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MÉCANISMES D’ATTENTION SPATIO-TEMPORELS POUR LA

RECONNAISSANCE D’ACTIVITÉ
Srijan Das

Directeur de thèse: François Brémond
Co-Directeur de thèse: Monique Thonnat

STARS, Inria Sophia Antipolis, France

RÉSUMÉ

Cette thèse vise la reconnaissance d’actions humaines dans des vidéos. La reconnaissance d’actions
est une tâche difficile en vision par ordinateur posant de nombreux défis complexes. Avec
l’émergence de l’apprentissage en profondeur et de très grandes bases de données provenant
d’Internet, des améliorations substantielles ont été apportées à la reconnaissance de vidéos. Par
exemple, des réseaux de convolution 3D de pointe comme I3D pré-entrainés sur d’énormes bases
de données comme Kinetics ont réussi à améliorer substantiellement la reconnaissance d’actions
de vidéos Internet. Mais, ces réseaux à noyaux rigides appliqués sur l’ensemble du volume espace-
temps ne peuvent pas relever les défis présentés par les activités de la vie quotidienne (ADL). Nous
sommes plus particulièrement intéressés par la reconnaissance vidéo pour les activités de la vie
quotidienne ou ADL. Outre les défis des vidéos génériques, les ADL présentent - (i) des actions
à grain fin avec des mouvements courts et subtils comme verser du grain ou verser de l’eau, (ii)
des actions avec des modèles visuels similaires différant par des modèles de mouvement comme
se frotter les mains ou applaudir, et enfin ( iii) de longues actions complexes comme faire la cui-
sine. Afin de relever ces défis, nous avons apporté trois contributions principales. La première
contribution comprend une stratégie de fusion multimodale pour prendre en compte les avantages
des modalités multiples pour classer les actions. Cependant, la question demeure: comment com-
biner plusieurs modalités de bout en bout? Comment pouvons-nous utiliser les informations 3D
pour guider les réseaux RVB de pointe actuels pour la classification des actions? À cette fin, notre
deuxième contribution est un mécanisme d’attention axé sur la pose pour la classification des
actions. Nous proposons trois variantes de mécanismes d’attention spatio-temporelle exploitant
les modalités de pose RVB et 3D pour relever les défis susmentionnés (i) et (ii) pour des actions
courtes. Notre troisième contribution principale est un modèle temporel combinant représenta-
tion temporelle et mécanisme d’attention. La représentation vidéo conservant des informations
temporelles denses permet au modèle temporel de modéliser de longues actions complexes, ce qui
est crucial pour les ADL. Nous avons évalué notre première contribution sur trois petites bases
de données publiques: CAD-60, CAD-120 et MSRDailyActivity3D. Nous avons évalué nos deux-
ième et troisième contributions sur quatre bases de données publiques: une très base de données
d’activité humaine: NTU-RGB + D 120, son sous-ensemble NTU-RGB + D 60, une base de données
d’activité humaine difficile du monde réel: Toyota Smarthome et une base de données d’interaction
personne-objet de petite dimension Northwestern UCLA. Nos expériences montrent que les méth-
odes proposées dans cette thèse surpassent les résultats de pointe.

Mots clés: reconnaissance d’action, analyse spatio-temporelle, mécanisme d’attention, actions
longues et complexes.
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ABSTRACT

This thesis targets recognition of human actions in videos. Action recognition is a complicated
task in the field of computer vision due to its high complex challenges. With the emergence of
deep learning and large scale datasets from internet sources, substantial improvements have been
made in video understanding. For instance, state-of-the-art 3D convolutional networks like I3D
pre-trained on huge datasets like Kinetics have successfully boosted the recognition of actions
from internet videos. But, these networks with rigid kernels applied across the whole space-time
volume cannot address the challenges exhibited by Activities of Daily Living (ADL).

We are particularly interested in discriminative video representation for ADL. Besides the chal-
lenges in generic videos, ADL exhibits - (i) fine-grained actions with short and subtle motion like
pouring grain and pouring water, (ii) actions with similar visual patterns differing in motion pat-
terns like rubbing hands and clapping, and finally (iii) long complex actions like cooking. In order
to address these challenges, we have made contributions.

The first contribution includes - a multi-modal fusion strategy to take the benefits of multiple
modalities into account for classifying actions. In an attempt to comply with the global optimiza-
tion strategies for action classification,our second contribution consists in articulated pose driven
attention mechanisms for action classification. We propose, three variants of spatio-temporal atten-
tion mechanisms exploiting RGB and 3D pose modalities to address the aforementioned challenges
(i) and (ii) for short actions. Our third main contribution is a Temporal Model on top of our at-
tention based model. The video representation retaining dense temporal information enables the
temporal model to model long complex actions which is crucial for ADL.

We have evaluated our first contribution on three small-scale public datasets: CAD60, CAD120
and MSRDailyActivity3D. On the other hand, we have evaluated our remaining contributions on
four public datasets: a large scale human activity dataset: NTU-RGB+D 120, its subset NTU-
RGB+D 60, a real-world challenging human activity dataset: Toyota Smarthome and a small scale
human-object interaction dataset Northwestern UCLA. Our experiments show that the methods
proposed in this thesis outperform the state-of-the-art results.

Keywords: action recognition, spatio-temporal, attention mechanism, long complex actions.
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Chapter 1

Introduction

Humans perform many high level tasks that involves complicated processing, which even-

tually takes place in our brain. The same is true for computers especially for any computer

vision task. Human brains can easily perceive the happenings in their nearby environment.

This is true even for a child brain. But computers are not good with complicated reasoning

for perceiving the environment. Thus, the primary goal of computer vision is to improve

computer abilities to interpret images and videos. Such abilities will play a key role for

the future of artificial digital world which comprises intelligent machines like robots, au-

tomated cars, etc.

One of the ultimate goals of artificial intelligence research is to build a machine that

can accurately understand humans’ actions and intentions, so that it can better serve us.

Imagine that a patient is undergoing a rehabilitation exercise at home, and his/her robot

assistant is capable of recognizing the patient’s actions, analyzing the correctness of the

exercise, and preventing the patient from further injuries. Such an intelligent machine

would be greatly beneficial as it saves the trips to visit the therapist, reduces the medical

cost, and makes remote exercise into reality. Other important applications including visual

surveillance, entertainment, and video retrieval also need to analyze human actions in

videos. In the center of these applications are the computational algorithms that can

understand human actions.

In this thesis, we are interested in Human Action Recognition. Action recognition can

be defined as the ability to determine whether a given action occurs in the video stream.

It is one of key components of the intelligent systems by the ability to interpret such

information will ultimately bring computers closer to human skills.

This chapter introduces the problem of action recognition. In section 1.2, we present

the key applications of action recognition. In section 1.3, we discuss the research chal-

lenges involved in this problem domain. We conclude the chapter with the list of contri-

butions (section 1.4) and a layout of the thesis structure (section 1.5).
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Figure 1.1: Large scale distribution of video data from different sources. These sources
vary from videos from the internet sources/ captured using monitoring cameras to videos
captured using wearable sensor or robots.

1.1 Problem statement

In this section, we define human action recognition problem which can be categorized

into two mainstream tasks. The first task is action classification and the second is action

detection.

Action Classification

Consider a set of videos V and a set of corresponding action labels L. Each video V ∈ V
contains one label lV ∈ L. Thus the goal of action classification is to predict the label lV
based on a video representation of video V . This statement could be extended for multiple

action instances in a trimmed video, where lV ∈ L is a set of labels.

Action Detection

Action detection is an extension of action classification problem where the objective is

to predict all the labels for a given video, as well as starting and ending time of each

predicted action.

In this thesis, we focus mainly on action classification on video clips ranging from few

seconds to few minutes. We argue that for an effective and efficient real-world action

recognition system, we must focus on designing high quality action classifiers. Thus, we

focus on video representation for classifying short action clips. Note, for convenience and

with a slight abuse of term, hereafter in this thesis we often refer to action recognition as

the problem of action classification.
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1.2 Applications

In this section, we present some applications based on video analysis. With increasing

video data on the web and acquired videos for different scenarios as presented in fig. 1.1,

learning strong video representation has become a crucial computer vision task. Modeling

actions in a video is a key approach for any video analysis problem.

Video Retrieval

Nowadays, we can observe a fast growth of internet broadcasting services such as YouTube

or Vimeo and social media services such as Facebook or Twitter. People can easily upload

and share videos on the Internet. However, managing and retrieving videos according to

video content is becoming a tremendous challenge as most search engines use the associ-

ated text data to manage video data. The text data, such as tags, titles, descriptions and

keywords, can be incorrect, obscure, and irrelevant, making video retrieval unsuccessful.

An alternative method is to analyze human actions in videos, as the majority of these

videos contain some human actions.

Video Surveillance

Security issue is becoming more important in our daily life, and it is one of the most

frequently discussed topics. Nowadays we can observe surveillance cameras almost at

every corner of the city. The primary goal of surveillance cameras is to increase the security

level and protect us from acts of violence, vandalism, terrorism, stealing. Thanks to action

recognition systems, video surveillance cameras could be analyzed all the time. With the

input of a network of cameras, a visual surveillance system powered by action recognition

algorithms may increase the chances of capturing a criminal on a live video stream, and

reduce the risk caused by criminal actions.

Human Computer Interaction

The evolution of Human Computer Interaction led us to many different devices which

make communication easier, faster and more comfortable. With recent advancements in

computer vision and camera sensors, we have reached a point where scenes from science-

fiction movies like the one from "Interstellar" are not fiction, but reality. Modern capabil-

ities of sensors like Kinect and Leap Motion powered with gesture or action recognition

algorithms allow us to build interfaces where a user can operate computer without any

need of holding any device. The computer is able to recognize actions or gestures done by

a user and trigger appropriate actions. Such solutions have been already introduced to TV

sets. In entertainment industry Xbox game console equipped with Kinect sensor is able to

interpret whole body motion, leading to new levels of game experience, especially in sport



4 Chapter 1. Introduction

games. All recent advancements in Human Computer Interaction are possible thanks to

development of gesture and action recognition algorithms.

Robotics

Robots ability of perceiving human actions plays a key role in many robotics applications.

For instance, autonomous vehicles which can be considered as specific type of robot. The

ability to observe and anticipate the situation of a road is important. Thus efficient inter-

pretation of intention of other traffic participants will play a key role in future autonomous

vehicles. The anticipation capabilities may concern vehicles, but also pedestrians. For in-

stance, autonomous vehicles are required to asses and anticipate pedestrian intention to

cross a road. This would let autonomous car avoid potentially dangerous situations.

