
HAL Id: tel-03177856
https://theses.hal.science/tel-03177856

Submitted on 23 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining active object and BSP programs
Pierre Leca

To cite this version:
Pierre Leca. Combining active object and BSP programs. Programming Languages [cs.PL]. Université
Côte d’Azur, 2020. English. �NNT : 2020COAZ4055�. �tel-03177856�

https://theses.hal.science/tel-03177856
https://hal.archives-ouvertes.fr

Combinaison de programmes à objets
actifs et BSP

Pierre LECA
Laboratoire d’Informatique, Signaux et Systèmes de Sophia Antipolis

Présentée en vue de l’obtention du grade de docteur
en Informatique d’Université Côte d’Azur
Dirigée par : Françoise BAUDE

Soutenue le : 02/10/2020.

Devant le jury, composé de :
Gul AGHA, Professeur émérite,
University of Illinois
Françoise BAUDE, Professeur,
Université Côte d’Azur
Emmanuel CHAILLOUX, Professeur,
Sorbonne Université
Gaétan HAINS, Professeur, Huawei Technologies
Ludovic HENRIO, Docteur, Univ Lyon
Fabrice HUET, Professeur, Université Côte d’Azur
Etienne LOZES, Professeur, Université Côte d’Azur
Wijnand SUIJLEN, Master, Huawei Technologies

Combinaison de programmes à ob-
jets actifs et BSP

Jury :
Président du jury
Etienne LOZES, Professeur, Université Côte d’Azur

Rapporteurs
Gul AGHA, Professeur émérité, University of Illinois
Emmanuel CHAILLOUX, Professeur, Sorbonne Université

Examinateurs
Françoise BAUDE, Professeur, Université Côte d’Azur
Gaétan HAINS, Professeur, Huawei Technologies
Fabrice HUET, Professeur, Université Côte d’Azur

Invités
Ludovic HENRIO, Docteur, Univ Lyon
Wijnand SUIJLEN, Master, Huawei Technologies

Combinaison de programmes à ob-
jets actifs et BSP
Résumé

Cette thèse présente un modèle de programmation hybride entre deux modèles
de programmation parallèle : objets actifs et BSP (Bulk Synchronous Parallel). Les ob-
jets actifs sont spécialisés dans le parallélisme de tâche ; ils permettent d’exécuter du
code fonctionellement différent en parallèle, et d’échanger leurs résultats grâce à des
futurs qui représentent ces résultats avant-même qu’ils soient disponibles. Le modèle
BSP permet, quant à lui, un parallélisme assez différent de celui des objets actifs : un
parallélisme de donnée. Ce parallélisme consiste à découper une tâche en plusieurs
morceaux et de les traiter en parallèle pour aller plus vite. Ces deux modèles spéciali-
sés, permettent une programmation haut niveau et ont des propriétés intéressantes telle
que la facilité de programmation et le déterminisme sous certaines conditions. L’intérêt
d’allier ces deux modèles est donc de permettre l’écriture de programmes combinant
parallélisme de tâche et parallélisme de donnée, tout en bénéficiant des caractéristiques
des deux modèles. Cette thèse étudie ce nouveau modèle d’objets actifs BSP sous un
aspect théorique (grâce à une sémantique opérationelle) et pratique (grâce à une implé-
mentation en C++ avec MPI). Un nouveau concept de futurs distribués est également
defini ; ils consistent à unifier les concepts de futurs et de vecteurs distribués. Cela per-
met une meilleure intégration entre objets actifs et BSP : grâce à eux, nos objets actifs
BSP peuvent échanger entre eux efficacement en parallèle. L’efficacité de ces futurs dis-
tribués est montrée grâce à des benchmarks sur notre implémentation qui comparent
les performances des futurs classiques et des futurs distribués.

Mots clés : parallelisme, modèles de programmation, parallelisme de donnée, paralle-
lisme de tache, objets actifs, acteurs, futurs, BSP, semantique opérationelle, benchmark

v

Combining active object and BSP pro-
grams
Abstract

This thesis presents a hybrid programming model between two parallel program-
ming models : active objects and BSP (Bulk Synchronous Parallel). Active objects are
specialized in task parallelism; they enable the execution of functionally different codes
in parallel and the exchange of their results thanks to futures, which represent these re-
sults before they are available. The BSP model enables a quite different parallelism from
the one provided by active objects : data-parallelism. This form of parallelism consists
of cutting a task into several pieces in order to process them faster in parallel. These two
specialized models enable high-level programming and provide interesting properties
such as ease of programming and determinism under certain conditions. The point of
combining these two models is therefore to allow the writing of programs combining
task-parallelism and data-parallelism, while benefiting from the properties of the two
models. This thesis studies this new BSP active object model under a theoretical aspect
(with operational semantics) and a practical aspect (with a C++/MPI implementation).
We also introduce a new concept of distributed future. Our distributed futures consist
in unifying the concepts of futures and distributed vectors in order to represent distri-
buted data. This allows a better integration between active objects and BSP. With our
distributed futures, our BSP active objects can communicate efficiently with each other
in parallel. The efficiency of these distributed futures is shown through benchmark
scenarios executed on our implementation. They allow us to confirm a performance
improvement of our distributed futures against classical futures.

Keywords : parallelism, programming model, data-parallelism, task-parallelism, active
objects, actors, futures, BSP, operational semantics, benchmark

Acknowledgements

First of all, I would like to thank my supervisors Ludovic, Françoise, Wijnand and Gaé-
tan. Without their help, I would have never been able to complete this thesis in the
state it is now. Thank you Ludovic for accepting to be my supervisor and for sticking
with me even after you changed jobs. Thank you also to Françoise for taking over as
my university supervisor, and not only by name. Wijnand’s daily help and conversa-
tions were very helpful, both for this work and personally, and I cannot overstate how
thankful I am. I am also especially thankful to Gaétan for his contributions and his
work coordinating and administrating this CIFRE collaboration.

Reading a full thesis is not easy, and I greatly thank Gul and Emmanuel for accept-
ing to review mine, and for all their comments which helped improve this thesis.

I would also like to thank fellow PhD students Anthony, Filip, Thibaut and Juan.
Their (un)scientific contributions helped me a lot and all along these years working on
my PhD.

My deepest appreciation goes to my best friend and beloved Maryn, whose pres-
ence and support was invaluable during these years and many before. I also wish
to show my gratitude to my other longtime friends Carol-Anne, Jacques and Manon.
Their moral supports helped me refresh my mind on many occasions.

Special thanks also go to my parents Martine and Thierry, who have helped me
grow since more than 26 years now, which is not a small task, and is still ongoing.

3

Contents

List of Figures 7

1 Introduction 9
1.1 Context and Objectives . 9
1.2 Contributions . 11
1.3 Overview . 12

2 Background and State Of the Art 13
2.1 Introduction . 13
2.2 Survey of existing parallel programming models, frameworks and lan-

guages . 13
2.2.1 Well-established models for programming parallel computers . . 14
2.2.2 High-level programming models 15

2.3 Bulk Synchronous Parallel . 18
2.3.1 BSP computation model . 19
2.3.2 BSP abstract computer . 20
2.3.3 BSP cost model . 21
2.3.4 Model variants and implementation optimizations 22
2.3.5 BSP languages and applications 25

Works around BSPlib . 26
Functional BSP programming . 28
Higher-level BSP languages and Frameworks 29

2.3.6 A focus on BSPlib . 30
BSPlib API . 30

2.3.7 BSPlib Example . 31
2.4 Futures, Promises, Actors and Active Objects 35

2.4.1 Futures and promises . 36
2.4.2 Actors and active objects . 38
2.4.3 Languages and implementations 40
2.4.4 Parallel processing . 42
2.4.5 Applications . 43

2.5 Parallel data communication . 44
2.6 Conclusion . 46

3 BSP Active Objects 49

4

3.1 Introduction . 49
3.2 Execution model . 50

3.2.1 Design choices . 50
3.2.2 Model overview . 52

3.3 BSP active objects by example . 55
3.4 Management thread for distributed implementation 58

3.4.1 Motivation and terminology . 58
3.4.2 Illustration: Processes and threads 58

3.5 Conclusion . 60

4 Formalization 61
4.1 Introduction . 61
4.2 Syntax . 61

4.2.1 Design choices . 63
4.3 Semantics . 63
4.4 Example . 72
4.5 Cost model . 75
4.6 Determinism . 77
4.7 Conclusion . 78

5 Distributed Futures 81
5.1 Introduction . 81
5.2 Motivation and principles . 81

5.2.1 Motivation . 82
5.2.2 Principles . 83

5.3 Implementation of distributed futures . 85
5.3.1 The vector_distribution structure 85
5.3.2 Language extension . 87
5.3.3 Note on implementation choices 90

5.4 Illustrative example . 91
5.5 Conclusion . 93

6 Implementation 95
6.1 Introduction . 95
6.2 Environment . 95
6.3 Active object implementation . 96

6.3.1 C++ active objects . 97
6.3.2 MPI implementation of actors . 98

6.4 BSP active object implementation . 102
6.4.1 Giving multiple processes to active objects 102
6.4.2 BSP implementation within parallel actors 103
6.4.3 Implementation of bsp_run . 104

6.5 Distributed future implementation . 105
6.6 Conclusion . 107

5

7 Experimental evaluation 109
7.1 Introduction . 109
7.2 Experimental Setting . 109
7.3 Communication benchmarks . 110

7.3.1 Vector call . 110
7.3.2 Relay vector . 111

7.4 Image comparison benchmark . 114
7.4.1 Scenario . 114
7.4.2 Results . 116

7.5 Conclusion . 120

8 Conclusion 121
8.1 Summary . 121
8.2 Concluding remarks . 122
8.3 Perspective . 122

7

List of Figures

2.1 The BSP execution model . 19
2.2 BSPlib inner product from BSPedupack 33
2.3 initializing function of BSPedupack inner product 34
2.4 main function of BSPedupack inner product 35
2.5 Active objects . 39

3.1 BSP active object model . 53
3.2 ActiveBSP example . 56
3.3 Inner product execution . 57
3.4 Head process request handling with management thread 59

4.1 Static syntax of BSP active objects . 62
4.2 Runtime Syntax of BSP active objects (terms identical to the static syntax

omitted). 63
4.3 Semantics of BSP active objects – Part 1 64
4.4 Semantics of BSP active objects – Part 2 65
4.5 ABSP runtime configuration . 67
4.6 Serve rule . 69
4.7 BSPrun rule . 70
4.8 Return-Sub-Task rule . 71
4.9 BSP-Get rule . 71
4.10 ABSP example . 73
4.11 Instantiation of first BSPrun . 74
4.12 Instantiation of first return from bsp_o f f set 74
4.13 Simple ABSP main function . 76
4.14 Active object race condition . 77

5.1 Gathering and scattering to transfer distributed data 82
5.2 Parallel transfer of distributed data . 83
5.3 Distributed future API example . 88
5.4 Vector distribution primitives . 88
5.5 PipeActor forwarding distributed data . 92
5.6 main function showing three PipeActor objects forwarding a distributed

vector through distributed futures . 93

6.1 Syntax of DECL_ACTOR . 97

8

6.2 Example usage of DECL_ACTOR . 98
6.3 Management of MPI processes . 99
6.4 Creating an actor . 100
6.5 Calling an actor . 101
6.6 Calling get on a Future object . 101
6.7 Creating a multi-process actor . 102
6.8 Implementation of bsp_run . 105

7.1 Vector call benchmark scenario . 110
7.2 Vector call benchmark results . 111
7.3 Communications in Relay vector scenario for future 112
7.4 Communications in Relay vector scenario for first class future 112
7.5 Communications in Relay vector scenario for distributed future 113
7.6 Relay vector benchmark results . 114
7.7 One pipeline sequence . 115
7.8 Main part of the coordinator process . 116
7.9 Time for each stage of the pipeline with distributed futures 116
7.10 Time for each stage of the pipeline without distributed futures 117
7.11 Execution time for inserting 1000 images as function of the number of

compressor processes, with 16 disk processes and 20 database processes 118
7.12 Time for inserting 1000 images as function of the image size, with 16 disk

processes, 16 compressor processes and 20 database processes 119
7.13 Time for inserting 1000 images as function of the image size, with 16 disk

processes, 16 compressor processes and 20 database processes 119

9

Chapter 1

Introduction

1.1 Context and Objectives

Programming parallel and distributed systems is a notoriously difficult discipline that
is often reserved to experts which have to be aware and careful of the many pitfalls
it involves. It is also a very time consuming endeavor that requires a great deal of
debugging and performance analysis in order to reach one or several of the desired
benefits it can bring. These benefits are attractive; for example, parallel programming
may result in solving a task quicker, solving many tasks at the same time or solving
a task with a larger, distributed input that would not fit in the memory of a single
computer.

In order to ease parallel programming and thus enable a greater number of pro-
grammers to bring the benefits of parallel programming into their applications, re-
search and industries have contributed to numerous parallel programming models,
languages and frameworks over the years.

With languages becoming cleaner and less complex, formal studies were intro-
duced in order to reason on them on the theoretical level. These works include the
definition of formal languages (which often represent a language executable in a pro-
duction environment). For example, operational semantics is a way to define a formal
language, it enables the proof of certain properties within the defined formal language.
This is valuable for a programmer as it adds to the safety, reliability, and clarity of
programming languages.

However, as programming models become higher-level and easier to use, they
often sacrifice flexibility and hide parallel programming concepts in order to become
easier. As we will see, BSP and actors are two examples of models that make program-
ming easier in this manner. For example, it is difficult to efficiently synchronize parallel
tasks of different durations with BSP. Making parallel programming easier and safer of-
ten comes at some cost: a loss of performance or flexibility for example. A side effect is
often that programming models become specialized and less suited to solve problems
outside their domains.

10

Domain Specific Languages (DSLs) are an extreme example of specialization that
can make programming so easy that the developer of an application does not need to
be a programming expert; but these kind of languages are so inflexible that they can
not be used in another context than the one they are specialized for. DSLs can however
be a good solution in some cases, but their lack of flexibility makes them unusable in
the general case.

Even general purpose programming languages often propose a very specialized
parallelization methodology which could be restrictive in terms of performance. They
can also restrict the potential parallelism or the expressible distribution of the compu-
tation. This is why we believe it is interesting to propose hybrid parallel programming
models. The benefits of doing so include broadening the class of application for the
hybrid model while keeping the ease of programming thanks to the specific constructs
of the different models.

Among the programming models for parallel and distributed computing, one can
identify two important families. There is task-parallelism, which decomposes work into
functionally different parts that can be executed in parallel, and data-parallelism, where
a set of coordinated processes perform a computation by splitting the input data to
process the different pieces in parallel.

Task and data-parallel programming languages remain far less specialized than
DSLs, but their specialization often makes them inappropriate for other kind of par-
allelism. Because task-parallelism and data-parallelism are convenient to parallelize
different parts of an application, it would be valuable to combine them into one pro-
gramming framework.

The goal of this thesis is to study the integration of two programming models in
these categories. We want to propose a single model able to express both kinds of
parallelisms, but also this new programming model should be easy to program and
feature properties that provide some form of safety and limit the occurrence of bugs.

Active objects are specialized in task parallelism. They provide a friendly object
oriented manner to program parallel tasks. Active objects basically represent entities
running on dedicated threads; they communicate with each other through typed asyn-
chronous method calls and they use futures to represent results. These futures are used
as placeholders for the results of asynchronous invocations. Active objects have some
valuable safety properties such as the absence of data-race, and a programmability
close to sequential programming and determinism under certain conditions.

On the other hand the BSP parallel programming model, and its BSPlib API, pro-
vides data-parallelism, in a relatively easy to program way. BSP makes data-parallel
programming easier and safer by concisely splitting algorithms into disjoint phases
of computations and communications, and limiting the mean of synchronizing pro-
cesses to barrier synchronizations. This provides BSP with some interesting properties

11

such as determinism (depending on the implementation but easy to achieve), deadlock-
freedom, and programmability close to sequential programming.

Both active objects and BSP limit the concurrency mechanisms exposed to the pro-
grammer. They provide a convenient and safe way to write parallel and distributed
applications, with a programmability close to a sequential program. Because of the
properties and focuses both these models have in common, we believe that the active
object and BSP models are good candidates for forming an hybrid model between task
and data-parallelisms.

There have already been attempts to mix task and data-parallelisms, for exam-
ple into parallel component frameworks. However, we believe these two parallelism
aspects could be better integrated than what can be found in the literature. In any
case, even in the existing hybrid models that mix data and task parallelism, one known
problem appears almost systematically: how to efficiently transfer the data produced
in parallel by a task, to a different task. For solving this problem, communication strate-
gies have to be designed. In these kind of scenarios, when the programming API has
to be exposed as part of these strategies, the user has to be made aware of the existence
of these strategies and how they work. Our goal is also to solve this problem in an
efficient and elegant manner in the context of the integration of BSP and active objects.

1.2 Contributions

The work of this thesis is centered around bringing task and data-parallelisms closer
with each other, through a unified model between BSP and active objects.

The main contributions for this thesis are:

• An hybrid BSP active object model. This thesis is centered around this BSP
active object model; we define a programming model which allows active objects
to process a request in parallel through BSP.

• A core formal BSP active object language and its operational semantics. First, a
formal language and clearly defined semantics precisely specify the behaviour of
our model. Second, it provides the basis for a formal study of our model in order
to prove theoretical properties.

• The definition of distributed futures. Adding data-parallelism inside active ob-
jects implies that they can produce distributed results in parallel. Providing such
a functionality highlighted that futures are not appropriate for representing dis-
tributed data. In order to better integrate task and data-parallelisms, we designed
distributed futures; this allows us to return distributed data from BSP active ob-
jects and communicate results of parallel tasks between active objects while opti-
mizing the communications. While we designed distributed futures for our BSP
active objects, our contribution is broader as distributed futures could be exported
outside this context.

12

• The design of a data transfer strategy for distributed futures. We describe our
strategy for synchronizing a distributed future and communicating the associated
distributed data efficiently between parallel entities.

• An API for creating, accessing, and manipulating distributed futures. We ex-
tended our BSP active object model with primitives enabling the programmer to
manipulate distributed futures in our hybrid task and data-parallel environment.

• The description of our BSP active objects and distributed futures implementa-
tions. We implemented BSP active objects and distributed futures in a C++/MPI
environment. We describe the interesting aspects of this implementation.

• Benchmarks evaluating the performance of BSP active objects and distributed
futures. We evaluated our implementation of BSP active objects and distributed
futures. We designed several benchmark scenarios to evaluate the performance
of our BSP active object implementation. In our largest benchmark, we focus on
the performance comparison of classical futures against distributed futures.

Most of these contributions were published in [38] and [52], and credits also go to
the co-authors of these papers for their contributions.

1.3 Overview

This document is organized as follows:

• In Chapter 2, we provide an overview of existing parallel programming models,
with a focus on a task-parallel model: active objects, and a data-parallel model:
BSP. All along, we point out existing works that attempts to bring the other kind
of parallelism into each of them.

• Chapter 3 presents our BSP active object model.

• In Chapter 4, we present a formal language for BSP active objects.

• Chapter 5 presents distributed futures, an unification of futures and distributed
vectors. We introduce distributed futures in the context of our BSP active objects.

• In Chapter 6, we describe in further details our implementation of BSP active
objects and distributed futures.

• Chapter 7 provides an experimental evaluation of our implementation of BSP
active object and distributed future.

• Chapter 8 summarizes the contributions of this thesis and gives concluding re-
marks on our work. Perspectives for future works are also presented.

13

Chapter 2

Background and State Of the Art

2.1 Introduction

In the context of this thesis, we are interested in two kinds of parallel programming
approaches: task-parallelism and data-parallelism. More precisely, we are interested in
a unifying model combining the two approaches; not as a general parallel programing
model, but as a hybrid one. We picked a model of each category, for their properties
that include safety and ease of programming, BSP in the domain of data-parallelism
and active objects in the domain of task-parallelism. In this chapter, we give the state
of the art on parallel programming in general, on the BSP and active object models,
and on parallel data communication techniques, which are useful in a hybrid model
that efficiently combines task and data parallelism.

This chapter is organized as follows: first we are going to give an overview of the
state of parallel programming models and languages in Section 2.2. Then, we take a
closer look at task-parallelism and data-parallelism by focusing on a family of each:
BSP for data-parallelism in Section 2.3, and actors, active objects and futures for task-
parallelism in Section 2.4. We then describe existing techniques for communicating
data in parallel in Section 2.5.

2.2 Survey of existing parallel programming models, frame-

works and languages

In this section, we discuss parallel programming in general, we start with low-level and
well-established parallel programming approaches in Section 2.2.1. We then discuss in
Section 2.2.2 why and how higher-level programming languages emerged, following
with a brief survey of some of these high-level languages and frameworks for special-
ized parallel computing needs.

14

2.2.1 Well-established models for programming parallel computers

Several parallel APIs have been introduced to provide uniform interface to parallel
programming. Indeed, parallel computers used to be specialized machines that each
require their own programming library. The Message Passing Interface (MPI) is an at-
tempt at providing a common API for programming parallel computers. Parallel com-
puter providers can still provide dedicated libraries for programming their machines,
but by providing an MPI implementation, that can be built from their specialized li-
braries, they enable programmers to build programs that are portable to other parallel
computers.

With MPI, all processes start by entering the same function at the beginning of a
program. This style of parallel programming is called Single Program Multiple Data
(SPMD), because all processes execute the same program, usually from the same main
function, with each process having its own control flow. This is in contrast with the
Single Instruction Multiple Data (SIMD) style, which has only one control flow.

MPI provides message passing primitives in many variants, the basic ones are
the blocking point-to-point message sending and receiving primitives, respectively
MPI_Send and MPI_Recv. MPI also provides collective operations such as broadcast,
gather and scatter, that each may perform on a group of processes that can be controlled
by the programmer through a communicator concept. Inspired from other library in-
terfaces such as BSPlib, later MPI versions added Remote Memory Access (RMA) prim-
itives. While difficult to use and with many constraints, these RMA primitives allow
the writing of data into registered remote memory areas. The remote processes are not
aware about exactly where data is read or written on their memory, but they still have
to enter barrier-like primitives in order to allow these operations to happen.

One common source of bug with MPI is the misunderstanding and misuse of its
primitives, possibly leading to deadlocks. According to the MPI specification, the send-
ing primitive may block until the message is received by the target process, which must
call the receiving primitive in order to do so. However, MPI implementations often
optimize the sending of small messages by sending them right away in a non-blocking
manner, which can be confusing for the programmer.

Calling the receiving primitive blocks until a matching message is received. While
there are variants of sending and receiving primitives which may be mistaken to be
asynchronous such as the MPI_Irecv and MPI_Isend primitives, they are in fact not
guaranteed to be asynchronous by the MPI specification. Sending and receiving mes-
sages involves a lower-level protocol that may vary between different MPI implementa-
tions. The MPI standard recognizes this and chose to leave flexibility in the implemen-
tation of primitives for performance reasons. While some primitives may be mistaken
to be asynchronous, other primitives must be called from time to time in order to make
sure the data is being sent.

15

While MPI became a standard for programming parallel computers through the
message passing model, shared memory computers can also be programmed through
shared memory programming. OpenMP [24] later became a successful standard for
programming shared memory computers. OpenMP took a higher level approach than
MPI or other shared memory programming standards such as POSIX threads or Win32
threads. It consists of a set of compiler directives for C, C++ and Fortran. These direc-
tives can be used, among other things, to automatically parallelize loops. Shared and
private variables are also specified within compiler directives. The way processes are
used is also different from MPI. Here by default, the execution is sequential and the
context becomes explicitly parallel when a parallel compiler directive is called, for the
duration of the scope for which the directive is called. This follows the fork-join model
of parallel programming; while MPI also provides means to program in a fork-join
style, it is not as convenient to do so as with OpenMP.

While the C language is one of the preferred languages for writing high-performance
applications, it does not natively integrate aspects of a parallel computer, or provide the
means to program it. While C libraries such as MPI C implementations provide means
to program parallel computers, the Unified Parallel C (UPC) [18] extends the C lan-
guage itself, which can then be implemented using, for instance, message passing or
shared memory libraries. New keywords are added in order to distinguish between
local and remote addresses and exploit data-locality. Pointers and arrays can be de-
clared to be shared among parallel processes. The internal structure of shared variable
includes a process number that indicates where the data is stored. The items of an array
of shared data may or may not point to local data. Pointer arithmetic looks up element
as cyclically distributed data. Block distribution is mentioned to be achievable either
manually, by having a shared array of blocks of data, or as an UPC implementation
choice. The memory consistency model may also be chosen by the user, with the choice
between strict or relaxed models. Synchronization of processes is achieved through
locks, fences and global barriers; the strict shared memory consistency model may also
be exploited in order to synchronize processes.

2.2.2 High-level programming models

Because parallel programming, especially at lower level, is difficult and time consum-
ing due to its increased complexity compared to sequential programming, numerous
research works were dedicated to providing higher level languages and frameworks
to simplify development work and make parallel programming accessible to program-
mers who are not parallel programming experts. Such work often comes with compro-
mises on different levels, including performance and expressiveness, with goals vary-
ing from ease of programming, cost analysis, and verifiability.

Two common ways to parallelize an application are task parallelism and data par-
allelism. Task parallelism aims to decompose a problem into functionally different
problems, where each is handled by a different process. Parallelism is achieved by

16

having different problems solved at the same time. A pipeline can be formed by dif-
ferent processes, each handling a part of a problem instance. Data parallelism on the
contrary aims to solve the same problem faster by slitting the input data and processing
it in parallel on multiple processes. Sometimes, a data-parallel problem is solved with-
out any communication. Such problems are called embarrassingly parallel problems,
because of how easy their parallelization is.

One way to provide language support for task parallelism is Remote Procedure
Calls (RPC), it enables sending a particular instruction to a process so that it executes a
specified procedure with given parameters, all this with the language perspective of a
local procedure call.

Actors, active objects and futures are concepts specialized to make task parallelism
easier. On the other side Bulk Synchronous parallel is an execution model specialized
into data-parallelism. Because of how close these concepts are to the work of this thesis,
we will go into them into dedicated sections (Section 2.3 and Section 2.4).

The programming of stream applications is an example of task parallelism, where
data flow through different components. StreamIt [67] is an example of a dedicated lan-
guage for programming stream applications. It aims to ease stream programming, of-
ten programmed into low-level languages such as C, without sacrificing performance.
In the original StreamIt from [67], all stream flows and filter combinations have to be
known at compile time. This static structure aims to enable compile-time optimiza-
tions of streams, that had otherwise to be implemented manually by the stream ap-
plication developer in a general purpose language. StreamIt uses a Java-like syntax
to provide ease of programming. To provide a specialized language for streaming ap-
plications, StreamIt identifies main concepts to be integrated into the language: data
stream, stream filters (computation item, or task), computation pattern (connection be-
tween filters).

Coordination languages [33] are also dedicated to task parallelism, they propose
splitting programming languages into computation languages and coordination lan-
guages. The computation language part is dedicated to the specification of each task,
while the coordination language is dedicated to making tasks interact with each other.
Coordination languages are designed according to specific coordination needs. For
example, distributed systems may make heavy use of RPC with request-reply mech-
anism, while parallel HPC applications can not afford to do so. An argument for the
separation of coordination languages from computation languages is portability. For
example, if for some reason the computation language has to change, then the coor-
dination implementation of the different tasks can stay the same. Another argument
made is that tasks made with different computation languages may be tied together in
an application with a common coordination language.

The Linda [32] coordination language proposes an abstract concept of Global Tuple
Space (GTS), which processes interact with in order to communicate with each other.
Three base operations are described on the GTS: out, in and read. The out operation

17

inserts a tuple of a given name along with parameters, the in operation reads a tuple
from the GTS and removes it, while the read operation also reads a tuple without re-
moving it. If an attempt is made at reading a tuple with a name that does not yet appear
in the GTS, then the executing process waits for it. One feature is that the destination
process is not explicitly specified when a tuple is sent using out, only a tuple name is
given and any process can consume the tuple using in by specifying this name. Conse-
quently, this set of primitives is a source of non-determinism as asynchronous processes
may produce and consume tuples at different points in time. For example, when a tu-
ple is produced and multiple processes are trying to consume this tuple by specifying
its name, the processes trying to consume the tuple are actually competing with each
other, because only one can obtain the tuple if it is removed from the GTS upon reading.
These base operations are extended to support structured naming, allowing one name
to generate a family of others. One main implementation challenge is to implement the
GTS efficiently in a distributed environment. It is noted that the global aspect of the
tuple space might put a heavy burden on the network, which might be a performance
issue.

Tasks are sometimes encapsulated into higher level components that take care of
their communicating interfaces, so that a programmer does not have to implement
communication between different tasks. The Grid Component Model (GCM) [8] is a
specification for implementing a component framework. It includes a way to manage
components of the same kind as a single parallel component. This is useful for exam-
ple for implementing data parallelism. Different tasks can be called for solving smaller
problems. The result too can be viewed as a single distributed result, and passed be-
tween parallel components.

Foisy et al. studied how a get RPC call could send expressions to be evaluated by
other processes [29]. The fact that processes are running the same code in parallel was
exploited to allow an expression to be directly contained in a get call, as it would have
been with a normal parameter. However the program structure is constrained as the
get call is contained within a sync statement that freezes the evaluation environment
so that it is not ambiguous at which point the value of the expression has to be taken
from the asynchronous processes.

Algorithmic skeletons were introduced by [23] as a high-level programming model.
A skeleton aims to hide the complexity of parallelization through predefined patterns,
that can be filled by the user. The user only has to program sequential aspects of the
algorithms called muscles, and the difficult distributed/parallel aspects are provided
by the skeleton. Different skeletons can be combined together by the user to form more
complex patterns from the basic ones.

