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Abstract 
 

Etude de la composante génétique de caractères complexes dans une population isolée  

 

Mon projet de thèse vise à exploiter le potentiel des isolats de population pour étudier la 

composante génétique des maladies multifactorielles. En effet, les isolats peuvent faciliter 

l'identification des facteurs génétiques habituellement trop rares en population générale. Cette 

thèse est composée de deux études principalement : l'imputation génétique et l'analyse de 

l'héritabilité. Chacune de ces études ont été abordée sous deux angles : l͛uŶ thĠoriƋue, s͛appuǇaŶt 
sur une vaste étude de simulations basée sur les caractéristiques de la population isolée du Cilento, 

perŵettaŶt d͛Ġǀaluer des stratĠgies d͛aŶalǇse et de dĠterŵiŶer la plus adĠƋuate ; l͛autre appliƋuĠ, 
s͛appuǇaŶt sur l͛aŶalǇse de doŶŶĠes gĠŶĠtiƋues rĠelles issues de la ŵġŵe populatioŶ. 
 

L'imputation génétique est une étape cruciale pour effectuer des analyses d'association dans un 

isolat et représente une méthode peu couteuse pour obtenir les séquences complètes du génome 

ou de l͛eǆoŵe des iŶdiǀidus de la populatioŶ. L'efficacitĠ de cette approche dĠpeŶd de la prĠcisioŶ 
de l͛iŵputatioŶ; nous avons donc étudié plusieurs stratégies pour obtenir une précision d'imputation 

ŵaǆiŵale daŶs uŶ isolat. Nous aǀoŶs ŵoŶtrĠ Ƌue les logiciels utilisaŶt des algorithŵes Ƌui s͛appuieŶt 
sur les caractĠristiƋues particuliğres des isolats Ŷ͛ĠtaieŶt pas, de façon inattendue, aussi 

performants que ceux conçus pour les populations générales. De plus, malgré la disponibilité de 

panels de référence publics contenant plusieurs milliers de chromosomes, nous avons confirmé 

Ƌu͛uŶ paŶel de rĠfĠreŶce spĠcifiƋue de la populatioŶ d͛Ġtude, ŵġŵe de taille trğs rĠduite, Ġtait 
esseŶtiel pour la ƋualitĠ de l͛iŵputatioŶ. Ceci Ġtait d͛autaŶt plus ǀrai pour les ǀariaŶtes rares. 
 

Pour de nombreux traits, il existe des discordances entre les estimations de l'héritabilité obtenues à 

partir d͛iŶdiǀidus appareŶtĠs et à partir d͛iŶdiǀidus ŶoŶ appareŶtĠs. EŶ particulier, la plupart des 
chercheurs considère que les effets dominants (non additifs) ne jouent pas un rôle majeur malgré les 

résultats contrastés des études sur les isolats. Notre deuxième analyse a révélé des mécanismes 

possibles pour expliquer la disparité de ces estimations publiées entre populations isolées et 

populations générales. Cela nous a permis de faire des déductions intéressantes pour nos propres 

analyses dans le Cilento. En particulier, nous avons identifié la possibilité d'une composante de 

dominance non nulle pour les niveaux de lipoprotéines de basse densité (LDL). Cela nous a amenés à 

effectuer des analyses d'association pan-génomique des composantes additives et non-additives 

pour LDL dans le Cilento et nous avons pu identifier des gènes qui avaient déjà été liés au trait dans 

d'autres études. 

 

Dans le contexte de nos deux études, nous avons observé l'importance de conserver l'incertitude 

génotypique (dosage pour l͛iŵputatioŶ, ǀraiseŵďlaŶce des gĠŶotǇpes pour les doŶŶĠes de 
sĠƋueŶçageͿ. DaŶs la perspectiǀe de cette thğse, Ŷous aǀoŶs proposĠ des ŵoǇeŶs d͛iŶcorporer cette 
incertitude à certaines méthodes utilisées dans ce projet. 

 

Nos résultats concernant les stratégies d'imputation et l'analyse de l'héritabilité seront très utiles 

pour la poursuite de l'étude de l'isolat de Cilento. Mais, ils seront également instructifs pour les 

chercheurs travaillant sur d'autres populations isolées et également applicables plus généralement à 

l'étude des maladies complexes. 

 

Mots-clés : Maladie multifactorielle, population isolée, génétique, statistique, identité-par-

descendance, phasage, imputation, héritabilité, génétique dominance, déséquilibre de liaison, 

effet fondateur 
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Studying the Architecture of Complex Traits in a Population Isolate 

 

My thesis project is concerned with tapping the potential of population isolates for the dissection of 

complex trait architecture. Specifically, isolates can aid the identification of variants that are usually 

rare in other populations. This thesis principally contains in depth investigations into genetic 

imputation and heritability analysis in isolates. We approached both of these studies from two main 

angles; first from a methodological standpoint where we created extensive simulation datasets in 

order to investigate how the specificities of an isolate should determine strategies for analyses. 

Secondly, we demonstrated such concepts through analysis of genetic data in the known isolate of 

Cilento. 

  

Imputation is a crucial step to performing association analyses in an isolate and represents a cost-

efficient method for gaining dense genetic data for the population. The effectiveness of imputation 

is of course dependent on its accuracy. Hence, we investigated the wide range of possible strategies 

to gain maximal imputation accuracy in an isolate. We showed that software using algorithms which 

specifically evoke known characteristics of isolates were, unexpectedly, not as successful as those 

designed for general populations. We also demonstrated a very small study specific imputation 

reference panel performing very strongly in an isolate; particularly for rare variants.   

 

For many complex traits, there exist discordances between estimates of heritabilities from studies in 

closely related individuals and from studies on unrelated individuals. In particular, we noted that 

most researchers consider dominant (non-additive) genetic effects as unlikely to play a significant 

role despite contrasting results from previous studies on isolates. Our second analysis revealed 

possible mechanisms to explain such disparate published heritability estimates between isolated 

populations and general populations. This allowed us to make interesting deductions from our own 

heritability analyses of the Cilento dataset, including an indication of a non-null dominance 

component involved in the distribution of low-density lipoprotein level measurements (LDL). This led 

us to perform genome-wide association analyses of additive and non-additive components for LDL in 

Cilento and we were able to identify genes that had been previously linked to the trait in other 

studies.  

 

In the contexts of both of our studies, we observed the importance of retaining genotype 

uncertainty (genotype dosage following imputation or genotype likelihoods from sequencing data). 

As a prospective of this thesis, we have proposed ways to incorporate this uncertainty into certain 

methods used in this project.  

 

Our findings for imputation strategies and heritability analysis will be highly valuable for the 

continued study of the isolate of Cilento but will also be instructive to researchers working on other 

isolated populations and also applicable to the study of complex diseases in general.  

 

Keywords: Multifactorial Disease, Population Isolates, Genetics, Statistics, Identity-By-Descent, 

Phasing, Imputation, Heritability, Genetic Dominance, Linkage Disequilibrium, Founder Effect  
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Opening Remarks 
 

There exists great variation in the human genome in the modern-day global population, and 

describing the source of such variation is a theme that has intrigued those working in many different 

fields of research; from biochemistry to applied mathematics. In population genetics, current 

consensus following years of analysis of human genetic diversity has arrived at the ͞out of Africa͟ 

model. This describes a genesis and subsequent long period of human activity in East Africa followed 

by multiple waves of gradual migration into surrounding continents. The study of human genetic 

variation has revealed many moments where new populations expanded in new territories following 

the migration of relatively few individuals from a large ancestral population. We will loosely term 

this effect on population expansion as a ͚bottleneck͛; capturing the idea that the new population is 

connected through ancestry to its population of origin through a relatively small number of lines of 

inheritance. The occurrence of bottlenecks in this demographic expansion of human beings across 

the planet is easily conceivable when considering the geography of habitable regions and the 

distances and routes between continental landmasses. From Figure 0.1 taken from Liu, et al. 
1
 we 

can well imagine why there exists less genetic variation in the native populations of South America 

than in Europe or Asia; which in turn harbour less genetic variation than in Africa
2
. These principal 

prehistoric ďottleŶecks haǀe ďroadlǇ shaped the world͛s populatioŶ.   

The study of isolated populations is concerned with the same phenomenon that have governed 

human genetic variation but on a smaller scale. Various geographic, historical, or cultural selections 

can lead to a small group of individuals founding a new community that grows in relative seclusion 

from the wider population from which the founding individuals originated. For an example, the 

Icelandic population gives a good illustration of these principals. The earliest record of human 

settlement in Iceland was in the 9
th

 or 10
th

 Century, an event that was documented in the 

Landnámabók
3
, written originally by Ari Thorgilsson the Learned, born in 1067, a historic text 

detailing family history and important events in the first few centuries of Icelandic history. 
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Excerpts from the Landnámabók. The text gives highly detailed accounts of familial relationships, 

along with atmospheric passages. 

This represents an invaluable resource for Icelandic geneticists. The genetic origins of the modern 

day Icelandic population have been widely studied
6-8

 over recent decades and continues to drive 

research including recent analyses of ancient genomes
9
. 

 

Figure 0.1 - Taken from Liu, et al. 
1
. Possible principal routes of human population expansion based 

on shortest possible geographic distances; taking terrain characteristics into account. Blue dots 

represent populations found in the CEPH human genetic-diversity panel
4,5

; a landmark study of 

human genetic variation.    
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The genetic properties of isolated populations have long been of interest to epidemiologists. Many 

isolates have unusually low or high prevalence of certain diseases. As a case study we could look 

briefly to the example of Tay-Sachs disease which was observed as having a 10 times greater 

prevalence in Ashkenazi Jews
10,11

; a population extensively studied and established to be a religious 

or cultural isolate
12-14

. Isolated populations may well be characterised having a high proportion of 

consanguinity and so present an opportunity for uncovering genes that cause rare recessive 

disorders. Indeed, for the Hutterite population of North America
15

, one the most widely investigated 

genetic isolates, over 30 such recessive disorders have been recognised in the population
16

 and one 

can even find an extensive clinical database of genetic disorders associated with the Hutterites and 

similar populations
17

.  

In the ͚ϵϬs aŶd ͚00s, isolated populations were championed as a powerful tool for unpicking the 

genetic architecture of complex traits
18-24

. We refer to a trait as ͚coŵpleǆ͛ wheŶ: ;aͿ we observe the 

following high variability in the presentation of the trait; and (b) we anticipate that multiple factors, 

ďoth geŶetic aŶd eŶǀiroŶŵeŶtal, will ďe ŶecessarǇ to eǆplaiŶ the trait͛s distriďutioŶ without aŶǇ oŶe 

factor being sufficient to do so. Indeed, many studies of complex traits in isolates have already led to 

several notable discoveries
21,25

. Some particular illustrations include the extensive study of 

Alzheiŵer͛s disease in Iceland, Schizophrenia in Finnish cohorts, and Asthma in the Hutterites, which 

all will be discussed in detail in Section 1.2.6. 

This thesis is concerned with the study of complex traits in isolated populations, specifically in the 

setting of recent advances in the gathering of genetic data and recent trends in study design in 

genetic epidemiology. This will both involve theoretical discussion of the statistical methods involved 

using detailed simulation data as well as analysis of a known isolate; the three villages of the Cilento 

population from Southern Italy. 
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Chapter 1: Introduction 

1.1 Principals of Genetic Epidemiology 

1.1.1 Genome Structure 

 

The human genome is a set of complex double-helical chains of deoxynucleic acid (DNA). This 

structure of this chain provides a biochemical code for the production of all necessary proteins 

required for the development and sustainment of the human body. Each of the two linked strands 

that comprise a section of DNA is a sequence of nucleotides composed of one of four chemical 

bases: adenine (A), guanine (G), cytosine (C), or thymine (T). The two stands of the double helix are 

bound together at each nucleotide position, with adenine binding exclusivity to thymine and 

cytosine exclusively to guanine. Within each human cell nucleus, 23 pairs of long DNA molecules are 

found. These 23 different sections of DNA are known as chromosomes, with the first 22 existing in 

homologous pairs (the autosomal chromosomes) and one pair of sex chromosomes where males 

have one X and one Y chromosome (which differ greatly in size and in composition), and females 

have two X chromosomes. As each chromosome presents in a pair, humans are ͚diploid͛ organisms. 

Outside of the cell nucleus, there is also a comparatively small amount of mitochondrial DNA that is 

haploid; meaning there is only one copy unlike the 22 diploid autosomal chromosomes. The 

ensemble of the 23 chromosome pairs and the mitochondrial DNA is the human genome (see Box 

1.1.1). 

Grand scale scientific projects and collaborations gave the firsts complete maps of the human 

genome in the ϭϵϵϬ͛s26-28
 before the human genome would be for the first time sequenced 

comprehensively iŶ the earlǇ ϮϬϬϬ͛s29-31
. From hence, one could describe each position of each 

chromosome by the exact number of pairs of base nucleotides from the beginning of the 

chromosome. Given that within the double helical structure, adenine binds exclusivity to thymine 

and cytosine exclusively to guanine, it is only necessary to keep track of one of the two strands in 

each chromosome.  
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For each position, the two bases (one from each chromosome) make up the genotype which we 

write as ܣଵ2ܣ; examples could be GG, CC, TA, etc. For most positions on the human genome, the 

values of ܣଵ and 2ܣ will be equal and invariant across all individuals. However, for a fraction of 

positions, multiple nucleotides can be observed in different individuals and indeed within the 

genotype of a single individual. Positions such as these are ͚genetic variants͛, and this is indeed the 

simplest case of a genetic variant: a single position where two or more nucleotides can be observed 

in a population. We terŵ the differeŶt possiďle ǀalues that a geŶetic ǀariaŶt caŶ take as ͚alleles͛.  

 

Box 1.1.1 – A view of the human genome, and a view as to how to describe particular genomic 

positions. 

There exist many more complex forms of genetic variation. Often genetic variants span many 

positions and have multiple possible alleles. Explicitly, a genetic variant could describe the different 

possibilities for a short sequence of base pairs as well as occurrences such as: (a) ͚insertions͛ where 

additional stretches of DNA appear to be inserted into a chromosome; (b) ͚deletions͛ where a stretch 
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of base pairs can appear to disappear in certain individual; ;cͿ ͚repeats͛ where a short seƋueŶce 

;such as ͚CT͛Ϳ caŶ ďe repeated ;i.e. CTCTCT…Ϳ a different number of times; (d) ͚inversions͛ where a 

short sequence can appear but in reverse order; or (e) translocations where a short sequence can 

appear in an unexpected position (or even chromosome). The example of a genetic variant in Box 

1.1.1 is a single nucleotide polymorphism (SNP) and in general, when any genetic variant is discussed 

in this thesis, it is assumed to be a SNP unless otherwise stated. Furthermore, in this work our 

discussion will focus on genetic variants that have only two possible values within a population and 

which lie on one of the 22 autosomal chromosomes (unless otherwise indicated). Going forward, 

when discussing a single variant in generalised terms, we will name these two alleles as ′ܣ′ and ′�′. ′ܣ′ will denote the ͚refereŶce͛ allele, or the ŵost coŵŵoŶlǇ oďserǀed allele, aŶd ′�′ will be the 

͚alterŶatiǀe͛ allele that is less commonly observed, apparently arising from mutation. Several 

alternative alleles may occur at a given position, but in general we will assume only one possible 

alternative allele. Therefore, there will generally be three possible genotypes: ܣܣ,  and �� as ,�ܣ

each individual with have two alleles at every position on the 22 autosomal chromosomes. In 

practical terms we can encode the genotypes ܣܣ,  and �� as 0, 1, and 2 (describing the count of ,�ܣ

minor alleles in the genotype). One would only require a dictionary to look up the nucleotide values 

of the reference allele ܣ and the alternative allele �.  The terŵs ͚ŵajor͛ aŶd ͚ŵiŶor͛ will also ďe used 

for the reference and alternate alleles.  

To give a concrete example of how our DNA actually acts as well as the effects of genetic variation, 

we can focus in on the APP gene found on chromosome 21. In section 1.1.4, we discuss the 

definition of a gene in detail, for now we can simply picture a section of DNA or long string of 

nucleotides (APP is approximately 290,000 base pairs long) that work together giving a certain 

biological functionality. APP is a gene responsible for the production of Amyloid beta peptides (ߚܣ). 

Subtle variations in the proportions of different ߚܣ compositions can lead to these molecules to fold 

upon themselves and congregate in the brain, and their presence has been widely linked to 

neurodegenerative effects, i.e. they may be harmful to nerve cells. APP is a gene of ancient origins
32
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(back to when vertebrates were first developing) and ߚܣ seems to now be a multi-functioning tool in 

the human body (in particular the brain) including sealing leaks in the blood-brain barrier, aiding 

brain recover after injury and regulating synaptic function relating to memory consolidation
33

. The 

list of mutations or genetic variants within the APP gene is extensive; an excellent and detailed 

resource can be found at https://www.alzforum.org/mutations/app.  

Two examples of SNPs that have been studied within the APP gene are ͚rs63750264͛ (at position 

27,264,096 of chromosome 21 with reference allele C and potential alternative alleles A, G, or T) and 

͚rs63750847͛ (at position 27,269,932 and with reference allele C and alternative allele T). The 

occurrence of the rs63750264 mutation was initially shown to be associated with greater risk on 

earlǇ oŶset of Alzheiŵer͛s disease34
 from a study of affected British families and later investigation 

showed this mutation to result in higher production of 42ߚܣ
35

 (an apparently particularly 

unfortunate variation of ߚܣ). Mutations at this position are very rare worldwide, but they have been 

observed in families from many different ancestral origins. Our other example, rs63750847, was 

discovered in a study of 1,795 Icelandic individuals
36

 and is extremely rare outside of Scandinavia. 

This variant was shown to decrease the production of ߚܣ after having been found associated with a 

sigŶificaŶt decrease iŶ risk for deǀelopiŶg Alzheiŵer͛s disease. These two example mutations (whose 

actions we have rather simplified) only scratch the surface of the multitude of results that have been 

carefully gathered to describe possible relationships ďetweeŶ APP aŶd Alzheiŵer͛s disease; aŶd APP 

itself is by no means the only gene that has been linked to the condition. However, these examples 

give an insight into the interplay of genome and physiology, the complexity of the task in hand of 

describing the genetics of complex traits, as well as hinting at the potential of studying isolated 

populations.  
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1.1.2 Genetic Data 

 

In the last 20 years, the size (in terms of number of measured genomic positions and also in the size 

of cohort studies) of genetic data has drastically increased. Technological advancements have 

allowed the cost of genotyping entire human genomes to drop sufficiently such that studies 

involving thousands of fully sequenced individuals have become widely prevalent. We will discuss 

three types of genetic data in this thesis: (a) genotyping array data, to be referred to as ͞ArraǇ͟; (b) 

whole-exome sequencing data, to be referred to as WES data, and (c) whole-genome sequencing 

data, to be referred to as WGS data. Array data consist of hundreds of thousands of genotyped SNPs, 

known to be polymorphic in multiple worldwide populations. Such data is capable of characterising 

uniquely the genome of any individuals, of observing relatedness between individuals, and for 

estimating the ancestry of a given individual. Furthermore, through Linkage Disequilibrium (a 

description of statistical correlation between pairs of nearby genetic variants, discussed fully in 

section 1.2.3), Array type data can represent the variation of the entire genome. This is a 

consequence of the fact that the many thousands of genotyped SNPs span the 23 chromosomes in 

an even manner (when viewed macroscopically). These Array positions are aiming to ͚ŵark͛ as much 

genetic variation as possible, through the fact that any given genomic position should not be too far 

away from a genotyped Array position. The human exome describes the fraction (~2%) of the entire 

genome that is directly responsible for protein coding. Simply put; it is the ensemble of genome 

segments (exons) that have the most direct actionable effects. This is not to say that the remaining ~98% of non-coding genome is not important, indeed it is from these regions that the majority of 

significant associations with complex traits have been found
37,38

. WES data is the full sequence of 

these exonic regions, which will comprise a large set of small packets of closely grouped, if not even 

sequential, genetic variants. WGS data is a record of every position on the human genome, though 

typically only the polymorphic markers will be analysed for obvious reasons. This will usually 

represent many millions of genetic variants. 
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Figure 1.1.2 gives a visualisation of WGS, WES, and Array positions that are present in the datasets of 

the Cilento isolate (discussed fully in section 2.1) that fall within the first million base pairs of 

chromosome 10. We can observe here the density of the WGS data, the regions with clustered WES 

data and the spread of Array positions. The plot contains 3,918 WGS positions, 149 WES positions 

and 52 array positions. 

 

Figure 1.1.2 – Different types of genetic data, with different densities of positions. A short example of 

positions from Whole-Genome Sequencing (WGS) data, Whole-Exome Sequencing data (WES) and 

genotype array data (Array) on the first million base pairs of chromosome 10. 

 

1.1.3 Inheritance 

 

There exist two notable exceptions to the previous statement that each human cell contains 46 

chromosomes – the male sperm cells and female ovule cell contain only 23 chromosomes; one copy 

of each autosomal chromosome and one sex chromosome (ova will carry one X-chromosome, and 

spermatozoa will either carry either an X or a Y chromosome. Such cells carrying half of an 

indiǀidual͛s DNA are known as gametes, and the joining of two gametes during sexual reproduction 

is the mechanism by which genetic data is passed from parents to offspring (Box 1.1.3, section A).  

The creation of gametes (a process known as meiosis) allows for the transmission of material from 

both parental chromosomes to their offspring. Hence, each chromosome within each new gamete is 

composed of fused fragments of the two parent chromosomes (Box 1.1.3, section B). The process 

that rends fragments from each iŶdiǀidual͛s two pairs of chromosomes and then reconstructs new 

chromosomes in gamete formation is known as recombination. In section B, of Box 1.1.3, we can see 

that two recombination events have occurred during the creation of the orange gamete passed from 
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father to child, and one recombination event has occurred during the maternal transmission. These 

recombination events are marked in the figure by Ǯ�ǯ. In section C of Box 1.1.3, we see this 

transmission of genetic material within a population over many generations, involving many 

recombination events. This gives the idea that our genomes are mosaic like, built of small sections of 

ancestral genomes. We also touch here on the idea of identity-By-Descent (IBD), the situation where 

multiple identical copies of a portion of a chromosome, inherited from a common ancestor, are 

observed in a population.  

 

Box 1.1.3 - The concepts of inherited genetics, recombination, and the transmission of chromosome 

segments. 
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1.1.4 Genes and Mendelian Traits  

 

Before continuing, we should establish what is meant by a ͚geŶe͛. This is a terŵ that has eǀolǀed 

alongside the centuries of progression of scientific understanding of genetics
39

.  In what is a widely 

celebrated example of scieŶtific curiositǇ aŶd eŶdeaǀour, AugustiŶiaŶ friar Gregor MeŶdel͛s 

investigation into pea plant characteristics
40

 in 1866 marked the beginnings of the concept of 

phǇsical eŶtities ;MeŶdel referred to these as ͚eleŵeŶts͛Ϳ that are transferred between generations. 

We now know that he had discovered what we would still call genes in the genome of Pisum sativum 

that affected observable characteristics such as the colour of the flowers or the exterior texture of 

the peas. After the turn of the century, the link between chromosomes and inheritance was 

developed
41,42

 and hitherto, to a large extent, a gene was considered as a single-point entity, lying on 

a chromosome. When the double-helical structure of DNA was co-discovered by James Watson & 

Francis Crick
43

, Rosalind Franklin
44

, and Maurice Wilkins
45

 (the accreditation of this discovery being 

an extensive subject in its own right), we arrive at the concept of a gene being a string of nucleotides 

that give a code for the production of a specific protein; a molecule of messenger ribonucleic acid 

(mRNA).  

To make a brief aside, this is the definition that I would tend to hold inside my head. However, often 

it is still most intuitive not to reflect at all on the physical description of DNA, and to consider each 

chromosome to be an enormously long string of random variables from a probabilistic point of view. 

Or, in an even more practical sense, as a long series of zeros, ones, and twos stored digitally as the 

scale of genetic data can simply only now be dealt with advanced computational algorithms.  

Yet, the coding string of DNA definition is still an over simplification. There is great variation in 

mechanisms for producing mRNA, and the model where one gene codes one specific molecule has 

multiple counter examples. What is more, the boundaries between pairs of genes and between 

genes and non-coding regions are often practically indeterminable. The scale of interaction between 

DNA elements has also been shown to be highly complex and much study has gone into the action of 
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entire networks of genes, the role of genes within diverse biological pathways as well as the activity 

of genes in different parts of the body. A further layer of complication comes from the fact that 

chromosomes are tightly folded in on themselves, with regioŶs segregatiŶg iŶto ͚topologicallǇ 

associatiŶg doŵaiŶs͛ whose distributions are known to play a part in gene regulation. One can also 

make reference to the studies of epigenetics, to endogenous viral elements within the genome, of 

chromosome X inactivation. Indeed, the list of topics not considered in this thesis grows worrisomely 

large. Here, one should highlight both the huge challenges as well as rich opportunities for genetic 

studies. It is a subject that is well disposed to intrigue biologists, chemists, mathematicians, 

statisticians, computer scientists as well as other disciplines. There is a great importance for 

collaborative efforts across these disciplines in order to effectively unlock the functionality of the 

human genome. 

The behaviour of many genetic disorders is described as Mendelian or monogenic. This is the case 

wheŶ aŶ iŶdiǀidual͛s geŶotǇpes across ǀariaŶts iŶ a siŶgle gene are the sole genetic variation that 

governs an observable phenotype, or disease. Different possible mutation at different positions in 

the gene may be implicated in the prevalence of the disorder. A classic example of such as disorder 

is Cystic Fibrosis
46

, a genetic disorder that affects multiple systems in the body due to mutations in 

the CFTR gene on chromosome 7. Around two thirds of all cases are caused by the presence of a 

three-nucleotide deletion called ∆F508
47

, Affected individuals will this deletion on both copies of 

their 7
th

 chromosomes. The remaining third of the cases are caused by neighbouring mutations, of 

which over 1,000 have been identified, many of which have been studied in isolated populations. 

One notable example being the mutation MR1101K (in gene CFTR) that was discovered in the 

Hutterite population
48

 where the mutation is unusually frequent. 

Mendelian traits are characteristically rare (infrequent within a population) and the relationship 

between the mutation and the disorder is usually clear-cut. To be precise, there is a high or 

complete penetrance. The penetrance of a genetic variant involved in a Mendelian disorder is the 



Anthony Francis Herzig – Doctoral Thesis – 2019 

 

20 

 

proportion of carriers of the mutation who also develop the disorder. The higher this proportion, the 

more likely the genotype of the variant will determine the distribution of the trait. 

Family based studies involving linkage analysis have proved very successful in identifying for many 

such disorders as well as disorders that are oliogenic (dependent on a few genes), each acting in a 

Mendelian way. Study designs for linkage analysis do not require whole genome sequencing, but 

only a dense enough set of genetic markers in order that any conceivable variant in a gene that 

affects the trait will be in ͚close͛ eŶough ;coŶcepts of geŶetic distaŶce are discussed iŶ Section 1.2.3) 

with one or several of the genotyped markers. These markers are chosen to be highly variable so 

that the transmission of chromosome stretches (haplotypes) can readily be tracked through meiosis 

in the family structure. Linkage analysis is usually based on calculatiŶg MortoŶ͛s LOD scores
49

, which 

describes the logarithmic odds of whether genetic markers are close or not to a causal variant. Such 

methods require the ability to calculate the likelihood of given genotypes in a family based on a 

known pedigree; notably using either the Elson-Stewart
50

 algorithm or the Lander-Green-Kruglyak 

algorithm
51,52

.  

Figure 1.1.4 gives an example of a highly complex pedigree of five generations from a Bedouin tribe 

which includes high rates of inbreeding; also given is an extract from the corresponding study 

describing the population. This example is taken from Scott, et al. 
53

, who were able to locate the 

gene that would be shown to be responsible for the numerous individuals within the family affected 

with Nonsyndromic Autosomal Recessive Deafness. The gene they found was DFNB1 which is 

located on chromosome 13, which subsequently was shown to carry certain mutations in this 

Bedouin family
54

. In the figure, haplotypes for five variants are tracked through the pedigree, helping 

to pinpoint the linkage signal. 
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Figure 1.1.4 - Pedigree used for linkage analysis of Nonsyndromic Autosomal Recessive Deafness in a 

Bedouin population along with excerpt from Scott, et al. 
53
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1.1.5 Complex Traits and Causal Variants 

 

This thesis is concerned with the behaviour of complex traits. This is the study of continuous human 

characteristics, and diseases and disorders with varied phenotypic presentations. Complex traits may 

also be binary in nature, and in this case, it is the risk of having the disease that is thought of as 

continuous. Such traits are demonstrably non-Mendelian, yet there is clear evidence from the 

analysis of family data that they can be (partially) inherited. The idea is that there is correlation 

between the phenotypes of parents and their offspring: tall parents are more likely to have tall 

children. However, a gene for tallness is not forthcoming. The heights of adult males and female are 

normally distributed, with many non-genetic factors affecting the measurement. R.A. Fisher was the 

first to formally describe how the multiple genetic variants, each acting in a Mendelian way could 

combine together to give continuous distributions of complex traits observed across a population
55

. 

The central idea being the polygenic Model: some large number (݆ = ͳ, … , �) of genetic variants 

each contribute to the trait with values of ݑ௝଴,  ௝2, dependent on their three possibleݑ ௝ଵ, andݑ

genotypes ܣܣ, � .�� and ,�ܣ = ͳ describes Mendelian inheritance, as might be seen within a study 

of an affected family, � < ͳͲ was the level of polygeny that was expected to be found for most 

human complex traits until recent decades, and � ≫ ͳͲ approaches Fisher͛s iŶfiŶitesiŵal ŵodel 

which gives a mathematically explanation that bridged the concepts of Mendelian inheritance and 

the observed continuous distributions of human traits.  

If we can assume that these ͚causal͛ variants will act independently on the phenotype, then we can 

assume that each causal variant will act in a somewhat Mendelian way on the trait, and if we look at 

the marginal effect of each of these variants over a large cohort of individuals we should observe 

something akin to Figure 1.1.5a. However, the more polygenic the trait architecture, the less 

observable the marginal effects will be.  
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Figure 1.1.5a – Relationship between the total number of causal variants and the marginal effect of a 

single causal variant (under the assumption that the ensemble of all causal variants contribute 

equally to the trait variance in each case).  

If the variance of the trait is fixed, then the polygenic model leads to this relationship between the 

number of causal variants ሺ�ሻ and the effect sizes of such a variant. Hence, for a highly polygenic 

trait, it becomes very difficult to detect the effects of causal variants and may require a large 

number of individuals to notice these patterns. Currently, the most prevalent method is the 

Genome-Wide Association Study (GWAS). Profiting from recent sequencing technology advances 

and the availability of WGS data, this method exhaustively tests the statistical association between 

each sequenced variant and a given trait. In effect, no prior knowledge of which genes may play a 

role in the distribution of the trait is needed, as the dense sequencing data allows for a near-

comprehensive sweep of the genome. This method is not fully comprehensive as there are still types 

of genomic variation that are very difficult to successfully sequence which are therefore not always 

included
56

. To date, GWAS have had great success in uncovering associations between phenotypic 

and genetic variation. What is more, the breadth of such studies has gone through an explosive 

increase in the last 10 years in terms of sample sizes and numbers of traits studied
57

. Figure 1.1.5b 

shows the numbers of GWA“ ͚hits͛ or associations currently archived in the online resource the 

GWAS catalogue. 
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௝ܺ is the vector of the genotypes of genetic variant ݆ across the sample. Writing a single entry of  ௝ܺ 

as  ௜ܺ௝, the genotype of variant ݆ for individual ݅, where: 

௜ܺ௝ = {Ͳ, ݅ ݈�ݑ݀݅�݅݀݊݅ �݋݂ ݆ ݐ݊�݅��� ݂݋ ݁݌ݕݐ݋݊݁݃ = ,ͳܣܣ ݅ ݈�ݑ݀݅�݅݀݊݅ �݋݂ ݆ ݐ݊�݅��� ݂݋ ݁݌ݕݐ݋݊݁݃ = ,ʹ�ܣ ݅ ݈�ݑ݀݅�݅݀݊݅ �݋݂ ݆ ݐ݊�݅��� ݂݋ ݁݌ݕݐ݋݊݁݃ = ��  

This represeŶts aŶ ͚additiǀe͛ ŵodel for the geŶetic effect. ܷ is a matrix of other non-genetic 

covariates, ߚ௝ is a constant, ߚ଴ is a vector of constants and �ா2 describes variance in the trait coming 

from environmental effects. ܫே is an ܰ × ܰ identity matrix. Our statistical test will be against the null 

hypothesis: ܪ଴: ߚ௝ = Ͳ. 

When dealing with a sample which include related individuals, such as in an isolated population, we 

can expect the phenotypes of closely related individuals to be correlated. In order to be able to 

separate these patterns from the effects of a single variant requires a more complex variance 

structure and so a Linear Mixed Model (LMM) is fitted. Now we assume that the phenotype follows 

a multi-variate normal distribution: 

ܻ~�ܸܰሺߚ௝ ௝ܺ + ,଴ߚܷ ߬� + �ா2ܫேሻ 

This variance structure is comprised of the environmental variance �ா2ܫே that is independent across 

individuals and a genetic component ߬�. Here, � is a variance-covariance matrix representing the 

correlation between phenotypes of pairs of individuals (usually based on their relatedness); ߬ is a 

constant. This LMM and the variance-covariance structure � will be the main focus of Chapter 4 

where we will revisit these models in much greater detail. 

For GWAS, we are discussing a model which involves a continuous distribution of a trait and which 

involves very subtle patterns that will not present themselves clearly in data collected from a family. 

This leads to the study of genetics over wide cross sections of populations rather than orientating 

oŶe͛s ideas around the genetics of a single individual. In the following chapter, we will introduce 

concepts of population genetics, including isolated populations, before exploring further the study of 

complex traits. 
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1.2 Principals of Population Genetics 

 

It should be noted that in animal/plant studies, the ability to select and oversee crosses between 

individual organisms facilitates many potential analytical approaches. This not being possible in 

humans, large existent human populations are studied. In a sufficiently large population, the global 

genetic characteristics will be maintained between different generations, under certain conditions. 

However, external forces and circumstances may lead to the natural evolution of population 

characteristics and the study of population genetics is the study of the possible mechanisms that 

interplay with the genetics of the population as a whole. In this section we will give only a brief 

summary of concepts that will be of importance to the analyses we have performed in this thesis 

(Chapters 3 and 4). The following materials will give much richer descriptions: ͚The GeŶetic “tructure 

of PopulatioŶs͛ – A. Jacquard (English Translation)
58

, ͚IŶtroductioŶ to QuaŶtitatiǀe GeŶetics͛ – D. S. 

Falconer
59

, aŶd ͚GĠŶĠtiƋue des PopulatioŶs͛ – J-L. Serre
60

. 

1.2.1 The Theoretical Population 

  

The context of all models that will be introduced depends on the assumption of large underlying 

populations of individuals from which our study individuals have emerged or have been sampled. 

The population of the entire world seems a logical realisation but, as described in the opening 

remarks of this thesis, there exist too many structures in the world͛s population due to the history of 

migration and settlement across the planet. Instead, models are based on a more homogenous 

theoretical population with a sufficiency large sampling size such that there is approximate temporal 

stability - i.e. from one generation to the next, the population characteristics should not significantly 

change. When mathematically minded, we can simply describe this population as infinite, though we 

will instead usually describe this general population as having finite size ܰ where ܰ is very large. As 

described by Falconer
59

, the most significant assumption that we need for this populations is that 

the each generation transmits gametes to subsequent generations completely at random. In effect, 
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that all individuals have equal fertility and all potential mating pairs have equal probability of 

occurring. In detail, this requires that the formation of gametes should not engender any biases as to 

which alleles are transmitted to subsequent generations. Further assumptions about this theoretical 

population that are usually made include: (a) that it does not change in size between generations; 

(b) alleles are transmitted immaculately (without mutations); and (c) there is no migration of new 

individuals into the population.  

1.2.2 Frequencies of Alleles  

 

We have already introduced the notion of a genetic variant with (in the simplest case) two possible 

alleles (ܣ and �) and three possible genotypes (ܣܣ, ,�ܣ ��). Within a population, if we have access 

genotypes of all members, we can then calculate the frequencies of each genotype, which we shall 

denote as ݌��, ��݌ , and ݌��. We could equally think of the distribution of the genotype coming from ܰ individuals but from ʹܰ chromosomes (two from each individual). We can write down the 

frequencies of each of the two alleles which we denote as ݌�, and ݌�. By simple counting, we have 

the following: ݌� = ��݌ + ଵ2 �݌ and ��݌ = ଵ2 ��݌ + ��݌ . When we discuss a single variant in general, 

we will use the following ubiquitous notation of ݌ ݍ and �݌ = �݌  = . As ݍ is the frequency of the 

minor (or mutant) allele, it is more often the quantity of interest and will often be referend to as the 

Minor Allele Frequency (MAF).  

If we then consider a new individual being born within this theoretical population, one can attempt 

to predict their genotype for this variant. The probability of receiving allele ܣ from a parent (who has 

genotype ܩ௉) will be equal to: ͳ × ௉ܩሺܾ݋�� =  + ሻܣܣ
ଵ2 × ௉ܩሺܾ݋�� = ሻ�ܣ + Ͳ × ௉ܩሺܾ݋�� = ��ሻ = ݌�� + ଵ2 ��݌ =  ݌

Similarly, the probability of receiving allele � will be equal to ݍ by symmetry. Indeed, it is clear that 

this new individual͛s two alleles are effectively random draws from the pool of alleles in the parent 

population. This uses the conditions outlined in Section 1.2.1 specifying that this new individual has 
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two parents drawn completely at random, and each allele in the population is equally likely to be 

one of the two passed from these two parents to the child. Denoting the Ŷew iŶdiǀidual͛s geŶotǇpe 

as ܩை, with the random mating assumption, the inheritance of each allele is an independent event 

and the probability of the three possible genotypes are ��ܾ݋ሺܩை = ሻܣܣ = ைܩሺܾ݋�� ,2݌ = ሻ�ܣ ைܩሺܾ݋�� and ,ݍ݌ʹ= = ��ሻ =  If we then consider the birth of many individuals, or in effect the .2ݍ

arrival of an ሺ݊ + ͳሻ௧ℎ generation arising from random mating in the ݊௧ℎ generation, we should 

expect to see genotype frequencies in this ሺ݊ + ͳሻ௧ℎ generation approximately equal to ݍ݌ʹ ,2݌, 

and 2ݍ. These frequencies are known as the proportions of Hardy-Weinberg. If a genetic variant 

presents in these proportion in a population respecting the structural assumptions laid out is Section 

1.2.1 then it is said to be in Hardy-Weinberg Equilibrium (HWE). Often, a PearsoŶ͛s ߯2-test is 

employed to test for significant departures from Hardy-Weinberg proportions (HW) for a single 

variant. Small departures from HW can indicate structures within the population such as assortative 

mating, non-homogenous populations, or inbreeding. However, finding an extreme departure for a 

variant can be an indication of genotyping errors and so such variants are often excluded from 

subsequent analyses.  

1.2.3 Genetic Distance and Linkage Disequilibrium 

 

Genetic variants are linked together in chromosomes, and inheritance works through the 

transmission of long stretches of these chromosomes (Box 1.1.1). If we know that an individual has 

inherited a particular allele at a particular position from one of their two parents, we can infer that 

in fact they have also inherited a substantial chain of alleles (or haplotype) from that parent. Whilst 

the possibility of recombination events will suggest this inherited haplotype may be limited in size 

(i.e. will not span the whole chromosome for example), this inference can be highly informative and 

this linking of inherited alleles will drive many statistical models for population genetics. Hence it is 

of great importance to be able to describe the genetic distance between two markers on a 

chromosome in order to know how likely it is for haplotypes containing both markers to be 
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transmitted from parent to child. Two alleles on completely different chromosomes (e.g. on 

chromosome 1 and chromosome 19) each have a 50% chance of passing on an offspring, and as they 

are on separate chromosomes, there is a 25% chance of them both being passed on. This cannot be 

said of two alleles nearby on the same chromosome where two alleles on the same haplotype will 

either both be transmitted or neither will be; unless one (or possibly several) recombination event(s) 

occur between the two positions. 

In Box 1.2.3, we describe how genetic distance can be derived from the frequency of recombination 

events during the production of gametes via the Haldane mapping function
61

. Box 1.2.3 also gives a 

brief explanation of Gametic Disequilibrium and Linkage Disequilibrium (LD). LD is the persistence of 

Gametic Disequilibrium in a population (see Box 1.2.3 or for a full description see ͚GénétiƋue des 

populations’ by Jean-Louis Serre
60

). The LD-matrix plot in Box 1.2.3 was generated using R-package 

͚GastoŶ͛62
. This plot is a graphical representation of the lower-triangular portion of a square matrix 

that gives the correlation between each pair of a set of 150 genetic variants; with the rows ordered 

by the physical position on the genome. The darker coloured entries represent higher values of 

correlation. Two distinct regions are clearly seen, wherein variants are correlated with each other, 

but with very little correlation between variants in different regions. Such regions are referred to as 

LD-blocks. 
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Box 1.2.3 – Key concepts of genetic distance and linkage disequilibrium. 
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Recombination events do not occur completely at random across the genome; there are particular 

places that are far more susceptible to cleave during meiosis. These regions are known as 

recombination hotspots, usually between 1Kb and 2Kb in length
63

 (Kb=Kilo-base, 1000 base pairs, 

similarly we will also refer to length in Mb – Mega-base, 1,000,000 base pairs). Around 30,000 

hotspots have been identified on the human genome
64

 with an average hotspot resulting in 

recombination slightly less that once every 1,000 meiosis (Myers, et al. 
64

 suggested that the average 

proďaďilitǇ of recoŵďiŶatioŶ at a hotspot is roughlǇ Ϭ.ϬϬϬϳϱ ≈ ϭ/ϭϯϬϬͿ. In Figure 1.2.3, the 

recombination hotspots on chromosome 21 are displayed.  

 

Figure 1.2.3 - Taken from Myers, et al. 
64

 shows estimates of recombination rates on chromosome 21. 

A high peak indicates a high ratio between the distance between loci in cM compared to distance in 

base pairs. These peaks indicate particular high frequencies of recombination events (recombination 

hotspots). Of interest, the distribution of genes (on both the Up (+) and Down (-) strands) are also 

presented. 

  

1.2.4 Identity-By-Descent 

 

IBD was briefly introduced in Box 1.1.3, this is a key concept in this thesis. Simply, if we observe two 

alleles, then our assumption is that this pair will fall in one or three formations: (a) the two are 

different (e.g. ܣ and �), (b) they are identical (e.g. ܣ and ܣ), or (c) they are identical and what is 

more both alleles originate from a recent common ancestor. Alleles that are identical are said to be 

Identical-By-State (IBS) and alleles that are identical and share a common ancestral origin are said to 

be Identical-By-Descent (IBD). IBD-sharing is a particular example of IBS-sharing.  In Box 1.2.4, a 

simple example of IBD is given from a nuclear family (section A), then from a pedigree (family tree 

diagram) with an example of a consanguineous marriage (section B), and finally we present a well-
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known and useful method of notation to describe possible IBD configurations between two 

individuals (Section C). For example: ∆ଵ is the probability of all four alleles being inherited IBD; ∆ସ is 

the probability that individual ݅ has two alleles which are IBD, and individual ݇. The probabilities of 

the nine IBD states for the two siblings in section A of Box 1.2.4 are ሺͲ, Ͳ, Ͳ, Ͳ, Ͳ, Ͳ, ଵସ , 2ସ, ଵସሻ. For the 

two siblings in section B, the corresponding values would be ሺ ଵ଺ସ , Ͳ , 2଺ସ  , ଵ଺ସ , 2଺ସ , ଵ଺ସ , ଵ5଺ସ , ଷ଴଺ସ , ଵ2଺ସሻ. 

 

Box 1.2.4 – Key concepts of Identity-By-State (IBS) sharing and Identity-By-Descent (IBD) sharing.  

The expected values of nine IBD states, first described by Jacquard
58

, can be estimated from a given 

pedigree. This can be done using recursion algorithms
65

, with the idea being that the probabilities of 

each IBD state between two individuals can be derived explicitly if we know the probabilities of each 

IBD state ďetweeŶ eǀerǇ pair of the two iŶdiǀiduals͛ four pareŶts. If this principal is followed, within 

a fiŶite pedigree, eǀeŶtuallǇ oŶe arriǀes at the ͚fouŶdiŶg͛ iŶdiǀiduals, where the fouŶders of a 
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pedigree are simply those for whom no information about their parents has been recorded. It is 

often cumbersome to work with all nine probabilities. If inbreeding (IBD-sharing between two alleles 

within an iŶdiǀidual͛s genotype) is expected to be very low, it is often assumed that only the last 

three coefficients ሺ∆଻, ∆଼, ∆ଽሻ are non-zero and the notation ሺ݇2, ݇ଵ, ݇଴ሻ is often used (or similar), 

which indicates the proportions of two alleles shared IBD, one allele shared IBD, and zero alleles 

shared IBD. For brevity, we will write IBD=2, IBD=1, and IBD=0. Knowledge of IBD-sharing between 

individuals and identifying shared regions can be used to infer degrees of relatedness between 

individuals and has many applications such as in linkage analyses
66

, in methods for establishing 

genetic phase and for genetic imputation (focus of Chapter 3), and in heritability studies (focus of 

Chapter 4). 