Human-robot interaction is also popularly applied in home and industry environment.

Imagine that a person is interacting with a robot and asking it to perform certain tasks,

such as passing a cup of water or performing an assembling task. Such an interaction

requires communications between robots and humans, and visual communication is one

of the most efficient ways.

Healthcare

According to a recent report of the United Nations [15], the global population aged 60+ is

projected to grow from 0.9 billion in 2015 to 1.4 billion in 2030. This demographic trend

translates to the dramatic need for an increase of the workforce in healthcare. To relieve

such workforce stress, activity detection system is becoming important to help monitor

the health state of older patients and support the early detection of potential physical or

mental disorders. For instance, monitoring patient eating habits allows doctors to track

the state of a patient and react before serious health conditions arise. Thanks to such

systems seniors can stay longer at home without the need of being hospitalized, which

can greatly improve their comfort and quality of life.

1.3 Research challenges

Action recognition is a very challenging research problem and many unanswered ques-

tions keep this problem unsolved until this date. Over the last few years, static image

classification has taken new strides. We are now closer to solving tasks like image classifi-

cation, object detection and even semantic segmentation [16]. On the other hand, when it

comes to video understanding we are still struggling to answer basic questions like: What

are the right categories of actions? Do activities have well-defined spatial and temporal

extent? How to model time in videos?
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Web Videos ADL

Figure 1.2: Example of some videos retrieved from internet sources (at left) and some
ADL videos (at right). Note the meaningful background information for the web videos
compared to the similar background for ADL videos.

The challenges in the field of action recognition begins from the most fundamental

question - what are the right action categories? Unlike objects where categories are well

defined, action categories defined by verbs are relatively few in number. Should we focus

our analysis on action categories like drinking or more specific ones like, drinking from
cup? Verbs like drinking and walking are unique on their own, but verbs like take and put
are ambiguous unless nouns and even prepositions are included: take pills, take off shoes,
put something on table, put on shoes.

The next ambiguity lies in annotating the actions where an action persists implicitly

within another another. For instance, a person using telephone while walking. Do we

have a single primary label for this action, i.e. using telephone or do we have both the

labels using telephone and walking? Most of these scenarios especially, the action walking
remains implicitly in many other actions. How do we model such actions?

Actions, when annotated in real-world scenarios naturally result in a Zipf’s law type of

imbalance across action categories. There will be many more examples of typical actions

(walking or sitting) than memorable ones (using telephone), but this is how it should be!

Recognition models need to operate on realistic "long tailed" action distributions rather

than being scaffolded using artificially balanced datasets. But how do we handle such

data imbalance in action recognition models?

Finally, the challenge of domain adaptation in the field of action recognition. While

capturing data, three approaches have been attempted to achieve scalability: (i) action

videos from the web, (ii) crowd-sourcing scripted actions, and (iii) long-term collections

of natural interactions in homes. While the latter offers more realistic videos, many actions

are collected in only a few environments and only from a single view-point. This leads

to learned representations which do not generalise well [17]. Are the current action
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recognition models able to combat the shifts like changes in environment, changes in

illumination and changes in view points?

A significant problem in the past has been the absence of generic datasets for action

recognition. Most of the major advances in recognition methods are often paired with

the availability of annotated data. For instance, significant boosts in image recognition

accuracy on the AlexNet and VGG architectures [18, 19] were possible thanks to Ima-

geNet [20] and COCO [21] datasets. On the other hand, historical video datasets like

UCF-101 [22] and HMDB-51 [23], Kinetics [24] are gathered from video web services

(e.g. YouTube). Such datasets introduce data bias as they mainly contain actions con-

cerning sports, outdoor actions and playing instruments. In addition, these actions have a

significant inter-class variance (e.g. bike riding vs. sword exercising), which usually does

not characterize daily living actions. Besides, most video clips only last a few seconds.

Does these data really help in understanding a large variety of actions?

In this thesis, we present approaches for learning video representations to discriminate

visually similar actions, specifically Activities of Daily Living (ADL). As discussed above,

these boring videos [25] are not commonly available in internet sources. Some represen-

tative frames from web videos and ADL videos are illustrated in fig. 1.2. Moreover, very

few action recognition methods have been dedicated for recognition of ADL w.r.t. meth-

ods developed to discriminate generic videos. Below, we discuss the challenges involved

in learning representations for actions, with more focus on ADL because of their intrinsic

complexities as illustrated in fig. 1.3.

How to handle time?

Unlike image classification, action recognition involves handling space as well as time

dimension. Temporal extent of an action is ambiguous. Imagine the case of annotating

action temporal boundaries. It is difficult to reach a consensus when annotating, because

often it is difficult to agree on the start and end times of an action. For example, when

does the action drinking start? Is it when the glass touches the mouth, or when the per-

son start holding it? This kind of ambiguities introduces noise and biases in the training

data [16]. Consequently, learning video representation based on different temporal ag-

gregation strategies have been developed over the years. However, handling the temporal

dimension in web videos through pooling mechanisms, sequential networks and temporal

convolutions have ensured optimal solutions for dedicated end tasks respectively. These

videos have strong motion and thus are discriminated with simple temporal aggregation

techniques. However, strategies suitable to model temporal information for ADL are yet to

be explored. ADL involve variation in appearance, motion patterns and view points which

prevents learning an invariant or generic joint spatio-temporal patterns across the video.
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Figure 1.3: Illustration of challenges in ADL: Long-complex actions like cooking (top),
fine-grained actions (middle), actions with similar visual pattern (below).

Modeling temporal information is already a challenge for short video clips for am-

biguous temporal boundaries. Besides that, another important challenge that commonly

persists in ADL is long-range temporal dependencies in actions like making breakfast or

cooking. These actions are composed of several sub-actions occurring in a sequence. For

example, cooking is composed of cutting, stirring, using stove, etc. These actions exhibit

three properties: composition, temporal extent and temporal order. Here, we assume that

an action concludes before another starts. However in ADL, concurrent actions occur quite

often and require their understanding in parallel. Thus, modeling these sub-actions along

with linking them over time to recognize a coarse action is a challenging task. The diffi-

culty remains in learning the long-term relationship among the sub-actions in the videos,

which the current state-of-the-art algorithms fail to incorporate.

How to learn representations for recognizing fine-grained actions?

Fine-grained actions can be defined in two ways depending on their spatial and tempo-

ral extent. With respect to space, similar actions with different object interactions like

drinking with a cup or drinking with a bottle require concentrated focus of attention to

encode the object information to discriminate the actions. With respect to time, actions

like cutting bread and typing keyboard involve subtle motion for a very short period of

time and thus require fine-grained understanding for a compact and discriminative video
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representation. State-of-the-art methods processing the volume of a video cannot model

the subtle variation in motion patterns and lack mechanism to encode fine spatial details.

Thus, these methods fail to learn discriminative representation for fine-grained actions.

How to disambiguate similar appearance actions?

Actions from internet sources have high inter-class variation which enable the classifiers

to discriminate them effectively. For instance, actions like swimming and playing soccer can

be distinguished only by looking at their background which is the water and green grass

respectively. Whereas in ADL, the contextual information does not help much because of

similar indoor environment, low inter-class variation adds to the challenges. ADL exhibit

similar visual patterns while differing in motion patterns like rubbing hands and clapping
require fine and joint modeling of spatio-temporal information in videos. Most of the

state-of-the art methods do not couple space and time together which implies that the

temporal information is processed after processing the spatial information. As a result,

discriminating the similar actions with subtle variation in motion patterns are not captured

by the prior methods.

1.4 Contributions

Although the methods proposed in this thesis are applicable for generic video represen-

tation, as mentioned earlier, we are particularly focusing on ADL. Our contributions are

motivated by the complex challenges involved in ADL. We argue that, addressing the ADL

challenges should improve the overall classification of a wide diversity of actions. In or-

der to address the challenges in ADL, we have made three key contributions. The first

contribution includes a multi-modal fusion strategy to take benefits of multiple modalities

into account for classifying actions. Our second contribution is a pose driven attention

mechanism for action classification. Our third contribution is a Temporal Model com-

bining temporal representation and attention mechanism. Below, we briefly discuss the

contributions made in this thesis.

1.4.1 Multi-modal Fusion

Recognizing actions in videos involve understanding different cues. Cues computed from

different modalities are complementary in their feature space. Thus, fusing them in a com-

mon feature space enables a classifier to learn even more discriminative features compared

to their classification in individual feature space. Thus, to incorporate the effectiveness of

each modality, we propose a new strategy to fuse RGB, optical flow and 3D poses for ac-

tion recognition. This proposed methodology aims at handling different temporal extents
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present in ADL, thus addresses the challenge of handling time in videos. We show that

RGB cue modeling appearance variation, optical flow modeling short-term motion, and

temporal evolution of 3D poses modeling long-term motion, when combined in a strate-

gic manner improves the action recognition accuracy. The question remains how do we

combine these cues?

Further to this, we invoke a similar action discrimination module to disambiguate the

actions with similar appearance. The objective is to make use of the individual properties

of each cue to disambiguate the actions with similar appearance.

1.4.2 Spatio-temporal Attention Mechanisms

Next, we propose a novel variants of spatio-temporal attention mechanisms to address the

challenges in ADL. In this proposed methodology, instead of multi-modal representation,

we aim at infusing other modalities into the RGB network through attention mechanism.

We present three variants of spatio-temporal attention mechanisms on top of the state-of-

the-art 3D ConvNet [3] (to be discussed in Related Work). These attention mechanisms

address the challenge of classifying fine-grained actions and disambiguating similar ap-

pearance actions. Attention mechanisms provide a strong clue to focus on the pertinent

Region of Interest (RoI) with respect to space and time in a spatio-temporal feature map.

Below, we briefly describe the variants of our proposed pose driven attention mechanisms.

1. Human body Parts based spatial attention mechanism

In this work, we aim at focusing on the pertinent human body parts relevant for an action.

The pose driven attention provides a set of attention weights for the spatio-temporal fea-

tures for each human body part. We argue that such video representation will incorporate

fine-grain details related to space for modeling an action.

2. Separable spatio-temporal attention mechanism

In order to generalize the above methodology, we aim at focusing on the RoI within the

entire human body region. This relaxes the burden of training a large number of network

parameters along with a compact video representation. Moreover, in this work we pro-

pose to provide spatial and temporal attention weights to focus on the RoI in space and

to focus on the key frames for learning discriminative representation for an action. How-

ever, the question remain, how to learn spatio-temporal attention weights - separately or

jointly? We explore such choices for attention and proposed our separable spatio-temporal

attention mechanism.
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3. Video-Pose Embedding

The above two variants however, do not consider the correspondences between the 3D

poses and RGB cue. In this variant of Basic, we propose a spatial embedding to provide

an accurate alignment between the modalities exploited to learn the video representation.

