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Abstract: The modelization of nano-reinforced material requires to take into ac-

count the size effect caused by the local phenomena at the interface between the

nano-inclusion and the matrix. This size effect is interpreted through an increase in

the ratio interface/volume and can be taken into account by introducing a surface

elasticity at the interface. Whereas a lot of works have been developed from the

analytical point of view, few contributions are related to numerical description and

implementation of such surface elasticity in Finite Element Method (FEM).

Our studies aim to develop efficient numerical tools based on FEM for the mod-

eling of nanocomposites. Firstly, we evaluate the two existent numerical strategies

namely the XFEM approach and the Interface element approach in reproducing the

size effect in the homogenization process. Secondly, based on a performance test

on the three types of formulations of E-FEM for the case of weak discontinuity,

we propose an enhanced SKON formulation allowing to incorporate the effect of a

coherent interface. Finally, the numerical modeling on the nonlinear behavior of

nanocomposites is investigated. In the first step, a von Mises type elastoplastic

law with linear isotropic hardening is considered for the bulk while the interface is

considered as linear elastic.

Keywords: finite element method, XFEM, E-FEM, homogenization, nanocompos-

ite, surface elasticity, size effect, plasticity.

Résumé: La modélisation des matériaux nano-renforcés nécessite de prendre en

compte l’effet de taille induit par les phénomènes locaux à l’interface entre la nano-

inclusion et la matrice. Cet effet de taille est interprété par une augmentation du

rapport interface/volume et peut être pris en compte en introduisant une élasticité

surfacique à l’interface. Alors que de nombreux travaux ont été développés du point

de vue analytique, peu de contributions ont trait à la description numérique et à

la mise en œuvre de cette élasticité surfacique dans la méthode des éléments finis

(FEM).

Nos études visent à développer des outils numériques efficaces basés sur la FEM

pour la modélisation de nanocomposites. Dans un premier temps, nous évaluons

les deux stratégies numériques existantes, à savoir l’approche XFEM et l’approche

des éléments d’interface, dans la reproduction de l’effet de taille dans le processus

d’homogénéisation. Deuxièmement, sur la base d’un test de performance des trois

types de formulations d’E-FEM dans le cas de discontinuités faibles, nous proposons

une formulation améliorée de SKON permettant d’intégrer l’effet d’une interface

cohérente. Enfin, la modélisation numérique du comportement non linéaire des

nanocomposites est étudiée. Lors de la première étape, une loi élastoplastique de

type von Mises avec durcissement linéaire isotrope est considérée pour le volume,

tandis que l’interface est considérée comme élastique linéaire.

Mots-clés : méthode éléments finis, XFEM, E-FEM, homogénéisation, nanocom-

posites, élasticité surfacique, effet de taille, plasticité.
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Chapter 1

General introduction
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1.1 Background and motivations . . . . . . . . . . . . . . . . . . . . 1
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1.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Background and motivations

Due to their remarkable mechanical behavior for low reinforcement mass fraction

(less than 5%) [Cauvin et al., 2010], nano-reinforced polymers are increasingly used

as structural materials. This interest has induced considerable worldwide research

on nanocomposites mechanical behavior. Most of these studies focused mainly on

experimental processing and characterization or analytical modeling.

One of the main features of nanocomposites compared to conventional composites

is the so-called size effect they exhibit: for a given volume fraction of nano-fillers,

the (macro) homogenized behavior depends on the size of the fillers. Since standard

experimental setups are not able to access the local phenomena arising at the nano

or even sub-nano scales, Molecular Dynamic (MD) simulations [Shenoy, 2005, Mi

et al., 2008] are often employed to "identify" the model parameters to be used in

continuum mechanics based modelization.

One of the biggest challenges for the modeling of these materials lies in taking

into account the size effect induced by the nano-fillers on the macroscopic behavior

of the material as suggested by several experimental studies (for instance [Reynaud

et al., 2001,Cho et al., 2006,Blivi et al., 2016]). This size effect, commonly attributed

to local phenomena at the atomic scale, can be interpreted through an increase in

the ratio (interface matrix-inclusions)/(volume fraction of inclusions). The influence

of the local phenomena on the overall properties of the material can be modeled in

the framework of continuum mechanics by an interphase or an imperfect interface

1
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whose properties can be characterized by MD simulation. By adding imperfect in-

terface models or interphase between matrix and inclusion into the homogenization

methods, the behavior and effective properties of nanocomposites can be estimated.

From the analytical point of view, two different types of approaches are considered:

either an interface model with surface elasticity ( [Sharma et al., 2003,Duan et al.,

2005b, Chen et al., 2007, Quang and He, 2009, Brisard et al., 2010a, Monchiet and

Kondo, 2013,Dormieux and Kondo, 2013,Nazarenko et al., 2017]) or an interphase

model is taken into account ( [Boutaleb et al., 2009,Paliwal et al., 2012,Benveniste,

2013]). The main limitation of all these studies based on analytical developments re-

mains in their restriction to quite simple shapes of inclusions (spheres, cylinders, ...).

Moreover, the extension of these developments to non-linear behaviors is not straight

forward (very recent nonlinear studies are proposed in [Brach et al., 2017a, Brach

et al., 2017b]). The development of dedicated numerical approaches is, therefore,

necessary to circumvent all these limitations. However, very few contributions are

related to numerical description and implementation of such interface/interphase

models in Finite Element codes. These developments are based mainly on the stan-

dard Finite element method with the surface-type element as in [Wei et al., 2006] or

the eXtended Finite element method (XFEM) in [Yvonnet et al., 2008]. In addition,

the evaluation of the efficiency of these two numerical approaches as well as the

numerical modelization for nonlinear behavior in the case of nanocomposite are not

available.

As mentioned, the weak discontinuities induced by the presence of inclusions can

be numerically modeled by XFEM. Nevertheless, another choice can be to consider

Embedded Finite Element Method (E-FEM), widely used for the description of

strong discontinuities. Even if this approach has the potential to handle the weak

discontinuity, its application in the numerical homogenization is quite limited. We

can found several works that couple weak and strong discontinuities in the E-FEM

framework as in [Hautefeuille et al., 2009, Benkemoun et al., 2010, Roubin et al.,

2015, Idelsohn et al., 2017]. However, the evaluation of the performance as well as

the level of accuracy of this method in handling weak discontinuities (in the context

of the homogenization of the macroscopic properties) has never been performed.

To the best of our knowledge, XFEM and E-FEM are two of the most efficient

tools for handling discontinuities on structured meshes (unfitted meshes). Compared

to the global kinematic enrichment of XFEM, the local enhancement of E-FEM

separately handles the local equilibrium of the interface and the global equilibrium.

As in the coherent interface model, the interface equilibrium is locally governed by

the Young-Laplace equation, E-FEM seems well adapt in this context. Keeping this

idea in mind, an E-FEM strategy seems very promising for modeling homogenized

behavior of nanocomposites including nanoreinforcement size effect.

From these motivations, the objectives of this PhD work are summarized as
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follows:

- Compare the efficiency of the two existent numerical approaches numerical

approaches found in the literature namely XFEM and Interface element;

- Evaluate the E-FEM formulations for numerical homogenization;

- Develop a numerical approach in the context of E-FEM to take into ac-

count the interface effect on homogenized properties in the case of nanore-

inforced materials;

- Extend the numerical approaches to handle nonlinear behaviors of the

nanocomposites constituents.

1.2 Outline

The outline of this thesis is as follows:

In chapter 2, we firstly give a general introduction about nanocomposite mate-

rial as well as the interesting size effect they exhibit. The experimental evidence

and the explanation of this effect from the atomistic/molecular point of view are

then presented. Before reporting on the state of the art in this domain, the no-

tion of interphase and interface which are needed for the vast majority of models

and simulations are defined. Next, we present different types of studies that deal

with the size effect observed in nanocomposites. They are ranging from the very

fine-scales (atom, nano) with Molecular Dynamic simulation to the continuum me-

chanical scales (micro, macro) with the analytical and numerical micromechanical

models. To end the chapter, the principal hypothesis and the main equations needed

for the problem in hand are presented.

In chapter 3, we present a comparative study of the performance of the Interface

element approach and XFEM/level set approach in modeling the size effect. For

a fair comparison, these two approaches are implemented in the same framework,

considering the same element topology. After validation of the implemented strate-

gies, we investigate, in particular, the influence of the homogenization hypothesis

in terms of boundary conditions and random microstructure on the computed ef-

fective mechanical properties. The comparison of the convergence analysis and the

computation of effective mechanical properties give an evaluation of the two studied

approaches and provides a good basis to elaborate a new numerical computation

method.

In chapter 4, a new numerical approach based on the Embedded Finite Element

Method (E-FEM) is elaborated in order to model size effect of nanocomposites. For

this purpose, a performance comparison of three formulations of E-FEM in the case

of weak discontinuity is performed. Based on its good performance, the E-FEM

standard Statically and Kinematically Optimal Nonsymmetric (SKON) formulation
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is chosen to incorporate a surface elasticity at the interface between the matrix and

the inclusions. The results obtained with the proposed approach for a couple of

problems are confronted to those obtained with analytical solutions and with the

Interface element approach.

In chapter 5, the numerical models presented in the previous chapters are used

in the context of non-linear behavior. A von Mises type elastoplastic law with

linear isotropic hardening is considered for the bulk while the interface is considered

as linear elastic. The implicit backward Euler integration scheme and the return

mapping algorithm have been used. Results on the homogeneous nonlinear behavior

on the deviatoric part of the stress and strain obtained from the three different

numerical approaches are then presented and compared.

Finally, conclusions and perspectives are drawn in chapter 6.

1.3 Notations

- Tensors and vectors

a Scalar

A Second order tensor

I Second order identity tensor

n Normal vector

a · b = aibi

A ·b = Aijbj

A·B = AikBkj

a Vector

A Fourth order tensor

I Fourth order identity tensor

P Projector operator onto interface

A : B = AikBki

A : B = AijklBlk

a ⊗ b = aibj

- Mathematical symbols

J{•}K Jump of a quantity {•} over the interface.

∇ Gradient operator

∇s Symmetric gradient operator

∇s Surface gradient operator

∇s
s Symmetric surface gradient operator

div Divergence operator

divs Surface divergence operator

dev Deviatoric part

K Curvature tensor
˙{•} Derivative with respect to the time of a quantity {•}

- Mechanical symbols

λ, µ Lame’s constants of the bulk

λs, µs Lame’s constants of the interface
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u Displacement field in the bulk

a Additional degree of freedom vector

ψ Enrichment function in XFEM

us Displacement field on the interface

ǫ Infinitesimal strain tensor in the bulk

ǫs Infinitesimal strain tensor on the interface

γ Enhanced strain tensor in the bulk

γs Enhanced strain tensor on the interface

M Enhanced shape function in E-FEM

σ,σs Cauchy stress tensor in the bulk and on the interface

C Fourth order elastic tensor

Cs Fourth order surface/interface elastic tensor

Cep Consistence elastoplastic tangent tensor

K Hardening modulus

ξ Hardening variable

f Yield function

σy Elastic limit stress

q Stress-like variable associated to the hardening variable

D Plasticity dissipation

γ Lagrange plastic multiplier

ζ Plastic flow direction

{•}trial Trial values of variable {•}
∆u Incremental displacement

- Abbreviations

FEM Finite Element Method

MD Molecular Dynamics

RVE Representative Volume Element

MTM Mori-Tanaka Model

GSCM Generalized Self-Consistence Method

CCA Composite Cylinder Assemblages

HS Hashin-Shtrickman bounds

IE Interface Element approach

XFEM eXtended Finite Element method

E-FEM Embedded Finite Element method

KUBC Kinematic Uniform Boundary Condition

SUBC Stress Uniform Boundary Condition

PBC Periodic Boundary Condition

EAS Enhanced Assumed Strain

SOS Statically Optimal Symmetric
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KOS Kinematically Optimal Sysmetric

SKON Statically and Kinematically Optimal Non-symmetric

d.o.f Degree of freedom



Chapter 2

Size effect in nanocomposite

materials: state of the art

In this chapter, we first give a general introduction about

nanocomposite material as well as its interesting size effect.

The experimental evidence and the original explanation of this

effect from the atomistic/molecular point of view are then pre-

sented. Before a brief review of the studies and the results

obtained in this domain, the notion of interphase and inter-

face needed for the vast majority of models and simulations

is defined. Next, we present different types of studies that

deal with the size effect of nanocomposites. They are ranging

from the very fine-scales (atom, nano) with Molecular Dy-

namic simulation to the continuum mechanical scales (at the

micro and the macro scales) with the analytical and numerical

micromechanical models. In order to account for the size ef-

fect in nanocomposites, the problem we consider in this Ph.D.

thesis with its principal assumptions and main equations is

introduced.
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2.1 Introduction

2.1.1 Nanocomposite and its size effect

A nanocomposite is a composite material whose particularity is to be composed

of at least one constituent with one or more nanoscopic dimensions (less than 100

nm). The nanoscopic scale lies between the usual microscopic scale and that of the

molecules. Nanocomposites can be classified according to the type of reinforcements,

namely particles (spherical), fiber and platelets (see Figure 2.1).

The challenge with the nanocomposites stands in accounting for the specificities

of their microstructure or even "nanostructure" on their macroscopic behavior in

order to express their constitutive laws. Because of the nanometric size of their

reinforcements, multi-scale modeling approaches have to be adapted in order to

predict the nanocomposite behavior integrating the phenomena occurring at nano
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Figure 2.1: Different reinforcement morphologies of nanocomposites [Fu et al.,
2019].

or sub-nano scales. As illustrated in Figure 2.2, the smallest scale that can be

considered the multiscale model stands in a quantum description of materials based

on molecular mechanics or molecular dynamics.

Figure 2.2: Range of length and time scales of the multi-scale methods for nanocom-
posite materials [Gates et al., 2005].

Nanocomposite materials are increasingly used in industry due to the improve-

ments they offer compared to conventional composites. They are widely used in the

aerospace and automotive industries [Bogue, 2011, Gu et al., 2016, Kausar et al.,

2017,Naskar et al., 2016] where improving the performance of structures combined

with their lightness are daily challenges. Nanocomposites require less fillers (less

than 10 % by weight) and offer higher performance than conventional compos-

ites [Blivi, 2018]. Besides their mechanical properties improvement, other interesting

properties such as thermal, electrical, optical, fire resistance, gas barrier, etc are also

enhanced. In the scope of this thesis, we focus on the mechanical properties of the

material.

The size effect observed on those materials at least on the mechanical behavior

is one of the most attractive characteristics of this kind of materials: for a given

volume fraction of inclusions, the physical (mechanical) properties depend on the size

of the inclusions. This size effect, commonly attributed to local phenomena at the

atomic scale, can be interpreted through an increase in the ratio (interface/surface

matrix-inclusions) / (volume).
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Streitz et al [Streitz et al., 1994] showed, by molecular dynamics simulations,

that the stresses present at the surface of a material or at the interface between two

bodies can cause a displacement of the equilibrium position of the atoms present

in this zone compared to those further away from the borders or the interfaces.

This modification in interatomic distances affects the elastic properties of objects

of nanoscopic dimensions. Indeed, the atoms on the surface or the interface of

solid bodies are, in an environment different from those located in the volume of

the material and their equilibrium position and their energy are in general different

from those of the atoms located far from interfaces, the properties of a solid being

related to the position and energy of the constituent atoms.

In a body in which the number of surface atoms is relatively small to the to-

tal number of atoms, the properties of the surface atoms (different from those of

the other atoms) will not significantly modify the overall properties of the body

and can be neglected. This is the case with classical composites. However, com-

pared to conventional composites, nanocomposites have a high interfacial surface

(108m2/m3, [Marceau, 2003]). As shown in Figure 2.3, the matrix/inclusion inter-

face area is approximately 1000 times greater for nanocomposites than for conven-

tional composites and therefore, the phenomena taking place at the interface zones

(causing size effect) are no longer negligible.

Figure 2.3: – Surface area as a function of particle size [Jesson and Watts, 2012].

The smaller the inclusion size, the greater the surface area of interface ma-

trix/inclusion and the impact of the interface effect becomes more obvious. As a

consequence, the macroscopic mechanical properties depend not only on the volume

fraction but also on the size of the inclusions. To illustrate this dependence, exper-
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imental evidence of the size effect in nanocomposites will be presented in the next

subsection.

2.1.2 Size effect: Experimental evidence

In the experimental point of view, the effect of the size of the inclusions in nanocom-

posite has been shown in several studies [Douce et al., 2004], [Mishra et al., 2005],

[Cho et al., 2006], [Blivi et al., 2016], [Blivi, 2018].

In their work, Douce et al [Douce et al., 2004] and Mishra et al [Mishra et al.,

2005] measured the Young modulus of a Polysiloxane reinforced by silica nanoparti-

cles and of a Polypropylene reinforced by calcium carbonate (CaCO3) nanoparticles,

respectively, for different sizes and volume fractions of inclusions. As shown in Fig-

ure 2.4, for a given volume fraction of reinforcements, an increase of the Young

modulus is observed when the particles size decrease.

(a) polysiloxane/silica (b) PP/CaCO3

Figure 2.4: Evolution of Young’s modulus versus volume fraction for different par-
ticle sizes in (a) [Douce et al., 2004] and (b) [Mishra et al., 2005].

To highlight this size effect of the reinforcements, Cho et al [Cho et al., 2006]

performed a more complete study of a nanocomposite made of vinyl ester resin

reinforced by alumina nanoparticles. For fixed volume fraction (1% and 3%) of

nanoreinforcements, different sizes of particles varied from macro (0.5 mm) to nano

(15 nm) scale were considered. As can be emphasized in Figure 2.5a, a size effect

is clearly observed with the particles are smaller than 1 µm, the Young’s modulus

of the material increasing with a decrease of the particle sizes, while the Young’s

modulus is not affected by the size of the particle, when they are bigger than 1 µm.

In addition to its elastic behavior, Cho et al studied the material response during

tensile tests and, as shown in Figure 2.5b, the behavior is clearly impacted by the

size of the particle.

More recently, the experimental works of Blivi et al [Blivi et al., 2016], [Blivi,

2018] focused on the study of the size effect of PMMA/silica nanocomposites. As
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(a) Effect of particle size on Young’s
modulus with 1 and 3 vol%

(b) Stress–strain curves for composites
with 3 vol% of various particle sizes

Figure 2.5: Particle size effect on alumina nanoparticles composites in [Cho et al.,
2006]

presented in Figure 2.6, with constant volume fractions on inclusions, fixed at 4%

and 8%, Young’s modulus increase when particle diameter decrease. In their study,

they observed a similar effect of the particle size on the viscoelastic mechanical

properties and thermal properties ( glass transition and degradation temperatures).

(a) volume fraction 4% (b) volume fraction 8%

Figure 2.6: Particle size effect on PMMA/silica nanocomposites Young’s modulus
in (a) [Blivi et al., 2016] and (b) [Blivi, 2018].

Even experimental based research seems to be the best way to observe the size

effect and ideally determine the relationships between micro/nano-structure and

properties of nanocomposites, the development of models and theories that inter-

pret and predict the observed behavior under the corresponding conditions is still

essential in the material research process. In order to further study the size effect

and to report from a theoretical point of view (from the point of view of model-

ing), different tools and strategies on different scales can be considered. These tools

and strategies range from the fine scales (atom, nano) with Molecular Dynamics

Simulation to bigger scales (micro, meso, and macro) where the continuum mechan-
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ics is applicable. Before getting into these methods, the notions of interphase and

interface should be clarified, they are introduced in the next subsection.

2.2 Interphase or interface?

An interface, in a simple way, is the point (line, curve, surface) at which the matrix

ends and the reinforcement begins. Thus, in the Finite Element Method (FEM) or

micro-mechanical models, an interface is typically modeled with at least one zero-

dimensional terms. More specifically, the interface can be described as the boundary

between two different chemical and/or microstructure layers. However, such bound-

aries rarely have no chemical or atomic interaction, and therefore a region, called

interphase, can be defined as the volume of material affected by the interaction at

the interface. A three-dimensional interphase will lead to a gradation of properties

from one phase to another rather than the abrupt change necessitated by the accep-

tance of a two-dimensional interface. In [Drzal et al., 1983], the author offered the

following definition of the interphase:

"The interfacial region (i.e. the interphase) is the region beginning at the point in

the fiber at which the properties differ from those of the bulk filler and ending at the

point in the matrix at which the properties become equal to those of the bulk matrix.

The chemistry, polymer chain mobility, degree of cure and crystallinity are likely to

be altered in that region. . . "

In order to model the size effect in the nanocomposite, the different properties (or

energy of atoms as presented previously) in the interaction zone needs to be taken

into account via an interface or interphase. In the context of nanocomposites and

in the point of view of modelization, the use of the interphase requires a very fine

scale to be able to capture the gradient of the fields in the direction of thickness,

which is only a few nanometers or even a few angstroms. Hence, the interphase

concept is appropriate for the simulation methods at the atomistic scale like the

Molecular Dynamics simulation. On the other hand, the interface concept is often

used for the continuum mechanical scale (micromechanical models, FEM) where the

effects of the interaction zone on the mechanical fields are described via an imperfect

interface. The interface models have the advantage to avoid the mathematical and

mechanical complexity due to the size of interphase. Depending on the different

impact on the mechanical fields, the imperfect interface models are divided into

three main categories (see Figure 2.7): cohesive interface, coherent interface and

general interface. These interface models describe the discontinuity induced by the

interaction zone on the displacement field or the stress field or both of them.

Among these models, the most widely used are the coherent interface model and

the spring-layer model. These two models were derived by using the asymptotic ap-

proach on a very thin region (interphase) [Bövik, 1994,Benveniste, 2006]. According



14 Chapter 2. Size effect in nanocomposite materials: state of the art

Interphase

Interface

Debonding

(Cohesive interface)

Surface elasticity

(Coherent interface)

General interface

(Spring-layer)

(Membrane-type)

Figure 2.7: Interphase and interface models.

to the linear spring-layer model, the traction vector is continuous across an inter-

face while the displacement vector across the interface suffers a jump related to the

traction vector (debonding). This model is derived for interphases much softer than

the bulk phases and is often used to describe the decohesion of matrix/inclusion.

On the contrary, the coherent interface model prescribes that the displacement vec-

tor is continuous while the traction vector is discontinuous across the interface. In

this context, the Hadamard relation [Hill, 1961] (see Eqs. (2.49)) implies that the

gradient of displacement suffers a jump along the direction normal to the interface

but is continuous in the plane tangent to the interface. Besides, the traction vector

jump and the surface stress are related by the generalized Young-Laplace equa-

tion [Povstenko, 1993,Chen et al., 2006] (see Eq. (2.1)), which describes the static

equilibrium of the interface. Another ingredient of the coherent interface model is

that the surface stress and surface strain tensors obey a two-dimensional surface

linear elasticity law (see Eq. (2.7)).

- Generalized Young-Laplace equation

JσK · n + divsσs = 0 , (2.1)

where σs is the surface stress tensor, σ denotes the bulk Cauchy stress and n is the

normal vector to the interface.

The surface divergence divs is defined as:

divs{•} = ∇{•} : P (2.2)
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with

P = I− n⊗ n , (2.3)

where P is the projection operator and I is the second order identity tensor.

- Principle of the surface elasticity

Historically, the notion of surface or interface stress in solid bodies has been intro-

duced by Gibbs [Gibbs, 1906] and its development continued during the last century.

We can cite in particular the works of [Shuttleworth, 1950], [Eyring, 1954], [Orowan,

1970], [Cammarata, 1994], [Fried and Gurtin, 2007], [Gu, 2008] and [Hamilton and

Wolfer, 2009]. The surface stresses can be defined in different ways. Gurtin et

al. [Gurtin et al., 1998] bind them to tangential deformations in the solids, these de-

formations being different in the two solids located at the interface. From a physical

point of view, the stress on the surface of the inclusion σs is related to the residual

stress τ0 present on the surface and to the surface energy γ existing on the inter-

face matrix/inclusion. This surface stress σs can be defined through Shuttleworth’s

equation [Shuttleworth, 1950]:

σs = τ0 +
∂γ(ǫs)

∂ǫs
, (2.4)

where γ(ǫs) is the surface-strain energy, and ǫs is the surface strain, defined as (see

Gurtin and Murdoch [Gurtin and Ian Murdoch, 1975]):

ǫs = P · ǫ ·P , (2.5)

In the case of isotropic surface, Eq. (2.4) can be written as:

σs = τoI + 2(µs − τo)ǫs + (λs + τo)tr(ǫs)I , (2.6)

where µs and λs are Lame’s constants characterizing the interface Γ.

In the absence of τo, Bottomley and Ogino [Bottomley and Ogino, 2001] proposed a

linear relation between the surface stress tensor σs and the surface strain tensor ǫs:

σs = C
s : ǫs , (2.7)

where Cs is the surface elastic stiffness tensor.

For the isotropic surface and in absence of τo, Eq. (2.6) becomes:

σs = 2µsǫs + λstr(ǫs)I , (2.8)

This surface elasticity represents the mechanical behavior of the interface and can

be considered as the constitutive law of the material at the interface. By considering

this surface elasticity, the energy of the surface can be taken into account to provide
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the contribution of the interface to the effective properties of the material.

The interphase and interface concepts have been widely used in the context of

solid and fluid mechanics. In this Ph.D. thesis work, we focus on the use of these

concepts to model the size effect of nanocomposites. In the following of this chapter,

we will present the different methods which allow accounting for the size effect. Let’s

start from the finest scale with the Molecular Dynamic Simulation.

2.3 Molecular dynamics simulations

Molecular dynamics (MD) is a computer simulation method for studying the physical

movements of atoms and molecules. It allows simulating the behavior of materials

at the atomic scale by providing information on the structure and mobility of the

system made of atoms or molecules. On the other hand, the size of the studied sys-

tems is quickly restricted by their complexity. In the framework of nanocomposites,

MD simulation makes it possible to account for the behavior of inclusions/matrix

assemblies at the atomic scale and, thus, to better understand the particle/matrix

interaction. More generally, MD is a predictive tool for the behavior of materials at

the atomic structure scale. The studied system is represented by the atoms or the

molecules that constitute it, as well as by all the interactions between these different

atoms or molecules and the forces applied to the system.

The molecular dynamics simulation requires the definition of interaction forces

between matrix and inclusions. These interaction forces have never been measured

and are considered as deriving from an empirical potential (classical molecular dy-

namics) or calculated from the first principles of quantum mechanics (ab initio).

Besides, one of the main features of MD simulation is that the number of atoms

being simulated needs to be big enough to capture the mechanical fields of inter-

est at the macro scale of continuum mechanics and therefore intensively arise the

computational cost of the simulation.

