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Abstract

Born-analog documents contain enormous knowledge which is valuable to our society.

For the purpose of preservation and easy accessibility, several digitisation projects have

converted these documents into digital texts by using optical character recognition (OCR)

software. Some existing problems of OCR techniques prevent users and further processes

from accessing, searching, or retrieving information on these digitised collections, and so

limit the benefits of these above projects.

A notable limitation is the fact that certain meaningful structures such as chapters,

sections, etc., are not available from OCRed books. Thus, it is not convenient for users

to navigate or search information inside books. Another constraint is that the accuracy

of modern OCR engines on historical documents substantially decreases. Erroneous OCR

output considerably impacts on the performance of search engines and natural language

processing systems. This thesis facilitates access to historical digitised documents by

addressing such problems.

Several approaches are proposed within this thesis, aiming to reconstruct the logical

book structures and to improve the quality of digitised text.

The first contribution is to rebuild the logical book structures. An ensemble method

is introduced to extract tables of contents of digitised books. Experimental results show

that our approach outperforms the state-of-the-art for both evaluation metrics.

The major contribution of this thesis is to provide methodologies to reduce OCR

errors. Common and different features between OCR errors and human misspellings are

clarified for better designing post-OCR processing. Normally, a post-processing system

detects and corrects remaining errors. However, it is reasonable to treat them separately in

some applications which allow to filter out, flag, or selectively reprocess such data. In this

thesis, we examine different post-OCR approaches, ones based on error model and language

model, and others that involve neural network models. Results reveal that the performance

of our proposals is comparable to several strong baselines on English datasets of the two

competitions on post-OCR text correction organised in the International Conference on

Document Analysis and Recognition in 2017 and 2019.
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Résumé

Les documents papiers sont à la base de nos connaissances et renferment une myriade

d’information dont certaines sont très précieuses pour notre société. Dans un but de

préservation et afin de les rendre plus accessibles, de nombreux projets de numérisation

visent à convertir ce type de documents en textes numérisés, notamment en utilisant des

logiciels de reconnaissance optique de caractères (OCR). Toutefois, certains problèmes

inhérents aux techniques actuelles d’OCR rendent difficiles la recherche ou l’accès aux

informations présentes dans ces collections numérisées, tant pour les utilisateurs que pour

les processus automatiques, et limitent ainsi l’impact de ces efforts de numérisation.

L’une des limitations de la numérisation repose sur le processus même puisque les doc-

uments numérisés ne sont pas immédiatement réprésentés sous leur forme logique (partie,

chapitre, section, etc.), mais de façon physique. Ainsi, une œuvre sera numérisée page

par page, ce qui ne correspondant généralement qu’à une organisation physique et pas à

l’intention rédactionnelle des auteurs. La structure logique des documents doit ainsi être

extraite afin de permettre aux utilisateurs de naviguer dans les collections ou même de

trouver des informations au sein d’un ouvrage.

Un second verrou du processus de numérisation, qui en est également le plus important,

correspond aux performances des moteurs d’OCR. En effet, celles-ci sont substantiellement

réduites pour les documents patrimoniaux qui ont généralement subis des dégradations.

Les erreurs d’OCR que cela induit ont un impact non négligeable sur la performance des

outils de recherches et sur les systèmes de traitement du langage naturel puisqu’il faut par

exemple apparier des besoins bien écrits à des textes mal reconnus. Cette thèse a pour

objectif de faciliter l’accès aux documents historiques numérisés en étudiant les problèmes

précédemment mentionnés.

En vue de faciliter l’accès aux documents historiques, plusieurs approches sont pro-

posées, visant à reconstruire les structures logiques des ouvrages et à améliorer la qualité

des textes numérisés par OCR.

En ce qui concerne l’extraction de la structure logique, nous avons développé des

approches de fusion combinant des méthodes préexistantes afin d’extraire la table des

matières d’ouvrages numérisés. Nos expériences ont démontré que cette approche surpasse
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l’état de l’art. La contribution majeure de cette thèse fournit, quant à elle, des méthodes

pour la détection et la correction des erreurs d’OCR. Les caractéristiques communes et

divergentes entre les erreurs d’OCR et celles des utilisateurs sont clarifiées pour mieux

concevoir les traitements post-OCR. Normalement, un système de post-traitement détecte

et rectifie les erreurs résiduelles. Toutefois, il peut être préférable de gérer ces erreurs

séparément grâce à des applications qui permettent de filtrer, d’étiqueter, ou de traiter

sélectivement de telles données. Dans cette étude, nous examinons différentes approches

post-OCR basées sur la modélisation des erreurs typiques observées, et sur des modèles de

réseaux de neurones. Les résultats montrent que les performances de nos méthodes sont

comparables à plusieurs méthodes de référence sur des jeux de données en anglais utilisés

lors des deux premières éditions de la compétition sur la correction des textes post-OCR

organisée durant les conférence ICDAR en 2017 et 2019.

Mots-clés: extraction de la table des matières, extraction de la structure d’un livre,

traitements post-OCR, correction des erreurs post-OCR, détection des erreurs post-OCR.
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CHAPTER 1

Introduction

1.1 Background

Historical documents contain valuable knowledge that gets enormous attention from re-

searchers and libraries around the world. Substantial efforts have been devoted to trans-

form such analog material into electronic text, aiming at better preservation and easier

access by a much wider audience. This transformation is known as digitisation [79].

Some notable digitisation projects are Europeana1, Project Gutenberg2, Wikisource3,

Google Books4, and so on. Europeana serves as a portal which allows to access digitised

corpus of many European museums, galleries, libraries and archives. Project Gutenberg

and Wikisource are non-profit crowd-sourcing projects which create freely available digital

documents. Google Books is a massive commercial digitisation project that intends for an

online searchable catalog of books.

The digitising process involves the efficient scanning or photographing of documents,

1http://europeana.eu/ (accessed 2019-10-30)
2http://www.gutenberg.org/ (accessed 2019-10-30)
3http://wikisource.org/ (accessed 2019-10-30)
4https://support.google.com/books/partner/faq/3396243 (accessed 2019-10-30)

1

http://europeana.eu/
http://www.gutenberg.org/
http://wikisource.org/
https://support.google.com/books/partner/faq/3396243
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Figure 1.1: Standard steps of OCR procedure.

page-by-page, and the conversion of the image of each page into computer-readable text.

The selection of digitisation techniques relies on several factors, such as the medium, the

type of writing, the language, etc. In any case, the first step is to create digital images of

documents by using scanners or digital cameras. When digital objects are available, two

common approaches are manual text entry, and OCR software.

Manual text entry typically requires at least two typists to enter text into computers

(known as double-keying). The typescripts are compared to highlight mismatches, next, a

proofreader makes a choice to correct the transcription. Since double-keying and proofing

are very labor-intensive, keying entry is often outsourced to service providers in countries

with lower wages than in Europe or America, known as offshore double-keying. How-

ever, offshore outsourcing is still expensive and associated with some security issues when

sharing information to the third party.

OCR software is a cost-efficient alternative of manual text entry without any security

problems. This technique yields good recognition rates on modern documents, and has

become one of the widely used and effective methods for the automatic conversion of

printed text. Starting from images, generally, the OCR system detects and orders positions

and types of all important zones in documents. Zones, then, are segmented into words

which are, in turn, divided into characters. The last process classifies them into their

corresponding character codes. Figure 1.1 shows the standard conversion steps of OCR

procedure.

In principle, once these digitised documents are available online, multiple users can

easily search, select, and make use of them simultaneously from various locations at any

time. Indeed, people get their information by simply entering keywords into search engines,

then the computer system will provide them a list of relevant results. If returned outputs
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are books, readers may expect to apply the similar behaviour of reading digital-born books

by looking at hyperlinked tables of contents and navigating to their selective pages.

Nevertheless, the digitised historical documents are not error-free due to various rea-

sons. While OCR tools are designed to process text with standard spellings and modern

typefaces, spellings of historical text and typefaces in past prints may differ from the cur-

rent ones. For instance, take a look at spelling variation between a text printed in 1490

and its modernised edition in 2000, ‘After dyuerse werkes made translated and achieued

hauyng noo werke in hande.’ vs. ‘After diverse works made, translated and achieved,

having no work in hand’ [83]. Figure 1.2 illustrates the similarity of some characters that

can also pose challenges to the human eye.

In addition, the physical quality of the original materials, the complicated layouts, etc.,

also have bad effects on performance of current OCR software. The more highly degraded

the input, the higher the error rate. An example of the 18th century printed documents

and its corresponding noisy OCRed text are respectively illustrated in Figures 1.3 and 1.4.

Figure 1.2: Gothic characters are frequently confused by OCR system. From left to right,
the characters are: s (in its long form), f, u, n, u or n, B, V, R, N [29].

Although OCR engines have been constantly improved, they still lack adequate training

data of past documents that is their strict requirement to achieve similar performance on

historical text. Their parameters should be adapted to each kind of document, which is

not feasible when processing the large number of pages. Furthermore, previously digitised

resources processed with outdated OCR software are rarely resent to the state-of-the-art

digitisation pipeline, as priority is often given to the masses of newly incoming documents.

As a result, digitised historical collections still contain errors.

It is obvious that the noise induced by OCR technologies presents a serious challenge

to downstream processes that attempt to make use of such data. Digital documents are
4http://pergamentai.mch.mii.lt/DokPranc/indexen.en.htm (accessed on 2019-10-30)

http://pergamentai.mch.mii.lt/DokPranc/indexen.en.htm
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Figure 1.3: The oldest known document printed in Australia, a theatre playbill 1796 [46].

Figure 1.4: OCRed text of the theatre playbill in Figure 1.3.
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indexed through their error-prone OCRed version, thus, computing systems may miss

some relevant documents in their responses to user queries. Chiron et al. [9] estimated the

impact of OCR errors on the use of the Gallica digital library from the National Library

of France. They indicated that 7% of common search terms, which are queried at least 35

times, are potentially affected by OCR errors. Information retrieval performance remains

good for relatively high error rates on long texts [96], but it drops dramatically [13, 70]

on short text.

The impact of noisy OCRed text on other natural language processing (NLP) appli-

cations has been studied. Performance of named entity recognition tool, which extracts

named persons, named locations, named organisations, etc., from text, considerably de-

grades with the rises of the error rate of OCR output [35, 69]. Text summarisation,

which creates a summary representing the most important content of the original, suffers

significant degradation on noisy input even with slight increases in the noise level of a

document [41]. OCR errors cause negative influences on topic modeling, which discovers

the abstract topic occurring in a collection of documents [72], and sentiment analysis if

sentiment bearing words are not recognised well.

Digitised documents are not only noisy but also unstructured. Actually, OCR tech-

nologies typically produce the full text of digitised books with only the physical structures,

such as pages, paragraphs, lines, and words. The absence of logical structures (e.g., chap-

ters, sections) makes readers impossible to navigate to their desirable sub-parts by simply

clicking on the corresponding part of the hyperlinked ToC.

Furthermore, another issue of missing logical structure is that users cannot take an

advantage from structured information retrieval, which is proved to increase retrieval per-

formance [99], to directly access to relevant parts of their information need in digital

libraries. Structured information retrieval is defined as the search over structure docu-

ments 5 where a markup language like eXtensible Markup Language (XML) is used to

identify document parts along with their meanings.

As a consequence, it is critically essential to improve the existing digitised historical

collections for facilitating access to past documents and for further automatic processing.

5https://nlp.stanford.edu/IR-book/html/htmledition/xml-retrieval-1.html (accessed on 2020-02-01)

https://nlp.stanford.edu/IR-book/html/htmledition/xml-retrieval-1.html
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This can be carried out by fixing remaining errors of OCR results (named as Post-OCR

processing) as well as re-establishing logical structures (named as Table of Contents ex-

traction) defined by book authors (e.g., chapters, sections, etc.).

Post-OCR processing is in charge of detecting and correcting erroneous OCRed tokens.

Post-OCR error detection is meant for identifying positions of incorrect tokens by using

dictionaries or other NLP resources. On one hand, the error detection supports human

assistants to quickly rectify errors by locating their positions, and on the other hand, it

enables to filter out, flag, or selectively reprocess such data if necessary. Furthermore,

the error detection produces the input of post-OCR error correction which is intended for

rectifying invalid tokens by different techniques.

Table of contents (ToC) extraction is responsible for reconstructing logical book struc-

tures. Depending on whether books contain ToC pages or not, ToC can be recognised

from such pages and/or derived from the entire book content. ToC extraction approaches

will generate a hyperlinked table of contents of each digitised book. Such hyperlinked

table contains title, link, deep level for each ToC entry. For example, given a ToC entry

as a book chapter, its title is the chapter title, its link is the physical page number, and

its depth level is the depth at which the chapter is found in the ToC tree.

This dissertation concentrates on facilitating access to historical documents for users

and further processes by rebuilding logical document structures and providing higher qual-

ity of OCRed text. Indeed, readers easily search and navigate inside documents with the

help of structural information and less erroneous text. Search engines and natural lan-

guage processing applications like text information extraction, text summarisation, topic

modeling, sentiment analysis, part of speech tagging, etc., can yield higher performance

with cleaner digitised texts.

1.2 Research problems and main contributions

Limitations of modern OCR technologies in handling historical documents lead to diffi-

culties in reading, retrieving as well as further processes on digitised collections. In other

words, they have partly reduced the benefits of digitisation projects by preventing readers
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from acquiring knowledge from past documents. It is necessary to minimise the influences

of such problems of OCR technologies. This, as a result, is the main purpose of the the-

sis, which complements OCR techniques by providing logical structural information and

improving quality of digitised text.

This thesis presents four key contributions which support the usage of historical doc-

uments by rebuilding logical book structures, detecting and correcting invalid OCRed

tokens. These results are listed below.

1. Digitisation has constantly increased the number of historical digitised books. How-

ever, most of them are in a full text mode with some simple structural information.

More complicated logical book structures are often missing, which results in diffi-

culties for users to search and browse inside a book. The first part of this work is

to enhance OCR methods by extracting these sophisticated structures for digitised

books. Such information can then be used to aid user navigation as well as to im-

prove search performance. In Chapter 4, we introduce an ensemble approach [73]

which combines prior book structure extraction approaches based on carefully taking

advantages of each method.

2. The accuracy of OCR technologies remarkably affects further processes on digital

documents. Most parts of the thesis focus on post-processing approaches to improve

the quality of OCRed texts. Naturally, a deep understanding of OCRed text, of

course, leads to better designing post-processing approaches. Therefore, in Chap-

ter 5, we study characteristics of OCR output and compare them to human gen-

erated misspellings [76]. Our analyses, thus, reveal some clues to guide post-OCR

approaches.

3. Typically, a post-processing system detects and corrects remaining errors. However,

in some scenarios, decoupling these tasks is a wise solution. In mass digitisation

projects, source materials may vary regarding different levels of conservation, lan-

guage, domains, ect. Quality of the resulting OCRed text is consequently diverse

as well. In such case, people may prefer to figure out anomalous text regions, and

decide further operations on such data rather than automatically rectifying OCR
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output. In this thesis, as a result, we consider them as two separate tasks.

Post-OCR error detection is to identify potential erroneous OCRed tokens. We

present two novel error detection approaches in Chapter 6. One of them applies

binary classification with several new features extracted from a list of plausible can-

didates for each OCRed token [77]. The other fine-tunes Bidirectional Encoder

Representations from Transformers (BERT) models to detect erroneous tokens.

4. Post-OCR error correction is to fix errors with a given list of error positions. Two

correction approaches are proposed and reported in Chapter 7. The first one utilises

an adaptive edit distance and some other important features in regression model [74].

The second one transforms OCRed text into corrected text based on neural machine

translation models with some variations.

1.3 Method overview

In this thesis, some approaches are suggested to enrich access to historical text, which

are divided into three tasks, including ToC extraction, post-OCR error detection, and

post-OCR error correction.

In terms of ToC extraction, an ensemble method is designed to carefully combine some

existing approaches. Since a large portion of books are integrated with physical tables

of contents indicating their logical organisations, therefore, most of methods depend on

the detection and the analysis on ToC areas to find out and link ToC entries with their

corresponding pages. Some others process all book content to extract logical structures,

without considering ToC pages. Hybrid ones handle books with or without ToC pages,

which recreate book structures by analysing either the ToC areas or the full book content.

Performances of such hybrid methods are inferior to those of the method exploiting ToC

areas [22, 23, 25]. Our aggregation proposal is different from these methods, we fully

combine the analysis on both ToC areas and book content over the same document.

In terms of the post-OCR error detection, two proposed approaches are implemented.

The first one employs statistical features extracted from lexicon, error channel, language

model to detect errors. Each OCRed token needs to prove itself to be a correct one
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among its replaceable candidates through a set of different features from both character

and word levels. Inspired by the winner of the competition on post-OCR text correction

in ICDAR2019 [89], the second error detection approach exploits neural network based

language model to identify incorrect OCRed tokens. BERT is well-known as deep bidi-

rectional language model, which can be fine-tuned to create state-of-the-art models for a

wide range of NLP tasks. In our case, BERT model is trained with some modifications in

order to find error positions.

Regarding the post-OCR error correction, the statistical and neural machine trans-

lation based approaches are developed. The statistical one applies regression model to

select the top-matching correction candidate with features related to error channel, and a

statistical or neural network based language model. Machine translation (MT) system is

adapted to correct errors by translating OCRed text into corrected text. Given a list of

error positions or a list of detected errors, the input and output of MT system are charac-

ter sequences of word ngrams related to errors of OCRed text and those of corresponding

ngrams from ground truth (GT) text, respectively.

1.4 Thesis outline

This manuscript is structured as follows:

• Chapter 2 surveys the state-of-the-art work on extracting book structure information

(e.g., chapter, section, etc.) and on post-OCR processing. Their advantages and

disadvantages are highlighted.

• In Chapter 3, we provide an overview of datasets and measures used to evaluate our

models. All of datasets are open access, and come from two competitions of the

International Conference on Document Analysis and Recognition on book structure

extraction and on post-OCR text correction. Similarly, evaluation metrics are official

ones of these two competitions.

• Chapter 4 introduces an aggregation-based method to enhance ToC extraction using

system submissions from the ICDAR Book structure extraction competitions (2009,



10 Chapter 1. Introduction

2011, and 2013). The logical structure information is very helpful for reader to search

or browse inside a book.

• In Chapter 5, we study OCR process and provide a detailed comparison between

OCR errors and human spelling mistakes. The deep analysis on invalid OCRed

tokens is included towards developing effective post-processing approaches.

• Two error detectors are reported in detail in Chapter 6. The first approach em-

ploys different features of both character and word levels to find erroneous tokens.

The second one adjusts the well-known contextual language model and static word

embeddings to detect errors.

• In Chapter 7, two correction approaches are presented. One of them explores a mod-

ified way of candidate generating and candidate scoring to select the best candidate

for each error. The other one adapts machine translation technique to transform

OCR errors to corrected tokens with some extra features.

• Finally, the thesis concludes in Chapter 8 and gives an outlook on future work.

1.5 List of publications

Results presented in this thesis were published by the author, as listed below:

• Thi Tuyet Hai Nguyen, Adam Jatowt, Nhu-Van Nguyen, Mickaël Coustaty, and

Antoine Doucet. Neural Machine Translation with BERT for Post-OCR Error De-

tection and Correction. In 20th ACM/IEEE Joint Conference on Digital Libraries,

JCDL 2020, Accepted. [Chapters 6 and 7].

• Thi Tuyet Hai Nguyen, Adam Jatowt, Mickaël Coustaty, Nhu-Van Nguyen, and An-

toine Doucet. Post-OCR error detection by generating plausible candidates. In 15th

IAPR International Conference on Document Analysis and Recognition, ICDAR

2019, Sydney, Australia, 2019. [Chapter 6].
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Antoine Doucet. Deep statistical analysis of OCR errors for effective post-ocr pro-

cessing. In 19th ACM/IEEE Joint Conference on Digital Libraries, JCDL 2019,

Champaign, IL, USA, pages 29-38, 2019. [Chapter 5].

• Thi Tuyet Hai Nguyen, Mickaël Coustaty, Antoine Doucet, Adam Jatowt, and Nhu-

Van Nguyen. Adaptive edit-distance and regression approach for post-OCR text

correction. In Maturity and Innovation in Digital Libraries - 20th International

Conference on Asia-Pacific Digital Libraries, ICADL 2018, Hamilton, New Zealand,

pages 278-289, 2018. [Chapter 7].

• Thi Tuyet Hai Nguyen, Antoine Doucet, and Mickaël Coustaty. Enhancing table of

contents extraction by system aggregation. In 14th IAPR International Conference

on Document Analysisand Recognition, ICDAR 2017, Kyoto, Japan, pages 242-247,

2017. [Chapter 4].
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CHAPTER 2

Related work

Results of OCR technologies are missing high-level structures of document contents (e.g.,

chapter, section) and still erroneous. A lot of efforts are dedicated to overcome such lim-

itations aiming at facilitating the usage of digitised historical texts. Several methods are

suggested to rebuild logical book structures which not only enrich user navigation expe-

riences but also structure digitised documents for better structure retrieval performance.

Likewise, there are a wide range of post-OCR approaches that improve the quality of

OCRed text by identifying and rectifying remaining erroneous tokens. In this chapter, we

give a detailed overview of multiple approaches on reconstructing high-level book struc-

tures and those on post-processing.

2.1 Table of contents extraction

Along with the development of digital libraries, several digitised historical books have

been accessible via the Internet. Many approaches have been proposed to rebuild book

structures, aiming to provide users a convenient way to locate or browse their content of

interest. There are some challenges in dealing with extracting table of contents that is a

13
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list of ToC entries each of which includes three elements: title, page number and level of

the title. On one hand, the limitation of OCR technologies on historical documents causes

troubles for structuring analysis, especially when some keywords like ‘chapter’, ‘section’

are wrongly recognised. On the other hand, historical books have various layout formats.

Figures 2.1, 2.2 and 2.3 illustrate some different ToC types such as hierarchical ToC, ToC

with multiple-line entries or ToC in double-column layout.

Figure 2.1: Hierarchical ToC from ‘History of ethics within organized Christianity’,
Thomas Cuming Hall, 1910.

Book structure extraction approaches can be classified into three types: methods based

on the recognition and analysis of pages containing a table of contents, methods analysing

the full content of the book and notably looking for internal titles, and hybrid methods [21].

