisfies the constitutive law formulated in terms of the aforementioned contribution, i.e. σ h = F (ε reg h ). Under these assumptions, the variational formulation 4.24 is restated as:

∀(d v , α v , e v ), d v Ω h B T σ h dV -A I Γ h N T f I ds - ∂ t Ω h N T h dS + + α v Ω h (B * α ) T σ h dV -A I Γ h (N * α ) T f I ds - ∂ t Ω h (N * α ) T h dS + + e v Ω h (B * c ) T σ h dV -A I Γ h (N * c ) T f I ds - ∂ t Ω h (N * c ) T h dS = 0 (5.30)
where the terms

∂ t Ω h (N * α ) T h dS and ∂ t Ω h (N * c )
T h dS will be hereinafter neglected due to the observation made in section 4.2.5. By noting that N * c = 0 on Γ, the following system of equations is obtained:

               Ω h B T σ h dV = A I Γ h N T f I ds + ∂ t Ω h N T h dS (5.31a) Ω h (B * α ) T σ h dV = A I Γ h (N * α ) T f I ds (5.31b) Ω h (B * c ) T σ h dV = 0 (5.31c)
Let us point out that, being the displacement of the inclusion only related with d and α, the force f I is not dependent on e. From now on, the subscript "h" associated with the finite element approximation will be dropped off to lighten the notation.

2D settings

By focusing to the case of a single finite element e, i.e. Ω ≡ Ω e , in a twodimensional framework, the volume integrals in system 5.31 reduces to surface integrals, namely:

             A B T σ dA t = A I Γ N T f I ds + Γ t N T h ds t (5.32a) A (B * α ) T σ dA t = A I Γ (N * α ) T f I ds (5.32b) Γ p ± T σ ds t - A (B * α ) T σ dA t = 0 (5.32c)
where t still denotes the finite element thickness. Let us note that the first line integral in equation 5.32c derives from the application of the Dirac delta δ Γ . Such equation therefore expresses the equilibrium between the boundary tractions applied to the matrix and the average stress vector computed in the bulk. By considering the results obtained in the previous chapter and introducing the inclusion length , the governing equations therefore read:

       A B T σ dA t = (N G ) T ∆F I + Γ t N T h ds t (5.33a) 
p T Σ t = ∆F I (5.33b)

t + t + t -t + p T Σ t = 0 (5.33c)
where the interface tractions t + and t -acting on the portions of the boundary belonging to Ω + and Ω -(see the previous chapter for their definition), respectively, are computed from the discrete traction-separation law 5.16 expressed in terms of the discontinuity variable e.

Resolution procedure

Being both F and G in equations 5.13 and 5.16 generic constitutive operators, i.e. they can be non-linear, the resolution of problem 5.33 requires a priori an iterative procedure. With reference to section 4.4, after performing the assembly operation, the latter is then reformulated in the following way:

         R = F Γ int -F Γ ext = 0 (5.34a) r = f Γ int -P I = 0 (5.34b) g = n en
A e=1 t e,+ + t e,-+ p T Σ e e t = 0 (5.34c) having indicated with F Γ int and f Γ int the terms combining the contributions associated with the matrix and the inclusion of the global and local problem, respectively, while F Γ ext = F I + F ext (see equation 4.65). In particular, if P I = 0, one will therefore have F Γ ext ≡ F ext . In such case, equation 5.34b then states the equilibrium between the axial force distribution of the inclusion and the applied boundary tractions exchanged by the matrix in absence of concentrated loads at the inclusion ends. Hence, solving problem 5.34 requires that the three residuals R, r and g shall vanish. A Newton-Raphson algorithm can be adopted for this purpose. First of all, the external load is applied incrementally to the structure by introducing a sequence of pseudo-time instants {t 0 = 0, t 1 , . . . , t n , t n+1 , . . . , t N = T}. Its value at time n + 1 is therefore equal to:

F Γ ext,n+1 = F Γ ext,n + ∆F Γ ext , ∀t n+1 ∈ [0, T] (5.35) 
where ∆F Γ ext represents the load increment. Moreover, a certain number of iterations is required between each time step for solving the equations. This translates in expressing the displacement variables at time n + 1 as:

       d k+1 n+1 = d n + ∆d k+1 n+1 (5.36a) α k+1 n+1 = α n + ∆α k+1 n+1 (5.36b) e k+1 n+1 = e n + ∆e k+1 n+1 (5.36c) 
with ∆d k+1 n+1 , ∆α k+1 n+1 and ∆e k+1 n+1 the total displacement increments at iteration k + 1. The latter are computed as the sum of a prediction denoted with the superscript "0" and a series of corrections, i.e.:

                       ∆d k+1 n+1 = ∆d 0 n+1 + k+1 ∑ j=1 δd j n+1 = k+1 ∑ j=0 δd j n+1
(5.37a)

∆α k+1 n+1 = ∆α 0 n+1 + k+1 ∑ j=1 δα j n+1 = k+1 ∑ j=0 δα j n+1
(5.37b)

∆e k+1 n+1 = ∆e 0 n+1 + k+1 ∑ j=1 δe j n+1 = k+1 ∑ j=0 δe j n+1
(5.37c) By means of this approach, the resolution procedure consists in computing the corrections δd k+1 n+1 , δα k+1 n+1 , δe k+1 n+1 such that:

           R k+1 n+1 = R d k+1 n+1 , α k+1 n+1 , e k+1 n+1 = 0 (5.38a) r k+1 n+1 = r d k+1 n+1 , α k+1 n+1 , e k+1 n+1 = 0 (5.38b) g k+1 n+1 = g d k+1 n+1 , α k+1 n+1 , e k+1 n+1 = 0 (5.38c)
This can be done by linearising equations 5.34 in the vicinity of the solution computed at the previous iteration. By omitting from now on the subscript indicating the time step, the following linear system is obtained: Similarly to the set of equations 4.59, the latter can be put in the form: Let us note that in the previous equation, e denotes the length of the elementary inclusion segment crossing the finite element e. On the contrary, the presence of the discontinuity does not affect the computation of the contributions ∆K Γ,k ij (i, j = d, α, g) associated with the inclusion. We therefore have ∆K

                   R k + ∂R
         K Γ,k dd δd k+1 + K Γ,k dα δα k+1 + K Γ,k dg δe k+1 = -R k (5.40a) K Γ,k αd δd k+1 + K Γ,k αα δα k+1 + K Γ,k αg δe k+1 = -r k (5.40b) K Γ,k gd δd k+1 + K Γ,k gα δα k+1 + K Γ,k gg δe k+1 = -g k (5.40c) where K Γ,k ij = Ae K e,k ij + ∆K Γ,k ij with i, j = d, α, g.
Γ,k dg = ∆K Γ,k αg = ∆K Γ,k gd = ∆K Γ,k gα = ∆K Γ,k gg = 0.
The other terms are:

∆K Γ,k dd = n en A e=1 e+1 i=e-1 (-1) e-i k k (e,i) (N G e ) T T N G i (5.51) ∆K Γ,k dα = n en A e=1 e+1 i=e-1 (-1) e-i k k (e,i) (N G e ) T T (5.52) ∆K Γ,k αd = n en A e=1 e+1 i=e-1 (-1) e-i k k (e,i) T N G e (5.53) ∆K Γ,k αα = n en A e=1 e+1 i=e-1 (-1) e-i k k (e,i) T (5.54) 
with T = e I e T I . If one solves equation 5.40c with respect to δe k+1 , he obtains:

δe k+1 = K Γ,k gg -1 -g k -K Γ,k gd δd k+1 -K Γ,k gα δα k+1 (5.55)
Substituting the previous expression in equation 5.40b and solving with respect to δα k+1 gives: having set