To reduce the expensive cost, in the DM studies on nanoparticles, the nanopar-

ticle are generally considered as a hard-sphere (non-deformable) [Brown et al.,

2003], [Adnan et al., 2007] (see Figure 2.8). This kind of assumptions is very efficient

from the point of view of the gain in computational time but lacks the mechanical

contribution of the inclusion. Another way for dealing with the cost of MD is to co-

operate with the micromechanical modeling. In that case, MD is used to provide the

information of the interaction zone (interphase, interface, surface) where continuum

mechanics is not valid. The information related to mechanical properties or dimen-

sions of the interaction zone is then updated to the micromechanical approaches

at bigger scales (micro, macro). At the boundary between Molecular Dynamics

and micromechanical modeling, we can note the work of Odegard et al. [Odegard

et al., 2005] on the simulation of polyamides matrix with silica nanoparticles. The
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Figure 2.8: Periodic box of different neat and nanocomposites model used for molec-
ular dynamic simulation in [Adnan et al., 2007] with non-deformable spherical in-
clusion.

micromechanics model includes an effective interface between the polyamides and

nanoparticle with properties and dimensions that are determined using the results

of molecular dynamics simulations. Similarly, from the perspective of the microme-

chanical models, it is possible to account for the local phenomena via the interface

or interphase model, and the parameters of these interfaces/interphases can be ob-

tained from MD simulations. For example, Shenoy [Shenoy, 2005] and Mi et al [Mi

et al., 2008] used MD to calculate the surface elastic constants (surface stress and

surface stiffness) needed for the surface elasticity theory [Gurtin and Ian Murdoch,

1975] (presented in the previous section). These surface elastic constants are widely

used in the analytical and numerical approaches in which the coherent interface

model with the surface elasticity is employed.

As discussed in the previous section, since the scale of interest for MD simulation

is very fine (atomic scale), the interphase concept is often chosen to represent the

interaction zone [Brown et al., 2003], [Brown et al., 2008], [Paliwal et al., 2012].

The thickness and mechanical properties of the interphase could be determined by

coupling the MD simulation and a (semi-)analytical homogenization schemes. For

example, with the introduction of constant thickness interphase between matrix and

inclusion, Marcadon et al [Marcadon et al., 2013] presented a confrontation between

MD simulations and the improved dilute coated inclusion (IDCI) model [Marcadon

et al., 2007] to investigate particle size effects of polymer nanocomposites. In this

study, the MD simulation allows to observe and determine the thickness of the
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interphase. The moduli obtained from MD simulation are then fitted to the IDCI

model to deduce the mechanical properties of the interphase.

Beside cooperating to a micromechanical model, several MD studies consider

the elastic properties of the interface/interphase as stochastic variables [Yu et al.,

2009], [Vu-Bac et al., 2014], [Le et al., 2016]. For instance, Le et al [Le et al.,

2016] proposed to build, based on results arising from MD simulations, a random

field model for the elastic properties of the interphase region surrounding the silica

nanoscopic inclusion. However, the use of stochastic models is often accompanied

by Monte Carlo simulations resulting in large computational costs.

The MD simulation plays a very important role in multiscale methods. It is the

main tool for investigating the local phenomena at the atomic/nanoscale level and

to calculate the properties of the interface/interphases needed in the approaches

at bigger scales (homogenization schemes, FE simulations,...). In the next section,

several micromechanical models are presented. These models investigate the size

effect by taking into account the imperfect interface between matrix and inclusions.

2.4 Analytical models

In terms of analytical works, several forms of micromechanical models (homogeniza-

tion) have been extended to take into account the size effect in the nanocomposites

through the introduction of an imperfect interface between the matrix and the in-

clusions. Except for a few studies [Marcadon, 2005], [Marcadon et al., 2007], the

interphase concept is rarely used in the analytical studies due to the ratio between

the size of the inclusions and the size of the interphase. Indeed, inclusions and inter-

phase sizes are on the same scale (nanoscopic), and the overall mechanical properties

depend not only on the size of the inclusion but also on the size and the mechanical

properties of the interphase. Instead of using the interphase concept with all the

complexity related to its characterization, homogenization schemes with interface

effect offers a particularly interesting alternative. Indeed, the results obtained from

the use of the interface concept involve only the shape of the reinforcements, their

dimensions, and constitutive laws at their interface with the matrix.

Interface effects affect the effective properties of composite materials by modi-

fying average stresses (and strain) in the inclusions and the matrix. The effective

modulus of a composite with consideration of interface effects can be estimated using

micromechanical models, provided that appropriate modifications are made to take

into account the jumps of displacement (spring-layer model) and/or stress (coherent

interface model) at the interfaces. As already mentioned, this Ph.D. work focuses on

the prediction of the mechanical behavior of nanocomposite including the size effect

due to the nanoscopic inclusions. In that case, we need to implement the imperfect

interface models presented previously into the micromechanical model.
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With the introduction of the surface stress and the surface elasticity, the coherent

interface model turns out to be suitable for the micromechanical approaches to

investigate the interface effect as well as the size effect in nanocomposites. There

exists today an extensive literature on the generalized form of the micromechanical

approaches in which the coherent interface model is incorporated in order to account

for the interface effect. Few of them, are presented in this section: Eshelby’s problem

with interface effect, Generalized Mori-Tanaka model, Generalized self-consistent

method, Generalized Voigt and Reuss bounds and Generalized Hashin-Shtrikman

bounds.

2.4.1 Eshelby’s problem with interface effect

Despite researches dating back to 1950 [Shuttleworth, 1950,Gurtin and Ian Murdoch,

1975], the concept of surface/interface stress is first considered in elastic microme-

chanical models in [Sharma et al., 2003, Sharma and Ganti, 2004] (the erratum of

these articles is published in [Sharma and Ganti, 2005,Sharma et al., 2006]). These

studies dealt with Eshelby’s problem in which a surface elasticity on the interface

between matrix and inclusion is introduced.

Infinite domain

Ro

Figure 2.9: First Eshelby problem with coherent interface.

In their study, Sharma et al [Sharma and Ganti, 2004] presented the analyti-

cal solution of a cylindrical/spherical inclusion with interface effect subjected to a

uniform dilatational eigenstrain in an infinite medium (see Figure 2.9). Although

they did not provide the complete Eshelby tensor expression for this case, the exact

deformation fields have been presented for

• Spherical inclusion (in spherical coordinates):

εrr(r) = εθθ(r) = εφφ(r) =
3κε∗ − 2τo/Ro

4µ+ 3κ+ 2κs/Ro
| r < Ro (2.9)

εrr(r) = −
[

3κε∗ − 2τo/Ro

4µ+ 3κM + 2κs/Ro

]
2R3

o

r3
| r > Ro (2.10)

εθθ(r) = εφφ(r) =

[
3κε∗ − 2τo/Ro

4µ+ 3κ+ 2κs/Ro

]
R3
o

r3
| r > Ro , (2.11)
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where Ro is the radius of the inclusion, κ = λ + 2µ/3 is the bulk modulus of the

medium (λ and µ are the bulk Lame’s constants) , κs = 2(λs + µs) is the surface

modulus (λs and µs are the surface Lame’s constants) and ε∗ is the dilatational

eigenstrain prescribed in the inclusion with ε∗ = ε∗
11 = ε∗

22 = ε∗
33.

• Cylindrical inclusion (in cylindrical polar coordinates):

εrr(r) = εθθ(r) =
3kε∗ − τo/Ro

2µ+ 3k + κs/Ro
| r < Ro (2.12)

εrr(r) = −
[

3kε∗ − τo/Ro

2µ+ 3k + κs/Ro

]
R2
o

r2
| r > Ro (2.13)

εθθ(r) =

[
3kε∗ − τo/Ro

2µ+ 3k + κs/Ro

]
R2
o

r2
| r > Ro (2.14)

εrr(r) = 0 , (2.15)

where k = 2(λ + µ)/3 is the plane strain bulk modulus, κs = λs + 2µs is the plane

strain surface moduls, and the dilatational eigenstrain is ε∗ = ε∗
11 = ε∗

22, ε
∗
33 = 0.

In these extensions of Eshelby’s problem, the stress fields in the spherical/cylindrical

inclusion were found to be uniform under the considered dilatational eigenstrain and

hydrostatic remote loading conditions. Duan et al [Duan et al., 2005a] derived the

complete Eshelby tensor and stress concentration tensor in the inhomogeneity and

showed that those tensor are, in general, not uniform. They used their results for

accounting for interface effects in the Generalized Mori-Tanaka model and the Gen-

eralized self-consistent method.

2.4.2 Generalized Mori-Tanaka model and Generalized self-

consistent method for spherical inclusion

Compared to the dilute scheme [Eshelby, 1957] that link average stress in the inclu-

sion to the macroscopic stress, the basic idea of Mori–Tanaka method (MTM) [Mori

and Tanaka, 1973] is to relate the average stress in the inclusion to the average

stress in the matrix. Hence, in the context of spherical inclusion, in the Mori-

Tanaka model, spherical inclusion with radius R0 is embedded in an infinite matrix

subjected to an imposed remote field equal to the average stress (strain) field in the

matrix of the composite (see Figure 2.10a).

The generalized self-consistent method (GSCM) [Christensen and Lo, 1979] has

been developed from the composite sphere assemblage model (CSA) [Hashin, 1962].

GSCM is a three-phase model in which a spherical inhomogeneity (of radius R0)

with a matrix shell (of radius R1) is embedded in an infinite effective medium and

the boundary conditions are specified at infinity (see Figure 2.10b).

Duan et al [Duan et al., 2005b] extended Mori-Tanaka model and GSCM by

incorporating surface elasticity in the estimations of the effective bulk and shear
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(a) MTM
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eff effEffective medium

(b) GSCM

Figure 2.10: Mori-tanaka model and Generalized self-consistent method with coher-
ent interface.

moduli of materials reinforced with spherical nano-inclusions. The results of this

study showed a perfect agreement between these two models for the effective bulk

modulus given by the following expression:

κeff =
3κ1 (3κ2 + 4fµ2) + 2µ2 [4fµ2κ

r
s + 3κ2 (2− 2f + κrs)]

3 [3 (1− f)κ1 + 3fκ2 + 2µ2 (2 + κrs − fκrs)]
, (2.16)

where subscript (i = 1) and (i = 2) stand, for the inclusion and the matrix, respec-

tively, κrs = κs/(R0µ2) where κs = 2(λs + µs) is the interface bulk modulus, R0 is

the radius of the inclusion and f is the volume fraction.

When κs → 0, the expression of κeff reduces to the classical expression of Mori-

Tanaka scheme and GSCM model (without interface effect). The authors also pro-

vided the solutions for finding the effective shear modulus according to the Mori-

Tanaka model and GSCM although the results obtained from these two models are

different at high volume fractions.

2.4.3 Composite cylinder assemblages model and General-

ized self-consistent model for cylindrical inclusion

Not only the case of spherical inclusions presented previously but also the case of

fibrous nanocomposite with cylindrical inclusion (circular base) have been analyt-

ically modeled. The fibrous nanocomposite referred to a columnar microstructure

where the micro geometrical characteristic of the constituent phases is homogeneous

along one and only one direction (the fiber direction). The first study accounting for

an imperfect interface in fibrous nanocomposite was proposed by Chen et al [Chen

et al., 2007]. In this study, the five effective constants characterizing the overall elas-

tic behavior of the transversely isotropic composite (Hill’s moduli [Hill, 1964]) are

derived. While the effective transverse modulus, longitudinal and transverse moduli,
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and axial shear modulus are calculated by using of composite cylinder assemblages

model (CCA) [Hashin and Rosen, 1964], the effective transverse shear modulus

is estimated through the generalized self-consistent method (GSCM) [Christensen

and Lo, 1979]. The analytical estimations obtained in this study clearly show that

the effective modulus of unidirectional nanofibrous composites depends on the fiber

cross-section size. We present here the expression of the effective transverse (plane

strain) bulk modulus:

keff = k2 +
f(k1 − k2 + ks

2r
)(k2 +m2)

k2 +m2 + (1− f)
(
k1 − k2 + ks

2r

) , (2.17)

where ks = λs + 2µs, subscripts (i = 1) and (i = 2) refer to the inclusion and the

matrix, respectively, and m denotes the transverse shear modulus and k the bulk

modulus.

Without surface effect (ks = λs = µs = 0), Eq. (2.17) provides the well-known

result obtained in the case of perfect interface [Hill, 1964].

It can be emphasized that the results of [Chen et al., 2007] are obtained in the

case where the interface, fiber, and matrix phases are transversely isotropic. For

the more general case with cylindrically anisotropic phases, Le Quang et He [Quang

and He, 2009] gave an estimate of homogenized thermoelastic modulus by using

the generalized self-consistent method (GSCM) with the incorporation of a coherent

thermoelastic interface model. This study is based on the extension of their previous

works [Le Quang and He, 2007] for classical fibrous composites. When the phases

are set to be transverse isotropic, we recover the results obtained by Chen et al [Chen

et al., 2007].

Besides the estimation of the effective properties of nano-reinforced materials,

studies related to bounds on the effective moduli have also been performed [Le Quang

and He, 2008], [Brisard et al., 2010a], [Brisard et al., 2010b]. These bounds are useful

references allowing to check the consistency of the previous approximations. In that

context, generalized Voigt and Reuss bounds and generalized Hashin-Shtrikman

lower bound will be briefly introduced in the next subsections.

2.4.4 Generalized Voigt and Reuss bounds

The first attempt at establishing bounds on the effective elastic moduli of nanocom-

posite material came from Le Quang and He [Le Quang and He, 2008]. In this study,

they extended the variational principle to multiphase materials with linear coherent

interfaces. The explicit first-order upper and lower bounds for the effective elastic

moduli in both the case of spherical and cylindrical (with circular base) inclusions

have been derived. The expression for the upper and lower bounds on the effective

bulk modulus are given as follows:
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• Cylindrical inclusion (effective transverse modulus)





k(+) = c0k0 +
p∑

i=1

ci

(
ki +

κsi + µsi
2ri

)

k(−) =



c0

κ0

+
p∑

i=1

ci

ki +
κsi + µsi

2ri




−1
(2.18)

• Spherical inclusion





κ(+) = c0 κ0 +
p∑

i=1

ci

(
κi +

4

3

κsi
ri

)

κ(−) =



c0

κ0
+

p∑

i=1

κi +
ci

κi +
4κsi
3ri




−1

(2.19)

where ci is the volume fraction of the phase i, phase o corresponds to the matrix,

κi and µi are the elastic moduli, ri is the radius of the inclusion, κsi and µsi are the

elastic moduli of the interface surrounding the inclusions of phase i.

These bounds coincide with the well-known classical Voigt and Reuss bounds

when interface effects are omitted (κsi = µsi = 0) or when the radii ri of the

inclusion is large enough.

2.4.5 Generalized Hashin-Shtrikman lower bound

In the context of nano-reinforced materials, Brisard et al [Brisard et al., 2010a] apply

variational approaches to determine the lower bound of Hashin-Shtrikman type of

the bulk modulus. In that development, the difficulty lies in the bidimensional

nature of the interface’s stiffness tensor. The establishment of this Hashin-Shtrikman

type bounds requires to compare the stiffnesses of the interface (2D) with the stiffness

of the reference material (3D). To overcome this difficulty, the authors introduced a

thin elastic layer analogy based on the asymptotic analysis which allows deducing the

3D bulk and shear moduli of the equivalent elastic layer from their 2D counterparts.

A polarization framework for the derivation of second-order bounds on the elastic

moduli of composites with interface effects was then proposed. This polarization

framework was firstly applied for mono-disperse spherical nano-inclusions, providing

the following lower bound:

κeff = κm + f
3κm + 4µm

3fκm + 4µm + 3(1− f)κp
(κp − κm) , (2.20)

where κp = κi+
4κs
3r

, κi, κm, κs are the bulk modulus of the inclusion, the matrix and

the interface, respectively, µm is the shear modulus of the matrix, r is the radius of
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the inclusions and f is their volume fraction.

This lower bound improves the first-order generalized Reuss bound (Eq. (2.19))

proposed by Le Quanf and He [Le Quang and He, 2008] and provides the same results

from those obtained with the generalized Mori-Tanaka model (Eq. (2.16)) estab-

lished by Duan et al [Duan et al., 2005b]. The polydispersity was also considered by

assuming that all inclusions and interfaces share the same elastic moduli κi, µi, κs

and µs while their radius can be diverse. In the same line of their study, Brisard et

al proposed in [Brisard et al., 2010b] the lower bound of the shear modulus.

2.4.6 Comparison and conclusions on analytical models

We propose in this subsection to compare the result of the prediction of the effective

bulk modulus of nanocomposite with spherical inclusions for the generalized models

of [Duan et al., 2005b], [Le Quang and He, 2008] and [Brisard et al., 2010a]. Figure

2.11a shows the different estimations of this homogenized modulus according to the

interface modulus κs while Figure 2.11b represents the evolution of the effective

bulk modulus with respect to the radius of the inclusion. We can see the influence

of the size effect on the effective bulk modulus given by different models of the

literature. This comparison allows us first of all to note that a decrease in the size

of the inclusions produces an increase in the absolute value of the effective elastic

modulus of the composite (compared to the case without interfaces). When the

interface modulus κs is zero (no interface effect), the estimations provide the exact

result of the homogenized bulk modulus of the classical Mori-Tanaka scheme. On

the other hand, for the cases of κs > 0, all estimations give higher values than the

classical Mori-Tanaka estimate. Moreover, as expected, the lower generalized bound

of Hashin-Shtrikman [Brisard et al., 2010a] coincides perfectly with the Generalized

Mori-Tanaka model [Duan et al., 2005b] when accounting for interface effects.

In summary, it can be seen that a large number of publications have introduced

the interface effect in micromechanical models to predict the size effect on the elastic

behavior of nanocomposites. They extended the classical models by adding an

imperfect interface between matrix and inclusion. These interfaces have generally

been considered with simple shapes (spherical or cylindrical) of the inclusion to

simplify the analytical developments. In addition, analytical research on nonlinear

behavior of this kind of material is rarely found in the literature. We can mention

here the two first studies [Brach et al., 2017a] and [Brach et al., 2017b] which

account for the size effect for nonlinear behavior of nanoporous materials. In these

studies, the matrix is assumed to be a rigid-ideal plastic material obeying to a

general isotropic yield criterion. In the case of isotropic loading conditions, the

authors provided the exact microscopic limit state of nanoporous materials. The

size effects associated with the possible nanosize of voids have been accounted for

via a coherent interface at the cavity boundary. The limitations on inclusions shape
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Figure 2.11: Size effect on effective bulk modulus of a spherical inclusion
nanocomposite- Estimation by different models in the literature - κm = 20 GPa,
κi = 35 GPa, µm = 15, f = 0.2.

of the analytical models can be overcome by using the numerical model based on

FEM, the mostly considered FEM approaches in the context of nanocomposite are

presented in the next section.

2.5 Numerical models based on FEM

In order to solve the homogenization problems, the analytical models, presented in

the previous section, require "simple" shapes of inclusions (spherical or circular cylin-

drical shapes). Therefore, numerical approaches are very necessary to break through

this limitation. The continuum finite element method (FEM) lies in the framework

of continuum mechanics and can be associated with imperfect interface models intro-
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duced in section 2.2 to model the size effect. FEM approaches allow circumventing

the high computational cost inherent to molecular dynamics computations while ef-

ficiently reproducing surface/interface effects, at least at a phenomenological point

of view.

The numerical approaches can be divided into two main categories based on dis-

cretization techniques. The first one requires a conforming mesh (fitted FEM) in

which the interface coincides with element edges. The interface is then explicitly

discretized by using the element side or edges as lower-dimensional entities (sur-

face/interface element). The second type can be performed on the regular mesh (

uniform/structured mesh) and no discretization effort is needed. The interface is

defined by a scalar zero level set function independent from the background mesh

(unfitted FEM). The interface is implicitly discretized by the piecewise approxi-

mation of the intersections between the level set function and the mesh. On the

elements which are cut by the interface, additional degrees of freedom are required

to describe the interface behavior as well as the discontinuity of the mechanical

fields.

2.5.1 Surface/interface element in standard FEM

Size-dependent mechanical behavior in nanostructured materials has been first treated

numerically by Wei et al [Wei et al., 2006] with the introduction of surface elements

in a standard FEM framework. Due to its attachment to the volume element, these

surface elements can reflect the rigidity of the surface (surface elasticity) and trans-

mit the surface stress to the bulk of the material (see Figure 2.12a). The size effect

on the stress concentration (which relates the stress in the inclusion to the applied

remote stress) is then computed and compared to the analytical results from [Sharma

and Ganti, 2004] (see Figure 2.12b).

While in [Wei et al., 2006], the coherent interface model has been used in the

framework of infinitesimal strain, Javili et al [Javili et al., 2015] conducted a similar

study within the framework of finite strains. In their studies, besides the coherent

interface model, they considered different interface models. Still in the context

of finite strains, Esmaeli et al [Esmaeili et al., 2017], employed a standard finite

element implementation with interface element accounting for surface elasticity in

order to predict the degradation of a non-coherent interface. More recently, Javili

et al [Javili et al., 2017] studied a general imperfect interface treated by using the

interface element approach. As shown in Figure 2.13, in the case of perfect interface

model no size effect was observed on the macroscopic Piola-Kirchhoff stress. When

the general interface model is considered, the material response is the combination of

the results obtained from the cohesive (spring-layer) and elastic (coherent) interface

models. While the cohesive interface introduces a less rigid behavior, the response

of the elastic interface leads to a more rigid effect.
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(a) Schematic diagram of mesh
map of solid containing surface
element

(b) Variation of stress concentration with
void radius R

Figure 2.12: Surface element in standard FEM and its result from [Wei et al., 2006].

Figure 2.13: Summary of the effective response of the RVE versus size for different
stiffness ratios and different types of interfaces. The graphs show the component
xx of the macroscopic Piola stress versus the normalized RVE size by a physical
dimension at the microstructure denoted d [Javili et al., 2017].

It should be noted that to have an efficient implementation of the finite element

method, the surface/interface elements need to be chosen to be consistent with the

bulk elements. Thanks to this choice, the common facet or edge of two adjacent bulk
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elements can be regarded as an interface element and therefore the interface can be

explicitly discretized. The standard FEM with surface/interface element is perhaps

the most simple and explicit way for modeling the composite material in general

and taking into account the imperfect interface in particular. However, it requires

conforming meshes, which are costly to create for complex geometries or random

microstructures. This approach will be studied in more detail, for comparison to

the XFEM approach, in chapter 3.

2.5.2 XFEM/level set approach

In order to overcome the drawback of conforming mesh requirement and to account

for singularities (discontinuities) of the mechanical fields, the concept of eXtend

Finite Element Method (XFEM) was introduced in [Moës et al., 1999, Moës and

Belytschko, 2002]. This approach extends or enriches the approximation space (see

Figure 2.14) so that we can naturally reproduce the complex function associated with

the problem of discontinuity, singularity, boundary layer, etc. In terms of numerical

homogenization, Sukumar et al [Sukumar et al., 2001] has successfully modeled the

problem with inclusions (and holes) with a perfect interface by the level-set method

(LSM) [Osher and Fedkiw, 2001] in the framework of XFEM.

fully enriched elements

partially enriched elements

Ω
blnd

unenriched elements

Γ
int

Γ
blnd

Figure 2.14: An XFEM/level set mesh with an interface, showing fully enriched
elements, partially enriched elements and unenriched (standard) elements. Also
shown is the boundary Γblnd where the enrichment vanishes [Chessa and Belytschko,
2003].

The surface/interface terms (surface tension) have been firstly treated in the

context of fluid mechanics using XFEM by Chessa and Belytschko [Chessa and

Belytschko, 2003]. In solid mechanics and especially for nanocomposites, Yvonnet

et al [Yvonnet et al., 2008] evaluated the size effect for different shapes of inclusion

even the arbitrary shapes and random microstructures by using a coherent interface

model in the framework of XFEM/level set strategy. The relevance of their numerical

method was verified by comparing the effective bulk modulus calculated by XFEM

and those given by the existing analytical solutions of Le Quang and He [Quang and
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He, 2009] and Duan et al [Duan et al., 2005b]. As can be seen in Figure 2.15, a good

agreement between XFEM/level set and the analytical solutions has been reported

for both cylindrical and spherical nanopores.
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Figure 2.15: Normalized effective bulk modulus versus pore radius [Yvonnet et al.,
2008]

(a) 4-node tetrahedral background
mesh and triangular cutting inter-
face discretized

(b) Effective bulk modulus versus volume fraction

Figure 2.16: Spherical inclusion problem with the spring-layer interface [Zhu et al.,
2011] (β1 is a relative elastic stiffness of the imperfect interface).

In the same context of XFEM/level set, Farsad et al [Farsad et al., 2010] consid-

ered the same type of numerical model but added interface decohesion while Zhu et

al [Zhu et al., 2011] used the XFEM approach to build composite three-dimensional

problem using tetrahedron elements. In their study, Zhu et al [Zhu et al., 2011]

considered the spring-layer interface model which makes the displacement vector

discontinuous across the interface whereas the traction vector is continuous and is,
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in the linear case, proportional to the displacement vector jump. Their results in

terms of effective elastic modulus were compared with the analytical upper and lower

bounds derived by Hashin [Hashin, 1992] (see Figure 2.16).

In the XFEM/level set approach, the geometry of the micro/nano structure

is entirely defined by the level-set functions, which are independent of the mesh

discretization. Therefore, the advantage of this approach is to handle complex ge-

ometries of inclusion and interface without discretization effort. Nevertheless, the

number of degrees of freedom and integration points is raised compared to standard

FEM. In addition, degradation of convergence due to the presence of surface elas-

ticity has been also reported by Yvonnet et al [Yvonnet et al., 2008]. A more detail

study of this approach will be presented, for comparison to the Interface element

approach, in chapter 3.

2.5.3 Other promising methods: Cut-FEM, Embedded-FEM

Besides XFEM, in the framework of unfitted FEM, there exist other promising

approaches, although they have not yet been used in the case of nano-reinforced

materials.

- Cut Finite Element Method

Developed by Burman et al [Burman and Hansbo, 2010], CutFEM is a general

method for dealing with complicated problems involving complex geometries of sur-

face/interface. The basic idea of discretization in CutFEM is to embed the (d− 1)-

dimensional surface/interface in a d-dimensional mesh and use the basic functions

of the higher dimensional mesh but integrate over the interface [Olshanskii et al.,

2009]. Based on this approach, Cenanovic et al [Cenanovic et al., 2016] suggested a

formulation allowing to integrate of elastic membranes in a finite element formula-

tion. The displacement field is continuous, the membrane model used in this study

is based on the surface elasticity introduced by Gurtin and Murdoch [Gurtin and

Ian Murdoch, 1975]. However, no local relation between surface stress and stress in

the bulk (generalized Young-Laplace equation) is imposed. It should be noted that

in this work, the membrane equations are simply added to the bulk equations and

the equilibrium equations of the bulk and the membrane are related to the same

displacement field. The membrane, therefore, shares the same degrees of freedom as

the bulk, and no additional degree of freedom is required. Although the CutFEM ap-

proach needs stabilization due to ill-conditioning of the linear system (see [Burman

et al., 2015], [Burman et al., 2016] for details), once the coherent interface model is

applied, this approach can completely take into account the interface energy as well

as reproduce the size effect of nanocomposites.