We show that such self-supervising task not only improves the preciseness of attention

weights but also learns effective video representation to discriminate ADL. The attention

network in this model utilizes the graphical structure of 3D poses and jointly learns the

spatio-temporal attention weights for a video.

1.4.3 Temporal Representation for ADL

In order to address the challenge of modeling long complex actions in ADL, we propose an

end-to-end Temporal Model to incorporate long-range temporal dependencies in actions

without losing subtle details. The temporal structure of an action is represented globally

by different temporal granularities and locally by temporal segments. We also propose a

two-level pose driven attention mechanism to take into account the relative importance of

the segments and granularities.

1.4.4 Experimental Studies

We have evaluated our first contribution on three small-scale public datasets. We have

evaluated our second and third contributions on four public datasets. We have conducted

exhaustive ablation studies to show the effectiveness of each of our proposed methods.

Finally, we discuss the limitations of our proposed methods and possible future research

directions.

1.5 Thesis structure

• Chapter 1 "Introduction" introduces the action recognition problem. We describe

the problem motivation and provide key possible applications. Then we discuss main

challenges in action recognition problem and summarize our contributions.

• Chapter 2 "Related Work" introduces the state-of-the-art action recognition meth-

ods based on how they address the research challenges we have defined. We provide

a brief study on the handcrafted approaches proposed in this problem domain. How-

ever, our literature survey mainly focuses on the recent deep learning approaches.

Consequently, we present a detail description on how different modalities (RGB, op-

tical flow and 3D poses) are processed in different network architectures to model
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temporal information in videos. We present previous works on how different modal-

ities are combined for the task of action recognition. We present a detailed study on

different attention mechanisms based action recognition approaches relevant to our

problem. Finally, we present a comparative study of the different public datasets in

the action recognition domain. We also describe the datasets that have been used in

this thesis for our experimental studies.

• Chapter 3 "Multi-modal Video Representation for ADL" presents a multi-modal

fusion strategy for effective action recognition. We present an entire action recog-

nition framework - feature extraction from different relevant cues for learning dis-

criminative features in ADL, multiple levels of feature fusion mechanism followed by

a classifier learning the action labels. We also present a similar action discrimination

module for the refinement of the learned action labels by the classifier.

• Chapter 4 "Attention Mechanisms for Visual Representation" presents an atten-

tion mechanism based action recognition framework for the wide diversity of actions

in ADL. We present three variants of pose driven attention mechanism - to focus on

relevant human body parts for an action representation, to focus on the relevant RoI

in a spatio-temporal feature map of a video, and to improve the former attention

networks by providing accurate alignment of 3D poses and RGB cue.

• Chapter 5 "Temporal Representation for ADL" presents for an accurate and effec-

tive temporal representation of videos for action recognition. We aim at modeling

long complex actions in ADL through this Temporal Model. We present a new tem-

poral representation of a video through different temporal segments with several

temporal granularities. This temporal representation of video is accompanied by a

two-level pose driven attention mechanism for obtaining even more discriminative

video representation compared to the former.

• Chapter 6 "State-of-the art comparison" presents a performance comparison with

the state-of-the-art techniques. We evaluate our approaches on the relevant datasets.

We also investigate advantages and limitations of our proposed methods.

• Chapter 7 "Conclusion & Future Work" outlines our approaches and possible fu-

ture perspectives of this thesis work. We provide discussion about advantages and

limitations of our work. In this chapter we also suggest future directions, presenting

short-term and long-term perspectives.





Chapter 2

Related Work

2.1 Introduction

In this chapter we review the methods for Action Recognition published in recent years.

This literature study revolves round how action recognition has been approached in the

recent years for generic videos, how they are limited for ADL. We broadly categorize our

study based on the challenges discussed earlier. Firstly, we discuss how the state-of-the-

art action recognition frameworks handle time for discriminative video representation.

Within this category, we present the handcrafted and deep learning approaches in this

domain based on their input modalities.

In this thesis, we mainly focus on RGB, optical flow and 3D poses obtained from RGB-D

sensors due to their effectiveness over modalities like IR, depth map and so on. Secondly,

we discuss how previous studies have made attempts to discriminate fine-grained and sim-

ilar actions. In this category, we focus on multi-modal representation of videos leveraging

the advantages of each modality. Finally, in an attempt to globally optimize all modalities

in a single RGB network, we study the recent attention mechanism based approaches to

address the challenges in ADL.

Since most of our literature survey covers a wide range of Deep Learning algorithms,

we first discuss some concepts that have been used hereafter.

2.2 Background

• Deep Neural Network (DNN) - consists of an input layer, multiple hidden layers and

an output layer. The input layer receives raw inputs and computes low level features

like lines, corners. The hidden layers transform and combine the low-level features

into high-level features depicting semantic concepts. Finally, the output layer uses

the high-level features to predict results.
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• Convolutional Neural Network (CNN) - consists of an input layer, multiple hidden

layers and an output layer. The hidden layers of a CNN typically consist of a series

of convolutional layers followed by pooling operations. In a convolutional layer,

a kernel (also called filter) slides across the input feature map. At each location,

the product between each element of the kernel and the input element is computed

and summed up as the output in the current location. Besides convolutional layer,

pooling operation also plays an important role in CNNs. Pooling operations reduce

the size of feature maps by using some function to summarize sub-regions, such as

taking the average or the maximum value. For more details about CNNs, please refer

to [26].

• Recurrent Neural Network (RNN) - can be thought of as multiple copies of the same

network, each passing a message to a successor. They are networks with loops in

them, allowing information to persist. However, these networks are not capable of

learning long-term dependencies because of gradient vanishing factor.

• Long Short term Memory (LSTM) - is a special kind of RNN which alleviates the

effect of vanishing gradient issue in RNN. LSTM consists of a cell state and four

gates. The cell state is a kind of conveyor belt. It runs straight down the entire

chain, with only some minor linear interactions. Its very easy for information to just

flow along it. Whereas gates are a way to optionally let information through. They

are composed of sigmoid activated layer and a point wise multiplication operation.

The four gates are - forget gate, input gate, self-recurrent gate and output gate. For

more details on LSTM, refer to [27].

Below, we detail the relevant state-of-the-work categorized according to the challenges

they address.

2.3 How to handle time?

In this section, we categorize the methods into handcrafted approaches and deep learn-

ing approaches. In each category, we discuss the previous methods based on individual

modalities - (i) RGB and Optical Flow and (ii) 3D Poses.

An important question is why RGB, Optical Flow and 3D poses? We argue that RGB and

3D poses are the privileged modalities that provide salient features for discriminating ADL.

RGB provides information based on appearances of the subject performing an action and

optical flow provides information about short-term motion of an action. While 3D poses

provide crucial geometric information related to an action which is robust to illumination

changes, view changes. Their complementary nature motivates us to investigate further
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to combine these modalities to address the challenges in ADL. Below, we detail the action

recognition frameworks proposed leveraging these modalities individually.

2.3.1 Handcrafted Approaches

In this section, we discuss how the problem of video classification, especially action recog-

nition has been approached prior to the era of deep learning.

Approaches based on RGB and Optical Flow

The key idea behind video analysis is to capture characteristic features from a local spatio-

temporal representation of a video.

An image is a 2-dimensional data formulated by projecting a 3-D real-world scene, and it

contains spatial configurations (e.g., shapes and appearances) of humans and objects. A

video is a sequence of those 2-D images placed in chronological order. Therefore, a video

input containing an execution of an action can be represented as a particular 3-D XYT

space-time volume constructed by concatenating 2-D (XY) images along time (T).

Space-time approaches are those that recognize human activities by analyzing the

space-time volumes of action videos. A typical space-time approach for human action

recognition is as follows. Based on the training videos, the system constructs a model

representing each action. When an unlabeled video is provided, the system constructs

a 3-D space-time volume corresponding to the new video. The new 3-D volume is com-

pared with each action model (i.e., template volume) to measure the similarity in shape

and appearance between the two volumes. The system finally deduces that the new video

corresponds to the action that has the highest similarity. This example can be viewed as a

typical space-time methodology using the 3-D space-time volume representation and the

template-matching algorithm for recognition.

Below, we detail some popular methods prior to the era of deep learning based on

space-time approaches categorized into (A) space-time volumes, (B) space-time local fea-

tures, and (C) space-time trajectories.

(A) Space-Time Volumes - The key idea of the recognition using space-time volumes is

in the similarity measurement between two volumes. In order to compute correct similar-

ities, a wide range of space-time volume representations have been developed.

Instead of concatenating entire images along time, some approaches only stack the fore-

ground regions of a person (i.e., silhouettes) to track shape changes explicitly [28]. An

approach to compare volumes in terms of their patches corresponding to the neighborhood

has been proposed as well [29]. Ke et al. [30] used over-segmented volumes, automati-

cally calculating a set of 3-D XYT volume segments that corresponds to a moving human.

Rodriguez et al. [31] generated filters capturing characteristics of volumes by adopting

the maximum average correlation height (MACH), in order to solve the problem of action
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recognition.

(B) Space-Time Local Features - The approaches in this section use local representation

extracted from 3D space-time volume to recognize actions. The motivation behind these

approaches is the fact that a 3-D space-time volume essentially is a rigid 3-D object. This

implies that if a system is able to extract appropriate features describing characteristics

of each action’s 3-D volume, the action can be recognized by solving an object-matching

problem.

Laptev and Lindeberg [32] recognized human actions by extracting sparse spatio-temporal

interest points from videos. They extended the previous local feature detectors [33] com-

monly used for object recognition, in order to detect interest points in a space-time vol-

ume. Dollar et al. [34] proposed a new spatio-temporal feature detector for the recogni-

tion of human (and animal) actions. Their detector is especially designed to extract space-

time points with local periodic motions, obtaining a sparse distribution of interest points

from a video. Bregonzio et al. [35] proposed an improved detector for extracting cuboid

features, and presented a feature selection method. Rapantzikos et al. [36] extended the

cuboid features to color and motion information as well, in contrast to previous features

using intensities only (e.g., [32]; [34]).