δα k+1 = KΓ,k αα -1 -r k -KΓ,k αd δd k+1 (5.56) with rk = r k -K Γ,k αg K Γ,k gg -1 g k (5.57) KΓ,k αα = K Γ,k αα -K Γ,k gg -1 K Γ,k gα (5.58) KΓ,k αd = K Γ,k αd -K Γ,k gg -1 K Γ,k gd ( 5 
Rk = R k -K Γ,k dα KΓ,k αα -1 rk -K Γ,k dg K Γ,k gg -1 g k (5.61) KΓ,k dd = K Γ,k dd -K Γ,k dα KΓ,k αα -1 KΓ,k αd -K Γ,k dg K Γ,k gg -1 K Γ,k gd (5.62)

path-following formulaltion

Strain localisation is often associated with highly non-linear responses. Such physical phenomenon can therefore translates into unstable structural behaviours. In these situations, in order to carry out the numerical simulation, it is helpful or, in many cases, even essential to implement suitable path-following algorithms which can sensibly improve the convergence properties of the iterative procedure in presence of softening materials [START_REF] Rastiello | Discontinuity-scale path-following methods for the embedded discontinuity finite element modeling of failure in solids[END_REF] (see for instance the snap-back response depicted in figure 5.3). The basic principle, is to drive the loading process with respect to a variable which is a monotonically increasing function of the pseudotime. In structures with embedded anchors undergoing debonding mechanisms, a possible choice is to assume as controlled variable the quantity related with the anchor pull-out, namely the displacement discontinuity u ≡ e introduced in the previous section. However, such choice would only allow to describe the non-linear part of the structural response once the slip is initiated. It would not, therefore, be possible to reproduce accurately the overall mechanical behaviour, which can be characterised by other complex phenomena such as plasticity or damage taking place prior to the anchor debonding. In this framework, a more suitable choice for the controlled variable is therefore the total displacement of the inclusion.

Augmented finite element problem

For the sake of simplicity and without loss of generality, let us assume that no external load is directly applied to the inclusion ends, i.e. P I = 0. In such a case, we will therefore have F Γ ext = F ext in equation 5.34a. The first step is then to express the external force vector in the following way:

F ext = η Fext (5.63)
where η is a variable (unknown) load parameter and Fext is a normalised load vector. In order to compute η, an additional equation, namely a control equation P depending on an user-defined path-step length τ, is added to the set of equations 5.34. The latter then become: where all dependency has been explicited. The linearised system of equations therefore reads: (5.73)

               R(d, α, e, η) = F Γ int (d, α, e) -F ext (η) = 0 (5.64a) r(d, α, e) = f Γ int (d, α, e) = 0 ( 
                           R k + ∂R
The computation of δe k+1 can finally be performed as in equation 5.55.

numerical validation

In this section, the numerical validation of the debonding problem formulated in sections 5.1 and 5.2 is presented. Notably, the simulation of case studies available in the literature is considered, such that a comparison can be made with respect to other models. Firstly, the case of an elastic interface is dealt with. Such situation is of particular interest whether the strengthening phase is glued to the matrix. In such circumstances, indeed, a bond-slip can occur at the macroscale in the elastic regime due to the presence of the adhesive layer. Secondly, the case of material debonding is adressed. In particular, the simulation of the in-situ test presented in chapter 3 is addressed. Let us note that in both the situations, the equations governing the mechanical problem are the same, with the exception of the previously discussed interface constitutive law. Test-setup according to [START_REF] Fkf Radtke | A partition of unity finite element method for obtaining elastic properties of continua with embedded thin fibres[END_REF] for comparison with the PUFEM approach and the Shear-Lag solution.

Linear elastic interface

By focusing on the interface behaviour governed by the shear stresses τ Γ , the discrete traction-separation law 5.16 is formulated as:

τ Γ = k s u s (5.74)
where k s denotes the shear stiffness of the inclusion-matrix bond and u s is the displacement discontinuity in the longitudinal direction between the two phases, i.e. the slip. For what concerns the normal direction, we will consider u n = 0, i.e. perfect bond is assumed. The transverse deformation of the inclusion will be neglected as well.

Problem 1

Let us consider the problem depicted in figure 5.4 taken from [START_REF] Fkf Radtke | A partition of unity finite element method for obtaining elastic properties of continua with embedded thin fibres[END_REF], where it has been studied by means of the PUFEM approach. It consists of a tie rod solicited in tension by means of an horizontal displacement δ = 0.1 mm applied to the right end of the structure, which, on the contrary, is fixed at its left end. An embedded fiber of thickness d I = 0.025 mm is placed in its central part. A unitary thickness t = 1 is assumed both for the matrix and the inclusion, which is then characterised by the cross section A I = d I × 1 = 0.025 mm. Under the described conditions, the sample undergoes an average longitudinal strain ε 11 = 0.01. The material parameters of the matrix are Young's modulus E 0 = 20 GPa and Poisson's ratio ν 0 = 0.2. Let us note that due to the unitary thickness, the parameter k s in equation 5.74 can be expressed as a force divided by a surface. The problem is discretised by means of 200 CST finite elements deployed in the horizontal direction (at most two elements in the transversal direction). Plane strain conditions are assumed in the simulation.

As a first analysis, the influence of the shear stiffness k s on the interface stress profile τ Γ and inclusion axial stress profile σ I are studied by setting the stiffness contrast c = E I /E 0 equal to 1. In particular, values comprised between k s = 10 3 N/mm 2 and k s = 10 6 N/mm 2 are considered, with the highest value translating fiber stress σ f ib ≡ σ I have been reproduced. These quantities are normalised with respect to the maximal values obtained by the Shear-Lag model, denoted with the subscript "0" in figures 5.5 and 5.6, which shall not be confused with the notation adopted in the present work for referring to the quantities computed in the matrix. The same quantities obtained by the proposed formulation are presented in figure 5.6. As one can see, a good agreement between the different approaches is found, especially in all the cases the static boundary conditions at the inclusion ends, i.e. σ I (x = ± /2) = 0, are satisfied ∀ k s . Neverthless, to the same stiffness value (k bt ≡ k s in the PUFEM) does not correspond exactly the same response. Notably, for k s ∈ 10 3 , 10 5 N/mm 2 , higher interface stresses are computed by the enhanced model with respect to the PUFEM, while the opposite situation is observed for k s = 10 6 N/mm 2 . Moreover, the distribution σ I in figure 5.6b appears to converge for x → 0 towards the Shear-Lag one ∀ k s . Such correspondence is reasonable since, in x = 0, τ Γ vanishes due to simmetry, therefore implying u s = 0 and hence, being the stiffness contrast equal to 1, both the numerical and analytical model should obtain σ I = E I ε I = E 0 ε 11 . This result can be checked for the Shear-Lag model by computing the value of the fiber stress in x = 0. However, this is not the case of the PUFEM results for k bt > 10 3 N/mm 2 , whose values seem to be slightly higher in the central part of the sample. Such small discrepancies could be due either to the specific finite element approximation, either to different spatial discretisations.

The second analysis consists in studying the influence of the stiffness contrast c on the solution between the matrix and the inclusion. This time, the bond stiffness is kept constant and set equal to k s = 10 6 N/mm 2 , while c is made to vary between 1 and 10. Very close results are observed between the three approaches especially for the interface stress distributions depicted in figures 5.7a and 5.8a. The inclusion stresses shown in figures 5.7b and 5.8b present some differences, in particular, these become more important with respect to the Shear-Lag model for increasing values of c. This was expected, as explained in [START_REF] Fkf Radtke | A partition of unity finite element method for obtaining elastic properties of continua with embedded thin fibres[END_REF], due to the fact the analytical solution neglects the influence of the fibre on the strain field of the matrix, which becomes more important for a stiff inclusion. As in the previous analysis, small differences persist with respect to the inclusion stresses between the proposed model and the PUFEM in the central part of the sample. Notably, In the latter case, the computed values tends to exceed the asymptote defined by σ I ≡ σ f ib = σ 0 .

