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Analyse mathématique de quelques modèles tridimensionnels en mécanique des fluides et en magnetohydrodynamique Résumé. Cette thèse est essentiellement consacrée à l'étude de certaines propriétés mathematiques de trois équations : les équations de Navier-Stokes, les équations de Boussinesq et les équations de Hall magnetohydrodynamique, dans le contexte tridimensionnel. Il convient de noter que, pour le moment, la question de la solvabilité globale des équations de Navier-Stokes 3D reste un problème ouvert : nous ne savons pas si des données initiales régulières génèrent, de manière unique, une solution régulière et globale en temps, ou bien si une formation d'une singularité peut se produire à temps fini. Il est donc clair qu'un tel problème est aussi ouvert pour toutes les équations à l'étude dans ce travail. Le but de cette thèse est d'étudier d'abord certaines conditions liées au phénomène de l'explosion à temps fini des solutions fortes aux équations de Navier-Stokes 3D (Chapitre II). Les Chapitres III, IV et V sont consacrés à la question du caractère bien posé du système de Boussinesq avec différents cas de dissipations. Nous consacrerons le Chapitre III aux équations de Boussinesq complètement visqueuses avec des données initiales axisymétriques appartenant aux espaces critiques de Lebesgue. Pour le même système mais sans dissipation dans l'équation de ρ, travailler dans des espaces critiques est plus délicat. Toutefois, dans le Chapitre IV nous parvenons à traiter le cas des données initiales axisymétriques qui sont critiques par rapport à l'échelle de la vitesse. Le résultat principal du Chapitre V est l'unicité des solutions (dans une classe d'espaces anisotropes) du système de Boussinesq avec des dissipations partielles (horizontales) dans toutes les équations. Nous utilisons ensuite ce résultat pour améliorer certains théorèmes déjà établis. Enfin, dans le Chapitre VI nous établissons quelques résultats du critère bien posé (local en temps ou global pour les données initiales petites) et du comportement à long temps des solutions globales (dans certains espaces fonctionnels) pour un modèl de Hall-MHD.

First of all, I would like to thank my supervisors Fabrice Planchon and Pierre Dreyfuss for their support and guidance of my PhD study and research, it was really a great pleasure and honor to me having the opportunity to work under their supervision after following their luminous M2 courses in Nice. I would like to express my particular sincere gratitude to them for all what I have learned from them during the past four years. Thank you very much! I would like to thank Thierry Gallay and Taoufik Hmidi for giving me the honor of being the reporters of my thesis and for the time they devoted to read it. I am also very honored that Marco Cannone, Isabelle Gallagher, Boris Haspot and Maxime Ingremeau have agreed to be part of the jury and I would like to express my gratitude and my thanks to all of them. I learned a lot from the remarks and the discussions I had with the members of the jury. Their comments were very helpful to me and I appreciate all their efforts. Also, I would like to express my sincere thanks to my thesis's monitoring committee: David Chiron and Maxime Ingremeau for the kindness discussions and the remarks they provided during the meetings we had in the past three years. I would like to thank my collaborators Adalet Hanachi and Mohamed Zerguine for their work and remarks. Also, I should not forget to mention my special thanks to all the professors I had in my career. In particular, those who encouraged me and gave me more reasons to do what I'm doing today. The list goes on but I should mention Ibrahim Benzaghli, Didier Clamond, Ahmed Zerrouk Mokrane, Amar Youkana, Abdelghani Zeghib, Mohamed Zerguine, ... So thank you all for your advice and continuous support.

A lot of thanks go also to Florence Marcotte for the very nice and helpful discussion we had on the MHD system. Her advice was also very helpful to me in the defense of my thesis and I really appreciate her kindness help.

The Lab staff were present to ensure the good conditions so that this work can be done. I would like to thank all of them and to address very special thanks to Anita Ibrahim, Jean-Marc Lacroix, Roland Ruelle and Chiara Soresi for their patience and kindness help.

During the last years, I had the chance to meet and make a lot of friends, we had good times together and I really enjoyed the very useful discussions with them. The list is long but I should mention here Ahmed, Alexis, Billel, Batod, Chenmin, Dahmane, David, Eliot, Gaetan, Jonathan, Kevin, Léo, Mehdi, Mhammed, Victor, Yash, Zakaria... Last but not the least, I am extremely grateful to my parents Belkacem Houamed and Ilhem Saidani for their love, prayers, caring and scarifies for educating and preparing me for my future. I am very much thankful to my dear wife Mouna, for her love, understanding, prayers and continuous support to complete this thesis, as well as in my life. Also, I would like to express my thanks to my grandmas, my sister Amina and my brothers Aymen and Anoir and all the rest of my family.

Sometimes, life is unfair, hard and bad things can happen at any time, this is not predictable and this is not like an equation you can solve (at least, not for large times!). A formation of singularities can occur and many people think they can handle it alone, I always thought like that, maybe I still do! But, the point is, it is always great to have others by your side. Words cannot be enough to express my thanks to all the people in my life, but at least maybe now you know that I'm really grateful to all of you. So Thank you all! Haroune. 

I.1 General Introduction and derivation of the Navier-Stokes equations

In this thesis, we intend to present several results in the mathematical context of some fluid mechanic and hydrodynamic models in dimension three. In particular, our study treats some points in question related to the three dimensional Navier-Stokes equations, the Boussinesq equations with different cases of dissipation in the equations and a model of the Hall-magnetohydrodynamic equations. Note that in all these systems, the core equations are the Navier-Stokes ones. In this introduction, we will briefly introduce the derivation of the 3D Navier-Stokes equations and then we will give a short abstract about the main results of this work.

I.1.1 General introduction to the Navier Stokes equations

The Navier-Stokes system is a mathematical model which describes the motion of Newtonian viscous fluid (gaz, liquid), and explains the resistance of a moving body in a fluid.

In the 19 th century, in particular in 1845, C. Navier and G. Stokes proposed the following model to describe the evolution of a viscous fluid   

∂ t u + u • ∇u -µ∆u + ∇p = f, (t, x) ∈ R + × R 3 , div u = 0, u |t=0 = u 0 , (I.1)
where µ > 0 is the viscosity of the fluid, u = (u 1 , u 2 , u 3 ) represents its velocity, p denotes the pressure forces, and f is the external force. We will see that the Boussinesq equations is an example when the force f is a scalar quantity acting in the e 3 direction in the first equation of (I.1), and satisfying a transport or transport-diffusion equation.

As known in the literature, one may notice the special two terms: u•∇u and µ∆u appearing in (I.1), also known as the convective and the viscous term. Roughly speaking, u • ∇u is non linear, instability generator and held responsible for the turbulent flow of the fluid in certain situations. On the other hand, the term µ∆u is known by its opposite "smoothing" effects. Based on these two terms it came the definition of the Reynold number Re, given by

Re def = |u • ∇u| |µ∆u| .
As briefly explained in the introduction of [START_REF] Poulon | Etude qualitative d'éventuelles singularités dans les équations de Navier-Stokes tridimensionnelles pour un fluide visqueux[END_REF], the experimental observations propose the existence of a critical number Re * for which, any flow whose Reynold number satisfies Re < Re * is said to be a "laminar flow". Laminar flow is characterized by fluid particles which are roughly flowing in the same direction. It is also the opposite of a turbulent regime, made of vortices that contradict each other. Such flow is as well the kind of the flows that we like to deal with when we want to circulate a fluid in a pipe or fly an airplane (because it is more stable, and predictable by the equations).

I.1.2 The outlines of the derivation of the Navier-Stokes equations

In this subsection, we examine the physical meaning of the three-dimensional Navier-Stokes equations and perform a simple mathematical derivation based on Newton's second law. While these equations may look intimidating and complicated to a lot of people, all they really are is a statement that the sum of forces is equal to the product of the mass by the acceleration.

The model we derive in this subsection is the following

   ρ ∂ t u + u • ∇u = µ∆u -∇p + ρg, (t, x) ∈ R + × R 3 , divu = 0, u |t=0 = u 0 . (NS µ )
Above, ρ is a scalar function representing the density of the fluid, and g = (g x , g y , g z ) some external forces (let us say the gravity force for instance).

The system (NS µ ) is written for a differential element of the fluid which is infinitesimally small, the three forces we are concerned with here are the forces due to the gravity, the forces due to differences in pressure and the forces due to the viscosity of the fluid. Let us also point out that each of these terms is on a per unit volume basis.

If we denote ( F x , F y , F z ) = F = F ext + F int being respectively the external and the internal forces acting on our model, and similarly a = (a x , a y , a z ) denotes the acceleration, then the Newton's second law gives ma = F.

(N)

In the left hand side we have the mass times the acceleration, keeping in mind that each term above is on a per unit volume basis, that is the external forces might be the weight of something given by F ext = mg.

The mass is given by the density times a per unit volume V = dxdydz, that is for the external force in right hand side of the equation above we have

F ext V = ρg.
For the left hand side of (N), after dividing by V , we should examine the quantity ρa.

To make the presentation simple enough, we should deal here only with the x-direction, the same mathematics would apply for the y and z-directions.

By definition of the x-acceleration, we have

a x = du 1 dt = ∂ t u 1 + ∂ x u 1 ∂ t x + ∂ y u 1 ∂ t y + ∂ z u 1 ∂ t z,
by using the fact that

∂ t x = u 1 , ∂ t y = u 2 , ∂ t z = u 3 ,
we end up with

a x = ∂ t u 1 + u • ∇u 1 , (I.2)
above, the first term in the right hand-side is known as the local acceleration, and the second one is known as the convective acceleration.

We move now to examine the forces F ext acting on an elementary volume element of the fluid, to do so, let us present formally this element by an infinitesimal cube in R 3 , see figures below.

Typically, when we draw a free body diagram, gravity will be acting downward in the y-direction, here we are considering an arbitrary case where a component of gravity could act for example in the x-direction. The force due to gravity is then given by

F ext x = mg x = ρ dxdydz g x (I.3)
Let us now examine the forces F int acting on the left and the right hand side of our element: we could have a normal stress acting to the right on the right face, and another one acting on the left outward from the left face, we respectively denote these two forces by σ xx (x+dx) and σ xx (x). On the top and bottom faces, we could have a shear stress acting to the right on the top face, and shear stress acting to left on the bottom face, the notations we use for these forces are, respectively, τ yx (y + dy) and τ yx (y), see figure I.1. Similarely, for the front and the back of the cube, we could have as shear forces τ zx (z + dz) and τ zx (z) presented in figure I.2. To resume, the result of all the forces defined above is By letting dx, dy, dz approaching zero, the last equation above turns into the differential form ρg x + ∂ x σ xx + ∂ y τ yx + ∂ z τ zx = ρa x .

By doing the same computation for the y and z-directions, we would come up with the following system ρa x = ρg x + ∂ x σ xx + ∂ y τ yx + ∂ z τ zx , ρa y = ρg y + ∂ x τ xy + ∂ y σ yy + ∂ z τ zy , ρa z = ρg z + ∂ x τ xz + ∂ y τ yz + ∂ z σ zz .

(M)

The three equations above are known as the equations of motion for a fluid. The next step consists at getting from these equations to the Navier-Stokes equations (NS µ ). To do so we need a way to relate the normal and the shear stress to the viscosity of the fluid and the velocity profiles, and this is done by using the following equations which are the constitutive relations for a Newtonian fluid, which we will not get into here (see [START_REF] Dreyfuss | Introduction à l'analyse des équations de Navier-Stokes[END_REF] for some details)

σ xx = -p + 2µ∂ x u 1 , τ xy = τ yx = µ ∂ y u 1 + ∂ x u 2 , σ yy = -p + 2µ∂ y u 2 , τ yz = τ zy = µ ∂ z u 2 + ∂ y u 3 , σ zz = -p + 2µ∂ z u 3 , τ zx = τ xz = µ ∂ x u 3 + ∂ z u 1 .
(R)

If we accept the relations (R) as being true, then deriving the Navier-Stokes equations form (M) form to the form given by (NS µ ) becomes a series of algebraic manipulations, let us only mention that the incompressibility condition (∇ • u = 0) plays a significant role in the simplification of some terms in this last step.

I.2 Principal results

The main results of this thesis are based on the following papers [START_REF] Houamed | About some possible blow-up conditions for the 3D-Navier-Stokes equations[END_REF][START_REF] Hanachi | On the global well-posedness of axisymmetric Boussinesq system in critical Lebesgue spaces[END_REF][START_REF] Houamed | On the global solvability of the axisymmetric Boussinesq system with critical regularity[END_REF][START_REF] Dreyfuss | Uniqueness result for Navier-Stokes-Boussinesq equations with horizontal dissipation[END_REF][START_REF] Houamed | Well-posedness for the electron inertial Hall-MHD system in Besov spaces[END_REF] that we regroup them as follows
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As it will be explained with more details in the sequel of this work, what we can and what we cannot prove concerning the mathematical analysis of the three dimensional Navier-Stokes equations is the the motivation of all the questions we treat in this thesis. In order to make our introduction simple enough, we choose to postpone the presentation of the known important "technical" results for (NS µ ) and detail them in the Appendix B.

In the rest of this introduction, we briefly outline the statements of the main results in our first five papers listed above.

I.2.1 Some possible blow-up conditions for the 3D Navier-Stokes equations

It is well known that the question of the global resolution (in general) of the threedimensional Navier-Stokes equations is an open question till toady. These equations are given by   

∂ t v + v • ∇v -µ∆v + ∇p = 0, (t, x) ∈ R + × R 3 , div v = 0, (v, ρ) t=0 = (v 0 , ρ 0 ), (NS µ )
where, v, p and µ represent, respectively, the velocity of the fluid, its pressure, and its cinematic viscosity. It is also well known, due to the work of J. Leray [START_REF] Leray | Essai sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF], that the equations above have at least one global weak solution u in L ∞ (R + ; L 2 (R 3 )) ∩ L 2 (R + ; Ḣ1 (R 3 )) if the initial data is in L 2 (R 3 ). The uniqueness of such solutions remains till today as an open question. J. Leray proved also in his paper that the construction of a unique regular solution is possible if the initial data is regular enough (saying u 0 ∈ H 1 (R 3 ).). However, this solution is known only for short time if the size of the initial data is arbitrary large. On the other hand, the maximal life of the solution T * can be chosen to be T * = ∞ if the initial data is small enough.

The next step in this direction consists of trying to understand what happens to the solution near the maximal time of existence T * if this latest is finite. The various answers we find in the literature affirm that if T * < ∞ then the solution will blow-up, in some spaces, when we get close to T * . In this part of our work, we are more interested in critical the blow-up criterion in terms of spaces respecting the natural scaling of the 3D Navier-Stokes equations.

As a first example of this kind of results, we can mention the Prodi-Serrin criteria, saying that if T * < ∞, then for all (p, q) ∈ [1, ∞) × [1, ∞], with 2 p + 3 q = 1, we have lim

t→T * t 0 v(τ, •) p L q (R 3 ) dτ = ∞.
More recently, better blow-up criterion have been proved. These results take in consideration less components of velocity or its matrix gradient. The first result in this direction, taking into account only one component of the velocity in some scaling invariant space, has been proved by J-Y. Chemin and P. Zhang in [START_REF] Chemin | On the critical one component regularity for 3-D Navier-Stokes system[END_REF]. their result is the following

T * < ∞ =⇒ lim t→T * t 0 v 3 (τ, •) p Ḣ 1 2 + 2 p (R 3 )
dτ = ∞, ∀p ∈ (4, 6). (I.5) (I.5) has been generalized, by the same authors together with Z. Zheng, to the case p ∈ (4, ∞). The special case p = 2 has been treated by J-Y. Chemin, I. Gallagher and P. Zhang in [START_REF] Chemin | Some remarks about the possible blow-up for the Navier-Stokes equations[END_REF]. The authors in [START_REF] Chemin | Some remarks about the possible blow-up for the Navier-Stokes equations[END_REF] considered also the case p = ∞, which is more harder to deal with compared to the case p < ∞, and they showed that if T * < ∞, then it is not possible for one component of the velocity to tend to zero too fast (as t tends to T * ) in Ḣ 1 2 (R 3 ). In order to prove a better result, the authors proposed to slightly reinforce the Ḣ 1 2 (R 3 )-norm of one component in the horizontal frequencies. More precisely, for an arbitrary constant E > 0, they introduced the space H 1 2 log h ,E (R 3 ) as the sub-space of Ḣ 1 2 (R 3 ) such that

a 2 H 1 2 log h ,E def = R 3 |ξ|log(E|ξ h | + e) | a(ξ)| 2 dξ,
and they proved the existence of some constant c 0 > 0 such that, if T * < ∞ then lim sup

t→T * v 3 (t, •) Ḣ 1 2 log h ,E (R 3 ) > c 0 . (I.6)
Our first result in this thesis consists of proving a similar version of (I.6), but with a vertical logarithmic perturbation. Our result is the following Theorem I.2.1. There exists a constant c 0 > 0 satisfying: If v is the maximal solution to (NS µ ) in C([0, T * ); H 1 ), and if T * < ∞, then for all E > 0 we have lim sup

t→T * v 3 (t, •) Ḣ 1 2 logv ,E (R 3 ) > c 0 , (I.7)
where,

a 2 Ḣ 1 2 logv ,E def = R 3 |ξ|log(E|ξ v | + e) | a(ξ)| 2 dξ.
As a corollary, we improve a little bit the two results above by replacing the spaces Ḣ 1 2 log h ,E and Ḣ 1 2 logv,E by the space Ḣ 1 2 log,E , defined by its norm

a 2 Ḣ 1 2 log,E def = R 3 |ξ|log(E min{|ξ h |, |ξ v |} + e) | a(ξ)| 2 dξ.
In the second part of [START_REF] Houamed | About some possible blow-up conditions for the 3D-Navier-Stokes equations[END_REF] , we prove also two criterion considering some components of the matrix gradient of the velocity in some critical Besov-type spaces. This results can be summarized in the two theorems below. We will use as notation

ω def = ∇ × v, s p def = 2 p - 1 2
, and B q,p def = Ḃ 3 q + 2 p -2 q,∞ .

(I.8)

Theorem I.2.2. Let v be the maximal solution to (NS µ ) in C([0, T * );

H 1 ). If T * < ∞, then ∀p, m ∈ [2, 4], ∀α ∈ 0, 2 p - 1 2 , ∀β ∈ 0, 2 m - 1 2
, we have

T * 0 ∂ 3 v 3 (t ) p Ḃα,sp-α 2,∞ dt + T * 0 ω 3 (t ) m Ḃβ,sm-β 2,∞ dt = ∞.
Theorem I.2.3. Let v be the maximal solution to (NS µ ) in C([0, T * ); H 1 ). If T * < ∞, then for all q 1 , q 2 ∈ [3, ∞), and p 1 , p 2 be such that

3 q i + 2 p i ∈ (1, 2), i ∈ {1, 2}, (I.9)
we have

T * 0 ∂ 3 v 3 (t ) p 1 Bq 1 ,p 1 dt + T * 0 ω 3 (t ) p 2 Bq 2 ,p 2 dt = ∞.

I.2.2 Global wellposedness of the axisymmetric completely-viscous Boussinesq system in critical spaces

In the paper [START_REF] Hanachi | On the global well-posedness of axisymmetric Boussinesq system in critical Lebesgue spaces[END_REF], we consider the system of the 3D Boussinesq completely viscous

       ∂ t v + v • ∇v -µ∆v + ∇p = ρ e 3 , ∂ t ρ + v • ∇ρ -κ∆ρ = 0, div v = 0, (v, ρ) t=0 = (v 0 , ρ 0 ), (B µ,κ )
where, v designates the velocity of the fluid, p its pressure and ρ the fluctuation of its density around a constant value. µ > 0 and κ > 0 represent, respectively, the cinematic viscosity and the constant diffusion. We consider in [START_REF] Hanachi | On the global well-posedness of axisymmetric Boussinesq system in critical Lebesgue spaces[END_REF] the Cauchy problem of (B µ,κ ) for (t, x) ∈ R + × R 3 , and we are interested in the study of the global strong solutions. It is well known that the question of the global solvability of (B µ,κ ) (in the general case) is still open. In our paper [START_REF] Hanachi | On the global well-posedness of axisymmetric Boussinesq system in critical Lebesgue spaces[END_REF], we consider the case of the axisymmetric solutions without swirl, where the velocity and the density have the form

v(t, x) = v r (t, r, z)e r + v z (t, r, z)e z , ρ(t, x) = ρ(t, r, z), with, r 2 def = x 2 1 +x 2 2 , et z def = x 3 .
Our reasoning is strongly inspired by the work ofTh. Gallay and V. Sverak [START_REF] Th | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF] who dealt with the Navier-Stokes case (ρ = 0). by introducing the vorticity ω θ def = ∂ z u r -∂ r u z and the auxiliary quantity

ζ def = ω θ
r , we can check that the system (B µ,κ ) is equivalent to the following one

   ∂ t ζ + v • ∇ζ -µ ∆ + 2 r ∂ r ζ = - ∂ r r ρ, ∂ t ρ + v • ∇ρ -κ∆ρ = 0.
( Bµ,κ )

If we further assume that κ = µ, then we can see that the quantity Γ def = κζ -ρ 2 satisfies a transport-diffision like equation (without a force term):

∂ t Γ + v • ∇Γ -µ ∆ + 2 r ∂ r Γ = 0,
which, combined with the second equation in ( Bµ,κ )makes it possible to obtain some estimates a priori global in time on the solutions of the system.

We also consider other interesting quantities to be able to establish more estimates which eventually allow us to construct a unique global solution. More precisely, we find that the quantities ρ def = rρ and Γ def = rΓ play a very important role in our analysis. The equations which govern these quantities are given by

       ∂ t ρ + v • ∇ ρ -µ ∆ - 1 r 2 ρ = v r r ρ -2∂ r ρ, ∂ t Γ + v • ∇ Γ -µ ∆ - 1 r 2 Γ = v r r Γ.
Finally, our result can be summarized as follows Theorem I.2.4. Let µ = κ > 0, and v 0 be a divergence free, axisymmetric without swirl, vector field satisfying ∇ × v 0 ∈ L 1 (R 3 ). Let ρ 0 be a scalar axisymmetric function in L 1 (R 3 ).

Then the system of Boussinesq completely viscous has a unique global solution (u, ρ) be such that, for all t > 0

ζ(t) L 1 + ρ(t) L 1 + t rζ(t) L ∞ + rρ(t) L ∞ + t 3 2 ζ(t) L ∞ + ρ(t) L ∞ ≤ C,
where, C > 0 is a constant depending only on

ζ 0 L 1 (R 3 ) + ρ 0 L 1 (R 3 ) .

I.2.3 Global wellposedness of the axisymmetric Boussinesq system with no diffusion in the ρ-equation

The paper [START_REF] Houamed | On the global solvability of the axisymmetric Boussinesq system with critical regularity[END_REF] is a work in collaboration with M. Zerguine, which concerns the study of the existence and the uniqueness of the global solutions of the three-dimensional Boussinesq system, without dissipation in the density equation, in a case of the particular initial data.

More precisely, we consider the following Boussinesq system:

       ∂ t v + v • ∇v -µ∆v + ∇p = ρ e 3 , (t, x) ∈ R + × R 3 , ∂ t ρ + v • ∇ρ = 0, (t, x) ∈ R + × R 3 , div v = 0, (v, ρ) t=0 = (v 0 , ρ 0 ), (B µ )
and we study the global Cauchy problem, for axisymmetric initial data without swirl. The main result of our work consists in improving the result of T. Hmidi and F. Rousset cite Hmidi-Rousset in the sense of proving that the system is globally well posed with less initial regularity while working in critical spaces compared to the scale of the velocity. The proof we propose here is based on an idea due to Calderon and which has been used in other papers like cite Abidi. The main result statement is as follows:

Theorem I.2.1. Let v 0 ∈ H 1 2 (R 3 ) ∩ Ḃ0
3,1 (R 3 ) be a divergence free, axisymmetric without swirl, vector field. Let ρ 0 be a scalar axisymmetric function such that ρ 0 ∈ L 2 (R 3 ) ∩ Ḃ0

3,1 (R 3 ). Then (B µ ) has a unique global axisymmetric solution satisfying

(v, ρ) ∈ E T (H 1 2 ) ∩ L ∞ T ( Ḃ0 3,1 ) ∩ L 1 T ( Ḃ2 3,1 ) × L ∞ T (L 2 ∩ Ḃ0 3,1 ).
The proof of Theorem (I.2.1) is essentially based on another version of the first Theorem proved by H. Abidi in his paper [START_REF] Abidi | Résultats de régularité de solutions axisymétriques pour le système de Navier-Stokes[END_REF] for the 3D Navier-Stokes equations with a forcing term

   ∂ t v + v • ∇v -µ∆v + ∇p = f, (t, x) ∈ R + × R 3 , div v = 0, v t=0 = v 0 . (NS µ )
The proof of our version of the Theorem above is the subject of the first part of our paper.

The main idea of the proof is also based on a method of splitting in frequencies due to Calderon, and our result consists in considering less spatial regularity for the source term in front of asking a little more integrability in time compared to the work of Abidi [START_REF] Abidi | Résultats de régularité de solutions axisymétriques pour le système de Navier-Stokes[END_REF]. The summary of the result is as follows:

Theorem I.2.2. Let v 0 ∈ H 1 2 (R 3
) be a divergence free, axisymmetric without swirl, vector field. Let f be an axisymmetric without swirl vector field such that f ∈ L 2 loc R + ; H β (R 3 ) , for some β > 1 4 , Then (NS µ ) jas a unique global axisummetric solution satisfying

v ∈ C R + ; H 1 2 ∩ L 2 loc R + ; H 3 2 .

I.2.4 Uniqueness result for an anisotropic model of Boussinesq system

In Chapter V, we consider the 3-D Boussinesq system with horizontal dissipation, where there is no smoothing effect on the vertical derivatives, the system in question will be then

       ∂ t + u • ∇ u -∆ h u + ∇P = ρe 3 , (t, x) ∈ R + × R 3 , ∂ t + u • ∇ ρ -∆ h ρ = 0, div u = 0, (u, ρ) |t=0 = (u 0 , ρ 0 ). (B h )
The partial diffusion in the above system is a natural assumption for several cases of interest in geophysical fluid flows, we refer to [START_REF] Pedlosky | Geophysical fluid dynamics[END_REF] for more details. Recently, the Boussinesq system with partial dissipation received a special attention, and a significant progress in its analysis have been made, see for instance [START_REF] Miao | On the global well-posedness for the Boussinesq system with horizontal dissipation[END_REF][START_REF] Adhikari | Global regularity results for the 2D Boussinesq equations with vertical dissipation[END_REF][START_REF] Wu | The 2D Boussinesq equations with fractional horizontal dissipation and thermal diffusion[END_REF]. Note that the lack of the vertical gain in this model makes it more difficult to study and establish the same results as in the fullydissipative case. Our principal goal here is to study the Cauchy problem of this model. More precisely, we prove a stability-type result of solutions (u, ρ)

∈ L ∞ T H 0,s × H 0,1-s with (∇ h u, ∇ h ρ) ∈ L 2 T H 0,s × H 0,1-s and s ∈ [1/2, 1]
. The main theorem of Chapter V is then the following Theorem I.2.5. Let s ∈ [1/2, 1] and (u, ρ), (v, η) be two solutions for system (B h ) in

L ∞ loc (R + ; H 0,s ) ∩ L 2 loc (R + ; H 1,s ) × L ∞ loc (R + ; H 0,1-s ) ∩ L 2 loc (R + ; H 1,1-s ). Then (u, ρ) = (v, η)
The technics we use in this Chapter are based on several works dealing with the 3-D Navier Stokes equations with only horizontal dissipation [START_REF] Chemin | Fluid with anisotropic viscousity[END_REF][START_REF] Iftimie | A uniqueness result for the Navier-Stokes equations with vanishing vertical viscosity[END_REF][START_REF] Paicu | Equation anisotrope de Navier-Stokes dans des espaces critiques[END_REF]. In particular one should pay attention to the fact that the model is parabolic with respect to the horizontal variables, but it is hyperbolic with respect to the vertical one. Hence, our analysis will be done in spaces that are algebra with respect to the vertical variables, at least for the velocity.

As a consequence, we improve the conditions stated in the paper [START_REF] Miao | On the global well-posedness for the Boussinesq system with horizontal dissipation[END_REF] in order to obtain a global wellposedness result in the case of axisymmetric initial data. Our second result is the following Theorem I.2.6. Let u 0 ∈ H 1 (R 3 ) be an axisymmetric divergence free vector field without swirl such that ω 0 r ∈ L 2 and let ρ 0 ∈ L 2 be an axisymmetric function. Then there is a unique global solution (u, ρ) of the system (B h ). Moreover we have

u ∈ C(R + ; H 1 ) ∩ L 2 loc (R + ; H 1,1 ∩ H 2,0 ), ω r ∈ L ∞ loc (R + ; L 2 ) ∩ L 2 loc (R + ; H 1,0 ), ρ ∈ C(R + ; L 2 ) ∩ L 2 loc (R + ; H 1,0 ).
We should mention that the main feature in our proof is the choice of the spaces in which we do our estimates. This will be explained with more technical details in the introduction of Chapter V.

At the end of this chapter, we provide another example of a local existence and uniqueness result, where, for the existence part, we do not need to assume a high spacial regularity for the initial density, while the uniqueness part is a direct application of our first theorem above. The statement is the following

Theorem I.2.7. Let s ∈]1/2, 1] , δ ∈ [0, s] and (u 0 , ρ 0 ) ∈ H 0,s × H 0,δ . We have • There exists C 0 > 0 such that if u 0 2 0,s + T ρ 0 L 2 u 0 L 2 + ρ 0 L 2 1 + T 2 < C 2 0 ,
then (B h ) has at least one solution (u, ρ) in X s,δ (T ), where

X s,δ (T ) def = L ∞ T H 0,s ∩ L 2 T H 1,s × L ∞ T H 0,δ ∩ L 2 T H 1,δ .
• The solution is unique if δ ≥ 1 -s

I.2.5 Wellposedness and large time behavior of the electron inertia Hall-MHD system

Finally, Chapter VI is devoted to the study of the wellposedeness of the Hall-MHD system augmented by the effect of electron inertia. After simplification of some physical quantities, the system we deal with here is

           ∂ t u + u • ∇u -∆u + ∇P = (∇ × B) × H, ∂ t H -∆H + 2∇ × (∇ × B) × H = ∇ × u × H + ∇ × (∇ × B) × (∇ × u) , H = (Id -∆)B, div u = div B = 0, (u |t=0 , B |t=0 ) = (u 0 , B 0 ).
Our main goal consists in generalizing the wellposedness topic proved in [START_REF] Fukumoto | Well-posedness and large time behavior of solutions for the electron inertial Hall-MHD system[END_REF] from the Sobolev context to the general Besov spaces.

In particular, our first result deals with small initial data u 0 , B 0 ,

∇ × B 0 in Ḃ 3 p -1 p,r (R 3 ), for (p, r) ∈ [1, ∞) × [1, ∞].
The statement of our first result is the the following

Theorem I.2.8. Let p ∈ [1, ∞), r ∈ [1, ∞] and U 0 def = (u 0 , B 0 , ∇ × B 0 ) be in Ḃ 3 p -1 p,r (R 3 ) . There exists c 0 > 0 such that, if U 0 Ḃ 3 p -1 p,r < c 0 ,
then the Hall-MHD model above has a unique global solution

U in L ( Ḃ 3 p -1 p,r ), with U L ( Ḃ 3 p -1 p,r ) < 2c 0 .
Then we show that we can reduce the required regularity on the initial magnetic field in the first result (in the case r = 1) to be only in Ḃ 3 p p,1 (R 3 ), together with an additional condition on the maximal time of existence. More precisely, we prove Theorem I.2.9. Let T > 0, p ∈ [1, ∞) and (u 0 , B 0 ) be two divergence vector fields in

Ḃ 3 p -1 p,1 (R 3 ) × Ḃ 3 p p,1 (R 3 ), there exists c 0 > 0 such that if u 0 Ḃ 3 p -1 p,1 + (2 + T ) B 0 Ḃ 3 p p,1 < c 0 ,
then the Hall-MHD system above has a unique solution (u, B) on (0, T ) with

u L T ( Ḃ 3 p -1 p,1 ) + (2 + T ) B L T ( Ḃ 3 p p,1 )
< 2c 0 .

Our proofs are essentially based on some fixed point arguments applied to a reformulated version of the system above. The estimates we use in this Chapter are in particular a fine estimates proved for the heat-semi group together with some estimates in the homogeneous-Besov spaces for the non-homogeneous operator (Id -∆) -1 .

Finally, we study the large time behavior of the solution is some particular spaces 1 . We show that the L p (and eventually the L p ) norm of the solution (u, B, ∇ × B) associated to an initial data in

B 3 p -1 p,∞ (R 3 ) is controlled by t -1 2 (1-3 p )
, for all p ∈ (3, ∞), which provides a polynomial decay to zero of the L p norm of the solution. The last result of this Chapter is then the following Theorem I.2.10. Let p ∈ (3, ∞) and u 0 , B 0 be two divergence free vector fields. There exists c 0 > 0 such that if

e t∆ u 0 K 1-3 p p + e t∆ B 0 K 1-3 p p + e t∆ (∇ × B 0 ) K 1-3 p p < c 0 ,
then the Hall-MHD system above has a unique global solution

U = (u, B, ∇ × B) in K 1-3 p p satisfying U(t, •) L p t -1 2 (1-3 p ) .
We also point out in Chapter VI some very interesting open questions related to the MHD model in study, we make a link (at least formally) with other models and recent results by comparing this latest to our main results. More details can be also found in our associated paper [START_REF] Houamed | Well-posedness for the electron inertial Hall-MHD system in Besov spaces[END_REF] I.2.6 Overview and the organization of the thesis

The rest of the thesis is organized as follows: We present our results in the form of three parts, with an additional part as an Appendix. The chapters of each part can be read independently, but some technical lemmata and propositions are proved in the appendix because we believe that these latest can be also useful for more general problems and not only for the models in question in this thesis.

• Part one About the Navier-Stokes equations: It contains one chapter in which we prove the results described in the subsection I.2.1.

• Part two About the Boussinesq system: This part is composed of three Chapters each one treats, respectively, one of the subsections I.2.2, I.2.3 and I.2.4.

• Part three About the Hall-MHD system: The third part of this work is devoted to the proof of the results aforementioned in the subsection I.2.4.

• Part Four Appendix: The finale part contains three chapters which are organized as follows:

-Appendix A is devoted to recall the definitions of the functional spaces used in all our work, and to provide a general tool box of results which can be of a constant use in the mathematical analysis of PDE's.

-Appendix B Is about the Navier-Stokes equations, which is also the technical part associated to the introduction of the Navier-Stokes equations. We begin by recalling some basic notions of the Navier-Stokes equations and we end with briefly presenting some important results on these equations, starting from the work of J.Leray till today.

-Finally, Appendix C Is the perspective part of this thesis. In which, we briefly comment on some open questions related to our results and we mention some open questions that interests the author.

Part I

About the Navier-Stokes equations

CHAPTER II 

II.1 Introduction and statement of the main results

In this chapter, we are interested in the study of the possibility of the blow-up for regular solutions to the 3D incompressible Navier stokes equations

   ∂ t u + u • ∇u -∆u + ∇p = 0, (t, x) ∈ R + × R 3 , div u = 0, u |t=0 = u 0 , (N S)
where the unknowns of the equations u = (u 1 , u 2 , u 3 ), p are respectively, the velocity and the pressure of the fluid. We recall that the set of the solutions to (N S) is invariant under the transformation:

u 0,λ (x) def = λu 0 (λx), u λ (t, x) def = λu λ (λ 2 t, λx). That is if u is a solution to (N S) on [0, T ] × R 3 associated to the initial data u 0 , then, for all λ > 0, u λ is a solution to (N S) on [0, λ -2 T ] × R 3 associated to the initial data u 0,λ .
It is well known that (N S) has at least one global weak solution with finite energy

u(t) 2 L 2 + 2 t 0 ∇u(t ) 2 L 2 dt ≤ u 0 2 L 2 (II.1)
This result was proved first by J. Leray in [START_REF] Leray | Essai sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF]. In dimension three, the uniqueness of such solutions stands to be an open problem. J. Leray proved also in his famous paper [START_REF] Leray | Essai sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF] that, for more regular initial data, namely for u 0 ∈ H 1 (R 3 ), (N S) has a unique local smooth solution. That is to say, there exists T * > 0 and a unique maximal solution u in

L ∞ T * (H 1 (R 3 )) ∩ L 2 T * (H 2 (R 3 
)). The question of the behavior of this solution after T * remains to be also an open problem.

In order to give a "formally" large picture, let us define the set

χ T def = (L ∞ T L 2 ∩ L 2 T H 1 ) • (L ∞ T L 2 ∩ L 2 T H 1 ) , (II.2)
where χ T is the dual of

(L ∞ T L 2 ∩ L 2 T H 1 ) • (L ∞ T L 2 ∩ L 2 T H 1 ) def = uv : (u, v) ∈ (L ∞ T L 2 ∩ L 2 T H 1 ) × (L ∞ T L 2 ∩ L 2 T H 1 ) .
Multiplying (N S) by -∆u, and integrating by parts yield to

d 2dt ∇u 2 L 2 + ∇u 2 H 1 = - R d ∇u • ∇u ∇u .
If we suppose that ∇u is already bounded in G T some sub-space of χ T , then one may prove that ∇u is bounded in

L ∞ T L 2 ∩ L 2 T H 1
. This is the case in dimension two where we get, for free, by the L 2 -energy estimate (II.1) a uniform bound of ∇u in

L 2 T L 2 ⊂ (L 4 T L 4 )•L 4 T L 4 ) ⊂ χ T .
In the case of dimension three, several works have been done in this direction, establishing a global wellposedeness of (N S) under assumptions of the type ∇u ∈ G T .

We can set as an example of these results the well known Prodi-Serrin type criterion. Saying that, if u ∈ L p ([0, T ], L q (R 3 )), with 2 p + 3 q = 1 and q ∈]3, ∞], then (N S) is globally wellposed.

The limit case where q = 3 was proved recently by L. Escauriaza, G. Seregin and V. Sveràk in [START_REF] Escauriaza | L3;1 -solutions of Navier-Stokes equations and backward uniqueness[END_REF], proving that: if T * def = T * (u 0 ) denotes the life span of a regular solution u associated to the initial data u 0 then

T * < ∞ =⇒ lim sup t→T * u(t) L 3 (R 3 ) = ∞. (II.3)
This was extended to the full limit in time in Ḣ 1 2 (R 3 ) by G. Seregin in [START_REF] Seregin | A certain necessary condition of potential blow up for Navier-Stokes equations[END_REF]. Several works have been done in this direction as well, the recent work of I. Gallagher, G. Koch and F. Planchon [START_REF] Gallagher | Blow-up of Critical Besov Norms at a Potential Navier-Stokes Singularity[END_REF] for instance extends (II.3) to the critical Besov spaces Ḃ-1+ 3 p p,q , for 3 < p, q < ∞.

In another hand, one may notice that the divergence free condition can provide us another type of conditions for the global regularity (let us say anisotropic ones) under conditions on some components of the velocity or its gradient. Several works have been done in this direction, one may see for instance [START_REF] Neustupa | Regularity of a suitable weak solution to the Navier-Stokes equations as a consequence of regularity of one velocity component[END_REF][START_REF] Cao | Regularity criteria for the three-dimensional Navier-Stokes equations[END_REF][START_REF] Cao | Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor[END_REF][START_REF] Gallagher | A profile decomposition approach to the L ∞ t (L 3 x ) Navier-Stokes regularity criterion[END_REF][START_REF] He | Regularity for solutions to the Navier-Stokes equations with one velocity component regular[END_REF][START_REF] Ziane | One component regularity for the Navier-Stokes equations[END_REF][START_REF] Neustupa | An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity[END_REF][START_REF] Penel | Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity[END_REF][START_REF] Pokorny | On the result of He concerning the smoothness of solutions to the Navier-Stokes equations[END_REF][START_REF] Zhou | On the regularity of the solutions of the Navier-Stokes equations via one velocity component[END_REF] for examples in some scaling invariant spaces or not of Serrin-type regularity criterion, or equivalently proving that, if T * is finite then

T * 0 u 3 (t, .) p L q = ∞ or T * 0 ∂ j u 3 (t, .) p L q = ∞.
The first result in a scaling invariant space under only one component of the velocity has been proved by J.-Y Chemin and P. Zhang in [START_REF] Chemin | On the critical one component regularity for 3-D Navier-Stokes system[END_REF] for p ∈]4, 6[ and a little bit later by the same authors together with Z. Zhang in [START_REF] Chemin | On the critical one component regularity for 3-D Navier-Stokes system: General case[END_REF] for p ∈]4, ∞[. The case p = 2 has been treated very recently by J.-Y Chemin, I. Gallagher and P. Zhang in [START_REF] Chemin | Some remarks about the possible blow-up for the Navier-Stokes equations[END_REF]. As mentioned in [START_REF] Chemin | Some remarks about the possible blow-up for the Navier-Stokes equations[END_REF] such a result in the case of p = ∞, assuming it is true, seems to be out of reach for the time being.

However, the authors in [START_REF] Chemin | Some remarks about the possible blow-up for the Navier-Stokes equations[END_REF] proved some results for p = ∞. Mainly, they proved that if there is a blow-up at some time T * > 0, then it is not possible for one component of the velocity to tend to 0 too fast. More precisely they proved the following blow-up condition

∀σ ∈ S 2 , ∀t < T * , sup t ∈[t,T * [ u(t ) • σ Ḣ 1 2 ≥ c 0 log -1 2 e + u(t) 4 L 2 T * -t
The last result proved in their paper needs reinforcing slightly the Ḣ 1 2 norm in some directions. Mainly, without loss of generality, their result can be stated as the following Theorem II.1.1. There exists a positive constant c 0 such that if u is a maximal solution of (N S) in C([0, T * [, H 1 ), then for all positive real number E we have:

T * < ∞ =⇒ lim sup t→T * u 3 (t) Ḣ 1 2 log h ,E ≥ c 0 , where a 2 Ḣ 1 2 log h ,E def = R 3 |ξ|log(E|ξ h | + e)|â(ξ)| 2 dξ < ∞, and ξ h def = (ξ 1 , ξ 2 ).
Motivated by this result, we aim to show that, up to a small modification in the proof of Theorem II.1.1, we can obtain the same blow-up condition in the case p = ∞, by slightly reinforcing the Ḣ 1 2 norm in the vertical direction instead of the horizontal one. More precisely, we define Definition II.1.1. Let E be a positive real number. We define

Ḣ 1 2
logv,E to be the sub space of Ḣ 1 2 (R 3 ) such that:

a ∈ Ḣ 1 2 logv,E ⇐⇒ a 2 Ḣ 1 2 logv ,E def = R 3 |ξ|log(E|ξ v | + e)|â(ξ)| 2 dξ < ∞

We will prove

Theorem II.1.2. There exists a positive constant c 0 such that if u is a maximal solution of (N S) in C([0, T * [, H 1 ), then for all positive real number E we have

T * < ∞ =⇒ lim sup t→T * u 3 (t) Ḣ 1 2 logv ,E ≥ c 0 .
Remark II.1.1. The blow-up condition stated in Theorem II.1.2 above can be generalized to the following one

∀σ ∈ S 2 , T * < ∞ =⇒ lim sup t→T * σ • u(t) Ḣ 1 2 log σ ,E ≥ c 0 ,
where

a 2 Ḣ 1 2 log σ,E def = R 3 |ξ|log(E|ξ σ| + e)|â(ξ)| 2 dξ < ∞, with ξ σ def = (ξ • σ)σ.
As a corollary, by combining the arguments leading to prove our Theorem II. 

a 2 Ḣ 1 2 log,E def = R 3 |ξ|log(E min{|ξ h |, |ξ v |}| + e)|â(ξ)| 2 dξ < ∞.

Then we prove

Corollary II.2. There exists a positive constant c 0 such that, if u is a maximal solution of (N S) in C([0, T * [, H 1 ), then for all positive real number E, we have

T * < ∞ =⇒ lim sup t→T * u 3 (t) Ḣ 1 2 log,E ≥ c 0 .
The other results that we will prove in this Chapter can be seen as some blow-up criterion under scaling invariant conditions on one component of the velocity and one component of the vorticity, whether in some anisotropic Besov spaces of the form

L p (B α 2,∞ ) h (B sp-α 2,∞ ) v , for α ∈ [0, s p ], or L p (B q,p ), where s p def = 2 p - 1 2
, and B q,p def

= B 3 q + 2 p -2 q,∞ .
(II.4)

We will prove

Theorem II.2.1. Let u be a maximal solution of

(N S) in C([0, T * [; H 1 ). If T * < ∞, then ∀p, m ∈ [2, 4], ∀α ∈ 0, 2 p - 1 2 , ∀β ∈ 0, 2 m - 1 2
, we have:

T * 0 ∂ 3 u 3 (t ) p B α,sp-α 2,∞ dt + T * 0 ω 3 (t ) m B β,sm-β 2,∞ dt = ∞.
Theorem II.2.2. Let u be a maximal solution of (N S) in C([0, T * [; H 1 ). If T * < ∞, then for all q 1 , q 2 ∈ [3, ∞[, for all p 1 , p 2 satisfying

3 q i + 2 p i ∈]1, 2[, i ∈ {1, 2}. (II.5)
We have

T * 0 ∂ 3 u 3 (t ) p 1 Bq 1 ,p 1 dt + T * 0 ω 3 (t ) p 2 Bq 2 ,p 2 dt = ∞.
Remark II.2.1.

1. All the spaces stated in Theorems II.2.1 and Theorem II.2.2 above are scaling invariant spaces under the natural 3-D Navier-Stokes scaling.

2. The regularity of the spaces stated in the blow-up conditions in Theorem II.2.2 is negative, more precisely under assumption (II.5), 3 q i + 2 p i -2 ∈] -1, 0[. Moreover, the integrability asked for in the associated Besov spaces is always higher than 3, which make these spaces larger than L p T H T (L 2 ). The proof in this case can be done without any use of anisotropic technics.

The structure of this Chapter is the following: in order to prove each one of Theorems II.1.2, II.2.1 and II.2.2, in a first time we will reduce their proofs to three lemmata. Then we prove each one in its subsection.

We will make use of the following notations: if A and B are two real quantities, the notation A B means A ≤ CB for some universal constant C which is independent on varying parameters of the problem. (c q ) q∈Z (resp. (d q ) q∈Z ) will be a sequence satisfying

q∈Z c 2 q ≤ 1 (resp. q∈Z d q ≤ 1)
, which is allowed to differ from a line to another one.

Sometimes, we will use the notation

L r T (L p h L q v ) def = L r ((0, T ); L p ((R 2 h ); L q (R v ))), Ḣs h ( Ḣt v ) def = Ḣs,t (R 3 ) • Ḣs h ( Ḣt v ) def = • Ḣs,t (R 3 ) , • Ḃs p,q def = • Ḃs p,q (R 3 )
In the rest of this Chapter, in order to simplify the notations, we will omit the dot in the notation of the homogeneous dyadic operators. That is to say, we will be using only the homogeneous version of Littlewood-Paley theory defined in the Appendix A, by denoting the associated dyadic blocks ∆ j instead of ∆j .

II.3 Almost critical one component condition

II.3.1 Proof of Theorem II.1.2
In this subsection, we reduce the proof of Theorem II.1.2 to a proof of a crucial inequality. For i, ∈ {1, 2}, we denote

J i (u, u 3 ) def = R 3 ∂ i u 3 ∂ 3 u ∂ i u . (II.6)
The proof of Theorem II.1.2 is then based on the following lemma Lemma II.3.1. There exists C > 0 such that, for any E > 0, we have:

J i (u, u 3 ) ≤ 1 10 + C u 3 H 1 2 logv ,E ∇ h u 2 Ḣ1 + C u 3 2 Ḣ 1 2 ∂ 3 u h 2 L 2 E 2 .
Let us assume for a moment that Lemma II.3.1 holds true, we show first how to derive Theorem II.1.2 from it, then we go back to prove Lemma II.3.1 in the next subsection.