- Embedded finite element method (E-FEM)

Embedded finite element method (Embedded FEM or embedded discontinuity ap-

proach) is based on a local enhancement on the element which contains the discon-
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tinuities either in the displacement field (strong discontinuities [Simo et al., 1993])

or in the strain field (weak discontinuities [Ortiz et al., 1987]). Compared to the

global kinematic enrichment of XFEM, Embedded FEM is less expensive in terms

of computational cost. The comparison study of Oliver et al [Oliver et al., 2006]

between E-FEM and XFEM for capturing strong discontinuity showed that there is

not a big difference in the accuracy as well as the efficiency. The E-FEM approach

separately handles the global and local equilibrium equations [Roubin et al., 2015]

and therefore allows to conveniently impose the weak form of the generalized Young

Laplace equation at the local level (interface embedded in the element). Starting

from this advantage and the fact that this method has not been widely applied in

numerical homogenization, we chose to extend the Embedded FEM approach to take

into account the weak discontinuity and the interface behavior in order to model

the interface effects present in nano-reinforced materials. These developments will

be discussed in details in chapter 4.

2.5.4 Conclusion on numerical approaches

Whereas a lot of works have been developed from the analytical point of view, few

contributions are related to numerical development in Finite Element codes. We

only found in the literature two numerical approaches that dealt with the size effect

observed in the nanocomposites. Besides, these two approaches suffer certain draw-

backs such as the conforming mesh requirement of the Interface element approach or

the degradation of the convergence of XFEM. Moreover, the nonlinear behavior of

nanocomposite has hardly been taken into account. These restrictions motivated the

initial objective of this work: the development of an efficient finite element strategy

for the modeling of nano-reinforced material not only for elastic behaviors but also

for nonlinear behaviors. We chose, in this Ph.D. work, to evaluate the capabilities

of E-FEM in predicting homogenized properties of nano reinforced materials. The

specificities of this homogenization problem are presented in the next section.

2.6 Homogenization problem with coherent inter-

face model

In order to predict the effective behavior of nanocomposite material including the

size effect due to the nanoscopic inclusions, a heterogeneous problem containing

different materials (matrix and inclusions) and coherent interfaces is considered.

Besides the classical equilibrium equation for the bulk, the equilibrium of the inter-

face is described by the generalized Young-Laplace equation. Before presenting the

basic problem, the elements of differential calculus in surface/interface context are

presented.
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2.6.1 Basic elements of differential geometry for surface

Following the theories and research on the elastic material surfaces/interfaces of

[Gurtin and Ian Murdoch, 1975], [Fried and Gurtin, 2007] and [Gu, 2008], the def-

inition of interface/surface terms related to projection operators, superficial fields,

surface gradient, and surface divergence are presented in this subsection.

2.6.1.1 Projection operators

We introduce two complementary orthogonal projection operators defined at any

point x of interface Γ by

P⊥(x) = n(x)⊗ n(x) , (2.21)

P(x) = I− n(x)⊗ n(x) , (2.22)

where I is the second order identity tensor and n is the normal vector of the interface

Γ.

Geometrically, P(x) projects any vector v ∈ Rk onto the tangent space of Γ at the x

position while P⊥(x) projects v, still at the x position, on the normal line of Γ along

n(x). So any vector v ∈ R
k can uniquely be decomposed into a normal component

vn and a tangential component vs:

v = vn + vs, vn = P⊥ · v, vs = P · v . (2.23)

Since the operators P and P⊥ are orthogonal projectors, they verify the following

relations:

P2 = P, (P⊥)2 = P⊥, (P)T = P,

(P⊥)T = P⊥, P ·P⊥ = P⊥ ·P = 0 . (2.24)

2.6.1.2 Superficial (surface) fields

A second order tensor field T on Γ is a superficial field if and only if

T(x) · n(x) = 0 ∀x ∈ Γ . (2.25)

For any second order tensor field H defined on Γ, the field T(x) = H(x) · P(x)

is superficial, because P(x) · n(x) = 0. In addition, a second order tensor field T

defined on Γ is superficial if and only if

T(x) ·P(x) = T(x) ∀x ∈ Γ . (2.26)
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For example, to get a precise idea of the matrix form of a surface field T, if we

consider the case where Γ is a plane surface whose normal vector n coincides with

the vector e1 of an orthonormal basis {e1, e2, e3} in a 3D case and {e1, e2} in a 2D

case

T3D =




0 T12 T13

0 T22 T23

0 T32 T33


 and T2D =


 0 T12

0 T22


 (2.27)

A superficial field T(x) defined on Γ is said to be tangential if and only if

TT (x) · n(x) = 0 . (2.28)

It is immediate to deduce that any symmetrical superficial tensor field is necessarily

tangential and P is a tangential superficial tensor and if T is a tangential superficial

tensor, then T = P · T · P. Using the example of a planar surface normal e1, a

tangential superficial field T takes the form

T3D =




0 0 0

0 T22 T23

0 T32 T33


 and T2D =


 0 0

0 T22


 (2.29)

It can be noticed that in the 3D case, the interface is a plane surface, therefore, a

tangential superficial tensor can be reduced to a 2 × 2 matrix. Meanwhile, in the

2D case, the interface reduces to a curve line and the tangential superficial tensor

becomes a scalar that can be presented under the form T = T22P.

2.6.1.3 Surface gradient, surface divergence

The surface gradient operator is the tangential derivative, defined by:

∇s{•} = ∇{•} ·P . (2.30)

Because of its definition, ∇s{•} is a superficial field, therefore, the gradient operator

∇{•} can be decomposed into a surface and a normal terms:

∇{•} = ∇s{•}+∇n{•} with ∇n{•} = ∇{•} ·P⊥ . (2.31)

The surface divergence is defined by:

divs{•} = ∇{•} : P , (2.32)

and as the gradient operator, the divergence operator can be decomposed as follow:

div{•} = divs{•}+ divn{•} with divn{•} = ∇{•} : P⊥ . (2.33)
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Thanks to the surface gradient and divergence operators, the curvature tensor K
can be introduced and defined by

K = −∇sn . (2.34)

This K tensor is a tangential superficial tensor, from which can be expressed K̄, the

total (twice of the mean) curvature:

K̄ = trK = P : K = −divsn , (2.35)

and we also have the identity

divsP = K̄n . (2.36)

In the following, we will often have to calculate the tangential derivatives of the

functions. Let a be a scalar field, v and w be two vector fields, and T be a tensor field

defined on a manifold Γ in Rk. Starting from the previous definitions of tangential

derivatives, we can establish (see [Gurtin and Ian Murdoch, 1975] and [Murdoch,

1976] for more details) the following formulas

∇s(av) = a∇sv + v⊗∇sa , (2.37)

divs(av) = adivsv + v · ∇sa , (2.38)

divs(aT) = adivsT + T · ∇sa , (2.39)

divs(v⊗w) = (divsv)w + (∇sv) ·P ·w , (2.40)

divs(T
T · v) = v · divsT + T · ∇sv . (2.41)

Denoting by m(x) the unit vector tangent to Γ but normal to ∂Γ at a position

x ∈ ∂Γ, then the divergence theorem applied to v and to T is written as

∫

∂Γ
v ·mdl =

∫

Γ
divsvdS , (2.42)

∫

∂Γ
T ·mdl =

∫

Γ
divsTdS . (2.43)

In particular, the left terms of each of the expressions (2.42) and (2.43) is zero when

Γ is a closed plane curve or a closed surface.

2.6.2 Problem of composite material with coherent interface

We present here a problem in the framework of the infinitesimal hypothesis. This

problem is the basic pattern we consider alone or repeated (periodically or randomly)

in the homogenization problems we will solve later by using different numerical

strategies. For the sake of simplicity, in this work, the heterogeneous material made

of two phases although more phases can be considered.
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2.6.2.1 Equilibrium equations and boundary conditions

Figure 2.17: Problem of two phases material with an imperfect interface.

We consider here a continuum body described by a bounded domain Ω ⊂ Rd (d

= 2 or 3) , with boundary ∂Ω. This domain consists of two-phases Ω(1) and Ω(2)

( in the following Ω(1) and Ω(2) denote inclusion and matrix, respectively). These

two phases are partitioned by an interface Γ (see Figure 2.17) with unit normal

vector denoted as n pointing, conventionally, from Ω(1) toward Ω(2). The outward

unit normal to ∂Ω is denoted ñ. The boundary ∂Ω is partitioned into ∂Ωu where

Dirichlet boundary conditions are prescribed and ∂ΩF where Neumann boundary

conditions hold (∂ΩF ∪ ∂Ωu = ∂Ω and ∂ΩF ∩ ∂Ωu = ∅). The jump of a quantity

{•} over the interface is defined by J{•}K = {•}(1) − {•}(2).

The bulk equilibrium equations in Ω(i) (i = 1, 2) are given by:

divσ(i) + b = 0 in Ω(i), i = 1, 2 , (2.44)

where σ denotes the bulk Cauchy stress tensor and b denotes a volume force.

The Neumann and Dirichlet boundary conditions on ∂Ω are defined by:

σ · ñ = F on ∂ΩF and u = ū on ∂Ωu . (2.45)

As mentioned above, a coherent surface Γ is introduced at the interface between

the matrix Ω(2) and the inclusion Ω(1). According to the generalized Young-Laplace

equation [Povstenko, 1993], [Gurtin et al., 1998] the equilibrium of the interface Γ

is given by:

JσK · n + divsσs = 0 on Γ , (2.46)

where σs is the surface stress tensor.

Contrary to classical continuum mechanics hypothesis, the generalized Young-Laplace

equation allows a jump of the traction across the interface Γ. The traction jump

vector can be decomposed into the normal and tangential components. In that case,
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Eq. (2.46) becomes:





P⊥ · JσK · n = −(σs : K)n

P · JσK · n = −P · divsσs
on Γ . (2.47)

The first equation of Eqs. (2.47) relates to the interface equilibrium in the normal

direction with the involvement of the curvature tensorK. In the case of a straight line

or plane interface, the right part of this equation vanishes even when the interface

stress is non-zero. The second equation of Eqs. (2.47) expresses that the non-

uniformity of the interface stress will cause the discontinuity of the bulk shear stress

(the non-diagonal components of JσK).

Combining the two equations of Eqs. (2.47) allows to rewrite Eq. (2.46) as follow:

JσK · n + (σs : K)n + P · divsσs = 0 on Γ . (2.48)

In the classical case, the surface terms vanish and Eqs. (2.46), (2.47) and (2.48)

reduce to the standard traction continuity equation.

According to the coherent interface model, there is no decohesion at the interface

Γ so that, derived from Hadamard’s compatibility conditions, we have the following

kinematic conditions:

across Γ





JuK = 0 ,

JǫK = (a ⊗ n + n⊗ a)s a ∈ Rd .
(2.49)

2.6.2.2 Constitutive equations for the bulk and the interface

The bulk constitutive laws in the context of linear elasticity are given by:

σ = C
(i) : ǫ in Ω(i), (i = 1, 2) , (2.50)

where C(i) is the fourth-order elastic stiffness tensor associated with domain Ω(i).

On the interface, we introduce a surface/interface elasticity [Gurtin and Ian Mur-

doch, 1975] given by the following expression:

σs = τoI2 + 2(µs − τo)ǫs + (λs + τo)tr(ǫs)I2 , (2.51)

where ǫs denotes the surface strain tensor, µs and λs are surface Lame’s constants

characterizing the interface elasticity, I2 represents the surface second order identity

tensor and τo is the surface tension. Eq. (2.51) is considered as the constitutive law

of the interface and in the absence of τo, as already said in section 2.2, it can be

written:

σs = C
s : ǫs , (2.52)
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where Cs is the surface elastic stiffness tensor.

We recall that the interface strain tensor ǫs can be obtained from the bulk strain

tensor ǫ by projection on the tangent plane of the interface through the projection

operator P

ǫs = P · ǫ ·P . (2.53)

All the studied pattern problem can be summed up as follow:

Equilibrium equations

div(σ(i)) + b = 0 in Ω(i)

JσK · n + divsσs = 0 on Γ

Constitutive equations

σ = C
(i) : ǫ in Ω(i)

σs = C
s : ǫs on Γ

Boundary conditions

σ · ñ = F on ∂ΩF and u = ũ on ∂Ωu

Across the interface

JuK = 0 while JσK · n 6= 0 and JǫK · n 6= 0

(2.54)

It should be noted that the surface stress σs and surface strain ǫs are tangential

superficial tensor fields. Therefore, σs and ǫs have all the characteristics presented

in subsection 2.6.1.

As Eqs. (2.54) are the strong form of the problem, their weak forms depend on

the considered numerical strategy. These weak forms will be presented in the next

chapters for different numerical approaches.

2.7 Conclusion

In this chapter, we have given a general introduction about nano-reinforced materi-

als, in which, a so-called size effect can be observed on the macroscopic mechanical

behavior. This size effect is generally attributed to local phenomena at the atomic

scale, and can be interpreted through an increase in the ratio (interface matrix-

inclusions) / (volume fraction of inclusions).

First of all, the origin of this size effect has been given from the molecular

interaction point of view. The interaction of the atoms located at the interface zone

modifies their energy and position leading to different properties of solid in this zone.

This phenomenon results in the dependence of the overall behavior on the size of

fillers. Due to the very huge interfacial surface of the nano reinforcements, this size

dependence is obvious in the case of nanocomposites. This effect has been illustrated
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by the experimental results of the mechanical behavior of nanocomposites. For

a given volume fraction, an increase of the macroscopic mechanic properties was

observed when the size of the nano fillers decreases. Besides, the effect tends to

vanish when the reinforcement size is large enough corresponding to the case of

classical composites.

Before investigating from the modelization point of view, we presented the no-

tion of interphase and interface which are needed for the vast majority of models.

We then investigated the different methods from different scales in the context of

nanocomposite. Molecular Dynamics simulations lie at a very fine scale (atom/nano)

and mainly aim at providing mechanical information at the interaction zone for ap-

proaches at bigger scales. At the continuum mechanical scale, the analytical models

with the incorporating in the micromechanical approaches of the imperfect interface

models are diverse but limit themselves to simple shapes of reinforcements (spherical

or cylindrical).

The two numerical approaches based on FEM (standard FEM with interface

element and XFEM/level set) that we found in the literature can overcome the

geometry limitation of analytical models. However, from the computational point

of view, these two numerical approaches still have certain drawbacks. We also noted,

through this bibliographic analysis, the necessity of the development of an efficient

numerical strategy for the modeling of nano-reinforced materials not only for elastic

behaviors but also for nonlinear behaviors.

We finished the chapter by presenting the mechanical problem with the princi-

pal hypothesis and equations we consider in this work for modeling nanocomposite

materials.



Chapter 3

FEM with surface/interface

element and eXtended-FEM for

modeling size effect of

nanocomposites: a comparative

study.

We present in this chapter a comparative study of the Inter-

face element approaches and XFEM/level set approach. The

implementation strategies of these two numerical approaches

are built and the result related to the validation, exploitation

and performance in various conditions are then reported.
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3.1 Introduction

As mentioned in the previous chapter, whereas a lot of works have been developed

from an analytical point of view, only a few contributions are related to numerical

description and implementation of surface elasticity effects in Finite Element simu-

lations. To the best of the author’s knowledge, standard FEM with surface/interface

element (see for instance [Wei et al., 2006]) and XFEM/level set (firstly extended

by [Yvonnet et al., 2008] to study nanocomposites) are two of the most considered

approaches in the literature to capture the size effect in nanocomposites. We pro-

pose in this chapter to compare the efficiency of these two approaches. In order

to make the comparison as fair as possible, the numerical implementation of each

approach has been performed with the same data: size of finite element mesh, ma-

terial properties, Representative Volume Element (RVE). The comparison in terms

of convergence and performance of the two numerical strategies has been performed

and the results in terms of homogenized properties have been compared to the an-

alytical solutions presented in the previous chapter. After validation of the imple-

mented strategies, we investigate, in particular, the influence of the homogenization

hypothesis in terms of boundary conditions on the computed effective mechanical

properties. To test more realistic configurations, random microstructures are then

considered with a comparison not only on the effective behavior but also on the

computational cost. The comparison in this chapter gives an evaluation of the two

studied approaches and it is expected to be a good basis to elaborate an optimal

numerical computation method.

The chapter is organized as follows: in section 3.2, we describe the equations

governing the problem of a two-phases medium with a coherent interface. In section

3.3, the fundamentals and the discretization techniques for XFEM approach and

Interface element approach are presented. The numerical results obtained for both

formulations are compared and analyzed in section 3.4. Finally, in section 3.5,

several conclusions of this comparative study are reported.
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Figure 3.1: Problem of two phases material with coherent interface.

3.2 Governing equations

The problem of a two phase composite material with coherent interface (2.54) pro-

posed in chapter 2 is recalled here (see Figure 3.1). The generalized Young-Laplace

equation Eq. (2.46) is considered to describe the equilibrium of the interface while

the elastic behavior of this interface is given by the linear expression proposed by

Bottomley and Ogino [Bottomley and Ogino, 2001] (2.7). The two equilibrium

equations in the bulk and on the interface are given as:





div(σ(i)) + b = 0 in Ω(i) i = 1, 2

JσK · n + divsσs = 0 on Γ
(3.1)

where σs is the surface stress tensor, σ(i) denotes the bulk stress tensor in the phase

Ω(i), b denotes a volume force and n is the unit normal vector to the interface,

oriented, conventional from Ω(1) to Ω(2).

The weak form associated with Eq. (3.1) is given by testing with vector valued test

functions δu ∈ H1(Ω) and δus ∈ H1(Γ) such that:

∫

Ω\Γ
δu · (divσ + b) dΩ +

∫

Γ
δus · (divsσs + JσK · n) dΓ = 0 ∀(δu, δus) , (3.2)

where σ and σs are symmetric second order tensors.

By using the formula (2.41), the terms of the surface integral in Eq. (3.2) can be

written as follow:

∫

Γ
δus · (divsσs + JσK · n) dΓ =

∫

Γ
divs(δus · σs) dΓ

−
∫

Γ
(∇s

sδus) : σs dΓ +
∫

Γ
δus · JσK · n dΓ ∀(δus) . (3.3)

Applying the surface divergence theorem (2.43) for the first term on the right hand
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of Eq. (3.3) gives:

∫

Γ
δus · (divsσs + JσK · n) dΓ =

∫

∂Γ
δus · σs ·m dl

−
∫

Γ
(∇s

sδus) : σs dΓ +
∫

Γ
δus · JσK · n dΓ ∀(δus) , (3.4)

where ∂Γ is the boundary of Γ and m is the outward unit normal vector to ∂Γ.

The bulk integral terms in Eq. (3.2) can be rewritten as:

∫

Ω\Γ
δu · (divσ + b) dΩ =

∫

Ω\Γ
div(δu · σ) dΩ

−
∫

Ω\Γ
(∇sδu) : σ dΩ +

∫

Ω\Γ
δu · b dΩ ∀(δu) . (3.5)

For the case of a two phase domain that includes an interface (Ω = Ω(1) ∪Ω(2) ∪ Γ),

Esmaeili et al [Esmaeili et al., 2017] proposed an extended form of the divergence

theorem ∫

Ω\Γ
div{•} dΩ =

∫

∂Ω
{•} · ñ dS −

∫

Γ
J•K · n dΓ . (3.6)

Considering this extended divergence theorem, Eq (3.6) becomes:

∫

Ω\Γ
δu · (divσ + b) dΩ =

∫

∂Ω
δu · σ · ñ dS

−
∫

Γ
Jδu · σK · n dΓ−

∫

Ω\Γ
(∇sδu) : σ dΩ +

∫

Ω\Γ
δu · b dΩ ∀(δu) . (3.7)

Substituting Eq. (3.7) and Eq. (3.4) into Eq. (3.2) leads to: ∀(δu, δus)
∫

Ω\Γ
(∇sδu) : σ dΩ +

∫

Γ
Jδu · σK · n dΓ−

∫

∂Ω
δu · σ · ñ dS −

∫

Ω\Γ
δu · b dΩ

+
∫

Γ
(∇s

sδus) : σs dΓ−
∫

∂Γ
δus · (σs ·m) dl −

∫

Γ
δus · JσK · n dΓ = 0 . (3.8)

In the following, we assume that the interface Γ is closed so that the term
∫

∂Γ
vanishes. Moreover, no decohesion at the interface is considered. It implies that

Jδu ·σK·n = δu ·JσK·n and δus = δu|Γ, which means that the interface displacement

is a restriction of the bulk displacement on the interface. Thus, Eq. (3.8) can be

written as: ∀(δu, δus)
∫

Ω\Γ
∇sδu : σdΩ +

∫

Γ
∇s
sδus : σsdΓ−

∫

Ω\Γ
δu · bdΩ−

∫

∂Ω
δu · σ · ñdS = 0 . (3.9)

Taking into account the constitutive laws of the bulk and the interface presented in

problem (2.54) 



σ = C(i) : ǫ in Ω(i)

σs = C
s : ǫs on Γ

(3.10)

and the fact that usually test functions are chosen equal to zero on the Dirichlet
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boundary ∂Ωu, the weak form (3.9) can be expressed as:

∫

Ω\Γ
ǫ(δu) : C(i) : ǫ(u)dΩ +

∫

Γ
ǫs(δus) : Cs : ǫs(us)dΓ

=
∫

Ω\Γ
δu · bdΩ +

∫

∂ΩF

δu · FdΓ ∀(δu, δus) , (3.11)

where ǫ{•} = ∇s{•} and ǫs{•} = ∇s
s{•}.

Finally, if the relation (2.53) is taken into account, the weak form (3.11) can be

written as:

∫

Ω\Γ
ǫ(δu) : C(i) : ǫ(u)dΩ +

∫

Γ
P · ǫ(δu) ·P : Cs : P · ǫ(u) ·PdΓ

=
∫

Ω\Γ
δu · bdΩ +

∫

∂ΩF

δu · FdΓ ∀(δu) . (3.12)

The next sections of this chapter aim at comparing two different implementations

of an elastic interface namely XFEM [Yvonnet et al., 2008] and an approach based

on interface element [Wei et al., 2006]. The two previous equivalent versions of

the weak form of the equilibrium equations (3.11) and (3.12) serve, respectively,

as basis for interface element discretization and XFEM discretization. Indeed, as

shown in the next section, the major difference between the two approaches is the

explicit (interface element approach) or implicit (XFEM approach) discretization of

the displacement along with the interface Γ. We detail the difference in terms of

discretization strategies for the two approaches in the following.

3.3 Finite element implementation

Geometry

Interface element mesh

Interface 

element

 Bulk

element

XFEM/level set mesh

Enriched

 element

Enriched

 node

 Zero

level set

Blending

element

Standard

element

Figure 3.2: An example of XFEM mesh and Interface element mesh.

For the sake of simplicity, in this work, we limit our investigation to three nodes
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triangular elements. In the following, we discuss the choices in terms of interpola-

tions and numerical implementation for two different numerical descriptions of the

kinematics of the interface, namely XFEM/level set and standard FEM with inter-

face elements. For XFEM/level set approach, the interface is implicitly described

by the introduction of a level-set function. Thus, regular meshes can be adopted

even if the interface has a complex geometry. On the contrary, for the interface

element approach, the interface is explicitly described through a conforming mesh

(see Figure 3.2). In both cases, for 2D context, the strain and stress tensor can be

expressed in the vector forms:

ǫ =
[
ǫ11 ǫ22 ηǫ33 2ǫ12

]T
,

σ =
[
σ11 σ22 ησ33 σ12

]T
,

(3.13)

where, for plane strain problems η = 0 and the indices 1,2,3 are associated with

respectively directions ex, ey, and ez while for axisymmetric problems η = 1 and the

indices 1,2,3 are associated with directions er, ez and eθ .

3.3.1 Standard FEM with surface/interface element

The first strategy explored in the paper of Wei et al [Wei et al., 2006] to account for

a coherent interface is based on an explicit discretization of the interface (see Figure

3.2) through the use of interface elements with surface elasticity. This strategy had

been detailed in [Esmaeili et al., 2017,Javili et al., 2017,Ottosen et al., 2015] in the

framework of finite strains and in the general case of the imperfect interface where

both tractions and displacements can be discontinuous across the interface. We

develop here a similar strategy in the framework of small strains and focus only on

the treatment of the surface elasticity so that no decohesion is, at that stage, taken

into account. In that case, we consider the classical interpolation of the displacement

in the bulk given as:

uh(x) =
n∑

i=1

Ni(x)ui , (3.14)

where Ni is the standard finite element shape function associated with node i, along

with a specific interpolation for the displacement on the interface:

uhs (x) =
m∑

i=1

N̄i(x)us,i , (3.15)

where N̄i is the shape function of interface element associated to node i and us,i

corresponds to the displacements of node i along the interface direction obtained by

projection of the components of the displacement in the global frame onto the local

frame (see Figure 3.3):
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Figure 3.3: Interface element and bulk neighbor elements.
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
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u2

v2



, (3.16)

where ϕ is the angle between the interface and the horizontal direction.

The surface strain tensor on the interface element e is then built such that:

ǫ(e)
s = B̄(e)Tu , (3.17)

where B̄(e) is the matrix of shape function derivatives corresponding to a standard

1D element if 2D problems are considered.

By using the weak form (3.11) and the interpolations (3.14) and (3.15), we obtain

the following discrete system of linear equations:

(K + Ks)u = f , (3.18)

where

K =
∫

Ω(1)
BTC(1)Bη̃dΩ +

∫

Ω(2)
BTC(2)Bη̃dΩ ,

f =
∫

Ω
NTbη̃dΩ +

∫

∂ΩF

NTFη̃dΓ

Ks =
∫

Γ
TT B̄TCsB̄Tη̃dΓ ,

(3.19)

where B is strain interpolation matrix for a standard triangular element, η̃ = 1 for

plane strain problems and η̃ = 2πr for axisymmetric problems and C(i) is the matrix

form of the elastic tensor of the phase (i)

C(i) =




(λ(i) + 2µ(i)) λ(i) ηλ(i) 0

λ(i) (λ(i) + 2µ(i)) ηλ(i) 0

ηλ(i) ηλ(i) η(λ(i) + 2µ(i)) 0

0 0 0 µ(i)




i = 1, 2 . (3.20)
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The surface elastic tensor Cs is, when interface elements are considered, defined as:

Cs =


 λs + 2µs ηλs

ηλs η(λs + 2µs)


 . (3.21)

With the plane strain hypothesis, η = 0, Cs can be expressed with only one scalar

Cs = λs+2µs. In this case, 1D interface elements behave like springs with a stiffness

equal to λs + 2µs.