Before continuing, one further concept that is necessary to introduce is the kinship coefficient 

between two individuals ݅ and ݇. This is the probability that two alleles from the same position, �௜  & �௞  , that are randomly sampled from two individuals ݅ & ݇ will be IBD. We can write this as �ሺ�௜ =ூ஻� �௞ሻ. Given that the IBD state of this position will necessarily be one of the nine states 

described above, we can condition on these possible states and write: 

�ሺ�௜ =ூ஻� �௞ሻ = ∑ �ሺ�௜ =ூ஻� �௞|݁ݐ�ݐݏ �ܤܫ ݈ሻ௟ ∆௟  

Going through the possible pictograms in Box 1.2.4, it is clear for example that if the two alleles are 

drawn from a position in IBD state 1, then they will certainly be IBD. If the position has IBD state 2, 4, 

6, or 9, then as there are no IBD connections between ݅′ݏ alleles and ݇′ݏ alleles then the two 

randomly drawn alleles cannot be in IBD. For states 3, 5, 7, and 8, the two alleles may be in IBD, 

depending on the random draws. The probabilities of selecting two alleles IBD from these states are 

ଵ2, 
ଵ2, 

ଵ2, and 
ଵସ, respectively. In this way we arrive at the following: 

�ሺ�௜ =ூ஻� �௞ሻ = ∆ଵ + ͳʹ ሺ∆ଷ + ∆5 + ∆଻ሻ + ͳͶ ∆଼ 
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The usual notation for this kinship coefficient is ߮௜௞. The ͚self-kiŶship͛ coŵes froŵ the saŵe idea of 

randomly drawing two alleles from the same individual, ߮௜௜  in effect. By considering each possible 

IBD case, we can see that: ߮௜௜ = ∆ଵ + ∆2 + ∆ଷ + ∆ସ + ଵ2 ∆5 + 
ଵ2 ∆଺ +  

ଵ2 ∆଻ +  
ଵ2 ∆଼ +  

ଵ2 ∆ଽ 

 This we write as 
ଵ2 ሺͳ + ௜݂ሻ where ௜݂ is the inbreeding coefficient of individual ݅ and is equal to ∆ଵ + ∆2 + ∆ଷ + ∆ସ; this describes the probability of the individual having two alleles inherited from 

a single ancestor at a given position. The inbreeding coefficient of individual ݅ is also observed to be 

the kinship coefficient of the two parents of individual ݅. 
1.2.5 Population Isolates 

 

There is no strict definition of an isolated population; here we depict an isolate by evoking first large 

population, followed by a bottleneck or founding event, and a subsequent demographic growth in 

isolation due to geographical or cultural factors (Box 1.2.5a). The attributes of the isolate will depend 

on the makeup of the population when it was at its smallest size or at the founding event and indeed 

the initial period of growth after the founding event that may involve a high percentage of marriages 

between related individuals. These attributes will likely represent a drift away from the initial large 

population.  

In the opening remarks of this thesis, I gave the Icelandic population as an example of an isolated 

population. The key elements that characterise this particular population are: (a) the founding event 

- the period of settlement during which the first arrivals from Scandinavia and the British Isles began 

to reside permanently on Iceland; and (b) the expansion of the population in isolation from the rest 

of Europe. This is an over simplified description of the population history of Iceland as indeed 

subsequent bottleneck events linked to famine and epidemics
6
 have increased the drift in the 

characteristics of this isolate. 
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Box 1.2.5a – Characterising an isolated population. 

The study of genetic isolate data began as a logical extension of studies of large families with many 

individuals affected by (mainly) Mendelian disorders
67,68

. The example of non-syndromic deafness in 

Bedouins (as given in Section 1.1.4) being a classic example. Advances in sequencing technology 

have brought the opportunity of performing association analyses with more complex traits on large 

numbers of individuals from within an isolate. Indeed, isolates hold many intrinsic advantages for 

association analysis.  

The bottleneck and the subsequent period of growth will results in changes in allelic frequencies. 

This phenomenon is a particular example of ͚geŶetic drift͛ first described by S. Wright
69

. This means 

that one should expect the frequencies of genetic variants in an isolate to be different from the 

population of origin. For a complex trait with a polygenic architecture, the divergent frequencies of 

causal variants in the isolate may facilitate the identification of said variants. Box 1.2.5b shows an 

isolate where the founding event has led to certain causal variants to disappear (as in no carriers of 

the alternative allele remain); and furthermore, some causal variants exhibit a higher minor allele 

frequency in the isolated population. Shortly after the founding event, the small size of the 

population will further drive this perturbation of allele frequencies.  
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Drift caused by a bottleneck can lead to specific presentations of the trait in question within the 

population. For example, the studies of the isolate Pima Indian populations have found unusually 

high rates of type 2 diabetes but also near null rates of type I diabetes
70-72

. Furthermore, background 

genetic variation in a population isolate will also be reduced due to the relatively small gene pool (or 

founding pool) from which all individuals are descendant. Therefore, there is less risk of potential 

false positive results from association analyses due to the homogeneous nature of the population
20

. 

In a general population, genetic variation can easily be confounded with environmental factors that 

affect a given trait. This can happen when individuals from multiple ethnicities are studied together, 

whose differing cultures and lifestyles may be associated with a particular trait. Stratification within 

a population is a common source of bias, but it is one that should be largely avoided when studying 

an isolate.  

 

Box 1.2.5 – Motivation for studying complex traits in isolates due to unique trait architecture. 

A further benefit of studying isolated populations is that all individuals can be assumed to share a 

similar environment. This is not a completely safe assumption; isolated populations will still contain 

a mix of smokers and non-smokers for example and so data for potentially important non-genetic 
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explanatory variables must still be collected. However, the fact that all members share a broadly 

similar lifestyle makes isolated populations appealing for complex trait analyses as it suggests that a 

larger proportion of the phenotypic variance should be genetic based and that there will be less 

noise affecting the trait. A final unwanted potential source of variation in the trait can come from 

different diagnosticians or measurement methods. Peltonen, et al. 
21

 give the example of studies in 

Finland where all clinicians are trained in one of five medical schools, all of which share academic 

traditions. In practical terms, studying an isolate can again be beneficial due to the practically of 

having all individuals living nearby one another and with data collection being performed at perhaps 

a single location. The contained (geographical or cultural) nature of an isolate also facilitates the 

collection of genealogical data. For many isolates it has been possible to gather extensive pedigree 

information; the deCode project in Iceland and the Hutterite population being important examples.  

Isolated populations will also have specific haplotype structures. From the point of view of 

population genetics, this is manifest as patterns of LD that are unique to the isolate due to the 

particularity of the founding individuals and the particular stochastic realisation of recombination 

and pairings in the population
73-75

. Notably, population isolates will often exhibit particularly long 

blocks of LD. From the point of view of family/pedigree based genetics; this specific haplotype 

structure can be described by relatedness between all individuals; with the expectation being that 

even pairs of individuals who are not closely related will still share very long haplotypes, or long 

stretches of IBD=1
76-79

. This property enables the use of many statistical methods based on IBD 

sharing in the study of isolated populations.   

The degree to which isolates will display such noticeably specific characteristics will depend on their 

age, size and the nature of their bottlenecks or founding events
20,21

. Efforts have been made to 

classify and compare genetic isolates; by estimating the number of generations since the founding 

event
80

, levels of inbreeding
81

, and the (effective) size of the isolate
82

. The effective population size is 

a concept from the field of population genetics. For an isolate describes the size of a hypothetical 
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idealised population that would produce similar results when analysed equivalently to the true 

observed data from the isolate. Recently a formal index of isolation has been proposed by E. 

)eggiŶi͛s group83
. Their measure, ݔݏܫ, combines information regarding the time since the founding 

event, the level of genetic drift, and the effective population size. Such characteristics are important 

as they may determine the particular strength or weaknesses of an isolated population for gene-

mapping (finding associations between genetic variants and complex traits). Younger isolates that 

still present relatively high inbreeding (following consanguineous pairings after the bottleneck) and 

extended LD may be particularly useful for identifying new genomic regions associated with a 

trait
84,85

. Older isolated populations carry the same advantages (if not to the same extent), but here 

larger sample sizes can be gathered. This can allow searches for rarer genetic variation and more 

precise localisations of disease variants can be found
80

.    

1.2.6 Studying Complex Traits in Isolated Populations: Track Record 

 

A myriad of multifactorial traits have been studied by genetic epidemiologists, and data from 

isolated populations have played an important role. Indeed, the current largest combined panel of 

human reference genomes, the Haplotype Reference Consortium
86

 (HRC), contains many datasets 

arising from cohort studies of small founder populations including the MANOLIS
87

 cohort, the Val 

Borbera
73

 cohort, and cohorts from Sardinia
88

, Finland
89

, and the Orkney Islands
90

. I will give three 

case studies of three different traits analysed in three different isolates to demonstrate the concepts 

and potential of studying complex traits in isolated populations.  

The first eǆaŵple is the studǇ of Alzheiŵer͛s Disease ;ADͿ iŶ the IcelaŶdic population. Iceland 

represents a near extreme example of an isolate in that (a) the modern day population is now of 

very large size, (b) it is an isolate derived from a large number of founding individuals, and thus (c) 

the expected IBD sharing probabilities between individuals is quite low compared to other isolates.  

This population has produced discoveries of genetic variation that affect the development of AD. I 

have already made reference to the discovery of a protective allele against AD found within the APP 
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gene in section 1.1.4. Other significant discoveries coming from Iceland include variants associated 

with increased risk of AD in the genes TREM2
91

, TM2D3
92

, and ABCA7
93

. The specific variant found in 

TM2D3 had a MAF 10-fold greater (0.005 vs 0.0005) in the Icelandic study sample than the MAF 

observed in other European populations. This genetic drift leading to this ͚eŶrichŵeŶt͛ of a ŵutaŶt 

allele, facilitating its own discovery through association analyses, highlights one of the 

aforementioned advantages of studying isolates for complex traits. Similarly, the variant found in 

TREM2 had a MAF of 0.062 in Iceland compared to MAFs between 0.001 and 0.002 in the replication 

studies carried out in other European populations.  

Note that these variants were still very rare in Iceland and that large sample sizes are required in 

order to spot associations with such variants and further characteristics of the population are also 

crucial to the success of such studies. In Steinberg, et al. 
93

, we see that the associating testing that 

lead to the discovery of a rare variant in the ABCA7 gene involved 3,419 individuals with AD (the 

cases) and 151,805 control individuals! There are two points of interest here, firstly all of the cases 

were diagnosed with AD using one of only two possible strict sets of established clinical criteria and 

were all enrolled at the same university hospital in Landspitali. Whilst we cannot vouch first hand for 

the quality of the study, it seems reasonable to presume an advantageous homogeneity in the 

phenotypic data. More impressive is the number of controls involved in the study, however the 

majority of this data was not directly sequenced but inferred from a set of 2,636 individuals with 

WGS data. Most individuals only had Array type data
76

 but dense genetic data could be inferred by 

methods based on sharing of long haplotypes IBD between individuals and the presence of closely 

related individuals. Hence, the haplotypic structure of the population and opportunities in data 

collection made feasible the statistical analyses that led to these discoveries. Subsequently, these 

discoveries have been replicated in other populations and have improved biological understanding 

of AD
94

.  
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A second example is studies of Schizophrenia in Finland. Studies in Finland have been undertaken on 

the general Finnish population (which has similarities to Iceland) but also on certain small internal 

founder populations arising from settlements in the North and East of Finland. A description of the 

demographic history is given in Hovatta, et al. 
95

; the first evidence of inhabitation in Finland dates 

from 11,000 years ago, but with the largest expansion in the population following a bottleneck 

around 4,000 years ago. The general population of Finland remained isolated for geographic and 

cultural reasons and in 16
th

 and 17
th

; new settlements in the North and East resulted in small internal 

isolates. Rates for schizophrenia and related conditions had been observed to be above those 

measured in other parts of the world, particular in rural areas including the small internal founder 

populations
95

. An early analysis of families from one such isolate uncovered multiple possible loci 

associated with the trait
96

. Below, the genealogical connections between individuals with two 

children who have schizophrenia are shown (Figure 1.2.6a) for a large family from within the internal 

isolate study in Finland. 

 

Figure 1.2.6a - Pedigree structure from the north-east internal isolate in Finland; taken from Hovatta, 

et al. 
96

 

One such region that was found was on chromosome 1, the signal would later be identified as 

coming from the gene DISC1. Originally, translocations in this gene were associated with 

Schizophrenia from family-based studies in Scotland
97,98

. However, the translocation in this family is 
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incredibly rare in general populations. It was from continued study of the Finnish populations (both 

the general population as well as further families from the small internal isolates) that the 

importance of the gene began to emerge
99-102

. Indeed, the presence of very specific haplotypes in 

the internal Finnish isolate proved to be particularly informative
103,104

. It is now a gene that has been 

studied extensively and is known to be of significant importance for many cognitive functions
105

. 

Interestingly, other known genes associated with schizophrenia have been shown to not play 

significant roles in the development of the trait in Finland
106

. Again, many of the advantages of 

studying isolated populations helped to aid this discovery. Schizophrenia is difficult to diagnose, but 

the clustering of cases in the small internal isolate was recognised and the study of which could be 

carried out uniformly between patients. The availability of genealogical data, and the haplotypic 

specificity of the population were also very important; plus, the advantage of a natural decrease in 

other possible genetic risk factors related to the affliction. 

In a last example, we turn to studies of allergic Asthma in the Hutterite population. This population is 

an exemplum of a small founder population. A full description and detailed history of this population 

was given by A.P. Mange 
107

. Originating from the 16
th

 Century from communities in the Tyrolian Alps 

(modern day border zone between Italy and Austria), this religious sect moved East across Europe, 

before a group of about 800 individuals made the journey to the New World, settling in South 

Dakota. This population has existed in isolation due to resolute beliefs and desire to self-govern; to 

quote directly from A.P. Mange (who has a nice turn of phrase). 

Excerpts from ͚Groǁth and Inďreeding of a Huŵan Isolate’, Mange 
107

. 
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Meta-analyses across many populations, of which data from the Hutterites invariably plays a role. To 

highlight one in particular, investigation of the link between the trait and the HLA gene on 

chromosome 6 was aided greatly by the analysis of haplotypes in the Hutterite population
118

 as this 

is a region that has high variability and is notoriously difficult to analyse. Further findings coming 

principally from studies of the Hutterites include the link with the genes CH13L1
116

 and NEDD4L
117

.  

 

Figure 1.2.6c – Artistic impression of GWAS hits for Asthma, taken from Ober 
119

. The strongest GWAS 

signals are characterised as the fruit that hang lowest, which are thus easiest to capture. 

In general however, the overall picture of genetic aetiology of Asthma still holds many mysteries and 

further discoveries will require more advanced analytical techniques and richer datasets (containing 

both genetic and non-genetic information)
119

. In Figure 1.2.6c, the ͚low haŶgiŶg-fruit͛ hǇpothesis is 

displayed, taken from C. Oďer͛s reǀiew ͞Asthma Genetics in the Post-GWAS Era”119
. This shows the 

genes that have been discovered to be associated with Asthma as those that have descended most 

froŵ the tree͛s top; where this distaŶce reflects the streŶgth of associatioŶ sigŶals that are oďserǀed 

in GWAS. Different coloured vertical sections represent the 22 autosomal chromosomes. The idea 
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being that the techniques that have been applied so far are fine for finding the more obvious sources 

of Asthma variation in the genome; while new approaches will be required to explore the higher 

parts of the canopy. In the next section, I will explore the current role of isolated populations in a 

hyper-modern context. 

1.2.7 Studying Complex Traits in Isolated Populations: Prospective 

 

Directly sequencing whole genomes in isolates can be motivated by a desire to gain high confidence 

in the genotyping and to find types of rare genetic variation that would otherwise not be observed. I 

will give a quick aside as to why the search for genetic variants that drive quantitative trait 

architecture has increasingly turned on to more complex and/or more unusual genetic variation. In 

the study of many traits, progress has encountered a hurdle in the well-known phenomenon of 

͚ŵissiŶg heritaďilitǇ͛. HeritaďilitǇ will ďe the central theme of Chapter 4, for now a simple definition 

can be given. When modelling such traits, either the quantitative phenotype itself or the odds of 

developing a disease may be transformed in order to follow a Gaussian distribution. The variance of 

this distribution can be written as �ܸ and a general assumption is that this variance can be split into 

two components, one underpinned by genetics, the other by environmental factors. Therefore, we 

can write �ܸ =  ܸீ + ாܸ, the sum of the genetic variance ܸீ  and the environmental variance ாܸ. The 

heritability of the trait is then the quotient ܸீ �ܸ⁄ . This describes the proportion of the observed 

variance of the trait that can be ascribed to inherited genetic factors. How can this heritability be 

͚missing͛ exactly? This refers to the observation that estimates of heritability using data from 

families are very often considerably higher than estimates from cohorts of unrelated individual 

based on observed genotypes
120-123

. Thus, we caŶ haǀe aŶ estiŵate of the role of oŶe͛s whole 

genome, but this value cannot be attained when attempting to list and observe the particular 

elements that comprise this role. Furthermore, current lists of confirmed or putative causal variants 

can often only explain a fraction of the heritability estimated from family data. The meaningfulness 

of these gaps between estimations of heritability has often been overstated or wrongly 
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interpreted
124

. Missing heritability has, nevertheless, motivated the scientific community to explore 

approaches that are more sophisticated in order to make new discoveries, often concentrating on 

rare genetic variation.  

The sequencing of genetic isolates in recent years has already supplied contributions to this end. 

Sequencing studies have recently been carried out in Greek isolates
125,126

; in Croatian isolates
127

; the 

Hutterites
117

; Sardinia
88

; Finland
128

; the Faroe Islands
129

; Ashkenazi Jews
130

, Qatar
131

, and French 

Canadians
132

. We have also already mentioned sequencing studies in Iceland
133

, Orkney
90

, and in a 

North Italian isolate (Val Borbera)
73

. Without exception, all studies listed above revealed numerous 

novel genetic variants and many new association signals. A notable example of a finding that 

involved very rare variants specific to the population is found in Gilly, et al. 
125

 who studied the 

MANOLIS isolate (mountainous villages from the island of Crete). Here, association between 

aggregated rare mutations in the FAM189B gene with measured levels of triglycerides were found; 

with the variants driving the signal only being uncovered through deep (high quality) whole-genome 

sequencing in the population. A concept that was developed in recent publications of the same 

group is that the small population sizes in isolated populations limit the action of purifying selection 

– the diminishing of deleterious mutations in the population
83

. In an isolate, certain variants (which 

are usually highly rare in general populations) will occur with elevated frequency. By considering the 

hypothesis of low effectiveness of selection, it can also be expected that these variants with higher 

allele frequencies found in isolates may also have high functionality. In two studies of recently 

attained WGS data (one on MANOLIS
126

, and one on data from many isolates
83

) enrichments of such 

rare variants with predicted high functionality. Similar enrichments were found in WES studies in 

Finland
134

 and in the Vis island in Croatia
127

. This strengthens the idea that isolated populations 

should continue to be good sources of new association signals for complex traits and the recent 

increase in WGS data creation in isolates will likely soon produce further discoveries. 
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Sequencing technology and genetic imputation methods have greatly improved the precision of 

genome data. Looking more closely at the biological chain of events that links DNA and complex 

traits, there are clearly many other possible types of ͚omics͛ data that can be gathered and analysed. 

There has been recent interest in adding similar precision for measurements of the transcriptome 

(levels of RNA transcribed from DNA), the proteome (levels of proteins generated by RNA), and the 

metabolome (the complex molecules such as lipids, sugars and amino acids with direct biological 

actions, (see Box 1.2.7). There are complex interactions between these different layers, and while 

DNA remains mostly constant, other omics data vary greatly between different cell types in the 

body.  As of yet, few studies of isolated populations have begun to explore such data, though as 

described above, the functional classes of variants found in isolated populations are now often being 

considered. In Benton, et al. 
135

, a study of the Norfolk Island isolate, a region on chromosome 1 was 

identified to be associated with multiple cardiovascular related traits and an exploration of gene 

expression data revealed that the locus was associated with transcripts of 55 genes. An investigation 

of these genes indicated a possible connection to a biological pathway controlling purine 

metabolism. Without plunging into too many details, the important message is that in this isolate, 

the transcriptome data for a range of genes had been previously shown to be heritable in the 

 

Box 1.2.7 – The different levels of ͚oŵics’ data. 
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isolate
136

, and a connection was made between a significant GWAS hit in a non-coding (intragenic) 

region and the expression levels (amount of RNA produced) in distant and potentially relevant 

genes. This might suggest that the advantages of studying isolated populations could carry through 

to more complex analyses involving omics data. 

What is also apparent when looking at Box 1.2.7, is the importance of gathering far more precise 

data regarding phenotypes (the phenome) and even environmental exposures (the exposome). As 

described above, population isolates have proven beneficial, as it may be the case that very specific 

forms of phenotypes can be observed and that data collection can be well regulated. Similarly, high 

quality data relating to environmental exposures can be obtained in isolates for precisely analogous 

reasons. Again, in the MANOLIS population, recent analysis has found both genetic and 

environmental explanations for rates of cardiovascular disease. A variant in the APOC3 gene, which 

occurs with an unusually high MAF in the cohort, was shown to be protective against heart disease 

as it was associated with low levels of certain lipids in the blood
137

. However, in this population, 

particularly poor dietary habits are quite common and augment the risks of such traits
138

. This 

highlights a potential for studies in isolated populations to be able to study both genetic and non-

genetic risk factors with precision. Studies in isolates involving statistical interactions between genes 

and environment may also prove to be successful due to the lack of statistical noise in both factors. 

Again, by looking at the extreme examples of human genetics found in isolates, it may be possible to 

enhance biological understanding that can be applied to treatments and initiatives in wider 

populations.  

However, the main research directions in genetic epidemiology which explore the architecture of 

complex traits (that often appears increasingly convoluted) are relying on methods that leverage 

information from huge numbers of individuals. The unavoidable weakness of studying population 

isolates is the limitations of sample size (outside of examples such as the Icelandic population), and 

hence statistical power for many analyses. The polygenic model, where 100s or even 1000s of genes 
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are iŵplicit iŶ a traits distriďutioŶ, has ďeeŶ suggested as iŶsufficieŶt. The Ŷew ͚oŵŶigeŶic͛ 

model
139,140

  has provided a working hypothesis for the observation that for many traits, it would 

appear that most regions of the genome are contributing to the heritability of a trait
141,142

 and that 

pleiotropy is widespread
143

. Furthermore, this model highlights the involvement of genomic regions 

that regulate the expressions of ͚core͛ geŶes, rather thaŶ focusiŶg oŶ the roles of these ͚core͛ geŶes 

themselves. Note that debate continues as to the relevance of this recently proposed model
144

. The 

role of gene expression levels in different tissues in the body is also now being studied
145

. 

Assumptions involving huge numbers of variants, interacting in complex networks, each contributing 

tiny marginal effects, are hard to test. For many traits, GWAS are now operated by large consortiums 

performing meta-analyses on data recruited from many cohorts. In 2018, several meta-analyses 

were published involving over 1 million genomes
146-148

. What is more, a vogue has emerged for 

statistical methods that are based on exchanged summary test statistics from individual GWAS 

studies. Specifically, the test statistics and estimated effect sizes relating to each association test 

with each genetic variant in a GWAS have been shown to hold sufficient information to carry out 

further analysis without observing the underlying individual genotype data
149

.  

It can therefore be hard to see what role studies of small genetic isolates will continue to play in the 

face of studies that involve huge sample sizes and the appearance of resources such as the UK 

Biobank
150

 (ܰ~ͷͲͲ,ͲͲͲሻ in complex trait genetics. As has been discussed, the characteristics of 

isolates may give increased power for detecting signals, but hyper-rare variants or variation/patterns 

with very subtle effects may be beyond the scope of studies in population isolates.  

Therefore, a necessary future direction for population isolates might be to combine resources.  

While each isolate will contain its own unique genetic characteristics, the signals found in one isolate 

have often been replicated in general populations. To give an example, a variant found in the gene 

NDST3 strongly associated with schizophrenia in the Ashkenazi Jewish population was also shown to 

be associated with the trait in a range of further cosmopolitan samples
151

. Furthermore, replicated 
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results can occur between multiple isolates. I earlier referred to the heart-disease protective variant 

in APOC3 in a Greek isolate; this was indeed a replication result as this variant had already been 

found in an Amish founder population
152

. In Xue, et al. 
83

, by looking at WGS data from several 

isolates, an illustration is given of how rare genetic variation with important predicted functions can 

be shared across different isolates. This provides hope of the potential of ensemble data from 

different isolates; indeed as far back as 2010, a successful meta-analysis was carried out on five 

isolates of different European origins
153

; finding associations between three genes and levels of 

creatinine serum (linked to kidney function).  

Another area where data across multiple isolates has been studied is when looking at the effects of 

inbreeding. Runs of Homozygosity (ROH) describe sections of the genome where an individual 

harbours two haplotypes in IBD, and is therefore homozygous at every position across this IBD 

region. A recent review looked at the relationship between proportions of occurring ROH and 

complex traits
154

. Many studies that have so far looked at ROH are based on isolated populations, 

including the study of Joshi, et al. 
155

 which found associations between ROH levels and traits such as 

height and cognition. Isolated populations are suitable for such studies due to the presence of 

inbreeding.  

So far when discussing the genetics of complex traits and GWAS in isolated populations, this has 

referred to tests uŶder ͚additiǀe͛ ŵodels as this is ďǇ far the ŵost coŵŵoŶ practice. The additive 

model (given in Section 1.1.5) assumes that the effect of a causal variant is linear in the number of 

minor alleles in the genotype. However, departures from this model are often observed, for example 

many Mendelian disorders follow recessive or dominant models. In a recessive model for example, 

the disorder will only occur in individuals with genotype containing two mutant alleles (��), and a 

dominant model would be where the individuals with genotypes ܣ� or �� will have the disorder. 

Isolated populations with high consanguinity such as the Hutterites have proved useful in detecting 

rare recessive autosomal disorders. Genetic variants involved in complex traits can also act (in part 
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or completely) in such non-additive ways; this will be fully explored in Chapter 4. When performing 

additive GWAS, there is far less power to detect variants with non-additive effects, particularly for 

those that act recessively
156

. By considering isolated populations, where both inbreeding and pairs of 

individuals sharing regions IBD=2 may be present, it may well be possible to investigate such genetic 

variation far more effectively than in general populations.  

To summarise, the important future directions for isolated populations will involve attaining high 

quality WGS data in isolates, looking at more creative hypothesis and models for complex trait gene-

mapping, and gathering data from multiple isolates and meta-analyses. 

1.2.8 Applying Knowledge of the Genetics of Complex Traits 

 

Finally, what is the motivation of the search for associations between genetic variants and complex 

traits? Common multifactorial diseases place an enormous burden on modern health-care resources 

as well as debilitating vast numbers of individuals. If each iŶdiǀidual͛s susceptiďilitǇ to a certaiŶ trait 

depends on what is possibly a huge number of genetic variants, it can be difficult to imagine what 

solutions could be laid out from the increasing lists of GWAS signals. However, finding such 

association signals has led to many successes. Identifying a locus associated with a trait can be the 

first step in understanding a particular biological functionality and how oŶe͛s DNA caŶ affect such a 

function. This in turn can lead to possible therapies and the development of new medications. This is 

by no means the case for every GWAS hit discovered but a small number have been involved directly 

in new treatments
157

. Another important benefit of studying complex trait genetics is in diagnosis. It 

has become clear that traits such as Asthma are really in fact umbrella descriptions of many 

phenotypes
158

. Understanding underlying genetic effects leads to the possibility of far more 

pertinent descriptions of each iŶdiǀidual͛s afflictioŶ.  

This leads to the concept of ͚precisioŶ medicine͛, where aŶ iŶdiǀidual͛s treatŵent is tailored to their 

genome and this is already an active area of modern medicine. One important example is the now 
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routine tests for a particular genetic variant in the HLA-B gene that was shown to be linked with 

extreme sensitivity to the drug Abacavir used in the treatment of HIV
159

. Individuals carrying the rare 

allele are prescribed alternate treatment. In the field of oncogenomics, there have long existed 

treatment protocols that depeŶd oŶ the geŶetic ŵakeup of aŶ iŶdiǀidual͛s tuŵour cells as well as 

genetic scans to assess pre-symptomatic risk
160-162

. For complex traits, there may be currently less 

examples but many studies have begun to assess the relationship between genetic variation and 

possible treatments. For example, individuals carrying mutations in the DRD2 gene have been shown 

to respoŶd particularlǇ well to certaiŶ treatŵeŶts for ParkiŶsoŶ͛s Disease163,164
. It is likely that in the 

coming decades, more and more of the findings from research into complex trait genetics will find 

their way into clinicians͛ aŶd diagŶosticiaŶs͛ toolboxes. There is also the possibility of predicting the 

development of phenotypes from genotypes; this being relevant mostly for traits with a late age of 

onset. This approach that has been explored extensively, though often with limited success, and 

debate continues as to the utility and practicality of such prediction for many traits
165

. 

As alluded to in previous sections, the genetic architectures of complex traits have proven to fully 

live up its billing – they are highly complex. However, this should not discourage. Whilst the 

measureable overall impact of genetic epidemiological studies into complex traits may have not met 

certain expectations, the proven successes so far and the current velocity of research indicate that 

the progress in subsequent decades should be substantial. 
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Chapter 2: The Cilento Isolate, real and simulated versions  

2.1 Gioi, Cardile, and Campora 

 

For this project, we have access to a very valuable resource - genetic data from the genetic isolates 

of Cilento. We have access to this data thanks to our continued collaboration with Dr. Marina Ciullo, 

Dr. Teresa Nutile, and Dr. Daniela Ruggiero based at the Institute of Genetics and Biophysics, A. 

Buzzati-Travesro – CNR in Naples, Italy. This dataset comes from three remote hill villages, Campora, 

Cardile and Gioi located in the National Park of Cilento in Southern Italy (Box 2.1).  

 

Box 2.1 - The Cilento Isolates 

The area was likely to have been first settled by individuals of Greek origin, in the 8
th

 Century BC. The 

region was subsequently conquered and then reconquered by the Lucanians (Italic tribe of Southern 

Italy) and the Greeks, respectively. The grouping of inhabitants into significant villages in this area 

occurred later on in the 10
th

 and 11
th

 centuries. This change was driving by the presence of monks 

from the Byzantine Empire who had fled the coastline and the frequent Saracen raids. Records of a 
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settlement in Campora do date back to the around the 5
th

 Century BC, before the arrival of the 

monastics around the 11
th

 century AD. Gioi first appeared in the 9
th

 Century AD, and Cardile seems 

to have (at least in part) been founded from individuals coming from Gioi in the 11
th

 Century
81,166,167

.   

Importantly, the region suffered dramatically from an outbreak of the Plague in the 17
th

 Century AD 

which greatly reduced the population size. This caused a bottleneck in the populations of the three 

villages. The region then experienced isolation until the end of the Second World War. Since, the 

populations of all the three villages have decreased in size due to outward migration. Hence, the 

three villages represent an example of a small and young genetic isolate. Genetic studies of the 

three villages began early in the new millennium
168

 establishing the isolation of the region
81,166

 and 

leading to publications relating to obesity
169

, behaviour of smokers
170

, vascular endothelial growth 

factor (VEGF) serum levels
171

, Placental Growth Factor serum levels (PGF)
172

, and CRIPTO serum 

levels
173

. Very recently, evidence has been found of individuals from Cilento who either suffer from 

CADASIL disease or Pseudoxanthoma Elasticum (both are Mendelian disorders). This was based on 

the detection of known disease alleles in the population through whole-exome sequencing
174

. 

The study sample is composed of 2,304 individuals with deep phenotyping (anthropometric, 

cardiometabolic, and haematological traits) and detailed health status information (structured 

questionnaires and clinical records). For 1,617 individuals we have dense marker genotyping data 

(~͸ͲͲ,ͲͲͲ mostly common variants spread across the genome) and in addition we have deep 

exome sequencing data (~400,000 mostly rare variants in protein coding genes) for 247 of these 

individuals which were generated at the Sanger Institute, UK. These 247 individuals form a study 

specific panel for imputation. A subset of 19 individuals (with some overlap to the 247 WES 

individuals) has also been sequenced at the Sanger Institute across the whole genome. The 1,617 

individuals with Array data were not all sequenced on the same chip:  individuals from Campora and 

Cardile have been genotyped on an Illumina 370 K array (370K), whilst individuals from Gioi have 

been genotyped on an Illumina HumanOmniExpress array (OMNI). The WES and WGS datasets are 
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both of high quality; having mean sequencing depths (a measure of the thoroughness of the 

sequencing) of ~͹ͷx and ~ͷͲx, respectively. 

Genetic imputation has been carried out in Cilento, a process that imputes genetic data at positions 

not found on genotyping arrays. This imputation was achieved using the publically available panel of 

cosmopolitan reference haplotypes from the 1000 Genomes Project
175,176

. This panel consists of 

2,504 individuals with high quality WGS data from a wide range of global populations. Methods for 

genetic imputation will be a focus of Chapter 3 of this thesis. The imputation in Cilento provided the 

possibility to approximate WGS data for all 1,617 individuals in Cilento. This has enabled more in 

depth analysis of the Cilento dataset and has made possible collaborative meta-analyses that have 

combined data from Cilento with data from other populations.  In 2016, a meta-analysis led by our 

collaborators in Naples using data from Cilento uncovered six novel loci associated with VEGF serum 

levels
177

. This meta-analysis incorporated results from diverse sources including the Framingham 

Heart Study, Icelandic and Sardinian cohorts, and the Val Borbera isolate of Northern Italy. Cilento 

has also recently participated on a large meta-analysis on the effects of homozygosity and 

inbreeding which including many European Isolates
155

. 

Previous analysis of the Cilento isolates has examined the average inbreeding and kinship 

coefficients between pairs of individuals
81,166

. The three villages have lower coefficients than the 

Hutterite populations. Levels of relatedness for Cilento fell slightly below estimates from previous 

studies of isolates from Sardinia
178

 and slightly above estimates from the Icelandic population
179

. The 

most important bottleneck involved in the history of these villages occurred quite recently (17
th

 

Century). The Cilento isolates can be characterised as young (< ʹͲ generations) with mild 

inbreeding. In this thesis we will mostly treat Cilento as a single isolate, though the three villages can 

be thought of as representing three distinct isolates. Campora is the least similar to the other two 

villages. Gioi and Cardile have a shared origin, being estimated to have separated approximately 

1000 years ago
166

. In a recent study, the WES data from Cilento has been explored where many 
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novel variants, variants with allele frequencies that appear to have drifted, as well as rare, disease-

causing variants have been found
174

. This analysis of the WES data has further explored the 

consequences and the evidence of isolation of the three villages of Cilento.  

The aforementioned successes from analyses of the Cilento isolate and the recent efforts to gain 

sequencing data in Cilento indicate that continued studies of the genetics of this isolate will lead to 

further important results. 
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2.2 Integral Simulation Study 

 

In this thesis, we will analyse both the Cilento dataset and simulated datasets with the same 

structure as Cilento. In order to create realistic simulated data with similar properties to Cilento, we 

used the software Genedrop
180

. This method uses the pedigree structure of Cilento. Below, in Figure 

2.2, the pedigree structure for part of the Cilento population is given. 

 

Figure 2.2 – Pedigree structure of Campora village, 17 generations are represented. This structure 

will be used to simulate data representative of isolated populations. 

To carry out gene-dropping, first, one provides phased genotypes for each founding individual in the 

pedigree. Therefore, for each chromosome, each founder receives two complete haplotypes. 

Second, transmission at each meiosis and stochastic recombination events, based on genetic 

distance in cM, are simulated. Working through all lineages, mosaics of the initial founding 

haplotypes will be giving to every member of the pedigree. We used publically available WGS 

haplotype data from the UK10K imputation reference panel
181

 (UK10K) as our source of founding 
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haplotypes. The combined pedigree of Cilento (incorporating family histories of the three villages, 

Gioi, Cardile and Campora) has 1470 founding individuals. We used a similar application of the 

program Genedrop to Gazal, et al. 
182

 in order to simulated whole-genome sequence data. Explicitly, 

we only applied Genedrop on a sparse set (or grid) of genetic markers, thus only allowing 

recombination events to occur at a limited number of positions. Then, in a second step, more precise 

recombination locations were simulated by selecting random WGS positions in between adjacent 

grid markers. Care was taken to ensure that inherited haplotypes composed of previously 

recombined haplotypes in the pedigree would also inherit the same precise recombination locations. 

This elaborate process was necessary due to the internal limitations of Genedrop regarding number 

of genetic variants, but we were able to build this complementary routine to Genedrop in order to 

simulate WGS data. 

Using this technique, we simulated WGS data for 1,444 individuals in the connected pedigree of the 

three villages. We performed this simulation six times using different random draws of founding 

haplotypes with independent realisations of gene-dropping on to the pedigree. We simulated 

22,989,093 genetic variants in this was across the 22 autosomal chromosomes. These simulation 

datasets which have the population structure of Cilento will be called upon to test different 

statistical methods and hypothesis. 

The required number of founding haplotypes to run the simulation was ʹ × ͳͶ͹Ͳ = ʹͻͶͲ. However, 

a previous study of the village of Campora which analysed data from Y chromosomes and 

mitochondrial DNA
81

 suggested that the true founding pool of Cilento should be far smaller. Y-

chromosomes are transmitted directly from father to son without recombination (aside from a very 

small region which is homologous to the X chromosome) and mitochondrial DNA is passed directly 

from mother to offspring. Hence, analyses of the observed variability of these two unique regions of 

the genome can give a good estimation of the number of patrilineal and matrilineal ancestors – i.e. 

the number of founders. It was estimated that 97% of the genetic diversity in the population of 
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Campora originated from 17 men and 20 women. We extrapolated from this finding and assumed 

that every member of the Cilento dataset (three villages) has descended from approximately 200 

founding haplotypes. We used the software HapGen2
183

 to account for this problem. In each 

simulation iteration, we randomly sampled 200 haplotypes from the UK10K panel, and using 

HapGen2, we created a pool of mosaic of size 2,940 as to be able to draw the number of haplotypes 

required to gene-drop onto the Cilento pedigree. The idea of including this HapGen2 step was to 

simulate the unrecorded links between the known pedigree structure and the founding individuals. 

In addition to these six complete simulated populations, we also simulated 200 versions of WGS data 

for chromosome 10 for 477 individuals from Campora which will be used for testing phasing and 

imputation software (Chapter 3). Note that here, for the large set of versions of chromosome 10 that 

were simulated, for 100 iterations we included this HapGen2 step in the simulation, but in the other 

100 iterations we skipped HapGen2 and sampled founding haplotypes directly from the UK10K 

panel. Further details of our data simulation are found in Annex A. 
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Chapter 3: Phasing and Imputation in Isolated Populations 

3.1 Experimental Design to Investigate Phasing an Imputation Accuracy 

 

The first main discussion of the thesis will centre on one practical aspect of genetic studies - the 

obtaining of genetic data. There is something very alluring (to statisticians at least) about the fact 

that we each have our own precise genetic coding - that our biology is so readily described by a large 

ensemble of discrete values. Furthermore, the fact that each genetic variant is hidden from view and 

is inherited completely at random gives strength to causative hypothesis that link genetic values to 

observable trait characteristics. Whilst this seems ideal, our DNA is largely inaccessible and has 

required years of dedicated technological innovation in order to collect this precious data.  

The cost of such full genetic sequencing is still relatively high. Even if a full human genome has come 

below 1000 US dollars, the hypothetical cost of whole-genome sequencing the ~ʹͲͲͲ member of 

the Cilento cohort is still considerable. WGS, WES, and array data were introduced in Section 1.1.2 

and these formats would appear in the same order if ranked by descending monetary cost. What is 

more, the quality of WGS data depends primarily on the thoroughness or ͚depth͛ of the seƋueŶciŶg. 

Simply put, the depth describes the number of times each genetic marker will be read by the 

sequencing machine and the higher the depth the more accurate and rich the final dataset will be. 

Hence, a researcher will be faced by a difficult choice when deciding how to best allocate funds for 

gathering genetic data due to the large menu of different platforms available as well as the desire to 

attain genotypes for as many individuals as possible.  

However, in many ways the composition of the human genome behaves in a reasonably predictable 

way. Most variants lie within a set of inter-correlated variants; termed a block of LD
184,185

 (see 

Section 1.2.3). Such structure can allow for the inference of unobserved genetic variants from 

observed neighbouring variants.  
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Missing genotype imputation was first achieved by considering the inheritance patterns between 

pairs of related individuals and genetic imputation was first applied to family data
186-188

. In certain 

pedigrees, exact genotype imputation can be straight forward. In other cases, an expected genotype 

can be calculated by calculating likelihoods of genotypes over the pedigree – i.e. using the Elston-

Stewart or Lander-Green-Kruglyak algorithm. By expected genotype we mean the expected count of 

minor alleles and so software (e.g. MERLIN
189,190

 and MENDEL
191,192

) were adapted to work with 

genotypes that no longer had to strictly take a value from the set {Ͳ,ͳ,ʹ} (the minor allele counts of 

genotypes ܣܣ,  and ��, respectively) but could be continuous in the interval [Ͳ,ʹ]. The �ܣ

importance of imputation is both intuitive in that it gives the researcher more information to play 

with as well as demonstrable in that in terms of increase in statistical power of subsequent analyses. 

Methods that worked with pedigree information were overtaken as genetic imputation was 

extended to non-related pairs of individuals. New methods were developed based on the structures 

of LD in the genome, and the fore-runners of such methods were fastPHASE
193

, MaCH
194

, BEAGLE
195

, 

and IMPUTE
196

. Over the last 10 years, three groups have continued to improve their algorithms; at 

time of writing, the latest available software are MINIMAC4
197

, BEAGLE (version 5.0)
198

, and 

IMPUTE4
150

.  

Our first large analysis was to examine different strategies for genetic imputation in isolated 

populations. We considered state of the art software as well as various informatics pipelines that 

could be applied to the Cilento data, seeking to find the approach that would lead to the most 

accurate genome-wide imputation in our dataset. We focussed on the most common and 

computationally tractable pipeline for imputation which is a two stage approach; first haplotype 

phase is estimated for the SNP array data for all individuals, and then haplotype imputation is 

performed using a haplotype reference panel. This two stage strategy was introduced in Howie, et 

al. 
199

 and has been shown to be an effective approach. Our analysis focused on the impact of 

different software choices for the phasing and imputation steps, as well as the choice of reference 

panel for the imputation step. 
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In order to do so, a large scale simulation study was carried out. Here we used the multiple 

simulated versions of chromosome 10 as described in section 2.2; using the two simulation 

strategies that we terŵed ͚Pedigree͛ aŶd ͚HapGeŶ+Pedigree͛ in Annex A, and will also do so here 

(see Figure 3.1). Having simulated WGS data from the structure to the village of Campora, we 

obscured the positions not present on the SNP genotyping arrays, re-imputed as many missing 

positions as possible, and then compared imputed genotypes to the true simulated genotypes. The 

true haplotype phase was also known from the simulation, but would be jumbled and then re-

estimated. We tested different methods for haplotype phasing across the entirety of chromosome 

10 and tested different imputation software on the 20Mb telomeric region of the short arm of 

chromosome 10 (the first 20 million base pairs of chromosome 10, reading from the top). 

In Figure 3.1, a schematic of the whole study is given, including the two different methods of 

simulating founder haplotypes, the gene-dropping process, and the phasing and imputation 

pipelines used. For genetic imputation, a bank of reference haplotypes is required. In our study we 

used principally the latest version of the 1000 Genomes panel
176

 (1000G). We also tested the HRC 

panel as well as small Study Specific Panels (SSPs) created from our simulated data.   
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(A) 

 

 

 

(B) 

 

 

 

(C) 

 

 

(D) 

Figure 3.1. Schematic of Campora simulation study. Taken from supplementary materials of Annex A. 

(A) Founding event simulated in two different ways; either direct draws from the UK10K, or from 

a pool of mosaic haplotypes created by HapGen2 from 80 UK10K haplotypes. 

(B) Gene-dropping through the Campora pedigree. 

(C) Phasing is performed on the simulated array data using a range of different software. 

(D) Taking the most accurately phased data, imputation is performed using a range of different 

software and reference panels; including a local study specific panel built from simulated 

WGS data for 93 individuals. 
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3.2 Phasing 

3.2.1 Review of Haplotype Phasing Methods 

 

First we will focus on the different possible phasing algorithms that could be used. Table 3.2.1 details 

the different software that we analysed and the methodological approaches behind their algorithms.  

Table 3.2.1 References for 

software(s) 

Methodology Algorithms based 

on: 

References for 

algorithm(s) 
Software 

SHAPEIT2/SHAPEIT3 
200

 
201

 LD-based Li-Stephens model 202
 

EAGLE 1/EAGLE2 
203

 
204

 IBD- and LD-based Long Range phasing 

and/or haplotype 

clustering   

203
 
204

 
205

 

BEAGLE 
195

 
206

 LD-based Haplotype clusters  
207

 

SLRP 
208

 IBD-based Long range phasing 
76

 
209

 

ALPHAPHASE 
210

 IBD- and pedigree 

based. 