Proof of Theorem II.1.2 Following the idea of [START_REF] Chemin | Some remarks about the possible blow-up for the Navier-Stokes equations[END_REF] we begin by establishing a bound of ∇ h u in L ∞ T (L 2 ) ∩ L 2 T ( Ḣ1 ), then we use this estimate to establish a bound of ∂ 3 u in the same space. To do so we multiply (N S) by -∆ h u, usual calculation leads then to:

d 2dt ∇ h u 2 L 2 + ∇ h u 2 Ḣ1 = 4 i=1 E i (u), (II.7)
with

E 1 (u) def = - 2 i=1 ∂ i u h • ∇ h u h ∂ i u h L 2 , E 2 (u) def = - 2 i=1 ∂ i u h • ∇ h u 3 ∂ i u 3 L 2 , E 3 (u) def = - 2 i=1 ∂ i u 3 ∂ 3 u h ∂ i u h L 2 , E 4 (u) def = - 2 i=1 ∂ i u 3 ∂ 3 u h ∂ i u h L 2 .
A direct computation shows that E 1 (u), E 2 (u) and E 4 (u) can be expressed as a sum of terms of the form

I(u) def = R 3 ∂ i u 3 ∂ j u k ∂ u m ,
where (j, ) ∈ {1, 2} 2 and (i, k, m) ∈ {1, 2, 3} 3 .

Next, by duality, product rules and then interpolation, for any p ∈ (1, +∞], one may easly show that 1

I(u) ∇ h u 3 Ḣ 2 p -1 2 ∂ j u k ∂ u m Ḣ 1 2 -2 p u 3 Ḣ 2 p + 1 2 ∇ h u 2 Ḣ1-1 p u 3 Ḣ 2 p + 1 2 ∇ h u 2 p L 2 ∇ h u 2-2 p Ḣ1 .
In particular, for p = ∞ we have:

I(u) u 3 H 1 2 ∇ h u 2 H 1 .
(II.8)

1 Notice that I(u) provides a global bound if u 3 ∈ L p ( Ḣ 2 p + 1 
2 ) for some p ∈ (1, ∞]. It is in fact the term E 3 (u) which poses a problem, and this is why this method doesn't give a complete answer to the regularity criteria under one component only in the case p = 2 as mentionned in [START_REF] Chemin | Some remarks about the possible blow-up for the Navier-Stokes equations[END_REF].

The term E 3 (u), can be estimated by using Lemma II.3.1, to obtain

E 3 (u) ≤ 1 10 + C u 3 H 1 2 logv ,E ∇ h u 2 Ḣ1 + C u 3 2 Ḣ 1 2 ∂ 3 u h 2 L 2 E 2 .
We define then

T * def = sup T ∈ [0, T * [/ sup t∈[0,T ] u 3 (t) H 1 2 logv ,E ≤ 1 4C .
Therefore, for all t ≤ T * , relation (II.7) together with estimate (II.8), Lemma II.3.1 and the classical L 2 -energy estimate lead to

∇ h u(t) 2 L 2 + t 0 ∇ h u(s) 2 Ḣ1 ds ≤ ∇ h u 0 2 L 2 + u 0 2 L 2 E 2 .
(II.9)

On the other hand, as explained in [START_REF] Chemin | Some remarks about the possible blow-up for the Navier-Stokes equations[END_REF], multiplying (N S) by -∂ 2 3 u, integrating over R 3 , integration by parts together with the divergence free condition lead to

d 2dt ∂ 3 u 2 L 2 + ∂ 3 u 2 Ḣ1 ∂ 3 u L 6 ∇ h u L 3 ∂ 3 u L 2 1 2 ∂ 3 u 2 Ḣ1 + C ∇ h u L 2 ∇ h u Ḣ1 ∂ 3 u 2 L 2 .
(II.9) above leads then to a bound for u in L ∞ T * ( Ḣ1 ). Thus, by contraposition, if the quantity u(t) Ḣ1 blows-up at a finite time T * > 0, then

∀t ∈ [0, T * [: sup s∈[0,t] u 3 (s) Ḣ 1 2 > c 0 , def = 1 4C
which gives the desired result by passing to the limit t → T * . Theorem II. 

f G def = q≤k ∆ h k ∆ v q f.
Then we have:

∂ 3 f G Ḣs,t ∇ h f Ḣs,t
Proof Let us use Plancherel-Parseval identity to write:

∂ 3 f G 2 H s,t ≈ R 3 |ξ h | 2s |ξ v | 2t q≤k |ξ v |ϕ h k (ξ)ϕ v q (ξ) 2 | f (ξ)| 2 dξ, (II.10)
where:

ϕ h k def = ϕ(2 -k |ξ h |), ϕ v q def = ϕ(2 -q |ξ v |)
, and ϕ is the function given in the Appendix to define the dyadic blocks. Thus, using the support properties of ϕ h k , ϕ v q , and the condition q < k, we infer that, for all ξ

= (ξ h , ξ v ) ∈ Supp(ϕ h k ) × supp(ϕ v q ) |ξ v | 2 q ≤ 2 k |ξ h |. (II.11)
Plugging (II.11) into (II.10) concludes the proof of the lemma. 2

The second lemma that we will need is useful to estimate some parts of the anisotropic Bony's decomposition for functions having a dominated vertical frequencies compared to the horizontal ones, and which are supported away from zero horizontally in Fourier side.

Lemma II.3.3. Let f be a regular function, and E > 0. We define f B ,E -1 as

f B ,E -1 def = k<q ∆ h k ∆ v q f ,E -1 , where f ,E -1 def = F -1 1 B c h (0,E -1 )
f . Above, B h (0, R) refers to the two dimensional ball of radius equals to R. Then we have the following estimates

∆ v q S h j-1 (f B ,E -1 ) L 2 v (L ∞ h ) log(E2 q + e) 1 2 c q ∇ h f L 2 (R 3 ) .
(II.12)

S v q-1 S h j-1 (f B ,E -1 ) L ∞ v (L ∞ h ) log(E2 q + e) 1 2 c q 2 q 2 ∇ h f L 2 (R 3 ) . (II.13)
Proof According to the support properties we have

∆ v q S h j-1 (f B ,E -1 ) = ∆ v q S h j-1 i∈{-1,0,1} S h q-1+i ∆ v q+i f ,E -1 ,
therefore, due to Bernstein's inequality, we can write

∆ v q S h j-1 (f B ,E -1 ) L 2 v (L ∞ h ) E -1 2 k 2 q 2 k ∆ h k ∆ v q f L 2 (R 3 ) E -1 2 k 2 q c k c q ∇ h f L 2 (R 3 ) log(E2 q + e) 1 2 c q ∇ h f L 2 (R 3 ) .
Thus the first inequality is proved. For the second, one we first write

S v q-1 S h j-1 (f B ,E -1 ) L ∞ v (L ∞ h ) m≤q 2 m 2 ∆ v m S h j-1 (f B ,E -1 ) L 2 v (L ∞ h ) ,
inequality (II.12) gives then

2 -q 2 S v q-1 S h j-1 (f B ,E -1 ) L ∞ v (L ∞ h ) m≤q 2 1 2 (m-q) log(E2 m + e) 1 2 c m ∇ h f L 2 (R 3 ) log(E2 q + e) 1 2 c q ∇ h f L 2 (R 3 )
Inequality (II.13) follows. 2

Now we are in position to prove lemma II.3.1.

Proof of lemma II.3.1 Let us write, for E ∈ R + and a ∈ S (R 3 ):

a ,E -1 def = F -1 (1 B h (0,E -1 ) â), a ,E -1 def = F -1 (1 B c h (0,E -1 ) â).
Based on this decomposition, we write

J i (u, u 3 ) = J E + J E ,
where

J E def = R 3 ∂ i u 3 ∂ 3 u ,E -1 ∂ i u , and J E def = R 3 ∂ i u 3 ∂ 3 u ,E -1 ∂ i u .
The main point consists in estimating J E . Using Bony's decomposition with respect to the horizontal variables, to write J ,1 E can be estimated by duality then by using some product laws, we obtain

J E = J ,1 E + J ,2 E with J ,1 E def = Rv R 2 h ∂ i u (x h , x 3 ) T h ∂ i u 3 (x h ,x 3 ) ∂ 3 u ,E -1 (x h , x 3 )dx h dx 3 , J ,2 E def = Rv k∈Z R 2 h ∆ h k ∂ i u (x h , x 3 ) ∆h k T h ∂ 3 u ,E -1 (x h ,x 3 ) ∂ i u 3 (x h , x 3 )dx h dx 3 ,
J ,1 E ∇ h u L ∞ v ( Ḣ 1 2 h ) T h ∂ i u 3 ∂ 3 u ,E -1 L 1 v ( Ḣ-1 2 h ) ∇ h u L ∞ v ( Ḣ 1 2 h ) ∇ h u 3 L 2 v ( Ḣ-1 2 h ) ∂ 3 u L 2 v ( Ḣ1 h ) .
Using then the inequality:

∇ h u L ∞ v ( Ḣ 1 2 h ) ∇ h u Ḣ1 (R 3 ) (see Lemma A.2.7
), we infer that

J ,1 E u 3 Ḣ 1 2 (R 3 ) ∇ h u 2 Ḣ1 (R 3 ) . (II.14)
In order to estimate J ,2 E , we split it into a sum of a good term J ,2,G E and a bad one J ,2,B E based on the dominated frequencies of ∂ 3 u

∂ 3 u ,E -1 = ∂ 3 u ,G ,E -1 + ∂ 3 u ,B ,E -1 with ∂ 3 u ,G ,E -1 def = q≤k ∆ h k ∆ v q ∂ 3 u ,E -1 and ∂ 3 u ,B ,E -1 def = k<q ∆ h k ∆ v q ∂ 3 u ,E -1
The good term can be easily estimated without using the fact that u ,E -1 contains only the high horizontal frequencies, but just by making use of the fact that the horizontal frequencies control the vertical ones. We proceed as follows, by using the product Lemma A.2.3, we find:

J ,2,G E ∇ h u 3 H -1 2 h (L 2 v ) ∂ 3 u ,G ,E -1 H 3 4 h (H 1 4 v ) ∇ h u H 3 4 h (H 1 4 v )
.

Lemma II.3.2 gives then

J ,2,G E ∇ h u 3 H -1 2 h (L 2 v ) ∇ h u 2 H 3 4 h (H 1 4 v )
, which yields finally, by using Lemma A.2.6

J ,2,G E u 3 H 1 2 ∇ h u 2 H 1 .
(II. 15) In order to estimate the bad term J ,2,B E , we use the Bony's decomposition with respect to vertical variables to infer that

J ,2,B E q,k∈Z ∆ h k ∆ v q ∇ h u L 2 (R 3 ) I (1) 
k,q + I (2) k,q + I (3) 
k,q , (II.16)

where

I (1) k,q def = S h k-1 S v q-1 (∂ 3 u ,B ,E -1 ) L ∞ v (L ∞ h ) ∆ h k ∆ v q ∇ h u 3 L 2 (R 3 ) , I (2) k,q def = S h k-1 ∆ v q (∂ 3 u ,B ,E -1 ) L 2 v (L ∞ h ) ∆ h k S v q-1 ∇ h u 3 L ∞ v (L 2 h ) , I (3) k,q def = 2 q 2 j≥q-N 0 S h k-1 ∆ v j (∂ 3 u ,B ,E -1 ) L 2 v (L ∞ h ) ∆ h k ∆v j ∇ h u 3 L 2 (R 3 )
.

The estimates of these terms are based on Lemma II.3.3, by taking

f B ,E -1 = ∂ 3 u ,B ,E -1
We use inequality (II.13) from Lemma II.3.3 to estimate I

k,q , which gives

I (1) k,q log(E2 q + e) 1 2 c q 2 q 2 ∇ h ∂ 3 u L 2 (R 3 ) 2 k ∆ h k ∆ v q u 3 L 2 (R 3 ) c 2 q c k 2 q 2 2 k 2 ∇ h ∂ 3 u L 2 (R 3 ) u 3 Ḣ 1 2 logv ,E
.

Thus, we obtain

I (1) k,q c k 2 q 2 2 k 2 ∇ h ∂ 3 u L 2 (R 3 ) u 3 Ḣ 1 2 logv ,E . 
(II.17)

In order to estimate I

k,q , we use inequality (II.12) to infer that

I (2) k,q log(E2 q + e) 1 2 c q ∇ h ∂ 3 u L 2 (R 3 ) 2 k ∆ h k S v q-1 u 3 L ∞ v (L 2 h ) (II.18) c q 2 k 2 ∇ h ∂ 3 u L 2 (R 3 ) log(E2 q + e) 1 2 2 k 2 ∆ h k S v q-1 u 3 L ∞ v (L 2 h ) .
(II. [START_REF] Cao | Regularity criteria for the three-dimensional Navier-Stokes equations[END_REF])

Next, we use the following estimate 2 -q 2 log(E2 q + e)

1 2 2 k 2 ∆ h k S v q-1 u 3 L ∞ v (L 2 h ) m≤q 2 (m-q) log(E2 q + e) 1 2 2 k 2 ∆ h k ∆ v m u 3 L 2 (R 3 ) ,
together with the fact that

log(E2 q + e) ≤ log(2 q-m (E2 m + e)), ∀m ≤ q ≤ log(E2 m + e) + (q -m) log(E2 m + e)(1 + (q -m))
to achieve 2 -q 2 log(E2 q + e)

1 2 2 k 2 ∆ h k S v q-1 u 3 L ∞ v (L 2 h ) m≤q (σ q-m c m )c k u 3 Ḣ 1 2 logv ,E
,

where σ j def = √ 1 + j 2 j 2
∈ 1 j (N). By using convolution inequality, we deduce that

I (2) k,q c k 2 k 2 2 q 2 ∇ h ∂ 3 u L 2 (R 3 ) u 3 Ḣ 1 2 logv ,E . (II.20)
Finally, in order to estimate I

k,q , we use again inequality (II.13) from Lemma II.3.3, we obtain

I (3) k,q 2 q 2 2 k 2 j≥q-N 0 log(E2 j + e) 1 2 c j 2 k 2 ∆ h k ∆ v j u 3 L 2 (R 3 ) ∇ h ∂ 3 u L 2 (R 3 ) c k 2 q 2 2 k 2 ∇ h ∂ 3 u L 2 (R 3 ) u 3 Ḣ 1 2 logv ,E
.

Together with (II.17 

I (i) k,q c k 2 q 2 2 k 2 ∇ h u H 1 (R 3 ) u 3 Ḣ 1 2 logv ,E
.

Plugging this last one into (II.16) gives

J ,2,B E k,q∈Z c k 2 q 2 2 k 2 ∆ h k ∆ v q ∇ h u L 2 (R 3 ) ∇ h u Ḣ1 (R 3 ) u 3 Ḣ 1 2 logv ,E ∇ h u Ḣ 1 2 h ( Ḃ 1 2 2,1 )v ∇ h u Ḣ1 (R 3 ) u 3 Ḣ 1 2 logv ,E
.

Lemma A.2.6 then gives

J ,2,B E ∇ h u 2 Ḣ1 (R 3 ) u 3 Ḣ 1 2 logv ,E . (II.21)
From (II.14), (II.15) and (II.21) we deduce

J E ∇ h u 2 H 1 (R 3 ) u 3 H 1 2 logv ,E
. J E can be estimated along the same lines as in [START_REF] Chemin | Some remarks about the possible blow-up for the Navier-Stokes equations[END_REF], by using the product law ( Ḃ1

2,1 ) h • Ḣ 1 2 h ⊂ Ḣ 1 2 h , together with the embedding Ḣ1 (R 3 ) → L ∞ v ( Ḣ 1 2 
h ) (see Lemma A.2.7), we infer that

J E ∇ h u 3 L 2 v ( Ḣ-1 2 ) h ∂ 3 u ,E -1 ∂ i u L 2 v ( Ḣ 1 2 h ) u 3 Ḣ 1 2 ∂ 3 u ,E -1 L 2 v ( Ḃ1 2,1 ) h ∇ h u L ∞ v ( Ḣ 1 2 h ) u 3 Ḣ 1 2 ∇ h u Ḣ1 ∂ 3 u L 2 E 1 100 ∇ h u Ḣ1 + C u 3 2 Ḣ 1 2 ∂ 3 u 2 L 2 E 2
Lemma II. 

J i (u, u 3 ) ≤ 1 5 + C u 3 H 1 2 log,E ∇ h u 2 Ḣ1 + C u 3 2 Ḣ 1 2 ∂ 3 u h 2 L 2 E 2 .

Proof

We recall the expression of J i, (u, u 3 )

J i (u, u 3 ) def = R 3 ∂ i u 3 ∂ 3 u ∂ i u .
Let us write

u 3 = u 3 h + u 3 v , with u 3 h def = F -1 1 |ξv|≤|ξ h | u 3 (ξ) , u 3 v def = F -1 1 |ξ h |<|ξv| u 3 (ξ) .
This decomposition gives in particular

J i (u, u 3 ) = J i (u, u 3 h ) + J i (u, u 3 v ),
and

u 3 Ḣ 1 2 log,E = u 3 h Ḣ 1 2 logv ,E + u 3 v Ḣ 1 2 log h ,E
.

The proof of Lemma II. 

f g|g L 2 ≤ 1 10 g 2 Ḣ1 (R 3 ) + C f p B α,sp-α 2,∞ g 2 L 2 (R 3 ) .
The second lemma reads as follows Lemma II.4.2. For any p, q ∈ [1, ∞] satisfying 3 q + 2 p ∈]1, 2[, we have

f g|g L 2 ≤ 1 10 g 2 Ḣ1 (R 3 ) + C f p Bq,p g 2 L 2 (R 3 ) .
In the rest of this subsection, we outline the proofs of TheoremII.2.1 and Theorem II.2.2, assuming the two lemmata above hold true Proof of Theorem II.2.1 Following for example the idea of [START_REF] Zhang | Ganzhou Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component[END_REF], we multiply (N S) by -∆u and we integrate in space to obtain

d 2dt ∇u 2 L 2 + ∆u 2 L 2 = R 3 u • ∇u • ∆u = - R 3 3 i,j,k=1 ∂ k u j ∂ j u i ∂ k u i .
For the time being, we don't know how to deal with the tri-linear term on the right handside above in order to obtain a global-estimate of u in

L ∞ T Ḣ1 x ∩ L 2 T Ḣ2
x , so to close the estimates the idea is similar to the one in Theorems II.1.1 and II.1.2, and it consists in looking at this term as a bi-linear operator acting on L ∞ T Ḣ1

x ∩ L 2 T Ḣ2

x 2 after assuming a condition which allows to control some components of the matrix ∂ i u j .

Let us recall the Biot-Savart law identity which allows to write the so-called div-curl decomposition of u h as

u h = ∇ ⊥ h ∆ -1 h (ω 3 ) -∇ h ∆ -1 h (∂ 3 u 3 ). (II.22)
Identity (II.22) insures that, for (i, j) ∈ {1, 2} 2 , ∂ i u j can be writing in terms of ω 3 and ∂ 3 u 3 , modulo some anisotropic Fourier-multipliers of order zero, more precisely we have,

for (i, j) ∈ {1, 2} 2 ∂ i u j = R i,j ω 3 + Ri,j ∂ 3 u 3 ,
where Ri,j and R i,j are zero-order Fourier multipliers bounded from L q into L q for all q in ]1, ∞[. On the other hand, the quantity ∂ k u j ∂ j u i ∂ k u i contains always, at least, one term of the form ∂ i u j with (i, j) ∈ {1, 2} 2 or i = j = 3, we infer that

d 2dt ∇u 2 L 2 + ∆u 2 L 2 (l,k,m,n)∈{1,2,3} (i,j)∈{1,2} R 3 R i,j ω 3 + Ri,j ∂ 3 u 3 ∂ k u l ∂ m u n . (II.23) Lemma II.4.2 gives then d 2dt ∇u 2 L 2 + ∇u 2 Ḣ1 ≤ 1 10 ∇u 2 Ḣ1 + C ∂ 3 u 3 p Ḃα,sp-α 2,∞ + ω 3 m Ḃβ,sm-β 2,∞ ∇u 2 L 2 .
Gronwall's lemma leads then to

∇u(t) 2 L 2 + t 0 ∇u(t ) 2 Ḣ1 dt ∇u 0 L 2 exp C t 0 ∂ 3 u 3 (t ) p Ḃα,sp-α 2,∞ + ω 3 (t ) m Ḃβ,sm-β 2,∞
dt .

(II.24) That is if, for some α, β, p, m satisfying the hypothesis of Theorem II.2.1, the quantity in the right hand side of (II.24) is finite, then u is bounded in L ∞ T ( Ḣ1 ). By contraposition, if there is a blow-up of the Ḣ1 norm at some finite T * then, for all α, β, p, m as given by Theorem II.2.1 

T * 0 ∂ 3 u 3 (t ) p Ḃα,sp-α 2,∞ + ω 3 (t ) m Ḃβ,sm-β 2,∞ dt = ∞. Theorem II.
θ def = 1 2 + α 2 - 1 p . (II.26)
One may check that

q ∈ 8 3 , 4 ⊂]2, ∞[ and θ ∈ 1 2 - 1 p , 1 4 ⊂ 0, 1 2 ⊂ 0, 2 q ,
which allow us to use the following embedding, due to Lemmata A.2.6 and A.2.9

L ∞ T (L 2 (R 3 )) ∩ L 2 T ( Ḣ1 (R 3 )) → L q T ( Ḃ 2 q 2,1 (R 3 )) → L q T ( Ḃ 2 q -θ 2,1 ) h ( Ḃθ 2,1 ) v . (II.27) Thus, by using Lemma A.2.3, if g ∈ ( Ḃ 2 q -θ 2,1 ) h ( Ḃθ 2,1 ) v then g • g ∈ ( Ḃ 4 q -2θ-1 2,1 ) h ( Ḃ2θ-1 2 
2,1 ) v . By virtue of (II.25), (II.26) and embedding (II.27), we infer that

g • g ( Ḃ-α 2,1 ) h ( Ḃ-2 p + 1 2 +α 2,1 )v g 2 ( Ḃ 2 q -θ 2,1 ) h ( Ḃθ 2,1 )v .
which gives by duality, embedding (II.27) and Lemma A.2.9

f g|g L 2 f ( Ḃα 2,∞ ) h ( Ḃ 2 p -1 2 -α 2,∞ )v g • g ( Ḃ-α 2,1 ) h ( Ḃ-2 p + 1 2 +α 2,1 )v f ( Ḃα 2,∞ ) h ( Ḃsp-α 2,∞ )v g 2 Ḃ 2 q 2,1 f ( Ḃα 2,∞ ) h ( Ḃsp-α 2,∞ )v g 2 p L 2 g 2(1-2 p ) Ḣ1
.

Finally, we obtain

f g|g L 2 ≤ 1 10 g 2 Ḣ1 + C f p ( Ḃα 2,∞ ) h ( Ḃsp-α 2,∞ )v g 2 L 2 .
Lemma II.4.1 is proved. 2

Proof of lemma II.4.2 According to Lemma A.2.9, in particular inequality (A.15) gives g(t, .)

Ḃ 2 m 2,1 (R 3 )) g(t, .) 2 m Ḣ1 (R 3 ) g(t, .) 1-2 m L 2 (R 3 ) , ∀m ∈]2, ∞[. (II.28)
We use then the Bony's decomposition to study the product g • g.

Let (q, p) ∈ [1, ∞] 2 satisfying q ∈ [3, ∞] and 3 q + 2 p ∈]1, 2[. Let (m 1 , m 2 ) be in [2, ∞]×]2, ∞[, given by 2 3m 1 def = 1 q and 2 1 - 1 m 2 def = 3 q + 2 p ∈]1, 2[ ⇐⇒ m 2 ∈]2, ∞[. (II.29)
Let us define the real number N m 1 associated to the embedding

Ḣ 2 m 1 (R 3 ) in L Nm 1 (R 3 ) 1 N m 1 def = 1 2 - 2 3m 1 ∈ 1 6 , 1 2 . 
Let us also define r to be the conjugate of q, that is

1 r def = 1 - 1 q ∈ 2 3 , 1 .
We write ∆ j (g • g) = 2∆ j T g (g) + ∆ j R(g, g)

where T and R are the operators associated to the Bony's decomposition, defined in the Appendix A.

We turn now to estimate the two parts of ∆ j (g • g). We have

∆ j T g (g) L r S j-1 g L Nm 1 ∆ j g L 2 g L Nm 1 d j 2 -j 2 m 2 g Ḃ 2 m 2 2,1
using then the embedding

g L Nm 1 g Ḣ 2 m 1 (II.30)
together with the interpolation inequality (II.28) gives

∆ j T g (g) Ḃ 2 m 2 r,1 2 -j 2 m 2 d j g 2 m 1 + 2 m 2 Ḣ1 g 2-2 m 1 + 2 m 2 L 2 (II.31)
For the remainder term, we proceed almost similarly

∆ j R(g, g) L r j ≥j-5 ∆j g L Nm 1 ∆ j g L 2 2 -j 2 m 2 j ≥j-5 d j 2 -(j -j) 2 m 2 g L Nm 1 g Ḃ m 2,1
,

where ∆j def = i∈{-1,0,1}
∆ j +i . By convolution inequality, interpolation inequality (II.28)

and the embedding one (II.30), we get

∆ j R(g, g) L r 2 -j 2 m 2 d j g 2 m 1 + 2 m 2 Ḣ1 g 2-2 m 1 + 2 m 2 L 2
which gives, together with (II.31)

∆ j (g • g) L r 2 -j 2 m 2 d j g 2 m 1 + 2 m 2 Ḣ1 g 2-2 m 1 + 2 m 2 L 2
On the other hand, by duality, we get

f g|g L 2 j∈Z ∆ j f L q ∆ j (g • g) L r j∈Z 2 -j 2 m 2 ∆ j f L q d j g 2 m 1 + 2 m 2 Ḣ1 g 2-2 m 1 + m L 2 f Ḃ-2 m 2 q,∞ g 2 m 1 + 2 m 2 Ḣ1 g 2-2 m 1 + 2 m 2 L 2
. By virtue of (II.29) we have

1 - 1 m 1 + 1 m 2 = 1 p and - 2 m 2 = 3 q + 2 p -2.
This gives 

f g|g L 2 ≤ 1 10 g 2 Ḣ1 + C f p

III.1 Introduction

The description of the state of a moving stratified fluid in dimension three under the Boussinesq approach, taking into account the friction forces is determined by the distribution of the fluid velocity v(t, x) with free-divergence located in position x at a time t, the scalar function ρ(t, x) designates either the temperature in the context of thermal convection, or the mass density in the modeling of geophysical fluids and p(t, x) is the pressure which is relates v and ρ through an elliptic equation. This provides us to the Cauchy problem for the Boussinesq system,

       ∂ t v + v • ∇v -µ∆v + ∇p = ρ e 3 , if (t, x) ∈ R + × R 3 , ∂ t ρ + v • ∇ρ -κ∆ρ = 0, if (t, x) ∈ R + × R 3 , div v = 0, (v, ρ) |t=0 = (v 0 , ρ 0 ). (B µ,κ )
Above, µ and κ are two non-negative parameters which can be seen as the inverse of Reynolds numbers and ρ e z models the influence of the buoyancy force in the fluid motion in the vertical direction e z = (0, 0, 1).

Boussinesq flows are ubiquitous in various nature phenomenon, such as oceanic circulations, atmospheric fronts or katabatic winds, industry such as fume cupboard ventilation or dense gas dispersion, see, e.g. [START_REF] Pedlosky | Geophysical fluid dynamics[END_REF].

Let us notice that the Navier-Stokes equations are obtained as particular case from (B µ,κ ) when the initial density is constant. Such equations are given as follows

   ∂ t v + v • ∇v -µ∆v + ∇p = 0, (t, x) ∈ R + × R 3 , div v = 0, v |t=0 = v 0 . (NS µ )
An important breakthrough was J. Leray's paper in the thirties of last century where he showed the global existence of weak solutions in energy space for any dimension. Nevertheless, the uniqueness of such solutions has been till now an open question, unless for the two-dimensional case. Lately, the local wellposedness issue in the setting of mild solutions for (NS µ ) was done by H. Fujita and T. Kato [START_REF] Fujita | On the Navier-Stokes initial value problem I[END_REF] for initial data belonging to the critical Sobolev space Ḣ 1 2 in the sense of scale invariance. More similar results are established in several functional spaces like

L 3 , Ḃ-1+ 3 p p,∞
and BM O -1 . It should be noted that these types of solutions are globally well posed in a time for initial data sufficiently small with respect to the viscosity, except in two-dimensional, see [START_REF] Lemarie-Rieusset | Recent Developments in the Navier Stokes Problem[END_REF][START_REF] Robinson | The three-dimensional Navier-Stokes equations[END_REF]. In a similar way, especially in dimension two of spaces, the system (B µ,κ ) was tackled by many authors in various functional spaces and different values for the parameters κ and µ. For the connected subject, we refer to some selected references [START_REF] Hmidi | On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity[END_REF][START_REF] Hmidi | Global well-posedness for an Euler-Boussinesq system with critical dissipation[END_REF][START_REF] Hmidi | Global well-posedness for a Navier-Stokes-Boussinesq system with critical dissipation[END_REF][START_REF] Hmidi | On the global well-posedness of the Euler-Boussinesq system with fractional dissipation[END_REF][START_REF] Larios | Global well-posedness for the 2d-Boussinesq system with anisotropic viscosity without heat diffusion[END_REF][START_REF] Miao | On the global well-posedness of a class of Boussinesq-Navier-Stokes systems[END_REF][START_REF] Weinan | Small-scale structures in Boussinesq convection[END_REF].

Before discussing some theoretical underpinnings results on the wellposedness topic for the viscous Boussinesq system (B µ,κ ) in three-dimensional, first let us point out again that the topic of global existence and uniqueness for (NS µ ) in the general case is till now an open problem in PDEs. It is therefore incumbent upon us to seek out a subclass of vector fields which in turn leads to some conservation quantities, and so the global wellposedness result. Such subclass involves to rewrite (NS µ ) under vorticity formulation by applying the "curl" to the momentum equation, which is defined by ω = ∇ × v. Thus, we have:

∂ t ω + v • ∇ω -µ∆ω = ω • ∇v if (t, x) ∈ R + × R 3 , ω |t=0 = ω 0 . (III.1)
For three-dimensional flow the situation is more complicated due to the presence of stretching term ω • ∇v, which contributes additional drawbacks for the fluid motion.

The subclass we look for requires to assume that the velocity is an axisymmetric vector field without swirl in the sense that v can be decomposed in the cylindrical coordinates (r, θ, z) as follows:

v(t, x) = v r (t, r, z) e r + v z (t, r, z) e z ,
where for every x = (x 1 , x 2 , z) ∈ R 3 we have

x 1 = r cos θ, x 2 = r sin θ, r ≥ 0, 0 ≤ θ < 2π.
Above, the triplet ( e r , e θ , e z ) represents the usual frame of unit vectors in the radial, azimuthal and vertical directions with the notation

e r = x 1 r , x 2 r , 0 , e θ = - x 2 r , x 1 r
, 0 , e z = (0, 0, 1).

For these flows, the vorticity ω takes the form ω def = ω θ e θ , with

ω θ = ∂ z v r -∂ r v z . (III.2)
Taking advantage of div v = 0, the velocity field can be determined clearly in the half-space Ω = {(r, z) ∈ R 2 : r > 0} by solving the following elliptic system

∂ r v r + 1 r v r + ∂ z v z = 0, ∂ z v r -∂ r v z = ω θ , (III.3)
under homogeneous boundary conditions v r = ∂ r v z = 0. The differential system (III.3) is wellknown as the axisymmetric Biot-Savart law associated to (NS µ ), see Section III.2.1.

A few computations claim that the term ω • ∇v becomes v r r ω θ and that ω θ evolves,

∂ t ω θ + (v • ∇)ω θ -µ∆ω θ + µ ω θ r 2 = v r r ω θ , (III.4) with the notations v • ∇ = v r ∂ r + v z ∂ z and ∆ = ∂ 2 r + 1 r ∂ r + ∂ 2 z .
By setting Π = ω θ r , we discover that Π satisfies

∂ t Π + v • ∇Π -µ ∆ + 2 r ∂ r Π = 0, Π |t=0 = Π 0 . (III.5)
Since the dissipative operator (∆ + 2 r ∂ r ) has a good sign, thus the L p -norms are time bounded, that is for t ≥ 0

Π(t) L p ≤ Π 0 L p , p ∈ [1, ∞]. (III.6)
Under this pattern, M. Ukhoviskii and V. Yudovich [START_REF] Ukhovskii | Axially symmetric flows of ideal and viscous fluids filling the whole space[END_REF], independently O. Ladyzhenskaya [START_REF] Ladyzhenskaya | Unique solvability in the large of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry[END_REF] succeed to recover (NS µ ) globally in time, whenever v 0 ∈ H 1 and ω 0 , ω 0 r ∈ L 2 ∩ L ∞ . This result was relaxed later by S. Leonardi, J. Màlek, J. Necȃs and M. Pokorný for v 0 ∈ H 2 and weakened recently in [START_REF] Abidi | Résultats de régularité de solutions axisymétriques pour le système de Navier-Stokes[END_REF] 

by H. Abidi for v 0 ∈ H 1 2 .
The majority of aforementioned results are accomplished within the framework of finite energy solutions. For the solutions with infinite energy, in particular in two dimensions many results dealing with the global wellposedness problem have been obtained by numerous authors. Particularly, worth mentioning that Giga, Miyakawa and Osada have been established in [START_REF] Giga | Two-dimensional Navier-Stokes flow with measures as initial vorticity[END_REF] that (NS µ ) admits a unique global solutions for initial vorticity is measure. Lately, M. Ben-Artzi [START_REF] Ben-Artzi | Global solutions of two-dimensional Navier-Stokes and Euler equations[END_REF] has shown that (NS µ ) is globally well posed whenever the initial vorticity ω 0 belongs to critical Lebesgue space L 1 (R 2 ) who proposed a new formalism based on elementary comparison principles for linear parabolic equations. While, the uniqueness was relaxed later by H. Brezis [START_REF] Brezis | Global solutions of two-dimensional Navier-Stokes and Euler equations[END_REF]. Thereafter, this result was improved by I. Gallagher and Th. Gallay [START_REF] Gallagher | Uniqueness for the two-dimensional Navier-Stokes equation with a measure as initial vorticity[END_REF], where they constructed solutions globally in time, under the assumption that ω 0 is a finite measure. For more details about this subject we refer the reader to the references [START_REF] Cottet | Equations de Navier-Stokes dans le plan avec tourbillon initial mesure[END_REF][START_REF] Th | Stability and interaction of vorticies in two dimensional viscous flows[END_REF][START_REF] Germain | Equations de Navier-Stokes dans R 2 : existence et comportement asymptotique de solutions d'énergie infinie[END_REF].

More recently, the global wellposedness problem for (III.4) was revisited in three-dimensional by Th. Gallay and V. Sverák who established in [START_REF] Th | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF] that (NS µ ) posseses a unique global solutions if the initial velocity is an axisymmetric vector field and its vorticity lying the critical space L 1 (Ω). In addition, they were extending their results in more general case, i.e., ω 0 is a finite measure, where Ω is half-plane Ω = {(r, z) ∈ R 2 : r > 0, z ∈ R} endowed with the product measure drdz. Actually, their paradigm uses specifically the standard fixed point method to show in particular the local wellposedness for the system (III.4) under the form

∂ t ω θ + div (vω θ ) = µ ∆ - 1 r 2 
ω θ combined with the special structure of the vorticity, in particular, the axisymmetric Biot-Svart law, where div f = ∂ r f r + ∂ z f z . They showed that the local solutions constructed can be extended to the global one by exploiting some a priori estimates for ω θ in various norms. We point out that the uniqueness topic for initial vorticity is measure was done by the same authors under some smallness condition on the punctual part. Furthermore, they provide also an asymptotic behavior study for positive vorticity with a finite impulse.

For (B µ,κ ), the global regularity in dimension three of spaces has received a considerable attention. As shown in [START_REF] Danchin | Le théorème de Leray et le théorème de Fujita-Kato pour le système de Boussinesq partiellement visqueux[END_REF], for κ = 0 R. Danchin and M. Paicu investigated that (B µ,κ ) is locally well posed in time in any dimension in the framework of Fujita-Kato's solutions. Next, in the axisymmetric case, H. Abidi, T. Hmidi and S. Keraani proved in [START_REF] Abidi | On the global regularity of axisymmetric Navier-Stokes-Boussinesq system[END_REF] that (B µ,κ ) is globally well posed by rewriting it under vorticity-density formulation:

   ∂ t ω θ + v • ∇ω θ -v r r ω θ = ∆ -1 r 2 ω θ -∂ r ρ, ∂ t ρ + v • ∇ρ = 0, (ω θ , ρ) |t=0 = (ω 0 , ρ 0 ). (III.7)
Consequently, the quantity Π = ω θ r solves the equation

∂ t Π + v • ∇Π -(∆ + 2 r ∂ r )Π = - ∂ r ρ r . (III.8) They assumed that v 0 ∈ H 1 (R 3 ), Π 0 ∈ L 2 (R 3 ), ρ 0 ∈ L 2 ∩ L ∞ with supp ρ 0 ∩ (Oz) = ∅ and P z (supp ρ 0 ) is a compact set in R 3
, especially to dismiss the violent singularity of ∂rρ r , with P z being the orthogonal projector over (Oz). Those results are improved later by T. Hmidi and F. Rousset in [START_REF] Hmidi | Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data[END_REF] for κ > 0 by removing the assumption on the support of the density. Their strategy is deeply based on the coupling between the two equations of the system (III.9) by introducing a new unknown which is called coupled function, this latest will play a significant role in our analysis as well, we shall come back to this later. In the same way, by using the advantage of the coupled function, C. Miao and X. Zheng studied in [START_REF] Miao | On the global well-posedness for the Boussinesq system with horizontal dissipation[END_REF] the Cauchy problem of the system in question where they replaced the full dissipation by an horizontal one in all the equations. More recently in [START_REF] Dreyfuss | Uniqueness result for Navier-Stokes-Boussinesq equations with horizontal dissipation[END_REF] P. Dreyfuss and H.Houamed treated the system in question, where they replaced the full dissipation by an horizontal one in all the equations, and proved the global wellposedness if the axisymmetric initial data (v 0 , Π 0 , ρ 0 ) lies in H 1 (R 3 )×L 2 (R 3 )×L 2 (R 3 ) . In the same direction, in [START_REF] Houamed | On the global solvability of the axisymmetric Boussinesq system with critical regularity[END_REF] H. Houamed and M. Zeruine succeed to solve (B µ,κ ) globally in time for κ = 0 and axisymmetric initial data

(v 0 , ρ 0 ) ∈ H 1 2 ∩ Ḃ0 3,1 (R 3 )× L 2 ∩ Ḃ0 3,1 (R 3
), by essentially combining the works of [START_REF] Abidi | Résultats de régularité de solutions axisymétriques pour le système de Navier-Stokes[END_REF][START_REF] Danchin | Le théorème de Leray et le théorème de Fujita-Kato pour le système de Boussinesq partiellement visqueux[END_REF][START_REF] Hmidi | Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data[END_REF].

In the present Chapter, we want to conduct the same results recently obtained in [START_REF] Th | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF] for the viscous Boussinesq system (B µ,κ ) expressed by the following vorticity-density formulation.

   ∂ t ω θ + v • ∇ω θ -v r r ω θ = ∆ -1 r 2 ω θ -∂ r ρ, ∂ t ρ + v • ∇ρ -κ∆ρ = 0, (ω θ , ρ) |t=0 = (ω 0 , ρ 0 ), (III.9)
for initial data (ω 0 , ρ 0 ) in the critical Lebesgue space L 1 (Ω) × L 1 (R 3 ), with the following notations

ω θ L p (Ω) =    Ω |ω θ (r, z)| p drdz 1 p if p ∈ [1, ∞), essup (r,z)∈Ω |ω θ (r, z)| if p = ∞ and Π L p (R 3 ) =    Ω |Π(r, z)| p rdrdz 1 p if p ∈ [1, ∞), essup (r,z)∈Ω |Π(r, z)| if p = ∞.
Let us notice that the spaces L 1 (Ω) and L 1 (R 3 ) are scale invariant, in the sense

λ 2 ω 0 (λ•) L 1 (Ω) = ω 0 L 1 (Ω) , λ 3 ρ 0 (λ•) L 1 (R 3 ) = ρ 0 L 1 (R 3 )
for any (ω 0 , ρ 0 ) ∈ L 1 (Ω) × L 1 (R 3 ) and any λ > 0. This is derived from the fact

ω θ (t, r, z) → λ 2 ω θ (λ 2 t, λr, λz), ρ(t, r, z) → λ 3 ρ(λ 2 t, λr, λz).
is a symmetry of (III.9).

At this stage, we are ready to state the main result of this Chapter. To be precise, we will prove the following theorem.

Theorem III.1.1. Let (ω 0 , ρ 0 ) ∈ L 1 (Ω) × L 1 (R 3
) be an axisymmetric initial data, then the system (III.9) for κ = 1 admits a unique global mild solution. More precisely, we have:

(ω θ , rρ) ∈ C 0 [0, ∞); L 1 (Ω) ∩ C 0 (0, ∞); L ∞ (Ω) 2 , (III.10) ρ ∈ C 0 [0, ∞); L 1 (R 3 ) ∩ C 0 (0, ∞); L ∞ (R 3 ) . (III.11)
Furthermore, for every p ∈ [1, ∞], there exists some constant Kp (D 0 ) > 0, for which, and for all t > 0 the following statements hold.

(ω θ (t), rρ(t)) L p (Ω)×L p (Ω) ≤ t -(1-1 p )
Kp (D 0 ), (III.12)

ρ(t) L p (R 3 ) ≤ t -3 2 (1-1 p )
Kp (D 0 ), (III.13)

where D 0 def = (ω 0 , ρ 0 ) L 1 (Ω)×L 1 (R 3 ) .
A few comments about Theorem III.1.1 are given by the following remarks.

Remark III.1.2. By axisymmetric scalar function we mean again a function that depends only on the variable (r, z) but not on the angle variable θ in cylindrical coordinates. We can check that the axisymmetric structure is preserved through the time in the way that if (v 0 , ρ 0 ) is axisymmetric without swirl, then the obtained solution is also.

Remark III.1.3. The hypothesis ω θ ∈ L 1 (Ω) doesn't imply generally that the associated velocity v is in L 2 (Ω) space. Consequently, the classical energy estimate is not available to provide a uniform bound for the velocity.

The proof is organized in two parts. The first one cares with the local well posedness topic for (III.9) in the spirit of [START_REF] Th | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF] due to Th. Gallay and V. Svérak . We make use of fixed point-method for an equivalent system (III.9) on product space equipped with an adequate norm with the help of the axisymmetric Biot-Savart law and some norm estimates in terms of the velocity and the vorticity. But in our context, we should deal carefully with the additional term ∂rρ r which contributes a singularity over the axis (Oz). The remedy is to hide this term by exploiting the coupling structure of the system (III.9) for κ = 1 and introducing new unknown functions Γ and Γ in the spirit of [START_REF] Hmidi | Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data[END_REF] by setting Γ = ω θ r -ρ 2 , and Γ = rΓ. A straightforward computation shows that Γ and Γ solve, respectively

∂ t Γ + v • ∇Γ -(∆ + 2 r ∂ r )Γ = 0, Γ t=0 = Γ 0 .
(III.14)

∂ t Γ + v • ∇ Γ -v r r Γ -(∆ -1 r 2 ) Γ = 0, Γ t=0 = rΓ 0 .
(III. 15) In fact, in the second part, we shall investigate some a priori estimates for all the unknowns in order to establish the global regularity for the system in question. Significant properties of the new unknowns, such as the maximum principle, are gained in this transition and Γ evolves a similar equation and keeps the same boundary conditions as Π in the case of the axisymmetric Navier-Stokes without swirl, see (III.5). As a consequence, the function Γ (and eventually Γ in Ω after some technical computations) satisfies an estimate as (III.6) which will be crucial in the process of deriving the global regularity of our solutions.

For the reader's convenience, we provide a brief headline of this Chapter. In section 2, we briefly depict the framework that exists regarding the axisymmetric Biot-Savart law. Many results could be spent in explaining this framework in detail, in particular, the relation between the velocity vector field and its vorticity by means of the stream function.

Along the way, we recall some weighted estimates which will be helpful in the sequel. Afterwards, we focus in the linear equation of (III.9) and some characterization of their associated semi-group, in particular the L p → L q estimate as in two-dimension space. Section 3, mainly treats the local well posedness topic for the system (III.9). The main tool is the fixed point argument on the product space combined with a few technics about the semi-group estimates. In section 4, we investigate some global a priori estimates by coupling the system (III.9) and introducing the new unknowns Γ and Γ. Considering these latest quantities will be helpful to derive the global estimates for the equivalent system (III.9) and consequently the system (B µ,κ ).

III.2 Introduction to the axisymmetric without swirl vector fields and to the heat-semi group operator

In this section, we recall some basic tools which will be employed in the subsequent sections.

In particular, we devellop the Biot-Savart law in the framework of axisymmetric vector fields, and we study the linear equation associated to the system (III.9), usually specialized to the local existence.

III.2.1 The tool box of Biot-Savart law

Recalling that in the cylindrical coordinates and in the class of axisymmetric vector fields without swirl the velocity is given by v = (v r , 0, v z ) with v r and v z are independent of θ-variable, ω θ its vorticity defined from Ω into R by ω θ = ∂ z v r -∂ r v z and the divergencefree condition div v = 0 turns out to be

∂ r (rv r ) + ∂ z (rv z ) = 0.
In this case, it is not difficult to build a scalar function Ω (r, z) → ψ(r, z) ∈ R which is called axisymmetric stream function and satisfies

v r = - 1 r ∂ z ψ, v z = 1 r ∂ r ψ. (III.16)
Consequently, one obtains that ψ evolves the following linear elliptic inhomogeneous equation

- 1 r ∂ 2 r ψ + 1 r 2 ∂ r Ψ - 1 r ∂ 2 z ψ = ω θ , with the boundary conditions ψ(0, z) = ∂ r ψ(0, z) = 0. By setting L = -1 r ∂ 2 r + 1 r 2 ∂ r -1 r ∂ 2 z , one finds the following boundary value problem Lψ(r, z) = ω θ (r, z) if (r, z) ∈ Ω ψ(r, z) = ∂ r ψ(r, z) = 0 if (r, z) ∈ ∂Ω, (III.17)
where ∂Ω = {(r, z) ∈ R 2 : r = 0}. It is evident that L is an elliptic operator of second order, then according to [START_REF] Sveràk | Selected topics in fluid mechanics. Lectures notes of an introductory graduate course taught[END_REF], L is invertible with an inverse L -1 . Consequently, the above boundary value problem admits a unique solution given by Ψ(r, z)

def = L -1 ω θ (r, z) = ∞ -∞ ∞ 0 √ rr 2π F (r -r) 2 + (z -z) 2 rr ω θ ( r, z)d rd z, (III.18)
where the function F : (0, ∞) → R is expressed as follows.

F (s) = π 0 cos αdα 2(1 -cos α) + s 1/2 . (III.19)
Since, F cannot be expressed as an elementary function, but it contributes some asymptotic properties near s = 0 and s = ∞ listed in the following proposition. For more details about the proof, see [START_REF] Feng | On the Cauchy problem for axi-symmetric vortex rings[END_REF][START_REF] Sveràk | Selected topics in fluid mechanics. Lectures notes of an introductory graduate course taught[END_REF].

Proposition III.2.1. Let F be the function defined by (III. [START_REF] Cao | Regularity criteria for the three-dimensional Navier-Stokes equations[END_REF], then the following assertions hold.

(i) F (s) = 1 2 log 1 s + log 8 -2 + O s log 1 s and F (s) = -1 2s + O log 1 s as s → 0 + . (ii) F (s) = π 2s 3/2 + O 1 s 5/2 and F (s) = -3π 4s 5/2 + O 1 s 7/2
as s → ∞.

(iii) For every k ∈ N , we have

|F (s)| min 1 s , 1 s 1 2 , 1 s 3 2 , ∈]0, 1 2 [, and 
|F (k) (s)| min 1 s k , 1 s k+ 1 2 , 1 s k+ 3 2 , s ∈]0, ∞[. (iv) The maps s → s α F (s) and s → s β F (s) are bounded for 0 < α ≤ 3 2 and 1 ≤ β ≤ 5 2 respectively. Now, let K(r, z, r, z) = √ rr 2π F (r -r) 2 + (z -z) 2 rr . (III.20)
Thus in view of (III.18), Ψ takes the form

Ψ(r, z) = ∞ -∞ ∞ 0 K(r, z, r, z)ω θ ( r, z)d rd z,
with K can be seen as the kernel of the integral representation above. The last formula together with (III.16) claim that there exists a genuine connection between the velocity and its vorticity, namely theaxisymmatric Biot-Savart law which reads as follows

v r (r, z) = ∞ -∞ ∞ 0 K r (r, z, r, z)ω θ ( r, z)d rd z, v z (r, z) = ∞ -∞ ∞ 0 K z (r, z, r, z)ω θ ( r, z)d rd z.
(III.21) Here, with the notation

ξ 2 = (r-r) 2 +(z-z) 2 rr we have K r (r, z, r, z) = - 1 π z -z r 3/2 r 1/2 F (ξ 2 ) (III.22)
and

K z (r, z, r, z) = 1 π r -r r 3/2 r 1/2 F (ξ 2 ) + 1 4π r 1/2 r 3/2 F (ξ 2 ) -2ξ 2 F (ξ 2 ) .
(III.23)

A worthwhile properties of the kernels K r and K z are given in the following result. For more details about the proof see [START_REF] Th | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF].