ToC-recognition-based type. The first approach type relies on the detection of ToC

pages. Typically, approaches of this type concentrate on detecting ToC pages within a

book, then extracting all ToC entries from such pages. Next, the remaining book content

is only processed for identifying links between titles and pages.

The best performing approach (named as MDCS) of the three competitions belongs to

this type, and was developed by Dresevic et al. [26]. The approach recognised ToC pages

and assigned each physical page with a logical page number. After that, each ToC page
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Figure 2.2: Multiple-line ToC entries from ‘A key to the birds of Australia : with their
geographical distribution’, Robert W. Hall, 1906.

was analysed for ToC sections whose important parts were processed to detect titles and

corresponding page numbers. In the next step, a fuzzy search technique was applied to

identify links between titles and page numbers. All parts of this ToC extraction engine

were based on pattern occurrences obtained from their training datasets.

Several methods of this type used ad-hoc rules derived from limited datasets to locate

and parse ToC entries [57, 98]. Instead of applying the same rules for all ToC layouts,

Wu et al. [103] studied the detail content of ToC pages and took the diversity of ToC

layouts into consideration. They introduced three basic ToC layout styles, namely, ‘flat’,

‘ordered’, and ‘divided’. They further designed three corresponding rule-based techniques

for processing each of these styles. The ToC layout style classification was used as a

complement step before the extraction of ToC entries.

The Epita approach [56] relied on the text boxes provided in portable document format

(PDF) documents. It first searched the ToC areas and then reconstructed ToC entries

based on the features of text boxes: alignments, lines ending with numbers or not, etc.

Page linking was found using the difference between the page number of a page in the

middle of the book and its page number written in the book.

The disadvantage of this kind of approach is that it mainly relies on ToC pages to

extract ToC entries, therefore its performance can be significantly decreased in case of
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Figure 2.3: ToC in double-column layout, from ‘The works of William Cowper : his life,
letters, and poems’, William Cowper, Thomas Shuttleworth Grimshawe, John William
Cunningham, 1857.

books without ToC pages, or whenever the physical or digitised version of the ToC pages

is damaged or altered.

Book-content-based type. To overcome the problems of the first approach type,

the second type focuses on the analysis of the entire book content instead of focusing on

its ToC pages. The representative approach of this type (named as Greyc) was presented

by Giguet et al. [31, 32]. They used a four-page window to search a large white-space

which was considered as a strong indicator of the ending of a chapter and the beginning

of a new one. After finding the relevant pages, they extracted entry titles from the third

page of the sliding window.

Similarly, Déjean et al. [16] exploited page breaks to identify book parts. The breaks

associating with high-level book structures (part, chapter) create white-spaces on top

of page (leading pages) or bottom of pages (trailing pages). They reported that their

approach achieved very good precision and lower recall since other structures unmarked a

page break are not detected.

In our point of view, approaches of this type are totally unsupervised and language-

independent. They are capable of handling documents with or without ToC as well as are

not affected by erroneous ToC pages. However, they require a large memory for processing

the whole document even in the case of a book with clear and exhaustive ToC areas.
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Hybrid type. In out-of-copyright books, it is observed that as many as 20% books

do not contain any ToC [24]. It, thus, seems necessary to use approaches of the hybrid

type. In particular, they enable to extract logical book structures from books with and

without ToC pages.

The method of Liu et al. [59] (named as Nankai) considered whether a book has ToC

pages or not, then applied the appropriate approach. A rule-based method was designed

for books with ToC pages while machine learning was used to deal with books without

ToC pages.

Different from approaches applying traditional rule-based method and classical boolean

logic, Gander et al. [30] utilised the power of rule-based method with the flexibility of the

fuzzy logic, aiming to better handle several OCR flaws as well as variations in the book

structure styles. Additionally, results were carefully refined by a grammar-based method

in the final step. Their method was called as Innsbruck in the competition.

Another approach (named as XRCE) [17, 18] combined a rule-based method, a su-

pervised one and similar strong indicators Déjean et al. [16] in order to extract the ToC

entries. Four techniques were applied in their suggestion. The first and second ones used a

rule-based technique to parse ToC pages and index pages. The supervised method relying

on five generic properties (contiguity, textual similarity, ordering, optional elements, no

self-reference) and on some document layout specificities was the core of the third method.

The last one relied on the leading and trailing page white-spaces.

This type of approach is promising in that it could properly handle all books, with or

without ToC pages. However, it still underperforms the MDCS approach in all the three

competitions on book structure extraction.

Conclusion. In summary, no approach has fully combined the features from the ToC

pages and those from the book content, even in the case of the hybrid methods. The latter

underperforms the best ToC-recognition-based approaches according to the official results

of the three ICDAR book structure extraction competitions [23–25].

Our analysis of the submissions to the three competitions indicates that the MDCS

approach always obtains the best performance on 1,653 books with ToC pages. The XRCE

1Two evaluation metrics (i.e., title-based, link-based) are described in detail in Section 3.2.1.
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Table 2.1: Detail performance scores over the ICDAR 2009 competition dataset on title-
based and link-based measures1.

Method
F-measure

Books with ToC Books without ToC

Title-based Link-based Title-based Link-based

Greyc [32] 0.07 1.5 0.13 0.5

Noopsis [23] 10 47.7 0.87 2.8

XRCE [17, 18] 33.17 72.4 7.81 22.6

MDCS [26] 50.84 78.8 0.13 7.4

Table 2.2: Detail performance scores over the ICDAR 2011 competition dataset on title-
based and link-based measures.

Method
F-measure

Books with ToC Books without ToC

Title-based Link-based Title-based Link-based

Greyc [32] 9.47 52.5 6.9 42.5

XRCE [17, 18] 19.02 58.4 26.32 53.8

Nankai [59] 38.85 71.6 7.93 26.9

MDCS [26] 48.96 78.2 5.12 8.6

approach achieves the highest performance on the 187 books without ToC pages of the

competition datasets in ICDAR 2009 and ICDAR 2011. The Greyc approach is the best on

the 167 books without ToC pages of the ICDAR 2013 competition dataset. Tables 2.1, 2.2

and 2.3 illustrate the performance scores observed over the three competition datasets.

As a consequence, we propose a novel ensemble approach which builds on previous

works. The notable difference between our proposal and past methods is that we combine

both types of techniques: those based on ToC pages and those based on book content. In

other words, we benefit from both of them to construct a hyperlinked ToC. Our approach

is implemented relying on two set operators (the union and the intersection) applied on

two properties of ToC entries (title and page number). The full details on this contribution

are provided in Chapter 4.
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Table 2.3: Detail performance scores over the ICDAR 2013 competition dataset on title-
based and link-based measures.

Method
F-measure

Books with ToC Books without ToC

Title-based Link-based Title-based Link-based

Greyc [32] 8.74 47 9.18 35.4

Epita [56] 18.06 41.9 0.07 1.8

Wurzburg [25] 22.13 48.6 7.53 26.5

Innsbruck [30] 36.17 74.2 8.2 33.6

Nankai [59] 42.65 73.8 0.7 7.5

MDCS [26] 52.67 80.1 0.2 1.9

2.2 Post-OCR processing

Post-OCR processing approaches detect and correct remaining OCR errors for yielding

better quality of digitised documents. The literature of post-OCR processing research has

a rich family of models. They are grouped into three types: manual approach type which

lets human manually review and correct OCRed texts, lexical approach type towards the

comparison of source words to dictionary entries, neural network and statistical approach

one that utilises information learnt from training data. The insights of each group are

discussed in the following sections.

2.2.1 Manual approach type

ReCAPTCHA and crowd-sourcing are some key approaches of this type. CAPTCHAs

(Completely Automated Public Turing test to tell Computers and Humans Apart) are

widespread security measures on the World Wide Web. Von Ahn et al. [100] suggested to

benefit from CAPTCHAs to digitise old printed material. They concealed crowd-sourcing

effort in OCR correction behind an access system to websites. Users were shown two

images; one was known to the system and used for verifying access to a website; another

was unknown and its content would be determined by majority vote of contributors. Users

did not know which one was known or unknown to the system. The authors reported that
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the reCAPTCHA system achieved a word-level accuracy of 99.1% whereas standard OCR

approaches on the same set of articles obtained only 83.5%. An example of reCAPTCHA

is shown in Figure 2.4.

Figure 2.4: An example of reCAPTCHA [100].

Crowd-sourcing approaches for post-correction of OCR output have been successfully

applied to several historical text collections. Collaborative correction on a large amount of

text requires a easy-to-use user interface, and continuous efforts for keeping the volunteer

proofreaders motivated. Several crowd-sourcing systems have been built to profit from the

public effort in order to enhance the quality of digitised texts.

One of the first crowd-sourcing approaches was a web-based system called Trove [37]2.

This system was developed by the National Library of Australia for crowd correction

in historical Australian newspapers. The approach presented full articles to volunteers,

and allowed to fix text line by line. A screenshot of the web-based Trove system [37] is

demonstrated in Figure 2.5.

Clematide et al. [12] reported a crowd-correction platform called Kokos to improve the

OCRed text quality of the yearbooks of the Swiss Alpine Club (SAC). Kokos showed full

documents to users and let them correct errors word by word instead of line by line like

Trove. More than 180,000 characters on about 21,000 pages were corrected by volunteers in

about 7 months, word accuracy of 99.7%. Figure 2.6 shows a screenshot of the web-based

Kokos system.
2https://help.nla.gov.au/trove/for-digitisation-partners (accessed 2019-11-01)
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Figure 2.5: User interface of the Trove system [37].

Figure 2.6: A book page in Kokos [12].
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Figure 2.7: An example of Digitalkoot [10].

Instead of showing full articles to users, another system (named Digitalkoot) broke

the articles into single words without any context and inserted them to simple games.

The objective of this model was to attract volunteers to donate their time for correcting

erroneous tokens. This approach was developed by Chrons et al. [10] for rectifying OCR

errors in old Finnish newspapers. An example of Digitalkoot is given in Figure 2.7. The

experimental results reported that the quality of corrected text was very high with word

accuracy over 99%. However, the system ignored nearby context and only allowed users to

interact with single words, which raises a doubt that real-word errors cannot be corrected.

While collaborative OCR correction approaches proved their performance with high

accuracy, they also have some limitations. They require the original documents which

are often unavailable on some OCRed text corpus. In addition, they heavily depend on

volunteer work as well.

2.2.2 Lexical approach type

The approaches of the lexical type typically utilise distance measures between an erroneous

word and a lexicon entry to suggest candidates for correcting OCR errors.

Some researchers focus on specialised lexicons to improve the accuracy of Abbyy

FineReader on historical documents. Gotscharek et al. [33] used a corpus of historical

German documents from before 1500 to 1950 to construct different types of lexicons, and

evaluated them on three sets of test documents. The authors confirmed that lexicons
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helped to reduce error rate of the original OCRed text, with 28.20%, 42.00%, 59.06% on

the 16th-century, 17th-century, and 18th-century test set, respectively.

Considering the fact that spellings in historical documents are often not standardised

and historical stages of a language often lack complete lexicons, some prior works aim

to study the influence of the coverage of a lexicon. Then different ways are suggested to

dynamically collect specialised lexicons.

Strohmaier et al. [94] argued that conventional dictionaries were short of a considerable

number of tokens of a specific thematic area, which would drastically decrease performance

of post-OCR processes. They suggested to exploit thematic dictionary to improve results of

approaches belonging to the lexical type. They built a dynamic dictionary from collecting

vocabularies of Web pages of the input domain, which obtained a higher coverage than

static conventional dictionary.

Ringlstetter et al. [90] emphasised that approaches of this type only achieved a high

performance if dictionary was sensitive to the document domain. They refined the crawl

strategy employed in the previous approach [94] to produce smaller dictionaries with high

coverage. In particular, the similarity between crawled pages and the given input text was

controlled based on the normalised cosine distance. Web pages with many orthographic

errors were removed from dictionary construction.

Instead of building a dictionary, Bassil et al. [5] profited Google’s massive indexed

data for post-processing OCR output. They sent OCRed tokens to Google search engine

as search queries. If the query contained errors, the search engine would suggest some

replaceable words for misspellings. These suggestions were considered as corrections for

OCR errors. One of competition participants (named as EFP) [8] also explored lexicon

look-up techniques and regular expressions to detect and correct errors.

Lexical approach type is easy to apply, however, it also goes together with some dif-

ficulties. Historical documents do not follow a standard spellings like modern texts and

often lack complete lexicons. Moreover, the approaches of this type only concentrate on

single words so that they cannot handle real-word errors which are valid lexicon items but

occur in wrong context.
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2.2.3 Neural network and statistical approach type

Most of post-processing approaches are statistical, which enable to model specific distri-

butions of the target domain from available training data. Some methods of this type

incorporate different digitised outputs of the same paper-based document to benefit from

each other. Some approaches exploit error model and language model in different ways to

detect and correct remaining erroneous tokens. Some others profit from machine transla-

tion techniques in order to transform OCRed text into corrected one.

Merging OCR outputs

One direction of work combines multiple OCR outputs, which typically includes three

steps. OCR texts are firstly created from multiple OCR engines on the same input or from

the same OCR engine on different digital versions of the original document. Secondly,

alignment algorithms are applied to align the OCR output. Finally, different decision

methods are explored to select the final output.

In the first step, approaches obtain multiple outputs by different ways. Lopresti et

al. [61] employed the same OCR engine on several scans of the same document. Instead

of using different scans of the same document, Lund et al. [62] adjusted the binarisation

threshold to create multiple versions of the original documents. Otherwise, Lin [58] and

Boschetti et al. [6] used different OCR engines to digitise the same document.

Next, some alignment methods have been developed to align multiple OCR output

sequences. Lund et al. [63] introduced an efficient algorithm to align the output of multiple

OCR engines and then to take advantages of the differences between them.

In the last step, several techniques were applied to choose the best sequence. Lopresti

et al. [61], Lin [58], and Lund et al. [62] utilised voting policy to decide the best sequence.

Boschetti et al. [6] selected characters using Naive Bayes classifier. Some kinds of fea-

tures (voting, number, dictionary, gazetteer, and spelling checker) were used in Maximum

entropy classification methods to choose the best possible correction by Lund et al. [64].

These approaches of this type proved their benefit with lower word error rate than the

individual OCR engine. However, they limit candidate suggestions from the recognition

output of OCR engines. In addition, the approaches do not consider any contextual infor-
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mation, thus, real-word errors are impossibly corrected. Furthermore, they require some

additional efforts of multiple OCR processing and the presence of the original OCR input

which are not always available in some datasets of post-OCR processing task. Collections

of the two competitions on Post-OCR Text Correction [8, 89] are some of typical examples.

Error model and language model

Several supervised and unsupervised approaches exploit error model and language model

to deal with post-OCR processing problems.

Some approaches mainly investigate the error model and ignore context information.

Given an OCR error, CSIITJ - a competition team [89] selected a list of candidates based

on edit distance between the error and lexicon entries. These candidates were, then, ranked

by the error model and suggested as corrections.

Kolak and Resnik [52] considered the post-processing problem as a recognition one and

adapted a framework of syntactic pattern recognition to solve the problem. Parameters

of their model were estimated by Levenshtein distance and IBM translation models.

Perez-Cortes et al. [81] applied the extended version of the Viterbi algorithm to find

the lowest cost path through a directed graph associated to the stochastic finite-state

automaton and to the input string. Their experiments showed some improvements on

correcting handwritten Spanish names at character level.

Extending the approach of Perez-Cortes et al. [81], Llobet et al. [60] built an error

model and a language model, then added one more model built from character recognition

confidences called hypothesis model. Three models were compiled separately into Weighted

Finite-State Transducers (WFSTs), then were composed into the final transducer. The

best token was the lowest cost path of this final transducer. However, character recognition

confidence is often unavailable in some digitised corpus, such as datasets of three works [8,

27, 89], so it is hard to implement this hypothesis model.

A competition team from Centro de Estudios de la RAE [8, 89] also implemented a

WFST based method (denoted as WFST-PostOCR in the first competition, RAE in the

second one). The RAE team compiled probabilistic character error models into WFST.

Ngram language models and the lattice of candidates generated by the error model were



26 Chapter 2. Related work

used to decide the best token sequence. This approach obtained the best performance on

detection task of the competition ICDAR2017, and improved the quality of OCRed text

in the two competitions.

Another competition participant (called as 2-pass RNN) [8] examined neural language

model instead of statistical one. Erroneous tokens were detected based on two recurrent

neural network (RNN) models. Features of character-level model were used as the input

of the word-level model.

Some approaches apply the error model along with the language model to deal with

both non-word and real-word errors. Tong and Evans [97] implemented a context sensitive

correction system. The approach took advantages of information from multiple sources,

including letter ngrams, character confusion probabilities, and word-bigram probabilities.

Candidates were selected by comparing OCRed token ngrams with lexicon-entry ngrams,

then ranked by the conditional probability of the token being recognised as matches. Fi-

nally, statistical language modeling was used to determine the best scoring word sequence.

Taghva et al. [95] generated candidates by confusion lists, then scored them using

Bayesian function on frequencies of word pairs and character ngrams. In addition, a

heuristic was designed to create candidates for words containing unrecognized characters.

The ranked list of candidates was then recommended to users.

Evershed et al. [27] introduced post-processing approaches applying both error model

and word language model. They carefully generated candidates at character level using

the error model and at word level using word trigram and ‘gap’ trigram. The error model

used confusion matrix and the novel reverse OCR derived estimation. Suggestions were

ranked by the confusion cost from the error model, and trigram language cost. In our

opinion, more clues can be employed to select the best matching candidate, for example,

candidate frequency, costs related to skip-grams, or part-of-speech tagger.

Some unsupervised post-OCR approaches have been developed. Reynaert [85, 86]

introduced an unsupervised method to solve problems of spelling variation. The method

exploited a hash table and a hash function to produce a large number for identifying words

(anagrams) which have the same characters in common. The main characteristic of this

hash function is that each character or character sequence of a word can be calculated
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separately. This feature enabled to retrieve similar words for a given word by inserting,

deleting, substituting or transposing characters. The results showed that a large amount

of non-word errors were detected and corrected.

Anagram hash algorithm was then applied in another unsupervised approach. Niklas [78]

combined this hash algorithm and a new OCR adaptive method in order to search the

best matching proposals for OCR erroneous tokens. The proposed method first classified

characters into equivalence classes based on their similar shapes. Characters of the same

class would share the same OCR-key. The key of the given word was utilised to retrieve all

words which had the same key in the dictionary. In addition, context information (word

bigrams) was also applied to score suggested words.

Regression model

Machine learning approaches learn from different features, which enable more robust can-

didate selection. These approaches explore multiple sources to generate candidates, ex-

tracted features and then rank them using a statistical model.

Kissos and Dershowitz [48] computed feature values for each input, including confusion

weight, OCR confidence, frequencies (unigram frequency, related bigram frequency, term

frequency in OCRed document). These features were used to decide whether the OCRed

word should be replaced by its highest ranked correction-candidate. However, it should be

reminded that OCR confidence is not always available in OCRed text collections, therefore

that model cannot fully be implemented. Furthermore, their features were not designed

to deal with segmentation errors. For example, frequency of unigram does not take run-on

errors into account (e.g., there is not frequency of unigram if an error is as ‘doubtfud.of’, its

candidate is as ‘doubtfull of’). In addition, that approach did not consider an important

feature employed in error correction [39], which is the similarity between an error and its

candidate.

Mei et al. [66] argued that the above method made use of solely ngram frequencies

without knowing the characteristics of OCR errors. They identified errors relying on fre-

quencies of word and word ngrams. A token was viewed as an error if its frequency or its

ngram frequencies in the same document were less than a threshold. They suggested a sim-
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ilar approach with some additional features, such as similarity metrics (Levenshtein edit

distance, longest common subsequence), contextual information (word ngram frequency,

skip-gram frequency). However, they ignored another important feature - confusion prob-

ability which was used in several successful post-processing approaches [52, 60, 81].

Khirbat [45] classified a token as being incorrect or correct by using three following

features: the presence of non alpha-numeric text in the token, the occurrence of the token

and its context in other places of the same document, the comparison between its word

bigram frequency and a threshold. They rectified the errors by employing similar features,

which were exploited in the work of Mei et al. [66], to score candidates based on simulated

annealing [47].

Machine translation model

Along with the development of machine translation techniques, some approaches consid-

ered OCR post-processing as machine translation (MT) task, which transforms OCRed

text into the corrected one in the same language.

Afli et al. [1] successfully trained statistical machine translation (SMT) system to re-

duce OCR errors of historical French texts. They concluded that word-level SMT systems

performed slightly better than character-level systems for OCR post-correction [1], and

the word-level systems outperformed language model techniques [2]. However, it should be

mentioned that they had a large training set of over 60 million tokens while some datasets

were much smaller.

Schulz and Kuhn [91] presented a complex architecture named Multi-Modular Domain-

Tailored (MMDT) for OCR post-correction of historical texts. This approach combined

many modules from word level (e.g., original words, spell checker, compounder, word

splitter, text-internal vocabulary) to sentence level (i.e., SMT) for candidate suggestion.

Then, the decision module of Moses decoder [50] was used to rank candidates.

Following the success of translation task in post-OCR, some competition teams (Char-

SMT/NMT, CLAM, CCC, UVA) employed methods of character-based machine transla-

tion to correct OCR errors.

CLAM and UVA depended on neural machine translation while Char-SMT/NMT [3]
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combined neural machine translation and statistical machine translation. Amrhein and

Clematide [3] reported that SMT systems outperformed NMT systems in error correction,

while NMT systems obtained higher performance in error detection. Their complicated

ensemble models achieved the best result in the correction task of the first competition on

post-OCR text correction [8].

The Context-based Character Correction (CCC) method is the winner of the second

competition [89]. It fine-tuned the pretrained language model BERT [20] with some convo-

lutional layers and fully-connected layers to identify OCR errors. Their correction model

is an attention sequence to sequence model with fine-tuning BERT.

It is obvious that participants applied various methods to detect and correct OCR

errors in the first two competitions on post-OCR text correction [8, 89]. Both of win-

ners (Char-NMT/SMT, CCC) utilised character-level machine translation techniques with

some additional features. Their methods outperformed most of other methods, such

as approaches based on error model and language model (such as weighted-finite-state-

transducer, anagram hashing) and lexical approaches.

