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Directeurs de thèse : Smail Niar. Professeur, UPHF.

Fadi Kurdahi. Professeur, University of California, Irvine.
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Résumé

Depuis les débuts du défi DARPA, la conception de voitures autonomes suscite un
intérêt croissant. Cet intérêt grandit encore plus avec les récents succès des algo-
rithmes d’apprentissage automatique dans les tâches de perception. Bien que la
précision de ces algorithmes soit irremplaçable, il est très difficile d’exploiter leur
potentiel. Les contraintes en temps réel ainsi que les problèmes de fiabilité alourdis-
sent le fardeau de la conception de plateformes matériels efficaces. Nous discutons
les différentes implémentations et techniques d’optimisation de ces plateformes dans
ce travail. Nous abordons le problème de ces accélérateurs sous deux perspectives
: performances et fiabilité. Nous proposons deux techniques d’accélération qui opti-
misent l’utilisation du temps et des ressources. Sur le volet fiabilité, nous étudions
la résilience des algorithmes de Machine Learning face aux fautes matérielles. Nous
proposons un outil qui indique si ces algorithmes sont suffisamment fiables pour être
employés dans des systèmes critiques avec de fortes critères sécuritaire ou non. Un
accélérateur sur processeur associatif résistif est présenté. Cet accélérateur atteint des
performances élevées en raison de sa conception en mémoire qui remédie au goulot
d’étranglement de la mémoire présent dans la plupart des algorithmes d’apprentissage
automatique. Quant à l’approche de multiplication constante, nous avons ouvert
la porte à une nouvelle catégorie d’optimisations en concevant des accélérateurs
spécifiques aux instances. Les résultats obtenus surpassent les techniques les plus
récentes en termes de temps d’exécution et d’utilisation des ressources. Combinés à
l’étude de fiabilité que nous avons menée, les systèmes ou la sécurité est de priorité
peuvent profiter de ces accélérateurs sans compromettre cette dernière.

Mots Clés Voitures Autonomes, Intélligence Artificielle, FPGA, GPU, ASIC,
CNN, Systèmes Embarqués, Fiabilité.
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Abstract

Since the early days of the DARPA challenge, the design of self-driving cars is catching
increasing interest. This interest is growing even more with the recent successes
of Machine Learning algorithms in perception tasks. While the accuracy of these
algorithms is irreplaceable, it is very challenging to harness their potential. Real-
time constraints as well as reliability issues heighten the burden of designing efficient
platforms.

We discuss the different implementations and optimization techniques in this work.
We tackle the problem of these accelerators from two perspectives: performance and
reliability. We propose two acceleration techniques that optimize time and resource
usage. On reliability, we study the resilience of Machine Learning algorithms. We
propose a tool that gives insights whether these algorithms are reliable enough for
safety critical systems or not.

The Resistive Associative Processor accelerator achieves high performance due to
its in-memory design which remedies the memory bottleneck present in most Machine
Learning algorithms. As for the constant multiplication approach, we opened the door
for a new category of optimizations by designing instance specific accelerators. The
obtained results outperforms the most recent techniques in terms of execution time
and resource usage. Combined with the reliability study we conducted, safety-critical
systems can profit from these accelerators without compromising its security.

Keywords Autonomous Vehicles, Artificial Intelligence, FPGA, GPU, ASIC,
CNN, Embedded Systems, Reliability.
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1.1 Deep Learning for Autonomous Vehicles

The recent years have known a constant increase in road users. This rapid growth
has a direct impact on road accidents. The security and economic challenges that
stem from this increase are of an immense magnitude. Human error, whether caused
by fatigue, alcohol use or unsafe driving, is the major cause of traffic accidents. In
a 2016 National Highway Traffic Safety Administration (NTHSA) report [205] in the
USA, more than 94% of accidents are caused by human error.

According to the World Health Organization1, road traffic injuries are the lead-
ing cause of death for children and young adults aged 5-29 years. The number of
death is estimated to 1.35 million per year. To put it into perspective, this number
represents more deaths than those caused by alcohol use, drug use, fire, terrorism
and natural disasters combined according to a statistic published by Amnesty Inter-
national2. While human life concern is visibly the main impact, road traffic accidents
cost most countries 3% of their gross domestic product. The annual social benefits
of Autonomous Driving Systems are projected to reach $800 billon by 2050 [255].

On a parallel comparison, fatalities caused by road accidents are the main chal-
lenge in transportation. Moreover, when comparing the death tolls in the field of
transportation, we clearly see that most fatal accidents occur in road traffic. Figure
1.1 illustrates these tendencies as reported by the National Transportation Safety
Board (NTSB) between the years 1990 and 20173.

Figure 1.1: Comparison of fatalities caused by accidents in different transportation
modes, data reported by the US’ NTSB.

The European Commission released a new policy framework for road safety 2021-
2030 [44] in May 2018 in order to deal with fatalities caused by road injuries. This
new policy has a set of actions including the following:

� To make the vehicles we drive even safer.

� To make the infrastructure we drive on safer.

� To fund and finance investment in transport safety.

These policies have for goal to reduce fatalities by relying on safe autonomous
systems. However, these systems have proven to be of high complexity. The unpre-
dictability of road users’ behaviour and the constant change of environment due to
weather (sunny, rainy or snowy), time (day or night) and location (highway, city road
or off-road) are major contributors to this complexity.

The recent advances in Artificial Intelligence (AI) ease the task of autonomous
driving by providing highly capable algorithms that accurately assesses a situation.
These algorithms rely on complex networks that are able to cope with the environ-
ment change and other users’ behaviour. Successful deployment of these networks

1https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
2https://ourworldindata.org/causes-of-death
3https://www.ntsb.gov/investigations/data/Pages/Data_Stats.aspx

https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://ourworldindata.org/causes-of-death
https://www.ntsb.gov/investigations/data/Pages/Data_Stats.aspx
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have shown impressive reduction in fatalities per 100 million kilometers. The Tesla
Autopilot for example have driven more than 3 billion kilometers with less than 10
reported fatalities. This accounts to 0.20 fatalities per 100 million kilometers. This
number is estimated to be at 0.73 under traditional human control by the US De-
partment of Transportation’s 2016 fatal traffic crash data4.

The consistency of these numbers is only guaranteed with systems capable of
running the most recent AI algorithms. However, the computing requirements are
out of reach for today’s platforms. In order to process a single 400× 400 image and
locate driveable area as well as detect obstacles with only 53% accuracy, more then
140 GFlops5 are needed. Running such algorithm constantly on all cameras deployed
in the car and expecting an output at real time is beyond possibility. In addition,
other sensors are needed when the environment changes. Cameras can not provide
accurate perceptions in dark and obscure environments. The hardware platform needs
to process all these inputs to carefully put the car in the right track. With more
specialized hardware in the market, finding a single platform that can satisfies these
performance constraints is challenging, especially with a limited budget in order to
maintain a reasonable system overhead on the final price. Therefore, designing faster
and efficient hardware is a key challenge for feasibility of ADS.

1.2 Aim of Thesis

Deep Learning has been established as a leading actor towards the developments
of autonomous systems by revitalizing AI. For modern systems, it is inevitable to
use these algorithms –or networks6– to cope with their increased complexity. While
increasing the accuracy is a challenge, being able to deploy these networks should be
a priority.

There are two phases when designing a deep neural network, namely, training and
inference. The training phase is an offline process that generates a working instance
of the network. The inference phase is when the network is ready to process inputs.
During the deployment phase, we only need the training phase7. In this thesis, we
focus on the deployment phase. At this stage, the network takes inputs from the
environment using the various sensors deployed on the car and tries to predicts the
best decision.

1.2.1 Problem statement

Neural networks are compute hungry algorithms. The inference run on a single cam-
era image requires more than 20 billion Multiply and Accumulate (MAC) operation.
At peak performance, a 5 GHz Central Processing Unit (CPU) takes 4 seconds to
process the image. By that time, the decision is obsolete and the situation is ir-
recoverable. In this thesis, we tackle this performance issue by proposing hardware
architectures capable of handling this computation load.

This need in compute power is being fed by the increase in sensory demand. With
higher levels of automation, the vehicle needs a complete environment perception. As
seen in Figure 1.2, at least 28 sensory units are required for a mundane autonomous
ride. These sensors continuously stream data to the compute units that need to be
alerted at any given time to detect and react in case of danger.

Future autonomous vehicles will need an equivalent of a supercomputer rolling
down the highway, generating and transmitting a overwhelming volume of data, up

4https://www.nhtsa.gov/press-releases/usdot-releases-2016-fatal-traffic-crash-data
5These numbers are obtained using a trained instance of Mask RCNN with 32-bit floating point

weights and activations.
6Deep learning algorithms have similar structures as networks of artificial neurons. They are

referred to as neural networks instead of the general appellation of algorithms, which is vaster.
7Some networks are continuously trained, however we do not consider these algorithms in this

study.

https://www.nhtsa.gov/press-releases/usdot-releases-2016-fatal-traffic-crash-data
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Figure 1.2: Sensor modules for each automation level from [251].

to 4 terabytes 8 per day per car. Deploying a massive hardware platform to handle
these tasks would have dramatic impact on the cost, weight and energy consumption
of the vehicle. For autonomous vehicles to be considered a safety replacement, efficient
hardware need to be designed, aimed specifically at solving these challenges.

An other issue that is under-explored by researchers in machine learning is reliabil-
ity. In this thesis we will also tackle the problem of whether these algorithms should
be trusted for safety-critical systems such as autonomous driving. ADS should adhere
to strict safety standards such as ISO 26262:2018 [100] and ISO/PAS 21448:2019 [101]
specially addressing the safety of Advanced Driver Assistance Systems (ADAS) func-
tions in road vehicles. The reliance on machine learning puts ADSs in a gray area
when it comes to these standards due to their lack of traceability and unpredictabil-
ity [120].

1.2.2 Constraints and Challenges

As far as inference is concerned, many platforms exist to satisfy these constraints.
However, for a commercial system, efficiency is always the next challenge after feasi-
bility. Designing efficient hardware for self-driven cars is crucial to their functioning.
Many major companies addressed this problem for their autonomous vehicle projects.
For instance, Tesla’s Hardware 2 uses the NVIDIA DRIVE PX 2 AI computing plat-
form. The platform costs around 15,000 AC per unit. This price is compared to that
of the most sold car in 2019, the Toyota Corolla. On the other hand, Google have
designed a novel architecture, the Tensor Processing Unit (TPU), that is dedicated to
machine learning algorithms. The TPU is deployed on the cloud and could be rented
for research. In the academic community, Field Programmable Gate Array (FPGA)
accelerators are widespread. However, these accelerators trade the accuracy of the
system for performance. This trade-off is not possible for a safety-critical system such
as autonomous vehicles.

As for reliability, this problem seems to be ignored. Researchers focus on improv-
ing the accuracy of the network. This accuracy is then traded for performance with
no concern on reliability. This is partly since machine learning algorithms are not yet
considered for safety-critical systems and are always supervised by a human expert.

8https://datacenterfrontier.com/rolling-zettabytes-quantifying-the-data-impact-of-connected-cars/

https://datacenterfrontier.com/rolling-zettabytes-quantifying-the-data-impact-of-connected-cars/
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This trend is changing. The accelerator for machine learning needs to be resilient to
faults if deployed in aggressive environments.

1.2.3 Thesis Objectives

In this thesis, we tackle the problem of performance and reliability for machine learn-
ing accelerators deployed in autonomous vehicles. In the performance study, the
usual tradeoff between accuracy and performance is not tolerated. As for the reli-
ability study, we aim to locate the vulnerable components of the software, i.e. the
network, and the hardware.

1.3 Main Contributions

The thesis focus on designing hardware for autonomous vehicles. The problem was
tailored down to designing machine learning accelerators. In this thesis, we propose
two architectures of hardware accelerators for machine learning.

The first architecture can be seen in Chapter 5. In this chapter, we used a
memristor-based implementation of an associative processor, the Resistive Associa-
tive Processor (ReAP), to solve the performance problem of machine learning for
autonomous systems like self-driving cars. The motivations behind this choice are
the von Neumann bottleneck and it’s implications on the performance of the system.
In our ReAP, all computations are done inside the memory which solves this prob-
lem. The accelerator compares very well to a Xilinx reference design with less than
2 ms for a 1024× 1024 matrix multiplication, two orders of magnitude less than the
Xilinx design. In terms of general compute efficiency, measured as GOPs per Watt
per transistor, comparisons shows a staggering difference with a major gap between
our design and the Xilinx design. This was mainly due to the efficient usage of re-
sources for storage and compute at the same time. The results of this work has been
published in [163],

Our second contribution is on FPGA and is detailed in Chapter 6. We exploit the
fact that weights are constant after training. Therefore, we designed an accelerators
dedicated to a trained instance of a network. In any given design, the multipliers
require a weight and an input. Since weights are constant, we design dedicated
multipliers that only takes one operand, the input. This results in a inflexible design
since these multipliers can no longer be reused. However, this flexibility is traded
for performance and resource utilization which is a novel contribution compared to
other state of the art accelerators where the main tradeoff happens between accuracy
and performance. Moreover, since weights are embedded in multipliers, no storage is
needed. Simplifying storage have huge implication on the architecture since no time
is needed to load weights from the input and the memory would be free to store more
inputs. Results of this work has been partially published in [153].

As stated earlier, the second axis of this thesis is reliability. While machine
learning has been extensively studied in the past few years from an acceleration and
quality point of view, research about how reliable these network are against faults and
attacks are meagre. The results of this work shows that reliability is an important
issue for safety of machine learning-based systems. The accuracy with which the
system has been deployed can be substantially compromised. This was a two step
contribution given in details in Chapter 7. First, we propose a study to test if there
is a problem when the hardware accelerator is exposed to errors. In this first part,
we discovered that the combinatorial part of the circuit is resilient however, memory
errors can prove to be dramatic. This first contribution was published in [165].
In the second study, we focus on the nature of errors. We compare the different
representations and how they compare to each other. The results of this work is
published in [161]. In parallel, a tool was made publicly available9 to test the resilience

9https://github.com/cypox/CNN-Fault-Injector

https://github.com/cypox/CNN-Fault-Injector
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of a CNN and to isolate the vulnerable layers that needs.
From a system point of view, we designed a streaming platform that uses CPUs

and FPGAs to conduct data from a sensory unit, for instance, a camera, to the
accelerator. The design undergoes a study on the input to choose the optimal size
that allows components to communicate efficiently with minimal loss in accuracy and
performance. The results of this work were published in [162]. An other study on
sensor fusion was conducted to show a way of merging the camera and the LiDAR
inputs, two totally different representations cooperating to perform road extraction
and obstacle detection. This work was partially published in [168]. We also propose
a high level framework in [81] that incorporate the cloud and the fog in the detection
process. Communication with these components is key to achieving full safe driving.

1.4 Outline

This thesis is structured as follows. First we give our reasons on why we considered
machine learning algorithms as a solution for the driving problem. This is presented
int Chapter 2 along with the required knowledge on field to understand later chapters.
We conclude the chapter with a review on recent algorithms, their architectures and
performances. An in-depth study on ADS is given in Chapter 3. We present the
challenges of autonomy in self-driving cars from a hardware point of view. In Chapter
4 we give our state-of-the-art study on hardware accelerators for machine learning
that may apply to the autonomous driving scenario. Two novel accelerator designs
were presented in Chapters 5 and Chapter 6. Our reliability study is shown in Chapter
7. We conclude the thesis with a summary and some research perspectives in Chapter
8. The dependencies between chapters are shown in the flow graph in Figures 1.3.
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Motivations and Thesis Objectives

Chapter 3
Autonomous Driving Systems

Chapter 2
Machine Learning: A Review

Chapter 4
Hardware Platforms
for Machine Learning

Chapter 7
Design for Reliability:
A Fault Injection Study

Chapter 6
Design for Performance:
On Constant Multiplication

Chapter 5
Design for Performance:
On Associative Processors

General Conclusion and Perspectives

Figure 1.3: The reading dependencies between chapters. Chapters with the black
document icon in the top right corner contain details of at least one peer-reviewed
publication.
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While Moore’s law is in decline for single-core processors, parallel computing is
correcting the slope for the past decade in order to maintain the performance increase
each year as can be seen in Figure 2.1. With this law being true for half a century,
processing power became abundant. Today’s computers are able to perform incredible
feats.

Computer vision is one of the fields that harnessed this power. Ideas that requires
large data operations became possible. Limited by the available compute power
back then, these algorithms remain dormant for a long time. The, arguably biggest,
milestone achieved recently was witnessed in ILSVRC 2015 when AlexNet, a CNN,
raised the bar by beating other algorithms and even human accuracy at guessing the
class of an image from 1000 possible classes.

In this chapter we walk through these algorithms. We first explain the motivations
that lies behind the choice of machine learning over other approaches. We also give
an insight on how most famous machine learning algorithms operates. Later on,
we present a profiling study to analyze the characteristics and requirements of these
algorithms.
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2.1 Artificial Intelligence and Machine Learning

Machine learning is a sub-category of AI. AI encompass any algorithm that enables
computers to mimic human behavior as can be seen in Figure 2.2. Examples of these
algorithms are rule-based or expert systems usually used for medical diagnosis where
all the outputs of a problem (in this cases diseases) are listed with all the possible
inputs (symptoms in the case of medical diagnosis). While this basic is useful in some
fields, it does not scale with the problem size where the human expert needs to pass
a large amount of information to the computer. The ability to learn without being
explicitly programmed was the follow-up of AI algorithms and is what we refer to as
machine learning.

Figure 2.2: Timeline of the advances in artificial intelligence and the rise of machine
learning.

In ML, the explicit programming was replaced with a learning phase. In this
phase the machine is taught how to solve a problem. Once done, the second phase
follow and is called the inference phase. In this phase, the algorithm is deployed and
is ready to perform the task it was trained for.

Depending on the training phase, many types of ML algorithms arises. In [16],
six types were discussed:

� Supervised learning: this is the most common form of ML algorithms. In this
class, a labeled dataset is used to train the algorithm. During this training, the
algorithm will extract the similar characteristics of elements with the same label
to classify a given input into the most adequate class. A common misconception
is that supervised learning is classification. This is false since regression -where
the algorithms learns the evolution of an output based on input variations- and
detection -where the algorithm learns how to distinguish and separate objects-
are also algorithms with a supervised training.

� Unsupervised learning: the difference between the supervised and the unsuper-
vised learning is the dataset. In this class, no labels are given. During the
learning phase, the algorithm learns the existing similarities between samples
in the dataset as stated in [69].

� Semi-supervised learning: this type of ML algorithms is somewhere between the
first two. The dataset contains some labeled samples but may contains items
with no labels. The training algorithm should be able to process both samples
in order to learn features from the dataset.

� Reinforcement learning: in this class of algorithms, no dataset is present. Learn-
ing consist on finding the best policy that an agent should follow in a simulated
environment in order to achieve a goal. When interacting with said environ-
ment, the agent receives reward for positive decisions and penalties for negative
ones. This reward mechanism helps the agent find the best policy.
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� Transduction: this is not a very common class in ML. Similar to supervised
learning, the algorithm tries to map an input to an output based on a given
dataset. The main difference being, transduction algorithms does not explicitly
construct a mapping function but predicts outputs based on the dataset.

� Learning to learn: this is a new class of ML algorithms. It falls under the
category of self-aware systems. In this class, the algorithms learns its own
inductive bias based on previous experience.

Figure 2.3: Classification of ML algorithms and sub-categories of each class with some
example algorithms are given at the nodes of each sub-category.

In Figure 2.3 we show the most common types of ML algorithms, namely, super-
vised, unsupervised and reinforcement learning. In these algorithms, the quality of
the algorithm highly depends on the quality of samples in the dataset. The exception
being for reinforcement learning where no dataset is present. In this case, the quality
depends on how well the environment is simulated and the reward-penalty system is
designed.

2.2 Motivations Behind Machine Learning

As stated in [167], the two biggest drivers of the recent progress of machine learning
are computational scale and data availability. The first cause was discussed in
the introduction of this chapter with the introduction of parallel processing in the
recent compute platforms. As for the second, data abundance is clearly visible with
the widespread of social media applications.

It was estimated by Middlesex [150] that at least 1200 petabytes are stored in the
databases of the giant four companies: Google, Amazon, Microsoft and Facebook. In
the case of Facebook, more than 300 million photos are uploaded each day [32] and
every minute, 510000 comments are posted and 293000 statuses are updated [169].
This large amount of data challenges the most sophisticated traditional algorithms
that rely mostly on handcrafted policies and fine-tuned solutions to specific problems.
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This large amount of information helps constructing bigger and better databases
which, consequently, results in better algorithms. Combined with powerful platforms
to accelerate processing, ML has been established as a de-facto approach in AI in the
last decade and continues to thrive.

2.3 How it works?

Artificial Neural Networks are an example algorithm of ML that mimics the human
brain by replicating, to certain extent, its architecture. They are by far the most
used ML algorithms. For this, we dedicate Section 2.3.2 to present this category of
algorithms. Section 2.3.3 details a variant of ANNs that deals mainly with images:
CNNs.

2.3.1 The back propagation algorithm

The ability to grasp large amounts of data was mainly achieved by using the back
propagation algorithm [87], [178]. This algorithm is used during the learning, or
training, phase of almost every neural network. It consists on forwarding the inputs
through the network. The results would most probably be erroneous. The error is
quantified and its values is propagated back in order to update the network parame-
ters.

In order to understand this learning process, we consider a function y = f(x) =
ax+ b that takes an input x and gives an output y. In machine learning, the problem
is to find the parameters a and b in order for this function to output a desired value
y for a given input x. The relationship between x and y is explained as a list L of n
pairs (xi, y

′
i)i=1→n which corresponds to the desired output y′i of the function f when

the input is xi.
The process of training, or learning, uses the list L to find the best parameter

pair (a, b) in order to increase the output quality of the function f . The quality is
measured using an error function Ei(a, b). The error function takes the current value
of the parameter pair (a, b) and measures the distance between the actual output yi
and the desired output y′i of f for a given input xi from the list L.

Ei(a, b) = |yi − y′i| (2.1)

In Equation 2.1, we estimate the error, by choice1, as the absolute value of the
difference between the outputs y and the desired outputs y′ for each value of x ∈ L.
Since yi = f(xi) = axi + b, Equation 2.1 could be written as follow:

Ei(a, b) = |axi + b− y′i| (2.2)

For a given pair (a, b), the total error E(a, b) would be calculated as the sum over
all pairs (xi, y

′
i) ∈ L as follows.

E(a, b) =

i=n∑
i=1

|axi + b− y′i| (2.3)

This error can be visualized in a three-dimensional grid by varying a and b and
calculating the error E every time. In the following, we consider the problem as stated
before with L being the list of pairs from Table 2.1.

Figure 2.4 shows the distribution of the error function from Equation 2.3. These
values represent the error on the output of the function f(x) = ax+b for a given pair
(a, b) and the outputs from the list L. We can visually find the minimum of this error

1Many error functions exists such as the squared error. Error functions usually gives positive
values by introducing operators such as the absolute value. The reason behind this it to avoid errors
canceling out.
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Input (x) 1 -2 4 3 2 -1 -1
Desired output(y) 2 5 17 10 5 2 2

Table 2.1: Example of a labeled dataset.
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Figure 2.4: Distribution of the error function E from Equation 2.3.

function in the intervals (a, b) ∈ ([−6, 6], [−2, 10]) which is the goal of this phase. This
minimum can be local, however, it was noticed that the presence of a local minima
in the error function does not seem to be a major problem in practice [129].

However, this visualization might not be practical. It is highly dependant on the
choice of the intervals and, for complex function, it would be hard to recognize a
pattern that helps localize the minima. Therefore, in order to increase the quality of
the output, we need to analytically find a value for (a, b) that minimizes this error
function. The problem statement is shown in Equation 2.4.

min
(a,b)∈R2,i=1→n

Ei(a, b) = |axi + b− y′i| (2.4)

This problem can be solved numerically. We first initialize a and b randomly to
(a0, b0) and then, we iteratively update their values while reducing the magnitude of
the error function. The update of weights can not be arbitrary. Numerical methods
for finding the minimum could be used such as Newton’s method. In ML, the most
common optimizer is the gradient descent due to its simplicity and efficiency. Similar
to Newton’s method, it relies on the slope, or gradient, of the function at a given point.
If at a point a0, the slope of E is negative, then the function is rising. Therefore,
we should reduce the value of a0 in the next iteration in order to get a lower value
of E . Since the error function takes two arguments, the slope is computed as the
partial derivative with respect to each parameter. The update procedures are shown
in Equation 2.5. {

ak+1 = ak − ∂E(ak,bk)
∂a

bk+1 = bk − ∂E(ak,bk)
∂b

(2.5)

In analogy with ML, the list L from our simplified example represent the training
dataset. The training is supervised since the dataset contain the inputs with the
correspondent outputs or labels in the case of an image classification task. The
parameters a and b represent weights. A larger algorithm would require more than
two parameters to explain complex relations, hence, the need of a weight vector and
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a more complex function f . In such a case, visualization can no longer be considered
since it results in an N + 1-dimensional space with N2 the number of parameters of
the network.

The initial gradient descent algorithm for learning has been adapted and improved
in many recent works. For example, in Equation 2.5, a learning rate α is introduced
to slow down the descent towards the minimum. This addition has shown to be
primordial in order for the algorithm to converge towards the minimum. One popular
variation is the Stochastic Gradient Descent algorithm.

2.3.2 ANN Architecture

Figure 2.5: Architecture of an Artificial Neural Network.

ANNs are a brain-inspired class of ML algorithms. They map a set of inputs to
a set of outputs by forwarding the former through a network of compute elements
called neurons. This architecture can be seen in Figure 2.5, in it, we see three layers:
an input layers, a hidden layer and an output layer. In Figure 2.6, we see an analogy
between artificial neurons and a real neuron in the human brain.

The number of neurons in the input and the output layer depend on the problem
while the number of neurons in the hidden layer is a design parameters. Also, multiple
hidden layers could be present with the same interconnection scheme. The general
rule is that more neurons and layers are require to yield better representations since
it allows more complex representations. However this is not a sufficient to assure
better accuracy and other design parameters needs to be tuned.

Neurons function in a simple way. Let us considering a vector X of n elements
xi=1→n. A weight wi=1→n is assigned to each connection between the inputs and
the neuron. The first step of processing consist on multiplying each input xi by the
correspondent weight wi. A bias b is then added to the weighted sum. For simplicity,
the term b is usually padded to the weight vector as w0 and is multiplied by a value
x0 added to the input vector. The final output is obtained by applying an activation
function A on the resulting sum from the previous step. This can be summarized in
Equation 2.6.

O = A(

n∑
i=0

xi ∗ wi) (2.6)

The activation function A is important for many reasons. It’s role is to keep the
output of each neuron in check. A neuron compute the weighted sum of all of its

2In the given example, the number of parameters is two-a and b. This results in a 3-dimensional
space shown in Figure 2.4. The two parameters constitutes the (x, y) axis and the z axis represent
the value of the error function.
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Figure 2.6: Analogy between a neuron in the human brain and artificial neurons.

inputs. Stacking multiple layers may results in large output sums that overshadows
one another. Sigmoid function can be used since its output is guaranteed to be in
[0, 1].

Moreover, the activation function needs to be derivable. We have seen in Equa-
tion 2.5 that updating weights requires partial derivatives of the error function. In
an ANN, the error function uses Equation 2.6 to compute outputs. Therefore, a
valid derivative is required to compute the gradients. Finding the derivative, either
numerically or analytically, might be tedious if the activation function is complex.
This pushed many researchers to choose simpler activations for better performance.
A common activation function used in recent architectures is the Rectified Linear
Unit (ReLU) whose output is given by Equation 2.7.

ReLU(x) =

{
x if x > 0

0 otherwise
(2.7)

While this activation function does not solve the problem of large outputs, its
easy computation and derivation made it the designer’s choice. Normalization on the
inputs and the outputs of each layer was introduced to cope with this problem whilst
being able to use simple activation functions.

All layers in an ANN are composed of neurons with this particular architecture.
Designers have to choose the ideal number of layers as well as the number of neurons in
each layer. The connection between neurons is also a design parameter. Based on the
connections between neurons, many types of neural networks can be distinguished. A
fully-connected neural network is when every neuron in layer i is connected to every
neuron in the subsequent layer i+1 and no neuron from layer i+1 is connected back-
wards to neurons from layer i. Layers with such constraints are called fully connected
layers. Backwards connections are enabled in certain types such as Recurrent Neural
Networks.

ANNs has proven to be extremely efficient in many classification and regression
tasks. However, their structure does not allow them to process structured data. The
indices of the input vector are superficial and the order is not exploited.

If we apply Equation 2.6 to the input layer of the network, the output is unchanged
if two neurons xi and xj are interchanged with their respective weights wi and wj .
This means that the training process will still achieve the same accuracy if the order
of inputs is changed.