Proposition III.2.2. Let (r, z, r, z) ∈ Ω × Ω, then we have |K r (r, z, r, z)| + |K z (r, z, r, z)| ≤ C (r -r) 2 + (z -z) 2 1/2 .
(III.24)

Now, we state the first consequence of the above result, in particular the L p → L q between the velocity and its vorticity, specifically we establish.

Proposition III.2.3. Let v be an axisymmetric velocity vector associated to the vorticity ω θ via the axisymmetric Biot-Savart law (III.21). Then the following assertions hold.

(i) Let (p, q) ∈ (1, 2) × (2, ∞), and 1 p -1 q = 1 2 . If ω θ ∈ L p (Ω), then v ∈ (L q (Ω)) 2 and v L q (Ω) ≤ C ω θ L p (Ω) . (III.25) (ii) Let (p, q) ∈ [1, 2) × (2, ∞], we define σ ∈]0, 1[ by 1 2 = σ p + 1-σ q . Then for ω θ ∈ L p (Ω) ∩ L q (Ω), we have v ∈ (L ∞ (Ω)) 2 and v L ∞ (Ω) ≤ C ω θ σ L p (Ω) ω θ 1-σ L q (Ω) .
(III.26)

Proof (i) Combining (III.21
) and (III.24), we get

|v r (r, z)| ≤ C ∞ -∞ ∞ 0 |ω θ ( r, z)| (r -r) 2 + (z -z) 2 1/2 d rd z, and 
|v z (r, z)| ≤ C ∞ -∞ ∞ 0 |ω θ ( r, z)| (r -r) 2 + (z -z) 2 1/2 d rd z.
The last two integrals on the right-hand side are singular integrals, so by hypothesis 1 p -1 q = 1 2 , Hardy-Littlewood-Sobolev inequality, see e.g. [START_REF] Chae | Local existence and blow-up criterion of Hölder continuous solutions of the Boussinesq equations[END_REF]Theorem 6.1.3] yields the desired estimate.

(ii) Let R > 0, then in view of (III.24) we have.

|v(r, z)| Ω R |ω θ (r -r, z -z)| ( r 2 + z 2 ) 1 2 d rd z + Ω\Ω 1 R |ω θ (r -r, z -z)| ( r 2 + z 2 ) 1 2 d rd z,
where

Ω R = {(r, z) ∈ Ω : 0 < r ≤ R, -R ≤ z ≤ R}. Thus, Hölder's inequality implies |v(r, z)| ω θ L q (Ω) R 1-2 q + ω θ L p (Ω) 1 R 2 p -1 .
It is enough to take R = ω θ L p (Ω) / ω θ L q (Ω) , with = σ 1-2/q = 1-σ 2/p-1 , then easy computations achieve the estimate. 2

In the axisymmetric case the weighted estimates practice a decisive role to bound some quantities like r α v in Lebesgue spaces for some α. Now, we state some of them, the proof of which can be found in [START_REF] Feng | On the Cauchy problem for axi-symmetric vortex rings[END_REF][START_REF] Th | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF]. ), and assume that p, q ∈ (1, ∞) satisfy

Proposition III.2.4. Let α, β ∈ [0, 2] be such that β -α ∈ [0, 1
1 p - 1 q = 1 + α -β 2 .
If r β ω θ ∈ L p (Ω), then r α v ∈ (L q (Ω)) 2 and the following bound holds

r α v L q (Ω) ≤ C r β ω θ L p (Ω) . (III.27)

III.2.2 Characterizations of the semi-groups associated with the linearized equation

We focus on studying the linearized boundary initial value problem associated to the system (III.9) and we state some properties of their semi-groups. Specifically, we consider

     ∂ t ω θ -∆ -1 r 2 ω θ = 0, in Ω, ∂ t ρ -∆ρ = 0, in R 3 , (ω θ , ρ) |t=0 = (ω 0 , ρ 0 ), (III.28)
with Ω = {(r, z) ∈ R 2 : r > 0} is the half-space by prescribing the homogeneous Dirichlet conditions at the boundary r = 0 for ω θ variable. For (ω 0 , ρ 0 ) ∈ L 1 (Ω) × L 1 (R 3 ), the solution of (III.28) is given explicitly by

ω θ (t) = S 1 (t)ω 0 , ρ(t) = S 2 (t)ρ 0 ,
where (S 1 (t)) t≥0 and (S 2 (t)) t≥0 being respectively the semi-groups or evolution operators associated to the dissipative operators (∆ -1 r 2 ) and ∆. Such are characterized by the following explicit formula, namely we have.

Proposition III.2.5. The family (S 1 (t), S 2 (t)) t≥0 associated to (III.28) is expressed by the following

   (S 1 (t)ω 0 )(r, z) = 1 4πt Ω r 1/2 r 1/2 N 1 t r r e -(r-r) 2 +(z-z) 2 4t ω 0 ( r, z)d rd z, (S 2 (t)ρ 0 )(r, z) = 1 4πt Ω r 1/2 r 1/2 N 2 t r r e -(r-r) 2 +(z-z) 2 4t ρ 0 ( r, z)d rd z, (III.29)
where the functions (0, +∞)

t → N 1 (t), N 2 (t) ∈ R are defined by    N 1 (t) = 1 √ πt π/2 -π/2 e -sin 2 α t cos(2α)dα, N 2 (t) = 1 √ πt π/2 -π/2 e -sin 2 α t dα.
(III.30)

Proof

We assume that (ω θ , ρ) solves (III.28), then a straightforward computations claim that (ω, ρ), with ω = ω θ e θ , satisfies the usual heat equation ∂ t ω -∆ω = 0 and ∂ t ρ -∆ρ = 0 in R 3 with initial data (ω(0, •), ρ(0, •)). Therefore, for every t > 0 we have

   ω(t, x) = 1 (4πt) 3/2 R 3 e -|x-x| 2 4t ω(0, x)d x, ρ(t, x) = 1 (4πt) 3/2 R 3 e -|x-x| 2 4t ρ(0, x)d x.
(III.31)

We will develop each term in the cylindrical basis ( e r , e θ , e z ) by writing x = (r cos θ, r sin θ, z) and x = ( r cos θ, r sin θ, z), hence the first equation of (III.31) takes the form (III.32)

ω θ (t, r, z)   -sin θ cos θ 0   = 1 (4πt) 3/2 ∞ 0 R π -π e -|x-x| 2 4t ω 0 ( r, z)   -sin θ cos θ 0   rd θd zd r = I 1 . Since, |x -x| 2 = (r -r) 2 + (z -z) 2 + 4r r sin 2 θ-θ 2
, thus we have

I 1 = 1 (4πt) ∞ 0 R 1 (4πt) 1/2 π -π e -r r sin 2 θ-θ 2 t   -sin θ cos θ 0   rd θ e -(r-r) 2 +(z-z) 2 4t
ω 0 ( r, z)d zd r.

(III.33) To treat I 1 , we set α = θ-θ 2 then we have

1 √ 4πt π -π e -r r sin 2 θ-θ 2 t (-sin θ) rd θ = - 1 √ πt θ/2+π/2 θ/2-π/2 e -r r sin 2 α t sin θ cos 2α -cos θ sin 2α rdα = - 1 √ πt +π/2 -π/2 e -r r sin 2 α t sin θ cos 2α rdα - 1 √ πt +π/2 -π/2 e -r r sin 2 α t cos θ sin 2α rdα. For t ∈ (0, ∞), define N 1 (t) = 1 √ πt π/2 -π/2 e -sin 2 α t cos(2α)dα.
Then the last estimate becomes 1 (4πt)

1 2 π -π e -r r sin 2 θ-θ 2 t (-sin θ) rd θ = r 1/2 r 1/2 N 1 t r r (-sin θ).
Similarly, 1 (4πt)

1 2 π -π e -r r sin 2 θ-θ 2 t cos θ rd θ = r 1/2 r 1/2 N 1 t r r cos θ.
Combining the last two estimates and plugging them in I 1 we reach the desired estimate.

For the second equation in (III.31) we express the formula of ρ by

ρ(t, r, z) = 1 4πt Ω 1 2 √ πt π -π e -r r sin 2 ( θ-θ 2 ) t rd θ e -(r-r) 2 +(z-z) 2 4t ρ(0, r, z)d rd z.
(III.34)

Setting

I 2 = 1 2 √ πt π -π e - r r sin 2 θ-θ 2 t rd θ.
The same variable α = θ-θ 2 allows us to write

I 2 = 1 √ πt π/2 -π/2 e -r r sin 2 α t rdα = r r N 2 t r r ,
with N 2 is defined for t > 0 by

N 2 (t) = 1 √ πt π/2 -π/2
e -sin 2 α t dα.

Plugging I 2 in (III.34), we get the result. This ends the proof of the Proposition. 2

The following Proposition provides some asymptotic behavior of the functions N 1 and N 2 near 0 and ∞, which will be fundamental in the sequel.

Proposition III.2.6. Let N 1 , N 2 : (0, ∞) → R be the functions defined in (III.30). Then the following statements hold.

(i) N 1 (t) = 1 -3t 4 + O(t 2 ) and N 1 (t) = -3 4 + O(t) when t ↑ 0; (ii) N 1 (t) = π 1/2 4t 3/2 + O 1 t 5/2 and N 1 (t) = -3π 1/2 8t 5/2 + O 1 t 7/2 when t ↑ ∞; (iii) N 2 (t) = 1 + t 4 + O(t 2 ) and N 2 (t) = 1 4 + O(t) when t ↑ 0; (iv) N 2 (t) = π 1/2 t 1/2 -π 1/2 2t 3/2 + O 1 t 5/2 and N 2 (t) = -π 1/2 2t 3/2 + 3π 4t 5/2 + O 1 t 7/2
when t ↑ ∞.

Proof (i) Substituting ζ = sin α √ t in N 1 , we shall have N 1 (ζ) = 1 √ π 1 √ t -1 √ t e -ζ 2 1 -2tζ 2 1 -tζ 2 dζ = 2 √ π 1 √ t 0 e -ζ 2 1 -2tζ 2 1 -tζ 2 dζ = 2 √ π 1 2 √ t 0 e -ζ 2 1 -2tζ 2 1 -tζ 2 dζ + 1 √ t 1 2 √ t e -ζ 2 1 -2tζ 2 1 -tζ 2 dζ = II 1 + II 2 .
Note that lim t↑0 II 2 = 0, so the behavior of N 1 near 0 comes from II 1 . Hence, let us deal with II 1 , we insert the Taylor expansion of the function

ζ → 1 √ 1-tζ 2 in the integral of II 1 to obtain II 1 = 2 √ π 1 2 √ t 0 e -ζ 2 (1 - 3 2 tζ 2 -t 2 ζ 4 )dζ + O(t 3 ). It is straightforward to show that ∞ 0 e -ζ 2 dζ = √ π 2 , ∞ 0 ζ 2 e -ζ 2 dζ = √ π 4 , ∞ 0 ζ 4 e -ζ 2 dζ = 3 √ π 8 .
Consequently, lim t↑0 II 1 = 1. Combining all the previous quantities, we find the asymptotic behavior of II 1 near 0, that is,

II 1 = 1 - 3 4 t + O(t 2 ).
By derivation of II 1 , we find the behavior of N 1 .

(ii) The Mac Laurin's expansion of the function y → e -y at 0 gives

e -sin 2 α t = 1 - sin 2 α t + O 1 t 2 .
Thus we get

N 1 (t) = 1 √ πt π/2 -π/2 1 - sin 2 α t cos 2αdα + O 1 t 5 2
.

After an easy computations we achieve the estimate.

(iii) To prove this assertion, setting y = sin α √ t in N 2 and we split the integral into two parts, one has

N 2 (t) = 2 √ π 1 2 √ t 0 e -y 2 1 -ty 2 dy + 1 √ t 1 2 √ t e -y 2
1 -ty 2 dy .

We follow the same steps as N 1 . For the second integral in right-hand side, we have

2 √ π 1 √ t 1 2 √ t e -y 2 1 -ty 2 dy = 2 √ π 1 √ t 1 2 √ t e -y 2 ( 1 - √ ty)( 1 + √ ty) dy ≤ Ce -1 4t 1 √ t 1 2 √ t 1 1 - √ ty dy.
Let us observe that the last estimate goes to 0 as t ↑ 0, so the asymptotic behavior of N 2 near 0 comes only from the first integral. To be precise, it is clear that t

→ 1 √ 1-ty 2 is bounded function whenever 0 < y < 1 2 √ t and lim t↑0 2 √ π 1 2 √ t 0 e -y 2 dy = 1.
Thus, the expansion of the function x → (1 -x) -1 2 for x = ty 2 enables us to write

N 2 (t) = 2 √ π 1 2 √ t 0 e -y 2 1 + ty 2 2 dy + O(t 2 ) = 1 - t 4 + O(t 2 ).
(iv) Using Taylor series of the function e -y near 0, for y = sin 2 α t , we get

N 2 (t) = 1 √ πt π 2 -π 2 1 - sin 2 α t dα + O( 1 t 5/2 ),
thus the expansions of N 2 and N 2 follow by an easy computation.

2 Some remarks from [START_REF] Th | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF] are recalled below Remark III.2.1. (i) We believe that the function t → N 1 (t) is decreasing over ]0, ∞[, but the proof seems very hard.

(ii) The functions t → t α N 1 (t), t → t α N 2 (t) and t → t β N 1 (t), t → t β N 2 (t) are bounded for 0 ≤ α ≤ 1 2 and 0 ≤ β ≤ 3 2 .
Other nice properties of (S i (t)) t≥0 , with i = 1, 2, in particular the estimate L p → L q are given in the following result.

Proposition III.2.7. The family ((S 1 (t), S 2 (t)) t≥0 associated to (III.28) is a strongly continuous semi-group of bounded linear operators in L p (Ω) × L p (Ω) for any p ∈ [1, ∞]. Furthermore, for 1 ≤ p ≤ q ≤ ∞ the following assertions hold.

(i) For (ω 0 , ρ 0 ) ∈ L p (Ω) × L p (Ω), we have for every t > 0 (S 1 (t)ω 0 , S 2 (t)ρ 0 ) L q (Ω)×L q (Ω) ≤ C t 1 p -1 q (ω 0 , ρ 0 ) L p (Ω)×L p (Ω) . (III.35) (ii) For f = (f r , f z ) ∈ L p (Ω) × L p (Ω), we have for every t > 0 S 1 (t)div f L q (Ω) ≤ C t 1 2 + 1 p -1 q f L p (Ω) . (III.36) (iii) For f = (f r , f z ) ∈ L p (Ω) × L p (Ω), we have every t > 0 S 2 (t)div f L q (Ω) ≤ C t 1 2 + 1 p -1 q f L p (Ω) .
(III.37)

Here, div f = ∂ r f r + ∂ z f z (resp. div f = ∂ r f r + ∂ z f z + f r r
) stands the divergence operator over R 2 (resp. the divergence operator over R 3 in the axisymmetric case).

Proof (i)

We follow the proof of [START_REF] Th | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF] with minor modifications, for this aim let (r, z), ( r, z) ∈ Ω, we will prove the following worth while estimates

   1 4πt r 1/2 r 1/2 N 1 t r r e -(r-r) 2 +(z-z) 2 4t ≤ C t e -(r-r) 2 +(z-z) 2 5t , 1 4πt 
r 1/2 r 1/2 N 2 t r r e -(r-r) 2 +(z-z) 2 4t ≤ C t e -(r-r) 2 +(z-z) 2 5t
.

(III.38)

We distinguish two cases r ≤ 2r and r > 2r.

• r ≤ 2r. Employing the fact t → (t α N 1 (t), t α N 2 (t)) is bounded for α ∈ [0, 1 2 ], see, (ii)-Remark III.2.1 and t → e -t is decreasing, we get the result. 1 2 ] and te -t 2 4 ≤ Ce -t 2 5 for t ≥ 0 lead to 1 4πt

• r > 2r. The remark r ≤ 2 (r -r) 2 + (z -z) 2 1 2 , a new use of t → (t α N 1 (t), t α N 2 (t)) is bounded for α ∈ [0,
r 1/2 r 1/2 N i t r r e -(r-r) 2 +(z-z) 2 4t ≤ C t (r -r) 2 + (z -z) 2 4t 1 2 e -(r-r) 2 +(z-z) 2 4t ≤ C t e -(r-r) 2 +(z-z) 2 5t , i ∈ {1, 2}.
Next, from (III.38) and the last estimate we write

|S 1 (t)ω 0 | + |S 2 (t)ρ 0 | ≤ 1 4πt Ω r 1/2 r 1/2 N 1 t r r e -(r-r) 2 +(z-z) 2 4t ω 0 ( r, z) d rd z + 1 4πt Ω r 1/2 r 1/2 N 2 t r r e -(r-r) 2 +(z-z) 2 4t ρ 0 ( r, z) d rd z ≤ C t Ω e -(r-r) 2 +(z-z) 2 5t |ω 0 ( r, z)| + |ρ 0 ( r, z)| d rd z.
The last line can be seen as a convolution product, then Young's inequality gives the desired estimate.

(ii) By definition for every (r, z) ∈ Ω, we have

S 1 (t)div f (r, z) = 1 4πt Ω r 1/2 r 1/2 N 1 t r r e -(r-r) 2 +(z-z) 2 4t (∂ r f r ( r, z) + ∂ z f z ( r, z))d rd z = 1 4πt Ω r 1/2 r 1/2 N 1 t r r e -(r-r) 2 +(z-z) 2 4t ∂ r f r ( r, z)d rd z + 1 4πt Ω r 1/2 r 1/2 N 1 t r r e -(r-r) 2 +(z-z) 2 4t ∂ z f z ( r, z)d rd z = II 1 + II 2 .
After an integration by parts, it happens

II 1 = 1 4πt Ω r 1/2 r 1/2 t r r 2 N 1 t r r - 1 2 r + r -r 2t N 1 t r r e -(r-r) 2 +(z-z) 2 4t f r ( r, z)d rd z,
and

II 2 = - 1 4πt Ω r 1/2 r 1/2 z -z 2t N 1 t r r e -(r-r) 2 +(z-z) 2 4t f z ( r, z)d rd z.
We proceed by the same manner as above. The fact that the functions N 1 , N 1 and t → t α N 1 (t), t → t α N 1 (t) are bounded, see Remark III.2.1, one finds

|II 1 | ≤ C t 3 2 Ω e -(r-r) 2 +(z-z) 2 5t |f r ( r, z)|d rd z,
and

|II 2 | ≤ C t 3 2 Ω e -(r-r) 2 +(z-z) 2 5t |f z ( r, z)|d rd z.
Together with Young's inequality, we obtain (III.36).

(iii) Let (r, z) ∈ Ω, then we have

S 2 (t)div f (r, z) = 1 4πt Ω r 1/2 r 1/2 N 2 t r r e -(r-r) 2 +(z-z) 2 4t ∂ r f r ( r, z) + ∂ r f z ( r, z) + 1 r f r ( r, z) d rd z = 1 4πt Ω r 1/2 r 1/2 N 2 t r r e -(r-r) 2 +(z-z) 2 4t ∂ r f r ( r, z) rd z + 1 4πt Ω r 1/2 r 1/2 N 2 t r r e -(r-r) 2 +(z-z) 2 4t ∂ z f z ( r, z) rd z + 1 4πt Ω r 1/2 r 1/2 N 2 t r r e -(r-r) 2 +(z-z) 2 4t 1 r f r ( r, z)d rd z = III 3 + III 4 + III 5 .
(III.39)

The two terms III 3 and III 4 ensue by the same argument as in (ii). It remains to treat the term III 5 in the following way

III 5 = 1 4πt Ω r 1/2 r 1/2 N 2 t r r e -(r-r) 2 +(z-z) 2 4t 1 r f r ( r, z)d rd z = 1 4πt Ω 1 (r r) 1/2 N 2 t r r e -(r-r) 2 +(z-z) 2 4t f r ( r, z)d rd z. (III.40)
The fact that (•/r r)

1/2 N 2 (•/r r) is bounded guided to |III 5 | ≤ C t 3/2 Ω e -(r-r) 2 +(z-z) 2 4t |f r ( r, z)|d rd z.
By pluging the last estimate in (III.40) and combine it with (III.39), it follows

|S 2 (t)div f | ≤ C t 3/2 Ω e -(r-r) 2 +(z-z) 2 5t |f r ( r, z)| + |f z ( r, z)| d rd z.
Then a new use of Young's inequality leads to the result.

To reach our claim, it remains to establish that R + t → S 1 (t) (resp. R + t → S 2 (t)) is continuous on L p (Ω) (resp. on L p (Ω)). We restrict ourselves only to treat (S 1 (t)) t≥0 . Let ω 0 ∈ L p (Ω) and define its extension on R 2 by ω 0 which equal to 0 outside of Ω. Thus, in view the change of variables r = r + √ tϑ and z = z + √ tγ, the statement (III.29) takes the form

(S 1 (t)ω 0 )(r, z) = 1 4π R 2 1 + √ tϑ r 1/2 N 1 t r(r + √ tϑ) e -ϑ 2 +γ 2 4 ω 0 (r + √ tϑ, z + √ tγ)dϑdγ.
We write

S 1 (t)ω 0 (r, z) -ω 0 (r, z) = 1 4π R 2 e -ϑ 2 +γ 2 4 Υ(t, r, z, ϑ, γ)dϑdγ, (III.41)
where

Υ(t, r, z, ϑ, γ) = 1 + √ tϑ r 1/2 N 1 t r(r + √ tϑ) ω 0 (r + √ tϑ, z + √ tγ) -ω 0 (r, z).
Taking the L p -estimate of (III.41), then with the aid of the following Minkowski's integral formula in general case

X 1 X 2 F (x 1 , x 2 )dλ 2 (x 2 ) p dλ 1 (x 1 ) 1/p ≤ X 2 X 1 F (x 1 , x 2 ) p dλ 1 (x 1 ) 1/p dλ 2 (x 2 ), one obtains for p ∈ [1, ∞) that S 1 (t)ω 0 (r, z) -ω 0 (r, z) L p (Ω) ≤ 1 4π R 2 e -ϑ 2 +γ 2 4 Υ(t, r, z, ϑ, γ) L p (Ω) dϑdγ. Since 1 4π R 2 e -ϑ 2 +γ 2 4 dϑdγ = 1,
All we need to check is Υ(t, r, z, ϑ, γ) L p (Ω) → 0 as t ↑ 0. To do this, let r > 0 and r + √ tϑ > 0, as we have seen above we have

1 + √ t ϑ r 1/2 N 1 t r(r + √ tϑ) ≤ C(1 + |ϑ|). Therefore Υ(t, •, •, ϑ, γ) L p (Ω) ≤ C(1 + |ϑ|) ω 0 (• + √ tϑ, • + √ tγ) L p (Ω) + ω 0 L p (Ω) ≤ C(1 + |ϑ|) ω 0 L p (Ω) .
On the other hand, we have 1

+ √ tϑ r 1/2 N 1 t r(r+ √ tϑ)
goes to 1 as t ↑ 0. Thus, Lebesgue's dominated convergence asserts for (ϑ, γ) ∈ R 2 that Υ(t, r, z, ϑ, γ) L p (Ω) → 0 when t ↑ 0. A new use of Lebesgue's dominated convergence, we finally deduce

lim t↑0 S 1 (t)ω 0 (r, z) -ω 0 (r, z) L p (Ω) → 0, (III.42)
which accomplishes the proof. 2

In the spirit of Proposition 3.5 in [START_REF] Th | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF], another weighted estimates for the linear semi-group (III.29) are shown in the following proposition, the proof of which can be done by the same reasoning as in the previous proposition,

Proposition III.2.8. Let 1 ≤ p ≤ q ≤ ∞, i ∈ {1, 2} and (α, β) ∈ [-1, 2], with α ≤ β. Assume that r β f ∈ L p (Ω), then r α S i (t)f L q (Ω) ≤ C t 1 p -1 q + (β-α) 2 r β f L p (Ω) .
(III.43)

In addition, if (α, β) ∈ [-1, 1], α ≤ β and r β f ∈ L p (Ω), then r α S i (t)div f L q (Ω) ≤ C t 1 2 + 1 p -1 q + (β-α) 2 r β f L p (Ω) . (III.44)
We end this section by recalling the following classical estimate on the heat kernel in dimension three, the proof of which is left to the reader.

Proposition III.2.9.

Let 1 ≤ p ≤ q ≤ ∞. Assume that f ∈ L p (R 3 ), then S 2 (t)f L q (R 3 ) ≤ C t 3 2 ( 1 p -1 q ) f L p (R 3 ) .
(III.45)

III.3 Local wellposedness in critical Lebesgue spaces

We will explore the aforementioned results and some preparatory topics in the previous sections. We begin by the the construction of the unique solution (III.9).

III.3.1 The fixed point argument (Construction of the local solution)

In order to scrutinize the local wellposedness issue for the system (III.9), we rewrite it in view of the divergence-free condition in the following form

     ∂ t ω θ + div (vω θ ) = ∂ 2 r + ∂ 2 z + 1 r ∂ r -1 r 2 ω θ -∂ r ρ if (t, r, z) ∈ R + × Ω, ∂ t ρ + div(vρ) -∆ρ = 0 if (t, r, z) ∈ R + × Ω, (ω θ , ρ) |t=0 = (ω 0 , ρ 0 ). (III.46)
The direct treatment of the local wellposedness topic for (III.46) in the spirit of [START_REF] Th | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF] for initial data (ω 0 , ρ 0 ) in the critical space L 1 (Ω)×L 1 (R 3 ) contributes many technical difficulties. This motivates to add the following new unknown ρ def = rρ which solves

∂ t ρ + div (v ρ) = ∂ 2 r + ∂ 2 z + 1 r ∂ r - 1 r 2 ρ -2∂ r ρ. (III.47)
We remark that ρ satisfies the same equation as ω θ with additional source term and their variations are in Ω.

To achieve our topic we will handle with the following equivalent integral formulation.

   ω θ (t) = S 1 (t)ω 0 - t 0 S 1 (t -τ )div v(τ )ω θ (τ ) dτ - t 0 S 1 (t -τ )∂ r ρ(τ )dτ ρ(t) = S 1 (t) ρ 0 - t 0 S 1 (t -τ )div v(τ ) ρ(τ ) dτ -2 t 0 S 1 (t -τ )∂ r ρ(τ )dτ ρ(t) = S 2 (t)ρ 0 - t 0 S 2 (t -τ )div v(τ )ρ(τ ) dτ.
(III. [START_REF] Gallagher | Uniqueness for the two-dimensional Navier-Stokes equation with a measure as initial vorticity[END_REF] In order to analyze the above system, we will be working in the following Banach spaces.

X T = f ∈ C 0 (0, T ], L 4/3 (Ω) : f X T < ∞ , Y T = g ∈ C 0 (0, T ], L 4/3 (Ω) : g Y T < ∞ , Z T = h ∈ C 0 (0, T ], L 4/3 (R 3 ) : h Z T < ∞ ,
equipped with the following norms

f X T = sup 0<t≤T t 1/4 f (t) L 4/3 (Ω) , g Y T = sup 0<t≤T t 1/4 rg(t) L 4/3 (Ω) , h Z T = sup 0<t≤T t 3/8 h(t) L 4/3 (R 3 ) .
Now, our task is to prove the following result.

Proposition III.3.1. Let (ω 0 , ρ 0 ) ∈ L 1 (Ω) × L 1 (R3 ), then there exists T = T (ω 0 , ρ 0 ) such that (III.48) admits a unique local solution satisfying

(ω θ , ρ) ∈ C (0, T ]; X T × C (0, T ]; Y T ∩ Z T .
(III.49)

Proof

We will proceed by the fixed point theorem in the product space

X T = X T × X T × Z T equipped by the norm (ω θ , ρ, ρ) X T def = ω θ X T + ρ X T + ρ Z T .
Notice that by definition, we have 1

ρ X T = ρ Y T . (III.50)
For t ≥ 0, define the free part (ω lin (t), ρ lin (t), ρ lin (t)) = S 1 (t)ω 0 , S 1 (t)(rρ 0 ), S 2 (t)ρ 0 , where S 1 (t), S 2 (t) is given in Proposition III.2.5. In accordance with the (i)-Proposition III.2.7, it is not difficult to check that for (ω 0 , ρ

0 ) ∈ L 1 (Ω) × L 1 (R 3 ), we have for T > 0 sup 0<t≤T t 1/4 ω lin (t) L and sup 0<t≤T t 1/4 ρ lin (t) L 4 3 (Ω) ≤ C rρ 0 L 1 (Ω) = C ρ 0 L 1 (R 3 ) . (III.52)
On the other hand, the fact that

ρ lin (t) L 4 3 (R 3 ) = r 3 4 ρ lin (t) L 4 3 (Ω)
together with (III.43) stated in Proposition III.2.8, we further get

sup 0<t≤T t 3/8 ρ lin (t) L 4 3 (R 3 ) ≤ C rρ 0 L 1 (Ω) = C ρ 0 L 1 (R 3 ) . (III.53)
Combining (III.51), (III.52) and (III.53) to obtain that (ω lin , ρ lin , ρ lin ) ∈ X T .

Next, define the following quantity which will be useful in the contraction.

Λ(ω 0 , ρ 0 , T ) = C (ω lin , ρ lin , ρ lin ) X T . (III.54)
We claim that Λ(ω 0 , ρ 0 , T ) → 0 when T ↑ 0. To do this, we employ the fact (

L 4/3 (Ω) ∩ L 1 (Ω)) × (L 4/3 (R 3 ) ∩ L 1 (R 3 )) is a dense space in L 1 (Ω) × L 1 (R 3
). Then for every ε > 0 and every (ω

0 , ρ 0 ) ∈ L 1 (Ω)×L 1 (R 3 ) there exists (φ, ψ) ∈ (L 4/3 (Ω)∩L 1 (Ω))×(L 4/3 (R 3 )∩L 1 (R 3 )) such that (ω 0 , ρ 0 ) -(φ, ψ) L 1 (Ω)×L 1 (R 3 ) < ε.
On account of (i)-Proposition III.2.7 we write

ω lin (t) L 4/3 (Ω) = S 1 (t)(ω 0 -φ + φ) L 4/3 (Ω) ≤ S 1 (t)(ω 0 -φ) L 4/3 (Ω) + S 1 (t)φ L 4/3 (Ω) ≤ C t 1/4 ω 0 -φ L 1 (Ω) + C φ L 4/3 (Ω)∩L 1 (Ω) .
Multiply the both sides by t 1/4 and taking the supremum over (0, T ] to get

sup 0<t≤T t 1/4 ω lin (t) L 4/3 (Ω) ≤ C ω 0 -φ L 1 (Ω) + CT 1/4 φ L 4/3 (Ω)∩L 1 (Ω) ≤ Cε + CT 1/4 φ L 4/3 (Ω)∩L 1 (Ω) .
Thus, by setting

C 0 (ω 0 , T ) = sup 0<t≤T t 1/4 ω lin (t) L 4/3 (Ω) , (III.55)
and let T (resp. ε) goes to 0, one deduces lim

T ↑0 C 0 (ω 0 , T ) = 0. (III.56)
By the same reasoning as above, it holds

sup 0<t≤T t 1/4 ρ lin (t) L 4/3 (Ω) ≤ Cε + CT 1/4 φ L 4/3 (Ω)∩L 1 (Ω) , with C 1 ( ρ 0 , T ) = sup 0<t≤T t 1/4 ρ lin (t) L 4/3 (Ω) . (III.57) Likewise lim T ↑0 C 1 ( ρ 0 , T ) = 0. (III.58)
For ρ lin , a new use of Propositions III.2.8 and III.2.9 yield

ρ lin (t) L 4/3 (R 3 ) = S 2 (t)(ρ 0 -ψ + ψ) L 4/3 (R 3 ) ≤ S 2 (t)(ρ 0 -ψ)) L 4/3 (R 3 ) + S 2 (t)ψ L 4/3 (R 3 ) ≤ C t 3/8 ρ 0 -ψ L 1 (R 3 ) + ψ L 4/3 (R 3 )
Now, we multiply the both sides by t 3/8 and we take the supremum over (0, T ] to deduce

sup 0<t≤T t 3/8 ρ lin (t) L 4/3 (R 3 ) ≤ C ρ -ψ L 1 (R 3 ) + CT 3/8 ψ L 4/3 ∩L 1 (R 3 ) (III.59) ≤ Cε + CT 3/8 ψ L 4/3 ∩L 1 (R 3 ) .
Similarly, by putting

C 2 (ρ 0 , T ) = sup 0<t≤T t 3/8 ρ lin (t) L 4/3 (R 3 ) , (III.60)
we shall obtain that lim Λ(ω 0 , ρ 0 , T ) = 0. Now, we are ready to contract the integral formulation (III.48) in X T . Doing so, define for (ω θ , ρ, ρ) ∈ X T the map

(0, T ] t → T (t)(ω θ , ρ, ρ) ∈ L 4/3 (Ω) × L 4/3 (Ω) × L 4/3 (R 3 )
by

T (t)(ω θ , ρ, ρ) =   t 0 S 1 (t -τ )div v(τ )ω θ (τ ) dτ + t 0 S 1 (t -τ )∂ r ρ(τ )dτ t 0 S 1 (t -τ )div v(τ ) ρ(τ ) dτ + 2 t 0 S 1 (t -τ )∂ r ρ(τ )dτ t 0 S 2 (t -τ )div v(τ )ρ(τ ) dτ   . (III.62)
We aim at estimating 

T (t)(ω θ , ρ, ρ) in L 4/3 (Ω) × L 4/3 (Ω) × L 4/3 (R 3
t 0 S 1 (t -τ )div v(τ )ω θ (τ ) dτ L 4 3 (Ω) t 0 1 (t -τ ) 1 2 +1-3 4 v(τ )ω θ (τ ) L 1 (Ω) dτ t 0 1 (t -τ ) 3 4 v(τ ) L 4 (Ω) ω θ (τ ) L 4 3 (Ω) dτ.
Thanks to (III.25), it follows that

t 0 S 1 (t -τ )div v(τ )ω θ (τ ) dτ L 4 3 (Ω) t 0 1 (t -τ ) 3 4 ω θ (τ ) 2 L 4 3 (Ω) dτ t 0 dτ (t -s) 3 4 τ 1 2 ω θ 2 X T t -1 4 ω θ 2 X T . We show next how to estimate t 0 S 1 (t-τ )∂ r ρ(τ )dτ in L 4 3 (Ω).
In view of Proposition III.2.8 for α = 0 and β = 3 4 , we get

t 0 S 1 (t -τ )∂ r ρ(τ )dτ L 4 3 (Ω) t 0 1 (t -τ ) 1 2 + 3 4 -0 2 r 3 4 ρ L 4 3 (Ω) dτ t 0 1 (t -τ ) 7 8 ρ L 4 3 (R 3 ) dτ t 0 dτ (t -τ ) 7 8 τ 3 8 ρ Z T t -1 4 ρ Z T .
The above estimates combined with (III.54) provide the following inequality

ω θ X T ≤ Λ(ω 0 , ρ 0 , T ) + C ω θ 2 X T + C ρ Z T .
(III.63)

As explained above, the estimate of

t 0 S 1 (t -τ )div v(τ ) ρ(τ )
dτ can be done along the same lines, so we have

t 0 S 1 (t -τ )div v(τ ) ρ(τ ) dτ L 4 3 (Ω) t -1 4 ω θ X T ρ X T , (III.64) we deduce that ρ X T ≤ Λ(ω 0 , ρ 0 , T ) + C ω θ X T ρ X T + C ρ Z T . (III.65)
Let us move to estimate the last line in (III.62). Under the remark div(vρ) = v r r ρ+div (vρ), we write

t 0 S 2 (t -τ )div v(τ )ρ(τ ) L 4/3 (R 3 ) dτ = t 0 S 2 (t -τ ) v r (τ ) r ρ(τ ) L 4/3 (R 3 )
dτ(III.66)

+ t 0 S 2 (t -τ )div (v(τ )ρ(τ )) L 4/3 (R 3 ) dτ
So, for the first term, we shall apply (III.43) stated in Proposition III.2.8 for α = 3 4 and β = 2 to get

t 0 S 2 (t -τ ) v r (τ ) r ρ(τ ) L 4/3 (R 3 ) dτ = t 0 r 3/4 S 2 (t -τ ) v r (τ ) r ρ(τ ) L 4/3 (Ω) dτ t 0 1 (t -τ ) 1-3/4+(2-3/4)/2 v r (τ )rρ(τ ) L 1 (Ω) dτ t 0 1 (t -τ ) 7/8 v r (τ ) L 4 (Ω) ρ(τ ) L 4/3 (Ω) dτ t 0 1 (t -τ ) 7/8 τ 1/2 ω θ X T ρ X T dτ t -3/8 ω θ X T ρ X T . Therefore t 3/8 t 0 S 2 (t -τ ) v r (τ ) r ρ(τ ) L 4/3 (R 3 ) dτ ω θ X T ρ X T .
The second term of the r.h.s. in (III.66), will be done by a similar way as above, but we employ (III.44) in Proposition III.2.8 for α = 3 4 and β = 1, one may write

t 3/8 t 0 S 2 (t -τ )div (v(τ )ρ(τ )) L 4/3 (R 3 ) dτ ω θ X T ρ X T .
Gathering the last two estimates and inserting them in (III.66), one has

t 3/8 t 0 S 2 (t -τ )div v(τ )ρ(τ ) L 4/3 (R 3 ) dτ ω θ X T ρ X T ,
combined with (III.60), it follows

ρ Z T ≤ Λ(ω 0 , ρ 0 , T ) + ω θ X T ρ X T . (III.67)
Collecting (III.63), (III.65) and (III.67) we finally find the nonlinear system

ω θ X T ≤ Λ(ω 0 , ρ 0 , T ) + C ω θ 2 X T + ρ Z T . (III.68) ρ X T ≤ Λ(ω 0 , ρ 0 , T ) + C ω θ X T ρ X T + ρ Z T . (III.69) ρ Z T ≤ Λ(ω 0 , ρ 0 , T ) + C ω θ X T ρ X T . (III.70)
In order to better justify the contraction argument, let us denote

B T (R) def = {(a, b) ∈ X T × X T : (a, b) X T ×X T < R}.
and we claim, for R, T sufficiently small, (ω θ , ρ) ∈ B T (R). By substituting (III.70) into (III.68) and (III.69), the contraction argument is satisfied if

3Λ(ω 0 , ρ 0 , T ) + CR 2 < R.
Since Λ(ω 0 , ρ 0 , T ) → 0 when T ↑ 0, then an usual argument leads to the existence of T > 0 for which ω θ X T + ρ X T remains bounded by R for all T < T . Finally by substituting this latest in (III. [START_REF] Hmidi | On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity[END_REF] we deduce that ρ Y T remains bounded as well for all T < T . The local existence and uniqueness follow then from classical fixed-point arguments. For the continuity of the solution, we will postpone the proof after another asymptotic properties, this completes the proof. 2

Remark III.3.1. In fact in the proof of the local existence above we skip two steps by assuming that ρ = rρ, the rigorous proof should be as the following: In a first step instead of dealing with (III.48), we need first to solve the system

   ω θ (t) = S 1 (t)ω 0 - t 0 S 1 (t -τ )div v(τ )ω θ (τ ) dτ - t 0 S 1 (t -τ )∂ r ρ(τ )dτ ρ(t) = S 1 (t) ρ 0 - t 0 S 1 (t -τ )div v(τ ) ρ(τ ) dτ -2 t 0 S 1 (t -τ )∂ r ρ(τ )dτ ρ(t) = S 2 (t)ρ 0 - t 0 S 2 (t -τ )div v(τ ) ρ r (τ ) dτ.
(III.71)

by following the idea explained in the proof above, and finally we check that ρ = rρ by solving a heat-type equation evolving the quantity ρ -rρ with 0 initial data. Remark III.3.2. In the light of remark 4.2 from [START_REF] Th | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF], the local time of existence T given by Proposition III.3.1 above can not be bounded from below by using only the norm (ω 0 , ρ 0 ) L 1 (Ω)×L 1 (R 3 ) . However, in the case where (ω

0 , ρ 0 ) ∈ L 1 (Ω) × L 1 (R 3 )) ∩ L p (Ω) × L p (R 3
) , for some p > 1, it is easy to explicitly provide a lower bound on T from an upper bound of (ω 0 , ρ 0 ) L p (Ω)×L p (R 3 ) by making use of Propositions III.2.7, III.2.8, and III.2.9.

III.3.2 The bootstrap argument (More properties for the local solution)

We supply the above local wellposedness result by the following properties of the solution constructed in the previous part. Especially, we will prove.

Proposition III.3.2. For any p ∈ (1, ∞], we have

lim t↑0 t (1-1 p ) ω θ (t) L p (Ω) = 0, lim t↑0 t (1-1 p ) rρ(t) L p (Ω) = 0, lim t↑0 t 3 2 (1-1 p ) ρ(t) L p (R 3 ) = 0.
For, p = 1, the above quantities are just bounded as t tends to 0.

Proof

The proof is based principally on a bootstrap argument similar to that of [START_REF] Th | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF]. For this aim, we will use the notaions

N p (f, T ) def = sup 0<t≤T t (1-1 p ) f L p (Ω) , J p (f, T ) def = sup 0<t≤T t 3 2 (1-1 p ) f L p (R 3 ) . M p (f 0 , T ) def = sup 0<t≤T t (1-1 p ) S 1 (t)f 0 L p (Ω) , F p (f 0 , T ) def = sup 0<t≤T t 3 2 (1-1 p ) S 2 (t)f 0 L p (R 3 ) .
From the properties of the semi-groups S 1 and S 2 , we have for all p ∈ (1, ∞]

lim T ↑0 M p (ω 0 , T ) = lim T ↑0 M p (rρ 0 , T ) = lim T ↑0 F p (ρ 0 , T ) = 0. (III.72)
In addition, from the local existence the desired inequalities hold also for p = 4 3 , assuming for a moment that the L 1 (Ω) × L 1 (R 3 )-norm of (ω θ (t), ρ(t)) is bounded for all t small enough (for t < T , with T denotes the local time of existence given by the local existence theory). Thus, by interpolation the proposition in question holds for all p ∈ (1, 4 3 ]. In order to extend it to the other values of p we consider the Duhamel formula (III.48), and we will argue as in the local existence part, thus we omit some steps to make the presentation simpler. In view of Proposition III.2.8, we write

ω θ (t) L p (Ω) ≤ S 1 (t)ω 0 L p (Ω) + C t 2 0 ω θ 2 L q (Ω) (t -τ ) 2 q -1 p dτ + C t t 2 ω θ (τ ) L q 1 (Ω) ω θ (τ ) L q 2 (Ω) (t -τ ) 1 q 1 + 1 q 2 -1 p dτ + C t 2 0 ρ(τ ) L 4 3 (R 3 ) (t -τ ) 1 2 + 3 4 -1 p + 3 8 dτ + C t t 2 ρ(τ ) L p (R 3 ) (t -τ ) 1 2 + 1 2p dτ.
Under the conditions

1 2 ≤ 2 q - 1 p , 1 2 ≤ 1 q 1 + 1 q 2 - 1 p < 1, (III.73)
we shall obtain

N p (ω θ , T ) ≤ M p (ω 0 , T )+C p,q N q (ω θ , T ) 2 +C q 1 ,q 2 N q 1 (ω θ , T )N q 2 (ω θ , T )+C p J 4 3 (ρ, T )+C p J p (ρ, T ).
(III.74) We recall that ρ evolves almost the same equation as ω θ , so we have

N p ( ρ, T ) ≤ M p ( ρ 0 , T )+C p,q N q (ω θ , T )N q ( ρ, T )+C q 1 ,q 2 N q 1 (ω θ , T )N q 2 ( ρ, T )+C p J 4 3 (ρ, T )+C p J p (ρ, T ).
(III.75) Finally, to claim similar estimate for J p (ρ, T ), first we write

ρ(t) L p (R 3 ) ≤ S 2 (t)ω 0 L p (R 3 ) +C t 2 0 ω θ L 4 3 (Ω) ρ L 4 3 (Ω) (t -τ ) 1 2 +1-1 p + 1-1 p 2 dτ +C t t 2 ω θ (τ ) L q 1 (Ω) ρ(τ ) L q 2 (Ω) (t -τ ) 1 2 + 1 α -1 p + 1-1 p 2 dτ, with 1 α = 1 q 1 + 1 q 2 - 1 2 .
Under the additional condition on p, q 1 , q 2

1 q 1 + 1 q 2 - 3 2p < 1 2
and for q = 4 3 , we obtain

J p (ρ, T ) ≤ F p (ρ 0 , T ) + C p N 4 3 (ω θ , T )N4 3 ( ρ, T ) + C q 1 ,q 2 N q 1 (ω θ , T )N q 2 ( ρ, T ).
(III.76)

Plugging (III.76) in (III. [START_REF] Hmidi | Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data[END_REF]) and (III.75) for q = 4 3 , and by denoting

U p (T ) def = N p (ω θ , T ) + N p ( ρ, T ), V p (T ) def = M p (ω 0 , T ) + M p ( ρ 0 , T ) + F p (ρ 0 , T ),
we deduce, that

U p (T ) ≤ C p,q 1 ,q 2 V p (T ) + U 4 3 (T ) 2 + J4 3 (ρ, T ) + U q 1 (T )U q 2 (T ) .
Now, to cover all the range p ∈ ( 4 3 , ∞), we proceed by the following bootstrap algorithm:

• For q 1 = q 2 = 4
3 we can check that U p (T ) → 0 as T → 0 for all 1 < p < 3 2 . • Next, by taking q 1 = q 2 sufficiently close to 3 2 , we obtain the same result, for all p < 9 5 . • For q 1 = q 2 = 8 5 , the estimate in question will hold then for all p < 2. • Taking q 1 sufficiently close to 2, the result follows for all p < 3 2 q 2 and for all q 2 < 2. • Finally, we define the sequence p n by p 0 = 4 3 and p n sufficiently close to 3 2 p n-1 , by induction, we find that p n is sufficiently close to ( 32 ) n p 0 . Hence, letting n goes to ∞, we can cover all the range p < ∞, and thus we obtain

U p (T ) → 0, T ↑ 0, for all p ∈ (1, ∞).
Finally, substituting this latest into (III.76), leads to J p (ρ, T ) → 0, T ↑ 0, for all p ∈ (1, ∞).

(III.77)

In order to treat the case p = ∞, we need to pay some more attention to the equation of the density. We propose the following procedure: For the equations of ω θ and ρ, we just need to chose q 1 = 3 2 , q 2 = 4 and p = ∞ in (III.74) and (III.75). Indeed, remark that this choice of (q 1 , q 2 , p) is admissible by the relation (III.73). This leads to the following estimates

N ∞ (ω θ , T ) ≤ f 1 (T ) + CJ ∞ (ρ, T ). (III.78) N ∞ ( ρ, T ) ≤ f 2 (T ) + CJ ∞ (ρ, T ), (III.79) with f 1 (T ) = M ∞ (ω 0 , T ) + CN4 3 (ω θ , T ) 2 + CN3 2 (ω θ , T )N 4 (ω θ , T ) + CJ4 3 (ρ, T ) -→ 0 T →0 , f 2 (T ) = M ∞ ( ρ 0 , T ) + CN4 3 (ω θ , T ) 2 + CN3 2 (ω θ , T )N 4 (ω θ , T ) + CJ4 3 (ρ, T ) -→ 0 T →0
.