Conclusion

After studying a wide range of post-OCR processing approaches, we offer two important

conclusions below:

1. Most of the above-discussed post-processing approaches focus on the correction part

rather than the detection part. Nonetheless, it does not mean that the error detection

part is not important as naturally one cannot correct errors without knowing their

positions. There are a few separate detection methods relying on lexicon (e.g.,

EFP [8]), or on word ngram frequencies (e.g., [66]), or on feature-based classification

model (e.g., [45]), or on BERT model (e.g., [89]). Some others usually identify

incorrect tokens based on the most-matching candidates from the correction part.

If the best alternative differs from the OCRed token, then the token is erroneous

and replaced by this candidate. The advantage of these approaches is to detect and

correct errors at the same time, but the performance of the detection task depends

on that of a more difficult task - the correction.
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2. Neural machine translation based techniques have been the-state-of-the-art accord-

ing to the results of the competition on post-OCR text correction. Nevertheless, it

should be clarified that there is no clear performance comparison between BERT and

feature-based classification models on the post-OCR error detection. Similarly, we

still lack obvious evaluations between MT and regression models [45] on post-OCR

error correction.

As a consequence, we focus on BERT and feature-based classification models to locate

error positions. Likewise, regression and MT models are employed to correct OCR errors.

Furthermore, by mainly exploiting natural language processing resources, our post-OCR

approaches can handle different digitised documents that created by varying digitisation

processes and out-of-date OCR algorithms.

In terms of the post-OCR error detection, the first approach exploits various character-

level as well as word-level features to identify whether the OCRed token is incorrect or

correct via binary classification. An OCRed token needs to prove to be a valid word via

feature values computed from its plausible candidate set. This method differs from the

prior work of classification model [45] since we explore more features of both character and

word levels. In addition, feature values are computed based on the possible alternative set

of each OCRed token instead of only relying on the erroneous token.

The second detection approach adapts BERT model on the named entity recognition

task to identify errors. Our proposal is similar to the best-performing approach in the

competition ICDAR2019, but we simplify the model with only one fully-connected layer

on the top of the hidden-states output. In addition, our model applies Fasttext [68],

Glove [40] as the initial embeddings of our model rather than using randomly numbers.

In terms of the post-OCR error correction, our first method makes use of confusion

probability obtained from the noisy channel model of single or multiple edits, and context

probability given by language model. Then, these two features and some essential features

suggested by related works [48, 66] are used to predict the confidence of each candidate

becoming a correction via regression model. Our second correction approach which applies

NMT techniques on contextual input data and some additional features (e.g., our character

embedding, candidate filter based on length difference) is promising to reduce OCR errors.
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This chapter surveys the prior works on book structure extraction and post-processing

OCRed text, which provides a general viewpoint about what was done in the state of

the art as well as the advantages and disadvantages of each method. Based on such

background, we design and implement our novel approaches for aiding access to digitised

document collections.

To evaluate these contributions, we need to identify adequate datasets and evaluation

metrics, which are the focus of the next chapter.
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CHAPTER 3

Evaluation datasets and metrics

After considering the state of the art, we will now detail the way that we evaluate our

works aimed at extracting tables of contents from digitised books as well as detecting

and correcting OCR errors. Evaluation metrics and datasets play a crucial role in testing

the performance of proposed methods. Shared tasks are great opportunities to compare

approaches in a controlled setting where all are evaluated using the same measures and

the same datasets. That is the reason why we select the official metrics and datasets of

two competitions to assess our proposals. This chapter introduces adequate benchmark

datasets and associated metrics.

3.1 Datasets

Five datasets are applied to evaluate our approaches on table of contents extraction and

post-OCR text correction. All of them are public datasets of competitions from the inter-

national conference on document analysis and recognition. In this chapter, five of them

are discussed in detail.

33
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Table 3.1: Datasets of the three ICDAR competitions on book structure extraction.

Dataset Total
books

# Books
with ToC

# Books
without ToC

Participants

ICDAR 2009 527 436 91 MDCS, XRCE, Noopsis, Greyc

ICDAR 2011 513 417 96 MDCS, Nankai, XRCE, Greyc

ICDAR 2013 967 800 167 MDCS, Nankai, Innsbruck,
Wurzburg, Epita, Greyc

3.1.1 Table of contents extraction

The reference datasets and metrics for the extraction of tables of contents were defined

in the context of the ICDAR conference’s series of Book Structure Extraction competi-

tions [24]. We use the three datasets created in the context of the 2009 [23], 2011 [22] and

2013 [25] Book Structure Extraction competitions. Different datasets have been annotated

and used for each of the competition, but all of them are composed of books selected from

the corpus of the INEX book search track [43] which contains 50,239 books. This book

collection is provided by Microsoft Research and the Internet Archive [44].

The three subsets preserve the diversity of the large book collection in both book

genre and the observed ratio of books with and without a physical table of contents pages

(80:20). Details on the three datasets of the competitions are given in Table 3.1, together

with the corresponding lists of participants.

Each book of these datasets is provided in two different formats [23]. Portable docu-

ment format is provided to participants to give them access to original image files, while

DjVu XML is provided as the output of an OCR process including OCRed text and basic

structure provided in a simple markup format illustrated and described as follows:

<DjVuXML>

<BODY>

<OBJECT data=" f i l e . . . " [ . . . ] >

<PARAM name="PAGE" value =" [ . . . ] " >

[ . . . ]

<REGION>
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<PARAGRAPH>

<LINE>

<WORD coords =" [ . . . ] " > Moby </WORD>

<WORD coords =" [ . . . ] " > Dick </WORD>

<WORD coords =" [ . . . ] " > Herman </WORD>

<WORD coords =" [ . . . ] " > Me l v i l l e </WORD>

[ . . . ]

</LINE>

[ . . . ]

</PARAGRAPH>

</REGION>

[ . . . ]

</OBJECT>

[ . . . ]

</BODY>

</DjVuXML>

An <OBJECT> element corresponds to a page in a digitised book. A physical page

number is given as the attribute @value of the <PARAM> element. Inside a page, each

paragraph is marked up. Each paragraph element includes line elements, in which each

word is showed separately. Coordinates of a rectangle surrounding a word are given as

attributes of word elements.

3.1.2 Post-OCR processing

As we saw in Chapter 2, post-OCR processing has been a long standing problem. However,

few public evaluation benchmarks exist. The competition on Post-OCR Text Correction

organised in 2017 and 2019 in the context of the ICDAR conference [8, 89] therefore

attracted strong interest from the community, with around 70 registrations in total. This

shared task provides a good opportunity to compare techniques for the detection and

correction of OCR errors. Therefore, we rely on the datasets of this competition to evaluate
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Figure 3.1: A sample of training data in the 2017 competition dataset [8].

the performance of our proposed methods.

The dataset of the 2017 competition was built within the AMELIOCR project 1. It

contains OCRed text from historical documents in English and French taken from different

digital collections available at the National Library of France (BnF) and the British Library

(BL). The corresponding ground truth was created through different projects such as

Europeana Newspapers, IMPACT, Project Gutenberg, Perseus and Wikisource. There

is no detailed information about which OCR engines were used to generate the OCRed

text of the competition dataset. The full dataset of the first competition includes around

12 million OCRed characters along with the corresponding ground truth, with an equal

split of English and French data. The dataset is distributed as a training set of 10 million

characters and an evaluation set of 2 million characters.

The data is split into multiple files with three lines of text for each file. The first line

contains the original output of the OCR system, while the OCRed text is aligned with the

ground truth on the second line. The last line contains the aligned ground truth. The ‘@’

character is used as a padding symbol in the aligned sequences. Any text that could not

be identified with certainty in the original image is aligned with the ‘#’ character. One

example of the training data is illustrated in Figure 3.1.

The dataset of the second competition, organised in 2019, consists of 22 million OCRed

characters (754,025 tokens) along with the corresponding ground truth, covering 10 Eu-

ropean languages. The OCRed text includes documents originating from digitised collec-

1The project is in the collaboration between the National Library of France (department of preservation
and conservation) and the L3i laboratory of the university of La Rochelle.
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tions. The GT comes from different sources such as HIMANIS 2, IMPACT 3, IMPRESSO 4,

Open data of National Library of Finland 5, GT4HistOCR [93] and RECEIPT [4].

Similar to the dataset of the first competition, there is no information about the OCR

engines and configurations that produced the OCRed text. 80% of the dataset is given to

participants as training set, while the rest is utilised for evaluation.

This thesis uses the English OCRed texts of both competitions. There are 813 files

written in English in the dataset of the first competition. All these files are published

either in periodicals or monographs, and the competition organisers divide them into two

datasets: Monograph and Periodical. The dataset of the second one contains 200 files in

English, which are stemming from IMPACT project. Details of our evaluation datasets

are shown in Table 3.2.

Table 3.2: Description of the datasets used for post-OCR processing evaluation; CER
denotes character error rate6, # Files denotes a number of files, # Chars denotes a number
of characters; ‘-’ denotes no information.

Dataset Source Type Dates CER(%) # Files # Chars

Monograph BL Monog monographs 1858 - 1891 1 667 1.2M
GT BnF Eng monographs 1802 - 1911 2 3M

Periodical BL Euro NP periodicals 1744 - 1894 4 59 1.8M

Comp2019 IMPACT - - 21.28 200 0.24M

3.2 Metrics

To ease comparison with state of the art, and because our research problems are aligned

with the settings of the given competitions, we apply the same evaluation metrics as those

competitions did. The following sections describe each measure in detail.

2http://www.himanis.org (accessed 2019-12-02)
3https://www.digitisation.eu (accessed 2019-12-02)
4https://impresso-project.ch (accessed 2019-12-02)
5https://digi.kansalliskirjasto.fi/opendata (accessed 2019-12-02)
6CER is computed as Levenshtein distance that is the minimum number of operations required to

transform the reference text into the output.

http://www.himanis.org
https://www.digitisation.eu
https://impresso-project.ch
https://digi.kansalliskirjasto.fi/opendata


38 Chapter 3. Evaluation datasets and metrics

3.2.1 Table of contents extraction

The key concepts used in the evaluation of ToC extraction are defined as follows [23].

Atomic units that make up a ToC are considered as ToC entries. A ToC entry has three

properties: title, link, and depth level. Given a ToC entry corresponding to a book chapter,

title is the chapter title, link is the physical page number at which the chapter starts in

the book, depth level is the depth at which the chapter is found in the ToC tree with the

book as the root.

Matching titles. Two titles match if they are ‘sufficiently similar’, where a similarity

is computed based on a modified version of the Levenshtein distance. In particular, they

give different costs on modification operations involving a type of a changed character:

the cost of alphanumeric modification is 10; the cost of non-alphanumeric one remains 1.

Two strings A and B are ‘sufficiently similar’ if their distance D is less than 20% and

if the distance between their first and last five characters (or less if the string length is

small) is lower than 60%. The distance D between strings A and B is computed as follows:

D(A,B) =
LevenshteinDist ∗ 10

min(length(A), length(B))
(3.1)

where LevenshteinDist is the modified Levenshtein distance, length(A) is the number of

characters of strings A.

This loose definition of similarity was designed to match and consider correct both the

ToC entry title that may be found in the book’s ToC and the one that may be found at

the corresponding page (e.g., sometimes the titles have variations such as being preceded

by the word ‘Chapter’ or not).

Matching links. A link is correctly recognised if an entry has matching title linking to

the same physical page in the ground truth.

Matching depth levels. A depth level is correct if an entry has matching title at the

same depth level in the ground truth.

Matching complete ToC entries. A ToC entry is said to be entirely correct if an entry

has matching title, matching depth level, and matching link, correspondingly.

Two complementary metrics are yielded to evaluate ToC entries, including a title-
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based measure [23] and a link-based measure [19]. The main difference is that the former

primarily matches ToC entries based on the similarity of titles, while the latter directly

takes into account the quality of the links.

In the title-based measure, ToC entries are firstly assessed on whether their titles

are similar to any available titles of the ground truth according to a distance measure

mentioned in Equation 3.1, then the links and the depth levels are considered.

Concerning the link-based measure, first of all, ToC entries are tested based on whether

they link to a page number that truly matches an existing ToC entry. After that, the

similarity of the titles is computed by Equation 3.2, and the depth levels are tested.

simil(s1, s2) = 1− weightedLevenshtein(s1, s2)

max(weight(s1), weight(s2))
(3.2)

where weightedLevenshtein is similar to LevenshteinDist mentioned in the Equation 3.1,

and weight(s) is the sum of each character’s weight in the string s (if a character is a letter

or a number then its weight is 10, otherwise, its weight is 1).

After considering whether ToC entries match the ground truth or not, three common

metrics including Precision, Recall, and F-measure values are computed for each property

separately, and for complete entries. Each of three measures is calculated for each book

and then averaged over the total number of books (macro-average). Precision, Recall, and

F-measure are formulated in Equations 3.3, 3.4, and 3.5, respectively.

Precision =
TP

TP + FP
(3.3)

where TP is True Positive, FP is False Positive

Recall =
TP

TP + FN
(3.4)

where FN is False Negative

F −measure = 2 ∗ Precision ∗Recall
Precision+Recall

(3.5)
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3.2.2 Post-OCR processing

As for post-OCR processing, we employ the same evaluation metrics used in the compe-

tition. In the error detection task, the goal is to identify tokens as being either erroneous

or not. Therefore, the organisers used the three popular metrics Precision, Recall and

F-measure as defined in Equations 3.3, 3.4, and 3.5, respectively.

In the correction task, this official metric is the relative improvement (impr) between

the original Levenshtein distance (origDist) and the corrected distance (avgDist).

impr =
origDist− avgDist

origDist
∗ 100 (3.6)

The origDist distance is calculated based on Levenshtein distance between the raw

OCRed text (ocr) and its GT (gt) as below:

origDist(ocr, gt) =

∑n
i=1 LV distance(ocri, gti)

N
(3.7)

where ocri is an OCRed token, gti is a GT token, n is a number of tokens, N is the total

number of characters in GT, and LV distance is the Levenshtein distance.

The avgDist distance relies on Levenshtein distance between the corrected text (corr)

and the corresponding GT, and the likelihood of each candidate to be the correction in

case there are many candidates for one error. It is computed by the following formula:

avgDist(corr, gt) =

∑n
i=1

∑m
j=1wij ∗ LV distance(cij, gti)

N
(3.8)

where wij is the likelihood of candidate cij to be a GT word gti, m is the number of

candidates of an OCRed token corresponding to gti.
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Table of contents extraction

Digitised books inherently lack logical structure information, such as chapters, sections.

To enrich the navigation experience of users, several approaches have been proposed to

extract tables of contents (ToC) from digitised books. In this chapter, we introduce and

evaluate our hybrid approach designed to combine approaches focused on the identification

and analysis of ToC pages, and those that build ToCs by searching for structure throughout

the whole book. To do this, we present and apply an aggregation-based method to enhance

ToC extraction and use as simulation of systems to be combined the output of submissions

to the ICDAR Book structure extraction competitions held in 2009, 2011, and 2013.

4.1 ToC extraction approach

Most multi-page documents come with a built-in table of contents, which naturally re-

flects the logical structure of the entire document. Consequently, most of the prior work

concentrate on recognising ToC pages and extracting ToC entries along with their corre-

sponding page numbers within such ToC area. These approaches are incapable to work in

case of books without ToC pages or with too degraded ToC areas. Some other methods
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process entire book content to detect ToC entries, which is typically based on leading

and trailing page white-spaces. In our opinion, results extracted from ToC pages can

complement those extracted from the book content and vice versa. Therefore, we suggest

an aggregation method which fully combines the analyses of both ToC pages and book

content.

Our ensemble method is built on the top of existing approaches. Specifically, we employ

extracted ToCs from submissions of the ICDAR book structure extraction competitions

in 2009 [23], 2011 [22], and 2013 [25]. Each submission may be considered as a set of ToCs

of books each identified by bookid, with for each book a set of ToC entries defined by page

number and title. An example of a ToC page and the corresponding submission are shown

in Figures 4.1, and 4.2, respectively.

We aggregate ToC entries obtained from each pair of available submissions for each

book in a collection by using two common set operators (i.e. union, and intersection). Our

purpose is to evaluate the performance of an aggregation submission which only contains

the common entities of two submissions or all the entities extracted by these submissions.

It is simple to apply set operators on primitive sets such as integers, floats or strings.

However, a ToC submission is a derived set which consists of ToCs of books. A ToC of

a book has a unique bookid and a list of ToC entries, that each includes three properties

(i.e. title, page number, and depth level).

For each bookid in the corpus, we propose to aggregate ToC entries of two submissions

by applying each set operator to each property which belongs to a primitive set. The

difficulty in choosing appropriate properties is supported by reading-behaviours of users.

When reading a book, typically, users first pay attention on the ToC to find contents and

identify the corresponding pages. Hence, we consider two properties of ToC entries, title

and page number, for combining submissions. Details of the set operators as well as the

properties of ToC entries are introduced in the following sections.

4.1.1 The properties

It is not difficult to identify whether two page numbers are the same or not, but checking

the matching of two entity titles is non-trivial because, in addition to possible OCR errors,
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Figure 4.1: ToC with single-line entries.

Figure 4.2: Submission example of ToC in Figure 4.1.



44 Chapter 4. Table of contents extraction

the title of the same entry in the ToC page and the actual book content may slightly differ.

However, the competition organisers defined a strategy to deal with this and compare titles.

The modified Levenshtein edit distance D used in the competition on book structure

extraction [22] is applied to decide whether two strings A and B are similar or not. If the

distance D (computed in Equation 3.1) between string A and B is lower than 20% and

the distance between their first and last five characters (or less if the string is shorter) is

lower than 60%, then two strings are similar.

4.1.2 The operators

In set theory, the intersection (AND) of set A and set B is the set which contains all

elements of A that also belong to B. The mathematical formulation of set intersection is

provided by Equation 4.1.

A ∩B = {x : x ∈ A ∧ x ∈ B} (4.1)

As to the union (OR), the union of set A and set B is the set of all elements in two sets,

which are in A, in B, or in both A and B. In other words, this set contains all elements of

set A and some elements of set B which are different from set A. Equation 4.2 formulates

the union operator as follows:

A ∪B = {x : x ∈ A ∨ x ∈ B} (4.2)

For each bookid in the collection, we study 8 possible combinations, including AND

pages, OR pages, AND titles, OR titles, AND pages AND titles, OR pages OR titles, OR

pages AND titles, and OR titles AND pages. Each of them will be carefully discussed in

the following two sub-sections, organising the combinations in two types, based on whether

they use a single or double operators.

Before examining each combination in detail, let us take two simple example sub-

missions shown in Figures 4.3 and 4.4 to illustrate these combinations. Assuming that

submission 1 is of participant ID1 and submission 2 is of participant ID2, for the book
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Figure 4.3: Example submission of participant ID1.

Figure 4.4: Example submission of participant ID2.

of bookid 1, we denote the ToC of submission 1 as ToC1 and the ToC of submission 2

as ToC2. It is worth clarifying that according to the distance measure D mentioned in

Equation 3.1, the first title of ToC1 ‘CLARISINE THE COUNTESS’ is similar to that

of ToC2 ‘CLARISINE COUNTESS;’ and the second title of ToC1 ‘THE BALLAD OF

BLOODY ROCK’ is similar to that of ToC2 ‘1.THE BALLAD BLOODY ROC’.

Our examples show four cases which can happen between book titles and book pages,

including ‘similar title and same page’ (the first ToC entries), ‘similar title and different

page’ (the second ToC entries), ‘different title and same page’ (the third ToC entries), and

‘different title and different page’ (the fourth ToC entries).

Single operator

In this type of combination, we only apply one set operator on one property. With the

page number property, the intersection (AND pages) and the union of two submissions

(OR pages) are exploited. The AND pages set only consists of ToC entries having the

same pages of two submissions, while the OR pages set contains all ToC entries of the first

submission and those of the second one whose pages are different from the first one.

Given our examples, the AND pages set contains two entities sharing the same page
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Figure 4.5: AND pages set.

Figure 4.6: OR pages set.

Figure 4.7: AND titles set.

Figure 4.8: OR titles set.
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numbers (the entities of pages 32, 46). Similarly, the OR pages set consists of six ToC

entries, including four from ToC1 (those of pages 32, 39, 46, 50) and two from ToC2 which

have different page numbers (those of pages 40, 53) from ToC1. These combination sets

of our examples are illustrated in Figures 4.5 and 4.6.

Regarding the title property, the intersection set (AND titles) of two submissions in-

cludes ToC entries having similar titles of two submissions; and the union (OR titles) of

two submissions consists of all ToC entities of the first submission and those of the second

one whose titles are different from the first one. The AND titles set and OR titles set of

our examples are described in Figures 4.7 and 4.8.

Double operators

This sub-section describes approaches where we rely on two operators on both of proper-

ties. Firstly, there are two combinations utilising the same set operator on book properties

separately: AND pages AND titles, OR pages OR titles. The result of the combination

(AND pages AND titles) is the set that only contains ToC entries which have the same

book pages and similar book titles. The output set of the combination (OR pages OR ti-

tles) includes all entries of the first submission and those of the second one having different

pages and different titles from the first one.

Give our examples, the AND pages AND titles set only contains the first entries of

ToC1 and ToC2 (the entries of page 32). The OR pages OR titles set includes all ToC1

entries and the ToC2 entries whose page numbers and titles are different from those in

ToC1 (only the entry of page 53 is added for that reason, while the entry of page 40 will

be ignored because its title is similar to that of the entry of page 39). Figures 4.9 and 4.10

demonstrate these double combinations.

Secondly, two combinations are utilising different set operators on two properties: OR

pages AND titles, and OR titles AND pages. The OR pages AND titles set is a subset of

the OR pages set, since we can get it by removing the ToC entries which have different

titles from the ones in the AND titles set. Similarly, the OR titles AND pages set is a

subset of the OR titles set, obtained by deleting the ToC entries having different page

numbers from those in the AND pages set.
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Figure 4.9: AND pages AND titles set.

Figure 4.10: OR pages OR titles set.

Figure 4.11: OR pages AND titles set.

Figure 4.12: OR titles AND pages set.
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In our examples, the OR pages AND titles set is created by removing from the OR

pages set the ToC entries of pages (46, 50, 53) since their titles are different from the ones

in the AND titles set. Likewise, the OR titles AND pages set is generated by deleting

from the OR titles set the ToC entries of pages (39, 50, 53) that are unlike those in the

AND pages set. These combinations are illustrated in Figures 4.11 and 4.12.