(C) Space-Time Trajectories - Feature trajectories is an idea that arisen on top of lo-

cal representation. Many authors [37, 38, 39, 10, 40] claimed that 2D spatial do-

main and temporal domain posses very different characteristics. Therefore, many au-

thors [37, 38, 39, 10, 40] proposed methods where they track spatial Points of Interest

(PoI) across time. The trajectory shape and descriptors computed based on volume around

the trajectory points are used as video representation. Messing et al. [38] extracted fea-

ture trajectories by Harris3D interest points [32] with the KLT tracker [41]. Wang et

al. [10, 40] proposed local descriptors around dense trajectories which are densely sam-

pled PoI. These POIs were tracked using optical flow. The local descriptors around the

dense trajectory points are HoG [42], HoF [43], MBH [44] features. The methods which

leverage trajectory information showed impressive results in action recognition. As a re-

sults, these methods are used even today by blending the dense trajectories with deep

features [45, 1]. However, these RGB based approaches are 2D spatial data and misses

crucial depth information. As a result, these approaches do not address the challenge of

view-invariance which is a characteristic property of ADL.

Approaches based on 3D poses

To focus on the view-invariant challenge, temporal evolution of 3D poses have been lever-

aged for skeleton based action recognition [46, 47, 48, 49, 50, 5, 51, 52, 53, 54]. 3D

poses are robust to illumination changes, view changes and provide geometric informa-

tion associated to the actions. These underlying properties of the 3D poses have motivated
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the vision community to move steps forward in 3D human action analysis [5, 51, 52, 53].

Below, we briefly describe how the 3D poses are obtained from the depth sensors.

The most popular skeleton detection method that we use in this entire thesis, is using

Kinect as discussed in [55]. In this algorithm the human poses are inferred in a two

stage process: first by computing a depth map and then the body position. It begins

with 100,000 depth images with known skeletons from a motion capture system and then

computer graphics is used to render all sequences for 15 different body types. Thus a

million training examples are produced which are used to learn a randomized decision

forest for mapping the depth images to body parts. Then, the mean shift algorithm is used

to robustly compute the modes of probability distributions to transform the body image

into a skeleton.

After the introduction of affordable depth sensors, many approaches [46, 47, 48] have

been proposed that use human skeletons for modeling actions. Note that, by skeletons we

mean human 3D poses in the entire thesis and we use them interchangeably. Vemulapalli

et al. [49] represented each skeleton using the relative 3D rotations between various body

parts. Their skeletal representation becomes a point in a Riemannian manifold. Then,

using this representation, they model human actions as curves in this manifold and per-

form classification in the Lie algebra. Wu et al. [50] have proposed a hierarchical dynamic

framework that first extracts high level skeletal features and then uses the learned repre-

sentation for estimating label probability to infer action classes.

All these methods discussed till now are handcrafted approaches. These methods ex-

tract features representing the input spatio-temporal data and then fed to a classifier. The

limitation lies in the lack of a global optimization strategy that could learn representations

for classifying the actions directly. Hence below we discuss the deep learning approaches

in the recent years for the task of action recognition.

2.3.2 Deep Learning Approaches

With the emergence of deep learning and the enormous success of image classification

tasks, many authors [1, 56, 45] have proposed methods using Deep Neural Network

(DNN) for video classification. Different architectures of deep learning networks have

been proposed (2D CNN, 2D CNN + RNN, 3D CNN) as shown in fig. 2.1. In the following,

we detail these approaches.

Approaches based on RGB and Optical Flow

In this section, we present the evolution of handling temporal information in videos from

state-of-the-art methods. This evolution involves a transition from using 2D CNN + pool-

ing techniques to 3D CNNs capable of taking spatio-temporal inputs for video representa-

tion.
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Action

(a) 2D CNN based approaches (b) 2D CNN + RNN based approaches (c) 3D CNN based approaches

Figure 2.1: Deep Learning based key action recognition approaches to model temporal
information in videos. These approaches use (a) 2D CNN (left), (b) 2D CNN + RNN (mid-
dle), and (c) 3D CNN (right) to aggregate temporal information for action classification.
The figures have been extracted from [1, 2, 3] respectively.

Figure 2.2: Explored approaches for fusing information over temporal dimension through
the network in [2]. Red, green and blue boxes indicate convolutional, normalization and
pooling layers respectively (Figure from [2]). In the Slow Fusion model, the depicted
columns share parameters.
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(A) 2D CNN based approaches - Karpathy et al. [2] extended the connectivity of a CNN

in time domain to take advantage of local spatio-temporal information. They explored dif-

ferent strategies for the fusion of input data along different temporal dimension in CNNs

as shown in fig. 2.2 - (i) a model based on single frame (ii) an early fusion model which

combines information across an entire time window immediately at the pixel level. (iii)

a late fusion model which places two separate single frame networks with shared param-

eters, and then merges the two streams via a fully connected layer. (iv) a slow fusion

model which is a balanced mix between the two approaches that slowly fuses temporal

information throughout the network such that higher layers get access to progressively

more global information in both spatial and temporal dimensions. Finally, they [2] have

proposed a multi-resolution CNN architecture for action recognition. The input frames are

fed into two separate streams of processing: a context stream that models low-resolution

image and a fovea stream that processes high-resolution center crop. This multi-resolution

CNN architecture with slow fusion along temporal domain proved to be effective for ac-

tion classification in sport videos with dissimilar background. Simonyan et al. [1] have

proposed to model motion with CNN (temporal stream) trained on optical flow input,

together with another CNN (spatial stream) trained on input still images. The spatial

stream models the appearance whereas the temporal stream models the short-term mo-

tion. This approach was later extended by Feichtenhofer et al. [56], they replaced the

late fusion of both the streams by fusing two nets at lower layers and perform joint train-

ing. Recently, the costing burden of optical flow computation is balanced by two in one

stream network [57]. Such representations with no requirement of optical flow at test

time results in better video representation compared to their fusion. Authors in [45, 58]

have proposed to extract CNN features from the tracks of different human body parts (left

hand, right hand, full body and upper body). The body parts are extracted using 2D pose

information computed either from kinect sensors or pose estimation algorithms [59, 60].

Finally, the RGB and optical flow based CNN features are fused and classified using a

linear SVM classifier to recognize fine-grained actions. All these approaches utilizing op-

tical flow frames [1, 56, 45] can model short-term motion (≤ 1 second). The two-stream

CNNs [1, 56, 45] uses stacked optical flows computed in short time windows as inputs,

and the order of the optical flows is fully discarded in the learning process. This is not

sufficient for video classification, as many complex contents can be better identified by

considering the temporal order of short-term actions [61]. Take "birthday" event as an

example - it usually involves several sequential actions, such as "making a wish", "blowing

out candles" and "eating cakes".

(B) 2D CNN + RNN based approaches - To address the above limitation, a lot of stud-

ies have proposed action recognition using Recurrent Neural Networks (RNNs) to better
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model long-term temporal information. Inspired from image captioning, machine transla-

tion and video description tasks, authors in [62, 63, 64, 65, 66, 67, 61, 68, 69] used the

concept of encoder + decoder to recognize actions. As shown in fig. 2.1(b), the key idea

in these approaches include encoding the frame-level features using a 2D CNN (encoder)

and finally perform a complex temporal pooling of the aforementioned features using a

sequential networks like LSTM (decoder) before classifying the actions. These encoders

are generally image classification networks pre-trained on ImageNet [20]. Besides, the key

idea remains the same, variants of RNNs like stacked LSTMs, Gated Recurrent Unit (GRU),

bi-directional LSTMs are used in [65, 66, 67, 68]. Similar to [1], authors in [61, 69] have

proposed multi-stream fusion of RGB, optical flow or audio based features computed by

an encoder. However, these sequential networks rely too much on strong human motion

as in sport videos. Consequently these methods outperforms the prior methods for sport

videos [70] but fails to discriminate actions in ADL [58]. These approaches do not address

the key challenge of modeling subtle motion possessed by ADL.

(C) 3D CNN based approaches - Due to this reason, Tran et al. [71] have proposed 3D

(XYT) convolution to model the spatio-temporal patterns within an action. Note, for sim-

plicity and slight abuse of notation, we will denote 2D + T (XYT) convolutions as 3D

convolutions throughout the thesis. The 3D kernels provide tight coupling of space and

time towards better action classification. The current studies on 3D ConvNets describe

them as a good descriptor being generic, compact, simple and efficient [71]. 3D convolu-

tional deep networks can model appearance and motion simultaneously. In 3D ConvNets,

convolution and pooling operations are performed spatio-temporally while in 2D Con-

vNets they are performed only spatially. Recently, Carreira and Zisserman [3] fabricated

a 3D CNN based fully convolutional network namely I3D for action classification. The

design choice of I3D enables it to leverage pre-training from ImageNet [20]. This is done

by inflating the 2D kernels to 3D kernels. Moreover, asymmetric operations are imposed

along space and time, for example, initial layers apply 1× 3× 3 convolutional operations

compared to 3 × 3 × 3 to handle the higher dimension along the spatial domain. I3D

with 9 inception modules, multiple bottlenecks [72] to reduce parameter complexity, and

pre-trained on ImageNet [20] and Kinetics [24], is well engineered for video classifica-

tion problems. With the success of I3D holistic methods like slow-fast network [73] and

MARS [7] have been fabricated for generic datasets like Kinetics [24] and UCF-101 [22].

Slow-fast network [73] adapted the concept of fovea and context stream from [2] using

3D CNN as visual backbone. With the slow pathway, this network captures spatial seman-

tics of the image frames whereas with the fast pathway, this network captures motion at

fine temporal resolution. The slow and fast pathways are implemented by operating the

videos at low and high frame rate respectively. In order to optimize the network, the fast
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pathway (with high frame rate) reduces the channel capacity.

Further, authors in [74] have proposed a balance between speed and accuracy by build-

ing an effective and efficient video classification system through systematic exploration of

critical network design choices. They have proposed to replaced the expensive 3D con-

volutional operations by separable 3D convolutional operations (1 × 3 × 3 convolution

followed by 3 × 1 × 1 convolution) at the initial layers, suggesting that temporal repre-

sentation learning on high-level "semantic" features is more useful. When combined with

separable convolutions and feature gating inspired from [75], their system results in an ef-

fective video classification system that produces very competitive results on several action

classification benchmarks. Similarly, Hara et al. [76] explored I3D with residual connec-

tions, namely 3D ResNet, to improve the action classification performance. Towards this

direction of exploring 3D video networks, Tran et al. [77] empirically demonstrate that

the amount of channel interactions plays an important role in the accuracy of 3D group

convolutional networks. Their experimental analysis substantiates two main findings: (1)

it is a good practice to factorize 3D convolutions by separating channel interactions and

spatio-temporal interactions as this leads to improved accuracy and lower computational

cost, and (2) 3D channel separated convolutions provide a form of regularization, yielding

lower training accuracy but higher test accuracy compared to 3D convolutions. Recently,

Feichtenhofer proposed a family of efficient video networks [78] by expanding a tiny

image classification architecture along multiple network axes, in space, time, width and

depth. The candidate axes are temporal duration, frame rate , spatial resolution, net-

work width, bottleneck width, and depth. The resulting architecture is referred as X3D

(Expand 3D) for expanding from the 2D space into 3D space-time domain. The 2D base

architecture is driven by the MobileNet core concept of channel-wise1 separable convo-

lutions, but is made tiny by having over 10× fewer multiply-add operations than mobile

image models. The expansion then progressively increases the computation by expanding

only one axis at a time, train and validate the resultant architecture, and select the axis

that achieves the best computation/accuracy trade-off. The process is repeated until the

architecture reaches a desired computational budget.