Problem 2

The second case study, also taken from [START_REF] Fkf Radtke | A partition of unity finite element method for obtaining elastic properties of continua with embedded thin fibres[END_REF], consists of a square structure clamped at its left end and loaded through an horizontal displacement δ = 0.05 mm applied as described in figure 5.9. The material parameters for the matrix are kept unchanged with respect to the previous case, i.e. the Young's modulus E 0 = 20 GPa and the Poisson's ratio ν 0 = 0.2. For what concerns the inclusion, we set E I = 500 GPa, while its thickness is chosen equal to d I = 0.05 mm. The aim of this example is to study the effect of both the inclination β and the inclusion length (see figure 5.9). The problem thickness t is, once again, set equal to 1. Two alternative strategies are compared to the proposed model, namely the PUFEM and the standard modeling discussed in the previous chapter with the addition of interface finite elements in order to account for bond-slip effects. The latter is characterised by two four nodes joint elements which are located on opposite sides of the interface. Two nodes of each joint element are therefore bonded to the matrix while the other two are bonded to the inclusion, which is modeled through linear trusses, such that a relative displacement is allowed between the phases. The shear stiffness will be denoted also in this case with k s , while the normal stiffness k n is assumed to be big enough in order to ensure perfect bonding.

In order to compare the aforementioned approaches, a suitable choice of the parameter k s is required. For this reason, a convergence analysis is firstly performed. The bond stiffness is then chosen such that the same response (δ, F), with F denoting the reaction force, is obtained at convergence. An inclusion length = 3.8 mm is considered. The results are shown in figures 5.10 and 5.11 for β = 0 • and β = 30 • , where both linear triangular and quadrilateral elements have been compared in the case of the PUFEM. These results have been obtained for the following values of the bond stiffness: k en s = 7 × 10 3 N/mm 2 , k pu f em s = 5 × 10 4 N/mm 2 , k std s,0 = 1.5 × 10 4 N/mm 2 and k std s,30 = 1 × 10 5 N/mm 2 , where the last two values correspond to the cases β = 0 • and β = 30 • , respectively. Notably, in figures 5.10a and 5.11a, the reaction force is plotted against the total number of dofs, whereas in figures 5.10b and 5.11b the additional dofs introduced in the embedded region are considered. Let us note that in the case of the standard model, since the interface finite elements are bonded both to the matrix and the inclusion, only two additional dofs per truss node are introduced. For obtaining the same number of degrees of freedom of the enhanced model, the reinforcement is thus discretised by assuming a characteristic truss length h std I = /n en , where n en is the number of enhanced elements. However, due to the presence of joint elements, the number of Gauss points (two for each interface element, i.e. 2 × 2 + 1 per truss) is much higher by following the standard approach. As one can see, the results pertaining to the proposed formulation are in most cases much closer to the converged ones, i.e. the error starts from lower values with respect to the other strategies. The only exception is the case of the coarsest discretisation in figure 5.11, which shows an initial instability. We now consider the case of an horizontal inclusion. Focus is given to the evaluation of the slip profile and the interface stress in the embedded region. In particular, the influence of the inclusion length is studied. Three cases are considered, namely, = 1 mm, = 2 mm and = 3 mm. A discretisation comprising 25 × 25 quadrilaterals is considered in the case of the PUFEM, whereas a similar discretisation obtained by subdiving the previous one by means of triangular elements is adopted for the enhanced and standard models. Hence, the total number of finite elements is 625 in in the first case and 1250 in the second case, whereas the two discretisations share the same number of degrees of freedom, i.e. 1352 dofs. The values of k s are the ones determined hereinbefore, i.e. k en s = 7 × 10 3 N/mm 2 , k pu f em s = 5 × 10 4 N/mm 2 and k std s,0 = 1.5 × 10 4 N/mm 2 . The slip profiles are shown in figure 5.12, as well as the bond stress profiles. Let us note that these distributions have been plotted as straight lines between the respective reference points, i.e the Gauss points for the PUFEM, the center of gravity of the elementary segments Γ e (see its definition in section 4.3) for the enhanced model and the truss nodes for the standard approach. It can be seen that small difference is found between the solutions for = 1 mm (figure 5.12a), which becomes more important for = 2 mm 5.12b and = 3 mm (5.12c). Especially, in all the three situations, one has | u pu f em s

| < | u std s | < | u en s |.
If therefore one computes the bond stress τ Γ = k s u s , some important differences are found between the three approaches, as can be seen in figures 5.12d-5.12f. Such deviations are reasonable since rather similar slip distributions have been computed for different values of the parameter k s . In order to conclude the analysis and better understand the behaviour of the considered modelling strategies, the same value k s = 5 × 10 4 is set for all the computations. In this case, the results are quite close as can be seen in figure 5.13. In particular, except for the case = 1 mm depicted in figures 5.13a and 5.13d, the enhanced and standard approaches are in good agreement, whereas the gap with respect to the PUFEM is also reduced. The differences between the first two approaches mainly concentrate at the inclusion ends. For this reason, the deviation is more important for the short inclusion. 

Non-linear interfacial behaviour

In order to represent non-linearities associated with the interfacial behaviour, a modified version of the BPE proposed by Eligehausen et al. in [START_REF] Eligehausen | Local bond stress-slip relationships of deformed bars under generalized excitations[END_REF] is considered. The original model, which has been successfully adopted in the literature for modelling a broad variety of reinforcement layouts experiencing bond-slip effects, is shown in figure 5.14a while its revised version is shown in figure 5.14b. With reference to figure 5.14b, by denoting with s ≡ u s the slip variable, in the latter case the expression of the interfacial shear stress is the following:

τ Γ =                  τ 1 s s 1 α
, for 0 < s < s 1 τ 1 + s-s 1 s 2 -s 1 (τ 2τ 1 ), for s 1 < s < s 2 τ 2 + s-s 2 s 3 -s 2 (τ 3τ 2 ), for s 2 < s < s 3 τ 3 , for s > s 3 (5.75) where the parameters α, τ i and s i (i = 1, 2, 3) have to be determined from experimental data. If therefore one sets τ 2 = τ 1 , the standard BPE model is recovered. In particular, the hardening branch has been introduced to represent the interlocking between the debonded surfaces. As pointed out in [START_REF] Cosenza | Behavior and modeling of bond of FRP rebars to concrete[END_REF], α should be smaller than 1 in order to be physically meaningful (a value of 0.4 has been suggested by Eligehausen et al. [START_REF] Eligehausen | Local bond stress-slip relationships of deformed bars under generalized excitations[END_REF] for steel rebars).