Long range phasing 

and Pedigree based. 

76
 
210

 

Table 3.2.1 – Phasing algorithms compared in our study. 

We chose to test methods that were either recently published, had been shown to give accurate 

phasing results in previous comparisons, and which were based on algorithms we perceived to be 

potentially appropriate for isolated populations. The only previous comparison of phasing algorithms 

when applied to data from isolated populations is found in O'Connell, et al. 
211

 Here, the best 

performing software was SHAPEIT2; what our study would add to these findings was to perform a 

more rigorous test of phasing algorithms via repeated simulations; and to include the new software 

EAGLE whose combination of IBD-based and LD-based methods appeared to be very promising. All 

above methods require a substantial number of individuals to work with when phasing; in our 

simulation we tested these software on samples of 477 individuals (which is sufficient, though higher 

sample sizes have been widely shown to increase phasing accuracy; e.g. Loh et al.
204

). 

First I will give further details of two of the involved algorithms, (1) Long Range Phasing (LRP) which 

characterises all of the IBD-based phasing methods, and (2) the Li-Stephens model
202

 as SHAPEIT2 
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was the best performing software and most LD-based phasing and imputation software use a form 

of this underlying model. The model of BEAGLE for example, is conceptually similar as the Li-

Stephens model (broadly speaking), though the modelling method is quite different
212

.  

(1) IBD-based methods and Long Range Phasing 

LRP was first introduced in Kong, et al. 
76

 and used on the Icelandic population by the deCode group. 

This was then mathematically formalised and implemented in an open source software SLRP
208

 by a 

team from the Sanger Institute, UK. LRP focuses on uncovering long stretches of IBD between 

individuals and indeed across chains of individuals. In essence, LRP seeks to infer phase in an 

individual ݅ (and also to impute un-typed genotypes) by regarding the haplotypes of individuals who 

share a haplotype IBD with ݅. This group of IBD sharers with ݅ are termed as the surrogate parents of 

individual ݅.  

 

Box 3.2.1a – Central ideas of the Long Range Phasing algorithm taken from Kong, et al. 
76
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In the genomic region where IBD has been found and phase is being estimated, this group who share 

a haplotype IBD are locally as closely related as parents to individual ݅. LRP was designed to be 

effective in samples of both closely related and distantly related (separated by ~1-20 meiosis) pairs. 

Thus, avoiding potential limitations of family based methods requiring close family members and LD-

based methods for unrelated individuals. An outline of the method of long range phasing is given in 

Box 3.2.1a. 

To search for IBD between two individuals, LRP will first look for evidence against IBD. Whenever 

individuals have opposite homozygous genotypes (ܣܣ vs. �� which can be described as IBS=0), then 

there can be no IBD-sharing. If over a large region (e.g. across 4cM
204

 or 1000 genotyping array 

SNPs
76

), there is no instance of IBS=0, then the algorithm will take this as potential evidence of 

IBD>1. After these searches have been made across all pairs and across the whole chromosome, the 

phase between pairs of heterozygous sites can be inferred. In Box 3.2.1a, in a region containing two 

SNPs, individual ݅ was matched to individuals ݏଵ, … ,  ௥; an internal test having established this set ofݏ

surrogates for individual ݅ to indeed be a set of individuals who share at least one haplotype with ݅ in 

IBD. As individual ݏଷ is trivially phased, this informs the phase of individual ݅; note that once the 

phase of individual ݅ is known, in the example given, the phase of individuals ݏଵ,  ௥ can alsoݏ and ,2ݏ

be derived. Working through the network of connections, LRP will try to estimate phase for every 

position; however where IBD sharing cannot be assumed, or phase informative matches cannot be 

found, phase cannot be estimated. Hence, the original LRP algorithm outlined by Kong, et al. 
76

, 

when first tested on 35,528 Icelandic individuals, was able to phase approximately 95% of all 

heterozygous sites. SLRP, a phasing software that further developed the original LRP algorithm, 

when presented in Palin, et al. 
208

 was able to phase up to 93% of all sites on simulated isolate type 

data; though in O'Connell, et al. 
211

 (who tested SLRP across populations with a range of 

characteristics), the best yield of SLRP that they observed was 88% for data from the Orkney Islands 

isolate.  
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(2) LD-based methods and the Li-Stephens model 

The majority of LD-based methods use Hidden Markov Modelling. A brief description of a Hidden 

Markov Model is given in Box 3.2.1b. A chain of hidden (unobserved) events, following a Markovian 

process, emit observable values at each step. From these observations, inference can be made about 

the hidden path as well as the mechanisms that govern the transition between hidden states and 

emission of observed elements. 

 

Box 3.2.1b – The concept of the Hidden Markov Model. An unobserved Markovian sequence emitting 

an observable sequence from which inference can be made. The Hidden Markov Models described in 

this chapter will describe unobserved sequences taking values at every position on a chromosome. 

Hence, we re-use the subscript ݆ running from ͳ to � which we have usually used to describe a long 

list of genetic variants. 

Hidden Markov Models (HMMs) are attractive tools for modelling genetic data as it puts at oŶe͛s 

disposal many existing algorithms that make inference from HMMs that can give solutions to a many 

interesting questions. To give examples: (a) the Forward algorithm for estimating the likelihoods of 

the observed states
213

; (b) the Forward-Backward algorithm for estimating posterior probabilities of 

hidden states
214

; and (c) the Viterbi algorithm for estimating the most likely hidden path
215,216

. For 
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further elaboration on HMMs, we refer the reader to work by L. R. Rabiner
217

, and to useful 

introductory level summaries by V. A. Petrushin
218,219

.  

We will explore in detail the Li-Stephens HMM
193,202

 which is used by SHAPEIT2 as an example of an 

LD-based method in order to contrast against the long-range phasing method already given above.  

The philosophy of the Li-Stephens model is given in Box 3.2.1c, where we can see that the model 

describes a process where a new haplotype is built from segments of already observed haplotypes. 

As the ŵodel allows for sŵall discrepaŶcies withiŶ the segŵeŶts that are ͚copied͛ froŵ kŶowŶ 

haplotypes, this is often described as a process of imperfect mosaics. The hidden chain in this HMM 

is realised at each sequential position on a chromosome. The hidden states in this HMM are 

elements of the set of known haplotypes from which the new haplotype is being copied – often 

referred to as ͚copying states͛. 

The transition states describe a Poisson process relating to the number of recombination events 

between two adjacent positions. Either there is no recombination event, so the copying state 

remains the same; or if there is at least one recombination event, it is assumed that a new copying 

state is drawn at random (including the possibility of returning to the current state) which is why we 

see the factor ቀଵேቁ associated with the Poisson probability of at least one event: ͳ − ݁−�ೕ. This 

recombination rate �௝ is based on genomic distance in cM. The observable states are the alleles of 

the new haplotype and the emission states are nearly trivial (in that alleles are likely to be copied 

directly) though there is provision for both mutation and genotyping errors.  
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Box 3.2.1c - The Li-Stephens HMM model for haplotype mosaicism in a population. 
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In a sense, this model appears to invoke ideas of IBD-sharing, but in fact it is only modelling IBS-

sharing. This model does not make any assumption of recent shared ancestry. The idea is that 

haplotypes are likely to be locally identical across individuals in a population due to the enduring LD 

structure in a population. High correlations between nearby variants will imply that pairs of 

individuals from the same population are likely to have identical haplotypes over short distances.  

Thus, the model argues that after observing ܰ haplotypes from a population, the ܰ + ͳ௧ℎ observed 

haplotype will be an imperfect mosaic haplotype built of short segments that have already been 

observed. This may implicitly imply some ancient common ancestry between two individuals sharing 

a short haplotype segment. However, this is not the same as IBD, which in a sense implies a recent 

common ancestor. What recent means in the definition of IBD is ambiguous; a common definition 

would be that this is an individual arising after the population (from which our sample is drawn) was 

founded. In any case, the important distinction is that the Li-Stephens model relies on IBS-sharing 

without bothering to consider whether shared haplotypes are long enough or specific enough as to 

be considered as IBD. 

SHAPEIT2 employs a version of the Li-Stephens model to estimate phase. To estimate phase for a 

given individual, SHAPEIT2 must draw two paths though the Li-Stephens HMM, giving two 

haplotypes, and these must be compatible with the observed genotypes. Specifically, when 

individual ݅ is being phased, SHAPEIT2 takes the current estimated phased haplotypes of all other 

individuals in the sample as the references haplotypes; and searches for two new haplotypes 

compatible with individual ݅͛s geŶotǇpe. The algorithm loops through individuals repeatedly, with 

each new estimation of phase being re-supplied to the model in order to facilitate the phasing of 

subsequent individuals. SHAPEIT2 can also leverage information from an external reference panel of 

haplotypes, by adding these to the pool of reference haplotypes from which new haplotypes can be 

copied from. A further optioŶ for “HAPEITϮ is the ͚duohŵŵ͛ optioŶ211
 which is designed to search 

the pedigree information in the sample for instances of nuclear families, and to refine final phase 
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estimates for these individuals. Full details of the SHAPEIT2 algorithms, including different versions 

and options are found in Delaneau, et al. 
220

, Delaneau, et al. 
221

, and Delaneau, et al. 
222

  

For an isolated population, we might initially expect to see an advantage for IBD-based phasing 

methods over LD-based phasing methods. LD information informs us only of the probability of 

recombination events between variants, allowing us to infer the probability of combinations of short 

haplotype matches between individuals and hence one can infer probabilities of haplotype phase. 

IBD-based methods concentrate on finding longer haplotype matches. If IBD-sharing can be 

confidently established, phase can be directly inferred, and when there remains some uncertainty 

about IBD-sharing, haplotype phase probabilities can then be derived. This is the approach of SLRP, 

which uses an HMM to model IBD-sharing and to tie together the more easily identifiable long 

haplotype matches, before calling phase using the concepts of LRP. SLRP incorporates the pairwise 

HMM of Genovese, et al. 
209

, which models the IBD-sharing states along the four chromosomes of a 

pair on individuals
223

. The prevalence of IBD in an isolate would intuitively suggest using a method 

such as SLRP. 

The most recent assessment of phasing algorithms for isolate type data was in O'Connell, et al. 
211

 

Here SHAPEIT2 was the strongest performer and was shown to outperform SLRP. Prior to our study, 

the EAGLE software had not been tested for isolated populations; it was our hypothesis that it might 

be the most appropriate method as it combines an initial LRP algorithm, with a second LD-based 

method. Thus, EAGLE could theoretically take advantage of long stretches of IBD in an isolate, 

without suffering (as SLRP has been shown to do) from being unable to phase areas outside of IBD 

sharing.  EAGLE1 combines Long Range Phasing with a secondary pseudo-HMM. EAGLE2 however 

will act differently depending on whether or not external reference haplotypes are provided. If no 

external reference panel is provided to EAGLE2, it performs LRP followed by an application of the 

Positional Burrows-Wheeler Transform (PBWT)
205

 for haplotype phasing, an indexing algorithm that 

facilities phasing by finding nearest local neighbours and again invokes ideas of IBS-sharing and 
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imperfect mosaic haplotypes. If however, an external panel is supplied, the LRP algorithm is not 

used, and only the second PBWT algorithm is used. It is important to note that EAGLE was designed 

to phase very large samples of individuals without incurring large computational burden. Indeed, the 

LRP aspect of EAGLE was motivated primarily as a time saving device.  

3.2.2 Accuracy of Phasing Software - Results from our Publication 

 

To evaluate phasing software, we measure the Switch Error Rate (SER) (Box 3.2.2). Note that as our 

simulation contained missing data and error sites, we only measured switch error rates at truly 

heterozygous sites. In Figure 3.2.2a, we have calculated the SERs of phasing on chromosome 10 

using different software and indeed different strategies. In Figure 3.2.2b, the results restricting to 

sites successfully phased by SLRP is shown.  

 

Box 3.2.2 – Switch Error Rate, a metric for phasing accuracy used throughout our study. Switch errors 

were measured between pairs of heterozygous sites, excluding positions that were known simulated 

genotyping errors.  
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Figure 3.2.2a - Mean switch error rates (SERs) across the multiple iterations of our simulation. Results 

are split between the two simulation strategies (described in Section 2.2). Note that a lower SER 

indicates a better accuracy of phasing. 

 

 

Figure 3.2.2b - Mean switch error rates (SERs) on the 100 iterations of the HapGen+Pedigree 

simulation strategy including results from SLRP. In this figure, the calculation of SER is restricted to 

the set of variants that could be successfully phased by SLRP. 
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The best strategy was found to be ͞“HAPEITϮ+ϭϬϬϬG+duoHMM͟, full details of all the phasiŶg 

strategies are given in Annex A. This strategy refers to running SHAPEIT2 with the 1000G as a 

refereŶce paŶel aŶd the ͞duohŵŵ͟ optioŶ iŶ operatioŶ.  

In Figures 3.2.2c-e, we give visual interpretations of the phasing performance of three algorithms by 

plotting a small sub-section of the phased output of a single simulation iteration. In these pictures, 

changes in colour represent switch errors. For 50 individuals, their phased chromosome 10 data are 

stacked in these graphs. A complete blue line shows a perfectly phased individual; a line that 

changes once from blue to red shows an individual with one switch error; a line that changes often 

between blue and red shows a poorly phased individual with many switch errors.  

 

Figure 3.2.2c - Zoom in on phasing performance of SHAPEIT2+duohmm+1000G on the 

HapGen+Pedigree simulation. 
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Figure 3.2.2d - Zoom in on phasing performance of EAGLE2 on the HapGen+Pedigree simulation. 

 

Figure 3.2.2e - Zoom in on phasing performance of BEAGLE on the HapGen+Pedigree simulation. 
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In these three diagrams (Figures 3.2.2c-e), we can see the strong and often similar performances of 

SHAPEIT2 and EAGLE2; with the less successful software BEAGLE as a counterpoint.  

SHAPEIT2 facilitates investigation into the certainty of the phase estimates that it provides. In Figure 

3.3.3f, we have produced a detailed look at the phasing performance of SHAPEIT2. At this resolution, 

we again have each individual represented horizontally and now individual SNPs can be plotted. For 

the first panel (right), the colour scheme now represents homozygous (and so not important for 

phasing) sites in grey, correctly phased SNPs are plotted in blue, and switch errors are plotted in red. 

This right panel represents the most likely paths ascertained by the SHAPEIT2 HMM, and indeed only 

a few switch errors are found when comparing the phase estimated to the true simulated phase. 

We can then demand that SHAPEIT2 to make random draws from its HMM giving different possible 

realisations of phase. In the left box, 100 random draws were taken and now the number of times 

the phase changed with respect to the right box is given. This represents the certainty or uncertainty 

of “HAPEITϮ͛s phase. We caŶ eǆtrapolate that wheŶ “HAPEITϮ͛s phase estiŵate at a site changes five 

times out of 100 random draws, then SHAPEIT2 is around 95% certain of the phase at the site. 

 

Figure 3.2.2 - Phasing uncertainty with SHAPEIT2. Left panel: Rows represent individual genomes; 

each mall vertical bar is a variant. Blue bars are correctly phased heterozygous sites; red bars are 

incorrectly phased with respect to the preceding (reading left to right) heterozygous site. Grey bars 

are homozygous. Right panel: The number of times SHAPEIT2 returned the same phase when asked 

to make 100 random draws from its final HMMs.  
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This functionality of SHAPEIT2 is rather onerous to perform genome wide but could be an important 

tool for establishing the quality of phase in a region of interest. 

Going back to the overall results of Figure 3.2.3a, an interesting finding was that EAGLE2 

outperformed EAGLE2+1000G, this suggested that LRP was indeed an accurate method for our 

simulated data as better results were obtained when EAGLE2 was obliged to perform it. In regards to 

SLRP, the results also reflect positively on LRP, we were able to phase very high percentages of 

chromosome 10 and with high accuracy. In Kong, et al. 
76

, LRP was demonstrated to be more 

effective with more individuals, specifically when a large fraction of the total population (in their 

case this was the population of Iceland whose sample size was given as 316,000 individuals) was 

genotyped. They showed that if only 1% of the population was genotyped, useful results could still 

be obtained, and that going up to 10% would yield very accurate results. In Cilento, it was estimated 

at the genesis of the study that the set of genotyped individuals covered 80% of the total eligible 

populations of Campora, 86% of Gioi, and 64% of Cardile. At time of writing, the current number of 

inhabitants of the three villages are in the region of 400 for Campora, 800 for Gioi and 500 for 

Cardile (personal communication with Teresa Nutile). Effective population size estimates of the 

three villages are in the region of a few thousand individuals
174

. It is difficult to precisely estimate the 

fraction of the population that has been genotyped for the Cilento isolates, yet we feel confident 

that we surpass the 10% mark that should make Cilento a perfect candidate for LRP. Indeed, when 

tested on the true data of Campora, SLRP was able to phase ~ͻͻ% of heterozygous sites 

(Supplementary Figure 8a of Annex A), both this and the SERs for SLRP were more positive results for 

SLRP that any we found in the literature. 

Perhaps the most noteworthy result was the observation that all algorithms gave highly accurately 

phase data compared to previous published SERs
201,203,204,224

. In particular, on the HapGen+Pedigree 

simulation, where IBD sharing in the simulated individuals was boosted even higher by the tighter 
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bottleneck, the SERs observed were very low as all methods appear to benefit from the increased 

IBD-sharing and lowered genetic variation.  

O͛Connell et al
211

 also observed SHAPEIT2 outperforming IBD-based phasing algorithms, and in their 

discussion they suggest that the Li-Stephens model was perfectly capable to utilising long IBD. To 

test this idea, we explored the location of switch errors in conjunction with the location of shared 

IBD sections which we were able to track through the simulation of the data. This result was 

described in the Supplementary Materials Annex A and presented in Supplementary Figure 11. This 

is also given here in figure 3.2.2g.  

 

Figure 3.2.2g – The number of available surrogate parents (true IBD haplotypes) in the sample for 

random picks of Switch Error Sites and correctly phased sites. The same numbers of sites were chosen 

for the two sets of boxplots in the plot, from similar individuals and with the sites specified to have 

similar MAFs. This analysis was completed on the Pedigree simulation, as it was in this scenario that 

we could record IBD-sharing perfectly (See Annex A). 

By comparing the locations of switch errors to the locations of correctly phased sites, it was clear 

that ďoth EAGLEϮ͛s aŶd “HAPEITϮ͛s perforŵed in similar way depending on the number of existing 

long IBD matches (surrogate parents) in the sample at that position. This is an intuitive result for a 
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software using LRP where the number of surrogate parents that can be found will naturally affect 

the ability to phase. For an LD-based method, it is less obvious why one would observe a pattern 

involving the number of IBD-sharing partners. The fact that EAGLE2 and SHAPEIT2 seemed to behave 

so similarly in this respect strengthens the idea of O'Connell, et al. 
211

 iŶ that “HAPEITϮ͛s approach 

based on very local LD patterns can (through communications in the graphical HMM) benefit from 

long shared IBD segments. This idea is also discussed in Howie, et al. 
225

 This would be an interesting 

area for continued exploration. We know that HMM based methods have been widely used to locate 

segments of HBD and IBD
79,226-230

. Some of these methods indeed could even facilitate the 

simultaneous detection of IBD sharing between multiple pairs
231,232

. Most of these algorithms come 

up against limitations of computational complexity, though recently the ultra-fast method of PBWT 

has been reengineered to estimate IBD in large sample
233

 using similar ideas as to when PBWT had 

been adapted for phasing and imputation
205

. If we know that the phasing algorithm SHAPEIT2 gives 

nigh on perfect phase in an isolate, it would suggest that the final HMM models that this software 

produces (which described haplotype sharing across a whole sample of individuals) could be ideal for 

identifying almost all IBD matches in a sample. 

3.2.3 Genotyping Errors in Phasing  

 

In this study we also simulated genotyping errors in the Array data and observed how the presence 

of such errors affected the accuracy of phasing. These results were given in Supplementary Figures 

8a, 8b, and 10 in Annex A, with errors particularly affecting SLRP and ALPHAPHASE. Here we give one 

further analysis that we carried out but that was not included in the publication. Here we were able 

to show how errors simulated at a particular site would engender phasing errors at the same site in 

other individuals. This analysis is presented in Figure 3.2.3a. Genotyping errors will clearly disrupt 

IBD sharing patterns and also LD estimations, yet it is interesting to see that EAGLE and SHAPEIT2 

had very similar increases in SER at the locations where errors were present.  
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Figure 3.2.3a – We selected sites with either 0, 1, or >1 simulated genotyping errors. Boxplots of SER 

are labelled by the phasing pipeline used and whether or not the data had simulated genotyping 

errors. 

We did not measure for switch errors at the exact individual genotypes with simulated genotyping 

errors, but we do measure the SER at the position across all other individuals in the sample. The pink-

bordered boxplots show the increase in SERs at the positions with more and more genotyping errors. 

The black bordered boxplots give a counterpoint, showing the trend (of course) disappearing when 

no genotyping errors were simulated in the first place. 

This analysis was on the Pedigree simulation strategy only. 
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3.3 Imputation  

3.3.1 Accuracy of Different Imputation Software - Results from our Publication 

 

In each iteration of the simulation, we retained the phased haplotypes from the 

SHAPEIT2+1000G+duoHMM strategy and proceeded to test a range of imputation software and 

imputation reference panels. We tested IMPUTE2
225

, IMPUTE4
150

, MINIMAC3
197

, BEAGLE (version 

4.1)
206

, and PBWT
205

. We tested public imputation reference panels: the 1000G and the HRC. We 

also tested the use of a WGS SSP.  

All imputation software tested used LD-based methods; again with central concepts of haplotype 

mosaicism described by the Li-Stephens model (Box 3.3.1); interpretations of which are used in 

IMPUTE2, MINIMAC3, BEAGLE, and PBWT. MINIMAC3 and IMPUTE2 are very similar; differing most 

in their methods for calculating model parameters relating to transition probabilities and in the 

initial selections of potential copying states
234,235

. Previous versions of BEAGLE used a similar 

haplotype clustering model as used for their phasing algorithm but the latest version of BEAGLE that 

we tested relied again on the Li-Stephens model. The PBWT algorithm allows for a highly efficient 

graphical description of a large haplotype reference panel, from which the estimated haplotypic 

frequencies allow for new haplotypes to be matched to the reference under the Li-Stephens 

model
236

.  

Figure 3.3.1a displays the mean imputation accuracy (split my MAF) for different software when 

using the 1000G as a reference panel; MINIMAC3 was the best performer. Imputation Accuracy was 

measured as the correlation between true genotype and imputed dosage genotypes (Box 3.3.1) on 

the first 20Mb of chromosome 10. 
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Box 3.3.1 – Concepts of imputation of missing genotypes using the Li-Stephens model. 
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Figure 3.3.1a - Imputation accuracies from different imputation software, split by MAF and 

simulation strategy. Imputation was more accurate on the Pedigree simulation; this finding is 

discussed in section 3.3.3. ;†Ϳ PBWT results are onlǇ froŵ Ϯ5 siŵulation runs. 

 

3.3.2 Reference Panels: Local and Global - Results from our Publication 

 

In Cilento, 247 individuals have exome sequencing data, and these individuals were selected to give 

a good representation of the whole sample in order to serve as an SSP. Explicitly, kinship was 

calculated between all pairs of individuals. Then, in an iterative manner, individuals were selected to 

join the SSP by picking those with the highest mean kinship to all over individuals, without selecting 

an individual with a kinship coefficient above 0.1 with any other individual already selected for the 

SSP. This method was based on Urrichio et al.
77

 In this simulation study, we only considered 

Campora, where 93 of the 477 individuals have Exome data. We considered hypothetical situations 

where these 93 individuals constituted either a study specific WES panel or a study specific WGS 

panel. In our publication, we only gave results for the WGS panel. This choice was based on the fact 
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that WGS panels are more often used and are more similar in nature to the public reference panels 

such as the 1000G. Furthermore, the results for the WES SSP were more complex that we had 

envisaged and so we chose not to take these results through to the publication as they were perhaps 

overly specific to the scenario in Campora (see section 3.3.5) and so of less interest to the wider 

scientific community. In agreement with many other studies that looked into the use of study 

specific imputation panels in human populations
88,224,237-243

 and indeed in animal populations
244

, the 

93 WGS individuals were very successful as an SSP. We felt that it was a significant contribution to 

the known literature to show that an imputation panel of only 93 individuals (even when admitting 

that they were closely related to the target individuals) could outperform a public panel of the size 

of the HRC.  

In the Figure 3.3.2a and 3.3.2b, we compared different choices and combinations of reference 

panels for two software - IMPUTE2 and MINIMAC3. These two were chosen because IMPUTE2 had 

the unique ability to combine reference panels internally and because MINIMAC3 had given the 

most accurate results in our initial test. For both software, the inclusion of an SSP was highly 

effective. For MINIMAC3, we were able to test the hyper-diverse and hyper-large public reference 

panel, the HRC, which further improved the imputation accuracy. However, using the SSP alone was 

also very effective.  

Our final recommendation for choice of imputation software depended on the number of reference 

panels available to the researcher. When imputing with a single panel, we observed an advantage 

for MINIMAC3 but the best imputation involved combining an external and a study specific panel. 

When an SSP is available, we felt that certain options of IMPUTE2 made it a more attractive choice; 

particular due to the possibility of merging two reference panels (this merging procedure is 

discussed in detail in section 3.3.5). Further details of our recommendations are given in the 

discussion of Annex A. 
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Figure 3.3.2a – Comparison of Imputation Accuracy for IMPUTE2 with different reference panel 

choices. 

Figure 3.3.2b - Comparison of Imputation Accuracy for MINIMAC3 with different reference panel 

choices. 
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To run MINIMAC3 with both the HRC and the SSP we had to combine these two panels ourselves, 

thus having to restrict to sites present in both panels and so excluding the possibility of imputing 

variants that are specific to the sequencing of the study population.  

3.3.3 HapGen+Pedigree vs. Pedigree 

 

One of the most interesting results that we observed in this simulation study was the contrast 

between the two simulation strategies. For phasing, accuracy was much higher in the 

HapGen+Pedigree simulation as compared to the Pedigree simulation (Figure 3.2.2a). This trend was 

however reversed when calculating imputation accuracies (Figure 3.3.1a) when we were not using 

an SSP. To reconcile this phenomenon, we must remember that at the heart of each phasing 

algorithm, similarities between members of the sample are being leveraged. However, in the case of 

imputation using only the 1000G, the algorithm is now reliant only on similarities between each 

individual member of the sample and the set of external reference panel haplotypes. The 

HapGen+Pedigree strategy simulated a sharp bottleneck; thus creating a population with more 

specific characteristics and therefore one that was less well represented by the 1000G panel; hence 

imputation was poorer. We explored the similarity between the target population and the reference 

populations by looking at differences in MAFs between the two. Here we were able to show that the 

HapGen+Pedigree simulation created greater departures from public reference panels in terms of 

MAFs. Furthermore, when we used an SSP, the order of the results flipped - i.e. the imputation was 

more accurate on the HapGen+Pedigree simulation. In this scenario, the reference panel now 

contained haplotypes specific to the population and so the results took on a similar pattern to our 

results for phasing. In our publication we confirmed two logical suppositions regarding this result: (a) 

that individuals most closely related to the SSP were imputed more accurately; and (b) that variants 

which had a higher frequency in the target populations than in the external reference panel 

benefited most from the inclusion of an SSP. The results of these investigations are described in 

Supplementary Figures 15, 16a-d, and 17 of Annex A. 
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3.3.4 Info and RSQ 

 

Our study also contained an investigation of two measures of iŵputatioŶ accuracǇ: the ͚iŶfo͛ score 

aŶd the ͚‘“Q͛ score proǀided ďǇ IMPUTEϮ aŶd MINIMACϯ, respectiǀelǇ. Most imputation software 

will report a metric per-variant that describes the imputation quality. In the Supplementary 

Materials of J. MarchiŶi͛s aŶd B. Howie͛s reǀiew of geŶetic iŵputatioŶ245
, a review of these quality 

scores and their differing calculations is given. Here it was shown that the different scores were all 

highly correlated with each other and that the two scores cited above were the best performers. The 

RSQ score describes directly the incertitude of the imputed data; it is the quotient of the empirical 

variance of the imputed dosages over the ͚true͛ variance of the hidden genotypes. This true variance 

is estimated as ʹ̅ݍሺͳ −  is an estimator of the MAF from the dosage data. The ͚iŶfo͛ ݍ̅ ሻ, whereݍ̅

score of IMPUTE2 is a ratio of observed and complete statistical information regarding the MAF; 

again one calculated from dosage data and one calculated using ̅ݍ, the estimate of the MAF from the 

imputed dosages. 

In Figure 3.3.4a, the utility of these metrics is evaluated by plotting them against the true imputation 

accuracy. The graph is generated from imputation during one iteration of the Pedigree simulation 

using the 1000G as a reference panel. Similar figures can be found in the supplementary information 

of Pistis, et al. 
238

 The imprecision of such metrics is well known, a detailed investigation of these 

metrics is found across publications by N.R. Roshyara and collaborators
240,246,247

. Commonly applied 

post-imputation quality thresholds have been to exclude variants with info < 0.4 or RSQ < 0.3; 

though different thresholds have been suggested when using an SSP.
238
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Figure 3.3.4a - Iŵputation AccuracǇ against ͚info’ and ͚‘SQ’ scores ďased on the iŵputation assaǇs 
IMPUTE2+1000G and MINIMAC3+1000G on one iteration of the Pedigree simulation. The blue 

shading represents the MAF of each variant. The darkest blue variants have the lowest MAF. 

For rare variants (darkest blue in Figure 3.3.4a) the correlation between imputation metrics and true 

accuracy is notably quite poor. Hence, higher thresholds are often applied for the low end of the 

MAF spectrum
248

. In our study, we showed exactly how the choice of threshold would affect the 

overall accuracy of remaining variants as well as discussing that the choice of such a threshold is a 

balancing act between keeping as many imputed variants as possible, whilst removing those with 

poor imputation accuracy (Figure 3.3.4b, Supplementary Figure 18b in Annex A, and discussion in 

Supplementary materials of Annex A). 
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Figure 3.3.4b. Imputation accuracy across all MAFs following post imputation quality control based 

on either ͚info’ scores for IMPUTEϮ or ͚‘SQ’ scores for MINIMACϯ. Iŵputation accuracǇ and 
imputation quality scores are derived from IMPUTE2+1000G or MINIMAC3+1000G imputation. The 

size of circles details the fraction of remaining variants after a given threshold. 

We also briefly looked at exactly how the choice of threshold could be made. By changing the 

threshold gradually and measuring the numbers of well imputed variants (accuracy above 0.8) 
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against the number of poorly imputed variants (accuracy below 0.8Ϳ, aŶ ͚optiŵal͛ threshold could ďe 

described as the point where one begins to remove more well imputed variants than poorly imputed 

ones. These analyses are given in Figure 3.3.4c and suggest that across the whole MAF range, 

threshold values of about 0.8 for info and 0.6 for RSQ would be appropriate. This is because in each 

test, as we increased the info threshold, we were removing more poorly imputed variants than well 

imputed variants up until tipping points where we began to remove more and more well imputed 

variants. Identifying the best thresholds will always be problematic as one first has to decide what 

coŶstitutes ͚well͛ iŵputed; and furthermore, the distribution of such quality scores will depend on 

many factors pertaining to the imputation strategy and in particular the similarity between target 

and reference haplotypes
240

.  

                         

Figure 3.3.4c - Here the ͚info’ and ͚‘SQ’ thresholds are varied ;ǆ-axes) and plotted against the 

difference of the numbers of remaining ͚well’ imputed variants and ͚poorly’ imputed variants. As the 

thresholds increase, we see this difference initially change as the majority of removed variants are 

͚poorlǇ’ iŵputed. In each case, a tipping point is reached and as the threshold increases further, more 

͚ǁell’ iŵputed variants are ďeing reŵoved than ͚poorlǇ’ iŵputed variants.               
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3.3.5 Imputation with an Exome panel 

 

In Cilento, our SSP is actually WES sequenced, not WGS sequenced which was the scenario we 

explored in our publication. Initially we planned to present results for both types of SSP; running the 

simulations with WES panels as well as WGS panels in each iteration. However, it became clear that 

the results for the WES panel were far harder to interpret than in the case of the WGS panel. In 

particular, our summarising statistics that measured imputation quality consistently showed that the 

strategy IMPUTE2+1000G+WES was outperformed by IMPUTE2+1000G, contrary to our expectations 

and to previous publications
241

.   

By investigating different tweaks to the imputation pipeline involving a WES SSP and expanding our 

analysis to include all three villages; we observed three things in particular: (a) using an exome panel 

only improved imputation in exonic regions; (b) it would be best to impute individuals from Cilento 

separately based on their genotyping arrays; and (c) that the methods involving imputation with 

multiple reference panels had substantial impact on the final accuracy. Two choices that played a big 

role were the following: whether available Array positions were added to the WES panel and 

whether the merge-ref-panel option was engaged in IMPUTE2.  

The 247 individuals with WES data in Cilento also have Array data (both in the simulation and in 

reality) and so when forming an SSP of haplotypes, it was possible to add these Array positions to 

the WES data. This was suggested in Joshi, et al. 
241

 and is an immediately logical decision. The extra 

Array position will aid the phasing of the SSP, particularly as they add data in between exons. The 

extra Array positions in the SSP will also facilitate imputation programs to match the target 

individuals with the SSP haplotypes across all Array positions. 

The other important choice requires more explanation regarding the internal workings of IMPUTE2 

pertaining to the merge-ref-panel option. In Figure 3.3.5a we give the relevant schema describing 

the merge-ref-panel option taken from the IMPUTE2 website. 
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Figure 3.3.5a – Merging reference panels in IMPUTE2. First, sites that are missing in either one of the 

two reference panels are cross-imputed to form a single combined reference panel. 

Source:  https://mathgen.stats.ox.ac.uk/impute/impute_v2.html#merging_panels 

In order to merge the two panels, any sites that are not present in both panels must be filled in via 

imputation in order so that both panels will contain identical lists of variants. This cross-imputation 

is performed in much the same way as the general algorithm for imputation in IMPUTE2 and 

crucially, ͚best guess͛ or ͚hard called͛ genotypes are then taken for these cross-imputed sites. In 

short, the genotype with the highest posterior probability is imputed as a certain genotype during 

cross-imputation. 

The fact that IMPUTE2 does not later account for the uncertainty in the cross imputation appears to 

be the main reason for the downstream loss of accuracy when using a WES panel. When analysing 

various strategies for imputation with the WES SSP we took the opportunity to test whether it would 

be better to combine all array data from all three villages (the previous approach of our 
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collaborators in Naples) or to impute separately. Bear in mind that Campora and Cardile were 

genotyped on a different chip to Gioi and combining these datasets would mean restricting to 

common sites between the two arrays. These two arrays were described in Section 2.1 and we will 

Ŷote theŵ as ͚ϯϳϬK͛ aŶd ͚OMNI͛. In Table 3.3.5, the differences in imputation accuracy (against the 

baseline IMPUTE2+1000G strategy) are given for a variety of slightly different imputation pipelines 

when tested on our simulation datasets. 

Table 3.3.5 Imputation Accuracy of Non-

Exonic Variants 

Imputation Accuracy of Exonic 

Variants 

Imputation Strategy MAF < 5% MAF ≥ 5% MAF < 5% MAF ≥ 5% 
 

IMPUTE2+1000G (baseline)   0.470 0.781 0.510 0.797 

 

IMPUTE2+1000G+WES       (A1) 

Reference panels are merged 
0.489 

+4.3% 

0.789 

+1.2% 

0.561 

+10% 

0.820 

+2.9% 

IMPUTE2+1000G+WES       (A2) 

Array positions added to SSP  
Reference panels are merged 

0.464 

-1.2% 

0.770 

-1.4% 

0.863 

+69% 

0.943 

+18% 

IMPUTE2+1000G+WES       (A3)  

Array positions added to SSP 
Reference panels not merged 

0.470 

-0.005% 

0.781 

-0.009% 

0.851 

+67% 

0.939 

+18% 

IMPUTE2+1000G+WES       (A4)  

Array positions added to SSP  
Reference panels are merged  
No relatedness to SSP 

0.487 

+3.8% 

0.786 

+0.7% 

0.520 

+1.9% 

0.804 

+0.9% 

 

IMPUTE2+1000G+WES       (B1) 

Array positions added to SSP  
Reference panels are merged  
Separate imputation on two  
genotyping arrays 

0.643 

+37% 

0.894 

+14% 

0.868 

+70% 

0.952 

+20% 

Table 3.3.5 - On our simulated data, we performed imputation using the WES SSP and a variety of 

different pipelines. The baseline imputation was performed on all three villages together, using only 

variants found on both of the genotyping arrays in Cilento and using IMPUTE2 and the 1000G as a 

reference panel. In the middle section of the table we tested different ways of including a WES SSP.  

In the last section of the table we testing imputation on the two genotyping arrays separately.  

The clearest conclusion was that the biggest improvement to imputation that one will gain from a 

WES SSP was on exonic variants. Also it was clear that it would be best to perform our imputation 

separately on the two genotyping arrays (row B1). To go into details of Table 3.3.5, we observe that 

the only instance when imputation accuracy decreased substantially was for the non-exonic 

positions and when array position were included in the WES panel and when the merge-ref-panel 

option was used (row A2). We had applied this strategy for the WGS panel in our simulation study. 
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We can rationalise these observation in the following way: for a given target haplotype, the most 

likely copying states depend on the ability to match the array positions of the target haplotype to 

the array positions in the reference panel. Therefore, adding the array positions to the WES panel 

will facilitate matching between target haplotypes in the isolated population and study specific 

reference panel individuals (they are of course closely related in many cases). Hence, imputed 

genotypes become more likely to be inferred from the 93 individuals - not the 1000G individuals. 

This explains the increased imputation accuracy for WES positions when the array positions are 

added (rows A2 and A3 against row A1 for Exonic Variants).  

However, as the Array positions are distributed relatively evenly, the same enhancement for 

matching will take place outside of exons as well. Hence, the imputed genotypes from non-exonic 

regions are also most likely to be inferred from the 93 WES individuals. Reflecting on this, it is 

evident that if the reference data for imputation outside of exons comes from the 247 SSP 

individuals, it will contain mostly variants that will have been already imputed from the 1000G 

through cross-imputation during the merging step. However, the quality of the imputation during 

the merging may be poor and so the hard calls made during cross imputation with create erroneous 

genotypes that will be subsequently imputed again. Therefore, it makes sense that the quality of 

imputation outside of exons will not be better when we include the SSP, and may in fact be worse 

(row A2). If the merge-ref-panel option is not activated, then this problem is avoided (row A3). 

When the option is not activated, imputation is performed in two steps, first from the SSP onto the 

target, second from the 1000G onto the target.  

Furthermore, if the merge-ref-panel option is retained but the relatedness between the SSP and the 

target haplotypes is removed, again this problem does not occur (row A4 against row A2). We 

removed this relatedness artificially by using an SSP from one iteration of our simulation as an 

imputation panel for simulated target individuals from a different iteration. Therefore, we were 
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adding a WES panel of 247 individuals who were not related to our target haplotypes, but could 

nonetheless prove useful for imputation as they still consist of imperfect UK10K mosaic haplotypes. 

In Figure 3.3.5, a visual representation of some of these changes in imputation accuracy was plotted. 

In this plot we focus in on a single exon and show the changes in imputation accuracy against the 

baseline accuracy of IMPUTE2+1000G for each variant against its physical position on the 

chromosome.   

 

Figure 3.3.5. The change in imputation accuracy (against baseline imputation quality from the 

strategy IMPUTE2+1000G) is plotted across a chromosome 10 exon and surrounding regions. The 

variants present on the WES panel are highlighted in red and one exon of chromosome 10 is clearly 

visible, flanked by regions populated by variants present on the 1000G panel (black).  

Section A: IMPUTE2+1000G+WES. Array positions added to SSP. Reference panels are merged (row 

A2 in Table 3.3.5).  

Section B: IMPUTE2+1000G+WES. Array positions added to SSP. Reference panels NOT merged. 

(row A3 in Table 3.3.5). 

In Section A of Figure 3.3.5, the SSP with both exome and array positions is used and the merge-ref-

panel option is activated. Here, we observe that the exonic variants (red) have increased imputation 
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accuracy; 1000G variants (black) within and very close to the exon also have increased accuracy. 

Outside the exon the accuracy decreases. In Section B, there is only one difference to section A: the 

panels are not merged. Here, we see that the exome positions in red increase in accuracy but all 

1000G positions remain unchanged. In Box 3.3.5, an elucidation of how accuracy can be lost in in this 

specific case is given.  

 

Box 3.3.5 - An example target haplotype with two positions in an exon and four positions outside is 

given. The imputation outside this exon from the 1000G is not very accurate, giving dosages of {Ͳ.͵, Ͳ.͸, Ͳ.Ͷ}  for the three unobserved sites, whose true values are {ͳ, Ͳ, ͳ}. When the WES panel is 

used, during the merging stage, the values {Ͳ.͵, Ͳ.͸, Ͳ.Ͷ} are imputed into the WES panel (left 

section) and are then called as {Ͳ,ͳ,Ͳ}. This exacerbates the inaccuracies of IMPUTE2 with final 

imputed dosages in the target of {Ͳ.ͳ, Ͳ.ͻ, Ͳ.ʹ}, even further from the true haplotype. This issue is 

avoided if we do not merge the panels (right section). 

Further exploration may be required to fully interpret these results and to understand what 

characteristics of the HMM imputation models have been demonstrated. The fact that the 

relatedness between target and reference individuals has led to problems in this instance perhaps 

indicates that when dealing with population isolate samples with complex structures, methods that 

do specifically model for IBD sharing can potentially suffer. Furthermore, this analysis shows that for 
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human genetics, imputation that involves WES reference data should be handled carefully due to 

the large gaps between exons. However, in animal models where LD extends much further and WES 

SNPs can better tag non-exonic regions
249

, these difficulties associated with using a WES SSP may 

well not have arisen.    

To carry out imputation in Cilento, we decided to use the strategy IMPUTE2+1000G+WES with Array 

positions added to the WES SSP and using the merge-ref-panel option; despite knowing that this 

would lead to some loss of accuracy outside of exons. Our reasoning was that: (a) this strategy 

would improve the imputation in and nearby exons greatly and as our sequencing data is only on 

exons this should be a priority; (b) if we did not apply the merge-ref-panel option, any variants 

specific to the WES SPP would be removed by IMPUTE2 as without this option, only positions in the 

largest panel (1000G) can be imputed. Finally, we also carried out the imputation separately on the 

two genotyping arrays present in Cilento as this gave clear improvement in the simulation. We used 

the 1000G as the external reference panel as it contained many more variants than the version of 

the HRC that was available to us. We were able to confirm our simulation results by showing 

iŶcreases iŶ the ͚iŶfo͛ score wheŶ iŶcludiŶg the WE“ ““P for the imputation of the real data of 

Cilento
174

.  

To use the full HRC panel would have required us to upload our data on to an external imputation 

server and thus preclude the merging step with our local WES panel. It is well known that imputation 

benefits from using the largest and most diverse imputation panel possible and it was not a surprise 

to see that the HRC performed better than the 1000G in our simulation. The idea being that as 

imputation algorithms are able to pick the most appropriate haplotypes for Copying States, making 

available additional haplotypes can only improve imputation
225

. Indeed, similar ideas about 

increasing reference panel diversity also appear in the literature of imputation in animal 

models
250,251

. It would have been potentially of great interest to use the full HRC for Cilento as it 

includes many haplotypes of Greek and Italian origin. However, our priority was to pursue the use of 

our WES SSP.  
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3.4 Prospective for Phasing and Imputation in Isolated Populations 

 

We have established that haplotype phasing of array type data is exceptionally accurate in isolated 

populations. This means there remains little room for improving phasing accuracy, though leveraging 

larger external reference panels such as the HRC for phasing might provide another small 

improvement. The current main prospective for haplotype phasing in general is to be able to harness 

the phase information of read data. As WGS data is constructed from large ensembles of short 

genotyped reads (small haplotǇpes that are ͚read͛ ďǇ the seƋueŶciŶg ŵachiŶerǇͿ, often the 

haplotype phase has actually already been measured. Indeed, a version of SHAPEIT2 is already in 

place to infer phase directly from read data
222

 which stands alongside previous read-based phasing 

methods such as WhatsHap
252,253

 and HapCut
254

. Furthermore, short distance haplotype calling 

(determining phase between very closely located variants) is currently available in the commonly 

used calling algorithm GATK
255

. The field of read-based phasing has now been joined by new 

methods whose development is tied directly into innovations in whole-genome sequencing 

methods
256

. A discussion of the phasing of WGS data including some of these methods was 

published in 2018
257

 which showed SHAPEIT2 and EAGLE2 to still be very competitive with what is 

referred to as ͚laďoratorǇ-ďased͛ ŵethods; particularlǇ wheŶ also coŶsideriŶg the difference in cost 

of such approaches. However, as future studies of population isolates may rely more on direct WGS 

data, potentially using technology that can read longer haplotype fragments, it might become 

standard practice to adopt genotyping protocols that directly generate phased data. 