The order of inputs is important in certain types of inputs such as images where the
meaning (of the image) is expressed by the value of each pixel and it’s neighbourhood.
This motivates the development of new types of architectures that exploits this aspect.
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2.3.3 CNN Architecture

Images has different structures. The important information is not extracted from a
single pixel but from its neighbourhood. While using a large ANN may solve this
problem, the usage of convolutions can achieve similar results with smaller networks.
The added convolutions act as feature extractors and the fact that they are trained
automatically makes them automatic feature extractors. These features can then be
classified or processed using an ANN in order to produce the desired outputs.

A CNN is a neural network architecture that has these automatic feature extrac-
tors embedded as layers in the architecture. The introduction of these layers results
in large networks. In the jargon of computer vision, these networks are referred to as
Deep Neural Networks. Most state-of-the-art CNNs has this quality which qualifies
them as DNNs.

Exactly as machine learning is a branch of artificial intelligence, deep learning,
which is the study of DNNs, is a sub-class of machine learning. This is illustrated
in Figure 2.2. While many researchers struggle to define a clear barrier between the
two, the most visible distinction is that deep learning automatically extracts features
whilst in other machine learning approaches, features are human handcrafted. An
other way of distinguishing the two classes is the number of layers where a network
with less than 10 layers is considered shallow.

2.3.4 The Convolutional Layer

The convolutional layer is the trademark of CNNs. It takes a feature map F as input.
A feature map is a 3-dimensional array3 of dimensions W × H × C. In the case of
an input layer, the value C represents the number of channels in the input image (3
in the case of RGB and 1 in the case of grayscale images). W and H represent the
dimensions of the image, namely, width and height.

Neurons in this layers are filters. In ANNs, each neuron takes every input and
multiply it by a weight. A convolutional layer does the same thing with two modifi-
cations. The first one being, the inputs of the neuron are not individual values of the
feature map but windows of K ×K4 neighbouring elements in order to incorporate
the locality information. The second modification is weight sharing. The convolu-
tional layer neuron would multiply every input window with the same filter greatly
reducing the number of parameters. For the sake of comparison, an ANN neuron
assign a distinct weight to every input.

The role of convolutional layers is to extract high level features from inputs, usu-
ally images. This operation is similar to previous computer vision filtering algorithms
such as the Sobel operator [115] for edge detection. By convolving an input image
with these filters, multiple representations of the image are generated. Each one of
these new representations contain a separate feature of the image. By re-applying fil-
ters in a succeeding layer to these representations, higher features could be extracted.
Repeating this process results in a set of complex features of an image that could later
be classified using an ANN.

While these convolutional layers reduce the number of parameters, the number
of outputs is tremendous compared to fully connected layers used in ANNs. For this
reason, an aggregation layer usually follow convolutional layers to reduce the size
of the output feature map. This is achieved by grouping, or pooling, neighbouring
values into a single one. There are many types of pooling. The most common types
are maximum pooling and minimum pooling. The maximum, respectively minimum,

3These arrays are also referred to as tensors in some libraries such as Tensorflow. Also, a fourth
dimension could be added to the feature map in order to process multiple inputs at the same time.
This practice is called batching and it is widely used in modern hardware accelerators as we will see
later in Section 4.

4The input window can be non square with a size K × L with L 6= K. However, almost every
major CNN architecture has square filters that takes square inputs. For this reason, we simplify the
notation by only considering square input windows.
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values are kept for each window. The size of the pooling window is a design parameter.
The choice of maximum, respectively minimum, is also a design parameters and was
adopted due to its simplicity in computation while maintaining information about
the values in the window.

2.4 Datasets

As stated earlier and in [167], the availability of datasets allowed gradient-based
learning and automatic feature extractors to flourish. The quality of said datasets
ensures efficient training which leads to high accuracies.

Figure 2.7: Subset of MNIST images.

One of the first datasets to be used for traning machine learning algorithms is
MNIST. A subset of this dataset is shown in Figure 2.7. It has 60.000 images of
28× 28 pixel gray scale images. The images are for handwritten digits. The dataset
is split into a training set with 50.000 images and a test set with the remaining 10.000
images. The classes of this dataset are the digits from 0 to 9. Algorithms trained on
this dataset try to correctly classify an input image into one of the digits classes.

Figure 2.8: Subset of CIFAR-10 images.

A dataset with more general classes is CIFAR. It has two versions, CIFAR-10
which is shown in Figure 2.8 and has 10 classes and CIFAR-100 with 100 classes.
The classes of this dataset are objects found in the world such as cars, people and
animals. The 10-class variant has 80 million labeled images of size 32 × 32. It is
designed for fast training with such small sized images.

The largest dataset to date is ImageNet [52] shown in Figure 2.9. It has more
than 14 million images classified into 20.000 categories. A subset of ImageNet is used
in ILSVRC, the most notorious challenge of image classification. In the challenge,
only 1000 classes are considered.

2.5 Common CNN Architectures

2.5.1 LeNet-5

The first successful architecture of a CNN was introduced in LeNet-5 [129], or just
simply LeNet. LeNet was designed for isolated character recognition. As shown in
Figure 2.10, LeNet consists of two parts (from left to right): a feature extractor,
and a classifier appended to it. Feature extraction is performed by two unpadded
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Figure 2.9: Subset of IMAGENET images.

convolutional layers with small filters of size 5×5, with 20 and 50 filters respectively,
and followed by ReLU activations. In order to mitigate the increase of dimensional-
ity, each convolutional layer is followed by a max pooling operation, downsampling
the resulting feature vectors. The classifier is composed of 3 fully connected layers,
terminated by a Softmax activation.

LeNet-5 achieved a 99.2% accuracy on the MNIST dataset. While it has been
bested by many modern architectures recently5, this result, and others that follow,
cemented the position of computers as a human alternative even in high-risk fields
such as banking and the medical sector.

2.5.2 AlexNet

The 2012 Imagenet Large Scale Visual Recognition Challenge (ILSVRC) was the first
major success of machine learning. AlexNet [124], a CNN architecture, won the image
classification challenge whilst beating human accuracy. This milestone was reached
by using 5 convolutional layers separated by maximum pooling and normalization
layers. Classification is done using 3 fully connected layers with Softmax activation
at the end.

5The current state-of-the-art best is [226] with 0.21% error rate. This is a CNN with 2 convolu-
tional layers, a fully connected layer, a ReLU layer and a special DropConnect layer.
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Figure 2.10: Architecture of LeNet5.

2.5.3 VGG16

VGG-16 [204] was an improvement on AlexNet. With more layers and similar archi-
tecture, the main difference is the kernel sizes. Convolutional layers use 3× 3 kernels
at all levels for easier hardware re-use6.

2.5.4 GoogleNet

Winner of the 2014 ILSVRC, GoogleNet [212] is a 22 layers network. It introduces
inception layers which is the concatenated output of three parallel convolutional layers
with different filter sizes. The inception layer (or module) uses small size filters for
fine resolution and large filters for larger receptive field.

2.5.5 SqueezeNet

SqueezeNet [98] is a lightweight CNN used for mobile devices. It was designed with
1× 1 kernels which reduce the size of the network parameters vector. With a million
weights, this network fits easily in fast caches and on-chip memories (such as BRAMs
for FPGAs). Besides this change, the architecture of the network was inspired by
AlexNet.

2.6 CNN Profiling

While CNNs reduce the number of required weights by sharing filters7, the number
of operations is greatly increased since multiplications are replaced by convolutions.
This increased number of operations can be seen in Table 2.2.

The number of operations is in terms of tens of billions (Total workload row from
Table 2.2). These operations needs to be performed for each new input. This raises
the need for efficient hardware that is capable of dealing with such workloads.

Many operations are performed during a single inference run of a CNN. In Figure
2.11, we show the number of these operations for six different networks. It is obvious
that the majority of workload is dedicated to MAC operations. In other words, one
can focus on optimizing MAC hungry layers thereby ensuring the most impact on the
overall performance of the CNN inference.

Figure 2.12 shows the distribution of MAC operations over network layers. The
pie charts shows that the convolution layers are the most MAC hungry layers. With
a good MAC implementation, a high parallel implementation of these two layers can
be sufficient to achieve high overall performance. This is visible in the state of the

6FPGA implementations can design a 3× 3 kernel processor which will then be used to execute
the whole network.

7The same filter is applied to the whole input of the layer whereas in ANNs, each input xi has
it’s own dedicated weight wi (see Equation 2.6).
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Table 2.2: Accuracy and workload of famous classification CNNs with the same input
size.

Model AlexNet GoogleNet VGG16 VGG19 ResNet50 ResNet101 ResNet152
Top1 err 42.9% 31.3% 28.1% 27.3% 24.7% 23.6% 23.0%
Top5 err 19.80% 10.07% 9.90% 9.00% 7.8% 7.1% 6.7%

conv layers 5 57 13 16 53 104 155
conv worload

(MACs)
666 M 1.58 G 15.3 G 19.5 G 3.86 G 7.57 G 11.3 G

conv params 2.33 M 5.97 M 14.7 M 20 M 23.5 M 42.4 M 58 M
Activation ReLU
pool layers 3 14 5 5 2 2 2
FC layers 3 1 3 3 1 1 1

FC workload
(MACs)

58.6 M 1.02 M 124 M 124 M 2.05 M 2.05 M 2.05 M

FC params 58.6 M 1.02 M 124 M 124 M 2.05 M 2.05 M 2.05 M
Total workload

(MACs)
724 M 1.58 G 15.5 G 19.6 G 3.86 G 7.57 G 11.3 G

Total params 61 M 6.99 M 138 M 144 M 25.5 M 44.4 M 60 M

0 20 40 60 80 100
Percentage

Alexnet

GoogLeNet

ResNet152

VGG16

YOLO

FasterRCNN

Composition of CNN operations

macc

comp

add

div

exp

Figure 2.11: Percentage of Multiply and Accumulate (macc), comparison (comp),
addition (add), division (div) and exponent (exp) operations for different networks

art study in Section 5.2 where most presented works ignores other layers and only
focus on these two.
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Figure 2.12: Distribution of MACC operations over different network layers.
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The race towards autonomous vehicles was initiated by the US’ Defense Advanced
Research Projects Agency (DARPA) with Navlab and ALV projects in 1984. How-
ever, with 749, 000, 000AC funding, the Eureka Prometheus Project is considered the
largest in the field of driverless cars. In 2004, DARPA organized the first major fully
automated driving challenge. Attendees were asked to finish an off-road parkour with
no human intervention. No attendee managed to finish the challenge. However, in
a second challenge in 2005, five teams reached the finish line [27]. With the advent
of machine learning, this race gained in intensity. The high perception capabilities
offered by state of the art algorithms solved many problems that were, at the very
least, challenging.

In a released taxonomy for terms related to driving automation systems [195],
the Society of Automotive Engineers defined six levels of automation. These levels
goes from complete human control to fully autonomous driving systems. The fulfilled
tasks in each system decide which level the system is classified. As shown in Figure
3.1, a system qualifies as autonomous by monitoring the driving environment and
taking control over steering and acceleration ; if one of these two tasks is made,
fully or partially, by a human driver, the system is considered manual with machine
assistance.

Figure 3.1: The six levels of driving automation as defined by SAE International in
J3016.

In this chapter we will give certain examples of automation levels. First we focus
on the first three levels, considered manual with automatic driver assistance. Next,
we pass to the other three levels which are still in research phase. Later on, we
give some datasets and simulators that helps designing autonomous systems. Some
example frameworks are given in the last section.

3.1 Driver-Assistance Systems

The goal of automation is to free the driver of certain tasks. Each automation system
perform a set of driving tasks. These systems are also referred to as ADAS. ADAS
are designed to limit human error [24]. It was estimated in [206] and [254] that more
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than 90% of road accidents are attributed to human error. The source of these errors
are human fatigue or inattention. The human accuracy in taking decision might not
be perfect but is far from being the reason behind accidents. An ADAS performs
tasks that are 1) repetitive, such as lane keeping and cruise control or 2) pre-defined,
such as parking and overtaking. An ADS on the other hand is a system that replaces
the human driver. Not only it will executes the decision like ADAS, but it will also
take that said decision.

3.2 Autonomous Driving System

The architecture of an ADS was given [140]. This architecture is shown in Figure
3.2. The tasks of a driving system could be extracted from this figure.

Figure 3.2: Autonomous driving system architecture overview from [140].

The three major components of an ADS are: the sensing module, the perception
module and the decision module. These three software modules are run by an oper-
ating system on a hardware platform. The system is connected to a cloud platform
that handles off-line tasks such as model training and data storage and some on-line
tasks such as logging. The user interface is needed for production systems, however,
it is not a required module for a functioning.

3.2.1 Sensory Module

This module provide the information required to understand the environment. RADARs
were the first sensors used to perform ADAS tasks. Due to their accuracy in obstacle
detection, they were used for braking and reversing. Modern cars are equipped with
60− 100 sensors. In the Automotive Sensors and Electronics Expo, it was estimated
that this number will reach 200 sensors per car on average. In modern cars, these
sensors and their locations are shown in Figure 3.3.

In Table 3.1, the main three sensors (RADAR, Lidar and Camera) were compared
to each other and to the human driver. As can be seen, no single sensor is capable
of providing enough information to accurately perform all the tasks at once. Sensor
fusion is a must. From an other perspective, communication is a valuable asset that
could be considered part of the sensory module. Being able to communicate with the
infrastructure and other road users is crucial and gives the edge to connected systems
over the human driver.

This observation leads to increasing number of deployed sensors which raises an-
other problem, the need of compute power. In an estimation of ARM [13], au-
tonomous vehicles will required 100× more compute performance by 2024 compared
to 2016 models.

In many cases, sensors are equipped with small compute units. These units are
used for near-sensor operations such as decoding and data pre-processing [162]. These
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Figure 3.3: Automotive sensors and their deployment on autonomous vehicles.

Table 3.1: Summary of the key operating characteristics of each sensor as they apply
to autonomous vehicles from [200]. AV stands for Autonomous Vehicles, CV for Con-
nected Vehicles, CAV for Connected Autonomous Vehicles and DSRC for Dedicated
Short-Range Communications.

operations are important in order to reduce the impact of environment noise. Kalman
Filter is widely used in this step for enhancements and error correction. Other op-
erations such as sensor calibration and synchronization are also performed near the
sensory unit as a preprocessing step.

3.2.2 Perception Module

The role of this module is to understand the environment using the information pre-
viously gathered by sensors. The vehicle needs to 1) localize itself in the environment
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and 2) detect other actors and interferers.
Localization is performed by using inputs from Global Position System (GPS)

units deployed on the vehicle. However, GPS readings might not be accurate, there-
fore, Inertial Measurement Unit (IMU) are deployed in order to enhance the estimated
position of the vehicle. The estimated position is passed to the decision module in or-
der to plan the trajectory. In [10], the localization and the navigation are performed
using a special type of neural networks, Variational Neural Networks (VNNs). As
shown in Figure 3.4, the VNN takes the camera input as well as the map position
and try to navigate the driveable area towards the target path. Modules that pro-
cess localization and navigation are called SLAM (Simultaneous Localization And
Mapping). SLAMs are present in most robotic systems.

Figure 3.4: Localization, navigation and control using a neural network from [10].

The position is also used in the perception module to filter important actors in the
environment. These actors are detected by using the inputs from cameras and Light
Detection and Ranging. Important actors are other road users such as pedestrians
and other cars. Road signals such as street lights and signs are also detected in this
phase.

The perception module is also responsible for detecting the navigable road surface
and the lanes. This area is important in order to maintain the vehicle centered on
the road.

3.2.3 Decision Module

This is an aggregation module that uses the raw data from sensors and the outputs
from perception units in order to drive the vehicle. The main tasks of this module
are path planning, prediction and control.

The planning phase is divided into two components. First a high level planner will
find the shortest way to the final destination. This service can be performed using
internet resources such as Google Maps. A local path planner is needed however to
plan local maneuvers such as lane changing, turn execution and overtaking.
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The local plan is then executed by the control unit that will directly act on the
steering wheel and the throttle to reach the desired goal.

3.2.4 Hardware Platform

The software components of the systems run on an operating system1. These com-
ponents needs to take decision in an acceptable time in order for it to safely drive
the vehicle and not collide with other road users. The role of the hardware platform
is to host the operating system and all the components of the system.

With such a constraint, general purpose computers lack significantly in processing
power. The design of fast dedicated hardware is a requirement. This is partly the
aim of this thesis; choosing the best embedded system, capable of ensuring these
constraints with the minimal possible overhead on the cost of the vehicle.

Besides performance, reliability is an other issue in autonomous driving. Hardware
faults occurs all the time. Letting these faults propagate through the system would
lead to disastrous consequences. The hardware component should, as well as the
software component, be fault resilient or has recovery mechanism after faults occurs.

3.2.5 Example Systems

Existing systems perform these tasks with slight modification on the architecture
from Figure 3.2. We distinguish three types of implementations:

� Pipelined systems: A pipelined system is a direct implementation of the archi-
tecture in Figure 3.2. Each module is implemented as such. Data flow through
the system while being enriched and transformed by the different modules in
the pipeline.

� End-to-End learning: In [167], the rise of end-to-end learning was evoked. As
defined in [167], an end-to-end learning algorithm would take as input the raw
original data and try to directly generate the final output. In the case of
ADS, the desired steering and acceleration outputs are learned directly from
the input images and LIDAR point clouds. End-to-end systems are therefore
easy to design. The drawback of these methods is debuggability. If an error -or
bad decision- occurs, it is hard for human experts to trace back its origin and
even harder to modify the network to fix it. With the high risk value in ADS,
end-to-end learning is used with high discretion.

� Reinforcement Learning: Similar to end-to-end learning, reinforcement learning
tries to find the optimal policy that the car should follow in order to reach its
goal. Besides inputs, the perception and decision modules are merged together
and the final decision is directly executed on the vehicle.

In Section 3.6 we give concrete examples on the first two types with more details
on the actual implementation.

3.3 Datasets and Challenges

The quality of machine learning algorithms depends on 1) the efficiency of the train-
ing algorithm when extracting features and 2) the richness of the training dataset.
However, the training algorithm can never extract more features than there are in
the dataset. For this reason, many tailored datasets exists. For ADSs, a selection of
these datasets is shown in Table 3.2.

1It is possible to implement all the functions as bare-metal applications. However, a full sys-
tem with interface, communications, scheduling and other tasks would be so complex. The use of
operating systems on top of hardware is almost mandatory.
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The available datasets for autonomous driving focus on driving scenarios. First,
the sensors are considered. Rather than relying on images, a vehicle can use LIDAR
and RADAR inputs to detect obstacles or understand the environment. Datasets
such as KITTI [67] offer calibrated LIDAR point-clouds with synchronized images.
The synchronization information can be very critical to enrich the information passed
to the network which would reflect positively on the output quality. Other factors
such as time and weather can be critical for a level 5 system where the car is expected
to drive anywhere with full autonomy.

Synthetic data is also helpful to design better architectures. The test-bed of
an autonomous vehicle is costly, especially for small research groups. Therefore, a
simulator is used to create a cheap indoor test-bed. Simulation skips the need of
manual annotation since data can be directly extracted. While synthetic data can
not be directly ported to real life scenarios, the algorithm can be retrained, or even
fine-tuned with real data in order to test it on real life scenarios.
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3.4 Autonomous Vehicle Constraints

Due to ethical dilemmas such as the Trolley problem2, ADSs needs to surpass human
driving capabilities with a safe margin for it to be considered an everyday replacement.
This safe margin dictates the constraints of designing an ADS. The main constraints
are enumerated as follows:

� Safety: The major concern in autonomous vehicles is safety. The software and
hardware components of the ADS should be able to detect dangers and prevent
them. For the hardware, this can be seen as the reliability of the platform. The
software component’s safety measure lies in it’s accuracy.

� Accuracy: The main constraint of an autonomous driving system is its accuracy
in replacing the human driving. This is measured by the detection quality and
the planning execution. The involved algorithms have a direct impact on these
qualities.

� Performance: In general, the more sophisticated the algorithm, the more com-
putations it needs. Therefore, the accuracy constraint could be transformed
into a performance constraint where the hardware platform should be capable
of running the different algorithms and provide outputs in time.

� Real-time: Due to it’s nature, real-time responses are needed. The system
should also be able to reply in given intervals for a safe driving. The difference
between real-time and performance is especially important in machine learning.
Most hardware accelerators, Graphics Processing Units in particular, reach very
high throughputs when processing multiple inputs at a time. In an ADS, the
number of inputs per instance is limited by the sensors, for instance cameras,
yet, each individual input needs to be processes in a fixed time for the decision
to be taken.

� Energy: It is a generic constraint in embedded systems. However, it is not that
important for autonomous vehicles. The maximum power consumption of an
NVIDIA Titan X GPU is 334 W which results in a 0.334 kWh consumption.
From the Electric Vehicle Database [51], the average energy consumption of
fully electric cars is 18.6 kWh/100km. With a speed of 100 km/h, the gpu
would be responsible for 0.02 % ( 0.334kWh

18.6kWh×1h× 100km/h
100km

) of the total energy of the

car which is negligible.

� Time-to-Market: Besides technical constraints, time-to-market is a major player
for any embedded system. The race towards fully autonomous vehicles is rapidly
intensifying. Most companies are joining in and standards are yet to be put.

� Cost: While luxury cars can afford to deploy high-end hardware with limited
to no limitations on cost, everyday cars are more compelling. It was estimated
by the Global Automobile Database [70] that Toyota Corolla is the most sold
vehicle in 2019. With a cost of 18,000 AC per unit, a 7000 AC NVIDIA Quadro
RTX 8000 or a 9000 AC Xilinx Alveo U200 would be highly overpriced.

Balancing these constraints is key to choosing the right hardware platform. In
the rest of the thesis, we work on the reliability and performance constraints of the
machine learning component of the system. As seen earlier, ML is a must of any
ADS.

2https://en.wikipedia.org/wiki/Trolley_problem

https://en.wikipedia.org/wiki/Trolley_problem
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3.5 Simulators

Training more sophisticated algorithms relies partly on having rich datasets. A rich
dataset should contain instances of any given situation. In the real world, it is very
complicated to collect a crash dataset from the point of view of the driver3. This is
where simulators come in handy.

Moreover, real-time systems such as ADS are best modelized as agents in envi-
ronment with a reward-penalty approach. With the rise of reinforcement learning,
datasets became less of a hassle and better environment simulators are of a priority.
Table 3.3 from [217] resumes the most famous simulators.

Table 3.3: Comparison of autonomous vehicle simulators. The environment abbre-
viations for urban and off-road columns are: T represent town, C is for city, R is
for road track and H for highway, F for forest, D for desert, M for mountains, G for
grassy field, U for underground mine and H for harbor.

As discussed earlier, some simulators are used to generate synthetic data that
would help training driving models. Realistic simulators can even use generated data
to train real-world vehicles, however, no similar cases were reported.

On a parallel note, the rise of the digital twin model to replicate and study the
behaviour of a system motivates the development of accurate simulators. The col-
lected data from the real world help diagnose and significantly improve the driving
model.

3.6 Frameworks for Autonomous Driving

Many frameworks exists for ADS. An ADS framework is a hardware/software solution
to the self-driving problem. The first detailed example was given by the winner car of
the 2005 DARPA challenge, Stanley [27]. Recently, almost each major car producer
has it’s own version of an autonomous vehicle. In this section we give two example
systems: Stanely and NVIDIA’s DAVE-2.

3.6.1 Stanley

Stanley was designed for desert driving with no manual intervention (Level 5 SAE
ADS). It relied on ML in its perception module. The architecture of Stanley can be
seen in Figure 3.5.

Stanley is composed of 6 modules. First the sensor interface feeds the system with
raw inputs from sensory units. These inputs are then processed by the perception

3This is due to ethical and legal obligations for real life crashes and cost if crashes were to be
scened
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Figure 3.5: Flowchart of Stanley software system from [27].

module that would extract the navigable area, detect obstacles and assess the surface
to estimate a velocity limit. The perception module is the heaviest in terms of
compute needs. The outputs of the perception modules are passed to the vehicle via
the planning and control module. These outputs are pre-processed and passed to the
vehicle interface module to be executed as actions such as throttling down or steering
the vehicle. The user interface module is used to show the state of the system and
the actual outputs. Global services such as health monitoring and time syncing are
packed in a separate module.

The huge popularity of autonomous vehicles led also to the development of soft-
ware stacks similar to Stanley’s. Apollo4 and Autoware5 are two examples. They
are both open-source platforms that allows for easier development and integration of
autonomous driving solutions. These platforms offers a pre-built Robotics Operation
System (ROS) that implements the main components of an ADS. A designer will then
have the choice on changing certain modules, such as replacing the obstacle detector.
The missing component of these platforms is the hardware side where no material
requirements are provided.

3.6.2 DAVE-2

In contrast to the previous pipelined solution. NVIDIA adopted an end-to-end solu-
tion in their DAVE-2 system [22]. They used a 9-layer CNN consisting of 5 convolu-
tional layers, 3 fully connected layers and a normalization layer. The architecture is
shown in Figure 3.6. The network takes a single image from a centered camera with
a YUV encoding. The networks outputs the final steering command which is passed
directly to the drive-by-wire interface.

The CNN is trained using real life recorded actions. A human driver drives the

4https://github.com/ApolloAuto/apollo
5https://github.com/autowarefoundation/autoware

https://github.com/ApolloAuto/apollo
https://github.com/autowarefoundation/autoware
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Figure 3.6: Architecture of the end-to-end system from NVIDIA’s DAVE-2.

car for a certain period of time. During that time, the steering decisions are recorded
along with the three camera inputs, a left camera, a right camera and a center camera.
The camera images are passed to the network as inputs. The ground truth used
to computed the error during training is the actual driver decision. This training
architecture is shown in Figure 3.7.

Figure 3.7: Training of the neural network used in NVIDIA’s self-driving car.

With the constraints of autonomous driving, the hardware is as important as the
software to guarantee safe driving. NVIDIA propose the Drive platform [172] to solve
this problem for their system. They rely on GPUs in their system-on-a-chip that can
ensures real-time execution of the software modules of DAVE-2.

3.7 ADS Design Example

Designing a self-driving system is a challenging task. In this section, we show our
study on designing such systems. We only focus on the obstacle detection task. For
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this task we present a system that would follow the data from the sensor to the final
control outputs while picking an adequate hardware capable of handling the software
load.

Each hardware platform presents strengths and weaknesses. Figure 3.8 from [262]
gives a rough insight on how these platforms compare in terms of performance and
energy consumption. More details on each platform are given in Section 4.

Figure 3.8: Comparison between different platforms.

For a system such as autonomous driving, a heterogeneous platform can be used
to perform the various task while respecting the different constraints. In this chapter
we show a simplified heterogeneous platform that we proposed as well as the full
system optimization study that could be reproduced for other case studies.

3.7.1 Platform Design Example

In this section, we present a software/hardware co-design methodology to implement
a full obstacle detection system based on deep learning. The results of this section
were published in [162]. In [140], an ADS architecture is presented. First inputs
are collected by sensors and sent to perception modules. These modules process
the inputs and generate information to help decision modules control the vehicle.
This pipeline is executed on a given platform. The sensory units vary in type. In
autonomous driving systems LiDARs, RADARs, cameras and combinations of the
above are used. In this work, we focus on images captured from cameras since they
are the most dense and the require more complex computation to output a useful
information. Results of this section were published in [162].

In a streaming environment, data comes from sensors and needs to be processed
in real time. Due to the very complex nature of CNNs, such performance requires
very delicate implementations. In the recent years, many researchers focused on this
issue and proposed platforms in order to achieve real-time inference.

3.7.1.1 CPU

Since the CPU have a fixed architecture and a clear execution path, the only challenge
is in the implementation. Many libraries were proposed to accelerate the inference
by reducing the convolution problem to a matrix multiplication and using a fast
algorithm for that such as Caffe [105]. However, the limited parallelism of a CPU can
not be ignored and leaves the CPU-based implementations behind when compared
to other platforms.

3.7.1.2 GPU

Similarly to CPUs, GPU have a fixed architecture. A GPU implementation is the
software program that should be executed. Many CPU libraries have a GPU extension
such as BLAS (cuBLAS). Dedicated platforms for DNN exists, most notably, Caffe
and Google’s Tensorflow [1].
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Figure 3.9: Evolution of detection when increasing the input resolution. From top-left
to bottom-right: detection with 20%, 40%, 80% and 100% original size.

3.7.1.3 FPGA

In [143], authors combined the line-buffer storage policy with the winograd algorithm
to obtain a staggering 2.94 TOPs. This performance was even compared to the top
GPUs. The use of winograd algorithm gives a minimal number of multiplications
is used during the convolution, however it is not portable to other networks where
strides different than 1 are present.