All the methods discussed above have two main limitations for ADL recognition. These

networks [3, 74] (i) cannot capture the varieties in temporal extents of complex actions,

and too short (about 99 frames) for long-range temporal modeling, and (ii) with similar

spatio-temporal kernels applied across the whole space-time volume of a video, are too

rigid to capture salient features for subtle spatio-temporal patterns for ADL.

To overcome (i), several strategies with different frame level sampling strategies have been

exploited detailed below. For (ii), later we discuss the literature for attention mechanisms

used on top of these 3D CNNs.
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Approaches for long complex actions - To learn long-range temporal patterns, previous

works have considered processing long videos into several video segments [79, 80, 81]. To

learn video-wide representations, Temporal Relation Network (TRN) [79] learns relations

between several video segments. A pairwise relation is learned using a composite function

(which is a multilayer perceptron) among the segments. Each segment is represented by

a sampled frame. The final classification is performed by capturing temporal relations at

multiple time scales. However, TRN introduces noise by averaging the features at multiple

time scales. Similarly in Temporal Segment Network (TSN) [80, 81], a video is divided

into a fixed number of non-overlapping segments, and a frame is randomly sampled from

each segment. Then a consensus function aggregates the information from the sampled

frames. A similar segment based method has been proposed in [82] with self-attention

to adaptively pool the frame-level softmax scores for each segment to obtain the video-

level prediction. Note that we will discuss more about self-attention mechanisms later

in this chapter. All these segment based methods [79, 80, 81] can encode the temporal

evolution of the image features sparsely sampled from the whole videos. However, these

sampled frames are disconnected which prevents the extraction of subtle motion patterns.

So, these methods perform well on internet videos (videos with strong motion w.r.t human

posture and background) and videos with distinctively high human motion (for [70, 22]),

whereas they do not model the smooth local temporal structure for ADL.

Recently, Wang et al. [83] have proposed to represent videos as space-time region

graphs. Their graph nodes are the object region proposals from different frames in a long

video. These nodes are connected by two relations: (i) similarity relations capturing the

long range dependencies between correlated objects and (ii) spatial-temporal relations

capturing the interactions between nearby objects. But this representation succeed in

modeling temporal footprint of 128 time steps ( 4-5 sec) at max. Therefore, Hussein et

al. [4] have proposed a timeception layer to address complex actions with long-range tem-

poral dependencies of up to 1024 time steps, jointly. Timeception layer takes as input the

features from 3D visual backbone like I3D or even 2D visual backbone like ResNet-152.

These features correspond to the time steps from the previous layer in the visual back-

bone. Note that unlike [79, 80], time steps here correspond to spatio-temporal features

from each video segments and not a single frame representation. Then the Timeception

layer splits the input features into several groups, and temporally convolves each group

as hown in fig. 2.3. It further comprises of multi-scale temporal only convolutions to tol-

erate variety of temporal extents in complex actions. Timeception makes use of grouped

convolutions and channel shuffling to learn cross-channel correlations efficiently rather

than 1×1 spatial convolutions. Thus, the effectiveness of this layer substantiates the need

of dense temporal information in videos especially for recognizing ADL with subtle mo-

tion. However, timeception with dedicated kernels for each time-scale does not take into



2.3. How to handle time? 23

account the subtle temporal transitions in a video segment but focus on temporal transi-

tions. Recently, Wu et al. [84] have proposed Long-term feature bank model to extract

information over the entire span of a video to augment state-of-the-art video models that

otherwise would only view short clips of 2-5 seconds. The idea is based on two concepts:

(1) a long-term feature bank that intuitively acts as a ’memory’ of what happened during

the entire video - they compute this as Region of Interest (RoI) features from detections

at regularly sampled time steps; and (2) a feature bank operator (FBO) that computes

interactions between the short-term RoI features (describing what actors are doing now)

and the long-term features. The interactions may be computed through an attentional

mechanism, such as a non-local block [85], or by feature pooling and concatenation. This

model focuses only on addressing the challenge of long temporal relationships within a

video. But the model design with sampling few frames out of many future frames, does

not take into account the fine temporal transitions.

Thus to sum up the studies mostly based on 3D CNNs for short and long actions, we

point out that: (i) video based networks with millions of training parameters must be

designed carefully to maintain an optimal trade-off between efficiency and accuracy, (ii)

strategies like expanding 2D networks, pre-training the video networks on large diversified

dataset like Kinetics, applying separable convolutions (for space and time), applying group

convolutions (for channel interactions) are instrumental for effective action recognition,

and finally (iii) extra processing with blocks like non-local and timeception or Long Feature

Banks are crucial for modeling long-term relationships in videos. In table 2.1, we present

a comparative study of the different popular video networks with their performance on

Kinetics-400 dataset, GFLOPs, and the number of training parameters. We also indicate

if any prior pre-training on ImageNet [20] is done. This comparison along with their

performance on Kinetics is important to follow as these provide us an intuition of what

video backbone we should opt for our classification task.

In addition, none of these RGB based approaches address the challenge of view in-

variant action recognition. This is due to the incapability of the current convolutional

architectures to be view adaptive.

Approaches based on 3D Poses

With the emergence of deep learning, the evolution of 3D poses are exploited using se-

quential networks like LSTMs [27]. Figure 2.4 illustrates the configuration of body joints

for a given 3D pose acquired with Kinect V2.

(A) RNN based approaches - Similar to CNN + RNN based approaches using RGB cues,

3D poses are fed to RNNs. Such methods take the temporal evolution of the 3D poses

into account and thus discriminate actions even with similar appearance but dissimilar
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Table 2.1: Comparative study of different video networks. We present their Top-1 accuracy
on Kinetics, GFLOPs, and the number of training parameters. NL stands for NonLocal and
R50 or R101 stands for 3D ResNet 50/101.

Model pre-training Top-1 GFLOPs Param
ImageNet Accuracy (%)

I3D [3] X 71.1 108 12M
Two-stream I3D [3] X 75.7 216 25M
Two-stream S3D [74] X 77.2 143 23.1M
Nonlocal R50 [85] X 76.5 282 35.3M
Nonlocal R101 [85] X 77.7 359 54.3M
Two-stream I3D [3] × 71.6 216 25M
CSN [77] × 77.8 109 32.8M
SlowFast (R101) [73] × 77.9 106 53.7M
SlowFast (R101+ NL) [73] × 79.8 234 59.9M
X3D [78] × 80.4 194.1 20.3M

motion. Differential RNN [86] added a new gating mechanism to the traditional LSTM

to extract the derivatives of internal state (DoS). The derived DoS is fed to the LSTM

gates to learn salient dynamic patterns in 3D skeleton data. HBRNN-L [87] have proposed

a multilayer RNN framework for action recognition on a hierarchy of skeleton-based in-

puts. At the first layer, each sub-network received the inputs from one body part. On

next layers, the combined hidden representation of previous layers are fed as inputs in a

hierarchical combination of body parts. The work of [88] introduced an internal dropout

mechanism applied to LSTM gates for stronger regularization in the RNN-based 3D action

learning network. To further regularize the learning, a co-occurrence inducing norm was

added to the network’s cost function which enforced the learning to discover the groups of

co-occurring and discriminative joints for better action recognition. Shahroudy et al. [5]

have proposed part-aware LSTM which has part-based memory sub-cells dedicated to ev-

ery human body part for action classification. Although LSTM networks are designed to

explore the long-term temporal dependency problem, it is still difficult for LSTM to mem-

orize the information of the entire sequence with many timesteps [89]. In addition, it is

also difficult to construct deep LSTM to extract high-level features [90].

(B) CNN based approaches - Thus, authors in [91, 91, 92] have proposed another frame-

work to represent 3D poses as pseudo image. This enables the framework to leverage the

successful image classification CNNs for action classification. Ke et al. [6] transformed a

skeleton sequence into three clips of gray-scale images as illustrated in fig. 2.5. Each clip

consists of four images, which encode the spatial relationship between the joints by insert-

ing reference joints into the arranged joint chains. They employed the pre-trained VGG19

model to extract image features and applied the temporal mean pooling to represent an
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Figure 2.3: The core component of Timeception on left. At right, a zoom of temporal
convolution operation applied in a Timeception layer. Figure extracted from [4].

action. Similarly, [91, 92] first transforms the skeletal time-series data into an appropriate

pseudo-image representation. Then, they make use of the powerful image classifiers like

VGG [19] to classify the actions.

(C) GCN based approaches - With advancements in CNN architectures, dedicated CNNs

for graph based data, namely Graph Convolution Networks (GCNs), are introduced

in [93]. On this note, 3D poses can be considered as a graph with joints as vertexes

and bones as edges. In [94, 95], the key idea is to fed a GCN with a graph representation

of a skeleton frame. A variant of GCN with its kernels convolving around the neighboring

nodes computes a high-dimensional output. These per-frame output features are aggre-

gated either by a conventional 2D CNN as discussed above (for [94]) or by a temporal

convolutional network (for [95]). Such aggregation is followed by action classification.

Yan et al. [96] first apply GCNs to model the skeleton data. They construct a spatial graph

based on the natural connections of joints in the human body and add the temporal edges

between corresponding joints in consecutive frames. A distance-based sampling function

is proposed for constructing the graph convolutional layer, which is then employed as a

basic module to build the final spatio-temporal graph convolutional network (ST-GCN).