A successful example of a high-level programming framework inspired from skele-
tons is MapReduce [26]. MapReduce itself is merely a programming interface. It only
exposes the user to two functions: map and reduce. MapReduce originates from Google
where they realized that most of their computations apply a map operation to each

18

data record to compute intermediate key-value pairs, and then applying reduce oper-
ations with all values which share the same key. Results are written to disk. Exposing
only the map and reduce functions means that everything else can be programmed,
optimized and made fault tolerant separately from the map and reduce performed by
different applications. Portable code can also be written for different MapReduce im-
plementations, where the user code (the map and reduce functions) can be reused in
different implementations, for different architectures. One of the strong points men-
tioned of MapReduce is its ease of programming. Only two sequential functions have
to be written by a user to write a parallel program without any knowledge of parallel
programming required. Details about parallelization, fault tolerance, locality optimiza-
tion and load balancing are hidden. While Google published the MapReduce concept,
their implementation was kept proprietary, but open source implementations such as
Hadoop exist.

Another successful high-level framework for parallel computing is Spark [73]. Af-
ter each operation, MapReduce writes data to disk. This makes algorithms reusing
results ineffective, in particular iterative jobs, because data has to be read and written
from the disk every iteration. MapReduce applications have a rigid structure with se-
quence of map and reduce operations, writing to disk each time results are produced.
Spark applications are more flexible in their structures as there is a driver program in
charge of the control flow of the application, and with results that can stay in memory
between operations. This driver program can call parallel operations that make use of
distributed data called Resilient Distributed Dataset (RDD). An RDD is a read-only col-
lection partitioned among a set of machines. Parallel operations such as reduce, collect
(send to driver), and foreach(apply user function) can be called to process the RDDs.
Similarly to MapReduce, the Spark framework takes care of fault tolerance and com-
munications, while hiding the most difficult aspects of parallel programming from the
user.

As mentioned earlier among parallel programming models, this thesis rely on BSP
and active objects. Because both active objects and BSP are specialized models, they
are not appropriate for the kind of programs that the other is able to represent. In this
thesis, we are interested in merging both into a single model in order to benefit from
both task-parallel and data-parallel paradigms. We will talk about them in more details
in Section 2.3 and Section 2.4. We will also see that a naive integration of both models
can lead to communication patterns that could clearly be parallelized between two data
parallel tasks, this is why we will describe some related works about communicating
distributed data in Section 2.5.

2.3 Bulk Synchronous Parallel

In this section, we take a closer look at the BSP model of parallel programming. This
model is interesting in the context of this thesis as it is a data-parallel specialized model

19

Figure 2.1: The BSP execution model

of parallel programming. We will also see that, because the BSP model is not appropri-
ate for task-parallelism, efforts were made in order to address this shortcoming, mainly
through the proposed aspect of subset synchronization as we will later see. We picked
BSP for our hybrid model between task and data parallelism because of the interesting
properties we will detail in this section.

2.3.1 BSP computation model

The BSP model [70] originates from Valiant in the 90s as an attempt to provide parallel
computing with an equivalent to the Von Neumann model for sequential computing.
Valiant argues that what is needed for parallel computing to succeed in computation-
ally intensive domains is what he calls a bridging model for parallel hardware and soft-
ware. One main issue of parallel algorithm design was that different algorithms were
required in order to solve the same problem efficiently on different networked parallel
computers. The BSP model has the goal of splitting hardware and software concerns.
It is hoped that having such a model generally accepted can lead parallel computing to
lower costs and greater predictability, as software and hardware designers could keep
their issues apart and focus on their actual domains. Software designers would be
writing algorithms matching the BSP model and hardware/topology designers would
implement the BSP abstract computer.

As shown in Figure 2.1, BSP algorithms are defined as a sequence of 3 phases.
These phases are computation, communication and a global synchronization barrier
between all processes (depicted by a red vertical bar on the figure). A group of these
phases is called a superstep.

Formally splitting computation and communication into sequenced phases may
not initially be intuitive as it implies forbidding their parallelization This choice is mo-
tivated by the fact that parallelizing them would at most improve performance by a
factor of two if computation and communication steps were perfectly balanced so that
their execution could perfectly overlap, while clearly separating them allows greater
optimizations on communication, which we will see in Section 2.3.4.

20

McColl also studied and taught about the BSP model. His paper on scalable com-
puting [57] provides a very nice overview of BSP, it represents today’s general under-
standing about BSP. His lecture notes [56] provide a more detailed reading, from com-
puter architecture to algorithm design.

Valiant’s original hope for the BSP model is that it can be generally accepted by
both the software and hardware communities so that experts can focus on their actual
domains. However, while the forced barrier synchronization provides very nice prop-
erties, BSP is often criticized for only allowing this form of process synchronization.
People see barrier synchronizations as slow, but they often see the effect of commu-
nication or computation imbalance. The barrier itself can be efficiently implemented
on many network topologies, often only requiring O(log p) rounds of communication,
which constitutes only a negligible amount in the total running time of many applica-
tions. In any non-embarrassingly parallel application, where it is required to exchange
information among a group of processes, a collective communication round can be or-
ganized much more efficiently than if all processes have to synchronize and communi-
cate using point-to-point communications with each of their peers without any sense of
global schedule. Moreover, it makes accurate algorithmic cost analysis feasible, which
is the main argument for always performing communications synchronously in the BSP
model.

2.3.2 BSP abstract computer

A BSP computer is an abstraction which represents a parallel computer. It is very sim-
ilar to the well-known distributed memory architecture, where each processor has its
own memory and can communicate with other processors through a black box net-
work. One assumption in a BSP computer is that the communication bottleneck is not
in the network itself, but in the individual processes’s network interfaces. A BSP com-
puter is described by four performance indicators: its computation speed per processor
s (e.g. in FLOPS), the number of processors p, the reciprocal communication through-
put g and the latency L. Throughput and latency are expressed as a factor of the com-
putation speed to indicate resource balance (How many computations are “spent” for
sending each byte, or initiating communication).

The performance ratio of the components that make up a BSP computer, namely
the processors with their memory and the network, can differ between systems. One
system may have ten very fast processors (high s), slow synchronization (high L), but
a high throughput network (low g), while the other system can have a thousand slow
processors (low s), fast synchronization (low L) but a low throughput network (high
g). These differing performance ratios may mean that the best BSP algorithm for, for
example, a broadcast operation will also be different for these systems. The ten pro-
cessor system in this example will be much better off with the single phase broadcast
whose BSP cost is T(n) = png + L, while the thousand processor system will be likely
much faster with the two phase broadcast with cost T(n) = 2ng + 2L. To be able to

21

decide more accurately, one can actually measure the BSP parameters, e.g. by using the
benchmark program from BSPedupack [13], and apply those numbers to the cost for-
mulas. The algorithm with the lowest BSP cost, will have a good chance of also being
the fastest algorithm for that system.

The original BSP computer architecture is quite simple, with processor-memory
pairs that communicate with each other through a shared network. However, it does
not accurately represent modern computers. Valiant later proposed an alternative model [71]
called Multi-BSP that could represent multi-core computers. This model can represent
arbitrary combination of caches, memory, chips and processors. Instead of a flat p, g
and L parameter set, a Multi-BSP computer has d levels of parameter sets, and it also
captures the memory capacity m of each level. This gives (p1, g1, L1, m1)(p2, g2, L2, m2)...(pd, gd, Ld, md)

for a d layers Multi-BSP computer. This list represents a tree of components, where the
components at each level are homogeneous, this is why this list is enough to represent
a tree. Each level i has pi components of the same kind, in other words, heterogeneous
parallel computers can not be modeled. Each component of a layer forms a BSP com-
puter with other components that have the same parent component. This BSP computer
has bandwidth gi, latency Li and memory capacity mi.

The representation of a parallel computer consisting of p Sun Niagara UltraSparc
T1 multi-core chips connected to an external storage device is given by [71] in 2008.
This parallel computer has p multi-core chips with external memory m3 accessible via
a network of rate g2, where one chip has 8 core plus L2 cache, and each core has 1
processor with 4 threads plus L1 cache. With values taken from [71], this gives a Multi-
BSP computer of (p1 = 4, g1 = 1, L1 = 3, m1 = 8kB)(p2 = 8, g2 = 3, L2 = 23,
m2 = 3MB)(p3 = p, g3 = inf, L3 = 108,m3 ≤ 128GB).

After each component at a certain level finished doing its computation along with
those sharing the same parent, they are able to write the result into their parent’s mem-
ory. Through this model, Valiant hopes a more explicit control of caches can lead to
more efficient synchronizations. This model is however broadly seen as overly com-
plex.

2.3.3 BSP cost model

One of the goals of BSP is to make it easy to evaluate the cost of algorithms, this is
why performance metrics are given to BSP computers. Because of the barriers, a BSP
algorithm’s cost can be decomposed as the sum of the costs of all supersteps. Each
superstep’s cost can then be calculated independently. Since the computations and
communications are split, what is needed in order to evaluate the cost of a superstep
is the cost of computations and the amount of data communicated. With the barrier,
processes will be waiting for worst performing one at each phase. This inconvenience
translates in simplicity for the cost model because it means the cost of each phase is
simply the cost of the worst-performing process in this phase. For the computation
phase, we directly take the worst case at any process of this computation. For the cost

22

of the communication phase, we take the worst case sum of the amount of data sent and
received by any process. This defines the BSP superstep as an h relation, with h being
this sum. The cost of the communication (and synchronization) phase of an h-relation
is then h · g + L. Hence, the total cost of a superstep is w + h · g + L, with w being the
computational work required within this superstep; as usual, it is the worst case of any
process. The total time of a BSP computation is the sum of its supersteps costs. Worst
cases of h and w can be summed into respectively H and W to get the total cost within
a simple formula W + H · g + S · L, with S being total number of supersteps.

2.3.4 Model variants and implementation optimizations

Skillicorn presented a listing of a few implementation optimizations that can apply [61].
Message packing is the most often quoted optimization when implementing BSP. Since
the model suggests messages are going to be sent at the same time (at the end of a
superstep), they can be packed into single messages when they have the same desti-
nation in order to avoid sending many small-sized messages on the network. Destina-
tion scheduling is also mentioned by Skillicorn, messages to different processes can be
scheduled so that they have better chances of avoiding collisions when other processes
are also transmitting to the same destination, for example using latin square techniques,
which operate in sub-phases scheduled so that a process only interacts with one other
during the same sub-phase. Send rate pacing based on probed computer performances
can also help to send just below the maximum throughput to avoid performance drops.
Skillicorn also presented a few variants of broadcast implementations in message pass-
ing architecture, and how it is easy to use the BSP cost model to evaluate their perfor-
mance. For example, the naive broadcast (called one-phase broadcast) involves a loop
sending the data to each process. The BSP cost model gives this algorithm a communi-
cation time of p · n · g + L, where n is the size of the data, g is the BSP communication
throughput, p is the number of processes and L is the latency cost of performing a
superstep. The tree broadcast, implemented in many MPI implementations, involves
every process sending the data to another process that does not have the data, at each
superstep. This gives a cost for this algorithm of log(p) · n · g + log(p) · L. Another
broadcast technique relies on two supersteps, it is called the two-phase broadcast. In
the first superstep, the owning process sends each process distinct n/p parts of the
data. In the second superstep, every process broadcasts its part of the data to other
processes, making maximum parallel usage of communication links, assumed to exist
for every process pair. This implementation costs 2n · g + 2L. The two-phase broad-
cast is also implemented in many MPI implementations of the Broadcast, as a Scatter
followed by an AllGather. According these theoretical costs, the one-phase broadcast
is more efficient than the other algorithms in the situations of small data size, or when
p = 1 or p = 2. The two-phase broadcast is better for large data volumes. however,
the tree broadcast is never better than the others; it is only equivalent in performance
to the two-phase broadcast when p = 4, but then performs worse.

23

Optimizations in the barrier itself can also be made, for example, if a first phase
only triggers metadata exchange, different communication methods can be chosen ac-
cording to this information. Skillicorn notes that optimizations of a BSP library are
visible through improvement of a BSP computer’s g and l parameters. This means im-
proving the implementation of the library itself can, for example, yield a better g or
L parameter for the BSP computer. Some optimizations are listed in [61]. For exam-
ple, messages packing improves the bandwidth because more data can be sent in the
same amount of time, destination scheduling and pacing decrease congestion because
the sendings are coordinated and collisions are reduced, and barrier implementation
optimizations improve the l parameter directly because a faster barrier means a better
latency.

One major controversy within the BSP community is whether to allow subset syn-
chronization, this question and arguments of both sides are explored by [37]. Sub-
set synchronization in BSP terms means removing the requirement of global barriers
involving all existing processes and allowing barriers involving only a subset of all
processes. Each subset can then be viewed as a distinct BSP machine with a different
number of processes that communicate through barriers only including the processes
of this subset. Two reasons are identified for wanting to use subset synchronization;
firstly, for expressing higher-level expressions of computations, secondly, for allowing
processes, of which the amount of work depends on the data itself, to proceed further
without a barrier synchronization if they finished a phase earlier than other processes.
Two objections are also given; firstly, subset synchronization increases the difficulty of
cost analysis of BSP programs; secondly, there is no agreement on the semantics of BSP
programs with subset synchronization. Divide and conquer algorithms are given as ex-
amples supporting the first reason for using subset synchronization; however, the au-
thor notes that balanced divide and conquer algorithms can be re-written using global
barriers instead of subset barriers. The author also points out to balancing algorithms
against the first reason. One of the major motivations of using BSP is its cost model.
BSP assumes reliable measurement of the g and L values can be captured. Changing
the number of processes p within a BSP machine is likely to also change its g and L
parameters, which are associated with the new BSP computer corresponding to the
subset. Some O(p) BSP computer parameters sets could be taken for every possible
number of p, but the author points out there is no proof that the communications of
two interconnected BSP computers do not interfere with each other. Hence, the BSP
parameters of two subsets would be unreliable, and with them the BSP cost model.
This impact on the cost model is also mentioned in the BSPlib paper [42] as a reason for
not providing subset synchronization features in the BSPlib API. BSP programming is
often thought as writing a single program in a single BSP machine that communicates
with a single global barrier. Rewriting programs is mentioned in [37] so that divide and
conquer branches of a single algorithm are balanced and communicate with global bar-
riers, but do not explore having functionally different tasks as motivation for allowing
subset synchronization. A simple example is when a BSP algorithm solving a single

24

problem coexists with other algorithms in the same program. The difficulty of writing
an algorithm with all the others in mind increases with the number of algorithms in
the program. A single global barrier becomes more and more likely to slow down in-
dependent programs as they become stuck in barriers waiting for others processes that
perform work that have nothing to do with theirs. In this case, subset synchronization
is mentioned as a solution. Nevertheless, the BSP cost model is bound to become more
difficult: it becomes more difficult to deduce the cost model from an application, and
it becomes less reliable as network interferences between different subsets that do not
coordinate their communications might exist.

Tiskin focused specifically on divide and conquer algorithms implemented in BSP
without subset synchronization [69]. He proposes a concept of superthreads, that are
SPMD-style threads of execution comprised of BSP supersteps. Several superthreads
are orchestrated by a superthread manager. The idea is that the manager schedules each
superthread for execution until it reaches a barrier synchronization, but the communi-
cations or the global synchronization is not yet executed. The next superthread is then
scheduled in the same manner. Tiskin defines a superthread as an object with a run()

method, where the superthread manager calls these methods and makes progress un-
til they reach a barrier. The manager may even de-schedule it if it decides that the
superthread takes too much time. Once every superthread reached a barrier, the su-
perthread manager then triggers all superthread’s requested communication and the
global synchronization. The superthread style of programming enables viewing each
superthread’s code as independent of the others, while maintaining the flat BSP model
without subset synchronization. The idea of a superthread manager being able to de-
schedule superthreads without their consent however makes implementation difficult
as Tiskin writes in [69]; the difficulty is assigned on the SPMD style of programming.

For a balanced parallel algorithm performing collective operations, a process get-
ting delayed actually delays the entire execution as other processes will be waiting for
the slowest process. Sparsely distributed OS routine execution can generate this kind
of delay. This can be a problem for large scale executions. Jones proposed scheduling
together those OS routines to reduce this global delay [45]. Each process does not risk
delaying other processes because all of them will be executing their OS routines at the
same time.

Kim et al. [50] studied an alternative where the global barrier synchronization is
removed and only the necessary exchanges are made. This change is introduced as
a relaxed barrier synchronization. While experimental results are presented as out-
performing a standard BSP implementation and maintaining its consistency, it can be
argued that adopting such ideas may remove possibilities for other optimizations. For
example, the relaxed barrier optimization requires all inter-process exchanges to be
made with a PUT operation, which is a very small subset of the core primitives pre-
sented by Hill et al. [42], which also includes GET, SEND and RECV primitives. While

25

one of such optimization may outperform any combination of others, the fact that re-
searcher’s intuitions are looking for different ways to optimize the BSP model while
changing its core or its interfaces may imply that it is still not generally accepted as a
standard for BSP programming.

2.3.5 BSP languages and applications

The BSP model itself does not specify how parallel applications are to be programmed,
it only describes how a BSP computation proceeds on a BSP computer. The choice
is left open as to how BSP computations are to be programmed, with the possibility of
having both high level languages and low level ones. For example, Valiant suggests [70]
automating memory and communication management through hashing for high level
languages. Lower level languages are better able to exploit the bandwidth parameter g
as they can minimize the number of supersteps whereas higher level languages are not
always able to produce a BSP execution that minimizes the number of supersteps.

This means lower level, direct BSP programming, is better suited for execution on
high bandwidth BSP computer, because a lower-level program might be better able to
produce a code requiring fewer barrier synchronization, hence the performance of this
program would be less dependent on the latency parameter L.

It is even worth considering the BSP computer parameters at runtime to decide
which algorithm would run faster on which BSP computer. For example, an algorithm
that communicates less data but in more supersteps is better suited for a low latency
BSP computer, whereas an algorithm that communicates more but in less supersteps is
better suited for a high bandwidth BSP computer.

Multiple languages and environments have been built for writing BSP programs.
First, Hill et al. proposed a library interface for the C language called BSPlib [42], which
they implemented in the Oxford BSP toolset. BSPlib will be explained in more details
in Section 2.3.6.

When BSPlib was presented as a C library interface implementing the BSP model [42],
practical example implementations were also presented along with benchmarks. These
applications included Fast Fourier Transform, Randomized sample sort and the Barnes-
Hut N-Body Algorithm.

Nibhanupudi et al. [58] used BSP for plasma simulation on networks of worksta-
tion. This work also compared performances with MPI, the results are presented as
comparable for both libraries with the algorithm they used.

An attempt was made to use the BSP model for high resolution visualization [15],
the initial goal was to implement a visualization program as a BSP one for plotting in
parallel. But point-to-point communication is not required for this usecase, so super-
steps are implicit and serve as synchronizations for orchestrating plotting functions.

26

Works around BSPlib

Several implementations and variants of BSPlib exist. Yzelman implemented BSPlib
for shared memory computers [72], his library includes a bsp_direct_get() instruc-
tion which allows direct access to shared memory. This saves a global synchroniza-
tion for reading data from remote memory, but it effectively bypasses the superstep
concept, and the programmer has to take care of avoiding concurrent reads/writes to
an accessed memory area, this loses the determinism property that can be attained in
particular implementations, in exchange for superstep-saving accesses to shared mem-
ory. Yzelman also proposes nesting calls to the BSPlib bsp_begin() primitive, allowing
nested BSP computations with their own independent context, effectively supporting
hierarchical execution of different groups of processes, each owning a subset of pro-
cesses. When the processes are split into subsets, synchronization is not global. This
means subset synchronization is encouraged as a hierarchy of processes. This is a bit
more constrained than generic subset synchronization. Because each new group has its
own independent context and pauses the execution of the parent process, overlapping
subsets are forbidden.

The Paderborn University BSP library also presented an implementation [16], which
has the particularity to allow subset synchronization. Their main motivation in al-
lowing subset synchronization is for different completely sub-algorithms with differ-
ent communication patterns to be run in parallel; they cite a parallel ocean simula-
tion program as example. They also argue that synchronizing fewer processes is faster
than synchronizing all of them. However they do not try to explain how this impacts
the BSP performance prediction model. As an optimization to implementing the bar-
rier synchronization, they provide an oblivious synchronization primitive that saves a
metadata communication round when it is known how many messages each process is
going to receive. The authors mention interleaving as another option for implementing
this kind of algorithms, but regard it as inefficient because of different synchronization
requirements, they also consider it as more difficult to implement. The interleaving
approach was explored by Tiskin [69] for writing divide and conquer algorithms, but
not for writing functionally different algorithms. The PUB library also implemented
collective primitives such as broadcast, reduce and scan, on the top of the architecture
directly instead of building them from core primitives.

There has been work on providing formal semantics of BSPlib. The DRMA (Di-
rect Remote Memory Access) part of BSPlib, excluding the BSMP (Bulk Synchronous
Message Passing) part, was formalized by [66]. The authors propose a BSP-IMP formal
language which has the put and get DRMA operations, without including the register
allocation primitives for simplicity. Local reduction rules evaluate local statements of
individual processes while global rules orchestrate evaluation of local rules on parallel
processes. Global rules have visibility over all process states, one of these rules is able
to detect termination of a program when all processes terminated executing their local
operations; but more interestingly, they are able to detect synchronization errors when

27

a process is in finished state while another is waiting at a barrier (meaning there is a
deadlock). This error detection can be implemented in BSPlib relatively easily com-
pared to general message passing languages. Overall, we can say that there are no
deadlocks in BSPlib because a deadlock is easy to detect at runtime and then an error
can be raised. The global rule for processing the global synchronization, triggered after
each process reached a sync operation, employs a black-box operation for exchanging
data between processes. While the authors do not define this sync operation, they de-
scribe three different ways it could be done;

1. BSPlib compliant: communication requests are processed in an unordered man-
ner, as specified by the BSPlib specification [42]. For example, the result of two
write operations by different processes on the same remote memory area is un-
specified.

2. Determinized: communication requests are processed in an ordered, determinis-
tic manner, with different priorities given to each process when communication
requests are processed.

3. Debug mode: an error is raised when two communication requests access the
same remote memory area in the same superstep.

This discussion is interesting, as by showing these different ways to define the synchro-
nization rule in a BSPlib semantics, it is shown that the same variations exist in different
BSPlib implementations, depending on the desired focus: performance, determinism,
or error detection.

A simplified subset of BSPlib was formalized by [30] with a big-step semantics. The
paper targets formalizing the PUB library but the original features of this BSPlib vari-
ant such as subset synchronization are not represented in the BSP formal language of
this paper. This means that their formalization is closer to the original BSPlib specifica-
tion than the PUB library, and therefore this formalization should be considered more
general than the PUB library. DRMA communication aspects are modeled through
sync, push, pop, put and get operations, while message passing are modeled through
a send operation and a findmsg operation that reads from a special set of received vari-
ables. For simplicity, aspects of C such as pointers are not modeled and are instead
replaced by variable names. As in [66], there are local rules for local operations and
global rules for orchestrating operations. This formal semantics was implemented in
the Coq proof assistant the author’s semantics was used to solve the N-Body prob-
lem and prove its correctness; however, hundreds of applications of Coq’s tactics are
needed, which makes the proof of this program very tedious.

Another implementation of BSPlib by Suijlen called BSPonMPI was written in
2006, then rewritten in 2019 [63]. The latter implementation tackles the subset synchro-
nization controversy with a concept of delayed one-sided communication requests, il-
lustrated by implementing bulk synchronous collective communication primitives. For
example, it is known that a naive BSP broadcast has a BSP cost of p.n.g + L, while a

28

two-phase broadcast has a cost of 2.n.g + 2L. While the naive broadcast is more effi-
cient for smaller data because time is mostly spent on latency, larger data benefit from
a two-phase broadcast. A problem arises when one tries to build a broadcast function;
because a two-phase broadcast requires two supersteps (hence two BSPlib’s bsp_sync
calls), the calls to sync have to be inside the wrapping function to trigger a barrier.
The problem is when two independent consecutive calls are made to this broadcast
function: a total of four supersteps are required because two calls trigger two synchro-
nizations each. The Bulk Synchronous Collectives component of BSPonMPI proposes
writing this broadcast function with delayed communication primitives so that com-
munications are requested to happen after a specified superstep number, and synchro-
nizations are only requested to happen before processing the following communica-
tions. A new broadcast primitive is provided along with other common collectives that
make use of these delayed communication primitives to avoid triggering a real syn-
chronization within a function call requiring multiple supersteps, but instead returns a
superstep number pointing to the future where the collective will have performed all its
action, it is then possible to write a sequence of collective calls where only the minimal
number of supersteps is required, with the user triggering the barrier synchronization
after knowing when all calls will have performed their intended actions. This delayed
communication concept more generally enables parallel composition of different BSP
functions in a different way than subset synchronization.

Inspired from BSPlib variants of the time, Suijlen and Yzelman made another direct
BSP implementation called Lightweight Parallel Foundation (LPF) [64]. The program-
ming style is similar to BSPlib’s DRMA style, with lpf_put and lpf_get primitives
as main communication primitives. They focus on BSP model compliance and perfor-
mance prediction by providing asymptotic complexity guarantees to their primitives.
Memory usage from the library is exposed to the user with primitives controlling inter-
nal memory usage. Another focus of this library is interoperability. For this purpose,
it is possible to create an LPF context from another parallel environment by calling an
lpf_hook primitive, thus allowing the use of the LPF library within different parallel
frameworks to solve sub-problems. An example of calling LPF to solve the PageRank
algorithm from Spark is given. Interoperability has always been an issue with BSPlib,
because BSPlib programs are required to start the execution environment at the begin-
ning of a program, and also to end it, by terminating the parallel execution environ-
ment, making co-existence with other frameworks difficult. The LPF approach address
this problem by making it possible to call a BSP program inside existing frameworks in
order to solve sub-problems.

Functional BSP programming

Loulergue et al. introduced BSλ [54], a calculus for functional programming languages
extending the λ− calculus to write BSP algorithms. They also proved the flat version of
BSλ to be confluent(the result is the same no matter in which order applicable rules are

29

applied), they introduced a parallel composition operation, but proved that it breaks
the confluence property of flat BSλ.

A functional language called BSML [7] was implemented after BSλ. BSML was
implemented as an interface between OCaml and BSPlib. The syntax of BSML was later
revised [17] because experience with users showed that a communication primitive is
difficult to use.

Based on the BSλ calculus, Gava formalized BSMLib (an implementation of BSML
in Objective Caml) in the Coq proof assistant [31]. Using this formalization in Coq,
parallel operations were certified. These operations include the two-phase broadcast,
scatter and gather operations.

Higher-level BSP languages and Frameworks

Kessler implemented the BSP model as a dedicated language called NestStep [47].
NestStep comes with the concept of virtual shared memory, where one can declare
shared arrays that can be either replicated, distributed, or volatile. It does not mean
that processes will use shared memory to store the data, but it gives a shared memory
view to the programmer, who can arbitrarily access any part of the array. This shared
memory view respects the BSP model as accesses to data will only be performed after
barrier synchronizations. For distributed or volatile data, it is respectively distributed
among all the processes’ distributed memory (blockwise or circularly), or assigned to
an arbitrary process, but each process internally knows where the data is, even if the
programmer doesn’t. Kessler also argues for subset synchronization and implemented
it in NestStep. He views global barrier synchronization as an inflexible mechanism for
structuring parallel programs which is also less effective than synchronizing a subset
of processes when p is large. He points that subset synchronization allows overlapping
communication and computation when different process subsets are in different BSP
phases. Data accesses are combined at the barrier to reduce the number of produced
messages. Kessler later proposed automatically prefetching data from read operations
at the beginning of the previous superstep [48].

The Orleans Skeleton Library (OSL) [43] proposes building a data-parallel skele-
ton library following the BSP model. The computation skeletons of OSL manipulate
distributed arrays objects to identify and group array parts stored by each process so
that they represent a distributed array for the programmer. Local computations such as
map and zip can be used to apply user functions to elements of distributed arrays. The
communication skeletons of OSL (shift_left, short_right and permute_partition)
allow transferring distributed array parts between different processes, with communi-
cations that follow the BSP model.

As a model for parallel computation, obvious practical applications for BSP are
general scientific computing problems such as matrix multiplications, FFT, and dy-
namics simulations. However, the BSP model has also been used by Malewicz et al. for
graph processing at Google [55]. Their paper presents Pregel, a specialized framework

30

for large scale graph processing based on the BSP model. Besides showing how BSP
was more appropriate in this context than industry-standard MapReduce, it exploits
the BSP barrier property to introduce fault tolerance by checkpointing on supersteps.
Confined recovery is also suggested for improving the cost and latency of the recover-
ies. If messages are logged, it is possible to avoid some computation by using logged
messages to recover, instead of asking for all processes to recompute everything even
though we know what messages will be produced by healthy processes. A way to vir-
tually exploit the locality of VMs on the same hosts is also mentioned. If functionally
coherent, processes on such VMs have the possibility to combine messages to be sent
to the same recipient, similarly to the previously described message packing technique
but with a functional merging of messages. Performances is then not only likely to de-
pend on the graph partition strategy that is used, but also on the partition placement
on VMs and hosts. These can be specified in Pregel, even though the benchmarks that
were performed are using a simple hash function to do so.

Starting with Pregel, BSP has generated considerable interest in the domain of
graph computing. This is due to the inefficiency of standard MapReduce frameworks
for implementing iterative algorithms, like most graph algorithms. Algorithms are ex-
pressed from a vertex’s point of view, hence this kind of programming called "Think
Like A Vertex", or TLAV. Other graph computing frameworks based on BSP have been
developed since Pregel, Apache Hama [60] and Apache Giraph [2] are among those.
Hama is a direct BSP implementation and it does not only cover graph computing. Gi-
raph is vertex-centric and was extended by Facebook for running graph algorithms on
a trillion edges graph [21]. When evaluating graph computing platforms, their choice
was strongly influenced by the BSP model. They cite its determinism property (that
eases debugging), ease to understand, and straightforward scaling. Weaknesses of
TLAV have been underscored by Tian et al. [68], who showed how the vertex-centric
abstraction prevents making use of the locality between different vertexes on the same
partition. They proposed instead to have a graph-centric model to process by partition
instead of vertex to reduce the number of supersteps, therefore reducing the commu-
nication costs. This paper also points that sequential programs are often graph-centric;
sequential programs are thus easier to adapt into a graph-centric framework, even if
the framework works on partitions instead of the whole graph.