As surveyed in [76], the top performance reached by an FPGA is 40.77 TOPs
in [156]. This performance was reached by using 1-bit data and activation. In an
FPGA, the multiplication operations are reduced to a simple gate logic operations
(XNOR).

Other designs in [85] and [260], [258] also bypassed the 1 TOPs mark by employing
a mixture of data quantization and data transfer techniques.

When compared to GPUs, the performance CNN implementations on FPGAs
shines when data quantization is present. This is due to the fact that, in a GPU with
32-bit cores, a 1-bit operation and a 32-bit operation takes the same amount of time,
resources and energy.

However, the main advantage of FPGAs over GPUs is energy efficiency (GOPs/Watt)
where the same operation can be performed with minimal energy requirements.

The use of High-Level Synthesis (HLS) tools opened the doors for a variety of
implementations. [15] bypassed the 1 TOPs mark on Arria 10 with 1.38 TOPs by
using OpenCL to develop their accelerator. Xilinx also propose an implementation
in [103] using their own HLS tool. This implementation supports quantization by
using the Ristretto platform [80].

These implementations, and others that would be seen later on in Section 4, only
focus on the accelerator without porting the design to a runtime environment. Hav-
ing a high processing speed is a must for real-time systems, however, communication
costs and memory bottlenecks are proved to be an even bigger problem than the
computational load itself. Hence, we tackle this implementation challenge by inte-
grating an already optimized CNN accelerator into a real-life scenario where images
are streamed from a sensor.

3.7.2 Proposed Approach and Results

Our platform design operates in two phases. First, we applied some optimizations on
the network by locating the optimal input size for our case study, obstacle detection
for autonomous vehicles. Second, we considered the whole system where images are
streamed from a camera through our pipeline.
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Figure 3.10: Impact of input size on network size (billion multiply-accumulates) and
accuracy (compared to ground-truth.

3.7.2.1 Input size profiling

CNNs are known to be resilient to errors [165]. On the other hand, the same archi-
tecture can be retrained to process different sizes of images. Since filters are passed
through the input size, it can generate an output for any input given. In this study,
we vary the size of the input and measure the detection accuracy.

We used Faster R-CNN [191]. It is a state-of-the-art detection CNN in terms of
accuracy. Many other detection algorithms are variants of Faster R-CNN and this
study can be ported to most of them. The novelty in detection algorithms is that,
not only the CNN generates a class for a given object, but it will also localize it
and generate a bounding box. These networks are crucial for our task of obstacle
detection for autonomous vehicles.

We tested Faster R-CNN on the KITTI [67] dataset. The novelty is in the input
size. For the same image, we generate multiple low-resolution copies of the input
ranging from 20% the original size to the actual image size (100%) with a 10% in-
crement. We then process the new input using an already trained instance of Faster
R-CNN. At the end, we record the accuracy of each copy. We use the F-score to com-
pute the overlap with the ground truth detections which are provided by the KITTI
dataset. We repeat this experimentation on multiple images of the KITTI dataset
and we measure the mean accuracy of each input scale.

As for the computation load, we only considered multiply-accumulate (MACC)
operations. This is the most compute-intensive task in a CNN [165]. In Faster R-
CNN, it constitutes more than 99% of the overal operations. The number of MACC
operations of a CNN can be accurately computed since the architecture is constant.
A FC layer with 1000 neurons and 1000 input will always require a vector-matrix
product of 1000× 1000 by 1000 MACC operation.

In Figure 3.10 we show the evolution of the accuracy with respect to the computa-
tional load (Giga MACC operations). The number of operations grows exponentially
when we increase the input image size. The accuracy however, does not follow the
same growth. The maximum accuracy of detection is approached at 80% of the orig-
inal size. Figure 3.9 presents the result of 4 different image scales and compares the
CNN output (red boxes) to the ground truth (green boxes) for each run. The most
critical vehicles for a safe driving are detected at 80% of the input scale which is in
correlation with the graph in Figure 3.10.

This can be exploited to reduce the computational load while preserving an ac-
ceptable level of accuracy. By using the graph in Figure 3.10, we can even dynamically
choose the perfect combination depending on the desired level of accuracy. In the next
study, we use this information in order to accelerate a detection streaming platform.
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3.7.2.2 Streaming platform

In an AV system, and many other similar situations, images come from a sensor as
a stream. The processing unit needs to output a value for every given input in an
acceptable time in order to take correct decisions. We simulate this behaviour in the
design in Figure 3.11.

Figure 3.11: Architecture of the proposed encode/decode pipeline.

We propose a near-sensor computing model. These models allows high energy
gains due to the reduced transfer costs. The drawback of near-sensor platforms is
the limitations. The compute power and the energy requirements are very tight.
For critical CNN applications with high accuracy requirements, a main compute unit
needs to be in-place to handle the required compute power.

The two environments, the near-sensor unit and the main compute unit, needs to
communicate. Even though they both reside in the vehicle, the communication cost
is very expensive if we decide to send the raw input (image matrix). We propose the
usage of encoding techniques to reduce the communication load.

The final design, as presented in Figure 3.11, takes an input from a sensor (cam-
era). A near-sensor compute unit resizes the input image to the 300 × 300. This
resolution is fixed using the previous study on the input size and guarantees a good
accuracy with a relatively low compute requirements. This image is then encoded
to reduce its size. The encoded information is sent to a main compute unit. Our
main compute unit is an ZCU102 FPGA. The FPGA contains the latest Xilinx CNN
accelerator [103]. Before running the inference, the received data is decoded and
forwarded to the accelerator. Once finished, the result is sent to decision units.

We applied this architecture to the Xilinx design in [103]. We used the Ultrascale
MPSoC ZCU102 platform. For input we used a laptop with a camera, the encoding
is done using the OpenCV library. We first resize the input size to 300 × 300 and
encoded the result into JPEG format. The FPGA is responsible on decoding the
image and executing the inference. With this setup, we reached 14 FPS on Faster
R-CNN. The Xilinx design already performs quantization on the network weights.

3.8 Summary

In this chapter, we introduced the architecture of an ADS. The software and hardware
components of the architecture were presented in details. In the software component
we enumerate the main tasks the system need to realise. The reliance on machine
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learning algorithms was accentuated. Existing simulators and datasets tailored for
the self-driving problem were presented. As for the hardware component, we give the
constraints that justifies the pick of a platform over an other.

Some design examples were given, namely, Stanley from the DARPA challenge and
DAVE from the NVIDIA team. These examples show how a full system is designed.
We finally presented a novel design method to accelerate streaming and processing of
real-life data. Our method is based on input size reduction and input compression in
order to reduce network communications. We used JPEG for encoding and, although
some losses are present, CNNs can tolerate these deformations and still outputs the
correct results after inference. As for the hardware part, Near Sensor Processing is
a well established paradigm in embedded design and needs to be employed whenever
input data needs pre-processing.

Communication costs is a limiting factor when it comes to CNN performance
due to the massive load of data involved. Extending this work by using In-Memory
Computing is promising. The sensory unit only needs to store the data in a shared
memory where computation also will take place.
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In this chapter, we give an overview of general and platform-independent CNN
acceleration techniques in Section 4.1. Later on, we deeply discuss the different
platforms with a brief architectural overview and previous works that focused on
ML. We show how each platform make use of the general optimizations presented in
Section 4.1 as well as its platform-specific optimizations.

For each platform, different design mindsets are present. If a given CPU only
has a 32-bit Arithmetic Logic Unit (ALU), reducing the size of the operands would
not be as efficient as if a custom ALU is designed in an FPGA. Based on this, we
follow a different methodology in this section. The accelerators are classified first by
the platform for which they are proposed and then, depending on the platform, the
different optimizations are given.

4.1 CNN Optimization Techniques

A taxonomy of hardware accelerators for machine learning was proposed in [262].
We show this taxonomy in Figure 4.1. First, three levels of optimizations were dis-
tinguished: structure, algorithm and implementation level. At the structure level,
only the data is considered. In a CNN, the data is the inputs, the activations and
the weights. Using simpler representations such as the fixed point representation
from [47] has a dramatic impact on performance with a manageable loss in accuracy.
More aggressively, weights can be skipped which is the idea behind pruning tech-
niques. The second level is algorithmic. For inference, authors considered other ways
of computing the final result in order to simplify the execution graph. Fast Fourier
Transform (FFT) transformation, Winograd algorithm and the matrix-multiplication
transformation are very famous cases for convolutional layer algorithms. We see these
transformation in more details later in Section 4.1.2. Lastly, at the architecture level,
managing the hardware resources differently is a viable mean of trading performance,
energy and resources in order to satisfy the environment constraints.

Figure 4.1: Taxonomy of CNN acceleration methods from [262].

In this section, we use this categorization. For this, we will focus in the next
subsections on these three levels of classes. A general insight on how each class
tend to optimize the inference time is given, later in this chapter, we show how each
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platform (CPU, FPGA, GPU and Application Specific Integrated Circuit (ASIC))
exploit the optimization depending on it’s architecture. All the previous works fall in
one of these categories and is going to be presented later in this chapter. We followed
a platform-aware classification to present the existing works on CNN acceleration. In
the next two chapters (Chapter 5 and Chapter 6), we show how to exploit some of
these techniques to design two hardware accelerators for machine learning inference.

4.1.1 Structure Level

These optimizations are performed at early stages and tend to reduce the complexity
of the model before implementing it on hardware. Two main ideas are deeply explored
in this field: 1) reducing complexity of data and operations known as approximate
computing and 2) reducing the number of operations known as pruning. While these
optimizations are performed on the model itself, the fact that they were motivated
by hardware requirements justifies their status as hardware optimizations.

In reducing the complexity of data and operations, researchers reduced the number
of bits required to represent the data (inputs, activations and weights). This is a
common practice in approximate computing. A near-enough but fast result replaces
the slow exact value which should not be a problem since CNNs are known to be
resilient to small perturbations in inputs and outputs ; however this is not always
true as we will see in Chapter 7. Besides the IEEE-754 floating point representation,
two formats arises in reducing the number of bits: the static fixed point representation
and the dynamic fixed-point representation such as the one in [47].

Reducing the number of bits, also known as quantization, can get as aggressive
as it can gets. Binary and Ternary neural networks have shown the possibility of
training a network with binary data. This not only reduces memory requirements
with less bits but also the complexity of the operations. A multiplication in such
networks is a mere AND operations which will further accelerates the network.

As seen in Figure 2.11, multiplication is the most common operation in a CNN.
Reducing the complexity of this operation, even with a sacrifice on precision, can be
extremely beneficial to the total performance. As far as we know, using less-complex
operators is an under-explored field and was partly tackled in our second work in
Section 6.

Reducing the complexity is not the only model optimization. Weights and feature
maps contain redundant information. This is exploited to reduce the number of
parameters and operations. Pruning uses optimization and exploration techniques to
locate and eliminate, or at least minimize this redundancy.

Although this may leads to increase in fault rates as we will see in our reliability
study in Chapter 7, many general-purpose CNNs use this optimization to lighten
their models for fast response time and less energy consumption and resource usage.

4.1.2 Algorithmic Level

Most hardware optimizations target the software implementation before going into
hardware. Machine Learning algorithms are no different. Simplifying the datap-
ath in a CNN may lead to huge savings in execution time. The major challenge in
implementing CNN algorithms, or ML algorithms in general, is optimizing the con-
volutional layer (conv) layer and the fully-connected (fc) layer. The fc layer can be
boiled down to a vector-matrix multiplication where the input feature map is the vec-
tor and the weights and biases per neuron is the matrix. Vector-Matrix multiplication
has predictable and an easily schedulable order of execution. This leads to efficient
hardware implementation. As far as convolutions are concerned, transformations are
not as straight forward. Executing the operations of this layer as-is is challenging.
Three transformations are possible: convolutions as matrix multiplication, convolu-
tions using winograd algorithms and convolutions in frequency domain.
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Figure 4.2: Transform of the convolution operations (left) to a GeMM (right).

4.1.2.1 Convolutions as GeMM

The idea is to re-organize multiply-add operations so that a single convolution be-
tween a filter and a window from the input feature map becomes a multiplication
between a row vector and a column vector. The other convolutions are then stacked
in order to obtain two matrices. The final product of these two matrices is none
other than the original convolution. The motivation behind this transformation is
the fact that General Matrix Multiplication (GeMM) can be rapidly optimized. The
downside of this method is the replication of data; with small strides, input windows
overlap with each other. When stacking them to form a matrix, the overlapping re-
gion is replicated in the two rows as can be seen in Figure 4.2. This transformation is
adopted in Caffe [105], a very famous framework for machine learning. While archi-
tectures with abundant memory can live with this challenge, FPGAs, being mostly
resource bound, are not very suitable for this transformation.

Our first work in Section 5 uses this observation. We accelerate matrix multipli-
cation on a Resistive Associative Processor. We use a Content Addressable Memory
(CAM) based on resistive devices. This memory is area-efficient, hence, can host the
replicated data.

4.1.2.2 Winograd Convolutions

Since convolution and filtering are similar algorithms, many works tends to explore
the Winograd algorithm, also referred to as the minimal filtering algorithm, to im-
prove the performance of convolutional layers. The algorithm trades multiplications
for additions to reach a minimum number of multiplications required to perform a
given convolution between an input matrix and a filter. This number is reached
by transforming the input and the filter to simplify the problem and reduce it to a
general matrix-matrix multiplication (GeMM in Algorithm 1) and an element-wise
matrix-matrix multiplication (EwMM in Algorithm 1). The final design contains less
multiplications but more additions. However, since multiplications are more complex
than additions, it outperforms the conventional algorithm by a factor of 3× [128].

Input transformations consists of generating two intermediate matrices, U and V ,
as follows:

U = GWGT V = BT IB (4.1)

Where W is the weight matrix and G and B are constant matrices fixed in the
algorithm. The output is then computed as follows:

O = AT [U � V ]A (4.2)

Where A is an other constant matrix. The operator � denotes element-wise
multiplication.

Algorithm 1 shows the required transformations in the conventional algorithm to
use the Winograd algorithm.
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Algorithm 1 Convolutional layer using Winograd

procedure WINO(Mat: I, Mat: W , Mat: O)
U = GeMM(G,W,GT )
V = GeMM(BT , I, B)
T = EwMM(U, V )
O = GeMM(AT , T, A)

end procedure

Figure 4.3: The FFT transformation of the convolution operation between an inputs
X and a filter window h. The output y is obtained by applying an inverse FFT to
the dot product of their FFT transformations.

The performance of the Winograd on FPGAs can be greatly improved. Input
and weight transformations requires GeMM with the constant matrices B and G and
their transposes. However, B and G only contains the values: 0, 1, −1, 1

2 , − 1
2 . This

can be exploited to transform these multiplications to be done very efficiently using
a simple MUX operation. This reduces the number of required multiplication even
more to only the EwMM in Formula 4.2.

In [54], convolutions are handled using this algorithm. In this algorithm. Over-
lapped windows are exploited to reduce the number of computations.

4.1.2.3 Convolutions in Frequency Domain

The simplicity of computing convolutions in the frequency domain attracts many re-
searchers to exploit it for their designs. The complicated operation of dot-multiplying
a shifting window with a filter is a mere element-wise matrix multiplication in the
frequency domain.

Let us consider the convolution in Figure 4.3 of an input X: a vector, resp. matrix,
of n element to be convolved with h: a vector, resp. matrix, of k element representing
the filter. The application of this transformation goes as follows. The first step is to
compute the FFT of each vector. The outputs of the FFT operation are two vectors
X and H. These vectors are the frequency domain representation of the input vectors
x and h. The convolution theorem states that the convolution in the time domain
equals point-wise multiplication in the frequency domain. Therefore, multiplying the
values of X and H would result in Y the FFT of the expected result y. After this
multiplication, an Inverse Fast Fourier Transform (IFFT) is applied to obtain y the
final value of the operation.

The efficiency of this approaches shines for two reasons: 1) the fast FFT/IFFT
calculation and 2) the unconstrained multiplications of the two matrices after trans-
formation. As for the first, algorithms such as the butterfly diagram can be rapidly
implemented and are easily paralellized. The output of such algorithms can be ex-
ploited in the second step as soon as it is computed. With this scheme, there would
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be no delays and the resulting throughput of the overall circuit should be very high.

4.1.3 Implementation Level

Due to the differences in architectures, each hardware may, or may not, use a type of
optimization. Using cache optimization techniques in a CPU is obsolete in an FPGA
where the concept of cache is not present. Therefore, for implementation techniques,
we present the platform independant optimizations, where the focus is on 1) choosing
the best order in which the operations needs to be executed and 2) selecting the best
structures that hosts the data for efficient manipulation.

A common practice in machine learning acceleration in FPGAs is automated
hardware generation. It is a recurrent theme in many accelerators, therefore, we
dedicate Section 4.1.3.2 to present the various possibilities of hardware generation.

4.1.3.1 Datapath optimization

Machine Learning algorithms are both compute and memory bound. Each run, bil-
lions of operations are performed and, over all the layers of one network, gigabytes
of intermediate information need to be stored 2.2. A fully unrolled network is very
tricky to deploy and almost no chip is capable of hosting it. In the second work
we present in this thesis (Chapter 6), we study a novel method to tackle fully un-
rolled networks. The other alternative to solve this problem is reusing memory and
Processing Elements which sacrifices performance for feasibility.

The optimal number and organization of processing elements that maximizes per-
formance given a chip’s configuration (resources, architecture, memory bandwidth,
etc) is an optimization problem. For this, design-space exploration is largely used
to find the most suitable accelerator for a given chip. High level tools such as HLS
eases the burden of design space by proposing automated optimizations such as loop
unrolling, pipelining and tilling. Add to that interchanging the loops during the soft-
ware phase of designing, the vastness of the exploration space becomes within reach.
In [257] authors tackled this design-space problem to figure out the most adequate
parameters of the different loops that are required for a CNN execution. This allowed
them to achieve state-of-the-art performance by the time their work was published.

Besides exploring PE duplication, Single Instruction-Multiple Data (SIMD) pro-
cessors are also used. Since convolutions and fully connected layers could be replaced
by matrix-matrix and matrix-vector multiplication respectively, it comes with no
doubt that a vector processor is a promising candidate. Due to its efficiency, the
architecture of SIMD processors has been adopted in many FPGA designs. A single
PE is duplicated multiple times and data is forwarded as arrays (or matrices) back
and forth between the PEs and the storage (BRAMs or off-chip memory).

While optimizing loops and exploring the design space proved to increase the
throughput and the overall performance of the system, the best performance has
been claimed by Google’s TPU [117]. This model uses systolic arrays [126].

Figure 4.4: Line buffer and window buffer example for convolution operation from
[149].

PE organization is not the only challenge. The way the data is stored, read and
written is a task to deal with. One of the most efficient memory management patterns
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is line buffers. This structure allows reading feature maps in the same order they are
processed. The functioning of line buffers is shown in Figure 4.4. This structure was
used in [143]. The idea is that a value will stay in memory as long as it is used;
when this value is evicted, it will no longer be read again. This obviously reduces
the required number of transfers between on- and off-chip memory which will reduce
execution time.

4.1.3.2 Hardware Generation for FPGAs

Machine Learning algorithms in general and CNNs in particular are complex algo-
rithms. Writing the hardware description of a full accelerator is challenging to say
the least. The use of automated tools to ease this task is a common practice. While
it is not considered an optimization on its own, this phase could be a deciding factor
in obtaining good performing hardware.

Domain Specific Language (DSL) are common for various domains. CAPH1 is a
famous DSL for implementing dataflow applications on FPGAs. For ML, [268], [53]
use these languages to propose hardware accelerators. Besides these two works and
few others, the use of DSL is not frequent in CNN design.

The most common practices in CNN design are RTL and High-Level Synthesis
(HLS) based generation. HLS solution are widely used due to the short time-to-
market they offer. They come in two main categories, OpenCL based and Vivado
HLS based2. While the former is platform independent, HLS still offers very handy
set of tools that allows designers to implement their design in a very short time with
minimum complications. Many researchers enjoy this simplicity to propose efficient
implementations in terms of energy and performance such as [257], [224] and [220].
In the later, a framework (FINN) was built on top of Vivado HLS to facilitates
generating hardware for any given architecture. Xilinx offers a set of tools on top of
it’s HLS such as the ViTIS framework that uses xDNN, a high level toolkit that ease
the design of ML accelerators on its FPGAs. As for Altera’s FPGAs, OpenCL is the
main pick as a high level tool for designers. It was used in [210], [15] and [260].

The simplicity and high automation of HLS based approaches comes with a
penalty on quality. For this reason, many hardware designers use hardware descrip-
tion languages to generate their code for better performance. An example of RTL
based generated hardware is [158]. In this work, authors proposes a framework that
generate a Verilog description of a given CNN architecture.

Later in this thesis, we will present two of our contributions to accelerating CNN
inference. First, in Chapter 5, we explored an algorithmic optimization. As seen in
Section 4.1.2, convolutions can be executed as matrix multiplication. We proposed a
MM accelerator on an associative processor. The execution pattern of such algorithms
on associative processor is faster. We exploit this fact to propose the architecture and
the modified algorithm. In Chapter 6, we propose a second technique to accelerate
CNNs. In this second proposition, we evaluated the approach on FPGA and on ASIC.
In this rest of this chapter, we present the different works on accelerating machine
learning inference on hardware.

4.2 CPU

CPUs are ubiquitous. Combined with the popularity of CNNs, many systems rely on
their presence to satisfy their compute needs. Furthermore, complex systems requires
an Operating System (OS) which, in general, are executed on a CPU. Hence, their
deployment begets no additional resources since they are already present. This fact
motivates most major companies, such as Intel [227] and Amazon [142], to exploit
CPUs for CNN inference.

1https://github.com/jserot/caph
2Intel offers an HLS tool for their Altera FPGAs but it is not as common ax Xilinx’ Vivado.

https://github.com/jserot/caph
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4.2.1 Architecture

Modern processors are composed of a number of cores3, memory banks (in the form
of cache levels), a memory controller and some input/output ports. Figure 4.5 shows
the architecture of a first generation (Nehalem) Intel Core i7 [236].

Figure 4.5: Architecture of Intel’s processor Core-i7.

In general, the micro-architecture of each core contain some ALUs, a cache mem-
ory and a set of registers to control the execution and/or for storage. The micro-
architecture of an Intel Core is shown in Figure 4.6.

In the literature the term Instruction Set Architecture (ISA) is used to refer
to the set of atomic instructions a processor is capable of executing. The actual
implementation of said architecture is called the micro-architecture. Two processors
could have the same ISA but different micro-architectures such as AMD Opteron and
the Intel Core i7. While the ISA decides what a processor can and can not do, the
micro-architecture dictates how a processor will execute a program.

Due to high memory costs, multiple levels of caches are present inside a CPU.
Ranging from the large and slow to the small and fast, the speed of a processor on a
given task is highly decided by the efficient usage of these cache memories. When a
core lacks a required data from the nearest cache, it has to look for this data in high
level caches which will cause additional waiting times, hence, bad performance. This
phenomena is refereed to as a cache miss.

In addition to the cache memory, the level of pipelining is an other deciding factor
when performance is concerned. In order to be executed, an instruction is fetched
from the instruction memory. It would then be decoded and passed to the correct
execution module. At the end, the intermediate data is written back to free the
registers of the execution cores. These four stages is a very simple example of a
processor pipeline. This process could be accelerated by re-using subsequent modules
for the next instruction after each step.

With all these optimizations, a single processor is still unable to efficiently execute
compute intensive applications such as CNNs. In [92], five classes of CPUs were
introduced; personal mobile devices, desktop, server, clusters and embedded CPUs.
These classes could be seen in Table 4.1 ranked by their prices and performances.

Recent generations of processor support vector operations in the form of an ex-
tended instruction-set. This was motivated by the widespread of linear algebra appli-
cations. The most notable ones are the Streaming SIMD Extensions (SSE) and the
Advanced Vector Extensions (AVX).

3When the number of cores is greater than 1, the processor is called a multi-core processor. If the
emphasis is on parallelism and not on single-core performance, the processor is called a many-core
processors; which is a special case of the former.
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Figure 4.6: Intel Core micro-architecture.

Table 4.1: CPU Classes from [92].

In our case, these classes could be reduced to only two. General purpose CPUs
such as desktop, mobile and embedded CPUs and High Performance Computers
present in servers.
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4.2.2 CNN Acceleration on CPU

CPUs are designed for general-purpose computing. Acceleratorsfor ML applications
on this platform comes in the form of libraries. Many of which are used in HPCs.
These accelerations heavily rely on graph theory in order to optimize CNNs. Others
possible optimizations focus on processor architecture such as reducing cache misses
in [273].

4.2.2.1 Libraries

ML algorithms are dominated by vector and matrix operations. Libraries that focus
on these operations are widely used to implement ANNs and CNNs algorithms. They
share the same principle which is generating the execution graph and optimizing it
for a given problem for better performance, memory usage, cache allocation efficiency
and other important metrics.

Eigen [102] is a C++ linear algebra library that does exactly that. It’s a template
library that allows users to define their own types and use the different algorithms
such as GeMM and Vector-Matrix Multiplication (VeMM). OpenBlAS [243] is a very
similar library also for C++. It focus on Basic Linear Algebra Subroutines (BLAS). Its
presence is wider than Eigen due to its better documentation. It provides basic linear
algebra algorithms optimized for most common CPU architectures such as Digital
Equipment Corporation (DEC) Alpha, Advanced RISC Machine (ARM) 32 and 64bit,
Intel’s Itanium architecture (IA64), Microprocessor without Interlocked Pipelined
Stages (MIPS) 64-bit, Power Architecture, Oracle’s Scalable Processor Architecture
(SPARC) and Intel’s x86 and x86-64 architectures.

The Automatically Tuned Linear Algebra Software (ATLAS) [235] is an other
library that focus on BLAS subroutines. It focus on automating the process of writ-
ing efficient software for machines ranging from Personal Computer to embedded
processors.

Intel developed its own library for its processors. Intel Math Kernel Library
(IntelMKL) [227], in addition to linear algebra, focus on other math routines such
as FFTs, vector statistics, data fitting and other miscellaneous solvers. It is highly
optimized for most of Intel processors’ families such as: the Xeon©, the Core�, the
Atom©and the Xeon Phi�processor family.

While these libraries focus on BLAS algorithms which, then, can be used for
ML algorithms, the Library targeting Intel Architecture for specialized dense and
sparse matrix operations, and deep learning primitives (LIBXDMM) [90] focus on
small matrix multiplications. This is very handy for CNNs since convolutions are
majorly multiplications with small filters. It targets all recent x86 vector instruction
set extensions up to Intel AVX-512.

The first major library dedicated to ML applications is Berkeley’s Caffe [105]. It
is written in C++ and makes use of other libraries such as ATLAS and OpenBLAS.
It offers a full framework that, given a description of a network, gives the main
routines to execute it. The description is written using Google’s Protocol Buffers
(ProtoBuf) by defining its own specific protocol named prototxt. Hence, the user
only needs to provide the description of the network as in Figure 4.7 and, using the
high level functions it provides, run most ML operations on the defined network,
namely, training and inference. It has a support for GPUs.

Caffe provides most, if not all, ML operations. However, it is slightly complicated
for experimenting. Google’s Tensorflow [1] offers exactly that. Written in Python,
it simplifies ML development by offering a very-high level Application Programming
Interface (API). As for performance, the library generates a network graph that,
once compiled, could be optimized and executed on the host hardware. It is based
on tensors and is very optimized for TPUs which we will see later in Section 4.5.
Other Python libraries exist ; the most notable ones are Theano [5], Keras [42]4 and

4Keras was integrated into the most recent version of Tensorflow (2.0).



4.2. CPU 65

Figure 4.7: Example definition of network described in Caffe’s prototxt format on
the right. The equivalent architecture of the network is on the left. It has a single
convolution layer where data is stored in blobs. A blob is Caffe’s notation for a vector
of elements.

Lasagne [55]. Their main goal is to ease the use of ML applications and facilitates
experimentation to the detriment of performance.

MXNet [33] is a viable competitor to other major frameworks. It is an other
deep learning library which automates ML design such as differentiation for gradient
derivation and architecture declaration. In their experimentations, a similar perfor-
mance to Caffe was reported while Tensorflow was lacking with 2× falloff.

4.2.2.2 Algorithmic and Graph-based Optimizations

The Winograd algorithm [239] is a very famous transformation for filtering operations.
It is explained in details furthermore in Section 4.1.2.2. Basically, it trades multipli-
cations for additions. It was used in [26] and [106]. In the two papers, techniques
to extend the algorithm for larger filters with multiple dimensions were discussed.
However, due to the nature of CPU architectures, multiplications and additions, the
power of this algorithms is hard to harness and is best exploited in other platforms,
especially FPGAs and ASICs.

