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Résumé

Nous nous intéressons & un cas particulier d’homomorphismes maximaux depuis un groupe de surface dans
un groupe de Lie Hermitien de type tube, que nous appelons mazimaux entiers.

Dans la premiere partie, nous étudions le cas ou le groupe de Lie est localement isomorphe au groupe
des isométries directes du plan hyperbolique. Dans ce cas, les homomorphismes maximaux entiers induisent
une hyperbolisation de la surface de départ et nous les relions avec les surfaces de Riemann spinorielles,
c’est-a-dire les surfaces de Riemann équipées d’un fibré en droite dont une certaine puissance tensorielle
est isomorphe au produit tensoriel du fibré canonique et d’un diviseur donné. Si notre surface est fermée,
nous associons un entier modulo un autre entier fixé a chaque géodésique, son nombre de translation. Nous
comptons asymptotiquement le nombre de géodésiques plus petites qu’'une longueur donnée et de nombre de
translation donné.

Dans la deuxiéme partie, nous nous intéressons au cas d’un groupe de Lie Hermitien de type tube quel-
conque. Nous lui associons un certain revétement fini et dans ce dernier, nommons les représentations :
représentations spinorielles. Nous montrons alors que 'espace des représentations maximales entieres spino-
rielles s’identifie au produit cartésien de ’espace des représentations maximales entieres dans le groupe de
Lie initial et d’un sous espace explicite de ’ensemble des homomorphismes du premier groupe d’homologie a
coefficients entiers du fibré unitaire tangent de notre surface de départ dans un groupe cyclique fini. L’homéo-
morphisme construit entre ces deux espaces est de plus équivariant sous I'action du groupe modulaire. Nous
sommes donc amenés a expliciter ’action du groupe modulaire sur 1’espace des homomorphismes du premier
groupe d’homologie du fibré unitaire tangent de notre surface dans un groupe cyclique fini. Pour terminer,
ces résultats appliqués a un cas particulier permettront de calculer le nombre de composantes connexes de
représentations diagonales dans certains groupes de Lie localement isomorphes au groupe symplectique.

Mots-clés Représentation maximale, groupe de surfaces, structure spinorielle, groupe modulaire, groupe
de Lie Hermitien de type tube.

Abstract

We study a particular case of maximal homomorphisms from a surface group into a Hermitian Lie group of
tube type, which we call integral mazimal.

In the first part, we deal with the case when the Lie group is locally isomorphic to the group of isometries
of the hyperbolic plane. In this case, integral maximal homomorphisms induce hyperbolizations of the initial
surface and we relate them to spin structures on Riemann surfaces, that is to line bundles whose tensor power
is isomorphic to the tensor product of the canonical bundle and a given divisor. Fixing such an integral
maximal representation, we associate to each geodesic an integer modulo a fixed integer, its translation
number. We then give, when the surface is closed, the asymptotic growth of the number of geodesics with
given translation number.

In the second part, we study the general case of an arbitrary Hermitian Lie group of tube type. Fixing
a specific finite cover of such a Lie group, we call the representations into the cover spin representations and
we show that the space of integral maximal spin representations is homeomorphic to the product of the space
of maximal representations into the initial Lie group and an explicit subspace of homomorphisms from the
first homology group with integer coefficient of the unit tangent bundle of the surface into a finite cyclic
group. The homeomorphism we construct is moreover mapping class group equivariant so that we naturally
study the action of the mapping class group on the space of homomorphisms from the first homology group
of the unit tangent bundle of the surface into a finite cyclic group. Finally we apply these results to count
the number of connected components of diagonal representations into some Lie groups locally isomorphic to
the symplectic group.

Keywords Maximal representation, surface group, spin structure, mapping class group, Hermitian Lie
group of tube type.



Remerciements

Je tiens tout particulierement a adresser mes remerciements les plus sinceres a
Frangois Labourie. Il fut mon directeur de master avant de m’accepter en thése
et, pendant ces années, j’ai beaucoup appris de nos discussions. Mais ce n’est pas
seulement au mathématicien que je m’adresse, car en effet Francois a su étre,
a tout niveau, disponible, compréhensif et patient, il m’a laisser la liberté qui
m’était nécessaire. Sa bonne humeur communicante, sa passion pour la recherche
et sa confiance face a n’importe quel probleme mathématique m’ont toujours
impressionnées et motivées.

Je remercie Olivier Guichard et Julien Marché de m’avoir fait I’honneur d’étre
mes rapporteurs de these. Leurs remarques et leurs corrections m’ont beaucoup
aidées. Je remercie également Julie Déserti, Andreas Horing et Hugo Parlier pour
leur participation au jury.

J’exprime aussi ma gratitude envers les différents enseignants qui m’accompa-
gnérent du college a la these, notamment L.Martin, V. Thouard, S. Dupont et
O. Biquard. Je ne serai pas ici sans eux.

Au cours de cette these, j’ai eu le plaisir de rencontrer et d’échanger avec
de nombreux mathématiciens. Je remercie particulierement Brice, Florent, Fran-
gois, Indira, Jérémy, Maxime, Nicolas, Sorin et Sourav. C’est avec joie que je les
retrouvais soit en conférence, soit au laboratoire.

J’ai grandement apprécié 'ambiance du laboratoire Dieudonné. Le personnel
facilite beaucoup notre travail. Un grand merci a Anita, Chiara, Isabelle, Jean-
Louis, Jean-Marc, Roland... Toute ma reconnaissance a Clara qui m’a soulagé de
nombreuses taches administratives.

Beaucoup d’activités sont organisées entre doctorants, j’y participais tres vo-
lontiers. Aussi bien au laboratoire qu’en dehors, j’ai passé de trés bon moments.
Merci a vous et spécialement a Luis et Mehdi qui furent aussi mes colocataires.

Cette these n’aurait pu étre sans ma famille. Ils m’ont toujours soutenu dans
mes projets. La confiance qu’ils m’ont accordée et leur aide dans mes moments de
doutes ont été des ingrédients essentiels a ce travail. Leurs nombreuses relectures
ne furent pas moins utiles.



Contents

(I r-spin structures and representations| 16
20

1.1 Unitormization theorem for pointed Riemann surfaces| . ... ... ... .. 20
[L.1.1 _Riemann surfacesl. . . . . . . . . . . . ... oo 20

[1.1.2  Hyperbolic surfaces and holonomy| . . . . ... ... ... ... ... 23

[1.1.3 Pointed Riemann surfaces and finite volume hyperbolic surtaces|. . . 28

[1.2  r-spin structures and homomorphisms into Spin"| . . . . .. ... ... ... 28
2.1  First definitionsl. . . . . . . .. .. .. oL 28

[1.2.2  Definition of a r-spin structure| . . . . . . . . ... ... .. 32

[1.2.3  r-spin hyperbolizations|. . . . . . . . .. .. ... L. 33
2__Proof of Theorem [l 37
RI1 Tocalcase . . . ... .. . . . 38
2.2 The holonomy map|. . . . . ... ... .. ... ... ... ... . ..., 42
[2.2.1 Lifting the hyperbolization| . . . . . .. ... ... ... ....... 42

[2.2.2  Constructing a r-spin structure from a homomorphism|. . . . . . . . 43

[3 Application: counting closed geodesics with given rotation number] 45
(3.1 A theorem of Katsuda and Sunadal . . . . ... ... .. ........... 45
[3.2  Translation number and homomorphism| . . . . . . . .. .. ... ... ... 46

[(II  Integral Maximal r-spin representations| 50
4 __Introduction and statement of results| 51

[4.1 The action of the mapping class group on the space Hom(H;(7'S°,Z), Z/rZ)| 51
4.2 Integral maximal representations and a mapping class group equivariant map| 52
4.3 Application| . . . . . . 54




T

|_5 Action of the mapping class group on Aqﬁ’m

b.1 Notations and definitions|

b.1.1  Mapping class group acting on homology| . . . . .. ... ... ...

[5.1.3 A generating set for Hom(H(7'S°,Z),Z/rZ)| . . . . ... ... ...

5.2 Mapping class group action| . . .

[p.2.1  Affine structure on Ag'H"|

[5.3  Explicit action of a generating set of the mapping class group| . . . . . . . .

b.3.1  Dehn twists and bounding pairs| . . . . . . ... ... ... ... ..

5.3.2  Proots of Proposition [5.2.1]and Lemma[5.2.2) . . . .. .. ... ...

|6 Integral maximal representations|

[6.1.1  Background material on group cohomology| . . . . . ... ... ...

[6.1.2  Group cohomology|

[6.1.3  Lie groups of Hermitian type| . . . . . . . . . .. ... ... ... ..

[6.1.5 Integral maximal homomorphismg . . . . . . . ... ... ... ...

6.2 Lifting an integral maximal homomorphism| . . . . . . . .. ... ... ...

16.2.1 Construction of hl

(7

Applications|

[7.1 Diagonal representations|

[7.2  Computation of Card(Aj;

n

,S

/T(9)]

56
o6
56
57
58
99
60
62
62
63

71
71
71
71
79
86
90
97
97
99
101
101



Introduction

Structures spinorielles et représentations Soit S une surface fermée de genre g > 2
et X une structure de surface de Riemann sur S. Une caractéristique théta ou structure
spinorielle (theta characteristic ou spin structure en anglais) sur X est une racine carrée
du fibré canonique Kx de X. Une telle racine carrée L donne lieu & un revétement ramifié
L — L®? ~ Kx qui ne ramifie que sur I'image de la section nulle X — K. Retirant cette
image et en notant N° le fibré obtenu & partir d’un fibré N aprés retrait de 'image de la
section nulle, il vient un revétement a deux feuillets p : L° — K§ de K% auquel est associé
I’homomorphisme suivant

Id
m(KYX) — m(K%)/p«(m(L°)) = Z/2Z.
Munissons X d’une structure riemannienne, de sorte que Kx s’identifie au fibré tangent
TX de X et oubliant la structure complexe nous obtenons une application

® :  {Structures spinorielles sur X} — Hom(H(T'S°,Z),Z/27Z)
L — &L,

ou TS est le fibré tangent de S et ou le théoreme de Hurewicz donne l'identification
Hl(TSO, Z) ~ Fl(TSO)/[ﬂ'l(TSO), 7T1(TSO)].

L’application ® est injective mais n’est pas surjective. Pour décrire son image, rappelons
que la projection T'S® — S induit par tiré en arriére une injection de H'(S,Z/2Z) dans
HY(T'S°,Z/2Z) telle que la suite suivante soit exacte

0 — HY(S,Z/27) — HY(TS°,2/27) 2 7.)27 — 0

ou A(§) = &(t) est 'image par £ d’une boucle ¢ dans une fibre de 7'S°. Si L est une structure
spinorielle, alors £, (t) =1 mod 2 et un argument de cardinalité montre que l'image de ®
est exactement I'image réciproque de 1 € Z/2Z par .

Si f est un difféomorphisme de S préservant l'orientation et L une structure spinorielle
sur X, alors le tiré en arriére f*L est encore une structure spinorielle sur X, qui peut ne pas
étre L. Dans [Ati71] et [MumT71], les auteurs étudient un invariant des structures spinorielles
défini comme la dimension modulo 2 de I'espace H’(X, L) des sections holomorphes de la
structure spinorielle L. D’un point de vue plus topologique, dans [Joh80] I'auteur associe &
L une forme quadratique sur Hy(S,Z/2Z) et 'invariant d’Arf (voir [Arf4l]) de cette forme
quadratique correspond & dim H°(X, L) mod 2.

Le degré du fibré canonique de X étant pair, les structures spinorielles existent toujours.
Sir € Zsg divise 2g — 2, alors il existe sur X des structures spinorielles d’ordre r (r-



spin structures en anglais), c’est-a-dire des fibrés en droite holomorphes L sur X tels que
L®" ~ Kx . Dans [Sip82], 'autrice identifie 'ensemble des structures spinorielles d’ordre
r sur X avec ’ensemble des homomorphismes & : Hi(T'S°,Z) — Z/rZ tels que &(t) = 1.
Cette identification lui permet d’expliciter I'action d’un ensemble de générateurs de I'(S),
le groupe modulaire de S, sur ’ensemble des structures spinorielles d’ordre r sur X.

Si sur la surface de Riemann compacte X on marque s points zi,...,xs, et si on
fixe > 0 et my,...,ms des entiers tels que r | 29 — 2 + s — >_m;, alors une structure
spinorielle d’ordre v et de type (m1, ..., ms) sur la surface de Riemann avec points marqués
(X;21,...,25) est la donnée d’un fibré en droite holomorphe L — X tel que

L ~ Ky ® (— Z(mj —1)x;)

ou Kx ® (—> (mj — 1)x;) est le fibré en droite dont les sections holomorphes sont les
sections méromorphes s de Ky telles que le diviseur div(s) — >-(m; — 1)x; soit positif,
c’est-a-dire que s peut avoir un podle d’ordre au plus m; — 1 en x; si mj —1 > 0 et a
un zéro d’ordre au moins 1 —m; en x; si mj; — 1 < 0. Ces structures spinorielles et leurs
isomorphismes définissent [’espace de module des surfaces de Riemann spinorielles de type
m = (m,...,ms) My§ qui est un revétement régulier d’ordre 729 de l'espace M, s de
module des surfaces de Riemann avec points marqués.

Dans [Wit92} [Wit93], 'auteur utilise I'espace de module My'T pour énoncer une conjec-
ture généralisant une autre conjecture qu’il avait lui-méme formulée dans [Wit91] et qui
fut prouvée par M. Kontsevich dans [Kon92|. La conjecture originelle d’E. Witten porte
sur les nombres d’intersections de classes tautologiques sur la compactification My s qui
sont définies comme suit :

Pour chaque point marqué j, il existe un fibré en droite L; (au sens orbifold) sur
I’orbifold MW tel que la fibre au dessus d’une surface de Riemann Y € M, soit le fibré
cotangent de Y au point z;. Soit 1; = ci1(L;) la premiere classe de Chern du fibré L; et
pour di,...,ds € Z>p soit

<Td1..-7'ds>g:/7 '(Z)ls...ql)ss.
My,s

Ce nombre d’intersection est bien défini deés que la somme des d; égale la dimension com-
plexe de M, ,, soit 3g — 3 + s. La conjecture originelle d’E. Witten consiste alors en une
relation de récurrence entre les différents (74, - - 74,)4, qui peut étre exprimée en terme
d’équations différentielles vérifiées par une fonction génératrice des (74, ---74,)g. Dans
[MirQ7b|, 'autrice relie les nombres d’intersection des classes ¢ avec le volume de l'es-
pace de module M, (L) des surfaces hyperboliques de genre g avec s composantes de



bord totalement géodésique de longueur fixée L = (Ly,..., Ls). En effet, M. Mirzakhani
prouve que le volume de M, (L) est un polynéme

Vol(Mo(L) = Y CoL®
aEZ‘;O
|| <39—3+s

ou pour o = (av,...,05) € Zzo, L* = LT --- L et |a] = Y aj, et si |af =39 — 3 + s,
c’est-a-dire pour les plus hauts degrés,

|
= Sl ol T

Ca

De plus, elle montre dans [Mir07a] que le volume de M, (L) s’exprime en fonction du
volume des My (L") pour 2¢9'+s" < 2g+s, et la relation de récurrence qu’elle obtient pour
les C, implique la conjecture d’E. Witten pour les nombres d’intersections (74, - - 74, )g -

Avec Despoir initial, mais pas encore abouti (et donc non présenté ici), d’étudier les
nombres d’intersections d’E. Witten sur M{'¢, nous avons considéré un espace de « surfaces
hyperboliques spinorielles & bord totalement géodésique de longueur fixée » Mp¢(L). Pour
prouver cela, nous montrons dans la premiere partie de cette these que 'espace Mg'?
s’identifie au quotient par I'(S) d’un sous-ensemble de la variété de représentation du
groupe fondamental de S dans le revétement connexe a r feuillets de PSL2(R).

Soit Spin” I'unique (& isomorphisme prés) revétement connexe a r feuillets de PSLy(R).
Si g € Spin” est un antécédent de g € PSL2(R), alors g est dit hyperbolique (resp. parabo-
lique, elliptique) si g I'est. Identifiant P'R et le cercle R/Z, I'action de g sur R/Z se reléve
en une action de g sur R/rZ telle que le diagramme suivant commute

R/rZ —2 R/rZ

| |

R/Z —— R/Z.

Si de plus g est hyperbolique ou parabolique, il fixe un point dans R/Z et donc son nombre
de rotation est nul. Ainsi, ses différents antécédents g dans Spin” different par un entier
modulo r, leur nombre de translation modulo r, noté Trans(") (9), qui est leur nombre de
rotation en tant qu’homéomorphismes de R/rZ.

Soit S = S, une surface orientée connexe compacte de genre g et

S:Sg,szgf{pla-“aps}



la surface obtenue en retirant s points. Pour tout j =1, ..., s, soit ¢; une boucle autour du
j-iéme point retiré. Comme l'action du groupe modulaire sur Repy, (S, PSLa(R), P) est
propre, l'action du groupe modulaire sur Repyy,, (S, Spin”, P) I'est aussi. Dans la premiere
partie de la these, nous montrons que le quotient Repyy,, (S, Spin”, Py) s’identifie & My

Théoréme
1l existe un difféomorphisme

MGE =~ Repyy, (S, Spin”, Py)/T(S)

978 -

ot Repyy,, (S, Spin”, P,) désigne l'espace des classes de conjugaison d’homomorphismes
p  m(S) — Spin" induisant une hyperbolisation de S de wvolume fini et tels que
Trans(") (p(cj)) = —mj mod r.

Voir le Théoreme |1} On peut alors définir MpT(L) comme le quotient par I'(S) de
la variété de représentation relative de 71(S) dans Spin” contenant les homomorphismes
p : m1(S) — Spin” induisant une hyperbolisation de S tels que p(c;) soit hyperbolique de
distance de translation L; pour L; > 0, et parabolique pour L; = 0, et ait pour nombre
de translation —m; modulo 7; homomorphismes que nous appellerons hyperbolisations
spinorielles de S.

Si p : m1(S) — Spin” est une hyperbolisation spinorielle de S et ¥ est la structure
hyperbolique induite sur S, alors a chaque géodésique fermée sur ¥ est associée un entier
modulo 7 de la maniére suivante : une telle géodésique définit une classe de conjugaison
dans 71(S) et le nombre de translation modulo r est invariant par conjugaison.

Pour L > 0 et m € Z/rZ, soit

C(L,m) = {v géodésique fermée, Is(vy) < L, Trans (y) = m},
C(L,m) = Card(C(L,m)),

ol Is;(7) est la longueur de la géodésique . Soit C(L) = 3=,,,c7/r7 C(L, m) le nombre total
de géodésiques fermées sur X de longueur strictement inférieure a L. Si 3 est compacte,
un résultat de G. Margulis (voir [Mar69]) donne I’équivalent suivant

ot f(L) ~ g(L) signifie limy_,o0 f(L)/g(L) = 1. En reliant la fonction v — Trans™ () &
un homomorphisme Hy(T'%,7Z) — Z/rZ, ou T'Y est le fibré tangent unitaire de ¥, nous
utilisons, comme une boite noire, un théoreme d’A. Katsuda et T. Sunada [KS90] dans le
chapitre [3| pour établir, toujours sous I’hypothese de compacité de X, le théoreme suivant



Théoréme

Pour tout m € Z/rZ, nous avons l’équivalent suivant quand L — oo

el

C(L,m)~ —.
( ) rL
De plus, les géodésiques de nombre de rotation fixé sont équiréparties sur 3 au sens suivant :

pour toute fonction f € C°(X) et m € Z/rZ,

, | 1 -
ey 2 lzm/vf_/zfdvolg.

y€C(L,m)

voir le Théoreme Bl

Représentations maximales entiéres Soit S une surface orientée connexe compacte
de genre g > 2 et h : m(S) — PSL2(R) un homomorphisme. Soit ai,b1,...,aq,by une
collection génératrice d’éléments de 71 (.S) telle qu’on ait la présentation suivante

g
m(S) = (a1,b1,...,aq,by| H[aiabi] =1).
=1

Soit PSLy(R) le revétement universel de PSLy(R). Puisque 1 (PSLy(RR)) est central dans
PSL2(R), le commutateur [, -] : PSL2(R) x PSLy(R) — PSLy(R) factorise par

[,] : PSLy(R) x PSLy(R) — PSLy(R)

et ainsi h : m(S) — PSLa(R) définit un unique entier eu(h), appelé nombre d’Euler de h,
définie par la relation

[T1r(a:), h(b:)] = 7™,
=1

ol 7 est I'image de 1 € 71 (PSLy(R)) par m1(PSLy(R)) — PSLa(R).

Dans [Gol80, [GolI8§|, lauteur démontre que la variété de représentation
Rep(m1(S), PSL2(R)) consiste en 49 — 3 composantes connexes caractérisées comme étant
les préimages de {2 —2g,...,2g — 2} par eu et que la composante eu™!(2g — 2) s’identifie &
I’espace de Teichmiiller de S, c’est-a-dire a I’espace des structures de surfaces hyperboliques
marquées sur S induisant ’orientation initiale de S.

Si G est un groupe de Lie simple Hermitien de rang réel n, c’est-a-dire si son espace
symétrique X est Hermitien de rang n, alors il existe sur X une forme symplectique w
invariante sous l'action de G, unique si on impose la courbure sectionnelle holomorphe de



X d’étre égale a —1.
Pour x € X et go, 91,92 € G, soit A(goz, g1z, gox) le triangle géodésique dans X ayant
pour sommets gox, g1 et gox. La fonction ¢, : G — R définie par

1

1 " (1)
2m /A(90I791$792$)

Cw
est un cocycle continu et sa classe cohomologique kg r dans H2(G,R) s’appelle la classe de
Kiahler (réelle) de G. La cohomologie du groupe 1 (.S) s’identifie a la cohomologie de S, et
comme S est compacte, I'intégration sur S donne un isomorphisme [q : H?(m;(S),R) ~ R.
Pour tout homomorphisme h : 71(S) — G, le réel

T(h):/h*ﬁG,R
S

ainsi obtenu est !’invariant de Toledo de h, et pour G = PSL2(R), on retrouve le nombre
d’Euler eu(h). La fonction

T : Hom(m(S),G) R

_>
— T(h)

est continue, invariante par conjugaison et son image est contenue dans I’ensemble d’entiers
{n(2 —2g),...,n(29 — 2)}.

Les éléments de Hom(7;(5), G) dont I'invariant de Toledo est maximal, c’est-a-dire égal
an(2g—2), sont les homomorphismes maximauz. Si G = PSLy(R), on retrouve exactement
les hyperbolisations de S. Si G = Spin”, le revétement connexe de PSLy(R) a r feuillets, on
retrouve les hyperbolisations spinorielles de S, s’il en existe.