Thus, all we need in order to close our estimates is to deal with J ∞ (ρ, T ) as follows: By using again the properties of the heat-semi group as in the case p < ∞, we infer that

ρ(t) L ∞ (R 3 ) ≤ S 2 (t)ρ 0 L ∞ (R 3 ) +C t 2 0 ω θ L 4 3 (Ω) ρ L 4 3 (Ω) (t -τ ) 1 2 + 3 2 dτ +C t t 2 u(τ ) L ∞ (R 3 ) ρ(τ ) L q (R 3 ) (t -τ ) 1 2 + 3 2q dτ.
(III.80)

In order to insure that the last term on the r.h.s above is finite, we need to chose p such that 1 2 + 3 2q < 1. Let us for, instance, take q = 6. On the other hand, let us remark that, due to the Biot-Savart law, we have , for some

1 < m < 2 < < ∞ u(τ ) L ∞ (Ω) ω θ (τ ) α L m (Ω) ω θ (τ ) 1-α L (Ω) , for α = m 2 -2 -m ∈ (0, 1).
Which gives after simplification, thanks to the previous estimates in the case p < ∞

u(τ ) L ∞ (Ω) τ -1 2 . (III.81)
Finally, by using (III.81), and by taking q = 6 in (III.80), we obtain

t 3 2 ρ(t) L ∞ (R 3 ) ≤ t 3 2 S 2 (t)ρ 0 L ∞ (R 3 ) +CN4 3 (ω θ , T )N 4 3 ( ρ, T )+ sup τ ∈(0,T ) t 1 2 u(τ ) L ∞ (Ω) J 6 (ρ, T ).
(III.82) It is easy then to conclude that

J ∞ (ρ, T ) → 0, T ↑ 0, (III.83)
and eventually we get as well

N ∞ (ω θ , T ) + N ∞ ( ρ, T ) → 0, T ↑ 0. (III.84)
This ends the proof of Proposition III.3.2 provided that we prove that, there exists some C 0 > 0 for which

(ω θ (t), ρ(t), ρ(t)) L 1 (Ω)×L 1 (Ω)×L 1 (R 3 ) ≤ C 0 (ω 0 , ρ 0 ) L 1 (Ω)×L 1 (R 3 ) .
From the definition of Γ, we have

ω θ (t) L 1 (Ω) ≤ Γ(t) L 1 (Ω) + ρ(t) L 1 (Ω)
and since ρ = rρ, our claim is equivalent to ( Γ(t), ρ(t))

L 1 (Ω)×L 1 (R 3 ) ≤ C 0 (ω 0 , ρ 0 ) L 1 (Ω)×L 1 (R 3 ) . (III.85)
Let us then prove (III.85), we will restrict our selves to the estimates of the non linear terms since the linear part can be dealt with by applying the properties of the semi-groups proved in the previous section, thus according to the equations of Γ and ρ, we need to show that

t 0 S 1 (t -τ )div * (v Γ)(τ ) L 1 (Ω) dτ (ω 0 , ρ 0 ) L 1 (Ω)×L 1 (R 3 ) , (III.86) and t 0 S 2 (t -τ )div(vρ)(τ ) L 1 (R 3 ) dτ (ω 0 , ρ 0 ) L 1 (Ω)×L 1 (R 3 ) . (III.87)
For (III.86), Holder's inequality, Biot Savart law and the definition of the X T norm, we infer that

t 0 S 1 (t -τ )div * (v Γ)(τ ) L 1 (Ω) dτ t 0 1 (t -τ ) 1 2 v(τ ) L 4 (Ω) Γ(τ ) L 4 3 (Ω) dτ t 0 1 (t -τ ) 1 2 ω θ (τ ) L 4 3 (Ω) Γ(τ ) L 4 3 (Ω) dτ t 0 1 (t -τ ) 1 2 τ 1 2 dτ ω θ X T Γ X T ω θ X T Γ X T .
For (III.87), we have

S 2 (t -τ )div(vρ)(τ ) L 1 (R 3 ) = rS 2 (t -τ )div(vρ)(τ ) L 1 (Ω) ,
then we use first Proposition III.2.8 to infer that

t 0 rS 2 (t -τ )div(vρ)(τ ) L 1 (Ω) dτ t 0 1 (t -τ ) 1 2 vrρ(τ ) L 1 (Ω) dτ,
then, using the definition of ρ = rρ, Holder inequality yields

S 2 (t -τ )div(vρ)(τ ) L 1 (R 3 ) t 0 1 (t -τ ) 1 2 v(τ ) L 4 (Ω) ρ(τ ) L 4 3 (Ω) dτ,
the rest of the estimate is then similar to the proof of (III.87) above by replacing Γ by ρ. Finally, (III.86) and (III.87) follow from the local existence theory given by Proposition III.3.1. 2

Our last task of this section is to reach the continuity of the solution stated in (III.10) and (III.11) of the main Theorem III.1.1. For this aim, we briefly outline the continuity of ω θ , the rest of quantities can be treated along the same lines. So, we will show that

ω θ ∈ C 0 [0, T ); L p (Ω) , ∀p ∈ [1, ∞).
To do so, let 0 < t 0 ≤ t < T , so we have

ω θ (t)-ω θ (t 0 ) = S 1 (t-t 0 )-I ω θ (t 0 )- t t 0 S 1 (t-τ )div v(τ )ω θ (τ ) dτ - t t 0 S 1 (t-τ )∂ r ρ(τ )dτ. (III.88)
The first term (free part) is derived by the same manner as in (III.42), that is to say,

lim t↑t 0 S 1 (t -t 0 ) -I ω θ (t 0 , •) L p (Ω) → 0.
(III.89)

Concerning the second term in the r.h.s of (III.88), (III.36) in Proposition III.2.5 provides

t t 0 S 1 (t -τ )div v(τ )ω θ (τ ) dτ L p (Ω) t t 0 1 (t -τ ) 1 2 v(τ ) L ∞ (Ω) ω θ (τ ) L p (Ω) dτ.
By virtue of the following interpolation estimate, see, Proposition 2.3 in [START_REF] Th | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF], we have for some 1

< q 1 < 2 < q 2 < ∞ v(τ ) L ∞ (Ω) ω θ (τ ) σ L q 1 ω θ (τ ) 1-σ L q 2 , with σ = q 1 2 q 2 -2 q 2 -q 1 ∈ (0, 1), one may conclude that t t 0 S 1 (t -τ )div v(τ )ω θ (τ ) dτ L p (Ω) essup τ ∈(t 0 ,T ) ω θ (τ ) L p (Ω) ω θ (τ ) σ L q 1 ω θ (τ ) 1-σ L q 2 t t 0 dτ (t -τ ) 1 2 essup τ ∈(t 0 ,T ) ω θ (τ ) L p (Ω) ω θ (τ ) σ L q 1 ω θ (τ ) 1-σ L q 2 (t -t 0 ) 1 2 ,
which is sufficient to obtain lim

t↑t 0 t t 0 S 1 (t -τ )div v(τ )ω θ (τ ) dτ L p (Ω) = 0. (III.90)
Let us move to the last term of (III.88) for which we distinguish two cases for p. For p ∈ (1, ∞), (III.44) stated in Proposition III.2.8 for α = 0 and β = 1 p yield

t t 0 S 1 (t -τ )∂ r ρ(τ )dτ L p (Ω) t t 0 1 (t -τ ) 1 2 + 1 2p r 1 p ρ(τ ) L p (Ω) dτ, (III.91)
and the fact that ρ ∈ L ∞ (0, T * ); L p (R 3 ) ensures that

t t 0 S 1 (t -τ )∂ r ρ(τ )dτ L p (Ω) essup τ ∈(t 0 ,T * ) ρ(τ ) L p (R 3 ) (t -t 0 ) 1 2 (1-1 p )
combined with (III.91), one has lim

t↑t 0 t t 0 S 1 (t -τ )∂ r ρ(τ )dτ L p (Ω) = 0. (III.92)
For the case p = 1, we will work with Γ instead of ω θ to avoid the source term ∂ r ρ. The fact rρ

L 1 (Ω) = ρ L 1 (R 3 ) leads to ω θ (t) -ω θ (t 0 ) L 1 (Ω) ≤ Γ(t) -Γ(t 0 ) L 1 (Ω) + ρ(t) -ρ(t 0 ) L 1 (R 3 ) ,
so, the continuity of ω θ (•) L p (Ω) relies then on the continuity of Γ(•) L p (Ω) and ρ(•) L 1 (R 3 ) . On the one hand, seen that the equation of Γ governs the same equation to that of ω θ , but without the source term ∂ r ρ, hence we follow then the same approach as above to prove that lim

t↑t 0 Γ(t) -Γ(t 0 ) L 1 (Ω) = 0. (III.93)
On the other hand, ρ solve a transport-diffusion equation, for which the continuity property is well known to hold, thus we skip the details. Therefore

lim t↑t 0 ω θ (t) -ω θ (t 0 ) L 1 (Ω) = 0.
Combining the last estimate with (III.89), (III.90) and (III.92), we achieve the result.

In the case p = 1 and t 0 = 0, we should just be careful about the term ∂ r ρ which can be completely avoided in the estimates by using the coupled functions Γ and Γ, the details are left to the reader. 2

III.4 Proof of the global estimates

To reach the global existence for the local solution constructed in sections III.3, we will establish some a priori estimates in Lebesgue spaces. For this target, let

(ω θ , rρ, ρ) ∈ C 0 [0, T ]; L p (Ω) × L p (Ω) × L p (R 3 ) , p ∈ [1, ∞), T ∈ (0, T * ).
be a solution of the integral formulation (III.48) and so does (ω θ , ρ) to the differential equation (III.46) associated to the initial data (ω 0 , ρ 0 ) ∈ L 1 (Ω) × L 1 (R 3 ), where T * denotes the maximal time of existence. The key idea here is to use the coupling functions Γ = Π-ρ 2 , Γ = rΓ following [START_REF] Hmidi | Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data[END_REF] with Π = ω θ r , combined with the approach of [START_REF] Th | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF]. Some familiar computations show that Γ evolves

∂ t Γ + v • ∇Γ -(∆ + 2 r ∂ r )Γ = 0 if (t, x) ∈ R + × R 3 , Γ |t=0 = Γ 0 , (III.94)
while Γ solves

∂ t Γ + div (v Γ) -(∆ -1 r 2 ) Γ = 0 if (t, r, z) ∈ R + × Ω, Γ |t=0 = Γ 0 .
(III.95)

The role of the new function Γ (resp. Γ) for the viscous Boussineq system (B µ,κ ) is the same that Π (resp. ω θ ) for the Navier-Stokes equations (NS µ ). For this aim, it is quite natural to treat carefully the properties of Γ and Γ.

The starting point of our analysis says that Γ enjoys the strong maximum principle. We will prove the following.

Proposition III.4.1. We assume that Γ 0 (x 1 , x 2 , z) > 0 (or, < 0), then Γ(t, x 1 , x 2 , z) > 0 (or, < 0) for any (x 1 , x 2 , z) ∈ R 3 and t > 0.

Proof

We follow the formalism recently accomplished in [START_REF] Feng | On the Cauchy problem for axi-symmetric vortex rings[END_REF]. Up to a regularization of Γ by standard method we can achieve the result as follows: we suppose that Γ 0 (x 1 , x 2 , z) > 0 (likewise the case Γ 0 (x 1 , x 2 , z) < 0). Due to the singularity of the term 2 r ∂ r Γ, we can not apply directly the maximum principle. To surmount this hitch, we can be appropriately interpreted the term ∆ + 2 r ∂ r as the Laplacian in R 5 . Thus we recast (III.94) in ]0, ∞[×R 5 by setting

Γ(t, x 1 , x 2 , x 3 , x 4 , z) = Γ t, x 2 1 + x 2 2 + x 2 3 + x 2 4 , z and 
v(t, x 1 , x 2 , x 3 , x 4 , z) = v r t, x 2 1 + x 2 2 + x 2 3 + x 2 4 , z e r + v z t, x 2 1 + x 2 2 + x 2 3 + x 2 4
, z e z .

Above,

r = x 2 1 + x 2 2 + x 2 3 + x 2 4 , e r = x 1 r , x 2 r , x 3 r , x 4 
r , 0 , e z = (0, 0, 0, 0, 1)

Thus the equation (III.94) becomes

∂ t Γ + v • ∇ 5 Γ -∆ 5 Γ = 0 if (t, x) ∈ R + × R 5 , Γ |t=0 = Γ 0 , (III.96)
where ∇ 5 and ∆ 5 designate the gradient and Laplacian operators over R 5 respectively. Consequently, by the strong maximum principle for (III.96), we deduce that

Γ > 0 in ]0, ∞[×R 5 , which leads to Γ > 0 in ]0, ∞[×R 3 .
Thus, the proof is completed. 2

The second result cares with the classical L p -estimate for Γ and showing that t → Γ(t) L p (R 3 ) is strictly decreasing function for p ∈ [1, ∞]. We will establish the following.

Proposition III.4.2. Let v be a smooth divergence-free vector field on R 3 and Γ be smooth solution of (III.94). Then the following assertion holds.

Γ(t) L p (R 3 ) ≤ Γ 0 L p (R 3 ) , p ∈ [1, ∞].
(III.97)

In particular, for p ∈ [1, ∞] the map t → Γ(t) L p (R 3 ) is strictly decreasing.

Proof

Thanks to the Proposition III.4.1, we can assume that Γ 0 > 0, thus we have Γ(t) > 0 for t ∈ [0, T ]. We developp an integration by parts and taking into account the Γ-equation, the fact that div v = 0 and the boundary condition over ∂Ω, one has

d dt Γ(t) p L p (R 3 ) = p Ω ∂ t Γ(t)Γ p-1 (t)rdrdz (III.98) = -p Ω v • (∇Γ)Γ p-1 rdrdz + p Ω (∆Γ)Γ p-1 rdrdz + 2p Ω (∂ r Γ)Γ p-1 drdz = -p(p -1) Ω |∇Γ| 2 Γ p-2 rdrdz + Ω ∂ r Γ p drdz = -p(p -1) Ω |∇Γ| 2 Γ p-2 rdrdz + R Γ p (t, 0, z)η r dz = -p(p -1) Ω |∇Γ| 2 Γ p-2 rdrdz - R Γ p (t, 0, z)dz < 0.
where η = (η r , η z ) = (-1, 0) is a outward normal vector over Ω. Thus, integrating in time to obtain the aimed estimate for positive solutions. Generally if Γ 0 changes its sign, we proceed as follows: we split Γ(t) = Γ + (t)-Γ -(t), where Γ ± solves the following linear equation with the same velocity

∂ t Γ ± + v • ∇Γ ± -(∆ + 2 r ∂ r )Γ ± = 0 if (t, x) ∈ R + × R 3 , Γ ± |t=0 = max(±Γ 0 , 0) ≥ 0.
(III.99)

Arguiging as above to obtain that Γ ± satisfies (III.97). Thus we have:

Γ(t) L p (R 3 ) ≤ Γ + (t) L p (R 3 ) + Γ -(t) L p (R 3 ) (III.100) ≤ Γ + 0 L p (R 3 ) + Γ - 0 L p (R 3 ) = Γ 0 L p (R 3 ) .
If Γ 0 = 0, we distinguish two cases: Γ 0 > 0 or Γ 0 < 0. For this two cases the last inequality is strict and consequently (III.97) is also strict. Therefore, t → Γ(t) L 1 (R 3 ) is strictly decreasing for t = 0, and analogously we deduce that is strictly decreasing over

[0, T ]. 2 
Now, we state a result which deals with the asymptotic behavior of the coupled function Γ in Lebegue spaces L p (R 3 ). Specifically, we have.

Proposition III.4.3. Let ρ 0 , ω 0 r ∈ L 1 (R 3 ), then for any smooth solution of (III.94) and 1 ≤ p ≤ ∞, we have

Γ(t) L p (R 3 ) ≤ C t 3 2 (1-1/p) Γ 0 L 1 (R 3 ) , (III.101)
where Γ 0 = Π 0 -ρ 0 2 .

Proof

Due to (III.97), the estimate (III.101) is valid for p = 1.

From the estimate (III.98) we have for

p = 2 n d dt Γ(t) p L p (R 3 ) = p Ω ∂ t Γ(t)Γ p-1 (t)rdrdz (III.102) = -p(p -1) Ω |∇Γ| 2 Γ p-2 rdrdz - ∞ -∞ Γ p (t, 0, z)dz ≤ -p(p -1) R 3 |∇Γ| 2 Γ p-2 dx = -p(p -1) Ω 2 p ∇Γ p 2 2 rdrdz = - 4(p -1) p Ω ∇Γ p 2 2 rdrdz.
Thanks to the well known Nash's inequality in general case

R N |f | 2 dx ≤ C R N |∇f | 2 dx 1-γ R N |f |dx 2γ , γ = 2 N + 2 . (III.103)
one obtains for N = 3

- d dt Ω Γ p (t)rdrdz ≥ 4(p -1) p C Ω Γ p 2 rdrdz -4/3 Ω Γ p rdrdz 5/3
.

To simplify the presentation, setting

E p (t) = Γ(t) p R 3 = Ω |Γ(t)| p rdrdz, then the last inequality becomes - d dt E p (t) ≥ 4(p -1) p CE -4/3 p/2 (t)E 5/3 p (t) (III.104)
We prove (III.101) for p = 2 n with non-negative integers n by induction. Assume that (III.101) is true for q = 2 k with k ≥ 0, and let p = 2 k+1 . Combined with (III.104)

- d dt E p (t) ≥ 4(p -1)C p C q q t -3 2 (q-1) Γ 0 q L 1 (R 3 ) -4/3 E 5/3 p (t).
Thus we have 3 2

d dt E p (t) -2/3 = -d dt E p (t) E 5/3 p (t) ≥ 4(p -1)C p C -4q/3 q Γ 0 -4q/3 L 1 (R 3 ) t 2(q-1) = 4(p -1)C p C -2p/3 q Γ 0 -2p/3 L 1 (R 3 ) t (p-2) .
Hence, integrating in time le last inequality yields

E -2/3 p (t) ≥ E -2/3 p (0) + 8C 3p C -2p/3 q Γ 0 -2p/3 L 1 (R 3 ) t p-1 .
After a few easy computations, we derive the following

Γ(t) L p (R 3 ) = E 1 p p (t) ≤ 3p 8C 3 2p C q Γ 0 L 1 (R 3 ) t -3/2(1-1/p) .
By setting C p = 3p 8C 3 2p C q , then (III.101) remains true for p = 2 k+1 . Let us observe that

C p = 3p 8C 3 2p C q = 3 8C 3 2 k+2 2 3(k+1) 2 k+2 C 2 k ≤ 3 8C 3 4 k≥0 
1 2 k 2 3 4 k≥0 k+1 2 k C 1 def = C ∞ which means that C ∞ is independent of p. Letting p → ∞, we deduce that Γ(t) L ∞ (R 3 ) ≤ C ∞ t -3/2 Γ 0 L 1 (R 3 ) . (III.105)
For the other values of p, we proceed by complex interpolation to get

Γ(t) L p (R 3 ) ≤ C Γ(t) 1/p L 1 (R 3 ) Γ(t) 1-1/p L ∞ (R 3 )
, combined with (III.105), so the proof is completed.

2

Next, we recall some a priori estimates for ρ-equation in Lebesgue spaces. To be precise, we have.

Proposition III.4.4. Let ρ 0 ∈ L 1 (R 3 ) and p ∈ [1, ∞],
then there exists some nonnegative universal constant C p > 0 depending only on p such that for any smooth solution of ρ-equation in (III.9), we have

(i) ρ(t) L p (R 3 ) ≤ ρ 0 L p (R 3 ) , (ii) ρ(t) L p (R 3 ) ≤ Cp t 3 2 (1-1 p ) ρ 0 L 1 (R 3
) . Proof (i) Can be done by a routine computations as shown in Proposition III.4.2, while (ii) can be obtained along the same way as Proposition III.4.3. We should mention also that the constant C p is bounded with respect to p (see the proof of Proposition III.4.3), and according to the proof of Proposition III.4.3 C ∞ is given by

C ∞ def = 3 8C 2 3 4 k≥0 k+1 2 k C 1 < ∞ (III.106) 2 
Now we will prove another type of estimates for the quantities Γ, ρ and ω θ which is the real purpose of this part. Namely, we establish.

Proposition III.4.5. Let ρ 0 , ω 0 r ∈ L 1 (R 3 ) and p ∈ [1, ∞], then there exist a non-negative constants C p , K p , depending only on p and the initial data, such that for any smooth solution of (III.95), (III.47) and (III.46), we have

(i) Γ(t) L p (Ω) ≤ Cp(D 0 ) t 1-1 p , (ii) ρ(t) L p (Ω) ≤ Kp(D 0 ) t 1-1 p , (iii) ω θ (t) L p (Ω) Cp(D 0 )+Kp(D 0 ) t 1-1 p
, where

D 0 = (ω 0 , ρ 0 ) L 1 (Ω)×L 1 (R 3 ) (III.107) and sup p∈[1,∞) C p (s) def = C ∞ (s) < ∞, C p (s) → 0, as s ↑ 0, ∀p ∈ [1, ∞]. (III.108)

Proof

Let us point out that (iii) is a consequence of (i) and (ii). Thus, we shall focus ourselves to prove (i) and (ii).

(i) Due to the similarity of the equation of Γ and the one of ω θ for the Navier-Stokes (NS µ ) treated in [START_REF] Th | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF], we follow the approach stated in Proposition 5.3 in [START_REF] Th | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF]. The key point consists to employ the following estimate,

v r r L ∞ (Ω) 1 t (ω 0 , rρ 0 ) L 1 (Ω) . (III.109)
Indeed, Proposition 2.6 in [START_REF] Th | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF] gives

v r r L ∞ (Ω) ω θ 1 3 L 1 (Ω) ω θ r 2 3 L ∞ (Ω)
, by using the fact that

ω θ r L ∞ (Ω) = ω θ r L ∞ (R 3 )
combined with ω θ r = ρ 2 + Γ, together with Propositions III.4.3 and III.4.4, lead to (III.109). So, the inequality (i) follows then by exploring (III.109) and repeating the outlines of the proof of Proposition 5.3 from [START_REF] Th | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF], the details are left to the reader. We should only mention that the constant Cp in our proposition is the same as the one from proposition 5.3 in [START_REF] Th | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF], which guaranties (III.108).

(ii) The estimate obviously holds for p = 1, whereas in the rest of the proof we shall deal with p > 3. The case p ∈ (1, 3] follows by interpolation.

We multiply the ρ-equation by | ρ| p-1 , after some integration by parts we obtain

1 p d dt ρ(t) p L p (Ω) ≤ -4 (p -1) p 2 Ω |∇(| ρ| p 2 )| 2 drdz+ - Ω div (v ρ)| ρ| p-1 drdz- Ω ∂ r ρ| ρ| p-1 drdz .
(III.110) On the one hand, a straightforward computation gives

- Ω div (v ρ)| ρ| p-1 drdz = 1 - 1 p Ω v r r | ρ| p drdz, then (III.109) provides - Ω div (v ρ)| ρ| p-1 drdz ≤ CD 0 1 - 1 p t -1 Ω | ρ| p drdz, (III.111)
where D 0 is given by (III.107).

On the other hand, the fact

-∂ r ρ = -∂r ρ r + ρ r 2 yields - Ω ∂ r ρ| ρ| p-1 drdz = 1 - 1 p Ω | ρ| p r 2 drdz.
Next, let us write

Ω | ρ| p r 2 drdz = I 1 + I 2 , (III.112)
with

I 1 def = Ω | ρ| p r 2 1 {r≤t 1/2 } drdz, I 2 def = Ω | ρ| p r 2 1 {r>t 1/2 } (r, z)drdz.
For p > 3 we have,

I 1 = Ω r p-3 |ρ| p 1 {r≤t 1/2 } rdrdz ≤ t p-3 2 ρ p L p (R 3 ) .
So, by virtue of Proposition III.4.4, we infer that

I 1 ≤ C p p t -p G p 0 , (III.113)
where G 0 def = ρ 0 L 1 (R 3 ) , and C p is the constant given by Proposition III.4.4.

For the term I 2 an easy computation yields .

I 1 ≤ t -
Plugging the last inequality in (III.116), it holds

Ω | ρ| p drdz p 2(p-1) Ω |∇(| ρ| p 2 )| 2 1 2 Ω | ρ|drdz p 2(p-1)
.

Since the inequality we aim to prove holds for p = 1, accordingly

CG -p p-1 0 Ω | ρ| p drdz p p-1 ≤ Ω |∇(| ρ| p 2 )| 2 drdz .
(III.117) Thus, by gathering (III.111), (III.115) and (III.117) and insert them in (III.110), it happens

f (t) (p -1) - C p G -p p-1 0 f (t) p p-1 + (CD 0 + 1)t -1 f (t) + C p p t -p G p 0 , (III.118)
where, f (t)

def = Ω | ρ(t)| p drdz.
We recall that one may deduce from Proposition III.3.2, for all p ∈ [1, ∞]

f (t) ≤ e p (D 0 ) p t -(p-1) , ∀ 0 < t < T , (III.119)
for some e p (D 0 ) > 0.

In a first step, we will show that f (t) is finite for all t > 0, then we prove that the decay property (III.119) holds as well for all t > 0, for a suitable non negative constant K p (G 0 ). Indeed, the first step is easy, one should remark that (III.118) implies

f (t) (p -1) (CD 0 + 1)t -1 f (t) + C p p t -p G p 0 .
Via, Gronwall inequality on (t 0 , t), for some 0 < t 0 < T , we get for all t > t 0

f (t) ≤ f (t 0 ) + C p p t 1-p 0 t t 0 (p-1)(CD 0 +1) , (III.120)
which ensures that f (t) is finite for all t > 0.

Now, let us denote

T def = sup t > 0 : f (t) < K p p (D 0 )t -(p-1) , (III.121)
where K p (D 0 ) will be chosen later, and we will prove that (III.119) holds as well for all t ∈ [ T , T + ε], for some ε > 0, this should be enough to contradict the fact that T < ∞, and we shall conclude then that (III.119) is true for all t > 0. If T is finite then we deduce

f ( T ) = K p p (D 0 ) T -(p-1) . (III.122)
Now, define g by g(t) 1) . By virtue of (III.118) and (III.122), we find out that

def = f (t) -K p p (D 0 )t -(p-
g ( T ) ≤ T -p (p -1) - C p G -p p-1 0 K p (D 0 ) p 2 p-1 + K p p (D 0 ) + Σ p (D 0 ) , (III.123)
where Σ p (D 0 ) = CD 0 + 1 + C p p D p 0 . Since p 2 p-1 > p, then if we choose K p p (D 0 ) large enough, in terms of Σ p (D 0 ) and G 0 , we may conclude that g ( T ) < 0, which in particular gives, for ε 1

g( T + ε) ≤ g( T ) = 0.
This means that (III.119) holds for t = T + ε, which contradicts the definition of T . The choice of K p (D 0 ) can be made as

K p (D 0 ) = max C -1 pG p p-1 0 CD 0 + 2 + C p p D p 0 1 p , 1, e p (D 0 ) , (III.124)
where, e p (D 0 ) is the constant from (III.119). Thus, we end with, for all p > 3

ρ(t) L p (Ω) ≤ K p (D 0 )t -(1-1 p ) . (III.125)
By denoting

K ∞ (D 0 ) def = lim p→∞ max C -1 pG p p-1 0 CD 0 +2+C p ∞ D p 0 1 p , 1, e p (D 0 ) = max {1 + C ∞ D 0 , e ∞ (D 0 )} .
From proposition III.4.4, C ∞ is finite, hence K ∞ (D 0 ) is also finite, thus by letting p → ∞ in (III.125), we end up with 

ρ(t) L ∞ (Ω) ≤ K ∞ (D 0 )t -

IV.1 Introduction

IV.1.1 Set-up of the problem

In this Chapter we shall be dealing with two cases: the first one consists in treating the 3D Navier-Stokes equation with general external force with certain regularity, and the second one is about the case where this external force is a scalar quantity, appearing in one direction , transported by the flow of the velocity field v, namely the Boussinesq equation. The axisymmetric Boussinesq system in three dimensions of space with zero diffusivity is a singular perturbation at level zero of the Navier-Stokes equations. Such system reads as follows

       ∂ t v + v • ∇v -µ∆v + ∇p = ρ e 3 , (t, x) ∈ R + × R 3 , ∂ t ρ + v • ∇ρ = 0, (t, x) ∈ R + × R 3 , div v = 0, (v, ρ) |t=0 = (v 0 , ρ 0 ). (B µ )
Above, v(t, x) ∈ R 3 refers to the velocity vector field localized in x ∈ R 3 at a time t, p(t, x) ∈ R is the force of internal pressure which acts to enforce the incompressibility constraint div v = 0 and it may be determined by a type of Poisson's equation and ρ(t, x) ∈ R + stands either the temperature in the context of thermal convection or the mass density in the modeling of geophysical fluids. The condition div v = 0, means that the volume of the fluid elements does not change (iso-volume) over time and µ > 0 is well-known as the 'kinematic' viscosity's parameter of the fluid.

The key assumption of the Boussinesq system (B µ ) is that the variations in density are small and their effect is neglected everywhere except in the buoyancy term ρ e 3 that driving the fluid motion in the direction e 3 = (0, 0, 1).

The Boussinesq system occurs principally in the dynamics of geophysical fluids which illustrates many models coming from atmospheric or oceanographic turbulence where rotation and stratification play an important role, see e.g. [START_REF] Pedlosky | Geophysical fluid dynamics[END_REF].

Mathematically, this model is essentially limited to the case of dimension two due to a formal resemblance (in the case µ = 0) with three-dimensional axisymmetric swirling flows. It can be shown that the fact that the solution develops singularities at time t is related at the simultaneous blow-up of ∇ρ and the vorticity in L 1 t L ∞ , see [START_REF] Weinan | Small-scale structures in Boussinesq convection[END_REF]. Unfortunately, determining whether these quantities actually blow-up seems at least as difficult as addressing the similar problem for the system of Euler incompressible in dimension three of spaces.

For better understanding the analysis of (B µ ), we come first to the particular case which we assume that the density is constant. Thus, we obtain the classical Navier-Stokes equations

   ∂ t v + v • ∇v -µ∆v + ∇p = 0, (t, x) ∈ R + × R 3 , div v = 0, v |t=0 = v 0 . (NS µ )
The significative leap was J. Leray's paper [START_REF] Leray | Essai sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF] in the thirties of last century where succeeded to build a weak family of solutions to (NS µ ) globally in time in the energy space for any dimension, via compactness method. Even though, the uniqueness issue is known only in dimension two. Afterwards, H. Fujita and T. Kato formulated in [START_REF] Fujita | On the Navier-Stokes initial value problem I[END_REF] a mildsolutions for (NS µ ) locally in time for initial data in critical Sobolev spaces Ḣ N 2 -1 (R N ) which respect the so-called invariant by scaling. A similar topic are developed in several

functional spaces alike L N (R N ), Ḃ-1+ N p p,∞
and BM O -1 , for other connected subjects we refer to [START_REF] Th | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF][START_REF] Hmidi | Inviscid limit axisymmetric Navier-Stokes system[END_REF][START_REF] Houamed | About some possible blow-up conditions for the 3D-Navier-Stokes equations[END_REF][START_REF] Kato | The Navier-stokes equation for an incompressible fluid in R 2 with a measure as the initial vorticity[END_REF][START_REF] Koch | Tataru Well-posedness for the Navier-Stokes equations[END_REF][START_REF] Lemarie-Rieusset | Recent Developments in the Navier Stokes Problem[END_REF][START_REF] Robinson | The three-dimensional Navier-Stokes equations[END_REF][START_REF] Planchon | Global strong solutions in Sobolev or Lebesgue spaces for the incompresble Navier-Stokes in R 3[END_REF]. It should be noted that these kinds of solutions are globally in time apart from small initial data with respect to the viscosity parameter, except in dimension two. Thus, in general setting the global well-posedness for (NS µ ) is a till now an open problem in PDEs. For this purpose, it is legitimate to search the "best" conditions that guarantee the existence and uniqueness of a solution for (NS µ ). This latter gave the opportunity to many authors to require that the velocity enjoying a geometric condition like axisymmetric without swirl. Namely, the velocity vector field can be splitted in cylindrical basis of R 3 in the following way. v(t, x) = v r (t, r, z) e r + v z (t, r, z) e z , where for every x = (x 1 , x 2 , z) ∈ R 3 we have

x 1 = r cos θ, x 2 = r sin θ, r ≥ 0, 0 ≤ θ < 2π.
Above, the triplet ( e r , e θ , e z ) represents the usual frame of unit vectors in the radial, azimuthal and vertical directions with the notation

e r = x 1 r , x 2 r , 0 , e θ = - x 2 r , x 1 r
, 0 , e z = (0, 0, 1).

Since, the vorticity in R 3 is defined by ω = curlv = ∇ × v, so if we apply the curl operator to (NS µ ) we obtain that the vorticity takes the form ω def = ω θ e θ with ω θ = ∂ z v r -∂ r v z solves the following nonlinear parabolic equation

∂ t ω θ + (v • ∇)ω θ -µ ∆ω θ - ω θ r 2 = v r r ω θ , (IV.1) with the notation v•∇ = v r ∂ r +v z ∂ z and ∆ = ∂ 2 r + ∂r r +∂ 2 z . Deposit ζ = ω θ r , a straightforward computations lead to ∂ t ζ + v • ∇ζ -µ ∆ + 2 r ∂ r ζ = 0, ζ |t=0 = ζ 0 . (IV.2)
The fact that, the dissipative operator (∆ + 2 r ∂ r ) has a good sign, consequently, we may estimate L p -norms of ζ globally in time, that is

ζ(t) L p ≤ ζ 0 L p , p ∈ [1, ∞], t ≥ 0. (IV.3)
In fact, M. Ukhovskii and V. Yudovich [START_REF] Ukhovskii | Axially symmetric flows of ideal and viscous fluids filling the whole space[END_REF] independently O. Ladyzhenskaya [START_REF] Ladyzhenskaya | Unique solvability in the large of the three-dimensional Cauchy problem for the Navier-Stokes equations in the presence of axial symmetry[END_REF] showed that the bound (IV.3) is considered as a bulwark to prohibit the formation of singularities in finite time for axisymmetric flows without swirl. More precisely, global existence and uniqueness were established for axisymmetric initial data v 0 ∈ H 1 and ω 0 , ω 0 r ∈ L 2 ∩ L ∞ . Lately, this latter was improved by S. Leonardi, J. Màlek, J. Necȃs and M. Pokorný [START_REF] Leonardi | On Axially symmetric flows in R 3[END_REF] for

v 0 ∈ H 2 and external force f ∈ L 2 loc (R + ; H 2 ) in the sense that v 0 ∈ H 2 regains that ω 0 , ω 0 r ∈ L 2 ∩ L ∞ .
Fairly recent, H. Abidi [START_REF] Abidi | Résultats de régularité de solutions axisymétriques pour le système de Navier-Stokes[END_REF] relaxed the last result by assuming that v 0 is in the critical Sobolev space H

1 2 and f ∈ L 2 loc (R + ; H β ) with β > 1 4 . For critical regularities, that is v 0 ∈ B -1+ 3 p p,1
, with 1 ≤ p ≤ ∞ and ω 0 r ∈ L 3,1 , the second author and Hmidi investigated in [START_REF] Hmidi | Inviscid limit axisymmetric Navier-Stokes system[END_REF] that (NS µ ) admits a unique global solution uniformly with respect to the viscosity in the absence of Beale-Kato-Majda criterion, see [START_REF] Beale | Remarks on the breakdown of smooth solutions for the 3D-Euler equations[END_REF]. Furthermore, they also provided the rate of convergence whenever the viscosity goes to zero. For the Boussinesq system (B µ ), an intensive attention has been gained to the local/global well-posedness problem. In particular, in two dimensions of space and its dissipative counterpart phenomena for the density, refer to [START_REF] Abidi | On the global well-posedness for Boussinesq System[END_REF][START_REF] Cannon | The initial value problem for the Boussinesq equations with data in L p[END_REF][START_REF] Chae | Global regularity for the 2D-Boussinesq equations with partial viscous terms[END_REF][START_REF] Chae | Local existence and blow-up criterion for the Boussinesq equations[END_REF][START_REF] Chae | Local existence and blow-up criterion of Hölder continuous solutions of the Boussinesq equations[END_REF][START_REF] Danchin | Global well-posedness issues for the inviscid Boussinesq system with Yudovich's type data[END_REF][START_REF] Guo | Spectral method for solving two-dimensional Newton-Boussineq equation[END_REF][START_REF] Hmidi | On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity[END_REF][START_REF] Hmidi | On the global well-posedness of the Boussinesq system with zero viscosity[END_REF][START_REF] Hmidi | Global well-posedness for an Euler-Boussinesq system with critical dissipation[END_REF][START_REF] Hmidi | On the global well-posedness of the Euler-Boussinesq system with fractional dissipation[END_REF][START_REF] Hmidi | Vortex patch for stratified Euler equations[END_REF][START_REF] Hou | Global well-Posedness of the viscous Boussinesq equations[END_REF][START_REF] Dreyfuss | Uniqueness result for Navier-Stokes-Boussinesq equations with horizontal dissipation[END_REF][START_REF] Liu | Local well-posedness and blow-up criterion of the Boussinesq equations in critical Besov spaces[END_REF][START_REF] Miao | On the global well-posedness of a class of Boussinesq-Navier-Stokes systems[END_REF][START_REF] Weinan | Small-scale structures in Boussinesq convection[END_REF][START_REF] Zerguine | The regular vortex patch for stratified Euler equations with critical fractional dissipation[END_REF] for a more complete history and references. For three-dimensional, the global regularity issue for the system (B µ ) in various spaces has received a considerable attention and widely studied in the last two decades. Worth mentioning, R. Danchin and M. Paicu showed in [START_REF] Danchin | Le théorème de Leray et le théorème de Fujita-Kato pour le système de Boussinesq partiellement visqueux[END_REF] that (B µ ) is well-posed in time for Leray's and Fujita-Kato's solutions in any dimension. Next, in the axisymmetric case, H. Abidi, T. Hmidi and S. Keraani have established in [START_REF] Abidi | On the global regularity of axisymmetric Navier-Stokes-Boussinesq system[END_REF] that (B µ ) possesses a unique global solution by rewriting it under vorticity-density formulation.

   ∂ t ω θ + v • ∇ω θ -∆ -1 r 2 ω θ = v r r ω θ -∂ r ρ, ∂ t ρ + v • ∇ρ = 0, (ω θ , ρ) |t=0 = (ω 0 , ρ 0 ), (IV.4)
Consequently, the quantity ζ = ω θ r solves the equation

∂ t ζ + v • ∇ζ -∆ + 2 r ∂ r ζ = - ∂ r ρ r . (IV.5) They assumed that v 0 ∈ H 1 (R 3 ), ξ 0 ∈ L 2 (R 3 ), ρ 0 ∈ L 2 ∩ L ∞ with supp ρ 0 ∩ (Oz) = ∅
and P z (supp ρ 0 ) is a compact set in R 3 especially for dismissing the singularity ∂rρ r , with P z being the orthogonal projector over (Oz). Those results were enhanced later by T. Hmidi and F. Rousset in [START_REF] Hmidi | Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data[END_REF] by removing the assumption on the support of density. Their paradigm requires to assume that (v 0 , ρ 0 ) ∈ H 1 (R 3 ) × L 2 (R 3 ) ∩ B 0 3,1 and ω 0 r ∈ L 2 (R 3 ) and couples the two-equations of (IV.4) by introducing a new unknown which called coupled function.

The overall aim here is to show first that (NS µ ) admits a unique global solution once v 0 ∈ H 1 2 (R 3 ) is an axisymmetric vector field and f in L β loc R + , L 2 (R 3 ) , with β > 4. Second, we exploit the previous result to prove that the system (B µ ) has a unique global solution whenever v 0 ∈ H

1 2 (R 3 ) ∩ Ḃ0 3,1 (R 3 ) and ρ 0 ∈ L 2 (R 3 ) ∩ Ḃ0 3,1 (R 3
). This kind of result is considered as novel in the sense that interpolating the critical regularities following R. Danchin and M. Paicu [START_REF] Danchin | Le théorème de Leray et le théorème de Fujita-Kato pour le système de Boussinesq partiellement visqueux[END_REF] and the axisymmetric constraint of T. Hmidi and F. Rousset [START_REF] Hmidi | Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data[END_REF].

IV.1.2 Statement of the main results

Throughout this Chapter, we denote by C a positive constant which may be different in each occurrence, but it does not depend on the initial data. We shall sometimes alternatively use the notation X Y for an inequality of type X ≤ CY with C independent of X and Y . The notation C 0 means that the constant depends on the involved norms of the initial data. In this Chapter, we will also be using some homogeneous Besov spaces of the form Ḃs p,r (R 3 ), we refer to the Appendix part for the definition and more details.

For s ∈ R, the standard Sobolev spaces denoted by H s (R 3 ) is defined as the set of all tempered distributions over R 3 be such that

v 2 H s = R 3 1 + |ξ| 2 s | u(ξ)| 2 dξ < ∞.
Likewise, the homogeneous standard Sobolev spaces designated by Ḣs (R 3 ) are defined as the set of all tempered distributions over R 3 be such that u ∈ L 1 loc and

v 2 Ḣs = R 3 |ξ| 2s | u(ξ)| 2 dξ < ∞.
The scalar product in H s and Ḣs are denoted respective by •|• s and •|• ṡ, whereas the case s = 0 will be simply denoted by

•|• .
About Navier-Stokes equations with external force.

The incompressible Navier-Stokes equations with the external force in the whole space with the viscosity µ = 1, still noted (NS) reads as follows.

   ∂ t v + v • ∇v -∆v + ∇p = f if (t, x) ∈ R + × R 3 , div v = 0, v |t=0 = v 0 . (NS)
If X is a spacial space, and X (1) is the space of tempered distributions U such that ∇U belongs to X, then we denote the energy space associated to X by ) ).

E T (X) def = L ∞ T (X) ∩ L 2 T (X ( 1 
The energy inequality associated to (NS) reads for all T > 0 as follows

v L ∞ T (L 2 ) + ∇v L 2 T (L 2 ) v 0 L 2 + f L 2 T ( Ḣ-1 ) , if f ∈ L 2 T ( Ḣ-1 ). and v L ∞ T (L 2 ) + ∇v L 2 T (L 2 ) v 0 L 2 + (1 + √ T ) f L 2 T (H -1 ) , if f ∈ L 2 T (H -1 ).
The scenario of mild solutions will be done by rewriting (NS) in terms of a fixed point problem for the heat semi-group, and thus obtain a unique solution v which belongs to a functional space, for example Ḣs (R N ), such that the linear term (∂ t -∆)v and the nonlinear term Pdiv(v ⊗ v) have the same regularity, with P designates the Leray's projector which acts on the divergence free vector field. This involves the scaling invariance for (NS). Indeed, if we denote by v the solution of (NS) with data v 0 and f . Thus, for λ > 0 the vector field v λ : (t, x) → λv(λ 2 t, λx)

with data v 0,λ : x → λv 0 (λx), f λ : (t, x) → λ 3 f (λ 2 t, λx)
is also a solution of (NS).

It is simple to check that the Sobolev regularities according to Fujita-Kato for

N = 3 are Ḣ 1 2 (R 3 ) for v 0,λ , L 2 R + ; Ḣ-1 2 (R 3 ) for f λ and C R + ; Ḣ 1 2 ∩ L 2 (R + ; Ḣ 3 2
for v λ . Consequently, Fujita-Kato [START_REF] Fujita | On the Navier-Stokes initial value problem I[END_REF] succeed to recover (NS) globally in time in the following way.

Proposition IV.1.1. Let v 0 ∈ Ḣ 1 2 (R 3 ) and f ∈ L 2 T Ḣ-1 2 (R 3 ) , there exists some c 0 > 0 such that if v 0 Ḣ 1 2 + f L 2 T ( Ḣ- 1 
2 ) < c 0 . Then (NS) has a unique global solution satisfying for all T > 0,

v L ∞ T ( Ḣ 1 
2 ) + ∇v

L 2 T ( Ḣ 1 2 ) v 0 Ḣ 1 2 + f L 2 T ( Ḣ- 1 
2 ) .

Without smallness condition, H. Abidi [START_REF] Abidi | Résultats de régularité de solutions axisymétriques pour le système de Navier-Stokes[END_REF] developed another result of global wellposedness in time for (NS µ ), by interpolating the critical space of Fujita-Kato and the axisymmetric condition of Màlek-Necȃs-Pokorný. Especially he proved the following theorem.

Theorem IV.1.1. Let v 0 ∈ H 1 2 (R 3
) be an axisymmetric divergence free vector field vector without swirl and f ∈ L 2 loc R + ; H β (R 3 ) be an axisymmetric vector field, for some β > 1 4 . Then (NS) has a unique global axisymmetric satisfying

v ∈ C R + ; H 1 2 ∩ L 2 loc R + ; H 3 2 .
The approach suggested by H. Abidi to prove Theorem IV.1.1 is deeply based on the argument introduced by C. P. Calderón [START_REF] Calderón | Existence of weak solutions for the Navier-Stokes equations with initial data in L p[END_REF] to show that the Navier-Stokes equations admit a solution in L p for 2 < p < N with N = 3, 4, ... and further performed by I. Gallagher and F. Planchon [START_REF] Gallagher | On global solutions to a defocusing semi-linear wave equation[END_REF] with the purpose to study the global existence for the wave equations. This argument consists to split the data v 0 into two regular parts, the first one is more regular, denoted by v 0, and supported spectrally in the ball of radius N 0 , with N 0 being a large real number, the other one is less regular but small denoted by v 0,h . Likewise, for the external f ≡ f + f h , with the subscripts h and refer respectively the high and low frequencies. More precisely, we write.

v 0, def = F -1 1 |ξ|≤N 0 v 0 , v 0,h def = F -1 1 |ξ|≥N 0 v . f def = F -1 1 |ξ|≤N 0 f , f h def = F -1 1 |ξ|≥N 0 f .
Since v 0 and f are axisymmetric, it is clear that the functions v 0, , v 0,h , f and f h are also because the cut-off operator doesn't disturb this structure.

Compared to Proposition IV.1.1 it seems that Theorem IV.1.1 is not optimal in terms of the required regularity on f , whereas the optimal regularity on f would be something like f ∈ L 2 T (H -1 2 ). For the Boussinesq system , the approach used in [START_REF] Abidi | Résultats de régularité de solutions axisymétriques pour le système de Navier-Stokes[END_REF] isn't applicable directly if f ∈ L 2

T (H β ), with β ≤ 1 4 , instead of that, we will relax the regularity with respect to β by means of asking for some more integrability in time. So, the general idea is as follows: for f ∈ L 2 loc R + ; L 2 and α ≤ 0, we have

f h L 2 T (H α ) ≤ ε N 0 ,α , with ε N 0 ,α =    N α 0 f L 2 T (L 2 ) if α < 0 T 0 1 |ξ|≥N 0 f (τ, ξ) 2 L 2 (R 3 ) dτ 1 2 if α = 0.
If N 0 is sufficiently large, then ε N 0 ,α is small as much as we want, and eventually the L 2 T (H α )-norm of f h as well, for all α ∈ -1 2 , 0 . Then, for the data f h we define v h as the solution of the following Navier-Stokes equations

   ∂ t v h + v h • ∇v h -∆v h + ∇p h = f h div v h = 0 v h|t=0 = 0. (NS h )
In the spirit of Proposition IV.1.1 for (NS h ), we will prove the following result.

Proposition IV.1.2. There exists N 0 > 0 large enough and ε small as much as we want in terms of N 0 for which

(NS h ) has a unique global solution v h in E T ( Ḣ 1 2 ) ∩ E T ( Ḣ1 ), with v h E T ( Ḣ 1 2 )∩E T ( Ḣ1 )
ε.

Next, we demonstrate that (N S) admits a unique global solution v of the form v = v + v h with v satisfying the following modified system

   ∂ t v + v • ∇v -∆v + ∇p = f + F v h (v ) div v = 0 v | t=0 = v 0 , (NS ) 
where the operator F a is given by

F a (b) def = -a • ∇b -b • ∇a (IV.6)
Unless F v h (v ) = 0, it is not clear how to solve (NS ) by means of the previous proposition with an external force term as a sum of f in L 2 (H 1 ) and a linear operator F v h . In fact, Proposition IV.1.2 is not enough to establish the desired global control in time of the H 1 -norm of the modified system (NS ), the issue is related to the fact that having a L ∞ T ( Ḣ

2 ) estimate of the small solution (v h in our context) is crucial to deal with the modified system. To remedy this, we will have to demand more regularity on v h which comes from additional conditions on the external force f . We recall that in this work we will later treat the Boussinesq equations as well, so we want to keep the regularity zero with respect to the spacial variable, whereas we will add some integrability conditions with respect to time. Hence, we shall prove the following proposition.