3.3.2 XFEM/level-set approach for modeling size effect

For the XFEM approach, the specific shape of the interface is defined by means of

the introduction of a level set function φ(x). By denoting xc and rc the center and

radius of the inclusion (in the case we consider a circular inclusion), the interface Γ

is geometrically defined by:

φ(x) = ‖x− xc‖ − rc = 0 , (3.22)

Usually, function φ(x) is chosen as the signed distance to the interface Γ. With

such a choice, the sign of function φ(x) also defines the partition of the domain into

two different phases : φ(x) > 0 in the matrix and φ(x) < 0 in the inclusion. The

implicit interface is not discretized and we can not derive directly the surface strain

tensor ǫs. In this case, Eq. (2.53) is used to extract the surface strain tensor which

implies to form the projection operator P = I− n⊗ n by numerically evaluating of

the unit normal vector n. This is achieved by considering the discretized form φh of

the level set function φ(x):

φh(x) =
n∑

i=1

Niφi . (3.23)

where Ni is the finite element shape function associated with node i and φi = φ(xi)

where xi corresponds to the position of node i. Therefore, the numerical evaluation

of n is obtained as follows:

n(x) =
∇φ(x)

||∇φ(x)|| , (3.24)

To satisfy the discontinuous conditions (2.49) across the interface within the frame-

work of XFEM, the enriched approximation proposed in [Moës et al., 2003] is used.

This approximation is defined at a given point x ∈ Ωe by:

uh(x) =
n∑

i=1

Ni(x)ui +
m∑

j=1

Nj(x)ψ(x)aj , (3.25)

where aj the additional degrees of freedom associated to node j and the index j

corresponds to the set of nodes pertaining to the elements cut by the interface and
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ψ(x) is the enrichment function here defined as:

ψ(x) =
n∑

i=1

|φi|Ni(x)−
∣∣∣∣∣

n∑

i=1

φiNi(x)

∣∣∣∣∣ . (3.26)
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Figure 3.4: Enrichment function ψ for a circle interface in XFEM.

In [Moës et al., 2003], a comparison between an enrichment function defined as the

absolute value of the level set function proposed by Sukumar et al [Sukumar et al.,

2001] and the enrichment function (3.26) has been performed. The comparison

showed that the enrichment function (3.26) gives better convergence. This enrich-

ment function is equal to zero on the nodes of the enriched elements and on the

standard (non-enriched) elements (see Figure 3.4). Its values are maximum along

the interface and therefore this choice of ψ(x) provides a jump on the strain field

across the interface when ∇suh is evaluated. The zero value of this enrichment func-

tion on the nodes of the enriched elements suggests that a local enrichment could

be proposed instead of a global one.

Enriched node

Intersection between the interface and the mesh 

Interface integration points

Bulk integration points

Figure 3.5: Element cut by the interface Γ, approximated interface and integration
points in XFEM.
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In order to compute the surface integral in the weak form (3.12), a two Gauss

points integration is performed along the interface. Note that the geometry of the

interface is discretized according to the discretization of the level set function φ(x)

resulting in a piecewise linear approximation of the interface when considering linear

finite element interpolation. For the bulk, the elements crossed by the interface are

divided into sub-triangles where the numerical integration is carried out considering

three integration points (see Figure 3.5). It has to be noticed that, due to the

enrichment (see Eq. (3.25)), the interpolations of strains and stresses in the element

crossed by the interface are one order higher than for standard elements. Finally, by

using the approximation given in Eq. (3.25), the following discrete system of linear

equations is obtained:

(K + Ks)d = f , (3.27)

where

K =
∫

Ω(1)
BTC(1)Bη̃dΩ +

∫

Ω(2)
BTC(2)Bη̃dΩ ,

f =
∫

Ω
NTbη̃dΩ +

∫

∂ΩF

NTFη̃dΓ

Ks =
∫

Γ
BTMTC(s)MBη̃dΓ

(3.28)

and d gathers all the degrees of freedom:

d = [u1...un a1...am]T . (3.29)

η̃ = 1 for plane strain problems and η̃ = 2πr for axisymmetric problems.

C(1), C(2), C(s) correspond to the matrix form of the elastic tensor of the phase (1),

the phase (2) and the interface Γ, respectively:

C(i) =




(λ(i) + 2µ(i)) λ(i) ηλ(i) 0

λ(i) (λ(i) + 2µ(i)) ηλ(i) 0

ηλ(i) ηλ(i) η(λ(i) + 2µ(i)) 0

0 0 0 µ(i)




i = 1, 2, s . (3.30)

The matrix B is defined as B = [B1 · · ·BnB̂1 · · · B̂m] with Bi = L(Ni) (L is the

standard matrix form of the symmetric gradient operator) and B̂j = L(Njψ). The

matrix M is defined according to

M =




P 2
11 P 2

12 0 P11P12

P 2
12 P 2

22 0 P12P22

0 0 η 0

2P11P12 2P12P22 0 (P 2
12 + P11P22)



, (3.31)

where P11, P12, P22 are the component of the projection tensor P.

We can note that the introduction of the surface elasticity on the interface Γ results
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in the introduction of an added stiffness Ks in the tangential direction of the interface

in the resulting linear system of equations.

In the discrete systems of equations with the Interface element approach Eqs.

(3.19) and with the XFEM/level set approach Eqs. (3.28) the stiffness matrix of

the bulk K and the external force f are similar, while the stiffness matrix of the

interface Ks is different and depends on the surface strain calculation. The surface

strain, in the Interface element approach, is a “real” deformation of the 1D (for 2D

problems) interface elements, hence the surface elastic tensor Cs can be expressed

with only one scalar value (in the plane strain case). Meanwhile, in XFEM approach,

the surface strain is a projection of the strain tensor of the bulk on the piecewise

linear approximation of the interface, and the surface elastic stiffness tensor C(s) is

a second order tensor like the elastic stiffness tensor of the bulk.

In the next section, these two approaches are validated and their performance

are compared for various numerical examples.

3.4 Numerical results

In this section, we compare the performance and results obtained from the two previ-

ously presented approaches for different problems. It’s worth pointing out that with

current technologies, there is no possibility of direct measurement of the mechanical

properties of the interface. This limitation can be circumvented by appealing to

molecular dynamics computations for inverse identification of mechanical properties

of the interface [Miller and Shenoy, 2000], [Shenoy, 2005] and [Mi et al., 2008]. The

purpose in this section is to compare the performance of two numerical approaches.

Therefore the mechanical parameters of the interface, the matrix and the inclusions

are not chosen from real materials but to assess the sensibility and robustness of the

considered numerical strategies to the problem parameters.

Infinite domain

Ro

(a)

R

(b) (c) (d)

Figure 3.6: Problems with coherent interface are treated in the plane strain con-
text: (a) Eshelby problem ; (b) Two-phases material; (c) XFEM mesh; (d) Interface
element mesh.

In order to compare the two considered numerical approaches, we handle the

problem of a cell with a cylindrical inclusion by considering plane strain hypothesis.
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A representation of the geometry of the considered problem is given in Figure 3.6.

To evaluate the performance of the two numerical approaches as regards the problem

parameters, we vary the mechanical properties of the interface, the matrix, and the

inclusion. To that purpose, we define the two "contrast" coefficients α and β:

α =
κ̂s
κ̂m

and β =
Ei
Em

, (3.32)

where κ̂s = λs + 2µs is the plane strain surface modulus of the interface and κ̂m

denotes plane strain bulk modulus of the matrix. Ei and Em denote the Young

modulus of the inclusions and the matrix, respectively.

3.4.1 Eshelby’s problem with coherent interface

We first consider the problem of an inclusion embedded in an infinite elastic domain

and submitted to a dilatational eigenstrain ǫ∗ (see Figure 3.6a). Examples of meshes

considered for the two approaches are presented in Figures 3.6c and 3.6d. Such a

problem corresponds to the so-called Eshelby problem for which analytical solutions

including the effect of a coherent interface between the inclusion and the matrix

are available in [Sharma and Ganti, 2004, Sharma et al., 2003, Sharma and Ganti,

2005,Sharma et al., 2006]. For the numerical computation, only a bounded domain is

considered around the inclusion and the analytical solution in terms of displacements

is prescribed on the boundary of the finite domain. In the results presented in this

section, the loading conditions correspond to a dilational eigenstrain ǫ∗ prescribed

to the inclusion and such that ǫ∗xx = ǫ∗yy = 0.5, ǫ∗zz = 0.

3.4.1.1 Convergence analysis

For the convergence analysis, we choose the radius of inclusion R = 1nm and the

volume fraction of inclusion f = 0.2. The performance of the numerical approaches

considered in this chapter are evaluated through the evaluation of the error and rate

of convergence, computed on the basis of the relative energy norm error defined by:

e =

√√√√
∫

Ω (ǫh(x)− ǫ(x)) : C : (ǫh(x)− ǫ(x)) dΩ
∫

Ω ǫ(x) : C : ǫ(x)dΩ
, (3.33)

where ǫh is the computed strain with the considered numerical strategy and ǫ is the

analytical solution.

All the computations are performed considering three-node triangular elements and

the error is computed for various element sizes h (from 10x10nodes meshes to

80x80nodes meshes). The results are presented in Figure 3.7. As seen in Figure

3.7a, the introduction of a surface elasticity (α 6= 0) degrades the rate of conver-

gence of XFEM. For α = 0 (no surface elasticity), the expected rate of convergence



3.4. Numerical results 51

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6

 log
10

(h) 

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 l
o

g
1
0
(e

) 

r = 0.95

r = 0.65

r = 0.46

r = 0.43

r = 0.65

1

(a) XFEM

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6

 log
10

(h) 

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 l
o

g
1
0
(e

) 

All r = 1

1

(b) Interface element

Figure 3.7: Convergence analysis for the extended Eshelby problem (β = 1) with a
coherent interface.

r ≈ 1 is recovered. On the contrary, when considering interface elements (see Figure

3.7b), the rate of convergence is not affected by the introduction of surface elasticity

and we observe, as expected, a rate of convergence close to 1 for all values of α.

It has to be pointed out that for the case α < 0 with XFEM, the surface stiffness

matrix Ks in Eqs. (3.28) is negative-definite and it influences the condition number

of the total stiffness matrix and therefore causes an ill-conditioned problem leading

to inaccurate results. In [Yvonnet et al., 2008], this issue has been handled by using

the biconjugate gradient methods ("bicg" function in Matlab). In this test, we simply

avoid the meshes leading to ill-conditioning for XFEM.

3.4.1.2 Investigation of local field

In the context of the Eshelby problem with coherent interface presented above, we

can also investigate the strain field given by the two numerical approaches. This

investigation allows evaluating the accuracy thanks to the comparison with the exact

field given by the analytical solution [Sharma and Ganti, 2004].

R

A B

Figure 3.8: Geometry for local strain field investigation
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Figure 3.9: Meshes for local strain field investigation.
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Figure 3.10: ǫxx along the line A-B for different values of α (XFEM vs Interface
element).
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By considering the strain component ǫxx along the line A-B corresponding to the

centerline of the RVE (see Figure 3.8), the numerical strain field, as well as the

strain jump across the interface, can be observed. 40x40 nodes meshes are used for

this test (see Figures 3.9a and 3.9b). The strain component ǫxx along the line A-B

computed by the two numerical approaches for different values of α are presented

in Figure 3.10.

As expected, for XFEM approach, in the elements cut by the interface, the strain

field is linear because of the displacement field enrichment, while for Interface ele-

ment approach, in the elements adjacent to the interface, the strain field is constant.

We notice that the prediction of XFEM is affected by the change of the value of α

or in other words, by the stiffness of the interface. XFEM gives very good results

in the classical case without surface elasticity (α = 0) while the strain field and the

amplitude of strain jump in cut elements (enriched elements) get worse when the

value of alpha increases. This trend explains the degradation of convergence on the

relative norm of XFEM presented in Figure 3.7. For the Interface element approach,

α doesn’t affect the results of the strain field.

3.4.1.3 Size effect indicator

In order to validate the efficiency of the two implemented strategies in reproducing

the size effect observed when considering surface elasticity, we compute the size effect

indicator defined by the ratio between interface energy and total energy proposed
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Figure 3.11: Size effect indicator versus inclusion radius for the extended Eshelby
problem (β = 1).
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in [Yvonnet et al., 2008]:

ξ =
|Es|

|Es|+ |Eb|
=

| ∫Γ σs : ǫsdΓ|
| ∫Γ σs : ǫsdΓ|+ | ∫Ω σ : ǫdΩ| (3.34)

where Es and Eb denote the surface and bulk energy, respectively.

We consider 40×40 nodes mesh for both numerical approaches and compute the size

effect indicator ξ for the same volume fraction of inclusion f = 0.2 but with various

radii of the inclusions and various values of the contrast parameter α. The results

are given in Figure 3.11. It can be seen that the results are quite similar, both

numerical approaches are capable of reproducing the expected size effect, though,

as mentioned above, the convergence of XFEM is slower than the interface element

for high values of α. For the inclusion bigger than 40nm, the interface energy is

very small compared to the total energy and the effect is therefore weakened. If we

continue to increase the size of inclusion, we approach the case of classical composite

where the size effect is too weak and can be ignored.

3.4.2 Size dependence of effective properties of two-phases

nanocomposites

The two implemented numerical strategies can be used to estimate, numerically, the

homogenized properties of materials presenting nano-inclusions (see Figure 3.6b).

The effective bulk and effective shear modulus (κseff , µ
s
eff) of the nanocomposites

differ from those predicted classically with no effect of the interface (κeff , µeff).

These normalized differences (κseff − κeff)/κeff and (µseff − µeff)/µeff depend, for

a given volume fraction of inclusion f , on the size of the inclusions.

In this subsection, we vary the value of the contrast parameter β from 0 (porous

material) to 10 to assess how the stiffness contrast ratio of the two materials (matrix

and inclusion) affects the size effect, the elastic properties of the interface remaining

unchanged. The results are reported in Figure 3.12 for the bulk modulus and in

Figure 3.13 for the shear modulus. Both strategies provide the same result in terms

of size dependence.

For inclusions 10 times stiffer than the matrix (β = 10), the effective modulus

is not much affected by the size of the inclusions while for nanoporous materials

(β = 0) the size effect is more pronounced. The intensity of the size effect depends

on the ratio between interface energy and bulk energy (see Figure 3.11). In this

example, the stiffness of the matrix and the interface are kept constant. Hence,

with the increase of the stiffness of the inclusion, the ratio between interface energy

and bulk energy decreases and the effect is weakened. It is worth mentioning that

for the purpose of this sensitivity analysis we assumed that the elastic properties of

the interface are independent of the elastic properties of the surrounding materials
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Figure 3.12: Size dependence of effective plane strain bulk modulus of two-phases
materials for α = 0.2 and α = −0.2 for different values of the stiffness contrast β.

(matrix and inclusion).

For sizes of inclusion bigger than 40nm, the influence of the interface effect on

the effective modulus is very small and can be negligible. This result is coherent

with the result of size effect indicator plotted in Figure 3.11 for Eshelby problem

with the coherent interface model. When the size of inclusion is big enough, the

size effect disappear and we then obtain the mechanical behavior of a conventional

composite.
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Figure 3.13: Size dependence of effective plane strain shear modulus of two-phases
materials for α = 0.2.

3.4.3 Effective properties of a nanoporous material and in-

fluence of the boundary conditions

In this subsection, we use the interface parameters obtained through molecular dy-

namics simulations [Miller and Shenoy, 2000] to compute the effective properties of

an aluminum based nanoporous material.

• Aluminum matrix : Young modulus E = 70 GPa, Poisson ratio ν = 0.32

• Elastic coherent interface: (given in Miller and Shenoy [Miller and Shenoy,

2000])

- set A: λs = 6.842 N/m, µs = −0.375 N/m.

- set B: λs = 3.48912 N/m, µs = −6.2178 N/m.

- set C: λs = 0 N/m, µs = 0 N/m (no interface elasticity).

We report in the following the results obtained considering different types of

boundary conditions on the unit cell represented in Figure 3.6b namely: Periodic

Boundary Conditions (PBC), Kinematic Uniform Boundary Conditions (KUBC),

Stress Uniform Boundary Conditions (SUBC) (see Figure 3.14). The results ob-

tained with both numerical strategies are compared to the ones obtained from the

analytical homogenization strategy denoted as GSCM (Generalized Self-Consistent

Method) [Chen et al., 2007,Quang and He, 2009]. The results, for the homogenized
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SUBC KUBC Periodic BC

Figure 3.14: Three types of boundary conditions.
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Figure 3.15: Size effect in effective plane-strain bulk modulus for different type of
boundary conditions.

bulk moduli, are presented in Figure 3.15 for different values of the radius of void

R and different volume fractions f .

We can observe in Figure 3.15 that, for high volume fractions of nano-voids

SUBC and KUBC hypothesis lead to results quite different from the analytical pre-

dictions. But, in that comparison of the homogenized bulk modulus, for periodic
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boundary conditions, the predictions of both numerical strategies are very close to

the analytical ones (GSCM model). Note that with the GSCM model used in [Chen

et al., 2007,Quang and He, 2009], the cylindrical inclusions in a shell of the matrix

with a coherent interface, are surrounded by the effective medium. This result for

periodic boundary conditions could be explained because the GSCM model takes

into account interactions between inclusions and the Periodic Boundary Conditions

are better than Kinematic or Stress Uniform Boundary Conditions to account for

the interactions between the considered phases. Indeed, Kinematic and Stress Uni-

form Boundary Conditions do not take any phase interactions into account. For

low volume fraction of nano-voids, numerical and analytical results are very close

whatever the boundary conditions.
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Figure 3.16: Size-dependent effective plane-strain shear modulus for different type
of boundary conditions.

The same type of comparisons has been carried out considering the effective

shear modulus. The results are presented in Figure 3.16. For the Periodic Bound-

ary Condition, a good agreement between the results given by the two numerical
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approaches can be observed in Figure 3.16a, the size dependence of the effective

shear modulus is clearly shown up. However, unlike the case of bulk modulus, we

found a difference between the results of GSCM and the results of the numerical ho-

mogenization, though the periodic boundary conditions still give the closest results

(see Figures 3.16b, 3.16c and 3.16d).

3.4.4 Spherical void (axisymmetric model)

The axisymmetric analysis is used here to consider spherical nano-inclusions. This

model allows us to work on the 2D meshes but handle symmetric 3D problems. The

2D meshes are represented in Figure 3.17 with H=2R’ and R’ is chosen to obtain

the volume fraction f = 0.2.

R

R'

H

z

(a) Interface element

R

R'

z

(b) XFEM

Figure 3.17: Spherical void with coherent interface is treated with axisymetric model.

To take into account the axisymmetry conditions, the horizontal displacement of the

nodes on the left boundary is set to 0 and the factors η in Eqs. (3.13), (3.20), (3.21),

(3.30), (3.31) and η̃ in Eqs. (3.19), (3.28) are now set to η = 1 and η̃ = 2πr. It is

worth pointing out that the Periodic Boundary Condition can’t be applied to the

axisymmetric model. Therefore, only the KUBC and SUBC results are presented

(see Figure 3.18). The effective properties given by the generalized Mori-Tanaka

scheme (see [Duan et al., 2005b]) are, in the following, considered as the reference

properties. As shown in Figure 3.18, for the bulk modulus, a good agreement be-

tween the two presented approaches and between analytical and numerical solutions

is observed.

The results for the effective shear modulus are presented in Figure 3.19. Once

again, as in the previous subsection, we obtain a difference between numerical and
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Figure 3.18: Size-dependent effective bulk modulus with a spherical nanovoid for
different type of boundary condition (IE: Interface element; MT: Mori-Tanaka).

analytical results. However, the size effect is clearly observed and very good agree-

ment between the two considered numerical approaches is obtained.
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Figure 3.19: Size-dependent effective shear modulus with a spherical nanovoid for
different types of boundary condition (MT: Mori-Tanaka).

3.4.5 Nanoporous material with random microstructure

In order to describe more realistic material configurations, we consider a material

with randomly distributed nano-voids with coherent interface. We firstly consider

the Interface element approach for treating several large RVEs. The elastic coherent

interface constants for set A (λs = 6.842 N/m, µs = −0.375 N/m) are employed

and the radius void is set to 1 nm, while the number of voids is set to 5, 20 and 30.

Since the volume fraction is fixed to 0.3, having more voids in the domain leads to
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larger size of RVE (see Figure 3.20).

(a) 5 voids (b) 20 voids (c) 30 voids

Figure 3.20: Conforming meshes of RVEs with randomly distributed nano-voids.

The computational homogenization is then performed on these RVEs with hydro-

static load. For each size of RVE, the statistical convergence on the mean value of

the effective properties is carried out. This statistical convergence is evaluated by

A =
1

Niter

Niter∑

i=1

A(i) , (3.35)

where Niter the number of realizations and A is the variable that we need to test (in

our case keff/kM).
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Figure 3.21: Statistical convergence on the normalized effective bulk modulus for
different RVEs by the Interface element approach (f = 0.3, E = 70 GPa, ν = 0.32,
λs = 6.842 N/m, µs = −0.375 N/m).

As shown in Figure 3.21 and Table 3.1, the mean value of the effective property of

the bigger size RVE converge faster. The statistical convergence is reached after 40
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realizations for the RVEs containing 5 voids, 30 realizations for RVEs containing 20

voids and only 25 realizations for RVEs with 30 voids.

Number Number of realizations KUBC PBC Difference

of voids required to converge
keff
kM

keff
kM

kKUBC − kPER
kPER

× 100%

5 40 0.4374 0.4189 4.42
20 30 0.4345 0.4241 2.46
30 25 0.4404 0.4325 1.81

Table 3.1: Results for different size of RVEs treated by the Interface element ap-
proach (f = 0.3, E = 70 GPa, ν = 0.32, λs = 6.842 N/m, µs = −0.375 N/m).

Moreover, when the size of the RVE is big enough, the three type of boundary con-

ditions mentioned in the previous subsection tend to converge. Indeed, as presented

in Table 3.1, the difference between the normalized effective bulk modulus obtained

with KUBC and with PBC decreases with the increase of the RVE size. The defor-

mation of a samples with 30 voids under hydro-static load with Interface element

approach is presented in Figure 3.22.

(a) Mesh (b) KUBC (c) PBC

Figure 3.22: Deformation under hydro-static load ǭ11 = ǭ22 = 0.5, (f = 0.3, E = 70
GPa, ν = 0.32, λs = 6.842 N/m, µs = −0.375 N/m)

To complete the comparison between the two considered approaches, the RVE

composed of 30 circular nanovoids randomly distributed is now computed with the

XFEM approach. Since many voids have to be taken into account in the discretiza-

tion, the level-set function defined in Eq. (3.22) is now computed to the nearest

void.

It should be noticed that, in XFEM approach, an issue occurs when the distance

between particles is too small, which leads to the case of an element being cut by

many interfaces. This issue can be solved by using the multiple level set approach

proposed by Tran et al [Tran et al., 2011] in which each inclusion is associated with

its own level set and additional d.o.f are introduced. In this thesis, we simply avoid

this issue by setting a constraint on the distance between inclusions/voids.
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(a) XFEM non-conform mesh (b) Interface element conform mesh

Figure 3.23: Two different samples for a 30 randomly distributed nano-voids RVE.

This distance must not be smaller than twice radius plus element size. This con-

straint will make the voids better distributed (see Figure 3.22a and Figure 3.23b)

which leads to an increase of the effective modulus. However, it does not affect the

fairness of the comparison since this constraint has been applied to both approaches

(XFEM and Interface element). Two different discretizations resulting from two

different samples are represented in Figure 3.23.
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Figure 3.24: Normalized effective plane-strain bulk modulus for nanoporous material
with randomly distributed nano-voids (f = 0.3, E = 70 GPa, ν = 0.32, λs = 6.842
N/m, µs = −0.375 N/m).

In order to estimate the size effect of the void on the effective properties, the

volume fraction of voids is set to 0.3 while we vary their radius. For each radius,

a statistical convergence on the mean value of the effective property is carried out.

The meshes of about 20000 standard degrees of freedom have been used for the two

approaches. The results in terms of effective bulk modulus with respect to the size
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of the nano-voids are presented in Figure 3.24.
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Figure 3.25: Convergence test on number of standard d.o.f.

The influence of the size of nano-voids is clearly observed with both approaches.

Note that the comparison here only has a qualitative meaning since the mesh con-

vergence has not been reached for both methods because of the limit of the memory

space (see Figure 3.25). Moreover, even if the convergence on mesh size was reached,

we couldn’t conclude about the accuracy of the approaches in this case without a

reference result. The computational cost of the two approaches is compared in Table

3.2. Even if the comparison in terms of computation time shown in Table 3.2 has

only a relative meaning since no code optimization process has been done, it can be

noticed that XFEM is still much expensive than the Interface element approach, at

least for the solution process.

X-FEM Interface
element

Number of standard d.o.f 20000 21528

Number of additional d.o.f 4560 0

Total unknowns 24560 21528

Size of elemental
stiffness matrix 12×12 6×6

Final size of
global stiffness matrix 4.104 × 4.104 21528×21528

Computing time
for 1 realization (sec) 106.676 45.223

Table 3.2: Comparison of computational cost (XFEM vs IE).
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3.5 Conclusion

In the context of the prediction of the mechanical behavior of nanocomposites,

a comparison of two numerical procedures namely XFEM approach and interface

element based strategy has been performed. Both approaches are based on the

implementation of a coherent interface with surface elasticity to account for size

effect in nanocomposites. The results show that whatever the contrasts of "rigidity"

of the surface with respect to the matrix (coefficient α in this chapter) the rate of

convergence and the prediction of strain field of XFEM are affected by the presence

of surface elasticity while for interface element approach, the rate of convergence

and the local strain field are not affected. Even so, both of the considered numerical

methods are able to reproduce the size effect of the Eshelby problem with coherent

interface [Sharma and Ganti, 2004, Sharma et al., 2003, Sharma and Ganti, 2005,

Sharma et al., 2006]. Moreover, the performances of the two numerical approaches in

reproducing the size effect have also been evaluated for different fictitious materials

by varying the contrast of rigidity between the matrix and the inclusions (coefficient

β in this chapter). The results obtained by the two studied numerical approaches

were also compared to micromechanical schemes proposed in [Quang and He, 2009]

and [Duan et al., 2005b] in the context of the evaluation of the effective properties

of nanoporous materials. To that purpose, different sets of boundary conditions

were considered. As could be expected, due to the underlying hypothesis of the

micromechanical model (interactions between inclusions), it emerges that, for the

effective bulk moduli, the numerical estimations have a very good agreement with

the micromechanical model when considering periodic boundary conditions on the

unit cell. However, this is not the case for the estimation of the effective shear

modulus although the Periodic Boundary Condition still gives the closest result to

the GSCM solution among the three type of boundary conditions.

To test more realistic configurations, a composite material with randomly dis-

tributed nano-voids has been considered. The RVEs containing 5, 20 and 30 voids

have been firstly treated by the Interface element approach. With the fixed volume

fraction and radius, the number of voids is linked to the size of the RVE, an in-

crease of the number of the voids implies an increase in the RVE size. The results

confirmed that an increase of RVE reduces the influence of boundary conditions on

the effective modulus. Therefore the RVE with 30 voids was chosen to complete

the comparison between the two considered numerical approaches not only on the

effective modulus but also on the computational cost. Both approaches have shown

their ability to reproduce the size effect in this configuration but XFEM is more

expensive than the Interface element.