Si § = 5, est une surface obtenue en retirant s > 1 points d’'une surface compacte
orientée connexe de genre g > 0, g > 1 — s/2, la définition de l'invariant de Toledo est
plus compliquée car le groupe 71 (S) est libre et donc H?(m(S),R) = 0. Pour palier & ce
probléme, on utilise la cohomologie bornée : pour GG un groupe topologique localement
compact et A = R, Z, la cohomologie bornée borélienne de G d coefficient dans A, notée

Bb(G, A), est la cohomologie du complexe de cochaines boréliennes ¢ : G x --- x G — A
qui sont bornées et invariantes sous l'action g - ¢(go, ..., 9n) = c(990,---,99n)-

Le cocycle ¢, défini par 'équation (I)) est borné et donc définit une classe
m%’R € H3,(G,R) dite classe de Kdihler bornée (réelle) de G. Dans [BIWI10] les auteurs
construisent une forme linéaire continue I : HZ (71 (S),R) — R et la quantité qu’ils consi-
deérent

Tiy(h) = I(h*rg g)
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généralise 'invariant de Toledo précédent. La fonction

Ty, : Hom(mi(S),G) — R
— Tb(h>

est continue, invariante par conjugaison et son image est exactement l’intervalle réel
[nx(S), —nx(S)], voir [BIW10]. Les homomorphismes h tels que Ty(h) = —nx(S) sont
dits maximauz. Ils sont injectifs et d’image discrete.

Si G = PSL2(R), il existe une unique classe ’%IIJDSLQ(R),Z € H3, (PSLy(R),Z), dite
classe de Kaihler bornée entiére de PSLy(R), telle que /@'I;SLQ(R)R soit I'image de HIE’SLQ(R),Z
par le changement de coefficient H%, (PSL2(R),Z) — HZ(PSL2(R),R). Dans [BIWI0],
utilisant leurs résultats ainsi que les résultats de [Ghy87], les auteurs observent qu’il
existe /i%z € HZ(m1(9),Z), dite classe fondamentale bornée entiére de S, telle que
h: 7 (S) — PSL2(R) soit maximal si et seulement si h*”gSLQ(R),Z = H%,Z. Si ’{gﬁR est 'image
de /i%z par changement de coefficient et G un groupe de Lie simple Hermitien de rang n,
alors

Théoréme ([BIW10])
L’homomorphisme h : w1 (S) — G est mazimal si et seulement si h*HZévR = n/{%’R.

Soit G un groupe de Lie simple Hermitien et de type tube, c¢’est-a-dire que son espace
symétrique est biholomorphe & un domaine de la forme V @i ou V est un espace vectoriel
réel et 2 C V est un céne ouvert convexe non vide de V. Dans ce cas, comme pour PSLy(R),
la classe de Kéhler bornée réelle de G a une version entiere ”%,Z € H3(G,Z) dite classe de
Kdhler bornée entiére de G. Nous introduirons la notion d’homomorphisme mazximal entier
pour les homomorphismes h : m1(S) — G dont nous verrons qu’elle est équivalente a ce
que h*/{%z = ’I’LI{bSZ, voire la Proposition Si tous les homomorphismes maximaux
entiers sont maximaux, la réciproque n’est en général pas vraie. On note Hompygnax (S, G)
Pensemble des homomorphismes entiers maximaux de 71(S) dans G. C’est une union de
composantes connexes de ’espace Homyp,x (S, G) des homomorphismes maximaux de 71 (.5)
dans G.

Oubliant le caractére borné de Hl&,zv nous obtenons une extension centrale de G par Z,
c’est-a-dire une suite exacte

02256561

ol i(Z) est un sous groupe central de G. Soit G, := G/i(rZ), qui est un revétement fini
de G. Si le groupe 71(S) est libre (resp. si s = 0 et 7 | n(2g — 2)), tout homomorphisme
h € Hom(71(S), G) admet 7295~ (resp. r29) relevés p € Hom(m(S), G,), et I'application

px : Hom(m(S), G,) — Hom(71(S), G)

11



est un fibré principal de groupe structural Hom((S),Z/rZ). Soit
AP = {¢ € Hom(H(T'S°),Z),Z/rZ) : £(t) =n mod r}

ol, comme précédemment, ¢ désigne la classe d’homologie d’une boucle dans la fibre de T'S°.
Restreignant p, aux homomorphismes entiers maximaux, et en notant Reppynax (S, G) le
quotient de Hompygnax (S, G) par I'action par conjugaison de G, nous obtenons le Théoréme

il

Théoréme
Soit S = Sy avec 2g—24s >0, r € Zso. On suppose s > 0 ou r|n(2g —2). Alors il existe
un difféomorphisme équivariant pour l'action de T'(S)

P : ReplntMax(S’ GT) % RepIntMax(Sv G) X AZ’,Z (2)

ot l’application ReplntMaX(Sa GT‘) — RepIntMax(Sv G) est [P] — [p*p]

A la classe de Kihler bornée entiére x de G est associée une fonction Trans,(:) : G —
R/rZ et pour p € Repryivax (S; Gr), Trans(™ op(v) € Z/rZ pour tout y € m1(S). Supposons
s > 0 et pour tout 1 < j < s, soit ¢; une boucle simple lisse autour de la j-ieme pointe
dans le sens direct, et soit ¢; son relevé tangentiel a T'S°. Pour m = (mq,...,m,) € Z°,
soit

ReplntMaX(S7 GT?m) = {[p] € ReplntMax(S7 GT’) : Trans,(:) (p(cj)) = —my mod ’I“} .

Par un théoréme de [BIW10], Repiyviax (S, Gr, m) est non vide si et seulement si 3271 m; =
n(2g — 2+ s) mod r. Soit Iy = {m = (my,...,ms) € Z/rZ: 3751 mj =n(29 — 2+ s)

mod r}. Pour m € I}y, posons

Ag’g’m ={¢ € Hom(H.(T'S°,Z),Z/rZ) : £(t) =n mod r, £(¢j) = m; Vj}.
L’action de I'(S) sur Hom(H;(T'S°, Z), Z/rZ) préserve les Ap'c™ et nous avons
Hom(H,(T'S°,Z),Z/rZ) = [] A"
1<r<n
et pour s >0
A= I A
melyy
ou | ] désigne 'union disjointe. Nous obtenons alors un raffinement du théoréme précédent,
voir encore le Théoréme [111
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Théoréme
Soit S = Sy avec 29 — 2+ s > 0, r € Zso. On suppose s > 0. Alors il existe un
homéomorphisme équivariant pour l'action de T'(S)

D RepIntMax(sa GT> m) — RepIHtMax(S> G) X A;:?;’m : (3)
Dans le cas G = PSL2(R), on obtient
RepHyp(S, Spin”, Py) ~ RepHyp(S, PSLy(R), P) x Ag’é’m

et pour déterminer le nombre de composantes connexes de Repy,, (S, Spin”, Pn)/I'(9), il
suffit de déterminer Ap™/T'. C'est équivalent a ce que fait T. Jarvis dans [Jar00], ot il
étudie la géométrie de MP'T et en particulier dénombre ses composantes connexes. S'il
était déja connu que ./\/lg a deux composantes connexes (distinguées par l'invariant d’Arf,
voir [Ati71, Mum71l, [Toh80]), T. Jarvis prouve que pour g > 2, My a au plus deux
composantes connexes, et en fait deux si et seulement si 2 divise les entiers r et m; + 1
pour tous j = 1,...,s. Nous généralisons son calcul et obtenons le nombre d’orbites de
laction de I'(S) sur Ag's™, voir le Théoreme

Théoréme
Soit s > 0 et soit

1 g =
lge™ = { pged(r,my —n,...,ms —n) g=
pged(r,2n,my —n,...,ms—mn) sinon,

alors
Card(Ag”Z’m/F(S)) = d(l;?’m) .

Pour s =0, nous avons
Card(Ayo/T(S)) = d(pged(2n, 7)),
ot d(k) est le nombre de diviseurs d’un entier k.

Nous utilisons ce résultat pour calculer le nombre de composantes connexes de repré-
sentations maximales diagonales dans un revétements fini de PSp,,,(R) pour n impair.

Si G = PSp,,,(R), si n est impair et si r est premier avec n, alors le groupe G, est
I'unique revétement connexe a r feuillets de G, et il existe un unique (& conjugaison pres)
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couple (A, A,) d’homomorphismes tel que le diagramme suivant commute

Spin” _ar G,

! !

PSLy(R) —2— G

et que A soit la composition PSLy(R) — PSL2(R)™ — G. Les homomorphismes A et A,
induisent par tiré en arriere des homomorphismes A* : HZ(G,Z) — HZ(PSL2(R),Z) et
Ar : HZ(G,,Z) — HE(Spin”, Z) tels que le diagramme suivant commute

H2(G,Z) 27 H2(PSLy(R), Z)

| |

H2(G,,Z) —2— H2(Spin”,Z)
et de plus A*K%Z = anSLQ(R) 7 - En particulier, si h : 71(S) — PSL2(R), alors
(Ao h) kg g = nh*Kps,m) z

et ainsi Aoh est maximal entier si et seulement si i est une hyperbolisation de S. De méme,
si p:m(S) — Spin”, alors A, 0p: 71 (S) — G, est maximal entier si et seulement si p lest.
Les compositions Aoh et A,.o0p pour h et p maximaux sont les homomorphismes diagonauz
Fuchsiens. Pour r = 2, on retrouve le cas des homomorphismes diagonaux Fuchsiens dans
Spa, (R).

Soit Homa (S, G) et Homa (S, G,) les plus petites unions de composantes connexes de,
respectivement, Hompyp.x (S, G) et Homypax (S, G,) contenant les homomorphismes diago-
naux Fuchsiens. Les éléments de Homa sont dit maximaux diagonauz. Sachant que parmi
les homomorphismes maximaux, les homomorphismes maximaux entiers restent maximaux
entiers lors de déformations continues, tout homomorphisme maximal diagonal est maximal
entier.

Soit Repa (S, G) et Repa (S, G;) les quotients de Homa (S, G) et Homa (S, G,.) par conju-
gaison. L’homéomorphisme I'(.S)-équivariant se restreint en un difféomorphisme

Repa (S, G,) — Repa (S, G) x AL

et nous en déduisons

Corollaire
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Le nombre de composantes connezes de Repa (S, G;)/T'(S) est égal a Card(Ay%/T'(S)), ot

rs—1 g=0,5s>3

S g=1,s5>1

rl (/25 g>2,s>1,2|r
Card(Ag/T'(S)) = ¢ r*! g=2,s>1 2¢r

2 922,5=0,2|r|29—-2

1 9g=22,5=0,21r|29—2

0 g=2,8=0,7r129—2

voir le Corollaire

Résumé des sections Dans le premier chapitre, nous fixons les notations et définitions
des structures spinorielles et des représentations associées pour, dans le deuxiéme chapitre,
prouver le Théoréme [I] Dans le troisiéme chapitre nous prouvons le Corollaire [2] sur le
comptage des géodésiques de nombre de rotation fixé, ce qui conclut la premieére partie.

La deuxiéme partie commence, apres I’énoncé des résultats dans le quatrieme chapitre,
par I’étude de l'action du groupe modulaire sur Hom(H;(7'S°,Z),Z/rZ) et la preuve du
Théoréme (10| constitue le cinquieme chapitre. Le sixieme chapitre traite des représentations
maximales entiéres et nous y prouvons le Théoréme[I1] Dans le septiéme et dernier chapitre,
nous appliquons nos résultats pour prouver le Corollaire
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Part 1

r-spin structures and
representations
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Statement of results

Let X be a compact Riemann surface of genus g and Y = (X; 1, ..., xs) a pointed Riemann
surface with 2g—24s > 0. If r € Z~g and m = (mq, ..., ms) € Z°, a r-spin structure of type
m on Y is a pair (£, f) where £ — X is an invertible sheaf and f is a sheaf isomorphism

FiL8 — wy(A)

where wy is the canonical sheaf of X, A = -3 7(m; — 1) - ; a divisor on X and wx(A)
the sheaf of meromorphic sections of wx with div(s) + A > 0. For degree reason, such a
r-spin structure exists if and only if r | 29 — 2+ s — >~ m; , see for instance [Jar00].

A r-spin Riemann surface is a pointed Riemann surface equipped with a r-spin struc-

ture. Isomorphism classes of r-spin Riemann surfaces of type m, genus g and with s points

r,m

g5 see [Jar00, [Chi08]. Forgetting the r-spin structure yields a

form a moduli space M
regular r29-cover

r,m
MGE — Mys

of the moduli space M, ¢ of genus g Riemann surfaces with s points.

The uniformization theorem yields a bijection between M, s and isomorphism classes
of hyperbolic structures on .S with cusps at each puncture. The holonomy of such a hyper-
bolic structure is a mazimal homomorphism m1(S) — PSL2(R) sending loops about each
puncture to positive parabolic elements, where maximal homomorphisms are a special case
of homomorphisms from a surface group into a Hermitian Lie group and were investigated
by M. Burger, A. lIozzi and A. Wienhard in [BIW10]. More precisely, let

Repyax (S, PSL2(R), P) = Hompax (S, PSL2(R), P)/PSLa(R)

be the space of conjugacy classes of maximal homomorphisms p : m1(S) — PSL2(R) sending
loops about punctures to parabolic elements. Let I'(.S) be the (pure) mapping class group
of S, that is the group of orientation-preserving diffeomorphisms of S fixing each puncture,
up to isotopy. The mapping class group I'(S) acts on Repyp.y (S, PSL2(R), P) and the
uniformisation theorem tells us that the quotient is analytically diffeomorphic to M, , .
In the first part we show that the uniformisation diffeomorphism lifts and we identify
MG'S with a subspace of the quotient of the representation variety of m1(S) into the unique
connected r-cover of PSLo(R). Before stating the correspondance, we need a few definitions.
The fundamental group of PSLs(R) is isomorphic to Z and we call Spin” the quotient
of PSLy(R), the universal cover of PSLy(R), by 7Z < 1 (PSLy(R)). The Lie group Spin” is

17



a connected simple Lie group which fits into the following exact sequence
0 — Z/rZ — Spin” — PSL2(R) — 1.

For g € PSLy(R), let Rot(g) € R/Z be the rotation number of g as the rotation number of
a homeomorphism of the circle. Since Rot : PSLy(R) — R/Z is continuous, we may lift it
in a unique way in Trans : PSLy(R) — R with Trans(e) = 0. If g € Spin”, the translation
numbers of the lifts of g to PSLy(R) differ by some multiple of r, so that we have a well

defined continuous function
Trans™ : Spin” — R/rZ

which is the translation number function of Spin” acting on R/rZ. Moreover if g € PSLy(R)
is parabolic or hyperbolic, then g fixes a point on the circle and Rot(g) = 0, so that the
translation numbers of its lifts are integers.

Let Repyax (S, Spin”, Pyy) be the set of conjugacy classes of maximal homomorphisms
p : m(S) — Spin” such that, if ¢; is a loop about p; in the positive direction, p(c;) is
parabolic and has translation number —m; mod r. As a consequence of Theorem 13 of
[BIW10], we have that for Repyja, (S, Spin”, Pn) to be non-empty, one must have Y- m; =
29 — 2+ s mod r. In Chapter [2] we prove the following statement.

Theorem 1

Let S be a genus g compact oriented connected surface with s points removed and 2g—24s >

0, r > 0 some integer and m = (ma, ..., ms) € Z" such that 3°5_y mj =29 —2+s mod .
There exists an analytic diffeomorphism

Hol, : My'S — Repppax (S, Spin”, Pn) /T(S)

s

such that the following diagram commutes

My 220 Repyg,i (S, Spin”, Pa) /T(S)

l |

Mgs L Repypay (S, PSLa(R)2, P)/T(S) .

This point of view on r-spin structures allows us to apply a result of A. Kastuda and
T. Sunada [KS90] to get the following theorem for the case s = 0. Let S be a closed genus
g surface and p : m1(S) — Spin” a faithful and discrete homomorphism. The composition
m1(S) £ Spin” — PSLy(R) yields a hyperbolic structure ¥ on S. To a closed geodesic
v C ¥, we associate its length fx(v) and its translation number given by Trans™ (p([y])),
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where [y] C 71(5) is the conjugacy class associated to the geodesic 7. To count the number
of closed geodesics of length less than L and with given translation number, we introduce
the following notations for L > 0 and m € Z

C(L,m) = {~ closed geodesic on X, ¢x(v) < L, Trans(p([y])) =m mod r},
C(L,m) = Card(C(L,m)).

From work of Margulis [Mar69, Mar04], it follows easily that

= exp(L)
mz::OC(L,m) ~ =7

As an application of Theorems 1 and 3 by A. Kastuda and T. Sunada in [KS90], we prove
in Chapter [3| a more precise result

Theorem 2
Let S be a genus g compact oriented connected surface, g > 2. Let r € N be some integer
with v | 29 — 2 and p : m(S) — Spin” a faithful and discrete homomorphism, % the
associated hyperbolic structure on S.

Then for all m € {0,...,r — 1},

exp(L)
rL

C(L,m) ~

and the geodesics with translation number m modulo r are equidistributed in the following
sense: for all f € C*(S),
1 1
lim —— 7/ :/ dvol,
Mo 2 o LA

YEC(L,m

where

[ =] semear

for c: I — 3 a parametrization of .
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Chapter 1

Definitions and notations

1.1 Uniformization theorem for pointed Riemann surfaces

1.1.1 Riemann surfaces
definition and first examples

Definition 1.1.1. e A Riemann surface X is the data of a second countable connected
Hausdorft topological space Xy and a collection of charts (U;, ¢;) where for all i, U;
is an open subset of Xg, ¢; : U; — C is a homeomorphism on its image and for all
i,j such that U; NU; # 0,

¢; 0 gb]_l : qb](UZ N Uj) — qzﬁz(Uz N Uj)
is a biholomorphism.

e For two Riemann surfaces X and Y, a continuous map f : X — Y is holomorphic if
it is holomorphic in every chart.

¢ Two Riemann surfaces are equivalent if there exists a biholomorphism between them.

Ezample 1.1.1. The complex plane C is a Riemann surface. Any open set of C is also a
Riemann surface, in particular the half plane H = {7 € C, J(7) > 0} and the unit disc
D = {z € C, |2| < 1} are Riemann surfaces. The Riemann sphere P!1C = C U {0} is also
a Riemann surface, where the charts are given by (C,Id) and (CU {oo} \ {0}, z — 1/2).

Compact case A compact Riemann surface is a Riemann surface whose underlying

topological space is compact.
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Since biholomorphic maps are in particular smooth orientation preserving diffeomor-
phisms, every Riemann surface is a connected smooth oriented manifold of real dimension 2.

If S is a compact oriented connected smooth surface, the genus of S is the maximal
number of non intersecting loops one may draw one S without disconnecting S. The
underlying space of a compact Riemann surface is uniquely characterized by its genus, as
shown by

Theorem 3 (Classification of compact surfaces)

Every compact orientable connected surface S is homeomorphic to Sy for g € Zxq the genus
of S, where Sy is the sphere with g handles attached. Two surfaces with different genus
are not homeomorphic.

Definition 1.1.2. A pointed Riemann surface (X;x1,...,zs) is the data of a compact
Riemann surface X together with s distinct numbered points z1,...,2s € X. A biholo-
morphism of pointed Riemann surfaces f : (X;x1,...,xs) = (X';24,...,2,) is a biholo-

morphism from X to X' such that f(z;) = 3:; forall j =1,...,s.

Uniformization theorem We saw in Example three Riemann surfaces: the half
plane H, the complex plane C and the Riemann sphere P'C. They are, up to biholomor-
phism, the only simply connected Riemann surfaces, as is stated by the

Theorem 4 (Uniformization theorem)
Let X be a simply connected Riemann surface. Then X is biholomorphic either to H, C or
P'C.

As a consequence, the universal cover of any Riemann surface is either the half plane,
the complex plane of the Riemann sphere.

Biholomorphisms of a Riemann surface Every Riemann surface is either the Rie-
mann sphere, a quotient of C by a group of biholomorphisms or a quotient of H by a group
of biholomorphisms. We have the following classical fact.

Proposition 1.1.1. The group of biholomorphisms of the Riemann sphere is PSLa(C),
where for z € CU{oo} and [a Z] € PSLy(C),
c

a b Z_az—i—b
c d ez +d’

Biholomorphisms of H (resp. C) are biholomorphisms of P'C mapping H (resp. C) to
itself, that is
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e The group of biholomorphisms of H is PSLa(R).

e The group of biholomorphisms of C is the affine group of maps of the form z — az+b
where a,b € C and a # 0.

We will be mostly interested in compact pointed Riemann surfaces whose biholomor-
phisms group is finite.

Proposition 1.1.2. Let X be a compact pointed Riemann surface of genus g and with s
points. The group of biholomorphisms of X is finite if and only if 29 — 2+ s > 0.

Moduli space, Teichmiiller space and mapping class group

Let S = S, be a compact connected oriented genus g surface and let P = {py,...,ps} be s
numbered distinct points on S, with 29—2+s > 0. Let S = S, s = S— P. We will say that
Sg.s is a compact connected oriented surface with s points removed or with s punctures.

Teichmiiller space A marked pointed Riemann surface over S is the data of (Y, ¢) where
Y = (X;21,...,7s) is a pointed Riemann surface and ¢ : S — X is a diffeomorphism with
¢(pj) = ;.

Two marked pointed Riemann surfaces (Y, ¢) and (Y, ¢') are equivalent if there exists
a biholomorphism A : Y — Y’ and an orientation preserving diffeomorphism f : S — S
fixing each p; and isotopic to the identity such that the following diagram commutes

A v

b

S Y.

Let 7 (S) be the Teichmiiller space of S, that is the space of all marked pointed Riemann

surfaces up to equivalence. Teichmiiller space comes with a natural complex structure and

Theorem 5
Teichmiiller space is biholomorphic to a complex ball of dimension 3g — 3 + s.

Mapping class group The mapping class group T'(S, P) of (S, P) is the group of ori-
entation preserving diffeomorphisms of S that fix P pointwise up to isotopy fixing P

['(S, P) = Diff (S, P)/ Diffo(S, P) .
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We will most often write I'(S) = T'(S, P), remembering the order of the cusps. The
mapping class group acts on Teichmiiller space: if f € Diff *(S, P), the equivalence class
in Teichmiiller space of

[ (Y.0) =, 6017
depends only of the isotopy class of f.

Theorem 6

The mapping class group acts properly discontinuously on Teichmiiller space.

Moduli space The quotient M, = .7 (S)/I'(S) is the moduli space of pointed Riemann
surfaces of genus g and s points. It is the space of biholomorphism classes of compact
pointed genus g Riemann surfaces with s points.

1.1.2 Hyperbolic surfaces and holonomy
The hyperbolic plane

Hyperbolic surfaces are 2 dimensional manifold modelled on the hyperbolic plane.
The half plane model of the hyperbolic plane is the Riemannian manifold H = {z +
iy, (x,y) € R x Ry} equipped with the metric

5  dx? +dy?
ds® = -5 -
Y
The surface H is the only (up to isometries) simply connected complete Riemannian
surface of constant sectionnal curvature equal to —1. Its group of orientation-preserving

isometries is PSLa(R).

Boundary at infinity The boundary at infinity O5H of H is the set of equivalence
classes of geodesic rays where two rays are equivalent if they are at bounded Hausdorff
distance. The boundary at infinity of H naturally identifies with PR = R U {oo} and
isometries of H extend continuously on P'R, acting by homography.

Isometries of the hyperbolic plane Let g = [A] € PSLy(R) be a non trivial isometry
of H. We say that g is hyperbolic if |Tr(A)| > 2, parabolic if |Tr(A)| = 2 and elliptic if
ITr(A)| < 2.