2.3.6 A focus on BSPlib

In this section, we go into further detail about BSPlib, a standard programming library
for programming BSP algorithms. First, we will take a look at some core primitives,
then we will show a code example making use of this library.

BSPlib API

The original BSPlib specification from Hill [42] is a direct low-level BSP implementation
in C where data exchanges are programmed explicitly. Just as with MPI, every process

31

executes its own version of an SPMD program and is able to communicate with other
processes. BSPlib proposes a set of 20 core primitives, organized into three different
categories.

The first category is called “SPMD category” and contains primitives that control
parallel execution. The bsp_init has to be called at the beginning of a program, with
a void(*spmd)() function as parameter that will be the entry point of all parallel pro-
cesses. Then a bsp_begin function has to be called with a number of required processes
as parameter. A symmetrical bsp_end function must be called after the parallel execu-
tion. These control functions must be called only once in a program’s lifetime. This
imposed program structure is one of the reasons why the original BSPlib specification
is impractical to use. Indeed, an existing parallel program cannot use the BSPlib library
to solve a sub-task as the aforementioned primitives delimit the beginning and the end
of a program. program mus calling a BSPlob from from within a different is difficult
A process identifier (pid) can be queried with the bsp_pid function, as well as the total
number of process with the bsp_nproc function. One of the most important primi-
tives of BSPlib is the bsp_sync function, which delimits a BSP barrier. All requested
communications are only effective after a call to this primitive by all processes.

The second and third categories of BSPlib are describing communication prim-
itives for two kinds of programming: DRMA (Direct Remote Memory Access), and
BSMP (Bulk Synchronous Message Passing). DRMA programming consists of read-
ing/writing data directly from/into a remote process’s memory through
bsp_get/bsp_put primitives. Remote memory that can be accessed has to be regis-
tered with a bsp_push_reg primitive; it can also be de-registered with a bsp_pop_reg

primitive. Message passing consists of explicit message exchanges between processes:
a sent message has to be explicitly received by a process so that its content may be
used by the programmer. The BSPM category allows messages to be sent using the
bsp_send primitive, and received by the destination with a bsp_move primitive. A tag
is also attached to each message and can be introspected before dequeuing a message,
but contrarily to MPI, messages cannot be selected according to their tag, the message
at the start of the queue has to be dequeued no matter its tag. The bsp_get_tag func-
tion allows reading the tag of the next message in the queue without dequeuing this
message.

2.3.7 BSPlib Example

Here, we show an example program from BSPedupack [13], a software package written
by Bisseling that uses the BSPlib API. This example shows a simple BSPlib program that
computes the inner product of two vectors; it is split into three figures for size concern
(Figure 2.2, Figure 2.3 and Figure 2.4). These split figures form, in the same order, a
single file taken from the BSPedupack. Figure 2.2 shows the core of this example: the
bspip function that computes the inner product of its input vectors. Figure 2.3 shows a
function called to initialize an input, and to call the bsp_begin and bsp_end functions.

32

Figure 2.4 shows the main function of this program, which illustrates the use of the
bsp_init function.

The main function in Figure 2.4 is entered in parallel by every process in the SPMD
parallel environment. This function first calls bsp_init (line 3) with the function
bspinprod as parameter to instruct all processes, except the process of pid 0, to enter
this function; from this point, only the process of pid 0 proceeds in the main function.
This process asks the user to input a number of processes to use for executing the rest of
the program; this input is put into the variable P (at the global scope), declared above in
the original code (here it is in Figure 2.2). After a simple check on this number to make
sure enough processes are available, the bspinprod function is then called (line 14) so
that the process of pid 0 joins the processes that entered this function before through
bsp_init.

The bspinprod function in Figure 2.3, starts by executing bsp_begin at line 8, re-
questing the use of the number of processes that was requested (that is now in the P

global variable) in the main function. Most of the rest of this function is about initializ-
ing the input for the example, we will show the use of the communication primitives
in a more interesting and concise setting in Figure 2.2. Here we can note that the bspip

is called in parallel, and the expected result will be set into variable alpha of every pro-
cess. After each process prints this result at lines (37-38), the bsp_end function is called
to mark the end of the parallel execution of the BSPlib program. Only the process of
pid 0 returns to the main function before calling exit.

We now take a look at the core of this example, the bspip function of Figure 2.2.
This function is entered in parallel by the number of processes (now in p) specified by
the user; it computes in parallel the inner product of vectors x and y of sizes n, using
p processes. The bspinprod function (calling bspip) of Figure 2.3 made every process
allocate (line 25) and initialize (line 28) the vector parts so that they are already dis-
tributed, each process owns a part. We can see that first, a vector Inprod is allocated
(line 27) by every process (every process has its own copy); this vector is later used for
storing intermediate results, with one slot for each process. This vector is then regis-
tered using bsp_push_reg for enabling DRMA communications. Then processes start
computing the local inner products of the vector parts they hold; after each process s
has this intermediate result, it communicates it to every process t (ranging from 0 to
p) using the bsp_put primitive (line 37) into the slot s of the intermediate result vector
that was previously registered. As we have explained before, the BSPlib communi-
cation primitives only initiate communications, they are only effective after a call to
bsp_sync, which is made right after the calls to bsp_put. After every process has the
intermediate results of every process, only a sum of these is necessary to get the in-
ner product result of the whole distributed vectors; this result is written into the alpha

variable. As every process does this, the result is available on the alpha variable of
all these processes (each process knows the final result of the inner product). Before
returning the result, the registered memory area is removed using the bsp_pop_reg

33

1 #include "bspedupack.h"

2
3 /* This program computes the sum of the first n squares , for n>=0,

4 sum = 1*1 + 2*2 + ... + n*n

5 by computing the inner product of x=(1,2,...,n)^T and itself.

6 The output should equal n*(n+1)*(2n+1)/6.

7 The distribution of x is cyclic.

8 */

9
10 int P; /* number of processors requested */

11
12 int nloc(int p, int s, int n){

13 /* Compute number of local components of processor s for vector

14 of length n distributed cyclically over p processors. */

15
16 return (n+p-s-1)/p ;

17
18 } /* end nloc */

19
20 double bspip(int p, int s, int n, double *x, double *y){

21 /* Compute inner product of vectors x and y of length n>=0 */

22
23 int nloc(int p, int s, int n);

24 double inprod , *Inprod , alpha;

25 int i, t;

26
27 Inprod= vecallocd(p); bsp_push_reg(Inprod ,p*SZDBL);

28 bsp_sync ();

29
30 inprod= 0.0;

31 for (i=0; i<nloc(p,s,n); i++){

32 inprod += x[i]*y[i];

33 }

34 for (t=0; t<p; t++){

35 // Write the double value inprod (of size SZDBL) at position s

36 // of the registered memory area Inprod of process t

37 bsp_put(t,&inprod ,Inprod ,s*SZDBL ,SZDBL);

38 }

39 bsp_sync ();

40
41 alpha= 0.0;

42 for (t=0; t<p; t++){

43 alpha += Inprod[t];

44 }

45 bsp_pop_reg(Inprod); vecfreed(Inprod);

46
47 return alpha;

48
49 } /* end bspip */

Figure 2.2: BSPlib inner product from BSPedupack

34

1 void bspinprod (){

2
3 double bspip(int p, int s, int n, double *x, double *y);

4 int nloc(int p, int s, int n);

5 double *x, alpha , time0 , time1;

6 int p, s, n, nl, i, iglob;

7
8 bsp_begin(P);

9 p= bsp_nprocs (); /* p = number of processors obtained */

10 s= bsp_pid (); /* s = processor number */

11 if (s==0){

12 printf("Please␣enter␣n:\n"); fflush(stdout);

13 scanf("%d" ,&n);

14 if(n<0)

15 bsp_abort("Error␣in␣input:␣n␣is␣negative");

16 }

17 bsp_push_reg (&n,SZINT);

18 bsp_sync ();

19
20 bsp_get (0,&n,0,&n,SZINT);

21 bsp_sync ();

22 bsp_pop_reg (&n);

23
24 nl= nloc(p,s,n);

25 x= vecallocd(nl);

26 for (i=0; i<nl; i++){

27 iglob= i*p+s;

28 x[i]= iglob +1;

29 }

30 bsp_sync ();

31 time0=bsp_time ();

32
33 alpha= bspip(p,s,n,x,x);

34 bsp_sync ();

35 time1=bsp_time ();

36
37 printf("Processor␣%d:␣sum␣of␣squares␣up␣to␣%d*%d␣is␣%.lf\n",

38 s,n,n,alpha); fflush(stdout);

39 if (s==0){

40 printf("This␣took␣only␣%.6lf␣seconds .\n", time1 -time0);

41 fflush(stdout);

42 }

43
44 vecfreed(x);

45 bsp_end ();

46
47 } /* end bspinprod */

Figure 2.3: initializing function of BSPedupack inner product

35

1 int main(int argc , char **argv){

2
3 bsp_init(bspinprod , argc , argv);

4
5 /* sequential part */

6 printf("How␣many␣processors␣do␣you␣want␣to␣use?\n"); fflush(stdout);

7 scanf("%d" ,&P);

8 if (P > bsp_nprocs ()){

9 printf("Sorry ,␣not␣enough␣processors␣available .\n"); fflush(stdout);

10 exit (1);

11 }

12
13 /* SPMD part */

14 bspinprod ();

15
16 /* sequential part */

17 exit (0);

18
19 } /* end main */

Figure 2.4: main function of BSPedupack inner product

primitive (line 43). After the next superstep, this memory area will no longer be a valid
target for DRMA operations. The result is returned at line 45 by every process, as the
bspip function was called in parallel by every process from the bspinprod function at
line 33 (alpha= bspip(p,s,n,x,x);) of Figure 2.3. The result is then printed by every
process as explained above.

2.4 Futures, Promises, Actors and Active Objects

In this section, we give an introduction to the concepts of Futures, Promises, Actors, and
Active Objects. These concepts are dedicated to task-parallelism, and we will see their
most valuable properties.

We picked active objects and futures for our hybrid model between task and data
parallelism because of their interesting properties concerning safety and absence of
data-races. The concepts of futures, promises, actors and active objects are not only
strongly tied to task-parallelism, but also strongly tied together, which is why we in-
troduce them together in this section.

We start by defining futures and promises in Section 2.4.1, before defining actors
and active objects in Section 2.4.2 because the actors and active objects use the concepts
futures and promises. We describe a few languages and implementations of actor and
active object languages in Section 2.4.3, before giving a few examples of works that
bring a data-parallelism flavor inside actors and active objects. We then describe a few
applications that use actor and active object languages in practice.

36

2.4.1 Futures and promises

The definition of a future is somewhat varying for developers. We will start this section
with a brief history of futures and promises, followed with the definitions we will use
for the rest of this thesis. We will then give a brief survey on futures.

Futures were first introduced in 1985 by Halstead and Robert [39] and they are of-
ten confused with promises, later described by Liskov and Shrira in 1988 [53]. The fu-
tures of [39], were introduced into a parallel functional language, based on the Scheme
language, called Multilisp. A future is basically a placeholder for the result of a task
that that runs in parallel. In Multilisp, the construct future X immediately returns a
future and executes expression X in parallel as a separate task. The future is initially un-
determined, and becomes determined when the X expression finished being computed.

When comparing both concepts, Liskov and Shrira distinguish them by saying
promises have a strong typing and allow better exception handling. This comparison
is quite old and implementations vary, with strong typing and exception handling for
futures of nowadays too. The two concepts are in practice similar, but we will see
below a distinction that appeared later on between the two concepts: read or write
access modes.

Liskov and Shira introduced Promises [53] and focus on comparing their use to
Remote Procedure Calls (RPC). They note that RPCs callers have to wait for the result
to be computed and returned before continuing, and that they could instead proceed
doing other things before trying to synchronize the result when they need it. Within
their language, they also note that arguments are passed by value and that promises
are not valid arguments. This effectively means their implementation of promises have
to synchronize the results before passing them to other processes, even if this result is
not required in the calling process.

Futures and promises both have an associated state; the first future version [39]
defines it as determined and undetermined, the first promise version [53] defines a
promise as a 2 states future : blocked or ready. Another version [12] features promises
as 3 states futures : initially unresolved, fulfilled or broken.

In some implementations, a Promise object is given as parameter to the newly
created task. While a future is fulfilled when a task finishes, a promise can be used
explicitly to be fulfilled. For example, the Scala language allows a called process to use
a Promise object to give a value to a future, in contrast with the future being completed
by the return statement of the called function. Because the future object is used to read
a value, and the promise object is used to write it, a future can be seen as a read-only
view to its bound promise object. Giving a value to a future or a promise is called
fulfilling the future (resp. promise).

This is the definition of futures and promises we assume for the rest of this doc-
ument. A future is thus what is returned from an active object call, and there are two
ways to fulfill this future: either with a return value from the called function, or through

37

promise object given to the called function that allows fulfilling the promise by setting
its value. In the works of this thesis, we will only use futures that are fulfilled by re-
turning a value.

An efficient use of a future variable is to perform as many computations as possible
before trying to access the future variable. This way the caller does not have to wait
for the result of the call associated to the future, as this computation will be executed
in background in a separate thread.

Some languages allow passing futures as argument of remote calls without trying
to resolve them. These futures are called first class futures.

The moment when a future is retrieved impacts performance; while most local im-
plementations simply check the availability of some data in the memory, the access to
future values is less obvious in a distributed setting, especially if future references can
be transmitted between processes (first class futures) and thus many processes may
need to access the same future value. An overview of some of the possible future up-
date strategies is given by [49], identifying three main strategies: “eager forward”, “ea-
ger message”, and “lazy message”. In eager forward every process that sends a future
object as a call argument is responsible for forwarding its value to processes they sent
the future to, when this value is available. All futures eventually become updated as
values are recursively forwarded along the call graph after this value is computed; in
eager message, the process computing the future is responsible for sending the value
back to every process that owns a future reference, which means it has to be notified
each time this future is passed as argument; in lazy message, the process computing a
value will store it after it is produced, and answer this value when it is requested by
another process trying to access it through a corresponding future object.

While synchronizing the data associated to a future in one aspect of the future
concept, accessing this future in the implementation language is a separate aspect. De-
pending on the implementation, there can be different ways to access a future. A get
operation on a future blocks until the future is resolved, or simply continues with the
value if it is already available. The execution thread can also be released with an await
operation, until the future value is available, but it has some overhead for saving and re-
trieving the execution context. Another way to access a future is to not explicitly access
it, but to register a continuation to be executed when the future is resolved. Synchro-
nization with a get operation is more efficient and lightweight, whereas synchroniza-
tion with await is more difficult to implement (because it requires cooperative thread
scheduling). The great advantage of cooperative scheduling is that it removes some
deadlocks, but it requires additional care with the state of variables between context
switches. Synchronization with registration of continuation loses the variable context
because the called function has a different scope but allows an execution thread to be
used only when it is possible to proceed with a computation.

When a future represents large data that are then processed by the way of an it-
eration, it is possible to overlap the transfer of this future with the processing of parts

38

being received, as shown in [9]. In their implementation within the C++// language,
a later object is introduced, which behaves the same as a future, but is not sent during
the first inspection of the object when it is passed as a call parameter, but later. For ex-
ample, a list of later objects can be given as parameter, and the later objects are fulfilled
independently. Consequently, a request is able to start without all the data pieces that
are defined as parameters, but can proceed by requiring smaller pieces separately as it
goes on.

Futures can also be used to represent streams of result data. Within the context
of the Abstract Behavioral Specification (ABS), Azadbakht and De Boer introduced
streaming futures [6], which are futures that can be fulfilled multiple times in a queue-
like manner. Inside a method, a yield statement can be used, instead of a return

statement, to fulfill a future without exiting the function. A future can then be fulfilled
multiple times, and especially, accessing the future multiple times gives different val-
ues, in the order of which they were fulfilled. This gives the rise of non determinism
(race conditions) as a future shared between concurrent actors can be accessed in an
unspecified order, with different results depending on this order.

When using promises to fulfill a future, there is added flexibility because the promise
can be fulfilled at any given time by any process, it is also possible to continue execut-
ing a method after a promise has been fulfilled. But one problematic case is that a
programmer can forget to fulfill a promise, or fulfill it several times. This is not a pos-
sibility when the future is managed by a return statement because most compilers will
notice when a return statement is missing and a return terminates the function. But one
issue with futures managed by return value is that the return value type is inflexible
when futures are explicitly typed. Let us take this example: a method M1 has an int

as return type, but it requires the execution of another method M2 to compute this int
(in an asychronous way); thus, it would be nice that the Future<int> of the M2 call be
immediately returned by M1 instead; due to type inflexibility, it has to make the call
synchronize its value before returning the int value. The concept of forward [27] aims
to solve this issue with a forward statement that may replace the return statement by
specifying that the future is not actually fulfilled and that it will be by the future given
as parameter. Enforcing the presence of either forward or return statements is enough
to guarantee that a future will be fulfilled (except when there is an infinite sequence
of calls), because the forward concept explicitly delegates the burden to another return
statement.

2.4.2 Actors and active objects

The concept of active objects was formally introduced in 1996 by Lavender et al. [51]
as a design pattern. The basic principle is to decouple method invocation from method
execution. When calling a method, a main thread can ask a second thread to execute
this function while continuing its execution. The main thread only needs to perform the
invocation. To further embed the calls into easy-to-use language aspects, return values

39

Figure 2.5: Active objects

are managed through futures. Upon call, the caller obtains an unresolved future. Upon
returning a value from the called thread, the future is fulfilled with this value and can
be accessed.

Active objects are basically objects that run in their own thread of control. When
a method of an object is called, it will be up to the target active object’s thread to run
this method. The caller process may then proceed execution without waiting the result
because it is managed through a future.

Future variables are wrapping regular data, but this data may not be available at
any time. In the context of active objects, the data is only available after the execution
of the method (recall each future corresponds to the execution of a method) and must
be sent back to the process accessing it, or later retrieved. Note that if the implemen-
tation supports first-class futures, there may be multiple processes accessing the data,
as a future can be passed as a method parameter between active objects; in particu-
lar a process accessing the data is not necessarily the process that initially called the
corresponding active object method when the future object was first created.

Figure 2.5 shows an example execution using active objects where futures are syn-
chronized with a get operation as described in Section 2.4.1. When the function foo

of active object A is called by active object C, A receives a message representing this call
and the corresponding parameters into its execution queue. Eventually, this call is ex-
ecuted by A’s execution thread as the object’s foo function. Here, this function calls
function bar of another active object B. A future fut is returned from the call, and A’s
function foo is free to do other things before synchronizing the future. When the future
is required, the future’s get function is called, which blocks until the value is produced
and sent by B. When foo of A has produced its result, it gives it as return value, and the
active object will take this return value and fulfill the future f corresponding to the ini-
tial call to foo. This value can then be retrieved by C, which was waiting to synchronize
the corresponding future f with a get call.

This basic principle of active objects is the same as with the actor [5] model, both

40

are parallel entities managed with their own thread. Actors propose building applica-
tions by modeling independent entities interacting with each other through messages,
these messages may for example be basic strings or with a type dedicated to the de-
sired interaction. Active objects are actors but propose stronger typing by abstracting
the notion of messages from the language. In this sense, an active object is basically an
actor managed as an object. Entities call other entities through a typed set of methods
associated to each entity. At the language level, it looks like a simple call to an object’s
function. These objects are called active objects because they each have a dedicated
thread and thus are able to live independently. They can serve requests to execute a
method from other active objects and they can issue requests of their own. Usual ob-
jects are then in contrast called passive objects as they can not behave independently.
An active object thus provide a natural object oriented way to schedule tasks on parallel
processors.

Because a standard active object is running in its own thread and that this thread
is only assigned to a single active object, data-races are naturally prevented when ac-
cessing object data because of the guarantee that no other thread has access to the same
memory. The only way to communicate between active objects is through method calls,
which are processed one at a time (sequentially) by an active object. So there is no need
for a programmer to protect data accesses through mutual exclusion mechanism and
risk introducing resource deadlocks. As we will see in Section 2.4.4, communication
deadlocks can still be introduced depending on how Future accesses are managed. The
fact that active objects are programmed as sequential programs gives them a similar
ease of programming.

Active objects in general are mentioned in a multi-threading environment, but they
may also be used in a distributed system. A proxy can send request messages that are
handled on separate machines, at the cost of marshalling and unmarshalling request
messages, and network communications.

2.4.3 Languages and implementations

Actors and active objects were implemented in the form of different languages. Here
we will give a brief survey of actor and active object languages. A more complete
survey of active object languages is given by [14].

Caromel et al. created the ProActive java library, first named Java// [20], this
library was then formalized as the ASP formal semantic [19]. Caromel et al. showed
in [19] that the only source of non-determinism in ASP is when two clients are calling
the same active object at the same time. Also, they prove that if at any time the request
flow graph forms a set of trees then the reduction is deterministic.

A normalization of active objects was attempted by Cunha and Sobral as part of an
annotation based framework for Java [62] where a class only requires an ActiveObject

41

annotation to produce active objects when implemented, with an OpenMP-style phi-
losophy in mind. Several annotations for different concurrent behaviors are proposed,
with different levels of parallel programming. There are annotations for One way (re-
mote method calls), futures, active objects, barriers, synchronized accesses (protected
with locks), read/write locks (with different concurrent protections), scheduling of re-
mote method call execution. While these annotations do not offer the same kind of
parallelism than OpenMP, they provide a high level tool to program parallel object ori-
ented applications.

Creol [44] is another active object language, but it has the particularity to allow
explicitly releasing the current process from the processor, this enabling cooperative
scheduling. The await e statement releases the current process if expression e evalu-
ates to false, and the fulfillment of a given future f can be queried by expression f?.
Descheduling the current process if the future is not fulfilled can then be achieved by
await l?, or by await l?(x) as shortcut for assigning the result to variable x when it
is ready. Cooperative scheduling for active objects avoids some deadlocks because a
given active object can process another request if one request execution requires a fu-
ture result not yet available. But cooperative scheduling comes at the cost of saving and
loading the context of intermediate variables. Also, the interleaving due to cooperative
scheduling can lead to data modifications by several requests served in an interleaved
manner: thread scheduling leads to a race condition that can make the object’s state
inconsistent if not programmed correctly.

Bernstein and Bykov presented the Microsoft Orleans active object middleware [11,
12] who introduces the concept of virtual actors to scale services in a cloud computing
environment. Here single threaded active objects are dynamically loaded as they are
called, and unloaded as they try to access future variables. Active objects are unloaded
into a global store and can then be loaded on any server, which is a compromise on per-
formance to attain scalability and a compromise between stateless and stateful services.
This concept can be seen as an analogy to virtual memory. Depending on the usage,
there can be peaks of required active objects and threads, they mention this model is
weak for bulk collective operations, because many objects need to be awaken at the
same time, giving a peek of required physical threads that may exceed the number of
available ones.

Akka [1] is an actor framework built on the top of the Scala and Java program-
ming languages. Messages are created and handled explicitly and an object declares
the message types it is able to handle, associating it to an internal method with a given
message instance as parameter.

The Abstract Behavioral Specification language (ABS) [36], is an actor modelling
language for formal study of distributed systems. Parallel processes are represented by
tasks and they interact through asynchronous message exchange where a method that
has to be executed on the target is specified. The return values of these methods are
managed through futures. ABS uses a concept of Concurent Object Groups (COGs),

42

where a COG represents a processor, which is responsible for running a group of one
or several active objects. Only one active object per COG is active on the associated
processor. This means a COG effectively shares the usage of a single processor between
different active objects. The active objects inside a single COG are not preempted, and
must explicitly release control over the processor in order to allow another active object
in the same COG to take control; this may be done either through an explicit release
point with the release statement, or through an await operation on a future, in a way
similar to the active objects of Creol [44].

2.4.4 Parallel processing

In this section, we will discuss the benefits and weaknesses of having a single thread
per actor; we will also discuss some works that attempt to bring parallelism (including
data-parallelism) inside actors without sacrificing the benefits of having only a single
thread.

One issue with the basic active object model is that an active object has only one
thread of control. It is the core concept that makes active objects easy to program and
debug. Programming an active object is almost as easy as programming a sequential
program, because requests are really programmed sequentially and thus there is no
parallelism inside an active object.

This makes proving properties easier but it is a major issue when building scalable
multi-threaded applications because by default data manipulated by two threads needs
to be duplicated. Also, if accesses to future variables are blocking until the result is
available (blocking get access), and the executing thread is not released (no cooperative
scheduling), deadlocks in active objects are possible due to the blocking semantics of
futures and the inability to reschedule the current thread. For example, when an active
object A calls active object B and gets future f from the call, if A requires f and executes
its blocking get method, the execution thread of A is blocked. If throughout the request
execution on B, the result depends on the result of a second call on A (recursion or not),
then A is unable to process this request because it is busy waiting for its future f, hence
a deadlock occurs because the fulfillment of f depends on the execution of the second
request on A, which depends on the fulfillment f.

Allowing parallel request handling on active objects can be a solution to this prob-
lem because then the second request could be executed in parallel to the first one cur-
rently blocked. But this solution requires considering when mutual exclusion is re-
quired, and providing a mean to enforce it, because the possibility of having data-races
is reintroduced by having several threads possibly accessing the same variables at the
same time. In the active object model, a natural way to enforce it is through the re-
quest scheduler. As the scheduler dequeues what request it judges as runnable, simply
offering more complex conditions in the scheduler can be a solution. This has been
studied in the Parallel Actor Monitor framework [59] by implementing the scheduling
loop directly.

43

This solution was judged too low level to be concise by Henrio et al. [40], which
provided the multi-active object concept with higher level condition evaluations such
as compatibility groups of methods or using a predicate function as entry point to de-
cisions. Henrio and Rochas [41] added a priority mechanism to the multi-active object
model where requests can overtake other requests based on their priorities. These pri-
orities are specified by annotations in the language representing a priority graph.

By changing the scheduling of requests, however, the convenience and predictabil-
ity of the sequential handling of requests (thanks to FIFO queues) is lost. Assumptions
on the order of request execution, and absence of data-races are thus more difficult
to make. While the approach is more efficient and more expressive, it requires more
expertise from the programmer.

To conclude, the single threaded nature of active objects can be a limitation. Sev-
eral solutions exist, based either on cooperative multithreading, on the asynchronous
reaction to future resolution (preventing blocking a thread), or local multithreading.

2.4.5 Applications

Gibbs used active objects to model multimedia systems [34]. Each active object rep-
resents multimedia components such as screens, CD players or speakers, consuming
and/or producing multimedia values at specific rate.

Microsoft used Orleans, their Active object middleware for building service for the
Halo 4 game [12]. Considering today’s leaning towards Service Oriented Architecture
for distributed application, the active object concept may look familiar as it can be used
to implement services where an active object framework can be part of a middleware.

A successful actor framework is Akka [1], which has been used by several industry
big players to build applications along an event-driven architecture.

The Scala language integrates the actor model as its default concurrency mecha-
nism, using just a combination of libraries and convention. Because other concurrency
mechanisms exist in Scala, the actor model can be bypassed easily. Indeed, Tasharofi et
al. concluded a survey [65] on 16 major Scala projects hosted on github, to analyze why
and how developers mixed the actor model with other types of concurrency models for
building their applications. They found that 80% of the major projects they selected are
mixing actors with manual threads. They found that only 3 out of 16 projects are using
actors for distribution, contradicting their initial thoughts that they were using actors
for distribution and threads for local parallelism. Instead, their results show that actors
tend to be used for local parallelism. They also analyzed how often actors use other
kinds of communication mechanisms than asynchronous messaging. They found that
only 2 programs use futures to receive messages asynchronously and only 2 other pro-
grams use blocking future accesses. At least 6 use other communication means inside
actors, 2 communicate through I/O and 4 through shared objects. As they queried the
developers, they found 3 main reasons for not using purely actor communications: the

44

lack of developer experience, some protocols were easier to implement using shared
memory, and the lack of efficient I/O provided by the actor libraries.

2.5 Parallel data communication

Data parallelism involves working on distributed data and often producing a distributed
result. While a distributed entity may use the distributed result of another distributed
entity as input, communication between these parallel entities (parallel tasks) presents
a choice of how to communicate this data efficiently. This scenario is referred as the
MxN problem, where M parallel processes exchange data with N other parallel pro-
cesses. The naive approach is to have the first entity gather all data into a single pro-
cess, and let this process handle communication to the second parallel entity, which
requires this data. This other entity is then left with all the data into a single process
and decides how to redistribute this data among its peers if needed. This sequential
transfer is inefficient as it requires gathering data, transferring it from one process to
another, then scattering if redistribution is needed.

Using the low-level programming API such as MPI, data can be directly exchanged
by parallel processes using point-to-point communication, or even using MPI collec-
tives on intercommunicators, a concept bridging two independent process subsets.
This problem can also be seen as an all-to-all communication pattern in order to opti-
mize communications. However, these communication primitives are usually difficult
to use and lack flexibility, as the precise distribution and redistribution has to be known
by both parallel entities, which is not convenient for programmers.

On the side of Remote Memory access (RMA) programming paradigms, such as
MPI RMA or BSPlib, remote memory is usually declared with a fixed size prior to com-
munications. All remote memory segments put together implicitly form a distributed
array. A collection of communications from one distributed area to another effectively
forms a distributed communication, however this approach is also difficult to use and
lacks flexibility because, just as with message passing, the distribution on other pro-
cesses has to be known by the group that initiates the communication.