However, the graph employed in ST-GCN is heuristically predefined and represents only

the physical structure of the human body. Thus it is not guaranteed to be optimal for the

action recognition task. For example, the relationship between the two hands is important

for recognizing classes such as clapping and reading. However, it is difficult for ST-GCN to

capture the dependency between the two hands since they are located far away from each

other in the predefined human-body-based graphs. To solve the above problems, a novel

Adaptive Graph Convolutional network is proposed in [97]. It parameterizes two types of
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Figure 2.4: An example of 3D pose joint configuration extracted from the figure in [5].
The labels of the joints are: 1-base of the spine 2-middle of the spine 3-neck 4-head 5-
left shoulder 6-left elbow 7-left wrist 8- left hand 9-right shoulder 10-right elbow 11-right
wrist 12- right hand 13-left hip 14-left knee 15-left ankle 16-left foot 17- right hip 18-right
knee 19-right ankle 20-right foot 21-spine 22- tip of the left hand 23-left thumb 24-tip of
the right hand 25- right thumb
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Figure 2.5: Clip Generation of a skeleton sequence in [6] (Figure from [6]). The skeleton
joints of each frame are first arranged as a chain by concatenating the joints of each
body part (i.e., 1-2-3-...-16). Four reference joints shown in green (i.e., left shoulder
5, right shoulder 8, left hip 11 and right hip 14) are then respectively used to compute
relative positions of the other joints to incorporate different spatial relationships between
the joints. Consequently, four 2D arrays are obtained by combining the relative positions
of all the frames of the skeleton sequence. The relative position of each joint in the 2D
arrays is described with cylindrical coordinates. The four 2D arrays corresponding to the
same channel of the coordinates are transformed to four gray images and as a clip. Thus
three clips are generated from the three channels of the cylindrical coordinates of the four
2D arrays.
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graphs, the structure of which are trained and updated jointly with convolutional param-

eters of the model. One type is a global graph, which represents the common pattern for

all the data. Another type is an individual graph, which represents the unique pattern for

each data. Both of the two types of graphs are optimized individually for different layers,

which can better fit the hierarchical structure of the model. This data-driven method in-

creases the flexibility of the model for graph construction and brings more generality to

adapt to various data samples.

Different from [95, 94], ST-GCN and AGCN perform graph convolutions across space as

well as time using several partition strategies. Note that in spite of the differences in these

skeleton based action recognition methods using GCNs, he underlying graph convolutional

operation remains the same across all the methods. The output fout of a GCN whose input

is a graph G with adjacency matrix A, is computed by

fout = D−
1
2 (A+ I)D−

1
2GW, (2.1)

where W is the weight matrix and D is the diagonal degree matrix with Dii = Σj(Aij +

Iij) its diagonal elements. Compared to sequential networks and pseudo image based

methods [96, 94, 95], graph-based methods make use of the spatial configuration of the

human body joints and thus, are more effective.

Thus, over the recent years, with the introduction of several large-scale RGB-D datasets

for action recognition, 3D skeleton action recognition have made remarkable improve-

ments in action classification. Actions with strong human motion, similar appearance and

dissimilar motion, and discriminating posture are now better classified with respect to

RGB based methods. However, the skeleton based action recognition lacks in encoding

the appearance information, especially actions with object interactions, which is also crit-

ical for ADL recognition. Thus, the intuitive direction of research is towards multi-modal

video representation in order to leverage the pros of RGB and 3D poses.

2.4 Discriminating Fine-grained Actions & Similar Actions

Unlike the problem of object detection, the diversity of actions in generic videos varies a

lot. Recognizing fine-grained actions and discriminating similar actions are the intrinsic

challenges in ADL. Previous methods have attempted to address these challenges. One

approach is based on combining the advantages of privileged modalities in order to make

use of their complementary discriminative power as discussed below.
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(a) Lateral connections in slow-fast network (b) Teacher-student network in MARS NAS in AssembleNet

Figure 2.6: Recent approaches for combining RGB and optical flow cues in Neural
Networks. (a) Late fusion in two-stream models [3], (b) Teacher-student network in
MARS [7], and (c) NAS in AssembleNet [8]. Figures extracted from [3, 7, 8] respectively.

2.4.1 Multi-modal Representation

We have already seen how two-stream [1, 56, 45] fusion that learns separate features

from the optical flow and RGB modalities, outperforms single modality approaches. Re-

cent studies have shown substantial improvements in using new strategies for fusing RGB

and optical flow features. Some of these approaches are illustrated in fig. 2.6. (i) One

approach is Feature-level or late fusion between the streams processing both the modali-

ties. In [1], Simonyan et al. have used late fusion of scores obtained from RGB and optical

flow streams. These streams are trained independently. This fusion configuration is quite

popular due to its effectiveness and straightforward implementation. Further in [56],

feature-level fusion between both the modalities have been proposed to learn joint rep-

resentation for action classification. (ii) Another approach is learning a teacher-student

network [7] that mimics the motion stream at inference time without actually computing

them (optical flow). In this network, a teacher network - a motion stream is trained inde-

pendently for the end task which is action classification. Then the RGB stream is trained

for action classification along with mimicking the features learned by the motion stream.

This is accomplished by a distillation loss that minimizes the euclidean distance between

the features learned by them. The experiments shows that MARS at test time is more

effective than the individual streams even by minimizing the test time considerably. (iii)

The third approach is very popular nowadays, i.e. searching a neural architecture to fuse

the RGB and optical flow modalities. In [8], Ryoo et al. have proposed a Neural Search

Architecture (NAS) to combine the RGB and Optical flow stream. This search mechanisms

answers many interesting questions like: how should we combine RGB and optical flow

(by concatenation or summation)? At which layers these modalities should be combined?
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The appearance and motion features are complementary and their fusion utilizes the

correlation between features from both modalities. This makes them more discriminative

in common feature space rather than their individual feature space. However, optical

flow modality modeling short-term motion is less effective for ADL which exhibits actions

with subtle motion. Moreover, with the introduction of 3D convolution [71], now some

inherent optical flow information is extracted along with the appearance information. On

the other hand, evolution of pose estimation algorithms as well as pose based approaches

for action recognition have made huge improvement in the recent years. Especially for

videos captured in monitoring views, to some extent skeleton based action recognition

have mitigated the drawbacks of RGB based approaches like robustness to illumination

and view. As a result, going towards multi-modal video representation for ADL not only

using RGB and optical flow but also 3D poses is an obvious direction of research. Note

that it is not straightforward to combine RGB and 3D poses as it is possible for that of RGB

and optical flow. The reason is that both the modalities have so different characteristics in

terms of representation and dimension. This limits them from blending at any stage in a

network.

Below, we briefly study few approaches leveraging multiple modalities for action recog-

nition. These approaches exclude the ones involving only RGB and optical flow (as already

discussed above).

The use of different modalities via a Markov chaining is proposed in [98]. Zolfaghari

et al. have proposed a chained multi-stream network in [98] exploiting pose, appearance

and motion, fusing them in order to have a sequential refinement of action labels. But

the drawback of such chaining models includes mutual dependence of the different cues

used. Rahmani et al. [99] have proposed an approach that fuses depth image and skele-

ton data. Features from multi-modal information are concatenated before sending to a

fully connected layer for classification. In [100], the RGB cue and the skeleton evolution

are fused to make better use of both the spatial information and the temporal informa-

tion. Shahroudy et al. [101] have proposed a new hierarchical bag-of-words feature fusion

technique based on multi-view structured sparsity learning to fuse atomic features from

RGB and skeletons for the task of action recognition. With the gains of the distillation loss

for knowledge representation [102], Luo et al. [103] have proposed a graph distillation

that incorporates rich privileged information from a large-scale multi-modal dataset in the

source domain. Whereas in the target domain, they have limited data and a subset of the

modalities during training, and only one modality during testing. Their graph distillation

method learns a dynamic distillation across multiple modalities for action detection in

multi-modal videos. Recently, Perez-Rua et al. [104], have proposed a novel multi-modal

search space and exploration algorithm to solve the task of action recognition in an effi-

cient yet effective manner. The proposed search space is constrained in such a way that
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it allows convoluted architectures to take place while also containing the complexity of

the problem to reasonable levels. However, these searching algorithms learns a network

architecture based on a particular data distribution. Thus, these networks are susceptible

to domain shifts and thus, cannot be generalized for a large diversity of actions.

The existing studies on action recognition show the diversity of approaches and infor-

mation used. This gives us a hint of different cues for modeling the actions along with

eliminating the noise introduced because of interference among the cues. Understanding

the pose, appearance and motion of a subject performing an action is critical for action

recognition. Thus, we focus on combining the pros of different cues with a learning strat-

egy optimized for modeling ADL in chapter 3.

It is desirable to fuse multi-modal information into an integrated set of discrimina-

tive features. But, these modalities are heterogeneous and they must be processed by

asymmetric networks to show their effectiveness. This limits their performance in sim-

ple multi-modal fusion strategy [101, 100, 103]. As a consequence, many pose driven

attention mechanisms have been proposed to guide the RGB cues for action recognition.

2.4.2 Attention Mechanisms

Attention is, to some extent, motivated by how we pay visual attention to different re-

gions of an image or words in one sentence. Human visual attention allows us to focus on

a certain region with "high resolution" while perceiving the surrounding image in "low res-

olution", and then adjust the focal point or do the inference accordingly. This phenomenon

is known as attention mechanism in artificial intelligence. In a nutshell, attention in deep

learning can be broadly interpreted as a vector of importance weights: in order to predict

or infer one element, such as a pixel in an image or a word in a sentence, we estimate

using the attention vector how meaningful it is. Recently, two classes of attention have

emerged, hard and soft attention.

Hard vs Soft attention -Hard attention is the principle of taking hard decisions while

choosing parts of the input data. This selection reduces the task (object recognition) com-

plexity as the Region of Interest (RoI) can be placed in the center of the fixation and ir-

relevant features of the visual environment outside the fixed region are naturally ignored.

For instance, Mnih et al. [105] have proposed a visual hard-attention for image classifica-

tion. They train RNN to select an appropriate local region to be focused on. The feature

extraction from local region by a glimpse sensor (hard cropping of RoI and CNN feature

extraction) is guided by an agent controller that receives an award for taking a correct

decision. The parameters deciding where to look next are learned using Reinforcement

Learning. Similar hard-attention mechanism has been used in multiple object recognition,

object localization and saliency map generation as quoted in [106]. Another example
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is [107], where hard-attention is used but for action detection. A set of parameters ap-

proximates which frame to observe next and when to emit an action prediction. Similar

to [105], these parameters are learned from the hidden state vectors of an RNN across

its time steps. All these methods [107] are stochastic algorithms that cannot be learned

easily through gradient descent and backpropagation, preventing a global optimization

of the network. Whereas, using attention models in the recent deep networks require

a differentiable loss in order to train the network in an end-to-end manner by standard

back-propagation.