If g is hyperbolic, g is conjugated to

A0
H, =
=l
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for a unique A > 1, has no fixed point in H and fixes two points in P'R, one attracting and
one repulsive. If g is parabolic, ¢ is conjugated to

1 ¢
P. =

for a unique ¢ € {+1,—1}, has no fixed point in H and fixes one point in P'R. We will
say that g is positive parabolic (resp. negative parabolic) if g is conjugated to P; (resp. to
P_q). If g is elliptic, g is conjugated to

cos@ sinf
R p—
o [— sinf cos 9]

for a unique @ € (0, 7), has a fixed point in H and no fixed point in P'R.

Rotation number For g € PSLy(R), the rotation number of g is Rot(g) € R/Z defined
as the rotation number of the homeomorphism of the circle P'R induced by g. The rotation
number is the only function f : PSLy(R) — R/Z such that

o fis central, that is f(ghg™!) = f(h) for all g,h € PSLy(R);
o f(HN) = [(F:)=0;
« f(Rg)=0/m.
Existence and uniqueness of such a function follows from the classification of isometries of
H. As a consequence, Rot : PSL2(R) — R/Z is continuous since
1
Rot([A]) = arccos (2 min (|Tr(A)], 2)) mod Z

where [A] — min(|Tr(A)|,2) is continuous.

Hyperbolic surfaces

Definition 1.1.3.

A hyperbolic surface ¥ is a smooth connected oriented surface equipped with a complete
Riemannian metric of constant curvature —1.

The universal cover of a hyperbolic surface is isometric to the hyperbolic plane, thus
every hyperbolic surface is a quotient H/A for A some subgroup of PSLo(R). If the volume
of ¥ is finite, we have
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Theorem (Gauss-Bonnet formula)
Let ¥ be a finite volume hyperbolic surface. Then

Area(¥) = —2mx(2).

In particular, the Euler characteristic of a hyperbolic surface is negative. The underly-
ing topological space of a finite volume hyperbolic surface is some S, s for 2g — 2 + s > 0.

Fricke space

Let S = S, be a compact oriented connected surface with s punctures and suppose
20—-2+s5>0.

A marked hyperbolic surface of finite volume (X, ) is the data of a hyperbolic surface
> of finite volume and a diffeomorphism ¢ : S — X.

Two marked hyperbolic surfaces of finite volume (X1, ¢1) and (X2, ¢2) are equivalent
if there exists an isometry I : 31 — Y5 and an orientation preserving diffeomorphism
f S — S fixing each puncture and isotopic to the identity such that the following diagram
commutes

SLEl

Jf I
S&Z{.

The Fricke space F(S) is the space of all marked finite volume hyperbolic surfaces up to
equivalence.
Representation variety

Let z € S and m1(S) = m1(S5,z) be the fundamental group of S based at x. The group
m1(S) admits the following presentation

m(S) = <a1,b1, csag, by, Gl H[ai,bi] ch = 1> (1.1)

where [a,b] = aba='b~!. Tt is free if and only if s > 0.

For any Lie group G, let Hom(7(S), G) be the space of homomorphism p : 71(S) — G.
Such a homomorphism is determined by the image of the generators of 71(5), so that if
s =0, Hom(7m(S), G) identifies with a subset of 2¢g copies of G

Hom(mi(S),G) = {41, By,..., Ay, By € G, [[[4i, Bi] = 1}
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and if s > 0, m1(.5) is a free group on 2g + s — 1 generators and we have
Hom(m(S), G) ~ G29+s~1,
For g € G and p € Hom(7(S),G) we may define the conjugate of p by g to be

g-p: m(S) — G

v o= gp(v)gt.

The representation variety Rep(mi(S), G) of m1(.S) into G is the quotient of Hom(m(5), G)
by G
Rep(m1(S),G) = Hom(m1(5),G)/G.

Note that with this definition, some points of Rep(m(5), G) might not be closed for the
quotient topology, however we will be interested in the subset of maximal representations
Repyrax (S, G) C Rep(m1(S), G) which is Hausdorff for the quotient topology.

Relative representation variety Suppose s > 0 and let ¢; be a loop in the positive
direction around the jth puncture for all j. Inside 7 (S) the conjugacy class of ¢; is well
defined and if C; C G is a conjugacy class, we define the relative character variety of S to
be

Rep(m1(5), G, C) = {[p] € Rep(m1(5),G), p(c;) € C;Vj} .

Mapping class group and outer automorphims The group Aut(m(S)) of automor-
phisms of 71 (.S) acts on Rep(71(S), G) by precomposition. For n € m1(S), let I, : m(S) —
71(S), ¥+ nyn~! be an inner automorphism. For all v € 71(S) and p : 71(S) — G,

(In-p)(v) =p

so that p and I, - p define the same point in Rep(m(S5),G), and we get an action of
Out(m1(S)) on Rep(m1(S), G) where

Out(m1(.5)) = Aut(m1(5))/ Inn(71(S))

is the quotient of Aut(m(S)) by the normal subgroup Inn(7(.S)) of inner automorphisms.
Let f be an orientation-preserving diffeomorphism of S sending the jth puncture to
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itself for all j. Post-composition by f yields

fe :m(S,x) = (S, f(x)) .

Identifying 71 (S, ) with 71 (.S, f(z)) up to some inner automorphism, we have a well defined
map

Diff*(S) — Out(m1(S))

and if f and g are isotopic they induce, up to some inner automorphism, the same auto-
morphism of 71 (), thus we get a homomorphism

o :T'(S) — Out(m1(9))

which is always injective. More precisely, we have

Theorem 7 (Dehn-Nielsen-Baer)
If S =S, is a compact surface, then the following sequence is exact

1 — T(S) & Out(m(9)) — Z/2Z — 0.
For S =S, s with s > 0, the following sequence is exact
1 —T(S) & Out*(m(S)) — Z/2Z — 0,

where Out™(mw1(S)) is the subgroup of Out(m(S)) preserving the conjugacy class of the
simple closed curves around each punctures.

In particular, I'(S) acts on the relative character varieties.

Holonomy of a marked hyperbolic surface Let (X, ¢) be a marked hyperbolic surface
with finite volume. The universal cover of ¥ is isometric to H, so that ¥ = H/A for
i: A < PSL2(R) a torsion free lattice. The marking ¢ yields an isomorphism ¢, : 71 (S) — A
and we get a homomorphism h = io ¢, : m1(5) — PSL2(R). Moreover, because X has finite
volume, each peripheral element is sent to a positive parabolic one. With P denoting the
conjugacy class of positive parabolic elements in PSLz(R), the resulting map

Hol : §(5) — Repypax (m1(5), PSL2(R), P)

is well defined. The holonomy map gives a natural topology on §(S). A stronger statement
is the following, see [FM12], Section 10.6.3.
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Theorem 8
The Fricke space is a smooth real manifold diffeomorphic to an open ball of dimension 6g—
6 + 2s.

1.1.3 Pointed Riemann surfaces and finite volume hyperbolic surfaces

Since the orientation-preserving isometries of the hyperbolic plane are exactly its biholo-
morphisms and and since every local isometry from H to H is a biholomorphism, every
hyperbolic surface is a Riemann surface, and two isometric hyperbolic surfaces are biholo-
morphic when seen as Riemann surfaces.

We have the following converse

Theorem 9 (Uniformization for pointed Riemann surfaces)

Let (X;x1,...,25) be a pointed Riemann surface where X has genus g and 29 —2+ s > 0.
Up to isometries, there exists a unique hyperbolic surface structure with finite volume % on
Sg,s such that X \ {x1,...,xs} is biholomorphic to 3 seen as a Riemann surface.

Through this identification, pointed points are sent to cusps. In particular, we have
the following identification between Teichmiiller space and the Fricke space.

and taking the quotient by I'(5),

Mg s ~ {Isometry classes of finite volume hyperbolic surfaces of genus g with s cusps}
~ Rep(m1(5), PSL2(R), P)/T(S) .

1.2 r-spin structures and homomorphisms into Spin"

1.2.1 First definitions
Sheaves, line bundles, divisors

Sheaves Let Z be any Riemann surface.

Definition 1.2.1. A sheaf F over Z is the data of a non empty set F(U) for every open
set U C Z and of restriction maps sy : F(V) — F(U) for every open sets U C V C Z,
such that

o For all open set U, syuv = Idzy);
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o Forallopensets U CV CW, syw = sy,v o sy,w .
And for U =, U, ,

o For all (Fi)a € (F(Ua))a such that for all «, B, su,nus,v.(Fa) = sv.nus,us(Fp),
there exists F' € F(U) such that sy, y(F) = Fu;

o Forall F,G € F(U), if sy, v(F) = sy,,v(G) for all a, then F' = G.

Sheaves most often come with structure. A sheaf F is said to be of abelian groups
(resp. rings, modules, algebras) if the sets F(U) are abelian groups (resp. rings, modules,
algebras) and the maps sy are morphisms of these structures. In these cases we require
F(0) = {0}.

If v : Z — X is a holomorphic map between two Riemann surfaces and if F is a sheaf
on Z, the push forward sheaf 1, F of F by ¢ is a sheaf on X given by, for every U C X open
set,

LFU) =FH(U)).

Ezample 1.2.1. For any open set U C Z, let Oz(U) be the ring of holomorphic functions
U — C. Equipped with the restriction maps syv : f — fly, Oz is a sheaf of rings.
If D is the unit disk in C, D* the punctured unit disk and ¢ : D* — D the inclusion,
then the push forward sheaf
1+ Opx

is a sheaf on D which is not isomorphic to Op. Indeed, there are more holomorphic functions
D* — C than holomorphic functions D — C.

A sheaf F over Z is a Oz-module if for every open set U, F(U) is a Oz(U)-module and
the module multiplication is compatible with the restriction maps.

If v : Z — X is a holomorphic map between two Riemann surfaces and if F is a sheaf
on Z, the push forward sheaf 1, F of F by ¢ is a sheaf on X given by, for every U C X open

set,
LF(U) = FOHU)).

Vector bundle

Definition 1.2.2. Let A be a smooth manifold, K =R or K = C and ¢ € Z~g. A vector
bundle of rank | over A is the data of a smooth manifold E and a smooth surjective map
p: E — A together with a dimension ¢ vector space structure on each E, := p~!(a) for all
a € A, such that there exists a covering (U, )q of A and smooth diffeomorphisms, called
trivializations, o : Ely, = p~ " (Us) — Uy x K* such that
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e The following diagram commutes

Ely, —22 U, x K*

e

Uass

e ForallaeU,, E, SN {a} x K" is a linear isomorphism.
We call A the base, E, the fiber and E the total space.

If p: E— Ais a K-vector bundle of rank ! and U, a covering of A such that E|y, is
trivial for all o, we get transition functions go g : Us NUg — GL(K) for all U,,Ug with
Ua NUg # 0 such that

$aodz' 1 UaNUsx K¢ — UsNUs x K*
(z,v) — (2, gap(x)V).

The data of the transition functions determines the bundle.

A section of a vector bundle p: E — A is a function s : A — E such that for all a € A,
s(a) € E4. The zero section of E is the section s such that for all a € A, s(a) = 0g,. Let
E° = E — s(A). If E has real rank 2 and comes with an orientation, say E is the tangent
bundle of an oriented surface or is a holomorphic bundle, then a loop around the origin
in E° is a loop going once in a fiber of E° in the positive direction. We will write g for
the homotopy or homology class (context will tell) of such a loop, and call such a class the
loop around the origin.

A vector bundle is said complex if its fibers are complex vector spaces, real if its fibers
are real vector spaces.

If its base is a complex manifold, a complex vector bundle is holomorphic if the trivial-
izations are holomorphic. A (Fuclidean, Hermitian) metric on a vector bundle p: E — A
is a smooth function |-| : E — R3¢ that restricts to a (Euclidean, Hermitian) metric on
each fiber.

Over a complex manifold, by a line bundle we will mean a complex holomorphic vector
bundle of rank 1.

Invertible sheaf If L — X is a line bundle over a complex manifold X, we construct
Fr, the sheaf of holomorphic sections of L by setting

F1(U) = {Holomorphic sections of L|y}.
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The sheaf Fr, is a Ox-module and if L]y ~ U x C is trivial, then (F7 )|y is isomorphic to
(Ox)|v as (Ox)|y-modules.

Definition 1.2.3. A sheaf F over X is said to be invertible if it is locally isomorphic to
Ox as a Ox-module, that is if for all x € X, there exists an open set U C X containing x
and a sheaf isomorphism

f’U ~ (OX)’U

If F is an invertible sheaf and U, is a covering of X such that F|y, is trivial, we get
transition functions

a8 " Ox(Ua N UB) — Ox(Ua N U/B)

and for all x € Uy N Ug, ga,p is the multiplication by a non zero complex number. The
collection g, g allows one to construct a line bundle L — X such that F;, = F and we get
the usual correspondence

Proposition 1.2.1. Invertible sheaves and line bundles over X are in a bijective and
natural correspondence.

If p: E — A is a vector bundle and f : B — A a continuous map, the pull back bundle
f*p: ff*EF — B is the bundle given by the total space

fTE={(be) e BxE, f(b) =p(e)}.

If p: L - X is a line bundle with associated sheaf of sections £ and ¢ : 7 — X is
holomorphic, the pull back (*L is again a line bundle and we define the (*£ to be the
invertible sheaf associated with the line bundle +* L.

From two line bundles L1, Ly over Z we can construct the tensor product L1 ® Lo — Z
defined by multiplying the transition function of Ly and Lo. If £1 and Lo are the invertible
sheaves of sections of Ly and Ls respectively, we get an invertible sheaf £1 ® Lo of sections
of L1 ® Ls.

Divisors A divisor on a Riemann surface X is an element of the free abelian group
generated by the points of X. A divisor A is non negative, and we write A > 0, if it can
be written A = > njz; with z; € X and n; € Zxo.

If s is a global meromorphic section of an invertible sheaf over a compact Riemann
surface X, s has a finite number of poles and zeros and we define the divisors associated

div(s) = Z npp — Z npp
s(

p)=0 p pole of s

to s to be
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where n,, is the multiplicity of p as a zero or pole of s.

If A is a divisor on X, we associate to A the sheaf O(A) of meromorphic functions f on
X such that div(f)+A > 0. If V, is a covering of X and u, a meromorphic function on V,
with div(us) = A on Vg, then Oly, = u;'Ox and thus O(A) is an invertible sheaf. The
line bundle L associated to O(A) is given by the covering V,, and the transition function
Jap = Ua/ug. We will often write (A) := La.

We have the sheaf isomorphism

O(A) — O(La)

fr—s

locally given by s = fu,. We define sp the canonical section of L to be the image of the
constant meromorphic function f = 1 by this isomorphism. In particular, div(sa) = A. If
A =3 ajz;is a divisor on X and Z = X \ {z1,...,2,}, pulling back the bundle (A) to Z
we get the trivial bundle. Indeed, on the open set Z C X, the canonical section is constant
equal to 1 and thus trivializes the bundle.

For any sheaf F, we will write F(A) for the sheaf of meromorphic sections s of F with
div(s) + A > 0. It is naturally isomorphic to F @ O(A).

1.2.2 Definition of a r-spin structure

For X a Riemann surface, the canonical sheaf wx of X is the sheaf of holomorphic 1-forms.
It is the invertible sheaf of sections of the canonical bundle K.

Definition 1.2.4. e Let r € Zsg and mq,...,mgs € Z. A r-spin structure of type
(m1,...,ms) on a pointed Riemann surface (X;z1,...,xs) is the data (£, f) of an
invertible sheaf £ and a sheaf isomorphism

L% = wx(— Z(mj —1Daxy).

e A r-spin Riemann surface is a pointed Riemann surface equipped with a r-spin
structure.

e Two r-spin Riemann surfaces (X1;x1,...,2;, L1, f1) and (Xo;y1,...,y;, Lo, fo) of a
given type are isomorphic if there exists a pair (¢,¢) where ¢ : (X1;21,...,7) —
(X2;91,...,y) is a biholomorphism and ¢ : (¢*La,0*f2) — (L1, f1) is an isomor-

phism of r-spin structures, that is € : ¢*Lo — L1 is an isomorphism of sheaves and
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the following diagram commutes

e®r

90*5587’ ﬁ?r

lw*ﬁ lf1

Prwx, (=X (mj — Dy;) —— wx, (= X(my — 1)z5)).

Remark 1.2.1. For a given type (mq,...,ms), r-spin structures exist if and only if r |
29 — 2+ s — ) m; for degree reason. If non empty, the set of r-spin structures of type
(m1,...,mgs) over X is an affine space over the space of r-roots of Ox which contains 29
elements.

Let My be the moduli space of r-spin Riemann surfaces, that is the set of equivalence
classes of r-spin compact pointed Riemann surfaces of genus g with s points and type

m= (my,...,ms).
If for all j, m}; = m; mod r and if £ is a 7-spin structure of type (mj,...,my), then
L=L'(Y mj;mj ;) is a r-spin structure of type (my, ..., m;) and the moduli spaces My'T

and M;‘;‘/ are canonically isomorphic. For this reason, we most often restrict ourself to
the case where 0 <m; <r — 1.
The forgetful map MyT — Mg, forgetting about the r-spin structure is a regular
29
r<9-cover.

1.2.3 r-spin hyperbolizations

Let S = Sy with 29 — 2+ s > 0 and let a;,b;,c; be the generators of m1(S) given in
Equation (I.1). We assume moreover that each c; is represented by a loop winding around
the jth puncture once in the positive direction.

Covers of PSLy(R)

The fundamental group of PSLy(R) is isomorphic to Z. Let 7 be the relative homotopy
class of the loop
t e [0, 1] — R € PSLQ(R) .

The fundamental group 71 (PSLy(R)) is generated by 7 and we have the exact sequence

0 — Z 225 PSLy(R) — PSLy(R) — 1
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where PSLy(R), the universal cover of PSLy(R), acts on R lifting the action of PSLy(R)
on P'R. The center of PSLy(R) is exactly {r*, k € Z}. Non central elements are called
elliptic, parabolic or hyperbolic depending on their image in PSLa(R).

The continuous function Rot : PSLy(R) — R/Z lifts in a unique continuous function

Trans : PSLy(R) — R

such that Trans(Id) = 0.
For r € Z~o, let
Spin” = PSL2(R)/(7")

be the unique connected r-cover of PSLy(R). With this notation, Spin? = SLy(R). For
g € Spin”, the translation number modulo r of g is a well defined element Trans") (¢) € R/rZ
equal to Trans(g) mod r for any g € PSLa(R) lifting g.

Lifting hyperbolizations to Spin”

Let
ps« : Hom(m(S), Spin”) — Hom(71(S), PSL2(R))

be the map induced by the projection p : Spin” — PSLy(R).

Closed case and Euler number For a moment we assume that S = S, is a closed
surface of genus g > 1. Because 7 is central in PSLy(R), if z,y € PSL2(R) the commutator
[z,y] € PSL2(R) depends only on the image of x and y in PSLy(R). Hence a well defined
map

[-,] : PSLa(R) x PSLy(IR) — PSLy(R).

Since here S is closed, [[7_;[a;,b;] = 1 and for h € Hom(m(Sy), PSL2(R)), we have the
Euler number of h, defined as the only integer eu(p) such that

710 = TJlp(ar). )]
The Euler number is a conjugacy invariant and W. Goldman showed in his thesis [Gol80)]

Theorem (W. Goldman)
The homomorphism h is the holonomy of a hyperbolic structure on Sy if and only if we
have the equality eu(h) = 2g — 2.

The Euler number tells us whether or not a homomorphism h € Hom(m(Sy), PSL2(RR))
has antecedents in Hom((S), Spin”). Indeed, h lifts to Spin” if and only if r | eu(h).
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General case Back to the general case, that is § = S, . If s > 0, the group m((5) is
free on 2g + s — 1 generators and any homomorphism & : m1(S) — PSLy(R) has r29+s—1
lifts to Spin”.

As an immediate consequence of Theorem 12 of [BIW10], we have

Corollary
Let p € Hom(m1(S),Spin™) be any lift of a hyperbolization of S. Then

- Z Trans(" (p(cj)) =29g—2+s modr. (1.2)

J
If h : m(S) — PSLa(R) is a hyperbolization of S, the elements h(c;) € PSLy(R) are
either parabolic or hyperbolic. In particular, they have rotation number 0. If p : 71(S) —
Spin” yields an hyperbolization p.p : 71(S) — PSL2(R), we call p a r-spin hyperbolization

and write Hompy, (S, Spin”) for the space of all r-spin hyperbolizations of S in Spin". For
any collection m = (mq,...,ms) € {0,...,7r — 1}%, let

Homyy,, (S, Spin”, m) = {p € Hompyp (71 (S), Spin”), ¥j Trans™ (p(c;)) = —m; mod r}
and
Hompyyp, (S, Spin”, Pn) = {p € Hompyp (71(5), Spin”, m), Vj p(c;) is positive parabolic} .

As a consequence of Formula (1.2)), one has that the spaces Hompy, (S, Spin”, m) and
Homyyyp (S, Spin”, Py) are non empty if and only if Y m; = 29 — 2 + s mod r, where
>_m; = 0 whenever s = 0.

Affine structure on r-spin hyperbolizations Let
Reppyp(S,Spin”,m) and  Repyy, (S, Spin”, Pn)
be the quotient of Hompyy (71 (S), Spin”, m) and Hompyyp, (S, Spin”, Py) by Spin”. Let
AT = {¢ € Hom(mi(S), 2/rZ), Vj€(c;) = 0}

Using the fact that
0 — Z/rZ — Spin" — PSL2(R) — 1

is a central extension, we deduce the following

Proposition 1.2.2. Let m = (m1,...,ms) € Z° such that 377} = 2g — 2+ s mod .
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Then Repyy,, (S, Spin”, Pn) is a A"-principal bundle over Repyy,(S,PSL2(R), P), that is
the Z/rZ-module A" acts freely and transitively on the fibers of

P« : Repyyp (S, Spin”, Pu) — Reppy, (S, PSL2(R), P).

Moreover, since Repyy,, (S, PSL2(R), P) is the Teichmiiller space, it is simply connected

and the cover p, must be trivial, so that we have the identification
Reppy,, (S, Spin”, Pu) =~ Repyy, (S, PSL2(R), P) x A”.

However this identification is not I'(.S)-equivariant.
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Chapter 2

Proof of Theorem (1

Let S be a compact connected oriented genus g surface with s punctures, where 2g—2+s >
0. We introduce marked r-spin Riemann surfaces in order to, later, define their holonomy.

Definition 2.0.1. A marked r-spin Riemann surface of type m = (mq,...,ms) is the
data of a r-spin Riemann surface (X;x1,...,xs, L, f) together with a diffeomorphism ¢ :
(S;p1s-sps) = (X521, .0, ).

An isomorphism of marked r-spin Riemann surfaces of type m between (¢1, Y1, L1, f1)
and (¢2, Yo, Lo, f2) is an isomorphism of r-spin Riemann surfaces (¢, €) between (Y1, L1, f1)
and (Y2, Lo, fo) where the diffeomorphism

gbz_lo(pqul:S—)S

is isotopic to the identity.

Let .7"™(S) be the space of all marked r-spin Riemann surfaces of type m up to
isomorphism. The aim of this section is to prove the following proposition, which will
imply Theorem

Proposition 2.0.1. There exists a I'(S)-equivariant analytic diffeomorphism
Hol, : 7"™(S5) — Repyy, (S, Spin”, m)

such that the following diagram commutes

Tm™(8) Hol , Repyy,, (S, Spin”, Pn)

| l

7 (8) —1% Repyy, (S, PSL2(R), P).
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The main difficulty of the proposition is to deal with what happens at the pointed
points. Consequently, we start by a local study above the disc.