The GCM distributed software components model [8] and its implementation in
the ProActive active object middleware specifies collective interfaces between paral-
lel and distributed hierarchical components. A broadcast interface replicates a service
method invocation on parallel components of the same type, and can automatically
split a call parameter of type collection into parts distributed evenly on the target com-
ponents. Reception of the call’s result blocks until all parts have been retrieved as they
are aggregated as a collection. A gathercast interface synchronizes incoming method
calls from a set of parallel components to form a single one, where pieces provided for
a given call parameter are aggregated as a collection, before the call is forwarded to the
receiving component; on return, if the result (received on a central point) is a collection,

45

it can be split in parts, returned to respective callers. An MxN collective interface com-
bines a gathercast from M parallel components, and a multicast to N parallel compo-
nents. The combination of gathercast-multicast effectively gathers the distributed data
from M processes into a single process, which is the hierarchical component embedding
the M inner components, which then broadcasts pieces to the N other processes, them-
selves embedded in a hierarchical component. The optimized implementation of an
MxN in GCM/ProActive automatically replaces this combined view as follows: each
of the M parallel components gets a new multicast interface, bound to the subset of the
N parallel components to which it needs to distribute pieces of the call parameter; each
of the N components exposes a gathercast interface from which it can synchronize invo-
cations and receive the needed pieces in order to execute the invoked method once. The
optimization directly binds the M and N processes to parallelize the communication,
this, bypassing the two hierarchical components. To enable it, the user has to imple-
ment an MxN component, including a hierarchical and parallel component of size M,
and another hierarchical component of size N, and associated controller(s) which spec-
ify the distribution. Here, the data distribution needs to be known at composition time
to create the adequate component interfaces with their corresponding controllers.

Research work by Keahey et. al. [46] suggests that a central component is needed
in order to achieve maximum flexibility for solving the MxN problem. They introduce
a notion of collective ports, which allows collective components to act as one parallel
entity. They introduce a class of translation component, which translates between data
distribution formats used by two different components. This component provides its
own standardized way of representing data distribution, and is considered to be dis-
tributed over the sum of the producing and consumer components. They note that
having this central component which coordinates the transfer enables transferring data
collectively, which is more efficient than having transfers performed individually, but
that this costs more synchronization, hence latency. The approach of this work however
has the performance penalty of having to copy data to and from the parallel component.

Dameveski et. al. propose that Parallel Remote Method Invocation (PRMI), which
involves a collective call to and/or from parallel components, be integrated so that au-
tomatic data redistribution mechanisms are triggered, this is achieved at the level of an
interface definition language compiler [25]. They base their distribution representation
on the model used by PAWS [10], a distribution is represented with three elements: the
index of the first element, the index of the last element, and the stride, which is the
number of array spaces between two elements. The distribution schedule is then ex-
pressed as a collection of intersecting distributions, which represents the data that has
to be transferred between processes. While MxN redistribution is performed through
PRMI through argument passing, a call means data has to be available, and a callee
receives the data upon this call. This approach requires synchronizing data between
each call, without allowing to delay synchronizing and transferring the data if it is not
needed by the target component or if this component could do something else before
this data is available.

46

The notion of ParT [28] represents an array of futures, representing results from
different invocations, effectively representing data among parallel processes, even if
the implementation of ParT is not distributed. Synchronizing elements of a ParT effec-
tively gathers data from parallel processes. ParT can be used to implement speculative
parallelism or barriers gathering a set of results. The set of futures represents different
method calls and not a single method call producing a distributed array.

Join continuations [4] are used to execute actor calls that depend on the results
from multiple other actor calls. For example, in a divide and conquer algorithm, an
actor may need the results of two different sub-computations in order to use them as
parameters to form another result. To do so, an actor may for example synchronize the
first result, then the second result. But doing so in this manner means that the evalu-
ation order is fixed. A join continuation allows to synchronize these parameters, but
without any order specified. This allows for example to do some partial computations
with the first received parameter without waiting for the others, and without specify-
ing which result is synchronized first. This also allows to return a result earlier, without
waiting for other parameters to be synchronized. This is useful for example when we
realize that a parameter does not have a valid value. In this case, we may return a
result without waiting for the value of the other parameters. Tags may be attached to
parameters if we need to know which parameter was received. With this mechanism,
join continuation may be used to synchronize the results of distributed data, with one
parameter associated to a data part. This would allow to start the computation with-
out waiting for all parts, assuming they are not needed at this point. With a group of
actors representing a distributed component, one such component may use these parts
as input. But in this case, the granularity of requests (the number of parts to represent
the same distributed data) has to be chosen carefully by the programmer, depending
on the number of actors that each distributed component has.

To summarize, several approaches exist for data distribution and communication.
They all implement different compromises but we deem none of them are sufficiently
well integrated in the language and they seem to build too much on existing well-
founded mechanism instead of trying to integrate distributed data and parallel function
calls into the execution model and its language.

2.6 Conclusion

In this chapter, we have seen that the difficult aspects of parallel programming can be
abstracted into higher level programming models and languages. This often leads to
works that attempt to bring parallel programming closer to sequential programming,
and we have seen that active objects and BSP are specialized models, respectively for
task and data parallelism, that aim to do just that. The only synchronization mecha-
nism provided by the BSP model is the barrier synchronization; even if the program-
ming interface exposes point-to-point communication primitives as in BSPlib, they are

47

only synchronized during the barrier synchronization, which makes programs rela-
tively safe, and easy to program and debug. Actors and active objects also make pro-
gramming closer to sequential programming by limiting the concurrency mechanisms
exposed to the programmer: the only ways for processes to communicate are through
remote method calls and future synchronizations.

We have seen that one major issue with the BSPlib programming API is that it pre-
vents the efficient cooperation of several functionally different tasks in parallel due to
its rigid barrier structure. This issue was addressed in several forms, the more general
of them is subset synchronization, which partitions processes into subgroups which
communicate using communication involving only themselves. This allows groups to
execute different codes with different synchronization patterns, at the cost of compro-
mising the accuracy of the BSP cost model.

On the other hand, we have seen that there has been works to parallelize the ex-
ecution of an active object, but we deem these approaches too heavy and restrictive.
This is because active objects require going through the queuing mechanism for every
communication between processes. When implementing data-parallelism with actors,
each sub-task is managed through a dedicated active object, these communications be-
tween the sub-tasks are restricted to active object parameter passing. Instead, they
could communicate directly with each other during the execution of their request. This
would avoid suspending their execution or introducing a deadlock because an active
object sends data to another that is already executing a similar function.

In the next chapter, we will show another approach solving the enumerated short-
comings of both models, by actually unifying them.

49

Chapter 3

BSP Active Objects

3.1 Introduction

In this chapter, we propose a programming methodology that mixes BSP, a well-structured
data-parallel programming model, with actor-based high-level interactions between
asynchronous entities. This way, we are able to express in a single programming model,
several tightly coupled data-parallel algorithms interacting asynchronously. More pre-
cisely we design an active-object language where each active object is able to run paral-
lel BSP code using multiple processes owned by the same active object. The communi-
cation between active objects is remote method invocation, while it is delayed memory
read/write inside the BSP code. These two programming models were chosen because
of their properties: BSP features predictable performance, absence of deadlocks un-
der simple hypotheses and relative ease of programming compared to more general
purpose parallel programming models. Active objects have only a few sources of non-
determinism and provide high-level asynchronous interactions. Both models ensure
absence of data races, thus our global model features this valuable property. The bene-
fits we expect from our mixed model are the enrichment of efficient data-parallel BSP
with service-like interactions featured by active objects. Elasticity is also a feature of
our model. Indeed, creating a new active object creates a new thread; this is not a fea-
ture that is part of the classical BSP model. Automatic scaling as the one available in
most cloud services could be implemented by a user program, but it is not a goal of the
model itself.

We start this chapter by describing our model in Section 3.2, then we illustrate this
model through a code example using our C++ implementation in Section 3.3. We then
follow in Section 3.4 with some implementation aspects that proved to be key in the
design of a distributed implementation, before concluding in Section 3.5.

50

3.2 Execution model

3.2.1 Design choices

We have seen in Section 2.4.2 that active objects enable a natural way to schedule tasks
on parallel processors. In order to keep this benefit, it is natural to keep active objects
as the top-level model of a hybrid BSP active object model. We go with the following
guideline: active objects should be used to coordinate high-level tasks, and a BSP exe-
cution of these tasks should speed them up with multiple processes. After this choice is
made, it now becomes clear that active objects should now have more than one process
each to properly embed parallel tasks. The next points to address are now how to use
these processes, and at what point in time should we consider using them for parallel
execution.

To help make the description of our model clear, we first give definitions for some
of the vocabulary we will use. A task is a job handled by an active object. We refer
to a single task even if this task is parallel and involves multiple processes on a single
active object. We sometimes refer to a parallel task to emphasize that a task involves
multiple processes. For example, if we use the words parallel tasks, we refer to multiple
active objects, each of them solving their problem in parallel with multiple processes
each. We refer to these processes as active object processes, with possibly several of
these processes assigned to a single active object.

We already know that from the outside, a task should look like an active object
function, and its result should therefore be represented as a future. For example, and
in order to achieve the easiest and most familiar active object call syntax, a call should
still look like fut = a.foo(p1,p2). After defining this, the first choice has to be made:
is the execution becoming parallel right at the start of the foo function ? If so, then
some questions have to be answered: how to distribute the call parameters and how to
manage the return values; if not, then the parameters can be transferred directly to a
single process, or this process can coordinate the distribution of parameters if needed.
While addressing this choice, it must be kept in mind that the solution should be kept
simple, both to ease an implementation and to avoid exposing too much complexity to
the user.

Managing the passing of parameters to a parallel remote method requires a choice
on how to send the parameters. These parameters may be sent to just one process, to
all the processes, or, in the case of array parameters, they may be distributed among all
the processes. This choice, especially for large arrays, has an impact on communication
performance. A similar choice has to be made for return values: how to manage the
return values of a parallel execution. The return value of an active object function is
usually managed through a future, which represents a single object. This single object
may represent an array, but it can not store a distributed array.

For usual active objects, a distributed result may be produced through multiple ac-
tive objects, and represented by a collection of future objects. More optimized solutions

51

based on this principle were developed such as ParT [28]. We could adopt a solution
based on having an array of futures to provide a distributed result, but this would re-
quire multiple active objects and we are more interested in working with a single active
object to produce a result in parallel.

From the reasoning we detailed above, and the complexity of solutions that must
be addressed, we decided that an active object call should at first trigger only a se-
quential execution. This sequential execution is handled by one process among those
owned by the called active object. We also decided that this process should always
be the same for a given active object in order to keep the state of object variables af-
ter different calls on the same active object. Choosing otherwise would leave open the
possibility of an active object to execute several sequential requests in parallel as pro-
posed in multi-active objects [40]. However, in our work, we are not interested in the
parallel execution of different requests simultaneously in the same object, but rather in
the execution in parallel of a single request at a time. Picking the same process start-
ing sequential executions on an active object effectively closes the possibility of parallel
execution of different requests, but conveniently allows the programmer to keep the
same context between different calls, because the same process has the same memory,
and thus the same state of variables. To better describe our model, we refer to this
process in an active object as its head process.

Starting sequentially the execution of a method allows its parameters to be sent
from just one process to one other process, as simply as a normal active object call. The
caller does not have to make a decision on how to transfer the parameters to the par-
allel processes as this will be handled by the receiving active object’s head process. As
the return value is returned by this head process, this solution also allows the return
value to be managed by a single future, may this value be a simple integer or an ar-
ray. This has some drawbacks for communication of large arrays, which we address
through distributed futures in Chapter 5. For now, this solution allows a base model
and implementation to be kept simple by default and allows extensions to handle more
complex parameter passing as well as return values later on.

Now that we have decided that the execution of a task should be started sequen-
tially, comes the choices of how to switch from sequential to parallel execution. We
chose to create a dedicated primitive called bsp_run, with another function as param-
eter that is to be called in parallel by all the active object processes. Another choice to
make is whether the head process should be part of the called parallel function. We
deemed this choice to be mostly related to the nature of the parallel execution model.
Since we chose BSP as the parallel execution model, we saw no counter-indication
to using all the processes at the same time, including the head process. If we would
have chosen the parallel execution model differently, for example a CUDA execution
for GPUs, where parallel GPU execution using tightly coupled threads is orchestrated
from a CPU thread (which would be the head process in our context), it would have
made sense to exclude the head process from the processes used for parallel execution.

52

Because of how different purpose and resource configurations the CPU thread has com-
pared to the GPU threads, it would be inappropriate to have the CPU thread perform
the same kind of work as the GPU threads.

3.2.2 Model overview

In the previous section we have explained a few choices that were necessary to make
in order to design a hybrid BSP active object model, along with the decisions we made
and for what purpose. Here is a summary of the decisions that were taken:

• A call to a BSP active object should be as similar as possible to a normal active
object

• Execution of a parallel task starts sequentially; the active object process handling
sequential execution is referred as the head process

• The head process is always the same throughout different function calls

• Call parameters are passed sequentially from the calling process to the head pro-
cess

• The head process returns the result value

• The head process is able to start BSP parallel execution along with other processes
using a new bsp_run primitive

• The head process is part of the parallel execution

We have detailed the choices regarding the originalities of our hybrid model above.
Since we join two existing programming models, each of them having different imple-
mentations with their own originalities, we must also specify the kind of active objects
and BSP variant we want to use for our model. Some variations may not matter specif-
ically for our hybrid model, and different choices may not break its core principles, but
could complicate the base model and its implementation.

First, at the top level of our model, we chose to use active objets and futures which
are as simple and explicit as possible. This is because we do not want to complicate
our model with unnecessary details and we prefer to be explicit regarding the behav-
ior of our active objects and futures so that our examples expose no complexity to the
reader. Each active object, once created, is assigned to one or multiple processes avail-
able in the execution environment. In particular, and for the reason of simplicity, we
do not integrate the notion of COGs as exist in ABS [36]. Integrating COGs would en-
able original aspects such as having different active objects share different processors;
while possible, this would not only make our model more complex, but make it possi-
ble to have overlapping processor subsets, which part of the BSP community regards
as a worse variant of subset synchronization because of communication interferences
between different subsets.

53

Figure 3.1: BSP active object model

We also specify that the requests are enqueued in FIFO order into the request queue
of each active object, so that the execution order of several requests may be predicted
to some extent. More complex queuing mechanisms such as request priorities or a
different request ordering would not interfere with the principles of our model.

As for the syntax and typing of futures, we chose futures with explicit types be-
cause we prefer our examples to be easily readable, and because explicit futures were
easy to implement in our C++ implementation. Also, we do not explore recursive ac-
tive object calls, which would benefit from implicit or dataflow explicit futures. While
we made this choice of future types for the aforementioned reasons, a different choice,
in some particular implementation that would require or benefit from implicit futures,
would not go against the concepts of our model.

In our language, the synchronization of a future is triggered by a get operation,
which blocks the current thread until the value associated to the future is available. We
chose get operations as the only way to synchronize futures to simplify the implemen-
tation and have precise control over the runtime. Allowing cooperative scheduling
through await would raise questions such as what to do when a thread in a parallel
function synchronizes a future and get de-scheduled, while the other threads continue
with the execution. Tackling this question would greatly complexify our model and
implementation, which is why we chose to stick with simple blocking get operations.

We chose a ”lazy message” synchronization strategy as described in Section 2.4.1
in order to ease the understanding of events happening at runtime: a get operation
triggers a request and the possible transfer of the value associated to the future. At
this point, there is no other argument against another synchronization strategy, but we
will see that the contributions of Chapter 5 will complexify the introduction of eager
strategies.

To summarize briefly, we can say that our base active object model resembles the
one of ASP [19], but with explicit futures and lazy future synchronization as the only
synchronization strategy.

54

We now detail how a request is executed following the example of Figure 3.1. In
this example, we have an active object A which, from the outside, behaves similarly to
the actor presented in Figure 2.5. Our BSP active object can be called, just as a normal
active object, through a function call in order to produce and send a request message.
Each active object has its own request queue, and each of its processes has its own
memory; the programmer is exposed to no shared memory, not only between different
active objects, but there is also no shared memory between the parallel processes of an
active object.

The first noticeable difference we can see between an usual active object of Fig-
ure 2.5 and our BSP active object of Figure 3.1 is that the BSP active object has two
processes, process A.0 and process A.1. The head process is, by convention, the first
process (A.0). Active object A is able to execute function foo sequentially, and function
bar in parallel. In our scenario, the foo function is first called on A. Just as with a nor-
mal active object, this translates into a message being sent from the caller to A’s request
queue, here stored on its head process, as we can see in (1). Eventually, the active ob-
ject is going to be execute the request, running the foo function, here in (2). Inside the
foo function (3), the bsp_run function is called with function bar as parameter. This
makes the head process A.0 require process A.1 to participate in the parallel execution
of function bar, as shown in (4). If there were other processes than A.1, they would
also be required to participate. After this, both processes (A.0 and A.1) enter function
bar in parallel. From this point, the execution is parallel and following the BSP model.
This means communications between the two processes are orchestrated in supersteps.
After both processes finished executing bar, A.0 goes back to executing foo where it
was (5), after the call to bsp_run. From this point, the execution came back to sequen-
tial execution and A.1 is not involved. The head process is free to call bsp_run again,
but here it simply proceeds and returns a result value in (6). This return value fills the
future that was created by calling this active object’s function foo.

While explaining Figure 3.1, we mentioned that processes communicate following
the BSP model during the execution of the bar parallel function. We chose a direct-
mode of BSP communication so that the programmer has precise control over com-
munications, which are explicitly triggered. The BSPlib standard, described in Sec-
tion 2.3.6, is an existing specification for direct-mode BSP programming, with we con-
veniently integrated in our BSP active object model along with some of its existing
implementations.

We have shown how our BSP active objects work internally, and several of these
active objects can coexist: they communicate through method calls and futures, just
as how it can be expected from a classic active object model. In Chapter 5, we will
introduce another mean of communication that is more specialized to multi-process
actors.

55

3.3 BSP active objects by example

In this section, we will give an example of what the syntax of the BSP active object
model can look like. Here we use the syntax that is used in our C++ BSPlib implemen-
tation.

In this example we also show how we can reuse existing code written in BSPlib.
For consistency of examples, we reuse the inner product code from BSPedupack [13]
that we showed in Figure 2.2 to present BSPlib. We do not reuse the codes of Figure 2.3
and Figure 2.4 to initialize the example because theses codes generate arguments and
forward them to the inner-product code. Handling arguments is now managed by the
active object interface.

When the head process triggers a parallel execution using the bsp_run primitive,
all processes enter the function given as parameter, including the head process. Because
the sequential and parallel functions do not share the same function scope, the only
scope they share is the object scope. In order for the head process to share data between
its sequential and parallel execution contexts, variables at the object scope must be
used. This is the case in our example, where the return value is produced in the parallel
context and returned from the sequential context. After the execution of the parallel
function, each process has the value set in variable _alpha (cf line 26 of Figure 3.2). In
our example, this variable is at the object scope so that the head process can return it
from its sequential execution context. In this example, and by convention, all variables
starting with ’_’, are variables at the object scope, thus they are reachable from any
function in the object; this is useful because the function used for calling the active
object (ip) is different than the function used for parallel execution(bspinprod). The
head process, which enters both, may use these variables to keep some context between
parallel and sequential executions.

The IPActor class interfaces the inner product implementation included in the
BSPedupack software package [13]. We only show parts of the code we deem inter-
esting to present our model.

In this example, we show how an active object can encapsulate process data through
object variables and how its function interface can act as a parameterized sequential en-
try point to a parallel computation. We also show the result of a call being used to call
another active object to do another computation, which is not shown.

In the main function, each active object is created and given two processes, here
their pids are given directly as parameters of the createActor primitive (lines 34-35).
Then the ip function of the first active object is called with vector v as the two parame-
ters. This asynchronous call returns with a future f1. As explained above, the ip func-
tion of this active object is run by its head process sequentially. Using BSP primitives,
the input vectors are split among the processes of the active object. Here, for simplicity,
we assume bsp_nprocs() divides v1.size(). Then the bsp_run primitive is used to
run bspinprod in parallel, which calls the bspip function of BSPedupack. Immediately

56

1 class IPActor : public activebsp :: ActorBase {

2 private:

3 double * _x_part;

4 double * _y_part;

5 int _n_part; // Number of elements in each part (_x_part and _y_part)

6 double _alpha;

7
8 public:

9 double ip(vector <double > v1, vector <double > v2) {

10 // ... (Initialize _n_part , allocate/register _x_part and _y_part)

11 for (int i = 0; i < bsp_nprocs (); ++i) { // Split data

12 int i_beg = _n_part * i;

13 // Send array block starting at offset to process i

14 bsp_put(i,&v1[i_beg],_x_part , 0, _n_part*sizeof(double));

15 bsp_put(i,&v2[i_beg],_y_part , 0, _n_part*sizeof(double));

16 }

17
18 bsp_run (& IPActor :: bspinprod);

19
20 return _alpha;

21 }

22
23 void bspinprod () {

24 bsp_sync ();

25 // call BSPedupack inner product , returns result on all p

26 _alpha = bspip(bsp_nprocs (), bsp_pid(), _n_part , _x_part , _y_part);

27 }

28 };

29
30 int main() {

31 // ...

32 vector <double > v;

33 // ...

34 Proxy <IPActor > actorA = createActor <IPActor > ({1 ,2});

35 Proxy <MultActor > actorB = createActor <MultActor >({3 ,4});

36
37 Future <double > f1 = actorA.ip(v,v);

38 double ip = f1.get();

39 Future <vector <double >> f2 = actorB.multiply_all(v, ip);

40 v = f2.get ();

41 // ...

42 }

Figure 3.2: ActiveBSP example

57

Figure 3.3: Inner product execution

after the call on the first active object, the main method requests the result with a get

primitive on f1, blocking until the result is ready (line 38). We also show this result
being sent to another active object (actorB) as request parameter of a multiply_all

function.

A view of the active object running the BSP inner product is given in Figure 3.3.
First, the head process receives vectors v1 and v2 in its memory. It first initiates the
sending (lines 14-15) of vector parts to other processes so that they are evenly dis-
tributed, even though they do not participate yet. Then the head process calls the
bsp_run primitive, which enables the other processes of this active object to participate
by entering the bspinprod function together in parallel. Then the BSPlib’s bsp_sync

function is called (line 24) so that the current superstep is ended and the initiated com-
munications by the bsp_put calls take effect. From this point, every process gets its
relevant pieces of vectors v1 and v2 in its memory. After this, the inner product compu-
tation is performed inside the bspip function, and every process gets the result _alpha
in its memory, as implemented in the inner product computation of BSPedupack, even
though we are only interested in the _alpha variable contained in the head process
memory. The parallel function is then finished and the head process proceeds with
sequential execution, it just has to return the content of the _alpha variable, which
contains the previously computed result of the inner product computation.

58

3.4 Management thread for distributed implementation

In this section, we describe an implemention aspect we had to use for our distributed
implementation of active objects: the management thread.

3.4.1 Motivation and terminology

Active objects are asynchronous in nature. They represent independent entities work-
ing in their own thread that can be called by other threads to request the execution
of some function. When an active object is already executing a function, it must also
be available when another active object calls it; in particular, it must be able to receive
requests so that a caller thread does not remain blocked until the called active object fin-
ishes to execute a previous request. In shared memory architectures, this problem does
not occur, because a caller has access to the memory of the callee, and can just queue its
request on a shared memory queue. A distributed memory implementation does not
have this easiness, even in Remote Memory Access programming. A solution to this
problem is to have a separate thread handle communications with other active objects.
To make our description clear, we give some definitions regarding these threads.

The worker thread is responsible for executing the active object user code, its role is
handling the active object requests that it reads from its queue.

The management thread is responsible for enforcing the reponsiveness of an active
object, for example, receiving requests from the outside and putting them into the active
object request queue while the worker thread is processing another request.

An active object process is a process that encompasses the management and worker
threads. It does not have its own execution context, and we use this term when we are
not interested in whether we reason on the management or the worker thread. This is
sufficient when we put our discussion at the level of active objects and their processes
in charge of parallelizing a task.

Note that the head process of an active object is just one active object process that
satisfies to this definition, and not another term for management or worker thread.

The motivation we gave so far for having a separate management thread only con-
cerns the head process because it handles active object requests. We will see in Chap-
ter 5 that there will be a reason for having a management thread for not only the head
process, but so far, note that this is not required. Also, it must be kept in mind that the
need for a management thread emerged from our interest in a distributed implementa-
tion.

3.4.2 Illustration: Processes and threads

Figure 3.4 shows the inner-workings of the head process of a BSP active object (objectA)
handling two requests and returning the values of the corresponding futures. While
this active object may have several processes, here we focus on its head process and its

59

Figure 3.4: Head process request handling with management thread

corresponding management and worker threads. In the illustrated scenario, an object
objectB calls foo on the same object (objectA) two consecutive times, then retrieves
the two corresponding futures, successively, with a blocking get operation. Both active
object calls send a corresponding request to the management thread, that just handles
the request by queuing it into a shared memory queue. The first request is then de-
queued by the worker thread, which starts handling this request.

We implemented first-class futures which have a lazy synchronization strategy (As
described in Section 3.2.2). The data associated to the future is stored on the object that
computed it, which transfers this data to any other active object which requests it with
a get operation on the corresponding future object.

Handling a request can take any amount of time, depending on the active ob-
ject function itself, but here we will assume, for illustrative purposes, that it takes
enough time so that the execution of the two requests does not finish instantaneously
and the management thread has time to handle the first get request (the second is not
sent because the first is blocking). When handling this get request, the management
thread does not yet have a result to answer, because the worker thread did not finish its
computation. If the result would have already been computed, then the management
thread could have answered the result right away, but at this point in time, it simply
remembers that the future was requested and it continues being available for other re-
quests (here there is none yet so it does nothing). This leaves objectB pending because
it is waiting for the result of the get operation on the f1 future, which the management
thread did not yet answer. When the worker thread finished executing its function and

60

possible (but not necessary) associated BSP computations, it sends the associated re-
turn value to the management thread and then proceeds with handling the next foo()
queued request. The management thread then takes care of forwarding the data cor-
responding to the f1 future to any process that requests it, here it was requested by
objectB. When the result is transfered, the get operation on f1 unblocks on objectB

and the get operation on f2 is then executed, and similar steps follow for handling the
future.

We chose that the worker thread would not be responsible for communicating the
result data because there can be a request at any point in time for this data, and when
the worker thread is busy doing some computation, it is not available to handle re-
quest for data communication. This would effectively block the get operation on a
future already computed if the active object that produced the value is busy processing
another request. Instead it forwards the result to the management thread, which has
the responsibility to be available to answer the value to whoever requests it.

3.5 Conclusion

In this chapter, we have presented a new programming model for the coordination of
BSP processes. It consists of an actor-like interaction pattern between SPMD processes.
Each actor is able to run an SPMD algorithm expressed in BSP. The active-object pro-
gramming model allowed us to integrate these notions together by using object meth-
ods as entry points for asynchronous requests and for data-parallel algorithms. Our
model can be seen as a way to program subset-synchronized BSP algorithms, while
naturally enforcing disjoint subsets. We have shown an example of this model that
features two different BSP tasks coordinated through dedicated active objects. This ex-
ample also shows the usage of our C++ library implementing this model, that relies on
BSPlib primitives for intra-actor data-parallel computations. We have also discussed
some key implementation aspects that have to be addressed while implementing this
model in a distributed setting.

61

Chapter 4

Formalization

4.1 Introduction

In this chapter, we present the formal language implementing the BSP active object
model we introduced in Chapter 3. We are interested in clear semantics for our model
because it formally specifies the behavior of our execution model, and it can serve as a
basis for formal reasoning and proof of properties, both concerning the programming
model and specific applications.

While our implementation, that we will present in Chapter 6, is a way to show
precisely how our model works, this description is downed with implementation de-
tails not specific to the model, and with choices that are not part of the model itself
and could have been different. The formal description presented in this chapter pro-
vides a clear view of the model through the ABSP formal language that is abstract from
implementation details.

This chapter is organized as follows: first, we present the syntax of our formal
language in Section 4.2, then we describe its semantics in Section 4.3. We then show an
illustrative example in Section 4.4. While we did not provide a formal cost model nor a
proof of determinism, we describe how they could be done, respectively in Section 4.5
and Section 4.6. We then conclude in Section 4.7.

4.2 Syntax

ABSP is our core language for expressing the semantics of BSP processes encapsulated
inside active objects. Its syntax is shown in Figure 4.1, x ranges over variable names,
m over method names, α, β over actor names, f over future names, and i, j, k, N over
integers that are used as process identifiers or number of processes; a horizontal bar
over terms means it is an ordered list of the terms below the bar. A program P is made
of a main method and a set of object classes with name Act, each having a set of fields
and a set of methods. The main method identifies the starting point of the program.
Each method M has a return type, a name, a set of parameters x, and a body. The
body is made of a set of local variables and a statement. For simplicity and clarity, we

62

P ::= Act{T x M} {T x s} program
T ::= Int | Bool | Act | Fut < T > type

M ::= T m(T x) {T x s} method
s ::= skip | x = z | if v { s } else { s } | s ; s
| return v | return | BSPrun(m) | sync

| bsp_get(v, x, y) | bsp_put(v, v, x) statements
z ::= e | v.m(v) | new Act(N, v) | get v rhs of assign
e ::= v | v⊕ v expressions
v ::= x | null | integer-values atoms

Figure 4.1: Static syntax of BSP active objects

assume that local variables and fields have disjoint names but we could specify rules
for allowing their overlapping and prioritizing their selections.