In-situ test

The proposed finite element formulation is adopted for modelling the in-situ test presented in chapter 3. The main focus is the representation of the interfacial behaviour in the inclusion (CFRP mesh anchor) zone, i.e. the identification of a suitable interfacial constitutive law. For such reason, the pull-out configuration represented in figure 5.15a is considered. Both the cylindrical portion of the specimen and the adhesive layer are modelled under the plane stress assumption. Clamped boundary conditions are prescribed to the lateral surface corresponding to the two hollow half-cylinders, which are bolted during the experiments to the test apparatus. The presence of rigid body motions is not considered in the analysis presented hereinafter since it is not expected to affect the results. A linear elastic behaviour is assumed for concrete, adhesive layer and CFRP anchor, while the behaviour of the interface is represented through the modified BPE model 5.75. The material properties, namely the Young's modulus E and Poisson's ratio ν, the geometrical parameters, i.e. t (specimen thickness), A mesh (cross-sectional area of the mesh anchor), (embedment depth), D 0 (anchor hole diameter) and the identified parameters of the interfacial constitutive law are reported in table 5 First of all the pull-out response is studied. In figure 5.16a the applied force F mesh is plotted against the slip, while in figure 5.16b the secant stiffness degradation 1k sec /k 0 , with k 0 the initial stiffness, is represented. Its derivative with respect to the slip variable, i.e. k sec /k 0 is shown in figure 5.17. As one can see, the numerical simulation is in good agreement with the experimental data and it is not affected by the discretisation. In particular, the slip initiates almost instantly and keeps evolving slowly up to F mesh ≈ 625 N, corresponding to a maximal interfacial shear stress value τ Γ = τ 1 = 1 MPa. From this point, the pull-out mechanism is characterised by a steady state-state growth until reaching the peak value F mesh ≈ 950 N. Unfortunately, during the in-situ test, it has not been possible to continue further due to a pertubation induced by the scanning procedure which has provoked a slight force jump in the system and, therefore, the specimen failure. It is reasonable, however, to presume that τ Γ had reached its highest value τ 2 = 1.25 MPa. Let us note that the first phase of the numerical response is slightly different from the experimental one, which appears to be characterised by perfect bond conditions (zero slip). This difference can be ascribed to three main reasons. First, it is well known from the previous applications (see for instance chapter 4) and other researches [START_REF] Llau | Finite element modelling of 1D steel components in reinforced and prestressed concrete structures[END_REF][START_REF] Vincent | Yield design-based numerical analysis of three-dimensional reinforced concrete structures[END_REF] that the 2D mixed-modelling approach is often associated with sharp gradients in the solution, which may lead to the onset of non-linearities very soon in the analysis. A suitable choice of the interfacial constitutive behaviour is therefore necessary in order to obtain meaningful results. In this sense, the introduction of slip mechanisms even in the elastic phase accounts for the fact that the transversal dimension of the inclusion is not represented, i.e. the solution must somehow be regularised in order to eliminate the singularities at the extremities. Second, the experimental bond-slip response has been measured by solving an inverse problem, i.e. the measurement of kinematic fields by means of DIC, whose accuracy relies on several factors, above all, image quality (resolution, noise, grey values etc.) and choice of the regularisation parameters, notably, mesh size and mechanical regularisation length. Consequently, a good compromise must be reached between the stability of the solution and the degree of locality of the information sought. Moreover the way the slip has been measured, i.e. by considering two points belonging to opposite sides of the crack nearby the inclusion, gives only an approximation of the real slip. In particular, by following this method, it is not possible to quantify the elastic contribution associated with the presence of the adhesive inside the anchor hole. Third, the complex crack pattern that has been identified from the computed scans has not been reproduced in the numerical simulation. The interaction between different cracks and crack-opening components has not therefore been taken into account.

The local response is depicted in figure 5.18 for the reference time instants t 0 , t 1 , t 2 , t 3 and t 4 considered in the experiment. In this case, two finite element discretisations comprising n en = 10 (figures 5.18a-5.18c) and n en = 58 (figures 5.18d-5.18f) enhanced finite elements, respectively, are compared. The mesh anchor profiles are shown in figures 5.18a and 5.18c, the interfacial stress is depicted in figures 5.18b and 5.18e wheares the slip variable appears in figures 5.18c and 5.18f. These quantities appear to confirm the previous considerations made for the global response and confirm, once again, the high accuracy of the proposed formulation even for very coarse discretisations. The axial stress σ mesh evolves from a non-linear distribution associated with a non-uniform shear stress towards a linear one induced by almost constant values of τ Γ . The peak stress σ mesh ≈ 48 MPa is therefore reached for the limit value of the shear stress τ Γ ≈ 1.25 MPa.

conclusions

In this chapter, the enhanced finite element model presented in chapter 4 has been reformulated in order to reproduce the debonding behaviour of the inclusion. A strong discontinuity framework has been considered for the purpose.

By following the same approach developed in the previous chapter, the governing equations have been firstly derived at the microscale. Notably, the regular part of the compatible strain field is assumed for expressing the continuum constitutive law of the bulk, whereas a discrete traction-separation law is introduced on the discontinuity located in the nearby of the inclusion boundary. Through an upscaling procedure, the problem is then re-written at the macroscale. The weak formulation and associated finite element approximations are therefore introduced. In order to solve the non-linear problem, a Newton-Raphson method is adopted. Since the interface response is often associated with softening behaviours, a path-following formulation is also presented. The augmented system of equations is therefore derived by considering a control function that depends only on the inclusion kinematics.

The numerical validation is realised by considering both linear elastic and no-linear traction-separation laws. In the first case, the model is compared to other approaches presented in the literature, namely the analytical Shear-Lag approach and the PUFEM approach. The results show that some differences are found between the models, in particular the proposed formulation and the PUFEM seem to compute slightly different responses for the same interface stiffness parameters.

A convergence study with respect to the spatial discretisation confirms the quality of the proposed finite element approximation, which has already been highlighted in the previous chapter.

A non-linear interfacial law is finally assumed for simulating the in-situ test analysed in chapter 3. It consists in a modified BPE model where the sole modification consists in introducing an hardening branch aimed at representing the interlocking between the debonded surfaces. The results are very satisfying already for coarse discretisations. Moreover, it appears that the initiation of slip mechanisms in the early stages of the analysis helps to alleviate some of the drawbacks characterising mixed-modelling approaches related with the fact that the transversal dimension of the inclusion is not explicitly represented.

S U M M A R Y A N D C O N C L U S I O N S

The purpose of the investigation presented in this work was two-fold: on the one hand the comprehension of the local mechanisms occuring at the interface between concrete and embedded FRP anchorages, on the other hand the development of a numerical model that can be adopted for including such phenomena in real-life simulations.

bibliographic review

The bibliographic review has revealed that the addressed problem shows several multiscale features associated with local strengthening systems. The main consequence is that an accurate knowledge of the physical phenomena allowing the effort tranmission (and redistribution) between the different elements is essential for guaranteeing the structural safety. Particular focus has been given to the case of FRP anchors since the latter represent one of the most effective solutions for bonding FRP reinforcements to RC joints. Although their fabrication and installation is in practice relatively simple, their behaviour is rather complex since it is characterised by several failure modes that are atypical and undesired for reinforced concrete structures. The most common ones are combined concrete cone-bond failure and fibre rupture. Such mechanisms can take place suddenly during a seismic excitation and must therefore be prevented. Reproducing accurately these phenomena in computational structural engineering can be challenging since the characteristic dimensions of the anchors are usually very different from those of the structural member to which they are applied. The main consequence is that localised material interactions can have great effect on the global response.

experimental investigation

The starting point of the investigation has been the realisation of in-situ experiments to try to better understand how the material degradation affects the anchor behaviour in the transition zone between an horizontal and a vertical element. Due to the several constraints imposed by the available instrumentation and adopted techniques, namely CT scanning, the joint configuration has been reproduced through beams of variable cross section. A FRP strip has been applied to the tensioned surface of the specimen and bonded through an inclined CFRP anchor.

The results have shown that:

• In most cases, a combined failure with partial cone formation occurs in the embedded region.

• The concrete crack embedding the anchor converges quickly towards the interface. Its initiation point is influenced by the presence of glue on the specimen surface.

• Both a normal and tangential crack-opening components are observed with the former associated with peeling stresses and influenced by the lateral confinement.