2.1 Local case

1 1
0 1
identify H/(u) and D* = D\ {z} through ¥ : 7 — exp(2in7). Let ¢ : D* — D be the
inclusion.

Being the isometry group of H, PSLy(R) acts on the tangent bundle TH of H and by
duality on the cotangent bundle Ky = T"H of H. For z € H, o € Ty H one has g.a € Ty, H
and for X € T, H

Let D be the unit disc in C, z its origin, 0 < m < r and u = [ ] € PSLy(R). We

ga(X) = a((Tg)"'X).

Let wy be the sheaf of holomorphic sections of Kp. Since elements of PSLy(R) are bi-
holomorphic maps, PSL2(R) acts on wy and for o € wy(H), g € PSL2(R) and € H one
has

(g-0)(x) = glo(g " x)).

We construct an invertible sheaf Ly on H such that E%T = wy. To do so, we construct a
line bundle Ly — H whose sheaf of holomorphic sections will be L.
Let i € H be the square root of unity. The projection

PSLy(R) — H
g = gl

defines a principal R/Z bundle where v € R/Z acts on PSL2(R) viav-g = gR_,; for all g €
PSL2(R). From the circle bundle PSLy(R) — H we construct a line bundle PSLa(R) xg 7 C
in the following way

PSL(R) xgz C = {(9:}) € PSLa(R) x C} [ 7

where v € R/Z acts on (g,A) by v (g,\) = (§R—yr,e 2™). Choosing any 1-form o €
TFH\ {0}, we get a bundle isomorphism

PSLQ(R) XR/Z(C —  T*H
(g, A] = AgsQ,
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and note that v € R/Z acts on PSLy(R) Xz C via
- [9,A] = [gRom, A] = [g, e 2.

Let (Rl(f,}))veR be the 1-parameter subgroup of Spin” such that the image of Rff;r) in PSL2(R)
is Ryr . We now define Ly as the line bundle associated to the circle bundle Spin”™ — H

L]]-]I = Spinr XR/TZ C

where v € R/rZ acts on (g,\) via v - (f,\) = (fR(T) e I A). Then Ly is a line bundle

—UT)

over H and for all f € Spin” with image g in PSL2(R), the following diagram commutes

Ly —— T"H —— H

b

Ly —— TF"H —— H,

where the map Ly — T*H ~ PSLy(R) xg/z C is [f, A\] = [g,A"]. The projection Spin" —
PSLs(R) induces an isomorphism L§" — K.

The sheaf Ly of holomorphic sections of Ly comes with an action of Spin” lifting the
action of PSLy(R) on wy.

Recall that on Ky we have the metric dual to the hyperbolic metric on TH

and the composition
Il rey

'l gy * L Ky R>o

=

is a metric on Ly. For ¢ € P'R a point at infinity of H and U C H some open set, a
section of Ly (U) is said to be bounded near & is there exists a horoball B centered at £ and
a constant C' > 0 such that for all 7 € BNU, [s(7)[, <C.

Recall that oo € PR is the point at infinity of H that is fixed by u. For g € Spin” a
preimage of u and U C D, let

L,(U) ={s € Lyg((to W) (1)), g«s = s and s is bounded near oo}

be the sheaf on g-invariant sections of Ly that are bounded near co. It is a subsheaf of the
pushforward sheaf (v o ¥),. Ly on D.

Lemma 2.1.1. The sheaves L4 are all invertible. Moreover, if L is an invertible sheaf on
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D and 0 < m < r, then LZ" is isomorphic to wp((1 —m)z) if and only if L is isomorphic
to L, where Trans™ (g) = —m mod r and = € D is the origin.

Proof. Let dz € wp(D) be the differential of the function z € D — z € C. We have the
sheaf isomorphisms
Op — wp
f = fdz
and
Op — wp((1—m)x)
f = f(z)zm"dz.

Let dr € wy(H) be the differential of the function 7 € H — 7 € C and o9 € Ly (H) such
that U?r = d7. There are r possible choices for oy, indexed by the r roots of unity. Let
go € Spin” be a lift of u with Trans" (go) = 0. We have

(90 - 90)(7) = (g0)+o0(u™"7) = 00(7)

and now if ¢ is a lift of u with Trans(”(¢g) = —m mod r for some 0 < m < r, then
g= goR(T,)n and

(g-00)(T) = e%”m/rao(T) )

For k € Z, we define a global section oy of Ly by

ou(r) = exp (22 oo o).

(9 0r)(7) = gson(g~'7)
= exp QZ:m) exp (2i7rk:(: — 1)>00(7')
ey (BB

and oy, is g-invariant if and only if K =m mod r.

Pick k € {1,...,7} so that r | k—m. Being g-invariant, oy, yields a section of (co W), Ly,
and every global section of (v o W), Ly is of the form f(7)og(7) where f(7 + 1) = f(r) for
f + H — C some holomorphic function. Such a function f may be written f(7) = F(z)
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where z = €™ is the coordinate on D*. We compute the norm of foy, as a section of Ly:

F(on(D) gy = |F(0)E™ |0l
—2m
log|z|’

= |F(2)]|2*"

because, with &7 the imaginary part of 7,

|00\LIHI = |dT’KH
1

ST
—27

" logz]

Sections of L, are exactly sections of (v o ¥),Ly whose norm is bounded, so that foy,
is a section of L, if and only if the singularity of F' at the origin of D is a removable one,
that is if and only if F' extends to a holomorphic function D — C. Finally, we get a sheaf
isomorphism

O]D)—>£g, F+— Foy.

Which shows £, to be an invertible sheaf.
We now compute E?’" by first computing U}?T using the fact that 2imdr = dz/z since
z = exp(2inT).

®r 27,71']?7’0_6@1”

o, =e
—i pdz
2r z
i
= gz,
2

So that we have a sheaf isomorphism
Eff”" — wp((1 — k)x)

where z is the origin of D.

Inversely, if £ is an invertible sheaf above D such that £&" = wp((1—k)z). We construct
a section o € L(D)

then oy, is a global section of £ and £ = L, where Trans™ (g) + k=0 mod r.

Indeed, let Ly and Ky be the line bundles respectively associated to the sheaves Ly
and wy and define similarly L and Kp to be associated with £ and wp. The line bundle
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U*L|px — H is a r-root of Ky and (up to multiplication by a r-root of unity), we have
U*L|px = Ly. Let 0 : H — U*L|px be a section such that

—1
\j . ®r - _° k’—ld
(Lo W),0) 57 z
as a section of L®" = Kp ® ((1 — k)x). To construct o, one first observes that the section
;—;zkfldz, when restricted to D*, never vanishes, so that is it a section of (Kp ® (1 —
k)z))|}x, where for a line bundle N, N° is the bundle NV with the zero section removed.
Since L° — (Kp ® ((1 — k)x))|j« is a regular cover, the map

H — (Kp® ((1 —k)x))°|px
T = g—;zkfldz

where z = %77 lifts in a map o : H — L and

Ly — L
for, — fo

is a sheaf isomorphism. O

2.2 The holonomy map

2.2.1 Lifting the hyperbolization

Let (Y, ¢, L, f) be a marked r-spin Riemann surface of type m where Y = (X;x1,...,x5)
is a compact pointed Riemann surface. Forgetting the r-spin structure, we get an hyper-
bolization h € Hompyyp (S, PSLa2(R), P) of (Y,¢). Let Z = H/h(m1(S)) be the hyperbolic
surface with cusps equipped with its Riemann surface structure such that +: Z — X is a
biholomorphism on its image X \ {z1,...,zs}.

We view the r-spin structure as a line bundle L over X. Removing the zero sections of
the line bundles L and Kz we get, respectively, L° and K7, and restricting L° to Z C X,
we get a r-cover

0:L°; — K

where we identified (Kx ® (—>2(m; — 1)z;))|z with Kz through the pullback by the
inclusion ¢ : Z — X.
The cover
Ly — Ky — K5
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sends the loop around the origin ¢, of Ly to r times the loop around the origin in Kz,
that is to 0.(t1),) = t, in m(K7). Consequently, by homotopy lifting property, we get a
r-cover Ly — L°|z such that the following diagram commutes

Ly —— Ky

I

LO|Z E— K%

The deck transformation group of both Ly — L°|z and K — K7 is m1(S). Thus we get
p:m(S) — Spin” lifting the hyperbolization h : m1(S) — PSLy(R) such that

L%z = Lg/p(m1(S5)) -

The homomorphism so obtained is the holonomy Hol,(Y, ¢, L, f) of the marked r-spin
Riemann surface.

2.2.2 Constructing a r-spin structure from a homomorphism

In this section, starting from p € Hompuyp (S, Spin”, Py), we construct a r-spin structure
whose holonomy is p. Let h : m1(S) — PSL2(R) be the hyperbolization of S induced by
p and (Y, ¢) the associated point of Teichmiiller space where Y = (X;x1,...,25). Let
Z = H/h(m1(S)) the associated Riemann surface and ¢ : H — Z its universal cover,
t: Z — X the inclusion.

Taking the sheaf of p invariant sections of Ly, we get a sheaf on X that is invertible if
and only if s = 0. Otherwise, we need to discard some sections. To do so, let Q@ C P'R
be the set of parabolic fixed points of h, that is the set of ¢ € P'R such that there exists
v € m1(S), h(v) is parabolic and h(y)§ = &.

Proposition 2.2.1. For p € Hompuy, (S, Spin”, Pn), let £, be the sheaf over X defined by

L,(U)={se (toq)«Lu(U), s is bounded near all £ € Q
and for all v € w1 (5), p(7)«s = s}

for U C X any open set. Then (L,, f) defines a r-spin structure of type m over X where
f is the map induced by L3" ~ wy, and the holonomy of (Y, ¢, L,, f) is conjugated to p.

Proof. Intuitively, £, is the sheaf of p-invariant sections thar are bounded near pointed
points. In particular, the local study done in Lemma [2.1.1] applies and for every open set
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D small enough containing a pointed point, £,|p is indeed trivial and

LY p =wx (=Y (mj—1)zj)|p.

If U is a small open set not containing any x;, the boundedness condition is empty and
the result is immediate. O

In the process of proving Theorem [I| we have shown that the following diagram com-

mutes

‘77"7“1(5() & RepHyp(SaspinraPm)

| !

7(8) —% Repyy, (S, PSLa(R), P).

The regularity of Hol, can be check locally since the vertical lines are regular covers.
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Chapter 3

Application: counting closed
geodesics with given rotation
number

Let ¥ be a compact connected oriented hyperbolic surface. A free homotopy class of closed
curves on Y defines on the one hand a unique geodesic on ¥ and one the other hand
a unique conjugacy class in m(S). Since Trans(™ : Spin”™ — R is conjugacy invariant, if
p: 71 (S) — Spin” is a r-spin hyperbolization inducing the hyperbolic structure ¥ and if y is
a closed geodesic on 3 we may define the translation number of v as Trans™ (p([1])) € Z/rZ
where [7] is the conjugacy class associated to 7.

3.1 A theorem of Katsuda and Sunada

We first recall a weak version of Theorems 1 and 3 by A. Katsuda and T. Sunada appearing
in [KS90]. Let ¢; be the geodesic flow on M = T'Y the unit tangent bundle of ¥. Given
any surjective homomorphism ¢ : Hy(M,Z) — Z/rZ, we define, for m € Z/rZ and L > 0,

C(L,m) = {z closed orbit of length I(x) < L, ¢¥([z]) = m} ,
C(L,m) = Card(C(L,m)),

where [z] denotes the homology class of the orbit x. Here since ¢ is the geodesic flow on
the hyperbolic surface ¥, we have

C(L,m) = {v closed geodesic on X, lx:(y) < L, ¥([y]) = m} .
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For I — 00, we write (L) ~ g(L) whenever lim £ = 1.

Theorem (A. Katsuda, T. Sunada)
For allm € Z/rZ, as L — oo, we have

exp(L)

C(L,m) ~ T

Moreover, for all f € C*°(M), for all m € Z/rZ, the following equality holds
1 1
lim —— 7/f:/fdvolg.
Mot 2w b7k

3.2 Translation number and homomorphism

To prove Theorem 2] we relate Trans™) op : m1(S) — Spin” to a homomorphism from
H,(T'S°,Z) to Z/rZ, where p is a r-spin hyperbolization of S. The fact that a r-spin
structure yield a homomorphism H; (7'S°,Z) — Z/rZ was already observed by P. Sipe in
[Sip82] in the closed case. We relate such a homomorphism to the translation number
function modulo 7 in order to prove Theorem

In T'S°, recall a loop in the fiber is a simple curve in any fiber that is positively oriented,
where the orientation comes from the orientation of S. The image of such a loop in 1 (7'S°)
defines a unique element, noted t7g or ¢t when there is no ambiguity and called the loop in
the fiber. We also write tpg or t again for the homology class of such a loop.

Let = be a smooth curve on S. The tangential lift of x is the curve T in T'S° given by
T = (x, ).

Proposition 3.2.1. Let p € Homyy, (S, Spin") and equip S with the associated hyperbolic
metric. There exists a homomorphism & : Hy(T'S°,Z) — Z/rZ such that

1. f(tTS) = ]-7'
2. For all closed geodesic v,

£(7) = — Trans™ (p([7])) -

In order to define the needed homomorphism, we need the following lemmas, which will
also be useful in the next part.

For the following two lemmas we don’t assume S to be closed, that is S = S, s with
29 —2+4+s5>0.
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Lemma 3.2.1. Let xg € S and Xo € T;,,S° be two base points. Fix any hyperbolic metric
on S. Let g € m(S,x0). Assume g is non peripheral (resp. peripheral) and let v be the
only geodesic (resp. a horocycle) freely homotopic to any curve representing g. Then there
exists a unique s(g) € m1(T'S°, Xo) such that

e s(g) is an antecedent of g,

e any curve representing s(g) is freely homotopic to the tangential lift of .

Moreover, the function s : g € m1(S,x0) — s(g) € m(TS°, Xo) does not depend on the
chosen hyperbolic metric.

Proof. First we prove the uniqueness.

Let g1 and g2 be two such lifts.

Because p(g1) = p(g2) = g, there exists k € Z, g1 = got*. It suffices to show k = 0.
Since any curve representing g; and go are freely homotopic, g; and go are conjugated:
there exists # € 71 (TS°), zg12~! = go. In particular in 71(S) we have

pla)gp(z) ™ =g.
Thus, we have two integers o, 3 € Z\ {0} such that p(z)® = ¢®. In particular, p(gl_ﬁa:a) =1
and let 0 € Z such that g, "2 = t9. Since xg1z~! = go = g1t~ * we have

Q

the = g 2T

= gt g

=4g1-

g1
B

And thus £ =0 and g1 = go.

Let us show the existence. let Conj(y) C m1(S) be the conjugacy class associated to
7, that is the conjugacy class of g. Let Conj(¥) C m1(T'S°) be the conjugacy class of the
tangential lift 7 of . Since

0—7Z— m(TS°) L 7 (S) =0

is a central extension, p restricts to a bijection p|conjcy) : Conj(¥) — Conj(7). Indeed, the
proof of the uniqueness of s(g) shows p]conjﬁ) to be injective. To show the surjectivity, let

h € Conj(v) and suppose h & p(Conj(y)). Since h € Conj(7y), we have

p~'(h) C p~!(Conj(y)) = | t* Conj(7)
keZ
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so that h € |Jp(t* Conj(7)) = p(Conj(7)), contradiction. Now we can define s(g) to be
(p\COnjﬁ))_l(g), since g € Conj(7y), thus showing the existence.

The function that associate a geodesic in a free homotopy class to a hyperbolic metric
is continuous and thus the constructed lift depends continuously on the metric. By dis-
creetness and by connectedness of the space of hyperbolic metric on S, the lift does not
depends on the metric chosen to construct it. ]

Recall that 7 € PSLy(R) is the image of the loop ¢ € [0,1] — Rix € PSLy(R) by the
injection 71 (PSL2(R)) — PSL2(R).

Lemma 3.2.2. There exists a continuous function

Homgyyp (S, PSLy(R)) —  Hom(m (T'S°), PSLa(R))
h — h

where for h € Hompy, (S, PSLa(R)), h is the only homomorphism such that

e For any closed geodesic v on S, Trans(h(¥)) =0;
. iL(th) =75

e the following diagram commutes

m(TS°) —"— PSLy(R)

l !

m(S) —— PSLy(R).

Proof. Uniqueness of h is immediate. For the existence, let h € Hompgy, (S, PSLa(R)) and
Y = H/h(71(S)). Let T'Y be the unit tangent bundle of ¥. Let X € T'Y be a based
point, Xo € T'H a lift of Xo. We identify PSLy(R) with T'H through g — gXo and the
universal cover of T'Y with I;S/I_Q(R), where the universal cover is defined through paths
based at Xj.

Suppose 7 is a unit length geodesic on ¥ with 4(0) = Xy. Let v be the lift of v to
ISST_Q(R) starting at the identity. Then the end point of v corresponds to fz('y), and since
v(t) projects in PSLy(R) (identified with T'H) to an hyperbolic element for all ¢, we have
Rot(v(t)) = 0 for all ¢, thus Trans(h(7)) = 0. The proposition follows because Trans is
invariant by conjugacy. O

We can now proceed with the proof of Proposition [3.2.1] which will enable us to use
Theorem [3.T] and thus finish the proof of Theorem
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Proof (of Proposition[3.2.1]). Let h : m(S) — PSL2(R) be the composition m(S) 2,
Spin” — PSLy(R) and h : 71(T'S°) — Spin” be the lift of h obtained by Lemma
above and composition with PSLy(R) — Spin”. Let p : m (T'S°) — m1(S) be the projection.
For all z € m1(S) we define &(z) € Z/rZ to be such that

) = h(z)(p(p())) "

where 7 is the generator of the center of Spin”. We check that & : m(T'S°) — Z/rZ is
indeed a homomorphism: for a,b € 7 (T'S°), we have

Fé(ab)

Il
o

(ab)(p(p(ab))) ™"
(@)h(b)p(p(b) ™ p(p(a)
(a)

a)r¢® p(p(a)) !
_(a)+E(b)

(I
ISR

We call again £ : Hy(T'S°,Z) — Z/rZ the homomorphism obtained via the Hurewicz
Theorem, and if v is a closed geodesic on S (equipped with the hyperbolic structure from
p), then with T € 71 (T'S°) freely homotopic to 7, 70 p(p(T)) = h(Z) thus

0 = Trans®) (4(z)) = £(7) + Trans® (p(p()) O

49



Part 11

Integral Maximal r-spin
representations
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Chapter 4

Introduction and statement of
results

4.1 The action of the mapping class group on the space
Hom(H,(T'S°,Z),Z/rZ)

Let g,s € Z>g such that 2g — 2+ s > 0. Let S be a genus g connected compact oriented
surface with s points p1,...,ps removed, T'S the tangent bundle of S and T'S° the tangent
bundle of S where we removed the zero section. Let zg € S be a base point and a;, b;, ¢; be
a collection of smooth simple closed curves on S such that, writing (a, b) for the algebraic

intersection number of the curves a and b, we have
o (aibj) =bi;,

(ai,aj) = (bi,bj) =0,

¢; is freely homotopic to a loop around p; winding in the positive direction,

The curves a;, b;, ¢j intersect at xg and, writing again a;, b;, ¢; for the relative homo-
topy classes, we have the following presentation of 71 (.5)

7T1(S) = <a1,b1,...,ag,bg,cl,... ,CS‘ H[ai;bi] H Cj = 1> .
i=1 j=1

Let t be the loop around the origin in 7°'S°. Lifting the curves a;, b;, c; to T'S° tangentially,
we get a generating set {a;,b;,¢j,t} of Hy(T'S° Z) satisfying the only relation ¢, =
(29 — 2+ s)t.
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The mapping class group I'(S) acts on the space Hom(H;(7'S°,Z),Z/rZ) and for n €
Z>o, m = (mq,...,ms) € Z°, the space

AYS" ={§ € Hom(H(T'S°,Z), Z/rZ),&(t) =n mod r, Vj, £(¢;) =m; mod r}

is a union of orbits which is empty whenever > m; # (29 — 2+ s)n mod r.
Let (3™ € Z>( be defined as

1 g=20
™ = qged(r,mi —n,...,ms—n) g=1
ged(r,2n,my —n,...,mgs —n) else.

If s =0 then g > 2 and Ij5"™ = ged(2n, 7).
One of our main results is

Theorem 10 (Mapping class group action)

Letn,g,s,r,ma,...,mg € Z with g,s > 0, r,n >0, 2g—2+4+5 > 0 and n(2g—2+s) = Y. m;
mod 7. Let £ = £y'>™. The action of the mapping class group I'(S) on AP'e™ decomposes
into d(€) orbits, where d(k) is the number of divisors of the integer k, including 1 and k.

4.2 Integral maximal representations and a mapping class
group equivariant map

Let G be a simple Hermitian Lie group of tube type. To G is associated kK = kg7 € H%(G, Z)
its integral Kéhler class. The class k yields in the usual way a central extension of G by Z

OHZAGK%G%L

Associated to x and defined in [BIW10] Section 7 are the rotation number Rot, and trans-
lation number Trans, . They are continuous and homogeneous quasi-morphisms such that
the following diagram commutes

and they generalize the Rot and Trans associated to PSLy(R) that we used in the first part.
Let G, = G, /i(rZ) be the r-cover of G associated to s and let Trans”) : G, — R/rZ. Let
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h:m(S) — G be a mazimal homomorphism as defined in [BIW10] Definition 3.5, or equiv-
alently see Definition and assume moreover that for all z € 7m1(5), Rotx(p(x)) = 0.
We will call such homomorphisms integral mazimal, although the definition we will adopt
will be slightly different. If p : m1(S) — G, is a lift of h, then Trans,(f) op takes values into
Z/rZ and for m = (my,...,ms) € Z°, let

HompyeMax (S, Gr, m) = {p € Homppemax (S, Gr), Vi Trans,(_f) (p(¢j)) = —mj mod r}

be the subspace of integral maximal homomorphisms with assigned translation number
around each puncture. As a consequence of the proof of Lemma 8.10 and of Theorem 12 of
[BIW10], Homyptpax (S, G, m) is a union of connected components of Homygax (S, G,) and
it is non empty if and only if >>m; =n(29g — 2+ s) mod .

Let Repryivax (S, G) be the quotient of Homypenax (S, G) by G and Repryiax (S, Gr, m)
the quotient of Homyy¢niax (S, Gy, m) by G,

For n,r > 1, let

A;’,Z ={{ €e Hom(H.(T'S°,Z),Z)rZ), {(trs) =n mod r}.