The use of surface/interface elements in standard FEM depends massively on

conforming meshes, which are costly for the cases with complex geometries. Mean-

while, the XFEM/level set approach, although it does not require any discretization
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effort but the number of degrees of freedom and integration points is raised com-

pared to standard FEM. Moreover, degradation of convergence due to the presence

of surface elasticity is another drawback of XFEM. To overcome these disadvan-

tages, a new numerical approach based on the Embedded Finite Element Method is

proposed in the next chapter.

Finally, the studies presented in this chapter can serve as a foundation to assess

the influence of the nonlinear behavior within the numerical homogenization strat-

egy to get closer to more realistic behaviors than linear elastic behaviors for the

constituents. The nonlinear results will be discussed in chapter 5 of this thesis.



Chapter 4

Embedded-FEM approach for

modeling the size effect in

nanocomposite

A new numerical approach based on the Embedded Finite El-

ement Method (E-FEM) is elaborated in order to model size

effect of nanocomposites. For this purpose, a comparison of

the performance of the three classically considered formula-

tions of E-FEM is performed for the simple case of a weak

discontinuity without surface elasticity. Based on its good

performance, the E-FEM standard Statically and Kinemat-

ically Optimal Nonsymmetric (SKON) formulation is then

chosen to incorporate a surface elasticity at the interface be-

tween the matrix and the inclusions. The results obtained

with the proposed approach for a couple of problems in the

case of nanocomposites (Eshelby problem, two-phase compos-

ite, random micro-structures) are confronted with analytical

solutions and the Interface Element approach. The developed

approach is shown to be an efficient tool for the evaluation

and prediction of the mechanical behavior of nanocomposite

materials.
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4.1 Introduction

In this chapter, we propose an efficient numerical approach that requires neither a

conforming mesh nor additional nodal degrees of freedom. The development is built

on the Embedded Finite Element Method (E-FEM). Although E-FEM is usually

used to handle strong discontinuities [Dvorkin et al., 1990], [Simo et al., 1993], [Lin-

der and Armero, 2007], [Brancherie and Ibrahimbegovic, 2009], it was originally

introduced by Ortiz et al [Ortiz et al., 1987] to capture weak discontinuities to im-

prove the resolution of shear bands. Considering an Assumed Strain Finite Element

Method, Ortiz et al enhanced the strain field to embed strain discontinuity in a

single element. Based on this idea, two parallel weak discontinuity lines allowing

to contain a band of localized strain have been proposed by Belytschko et al [Be-

lytschko et al., 1988]. Several different formulations of E-FEM were developed in the

same spirit: the approximation of the displacement or/and strain fields are enriched

with additional parameters to capture the jump in the displacement field (strong

discontinuity) or strain field (weak discontinuity). The enrichment related to dis-

placement jumps or strain jumps is defined independently for every single element

cut by the interface where the jump occurs. Different studies have been derived

from various principles, starting from the extended principle of virtual work over

Hellinger Reissner [Dujc et al., 2013] to Hu-Washizu variational principle [Roubin

et al., 2015], using an enhanced assumed strain (EAS) or B-bar format. For han-

dling strong discontinuities, the E-FEM approaches has been widely applied to many
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interesting problems such as piezoelectric materials [Linder and Miehe, 2012], ge-

omaterials [Foster et al., 2007], coupled formulations [Linder et al., 2011], finite

strains [Armero and Garikipati, 1996], crack branching [Linder and Armero, 2009],

dynamic fracture [Nikolić et al., 2018], etc.

The most interesting advantage of E-FEM (compared to XFEM presented in

chapter 3) is that the additional unknowns are solved and condensed at the element

level. Hence, the final system of equations to be solved at the global level has the

same number of unknowns than a standard Finite Element problem set on the same

spatial discretization. In terms of numerical accuracy, Oliver et al [Oliver et al.,

2006] compared E-FEM with XFEM for several selected examples and proved that

E-FEM can be as accurate as XFEM. However, if a lot of works focus on the use

of E-FEM in the context of failure analysis (involving strong discontinuities), very

few studies concern the use of E-FEM for numerical homogenization where weak

discontinuities have to be taken into account.

Three formulations of E-FEM based on different choices of interpolations have

been developed, namely, Statically Optimal Symmetric (SOS), Kinematically Op-

timal Symmetric (KOS), and Statically and Kinematically Optimal Nonsymmetric

(SKON), a detailed comparison of those approaches in strong discontinuities context

has been proposed in [Jirásek, 2000] and [Cazes et al., 2016].

In this chapter, we firstly present a comparative study of the performance of

the three types of formulations for the case of weak discontinuities which, to the

best of our knowledge, has never been presented in the literature. On the basis

of this comparison, we then propose an enhanced SKON formulation allowing to

incorporate the effect of a coherent interface. In that formulation, the interface

mechanical behavior is taken into account and the traction continuity condition

at the discontinuity line (interface) is replaced by the generalized Young-Laplace

equation (2.48).

This chapter is organized as follows: in section 4.2, the three basic E-FEM

formulations are built in the case of standard weak discontinuities. In section 4.3,

a comparative study of the performance of the three types of interpolations for

handling weak discontinuity problems is presented. Then, we discuss, in section

4.4, an issue of the E-FEM approach in the case of the high contrast of rigidity

between the matrix and the inclusion for composite material. On the basis of the

comparison presented in section 4.3, we propose in section 4.5 an enhanced SKON

formulation allowing, in the context of composite material, to incorporate the effect

of surface elasticity at the matrix/inclusion interface. Due to the introduction of

surface elasticity on the interface, additional surface terms appear in both global and

local equations. In section 4.6, the results obtained from the proposed approach,

related to convergence analysis, linear homogenization with periodic microstructure

and random microstructure are compared to the analytical solutions as well as to
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the Interface element approach results. In section 4.7, several conclusions of the

proposed approach are drawn.

4.2 E-FEM formulations to handle weak discon-

tinuities

In this section, the three variants of E-FEM formulation are revisited for prob-

lems with weak discontinuities. We consider here a continuum body described by a

bounded domain Ω ⊂ Rd (d = 2 or 3) , with boundary ∂Ω. This domain consists

of two-phases Ω(1) and Ω(2) ( in the following Ω(1) and Ω(2) denote inclusion and

matrix, respectively). These two phases are partitioned by a perfect interface Γ

meaning that neither surface elasticity nor debonding are taken into account, (see

Figure 4.1). We denote as n the unit normal vector pointing, conventionally, from

Ω(1) toward Ω(2).

Figure 4.1: Problem of two phases material with a perfect interface (classical com-
posite).

The outward unit normal to ∂Ω is denoted ñ. The boundary ∂Ω is partitioned into

∂Ωu where Dirichlet boundary conditions are prescribed and ∂ΩF where Neumann

boundary conditions hold (∂ΩF ∪ ∂Ωu = ∂Ω and ∂ΩF ∩ ∂Ωu = ∅).

4.2.1 Hu-Washizu three-field variational formulation

A unified mathematical framework to enrich the kinematics of a finite element by the

Embedded Finite Element Method can be obtained from the three-field variational

formulation of Hu-Washizu [Washizu, 1975]. The Hu-Washizu functional has the

form:

ΠHW (u, ǫ,σ) =
∫

Ω
(∇su : σ − ǫ : σ +

1

2
ǫ : C : ǫ)dΩ

−
∫

Ω
u · bdΩ−

∫

∂ΩF

u · FdS .
(4.1)
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where, b and F are volume force and external loads, respectively.

The real fields (u, ǫ,σ) corresponding to the displacements field, strain field and

stress field, respectively, are considered as independent. We denote (δu, δǫ, δσ)

the virtual displacement, virtual strain and virtual stress field, respectively. Note

that these three virtual fields are also independent. With all these notations, the

three-field variational principle derived from Eq. (4.1) can be written as:

∀(δu, δǫ, δσ)





∫

Ω
∇sδu : σ dΩ−

∫

Ω
δu · b dΩ−

∫

∂ΩF

δu · F dS = 0
∫

Ω
δσ : (∇su− ǫ) dΩ = 0

∫

Ω
δǫ : (σ̂(ǫ)− σ) dΩ = 0

(4.2)

where σ̂(ǫ) denotes the stress field derived from the behavior law.

The three equations in the system (4.2) correspond to the weak form of the equilib-

rium equation, kinematic compatibility equation and behavior law, respectively. If

the kinematic equation and behavior equation are imposed in strong form (∇su = ǫ

and σ̂(ǫ) = σ), the system (4.2) returns to the classical variational formulation

written in displacement.

4.2.2 Enhanced assumed strain method

The Embedded Finite Element formulation is based on a mixed-type formulation

with independent strains and displacements. Based on the Enhanced Assumed

Strain [Simo and Rifai, 1990] or equivalently on the so-called incompatible mode

method [Wilson and Ibrahimbegovic, 1990], the infinitesimal real strain field ǫ is

decomposed into the compatible part ∇su and an added enhanced field denoted

here as γ:

ǫ = ∇su + γ . (4.3)

Following the idea of the Enhanced Assumed strain method, not only the real but

also the virtual strain field is enhanced in the same way.

δǫ = ∇sδu + δγ . (4.4)

With these notations, the system (4.2) becomes:

∀(δu, δγ, δσ)





∫

Ω
∇sδu : σ dΩ−

∫

Ω
δu · b dΩ−

∫

∂ΩF

δu · F dS = 0

∫

Ω
δσ : γ dΩ = 0

∫

Ω
∇sδu : (σ̂(ǫ)− σ) dΩ +

∫

Ω
δγ : (σ̂(ǫ)− σ) dΩ = 0

(4.5a)

(4.5b)

(4.5c)
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Taking into account that δu and δγ are independent, the system (4.5) can be

rewritten as

∀(δu, δγ, δσ)





∫

Ω
∇sδu : σ dΩ−

∫

Ω
δu · b dΩ−

∫

∂ΩF

δu · F dS = 0

∫

Ω
δσ : γ dΩ = 0

∫

Ω
∇sδu : (σ̂(ǫ)− σ) dΩ = 0

∫

Ω
δγ : (σ̂(ǫ)− σ) dΩ = 0

(4.6a)

(4.6b)

(4.6c)

(4.6d)

Combining Eq. (4.6a) and Eq. (4.6c) gives

∀(δu, δγ, δσ)





∫

Ω
∇sδu : σ̂(ǫ) dΩ−

∫

Ω
δu · b dΩ−

∫

∂ΩF

δu · F dS = 0

∫

Ω
δσ : γ dΩ = 0

∫

Ω
∇sδu : (σ̂(ǫ)− σ) dΩ = 0

∫

Ω
δγ : (σ̂(ǫ)− σ) dΩ = 0

(4.7a)

(4.7b)

(4.7c)

(4.7d)

The second key point of the Enhanced Assumed Strain is to build the space of the

stress fields (σ, δσ) and the enhanced strain fields (γ, δγ) as orthogonal which makes

it possible to avoid the presence of the stress fields in the discretized formulation:

∫

Ω
δσ : γdΩ = 0 and

∫

Ω
δγ : σdΩ = 0 (4.8)

By integrating Eq. (4.8) into Eqs. (4.7), we have a two-fields variational formulation:

∀(δu, δγ)





∫

Ω
∇sδu : σ̂(ǫ) dΩ−

∫

Ω
δu · b dΩ−

∫

∂ΩF

δu · F dS = 0

∫

Ω
∇sδu : (σ̂(ǫ)− σ) dΩ = 0

∫

Ω
δγ : σ̂(ǫ) dΩ = 0

(4.9a)

(4.9b)

(4.9c)

The last point of the EAS method is to assume that the stress field verifies the

constitutive equation in the strong form σ̂(ǫ) = σ. In that case, the system (4.9)

becomes:

∀(δu, δγ)





∫

Ω
∇sδu : σ̂(ǫ) dΩ−

∫

Ω
δu · b dΩ−

∫

∂ΩF

δu · F dS = 0

∫

Ω
δγ : σ̂(ǫ) dΩ = 0

(4.10a)

(4.10b)

Note that the interpolations of the enhanced strains are not necessarily continuous
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from one element to another. Therefore no inter-element continuity on enhanced

strains needs to be enforced when constructing finite element approximations and

Eq. (4.10b) is evaluated at the element level

∀(δu, δγ)





∫

Ω
∇sδu : σ̂(ǫ) dΩ−

∫

Ω
δu · b dΩ−

∫

∂ΩF

δu · F dS = 0

∫

Ωe

δγ : σ̂(ǫ) dΩ = 0 ∀e with enhanced strain

(4.11a)

(4.11b)

To ensure the convergence of this method, the enhanced element must verify the

patch-test [Zienkiewicz and Taylor, 2005], in other words, it must be able to represent

a constant stress field, with σ̂(ǫ) = σ̂c. To verify this patch-test, Eq. (4.11b) leads

to ∀σ̂c constant per element:

∫

Ωe

δγ : σ̂c dΩ = 0 ⇒ σ̂c

∫

Ωe

δγ dΩ = 0 ⇒
∫

Ωe

δγ dΩ = 0 , (4.12)

which means that the enhanced part of the virtual strain must satisfies the zero

mean condition over the element.

4.2.3 E-FEM discretization

As mentioned in the introduction, E-FEM is usually formulated for strong discon-

tinuities using three different formulations based on different choices of interpola-

tions, namely, Statically Optimal Symmetric (SOS), Kinematically Optimal Sym-

metric (KOS), and Statically and Kinematically Optimal Nonsymmetric (SKON).

We present here some basic features of the three formulations:

- Statically Optimal Symmetric (SOS)

Using the study of Belytschko et al [Belytschko et al., 1988], SOS for-

mulation has been developed and used over the next decades in many

works like [Larsson et al., 1996], [Armero and Garikipati, 1996], [Sluys and

Berends, 1998]. This method only enhances the strain field, without any en-

richment of the displacement field. The shape of the enhanced parts (both

virtual and real strain) can be determined thanks to the zero mean condi-

tion (4.12). Once this condition is satisfied, the stress field is continuous

over the element and the traction continuity condition across the interface

is verified. Due to the fact that the enhanced part of virtual and real strain

is interpolated in the same way, the matrix of the system to be solved is

symmetric. Nevertheless, the main drawback of this formulation is the lack

of kinematic compatibility since the displacement field is not enhanced.
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- Kinematically Optimal Symmetric (KOS)

Contrary to the SOS formulation, the KOS formulation of Lotfi and Shing

[Lotfi and Shing, 1995] only considers the kinematic aspect of the discon-

tinuity. The enhanced strain is derived from the enriched part of the dis-

placement field by using the symmetrical kinematics gradient operator ∇s,

similar to the regular part. By choosing a suitable interpolation matrix,

the stress field is deleted from the equations and the final form of the sys-

tem becomes identical to the one obtained by using SOS formulation. The

difference lies on the interpolation of the enhanced strain which does not

respect the zero mean condition. Hence, the traction continuity condition,

as well as the patch test, are not satisfied.

- Statically and Kinematically Optimal Nonsymmetric (SKON)

The SKON formulation of embedded elements proposed in [Simo and Oliver,

1994] and [Oliver, 1996] combines the two above formulations to have the

advantages of both. The interpolation of the enhanced part of the real

strain is built from the enrichment of the displacement field and suitably

represents the discontinuity kinematics. Meanwhile, the interpolation of the

enhanced part of the virtual strain respects the zero mean condition and

guarantees traction continuity. Due to the different interpolations of the

real and virtual enhanced strain, the matrix of the final system to resolve

becomes nonsymmetric.

Whereas these formulations have been elaborated in the framework of strong

discontinuity, we adapt them here for the case of weak discontinuity. Due to the

fact that SKON is a combination of SOS and KOS, in the following we only present

the SKON formulation. nevertheless, the KOS and SOS formulations can be then

obtained by choosing one of two interpolations in SKON formulation.

To build proper kinematics discontinuity, we first consider the displacement field

and derive, from this displacement, the strain enhancement. In the case of a weak

discontinuity problem like the one on hand, the displacement field is continuous

across the interface Γ separating the two phases Ω(1) and Ω(2). For elements cut by

the interface, the displacement field can be written in the form:

uh(x) =
n∑

i=1

Ni(x)ui + M(x)a , (4.13)

where M(x) is an added shape function, continuous at Γ and a are additional local

degrees of freedom.

Function M(x) is chosen consistent with a weak kinematic discontinuity in the form:

M(x) = ϕ(x)HΓ(x)−
∑

i∈Ω(1)

Ni(x)ϕ(xi) , (4.14)
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where HΓ denotes the Heaviside function defined as:

HΓ(x) =





0 if x ∈ Ω(2)

1 if x ∈ Ω(1)
(4.15)

ϕ(x) is here chosen to ensure that M(x) equals 0 on all nodes of the element and

ϕ(xi) corresponds to the evaluation of ϕ(x) on node i.

To allow a strain discontinuity, the function ϕ(x) is here chosen as the restriction

to the element of the signed distance to the interface Γ. The unit normal vector to

the interface Γ is thus given as:

n(xΓ) =
∇ϕ
||∇ϕ||(xΓ) , (4.16)

where xΓ is the position vector of the considered point on Γ.

In the present work, the linear approximated interface is considered in the element.

Figure 4.2: Shape function M(x) in a discontinuous element

The normal vector to the interface is therefore constant in the element considered

(see Figure 4.2). The signed distance function ϕ(x) takes the zero value on the

interface, it corresponds to the level set function used in the XFEM approach pre-

sented in the previous chapter. Hence, as presented in Eqs. (3.23) and (3.24), the

components of the normal vector n(x) can be evaluated at every x position in the

element considered by:

n(x) =
∇ϕh(x)

||∇ϕh(x)|| with ϕh(x) =
n∑

i=1

Ni(x)ϕ(xi) . (4.17)

Considering (4.13) and the chosen expression of M, the real strain field is written

in the form:

ǫ(x) = B(x)u
︸ ︷︷ ︸

∇su

+ Gr(x)a
︸ ︷︷ ︸

γ

, (4.18)

with

Gr(x) = LM(x) = NHΓ(x)−
∑

i∈Ω(1)

Bi(x)ϕ(xi) , (4.19)

where L is the matrix operator associated with the symmetric gradient ∇s.
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Following the Voigt notation, N is defined as (for 2D plane strain problems):

N =




nx 0

0 ny

ny nx


 . (4.20)

As seen from its definition, the enhanced part of the real strain tensor is a derivation

from an enhanced part of the displacement field. Hence, it respects the kinematic

compatibility.

The interpolation of the virtual strain field is defined as:

δǫ(x) = B(x)δu
︸ ︷︷ ︸

∇sδu

+ Gv(x)δa
︸ ︷︷ ︸

δγ

, (4.21)

where Gv is built as a modified version of Gr in order to satisfy the zero mean

condition (4.12).

This Gv ensures the satisfaction of the patch-test and can be obtained by following

the procedure proposed for the method of incompatible modes proposed by Ibrahim-

begovic and Wilson [Ibrahimbegovic and Wilson, 1991] leading to:

Gv(x) = Gr(x)− 1

V

∫

Ωe
Gr(x)dΩ . (4.22)

We then obtain, for three nodes triangular elements:

G(1)
v (x) =

V (2)

V
N on Ω(1)

G(2)
v (x) = −V

(1)

V
N on Ω(2) ,

(4.23)

where V (1) and V (2) denotes the volume (for 3D problems or area for 2D problems)

of Ω(1) and Ω(2), respectively.

Using the definitions (4.21) in Eq. (4.10b) gives:

∫

Ωe

δγ : σ̂(ǫ) dΩ = δa
(∫

Ω(1)
(G(1)

v )T σ̂(1)dΩ +
∫

Ω(2)
(G(2)

v )T σ̂(2)dΩ
)

= 0 . (4.24)

By using Eqs. (4.23) and by considering that, in a three nodes triangular elements,

the stress field is constant in each sub-domain Ω(1) and Ω(2), Eq. (4.24) can be

written as:

∫

Ωe

δγ : σ̂(ǫ) dΩ = δa(
V (1)V (2)

V
N T σ̂(1) − V (1)V (2)

V
N T σ̂(2)) = 0 . (4.25)

As N T σ̂ is the Voigt notation for σ̂n, Eq. (4.25) can be interpreted as the traction
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continuity condition:

∫

Ωe

δγ : σ̂(ǫ) dΩ =
V (1)V (2)

V
Jσ̂Kn = 0 . (4.26)

It can be seen from Eq. (4.26) that with the use of Gv the traction continuity

condition is satisfied.

The system of SKON formulation is obtained by injecting Eq. (4.18) and Eq.

(4.21) in Eqs. (4.11): 



∫

Ω
BT σ̂(Bu + Gra)dΩ = fext

∫

Ωe

GT
v σ̂(Bu + Gra)dΩ = 0

(4.27a)

(4.27b)

If we replace Gr in the real strain interpolation (4.18) by Gv, we then obtain the SOS

formulation in which the traction continuity is verified in Eq. (4.26) and the system

(4.27) becomes symmetric. However, without Gr, the compatibility between the

strain field and the displacement field is not ensured since γ is not derived directly

from a displacement field. On the contrary, if Gv in the virtual strain interpolation

(4.21) is changed to Gr, we obtain the KOS formulation, which is also symmetric

with a reliable kinematic expression but the traction continuity is no longer satisfied.

Although the system (4.27) of SKON formulation is not symmetric, it satisfies both

the condition of traction continuity and the kinematic compatibility.

4.2.4 Resolution strategy

In the case of linear elastic behavior, the system (4.27) can be rewritten in matrix

form as: 



Nelem

A
e=1

(Ke
uu u + Ke

ua a) =

Nelem

A
e=1

f eext

Ke
au u + Ke

aa a = 0 ∀e cut by Γ

(4.28a)

(4.28b)

where

Ke
uu =

∫

Ω
(1)
e

BTC(1)B dΩ +
∫

Ω
(2)
e

BTC(2)B dΩ

Ke
ua =

∫

Ω
(1)
e

BTC(1)G(1)
r dΩ +

∫

Ω
(2)
e

BTC(2)G(2)
r dΩ

Ke
au =

∫

Ω
(1)
e

(G(1)
v )TC(1)B dΩ +

∫

Ω
(2)
e

(G(2)
v )TC(2)B dΩ

Ke
aa =

∫

Ω
(1)
e

(G(1)
v )TC(1)G(1)

r dΩ +
∫

Ω
(2)
e

(G(2)
v )TC(2)G(2)

r dΩ

(4.29)

with C(i) is the matrix form of the elastic tensor for phase (i):

C(i) =




(λ(i) + 2µ(i)) λ(i) 0

λ(i) (λ(i) + 2µ(i)) 0

0 0 µ(i)


 i = 1, 2 . (4.30)
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The system (4.28) is solved by taking advantage of the fact that Eq. (4.28b) are

written at the element level. An "operator split" method is then considered for

the resolution: Eq. (4.28b) is solved at the element level in order to obtain the

variables a for each element crossed by the interface, then, after a static condensation

procedure [Wilson, 1974] at the element level, nodal displacements u are obtained

as solution of:
Nelem

A
e=1

K̃eu =

Nelem

A
e=1

f eext (4.31)

with

K̃e = Ke
uu −Ke

ua(K
e
aa)

−1Ke
au . (4.32)

Due to static condensation, the size of the final global system (4.31) to be solved

is not modified. Hence, no matter how many inclusions and interfaces exist in the

RVE, the size of the problem is preserved and only depends on the number of nodes

of the mesh.

4.3 Performance of the three E-FEM formulations:

SOS, KOS and SKON

In this section, we aim at comparing the numerical performance of the three E-FEM

formulations presented in the previous section. Such comparisons have already been

conducted in the case of strong discontinuities, leading to the conclusion that, for

linear elements, the SKON formulation gives the best results regarding convergence

and alleviates all the difficulties due to stress locking [Jirásek, 2000, Cazes et al.,

2016]. Since this PhD work deals with weak discontinuities, the classical first Eshelby

problem and two-phase material problem are chosen to test the efficiency of the three

formulations. The results of conforming FEM is also added to the comparison as a

reference result.

Infinite domain

R

(a) Eshelby problem

R

(b) Two phases

Figure 4.3: Classical first Eshelby problem and two-phase material problem (R =
1nm, f = 0.2).

For the first Eshelby problem, we consider a bounded domain surrounding an

inclusion (see Figure 4.3a) and we conduct the computations by prescribing the an-
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Figure 4.4: Convergence analysis of the three formulations of E-FEM in treating the
First Eshelby problem and the two phase material problem.

alytical solution in terms of displacements on the boundary of the finite domain. In

the results presented in this section, the loading conditions correspond to a dilational

eigenstrain ǫ∗ prescribed to the inclusion and such that ǫ∗ = ǫ∗xx = ǫ∗yy = 0.5, ǫ∗zz = 0.

For the two phases material problem, the considered RVE represented in Figure 4.3b

is considered and submitted to an hydrostatic stress by prescribing the exact solu-

tion of the displacement field given in [Sukumar et al., 2001] on the boundary of

the domain. The material constants are chosen as: Em = 70 GPa, Ei = 0.1Em,

νm = 0.3 and νi = 0.25.

The performances of KOS, SOS, and SKON formulations are evaluated through

the relative energy norm error defined is Eq. (3.33) and convergence rate. As shown

in Figures 4.4a and 4.4b, the convergence of SKON is the best among the three

formulations of E-FEM in both problems. The expected conforming FEM rate of

convergence r = 1 is recovered for SKON.

We also investigate the efficiency of the three formulations in representing the

local fields. A 40x40 nodes mesh is used for this test (see Figure 4.5a). The strain

component ǫxx along the line A-B (see Figure 4.5a) corresponding to the center line

of the RVE is represented for the three formulations in Figure 4.5. For the KOS

formulation (Figure 4.5b), the strain field in the matrix, as well as the strain jump,

are overestimated compared to the exact solution. Regarding SOS (Figure 4.5c), a

good estimation of the strain jump is obtained but the level of strain in the element

cut by the interface is not correctly captured. Finally, for the SKON formulation

(Figure 4.5d) the strain field, as well as the strain jump, are correctly computed.

The same investigation has been performed for the two-phase material problem.

The strain component ǫxx along the line A-B are presented in Figure 4.6. It can be

seen in Figure 4.6b that the stress field given by KOS formulation is discontinuous

across the interface at x = −1 and x = 1. Meanwhile, the stress fields obtained from
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Figure 4.5: ǫxx along the line A-B for the classical first Eshelby problem.

SOS and SKON formulations (see Figures 4.6d and 4.6f) are continuous across the

interface because the traction continuity condition is verified in these formulations.