One of the negative points of our first publication was that the rather limited choices of imputation 

software that we compared. All software tested were LD-based, whereas it would have been of 

interest to include software based on different methodologies as we had done so with the phasing 

analysis. We considered the use of imputation software PRIMAL
111

. PRIMAL was a perfect candidate 

for this study as it presents a phasing and imputation method specifically designed for isolated 

populations. It combines ideas of LRP and pedigree based imputation but, like EAGLE, utilises an LD-
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based method (IMPUTE2) to complete the imputation in areas of the genome where IBD-based 

methods are not informative. We initially encountered difficulties with implementation, and despite 

continued efforts and discussions with the authors M. Abney and D. Nicolae of PRIMAL, we were 

never able to satisfactorily run the software on our simulated dataset. Indeed, we were advised to 

wait for the release of a new version. We also considered pedigree based imputation methods and 

chose to try and test GIGI
258

 on the simulated dataset; this too was problematic due to the size of 

the Cilento Pedigree; finally we decided to not pursue matters further and submitted our work 

without including an imputation method based on IBD sharing. 

We returned to the subject of phasing and imputation recently (after the publication of the article) 

to once again try to use GIGI. This imputation software directly uses the known pedigree structure 

along with array genotypes to infer the patterns of the inheritance. With this information, if some of 

the individuals (an SSP) have sequencing data, their genotypes may be imputed in to closely related 

individuals based on their connections in the pedigree. GIGI is indeed a development of the first 

genotype imputation methods in families discussed in section 3.1. We found that GIGI alone was not 

able to operate efficiently in Cilento for the following reasons: (a) the pedigree had to be split and 

the sub-pedigrees of genotyped members were too small; (b) the members of the SSP in Cilento 

were too few and too widely spread for this method. However, the ͚ped-pop͛ method
259,260

 that 

combines output from GIGI and IMPUTE2/MINIMAC3, gave hope of being able to attain imputation 

accuracy higher than from IMPUTE2/MINIMAC3 alone. This method selected the most confidently 

imputed genotype between the two output files and as we had observed that GIGI could impute well 

from SSP members to their siblings it was possible that the results of IMPUTE2 could be improved 

upon. However, wheŶ usiŶg ͚ped-pop͛ we still oďserǀed a drop iŶ accuracǇ of approǆiŵatelǇ 10% 

compared to IMPUTE2. 

Very recently, a new software known as Kinpute
261

 was released which takes the posterior genotype 

probabilities from IMPUTE2 as initial estimates (or as prior probabilities) and then re-estimate the 
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imputed genotypes via estimations of IBD sharing coefficients between the target individuals and 

individuals in the SSP. This method was shown to produce highly accurate results on the Hutterite 

data, but initial tests on our simulation data are showing a decrease in imputation accuracy (roughly 

1% decrease on common variants though rare variants had equal accuracy) when compared to 

IMPUTE2.  

The possible idea of combining IBD- and LD-based methods for genotype imputation that have been 

developed by PRIMAL, GIGI, and KINPUTE seem ideal for isolated populations but as of yet we have 

not been able to demonstrate their efficacy. This will be a continued area of future investigation 

using our simulation datasets. 

During this thesis, I have exclusively concentrated on phasing and imputation literature relating to 

human genetics; but these are techniques that are also heavily used in in the study of livestock 

populations. One software that could have been included in our study was FIMPUTE
262

, a long range 

phasing/imputation method first implemented for cattle datasets. However, this method had been 

previously shown to be slightly inferior to methods such as, IMPUTE2, and MINIMAC3
263-265

, though 

it may be able to outperform BEAGLE
266

 and continues to be used in animal populations where 

detailed pedigree data is available
267

. We also did not test ALPHAIMPUTE
268

 (after observing that 

ALPHAPHASE had very poor performance in our simulation); though this method was updated in 

2017
269

 and so should be re-examined. Now, inference from ALPHAIMPUTE can be combined with 

that of MaCH (a precursor to MINIMAC3), again bringing forth an idea of combining IBD- and LD-

based methods. The idea that methodologies developed for studies of animals could be borrowed 

for analysing isolated populations (and vice-versa) is driven by the fact that in both cases, it may be 

possible to attain detailed pedigree structures whose information could be taken advantage of.  
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3.5 Conclusions on Phasing and Imputation 

 

From this first study, we were able to establish the most appropriate phasing and imputation 

strategy for ourselves in Cilento, whilst also being able to provide useful recommendations to other 

researchers studying isolated populations. We had felt that combinations of IBD- and LD-based 

methods could unlock the highest levels of phasing accuracy; but SHAPEIT2 continued to 

demonstrate the highest performance levels. For imputation, we demonstrated the strengths of 

SSPs in a thorough simulation setting for the first time as well as showing that even a very small SSP 

can be highly effective in a population such as Campora. 

Our unpublished results on using a study specific WES panel showed a potential weakness of 

IMPUTE2. The issue that we have highlighted regarding imputation with a study-specific WES panel 

could be easily rectified by the developers of the IMPUTE software, and could even be circumvented 

by ourselves – though it would take a rather lengthy and convoluted pipeline. Alternatively, there is 

no reason why genotype uncertainty could not be retained within a haplotype reference panel. A 

method allowing for this scenario would solve the issue we observed with the cross-imputed WES 

SSP. Previously, on a somewhat similar note, a specific issue had been brought up with the Li-

Stephens model for haplotype phasing. C. Nettelblad 
270

 described how the presence of individuals 

sharing two haplotypes IBD can lead to phase estimates fixating on an incorrect outcome. Allowing 

the algorithm to escape from this local maximum was one of the many adjustments between 

SHAPEIT2 and the original incarnation SHAPE-IT
220

. The recent priority of imputation software has 

been to accommodate enormous sample sizes; for example, IMPUTE4 has far less user specified 

options than IMPUTE2 and so researchers focused on samples of related individuals may find that 

LD-based methods will be less and less likely cater to their specific needs and perhaps more bespoke 

methods that specifically model for IBD could be developed and provide advantages.   
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Chapter 4: Heritability 

4.1 Introduction of Concepts 

 

For complex quantitative traits, there is often interest in estimating the proportion of the phenotypic 

variance that can be ascribed to each individual͛s iŶherited geŶoŵe. This proportion of variance 

coming from the genome is referred to as heritability. Classically, the approach was to decompose 

the variance of a phenotype by calculating correlations of phenotypes between pairs of close 

relatives
55

. Analyses commonly focused on contrasting monozygotic and dizygotic twins, or by 

studying sets of sibling pairs of parent-offspring pairs
110

. Subsequently, linear mixed modelling has 

enabled the estimation of trait variance components from samples including pairs of individuals with 

various degrees of relatedness, such as studies of population isolates
271

. Such approaches either use 

extended pedigree information that gives the expected relatedness coefficients between each pair 

or individuals, or use individual level genotypes for directly estimating relatedness on the genome. It 

is intuitive that exact estimations of relatedness should be more informative than the expected 

values given by the pedigree due to the large potential stochastic variability of genome sharing 

between relatives
228,272

. Such techniques initially relied on finding shared sections of the genome 

identical-by-descent (IBD)
79,226,229

 but more recently, it has been shown that correlations between 

genotypes allow for heritability estimation from any sample of individuals, including large samples of 

unrelated individuals
273,274

.   

Firstly, I will fully explain the concepts of additive and non-additive heritability in a (non-inbred) 

population. The initial assumption is that our phenotype ܻ can be modelled as follows: 

௜ܻ =  ∑ ݃௜௝ெ
௝=ଵ + ௜ߝ   

� is the total number of causal variants. The index ݅ indicates individuals and ݆ indicates genetic 

variants, ߝ௜  is the environmental component, assumed to be normally distributed under ܰሺͲ, �ா2ሻ 



Anthony Francis Herzig – Doctoral Thesis – 2019 

 

104 

 

and is independent of ݃௜௝ .  ݃௜௝  is the genetic value of variant ݆ of individual ݅ which is dependent on 

the genotype which we denotes as ܩ௜௝: 

݃௜௝ = , ௝଴ݑ}  ௜௝ܩ = , ௝ଵݑܣܣ ௜௝ܩ = , ௝2ݑ�ܣ ௜௝ܩ = ��  

As we assume that the genetic values are invariant across individuals, the subscript ݅ will sometimes 

be dropped for brevity. 

Considering the genetic value ݃௝ as a random variable (as the genotypes are here considered as 

random), then the expected value of ݃௝ is ܧ[݃௝] = ௝଴ݑ௝2݌  + ௝ଵݑ௝ݍ௝݌ʹ +  ௝ is the minorݍ ௝2 whereݑ௝2ݍ

allele frequency of variant ݆ and ݌௝ =  ͳ − ௝ߤ ௝. We defineݍ =  .[௝݃]ܧ 
The random variable ݃௝ is defined on a probability space, mapping one of the three events {ܣܣ, ,�ܣ ��} which occur with probabilities {݌௝2, ,௝ݍ௝݌ʹ ,௝଴ݑ} ௝2} to the set of outcomesݍ ,௝ଵݑ  ௝2}. Itݑ

can be shown that ݃௝ lies within a vector space of three dimensions governed by the values ݑ௝଴, ,௝ଵݑ  :௝2 and with the following inner productݑ

,௝ଵ݃ۃ          ݃௝2ۄ = [௝ଵ݃௝2݃]ܧ = ௝଴ଵݑ௝2݌ ௝଴2ݑ + ௝ଵଵݑ௝ݍ௝݌ʹ ௝ଵ2ݑ + ௝2ଵݑ௝2ݍ ௝22ݑ  Eq. 4.1a 

The superscripts indicate different realisations of ݃௝ coming from different values of {ݑ௝଴, ,௝ଵݑ  .{௝2ݑ
We can denote this vector space as � where each random variable contained in � is characterized 

by a tuple ݑ = ሺݑ௝଴, ,௝ଵݑ  .௝2ሻݑ
We will first define ௝ܺ = ݃௝ − ௝ߤ ଵܺ, where ଵܺ is a particular member of � characterised by ሺͳ,ͳ,ͳሻ.  

௝ܺ is characterized by the tuple ሺݑ௝଴ − ௝ߤ , ௝ଵݑ − ௝ߤ , ௝2ݑ −  .௝ሻߤ
௝ܺ has an expected value of zero and is orthogonal to the variable ଵܺ. This is seen as ߤ௝ = ,௝݃ۃ ଵܺۄ 

and hence ۃ ௝ܺ , ଵܺ݃ۃ = ۄ௝, ଵܺۄ − ۃ௝ߤ  ଵܺ, ଵܺۄ = Ͳ. 
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We can decompose ௝ܺ into two further orthogonal components ௝ܺ�  and ௝ܺ� so that for some values �௝ and ௝݀: 

௝ܺ =  �௝ ௝ܺ� + ௝݀ ௝ܺ� 

Here,  ௝ܺ�  and ௝ܺ� are specified to have expectations of zero and ۃ ௝ܺ� , ௝ܺ�ۄ = ۃ ௝ܺ� , ௝ܺ�ۄ = ͳ. As with 

linear 3-dimentional space, there are countless ways to partition a vector into orthogonal 

components as there are countless different orthogonal bases that can be chosen, but we will 

choose two directions relevant to the variance of a genetic trait.  

In particular we choose ௝ܺ� to relate to the number of minor alleles in the genotype. Intuitively, this 

direction must be ܺ଴ଵ2 = ሺͲ,ͳ,ʹሻ so we specify ௝ܺ� = ሺܺ଴ଵ2ߙ − ߚ ଵܺሻ. And solve for the constants ߙ and ߚ by seeing that ۃ ௝ܺ� , ௝ܺ�ۄ = ͳ and ۃ ௝ܺ� , ଵܺۄ = Ͳ, this gives: 

௝ܺ� = ܺ଴ଵ2 − ௝ݍʹ ଵܺ√ʹ݌௝ݍ௝ = ቆ ௝ݍ௝݌ʹ√௝ݍʹ− , ͳ − ௝ݍ௝݌ʹ√௝ݍʹ , ʹ − ௝ݍ௝݌ʹ√௝ݍʹ ቇ 

This is recognizable as the normalized additively coded genotypes of the individual. Hence, as ௝ܺ� 

describes the contribution of additive effects of the variant, we name the remaining orthogonal 

component ௝ܺ� as the ͚ŶoŶ-additiǀe͛ coŵpoŶeŶt. 

By setting ௝ܺ� = ሺߜଵ, ,2ߜ ۃ ଷሻ and by observing that by constructionߜ ௝ܺ� , ௝ܺ�ۄ = ͳ, ۃ ௝ܺ� , ଵܺۄ = Ͳ, and ۃ ௝ܺ� , ௝ܺ�ۄ = Ͳ , it is straightforward to solve simultaneously to give the non-additive coding for the 

genotypes: 

௝ܺ� = (௤ೕ௣ೕ  , −ͳ , ௣ೕ௤ೕ). 

Hence:  

                                                          ௜ܻ = ∑ ௝௝ߤ + ∑ (�௝ ௜ܺ௝� + ௝݀ ௜ܺ௝� )௝  ௜ Eq. 4.1bߝ +

In Box 4.1, the separation of additive and non-additive effects is depicted to give a clearer image of 

what is being described by each component.  
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Box 4.1 – The decomposition of a genetic value into additive and non-additive components. 

In matrix form:   ࢅ = � + ��ࢄ + ��ࢄ + � , where ࢄ� and ࢄ� are ܰ × � matrices that represent 

the additively coded and non-additive coded genotypes of all individuals; � = ሺ�ଵ, … , �ெሻ and � = ሺ݀ଵ, … , ݀ெሻ; and �  is a vector of length ܰ with all values equal to ∑ ௝௝ߤ .  

1) Classical interpretation 

To reach this point, our stance has always been that the effects � and � are fixed and the genetic 

components ࢄ� and ࢄ� are random. This interpretation is the classical version introduced by R. A. 

Fisher
55

. We will later turn to the modern stance introduced by P. Visscher. The differences between 

these two stand-points is discussed in detail by Dandine-Roulland and Perdry 
275

. 

Consider the covariance of two individuals͛ phenotypic values, ௜ܻ  and ௞ܻ: 

ሺ�݋ܿ ௜ܻ , ௞ܻሻ = �݋ܿ ቌ∑ ௝௝ߤ +  ∑(�௝ ௜ܺ௝� + ௝݀ ௜ܺ௝� )௝ + ௜ߝ    , ∑ ௝௝ߤ +  ∑(�௝ܺ௞௝� + ௝݀ܺ௞௝� )௝ +  ௞ቍߝ 
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We assume that all variants are in linkage equilibrium. Hence, all cross terms of the form 

c݋�( ௜ܺ௝భ� , ܺ௞௝మ� ) and ܿ݋�( ௜ܺ௝భ� , ܺ௞௝మ� ) are null. As are the cross terms involving environmental effects 

as we assume there to be no covariance between genetic and environmental terms. In non-inbred 

populations, the cross terms ܿ݋�( ௜ܺ௝� , ܺ௞௝� ) are also null. As a side note, while such terms do 

theoretically contribute in populations with inbreeding, there is very little consanguinity in Cilento 

and we chose not to consider the more elaborate covariance structures outlined in Abney, McPeek, 

& Ober
110

. Hence we arrive at the following:  

ሺ�݋ܿ ௜ܻ , ௞ܻሻ = ∑ ቀ���ܿ݋� ( ௜ܺ௝� , ܺ௞௝� ) + )�݋ܿ��݀ ௜ܺ௝� , ܺ௞௝� )ቁ௝ + ,௜ߝሺ�݋ܿ  .௞ሻߝ
Therefore, we must evaluate the covariance of pairs of additive and pairs of non-additive 

components between pairs of individuals. To do this requires a decomposition over the different 

possible IBD sharing states between the two individuals: ܿ݋�( ௜ܺ௝� , ܺ௞௝� ) = ∑ ∆௟ሺ௜௞ሻܿ݋� ቀ ௜ܺ௝� , ܺ௞௝� |∆௟ሺ௜௞ሻቁଽ௟=ଵ ,  

)�݋ܿ ௜ܺ௝� , ܺ௞௝� ) = ∑ ∆௟ሺ௜௞ሻܿ݋� ቀ ௜ܺ௝� , ܺ௞௝� |∆௟ሺ௜௞ሻቁଽ௟=ଵ . 

∆௟ሺ௜௞ሻ
 is the probability of individuals ݅ and ݇ being in IBD state ݈.  

The workings through the possible states can be found in Jacquard 
58

, and we arrive at the following 

well known results for a non-inbred population: ܿ݋�( ௜ܺ௝� , ܺ௞௝� ) = ʹ߮௜௞ , where ʹ߮௜௜ = ͳ; and ܿ݋�( ௜ܺ௝� , ܺ௞௝� ) =  ߰௜௞ , where:  

߰௜௞ = { ͳ, ݅ = ݇∆଻ሺ௜௞ሻ, ݅ ≠ ݇    . 
Importantly, ܿ݋�( ௜ܺ௝� , ܺ௞௝� ) and ܿ݋�( ௜ܺ௝� , ܺ௞௝� ) do not depend on the variant ݆. Therefore,  

ሺ�݋ܿ ௜ܻ , ௞ܻሻ = ʹ߮௜௞ ቌ∑ �௝2௝ ቍ + ߰௜௞ ቌ∑ ௝݀2௝ ቍ + ,௜ߝሺ�݋ܿ  .௞ሻߝ
The environmental components are assumed to be pairwise independent; i.e. c݋�ሺߝ௜, ݅ ௞ሻ is equal to ͳ ifߝ = ݇, but is zero otherwise. We now introduce ܰ × ܰ matricies � and � where �௜௞ = ʹ߮௜௞  and �௜௞ = ߰௜௞. 
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Hence, in matrix form, the variance-covariance stricture of  ࢅ, written as ���ሺࢅሻ, is as follows: 

���ሺࢅሻ =  ቌ∑ �௝2௝ ቍ � + ቌ∑ ௝݀2௝ ቍ � + �ா2�ே 

We then write ߬� = ∑ �௝2௝  and ߬� = ∑ ௝݀2௝  and define broad- and narrow-sense heritability, 

respectively, as: 2ܪ =  ��+����+��+��మ    and   ℎ2 =  ����+��+��మ     

Furthermore, we will write the additive and non-additive heritabilities respectively as: ℎ�2 = ℎ2 and  ℎ�2 = 2ܪ − ℎ2. If the trait is scaled by dividing through by (߬� + ߬� + �ா2ሻ, we have: ���ሺࢅሻ =  ℎ�2� + ℎ�2� + ሺͳ − ℎ�2 − ℎ�2ሻ�ே 

 

2) Modern interpretation 

Eq. 4.1c 

An alternative interpretation was introduced by P. Visscher and first demonstrated in a landmark 

study of heritability in a sample of unrelated individuals
273

. Here, the important distinction is that the 

effects � and � are now considered as random and the genetic components ࢄ� and ࢄ� are 

considered as fixed. We assume that entries of the vectors � and � are draws of independent and 

identically distributed normal variable with means equal to Ͳ and variances equal to ��2 and ��2, 

respectively. In this setting, the variance-covariance matrix of ࢅ becomes: ���ሺࢅሻ = ்�ࢄ�ࢄ2��  + ்�ࢄ�ࢄ2�� + �ா2�ே 

Which we rewrite arbitrarily as:  

���ሺࢅሻ =  ߬� ͳ� ்�ࢄ�ࢄ + ߬� ͳ� ்�ࢄ�ࢄ + �ா2�ே 

The link between this model and equation 4.1c is clear once we notice that as �௝~ܰሺͲ, ��2ሻ, (∑ �௝2) 

is a moment estimator of ���2 =  ߬�, and likewise for ߬� and (∑ ௝݀2). Again, if the trait is scaled by 

dividing through by (߬� + ߬� + �ா2ሻ, we have: 

���ሺࢅሻ =  ℎ�2 ͳ� ்�ࢄ�ࢄ + ℎ�2 ͳ� ்�ࢄ�ࢄ + ሺͳ − ℎ�2 − ℎ�2ሻ�ே 
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Consider single entries of the two matrices ࢄ�ࢄ�் and ࢄ�ࢄ�்: 
ͳ� ௜௞{்�ࢄ�ࢄ} = ͳ� ∑ ௜ܺ௝� × ܺ௞௝�ெ

௝=ଵ  

ͳ� ௜௞{்�ࢄ�ࢄ} = ͳ� ∑ ௜ܺ௝� × ܺ௞௝�ெ
௝=ଵ  

For any given variant ݆, ௜ܺ௝� × ܺ௞௝�  and ௜ܺ௝� × ܺ௞௝�  are moment estimators of ʹ߮௜௞ and ߰௜௞  , 

respectively. By averaging over all causal variants; 
ଵெ ∑ ௜ܺ௝� × ܺ௞௝�ெ௝=ଵ  is a moment estimator of �௜௞ 

and likewise 
ଵெ ∑ ௜ܺ௝� × ܺ௞௝�ெ௝=ଵ  is a moment estimator of �௜௞. 

Once the matrices � and � (which we will no longer write in bold from here on for ease of reading 

as we are always clearly referring to matrices) have been calculated, either from IBD probabilities or 

as moment estimates from the individual level genotypes, ߬� , ߬� , and �ா2 can be estimated via a 

linear mixed model (LMM). In our study, we use average information maximum likelihood 

estimation (AIREML)
276

 to do so. When � and � are calculated as moment estimators from genotype 

data, we will refer to them as Genetic Relatedness Matrices (GRMs). This particular LMM will be 

referred to as Model KD:  �݈݁݀݋ ��:    ܻ ~ �ܸܰሺܷߚ଴, ߬�� + ߬�� + �ா2ܫேሻ 

The term ܷߚ଴ describes any potential addition covariates (such as sex or age) that may be added to 

the model. 

An important distinction between the classical and modern derivations is that there is a difference in 

the interpretation of the relative sizes of the genetic effects. In the classical interpretation, there is 

no restriction or prior expectation on the values that ݑ௝଴,  ௝2 can take. In the modernݑ ௝ଵ, andݑ

interpretation, the genetic effects �௝ and ௝݀ are assumed to be draws of normal distributions and 

contribute to the trait via the formula previously given above:  

௜ܻ = ∑ ௝௝ߤ + ∑(�௝ ௜ܺ௝� + ௝݀ ௜ܺ௝� )௝ +  ௜ߝ 
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As the genotypes have been normalised to form ௜ܺ௝�  and ௜ܺ௝� , this essentially leads to a relationship 

between the contribution of a genetic variant to the trait and the frequency of the variant. Indeed, 

this model of P. Visscher predicts that rarer variants will, on average, have larger genetic effect sizes. 

In either case, it is typical for only narrow-sense heritability (the contribution of only the additive 

effect of the number of minor alleles in the genotype) to be calculated and presented. The non-

additive component is not fitted. Results for non-additive heritability for complex traits have only 

rarely been estimated and results often vary greatly between different studies, this led us to begin a 

second simulation study primarily investigating non-additive heritability. 
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4.2 Published Results for Non-Additive Heritability Estimation 

4.2.1 Interplay of Trait Architecture and Variance Components Estimates  

 

In our second study we demonstrated some possible advantages of studying isolated populations for 

broad-sense heritability estimation. Through simulation and the study of the Cilento isolates we 

explained to an extent why large differences in estimations can be observed in the literature. We 

used the simulated data for all three villages of Cilento, using the combination of HapGen2 and 

gene-dropping as described in Section 2.2. Data from six different runs of this simulation were used 

in this study. We also siŵulated ͚outďred͛ populatioŶs - simply by running HapGen2 on the UK10K to 

produce mosaic haplotypes. In fact, for this simulation study we did not actually use HapGen2 

directly, we coded their algorithm ourselves so that we could record the mosaic segments used in 

the siŵulatioŶ; this would allow us to kŶow the ͚true͛ IBD shariŶg ďetweeŶ all pairs of individuals in 

the simulated populations. For the majority of results we concentrated on four populations: (a) – 

͞Isolated;ϭϰϰϰͿ͟, oŶe realisatioŶ of the siŵulated isolated populatioŶ with ϭ,ϰϰϰ iŶdiǀiduals aŶd the 

structure of the three Cilento villages; ;ďͿ ͞Outďred;ϭϰϰϰͿ͟ – an outbred population of 1,444 

iŶdiǀiduals; ;cͿ ͞Outďred;ϰϯϯϮͿ͟; aŶd ;dͿ  ͞Outďred;ϴϲϲϰͿ͟ – larger simulated outbred populations of 

size 4,332 and 8,664, respectively. 

The first section of the study concentrated on estimations of ℎ�2 and ℎ�2  from running linear mixed 

models on phenotypes simulated under simple polygenic models. Details of phenotype simulation 

are given in the Method section of Annex B.  Below, in Table 4.2.1, a collation of previous estimates 

of both heritability components from commonly studied traits are given. For two traits, LDL and BMI, 

I have plotted these estimates to demonstrate their diversity (Figure 4.2.1a).  
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Figure 4.2.1a - We decided to plot these joint heritability component estimates on triangular figures 

to represent how the LMM distributes the phenotypic variance between the three variance 

components from the three variance-covariance matrices, K, D, and ܫ�. This results in a slight bending 

of 2D space; essentially an isosceles triangle with vertices at (0,0), (1,0), and (0,1) has been mapped 

on to an equilateral triangle to give equal prominence to all three components and a better 

aesthetic. Two specific values of BMI estimates have been added to aid comprehension of how values 

of ℎ�2 and ℎ�2  vary in the simplex. The construction of the graph means that one can roughly gauge 

the magnitude of the two estimates by observing the distances from a point to each vertex. The 

variety of estimates for ℎ�2  for the trait LDL have been indicated by their distance to the ℎ�2  vertex. 

The difference in estimations from different study designs, we reasoned, could relate to either 

specific trait architectures, or to the different methods used for calculating matrices � and � (IBD-

based in isolated populations, or moment based estimates in outbred populations). Our first analysis 

was concerned with the former conjecture – different trait architectures. Hence, we decided to 

analyse simulated populations in the same way: we simulated a myriad of phenotypes using random 

draws of random causal variants. For all populations, we calculated the variance-covariance matrices 

as GRMs and fitted the same linear mixed models (LMMs). We varied the polygenic trait architecture 

by changing the number and frequencies of causal variants. 
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Table 

4.2.1 

Abney, 

McPeek, & 

Ober. 2001. 
109

,  � = 806, 

Isolate (1) 

Pilia et al., 

2006 
277

, � = 6,148, 

Isolate (1) (2) 

Traglia et al., 

2009 
278

, � = 1,803, 

Isolate (1) (2) 

Zaitlen et al., 

2013 
279

, � ≈ 15,000, 

Extended 

Genealogies 

(3) 

van Dongen et 

al., 
280

, 2013, 

 � ≈ 7,500, 

Twin Study (4) 

   

Chen et al., 

2015 
281

, � = 7,740, 

Twin Study (5) 

 

Chen et al., 

2015 
281

,  � = 5,779, 

Outbred (5) (6) 

 

Zhu et al., 

2015 
282

, � = 8,682, 

Outbred (6) 

Nolte et al., 

2017 
122

, � = 13,436, 

Outbred (6) 

Phenotype ℎ�2  ℎ�2  ℎ�2  ℎ�2  ℎ�2  ℎ�2  ℎ�2  ℎ�2  ℎ�2  ℎ�2  ℎ�2  ℎ�2  ℎ�2  ℎ�2  ℎ�2  ℎ�2  ℎ�2  ℎ�2  

Height - - 0.77 0.23 * 0.78 0.22 * - - 0.81 0.09 0.77 0.09* 0.62 0.00 0.48 0.02 0.49 0.00 

BMI 0.54 0.00 0.36 0.32 * 0.33 0.17 0.16 0.09 0.41 0.37  0.28 0.41* 0.21 0.02 0.23 0.15*  0.25 0.02 

TGLY 0.37 0.00 0.30 0.42 * 0.39 0.35 * - - 0.33 0.25  0.42 0.14 0.31 0.28* - - 0.19 0.01 

HDL 0.63 0.00 0.47 0.11 0.62 0.00 0.42 0.14* 0.40 0.27  0.66 0.00 0.24 0.01 0.25 0.07 0.19 0.00 

Total Chol - - 0.38 0.29 * 0.23 0.77 * - - 0.51 0.16  0.28 0.19* 0.15 0.00 0.21 0.01 0.23 0.00 

LDL 0.36 0.60 * 0.37 0.27 * 0.33 0.66 * 0.20 0.26* 0.51 0.18  0.23 0.24* 0.16 0.00 0.26 0.02 0.27 0.00 

Published results for additive and dominant genetic variability from various study designs. 

* Estimates of ℎ�2  presented as statistically significant at the 5% level. 

-  Trait not studied for dominance in the article. 

(1) Estimates based on estimating � and � from expected proportions of identity-by-descent (IBD) sharing coming from pedigree information. 

(2) The depth of pedigree information in these studies did not allow the differentiation between a dominance model (including non-additive genetic variation) and a household 

model (including an effect of shared environment between siblings).  

(3) The authors of this study analysed a large sample from the Icelandic population for whom extensive pedigree data was available, Matrices � and � were estimated by 

locating and counting stretches of IBD between pairs of individuals.  

(4) This study analyses a large cohort of monozygotic and dizygotic adult twins. Standard errors are only presented for broad-sense heritability, though it is likely that the 

estimates for ℎ�2  for all traits other than height were significantly different to zero.  

(5) The authors of this study performed separate analysis, firstly a twin based study using structural equation methods with adjustments for reported levels of time spent in a 

shared environment between twins, and secondly a study of a large sample of unrelated which included one individual out of most twin pairs in the first analysis.  

(6) Estimates based on calculating correlations between additively and non-additively coded genotypes to compute matrices � and �. 

Abbreviations: BMI: Body-mass index; TGLY: Triglycerides; HDL: High-density lipoproteins; Total Chol: Total cholesterol; LDL: Low-density lipoproteins; ܰ: Sample size. 
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Having then estimated ℎ�2 and ℎ�2 , we could notice patterns across multiple realisations of the 

phenotype simulation. To give a full explanation of how the plots in the publication were designed, 

we include here Figure 4.2.1b (Figure 1 from Annex B) with a full description. 

 

Figure 4.2.1b – For each of our simulated populations, we repeatedly simulated phenotypes by taking 

random draws of causal variants with either additive effects, non-additive effects, or both; and 

random draws of genetic effects (�௝ and ௝݀ from section 4.1); scaled so that ℎ�2 and ℎ�2  were both 

equal to 0.4; the horizontal lines in each sub-plot of section (a) denote these true values. In section 

(a), we vary the number of causal variants (M) and present the maximum likelihood estimates (MLEs) 

for ℎ�2  ሺ݈݃݀݋ሻ, ℎ�2  ሺܾ݈݁ݑሻ, and indeed ͳ − ℎ�2 − ℎ�2  (grey). Each simulated phenotype results in one 

thin vertical bar on the plot. Section (b) gives one example of such a set of MLEs. For a few particular 

values of M, we repeated the simulation 500 times in order to compute empirical variances of the 

estimates of ℎ�2 and ℎ�2  which we present in section (c), observing that there was less precision for 

phenotypes simulated using very small numbers of causal variants.  
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Two things were immediately obvious, that there would be very little precision in estimates of ℎ�2  in 

all populations and that estimates from outbred populations were downwardly biased; particularly 

when causal variants were rare. Estimates from isolated populations were however robust to 

changes in causal variant frequencies and to the numbers of variants made available for calculating 

GRMs (Figure 2 and Supplementary Figures 1 and 2 of Annex B). By increasing sample sizes of both 

isolated and outbred populations, we could substantially increase the precisions of the estimates of ℎ�2 and ℎ�2  (Figures 1,2, and 3 in Annex B). For the additive component, it is well known and well 

documented that analyses of unrelated individuals will underestimate heritability
120,121

. It was not 

surprising to see in our analysis a mirroring of this well documented phenomenon for non-additive 

heritability. This somewhat contradicts the conclusions of Zhu, et al. 
282

 who postulated that non-

additive heritability was largely unimportant based upon interpretations of estimates of unrelated 

individuals when using very similar methods to estimate ℎ�2  as we have used here. However, our 

simulation was very simple and potentially naïve as our simulated phenotypes followed idealised 

polygenic models. It is unlikely that any human trait is a simple amalgamation of hundreds of 

thousands of small independent effects.  

Furthermore, estimates from isolated populations may also be problematic and the rest of our study 

concentrated specifically on these challenges. 

4.2.2 How to Estimate Relatedness Matrices in an Isolate 

 

We investigated different methods for estimating the matrices � and � in isolated populations. We 

noted that in our comparison of previously published joint estimates of ℎ�2 and ℎ�2  that the studies of 

isolated populations used the expected IBD coefficients based on known pedigree structures. 

Conversely, the studies of outbred populations, not having evidence of close relationships, used 

GRM moment estimators to calculate � and �.  
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We compared three methods for estimating � and � in isolated populations: (a) pedigree based 

estimates; (b) true IBD-sharing based estimates (as we could either track every simulated allele back 

to a particular founding haplotype); and (c) using GRMs. In Figures 4.2.2a and 4.2.2b (taken from the 

Supplementary Figures 4b and 4c of Annex B) we compare the off-diagonal entries of these matrices. 

The off-diagonal elements from pedigree-based matrices are less continuous than other methods. 

From a pedigree, only the expected values of IBD sharing can be calculated. Hence, for example, all 

of the sibling pairs have an expected value for their non-additive covariance roughly equal to 0.25 

(Figure 4.2.2a). Whereas the estimated values for these covariance values from GRMs vary greatly 

around 0.25. The idea being that, for example, we expect two siblings to have a kinship coefficient of 

0.5 and a coefficient of IBD=2 sharing equal to 0.25. However, the actual values will depend on the 

stochastic transmission from the two parents. It is intuitive therefore that using coefficients that 

capture the exact IBD-sharing between each pair will better reflect the assumptions of the LMM. 

 

Figures 4.2.2a – Comparison of off diagonal elements of matrices � and � calculated either from the 

pedigree of Cilento or as GRMs. 

We estimated heritabilities ℎ�2 and ℎ�2  for previously simulated phenotypes, using these different 

methods for estimating � and �. 
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Figures 4.2.2b – Comparison of off diagonal elements of matrices � and � calculated either from the 

true IBD-sharing (recorded during the simulation) or as GRMs. 

The ŵost iŶterestiŶg result was to see that the ͚ďest͛ estiŵates caŵe from GRMs, and this was a 

universal result across many different scenarios (Figure 4 in Annex B and Supplementary Figure 5 in 

Annex B). One particular result is summarised in Box 4.2.2.  

The ellipses in Box 4.2.2 reflect the variance in the estimation of the additive and non-additive 

components, with their forms showing the large lack of precision in the estimate of ℎ�2   which could 

generally vary between 0 and close to 1. If we concentrate on the estimation of the additive 

components, we can see that all methods performed quite similarly as the ellipse have similar minor 

axes. For the major axis which describes the non-additive component, there were some differences 

and the GRMs appear to give more precise results. We were somewhat surprised that the GRMs 

outperformed the matrices derived from the true simulated IBD-sharing. We presented the 

following conclusions from this particular analysis: firstly, using GRMs in isolated populations is 

appropriate (as this was not an approach generally used before though has been previously explored 

for related individuals
283

). Secondly, that using GRMs may hold an advantage over methods that 

specifically model tracts of IBD-sharing; IBD-sharing estimation methods have been applied for 

isolated populations, e.g. Vitart, et al. 
284
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Box 4.2.2. Here, minimal ellipses containing at least 95% of the 500 maximum likelihood estimates 

from repeated phenotype simulation are given. A section of Figure 4.2.1b is given to put these new 

results in context. We set the number of causal variants to ͳͲ5 and replicated the phenotype 

simulation 500 times. The three small triangles on the left of the box show heat maps of all of the 

500 MLEs resulting from fitting out LMM using different versions of matrices � and �. 

The reason that GRMs could hold an advantage is that they are able to capture similarities between 

genotypes that go beyond the IBD-sharing that we recorded in our simulation. In our simulation, we 

assume that our original 200 founding haplotypes, which were drawn to simulate our data, were all 

completely unrelated. But these haplotypes were from the UK10K and so could easily share regions 

IBD. Certainly they will share many short regions shared IBS. This could seep down through our 

simulation and lead to similarities between individuals that we do not record as IBD.   

Which approach is ͚ďetter͛ ŵaǇ iŶ fact Ŷot a useful ƋuestioŶ to ask. First, all of our interpretations 

have been based on the assumption of the polygenic model. If we do accept this model, depending 

on how the actual causal variants are distributed, it may be arbitrary as to which method will give an 
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estimate that happens to better represent the set of variants that truly have an effect. GRMs were 

calculated using different sets of variants, one large set, and one much smaller set, and results were 

largely unaffected. This is shown in the closeness of Figure 4 in Annex B and Supplementary Figure 5 

in Annex B. However, as causal variants were always selected at random, in some cases many of 

them may have been sampled from the sets of variants used to estimate the GRMs. Indeed, we 

observed during early explorations of our simulation that if the exact set of causal variants were 

used to calculate the GRMs, we would of course get highly accurate heritability estimates.  
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4.3 Confounding with Shared Environmental Factors 

 

From the initial results regarding the interplay of trait architecture and heritability estimation, it 

could be tempting to conclude that the low estimates of ℎ�2  from previous studies of outbred 

populations indicate trait architectures involving many rare variants; or possibly variants that are not 

well covered by LD. Equivalent hypotheses are currently being explored in great detail for narrow 

sense heritability for many complex traits
274,285,286

. 

Our simulated phenotypes followed polygenic models precisely. Two important assumptions that 

our polygenic model makes and that we know to not be good assumptions to make are that: (a) 

there is no contribution to the covariance structure from interaction effects between different 

genetic variants; (b) there is similarly no contribution from interactions between genetic and 

environmental effects. We did not address point (a) in our study, though interactions between 

genetic variants (epistasis) have been shown to significantly affect heritability estimation
120

. Neither 

did we explore explicit non-independence of genetic and environmental effects. We did however 

broach this topic by simulating phenotypes using models that describe covariance between 

environmental effects between certain pairs of individuals: siblings. We showed that this gives a 

confounding between the non-additive genetic and environmental components. Phenotypes were 

simulated under the following model: 

,଴ߚሺܷܸܰ� ~ ܻ    :ܵ�� ݈݁݀݋� ߬�� + ߬�� + ��2ܵ + �ா2ܫேሻ 

The additional matrix, ܵ, has values of ͳ on the diagonal and at every off-diagonal element 

corresponding to pairs of siblings in the sample; all other entries are zero. A confounding arises 

because the non-additive effect as the matrices � and ܵ are so similar, making it difficult to 

simultaneously estimate ߬� and �௦2. The matrices are similar because the siblings are the pairs of 

individuals with by far the highest proportions of IBD=2 sharing.  
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The proportion of variance assigned to the shared environmental component between siblings will 

be written as ℎ�2 (defined below) and is soŵetiŵes referred to as the ͚Household͛ effect. 

ℎ�2 = ��2߬� + ߬� + ��2 + �ா2 

Indeed, in Traglia, et al. 
278

 and in Pilia, et al. 
277

 there was complete compounding of these effects as 

they studied populations where the only pairings with expected values of IBD=2 sharing different 

from zero were siblings. Note that this was a result of using pedigree based estimates for the 

relatedness matrices. This highlights another motivation for using matrices based on estimates of 

exact IBD-sharing or GRMs rather than the expected values from pedigree structure. If a true 

continuum of IBD-sharing values make up the off-diagonal elements, this is unlikely to be matched 

and hence confounded with shared environmental effects
109,110

. From results presented in Abney, et 

al. 
110

, we could see that the distribution of estimates of Δ଻ in the Hutterite population, estimated 

from their pedigree, was less polarised than the equivalent distribution in Cilento. To elaborate, in 

the Hutterite population, the amount of loops in the pedigree and the sharpness of the founding 

bottleneck predict a wide range of potential IBD=2 sharing probabilities. In Cilento, conversely, we 

can see in Figure 4.2.2a that there are only sufficient loops in the pedigree to give expected values of 

off-diagonal elements of � that are only slightly different from either 0 (unrelated) and 0.25 

(siblings). These coefficients are then more continuous when estimated from GRM matrices yet 

values are still clearly divided into two groups (sibling pairs and non-sibling pairs). Hence, analyses 

may be susceptible to confounding with sibling status. 

We showed through our simulation that large confounding was possible even when there was just a 

very small Household effect. For example we simulated phenotypes with the following variance 

parameters: ℎ�2 = Ͳ.Ͷ, ℎ�2 = Ͳ.Ͷ − ℎ�2, where ℎ�2 took the following values: Ͳ.ͲͲ, Ͳ.Ͳʹ, Ͳ.Ͳͷ, Ͳ.ͳͲ,Ͳ.ʹͲ,  and, Ͳ.ͶͲ. The results from these simulations are given in Supplementary Figures 7a-f in Annex 
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B. The results where ℎ�2 = Ͳ.ʹ are presented here in Figure 4.3 and also in Figure 5 in the main text 

of Annex B.   

These analyses showed that when the shared environmental effect increased - it was very likely that 

LMMs would give a broad-sense heritability estimate of 1, a phenomenon that will be interesting to 

explore further and that can in fact be observed in previous estimates from isolated populations (see 

Table 4.2.2). When pedigree information was used to estimate the matrices � and �, there 

appeared to be slightly more sensitivity to the presence of both non-additive effects and shared 

environmental effect; probably because in this case the matrices � and ܵ had fewer differences. 

 

Figure 4.3 - Contrasts between model KD and model KDS, illustrating the confounding between non-

additive effects and shared environmental effects between siblings in the simulated population 

isolate. Results are split dependent on whether GRMs or Pedigree estimates were used to form 

matrices � and �. The plot follows the same form as in Box 4.2.2 

In our simulation study we were able to show that one way around this problem would be to 

exclude one member of each sibling pair from variance component analysis. However, in an isolate 

with the size and characteristics of Cilento, this would decrease the sample size greatly. We 

presented results from a simulated population that we called ͞Isolated(5136)_nosibs͟, a 

congregation of simulated individuals across the six simulated versions of Cilento without any sibling 

pairs. We showed that a reasonable estimates of ℎ�2  could be found in an isolated population with 

no siblings and just from the information carried by more distantly related pairs who nonetheless 
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share regions with IBD=2. Results from this analysis are given in Supplementary Figures 8a-d of 

Annex B. 

In both this analysis, which excluded siblings, and the analysis involving different sample sizes in a 

population isolate (Figure 3 Annex B), we had combined multiple simulation datasets based on 

Cilento. Without larger pedigree structures at hand for other isolates, this was our choice of method 

to explore isolate type data that was not limited to 1,444 individuals or less. These analyses raised 

the question of whether it would ever be possible to combine data from several population isolates 

in order to perform such heritability analyses. Our results suggested that there would be clear 

advantages in the precision of the estimates as well as allowing for analysis of subgroups of pairs 

(e.g. non-sibling pairs). However, would it be reasonable to do so? Given that in each population, we 

should expect the values of ℎ�2, ℎ�2 , and ͳ − ℎ�2 − ℎ�2  to be different. The amount of environmental 

variation will be different between isolates as will the genetic components depending on the 

frequencies and distribution of causal variants in each population. Nevertheless, whilst the values of 

heritability estimates across different populations might be nonsensical, it could still be a powerful 

approach for establishing whether certain components are at least different from zero.  
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4.4 Analysis of the Cilento Isolates 

4.4.1 Heritability Analyses 

 

We analysed six traits for heritability in Cilento, with our findings slotting in nicely into the collection 

of previous results from the literature that we had gathered in our study. We focused particularly on 

two traits, BMI and LDL. By comparing estimations based on the Model KD and Model KDS and by 

comparing our results to those of the simulation study involving shared environmental factors we 

tried to decipher our heritability estimates from Cilento and to see what conclusions could be 

drawn. In Figure 4.4.1a, we present the likelihood profiles of the two variables ℎ�2 and ℎ�2  from the 

Model KD for the two traits BMI and LDL. We include the MLE for ℎ�2 and ℎ�2  from the Model KDS 

(green peak) and we can see that in both cases that changing from Model KD to Model KDS results in 

a reduction in the estimate of the dominance component. In Table 4.4.1, all heritability estimates 

from the study are given (taken from Table 2 in Annex B), where various different models were 

tested and further contrasts between using GRMs or pedigree information are given. 

 

Figure 4.4.1a – Likelihood profiles from the model KD for BMI and LDL. The red region represents the 

95% confidence interval of the MLE estimates for heritability (red peaks). We overlay the previous 

results from the literature as well as the MLEs from the model KDS (green peaks).  
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The initial estimate of BMI from Model KD gave 2ܪ as 0.93 (close to 1) and a high value for ℎ�2  of 

0.58. If pedigree information was used rather than GRMs, then 2ܪ was estimated as exactly 1 and ℎ�2  as 0.65 (Table 4.4.1). The red confidence interval for the MLE suggested that the estimate for ℎ�2  

was significantly different from zero. However, when the sibling matrix was included (Model KDS) 

the estimate for ℎ�2  fell to zero, with most of the variance that had previously been ascribed to ℎ�2  

switching to the environmental component (ͳ − ℎ�2 − ℎ�2). Adding the matrix ܵ to the covariance 

structure in the model did not affect estimates of ℎ�2 in Cilento, which was in accordance with our 

simulations that compared models KD and KDS. If we compare the results for BMI to our simulation 

results that compared Model KD with Model KDS (described in Section 4.3), they are probably most 

compatible with the scenarios where ℎ�2  was small or even zero and ℎ௦2, the Household effect, was 

large.   