Proposition IV.1.3. Let v h be the solution obtained by Proposition IV.1.2, if in addition

f is in L β T (L 2 ) for some β > 4. Then v h is actually in L ∞ T ( Ḣ 3 
2 ), with

v h L ∞ T ( Ḣ 3 2 ) 
ε.

After this extensive explanation and a stack of important results, now we are ready to state our first main result which deals by establishing the following version of Theorem IV.1.1.

Theorem IV.1.2. Let v 0 ∈ H 1 2 (R 3
) be an axisymmetric divergence free vector field vector without swirl and f ∈ L β loc R + ; L 2 (R 3 ) be an axisymmetric vector field vector, for some β > 4. Then (NS) admits a unique global axisymmetric solution such that

v ∈ C R + ; H 1 2 ∩ L 2 loc R + ; H 3 2 .
Remark IV.1.3. Let us point out that, the condition β > 4 is essentially entailed to prove that the solution

v h of (NS h ) is in L ∞ T ( Ḣ 3 
2 ), which is really important to get the global bound of the modified system. Equivalently, any couple of real numbers (α,

β) ∈ (-1 2 , ∞)× [2, ∞] such that the condition f ∈ L β T (H α ) allows to get a solution v h to (NS h ) in E T (H 1 2 ∩ H 1 ) ∩ L ∞ T ( Ḣ 3 
2 ), is admissible 1 to reinstate the condition f ∈ L β T (L 2 ) in Theorem IV.1.2.

1 One may check that our proof works in particular if f ∈ L β T (H α ) such that α + 1 2 > 2 β and β ∈ [2, ∞], this condition comes from the proof of Proposition IV.1.3.

About the Boussinesq system

Now, let us move to the Boussinesq system (B µ ) where we set the viscosity µ = 1 to simplify the presentation, the system often obtained still denoted by (B) and given by the following coupled equations.

       ∂ t v + v • ∇v -∆v + ∇p = ρ e 3 , (t, x) ∈ R + × R 3 , ∂ t ρ + v • ∇ρ = 0, (t, x) ∈ R + × R 3 , div v = 0, (v, ρ) |t=0 = (v 0 , ρ 0 ). (B)
Let us recall that the system (B) respects the following scaling invariance

v λ : (t, x) → λv(λ 2 t, λx), ρ λ : (t, x) → λ 3 ρ(λ 2 t, λx)
with initial data (v 0,λ , ρ 0,λ ) given by v 0,λ (x) = λv 0 (λx) and ρ 0,λ (x) = λ 3 ρ 0 (λx). In other words, the critical spaces for the velocity are the same as for the Navier-Stokes system, and it is necessary to require two less derivatives on the density. A straightforward computation claims that Ḣ 1 2 (R 3 ) and Ḃ0 3,1 (R 3 ) are critical for the velocity, whereas L 1 (R 3 ) is critical but for the density.

The second main result of this work handles with the global well-posedness for (B) and reads as follows.

Theorem IV.1.4. Let v 0 ∈ H 1 2 (R 3 ) ∩ Ḃ0
3,1 (R 3 ) be an axisymmetric divergence free vector field vector without swirl and ρ 0 ∈ L 2 (R 3 ) ∩ Ḃ0

3,1 (R 3 ) be a scalar axisymmetric function. Then (B) has a unique global solution satisfying for all T > 0

(v, ρ) ∈ E T (H 1 2 ) ∩ L ∞ T ( Ḃ0 3,1 ) ∩ L 1 T ( Ḃ2 3,1 ) × L ∞ T (L 2 ∩ Ḃ0 3,1 ).
A bunch of important remarks concerning the previous theorem are in order.

Remark IV.1.5. An axisymmetric scalar function means a function that depends only on the variable (r, z) but not on the angle variable θ in cylindrical coordinates. We check obviously that the axisymmetric structure is preserved through the time in the way that if (v 0 , ρ 0 ) is axisymmetric without swirl, then the obtained solution is it also.

Remark IV.1.6. As aforementioned above H

1 2 (R 3 ) ⊂ Ḣ 1 2 (R 3
) and Ḃ0 3,1 (R 3 ) are critical spaces with respect to the velocity, whereas L 2 (R 3 ) and Ḃ0

3,1 (R 3 ) are not critical ones for the density, as pointed out, for instance, in [START_REF] Danchin | Le théorème de Leray et le théorème de Fujita-Kato pour le système de Boussinesq partiellement visqueux[END_REF] it is not clear how to solve the equations in critical spaces with respect to the density without additional required regularity on the initial data, our choice of these additional conditions is highly inspired from [START_REF] Danchin | Le théorème de Leray et le théorème de Fujita-Kato pour le système de Boussinesq partiellement visqueux[END_REF][START_REF] Hmidi | Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data[END_REF] where the L 2 condition on ρ 0 seems to be crucial to solve the momentum equation in H 1 2 , and the condition Ḃ0

3,1 is essentially helpful for the uniqueness.

Let us briefly discuss the proof of Theorem IV.1.4, first by describing the formal energy inequalities associated to our system. To do this, let (v, ρ, ∇p) be a regular solution for Boussinesq system which decreasing at infinity with initial data (v 0 , ρ 0 ). First of all, we recall that the velocity vector field is in divergence free, so

ρ(t) L p = ρ 0 L p , p ∈ [1, ∞], t ≥ 0.
In particular, for all r ∈ [1, ∞] we have

ρ L r T (L 2 ) = T 1 r ρ 0 L 2 . (IV.7) and thus v L ∞ T (L 2 ) + ∇v L 2 T (L 2 ) v 0 L 2 + T 1 2 ρ 0 L 2 .
By virtue of Theorem 1.1 from [START_REF] Danchin | Le théorème de Leray et le théorème de Fujita-Kato pour le système de Boussinesq partiellement visqueux[END_REF], the assumption v 0 , ρ 0 in L 2 (R 3 ) ensures the existence of at least one global weak solution (v, ρ), that is, in view of (IV.7), ρ is in L β T (L 2 ), for β > 4. Consequently, in accordance with Theorem IV.1.2 we may define the unique global axisymmetric solution v to the equation (NS) with f = ρ e 3 . Next step consists to propagate the regularity alike v ∈ L 1 t (Lip) which seems to be crucial, according to [START_REF] Danchin | Le théorème de Leray et le théorème de Fujita-Kato pour le système de Boussinesq partiellement visqueux[END_REF], to prove the uniqueness of the constructed solution for (B). But the lack of diffusion term in the density equation contributes some technical drawback. To circumvent these difficulties we will need to supply some additional summability condition at the level of the dyadic decomposition of the (v 0 , ρ 0 ), rather than being just in B 1 2 2,2 × B 0 2,2 , namely we will need them to be in B 0 3,1 × B 0 3,1 . Theorem IV.1.4 is then a consequence of the following proposition.

Proposition IV.1.4. Let T > 0 and (v, ρ) be a solution to (B) on

(0, T ) in E T ( Ḣ 1 2 ) × L ∞ T (L 2 ). If in addition (v 0 , ρ 0 ) ∈ Ḃ0 3,1 × Ḃ0 3,1 , then (v, ρ) ∈ L ∞ T ( Ḃ0 3,1 ) ∩ L 1 T ( Ḃ2 3,1 ) × L ∞ T ( Ḃ0 3,1 )
and (v, ρ) is actually the unique solution to (B) on (0, T ).

IV.2 About the axisymmetric Navier-Stokes equations with external force term IV.2.1 Some key estimates in Sobolev and Besov spaces

To state the proof of the main results, we first need to analyze some classical estimates in Sobolev and Besov spaces that will be more useful in the proof of our main theorems, we begin with proving the following proposition Proposition IV.2.1. For s ∈ 1 2 , 3 2 , there exists C > 0 such that for a, b and c are regular enough, the following assertions hold.

a • ∇c|b ṡ ≤ C a 2 Ḣ 1 2 ∇c 2 Ḣs + 1 100 ∇b Ḣs . (IV.8) a • ∇b|b ṡ ≤ C a Ḣ 1 2 ∇b 2 Ḣs (IV.9) b • ∇a|b ṡ ≤ ∇a 2 Ḣ 1 2 b 2 Ḣs + 1 100 ∇b 2 
Ḣs .

(IV.10)

a • ∇b|b ṡ ≤ C a 4 Ḣ1 b 2 Ḣs + 1 100 ∇b 2 
Ḣs .

(IV.11)

For s = 3 2 , we have div(a ⊗ b)|b 3 2 + div(b ⊗ a)|b 3 2 ≤ C a 2 Ḣ1 b 2 Ḣ2 + b 2 Ḣ1 a 2 Ḣ2 + 1 100 ∇b 2 Ḣ 3 2 . (IV.12)
And for s = 2, we have

a • ∇b|c 2 a Ḣ1 ∇b Ḣ 1 2 + ∇b Ḣ2 c Ḣ3 (IV.13) a • ∇b|c 2 a Ḣ 1 2 + a Ḣ2 ∇b Ḣ1 c Ḣ3 (IV.14)

Proof

We restrict ourselves to establish (IV.8). Estimates (IV.9) and (IV.10) will be done by the same method. By definition we have

a • ∇c|b 2 ṡ ≤ R 3 |ξ| 2s |( a • ∇c(ξ))|| b(ξ)|dξ ≤ R 3 |ξ| 2(s-1) | a • ∇c(ξ)| 2 dξ 1/2 R 3 |ξ| 2(s+1) | b(ξ)| 2 1/2 ≤ a • ∇c Ḣs-1 b Ḣs+1 .
On the other hand, the product law in dimension three Ḣs

• Ḣ 1 2 ⊂ Ḣs-1 , for s ∈ 1 2 , 3 2 , gives a • ∇c Ḣs-1 ≤ C a Ḣ 1 2 ∇c Ḣs .
Putting together the last two estimates to obtain the scalar product

• | • ṡ in Ḣs , a • ∇c|b ṡ ≤ C a Ḣ 1 2 ∇c Ḣs ∇b Ḣs .
So, Young's inequality AB ≤ CA 2 + 1 100 B 2 gives the desired estimate. The proof of (IV.11) is ensued from the following product law,

Ḣs-1 2 • Ḣ1 ⊂ Ḣs-1 for all s ∈ 1 2 , 3 2 .
Indeed, the scalar product in Ḣs together with the product law above give rise to a • ∇b|b ṡ a Ḣ1 ∇b Ḣs-1 2 b Ḣs+1 Next, in view of the following interpolation inequality in general case

f Ḣs+ 1 2 f 1 2 Ḣs f 1 2

Ḣs+1

and a new use of Young inequality

AB ≤ CA 4 + 1 100 B 4 3 implies a • ∇b|b ṡ ≤ C a 4 Ḣ1 b 2 Ḣs + 1 100 ∇b 2 Ḣs .
To establish (IV.12) for s = 3 2 , we apply Bony's decomposition

a ⊗ b = T a b + T b a + R(a, b).
The two first terms can be estimated along the same lines as follows

∆ j T a b L 2 S j-1 a L ∞ ∆ j b L 2 c j 2 -3 2 j a Ḃ-1 2 ∞,∞ b Ḣ2 , with j∈Z c 2 j ≤ 1.
Hence the Sobolev embedding Ḣ1 (R

3 ) → Ḃ-1 2
∞,∞ (R 3 ) gives the desired estimate for T a b. For the remainder term, Bernstein inequality and the definition of Besov spaces allow to conclude

∆ j R(a, b) L 2 2 3 2 j k≥j+N 0 ∆ k a L 2 ∆ k b L 2 2 3 2 j k≥j+N 0 c k 2 -3k a Ḣ1 b Ḃ2 2,∞ 2 -3 2 j k≥j+N 0 c k 2 3(j-k) a Ḣ1 b Ḣ2
thus, by using Hölder inequality, we finally obtain

∆ j R(a, b) L 2 2 -3 2 j c j a Ḣ1 b Ḣ2 .
Finally, we only prove (IV.13) because (IV.14) will be done by the same fashion and we left it to the reader. The definition of the scalar product in Ḣ2 gives

a • ∇b|c 2 a • ∇b Ḣ1 c Ḣ3 .
Then, by using the following three-dimensional law product, see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] Ḣ1

• Ḃ 3 we infer that a • ∇b|c 2 a Ḣ1 ∇b Ḃ 3 2 2,1 c Ḣ3
combined with the following interpolation estimate, the proof of which can be found again in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], f

Ḃ 3 2 2,1 f Ḣ 1 2 + f Ḣ2 , Proposition IV.2.1 is then proved. 2
The next lemma will be used to obtain the bound

L ∞ T ( Ḣ 3 
2 ) of the small solution v h . Lemma IV.2.1. For a regular enough divergence free vector fields u, v and β ∈ [1, ∞], the following estimate holds.

div (u ⊗ v) L β T ( Ḃ0 2,∞ ) u L ∞ T ( Ḃ 1 2 2,∞ ) v L β T ( Ḃ2 2,∞ ) + v L ∞ T ( Ḃ 1 2 2,∞ ) u L β T ( Ḃ2 2,∞ ) .
(IV.15)

Proof

The proof is classical and relies on continuity properties of Bony's decomposition. To make the presentation more reputable, we omit the tensor product and estimate the formal product ∂ j (uv). Hence we need to prove

uv L β T ( Ḃ1 2,∞ ) u L ∞ T ( Ḃ 1 2 2,∞ ) v L β T ( Ḃ2 2,∞ ) + v L ∞ T ( Ḃ 1 2 2,∞ ) u L β T ( Ḃ2 2,∞
) . Thanks to Bony's decomposition, we write

uv = T u v + T v u + R(u, v),
By changing the positions of u and v, the first two terms on the r.h.s can be dealt with similarly as follows

∆ k T u v L β T (L 2 ) S k-1 u L ∞ T (L ∞ ) ∆ k v L β T (L 2 ) 2 -k u L ∞ T ( Ḃ-1 ∞,∞ ) v L β T ( Ḃ2 2,∞ )
By Sobolev embedding we have

T u v L β T ( Ḃ1 2,∞ ) u L ∞ T ( Ḃ 1 2 2,∞ ) v L β T ( Ḃ2 2,∞
) . For the reminder term, the same analysis gives

∆ k R(u, v) L β T (L 2 ) m>k-N 0 ∆ m u L ∞ T (L ∞ ) ∆ m v L β T (L 2 ) 2 -k m>k-N 0 2 k-m u L ∞ T ( Ḃ1/2 2,∞ ) v L β T ( Ḃ2 2,∞ )
thus, by Holder inequality we obtain 

∆ k R(u, v) L β T (L 2 ) 2 -k u L ∞ T ( Ḃ1/2 2,∞ ) v L β T ( Ḃ2
2 ) bound for v h . Doing so, we take the inner product in Ḣ 1 2 with v h solution of (NS h ) to obtain 1 2

d dt v h (t) 2 Ḣ 1 2 + ∇v h (t) 2 Ḣ 1 2 ≤ v h • ∇v h |v h 1 2 + f h Ḣ-1 2 ∇v h Ḣ 1 2 .
By virtue of (IV.9) in Proposition IV.2.1 and Young's inequality, we infer that 1 2

d dt v h (t) 2 Ḣ 1 2 + ∇v h (t) 2 Ḣ 1 2 ≤ C v h (t) Ḣ 1 2 ∇v h (t) 2 Ḣ 1 2 + C f h (t) 2 Ḣ-1 2 + 1 4 ∇v h (t) 2 Ḣ 1 2 . Now, let T = sup τ > 0 : v h (τ ) Ḣ 1 2 < 1/4C . The definition of f h provides that for all t < T , v h (t) 2 Ḣ 1 2 + ∇v h (t) 2 L 2 t ( Ḣ 1 2 ) ≤ Cε 2 N 0 ,- 1 2 . 
We choose N 0 large enough such that Cε 2

N 0 ,-1 2 < 1/(8C) 2 , hence for all t < T v h (t) Ḣ 1 2 < 1/8C. (IV.16)
On the one hand, we assume that T < ∞, so the definition of T and solution's continuity yield v h ( T ) Ḣ 1 2 = 1/4C. Hence, letting t goes to T in (IV.16), we end up with

1/4C = v h ( T ) Ḣ 1 2 ≤ 1/8C.
This contradicts the fact that T is finite, and thus v h (t) Ḣ 1 2 remains bounded for all t > 0 and can not blow-up in finite time. In particular, one concludes that for all T > 0

v h E T ( Ḣ 1 2 )
ε.

(IV.17)

Let us now prove the same estimate for v h E T ( Ḣ1 ) . Similarly, as above, by virtue of (IV.9) stated in Proposition IV.2.1, we write 1 2

d dt v h (t) 2 Ḣ1 + ∇v h (t) 2 Ḣ1 ≤ C v h (t) Ḣ 1 2 ∇v h (t) 2 Ḣ1 + C f h (t) 2 L 2 + 1 4 ∇v h (t) 2 Ḣ1 ≤ C f h (t) 2 L 2 + 1 2 ∇v h (t) 2 Ḣ1 . Hence v h E T ( Ḣ1 ) ε N 0 ,0 ε. (IV.18)
Grouping (IV.17) and (IV.18), we end up with

v h E T ( Ḣ 1 2 )∩E T ( Ḣ1 ) ε. (IV.19)
For the uniqueness topic, it is well-known to hold in these kinds of spaces, hence the details are left to the reader. The proof of Proposition IV.1.2 is now achieved. 2

Proof of Proposition IV.1.3 The perception of the proof will be done in the following way. First, we start by establishing that

v h ∈ L ∞ T (B 2-2 β 2,∞
). Thereafter, remarking that for β > 4 then 2 -2 β > 3 2 , so we conclude by making use of the interpolation argument that

L ∞ T (H 1 ) ∩ L ∞ T (B 2-2 β 2,∞ ) → L ∞ T (B 3 2 2,1 ) → L ∞ T (H 3 2 ). So, to prove that v h lies in L ∞ T (B 2-2 λ 2,∞
), we first write down the equivalent Duhamel's formula associated to system (NS h )

v h (t, •) = - t 0 S(t -τ )Pdiv(v h ⊗ v h )(τ, •)dτ - t 0 S(t -τ )Pf h (τ, •)dτ,
where S represents the heat semi-group, defined by S(t) def = e t∆ .

Next, we apply the Lemma A.2.1 from the Appendix for κ 1 = a, κ 2 = β and p = 2 to write

∞ 0 1 τ ≤• S(• -τ )∆ q g(s) L a T (L 2 ) 2 2j(-1+ 1 β -1 a ) ∆ q g L β T (L 2 ) , for all a ∈ [β, ∞]. (IV.20)
Accordingly, the fixed-point method for the above Duhamel's formula can be done in the following functional space.

X T def = g ∈ C((0, T ); L 2 ) : g X T < ∞ ,
equipped with the norm

g X T def = g L ∞ T ( Ḃ2-2 β 2,∞ ) + g L β T ( Ḃ2 2,∞ ) .
The external term can be estimated by applying (IV.20), while the bilinear form can be carried out by employing (IV.15) in Lemma IV.2.1, we conclude that

v h X T ≤ C v h L ∞ T ( Ḃ 1 2 2,∞ ) v h X T + C f h L β T ( Ḃ0 2,∞ ) .
(IV.21)

The fact that

L 2 = Ḃ0 2,2 → Ḃ0 2,∞ leads to f h L β T ( Ḃ0 2,∞ ) ≤ f h L β T (L 2 ) .
Similarly, on account of Proposition IV.1.2, one may write

v h L ∞ T ( Ḃ 1 2 2,∞ ) ≤ v h L ∞ T ( Ḣ 1 
2 ) ≤ ε/C, plugging these into (IV.21) gives

v h X T f h L β T (L 2 )
. By definition of f h , for N 0 large enough we obtain the desired estimate.

2

IV.2.3 Global estimates for the modified system and proof of the main Theorem IV.1.2

Before to lay down the proof of Theorem IV.1.2 we begin by proving the following result.

Theorem IV.2.2. Let v 0 be an axisymmetric divergence free vector field in H 2 (R 3 ) and v h the unique global solution of (NS h ) given by Propositions IV.1.2 and IV.1.3. Then (NS ) has a unique solution in E T (H 1 ) for all T > 0.

The proof of Theorem IV.2.2 will be orchestrate, first by showing that (NS ) has a unique local solution in E T (H s ), for all s ∈ [ 1 2 , 2], with T can be considered as the maximal lifespan in H 1 . Second, we explore the axisymmetric structure to control the H 1 -norm over (0, T ], which allows to extend the solution beyond T . This contradicts the fact that T is maximal.

We start by proving the following proposition.

Proposition IV.2.2. Let v 0 be a divergence free vector field in H 2 (R 3 ) and v h the unique global solution of (NS h ) constructed in Propositions IV.1.2 and IV.1.3. Then, there exists a maximal lifespan T > 0 such that (NS ) has a unique solution in E T ( Ḣs ) for all s ∈ [ 1 2 , 2].

Proof

We will only show the existence part and we skip the uniqueness, since this latter is wellknown to hold in such spaces (the linear part with respect to v can be dealt with as in the existence part). Define the free solution as

v l (t, •) def = e t∆ v 0 (•)
and we look for a solution v to (NS ) of the form v = v l + w with w solving

   ∂ t w + w • ∇w -∆w + ∇p = f + F v h (w ) + F v l (w ) -v l • ∇v l div v = 0 w |t=0 = 0, (NS ) with F a (b) = -a • ∇b -b • ∇a.
Let us point out first that, for all s ∈ [ 1 2 , 2] and p ∈ [2, ∞], we have

v l L p T ( Ḣs+ 2 p ) v 0 Ḣs .
We only restrict ourselves to outline some a priori estimates while the construction of a solution to (NS ), can be done by employing the well-known Friedrichs method based on formal calculation that we will prove here. For more details about this method, we refer the reader to [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF].

We proceed in four steps.

• 1 st Step: s = 1 2 . Taking the scalar product in Ḣ 12 for (NS ) with w . Thus, (IV.8) in Proposition IV.2.1 gives

1 2 w (t) 2 Ḣ 1 2 + ∇w 2 L 2 t ( Ḣ 1 2 ) ≤ C w L ∞ t ( Ḣ 1 2 ) + C v h L ∞ t ( Ḣ 1 
2 ) + 1/4 ∇w 2

L 2 t ( Ḣ 1 2 ) +C w 2 L ∞ t ( Ḣ 1 2 ) ∇v h 2 L 2 t ( Ḣ 1 2 ) + Cδ(t), (IV.22) with δ(t) def = v l 2 L ∞ t ( Ḣ 1 2 ) ∇v l 2 L 2 t ( Ḣ 1 2 ) + v l 4 L 4 t ( Ḣ1 ) w 2 L ∞ t ( Ḣ 1 2 ) + f 2 L 2 t ( Ḣ- 1 2 ) 
.

According to Proposition IV.1.2, we may choose N 0 large enough so that

v h L ∞ t ( Ḣ 1 2 ) + ∇v h L 2 t ( Ḣ 1 
2 ) ≤ min 1/4C, 1/4

√ C ,
this gives in particular

C w 2 L ∞ t ( Ḣ 1 2 ) ∇v h 2 L 2 t ( Ḣ 1 2 ) ≤ 1 4 w 2 L ∞ t ( Ḣ 1 2 ) 
.

By denoting

T 1 def = sup τ > 0 : C w L ∞ τ ( Ḣ 1 
2 ) < 1/4 . Inequality (IV. [START_REF] Chae | Local existence and blow-up criterion for the Boussinesq equations[END_REF] gives, for all t < T 1

1 4 w (t) 2 Ḣ 1 2 ≤ Cδ(t)
and seen that ∇v l (•)

Ḣ 1 2 ∈ L 2 (R + ) and v l (•) Ḣ1 ∈ L 4 (R + ), one has δ(t) -→ 0, t → 0 + .
Hence, if we denote T 2 the first t > 0 such that δ(t) < 1/64C 2 for all t < T 2 . Setting T def = min{T 1 , T 2 }, by usual continuity arguments, we conclude that, for all t ∈ [0, T ), the E t ( Ḣ

2 ) norm of w remains bounded for all t < T , more precisely we have w

L ∞ t ( Ḣ 1 • 2 nd Step: s ∈ ( 1 2 , 3 
2 ). Again the scalar product in Ḣs for (NS ) with w and (IV.9) and (IV.10) of Proposition IV.2.1 allow us to get

1 2 w (t) 2 Ḣs + ∇w 2 L 2 t ( Ḣs ) ≤ C w L ∞ t ( Ḣ 1 2 ) + C v h L ∞ t ( Ḣ 1 
2 ) + 1/4 ∇w 2

L 2 t ( Ḣs ) +C w 2 L ∞ t ( Ḣs ) ∇v h 2 L 2 t ( Ḣ 1 2 ) + v l 4 L 4 t ( Ḣ1 ) + Cδ s (t), with δ s (t) def = w 2 L 4 t ( Ḣ1 ) v l 2 L 4 t ( Ḣs+ 1 2 ) + f 2 L 2
t ( Ḣs-1 ) < ∞, ∀t < T . We may suppose that, for t small enough (we keep the same notation for the maximal time

T ) u l 4 L 4
t ( Ḣ1 ) < 1/4C to end with the following estimate, for all t < T w (t) 2 Ḣs + ∇w 2

L 2 t ( Ḣs )
δ s (t) < ∞.

• 3 rd Step: s = 3 2 . By similar arguments and by making use of inequality (IV.12), it holds

1 2 w (t) 2 Ḣ 3 2 + ∇w 2 L 2 t ( Ḣ 3 2 ) ≤ C δ(t) + 1 4 ∇w 2 L 2 t ( Ḣs ) , with δ(t) def = v l 2 L ∞ t ( Ḣ1 ) v l 2 L 2 t ( Ḣ2 ) + w 2 L ∞ t ( Ḣ1 ) w 2 L 2 t ( Ḣ2 ) + v l 2 L ∞ t ( Ḣ1 ) w 2 L 2 t ( Ḣ2 ) + w 2 L ∞ t ( Ḣ1 ) v l 2 L 2 t ( Ḣ2 ) + v h 2 L ∞ t ( Ḣ1 ) w 2 L 2 t ( Ḣ2 ) + w 2 L ∞ t ( Ḣ1 ) v h 2 L 2 t ( Ḣ2 ) + f 2 L 2 t ( Ḣ 1 2 ) 
.

One deduces for all t < T that

w (t) 2 Ḣ 3 2 + ∇w 2 L 2 t ( Ḣ 3 2 ) δ(t) < ∞.
• 4 th Step s = 2. By using estimates (IV.13) and (IV.14), similar calculations to the previous steps lead to

1 2 w (t) 2 Ḣ2 + ∇w (t) 2 L 2 t ( Ḣ2 ) ≤ Cδ(t) + C t 0 ∇v h (τ ) 2 Ḣ1 w (τ ) 2 Ḣ2 dτ + 1 4 ∇w (t) 2 L 2 t ( Ḣ2 ) with δ(t) def = v h 2 L 4 t ( Ḣ1 ) + w 2 L 4 t ( Ḣ1 ) + v l 2 L 4 t ( Ḣ1 ) ∇w 2 L 4 t ( Ḣ 1 2 ) + ∇w 2 L 4 t ( Ḣ2 ) + w 2 L 4 t ( Ḣ1 ) + w 2 L 4 t ( Ḣ1 ) ∇v l 2 L 4 t ( Ḣ 1 2 ) + ∇v l 2 L 4 t ( Ḣ2 ) + ∇v h 2 L 2 t ( Ḣ1 ) ∇w 2 L ∞ t ( Ḣ 1 2 ) + f 2 L 2 t ( Ḣ1 ) ,
according to the previous steps δ(t) is finite for all t < T * , Gronwall lemma then insures

w (t) 2 Ḣ2 + ∇w (t) 2 L 2 t ( Ḣ2 ) δ(t) exp C v h 2 Et( Ḣ1 ) < ∞, ∀t < T *
This completes the proof of Proposition IV. , 2], with T can be considered as the maximal lifespan in H 1 , and we show now how to benefit of the axisymmetric structure to control the H 1 norm on [T -η, T ] for some η << 1, which allows to extend the solution, and contradicts the fact that T is maximal.

The key idea to prove the H 1 global bound of v is to explore the axisymmetric structure to get a uniform bound of

α def = ∇×v r in E T (L 2
) for all T > 0. Indeed, the solution v ∈ E T (H2 ), given by Proposition IV.2.2, for all T < T * , combined with the Biot-Savart law, (see Lemma 2.2 from [START_REF] Abidi | Résultats de régularité de solutions axisymétriques pour le système de Navier-Stokes[END_REF]) ensure that α lies in E T (L 2 ), for all T < T * . Now, we state the proof of the H 1 -global bound of v in the spirit [START_REF] Abidi | Résultats de régularité de solutions axisymétriques pour le système de Navier-Stokes[END_REF]. For the rest of the proof we will agree the following notations.

Γ h def = (∇ × v h ) e θ , Γ def = (∇ × v ) e θ , g def = (∇ × f ) e θ .
Recall that v = v h + v and it is clear that Γ solves

∂ t Γ + v r ∂ r +v z ∂ z - v r r Γ -∂ 2 r 2 +∂ 2 z 2 + ∂ r r - 1 r 2 Γ = g -v r ∂ r Γ h -v z ∂ z Γ h + v r r Γ h , (IV.23)
with (v r h , v z h ) and (v r , v z ) refer respectively to the components of v h and v . Taking the L 2 -inner product of (IV.23) by Γ , integrating by parts, the incompressibility

condition div v = ∂ r v r + ∂ z v z + v r r = 0 and div v h = ∂ r v h r + ∂ z v z h + v r h r = 0 yield 1 2 d dt Γ 2 L 2 + DΓ 2 L 2 + Γ r 2 L 2 = I(π,R,R + ) g Γ + v r r (Γ ) 2 + (v r ∂ r Γ + v z ∂ z Γ )Γ h + v r r Γ h Γ rdrdzdθ
Via, Cauchy-Schwartz and Hölder's inequalities, we end up with 1 2

d dt Γ 2 L 2 + DΓ 2 L 2 + Γ r 2 L 2 ≤ g Ḣ-1 Γ Ḣ1 + Γ r L 2 v r L 6 Γ L 3 + v L 6 DΓ L 2 Γ h L 3 + Γ r L 2 v L 6 Γ h L 3 ,
In accordance with the following Sobolev embedding

g Ḣ-1 f L 2 , Γ Ḣ1 ≈ DΓ L 2 and v L 6
∇v L 2 combined with Young inequality give rise to, 1 2

d dt Γ 2 L 2 + DΓ 2 L 2 + Γ r 2 L 2 f 2 L 2 + Γ r 4 3 L 2 ∇v 4 3 L 2 Γ 2 3 L 2 + ∇v 2 L 2 Γ h
After an integration in time and Young inequality with respect to time, it holds

Γ (t) 2 L 2 + DΓ 2 L 2 t (L 2 ) + Γ r 2 L 2 t (L 2 ) Γ 0, 2 L 2 + f 2 L 2 t (L 2 ) + Γ r 4 3 L ∞ t (L 2 ) ∇v 4 3 L 2 t (L 2 ) Γ 2 3 L 2 t (L 2 ) + t 0 ∇v (τ ) 2 L 2 Γ h (τ ) 2 L 3 dτ. (IV.24) Now, we treat α def = Γ
r which is governs the equation

∂ t α + v r ∂ r + v z ∂ z α -∂ 2 r + ∂ 2 z + 3 r ∂ r α = g r - v r r ∂ r Γ h - v z r ∂ z Γ h + v r r Γ h r . (IV.25)
To do so, taking the L 2 -inner product of (IV.25) with α and integrating over R 3 , one has

1 2 d dt α 2 L 2 + R 3 v r ∂ r α+v z ∂ z α αdx - R 3 ∂ 2 r α + ∂ 2 z α + 3 r ∂ r α αdx (IV.26) ≤ I(π,R,R + ) g r - v r r ∂ r Γ h - v z r ∂ z Γ h + v r r Γ h r αrdrdzdθ .
So, for the second term on the l.h.s we have

R 3 v r ∂ r α + v z ∂ z α αdx = I(π,R,R + ) (v r ∂ r α + v z ∂ z α)αrdrdzdθ = -π R×R + ∂ r v r + ∂ z v z + v r r α 2 rdrdz = 0,
where we have used the fact div

v = ∂ r v r + ∂ z v z + v r r = 0 and v r (0, •) = 0 because v is axisymmetric.
For the second term, we use the fact

∆ = ∂ 2 r + ∂ 2 z + 1 r ∂ r to obtain - R 3 ∂ 2 r α + ∂ 2 z α + 3 r ∂ r α αdx = - R 3 (∆α)αdx - R 3 2 r (∂ r α)αdx = ∇α 2 L 2 + 2π R α 2 (t, 0, z)dz ≥ ∇α 2 L 2 .
Collecting the last two estimates and inserting them in (IV.26), it follows

1 2 d dt α 2 L 2 + Dα(t) 2 L 2 ≤ I(π,R,R + ) g r - v r r ∂ r Γ h - v z r ∂ z Γ h + v r r Γ h r αrdrdzdθ . (IV.27)
Now, for the second term on the r.h.s, a straightforward computation yields

- v r r ∂ r Γ h - v z r ∂ z Γ h + v r r Γ h r = -v r ∂ r Γ h r -v z ∂ r Γ h r ,
so, a new use of integration by parts, the fact div v = 0 and v r (0, •) = 0 we further get

- I(π,R,R + ) v r r ∂ r Γ h + v z r ∂ z Γ h - v r r Γ h r αrdrdzdθ = I(π,R,R + ) v r ∂ r α + v z ∂ r α Γ h r rdrdzdθ.
Gathering the last two and plug them in (IV.27), thus Cauchy-Schwartz's and Hölder's inequalities lead to 1 2

d dt α 2 L 2 + Dα 2 L 2 ≤ g r L 2 α L 2 + Dα L 2 v r L 6 Γ h L 3
Integrating in time over (0, t), then in view of Young inequality, one has

α(t) L 2 + Dα L 2 t (L 2 ) α 0 L 2 + g r L 1 t (L 2 ) + t 0 v (τ ) r 2 L 6 Γ h (τ ) 2 L 3 dτ 1 2
, (IV.28)

For the first term on the r.h.s., Hardy inequality, Sobolev embedding Ḣ1 (R 3 ) → L 6 (R 3 ) and (A.17) provide that

v r L 6 ∂ r v L 6 ∇v Ḣ1 DΓ L 2 + Γ r L 2 ,
whereas, concerning the second one we have

g r L 1 t (L 2 ) f L 1 t (H 2 ) .
Plugging these into (IV.28), it happens

α(t) L 2 + Dα L 2 t (L 2 ) v 0 H 2 + f L 1 t (H 2 ) + t 0 DΓ L 2 + Γ r L 2 2 Γ h (τ ) 2 L 3 dτ 1 2 (IV.29) Let us denote Π(T 0 ) def = sup t∈[0,T 0 ] Γ (t) L 2 + DΓ L 2 t (L 2 ) + Γ r L 2 t (L 2 )
.

In accordance with Sobolev embedding and Proposition IV.1.3, one obtains

Γ h L ∞ t (L 3 ) v h L ∞ t (H 3 2 ) 
ε Inserting this latest in (IV.29), then for all t ∈ (0, T 0 ), we find

α(t) L 2 + Dα L 2 t (L 2 ) v 0 H 2 + f L 1 t (H 2 ) + εΠ(T 0 ) (IV.30)
Substituting (IV.30) into (IV.24), we infer that

Π(T 0 ) v 0 H 1 + f L 2 T 0 (L 2 ) + Π(T 0 ) Γ h L 2 T 0 (L 3 ) + α 2 3 L ∞ T 0 (L 2 ) ∇v 2 3 L 2 T 0 (L 2 ) Γ 1 3 L 2 T 0 (L 2 ) v 0 H 1 + f L 2 T 0 (L 2 ) + Π(T 0 ) Γ h L 2 T 0 (L 3 ) + v 0 H 2 + f L 1 t (H 2 ) +εΠ(T 0 ) 2 3
× ∇v

2 3 L 2 T 0 (L 2 ) ∇v 1 3 L 2 T 0 (L 2 ) .
Again, Sobolev embedding and Proposition IV.1.2 yield

Γ h L 2 T 0 (L 3 ) v h L 2 T 0 (H 3 2 ) 
ε.

Now, we choose N 0 1 such that ε 1, to end with

Π(T 0 ) v 0 H 1 + v 0 H 2 + f L 2 T 0 (L 2 ) + f L 1 T 0 (H 2 ) + Dv 3 L 2 T 0 (L 2 ) .
The left hand-side of the last inequality is finite for all finite T 0 > 0, more precisely we have

Π(T 0 ) v 0 H 1 + v 0 H 2 + 1 + T 1 2 0 N 2 0 f L 2 T 0 (L 2 ) + v 0 2 L + (1 + T 0 ) f L 2 T 0 (H -1 ) 3 < ∞.
The last inequality provides the desired E T (H 1 ), for all finite T > 0. Theorem IV.2.2 is then proved. 2

Remark IV.2.3. The L β T (L 2 )-norm of f does not explicitly appear in the last inequality above, but according to the proof of Proposition IV.1.3, the choice of N 0 is really related to fact that f L β T (L 2 ) is finite. Proof of Theorem IV.1.2 In order to derive Theorem IV.1.2 from Theorem IV.2.2, we will proceed by the following argument. For v 0 in H

1 2 , we construct a unique solution v = v h + v , with v h is in E t (H 1 
2 ) for all t > 0, and v solves (NS ) in E T (H

1 2 ), with T < T the maximal lifespan of existence in H 1 2 . Since v ∈ L 2 T (H 3 
2 ), there exists some t 0 ∈ (0, T ) such that v (t 0 ) ∈ H 3 2 , then Proposition IV.2.2 enables to solve (NS ) again on (t 0 , T * ) with initial data v (t 0 ). So, due to the uniqueness of the solution, we infer that v ∈ L ∞ ((t 0 , T );

H 3 2 ) ∩ L 2 ((t 0 , T ); H 5 
2 ). By the same processes there exists t 1 ∈ (t 0 , T ) such that v (t 1 ) ∈ H 2 . Hence, if we take v (t 1 ) as the new initial data we succeed to construct a unique solution given by Theorem IV.2.2 on (t 1 , T ) for all T > t 1 , we denote this solution by v . The uniqueness property of the Navier-Stokes equations in E T ( Ḣ

2 ) guarantees that v = v on [t 1 , T ) and Theorem IV.1.2 follows. 2

IV.3 Global wellposedness of the Axisymmetric Boussinesq system (Proof of Theorem IV.1.4)

The goal of this section is to show how to derive Theorem IV.1.4 from Theorem IV.1.2.

Proof of Theorem IV.1.4 Since (v 0 , ρ 0 ) ∈ H 1 2 (R 3 ) × L 2 (R 3 )
, then in accordance of Theorem 1.1 in [START_REF] Danchin | Le théorème de Leray et le théorème de Fujita-Kato pour le système de Boussinesq partiellement visqueux[END_REF] we can construct at least one global solution (v, ρ) to (B) which satisfies the energy inequalities. Next, for ρ ∈ L ∞ (L 2 ) ⊂ L β loc (L 2 ) for β > 4, by virtue of Theorem IV.1.2, we associate to this ρ, the unique global solution to (NS) in E T (H 1 2 ), for all T > 0. The final step consists at proving that the solution (v, ρ) is the unique one. Doing so, we will need some additional regularity on v and ρ, therefore the conclusion of the proof is a direct application of Proposition IV.1.4 that we prove below.

2

Proof of Proposition IV.1.4 We will only show how to propagate the regularity in Proposition IV.1.4, the uniqueness part is well known to hold in these spaces, see for instance Theorem 1.3 in [START_REF] Danchin | Le théorème de Leray et le théorème de Fujita-Kato pour le système de Boussinesq partiellement visqueux[END_REF].

We intend to extend the proof of the previous proposition to more general class of system than (B). Such system takes the form

       ∂ t v -µ∆v + ∇p = Q(v, v) + ρ e 3 if (t, x) ∈ R + × R 3 , ∂ t ρ + v • ∇ρ = 0 if (t, x) ∈ R + × R 3 , div v = 0, (v, ρ) |t=0 = (v 0 , ρ 0 ). (B µ,Q ) where Q(v, v) j = 3 i=1 q i,j (D)(v i v j )
and {q i,j } 1≤i,j≤3 are Fourier multipliers of order 1.

Thanks to Proposition A.3.1 with f ≡ 0, we have the following estimate

ρ L ∞ t ( Ḃ0 3,1 ) ρ 0 Ḃ0 3,1 1 + t 0 ∇v(τ ) Ḃ0 ∞,1 dτ . (IV.31) Therefore, the control of ρ in L ∞ T ( Ḃ0 3,1 ) requires a control of v in L 1 T ( Ḃ1 ∞,1
), which can be done, due to sobolev embedding, if we know how to control v in L 1 T (B 2 3,1 ). To do so, we consider the Duhamel's formula associated to the velocity equation

v(t, •) = S(t)v 0 (•) - t 0 S(t -τ )PQ(v, v)(τ, •)dτ - t 0 S(t -τ )Pρ e 3 (τ, •)dτ.
To make the presentation simple enough, we will use in the rest of the proof the following notation

E T ( Ḃ0 3,1 ) def = L ∞ T ( Ḃ0 3,1 ) ∩ L 1 T ( Ḃ2 3,1
). Owing to the continuity property of the heat semi-group S(•), we have

v Et( Ḃ0 3,1 ) v 0 Ḃ0 3,1 + Q(v, v) L 1 t ( Ḃ0 3,1 ) + ρ L 1 t ( Ḃ0 3,1 ) . (IV.32)
In fact, if we deal directly with L 1 T ( Ḃ2 3,1 ) estimate we will end with the following issue. By exploring the following estimate the proof of which is an easy application of para-product law,

Q(v, v) L 1 t ( Ḃ0 3,1 ) (v, v) L 1 t ( Ḃ1 3,1 ) v L ∞ t ( Ḃ-1 ∞,∞ ) v L 1 t ( Ḃ2 3,1 ) , by denoting V(t) def = v L 1 t ( Ḃ2 3,1 ) and K(t) def = v L ∞ t (H 1 2 
) and on account of (IV.31), one has

V(t) C 0 + K(t)V(t) + t 0 C 0 V(τ )dτ. (IV.33)
Remark that the above estimate doesn't provide a global control of V(t) for all t ≤ T < ∞.

The difference factor between our context and that of [START_REF] Hmidi | Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data[END_REF] is the following: in [START_REF] Hmidi | Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data[END_REF], the authors dealt with an initial data v 0 in H 1 (R 3 ) which gives a solution v in L 2 T (H 2 ) and eventually by interpolation, one obtains in their context that v belongs to L 2 T ( Ḃ 3 2 2,1 ). Or, this latter space in an algebra, whereupon the following estimate holds

Q(v, v) L 1 t ( Ḃ0 3,1 ) v 2 L 2 t ( Ḃ 3 2 2,1 ) 
(IV.34)

≤ C 0 e C 0 t .
Therefore in [START_REF] Hmidi | Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data[END_REF], instead of (IV.33), they have

V(t) C 0 + C 0 e C 0 t + t 0 C 0 V(τ )dτ.
which is sufficient to control V. Contrary, in our case we deal only with initial data in H 1 2 , so the maximal gain of regularity is

L 2 T (H 3 2 
). Consequently, we are below to the regularity threshold of Hmidi-Rousset's approach [START_REF] Hmidi | Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data[END_REF] which in turn becomes not available in our case. To remedy this latter, we must propose another argument, in particular to control the non-linear term without using the L 2 t (H

2 ) norm when we deal with the low frequencies in the Bony's decomposition of v ⊗ v. The first step consists to establish a control of the velocity v in L

4 3 t ( Ḃ 3 2 3, 4 
3

) = L 4 3 t ( Ḃ 3 2 3,4/3 ) in terms of the L 4 t ( Ḣ1 ) and L 2 T ( Ḣ 3 
2 ) norms of v, which are already controlled, for all t ≤ T, since v ∈ E T ( Ḣ 2 ). In the next step, in order to control v L 1 t ( Ḃ2 3,1 ) , we estimate the bi-linear term in terms of the L 

S(•)v 0 L 4 3 t ( Ḃ 3 2 3,r ) v 0 Ḃ0 3,1 .
In particular, for r = 4 3 , we obtain

S(•)v 0 L 4 3 t ( Ḃ 3 2 3,4/3 ) v 0 Ḃ0 3,1 .
Defining

Kg(t, •) def = t 0 S(t -τ )g(τ, •)dτ.
The following inequality Kg L

together with Sobolev embedding Ḃ0

2,1 → Ḃ 3 2 -2
3,4/3 and the estimate

Q(v, v) L 4 3 t ( Ḃ0 2,1 ) v L 4 t ( Ḣ1 ) v L 2 t ( Ḣ 3 
2 ) ,

lead to v L 4 3 t ( Ḃ 3 2 3, 4 3 
)

v 0 Ḃ0 3,1 + C v L 4 t ( Ḣ1 ) u L 2 t ( Ḣ 3 2 ) + ρ L 1 t ( Ḃ0 3,1 )
By means of (IV.31), it follows

v L 4 3 t ( Ḃ 3 2 3, 4 3 
)

v 0 Ḃ0 3,1 + C v L 4 t ( Ḣ1 ) u L 2 t ( Ḣ 3 
2 ) + ρ 0 Ḃ0

3,1 t + t 0 V(τ )dτ . (IV.35)
Finally, we come back to estimate

V(t) = v L 1 t ( Ḃ2 3,1 )
, to do so, we summarize from (IV.32), and instead of using (IV.34), we use the following estimates, which we will prove at the end of this section

Q(v ⊗ v) L 1 t ( Ḃ0 3,1 ) v L 4 t ( Ḣ1 ) v L 4 3 t ( Ḃ 3 2 3,2 ) (IV.36) v L 4 t ( Ḣ1 ) v L 4 3 t ( Ḃ 3 2 3, 4 3 
) with the help of (IV.35) and the embedding

E T ( Ḣ 1 2 ) → L 4 T ( Ḣ1 ), it happens Q(v, v) L 1 ( Ḃ0 3,1 ) v Et( Ḣ 1 2 ) v 0 Ḃ0 3,1 + C v 2 Et( Ḣ 1 2 ) + ρ 0 Ḃ0 3,1 t + t 0 V(τ )dτ .
By setting

A(t) def = v 0 Ḃ0 3,1 + t ρ 0 Ḃ0 3,1 + v Et( Ḣ 1 2 ) v 0 Ḃ0 3,1 + C v 2 Et( Ḣ 1 2 ) + t ρ 0 Ḃ0 3,1 , and 
B(t) def = ρ 0 Ḃ0 3,1 1 + v Et( Ḣ 1 
2 ) , which are finite for all t < ∞. Therefore, one concludes from (IV.32) that

V(t) A(t) + B(t) t 0 V(τ )dτ,
Gronwall's estimate yields V(t) A(t)e tB(t) , for all t < ∞.

(IV.37)

Once, we have established the bound of V(t) for all t > 0, we can control v in E t ( Ḃ0 3,1 ) and ρ in L ∞ t ( Ḃ0 3,1 ) by substituting (IV.37) in (IV.32) and (IV.31). Proposition IV.1.4 is then proved.

For the sake of completeness, we briefly outline the proof of (IV.36). For this aim, we employ the following law product in three dimensions of space

Ḣ1 ∩ Ḃ 3 2 3,2 • Ḣ1 ∩ Ḃ 3 2 3,2 ⊂ Ḃ1 3,1 .
Indeed, Bony's decomposition enables us to write

uv = T u v + T v u + R(u, v).
For T u v, we have

∆j (T u v) L 3 Ṡj-1 u L ∞ ∆j v L 3 c 2 j 2 -j u Ḃ-1 2 ∞,2 v Ḃ 3 2 3,2 , with j∈Z c 2 j ≤ 1. Whence, the 3D Sobolev embedding Ḣ1 → Ḃ-1 2 ∞,2 gives T u v Ḃ1 3,1 u Ḣ1 v Ḃ 3 2 3,2
.

Similarly, by exchanging the positions of u and v in the above estimates, we infer that

T v u Ḃ1 3,1 v Ḣ1 u Ḃ 3 2 3,2 . 