4.2 Experimental Results

4.2.1 Evaluation

As mentioned in Section 3.2.1, in order to assess the quality of the results and compare our

results to the methods proposed in the competition, the official and alternative metrics of

the competition are used: a title-based measure [24] and a link-based measure [19]. After

checking whether ToC entries match or not, three popular metrics including Precision,

Recall, F-measure are used to get an overall evaluation.

4.2.2 Results

The global performances of our systems, computed on these three competition datasets,

are presented in Tables 4.1, 4.2, and 4.3. It should be noted that we combine ToC entries

from each pair of any available submissions. These tables only report the best result of

each combination for the compactness reason. Each table is horizontally split into 3 blocks

of information. The first block evaluates the two best approaches (denoted as Best appr.)

from the competition. The two next blocks correspond to the results obtained with the

single operators (denoted as Single) and the double ones (denoted as Double) presented

in Sections 4.1.2 and 4.1.2.

Our results show that the union operator applied to one property outperforms the sole

state-of-the-art approach (MDCS) on both the title-based and the link-based evaluation

measures. In terms of the link-based measure, the aggregation of two best competition

approaches using OR pages always gets higher performance than the MDCS approach,

with 4.0%, 9.9% and 6.6% improvements over the competition datasets from 2009, 2011,
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Table 4.1: Performance scores over the ICDAR 2009 competition dataset.

Method
Precision Recall F-measure

Title-
based

Link-
based

Title-
based

Link-
based

Title-
based

Link-
based

B
es

t
ap

p
r. Books with ToC pages (MDCS) 41.33 65.90 42.83 70.30 41.51 66.40

Books without ToC pages (XRCE) 30.28 69.20 28.36 64.80 28.47 63.80

S
in

gl
e

AND pages (MDCS-XRCE) 42.94 66.80 34.68 52.60 36.90 56.20

AND titles (MDCS-XRCE) 38.51 54.20 24.38 33.70 27.40 38.00

OR pages (MDCS-XRCE) 41.01 70.20 44.63 77.50 41.70 70.40

OR titles (MDCS-XRCE) 36.12 59.70 46.08 76.70 39.05 63.40

D
ou

b
le

OR pages AND titles (MDCS-XRCE) 37.27 55.60 24.45 34.80 27.11 38.80

OR titles AND pages (MDCS-XRCE) 35.53 56.10 36.17 54.30 34.11 51.40

AND pages AND titles (MDCS-XRCE) 38.44 54.30 23.24 31.70 26.54 36.50

OR pages OR titles (MDCS-XRCE) 41.75 70.70 44.59 76.20 42.11 70.10

Table 4.2: Performance scores over the ICDAR 2011 competition dataset.

Method
Precision Recall F-measure

Title-
based

Link-
based

Title-
based

Link-
based

Title-
based

Link-
based

B
es

t
ap

p
r. Books with ToC pages (MDCS) 40.40 64.50 43.17 70.20 40.75 65.10

Books without ToC pages (XRCE) 27.39 79.30 18.69 52.50 20.38 57.60

S
in

gl
e

AND pages (MDCS-Nankai) 39.72 64.10 34.14 54.40 34.96 55.60

AND titles (MDCS-Nankai) 38.48 58.90 27.60 39.80 30.00 43.80

OR pages (MDCS-XRCE) 43.52 75.00 48.82 83.20 44.50 75.00

OR titles (MDCS-XRCE) 39.55 63.50 51.86 79.60 42.25 65.00

D
ou

b
le OR pages AND titles (MDCS-Nankai) 36.14 56.60 27.88 41.30 29.44 44.00

OR titles AND pages (MDCS-Nankai) 35.59 56.30 35.37 55.60 33.79 52.30

AND pages AND titles (MDCS-Nankai) 37.86 58.10 25.76 36.80 28.53 41.40

OR pages OR titles (MDCS-XRCE) 43.96 74.90 47.37 79.60 43.64 72.50
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Table 4.3: Performance scores over the ICDAR 2013 competition dataset.

Method
Precision Recall F-measure

Title-
based

Link-
based

Title-
based

Link-
based

Title-
based

Link-
based

B
es

t
ap

p
r. Book with ToC pages (MDCS) 42.77 64.90 45.92 71.50 43.61 66.60

Book without ToC pages (Innsbruck) 33.63 75.70 32.14 68.90 31.34 67.20

S
in

gl
e

AND pages (MDCS-Nankai) 43.87 65.50 37.49 54.80 38.85 56.50

AND titles (MDCS-Nankai) 42.12 60.50 30.12 40.30 32.94 44.50

OR pages (MDCS-Innsbruck) 41.97 69.50 49.69 85.40 44.07 73.20

OR titles (MDCS-Innsbruck) 38.36 61.50 50.45 83.40 42.04 67.40

D
ou

b
le OR pages AND titles (MDCS-Nankai) 39.67 59.60 30.21 41.80 32.07 44.70

OR titles AND pages (MDCS-Nankai) 38.80 58.40 38.95 56.70 37.29 53.80

AND pages AND titles (MDCS-Nankai) 42.49 60.00 28.27 37.00 31.69 41.80

OR pages OR titles (MDCS-Innsbruck) 42.86 69.70 49.42 82.40 44.53 72.20

and 2013, respectively.

In terms of the title-based measure, the OR pages aggregation is 3.75% higher than

MDCS for the 2011 competition. With the 2009 and 2013 datasets, the OR pages OR

titles aggregation achieves better results than MDCS, by 0.6% and 0.92%, respectively.

The union operator outperforms other set operators because it combines the best of two

worlds, by integrating results from a) methods that are good at extracting ToC entries from

books with ToC pages, and b) methods that are good over books without ToC pages. This

confirms our initial hypothesis that both types of approaches are complementary. Indeed,

the main F-measure improvement is due to strong recall improvement while precision

remains stable.

Significance of our results. To determine whether our results are statistically con-

clusive, we compute the student’s t-test to compare the distributions of our best combina-

tions to the best-performing methods over each of the three competition datasets. These

detail p-values are demonstrated in Table 4.4.

Regarding linked-based measure, this shows clear significance over all competition

subsets (p<0.001), demonstrating the added-value of our approach over the state of the
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art. Concerning the title-based measure, statistical significance is obtained for the 2011

datasets (p<0.001), but not for the 2009 and 2013 datasets.

As described in Section 3.2.1, the title-based measure checks the similarity between

titles before other properties. We think that there are more books (without printed ToC

pages) having long and degraded titles in the 2009 and 2013 datasets than those in the

2011 dataset, which cause low-quality extracted titles and reduces the performance of

ToC approaches that focus on the analysis of the full content. As a consequence, our

aggregation approach cannot reach similar performance improvements as it does with the

2011 dataset.

The official results on the title-based measure of the competition confirm our assump-

tion. While the performance of the method based on ToC pages (MDCS) remains stable,

that of the two approaches considering the entire book content in our best combination

(XRCE, Innsbruck) is reduced dramatically on the 2009 and 2013 datasets (XRCE reaches

only 7.81% on the 2009 dataset, and Innsbruck 8.2% on the 2013 dataset, while XRCE

reaches 26.32% on the 2011 dataset).

Table 4.4: Student’s t-test over three competition datasets.

Dataset
P-value

Title-based Link-based

2009 0.1567 1.225E-10

2011 1.109E-05 1.835E-14

2013 0.0018 1.159E-26

4.3 Conclusions

This chapter presents our aggregation approach using two set operators on two properties

of ToC entries in order to combine the output of top-performing methods in book structure

extraction. By combining the output of systems that are focused on the detection and

analysis of ToC pages and systems that are focusing on inner book contents, it manages

to perform statistically significant improvement over the state of the art in extraction of
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table of contents. Our experimental results indeed demonstrate that the union operator

applied on ToC entries’ properties performs better than the top-performing methods for

both title-based and link-based evaluation.

We have now presented a way to ease information access by providing logical structure

to enter and browse documents. The remainder of this dissertation will focus on the

amelioration of the textual contents of documents.
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CHAPTER 5

Comparison of OCR errors and human misspellings

OCR errors share some common features with spelling errors, but, OCR errors have their

own special characteristics as they are created by different processes than spelling errors.

Various characteristics of OCR errors on popular public datasets are analysed and com-

pared with misspellings in order to design better post-OCR approaches. This chapter

gives an overview of OCR process and the results of the analyses.

5.1 OCR process

Historical digital texts hold some special characteristics and differ from modern electronic

text. Most of problems of OCRed texts involve in this conversion process, which consists

of four standard steps: scanning, zoning, segmentation, and classification.

• Scanning is the first step of digitisation process, which produces digital version of

paper-based documents. The outcome of this step heavily depends on the degrada-

tion level of the original document, scanner, or a way of scanning.

• Zoning automatically orders the text regions in the documents. Zoning errors greatly

affect the word order of the scanned material and produce an incoherent document.
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Some of real-word errors of OCRed text are zoning errors. In fact, wrongly ordering

one sentence might cause all correctly recognised words of that sentence to be real-

word errors. Zoning errors are very hard to be corrected by post-processing using

NLP techniques.

• Segmentation breaks zones into words, and decomposes words into characters. In-

correct segmentation results in errors involving incorrect split and concatenation of

words (e.g., ‘sea’ vs. ‘se a’, ‘blue sea’ vs. ‘bluesea’), or those related to multiple

substitutions (m characters are wrongly recognised as n characters, e.g ‘main’ vs.

‘liiain’, ‘client’ vs. ‘dient’).

• Classification process classifies characters into their corresponding ASCII characters.

OCR devices recognise characters primarily by their shapes. With some noises, it is

easy to mis-recognise symbols of similar shapes. In other words, a correct character

is replaced by an invalid character, e.g., ‘core’ vs. ‘eore’, ‘in’ vs. ‘ln’).

5.2 Analysed datasets

Four analysed datasets are public collections of historical documents obtained from four

libraries. Two first datasets come from the first competition on post-OCR text correc-

tion [8], including Monograph, Periodical. Their details are mentioned in Section 3.1.2.

Two others are Overproof evaluation datasets [27]. The first one (denoted as OverNLA)

consists of 159 medium-length news articles with at least 85% correct lines, which are

extracted from one of the longest-running titles in the National Library of Australia’s

Trove newspaper archive - The Sydney Morning Herald, 1842-1954. Its corresponding GT

was additionally corrected by Evershed et al. [27] after crowd sourcing corrections [34].

The second one (denoted as OverLC) contains 49 medium-length news articles ran-

domly selected from 5 titles of the Library of Congress Chronicling America newspaper

archive. The corresponding GT of OverNC was manually corrected by Evershed et al. [27].

Both of the Overproof datasets are noisier than the competition ones with totally 208 files.
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Table 5.1: Details description of four datasets.

Sources Types Years WER Sizes Files

Monograph monograph 1862-1911 9% 4.2M 747
Periodical periodical 1744-1894 16% 1.8M 66
OverNLA news 1842-1954 25% 0.3M 159
OverLC news 1871-1921 27% 0.1M 49

These OCRed documents are processed by ABBYY FineReader1, which is the state-of-

the-art commercial OCR system.

The four datasets thus include OCRed texts of past documents from popular libraries

(National Library of France, British Library, National Library of Australia, Library of

Congress Chronicling America). The selected documents are characterised by varying

levels of degradation under independent conservation and originate from a relatively wide

time range spanning from 1744 to 1954. In view of these, altogether the datasets are

representative for historical OCRed texts with typical OCR errors. The details of sources,

types, years, word error rates (WER)2, sizes and the file counts of all the four datasets are

listed in Table 5.1.

5.3 OCR errors vs. human misspellings

In the following sections, we present five main types of analyses conducted on all the

datasets. Particularly, edit operation types and edit distance are considered. In addition,

we concentrate not only on word lengths but also on OCRed token lengths. Moreover,

positions of incorrect characters and real-word vs. non-word errors are analysed. Prob-

lems related to the wrong deletion/insertion of white spaces (word boundaries) are also

examined.

1https://www.abbyy.com
2WER is derived from the Levenshtein distance, working at word level.

https://www.abbyy.com
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5.3.1 Edit operations

In this section, we discuss edit operation types, standard/non-standard substitution map-

pings (denoted as standard/non-standard mappings), edit distance and string similarity

based on LCS.

Edit operation types

In order to transform token A to token B, four basic edit operation types can be

performed: deletion, insertion, substitution, and transposition [14]. Prior works [51, 66,

97] indicated that transposition is common in misspellings but rarely occurs in OCR errors.

We then only consider the first three types.

Figure 5.1 shows the percentages of single modification error types (deletion, insertion

and substitution denoted as del, ins and sub, respectively) and ones of their possible

combinations (del+ins, del+sub, ins+sub, del+ins+sub) in all the four datasets.

Figure 5.1: Error rates based on edit operation types.

Among single edit operation types, the average percentage of substitution (51.6%) is

much higher than that of two others. Furthermore, the total percentage of three single edit

operation types is about 77.02%, thus higher than that of their combinations. It leads to

the conclusion that post-OCR techniques can correct most of errors by just concentrating

on a single modification type.

As to the combinations of edit operation types, deletion and insertion rarely occur

together. In fact, the combinations of deletion and insertion have very small occurrence
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rate being 0.24% (del+ins) and 1% (del+ins+sub). Post-OCR approaches could then in

our opinion pay less attention on the combinations in candidate generation.

Moreover, the average rate of OCR errors involving substitution, insertion, deletion

is approximately 5:1:1, which is an useful information for some post-OCR approaches

(e.g., [27, 60, 75]) to decide the number of substitution/insertion character candidates for

each OCRed character position in candidate generation. If the rate is too small, no correct

candidates can be suggested. Otherwise, many incorrect candidates are created negatively

affecting the candidate ranking process.

Standard mapping

Secondly, we consider standard and non-standard mappings, which are results of

wrongly zoning text regions. While misspellings often have standard mapping 1:1 (e.g.,

‘hear’ vs. ‘jear’), OCR errors contain not only standard mappings 1:1 but also non-

standard mappings, such as n:1 and 1:n (e.g., ‘link’ vs. ‘hnk’, ‘link’ vs. ‘liiik’).

The standard mapping 1:1 of our datasets is illustrated in Tables 5.2 and 5.3. In these

tables, we compute the percentage of appearance frequency of each GT character being

recognised as an OCRed character for each dataset. Let us call this percentage as mapping

percentage. In order to make the tables compact, we only show OCRed characters whose

mapping percentages are equal or more than 0.1%. Other cases whose mapping percentages

are less than 0.1% are denoted as @. Because one GT character can be recognised as one

or n OCRed characters, so other cases (@) include OCRed characters in 1:1 mappings and

1:n mappings. For example, the percentages of frequency of character ‘b’ in Periodical

being recognised as ‘b’, ‘h’ and other characters are 96.7%, 1.6% and 1.7%, respectively.

Tables 5.2 and 5.3 indicate that the characters with the highest and lowest recognition

accuracy are ‘t’, ‘z’ with 98.53% and 88%, respectively. Moreover, the statistics also reveal

that characters sharing similar shapes are easily confused, such as ‘b’ vs. ‘h’; ‘c’ vs. {‘o’,

‘e’}; ‘e’ vs. {‘o’, ‘c’}.

This standard mapping is used to create character confusion matrix which is one of

the most important sources to generate and rank candidates. It is obvious that the more

similar frequent error patterns between a training part and a testing part of the used

datasets are, the higher the probability of the correct candidates are generated. However,
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Table 5.2: Percentages of standard mapping 1:1 (part 1). One GT character is substituted
by one OCRed character. Only values higher than 0.1% are shown, other characters
(including sequences of more than one character) are denoted as @.

GT Char Monograph Periodical

a {a: 99.5, @: 0.5} {a: 97.5, u: 0.4, n: 0.2, e: 0.2, i: 0.2, @: 1.5}

b {b: 98.7, h: 0.8, @: 0.5} {b: 96.7, h: 1.6, @: 1.7}

c {c: 97.0, o: 2.0, e: 0.6, @: 0.4} {c: 96.2, e: 1.2, o: 1.0, @: 1.6}

d {d: 99.7, @: 0.3} {d: 98.4, l: 0.2, i: 0.2, @: 1.2}

e {e: 98.7, o: 0.2, @: 1.1} {e: 96.9, o: 0.6, c: 0.5, a: 0.2, s: 0.2, @: 1.6}

f {f: 98.2, @: 1.8} {f: 96.2, t: 1.2, l: 0.9, i: 0.4, @: 1.3}

g {g: 99.6, @: 0.4} {g: 98.3, @: 1.7}

h {h: 99.1, b: 0.4, @: 0.5} {h: 95.2, b: 1.7, i: 0.4, n: 0.2, @: 2.5}

i {i: 99.1, @: 0.9} {i: 97.6, l: 0.6, t: 0.2, @: 1.6}

j {j: 99.7, @: 0.3} {j: 97.4, i: 0.3, l: 0.3, c: 0.2, @: 1.8}

k {k: 99.5, @: 0.5} {k: 98.6, t: 0.2, @: 1.2}

l {l: 95.6, i: 0.8, d: 0.2, @: 3.4} {l: 96.9, i: 0.8, t: 0.2, @: 2.1}

m {m: 99.1, @: 0.9} {m: 97.4, n: 0.5, i: 0.2, @: 1.9}

n {n: 99.1, u: 0.2, @: 0.7} {n: 96.4, u: 1.2, a: 0.3, m: 0.2, o: 0.2, i: 0.2, @: 1.5}

o {o: 99.4, @: 0.6} {o: 97.9, e: 0.5, a: 0.2, @: 1.4}

p {p: 99.8, @: 0.2} {p: 98.7, n: 0.2, @: 1.1}

q {q: 99.4, @: 0.6} {q: 97.7, o: 0.2, i: 0.2, j: 0.2, @: 1.7}

r {r: 99.4, @: 0.6} {r: 98.5, i: 0.3, t: 0.2, @: 1.0}

s {s: 98.8, a: 0.5, f: 0.3, @: 0.4} {s: 94.2, a: 0.8, e: 0.7, t: 0.3, i: 0.3, @: 3.7}

t {t: 99.7, @: 0.3} {t: 98.7, i: 0.2, l: 0.2, @: 0.9}

u {u: 99.2, n: 0.2, @: 0.6} {u: 96.6, n: 1.1, a: 0.7, o: 0.3, i: 0.2, @: 1.1}

v {v: 99.6, @: 0.4} {v: 97.9, r: 0.7, y: 0.2, @: 1.2}

w {w: 99.6, @: 0.4} {w: 98.7, @: 1.3}

x {x: 99.0, @: 1.0} {x: 97.4, i: 0.8, s: 0.2, r: 0.2, t: 0.2, @: 1.2}

y {y: 99.5, @: 0.5} {y: 98.0, v: 1.1, @: 0.9}

z {z: 99.2, s: 0.5, @: 0.3} {z: 86.0, s: 2.5, x: 1.6, r: 1.2, i: 1.1, a: 0.9, g: 0.3, t: 0.3, v: 0.3,

c: 0.2, b: 0.2, e: 0.2, k: 0.2, l: 0.2, o: 0.2, n: 0.2, u: 0.2, @: 4.2}

OCR errors can vary from OCR engines, layouts as well as degradation levels of docu-

ments, and etc. Therefore, some very frequent characters along with their highly possible

misrecognition (e.g., ‘e’ vs. ‘o’, ‘j’ vs. ‘i’) may not occur in the large training part and

only appear in the small testing part. In such cases, it is impossible to generate valid

candidates for unseen error patterns of the testing part.

Non-standard mappings

Besides the standard mapping 1:1, OCR errors are also subject to more complex map-

pings [42, 53]. Different from past related work [1, 27, 42, 87, 88, 95], our study provides
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Table 5.3: Percentages of standard mapping 1:1 (part 2). One GT character is substituted
by one OCRed character. Only values higher than 0.1% are shown, other characters
(including sequences of more than one character) are denoted as @.