For the trait LDL, the estimate for ℎ�2  was also significantly different from zero under the Model KD 

based on the presented 95% confidence interval. The MLE under Model KD is also quite far from the 

bottom edge of the figure. Also, the shift of the MLE when we moved to Model KDS was 

comparatively small when compared to the other traits studied such as BMI. Coupling these 

observations suggests that the initial estimation of ℎ�2  was probably not being completely driven by 

an unaccounted for Household effect. This allowed us to draw a tentative conclusion that our 

analyses gave a good indication of a non-zero non-additive (or dominance) component for LDL in 

Cilento. Based on these results we decided to continue to analyse the trait LDL in detail, including 

analysis of a recently completed imputation dataset of Cilento. 
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Table 

4.4.1 

GRM 

Model K 

GRM 

Model KD 

GRM 

Model KS 

GRM 

Model KDS 

Pedigree 

Model K 

Pedigree 

Model KD 

Pedigree 

Model KS 

Pedigree 

Model KDS 

Phenotype ℎ�2  ℎ�2  ℎ�2  ℎ�2  ℎ௦2 ℎ�2  ℎ�2  ℎ௦2 ℎ�2  ℎ�2  ℎ�2  ℎ�2  ℎ௦2 ℎ�2  ℎ�2  ℎ௦2 

Height 0.76 0.74 0.13 0.74 0.04 0.74 0.12 0.01 0.75 0.74 0.15 0.74 0.04 0.74 0.15 0.00 

BMI 0.40 0.35 0.58 0.31 0.23 0.31 0.00 0.23 0.44 0.35 0.65 0.35 0.21 0.35 0.00 0.21 

TGLY 0.27 0.24 0.26 0.21 0.11 0.21 0.00 0.11 0.28 0.23 0.45 0.23 0.11 0.23 0.41 0.01 

HDL 0.49 0.49 0.00 0.44 0.02 0.44 0.00 0.02 0.48 0.49 0.00 0.48 0.01 0.48 0.00 0.01 

Total Chol 0.29 0.23 0.55 0.23 0.18 0.22 0.27 0.12 0.29 0.21 0.72 0.22 0.18 0.21 0.47 0.06 

LDL 0.32 0.25 0.52 0.24 0.17 0.23 0.29 0.10 0.33 0.24 0.66 0.24 0.16 0.24 0.45 0.06 

Maximum likelihood estimates for the contribution of each variance components considered in a Linear Mixed Model. Model names refer to 

the set of variance components included. � denotes the additive genetic component, � the non-additive or dominant genetic component, 

and ܵ the component accounting for shared environmental effects between siblings. Matrices � and � are calculated either as genetic 

relationship matrices (GRMs) or from pedigree information. 
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4.4.2 GWAS of LDL in Cilento 
 

To complement our heritability results, we set out to perform both additive and non-additive GWAS 

of the trait LDL in Cilento. We tested these components separately, knowing the tests to be 

orthogonal by construction, to see if evidence of our polygenic model comprising additive and non-

additive effects (equation 4.1b) could be found. Note, that testing both of these orthogonal 

components and then combining their test-statistics would be equivalent to a two degrees of 

freedom test under a general model where each of the three genotypes is assumed to have a 

specific effect (ܣܣ vs. ܣ� vs. ��).   

This section will touch on our previous investigation into genotype imputation in Cilento as it 

involves our completed genome wide imputation dataset in Cilento, using the whole-exome 

sequenced study specific panel (the WES SSP). The imputed dataset has been passed back to our 

collaborators in Naples and will continue to be analysed for multiple traits and as we have harnessed 

local sequencing data, we have hope of finding new associations in Cilento. Through our detailed 

simulation studies, we believe that we have created a highly accurate imputation dataset. Here, it 

will be instructive to trial this dataset by performing a GWAS for a widely studied trait such as LDL. 

Hence, the following analysis is both a confirmation of our imputation strategy and a follow-up of 

our heritability results. We performed our GWAS on hard-called imputed genotypes because, as of 

yet, we have not implemented methods necessary for analysing non-additive components from 

imputed dosage data (this is discussed in detail in Section 4.5). Using hard-calls is of course 

problematic when imputed genotypes are uncertain. Hence, we put a threshold of 0.8 for the top 

posterior genotype probability and set genotypes failing this threshold to zero. This will detract from 

our results, but for the moment this was primarily an initial test of the imputation dataset and a 

continued look at non-additive effects. 

The trait LDL describes the level of low-density lipoprotein in blood plasma. This has been widely 

studied in genetic epidemiological studies, finding associations with many genes and loci
287-290

, many 
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of whose functionalities have previously been well described
291

. 789 GWAS hits for LDL from 65 

studies are currently (December 2018) listed in the GWAS catalogue. Particular genes that could well 

be found include: APOE, APOC1, APOC2, SORT1, LDLR, APOB, PCSK9, LDLRAP1, and NPC1L1
289,292

. 

The distribution of the trait across Cilento and within each of the three villages is given in Figure 

4.4.2a. The trait was judged to not require a transformation though it was adjusted appropriately for 

the intake of certain lipid lowering medications. We fitted LMMs including additional explanatory 

variables for the membership of each village, age, sex, and the interaction age×sex. The covariance 

structure used in the model included the two relationship matrices � and �, both estimated as 

GRMs from dense, hard-called, high quality ;IMPUTEϮ ͚iŶfo͛ score > Ϭ.ϳͿ imputed data.  

To give a brief aside, we are in effect applying Model KD with additive/non-additive components of 

each variant being included as explanatory variables in the model in turn. This was our chosen initial 

approach but discussion continues with our collaborators as to what should be the optimal 

procedure before they embark on further association tests of the many phenotypes available in 

Cilento. For example, when testing a variant on a certain chromosome, it may have been possible to 

make gains in power by using estimators of � and � based on markers from all other 

chromosomes
293

. Furthermore, we must also scrutinise the decision of whether or not to include the 

dominance matrix � in our association model, as we should assess how the precision (or lack of 

precision) of our estimates of this matrix will affect our association models
294

.  

We proceeded to perform GWAS of the additive and non-additive genetic components for LDL in 

Cilento; here 9,633,547 variants were tested and in Figure 4.2.2b I give QQ-plots of p-values in these 

two GWAS and corresponding Manhattan plots in Figure 4.2.2c. 
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Figure 4.4.2a – The distribution of LDL in Cilento and in each village of Cilento. 

 

Figure 4.4.2b – QQ plots of the p-values from additive and non-additive GWASs of LDL in Cilento. The 

red line and grey zone describe the expected distribution of p-values under the null distribution. 
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Figure 4.4.1c – Manhattan plots of p-values from additive (top) and non-additive (bottom) GWASs of LDL in Cilento. The p-values are plotted against their 

position on the genome, with the 22 autosomal chromosomes clearly visible. Horizontal red lines represent a common threshold for genome wide 

significance of ͷ × ͳͲ−଼.
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First we will discuss the results of the additive GWAS. In Table 4.2.2, the 30 variants with the lowest 

p-values on the additive GWAS are presented. The table notes also the gene for each variant where 

appropriate, ŵiŶor allele freƋueŶcies, aŶd ͚iŶfo͛ scores froŵ the two iŵputatioŶ ruŶs. We also detail 

the ͚source͛ of each ǀariaŶt, i.e. whether it is a ǀariaŶt froŵ the ArraǇ data, froŵ the WE“ paŶel, 

from both Array and WES data, or from the 1000G.    

 

Table 4.4.2a CHR MAF  

Cilento 

MAF 

1000G  

ALL 

MAF 

1000G 

EUR 

info 

370K 

info 

OMNI 

Data Origin p-value 

(additive) 

Gene 

Variant id 

rs583104 1 0.22 0.36 0.22 0.97 1.00 1000G 1.6× ͳͲ−଼ SORT1 

rs7528419 1 0.22 0.20 0.21 1.00 - OMNI 1.8× ͳͲ−଼ SORT1 

rs12740374 1 0.22 0.20 0.21 1.00 1.00 1000G 1.8× ͳͲ−଼ SORT1 

rs629301 1 0.22 0.24 0.21 1.00 1.00 1000G 2.0× ͳͲ−଼ SORT1 

rs1277930 1 0.22 0.36 0.22 0.96 1.00 1000G 2.2× ͳͲ−଼ SORT1 

rs56246620 1 0.18 0.12 0.18 0.99 1.00 1000G 2.3× ͳͲ−଼ SORT1 

rs646776 1 0.22 0.24 0.21 - - 370K, OMNI 2.6× ͳͲ−଼ SORT1 

rs660240 1 0.21 0.23 0.20 1.00 - OMNI 2.7× ͳͲ−଼ SORT1 

rs57677983 1 0.21 0.25 0.20 1.00 1.00 1000G 2.7× ͳͲ−଼ SORT1 

rs599839 1 0.22 0.36 0.22 0.96 - OMNI 2.7× ͳͲ−଼ SORT1 

rs4970836 1 0.21 0.35 0.22 0.97 1.00 1000G 3.6× ͳͲ−଼ SORT1 

rs602633 1 0.21 0.35 0.21 0.97 1.00 1000G 4.8× ͳͲ−଼ SORT1 

rs1065853 19 0.06 0.08 0.06 0.99 0.99 1000G 5.2× ͳͲ−଼ APOE 

rs7412 19 0.06 0.08 0.06 0.97 - OMNI, WES  6.9× ͳͲ−଼ APOE 

rs7254892 19 0.04 0.08 0.03 0.96 0.93 1000G 3.0× ͳͲ−଻ APOE 

rs111867267 19 0.40 0.28 0.44 0.99 0.99 1000G 4.8× ͳͲ−଻ LDLR 

rs4970834 1 0.18 0.17 0.19 0.98 - OMNI, WES 5.6× ͳͲ−଻ SORT1 

rs61679753 19 0.04 0.07 0.03 0.98 0.99 1000G 8.4× ͳͲ−଻ APOE 

18:54736162:T:C 18 0.001 0.0002 0 0.96 0.96 1000G 1.1× ͳͲ−଺ LINC-ROR 

18:54714904:G:A 18 0.001 0.0006 0.001 0.95 0.89 1000G 1.1× ͳͲ−଺ LINC-ROR 

rs117535884 19 0.02 0.007 0.02 0.91 0.87 1000G 1.2× ͳͲ−଺ MUC16 

rs6469644 8 0.34 0.22 0.40 0.95 0.97 1000G 1.8× ͳͲ−଺ - 

12:67605169:G:A 12 0.004 0.0006 0 0.78 0.83 1000G 2.1× ͳͲ−଺ - 

rs370812494 12 0.004 0.002 0 0.78 0.84 1000G 2.1× ͳͲ−଺ - 

12:67609274:T:C 12 0.004 0.001 0 0.78 0.81 1000G 2.2× ͳͲ−଺ - 

12:67457528:C:A 12 0.004 0.0002 0 0.79 0.80 1000G 2.2× ͳͲ−଺ - 

12:67679011:TC:T 12 0.004 0.001 0 0.91 0.88 1000G 2.2× ͳͲ−଺ - 

rs72658867 19 0.02 0.003 0.01 0.98 0.85 WES  2.7× ͳͲ−଺ LDLR 

rs202056691 3 0.04 0.01 0.02 0.85 0.92 1000G 2.8× ͳͲ−଺ CLASP2 

rs72643748 5 0.05 0.20 0.05 0.82 0.81 1000G 3.0× ͳͲ−଺ - 

 

Table 4.4.2a – Lowest 30 p-values from additive GWAS of LDL in Cilento. The minor allele frequencies 

of each variant in Cilento, in all 1000G populations, and in all European 1000G populations are given. 

As imputation was performed separately on the two genotyping arrays in Cilento (370K and OMNI), 

we give both of the imputation quality scores in the table. The Data Origin column describes whether 

variants originated in either of the genotyping arrays, the WES data of Cilento, or from the 1000G. 

Where possible, if a variant lies within a gene (or very close to a gene) this information is given. Rows 

in the table are marked as grey if there is a known or conceivable relationship between the gene and 

the trait LDL; orange otherwise.  
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The results from the additive GWAS show that the null-model was largely followed without any clear 

and apparent presence of many false-positive results. By looking through the lowest p-values, some 

familiar genes known to be associated with LDL have been identified. SORT1, APOE, and LDLR have 

been detected, with a few variants on SORT1 actually passing genome-wide significance. Beyond 

these genes, and beyond the first 30 lowest p-values, variants do not resonate with any other 

previous results. The association with the gene SORT1 was the strongest, and interestingly the top 

variant rs583104 on chromosome 1 was also highlighted in Sanna, et al. 
292

 Note that this study was 

on the Sardinian population, also an Italian isolate, and involved an interesting strategy where 256 

individuals with extreme values for LDL were whole-exome sequenced. Interestingly, this variant was 

also highlighted in a study on an African American cohort
295

. 

We chose a commonly used threshold for genome-wide significance of ͷ × ͳͲ−଼. This value arose 

from estimates of the effective number of independent tests that are carried out during a GWAS. It 

has been estimated that approximately 1 million independent regions of the genome exist in 

European populations
296

. This leads to the adjusted p-value of ͷ × ͳͲ−଼. However, in African 

populations, due to lower LD across the genome, the corresponding estimate is in fact in the region 

of 2 million independent regions
296

. Hence, different thresholds for significance should be used in 

different populations
297

. In isolated populations, we know that LD-blocks can be larger than in 

general populations suggesting, potentially, that lower thresholds should be used to avoid type-2 

errors. As we have not carried out the required analysis to estimate a population specific threshold 

for Cilento, we stuck with ͷ × ͳͲ−଼.  

To test the non-additive component, it is essential that all three genotypes are present in the 

sample; hence this test was only possible on 7,291,750 variants. For the GWAS of non-additive 

components, the null-hypothesis would seem to hold across the genome; there are no significant 

results. In table 4.2.2b, we give the variants with the lowest 20 p-values from this GWAS. An 

exploration of the variants with the lowest p-values (beyond the first 20) gave one possible loci we 
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felt was worth further exploration: the two variants in Table 4.2.2b that stand out are those in the 

gene GPIHPB1.  

Table 4.2.2b CHR MAF  

Sample  

MAF 

1000G 

ALL 

MAF 

1000G 

EUR 

info 

370K 

info 

OMNI 

Data Origin p-value 

(non-

additive) 

Gene 

Variant id 

rs143444879 5 0.11 0.13 0.13 0.97 0.99 1000G ʹ.Ͳ × ͳͲ−଻ - 

rs1751064 13 0.22 0.28 0.28 0.98 0.91 1000G ͵.Ͷ × ͳͲ−଻ ABCC4 

rs150565162 5 0.26 0.25 0.33 1.00 0.99 1000G Ͷ.͵ × ͳͲ−଻ - 

rs163360 5 0.26 0.25 0.39 1.00 0.99 1000G Ͷ.8 × ͳͲ−଻ - 

rs149362603 5 0.12 0.13 0.06 0.94 0.97 1000G ͷ.ͻ × ͳͲ−଻ - 

rs163357 5 0.26 0.25 0.33 1.00 0.99 1000G ͸.Ͳ × ͳͲ−଻ - 

rs163361 5 0.26 0.25 0.33 1.00 0.99 1000G ͸.Ͳ × ͳͲ−଻ - 

rs59728366 21 0.40 0.32 0.41 0.98 0.94 1000G ͹.ʹ × ͳͲ−଻ B3GALT5 

rs2596387 5 0.26 0.25 0.33 0.99 0.99 1000G 8.ʹ × ͳͲ−଻ - 

rs2596388 5 0.26 0.25 0.22 0.99 0.99 1000G 8.ʹ × ͳͲ−଻ - 

rs112271883 8 0.04 0.06 0.02 0.84 0.84 1000G ͻ.Ͳ × ͳͲ−଻ GPIHBP1 

rs138876170 8 0.04 0.06 0.02 0.82 0.84 1000G ͻ.8 × ͳͲ−଻ GPIHBP1 

rs154790 5 0.26 0.25 0.34 - 1.00 370K ͻ.8 × ͳͲ−଻ - 

rs35725707 8 0.28 0.39 0.23 0.98 0.97 1000G ͳ.Ͳ × ͳͲ−଺ MATN2 

rs439765 3 0.32 0.26 0.21 - 1.00 370K ͳ.ͳ × ͳͲ−଺ - 

rs2513837 8 0.26 0.29 0.18 1.00 0.99 1000G ͳ.ʹ × ͳͲ−଺ MATN2 

rs73324 5 0.26 0.25 0.33 1.00 1.00 1000G ͳ.Ͷ × ͳͲ−଺ - 

rs696897 5 0.26 0.25 0.33 1.00 1.00 1000G ͳ.Ͷ × ͳͲ−଺ - 

rs258909 5 0.26 0.25 0.33 1.00 1.00 1000G ͳ.Ͷ × ͳͲ−଺ - 

rs460339 5 0.26 0.25 0.33 1.00 1.00 1000G ͳ.Ͷ × ͳͲ−଺ - 

Table 4.4.2b – Lowest 20 p-values from non-additive GWAS of LDL in Cilento. See Table 4.2.2a for a 

full explanation of the columns. Rows in the table are marked as grey if there is a known or 

conceivable relationship between the gene and the trait LDL; orange otherwise.  

The gene GPIHBP1, near the bottom end of chromosome 8 could conceivably be relevant for the 

distribution of LDL. Variants in this gene have been associated with various lipid measurements and 

hypertriglyceridemic phenotypes
298-303

. Indeed, mutations in this gene have already been found, 

under recessive models, associated with Hypertriglyceridemia
304

. Knowing the connections between 

this gene and lipid related traits, including through recessive models, is suggestive that this signal 

from the non-additive GWAS could have some foundation. The two variants rs112271883 and 

rs138876170 were imputed from the 1000G; there were however a small group (< ͳͲ) of nearby 

variants coming from the WES local reference panel suggesting that the imputation of this region 

may have benefitted from the WES SSP (See Section 3.3.5). In Figure 4.4.2d, the distribution of LDL 

against the different genotypes of these two variants is given, including those individuals whose 

genotypes were considered as missing during the GWAS. 
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Figure 4.4.2d - The distributions of LDL depending on the genotypes at two positions of interest in 

GPIHPB1 that stood out from the results on the non-additive GWAS. Left panel shows LDL against 

rsϭϭϮϮϳϭϴϴϯ, for iŶdiǀiduals with geŶotǇpes C/C, C/T, T/T, or ͚MissiŶg͛. The right paŶel show the 
same for rs138876170 where individuals had possible genotype A/A, A/AT, AT/AT, or ͚MissiŶg͛. 
There are 100 and 103 individuals with missing data for these positions respectively.  

The evidence from these two positions may not be overwhelmingly convincing, importantly there 

are only a few instances of the rare genotype. For rs112271883, the major allele is C and the minor 

allele is T and only six individuals have the genotype T/T. Variant rs138876170 is an insertion, with 

the major allele being a single A nucleotide and the minor allele involving an inserted T nucleotide. 

Only four individuals had the rare genotype AT/AT. These four individuals all also had the genotype 

T/T on rs112271883 and two of these are also siblings. The ͚info͛ scores for the two variants are not 

particularly high (but they are not common variants so the info is hard to interpret). Crucially, there 

are many genotypes that are missing due to the decision to keep only confidently imputed variants 

when hard-calling. To gain a better resolution of this genomic region, a stretch (50% of chromosome 

8) of this hard-called imputed data was returned to SHAPEIT2 for re-phasing. This would fill in the 

missing genotypes for these two variants. The logic being that while IMPUTE2 could not confidently 

impute some genotypes in this region, SHAPEIT2 could perhaps give better results as will make 

inference from within the whole Cilento sample. We have already established in Chapter 3 that this 

phasing software is highly accurate in isolated populations; but that imputation (in particular when 
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using a WES SSP) was not always guaranteed to enjoy quite the same levels of success. The 

imputation concordance rate of SHAPEIT2 for sporadic missing genotypes was estimated as having 

98% accuracy on our simulated data. Having completed this re-phasing, new boxplots were made 

which now include genotypes of all individuals (Figure 4.4.2e). 

 

Figure 4.4.2e - The distributions of LDL depending on the genotypes at two positions of interest in 

GPIHPB1. Here, missing genotypes have been ͚called’ using SHAPEIT2. 

In Figure 4.4.2e, there are now 16 individuals with genotype T/T for variant rs112271883 and there 

are 14 individuals with genotype AT/AT for variant rs138876170. From the boxplots, it became clear 

that the signal from these variants had been diluted. What is more, we could see that these 

additional individuals with rare genotypes brought into the analysis by SHAPEIT2 were estimated as 

carrying (locally) the exact same pairs of haplotypes as the initial group of individuals which 

originally stood out. It is therefore almost certainly not the case that the small group of individuals 

that stand out in Figure 4.4.2d are carrying two pairs of a very specific haplotype. 

In Figure 4.4.2f, the imputed dosages of rs112271883 and rs138876170 are plotted against each 

other, illustrating why many individuals were excluded from the first GWAS. We can see the group of 

individuals with a dosage roughly equal to ~ͳ.ͷ that were excluded from the initial analysis but were 

brought into the second analysis by SHAPEIT2 with imputed dosages of ʹ. This illustrates how if we 
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had been able to implement our non-additive GWAS on dosage genotypes directly, we probably 

would never have noticed the gene GPIHPB1 and perhaps not have been tempted by erroneous 

conclusions. In Section 4.5, we will give the definition of a non-additive component for dosage data 

that would be appropriate for such analyses in the future. 

 

Figure 4.4.2f – Plot of imputed dosages of rs112271883 and rs138876170 in Cilento. The correlation 

between these variants is high and many dosages show a high level of uncertainty. 

At this point our conclusion is that the results on GPIHPB1 from the non-additive GWAS probably 

stood out by chance alone and do not represent a link between the gene and the trait in Cilento. 

This is not to say that a deeper investigation of this region could not produce a working hypothesis 

but for the moment our plan will be to turn to alternative analysis approaches for finding sources of 

the non-additive component for LDL in Cilento. One approach to explore non-additive effects that 

we would like to test for association between homozygosity and LDL level in Cilento using the 

methods described in Abney, et al. 
305
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4.5 Prospective: Estimating K and D with Uncertain Genotypes  

 

Here, we describe estimators of matrices � and � from imputed data or from low depth sequencing 

data. This section will initially follow a very similar line as the derivation of additive and non-additive 

components given in Section 4.1. We will first give the orthogonal decomposition of additive and 

non-additive effects without assuming Hardy-Weinberg proportions in the population, before using 

this result to give similar decompositions in the presence of genotype uncertainty. 

1) Departure from Hardy-Weinberg  

Given a genetic value taking values of ݑ௝଴, ݑ௝ଵ, and ݑ௝2 as before, we will now define its expectation 

using genotype probabilities that do not necessarily follow Hardy-Weinberg proportions: ܧ�[݃௝] = ௝଴ݑ��௝̅݌  + ௝ଵݑ��௝̅݌ +  ௝2ݑ��௝̅݌

Where ̅݌௝ீ  refers simply to the empirical observed probability of genotype ܩ (at the ݆௧ℎ variant) 

based simply on the observed frequency of genotype ܩ in the population. The subscript ݆ will be 

dropped off ̅݌௝ீ to ease readability. The subscript ߝ is added throughout to distinguish this section 

from the calculations in Section 4.1 as this differs from previous calculations which used the allelic 

frequencies ݌ and ݍ.  A discussion of this particular approach can be found in Vitezica, et al. 
306

 

The inner product, corresponding to equation 4.1a, can now de defined as follows: ݃ۃ௝ଵ, ݃௝2ۄ� = [௝ଵ݃௝2݃]�ܧ = ௝଴ଵݑ��̅݌ ௝଴2ݑ + ௝ଵଵݑ��̅݌ ௝ଵ2ݑ + ௝2ଵݑ��̅݌ ௝22ݑ  

Again we can then assume the following orthogonal decomposition:  ݃௝=  ߤ௝ ଵܺ +  �௝ ௝ܺ�,� + ௝݀ ௝ܺ�,�
 . 

Choosing ௝ܺ�,�  to equal  ߙሺܺ଴ଵ2 − ߚ ଵܺሻ and specifying ۃ ௝ܺ�,�  , ௝ܺ�,� �ۄ  = ͳ and ۃ ௝ܺ�,�  , ଵܺ ۄ� = Ͳ gives:    

௝ܺ�,� = ߭�−భమ [ܺ଴ଵ2 − ሺ̅݌�� + ሻ��̅݌ʹ ଵܺ],  where ߭� = ��̅݌  + ሺͶ̅݌��̅݌�� − 2��̅݌ ሻ. 
On inspection, we see this corresponds closely to the classical additive component, as the term ̅݌�� + ��̅݌ʹ  is equivalent to the expected minor allele count. ߭� represents the variance of the minor 

allele count; composed of the variance under Hardy-Weinberg proportions (̅݌��ሻ and the change in 

the variance coming from any departure from Hardy-Weinberg proportions (Ͷ̅݌��̅݌�� − 2��̅݌ ). 
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We again find ௝ܺ�,�
 by specifying ۃ ௝ܺ�,� , ௝ܺ�,�ۄ� = ͳ, ۃ ௝ܺ�,� , ଵܺۄ� = Ͳ, and ۃ ௝ܺ�,� , ௝ܺ�,�ۄ� = Ͳ, and we 

find the following: 

௝ܺ�,� = ܣܣ̅݌��̅݌√�ߛ)  , ʹ�ܣ̅݌ܣܣ̅݌��̅݌√�ߛʹ−  , ߝߛ where  ,(��̅݌ܣܣ̅݌√�ߛ = ቀ̅݌�� + Ͷ ௣̅��௣̅��௣̅�� + ቁ−భమ��̅݌
. 

2) Incorporating Genotype Uncertainty 

We will now consider the case where there exists enough uncertainty about genotypes that we wish 

to retain this uncertainty in subsequent calculations. This might well be the case for either low depth 

sequencing data or for imputed data. The derivation will follow the same steps as above, and here, 

the subscript ܮ is used. In this situation, for individual ݅͛s data at the ݆th variant we have three 

probabilities for each potential genotype - ܮ௜௝��, ܮ௜௝�� , and ܮ௜௝��.  

If we consider again the genetic value ݃௝, this can now no longer depend on the now unobservable 

genotype. Instead, it can be defined by these three probabilities: under this setup we have the 

following continuous form for the genetic value: ݃௝ = ௝଴ݑ��௝ܮ  + ௝ଵݑ��௝ܮ +   .௝2ݑ��௝ܮ
Across all individuals in a sample, the variation in the values of ܮ௜௝��, ܮ௜௝�� , and ܮ௜௝�� will however reflect 

the distribution of the unobserved genotypes. Hence, we can think of these three probabilities as 

random variables, with distributions depending on the unobserved genotypes ܩ௝ . Taking the 

expectation of the genetic value gives: ܧ௅[݃௝] = ௝଴ݑ[��௝ܮ]ܧ  + ௝ଵݑ[��௝ܮ]ܧ +  .௝2ݑ[��௝ܮ]ܧ
In a similar way that allele frequencies would usually be empirically estimated from the ensemble of 

all individuals in the sample, we must do the same for each of the expected values of the genotype 

probabilities by estimating: 

[��௝ܮ]ܧ = ͳܰ ∑ ௜௝��௜ܮ [��௝ܮ]ܧ   , = ͳܰ ∑ ௜௝��௜ܮ [��௝ܮ]ܧ   , = ͳܰ ∑ ௜௝��௜ܮ   
We denote these expectations as ̅ܮ̅  ,��ܮ�� , and  ̅ܮ�� . 
Therefore, we must now find orthogonal components using the following inner product:  
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,௝ଵ݃ۃ ݃௝2ۄ௅ = ௅[݃௝ଵ݃௝2]ܧ = ௝଴ଵݑ��ܮ̅ ௝଴2ݑ + ௝ଵଵݑ��ܮ̅ ௝ଵ2ݑ + ௝2ଵݑ��ܮ̅ ௝22ݑ  

Now we have the exact same scenario as with the empirical example first given in this section, hence 

we have the following orthogonal components: 

                                                        ௝ܺ�,௅ = ߭௅−భమ [ܺ଴ଵ2 − ሺ̅ܮ�� + ሻ��ܮ̅ʹ ଵܺ], where 

                         ߭௅ = ��ܮ̅  + ቀͶ̅ܮ̅��ܮ�� −  2ቁ,  and��ܮ̅

Eq. 4.5a 

௝ܺ�,௅ = ቆܣܣܮ̅��ܮ̅√ܮߛ  , మ�ܣܮ̅ܣܣܮ̅��ܮ̅√ܮߛʹ−  , ௅ߛ  ቇ  where��ܮ̅ܣܣܮ̅√ܮߛ = ቀ̅ܮ�� + Ͷ ௅̅��௅̅��௅̅�� + ʹቁ−ͳ��ܮ̅
  . 

3) Imputation Dosages 

In a very similar way, we can derive a similar coding in the presence of dosage genotypes, which we 

will mark with the subscript ܫ (for imputation). This is relevant to the circumstance where three 

posterior probabilities for each genotype from imputation are not available as they have been 

summarised in a single dosage. We now define our genetic value as: 

݃௜௝ = {ሺͳ − ௝଴ݑ௜௝ሻݓ + ௜௝ݓ    ݂݅                      ,௝ଵݑ௜௝ݓ < ͳ ሺʹ − ௝ଵݑ௜௝ሻݓ + ሺݓ௜௝ − ͳሻݑ௝2, ௜௝ݓ    ݂݅ ≥ ͳ  

Where ݓ௜௝ is the dosage of variant ݆ for individual ݅. Here, there is a required assumption that a 

dosage between 0 and 1 suggests that the probability of the �� genotype is zero. Similarly, a dosage 

between 1 and 2 is assumed to mean that the probability of the ܣܣ genotype is zero. Our inner 

product becomes: ݃ۃ௝ଵ, ݃௝2ۄூ = ூ[݃௝ଵ݃௝2]ܧ = ௝଴ଵݑ��ܹ̅ ௝଴2ݑ + ௝ଵଵݑ��ܹ̅ ௝ଵ2ݑ + ௝2ଵݑ��ܹ̅ ௝22ݑ , where ܹ̅�� = 
ଵே ∑ ሺͳ − ௜௝ሻ�೔ೕ<ଵݓ , ܹ̅��  = 

ଵே ∑ ௜௝�೔ೕ<ଵݓ   + 
ଵே ∑ ሺʹ − ௜௝ሻ�೔ೕ≥ଵݓ , ܹ̅��  = 

ଵே ∑ ሺݓ௜௝ − ͳሻ�೔ೕ≥ଵ . 
In an entirely equivalent manner to the derivations of ௝ܺ�,௅

and ௝ܺ�,௅
, we arrive at the following 

additive and non-additive orthogonal components: 

                           ௝ܺ�,ூ = ߭ூ−భమ[ܺ଴ଵ2 − ሺܹ̅�� + ʹܹ̅��ሻ ଵܺ] 
Eq. 4.5b 

Here: ߭ூ =  ܹ̅�� + ሺͶܹ̅��ܹ̅�� − ܹ̅��2 ሻ.  

௝ܺ�,ூ = ቆߛூ√ �̅���̅��  , ூ√�̅���̅���̅��మߛʹ−  , ��̅���̅�√ூߛ ቇ where ߛூ = ቀܹ̅�� + Ͷ �̅���̅���̅�� + ܹ̅��ቁ−భమ
. 
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Hence, we can also find orthogonal components for imputed dosage type data. 

These new non-additive components ௝ܺ�,௅
 and ௝ܺ�,ூ

 can be used for performing a GWAS on non-

additive effects directly from posterior probabilities or from dosage data, respectively. Indeed, this is 

what we hope to implement for non-additive GWAS as described in Section 4.4.2.  

We tested these ideas when estimating matrices � and � on dosage data that we created by 

performing imputation on to the simulated Array data of Cilento. We found that in this case, the 

estimation of the matrices � and � were alŵost ideŶtical to those estiŵated froŵ ͚hard called͛ 

imputed genotypes (Figure 4.5a). 

 

Figure 4.5a – Comparison of off diagonal elements of matrices � and � from GRMs calculated either 

using dosages explicitly with the components ௜ܺ௝�,ூ
and ௜ܺ௝�,ூ described above, or when using hard-

called genotypes and hence classical components ௜ܺ௝�  and ௜ܺ௝� . Data from Chromosome 1 on the 

HapGen+Pedigree simulation. 

We see from Figure 4.5a that retaining the uncertainty from imputation, in this case, does not lead 

to large differences in the GRMs. This is because, as we have previously demonstrated, we do not 

need an overwhelming detailed amount of data in order to estimate a GRM in an isolate such as 

Cilento; in fact, we showed in our published work that simply using the Array genotypes will 

probably suffice.   
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Estimating GRMs from imputed data will be more relevant when the quality of the original data was 

low. A possible scenario could be in the presence of low depth sequencing data. In such data, each 

position will on average only be read by the genotyping machinery a very limited number of times; 

this average read depth could be as low as 0.1 or 0.5. For such data, the calling of the genotypes is 

problematic as the set of observed reads for each genotype will often be very small and there will be 

high levels of missing data. In general, for WGS data, three genotype likelihoods are calculated based 

on the set of observed reads, using for example the methods described in GATK
307

. These likelihoods 

will then indicate one genotype that has most supporting evidence from the reads and it will be clear 

as to which genotype should be called. If there is insufficient certainty, then genotypes may be called 

as missing. For example, the following sets of reads might be observed for four individuals at a given 

position:  

,ܣ} – (1) ,ܣ ,ܣ ,ܣ ,ܣ ,ܣ ,ܣ ,ܣ ,ܣ ,ܣ ,ܣ ,ܣ ,ܣ ,ܣ ,ܣ ,ܣ  ,{ܣ

,ܣ} – (2) �, ,ܣ ,ܣ ,ܣ �, �, �, ,ܣ �, ,ܣ ,ܣ �, ,ܣ �, �, ,ܣ �, �}, 

(3) – {�, �, �, �, �, �, �, �, �, ,ܣ �, �, �, �, �, �, �, �, �, �, �, �, �, �, �, �, �, �}, 
,ܣ} – (4) ,ܣ  .{ܣ

In the first example, the set of reads clearly suggests the genotype ܣܣ. The second set of reads 

suggests a heterozygous genotype ܣ�. The third set of reads suggests the genotype ��, even though 

there is on instance of a read of the major allele ܣ (it is more likely that this one read is an error than 

the site is truly heterozygous and all but one reads came from one single haplotype). The fourth set 

of reads is perhaps too small to draw a meaningful conclusion.  

When there are few reads, it is clear that it becomes impossible to designate a genotype with any 

certainty. However, genotype likelihoods, ܮ��,  can still carry useful information. The  ��ܮ and ,��ܮ

method SEEKIN
308

 was designed to estimate kinship from low depth sequencing data, via an 

intermediate imputation step. Recent versions of the software BEAGLE as well as recent software 
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GeneImp
309

 are compatible with genotype likelihood data and are used both to impute new sites as 

well as to improve the calling of low-coverage genotypes via the information stored in large panels 

of reference haplotypes. SEEKIN estimates kinship from such imputed data. The SEEKIN estimator for 

kinship for a single imputed SNP is similar to the point wise estimates that are combined to calculate 

a GRM. The SEEKIN estimator is given below: 

ʹ߮̅௜௞ = ሺݓ௜ − ௞ݓሻሺݍ̅ʹ − ሺͳݍ̅ʹሻݍ̅ʹ − ሻሺ�2ሻ2ݍ̅  

Here, ݓ௜ and ݓ௞ are the imputed dosages of the two individuals ݅ and ݇; ̅ݍ is the estimate of the 

MAF of the SNP; and �2 is the correlation between true genotypes and imputed genotypes. This will 

not be known so an estimator in the form of an imputation quality score, �̂2, will be used.  

From equation 4.5b, using the derivation for dosages that we have presented, our point-wise 

estimator would be the following: 

ʹ߮̅௜௞ = ሺݓ௜ − ܹ̅�� + ʹܹ̅��ሻሺݓ௞ − ܹ̅�� + ʹܹ̅��ሻ ߭ூ  

Where ̅ݓ is the mean dosage across all individuals and is an estimator of ʹݍ. ߭ூ is the empirical 

variance of the dosages of the SNP across all individuals. In addition to SEEKIN, there exist recent 

methods for estimating kinship and IBD-sharing directly from genotype likelihoods
310-313

. The 

estimators that we derived allow the estimation of the non-additive component, but it will in 

instructive to compare our additive estimators to existing methods in the future. 

We were also interested in the idea of working directly with genotype likelihoods. Working with 

imputed data or genotype likelihoods would appear to be equivalent as with both types of data we 

have three genotype probabilities rather than a single genotype. However, there is one key 

difference: with imputed data, there is prior information coming from the reference panel. Thus, if 

there is little information from an HMM (or other model), then the three posterior genotype 

probabilities will likely reflect the allele frequency in the reference panel and should roughly equal 
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,2݌  Genotype likelihoods, however, are calculated without such prior information, and .2ݍ and ,ݍ݌ʹ

whilst calling pipelines will leverage information across multiple samples to describe the quality of 

the mapping and calling of each variant, the individual level genotype likelihoods are based only on 

individual read data. Hence, genotype likelihoods of ሺͳ/͵, ͳ/͵, ͳ/͵ሻ and imputed posterior 

probabilities of ሺͳ/͵, ͳ/͵, ͳ/͵ሻ describe quite different things. If the variant has a low MAF, 

posterior imputed probabilities of ሺͳ/͵, ͳ/͵, ͳ/͵ሻ could, hypothetically, be quite informative; 

suggesting that this individual may well carry one or even two rare alleles. Genotype likelihoods of ሺͳ/͵, ͳ/͵, ͳ/͵ሻ however represent a complete lack of information and could even be treated as a 

missing value.  

We have begun testing out method for directly estimating relatedness matrices � and � from low-

coverage data. We took our simulated data using the Cilento genealogies for chromosome 10 and 

for each individual level genotype, we used a simple additional layer of simulation to create three 

genotype likelihoods. This process was also used in our first study (see the description of Error 

Models in the Supplementary Methods of Annex A). It is based on the simulation method described 

in Kim, et al. 
314

 Explicitly, for every position on our simulated chromosome 10, we assigned a value 

of mean read depth derived from the sequence of observed mean read depths from the actual WGS 

data of chromosome 10 from 19 individuals in Cilento. This sequence of average read depths was 

used in order so that we could replicate any potential patterns of low or high depth in different 

regions of the chromosome. Then for every position, we drew random counts of major and minor 

reads based on Possion distributions with parameters depending on the true simulated genotype 

generated from gene-dropping. Our simulation allows error reads to occur with a rate of 1%. The 

simulation process is described in Box 4.5. The mean depth in the WGS panel of Cilento on 

chromosome 10 is roughly 54 reads. To generate low depth data, we simply scaled down the 

observed sequence of average depths from Cilento accordingly.  
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Box 4.5 – Simulation of genotype likelihoods on top of previously simulated genotypes. 

Once we had generated sets of reads for every simulated position, genotype likelihoods were 

estimated from binomial distribution function. This admittedly skips several steps from the GATK 

calling algorithm and we only have considered a very simple error simulation and model. In Figure 

4.5b, we compare the off diagonal elements of matrices � and � that have either been calculated as 

GRMs from the simulated genotypes, or from the simulated genotype likelihoods. We varied the 

mean overall read depth of the chromosome. There was an immediately obvious bias in the 

estimates from genotype likelihoods. This bias was greatest when the global mean depth was 

lowest. 

It is possible to demonstrate this bias by numerically calculating the expected value of the 

correlation between additive and non-additive components by forming a summation over possible 

Poisson draws in our simulation. To elaborate, for a parent-offspring pair; then the expected 

covariance of their classical additive components (as defined in Section 4.1) of a single variant is 

equal to ½. However, when computing the equivalent expectation for a parent-offspring pair using 

our simulated genotype likelihoods and the revised additive components (equation 4.5a) our 
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evaluation will systematically fall below ½. The bias is depending on read depth, MAF, and error 

model. This explains the patterns observed in Figure 4.5b. Whilst we have shown that orthogonal 

additive and non-additive variance components can be estimated directly from genotype likelihoods, 

these estimators are not equivalent to classical GRMs as they are not unbiased moment estimates of 

IBD-sharing matrices � and �. To pursue this line of investigation may require a more sophisticated 

simulation of low depth data and better appreciation of the bioinformatics tools used to produce 

genetic data, an aspect that we are so far yet to explore in detail. 
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Figure 4.5b - Comparison of off diagonal elements of matrices � and � from GRMs calculated either 

using simulated genotypes or simulated genotype likelihoods. We varied the mean read depth on the 

chromosome, using values of 2.5, 5, 7.5, and 10. 
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4.6 Conclusions on Heritability 

 

Our study of dominance components of heritability in isolated and outbred populations was very 

instructive for our own analyses of Cilento as well as answering questions about previously 

published results in the literature. By simulating data, with a similar structure to Cilento, we could 

gain insights into the results found on the true data of the three villages. For example, we were able 

to conclude that for BMI, the large estimate for ℎ�2  was probably driven by shared environmental 

effects. For LDL on the other hand, the large estimate for ℎ�2  may truly point to a non-zero 

component. We were able to show why disparate estimates for ℎ�2  have been presented in different 

populations suggesting that this has been a result of some combination of particular trait 

architectures, confounding with environmental factors, and insufficient sample sizes.  

To fully pick apart the global architecture of a trait will require more individuals than we have in 

Cilento, in particular it would have been of great interest to apply the methods described in Young, 

et al. 
315

 for jointly exploring genetic effects and shared environmental effects. We have also 

proposed that studying multiple isolates might by a powerful approach, though there would be 

additional challenges coming from differences between isolates. 

We also found success when using GRMs for estimating variance components in an isolated 

population. However, it is not completely clear to what extend these results were depended on our 

simulation set-up. Our simulated traits never deviated from the assumed polygenic model, our 

simulated effect sizes were drawn from normal distributions, and we therefore engendered a 

relationship between the size of genetic effects and the frequency of the variants; as described in 

section 4.1.  A future direction for this particular analysis will be to continue our exploration of 

potential trait architectures by simulating traits that adhere less closely to the polygenic model and 

then see if GRMs continue to hold an advantage over IBD-based estimates.  
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This study has opened new avenues of investigation; and led us to complete a first GWAS using our 

new imputation dataset for the trait LDL. This demonstrated the potential of the new imputation 

dataset as we identified known genes under an additive model in this initial GWAS. As of yet, we 

were not able to pinpoint something specific that could help explain the estimates for ℎ�2  for LDL in 

Cilento. We have demonstrated the importance of retaining genotype uncertainty for this particular 

test in an anecdotal manner by looking at two positions on chromosome 8 that appeared to be 

possible interesting candidates for further investigation. We plan to continue to explore non-

additive effects for the trait LDL in Cilento. Finally, we have also began to explore methods for 

estimating additive and non-additive components from imputed data or even from low-depth 

sequencing data. 
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Chapter 5: Discussion 

 

The objective of this thesis has been to understand how the study of isolated populations can 

continue to shed light of the architecture of complex traits. Having presented numerous successful 

studies of isolated populations, the challenge is to predict the role of such populations in future 

projects. Though GWAS have been enormously successful, revolutionizing our understanding of the 

human genome, for many traits the research coŵŵuŶitǇ͛s attention will soon turn towards more 

elaborate models, beyond looking at marginal effects of every genetic variant. Deeper biological 

understanding of the genome, driven at first by the multitude of GWAS results, will necessarily be 

incorporated into the future queries and models put forth by genetic epidemiologists. The innate 

properties of population isolates that have so far proved useful to gene-mapping in many cases 

should continue to benefit such future studies. The increased availability of whole-genome 

sequencing data will give much added richness to genetic data in isolates that will allow more 

detailed hypotheses to be tested. Isolated populations will continue to present good hunting 

grounds for finding rare and unusual types of genetic variation.  

Sequencing studies in isolated populations have been quick to demonstrate their power in finding 

both novel and population specific levels of genetic variation. Gathering large samples of high quality 

sequencing data in isolated populations seems guaranteed to provide further interesting findings by 

exploring the specific characteristics of the genetics of each isolate with increasing resolution. To this 

end, though sequencing costs remain relatively high, genotype imputation methods will remain 

important tools. Hence, we undertook an in depth simulation study to investigate the best practices 

for performing such imputations in isolated populations.  

From our simulations, we were able to both identify a pragmatic pipeline for the existing data in 

Cilento, as well as providing recommendations for the scientific community. This investigation was 

also very informative on the performance of IBD- and LD-based methods for phasing in isolated 
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populations. The algorithmic approach of SHAPEIT2 was particularly capable of modelling the 

mosaicism between individuals in an isolated population and we demonstrated that highly accurate 

phasing results should be anticipated in an isolate such as Cilento. Indeed, all phasing software 

tested proved to give very accurate phasing results. We were also able to reinforce previous findings 

regarding the benefits of using study specific reference panels for imputation by showing the 

strengths of a very small panel of local reference haplotypes. By comparing two different simulations 

of the bottleneck effect in the population, we also showed that imputation using only external public 

reference haplotypes can be unsatisfactory for imputation in a population with highly prevalent 

genetic drift. Whether or not our exact recommendations will last the test of time is perhaps 

questionable due to the continued advancements of available software; yet we feel that this 

detailed investigation into the interplay of isolate characteristics with phasing and imputation 

algorithms will continue to prove instructive. 