A plethora of other algorithmic optimizations were presented in [68]. These algo-
rithms focus on accelerating the conventional convolution algorithm, which they call
”direct convolutions”, on x86 processor architecture. In their work they also discuss
a strategy to efficiently deploy on multiple nodes. For ResNet-50 [88], a close to peak
theoretical performance was reached.

An upper bound for execution time on multiple nodes can be computed using
Brent’s theorem.

Theorem 1 Brent’s theorem [78] states that if an algorithm with N operations can
be executed with maximum parallelism, Pm, in T units of time then a processor with
P cores (P < Pm) would be able to execute the same algorithm in TP such that:

TP ≤ T +
N − T
P

(4.3)

In Figure 4.8 we show an example of an algorithm with N = 11 operations. The
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Figure 4.8: Parallel solution for a system of two equations with two unknowns. The
considered processor has 6 cores. Each column represent one core and each row shows
the instruction to be executed in the given core at a given time.

Figure 4.9: Solution to the system from 4.8 with 4 cores for u and v. The final values
should be: u = dx−cy

ad−bc and v = ay−bx
ad−bc .

algorithms solves a set of two equations:{
au+ bv = x
cu+ dv = y

The maximum number of cores required to fully unroll the algorithm is 6. With this
many cores, the algorithm takes T = 3 timestamps to finish. The execution of the
same algorithm on a 4-core processor is shown in Figure 4.9. As expected, it was
possible to execute the algorithm in TP = 4 timestamps which satisfies Equation 4.3.

While this theorem gives an upper bound on time, it does not shows how to
obtain it. In [273] authors proposed a method to attain this performance. Compared
to Caffe [105] and [5], they reached a speedup of over 90×. This implementation even
compares to the GPU implementation of Caffe.

Low data reuse was identified in [261] as a root cause for performance issues in
CPUs when executing RNNs. A framework that maximize data reuse was proposed.
Authors claims an order of magnitude better performance compared to Tensorflow
and can even compete with GPUs.

In [215], authors stated that, after generating the execution graph, the focus on
maximizing the level of parallelism is more important than that of accelerating nodes
in the graph. This was done in major frameworks where we see efficient implemen-
tations of individual operations such as most BLAS libraries without any concern
of how the full application is going to be executed. This problem is more sever for
many-core architecture. This was addressed in their paper. As a solution, they pro-
pose Graphi, an execution engine that minimizes interferences between software and
hardware resources. Their results shows an acceleration range of 2.1× to 9.5× on a
68-core Intel Xeon Phi processor compared to Tensorflow.

Graph Lowering Compiler Techniques (GLOW) [192] is an other tool that uses
the execution graph to optimize the ML code. It operates in two levels: a low level
and a high level. The high level generates an optimized Intermediate Representation
(IR) while the low level exploits the target architecture to perform memory-related
optimizations. With this architecture, the generated code could be executed effi-
ciently on any given architecture by parameterizing the low level optimizer. On a
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single threaded Intel i7-7600U, it reaches 8.3 Frames Per Second (FPS) on ResNet-
50 [88] compared to 3.0 for Tensorflow and 6.3 for TVM [34]. TVM is a similar graph
optimizing framework that targets both CPUs and GPUs. It is based on Halide [187]
which is a language that optimizes image processing tasks.

While some works proposes compilers to generate optimal code [37], the generation
of an IR was the way to go. It was used in nGraph [50], an Intel deep learning
compiler. With a fine-tuned low level enhancer, it achieves a 1.5× speedup when
compared to their MKL library [227].

Built on top of TVM [34], Amazon’s neoCPU [142] is an end-to-end stack which
focus on optimizing both the execution graph and the operations without relying
on other libraries. According to the authors, this gives more flexibility and allows
better yield in terms of performance. Their results shows better execution time over
Tensorflow and MXNet [33] on an 18-core Intel Skylake, a 24-core AMD EYPC and
an ARM A72. The technique is also scalable and reaches a 3× speedup when the
number of cores augments.

Edge devices have their share of ML ( [240], [108]). Considered to be a must for
many Internet of Things (IoT) systems, these devices have neither the space for large
accelerators nor the performance of such high-end platforms. In [108] authors used
the TVM [34] stack with specific edge optimizations such as quantization to obtain
a 3× latency speedup over MXNet [33] for ResNet-18 and a 10× for MobileNet [94].
The runtime library they generated has a size of less than 1MB which is adequate for
edge devices.

4.2.3 Summary

CPU implementations can be split into libraries and execution-graph optimization.
Most major techniques falls in these two categories. However, when real-time re-
sponses are needed, CPUs are either sluggish or impractical if an HPC should be
deployed. Their usage as a control unit is still inevitable. Their high simplicity,
yet large coverability, makes of them the de-facto master in the majority of com-
plex systems. Almost every platform has a CPU in it’s core to manage the different
accelerators and, in some cases, help with the execution.

4.3 GPU

GPUs are known to be the power-horse of machine learning. Many researchers con-
siders this platform the sole responsible for the recent development of ML. In this
section, we present the architecture of GPUs as well as the most notable CNN accel-
erations on them.

4.3.1 Architecture

In simple terms, a GPU is a many-core processor with different optimization ob-
jectives. The core ideas behind these optimizations were boiled down to three key
concepts in [62]. Starting from a simple many-core processor, a GPU could be de-
signed following these three rules.

� Simplify cores: A CPU core has many modules that helps a single instruction
stream run faster. These modules could be an out-of-order control logic, a
branch predictor, a memory pre-fetcher or cache memories. GPU cores are
stripped down from all these components. By simplifying a single cores, more
cores could be used to achieve higher parallelism. Basically, in this step we
trade complex cores for more cores5.

5This trend was also adapted in CPU design. The latest AMD EPYC 7742 has 64 cores which is
unusual in common processors.
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Figure 4.10: NVIDIA TU102 Diagram.

� Single-Instruction Multiple-Data (SIMD) processing: GPU cores are specialized
for parallel computations. More ALUs are added to each core while simplifying
their usage by introducing new instructions. The new instructions replace the
old operations by vector operations6. The examples given in [62] is the NVIDIA
GeForce GTX 285 with an 8 SIMD functional units per core and the AMD
Radeon HD 4890 cores with 16 SIMD.

� Avoid stalls: In the first step, cores were simplified. Therefore, stalls caused
by data dependencies, are no longer prevented since the responsible logic is
simplified. Storing multiple contexts in each core can solve this problem. When
facing a stall, the core will just load an other context without stalling the
execution. This will increase the throughput of the GPU. The NVIDIA GeForce
GTX 285 has a 64 KB of memory dedicated to context storage which can store
up to 1024 contexts.

Figure 4.10 shows the architecture of an NVIDIA Turing, the TU102. It has 4086
cores spread over 72 Streaming Multiprocessor (SM). The architecture of an SM is
shown in Figure 4.11. It is partitioned into 4 logical blocks sharing the same L1
cache. Each block has 16× 32-bit floating point ALU, 16× integer ALU and 32×
16-bit floating point ALU.

GPUs were originally designed for 2D rendering and 3D applications like video
games. This was mainly due to the similarity between the architecture of GPUs and
the data structure of these applications (independent matrices). CNNs have similar
structures. A huge shift happened in the past few years; general purpose GPUs were

6A function that multiplies two 64-bit inputs using a basic instruction mul can be executed as 8
parallel 8-bit instances if the instruction set of the core has a vector multiplication instruction mul8.
A vector operation takes vectors as inputs and perform the operation simultaneously on all cores.
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Figure 4.11: Architecture of the Streaming Multiprocessor (SM) in the NVIDIA
TU102.

no longer limited to gaming and rendering but pioneered as ML training and inference
platforms.

GPUs are not independent. A CPU is used to control the execution and forward
the inputs7.

4.3.2 CNN Acceleration on GPU

Accelerating CNNs on a GPU is all about efficiently using the available cores. Re-
structuring the flow of execution may fix multiple memory problems caused by data
dependency. However, the true power of GPUs lies in batching. In many cases, a
CNN is asked to infer on multiple inputs. If multiple inputs are present at a given
time, packing and processing them simultaneously will yield better performance since
it eliminates the need of reloading weights for each input. In Figure 4.12, the impact
of the batch size on the performance, measured as the number of processed images
per second, is shown. Five GPUs from NVIDIA were considered: the 1080Ti, the
Titan V, the GV100, the Titan V with 16-bit floating point and the GV100 with
16-bit floating point. Two networks are used for comparison, GoogleNet and ResNet.
The trend is similar in the two networks as the batch size increases from 32 to 2048.

Increasing the batch size can be disadvantageous if used aggressively. As seen
in Figure 4.12, the memory requirement increases when the number of simultaneous
inputs increases. At a given point, the GPU can no longer satisfy this requirement
and is unable to process the load. Even if the GPU is able to hold the massive batch,
the number of images processed per second may decreases as seen in the difference
between the number of processed images per second for a batch size of 1024 and 2048
for the two networks.

In many situations, few images are present at any given moment. An obstacle
detector for a real-time driving system can not accelerate inference using batching
since it needs images to be processes as soon as they are captured. However, this feat

7The inputs are not actually sent from the CPU but from the main memory. The CPU will just
initiate the operation by sending the address from where the data should be fetched.
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(a) GoogleNet

(b) ResNet

Figure 4.12: The impact of increasing the batch size on the performance measured
as the number of processed images per second for CNN inference. The missing bars
at high batch sizes represent a GPU failure due to its memory size.

is still important while in training. Massive amounts of data is present and needs
to be forward/back propagated through the network. Using the same weights, these
data is sent simultaneously to the chip achieving higher performance.

4.3.2.1 GPU Libraries

Similar to CPUs, many libraries were proposed for CNN programming on GPUs.
The most notable one being Nvidia’s CuDNN [12]. Built on top of CUDA, CuDNN
provides most of the primitives needed by any ML algorithm. GRNN [93] is an other
library that only focuses on RNNs. Authors first showed that poor data reuse, low
on-chip resource utilization and the synchronization overhead are the major causes
of weak RNN performance on GPUs. Their library addresses these problems by
minimizing global memory accesses and reorganizing the data in order to balance
on-chip resource usage.

In [232], DLVM, a deep learning compiler was proposed. This compiler is based
on the famous LLVM [173]. It generates a linear algebra IR and target GPUs. DLVM
supports major ML architectures and algorithms and is highly expressive.

Authors in [222] noticed that many high level libraries (TensorFlow, Torch/PyTorch,
Caffe, MXNet, etc) does not support custom operators. If needed, integrating these
operators in existent libraries and tool-chains requires high engineering costs and
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usually, a massive hit in performance. Authors proposed Tensor Comprehensions, a
mathematical language for expressing these operators as well as other deep learning
primitives. A compiler is then used to convert this description to a CUDA kernel
that will lately be executed by the GPU.

4.3.2.2 Desktop and Server-Class GPU

Server-class GPUs focus mainly on training. In [43] authors gives numbers of their
Commodity Off-The-Shelf HPC. The COTS HPC was able to ”train 1 billion param-
eter networks on just 3 machines in a couple of days”. They show implementation
details of deep learning algorithms in two steps. First they focus on optimizing the
CUDA kernels to be executed in each GPU. Then, they give details about communi-
cation optimization in order to reduce latency.

Whether it is a server-class GPUs or a desktop General Prupose GPU (GPGPU),
computation power is not an issue. The latest families can easily fit thousands of
compute cores capable of running at very high frequencies. Nevertheless, feeding
these cores with data is a major issue. In [99], a Content Addressable Memory
(CAM) is used to store frequent patterns of computations. These patterns are then
used to enhance data reuse. This CAM was integrated with an AMD southern Island
GPU architecture to result in 68% energy savings and 40% speedup with a negligible
loss in accuracy (2%).

A hardware/software co-designed system was proposed in [242]. The paper presents
an en-to-end recognition system which authors called Deep Image. Deep Image uses
highly parallel algorithms. The algorithm uses butterfly synchronization with a lazy
update technique. The final design is highly scalable which is very important in GPU
design.

Beside CNNs, RNNs acceleration on analytics servers was discussed in [170]. In
this work, GPUs were compared to CPUs, FPGAs and ASICs. With large batch sizes,
the performance of a server-class GPU shines. However, the power and computation
efficiency of FPGAs is hard to beat.

4.3.2.3 Mobile and Edge GPU

The difference between mobile-class GPUs and server-class GPUs were discussed in
[97]. These differences boils down to three main problems. Achieving shorter latency,
relieving the burden of network connecting to the cloud and protecting user privacy
are all gains that could be harvested by opting for an inference on edge devices [229].
Contrary to the previous class of GPUs, these devices have less resources to work
with and more restrained energy constraints [151].

Natural Language Processing (NLP) is mostly used in Intelligent Personal Assis-
tant (IPA) such as Apple’s Siri and Microsoft’s Cortana. Computation for these IPAs
are usually performed in the cloud [114]. With previously mentioned reasons, [265]
and [114] focused on accelerating Long Short-Term Memory (LSTM) networks on
mobile devices. These networks are very successful in NLP which is widely used on
such devices. They exhibit major inefficiency when it comes to data movement. Au-
thors in [265] proposed inter- and intra-cell level optimizations to 1) parallelize LSTM
sequential portions and 2) explore data locality between cells while trading accuracy
by skipping computations and memory reads.

To lighten the burden of communication, Neurosurgeon was proposed in [114].
It is a lightweight scheduler that partition computations between cloud and edge
devices. It achieves a 3.1× latency speedup on average with a staggering 40.7×
energy consumption reduction on the edge device.

Besides scheduling operations and memory loads, an other way of dealing with
performance issues is by carefully adjusting the batch size. In [207], authors managed
to achieve the best user satisfaction by exploring this idea. A metric of this metric
(user satisfaction) is also proposed in the same paper.
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In [97] authors tackled the problem by addressing major performance problems in
GPUs. Branch divergence [214] is one of the most common setbacks of performance.
Authors proposed DeepSense, a GPU accelerator for CNNs by eliminating branch
divergence and vectorizing memory.

From an other perspective, the use of IR -a common practice in CPU acceleration-
is explored in [229]. This transition widen the range of target devices since the
representation is generated in a platform-agnostic way. It encodes most computer
vision primitives which will then be optimized in most integrated GPUs. When
compared to vendor-provided libraries, the proposed end-to-end solution achieves
1.62× performance increase. It can also be scaled to server-class GPUs and is adopted
in production Amazon Web Services (AWS).

4.3.3 Summary

Whether it is training or inference, GPUs have been established as the de-facto plat-
form for executing CNN algorithms. Their highly parallel architecture, combined
with the easy schedulability of CNNs result in best recorded performances.

To guarantee this performance, three ideas were presented: simplifying cores, us-
ing SIMD processing and avoiding stalls. Hardware designers and vendors incorporate
these ideas in the newer generations GPUs.

The batching capability of CNNs is an other feat that allows GPUs to excel.
Their SIMD design is very adequate to process multiple inputs at the same. The
high presence of batching during training is a deciding factor and the reason why
almost every training framework is based on GPUs.

The density of cores inside a GPU causes many heating problems. Cooling the
device is a major concern for any kind of use. However, the major downside of GPUs
is energy consumption. These power hungry devices could not meet the requirements
for most embedded setups and makes them more adequate as cloud resources where
energy is not as constrained.

4.4 FPGA

FPGAs have been around since the late 80s. They were aimed to fix the flexibility
problem of ASICs. At the cost of few extra logic, the chip can be reprogrammed
to perform different types of computations. Initially designed for prototyping, this
reconfigurability feat was exploited in data-centers such as the AWS F1 instances
which uses Xilinx Ultrascale+ VU9P cards. The flexibility can also be exploited
for dynamic reconfiguration. In this case, the chip is dynamically reprogrammed in
order to change the behaviour, fully or partly, of the deployed design to cope with a
changing environment.

4.4.1 Architecture

Three main components are present in every FPGA: Configurable Logic Blocks, pro-
grammable interconnects and input/output ports.

� CLB: this is the fundamental piece of an FPGA. It is a logical block that can be
programmed to implement any logical function. A CLB has input pins, output
pins and, in most architectures, a small memory that can be used to output the
desired output for a given input. An FPGA chip has thousands of CLBs8. A
synthesis tool will transform the user program, written in C or in VHDL, into
logical operations that can be performed using CLBs.

8The Xilinx KU15P for instance has 523000 CLB units used as Look-Up Tables.
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� Programmable interconnects: the CLBs pins (input and output) are wired to-
gether with other CLBs through programmable connections. These connections
allows higher level functions to be implemented. If a logical operation can not
be performed in a single CLB, two or more CLBs can be connected together
in order to implement it. These connections can be implemented as a simple
transistor that would link two components if turned on and disconnect them
otherwise. The user program will contain information on how each CLB is con-
nected to the others. The FPGA re-programmability comes from these smart
connections.

� Input/output ports: besides the logic done inside the CLBs, an FPGA is con-
nected to the outside world through IO ports. Depending on the program, these
IO ports are then connected to the logic in order to perform the desired task.

Although these are the main components, recent production FPGAs have many
other modules. The goal is to achieve faster run-times. For example, MAC is a very
common operation amongst FPGA applications, therefore, Digital Signal Processing
(DSP) units were introduced to efficiently perform it. A DSP is a hardwired MAC
unit that eliminates the trouble of designing a LUT-based multiplication, which is
inefficient. Another example of additional modules is the Block Random Access
Memory (BRAM). Memory is needed in any design and implementing large amounts
of such circuits using CLBs could be inefficient in terms of time and resources.

In [77], it was stated that maximizing the usage of DSPs is a must to achieve
higher throughput in FPGA. This is obvious since ASIC-like hard-coded circuits are
usually faster and more efficient.

4.4.2 CNN acceleration on FPGA

CNN acceleration on FPGAs is a flourishing field. The designs on CPUs and GPUs are
limited by the architecture and only focus on the execution graph. On the other hand,
the architecture is fixed to a certain extent. These architectures are already designed
for a given target metric; GPUs are designed for high parallel simple operations
and CPUs thrive in energy consumption and can be easily deployed for any complex
system. Whether it is performance, energy consumption, area or resource usage,
FPGAs can be efficiently configured to handle any given constraints. Moreover, their
flexible architecture allows many exotic enhancements such as the use of custom
operators. A custom operator requires a custom circuit such as the one we used in
our second contribution explained in more details in Chapter 6. These circuits are
inefficient to execute on an ISA9.

4.4.2.1 Surveys

Many surveys focused on CNN acceleration on FPGA. In [77], two categories of
accelerators were proposed, hardware oriented model compression and efficient archi-
tectures for hardware design.

The first class of optimization includes quantization and weight reduction. Au-
thors try to reduce the size and the complexity of the model in order to simplify the
resulting logic. Quantization endures a loss in accuracy. In the survey, a comparison
between the loss of different quantization approaches was presented. This comparison
can be seen in Figure 4.13.

The second axis of optimization presented in [77] was at the architecture level
where the user chooses the best implementation either by performing a transforma-
tion, such as the winograd algorithm, or by exploring the design space for the optimal

9An example of that is a bit-level operation that takes two inputs a and b and outputs a value
c equal to b if at least two bits of a are equal to 1. In the other case, c takes the values zero. In
an ISA, this is translated into multiple consecutive operations while a straightforward FPGA design
can replicate this behaviour efficiently.
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Figure 4.13: Comparison between different quantization methods from [75], [83],
[131], [185], [270] and [271]. The quantization configuration is expressed as (weight
bit-width) × (activation bit-width). The ”(FT)” denotes that the network is fine-
tuned after a linear quantization.

architecture. Efficient implementations were classified into optimizations that targets
the computation unit design, the algorithm design and the system design. At compu-
tation unit level, the processing elements were optimized either by using low bit-width
operators ( [154], [73], [75], [82], [109], [96], [133], [156], [159], [160], [171], [182], [183],
[185], [220], [244], [245], [256] and [267]) or by increasing the working frequency to
reach the peak supported ( [230] and [241]). At the algorithm level, the main loops
of the convolutional or fully-connected layer are considered. researchers tend to fine-
tune the level of parallelism of each loop in order to get the perfect design for a given
chip ( [257], [146], [157], [143], [96], [269], [264], [203] and [136]). At the same level,
data transfers might be the key for better performance besides parallelism. This
principle motivated the design of accelerators such as the usage of systolic arrays
( [234], [146] and [15]) and line buffers ( [185]). Finally, at the system level, high level
models such as the roofline model [237] are used to compute the peak theoretical
performance and evaluate the quality of designs.

A more detailed classification approach was adopted in [228]. First, quantization
was presented as the category of hardware that uses simpler data representation in
order to simplify logic. Approaches that reduce the number of weights by sharing or
factorization are grouped into a second category. Their third category groups input
dependant hardware. Finally, hardware that uses approximate computing to evaluate
the activation function were discussed in a separate class.

The first two categories, quantization and weight reduction are similar to the first
class from the previous categorization in [77]. The addition is the input-dependent
computation class of implementations. In this category, two sub-classes arises based
on the target of the optimization, the software, i.e. the algorithm or the hardware, i.e.
the implementation. Algorithmic development of input-dependant accelerators focus
on stochastic studies on the input in order to exploit redundancy ( [19], [116], [193],
[194], [8], [18], [138], [135] and [65]). From the hardware perspective, implementations
are scarce, albeit, we can mention cascade networks ( [122], [8] and [65]) which rely
on a two-level implementation of a slow high-precision subnetwork and a fast low-
precision main network. Depending on the confidence on a given input, the system
decides to switch, or not, to the high-precision network if the confidence is low.

Besides model and algorithmic optimizations mentioned in the two previous cat-
egorizations, two other FPGA acceleration categories were extracted in [3], datapath
optimization and hardware generation. The first consists on designing better data
structures that could handle the data flow in a CNN. As for hardware generation,
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many tools can be used to ease the deployment of CNNs on FPGAs. Hardware that
used these high level generators were discussed in this category of the survey.

Figure 4.14: Generic data paths of FPGA-based CNN accelerators from [3].

In datapath optimization, we mention two sub-classes shown in Figure 4.14. Sys-
tolic arrays are grids of PEs connected to each other for faster communications.
Their architecture is seen in more details in Section 4.5. They are more efficient as
when implemented in ASIC but FPGA implementations exist ( [197], [60], [31], [61]
and [71]).

The second sub-class is SIMD accelerators. These accelerators employs a design
space exploration to pick the best loop optimizations such as unrolling and tiling
factors. These optimizations are the most common implementation methodologies
and were explored in [257], [147], [258], [157], [210], [185], [96], [146], [188], [9] and [145]
to design FPGA accelerators.

4.4.2.2 Architectures

Unlike CPUs and GPUs, designing on FPGA requires managing memory and compute
units. While maximizing DSP usage is a requirement for performance [77], careful
memory management is mandatory for feasibility. With a very limited on-chip mem-
ory, reading data from outside the FPGA each operation results in huge latencies that
have dramatic impact on performance and energy consumption10. For this reason,
the roofline model presented in [237] was used in many works such as [257] and [266].
In [257], authors explore all feasible solutions on a given platform and compare the
efficiency to the maximum attainable performance. The design was generated using
High Level Synthesis (HLS) and the optimal solution was picked by rearranging the
different loops of the convolution algorithm (Algorithm 4). The global architecture
for their accelerator as well as most standard FPGA accelerators is shown in Figure
4.15.

Memory was extensively studied for FPGAs. In [233], a layer conscious memory
management framework was proposed for FPGA. The framework focus on maximizing
data reuse and reducing prefetch operations. A similar study was performed in [179].
Authors designing a flexible memory hierarchy. Combined with a scheduler that uses
loop tiling and reordering.

10It was shown in [113] that the memory is responsible for more than 80% energy consumption.
This result is shown in Figure 5.1.
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Figure 4.15: Standard dataflow of CNN/DNN accelerators.

In [143], line buffers were used to efficiently move data. For a CNN, this technique
is probably the most efficient since each value will only be read once11. Two line
buffers were considered, one for inputs and one for outputs. Data is read from the
main memory and fed to the input line buffer. Input tiles are extracted from this
line buffer and passed to the processing engines. These engines perform convolutions
between the input tile and filters, which are stored in separate buffers residing in
the on-chip memory (BRAMs). The output of the processing engines is stored to a
output line buffer that is connected to the off-chip memory for final write-back. This
architecture is shown in Figure 4.16. The input is an W ×H matrix of M channels.
This input is represented as an M ×W by H matrix. The result of the convolution
is an N ×R×C matrix where C is the number of filter, hence the number of output
channels and N and R are the width and height of the output matrix depending
on the stride and padding of the convolution. n and m are design parameters to
be fine-tuned and represents the number of lines in the input and output line buffer
respectively.

Processing elements used in [143] rely on the Winograd transformation [239].
This transformation was also used in [15] to reduce the number of multiplication for
convolutions.

Systolic arrays is an other solution to the compute-heavy convolutional layers.
They were used in [234], [197], [60], [31], [61] and [71]. They are designed for fast
matrix multiplication. Therefore, inputs and weights are transformed to match this
pattern. However, the performance gain can justify the cost of this transformation.
The design from [234] reached 1.2 Tops for an 8-bit fixed point inference which is
even comparable to GPU12 with their immense power consumption.

4.4.2.3 Automatic Hardware Generators

CNNs have a straightforward architecture. Computations are generic and can be
mapped to automatically generated hardware. Whether it is a matrix-multiplication
transformation, an FFT transformation or the standard convolution algorithm, the

11If a value is brought to the line buffer from the main memory, it would be used as many times
as the algorithm requires it. Once it is evicted, it would never be read again.

12The Titan X device delivers about 6 Tops speed during inference.
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Figure 4.16: Architecture overview of the accelerator from [143].

loops can be parametrized, unrolled or split. These operations, and others, are auto-
matically applied to generated a hardware. The tools can use a high level language
for simplicity such as HLS or a lower level VHDL/Verilog implementation for perfor-
mance. The full system is easily connected at the end since it is just a sequence of
layers each of which having an input memory and an output memory.

Table 4.2: Comparison of State-of-the-Art Hardware Generators from [3].

In [2], a tool, Haddoc2, was presented to automatically generate a hardware accel-
erator for a given CNN. FINN [220] is a similar tool the uses the Vivado design suite
to produce the final IP. It was aimed to generate binarized network accelerators for
faster inference on FPGAs. These generators become quite common recently for two
main reasons: 1) CNNs have similar layered structures and atomic building blocks
such as matrix-vector multiplication and 2) the loss, usually associated with the usage
of high level generation tools, is minimal because the final product is but a replication
of the building blocks; issues from place-and-route and scheduling does not apply. Ta-
ble 4.2 shows a list of these generators as well as metrics on how they compare with
other generators for other platforms such as Yoda NN [11], NeuFlow [61] for ASIC,
CuDNN [12] for GPU and fpgaConvNet [224], an other FPGA hardware generator.

4.5 ASIC

If the target application is well defined, an ASIC is, naturally, the most efficient way
of implementing a hardware accelerator for said application. In [59], authors proposed
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an architecture that uses a streaming processor with a grid of connected ALUs. The
Streaming processor forwards the inputs to the compute cores which will then writes
the output to the external memory.

The efficiency of ASICs could be seen in [144]. In this work, authors present Da-
DianNao, a CNN accelerator with a 656× speedup over a gpu whilst reducing energy
consumption by a factor of 184 using a 28 nm technology. The 28 nm technology was
also used in [230]. In this later, authors achieved a throughput of 806 GOPs with less
than 4 million gates and 352 KB of on-chip memory. Their design, called Chain-NN,
consumes 567 mW which yield a 1.4 TOPs/W power efficiency. In [127], authors ad-
dressed the flexibility problem of ASICs by proposing MAERI, an accelerator build
using modular and configurable building blocks that would host the network to be
accelerated. The energy efficiency of MAERI was achieved by maximizing resource
utilization using optimized mapping.

Figure 4.17: Architecture of the ASIC proposed in [175].

Scalability is an issue for many CNN accelerators. The results obtained on a
network architecture are not guaranteed if a larger network is deployed. For ASIC,
once the hardware is deployed, it is very complicated and costly to replace it. Being
able to scale with the size of the network is a valuable asset to have in an ASIC
accelerator. The problem of scalability in ASIC accelerators was tackled in [66]. PEs
can be reused, however, memory should be large enough to host the target network.
By using a 3D memory, the proposed accelerator, TETRIS, optimize the area distri-
bution between PEs and SRAM buffers. The smaller footprint of 3D memories also
decreases bandwidth pressure. Combined with a partitioning strategy, the accelera-
tor achieves a 4.1× speedup with a 1.5× decrease in energy consumption over similar
accelerators.

In [175], authors propose SCNN, a sparse CNN accelerator. The motivation be-
hind SCNN is that most weights are zeros and zero multiplication could be skipped.
Their architecture uses a grid of connected complex PEs. The grid is connected to an
off-chip memory that contains network specification and weights as shown in Figure
4.17. Each PE has a coordinate-aware F × l array multiplier that skips zero-valued
weights. When compared to a CNN accelerator, SCNN achieves 2.7× increase in
performance with 2.3× drop in energy consumption.