GT Char Overproof NLA Overproof LC

a {a: 92.7, n: 2.1, i: 1.1, u: 1.0, o: 0.3, m: 0.2, @: 2.6} {a: 92.8, n: 2.7, u: 0.8, i: 0.5, m: 0.3, o: 0.2, @: 2.7}

b {b: 96.2, h: 1.7, l: 0.5, t: 0.3, @: 1.3} {b: 93.9, h: 1.8, l: 0.5, n: 0.4, i: 0.3,

t: 0.3, o: 0.2, m: 0.2, @: 2.4}

c {c: 93.9, e: 1.7, o: 1.5, r: 0.4, t: 0.2, i: 0.2, @: 2.1} {c: 92.2, o: 3.1, e: 1.6, u: 0.3, s: 0.3,

n: 0.2, a: 0.2, r: 0.2, t: 0.2, @: 1.7}

d {d: 97.1, a: 0.4, l: 0.2, i: 0.2, @: 2.1} {d: 96.8, l: 0.5, i: 0.3, u: 0.3, @: 2.1}

e {e: 86.1, o: 9.2, c: 1.6, i: 0.3, a: 0.2, @: 2.6} {e: 80.8, o: 14.8, c: 0.9, u: 0.4, i: 0.3, r: 0.2,

n: 0.2, @: 2.4}

f {f: 94.3, l: 1.5, t: 1.0, i: 0.9, @: 2.3} {f: 94.1, l: 1.8, t: 1.4, i: 0.6, @: 2.1}

g {g: 93.4, c: 0.4, p: 0.4, r: 0.4, e: 0.3,

s: 0.3, i: 0.3, u: 0.3, t: 0.2, f: 0.2, @: 3.8}

{g: 95.2, j: 0.3, i: 0.3, c: 0.2, e: 0.2, @: 3.8}

h {h: 95.1, b: 1.1, l: 0.8, i: 0.7, n: 0.2, @: 2.1} {h: 95.7, l: 1.0, i: 0.6, b: 0.5, n: 0.3, @: 1.9}

i {i: 90.7, l: 3.3, m: 0.4, t: 0.3, u: 0.2, n: 0.2, @: 4.9} {i: 94.0, l: 1.6, @: 4.4}

j {j: 85.0, i: 1.5, l: 0.4, t: 0.4, @: 12.7} {j: 92.7, @: 7.3}

k {k: 95.6, l: 1.0, i: 0.3, h: 0.2, t: 0.2, @: 2.7} {k: 97.5, a: 0.2, i: 0.2, h: 0.2, @: 1.9}

l {l: 96.2, i: 0.8, @: 3.0} {l: 96.8, i: 0.7, @: 2.5}

m {m: 94.3, n: 1.6, i: 0.8, r: 0.5, u: 0.2, @: 2.6} {m: 93.9, n: 1.3, i: 1.1, u: 0.3, r: 0.2, t: 0.2, @: 3.0}

n {n: 96.2, u: 1.0, i: 0.4, m: 0.3, a: 0.2, @: 1.9} {n: 92.6, u: 4.0, i: 0.8, m: 0.2, a: 0.2, @: 2.2}

o {o: 98.0, n: 0.2, i: 0.2, @: 1.6} {o: 97.2, n: 0.3, u: 0.3, e: 0.3, @: 1.9}

p {p: 97.9, n: 0.7, i: 0.2, r: 0.2, @: 1.0} {p: 96.8, n: 0.5, j: 0.3, o: 0.2, i: 0.2, r: 0.2, @: 1.8}

q {q: 97.3, a: 1.5, o: 0.9, @: 0.3} {q: 90.7, i: 3.3, m: 2.9, @: 3.1}

r {r: 93.4, i: 3.3, l: 0.4, n: 0.3, t: 0.2, @: 2.4} {r: 98.1, i: 0.2, t: 0.2, @: 1.5}

s {s: 91.7, a: 1.2, i: 0.5, e: 0.3, n: 0.2,

b: 0.2, t: 0.2, @: 5.7}

{s: 90.8, t: 0.6, i: 0.5, e: 0.5, a: 0.4, n: 0.3,

f: 0.3, u: 0.2, l: 0.2, o: 0.2, h: 0.2, @: 5.8}

t {t: 97.7, l: 0.7, i: 0.2, @: 1.4} {t: 98.0, l: 0.6, i: 0.2, @: 1.2}

u {u: 96.1, n: 1.0, i: 0.6, a: 0.3, m: 0.2, @: 1.8} {u: 96.1, i: 0.7, a: 0.5, o: 0.2, n: 0.2, j: 0.2, @: 2.1}

v {v: 92.2, i: 0.8, r: 0.5, y: 0.3, n: 0.3, t: 0.2, @: 5.7} {v: 97.7, i: 0.3, r: 0.3, m: 0.3, @: 1.4}

w {w: 92.8, v: 1.1, n: 0.5, y: 0.3, m: 0.2, i: 0.2, @: 4.9} {w: 98.1, v: 0.2, o: 0.2, @: 1.5}

x {x: 94.6, v: 0.9, i: 0.7, t: 0.6, o: 0.4,

n: 0.3, s: 0.2, @: 2.3}

{x: 97.1, g: 1.2, t: 0.6, @: 1.1}

y {y: 87.9, j: 3.4, v: 3.1, i: 0.4, r: 0.3, s: 0.2, @: 4.7} {y: 96.9, v: 1.3, j: 0.3, f: 0.2, @: 1.3}

z {z: 68.7, r: 6.2, s: 1.9, b: 1.6, n: 1.6,

m: 1.5, y: 1.5, i: 0.8, u: 0.7, l: 0.5, @: 15.0}

{z: 98.1, @: 1.9}
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the detailed statistics on the four popular datasets instead of only giving examples of

non-standard mappings.

The first point is 1:n mapping, in which one GT character is recognised as n OCRed

characters (e.g., ‘main’ vs. ‘rnain’). The mapping percentages of frequency of each GT

character being recognised as n OCRed characters are calculated for each dataset in Ta-

bles 5.4 and 5.5. With the same compactness reason as in Tables 5.2 and 5.3, these tables

only contain n OCRed characters whose mapping rates are equal or higher than 0.01%.

Tables 5.4 and 5.5 clarify 1:n mapping of @ in Tables 5.2 and 5.3.

For instance, the percentage of frequency of character ‘b’ in Periodical being recognised

as ‘li’, ‘ti’, ‘th’, ‘l.’ are 0.19%, 0.02%, 0.02%, 0.02%, respectively. The 1:n mapping

statistics indicate that there are some frequent patterns along with their average percents,

such as {‘b’: {‘li’:0.05, ‘h’:0.03}; ‘d’: {‘il’:0.07, ‘cl’:0.03}; ‘h’: {‘li’:0.34, ‘ii’:0.06}}.

The second point is n:1 mapping, in which n GT characters are recognised as one

OCRed character (e.g., ‘main’ vs. ‘mam’). The frequency rates of n GT characters being

recognised as one OCRed character are computed on four datasets showed in Tables 5.6

and 5.7. These tables only show GT character ngrams whose mapping percentages are not

less than 0.01% and which appear at least 10% of maximum frequency of their ngrams.

Different from the above tables, in Tables 5.6 and 5.7, we group percentages according to

OCRed characters because it is inefficient to show many GT character ngrams in the first

column.

For example, in Monograph dataset, the percentage of appearance frequency of GT

character bigram ‘li’ being recognised as ‘b’ is 0.03%. Based on the statistics of n:1

mappings, some common patterns with their average rates emerge, such as { ‘b’: {‘si’:0.05,

‘li’:0.04}; ‘d’: {‘il’:0.7, ‘ll’:0.12}; ‘h’: {‘li’:0.16, ‘ly’:0.1}}.

Our observations on these mappings support a conclusion that some characters ‘b’, ‘d’,

‘h’, ‘m’, ‘n’ are easily recognised as ‘li’, {‘il’, ‘cl’}, ‘li’, {‘rn’, ‘in’}, {‘ri’, ‘ii’}, respectively.

In opposite way, ‘li’, {‘il’, ‘cl’}, ‘li’, {‘rn’, ‘in’}, {‘ri’, ‘ii’} can be recognised as ‘b’, ‘d’, ‘h’,

‘m’, ‘n’, respectively. These kinds of mappings also play important roles in generating and

ranking candidates.

It should be noted that the statistics of these non-standard mappings are extracted
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Table 5.4: Percentages of non-standard mapping 1:n (part 1) Only values higher than
0.01% are shown. For each GT character, percentages shown for each dataset are parts of
corresponding percents of @ in Tables 5.2 and 5.3.

GT Char Monograph Periodical

b {li: 0.19, ti: 0.02, th: 0.02, l.: 0.02}

c {See: 0.03, foe: 0.02}

h {li: 0.07} {li: 0.78, ii: 0.23, il: 0.07, ri: 0.05, ir: 0.04}

j {.t: 0.08, i.: 0.08}

k {lc: 0.06, fc: 0.03}

m {rn: 0.36, ni: 0.04, in: 0.03} {in: 0.17, ra: 0.12, rn: 0.09, ni: 0.08, tn: 0.06}

n {r.: 0.07, ri: 0.03, ii: 0.03}

p {ji: 0.03}

q {cp: 0.03} {tj: 0.1, .l: 0.05, ri: 0.05, -’t: 0.05}

u {ti: 0.04, ii: 0.02, tt: 0.02, it: 0.02}

w {vv: 0.03, vr: 0.02, sr: 0.02}

x {’∼: 0.02} {ts: 0.03}

z {sa: 0.16, .i: 0.16, r.: 0.16, id: 0.16, ti: 0.16}

from aligned OCR and their corresponding GT. Although we make a full use of OCRed text

along with its corresponding GT, there are still some unavoidable noises in our statistics

due to the lack of character recognition confidences from OCR engines.

Edit distances

Figure 5.2: Error rates based on edit distances.

In case of edit distances, the survey on spelling errors [54] pointed out two main types:

single-error tokens (one edit distance) and multi-error tokens (higher edit distances). It

is obvious that the smaller edit distance an error has, the easier the correction task is.
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Table 5.5: Percentages of non-standard mapping 1:n (part 2). Only values higher than
0.01% are shown. For each GT character, percentages shown for each dataset are parts of
corresponding percents of @ in Tables 5.2 and 5.3.

GT Char Overproof NLA Overproof NC

a {ii: 0.05, in: 0.03, -i: 0.02, .i: 0.02} {ii: 0.21, it: 0.05, in: 0.05, .i: 0.05, iu: 0.03}

b {’h: 0.11, ili: 0.04}

c {t-: 0.05, e-: 0.04, le: 0.03, i’: 0.02, .e: 0.02} {Hle: 0.07, ’C: 0.02, iriw: 0.02}

d {il: 0.15, tl: 0.05, cl: 0.03, ri: 0.03, t4: 0.02} {il: 0.15, cl: 0.07, rt: 0.06, tl: 0.05, nl: 0.04}

e {io: 0.04, lc: 0.02, ic: 0.02} {io: 0.14, iu: 0.03, no: 0.02, oo: 0.02, n;: 0.02}

f {’l: 0.03, l’: 0.02} {l’: 0.1, l": 0.05, he: 0.02}

g {iR: 0.09, a-: 0.08, tr: 0.08, fr: 0.07, er: 0.06} {i": 0.33, e:: 0.21, uu: 0.14, (;: 0.14, ..:.-: 0.13}

h {li: 0.3, il: 0.06, ll: 0.05, ji: 0.02, i(.li: 0.02} {li: 0.21, di: 0.04, Ii: 0.04, ’li: 0.04, ti: 0.03}

i {vl: 0.03, ll: 0.02} {ll: 0.04, l’: 0.02, ’.: 0.02}

k {lr: 0.12, l;: 0.12, lt: 0.08, fc: 0.06, ’,: 0.04}

l {ii: 0.02, uit: 0.02, ->: 0.02} {’.: 0.05}

m {in: 0.37, rn: 0.29, ni: 0.13, ra: 0.09, tn: 0.08} {in: 0.65, ni: 0.48, ro: 0.16, rn: 0.15, tn: 0.11}

n {ii: 0.11, ti: 0.03} {ii: 0.12, ti: 0.11, ri: 0.08, t.: 0.06, iti: 0.03}

o {in: 0.03, .i: 0.02, i.: 0.02}

p {ii: 0.05, iv: 0.03, .i: 0.02} {fi: 0.1, iiiti: 0.07, ii: 0.03}

q {.v: 0.03}

r {ii: 0.02, i-: 0.02, li: 0.02, i’: 0.02} {ii: 0.04, t’: 0.02}

s {la: 0.03, t,: 0.02, iB: 0.02} {.-: 0.04, c-: 0.04, nl’: 0.04, i’: 0.04, .": 0.03}

t {ln: 0.03, Uo: 0.02}

u {ii: 0.19, ti: 0.08, li: 0.04, tii: 0.03, i.: 0.02} {ti: 0.11, ii: 0.1, tl: 0.06, ri: 0.05, i’: 0.04}

v {Ham: 0.09, %’: 0.05, s’: 0.04, «.: 0.02} {\*: 0.24}

w {vv: 0.44, tv: 0.15, ir: 0.07, *v: 0.05, v»: 0.05} {st: 0.11, fiH: 0.07}

x {.i: 0.39}

y {nj: 0.07, i,: 0.05, ij: 0.05, )*: 0.05, ’j: 0.04} {tv: 0.04, iiv: 0.04, ino: 0.04, IV: 0.04}
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Table 5.6: Percentages of non-standard mapping n:1 (part 1). n GT characters are sub-
stituted by one OCRed character. Only OCRed characters are results of n GT characters
mis-recognition are listed, and only values higher than or equal 0.05% are shown. Even
though this table shows n:1 mapping, the presentation is in a reverse way (1:n) in order
to save space.

OCR Char Monograph Periodical

a {ste: 0.07, ur: 0.05, pe: 0.05}

b {li: 0.08}

c {pe: 0.05}

d {il: 2.62, ll: 0.45} {il: 0.1, el: 0.06}

e {ho: 0.04}

h {li: 0.28} {li: 0.08, la: 0.06}

i {wa: 0.02}

m {in: 0.07} {us: 0.15, ns: 0.11, un: 0.1, in: 0.1, res: 0.08, nt: 0.08, ur: 0.05, ss: 0.05}

n {ri: 0.22} {ri: 0.24, rs: 0.14, us: 0.05, wh: 0.05}

s {ear: 0.06}

u {ss: 0.12, as: 0.1, ta: 0.08, nde: 0.06, ie: 0.06, }

w {ss: 0.19, ec: 0.05, se: 0.05}

Percentages of errors based on edit distances of our datasets in Figure 5.2 show that

most of OCR errors are single-error tokens with approximately 58.92% occurrences. That

rate is smaller than the rate of single-error typos in misspelled words (74.5% on aver-

age) [54]. In terms of multi-error tokens, most of them are of edit distance 2 (on average

22.57%). These statistics reveal that OCR post-processing approaches can mainly concen-

trate on edit distances 1 and 2 (with total 81.49% on average) at beginning steps. Relying

on these statistics, the edit distance threshold can be set at 2 for removing many irrelevant

candidates.

String similarity based on Longest Common Sequence (LCS)

LCS is another way to measure the similarity between two strings. Islam et al. [39] pro-

posed two variations of LCS, including Normalised Longest Common Subsequence (NLCS)

and Normalised Maximal Consecutive Longest Common Subsequence (NMCLCS).

NLCS considers lengths of two related strings wc and we, as follows:

NLCS(wc, we) =
length(LCS(wc, we))

2

length(wc) ∗ length(we)
(5.1)
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Table 5.7: Percentages of non-standard mapping n:1 (part 2). n GT characters are sub-
stituted by one OCRed character. Only OCRed characters are results of n GT characters
mis-recognition are listed, and only values higher than or equal 0.05% are shown. Even
though this table shows n:1 mapping, the presentation is in a reverse way (1:n) in order
to save space.

OCR Char Overproof NLA Overproof NC

a {s.: 1.69, s,: 0.36, ce: 0.09, ut: 0.07} {si: 0.55, he: 0.07}

b {hi: 0.07, li: 0.06, is: 0.05} {si: 0.21}

c {e,: 0.47, le: 0.13, ee: 0.12, ne: 0.12} {ess: 0.36, es: 0.25, ee: 0.18, se: 0.1}

d {il: 0.08} {si: 0.24, on: 0.08}

e {s.: 0.12, ic: 0.07} {can: 1.31, ic: 0.57, ac: 0.43, his: 0.27}

f {ta: 0.13}

h {ly: 0.38, li: 0.26} {ld: 0.12}

i {r.: 3.46, s.: 0.39, nce: 0.38, al: 0.05, as: 0.05} {ta: 0.26, on: 0.05}

j {or: 0.05}

k {ly: 0.22}

l {ni: 0.26, ri: 0.19, si: 0.18, di: 0.14, r.: 0.07} {ir: 1.02, ai: 0.6, ot: 0.21, in: 0.12, re: 0.06}

m {n,: 0.43, ur: 0.3, ni: 0.29, in: 0.29, ia: 0.25,

ns: 0.16, ai: 0.15, ree: 0.12, as: 0.07, rs: 0.05, }

{ld: 0.55, ns: 0.42, ll: 0.21, nt: 0.11, es: 0.09,

ee: 0.08, on: 0.05}

n {ri: 1.61, ry: 0.54, ia: 0.54, am: 0.23, ma: 0.13,

ra: 0.13, s.: 0.12, s,: 0.12, st: 0.12, ll: 0.11,

ti: 0.1, ay: 0.08, ar: 0.05, at: 0.05}

{rs: 0.99, ss: 0.47, om: 0.41, as: 0.28, ar: 0.05}

o {e,: 0.75, ic: 0.35, ie: 0.27, nc: 0.23, ne: 0.13,

me: 0.12, es: 0.09, ive: 0.07, he: 0.07}

{ee: 0.32, se: 0.3, ll: 0.15, es: 0.14, en: 0.08}

p {ve: 0.12, s,: 0.12, ing: 0.1}

q {s.: 0.27} {ar: 0.1}

r {ac: 0.23, ss: 0.12, ee: 0.09} {me: 0.21, en: 0.18}

s {e,: 0.14, ng: 0.07} {tor: 1.99, an: 0.08}

t {ine: 0.6, e,: 0.29, one: 0.22, s.: 0.16, le: 0.13}

u {is: 0.37, ri: 0.28, so: 0.27, ia: 0.25, ll: 0.25,

rs: 0.19, as: 0.19, hi: 0.16, ti: 0.13, il: 0.12,

ha: 0.11, le: 0.1, in: 0.07, ra: 0.06, st: 0.06,

li: 0.06, ee: 0.05, }

{ns: 0.7, na: 0.65, fo: 0.24, st: 0.2, an: 0.15,

ea: 0.14, te: 0.06, is: 0.06}

w {ear: 1.08, se: 0.29}
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Figure 5.3: Error rates based on the LCS similarity S.

There are three variations of MCLCS (Maximal Consecutive Longest Common Subse-

quence) with some additional conditions. MCLCS1 and MCLCSn use MCLCSs begin-

ning at the first, and at the n-th character, respectively;MCLCSz only considers MCLCSs

ending at the last character. NMCLCS is a normalised version of MCLCS, and it is com-

puted as the following equation:

NMCLCSi(wc, we) =
len(MCLCSi(wc, we))

2

len(wc) ∗ len(we)
(5.2)

where MCLCSi can be MCLCS1, MCLCSn or MCLCSz.

The similarity of the two strings S is calculated as below:

S(wc, we) = α ∗NLCS(wc, we) +
∑

i∈{1,n,z}

αi ∗NMCLCSi(wc, we) (5.3)

where α, αi are weights of NLCS and NMCLCSi.

We reuse the same weights suggested by Islam et al. [39] in our statistics. Figure 5.3

shows rates of errors on the four datasets with different threshold values of similarity S.

Our observation reveals that about 83.5% of all errors have the similarity S equal or

greater than 0.125. Similar to edit distance, the threshold of LCS similarity can be used

in removing many incorrect candidates for each error.
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5.3.2 Length effects

As to length effects, we examine not only word lengths but also OCRed token lengths.

Furthermore, we suggest a novel classification by grouping errors according to word lengths

and edit distances.

Word length

Figure 5.4: Rates of correct and incorrect word recognition based on word lengths.

In terms of word length, Kukich [54] found that more than 63% of the spelling errors

are short-word errors. Percentages of correct/incorrect word recognition according to word

lengths on our datasets are shown in Figure 5.4. According to our statistics, about 42.1%

of OCR errors are short-word errors, which is a lower value than that of misspellings with
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63% on average. In addition, from the highest percentage at length 3, the percentage

of incorrect word recognition decreases gradually according to the increase of GT token

length. Furthermore, around 85.27% of all OCR errors occur in words of lengths from 2

to 9.

OCR token length

Figure 5.5: Error rates based on OCRed token lengths.

In practice, post-OCR approaches have to deal with OCRed tokens instead of GT

words, and lengths of OCRed tokens can differ from those of GT words, therefore we

consider lengths of OCRed tokens. For example, in OCRed tokens ‘scho ol’ and their GT

word ‘school’, two incorrect OCRed tokens are ‘scho’ of length 4, and ‘ol’ of length 2; these

OCRed tokens come from GT word of length 6.

Similar to word length, the analysis of incorrect OCRed token lengths (see Figure 5.5)

suggests that incorrect OCRed tokens of length 3 are the most common one. In addition,

about 80.55% of all invalid OCRed tokens are of lengths between 2 and 9.

Two-dimensional classification based on word lengths and edit distances

There are some arguments that it is more difficult to deal with short-word errors than

with errors appearing in longer-length words. This is because short-word errors are more

likely to yield another lexicon entry when applying character edit operations [55].

However, the problem does not only result from length but also from edit distance

between an error and its GT word. For example, there are two errors (e.g., ‘ict’, ‘lct’) and
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their GT word (e.g., ‘let’). The first error ‘ict’ requires 2 edit operations to be transformed

into its GT word, which is more challenging than the second error ‘lct’ needing only 1

modification to be converted to its GT word. To give a clear view of such problem,

we suggest a novel classification by grouping errors according to word lengths and edit

distances. With run-on errors (e.g., ‘blue sky’ vs. ‘blucsky’), we assume the sum of lengths

of all words related to the errors as their word length.

Figure 5.6: Error rates based on word lengths and edit distances.

The two-dimensional classification of four datasets is shown in Figure 5.6. Based on this

classification, certain post-processing approaches could decide edit distance thresholds for

each word length. As mentioned in Sec 5.3.1, around 81.49% of errors have edit distance of

1, 2. In other words, maximum number of possible errors that post-processing approaches

can correct is about 81.49% if edit distance threshold is set as 2 for all word lengths.

In our opinion, by adjusting edit distance threshold according to word length, post-



5.3. OCR errors vs. human misspellings 71

OCR techniques can deal with higher rate of errors. Based on our observations, we suggest

to set edit distance thresholds 2, 3, 4 for word lengths less than 4, 10, 13, respectively. On

average, those settings increase the rate of errors that post-OCR techniques can process

from 81.49% to 89.15%.

5.3.3 Erroneous character positions

Figure 5.7: Error rates of erroneous character positions.

The survey on misspellings [54] showed that there are a few errors at the 1st charac-

ter. However, there is no research related to erroneous character positions in OCRed

text. Hence, we examine OCR errors at different character positions, including the

first/last/middle position (denoted as first, last, nth, respectively), and their possible

combinations (denoted as first+last, first+nth, last+nth, first+last+nth respectively). In

case of run-on errors, because this error type incorrectly removes white space at the end

of the first word, we decide that this error type always has one last-position error.

Details of erroneous character positions of our datasets are shown in Figure 5.7. While

12.46% of OCR errors are first-position errors, spelling errors have slightly smaller percent

of such errors with average 11% of all errors.

It is noticeable that on average 27.37% of all errors are last-position errors, which are

even comparable with that of middle-position errors (28.69%). Moreover, our observations

on four datasets indicate that erroneous characters rarely appear at the first/last position
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in the same error. In fact, statistics show that less than 10% of errors belong to (first

+ last) or (first + last + nth) combinations. Therefore, OCR post-processing can firstly

focus on single positions or some combinations (first+nth, last+nth).

5.3.4 Real-word vs. non-word errors

Figure 5.8: Rates of real-word vs. non-word errors.

In the next analysis we study the rate of real-word and non-word errors in OCRed

text. Real-word errors are valid in dictionary but incorrect in context (e.g., ‘hear’ vs.

‘bear’). The number of real-word errors vary naturally with the size of the lexicon [82].

Too small lexicon can ignore valid tokens as well as increase the number of false negatives.