• A pure pull-out behaviour is recovered at relatively small distance from the point of initiation of the crack. Such distance could increase for higher bending stiffness of the anchor.

• The anchor inclination is likely to induce a stress concentration in the transition zone and influencing the initiation of the crack.

Moreover, the computation of kinematic field by means of DVC and DIC has allowed to reconstruct the pull-out behaviour of the anchor, which represents an essential information for the numerical modelling.

numerical modelling

In the third part of this work, a novel finite element formulation has been proposed for addressing the problem of modelling FRP anchorages. The main features of this model are:

• The interaction problem is formulated in a multiscale scale framework as a linear inclusion embedded into an isotropic matrix.

• An enhanced finite element approximation is obtained by means of a kinematic enrichment associated with the interface behaviour.

• Interface-related quantities are computed from the stress jump arising in the bulk.

• The static boundary conditions applied to the inclusion ends are exactly satisfied.

• Improved performances (accuracy and computational effort) with respect to standard approaches are obtained in simulating elementary and structural case studies involving pull-out configurations.

Such model has been firstly implemented in the case of linear elastic behaviour and perfect bond conditions. This latter hypothesis has been then relaxed by reformulating the model in strong discontinuity settings. A path-following formulation has also been proposed, even though it has not been discussed in the applications.

In the validation of the debonding behaviour, two situations have been considered. The first one corresponds to the case of a linear elastic traction-separation law, for which it has been possible to compare the results with those of other approaches presented in the literature. The second one consists of a non-linear interface law (modified BPE model) adopted for simulating the in-situ test presented in the experimental part of the dissertation. Especially in this second case, after the calibration of the parameters, the model performs well in simulating the pull-out behaviour that has been reconstructed by means of DIC.

perspectives

From an experimental point of view, the in-situ experiments could be improved by ensuring better confinement conditions of the specimen. Indeed, it has been shown that the failure surface initiating in the anchorage region spreads towards the boundary to form a multi-branch cracking pattern. This situation is not representative of the behaviour of full-scale RC joints. Such improvement could be therefore considered in future investigations. Moreover, extensive ex-situ mechanical characterisation should be addressed in order to study the effects of parameters such as the anchor inclination and its dimensions.

Numerical case studies involving real-life RC joints have not been finalised yet. However, all the fundamental elements of the numerical strategy have been provided and validated for use in such kind of structural configurations. In addition, the model could be further enriched for representing in a more realistic manner the physical behaviour of the interface. Among the main perspectives, the coupling between damage and plasticity is required for simulating cyclic loading scenarios. Another important aspect that has not been discussed in the present work is the possibility of including bulk damage. No major modification of the finite element algorithm should be necessary, with exception of the definition of a suitable constitutive law governing the interaction of the different dissipative mechanisms.

Two further developments that could enhance the performances of the proposed model are on the one hand the possibility of handling several reinforcements embedded in a single finite element, on the other the implementation of the bending behaviour of the inclusion. The first aspect would be very useful for representing a broader variety of structural layouts, including for instance the combination of longitudinal and transversal reinforcements along with anchorage systems. The second aspect could improve the representation of the mechanism observed during the experiments involving both an horizontal and normal components of the crack opening displacement ascribable to the anchor inclination.
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 11 Figure 1.1: Seismic hazard map of France. The old map on the left, the new one on the right.
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 13 Figure 1.3: Connections studied in the framework of the ILISBAR project. Wall-slab joint tested by Chalot [20] (a), beam-column joint tested by IFSTTAR (b).
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 21 Figure 2.1: Effects of the lack of joint reinforcement during the Kocaeli (Turkey) earthquake. Local failure (a), global failure (b) [101].
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 22 Figure 2.2: Forces (a) and stresses (b) in interior beam-column joints according to Said et al. [103].
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 23 Figure 2.3: Stress-strain relationships of fibres, matrix and FRP [29].

Figure 2 . 4 :

 24 Figure 2.4: CFRP fabric [86]. Unidirectional (a), bidirectional (b).
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 25 Figure 2.5: FRP flexural reinforcements for RC beams. EB strip (a), NSM bars (a).
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 26 Figure 2.6: Joints tested by Prota et al. [84, 85]. Type 1 (a), Type 2 (b), Type 3 (c), Type 4 (d) configurations.
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 27 Figure 2.7: Specimens tested by Antonopoulos et al. [5].
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 28 Figure 2.8: Specimens tested by Shrestha et al. [106]. Column strip scheme (a), beam strip scheme (b).

Figure 2 . 9 :

 29 Figure 2.9: Debonding mechanisms according to Teng et al. [118]. Crack-propagation at level of internal reinforcements (a) and near concrete-FRP interface (b), debonding caused by flexural (c) and shear (d) cracks.
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 210211 Figure 2.10: Normal and shear stress profiles along a CFRP sheet[START_REF] Jg Teng | FRP: strengthened RC structures[END_REF] 
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 212 Figure 2.12: Anchorage systems for FRP reinforcements. Mechanical fasteners [58] (a), FRP U-wraps [79] (b), FRP U-anchors [54] (c), FRP spike anchors [127](d).

Figure 2 . 13 :

 213 Figure 2.13: Anchorage of FRP reinforcements. Transversal FRP anchor [59] (a), use of FRP anchors [56] (b).

Figure 2 . 15 :

 215 Figure 2.15: Dry anchor fabrication (a)-(c), wet anchor fabrication (d)-(e) according to Zhang et al. [129]. Rolling of dry fibres (a), tying of anchor dowel fibres (b), completed anchor (c). Rolling of impregnated fibres (foreground) and dry fibres (a), forming of anchor dowel component (b), completed anchor (c).

Figure 2 . 16 :

 216 Figure 2.16: FRP plate and anchor installation according to Zhang et al. [129]. Drilling of anchor hole (a), concrete surface preparation (b), anchor insertion (c), threading fibre sheet over anchor (d), epoxying of fan fibres onto plate (e).
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 217 Figure 2.17: Configurations considered by Qazi et al. [87] (a) and Chalot [20] (b).
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 218 Figure 2.18: Pull-out responses of adhesive bonded steel rods measured by Collins et al.[24] and Cook et al.[START_REF] Cook | Tensile Behavior and Design of Single Adhesive Anchors[END_REF].
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 219 Figure 2.19: Failure modes characterising FRP anchors [96]. Concrete cone failure (a), mixed-mode failure (b), dowel pull-out (c), fan-strip pull-out (d), anchor rupture (e).
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 220 Figure 2.20: Pull-out tests on FRP anchors realised by Kim et al. [55]. Load-displacement curves(a), load-strain curves (b).
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 221 Figure 2.21: Pull-out tests on FRP anchors realised by Ozbakkaloglu et al. [82]. Influence of the inclination on the capacity of CFRP anchors.
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 222 Figure 2.22: Influence of the bond length on the bond strength (a), effect of the embedment depth on the anchor capacity (b) [82].
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 223 Figure 2.23: Details of FRP anchors. Fan opening angle [56] (a), anchor bend [70] (b).
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 224 Figure 2.24: FRP-strengthened RC joint with embedded anchorages subjected to vertical shear actions.
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 225 Figure 2.25: Infinite elastic sheet embedding a semi-infinite elastic stiffener with load applied to its end [15].
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 227 Figure 2.27: Shear-Lag problem [23]. Reference and deformed configurations (a), radial variation of the shear stress in the matrix (b).
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 228 Figure 2.28: Results of the Shear-Lag theory for different fibre aspect ratios [23]. Axial stress in the fibre (a), interfacial shear stress (b).
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 231 Figure 2.31: Combined cone-bond model [27].
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 232 Figure 2.32: Problem considered by Martinez et al. [66].