Our result is

Theorem 11 (Equivariant map)

Let G be a Hermitian Lie group of tube type and real rank n. Let S be a connected compact
oriented surface of genus g minus s numbered and distinct points (p1,...,ps) with 29 —2+
s > 0. Let k be the integral Kdhler class of G and

0—7Z-"5G, 256 —1

the associated central extension.
Let r > 0 be an integer and G, be the quotient of G, by 1(rZ).
There exists a mapping class group equivariant homeomorphism

@ rn
ReplntMax(Sv GT) . ReplntMax(S7 G) X Ag,,s )

where Repriviax (S, Gr) = Reprvax (S G) @s p—= po p. For m = (my,...,ms) € Z°, the
restriction of ® to Repryinax (S, Gr, M) yields a mapping class group equivariant homeomor-
phism
P
ReplntMax(S> GTa m) BE— ReplntMax(S> G) X Ag,?;’m :

Remark 4.2.1. The integral maximal condition is a necessary one to construct ® the way
we do it and this construction cannot be extended to the whole representation variety.
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4.3 Application

Let A : PSLy(R) — PSpy,, (R) be the diagonal embedding. A homomorphism of the form
h A
71'1(5) — PSLQ(R) — PSpQH(R)

is called diagonal Fuchsian whenever h is a hyperbolization of S and where A : PSLy(R) —
PSpy, (R) is the composition of

PSLy(R) — (PSLy(R))™
A = (4.4

and the inclusion (PSL2(R))™ C PSp,,(R) given by blocks. Deformations of diagonal
Fuchsian homomorphisms inside the space of maximal homomorphisms are called diagonal
homomorphisms. Let

HOIHA(S, PSpZn (R)) and RepA(Sa PSpZn (R))

be respectively the space of diagonal homomorphisms into PSp,,,(R) and their quotient by
PSp,, (R). These spaces are connected components of, respectively, Homypax (S, PSps,, (R))
and Repyrax (S, PSpa, (R)).

If n is odd, 71 (PSps, (R)) = Z and we can show that the r-cover PSp,,, (R), associated
to k = Kpsp, (r)z i connected whenever ged(r,n) = 1 (see Lemma, so that it must
be the only one such cover of PSp,,,(R). In [GW10], the authors show that for n > 3 odd
and S closed, Homppax (S, PSpy,, (R)) consists of 3 connected components, one of them being
Homa (S, PSpy,, (R)), see their Theorem 8. They also show, under the same hypothesis, that
Repyax (S, Spay, (R))/I'(S) has 6 connected components, two of them consisting of maximal
diagonal representations, see their Theorem 10.

If S is closed, the mapping class group I'(S) acts properly discontinuously on the space
Reprinax (Ss Gr), see [Wie06] Theorem 1.1. If S has punctures, the notion of connected
components on the quotient Repa (S, G,)/I'(S) still holds. The previous theorems allow
us to determine the number of connected components of diagonal representations into

29+s=1 connected components of

PSp,y,, (R), up to mapping class group action. There are r
diagonal representations in Repiyiniax (Ss PSpay,(R);) if s > 0, 729 if s = 0 and r | 2n(g — 1)

and 0 otherwise. After mapping class group action, we get

Corollary 12
Suppose r and n are coprime, n > 2 odd and let G be the finite r-cover of PSpy, (R). Then
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the space
Repa (S, G)/T(S)

has d(g,s,r) connected components, where

rs=1 g=0,52>3

g A5 g=1s>21

4 (r/2)7 922,521,221 ]29-2
d(g,s,r) = qrs1 g=2,s=21,24r orrt2g—2

2 9g=22,s=0,2|r|29—2

1 9g=22,5s=0,21r|29—2

0 g=22,s=0,1r129—2.
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Chapter 5

Action of the mapping class group
on Ag’f;’m

In this chapter we prove Theorem

5.1 Notations and definitions

5.1.1 Mapping class group acting on homology

Let S be a compact connected oriented surface of genus g and P = {py, ..., ps} be s distinct
points on S. Let S = S — P be the punctured surface. We assume 2g — 2 + s > 0. Recall
from Part [If that the mapping class group of S is the group I'(S) of orientation-preserving
diffeomorphisms of S fixing P pointwise, up to isotopy fixing P.

For any vector bundle p : E — B, let punctured vector bundle E° — B be the restriction
of p to the total space E minus the image of the zero section. If T'S — S is the tangent
bundle of S, the punctured vector bundle T'S°® — S is homotopy equivalent to the unit
tangent bundle of S equipped with any metric.

If f is a diffeomorphism of S fixing P pointwise, the tangent application Tf : T'S — T'S
yields a map T'f : T'S° — T'S° and

Tf. : Hi(TS°,Z) — H(TS° 7Z)
7] = [Tf()]

is a well-defined homomorphism which depends only on the isotopy class of f, so that we get
a natural action of I'(S) on Hy (7°'S°, Z) and on Hom(H;(7'S°,Z),Z/rZ) by precomposition.
In this part we explicit the action of I'(S) on Hom(H;(7'S°,Z),Z/rZ) and in particular
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Figure 5.1 — A standard collection of curves on S

enumerates the orbits.

We need to single out some elements of 71 (7'S°) that will serve as a generating set and
give coordinates for the action of I'(S). If the set of punctures P is non-empty, m1(S) is
isomorphic to Fag1s—1 the free group on 2g + s — 1 generators and 71 (7'S°) is isomorphic
to Fagys—1 X Z, but the isomorphisms are not natural and the action of the mapping class
group difficult to compute in such coordinates.

5.1.2 Standard collection of curves on S

For p € P a puncture of S, a loop around p is a simple loop ¢ going around p in the positive
direction so that the connected component of the complement of ¢ in S containing the
puncture p is a punctured disc.

Let a;,b;,cj fori=1,...,gand j =1,...,s be smooth simple closed curves on S such
that, writing (a, b) for the algebraic intersection number of the curves a and b, we have

o (a;,bj) =6;;;
o (aj,a;) = (bi,bj) = 0;
e ¢j is a loop about p; .

We call any such collection of curves a standard collection of curves on S, see Figure 5.1
Fixing some base point xg on S, each curve of a standard collection of curves defines a
conjugacy class in 71(S, xg). We choose an element in the conjugacy class defined by each
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curve of a fixed collection such that we have the usual presentation of 7 (.5)
n S
m1(S) = <a1,b1, coag,bgcr, . csl H[ai,bi} H ¢ = 1> ,
i=1 j=1

where a generator x = a;, b;, ¢; in the presentation is the relative homotopy class of some
curve freely homotopic to z.

5.1.3 A generating set for Hom(H,(7'S°,Z),Z/r7Z)

The projection T'S® — S yields a homomorphism p : 71 (7'S°) — 71 (S) that is a Z-central
extension, in other words the following sequence is exact

0—=2Z%5 m(TS°) L m(S) =0

and ((Z) C m(T'S°) is a central subgroup.
Recall that for x a smooth closed curve on S, the tangential lift of x is the curve
T = (z,z) in TS°.

Lemma 5.1.1. Let S = S, s with x(S) <0 and s >0. Forj=1,...,s let ¢; be a smooth
simple loop around the puncture p; and ¢; its tangential lift to T'S® and let t denote the

loop around the origin in T'S°.
We have the following relation in Hi(T'S°,Z)

ZEjZ(Qg—Q—l-S)t.

Proof. Let xp be some point on S and X be a nowhere zero vector field on S\ {z¢} such
that the ¢; are orbits of X. We may see X as a singular vector field on the compact
genus g surface S compactifying S. On S, X has a singularity at each p; with index 1
and a singularity at zg, and the sum of all indexes must be equal to x(S) = 2 — 2g, so
the singularity at xg is of order 2 — 2g — s and the boundary of the image of X in T'S° is

¢+ -+ ¢+ x(9)t. O

Recall from Part I that for g € m1(S) we denote s(g) € m1(T'S°) the lift of g given by
Lemma B.2.1]
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Lemma 5.1.2. The fundamental group 71 (T'S°) admits the following presentation
m (TS°) :<al,51,...,69,59,61,...,68,t|

g
t is central and H[Ei,gi] H Cj = t—x(S)>’
i=1 j=1

where each generator @;,b;,¢; is the relative homotopy class of a loop freely homotopic to
the curve Ei,gi,éj.

Remark 5.1.1. If the surface S has non-empty boundary, by changing ¢; in ¢ - tX(5)+* for
some k € Z, we would change the relation [T{_, [@;, b;] [Tj=; ¢; = t=X) in [T9_, [@;, bi] [[=1c
tk. In the lemma, we get t~X(5) because of the specific choice of generators, which contrasts
with the closed case.

Proof. By the Hurewicz theorem, the abelianisation of w1 (7°'S°) is isomorphic to the first ho-
mology group H;(T'S°,Z). So to prove the lemma it is enough to show that in Hy(7'S°,7Z),
one has

Gt e = —x(9)t,

which was done in Lemma [5.1.1] before. O

5.2 Mapping class group action

We now prove Theorem which will be a consequence of Proposition and of
Lemma [5.2.9]

Let ¢ = [f] € T'(S) be a mapping class represented by a diffeomorphism f. We
consider the action of ¥ on Hom(H(T'S°,Z),Z/rZ) = Hom(m1(T'S°),Z/rZ) defined by,
for ¢ € Hom(H,(T'S°,Z),Z/rZ) and o = [a] € Hi(T'S°,Z),

&) = E([TfH(a)).

As a direct consequence of the definition of action of T f on T'S°, we see that the action
of 1 on Hy(T'S°,Z) satisfies ¢ (t) =t and [f](a@) = [f(a)] where t = trg is the loop around
the origin and a C S is a smooth closed curve.

Let r,n € Z~o be two integers and m = (myq,..., ms) € Z°5. We defined
AFS" ={§ € Hom(H(T'S°,Z), Z/rZ), £(t) =n  mod r and Vj, {(¢;) =m; mod r} .
Since (29 — 2+ s)t = >°¢; (= 0if s = 0) in Hy(T'S°,Z), Ay’s™ is non-empty if and only if
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n(2g — 2 + s) = >>m; and when non-empty, Ap'>"™ consists of 729 elements characterized
by the images of @; and b; in Z/rZ.

The space Hom(H;(7'S°,Z),Z/rZ) is the disjoint union of the ApS™ for n =1,...,r
and m; € {0,...,r — 1} with > m; =n(29g — 2+ s) mod 7.

5.2.1 Affine structure on A}"™

The composition of the projection T'S® — S and the inclusion S — S yields an injective
Z/rZ-module homomorphism

Hom(H; (S, Z),Z/rZ) — Hom(H(TS°, Z), Z/77Z)

whose image is exactly Agg’o. In particular, Agg"’ is a Z/rZ-module.

For L a Z/rZ-module, by an affine Z/rZ-module over L we mean a transitive and free
L-space, that is a set K equipped with an addition + : L x K — K satisfying:

L AM+Me+k)=A+X)+kfor ;e L, ke K;
2. Vki, ke € K, AN € L ko =X+ k1.
Lemma 5.2.1. The space Ay'y™ is an affine Z/rZ-module over Ag’g").

Proof. Recall A7%° consists of those homomorphisms ¢ : Hy(T'S°, Z) — Z/rZ with {(c;) =
¢(t) = 0. In particular, if £ € Ap’s™ then § + ¢ € Ap'y™ and the difference of two elements
in APB™ is in A7O°. O

Let A be the group of affine transformations of Ap'¢™. Every element of the mapping
class group acts on Ap'¢™ by affine transformation and Ag’g’o acts on Ap'¢™ by translation,
thus we get the diagram

I(S)
|
A

0 —— AP0 Glag(Z/rZ) —— 0

where the line is exact since as an affine Z/rZ module, Ap'>™ is isomorphic to (Z/ r7)%9.
On H;(S,Z) we have a symplectic pairing: the algebraic intersection pairing i which

yields a symplectic pairing i* on Hom(H1 (S, Z), Z/rZ) and we equip Agg"’ with this pairing.

The mapping class group preserves the symplectic pairing ¢* and the image of I'(S) —

Glog(Z/rZ) is Spyy(Z/1Z) (see [FM12] Chapter Six).
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Let Tor(S) be the Torelli group of S, that is the subgroup of the mapping class group
acting trivially on H;(S,Z). Since A;’g*’ lies in Hom(H,(S,Z),Z/rZ), elements of Tor(S)
act trivially on Ag’g"’ and thus the image of Tor(S) in A is contained in the subgroup of
translation by elements of Ag’gvo. More precisely, we have

Proposition 5.2.1. The image of the Torelli group of S inside A is the subgroup of
translation ged(2n,my —n, ..., ms — n)AZ’g’O if g>1 and ged(mi —n, ..., mg— n)Aq’g’o if
g=1.
More precisely, if E is the image of I'(S) in A, then the following sequences are exact:
For g > 1,

0— ged(2n,my —m,...,ms — n)Ag’g’o — E = Spyy(Z/rZ) — 1.
For g =1,
0— ged(my —n,...,mg— n)Aq’g’o — E — Spy(Z)rZ) — 1.

We prove Proposition [5.2.1] in Section [5.3.2]
Let £ = (3™ where we recall

1 g=20
™ = ged(r,mi —n,...,ms—n) g=1
ged(r,2n,my —n,...,ms —n) else

If ¢ = 1, Theorem [10] follows since under the Torelli group there is already 1 orbit. Oth-
l
erwise, since [ | r we have a natural map Ap’y™ A, Ag’g’m induced by the reduction

Z|rZ _medb 7 /IZ and, by Proposition the action of the Torelli group is transitive

on each fiber so that to conclude we need to know the number of orbits of the action on
the base Ag’g’m, which is the object of the following lemma.

Lemma 5.2.2. Ifl = [p's™, the action of T'(S) on Ag’g’m has d(£) orbits.

Thus to finish the proof of Theorem [I0] we just need to prove Lemma [5.2.2] and Propo-
sition [5.2.1 which is the object of the next section.
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5.3 Explicit action of a generating set of the mapping class
group

5.3.1 Dehn twists and bounding pairs

Dehn twists

Let x be a simple closed curve on S. Let j be an orientation-preserving embedding of the
cylinder [—1,1] x S! into S with j({0} x S') = z. The (right) Dehn twist T, about the loop
x is the homeomorphism of S defined by

T.(2) = z if x ¢ Im(j),
T.(5(t,0)) =7(t,0+ (t+ 1)m).

This homeomorphism is homotopic to a orientation preserving diffeomorphism of S
which we will also denote by T,. The mapping class [T;] is independent of the orientation
and the homotopy class of x and of the embedding j. Dehn twists act on H;(S,Z) via the
formula

To([a)) = [T2(@)] = a + i(a,2)a)],

for any loop a on S and where [-] denotes the homology class in Hy (S, Z) and i the algebraic
intersection number.

Lemma 5.3.1. Let © and a be two smooth simple closed curves on S, @ and T their
respective lifts to T'S°, [a] and [T| their homology classes in Hi(T'S°,Z). The Dehn twist
T, acts on Hi(TS°,Z) in the following manner

To([a) = [Tx(a)] = [a+i(a, 2)7]. (5.1)

Proof. The first equality comes from the definition of the action of the diffeomorphism
T, on T'S°. For the second one, we deform x and a so that each crossing is transverse.

Then, working locally at each crossing, one can construct a homology between T,(a) and
a+i(a,x)7. O

Bounding pairs

A bounding pair on S is the data of two simple closed curves 1,2 on S such that v1 Uy
separates the surface into two subsurfaces, 71 and 2 are non trivial and non homotopic in
S and [y1 + 2] = 0 in Hy(S,Z). A twist about a bounding pair (y1,72) is the composition
T, o Tv_zl of a Dehn twist about ~; and the inverse of a Dehn twist about 7e.
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The following proposition is a special case of a theorem by A. Putman, see [Put(07]
Theorem 1.3.

Proposition 5.3.1 (A. Putman). The Torelli group is generated by twists about bounding
pairs and Dehn twists about separating simple closed curves that are trivial in Hy(S,Z).

5.3.2 Proofs of Proposition and Lemma

To study the action of the Torelli group on Ap's™, we first observe that Dehn twists about
separating simple closed curves act trivially on Ag™. Indeed, for any separating simple
closed curve 7, one can find a standard collection of curves such that all have trivial
intersection with ~, thus 7’y acts trivially on Ap's™.

We fix a standard collection of curves (a;, b;, c;) on S. Let k € {1,..., ¢} and suppose
(71, 72) is a bounding pair cutting S in two subsurfaces S and So with orientation of v; and
2 inherited from the orientation of S; and such that i(bg,v1) = 1 = —i(bg,¥2) and for all
i#k,allj=1,...,gand l = 1,2, i(a;,v) =i(b;,y) = 0. Applying twice the formula ,
we get that the action of the twist W = T, o T.,! about (y1,72) on Hy(T'S°, Z) is

W (b) = b +71 + 72
W(b;) = bi, Vi #k
W(ﬁz) =a;, Vi.

Applying Lemma to the surface S7, we obtain
S1
Qo +s)t =T +%+ .7,
i=1

where g; is the genus of S7 and {pj, }i=1,... s, is the set of punctures of S that lie on Sj.
In particular, for £ € Ap'¢™, we have

S1
E( +72) =n(291 +51) + Z —my,
i=1

S1
=2ng1 + Y _(=my, +n).
i=1
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So for all £ € Ap'S™ one has

S1

W€ =¢+(2ng1 — Y _(my, —n))bj(€)

=1

where (af, b7, ..., ay, by) is the basis of Ag’g’o dual to the basis (a1, b1, ..., a4, by) of H1(S,Z),
that is W acts on A7%™ by translation by (2ng1 — >27L, (my, —n))b;.

For any = € {ai1,b1,...,a4,by}, any I C {1,...,n} and any ¢g; € {0,...,g — 1} such
that 2g; + Card(I) > 0, there exists a bounding pair (71, y2) bounding a surface S; of genus
g1, containing the punctures of S indexed by I and such that among {ai,b1,...,a4,b4},
v1 and 79 intersect x only, and once, see Figure [5.2 The action of the twist about this
bounding pair is then by translation by (2ng1 — 3 ;c7(m; —n))x*. Thus if g > 1, the image

of the Torelli group in the group of translation Ag’g’o is the subgroup

<2nZ @ @ (mj —n) Z) Agvg,o =ged(2n,r,my —ny ..., mg — n)AZ’2’°
J

since Agg’O is a Z/rZ module. For g = 1 or g = 0, for every bounding pair, at least one
of the two obtained subsurfaces has genus 0 so that modulo r, the translation obtained is
of the form (=322, m;, — n)z* and thus the image of the Torelli group in the group of
translation Ag’g"’ is the subgroup

ged(r,my —n,...,mg — n)Ag”g"’ ,
which conclude the proof of Proposition [5.2.1]

Proof of Lemma [5.2.2]

Let £ = £;'¢™ and recall d(¢) is the number of divisors of £. Since £ | m; —n for all j, we
have
¢ L
Ag7727m f— Ag:”;7n

where n = (n,...,n). We have four possibilities for Af;’:;’“, each needing a specific proof.

1. ¢ = 0 and in this case, Af;’;"" consists only of one element. Indeed, {¢i,...,Cs,t} is

then a generating set of Hy(7'S°,Z) and thus £ € Af;’;"" is uniquely determined;

2. g > 1and ¢ | n, in this case m; = m; —n = 0 mod ¢ and Ag’fs"“ = Ag’g"’, where

0=(0,...,0). The action of the mapping class group on A7" is exactly the action
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Example for x = ay, Example for x = by,

Figure 5.2 — Examples of bounding pairs

of Spy,(Z/IZ) on Z/IZ*, which has indeed d(f) orbits and the greatest commun
divisors of the coordinates yields a complete invariant.

3. g =1 and proving the statement in the case s = 1 will be enough.

4. g > 1 and £t n, and in this case we first deal with the case where n is a power of 2
and then deduce the general case.

Proof for g =1 Assume first s = 1, so that I'(S) = SL2(Z) and every element of I'(.S)
can be written as a word in the two Dehn twists T, and T; and using the coordinates
£ € Aﬁ’ff’n — (£(@),&(b)) € ZJUZL x ZJVZ, one sees that ged(¢,£(a),£(b)) is a complete
invariant.

If s > 1, keeping only one puncture of S, we get another surface S’ with genus 1 and
1 puncture along with a map ¢ € I'(S) — ¢’ € T'(S’) such that the following diagram
commutes

A

J» [»

Lnn fnn
A1,s B— A1,1
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Figure 5.3 — A standard collection of curves on S and the curves d; .

where the lines are affine isomorphisms. Thus there are as well d(¢) orbits of I'(.S) acting
on Abnn
g?S '

Proof for /{n and g > 1 We first need to describe the actions of some particular Dehn
twists in the coordinates given by

£ € ATV s (E(@), §(bi)1<icg € ((Z/2nZ))9 = (Z/2nZ) .

Let d; be a simple closed curve homologous to a;11 — a;, see figure Lifting d; to T'S°
in d; we get d; = @;+1 — a; +t (applying Lemma to the pair of pants bounded by
g, Ajt1, dl) For i,j € Z, let 51'7]' =1if1 =7 and 51'7]' = 0 otherwise.

Lemma 5.3.2. From formulafor the action of a Dehn twist, the action of Ty, Ty, Ty,
on Agg’”’" expressed in coordinates is

o Ty, (i, Bi);) = (i, Bi + dijag); 5
o Ty, (s, 8:);) = (i — 05,5 B, Bi); 5
o Tu,; (v, Bi);) = (i, Bi + (i — Giv1,5) (41 — aj + 1)), .

Note that this set of elements was use in a similar fashion by O. Randal-Williams in
[RW14], his situation being close to ours in the case n = 1. The fact that together with
the Torelli group, the Dehn twists Tj,;, T}, and T}, generate the mapping class group will
make two following proofs simpler, see [FM12].
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We can now proceed with the proof of Lemma By definition of ¢ we have ¢ | 2n.
We want to show that I'(.S) acting on Agﬁ’“ has d(¢) orbits. To do so, we decompose Af;’;?’“
into a product depending on the prime decomposition of ¢ as follows.

v»(k) be the prime decomposition of k. The isomor-

For k any integer, let k =[], yrime P

phism

z/tz.~ [ z/p"“z

p prime
yields an isomorphism
C. Abnn I, .. Apl’p“),n,n
' 9,8 p prime g,
f = (fp)p prime

with &, = ¢ mod p*() for p prime.
For f € Diff*(S), £ € A" and a € H\(T'S°, Z),

(a)
mod pl’p(f))
p

Cléoft
(6 (a
= (f - &(a)),
f-C&)(a).

C(f-&)(a)

)
)

As a consequence, the following diagram commutes

{nn c p2() non
Ag7,s’ Hp prime Ag,s Y

Jf lf

lnn c p”P“) n,n
14577,57 Hp prime Ag,s Y

where f acts on the element (§,), € [T, prime Ag?ﬁm’”’“ by f(&)p=(f&)p.
As a consequence, we get a well-defined map

Age/es) = T (4 ree(s))

p prime

which we show is a bijection.
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Lemma 5.3.3. The isomorphism C induces a bijection

Agrmrs)y = I (anrme/res)) .

p prime

Proof. During the proof, p will always be a prime integer. Indexing over the prime integers
will really be indexing over the prime integers that divide £.

Surjectivity comes from the surjectivity of C. For the injectivity, let &, € Agﬁ’“ and let
(&p)p = C(&), (¢p)p = C(C) be their images by C. Let us assume that there is f, € I'(S) such
that for all p, & = fp(p. We want to show that there exists f € I'(S) such that £ = f(.

vl)
It is enough to deal with the case where the action of f, on Ag’s( T g trivial for all p

but one, say ¢q. We may further assume that, when acting on Agfg “)’"’", the action of f; is
the action of ¢ where ¢ is either Ty, T}, or Ty,, since together with the Torelli group they
generate the mapping class group.