The idea of a grid of connected PEs was also present in Eyeriss [36]. In addition,
an efficient dataflow scheme was presented to maximize the use of these PEs while
reducing required memory acceses by reusing the data locally. The dataflow, called
Row Stationary (RS), is illustrated in Figure 4.18.

The non-reliance on memory by reusing PEs is best seen in their results. They
recorded 0.0029 Dynamic Random-Access Memory (DRAM) accesses per each MAC
for convolutional layers of AlexNet while requiring 278 mW of power.

YodaNN [11] takes the lead in power efficiency with their ultra-low power accel-
erator. The circuit was built using 65 nm technology at 0.6 V. The overall power
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Figure 4.18: Dataflow of a single PE of Eyeriss, the accelerator from [36]. From left
to right, in green is the flow of weights, in red the flow of input feature maps and
finally in red the flow of partial sums.

consumption is 0.895 mW with an efficiency of 61.2 TOPs/W. With an area of less
than 2 mm2, YodaNN also leads in area efficiency. This was achieved by using binary
networks where weights are limited to the values +1 and −1.

ASICs does not have a common architecture. Each work has its own design in
order to best serve the specific application for which it is targeted. A very successful
ASIC accelerator is Google’s TPU. Many works are based on the same architecture
for the efficiency it offers. For this, we give the architecture of these ASICs in a
separate section as well as most notable works based on it.

4.5.1 TPU Architecture

The ubiquity of TPUs was instigated by Google’s TPU [111]. The architecture of a
TPU is shown in Figure 4.19. It relies on an external memory (a DDR3 in this case)
to stream the inputs and weights. The instructions are also streamed from the host
via a unified buffer. In order to match the computations of the CNN to the hardware
architecture of the compute core, a systolic data setup is put in place to arrange the
inputs. Beside this re-arrangement, a TPU architecture is similar to a Floating Point
Unit (FPU) co-processor.

In the heart of every TPU, a systolic array is pumping. A systolic array is a
grid arrangement of PEs as can be seen in Figure 4.20. This structure allows high
throughput and can deal very efficiently with compute bound operations. Each PE
perform a multiply-and-accumulate on the inputs and forward its output the the
adjacent PEs. Originally, the PE would write-back the output to a register as seen
on the left part of Figure 4.21. The next cycle, the same value needs to be read from
the memory. The interconnection in the right part of Figure 4.21 shortcuts these
”write-back” and ”read” phases.

Google’s TPU feature a 65,536 8-bit matrix multiplication units with a peak
throughput of 92 TOPs. This throughput was reached by connecting ALUs together.
In a CPU, time and energy is wasted when accessing registers after each operation.
A systolic array is designed to fix this problem. The output of one ALU is passed
to the next one as we can see in Figure 4.21. An ALU with such interconnection is
usually referred to as a processing engine [211], we do not adopt the same appellation
in this thesis. The connections between the ALUs matches the execution tree of a
GeMM.

By matching the execution pattern, inputs could be streamed once throughout
the systolic array. The output is written once all computations are done with no
intermediate write/read operations.

The compute-heavy layers in a CNN are the convolutional layer and the fully-
connected layer. Both these layers could be transformed to a matrix-matrix or a
matrix-vector multiplication respectively. The systolic array is excellent at both.
First, the weights are fed into the ALUs from the weight FIFO. The data setup
module from Figure 4.19 is responsible for shaping the data into the correct matrix
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Figure 4.19: Architecture of the TPU from [111].

Figure 4.20: Architecture of a Systolic Array

operation. The flow of inputs is shown is Figure 4.22. The final outputs are stored
in the accumulators, which are also responsible for summing partial outputs. If an
activation or a pooling layer follows the currently executed layer, the two subsequent
modules performs the required operations, element per element, on the systolic array
output. Finally, the outputs are stored back to the unified buffer.

TPUs are initially designed for data-centers. The main concern in these environ-
ments is efficiency and TPUs are, by far, the most energy efficient platforms for CNNs.
Google’s TPU was compared to a server-class Intel Haswell CPU and an NVIDIA
K80 GPU. The TPU was at least 30× more energy efficient13 than the NVIDIA GPU
and 80× more than the Intel CPU. Performance wise, the TPU was from 15× to 30×
faster than the two other platforms. These results were obtained on many kinds of
ML applications such as CNNs, Multilayer Perceptrons and LSTMs.

13Energy efficiency is measured in TOPs/Watt.
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Figure 4.21: The simplified architecture of a CPU core on the left. The connections
between ALUs in a TPU is on the right.

The TPU’s efficiency depends on the memory bandwidth. If a GDDR5 memory
is used in the TPU, the previous numbers would jump to 70× more efficiency against
a GPU and 200× agasint a CPU.

Google’s TPU was designed to accelerate TensorFlow algorithms by providing
primitives that directly map TensorFlow code into the TPU. This is an incredible
feat since TensorFlow is a very high level library resulting in shorter time-to-market
and easier deployment of new CNN architectures.

4.5.2 TPU-based Accelerators

Based on [111], Stanford’s TPU, named ConvAU, was proposed in [118]. The architec-
ture of this TPU is shown in Figure 4.23. ConvAU achieves a 200× more TOPs/W
when compared to an NVIDIA K80 GPU and a 1.9× compared to Google’s TPU
from [111].

A cycle-accurate simulator, Scale-Sim, for systolic arrays was proposed in [196].
it takes the CNN topology and the available hardware configuration as inputs. The
hardware configuration consists of the size of memories allocated for inputs, outputs
and weights and the dimension of the systolic array (width × height). It generates
the expected number of cycles required to process the input architecture as well as
other statistics such as the utilization efficiency and the reads/writes traces.

4.5.3 Summary

ASIC-based accelerators dominate other platforms in power efficiency. This was
partly achieved by connecting PEs with each other; the alternative being relying
on on-/off-chip memory to store intermediate results. This design methodology was
adopted in every work in we mentioned in this section.

The, arguably only, downside of ASICs is flexibility. Once a circuit is printed,
reusing the element is not a viable option. However with CNNs, this is not an
obstacle. Designing a general CNN accelerator on ASIC could process any type of
data just by loading the correct network architecture and weights to the memory.
This is enabled by the uniqueness of CNNs as feature extractors.

4.6 General Conclusion

In this chapter, we surveyed the existing acceleration methods of machine learning
algorithms, namely, CNNs. We classified the accelerators by platform. In Figure 4.24,
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Figure 4.22: From top left to bottom right, the execution flow of a 3×3 input feature
map and a 3 × 2 weight matrix. Weights are passed to the execution units colored
in gray. The input, in light red, is then streamed through the systolic array. The
computed outputs is shown on the right of each figure.
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Figure 4.23: Overall architecture of the accelerator from [118].

Figure 4.24: Comparison from [137] of various hardware accelerators in terms of
energy efficiency, measured as GMACs per Watts, and performance, measured as
TMACs/Tflops per second.

we summarize the most notable of these accelerations in an energy vs performance
comparison.

While CPUs are the most ubiquitous, their performance is questionable. It is
possible to deploy CPUs for IoTs, however, for an ADS, it is not possible to rely
on their performance to execute the ML component. A solid proposition to the
performance issue is the usage of GPUs. In terms of sheer performance, only TPUs
can compare, which are usually cloud components. The downside however is that this
performance comes from batching. In an autonomous vehicle scenario, the latency is
more important than the throughput. High end GPUs, such as the NVIDIA Tesla
Volta can satisfy both components, but their cost is immense relative to the price
of the car. Moreover, their energy inefficiency is problematic, albeit, tolerable for
non-electric cars. As for FPGAs, they can compete with other platforms in terms
of performance, however, the peak performances are usually the result of a major
tradeoff in accuracy, which is not tolerable for autonomous vehicles.
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Memory access latency is one of the main problems that prevent processors from
achieving high performance. To eliminate the need of loading/storing large sets of
data, the In-Memory Computing (IMC) (or associative processor) architecture has
been proposed as a solution to the von Neumann bottleneck. In IMC, logic and
memory structures are combined together to allow in-memory computations. In this
chapter, we propose a new algorithm to compute the matrix multiplication inside the
memory that exploits the benefits of IMC. Many algorithms can be boiled down to a
GeMM problem, notably, CNNs which are heavily present in the autonomous driving
field. In this chapter, we will focus on one of the most efficient implementations
of IMC architectures, namely the ReAP. ReAP is a processor architecture made
possible with the invention of memristors. In [123], it was stated that memristors
would become the future of AI. The proposed approach is based on the Cannon
algorithm and uses a series of rotations without duplicating the data. It runs in
O(n), where n is the dimension of the matrix. The method also applies to a large
set of row by column matrix-based applications. Experimental results show several
orders of magnitude increase in performance and reduction in energy and area when
compared to the latest FPGA and CPU implementations. Work in this chapter has
been partially presented in [163].

5.1 Motivations

With the recent decline in Moore’s law, parallelism becomes the only resort for the
increasing demand of computing power. With multiple compute cores, the memory
needs to be faster than ever to provide the required data in time without augmenting
the speed. This difference in speed between the memory and the computing unit is
called the von Neumann Bottleneck or the memory wall.

Many applications suffer from this architectural limitation. Matrix multiplication
(MM) is one of the most important building blocks in many applications like machine
learning (as shown in Sections 2.3.3 and 2.3.2), image processing, etc. Although the
logic of this operation is very simple (multiply and accumulate), the data needs to
be massively transferred between the compute cores and memory.

IMC is a promising solution to this bottleneck. It consists of combining memory
and logic in the same physical core. There is no need to transfer data back and
forth since the computations are done in the same location where data is stored.
Associative Processors (AP) are an IMC model of the conventional Single Instruction
Multiple Data (SIMD) processor. Values that need to be processed are stored inside
the processor cells, and an operation is performed on all these cells at the same time.
Hence, associative processors do not need a separate memory module to store the
data.

In this chapter, we use IMC to solve the memory bottleneck for matrix multipli-
cation. The resistive implementation of associative processors (ReAP) is used for its
superior density. We propose a vectorized implementation of Cannon’s algorithm [30]
that suits the ReAP architecture. We also generalized the algorithm for other ap-
plications like All-Pairs Shortest Paths (APSP). Our approach is able to reduce the
execution time by an order of magnitude when compared to one of the most efficient
FPGA implementations for large size matrices. Area consumption reduction is even
more important.

The algorithm we present consists of storing elements inside the ReAP for efficient
execution. We also discuss an architecture that helps moving the data inside the
ReAP. This technique offers a very efficient data storage compared to similar methods.
Existing approaches replicate values to perform multiple operations on the same value
at the same time. In our approach, the values are kept uniquely inside the ReAP
without any duplication which reduces area consumption. The approach we propose
can be generalized to a set of matrix applications that are executed in a row per
column format. Our approach is able to reduce the execution time by an order of
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magnitude when compared to one of the most efficient FPGA implementations for
large size matrices. Area consumption reduction is even more interesting.

Figure 5.1: Energy distribution of a matrix multiplication design proposed in [125].
With large instances, storage tends to dominate energy consumption.

In Figure 5.1, the energy distribution of a matrix multiplication implementation
is presented. As far as energy is concerned, almost 80% of an implementation is
consumed in storage [113]. By embedding computing inside the memory, this energy
is reduced since no transfers are needed.

5.2 Hardware Accelerators for Matrix Multiplica-
tion

GeMM is used in a variety of fields like neural networks in machine learning, image and
signal processing, etc. In most applications, matrix multiplication is the performance
bottleneck. Numerous works targeted this problem. We classified these methods in
two major categories:

5.2.1 Software Implementations

Many works tend to reduce the complexity of the naive i-j-k algorithm. Strassen’s
algorithm in [208] drops the overall complexity from O(n3) to O(n2.807). Williams’
algorithm of O(n2.373) in [238] is the best current performance for MM. However, the
complexity of the operations makes it very difficult to use and today’s hardware is
unable to benefit from its performance since it requires very large matrices to show
a noticeable advantage. Also, Bshouty [25] proved the existence of a lower bound of
O(n2). This lower bound limits the capabilities of software-only improvements.

Bshouty [25] proved the existence of a lower bound of O(n2). This lower bound
limits the capabilities of software-only improvements. Although this limit can be
theoretically reached, numerical stability and low-rank complexity factors make it
impractical to use the algorithm.
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5.2.2 Hardware Improvements

5.2.2.1 CPU

One of the major issues of computing a matrix product is the memory organization
and the non-sequential access. For this reason, cache enhancements were proposed to
cope with this issue. These improvements profit from cache spatial locality to reduce
slow memory accesses. Optimized SW libraries such as Intel’s MKL also proposes
efficient implementations. However, due to its limited parallelism, CPUs cannot cope
with the increasing size of the problem.

5.2.2.2 FPGA

Jang et. al. [104] proposed an energy-time efficient approach for MM by storing
only one of the input matrices. In another work, Jiang et. al. [107] proposed a
Scalable Macro-pipelined architecture (SMPA). This architecture uses the temporal
parallelism to maximize the use of processing elements (PEs) in order to get better
throughput.

These works and others ( [112] and [263]) profit from the highly parallel archi-
tecture of reconfigurable devices to maximize the performance or the resource usage.
The downside of these methods is resource utilization since input matrices need to
be stored in the programmable logic (PL). In [104], Jang et. al. reported 78% energy
dissipation on storage for a 12×12 GeMM. With the growing size of matrices, the en-
ergy dissipation increases proportionally. This energy should be used for computation
rather than storage.

5.2.2.3 Dedicated Hardware

Many application specific hardware (ASIC) was developed for matrix multiplication.
They generally uses SUMMA [221] for its efficient memory management. However,
a dedicated ASIC can only execute the targeted function. In the other side, our
approach runs on an associative processor and can execute a variety of application
compared to those solutions.

In a similar fashion, Google recently presented their TPU which uses systolic
arrays to perform matrix multiplication. It is a CISC processor designed for machine
learning applications. It targets data centers [117] and is not available for general
public.

Many dedicated circuits use SUMMA [221]. Similarly to systolic arrays, compu-
tations can be easily mapped to different computing units. Since memory accesses
are predetermined, data can be efficiently transferred between compute units.

Haron et. al. [86] used the IMPLY logic to perform GeMM. In their 3D method,
input matrices are duplicated and all the multiplications are done in a single stage.
The additions are done using a binary adder tree which gives the overall algorithm an
O(log n) complexity. As far as we know, this is the most efficient algorithm. However,
duplicating matrices n times can be costly with the matrix size growth.

Morad et. al. [155] proposed a dense and sparse MM using a General Purpose-
Single Instruction Multiple Data processor and a sequential processor. Associative
memory array is used by the SIMD processor to perform the parallel computations.
In a similar manner, Yavits et. al. [248] proposed an efficient implementation of
sparse MM on an associative processor.

Their approach, which can be seen in Figure 5.2, consists of three steps:

� Broadcast : distributes the elements of row Aj,∗ over the the corresponding
elements of column B∗,j .

� Multiply : performs the multiplication between each two pairs.

� Reduce: sums all the values to obtain elements of the resulting matrix.
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Figure 5.2: Sparse matrix multiplication on associative processor from [248]. Matrices
A and B, shown in the top half, are stored in the CAM. Each row stores a non zero
value as a triplet of the row index, the column index and the value.

Elements are then copied inside the CAM to perform desired operations per row.
Elements of the jth row of A are copied to corresponding locations of ith column of
B. The results are finally summed to obtain the final output.

At the end the operations are done in parallel and hence, the row is multiplied by
the whole matrix.

When compared to existing methods, our approach profits from IMC to perform
the operation. This gives a huge leap in performance and area compared to FPGA
implementations since no data storage or loading is required. For implementations
based on AP, our storage policy is very efficient since we do not store indexes which
is common for associative processors. We also implement all the operations inside
the CAM, therefore, there is no need for a reduction tree.

5.3 Resistive Associative Processor

Von Neumann Architectures suffer from the speed gap between the main compute unit
and the main memory. This is called the von Neumann Bottleneck. This bottleneck
prevents the compute unit from reaching its full potential. In Memory Computing
gives a promising solution to this issue. In our work, we used the ReAP to accelerate
matrix operations. For this we explain the architecture we used in this section.

In this section, we describe the required knowledge on Associative Processors in
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Figure 5.3: Architecture of an associative processor.

order to understand our approach. We give details about the overall architecture and
how to exploit it to perform logic operations. Since we used a specific architecture,
we only show how our processor works, later in Section 5, we describe the method
used to reconfigure the AP for more complex operations as well as how others used
memristor technology to accelerate the same application as us (GeMM).

5.3.1 ReAP Architecture

Figure 5.3 shows the architecture of an AP. It consists of a CAM, a controller, an
instruction cache, an interconnection circuit and some specific registers (Mask, Key
and Tag). We used a resistive implementation of the CAM memory, the RCAM.
Each bit is represented using two memristors and two transistors.

The CAM holds the data in a column format. A program is a set of instructions to
be performed on that data. An instruction on AP consists of consecutive compare and
write phases. A Look-Up Table (LUT) is used for each instruction. The execution of
an instruction is the application of the LUT on the CAM. Operations in an AP are
performed on data inside the CAM in a column per column fashion. Therefore, the
number of rows does not affect the execution time of an operation.

The idea behind associative processing is not a new topic. It was introduced by
Foster in [64]. However, it did not gained much attention due to CMOS technology
limitations. With the upraise of memristors, CAMs can be implemented using a
small number of transistors. The 2T2R cell architecture [249] only uses 2 transistors
compared to 10 used in CMOS.

5.3.2 Logic execution

During the compare phase, columns to be compared against are marked with ”1”
in the Mask. Only values inside these columns are compared with the Key. If the
value inside the CAM matches the Key, the row will be tagged ”1” using the Tag
register. For example, if the Mask is ”101” and the Key is ”100”. Only the first and
the third columns are considered. These columns should be compared with the first
(from right to left) and third columns of the Key register and should be ”0” and ”1”
respectively.

Architecturally, by setting a high voltage in the Tag register cell, a capacitor
connected to each row would either discharge or maintain it’s charge depending on
the values of the row. If at least the value in one cell mismatch the value of the
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Figure 5.4: Typical evaluation phases of a ReAP cell for the match (a), mismatch
(b), and don’t care (c) states.

Table 5.1: LUT for Multiplication
Cr R B A Cr R Comment
0 0 0 0 0 0 NC
0 0 0 1 0 0 NC
0 0 1 0 0 0 NC
0 0 1 1 0 1 2nd Pass
0 1 0 0 0 1 NC
0 1 0 1 0 1 NC
0 1 1 0 0 1 NC
0 1 1 1 1 0 1st Pass
1 0 0 0 0 1 NP
1 0 0 1 0 1 3rd Pass
1 0 1 0 0 1 NP
1 0 1 1 1 0 NC
1 1 0 0 1 0 NP
1 1 0 1 1 0 4th Pass
1 1 1 0 1 0 NP
1 1 1 1 1 1 NC

key, the capacitor would discharge. This is similar to writing a zero in the Tag
register at that line. Figure 5.4 shows the three possible cases during the compare
phase. A match occurs if the looked-up values is the same stored in the cell. In this
case, the capacitor in the right of Figure 5.4 can not find a way to a ground and
therefore, remain charged for the active cell. If in the same cell a mismatch occurs,
the resistance of the memristor and the activation of the transistor would create a
path to the ground which will discharge the capacitor. In the case where the Mask
is set to ”0”, the transistor is not activated and no discharge is possible which is
equivalent to ignoring all the cells in that column.

In the write phase, only the rows that are tagged ”1” are considered. Depending
on the LUT of the current instruction, a value should be written to columns with a
mask of ”1”.

Table 5.1 shows an example of the LUT for unsigned multiplication. ”A”, ”B”
and ”R” are the masked bits of the corresponding variable. ”Cr” is the carry bit
and is always masked. In the compare phase, rows that correspond to the quadruple
(A, B, R, Cr) in the left column of the table are tagged. If a line matches these
values, the result ”R” and carry ”Cr” are updated using the right column of the
LUT. Other quadruples are omitted since they do not affect the two outputs. The
order of operations is important and is shown in the ”Comment” tab in the right
column. The quadruples need to be processed in the given order to prevent a row
from being processed twice.

Multiplication cannot be done in place so we need a result column ”R”. Other
combinations of ”A”, ”B”, ”Cr” and ”R” are omitted since they do not affect the
current values of the two outputs ”Cr” and ”R”, which are the active bits of the
carry and the result respectively. The mask of the ”Cr” column is always set. For
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Table 5.2: Running time of various operations on AP. IP (resp. OOP) stands for
In-Place (resp. Out-of-Place) execution. S and U stands for signed and unsigned
representations.

Inst. Runtime Area/Row

NOT 2m 2m

AND 2m 3m

OR 6m 3m

Addition (IP, S/U) 10m 2m+ 1

Addition (OOP, S/U) 11m 3m+ 1

Subtraction (IP, S/U) 10m 2m+ 1

Subtraction (OOP, S/U) 11m 3m+ 1

2’s Complement 6m 2m+ 1

Abs 8m 2m+ 1

Min (IP, S/U) 10m 2m+ 2

Multiplication (OOP, U) 10m2 4m

MAC (OOP, U) 10m2 + 10m 4m

Multiplication (OOP, S) 10m2 + 4m− 14 8m+ 4

each cycle, the mask will be set to ”1” for a bit of A, B and R. The compare phase
will look for the combinations as ordered in the table. The first combination to be
searched for is ”0111”. For rows that match these values, the corresponding ”Cr”
and ”R” columns will be set to ”10”.

We implemented a set of other operations that we needed for the MM problem.
We present in Table 5.2 the different time-space complexities of the implemented
operations. ”m” is the number of bits of the input (operands). IP/OOP stands for
In-Place/Out-of-Place execution respectively. Signed and unsigned operations are
marked ”U” and ”S” respectively.

5.3.3 Circuit Implementation

In [132], a 2-transistor-2-memristor CAM cell is presented. A memristor can change
its resistance. We only consider two levels, Ron and Roff. In the experiments, Ron is
set to 500 Ω and Roff to 10k Ω. Depending on their order, the two memristors inside
a cell can store a value of ”1” (Ron - Roff) or ”0” (Roff - Ron). Writing consists
of flipping the resistance of these two memristors to match the required order of the
desired value.

Before each compare phase, a pre-charge step is required. A capacitor connected
to each CAM row is charged. If the value inside the Key does not correspond to
the value inside the cell, a line connecting the capacitor to the ground can be found
and a discharge will take effect (row 2 in Figure 5.3). Otherwise, the capacitor will
maintain its charge if the searched word corresponds to the stored value in the row
(row 1 in Figure 5.3). After that, a sense amplifier decides on the logical value of the
tag register by comparing the voltage across the capacitor to the threshold voltage
(Vth).

5.3.4 Data Management

Data inside the CAM can be moved using a Switching Matrix (SM). Each CAM
cell is connected to other cells via a crossbar like in Figure 5.5. The SM can be
implemented using memristors. We can consider the Ron as a short circuit and the
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Figure 5.5: Connection between the CAM and the SM. The black dots stands for a
short circuit which means that the input line connected to this dot will be redirected
to the output line connected to the CAM.

Roff as an open one. With this in mind, only one memristor connecting a horizontal
line with a vertical line in the SM can play the role of a simple switch like in Figure
5.5. Memristors also allow reconfigurability since we can change the values and hence
the interconnection scheme.

5.4 Matrix Multiplication Algorithm

In this section we present an efficient MM implementation of Cannon’s algorithm [30]
on ReAP. We first discuss how we store the data inside the CAM. The operations
needed for the operation are then explained.

5.4.1 Cannon’s Algorithm on ReAP

Given a general matrix multiplication C = A ∗ B. Cannon’s algorithm as shown in
Algorithm 2 performs a series of rotations followed by a Multiply-and-Accumulate
(MAC) to compute the output C. A, B and are square matrices of n rows. A grid
of n by n processing elements (PEs) can efficiently performs the required operations
in n compute stages. Each processing element PEX holds a value of A: PEX,A, a
value of B: PEX,B and computes a value of C: PEX,C . After each stage, elements of
A and B are circularly transferred between processors to satisfy the matrix product
formula for each value of C: ci,j =

∑k=n
k=1 ai,k ∗ bk,j

Algorithm 2 Cannon’s Algorithm

procedure MM(Mat: A, Mat: B, Mat: C)
for i = 0 . . . n do

Ai,• ← CircularShiftLeft(i)
end for
for i = 0 . . . n do

B•, i← CircularShiftUp(i)
end for
for k = 0 . . . n do

PEX,C ← PEX,C + PEX,A ∗ PEX,B

Ak, • ← CircularShiftLeft(1)
B•, k ← CircularShiftUp(1)

end for
end procedure

In Algorithm 2, Ai,• represents the i-th row of matrix A and B•,k represents the
k-th column of matrix B. The CircularShift operations rotates the elements of a
vector such that the first element is stored at the end and all the other values are
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(a) CAM state after
loading input matri-
ces.

(b) Inner and outer rotations. (c) CAM state after each stage
rotation.

Figure 5.6: The execution scheme of MM on ReAP with the loading phase in 5.6a
and the rotations after each stage in 5.6b. Intermediate CAM states after rotations
in 5.6c.

shifted. If a parameter i different than one is passed, the first element would be stored
at n− i-th position while shifting the other values similarly.

5.4.2 Cannon Algorithm on CAM

In a ReAP, the CAM cells are the compute units. Each row is able to perform
one operation on values residing in its cells. For this reason, we store matrices in
vectorized format. Three columns are needed to store A, B and C. The execution
consists of consecutive execute-and-rotate stages. At each stage, we multiply columns
A and B and add the results to column C. Values of C are initially set to ”0”. Then,
we rotate the data inside the CAM to match Cannon’s circular shifts.

In Figure 5.6, we see the execution stages on ReAP. After storing the two matrices,
we perform a first MAC operation. Once the MAC operation is finished, we should
prepare the data for the next stage. We have computed one partial sum of each
one of the C values. Since matrices are stored in a vector format (1D) inside the
CAM, Cannon’s circular shifts are replaced by inner and outer rotations as illustrated
in Figure 5.6b. Algorithm 3 illustrate the multiplication of two matrices stored in
columns A and B inside the CAM.

The execution is a loop of n stages. In each stage, we compute one multiplication
for each element in C. The MAC operation performs a multiply-and-accumulate
operation between columns A and B and stores the temporary result in the column C.
The rotations in 5.6b are performed on the SM with the two instructions InnerRot
and OuterRot. These two operations run simultaneously on the SM. The dots in
Figure 5.5 corresponds to all the required rotations in the algorithm. The time
needed to perform these rotations is constant. Since MAC operations run also in a
constant time, the loop in Algorithm 3 performs a constant number of operation for
n times, which proves the linear complexity of our algorithm.

In Figure 5.6c we can see the results of these rotations. The MAC operation is
performed between each two rotations. Considering MAC-and-Rotate for the first
row, the value computed is: b11 ∗ a11 + b21 ∗ a12 + b31 ∗ a13 which is actually c11.

5.4.3 Generalization

All operations between two matrices, that can be performed in an ijk format (row-
per-column) can be accelerated by this approach i.e. algorithms of the form:

ci,j = ⊗k(⊕(ai,k, bk,j))
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Algorithm 3 MM on ReAP Execution

procedure MM(Column: A, Column: B, Column: C)
for i = 1 . . . n do

C ←MAC(A,B) . Perform MAC on the CAM
{ . Parallel rotations inside the SM

A← InnerRot(A) . Rotations for column A
B ← OuterRot(B) . Rotations for column B

}
end for

end procedure

Where ⊗k is an operation over a set and ⊕ is an operation between two values
ai,k, bk,j . For MM, ⊗k is the sum over k elements and ⊕ is a multiplication.

Algorithms of this class can be found in a variety of linear algebra computations.
Dominance product [223] is one of these algorithms. We denote it as C = A4B. It
is defined as:

ci,j = |{k/ai,k ≤ bk,j}|
In this product, the two operators are || (which denotes cardinal of a set) and ≤.

The implementation of the dominance product using our method also yields a linear
time and is performed as follows. LUTs for || and ≤ are first implemented in the
ReAP. Then A and B are stored inside the CAM as shown in subsection 5.6a. The
results are then computed in parallel inside the ReAP. For a given stage, we compare
the value of A with the value of B. If the value of A is less than or equal to the value
of B, we store ”1” in a temporary column T. At the end of each stage, the cardinal
can be implemented as an Increment If operation when the value in T is ”1”.

Another matrix processing that can be accelerated by our approach is the All-
Pairs Shortest Paths (APSP) algorithm [63]. This algorithm also knows as the Floyd
Warshall algorithm consists of computing the shortest paths between every two nodes
in a graph.