On the other hand, Soft attention takes the entire input (image or video) and then soft-

weights the RoI as per their relevance for the end task. For instance, Wang et al. [108]

weighs each part of the RoI to compute normalized mask features, which is further com-

bined with the original convolutional features to generate attention aware features. Jader-

baerg et al. [109] have proposed a differentiable module called Spatial Transformer Net-

work (STN) that can be placed at any stage in a neural network. STN with its components

-localization network, grid generator and sampler performs an affine transformation on

the RoI of the input image. Another class of soft-attention is self-attention that has been

shown to be very useful in machine reading, abstractive summarization, or image descrip-

tion generation [110, 111]. This architecture has been proposed in [110] for seq2seq

tasks like language translation, to replace traditional recurrent models. The main idea of

the original architecture is to compute self-attention by comparing a feature to all other

features in the sequence. This is carried out efficiently by not using the original features

directly. Instead, features are first mapped to a query (Q) and memory (key and value, K

& V ) embedding using linear projections, where typically the query and keys are lower

dimensional. The output for the query is computed as an attention weighted sum of val-

ues V , with the attention weights obtained from the product of the query Q with keys

K. In practice, the query here is the word being translated, and the keys and values are

linear projections of the input sequence and the output sequence generated so far. Next,

we detail, how these soft attention mechanisms have been applied for the task of action

recognition.

Attention mechanisms for action recognition - Sharma et al. [112] have proposed a re-

current mechanism for action recognition from RGB data, which assigns weights to differ-

ent parts of a convolutional features map along time. Instead of using RGB images, authors

in [113] use 3D joints with spatio-temporal attention mechanism for action recognition.

They have proposed an end-to-end network with three RNN networks, one for classifica-

tion, one to selectively focus on the discriminative joints of the skeleton (spatial atten-

tion), and one for assigning weights to the key sequences (temporal attention). Baradel

et al. [114] have proposed a similar technique as [54] replacing the input of classification

RNN with patches around human hands. Their attention model soft assigns weights to
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the RGB hand patches taking advantage of articulated pose. Later in [115], they have

extended [114] by replacing the RNN based attention sub-networks with CNN ones. Most

of these methods provide spatial attention on the input spatial features extracted from 2D

ConvNets fed to the RNN and temporal attention on the output latent spatio-temporal fea-

tures. Recently, Baradel et al. [106] have proposed a visual attention module that learns

to predict glimpse sequences corresponding to the RoI in the image along with tracking

them over time using a set of trackers, which are soft-assigned within an external memory.

In short, their method includes selecting the glimpses from spatio-temporal features and

soft-assigning them to multiple recurrent networks (called workers). However, there is no

tight coupling between extracting the features and learning the attention, hence fails to

globally optimize their proposed network.

With the success of 3D CNNs, recently several attention mechanisms have been pro-

posed on top of the aforementioned 3D ConvNets to extract salient spatio-temporal pat-

terns. For instance, Wang et al. [85] have proposed a non-local module on top of I3D

which computes the attention of each pixel as a weighted sum of the features of all pixels

in the space-time volume. This non-local module is widely used with other action recog-

nition networks like 3D ResNet [76], slow-fast [73] and GCN [83]. This module though

effective for the classification of actions in internet videos relies too much on the appear-

ance of the actions, i.e., pixel position within the space-time volume. As a consequence, it

fails to disambiguate ADL with similar motion.

Attention mechanisms have been a very popular research topic recently.However, its

application for recognition of ADL has not been explored much. In this thesis, we make an

attempt to explore this research direction. In table 2.2, we present a comparative study of

the attention based methods we have described above.

2.5 Datasets

In this section, we provide a literature survey of the public datasets available for the task

of action classification. We provide an analysis of the various datasets, some of their

intrinsic challenges and a description of the datasets we use for validating our proposed

algorithms in this thesis. Below, in this section, we analyze the different datasets to answer

an important question - How far are we from recognizing actions in the wild?

To deploy action-recognition algorithms in real-world applications, a validation on

videos replicating real-world challenges is crucial. To well compare the challenges of

currently-available datasets, we identify in the following a set of indicators on how well

each of these datasets addresses the main real-world challenges.

• Context: The context is the background information of the video. Some action
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Methods P RGB SA TA Mechanism

visual attention [112] × X X ×
One 2D CNN for extracting image features +
One LSTM classification network that also computes
the spatial attention weights for the next time step.

STA [113] X × X X

Three RNNs: One for classification, one for
computing spatial attention weights to choose
the discriminative joints, and the last one for
computing temporal attention weights to select
key frames.

STA hands [114] X X X X

One 2D CNN for extracting hand features + Three
RNNs. One for classification, another for spatial
attention weights to choose the relevant hands, and
the last one for computing temporal attention weights
to select key frames.

improved
STA hands [115]

X X X X

One 2D CNN for extracting hand features +
One RNN + Two CNNs. RNN for classification,
one CNN for spatial attention weights to choose
the relevant hands, and another CNN for computing
temporal attention weights to select key frames.

Glimpse
Cloud [106]

◦ X X X

One inflated 3D CNN for extracting RGB features +
C + 1 RNNs. One RNN + STN for spatial attention
C RNNs for distributed tracking and recognition,
and external memory assigns soft-weight to different
workers.

NonLocal [85] × X X X
A Layer used on top of any existing 3D CNNs.
A self-attention mechanism to compute weights for
spatio-temporal feature map.

Table 2.2: Comparative study of different attention mechanisms for action recognition.
We indicate the modalities used by these methods: 3D poses (P) and RGB. SA and TA
indicates spatial and temporal attention repectively.

Table 2.3: Comparative study highlighting the challenges in real-world setting datasets.
Along with indicating the defined challenges, we also present the view type, scene infor-
mation (indoor/outdoor) and the type of videos (web based, ADL, kitchen and so on) in
the datasets. Here, we denote MSRDailyActivity3D [9] dataset by MSR ADL.

Dataset Context Duration CV Composite View Type Spont. Camera Fine-grained Type
variation challenge actions acting framing actions

ACTEV/VIRAT [116] free Medium Yes No Monitoring Medium Low No Surveillance
SVW [117] biased Low No No Shooting High High No Sport
HMDB [23] biased Low No No Shooting Medium High No Youtube
Kinetics [3] biased Low No No Shooting Medium High No Youtube
AVA [118] biased Low No No Shooting Medium High No Movies

EPIC-KITCHENS [119] free High No Yes Egocentric High High Yes Kitchen
Something2 [120] free Low No No Shooting Low High Yes Object int.

MPII Cooking2 [121] free High Yes Yes Monitoring Medium Medium Yes Cooking
DAHLIA [122] free High Yes No Monitoring Medium Medium No Kitchen
CAD-60 [123] free Low No No Shooting Low High No ADL
CAD-120 [13] free Low No No Shooting Low High No ADL
MSR ADL [9] free Low No No Shooting Low High No ADL
NUCLA [124] free Low Yes No Shooting Low High No Object int.
NTU-60 [5] free Low Yes No Monitoring Low High No ADL

NTU-120 [125] free Low Yes No Monitoring Low High No ADL
Charades [25] free Low Yes Yes Shooting Low High Yes ADL
Smarthome free High Yes Yes Monitoring High Low Yes ADL
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datasets feature a rich variety of contextual information (context biased). In some

cases, the contextual information is so rich that it is sufficient on its own to recog-

nize activities. For instance, in UCF and kinetics, processing the part of the frames

around the human is often sufficient to recognize the activities. On the other hand,

in datasets recorded in environments with similar backgrounds (context free), the

contextual information is lower and thus cannot be used on its own for action recog-

nition. This is true, for instance, for datasets recorded indoor such as Smarthome

and NTU RGB+D [5].

• Spontaneous acting: This denotes whether the subjects tend to overstate move-

ments following a guided script (low spontaneous acting). Subjects acting freely a

loose script tend to perform activities spontaneously in a natural way (high sponta-

neous acting).

• Camera framing: When videos are recorded by a cameraman, subjects mostly ap-

pear in the middle of the image and facing the camera (high camera framing). On

the other hand, when videos are recorded automatically by a monitoring system us-

ing fixed cameras, subjects can be often occluded or partially outside the field of

view (low camera framing).

• Cross-view challenge (CV challenge): In real-world applications, a scene may be

recorded from multiple angles, and from some of these angles the subject of the

action, and/or the object used to perform it, might be occluded. Action recognition

algorithms should be robust to multi-view scenarios. We therefore assign a high

multi-view mark to datasets recorded with multiple cameras at the same time; low

multi-view mark to datasets recorded by a single camera.

• Duration variation: The duration of activities may vary greatly both inter-class and

intra-class. A high variation of duration is more challenging and more representative

of the real-world. We assign high duration variation to datasets in which the length

of video samples varies by more than 1 minute both intra-class and inter-class; low

duration variation otherwise.

• Composite actions: Some complex actions can be split into sub-actions (eg., cook-

ing is composed of cutting, stirring, using stove, etc.). Recognizing both coarse and

fine-grained actions is often needed. This indicator simply states whether the dataset

contains composite activities.

• Fine-grained actions: Recognizing both coarse and fine-grained activities is often

needed for real-world applications. For example, drinking is a coarse action with

fine-grained details of the object involved in it, say can, cup, or bottle.



36 Chapter 2. Related Work

Table 2.3 shows the comparison of the publicly available real-world action datasets

based on the above indicators.

ADL are usually carried out indoor. NTU-RGB+D-120 [125], an extended version of

NTU-RGB+D-60 [5], is the largest dataset for ADL, comprising more than 114K sam-

ples with multi-view settings. However, NTU-RGB+D-120 was recorded in laboratory

rooms and the actions are performed by students with strict guidance. This results in

guided actions and actors facing the cameras. EPIC-KITCHENS [119] contains only ego-

centric videos, showing mostly the hands of the person, which are very different from

third view videos. MPII Cooking 2 [121] is an ADL dataset recorded for cooking recipes

in an equipped kitchen. The dataset has 8 camera views, with composite action labels.

This dataset focuses on one cooking place, thus limiting the environment diversity and

the number of action classes. Charades [25] was recorded by hundreds of people in their

own home with very fine-grained action labels. However, self-recorded actions are very

short (10 seconds/action), often not natural, and always performed in front of the camera.

Hence, current ADL datasets address only partially the challenges of real-world scenarios.