This simulation study was also crucial in understanding how best to perform imputation using the 

WES panel in Cilento. The imputation study demonstrated how the use of a WGS study specify panel 

would provide highly accurate imputation. However, when using a study specific WES panel (as in 

Cilento), we showed that the improvement for imputation would largely be restricted to exonic 

regions. We were furthermore able to demonstrate an improvement in imputation for the real data 

of Cilento – a result that has been included in a recent research paper describing, for the first time, 

the sequencing data in Cilento
174

. Having completed imputation across the 22 autosomal 

chromosomes, and being confident of high quality imputation, our collaborators in Naples are in a 

good position to embark on analysis on the deep phenotyping data in Cilento. By performing a trial 

GWAS on LDL levels, partially in order to appraise the imputation, there is no evidence of any 

unforeseen problematic consequences from out imputation protocol. Ongoing projects that will 

involve this imputation dataset include looking at a genome-wide interaction study between VEGF 

serum levels and body-mass index and a GWAS on Bilirubin. Finally, by imputing up to the 1000G set 
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of positions, a commonly used and highly dense imputation panel, this will aid Cilento to continue to 

take part in meta-analyses with other cohorts. 

The prevalence of IBD-sharing in isolated populations, including between distantly related 

individuals, facilitates exploration of genetic trait architecture beyond looking simply at marginal 

additive effects. After observing some interesting estimates for heritability components for 

commonly studied traits across different populations, as well as some contention in the literature, 

we decided to evaluate the estimation of non-additive variance components between isolated and 

outbred populations. Through simulation we were able to explain some of these inconsistencies in 

the literature; suggesting that the non-additive components of certain traits may well be 

overestimated in isolated populations due to shared environmental factors; but also possibly 

underestimated in outbred populations as they can be driven by rare variation.  We also suggested 

that careful studies of isolated populations (potentially including data from multiple isolates) can 

detect non-additive components for complex traits; though the actual values of the estimates of said 

components will not be reliable. 

Taking these ideas into the Cilento population, we presented an indication of the presence of a non-

zero dominance component for the trait LDL in Cilento. This is a finding that we will continue to 

investigate; after initial findings from a non-additive GWAS for LDL suggested a possible link with the 

GPIHBP1 gene. A deeper investigation showed that this link to was not likely to be of any 

significance, though it could be an interesting region for continued study. One approach could be to 

directly sequence the gene including additional individuals from Cilento. This finding does in any 

case demonstrate the type of paradigm that may be required for future work on small population 

isolates in order to continue to compete with huge cohort studies: arising from both the imputation 

that was carried out in the Cilento, and by considering a specific hypothesis about trait architecture 

in the isolate. The non-additive GWAS also showed the great importance of retaining the uncertainty 

of imputed dosages. In order to fully test for non-additivity, we developed new methods for testing 
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for this component when using either genotype dosages or posterior imputation genotype 

probabilities. This led us to extend some of the methods used in our heritability study to data from 

low-depth sequencing data. The use of very low depth data in population isolates is a conceivable 

cost effective strategy (if again combined with imputation) for gathering WGS data. The methods we 

propose might also be suitable for off-target reads from WES data which could be explored in 

CileŶto. WE“ seƋueŶciŶg is ͚targeted͛ ŵeaŶiŶg that a list of kŶown exons are directly sought by 

genotyping probes. This is opposed to whole-genome sequencing where genomic fragments are 

sequenced impartially. During targeted exome sequencing, it is however possible for the wrong 

fragments to be captured and sequenced during this process; and these reads can still be aligned to 

non-exonic regions
316

. These off-target reads are nevertheless infrequent, and so these regions end 

up with similar characteristics to low depth sequencing data
309

. We observed that the distribution of 

positions in WES data was problematic for imputation methods due to the gaps between exons. It 

may be the case that incorporating off-target reads can help various statistical methods when 

dealing with WES data. Hence, using methods that have been extended to incorporate the 

uncertainty of low depth data may be necessary and will be something that we will continue to 

explore.  

In our investigation of heritability, we discussed the differences between heritability estimates from 

different study designs. Studies of related individuals are reƋuired to estiŵate the ͚true͛ heritaďilitǇ 

rather than SNP heritability but it is well known that these estimates are subject to confounding due 

to shared environmental factors. Therefore, estimates from isolated populations are problematic 

and indeed we illustrated this in our second large simulation study. The arguments against studying 

phenotypic variance decomposition in isolated populations could however be spun in favour of such 

studies. Recently proposed methods by Young, et al. 
315

 aim to allow estimations free of said biases, 

based on the idea that by knowing the expected relatedness between pairs of individuals can help to 

pick apart the effects of shared environment and the effects of genome-sharing. The greater the 

range of IBD-sharing proportions between pairs of individuals in an isolate, the less likely it is for a 
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naturally occurring confounder to mirror the distribution
110

. This is an advantage of studying isolates 

with high levels of relatedness such as the Hutterites or very large isolates such as Iceland where the 

vast number of pairings gives a very high resolution of IBD-sharing. As discussed before, isolated 

populations are characterised by reduced environmental heterogeneity as well as genetic 

heterogeneity.  In studies of large diverse cohorts of unrelated individuals, there will be multiple 

possible unobserved structures in the cohort. Isolated populations are conversely appropriate for 

studies that involve the gathering of environmental exposure data as well as genetic data; both 

allowing for testing hypotheses such as in gene−environment interaction models or when looking at 

variance decomposition and heritability.  

A key limitation of studies of isolated population is indeed often the limited sample size available. 

We have discussed how a necessary prospective for studying (small) isolated populations will be to 

continue efforts to combine forces with other isolated populations and to participate in meta-

analyses. Discoveries made in isolated populations will always have to be replicated and validated in 

other populations; and the goal of studying isolates has always been to have findings with 

implications to wider populations.  

In the study of rare variants, it is conceivable that within a certain gene, different populations could 

harbour different rare variation with augmented frequency due to isolation. Association tests at the 

gene level could be made via rare variant burden meta-analysis as proposed in Feng, et al. 
317

, Jiang 

and McPeek 
318

, and Liu, et al. 
319

 who developed specific methods to this end. If we further add the 

possibility that these different populations could be isolated, then all of the benefits of studying 

isolates in terms of increases statistical power for low-frequency variants could translate through to 

such meta-analyses. Indeed, such an approach was debuted in Southam, et al. 
126

 with success; and it 

would be intriguing to see if this direction is expanded on larger and more diverse sets of isolates 

such as the group of isolates studied in Xue, et al. 
83

, particularly as it has been suggested that there 

is increased power in such studies when datasets span multiple ethnic groups
320

. 
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A theme in both of our main studies in this thesis has been to compare IBD-based and non-IBD-

based methods. In our first study we compared long range phasing and SHAPEIT2 and in our second 

study we compared different estimators of relatedness matrices. Both times, we were able to 

observe IBD-based methods performing very well. EAGLE2 achieved very low switch error rates and 

IBDLD was able to estimate IBD-sharing proportions in Cilento with high precision (Supplementary 

Material in Annex B). Methods based on IBD sharing are intuitively preferable when working with an 

isolated population; we know that IBD-sharing is prevalent and relevant in isolates and it seems 

logical to evoke methods that incorporate this structure.  However, we were rather forced to accept 

in both our studies that methods that did not model for IBD performed best in the isolated 

population; SHAPEIT2 relied on haplotype-sharing (IBS) and GRM estimators of utilise single-point 

correlations between individuals which are in-fact moment estimators of single-locus IBD-sharing 

proportions.  

The relatively recent review paper of Speed and Balding 
272

 concluded that explicit ideas of 

relatedness between individuals may no longer be strictly necessary in order to discuss the genetics 

of complex traits. Our findings appear to support this standpoint, but there are certain caveats. For 

differentiating between phasing methods, we in fact tested different phasing software, so there is 

also a question of implementation as well as algorithm choice. For example, we cannot rule out that 

SHAPEIT2 is in some way built better that EAGLE2, leading to small differences in performance. As 

EAGLE2 combines an IBD-based method with an LD-based method similar to SHAPEIT2, it would be 

reasonable to expect EAGLE2 to give at least equivalent results to SHAPEIT2, if not better; this was 

not the case. Furthermore, results from our heritability analysis showed an advantage for using 

GRMs to estimate relatedness matrices. This was however based on simulated phenotypes following 

ideal polygenic models. It could be that the advantage could turn in the favour of IBD-based 

methods for traits with different architectures.  
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At the conclusion of this thesis, it is clear that the subject of complex trait architecture remains open 

and that many potential research directions can still benefit greatly from studies of isolated 

populations. The characteristics of such populations are likely to be as favourable for testing new 

hypotheses regarding complex trait architecture, as they have proved favourable in the past. The 

output of this thesis will prove valuable to subsequent analyses of the Cilento dataset and our two 

published simulation studies regarding the study of population isolates will be of use to the scientific 

community.    
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Glossary of Terms 
 

Throughout the thesis, the following notations and terms are used very often: ݅, ݇ = ͳ, … , ܰ ∶ Index of individuals in a sample or population ݆ = ͳ, … , � ∶ Index of genetic variants in a chromosome or any particular set of variants � = ͳ, … , ܴ ∶ Elements of a set of reference haplotypes, or similar ∆௟   , ݈ = ͳ, … ,ͻ ∶ JacƋuard͛s ϵ coŶdeŶsed ideŶtitǇ coefficieŶts ߮௜௞ ∶ Kinship of individuals ݅ and ݇ 

௜݂ : Inbreeding coefficient of individual ݅ ܩ௜௝ ∶ Genotype of individual ݅ at position ݆ 

௜ܻ ∶ The phenotype of individual ݅ ܺ ௜௝ ∗ : Coded genotypes of individual ݅ at position ݆, superscript ∗ will indicate various different 

codiŶg, iŶ particular ͚�′ aŶd ͚݀′ refer to additive and non-additive/dominant coding ܧ[∗] ∶ Expectation of ∗  ���[∗] ∶ Variance of ∗  ݀ு ∶ Genetic distance ܣ & � ∶ The major and minor alleles for a genetic variant ݌ �݋ ݍ & �݌ �݋ ݌� ∶ Frequencies of the major and minor alleles ܣܣ, ,�ܣ & �� ∶ Three possible genotypes for a genetic variant ݌��, ��݌ ,଴ݑ Frequencies of the three possible genotypes for a genetic variant :��݌ & , ,ଵݑ 2ݑ & ∶ Genetic effects of the three possible genotypes for a genetic variant ݃௜௝ ∶ Genetic value of individual ݅ at position ݆ �௝ & ௝݀ ∶ Additive and non-additive genetic effects 

�ܸ, ܸீ , & ாܸ : Phenotypic, Genetic, and Environmental Variance Components �ா2 ∶ Environmental variance parameter ߬�  and ߬� ∶  Genetic additive and genetic non-additive/dominant variance parameters ��2 ∶ Household/sibling variance parameter 2ܪ : Broad-sense Heritability ℎ�2 & ℎ�2  (ℎ�2 & ℎ�2  in Annex B) : Additive and non-additive components of Heritability ሺ2ܪሻ ℎ�2 ∶ Household/sibling variance components 
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��௜௝ܮ ,��௜௝ܮ  ,  ௜௝�� : Likelihoods, scaled to be probabilities (sum to 1), of the three possible genotypes ofܮ &

    individual ݅ at position ݆ ݓ௜௝: Imputed dosage of individual ݅ at position ݆ 

GWAS : Genome-Wide Association Study 

Array : Genotyping Array data 

370K :  Illumina 370 K array 

OMNI : Illumina HumanOmniExpress array 

WES : Whole-Exome Sequencing  

WGS : Whole-Genome Sequencing 

MAF : Minor Allele Frequency 

bp, Kb, and Mb : 1 base pair, 1,000 base pairs, 1,000,000 base pairs 

cM : centi-Morgans  (unit of Genetic Distance) 

LD : Linkage Disequilibrium 

IBD : Identity-By-Descent 

IBS : Identity-By-State 

IBD=2, IBD=1, and IBD=0 : Number of alleles shared Identity-By-Descent 

LRP : Long Range Phasing 

SSP : Study Specific Panel 

HMM : Hidden Markov Model 

HRC : The Haplotype Reference Consortium panel 

1000G : The 1000 Genomes panel 

UK10K : The UK10K panel 

SER : Switch Error Rate 

Imputation Accuracy : Correlation between dosages and true genotypes 

͚iŶfo͛ : IMPUTEϮ iŵputatioŶ ƋualitǇ  score 

͚‘“Q͛ : MINIMACϯ iŵputation quality  score 

LMM : Linear Mixed Model 

MLE : Maximum Likelihood Estimate 

GRM : Genetic Relationship Matrix 
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K : The kinship matrix or additive GRM 

D : The dominance matrix or non-additive GRM 

BMI : Body-Mass Index 

LDL : Low-Density Lipoprotein 

͚Pedigree “iŵulatioŶ͛ : The siŵulatioŶ usiŶg oŶlǇ the pedigree of CileŶto 

͚HapGeŶ+Pedigree “iŵulatioŶ͛ : The siŵulatioŶ usiŶg ďoth HapGeŶ aŶd the pedigree of CileŶto 

͚rare͛ :  When the frequency of the variant is described as rare, this will normally pertain to some                              

 hypothetical general population, unless specified otherwise. 
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ABSTRACT

In the search for genetic associations with complex traits, population isolates offer

the advantage of reduced genetic and environmental heterogeneity. In addition, cost-

efficient next-generation association approaches have been proposed in these pop-

ulations where only a subsample of representative individuals is sequenced and

then genotypes are imputed into the rest of the population. Gene mapping in such

populations thus requires high-quality genetic imputation and preliminary phas-

ing. To identify an effective study design, we compare by simulation a range of

phasing and imputation software and strategies. We simulated 1,115,604 variants

on chromosome 10 for 477 members of the large complex pedigree of Campora,

a village within the established isolate of Cilento in southern Italy. We assessed

the phasing performance of identical by descent based software ALPHAPHASE

and SLRP, LD-based software SHAPEIT2, SHAPEIT3, and BEAGLE, and new

software EAGLE that combines both methodologies. For imputation we compared

IMPUTE2, IMPUTE4, MINIMAC3, BEAGLE, and new software PBWT. Geno-

typing errors and missing genotypes were simulated to observe their effects on the

performance of each software. Highly accurate phased data were achieved by all

software with SHAPEIT2, SHAPEIT3, and EAGLE2 providing the most accurate

results. MINIMAC3, IMPUTE4, and IMPUTE2 all performed strongly as imputa-

tion software and our study highlights the considerable gain in imputation accu-

racy provided by a genome sequenced reference panel specific to the population

isolate.

K E Y W O R D S

founder effect, genotyping errors, identity by descent, linkage disequilibrium, study specific panel

1 INTRODUCTION

For many complex traits, attention has turned to the search

for associations with low-frequency or rare variants. This fol-

lows the success of genome-wide association studies (GWAS)

in identifying associations with many common variants but

without yet gaining a satisfactorily complete description of the

genetic heritability for various complex traits. The large sam-

ple sizes required to achieve sufficient power to detect associ-

ations with rare variants (particularly if effect size is modest),

combined with the sequencing cost, limit the opportunities for

finding such associations.

Population isolates have inherent characteristics beneficial

to the study of complex traits, namely reduced environmental

and genetic heterogeneity (Bourgain & Génin, 2005; Hatziko-

toulas, Gilly, & Zeggini, 2014). Because of the bottleneck

at the founding of the population followed by generations

of genetic drift, some mutations that would be described

as “rare” in general populations can occur with greater

frequency in the population isolate. Fewer individuals are
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hence required to achieve sufficient power for analyses. Also,

unique patterns of linkage disequilibrium (LD) are expected

within such populations and long haplotypes will be identical

by descent (IBD) among members of the population even

when not closely related.

To take advantage of the prevalence of shared IBD

regions, a subset of the study population can be whole-

genome sequenced (WGS) and then made available as a

Study Specific Panel (SSP) for genetic imputation on to

the remainder of the genotyped sample (Asimit & Zeggini,

2012; Holm et al., 2011; Zeggini, 2011). Alternatively,

public reference panels could be employed for imputation:

for example, the 1000 Genomes Project (1000G) (The

1000 Genomes Project Consortium, 2015) or the Haplotype

Reference Consortium (HRC) (McCarthy et al., 2016). All

study designs require efficient phasing and imputation, and a

range of software has been developed to this end.

Methods for phasing can be classified as either LD based

(Browning & Browning, 2016; Delaneau, Zagury, & Mar-

chini, 2013; O'Connell et al., 2016) or IBD based (Glodzik

et al., 2013; Hickey et al., 2011; Livne et al., 2015; Palin,

Campbell, Wright, Wilson, & Durbin, 2011). O'Connell et al.

(2014) found that despite the prevalence of IBD regions in

an isolate, LD-based methods outperformed the IBD-based

method proposed by Palin et al. (2011) when tested in several

population isolates. Recently a new method was proposed to

combine both LD-based and IBD-based approaches and was

shown to achieve increased phasing accuracy over LD-based

methods in a large outbred population (Loh et al., 2016; Loh,

Palamara, & Price, 2016). However, this new approach is yet

to be evaluated in a population isolate.

Several studies investigating imputation strategies have

shown that using an imputation panel specific to the popu-

lation under study increases imputation accuracy compared

to using larger multiethnic public reference panels. This has

been observed in population isolates (Joshi et al., 2013; Pistis

et al., 2015; Surakka et al., 2010) and in outbred populations

(Deelen et al., 2014; Mitt et al., 2017; Roshyara & Scholz,

2015). However, no study has compared imputation software

and imputation strategies together in a population isolate since

the recent releases of updated software versions (Browning

& Browning, 2016; Bycroft et al., 2017; Das et al., 2016),

new methods (Durbin, 2014), and larger and denser reference

panels (McCarthy et al., 2016; The 1000 Genomes Project

Consortium, 2015).

In population isolates, genealogical data may be available.

There exist many methods for phasing and imputation using

in part or solely pedigree data (Abecasis, Cherny, Cookson, &

Cardon, 2002; Chen & Schaid, 2014; Cheung, Thompson, &

Wijsman, 2013; Hickey et al., 2011; Livne et al., 2015). The

size and complexity of the pedigrees typical to isolates pre-

cludes the application of some methods that use only pedigree

data. However, methods that combine IBD inference from

both genetic and pedigree information should be well adapted

for population isolates (Hickey et al., 2011; Livne et al., 2015).

Here we provide an updated evaluation of state-of-the-

art phasing and imputation methods in the context of a

population isolate. We test the latest versions of existing

software as well as recently released software on simulated

data with the structure of the population isolate of Campora

in southern Italy. The effects of errors and missingness on

the performance of each software were also assessed. The

design of our study also gives the opportunity to observe in

detail the effects of isolate characteristics on phasing and

imputation software in order to provide recommendations for

future studies of population isolates.

2 METHODS

2.1 Campora

Pedigree and genetic data for Campora have previously been

gathered as part of the Vallo di Diano Project. The pedi-

gree contains 2,894 members, including 495 founders and

spans the 16th century to the present day (Colonna et al.,

2007). The pedigree of Campora was reconstructed from

parish records (supplementary Fig. S1). Although the pedi-

gree captures many loops and connections that result in a high

level of relatedness, it falls short of reaching back to the found-

ing event of Campora. Previous analysis of sex chromosomes

and mitochondrial DNA in Campora concluded that around

96.7% of the genetic variability was explained by 17 female

and 20 male lineages. Hence, while the recorded pedigree

contains 495 founders, the true founding event in Campora

likely involved closer to 37 founders (Colonna et al., 2007).

Of the present day individuals, 477 have high-quality

genotypes, all of whom have been genotyped on an Illumina

370K SNP-chip array (ARRAY). A subset of 93 individuals

has whole exome sequencing (WES) data and another subset

of 18 individuals has whole-genome sequencing (WGS)

data. The WES subset was selected to serve as an SSP using

the method described in Uricchio, Chong, Ross, Ober, and

Nicolae (2012) but with genetic kinship in the place of

genealogical kinship. This way we selected a subset with

a high level of relatedness to the remaining unselected

individuals while avoiding high levels of relatedness among

the selected individuals. This resulted in a selection of 93

individuals spread across the bottom four generations of the

Campora pedigree with a higher proportion coming from the

bottom two generations. The set of 93 individuals does not

contain multiple members of any single nuclear family.

2.2 Simulation

Genetic data were simulated with similar characteristics

to those observed in the real genetic data from Campora
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(supplementary Fig. S2). Gene dropping of chromosome 10

(chr10) was performed on the entire pedigree using the MOR-

GAN package Genedrop (Wijsman, Rothstein, & Thompson,

2006). For time efficiency, Genedrop was only provided with

a coarse genetic map, we then sampled precise locations of

recombination events on the far denser genetic map used in

our study as in Gazal et al. (2014).

We considered two approaches to generate the founder

haplotypes, both enlisting the haplotypes of the UK10K

panel (UK10K) (The UK10K Consortium, 2015) (see URLs).

The UK10K contains member of the TwinsUk cohort; for

the purposes of the simulation one member from each pair

of monozygotic or dizygotic twins was removed leading

to a pool of 7,500 haplotypes. In a first simulation strat-

egy we sampled the 990 pedigree founder haplotypes with-

out replacement from the pool of UK10K haplotypes. In

a second simulation strategy we first sampled 80 haplo-

types from UK10K to approximate the founding event of

roughly 37 founders in Campora and then used HapGen2

(Su, Marchini, & Donnelly, 2011) to simulate recombina-

tion events and mutations to create a pool of mosaic hap-

lotype from which the 990 founder haplotypes of the pedi-

gree were sampled without replacement. From hence we

refer to these two simulation strategies as “Pedigree” and

“HapGen+Pedigree”, respectively. Further details on Hap-

Gen2 parameters are given in Supplementary Materials. Each

strategy was independently replicated 100 times with inde-

pendent draws for the 990 and 80 haplotypes, respectively. In

each replicate we simulated variants at ARRAY positions for

all 477 individuals and WGS positions for the 93 SSP indi-

viduals. We observed that the HapGen+Pedigree simulation

produced simulated data with a mean pairwise genetic kin-

ship (estimated on ARRAY genotypes) closer to the mean

observed in Campora (supplementary Fig. S3) suggesting the

HapGen+Pedigree simulation better mimicked the data of

Campora.

2.3 Error models

Errors and sporadic missingness were simulated in the data.

Both were introduced independently in the two simulated plat-

forms (ARRAY and WGS). Missing genotypes observed in

the ARRAY data in Campora were set to missing in the simu-

lated data. Errors on the ARRAY data were simulated with a

simple undirected error model where one allele from a geno-

type can change to the other available allele (major or minor)

at that position with an error rate of 0.001.

For the WGS data, we simulated multiple reads for each

genotype (including erroneous reads), from which geno-

type likelihoods and genotype quality scores were estimated

using a similar methodology to previous studies involv-

ing next-generation sequencing data simulation (Kim et al.,

2011; Vieira, Albrechtsen, & Nielsen, 2016). Genotypes

that emerged with a quality score less than 20 were set

to missing, otherwise the genotype of greatest likelihood

was kept. Our error model was tuned to produce missing-

ness rates close to the observed missingness rate in Cam-

pora (between 0.01 and 0.02) and error rates similar to

those expected on the sequencing platform used in Campora

(between 0.003 and 0.004). Full details of our WGS data

simulation and the error model are given in Supplementary

Materials and specific nucleotide error rates in supplementary

Table S1.

To assess the effect of genotyping errors and missingness

on the performance of each phasing and imputation algo-

rithm, we completed the same phasing and imputation steps

using simulated data with both genotype errors and missing-

ness (Imperfect data) but also without any such imperfections

(Perfect data).

2.4 Quality control

No quality control was performed on individuals. For Imper-

fect data, all genotypes in the nuclear family were set to miss-

ing each time a Mendelian error was introduced by our error

models. In all files, variants were removed for low minor allele

frequency (MAF), significant deviation from Hardy-Weinberg

equilibrium and for high missingness in the case of imperfect

data (Supplementary Materials).

2.5 Phasing

Phasing algorithms can be separated into two main method-

ological classes:

LD-based methods that rely on hidden Markov models

(HMM) are employed by phasing algorithms SHAPEIT2

(Delaneau, Zagury et al. 2013) and BEAGLE (Browning &

Browning, 2016). Phase is estimated with respect to LD pat-

terns and haplotype similarity and is built for each individual

as a mosaic of current haplotype estimations of all other

sample individuals as well as external reference haplotypes if

they are made available to the algorithm. For SHAPEIT2 we

considered the use of the “duohmm” option (O'Connell et al.,

2014) that harnesses parent-offspring or duo information for

phasing. We also tested SHAPEIT3 (O'Connell et al., 2016),

a new version of SHAPEIT2 designed for large sample

sizes.

In IBD-based methods, long stretches of IBD can be

directly sought between pairs of individuals in order to phase

directly each individual in turn in an approach named Long

Range Phasing (Kong et al., 2008). We tested two software

that employ Long Range Phasing: SLRP (Palin et al., 2011)

and ALPHAPHASE (Hickey et al., 2011). ALPHAPHASE

was developed for livestock populations and is able to use

pedigree information in addition to genotypes. SLRP, which



4 HERZIG ET AL.

was specifically designed for population isolates, uses only the

genotypes.

Two releases of a new software that combines LD-based

and IBD-based methods were also tested: EAGLE version 1

(EAGLE1) (Loh et al., 2016) and version 2 (EAGLE2) (Loh

et al., 2016). EAGLE1 was aimed at general populations and

was developed to phase data with very large sample sizes.

It employs Long Range Phasing followed by an HMM in

a second step. EAGLE2 focuses on harnessing an external

reference panel. It no longer uses Long Range Phasing and

instead is based on the positional Burrows-Wheeler transform

(Durbin, 2014) and an HMM. Yet if EAGLE2 is used without

a reference panel it adds the Long Range Phasing algorithm

of EAGLE1 as an initial step.

BEAGLE, SHAPEIT2, SHAPEIT3, and EAGLE2 can

make inference from an external reference panel when phas-

ing. We tested all software without an external panel and

SHAPEIT2 and EAGLE2 with the 1000G panel.

Switch error rate (SER) is the standard measure to assess

the accuracy of an estimation of genetic phase. A switch

error is observable between two consecutive heterozygous

sites and occurs if phase at the second heterozygous site is

incorrect with respect to that of the first. The SER is the frac-

tion of pairs of heterozygous sites where a switch error has

occurred out of the total number of possible pairs. A descrip-

tion of SER calculation in the presence of known genotype

errors is given in the Supplementary Materials. We calcu-

lated SERs on the entirety of chr10: globally over all indi-

viduals and variants, for each individual, and for each variant.

We compared the SER per variant to MAF calculated naively

on the simulated ARRAY genotypes and the mean SER of

each individual to the individual's mean genetic kinship with

all other sample members. Kinship was estimated from the

simulated ARRAY genotypes using the R package “Gaston”

(see URLs).

2.6 Imputation

LD-based imputation methods IMPUTE2 (Howie, Donnelly,

& Marchini, 2009), IMPUTE4 (Bycroft et al., 2017), BEA-

GLE v4.1 (Browning & Browning, 2016), and MINIMAC3

(Das et al., 2016) were compared when using the 1000G as

a reference panel. We included all 2,504 individuals from

all populations of the 1000G for imputation as this has been

shown to be the best approach (Howie, Marchini, & Stephens,

2011). We also used the HRC panel but only for MINI-

MAC3 due to the computational burden associated with this

panel. The HRC panel used was the version made avail-

able for download through the European Genome-phenome

Archive, which contains 27,165 individuals, including all

samples from the 1000G. As our simulations were based

on the UK10K, we removed all UK10K haplotypes, lead-

ing to 23,450 individuals. We also tested the PBWT software

(Durbin, 2014) on 20 of our replicates through use of the

Wellcome Trust's Sanger Imputation Service and again using

the 1000G as a reference panel. We did not test PBWT with

the HRC panel as we could not remove the UK10K haplo-

types from the panel when using this imputation service. To

restrict to 20 replicates per simulation strategy was a prag-

matic decision based on the time required to upload data to the

server.

The benefits of imputation using an SSP (either alone or

combined with a public reference panel) were investigated.

In each simulation replicate, we first created an SSP: WGS

and ARRAY data for the 93 SSP individuals were combined

(setting discordant genotypes created by our error models

to missing in the case of Imperfect data) and then phased.

Imputation was performed with IMPUTE2 with a combina-

tion of this SSP and the 1000G panel, using the software

option that allows the combination of two reference panels

through cross-imputation. We also tested MINIMAC3 with

a combination of the SSP and the HRC panel. As MIN-

IMAC3 does not offer an option for cross-imputation, the

two panels were first restricted to the set of variants in com-

mon between them and then merged. We denote a phasing

or imputation strategy by the name of the software added

to the panels employed, for example: EAGLE2+1000G,

IMPUTE2+1000G, or MINIMAC3+HRC+SSP.

Imputation accuracy of software was assessed in each repli-

cate by the squared Pearson's correlation between imputed

genotype dosages and original simulated genotypes for each

biallelic SNP polymorphic in the simulated data and present

in the output of every imputation software. Imputation was

restricted to the telomeric region of the short arm of chr10 (20

Mb in length). As imputation scenarios involving the SSP of

93 individuals were tested, imputation accuracy was measured

for all scenarios on the complimenting set of 384 non-SSP

individuals. Mean imputation accuracy was calculated over

distinct partitions of the observed range of MAF by averag-

ing across all variants in each MAF bin considered. MAF was

estimated naively on all 7,500 UK10K haplotypes. All impu-

tation software were run on prephased data arising from the

best phased data found when comparing phasing software. For

general populations, it is possible that prephasing could lead

to a loss of imputation accuracy (Roshyara, Horn, Kirsten,

Ahnert, & Scholz, 2016) but this is unlikely to be signifi-

cant in population isolates where highly accurate phased data

are achievable (Howie, Fuchsberger, Stephens, Marchini, &

Abecasis, 2012).

All imputation software provided imputation quality scores

per variant; the calculation of such scores varies between

imputation software but the scores have been shown to be

highly correlated to each other (Marchini & Howie, 2010).

We investigated the consequences of post imputation qual-

ity control based on imputation quality scores in a separate

analysis.
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F I G U R E 1 Global switch error rates for BEAGLE, EAGLE2, SHAPEIT2, and SHAPEIT3 for the HapGen+Pedigree simulation strategy

2.7 Speed

Because we only concentrate on a single chromosome with

a moderate number of individuals, computation time was

not an issue for our simulation. However, many of the algo-

rithms considered were designed with speed and low mem-

ory usage in mind. Indeed, EAGLE1, EAGLE2, BEAGLE,

MINIMAC3, PBWT, IMPUTE4, and SHAPEIT3 are all

geared toward performance when analyzing very large num-

bers of individuals or when leveraging very large external

reference panels. We measured real and computational time

elapsed during a single replicate of the HapGen+Pedigree

simulation. All phasing and imputation executions were

completed on a 2 × 6 core, 2 × 12 thread 2.66 GHz

Intel Xeon Processor X5650 with 96 Gb of random access

memory.

The options used for phasing and imputation software are

discussed in the Supplementary Materials and the software

versions used are detailed in the URLs.

3 RESULTS

3.1 LD-based phasing

For analyses of phasing performance, we present results

from only the HapGen+Pedigree simulation unless oth-

erwise indicated as the patterns of results were very

similar between the two simulation strategies. Imperfect

ARRAY data initially spanned 13,599 variants on chr10

and following quality control an average of 13,262 vari-

ants remained on the HapGen+Pedigree simulation strat-

egy. Totaling over the 477 individuals and across the

entirety of chr10, phasing algorithms were required to phase

an average of 2,150,627 heterozygous sites in each sim-

ulation replicate. All LD-based phasing algorithms con-

sidered were able to phase the ARRAY data to a high

degree of accuracy with global SERs below 0.002 (Fig. 1).

EAGLE2 delivered improved SER compared to EAGLE1

(supplementary Fig. S4) and so we only present detailed
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results for EAGLE2. SHAPEIT2 provided the most accu-

rately phased data and the additions of the “duohmm”

option and the 1000G as an external reference panel

further improved its performance. SHAPEIT3 performed

similarly to SHAPEIT2 and for subsequent analysis we

will only present results for SHAPEIT2+duohmm+1000G.

SHAPEIT2+duohmm+1000G achieved a mean SER of 1.9 ×

10−4 while EAGLE2 achieved 3.2 × 10−4. The mean global

SERs for all phasing strategies considered are given in sup-

plementary Table S2.

3.2 IBD-based phasing

We note that EAGLE2 outperformed EAGLE2+1000G; con-

versely to what was observed for SHAPEIT2 (Fig. 1). This

result can be interpreted as evidence of the utility of the

EAGLE2 Long Range Phasing routine for population isolates

as this routine is irrevocably omitted from the algorithm when

using an external reference panel.

ALPHAPHASE and SLRP both provided added compli-

cations because they only phase sites that were found IBD

between individuals. SLRP outperformed ALPHAPHASE

in terms of SER even though ALPHAPHASE had access

to the pedigree information (supplementary Fig. S5).

ALPHAPHASE however phased more heterozygous sites

than SLRP that may explain some of the difference in

SER between the two. We chose to compare only SLRP to

other software (Fig. 2) as SLRP was clearly stronger than

ALPHAPHASE. Owing to the sites left unphased by SLRP,

a separate calculation of SER restricted to the set of sites

phased by SLRP in each replicate was carried out. SLRP pro-

duced higher SERs than SHAPEIT2+duohmm+1000G and

EAGLE2 and reducing the analysis to these sites resulted in

lower SERs for all other phasing software (when compared

to Fig. 1). On these sites, SHAPEIT2+duohmm+1000G

achieved a mean SER of 1.4 × 10−4 while EAGLE2 achieved

2.7 × 10−4 and so a considerable proportion of the switch

errors observed in Figure 1 occurred on the small percent-

age (1.6% on average) of heterozygous sites left unphased by

SLRP. This suggests that the sites left unphased by SLRP,

which are by definition in areas where SLRP was unable to

identify IBD between individuals, are precisely those sites

that other software frequently phased incorrectly.

3.3 Factors that impact phasing performance

To further explore the performance of phasing software, we

performed a series of subanalyses to identify patterns in the

distributions of switch errors on chr10. Variants with low

MAF had demonstrably higher SERs, whether using LD-

based software or EAGLE2 (supplementary Fig. S6).

The levels of IBD in the simulated populations clearly

affected phasing performance as all software had improved

F I G U R E 2 Global switch error rates for BEAGLE, SLRP,

EAGLE2, and SHAPEIT2+duohmm+1000G for the HapGen+Pedigree

simulation strategy on the set of variants successfully phased by SLRP

in each replicate

phasing accuracy in the presence of the elevated IBD in the

HapGen+Pedigree simulation as compared to the Pedigree

simulation strategy (supplementary Fig. S7). Similarly, SLRP

and ALPHAPHASE both phased many more sites on the

HapGen+Pedigree simulation (supplementary Fig. S8a, b).

At the individual level, all phasing algorithms had lower per-

formance for the individuals with the lowest mean pairwise

genetic kinship to the rest of the sample (supplementary Fig.

S9a–c).

Phasing software returned slightly higher SERs when phas-

ing data with errors and missingness (supplementary Fig.

S10) and ALPHAPHASE and SLRP phased significantly less

sites when errors and missingness were present (supplemen-

tary Fig. S8a, b). The effect of imperfections within the data

was noticed particularly on the Long Range Phasing algo-

rithms (ALPHAPHASE, SLRP, and EAGLE2).

We specifically investigated the IBD status at switch

errors sites in the Pedigree simulation strategy for EAGLE2

and SHAPEIT2+duohmm+1000G (Supplementary Materi-

als and supplementary Fig. S11) as in only this simulation

strategy, true IBD sharing was accessible from Genedrop. For

both phasing approaches, there were a lower number of true

IBD haplotypes at switch errors sites (six IBD haplotypes on
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F I G U R E 3 Software imputation accuracy with the 1000G as an external reference panel and for the Pedigree and HapGen+Pedigree simulation

strategies. The percentages of variants in each MAF bin are displayed atop the figure. Total number of variants for each strategy: 40,989 (Pedigree)

and 40,407 (HapGen+Pedigree). † PBWT was only run on 20 replicates of each simulation strategy

average) compared to correctly phased sites (17 IBD haplo-

types on average). These true IBD haplotypes are the haplo-

types that the software can use as phase informative. Hence

the performance of the LD-based method SHAPEIT2 was

implicitly linked to the prevalence of IBD.

3.4 Accuracy of imputation software

Results pertain to imputation of phased Imperfect ARRAY

data from both simulations strategies unless otherwise

stated. Following the results from the phasing software

evaluation, we phased ARRAY and WGS data with

SHAPEIT2+duohmm+1000G. This phasing strategy was

also found to be the most accurate for WGS data (supplemen-

tary Fig. S12).

In each replicate, mean imputation accuracy was calcu-

lated across all polymorphic SNPs found within the output

of every software. On average this entailed a selection of

40,989 SNPs for the Pedigree simulation and 40,407 SNPs

for the HapGen+Pedigree simulation. This difference is

ascribed to the presence of more monomorphic variants in

the HapGen+Pedigree simulation.

When using 1000G as the reference panel, MINIMAC3

provided the best imputation accuracy in both simulation

strategies followed closely by IMPUTE4 and then IMPUTE2

(Fig. 3). Variants with low MAF were universally harder

to impute. BEAGLE and PBWT consistently delivered

lower imputation accuracy than IMPUTE2, IMPUTE4, and

MINIMAC3. Although IMPUTE4 marginally outperformed

IMPUTE2, it currently does not offer the option to combine

reference panels necessary for subsequent analyses in which

we hence compare IMPUTE2 and MINIMAC3.

Genotype errors and missingness on the ARRAY data had

minimal impact on imputation accuracy but such imperfec-

tions simulated on the WGS SSP had slightly more effect (sup-

plementary Figs. S13 and S14).

3.5 Impact of reference panel choice

By comparing the two simulation strategies, we were able to

identify the consequences of reference panel choice in a pop-

ulation isolate. When the 1000G was chosen as the external

reference panel, imputation accuracy was significantly lower

in the HapGen+Pedigree simulation strategy than in the Pedi-

gree one (Fig. 3). This difference in imputation accuracy may

be due to differences in MAF between the simulated data

and the 1000G reference panel (Supplementary Materials and

supplementary Fig. S15). MAFs on the HapGen+Pedigree

simulation had drifted further away from the 1000G refer-

ence panel and the variants with the highest differences in

MAF to the 1000G reference panel were imputed with lower
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F I G U R E 4 Imputation accuracy of IMPUTE2 when using various reference panels for the Pedigree and HapGen+Pedigree simulation strategies.

The set of variants used for comparison is a reduction of the set used in Figure 3 because using only the SSP as a reference panel limits the set of

possible variants to compare imputed dosages and true genotypes. This depleted the number of variants in the [0,0.01) MAF category, which was

therefore merged with that of [0.01,0.05) MAF. Total number of variants for each strategy: 35,058 (Pedigree) and 34,065 (HapGen+Pedigree)

accuracy than random selections of similar variants (supple-

mentary Fig. S16a).

Imputation with the SSP was an improvement upon

imputation with the 1000G for both IMPUTE2 and MIN-

IMAC3 (Figs. 4 and 5). When using the SSP, the simula-

tion strategy with the highest imputation accuracy was the

HapGen+Pedigree simulation, contrary to when using only

the 1000G (Fig. 3). This can be ascribed the higher levels of

IBD between the 93 SSP members and the 384 other individ-

uals in this simulation strategy. Indeed, the most accurately

imputed individuals were consistently those with higher val-

ues of mean pairwise kinship to the set of SSP individuals

(supplementary Fig. S17).

For MINIMAC3, imputation accuracy was clearly

improved by using the HRC over the 1000G (Fig. 5). Impu-

tation that included the SSP again produced more accurate

results than imputation with only public reference panels on

the HapGen+Pedigree simulation strategy. Rare variants were

however imputed more accurately by MINIMAC3+HRC

than by MINIMAC3+SSP on the Pedigree simulation. The

results of Figs. 3–5 are summarized in supplementary Table

S3.

The founding event in an isolate will result in higher

MAFs for certain variants as compared to general popula-

tions. Variants with a high difference in MAF compared to

the 1000G were imputed as well as the random selections of

comparable variants under IMPUTE2+SSP, but with lower

accuracy under IMPUTE2+1000G (supplementary Fig.

S16a). When changing reference panel from the 1000G to

the SSP, we observed that imputation accuracy increased the

most for variants with a MAF higher in the sample than in

the 1000G (Supplementary Materials and supplementary Fig.

S16b). Another consequence of using solely the 1000G as

a reference panel was the fact that some variants that were

monomorphic in the sample were imputed with dosages com-

patible with being heterozygous for many individuals, that is,

polymorphic in the sample (supplementary Fig. S16c, d).

3.6 Imputation quality scores

Finally, we analyzed the effect of applying various thresholds

of the “info” score for IMPUTE2 and the “RSQ” score for

MINIMAC3. Each successive threshold improved imputation

accuracy for both IMPUTE2 and MINIMAC3 with the latter

still providing higher accuracy in each MAF bin (Supplemen-

tary Materials and supplementary Fig. S18a, b). The “RSQ”

measure gave a better indication of imputation accuracy than

“info” and we also found that higher thresholds than the stan-

dard ones were arguably preferable for both rare and common

variants in both simulation strategies (Supplementary Mate-

rials and supplementary Table S4).
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F I G U R E 5 Imputation accuracy of MINIMAC3 with various reference panels on the same set of variants as used in Figure 4

3.7 Speed

For phasing, BEAGLE, EAGLE1, and EAGLE2 were the

fastest because they allow for multiple threading. SHAPEIT2

required more computation time than other algorithms.

For imputation, the quickest software were BEAGLE

and IMPUTE4. MINIMAC3+1000G was quicker than

IMPUTE2+1000G. We observed the additional complex-

ity encountered by IMPUTE2 when performing cross-

imputation. The full list of times is given in supplementary

Table S5.

4 DISCUSSION

Using simulated genetic data, we have rigorously tested the

performance of a range of phasing and imputation software

in a population isolate. EAGLE2 (without a reference panel)

and SHAPEIT2 were the strongest performing phasing

software with SHAPEIT2+duohmm+1000G giving the

most accurately phased data. MINIMAC3, IMPUTE4, and

IMPUTE2 all performed well and we observed a slight

advantage for MINIMAC3. MINIMAC3 imputation was

more accurate with the HRC as an external reference panel

rather than the 1000G. The use of an SSP proved to be a

very successful strategy, when used alone, but even more

so when combined with a large external reference panel.

MINIMAC3+HRC+SSP proved the most effective imputa-

tion strategy. Genotype errors and missingness were shown

to have only a small effect on the performance of all phasing

and imputation software considered.

If we compare our phasing results to published results for

outbred populations, it is clear that all methods performed

with greater accuracy (SERs at least one order of magnitude

smaller) on our simulated data. Indeed, for outbred popula-

tions, very large sample sizes have been required to achieve

the high level of phasing accuracy observed in our population

isolate study. For examples, see Bycroft et al. (2017), Loh,

Danecek, et al. (2016), O'Connell et al. (2016), and Mitt et al.

(2017).

IBD-based phasing methods did not prove as effective as

the LD-based software SHAPEIT2, which appeared itself to

directly profit from IBD in the sample. O'Connell et al. (2014)

also observed SHAPEIT2 benefiting from IBD. Indeed, the

performance of IBD-based and LD-based software followed

a similar pattern: all were less accurate when less IBD was

present and all had difficulty when phasing the likely non-

IBD regions of the genome and when phasing individuals with

a low average kinship to the rest of the sample. IBD-based

methods were the most affected by imperfections in the data.

EAGLE was expected to perform strongly on popula-

tion isolate data as it should combine the appeal of Long

Range Phasing and the strengths of LD-based methods such

as SHAPEIT2. Though the combination of IBD-based and

LD-based approaches in EAGLE1 and EAGLE2 is a clear

improvement over previous Long Range Phasing software, it

does not provide more accurate phasing than the LD-based
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approach implemented in SHAPEIT2. This is in accord with

the results of Mitt et al. (2017) in a cohort of intermediate

size but not with those of Loh, Danecek, et al. (2016) in much

larger cohorts. EAGLE2 was developed with the aim of han-

dling large sample sizes but as gene-mapping studies in pop-

ulation isolates will remain by nature small scale, SHAPEIT2

remains the optimum choice for phasing.

Published results for SHAPEIT3 in outbred populations

suggest that it may return less accurate phased data com-

pared to SHAPEIT2 (O'Connell et al., 2016). Of the two,

SHAPEIT2 is recommended for sample sizes less than

20,000, which would encompass the realm of population iso-

lates. In our study, SHAPEIT2 and SHAPEIT3 performed

very similarly.

Our comparisons on imputation strategies agree with recent

literature (Deelen et al., 2014; Mitt et al., 2017; Pistis et al.,

2015) in terms of the improvement in accuracy brought by a

reference panel specific to the population under study. Mitt

et al. (2017) concluded that for certain outbred populations,

such a panel can outperform an order of magnitude larger and

more diverse reference panel (the HRC). We show that for a

population isolate, an SSP can be far smaller and still outper-

form the HRC. As discussed in Asimit and Zeggini (2012),

the appropriate size of the SSP will depend on the diversity of

the isolate.