For a given graph G(V,E), we can define the adjacency matrix A which is a |V |
square matrix. Each element ai,j is the distance between vertices i and j in G. The
APSP is defined as:

ci,j = min
k

(ai,k + ak,j)

In this case, operators are mink and +. Similar to MM, an atomic operation, in
this case, is the sum of the two elements residing on the same row. The aggregation
operator is the min. This can be implemented using an in-place minimum operator.

The complexity of operations used in APSP and the dominance product are similar
in ReAP. For this, and also for the sake of clearness, we will only be including APSP
results in the experiments.

5.5 Experimental Results

In this section, we present experimental values obtained during simulation. We will
first explain the experimental setup. Results are discussed later in this section.

For performance evaluation, we used the cycle-accurate associative processor sim-
ulator in [247]. For energy comparisons, HSpice is used to emulate the behavioral
part of the ReAP. We generate the number of compares/writes for each row/cell, and
using a ReAP netlist, we compute the energy consumption for a given cycle.

We compare the results of this design to FPGA. For the FPGA part, we used
Vivado HLS to create an IP core for GeMM [17]. The generated design uses pipelining
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for the outer loop in the matrix product and unrolling/flattening for the inner loops.
Input matrices are also partitioned along the correspondent dimension (1 for first
matrix and 2 for the second). The partitioning factor is equal to the number of
elements in each row/column. With these directives, the generated IP will create as
much multiply and accumulators as it can to reach maximum parallel computations
with a pipeline interval of 1. We tested the obtained IP for latency and energy results
on a Virtex-7 XC7V485T.

5.5.1 Performance

We compared the execution time of same instance sizes and compared the results
in Figure 5.7a. This figure compares execution times for 6 implementations: on
an i7 CPU using the conventional IJK algorithm and with the Strassen’s (STR)
implementation, on a FPGA using 16-bits and 32-bits implementation [17] and finally,
using our approach on a ReAP using 16-bits and 32-bits implementations. With
relatively big matrices (256x256), the FPGA design provides very poor performance
compared to the proposed ReAP method. We can also see that the time needed to
compute 1024 matrix product is lower on ReAP than the 512 MM on FPGA.
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Figure 5.7: Execution time in nsec for MM (left) and APSP (right) on an i7 CPU
(IJK, Strassen), an FPGA and a ReAP for 16-bit and 32-bit data width.
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These measurements were conducted without including the time needed to transfer
inputs to the compute unit (the IP core); If we consider the communication overhead,
which is a major issue when dealing with matrix multiplication, the time can be very
important. Also, if we deal with recurrent data, ReAP can hold the redundant matrix
since the 2T2R cells can be used as memory at the same time as compute units. In
this case, we only transfer the modified data, re-perform the computations and read
the new output.

The poor performance of MM on ReAP for small instances is caused mainly by
two factors:

� Level of parallelism: on ReAP, the number of operations to be done in parallel
depends on the input size. For small matrices, a low number of operations is
performed at each stage.

� Data width: the number of cycles to perform the multiplication on ReAP de-
pends on the number of stages i.e. input size n and the data width m. For very
small values of n, the execution time is driven by the multiplication operation
complexity. We measured the execution time of 16 bit inputs on the two cores
and compared the data to the previous results in Figure 5.7. Beyond a size of
64x64 element, our ReAP implementation outperforms the Xilinx design.

It is possible to fix this performance issue by allowing data duplication for small
instances since it will not consume much resources. Another solution is the usage of
high frequency memristor devices like the crossbar used in [86] with 5 Ghz frequency
compared to ours (500 Mhz).

As mentioned in Subsection 5.4.3, the proposed approach for MM can be general-
ized to any row per column application. For the APSP example, the execution time
is dramatically reduced as shown in Figure 5.7b. The + and min operations can be
performed in a linear time depending on the word size on ReAP. For a word length
of m=32-bits, one stage will only take 64 passes to complete. The final results are
two orders of magnitude better than the FPGA design.

In addition, the ReAP is also able to store the two matrices for future usage and
no time is needed to load them. Matrices can represent weights in a neural network,
hence, the inference part can be done easily with no data transfers.

CPUs perform very badly against accelerators as shown in Figure 5.7a. For this,
we decided to exclude it from area and energy comparisons.

5.5.2 Area

Since memristor layer can be built on top of CMOS layer [209], we used the number
of transistors as a comparison metric for area. This metric also gives a small insight
about the cost of the two designs.

The ReAP approach requires storing the two matrices in separate columns. One
column is needed for the result matrix. For MM, and for a word size of m, we need
4m cells per line; each cell contains 2 transistors and the number of rows is equal
to the matrix size (n2). The overall number of transistors is calculated using the
equation:

TrReAP = 2 ∗ (4m) ∗ n2

For FPGA, since the resource report does not contain the transistor count, we
estimated this number using the formula:

TrFPGA = TrBRAM ∗NBRAM + TrFF ∗NFF

+TrLUT ∗NLUT + TrDSP ∗NDSP

With NComponent and TrComponent the number of instances of the component and
the minimum number of transistors to realize it1.

1For an 18K BRAM we need 18*1024*8*6 transistors. 18*1024 is the number of words, 8 is the
bit-width and 6 is the minimum number of transistors for a memory cell.
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(a) Efficiency in area usage for matrix multiplication.
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(b) Efficiency in area usage for APSP.

Figure 5.8: Area efficiency in GOPS per transistor for MM (left) and APSP (right).

In Figure 5.8 we computed the number of transistors obtained by the previous
formula with the corresponding estimated count on FPGA. Area efficiency is then
calculated as performance per transistor. The results show an order of magnitude
better efficiency for MM and two orders for the all-pairs shortest path. This proves
a very small cost for the same operation. For FPGA, area depends on the type of
resources used. For matrices bigger than 32, FPGA starts using BRAMs to store
matrices which leads to area deficiency.

The huge difference in transistor count is mainly due to the simplicity of the
2T2R cell design [132], and the number of cells is exactly the size of the matrices
times the data width. For FPGA, resources are spread between storage, logic, and
communication which explains the efficiency of our approach compared to FPGA.
The reduced number of transistor also affects indirectly the chip size. Since halving
chip size reduces chip cost by roughly a factor of 8 (23) [91, 117], ReAPs will be
relatively cheap compared to other similar embedded cores.

To measure the energy consumption of our approach, we have created an equiv-
alent netlist for each cycle and simulated the generated design on HSpice. We have
used a frequency of 500Mhz (2ns for each cycle) and we obtained the results shown
in Figure 5.9.

During the compare cycle, only 0.007 pJ were needed for each row on average.
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One write operation costs 1.074 pJ for each cell. This huge difference affects poorly
the overall consumption results which we discussed earlier. This energy can also be
reduced with better memristors since they are still in their debut.

In Figure 5.9a we compared energy efficiency. For the 32-bit MM, we see an
advantage for the FPGA design in small designs. This is caused by the large number
of required writes. For 16-bit implementation, the small number of resources plays a
big role in giving to the ReAP approach better results.
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(a) Efficiency in energy consumption for matrix multiplication.
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(b) Efficiency in energy consumption for APSP.

Figure 5.9: Energy efficiency in GOPS per Joule for MM (left) and APSP (right).

An interesting observation is the low energy consumption of the design for the 32-
bit APSP compared the 32-bit MM in 5.9b even though they use the same number of
resources. This difference is caused by the hight write energy. APSP changes a value
only if this node offers better shortest path that the current value. On average, this
value is not altered a lot. This results in low number of write operations and hence,
low energy consumption.

5.6 Contributions and Guidelines

In this section, we presented a novel implementation of matrix multiplication on an
associative processor. The method runs on a Resistive Associative Processor. The
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(a) Matrix multiplication computation efficiency.
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Figure 5.10: Computation efficiency in GOPS per transistor per Joule for MM (left)
and APSP (right).

proposed technique shows better timing results compared to other efficient imple-
mentations on CPU and FPGA.

Since the memristor layer can be placed on top of the CMOS layer, resulting area
is very efficient compared to FPGA based techniques. The number of transistors is
an order of magnitude less in ReAP than in FPGA. This offers very high density and
hence, very high computing power.

The only downside of the ReAP compared to other implementations can be the
energy consumption. When the number of writes in the ReAP becomes important,
power consumption can be problematic. For very big designs, this issue becomes a
barrier that needs to be addressed. However, it is possible to reduce the number
of write operations by tagging fewer rows each cycle but this can be application-
dependent. Proposing heterogeneous cell architectures such as read-only cells and
read-write cells can be handy in some cases.

Although current memristors faces variability2 issues and short life cycles, it is

2With the current state of technology, memristors have very high variabilities which may reduce
their precision. This is, very confidently, going to change with future implementations. Since we
only considered two levels of resistance (Ron and Roff), This problem is not as critical as our
implementations such as memristor-based neuromorphic circuits.
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very plausible to discuss the integration of memristor-based components in today’s
FPGA SoCs. The associative computing power combined with the non-volatile in-
memory capabilities can be very useful in the hands of every SoCs developer. Matrix
and vector operations constitute a huge portion of signal and image processing ap-
plications. The linear time for the first and constant for the latter on the ReAP are
two very attractive characteristics.
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In autonomous driving scenarios, CNNs are used for inference. A fully operational
version is deployed and, in most cases, no training is needed on the vehicle. In this
chapter, we tackle the problem of CNNs’ inference by optimizing resource utilization,
power consumption and delay through a low level over-squeezing of the multiplication
circuit. We exploit the constant aspect of trained CNNs weights to reduce the required
resources to implement multipliers. Our experiments show that with over-squeezing
the multiplier, we achieve considerable speedup in the convolution and fully connected
layers. Results also show that with squeezing multipliers at circuit level, overall
multipliers energy consumption drops by more than 20× with no accuracy loss.

6.1 Motivations

Deep learning systems such as CNNs have shown remarkable success during the last
few years thanks to empirical achievements on a wide range of complex real life
problems. From handwritten digit and speech recognition to environment perception
for autonomous cars, these systems have demonstrated their ability to train robust
feature extractors that can be successfully exploited by a classifier.

CNNs are complex in nature and require massive amounts of data. This fact
leads to costly hardware implementations in embedded systems. The de-facto used
accelerators in the industry are GPUs. Since these latter are power hungry, they are
not suitable for low power-budget embedded systems. In the KITTI challenge [67],
CNNs’ runtime ranges between 0.2 seconds to 4 seconds which corresponds to 5
to 0.25 frames-per-second respectively. As these networks may be used in critical
real time applications such as autonomous vehicle, or power-limited systems such
as autonomous drones, it is significantly challenging to meet both time and energy
specifications. For this reason, a plethora of research work has been focusing on
optimizing the inference of CNNs and a variety of techniques have been proposed for
this purpose [3].

Earlier implementations, especially GPU-based CNNs, were designed in an accuracy-
oriented manner without much focus on the implementation constraints. However,
it led to heavy architectures that are power and resource-hungry and thereby chal-
lenging to deploy. This sparked a prolific area of research, resulting in a variety of
techniques for optimizing their implementation at different levels.

In [3], authors enumerate 4 optimization categories: First, algorithmic optimiza-
tions focus on the software implementation. Second, datapath optimizations address
the memory bottleneck. Compiler-based techniques rely on high-level tools and li-
braries such as HLS and CUDA to optimize the implementation. Finally, model
optimization techniques rely on the approximate computing paradigm, pruning and
compressing CNN architectures.

Going from software optimization, to memory management or model optimiza-
tion, we notice that all these techniques result in different trade-offs between power
consumption and resource utilization on the one hand and accuracy on the other
hand. However, to the best of our knowledge, none of them took profit from intrinsic
features of CNNs to optimize the network at circuit level . In fact, once the training
phase is achieved, CNN weights remain constant and during the inference only inputs
are variable.

We tackle the problem from a new angle by suggesting drastic optimization in
the multiplier circuit design. Our work is motivated by the observation that in CNN-
dedicated multipliers, one of the two operands that corresponds to the synapse weight
is permanently constant. This is due to the fact that inputs are multiplied by constant
weights identified off-line during the learning phase. Hence, a fine grain optimization
opportunity in multiplication circuits can be achieved.

The main scientific contributions of this chapter are summarized as follows:

� We suggest an exhaustive RTL-level and Circuit-level optimization of multiply
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operations for both convolution layers and fully connected layers to reduce
FPGA and ASIC-oriented CNNs resource utilization and power efficiency.

� Our approach allows the implementation of CNNs without storing network
weights, which saves considerable memory space with no loss of accuracy.

� We publish an open source tool that generates HDL source of a convolution
layer with compressed multipliers based on the layer weights.

6.2 Background

Artificial Neural Networks (ANNs) in general and CNNs in particular consist of pro-
cessing a given input through a set of layers. Each layer performs operations between
the input I and a set of precomputed coefficients referred to as weights (W ). In
conventional architectures, the output of each layer is forwarded as an input to the
subsequent layer. The overall network results are the outputs of the final layer.

The weights used inside each layer are obtained at the training phase of the
network. The training consists of reducing the error between the network output and
a desired output by continuously updating weights until reaching the desired accuracy.
This phase requires a dataset with sufficient number of samples and is performed in
general at off-line. Once the weights are identified, no training is required and the
network is ready for classification, detection or prediction. In this chapter, we only
focus on this later part, the inference part, for real time applications.

CNNs are particular deep neural networks where the main particularity is the
introduction of convolution layers. In these layers, a set of convolutions is performed
between the input and a set of kernels which represents the layer weights. In CNNs,
the role of the convolution layers is to perform automatic features extraction. Once
features are extracted, a set of fully connected layers act as a classifier and outputs
the final result. The number of layers and parameters per layer is an empiric design
choice.

The output of a convolutional layer is computed as follows:

O[c][x][y] = B[c] +

C−1∑
k=0

R−1∑
i=0

R−1∑
j=0

I[k][Sx+ i][Sy + j]×W [c][k][i][j] (6.1)

where O is the output feature map, B is the bias vector, C is the number of input
channels, R is the size of the kernel, S is the stride and W is the weight matrix.

In Figure 6.1, we show the number of operations performed during one inference
run for six different networks. It is clear that the majority of workload is dedicated
to MACC operations. In other words, one can focus on optimizing MACC hungry
layers thereby having a considerable impact on the overall CNN performance and
power consumption.

Besides multiplications, Equation 6.1 also requires two memory accesses for read-
ing the input I and the weight W for each multiplication.

6.3 Related works on complexity reduction

A plethora of optimizations have been proposed to reduce processing and memory
requirements of CNNs on embedded platforms. Model optimization techniques rely
on the approximate computing paradigm, pruning and compression of CNN archi-
tectures. We notice that all the proposed techniques result in inevitable trade-offs
between power consumption and resource utilization on the one hand and accuracy on
the other hand. These approaches can be divided into two main categories: Reducing
precision and Network compression.
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Figure 6.1: Percentage of Multiply and ACCumulate (MACC), comparison (comp),
addition (add), division (div) and exponent (exp) operations for different networks

6.3.1 Reducing Precision

Reducing operands’ precision includes using fixed point instead of floating point, data
quantization and weight sharing. The idea is to transpose data into a smaller space
of quantization levels. Practically, the process aims at minimizing the error between
the quantized and the initial data. The precision is correlated to the number of
quantization levels and consequently to the number of bits required to represent the
data.

The most straightforward quantization approach consists of a linear mapping with
uniform distance between each quantization level. It usually consists of converting
values from floating point to an N-bit fixed point number. Authors in [147] reduce
the weights bitwidth to 8 bits and the activations to 10 bits. In [79], both weights
and activations can reach 8-bits with fine-tuning. In [49], authors manage to reduce
even more aggressively the data bitwidth. By introducing the concept of binary
weights (−1 and 1), the multiply operation is reduced to addition and subtraction
only. The same idea is extended in [46] by using binary weights and activations,
thereby reducing the MAC operation to an XNOR. However, these two approaches
have a dramatic accuracy loss of 19% and 29.8%, respectively [190].

While these works rely on linear quantization with uniformly spaced out values,
the weights and activations distributions are not uniform [83,152].

For example, in [79, 152], weights are quantized to powers of two. Consequently,
the multiply operation is substituted by a bitshift operation.

In [35], authors suggest weight sharing. The approach consists of assigning a
single value to different weights in order to reduce the number of unique weights by
filter and thereby reduce the memory size.

In [89], authors noticed that the same weight occurs multiple times in or across
weight vectors. They proposed a new CNN architecture, named Unique Weight CNN
Accelerator (UCNN), to exploit this weight repetition. Due the to different applied
compression and quantization techniques, the number of unique weights in each filter
has decreased dramatically. Using a memorization technique and three fixed and
unique weights par layer, they obtained a 3.1× performance increase.
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(a) Portion of a standard fully connected layer. (b) Constant weight impact on the
architecture.

Figure 6.2: Illustration of our idea with 6.2a, the network before constant-
multiplication compression and 6.2b the result after customized multiplication com-
pression.

6.3.2 Network Compression

Besides the approach of tuning the data precision, a plethora of works in literature has
focused on reducing the network size and the number of performed operations. Re-
ducing the network size and optimizing the number of operations includes techniques
such as compression, pruning and compact network architectures.

The sparsity of the rectified linear unit (ReLU) output activation is exploited
in [38] to reduce memory access, particularly to costly off-chip memory access. The
proposed reconfigurable hardware skips reading the weights and performing the MAC
for zero-valued activation thereby reducing energy cost by 45%. Authors in [7] go
even further and instead of just gating the read and MAC operation for zero-valued
weights, they suggest to skip the cycle to increase the throughput by 1.37×.

Networks are usually over-parameterized and a large amount of redundancy exists
within their weights. Network pruning techniques such those proposed in [84,174,246]
aim at removing the redundancy. To maintain the primary accuracy level, aggressive
network pruning techniques may require weights fine-tuning.

To the best of our knowledge, none of the optimization techniques took profit
from intrinsic features of CNNs to optimize the network implementation.

Efficient algorithms for constant multiplication have been discussed in [225]. These
algorithms have been implemented in diverse applications such as FFT [186], matrix-
vector multiplication [4], FIR filters [250] and graph applications [110].

A multiplierless implementation of CNN was proposed in [74]. However, authors
only considered power of two weights. A more general implementation of a multi-
plierless neuron for artificial neural networks (no convolutional layer) is presented
in [198]. In their work, the authors changed the architecture of a single multiplier
to perform an approximate operation for the given input. Since their version is not
exact, a trade-off between accuracy and resource efficiency is inevitable.

In [176] the CORDIC algorithm was used to replace multiplications. By choosing
weights as trigonometric functions and constraining them to line in [−1,+1] range,
they are able to perform convolutions without implementing multiplications. While
this technique achieves interesting results in terms of resource efficiency, the imple-
mentation still requires high memory size to store weights.

Exact multiplier-less implementations of CNNs have not been discussed in pre-
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vious works. In this chapter, we present a novel approach that relies on constant
multiplication within CNN operations. In fact, once the training phase is achieved,
weights remain constant in most common CNNs. During the inference phase, only
inputs are variable unless a new training is performed. Since only one operand is
variable for each multiplier in a given architecture, it is profitable to replace the con-
ventional multiplier with a version customized to the constant value. Therefore, the
proposed compression technique does not require any weight storage. Considering
that memory bottleneck is a major problem in CNN implementation, eliminating
weight memory halves the required accesses for multiplications. A simplified illustra-
tion of this idea is presented in Figure 6.2.

6.4 Proposed Approach

6.4.1 The impact of operands value on the operation

Figure 6.3 illustrates the architecture of a 4x4 array multiplier. While the first row
is composed of AND gates, the subsequent lines are based on building blocks imple-
mented by AND gates along with full adders.

FAij	 Cinij	

ai	 bj	ppij	

Coij	

Sij	

Figure 6.3: A 4x4 array multiplier architecture.

We consider the notation presented in Figure 6.3. The building block parameters
are expressed as follows:

Sij = (ai.bj)⊕ ppij ⊕ Cinij (6.2)

Coij = (ai.bj).ppij + Cinij .(ai.bj ⊕ ppij) (6.3)

Where Sij is the output of individual full adder blocks and Coij is the carry of
the same block. Moreover, as shown in Figure 6.3, the array multiplier architecture
is given such that:

∀i, Cini0 = 0 (6.4)

And
∀j ≥ 1, Cinij+1 = Coij (6.5)

In the following, we study the cases where operand A, i.e. a3a2a1a0, is constant.
For this we consider the cases where ai is set to 0 and 1.

6.4.1.1 Bit 0 case

Let’s consider the case where a bit ai = 0. Hence, the parameters are expressed as
follows:
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S0
ij = ppij ⊕ Cinij (6.6)

And
Co0ij = Cinij .ppij (6.7)

Moreover, given Equations 6.4 and 6.5, Equation 6.7 becomes:

∀i, j while ai = 0, Co0ij = 0 (6.8)

Consequently, Equation 6.6 becomes:

∀i, j while ai = 0, S0
ij = ppij (6.9)

Architecturally, Equations 6.9 and 6.8 correspond to deleting the whole row of
building blocks or first row of AND gates corresponding to the bit equal to 0 and
forwarding the previous signals to the subsequent row.

6.4.1.2 Bit 1 case

If we suppose ai = 1, The parameters are expressed as follows:

S1
ij = bj ⊕ ppij ⊕ Cinij (6.10)

Coij = Cinij .ppij (6.11)

Architecturally, Equations 6.10 and 6.11 correspond to deleting the whole row of
AND gates corresponding to the bit equal to 1.

To summarize, using a compressed version of multipliers requires less resources
for the same operation. Moreover, 0 bits have more impact on compression rate. The
more zeros in a network weights, the less resources it requires. This is validated later
in subsection 6.7.1.

6.4.2 Fixed operands in CNNs

The second observation is a trivial aspect of neural networks. In fact, once CNNs
are trained, their weights are identified and fixed once and for all. The deployed
architecture is thereby fixed. The inputs of each layer are going to be multiplied by
the same weights for the CNN lifetime. Hence, either in convolutions or within fully
connected layers, multiplications occur with fixed operands.

Based on the first observation, we exploit the constant-operand multiplication to
optimize the CNN implementation. The multiplier circuit is squeezed at design time
to a new fitted circuit with fewer stages, thereby less resources. Consequently the
circuit takes less time performing the multiply operation and consumes less power
than a conventional multiplier. It is worth mentioning that, while this aspect is
intrinsic to CNNs, to the best of our knowledge, it has not been considered for
optimization purposes before.

An illustration of the circuit fitting is shown in Figure 6.4. In this input case
where one operand is fixed to ”1010”, a whole row of AND gates as well as a row
of FA-based building blocks are deleted from the circuit. The resulting multiplier is
hence implemented using 100% less AND gates (outside fulls adders) and 1/3 less full
adders compared to a conventional multiplier.

For FPGA-oriented inference, the impact of this observation on the RTL imple-
mentation is drastic. In fact, we not only save FPGA fabric resources, but also
memory elements. As the multiplier is weight-customized, one does not need to store
the weights on board and the only convolution layer inputs are sufficient to achieve
the MACC operations. Such impact helps not only reducing resource utilization and
power consumption but also memory access bottlenecks. In fact, one could notice
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Figure 6.4: Illustration of a multiplier architecture with fixed input = ”1010”.
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Figure 6.5: Number of ’zero’ bits compared to ’one’ bits (normalized) in different
quantized CNNs using a 7 bits fixed point representation.

that the multiplier takes only one parameters instead of two. Therefore, since the
first operations to execute in a convolution are multiplications, the convolution
layer does no longer need to access weights; streaming inputs suffice to com-
pute the output.

6.4.3 Weight-driven multiplier squeezing in CNNs

In order to estimate the expected impact of multiplication over-squeezing on perfor-
mance, energy and resource utilization, we profiled seven fine-tuned networks, namely
SqueezeNet, AlexNet, GoogLeNet and VGG. Figure 6.5 show the number of zeros and
ones in the bits of the tested networks’ weights.

As shown in Figure 6.5, about 80% of weight bits are equal to zero in most
networks. We have already demonstrated that a 0 input to the multiplier results in
removing the whole row and forwarding the previous intermediate results to the next
row. As for the 20% remaining rows, and since the input is 1, we save this amount
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of AND gates by skipping multiplications.
In the next subsection, we propose an experimental setup to validate these claims

and quantify the gains in terms of resources, energy and delay.

6.5 Theoretical Performance Study

In this section, we propose an analytic study on the performance of the proposed
implementation using the Roofline model [237]. An other analytical study of the
memory requirements after applying our compression scheme is discussed earlier in
this section.

6.5.1 Performance study

Computation and communication are two principal constraints in system performance
optimization. An implementation can be either computation-bounded or memory-
bounded. In [237], a roofline performance model is developed to relate system per-
formance to off-chip memory traffic on one hand and the peak performance provided
by the hardware platform on the other.

Figure 6.6: Roofline model for two applications O1 and O2. O1 has less compute
intensity and is memory bound since it has

In Figure 6.6, we show the relation between performance and compute intensity.
We distinguish two types of applications, compute-bound and memory-bound appli-
cations. If an application (or an algorithm) reads one byte from off-chip memory
for each operation, it has an operational intensity of 1. The lower this value, the
more reliant the application on memory. A memory-bound application has very low
operational intensity and is limited to the memory bandwidth, which is slower than
that of the compute units.

Equation 6.12 formulates the attainable throughput of an application on a specific
hardware platform. The number of operations per second GOPS is used as the metric
of throughput. The actual performance of an application kernel can be no higher than
the minimum value of two terms.

Attainable Perf = min(Perfpeak, BW ∗ CTC) (6.12)

The first term, Perfpeak, describes the peak possible performance provided by all
available computation resources in a hardware platform. Memory bandwidth is given
by BW and the intensity of computing i.e. computation to communication (CTC)
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Algorithm 4 Standard Convolutional Layer Algorithm

procedure CONV(Mat: I[C, IH, IW ], Mat: W [K,C,R,R], Mat:
O[K,OW,OH])

for n = 0 . . .K do . For each filter
for c = 0 . . . C do . For each input channel

for i = 0 . . . OW do . For each row
for j = 0 . . . OH do . For each column

IW = I[c, i→ i+R, j → j +R] . Extract an input window
F = W [n, c] . Read the corresponding filter
On,i,j+ = IW ~ F . Multiply and accumulate

end for
end for

end for
end for

end procedure

ratio, features the memory traffic required by a kernel in a specific system implemen-
tation. The second term bounds the maximum performance that the memory system
can support for a given computation to communication ratio.

Notice that the CTC is given by Equation 6.13.

CTC =
#OPs

#Bytes
(6.13)

Where OPs is the total number of operations to perform and Bytes is the total
number of bytes read that need to be read from the off-chip memory.

In this subsection, we use Equation 6.12 to compare the performance of a con-
ventional implementation of a convolution layer with and without the proposed opti-
mization. The pseudo-code of a baseline implementation of a convolution layer (from
Equation 6.1) is given by Algorithm 4 where I is the input feature map, W the layer
filters and O the output feature map. The operation ~ represent a dot-multiplication
between two matrices followed by an addition.

We first compare the impact the convolution loop unrolling factor, and conse-
quently the parallelism level, on the CTC ratio with and without our method. To
avoid the data communication bottleneck, the data input is forwarded to different
kernels to perform parallel convolutions. We consider the most commonly used kernel
size in recent CNNs which is 3×3. It results in 17 operations, 9 multiplications and 8
additions per convolution operation. Hence, if p is the number of parallel kernels, the
number of operations by iteration is equal to 17× p. The number of accessed data is
equal to 9 inputs, 9× p weights and p convolution outputs (10× p+ 9 in total). The
CTC ratio of a baseline convolution is hence given by Equation 6.14.

CTCReference =
17× p

9 + 10× p (6.14)

Since no weights communication is required in our method, the CTC ratio is then
given by Equation 6.15.

CTCCompressed =
17× p
9 + p

(6.15)

Figure 6.7 visualize the above Equations.
We consider a real time inference where the CNN input is collected from PCIe link.

Moreover, given the size of weights file, they are stored in DDR. Figure 6.8 visualizes
the roofline model with computational roof and I/O bandwidth roof of a conventional
CNN. In the same Figure we show the roofline model of the same CNN loop with our
technique. The model is implemented for the Zynq UltraScale+ ZU9CG board and
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the operations are considered to be 8-bit fixed point. Since the memory bandwidth
(BW ) considered in the roofline model is the system slowest storage device [237],
the slope corresponds to the DDR bandwidth for the baseline implementation. It
corresponds to the PCIe bandwidth in our method since no weights access is required.
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Figure 6.8: The roofline model comparison with and without our method.

An example to illustrate this difference is as follows. Let us consider an implemen-
tation with a CTC < 20 in the roof-line shown in Figure 6.8. By using compressed
multipliers, the design would no longer rely on the DDR which holds the weights but
will be limited by the PCIe from which the inputs are read. With higher bandwith,
the slope at which the theoretical roof reaches the peak performance will change
which allows more designs to reach peak performance. Secondly, for the same num-
ber of operations we require less reads and therefore shifts the new CTC to the right
gaining a higher roof which results in a better performance roof.