Types T and terms are standard for object languages, except that new creates an
active object, get accesses a future, and v.m(v) performs an asynchronous method in-
vocation on an active object and creates a future. The operators for dealing with BSP
computations are: BSPrun(m) that triggers the parallel execution of several instances
of the method m; sync delimits BSP supersteps; and bsp_put writes data on a parallel
instance.

bsp_put is a request for writing a value into the field of an object associated with
a parallel process at the end of the current superstep. A bsp_get operation is similar:
it will write the field of an object running in parallel into the field of the local object.
Delaying the effect of bsp_get and bsp_put to the next sync prevents data-races as
the sync operation handles these requests as a collection when they are all requested.
There is one noticeable difference in the syntax of bsp_get and bsp_put in Figure 4.1:
the type of their parameters. This difference may raise questions because both functions
are similar in purpose, one puts the value of a local variable into a remote variable and
the second one gets the value of a remote variable into a local variable. Both operations
happen at the execution of a sync, but the difference between the two functions is that
bsp_put takes the value of the local variable at the time of execution of this operation
while bsp_get only evaluates the value of the copied variable upon synchronisation.
This means that after the execution of bsp_put, the value of the variable may change,
but the value that is going to be written into the remote variable is the value of the
variable when the bsp_put is executed; any subsequent change to the variable does not
change the value that is going to be written when sync is executed. This is different for
bsp_get, which takes the value of the remote variable at the time of the execution of
the sync, simply because the process executing this operation can not know this value
without communicating. This is why the second and third argument types of both
functions are different, these are two variable references for bsp_get, and one value
and one variable reference for bsp_put instead. As we just explained and as we will
show in Section 4.3, this is because bsp_put saves the value of its second argument at
the time of execution of the bsp_put.

63

cn ::= α(N, A, p, q, Upd) f (⊥) f (w) configuration
p ::= ∅ | q :

(
[i 7→ Task] ; j 7→ Task

)
current request service

q ::= (f , m, w) request id
Task ::= {`|s} task

w ::= x | α | f | null | integer-values runtime values
`, a ::= [x 7→ w] local store

A ::= [i 7→ a] object fields
e ::= w | v⊕ v runtime expressions

Upd ::= (isrc, v, idst, x) DRMA operations

Figure 4.2: Runtime Syntax of BSP active objects (terms identical to the static syntax
omitted).

Sequence is denoted ; and is associative with a neutral element skip. Each state-
ment can be written as s; s′ with s neither skip nor a sequence.

4.2.1 Design choices

We chose to specify a FIFO request service policy like in ASP because it exists in sev-
eral implementations and makes programming easier. In ABSP, all objects are active;
a richer model using passive objects or concurrent object groups [14] would be more
complex. We choose a simple semantics for futures: futures are explicit and typed by
a parametric type with a simple get operator. We chose a BSP syntax similar to BSPlib
because it is a well-known library for BSP programming. We decided to model only
DRMA-style communications although message passing also exists in BSPlib; mod-
elling messages between processes hosted on the same active object would raise no
additional difficulty, but would complexify our semantics, which aims to be clear and
simple.

4.3 Semantics

The semantics of ABSP is expressed as a small-step operational semantics in Figure 4.3
and Figure 4.4.

A small example operational semantics rule is given below for illustrative purpose.

C1 C2

InitialState→ ResultState

The horizontal bar between the two parts of this rule separates the pre-condition on
the top, and the post-condition on the bottom. This rule is read as follows: when the
initial state matches InitialState and the preconditions C1 and C2 are satisfied, the state
may evolve into ResultState. If other rules may apply at the same time, it is not defined
which rule applies first; this is typical for formalizations of parallel languages, where

64

w is not a variable
[[w]]` = w

x ∈ dom(`)

[[x]]` = `(x)
[[v]]` = k [[v′]]` = k′

[[v⊕ v′]]` = k⊕ k′

NEW

[[v]]a+` = w y = f ields(Act)
A = [j 7→ (y 7→ w, pid 7→ j, nprocs 7→ N)| j ∈ [0..N − 1]] β fresh
Rk[a, `, x = new Act(N, v) ; s]→ Rk[a, `, x = β ; s] β(N, A,∅,∅,∅)

IF-TRUE

[[v]]a+` = true

Rk[a, `, if v { s1 } else { s2 } ; s]
→ Rk[a, `, s1 ; s]

IF-FALSE

[[v]]a+` 6= true

Rk[a, `, if v { s1 } else { s2 } ; s]
→ Rk[a, `, s2 ; s]

GET

[[v]]a+` = f
Rk[a, `, y = get v ; s] f (w)→ Rk[a, `, y = w ; s] f (w)

ASSIGN

[[e]]a+` = w (a + `)[x 7→ w] = a′ + `′

Rk[a, `, x = e ; s]→ Rk[a′, `′, s]

INVK

[[v]]a+` = β [[v]]a+` = w f fresh
Rk[a, `, x = v.m(v) ; s] β(N, A, p, q, Upd)

→ Rk[a, `, x = f ; s] β(N, A, p, q :: (f , m, w), Upd) f (⊥)

INVK-SELF

[[v]]a+` = α [[v]]a+` = w f fresh
α(N, A] [k 7→ a], q : Ck[`, x = v.m(v) ; s], q, Upd) cn

→ α(N, A] [k 7→ a], q : Ck[`, x = f ; s], q :: (f , m, w), Upd) cn f (⊥)

Figure 4.3: Semantics of BSP active objects – Part 1

65

SERVE

bind(α, m, v) = {`|s} i = head(N)

α(N, A,∅, (f , m, v) :: q′, Upd) cn→ α(N, A, (f , m, v) : (∅ ; i 7→ {`|s}), q′, Upd) cn

BSPRUN

bind(α, m,∅) = {`′|s′}
α(N, A, q : (∅ ; i 7→ {` | BSPrun(m) ; s}), q′, Upd) cn

→ α(N, A, q : ([k 7→ {`′|s′}|k ∈ [0..N − 1]] ; i 7→ {` | s}), q′, Upd) cn

RETURN-VALUE

[[v]]A(i)+` = w

α(N, A, (f , m, w) : (∅; i 7→ {` | return v ; s}), q, Upd) f (⊥) cn→ α(N, A,∅, q, Upd) f (w) cn

RETURN-SUB-TASK

α(N, A, q :
([

i 7→ Task
]
] [k 7→ {` | return ; s}] ; j 7→ Task′

)
, q, Upd) cn

→ α(N, A, q :
([

i 7→ Task
]

; j 7→ Task′
)

, q, Upd) cn

SYNC

A′ =
[

j 7→ A(j)
[
(y 7→ [[v]]A(i))|(i, v, j, y) ∈ Upd

]]
α(N, A, q :

(
[k 7→ {`k|sync ; sk}] ; i 7→ Task

)
, q′, Upd) cn

→ α(N, A′, q :
(
[k 7→ {`k|sk}] ; i 7→ Task

)
, q′,∅) cn

BSP-GET

[[v]]a+` = i
Dk[a, `, bsp_get(v, xsrc, xdst) ; s, Upd]
→ Dk[a, `, s, Upd∪ (i, xsrc, k, xdst)]

BSP-PUT

[[v]]a+` = i [[vsrc]]a+` = v′

Dk[a, `, bsp_put(v, vsrc, xdst) ; s, Upd]
→ Dk[a, `, s, Upd∪ (k, v′, i, xdst)]

Figure 4.4: Semantics of BSP active objects – Part 2

66

processes evolve independently of each other. Note that intermediate variables may be
defined in precondition, and be reused in the definition of the ResultState.

Our operational semantics in Figure 4.3 and Figure 4.4 relies on the definition of
runtime configurations in Figure 4.2 which represent states reached during the interme-
diate steps of the execution. The syntax of configurations and runtime terms is defined
in Figure 4.2. Statements and expressions are the same as in the static syntax except
that they can contain runtime values.

A runtime configuration is an unordered set of active objects and futures where
futures can either be unresolved or have an associated future value. An active object
has a name α and a number N of processes involved in α; these processes are num-
bered [0..N − 1]. One of these processes is the head process of the active object; it is
always the same for every active object. The function head(N) returns the process iden-
tifier of the head process of an active object among its N processes. Note that in the
examples of our figures, the head process is always the process 0: we will then assume
head(N) = 0. A associates each pid i to a set of field-value pairs a. It has the form
(0 7→ [x 7→ true, y 7→ 1], 1 7→ [x 7→ true, y 7→ 3]) for example meaning that the object
at pid 0 has two fields x and y with value true and 1, and the object at pid 1 has the
same fields with different values. Note that the object has the same fields in every pid.
The function A(i) allows us to select the element a at position i. q is the request queue
of the active object. The active object might be running at most one request at a time.
If it is not running a request, then p = ∅; otherwise p = q :

(
[i 7→ Task] ; j 7→ Task

)
,

where q is the identity of the request being served, and
(
[i 7→ Task] ; j 7→ Task

)
is a two

level mapping of processes to tasks that have to be performed to serve the request.
The first level represents parallel execution, it maps process identifiers to tasks, the sec-
ond represents sequential execution and contains a single process identifier and task.
We use this generic statement hierarchy to remember the pid associated with the se-
quential execution and to define rules for statements in both levels using a reduction
context. Tasks in each process consist of a local environment ` and a current statement
s. For example, p = q : ([k 7→ {`k|sk}|k ∈ [0..N − 1]] ; i 7→ {` | s}) means that the cur-
rent request q first requires the parallel execution on all processes of [0..N − 1] of their
statements sk in environments `k; then the process i will recover the execution and run
the statement s in environment `. Concerning future elements, these have two possi-
ble forms: f (⊥) for a future being computed, or f (w) for a resolved future with the
computed result w.

Figure 4.5 illustrates a runtime configuration, with a focus on one active object α

which has two processes. As stated before, the head process is always the process 0;
This active object has a sequential method m and a parallel method m′, here we can
see each sequential and parallel execution contexts associated to each of these func-
tions. Each process has its own memory; to differentiate the state of variables in each
process’s memory, we write them with a process number in our illustrative figures.
Thus variables in `0′ and a0, owned by process 0, may have a different state than the

67

Figure 4.5: ABSP runtime configuration

variables `1′ and a1, which are owned by process 1. We can also see that variables
in ` are only accessible from the sequential execution (they are not explicitly written
as `0 for this reason) and variables in `0′ and `1′ are only accessible from the parallel
execution. Variables in a0 and a1, which correspond to object variables, are accessible
from both execution contexts. The request queue q holds triplets (f , m, v...), where each
triplet corresponds to a request associated to a future f , corresponding to the execu-
tion of method m with arguments v.... One such triplets can be in a dedicated field
representing the request being processed at a given time. We also show the Upd field
that holds BSP requests, with each request as a quadruplet (isrc, v, idst, x), requesting to
copy the value of variable v as evaluated by process isrc into variable x of process idst.
Other similar active objects may exist side by side, and futures are not associated to any
particular active object because we consider that the decision about where to store the
future value to be implementation-related.

We adopt a notation inspired from reduction contexts to express concisely a point
of reduction in an ABSP configuration. A reduction context in general is an expression
with a hole, the definition of the valid reduction contexts is convenient for defining the
point of execution in a configuration. A global reduction context Rk[a, `, s] is a config-
uration with four holes: a process number k, a set a of object fields, a local store `, and
a statement s. It represents a valid configuration where the statement s is at a reducible
place, and the other elements can be used to evaluate the statement. This reduction
context uses another reduction context focusing on a single request service and picking
the reducible statement inside the current tasks. This second reduction context Ck[`, s]
will allow us to conveniently define rules evaluating the current statement in any of the
two execution levels, it provides a single entry for two possible options: the sequential
level and the parallel one. Note that this reduction context also defines that the parallel
level is picked first instead of the sequential one if it is not empty. The two reduc-
tion contexts are defined as follows (the variables that are parameters of the reduction

68

context should not appear anywhere else in the terms: they are fresh variables):

Rk[a, `, s]::=α(N, A] [k 7→ a], q : Ck[`, s], q, Upd) cn

Ck[`, s]::=(∅ ; k 7→ {`|s}) |
(
[i 7→ Task]] [k 7→ {`|s}]; j 7→ Task

)
Let us take the assignment rule as example, it applies in two kinds of configu-

rations: α(N, A] [k 7→ a], q :
(
[i 7→ Task]] [k 7→ {`|x = e ; s}]; j 7→ Task

)
, q, Upd) cn

and α(N, A] [k 7→ a], q : (∅ ; k 7→ {`|x = e ; s}) , q, Upd) cn. Using contexts both
greatly simplifies the notation and spares us from having to duplicate rules.

To help defining DRMA operations, we will also use Dk[a, `, s, Upd], which is an
extension ofRk[a, `, s] exposing the Upd field. It is defined as:

Dk[a, `, s, Upd]::=α(N, A] [k 7→ a], q : Ck[`, s], q, Upd) cn

We use the notation
[
i 7→ Task

]
] [k 7→ {`|s}] to access and modify the local store and

current statement of a process k. Just as a statement can be decomposed into a se-
quence s; s′ with the associative property, the task mapping can be decomposed into[

i 7→ Task
]
] [k 7→ Task], we use the disjoint union] to work on a single process dis-

joint from the rest.

The first three rules of the semantics define an evaluation operator [[e]]` that eval-
uates an expression e using a variable environment `. We rely on dom(`) to retrieve
the set of variables declared in `. While these rules may involve a single variable en-
vironment, we often use the notation a + ` to involve multiple variable environments,
e.g. [[e]]a+`. As stated above, we assume for simplicity that there are no variables with
the same name on a and `; this means we do not have to define what it means to ac-
cess a variable declared in both object and local scopes. It is important to note that
[[e]]a+` = w implies that w is not a variable, it can only be an object or future name,
null, or an integer value.

New creates a new active objects on N processes with parameters v, used to initialize
object fields. We use f ields(Act) to retrieve names and rely on the declaration ordering
to assign values to the right variables. We also add a unique process identifier and
N, respectively as pid and nprocs. The new active object β is then initialized with N
processes and the resulting object environment A.

Assign is used to change the value of a variable. The expression e is evaluated using
the evaluation operator, producing value w. Since variable x can either be updated in
the object environment a or the local variable environment `, we use the notation (a+ `)

to represent the unified environments. We can then use the notation (a + `)[x 7→ w] =

a′ + `′ to update either of these environments and retrieve both updated environments
as a′ and `′. In this rule, a value is assigned to a variable that can be in either of these
environments, They replace old ones in the object configuration.

69

If-True and If-False reduces an if statement to s1 or s2 according to the evaluation of
the boolean expression v.

Get retrieves the value associated with a future f . If the future has been resolved with
value w, the get statement is replaced by w, which is the value that was assigned to the
future in the Return-Value rule. If the future was not resolved, then this rule can not
be applied, and the α active object cannot execute the get statement as this operation is
not defined for unresolved futures: the active object is blocked.

Invk invokes the method m of an existing active object and creates a future associated
to the result. This rule requires v to be evaluated into an active object β then enqueues
a new request in this object.

A new unresolved future f is added to the configuration. Parameters v that are
passed to the method are evaluated locally, into w. The request queue of the active
object β is then appended with a triplet containing a new future identifier f associated
to the request, the method m to call and the parameters w.

Note that the execution of this rule requires the called active object β to be different
than the current active object which makes the call. The Invk-Self rule described allows
the current active object to make an active object call on itself

Invk-Self invokes the method m of the calling active object and creates a future asso-
ciated to the result. This is a simple adaptation of the Invk rule above; the purpose of
this rule, compared to the previous one, is to allow self-invocation. The variable v must
be evaluated to the current active object (and not a different one as the Invk rule). The
fields are updated as in the previous rule, except that these are the fields of the calling
active object.

(a) Initial configuration

→

(b) Result configuration

Figure 4.6: Serve rule

Serve processes a queued request. Figure 4.6 illustrates this rule. To prevent con-
current execution of different requests, the active object is required to be idle (with
the current request field empty). A request (f , m, v) is dequeued to build and execute
a new sequential environment i 7→ {`|s}, while the parallel execution context is ini-
tialized empty. BSP active objects start executing functions sequentially on the head
process, so the sequential environment is assigned to the head process of the α active

70

object (i = head(N)). The bind function initializes the environment by building a task,
i.e. local environment ` and statement s, from the method name m and argument list v.
This rule enables an active object to process a request, as opposed to the Invk rules that
are for creating and queuing a request.

(a) Initial configuration

→

(b) Result configuration

Figure 4.7: BSPrun rule

BSPrun starts a new parallel environment from the current active object α and the
method m. This rule is for turning a sequential environment into a parallel environment
through a function call. Figure 4.7 illustrates this rule, where we can see the parallel
execution context being created for running method m in parallel with all the processes
of actor α. Every process of the active object is going to be responsible for executing one
instance of the same task {`′|s′}. All parallel processes start with the same local variable
environment `′ and the same statement s′ to execute. This task is used to initialize the
parallel environment of the active object α. Every process is going to be responsible
for executing one instance of this task. This is why all parallel processes start with the
same local variable environment and the same statement to execute. Like the previous
rule, BSPrun starts a method execution, but of a parallel function with no parameter.

Return-Value resolves a future. The expression v is first evaluated into a value w
that is associated with the future f . The current request field is emptied, allowing a
new request to be processed. This rule describes how an active object function returns
a value from a return statement; it rule only applies to the sequential context. The
expression v is first evaluated into a value w. Since we did not use a reduction context,
we use A(i) to select the object variable environment of pid i. Then the future associated
to the request is given the w value. The current request element is then set to empty so
that other requests can be served.

Return-Sub-Task terminates one parallel task. Figure 4.8 illustrates this rule. The
process that performs the return is removed from the set of tasks running in parallel.
When the last process is removed from this set, the sequential context can be evaluated.

Figure 4.8 shows the head process returning from its parallel execution context.
When that happens, its associated parallel execution context is removed. A return

statement by one process only terminates this process’s execution context. Here, pro-
cess 1 is still active, so the sequential execution context may not resume, even if the head

71

(a) Initial configuration

→

(b) Result configuration

Figure 4.8: Return-Sub-Task rule

process finished its parallel execution context (executing the parallel function). When
all processes have returned, with their parallel execution contexts set to ∅, by this rule
and the triggering return statement, sequential execution may resume. This rule is the
opposite of BSPrun, it is used to switch from parallel to sequential execution by exiting
from the function called by BSPrun. Note that we do not allow sub-processes to return
a value from the parallel execution context, because we do not want to define what it
would mean to have return values from parallel to sequential execution contexts.

Sync ends the current superstep, the sync statement must be reached on every pid k of
the parallel execution context before this rule can be reduced. DRMA operations that
were requested since the last superstep and stored in the Upd field as (i, v, j, y) quadru-
plets are taken into account. They are used to update the object variable environment A
into A′ such that variable y of pid j is going to take the value v as evaluated in process
i, for every such quadruplet. As Upd is an unordered set, these updates are performed
in any order.

BSP-Get requests to update a local variable with the value of a remote one. We write
a DRMA quadruplet such that the variable xsrc of the remote process i is going to be
read into the variable xdst of the current pid k during the next synchronization step. For
example, if the statement bsp_get(1,x,y) was executed from process 2, it is going to
create the quadruplet (1, x, 2, y), which means the value of variable x on process 1 has
to be written into the variable y of process 2.

(a) Initial configuration

→

(b) Result configuration

Figure 4.9: BSP-Get rule

72

Figure 4.9 illustrates the evaluation of this rule. Process 1 executes bsp_get to
assign the value of the variable xsrc of process 0 be copied into its variable xdst. This
operation is simply remembered as a quadruplet of the UDP field. Note that here,
process 1 executes bsp_get in the parallel execution context, but it could have been
process 0 and even in the sequential execution context.

BSP-Put requests to write a local value into a remote variable. The value to be written is
evaluated into v, and a new update quadruplet is created in Upd. Just as bsp_get, it will
be taken into account upon the next sync. For example, if the statement bsp_put(1,x,y)
was executed from process 2 and its x variable has 42 as value, it is going to create the
quadruplet (2, 42, 1, y), which means the value 42 has to be written into the variable y

of process 1. Note that here, remembering that process 2 issued the operation is not
important, but this generic structure allows us to keep the get and put operations into
the same UPD field.

Determinism While race conditions exist in ABSP, like in active object languages and
in BSP with DRMA, the language has no data race. Indeed, the only race conditions are
message sending between active objects, and parallel emission of update requests. The
first one results in a non-deterministic ordering in a request queue, and the second in
parallel accumulation of update orders in an unordered set. Updates are performed in
any order upon synchronization but additional ordering could be enforced, e.g. based
on prioritized pids as suggested by [66].

4.4 Example

In this section, we present a simple example using our ABSP formal language. This
example features a BSP active object which has an object variable _val on each process
(with a different value for every process), and a function which does two things:

1. every process i sets the value of its _val variable to the value of _val of its neigh-
boring process on the right (i+1),

2. returns the value of _val which the head process has.

We assume we have basic arithmetic operations such as addition and modulus in order
to compute the neighboring process identifier.

Figure 4.10 features the OffsetActor, which has functions offset and bsp_offset.
The former is meant to be called as an active object function and the latter is meant to
be executed in parallel through BSPrun.

The offset function simply calls BSPrun with bsp_offset as parameter, and re-
turns the integer value stored in _val. The bsp_offset parallel function first initializes
the _val variable in the first call (we do not have sophisticated constructors to initial-
ize different values for each process at construction-time), then each process takes the
value of _val from its right neighbor (circularly) through a bsp_get call.

73

1 Act OffsetActor

2 {

3 int _val

4
5 void bsp_offset ()

6 {

7 if (_val == -1)

8 {

9 _val = pid; // numbered 0..nprocs -1

10 }

11 else

12 {

13 skip;

14 }

15
16 bsp_get ((pid + 1) % nprocs , _val , _val);

17 sync ();

18 return;

19 }

20
21 Fut <int > offset ()

22 {

23 BSPrun(bsp_offset);

24 return _val;

25 }

26 }

27
28 {

29 OffsetActor act

30 Fut <int > f1

31 Fut <int > f2

32 Int x

33 Int y

34
35 act = new OffsetActor (2,-1);

36
37 f1 = act.offset ();

38 f2 = act.offset ();

39
40 x = get f1;

41 y = get f2;

42 }

Figure 4.10: ABSP example

The main function (that is unnamed), creates an instance of this active object with
two processes and initialize the _val field at -1 to mark it as uninitialized (and trig-
gers its initialization inside bsp_offset). Then the offset function is called twice in a
row and the resulting values are synchronized into variables x and y, with respectively
values 1 and 2.

Figure 4.11 illustrates the instantiation in the first call to BSPrun in the example
of Figure 4.10 (line 23). Note that for clarity in the figures illustrating this example,
we only show the state of the _val variable in the a0 and a1 variable environment;
however they also contain the pid and nprocs variables initialized in the New rule when
creating the active object. At the time of this call, the bsp_offset function BSPrun has
as parameter was never entered; this means the _val variable in the a field still has a
value of -1 that was assigned for every process at the object creation time (line 35). We

74

(a) Initial configuration

→

(b) Result configuration

Figure 4.11: Instantiation of first BSPrun

can see in Figure 4.11 that the current request field is set to (f 1, o f f set,∅); this means
that the request being handled is associated to the f1 future, for executing the offset

function (the one the head process is currently in), with no parameter. We can also
see that there is another request in the queue: (f 2, o f f set,∅); this is a similar request,
but associated to the f 2 future. Note that due to the asynchronous nature of parallel
processes, it may also be the case that another statement execution scheduling would
have resulted in the main function not queuing this second request yet (if the main
function did not reach line 38), but here we assume it did for illustrative purpose. In the
result configuration, after the call to BSPrun, the parallel execution context is initialized
so that the statements s′ correspond to those of the bsp_offset function; we do not
show these statements as they would take too much space in this figure. We can see
that there is only return _val left to execute in the sequential execution context; as the
parallel execution has priority, the parallel execution context has to disappear on all
processes before executing this last statement.

(a) Initial configuration

→

(b) Result configuration

Figure 4.12: Instantiation of first return from bsp_o f f set

Figure 4.12 shows the first instantiation of the return statement inside the bsp_run
function (line 18). This happens after the scenario of Figure 4.11 above and after the ex-
ecution of the core of bsp_offset. We assume that both processes executed the rest of
the bsp_offset function and reached the return statement at the same time. Firstly,
and because it was the first time this function was called, the bsp_offset function
made every process set the value of the _val variable to the value of their pid; since

75

here the object has two processes, the process of pid 0 has _val set to 0 and the pro-
cess of pid 1 has _val set to 1. Secondly, all processes gave their value of _val to the
process having a successive pid value (or to process 0 for the process of pid nprocs -

1); since here there are only two processes, we can consider they simply permuted the
value of their _val variable; this means that now, after the execution of the core of the
bsp_offset function, process 0 has _val set to 1 and process 1 has _val set to 0 in the
initial state of Figure 4.12. In this figure, both processes reached the return statement;
this means Return-Sub-Task rule is applicable to both processes, but here we chose ar-
bitrarily to instantiate the return statement of the process 0. We can see the parallel
execution context disappearing in the result configuration. Now what is left is only the
return statement of process 1 before going back to the sequential execution context and
returning the _val value of 1.

We illustrated the transition between sequential and parallel execution through
BSPrun and the return statement within the parallel function that was called. The f1

future is then associated with the value 1. The next call to offset, associated to the f2

future, will then be associated to the value 0 because the _val values are going to be
permuted again in the bsp_offset function.

Through this example we illustrated the syntax of our ABSP language and the
instantiation of two key rules in our semantics.

4.5 Cost model

While we did not formally study and evaluate a cost model for BSP active objects or its
ABSP formalization, it is nevertheless interesting to give a discussion about such a cost
model.

First of all, it is important to mention that BSP active objects could be seen as BSP
subsets from the BSP point of view. Indeed, while each BSP active object synchronizes
its processes with barrier synchronizations, the global set of processes involving all the
BSP active objects is not synchronized with a global barrier synchronization. If we take
a view of all the BSP active objects together, each object represents a subset, and each
subset synchronizes independently from the other subsets.

When thinking about a cost model for BSP active objects, this brings us back to
the discussion of Section 2.3.4 about subset synchronization. As we have seen in the
literature, subset synchronization complicates the cost analysis of a BSP program. An-
other issue is that it is more difficult to get accurate BSP parameters in the context of
subset synchronization. Each BSP active object could be seen as an independent BSP
computer with its own BSP parameters, but there is no guarantee that the communica-
tions of each of these BSP computer does not interfere with the communications of the
other BSP computers. For these reasons, designing a cost model for BSP active objects
is a complicated endeavour, especially when one is expecting to compare and match
theoretical cost estimations to practical experimental measures.

76

Nevertheless, if it is not expected to have accurate performance predictions com-
pared to an implementation, a cost model would be an interesting addition to BSP
active objects. In this context, it is simpler to design a cost model around a theoretical
language such as ABSP compared to designing a cost model for a specific implemen-
tation. For example, this removes implementation details such as interactions between
management and worker threads as seen in Section 3.4. This particular detail might
not be present in another implementation (using shared memory for example), so a
cost model based on a formal language is also more general.

1 {

2 Actor act

3 Fut <int > f1

4 Int x

5
6 act = new Actor ();

7
8 f1 = act.f(1);

9 x = get f1;

10 }

Figure 4.13: Simple ABSP main function

When we want to give a cost prediction for an ABSP program, we want to take a
look at the different parts of this program, with the cost of one part possibly depending
on the cost of different other parts. Consider for example the code of Figure 4.13, where
the main function simply calls an active object function, then synchronizes the result
through get. The cost of this program is the cost of creating an actor, added to the
cost of an active object call with its parameters (here an integer), added to the cost of
executing the f function, synchronizing and transmitting the result. Note that here,
we do not execute anything between calling f and synchronizing its result through
get. If we would have executed more code between these instructions, the cost of
the get instruction (without the cost of transmitting the result) would be the maximum
between the cost of executing f and the cost of executing this other code. This is because
the nature of active objects means that the code of f is executed on another process, in
parallel of the code executed before synchronizing the result of f.

The cost analysis of code inside BSP active object functions is a bit more com-
plicated as there are more possibilities available to the programmer (BSPlib primitives,
BSPrun and parallel functions). The cost of executing an active object function in ABSP
is the sum of the costs of its sequential and parallel parts. Since ABSP relies on BSPlib
for BSP communications, the cost model of BSP primitives in ABSP could rely on the
existing BSP cost model. Instructing all the processes of an active object to execute a
parallel function with BSPrun consists of simply broadcasting an integer identifying
this parallel function to these processes, so that they know what function to enter in
parallel. Hence the cost of the BSPrun primitive is the BSP cost of a simple integer
broadcast. This cost for BSPrun does not include the cost of executing the parallel
function given to BSPrun. This cost should be deduced using the BSP cost model.

77

Figure 4.14: Active object race condition

In this section, we have seen that designing a reliable cost model for ABSP and BSP
active objects might be difficult. The scientific value of producing one such cost model
may easily be criticized in the same way as a cost model would be for BSP subset syn-
chronization. Therefore, in the context of this thesis, we only explored informally the
idea of a cost model for BSP active objects. This section has given ideas and intuitions
on how one could do to design such a cost model.

4.6 Determinism

In this section, we give a small discussion on proving the determinism property for the
ABSP formal language.

BSP active objects essentially merge two parallelism models, BSP and active ob-
jects. Each of these models has determinism properties under certain conditions. We
could therefore prove that our model is also deterministic under the same conditions.

In parallel programming languages, strict determinism is difficult to achieve as
even the reduction order of rules has to be the same between different program exe-
cutions. For example, is is typical in a parallel programming language to have several
processes which may execute different instructions at the same time. In this example,
we do not know which process is going to execute its next instruction first. Therefore,
in the context of parallel programming languages, the confluence property is typically
targetted for a proof of determinism. This confluence property does not enforce a par-
ticular reduction order for the rules, but the result has to be the same no matter in which
order the rules are applied.