Figure 2 . 33 :

 233 Figure 2.33: Results of the mixing theory applied to the four-point bending of a CFRPstrengthened RC beam [66]. Force-displacement curves (a), concrete damage at failure (b).

Figure 2 . 34 :

 234 Figure 2.34: FE 2 approach [104]. Two-scale problem (a), RVE problem with applied boundary tractions and discrete forces (b).

Figure 2 . 35 :

 235 Figure 2.35: Force-displacement curves of the RC deep beam simulated by means of the FE 2 approach for different RVEs [104]. Case of 1 × 1 unit cells (a), 2 × 2 unit cells (b), 3 × 3 unit cells (c).

Figure 2 . 36 :

 236 Figure 2.36: Multiphase model [12]. Heterogeneous problem (a), multiphase representation with associated boundary conditions (b).
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 237 Figure 2.37: Results of the multiphase model for the compression of a reinforced multilayered block [12]. Horizontal displacements (a) and reinforcement stress (c) in case of 4 layers, displacements (b) and reinforcement stress (d) in case of 8 layers.
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 238 Figure 2.38: Multi-layered plate element proposed by Teng et al. [119].
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 240 Figure 2.40: Implicit modelling of fibres embedded in a matrix [91].
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 241 Figure 2.41: Fibre-matrix problem considered in the PUFEM approach [91].
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 242 Figure 2.42: Results of tensile tests on squares with different fibre distributions simulated by means of the PUFEM [91].
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 31 Figure 3.1: Evolution of X-ray tomography [65]. Achievable spatial resolution as a function of time.
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 32 Figure 3.2: Data flow in computed tomography applications involving three inverse problems [50].

Figure 3 . 3 :

 33 Figure 3.3: Micro-tomography scanning. Cone-beam configuration.
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 34 Figure 3.4: CT artifacts.
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 35 Figure 3.5: Specimen geometry. 3D model (a), longitudinal dimensions (b), transversal dimensions.
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 36 Figure 3.6: Specimen preparation. Sliding supports A-B and load elements C-D (a), fixation half cylinders E-F (b), comparison with full scale beam-column joint of IFSTTAR (c).
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 37 Figure 3.7: Test devices at LMT. TTC machine (a), tomograph (b).

Figure 3 . 8 :

 38 Figure 3.8: Test configuration. 3D sketch (a), strengthened TTC machine (b).
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 39 Figure 3.9: 2D section of the test configuration.
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 310 Figure 3.10: Displacement decomposition. Undeformed state (a), deformed state (b).
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 311 Figure 3.11: Force decomposition in the deformed configuration (a), dependency on the friction coefficient (b).
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 312 Figure 3.12: Applied displacement vs. time.
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 313314 Figure 3.13: Scan characteristics at the undeformed state (reference test). Longitudinal midsection of the specimen (a) and corresponding grey level histogram (b), adjusted image (c) and grey level histogram (d).
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 316 Figure 3.16: Longitudinal scans at the midsection. Times t 1 (a), t 2 (b), t 3 (c), t 4 (d).
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 317 Figure 3.17: Transversal scans in proximity of the FRP anchor-strip connection. Times t 1 (a), t 2 (b), t 3 (c), t 4 (d).
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 318 Figure 3.18: Failed specimen.
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 319 Figure 3.19: Normalised residuals computed at the midsection. Time t 1 (a), t 2 (b), t 3 (c).
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 320 Figure 3.20: Normalised residuals computed at the transversal section. Time t 1 (a), t 2 (b), t 3 (c).
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 321 Figure 3.21: 3D projection of the correlation residuals over the finite element mesh at time t 1 (a), t 2 (b), t 3 (c).
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 322 Figure 3.22: Three-dimensional displacement field u = u x , u y , u z T at time t 1 (a)-(c), t 2 (d)-(f), t 3 (g)-(i). All quantities expressed in voxels ( vox = 144 µm).
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 323 Figure 3.23: Determination of the crack-opening displacements on 2D scans. Crack n.2 axis at time t 3 (a), crack position in the undeformed state (b), computed crack-opening at time t 2 (c), computed crack-opening at time t 3 (d).
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 324 Figure 3.24: Crack-opening displacements computed along the anchor length. Results at time t 2 (a) and t 3 (b).
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 325 Figure 3.25: Computation of the maximal crack-opening displacements by correlation of the loading radiographs. Deformed meshes and reference points at time t 1 (a), t 2 (b), t 3 (c), t 4 (d).

Figure 3 . 26 :

 326 Figure 3.26: Maximal crack-opening as a function of the applied displacement.

Figure 3 . 27 :

 327 Figure 3.27: Determination of the pivot point. Pivot coordinate evolution (a), position at times t 2 -t 4 (b).

Figure 3 . 28 :

 328 Figure 3.28: Corrected displacement vector (5 times magnification). Times t 1 (a), t 2 (b), t 3 (c), t 4 (d).
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 329 Figure 3.29: Initial residual Φ 0 c , final residual Φ c and rigid body motion residual Φ RBM c at times t 1 (a), t 2 (b), t 3 (c), t 4 (d).

Figure 3 . 30 :

 330 Figure 3.30: Difference between residuals |Φ c -Φ RBM c

x

  is vanishing close to the clamped section at every stage of the analysis, whereas the y-component is less affected by the correction since the magnitude of u RBM y maintains relatively small during the loading. Finally, if one computes the value of the rigid body displacement δ RBM h at the contact point depicted in figure3.9, 3.10 and 3.11a, it is possible to determine the corrected valueδ corr h = δ hδ RBM h . The displacement δ RBMh and δ corr h are plotted in figure 3.32a against the total displacement δ h , whereas the corrected force displacement curve δ corr h , F h is drawn in figure 3.32b.
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 331 Figure 3.31: Three-dimensional displacement field u corr = u corr x , u corr y , u corr z

Figure 3 . 32 :

 332 Figure 3.32: Total displacement δ h , rigid body displacement δ RBM h , corrected displacement δ corr h = δ hδ RBM h computed at the load application point (a), corrected forcedisplacement curve (b).

Figure 3 . 33 :

 333 Figure 3.33: Internal forces decomposition at the transition zone.

Figure 3 . 34 :

 334 Figure 3.34: Axial strain field ε y and neutral axis position ξ N at time t 1 (a), t 2 (b), t 3 (c), t 4 (d).

Figure 3 . 35 :

 335 Figure 3.35: Evolution of the neutral axis position during the loading (a), scheme for computing the internal forces (b).

Figure 3 . 36 :

 336 Figure 3.36: Axial forces vs. applied displacement (a), pull-out response (b).
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 42 Figure 4.2: Boundary conditions and displacement field at the different scales of observation.

  11) with f I (x) = div (σ I (x) e I ⊗ e I ) (4.12) Equation (4.10) is then completed with Dirichlet and Neumann boundary conditions applied on the respective portions of the boundary ∂Ω
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 43 Figure 4.3: Local behaviour of an elastic rod embedded in an isotropic matrix. Threedimensional (a) and two-dimensional (b) representations.
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 44 Figure 4.4: Decomposition of a CST element crossed by a linear inclusion.
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 45 Figure 4.5: Function N α in case of CST elements for different orientations of the inclusion: (a) β = -20 • , (b) β = 0 • , (c) β = 20 • .

Figure 4 . 6 :

 46 Figure 4.6: Shear stresses on the discontinuity surface (a), interface stresses acting on the inclusion boundary (b).

FFigure 4 . 7 :

 47 Figure 4.7: Local (a) and global (b) problems.

Figure 4 . 8 :

 48 Figure 4.8: Global modelling.

  47) into equations (4.41) and (4.38): K e dd d e + K e dα α e = (N G e ) T ∆F e I + F e ext (4.48a) K e αd d e + K e αα α e = ∆F e I
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 49 Figure 4.9: Integration scheme for CST elements.