In contrast, a too large dictionary can match invalid tokens to low-frequent lexical entries

or special domain terms, potentially raising the number of false positives. In other words,

the larger the lexicon is, the more real-word errors can occur.

On the other hand, non-word errors are invalid in dictionary (e.g., ‘hear’ vs. ‘hcar’).

It is obvious that non-word errors are easier to be detected and corrected than real-word

errors. In addition, there are words which appear in GT but are not lexicon entries, known

as out-of-vocabulary (OOV) words. Using the word frequency of COHA corpus, the rate

of OOV words in our datasets is found to be about 1%.

The statistics of real-word errors and non-word errors in Figure 5.8 show that approx-

imately 59.21% of OCR errors are real-word errors. The proportion of real-word errors in

our four datasets is about 1.47 times higher than that of non-word ones. On the contrary,
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misspellings have an opposite trend with 67.5% non-word errors.

Our observations on the four datasets also indicate that approximately 13.77% of non-

word errors involve digits, and 25.08% of real-word errors relate to punctuation. High

percentage of punctuation errors is one notable feature of OCRed text. In fact, the low

physical quality of old documents causes misrecognition of punctuation. Therefore, OCRed

texts tend to contain more incorrect/redundant commas and dots than human-generated

texts.

5.3.5 Word boundary

Figure 5.9: Rates of correct vs. incorrect word boundary errors.

This subsection observes word boundary aspect in detail. Let us call errors related to

wrongly identified word boundaries as incorrect word boundary errors, and ones unrelated

to word boundary problems as correct word boundary errors.

To give clearer views of OCR errors, we suggest to make a hierarchical classifica-

tion based on incorrect/correct word boundary error types, and real-word/non-word error

types. We firstly separate OCR errors into incorrect/correct word boundary error types.

Secondly, in terms of incorrect word boundary error type, depending on inserting/deleting

white spaces we classify into two main sub-types, including incorrect split/run-on error

types. In terms of correct word boundary error type, we divide into real-word/non-word

error types. Finally, for incorrect split/run-on error types we continue grouping into real-

word/non-word error types.
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Percentages of incorrect/correct word boundary types of our four datasets are shown

in Figure 5.9. It is clear that all of the four datasets give a similar trend. Around 82.85%

of errors are correct word boundary errors, which is much higher than that of incorrect

word boundary ones.

Incorrect word boundary errors

In terms of incorrect word boundary errors, we study two popular sub-types: incorrect

split/run-on error types. Incorrectly putting two or more words together creates a run-on

error which is often not in the lexicon. In other words, most of run-on errors are non-

word errors, and they are easy to be detected. Otherwise, correcting such errors is more

complicated because it easily leads to a combinatorial explosion of the number of possible

word combinations.

Wrongly splitting one word into some strings results in incorrect split errors. Both

detecting and correcting such errors are challenging because some of split strings are not

in the lexicon (non-word errors) and others are lexicon entries (real-word errors).

Figure 5.10: Error rates of incorrect word boundary subtypes.

Percentages of incorrect word boundary sub-types of four datasets are shown in Fig-

ure 5.10 with incorrect split errors denoted as split, run-on errors denoted as run-on and

their combination (split + run-on). It is notable that the percent of incorrect split errors

is on average 2.36 times higher than that of run-on errors. In contrast, most of incorrect

word boundary errors in misspellings are run-on errors with 6.5 times higher occurrence

than incorrect split ones. In addition, incorrect split and run-on errors rarely appear to-
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gether in errors. The percentage of their combination (split + run-on) is only 6.8% on

average, therefore, post-processing approaches can ignore it at first steps.

Correct word boundary

Figure 5.11: Error rates of correct word boundary subtypes.

In terms of correct word boundary, we directly classify errors into real-word/non-word

error types. Percentages of real-word and non-word errors in correct word boundary type

are shown in Figure 5.11. Real-word/non-word errors mentioned in this section are sub-sets

of the real-word and non-word errors pointed out in Figure 5.8, which reveals the similar

trend with their super-sets. Other non-word and real-word errors are of the incorrect word

boundary type, with 28.72% real-word errors and 24.82% non-word ones, on average.

5.4 Summary of main findings

We summarise in this section the key observations from our study. Firstly, we examine

OCR errors and compare them with spelling errors in several aspects. Misspellings and

OCR errors have similar trends in two cases. In particular, most of them are single-error

errors (74.5% misspellings, 58.92% OCR errors), and few of them are first-position errors

(11% misspellings, 12.46% OCR errors).

However, misspellings and OCR errors differ in three other aspects, including real-word

vs. non-word errors, incorrect split vs. run-on errors, and short-word errors. We find that

most of misspellings (67.5%) are non-word errors while most of OCR errors (59.21%) are
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real-word ones. Regarding the incorrect word boundary error type, the percentage of run-

on errors is 6.5 times higher than that of incorrect split ones in case of spelling errors.

In contrast, the proportion of incorrect split errors is on average 2.36 times greater than

that of run-on errors in case of OCR errors. Moreover, while 63% of misspellings appear

in short words, only 42.1% of OCR errors are short-word errors.

Secondly, besides similar aspects as in Kukich’s survey, we present novel statistics (non-

standard mappings, string similarities based on LCS, OCRed token lengths, and erroneous

character positions).

For non-standard mappings, our analysis reveals that some characters ‘b’, ‘d’, ‘h’,

‘m’, ‘n’ are easily recognised as ‘li’, {‘il’, ‘cl’}, ‘li’, {‘rn’, ‘in’}, {‘ri’, ‘ii’}, respectively. In

opposite way, some strings ‘li’, {‘il’, ‘cl’}, ‘li’, {‘rn’, ‘in’}, {‘ri’, ‘ii’} can be recognised as

‘b’, ‘d’, ‘h’, ‘m’, ‘n’, respectively.

In case of string similarities based on LCS, around 83.5% of OCR errors achieve no

less than 0.125 similarity S with their GT words.

As to OCRed token lengths, they show similar trend with word lengths. Particularly,

incorrect OCRed tokens of length 3 are the most common, and most of erroneous OCRed

tokens are of lengths from 2 to 9.

For erroneous character positions, around 27.37% errors are last-position errors, and

they thus are comparable to middle-position errors (28.69%). In addition, we observe that

errors rarely have erroneous characters at both the first and last position (in total 9.75%

of first+last and first+last+nth).

Finally, based on the analysis on four datasets, we make some suggestions for de-

signing post-processing approaches. Because last-position errors rarely appear together

with first-position errors, post-OCR techniques can ignore their combinations (first+last,

first+last+nth).

Our observations show that deletion, insertion and substitution occasionally appear

together in the same word (around 22.98%); algorithms of candidate generation can then

pay more attention on single modification types instead of their combinations. Moreover,

the rate of the number of substitution/deletion/insertion character candidates for each

character position of OCRed token can be set as 5:1:1 in generating candidates.
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Edit distance is considered as an important criteria in selecting relevant candidates.

Interestingly, 81.49% of OCR errors are of edit distance 1 or 2, so with edit distance

threshold 2, post-processing approaches could easily remove many irrelevant candidates.

Moreover, edit distance thresholds can be adjusted according to word lengths. With

flexible settings of edit distance threshold, post-processing techniques would be able to

handle about 89.15% of errors.

5.5 Conclusions

This chapter examines different aspects of OCR errors towards a better understanding

of OCR errors and related challenges. Based on our observations on four datasets, we

also reveal some guidelines for designing post-processing approaches. In addition, we

propose a novel two-dimensional classifications, including grouping errors according to

word lengths and edit distances, as well as grouping of real-word/non-word errors following

word boundary types.

Our work can be viewed as an important, initial step to further analyses or towards

more efficient and robust post-OCR techniques. The lessons learnt in this chapter are

applied to our post-OCR processing approaches, described in details in the remainder of

the manuscript.
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CHAPTER 6

Post-OCR error detection

Several post-processing approaches detect and correct remaining errors to improve the

quality of OCRed texts. This chapter focuses on the error detection approaches. Based

on our observation in Section 2.2, there is no clear comparison between the performance

of NMT models and that of classification models on post-OCR error detection. Therefore,

both of them are exploited with some novel features to locate error positions. The first one

explores different features from both character and word levels to classify errors (denoted

as stat-detection-proposal), while the second one applies neural network based language

model to find errors (denoted as nn-detection-proposal).

6.1 Statistical approach

This approach employs various features at both character and word levels in order to iden-

tify whether an OCRed token is correct or incorrect via binary classification. An OCRed

token needs to prove to be a valid word via feature values computed from its plausible

candidate set. This section gives details of this method and assesses its performance on

the competition datasets.

79
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6.1.1 System description

Since feature values of each OCRed token are computed relying on its candidate set,

our approach has one more step - candidate generation before typical steps of statistical

approaches. In the following section, we discuss each step in detail.

Candidate generation

In this section, we focus on generating possible candidates for each token position in

OCRed documents. In order to produce candidates, we utilise information related to an

OCRed token at character and word levels. We consider character level as important as

word level, therefore the same number of top candidates (k = 5) are used for each level.

At character level, we implement the approach similar to the one described in Sec-

tion 7.1.1 to suggest candidates for each OCRed token. Candidates are generated from a

character candidate graph and are ranked by the probabilistic character error model. For

example, an OCRed token ‘comes’ can have its candidate set {‘comes’, ‘cones’, ‘comas’}.

At word level, we make a use of local context to produce candidates. Word trigrams

related to an OCRed token are considered. Let us assume the phrase w−2 w−1 w w+1 w+2.

The three trigrams involving the OCRed token w are w−2 w−1 w (denoted as left-trigram),

w−1 w w+1 (denoted as middle-trigram), and w w+1 w+2 (denoted as right-trigram).

In case of the left-trigram, we keep w−2, w−1 and select candidate w0 for replacing

the OCRed token w. Then, we choose top k candidates based on the trigram frequency

w−2, w−1, w0. Similarly with the middle-trigram and right-trigram, top k possible candi-

dates are chosen for the OCRed token position.

For example, given the OCRed token ‘the’ in the phrase ‘his friend comes from the

north we.t’, its three related trigrams include ‘comes from the’, ‘from the north’, ‘the

north we.t’. Regarding the left-trigram ‘comes from the’, we keep ‘comes from’ and select

candidates for the OCRed token ‘the’. Three trigrams with the highest frequency are

‘comes from the’, ‘comes from a’, ‘comes from an’. Thus, top k alternatives {‘the’, ‘a’,

‘an’} of the left-trigram are chosen for the token position.

Similarly, we get word candidates for the OCRed token position from the middle-

trigram and right-trigram, which are, {‘the’, ‘up’, ‘a’} and the empty set, respectively.
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Feature extraction

Several features are extracted at character and word levels. They can be divided into

four groups: character ngram frequency, word ngram frequency, part-of-speech, and the

frequency of the OCRed token in its candidate generation sets. It should be noted that

due to shared characteristics between our datasets and the Corpus of Historical American

English (COHA) [15], we use frequencies of ngrams and parts-of-speech (POS) of this

largest corpus of historical English text. The CLAWS tagset is applied for all POS tags

of this corpus.

Character ngram frequency

The index of peculiarity (or the peculiar index) of a token is recommended for detecting

OCR errors [54], therefore we consider the peculiar index as a classifier feature. In our

work, we reuse the formula of computing the peculiar index on frequency statistics of the

historical corpus COHA.

The key idea of the peculiar index is that if strings contain non-existent or very in-

frequent ngrams (like ‘jtg’ or ‘bkm’), they are detected as potential erroneous tokens.

The peculiar index (pe-index-orig) of a token is the root-mean-square of the indices of its

trigrams, and is formulated as follows:

pe-index-orig(w) =

√∑
x∈trilist index(x)

2

n
(6.1)

where trilist is the list of trigrams of the OCRed token w, n is the size of trilist, and

index(x) is the index of trigram x which is computed as follows:

index(x) =

∑
y∈bilist log(freq(y)− 1)

2
− log(freq(x)− 1) (6.2)

where bilist is the list of bigrams of trigram x, freq(x) is the frequency of x.

For example, we reuse the OCR phrase ‘his friend comes from the south we.t’ with the

OCRed token ‘we.t’ and its two trigrams {‘we.’, ‘e.t’}, the peculiar index of this token is:

pe-index-orig(‘we.t’) =

√
index(‘we.’)2 + index(‘e.t’)2

2
(6.3)
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index(‘we.’) =
log(freq(‘we’)− 1) + log(freq(‘e.’)− 1)

2
(6.4)

− log(freq(‘we.’)− 1)

Tokens with a higher index of peculiarity tend to be incorrect [71]. However, it is

unfair to compare the index of the peculiarity of long tokens and that of short tokens.

Our analysis on the training part of our datasets suggests that long tokens tend to have a

higher index of peculiarity. Therefore, we adapt the peculiar index to token length.

For each dataset, we group the indices according to the length of their corresponding

tokens; for each group, the peculiar index is normalised by the highest peculiar index of

that group. The adapted index of peculiarity (denoted as pe-index ) and the corresponding

token length (denoted as tok-len) are used as classifier features.

By catching frequent character ngrams, the character-level features have potential to

correctly recognise out-of-vocabulary (OOV) words, which are often considered as errors

because they are not present in the dictionary.

Word ngram frequency

Some features related to word ngram frequency are studied, including word frequency,

bigram frequencies, skip-gram frequencies, and split-word.

Word frequency : The frequency of the OCRed token w is normalised by the max-

imum frequency of its candidate set C, and is utilised as one feature value (denoted as

word-freq).

word-freq(w) =
freq(w)

maxci∈C(freq(ci))
(6.5)

For example, for the OCRed token w=‘comes’, its candidates with corresponding fre-

quencies {‘comes’: 300, ‘cones’: 100, ‘comas’: 200}, the feature score of w is as follows:

word-freq(‘comes’) =
300

max(300, 100, 200)
= 1 (6.6)

Bigram frequencies of the OCRed token and its neighbours : The bigram fre-
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quency of the OCRed token and its previous token is normalised by the maximum bigram

frequency of the OCRed token’s candidates and its previous token’s candidates, and then

is used as one feature (denoted as pre-bi-freq).

pre-bi-freq(w) =
maxi∈C−1 freq(i, w)

maxi∈C−1,j∈C freq(i, j)
(6.7)

where C, C−1 are the candidate set of the OCRed token, and that of its previous token;

freq(i, w) is the frequency of word bigram (i, w).

For example, there are the OCRed token ‘the’ in the phrase ‘from the north’, the

candidate set C−1 {‘from’, ‘front’}, and the candidate set C {‘the’, ‘he’, ‘she’}. The

occurrence frequencies between ‘from’, ‘front’ and each candidate of set C are {100, 2, 1},

{105, 2, 3}. The feature score of the OCRed token ‘the’ is computed as follows:

pre-bi-freq(‘the’) =
max(100, 105)

max(100, 105, 2, 2, 1, 3)
= 1 (6.8)

Similarly, the bigram frequency of the OCRed token and its next word is normalised

by the maximum bigram frequency of the OCRed token’s candidates and its next token’s

candidates, and is used as a feature (denoted as next-bi-freq).

next-bi-freq(w) =
maxj∈C+1 freq(w, j)

maxi∈C,j∈C+1 freq(i, j)
(6.9)

where C, C+1 are the candidate set of the OCRed token, and that of its next token.

In addition, the product of the previous bigram frequency and the next bigram fre-

quency (denoted as prod-bi-freq) is also considered as one feature. Totally, three features

concerning word bigrams are used in classifying errors, including pre-bi-freq, next-bi-freq,

and prod-bi-freq.

Skip-gram frequencies : In order to reduce the data sparsity problem, skip-grams [84]

are examined beside contiguous ngrams. Since COHA provides only 4-gram word frequen-

cies, we focus on 2-skip-bigrams of an OCRed token and its neighbors.

Frequencies of 2-skip-bigrams of the OCRed token and three left/right words are cal-

culated. The sum of these concurrent frequencies is normalised by the number of 2-skip-
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bigrams (i.e. six in our work) and frequency of the OCRed token, is then used as the

skip-gram feature value. In particular, for an OCRed token w in the phrase w−3 w−2 w−1

w w+1 w+2 w+3, the score of skip-gram feature (denoted as skip-grams) is calculated as

follows:

skip-grams(w) =

∑
wi∈L1

freq(wi, w) +
∑

wj∈L2
freq(w,wj)

6 ∗ freq(w)
(6.10)

where the list L1 is {w−3, w−2, w−1}, the list L2 is {w+1, w+2, w+3}.

For example, for the OCRed token w = ‘from’ in the phrase ‘his friend comes from the

north we.t’, the skip-gram feature is computed as follows:

skip-grams(‘from’) =
sumfreq

6 ∗ freq(‘from’)

sumfreq = freq(‘his’, ‘from’) + freq(‘friend’, ‘from’) (6.11)

+ freq(‘comes’, ‘from’) + freq(‘from’, ‘the’)

+ freq(‘from’, ‘north’) + freq(‘from’, ‘we.t’)

Split-word feature : While run-on errors are easily found by lexical techniques, in-

correct split errors are more challenging to identify. In order to deal with incorrect split

errors (e.g., ‘made’ vs. ‘ma lie’), we generate a split-word candidate list Cs from the

OCRed token w and its next token. For each candidate, we compute a score based on

word frequency and bigram frequency, then use the highest score as a classifier feature

(denoted as split-word), as shown in Equation 6.12.

split-word(w) = max
ci∈Cs

(α ∗ x(ci, w) + (1− α) ∗ y(ci, w)) (6.12)

where w−1 is the previous word, x(ci, w) is 1 if freq(ci) > freq(w) else 0, y(ci, w) is 1 if

freq(w−1, ci) > freq(w−1, w) else 0, α is the contribution rate between word frequency

and bigram frequency, which is selected by keeping all other parameters same and trying

different values between 0 and 1 with a step of 0.1. Our experiments shows that α = 0.5

is the best level.
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Consider, for example, the OCR phrase ‘they main tain good relations’, two adjacent

OCRed tokens ‘main’, ‘tain’ and the previous token ‘they’. The split-word candidate set

Cs of ‘main tain’ is {‘maintain’, ‘maintan’, ‘niaintain’}. The OCRed token ‘main’ has the

highest frequency in comparison to the candidates and only ‘maintain’ has higher bigram

frequency than ‘main’, hence the feature score is as below:

split-word(‘main’) = max(0.5, 0, 0) = 0.5 (6.13)

Part-Of-Speech (POS) features

POS is considered as the general form of ngram feature. Our work utilise POS tag in

length 3 as a classifier feature.

Let us assume that there are the OCRed token w in the phrase w−2 w−1 w w+1 w+2,

and its candidate set C {c1, c2, c3}. The tri-POSs related to the OCRed token w are pos−2

pos−1 pos, pos−1 pos pos+1, and pos pos+1 pos+2 denoted as the left-POS/mid-POS/right-

POS, respectively.

We first get a list of POS tags of each token w−2, w−1, w, w+1, w+2 from COHA corpus,

denoted as L−2, L−1, L, L+1, L+2, respectively. OCRed token’s candidates c1, c2, c3 also

have the POS lists Lc1 , Lc2 , Lc3 , respectively.

As to the left-POS, all possible tri-POSs of the OCRed token and its candidates are

created by combining POS tags of L−2, L−1 and each POS list of {L,Lc1 , Lc2 , Lc3}.

The maximum frequency of the left-POS of OCRed token is computed, then nor-

malised by the maximum frequency of tri-POSs created from L−2, L−1 and each POS list

of {Lc1 , Lc2 , Lc3}. The normalised left-POS frequency of OCRed token is used as one

feature.

left-POS(w) =
maxi∈L−2,j∈L−1,k∈L freq(i, j, k)

maxLci∈Lc maxi∈L−2,j∈L−1,k∈Lci
freq(i, j, k)

(6.14)

with Lc = {Lc1 , Lc2 , Lc3}.

We reuse the same OCR phrase to illustrate this feature, ‘his friend comes from the

north we.t’. The OCRed token w is ‘comes’, and its candidate set is {‘comes’, ‘cones’,

‘comas’}. The POS lists of two previous words ‘his’, ‘friend’ are {appge, ppge}, {nn1,
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np1}, respectively. The POS lists of ‘comes’, ‘cones’, ‘comas’ are {vvz}, {nn2}, {nn2},

respectively. The possible left-POS of the OCRed token ‘comes’ include {appge nn1 vvz,

ppge nn1 vvz, appge np1 vvz, ppge np1 vvz} and their maximum frequency is 10,625.

Similarly, the maximum frequencies of the left-POS of the candidates ‘comes’, ‘cones’,

‘comas’ are 10,625; 16,425; 16,425; respectively. Consequently, the feature score is:

left-POS(‘comes’) =
10, 625

16, 425
= 0.65 (6.15)

Similarly, the normalised mid-POS, right-POS frequencies of OCRed token are com-

puted. In total, there are four features scores extracted from POS, including left-POS,

mid-POS, right-POS, and their product (denoted as prod-POS ).

The OCRed token frequency in its candidate generation sets

As mentioned in Section 6.1.1, there are four sources to generate error candidates:

character error model, local word context (left-trigram, middle-trigram, and right-trigram).

The number of appearances of the OCRed token in its candidate sets is normalised by the

number of candidate sets, then it is used as a feature (denoted as tok-freq).

While other features are built from individual words or word context, the tok-freq

feature is designed from both of them. Therefore, we think that this combined feature can

deal with non-word as well as real-word errors.

For example, the OCRed token w=‘the’ in the phrase ‘his friend comes from the north

we.t’ has the noisy channel candidate set {‘the’, ‘she’, ‘he’}. The local context candidate

sets include the left-trigram set {‘the’, ‘a’, ‘an’}, the middle-trigram set {‘the’, ‘up’, ‘a’},

and the empty right-trigram set. As a result, the feature score is that:

tok-freq(‘the’) =
3

4
= 0.75 (6.16)

Error classification

If the OCRed token is an error, then its feature vector is labeled as 1, otherwise 0. Gradient

Tree Boosting is one of the best performing classifiers [101], therefore we use it to train

and classify OCR errors. In our experiments, we use the scikit-learn library [80] with the
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maximum of 5 nodes in the tree, 800 boosting stages, and other default parameters.

6.1.2 Experimental results

As mentioned in Section 3.2.2, our results are evaluated by the same metrics (Precision,

Recall, F-measure) and the official evaluation tool of the competition.