V.1 Introduction and statement of the main results

In this Chapter we consider the following Navier-Stokes-Boussinesq equations with horizontal dissipation

       ∂ t + u • ∇ u -∆ h u + ∇P = ρe 3 , in R + × R 3 ∂ t + u • ∇ ρ -∆ h ρ = 0 div u = 0 (u, ρ) |t=0 = (u 0 , ρ 0 ), (N SB h ) where ∆ h def = ∂ 2 1 + ∂ 2 2
denotes the horizontal laplacian and e 3 = (0, 0, 1) T is the third vector of the canonical basis of R 3 . The unknowns of the system are u = (u 1 , u 2 , u 3 ), ρ and P which represent respectively: the velocity, the density and the pressure of the fluid.

In the following we will say that (u, ρ) is a solution to (N SB h ) if it is a weak solution in the classical sense (see for instance [START_REF] Chemin | Fluid with anisotropic viscousity[END_REF] pages 123,132 and 204). We recall also that from a solution (u, ρ) we may use a result of De Rham in order to recover a pressure P (which depends on u and ρ) and to obtain a distributional solution (u, ρ, P ) of the system (N SB h ).

Note that in (N SB h ) the diffusion only occurs in the horizontal direction. This is a natural assumption for several cases of interest in geophysical fluids flows (see [START_REF] Pedlosky | Geophysical fluid dynamics[END_REF]). However -∆ h is a less regularizing operator than the laplacian -∆ and we cannot expect a better theory than for the classical Navier-Stokes-Boussinesq equations:

       ∂ t + u • ∇ u -∆u + ∇P = ρe 3 , in R + × R 3 , ∂ t + u • ∇ ρ -∆ρ = 0, div u = 0, (u, ρ) |t=0 = (u 0 , ρ 0 ). (N SB)
In particular, the question of the global well-posedness of (N SB) and consequently of (N SB h ) remains largely open, but recently the system (N SB h ) has received a lot of attention from mathematicians (see for instance [START_REF] Miao | On the global well-posedness for the Boussinesq system with horizontal dissipation[END_REF][START_REF] Adhikari | Global regularity results for the 2D Boussinesq equations with vertical dissipation[END_REF][START_REF] Wu | The 2D Boussinesq equations with fractional horizontal dissipation and thermal diffusion[END_REF]) and significant progress in its analysis have been made. See also [START_REF] Hanachi | On the global well-posedness of axisymmetric Boussinesq system in critical Lebesgue spaces[END_REF][START_REF] Hmidi | On the global regularity of axisymmetric Navier-Stokes-Boussinesq system[END_REF][START_REF] Hmidi | Global well-posedness for an Euler-Boussinesq system with critical dissipation[END_REF][START_REF] Houamed | On the global solvability of the axisymmetric Boussinesq system with critical regularity[END_REF] for more related results for other models of the Boussinesq system. Note again that (N SB h ) involves the operator -∆ h which smooth only along the horizontal variables. Hence, we need to estimate differently the horizontal and the vertical directions, and the natural functional setting for the analysis involves some anisotropic Sobolev and Besov spaces. The definitions of these spaces and some of their important properties are recalled in the next section.

In order to analyse (N SB h ) it is useful to forget its second equation for a while, and to consider first the Navier-Stokes equations with horizontal laplacian:

   ∂ t + u • ∇ u -∆ h u + ∇P = 0, in R + × R 3 , div u = 0, u |t=0 = u 0 . (N S h )
Several interesting studies for this last system were done. In [START_REF] Chemin | Fluid with anisotropic viscousity[END_REF], the authors proved the local existence and the global one for small data in H 0,s for some s > 12 . The proof of the existence part in [START_REF] Chemin | Fluid with anisotropic viscousity[END_REF] uses deeply the structure of the equation and the fact that u is a divergence free vector field. The key point used in their estimates is related to the fact 1 that H

1 2 (R 2 ) → L 4 (R 2
) and that H s (R) is an algebra. Hence, it is easy to deal with the term u h • ∇ h u by using some product rules in the well-chosen spaces. Next, after using the divergence free condition together with some Littlewood-Paley stuffs in a clever way they were able to treat the term u 3 ∂ 3 u with the same argument.

Always in [START_REF] Chemin | Fluid with anisotropic viscousity[END_REF], the authors proved also a uniqueness result (but only for s > 3 2 , because of the term w 3 ∂ 3 u) by establishing a H 0,s 0 -energy estimate for a difference between two solutions w = u -v, where s 0 ∈] 1 2 , s]. Later, in [START_REF] Iftimie | A uniqueness result for the Navier-Stokes equations with vanishing vertical viscosity[END_REF], D.Iftimie had overcome the difficulty by remarking that it is sufficient to estimate w in H -1 2 with respect to the vertical variable, and this only requires an H 1 2 regularity for u in the vertical direction. Then he proved a uniqueness result for any s > 1 2 , and the gap between existence and uniqueness was closed. To do something similar with system (N SB h ), we begin by estimating the horizontal terms (terms which contain only horizontal derivatives) by using some product rules in the adequate Besov and Sobolev spaces. For the vertical terms (terms which contain only vertical derivatives) we follow in general the idea in [START_REF] Chemin | Fluid with anisotropic viscousity[END_REF] in order to transform them into terms similar to the horizontal ones by using the divergence free condition. Hence, for s ∈] 1 2 , 1], we first propose to estimate the difference between two solutions w = u -v in H 0,s-1 instead of H 0,-1 2 providing that the solution u already exists in the H 0,s energyspace (see Appendix for a proof of an existence result). For the second equation, denoting the difference between two solutions θ = ρ 1 -ρ 2 we remark that:

• The function ρ only appears in the third equation of u (the equation for the component u 3 ). Hence, a priori, we only need to estimate ρ in the H s-1 -norm with respect to the vertical variable.

• In order to deal with the term u h •∇ h θ, we must estimate θ with respect to the vertical variable in some space H -α , with α ≥ 0 and such that H s (R) × H -α (R) holds to be a subspace of H -α (R). In fact, Lemma V.2.1 bellow says that the minimum index -α that can be chosen is -α = -s.

• For the term w h • ∇ h ρ, if we consider that ρ lies in some H β -space, with respect to the vertical variable, then a direct application of the product rules shows that we need β ≥ 1 -s. Moreover, because the system is hyperbolic in the vertical direction, we expect the loss of one derivative.

Hence, we will estimate vertically ρ in H 1-s and θ in H -s .

For the critical case where s = 1 2 , in [START_REF] Paicu | Equation anisotrope de Navier-Stokes dans des espaces critiques[END_REF] M.Paicu proved a uniqueness2 result for

(N S h ) in L ∞ T (H 0, 1 2 ) ∩ L 2 T (H 1, 1 2
). It is clear that such a space falls to be embedded in L ∞ in the vertical direction which is the major problem that prevents using similar arguments to those in the case where s > 1 2 . In order to prove the uniqueness, the author in [106] established a double logarithm estimate (see (V.6)) and concluded by using the Osgood's Lemma. We will provide some details to adapte the idea of [START_REF] Paicu | Equation anisotrope de Navier-Stokes dans des espaces critiques[END_REF] and apply it to (N SB h ).

Our main result is the following:

Theorem V.1.1. (Uniqueness) Let s ∈ [ 1 2
, 1] and (u, ρ), (v, η) be two solutions for system

(N SB h ) in L ∞ loc (R + ; H 0,s ) ∩ L 2 loc (R + ; H 1,s ) × L ∞ loc (R + ; H 0,1-s ) ∩ L 2 loc (R + ; H 1,1-s ).
Then (u, ρ) = (v, η).

As an interesting consequence, we can improve the results of global well-posedness in the case of axisymmetric initial data established in [START_REF] Miao | On the global well-posedness for the Boussinesq system with horizontal dissipation[END_REF].

Let us first recall some basic notions: We say that a vector field

u is axisymmetric if it satisfies R -α (u(R α (x))) = u(x), ∀α ∈ [0, 2π], ∀x ∈ R 3 ,
where R α denotes the rotation of axis (Oz) and with angle α. Moreover, an axisymmetric vector field u is called without swirl if it has the form:

u(x) = u r (r, z)e r + u z (r, z)e z , x = (x 1 , x 2 , x 3 ), r = x 2 1 + x 2 2 and z = x 3 .
We say that a scalar function f is axisymmetric, if the vector field x → f (x)e z is axisymmetric. We also denote by ω = curl u the vorticity of u. Then we will prove:

Theorem V.1.2. (Global well-posedness) Let u 0 ∈ H 1 (R 3
) be an axisymmetric divergence free vector field without swirl such that ω 0 r ∈ L 2 and let ρ 0 ∈ L 2 be an axisymmetric function. Then there exists a unique global solution (u, ρ) of the system (N SB h ). Moreover, we have:

u ∈ C(R + ; H 1 ) ∩ L 2 loc (R + ; H 1,1 ∩ H 2,0 ), ω r ∈ L ∞ loc (R + ; L 2 ) ∩ L 2 loc (R + ; H 1,0 ), ρ ∈ C(R + ; L 2 ) ∩ L 2 loc (R + ; H 1,0 ).
Note that in Theorem V.1.2, we only assume that (u 0 , ρ 0 ) ∈ H 1 × L 2 whereas in [START_REF] Miao | On the global well-posedness for the Boussinesq system with horizontal dissipation[END_REF] the authors consider a stronger condition. Namely, in addition of the hypothesis of Theorem V.1.2 they assume that (∇ × u 0 , ρ 0 ) is in H 0,1 × H 0,1 or in L ∞ × H 0,1 . In both works the key point consists to establish an uniqueness result: it is the Theorem V.1.1 for us, whereas in [START_REF] Miao | On the global well-posedness for the Boussinesq system with horizontal dissipation[END_REF] the authors assume a strong initial condition in order to obtain some double exponential control in time for the gradient of u.

The last result we prove in this Chapter is a sort of a local wellposedness of N SB h , where the uniqueness of the solution is a direct application of Theorem V.1.1, namely we will prove

Theorem V.1.3. (Local well-posedness) Let s ∈] 1 2 , 1] , δ ∈ [0, s]
and (u 0 , ρ 0 ) ∈ H 0,s × H 0,δ . We have:

• There exists C s > 0 such that if u 0 2 0,s + T ρ 0 L 2 u 0 L 2 + ρ 0 L 2 1 + T 2 < C 2 s .
then (N SB h ) has at least one solution (u, ρ) in X s,δ (T ), where:

X s,δ (T ) def = L ∞ T H 0,s ∩ L 2 T H 1,s × L ∞ T H 0,δ ∩ L 2 T H 1,δ .
• The solution is unique if δ ≥ 1 -s.

Remark V.1.1. Notice that, according to Theorem V.1.3, the construction of solutions to (N SB h ) (at least locally in time) does not require high regularity for the initial density ρ 0 . This is in fact possible due to the high vertical regularity of the velocity which allows us to rigorously justify the a priori estimates (as in the Friedrich's method explained in the proof of Theorem V.1.2).

Remark V.1.2. The constant C s in Theorem V.1.3 tends in fact to zero when s tends to 1 2 . In this case, our a priori estimates fall, and hence the existence of solutions in the case s = 1 2 remains open, even for the classical Navier-Stokes equations. Remark V.1.3. In the case where s = 1 2 , one may prove a local well-posedness result if the initial data

(u 0 , ρ 0 ) is in L 2 h (B 1 2
2,1 ) v 2 . See for instance [START_REF] Paicu | Equation anisotrope de Navier-Stokes dans des espaces critiques[END_REF] where this is established for (N S h ).

Throughout this chapter we write R 3 = R 2 h × R v and for any vector ξ = (ξ 1 , ξ 2 , ξ 3 ) ∈ R 3 , we will denote the two first componants by ξ h and the last one by ξ v , that is to say: ξ = (ξ 1 , ξ 2 , ξ 3 ) def = (ξ h , ξ v ). Similarly, for any vector field X = (X 1 , X 2 , X 3 ) we will write X = (X h , X v ) with the meaning that X h = (X 1 , X 2 ) and X v = X 3 . We will also use the notations

H s h = H s (R 2 h ), H s v = H s (R v ), L p v (H s h ) = L p (R v ; H s h ) and L r T L p h L q v = L r (0, T ; L p (R 2 h ; L q (R v ))).
Recall that (N SB h ) involves the operator -∆ h which only regularizes along the horizontal direction. Hence the regularity of the functions along the vertical variable must be measured differently than the horizontal ones, that is we need to work in anisotropic function spaces, we refer to the Appendix part of this thesis for the definition and more details about these spaces.

This Chapter is organized as follows: in section 2, we establish several a priori estimates which are then used in section 3 to prove our theorems. Finally in section 4 we shall prove Theorem V.1.1, then we outline the proofs of Theorems V.1.2 and V.1.3, where the uniqueness part is an application of Theorem V.1.1.

V.2 A priori estimates and crucial lemmata

In this section we establish the main a priori estimates required to prove our theorems. But before that, let us prove two lemmata which serves the purpose of this section.

The following lemma is a sort of product laws in non-homogeneous Sobolev spaces

Lemma V.2.1. Let σ, σ , s, s 0 ∈ R verifying σ, σ < 1, σ + σ > 0, s 0 > 1 2
, s ≤ s 0 and s + s 0 ≥ 0 then there exists a constant C = C(σ, σ , s, s 0 ) such that:

ab H σ+σ -1,s ≤ C a H σ,s b H σ ,s 0 , ∀a, b ∈ S. Proof Remark first that because ab H σ+σ -1,s = ab H s v H σ+σ -1 h
, we have only to prove that:

H s (R) • H s 0 (R) ⊂ H s (R). (V.1)
Indeed, by using (V.1) together with the usual product rules with respect to the horizontal variables, the desired result follows (see for instance [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]). Note also that when s 0 > s > 1 2 , the inclusion (V.1) is trivial since in this case the space H s is an algebra and clearly H s 0 → H s . It remains then only to prove (V.1) in the situation s 0 > 1 2 ≥ s and s + s 0 ≥ 0. In order to do this, we use the Bony's decomposition in the vertical variable: ab = T v a b+T v b a+R v (a, b). For the first term, let us consider the two cases: s < 1 2 and s = 1 2 . The case s < 1 2 : By using the embedding

H s (R) → B s-1 2
∞,2 (R), together with (A.5) we obtain for any q ≥ -1:

∆ v q (T v a b) L 2 (R) S v q-1 a L ∞ (R) ∆ v q b (L 2 R) c 2 q 2 -q(s-1 2 ) 2 -qs 0 a B s-1 2 ∞,2 (R) b H s 0 (R) c 2 q max{1, 2 s 0 -1 2 }2 -qs a H s (R) b H s 0 (R) c 2 q 2 -qs a H s (R) b H s 0 (R) . It follows that T v a b H s (R) a H s (R) b H s 0 (R) . (V.
2)

The case s = 1 2 . We use the following estimate:

S v q-1 a L ∞ (R) ≤ -1≤j≤q 2 j 2 ∆ v j a L 2 (R) √ q a H 1 2 (R) ,
in order to obtain:

∆ v q (T v a b) L 2 (R) S v q-1 a L ∞ (R) ∆ v q b L 2 (R) c q √ q2 -q(s 0 -1 2 ) 2 -q 2 a H 1 2 (R) b H s 0 (R) .
Seen that ∀ε > 0, there exists C ε > 0 such that for all q ∈ R + : √ q2 -qε ≤ C ε , we infer that:

T v a b H 1 2 (R) a H 1 2 (R) b H s 0 (R) ,
and (V.2) follows for all s ≤ 1 2 < s 0 . Moreover, by using the embedding H s 0 (R) → L ∞ (R) together with the estimate:

∆ v q (T v b a) L 2 (R) S v q-1 b L ∞ (R) ∆ v q a L 2 (R) b L ∞ (R) c q 2 -qs a H s (R) ,
we obtain:

T v b a H s (R) a H s (R) b H s 0 (R) .
For the reminder term, if s + s 0 > 0, then applying Lemma A.2.2 together with (A.5) gives:

∆ v q (R(a, b)) L 2 (R) 2 q 2 j≥q-N 0 ∆ v j a L 2 (R) ∆v j b L 2 (R) , 2 q 2 j≥q-N 0 c 2 j 2 -j(s+s 0 ) a H s (R) b H s 0 (R) ,
where ∆v

q def = i={-1,0,1} ∆ v q+i .
Consequently, for any q ≥ -1 we get:

2 qs ∆ v q (R(a, b)) L 2 (R) 2 -q(s 0 -1 2 ) a H s (R) b H s 0 (R) j≥q-N 0 c 2 j 2 -(j-q)(s+s 0 ) c q 2 -q(s 0 -1 2 ) a H s (R) b H s 0 (R) .
It is then easy to show that R(a, b)

H s (R) a H s (R) b H s 0 (R)
. If s + s 0 = 0, then along the same lines we can prove that: R(a, b)

B -1 2 2,∞ (R) a H s (R) b H s 0 (R) .
The last step consists to use the following inequality by taking a = -1 2 and ε = s 0 -1 2 :

f B a-ε 2,1 = k≥-1 2 k(a-ε) ∆ k f L 2 ≤ C(ε) f B a 2,∞ , ∀a ∈ R, ε > 0. (V.3)
We get:

R(a, b) H -s 0 (R) = R(a, b) H s (R) a H s (R) b H s 0 (R) ,
which ends the proof. 2

Another important result is the following commutator-type estimate:

Lemma V.2.2. Let u, f be regular where u is a divergence free vector field in R 3 . We have:

∆ v q , S v j-1 u 3 (., x 3 ) f L 2 v H -1 2 h 2 -q S v j-1 ∇ h u(., x 3 ) L ∞ v L 2 h f L 2 v H 1 2 h
.

Proof

The proof is essentially based on the fact that -∂ 3 u 3 = ∇ h • u h and the following usual commutator estimate used with respect to the vertical variable:

∆ j , a b L r 2 -j ∇a L p b L q , with 1 r = 1 p + 1 q . (V.4)
For the proof of estimates of type (V.4) one may see for example [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], and for a detailed proof of Lemma V.2.2, one may see [START_REF] Chemin | Fluid with anisotropic viscousity[END_REF].

2
Let f, g def = f, g L 2 (R 3 ) be the usual L 2 -scalar product, and f, g α,β denotes the scalar product between f and g in H α,β (R 3 ). In order to simplify the redaction, we introduce the following notations:

L 1 def = q≥-1 2 2q(s-1) ∆ v q (u h • ∇ h w), ∆ v q w , L 2 def = q≥-1 2 2q(s-1) ∆ v q (u 3 ∂ 3 w), ∆ v q w , L 3 def = q≥-1 2 2q(s-1) ∆ v q (w h • ∇ h v), ∆ v q w , L 4 def = q≥-1 2 2q(s-1) ∆ v q (w 3 ∂ 3 v), ∆ v q w , L 5 def = q≥-1 2 -2qs ∆ v q (u h • ∇ h θ), ∆ v q θ , L 6 def = q≥-1 2 -2qs ∆ v q (u 3 ∂ 3 θ), ∆ v q θ , L 7 def = q≥-1 2 -2qs ∆ v q (w h • ∇ h η), ∆ v q θ , L 8 def = q≥-1 2 -2qs ∆ v q (w 3 ∂ 3 η), ∆ v q θ , L 9 def = q≥-1 2 2q(s-1) ∆ v q θ, ∆ v q (w 3 ) .
We shall prove:

Proposition V.2.1. Let s ∈] 1 2 , 1]. Then for u, v, w, ρ, η, θ verifying: u, v, ∇ h u, ∇ h v ∈ H 0,s , ρ, η, ∇ h ρ, ∇ h η ∈ H 0,1-s , w, ∇ h w ∈ H 0,s-1 , θ, ∇ h θ ∈ H 0,-s , div u = div v = div w = 0,
we have:

L 1 u 1 2 ,s ∇ h w 0,s-1 w 1 2 ,s-1 , L 2 ∇ h u 0,s w 2 1 2 ,s-1 , L 3 ∇ h v 0,s w 2 1 2 ,s-1 , L 4 v 1 2 ,s w 0,s-1 + ∇ h w 0,s-1 w 1 2 ,s-1 , L 5 u 1 2 ,s ∇ h θ 0,-s θ 1 2 ,-s , L 6 ∇ h u 0,s θ 2 1 2 ,-s , L 7 ∇ h η 0,1-s w 1 2 ,s-1 θ 1 2 ,-s , L 8 η 1 2 ,1-s w 0,s-1 + ∇ h w 0,s-1 θ 1 2 ,-s , L 9
θ 0,-s ( ∇ h w 0,s-1 + w 0,s-1 ).

Proof

In the following we denote by c q some constant c q def = c q (u, v, w, θ, ρ, t) with q≥-1 c 2 q ≤ 1 which comes from the fact (A.4) or (A.5). This constant is allowed to differ from one line to another.

• L 1 estimate Since s + (s -1) > 0, by using product Lemma V.2.1 between H 1 2 ,s and H 0,s-1 , we obtain

L 1 = u h • ∇ h w, w 0,s-1 ≤ u h • ∇ h w -1 2 ,s-1 w 1 2 ,s-1 u 1 2 ,s ∇ h w 0,s-1 w 1 2 ,s-1 . • L 2 estimate We write L 2 = L (1) 2 + L (2) 2 + L (3) 2 where L (1) 2 def = q≥-1 2 2q(s-1) |j-q|≤N 0 ∆ v q ∆ v j (u 3 )S v j-1 (∂ 3 w) , ∆ v q w , L (2) 2 def 
= q≥-1 2 2q(s-1) |j-q|≤N 0 ∆ v q S v j-1 (u 3 )∆ v j (∂ 3 w) , ∆ v q w , L (3) 2 def 
= q≥-1 2 2q(s-1) i∈{0,-1,1} j≥q-N 0 ∆ v q ∆ v j+1 (u 3 )∆ v j (∂ 3 w) , ∆ v q w .
Then, by using the embedding of H

1 2 (R 2 h ) in L 4 (R 2 h
), Bernstein Lemma for the vertical variable together with statement (A.4), we obtain

L (1) 2 w 1 2 ,s-1 q≥-1 c q 2 q(s-1) 2 q/2 |j-q|≤N 0 S v j-1 w L 4 h L 2 v ∆ v j ∇ h u L 2 w 1 2 ,s-1 w 1 2 ,s-1 ∇ h u 0,s q≥-1 c q 2 q(s-1 2 ) |j-q|≤N 0 c 2 j 2 j(1-s) 2 -sj w 1 2 ,s-1 w 1 2 ,s-1 ∇ h u 0,s q≥-1 c q 2 q(s-1 2 ) 2 q(1-s) 2 -qs w 1 2 ,s-1 w 1 2 ,s-1 ∇ h u 0,s q≥-1 c q 2 -q(s-1 2 )
w 1 2 ,s-1 w 1 2 ,s-1 ∇ h u 0,s .

To estimate L

(2)

2 , we consider the decomposition used in [START_REF] Chemin | Fluid with anisotropic viscousity[END_REF], by writing L

(2)

2 = A 1 +A 2 +A 3 , with A 1 def = q≥-1 2 2q(s-1) S v q (u 3 )∆ v q (∂ 3 w), ∆ v q w , A 2 def = q≥-1 2 2q(s-1) |j-q|≤N 0 S v q -S v j-1 (u 3 )∆ v j (∂ 3 w), ∆ v q w , A 3 def = q≥-1 2 2q(s-1) |j-q|≤N 0 ∆ v q , S v j-1 (u 3 ) ∆ v j (∂ 3 w), ∆ v q w ,
where [∆ v q , S v j-1 (u 3 ) denotes the commutator between ∆ v q and S v j-1 (u 3 ). After integration by parts we obtain

A 1 = - 1 2 q≥-1 2 2q(s-1) S v q (∂ 3 u 3 )∆ v q (w), ∆ v q w = 1 2 q≥-1 2 2q(s-1) S v q (∇ h • u h )∆ v q (w), ∆ v q w w 1 2 ,s-1 q≥-1 c q 2 -q(s-1) ∆ v q w L 4 h L 2 v S v q (∇ h u) L 2 h L ∞ v w 2 1 
2 ,s-1 ∇ h u 0,s . In order to estimate A 2 , we remark first that S v q -S v j-1 is supported away from 0 in Fourier side, that is we can use Lemma A.2.2 to estimate A 2 just like L

2 . Indeed

A 2 w 1 2 ,s-1 q≥-1 c q 2 q(s-1) |j-q|≤N 0 S v q -S v j-1 ∂ 3 u 3 L 2 h L ∞ v ∆ v j w L 4 h L 2 v w 1 2 ,s-1 q≥-1 c q 2 q(s-1) |j-q|≤N 0 S v q -S v j-1 ∇u h L 2 h L ∞ v ∆ v j w L 4 h L 2 v w 2 1 2 ,s-1 ∇ h u 0,s |i|≤N 0 q≥-1 c q 2 q(s-1) c j+i 2 (q+i)(1-s)
w2 1 2 ,s-1 ∇ h u 0,s . Finally, for A 3 we use the commutator estimate proved in Lemma V.2.2 to obtain

A 3 w 1 2 ,s-1 q≥-1 c q 2 q(s-1) |j-q|≤N 0 ∆ v q , S v j-1 (u 3 ) ∆ v j (∂ 3 w) L 2 Rx 3 ;H -1 2 (R 2 ) w 1 2 ,s-1 q≥-1 c q 2 q(s-1) |j-q|≤N 0 S v j-1 ∇ h u(., x 3 ) L 2 h L ∞ v ∆ v j w 1 2 ,0 w 2 1 2 ,s-1 ∇ h u 0,s i∈{0,-1,1} q≥-1 c q c q+i w 2 1 
2 ,s-1 ∇ h u 0,s . Ditto for the last term in this part, using the fact that

∂ 3 u 3 = -∇ h • u h , it happens L (3) 2 w 1 2 ,s-1 q≥-1 c q 2 q(s-1) 2 q/2 i∈{0,-1,1} j≥q-N 0 ∆ v j+i w L 4 h L 2 v ∆ v j ∇ h u L 2 w 1 2 ,s-1 w 1 2 ,s-1 ∇ h u 0,s q≥-1 c q 2 q(s-1 2 ) i∈{0,-1,1} j≥q-N 0 c j c j+i 2 j(1-s) 2 -sj w 2 1 2 ,s-1 ∇ h u 0,s q≥-1 c q 2 q(s-1 2 ) 2 q(1-2s) i∈{0,-1,1} j≥q-N 0 c j c j+i ,
where we used the fact that s ∈] 1 2 , 1] that is 1 -2s < 0. We obtain finally

L (3) 2 w 2 1 2 ,s-1 ∇ h u 0,s q≥-1 c q 2 -q(s-1 2 )
w 2 1 2 ,s-1 ∇ h u 0,s . Remark In the case where s = 1 we do not have to deal with L 1 + L 2 which is equal to 0 because of the identity u • ∇w, w = 0.

• L 3 estimate By using product Lemma V.2.1 between H 0,s and H 1 2 ,s-1 we obtain

L 3 = w h ∇ h v, w 0,s-1 ≤ w h ∇ h v -1 2 ,s-1 w 1 • L 4 estimate We write L 4 = L (1) 4 + L (2)
4 , where

L (1) 4 def = q≥-1 2 2q(s-1) j≥q-N 0 ∆ v q (∆ v j w 3 S v j+2 (∂ 3 v)), ∆ v q w , L (2) 4 def 
= q≥-1 2 2q(s-1) |j-q|≤N 0 ∆ v q (S v j-1 (w 3 )∆ v j ∂ 3 v), ∆ v q w .
Hence, by using again Lemma V.2.1, we infer that

L (1) 4 ≤ w 1 2 ,s-1 q≥-1 c q 2 q(s-1 2 ) j≥q-N 0 ∆ v j w 3 L 2 S v j+2 (∂ 3 v) L 4 h L 2 v .
For s = 1, after certain calculations, we get

S v j+2 (∂ 3 v) L 4 h L 2 v ≤ m≤j+1 2 m(1-s) 2 sm ∆ v m v L 4 h L 2 v ≤ m≤j+1 2 2m(1-s) 1 2 v 1 2 ,s
2 j(1-s) v 1 2 ,s . Thus, by using Lemma A.2.2 together with the previous estimate and the divergence free condition on w, we find

L (1) 4 w 1 2 ,s-1 v 1 2 ,s q≥-1 c q 2 q(s-1 2 ) j≥q-N 0 2 -js ∆ v j ∇ h w L 2 w 1 2 ,s-1 v 1 2 ,s ∇ h w 0,s-1 q≥-1 c q 2 q(s-1 2 ) j≥q-N 0 c j 2 j(1-2s) w 1 2 ,s-1 v 1 2 ,s ∇ h w 0,s-1 q≥-1 c q 2 q(s-1 2 ) j≥q-N 0 2 2j(1-2s) 1 2 c j l 2 (N∪{-1}) w 1 2 ,s-1 v 1 2 ,s ∇ h w 0,s-1 q≥-1 c q 2 q(s-1 2 ) 2 q(1-2s) w 1 2 ,s-1 v 1 2 ,s ∇ h w 0,s-1 q≥-1 c q 2 q( 1 2 -s) w 1 2 ,s-1 v 1 2 ,s ∇ h w 0,s-1 .
For the second term we proceed as follows

L (2) 4 w 1 2 ,s-1 q≥-1 c q 2 q(s-1) 2 q |j-q|≤N 0 2 j-q S v j-1 w 3 L 2 h L ∞ v ∆ v j v L 4 h L 2 v w 1 2 ,s-1 w 3 0,s |j|≤N 0 q≥-1 c q 2 q(s-1) 2 q ∆ v j+q v L 4 h L 2 v v 1 2 ,s w 1 2 ,s-1 w 3 0,s |i|≤N 0 q≥-1 c q c q+i v 1 2 ,s w 1 2 ,s-1 w 3 0,s .
In order to close the estimates of L

(2)

4 we remark that, for any s ∈ [ 1 2 , 1], we have

w 3 0,s ≤ w 3 0,s-1 + ∂ 3 w 3 0,s-1 ≤ w 3 0,s-1 + ∇ h w 0,s-1 .
In the case where s = 1, note that the estimate can be obtained easily, by using product rules and the previous inequality, as the following

w 3 ∂ 3 v, w L 2 ≤ w 3 ∂ 3 v -1 2 ,0 w 1 2 ,0 w 3 0,1 ∂ 3 v 1 2 ,0 w 1 2 ,0 v 1 2 ,1 ( w L 2 + ∇ h w L 2 ) w 1 2 ,0 . • L 5 estimate
In order to estimate this term we proceed by duality by inferring firstly that

L 5 ≤ u h ∇ h θ -1 2 ,-s θ 1 2 ,-s . Moreover, Lemma V.2.1 gives u h ∇ h θ -1 2 ,-s u h 1 2 ,s ∇ h θ 0,-s . It follows that L 5 u h 1 2 ,s ∇ h θ 0,-s θ 1 2 ,-s . • L 6 estimate
We use the Bony's decomposition L 6 = L 

2 2q(-s) |j-q|≤N 0 ∆ v q ∆ v j (u 3 )S v j-1 (∂ 3 θ) , ∆ v q θ , L (2) 6 def 
= q≥-1 2 2q(-s) |j-q|≤N 0 ∆ v q S v j-1 (u 3 )∆ v j (∂ 3 θ) , ∆ v q θ , L (3) 6 def 
= q≥-1 2 2q(-s) i∈{0,-1,1} j≥q-N 0 ∆ v q ∆ v j+1 (u 3 )∆ v j (∂ 3 θ) , ∆ v q θ .
For the first term, we use the Bernstein Lemma together with usual Sobolev embedding and the free divergence condition to obtain

L (1) 6 ≤ C θ 1 2 ,-s q≥-1 c q 2 -qs 2 q/2 |j-q|≤N 0 S v j-1 θ L 4 h L 2 v ∆ v j ∇ h • u h L 2 θ 1 2 ,-s θ 1 2 ,s-1 ∇ h u 0,s q≥-1 c q 2 q( 1 2 -s) |j-q|≤N 0 c 2 j θ 2 1 2 ,-s ∇ h u 0,s .
For L

(2)

6 , we follow the same decomposition used for L

2 , so we write L

(2)

6 = B 1 + B 2 + B 3
, where

B 1 def = q≥-1 2 -2qs S v q (u 3 )∆ v q (∂ 3 θ), ∆ v q θ , B 2 def = q≥-1 2 -2qs |j-q|≤N 0 S v q -S v j-1 (u 3 )∆ v j (∂ 3 θ), ∆ v q θ , B 3 def = q≥-1 2 -2qs |j-q|≤N 0 ∆ v q , S v j-1 (u 3 ) ∆ v j (∂ 3 θ), ∆ v q θ .
After integration by parts, we obtain

B 1 = 1 2 q≥-1 2 -2qs S v q (∂ 3 u 3 )∆ v q (θ), ∆ v q θ = 1 2 q≥-1 2 -2qs S v q (∇ h u h )∆ v q (θ), ∆ v q θ θ 1 2 ,-s q≥-1 c q 2 -qs ∆ v q θ L 4 h L 2 v S v q (∇ h u) L 2 h L ∞ v θ 2 1 2 ,s-1 ∇ h u 0,s .
To estimate B 2 we remark first that S v q -S v j-1 is supported away from 0 in Fourier side, that is we can use Lemma A.2.2 and estimate B 2 as A 2 , indeed

B 2 θ 1 2 ,-s q≥-1 c q 2 -qs |j-q|≤N 0 S v q -S v j-1 ∂ 3 u 3 L 2 h L ∞ v ∆ v j θ L 4 h L 2 v θ 1 2 ,-s q≥-1 c q 2 -qs |j-q|≤N 0 S v q -S v j-1 ∇ h u h L 2 h L ∞ v ∆ v j θ L 4 h L 2 v θ 2 1 2 ,-s ∇ h u 0,s |i|≤N 0 q≥-1 c q c q+i θ 2 1 2 ,-s ∇ h u 0,s .
Finally, for B 3 we use the commutator estimate proved in Lemma V.2.2 to obtain

B 3 θ 1 2 ,-s q≥-1 c q 2 -qs |j-q|≤N 0 ∆ v q , S v j-1 (u 3 ) ∆ v j (∂ 3 θ) L 2 Rx 3 ;H -1 2 (R 2 ) θ 1 2 ,-s q≥-1 c q 2 -qs |j-q|≤N 0 S v j-1 ∇ h u(., x 3 ) L 2 h L ∞ v ∆ v j θ 1 2 ,0 θ 2 1 2 ,-s ∇ h u 0,s i∈{0,-1,1} q≥-1 c q c q+i θ 2 1 2 ,-s ∇ h u 0,s . For L (3)
6 , by using the same arguments we find

L (3) 6 θ 1 2 ,-s q≥-1 c q 2 -qs 2 q/2 i∈{0,-1,1} j≥q-N 0 ∆ v j+i θ L 4 h L 2 v ∆ v j ∇ h • u h L 2 θ 1 2 ,-s θ 1 2 ,-s ∇ h u 0,s q≥-1 c q 2 -q(s-1 2 ) i∈{0,-1,1} j≥q-N 0 c j c j+i θ 2 1 2 ,-s ∇ h u 0,s .
• L 7 estimate This term can be estimated by using the following property based on product rules in dimension one together with inequality (V.3)

H s-1 (R) • H 1-s (R) ⊂ B -1 2 
2,∞ (R) → H -s . Indeed, based on the Bony's decomposition with respect to the vertical variable we write

L 7 = L (1) 7 + L (2) 7 + L (3)
7 , where

L (1) 7 def = q≥-1 2 -2qs |j-q|≤N 0 ∆ v q S v j-1 (w h )∆ v j (∇ h η) , ∆ v q θ , L (2) 7 def 
= q≥-1 2 -2qs |j-q|≤N 0 ∆ v q ∆ v j (w h )S v j-1 (∇ h η) , ∆ v q θ , L (3) 7 def 
= q≥-1 2 -2qs i∈{0,-1,1} j≥q-N 0 ∆ v q ∆ v j (w h )∆ v j+i (∇ h η) , ∆ v q θ .
By using inequality (A.5), similar arguments give then

L (1) 7 ≤ θ 1 2 ,-s q≥-1 c q 2 -q(s-1 2 ) |j-q|≤N 0 S v j-1 w L 4 h L 2 v ∆ v j (∇ h η) L 2 ≤ ∇ h η 0,1-s w 1 2 ,s-1 θ 1 2 ,-s q≥-1 c q 2 -q(s-1 2 ) |j-q|≤N 0 c 2 j ∇ h η 0,1-s w 1 2 ,s-1 θ 1 2 ,-s .
For the second term we proceed as follows

L (2) 7 ≤ θ 1 2 ,-s q≥-1 c q 2 -q(s-1 2 ) |j-q|≤N 0 2 1 2 (j-q) ∆ v j w L 4 h L 2 v 2 j(s-1) 2 j(1-s-1 2 ) S v j-1 (∇ h η) L 2 h L ∞ v ≤ ∇ h η B 0,1-s-1 2 ∞,2 w 1 2 ,s-1 θ 1 2 ,-s q≥-1 c q 2 -q(s-1 2 ) |j-q|≤N 0 c 2 j ∇ h η 0,1-s w 1 2 ,s-1 θ 1 2 ,-s ,
where we used the embedding

H 0,1-s → B 0,1-s-1 2 ∞,2
and the fact that 1 -s -1 2 < 0. For the last term we proceed as follows

L (3) 7 ≤ θ 1 2 ,-s q≥-1 c q 2 -q(s-1 2 ) i∈{0,-1,1} j≥q-N 0 ∆ v j w L 4 h L 2 v ∆ v j+i (∇ h η) L 2 ≤ ∇ h η 0,1-s w 1 2 ,s-1 θ 1 2 ,-s i∈{0,-1,1} q≥-1 c q 2 -q(s-1 2 ) j≥q-N 0 c j c j+i ∇ h η 0,1-s w 1 2 ,s-1 θ 1 2 ,-s . • L 8 estimate We write L 8 = L (1) 8 + L (2) 8 + L (3)
8 , where

L (1) 8 def = q≥-1 2 -2qs |j-q|≤N 0 ∆ v q (∆ v j w 3 S v j-1 (∂ 3 η)), ∆ v q θ , L (2) 8 def 
= q≥-1 2 -2qs |j-q|≤N 0 ∆ v q (S v j-1 (w 3 )∆ v j ∂ 3 η), ∆ v q θ , L (3) 8 def 
= q≥-1 2 -2qs i∈{0,-1,1} j≥q-N 0 ∆ v q (∆ v j w 3 ∆ v j+i (∂ 3 η)), ∆ v q θ .
Then, for the first term, we have

L (1) 8 ≤ θ 1 2 ,-s q≥-1 c q 2 -qs |j-q|≤N 0 ∆ v j w 3 L 2 S v j-1 (∂ 3 η) L 4 h L ∞ v .

Now we use

S v j-1 (∂ 3 η) L 4 h L ∞ v ≤ 2 j c j 2 -j(1-s-1 2 ) η H 1 2 h (B 1-s-1 2 ∞,2 )v 2 j c j 2 -j(1-s-1 2 ) η H 1 2 ,1-s , and 
∆ v j w 3 L 2 ≤ 2 -j c j 2 -j(s-1) ∇ h w H 0,s-1 .
Therefore we find

L (1) 8 ≤ θ 1 2 ,-s ∇ h w H 0,s-1 η H 1 2 ,1-s q≥-1 c q 2 q( 1 2 -s) |j-q|≤N 0 c 2 j 2 1 2 (j-q) θ 1 2 ,-s ∇ h w H 0,s-1 η H 1 2 ,1-s .
Next, for the second term

L (2) 8 ≤ θ 1 2 ,-s q≥-1 c q |j-q|≤N 0 2 -(q-j)s S v j-1 w 3 L 2 h L ∞ v 2 j(1-s) ∆ v j (η) L 4 h L 2 v ≤ θ 1 2 ,-s w 3 0,s η 1 2 ,1-s q≥-1 c q |j-q|≤N 0 c j ≤ θ 1 2 ,-s w 3 0,s η 1 2 ,1-s |j|≤N 0 q≥-1 c q c j+q θ 1 2 ,-s w 3 0,s-1 + ∇ h w 0,s-1 η 1 2 ,1-s .
For L

8 we have

L (3) 8 ≤ θ 1 2 ,-s q≥-1 c q 2 -qs 2 q/2 i∈0,-1,1 j≥q-N 0 ∆ v j w 3 L 2 ∆ v j+i (∂ 3 η) L 4 h L 2 v ≤ θ 1 2 ,-s q≥-1 c q 2 q( 1 2 -s) i∈0,-1,1 j≥q-N 0 ∆ v j ∇ h w L 2 ∆ v j+i η L 4 h L 2 v ≤ θ 1 2 ,-s q≥-1 c q 2 q( 1 2 -s) i∈0,-1,1 j≥q-N 0 2 j(s-1) ∆ v j ∇ h w L 2 2 j(1-s) ∆ v j+i η L 4 h L 2 v θ 1 2 ,-s ∇ h w 0,s-1 η 1 2 ,1-s .
Finally, for the last term, we use the fact that s ≤ 1 which implies that 2s -1 ≤ 1, and that w is a free divergence vector field to infer that

L 9 = 2 -2(s-1) S v 0 θ, S v 0 w 3 + q≥0 2 2q(s-1) ∆ v q θ, ∆ v q w 3 S v 0 θ L 2 S v 0 w L 2 + q≥0 2 -qs ∆ v q θ L 2 2 q(s-1) 2 q(2s-1) ∆ v q w 3 L 2 S v 0 θ L 2 S v 0 w L 2 + q≥0 2 -qs ∆ v q θ L 2 2 q(s-1) ∆ v q ∇ h • w h L 2
θ 0,-s ∇ h w 0,s-1 + w 0,s-1 .

2

In the case where s = 1 2 , the estimates are more delicate since the space H 1 2 (R) is not an algebra. In the present paper, and in this particular case, we will just take up again the reasoning due to M. Paicu in [START_REF] Paicu | Equation anisotrope de Navier-Stokes dans des espaces critiques[END_REF], and use his estimates to treat all the equations in the same energy space of H 0,-1 2 . More precisely one may prove the following proposition: Proposition V.2.2. Let u, v, ρ and η be in space

L ∞ T (H 0, 1 2 ) with ∇ h u, ∇ h v, ∇ h ρ, ∇ h η in L 2
T (H 0, 1 2 ) and u, v two divergence free vector fields. Let w, θ be in L ∞ T (H 0, 1 2 ) with ∇ h w and ∇ h θ in L ∞ T (H 0, 1 2 ) solution to the following equations

   ∂ t w + u • ∇w -∆ h w + ∇ = θe 3 -w • ∇v, ∂ t θ + u • ∇θ -∆ h θ = -w • ∇η, div w = 0. , (V.5) Let χ(t) def = w(t) 2 0,-1 2 + θ(t) 2 0,-1 2 . If χ(t) ≤ e -2
, for all 0 < t < T , then we have:

d dt χ(t) ≤ Cf (t)χ(t) 1 -lnχ(t) ln 1 -lnχ(t) , (V.6)
where f is a locally integrable function depending on the norms of u, v, w, ρ, η, θ in H 0, 1 2 ∩ H 1, 1 2 .

Proof

As mentioned before, the strategy is similar to the case s > 1 2 but it needs more attention because of the lack of the embedding H 1 2 (R) → L ∞ (R). The proof we propose here is a direct application of the estimates proved in [START_REF] Paicu | Equation anisotrope de Navier-Stokes dans des espaces critiques[END_REF]. In particular, note that the terms u • ∇w and u • ∇θ (resp. w • ∇v and w • ∇η) can be treated along the same way since we assume here that u and ρ (resp. v and η) have the same regularity. Some details are given below. Let us recall the following estimate from the proof of Lemma 4.2 from [START_REF] Paicu | Equation anisotrope de Navier-Stokes dans des espaces critiques[END_REF]:

q≥-1 2 -q ∆ v q (u • ∇w), ∆ v q w + ∆ v q (w • ∇v), ∆ v q w ≤ 1 50 ∇ h w 2 H 0,-1 2 + Cf 1 (t) w 2 H 0,-1 2 (1 -w 2 H 0,-1 2 )ln(1 -ln w 2 H 0,-1 2 )), (V.7)
where

f 1 def = 1 + u 2 1, 1 2 + v 2 1, 1 2 + w 2 1, 1 2 × 1 + ∇ h u 2 1, 1 2 + ∇ h v 2 1, 1 2 + ∇ h w 2 1, 1 2 .
Similar arguments can be used to establish the following estimate for the the second equation in (V.5)

q≥-1 2 -q ∆ v q (u • ∇θ), ∆ v q θ + ∆ v q (θ • ∇η), ∆ v q θ ≤ 1 50 ∇ h θ 2 H 0,-1 2 + Cf 2 (t) θ 2 H 0,-1 2 (1 -θ 2 H 0,-1 2 )ln(1 -ln θ 2 H 0,- 1 
2 )), (V.8)

where

f 2 def = 1 + u 2 1, 1 2 + η 2 1, 1 2 + θ 2 1, 1 2 × 1 + ∇ h u 2 1, 1 2 + ∇ h η 2 1, 1 2 + ∇ h θ 2 1, 1 2 .
Both estimates (V.7) and (V.8) hold under the assumption χ(t) = w(t) 2 0,-

1 2 + θ(t) 2 0,-1 2 ≤ e -2 .
Finally, the estimate of θe 3 is the following

q≥-1 2 -q ∆ v q θe 3 , ∆ v q w ≤ w H 0,-1 2 θ H 0,-1 2 ≤ w 2 H 0,-1 2 + θ 2 H 0,-1 2 . (V.9)
On the other hand, for 0 < x 1, the function x -→ x(1 -ln(x))ln(1 -ln(x)) is non-decreasing. It is then easy to deduce (V.6) from (V.7), (V.8) and (V.9) by setting In this subsection, we aim at showing how one can benefit of the a priori estimates proved in the section 1 in order to obtain the uniqueness result stated in Theorem V.1.1

f (t) def = f 1 (t) + f 2 (t) + 1.
Proof of theorem V.1.1 Let (u, ρ, P ), (v, η, Π) be two solutions for system (N SB h ), and

w def = u -v, θ def = ρ -η, def = P -Π denote the difference functions. Then (w, θ, ) satisfies        ∂ t + u • ∇ w -∆ h w + ∇ = θe 3 -w • ∇v, ∂ t + u • ∇ θ -∆ h θ = -w • ∇η, div w = 0, w |t=0 = θ |t=0 = 0. (Q) • The case: s = 1 2
In the sequel, the constant C denotes a universal constant which is allowed to differ from line to line. Recall first that, by interpolation, we have:

w 1 2 ,s-1 w 1 2 0,s-1 ∇ h w 1 2 0,s-1 , θ 1 2 ,-s θ 1 2 0,-s ∇ h θ 1 2
0,-s . By using the above interpolation result with the estimates from Proposition (V.2.1), we infer that

L 1 + L 5 u 1 2 ,s ∇ h w 3 2 0,s-1 w 1 2 0,s-1 , (V.10) i∈{2,3,6,7} L i ∇ h u 0,s + ∇ h v 0,s + ∇ h η 0,1-s w 0,s-1 + θ 0,-s × ∇ h w 0,s-1 + ∇ h θ 0,-s , (V.11) L 4 + L 8 v 1 2 ,s + η 1 2 ,1-s w 0,s-1 + θ 0,-s 3 2 
∇ h w 0,s-1 + ∇ h w 0,s-1

1 2
+ w 0,s-1 + θ 0,-s

1 2 ∇ h w 0,s-1 + ∇ h w 0,s-1 3 2 . (V.12)
Finally, we recall the estimate of L 9 L 9 θ 0,-s ∇ h w 0,s-1 + θ 0,-s w 0,s-1 . (V.13)

An easy consequence of the Young inequality tells that, for any non negative real numbers α, β, A, B, D with α + β = 2 , we have

DA α B β ≤ 1 100 B 2 + CA 2 D 2/α .
By a suitable choice of α, β in each one of the estimates (V.10),(V.11), (V.12) and (V.13), we infer that

9 i=1 L i ≤ 1 2 ∇ h w 2 0,s-1 + ∇ h θ 2 0,-s + Cf (t) w 2 0,s-1 + θ 2 0,-s , (V.14)
where f is a function, locally integrable in time3 , given by:

f = u 4 1 2 ,s + ∇ h u 2 0,s + ∇ h v 2 0,s + ∇ h η 2 0,1-s + v 4 3 1 2 ,s + η 4 3 1 2 ,1-s + v 4 1 2 ,s + η 4 1 2 ,s + 1.
On the other hand, by applying the operator ∆ v q to (Q), and by summing with respect to q ∈ N ∪ {-1}, then (V.14) leads to

w(t) 2 0,s-1 + θ(t) 2 0,-s ≤ C t 0 f (τ ) w(τ ) 2 0,s-1 + θ(τ ) 2 0,-s dτ.
Finally, we can conclude by using Gronwall's Lemma.