Let § € Z be such that § = 1 mod ¢”*® and g = 0 mod p*»\¥) for p # ¢. Using the
formula for the action of elementary Dehn twists, we deduce that ¢7 induces the same

action as f, on Agz“),n,n and acts trivially on Alg’i';’ @ gor p # q, thus &, = ¢, for all p,

that is C(&) = C(¢%¢), and using the injectivity of C we deduce & = ¢7( in Az’;"“. O

For p > 2 prime, p*»¥) | n since p*»() | 2n and 2 is coprime with p, so Ag:jﬁ(e)’"’“ =

Agtf(z)’o@ and AIg’t’;’(z)’”’“/F(S) has exactly d(p*»()) = v,(¢) + 1 elements.
Thus to prove that AL /T'(S) has d(¢) elements, all that remains it to show Agjm’"’" JT(S)
has v5(¢) + 1 elements: indeed, we would then have

Card(A5»"/T(S) = [[ Card(A2?mm/T(S))

p prime

= [I w®+1)=d@).

p prime

If n is a power of 2, since ¢ | 2n and ¢ t n, we have 2n = ¢, and the following lemma
will conclude.

Lemma 5.3.4. Suppose n is a power of 2. Then the reduction modulo n Agf‘s’”’“ — Aggt =

AE:S"’ yields a surjective map
AJMT(S) 2 A /T(S)

such that the orbit of 0 € AZ:S"’ has 2 antecedents by j and all the other orbits have only
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one antecedent.
In particular, AEZ’"’”/F(S’) has d(n) +1 = d(2n) elements.

Proof. We identify (Z/2nZ)? with A2%™" and (Z/nZ)?? with A?>>° during the proof. The
map j : AZ%"" — AT s, in these coordinates, the reduction modulo n (Z/2nZ)* —
(Z/nZ)*. Let & € AZ%™" such that j(£) = (0,...,0), that is

§=(€1,...,€9), € €{0,n}.

Using T, and Tp,, we transform the block (e2;i—_1,€2;) into (0,e;) where ¢; = 0 if €3,_1 =
€2; = 0 and €; = n otherwise. Then repeated use of Ty, in decreasing order of i’s shows
that & is in the same I'(S)-orbit as

& =1(0,6,0,0,...,0)

where € € {0,n} depends on £. In particular, 71(0) has at most 2 elements. It remains to
show that &y and &, are not in the same I'(.S) orbits. We consider the following function

I:  §7Y0) — Z)2Z
(61, . ,629) = Card{i, (egi_l, EQZ‘) = (0, 0)} mod 2°

We claim that [ is invariant by I'(.S). To show this, it is enough to consider the actions of
Ta,;, Ty, Ta, because together with elements of the Torelli group (which acts trivially here)
they generate I'(S).

Indeed, let (a1, B1,...,0a4,B5) € 571(0). For 4,5 = 1,...,g, either (ay, 8;) = (0,0) in
which case

Ta; (e, B1)) = Ty, (s, i) = (0,0)
or (e, i) # (0,0) and

1o, ((ai, Bi)) # (0,0)
Ty, ((as, Bi)) # (0,0)

Overall, the total number of blocks (0,0) doesn’t change.
Now applying Ty;, either aj11 —aj+n =0 mod 2n and

de((alaﬁl') cee 7049759)) = (alvﬁh cee 7a97/89)
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or aj11 — o +n=n mod 2n and

Ty, (g, Bj, aji1, Bi+1) = (o, B +ny a1, Bjv1 + 1),

so that if aj11 = o = n, the total number of (0,0) blocks doesn’t change and if oj11 =
a; = 0, the total number of (0,0) blocks changes by +2, since here a; = ;11 mod 2n.

In every cases, I(T,(§)) = I(§) for any x = a;,b;,d;, proving the function I to be
mapping class group invariant.

Since I(&) = 0 # 1 = I(&,), & and &, are not I'(S)-equivalent, thus proving Card(j~1(0)) =

Every mapping class group orbits in Ag;gvo may be represented by a (; = (0, k,0,...,0) €
Ag;gvo with k | n, 0 < k < n. Suppose k > 0 and let £ € j71({3), that is

E=(e1,e2+k,e3...,€), € € {0,n}.
By the same earlier process, £ is in the same orbit as

erentk = (61,62 + £,0,...,0)

where 1,69 € {0,n}. Well-chosen repeated applications of T, and T}, will send &,, g, to
o,k where K = ged(ai, B1,2n). Using the fact that n is a power of 2 and k is a proper
divisor of n, a little computation shows ged(e1,e2 + k,2n) = k for all 1,9 € {0,n}. In
particular, j71((x) consists of only one element, the orbit of & . O

Lastly we prove that Agi’j“)’”’“ has d(2"2(9)) orbits for any n. We write n = 2*2(" k where
ged(k,2) = 1. Let k € Z/22(YZ be the inverse of k modulo 2*2(), Linear multiplication
by k in the Z/2"2)Z-module Hom(H;(T'S°,Z),Z/2"2()Z) restricts to a T'(S)-equivariant
affine isomorphism

2v2(0) pn ~ 2u,u,u
Ag,s - Ag,s

where u = 22(0~1 = 2v2(") and u = (u, ..., u), and we conclude by applying Lemma|5.3.4
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Chapter 6

Integral maximal representations

6.1 Preliminaries

6.1.1 Background material on group cohomology

In this section we review bounded and unbounded, Borel or continuous group cohomology
with value in an abelian group, giving more attention to the cohomology of a Lie group
and of a surface group.

6.1.2 Group cohomology

Let R =R,Z or R/Z. For any locally compact topological group G we have the complex
(C*(G,R),d) = ({f : G — R}, d)

where the differential of f € C"(G, R) is given by

n

(df)(QOa .- 7.971) = Z(_l)if(QOa .- agAh .- -gn)~

=0

The cohomology of (C*(G, R),d) is trivial in positive degree and we consider the sub-

complex C*(G, R)® of G-invariant cochains, where for g, go,...,gn € G, g- f(go, ..., gn) =

f(g7 g0,-..,97 gn). The complex (C*(G, R)“,d) is called the homogeneous complex.
One may as well consider the following complex, called inhomogeneous

(C(G*, R),9)
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where, for go,...,gn € G, the differential of a cochain f is defined by

n—1

(0F)(90s--19n) = F(g2,- -1 9n) + D (=1 f(g1s- -1 GiGists - 9n) + (1) f(g1, -+ gn1) -
i=1

An inhomogeneous cocycle is said normalized if c(Idg, go,...,g,) = 0 for all go, ..., gn,

where Idg is the identity of G. Every inhomogeneous cocycle differs from a normalized one
by a coboundary and we will always assume our inhomogeneous cocycles to be normalized.
The inhomogeneous and homogeneous complexes are isomorphic. Indeed, to any ho-

mogeneous f € C(G"!, R)Y, we associate V"(f) € C(G™, R) defined by

an(gla-. . 7971) = f(laglyg1927-~- 791 . gn)

and V" : (C"*1(G, R)%,d) — (C™(G, R),§) is a complex isomorphism whose inverse U™ is
given by
U"f(90;---,9n) = (95 ' 91: -+ 9 19n)

Both the inhomogeneous and homogeneous representations will be used. The cohomol-
ogy of various sub-complexes of (C*(G, R)“,d) yields the cohomology theories we will be
interested in.

Definition 6.1.1. The regular (resp. continous, bounded, Borel, bounded continuous,
Borel bounded) cohomology of G with coefficient in R, noted H*(G, R) (resp. H2(G, R),
Hy (G,R), Hy(G,R), Hy.(G,R), Hy, (G, R)), is the cohomology of the complex of
(C*(G, R)%,d) (resp. of the sub-complex of continuous, bounded, Borel, bounded con-
tinuous, Borel bounded) cochains.

The Borel versions are most useful when A = Z since the continuous versions might
not be relevant. The inclusions of complexes “continuous — Borel” and “bounded —
unbounded” yields comparison maps in the corresponding cohomology theories and the
following diagram commutes

Hy (G, R) —— HE(G, R)

| |

Hpy (G, R) —— Hyj (G, R).
If T' is any discrete group, then every cochains on I' is Borel and continuous, so that

Hy(T', R) = HY(I', R) = H*(I', R) and Hp, (', R) = Hy (', R) = Hy (', R). For a countable
CW-complex X, let Ho(X, R) and H*(X, R) be respectively the singular homology and
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cohomology of X with R-coefficient. One may consider the subcomplex of bounded singular

cochains on X and get the singular bounded cohomology of X, denoted H} (X, R). If

m1(X) is the fundamental group of X and X is aspherical, one has isomorphisms gx

between the (bounded) cohomology of 71 (X) and of X, such that the following diagram

with isomorphisms for horizontal lines and comparison maps as vertical lines commutes

Hl.)(ﬂ-l(X)v R) 94){) HI.J(X’ R)

J |

H*(m (X),R) -2 H*(X,R).

The following facts will be useful:

1.

Every cochain with R/Z-coefficient is bounded and thus H(G,R/Z) = H} .(G,R/Z)
and Hy(G,R/Z) = Hy, (G,R/Z) for G locally compact topological group, with simi-
lar equalities for singular cohomology of CW-complexes;

The short exact sequence
0—-Z—-R—-R/Z—0

yields long exacts sequences in Borel and Borel bounded group cohomology and
in singular and bounded singular cohomology, all compatible with respect to the
comparison maps and Gromov isomorphisms;

By using regularization operators defined in [Bla79] one can show Hp (G,R) =
Hy,, (G, R);

For f : G — R, f is a inhomogeneous 2-cocycle if and only if f is a homomorphism, as
5f(z,y) = f(z) — f(zy) + f(y). From this one deduce that H:(G, R) = Hom.(G, R)
is the space of continuous homomorphisms;

if G = G1 x G4 then we have linear isomorphisms between the cohomology of G
with coefficient in R and the cartesian product of the cohomology of G; and G5 with
coefficient in R, for every cohomology theory and in a natural way with respect to
the comparison maps and change of coefficient.

If G is compact or abelian, H}, (G, R) = H{! .(G,R) = 0 for n > 0.

Continuous central extensions and Borel cohomology

Let G be a locally compact topological group. A (continuous) central extension of G

by 7Z is a locally compact topological group H together with continuous homomorphisms
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1:7 — H and p: H — G such that the following sequence is exact
0-Z5HLG—1

and i(Z) is a central subgroup of H.
Two central extensions (H,4,p) and (H',i',p') are equivalent if there exists an isomor-
phism ¢ : H — H’ such that the following diagram commutes

H

PN

0——Z 2 G—— 1.

NS

H/

IfZ % H 2 G is a central extension and o : G — H is a Borel section of p, for z,y € G
we define do(z,y) € Z to be the only integer such that

a(g)o(g’) = algg)i(do(g,9")) -

For go, 91,92 € G, we have

a(go)o(g1)a(g2) = o(gog1)o(g2)i(da(go, 91))
= 0(gog192)i(do(gog1, g2) + do(go, 1))

as well as

a(go)a(g1)o(g2) = a(go)o(g192)i(do (g1, 92))
= 0(g09192)i(do (g0, 9192) + do (g1, g2))

thus
do(g1,92) — do(gogi, 92) + do(go, 9192) — do(go, g1) = 0

that is do is an inhomogeneous Borel 2-cocycle. It is not hard to see that if ¢’ is a different
section of p : H — G, then there exists a function £ : G — Z such that

do = do’ + 5¢ .

Indeed, &(g) is the only integer such that o(g) = ¢'(9)i(£(g)). In conclusion, the central
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extension H — G yields a well-defined class in H% (G, Z) and one can see that two equivalent
central extensions yield the same class.

Conversely, let G be any locally compact topological group and x € H%(G, Z). Suppose
¢ is an inhomogeneous cocycle representing k. We define the group G X, Z such that:

o the elements of G x.Z are pairs (g,k) € G X Z;
o (9,k)- (¢, K)= (99", k+ K +c(g,9)) for all g,¢' € G and k, k' € Z.
Before defining the topology on G x. Z, we recall the following fact.

Lemma 6.1.1. Let G be a locally compact topological group equipped with a Haar measure.
For X C G, let X7'X = {27 'y : 2,y € X}. Then the sets X 'X for X Borel set of
positive measure form a basis of neighborhoods of the identity of G.

We equip G X, Z with the o-algebra such that

G — GXx 7
g = (9,0
and
(G x.Z)? - Gx.Z
(z,y) = aly
are measurable. Let p be a left invariant Haar measure on G and v be the only measure

on G X, 7Z such that

e v is left G x. Z-invariant;

e v({(g9,k) : g € B}) = u(B) for every k € Z and B C G borelien.

To define a topology compatible with the group structure on G x.Z we need only to
specify a basis of neighborhoods of the identity. The basis of neighborhoods we take is the

-1
X
for X C G x.Z measurable with v(X) > 0. Using Lemma one deduces that the

projection p : G X, Z — G is continuous.
Moreover, G x. Z is Hausdorff. Indeed, for Y C G a measurable set with p(X) > 0 let

family

Xy ={(g,0):g€Y}.
Since G is Hausdorff, one has
N Y'Y ={ld¢}

w(Y)>0
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and we deduce, using the equality N((Xy) 1 Xy) = (Xny) ' Xny , that

m (Xy)_le = {IdGXCZ} .
uw(Y)>0

Equipped with this topology, G X .Z is a locally compact topological group and p : GX.Z —
G is a covering map.
Since 0 > Z — G x.Z — G — 1 is exact, we get a continuous central extension

0Z5G0x%x.2%G6 1

whose associated Borel class is k.
In general, for a locally compact topological group G and a class k € H%b(G,Z) we
denotes by G the central extension associated to k.

Rotation numbers

These rotation numbers where introduced in [BIW10] Section 7. A lot of what follows here
is an adaptation to our situation of their results.

We define the rotation number and translation number associated to a bounded Borel
integral class. Let G be a locally compact topological group. For any B < G closed
subgroup we have the long exact sequence in Borel bounded cohomology associated to the
short exact sequence of coefficient 0 - Z — R - R/Z — 0

0 — Hp,(B,R/Z) — Hp,(B,Z) — Hy, (B, R) — -+ - .
Using the facts from Section [6.1.2] we have
Hi,(B,R/Z) = Hom.(B,R/Z) and H%,(B,R)=H:.(B,R)
and in the end the long exact sequence of coefficient becomes
0 — Hom(B,R/Z) % HE, (B, Z) — H}(B,R) — - - . (6.1)
If k € H3, (G, Z), let kg be its image in HZ (G, R). If kg|p =0 let fg: B — R/Z be
the unique continuous homomorphism such that 9(fp) = x|p. Applying this to B = (g)

for any g € G, and using the fact that H? (B,R) = 0 since B = (g) is abelian, we define,
as in [BIWI10] Section 7, the rotation number of g as follows.
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Definition 6.1.2. The rotation number of g € G with respect to k € H3,(G,Z) is

Rotx(9) = fi;5(9) -

The following properties follow from the fact that the exact sequence (6.1]) is natural
with respect to group homomorphisms.

Lemma 6.1.2. e Rot, : G — R/Z is conjugacy invariant;

e if kr|p = 0 then Rot,,, is a continuous homomorphism such that 9(Rot,,,) = k|p ;

K|lB

e if f: Gy — Go is a continuous homomorphism and ke € Hpy(Ga,7Z) then
Rot f+4,(g1) = Roty, (f(91)) ;
e Roty,+r, = Roty, +Roty, for all k1,ka € H%b(G,Z).

Translation numbers

Let f: G — R be any function. We say that f is a quasimorphism if the function

of(x,y) = flzy) — f(x) — f(y)

is bounded on G x G. We say that f is homogeneous if f(z™) = nf(x) for all n € Z and
xeq.

Lemma 6.1.3. Let f: G — Z be a quasimorphism. For x € G let

Hf(z) = tim 28

n n

Then Hf — f is bounded and H f is a homogeneous quasimorphism.

Proof. 1t is enough to show that Hf — f is bounded. Let n € Z~o. Using the quasimor-
phism property we have

n—1
f(@™) =nf(x)+ Z Sf(x,2")
=1
and since 0 f is bounded, H f — f is bounded. O
The following lemma is Lemma 7.4 of [BIW10].

Lemma 6.1.4. Every Borel homogeneous quasimorphism is continuous.
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Let x € H3, (G,Z) and let ¢ be a bounded inhomogeneous cocycle representing . Let

7 4 G. & G be the central extension associated to ¢ as in forgetting that c is
bounded. Let fy be
fo: G — Z
(9. k) — k.

By definition, § fo = ¢ so fy is a quasimorphism. We define the translation number function
with respect to k to be
Trans, = Hfy.

Proposition 6.1.1. The function Trans, : G, — R does not depend on the choice of the
bounded cocycle c used to define it and is a continuous and homogeneous quasimorphism.
Moreover for h € G, and n € Z,

Trans, (i(n)h) = n + Trans,(h)
and
Trans,(h) = Rotk(p(h)) mod Z.
In particular, Rot, is continuous.

Proof. The fact that Trans, is a continuous homogeneous quasimorphism follows from the
fact that fjy is a Borel quasimorphism and Lemma [6.1.4

If ¢ and ¢’ are bounded cocycle both representing  as a bounded class, then ¢ — ¢’ = 6¢
for £ : G — 7Z some bounded function. If G,, = G x.Z, let fo(g,k) =k and f1 : G X, Z be
defined by

f:Gx. 25 Gx.7 7

where ¢ is the isomorphism

¢o: GxX.Z — G XuoZ
(9,:k) = (9.k+&(9))

so that fi1(g,k) =k + &(g). Since £ is bounded,
Hfi=Hfo,

so Trans, depends only on k.
The equality
Trans, (i(n)h) = n + Trans,(h)

follows from the fact that i(Z) is central and fy already satisfies it.
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Lastly we show the relation between Trans and Rot. By the last part of Lemma [6.1.2]
we need to prove it for G = Z only. Let ¢ : R — R/Z be the projection so that we
want to show g o H fo = Rot, and it is enough to show Because H fy is homogeneous and
continuous, g o H fj is a group homomorphism and we claim that 0(q o H fy) = k. Indeed,
let 0 : R/Z — R be the section with value in [0,1) so that o o g o H fj is a Borel function
from our group Z to the coefficient module R. By definition of ? we have

0(go Hfyg) =—0(cogoHfy)=0fo—d(fo—Hfo+ooqoHf)

because §H fy = 0 since H fy is a homomorphism. The function fy — Hfy + o oqo Hf
takes integral value because f and H fy — oo qgo H fy do and is bounded because fy — H fy
and o o go H fy are. So in H3, (Z,Z) we get

0(qo Hfy)=[df] =[] =k.
So by definition of the rotation number, Rot.(g) = ¢ o H fo(g). O

Example 6.1.1. Let G = Homeo" (R/Z) be the group of orientation preserving homeo-
morphisms of the circle. Let G = Homeog(R) be the group of orientation-preserving
homeomorphism of R that commutes with the translation 7' : x — x + 1. For g € G let
g € G be the only lift of g with 0 < §(0) < 1. The bounded Euler class ¢® € Hg, (G, Z) is
the bounded cohomology class of the cocycle ¢ defined by, for all g,h € G,

Gh = L&}/LTC(g’h) .

The usual rotation number of a homeomorphism of the circle g € G is exactly Rot,(g). If
1 : PSLy(R) — G is the action of PSLy(RR) on the circle and if x = t*e?, then (PSLa(R)), is
isomorphic to PSL; (R) and the translation number function of the first Part is Trans,, or
more precisely the following diagram commutes

PSL2(R)

(PSL2(R)),;, ——— R.

Trans,

6.1.3 Lie groups of Hermitian type

For this section the reference is [HelO1].

Definition 6.1.3. A (Riemannian globally) symmetric space is a connected riemannian
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manifold X such that for all x € X, there exists an isometry s, of X fixing x and with
T8y = —Idr, x. The isometry s, is called a geodesic symmetry,

For X a symmetric space, let Isom(X) be its group of isometries equipped with the
compact open topology and G = Isom,(X’) the connected component containing the iden-
tity.

The group G admits a unique Lie group structure compatible with its topology.

A simply connected symmetric space X has a Fuclidean factor if there exists k € Z~
and X’ a symmetric space such that X is isometric to the product R* x X",

Proposition 6.1.2. Let X be a simply connected symmetric space and G = Isomq(X).
Then G is semisimple if and only if X has no Euclidean factor.

If X has no Euclidean factor then we say that
1. X is of compact type if the sectional curvature of X' is non-negative.
2. X is of non-compact type if the sectional curvature of X is non-positive.

Proposition 6.1.3. Fvery simply connected symmetric space is isometric to a unique
product of a FEuclidean space, a symmetric space of non-compact type and a symmetric
space of compact type.

A simply connected symmetric space X is said irreducible if X is not an Euclidean
space and whenever X = A] x &y then X = &) or X = X,. Irreducible symmetric spaces
are either of compact type or of non-compact type.

Every simply connected symmetric space decomposes into a product of irreducible
symmetric spaces:

Proposition 6.1.4 (De Rham decomposition). Let X' be a simply connected symmetric
space. Then there exists a unique (k,1) € (Z=0)? and non isometric irreducible symmetric
spaces X1, ..., X; unique up to isometries and permutations such that

X~REx Xy x--xX.
Moreover, we have a Lie group isomorphism
Isom, (X) ~ Isom,(RF) x Isome(X;) X - - - x Isom, (X))

Proposition 6.1.5. Let X be a non-compact symmetric space and G = Isomo(X). Then
the group G is semisimple with trivial center. Moreover, G is simple if and only if X is
irreducible.
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A flat of rank k in a non-compact type symmetric space X is an isometric embedding
RF — X. A flat is mazimal if maximal for the inclusion. Every flat is contained in a
maximal flat and all maximal flats are conjugated under the action of G. The rank of X
is the dimension of a maximal flat. Since geodesics are flats of rank 1, the rank of X is at
least 1.

A maximal compact subgroup of a Lie group is a compact subgroup which is maximal
for the inclusion. In a Lie group, they are all conjugated. Let X be a symmetric space of
the non-compact type, G = Isoms(G), x € X and K =G, = {g € G, g(x) = z}.

Proposition 6.1.6. The subgroup K < G is a mazimal compact subgroup and as G-spaces
we have

G/K~X
induced by g € G— g-x € X.

If G is a connected semisimple Lie group with no compact factor and finite center and K
a maximal compact subgroup one can equip the homogeneous space G/K with a symmetric
space structure. The resulting symmetric space is called the symmetric space of G and the
action of G on G/K is isometric and yields a surjective homomorphism G — Isom,(G/K)
which has finite kernel.

Lie group and cohomology

The various cohomology theories we introduced in Section[6.1.2] behave nicely for connected
semisimple Lie groups with finite center and no compact factor. We summarize the main
facts we will need. Let G be a connected semisimple Lie group with finite center and no
compact factor, X its symmetric space and K a maximal compact subgroup of G.

The following proposition follows closely Proposition 7.7 of [BIW10], we summarize the
proof.

Proposition 6.1.7. The following diagram is commutative, the horizontal lines are exact

sequences and the vertical lines are comparison maps and are isomorphisms

0 —— H3,(G,Z) —*> H2,(G,R) —— H2,(G,R/Z)

| | -

0 — H%(G,Z) —— H2(G,R) — H2(G,R/Z).

Moreover, the images of i and iy, are lattices.
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Proof. Because G is semisimple, every homomorphism G — R/Z is trivial and thus
Hom(G, R/Z) = 0. The horizontal lines are then the exact sequence of coefficient (6.1)). The
fact that the comparison map HZ (G, R) — H2(G,R) is an isomorphism is proven in [BM02].
The fact that the comparison map H3, (G, Z) — H3(G,Z) is also an isomorphism follows
from the commutativity of the diagram and the fact that H2(G,R/Z) = H2 (G,R/Z).
Finally, the image of iy, is a lattice because the image of 4 is.