The key condition for having this determinism property for active objects is that
all the requests arrive in the same same order on every active object. For example,
Figure 4.14 shows a case where the execution of an active object program is not deter-
ministic. In this example, the B and C active objects call the same method foo on another

78

active object A, and then store this result in their local variables x and y. The function
foo increments an integer i stored in the memory of A, before returning this integer to
the caller. Because we do not know in advance which request from B and C arrives first,
we also do not know which value of i is returned to which caller. As we saw in this
example, the values of the results x and y, given back to each active object, depends
on the arrival order of the requests sent by B and C. This means that this active object
program does not have the confluence property, because the arrival order of requests
is not known in advance. One simple way to be sure that an active object program is
confluent is to show that the call graph of this program forms a tree. For our ABSP
formal language, the proof of confluence could be made assuming the same conditions
are fulfilled, except that now, the additional processes inside active objects also have
to be considered. Indeed, in our model, all the processes inside an active objects are
allowed to make calls to other active objects. These processes have to be considered in
the active object call graph, for example by adding extra nodes to represent them. In
particular, we must ensure that the different processes of an active object can not send
a request to the same active object. If that were the case, the arrival order of these re-
quests would not be guaranteed, which would prevent confluence just as with classical
active objects.

Our hybrid model is quite complex as it merges two different models. Proving
the determinism property in such a model consists in comparing the behavior two by
two of each possible execution step, and then prove that the result is the same. This
is the Church-Rosser property, introduced in [22]. More precisely, we have to take two
rules from different models in our semantics, and prove that we reach the same state no
matter which rule is executed first, which would be a proof of confluence. For example,
when we are in a state where we may both execute BSPrun and an active object call, we
have to prove that no matter which of the BSPrun or the active object call is executed
first, we end up in the same state.

This proof would have to be made for each pair of the rules in our semantics,
where each pair has rules that reduce operations of different models. As our model is
quite rich, the whole proof with all pairs would be quite large. In the context of this
thesis, this would have taken time away from the other contributions of this thesis, for
example on distributed futures, implementation and experiments.

While we did not prove the determinism property, we believe we have laid solid
foundations for doing so thanks to the ABSP formal language. This section explained
how the determinism property could be proved using this semantics.

4.7 Conclusion

In this chapter, we have provided a formal semantics for our BSP active object model
presented in Chapter 3. This semantics joins active object semantics and simple BSPlib-
like DRMA semantics through a central BSPrun primitive. While we do not derive

79

formal properties due to lack of time and a focus on the distributed futures in Chap-
ter 5 and implementation aspects, this semantics would be a good candidate to do so.
The deterministic property (under similar conditions to active objects) would be an in-
teresting property to prove. We chose semantics close to the BSPlib specification, which
as explained in Section 2.3, is not deterministic, but would be easy to implement in a
deterministic way. Similar changes could be made, for example, enforcing an order on
the execution of DRMA operation instead of having an unordered set.

81

Chapter 5

Distributed Futures

5.1 Introduction

In this chapter, we introduce the notion of distributed futures, a concept of futures
that is appropriate to manipulate distributed data. They enable their efficient transfer
between data-parallel tasks and provide a unified view of distributed data through a
single future.

This chapter is organized as follows: we explain in Section 5.2 why the classical
futures are not appropriate for manipulating distributed data, before introducing our
notion of distributed futures in order to solve these issues. In Section 5.3, we then dis-
cuss some high-level implementation aspects we had to address in order to implement
distributed futures within our BSP active objects implementation, including its internal
structure and the primitives we introduced to manipulate distributed futures . We then
give an example usage within our implementation in Section 5.4, before concluding in
Section 5.5.

5.2 Motivation and principles

In this section, we explain the concept of a distributed future. We will see how dis-
tributed futures can be used to enable a more efficient communication between parallel
tasks that use futures, by parallelizing the communication. We will also see that dis-
tributed futures allow the programmer to have a more unified view of distributed data,
as opposed to a solution that would be based on arrays of futures.

The idea of distributed futures is not only relevant in the context of our BSP active
objects, but also to any parallel framework mixing task and data parallelisms by using
futures to communicate distributed results between parallel tasks. This is why, in this
section, we discuss distributed futures in a rather abstract manner; they are discussed in
the context of parallel tasks: with just the concepts of multiple tasks involving multiple
processes each. As we have seen in Chapter 3, each of our BSP active object can be used
to run a parallel task; this is how the discussions in this section about parallel tasks can
be related to BSP active objects.

82

Figure 5.1: Gathering and scattering to transfer distributed data

We first discuss what led us to design distributed futures in Section 5.2.1, then we
discuss the principles of distributed futures in Section 5.2.2.

5.2.1 Motivation

To incorporate data-parallelism inside a task-parallel framework, the most efficient so-
lution is to use multiple processes inside a single entity to handle each task, like BSP
tasks in our active BSP model. If these tasks are synchronized by futures, the result of
each data-parallel computation is required to be returned as a single return value in or-
der to store it in the future that corresponds to the task result. This single return value
could be a complex collection – e.g. an array, a vector – but it must be manipulated
as a single future and transmitted in its entirety upon future access. This means that
one needs to gather all the parts of the computed result into a single place in order to
return back a result, even if it was distributed among processes. This is the strategy we
applied in the previous chapters.

This gathering however raises a performance issue whenever the result is a large
array, especially when this array is passed to another task that scatters it again to do
another data-parallel processing.

Figure 5.1 illustrates this problem for two parallel tasks Task1 and Task2, which
may respectively correspond to two BSP active objects. Task1 has data that is dis-
tributed among its processes, and Task2 requires this data to be distributed among its
own processes. In order to transfer the data, Task1 gathers all the distributed data
pieces in the memory of a single of its processes. This process then communicates the
full data to a single process of Task2, which then scatters the data so that it is distributed
among all of its own processes.

83

Figure 5.2: Parallel transfer of distributed data

A more efficient way to transfer the data between the parallel tasks would be that
every data-parallel process keeps its part of the result, and transmits it directly where
it is needed instead of gathering the data in order to transfer it. We will see in the
following section how we propose to do so using distributed futures.

5.2.2 Principles

The purpose of a future is to represent the result of a task that is being computed, and
to provide a way for a process to synchronize on the availability of this result. The
representation of this result can be passed around to any other task if this future is a
first-class future, enabling other processes to synchronize on the availability of this re-
sult and to receive its data. When the result of a task is a distributed data, we would
like to have a future that still represents this distributed data, but where we have more
control over how the data itself is communicated on request, over parallel processes.
What we do not want, is to move distributed data needlessly; instead of having every
process in a parallel task gather its data piece to a central process, we choose to have
these processes keep their data piece, but create a description of this piece. The descrip-
tions of all the pieces are then gathered from each process of the parallel task to a single
process among them in order to form a description of all the pieces: a description of
the distributed collection of data. We now refer to this distributed collection of data as
a distributed vector. This description of the distributed vector can then be returned as
a future, and sent around between processes and/or be used to request specific data
pieces (only those required).

We call this description a vector distribution because it represents a distributed vec-
tor being computed. This vector distribution may only be known after a data-parallel

84

computation. This is why calling a parallel task that creates a distributed vector first
returns a future of vector distribution. We call this future a distributed future, because it
represents a distributed data, through its vector distribution, in the same way a future
represents a value being computed.

A distributed future is a future on which synchronization is possible, but its content is the
description of a distributed vector (and not the actual data of the vector). Synchronizing
this distributed future enables the programmer to synchronize on the availability of the
distributed data, without having to transfer the data right away. Instead of having a
future which is a placeholder for the data, the future is a placeholder for the vector dis-
tribution. The details of the vector distribution are not exposed to the programmer, but
its content can then be used by the programmer, through a dedicated get_part prim-
itive, to fetch the data parts necessary for the computation on the current processes.
This primitive is distinct from the get on the distributed future, and transfers only a
part of the distributed data to the process that performs the get_part.

Provided the size of a distributed future is way smaller than the distributed vec-
tor, a distributed future is cheaper to pass around between tasks. Using a distributed
future, any process in a data-parallel task can obtain the needed parts of the content of
the distributed vector, directly from the processes that hold them. Moreover, to obtain
the computed data, the programmer does not have to know where each part is located
and on how many processes each part is distributed.

This general principle is illustrated by Figure 5.2, where Task1, instead of gather-
ing all the data pieces to a single process, gathers only the description of these pieces.
When a process of Task2 synchronizes the corresponding distributed future, this de-
scription is sent to Task2 as a vector distribution. This process then broadcasts it to all
the other processes of Task2 so that they can freely request the pieces they need. Each
process, from the vector distribution, is then able to retrieve any part of the distributed
vector, no matter on which process(es) this part is located.

When each process individually requests a piece, the distributed data is effectively
transferred in parallel between the needed processes of Task1 and the needed processes
of Task2. In our implementation, this operation is not a collective: individual processes
may request pieces independently, and at a different time, from the rest of the processes.
Note that it is also possible that only one process requests a part (that is not even the
whole distributed vector), without the other processes requesting any part. However,
a different version could implement a more coordinated transfer through a collective
communication operation.

In this figure, the processes of Task1 are more numerous than the processes of
Task2. Because the same distributed data is evenly distributed on fewer processes in
Task2, this means the size of each part owned by each process of Task2 is larger than
the size of each part owned by each process of Task1. This is why an individual data
transfer initiated by a process of Task2 does not just involve communication from a
single process to another; in this case, each process of Task2 receives data pieces from

85

two processes of Task1. In the example, each processes requests a different part of the
distributed data. For example, the second process of Task2 only needs a part of the data
stored by the second process of Task1, the other part is requested by the first process of
Task2; the second process of Task2 will only receive the data it needs.

In short, distributed futures are more efficient as they enable parallel communi-
cation between the different processes that handle different data parts, but also this
optimisation is easy to program as the programmer does not have ot be aware of the
data distribution. They remove the necessity to gather each part into a single process,
transmit it in its entirety, and scatter it again. Every process only receives the data it
is interested in, and directly from process(es) that computed these data. A synchro-
nization on a distributed future consists in retrieving the metadata that is necessary to
access the content of the associated distributed vector. From this metadata, the content
of the distributed data can then be transferred by requesting the right part on the right
process(es), transparently for the programmer.

Our design is such that requesting the value of a distributed future and making
use of it to trigger effective data transfer is similar to using a lazy synchronization strat-
egy with classical futures: the data is only transmitted upon need. Indeed, because
data parallelism is often bandwidth-bound, we need precise control of the communica-
tion when large amounts of data may be communicated over multiple processes. This
is why a lazy synchronization strategy is best-suited, as we do not know in advance
which process will need which data.

Overall, a distributed future is at the same time a distributed data structure and a
unique descriptor that is both used to perform synchronization like a standard future,
and to redistribute the real data to processes that need them.

5.3 Implementation of distributed futures

Our implementation of distributed futures is based on the BSP active object model of
described in Chapter 3, and its implementation we will introduce in Chapter 6. To im-
plement the concept of distributed future, two aspects have to be implemented: the fu-
ture resolution as a vector distribution and the access to the distributed data. We review
our solution for both of them below. We start by defining the vector_distribution

data structure to represent a distributed vector, this data structure is stored in the dis-
tributed future when it is resolved.

5.3.1 The vector_distribution structure

When our distributed futures are resolved we assign them a collection of (pid,
local_id, size, offset) quadruplets. We define this structure as a vector_distribution,
which internally is a list of these quadruplets. Each quadruplet describes a part of a dis-
tributed vector. pid is the process which owns this part; local_id is the part identifier
that is unique within the owner; size is the size of this part; offset is the start index of

86

this part in the distributed vector. Fields offset and size are specified in bytes. For ex-
ample, a part with offset 1 and size 1 is the second byte of a distributed vector. This
structure allows storing different types of contiguous elements, including structs. The
simplest data distribution is the block distribution, which stores one contiguous range
per process, and thus requires a distributed future to track one such part per process.

For example, if we have a block-distributed vector of 40 elements computed by
processes 1, 2, 3 and 4, the value of the vector_distribution is the list ((1, 1, 10, 0),
(2, 12, 10, 10), (3, 41, 10, 20), (4, 33, 10, 30)), where each local_id value is taken arbitrar-
ily. Here we can see that processes own consecutive parts of size 10 each. The sec-
ond element of the quadruplet is a local identifier that allows each process to identify
uniquely the designed part: when requiring the part identified by 12 at process 2, it will
return the 10 elements of the distributed vector starting at index 10 even though pro-
cess 2 does not know what part of the distributed vector this data represents. Note that
this definition allows a set of quadruplets to be defined so that there are holes within
a distributed vector; for example, if we remove the second quadruplet in the example
above. It is useful for the programmer to know the size of a distributed vector from
a vector_distribution. For example, this size may be used in order to easily redis-
tribute a distributed vector into a different process group that has a different number of
processes. As we will see in Section 5.3.2, the user does not directly manipulate the set
of quadruplets in a vector_distribution in order to communicate a distributed vec-
tor. While the communication primitive is not influenced by holes in the distributed
vector, the user is not made aware that a part of a distributed vector that is received
has a hole inside. In this work, we are not interested in the possibility of having such
holes in distributed vector in order to simplify these aspects. This is why we assume
distributed vectors are contiguous, meaning they does not have any such hole. Allow-
ing holes would require our communication primitive to give the user information on
these holes, for example through a mapping from received data to index in a distributed
vector.

Instead of a part list, we could rely on pre-defined distributions; then the
vector_distribution would refer to a distribution type along with its parameters, this
would be enough to deduce the precise distribution of the distributed vector. However,
the location information, i.e. the process IDs, still has to be maintained which makes
the number of processes a factor of the vector_distribution structure size. Using a
part list like ours is generic in the sense that it can represent any distribution, but is not
suited when the number of parts is high. For example, the worst case is a cyclic distribu-
tion, where each vector element is round-robin distributed among the processes. Every
part of the vector_distribution represents one element of the distributed vector. In
such a case, a pre-defined distribution would involve a structure of size proportional
to the number of processes (holding only the pid of storing processes) while the size
of our distributed futures, given the way we have decided to represent them, is pro-
portional to the size of the vector, which is bigger. Pre-defined distributions are out of
scope for this work, but they should be envisioned for distributions where each process

87

stores many parts of a distributed vector.

5.3.2 Language extension

In order to represent the type of data in a distributed vector, we provide a template pa-
rameter T to the vector_distribution structure, which becomes
vector_distribution<T>. This has no repercussion on the quadruplet definition de-
fined in Section 5.3.1. This definition allows a safer use of the primitives defined below.
In our implementation, distributed futures are represented as futures of
vector_distribution <T>; we provide a more elegant definition as DistrFuture<T>,
which is simply an alias for Future<vector_distribution<T> >. For example, we can
have a DistrFuture<int> that represents a distributed vector of int elements.

In a data-parallel context where the processes of an active object each produces a
part of a distributed vector, our BSP active object implementation allows the program-
mer to make processes keep vector parts by storing these parts on their management
thread. This associates each distributed vector part with a local identifier within this
thread, so that they can be queried (e.g. the part whose id is 12 in the example above).
The management thread does not need to know more information. In particular, it does
not need to know how different parts relate to one another, its role is just to be available
for querying. Instead, metadata are assembled into a vector_distribution, which is
given to the user; this is a list of the quadruplets, as described in Section 5.3.1. The
user can use this structure to know which part(s) to query when an arbitrary subpart is
required.

We provide 4 main high-level primitives for manipulating vector_distribution,
shown in Figure 5.4. These primitives all have a template parameter T; as we will see
below, it serves different purposes, including a better type safety and a more user-
friendly computation of array positions. The following description of these primitives
is illustrated by the process and communication diagram of Figure 5.3.

The register_result function stores a distributed vector part of size size at local
address data into the management thread’s memory of the current process; offset
is the position of this part within the global distributed vector. This step creates a
quadruplet as defined in Section 5.3.1. The size and offset parameters are quantified
in number of T elements, not in bytes as the quadruplets of Section 5.3.1. This template
function will multiply these parameters by the size of an element T when creating a
quadruplet.

A call to gather_vd_parts by the head process enforces that all the calls to
register_result finished (by making sure the parallel function is exited by every pro-
cess), then assembles the quadruplets these calls produced into a vector_distribution<T>
structure on the head process. This structure is then given as return value to fulfill the
associated distributed future typed as DistrFuture<T> (which is a
Future<vector_distribution<T> >). Note that this is the only function where the

88

Figure 5.3: Distributed future API example

1 template < c l a s s T>
2 void r e g i s t e r _ r e s u l t (const T * data , s i z e _ t s ize , s i z e _ t o f f s e t) ;
3 template < c l a s s T>
4 v e c t o r _ d i s t r i b u t i o n <T> gather_vd_parts () ;
5 template < c l a s s T>
6 void broadcast_vd (v e c t o r _ d i s t r i b u t i o n & vd) ;
7 template < c l a s s T>
8 void get_par t (const v e c t o r _ d i s t r i b u t i o n <T> & vd ,
9 s i z e _ t o f f s e t , char * buf , s i z e _ t s i z e) ;

Figure 5.4: Vector distribution primitives

89

template parameter T has to be given explicitly by the user, because it can not be de-
duced automatically by a vector_distribution<T> parameter.

In the example of Figure 5.3, the vector_distribution<int> returned by
gather_vd_parts<int> is given to the return statement by objectA. This allows the
get statement on objectB to proceed, as it requests the associated future value. At this
point the synchronization provided by the future is ensured, and the vector distribution
is transfered to objectB, but the data transfer still needs to be performed (the metadata
is transfered, but not the data). Resolving this future means that the programmer ob-
tains this vector_distribution<int>. He triggers this resolution with a usual get on
this future.

The broadcast_vd primitive allows a head process to send this data structure to
its other active object processes; a collective call to the broadcast_vd primitive within
a parallel function sends the vd vector_distribution<int> given as parameter into
the same parameter of the other processes. The purpose of this primitive is to make the
vector_distribution structure transparent to the programmer so that it can be com-
municated without knowing its internal content, which does not have to be exposed.

With the get_part primitive any of these process can request a subpart of the dis-
tributed vector, where its distribution is transparently deduced from the vd

vector_distribution<T> given as parameter. The offset and size parameters im-
plicitly specify the part(s) to be retrieved, without the user knowing on which pro-
cess(es) the data is. Note that we do not specify any part id: they are not exposed to
the programmer; instead we directly specify the range of data that is required. The
retrieved part can actually be split over multiple processes, or be contained within one
part in one process; get_part deduces from the set of quadruplets stored in vd from
which process(es) the data is to be queried. Note that, as for register_result, the
offset and size parameters are quantified in number of elements of type T.

Consider the example of Section 5.3.1, if we request a part of the distributed vector
at offset 15 and of size 10, get_part will ask for one part of size 5 on process 2 (at offset
5 inside the part locally indexed 12) and another on process 3 (at the beginning of the
part locally indexed 41). In Figure 5.3, the first and second processes of objectB each
requests a half of the distributed vector stored in the memory of the three processes of
objectA. The first process of objectB requests the first half of the distributed vector,
which is deduced to be on P0 and P1; meanwhile, the second process of objectB re-
quests the second half of the distributed vector, which is deduced to be on P1 and P2

of objectA. As said earlier, these two get_part operations are independent from each
other: they are not part of a collective operation. As multiple processes can call this
function at the same time, the distributed vector can be transferred in parallel from a
BSP active object to another.

In order for a BSP active object to decide how to retrieve a distributed vector in
a balanced manner (which process has to receive which part and of what size), it is
also useful for the programmer to know the global size of a distributed vector from

90

the vector_distribution. This is why we also introduce a getVecSize member func-
tion in vector_distribution. Because we assume there is no hole in a distributed
vector, the global size of the distributed vector is obtained form the size and offset of
the last quadruplet of a vector_distribution (the one with the largest offset). Be-
cause the offset and size elements of our quadruplets are always expressed in bytes,
getVecSize obtains the number of T element in the distributed vector by dividing the
total number of bytes by the size of a T element. This is so that the returned value is
quantified in number of elements of T in the distributed vector.

We also added a primitive that enables the programmer to distribute a vector (to
create a distributed vector from a normal vector). This primitive only supports block
distribution, but the idea could be further extended if distribution policies would be im-
plemented. The signature of this primitive is vector_distribution<T>

block_distribute(std::vector<T> v). This primitive may be useful, for example,
to avoid going through the head process of an active object when the user wants to
distribute a vector. Indeed, in this case, the user would have to create an active ob-
ject function that takes a vector as parameter, and then scatter each part to a parallel
process. With this primitive, the vector is directly scattered without having to be trans-
mitted in full to the head process beforehand, therefore avoiding a data transfer.

5.3.3 Note on implementation choices

In our implementation, we have introduced a vector_distribution<T> structure that
represents the distribution of a distributed vector among different processes. This
structure, when given as return value of an active object function, becomes a distributed
future as DistrFuture<T> (which is an alias for Future<vector_distribution<T> >).
Synchronizing this distributed future with a call to get returns the associated
vector_distribution<T>, which may then be used with a get_part primitive in order
to retrieve a range of the data.

The concepts of Future and vector_distribution could have been further inte-
grated together. For example, a single primitive called on the distributed future could
both synchronize the metadata and retrieve the data, in a manner that is transparent
for the user. One issue with such a solution would be that the user may not know
in advance the size of the parts each process would then receive. The primitive re-
ceiving the data would then have the responsibility to allocate the buffer (or reallo-
cate a provided buffer if it is too small) used to receive the data. Another issue when
not knowing the size in advance is that it is not possible for the receiving processes
to decide precisely how to distribute the data among themselves (how to cut the dis-
tributed vector). This issue may be solved by implementing distributed policies as
discussed in Section 5.3.1. For example, the receiving processes may simply specify
that they want to receive the data in a block-distributed manner among themselves,
thanks to a pre-defined distribution policy that would be recognized by the processes

91

that own the data. This is why exploring this option requires further investigating dis-
tribution policies. In such a case, one could imagine a primitive similar to the get_part
of Section 5.3.2, but with a signature of void get_part(const DistrFuture<T> & df,

const DistributionPolicy & policy, std::vector<T> & data). Contrarily to the
version of Section 5.3.2, this primitive directly provides the DistrFuture<T> among
its parameters, instead of the synchronized vector_distribution<T> metadata. Also,
this primitive does not provide a precise target memory with offset and size param-
eters, but only gives a DistributionPolicy object, which must contain information to
distribute the data such as the pid of each process. Also notice that the data parameter
is an std::vector object, which may be resized by this get_part primitive if its initial
size is not enough to retrieve each part.

The study and implementation of a merged concept of Future and
vector_distribution requires a careful study of distribution policies and communi-
cation patterns in order to minimize the synchronizations. While the further develop-
ment of this idea is beyond the scope of this thesis, we think it would be an interesting
improvement and we provided an analysis of its requirement in this section.

5.4 Illustrative example

In this section, we give a simple code example showing the usage of distributed futures
within our BSP active object implementation (that will be fully described in Chapter 6).

This example is split into Figure 5.5 and Figure 5.6 for size concern. Figure 5.5
shows a PipeActor class with two active object methods : produce_dv and fetch_dv,
the former creates a distributed vector and returns it as a distributed future, and the
latter fetches an input distributed vector (in parallel) and returns it as a distributed
future. The fetch_dv function could do something with the distributed vector once it
has it, but the purpose of this example is to show the parallel transfer and the usage of
distributed futures, as simply and clearly as possible. The produce_dv method is not
shown because fetch_dv is enough to show the usage of distributed futures and their
associated primitives. Figure 5.6 shows a main function instantiating three PipeActor
active objects (a, b, and c) with two processes each. A distributed vector is created on
the first object a, which is successively forwarded to b, and then to c using the fetch_dv
method.

Figure 5.5 shows the core of this example, the PipeActor class and its fetch_dv

method. Let us first take a look at the object variables declared at lines 4-5; a vector
_v is declared for storage and a vector_distribution<int> is declared for sharing
a vector_distribution<int> parameter between different functions; as explained in
Chapter 3, we use the object scope so that different functions have access to the same
variables. The fetch_dv function itself is rather simple, it first synchronizes the _vd dis-
tributed future it received as parameter with a get operation on the Future object, and
assigns the resulting vector_distribution<int> object to the _vd object variable. The

92

1 class PipeActor : public ActorBase

2 {

3 private:

4 std::vector <int > _v;

5 vector_distribution <int > _vd;

6
7 void bsp_fetch_dv () {

8 int s,p;

9 size_t part_size , part_offset , size;

10
11 s = bsp_pid ();

12 p = bsp_nprocs ();

13
14 broadcast_vd(_vd);

15
16 // Get the size of the whole data

17 size = _vd.getVecSize ();

18
19 // Compute the data part indexes this process is inderested in

20 part_size = size / p;

21 part_offset = s * part_size;

22
23 // Resize _v so that it has enough space to receive the data part

24 _v.resize(part_size);

25
26 // Receive the right data part into _v

27 get_part(_vd , part_offset , _v.data(), part_size);

28
29 // ... Here we could work on the data part stored in _v

30
31 // Store the data part

32 register_result(_v.data(), part_size , part_offset);

33 }

34
35 public:

36 vector_distribution <int > produce_dv(size_t size) { ... }

37
38 vector_distribution <int > fetch_dv(DistrFuture <int > vd) {

39 _vd = vd.get ();

40 bsp_run (& PipeActor :: bsp_fetch_dv);

41
42 // Gather and return the registered metadata(not of the full data)

43 return gather_vd_parts <int >();

44 }

45 };

Figure 5.5: PipeActor forwarding distributed data

93

1 int main()

2 {

3 // ...

4 Proxy <PipeActor > a = createActiveObject <PipeActor >({1 ,2});

5 Proxy <PipeActor > b = createActiveObject <PipeActor >({3 ,4});

6 Proxy <PipeActor > c = createActiveObject <PipeActor >({5 ,6});

7
8 DistrFuture <int > f1,f2,f3;

9
10 f1 = a.produce_dv (1000000);

11 f2 = b.fetch_dv(f1);

12 f3 = c.fetch_dv(f2);

13
14 //...

15
16 return 0;

17 }

Figure 5.6: main function showing three PipeActor objects forwarding a distributed
vector through distributed futures

bsp_run function is then called with function bsp_fetch_dv as parameter. This makes
all the processes of the actor enter the bsp_fetch_dv function. As we will see, this func-
tion produces a distributed vector and each process registers the description of each
part it owns; these descriptions are then gathered into another vector_distribution
object through the gather_vd_parts primitive, which is returned right away. Let us
now take a look at the bsp_fetch_dv function; after declaring and initializing some
variables, the first thing it does is calling the broadcast_vd function, which makes
the head process share the vector_distribution<int> object it received as parameter
through the DistrFuture object that was synchronized, as we explained above. Every
process is interested in receiving a distinct range of the corresponding distributed vec-
tor: this is done simply by dividing the size of the distributed vector by the number of
processes p to obtain the part size (we assume the size of the distributed vector can be
divided by p). The offset is the obtained by multiplying the size by the pid (that ranges
from 0 to bsp_nprocs− 1), resulting in a block-distribution. Then, every process calls
get_part to receive its part of the distributed vector inside the _v vector object, after
it is resized so that it has enough room to hold it. From this point, every process has a
part of the distributed vector and a computation could take place. Here we only put it
aside using the register_result primitive, using the same range and size. The paral-
lel function is then exited and the distributed future is returned as explained above.

5.5 Conclusion

In this chapter, we presented the concept of distributed futures, which is an unification
of futures and distributed arrays: a distributed future is a future that represents a dis-
tributed array. It provides synchronization capacities on the entire array and enables
optimized communications by allowing processes to fetch directly the parts they are

94

interested in from the processes that computed them. A distributed future is a pro-
gramming abstraction that makes programming easier and in particular synchroniza-
tion and data transfer; it also makes the communication between data-parallel entities
more efficient than with standard futures (as we will validate in Chapter 7).

We implemented this notion in the context of the BSP active objects presented
in Chapter 3, that allows several BSP entities to interact in a task parallel and asyn-
chronous manner. We will come back on implementation aspects in Chapter 6 and
evaluate our implementation in Chapter 7.

Improvements can be envisioned, such as a declaration of distribution policy that
specifies how to redistribute data according to pre-defined or user-defined distribution
type. In our implementation, the user manually specifies the ranges of distributed data
needed, which may lead to programming mistakes being made on these parameters.
A declared distribution policy would be easier to manipulate since primitives could
be created in order to redistribute data according to a distribution policy, without the
user having to compute the offsets in an error-prone manner. This is however not
critical as BSPlib (which we use for our implementation of intra-actor communications)
programmers are already expected to know how to manipulate data in this manner
anyway.

This concept of distribution policy would allow further improvements such as al-
lowing the user to specify a pre-fetching of data according to a particular distribution
type, before the computation requiring this data is started. This would allow an active
object to trigger this data transfer between BSP processes earlier. Instead of pulling
data when the BSP computation starts, by invocation of the get_part primitive, the
idea would be to push the data on the BSP processes while the request is in the in-
put (FIFO) queue of the active object, i.e. between the moment the request is sent to
the active object and the moment the request is handled by the active object. Such a
pre-fetching strategy is outside the scope of this work.

95

Chapter 6

Implementation

6.1 Introduction

In the previous chapters, we presented BSP active objects (Chapter 3) along with a
distributed future extension (Chapter 5). In order to show how these concepts can be
implemented, we developed our own implementation. We have already introduced
some key implementation aspects in the previous chapters; here, we go into further
detail concerning our implementation in order to better describe it. While this chapter
is not a full description of our implementation and does not cover every detail, we
show the aspects that we deem interesting and worth mentioning.

In this chapter, we start in Section 6.2 by describing the environment on which we
chose to base our development work. To present our BSP active object implementa-
tion, we describe it as if we first implemented normal active objects in Section 6.3, and
then turned them into parallel BSP active objects in Section 6.4. We then explain fur-
ther implementation aspects for distributed futures in Section 6.5 before concluding in
Section 6.6.

6.2 Environment

In this section, we describe the technical environment that we used for implementing
BSP active object.