Figure 4 . 10 :

 410 Figure 4.10: Elementary case study. Enhanced CST model (a), standard CST model (b), reference model (c).

Figure 4 . 11 :

 411 Figure 4.11: Longitudinal displacement u G s (a) and strain energy W ε of concrete (b).

Figure 4 . 12 :

 412 Figure 4.12: Longitudinal displacement contributions at the inclusion center of gravity.
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 413414 Figure 4.13: Amplified deformed shapes for β = 15 • and E I A I = 10 8 N.

(4. 71 )

 71 where c nI = n • C ps : (n ⊗ e I ) s • e I and c nn = n • C ps : (n ⊗ n) s • n are strictly positive constants. Equation (4.67) projected in the normal direction n =sin β e x + cos β e y , being P I = P e I , finally gives:

Figure 4 . 15 :

 415 Figure 4.15: Interface shear stress for D I = 2.52 × 10 -2 m.

Figure 4 . 16 :

 416 Figure 4.16: Local (a) and global (b) normalised longitudinal displacement variation of the inclusion, local complementary strain energy W

Figure 4 . 17 :

 417 Figure 4.17: Pull-out test.

  × 10 -2 m), 70 (h en I = 7.69 × 10 -3 m) and 139 (h en I = 3.87 × 10 -3 m) enhanced elements have been considered for studying the local distributions. The total number of concrete elements is 34 (h en c = 2.70 × 10 -1 m), 508 (h en c = 6.75 × 10 -2 m), 8112 (h en c = 1.69 × 10 -2 m) and 33172 (h en c = 8.44 × 10 -3 m), respectively. The results are therefore compared to the explicit modelling (reference), for which h re f I = /n I = h re f c . In particular, we assume as exact the solution obtained by this latter strategy involving 1021 truss elements at the interface and 8.46 × 10 6 CST elements for concrete (h re f I = h re f c = 5.27 × 10 -4 m). The axial stress and interface stress distributions are shown in figure 4.18a and
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 418 Figure 4.18: Axial stress σ I (a), interface shear stress τ Γ (b) and adopted meshes (c) for the enhanced model. Corresponding distributions (d)-(e) and meshes (f) for the explicit (reference) model.

Figure 4 . 19 :

 419 Figure 4.19: Local (a) and global (b) longitudinal displacement profiles of the inclusion computed by the enhanced model. Global displacement profile for the explicit model (c).

Figure 4 . 20 :

 420 Figure 4.20: Tangential stress σ nI (a), normal stress σ nn (b) and longitudinal stress σ I I (c) in concrete for h en I = h re f I = 7.69 × 10 -3 m. Absolute differences |σ re f nIσ en nI | (d), |σ re f nnσ en nn | (e) and |σ re f I Iσ en I I | (f).

(4. 79 )Figure 4 . 21 :

 79421 Figure 4.21: Convergence curves for concrete with h-refinement. L 2 -norm error u L 2 (a) and energy norm error ε E (b).

Figure 4 . 22 :

 422 Figure 4.22: Convergence curves for the inclusion with h-refinement. L 2 -norm error u L 2 (a) and energy norm error ε(σ) E (b).

Figure 4 . 23 :

 423 Figure 4.23: Axial force increment ∆F I (a) and kinematic enhancement α (b) in the right end element as a function of the average inclusion size h I .
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 51 Figure 5.1: Debonding problem at the microscale. Three-dimensional (a) and twodimensional (b) representations.

Figure 5 . 2 :

 52 Figure 5.2: Debonding problem at the macroscale. Three-dimensional (a) and twodimensional (b) representations.

  e I ) s r dθλ = -π 0 τ r dθ e I λ = 2 r τ Γ e I (5.21)

  For what concerns the elementary contributions K e,k ij associated only with d and α, we have: α ) T D k B α dV (5.44) with D k the material stiffness at iteration k, whereas the elementary stiffness matrices related with e are: c ) T D k B c dV = K e,k disc -K e,k αα (5.49) with B bulk c = -B α , B * bulk c = -B * α and K e,k disc defined as:

. 59 )Figure 5 . 3 :

 5953 Figure 5.3: Snap-back response and distinction between dissipative and non-dissipative solutions [93].

  disc (e) + t e,- disc (e) + p T Σ e (d, α, e) e t = 0 (5.64c)P(d, α, η; τ) = 0 (5.64d)

I

  δd k+1 = δη k+1 δd k+1 I displacement increment δα k+1 (see equation 5.60), can be written as: δα k+1 = δη k+1 δα k+1 rk , KΓ,k αα and KΓ,k αd expressed by relations 5.57, 5.58 and 5.57, respectively. From equation 5.65d, on can then compute the load factor increment:δη k+1 = -P k -
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 54 Figure 5.4: Problem 1.Test-setup according to[START_REF] Fkf Radtke | A partition of unity finite element method for obtaining elastic properties of continua with embedded thin fibres[END_REF] for comparison with the PUFEM approach and the Shear-Lag solution.
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 5556 Figure 5.5: Comparison between the PUFEM and the Shear-Lag model for different values of the interface stiffness (reproduction from [91]). Bond stress (a), fibre stress (b).
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 5758 Figure 5.7: Comparison between the PUFEM and the Shear-Lag model for different fibre/matrix stiffness ratios (reproduction from [91]). Bond stress (a), fibre stress (b).
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 59 Figure 5.9: Problem 2. Structure with embedded fibre of arbitrary orientation β and varying length according to [91].

Figure 5 . 10 :

 510 Figure 5.10: Convergence curves of the reaction force F computed by the enhanced model, the PUFEM and the standard model with interface finite elements for β = 0 • and = 3.8 mm. Plot with respect the total number of dofs (a), plot with respect the additional dofs (b).

Figure 5 . 11 :

 511 Figure 5.11: Convergence curves of the reaction force F computed by the enhanced model, the PUFEM and the standard model with interface finite elements for for β = 30 • and = 3.8 mm. Plot with respect the total number of dofs (a), plot with respect the additional dofs (b).
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 5125 Figure 5.12: Comparison between the enhanced model, the PUFEM and the standard model with interface finite elements for k en s = 7 × 10 3 N/mm 2 , k pu f em s = 5 × 10 4 N/mm 2 and k std s,0 = 1.5 × 10 4 N/mm 2 . Bond slip profiles and interface stress profiles for β = 0 • and = 1 mm (a)-(d), = 2 mm (b)-(e), = 3 mm (c)-(f).

Figure 5 . 13 :

 513 Figure 5.13: Comparison between the enhanced model, the PUFEM and the standard model with interface finite elements for k en s = k pu f em s = k std s,0 = 5 × 10 4 . Bond slip profiles and interface stress profiles for β = 0 • and = 1 mm (a)-(d), = 2 mm (b)-(e), = 3 mm (c)-(f).

Figure 5 . 14 :

 514 Figure 5.14: Non-linear interface constitutive laws. BPE model (a), modified BPE model.

Figure 5 . 15 :

 515 Figure 5.15: In-situ test. Pull-out geometry (a), considered discretisations (b).

Figure 5 . 16 :

 516 Figure 5.16: Global quantities. Pull-out response (a), stiffness degradation (b).

Figure 5 . 17 :

 517 Figure 5.17: Derivative of the stiffness degradation with respect to the slip.

Figure 5 . 18 :

 518 Figure 5.18: Local quantities at times t 0 -t 4 computed by means of two discretisations comprising n en = 10 (5.18a-5.18c) and n en = 58 (5.18d-5.18f) enhanced elements. Anchor stress profiles (figures (a) and (d)), interfacial shear stress (figures (b) and (e)), anchor slip (figures (c) and (f)).
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 21 Comparison between properties of fibres, resin and steel[START_REF]Guide for the design and construction of externally bonded FRP systems for strengthening existing structures[END_REF].