O

Lemma 6.1.5. Any G-invariant k-form on X is closed.

Proof. This proof comes from [BILW05] Lemma 2.1. Because the action of G on X is
through Isom,(X) we might as well assume G = Isom,(X). Let w € QF(X)® be a G-
invariant k-form on & and s € Isom(X’) be the geodesic symmetry at some point = € X.
For g € G, because G is normal in Isom(X), we have sgs € G and thus by G invariance of
w we have sgsw = w, that is

g(sw) = sw

thus sw is also G invariant. Moreover Tys = —Id and thus (sw), = (—1)*w,. By G

kw = sw. Applying it to both w and dw

invariance the equality holds for all z, that is (—1)
we get

dw = (—l)kd(sw) = (—1)ksdw = —(—1)k+15dw = —dw. 0
If w € Q%(X)° is a G-invariant 2-form on X and x € X then the function

1

Cw(g(]agng) = 5= W, (62)

2 /A(90$,91$79233)
where A(gox, g1, gox) is the geodesic triangle with vertex gox, g1 and goz, is a homoge-
neous G-invariant 2-cocycle which is moreover bounded and whose bounded cohomology
class does not depend on x and the map

Q?(X)¢ — H2(G,R)

C

w — [cw]
is an isomorphism called Van Est isomorphism, see [vE53].
We recall the following fact

Lemma 6.1.6. If G is a simple connected Lie group with finite center, then H2(G,R) has

dimension 0 or 1.

Whether the dimension of H2(G,R) is 1 or 0 depends on whether X is Hermitian or
not. Hermitian symmetric spaces are particular cases of Kéhler manifolds.
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Complex and Kahler structures

Definition 6.1.4. 1. A complex manifold is a pair (M, A) consisting of a smooth man-
ifold M together with an atlas of charts 4 such that each chart (U, ¢) consists of
an open set U C M and a diffeomorphism ¢ : U — ¢(U) C C™ and where every
transition map is a biholomorphism.

2. An almost complex structure J on a manifold M is a tensor J : TM — TM such
that J? = — Idym.

On C" there is a natural almost complex structure given by the multiplication by 7 in
the tangent space. It is preserved by biholomorphisms and thus every complex manifold has
a natural almost complex structure. An almost complex structure induced by a complex
manifold structure is said integrable. Conversely, we have the following theorem, for which
we refer to [NN57].

Theorem 13 (Newlander, Nirenberg)
An almost complex structure J on M 1is integrable if and only if for all X,Y wvector fields
on M we have

[JX,JY] = JJX, Y]+ J[X,JY] + [X,Y].

Definition 6.1.5. Let (M, .J) be an almost complex manifold. A riemannian structure g
on M is said Hermitian if for all X,Y vector fields on M we have

g(JX,JY)=g(X,Y).

If (M, J, g) is a complex Hermitian manifold, that is if J is an integrable almost complex
structure, then we define the following tensors:
e a hermitian metric

MX,Y)=9(X,Y)+i9(X,JY);

e a 2-form

w(X,Y)=9(X,JY).

Definition 6.1.6. A complex Hermitian manifold is Kdhler if the associated 2-form is
closed.

Hermitian symmetric spaces

Definition 6.1.7. Let X be a connected complex manifold with a Hermitian structure.
We say that X is a Hermitian symmetric space if X is simply connected and if for every
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x € X there exists s, a biholomorphic isometry fixing « and with T;s, = —Id7, x.

Forgetting the complex structure, we see that every Hermitian symmetric space is a
symmetric space of even dimension.

The complex structure together with the Riemannian metric of a Hermitian symmetric
space yields an invariant 2-form with is closed by invariance, thus

Proposition 6.1.8. Fvery Hermitian symmetric space is Kdhler.

Definition 6.1.8. A Lie group G is said to be of Hermitian type if G is a semisimple Lie
group with finite center and whose symmetric space is Hermitian of non-compact type.

Proposition 6.1.9. Let G be a simple non-compact Lie group and X its (irreducible)
symmetric space. Are equivalent

1. G is of Hermitian type;
2. H2(G,R) has dimension 1;

3. H4(G,Z) has rank 1;

B

. m(QG) has a Z factor;

&

the center of a mazximal compact subgroup of G is not discrete.

Proof. That 1 and 5 are equivalent is proved in [Hel01], Chap.VIII Theorem 6.1.
Assertions 2 and 3 are equivalent since H3(G,Z) is a lattice in H2(G,R) by Proposi-
tion G171
We show 3 and 4 to be equivalent. Suppose 71(G) = A x Z and let G; = G/A where G
is the universal cover of G. The following sequence is exact

0—-Z—-G —G—1

and G; is connected, thus H%(G,Z) is non trivial. Conversely, if x € H3(G,Z) is non
trivial, then seeing x as a bounded integral class, let f = Rot, |k which is a homomorphism
K — R/Z because K is compact and thus HZ (K,R) = 0. The homomorphism f is non
trivial because x # 0 and

H%,(G,Z) — Hom.(K,R/Z)
K — ROt,{|K

is an isomorphism, see [BIW10] Proposition 7.7(2). Thus we get a surjective homomorphism
7T1(G) = 7T1(K) — 7.
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If G is Hermitian, its symmetric space has a symplectic form w which is moreover G
invariant and thus Q2(X)® is non trivial, so by Van Est isomorphism H2(G, R) has positive
dimension, hence dimension 1, thus 1 implies 2. Conversely, let w be a non trivial G-
invariant 2-form on a symmetric space X'. Notice that w has to be nondegenerate. Indeed,
w is K-invariant and the action of K on T,X is irreducible because X is irreducible. The
kernel of w is a linear subspace of T, X which is stable under K, so it must be trivial since
wy is non trivial. Thus 2 implies 1, since w is then a G-invariant symplectic form and
together with the Riemannian metric we get an integrable almost complex structure and
thus a Kéahler structure. O

Maximal polydisk

Let G be a Hermitian type Lie group and X its symmetric space. Let n be the rank of X.
e A polydisk in X is a totally geodesic and holomorphic enbedding ¢ : D — X.

o A maximal polydisk in X is a polydisk whose image is maximal for the inclusion. All
maximal polydisks are conjugated and of (complex) dimension n.

e A diagonal disk in X is the image of the diagonal D C D™ under a maximal polydisk
D" — X.

If d: D — X is a diagonal disk associated to a maximal polydisk ¢ : D" — X', then for
some r > ( there exists homomorphisms

Spin” —— Spin” x --- x Spin”

)

such that t is 7-equivariant and d is J-equivariant and
x( b _ b * b b
T (kg R) = K(spinm)» R and 0" KGR = NKSpin™ R -

Hermitian symmetric space of tube type

Definition 6.1.9. A Hermitian symmetric space is of tube type if it is biholomorphic to
a domain V @ i) where V is a real vector space and 2 C V is a convex open non-empty

cone.
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A Hermitian Lie group is of tube type if its symmetric space is. Hermitian Lie groups
of tube type include Sp,,, (R), SU(n,n) and SO(2,n).
The following fact can be found in [BIW10] remark 7.11, as a consequence of [CKQT7].

Proposition 6.1.10. If G is a Hermitian Lie group of tube type, then the real Kihler class
and the real bounded Kdihler class are respectively the image of an integral class kg7 €
H%(G,Z) called the integral Kéhler class of G and of an integral bounded class KJ%Z €
H2,(G,Z) called the bounded integral Kéhler class of G.

Ezample 6.1.2. The Lie group PSL2(R) is Hermitian of tube type, indeed its symmetric
space is biholomorphic to the upper-half plane which is R @ iRsg. Let x = K%SLQ (R),Z be
the bounded integral class of PSLy(R), e’ € H3, (Homeo™ (R/Z),Z) be the bounded Euler
class and ¢ : PSLy(R) — Homeo™ (R/Z) the section such that 0 < Trans,(:(g)) < 1. Then
Rot, = Rot,..» and thus |k = ¢*e’|x where K is a maximal compact subgroup of PSLy(R).
In unbounded Borel cohomology, the restriction

Hp(PSL2(R),Z) — Hp(K, Z)

is an isomorphism. Thus, using Proposition we conclude that (*e® = k.

6.1.4 The bounded fundamental class of a surface

For surface groups and surfaces, bounded cohomology behave very differently than the
unbounded version. Let S = S ¢ with x(S) < 0.

Bounded fundamental class

If s > 0, the fundamental group of S is free on 2g + s — 1 generators and the cohomol-
ogy groups H"(m1(S), R) vanish for n > 1 and R = R, Z, R/Z, and if s = 0, we have
H?(71(S), R) ~ R. However,

Proposition 6.1.11. Let S = S, ; with x(S) < 0. Then HE(m1(S),Z) and HE(m1(S),R)
are infinite dimensional.

Ifk = nf’DSLQ(R) 7 is the integral bounded Kéhler class of PSLo(R) and if hy, hy : m1(S) —
PSL2(R) are hypebolizations of S, it is shown in [BIW10] that the actions of h; and he
on the circle are semiconjugated in the sense of E. Ghys |[Ghy87] and as a consequence in
HZ(71(9),Z) we have

hi(r) = ha(k) .
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The class
K%z € Hy(m1(5), Z)

so obtained is called the integral bounded fundamental class of S, and its image f@%,R €
HZ(m1(9),R) by the change of coefficient map is called the real bounded fundamental class
of S.

Note that the function ROtH%Z :m1(S) — R/Zis trivial. Indeed, if h : m1(S) — PSL2(R)

is a hyperbolization of S, then for all v € m1(5),

Rot,s,_(7) = Rot (h(7)) = 0 (6.3)

b
FpsLy (r),z

because h(7) fixes a point in R/Z.

Definition of T"S° and s,

Recall that T'S° is the tangent bundle of S with the zero section removed. Let n be a
positive integer. We construct a real punctured plane bundle 7"S° together with a n-cover
p":TS° — T"S°.

To this end, let Z be a Riemann surface structure on S. The tangent bundle T'Z of
Z is a complex line bundle and forgetting the complex structure we recover the tangent
bundle 7'S of S. We consider the line bundle TZ®" where the tensor product is over C.
The natural bundle map

pt: TZ — TZ®"
I

is a m-cover with singularity at the zero section and for a small open set U € Z we have

the following commutative diagram

TZ|ly —— U xC

Jpn J(Id7z»—>z")

T™Z|y —~ U x C.

Let T™S be the underlying real structure of TZ®"™. The singular n-cover p" : T'S — T"S
yields a regular n-cover
pt:TS° —T"S°

after restriction to 1°S°.
In Lemma we defined s : m1(S) — w1 (T'S°) section of 71 (T'S°) — m(S). If S is
equipped with any hyperbolic structure, recall that s(g) € 71 (T'S°) is the only antecedent
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of g that can be represented by a loop freely homotopic to the tangential lift 7 where ~ is
the only geodesic freely homotopic to a curve representing g.
Let s, be the composition

s s (S) 5 w1 (T8°) 25 my (T7S°).

We use the section s, to get a particular presentation for m1(7™S°) from a standard col-
lection of curves on S.

Presentation of w1 (7"5°)

Let (v, Bi,7;) be a standard collection of curves on S and a;, b;, c; € m1(S) the relative
homotopy classes of loops freely homotopic to «;, 3;,y; respectively, such that we have the
usual presentation of ().

Lemma 6.1.7. The group m (T"S°) has the following presentation
Wl(TnSO) :<5n(a1)v Sn(bl)v R Sn(ag)’ Sn(bg)y Sn(cl)a SRR Sj(cs)a t |

g s
t is central and H[sn(ai), Sn(b;)] H sn(cj) = t—nx(S)>7
i=1 j=1

where t = trng is the loop around the origin.

Proof. We proved the case n =1 in Lemma [5.1.2] The general case is a consequence of it
as the relation

g S
[Tlsn(a), su(00)] [ sn(c;) = t=™x)
i=1 ute
is the image by p} of the corresponding relation in 71 (7'S°). .

Some properties of s,

Recall from Section that if
0Z5GB H—1
is a central extension, if 0 : H — G is any section of p, then do : H x H — 7Z defined by
o(x)o(y) = o(zy)i(dp(z,y))

is an inhomogeneous 2-cocycle.
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If s > 0, the cocycle ds,, is trivial in H% (7 (S), Z) since this cohomology group is trivial.
However, ds,, is actually bounded and not trivial in Hg, (71(S), Z) and

Lemma 6.1.8. The 2-cocycle ds, is bounded and represents nk%, in Hgy (m1(S), Z).

Proof. 1t is enough to prove it for n = 1 since ds,, = nds where s = s1. Let o : PSL2(R) —
PSL2(R) be the only section with 0 < Trans,(o(z)) < 1 for all x € PSLy(R) and where
Kk = “IE’SLQ(R) ; is the bounded integral Kahler class of PSLy(R). Because o is a section

of PSL2(R) — PSL2(R), the cocycle do represents the integral Kéahler class of PSLy(R).
Moreover, a little computation yields

do(z,y) = Trans,(o(x)o(y)) — Trans,(o(xy)) .

Since Trans, is a quasimorphism and Trans,(o(z)) is bounded uniformly in z, do is bounded
and thus represents x the integral bounded fundamental class of PSLa(R).

We now show h*do = ds for h : m1(S) — PSLy(R) a hyperbolization of S, which will
conclude, since /1%72 = h*k = h*[do]. Let h : m1(TS°) — PSLy(R) be the lift of i given
by Lemma [3:2.2] In particular, if v is a closed geodesic whose relative homotopy class
is z € m1(S5), then the relative homotopy class of the tangential lift 7 of v is s(x) (see

Lemma [3.2.1)). In particular we get

Applying h to the equality s(z)s(y) = s(xy)t%séx’y) one gets

ds(z,y) = do(h(z), h(y))
for all z,y € m1(S), thus proving [ds] = [h*do] = h*k = /ﬁgz. O

The section s, enjoys some more properties. Let Xy € T"S° be the base point of
m1(T"S°) and xp its image in S, so that m1(S) = 71 (S, zo) and 7 (T™S°) = m (T"S°, Xo).
If f is a diffeomorphism of S, T'f acts on T'S and on T™S for all n. We write T"f : T"S —
T™S and the class of T" f up to inner automorphism depends only on the isotopy class of

I
Lemma 6.1.9. 1. Let f € Difft(S). Suppose moreover that T"f(Xo) = Xo so that
we have automorphisms f. : m(S,x0) — m(S,x0) and T"f, : m(T"S°, Xo) —
m1(T"S°, Xo). Then for all z € 71(S),
sn(f«(@)) = (T" f)«(sn()) .
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2. Let k € Z and x € m1(S). Then
sn(2%) = s (x)F .
Proof. Since s, is the composition of the section
s=s1:m(S) = m(TS°)
and the homomorphism
py:m(TS°) — m (T"S°), c— "

and since for all v € T'S°,

(Tf()" =T"f(v),

it is enough to prove the lemma for n = 1.

Let first show s(z¥) = (s(x))* . Suppose S is equipped with any finite volume hyperbolic
metric and suppose first that x is a non peripheral element. Let v be the only geodesic
associated to x. By definition, s(x) is the only element of m1(7'S°) both antecedent of x
and freely homotopic to the tangential lift of v, see Lemma Since first taking the
tangential lift 7 of v and then travelling k times along 7 is the same as taking the tangential
lift of the geodesic v travelled k times, we get s(z¥) = s(x)*. If  is peripheral, we do the
same thing with a horocycle instead of the geodesic. Since h is a homomorphism, we get
h(sn (@) = (A(sa(2)).

Then we show the equivariance under f. Let z € m1(S) and 7 be the only geodesic on
S (or a horocycle if z is peripheral) freely homotopic to z. By definition of s, on the one
hand s(f«(x)) € m(T'S°) is the only antecedent of f.(x) € m1(S) that is freely homotopic
in TS° to f(v), the tangential lift of f(). One the other hand, T'f.(s(z)) € m1(T'S°) is
the only antecedent of f.(x) € m1(S) that is freely homotopic to T f.(¥). But the chain
rule implies

m: Tf*(ﬁ)

thus proving the lemma. O

6.1.5 Integral maximal homomorphisms

Let G be a simple Hermitian Lie group of tube type, X its irreducible symmetric space
of rank n = ny, IQEZ its bounded integral Kéhler class and ’{%,R its bounded real Kéhler
class.

Let S = S, s be a genus g compact oriented connected surface with s punctures, ”%,Z €
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HZ(71(9),Z) its bounded integral fundamental class and Iﬁ}b&R € HZ (m1(S),R) its bounded
real fundamental class.

The definition of a maximal homomorphism we adopt differs but is equivalent to the
one used in [BIW10], see their Corollary 8.6.

Definition 6.1.10. 1. A homomorphism p : m;(S) — G is mazimal if
P*K%,R = nﬁg,R :
2. A homomorphism p : m1(S) — G is integral mazimal if
P*H%,Z = n"ég,z-

Proposition 6.1.12. Let G be a simple Hermitian Lie group of Hermitian type and k =
H%Z its bounded integral Kdhler class. Let p : w1 (S) — G be a homomorphism. Then the
following statements are equivalent

1. p is integral mazimal;
2. p is maximal and Rot, op = 0.

Proof. First assume p is integral maximal. Then p is maximal and for v € m1(S),

Rot,(p(7)) = Rotpex(7)
= RO’Gnﬂg’Z (’y)
=nRot (y)=0,

Ksz

using equation [6.3] for the last equality. Now assume p to be maximal and Rot, op = 0.
Let 8 = p*m%z — nnf’gz. Because p is maximal, taking real coefficient we get Sr = 0 and
using the exact sequence of coefficient (6.1)) we find f € Hom.(m1(S),R/Z) such that

Af) =B=p"rEy —nkby.

Now if v € m1(S), we get

f(y) = Rotp*,{gﬁz(v) - ROtm’gZ (7) =Rot, (p(y)) =0.

G,Z
So f=0and 8 =0, that is p*Kg 5 = 1k 5 . .

Let Homppax (S, G) be the space of maximal homomorphisms and Hompygnax (S, G) the
space of integral maximal homomorphisms. We write S instead of 71(S) to remind us
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of the dependence in R%Z which cannot be defined with 71(S) alone as soon as S is not
compact. Every maximal homomorphism is reductive (see Theorem 5 of [BIW10]) thus
the action of G by conjugacy on Homyax (S, G) is proper and we let

Repyiax (S, G) = Homypax (S, G) /G and Reprinax (S G) = Hompyenax (S, G) /G

be the representation varieties.

If p is a homomorphism into PSLy(R) or its cover Spin” then p is maximal if and only if
p is integral maximal. Indeed, if p is maximal and v € m(.5), then p(7) is either parabolic
or hyperbolic and in both cases has rotation number 0. We don’t know in general whether
or not every maximal homomorphism in a tube type Hermitian Lie group is integral.

If G = Isom,(X) is a simple Hermitian Lie group of tube type then integral maximal
homomorphisms exist: indeed if A : PSLy(R) — G is a diagonal disk, then A*K/EZ =
n/ill’;Sl_2 (R)Z and thus if A is a hyperbolization of S, then A o A is integral maximal.

Let p : m(S) — G be a maximal homomorphism. In Lemma 10.8 of [BIW10], the
authors show that there exists an integer eg depending on G only such that

Vy e m(S), Rotﬁzéz(p('y)) €ec'Z/Z. (6.4)
As a consequence, we get

Proposition 6.1.13. The spaces Hompinax (S, G) and Repryinvax (S, G) are a union of
connected components of, respectively, Homppax (S, G) and Repya (S, G).

Proof. Let k be the integral bounded Kéhler class of G, h € Homp\ax (S, G) any maximal
integral homomorphism and p € Homypp,x (S, G) be any maximal homomorphism. The real
class in H? (G, R) corresponding to the integral class p*x — h*x € Hj,, (G, Z) vanishes and
thus p*x — h*k = 0(R,) for some R, € Hom,(71(5),R/Z), see the long exact sequence
For v € 71(S), from the definition of the rotation numbers one gets

Ry(7) = Roty(p(7)) — Roty(h(7)) -

The continuous homomorphism R, takes value in eg 1Z/ 7Z because of equation and we
obtain a continuous application

R : p € Homppax (S, G) = R, € Hom,(m1(S), ec' Z/7Z)
where Hom,(71(S), ec'Z/Z) is discrete and

HomlntMaX(S, G) = ’Ril(O)
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is open and close as preimage of an open and close set. O

Integral maximal homomorphisms and lifts

Let '
025G, 561

be the Z-central extension of G associated to kK = /il(’;z (forgetting that it is bounded). Let
Trans, : G, — R be the translation number function.
For r € Z~, let
Gr = GH/Z(TZ)

and Trans(" : G, — R/rZ be the projection of Trans, : G, — R. The following sequence
is exact

0 Z/rZ 5 G 25 G > 1. (6.5)

The group G, is a semisimple Lie group with finite center and Hermitian of tube type,
however it needs not be connected.

Lemma 6.1.10. Let n be the rank of the symmetric space of G. If n and r are coprime
then G, is connected.
Moreover, the pull back homomorphisms

prHE.(G,, Z) — H3,(G,Z) and p;:HZ.(G,,R) = H:.(G,R)

are tsomorphisms compatible with the change of coefficient and comparison maps.

Proof. Let B>o(G) be the set of Borel sets of G with positive Haar measure. For B € B> (G)
and k € Z let

By, ={(9,k) : g € B}

so that By C G, is a measurable set with positive measure, see [6.1.2] Recall that the
topology on G is the for which the family

{5}

is a basis of neighborhood of the identity.

BeB~o(G),keZ
First suppose n = 1, that is G is locally isomorphic to PSLy(R). In this case, and using
notation from section Gy, is isomorphic to PSLz(R) through

¢: PSLy(R)
g

G

N
= (a(9), E (Trans, (9)))
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where ¢ : PSLy(R) — G is the universal cover and E(z) = max{k € Z : k < z}. Indeed,
the cocycle

c:(g,9") — E(Trans,(gg’)) — E(Trans,(g)) — E(Trans.(g'))

is equal to do, where o : H — PSLy(R) is the only section with 0 < Trans,(c(g)) < 1 for all
g € H, so that c is a bounded Borel cocycle representing « and thus ¢ is a homomorphism.
Moreover ¢ is measurable and maps measurable sets with positive measure to measurable
sets with positive measure, thus ¢ is continuous at the identity and thus continuous. In a
similar fashion, one checks that

G. — PSLy(R)
(9,k) — o(g)r"

is a continuous homomorphism inverse of ¢, hence the claimed isomorphism.

Let now G be any Hermitian Lie group of tube type and n be the rank of its symmetric
space. Let A : H — G be a diagonal disc where H = Spin® is a finite cover of PSLy(R). In
particular, A*kg 7 = nKH z.

First we show that Hyy, , has n connected components. The following homomorphism

PSLa(R) = Hyg, — Hue
(h, k) — (h, nk)
is measurable and thus continuous and its image image Hiy = {(h,nk) : h € H, k € Z}

is connected. Moreover, as a subgroup of Hpy, ,, H(g) is locally closed, hence closed. It is
also open since it is the complement of the union

(Ide 1) : H(()) U...u (IdH,n — 1) . H(O) ,
where Idy is the identity element of H. If r is an integer coprime with n, let
Hr = HNHG,Z/TZ .