Among the three formulations, SKON gives the results closest to the analytical

solution. Its convergence is, therefore, better than the other ones as shown in Figure

4.4b. However, in the enhanced elements, the strain field in the inclusion part,

as well as the strain jump, are overestimated. Meanwhile, the strain field in the

standard elements of the inclusion is slightly smaller than the exact one. Therefore,

the total strain energy in the inclusion needed for the numerical homogenization is

still correct. Nonetheless, for the future works when decohesion or damage of the

interface is considered, this issue may cause inaccurate results. The issue related to

the strong variation of the stiffness coefficients between the two domains has also

been reported in [Idelsohn et al., 2017]. We open a discussion in the next section

for several efforts to solve the issue with a strong contrast of the stiffness of the two

phases.
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Figure 4.6: ǫxx and σxx along the line A-B for the classical two phases problem.

4.4 E-FEM approaches for two phases material

with strong contrast of properties

In this subsection, we investigate the overestimation of the strain field as well as

strain jump in the E-FEM element when a high contrast of rigidity β =
Ematrix
Einclusion

of

the composite material is considered. Considering the two-phase problem presented

in the previous section (see Figure 4.3b), the strain component ǫxx along the line A-B
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obtained from the three E-FEM formulations for the case of β = 100 and β = 1000

are presented in Figure 4.7. We notice that the results of KOS formulation are

almost not affected by the high value of β whereas those given by SOS formulation

and especially SKON formulation are affected by β.

In this section, we try to find the cause of this issue by few simple tests on SKON

formulation.
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(e) SKON, β = 100
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Figure 4.7: ǫxx along the line A-B for different E-FEM formulations with β = 100
and β = 1000.
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First of all, from the mathematical point of view, the strong contrast of stiffness

between the phases may result in a conditioning problem of the global stiffness

matrix. To verify it, we perform a test on a heterogeneous bar where a very high

stiffness coefficient (β = 106) is considered. The boundary conditions are u(x) = 0

on left edge and u(x) = 1 on the right edge, u(y) = 0 on the top and bottom edges.

This two phases bar is shown in Figure 4.8a. The strain component ǫxx obtained

from SKON formulation are presented in Figure 4.8b for β = 10 and in Figure 4.8c

for β = 106.
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(c) ǫxx for β = 106.

Figure 4.8: Traction test of a two phases bar using SKON formulation in the case of
stiffness coefficients β = 10 and β = 106 (Ematrix = 70 GPa, νmatrix = νinclusion =
0).

It can be seen that SKON provides correct results even with the very high value

of the stiffness coefficient β. Therefore, the conditioning of the stiffness matrix is

not the cause of the overestimation observed. As shown in Figure 4.9, the same

conclusion can be drawn in the case of a three phases bar (matrix-reinforcement-

matrix).

The second possibility can be the cause of the issue related to the alignment and

position of the interface relatively to the element edge. This geometric problem has
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Figure 4.9: Traction test of a three phases bar using SKON formulation in the case
of stiffness coefficients β = 10 and β = 106.

been reported in the framework of E-FEM in [Juárez-Luna and Ayala, 2014] for the

case of strong discontinuity. In this study, the authors pointed out that the different

positions and directions of the interface in the enhanced element can lead to different

results. They also showed that for the constant triangle element, the case with an

interface located at mid-height of the element and parallel to the border (element

edge) gave the best result. These two conditions have been enforced in several

studies of strong discontinuities as [Sancho et al., 2006, Reyes et al., 2009, Gálvez

et al., 2013, Alberti et al., 2017, Suárez et al., 2019]. Moreover, in [Idelsohn et al.,

2017], a singular case when the interface is very close to a node has been mentioned.

All these geometrical reasons can affect the results given by the E-FEM method.

In order to verify this possibility, we consider here a "special" mesh in which

the interfaces are always placed at mid-height and parallel to an edge of the corre-

sponding enhanced element (see Figure 4.10a). The two phases material problem of

a square domain surrounding a circular inclusion presented in Figure 4.3b is recon-

sidered.

As shown in Figure 4.10b on the convergence analysis for different values of β,
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Figure 4.10: Two phases composite problem is treated by SKON with special mesh

the SKON resolution still converges although its rate of convergence is degraded for

high values of β. The deformed mesh and the strain component ǫxx along the line

AB for different values of β are presented in Figures 4.11, 4.12, 4.13 and 4.14. It can

be seen that although we have better results compared to those of regular meshes

in Figures 4.7e and 4.7f, the issue related to the high value of β still happens even

when the geometric conditions are satisfied.

(a) Deformed mesh
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Figure 4.11: β = 10 with special mesh.

By observing the deformed meshes for the values of the stiffness coefficient β ranging

from 10 to 106, we notice that the displacement field, as well as regular part of

strain field in the enhanced elements, is also affected (overestimated) leading to the

underestimation of the displacement and strain field in the standard elements in the

inclusion (see Figures 4.13 and 4.14 for the clearest observation). These results show

that the FEM resolution at the global level seems to be working well, whereas the

local enhancement at the elementary level needs to be improved.
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(a) Deformed mesh
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Figure 4.12: β = 100 with special mesh.
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Figure 4.13: β = 1000 with special mesh.
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Figure 4.14: β = 106 with special mesh.

Due to the fact that KOS formulation is almost not affected by the high value of

β while SOS and SKON formulations are affected (see Figure 4.7). We can conclude

that the problem lies at the evaluation of the traction continuity condition at the
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elementary level (see equations from Eq. (4.24) to Eq. (4.26)). This condition is

imposed at the elementary level without "looking" what happens in the neighboring

elements. In the traction test on the heterogeneous bars presented above, the inter-

faces are straight and open lines, leading to the fact that the continuity condition

in a single enhanced element and at the global level are exactly the same. In this

case, even with very high contrasts of rigidity of the phases, SKON still gives the

correct results.

The local equilibrium at the elementary level of SOS and SKON formulations is

evaluated with the linear approximation of the interface. The approximated interface

in these elements is considered as a straight line and the normal vector is constant

over each element. Moreover, there is no assembly procedure to connect these linear

approximated interfaces at the local level. Therefore, when the interface is a curve,

the local equilibrium "forget" the fact that the interface is a curve and treat it like

a straight line.

To solve this issue, the local equilibrium evaluation has to take into account

the global geometry of the interface (curvature, open or close interface). Although

the assembly procedure can not be performed at the local level, the interaction

between the enhanced elements can be proceeded by using the inter-element force

presented in [Idelsohn et al., 2017]. Another promising possibility is to perform the

computation of the local equilibrium with the curvilinear coordinates systems. For

example, in 2D context as in this work, for the circular base cylindrical inclusion,

the cylindrical coordinate system can be used, or in 3D context, if the inclusion

is a sphere, the spherical coordinate system can be used in the equations at the

elementary level so that the curvature of the interface is accounted for.

With the restrictions in terms of the time of this Ph.D. work, we limit ourselves to

the determination of the cause of this issue. Nevertheless, some promising solutions

have been suggested for future works. One of them is still underway and gives some

very first positive results though more detail develops need to be done for a complete

solution that works well for every case.

Although this issue has not been solved, at low contrast of rigidity of the phases,

E-FEM formulations still give pretty good results with a much smaller computational

cost compared to the global kinematic enrichment of XFEM. They are used to deal

with the weak discontinuity and heterogeneous material in studies of [Hautefeuille

et al., 2009,Benkemoun et al., 2010,Roubin et al., 2015].

In the following of this thesis, numerical tests using the E-FEM approach con-

sider a contrast coefficient β = 10. From the numerical evaluations with weak

discontinuity problems presented in the previous section, SKON shows that it’s the

best one among the three E-FEM formulations. Based on its very good performance,

we chose this formulation to deal with the case of nanocomposites.
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4.5 E-FEM with coherent interface model

The problem considered now is the one already presented in chapter 2 (see Eqs.

(2.54)) of a two phases material with a coherent interface. The contribution of the

interface will be added into the system (4.11). The generalized Young-Laplace equa-

tion (2.48) will replace the traction continuity condition to describe the equilibrium

of the interface.

Figure 4.15: Problem definition: two phases material with imperfect interface.

4.5.1 Surface strain enhancement

As presented in the previous section in Eqs. (4.18) and (4.21) for E-FEM formula-

tion, the real and virtual strain fields in the bulk are defined as:

in Ω(i) i = 1, 2





ǫ = ∇su + γ = Bu + Gra

δǫ = ∇sδu + δγ = Bδu + Gvδa
(4.33)

It has to be noticed that γ allows a discontinuity of the strain field across the

interface Γ. According to the Hadamard’s compatibility conditions (2.49) mentioned

in chapter 2, there is no strain jump in the tangential direction of the interface. The

strain enhancement in this direction is therefore unnecessary. The construction of

Gr and Gv presented in subsection 4.2.3 leads to γ(i)
mm = δγ(i)

mm = 0, in other words,

the projection of γ and δγ on the tangential direction (see Figure 4.16) of the

interface is equal to zero P · γ ·P = P · δγ ·P = 0.

Figure 4.16: Discontinuous element
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Since the surface strain is a tangential superficial tensor field, only the regular part

of the strain field in the bulk can be projected on the tangential direction of the

interface. In order to take into account the influence of the interface at the local

level, an enhanced part of surface strain γs 6= P · γ ·P is proposed:

ǫs = P · (∇su) ·P + γs =MBu + Grsa on Γ , (4.34)

Note that γs is defined on Γ, as a tangential superficial tensor field (γs = PγsP).

γs corresponds to the incompatible part of the surface strain on Γ. Following the

idea of the Enhanced Assumed strain method the virtual surface strain field is also

enhanced in the form:

δǫs = P(∇sδu)P + δγs =MBu + Gvsδa on Γ . (4.35)

It has to be pointed out that the enhanced surface strain γs and δγs share the same

additional degrees of freedom (a and δa) with γ and δγ. Hence, γs and δγs are not

independent to γ and δγ.

4.5.2 Variational formulation with coherent interface model

As we consider a coherent interface model, the surface elasticity energy has to enter

the total energy of the whole system Ω(1) ∪Ω(2) ∪ Γ. For sake of simplicity, we omit

the body force in the equations. We start from the Hu-Washizu functional for Ω(1)

, Ω(2), respectively:

Π(1) =
∫

Ω(1)
(∇su : σ(1) − ǫ : σ(1) +

1

2
ǫ : C(1) : ǫ)dΩ

−
∫

Γ
u · (σ(1) · n)dΓ−

∫

∂Ω
(1)
F

\Γ
u · FdS (4.36)

Π(2) =
∫

Ω(2)
(∇su : σ(2) − ǫ : σ(2) +

1

2
ǫ : C(2) : ǫ)dΩ

+
∫

Γ
u · (σ(2) · n)dΓ−

∫

∂Ω
(2)
F

\Γ
u · FdS (4.37)

Similarly, the interface contribution Π(s) can be built as:

Π(s) =
∫

Γ
(P · ∇su ·P : σs − ǫs : σs +

1

2
ǫs : Cs : ǫs)dΓ +

∫

Γ
u · JσK · ndΓ (4.38)

where JσK · n =
(
σ(1) − σ(2)

)
· n acts like a body force along the interface.

By combining Eq. (4.36), Eq. (4.37) and Eq. (4.38), the total functional written on
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Ω(1) ∪ Ω(2) ∪ Γ takes the form:

Πtot =
∫

Ω\Γ
(∇su : σ − ǫ : σ +

1

2
ǫ : C : ǫ)dΩ

+
∫

Γ
(P · ∇su ·P : σs − ǫs : σs +

1

2
ǫs : Cs : ǫs)dΓ−

∫

∂ΩF

u · FdS .
(4.39)

By using the same process processed in the case with perfect interface in section

4.2, the stationarity of Πtot ∀(δu, δσ, δσs, δγ) provides the following system of

equations:

∫

Ω\Γ
∇sδu : σ̂(ǫ) dΩ +

∫

Γ
(P · ∇sδu ·P) : σ̂s(ǫs) dΓ−

∫

∂ΩF

δu · F dS = 0 (4.40a)
∫

Ω\Γ
δσ : γdΩ = 0 (4.40b)

∫

Γ
δσs : γs dΓ = 0 (4.40c)

∫

Ω\Γ
δγ : (σ̂(ǫ)− σ) dΩ +

∫

Γ
δγs : (σ̂s(ǫs)− σs)dΓ = 0 (4.40d)

where σ̂s(ǫs) denotes the surface stress field obtained from the constitutive law of

the interface (elasticity in our case).

Note that Eq. (4.40d) is written on the whole system and not on the bulks and

interface independently because δγ and δγs have been chosen to be not independent

(see subsection 4.5.1). This choice aims to be able to latter introduce the interface

equilibrium (generalized Young-Laplace equation (2.48)).

By following the process presented in section 4.2 with the perfect interface, the

L2-orthogonality between the stress fields and the enhanced strain fields is enforced

for the bulk (see Eq. (4.8)) as well as for the interface leading to the additional

conditions: ∫

Γ
δσs : γsdΓ = 0 and

∫

Γ
δγs : σsdΓ = 0 , (4.41)

We finally end up with the following system ∀(δu, δγ)





∫

Ω\Γ
∇sδu : σ̂(ǫ) dΩ +

∫

Γ
(P · ∇sδu ·P) : σ̂s(ǫs) dΓ

−
∫

∂ΩF

δu · F dS = 0

∫

Ωe\Γe

δγ : σ̂(ǫ) dΩ +
∫

Γe

δγs : σ̂s(ǫs) dΓ = 0

(4.42a)

(4.42b)
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4.5.3 Enhanced surface strain interpolation

By injecting Eq. (4.33), Eq. (4.34) and Eq. (4.35) into the system (4.42), the

discretized problem reads as follows:

Nelem

A
e=1

[f
Ωe\Γe

int + fΓe

int − f eext] = 0 , (4.43)

he =
∫

Ω
(1)
e

(G(1)
v )T σ̂(1) dΩ +

∫

Ω
(2)
e

(G(2)
v )T σ̂(2) dΩ +

∫

Γe

GT
vsσ̂s dΓ = 0 ∀e cut by Γ ,

(4.44)

where A
Nelem

e=1 denotes the assembly process and with

f
Ωe\Γe

int =
∫

Ω
(1)
e

BTC(1)
(
Bu + G(1)

r a
)
dΩ +

∫

Ω
(2)
e

BTC(2)
(
Bu + G(2)

r a
)
dΩ ,

fΓe

int =
∫

Γe

BTMTC(s) (MBu + Grsa) dΓ ,

f eext =
∫

Ωe

NTbdΩ +
∫

∂ΩF

NTFdS ,

(4.45)

In the bulk, the compatibility condition between the enhanced strain and the

displacement field is ensured by using Gr and the traction continuity condition

is verified by using Gv. On the interface these conditions are not required, only

one interpolation, that will be later defined, for both virtual and real strain of the

interface is considered: Gs = Grs = Gvs.

Due to the form of the interpolation of the enhanced strain fields, similar to the

system (4.28) of the perfect interface case, Eq. (4.44) is solved independently on

each element crossed by the interface Γ. Taking into account the expression (4.23)

of Gv in Eq. (4.44), we obtain the following local equation:

he =

(
V (2)

V

∫

Ω
(1)
e

N T σ̂(1)dΩ− V (1)

V

∫

Ω
(2)
e

N T σ̂(2)dΩ +
∫

Γe

GT
s σ̂sdΓ

)
= 0 . (4.46)

With the fact that we consider here 3 nodes triangular elements, where the stress

fields are constant in Ω(1)
e and Ω(2)

e and also on Γ, Eq. (4.46) can be rewritten as:

V (2)V (1)

V
N T

Jσ̂K + AGT
s σ̂s = 0 , (4.47)

where A is the length (surface in 3D case) of the portion of Γ crossing the considered

element.

It remains at this stage to choose the function Gs used for the interpolation

of the enhanced surface strain. This choice is made in such a way that the local

equation (4.46) corresponds to the equilibrium equation of the coherent interface,

namely the generalized Young Laplace equation (2.48). We can notice that N T
Jσ̂K

is the Voigt’s notation of Jσ̂Kn. Hence, combining Eq. (2.48) and Eq. (4.47) leads
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to:
V (2)V (1)

V
[(σ̂s : K)n + Pdivs(σ̂s)] = AGT

s σ̂s . (4.48)

Note that Eq. (4.48) is solved at the element level and that for three nodes triangle

element, the surface stress is constant on each element. Therefore, the surface

divergence of the interface stress divsσ̂s vanishes. It should be pointed out here

that the non-uniform distribution of the interface stress (related to divsσ̂s) has been

taken into account at the global level via the global equilibrium equation (where the

integral is done for the whole length of the interface Γ). The local curvature tensor

K is a tangential superficial tensor that can be written in the 2D context as:

K =
1

R
P , (4.49)

where R is the local radius of curvature of the interface on the considered element.

Eq. (4.48) now becomes

V (2)V (1)

V A

1

R
n(σ̂s : P) = GT

s σ̂s . (4.50)

Since σ̂s and P are symmetric tensors, Eq. (4.50) can be written as:

V (2)V (1)

V A

1

R
nPT σ̂s = GT

s σ̂s . (4.51)

where P is the Voigt’s notation of P.

From Eq. (4.51), we finally obtain the expression of Gs in the form

Gs =
V (2)V (1)

V A

1

R
PnT . (4.52)

The computation of Gs requires the value of the radius of curvature R of the

interface. In the general case where the radius of curvature is not available or when

the interface shape changes with respect to time as in fluid mechanics, the value

of the radius of curvature can be numerically estimated through the nodal values

of signed distance to the interface (level set). The computational process and the

influence of the numerical curvature on results are presented in Appendix A.

By using the interpolations of Gv,Gr and Gs given in Eqs. (4.19), (4.23) and

(4.52), Eqs (4.43) and Eq. (4.44) can be rewritten in the matrix form as:





Nelem

A
e=1

(Ke
uu u + Ke

ua a) =

Nelem

A
e=1

f eext

Ke
au u + Ke

aa a = 0 ∀e cut by Γ

(4.53a)

(4.53b)
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where

Ke
uu =

∫

Ω
(1)
e

BTC(1)B dΩ +
∫

Ω
(2)
e

BTC(2)B dΩ +
∫

Γe

BTMTC(s)MB dΓ

Ke
ua =

∫

Ω
(1)
e

BTC(1)G(1)
r dΩ +

∫

Ω
(2)
e

BTC(2)G(2)
r dΩ +

∫

Γe

BTMTC(s)Gs dΓ

Ke
au =

∫

Ω
(1)
e

(G(1)
v )TC(1)B dΩ +

∫

Ω
(2)
e

(G(2)
v )TC(2)B dΩ +

∫

Γe

GT
s C(s)MB dΓ

Ke
aa =

∫

Ω
(1)
e

(G(1)
v )TC(1)G(1)

r dΩ +
∫

Ω
(2)
e

(G(2)
v )TC(2)G(2)

r dΩ +
∫

Γe

GT
s C(s)Gs dΓ

(4.54)

where C(1), C(2),C(s) correspond to the matrix form of the elastic tensor of the phase

(1), (2) and of the interface Γ, respectively, their expression being:

C(i) =




(λ(i) + 2µ(i)) λ(i) 0

λ(i) (λ(i) + 2µ(i)) 0

0 0 µ(i)


 i = 1, 2, s . (4.55)

The system (4.53) is solved by the same strategy used to solve the system (4.28).

The final global system is written as:

Nelem

A
e=1

K̃eu =

Nelem

A
e=1

f eext (4.56)

with

K̃e = Ke
uu −Ke

ua(K
e
aa)

−1Ke
au . (4.57)

■nt❡rsection between the interface and the mesh

Interface integration points

Bulk integration points

Figure 4.17: Element cut by the interface Γ, approximated interface and integration
points in E-FEM.

As the enrichment does not affect the degree of interpolation of the fields in

the element (contrary to XFEM enrichment), the numerical integration procedure

only needs one integration point for each subdomain in the considered element (see

Figure 4.17).
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4.6 Numerical examples using E-FEM with inter-

face effect

Based on the performance test presented in section 4.3, we consider here the SKON

formulation for different the next numerical examples incorporating a surface elas-

ticity: Eshelby problem, two phases composite and nanocomposite with random

microstructures.

4.6.1 Eshelby problem with coherent interface

The first example aims to validate the proposed numerical approach for the Es-

helby problem incorporating surface elasticity at the matrix/inclusion interface.

This problem has already been presented in subsection 3.4.1 (see Figure 3.6a). As

consider the linear plane strain hypothesis, the problem corresponds to a cylindrical

inclusion immersed in an infinite elastic domain. An elastic interface is introduced

between the infinite domain and the inclusion. As for the classical Eshelby problem,

a uniform dilational eigenstrain ǫ∗ is prescribed in the inclusion. We consider here

that ǫ∗ = ǫ∗xx = ǫ∗yy = 0.5, ǫ∗zz = 0, and the material parameters of the bulk are

E = 3GPa and µ = 0.3. The convergence analysis obtained from the proposed

approach is compared to those of the XFEM and Interface element approach which

have already presented in subsection 3.4.1.
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Figure 4.18: Convergence analysis for the Eshelby problem with and without surface
elasticity for the three methods: E-FEM, XFEM and Interface element.

Figure 4.18 presents the comparison in terms of convergence rate and efficiency

of the three numerical approaches for the case without (ks = 0 N/m) and with

surface elasticity (ks = 6.092 N/m corresponding to λs = 6.842 N/m, µs = −0.375

N/m [Miller and Shenoy, 2000]). It can be seen that the convergence of E-FEM
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is slightly affected by the presence of surface elasticity but the expected rate of

convergence r ≈ 1 is recovered in both cases. The accuracy of the three compared

strategies shows that the E-FEM solution is slightly less accurate than the "Interface

element" solution but better than XFEM solution for the case with surface elasticity.

In the previous chapter, we tested the performance of the XFEM and Interface

element approaches for various mechanical properties of the interface. To that end,

we introduced the contrast coefficient α =
κ̂s
κ̂m

. We showed in the previous chapter

that the performance of the XFEM is affected by the contrast parameter α. We

perform here the same test for the E-FEM approach and the results are reported

in Figure 4.19a. To facilitate comparison, the results of XFEM presented in Figure

3.7a are plotted again here in Figure 4.19b.
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Figure 4.19: Convergence analysis of E-FEM for the extended Eshelby problem with
different values of α, compared to XFEM results ( β = 1).

Compared to XFEM, we can note that the convergence of E-FEM is less affected

by the introduction of surface elasticity. The rate of convergence remains higher than

for XFEM (r = 0.80 compared to r = 0.43 for XFEM for α = 10). For the case

α < 0, to avoid the ill-condition problem caused by the negative-definite interface

stiffness matrices, the following meshes are chosen: 12x12 nodes, 22x22 nodes, 46x46

nodes, 66x66 nodes, and 82x82 nodes.

The local field investigation that have been done with the XFEM and Interface

element approaches in the previous chapter is now performed with the proposed

approach. The component ǫxx of the strain along the line AB is plotted in Figure

4.20. The 40x40 nodes meshes are used for this test (see Figures 4.5a). The results

of the XFEM approach are added in the figures for comparison. We notice that the

strain jump across the interface is better estimated by E-FEM than by XFEM for

high values of α. The accurate estimation of strain jump of E-FEM leads to better

convergence as reported in Figure 4.19a.
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Figure 4.20: ǫxx along the line A-B for different values of α (E-FEM vs XFEM).

4.6.2 Two phases nanocomposite

In this subsection, we consider the problem of the linear homogenization of a two-

phase material with coherent interfaces at the matrix/inclusion interface. The ho-

mogenization is performed assuming a periodic microstructure, the considered RVE

corresponding to a unit-cell is represented in Figure 4.21. The chosen material prop-

erties are as follows: νm = νi = 0.32, Em = 70 GPa, Ei = 7 GPa and λs = 6.842

N/m, µs = −0.375 N/m [Miller and Shenoy, 2000] (corresponding to ks = 6.092

N/m). The computation is carried out on a 40x40 nodes mesh for both approaches:

E-FEM and Interface element. The normalized effective bulk modulus obtained for

the cases with and without surface elasticity versus the radius of inclusion for a

fixed volume fraction f = 0.2 is plotted in Figure 4.21. We can observe a very

good agreement between the results obtained from both approaches but also with

the analytical results given in [Quang and He, 2009], in which, cylindrical inclusions

in a shell of the matrix with a coherent interface, are surrounded by the effective
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medium. It may be noticed that the size effect observed for the case accounting

for surface elasticity is more pronounced for small radius of the nano-inclusions. As

expected, no size effect is observed for the case without surface elasticity.
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Figure 4.21: Size effect in effective plane-strain bulk modulus for circular inclusion
(f = 0.2 , Em = 70 GPa, Ei = 0.1Em, νm = νi = 0.32).

As already mentioned in chapter 2, the limitation of the analytical solutions

remains in the fact that only the circular cylindrical or spherical shape of inclusions

can be considered. In order to show the ability of the numerical approach in dealing

with more complex geometries, the case of an ellipse with a = 2b (where a is the main

axis and b is the minor one) is treated (see Figure 4.22). The radius of curvature

RC at any point C(x, y) on the ellipse is calculated by:

RC =
a2

b

(
1− (a2 − b2)x2

a4

)3/2

. (4.58)

Interface element E-FEM  b in nanometers, f=0.2 
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Figure 4.22: Size effect in effective plane-strain bulk modulus for ellipse inclusion
(f = 0.2 , Em = 70 GPa, Ei = 0.1Em, νm = νi = 0.32).
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Since no analytical result for the case of the elliptical cylinder with surface elasticity

is available in the literature, we compare the results obtained from the E-FEM

proposed approach with the Interface element results, consider here as the reference

results. The normalized effective bulk modulus versus the minor axis b of the elliptic

inclusion is shown in Figure 4.22. The size effect is here again clearly reproduced by

the proposed approach and a good agreement with the Interface element approach

is observed.

In order to evaluate the ability of the proposed strategy in reproducing the size

effect for complex geometries, we consider non-convex "abitrary" shapes of inclusion.

To that end, we consider the radius function proposed in [Yvonnet et al., 2008]:

R(α) = Ro + Asin(Bα), α = [0, 2π] , (4.59)

where Ro is the reference radius, A,B are deterministic constants which define the

amplitude and the period of oscillations of the shape "around" the perfect circle.

With such a function, the associated area of inclusion can be derived as:

V =
4A2Bπ + 8ARo + 8BπR2

o − 8ARocos(2Bπ)

8B
+
A2sin(4Bπ)

8B
, (4.60)

We choose here A = 0.25Ro and B = {3, 5, 7}.

(a) A = 0.25Ro and
B = 3

(b) A = 0.25Ro and
B = 5

(c) A = 0.25Ro and
B = 7

Figure 4.23: Arbitrary shapes

The shapes corresponding to those choices are presented in Figure 4.23. Due to

the complexity of geometry, the generation of the conforming meshes needed for the

Interface element approach is costly and the analytical solutions, of course, are not

available for these cases.

We observe in Figure 4.24, a big influence of the inclusion shape on the effective

bulk modulus. For a fixed volume fraction, a decrease of the module according to

the increasing number of oscillations can be reported. This tendency has also been

shown with the XFEM/level set approach in [Yvonnet et al., 2008]. In addition, the

size effect for different shapes of inclusion is clearly presented.
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Figure 4.24: Size effect and shape dependence in normalized effective bulk modulus.
Em = 10Ei, νm = νi = 0.32, f = 0.2

4.6.3 Nanocomposites with random micro-structures

(a) E-FEM (b) Interface element

Figure 4.25: Several samples for 30 randomly distributed nano-inclusions.