• The case:

s = 1 2
The uniqueness in this case can be deduced by applying the Osgood's Lemma to the estimate (V.6) given in Proposition V.2.2. 2

V.3.2 Global wellposedness in the axisymmetric case "Theorem V.1.2"

This subsection is devoted to a direct application of theorem V.1.1 to improve the minimum required regularity on the initial data stated in [START_REF] Miao | On the global well-posedness for the Boussinesq system with horizontal dissipation[END_REF] in order to uniquely construct a unique axisymmetric solution of (N SB h ).

Proof of Theorem V.1.2 As aforementioned, the uniqueness part in Theorem V.1.2 is a direct consequence of Theorem V.1.1 when we take s = 1. Then, we only have to prove the existence of a global solution (u, ρ) for (N SB h ). The arguments given hereafter, based on the Friedrichs method, are very classical. (see for instance [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF][START_REF] Paicu | Equation anisotrope de Navier-Stokes dans des espaces critiques[END_REF][START_REF] Danchin | Le théorème de Leray et le théorème de Fujita-Kato pour le système de Boussinesq partiellement visqueux[END_REF] for more details)

For n ∈ N, we consider the following approximate system

           ∂ t u n + E n (u n • ∇u n ) -∆ h u n + ∇P n = ρ n e 3 , ∂ t ρ n + E n (u n • ∇ρ n ) -∆ h ρ n = 0, div u n = 0, P n = E n k,j (-∆) -1 ∂ j ∂ k (u j n u k n ), (u n , ρ n ) |t=0 = (E n u 0 , E n ρ 0 ), (B n )
where E n denotes the cut-off operator defined on L 2 (R 3 ) by

E n u def = F -1 (1 B(0,n) û).
It is then easy to see by using a fixed point argument that there exists some T n > 0 for which (B n ) admits a unique solution (u n , ρ n ) ∈ C ∞ ([0, T n [, L 2,σ n ), where

L 2,σ n def = L 2,σ n × L 2 n (R 3 ), L 2,σ n def = v ∈ L 2 (R 3 ) 3 : div v = 0 and Supp (v) ⊂ B(0, n) , L 2 n (R 3 ) def = ρ ∈ L 2 (R 3 ) : Supp (ρ) ⊂ B(0, n) .
Moreover, because u n and ρ n are regular, we can multiply the first equation in (B n ) by u n and the second one by ρ n . Then, for t ∈ [0, T n [, after integrating the corresponding terms over [0, t[×R 3 , we obtain the classical uniform L 2 -energy bounds

u n (t) 2 L 2 + 2 t 0 ∇ h u n (τ ) 2 L 2 dτ ≤ 2( u 0 2 L 2 + t 2 ρ 0 2 L 2 ), (V.15) ρ n (t) 2 L 2 + 2 t 0 ∇ h ρ n (τ ) 2 L 2 dτ ≤ ρ 0 2 L 2 . (V.16)
Hence, (u n , ρ n ) is a global solution, that is for any T > 0, (u n , ρ n ) ∈ C ∞ ([0, T [, L 2,σ n ) and it satisfies (B n ) on [0, T [×R 3 . Moreover, we may extract a sub-sequence, still denoted

(u n , ρ n ), such that (u n , ρ n ) * (u, ρ) in L ∞ T L 2 ∩ L 2 T H 1,0 .
However, in order to pass to the limit in the non-linear terms, we will need some strong convergence property. To this end we can use the Proposition 3.2 established in [START_REF] Miao | On the global well-posedness for the Boussinesq system with horizontal dissipation[END_REF]. We obtain

u n (t) 2 H 1 + t 0 ∇ h u n (τ ) 2 H 1 dτ ≤ C 0 e C 0 t . It follows that u n is uniformly bounded in L ∞ T H 1 ∩ L 2 T (H 1,1 ∩ H 2,0 ). Assume temporarily that L ∞ T L 2 ∩ L 2 T H 1,0 ∩ L ∞ T H 0,1 ∩ L 2 T H 1,1 → L 4 T L 2 v (L 4 h ) ∩ L 4 T L ∞ v (L 4 h ). (V.17)
We infer that

• (u n ) is bounded in L 4 T L 2 v (L 4 h ) ∩ L 4 T L ∞ v (L 4 h ). • (ρ n ) is bounded in L ∞ T L 2 ∩ L 2 T H 1,0 → L 4 T L 2 v (L 4 h ).
Hence, ∇P n , div(u n ρ n ) and div(u n ⊗ u n ) are bounded in L 2 T H -1 , and this gives a bound for ∂ t u n and ∂ t ρ n in L 2 T H -1 . We can then use Aubin-Lions Theorem in order to extract a new sub-sequence (still denoted (u n , ρ n )) that strongly converges to (u, ρ) in

L 2 T H 1 2 loc ×L 2 T (H -1 2 loc
). Now, we can pass to the limit n → ∞ in all the terms in (B n ), and we show that (u, ρ) is a solution to (N SB h ).

In order to be more convenient, we briefly outline some details about how to pass to the limit in the non linear term in the ρ-equation: Let ψ, ζ be smooth functions in C ∞ c (R + ×R 3 ), supported respectively in K R + × R 3 , and K R + × R 3 , with K being strictly included in K and ζ| K = 1, we claim lim n→∞ (0,T )×R 3

u n ρ n • ∇ψ = (0,T )×R 3 uρ • ∇ψ. (V.18)
According to the properties of ψ and ζ we have

(0,T )×R 3 u n ρ n • ∇ψ = K (ζu n )(ρ n • ∇ψ).
We recall that, from the uniform bounds proved above, we have for s > 1 2

• (u n ) is bounded in L 2 T (H s ) and (∂ t u n ) is bounded in L 2 T (H -1 ). • (ρ n ) is bounded in L 2 T (L 2 ) and (∂ t ρ n ) is bounded in L 2 T (H -1 ).
hence, by simple product laws we obtain the same bounds for (ζu n ) and (ρ n • ∇ψ) as (u n ) and (ρ n ) respectively. Therefore, by combining the Aubin-Lions Theorem, Theorem 2.94 from [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] 4 and the weak compactness property of the Hilbert spaces, we infer that

• (ζu n ) converges strongly to (ζu) in L 2 T (H 1 2 ), • (ρ n • ∇ψ) converges strongly to (ρ • ∇ψ) in L 2 T (H -1 2 ).
This should be enough to justify assertion (V.18).

To complete our proof, we shall justify (V.17). To this end, we will prove a more general inequality: Let f ∈ S (R 3 ) and s > 1 2 (note that in inequality (V.17) s is equal to 1). By using Lemma A.2.2, we obtain for some non-negative number N to be fixed later

f L 4 h (L ∞ v ) ≤ k≥-1 j≥-1 ∆ h k ∆ v j f L 4 h (L ∞ v ) ≤ N ≥k≥-1 j≥-1 2 k 2 2 j( 1 2 -s) 2 js ∆ h k ∆ v j f L 2 + k≥N +1 j≥-1 2 -k 2 2 j( 1 2 -s) 2 js ∇ h ∆ h k ∆ v j f L 2 .
Hence, because s > 1 2 and j ≥ -1, the Cauchy-Schwarz inequality gives

f L 4 h (L ∞ v ) 2 N 2 f L 2 h (H s v ) + 2 -N 2 ∇ h f L 2 h (H s v ) .
Therefore, by choosing N such that 2

N = ∇ h f L 2 h (H s v ) f L 2 h (H s v )
, we obtain

f L 4 h (L ∞ v ) f 1 2 L 2 h (H s v ) ∇ h f 1 2 L 2 h (H s v )
. On the other hand, the Minkowski inequality ensures that L

4 h (L ∞ v ) → L ∞ v (L 4 
h ). This is sufficient to conclude the proof of (V.17). 2

V.3.3 Local wellposedness result in the general case

In this subsection we prove the result of wellposedeness for (N SB h ) given by Theorem V.1.3 under some smallness conditions on T , the norm of u 0 in H 0,s (R 3 ) and the norm of ρ in L 2 (R 3 ). This result may not be optimal in this direction, but it gives the existence of solutions in a some new5 situations where the proof of the uniqueness part is reduced to an application of Theorem V.1.1.

The proof of the existence part in Theorem V.1.3 in based on the following Lemma:

Lemma V.3.1. Let s ∈] 1 2 , 1], δ ∈ [0, s]
, then for all regulars vector fields a, b with div a = 0, we have

a • ∇b, b 0,δ b 1 2 ,δ a 1,s b 1 2 ,δ + a 1 2 ,s b 1,δ . (V.19) ρ, a 3 0,s ≤ 1 4 ρ L 2 a L 2 + ρ L 2 ∇ h a 0,s . (V.20)

Proof

In order to prove (V.19), we follow the same approach as in [START_REF] Chemin | Fluid with anisotropic viscousity[END_REF], so we write

a • ∇b, b 0,δ = a h • ∇ h b, b 0,δ + a 3 ∂ 3 b, b 0,δ . (V.21)
We remark next that Lemma V.2.1 gives

H 1 2 ,s × H 0,δ → H -1 2 ,δ , which implies a h • ∇ h b, b 0,δ b 1 2 ,δ a h • ∇ h b -1 2 ,δ b 1 2 ,δ a 1 2 ,s b 1,δ .
It remains now only to estimate the second term in the right hand side of (V.21). Indeed, Bony's decomposition tells that

∆ v q (a 3 ∂ 3 b) = ∆ v q k≥q-N 0 S k+2 (∂ 3 b)∆ v k a 3 + |q-k|≤N 0 S k-1 a 3 ∆ v k b . (V.22)
Note then firstly that

S k+2 (∂ 3 b) L 4 h L 2 v ≤ m≤k+1 2 m(1-δ) 2 δm ∆ v m b L 4 h L 2 v ≤ m≤k+1 2 2m(1-δ) 1 2 b 1 2 ,δ 2 k(1-δ) b 1 2 ,δ .
Moreover, by using the fact that ∂ 3 a 3 = -∇ h • u h together with Lemma A.2.2, we obtain

∆ v k a 3 L 2 ≤ C2 -k ∆ v k ∇ h • u h L 2 .
This implies

∆ v q k≥q-N 0 S k+2 (∂ 3 b)∆ v k a 3 , ∆ v q b ∆ v q b L 4 h L 2 v 2 q/2 k≥q-N 0 S k+2 (∂ 3 b) L 4 h L 2 v ∆ v k a 3 L 2 ∆ v q b L 4 h L 2 v 2 q/2 k≥q-N 0 2 -kδ b 1 2 ,δ ∆ v k ∇ h u L 2 b 1 2 ,δ u 1,s 2 -qδ c q b 1 2 ,δ 2 q/2 k≥q-N 0 2 -k(δ+s) c k b 2 1 2 ,δ u 1,s 2 -2qδ c q 2 q( 1 2 -s) .
Hence, thanks to the assumption s > 1 2 , we infer that

k≥-1 S k+2 (∂ 3 b)∆ v k a 3 , b 0,δ b 2 1 2 ,δ u 1,s .
In order to estimate the second term in the right hand side of (V.22), we use the decomposition proposed in [START_REF] Chemin | Fluid with anisotropic viscousity[END_REF] ∆

v q |q-k|≤N 0 S k-1 a 3 ∆ v k b, ∆ v q b = S q (a 3 )∂ 3 ∆ v q b, ∆ v q b + |q-k|≤N 0 ∆ v q , S k-1 a 3 ∂ 3 ∆ v k b, ∆ v q b + |q-k|≤N 0 S q -S k-1 a 3 ∆ v k ∂ 3 b, ∆ v q b def = J q 1 + J q 2 + J q 3 .
By using an integration by parts, we obtain

J q 1 = S q (a 3 )∂ 3 ∆ v q b, ∆ v q b = 1 2 S q (∂ 3 a 3 )∆ v q b, ∆ v q b ,
which shows that this term can be estimated in the same way as ∇ h a • b, b due to the divergence free condition. We get q≥-1

2 2qδ S q (a 3 )∂ 3 ∆ v q b, ∆ v q b a 1,s b 2 1 2 ,δ .
Next from Lemma V.2.2, it easily follows q≥-1

2 2qδ J q 2 = q≥-1 2 2qδ |q-k|≤N 0 ∆ v q , S k-1 a 3 ∂ 3 ∆ v k b, ∆ v q b a 1,s q≥-1 2 2qδ ∆ v q b 1 2 ,0 a 1,s b 2 1 2 ,δ .
Finally, to estimate J q 3 , we use the fact that the support of S v q -S v k-1 is far from zero in Fourier side. This gives in particular

(S v q -S v k-1 )a 3 L 2 h (L ∞ v ) 2 -k (S v q -S v k-1 )∂ 3 a 3 L 2 h (L ∞ v ) .
Thus, we obtain

J q 3 |q-k|≤N 0 2 q-k (S v q -S v k-1 )∂ 3 a 3 L 2 h (L ∞ v ) ∆ v k b L 4 h (L 2 v ) ∆ v q b L 4 h (L 2 v ) .
By using the fact that div a = 0 and s > 1 2 , we end up with q≥-1

2 2qδ J q 3 a 1,s b 2 1 2 ,δ .
This ends the proof of (V. [START_REF] Cao | Regularity criteria for the three-dimensional Navier-Stokes equations[END_REF]).

In order to prove (V.20), we use again the fact that div a = 0 together with s -1 ≤ 0, to obtain

ρ, a 3 0,s = 2 -2s S v 0 ρ, S v 0 a 3 + q≥0 2 2qs ∆ v q ρ, ∆ v q a 3 ≤ 1 4 S v 0 ρ L 2 S v 0 a L 2 + q≥0 ∆ v q ρ L 2 2 q(s-1) 2 qs ∆ v q ∂ 3 a 3 L 2 ≤ 1 4 S v 0 ρ L 2 S v 0 a L 2 + q≥0 ∆ v q ρ L 2 2 qs ∆ v q ∇ h a L 2 ≤ 1 4 ρ L 2 a L 2 + ρ L 2 ∇ h a 0,s .
This concludes the proof of Lemma V.3.1 2

Now we are in position to prove Theorem V.1.3

Proof of Theorem V.1.3 The uniqueness part of Theorem V.1.3 is a direct consequence of Theorem V.1.1. Hence, it remains only to prove the existence part. This can be done in a similar way than explained in the proof of Theorem V.1.2, and in particular the construction of the approximate sequence (u n , ρ n ) does not add any difficulty. However, the uniform bounds must now be obtained in some new adequate norms. For simplicity, in the following we will drop the index of the approximate sequence.

We apply ∆ v q in both equations for u and ρ from (N SB h ), then we multiply the first equation by ∆ v q u, the second one by ∆ v q ρ and we sum over q ≥ -1 to obtain

d 2dt u(t) 2 0,s + ∇ h u(t) 2 0,s ≤ u • ∇u, u 0,s + ρ, u 3 0,s . (V.23) d 2dt ρ(t) 2 0,δ + ∇ h ρ(t) 2 0,δ ≤ u • ∇ρ, ρ 0,δ . (V.24)
We prove firstly an uniform bound for u by using the L 2 -energy estimate of ρ and u. Indeed, by taking a = b = u in Lemma V.3.1, then (V.23) gives

d dt u 2 0,s + 2 ∇ h u 2 0,s ≤ ρ L 2 u L 2 + ∇ h u 2 0,s + ρ 2 L 2 + C s u 0,s ∇ h u 2 0,s , (V.25)
where C s is a non negative constant that depends on s. Let us assume that

u 0 2 0,s + T ρ 0 L 2 u 0 L 2 + ρ 0 L 2 1 + T 2 < C 2 s < 1 4 C 2 s , (V.26)
which ensures that u 0 0,s < C s < 1 2 Cs . Let us now assume that there exists T max ∈ (0, T ) satisfying

T max def = inf{t ∈ [0, T ] : u(t) 0,s = C s }.
It follows that, for all t ∈ [0, T max ): u(t) 0,s < C s < 1 2 Cs . By using this last inequality in (V.25), and by integration on [0, t), we obtain for all t ∈ [0, T max )

u(t) 2 0,s + 1 2 t 0 ∇ h u(τ ) 2 0,s dτ ≤ u 0 2 0,s + t 0 ρ(τ ) 2 L 2 + u(τ ) L 2 ρ(τ ) L 2 dτ.
Hence, by using the L 2 energy estimate for ρ and u given by (V.15) and (V.16), we infer that

u(t) 2 0,s ≤ u 0 2 0,s + t ρ 0 L 2 u 0 L 2 + ρ 0 L 2 1 + t 2 , ∀t ∈ [0, T max ),
then by using (V.26) and passing to the limit t -→ T max , we obtain

C 2 s ≤ u 0 2 0,s + T ρ 0 L 2 u 0 L 2 + ρ 0 L 2 1 + T 2 < C 2 s ,
which contradicts the existence of T max and gives for all t ∈ [0, T ]: u(t) 0,s < C s . Therefore we have proved an uniform bound of u in L ∞ T H 0,s . Plugging this bound into (V.25) gives a bound for u in L 2 T H 1,s . Note that by using an argument of interpolation, this also gives a bound of u in L 4 T H 1 2 ,s .

Next, we can estimate the right hand side of (V.24) by using Lemma V.3.1 with a = u and b = ρ. We obtain after some calculations 

d dt ρ(t) 2 0,δ + 2 ∇ h ρ(τ ) 2 0,δ dτ ≤ ∇ h ρ 2 0,δ + C s A(t) ρ(t) 2 0,δ , where A(•) = ∇ h u(•) 2 0,s + u(•) 4 1 2 ,s ∈ L 1 (0, T ) .
               ∂ t u + u • ∇u -µ∆u + ∇P = j × B -δ(1 -δ)λ 2 ∆B , ∂ t B -η∆B + (1 -δ)λ 2 µ e ∆ 2 B = ∇ × u -(1 -δ)λj × B -λµ e ∆(∇ × u), j = c 4π ∇ × B, B = B -δ(1 -δ)λ 2 ∆ 2 B -δλ(∇ × u), div u = div B = 0 (u |t=0 , B |t=0 ) = (u 0 , B 0 ). (1)
Here, u is the hydrodynamic velocity, B the magnetic field, the scalar function P denotes the pressure which can be recovered, due the incompressiblity condition, from the relation

-∆P = ∇ • u • ∇u -j × [B -δ(1 -δ)λ 2 ∆B] .
c is the speed of light and j denotes the electric current density. µ e is the kinematic viscosity of the electron fluid, and if we denote by µ i that of the ion fluid, then the kinematic viscosity µ will be µ i + µ e . The very small parameter δ is given by δ = m e /M , where M = m e + m i , which is the sum of the mass of an ion and of an electron.

If we denote by e, n, L 0 the charge, the number density and the length scale respectively, and if we define w M def = (4πe 2 n/M ) 1 2 , then λ will be λ = c/w M L 0 . As pointed out in the introduction of [START_REF] Fukumoto | Well-posedness and large time behavior of solutions for the electron inertial Hall-MHD system[END_REF], the system above can be seen as a full two-fluids MHD description of a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure and electron inertia. For more details about the derivation of the system, we refer the reader to [START_REF] Abdelhamid | Hamiltonian formalism of extended magnetohydrodynamics[END_REF][START_REF] Fukumoto | Well-posedness and large time behavior of solutions for the electron inertial Hall-MHD system[END_REF]. One may notice that if we neglect the presence of the electrons in the equations, that is if we set (δ, µ e ) = (0, 0) in (1), then it becomes the so-called Hall-MHD system as follows

           ∂ t u + u • ∇u -µ∆u + ∇P = j × B, ∂ t B -η∆B+ = ∇ × (u -λj) × B , j = c 4π ∇ × B, div u = div B = 0, (u |t=0 , B |t=0 ) = (u 0 , B 0 ). (Hall.M HD)
Hence, at least formally, the solution (u, B) to (Hall.M HD) can be seen as the limit of the solution of (1) when (δ, µ e ) tends to (0, 0).

Several works have been devoted to the study of the systems (1), (Hall.M HD) and to the classical MHD as well 1 . One may see [START_REF] Fukumoto | Well-posedness and large time behavior of solutions for the electron inertial Hall-MHD system[END_REF][START_REF] Danchin | On the well-Posedness of the Hall-Magnetohydrodynamics system in critical spaces[END_REF][START_REF] Danchin | Global well-posedness for the Hall-Magnetohydrodynamic system in larger critical Besov spaces[END_REF][START_REF] Giga | On the equations of the two-component theory in magnetohydrodynamics[END_REF][START_REF] Giga | Global well posedness for a two-fluid model[END_REF][START_REF] Agapito | Non-uniform decay of MHD equations with and without magnetic diffusion[END_REF][START_REF] Chae | Local well-posedness for Hall-MHD equations with fractional magnetic diffusion[END_REF][START_REF] Wan | On global existence, energy decay and blow-up criteria for the Hall-MHD system[END_REF] for more details.

The main purpose of this Chapter is to deal with the system (1). It is easy to check, by making use of the equation satisfied by (∇×u), that (1) can be simplified into the following system

           ∂ t u + u • ∇u -∆u + ∇P = (∇ × B) × H ∂ t H -∆H + 2∇ × (∇ × B) × H = ∇ × u × H + ∇ × (∇ × B) × (∇ × u) H = (Id -∆)B div u = div B = 0 (u |t=0 , B |t=0 ) = (u 0 , B 0 ), ( M 
HD) where we omit the constants which will play no significant role in the proofs of our results. Hence, all the constants in our results below will be modulo µ, η, δ and λ.

In a first stage, we aim at generalizing some of the results in [START_REF] Fukumoto | Well-posedness and large time behavior of solutions for the electron inertial Hall-MHD system[END_REF] from the Hilbert spaces Ḣs (R3 ) to the general Besov spaces of the form Ḃs p,r (R 3 ). To the best of our knowledge, the wellposedness of (1) in general critical Besov spaces has not been proved before this work2 . In the recent work [START_REF] Fukumoto | Well-posedness and large time behavior of solutions for the electron inertial Hall-MHD system[END_REF], the authors consider initial data in spaces of the type H s (R 3 ). It is then interesting to check if similar results can be proved as well in the context of general Besov spaces having the same scaling, which is the issue treated by our Theorem VI.1.1 below.

If we try to deal with ( M HD) as it is, the structure of some of the nonlinear terms will prevent us from establishing the wellposedness for all 3 p ∈ [1, ∞[. The issue will be in fact at the level of estimating the remainder terms in Bony's decomposition. Also, it is worth noting that ( M HD) does not have a scaling invariance structure as the classical Navier-Stokes equations or the classical MHD equations.

We recall that, the following spaces

Ḃ 3 m -1 m,n (R 3 ) → Ḣ 1 2 (R 3 ) → Ḃ 3 p -1 p,r (R 3 ) → Ḃ 3 q -1 q,r (R 3 ) → Ḃ-1 ∞,∞ (R 3 ),
for all m, n, p, q, r, r satisfying

m ≤ 2 ≤ p ≤ q ≤ ∞, n ≤ 2 ≤ r ≤ r ≤ ∞,
are critical for the 3D Navier-Stokes equations. On the other hand, the spaces

Ḃ 3 m m,n (R 3 ) → Ḣ 3 2 (R 3 ) → Ḃ 3 p p,r (R 3 ) → Ḃ 3 q q,r (R 3 ) → Ḃ0 ∞,∞ (R 3 )
are critical for the following 3D system

∂ t B -∆B = -∇ × (∇ × B) × B .
Based on this observation, one may ask the following question: from some cancellations in the case p = 2 to get ride of the most nonlinear term in the equation of J. Whereas, in the case p = 2, the index r is needed to be equal to 1 because, at some point, they need to estimate a product of two functions in the critical Besov space Ḃ 3 p p,r . 5 This can be completely avoided in our case, thanks again to the flexibility of the operator (Id -∆) -1 .

We recall that, in the present work, we are not interested in studying the asymptotic limit of the solutions to (1) when (δ, µ e ) vanish. But to be more precise and rigorous, we should point out that, if we keep all the constants in our analysis, the operator (Id -∆) -1 will be in fact (Id -δ(1 -δ)λ∆) -1 , which means that, when δ vanishes, we do not believe that we can give an answer to the open question in [START_REF] Danchin | On the well-Posedness of the Hall-Magnetohydrodynamics system in critical spaces[END_REF] by studying the limit (as (δ, µ e ) vanish) of our solution given by Theorem VI.1.1.

VI.1.2 Reformulation of the equations

We recall again that, for simplification, we will prove our theorems for ( M HD) instead of (1), whereas we should point out that all our results below hold as well for (1).

Let us then first rewrite the system ( M HD) in an appropriate form. To do so, we recall some vectorial concepts. For U, V two divergence-free vector fields on R 3 , we have

∇ × (U × V ) = V • ∇U -U • ∇V, (VI.1) (∇ × U ) × U = U • ∇U - 1 2 ∇|U | 2 , (VI.2) V × (∇ × U ) + U × (∇ × V ) = -∇ × (U × V ) -2U • ∇V + ∇(U • V ), (VI.3) ∇ × (∇ × U ) = -∆U. (VI.4)
If we denote J def = ∇ × B, then according to VI.2 and VI.4, we obtain

(∇ × B) × (B -∆B) = B • ∇B -J • ∇J + ∇ |B| 2 -|J| 2 2 .
On the other hand, we have

u × H + (∇ × B) × (∇ × u) = u × B + u × (∇ × J) + J × (∇ × u).
Thus according to (VI.3), we infer that

u × H + (∇ × B) × (∇ × u) = u × B -∇ × (J × u) -2J • ∇u + ∇(J • u). (VI.5)
Therefore, ( M HD) can be written as follows

           ∂ t u -∆u = B • ∇B -J • ∇J -u • ∇u + ∇ P ∂ t B -∆B = (Id -∆) -1 ∇ × Θ ∂ t J -∆J = -∆(Id -∆) -1 Θ + ∇(Id -∆) -1 (∇ • Θ) div u = div B = divJ = 0 (u, B, J) |t=0 = (u 0 , B 0 , ∇ × B 0 ), (S 1 )
where,

P def = -p + |B| 2 -|J| 2 2 ,
and

Θ def = u × B -2B • ∇B -J • ∇J -∇ × (J × u) -2J • ∇u + ∇(J • u).
One may notice that, in the expression of Θ above, the term u × B is not at the same level of scaling compared to the rest of quantities, besides that the non-homogeneous behavior of the operator (Id -∆) -1 destroys any chances for (S 1 ) to have a scaling invariant structure as the classical Navier-Stokes has for example, or as in the case of the system ( Hall.M HD) studied in [START_REF] Danchin | On the well-Posedness of the Hall-Magnetohydrodynamics system in critical spaces[END_REF].

The justification of the choice of the functional framework in which we do our analysis is then made by working in critical spaces as explained in the previous subsection.

Let us now write down Duhamel's formula corresponding to (S 1 ). Let P be the Leray projector, we write Finally, if we write U def = (u, B, J), then (S 1 ) is equivalent to

Q(u, v) def = ∇ • u ⊗ v , P(u, v) def = u × v, R(u, v) def = ∇ × (u × v), for a three dimensional vectors K = (K 1 , K 2 , K 3 ), L = (L 1 , L 2 , L 3 ), we define Γ(K, L) def =   Q(K 2 , L 2 ) -Q(K 1 , L 1 ) -Q(K 3 , L 3 ) P(K 1 , L 2 ) -R(k 3 , L 1 ) -Q(K 3 , L 3 ) -2Q(K 2 , L 2 ) -2Q(K 3 , L 1 ) P(K 1 , L 2 ) -R(k 3 , L 1 ) -Q(K 3 , L 3 ) -2Q(K 2 , L 2 ) -2Q(K 3 , L 1 )   , Ω(K, L) def = P   Γ 1 (K, L) (Id -∆) -1 ∇ × Γ 2 (K, L) -∆(Id -∆) -1 Γ 3 (K, L)   , (VI.
   ∂ t U -∆U = ζ(U, U) div u = div B = divJ = 0 U |t=0 = U 0 (S ζ )
Remark VI.1.1. As mentioned in a paper of I.Gallagher, D.Iftime and F.Planchon [START_REF] Gallagher | Asymptotics and stability for global solutions to the Navier-Stokes equations[END_REF] for the classical Navier Stokes equations, the theory of weak solutions to the Navier Stokes equations is related to the special structure of the equation, namely to the energy inequality, while the Kato's approach is more general and can be applied to more general parabolic or dispersive equations, this work is an example among many. The main issue here consists in writing the equations in an appropriate form in order to be able to adapt the techniques used for the classical Navier-Stokes [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF][START_REF] Gallagher | Asymptotics and stability for global solutions to the Navier-Stokes equations[END_REF][START_REF] Leray | Essai sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF][START_REF] Danchin | Global existence results for the anisotropic Boussinesq system in dimension two[END_REF].

VI.1.3 Statement of the main results

Before stating our results, let us fix some notations which will be of a constant use in this Chapter, we refer to the Appendix for more details about the functional spaces we use

• For A, B two real quantities, A B means that A ≤ cB, for some c > 0 independent of A and B.

• (c j,r ) j∈Z will be a sequence satisfying j∈Z c r j,r ≤ 1. This sequence is allowed to differ from line to line. Let us point out that, due to the embedding r (Z) ∈ ∞ (Z), we will often use the inequality c 2 j,r ≤ c j,r .

• The L p norm of u is given by

u L p def = u L p ,
where p is the usual conjugate of p, and u denotes the Fourier transform of u.

• We use the notation

L ( Ḃsp p,r ) def = ρ∈[1,∞] Lρ (R + ; Ḃsp+ 2 ρ p,r ),
and for T > 0,

L T ( Ḃsp p,r ) def = ρ∈[1,∞] Lρ ([0, T ]; Ḃsp+ 2 ρ p,r )
• Finally, we point out that in this Chapter, we will be working only in the homogeneous version of the spaces defined in Appendix A, especially the Besov spaces. However to simplify the presentation, the notation ∆ q in this Chapter refers to the homogeneous dyadic blocs, i.e ∆ q ≈ ∆q .

Let us now define what we mean by a solution to (S ζ ) in this Chapter.

Definition VI.1.1. Let T > 0, and U 0 be given in some Banach space X , we say that U is a solution to

(S ζ ) on (0, T ) if U ∈ L ∞ loc ([0, T ]; X ) and satisfies, for a.e t ∈ [0, T ] U(t, •) = e t∆ U 0 (•) + ζ(U, U), in X
The authors in [START_REF] Fukumoto | Well-posedness and large time behavior of solutions for the electron inertial Hall-MHD system[END_REF] proved the wellposedness of ( M HD) under the condition that u 0 H

1 2 + B 0 H 1 2 + B 0 H 3 2
is small enough. Our first result consists in generalizing this last one to the Besov context, it reads as follows.

Theorem VI.1.1. Let p ∈ [1, ∞), r ∈ [1, ∞] and U 0 = (u 0 , B 0 , ∇ × B 0 ) be in Ḃ 3 p -1 p,r (R 3 ). There exists c 0 > 0 such that, if U 0 Ḃ 3 p -1 p,r < c 0 , then (S ζ ) has a unique global solution U in L ( Ḃ 3 p -1 p,r ), with U L ( Ḃ 3 p -1 p,r ) < 2c 0 .
Remark VI.1.2. One may show that the solution, in the case r < ∞, is continuous in time with value in Ḃ 3 p -1 p,r , while in the case r = ∞ it is just weakly-continuous in time.

Remark VI.1.3. One may prove a local in time wellposedeness for large initial data, by slightly modifying the proof of theorem VI.1.1, we will give some details about that in corollary VI.3.

In terms of the required regularity, in Theorem VI.1.1 we ask for the initial data of B to be in Ḃ

3 p -1 p,r (R 3 ) ∩ Ḃ 3 p p,r (R 3
). It is worth noting that, it is because of the two non linear terms u × B in the equation of B, and B • ∇B in the equation of u, that we do not know how to prove an analogous result to Theorem VI.1.1, starting from initial data B 0 only in Ḃ 3 p p,r . However, in the case r = 1, we will prove that a small enough "compared to the maximal time of existence T * " initial data B 0 in Ḃ 3 p p,1 should generate a unique solution, at least up to time T * . More precisely, we will prove Theorem VI.1.2. Let T > 0, p ∈ [1, ∞) and (u 0 , B 0 ) be two divergence-free vector fields in

Ḃ 3 p -1 p,1 (R 3 ) × Ḃ 3 p p,1 (R 3 ), there exists c 0 > 0 such that if u 0 Ḃ 3 p -1 p,1 + (2 + T ) B 0 Ḃ 3 p p,1 < c 0 , then (S ζ ) has a unique solution (u, B) on (0, T ) with u L T ( Ḃ 3 p -1 p,1 ) + (2 + T ) B L T ( Ḃ 3 p p,1 ) < 2c 0 .
The question of the behavior, for large time, of the solution obtained in Theorem VI.1.1 can be established along "approximately" the same lines as those used, for instance, for the 3D Navier-Stokes equations in [START_REF] Gallagher | Asymptotics and stability for global solutions to the Navier-Stokes equations[END_REF]. That is to say, it should be possible to prove that U(t)

Ḃ 3 p -1 p,r
tends to zero as t tends to infinity.

It is also well known for the Navier Stokes equations (see the appendix of [START_REF] Gallagher | Asymptotics and stability for global solutions to the Navier-Stokes equations[END_REF]), that for

an initial data u 0 ∈ Ḃ 3 p -1 p,r (R 3 ), p ∈ (3, ∞)
, the L ∞ norm of the velocity also decays to zero at infinity. More precisely it is controlled by Ct -1 2 . The proof of this result relies on the fact that the bi-linear operator in Duhamel's formula acts well on the Kato's space, together with the fact that we can iterate, as much as we want, the solution u in Duhamel's formula in order to obtain a solution of the form of a sum of some N multi-linear terms of e t∆ u 0 , and a more regular remainder term r N +1 which is unique in L ∞ t (L 3 ). A priori, this approach should work as well in our case, but we will not enter into these details in this thesis.

In contrast to that, we will treat the case of initial data in the Herz-space B 3 p -1 p,r (R 3 )6 , and we will give some details in the case r = ∞ as an example. More precisely, we will prove Theorem VI.1.3. Let p ∈ (3, ∞) and u 0 , B 0 be two divergence free vector fields. There exists c 0 > 0 such that if e t∆ u 0 The rest of this chapter is organized as follows: In section 2, we will prove the wellposedeness of the system in study in the context of Besov spaces as stated in Theorems VI.1.1 and VI.1.2. Then, in section 3, we provide the details of the proof of the wellposedeness in the Kato-Herz space and the decay property described in Theorem VI.1.3. .

Proof

We will focus on the last inequality. The first two ones will follow by noticing that Q and R can be written as D 1 (P), where D 1 is a Fourier-multiplier of order 1.

We consider the Bony's decomposition described in the Appendix, to write uv = T u v + T v u + R(u, v).

For the first term, we have Finally, the remainder term, can be dealt with along the same lines, we infer that

∆ j T u v L 1 L p x k∼j S k-1 u L 4 L ∞ x ∆ k v
∆ j R(u, v) L 1 (L p x ) k≥j+N 0 ∆k u L 4 (L ∞ x )
∆ k v In order to prove Theorem VI.1.1, we will use the following the abstract Banach fixed point theorem stated in the following lemma. The reader can see Lemma 4 in [15] for more details Lemma VI.2.1. Let X be an abstract Banach space with norm . , let ζ be a bi-linear operator mapping X × X into X satisfying Let us point out that, according to the previous calculations, we have Ω(W, W)

L1 T ( Ḃ 3 p -1 p,r ) ≤ γ W 2 L T ( Ḃ 3 p -1 p,r )
for some γ > 0, where Ω is given by (VI.6). We also have

ζ(V, V) L T ( Ḃ 3 p -1 p,r ) = KΩ(V, V) L T ( Ḃ 3 p -1 p,r ) Ω(V, V) L1 T ( Ḃ 3 p -1 p,r )
.

On the other hand we know that Ω(V, V) ∈ L1 T ( Ḃ 3 p -1 p,r ) from the estimates of Proposition VI.2.1, and Lemma A.2.5, which gives in particular Ω(V, V) , for some universal constant C > 0. We chose T 1 such that, for all T < T 1

C V Z T < λ < 1,
we can then chose T * ≤ T 1 small enough so that, for all T < T * ≤ T 1 , we have Ω(V, V)

L1 T ( Ḃ 3 p -1 p,r ) < ε 1 ≤ (1 -λ) 2 4γ
The result follows by a direct application of Lemma A. .

Proof of (VI.12): According to Bony's decomposition, we have wz = T w z + T z w + R(w, z).

We then show how to estimate the first and the third term. We have

∆ j T w z L 1 T L p S j-1 w L ∞ T L ∞ ∆ j z L 1 T L p d j 2 -j( 3 p +2) w L ∞ T (L ∞ ) w L1 T ( Ḃ 3 p +2 p,1 )
.

We deduce from the embedding Ḃ 3 p p,1 (R 3 ) → L ∞ (R .

For the remainder term, we proceed as follows

∆ j R(w, z) L 1 T L p k≥j+N 0 ∆k w L 1 T L p ∆ k z L ∞ L ∞ 2 -j( 3 p +2) k≥j+N 0 d k 2 (j-k)( 3 p +2) w L1 T ( Ḃ 3 p +2 p,1 )
z L∞ ( Ḃ0 .

Inequality (VI.12) follows. proof of (VI.13): Let us point out again that, due to the fact that D 1 (P) ≈ R, (VI.13) and (VI.14) can be proved along the same way, we will thus concentrate on the proof of (VI.13).

We consider again the Bony's decomposition uw = T u w + T w u + R(u, w).

For T u w, we have .

∆ j (T u w) L 1 T L p S j-1 u L ∞ T L ∞ ∆ j w L 1 T L p d j 2 -j( 3 p +1) u L∞ T ( Ḃ-1 ∞,∞ ) w L1 T ( Ḃ 3 p +2 p,
For T w u, by using the embedding Ḃ 3 p p,1 (R 3 ) → L ∞ (R 3 ), we infer that ∆ j (T w u) L 1 .

T L p S j-1 w L ∞ T L ∞ ∆ j u L 1 T L p d j 2 -j( 3 p +1) w L ∞ T (L ∞ ) u
For the remainder term, we have .

∆ j R(u, w) L 1 T L p k≥j+N 0 ∆k u L 1 T L p ∆ k w L ∞ T L ∞ 2 -j( 3 p +1) k≥j+N 0 d k 2 (j-k)(
This ends the proof of inequality (VI.13), and eventually (VI.14). Lemma VI.3.1 is then proved. 2

The proof of Theorem VI.1.2 is based on the following variation of Lemma VI.2.1.

Lemma VI.3.1. Let {A i } i∈{1,2,3,4} be a set of bi-linear operators with . Then for all (x 0 , y 0 ) ∈ (X × Y) such that

A 1 (x 1 , x 2 ) X ≤ η 1 x 1 X x 2 X
x 0 X + (2 + T ) y 0 Y < 1 24η
, (VI.15)

the system

x = x 0 + A 1 (x, x) + A 2 (y, y) y = y 0 + A 3 (x, y) + A 4 (y, y) has a unique solution (x, y) in X × Y, which also satisfies

x X + (2 + T ) y Y < 1 12η
.

Proof

Let us present briefly the outlines of the proof, the idea is classical:

We define the sequence (x n , y n ) by    (x 0 , y 0 ) = (x 0 , y 0 ) x n+1 = x 0 + A 1 (x n , x n ) + A 2 (y n , z n ) y n+1 = y 0 + A 3 (x n , y n ) + A 4 (y n , y n )

If we write z n def = (1 + T )y n , then the system above is equivalent to (Seq)

      
(x 0 , y 0 , z 0 ) = (x 0 , y 0 , (1 + T )y 0 ) x n+1 = x 0 + A 1 (x n , x n ) + Ã2 (y n , z n ) y n+1 = y 0 + A 3 (x n , y n ) + A 4 (y n , y n ) z n+1 = z 0 + A 3 (x n , z n ) + A 4 (y n , z n ) with Ã2 = 1 1+T A 2 whose norm is less than η. Let α def = x 0 X + y 0 Y + z 0 Y < 1 24η , we claim that (x n , y n , z n ) is a Cauchy (bounded) sequence in B X ×Y×Y 0, 2α). By virtue of the definition of (x n , y n , z n ) and the continuity of A i , we proceed by induction to obtain

   x n+1 X ≤ x 0 X + 8ηα 2 y n+1
Y ≤ y 0 X + 8ηα 2 y z+1 Y ≤ z 0 X + 8ηα 2 which gives x n+1 X + y n+1 Y + z n+1 Y < 2α. In order to prove that (x n , y n , z n ) is a Cauchy sequence, similar computation lead to

I n def = x n+1 -x n X + y n+1 -y n Y + z n+1 -z n Y ≤ (24ηα)I n-1
This is enough to conclude the proof. 2

Proof of Theorem VI. in ϕ 2 , for Q(y 1 , y 2 ) we apply inequality (VI.11) from Proposition VI.3.1, and for Q(∇ × y 1 , ∇ × y 2 ), we apply Proposition VI.2.1.

in ϕ 3 , we apply respectively Proposition VI.2.1, then inequality (A.9) from Proposition A.2.2 for k = 2.

in ϕ 4 , * for Q(y 1 , y 2 ), we apply inequality (VI.12) from Proposition VI.3.1, then inequality (A.9) from Proposition A.2.2 for k = 0 * for Q(∇ × y 1 , ∇ × y 2 ), we apply Proposition VI.2.1, then inequality (A.9) from Proposition A.2.2 for k = 2.

• For P, we apply inequality (VI.13) from Proposition VI.3.1, then inequality (A.9) from Proposition A.2.2 for k = 0.

• For R, we apply inequality (VI.14) from Proposition VI.3.1, then inequality (A.9) from Proposition A.2.2 for k = 1.

Let a be a tempered distribution in S (R 3 ), (ψ, ϕ) by given as at the beginning of this section, λ ∈ R + and ξ = (ξ h , ξ v ) ∈ R 2 × R, by denoting ϕ(λD h ) (resp. ϕ(λD v )) the Fourier multiplier by ϕ(λ|ξ h |) (resp. ϕ(λ|ξ v |)) we define the non-homogeneous dyadic blocks ∆ h q (resp. ∆ v q ) and the homogeneous ones ∆q (resp. ∆v q ) by setting:

∆ h q a def =    ϕ(2 -q D h )a, for q ∈ N ψ(D h )a, for q = -1 0, for q ≤ -2

∆ v j a def =    ϕ(2 -q D v
)a, for j ∈ N ψ(D v )a, for j = -1 0, for j ≤ -2 similarly to the classical case, we define the anisotropic Besov spaces as follows Definition A.1.1. Let s, t be two real numbers and let p, q 1 , q 2 be in [1, +∞], we define the space (B t p,q 1 ) h (B s p,q 2 ) v as the space of tempered distributions u such that u (B t p,q 1 ) h (B s p,q 2 )v := 2 kt 2 js ∆ h k ∆ v j u L p q 1 k (Z; q 2 j (Z))

S h q def = m<j ∆ v m , ∀q ∈ Z, S v j def = m<j ∆ h m , ∀j ∈ Z ∆h q a def = ϕ(2 -q D h )a ∀, q ∈ Z, ∆v j a def = ϕ(2 -q D v )a ∀, j ∈ Z,
< ∞.

Remark A.1.4. We point out that

• The homogeneous anisotropic Besov spaces can be defined similarly by replacing the non-homogeneous blocks by the homogeneous ones.

• In the situation where q 1 = q 2 = q, we use the notation B t,s p,q := (B t p,q ) h (B s p,q ) v .

• In the case p = q = 2 the above spaces are nothing but the anisotropic Sobolev spaces, still denoted by H t,s .

• If moreover t = 0 then we have:

u H 0,s ≈ j∈Z 2 2js ∆ v j u 2 L 2 1 2

A.2 Various results

We begin this section by recalling the Bernstein lemma from [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] Lemma A.2.1 (Bernstein). Let B be a ball of R d , and C be a ring of R d . Let also a be a tempered distribution and a its Fourier transform. Then for 1 ≤ p 2 ≤ p 1 ≤ ∞ we have:

Supp a ⊂ 2 k B =⇒ ∂ α x a L p 1 2 k |α|+d 1 p 2 -1 p 1 a L p 2 Supp a ⊂ 2 k C =⇒ a L p 1 2 -kN sup |α|=N ∂ α a L p 1
similarly, one may prove an analogue result in the anisotropic case Lemma A.2.2. Let B h (resp. B v ) be a ball of R 2 h (resp. R v ) and C h (resp. C v ) a ring of R 2 h (resp. R v ). Let also a be a tempered distribution and â its Fourier transform. Then for 1 ≤ p 2 ≤ p 1 ≤ ∞ and 1 ≤ q 2 ≤ q 1 ≤ ∞ we have:

Supp â ⊂ 2 k B h =⇒ ∂ α x h a L p 1 h (L q 1 v ) 2 k |α|+2 1 p 2 -1 p 1 a L p 2 h (L q 1 v ) Supp â ⊂ 2 l B v =⇒ ∂ β x 3 a L p 1 h (L q 1 v ) 2 l β+ 1 q 2 -1 q 1 a L p 1 h (L q 2 v ) Supp â ⊂ 2 k C h =⇒ a L p 1 h (L q 1 v ) 2 -kN sup |α|=N ∂ α x h a L p 1 h (L q 1 v ) Supp â ⊂ 2 l C v =⇒ a L p 1 h (L q 1 v ) 2 -lN ∂ N x 3 a L p 1 h (L q 1 v )
The above properties of the Littlewood-Paley theory allow to establish several important results on the products and the embedding between the Besov spaces, we begin by recalling an anistopic product version in dimension three (see Lemma 4. if q = 1) with σ 1 + σ 2 > 0. Then for a in B s 1 ,σ 1 p 1 ,q (R 3 ) and b in B s 2 ,σ 2 p 2 ,q (R 3 ), the product ab belongs to B In the next proposition we collect some very useful results related to some of the spaces defined above, see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF][START_REF] Chikami | On Gagliardo-Nirenberg type inequalities in Fourier-Herz spaces[END_REF]15,[START_REF] Houamed | About some possible blow-up conditions for the 3D-Navier-Stokes equations[END_REF][START_REF] Dreyfuss | Uniqueness result for Navier-Stokes-Boussinesq equations with horizontal dissipation[END_REF] for more details. 

L 1 t L p x 2 j 1 + 2 2j ∆j f L 1 t L p x , (Id -∆) -1 ∆( ∆j f ) L 1 t L p x 2 2j 1 + 2 2j ∆j f L 1 t L p x ,
the result follows from the fact that, for all k ∈ [0, 2] we have

2 jk 1 + 2 2j .
Proposition A.2.2 is then proved. 2

Let us now recall a result describing how the dyadic blocks act on the heat semi-group for some critical space Y being any one from (B.6), is sufficient to guarantee the smoothness of the solution until time T , or if a singularity can show up at some T * ≤ T .

Another interesting question in this direction, besides the limit case, up to my knowledge all the one component-blow-up criterion have been established in terms of the Sobolev norms in space variables. Is it then possible to prove a Serrin-type criterion in critical Lebesgue spaces under conditions involving only one component of the velocity?

Let us now move to another version of the Navier-Stokes equations. Recent works have been addressed to the study of the 3D Navier-Stokes equations with partial dissipation,

∂ t u + u • ∇u -∆ h u + ∇p = 0. (C.1)
And eventually some similar systems as the Boussinesq system with different partial dissipation. We may refer to Chapters V for more details and for the progress of studying such systems. Here we would like to briefly mention two open questions concerning (C.1):

• In [106] M. Paicu was able to prove the first result of global wellposedness for small data2 in the critical space B 0, 1 2 defined by its norm

u B 0, 1 2 def = ∈Z 2 2 ∆ v u L 2 (R 3 ) , (C.2)
where ∆ v stands to be the vertical version of the dyadic blocks defined in the Appendix A.

Remark first that this was a new result even for the classical Navier-Stokes equations.

Moreover, the uniqueness result that he proves in his paper requires the solution to be only in L ∞ T (H 0, 1 2 ) ∩ L 2 T (H 1, 1 2 ), which corresponds to the "horizontal"-energy space of H 0, 1 2 . However, because of the lack of the embedding of this latter in L 2 h (L ∞ v ), which is really important in the proof of the existence part in [START_REF] Paicu | Equation anisotrope de Navier-Stokes dans des espaces critiques[END_REF], we do not know yet if initial data in H 0, 1 2 can generate local solutions to (C.1) or no.