The HapGen+Pedigree simulation strategy gave the best

representation of a true isolate with a strong founder effect

producing large disparities to general populations represented

in public databases. Of the two simulation strategies, imputa-

tion accuracy was significantly lower on this simulation when

using only a public reference panel. This suggests that for a

population isolate with a very small set of founders and high

relatedness between individuals, using public reference panels

alone is not a completely appropriate strategy for imputation.

A better solution is to sequence a subset of the isolate to serve

as an SSP. Even with a very large external reference panel,

such as the HRC (here 23,450 individuals), imputation accu-

racy could not match the level reached by an SSP of 93 indi-

viduals. Using an SSP was particularly effective when imput-

ing variants with MAFs higher in the sample than in an exter-

nal reference panel. As such variants are precisely those that

motivate the study of population isolates, this strengthens the

argument for using an SSP in a population isolate.

We observed that the best results came from combining an

external reference panel and our SSP together for imputation.

IMPUTE2 facilitates cross-imputation of two reference pan-

els with variants at nonidentical sets of positions. This is an

attractive strategy for isolates as all positions from both panels

can be imputed including variants specific to the isolate.

The accuracy of imputation can be directly linked to the

statistical power of subsequent association tests (Browning

& Browning, 2009; Huang, Wang, & Rosenberg, 2009; Li,

Willer, Ding, Scheet, & Abecasis, 2010; Surakka et al., 2010).

Indeed, if N is the number of individuals in a study and a vari-

ant is imputed with an imputation accuracy of r2 = �, then

the statistical power of an association test using the imputed

dosages is equivalent to that of a test performed on observed

genotypes for �N samples. This is the intended interpreta-

tion of imputation quality scores that are estimates of the true

r2 statistics (Marchini & Howie, 2010). To give an exam-

ple, we have observed differences in imputation accuracy of

around 0.2 for rare variants (MAF ≤ 0.05) and 0.1 for com-

mon variants (MAF > 0.05) between MNIMAC3+1000G

and MINIMAC3+HRC+SSP on the HapGen+Pedigree sim-

ulation (supplementary Table S3). Imputation accuracy was

measured on a sample of size N = 384 (non-SSP individu-

als), hence, these observed differences in imputation accuracy

would correspond to losses of power equivalent to removing

around 77 or 38 of these individuals from subsequent analy-

ses, respectively. Studies in isolates typically involve unavoid-

ably modest sample sizes. Hence, there is great importance

in attaining the highest imputation accuracy possible in such

studies in order to preserve power.

One possible option for SHAPEIT2 that we did not con-

sider is the PIR option that harnesses phase informative

reads (Delaneau, Howie, Cox, Zagury, & Marchini 2013). To

include this in our simulation would have required the cre-

ation of the original read data; this was judged to be too great

a computational burden for our study. To be clearer option was

tested in Mitt et al. (2017) and did not significantly improve

the global performance of SHAPEIT2. Another version of

SHAPEIT2, SHAPEITR (Sharp, Kretzschmar, Delaneau, &

Marchini, 2016), sets out to improve phasing by concentrat-

ing on rare variants. However, as it is so far only available

through the Oxford Statistics Phasing Server (see URLs), it is

not suitable for an in-house simulation.

One software that we have not tested is PRIMAL, which

uses Long Range Phasing and is designed for phasing and

imputation in population isolates (Livne et al., 2015). PRI-

MAL specifically requires pedigree information for phasing

and an SSP for imputation. We were unable to successfully

setup and run PRIMAL on our simulated datasets and we have

been advised by the authors to wait for a new version that is

soon to be released.

In this study, we have strived to create realistic isolate data

to thoroughly test a range of phasing and imputation soft-

ware and strategies. Our study design allowed us to observe

how phasing and imputation algorithms are impacted by cer-

tain characteristics of isolate data, namely IBD between sam-

ple members and characteristics arising from isolation such

as divergent MAFs compared to reference populations. We

found that the best strategy for phasing in a population iso-

late was to use SHAPEIT2 with the “duohmm” option and

with an external reference panel. For imputation, if no SSP

is sequenced in the isolate, it is desirable to use the largest

public reference panel available. This would lead to the use of
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MINIMAC3 or IMPUTE4 as these software can handle very

large reference panels. If an SSP is available in the isolate,

it should be used and the option in IMPUTE2 that combines

reference panels through cross-imputation makes it an attrac-

tive choice of imputation software. In this case the largest

available public reference panel compatible with IMPUTE2

should be used with the SSP. At the time of publication,

IMPUTE4 and MINIMAC3 do not offer the option of com-

bining two reference panels, but, if such options do become

available, then a strategy that both combines the HRC and an

SSP by cross-imputation would likely be both fast and highly

accurate in a population isolate.
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Supplementary Materials 

Data Simulation 

Founder haplotypes were created with HapGen using a theoretical population size of 3,000 and the 

default mutation rate. This choice led to simulated data with similar kinship to the observed genotypes in 

Campora (Supplementary Figure 3). The percentage of sites phased by SLRP serves as a good proxy for the 

proportion of IBD that can be found within the sample. When phasing the true data from Campora, 99% of 

heterozygous sites were phased, a similar percentage to those observed on the HapGen+Pedigree simulation, 

Supplementary Figure 8a.  

Error Models. 

Here we describe our error model for the WGS data of the 93 SSP individuals. For each simulated 

genotype, a set of bases was sampled from the two possible alleles of the genotype in order to represent the 

bases across multiple reads containing the position. Error bases are simulated within this set and can take any 

value out of A,C,T and G. The depth of the set was randomly selected from the depths observed in the Campora 

WGS data at the corresponding position. We then used the approach of Kim et al. (2011) to make approximate 

calculations of genotype likelihoods from which we calculated genotype qualities based on the models 

implemented by the next-generation sequence calling software GATK (DePristo et al., 2011). 

As in to Kim et al. (2011), our error models were not symmetric. Lower genotype quality was observed 

in Campora on AT and GT SNPs. Hence we simulated higher error rates for error types A → T, T → A, G → T, 

and T → G as shown in Supplementary Table 1. For all genotypes, the error rate from the true base to the base 

corresponding to the other possible allele at the position (according to the simulated genotype) was augmented 

by 1/120. For example, when simulating error bases for a true base of A at a position with alleles A and G 

present in the simulated data, the error rate A → G was 1/120 + 1/120. However, if the alleles present in the data 

were A and T, the error rate A → G would remain at 1/120 and the error rate A → T would be augmented by 

1/120. Such error models were chosen in order to create similar distributions of genotype quality as had been 

observed in Campora and overall genotyping error rates high enough to be of interest when analysing their 

effect on phasing and imputation. Our error models do not attempt to provide a faithful representation of the 

calling of genotypes from raw sequence reads but simply to create errors and missingness simply, randomly, and 

in similar patterns to those observed in WGS data in Campora. 

Quality Control 
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ARRAY variants were removed for high missingness (> 5%), low MAF (< 1%), and significant 

deviation from Hardy-Weinberg equilibrium (p < 10-5). WGS variants were removed for high missingness (> 

10%), low Minor Allele Count (< 2), and significant deviation from Hardy-Weinberg equilibrium (p < 10-5). 

Phasing 

When using EAGLE2+1000G we set the parameter 'pbwtiter' to 3 which significantly improved the 

phasing and ensures that phasing inference was made not just from the 1000G but from estimated haplotypes of 

other individuals in the sample. When phasing with BEAGLE we found that results were generally robust to 

changes in the 'window' and 'overlap' parameters. For EAGLE2 and BEAGLE we allowed multiple threading 

(four threads) after observing that restricting to one thread did not significantly change results. However, for 

SHAPEIT2 it is recommended to not use multiple threading so we used a single thread for each phasing run. 

Using BEAGLE with the 1000G as an external reference panel proved problematic as many variants were 

removed from the analysis by the algorithm due to high differences in MAFs between the sample and the 

reference panel. As population isolate data has been simulated, it is to be expected that MAFs differ from those 

observed in 1000G. We thus did not present BEAGLE results for this option. We did not test SHAPEIT3 with 

the 1000G as a reference panel due to the similarity between SHAPEIT2 and SHAPEIT3. Otherwise software 

were used with default settings. 

Note that it is not possible to calculate SER at the exact site of a genotype error or missing genotype as 

there is no true phase from which to make a comparison with. Hence all calculations are made irrespective of 

error sites in each replication. An error can still cause a SER in a direct way but this would be measured at the 

preceding and following heterozygous sites on the chromosome (Supplementary Figure 10). 

IBD-Sharing 

 To create Supplementary Figure 11 for SHAPEIT2+duohmm+1000G and EAGLE2 we randomly 

selected 200 heterozygous sites with switch errors and 200 heterozygous sites which were phased correctly. For 

each of the 400 sites we then counted the number of haplotypes in the sample IBD to the individual at the site. 

This analysis was performed on ARRAY data with no genotyping errors or missingness simulated and on the 

Pedigree simulation where the exact IBD sharing information was accessible. This is because on the Pedigree 

simulation, we know exactly which founder haplotype has been copied at every site for each individual. On the 

HapGen+Pedigree simulation, we could not keep track of this information. 

Imputation 
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Following user manual recommendations for IMPUTE2, the region was split into four regions each of 

width 5Mb and using a buffer region of 0.25Mb. Identical settings were used for IMPUTE4. Outputs from the 

four runs were then concatenated after imputation. We experimented with the 'k-haps' parameter in IMPUTE2 

and were unable to observe significant changes in accuracy and so the default parameter was used. MINIMAC3 

was run with default parameters as was BEAGLE as we found that results were not sensitive to changes in the 

'window', 'overlap' and 'Ne' (effective population size) parameters. A detailed investigation on the effects of 

model parameters on IMPUTE2, MINIMAC3 and BEAGLE is to be found in Browning and Browning (2016). 

As population isolates are the subject of this investigation it might be suggested that a lower value of 'Ne' would 

theoretically be suitable. In the context of imputation, the 'Ne' parameter controls the expected rate of 

recombination. Whilst our simulated individuals were constructed as mosaics of founder haplotypes with 

relatively few recombinations, a high recombination rate is still required in order to model each individual as an 

imperfect mosaic of external reference haplotypes. For IMPUTE2 we took advantage of the ‘merge-ref-panel’ 

option to perform cross imputation between the 1000G and our WGS SSP. 

Difference in MAF between sample and reference panel 

We compared the absolute difference in MAF between the simulated data in each replicate and either 

the 1000G Europeans populations or the complete 1000G. We averaged these differences over all variants used 

to estimate imputation accuracy and compared them to the baseline mean difference in MAF between the 

UK10K (our source of founding haplotypes) and the 1000G (Supplementary Figure 15). Compared to the 

Pedigree simulation, the HapGen+Pedigree simulation strategy produced simulated data with greater disparity in 

MAF compared to the 1000G. It was possible to observe a pattern between this disparity in MAF and lower 

imputation accuracy (Supplementary Figure 16a). To illustrate the importance of this difference in MAF we 

selected variants with a high MAF in our simulated data set (>0.3) and a large difference in MAF compared to 

the 1000G (top 10% of all MAF differences). We also excluded variants with imputation quality score (‘info’) 

below 0.7 coming from imputation using IMPUTE2+1000G. In the Pedigree simulation an average of 2,340 

variants fulfilled these criteria and the average 90th percentile of absolute MAF differences was 0.17. In the 

HapGen+Pedigree simulation there were an average of 2,166 variants and the average 90th percentile of 

absolute MAF differences was 0.20. We compared the mean imputation accuracy from imputation using 

IMPUTE2+1000G and IMPUTE2+SSP over this selection of variants to the mean imputation accuracy over a 

random selection of variants with similar MAFs (Supplementary Figure 16a). In both simulation strategies 
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variants with a large difference in MAF to the 1000G were harder to impute under IMPUTE2+1000G but were 

imputed with similar accuracy under IMPUTE2+SSP. 

To investigate further, we also selected variants with either a MAF significantly higher in the 1000G 

reference panel than in the sample or vice-versa. We then calculated the percentage increase in imputation 

accuracy by changing reference panel from the 1000G reference panel to the SSP (Supplementary Figure 16b). 

To put these increases into context, we again selected random selections of variants with a similar MAF to the 

chosen variants but without the large differences in MAF between the sample and the 1000G. Variants with 

significantly higher MAF in the sample (compared to the 1000G reference panel) experienced the most benefit 

from the change of reference panel for imputation. 

A final analysis was made on variants which were monomorphic in the sample. Such variants may 

represent the greatest difference in MAF between the sample and an external reference panel. We have 

compared imputation accuracy on the telomeric region of the short arm of chr10 (20Mb in length). In this region 

102,100 variants (found in the UK10K) were simulated and 22% and 31% of these variants became 

monomorphic in the Pedigree and HapGen+Pedigree simulation strategies respectively due to the founder 

effects that we simulated. From each replicate of each strategy, we selected 100 monomorphic variants at 

random. From this selection, an average of 18% and 19% of the variants passed a 0.4 threshold on the 

IMPUTE2 imputation quality score ‘info’. For each variant that passed the threshold, we called imputed 

genotypes from imputed dosages by assigning the genotype to the highest genotype likelihood if and only if one 

genotype likelihood exceeded 0.8. In Supplementary Figure 16c we present the number of individuals with an 

incorrect called genotype for the assembly of all variants considered across replicates. A few variants present 

extreme results, these were noted to be variants with extremely different MAF between the UK10K and the 

1000G. For example, the highest point on the left panel of Supplementary Figure 16c has a MAF of 0.47 in the 

1000G and 0.0026 in the UK10K. Supplementary Figure 16d shows a zoom-in on Supplementary Figure 16c. 

Genetic kinship coefficients between all 477 simulated individuals and the 1000G Europeans were 

computed using WGS positions after LD-pruning. The mean pairwise kinship on the Pedigree simulation was 

1.2×10-4 and 2.5×10-6 on the HapGen+Pedigree simulation. Again this demonstrated greater dissimilarity 

between the HapGen+Pedigree simulated data and 1000G than between the Pedigree simulated data and 1000G. 

Imputation Quality scores: ‘info’ and ‘RSQ’ 

First, we applied the standard thresholds for common variants of 0.4 for ‘info’ and 0.3 for ‘RSQ’ (Li, 

Willer, Ding, Scheet, & Abecasis, 2010; Pistis et al., 2015) (Supplementary Figure 18a).  
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We then specified different thresholds for ‘info’ and ‘RSQ’ and calculated the resulting mean 

imputation accuracy in the remaining variants (Supplementary Figure 18b) under MINIMAC3+1000G and 

IMPUTE2+1000G on the HapGen+Pedigree simulation strategy. We observed that increasing the thresholds 

continued to give gains in mean imputation accuracy at a price of removing large numbers of variants. 

Particularly for low MAF variants, greater increases in imputation accuracy were observed by placing thresholds 

on the ‘RSQ’ measure than ‘info’. Furthermore, the mean imputation accuracy of remaining variants became 

almost equal across all MAF bins when using the ‘RSQ’ measure while greater differences remain between 

MAF bins when using the ‘info’ score. 

By defining sets of well and poorly imputed variants (imputation accuracy above 0.5 or below 0.2) we 

observed that the standard thresholds of 0.4 for ‘info’ and 0.3 for ‘RSQ’ fail to remove many poorly imputed 

variants (Supplementary Table 4). Furthermore for rare variants, the quality scores have less ability to separate 

well imputed variants from poorly imputed variants as reported by others (Liu et al., 2012; Pistis et al., 2015). 

To ensure that the majority of poorly imputed low MAF variants will be removed, higher thresholds than the 

standard ones are required. For common variants we observed that similarly high thresholds could be used and 

only a small number of well imputed variants would be lost and more poorly imputed variants would be 

removed. The choice of threshold represents a compromise between attempting to remove all badly imputed 

variants while hoping to not discard too many well imputed variants that could be highly valuable to subsequent 

analyses. Poorly imputed variants could give false positive results. However, if the motivation for imputation 

was envisaged single point analyses, the damage would be minimal as the researcher could still access the ‘info’ 

or ‘RSQ’ scores in order to see whether significantly associated variants had a very high imputation quality 

score or one just above the threshold. If multipoint analyses (gene-based or haplotype based) were envisaged, 

then poorly imputed variants have the potential to cause false negative results which would be harder to rectify; 

suggesting that in this scenario higher thresholds should be taken. 
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Supplementary Figure 1. The pedigree of Campora as recorded from parish records. 

1600 

2007 
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Supplementary Figure 2. Schematic of the two simulation strategies. 
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Supplementary Figure 3. Comparison of mean pairwise genetic kinship coefficients estimated on simulated 

ARRAY data for 477 individuals for both simulation strategies. The HapGen+Pedigree simulation created data 

with closer mean pairwise genetic kinship to the mean pairwise genetic kinship calculated on the observed 

genotypes in Campora for the same individuals (dashed line). As every pedigree founder haplotype is first 

generated from 80 UK10K haplotypes in the HapGen+Pedigree simulation, the pedigree founders are no longer 

independent and share regions of IBD. Proportions of IBD are consequentially elevated throughout the sample 

and surpass those predicted solely by the pedigree information. 
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Supplementary Figure 4. Mean Switch Error Rates for EAGLE1 and EAGLE2 on the HapGen+Pedigree 

simulation strategy.  
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Supplementary Figure 5. Comparison of Long Range Phasing Software SLRP and ALPHAPHASE on the 

HapGen+Pedigree simulation strategy. The percentages of heterozygous sites phased are displayed atop the 

figure.  
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Supplementary Figure 6. Comparison of SERs according to MAF for BEAGLE, EAGLE2 and 

SHAPEIT2+duohmm+1000G on the HapGen+Pedigree simulation strategy. In each MAF bin, the mean SER 

over all variants is displayed. The percentages of variants in each MAF bin are displayed atop the figure. 
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Supplementary Figure 7. Global SERs from both simulation strategies for all LD-based software. 
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Supplementary Figure 8a. Comparison of the fraction of heterozygous sites phased by SLRP for both 

simulation strategies. SLRP phased a higher proportion of sites when applied to the HapGen+Pedigree 

simulation, similar to the proportion of sites as when applied to the observed ARRAY genotypes in Campora by 

SLRP (blue line). Genotype errors and missingness led to a reduction in the number of sites that SLRP was able 

to phase in both simulation strategies. 
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Supplementary Figure 8b. Comparison of the fraction of heterozygous sites phased by ALPHAPHASE for 

both simulation strategies. ALPHAPHASE phased a higher proportion of sites when applied to the 

HapGen+Pedigree simulation. Genotype errors and missingness led to a reduction in the number of sites that 

ALPHAPHASE was able to phase in both simulation strategies. 
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Supplementary Figure 9a. Relationship between mean pairwise genetic kinship and individual SER for 

SHAPEIT2+duohmm+1000G and EAGLE2. In each replicate, ARRAY genotypes were used to calculate the 

mean pairwise genetic kinship coefficient of each individual to all others. We considered 10 equally sized bins 

of mean pairwise genetic kinship based on the quantiles of the distribution of mean pairwise genetic kinship. In 

each group we then calculated the mean SER for all individuals in the group. 
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Supplementary Figure 9b. As Supplementary Figure 9a, but for BEAGLE and SLRP. Note the different scale 

on the y-axis compared to Supplementary Figure 9a.  
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Supplementary Figure 9c. Fraction of all heterozygous sites left unphased by SLRP according to mean 

pairwise genetic kinship. 
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Supplementary Figure 10. Effect of genotype errors and missingness (Imperfect) on mean Switch Error Rate 

according to software and on the HapGen+Pedigree simulation strategy.   
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Supplementary Figure 11. Comparison of mean number of true IBD haplotypes at either correctly phased sites 

or switch error sites for SHAPEIT2+duohmm+1000G or EAGLE2. This analysis was only possible on the 

Pedigree simulation where the exact locations of simulated IBD-sharing were known. 
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Supplementary Figure 12. Mean SER for the phasing of the 93 WGS SSP individuals with 

SHAPEIT2+duohmm+1000G and EAGLE2. There are two likely causes for the higher SERs as compared to the 

phasing of ARRAY data: firstly, a smaller number of individuals are involved, and secondly the WGS data 

contained a higher proportion of variants with MAF below 0.05.  
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Supplementary Figure 13. Effect of genotype errors and missingness on the ARRAY data on imputation 

accuracy.  
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Supplementary Figure 14. Effect of genotype errors and missingness on the SSP on imputation accuracy. 

Imputation accuracy calculated from imputation strategy IMPUTE2+1000G+SSP.  
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Supplementary Figure 15. Comparison of absolute difference in MAF between simulated data and the 1000G 

panel for both simulation strategies. Dashed lines represent the mean difference in MAF between the UK10K 

(founding pool used for the simulation) and the 1000G. 
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Supplementary Figure 16a. Comparison of imputation accuracy for sets of variants with particularly high 

differences in MAF compared to the 1000G panel against random selections of similar variants without such 

elevated disparities. Imputation accuracy was calculated from the imputation strategies IMPUTE2+1000G and 

IMPUTE2+SSP.   
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Supplementary Figure 16b. Increase in imputation accuracy by changing from IMPUTE2+1000G to 

IMPUTE2+SSP for sets of variants with either MAF greater in the 1000G reference panel compared to the 

sample or vice-versa. Once again, for each set of chosen variants for comparison, we selected a random 

selection of control variants with similar MAF in the sample to the chosen set.  
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Supplementary Figure 16c. Imputation of monomorphic variants in the sample under IMPUTE2+1000G. The 

number of individuals with an incorrectly imputed genotype (after taking a hard call) against base pair position 

on chromosome 10.  
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Supplementary Figure 16d. Zoom-in onto Supplementary Figure 16c showing the distribution of points with 

y-axis values less than 50.  
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Supplementary Figure 17. Comparison of individual imputation accuracy against the mean pairwise genetic 

kinship between each non-SSP member and all 93 SSP members. Mean numbers of individuals contributing to 

each bin of individual mean pairwise genetic kinship are displayed atop the figure. The minimum observed 

imputation accuracy for a single individual was just above 0.85 and just above 0.88 for the Pedigree and 

HapGen+Pedigree simulation strategies respectively.  
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Supplementary Figure 18a. Imputation accuracy across all MAFs following post imputation quality control 

based on a 0.4 threshold on ‘info’ scores for IMPUTE2 and a 0.3 threshold on ‘RSQ’ scores for MINIMAC3. 

These are the often recommended thresholds for ‘info’ and ‘RSQ’. The percentages of variants that remain in 

each MAF bin after thresholding are displayed atop the figure (blue for IMPUTE2 and green for MINIMAC3).  
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Supplementary Figure 18b. Imputation accuracy across all MAFs following post imputation quality control 

based on either ‘info’ scores for IMPUTE2 or ‘RSQ’ scores for MINIMAC3. Imputation accuracy and 

imputation quality scores are derived from IMPUTE2+1000G or MINIMAC3+1000G imputation.  
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Supplementary Table 1. Error rates between specific bases for the simulation of WGS data. 

  

Phasing Software + Options Mean Switch Error Rate 
 Pedigree HapGen+Pedigree 
ALPHAPHASE † 0.0235 0.0218 
BEAGLE 0.00490 0.00165 
EAGLE1 0.00267 0.000589 
EAGLE2 0.00152 0.000321 
EAGLE2+1000G 0.00293 0.00155 
SHAPEIT2 0.000910 0.000283 
SHAPEIT2+duohmm 0.000845 0.000247 
SHAPEIT2+duohmm+1000G 
SHAPEIT3 

0.000638 
0.000957 

0.000191 
0.000279 

SLRP † 0.00117 0.000950 
† Not all variants were phased. 

Supplementary Table 2. Mean global SER across simulation replicates for all phasing strategies considered. 

True Base 
 

Error Base rates 
G T C A Total 

G - 1/60 1/120 1/120 1/30 
T 1/60 - 1/120 1/60 1/24 
C 1/120 1/120 - 1/120 1/40 
A 1/120 1/60 1/120 - 1/30 
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Imputation Software + 
Reference Panel 

Mean Imputation Accuracy 

 Pedigree HapGen+Pedigree 
 MAF (0,0.01] (0.01,0.05] (0.05,0.10] (0.10,0.20] (0.20,0.50] (0,0.01] (0.01,0.05] (0.05,0.10] (0.10,0.20] (0.20,0.50] 

BEAGLE+1000G † 0.423 0.605 0.744 0.792 0.832 0.296 0.518 0.658 0.710 0.757 
IMPUTE2+1000G † 0.472 0.670 0.833 0.882 0.904 0.299 0.608 0.774 0.836 0.868 
IMPUTE4+1000G † 0.524 0.714 0.845 0.890 0.912 0.351 0.633 0.786 0.845 0.877 
MINIMAC3+1000G † 0.530 0.722 0.852 0.900 0.916 0.366 0.644 0.793 0.851 0.881 
PBWT+1000G (20 replicates) † 0.426 0.640 0.791 0.851 0.883 0.290 0.555 0.724 0.798 0.840 

 MAF (0,0.05] (0.05,0.10] (0.10,0.20] (0.20,0.50] (0,0.05] (0.05,0.10] (0.10,0.20] (0.20,0.50] 

IMPUTE2+1000G ‡ 0.749 0.863 0.883 0.907 0.670 0.811 0.834 0.871 
IMPUTE2+SSP ‡ 0.845 0.921 0.938 0.954 0.916 0.951 0.963 0.974 
IMPUTE2+1000G+SSP ‡ 0.872 0.933 0.946 0.960 0.914 0.950 0.961 0.973 
MINIMAC3+1000G ‡ 0.779 0.882 0.900 0.920 0.703 0.831 0.855 0.884 
MINIMAC3+HRC ‡ 0.844 0.918 0.930 0.942 0.752 0.860 0.879 0.903 
MINIMAC3+SSP ‡ 0.840 0.917 0.935 0.953 0.909 0.946 0.958 0.971 
MINIMAC3+HRC+SSP ‡ 0.905 0.951 0.961 0.971 0.918 0.953 0.964 0.974 
† Corresponds to a comparison on 40,989 and 40,407 variants on the Pedigree and HapGen+Pedigree simulation strategies respectively. 
‡ Corresponds to a comparison on 35,058 and 34,605 variants present in the SSP on the Pedigree and HapGen+Pedigree simulation strategies respectively. 
 
 
Supplementary Table 3. Mean Imputation accuracy across simulation replicates split by MAF, these results correspond to Figures 3, 4, and 5 in the main text. 
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MAF (0,0.01] (0.01,0.05] (0.05,0.10] (0.10,0.20] (0.20,0.50] 

 Good Bad Good Bad Good Bad Good Bad Good Bad 

N 313 595 2232 670 3568 272 7621 210 21682 359 

 Variants remaining (%) after threshold was applied 

info           

0.3 96 37 100 80 100 97 100 99 100 100 

0.4 94 30 100 69 100 90 100 96 100 99 

0.5 91 23 100 54 100 73 100 79 100 82 

0.6 89 17 99 37 100 48 100 47 100 43 

0.7 80 11 98 20 98 23 99 20 100 13 

0.8 68 6 93 8 92 9 95 7 97 3 

0.9 46 2 77 2 74 2 80 3 85 1 

RSQ           

0.3 85 13 96 37 100 55 100 60 100 65 

0.4 79 9 93 23 99 34 100 35 100 33 

0.5 71    6 88 14 97 18 99 18 100 10 

0.6 62 4 80 7 92 9 96 8 98 3 

0.7 51 2 67 4 84 4 90 4 94 1 

0.8 37 1 51 2 70 2 77 2 84 1 

0.9 20 0 29 0 47 1 53 0 60 0 

 

Supplementary Table 4.  Mean number of variants (N) in each MAF bin that were well imputed (Good) or 

poorly imputed (Bad) as defined by whether Imputation accuracy exceeded 0.5 or fell below 0.2 respectively. 

The body of the table displays the mean percentage of variants remaining after ‘info’ or ‘RSQ’ thresholds have 

been applied. ‘Info’ and ‘RSQ’ scores pertain to IMPUTE2+1000G and MINIMAC3+1000G imputation 

respectively.  
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Phasing Real Time Computational Time 
BEAGLE 0:05:53 0:36:58 
SLRP 3:39:20 3:34:38 
ALPHAPHASE 0:04:05 0:03:59 
EAGLE1 0:04:33 0:16:47 
EAGLE2 0:04:11 0:15:27 
EAGLE2+1000G 0:15:46 0:44:32 
SHAPEIT2 1:00:46 1:00:40 
SHAPEIT2+duohmm 1:01:58 1:01:53 
SHAPEIT2+duohmm+1000G 1:14:23 1:09:08 
SHAPEIT3 0:46:46 0:46:45 
Imputation   
BEAGLE+1000G 0:17:54 3:35:49 
IMPUTE2+1000G 2:03:24 1:57:39 
IMPUTE4+1000G 0:13:55 0:12:56 
IMPUTE2+SSP 0:02:49 0:02:42 
IMPUTE2+1000G+SSP 5:00:29 4:53:01 
MINIMAC3+1000G † 1:07:13 1:05:05 
MINIMAC3+SSP † 0:03:30 0:03:20 
MINIMAC3+HRC † 7:39:29 7:35:56 
† Part of the duration taken by MINIMAC3 was attributed to reformatting the reference panel into a specialised 
MINIMAC3 format. 

Hours:Minutes:Seconds 
 

Supplementary Table 5. Time requirements for phasing ARRAY data on the whole of chromosome 10 for and 

imputing 20Mb of chromosome 10.  
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Detecting the dominance component 
of heritability in isolated and outbred 
human populations
Anthony F. Herzig  1,2, Teresa Nutile  3, Daniela Ruggiero 3,4, Marina Ciullo  3,4, 
Hervé Perdry 5 & Anne-Louise Leutenegger  1,2

Inconsistencies between published estimates of dominance heritability between studies of human 

genetic isolates and human outbred populations incite investigation into whether such diferences 
result from particular trait architectures or speciic population structures. We analyse simulated 
datasets, characteristic of genetic isolates and of unrelated individuals, before analysing the isolate 
of Cilento for various commonly studied traits. We show the strengths of using genetic relationship 
matrices for variance decomposition over identity-by-descent based methods in a population isolate 

and that heritability estimates in isolates will avoid the downward biases that may occur in studies 

of samples of unrelated individuals; irrespective of the simulated distribution of causal variants. Yet, 
we also show that precise estimates of dominance in isolates are demonstrably problematic in the 

presence of shared environmental efects and such efects should be accounted for. Nevertheless, we 
demonstrate how studying isolates can help determine the existence or non-existence of dominance for 

complex traits, and we ind strong indications of non-zero dominance for low-density lipoprotein level 
in Cilento. Finally, we recommend future study designs to analyse trait variance decomposition from 
ensemble data across multiple population isolates.

For a plethora of human traits, there is an observable resemblance between close relatives. his suggests the pres-
ence of genetic constituents in the architectures of such traits and leads to an obvious question: for a pair of indi-
viduals, can one describe a relationship between their degree of relatedness (genomic sharing) and the degree of 
similarity of their trait values? Fisher unravelled this question by proposing a decomposition of the variance of a 
trait, with components attributed to each individual’s genome and to the amassment of environmental exposures 
in each individual’s history. his genetic component of the variability is known as the heritability of the trait which 
Fisher connected to the correlation of trait values between relatives. Heritability has been estimated extensively 
for a multitude of traits and through diverse models and study designs. Importantly, the recent availability of 
dense genetic data in large cohorts has enabled the estimation of heritability from samples of unrelated individu-
als whereas previous estimations had been driven by studies of close relatives such as twins or nuclear families. A 
review of heritability estimation in related individuals can be found in Tenesa & Haley1 and a recent discussion of 
heritability estimation in unrelated individuals can be found in Yang et al.2.

An important distinction is to be made between broad-sense heritability (H2) and the more commonly com-
municated narrow-sense heritability (h2). his stems from the innovative modelling of complex traits by Fisher 
who demonstrated the interest of splitting the genetic variance of a trait into additive, dominant (interaction of 
alleles within a genotype of a single locus), and epistatic (interaction between genotypes of multiple loci) compo-
nents3. For details on more elaborate models, we refer the reader to Abney et al.4 and Young & Durbin5. Briely 
put, h2 describes the additive contributions of each allele received from one’s parents while H2 encompasses the 
efect of one’s whole genome and is the sum of h2 and the contributions of non-additive efects. For the purposes 
of this study, we term this non-additive fraction of variance as ‘dominant’ as we do not here consider epistasis or 
higher order variance terms; we will denote this component as hD

2  (equal to H2 − h2). In terms of phenotypic 
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similarities between family members, the parent/ofspring correlation is equal to h
1

2

2 while the sibling correlation 

is equal to +h hD
1

4

2 1

2

2. To give clarity, we deine =h hA
2 2.

We will consider the estimation of heritability through maximum-likelihood estimation of variance parame-
ters of linear mixed models (LMMs). For a setting of N individuals and Y a vector of observed phenotypes, we will 
consider the following model with ixed efects Xand a variance-covariance structure split into genetic additive, 
genetic dominant, and environmental components:

β τ τ σ+ +~Y MVN X K D I( , ) (1)
T

A D E N0
2

We then are able to estimate the heritabilities as follows:

τ τ

τ τ σ

τ

τ τ σ

τ

τ τ σ
=

+

+ +
=

+ +
=

+ +
H h h, ,

(2)

A D

A D E
A

A

A D E
D

D

A D E

2
2

2
2

2
2

here are various possible choices of the N × N matrices K and D. Historically, K and D are deined in terms of 
identity-by-descent (IBD) probabilities4,6,7. K is equal to 2ϕ, where ϕi, j is the kinship coeicient of individuals i and j, 
deined as the probability of two alleles, randomly sampled from each of individuals i and j, at the same locus will be 
IBD. Di, j is the probability that individuals i and j share exactly two pairs of alleles IBD at a given locus. Both ϕi, j and 
Di, j are themselves expressions of Jacquard’s nine coeicients of identity: ϕ = ∆ + ∆ + ∆ + ∆ + ∆( )i j, 1

1

2 3 5 7
1

4 8, 
and Di, j = ∆1 + ∆7

6. In studies of family data or isolated populations, these coeicients have been classically estimated 
from pedigree information but with the advent of dense genomic information, they can now be estimated reliably 
from genotype data by either estimating genome-wide IBD sharing probabilities or detecting and counting IBD seg-
ments8–10. Such methods have also been developed for studies of unrelated individuals11, though the predominant 
approach in such studies is to use moment estimators of K and D by taking correlations between each pair of individ-
uals’ (orthogonal) additive and dominant genetic components, respectively12,13. hese latter estimators are known as 
genetic relationship matrices (GRMs) and can be used in any study design.

his leads to two distinct interpretations of the matrices K and D which both come with potential drawbacks. 
If IBD probabilities are used to estimate K and D, they represent the level of relatedness between pairs of individ-
uals based on the presence of recent common ancestors but if K and D are estimated as GRMs, then they repre-
sent simply the correlation between pairs of individuals’ genotypes. For the former interpretation, coeicients of 
identity can only be approximated either by their expected values based on the pedigree structure linking indi-
viduals or by estimating the proportions of IBD-sharing between individuals based on their genotypes. However, 
exhaustive pedigree information is never available and indeed the concept of IBD is similarly problematic due to 
the ambiguity of how many generations to consider when looking back for evidence of shared genetic ancestors. 
Ater many generations, mutations and recombinations cause the IBD segments to become increasingly short 
and not completely identical and thus diicult to distinguish from background genetic variation14–16. For the 
latter interpretation involving GRMs, there is the immediate problem that such correlations are computed from 
a large set of variants which are not speciic to the trait being studied in the hope that these variants will be repre-
sentative of the unknown set of causal variants via linkage disequilibrium (LD) (correlations between variants)17. 
Consequentially, if heritability is estimated with GRMs, it corresponds to only a proportion of the phenotypic 
variation coming from the subset of causal variants that are in LD with the genotyped variants18. his can lead to 
downwardly biased estimate of heritability as causal variants may oten be held at low frequencies by selection19,20 
and so will be in weak LD with common genotyped variants. Furthermore, if there exist relatively few causal var-
iants, the large numbers of non-causal variants used to estimate the genetic correlations might mask the desired 
correlation of causal variants between individuals21. Genomic-based IBD methods applied to unrelated individu-
als has been suggested as an approach to improve upon genetic correlation methods as detected stretches of IBD 
can cover some un-typed genetic variation11.

he main motivation for employing GRMs is that this allows for the estimation of heritability from unre-
lated individuals, thus leveraging data from large cohorts and avoiding shared environment biases13,22. However, 
there has been a trend towards using genomic-based estimates even when pedigree data is available due to the 
increased precision of relatedness estimation from genetic data, both in human studies16,23–27 and in animal/plant 
studies28–31.

For complex human traits, it has been suggested that one can assume that any contributions from non-additive 
genetic components h( )D

2  are relatively small compared to the additive genetic components32 and thus oten only 
estimates of hA

2 are presented. In a recent study, Zhu et al.12 illustrated this characterization of diminutive domi-
nant genetic variance for 79 traits in two large samples of unrelated individuals. his result was then re-enforced 
in Nolte et al.33. Yet, many others have presented incongruent results on this subject. Chen et al.34 compared the 
same approach as Zhu et al.12 with a twin-based analysis and concluded that whilst the genetic variances of 19 
traits were predominantly additive, dominant genetic components were nonetheless more prominently apparent 
than when described elsewhere. Aside from these studies, dominance heritability estimation using GRMs has 
rarely been carried out, and the authors who are more interested in dominance tend to rely on family data35,36. Of 
particular note is the observation that signiicant non-additive genetic components for many traits have been 
found in some studies on population isolates: Abney et al.37, Pilia et al.38, and Traglia et al.39 (Table 1).

An isolate is characterized as a population arising from a small group of founders and experiencing subse-
quent demographic growth in isolation. Such populations will include pairs of distantly related individuals who 
nonetheless share long haplotypes IBD, and may even share both haplotypes IBD in some regions. he pres-
ence of both pairs of closely related individuals and pairs of cryptically related individuals suggests that isolates 
could be ideally suited to heritability analyses. Furthermore, isolates are of interest for assessing the existence of 
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genetic components as one can assume that less heterogeneity in environmental exposures will be present in the 
population.

Studying dominance in samples of human twins or siblings can be problematic due to confounding between 
the sharing of genotypes and shared environmental factors1,34. In a large population isolate, such confounding had 
been deemed as unlikely to arise due to the extensive range of possible degrees of relatedness between individu-
als37,40. However, the presence of numerous sibling pairs in the sample could easily lead to confounding with the 
proportions of sharing two alleles IBD (IBD = 2) and indeed such confounding between estimates for dominance 
and shared environmental factors between relatives has recently been observed by Zaitlen et al.41 who performed 
a study on extended genealogies from the Icelandic populations, itself a moderate isolate.

Genetic dominance has oten been considered in the study of various animal species (mammals, poultry, and 
ish are most commonly studied). Here, by design, confounding with shared environmental factors can oten be 
avoided and extensive and highly accurate pedigree data can be recorded. For many traits, dominance heritabil-
ity is oten found to be signiicantly diferent from zero and the inclusion of dominance has been shown to give 
improved performance of prediction models in animal studies42–47. Negative results regarding the improvement of 
prediction given by including genetic dominance have also been presented (eg. Heidaraitabar et al.48) and indeed 
debate continues in regards to the practical value of non-additive variation; for recent reviews we refer the reader 
to Varona et al.49 and Wolak & Keller50. he increased interest in non-additive variation in this domain suggests 
that there may be value in not discounting such variation in human studies.

We propose to compare heritability estimations in a range of simulated study designs in order to contrast 
studies in population isolates and in samples of unrelated individuals. In this way we hope to determine whether 
the diferences between studies in isolates and in unrelated samples stem from particular trait architectures, spe-
ciic population characteristics, or non-equivalence between interpretations of heritability in difering study set-
tings. We will also assess diferent methods for estimating the matrices K and D in an isolate as well as the efect 
of shared environmental factors between siblings on the estimation of hD

2  in an isolate. We then proceed to analyse 
anew the six complex traits displayed in Table 1 in the genetic isolate of Cliento in Southern Italy where we will 
validate conclusions from our simulation study and search for evidence of signiicant non-additive genetic 
components.

Results
Efect of population structure. We assessed the ability of an LMM to detect the additive and dominant 
genetic variance components in four simulated populations, including firstly one population labelled 
“Isolated(1444)” which mimics the population structure of the genetic isolate of Cilento from Southern Italy (this 
cohort is described fully in the Methods section), along with three simulated outbred populations, 
“Oubred(1444)”, “Outbred(4332)”, and “Outbred(8644)” where the numbers in parentheses indicate the sample 
sizes. All populations are formed from mosaic haplotypes arising from the UK10K imputation panel51. We 

Phenotype

Abney, McPeek, 
& Ober37, 
N = 806, Isolate 
(1)

Pilia et al.38, 
N = 6,148, 
Isolate (1) (2)

Traglia et al.39, 
N = 1,803, 
Isolate (1) (2)

Zaitlen et al.41, 
N ≈ 15,000, 
Extended 
Genealogies (3)

van Dongen 
et al.35, 
N ≈ 7,500, 
Twin Study 
(4)

Chen et al.34, 
N = 7,740, Twin 
Study (5)

Chen et al.34, 
N = 5,779, 
Outbred (5) (6)

Zhu et al.12, 
N = 8,682, 
Outbred (6)

Nolte et al.33, 
N = 13,436, 
Outbred (6)

hA
2 hD

2 hA
2 hD

2 hA
2 hD

2 hA
2 hD

2 hA
2 hD

2 hA
2 hD

2 hA
2 hD

2 hA
2 hD

2 hA
2 hD

2

Height — — 0.77 0.23 * 0.78 0.22 * — — 0.81 0.09 0.77 0.09* 0.62 0.00 0.48 0.02 0.49 0.00

BMI 0.54 0.00 0.36 0.32 * 0.33 0.17 0.16 0.09 0.41 0.37 0.28 0.41* 0.21 0.02 0.23 0.15* 0.25 0.02

TGLY 0.37 0.00 0.30 0.42 * 0.39 0.35 * — — 0.33 0.25 0.42 0.14 0.31 0.28* — — 0.19 0.01

HDL 0.63 0.00 0.47 0.11 0.62 0.00 0.42 0.14* 0.40 0.27 0.66 0.00 0.24 0.01 0.25 0.07 0.19 0.00

Total Chol — — 0.38 0.29 * 0.23 0.77 * — — 0.51 0.16 0.28 0.19* 0.15 0.00 0.21 0.01 0.23 0.00

LDL 0.36 0.60 * 0.37 0.27 * 0.33 0.66 * 0.20 0.26* 0.51 0.18 0.23 0.24* 0.16 0.00 0.26 0.02 0.27 0.00

Table 1. Published results for additive and dominant genetic variability from various study designs. *Estimates 

of hD
2  presented as statistically signiicant at the 5% level. ‘—’ Trait not studied for dominance in the article. (1) 

Estimates based on estimating K and D from expected proportions of identity-by-descent (IBD) sharing coming 

from pedigree information. (2) he depth of pedigree information in these studies did not allow the 

diferentiation between a dominance model (including non-additive genetic variation) and a household model 

(including an efect of shared environment between siblings). (3) he authors of this study analysed a large 

sample from the Icelandic population for whom extensive pedigree data was available, Matrices K and D were 

estimated by locating and counting stretches of IBD between pairs of individuals. (4) his study analyses a large 

cohort of monozygotic and dizygotic adult twins. Standard errors are only presented for broad-sense 

heritability, though it is likely that the estimates for hD
2  for all traits other than height were signiicantly diferent 

to zero. (5) he authors of this study performed separate analysis, irstly a twin based study using structural 

equation methods with adjustments for reported levels of time spent in a shared environment between twins, 

and secondly a study of a large sample of unrelated which included one individual out of most twin pairs in the 

irst analysis. (6) Estimates based on calculating correlations between additively and non-additively coded 

genotypes to compute matrices K and D. Abbreviations: BMI: Body-mass index; TGLY: Triglycerides; HDL: 

High-density lipoproteins; Total Chol: Total cholesterol; LDL: Low-density lipoproteins; N: Sample size.
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simulated phenotypes with the following characteristics: = = .h h 0 4A D
2 2 , M causal additive variants, and M causal 

dominant variants. Causal variants are selected at random and efect sizes are drawn from normal distributions. 
Full details of the simulation of genotypes, phenotypes, and population structure are given in the Methods sec-
tion. We chose 200 values of M between 1 and 1,000,000, and for some values of M we repeated the simulation 500 
times in order to empirically estimate the standard errors of the estimates of hA

2 and hD
2 . We have considered either 

selecting causal variants completely at random (Causal Variant Scenario A) or from only the set of variants with 
MAF > 0.01 (Causal Variant Scenario B). Results for Scenarios A and B are presented in Figs 1 and 2, respectively. 
Here, we have calculated K and D for each population as GRMs from a dense set roughly 5.8 million of frequent 
UK10K variants (MAF > 0.05). We also performed the simulation with K and D calculated on roughly 170,000 
single nucleotide polymorphisms (SNPs) which are those also available in the real data of Cilento (Supplementary 
Figs 1 and 2).