  Two subclasses can be identified according to the insertion angle of the dowel with respect to the FRP strip: straight (longitudinal) anchors and transversal anchors (see figure2.13a). Examples of application are shown in figure2.13b. Let us note that the mechanical characterisation of the two systems can be done in rather different ways, by means of pull-out[START_REF] Chalot | Renforcement de liaison dalles/voiles par PRF, application au renforcement parasismique[END_REF][START_REF] Kim | Pullout tests on FRP anchors[END_REF][START_REF] Ozbakkaloglu | Tensile behavior of FRP anchors in concrete[END_REF][START_REF] Ozdemir | Tensile capacities of CFRP anchors[END_REF] and shear tests[START_REF] Sl Orton | Development of a CFRP system to provide continuity in existing reinforced concrete buildings vulnerable to progressive collapse[END_REF], respectively, as depicted in figure 2.14. Inclined anchors are then obtained by considering intermediate configurations. Moreover, a further distinction can be made between wet and dry anchors. The first type consists in fibre impregnation prior to the dowel formation, whereas the second type is formed in dry conditions. The anchor fabrication is described in figure2.15 for both typologies, whereas the installation procedure is detailed in figure2.16 according to Zhang et al.[START_REF] Hw Zhang | Optimisation of carbon and glass FRP anchor design[END_REF].

	Qazi et al. studied the behaviour of inclined anchorages in strengthened RC
	joints [87]. Four layouts characterised by two types of anchors and different bond-
	(a)	(b)
	Figure 2.14: Pull-out test configuration for longitudinal CFRP anchors [83], shear test
	configuration for transversal anchors [79].	

MODE Parameter Influence on anchor behaviour Reference 1

  

		Concrete strength	Negligible on the bond strength; important for the cone capacity	
		Embedment depth	Inversely proportional to the depth and width of the concrete cone	Ozbakkaloglu et al. [82]
		Dowel inclination	Beyond 15 • , reduces significanly the anchor capacity	
			Increases the anchorage strength	Llaurado et al. [63]
		Embedment depth	Small influence if greater than the effective length Inversely proportional to the uniform shear resistance of the	Ozdemir et al. [83]
	2		interface	
		Dowel cross-section Inversely proportional to the uniform interface shear resistance	Ozbakkaloglu et al. [82]
		Concrete strength	Not observed	
		Hole diameter	The ratio (hole diameter)/(dowel cross-section) is noninfluencing on the dowel debonding	Zhang et al. [128]
	3		A depth of 150 mm allows to increase the safety coefficient of 16%	
		Embedment depth	with respect to a depth of 50 mm	Llaurado et al. [63]
			Less significant for inclined anchors	
		Fan orientation	Must be towards the force origin	Zhang et al. [128]
			Bigger diameters allow to engage a larger effective width of the strip Niemitz et al. [74]
	4	Fan diameter	Several overlapping small anchors with small fan diameters are more effective than a single anchor	Orton et al. [80]
		Hole diameter	Not observed	
		Concrete strength	Not observed	Orton et al. [80]
	5	FRP strip width	Increases the capacity (non-linear relation)	
		Dowel cross-section Increases the capacity (non-linear relation due to defect sensitivity) Fan opening angle Reduces the anchor capacity	Del Rey Castillo et al. [95]

Table 2 . 2 :

 22 Influence of the anchor configuration on its behaviour.

Table 3 .

 3 

	Point t (×10 4 s) δ v (×10 -3 m)
	A	0.008	0.4
	B	0.368	
	C	0.728	
	D	0.750	1.5
	E	1.110	
	F	1.134	2.7
	G	1.494	
	H	1.530	4.5
	I	1.890	
	L	1.930	6.5
	M	2.290	

1: Loading steps.

  1) in the transition zone and the longitudinal crack (n.2) developing alongside the anchor, are initiated. With reference to figure 3.16b, let

	specimen	δ vu (×10 -3 m) F vu (N) δ hu (×10 -3 m) F hu (N)	Detail
	1	6.0	380	3.0	759	Combined mode
	2 (ref.)	6.5	359	3.3	717	Combined mode
	3	6.2	338	3.1	675	Combined mode
	4	5.5	376	2.8	751	Fibre rupture
	5	-	-	-	-	-

Table 3 .

 3 

2: Measured responses and observed failure modes.

Table 3 .

 3 

	2	5.21 × 10 -5 8.64 × 10 -4 3.91 × 10 -4 0.0064 0.0085 0.0072 0.0171 0.0899 0.2605 0.0243 0.0142 0.0262

3: Systematic errors and uncertainties computed for the DVC volumes. All quantities expressed in voxels ( vox = 144 µm).

Table 4 . 1 :

 41 Relative error (%) with respect to the assumed exact solution in the computation of the right end displacement for different modeling approaches.

  Strain energy norm error as a function of the CPU time.

		10 1			
			en(1) σ std ε E	E	en(2) ε ref ε E	E
	energy norm error	10 0		2.6 s	
				7.0 s
		10 -2 10 -1	10 -1	10 0		10 1	10 2
			t CPU (s)	
	Figure 4.24:				

  By following the same reasoning as in the previous section, equation 5.65a can be rewritten in the more compact form in terms of the sole nodal displacement and load factor increments δd k+1 and δη k+1 , i.e.

		∂d k	δd k+1 +	∂R ∂α k	δα k+1 +	∂R ∂e k	δe k+1 -δη k+1	Fext = 0 (5.65a)
	r k +	∂r ∂d k	δd k+1 +	∂r ∂α k	δα k+1 +	∂r ∂e k	δe k+1 = 0	(5.65b)
	g k +	∂g ∂d k	δd k+1 +		∂g ∂α k	δα k+1 +	∂g ∂e k	δe k+1 = 0	(5.65c)
	P k +	∂P ∂d k	δd k+1 +		∂P ∂α k	δα k+1 +	∂P ∂η k	δη k+1 = 0	(5.65d)
						KΓ,k dd δd k+1 -δη k+1	Fext = -Rk	(5.66)
	with Rk and KΓ,k dd defined as in equations 5.61 and 5.62, respectively. The nodal
	displacement increment can therefore be expressed in the following manner:

  .1. Four discretisations comprising 67, 146, 475 and 1811 enhanced CST elements are compared (see figure 5.15b). The number of enhnanced elements are 10, 15, 30 and 56.

		E (GPa)	ν	t (mm)	A mesh (mm 2 ) f u (MPa)	(mm) D 0 (mm)
	Concrete	30	0.2	0.036	-	-	-	-
	Adhesive	5	0.2	0.036	-	-	-	-
	CFRP mesh	60	-	-	20	600	50	5
		α	τ 1 (MPa) τ 2 (MPa)	τ 3 (MPa)	s 1 (µm)	s 2 (µm)	s 3 (µm)
	Interface	0.1	1	1.25	0.2	40	250	500

Table 5 .
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1: Material and geometrical parameters.

In the following, we will refer to carbon solutions. The terms FRP and CFRP will therefore be indistinctly employed.

From now on, no distinction will be made between the two terms.

ûΓ (x) = ûΓ s (x) e I , ∀x ∈ Γ (4.17)On two opposite sides of the interface, the compatible strain reads:ε - Γ (x) = ∇ s ū| Γ + ∇ s û-

This is an arbitrary choice that can be eventually removed.