To implement our hybrid BSP active object model, we chose to rely on the BSPlib
implementation for the implementation of the BSP part our model. We made this choice
because, as we have seen in Chapter 2, BSPlib is a direct implementation of the BSP
model which makes it possible to program directly BSP communications. This also
gives us the possibility to reuse an existing BSPlib implementation. Since the BSP part
of an active object is meant to speed up a task, reusing an existing implementation
allows us to benefit from previously optimized implementations. Moreover we can
reuse existing BSPlib user code within our implementation.

We chose to use a BSPlib implementation that runs on the top of MPI, because it is
relatively easily to modify this library and add aspects specific to our imlpementation

96

of active objects. Another reason is that Wijnand Suijlen, a supervisor of the author
of this thesis, developed several BSPlib implementations over MPI and could quickly
confirm it would not be too difficult to modify the libraries in order to fit our model.

Along our development work, we did use several BSPlib implementations running
on the top of MPI, but we did not decide this from the start. We started with BSPonMPI
v0.2, because it appeared easy to integrate it. The author of this library later developed
a professional BSP implementation for Huawei that supports BSPlib; this implementa-
tion was later used within our implementation as it was more stable and efficient than
BSPonMPI v0.2; but since the code of this Huawei implementation is not open source,
we had to keep relying on BSPonMPI v0.2 for some time. Later, the same author rede-
veloped BSPonMPI from scratch into a more stable version that remains open-source,
(starting from v1.0), which we integrated into our implementation to replace BSPon-
MPI v0.2.

Since we wanted the active object and BSP implementations to co-exist within the
same environment to avoid having to transfer data between different environments,
and that there is no well-established active object library in C++, this meant we had
to develop our own active object layer for implementing our BSP active object model.
While it was possible to do differently (through sockets for example), we chose to im-
plement active objects in MPI that was already used by BSPLib. It avoids us to intro-
duce new concepts in an already complex environment.

When we developed the worker and management thread architecture, first de-
scribed in Section 3.4, we chose to rely on the pthread library for thread programming,
mostly because it is a widely used and available library, with a reachable community,
and because the author is familiar with this thread programming library.

Active objects are meant to be easily programmable, but with both active and pas-
sive objects for efficiency reasons. Active objects manage a thread and can receive asyn-
chronous method invocations, while each passive objects can only be manipulated by
a single active object. When a call is made to an active object, it is expected that pas-
sive objects may be passed as parameter. Therefore (to maintain the invariant that each
passive object is manipulated by a single active object), it is required to serialize these
objects in order to send them to a remote process. We chose to rely on the Boost seri-
alization library in order to do so, there are two reasons for this. Firstly, because we
wanted to avoid having to develop the serialization of objects ourselves. Secondly, be-
cause this library allows the serialization of objects in a rather user-friendly manner.
Consequently, any object that can be serialized according to the guidelines of this li-
brary can be sent as parameters of active objects.

6.3 Active object implementation

In this section, we detail the main aspects of our implementation of active objects with
C++ and MPI. In Section 6.4, we will describe the BSP part of this implementation.

97

1 DECL_ACTOR(ClassName ,

2 (return1_type , function1 , arg1_type , arg1_type , ...),

3 (return2_type , function1 , arg2_type , arg2_type , ...),

4 (...)

5)

Figure 6.1: Syntax of DECL_ACTOR

We start this section by describing the challenges associated to implementing ac-
tive objects in C++ in Section 6.3.1; we then show how we implemented the communi-
cations with MPI in Section 6.3.2.

6.3.1 C++ active objects

As explained in Section 6.2, the active object part of our implementation had to be
developed from scratch in C++. The C++ language does not provide the greatest tools
for such an implementation. For example, creating an active object from an existing
class and being able to call its methods as active object methods is not an easy task.
This is mainly because reflection, i.e. the ability of a program to examine its own code,
is not provided by C++.

Let us first consider the example of creating an active object on an existing MPI
process to show the benefits of reflection. In this example, we want to create an active
object of class Foo on process P1. With reflection, this could have been implemented by
sending a message to process P1 containing the name of this class (messages are just
strings over the network). The process P1 would read this message and create this class
from the string, but this is not possible in C++. This is why we had to create a mapping
from string to class ourselves. The same problem arises, in a more complicated manner,
for active object calls. A call to an active object method involves sending a message to a
process’s active object that represents the call to this method along with its parameters.
Interpreting and translating this message to a call to an object’s member function, with
their typed parameter is also complex in C++ and a mapping has to be done in order
to implement reflection-like features.

Fortunately, the C preprocessor and C++ templates allowed us to generate most
of the code for the user so that the generation, from a class, of an active object can be
as simple as possible for the active object programmer. Only a limited set of macros is
exposed to the user in order to generate the code translating an object class to an active
object class. The main macro exposed to the user is the DECL_ACTOR macro; it enables
the user to turn a class into an active object class. From this class, an active object can
be created on other processes. This macro and its syntax were developed thanks to the
features of the Boost Meta Programming Library (MPL) [35].

The syntax of DECL_ACTOR is shown in Figure 6.1. A class name is given as first pa-
rameter, then individual sets of active object functions are given between parenthesis;
the user has to give, for each active object function, its return type, its name, then the

98

1 DECL_ACTOR(PipeActor ,

2 (vector_distribution <int >, produce_dv , size_t),

3 (vector_distribution <int >, fetch_dv , DistrFuture <int >)

4)

Figure 6.2: Example usage of DECL_ACTOR

type of all of its parameters. With this information, we can generate the necessary code
to turn the class given as parameter into an active object class. The DECL_ACTOR macro
generates:

1. A Proxy class, which enables the user to call active object functions,

2. A handler function, which a remote process enters when it is instructed to create
this actor,

3. A createActor method, which creates the ClassName actor on a remote process,

4. A Maker class, which at construction time, assigns a mapping from the class name
as string to the handler function, so that a remote process may find this function
when it receives a message instructing to create this actor.

An example usage of DECL_ACTOR is shown in Figure 6.2. This code turns the
PipeActor class, shown in Figure 5.5, into an active object class.

An additional macro has to be called by the user: the REGISTER_ACTOR(ClassName)
macro. This macro initializes a Maker object (defined when calling DECL_ACTOR), corre-
sponding to the class given as parameter, that creates the mapping from the class name
as string to the correct handler function (also defined in DECL_ACTOR). The DECL_ACTOR

can be called within a header file, but the operation performed when calling
REGISTER_ACTOR may only be done in a compiled C++ code. This is why we created
this REGISTER_ACTOR macro, so that it can be called separately from DECL_ACTOR. For the
PipeActor example above, simply calling REGISTER_ACTOR(PipeActor) from a com-
piled file (e.g. PipeActor.cpp) is enough: it registers the actor and makes it possible to
create and invoke active objects oy type PipeActor.

6.3.2 MPI implementation of actors

As explained in Section 6.2, we use an implementation of MPI to implement communi-
cations between actors. In this section, we describe in more detail how these commu-
nications are performed.

An MPI program starts with all processes entering the main function of an SPMD
program, with all of its processes belonging to an MPI_COMM_WORLD group, with each
process numbered from 0 to the total number of processes in this group minus one.
This statically defined parallel structure is already contrary to the active object style
of programming, this is why we impose that the first function the user must call is an
initializing function called activebsp_init. Aside from initialization purposes, this

99

Figure 6.3: Management of MPI processes

function only lets the process P0 exit this function to proceed executing the rest of the
main function. All the other processes are then stuck in this function, waiting to receive
further instructions; these instructions, for example, may create an active object, de-
stroy it, call an existing active object or retrieve the value of a future. The MPI process
of pid 0 is then a special case, because it executes the main function and it is not asso-
ciated to any particular object. We call this process the main process or the coordinator
process.

This base architecture is illustrated by Figure 6.3. This environment has five MPI
processes, including the coordinator process (P0) and four processes (P1, P2, P3 and
P4). In this figure, an instruction message is sent from P0 to P1. This message may for
example instruct the process to instantiate an active object, or to call an active object
if one is already attached to P1. Note that while active objects may be created and
destroyed dynamically on these processes (all except P0), there can be processes that
remain idle throughout the life of an application, if the programmer does not use them
to create an active object.

From this description, the reader may remember the discussion about manage-
ment thread presented in Section 3.4; each of the MPI processes (except P0), is in fact
one such management thread, even though they are not attached to any active object
yet.

The examples of creating an active object, and calling one are important to under-
stand our architecture, we will now focus on each of them.

Figure 6.4 shows process P0 initiating the creation of an active object on process
P1. As explained above, a message describing the creation of the actor is sent to P1. A
new thread W1 is then spawned by P1; this thread is the worker thread of this actor as
described in Section 6.4. This thread initiates the active object by instantiating the cor-
responding object and creating the request queue in a memory that is shared by the two
threads. The worker W1 then reads the request queue, which is for now empty, meaning
this worker is now blocked. Note that when a thread is created, it is associated to the
same MPI pid as the process that created this thread; this means that W1 is associated to
the same pid as P1.

100

Figure 6.4: Creating an actor

In this first example, we showed how we implement the creation of actor in an MPI
environment, where all processes already exist in an application. In an environment
that is able to spawn processes easily, the actor creation implementation would have
been slightly different. Indeed, the process allocated to the new actor would have to be
spawned before sending the creation message, instead of this process already existing
and being blocked in the activebsp_init function waiting for a message.

Figure 6.5 then shows process P0 calling an actor hosted on P1, which may be the
same as the one created in Figure 6.4. Process P0 sends a message to P1 describing this
call, along with its parameters. This message is then queued by P1 (the management
thread) into the shared memory queue belonging to the actor. After this request is
acknowledged by being queued, this management thread sends a response to the P0

calling process, with an identifier that is used to build a Future object; we will come
back on this later in this section. The message in the queue is eventually dequeued by
W1 when it is not handling another message and this request is next in line in the queue.
After the message is dequeued, its content is examined so that the requested function
is known, and the arguments of the call are de-serialized. The function is then executed
by the worker thread. When this execution finished, and the result value is returned,
this value is then serialized and sent to the management thread, which just stores it.

Our implementation of futures is quite simple. The Future object simply contains
the MPI pid of the head process of the active object that is producing the result, along
with a unique key identifying the result for the called active object. This key was al-
located and returned by this process when the active object call was made. Figure 6.6
shows what happens when this result is queried (by calling get on the corresponding
Future object). In this situation, the management thread simply answers, when the
result is available, with this serialised result. The get call is just left pending as long
as there is no value to answer. After the result value is sent back to P0, the get call
de-serializes this result so that it is available in the actor that perdormed the get.

101

Figure 6.5: Calling an actor

Figure 6.6: Calling get on a Future object

102

Figure 6.7: Creating a multi-process actor

6.4 BSP active object implementation

In the previous sections, we have described how we implemented basic active objects
within our C++/MPI environment. We will now explain how we turned these classical
active objects into BSP active objects: active objects with multiple processes which are
able to execute data-parallel code in a BSP-style.

6.4.1 Giving multiple processes to active objects

In Section 6.3.2, we have shown the creation of a single-process actor. Here we will
show how we implemented actors with multiple processes. We start from the exam-
ple of Figure 6.4, where we showed how we created a single-process actor using MPI.
Figure 6.7 now shows a multi-process actor being created. In this figure, process P0

initiates the creation of a single actor, on processes P1 and P2, by sending a message
to each of these processes with the list of pids that will belong to the active object (for
each process). The first process in the list will serve as the head process of the active
object; here P1 is the head process. All the active object processes start by creating a
worker thread (here W1 and W2) and then perform some initializations, but now only
the head process creates a request queue. A key difference in the initialization step of
this parallel actor is that all the worker threads create an actor_comm MPI communica-
tor (a new group of processes). All the specified active object processes now belong to
this MPI communicator. This communicator allows calling MPI collective operations
where only the active object processes (P1 and P2 in the example) participate instead
of all the processes of the MPI_COMM_WORLD global communicator that contains all the
processes in the MPI environment. This actor_comm communicator is particularly im-
portant in the integration of an existing BSPlib library, because our modified BSPlib im-
plementation initializes the library from this communicator, which allows us to call the

103

BSPlib bsp_sync barrier operation involving only the processes in actor_comm. From
this point, the management threads continues running without interfering with the rest
of the actor creation, we now focus on the behavior of the rest of the active object The W1
worker thread, now reads its request queue to start processing requests, like a single-
process actor. What is different is that the W2 worker thread expects a communication
from the W1 worker thread requesting a call to a parallel function. This communication
is made through a call to the bsp_run primitive, which W1 may initiate while handling
a request. We will further describe the implementation of bsp_run in Section 6.4.3.

6.4.2 BSP implementation within parallel actors

In our implementation of BSP active objects, we used BSPlib to implement the data-
parallel part of our active objects. More precisely, we used an existing BSPlib imple-
mentation over MPI that we slightly modified so that it can be initialized with an MPI
communicator, and not MPI_COMM_WORLD. We explain below how we integrated BSPlib
within our implementation.

BSPlib itself has primitives that dictate how a BSP program is structured. Namely,
the bsp_init(void (*spmd)()) function must be called before calling any other BSPlib
primitive to instruct all MPI processes to enter the designated spmd function; the pro-
cess of pid 0 is an exception: it does not enter the spmd function through bsp_init.
This process instead continues executing and must call spmd directly on its own. Be-
fore it makes this call, this process continues sequentially and may, for example, han-
dle program arguments. This bsp_init function may be called only once, this is also
the case of bsp_begin(int p) primitive (and the corresponding enclosing bsp_end()

primitive). The bsp_begin function requests at most p processes for the whole dura-
tion of the BSP program. This program structure is incompatible with BSP active objects
because we want to handle several requests and thus create several BSP parallel com-
putation during an active object lifetime. Also we want to be able to create and destroy
active objects with possibly different process subsets. Consequently, we must remove
the restriction that these primitives may be called only once per program lifetime. To
do so, the BSPlib implementations themselves had to be modified.

The changes to the BSPlib implementations were required so that the bsp_init,
bsp_begin, and bsp_end functions may be called multiple times without terminating
the program. Another main reason for modifying the BSPlib libraries was to initialize
them from a process subset (not all available processes in the environment). For ex-
ample, in MPI implementations of BSPlib, the MPI_COMM_WORLD global communicator
is often used when calling communication primitives. This was an issue because we
do not want to involve every process in the environment when a BSP active object calls
BSPlib, but only the processes of this BSP active object. To solve this issue, we created a
custom initialization function called bsp_plug_mpi(MPI_Comm comm), which allows us
to initialize a BSPlib library with a specified subset communicator, so that multiple ac-
tive objects can live in the same MPI environement using different processes. We then

104

modified the BSPlib libraries used by our framework so that they use this comm MPI
communicator instead of MPI_COMM_WORLD when they communicate.

In our BSP active object implementation, we chose not to expose the bsp_init,
bsp_begin and bsp_end primitives to the user. The bsp_run primitive already imposes
a structure where the function given as parameter is entered in parallel. The purpose
of bsp_init is also to trigger the parallel execution of the function given as parameter
(of all processes except the one with pid 0). If bsp_init would be exposed to the user,
it would co-exist with bsp_run while serving a similar purpose. Instead, the modified
BSPlib library is initialized by the BSP active object library when creating the BSP active
object itself. From the point of view of the BSPlib library, all processes called bsp_init

(also bsp_begin) and entered the spmd function given as parameter from the moment
the BSP active object is created. The bsp_end function is called when the BSP active
object is destroyed.

From the BSP community’s point of view, this model can be seen as a high-level en-
capsulation of subset synchronization. While we have chosen to implement the model
with subset synchronization (of MPI communicators), the subsets are all disjoint in
nature because a process can only participate in one active object (process subset). Be-
cause of this aspect of our implementation, and as seen in Section 2.3, the downsides of
subset synchronization apply to our implementation, including sacrificing the accuracy
and simplicity of the BSP cost model. However, another implementation making the
choice of interleaved threads of BSP computations as seen in [69] could be envisioned
in a different implementation of this model. Our model does not fit with a global BSP
cost model by principle. Indeed, BSP active objects rely on several functionally differ-
ent active objects with different synchronization patterns. Consequently, such a system
is not be as perfectly balanced as divide and conquer algorithms. With an implemen-
tation similar to the one proposed in [69], BSP active objects are bound to suffer from
imbalanced communications and computations before global barrier synchronizations
if they were to be synchronized altogether. This is why our implementation does not
feature global barrier synchronizations, but only subset synchronizations (of active ob-
ject processes, not synchronizing all the processes in the environment at the same time).

6.4.3 Implementation of bsp_run

We have seen that bsp_run takes a parallel function as argument, and that every process
of the active object then enters this function collectively As we will see in this section,
our implementation of the bsp_run function is quite simple.

Because the nature of bsp_run is to ask remote processes to execute a given func-
tion, the same problem as described in Section 6.3 about executing a remote function
by name occurs. To solve it, we have to specify the mapping beforehand between func-
tion name and function pointer; we do so through a register_spmd function that must

105

Figure 6.8: Implementation of bsp_run

be called within the object constructor because it is called in parallel at the object cre-
ation time. This register_spmd function associates an identifier to the function given
as parameter.

As shown in Figure 6.8, the implementation of bsp_run is then a simple broadcast
of this identifier from the head process to the other processes of the same active object.
Every other process has to be ready for this broadcast, and once they receive this identi-
fier, they enter the corresponding function, after looking it up in a table that mapped it
to the right function pointer thanks to the previous call to the register_spmd function.

In this section, we have shown the main aspects of our BSP active object imple-
mentation over MPI. We have seen that all MPI processes (except the one with pid 0)
are management threads that are able to instantiate BSP active objects by spawning a
worker thread. For parallel BSP objects, these worker threads are linked together by
a dedicated MPI communicator. This communicator is then used to initialize a BSPlib
library that only includes the processes in this communicator. A BSP active objects is
then able to call our bsp_run primitive, which executes a parallel function on all the
processes of an active object. We have seen that to do so, this bsp_run primitive is sim-
ply broadcasting an integer to these processes. In short, this BSP active object is able
to execute code in parallel thanks to bsp_run and to call BSPlib primitive thanks to the
BSPlib library dedicated to these processes.

6.5 Distributed future implementation

As we have seen in Chapter 5, distributed futures allow the parallel transfer of dis-
tributed data between two parallel entities. The processes of a parallel entity keep their

106

parts of some distributed vector, which can be queried by another group of processes
through a distributed future and a vector_distributed structure. When we presented
the requirement of having a management thread in Chapter 3, we pointed out that only
one management thread was required for each active object. Because our distributed
future concept makes processes keep part of distributed data, they must also be avail-
able in order to send these parts when it is asked of them. As we have seen in Chapter 5,
this means that we then need to have one management thread per active object process
instead of just one for the whole active object.

The get_part function, introduced in Chapter 5, is a central part of our implemen-
tation of distributed futures. This primitive allows the retrieval of any subpart of a
distributed vector from a vector_distribution structure given as parameter.

Algorithm 1 get_part pseudocode

Require: vector_distribution vd, size_t offset, char * out_buf, size_t size
1: req_end← offset + size
2: for each {vd_pid, vd_local_id, vd_size, vd_offset} ∈ vd do
3: part_end← vd_offset + vd_size
4: if not (part_end <= offset or vd_offset >= req_end) then
5: if o f f set >= vd_offset then
6: req_offset← offset− vd_offset
7: else
8: req_offset← 0
9: end if

10: req_size← min(vd_size, req_end− vd_offset)− req_offset
11: dst_buf = out_bu f + req_offset + vd_offset− offset
12: requestPart(vd_pid, vd_local_id, req_offset, req_size, dst_bu f)
13: end if
14: end for

Algorithm 1 shows a simplified pseudo-code for the implementation of get_part.
This algorithm relies on our vector_distribution implementation as a list of quadru-
plets, as described in Chapter 5. The requestPart(pid, local_id, offset, size, buf) function,
called in line 12, requests size bytes from process pid, from position offset, of the part it
identifies by local_id; the result is then written in the out_buf buffer.

This algorithm iterates all the quadruplets inside the vd vector_distribution

structure given as parameter. For each of these quadruplets, the algorithm checks (at
line 4) if the part this quadruplet describes overlaps with the part requested by the offset
and size parameters of get_part; if it does, it means there is something in this vector
part that is required (all of it or just a subpart). The following lines from 5 to 11 consist
of calculating exactly what is required, and at which spot this part should be written in-
side the out_buf buffer. From this information, the requestPart function described above
is called to initiate the communication of exactly the data that is required.

107

6.6 Conclusion

In this chapter, we have described key aspects of our implementation of BSP active ob-
jects and of distributed futures. We have also discussed our reasoning for the different
choices we made. We tried to keep a middle ground between performance and pro-
grammability. For example, reusing an existing BSPlib implementation was a choice
for performance; while enabling flexibility and responsiveness through the introduc-
tion of a management thread was a choice in favor of programmability for the user.
Because of this, our implementation could be improved in either direction by sacrific-
ing the other aspect. Nevertheless, our implementation serves as a usable and effective
proof of concept implementation for our BSP active object model, as well as distributed
futures.

109

Chapter 7

Experimental evaluation

7.1 Introduction

In Chapter 3, we have introduced our hybrid BSP active object model, along with a
distributed future extension in Chapter 5. We implemented these concepts in C++ over
MPI as described in Chapter 6. In this chapter, we are now interested in evaluating the
performance of this implementation through benchmarks.

We start in Section 7.2 by describing our execution environment, we then provide
some small communication benchmarks in Section 7.3 followed by a more elaborate
benchmark scenario in Section 7.4. We then give a conclusion for our experiments in
Section 7.5.

7.2 Experimental Setting

For these experiments, we have at our disposal ten Huawei RH2288v2 servers, each
with two Intel Xeon E5-2690v2 CPUs that have ten cores each. This kind of machines
is what our lab has in biggest number, and we prefer to have a group of identical ma-
chines in order to better compare results; this is why we do not use more nodes for our
experiments.

We use the Intel C++ compiler version 18.0.1. For our communication benchmarks
in Section 7.3, we use one process per node in order to better observe performances
in a simple environment. However, extra parallelism can be achieved in the scenario
of Section 7.4; this is why we will use more processes per node. In this scenario, and
because each BSP active object process uses two threads, we put a maximum of ten
processes on each of these servers. When an active object is assigned more than ten
processes, it means it is distributed over multiple nodes. For example twenty processes
are distributed over two nodes.

110

Figure 7.1: Vector call benchmark scenario

7.3 Communication benchmarks

In this section, we show the result of two small benchmarks involving our BSP ac-
tive object implementation. We show what we call the vector call benchmark in Sec-
tion 7.3.1, which focuses on active object calls and get operation. We then present our
relay vector benchmark in Section 7.3.2, which focuses on evaluating data transfers
between parallel actors with different kinds of futures.

7.3.1 Vector call

In this section, we are interested in measuring the performance of an active object
method call, and of the future resolution. We design a scenario where an active ob-
ject method is called with a vector as parameter. This method simply returns the input
vector, and the process that called it calls get on the corresponding Future object.

Figure 7.1 illustrates this scenario. This is basically combining the scenarios of
Chapter 6 involving an active object method call (Figure 6.5) and a future resolution
(Figure 6.6). The vector is first serialized, then sent to the management thread of the
object active object. After the message is dequeued, the vector is de-serialized by
the worker thread, which returns it (and re-serializes it) to the management thread.
This management thread then sends the result to the coordinator process, because it
requested the resolution of the associated Future object. The result is then de-serialized
in order to retrieve the associated vector object. For this scenario, we measure the time
it takes to make the active object call, and then the times it takes after the call to retrieve
the resulting data. We measure two successive get operations, because the first one is
executed right after the call. Because of this, the first get also measures the time it takes
for the request to be dequeued and processed. This is also interesting to measure, but it
does not exclusively measure a get operation. However, a second get gives us a better
indication of the time it takes for only executing the get operation, because the result
associated to the future is then known to be produced.

111

Figure 7.2: Vector call benchmark results

Our implementation of Future keeps the serialized data when it is first synchro-
nized, so any get operation made after a first one does not require communication; this
is why we make sure that we clear this data before executing the second get operation,
in order to really perform and measure the communication for this get operation.

We vary the size of the input vector and observe the resulting execution time for
the call and get operations. We make sure the active object queue is empty before each
execution. We execute each scenario ten times and we take the average running time to
report each result. All the measure we show have a Coefficient Of Variation (COV) of
less than 10% (the COV is calculated as the standard deviation divided by the mean).

Figure 7.2 shows these measures according to the vector size. We can see that
the time for the second get is slightly faster, but about equivalent to the time for the
call. We can also notice that it takes about three times more time to execute the first
get (when the result is not ready yet) than to execute the first get (when the result is
ready). This is because, the input vector must be dequeued by the worker thread after
the call, then sent to the management thread and then sent back to the coordinator
process. This process involves more serializations and data movement, which is why
we observe more time for executing the second get than executing the first one.

7.3.2 Relay vector

In this section, we are interested in comparing the performance of different kinds of
future communication. To do so, we designed a scenario where a coordinator pro-
cess sends a vector to a parallel object objectA. This object then distributes this vector
among its own processes, for a possible computation in parallel (which we do not per-
form because we are only interested in communication time), then the same vector is

112

Figure 7.3: Communications in Relay vector scenario for future

Figure 7.4: Communications in Relay vector scenario for first class future

returned (simulating a result data vector of the same size) to the coordinator. The co-
ordinator process then sends the result (we will see how below) to a second parallel
object objectB, which has the same behavior as objectA. The coordinator process then
synchronizes and receives this result data.

We are interested in comparing the performance of different futures, so this sce-
nario, described in an abstract manner so far, is not exactly the same for all futures. We
compare:

1. Normal futures: The data is sent from objectA to objectB by having the coordi-
nator process synchronize the associated future, and send the full data to objectB

as shown in Figure 7.3.

2. First class futures: The data is sent from objectA to objectB by having the co-
ordinator process send the first future directly to objectB, which synchronizes

113

Figure 7.5: Communications in Relay vector scenario for distributed future

it without requiring the coordinator process to receive it at all. This is shown in
Figure 7.4.

3. Distributed futures: the data is distributed directly from the coordinator pro-
cess to the parallel processes of objectA. To do so, we use the block_distribute

primitive we introduced in Chapter 5. The coordinator process then sends the
distributed future to objectB by calling it. objectB uses this distributed future to
receive the data in parallel from objectA. The distributed future that was created
from calling objectB is then used by the coordinator process to receive the data
through get_part. This is shown in Figure 7.5.

We execute this scenario using nine nodes in total, with one process per node. One
node is dedicated to the coordinator process, and four nodes are allocated to objectA

and four to objectB. This setting means that every process is on a remote node and
all communications between processes go through the network. In this setting, the
redistribution through distributed futures (and get_part) is simple because there is
the same number of process on objectA and objectB.

As with the vector call benchmark, we vary the size of the input vector and observe
the resulting execution time for each kind of future communication. We execute each
scenario ten times and we take the average running time to report each result. The
COV for these measures is always lower than 3%.

Figure 7.6 shows the result of this execution. We can see that for smaller input
sizes, both normal futures and first class futures have a better performance, but that
distributed futures scale much better as the vector size increases. The first class future
always has an advantage over the normal future as a vector communication is avoided.
Because distributed futures rely on communication of metadata, they perform a larger
number of small communications. Thus when latency is the limiting factor, i.e. for
very small sizes, it is predictable that they are less efficient. However, we expected the

114

Figure 7.6: Relay vector benchmark results

distributed futures to perform better for small vectors, but this is probably due to the
fact our implementation is not optimized.

Overall, the better performance as the input vector size increases clearly shows the
benefits of distributed futures to communicate large amount of data.

7.4 Image comparison benchmark

In this section, we demonstrate the performance gain of distributed futures when used
between parallel actors. To do so, we design a scenario that consists of a pipeline of
three active objects. When using pipelines for task parallelism, the slowest stage dic-
tates the throughput of the whole pipeline. So we show how we can choose the number
of processes given to each stage according to performance, memory, or disk capacity
goals. In our experiments, we will show that we can fine-tune the performance of
pipeline stages by varying the number of processes assigned to each stage, and we
compare the performance of distributed futures against a version without distributed
futures.

7.4.1 Scenario

We consider a scenario of a web backend system that indexes and stores large numbers
of images from its users that are in competition for a best picture prize. However, some
users are gaming the system by uploading pictures multiple times, so that they get a
better chance of winning. For that reason the backend filters all duplicates from the
stored images. To avoid duplicates, we check if an image is already in the collection
when it is being added. This may be time and memory consuming depending on the

115

Figure 7.7: One pipeline sequence

number and size of the images in the collection. To speed up the process, the backend
maintains a thumbnail database as index. A thumbnail is a downscaled version of an
original image obtained through lossy compression. Instead of comparing original im-
ages when we add a new image in our collection, we then simply compare thumbnails
(we place ourselves in a setting where comparing thumbnails is sufficient and using
hash-code is not useful because we cannot afford to compare original images). Our
setting also allow for an advanced comparison of thumbnails, e.g. not too sensitive to
light and color balance. Comparing thumbnails, in contrast to comparing original im-
ages, is faster and requires less memory because less data is compared, but it requires
compressing the original images into these thumbnails.

We place ourselves in a context where we have the thumbnail database in the main
memory of a set of dedicated machines. The task of compression is assigned to another
set of dedicated machines. Finally, we also dedicate a parallel file system component to
reading source images on a set of disks. This forms a pipeline of three components, a
parallel file system component that we call the disk component, a compressor compo-
nent, and a database component.