Results on the two competitions

We compare our proposed approach with the top six approaches of the first competition

(CLAM, Char-SMT/NMT, EFP, MMDT, WFST-PostOCR, 2-pass RNN), and those of

the second one (CCC, CLAM, CSIITJ, RAE1, RAE2, UVA), which are presented in

Section 2.2. The performances shown in Tables 6.1 and 6.2 indicate that our method

outperforms the highest performing approaches in the first competition, with 6% and

2% greater F-measure than the state-of-the-art (WFST-PostOCR) on Monograph and

Periodical, respectively. In case of the second competition, our method underperforms the

winner (CCC) which is the fine-tuned neural network model.

Furthermore, the performance on different error types (non-word vs. real-word) is

clarified. In our opinion, due to the sparsity problem, our context features are not really

effective in detecting real-word errors. In fact, despite applying possible features at word

level (from ngram, skip-gram to part-of-speech) our approach enables to identify 43% of

them on Monograph, 49% on Periodical, 33% on Comp2019.

In case of non-word errors, our approach correctly detects the majority of non-word

errors (96% of them on Monograph, 85% on Periodical, and 65% on Comp2019). Most of

the unidentified non-word errors are erroneous tokens related to numbers.

It should be reminded that non-word errors are easier to detect than real-word errors.

Therefore, the rate of non-word and real-word errors of datasets heavily affects on detection

performance. We believe that our method performs differently on three datasets partly

due to this reason. In fact, the rate of Monograph is about 1.5 while that of Periodical and

Comp2019 is around 0.5. Furthermore, real-word errors in Comp2019 are more difficult to

handle. They are not only some single tokens but also a whole sentence which is a result

of wrongly line recognition.
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Table 6.1: Experimental results of OCR error detection task in English datasets of the
first competition ICDAR2017, ‘-’ denotes no reported result.

Monograph Periodical

Approaches P(%) R(%) F(%) P(%) R(%) F(%)

Char-SMT/NMT [3] 98 51 67 89 50 64

Single Char-SMT/NMT [3] - - 62 - - 59

CLAM [8] 94 52 67 - - -

EFP [8] 63 77 69 53 55 54

MMDT [91] 83 55 66 70 32 44

WFST-PostOCR [8] 67 82 73 68 68 68

2-pass RNN [8] 58 77 66 64 68 66

stat-detection-proposal 82 76 79 81 61 70

In addition, we also take into account out-of-vocabulary (OOV) words which are correct

word but do not exist in a normal dictionary. On average, 38% of OOV words in our three

datasets are correctly recognised.

Feature analysis

In total, our approach relies on 13 features to classify OCR errors. Three features (pe-

index, tok-len, word-freq) built from individual words mainly focus on detecting non-word

errors. The features created from word context (bigram frequencies, skip-grams, POS

tags) concentrate on identifying real-word errors. Regarding the combined feature tok-

freq, it has potential to deal with both of non-word and real-word errors. The remaining

feature split-word is designed to handle incorrect-split errors.

Each feature contributes differently to predict the target. The more frequently a feature

is used in the split points of a decision tree, the more important that feature is. In ensemble

classifier like Gradient Tree Boosting, the relative feature importance is computed by
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Table 6.2: Experimental results of OCR error detection task in English datasets of the
second competition ICDAR2019, ‘-’ denotes no reported result.

Comp2019

Approaches P(%) R(%) F(%)

CCC [89] - - 67

CLAM [89] - - 45

CSIITJ [89] - - 45

RAE1 [89] - - 53

RAE2 [89] - - 57

UVA [89] - - 47

stat-detection-proposal 70 52 60

summing up the feature importances of the individual trees, then dividing by the total

number of trees [80].

As our approach detects more non-word errors than real-word ones, we believe that the

features based on individual words (pe-index, tok-len, word-freq) and the combined feature

tok-freq are more important than the features relying on word context. The relative

importance of the features of our best model shown in Fig. 6.1 supports our assumption.

In particular, tok-freq is the most important one on Monograph (36.8%) and Periodical

(52.3%) but not on Comp2019 (2.9%). The feature pe-index is the third important one

on Monograph (15%) and Periodical (9.4%), but is one of two most important features on

Comp2019 (21.1%).

The importance of our novel features are evaluated separately in Table 6.3. In overall,

pe-index and tok-freq help to increase recall on three datasets, and precision on Periodical.

This trend can be partly explained by characteristics of these features and different rates

of non-word/real-word errors of the three datasets. In fact, pe-index and tok-freq mainly

detect non-word errors, and the rates of non-word/real-word in Monograph are higher

than in Periodical and Comp2019 (1.5, 0.5, and 0.5, respectively).
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Figure 6.1: The relative importance of the features.

Table 6.3: Performance of our models without some novel features, model1 (11 basic
features), model2 (model1 + pe-index ), model3 (model1 + tok-freq), Stat-proposal is a
stat-detection-proposal.

Monograph Periodical Comp2019

Models P(%) R(%) F(%) P(%) R(%) F(%) P(%) R(%) F(%)

Model1 87 31 46 76 59 66 71 49 58

Model2 91 48 63 80 61 69 71 50 59

Model3 82 74 78 80 58 67 70 52 60

Stat-proposal 82 76 79 81 61 70 70 52 60

6.2 Neural network based approach

BERT [20] is a well-known contextual language representation model. The pre-trained

BERT model can be fine-tuned to handle a variety of down-stream tasks. In this section

we investigate the application of BERT model on post-OCR processing.
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6.2.1 System description

BERT [20] is a multi-layer bidirectional transformer encoder. It is pre-trained on un-

labeled data over two different tasks, including Masked Language Model (MLM), and

Next Sentence Prediction (NSP). In the MLM task, the authors [20] obtain a bidirectional

pre-trained model by randomly masking some percentages of the input tokens, and then

predicting those masked tokens. The second task (NSP) enables the model to learn the

relationship between two sentences.

BERT models can be modified to deal with NLP problems. Downstream tasks are

firstly set with the pre-trained parameters, which are adjusted by their labelled data.

There are multiple task-specific BERT models [20], some of them work at sentence level,

others perform at token level. Error detection problem can be viewed as token classification

which classifies OCRed tokens as either valid or invalid. We focus on fine-tuning BERT

models at token level.

Figure 6.2: Single sentence tagging tasks [20].

We adapt the model of named entity recognition (NER) (as shown in Figure 6.2) to

an error detection model. Particularly, instead of tagging tokens with NER taggers, we

tag tokens with label 1 (invalid token) or 0 (valid token). Our approach is similar to

the one of the winner of the 2019 competition, but we simplify the model with only one

fully-connected layer on the top of the hidden-states output. In addition, it is proved
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that pre-trained word embedding models increase the performance of NLP tasks. Thus,

instead of randomly initialising embeddings like the competition winner CCC does, we

employ popular word embeddings (Fasttext, Glove) in our model.

Figure 6.3: Error detection based on BERT model.

Figure 6.3 illustrates steps of our approach. OCR input is first split into OCRed tokens

based on white-space. Next, we apply WordPiece [102] tokenisation on each token to get

corresponding sub-tokens. A mapping between the original OCRed token and its sub-

tokens is also maintained. Then, Glove or Fasttext is used to embed sub-tokens in lieu of

assigning random numbers as initial embeddings.

After that, these embeddings are combined with segment and position embeddings as

inputs of BERT token classification model, which is a BERT model with an additional

fully-connected layer. This design is simpler than the state of the art which uses both

convolutional and fully-connected layers.

The outcome of this stage is labelled sub-tokens, with label 1 for invalid tokens and 0

for valid tokens. Finally, the original tokens are considered as invalid ones if at least one

of their sub-tokens is labelled as invalid.
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Take an OCR sequence ‘we wyll go’ with an error ‘wyll’ as an example to illustrate our

approach. The input of the first step is a list of OCRed tokens tokenised by white-spaces,

{‘we’, ‘wyll’, ‘go’}. Applying WordPiece on each OCRed token, we have the corresponding

sub-tokens and their mappings to their original tokens, {‘we’: ‘we’, ‘wyll’: {‘w’, ‘##yl’,

‘##l’}, ‘go’: ‘go’}. Next, the pre-trained word embeddings Glove or Fasttext embed the

sub-tokens to be used as inputs for BERT token classification. The classifier labels each

sub-token as either a valid or invalid word. The original token (‘wyll’) is identified as the

error since its sub-tokens are classified as invalid ones (‘w’, ‘##yl’, ‘##l’).

In our experiments, we apply uncased BERT-base model with batch size as 32, learning

rate of the optimizer Adam as 3e-5, maximum sequence length as 75. The model is trained

with a higher number of epochs than recommended (20) while the other hyperparameters

remain unchanged.

6.2.2 Experimental results

Our approach is evaluated on English datasets of the competition on post-OCR text

correction ICDAR2017 [8], ICDAR2019 [89] by its official evaluation metrics. Details of

datasets and metrics are indicated in Section 3.

Tables 6.4 and 6.5 illustrate performances of our approach in detail. In overall, we

outperform other approaches on Periodical (with 4% higher F-measure) and Comp2019

(with 1% higher F-measure) but not on Monograph.

These results are possibly explained by the rate of real-word and non-word errors in

each dataset and the strengthen of our neural network approach. In fact, there are more

real-word errors on two datasets (Periodical and Comp2019) than on Monograph. In

addition, BERT is a contextual language model, so it is reasonable that the BERT-based

model is possible to detect more real-word errors.

Percentage of correctly detected real-word errors support our assumption. Our ap-

proach is able to identify 64% of context-sensitive errors on Monograph, 63% on Periodical,

48% on Comp2019, which is much better than our stat-detection-proposal. This approach

also attains higher results of correctly detected non-word errors with 95% on Periodical,

93% on Comp2019, but not on Monograph (82%). Similarly, the percentage of correctly
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Table 6.4: Experimental results of OCR error detection task in English datasets of the
first competition ICDAR2017, ‘-’ denotes no reported result.

Monograph Periodical

Approaches P(%) R(%) F(%) P(%) R(%) F(%)

Char-SMT/NMT [3] 98 51 67 89 50 64

Single Char-SMT/NMT [3] - - 62 - - 59

CLAM [8] 94 52 67 - - -

EFP [8] 63 77 69 53 55 54

MMDT [91] 83 55 66 70 32 44

WFST-PostOCR [8] 67 82 73 68 68 68

2-pass RNN [8] 58 77 66 64 68 66

stat-detection-proposal 82 76 79 81 61 70

nn-detection-proposal 83 63 72 83 66 74

recognised OOV words is comparable to our stat-detection-proposal with about 61% on

average on three datasets.

6.3 Conclusions

In this chapter, we present two different approaches on error detection task: 1) the first

one is based on classification model, 2) the second one relies on bidirectional contextual

language model. Each approach has both advantages and disadvantages.

The stat-detection-proposal examines a novel OCR error detection approach which

verifies whether an OCRed token is a correct one using feature values computed from

its plausible candidate set. Our stat-detection-proposal allows to detect several non-word

errors. In addition, two novel features (pe-index, tok-freq) are found to play important

roles in the detection of incorrect OCRed tokens.

A problem of this approach is that it is time-consuming to generate the plausible
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Table 6.5: Experimental results of OCR error detection task in English datasets of the
second competition ICDAR2019, ‘-’ denotes no reported result.

Comp2019

Approaches P(%) R(%) F(%)

CCC [89] - - 67

CLAM [89] - - 45

CSIITJ [89] - - 45

RAE1 [89] - - 53

RAE2 [89] - - 57

UVA [89] - - 47

stat-detection-proposal 70 52 60

nn-detection-proposal 74 62 68

candidate set for each OCRed token. Nevertheless, the candidate set can be reused for

the error correction step in statistical approaches. Another issue of this method is that its

performance on real-word errors is limited although contextual features are considered.

Regarding the latter, it does not require to generate candidates for each token and

it enables to detect several real-word errors. However, it does not function well without

the pre-trained BERT model which was trained on large datasets using 4 Cloud Tensor

Processing Units (TPUs), with totally 16 TPUs in 4 days.

Error detection approaches provide the positions of errors, which are a required input

of the next step - correction. The following chapter details our post-OCR error correction

approaches.
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CHAPTER 7

Post-OCR error correction

After we have presented approaches for error detection in Chapter 6, the remaining step

is naturally to attempt to correct the identified errors. This chapter describes two error

correction approaches: a statistical approach and an approach based on neural networks.

7.1 Statistical approach

Our statistical method makes use of confusion probability obtained from the noisy channel

model of single or multiple edits, and context probability given by language model. These

two features are essential ones as suggested by related work [48, 66], where they are used

to predict the likelihood of each candidate to be the corrected version of an error using a

regression model.

7.1.1 System description

Our regression approach is divided into three steps: candidate generation and weighting

relying on an error model, candidate scoring using a language model and candidate ranking

based on a regression model. Details of each step are discussed in the following subsections.

97
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Candidate Generation and Weighting based on an error model (Step 1)

In the first step, we generate candidates based on the character candidate graph which can

deal with run-on and split-word errors. Such candidates are weighted by using a modified

confusion probability.

Candidate Generation:

A string can be generated from the other string by edit operations of three edition types

(deletion, insertion, or substitution). Therefore, we create the character candidate graph

based on a ‘seed’ word (an OCR error) with three corresponding node types (deletion,

insertion, or substitution). Then we use this graph to produce candidates by one or

more edit operations. More specifically, if two characters are generated from one ‘seed’

character, this is a deletion node; otherwise, if one character is created from two adjacent

‘seed’ characters, it is an insertion node. In case that one character is substituted by one

‘seed’ character, we have a substitution node.

Training dataset reveals that insertion and deletion caused by two adjacent characters

are more common than those caused by three or more adjacent characters, therefore in

this chapter, we limit to two adjacent characters.

After graph construction, Breadth First Search (BFS) with some heuristic tuned from

training dataset (maximum length of candidates, minimum confusion probability) is used

to deal with the complexity.

The example graph is shown in Figure 7.1. If ‘ar.d’ is an OCR error, all ‘seed’ characters

‘a’, ‘r’, ‘.’, and ‘d’ are denoted as yellow nodes. High frequency substitution characters of

‘a’, ‘r’, ‘.’, and ‘d’ are ‘e’, ‘n’, ‘,’ and ‘l’, respectively, which are denoted as green nodes.

Two adjacent characters ‘r’, ‘.’ can be combined to generate the character insertion node

‘n’ denoted as a red node; one ‘seed’ character ‘d’ can be divided into two characters

‘il’ denoted as a blue node. One possible candidate of the error ‘ar.d’ in Figure 7.1 is

‘and’ which is generated from the substitution node ‘a’, the insertion node ‘n’, and the

substitution node ‘d’.

By using the character candidate graph, our approach can deal with two difficult error

types, which are split-word errors (for instance, ‘appointed’ is recognised as ‘ap pointed’)

and run-on errors (for example, ‘doubtfull of’ is recognised as ‘doubtfud.of’). However,
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Figure 7.1: Example of character candidate graph.

there are some limitations in quality control of too many candidates generated by one

run-on error. Therefore, this chapter only allows a punctuation and a digit be substituted

by the space.

Candidate Weighting: Candidate are weighted relying on confusion matrices ob-

tained from the training part of each dataset.

The conditional probability p(x|w) of the given source word w recognised by the OCR

software as the string x (also named as confusion probability of source word and OCR

string) can be estimated by the confusion probabilities of the characters in x assuming

that character recognition in OCR is an independent process [97].

Let x1,i be the first i characters of OCR string x and let w1,j be the first j characters of

source string w. We define p(x1,i|w1,j) to be the conditional probability that the substring

w1,j is recognised as x1,i by the OCR process. p(x1,i|w1,j) is calculated as below:

p(x1,i|w1,j) = max


p(x1,i|w1,j−1)× p(del(wj))

p(x1,i−1|w1,j)× p(ins(xi))

p(x1,i−1|w1,j−1)× p(sub(xi|wj))

(7.1)

In typical formula, the probabilities of insertion, deletion are conditioned on the previous

character [11], are computed as below:

p(del(wj)) =
del[wj−1wj]

count[wj−1wj]
, if deletion (7.2)

where del[wj−1wj] is a number of times that the source characters wj−1wj are recognised
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as wj−1; count[wj−1wj] is the appearance frequency of wj−1wj.

p(ins(xi)) =
ins[wj−1xi]

count[wj−1]
, if insertion (7.3)

where ins[wj−1xi] is a number of times that wj−1 is recognised as wj−1xi; count[wj−1] is

the appearance frequency of wj−1.

The probability of substitution are calculated as follows:

p(sub(xi|wj)) =
sub[xi, wj]

count[wj]
, if substitution (7.4)

where sub[xi, wj] is a number of times that wj is recognised as xi.

Because erroneous OCRed characters frequently appear together, two or more error

characters can be recognised as one different correct character, or one character can be

recognised as different correct characters [42]. It means that the insertion, deletion can

depend on the different previous character instead of the same previous one like Equa-

tions 7.2 and 7.3. For example, ‘li’ can be wrongly recognised as ‘h’, ‘m’ can be wrongly

recognised as ‘in’, etc.

As a result, we propose to compute the probabilities of deletion and insertion by using

the probability of substitution of many characters by one character or one character by

many characters. The modified probabilities of deletion and insertion can be formulated

as below:

p(del(wj)) = p(sub(xi−1|wj−1wj)) =
sub[xi−1, wj−1wj]

count[wj−1wj]
, if deletion (7.5)

p(ins(xi)) = p(sub(xi−1xi|wj−1)) =
sub[xi−1xi, wj−1]

count[wj−1]
, if insertion (7.6)

For instance, the correction is ‘and’, and the error is ‘ar.d’. In this case, the correct

letter ‘n’ is recognised as the error characters ‘r.’. It is similar to insertion error type

except that it does not have the same previous character, so we cannot apply the typical

formula of insertion (Equation 7.3) directly. Typical approach (denoted as typical-prob)
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uses the substitution formula twice to calculate that confusion probability:

p(‘ar.d’|‘and’) = p(sub(‘a’|‘a’))× p(sub(‘r’|‘n’))× p(sub(‘.’|‘’))× p(sub(‘d’|‘d’)) (7.7)

Our approach (denoted as modified-prob) applies the substitution formula once:

p(‘ar.d’|‘and’) = p(sub(‘a’|‘a’))× p(sub(‘r.’|‘n’))× p(sub(‘d’|‘d’)) (7.8)

Our proposal also affects on creating the character confusion matrix. In particular, if

one character (c) is recognised as two characters which are different from character (c),

it is insertion. If two characters (c1, c2) are recognised as one character which is different

from characters (c1, c2), it is deletion. Otherwise, it is substitution.

Candidate Scoring using Language Model (Step 2)

After generating and weighting candidates at character level, in the second step, we utilise

context information to score candidates of each OCR error.

Similar to some approaches of the context-based type, we consider the typical statistical

language model (SLM) to deal with this problem. Moreover, we also explore the state-

of-the-art recurrent neural network based language model (RNN-LM) [67] to compare

two types of language models in context of erroneous OCRed text. SLM and RNN-LM

are trained on the same training dataset used in ‘One Billion Word Language Model

Benchmark’ of Chelba et al. [7]. Each candidate is weighted according to the probability

of trigram in SLM or that of predicting next word in RNN-LM.

In terms of SLM, the weight of each candidate is a sum of probabilities of three trigrams

related to that candidate. For example, we have a phrase ‘yield to thbse who are’, and

two candidates {‘those’, ‘there’}, of the error ‘thbse’. With the probability of ngram x as

p(x), the SLM weight of each candidate (weightSLM) is calculated as follows:

weightSLM(‘those’) = p(‘yield to those’) + p(‘to those who’) + p(‘those who are’) (7.9)
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weightSLM(‘there’) = p(‘yield to there’) + p(‘to there who’) + p(‘there who are’) (7.10)

For constructing RNN-LM, we apply one of the most common type of RNN - Long

Short Term Memory (LSTM) [36]. The weight of each candidate is a sum of probabilities

of predicting the next word related to that candidate. More specifically, LSTM needs a

seed which is a context to predict a next word. The candidate can appear in the seed or

be the next word.

To compare with trigram language model, we keep the total length of the seed and the

next word to be three. For instance, we have the same phrase with SLM ‘yield to thbse

who are’ with the same error candidate {‘those’, ‘there’} of the error ‘thbse’, the weight

of each candidate (denoted as weightLSTM) is computed as below:

weightLSTM(‘those’) = p(seed = ‘yield to’, next-word = ‘those’)

+ p(seed = ‘to those’, next-word = ‘who’)

+ p(seed = ‘those who’, next-word = ‘are’) (7.11)

where p(seed = x, next-word = y) is the probability of predicting next word y given the

previous word x.

weightLSTM(‘there’) = p(seed = ‘yield to’, next-word = ‘there’)

+ p(seed = ‘to there’, next-word = ‘who’)

+ p(seed = ‘there who’, next-word = ‘are’) (7.12)

Candidate Ranking based on a Regression Model (Step 3)

After generating candidates and weighting them at character level and word level in two

previous steps, this step reuses these features and some complementary features to predict

the confidence of each candidate becoming a correction by a regression model. Then such

confidence is used for candidate ranking. This step consists of two parts: feature extraction

and candidate ranking.
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Feature extraction

Four important features used in our approach are selected and modified from a set

of features of two related works [48, 66]. The first feature is ‘Probability of 3-length

sequences related to errors’ is the modified version of context feature, suggested by both

of the related works; in terms of [48], this feature is ‘backward/forward bigram frequency’;

in terms of [66], this is ‘exact/relax-context popularity’. The second feature is ‘Probability

of ngram candidate’, which is the general version of ‘unigram frequency’ of two prior works.

Two last important features are features missing from each related work. As presented in

Section 2.2.3, ‘similarity feature’ is an important feature used in error correction, which

is ignored by [48]. Similarly, ‘confusion probability’ is successfully used in several post-

processing approaches, but is ignored by [66]. As to other features, we cannot use them

because of different reasons. In fact, due to lack of information from the dataset, ‘word

confidence’ is ignored. We also remove the feature which is a part of other features, for

example, ‘lexicon existence’, which is included in ‘unigram frequency’ feature. In addition,

we refuse features that easily lead to bias such as ‘term frequency in OCRed text’.