6.5.2 Memory Resource Utilization

Recent optimizations ( [143], [38]) spends the majority of their resources in storing
and managing weights. In a CNN, weights are only used for multiplication. Since our
multiplier implicitly store weights, we do not required any memory. When compared
to other works on the literature, our work outperforms any others that rely on a
weight storage memory. From an other perspective, memory is considered the main
bottleneck of a system. By embedding weights into the compute units, a design using
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Figure 6.9: Total number of logic gates required before and after applying our squeez-
ing scheme.

our compression strategy is not prone to this bottleneck. A memory is still needed
to store intermediate results (activations).

6.6 Circuit-Level Experimental Results

As seen in Figure 6.1, the multiply accumulate operator is the computation bottleneck
of the forward phase in CNN architectures. In hardware accelerators, the de-facto
standard is using fixed-point implementations due to the huge reduction in delay,
energy and resources compared to the minimal loss in accuracy [3].

In a given fixed-point multiplication between A = a3a2a1a0 and B = b3b2b1b0, the
output is the result of the integer multiplication between A and B. The only difference
is the radix point which is not represented in the number but can be computed in
offline knowing the radix points of A and B. As an example, if A = 11.012 (3.2510)
and B = 10.102 (2.510)1, the output C = A × B = 1000.00102 (8.12510) can be
obtained as the result of the integer multiplication between A and B and setting the
radix at the fourth bit based on the input radix points (2 + 2). The signed version is
similar with an additional XOR operation between the two sign bits.

Hence, we conduct our experiments on fixed point networks based on an integer
multiplier architecture such as the one presented in Figure 6.3. We evaluate the
impact on resource utilization and delay by comparing a conventional implementation
with the proposed compressed constant multiplier.

6.6.1 Experimental Setup

For the profiling results, we used the Caffe [105] description of SqueezeNet [98],
AlexNet, GoogLeNet and VGG16.

For each of these networks, we used the already generated weights from Model Zoo
[29]. Model Zoo is an online collection of already trained networks on famous datasets.
We then used the Ristretto framework [80] to generate the optimal quantization
parameters using the fixed-point representation. We used the fine-tuned network
to compute the number of zero bits in weights and the required resources for each
network. After this step, we noticed that the optimal parameter width in all of these
networks is 7 bits.

We designed a 7× 7 and a 7× 15 multipliers using Orcad Capture and simulated
them using PSpice. These multipliers are used to estimate the energy and delay of
a single multiplication. For very accurate results, all input combinations are tested
exhaustively in terms of delay and energy and the worst case is recorded.

1In this example, we ignore the sign bit since it does not impact the multiplication. Hence, the
most-significant bit of each input is part of the number.
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6.6.2 Results

6.6.2.1 Resource Utilization

In the first experiment, we compare the number of logic gates that are required to
perform the multiplications of a given layer. By moving forward in the network
layer-wise, we count the number of required resources in the multiplier and compare
this number to the required resources given the actual weight after compression.
Figure 6.9 shows the total number of gates required to implement the multiplication
operations of the different networks. We notice that our approach achieves between
1 and 4 orders of magnitude of gain in terms of utilized resources. The relative gain
differs from a network to another depending on its corresponding size as well as the
respective weights distribution (see Figure 6.9).

6.6.2.2 Impact on delay

To estimate the impact on the delay of one multiplier, we vary the number of zeros
within the fixed operand bits and track the propagation average delay. When applying
our squeezing scheme, for each zero-bit2 in the right operand in Figure 6.3, we save a
row of full-adders. As for one-bits, we remove the AND gates used for multiplication
which will save us at least the delay of 1 AND operation each time. When one or
none of the bits are equal to 1, no carry propagation is required. Moreover, since
ANDs are also not required, the theoretical delay is equal to 0 ns.

Given the average number n of zeros within 8-bit-weights, we define the average
multiplier as the squeezed circuit that corresponds to a weight containing n zero bits.

In Figure 6.10 we show the estimated delay of the compressed multipliers. The
number of zeros in the fixed operand dictates the circuit and is enough to estimate
the delay of the multiplier. We compare the delay of each version to the conventional
array multiplier. At worst, which is the case with all ’ones’, the compressed multiplier
is one AND gate faster since no multiplications are performed. When at most one bit
is set to 1, the circuit contain no gates and the estimated delay is 0 ns. The difference
of delays between the SqueezeNet multipliers and the VGG16 multipliers is due to
the inputs size.

Figure 6.10 also shows the impact of our approach on these two corner networks.
We highlight the average number of zeros per weights by considering the networks
profiling results shown in Figure 6.5. As for SqueezeNet, the average number of zeros
per weight is equal to 5 while it is equal to 6 for VGG16. Consequently, the most
common multipliers are 1.8× faster for SqueezeNet and have 0 ns delay for VGG16.
On average, this compressed version is almost 2× faster for SqueezeNet and more
than 4× for VGG16.

6.6.2.3 Impact on energy consumption

We followed the delay experiments with a similar approach for energy. In Figure 6.11,
we show the impact of the proposed approach on the multipliers energy consumption.
For visualization purposes, circuits with 0 energy consumption (no gates, i.e. at most
one bit is set to 1) are shown to have 10−2 nJ. We present the results of the two corner
networks, SqueezeNet and VGG-16. As expected, the results are coherent with the
number of resources afforded. In fact, for SqueezeNet, the energy consumption of
the average multiplier is more than 20× less than the conventional circuit. More
interestingly, the energy consumption of the average multipliers in VGG16 is equal
to 0 nJ .

The average compressed multiplier in SqueezeNet is estimated to consume 23.85nJ
per use as pointed by the arrow in Figure 6.11. Taking into account the number of
multiplications in SqueezeNet, the estimated energy consumed by multiplications is
9.25 J per image.

2A bit that is set to 0. Similarly, a one-bit is a bit that is set to 1.
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6.7 RTL-Level Experimental Results

In this subsection, we present experimental results of the proposed multiplier archi-
tecture in terms of energy and resource savings in FPGA. As established earlier, our
idea only tackles multipliers, we do not propose a full-system architecture. Although a
CNN inference run is dominated by MACCs, an implementation requires other types
of operations that we did not discussed in this work. The difference with the previous
subsection is in the implementation. A multiplier in FPGA is implemented either in
DSP (hardwired) or using Look-Up Tables (LUTs). Gains from the squeezing scheme
discussed in subsection 6.4 may be different.

Many production CNNs are quantized. This increases performance at a small
accuracy cost. We used Ristretto [80] to generate fixed-point weights of 4 CNNs,
namely, AlexNet, VGG16, GoogleNet and Squeezenet. Ristretto uses the dynamic
fixed point representation from [47]. The fixed point multiplication is similar to inte-
ger multiplication with a simple XOR operation for the sign bit. For the 4 networks,
we obtained weights quantized with 7 bits each an 1 sign bit.

We developed an automatic code generator3. In it, We generate a multiplier code
that takes one input and performs multiplication with a fixed constant. We also
create a TCL script that calls Xilinx’s Vivado on the generated multiplier in order to
synthesize and map it on a chosen Xilinx chip. In our study, we used the results for
Xilinx’s xc7z020clg484-1 FPGA.

The generator takes the bit-width generated by Ristretto [80] as parameter. For
all integer values of the same bit-width, it generates a multiplier taking one input
and performing multiplication with that value. For each generated multiplier, we
record the number of used resources as well as energy. For fair comparison, we took
the default Vivado implementation of the multiplication operator (*) in VHDL as
reference. The reference multiplier only uses LUT slices since DSPs are not efficient4

for low bit-width arithmetic.
It is worth to mention that our comparisons are performed at multiplier level. We

only consider resources used and energy consumed between the input pins and the
output pins. E.g, for a multiplication by 0, we need no resources and no energy since
output pins are directly connected to the ground ; but we do need the same number
of resources in the reference implementation since no information about the inputs
are present at design, hence, all the components should be present.

6.7.1 Resource Utilization

The implemented multiplier uses only Look-Up Tables (LUT). Hence, we quantify
resource utilization as the number of used LUT slices after implementation. We
propose two comparisons. First, we compare the required resources for each constant
value in one hand with the required resources for a conventional multiplication on
the other hand. The conventional multiplication is the (*) operation in VHDL. This
is achieved by generating all possible multipliers for a given bit width using our tool.

This study is performed at multiplier-level. It gives insight on how the compressed
multipliers compare to the reference. The second study focuses on the impact at net-
work level. We propose a fully-unrolled CNN implementation. In this configuration,
we design as many multipliers as possible so that multiplications can be all performed
in parallel. For FC layers, we implement as many multipliers as weights. However,
since CONV layers have resource sharing, we duplicate weights in order to fully par-
alellize the execution.

Figure 6.12 shows the result of the first study. We take the case of a 7 bit
multiplication and we generate the possible 128 possible multipliers. We present the
distribution of used resources. At worst, 15 LUT slices are required per multiplication.

3The link is omitted for blind review purposes.
4Xilinx’s DSPs of the Ultrascale have a 27 × 18-bit multiplier. For 7-bit multiplication, it is

inefficient to use such multiplier. LUTs are more adapted resource-wise.
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Special cases, such as 0, 1 and 2’s powers require no resources and can be done by
forwarding input bits to corresponding output bits which will also results in null delay
an no energy. A conventional multiplication using Vivado’s implementation requires
51 LUT slices since it at least needs to multiply each bit of the multiplier with each
bit of the multiplicand.

Figure 6.12: Distribution of resource utilization for different compressed multipliers.
A comparison between the average of utilization over all possible128 multipliers (green
line) and the utilization of the conventional implementation (red line).

In Figure 6.13 we show the impact at network level. VGG16 is the heaviest net-
work in terms of weights. For this network, we managed to save 64.39× fewer LUT
Slices when using the compressed version. For Squeezenet, the lightest network, we
saved 11.44× slices. As mentioned before, we considered a fully unrolled implemen-
tation where all multiplications are done in parallel. In real life, this is achieved by
creating as many multipliers as weights for fully connected layers and by duplicating
the filters for each output and instancing a multiplier for each duplicated filter.

In our case, resource are related to the number of zeros in a network’s weights.
In Figure 6.13, we see this behaviour where the more zeros are present in a network,
more savings are possible, hence, less resources are used.

Although the reference design is not obliged to duplicate as many instance as
possible, the huge resource savings in our compressed version can cover this. The
results shows more than an order of magnitude less resources than the reference
implementation. This is enough to compensate for the inflexibility and the need to
instantiate as many multipliers as operations. The advantage in this case becomes
performance since our design will still be able to process all multiplication in parallel
while a not-fully unrolled implementation have to wait between two usages of the
same multiplier.

6.7.2 Power Efficiency

Power consumption is linearly correlated to resources used, hence, the tendencies
in power consumption are almost identical to resources. In Table 6.1, we present
normalized power consumption for all multipliers in each layer type (fully connected
and convolution). We record more than 10000× less power when only considering
multiplications for fully connected layers in VGG16 and Alexnet. This is caused by
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VGG16 Alexnet Googlenet Squeezenet
FC 18656.94× 1960.99× 21.77× /

CONV 70.71× 39.75× 18.70× 12.43×

Table 6.1: Energy savings relative to the reference implementation

the massive number of weights in these two networks. Gains also depend on the
network architecture. CNNs like VGG16 and AlexNet are not optimized. GoogleNet
and Squeezenet on the other hand have fewer weights. They have been subject to
extensive architectural optimizations which narrows the compression space. This
is visible in Figure 6.1 where our compression technique only achieves an order of
magnitude in these latters. Notice that, Squeezenet have no fully connected layers
by design5.

6.8 Discussion

Our idea exploits an inherent aspect of CNNs which is constant weights to opti-
mize CNN-dedicated multipliers implementation. While promising results have been
shown, some limitations need to be addressed. In fact, the proposed approach is
suitable for ASIC design as it implies optimization aspects at circuit level. This as-
pect makes our approach unsuitable for some reinforcement online learning neural
networks that continuously adapt the network weights at runtime. While these net-
works are mainly used for prediction purposes, offline learning algorithms remain the
most widely used in classification and recognition problems. As for FPGA platforms,
their reconfigurable aspect allows coping with dynamic requirements of some machine
learning algorithms or applications.

The technique is also a viable candidate for In-Memory Computing architectures
such as Resistive Associative Processors [163]. The dedicated multipliers could be
seen as a memory that is able to perform computations. This open the doors to a
plethora of possible target platforms.

51× 1 convolutions are introduced to play the role of fully connected layers.
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6.9 Contributions and Guidelines

A novel way of compressing CNN accelerators is presented in this chapter. We exploit
the constant nature of trained CNNs’ weights to design an optimized implementation.
Our approach is orthogonal to all previously proposed compression approaches as it
operates at RTL and circuit level. Hence, it can be coupled with any other high level
pruning or compression technique. The experimental study shows that the proposed
approach achieves more than 90% saving in utilized resources within multipliers and
at least 20× less energy consumption. Even though our approach is unsuitable for
ASIC-oriented continuously trained CNNs such as reinforcement learning-based [14],
a wide range of CNNs can benefit from our compression technique. Generalizing
our technique to different hardware platforms is our future focus. We are making
our VHDL code generation tool publicly available6 for FPGA-based CNN accelerator
implementations.

6https://github.com/267-OS822/ACM-TACO-2019

https://github.com/267-OS822/ACM-TACO-2019
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Deep learning architectures for autonomous driving requires both reliability and
performance [232]. Therefore, we focus our second aspect of the study on reliability
for machine learning accelerators. In this chapter we propose an exploratory study
on the reliability of CNN accelerators. First, we give a background on reliability
and existing works that targeted reliability in ML algorithms. Then we propose
two studies in which we answer two questions: Are CNNs reliable for safety-critical
systems? and if so, What are the vulnerabilities of a CNN implementations?

7.1 Motivations

Because of the massive amount of data handled by CNNs, their implementation in
embedded systems requires high performance Hardware platforms. While the litera-
ture is focusing on strategies for increasing the accuracy of CNNs and adapting them
to new tasks, the reliability of CNN-dedicated hardware still remains under-explored.
New hardware generations successively shrink transistors dimensions, thereby increas-
ing circuits sensitivity to external events which can negatively affect their accuracy.
One of the major sources of these errors in modern embedded systems are soft errors
such as Single Event Upset (SEU) and Single Event Transient (SET). These events
cause bit flips in the target chip. Depending on their duration, they can be upsets
if they permanently change the bit or transient if they affect the bit for a short du-
ration. These errors are typically caused by high energy particles striking electronic
devices. These events can lead to bit flips in sequential parts and memory cells. This
situation often leads to system level failures and violations of safety specifications. In
safety-critical systems, incorrect values being unreliably computed represent a serious
issue, as these systems must comply with strict safety standards [100]. These stan-
dards constrain the manufacturers with less than 10 failures in time (FIT) caused by
soft errors. This translates into less than 10 failures over a billion hours of operation.

Deep learning architectures are known to be inherently resilient to faults [121].
While this tolerance is enough for everyday systems such as spam classifiers and
general image classification, their usage in safety-critical systems such as autonomous
vehicles may be more exacting. The extent to which these errors may affect the system
must be carefully modeled and identified.

The impact of faults on layer activations can be compared to approximate comput-
ing. Chen et. al [40] have shown this effect by using approximate memories. Other
approximating techniques involves fixed-point quantization of a CNN [134] which
plays on bit-width of operators (activations and weights). However, faults have a
random aspect that cannot be compared to approximate computing techniques where
possible changes are defined.

Recently, the resilience to errors issue has been addressed in [201] where authors
propose a method for predicting the error resilience of neurons in a deep neural
network. However authors didn’t consider multiple events neither bit flips within
memory. Fault characterization in CNN-based embedded systems is important. Be-
cause of resource constraints, hardening approaches for these systems must incur a
small overhead in terms of area and energy.

In the first work in Section 7.4, we study the impact of single and multiple soft
errors on the accuracy of CNNs. By simulating errors in memory and in the outcome
of hardware’s calculations, we characterize the behavior of CNN models deployed on
embedded hardware. In this way, we provide a holistic overview on the susceptibility
of CNNs to transient errors.

Intentional attacks are an other potential source of faults. The widespread usage
of CNNs led to the development of sophisticated attacks. Adversarial attacks are
among these attacks. Malicious users could intentionally tamper with processed data
to fool the network. While these attacks are limited to the input, they can be easily
generalized to other parameters of the system such as the CNN’ weights [139].

In the second work in Section 7.5, we consider random errors resulting from the
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environment. These errors are simulated as bit-flips. Redundancy is a common
solution to reliability issues. However, a systematic redundancy has high resource
and energy overheads and is not suitable for limited-budget systems [180].

7.2 Soft Errors Primer

As sub-micron technology dimensions sharply decreased to a few nanometer range in
commercialized ICs, the sensitivity of electronic circuits increased drastically. Hence,
embedded systems are becoming remarkably sensitive to the environmental working
conditions and thereby vulnerable to soft errors. These errors result from a voltage
transient event induced by alpha particles from packaging material or neutron parti-
cles from cosmic rays [272]. This event is created due to the collection of charge at
a p-n junction after a track of electron-hole pairs is generated. A sufficient amount
of accumulated charge in the struck node may invert the state of one or multiple se-
quential elements, such as latches and static SRAM cells, thereby resulting in SEUs
or multiple bit upsets (MBUs) [58]. The current pulses induced by the event may
also corrupt combinatorial circuits thereby leading to one or more transient pulses
being generated and propagated [58]. In past technologies, this issue was considered
in a limited range of applications in which the circuits are operating under aggressive
environmental conditions like aero-space applications. Nevertheless, shrinking tran-
sistor size and reducing supply voltage in new hardware platforms brings soft errors
concern up to mainstream applications.

7.3 Fault Injection in Embedded Systems

Two types of fault injection were presented in [141]. The authors managed to achieve
miss-classification after a series of careful bit-flipping. They report the loss in accuracy
for the target class only. In our work, we study the impact on the overall accuracy.
Furthermore, the authors assumed the injections are carefully selected whereas in
our experimental setup, injections are performed randomly to simulate environment
faults.

In [23], a physical fault injection on DNNs was discussed. In their results, authors
reduced the accuracy of the DNN after injecting faults in the activation functions of
hidden layers.

In [180], a method for estimating fault tolerance in ANNs is proposed. This
method exploits redundancy of hidden units to increase the network’s fault tolerance.
In their results, a very high number of replications (more than 7) is needed to achieve
complete fault tolerance. Our study locates the most vulnerable parts to reduce this
overhead when redundancy techniques are employed.

In [6] authors discussed the inherent Partial Fault Tolerance (PFT) of neural
networks. They proposed a modified neural network that offers complete fault toler-
ance. Their proposal handles fault injections in output layer bias, in weights between
hidden-output layer, in hidden layer bias and in weights between input-hidden layer.
The overhead of their modification exerts an order of magnitude more area and delay
to reach complete fault tolerance.

The PFT of ANNs during training was discussed in [216]. The authors considered
replication to enhance the PFT of a network. In [189], it was shown that only 17
bit-flips are required to corrupt a network such as Alexnet. Authors carefully selected
the target bits to be flipped. In this work, we focus on random error injections on
different levels: data representation, position in the representation and position in
the architecture.

The inherent fault tolerance of networks has also been studied in [184]. However,
the authors focused on relatively small CNNs. Their methodology is based on stuck-at
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faults. Stuck-ats in feed-forward neural nets was also discussed in [181]. Replication
was proposed as a solution to achieve fault tolerance.

Stuck-ats were also discussed in [259]. Authors studied the impact of faulty MAC
units in the TPU’s grid-like architecture. Their results show that with less than
0.006% fault rate, accuracy degrades dramatically. They also proposed two solutions
by pruning and retraining. Their study only considers permanent errors in activations
since they claim that memory errors could be mitigated by ECCs.

The reliability of object detection networks on GPUs has been studied in [57].
Their study was based on fault injection and exploited the error leaking potential
between GPU threads. Our study is platform independent and the result could be
projected to other embedded systems.

Common adversarial attacks have been discussed in [253]. Authors surveys the
different input bit-flipping maneuvers to corrupt a network’s output. The counter-
measures to these attacks are also hovered and explained in their paper.

Adversarial attacks could be considered sources of faults. Authors in [139] pre-
sented an analysis on adversarial attacks on input, weights, activation functions and
other network parameters. In their attack design, faults are injected to fool the net-
work and reduce its accuracy. The authors also proposed a hash function to increase
the resilience of a given DNN.

To the best of our knowledge, this is the first study that explores random fault
injections in CNNs’ weight memory considering the different quantization parameters,
different data representations, the bit position and the layer of occurring faults.

7.4 Impact of Soft Errors on CNN’s Accuracy

7.4.1 Proposed Methodology

Figure 7.1 outlines our error injection method. When an input I is received, an ele-
ment Ii,j ∈ I is selected at random following a non-uniform distribution. A single bit
index is selected from the IEEE-745 single-precision floating-point format represen-
tation of the value Ii,j (described in detail in Figure 7.2) by drawing from a uniform
distribution ∼ U(0, 32). Finally, this bit is flipped and the value of Ii,j is substituted
with its altered version I ′i,j . This process is repeated for n iterations.

Input

Output

Select 

position

Flip bitDone?

Select 

one bit

Error injection method

Yes

No

Figure 7.1: Overview of the proposed method for soft error injection.

It is important to observe that an error will not appear on every subsection of a
Float32 with the same probability. There is a 71.87% chance for an error to appear
in the fraction subsection, whereas in the case of the exponent, there is a 25% chance.
The sign bit only has a 3.12% of possibilities to be affected. The relative impact of
an error depends on the subsection where it’s present, and also in the significance of
this bit with respect to its subsection. Changes in the most significant bits of the
exponent might be dramatic, while changes in the least significant bits of the fraction
can be negligible.
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0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0...

sign exponent fraction

31 30 23 22 0

= 0.156

8 bits 23 bits

Figure 7.2: Description of the IEEE-745 single-precision floating-point format.

7.4.1.1 Error injection in layer activations

Let A0 denote the golden run—referring to an activation which doesn’t contain any
injected error—and let Ak denote the k-th dirty run—referring to an activation with
k injected errors. It is possible to build a 2-layer model with only two levels deep to
collect a large enough sample to characterize the distribution of the errors in Ak with
respect to A0. This model is composed by two layers: an input layer and a KCWH
convolutional layer with K number of filters, C channels, W filter width and H filter
height.

Layer-wise bit upsets

Input Output
Convolution

layer

Bit

flip

28×28 26×26

Figure 7.3: Our 2-layer model for simulating soft errors in activations is composed
by a convolutional layer and our custom bit flip layer. The custom bit flip layer
comprises a convolutional layer and a bit flip module applied to the outputs of this
convolutional layer.

Figure 7.3 describes our 2-layer model for fault injection in layer activations. In
it, an input tensor is subjected to a padded convolution to which a bit flip layer is
appended. The output dimensions of the bit flip layer match 1 : 1 the output of
previous the convolution, with the only effect being the one described in Figure 7.1.
It is possible then to parametrize the amount k of bit flips to be performed by our
custom layer, and to generate different versions of Ak.

7.4.1.2 Full model fault injection

The aim of this experiment is to quantify errors on a fully trained model. We study
the drop of accuracy after fault injection, which is defined as the ratio between correct
and incorrect classifications (or predictions).

We distinguish two targets of soft-errors: memory errors hitting the stored weights,
and compute errors targeting the combinatorial circuit and corrupting the layer out-
puts. In both scenarios, injections may occur in two locations: memory, and compute
units. In this study, we excluded non von Neumann architectures such as In-Memory
Computing; for this type of architectures, errors can be more dramatic since they can
affect both storage and logic at the same time.

For CNNs, weights are usually stored in memory. During the inference phase,
compute units load an input and the respective weights of consecutive layers. This
behavior is successively repeated for each new input. Based on this, we simulate
memory errors as a random weight bit-flip event. In the case of compute errors,
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we consider partial outputs (activations) as the event target (since each circuit has
its own architecture), and low-level fault injection can not be performed unless an
architecture is defined.

In the case of events affecting compute units, the impact is transient. In our
model, training is done in a safe environment i.e. the generated weight file is con-
sidered perfect. Events happen during the inference part. In this phase, operations
only depend on a given input and the network parameters1. Future behavior is not
impacted since a new input is given each time. In our simulation model, given a
probability, events will only affect the results (multi-class classification accuracy) of
that given run with no history on previous events.

Memory events are permanent2. If a fault caused by a given event manages
to flip a bit in memory, corrupted data will be stored for future use. In order to
simulate this behavior in our model, we consider the impact of successive events
each of which causes a bit-flip that should be seen by future events. Hence, our
simulation results for this type of errors focuses on the cumulative aspect. It is worth
to mention that applications used for space operations can run for years in very
aggressive environments and therefore this impact should be anticipated.

7.4.2 Experimental Setup

Initially, three different experiments are created as part of an ablation study, in order
to understand the effect that error injection can have on the performance of full
DNN models. The first experiment consists on characterizing the effect of logical
errors in the activation of a convolutional layer. With this purpose, a 2-layer model
composed by a convolutional and our custom bit flip layer is assembled, and a number
of activations are computed in order to characterize the distribution of the error
defined as Ak − A0. In the second and third experiments, we track the impact
of transient errors on the overall performance of the DNN. We consider single and
multiple event transients on combinational circuits as well as single and multiple event
upsets in memories. This is translated in the CNN context by bit corruptions in the
activation functions on one hand, and bit flips within neuron weights on the other.

7.4.2.1 Simulation environment

Our method for fault injection was implemented in Python 3.6 with NumPy, and
DNN were built with PyTorch 0.4 over CUDA 9.0 and CuDNN 7.1.

Experiments on layer activations were run on Intel i7-6850K (15M Cache, 3.80
GHz) with 32GB RAM and NVIDIA Titan X Ultimate Pascal GPU 12GB GDDR5X.
We used a fixed input size of 28× 28, and the convolutional layer had 1 filter of size
3× 3 with stride 1. Output activation was of size 26× 26 and a rectified linear unit
(ReLU) was used as activation function. Results were collected from 1 million sample
activations with different parameterizations for k.

Full-model study was run on an Intel i7-6500U with 8GB of RAM running Python
3.5.2 with PyTorch 0.4. Experiments were performed on LeNet network trained for
16 epochs on the MNIST dataset. We used the Adam with a learning rate of 0.002.
For backwards error propagation, we used cross entropy loss as criterion.

7.4.2.2 Dataset

In full-model fault injection experiments, we focus on characterizing the performance
of the network on multi-class classification tasks. For this, we use the well known
MINST dataset [130]. MNIST is a dataset of handwritten digits consisting of 70,000

1Network parameters (weights) are stored in memory and are not affected by the event since it
hit the compute unit.

2We suppose that no safety measure are present during the simulation. If memory is operated
with an error correcting code, this can be mitigated and no errors are permanent.
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gray-scale images (28 × 28 pixels) divided into 10 classes, with approximately 7,000
images per class (Figure 7.4). There are 60,000 training images, and 10,000 test
images (sets are balanced).

Figure 7.4: Example images from the MNIST dataset.

7.4.2.3 DNN model

In our full-model experiments, we study the effect of noise on the well known LeNet5
architecture [129], when performing multi-class classification over the MNIST dataset.
Our choice of network was motivated by the following reasons:

� Available benchmarks: As one of the most widely studied networks, its per-
formance is well documented and understood. Many variants improved on it
but these modification are minimal and does not change much in the general
structure.

� Possibility of generalization: LeNet is a modern predecessor to contemporary
CNN architectures. The layers it contains are used almost every CNN for
multi-class classification (VGG, GoogLeNet, ResNet, etc). Thus, it is possible
to generalize the obtained results to other topologies.

7.4.3 Experimental Results

7.4.3.1 Layer-wise Analysis of Multiple Event Transients

In this experiment, we focus on characterizing the distribution of of the error between
golden activations and faulty activations, defined as the difference Ak−A0. For this,
we build a 2-layer model that takes 28 × 28 input tensors and produces a 26 × 26
output resulting from an unpadded KCHW convolution, where K = 1, C = 1 and
H = W = 3, terminated by a bit flip layer. This model is described in Figure 7.3. For
this experiment, k = {1, 2, 3} are selected in order to observe how increasing levels of
corruption can affect the produced activation.

It is worth noticing that the soft error rate is estimated once in 109 hours of op-
eration. Hence, scenarios with two or three bit flips are relatively rare. Nevertheless,
this issue is getting more frequent with new technology nodes especially when deploy-
ing DNNs in aggressive operating conditions such as high-radiation environments, as
multiple bit-flips can happen with a single particle strike [56].