To consider more realistic micro-structures, different RVEs consisting of randomly

distributed nano-inclusions are analyzed. We investigate here a domain with 30

monodisperse inclusions (see Figure 4.25). The radius of the inclusions is chosen

in a range from 1 nm to 50 nm while the volume fraction is fixed to f = 0.3.

For each size of inclusion, we generate a random microstructure and calculate the

homogenized bulk modulus until we reach the statistical convergence of the average

value of the effective modulus (see Figure 4.26a). The results obtained from the

proposed approach in comparison with those of the XFEM and Interface element

approaches are shown in Figure 4.26b. As mentioned in chapter 3 the comparison

only has a qualitative meaning since the mesh convergence has not been reached,

but expected size effect is well observed for the three approaches.
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Figure 4.26: Size effect for effective plane-strain bulk modulus with randomly dis-
tributed nano-inclusions (f = 0.3 , Em = 70 GPa, Ei = 0.1Em, νm = νi = 0.32;
λs = 6.842 N/m, µs = −0.375 N/m, corresponding to ks = 6.092 N/m).

X-FEM E-FEM Interface
element

Number of standard d.o.f 20000 20000 21528

Number of additional d.o.f 4560 4560 0

Total unknowns 24560 24560 21528

Number of integration points 9 2
on each enriched element (2 on Γ) (1 on Γ) ∅

Size of elemental
stiffness matrix 12×12 6×6 6×6

Final size of
global stiffness matrix 4.104 × 4.104 2.104 × 2.104 21528×21528

Computing time
for 1 realization (sec) 106.676 46.206 45.223

Table 4.1: Comparison of computational cost (XFEM vs E-FEM vs IE).

The computational costs of the three approaches are compared in Table 4.1.

Note that the calculation time presented in Table 4.1 has to be compared only

qualitatively and has a relative meaning since no code optimization process has been

done. We notice that XFEM and E-FEM have the same number of additional degrees

of freedom over the whole domain. However, due to the nodal enrichment strategy

of XFEM, the elemental and global stiffness matrix has double size compared to

standard FEM. Although the global matrix of XFEM is hollow with a lot of zeros, the

assembly process takes much more time than the two other approaches. Moreover,
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this enrichment makes the interpolations of the fields in the enriched element are

one order higher than for standard FEM. Therefore, XFEM strategy requires more

integration points in the bulk and on the interface of the enriched element. On

the contrary, the local enhancement of E-FEM allows condensing the additional

degrees of freedom at the element level leading to the final size of the global stiffness

matrix that is identical to that of standard FEM. The memory space needed and

the computational time of the E-FEM and Interface element approach are almost

equal. For the approaches performed on the regular mesh which does not require

any discretization effort, the results given by E-FEM and XFEM are very close but

the proposed approach is less costly than XFEM.

4.7 Conclusion

In this chapter, we have proposed a numerical approach based on the Embedded Fi-

nite Element Method for predicting the effective modulus of nanocomposites, taking

into account size effect.

Before adding the surface elasticity, the classical first Eshelby problem and the

classical two-phases material problem have been treated by the three formulations

of E-FEM. By applying the ideas of the Enhanced Assumed Strain method and

the method of Incompatible Modes into the Hu-Washizu three-field variational for-

mulation, the three formulations of E-FEM, namely SOS, KOS, SKON have been

presented and compared. The comparison in terms of performance and accuracy for

dealing with weak discontinuities, which is missing in the literature, showed that

SKON formulation gave the best results among the three formulations. We also

reported an issue relating to the evaluation of the local equilibrium at the elemen-

tary level. This issue makes E-FEM formulations only work well at low contrast of

rigidity of the different phases. Several promising solutions for this issue have been

suggested for future works. Based on its good performance, the SKON formulation

has been chosen to handle the case of nanocomposites with a coherent interface.

The coherent interface model with a surface elasticity has been added in the

framework of three-fields variational formulation, leading to the introduction of in-

terface terms in both global and local equilibrium equations. Instead of the traction

continuity condition, the generalized Young-Laplace equation is introduced at the el-

ement level by choosing an appropriate interpolation of the virtual enhanced surface

strain. Due to the use of the "operator split method" and the "static condensation"

at the element level, the global size of the problem does not depend on the number

of inclusions and interfaces. In terms of numerical resources, the memory space

needed only depends on the mesh size.

The validation of the E-FEM developed approach has been done by comparing

the results obtained to the analytical solutions and to the results given by the In-
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terface element approach. We noticed that the convergence and the accuracy of the

strain jump obtained from the proposed approach are less affected by the introduc-

tion of surface elasticity than those of XFEM. We then performed the numerical

homogenization with periodic and random microstructure in which the size depen-

dence of the nanocomposite has been reproduced with high accuracy. Moreover, the

proposed approach allows for handling complex shapes of inclusion.

The capacity of working with the nonlinear behavior of the E-FEM based ap-

proach will be shown in the next chapter.



Chapter 5

Modeling nonlinear behavior with

surface elasticity by numerical

approaches

In this chapter, the numerical models presented in the previ-

ous chapters are used in the context of nonlinear behaviors.

A von Mises type elastoplastic law with linear isotropic hard-

ening is considered for the bulk while the interface is consid-

ered as linear elastic. Results on the homogeneous behavior

obtained from the three different numerical approaches (In-

terface element, XFEM and E-FEM) are then presented and

compared.
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5.1 Introduction

Despite the increase in the use of nanocomposites in the industry, researches on

the nonlinear behaviors of this kind of material are still limited. As well as many

other composite materials, nano-reinforced materials can exhibit nonlinear behavior,

particularly because the matrix may exhibit nonlinear behavior. On one hand,

analytical homogenization approaches integrating nonlinear aspects are complex to

implement [Brach et al., 2017a, Brach et al., 2017b], on the other hand, numerical

methods are robust tools in handling nonlinear laws.

We present in this chapter the first step into the nonlinear domain by using

the three numerical approaches presented in the previous chapters. In a very first

example here, a von Mises type elastoplastic law with linear isotropic hardening is

considered for the bulk while the interface mechanical behavior is considered linear

elastic. In that nonlinear context, a standard Newton-Raphson procedure is used

to solve the global nonlinear set of equations. While at the local level, a return

mapping algorithm [Simo and Hughes, 2006] is used to determine the evolution of

the internal and state variables associated with the elastoplasticity model. In the

following, due to the use of the von Mises criterion, the deviatoric part of the stress

and strain tensors are used for the computation. Therefore, although as consider

the 2D plane strain hypothesis, the strain and stress tensor are now expressed in

the vector forms as:

ǫ =
[
ǫ11 ǫ22 ǫ33 2ǫ12

]T
,

σ =
[
σ11 σ22 σ33 σ12

]T
,

(5.1)

In section 5.2 we will recall the main ingredients of the plasticity model based

on a von Mises criterion as well as its numerical integration. For the seek of com-

parison, the introduction of the surface elasticity is performed considering the three

different approaches presented in the previous chapters (Interface element, XFEM,

and E-FEM). In section 5.3, linearized forms corresponding to the three different

approaches considered in this work will be given. Then, the results obtained from

the three considered approaches for a simple traction test on a unit cell composed

of an elastoplastic matrix and a circular nano-inclusion will be compared in section

5.4. Finally, the conclusions of these nonlinear developments are reported in section

5.5.

5.2 Plasticity model

In the following, as an opportunity to define our notations, we recall the main

ingredients of the standard elastoplastic model that we used in this work.



5.2. Plasticity model 105

5.2.1 Plasticity model with von Mises plasticity criterion

To describe an inelastic behavior and the corresponding irreversible processes, in-

ternal variables, capable of representing the different phenomena that characterize

a particular inelastic behavior, have to be introduced to define the local state of

the material. The choice of internal variables can be made according to various

criteria. We limit ourselves in this work to elastoplasticity with linear isotropic

hardening behavior. Therefore, the elastoplastic strain ǫp and hardening variable ξ

are introduced in the set of the internal variables (see Table 5.1).

State variables Associated variables
ǫ σ

ǫp σ

ξ q

Table 5.1: State and associated variables.

With the infinitesimal strain hypothesis, we consider an additive decomposition of

the strain. In which, the total strain is composed by the elastic part ǫe and plastic

part ǫp

ǫ = ǫe + ǫp . (5.2)

The free energy potential can be written in terms of the state variables (ǫ, ǫp, ξ) in

the case of linear isotropic hardening and isothermal conditions:

Ψ(ǫ, ǫp, ξ) = Ψe(ǫ, ǫp) + Ψp(ξ) =
1

2
(ǫ− ǫp) : C : (ǫ− ǫp) +

1

2
ξKξ , (5.3)

where K is the hardening modulus and ξ is the hardening variable (or accumulated

plastic strain).

We consider in this work, as a first step, an associated model. Therefore, the last

ingredient needed to elaborate the plastic constitutive model is the yield function,

also corresponding in this context to the dissipation function. We chose here the

classical von Mises criterion given as:

f(σ, q) = ‖devσ‖ −
√

2

3
(σy − q) 6 0 , (5.4)

where

‖devσ‖ =
√

devσ : devσ with devσ = σ − 1

3
(tr(σ))I , (5.5)

σy denotes the elastic limit stress and q is the stress-like variable associated to the

hardening variable ξ (see Table 5.1).
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The stress and stress-like variable can be derived through the state equations as

σ =
∂Ψ

∂ǫ
= − ∂Ψ

∂ǫp
= C : (ǫ− ǫp) , (5.6a)

q = −∂Ψ

∂ξ
= −∂Ψp

∂ξ
= −Kξ . (5.6b)

The plastic dissipation is then obtained thanks to the second principle of thermo-

dynamics [Maugin, 1992] in the form:

0 6 D = σ : ǫ̇− ∂Ψ

∂t
(5.7a)

= σ : ǫ̇− ∂Ψ

∂ǫ
: ǫ̇− ∂Ψ

∂ǫp
: ǫ̇p − ∂Ψ

∂ξ
ξ̇ (5.7b)

=

(
σ − ∂Ψ

∂ǫ

)
: ǫ̇− ∂Ψ

∂ǫp
: ǫ̇p − ∂Ψ

∂ξ
ξ̇ (5.7c)

Substituting Eqs. (5.6) into Eq. (5.7c) gives the evaluation of the plastic dissipation

in terms of the evolution of internal variables

0 6 D = σ : ǫ̇p + qξ̇ . (5.8)

As we consider an associated model, the evolution of the internal variables is ob-

tained by invoking the principle of maximum dissipation [Lubliner, 1990]. Among

all the admissible stresses (f(σ, q) 6 0), the system "chooses" the one maximiz-

ing the dissipation. This maximization process under constraints is recast into a

stationarity problem of Lagrangian:

L(σ, q, γ) = −D + γf(σ, q) , (5.9)

where γ is the Lagrange multiplier.

Thereby the evolution equations are obtained through the Kuhn-Tucker optimality

conditions:

∂L
∂σ

= 0 ⇒ ǫ̇p = γ
∂f

∂σ
, (5.10a)

∂L
∂q

= 0 ⇒ ξ̇ = γ
∂f

∂q
, (5.10b)

along with the loading/unloading conditions

γf(σ, q) = 0 , γ > 0 , f(σ, q) 6 0 . (5.11)



5.2. Plasticity model 107

Moreover, for a plastic loading, the consistency condition gives:

ḟ(σ, q) = 0 ⇒ ∂f

∂σ
: σ̇ +

∂f

∂q
q̇ = 0 . (5.12)

Accounting for the choose of the von Mises criterion for the yield function f (see

Eq. (5.4)), we obtain

ǫ̇p = γ
devσ

‖devσ‖ = γζ , (5.13a)

ξ̇ =

√
2

3
γ , (5.13b)

where we denote ζ =
devσ

‖devσ‖ .

In Eq. (5.13), the multiplier γ describes the magnitude of plastic flow and ζ defines

the flow direction. Combining Eqs (5.6), (5.13) and (5.12), the expression of the

multiplier γ can be obtained:

γζ : C : (ǫ̇− γζ)−
√

2

3
γK

√
2

3
γ = 0 ⇒ γ =

ζ : C : ǫ̇

ζ : C : ζ + 2
3
K

. (5.14)

Note that ζ =
devσ

‖devσ‖ is a deviatoric tensor, hence tr(ζ) = 0 which leads to:

ζ : C = λ(tr(ζ))I + 2µζ = 2µζ , (5.15a)

ζ : C : ζ = 2µ(ζ : ζ) = 2µ

(
devσ

‖devσ‖ :
devσ

‖devσ‖

)
= 2µ . (5.15b)

Thereby, the final expression of the Lagrange multiplier is:

γ =
2µζ : ǫ̇

2µ+ 2
3
K

=
1

1 + K
3µ

ζ : ǫ̇ . (5.16)

The combination of Eqs. (5.13) and (5.16) provides the relation between the stress

rate and the strain rate:

ǫ̇p = γζ =
(ζ : ǫ̇)ζ

1 + K
3µ

, (5.17a)

σ̇ = C : (ǫ̇− ǫ̇p) = C : ǫ̇− 2µ

1 + K
3µ

ζ(ζ : ǫ̇) =


C− 2µ

1 + K
3µ

ζ ⊗ ζ


 : ǫ̇ . (5.17b)

So the constitutive relation can then be written as:

σ̇ = C
ep : ǫ̇ , (5.18)
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with

C
ep =





C if γ = 0(
C− 2µ

1+ K
3µ

ζ ⊗ ζ

)
if γ > 0

(5.19)

In the next section, we will see how this plasticity model can be numerically imple-

mented.

5.2.2 Numerical integration

The solution of the nonlinear problem induced by the use of a nonlinear irreversible

behavior is provided by an incremental strategy combined with an operator split

technique. Therefore, the problem to be solved is written as:

Given : ǫn = ǫ(tn), ǫpn = ǫp(tn), ξn = ξ(tn)

for all integration points of Ωh

Find : ǫn+1 = ǫ(tn + ∆tn) = ǫ(tn+1), ǫ
p
n+1, ξn+1

for all integration points

such that





γn+1 > 0; fn+1 6 0; γn+1fn+1 = 0

for all integration points
Nelem

A
e=1

[
f e,intn+1 − f extn+1

]
= 0

(5.20)

where f e,intn+1 and f extn+1 denote the internal and external forces at time step tn+1,

respectively.

The use of the operator split technique allows separating the determination of

the internal variables at the local level (integration points) to the determination of

the nodal unknowns at the global level.

It has to be noticed that the stresses-involved in the evaluation of f e,intn+1 are

modified either through the modifications of internal variables at the local level or

through modifications of the nodal displacements (inducing modifications of total

strain). The resolution algorithm is summarized in Figure 5.1.

In order to better understand the resolution process, let’s start at the local

level, where we compute the internal variables producing the admissible stresses in

agreement with the given (best) iterative value of the total strain ǫ
(i)
n+1. This can be

written as follows:

• Computation of plastic flow at the local level

Given : ǫ
(i)
n+1, ǫpn, ξn

Find : ǫ
p
n+1, ξn+1

such that γn+1 > 0; fn+1 6 0; γn+1fn+1 = 0

(5.21)
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• Global level of FE code time step n+ 1, iteration i

Nelem

A
e=1

{
K
e (i)
n+1 ∆u

(i)
n+1 = r

e,(i)
n+1

}

• Element level

K
e,(i)
n+1, r

e,(i)
n+1 = f

e,int,(i)
n+1 − f e,extn+1

• Gauss points level

(Iterative procedure if nonlinear hardening)

Given : ǫ
(i)
n+1, ǫpn, ξn

Compute trial variables and check if f trialn+1 > 0

Compute γn+1 → σ
(i)
n+1, and C

ep(i)
n+1

Update internal variables ǫ
p
n+1, ξn+1

σ
(i)
n+1

C
ep(i)
n+1

u
(i)
n+1

r
e, (i)
n+1

K
e (i)
n+1

Figure 5.1: Resolution algorithm for standard plasticity model

To facilitate reading the document, as we are at the local level in a global iteration

i, the superscript (i) is omitted. As a classical return mapping algorithm [Simo and

Hughes, 2006] to compute the evolution of the internal variables at the local level

is considered, the first step is to assume no evolution of internal variables ǫp, ξ and

their associated variables σ, q :

ǫ
p,trial
n+1 = ǫ

p
n+1 and ξtrialn+1 = ξn (5.22a)

σtrial
n+1 = C : (ǫn+1 − ǫpn) and qtrialn+1 = −Kξn (5.22b)

f trialn+1 = ‖devσtrial
n+1 ‖ −

√
2

3

(
σy − qtrialn+1

)
. (5.22c)

If f trialn+1 < 0, the trial state is admissible, the internal variables do not evolve:

ǫ
p
n+1 = ǫpn ; ξn+1 = ξn . (5.23)

If f trialn+1 > 0, the trial elastic state is not admissible and internal variables have to

be updated. In that case, we have to find the positive value of the plastic multiplier

γn+1 > 0, which guarantees plastic admissibility of stress with fn+1(σn+1, qn+1) =

fn+1(γn+1) = 0 (see Figure 5.2). As this plastic multiplier is positive (γn+1 > 0) the
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plastic strain and hardening variable have to be updated:

ǫ
p
n+1 = ǫpn + γn+1ζn+1 with ζn+1 =

devσn+1

‖devσn+1‖
(5.24)

ξn+1 = ξn +

√
2

3
γn+1 (5.25)

The final value of the stress tensor is computed as:

σn+1 = C : (ǫn+1 − ǫ
p
n+1)

= C : (ǫn+1 − ǫpn)− γn+1C : ζn+1

= σtrial
n+1 − γn+12µζn+1 . (5.26)

The deviatoric part of the final stress can also be written as the appropriate modi-

fication of the trial stress:

devσn+1 = devσtrial
n+1 − γn+12µζn+1 . (5.27)

From Eq. (5.27), we can have some important results related to plastic flow:

devσtrial
n+1 = devσn+1 + γn+12µ

devσn+1

‖devσn+1‖
(5.28)

= devσn+1

(
1 +

γn+12µ

‖devσn+1‖

)

︸ ︷︷ ︸
scalar

⇒ (5.29)





ζtrialn+1 =
devσtrial

n+1

‖devσtrial
n+1 ‖

=
devσn+1

‖devσn+1‖
= ζn+1

‖devσtrial
n+1 ‖ = ‖devσn+1‖+ γn+12µ

(5.30)

The first equation of Eqs. (5.30) expresses that the normal to the yield surface is

kept the same for the trial and the final state. By combining Eq. (5.22c), Eq. (5.25)

and the second equation of Eqs. (5.30), we have the expression of the yield function

in terms of its trial value:

0 = fn+1 = ‖devσn+1‖ −
√

2

3
(σy +Kξn+1)

= ‖devσtrial
n+1 ‖ − γn+12µ−

√
2

3


σy +K


ξn +

√
2

3
γn+1






= ‖devσtrial
n+1 ‖ −

√
2

3
(σy +Kξn)− γn+1

(
2µ+

2

3
K
)

= f trialn+1 − γn+1

(
2µ+

2

3
K
)
. (5.31)

We then obtain the value of the plastic multiplier ensuring plastic admissibility
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(fn+1 = 0):

γn+1 =
f trialn+1

2µ+ 2
3
K

. (5.32)

With the expression of γn+1 above, the final stress can be computed from the trial

values in Eq. (5.26).

The corresponding graphic illustration of the return mapping algorithm computation

is given in Figure 5.2.

Figure 5.2: Computation of final stress from the elastic trial state by radial return
mapping algorithm, where total deformation is kept fixed [Ibrahimbegovic, 2009].

For an elastic step, γn+1 = 0, therefore σn+1 = σtrial
n+1 and the consistent elastoplastic

tangent modulus remains the same as the elastic tensor

C
ep
n+1 =

∂σn+1

∂ǫn+1
=
∂σtrial

n+1

∂ǫn+1
=
∂ (C : (ǫn+1 + ǫpn))

∂ǫn+1
= C . (5.33)

For a plastic step, γn+1 > 0, therefore σn+1 is computed from Eq. (5.26) and the con-

sistent elastoplastic tangent modulus is computed as the corresponding modification

of the elasticity tensor

C
ep
n+1 =

∂σn+1

∂ǫn+1

=
∂σtrial

n+1

∂ǫn+1
− ∂(γn+12µζn+1)

∂ǫn+1

= C− 2µζtrialn+1 ⊗
∂γn+1

∂ǫn+1
− 2µγn+1

∂ζtrialn+1

∂ǫn+1

= C− 2µ

1 + K
3µ

ζtrialn+1 ⊗ ζtrialn+1 − γn+1

4µ2
(
I− 1

3
I⊗ I− ζtrialn+1 ⊗ ζtrialn+1

)

‖devσtrial
n+1 ‖

. (5.34)

We notice that the elastoplastic tangent modulus in Eq. (5.34) for the discrete

problem, which is consistent with respect to the implicit Euler scheme computation
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of stress, is not the same as the one in Eq. (5.19) defined for the continuum problem.

However, for a large time, it is very important to employ the consistent (rather

than continuum) elastoplastic tangent modulus in order to ensure the quadratic

convergence rate of Newton’s method (at the global level).

The internal variables ǫ
p
n+1 and ξn+1 are updated by using Eq. (5.24) and Eq.

(5.25) with γn+1 from Eq. (5.32) and ζn+1 from Eq. (5.30). These information

are needed to compute σn+1 and Cep
n+1 for each integration points of the considered

element. These two terms are then used to compute the residual and the stiffness

matrix of the considered element before assembly for the computation at the global

level (see Figure 5.1).

• Solving equilibrium equations at the global level

After computing the internal variables for each integration point which ensures

the plastic admissibility of stress for a given iterative value of total deformation

ǫ
(i)
n+1, the global equilibrium equations can be solved:

Given : ǫ
p,(i)
n+1, ξ

(i)
n+1, with

σn+1 = C : (ǫ
(i)
n+1 − ǫ

p,(i)
n+1) and qn+1 = −Kξ(i)

n+1

plastically admissible for all integration points

Test : r(ǫ
(i)
n+1, ǫ

p
n+1, ξn+1) =

Nelem

A
e=1

[
f e,intn+1 − f extn+1

]
?
= 0

IF : ‖r(i)
n+1‖ 6 tol⇒ next time step n← n+ 1

ELSE : next iteration i← i+ 1

(5.35)

At this global level, the computation is performed with the Newton-Raphson itera-

tive method, the linearization form of the equilibrium equations is given as

0 = Lin



Nelem

A
e=1

(
f e,int(un+1)− f extn+1

)



=

Nelem

A
e=1

(
f e,int(un+1)− f extn+1

)
+

Nelem

A
e=1

∂f int,e(un+1)

∂u
∆u

(i)
n+1

=

Nelem

A
e=1

r
e,(i)
n+1 +

Nelem

A
e=1

K
e,(i)
n+1∆u

(i)
n+1 (5.36)

where K
e,(i)
n+1 is the tangent stiffness matrix of element e at iteration i and time

step n + 1. ∆u
(i)
n+1 computed by Eq. (5.36) is the incremental displacement of the

iteration i. The displacement and strain field are then updated to the iteration i+1

as:

u
(i+1)
n+1 = u

(i)
n+1 + ∆u

(i)
n+1 , (5.37)

ǫ
(i+1)
n+1 = Bu

e,(i+1)
n+1 . (5.38)
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In Eq. (5.36),the expression of K
e,(i)
n+1, f e,intn+1 are given by

K
e,(i)
n+1 =

∫

Ωe

BTC
ep,(i)
n+1 BdΩ , (5.39a)

f e,intn+1 =
∫

Ωe

BTσn+1(ǫ
(i)
n+1, ǫ

p,(i)
n+1, γ

(i)
n+1)dΩ (5.39b)

Note that all the expressions presented in this section are only for the bulk in which

the nonlinear behavior is applied. The contribution of the linear elastic interface to

the global system depends on the numerical approach and will be discussed in the

next section.

5.3 Finite element implementation

5.3.1 Interface element approach

Since we consider plane strain hypothesis, the strain–displacement matrix B and

the elastic tensor C for the bulk element are given as

B = [BI ,BII , ..,Bn] with BI =




∂NI

∂x1
0

0 ∂NI

∂x2

0 0
∂NI

∂x2

∂NI

∂x1



, (5.40)

C =




λ+ 2µ λ λ 0

λ λ+ 2µ λ 0

λ λ λ+ 2µ 0

0 0 0 µ



. (5.41)

The strain–displacement matrix B̄ and the surface elastic tensor Cs for the interface

element are the same as in the case of linear behavior of nanocomposites Eq. (3.21)

already discussed in subsection 3.3.1. Therefore, the problem to be solved with

interface terms can be written in an incremental form as:

Nelem

A
e=1

(
f
int,Ωe,(i)
n+1 + f

int,Γe,(i)
n+1 − f extn+1

)
+

Nelem

A
e=1

(
K

Ωe,(i)
n+1 + K

Γe,(i)
n+1

)
∆u

(i)
n+1 = 0 (5.42)

where, for a discretization with interface elements, we have:

f
int,Γe,(i)
n+1 =

∫

Γe

TT B̄Tσ
(i)
s,n+1dΓ , (5.43a)

σ
(i)
s,n+1 = Cs : ǫ

(i)
s,n+1 and ǫ

(i)
s,n+1 = B̄Tu

(i)
n+1 , (5.43b)

K
Γe,(i)
n+1 =

∫

Γe

TT B̄TCsB̄TdΓ . (5.43c)
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For each iteration of the iterative procedure, we need, at each integration point,

to update all the internal variables (for the considered model, we count 5 internal

variables: the plastic strain tensor components and the cumulated plastic strain ξ).

5.3.2 XFEM approach

With the global enrichment strategy of XFEM, the displacement vector (d) contains

both standard d.o.f (u) and additional d.o.f (a) (see Eq. (3.29)). After linearization,

the set of equations to be solved becomes:

Nelem

A
e=1

r
e,(i)
n+1 +

Nelem

A
e=1

K
e,(i)
n+1∆d

(i)
n+1 = 0 . (5.44)

The displacement and strain field are then updated to the iteration i+ 1 as:

u
(i+1)
n+1 = d

(i)
n+1 + ∆d

(i)
n+1 , (5.45)

ǫ
(i+1)
n+1 = Bd

e,(i+1)
n+1 , (5.46)

where matrix B is defined as B =
[
BI ...BnB̂I ...B̂m

]
with BI as defined in Eq. (5.40)

and with B̂I defined as follow:

B̂I =




∂(NIψ)
∂x1

0

0 ∂(NIψ)
∂x2

0 0
∂(NIψ)
∂x2

∂(NIψ)
∂x1



, (5.47)

where ψ is the enrichment function defined by Eq. (3.26).