Let wc be a candidate, C be a set of all candidates, and we be an OCR error. The

details of each feature score are described in this section.

Probability of 3-length sequences related to errors: This feature (denoted as

relatedLM ) is the normalised weight of step 2 mentioned in Section 7.1.1, and is computed

as below:

relatedLM(wc, we) =
weightLM(wc)∑

w′c∈C
weightLM(w′c)

(7.13)

where weightLM is either weightSLM or weightLSTM .

Probability of ngram candidate: Candidate can be a single word or a sequence of

multiple words, it means that candidate is word ngram. Instead of using the frequency of

candidate and accepting 0 value if candidate is not in the training data, we use the prob-

ability of candidate in word ngram model which already applies smoothing techniques for

solving sparsity problem. This feature (denoted as candi-prob) is the normalised proba-
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bility of candidate in word ngram model, and is formulated as follows:

candi-prob(wc, we) =
p(wc)∑

w′c∈C
p(w′c)

(7.14)

where p(wc) is the probability of candidate wc in word ngram model.

Longest common subsequence (LCS) is an alternative in qualifying the similarity

between two strings. Two variations of LCS, including Normalised Longest Common Sub-

sequence (NLCS) and Normalised Maximal Consecutive Longest Common Subsequence

(NMCLCS) are proposed by Islam et al. [38].

The similarity of the two strings wc and we (denoted as similar) is calculated as below:

similar(wc, we) = α ∗NLCS(wc, we) +
∑

i∈{1,n,z}

αi ∗NMCLCSi(wc, we) (7.15)

where NLCS and NMCLCSi are computed as in Equations 5.1, and 5.2; α = αi = 0.5

weights of NLCS and NMCLCSi, which is recommended by Islam et al. [39].

Confusion probability: This feature (denoted as conf-prob) is the normalised weight

of step 1 in Section 7.1.1, and is computed as below:

conf-prob(wc, we) =
p(wc|we)∑

w′c∈C
p(w′c|we)

(7.16)

Candidate ranking

A regression model is used for scoring candidates. For training and testing a regressor,

if a candidate is a correction, its feature vector is labeled as 1. Otherwise, the feature vector

is labeled as 0. Candidate with the highest confidence is suggested as the correction.

However, correcting run-on errors often produces irrelevant candidates which cause a

big difference between corrected word and ground truth one. For example, post-processing

tries to find the most suitable candidate from a dictionary for a run-on error ‘whereloan’,

and suggests the top candidate such as ‘helios’ which is totally different from the GT

‘where I can’. Therefore, the final filter based on the edit distance between error and its

top candidate decides whether use the top candidate or keep the error.
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7.1.2 Experimental results

In this section, we perform the comparative evaluation of our approach. As mentioned in

Section 3.1.2, English datasets of the ICDAR Post-OCR text correction competitions [8,

89] are used as benchmarks for the evaluation of our approaches.

Similarly, we use the percentage of improvement as the main evaluation metric. It

is calculated based on the comparison of the original Levenshtein distance (between the

OCR output and the GT) and the avgDistance distance (between the corrected output

and the GT). The details of these metrics are described in Section 3.2.2.

By combining two ways of calculating step 1’s weight and two ways of calculating step

2’s weight, we consider four approaches in total: typical-prob.SLM, modified-prob.SLM,

typical-prob.LSTM, and modified-prob.LSTM. The overall performance of our approaches

is shown in Table 7.1.

Table 7.1: Overall performance, the relative improvement (%), of our statistical approaches
over English datasets of the first competition ICDAR2017, ‘x’ denotes no improvement.

Approach Monograph Periodical

Baselines

Char-SMT/NMT [3] 43 37

Single Char-SMT/NMT [3] 18 21
CLAM [8] 29 22
EFP [8] 13 x

MMDT [91] 20 x
WFST-PostOCR [8] 28 x

stat-correction-proposal

typical-prob.SLM 22 3
modified-prob.SLM 30 10

typical-prob.LSTM 22 3
modified-prob.LSTM 30 10

Firstly, let us consider the dataset Monograph. In terms of performance of step 1, as

mentioned in Section 7.1.1, our approach of calculating the confusion probability con-



106 Chapter 7. Post-OCR error correction

sidered the common way in which erroneous characters appear, therefore our suggestion

(modified-prob) strongly outperforms the typical approach (typical-prob) even with differ-

ent techniques of step 2 (SLM or LSTM).

As to the performance of step 2, in erroneous OCR context, SLM has a comparative

result to LSTM. However, if we consider the improvement percentage with one decimal

value, SLM performs just slightly better (1.8% of relative increase of improvement in case

of typical-prob and 2.4% in case of modified-prob on Monograph).

Regarding the performance of step 3, experimental results show that gradient boosting

regression model [28] on top of decision trees with the least square loss function outper-

forms other regression models.

Among 10 participants of the correction task in the Post-OCR text correction IC-

DAR2017, only six teams can improve the distance with GT, and other teams almost

deteriorate documents. These final results confirm the difficulty of post-processing step to

deal with the noisy OCR output and the uncleaned GT.

Our best regression model (modified-prob.SLM ) obtains higher performance than 9

teams. It should be emphasised that our approach is better than the multi-modular

approach of statistical machine translation approach and spelling checker (MMDT) and

the neural machine translation approach applied on post-OCR problem (CLAM), with

around 10% and 1% absolutely increase, respectively.

Although our result is still lower than the one of the best-performing participant

(Char-SMT/NMT), it is unfair to compare our multi-modular approach with the ensemble

one. While our solution uses only one best regression model to score candidates, Char-

SMT/NMT trains several models of both statistical and neural machine translation, and

combines the top candidates generated from such models.

If we recommend top 5 candidates for each error, the best improvement percentage of

our best approachmodified-prob.SLM is 41%. It should be clear that the best improvement

percentage is calculated based on the original distance and the best corrected distance (the

distance of the most relevant candidate among the top n candidates with the GT word).

In other words, in semi-automatic mode, our multi-modular approach can suggest correct

candidates with the comparable performance with the ensemble approach of the winner.



7.2. Neural network based approach 107

Secondly, the dataset Periodical is taken into account. In our analyses of OCR errors

(Chapter 5), we indicate that this dataset has higher percentage of real-word errors and

more various mappings, which cause difficulties in generating and ranking candidates. Our

post-processing approach obtains some improvements on Periodical, which only better

than other statistical approaches (e.g., WFST-PostOCR, MMDT), but still much lower

than the neural network based ones. These improvements confirm the mentioned-above

conclusions, our modified-prob method outperforms the typical approach typical-prob and

SLM is comparable to LSTM in erroneous context of OCRed text.

Lastly, concerning the dataset of the competition 2019, our correction approach does

not get any improvements. It should be reminded that the second competition in 2019 is

different from the one in 2017. Instead of being provided the list of error position, we have

to use our list of errors. In our case, we apply the list obtained from our statistical detection

approach (Section 6.1). In other words, the task is more difficult because correction results

are dependent on not only correction techniques but also detection ones.

Furthermore, the dataset contains a high rate of real-word errors. More candidates

should be generated at word level to handle real-word errors. In addition, among our three

evaluation datasets, Comp2019 is the smallest and the one with the highest character error

rate, and our regression model requires more data to predict relevant candidates.

7.2 Neural network based approach

As mentioned in Section 2.1, character-level machine translation is the current state of the

art of error correction task. Regarding MT techniques, SMT consists of many small sub-

components that are tuned separately. In contrast, NMT aims at building a single neural

network which maximises the translation performance. Its performance is comparable to

the existing state-of-the-art phrase-based model [102]. Consequently, we decided to use

NMT at character level to translate OCRed text into its corrected version in the same

language.
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7.2.1 System description

We utilise an open-source toolkit for neural machine translation (OpenNMT) [49] to build

our models. This toolkit is easy to use with handy guidelines and performs comparably

with the high-performing NMT framework Nematus [92].

For hyperparameter setting, we use most of the default values of OpenNMT, except

for embedding, hidden layer size, sequence length. Input and output texts are of the same

language, therefore we configure to share embeddings between the source and target side

with embedding size of 160 (tested against 100). Hidden layer size is increased from 500

to 1000. We set the maximum sequence length to 70 (instead of the default one, 50) to

cover longer sequences of training data.

It is the fact that most of OCRed tokens are correct. If the MT system is trained

on a dataset with a large proportion of valid tokens, then it might not rectify errors. In

order to reduce the negative impact of imbalanced data and deal with real-word errors,

we consider erroneous OCRed tokens and some nearby tokens (which can be correct or

incorrect) as input; the corresponding GT texts are provided as output of NMT models.

Particularly, given one error and its four neighbors, we generate four word 5-grams

which are represented at character level and used as input sequences. By doing this, we

augment data for training NMT models. In the data representation, space and ‘#’ are

viewed as character delimiters and word boundary markers, respectively. If an error is a

run-on one, ‘$’ is used as word delimiter within its target text.

It should be noted that we do not consider an input sequence with all four words on

the left side of the error and no word on its right side. The reason is that we expect to

tackle incorrect split errors, such as ‘main tain’ vs. GT word ‘maintain’.

For example, given an error ‘andjust’ in OCR phrase ‘twenty in number andjust then

published in a’, and its corresponding GT ‘twenty in number and just then published in

a’, four input sequences of the error and their output ones are shown in Table 7.2.

Furthermore, Sennrich et al. concluded that linguistic features (e.g., POS tags, mor-

phological features, etc.) yield high performance of NMT systems. However, these features

are specifically designed for words rather than characters. Instead of using such linguistic

features, Amrhein et al. [3] applied two other features in their character-level NMT mod-
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Table 7.2: Example of input/output sequences.

OCRed text (source side)

t w e n t y # i n # n u m b e r # a n d j u s t # t h e n
i n # n u m b e r # a n d j u s t # t h e n # p u b l i s h e d
n u m b e r # a n d j u s t # t h e n # p u b l i s h e d # i n
a n d j u s t # t h e n # p u b l i s h e d # i n # a

GT text (target side)

t w e n t y # i n # n u m b e r # a n d $ j u s t # t h e n
i n # n u m b e r # a n d $ j u s t # t h e n # p u b l i s h e d
n u m b e r # a n d $ j u s t # t h e n # p u b l i s h e d # i n
a n d $ j u s t # t h e n # p u b l i s h e d # i n # a

els, including the text types and the written time span. Nevertheless, both of the features

are missing from Comp2019 dataset.

We think that OCRed texts of Comp2019 dataset might share some common charac-

teristics, thus, our work considers the source of this dataset as its type. In total, there are

three text types in the competition datasets (monograph and periodical from Comp2017,

and Comp2019), which are exploited as additional input feature (or factor) for MT model.

In OpenNMT, factors can be described in the input format with the symbol ‘|’ as the

beginning of a factor.

By applying factored NMT, we have more training data. Moreover, instead of training

different models for each dataset, we only need to train a single model to test on our

three datasets. An example of an input sequence of Monograph dataset with factored

representation is shown in Table 7.3. Factored NMT model is the first version of our

approach (denoted as Version 1).

MT techniques apply pre-trained word embeddings to improve translation performance.

Several word embeddings are available and free to access while it is not easy to find a

character embedding. McCann et al. [65] reported that a pre-trained encoder of a MT

model increases the performance of other NLP tasks. Their contextualised word vectors

are known as Context Vectors (CoVe). Broadening this idea, we extract embeddings from

character-level NMT model trained with an aligned data.
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Table 7.3: Example of an input sequence of Monograph dataset along with the feature
document source M (Monograph).

OCRed text (source side)

n|M u|M m|M b|M e|M r|M #|M a|M n|M d|M j|M u|M s|M t|M #|M t|M h|M e|M n|M

GT text (target side)

n u m b e r # a n d $ j u s t # t h e n

Particularly, we align OCRed text with its corresponding GT text, then we generate

input sequences from each aligned error with its contextual tokens. New character em-

beddings are extracted from models trained with the aligned data and shared embeddings

between source and target side. It is expected that the embeddings (called as aligned

embeddings) are able to put characters closer together in the vector space provided that

they have similar contexts and/or shapes. The second version of our approach (called as

Version 2) is similar to the first one but uses aligned embeddings.

As mentioned in Section 5.3, more than 80% of OCR errors have an edit distance less

than 3. We can apply this feature to remove some irrelevant candidates. Specifically, after

getting candidates for each error from MT models, we only select candidates which have

edit distance with the error lower than 3. Furthermore, the analyses also indicate that

percentage of deletion and insertion errors are much lower than that of substitution errors.

While it is expensive to compute edit distance between two sequences, the length difference

between candidate length and OCRed token length is simple and fast to calculate. We find

that by setting the length difference threshold to 4, we obtain a performance comparable

to using edit distance. The last version of our approach (denoted as Version 3) is the same

as Version 2 with the addition of the length difference filter.

7.2.2 Experimental results

Our approach is evaluated on English datasets of the first two competitions with their

evaluation metrics. Details of evaluation datasets as well as metrics are described in

Sections 3.1.2 and 3.2.2. In the first competition, the organisers provided the predefined

list of error positions. In contrast, the correction task of the second one is more challenging
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as we need not only to identify error positions but also to rectify such detected errors. In

this case, we use the list of errors detected by our neural network based detection approach

(Section 6.2).

Performances of our approach on the competition datasets in ICDAR2017, and IC-

DAR2019 are shown in Tables 7.4 and 7.5, respectively. In general, the third version of

our approach outperforms some of our counterparts as well as our statistical approaches.

Table 7.4: Overall performance, the relative improvement (%), of our neural network
based approaches over English datasets of the Post-OCR text correction ICDAR2017, ‘x’
denotes no improvement.

Approach Monograph Periodical

Baselines

Char-SMT/NMT [3] 43 37

Single Char-SMT/NMT [3] 18 21
CLAM [8] 29 22
EFP [8] 13 x

MMDT [91] 20 x
WFST-PostOCR [8] 28 x

stat-correction-proposal

typical-prob.SLM 22 3
modified-prob.SLM 30 10

typical-probLSTM 22 3
modified-prob.LSTM 30 10

nn-correction-proposal

Version 1 31 19
Version 2 32 20
Version 3 36 27

As to the first competition in ICDAR2017, our single model performs better than most

of participants, except for the state-of-the-art approach (Char-SMT/NMT) which com-

bines five different models of statistical MT and neural MT. The authors of the method [3]

said that their combining system is complicated and hard to apply to new datasets. They
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suggested the most promising single system which works across all data sets. However, its

performance is significantly lower than the ensemble model with 18% and 21% improve-

ment [3].

In opposite to the complex model of the winner, our model is easy to implement

with the help of the open source OpenNMT. Moreover, it should be emphasised that

our improvement is much higher than the neural translation based approach (CLAM) or

multi-modular statistical based approach (MMDT) [91]. Consequently, we think that our

model can be considered as one of the possible solutions to reduce OCR errors.

Table 7.5: Overall performance, the relative improvement (%), of our neural network based
approaches over English datasets of the Post-OCR text correction ICDAR2019.

Approach Comp2019

Baselines

CCC [89] 11

CLAM [89] 0.4
CSIITJ [89] 2
RAE1 [89] 9
RAE2 [89] 6
UVA [89] 0

nn-correction-proposal

Version 1 1
Version 2 2
Version 3 4

Regarding the second competition in ICDAR2019, without the provided error list,

we have to use our list of errors obtained from our neural network based error detector

(Section 6.2) in order to generate corresponding input and output sequences. Our best

model still underperforms than some other methods, including RAE2, RAE1 and CCC.

In our opinion, the reason is that our models are built on the limited resources of the

2019 competition which is small and contains several real-word errors involving wrong line

recognition. The RAE1, RAE2 competitors and the CCC team benefit from using external
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materials like the Google Books Ngram Corpus. Nonetheless, there is no clear conclusion

between the performance of our best model and that of RAE1&2 (called WFST-PostOCR)

as the former performed better in the first competition.

7.3 Conclusions

In this chapter, we explored two ways of correcting OCR errors. The first one employs re-

gression model to score candidates based on features extracted from the modified method of

computing confusion probability and different types of language model. Our experiments

show that SLM is comparable with LSTM in terms of 3-length sequence in erroneous OCR

contexts. Our best model is comparative with those of participants of the competition in

ICDAR2017, even with the neural network based model. However, there is a substantial

decrease when dealing with datasets with several real-word errors.

Our second approach applies NMT techniques on contextual input data and some

additional features (e.g., our character embedding, candidate filter) is promising to re-

duce OCR errors. Experimental results show that our best model outperforms several

approaches of the teams of the competition in ICDAR2017. Nonetheless, if real-word er-

rors caused by wrong line recognition like those in the competition dataset Comp2019 are

taken into consideration, the performance of our approach is limited. Future work will

focus on employing additional external resources to improve our results.
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CHAPTER 8

Conclusions and future work

Previous chapters described different approaches to support accessing and exploring digi-

tised output. Logical book structures are re-established for easy navigation. The quality

of OCRed text is improved by detecting and correcting erroneous tokens. This chapter

provides some conclusions as well as discusses future work.

8.1 Conclusions

Some limitations of OCR techniques lead to difficulties in exploiting digitised collections.

One of them is that they typically produce textual digitised books only with physical

structure information like paragraphs, pages, etc. It is not easy to navigate inside books

or search information page by page, and this structure does not reflect well the semantic

organisation of documents. Another problem is that the accuracy of modern OCR engines

is reduced while converting old documents. Erroneous OCR output considerably impacts

the way digital documents are indexed, accessed and explored. This thesis addresses these

above problems by providing users with tables of contents for digitised documents and

improving the quality of OCRed text.

115



116 Chapter 8. Conclusions and future work

Firstly, we introduce an aggregation method to enhance ToC extraction using sys-

tem submissions from the first three competitions on book structure extraction. Our

experimental results show that the union of two best approaches outperforms the existing

approaches using both the title-based and link-based evaluation measures on the dataset of

more than 2000 books. By efficiently combining the results of existing systems in an unsu-

pervised way, we consistently outperform the state-of-the-art in book structure extraction,

with statistically significant performance improvements. Our ensemble approach can work

effectively providing that the outputs of relevant structure extraction are available.

Secondly, post-processing approaches are applied to improve the quality of OCRed

texts. Although OCR errors share some common features with spelling errors, OCR

errors have their own special characteristics. Thus, we examine different aspects of OCR

errors towards a better understanding of OCR errors and related challenges. Based on

our observations on four datasets we suggest some guidelines for designing post-processing

approaches and apply them into our proposals.

Two high-efficient approaches are proposed on error detection task: i) error- and

language-based model; ii) BERT based model. The first detection approach called stat-

detection-proposal identifies erroneous tokens using feature values computed from its plau-

sible candidate set. Experimental results show that several non-word errors can be de-

tected and two novel features (pe-index, tok-freq) are useful in classifying errors. However,

the method has some limitations in detecting real-word errors. In addition, it requires

to generate the plausible candidate set for each OCRed token, nonetheless, it should be

noted that the set can be reused in the correction part.

The second detection approach named nn-detection-proposal classifies errors based on

fine-tuning BERT models with pre-trained word embeddings. Thanks to the contextual

language model BERT, this proposal is able to handle real-word errors and it is unnecessary

to generate candidates for each token. Nevertheless, it is dependent on the pre-trained

BERT model which needs to be trained for several hours on large datasets.

Similar to the detection part, we present two ways of correcting OCR errors. The first

correction approach is to predict the relevant candidates by using regression model. It is

worth noting that features extracted from the modified method of computing confusion
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probability and different types of language model are employed as the criterion to score

the candidates. Our best model is comparative with participants of the competition in

ICDAR2017. Nonetheless, there is a substantial drop in detecting errors on datasets with

several real-word errors.

Our second correction proposal applies neural machine translation techniques. By

considering more context, and utilising advance features of NMT, this method can rectify

not only non-word but also real-word errors. Numerical results show that our best model

outperforms some approaches, including other NMT based ones. However, real-word errors

which are caused by wrong line recognition like those in the competition dataset Comp2019

are still problematic.

8.2 Future work

This thesis reports some supportive approaches to browse inside books and to increase

the usability of digitised books. The advantages and disadvantages of each method are

clarified in each chapter. Our future work will focus on eliminating such disadvantages

from our next approaches.

Regarding book structure extraction problem, as more than 80% of books has physical

ToC pages, it is obvious that more attention should be payed for this kind of books. Besides

methods of the ToC-recognition-based type, approaches of the book-content-based kind

can be applied on books with ToC as well. It is apparent that this is a double verification

on extracting ToC on books with ToC, which enables to improve performance of book

structure extraction.

As to error detection task, the stat-detection-proposal shows some benefits in detecting

errors but it is time-consuming to generate the list of candidates. Further work can focus

on speeding up the current algorithm of candidate generation. The nn-detection-proposal

outperforms other approaches, but it depends on BERT models. Hence, it is interesting to

design more complex models on the top of BERT models or a new neural network model

which takes into account specific features of OCR errors.

Concerning error correction task, real-word errors are always a big problem especially
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with the stat-correction-proposal. The heart of the statistical approach is, of course, the

candidate generation. Besides candidates at character level, it is reasonable to consider

candidates at word level as well. More contextual features should be taken into account

to deal with real-word errors.

Applying machine translation techniques to post-OCR processing is the state-of-the-

art approaches. We will integrate the post-filter into the NMT model. Our nn-correction-

proposal can be upgraded with some modifications based on characteristics of OCR errors.

Experimental results show that our neural network based approach is comparable to other

approaches, but, it has some limitations in dealing with real-word errors like wrong line

recognition errors. Thus, one feasible way is to provide more contextual information to our

models, such as fine-tuned BERT models or Google Books Ngrams. Besides machine trans-

lation techniques, applying sequence-to-sequence approaches or sequence generation tech-

niques like Sequence Generative Adversarial Nets with Policy Gradient (SeqGAN) [104] is

also a promising solution.

In our next step, ensemble approaches will be considered to take advantages from

various detection and correction methods. Our post-OCR methods can be expanded to

benefit from not only natural language processing resources but also information of OCR

software. Furthermore, multi-modal learning model might be exploited to incorporate text

generation and post-processing.

The post-processing approaches could be further adapted to solve other problems of

string-string transformation, for example, spelling normalisation that converts historical

spellings into corresponding modern word forms, post-processing on textual outputs of

Automatic Speech Recognition which enables the recognition and translation of spoken

language into text by computers, or on transcriptions of handwritten documents.
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