• Based on the results of [START_REF] Chemin | Fluid with anisotropic viscousity[END_REF][START_REF] Paicu | Equation anisotrope de Navier-Stokes dans des espaces critiques[END_REF], several works have been done. For instance a case of initial data which is not necessary small in B 0, 1 2 has been treated in [START_REF] Chemin | On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations[END_REF] by introducing the critical space B 

2 -k ∆ h k ∆ v u 2 L 4 h (L 2 v ) 1 2 + j∈Z 2 j 2 S h j-1 ∆ v j u L 2 . (C.3)
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  ) and (II.20) yield i∈{1,2,3}
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 2 (ρ 0 , T ) = 0. (III.61) Collecting (III.56), (III.58) and (III.61), so that by (III.54), we end up with lim T ↑0

  and the L 4 t ( Ḣ1 ) norms of v , more details are given below. Taking advantage of the continuity property of S(τ ) we have for all r ≥ 1

2 V. 3

 23 Proof of the main theorems V.3.1 Proof of the uniqueness result "Theorem V.1.1"

2 VI. 1 IntroductionVI. 1 . 1

 2111 Finally, by applying Gronwall's Lemma we obtain the adequate bound for ρ. Presentation of the model In this Chapter we consider the incompressible 3D electron inertia Hall-MHD equations derived from the two fluid model of ion and electron

  6) and ζ(K, L) def = KΩ(K, L), (VI.7) where Kϕ(t, •) = t 0 e (t-s)∆ ϕ(s, •)ds.

3 p - 1 p 3 p - 1 p 3 p - 1 p

 313131 then (S ζ ) has a unique global solution U = (u, B, ∇ × B) in K 1-3 p p satisfying U(t, •) L p t -1 2 (1-3 p ) .Remark VI.1.4. By virtue of the characterization (A.8), we can show that the solution obtained in Theorem VI.1.3 is also in L ( B ,∞ ), by following approximately the same steps in the proof of Theorems VI.1.1 and VI.1.3. In fact for U 0 ∈ B ,r (R 3 ), small enough, we may construct a unique global solution in L ( B ,r ) by proceeding as in the proofs we will show in the next section. The details are left to the reader.

VI. 2 3 p - 1 p 3 p - 1 p

 23131 Wellposedness for small initial data in Besov spaces VI.2.1 About the Cauchy problem for (u 0 , B 0 ) in ḂIn this subsection we aim at proving Theorem VI.1.1, the proof of which is mainly based on the following proposition.Proposition VI.2.1. Let (p, r) be in [1, ∞) 2 , u, v in L ( Ḃ ,r), Q, R, P be given as in the introduction. We haveQ(u, v)

.

  Using proposition A.2.1, we infer that ∆ j T u v L 1 L enjoys the same estimate: by commuting u and v in the previous one, we obtain then∆ j T v u L 1 L p x c j,r 2 -j 3

2 Remark VI. 2 . 1 .

 221 We can replace L1 (•) and L (•) in the previous proposition, respectively, by L1T (•) and L T (•), for T > 0.

∀x 1 , 1 2η. 1 - 2 • 3 p - 1 p 3 p - 1 p

 11123131 x 2 ∈ X , ζ(x 1 , x 2 ) ≤ η x 1 x 2 , for some η > 0, then for all y ∈ X such that y < 1 4η the equationx = y + ζ(x, x)has a solution x ∈ B X 0, 2 y . This solution is the unique one in the ball B X 0, Proof of Theorem VI.1.1 In order to apply Lemma VI.2.1, all we need to show is thatζ(U, V)The second inequality follows directly from inequality (A.12) from Lemma A.2.5 in Appendix, and the first one follows by combining Proposition VI.2.1, Proposition A.2.2 and inequality (A.13) from Lemma A.2.5. Indeed, ζ = (ζ 1 , ζ 2 , ζ 3 ) T contains in each component the bi-linear operators Q, P, R: • For Q and R: in ζ 1 we apply directly Proposition VI.2.1, in ζ 2 we apply Proposition VI.2.1 and inequality (A.9) for ρ = 1 and k = in ζ 2 we apply Proposition VI.2.1 and inequality (A.10) for ρ = 1 and k = For P in ζ 2 we apply Proposition VI.2.1 and inequality (A.9) for ρ = 1 and k = 0 in ζ 2 we apply Proposition VI.2.1 and inequality (A.10) for ρ = 1 and k = 1 This ends the proof of Theorem VI.1.1. 2As a corollary, one may replace the smallness condition on the initial data in Theorem VI.1.1, by another one on the maximal time of existence, namely we can prove:Corollary VI.3. Let p ∈ [1, ∞), r ∈ [1, ∞],and U 0 = (u 0 , B 0 , ∇ × B 0 ), be in Ḃ ,r (R 3 ). There exists T * > 0 and a unique solution U to (S ζ ) in L T ( Ḃ ,r ), for all T < T * .ProofWe split the solution U into a sumU = V + W,where V is given by V(t, •) def = e t∆ U 0 .then it remains to solve, by fixed point argument, the equation on W W = 2ζ(V, V) + 2ζ(W, W) + ζ(V, W) + ζ(W, V).

  For the linear term on W, by virtue of Lemma A.2.5 and the proof of Proposition VI.2.1, where we showed that we can obtain the estimates of Q, P and R, by using only the norm of V in Z T def

3 .1. 2 VI. 3 . 1 3 p - 1 p, 1 × Ḃ 3 p p, 1 3 p - 1 p, 1 ) 3 p 3 p

 32313113131133 Local wellposedness for initial data (u 0 , B 0 ) in Ḃ We present in this subsection the outlines of the proof of Theorem VI.1.2. The following a priori estimates will play a crucial role to reach our purposeProposition VI.3.1. Let p be in [1, ∞), T > 0, u in L T (Ḃ and w, z be in L T ( Ḃ not work for r > 1, as the embedding Ḃ p,r (R 3 ) → L ∞ (R 3 ) fails to be true unless when r = 1. In this part of the thesis, we will denote d j def = c j,1 being a sequence in 1 (Z). Proof of Proposition VI.3.1 Proof of (VI.11): Inequality (VI.11) follows directly from the fact that L∞ ( Ḃ 3 p p,1 ) is an algebra and the (local in time) embedding a

1 )

 1 

p, 1 ) 1 T L p d j 2 -

 112 Minkoski's inequality then gives ∆ j (T w u) L

A 2 (y 1 , y 2 )A 3 (x 1 , y 2 ) Y ≤ η 3 x 1 X y 2 YA 4 (y 1 , y 2 ) Y ≤ η 4 y 1 Y y 2 Y

 2123121241212 X ≤ (1 + T )η 2 y 1 Y y 2 Y for some non negative T, (η i ) i∈{1,2,3,4} . Let η def = max{η i } i∈{1,2,3,4}

1 . 2 ψ 1 (x 1 , x 2 ) ψ 2 (y 1 , y 2 ) ψ 3 (x 1 , y 1 ) ψ 4 (y 1 , y 2 )ϕ 1 ψ 1 A 1 (x 1 , x 2 ) A 2 (y 1 , y 2 ) A 3 (x 1 , y 1 ) A 4 (y 1 , y 2 )e 1 with X = L ( Ḃ 3 p - 1 p, 1 ) 3 pp, 1 ) 1 .

 12112212311412111122123114121311311 In order to apply Lemma VI.3.1, let us rewrite the system (S ζ ) as follows. We definex 1 , x 2 ) Q(y 1 , y 2 ) -Q(∇ × y 1 , ∇ × y 2 ) P(x 1 , y 1 ) -R(∇ × y 1 , x 1 ) -2Q(∇ × y 1 , x 1 ) -2Q(y 1 , y 2 ) -Q(∇ × y 1 , ∇ × y 2 ) (x 1 , x 1 ) ϕ 2 (y 1 , y 2 ) ϕ 3 (x 1 , y 1 ) ϕ 4 (y 1 , y 2 ) (x 1 , x 2 ) ψ 2 (y 1 , y 2 ) (Id -∆) -1 ∇ × ψ 3 (x 1 , y 1 ) (Id -∆) -1 ∇ × ψ 4 (y 1 , y 2 ) (t-s)∆ Pϕ(s, •)ds.Therefore, the system (S ζ ) is equivalent to the following oneu(t, •) = e t∆ u 0 + A 1 (u, u) + A 2 (B, B) B(t, •) = e t∆ B 0 + A 3 (u, B) + A 4 (B, B)The proof of Theorem VI.1.2 can be reduced to a direct application of Lemma VI.3.1, thus all we need to show then is that {A i } i∈{1,2,3,4} satisfies the hypothesis of Lemma VI.3.and Y = L ( Ḃ . To do so, according to Lemma A.2.5 we should estimate ϕ in L1 Now, each component of ϕ contains a combination of Q, P, and R, we will thus show how to use Proposition VI.2.1, Proposition VI.3.1 and Lemma A.2.4 to deal with each one • For Q in ϕ 1 , we apply Proposition VI.2.1.

s 1 +s 2 - 2 p 2 ,σ 1 +σ 2 - 1 p 2 p 1
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Proposition A. 2 . 1 .d 2 ] 2 Proof of proposition A. 2 . 2

 212222 Let (δ, s) be in R × R * -, and p, r, ρ, m be in [1, ∞],• In the case of non positive regularity, one may replace, equivalently, ∆j in the definitions of the Besov space by Ṡj , that is we haveu Ḃs p,r ≈ 2 js Ṡj u L p r j (Z).Lemma A.2.4. Let C be an annulus in R d , m ∈ R, and k be the integer part of 1 + d ). Let σ be k-times differentiable function on R * such that for all α ∈ N d with |α| ≤ k, there exists C α satisfying∀ξ ∈ R d , |∂ α σ(ξ)| ≤ C α (1 + |ξ| 2 ) m |ξ| -αThen there exists C > 0 depends only on C α such that for any p ∈ [1, ∞] and λ > 0, we have, for any u ∈ L p satisfying supp( u) ⊂ λC,σ(D)u L p C(1 + λ 2 ) m u L p with σ(D)u def = F -1 (σ u)Proof Following the proof of Lemma 2.2 from[START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], seen that supp( u) ⊂ λC, we can writeσ(D)u = λ d K λ (λ•) u with K λ (x) def = (2π) -d R d e i(x|ξ) φ(ξ)σ(λξ)dξfor some smooth function φ supported in an annulus and having value 1 in C.Let M be the integer part of 1 + d 2 . We have(1 + |x| 2 ) M |K λ (x)| ≈ R d e i(x|ξ) Id -∆ ξ M φ(ξ)σ(λξ)dξ = |α|+|β|≤2M c α,β λ |β| supp( φ) e i(x|ξ) ∂ α φ(ξ)∂ β σ(λξ)dξ C(1 + λ 2 ) m . As 2M > d, we deduce that K λ L 1 ≤ C(1 + λ 2 ) m ,thus Young's inequality concludes the proof of the desired inequality. According to Lemma A.2.4, we have (Id -∆) -1 ∇ × ( ∆j f )

  

  2.1 is then proved. 2

	Proof of Theorem II.2.2 The proof of Theorem II.2.2 does not differ a lot from the
	previous one. We resume from (II.23), applying Lemma II.4.1 gives 2
	d 2dt	∇u 2 L 2 + ∇u 2 Ḣ1 ≤	1 10	∇u 2 Ḣ1 + C ∂ 3 u 3	p 1 Bq 1 ,p 1	+ ω 3 p 2 Bq 2 ,p 2	∇u 2 L 2 .
	Next, integrating in time interval [0, t], and applying Gronwall's lemma gives
	∇u(t) 2 L 2 +	0	t	∇u(t )	2 Ḣ1 dt	∇u 0 L 2 exp C	0	t	∂ 3 u 3	p 1 Bq 1 ,p 1	+ ω 3 p 2 Bq 2 ,p 2	dt .
	Same arguments as in the conclusion of the previous Theorem lead to the desired result.
	Theorem II.2.2 is Proved.								2
	II.4.2 Proof of the main lemmata II.4.1 andII.4.2
	The purpose of this is subsection is to outline the idea of the proof of Lemma II.4.1 and
	Lemma II.4.2										
	Proof of lemma II.4.1 Let p ∈ [2, 4] and α ∈ 0, 2 p -1 2 . We define q and θ such that
								2 q	def = 1 -	1 p	,		(II.25)

  )ω θ (τ ) dτ , we employ (III.35) in Proposition III.2.7 and Hölder's inequality with respect to time to obtain

). Due to the similarity of the first two lines of (III.62), we will restrict ourselves to analyze the first and the third ones. For t 0 S 1 (t -τ )div v(τ

  Remark III.4.1. As pointed out for the Navier-Stokes equations in Remark 5.4 from[START_REF] Th | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF], for the global existence part in our case, we only need to mention that due to Proposition III.4.5 (resp. Proposition III.4.4) the L p (Ω) norms of ω θ (t) and rρ(t) (resp. the L p (R 3 ) of ρ(t)) can not blow-up in finite time, hence in view of remark III.3.2, it turns out that any constructed solution in the previous section is global for positive time, in addition of that, all the assertions (III.10)-(III.13) follow as a consequence of propositions III.4.4 and III.4.5.

1 

.

2

  Lemma IV.2.1 is then proved. 2 IV.2.2 Global estimates for the small solution part (Proof of Propositions IV.1.2 and IV.1.3) Proof of Proposition IV.1.2 Let us begin with establishing the E T ( Ḣ

2,∞ ) .

  Proof of Theorem IV.2.2 To prove Theorem IV.2.2, we consider the unique local solution v to (NS ) given by Proposition IV.2.2 in E T (H s ) for all T < T and s ∈ [1 2 

	2.2.	2

  3 ), together with Minkowski's inequality, give ∆ j T w z L 1

	T L p	d j 2 -j( 3 p +2) w	L∞ T (	Ḃ 3 p p,1 )	w	L1 T (	Ḃ 3 p +2 p,1 )

  5 from[START_REF] Chemin | On the critical one component regularity for 3-D Navier-Stokes system[END_REF])Lemma A.2.3. Let q ≥ 1, p 1 ≥ p 2 ≥ 1 with 1 p 1 + 1 p 2 ≤ 1, and s 1 < 2 p 1 , s 2 < 2 p 2 (resp. s 1 ≤ 2 p 1 , s 2 ≤ 2 p 2 if q = 1) with s 1 + s 2 > 0. Let σ 1 < 1 p 1 , σ 2 < 1 p 2 (resp. σ 1 ≤ 1 p 1 , σ 2 ≤ 1

	p 2

We refer to the Appendix A for the definition of the hat-spaces.

Note that the case q i = ∞ is considered in the estimates proved in Lemma II.4.2. However, we did not say anything about this case in Theorem II.2.2 due to the lack of continuity of Riesz operators R i,j and Ri,j from L ∞ into L ∞ .

(Ω) ≤ C ω 0 L 1 (Ω) , (III.51)1 By assuming (III.50) we skip few parts of the proof for simplicity, see remark III.3.1 for more details.

2,1 ⊂ Ḣ1

) < 1/4C.

L

.

Recall that this argument permits to prove the uniqueness of weak-solution for the classical Navier-Stokes problem in dimension two.

We should mention that the existence of solution in such scaling-invariant space is still an open problem even for the classical Navier-Stokes system.

,s-1 ∇ h v 0,s w 2 1 2 ,s-1 .

Remark that the assumption on u, v being L ∞ T (H 0,s) ∩ L 2T (H 1,s ) is enough to ensure, by interpolation argument, that u and v belong to L

T (H 1 2 ,s ).

Theorem 2.94 from[START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] gives in fact a more general result in the Besov context, what we would apply here is a particular case which says that the multiplication operator by a smooth function is a compact operator from H s into H s-ε , for any s ∈ R and ε > 0.

We have already treated in Theorem V.1.2 some particular situations with axisymmetric initial data.

The term λ∇ × (j × B) is known in the literature as the hall-term. The classical MHD system is then the case where λ = 0.

We will explain in the sequel what do we mean by critical spaces to (1).

p refers here to the integrability with respect to space variables in the Besov spaces Ḃs p,r

See next subsection for the Duhamel formula associated to ( M HD), and Proposition A.2.2 to understand what we mean by the flexibility of this operator (Id -∆) -1 .

Fore more details on that we suggest to see in particular the estimates (3.5) and(3.6) in[START_REF] Danchin | On the well-Posedness of the Hall-Magnetohydrodynamics system in critical spaces[END_REF].

see Appendix A for the definition and some properties of such spaces.

This ends the proof of Theorem VI.1.2.

We will go back to more detail about that in the comments on Theorem B.3.3, which traits the case of some initial data which is not concerned by assertion (B.9).

one may see[START_REF] Auscher | A new proof for Koch and Tataru's result on the well-posedness of Navier-Stokes equations in BMO -1[END_REF] for a second proof of Theorem B.3.7

Up to my knowledge this was the first result that ensures the existence and the uniqueness in scaling invariant spaces, before that I. Gallagher, J-Y Chemin, B. Desjardins and E. Grenier proved in[START_REF] Chemin | Fluid with anisotropic viscousity[END_REF] a wellposedness result that requires the initial data to be in some sup-critical spaces, followed by the work of D.Iftime who improved the uniqueness result of[START_REF] Chemin | Fluid with anisotropic viscousity[END_REF] and ensured that it holds in almost critical spaces, this was before M.Paicu proved his result, more details can be found in Chapter V.
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CHAPTER IV

G.W-P of the axisymmetric Boussinesq system with no diffusion in the ρ-equation Finally, for the remainder term, we proceed as follows ∆j (R(u, v))

2

Remark IV.3.1. The uniqueness part of Proposition IV.1.4 can be established as well for the general system (B µ,Q ) by following the proof's approach of Theorem 1.3 from [START_REF] Danchin | Le théorème de Leray et le théorème de Fujita-Kato pour le système de Boussinesq partiellement visqueux[END_REF], and by estimating the difference between two solutions still noted by (δv, δρ) in Ḃ-1

3,1 × Ḃ-1 3,1 , one may notice that the proof of the uniqueness in Theorem 1.3 in [START_REF] Danchin | Le théorème de Leray et le théorème de Fujita-Kato pour le système de Boussinesq partiellement visqueux[END_REF] doesn't use at any step the special structure of the bi-linear term.

CHAPTER V

Uniqueness result for the Boussinesq system with horizontal dissipations Question: Can we solve [START_REF] Abdelhamid | Hamiltonian formalism of extended magnetohydrodynamics[END_REF] with initial data (u 0 , B 0 ) small enough in the above spaces?

As mentioned in [START_REF] Fukumoto | Well-posedness and large time behavior of solutions for the electron inertial Hall-MHD system[END_REF] for (Hall.M HD), the difficulty in establishing the wellposedness result under the condition that u 0 Ḣ 1 2 + B Ḣ 3 2 being small enough comes from the nonlinear term ∇×(u×B). Up to our knowledge, all the existing results require additional smallness assumptions on u 0 Ḣ 1 2 +ε + B 0 Ḣ 3 2 as in [START_REF] Wan | On global existence, energy decay and blow-up criteria for the Hall-MHD system[END_REF], or u 0 Ḃ 3 p -1 p,1

as in [START_REF] Danchin | On the well-Posedness of the Hall-Magnetohydrodynamics system in critical spaces[END_REF][START_REF] Danchin | Global well-posedness for the Hall-Magnetohydrodynamic system in larger critical Besov spaces[END_REF].

In our analysis, we find that ( M HD) is easier to deal with due to the flexibility of the operator (Id -∆) -1 that appears in the Duhamel formula 4 of ( M HD). This remarkable feature is a key ingredient in our proofs, and it is in fact one of the reasons why, in our Theorem VI.1.2 below, we can omit the smallness condition on

modulo an additional condition on the maximal time of existence. This provides a partial answer to the question above in the case of the Electron Inertial Hall-MHD.

On the other hand, to give a sense to the critical spaces in the case of (Hall.M HD), the authors in [START_REF] Danchin | On the well-Posedness of the Hall-Magnetohydrodynamics system in critical spaces[END_REF] considered the following "equivalent" system

where the third equation is obtained from the second one by applying the curl operator. Above, the curl -1 is defined as

The system ( Hall.M HD) has then a scaling invariance, which is exactly the same as that of the 3D Navier-Stokes equations and the classical MHD system.

Hence, taking into account the fact that (Hall.M HD) can be seen as the limit system of (1) when (δ, µ e ) vanishes, a space will be called critical to [START_REF] Abdelhamid | Hamiltonian formalism of extended magnetohydrodynamics[END_REF] if it is critical to (Hall.M HD) in the sense explained above and in [START_REF] Danchin | On the well-Posedness of the Hall-Magnetohydrodynamics system in critical spaces[END_REF].

We conclude this subsection by pointing out an interesting issue: One may notice that in our first result below for (1) (see Theorem VI.1.1) we will be considering data u 0 , B 0 , ∇×B 0 in Ḃ 3 p -1 p,r , where r can take any value in [1, ∞]. On the other hand, for (Hall.M HD) and as mentioned in [START_REF] Danchin | On the well-Posedness of the Hall-Magnetohydrodynamics system in critical spaces[END_REF], proving the wellposedness in such spaces remains an open question for the time being, except for the case p = 2 or r = 1. As explained in [START_REF] Danchin | On the well-Posedness of the Hall-Magnetohydrodynamics system in critical spaces[END_REF], one may benefit VI.4 Wellposedness for small initial data in the Kato-Herz spaces and large time behavior

In this subsection, we shall give some details about the wellposedeness in the hat-Kato space K

, and then we establish the decay property described in Theorem VI.1.3. It is all based on the following proposition Proposition VI.4.1. Let ζ be given by (VI.7). Then ζ maps K

. That is to say, there exists κ > 0 such that

Proof

By taking into account the inequality, for all m ∈ [0, 2] and |ξ| ∼ 2 j , we only need to show that, for all t > 0

that is, due to (VI. [START_REF] Cannone | A generalization of a theorem by Kato on Navier-Stokes equations[END_REF]), all the components of ζ can be dominated by a Gaussian multiplied by an order one Fourier-multiplier, as in the proof of Theorem VI.1.2.

Let us then give some details about the proof of (VI.17). By setting, for p > 3,

by virtue of Holder inequality, we infer that

By a change of variable in the L p norm of G(t -s, •), we obtain

This gives 

then we can construct a unique solution U of (S ζ ) in

.

By virtue of the continuity of the Fourier transform, from L q into L q , for q ∈ [1, 2], we infer that, for p ∈ (3, ∞),

it follows then, for all t > 0

Theorem VI.1.3 is then proved. 2

Part IV Appendix 164 APPENDIX A

Harmonic analysis tool box and functional framework

In this Chapter, we present briefly some definitions, functional framework and some results witch were of a constant use in the previous Chapters.

A.1 Littlewood-Paley theory and Functional spaces

In this section, we recall the basic concepts about the Littlewood-Paley theory and we define a bunch of functional spaces used in this thesis. Let (ψ, ϕ) be a couple of smooth functions with value in [0, 1] satisfying:

For every u ∈ S (R 3 ), define the cut-off or dyadic operators by

where, ϕ(λD) is the Fourier multiplyer by ϕ(λ| • |).

Besides, other nice properties ∆ q and S q are listed in the following points. Namely, for u, v ∈ S (R 3 ) we have

(iii) ∆ q , S q : L p → L p uniformly with respect to q and p.

Likewise the homogeneous operators ∆q and Ṡq are defined by

Before we define the Besov spaces, let us introduce a subspace of the tempered distribution space S(R d ). This subspace will be useful in the sequel.

Definition A.1.1. We denote by S h (R d ) the space of tempered distributions u such that

Remark A. 

We point out that, for s ∈ R, the spaces H s (R 3 ) and Ḣs (R 3 ) can be identified respectively to B s 2,2 (R 3 ) and Ḃs 2,2 (R 3 ) with equivalent norms. The well known Bony's decomposition [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF] enables us to split formally the product of two tempered distributions u and v into three pieces. Especially, we have Definition A.1.3. For a given u, v ∈ S we have

with

∆ q u ∆ q v and ∆ q = ∆ q-1 + ∆ q + ∆ q+1 .

Remark A.1.2. Similar decomposition is available for the homogeneous blocks ∆q .

The mixed space-time functional spaces are more useful in several parts of this thesis which motivates the following definition.

and L γ T B s p,r respectively by:

Next, we recall the definition of Kato spaces, then we introduce the Kato-Herz and the Fourier-Herz spaces used in Theorem VI.1.3, for more details about the Fourier-Herz spaces the reader can see for instance [START_REF] Chikami | On Gagliardo-Nirenberg type inequalities in Fourier-Herz spaces[END_REF].

In the case r = ∞, we simply denote K σ p,∞ = K σ p , such that

Definition A.1.6 (Fourier-Herz and Kato-Herz spaces). Let p, r be in

< ∞, and we define K σ p,r (T ) (or simply K σ p,r when T = ∞), as the space of functions u on

Remark A.1.3. In terms of the scaling, the Fourier-Herz space B s p,r (resp. the Kato-Herz space K s p,r ) has the same scale as the usual Besov B s p,r (resp. the usual Kato K s p,r ).

• For u ∈ Ḃδ p,r , there exists some sequence (c j,r ) r∈Z such that

,and j∈Z c r j,r ≤ 1.

• similarly in the anostopic particular case, u ∈ B 0,s p,2 , we have

, and q≥-1

, and

• According to Minkowski's inequality, we have

• In terms of Kato spaces (resp. Kato-Herz spaces), we have the following characterization of Besov spaces (resp. Fourier-Hezr spaces) of negative regularity s < 0

Remark A.2.1. Except for the last point of the proposition above, the rest of the results listed above hold as well in the non-homogeneous case.

The following proposition, which has been used in the previous section, describes the continuity in Chemin-Lerner spaces of some Fourier multipliers

The proof of proposition A.2.2 is based on Bernstein lemma and the following one Lemma A.2.1. There exists a positive constant C such that for T ≥ 0, q ∈ Z and p ∈

Since, for all q ∈ Z, supp ∆q u is included in the annulus A (0, 2 q , 2 q+1 ), then for t ≥ 0 we infer that there exist two constants c and C such that

So, for all τ ∈ [0, t] we have

Via, Young's inequality with respect to time, it follows for

As a consequence of the lemma above, we deduce the following smoothing effect of the heat semi-group, one may see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF][START_REF] Danchin | Le théorème de Leray et le théorème de Fujita-Kato pour le système de Boussinesq partiellement visqueux[END_REF] for more details.

and the operators T and T 0 be given by

where L ( Ḃs

The theory of interpolation is well known to be very useful in the analysis of PDE's, here we present some lemmata the proofs of which are based on this theory.

Lemma A.2.6. (Lemma 4.3 from [30]) For any s positive, for all (p, q) ∈ [1, ∞] and any θ ∈]0, s[, we have f ( Ḃs-θ p,q ) h ( Ḃθ p,1 )v f Ḃs p,q . Next, we recall Lemma A.2 from [START_REF] Chemin | Some remarks about the possible blow-up for the Navier-Stokes equations[END_REF] Lemma A.2.7. For any function a in the space

The following lemma shows the gain of summability with respect to the third index in Besov spaces, for functions belonging to Ḃs 1 p,r ∩ Ḃs 2 p,r , with

In order to give an idea of the proof of the three lemmas above, we chosed to prove the following lemma, used in Chapter 2 which is also a particular case of Lemma A.2.8 if we ignore the time variable Lemma A.2.9. For all p ∈]2, ∞[, there exists a constant c p > 0, such that for all u in

Proof The proof is classical, we proceed as the following: Let N (t) > 0 to be fixed later, we use Lemma A.2.2 and Cauchy-Swartz inequality, to write

The choice of N (t) such that

≤ c p u(t, .)

The lemma follows by taking the L p norm in time. 2

A.3 Other results

The following fixed point argument has been used to prove corollary VI.3, the proof of which can be found for instance in [15] Lemma A.3.1. Let X be a Banach space, L a linear operator from X to X, with norm equals to λ < 1, and let B be a bi-linear operator mapping from X × X in X, with norm B = γ, then for all y ∈ X such that

has a unique solution in the ball B X (0, 1-λ 2γ ).

We recall also the so-called Osgood's Lemma (see for instance [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]):

Lemma A.3.2. Osgood's lemma Let g be a measurable function from [t 0 , T ] to [0, a], γ a locally integrable function from [t 0 , T ] to R + and µ a continuous and non-decreasing function from [0, a] to R + . Assume that for some non-negative real number c, g satisfies:

then we have for a.e. t ∈ [t 0 , T ]:

The compacity property is very helpful and it is needed to construct the weak solutions as explained in some parts of this work. A very usufull tool to guarantee this property in some special cases is the following result due to Aubin-Lions, for more details we suggest to see [START_REF] Lions | Quelques m thodes de résolution des problèmes aux limites non linéaires[END_REF] Theorem A.3.1. Let X 0 , X, X 1 be three Banach spaces such that

we suppose also that the embedding X 0 → X is compact. For 1 ≤ p, q ≤ ∞, we define W to be

Then we have

It is well known that the Sobolev embedding in the whole space R d fail to be compact, which means that the above theorem does not guarantee any compactness result if X 0 , X and X 1 take the form of some B s p,q (R d ). However we can rely on the following result in the case of the whole space, we refer to Theorem 2.94 [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] for more details Theorem A.3.2. Let s < s, then for all ϕ in S(R d ), the multiplication by ϕ is a compact operator from

Now, we recall some estimates between the velocity and its vorticity in the framework of axisymmetric geometry along the following lines which are strongly useful in section IV.2.

First, let us denote by v the velocity vector field and ω its vorticity, with

So, some equivalent norms in terms of v and ω are given by the following. The proof can be found in [START_REF] Leonardi | On Axially symmetric flows in R 3[END_REF].

Lemma A.3.1. Let v be a smooth vector field, divergence free and axisymmetric. Then the following assertions hold. .16)

The symbol ≈ means the equivalence of two norms and by D we understand

The last result we recall in this work precises a refined estimates for the transport equation in Besov Spaces with Index 0, for more details one may see for instance [START_REF] Chemin | Fluid with anisotropic viscousity[END_REF] Proposition A.3.1. For T > 0, let v be a divergence free vector field such that ∇v belongs to

), any solution Θ to the following transport-diffusion equation.

APPENDIX B

The Navier-Stokes equations As one may notice, all the presented results in this work are essentially related to the classical Navier-Stokes equations, and all the models we dealt with have in their radical form the equation It is worth noting that, due to (B.2), the pressure p is in general negligated in several studies since this latter can be recovered by solving the following elliptic equation (as long as u has already been recovered)

B.1 Basic properties

Before stating any results, we recall the two major facts of the 3D Navier-Stokes equations, we will assume f = 0 in the sequel.

Energy inequality

Any regular solution u to (B.1)-(B.3) should satisfy, for all positive time t

Scaling invariance

The second major property of these equations, is the fact of respecting some sort of scaling in the following sense: if u is a solution to (B.1)-(B.3) on [0, T ] × R 3 , then, for all λ > 0, u λ is also a solution to (B.1)-(B.3), by replacing (B.3) with

where u λ is given by u λ (t, x) def = λu(λ 2 t, λx).

According to this property, a functional space X is said to be critical if its norm is invavriant by the above λ-transformation, that is if it satisfies u λ X = u X .

The following spaces are then critical regarding the above definition

for all p ≤ 2 ≤ p < ∞, and q ≤ 2 ≤ q ≤ ∞.

B.2 What do we mean by a solution to the Navier-Stokes equations?

The notions of a solution to PDE's in general and for the Navier-Stokes equations in particular depends on the methods used to solve the problem in study. For assertions (B.1)-(B.3) the notion of a solution can be defined as the weak solution (turbulent solution) or the strong solution (mild solution), the two notions are equivalent if the solution is regular enough. We give in the sequel some more details

B.2.1 Weak and turbulent solutions to the Navier-Stokes equations

The notion of weak solutions to the Navier-Stokes equations has been introduced at the first time by J. Leray in 1934 in his famous paper [START_REF] Leray | Essai sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF], in particular this type of solutions satisfies the equations in the distribution sense. 1

In the sequel, d will denote the spacial dimension such that d ≥ 2 unless we precise its value.

Definition B.2.1 (Weak solution). We say that a divergence free vector field u ∈

Let us now define the turbulent solution of J. Leray

and for all t ∈ [0, T ]

B.2.2 Mild solutions to the Navier-Stokes equations

We end up this subsection by introducing the definition of mild solutions, which does not really use the special structure of the equations as the turbulent solutions do where P denotes the Leray projector which is given by

1 Notice that J. Leray was able to give a sense to the weak solutions even before L.Schwartz introduces the theory of distributions.

The construction of Leray's solutions is essentially based on compacity arguments, the procedure takes in general the following form:

We begin by solving an approximate system based on regularizing the nonlinear term u•∇u in order be able to solve the new system and to construct a sequence of unique and global solutions (denoted (u n ) n∈N ) to the approximate system. Then, we prove global uniform bounds for u n with respect to n in the energy space. Finally, by making use of an adequate compacity arguments we prove the existence of a weak limit of the sequence (u n ) n∈N , and we prove that this weak limit satisfies (B.7) together with the energy inequality (B.5). On the other hand the construction of mild solutions relies on fixed point arguments.

Remark B.2.1. We often call a weak solution any solution given by compactness arguments (in particular Leray's solutions), and we call a strong solution any solution given by the fixed point arguments.

Remark B.2.2. Remark that Leray's solutions do not satisfy in general an energy equality, but just an inequality, this is in fact because of the lack of the strong compactness in infinite dimension spaces as the Lebesgue and Sobolev spaces.

B.3 Some important results

This section is devoted to some technical results from the hystorical point of view of the Navier-Stokes equations, the first brilliant result of the mathematical study of the Navier-Stokes equations is due to J. Leray in his famous paper [START_REF] Leray | Essai sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF], in which he proved Theorem B.3.1. Let u 0 ∈ L 2 (R d ) be a given divergence free vector field, then there exists at least one global turbulent solution for (B.1)-(B.3), defined for all t > 0.

This was the first positive affirmation of a construction of solutions to the Navier-Stokes equations since the derivation of the equations in 1845. It confirms the existence of solutions that can be defined for large times. One may notice that the above theorem does not say anything about the uniqueness of such solutions, in fact the question of the uniqueness here stands to be open till today, unless in the case of dimension two, which was also proved by J. Leray. Let us go back to dimension three, since the uniqueness is not known whether it holds to be true or not, it is a worthy question to ask: Under what kind of hypothesis one can prove that the Leray's solutions are unique? In this direction, we may prove the so-called weak-strong uniqueness property of turbulent solutions Proposition B.3.1. Let u, v be two turbulent solutions associated to the same initial data

The previous proposition shows then the hope of reaching the wellposedness of the 3D Navier-Stokes equations if one may construct a little bit more regular solutions, this fact of matter inspires the following question: An additional regularity assumption on the initial data, can it provide the global wellposedness of these equations? A first partial answer was given by J. Leray as follows Theorem B.3.2. Let u 0 be a divergence free vector field in H 1 (R 3 ), then there exists T > 0 and a unique solution to

In addition of that, there exists c > 0, such that if

then T = ∞.

Theorem B.3.2 above, besides ensuring the uniqueness of the solution, it has two main features:

• One may notice that it provides a local wellposedness result for any initial data sufficiently regular (H 1 -initial data). On the other hand, a smallness condition on the size of the initial data is needed in order to guarantee the life of the solution up to T = ∞. Point out that, till today we do not know if the local solution given by the theorem above blows-up at some finite time T * or it can be extended to infinity, also we do not know how to get rid of the smallness condition (B.9).

• The second remark that was the starting point for several research is the following: Assertion (B.9) is invariant under the scaling of the 3D Navier-Stokes equations, but it requires one gradient of the initial data to be in L 2 . Whereas such condition does not say anything about initial data like being in Ḣ 1 2 (R 3 ), or critical data with different properties. 2 It was then due to H.Fujita and T.Kato in [START_REF] Fujita | On the Navier-Stokes initial value problem I[END_REF] the answer of the local wellposedness for initial data being in the critical space Ḣ 1 2 (R 3 ), the following theorem gives some more details (see also chapter 5 in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] and chapter 15 in [START_REF] Lemarie-Rieusset | Recent Developments in the Navier Stokes Problem[END_REF]).

Theorem B.3.3. Let u 0 be a divergence free vector field in Ḣ 1 2 (R 3 ), then there exists a unique maximal life time T * = T * (u 0 ) and a unique u solution to (B.8) for which the following assertions hold • u has the following regularity, for all t < T *

.

• There exists a universal constant c > 0 for which, if

p ), for some p ∈ [2, ∞), more precisely we have, for any u, v two solutions to (B.1)-(B.3),

.

As aforementioned, the proof of Theorem B.3.3 relies on fixed point argument and the solutions obtained satisfy in a first time the integral form (B.8). In fact the proof of the above theorem provides more precise information concerning the size of the global solution regarding the smallness conditions (B.11): if the initial data is of size c << 1, then the solution is of size 2c. In addition of that, we can prove that the map t -→ u(t) Ḣ 1 2 is decreasing. These two facts together ensures that the Ḣ 1 2 -norm of u(t, •) should tend to 0 as t tends to infinity.

An interesting question is then the following: supposing that some Ḣ 1 2 initial data u 0 (with arbitrary large size) generates a global solution to (B.1)-(B.3), does the scenario of small solutions shows up always at large time? A positive answer of that has been confirmed by I. Gallagher, D. Iftimie, and F. Planchon in [START_REF] Gallagher | Asymptotics and stability for global solutions to the Navier-Stokes equations[END_REF], more precisely they proved Theorem B.3.4. Let u 0 be a divergence free vector field in

2 ), for all T > 0, then we have

Unlike the proof of Theorem B.3.3, the proof of Theorem B.3.4 uses the structure of the equations, namely the energy inequality.

On the other hand, according to the embedding (B.6), Theorem B.3.3 does not say anything about small data in spaces larger than Ḣ 1 2 , a little bit after, in [START_REF] Kato | Strong Lp-solutions of the Navier-Stokes equation in Rm, with applications to weak solutions[END_REF] T.Kato provided an answer in the case of initial data in L 3 by proving Theorem B.3.5. Let u 0 be a divergence free vector field in L 3 , then there exists a unique maximum time of existence T * = T * (u 0 ) and a unique solution u to (B.8) in the Kato space

If in addition, the L 3 -norm of u 0 is small enough then T * = ∞.

The strategy to prove the above theorem is similar to the one proving Theorem B.3.3, and it relies on finding a fix point for the functional F given by

), which means that searching of a solution in spaces like the Kato space K T is necessary in the proof of Theorem B.3.5. However, for the uniqueness task Furioli, Lemarié-Rieusset and Terraneo showed in [START_REF] Furioli | Terraneo Unicité dans L3(R3) et d'autres espaces fonctionnels limites pour Navier-Stokes[END_REF] that there is only one mild solution of the Navier-Stokes equations in C([0, T ]; L 3 ). That is the uniqueness of solutions to (B.8) holds in a space larger that K T . This is good in the point of view of the initial data that uniquely generates (at least local) solutions, but what about the initial data that behaves like x -→ 1 |x| ? this kind of initial data does not belong to any Lebesgue of Sobolev spaces, but it still respects the critical scaling of the initial data, besides of that it belongs to the critical spaces of the form Ḃ-1+ 3 p p,∞ (R 3 ). In order to treat the case of the initial data belonging to larger spaces such Ḃ-1+ 3 p p,∞ (R 3 ), p ∈ [3, ∞), the fixed point argument shows up to be applicable again in the Besov-type spaces, and the affirmative answer comes then due to M.Cannone in [START_REF] Cannone | A generalization of a theorem by Kato on Navier-Stokes equations[END_REF] (for p ∈ [START_REF] Abidi | Résultats de régularité de solutions axisymétriques pour le système de Navier-Stokes[END_REF][START_REF] Agapito | Non-uniform decay of MHD equations with and without magnetic diffusion[END_REF]) and F.Planchon in [START_REF] Planchon | Asymptotic behavior of global solutions to the Navier-Stokes equations in R 3[END_REF] (for p ∈ [3, ∞)). We resume these results and announce them in the following form (see also [START_REF] Chemin | Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel[END_REF] for more details) Theorem B.3.6. Let u 0 be a divergence free vector field belonging to Ḃ-1+ 3 p p,∞ (R 3 ), for some p ∈ [3, ∞), then there exists T > 0 and a unique u solution to (B.8) in

In addition of that, T can be chosen to be +∞ if u 0 is small enough in Ḃ-1+ 3 p p,∞ .

Above the space Lp ([0, T ]; Ḃs p,r ) refers to the so-called Chemin-Lerner space defined in the Appendix A. A particularity of the above theorem is the ability to construct global solutions starting from initial data which is not necessary small in Ḣ 1 2 or even in L 3 . The fundamental example of that is the data with a lot of oscillations in one direction. Indeed taking for instance ψ ∈ S(R 3 ), and we define

we can check that the L 3 norm of u ε 0 has a size 1 while its norm in

is small for all p > 3 as long as ε is small enough. Next, one may ask: what is then the largest critical space for the initial data that guarantees the global wellposedness (at least for small data)? According to (B.6) the space Ḃ-1 ∞,∞ appears to be the largest one. Indeed Y. Meyer proved in [START_REF] Wavelets | paraproducts, and Navier-Stokes equations[END_REF] that any Banach space X ⊂ S(R d ) which is invariant by translation and dilatation in the following sense

But unfortunately it has been proved (see [START_REF] Bourgain | Ill-posedness of the Navier-Stokes equations in a critical space in 3D[END_REF] and [START_REF] Germain | The second iterate for the Navier-Stokes equation[END_REF]) that the Navier-Stokes equations are ill-posed in this space. In the other hand, more recently H. Koch et D. Tataru proved in [START_REF] Koch | Tataru Well-posedness for the Navier-Stokes equations[END_REF] the wellposedness of these equations in BMO -1 defined by the set of tempered distribution u whose the following norm is finite

|e t∆ u| 2 dtdy.

Whereas the fixed point argument used to solve the equations has been done in the space X defined by its norm

More precisely, H. Koch et D. Tataru 3 proved Theorem B.3.7. If the initial data u 0 is small enough in BMO -1 , then (B.8) has a unique global solution in the space X defined above, and we have in addition u X ≤ 2 u 0 BMO -1 .

APPENDIX C

Perspectives

Besides the millennium problem of the 3D Navier-Stokes equations, and despite the work that has been done, a lot of interesting open questions are waiting for answers, here we discuss some of them which are related to the main results of this thesis.

As it is well known, the global regularity question of the 3D Navier-Stokes equations is still open. However we could establish blow-up criterion as (B.10) for p ∈ [2, +∞). The limit case p = +∞ is considerably hard to prove compared to the rest of cases, a first answer was due to L. Escauriaza, G. Seregin et V. Sveràk in [START_REF] Escauriaza | L3;1 -solutions of Navier-Stokes equations and backward uniqueness[END_REF] where they proved that if the maximal life span of the solution T * is finite, then lim sup t→T * u(t) L 3 = ∞. This was extended 1 to the general critical Besov spaces by I. Gallagher, G. Koch, F. Planchon in [START_REF] Gallagher | Blow-up of Critical Besov Norms at a Potential Navier-Stokes Singularity[END_REF].

Recently, it has been shown that the divergence free condition, together with the structure of the equations can provide better regularity criterion, better with respect to the number of velocity's components that should satisfy conditions like (B.10). Indeed, several works have been done in this direction, but the first result involving only one component in scaling invariant class of spaces was due to J-Y. Chemin and P. Zhang in [START_REF] Chemin | On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations[END_REF]. Followed by a result due to the same authors together with Z. Zhang in [START_REF] Chemin | On the critical one component regularity for 3-D Navier-Stokes system: General case[END_REF]. And more recently by J-Y. Chemin, I. Gallagher and P. Zhang in [START_REF] Chemin | Some remarks about the possible blow-up for the Navier-Stokes equations[END_REF]. More details are already given in Chapter II of this thesis.

As mentioned above, the limit case p = ∞ is hard to prove, the authors in [START_REF] Chemin | Some remarks about the possible blow-up for the Navier-Stokes equations[END_REF] proved some results concerning this case, and in the present work we slightly modified their proof to obtain similar result in another type of spaces (see Theorems II.1.1 and II.1.2 in Chapter II).

However we do not know if one component of the velocity being bounded in L ∞ (([0, T ]; Y), 1 Also it has been extended to the full limit in time in Ḣ 1 2 by G. Seregin in [START_REF] Seregin | A certain necessary condition of potential blow up for Navier-Stokes equations[END_REF] The above norm is inspired by two facts:

The first one is when we look at the first part of the norm above, we remark that the horizontal derivatives control the vertical ones. If we ignore the convective term in (C.1), and if we assume that the solution preserves this structure, in this case will have ∆ h ≈ ∆.

That is to say, any initial data that has the form of the first term on the r.h.s of (C.3) would generate a solution to (∂ t -∆ h )f = 0 (C.4) which gains some regularity with respect to the vertical variables despite the lack of the term -∂ zz in (C.4).

Secondly, the last term on the r.h.s of (C.3) considers the case where the vertical variables dominate the horizontal ones. Here as there is no gain of regularity with respect to the vertical variables in (C.1) the problem should be dealt with as hyperbolic system as well explained in [START_REF] Chemin | On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations[END_REF]. The work of M.Paicu [START_REF] Paicu | Equation anisotrope de Navier-Stokes dans des espaces critiques[END_REF] shows up to be crucial in this step.

As pointed out above and in [START_REF] Chemin | On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations[END_REF], one of the advantages of solving the equations in B

instead of B 0, 1 2 is to generate solutions from initial data like φ ε def = e ix 1 /ε φ(x), φ ∈ S(R 3 ), which satisfies

Which means that this kind of initial data can not be treated by the result of [START_REF] Paicu | Equation anisotrope de Navier-Stokes dans des espaces critiques[END_REF] whereas [START_REF] Chemin | On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations[END_REF] ensures the global wellposedness of (C.1) with initial data like φ ε and ε << 1.

The outlines of the proof in [START_REF] Chemin | On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations[END_REF] relies on searching for a solution of the form u = u F + w, where u F def = e t∆ u hh , u hh def = k≥ -1

and w belongs to an horizontal-energy-type space of B 0, 1 2 . The equation of w is then a modified Navier-Stokes equation with source term u F • ∇u F . It is in fact because of this term, the maximal horizontal integrability chosen in the definition of the first term on r.h.s of the norm (C.3) is L 4 h . One may ask if we can generalize the result of [START_REF] Chemin | On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations[END_REF] for small initial data belonging to

A positive answer was given in [START_REF] Zhang | Global wellposed problem for the 3-D incompressible anisotropic Navier-Stokes equations[END_REF], if in addition, the non linear term u F • ∇u F belongs to 2 ). This additional condition is true for all data belonging to B , and p ∈ [START_REF] Adhikari | Global regularity results for the 2D Boussinesq equations with vertical dissipation[END_REF][START_REF] Abidi | On the global well-posedness for Boussinesq System[END_REF]. The choice of p = 4 in [START_REF] Chemin | On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations[END_REF] is optimal regarding the idea they follow to prove their result (which is the same in [START_REF] Zhang | Global wellposed problem for the 3-D incompressible anisotropic Navier-Stokes equations[END_REF]).

The question that we address here is whether or not can we get rid of the additional condition u F • ∇u F ∈ L 1 T (B 0, 1 2 )? The major problem is the following:

Roughly speaking, we would like to solve a modified version of (C.1) on w with u F •∇u F as a source term. At some point this modified equation should be solved in L ∞ T (B 0, 1 2 )∩L 2 T (B 1, 1 2 ), which justify the choice of the condition u F • ∇u F ∈ L 1 T (B 0, 1 2 ). The use of the L 2 norm in the last term on the r.h.s of (C.5) is crucial in order to follow the work of M.Paicu in [START_REF] Paicu | Equation anisotrope de Navier-Stokes dans des espaces critiques[END_REF], and to benefit of the structure of the non linear term w • ∇w.

That is to say, replacing L 2 in the last term on the r.h.s of (C.5) by some L p , for p = 2, does not seem to be the key to solve the equations. Moreover, the choice of p = 4 in the space B 2 p -1, 1 2 p seems to be optimal since having u F in some B with respect to the spacial variables infers that the best low integrability that we can have for the non linear term u F • ∇u F would be p 2 . Which means that p = 4 looks like to be the best choice here. Similar and more are the questions that we can address to the rest of the models studied in this thesis. For which we hope that we will be able to provide some answers in our future works.