Let us show that the map = : Hgy — H, is surjective. Given k € Z, since r and n are
coprime there exists [ € Z so that In = k mod r. Thus (h,k) € H, is the image of
(h,In) € H(g). It follows that = is surjective hence H, is connected.

Now we consider the homomorphism A, : H, — G, induced by A : H — G. Its image is
connected because H,. is, so that (Idg, k) and (Idg, k') lie in the same connected component
for any k, k' € Z/rZ. If g € G, one has (g,0)(Idg, k) = (g, k) because the inhomogeneous
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cocycle ¢ representing kg z is normalized, that is c(Idg, g) = 0 for all g € G, and since the
left multiplication by (g,0) in G, is continuous, (g, k) and (g, k') are in the same connected
component.

To show that G, is connected, we now only need to show that for g,¢’ € G, (g,0) and
(¢',0) are in the same connected component. Pick any continuous path g, € G with go = g
and g1 = ¢, and lift it to g € G, so that go = (g,0). Then g3 = (¢, k) for some £k,
where (¢', k) is in the same connected component as (¢’,0). Thus (g,0) and (¢’,0) are path
connected and G, is connected.

Lastly, p; : HZ.(G,,R) — H2_(G,R) is a isomorphism because both are equal, through
Van Est isomorphism, to Q2(X)°. O

Lifting an integral maximal homomorphism yields an integral maximal homomorphism.
More precisely we have the following lemma.

Lemma 6.1.11. Assume G, is connected. Let p: m1(S) — G,. Then p is integral maximal
if and only if p, o p: m(S) — G is.

Proof. Since G, is connected and with p, : G, — G the projection, we have
b b
P:HG,Z = KG,,Z

since the symmetric space of G, is the symmetric space of G.
Thus for p : m1(S) — G, one has

,O*liléhz = nnf’g,z if and only if p* op;fngz = (pro p)*/@%jz = nf{gz . O

If G, is not connected, we define integral maximal homomorphism to satisfies the pre-
vious lemma:

Definition 6.1.11. A homomorphism p : 71(S) — G, is (integral) mazimal if p, o p :
m1(S) — G is.

Let p € Homyimax (S, G). By exactness of the sequence 0 — Z/rZ — G, Py G >0,
the set

VZ = {T] € HomlntMax(Sa Gr)a DProp= 77}

of lifts of p to G, is, if not empty, an affine space over Hom(m(5),Z/rZ). Indeed if
m,n2 € V), there exists a unique homomorphism 3 : 71(S) — Z/rZ such that

my) =mn0y) i (8(v)),

95



where i, : Z/r7 — G,.
We refers to [BIW10] for a proof of the following fact, as it is a consequence of their
Theorem 12.

Proposition 6.1.14. Suppose S is not compact and for all j, let c; be a simple loop in the
positive direction around the jth puncture. Let p € Hompynax (S, G) be an integral maximal
homomorphism and p : m1(S) — Gy any lift of p. Then

- Z Trans,(p(cj)) =n(2g —2+s).

And if n: m1(S) — G, lifts p, then
- Z Trans(") (p(cj)) =n(2g —2+s) modr.
If the surface S is closed, 71 (5) is not free. Let {a;, b;}; be generators of 71(S) with
the usual only relation [[7_;[a;, b;] = 1.

Lemma 6.1.12. Suppose S is a closed surface. Let p € Homyezax (S, G) and Ay, By € G
be lifts of p(ag), p(be) respectively. Then

ﬂAg,Bg | =1i(n(2g —2)).

As a consequence, if S is closed, an integral mazximal homomorphism lifts to G, if and only
if | n(2g — 2).

Proof. Let v = p*m%z be the pull back of the regular Kahler class of G. By definition
and naturalness of the comparison maps with respect to pull back, we have v = nkgz. If
[S] € Hi(S,Z) is the fundamental class of S we have

{v[8]) = n{rs6lS])
n(2g -2),

thus the obstruction to lifting p is n(2g — 2). O
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6.2 Lifting an integral maximal homomorphism

For this whole section we fix G a simple Hermitian Lie group of tube type, x = Ii%’z its
integral bounded Kéhler class,

05Z56G. B5G—1

the central extension of G associated to x (forgetting that « is bounded) and 7 = i(1) € G .
Recall the n cover T'S° — T™S5° and the section s, : 71 (S) — 71 (1T™S°) such that ds,,
is a bounded inhomogeneous cocycle representing nlﬁ%}z € H3, (m1(9),Z).
The aim of this section is the following proposition.

Proposition 6.2.1. Let G be a simple Hermitian Lie group of tube type and real rank
n, K = H%,Z its integral bounded Kdihler class. Let T™S° be the punctured plane bundle
n-covered by the punctured tangent bundle of S.

For any integral mazimal homomorphism h : m(S) — G, there ezists a unique h
T (T™S°) — G, such that

e h lifts h, that is h(trng) = T and the following diagram commutes

m(T"S°) —— G,

| |

71(S) _h G;

e for all z € m(S), Transy(h(sn(z))) =0.

The map Hompyenax (S, G) — Hom (71 (T™S°), G,), h +— h is continuous and yields another
continuous map Repryiax (S, G) — Rep(m(T"S°), Gx) such that for every mapping class
¢ € I'(9) and every h € Homypenax (S, G)

¢-[h]=¢-[h]
where here [-] denotes the conjugacy class.

6.2.1 Construction of h

From now on and until the end of the section, ¢ will denote the section of p : G, — G

defined by
For all g € G, 0 < Trans.(o(g)) < 1.
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Lemma 6.2.1. Let h: m1(S) — G be integral mazimal. Let A; = o(h(a;)), Bi = o(h(b;))

and Cj = o(h(cj)). Then
g

HA,,B HC = 720 2+s)
7j=1

=1
Proof. We first suppose s > 0. In this case, let hg : m1(S) — G, be any lift of h. One at
least must exist since m1(S) is free. Proposition [6.1.14] yields

- Z Trans,(ho(cj)) =n(2g —2+s).

J
We may assume ho(a;) = A; and ho(b;) = B; for all i. Indeed, for all 4, one has p(ho(a;)) =
h(a;) = p(A;) and p(ho(b;)) = h(a;) = p(Bi), so that there exists «;, 5; € Z with

ho(ai) = A,ﬂ'ai and ho(bl) = B{Tﬂi

and we define h{, : m1(S) — G, in the following way

ho(as) = ho(a;)7™*
hf)(bl) = ho(bi)T_Bi

Since 7 is central in G, h{, is a homomorphism lifting h and moreover h{(a;) = A; and
ho(b;) = B.

Since h is integral maximal, we have Rot,(h(z)) = 0 for all z € m1(S) and thus
Trans, (ho(cj)) = Trans,(Cj) =0 mod Z. Let m; = — Trans,(ho(c;)) € Z. We have

T ho(cs) = G

consequently
g g
1114, Bi] H i = [1[Po(as), Hho )T
i=1 j=1 i=1
S
= ij
j=1
F(29—2+s)
If s =0, that is the surface is closed, we use Lemma [6.1.12] O
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6.2.2 Proof of Proposition [6.2.1

Let h € Homppenax(S,G). We first define h on a generating set. Let h be the only
homomorphism 71 (77"S°) — G, such that for all z € {a;,b;, ¢}, h(sn(x)) = o(h(z)), that
is the image of s(z) is the only antecedent of h(x) with translation number equal to 0, and

h(tpng) = 7. By Lemma
g ~ ~ ~ ~
[T17(a:), 2(v:)] T] Rc;) = h(trng)" 292
=1

so h is indeed a homomorphism.
Proposition 6.2.2. For all z € m(S), h(sn(x)) = o(h(z)).

Proof. The cocycle do represents /QEZ and since h is integral maximal, the pullback h*do
represents n/iléz.
Moreover, if z,y € m1(S) by definition of ds,, we have

sn(2)sn(y) = s (@y)t?n (V)

and thus i ] ]
h(sn(x))h(sn(y)) = h(sn(xy))TdSn(x’y)

because h is a homomorphism and fz(tTnS) = 7. As a consequence we get the equality
d(hos) = ds,.
Using the commutativity of

we construct 3 : m(S) — Z such that for z € m(S)
h(sn(x)) = o (h(a))r"™)
In H, (71(S), Z) we have
0 = [d(hos,)] = [d(o o h)] = [df]

so (8 is at bounded distance from a homomorphism m1(S) — Z. We show that actually
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g =0.
First we show that § is homogeneous. It is enough to show that for all € 7;(S) and
keZ,

h(sn(2")) = (A(sa(2)))" and o (h(2%)) = (o (h(x)))".

The equality s,(z¥) = (s,,(2))* was proven in Lemma

Then we show o(h(z*)) = (o(h(x)))*. We write xk = ”%,Z' Since h is integral maximal,
we have Roty(h(z)) = 0. Thus o(h(x)) is the only lift of h(x) with translation number
0. Since Trans, is homogeneous, o(h(z))* has also translation number 0, which shows
(o (h(@)* = o(h(ab)).

Since f(x) is the only integer such that

h(sn(z)) = o(h(z))7?®

we get B(zF) = kB(x).

Suppose f = A + € where A : m1(S) — Z is a homomorphism and € : 71(S) — Z is
bounded. Since § is homogeneous, so is €, thus € being bounded it must be 0 and § = A is
a homomorphism.

By definition of h, both h o s, and o o h agree on the generating set of 71 (S) so for all
I<i<gand1<j<s,

Bla;) = B(bi) = B(c;) = 0.
So B is a homomorphism trivial on a generating set, hence trivial. O

Proposition 6.2.3 (Mapping class group invariance). For all h € Homppmax (S, G), for
all p € T'(S),

—_—~—

¢-[h)=¢-[h].

Proof. Let f be an orientation-preserving diffeomorphism of S whose mapping class is ¢
and such that f(xg) = xo and T'f(Xo) = Xo, where m1(S) = 71(S,z0) and m(IT"S°) =
Tl(TnSO, X()) .

We use the uniqueness of h as the only lift of A with Trans,(h(s,(z))) = 0 for all
z € m(S). Clearly both f - h and f-hlift f-hand for all z € m1(9),

Transn(m(sn(:z:))) =0.
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It remains to show Trans,(f - h(sn(z))) = 0, and applying Lemma to f~1

Trans,(f - fL(Sn(fL’))) = TTaDSK(B(Tnf*_l(Sn(fU))))

= Trans, (h(s,(f; }(x)))
=0

because by construction of h, Trans, o h o s, = 0. O

This last proof concludes the proof of Proposition [6.2.1} Indeed,
Trans,oh o s, = Trans,oo o h =0

because h is integral maximal so for x € m(5), Trans.(o(h(z))) = 0 mod Z and by
definition of o, we have 0 < Trans,(o(h(x))) < 1.

6.3 Construction of ¢

In this section we construct the map

Homppinax (S, Gr) — Hom(Hy(T'S°,Z),Z/rZ)
P — &p

for Theorem [I11

6.3.1 Sections and homomorphisms

Let p € Homppenmax (S, Gr) and let h € Homypenmax (S, G) be the composition of p with the
projection G, — G. Lifting h in A : 7 (T"S°) — G, as in Proposition we get a
homomorphism
n: m(T"S°) — G,
x — h(z) mod (7).

Let A = Im(n) be the image of  in G, and 7, be the image of 7 € G, in G,.

Lemma 6.3.1. The image of p: m1(S) — G, is a normal subgroup of A and the map
C:A/p(m(S)) = Z/rZ

that associates 1 to the class of T, is an isomorphism.
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Proof. For v € m(T"S°) and x € m1(S) the projection of v, let k € Z such that n(v) =

p(x)7F.

Then for any y € 71(S), we have

n(v)p(y)n(v) " = px)Fp(y) (p(z)7F) !
p(zyz™),

so that p(m1(S)) is a normal subgroup in A. Observe that n(t;.g) = 7 = Idg, and
n:m(T"S°) — G, induces an isomorphism

T1(T75%) ) (Hpngo) — A
and the exact sequence
0—Z/rZ — 71 (T"S°)/(tngo) — m1(S) — 1
yields the exact sequence
0—=Z/rZ — A — p(m(S)) =1

so that p(m1(S))/A contains 7 elements. Since ¢ : A/p(71(S)) — Z/rZ is a homomorphism
with {(7,) = 1, it is an isomorphism. O

Let &, be the homomorphism obtained by the following composition
£, m(TS%) = m(T"S°) L AJp(m1(S)) < Z/rZ.

Proposition 6.3.1. Let p € Hompynax (S, Gr), h = p o p € Homyenmax (S, G) its projection
and &, € Hom(m(T'S°),Z/rZ) as above. Let x € w1 (S) and s(x) € m(T'S°) its lift. Then

&5(s(2)) = — Trans()(p(2)) and  &,(trs) =n.
Moreover, p — &, is continuous.

Proof. Let x € m(5). Because n(s,(x)) and p(x) are both send to h(z) by p : G, — G,
there exists k € Z/rZ ~ ker(p) such that

0(sn(@))p(a) ! =7F.

From the equation above, k = Trans(") (n(s,(x))) — Trans") (p(z)) = — Trans(") (p(x)). By
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definition, we also have £,(s(x)) = k. Thus the first assertion is proved.
Let g : m(T'S°) — m1(S) be the projection. For z € m(T'S°) one has

p(q(@)7%") = h(sp(x)) mod (7).
Since h depends continuously on p, p — §p is continuous. O
Recall that A} = {§ € Hom(m(T'S°),Z/rZ) : £(t) =n mod r}.
Proposition 6.3.2. Let p, : G, — G be the projection. The function

D RepIntMax(Sv GT) — RepIntMax(S’ G) X Ag:z
[l — ([pr 0 p1,€p)

is a I'(S)-equivariant homeomorphism.

Proof. We show ® is a homomorphism at the level of Hompytmax. 10 show that @ is
a bijection, we explicit the inverse. Let h € Homiypinmax (S, G) and € € Ayl Let h, :
m1(T"S°) — G, be the lift of A given by Proposition composed with the projection
Gy — G,. For x € m1(TS°) let sp(x) € m (T™S°) be its image. Let n : m(T'S°) — G, be
the homomorphism given by, for z € 71(T'S°),

0(x) = hy(sn(@))7 5@
because 7, is central, n is indeed a homomorphism. Moreover,

n(trs) = iLT (tngo )T;E(tho )

:T:Lfn =Idg, .

Let g : T'S° — S be the projection. Then

ker(g.) = (trse) ,

and it follows that 7 = g« o p where p : m1(S) — G, such that ®(p) = (h, ). Thus the map
(h,&) — p is the inverse of ® which must be bijective.

The continuity of ® is a consequence of the continuity of p — &, which has been proved
in Proposition [6.3.1

The fact that p — p, o p is equivariant is obvious. For p — §,, let ¢ : 1 (T'S°) — m1(5)
be the projection and recall that if ®(p) = (h,&) and if A, : 7 (T"S°) — G,, then for
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¢ = [f1 € T(9),

797@) = p(g(£i2)) - B (fesn(2)))
= po fi(q(x)) - ilr o fi(sn(z))
— ¢ plg(z)) - h/o\ﬁr(sn(x)) (Proposition

— (@)
where ¢ = §4.,. Thus ol €= §¢-p and

D(p-p) =0 2(p),

which concludes the last part of the proof of Theorem [T1]
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Chapter 7

Applications

In this chapter we prove Corollary It will be a consequence of Proposition and
Proposition
7.1 Diagonal representations
Let 0 : SL2(R) — Spy,,(R) be the composition
SLy(R) — SL2(R)™ — Spy, (R)

where the first map is the diagonal and the second is the injective homomorphism given
by blocks. The composition

SLy(R) 2 Spy, (R) — PSpy, (R)

has kernel {+1d} and we call A : PSLa(R) — PSp,,,(R) the induced homomorphism. Note
that A stabilizes a diagonal disk in the symmetric space of PSp,,, (R).
From now on, let G = PSp,,,(R) and X be its symmetric space.

Lemma 7.1.1. Let r € Z~g. Assume r and n are coprime, where n is the rank of X.
There exists a unique A, : Spin” — G, such that the following diagram commutes

Spin” _Ar G,

! |

PSLy(R) —2— G.

105



Proof. Let cg be a bounded Borel cocycle whose class is the bounded integral Kéahler class
of G, so that
G =G X Z/TZ

using notation from Section|6.1.2l With these notations, we have Spin” = PSL2(R) xX.Z/rZ
with ¢ representing the Kihler class of PSLy(R). Because A*kgz = nkpsi,(r)z, We may
assume nc = A*cg. Then A, is given by, for (g, k) € PSLy(R) x.Z/rZ = Spin”

Ar((Q? k)) = (Ag>nk) .

Using ged(r,n) = 1 one checks that it is indeed injective. The commutativity of the
diagram follows from the definition. O
Definition 7.1.1. e A diagonal Fuchsian homomorphism into G, is the composition

A o p where p : m1(S) — Spin” is a r-spin hyperbolization of S;

o A diagonal homomorphism is any maximal homomorphism 71(S) — G, that can be
deformed to a diagonal Fuchsian one.

Let Homa (S, G,) and Repa (S, G,) be respectively the spaces of diagonal homomor-
phisms and its quotient by G,. We have

Homa (S, G) € Homypenmax (S, G),

and Homp (S, G,) is a union of connected components of Homppniax (S, Gr).
Since Homppax (S, PSL2(R)) is connected, Homa (S, G) is connected.
Before proving Corollary we need the following proposition

Proposition 7.1.1. Assume ged(r,n) = 1. The map
P : Repiyimax (S, Gr) — Reprpgvax (S G) x AP
from Theorem [11] restricts to
® : Repa (S, G,) = Repa (S, G) x Ags
and with T'(S) the mapping class group of S,
Repa (S, Gr)/T'(S)

has Card(Ag's/T'(S)) connected components.
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We compute Card(Ay%/I'(S)) in the next session.

Proof. The second part of the proposition is a consequence of the first and the fact that
Repa (S, G) consists of only one connected component. The first part is a direct consequence
of Lemma, above because it shows that the projection of a diagonal homomorphism
71(S) — G, is again a diagonal homomorphism 7 (S) — G. O

Note that, thanks to Lemmal6.1.10, G, is connected whenever ged(r,n) = 1. If moreover
n is odd, then 71 (PSp,,,(R)) = Z and G, is isomorphic to H the unique connected r-cover of
G. and using Proposition we get a mapping class group equivariant homeomorphism

Repa (S,H) — Repa (S, G) x AL

so that Repa(S,H)/T'(S) has Card(Ay’/I'(S)) connected components and Corollary
follows from Proposition

7.2 Computation of Card(A}%/T(S))

,S
In this section we compute the number of orbits for the mapping class group action on
AYs.
Let r,n > 1, g,s > 0 be integers such that 29 — 2+ s > 0 and let S = 5, . Let ¢; be

loops in the positive direction about each puncture and ¢; their tangential lift to 7'S°. For
positive s, let

I = {(mas . mg) €40, oom — 1}, my o my = n(2g — 24 )}

For m € [°¢ we defined

1 g =
™ = Cged(r,mi —n,...,ms—n) g=1
ged(r,2n,my —n,...,mgs —n) else.

As in Chapter [ we set

Ay s =Hom(H\(T'S°, Z), Z/rZ);
Ayl = {f € Ay 5 ¢ &(trs) =n mod r};
Ay = {s e A7 €le) = my 1< <5}
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So that

LA— r,mn
Age= 11 45
n€eL/r’

™ __ r,n,m
Ag,s - H Ag78
melyy

where [] is the disjoint union, and

A JT(S) = ] (A52/1(9))

neL/rL

AP r(S) = [ (Ay™/1(S))

melyy

where, by Theorem [10]
Card(Ape™/T(S)) = £55™

and for s =0,
Card(Ayo/T'(S)) = ged(r, 2n) .

We compute the total number of orbits of I' acting on Ayt where ged(r,n) = 1.
Proposition 7.2.1 (Total number of orbits). Let

d(g,s,r,n) = Card(Ay%/T(5))

be the total number of orbits of the mapping class group action on AgY. If v and n are
coprime, then

rs—1 g=0,5>3

> Ao g=1,s>1

Tl (/25 922,521, 2]
d(g,s,m,n) = st g=2,s>1,21r

2 9g=22,5s=0,2|r|29—-2

1 9g=22,5s=0,21r|29—2

0 g=>2,5=0,71129—2.

The cases where s = 0 are straightforward, indeed if r { 2g — 2, then r { n(2¢g — 2) and
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in this case Ay’ is empty. If r [ 2g — 2, we have
Card(A}5/T'(S)) = ged(r, 2n) = ged(r, 2)

where the last equality is a consequence of ged(r,n) = 1.
For positive s, we have

d(g,s,r,n) = Z et

melgys

and

Lemma 7.2.1. Suppose s > 0 and ged(r,n) = 1. Then

rs—1 g=0,s5s>3

Z romm Zd\'r a5t g=1
mGI;? 9° 7“571 + (7"/2)871 g 2 27 2 | T
ps1 g=2,21r

Proof. We do each case separately.

Case g = 0,5 > 3. In this case, (g™ =1 for all m € I3¢ and 3o 1 = Card(Igy) =

5L

Case g = 1. This is a consequence of Lemma below.

Case g > 2, 2 | r. In this case, since ged(2n,7) = 2, we have that £{’0™ = 1 if one of the
m; —n is odd and E;’;m = 2 otherwise. If m; — n,...,ms_1 — n are all even then

ms—n=—(my—n)—...—(ms_1 —n) +n(2g —2) mod r

is even as well because 2 | r. Thus we get

Do ft= ) 2+ ) 1

melyy melyy melyy
Vi, 2lm;—n 3j,2tm;—n

=2/ (7 = (/")
S (7“/2)8_1.

Case g > 2, 21 r. Since 2t r, and because r and n are coprime, then r and 2n are coprime

and thus £7'>™ =1 for all m € 17, hence the result.
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Lemma 7.2.2. Let r,s,n > 0. Then

> d(ged(r,my —n,...,ms—n)) =>_ d*!

o<ma,...,ms<r d|r
mi+--+ms=sn mod r

Proof. For such m; we have
ged(r,my —n,...,ms—n) =ged(r,m; —n,...,ms_1 —n)
since > 7_(m; —n) =0 mod r. Changing indices we have

Z d(ged(r,mi; —n,...,ms_1 —n)) = Z d(ged(r,mq,...,ms—1)) .

o<my,...,ms_1<0 o<my,...,ms_1<0

Now let
f(r k) = Card{(H,x1,...,x) : H subgroup of Z/rZ, x1,...,x, € H} .
Indexing subgroups of Z/rZ by divisors of r and then changing indices, we have
k) =3 (5

k
)
d|r

=y d~.

d|r
But from the definition of f(r, k) we have
f(r k) = Card{(H,x1,...,2) : T1,...,2 € ZJTL, (T1,...,x5) < H} .

For xy, ...,z € Z/rZ, the integer ged(r, x1, . .., x) is well-defined and d(ged(r, 1, ..., zk))

is exactly the number of subgroups of Z/rZ containing z1,...,z;. Thus
Z d(ged(r,xy,...,z1)) = Z Card{H < Z/TZ: z1,...,x, € H}
T1,ye TR EL[TT L1, TR EL[TT
= Card{(H,x1,...,2y): ®1,..., 0 € H <ZJ/TZ}
= f(r,k).
Taking £ = s — 1 concludes the proof. ]
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