Figure 7.5 displays the distribution of A1 over 1 million activations under single
bit flip injections. We observe that the activation errors are visibly centered around
zero, with 90% of activations being of small size. This is consistent with the statistical
expectation of the error, as comes defined by the disposition of the bits with respect to
the IEEE-754 format (as seen in Figure 7.2). In 10% of the cases, the error produces
a very high and distinctive activation in both positive and negative direction.

Figure 7.6 displays a similar pattern to Figure 7.5, without any distinct feature
indicating an increased accumulation of large errors. In this case, the difference leans
towards errors greater than zero, but this may be considered an effect of statistical
noise. Again, the proportions of the errors are the same with 90% concentrated
around the boundaries of zero, and with a 10% clearly showing remarkably high and
low alterations.

Figure 7.7 exhibits a similar behavior to the previously described experiments. In
this case, we see a larger accumulation of negative errors but 90% are still around
zero. It is interesting that in this case, the error doesn’t seem to grow out of control
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Figure 7.5: Distribution of A1 over 1 million activations in logarithmic scale.
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Figure 7.6: Distribution of A2 over 1 million activations in logarithmic scale.
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Figure 7.7: Distribution of A3 over 1 million activations in logarithmic scale.

even with 3 bit flips by occurrence. This is clearly due to the fact that alterations in
the fraction part of a 32-bit float might carry a low impact in the final error.

7.4.3.2 Impact of soft-errors on model performance

This experiment evaluates the performance degradation caused by soft-errors on a
trained DNN while performing inference. At first, we train LeNet5 obtaining an
accuracy of 0.987% in the test set. The resulting weights are used for subsequent
tests. We simulate soft-errors hitting compute units (SET) and memory (SEU).
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7.4.3.2.1 Single/multiple event transients We consider the intermediate out-
put of each layer in order to simulate bit-flips inside logic-units (PEs). We insert the
previously defined injection layer at each step and record the obtained accuracy while
increasing the fault injection probability. For each probability, we measure the aver-
age accuracy on the test set of 10k samples.
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Figure 7.8: Comparison between single and multiple event transients and their impact
on overall LeNet-5 performance.

Figure 7.8 illustrates the drop of accuracy of the aforementioned network (Section
7.4.2.3). As expected, the negative impact of injecting multiple errors is higher than
single error injection. The accuracy loss starts at a fault injection probability of
10−2 and accelerates exponentially. However, even with multiple fault injections in
combinational circuits, the overall accuracy degradation is not dramatic. In fact,
with a probability of 1.0, and for 3 bit-flips per event, we noticed a drop of 5% in
accuracy. This is not only due to the alterations in the fraction part of a 32-bit float,
but also to the CNN properties. In fact, the complex structure of the layers help
masking errors and preventing them from causing overall system failure. Practically,
these capabilities of neural networks make them inherently robust to SETs.

7.4.3.2.2 Single/multiple event upsets This subsection explores the impact
of single and multiple event upsets on the overall network accuracy. Although both
SETs and SEUs are caused by the same transient phenomenon, there is a fundamental
difference between them. In fact, while glitches caused by SETs are volatile in time,
SRAM cells are bistable elements and a bit flip leads the cell to a new stable corrupted
state. This means that the event is rather irreversible and by consequence the error
lasts in time. This is translated by a cumulative aspect of the errors that needs to
be considered in simulations. Therefore, to assess the impact of memory bit flips,
we inject faults cumulatively within network weights and track the model accuracy.
Injections are simulated as random bit-flips in the weight file (after training). Since
memory errors are permanent, we keep previous errors after each injection. We
measure the overall accuracy on the test set after each injection. This experiment is
repeated multiple times for more accurate results.

Figure 7.9 shows the effects of memory errors that correspond to alterations in
weights on the network accuracy. We notice a relatively slow decrease over cumulated
errors. The main impact can be viewed in extreme cases. As we can notice, the best
case scenario (maximum recorded accuracy) stagnates at almost perfect accuracy.
However, the worst case scenario can transform the network from an almost always
right to an almost random number generator. Before the 10 error step, we notice that
the network can instantly drop below acceptable accuracy. This is explained by the
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Figure 7.9: Evolution of average accuracy (in black) when the number of errors aug-
ments. The dispersion and the extreme cases are shown in red and gray respectively.

nature of weights and their relative importance when determine the network’s final
decision. For a given layer, the order of magnitude of weights is relatively similar. A
random error can easily disorient this order which gives the neuron concerned by this
weight a huge impact on the output.

The drop of accuracy continues until reaching the level of 10%. This was reached
very rapidly in the worst case scenario. At this level, the network is either outputting
the same number each time or outputting random numbers. The first happens if one
output neuron get affected and receives a huge boost. This will manifest as a neuron
giving the maximum confidence each run. If many weights are altered, which is the
case after a long time time of execution, the network output will be random giving
it a chance to correctly predict the number 10% of the times.

The impact of memory errors is not equal between layers. Some layers are more
critical if exposed to the same amount of faults. In the next experiment we evaluate
the responsibility of each layer on the overall network performance. Injections are
performed on weights like the previous experiments, however, we isolate a single
layer from the network as a target for errors. Other layers use the trained weights
and outputs correct values for given inputs.

The difference of singular impact can be viewed in Figure 7.10. The top-left
Figure 7.10a shows that the first layer is the most resilient when compared to others.
The average accuracy drops very slowly over time while errors corrupt the memory.
Convolutional layers (Figure 7.10a, 7.10b) does not have much impact when compared
to fully connected layers (Figure 7.10c, 7.10d, 7.10e). This is due to two main reasons:

� Fully connected layers classifies the extracted features into most suitable classes.
Errors in in these layers leads to direct impact on the output. On the other
hand, convolutional layer weights are feature extractors. The output of these
layers is then classified by fully connected layers. Errors can be masked during
the classifying mitigating their impact.

� Convolutional layers are followed by maximum-pooling layers in LeNet. If an
error reduces the value of a number which is not the local maximum, this has
no effect on subsequent layers and the error is masked. Fully connected layers
lacks this follow-up and therefore suffers from this error.
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(c) fc1
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Figure 7.10: Layer-wise analysis of memory soft-errors with independent responsi-
bility. Average accuracy is in black circles with the standard deviation in red. The
interval of extreme cases (minimum and maximum) is illustrated with the gray region.

Extreme cases confirm these same hypothesis. We can see the severe impact of
errors in the last layers where in less than 10 errors, the best recorded accuracy is
below 40%.

7.4.3.3 Discussion

Progress in approximate computing shows that CNNs are, to some extent, immune
to small error-driven deviations. We can exploit this fact to optimize the protection
of floating point data. In this setup, errors affecting the mantissa should get less
interest than exponent since their impact will not change the order of magnitude. On
the other hand, limiting the output of each layer3 can mitigate the effect of errors
on the exponent. Errors in sign bits have a direct impact on the data integrity and
should be implemented on hardened memory cells.

The conducted experiments on errors targeting the combinatorial part (SET/Multiple
Event Transient (MET)) shows a drop in accuracy. However, for a very exaggerated
probabilities, the network kept a very high average accuracy. As explained, the rea-
son is the short lifetime of the error. The impact is momentary and only limited to
the current inference; and while it has a chance of totally giving a false classification

3The upper bound can be fixed by maximizing the activation values of each layer obtained during
the test or the validation phase.
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or prediction, .
In contrary to errors striking the compute part, memory faults are more dramatic.

One memory error affects all future computations. In a CNN, weights constitutes the
most important data and, if not protected, may cause severe consequences.

Based on the last two observations, designing reliable CNNs for aggressive envi-
ronments should focus on protecting the weights memory. Storing weights in secure
or redundant memories or implementing an ECC is a design must. Moreover, it is
worth noticing that latter layers have the biggest impact and should be specifically
protected.

CNNs fed by a continuous source of data such as a video stream outputs a classi-
fication for each frame. Therefore, having occasional miss-classifications is not much
problematic due to the possible recovery in subsequent runs. In this case, compute
units require minimal attention since rare events are masked.

7.4.4 Summary and Design Guidelines

In this work, an exhaustive exploration of the transient errors impact on deep neu-
ral networks, notably CNNs, was presented. While deep learning is getting drastic
interest in mainstream and critical applications, reliability issues have not been suffi-
ciently addressed. Since these algorithms may replace humans in systems dedicated
to operate in aggressive environments, having a deep insight on their reliability is an
essential concern.

Although the regularization abilities of deep neural networks provide them with an
added degree of robustness against external disturbance, our empirical findings add
nuances to this widely admitted claim. In fact, while errors in processing elements
do not have a huge impact on the overall system accuracy, a drastic degradation was
noticed with faults occurring in memory.

A corruption in classification layers is more accuracy degrading than feature ex-
traction layers, as their relative impact in the final decision of the network is more
significant. Therefore, reliability enhancement techniques should be deployed since
some errors can dramatically and irreversibly corrupt the network behavior.

In future work, the focus on developing new strategies to increase the robustness
of DNNs in aggressive environments, as well as gaining an understanding on design
topologies that can be deployed in autonomous vehicles stationed in low Earth orbit,
where increased radiation levels are a very significant concern.

7.5 CNN Fault Injector

7.5.1 Experimental Methodology

In this subsection we present our setup and methodology to evaluate the reliability.
We use the same methodology from [164] with different experimental setup. When
compared to the previous work in Section 7.4, we evaluate more variables and confirm
the obtained results on other networks.

7.5.1.1 Methodology

Without considering physical damage, soft errors compromise system functionality by
causing bit-flips in memory or in computational elements. Since memory errors are
more critical and durable [164], we only focus on bit-flips in memory. In most machine
learning accelerator designs, two memories are present: 1) the weights memory (Mw)
which stores trained network parameters and 2) intermediate output memory (Mi)
which stores the output of hidden layers.
Mi receives new values for each input. A bit-flip in this memory will only affect

the current run, and, only if it occurs before the subsequent layer starts processing.
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This is similar to errors in computational parts which we will not study. On the other
hand, a bit-flip in Mw will remain active until a new network is deployed. We focus
on this kind of errors.

To reproduce this behaviour, we simulate a soft error in Mw by a number of bit-
flips in a random weight once the network is trained. Multiple studies are conducted
based on this simulation hypothesis. In each study we evaluate a robustness variable
of a CNN based system. The position of the flip is decided by the study and the
evaluated variable.

7.5.1.1.1 Networks CNNs can perform a variety of tasks. Whether it is for
images, voice, text or other input types, classification is the most common task per-
formed by CNNs. Other tasks, such as detection, uses a classification sub-network.
In the experimental setup we propose, we only consider classification networks. Con-
sequently, the study can be projected to other variants.

7.5.1.1.2 Dataset Measuring a CNN’s accuracy requires a labeled testset. Since
testsets are usually not labeled, we use the validation set of ImageNet as used in the
challenge. The set contains 50000 image with the correspondent class of each image.
The set contained 1000 classes.

7.5.1.1.3 Data Representation We consider two data representations:

� IEEE-754’s 32-bit float: This is the standard representation format for floating
point format. It is the dominant representation in CPU and GPU architectures.
Many GPUs are optimized to deal with floating point multiplications. For
simplicity we refer to this representation as F in the rest of this section.

� X-bit fixed point: We used the format from [48]. Trading accuracy for high
performance by using low bit-widths is a common practice in CNN accelera-
tion. This representation uses two parameters: bit-width and fractional length.
Negative fractional lengths can be used to represent powers of two. This repre-
sentation is referred to as Q (for quantized) in the rest of this section.

7.5.1.1.4 Injection Algorithm Based on the fault-injection model in [164], we
create a fault-injection engine. The engine takes a trained network, a dataset and
a test type. The test type dictates the execution flow and the parameters to vary
during the test. Multiple test types are developed, more details are provided later this
subsection. Depending on the selected test type, a series of bit-flips are performed in
the network’s weights. After each test, the engine reports the measured accuracy on
the dataset after the injection.

We consider three test types: full-network, index-wise and layer-wise tests.

� Full -network injection: the engine generates a list of errors that are identified
by their layer and the position in the layer. The engine incrementally injects
errors in the network. After each injection, we measure the accuracy on the
whole dataset. As a result, we aim to compare the two data representations
in terms of inherent resilience. This comparison is useful to decide which data
representation is more suitable when faults are present.

� Indexed injection: in this test, the generated errors are injected in a fixed bit
significance. The engine then loops over every possible position from the least
to the most significant bit4. The result of this test type extends on the result
of the full test. After comparing the two representations, we use this study to
explain the difference, if any, between the obtained accuracies. Furthermore,
this helps localizing the most vulnerable bits to protect.

4In the case of a trained network represented as 32-bit floating point, the engine loops over the
32 bit positions.
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� Layer -wise injection: in this test, errors are generated in the same layer with
different positions. This test is repeated for each layer whilst reporting the
accuracy after each run. The number of errors injected is proportional to the
number of parameters of each layer with a single injection in the layer with the
fewest parameters. This is similar to the real world where the soft-error rate
is proportional to the surface of the chip. This study allows us to understand
the inherent tolerance of CNNs layers. Finding the most vulnerable layers will
assist in creating comprehensive reliability enhancement strategies.

These tests are repeated 60 times to reduce probabilistic variations. In each run,
the engine generates a new set of errors and the injection of the generated errors
is performed each run. We then present the mean of the 60 runs as well as the
maximum, minimum and the standard deviation of the test.

A single soft error can cause multiple bit-flips. Furthermore, memory errors are
cumulative. We fix the number of errors to be injected when varying the index of the
bit-flip to 505. For layers, we inject errors proportional to the number of parameters
with at least 1 injected error6. An extensive study, with variable number of errors, is
possible, however, the same tendency reappears.

7.5.1.2 Experimental Setup

The engine was developed on python. For CNN inference, we used the framework
Caffe. The code is made publicly available7. As part of our study, we perform injec-
tions on quantized (low-precision) CNNs. The weights were obtained using Ristretto.

The experiments were performed on an Nvidia Quadro P5000 GPU with an In-
tel(R) Xeon(R) W-2123 CPU with 3.60GHz frequency.

We used four network architectures: GoogleNet, Alexnet, VGG16 and SqueezeNet.
These networks were selected for their wide usage, diversity, various sizes and high
accuracy. Their convolutional layers are widely reproduced as feature extractor in
other models. This facilitates generalizing the obtained results to other networks.

For the 32-bit floating point represented weights, we used trained instances from
Caffe’s Model Zoo8. We used Ristretto to quantize and fine-tune the four networks
into 8-bit fixed point networks without huge loss in accuracy.

7.5.2 Experimental Results

The results we collected from the engine are presented in this subsection. For each
test type (full, layer and index ) we show the obtained results separately.

7.5.2.1 Impact of Data Representation and Quantization

The results were obtained on weights represented as 32-bit floating point. We present
a comparison between the impact of different data representations on the accuracy
of the different networks.

Figure 7.11 illustrates the result of comparing the two representations F and Q.
The Q representation is clearly more resilient than it’s counterpart. This tendency is
present for the four networks with different rates. The theoretical reason behind this
resilience is explained by the overall difference after injection denoted by A in [164].
For instance, the Q representation with 7 decimal bits and 1 integer bit will differ
from the original value by at most ±1. For the F representation, the difference on
activations can reach 3× 1038 [164].

5It is worth repeating that event upsets are not only originated by the environment but can be
intentionally provoked.

6Scales with the size of the target layer.
7https://github.com/cypox/CNN-Fault-Injector
8Publicly available on: https://github.com/BVLC/caffe/wiki/Model-Zoo

https://github.com/cypox/CNN-Fault-Injector
https://github.com/BVLC/caffe/wiki/Model-Zoo
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Figure 7.11: Comparison between the 8-bit fixed point representation (Q) of weights
and the 32-bit IEEE-754 representation (F). The results of different runs are pre-
sented as the mean and the standard deviation of the top-1 accuracy.

Network Alexnet VGG16 Googlenet Squeezenet
Weights (×106) 60.97 138.36 7 1.25

Table 7.1: Number of weights (in millions) per network.

The decrease in accuracy in VGG16 and Alexnet is not as fast as the decrease for
the same number of errors in Googlenet and Squeezenet. The main reason for this
phenomenon is the number of weights as shown in Table 7.1. The same number of
errors have less impact if the number of weights is important.

7.5.2.2 Significance of Bits

To further explore this decrease in accuracy, we investigate the individual impact
of the bit position. The injections are performed at the same position on the four
networks each run. The only difference being the index of the bit-flip on the binary
representation of the weight. We performed this study only on the F representation.
The Q representation in invulnerable to bit-flips as shown in the previous results in
Figure 7.11.

In Figure 7.12, the four networks have the same tendency. Unless bits are injected
in the exponent’s most significant bit, almost no impact on the accuracy is perceived.

7.5.2.3 Layer Tolerance

The impact of injected faults may depend on its location within the network archi-
tecture. This subsection explores the layers tolerance aspect. Similar to subsection
7.5.2.2, we isolate the target layer in the fault injection process. This isolation allows
to track the individual impact of the chosen layer on the overall accuracy.

Googlenet and Squeezenet have a special architecture. They are built on top of
two modules, inception for the former and fire modules for the latter. These modules
regroup a set of convolutional layers working in parallel on the same input. The
output of the module is obtained by concatenating the outputs of each execution
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Figure 7.12: Position of bit-flips in the F representation and its impact on the ac-
curacy. In the X-axis, red labels represent the mantissa, blue labels represent the
exponent and the sign bit is in green.

branch. For clarity, we reduced the individual layers into the corresponding modules.
For each module, we take the average accuracy of its individual layers.

Figure 7.13 presents the results of this study. The four networks tend to lose
more accuracy when injections occur in advanced layers. This is correlated to our
previous results in [164]. While CNNs have a sequential structure, error propagation
is not problematic in CNNs. Errors in early layers have, in general, less impact on the
accuracy. This shows the implicit characteristic of CNNs to maintain a sane behaviour
when incorrect values are forwarded. This is explained by the implicit redundancy
in CNN weights. After training, many weight clusters are repeated. A small number
of errors is algorithmically masked if it occurs in the first layers. Techniques such
as pruning can greatly affect this study. It explores weight redundancy to reduce
computations, hence, augment performance. Errors that can be previously masked
by redundancy would no longer be harmless. While it achieves high throughput with
acceptable accuracy, reliability can be greatly compromised [202]. This is because
reducing the number of redundant weights increases the importance of each individual
non-pruned weight. This trade-off should be considered to evaluate CNN acceleration
in aggressive environments.

It is worth to mention that, although the mean value is at a comfortable accuracy,
the minimum accuracy reported is almost always ≈ 0%9. This means that in some
runs, the injected errors were able to fully compromise the network. As rare as it could
be, anticipating these cases by studying the network should precede any deployment.
Also, the fact that a few number of errors can damage a network this far is an other
motivation to deeply study the impact of faults.

7.5.3 Discussion

7.5.3.1 Floating Point and Fixed Point

In contradiction to common belief, the F representation is more vulnerable to in-
jections even though it has more bits. The individual impact of a bit in a short
representation (8-bit fixed point) is greater than its counter part in the F represen-
tation. However, the divergence from the correct value is greater in the later due to
the nature of the representation. The exponent is not represented in the fixed point

9The worst case is 0.001 which is equal to randomly guessing the class over the 1000 possibilities.
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Figure 7.13: Impact of faults layer-wise for the four networks. Each series is repre-
sented as the mean top-1 accuracy (black dots), the standard deviation (red error-
bars) and the minimum/maximum (gray fill).
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representation. A bit-flip in any position is similar to adding or subtracting a power
of 2. Since all weights range from −1 to +1 [139], the value added or subtracted is
minuscule. Hence, it’s impact can be logically masked.

7.5.3.2 Bit Position

In the F representation, not all the bits in the exponent are important. The impact
of bits is not linear to the bit position but constant except for the most-significant
bit as could be seen in Figure 7.12. This is partly due to the distribution of CNN
weights. Weights range from −1 to +1. High values in the exponent are always
accompanied with a negative exponent sign. Having a bit-flip will decrease the value
even more, making it close to 0, which is not a big difference considering the range
of weights. The only important change is the most-significant bit of the exponent.
If changed from 0 to 1, the new value will be orders of magnitude higher than the
others. Combined with the maximum pooling, this leads to catastrophic results in
the subsequent layers.

7.5.3.3 Layer Index

Although the general tendency shows that the last layers are more vulnerable, no
conclusions could be drawn. In other words, vulnerable layers of a new CNN can
not be located without a simulation. A fault injection engine such as the one we
presented in this work should be used to evaluate the individual layer vulnerability.
This is an extension to Netscope 10, a neural network visualizer and analyzer. We
introduced the resilience parameter which is computed from the accuracy reported by
the fault-injection engine. The modified version allows to extract the most vulnerable
layers visually. The analyzer is made publicly available with the engine source code11.

Figure 7.14 shows the output of the extended visualizer. It is a different repre-
sentation of the layer results. The percentage of correct predictions is shows for each
layer individually. Depending on the complexity of the network, the visual repre-
sentation helps identifying the vulnerable layers. In the example of Googlenet, the
3x3 layer in the inception modules seems to be very fragile. Errors are more critical
when injected in this layer. A higher level of protection of this particular layer (in all
modules) should increase reliability with minimal overhead.

7.5.3.4 Suggestions and Guidelines

The first study shows a bit difference between the storage formats. Floating point
representation should be used with caution in critical systems. The fixed point rep-
resentation would result in less memory and computation12 overhead with higher
reliability. System designers should consider this aspect when dealing with aggressive
environments.

It was shown that the most significant bit in the exponent is the vulnerable part of
the floating point representation. Using this conclusion, the overhead of redundancy
techniques could be reduced. Techniques such as TMR will Replicate the whole
number three times. This will triple the memory requirements of Googlenet for
instance, whose number of weights is 6, 996, 452, thereby adding 427 megabytes of
required storage. If applied exclusively to the vulnerable bits, only 13 megabytes
( 427

32 ) would be necessary. This result can also be extended to the layer test with
variable degrees of protection depending on the resilience of each layer as outputted
by the injection engine.

10https://github.com/ethereon/netscope
11https://www.github.com/cypox/CNN-Fault-Injector
12Fixed point representation is usually coupled with low precision arithmetic. This allows for

better efficiency with comparable accuracy.

https://github.com/ethereon/netscope
https://www.github.com/cypox/CNN-Fault-Injector
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Figure 7.14: Vulnerable layers in Googlenet represented with the same order of prece-
dence used during execution. The background color of each layer represent its vul-
nerability.
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7.5.4 Summary

An extensive analysis of inherent fault tolerance of CNNs is proposed. We show
that quantization have a positive impact on reliability. The issue with non-quantized
networks is the data representation. For the IEEE-754 format, the most significant
bit of the exponent is crucial to reliability for CNNs. A layer-wise analysis is then
performed. For complex networks, the reliability of the overall network should be
studied based on the architecture. The framework we developed to analyse reliability
is made publicly available. This study is useful in localizing the vulnerable parts
of CNNs and helps designing comprehensive low-overhead reliability enhancement
techniques.
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8.1 Conclusion

The rapid pace of machine learning development is a key contributor to the recent
advances in ADSs. These advanced systems are the future of transportation. Hard-
ware and software components are at the brain of these autonomous systems. While
the challenge of accurate decision making was partly solved by machine learning,
their usage is quite problematic. The hardware requirement of these algorithms are
colossal. Moreover, the safety measures that accompanies these systems need to be
addressed and solved explicitly. In next generation ADSs, designers will be faced with
a dilemma. On the one hand, ADSs are demanding high performance platforms and
highly reliable systems; systems that are expected to swallow an immense quantity
of data coming from an increasing number of sensors of different types. On the other
hand, these systems must be deployed on low cost platforms using recent technologies
and have a short Time-To-Market.

To solve the issue of performance, many architectures have been proposed. In
this thesis, we surveyed the most recent accelerator designs and we classified them
by platform. Each platform presents its own strengths and weaknesses. A heteroge-
neous system is inevitable in the design of driverless vehicles. The ubiquity of high
performance embedded devices, albeit inefficient, eased the integration of machine
learning algorithms in ADSs.

We also presented two accelerator designs. First, we proposed to solve the memory
bottleneck problem present in various von Neumann architectures by using the In-
Memory Computing paradigm. Our first design performs computation and storage
in the same unit using a ReAP, hence, improve performance and reduce requirements
over a state-of-the-art design on FPGA.

The second accelerator uses a novel acceleration technique. It hard-codes weights
in the multipliers of the accelerator. With this idea, no storage is required for weights,
moreover, the complexity of multipliers is reduced which yield better performance.
While many accelerators on FPGAs trades accuracy for performance, this acceleration
technique enables a new trade off, that of flexibility, for safety critical systems. This
acceleration scheme is orthogonal to all others and can be applied in conjunction with
others.

Finally, we tackled the problem of hardware accelerators from a reliability perspec-
tive. We simulated environment errors and intentional attacks as random bit-flips.
We used this assumption to create our fault injection model. Errors targeting the
memory units appear to be more dramatic on accuracy when compared to their combi-
natorial units counterpart. We also concluded that quantization, counter-intuitively,
reduces this impact to a huge extent. As for whether machine learning should be
trusted, in it’s current state, and without any protection mechanism, for autonomous
driving, if a short answer needs to be given based on the results presented in this
thesis, it would be no.

In this thesis, we also presented a study on system design for autonomous driving.
In this study, we showed how a profiling could be performed offline to choose the best
input size to use in a system. The resized images are then streamed and used in an
FPGA accelerator that outputs final detection results. While this study only focus
on detection, this system could be completed with other components.

8.2 Perspectives

The various tasks that needs to be performed in timely manner can only be solved
using heterogeneous platforms. Associative processors and FPGAs are dedicated to
specific types of applications. They are not capable of managing a full stacked system
on their own. Although efficient, their integration with a full system may engender
communication problems. As a follow up to our study, the usage of a ReAP as an
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acceleration module need to be studied. Weights, originally stored inside the CAM,
need to be shared with other compute units.

The integration of embedded devices as acceleration modules in system designs
also raises the question on schedulability. Tasks can be performed by various plat-
forms, more efficiently on some than others. A single platform can never be capable
enough of managing the whole system without being overwhelmingly expensive. An
offline study needs to be performed on what should be executed on which platform.

From a system point-of-view, the implication of other road users is essential to
achieve full self driving. Vehicle-to-vehicle communication and vehicle-to-infrastructure
can provide more information to the vehicle on the state of the environment and even
the state of the vehicle itself. These external sources of information can also be used
as processing units. Resources deployed in the infrastructure or in the cloud are ca-
pable of remotely process the vehicle state and take decisions if the network delays
allows it. The scheduling and partitioning problem mentioned earlier can only be
more necessary. A multi-level scheduling of tasks need to be performed to pick the
best execution configuration with the hardware deployed in the car, that on other
vehicles and the hardware on the cloud.

In their current state, these systems are prone to errors. While we focused on hard-
ware failures and intentional bit-flip attacks on network parameters and activations,
the nature of errors can be adversarial, targeting input data, for instance, images.
Neural networks have shown a particular weakness towards these attacks [72]. Since
their usage can not be excluded from autonomous system design, a fault-injection
study that includes the input, i.e. images, signals and other types of data, need to be
performed to model the full extent of these inconsistencies. Later on, hardware secu-
rity mechanism needs to be deployed to parry with the increasing security challenges,
especially with human life in the cycle.
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Pierre-Luc Carrier, Kyunghyun Cho, Jan Chorowski, Paul Christiano, Tim
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[12] Jeremy Appleyard, Tomás Kociský, and Phil Blunsom. Optimizing performance
of recurrent neural networks on gpus. CoRR, abs/1604.01946, 2016. 70, 77

[13] ARM. Arm expects vehicle compute performance to increase 100x in next
decade. https://www.arm.com/company/news/2015/04/arm-expects-vehicle-
compute-performance-to-increase-100x-in-next-decade. Accessed: 2020-03-11.
39

[14] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. A brief survey of deep reinforcement learning. CoRR, abs/1708.05866,
2017. 120

[15] Utku Aydonat, Shane O’Connell, Davor Capalija, Andrew C. Ling, and Gor-
don R. Chiu. An opencl�deep learning accelerator on arria 10. In Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, FPGA ’17, pages 55–64, New York, NY, USA, 2017. ACM. 50, 61, 74,
76

[16] Taiwo Oladipupo Ayodele. Types of machine learning algorithms. In Yagang
Zhang, editor, New Advances in Machine Learning, chapter 3. IntechOpen,
Rijeka, 2010. 24

[17] Daniele Bagni, A. Di Fresco, J. Noguera, and F. M. Vallina. A zynq accelerator
for floating point vivado hls, January 2016. 95, 96



BIBLIOGRAPHY 147

[18] Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup.
Conditional computation in neural networks for faster models. CoRR,
abs/1511.06297, 2015. 74
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