For the XFEM approach, the interface is implicitly modeled via the level-set function

and the interface integration is performed through the approximated interface of

the enriched element. The contribution of the interface into the tangent stiffness

matrix and internal force vector of the enriched elements being now considered, the

expressions (5.39) become (for enriched elements):

K
e,(i)
n+1 =

∫

Ωe\Γe

BTC
ep,(i)
n+1 BdΩ +

∫

Γe

BTMTC(s)MBdΓ , (5.48a)

f e,intn+1 =
∫

Ωe\Γe

BTσn+1(ǫ
(i)
n+1, ǫ

p
n+1, γn+1)dΩ +

∫

Γe

BTMTσs,n+1(ǫ
(i)
s,n+1)dΓ (5.48b)

with ǫ
(i)
s,n+1 =MBd

e,(i)
n+1 (5.48c)

Since we used a total of 9 Gauss points on an enriched element (see Figure 3.5),

the iterative procedure for enriched elements requires to compute and update 45

variables per enriched element. In that sense, for complex nonlinear irreversible

behaviors, XFEM requires a huge amount of local updatings, each of them resulting
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from the resolution of local nonlinear equations.

5.3.3 E-FEM approach

For the E-FEM approach, on the enhanced elements, besides the internal variables

computed at the Gauss point level, we need to determine the additional d.o.f (a)

at the element level. The equilibrium equation at the element level (Eq. (4.44))

needs to be verified on the enhanced element before updating the information to

the global level. In addition, as in the case of linear elasticity, the interface terms

appear at both the elemental level and global level. The problem to be solved after

computing the plastic flow, on these elements, is modified into

Given : ǫ
p
n+1, ξn+1, with

σn+1 = C : (ǫ
(i)
n+1 − ǫ

p
n+1) and qn+1 = −Kξn+1

plastically admissible

Test :
element level

h
(i),(k)
e,n+1 =

∫

Ωe\Γe

Gvσ
(i),(k)
n+1 dΩ +

∫

Γe

Gsσ
(i),(k)
s,n+1dΓ

?
= 0

IF : ‖h(i),(k)
e,n+1‖ 6 tol⇒ break to global level

ELSE : next iteration k ← k + 1

Test :
global level

r(ǫ
(i)
n+1, ǫ

p
n+1, ξn+1) =

Nelem

A
e=1

[
f e,intn+1 − f extn+1

]
?
= 0

IF : ‖r(i)
n+1‖ 6 tol⇒ next time step n← n+ 1

ELSE : next iteration i← i+ 1

(5.49)

The linearization form of the local equilibrium equation is given as:

0 = Lin
[
he
(
u

(i)
n+1, a

(i),(k)
n+1

)]

= −he
(
u

(i)
n+1, a

(i),(k)
n+1

)
+
∂he

(
u

(i)
n+1, a

(i),(k)
n+1

)

∂a
∆a

(i),(k)
n+1

= −he
(
u

(i)
n+1, a

(i),(k)
n+1

)
+
(
[Ke

aa]
(i),(k)
n+1

)
∆a

(i),(k)
n+1 (5.50)

where Ke
aa is now computed by changing C to Cep in Eq. (4.54).

The displacement and strain field are then updated to the local iteration k + 1 as

a
(i),(k+1)
n+1 = a

(i),(k)
n+1 + ∆a

(i),(k)
n+1 (5.51)

ǫ
(i)(k+1)
n+1 = Bu

(i)
n+1 + Gra

(i),(k+1)
n+1 (5.52)

After we found the value of a that verifies the local equilibrium, the static conden-

sation given in Eq. (4.57) is executed and the classical form of FEM is retrieved.

Note that all stiffness matrices Ke
uu,K

e
ua,K

e
au in Eq. (4.54) are now also computed
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with the coherent tangent stiffness Cep. After performing the linearization for the

global equilibrium equation, we end up with the form

Nelem

A
e=1

(
f e,intn+1 − f extn+1

)
+

Nelem

A
e=1

K̃e,(i)
n+1∆u

(i)
n+1 = 0 (5.53)

where K̃e,(i)
n+1 is computed by Eq. (4.57) and

f e,intn+1 =
∫

Ωe\Γe

BTσn+1(ǫ
(i)
n+1, ǫ

p
n+1, γn+1)dΩ +

∫

Γe

BTMTσs,n+1(ǫ
(i)
s,n+1)dΓ (5.54)

with ǫ
(i)
s,n+1 =MBu

e,(i)
n+1 + Gsa

e,(i)
n+1 . (5.55)

The resolution algorithm for the case of E-FEM approach is summed up in Figure

5.3.

• Global level of FE code time step n+ 1, iteration i

Nelem

A
e=1

{
K̃
e (i)
n+1 ∆u

(i)
n+1 = r

e,(i)
n+1

}

• Element level iteration k

K̃
e,(i)
n+1, r

e,(i)
n+1 = f

e,int,(i)
n+1 − f e,extn+1 .

−h
(i),(k)
e,n+1 +

(
[Ke

aa]
(i),(k)
n+1

)
∆a

(i),(k)
n+1 = 0

• Gauss points level

Compute trial variables

and check if f trialn+1 > 0

Compute γn+1 → σ
(i),(k)
n+1 and C

ep(i),(k)
n+1

Update internal variables ǫ
p
n+1, ξn+1

a
(i),(k)
n+1

σ
(i),(k)
n+1

C
ep(i),(k)
n+1

u
(i)
n+1

r
e, (i)
n+1

K
e (i)
n+1

Figure 5.3: Resolution algorithm with E-FEM approach

The number of internal variables to be updated on each enhanced element totally

depends on the number of Gauss points we use on these elements. In our work, we

used 2 integration points per enhanced element (see Figure 4.17) resulting in 10

internal variables in addition to the 2 additional parameters a related to the strain

jump.

In the next section, the numerical results obtained from the three considered

approaches for nonlinear behavior are presented and compared.
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5.4 Nonlinear results

In chapter 3 and chapter 4, by using the considered numerical approaches, we per-

formed a homogenization process to determine the macroscopic mechanical behavior

of several materials made of nanoinclusions with an elastic behavior for the bulk

and the interface. In this section, the von Mises type elastoplastic law with lin-

ear isotropic hardening presented above is considered for the bulk. The interface

remains linear elastic. We study the homogeneous behavior of a nanocomposite

material in terms of the evolution of the mean deviatoric stress with respect to the

mean deviatoric strain. Such analysis aims at obtaining the nonlinear homogenized

behavior of the composite including interface effect. A simple traction test (pre-

scribed macroscopic strain ǫM11 = 0.3, ǫM22 = ǫM33 = ǫM12 = 0) is performed on the RVE

presented in Figure 3.6b. The radius of inclusion and the volume fraction are set to

R = 1nm and f = 0.2. The material parameters are chosen as:

• Bulk material : Young modulus Em = 70 GPa, Ei = 0.1Em, Poisson ratio

νm = νi = 0.32, elastic limit stress σy = 7 GPa, hardening modulus K =

20 GPa.

• Elastic coherent interface: (given in Miller and Shenoy [Miller and Shenoy,

2000])

- set A: λs = 6.842 N/m, µs = −0.375 N/m ⇒ ks = 6.092 N/m.

- set B: λs = 3.48912 N/m, µs = −6.2178 N/m ⇒ ks = −8.9465 N/m.

- set C: λs = 0 N/m, µs = 0 N/m ⇒ ks = 0 N/m (no interface elasticity).

5.4.1 Interface element approach

We first present the results obtained from the Interface element approach. We plot

in Figure 5.4 the component xx of the deviatoric stress on the deformed mesh for

different set of parameters for the interface. We notice that the deformation of the

inclusion is the biggest for the case of set B and the smallest for the case of set A.

This is a reasonable result since set A with ks > 0 increases the global stiffness of

the resulting composite and vice versa in the case of interface set B when ks < 0.

In the same manner, the value of hardening variable (accumulated plastic strain)

is presented in Figure 5.5. Due to the stress concentration, the bulk elements in the

matrix that are near the interface turn soonly into the plastic phase resulting in

higher accumulated plastic strain ξ on these elements. It clearly shows that the

interface influences the value of ξ of these elements. As the stress concentration is

stronger with interface set B, the values of ξ are higher and vice versa in the case

with the interface set A.
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(d) Interface set C

Figure 5.4: Deviatoric stress (devσ)11 on deformed mesh for different interface
parameters under a simple traction test.

The difference caused by the interface on the local stress and strain fields results

in different overall elastoplastic behavior. To evaluate the influence of the interface

on the homogenized behavior, the mean value of stress and strain are considered.

The homogenized behaviors in terms of the deviatoric part of the stress with

respect to the deviatoric part of the strain for different interface sets are presented

in Figure 5.6a. We can notice the influence of the interface on the homogenized

behavior of the composite material. While the interface set A increases the global

rigidity of the composite, the interface set B decreases the rigidity.

To highlight the size effect, we vary the radius of inclusion while keeping the

volume fraction unchanged f = 0.2. The size dependence of the homogenized be-

havior is reported in Figure 5.6b. We can observe that the homogenized behavior of

the composite is influenced by the size of the inclusion both in the elastic part (as

already shown previously in chapter 3 and chapter 4) and in the plastic part of the

behavior leading to different apparent elastic limit of the composite.
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Figure 5.5: Hardening variable ξ for different interface parameters under a simple
traction test.
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Figure 5.6: Homogenized elastoplastic effective behavior under a simple traction test.
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5.4.2 XFEM and E-FEM
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(a) XFEM at load step ǫM11 = 0.1
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(b) E-FEM at load step ǫM11 = 0.1
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(c) XFEM at load step ǫM11 = 0.13
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(d) E-FEM at load step ǫM11 = 0.13
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(e) XFEM at load step ǫM11 = 0.2
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(f) E-FEM at load step ǫM11 = 0.2

Figure 5.7: Integration points turned into plastic phase for different time steps with
XFEM and E-FEM for interface set A.
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The same simple tensile test has been also carried out with the XFEM and E-FEM

approaches. On the enriched elements, due to the different stiffness and the stress

concentration, the integration points that lie in the matrix have much higher stress

than those in the inclusion. The Gauss points in the matrix, therefore, turn into the

plastic phase while those in the inclusion remain elastic. For the E-FEM approach,

we have only one integration point in the matrix part of the enriched element (see

Figure 4.17). Meanwhile, for the XFEM approach, the number of integration points

in the matrix on the enriched element is 3 or 6 points (see Figure 3.5). In Figure

5.7, the integration points that have already been in the plastic phase are marked

on the mesh at load (time) steps of ǫM11 = 0.1, ǫM11 = 0.13 and ǫM11 = 0.15. It can

be seen that the plastic behavior spreads from Gauss points near the interface to

points on the standard elements of the bulk.

It is worth pointing out that due to the ill-conditioned problem causing by the

negative-definite interface stiffness matrix, the resolutions of XFEM and E-FEM are

no convergence for the case of interface set B (negative value of ks.

The homogenized behavior obtained from XFEM and E-FEM for the interface set

A is then compared to those obtained from the Interface element approach. Figure

5.8 shows the homogeneous behavior of the mean deviatoric stress with respect to

the mean deviatoric strain. The notable size dependence is shown not only for the

elastic limit but also in terms of stiffness both in the elastic and plastic behavior

phases of the behavior of the material. In addition, an excellent agreement between

the three numerical approaches is obtained whereas the amount of local nonlinear

updating is not the same order for each method.
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Figure 5.8: Homogenized elastoplastic behavior for three different radius of nano-
inclusion using XFEM, E-FEM or Interface element approach.

At this stage, we can proceed with a comparison in terms of computational cost

in handling the nonlinear behavior of the three considered approaches. For the

case of circular nano-inclusion presented above, we compare the three considered

approaches in Table 5.2. It can be seen that XFEM is the most expensive approach
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among the three ones and the Interface element approach is the cheapest one. The

reason lies in the number of the integration points in which the internal variables

need to be updated at each iteration. The enriched FEM approaches require more

than one integration point on the enriched elements resulting in larger computational

cost. Compared to XFEM, E-FEM requires less integration points on each enriched

elements (see Figures 3.5 and 4.17). Moreover, the additional d.o.f of E-FEM can be

also technically considered as internal variables of the enriched element since they

are determined and condensed at the local level by the use of the operator split

technique. Therefore, among the two enriched FEM approaches, E-FEM is cheaper

than XFEM in terms of computational cost.

X-FEM E-FEM Interface
element

Number of standard d.o.f 242 242 338

Number of enriched elements 34 34 0

Number of additional d.o.f 68 68 0

Total unknowns at the global level 310 242 338

Number of integration points
for each standard element 1 1 1

Number of internal variables
for each standard element 5 5 5

Number of integration points
for each enriched element 9 2 ∅

Number of internal variables
for each enriched element 45 10 ∅

Final size of
global stiffness matrix 484× 484 242× 242 338 ×338

Computing time (sec) 27.679 15.292 5.767

Table 5.2: Comparison of computational cost in the case of elastoplastic behavior
(XFEM vs E-FEM vs IE).

With the enriched E-FEM approaches, the test can be performed on more com-

plex geometries of the RVE such as inclusions with non-convex shapes as presented

in Figure 4.24. For a fixed volume fraction f = 0.2, the shape dependence on

nonlinear behavior is presented in Figure 5.9. The same conclusion as reported in

subsection 4.6.2 is observed. For a fixed volume fraction, we notice a descending

tendency of the rigidity according to the increasing number of oscillations in both

elastic and plastic phases.
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Figure 5.9: Homogenized elastoplastic behavior for different shapes of inclusion.

Note that the studies presented above are only the first step, for future works,

more complex behaviors could be taken into account and sensitivity analysis of the

model parameters could be carried out.

5.5 Conclusion

In order to assess the influence of the nonlinear behavior of the bulk, a nanocom-

posite unit cell composed of an elastoplastic bulk with linear isotropic hardening

and coherent interface has been studied. The von Mises plasticity criterion and the

implicit backward Euler integration scheme with the return mapping algorithm have

been used.

Because of the nonlinearity of the problem, the linearization process of Newton-

Raphson was employed and adapted to the finite element implementation form of

the three studied approaches. For XFEM and the Interface element approach, the

linearization and interface terms only need to be handled at the global level with

the global equilibrium equation. For the E-FEM approach, both global and local

equilibrium equations are nonlinear, the linearization was then performed at both

levels.

We illustrated the homogenized nonlinear behavior on the deviatoric part of

stresses and strains in the case of a simple traction test with the three numerical

approaches. The results obtained showed a very good agreement between them.

Moreover, the notable influence of the interface is clearly shown. The size effect is

observed both in the elastic part and in the plastic part as well as on the apparent

elastic limit of the nanocomposite.

A comparison in terms of computational cost showed that the Interface element

approach is the cheapest among the three numerical strategies. Due to the use of

fewer internal variables in the enriched elements plus the condensation of additional

d.o.f, E-FEM is less expensive than XFEM.
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Those first results allow envisaging to consider more complex nonlinear behaviors

by numerical homogenization strategy in order to determine the behavior of more

realistic materials than nanocomposites made of linear elastic components. The

nonlinearities being here limited to the behavior of the bulk. For future works, we

could also consider the nonlinear behavior of the interface.
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6.1 General conclusion

In the present thesis work, by using the coherent interface model, we have proposed

several contributions to the numerical modeling of the mechanical behavior of nano-

reinforced material, summarized as follows (see Figure 6.1).

Firstly, a comparative study that provides the evaluation of the two numerical

approaches namely XFEM/ level set and interface elements based strategy has been

performed. These two approaches have been tested for many cases in which we have

varied the different parameters influencing the effective behavior, namely the stiff-

ness of the different phases, the parameters of the interface, the radius of inclusion,

the volume fraction of the inclusions, the boundary conditions. The results showed

that the convergence and the prediction of the strain field of XFEM are affected

by the introduction of the surface elasticity whereas those of the interface element

approach is not. Even so, both of the considered approaches were able to reproduce

the size dependence of the effective behavior of nanocomposites in the case of plane

strain hypothesis as well as axisymmetric model. The numerical estimations have a

very good agreement with the analytical solutions when considering periodic bound-

ary conditions on the unit cell. To test more realistic configurations, the random mi-

crostructure with the coherent interface has also been considered. Both approaches

have shown their ability to reproduce the size effect in this configuration but XFEM

is more expensive than the Interface element. The use of surface/interface elements
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in standard FEM depends massively on conforming meshes, which are costly for the

cases with complex geometries. Meanwhile, the XFEM/level set approach, although

does not requires any discretization effort but the number of degrees of freedom and

integration points are raised compared to standard FEM.
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Figure 6.1: Contributions of this PhD work

In chapter 4, we provide the second and main contribution of this PhD work is the

proposition of an E-FEM type formulation to take into account the surface elasticity.

To this purpose, an evaluation of the three standard formulations of the E-FEM

approach for numerical homogenization without surface elasticity has been carried

out. A limitation of this approach for the high contrast of rigidity of phases has

been reported. For low contrast of rigidity, the SKON formulation has given the best

results in terms of convergence among the 3 available formulations. Based on this

result, we have proposed an enhanced SKON formulation allowing us to incorporate

the effect of the coherent interface model. The proposed approach is original as

it is the first time to our best knowledge that the size effect is modeled in the
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framework of embedded finite elements method. The results related to convergence

analysis, linear homogenization with periodic microstructure have been provided and

validated to the analytical approaches. In addition, the ability to handle random

microstructure of the proposed approach has been shown up.

At this point, after studying the three numerical approaches namely Interface

Element, XFEM and E-FEM in the homogenization context with or without the

imperfect interface, we can indicate their effective domain of application in handling

the different characteristics of the material. If the geometry of RVE is simple enough

to create easily a conforming mesh, the Interface element is the best choice due to

its accuracy. On the contrary, if the shape of the inhomogeneity is complex, the

enriched methods (XFEM, E-FEM) can be employed. In these two approaches, E-

FEM has some advantages relate to computational cost but the improvements are

necessary to handle the high contrast of rigidity of phases. Our efforts to improve

the approach for such cases have been carried out and will be reported in the near

future. Before that, E-FEM can be used for low contrast of rigidity of components

while XFEM for high contrast.

In chapter 5, the extension of the numerical approaches to assess the nonlin-

ear behavior of nanocomposite has been performed. A nanocomposite unit cell

composed of an elastoplastic matrix with linear isotropic hardening and a linear

coherent interface has been studied. The von Mises plasticity criterion and the im-

plicit backward Euler integration scheme for the nonlinear model were used. The

differences in terms of linearization and updating of the internal variables for the

considered approaches have been reported. We then illustrated the homogenized

nonlinear behavior on the deviatoric part of stress and strain by performing a sim-

ple traction test. The results obtained from the three numerical approaches show a

very good agreement between them. Moreover, the notable influence of the inter-

face is clearly shown. The size effect is observed both on the elastic part and on the

plastic part as well as the elastic limit of the nanocomposites. This is the first step

into the nonlinear behavior modeling of this kind of material within the numerical

homogenization strategy. Some prospects on this point are proposed here after.

Note that the numerical developments presented in this Ph.D. works are essen-

tially used to deal with the interface between two solid materials, whereas it can be

applied for many other cases such as a solid-fluid interface or fluid-fluid interface...

The applications can be related to thermal problems or other multiphysics problems

where the interface between two domains causing a discontinuity of the interest

fields. In some problems, the movement of the interface needs to be envisaged and

the numerical strategies based on the fixed mesh as XFEM and E-FEM bring a big

advantage.
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6.2 Perspectives

There are many potential extensions and perspectives to this work, and necessary

studies should be realized to improve these numerical approaches, and answer the

remaining questions (raised in this work).

• Short-term prospects

First of all, as reported in chapter 4, we encountered a problem related to the

evaluation of the local equilibrium at the elementary level. This problem restricts

E-FEM to the low contrast of rigidity of phases in performing numerical homoge-

nization. Since the cause of the problem has been determined and some promising

routes have been pointed out, we can immediately start on the improvement of the

method.

For the XFEM approach, although the actual convergence is adequate for most

purposes, the degradation of the convergence in the presence of surface elasticity

(reported in chapter 3) still need to be overcome. With its global enrichment strat-

egy, a good convergence will help to avoid using very fine mesh and therefore, reduce

the high computational cost of XFEM, especially in treating the complex nonlinear

behavior. From the good convergences of the E-FEM method including coherent

interface, we can propose a similar surface strain field tensor in the framework of

XFEM as:

ǫh =MBu +
1

R
PnT (Nψ) a , (6.1)

The convergence obtained by using Eq. (6.1) in the Eshelby problem with coherent

interface (see subsections 3.4.1 and 4.6.1) for different values of the contrast coeffi-

cient α are presented in Figure 6.2a. Compared to the those with standard XFEM
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Figure 6.2: Convergence analysis for the Eshelby problem with a coherent interface
and different values of α (XFEM using Eq. (6.1) vs standard XFEM ).
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presented in Figure 6.2b, the convergence of XFEM using Eq. (6.1) are clearly

improved. These are only the preliminary results, we still need to develop the the-

oretical framework of the enriched surface strain field tensor given in Eq. (6.1) in

order to build an extension of the XFEM in the context of the coherent interface.

In the present work, the von Mises plasticity has been used whereas many other

nonlinear behaviors can be applied to the bulk in the framework of these numerical

approaches. The von Mises plasticity is a simple model that is certainly not suitable

for the targeted materials. With the presented procedure in this Ph.D. work, it is

easy to introduce other more complex nonlinear behaviors including more complex

phenomena (damage, hardening, ...). The validation of numerical models accounting

for these plasticity criteria and the imperfect interface could then be performed by

comparing to the results obtained with the analytical works of Brach et al [Brach

et al., 2017a] and [Brach et al., 2017b] in which a nanoporous material with a

spherical inclusion has been used. In this case, the Interface element approach is

therefore convenient to be extended firstly.

Besides the nonlinear law for the bulk, we can also consider the nonlinear behav-

ior for the interface, even if it will require many other parameters of the interfaces

that have never been measured or estimated by MD simulation. However, a fic-

tive interface material can be used for the numerical work before these parameters

are really determined in the future. The bases for taking into account a nonlinear

behavior of the interface could be proposed. This will make it possible later to

enrich the models used and could, moreover, make it possible to see the influence

of the assumptions concerning the behavior of the interface on the homogenized

properties. In addition to the nonlinear mechanical laws on the tangential direction

of the interface, the question of partial or total decohesion at the matrix/inclusion

interface may arise. In this case, non-linear interface models are also to be consid-

ered. E-FEM, used essentially, to represent strong discontinuities, offers a privileged

framework for this. In the short-term, the elasto-plastic or viscoelastic behavior can

be considered for the interface.

• Long-term prospects

The 3D model is still a necessary prospect. In the 3D context, the interface

element becomes a membrane-type element and the approximated interfaces in the

enriched methods (XFEM, E-FEM) could have different shapes. An example of the

3D model can be found in the study of Zhu et al [Zhu et al., 2011] in the framework

of XFEM and the spring-layer model. The 3D development will open the possibility

to perform a confrontation between numerical results and experimental results like

those obtained by Blivi et al [Blivi, 2018]. To this purpose, the parameters of the

interface between the silica inclusions and PMMA matrix are required and can be

determined thanks to MD simulations.
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The coherent interface model used in the present work specified that the dis-

placement field is continuous across the interface. For the other interface models,

the discontinuity of displacement field across the interface has to be considered and

the spring-layer model in the work of Zhu et al [Zhu et al., 2011] or the general in-

terface model in [Javili et al., 2017] can be employed to the proposed development.

In the context of enriched FEM approaches such as XFEM or E-FEM, the coupling

between weak and strong discontinuity to take into account the general interface

model is absolutely possible.



Appendix A

E-FEM with numerical evaluation

of curvature

A.1 Numerical evaluation of curvature

With 2D plane strain hypothesis, the value of curvature is defined as:

κc =
1

R
, (A.1)

where R is the local radius of curvature of the interface within the considered ele-

ment. In the general case where the radius of curvature is not available or when the

interface shape changes with respect to time as in fluid mechanics, the value of the

radius of curvature can be numerically estimated through the nodal values of signed

distance to the interface (level set). In chapter 4, (see Eq. (4.17)) we presented the

numerical evaluation of the normal vector of the interface as:

n =
∇ϕ
‖ ∇ϕ ‖ . (A.2)

The curvature can be computed in terms of the discretized signed distance function

as:

κc = ∇ · n = ∇ ·
(
∇ϕ
‖ ∇ϕ ‖

)
. (A.3)

It has to be noted that the interface is approximated by a linear interpolation based

on the finite element shape function, the normal n is therefore constant in each

element and ∇2ϕ vanish in element interior. We cannot rely directly on the inter-

polation of n to calculate curvature. We, therefore, use the strategy proposed by

Chessa and Belytschko [Chessa and Belytschko, 2003] for problems of axisymmetric

two-phase flow with surface tension. We thus introduce two auxiliary fields related

to the interface:

• The vector gradient of the level set g
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• The value of curvature κc

These fields need only to be determined on the elements cut by the interface. The

procedure to compute these fields has been presented in [Chessa and Belytschko,

2003] based on minimizing the following functional for g and κc

Ig =
∫

Ω

1

2
(g −∇ϕ)2 dΩ , (A.4)

Iκc
=
∫

Ω

1

2

[
κc −∇ ·

(
g

‖ g ‖

)]2

dΩ . (A.5)

By using the C0 finite element approximation for gh and κhc we obtain the discrete

finite element equations:

Q̃g = f gϕ , (A.6)

Qκc = fκ(gh) , (A.7)

where

Q̃ =
∫

Ω
NTNdΩ with N =


 N1 0 N2 0 N3 0

0 N1 0 N2 0 N3


 (A.8)

f g =
∫

Ω
NT (∇N)dΩ (A.9)

Q =
∫

Ω
ÑT ÑdΩ with Ñ = [N1 N2 N3] (A.10)

fκc =
∫

Ω
ÑT∇ ·

(
g

‖ g ‖

)
dΩ . (A.11)

After evaluation of nodal value of κic thanks to Eq. (A.5), the curvature in the

element is determined as:

κhc (x) =
n∑

i=1

Ñi(x)κic (A.12)

The radius of curvature R is then computed by using Eq. (A.1).

A.2 Influence of the numerical evaluation of the

curvature on the results

The numerical evaluation of the curvature is used in the case of the Eshelby problem

with coherent interface presented in subsection 4.6.1 of chapter 4. The convergence

analysis is presented in Figure A.1. We observe a small degradation of convergence of

E-FEM due to the error which comes from the numerical evaluation of the curvature.

However, the convergence using E-FEM is still better than that using XFEM.

We then consider the case of an ellipsoidal inclusion as presented in subsection
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Figure A.1: Convergence analysis for the Eshelby problem with a circular inclusion

4.6.2. In Figure A.2, the results obtained with the numerical estimation of the

curvature are compared to those obtained with the analytical calculation of the

curvature using Eq. (4.58). The 40x40 nodes and 80x80 nodes meshes have been

used for this test. We notice that the numerical curvature almost doesn’t affect the

effective bulk modulus.
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