Fitting the LMM for Isolated(1444) resulted in accurate estimates of hA
2, estimations of hD

2  were also unbiased 
but were clearly more problematic as seen by the low precision of the estimates. he results from Isolated(1444) 
were neither afected by the MAF range of the causal variants or the density of the genetic data used to estimate K 
and D. However the, precision of the estimates was low. he estimates in all of the simulated outbred populations 
were evidently downwardly biased when causal variants were selected completely at random and therefore 

Figure 1. Estimating heritability components in simulated populations with diferent structures. (a) Maximum 
Likelihood Estimates (MLEs) of h gold( )A

2  and h blue( )D
2  are presented for each simulated phenotype by vertical 

descending gold and ascending blue bars respectively. he middle grey bars represent the remaining 
environmental variation − − .h h(1 )A D

2 2  Each phenotype was simulated using diferent numbers of causal 
variants (M) for each variance component which corresponds to the x-axis. Causal variants are mostly rare, as 
they are selected completely at random (Causal Variant Scenario A). All MLEs are displayed for the 4 
populations either Isolated(N) or Outbred(N), where the value of N denotes the sample size. Horizontal gold 
and blue lines indicating the values used for simulation = . = .h h( 0 4, 0 4)A D

2 2 . Matrices K and D were calculated 
using roughly 5.8 million frequent UK10K positions. A missing bar for hA

2 or hD
2  indicates the maximum 

likelihood estimate of the parameter was zero. (b) An example of one set of MLEs from section A is given for the 
population Isolated(1444) and a value of M of 105. (c) Gold and blue diamonds represent the empirical standard 
errors of the MLEs for a selection of values of M. Simulation repeated 500 times.
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included many rare variants as in the UK10K panel (from which all simulated data is based on), over 50% of the 
variants have a MAF below 0.01. As the size of the outbred population increases, the precision of the estimates 
increases but downward biases remain, even when all causal variants are non-rare. he number of causal variants 
for each variance component (M) did not afect the results other than we observed that a small number of causal 
variants led to lower precision in the results obtained when simulations were repeated. his is shown by the dia-
monds representing empirical standard errors measured for certain values of M shown in Figs 1 and 2 and in 
Supplementary Figs 1 and 2.

We observed increased precision in the estimation of heritability components as we increased the size of the 
simulated outbred population (Figs 1 and 2). To explore the efect of sample size when studying isolates, we sim-
ulated populations with isolate characteristics of sizes 4,332 and 8,664 labelled as Isolated(4332) and 
Isolated(8664), respectively. A description of the simulation is given in the Methods section. For these popula-
tions, we simulated phenotypes under Causal Variant Scenarios A (displayed in Fig. 3) and B (displayed in 
Supplementary Fig. 3). he precisions of the estimates of hA

2 and hD
2  from these larger samples was increased com-

pared to the population Isolated(1444) and estimates remained unbiased for both heritability components. 
Indeed, the population Isolated(8664) gave the most accurate heritability estimates of all populations thus far 
considered.

Subsequent analyses will focus on the population Isolated(1444). his will be of particular interest as for this 
population results are directly comparable with analyses of the real data of Cilento.

Efect of the choice of relatedness matrices. To compare methods for calculating K and D in a popula-
tion isolate, we performed similar simulations of phenotypes and tested the estimation of hA

2 and hD
2  from our 

LMM from each of the following strategies: K and D calculated from the pedigree of Cilento, K and D calculated 
from exact IBD-sharing recorded during the data simulation (true IBD), K and D calculated as GRMs, and inally 
K and D calculated using either the IBDLD9 or GIBDLD52 sotware (see Methods section). Comparisons of 
of-diagonal elements of these matrices are given in Supplementary Fig. 4a–d. here was clear additional variation 
in the true proportions of IBD-sharing as compared to the expected values calculated by the pedigree 
(Supplementary Fig. 4a) and this was captured by the GRMs (Supplementary Fig. 4b). he matrix K as estimated 
by a GRM was very similar to the true IBD-sharing probabilities but there were some diferences for the matrix D 
(Supplementary Figure 4c). The software IBDLD and GIBDLD were able to accurately estimate the true 
IBD-sharing in the simulated isolate (Supplementary Fig. 4d).

Figure 2. Heritability estimates when causal variants are non-rare. Here, phenotypes are simulated by choosing 
causal variants that are all non-rare, as they are selected to have MAF > 0.01 (Causal Variant Scenario B). Legends 
and the coniguration of this plot are identical to those of Fig. 1A. Here, and for subsequent igures, we overlay the 
empirical standard error estimates, whose values correspond to the second y-axis on the right of the igure.
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he maximum likelihood estimates (MLEs) of hA
2 and hD

2  from each simulated phenotype can be positioned on 
a simplex to represent the range of possible values of the two parameters hA

2 and hD
2 . We present results from 500 

simulated phenotypes with M = 100,000 where we display minimal ellipses that contain 95% of all MLEs obtained 
from each strategy (Fig. 4).

First we compare GRM estimators using roughly 5.8 million frequent (MAF > 0.05) UK10K positions with 
estimates of K and D using either pedigree information or true IBD-sharing information (Fig. 4). The 
method-of-moment GRM estimates appear most accurate, while true IBD-sharing based matrices performed very 
similarly to expected IBD-sharing matrices derived from the pedigree. his trend in results occurred irrespective 
of the MAFs of causal variants or the number of causal variants (Fig. 4 and Supplementary Fig. 5). he advantage 
observed for the GRM method is mostly evident in the estimate of hD

2  as the ellipses were similarly sized in their 
minor axes (which describes variation in hA

2) but more diferentiable when examining their major axes (which 
describes variation in hD

2). Indeed, it was on the dominance matrix D that we observed noticeable diferences 
between off-diagonal elements when comparing GRMs to IBD-based methods (Supplementary Fig. 4c,d). 
Genomic IBD-based estimates from IBDLD or GIBDLD were also used to calculate K and D. hese Hidden 
Markov Model (HMM) based methods are not suitable for millions of variants and so were applied to the set of 
roughly 170,000 SNPs present in all three Cilento villages. hese methods were compared to the use of GRMs based 
on the same set of variants and to using pedigree information or true IBD-sharing information (Supplementary 
Fig. 6a,b). Such HMM methods could have improved upon the strategy using true IBD proportions as such meth-
ods could potentially uncover additional hidden IBD in our simulated population arising from IBD-sharing within 
the UK10K. We found that IBDLD and GIBDLD led to similar estimates of hA

2 and hD
2  to using either pedigree 

information or true IBD-sharing; and again no method was observed to outperform the use of GRMs.

Efect of the presence of a shared environment. To investigate how shared environmental factors can 
affect the estimation of hD

2  in a populations isolate, we simulated additional phenotypes for the population 
Isolated(1444) under causal variant Scenario A, with M = 100,000, and with = .h 0 4A

2 , = . −h h0 4D S
2 2, for the 

following values of hS
2: 0.00, 0.02, 0.05, 0.10, 0.20, and 0.40. For each of these phenotypes, we added positive covar-

iance between the environmental components of siblings. his covariance between siblings creates a confounding 
between non-additive genetic efects and shared environment efects. Full details of this phenotype simulation 
and the confounding created are found in the Methods section. We present the estimations of hA

2 and hD
2  from 

analyses with (model KDS) or without (model KD) the inclusion of a variance component (S) indicating pairs of 
siblings in the sample for = .h 0 20S

2  (Fig. 5). hroughout, model names indicate the set of variance-covariance 
matrices included in the LMM. Results for further values of hS

2 are displayed in Supplementary Fig. 7a–f. Here, we 
used either GRMs or pedigree based estimates for K and D as these were predominantly the methods used in 

Figure 3. Efect of sample size on heritability estimates in an isolate. Estimates of hA
2 and hD

2  are compared for 
populations with isolate characteristics of size 1,444, 4,332, and 8,664. Phenotypes are simulated under Causal 
Variant Scenario A and under the setting = .h 0 4A

2 , = .h 0 4D
2 . Legends and the coniguration of this plot are 

identical to those of Fig. 2.
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aforementioned studies that calculated dominant genetic components for widely studies traits (Table 1). Our 
simulations indicate that once a signiicant correlation between siblings is introduced, our unadjusted estimates 
for the broad-sense heritability became close to or equal to 1 (MLEs falling on the bottom axis of the simplex for 
model KD). Again, in these analyses using GRMs appears to outperform the use of pedigree based estimates. 

Figure 4. Efect of relatedness matrix estimation method in an isolate. Here, we compare methods of estimating 
matrices K and D for the simulated population isolate ‘Isolated(1444)’ K and D are estimated using either 
genetic relationship matrices (GRM), Pedigree information, or true IBD-sharing (IBD). Results are displayed on 
a simplex governed by the two parameters hA

2 and hD
2 , which both could range between 0 and 1. he heritability 

scenario used to simulate all phenotypes = = .h h( 0 4)A D
2 2  is marked by the triangular point in the centre of each 

simplex. Minimal ellipses containing 95% of the maximum likelihood estimates (MLEs) from 500 simulated 
phenotypes under either Causal Variant Scenario A or B (see Figs 1 and 2) are presented. Here, phenotypes are 
simulated from a large set of causal variants (M = 100,000).

Figure 5. Efect of shared environmental factors on heritability component estimates in an isolate. Comparison 
of estimates of hA

2 and hD
2  under models with and without a shared environment component (model KDS and 

model KD, respectively). As in Fig. 4, minimal ellipses containing 95% of the maximum likelihood estimates 
(MLEs) from 500 simulated phenotypes but now under the setting = . = . = .h h h0 4, 0 2, 0 2A D S

2 2 2 . Matrices K 
and D are calculated either using genotype relationship matrices (GRMs) or pedigree information. In the case of 
model KD when using pedigree information (right), all MLEs were found to be directly on the bottom edge of 
the simplex, and so the minimal ellipsoid degenerated into a line segment. Here, phenotypes are simulated from 
a large set of causal variants (M = 100,000).
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Adjusting for such correlation between siblings in the LMM did substantially correct for this bias but it is clear 
that in a population such as Cilento, there is little hope in efectively discriminating between dominant genetic 
variability and shared environmental factors between siblings if both occur simultaneously.

An obvious approach to avoid such ambiguity would be to remove one individual from every pair of siblings 
but in Cilento this would greatly reduce the sample size. herefore, we removed one individual from each pair of 
siblings from the population Isolated(8664), creating a sibling free population which we label as “Isolated(5136)_
nosibs”. Full details of the simulation of this population are found in the Methods section. From this population, 
we observed improved estimates of both hA

2 and hD
2  as compared to the Outbred(8664) under Causal Variant 

Scenario A; with the two populations performing similarly under Causal Variant Scenario B (Supplementary 
Fig. 8a,b). When compared to the results from Isolated(1444), the absence of pairs of individuals with high 
IBD = 2 probabilities led to a slight underestimation of hD

2 , but the increased sample size led to lower standard 
errors across replications of phenotype simulation. If no dominant genetic component was simulated, the 
Isolated(1444) population was most likely to give large (more erroneous) estimates for hD

2  compared to 
Isolated(5136)_nosibs and Outbred(8664) (Supplementary Fig. 8c,d).

Analysis of the Cilento Isolates. We irst calculated the matrices K and D using diferent approaches and 
then compared the resulting values. We calculated K and D using either the pedigree information, or as GRMs using 
genotype data before or ater imputation. Results were in accordance with those from the simulated population 
isolate Isolated(1444) (Supplementary Fig. 9). However, we observed greater diferences between the of-diagonal 
elements calculated with the pedigree and those in the GRMs when analysing the real Cilento data as compared to 
Isolated(1444). his is likely to stem from the explicit use of the pedigree information within the simulation. he 
inclusion of imputed variants led to similar estimates for the matrices K and D (Supplementary Fig. 10).

Following quality control and imputation (full details are given in the Supplementary Materials); we itted 
LMMs to the data in Cilento having estimated matrices K and D as GRMs (using all variants with MAF > 0.05 and 
imputation quality score > 0.7). Several traits displayed signiicant dominant genetic components and our results 
(Table 2) are not distant to those found in the literature of previous studies in population isolates (Table 1). LMMs 
were itted with diferent combinations of the matrices K, D, and S (the sibling indicator matrix). Full details are 
given in the Methods section; as above in the simulation study, the model names indicate the variance compo-
nents included in the LMM. he orthogonality between the additive and non-additive genetic components is 
apparent as estimates for hA

2 are similar across models with or without the inclusion of the non-additive genetic 
variance component. For each phenotype considered, we estimated the entire likelihood surface as well as the 
MLEs for the parameters hA

2 and hD
2  under the model KD. Likelihood surfaces governed by hA

2 and hD
2  for BMI and 

LDL are displayed in Fig. 6 and corresponding results for other traits are found in Supplementary Fig. 11a–d. We 
observed similar proiles in the likelihood contours as were observed in the distributions of MLEs from repeated 
phenotype simulation in the simulation study. We are able to have a reasonable level of conidence in the estimates 
of the additive genetic component, but the dominant genetic component is problematic as our conidence regions 
are very wide. he MLEs found when using pedigree information to estimate matrices K and D had equivalent 
estimates for the additive genetic components to the MLEs found when using GRMs, however the dominant 
genetic components were always estimated as equal or greater when using pedigree information.

he traits of BMI, LDL, and Total Chol were all estimated as having dominant genetic components higher than 
their respective additive genetic components in the KD model. By examining the 95% conidence regions, there 
is some indication that the dominant genetic components are unlikely to be equal to zero. his is due to the obser-
vation that the red zones either do not intersect or only briely intersect the upper let boundary =h( 0)D

2  of their 
respective simplexes (Fig. 6 and Supplementary Fig. 11d).

Adding the shared environmental component between siblings drastically changed the estimates of hD
2  for 

many traits as seen by comparing models KD and KDS in Table 2; for our two example traits (BMI and LDL) we 
present again the likelihood proiles from the original analysis and then new MLE and 95% conidence interval 
for hA

2 and hD
2  from the KDS model as well as the previous estimates for hA

2 and hD
2  found in the literature (Fig. 7). 

Equivalent plots for our other studied traits are given in Supplementary Fig. 12a–d.

Phenotype

GRM 
Model: K

GRM 
Model: KD

GRM 
Model: KS GRM Model: KDS

Pedigree 
Model: K

Pedigree 
Model: KD

Pedigree 
Model: KS

Pedigree Model: 
KDS

hA

2
hA

2
hD

2
hA

2
hS

2
hA

2
hD

2
hS

2
hA

2
hA

2
hD

2
hA

2
hS

2
hA

2
hD

2
hS

2

Height 0.76 0.74 0.13 0.74 0.04 0.74 0.12 0.01 0.75 0.74 0.15 0.74 0.04 0.74 0.15 0.00

BMI 0.40 0.35 0.58 0.31 0.23 0.31 0.00 0.23 0.44 0.35 0.65 0.35 0.21 0.35 0.00 0.21

TGLY 0.27 0.24 0.26 0.21 0.11 0.21 0.00 0.11 0.28 0.23 0.45 0.23 0.11 0.23 0.41 0.01

HDL 0.49 0.49 0.00 0.44 0.02 0.44 0.00 0.02 0.48 0.49 0.00 0.48 0.01 0.48 0.00 0.01

Total Chol 0.29 0.23 0.55 0.23 0.18 0.22 0.27 0.12 0.29 0.21 0.72 0.22 0.18 0.21 0.47 0.06

LDL 0.32 0.25 0.52 0.24 0.17 0.23 0.29 0.10 0.33 0.24 0.66 0.24 0.16 0.24 0.45 0.06

Table 2. Maximum likelihood estimates for the contribution of each variance components considered in 
a Linear Mixed Model (LMM). Model names refer to the set of variance components included. K denotes 
the additive genetic component, D the non-additive or dominant genetic component, and S the component 
accounting for shared environmental efects between siblings. he previously reported results from Table 1 can 
be compared to our results under the model KD. Matrices K and D are calculated either as genetic relationship 
matrices (GRMs) or from pedigree information.
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For BMI, the unadjusted heritability estimate was distant from previously reported results, but once we allow 
for a shared environmental component between siblings, we ind similar estimates for hD

2  to previous studies. For 
LDL, the unadjusted heritability estimates lay close to previous results from isolated populations, with the adjusted 
results moving towards previous results in studies of outbred populations but remaining quite large at 0.29.

Discussion
Across all analyses, whether on simulated or real Cilento data, we observed that estimates of hD

2  had less precision 
than estimates of hA

2.
Isolated populations exhibit favourable characteristics for uncovering the contribution of hD

2  due to the 
increased proportions of IBD = 2 between individuals. Our simulation elaborates on this by showing that in the 
absence of shared environmental efects, estimating hD

2  (and indeed hA
2) from an LMM in a population isolate will 

yield unbiased results for polygenic phenotypes with wide a range of characteristics. However, we saw that shared 
environmental factors pose a non-trivial obstacle to analysing dominant genetic variance of a trait in an isolated 
population. In the presence of even small shared environmental efects between siblings in the simulated isolate, 
we observed that estimates of hD

2  are heavily biased. Improved estimates may be attainable by including a sibship 
matrix in the variance decomposition analysis but accurately partitioning between dominance efects and shared 
environmental efects through linear mixed modelling in a population such as Cilento may not be possible.

Figure 6. Heritability analysis for BMI and LDL in Cilento. Black contours represent the likelihood proile from 
the model KD (see Fig. 5), with matrices K and D calculated as genetic relationship matrices (GRMs). he red 
zone represents the 95% conidence interval for the red maximum likelihood estimate (MLE) (red triangular 
peak). he corresponding MLE and 95% conidence boundary for the analysis using pedigree information to 
estimate K and D are added to the plot in blue.

Figure 7. Efect of shared environmental factors on heritability analysis for BMI and LDL in Cilento. Here we 
compare models KD and KDS (see Fig. 5) for the two traits in Cilento. Black contours represent the likelihood 
proile for the model KD, with the red zone indicating the 95% conidence interval for the red maximum 
likelihood estimate (MLE) (red triangular peak). he corresponding MLE for the KDS model is added in green. 
We also add in the previously observed estimates from the literature (Table 1).
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We compared diferent methods to estimate the covariance matrices K and D. In the simulated isolate, the 
precision of the estimates of hD

2  was either larger or equivalent when using GRMs as compared to IBD-based 
methods. his had previously also been noted by Browning & Browning53 when estimating hA

2. Furthermore, it 
would appear that only a relatively small number of SNPs are required to compute such GRMs in an isolate as 
using far denser sets of variants (either in our simulation or through imputation in the Cilento dataset) did not 
noticeably afect the itting of the LMM. he advantage observed for GRMs could be because they can capture 
similarities between all types of pairs of individuals in the isolate; including similarities not described by the 
recorded pedigree structure or originating before the founding event of the population. herefore this approach 
combines the classical interpretation of heritability regarding closely related individuals with the more recent 
approaches involving samples of unrelated individuals.

Foreseeably, the simulated outbred populations led to underestimation of both hA
2 and hD

2  in most of the set-
tings of phenotype simulation. his may go some way to explain the diferences between estimates of hD

2  that we 
observed in the literature for many complex traits. Our results suggest that observing very diferent estimations 
for non-additive genetic components between isolates and outbred populations could indicate the presence of 
many causal variants that occur at low frequencies across populations and that have non-zero dominant genetic 
efects. However, such an observation could also indicate the presence of bias due to the shared environmental 
factors in the studies of isolates. We note that estimation from outbred populations can also sufer from biases 
arising from shared environmental factors due to hidden structures existing within the population; a scenario that 
we have not considered in our simulation study. Population stratiication within a cohort is a known example of a 
structure that can lead to bias in heritability studies of unrelated individuals54,55.

he heritability analyses that we have carried out in Cilento did indeed suggest the presence of non-additive 
genetic variance for some of the traits considered. However, the phenotypes studied in Cilento behaved in similar 
ways to the simulated phenotypes with added non-genetic correlation between siblings. he simulation study 
suggested that even a very small shared environmental efect between siblings could result in the disparate herit-
ability estimates we observed in Cilento between itting LMMs with and without a variance component for covar-
iance between siblings. When the simulated shared environmental component was large, broad-sense heritability 
estimates approached 1; this is a result we observed in both previous studies of isolates for many traits38,39 (see 
Table 1) and in Cilento for the trait BMI. Combining this observation with the wide observed ranges of estimates 
for hD

2  in the literature strongly suggests that previous results in isolates have thus far been inlated by shared envi-
ronmental efects and that hD

2  statistics have been overestimated. For a trait such as LDL, we still observed high 
estimates for hD

2  even when accounting for a shared environment efect in the model, a result which our simula-
tion suggests would be unlikely if indeed =h 0D

2  for this trait.
It has been argued that the classical separation of the two additive and non-additive genetic components may 

lead to higher estimates for the additive genetic variance over the non-additive genetic variance56. However, pro-
posed alternative deinitions are far less interpretable and lead to variance decompositions with less applicable 
value. Higher order non-additive genetic variance components could be contributing to our estimates of domi-
nance in Cilento5. Indeed, we recognise that ignoring the presence of epistatic efects has been shown to lead to 
overestimations of H2 by Zuk et al.57 who also proposed a non-parametric method for estimating heritability in a 
population isolate. Such approaches require large samples of pairs of individuals with identical expected related-
ness coeicients. Similar approaches include those based on Haseman-Elston regression58 and studies focusing 
on populations of siblings or nuclear families. However, for the data of Cilento such methods proved not to be 
applicable due to the variety of relationships between pairs, such that looking at each pair type separately resulted 
in sample sizes too small to provide realistic estimations. here exist a wide range of sophisticated approaches for 
calculating narrow-sense heritability in sample of unrelated individuals59–61. Zaitlen et al.41 proposed to dissect 
narrow-sense heritability in samples containing close relatives by splitting variance between GRMs and thresh-
olded GRMs, and isolated populations could prove a valuable resource for future studies using such approaches. 
However, as we include non-additive genetic components and wish to compare our results to studies using pedi-
gree based methods, we have not explored such concepts here.

In this study, we have demonstrated various phenomena which can either result in under-estimation of hD
2  in 

studies of outbred populations or over-estimation in studies including closely related individuals. At this juncture, 
the existence of signiicant non-zero dominant genetic variation for many traits remains uncertain, but this could 
be elucidated through the continued gathering of estimates from diverse populations. Whilst diferent popula-
tions harbour difering levels of environmental variation, and hence one cannot expect agreement on heritability 
estimations, studies of isolated populations could lead to more reliable conclusions as to the existence or 
non-existence of genetic dominance for complex traits. If signiicant estimates for hD

2  are found when accounting 
for a shared environment efect between siblings, this is indicative of a true non-zero dominance component.

One possible future direction would be to increase the sample size in a study of an isolate. However, as this will 
not usually be feasible for a single isolate, one strategy that could be particularly interesting would be to combine 
data from several isolates with similar ancestral origins. Such an approach could give high precisions of the esti-
mates of both hA

2 and hD
2  due to the large sample size. Importantly, this strategy could also provide a large enough 

sample to complete analyses without sibling pairs, and to facilitate appropriate sensitivity analyses regarding the 
presence of siblings.

Methods
The Cilento Isolate. he Cilento isolate comprise three villages from the South of Italy; Campora, Cardile, 
and Gioi. Pedigree, phenotypic, and genetic data have previously been gathered as part of the Cilento Study. A 
pedigree structures which connects all three village has been reconstructed from parish records. he three vil-
lages have been shown to represent characteristics of population isolates intermediate between the large isolate 
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population of Iceland62 and the highly isolated Hutterite population63,64. Aggregating over the three villages, we 
have a pedigree of 7,585 members including 1,444 genotyped members. he high quality of the reconstructed 
genealogy in Cilento makes it an appropriate tool for simulating a realistic example of data from an isolated 
population. Individuals from Campora and Cardile have been genotyped on an Illumina 370 K array, whilst indi-
viduals from Gioi have been genotyped on an Illumina HumanOmniExpress array. Deep phenotyping has been 
performed in Cilento for a range of anthropometric, cardiometabolic, and haematological traits. For the purposes 
of this study, we have concentrated on phenotypes that have been oten analyzed in the literature of both other 
population isolates and in samples of unrelated individuals (Supplementary Table 1).

Simulation of genotypes and phenotypes. To create simulated datasets, we created mosaic haplo-
types using the same stochastic recombination model as in the generation of control individuals by the sotware 
HapGen265. We took the UK10K imputation panel as reference haplotypes having irst removed one individual 
from every pair of twins present in the panel. To simulate unrelated individuals we sampled 22 pairs of mosaic 
chromosomes, where each section of their mosaics is copied from a randomly sampled haplotype from the pool 
of UK10K haplotypes. In this manner, we created a sample of 8,664 (6 × 1,444) unrelated individuals. To create 
isolate type data, for each chromosome, we randomly selected 200 UK10K haplotypes, from which 2,940 mosaic 
haplotypes were simulated in order to simulate the 1,470 founders of the combined pedigree of Cilento. his set 
of founder haplotypes were supplied to the sotware Genedrop (part of the MORGAN66 package) along with the 
pedigree of Cilento in order to simulate phased genetic data for the 1,444 genotyped members of Cilento. Our 
gene-dropping approach was identical to the methods used in Herzig et al.67 We have made comparisons on 
four potential populations: the 1,444 individuals from Genedrop with isolate type data, labelled “Isolated(1444)”, 
and three possible sets of the 8,664 simulated unrelated individuals: “Outbred(1444)”, “Outbred(4332)”, 
“Outbred(8664)”, that represent outbred populations of the same size as Cilento, three times the size, and six 
times the size, respectively. We chose this range of samples sizes based on an analysis of the variance of eigenval-
ues68 of GRMs estimated on the populations Isolated(1444) and Outbred(1444) (Supplementary Materials and 
Supplementary Table 2). he choice of 200 haplotypes for the generation of founder haplotypes for Cilento stems 
from the previous work which estimated that 96.7% of the genetic diversity in Campora is accounted for by 17 
female and 20 male lineages63. his would suggest that 74 (37 × 2) autosomal haplotypes would be appropriate 
for the generation of simulated data for Campora and we decided to scale this up to 200 for the generation of 
simulated data for the three villages. We checked that this created simulated data with a similar structure as the 
observed data in Cilento (Supplementary Table 2 and Supplementary Fig. 13).

Our method for simulating isolate-type data requires a pedigree for gene-dropping. To create larger data-
sets with isolate characteristics, we used the Cilento pedigree multiple times. In detail, we simulated six popu-
lations of size 1,444, each using the Cilento pedigree but with diferent random draws of founding haplotypes. 
We then combined the irst three and all six of these populations to create the populations Isolated(4332) and 
Isolated(8664), respectively. In addition, we randomly discarded one individual from each sibling pair of the pop-
ulation Isolate(8664) to create a population with no sibling pairs of size 5,136, labelled as “Isolated(5136)_nosibs”.

Phenotypes were simulated repeatedly for each population as the sum of normally distributed errors 
(Equation 3).

β β ε= + +Y G G (3)A
T

A D
T

D

GA and GD are the additive genetic components of the genotypes of the randomly selected M causal additive 
variants and the non-additive genetic components of the randomly selected M causal dominant variants, respec-
tively. Efect sizes βA and βD were drawn from normal distributions. Variants may exhibit both additive and dom-
inant efects and a maximum of 2M variants could have non-zero efect sizes. We varied the heritability by scaling 
the efect-sizes accordingly in the knowledge that τ β= ∑A A

2 and τ β= ∑D D
2. We have simulated a range of possible 

phenotype characteristics by varying the number of causal variants and the MAFs of causal variants.
To estimate the variance parameters, and hence heritability, we itted the model of Equation 1 in the R-package 

‘Gaston’69 and estimated parameters τA, τD, and σE
2 using Average Information Restricted Maximum Likelihood 

Estimation (AIREML)70. Matrices K and D were estimated using the method-of-moment techniques described in 
Zhu et al.12, and we either used all variants present on the UK10K, or the variants present in the real data from all 
three Cilento villages. he exact set of variants used for these calculations were those with MAF > 0.05 and those 
passing a quality control threshold on the Hardy-Weinberg p-values (>10−5).

In the case of Isolated(1444), we also estimated K and D from the pedigree structure of Cilento using sotware 
IdCoefs4 that calculates ∆ … ∆, ,1 9 through the recursive algorithm described by Karigl71. Furthermore, we were 
able to record the origin of every mosaic segment simulated during the HapGen based and gene-dropping stages. 
his allowed us to calculate true proportions of IBD-sharing between every pair of individuals in the Isolated(1444) 
population. We also tested the sotware IBDLD9 and GIBDLD52 which directly estimate ∆ … ∆, ,1 9. For IBDLD, 
we used the LD-RR mode, default parameters, and we supplied the sotware with the expected values of ∆ … ∆, ,1 9 
between all pairs from the pedigree (calculated by IdCoefs). Conversely, GIBDLD used only the genotypes; we also 
ran this sotware with default parameters. For both IBDLD and GIBDLD, we used only the SNPs present in both 
genotyping arrays in Cilento as the sotware were not designed for sequence data.

Here we introduce the sibship matrix, denoted as S, which has values of 1 on the diagonal and at every 
of-diagonal element corresponding to pairs of siblings in the sample; all other entries are zero. To simulate phe-
notypes for the population Isolated(1444) with additional correlation between pairs of siblings, approximating an 
efect of shared environmental exposure, we simulated phenotypes under the same model as Equation 3 except 
that the environmental components were no longer drawn independently from normal distributions, but from a 
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multi-variate normal distribution with zero mean and a covariance structure of σ σ σ+ +I S( )E S N S
2 2 2 ; a matrix with 

σ σ+E S
2 2 on the diagonal and σS

2 on every of-diagonal entry corresponding to a pair of siblings in the sample. We 
chose values of σS

2 in order to create phenotypes with hS
2: 0.00, 0.02, 0.05, 0.10, 0.20, and 0.40 where 

σ τ τ σ σ= + + +h /( )S S A D S E
2 2 2 2 .

Analysis of Cilento Data. After quality control on both phenotypes and genetic data (details in the 
Supplementary Materials), we used the same approach as with the simulated data to estimate the heritabilities 
of the seven traits considered in this study. he only diference being that for the analyses of Cilento data, we 
added the following covariates to the LMM: age, sex, age × sex, and indicators of village membership (Campora, 
Cardile, or Gioi). For one trait (Triglycerides) we transformed the phenotype to a logarithmic scale, whereas 
other traits were let untransformed ater excluding very small numbers of outliers. LDL and Total Chol were 
both pre-adjusted for use of lipid-lowering medication. Matrices K and D were again estimated on the basis of 
pedigree or genetic information. To calculate GRMs from genetic data, we were restricted to using the set of var-
iants on the intersections of the two arrays used for genotyping of Cilento data. As this set was relatively sparse, 
we also performed genetic imputation with the following pipeline: phasing by SHAPEIT272 with the “duohmm” 
option73 and informed by the Haplotype Reference Consortium74 (HRC) reference panel followed by imputation 
by IMPUTE475 with the HRC as the reference panel. K and D were then computed on hard called imputed geno-
types76,77 ater removing variants with imputation quality scores below 0.7.

In a recent study of the Icelandic population, Young et al.78 presented an IBD-based method for nuclear fami-
lies in the Icelandic population aimed at eliminating environmental bias by looking at deviations in observed 
kinship from expected values. In Cilento data, the sample size precluded this approach as there are insuicient 
numbers of pairs of individuals with the required expected level of IBD-sharing and with both sets of parent’s 
genotypes. However, we are able to add a shared environment efect by adding into our model a variance compo-
nent indicating pairs of individuals who share the same mother. A similar approach was shown to lead to unbi-
ased results in many simulation settings in Young et al.78 As pairs of siblings have by far the highest probability of 
sharing two alleles IBD as each locus (one chance in four), correlations caused by shared environmental expo-
sures between siblings are very likely to confound the estimation of hD

2 . If there is signiicant confounding, this 
should be indicated by a large diference in results when including such a matrix indicating siblings in the LMM. 
We itted four LMMs for every trait which we denote as model K, model KD, model KS, and model KDS to indi-
cate the set of variance-covariance matrices included in the model.

Data Availability
he UK10K panel of haplotypes is available from the European Genome-phenome Archive and the simulation 
scripts are available from Anthony Francis Herzig (anthony.herzig@inserm.fr) on reasonable request. he Cilento 
datasets analysed during the current study are available from Marina Ciullo (marina.ciullo@igb.cnr.it) on reason-
able request and on a collaborative basis.
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Supplementary Materials 

Quality Control 

Using the known pedigree structure of the Cilento isolates, we scanned for Mendelian errors within 

the genotype data using Plink 
76

 and set all genotypes to missing within nuclear families wherever 

such errors were found. We then removed eight individuals due to very high levels of missingness 

(over 5%) and restricted to the set of shared SNPs between the two genotyping arrays used in 

Cilento. Finally we removed variants with minor allele frequencies less than 0.01, Hardy-Weinberg p-

values less than ͳͲ−5 and with missingness greater than 5%. This left 173,911 SNPs from which to 

calculate GRMs for subsequent heritability analysis. Finally, it became apparent that three pairs of 

monozygotic twins were present within the sample. We decided to remove one member at random 

from each pair from subsequent heritability analysis. These twin pairs can be observed in 

Supplementary Figures 9 and 10. 

In Supplementary Table 1 we detail the seven phenotypes studied here, for each phenotype we 

removed values lying more than three standard deviations away from the observed mean (after 

transformations (if any) had been applied.  

Imputation 

Phasing and imputation were completed separately on the two sets of individuals coming from 

different genotyping arrays in Cilento. We reconstructed genetic phase in Cilento from SHAPEIT2 
69

 

with the ͚duohŵŵ͛ optioŶ 70
. SHAPEIT2 was employed with 15 burn-in iterations, 15 pruning 

iterations, 35 main iterations and we used a reduced version of the HRC panel 
71 

to inform phasing. 

Following this, we performed haplotype imputation using IMPUTE4 
72

 and the same version of the 

HRC panel. This reduced HRC panel used here included 27,165 individuals and was made available to 

us from the European phenome-genome archive. IMPUTE4 was applied using default parameters in 

windows of 5Mb with 250Kb buffer regions. Imputation quality scores ;͚iŶfo͛Ϳ were calculated with 

the software QCTOOL. 

Following imputation, we removed all variants with an ͚info͛ score less than 0.7 in either of the two 

genotyping arrays and called most likely genotypes whenever an individual genotype had a posterior 

probability greater than 0.9. Otherwise, imputed genotypes were set to missing. This led to a final 

count of 3,757,339 confidently imputed variants. 

Simulation 

Our HapGen 
64

 like haplotype mosaic simulated was tuned to produce mosaic pieces of average size 

of 1-2cM, both in the case of creating simulated populations of outbred individuals, and when 

creating founding haplotypes for gene-dropping onto the Cilento pedigree. Here we set the effective 

population size to 3000 and we chose not to simulate mutations, genotyping errors, or missingness 

in our datasets. The mosaicism was tuned in order to achieve similar kinship and structure in the 

simulated isolated population as observed in the observed data in Cilento. Indeed, in Supplemental 

Table 2 we give the variances of the eigenvalues of all GRM matrices calculated both on the Cilento 

dataset studies here as well as the various simulated datasets and in Supplementary Figure 13 we 

compare a simple principle component analysis in Cilento and in the simulated population isolate 
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based on the pedigree of Cilento - Isolated(1444). Through these analyses, we observe that our 

simulation of an isolate appears to have successfully created similar structure to the Cilento data.  

It can be shown that the precision of the estimate of a variance parameter in a linear mixed model is 

proportional to the product of the sample size and the variance of eigenvalues of the associated 

variance-covariance matrix 
66

. Hence, as we observed that the variances of eigenvalues of the matrix � in the Outbred(1444) were roughly 36 times smaller than the corresponding values in 

Isolated(1444), we reasoned that an outbred population of ͸ × ͳͶͶͶ (8664) individuals would 

approximately give us equivalent precision to the population Isolated(1444). Thus we simulated an 

Outbred population of size 8664, as well as an intermediate population of size ͵ × ͳͶͶͶ (4332) in 

order to observe any trends in the results relating to sample size.  
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Supplementary Figure 1.  

Estimates of ℎ�2 and ℎ�2  are represented for each simulated phenotype. Each phenotype was 

simulated using different numbers of causal variants ሺ�ሻ for each variance component. Results from 

four simulated populations are given, either Isolated(N) or Outbred(N), where the value of N 

denotes the sample size. 

Matrices � and � are calculated using roughly 170,000 variants present in all villages in Cilento, 

causal variants are selected completely at random (Causal Variant Scenario A).  

Diamonds represent empirical standard errors measured for certain values of � which are measured 

on the right vertical axes.  A missing bar for ℎ�2 or ℎ�2  indicates the maximum likelihood estimate of 

the parameter was zero. 
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Supplementary Figure 2.  

Identic to Supplementary Figure 1 apart from here K and D are calculated using roughly 170,000 

variants present in all villages in Cilento, causal variants are selected to have MAF > 0.01 (Causal 

Variant Scenario B). 
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Supplementary Figure 3. 

Comparison of heritability estimates from a single simulated isolated population with populations 

constructed by combining isolated populations. 

Identic to Figure 3 in the main text but here causal variants are selected to have MAF > 0.01 (Causal 

Variant Scenario B). 
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Supplementary Figure 4a. 

Comparison of off-diagonal elements of the matrices K and D calculated on the simulated isolated 

populatioŶ ͚Isolated;ϭϰϰϰͿ͛. K aŶd D are calculates either froŵ the true proportions of IBD-sharing 

that occurred during the simulation of the data or from the pedigree information of Cilento. 

 

 

Supplementary Figure 4b. 

Comparison of off-diagonal elements of the matrices K and D calculated on the simulated isolated 

populatioŶ ͚Isolated;ϭϰϰϰͿ͛. K aŶd D are calculates either as geŶetic relatioŶship ŵatrices ;G‘MsͿ or 
from the pedigree information of Cilento. 
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Supplementary Figure 4c. 

Comparison of off-diagonal elements of the matrices K and D calculated on the simulated isolated 

populatioŶ ͚Isolated;ϭϰϰϰͿ͛. K aŶd D are estimated either as genetic relationship matrices (GRMs) or 

from the true proportions of IBD-sharing that occurred during the simulation of the data. 

   

 

Supplementary Figure 4d. 

Comparison of off-diagonal elements of the matrices K and D calculated on the simulated isolated 

populatioŶ ͚Isolated;ϭϰϰϰͿ͛. K aŶd D are estiŵated usiŶg either the software GIBDLD or the true 

proportions of IBD-sharing that occurred during the simulation of the data. Off-diagonal elements 

estimated by IBDLD were equally similar. 
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Supplementary Figure 5.  

Comparison of strategy for computing matrices K and D for the Isolated(1444) population. 

Identic to Figure 4 in the main text apart from here, phenotypes are simulated from a small set of 

causal variants (M=100). 

 

 
Supplementary Figure 6a.  

Comparison of strategy for computing matrices K and D for the Isolated(1444) population. 

The set of roughly 170,000 SNPs present in the Cilento isolates are used here to calculate K and D for 

the Isolated(1444) population, either as GRMs or using the IBDLD or GIBDLD software. Estimates 

using either pedigree information or recorded IBD-sharing from the simulating are also given. 

Here, phenotypes are simulated from a large set of causal variants (M=100,000). 



P a g e  | 10 

 

 

 
Supplementary Figure 6b.  

As Supplementary Figure 6a, but here phenotypes are simulated from a small set of causal variants 

(M=100). 

 

 

 

Supplementary Figure 7a. 

Identic to Figure 5 in the main text but with simulated setting : ℎ�2 = Ͳ.Ͷ, ℎ�2 = Ͳ.Ͷ, ℎ�2 = Ͳ.Ͳ 

Comparison of estimates of ℎ�2 and ℎ�2  under models with and without a shared environment 

component (model KDS and model KD, respectively). Matrices � and �  are calculated either using 

GRMs or pedigree information. 

Here, phenotypes are simulated from a large set of causal variants (� = ͳͲͲ,ͲͲͲ). 
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Supplementary Figure 7b.  

Simulated setting : ℎ�2 = Ͳ.Ͷ, ℎ�2 = Ͳ.͵8, ℎ�2 = Ͳ.Ͳʹ 

 

 

Supplementary Figure 7c. 

Simulated setting : ℎ�2 = Ͳ.Ͷ, ℎ�2 = Ͳ.͵ͷ, ℎ�2 = Ͳ.Ͳͷ 
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Supplementary Figure 7d. 

Simulated setting : ℎ�2 = Ͳ.Ͷ, ℎ�2 = Ͳ.͵, ℎ�2 = Ͳ.ͳ 

 

 

Supplementary Figure 7e.  

Simulated setting : ℎ�2 = Ͳ.Ͷ, ℎ�2 = Ͳ.ʹ, ℎ�2 = Ͳ.ʹ   

Completely the same as Figure 5 in the main text but is given here also for continuity with other 

Supplementary Figures. 
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Supplementary Figure 7f.  

Simulated setting : ℎ�2 = Ͳ.Ͷ, ℎ�2 = Ͳ.Ͳ, ℎ�2 = Ͳ.Ͷ 
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Supplementary Figure 8a.  

Comparison of heritability analysis for three simulated populations. 

Phenotypes are simulated under the setting : ℎ�2 = Ͳ.Ͷ, ℎ�2 = Ͳ.Ͷ 

Similar to earlier Figures but here we include the larger simulated isolated population, a composite 

of isolates with no sibling pairs. Causal variants are selected completely at random (Causal Variant 

Scenario A). 
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Supplementary Figure 8b.  

Identic to Supplementary Figure 8a apart from here, causal variants are selected to have MAF > 0.01 

(Causal Variant Scenario B). 
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Supplementary Figure 8c.  

Comparison of heritability analysis for three simulated populations. 

Phenotypes are simulated under the setting : ℎ�2 = Ͳ.Ͷ, ℎ�2 = Ͳ.Ͳ 

Similar to earlier Figures but here we include the larger simulated isolated population, a composite 

of isolates with no sibling pairs. Causal variants are selected completely at random (Causal Variant 

Scenario A). 
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Supplementary Figure 8d.  

Identic to Supplementary Figure 8c apart from here, causal variants are selected to have MAF > 0.01 

(Causal Variant Scenario B). 
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Supplementary Figure 9. 

Comparison of off diagonal elements of matrices � and � calculated for the Cilento dataset using 

either pedigree information or genetic relationship matrices (GRMs) from the observed genotypes in 

Cilento.   

 

 

 

 

Supplementary Figure 10. 

Comparison of off diagonal elements of matrices � and � calculated for the Cilento dataset using 

genetic relationship matrices (GRMs) before and after the inclusion of imputed variants in the 

Cilento dataset. 
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Supplementary Figure 11a. 

Heritability analysis for Height in Cilento. Black contours represent the likelihood profile from the 

model KD (see Figure 5 in main text), with matrices � and � calculated as genetic relationship 

matrices (GRMs). The red zone represents the 95% confidence interval for the red maximum 

likelihood estimate (MLE) (red triangular peak). The corresponding MLE and 95% confidence 

boundary for the analysis using pedigree information to estimate � and � are added to the plot in 

blue. 

 

 



P a g e  | 20 

 

 

Supplementary Figure 11b. 

As Supplementary Figure 11a, for the trait TGLY. 
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Supplementary Figure 11c. 

As Supplementary Figure 11a, for the trait HDL. 

 



P a g e  | 22 

 

 

Supplementary Figure 11d. 

As Supplementary Figure 11a, for the trait Total Chol. 
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Supplementary Figure 12a. 

Comparison of models KD and KDS (see Figure 7 in main text) in Cilento for the trait Height. Black 

contours represent the likelihood profile for the model KD, with the red zone indicating the 95% 

confidence interval for the red maximum likelihood estimate (MLE) (red triangular peak). 

The corresponding MLE for the KDS model is added in green. We also add in the previously observed 

estimates from the literature (Table 1 in the main text). 
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Supplementary Figure 12b. 

As Supplementary Figure 12a, for the trait TGLY. 
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Supplementary Figure 12c. 

As Supplementary Figure 12a, for the trait HDL. 
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Supplementary Figure 12d. 

As Supplementary Figure 12a, for the trait Total Chol. 
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Supplementary Figure 13. 

Principle components analysis, performed both in the real data of Cilento and the simulated 

population Isolated(1444) which aimed to mimic Cilento. 
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Supplementary 

Table 1 
Mean (sd)  

Non-missing 

values following 

Quality Control 

Number of 

outliers removed 
Transformation 

Phenotype 

Height 162.26(9.45) 1193 3 - 

BMI 26.12(4.31) 1184 12 - 

TGLY 4.77(0.52) 1326 16 Logarithmic 

HDL 60.50(15.66) 1328 14 - 

Total Chol 207.19(41.67) 1331 12 
Adjusted for 

medications 

LDL 118.16(35.71) 1299 12 
Adjusted for 

medications 

Abbreviations: BMI: Body-mass index; TGLY: Triglycerides; HDL: High-density lipoproteins; Total Chol: Total 

cholesterol; LDL: Low-density lipoproteins; sd: standard deviation. 

 

Summary statistics for each of the seven traits studied after the removal of outliers and application 

of transformations. For TGLY we performed a logarithmic transformation, and the traits Total Chol 

and LDL had been adjusted for a small number of individuals who were recorded as having 

prescriptions for lipid lowering medications.  

 

Supplementary 

Table 2 

Cilento Isolated(1444) Outbred(1444) Outbred(4332) Outbred(8664) 

���ሺ��ሻ 1.192 1.127 0.030 0.089 0.176 ���ሺ��ሻ 0.109 0.096 0.015 0.044 0.088 

 

Comparisons of estimated variances of the eigenvalues of the matrix K (��ሻ and of the matrix D (��ሻ 

across different simulated populations as well as the observed data in Cilento. 
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