For our experiments, we have implemented this pipeline scenario using the BSP
active object implementation described in Chapter 6 that includes our distributed fu-
tures. Each component is implemented as a BSP active object, and it communicates
data to other components in parallel through distributed futures. We have added a co-
ordinator component to feed the pipeline, as shown in Figure 7.7. For each image, the

116

1 std:: string path;

2 std:: ifstream is(img_list_file);

3 while (getline(is, path)) {

4 DistrFuture <char > img = disk.loadImage(path);

5 // img.get();

6 DistrFuture <char > compressed = compressor.compress(img);

7 // compressed.get();

8 Future <int > inserted = db.insert(compressed);

9 // inserted.get ();

10 }

Figure 7.8: Main part of the coordinator process

0 5 10 15 20
0

50

100

150

200

250

300

Number of processes

T
im

e
(m

s)

Disk stage
Compressor stage
Database stage

Figure 7.9: Time for each stage of the pipeline with distributed futures

coordinator instructs the disk object to read it; then the image is sent to the compressor
object; after compression, the resulting thumbnail is sent for indexation to the thumb-
nail database; and then the image is inserted in the database if this is a new occurrence.

The insertion operation does this check; it inserts this thumbnail if it was not al-
ready in the database; otherwise, the insertion operation does not insert the image.
While the thumbnail database component does not allow duplicates, the images that
were sent into the pipeline for insertion were read from the parallel file system compo-
nent. When an image’s thumbnail is refused for insertion because it is a duplicate, the
original image on the disk should also be cleaned. For simplicity, de do not show this
duplicate removal process on the disk. A slightly simplified version of the code of the
coordinator object is shown in Figure 7.8.

7.4.2 Results

We start by evaluating the individual performance of each active object in the pipeline
to identify what resource allocation avoids bottlenecks. For measuring the time each
object takes, we take the loop of Figure 7.8, but we synchronize the futures after each
call, as shown in comments. This makes the execution block on the completion of each
function and allows us to measure the time of each active object function individually.

117

0 5 10 15 20
0

200

400

600

800

1000

Number of processes

T
im

e
(m

s)

Disk stage
Compressor stage
Database stage

Figure 7.10: Time for each stage of the pipeline without distributed futures

Without blocking, we would only measure the overhead of an asynchronous call, or we
would need a global clock to compare the time of invocation on the coordinator wiht
the time of completion on another object. Note that resolving a future is more costly
for normal futures than for distributed futures. Indeed, the former requires communi-
cation of all data while the latter only requires exchange of metadata. To minimize the
communication overhead between components, we choose the same number of pro-
cesses for all active objects, which avoids a communication bottleneck on either side of
the distributed future. We choose large image sizes: 36 Mega-pixel images of resolu-
tion 4912 x 7360. Each of these images amounts to about 108 MB uncompressed in pure
bitmap format. We execute our pipeline for 1000 of these images and plot the average
time each pipeline stage takes, Figure 7.9 uses our distributed futures and Figure 7.10
does not.

We can clearly see that the components scale better with distributed futures. The
database has very little data to receive and very little work that can be performed in
parallel. However, its memory use increases as more images are indexed, which would
necessitate, in large deployments, its distribution over multiple servers. The disk and
compressor stages benefit the most from distributed futures, because they deal with
large data streams. Without distributed futures, the disk stage has to gather the whole
image in one process to transmit it to the compressor object through a regular future.
Figure 7.10 shows that both stages are overwhelmed by this transfer. Adding more
resources for reading and compression does not show significant gain from 4 processes
per stage. The experiment also shows that the performance of the distributed future
version keeps noticeably improving up to 16 processes.

We now need to decide the number of components we want To pick a resource
allocation, we compare the time taken by each pipeline stage depending on the number
of processes used by each active object. We first observe that the pipeline’s potential is
related to the slowest stage of the pipeline. We thus place ourselves in conditions that
minimize the time taken by the slowest stage. For the distributed future version, this
point is at sixteen processes for the compression stage, while it is at eighteen processes

118

Figure 7.11: Execution time for inserting 1000 images as function of the number of
compressor processes, with 16 disk processes and 20 database processes

for the disk stage for the version without distributed futures. Considering the number
of processes for the slowest stage that minimizes its duration, we can take a lower
number of processes for each of the other stages, as slowing down other stages does
not change the time taken for the whole pipeline to process an image. For distributed
futures however, as parallelism is also achieved in the communications between the
pipeline sections, the approach described above is only approximate and thus needs
to be adapted. As there is no systematic methodology, we augment the number of
processes used by the more data intensive stages, even if they are faster. Consequently,
taking also sixteen processes for the disk object is a safe choice because reducing it
will increase the time the compressor stage will take to receive its input. The choice of
number of processes for the database component is guided by the amount of required
memory.

We now run the same pipeline scenario, but we measure the performance of the
whole pipeline (we thus remove the intermediate synchronizations after each call on
code shown of Figure 7.8). We now take a configuration of twenty database pro-
cesses, sixteen disk processes, and we only vary the number of compressor processes.
Figure 7.11 shows the performance of these pipeline configurations. Because of the
pipeline effect, the performance improvement until sixteen compressor processes with
distributed futures confirms both our resource allocation choice and that the compres-
sor component is the bottleneck of this pipeline. This experiment clearly shows the
advantages of distributed futures, illustrating the gain brought by the parallel data
transfers.

We also evaluate scalability with respect to the image size. We still take 1000 of
them. Following our previous reasoning, we assign sixteen processes to the disk ob-
ject, sixteen processes to the compressor object and twenty database processes to our
database object to use two nodes. We have seen that these are interesting settings both

119

2e+07 4e+07 6e+07 8e+07 1e+08

50

100

150

200

250

300

Size per image(Bytes)

T
im

e
(s

)

With distributed futures
Without distributed futures

Figure 7.12: Time for inserting 1000 images as function of the image size, with 16 disk
processes, 16 compressor processes and 20 database processes

0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06
0

5

10

15

20

Size per image(Bytes)

T
im

e
(s

)

With distributed futures
Without distributed futures

Figure 7.13: Time for inserting 1000 images as function of the image size, with 16 disk
processes, 16 compressor processes and 20 database processes

120

for distributed futures and for standard futures. Figure 7.12 shows the execution time
of our pipeline, Figure 7.13 shows a focus on smaller image sizes. As expected, the total
time is proportional to the image size for both versions (with and without distributed
futures). The version with distributed futures benefits from a much higher through-
put. We attribute this again to the parallel transfer of data. We also see that, on small
image sizes, where there is not much data to be transferred, distributed futures do not
bring any performance gain, and are even a bit slower because data transfers involve
more communications (to ask for the data) and consequently, the communication la-
tency is higher for distributed futures than for standard ones. Further improvement
concerning latency is left for future work. In particular, a better integration of Future
and vector_distribution could reduce the number of synchronizations required be-
fore obtaining the data, which would reduce the latency and thus improve performance
for smaller image sizes. Also, we have made a preliminary investigation on a prefetch
strategy for distributed futures, but as no conclusive result have been obtained, this
research direction is kept as future works.

7.5 Conclusion

In this chapter, we have shown the performance of our BSP active object implementa-
tion, including distributed futures. While we showed basic performance measurements
through small communication benchmarks, we also showed a more complex scenario.

In particular, our experiments allow us to conclude that our distributed future
implementation performs better than our futures. We note that this is especially the
case as the data size increases, but our distributed futures perform worse for smaller
data sizes. This is expected as distributed futures require more communications, but
the fact that our implementation is not fully optimized could also explain this result.
This validates the distributed future approach, at least for communicating large sets of
data between data parallel computations.

Our benchmarks also show that our implementation of BSP active objects performs
reasonably well and can be considered as a promising first implementation of a pro-
gramming model combining data and task parallelism while ensuring good properties
for the programmer.

121

Chapter 8

Conclusion

8.1 Summary

In this thesis, we have presented our unified BSP active object model. We study this
model both from a theoretical and a practical point of view. We have seen that this
model may be used to express a combination of task-parallel and data-parallel algo-
rithms. The strength of our model is thus to allow to program applications that can
benefit from these two main models of parallelisation, benefiting from the advantages
of the two models. Our hybrid model relies on active objects and BSP because these two
programming paradigms are both relatively high-level and easy to program compared
to others in their categories. These models also come with interesting properties, such
as determinism under certain condition and absence of data-race. We thus provide a
programming framework that also have some interesting safety and programmability
properties, as illustrated by the examples we provide in this manuscript.

We provided a formal language for BSP active objects and a clear semantics that
may be understood independently of our implementation. This formalisation precisely
specify the behaviour of our model and is precise enough to allow for formal proofs,
even if proving properties of our model is outside the scope of this thesis.

In order to better integrate BSP and active objects, we designed distributed fu-
tures. Our distributed future concept allows a single future to represent a distributed
vector; this allow the efficient parallel transfer of distributed data, while providing a
synchronisation pattern based on futures.

In order to evaluate our model from a practical point of view, we developed an
implementation in C++ that communicate through MPI in a distributed environment.
We used this implementation to observe the performance improvement brought by
distributed futures over classical futures. Our experiments were satisfactory in the
sense that our model scales well, and even if our implementation could be optimised,
it is sufficient to show the effectiveness of our approach. Our model allows the easy
coupling of data-parallel and task-parallel computation in an easy-to-use and efficient
manner.

122

8.2 Concluding remarks

Through the study of our hybrid model between BSP and active objects, we have re-
alized that a naive integration of these two models raised some issues. In particular,
our base model could produce results in parallel, but it was not appropriate for com-
municating them efficiently between different active objects. Futures, which are usu-
ally employed in actor and active object languages, formed an obstacle to the efficient
communication of the distributed data produced by our parallel BSP active objects. A
solution based on array of futures is usually employed in active object programs in or-
der to have several active objects produce result parts in parallel. Since our aim was
to have a single active object work in parallel to produce a result, this solution was
not appropriate. This is why we opted for what we believe is a better integration of
data-parallelism: distributed futures which represent a distributed result with a single
future.

In our model and implementation, we aimed to strike a middle ground between
programmability and performance. Because of this, an implementation could be rethought
in a context where an application has specific needs. For example, an application re-
quiring more performance could sacrifice the responsiveness of active objects by elim-
inating the management threads we used in our implementation. This would indeed
require fewer data transfers between threads, but it would require the programmer to
have a precise knowledge of communications between active objects, as one could re-
main blocked when calling another at the wrong time. Another way to eliminate the
management thread would be to implement BSP active objects in a shared-memory-
only setting, thus sacrificing the distributed aspect of our implementation. Programma-
bility could also be improved, for example by implementing our model in a higher
level programming environment than the C++/MPI environment we used. While our
implementation kept a middle ground between performance and programmability, it
enabled us to better study our BSP active model and to demonstrate the increase in
performance of our distributed futures over classical futures.

8.3 Perspective

The works and contributions of this thesis may be used to base further studies. This
section lists the leads that are immediately clear to us.

While we formalized our hybrid BSP active object model into our core ABSP for-
mal language, we did not prove that the properties of BSP and active object still remain
in our hybrid model. This would be a valuable addition, and our formal language
should provide a good basis for doing so. Also, the formalization of our BSP active
object model does not include distributed futures. We focused on the implementation
aspects of distributed futures and we did not have the time to formalize them into our

123

core ABSP language. It would be interesting to extend our formal language and oper-
ational semantics in order to reason about distributed futures in a more formal context
and thus enable the proof properties for programs that use them.

Our distributed futures require the user to trigger two synchronizations: one for
synchronizing the metadata (through get) and another for synchronizing the data itself
(through get_part). A better integration of our vector_distribution structure and
futures could allow these two steps to be merged. However, the size of a distributed
vector is provided to the programmer through this vector_distribution structure.
Not providing this structure to the programmer through get would require the pro-
grammer to specify how the data is to be distributed into a parallel active object with-
out knowing the size of this data. Pre-defined distribution types would allow the user
to do so. The user would then only need to specify what distribution type a parallel ob-
ject should use when receiving the data associated to a distributed future. This would
reduce the synchronization requirement before obtaining the data, and also make dis-
tributed futures easier to program thanks to a modified API integrating these distribu-
tion policies.

Active objects enable the programming of pipelines of components that are wired
together through method calls and future synchronizations. When a first component
in a pipeline produces its result faster than a second component requiring it, this result
could be sent right after it is produced even if the second component is still processing
a request. This would save communication time when this second component requests
this data as it would already be communicated. This idea is called prefetching and it
is not new in the context of active objects. However, doing prefetching in the context
of our parallel actors producing distributed results through distributed futures would
raise additional challenges. When prefetching, the data communication is not initiated
while handling a request. This is why prefetching distributed futures would require a
different way to specify how the distributed data is to be redistributed from a BSP active
object to another. For example, the aforementioned distribution policies, would be
interesting candidates for doing so. We conducted initial experiments with prefetching
and hard-coded distribution policies but could not reach interesting improvements in
the performance nor decide whether better performance could be reached or not. This
is why these investigations are not presented in the present manuscript and prefetching
is left for future works.

While our formalization and implementation are specific to a particular active ob-
ject type (close to ProActive) and BSPlib, our key concepts are independent of them. For
example, one could get inspiration from our model to develop a CUDA active object
model for GPU programming. In this context, active objects could be used to coordi-
nate GPU parallel programs. This particular example would require to rethink some
aspects of our model, including the role of the head process. Indeed the head process
would most likely not participate in a GPU computation in this context, as it might be

124

more appropriate to associate it to a CPU coordinating this GPU execution. Extra syn-
chronization mechanisms may then need to be introduced in order to implement this
idea. This is because an implementation of this design could have the head process run
asynchronously from the GPU processes it coordinates. The head process would then
need to coordinate the exchange of data that the GPU threads produce, which might
raise interesting problems.

All along the development of our BSP active object implementation, we have at-
tempted to integrate more convincing code examples than the scenarios we have pre-
sented in this thesis. From a general point of view, such attempts are time and energy
consuming because parallel applications belong to huge projects and their study also
require expertise in specific domains. We have tried, for example, to explore parallel
solver coupling frameworks such as [3]. But the attempts we have made were incon-
clusive due to lack of time and expertise in these domains. It would be interesting to
find and implement richer applications that would be suited to our model. This would
allow us to better evaluate our model, and possibly highlight the need for extensions
or improvements.

125

Bibliography

[1] Akka. https://akka.io/.

[2] Apache giraph. http://giraph.apache.org.

[3] precice homepage. https://www.precice.org/.

[4] Gul Agha. Concurrent object-oriented programming. Communications of the ACM,
33(9):125–141, 1990.

[5] Gul A Agha. Actors: A model of concurrent computation in distributed systems.
Technical report, Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab,
1985.

[6] Keyvan Azadbakht, Frank S. de Boer, and Vlad Serbanescu. Multi-threaded actors.
In Proceedings 9th Interaction and Concurrency Experience, ICE 2016, Heraklion, Greece,
8-9 June 2016., pages 51–66, 2016.

[7] Olivier Ballereau, Frédéric Loulergue, and Gaétan Hains. High level bsp program-
ming: Bsml and bslambda. In Heriot-Watt University, pages 29–38. Intellect Books,
2000.

[8] F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio, and
C. Pérez. Gcm: a grid extension to fractal for autonomous distributed compo-
nents. annals of telecommunications - annales des télécommunications, 64(1), 2009.

[9] Françoise Baude, Denis Caromel, Nathalie Furmento, and David Sagnol. Optimiz-
ing remote method invocation with communication–computation overlap. Future
Generation Computer Systems, 18(6):769 – 778, 2002.

[10] P. H. Beckman, P. K. Fasel, W. E. Humphrey, and S. M. Mniszewski. Efficient cou-
pling of parallel applications using paws. In Proceedings. The Seventh International
Symposium on High Performance Distributed Computing (Cat. No.98TB100244), pages
215–222, July 1998.

[11] P. A. Bernstein and S. Bykov. Developing cloud services using the orleans virtual
actor model. IEEE Internet Computing, 20(5):71–75, Sept 2016.

[12] Phil Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen Thelin. Or-
leans: Distributed virtual actors for programmability and scalability. Technical
report, 2014.

[13] R.H. Bisseling. Parallel Scientific Computation: A Structured Approach Using BSP and
MPI. OUP Oxford, 2004.

[14] Frank De Boer, Vlad Serbanescu, Reiner Hähnle, Ludovic Henrio, Justine Rochas,
Crystal Chang Din, Einar Broch Johnsen, Marjan Sirjani, Ehsan Khamespanah,
Kiko Fernandez-Reyes, and Albert Mingkun Yang. A survey of active object lan-
guages. ACM Comput. Surv., 50:76:1–76:39, 2017.

https://akka.io/
http://giraph.apache.org
https://www.precice.org/

126

[15] Lars Ailo Bongo. Bulk synchronous visualization. In Proceedings of the 2013 Inter-
national Workshop on Programming Models and Applications for Multicores and Many-
cores, PMAM ’13, pages 21–30, New York, NY, USA, 2013. ACM.

[16] Olaf Bonorden, Ben Juurlink, Ingo von Otte, and Ingo Rieping. The paderborn
university bsp (pub) library. Parallel Comput., 29(2):187–207, 2003.

[17] W. Bousdira, F. Gava, L. Gesbert, F. Loulergue, and G. Petiot. Functional parallel
programming with revised bulk synchronous parallel ml. In 2010 First Interna-
tional Conference on Networking and Computing, pages 191–196, 2010.

[18] William W Carlson, Jesse M Draper, David E Culler, Kathy Yelick, Eugene Brooks,
and Karen Warren. Introduction to UPC and language specification. Technical
Report CCS-TR-99-157, IDA Center for Computing Sciences, 1999.

[19] Denis Caromel, Ludovic Henrio, and Bernard Paul Serpette. Asynchronous and
deterministic objects. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’04, pages 123–134, New York, NY,
USA, 2004. ACM.

[20] Denis Caromel, Wilfried Klauser, and Julien Vayssière. Towards seamless com-
puting and metacomputing in java. Concurrency: Practice and Experience, 10(11-
13):1043–1061, 1998.

[21] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi
Muthukrishnan. One trillion edges: Graph processing at facebook-scale. Proc.
VLDB Endow., 8(12):1804–1815, 2015.

[22] Alonzo Church and J Barkley Rosser. Some properties of conversion. Transactions
of the American Mathematical Society, 39(3):472–482, 1936.

[23] Murray Cole. Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, Cambridge, MA, USA, 1991.

[24] Leonardo Dagum and Ramesh Menon. Openmp: An industry-standard api for
shared-memory programming. IEEE Comput. Sci. Eng., 5(1):46–55, 1998.

[25] Kostadin Damevski and Steven Parker. M x n data redistribution through parallel
remote method invocation. IJHPCA, 19:389–398, 11 2005.

[26] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on
large clusters. In 6th Symposium on Operating System Design and Implementation
(OSDI 2004), San Francisco, California, USA, December 6-8, 2004, pages 137–150,
2004.

[27] Kiko Fernandez-Reyes, Dave Clarke, Elias Castegren, and Huu-Phuc Vo. Forward
to a promising future. In Giovanna Di Marzo Serugendo and Michele Loreti, ed-
itors, Coordination Models and Languages, pages 162–180, Cham, 2018. Springer In-
ternational Publishing.

[28] Kiko Fernandez-Reyes, Dave Clarke, and Daniel S. McCain. Part: An asyn-
chronous parallel abstraction for speculative pipeline computations. In Coordina-
tion Models and Languages, pages 101–120. Springer International Publishing, 2016.

[29] Christian Foisy and Emmanuel Chailloux. Caml flight: A portable SPMD ex-
tension of ML for distributed memory multiprocessors. In A. P. Wim Bohm and
John T. Feo, editors, High Performance Functional Computing Proceedings, pages 83–
96, Apr 1995.

127

[30] F. Gava and J. Fortin. Formal semantics of a subset of the paderborn’s bsplib. In
2008 Ninth International Conference on Parallel and Distributed Computing, Applica-
tions and Technologies, pages 269–276, 2008.

[31] Frédéric Gava. Formal proofs of functional bsp programs. Parallel Processing Let-
ters, 13(03):365–376, 2003.

[32] David Gelernter. Generative communication in linda. ACM Trans. Program. Lang.
Syst., 7(1):80–112, 1985.

[33] David Gelernter and Nicholas Carriero. Coordination languages and their signif-
icance. Commun. ACM, 35(2):97–107, 1992.

[34] Simon Gibbs. Composite multimedia and active objects. In Conference Proceedings
on Object-oriented Programming Systems, Languages, and Applications, OOPSLA ’91,
pages 97–112, New York, NY, USA, 1991. ACM.

[35] Aleksey Gurtovoy and David Abrahams. The boost c++ metaprogramming li-
brary. cit. on, page 22, 2002.

[36] Reiner Hähnle. The Abstract Behavioral Specification Language: A Tutorial Introduc-
tion, pages 1–37. Springer Berlin Heidelberg, 2013.

[37] Gaétan Hains. Subset synchronization in bsp computing. In PDPTA, volume 98,
pages 242–246, 1998.

[38] Gaétan Hains, Ludovic Henrio, Pierre Leca, and Wijnand Suijlen. Active objects
for coordinating bsp computations (short paper). In Giovanna Di Marzo Seru-
gendo and Michele Loreti, editors, Coordination Models and Languages, pages 220–
230. Springer International Publishing, 2018.

[39] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computa-
tion. ACM Trans. Program. Lang. Syst., 7(4):501–538, 1985.

[40] Ludovic Henrio, Fabrice Huet, and Zsolt István. Multi-threaded active objects. In
Rocco De Nicola and Christine Julien, editors, COORDINATION, volume 7890 of
Lecture Notes in Computer Science, pages 90–104. Springer, 2013.

[41] Ludovic Henrio and Justine Rochas. Declarative scheduling for active objects.
In Proceedings of the 29th Annual ACM Symposium on Applied Computing, SAC ’14,
pages 1339–1344, New York, NY, USA, 2014. ACM.

[42] Jonathan M. D. Hill, Bill McColl, Dan C. Stefanescu, Mark W. Goudreau, Kevin
Lang, Satish B. Rao, Torsten Suel, Thanasis Tsantilas, and Rob H. Bisseling. Bsplib:
The bsp programming library. Parallel Comput., 24:1947–1980, December 1998.

[43] Noman Javed and Frédéric Loulergue. Osl: Optimized bulk synchronous paral-
lel skeletons on distributed arrays. In International Workshop on Advanced Parallel
Processing Technologies, pages 436–451. Springer, 2009.

[44] E. B. Johnsen and O. Owe. An asynchronous communication model for distributed
concurrent objects. In Proceedings of the Second International Conference on Software
Engineering and Formal Methods, 2004. SEFM 2004., pages 188–197, 2004.

[45] Terry Jones. Linux kernel co-scheduling for bulk synchronous parallel applica-
tions. In Proceedings of the 1st International Workshop on Runtime and Operating Sys-
tems for Supercomputers, ROSS ’11, pages 57–64, New York, NY, USA, 2011. ACM.

[46] K. Keahey, P. Fasel, and S. Mniszewski. Paws: collective interactions and data
transfers. In Proceedings 10th IEEE International Symposium on High Performance
Distributed Computing, pages 47–54, 2001.

128

[47] Christoph W. Kessler. Neststep: Nested parallelism and virtual shared memory
for the bsp model. The Journal of Supercomputing, 17(3):245–262, 2000.

[48] Christoph W. Kessler. Managing distributed shared arrays in a bulk-synchronous
parallel programming environment. Concurrency and Computation: Practice and
Experience, 16(2-3):133–153, 2004.

[49] Muhammad Uzair Khan and Ludovic Henrio. First Class Futures: a Study of
Update Strategies. Technical Report RR-7113, INRIA, 2009.

[50] Jin-Soo Kim, Soonhoi Ha, and Chu Shik Jhon. Relaxed barrier synchronization
for the BSP model of computation on message-passing architectures. Information
Processing Letters (IPL), 66(5):247–253, 1998. Attempt to remove global synchro-
nization in BSP, exchange it with process-to-process exchanges. Requires using
only PUT operations.

[51] R. Greg Lavender and Douglas C. Schmidt. Pattern languages of program design
2. In John M. Vlissides, James O. Coplien, and Norman L. Kerth, editors, Pattern
languages of program design 2, chapter Active Object: An Object Behavioral Pattern
for Concurrent Programming, pages 483–499. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 1996.

[52] Pierre Leca, Wijnand Suijlen, Ludovic Henrio, and Françoise Baude. Distributed
futures for efficient data transfer between parallel processes. pages 1344–1347, 03
2020.

[53] B. Liskov and L. Shrira. Promises: Linguistic support for efficient asynchronous
procedure calls in distributed systems. In Proceedings of the ACM SIGPLAN 1988
Conference on Programming Language Design and Implementation, PLDI ’88, pages
260–267, 1988.

[54] Frédéric Loulergue, Gaétan Hains, and Christian Foisy. A,calculus of functional
bsp programs. Science of Computer Programming, 37:253–277, 05 2000.

[55] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, SIGMOD ’10, pages 135–146, New York, NY, USA, 2010. ACM,
ACM.

[56] W. F. McColl. Parallel algorithms lecture notes. 1997.

[57] W.F. McColl. Scalable computing. In Jan van Leeuwen, editor, Computer Science
Today, volume 1000 of LNCS. Springer, 1995.

[58] Mohan Nibhanupudi, Charles D. Norton, and Boleslaw K. Szymanski. Plasma
simulation on networks of workstations using the bulk-synchronous parallel
model. In in Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications, pages 13–22, 1995.

[59] Christophe Scholliers, Éric Tanter, and Wolfgang De Meuter. Parallel actor mon-
itors: Disentangling task-level parallelism from data partitioning in the actor
model. Sci. Comput. Program., 80:52–64, Feb 2014.

[60] K. Siddique, Z. Akhtar, E. J. Yoon, Y. S. Jeong, D. Dasgupta, and Y. Kim. Apache
hama: An emerging bulk synchronous parallel computing framework for big data
applications. IEEE Access, 4:8879–8887, 2016.

[61] D. B. Skillicorn. Predictable Parallel Performance: The BSP Model, pages 85–115.
Springer US, Boston, MA, 2002.

129

[62] J. L. Sobral and C. A. Cunha. An annotation-based framework for parallel comput-
ing. 16th Euromicro Conference on Parallel, Distributed and Network-Based Processing
(PDP 2008), pages 113–120, 2007.

[63] Wijnand Suijlen. Bsponmpi. https://github.com/wijnand-suijlen/bsponmpi.
Accessed: 2020-02-26.

[64] Wijnand Suijlen and A. N. Yzelman. Lightweight parallel foundations: a model-
compliant communication layer. ArXiv, abs/1906.03196, 2019.

[65] Samira Tasharofi, Peter Dinges, and Ralph E. Johnson. Why do scala developers
mix the actor model with other concurrency models? In Proceedings of the 27th
European Conference on Object-Oriented Programming, ECOOP’13, pages 302–326,
2013.

[66] Julien Tesson and Frédéric Loulergue. Formal semantics of DRMA-style program-
ming in BSPlib. In Parallel Processing and Applied Mathematics, pages 1122–1129.
2008.

[67] William Thies, Michal Karczmarek, and Saman Amarasinghe. StreamIt: A Lan-
guage for Streaming Applications, pages 179–196. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2002.

[68] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, and
John McPherson. From "think like a vertex" to "think like a graph". Proc. VLDB
Endow., 7(3):193–204, November 2013.

[69] Alexandre Tiskin. A new way to divide and conquer. Parallel Processing Letters,
11(04):409–422, 2001.

[70] Leslie G Valiant. A bridging model for parallel computation. CACM, 33(8):103,
Aug 1990.

[71] Leslie G. Valiant. A bridging model for multi-core computing. In Dan Halperin
and Kurt Mehlhorn, editors, Algorithms - ESA 2008, 16th Annual European Sympo-
sium, Karlsruhe, Germany, September 15-17, 2008. Proceedings, volume 5193 of Lecture
Notes in Computer Science, pages 13–28. Springer, 2008.

[72] A. N. Yzelman, R. H. Bisseling, D. Roose, and K. Meerbergen. Multicorebsp for
c: A high-performance library for shared-memory parallel programming. Interna-
tional Journal of Parallel Programming, 42(4):619–642, 2014.

[73] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. Spark: Cluster computing with working sets. In Proceedings of the 2Nd
USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10, pages 10–10,
2010.

https://github.com/wijnand-suijlen/bsponmpi

	List of Figures
	Introduction
	Context and Objectives
	Contributions
	Overview

	Background and State Of the Art
	Introduction
	Survey of existing parallel programming models, frameworks and languages
	Well-established models for programming parallel computers
	High-level programming models

	Bulk Synchronous Parallel
	BSP computation model
	BSP abstract computer
	BSP cost model
	Model variants and implementation optimizations
	BSP languages and applications
	Works around BSPlib
	Functional BSP programming
	Higher-level BSP languages and Frameworks

	A focus on BSPlib
	BSPlib API

	BSPlib Example

	Futures, Promises, Actors and Active Objects
	Futures and promises
	Actors and active objects
	Languages and implementations
	Parallel processing
	Applications

	Parallel data communication
	Conclusion

	BSP Active Objects
	Introduction
	Execution model
	Design choices
	Model overview

	BSP active objects by example
	Management thread for distributed implementation
	Motivation and terminology
	Illustration: Processes and threads

	Conclusion

	Formalization
	Introduction
	Syntax
	Design choices

	Semantics
	Example
	Cost model
	Determinism
	Conclusion

	Distributed Futures
	Introduction
	Motivation and principles
	Motivation
	Principles

	Implementation of distributed futures
	The vector_distribution structure
	Language extension
	Note on implementation choices

	Illustrative example
	Conclusion

	Implementation
	Introduction
	Environment
	Active object implementation
	C++ active objects
	MPI implementation of actors

	BSP active object implementation
	Giving multiple processes to active objects
	BSP implementation within parallel actors
	Implementation of bsp_run

	Distributed future implementation
	Conclusion

	Experimental evaluation
	Introduction
	Experimental Setting
	Communication benchmarks
	Vector call
	Relay vector

	Image comparison benchmark
	Scenario
	Results

	Conclusion

	Conclusion
	Summary
	Concluding remarks
	Perspective