Whereas, Toyota Smarthome: a dataset recorded in a semi-controlled environment and

real-world settings, provides a wide diversity of ADL. Here we summarize the key charac-

teristics of Smarthome: (1) The dataset was recorded in a real apartment using 7 Kinect

sensors [126] monitoring 3 scenes: dining room, living room and kitchen (2) Subjects

were recorded for an entire day, during which they performed spontaneous daily actions

without any script. (3) Action duration ranges from a couple of seconds to a few minutes.

(4) Because the camera positions were fixed, the subject resolution varies considerably be-

tween videos. (5) Sub-action labels are available for composite activities such as cooking,

make coffee, etc. The annotations of Smarthome dataset include different labels assigned

to the same action performed using different objects (eg., drink from cup, drink from can,

and drink from bottle). Thus, Toyota Smarthome posses numerous real-world challenges

that the other public datasets are missing mostly due to their strict script.

Now, we quantify the comparison of datasets providing their statistics. To date, there

are more than 50 human action recognition datasets. Although each one of them has

unique, beneficial characteristics for the evaluation of action recognition algorithms, they

have also limitations as discussed above. Table 2.4 lists the most popular public ADL

datasets to our knowledge with their key features. In terms of dataset size (i.e., number

of video samples and action classes). NTU RGB+D-120 is the largest dataset with 114K

videos and Toyota Smarthome is the third largest dataset with 4.2M frames at 20 fps.

From the above research analysis and quantitative study, we point out that each dataset

has its own intrinsic challenges. But, based on our motivation which is one more step

towards real-word action recognition, we make choices for selecting evaluation datasets

based on both dataset complexity as well as its size for our experiments. For our first
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Table 2.4: Comparison of different daily living action datasets for action recognition. The
datasets are ordered according to year of their publication.

Dataset Name #Subjects #Action Class #Videos #Viewpoint Modalities #Year
CAD-60 [123] 4 12 60 1 RGB+D+Skeleton 2011

RGBD-HuDaAct [127] 30 13 1189 1 RGB+D 2011
MSRDailyActivity3D[9] 10 16 320 1 RGB+D+Skeleton 2012

Act4[128] 24 14 6844 4 RGB+D 2012
CAD-120 [13] 4 10+10 120 1 RGB+D+Skeleton 2013

DML-SmartAction[129] 16 12 932 2 RGB+D 2013
NUCLA[124] 10 10 1475 3 RGB+D+Skeleton 2014

Office Activity[130] 10 20 1180 3 RGB+D 2014
UWA3D Multiview II[131] 10 30 1075 5 RGB+D+Skeleton 2015

NTU RGB+D-60 [5] 40 60 56880 80 RGB+D+IR+Skeleton 2016
NTU RGB+D-120 [125] 106 120 114480 155 RGB+D+IR+Skeleton 2019

Toyota Smarthome [132] 18 31 16129 7 RGB+D+Skeleton 2019

contribution which is mostly scalable for small-scale dataset, we use three public datasets

- CAD-60, CAD-120 and MSRDailyActivity3D. For our contribution based on attention

mechanisms, we validate our methods on four public datasets - NTU RGB+D-60, NTU

RGB+D-120, Toyota Smarthome and Northwestern UCLA. Below, we briefly describe

these datasets and their evaluation protocols which are used for validating the proposed

methods in this thesis.

2.5.1 CAD-60

This dataset [123] contains the RGB frames, depth sequences and skeleton. The data

was captured by Microsoft Kinect sensor. The data set consists of 12 actions performed

by 4 subjects. The actions are performed in 5 different environments: office, kitchen,

bedroom, bathroom, and living room. All together data-set contains 60 videos and some

sample frames are illustrated in fig 2.7. The challenge in this dataset includes extremely

small number of training samples. For evaluation, we follow one-subject out validation

protocol as mentioned in [123].

2.5.2 CAD-120

This dataset [13] contains the RGB frames, depth sequences and skeleton. All together

there are 120 videos available. Actions are performed by 4 different subjects performing

10 high-level activities. Each high-level action was performed three times with different

objects. The challenges in this dataset includes - (i) the activities vary from subject to

subject significantly in terms of length; (ii) low inter-class variation with similar actions

like stacking and unstacking objects. Some sample frames from this dataset are illustrated

in fig. 2.8. For evaluation, we follow one-subject out validation protocol as mentioned

in [133].
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2.5.3 MSRDailyActivity3D

This dataset [9] consists of 16 actions such as: drink, eat, read book, call cellphone, write
on a paper, use laptop, use vacuum cleaner, cheer up, sit still, toss paper, play game, lie down
on sofa, walk, play guitar, stand up, sit down. Each action is performed by 10 subjects,

and each subject performs each action in standing and sitting position, what adds an

additional intra-class variation. In total, the dataset contains 320 videos recorded with

640× 480 pixels spatial resolution. RGB frames, depth-map and skeleton are available for

all videos. Some sample frames from this dataset are illustrated in fig. 2.9. For evaluation,

we follow one-subject out validation protocol as mentioned in [133].

2.5.4 NTU RGB+D-60

NTU RGB+D-60, hereafter NTU-60, is acquired with a Kinect v2 camera and consists of

56880 video samples with 60 action classes. These actions are divided into three major

groups: 40 daily actions (drinking, eating, reading, etc.), 9 health-related actions (sneezing,
staggering, falling down, etc.), and 11 mutual actions (punching, kicking, hugging, etc.).

Sample frames from this dataset are provided in fig. 2.10

The actions were performed by 40 subjects and recorded from 80 viewpoints. For

each frame, the dataset provides RGB, depth and a 25-joint skeleton of each subject in the

frame. For evaluation, we follow the two protocols proposed in [5]: cross-subject (CS)

and cross-view (CV).

2.5.5 NTU RGB+D-120

NTU RGB+D-120, hereafter NTU-120, is a super-set of NTU-60 adding a lot of new similar

actions. NTU-120 dataset contains 114k video clips of 106 distinct subjects performing

120 actions in a laboratory environment with 155 camera views. These 12 actions are

divided into three major groups, including 82 daily actions (eating, writing, sitting down,
moving objects, etc), 12 health-related actions (blowing nose, vomiting, staggering, falling
down, etc), and 26 mutual actions (handshaking, pushing, hitting, hugging, etc). Sample

frames from this dataset are illustrated in fig. 2.11. Compared to the preliminary version

of the dataset, i.e. NTU-60, the characteristics of the newly added actions are:

• Fine-grained hand/finger motions

• Fine-grained object related individual actions

• Object-related mutual actions

• Different actions with similar posture patterns but with different motion speeds
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• Different actions with similar body motions but with different objects involved

• Different actions with similar objects involved but with different body motions

For evaluation, we follow a cross-subject (CS1) protocol and a cross-setting (CS2) proto-

col proposed in [125]. The large amount of variation in subjects, views, and backgrounds

makes it possible to have more sensible cross-subject and cross-setup evaluations for vari-

ous 3D-based action analysis methods.

2.5.6 Toyota-Smarthome

Toyota Smarthome, hereafter Smarthome, has been recorded in an apartment equipped

with 7 Kinect v1 cameras. It contains 31 daily living actions and 18 subjects. The

subjects, senior people in the age range 60-80 years old, were aware of the recording but

they were unaware of the purpose of the study. Each subject was recorded for 8 hours

in one day starting from the morning until the afternoon. To ensure unbiased actions, no

script was provided to the subjects. The obtained videos were analyzed and 31 different

actions were annotated. Sample frames from each action are illustrated in fig. 2.14. The

videos were clipped per action, resulting in a total of 16,115 video samples. The dataset

has a resolution of 640x480 and offers 3 modalities: RGB + Depth + 3D skeleton. The

3D skeleton joints were extracted from RGB using LCR-Net [134]. For privacy-preserving

reasons, the face of the subjects is blurred using tinyface detection method [135].

Challenges. The dataset encompasses the challenges of recognizing natural and di-

verse actions. First, as subjects did not follow a script but rather performed typical daily

activities, the number of samples for different activities is imbalanced (fig. 2.12). Sec-

ond, the subject resolution varies considerably between videos and sometimes subjects

are occluded. Third, the dataset consists of a rich variety of actions with different levels of

complexity. Sub-activity labels are available for composite actions such as cooking, make
coffee, etc. Fourth, the same action is assigned different labels when performed using dif-

ferent objects (for instance, drink from cup, can, or bottle). Finally, the duration of actions

varies significantly: from a couple of seconds (for instance, sit down) to a few minutes

(for instance, read book or clean dishes). All these challenges make the recognition of ac-

tions in Smarthome a difficult task. Figure 2.13 gives a visual overview of the dataset. For

evaluation on this dataset, we follow cross-subject (CS) and cross-view (CV2) protocols

proposed in [132].

2.5.7 Northwestern-UCLA Multiview activity 3D Dataset

Northwestern-UCLA Multiview activity 3D Dataset, hereafter NUCLA, is acquired simul-

taneously by three Kinect v1 cameras. The dataset consists of 1194 video samples with
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10 action classes. The activities were performed by 10 subjects, and recorded from three

viewpoints as shown in fig. 2.15. We performed experiments on N-UCLA using the cross-

view (CV) protocol proposed in [124]: we trained our model on samples from two camera

views and tested on the samples from the remaining view. For instance, the notation V 3
1,2

indicates that we trained on samples from view 1 and 2, and tested on samples from view

3.

2.6 Conclusion

Thus in our literature survey we have observed that an effective action recognition algo-

rithm relies on the effectiveness of its visual backbone. In this era, 3D CNNs are an obvious

choice for action classification but with additional functionalities to address the challenges

in ADL. On the other hand, multi-modal representation is also an essential ingredient for

high performing action recognition framework, especially to address the view-invariance

challenge. Hence, pose driven attention as proposed in [113, 115, 106] to leverage the 3D

poses is an interesting research direction. Such mechanisms enables the network to learn

spatio-temporal attention weights for action classification. But the questions that remains

are: How to learn attention weights from poses and combine them with spatio-temporal

feature maps? How to learn spatio-temporal attention weights jointly?

Moreover, in this chapter, we explore different datasets publicly available for eval-

uating our proposed action recognition frameworks. Different datasets have their own

intrinsic challenges. Based on the challenges that we aim to address in this thesis, we

filtered out seven public datasets for evaluating our frameworks.
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Figure 2.7: A glimpse of the action classes in CAD60.
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Figure 2.8: A glimpse of the action classes in CAD120.
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Figure 2.9: A glimpse of the action classes in MSRDailyActivity3D.
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Figure 2.10: A glimpse of the action classes in NTU-60. First four rows show the variety
in human subjects and camera views. Fifth row depicts the intra-class variation of the
performances.
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Figure 2.11: A glimpse of the action classes in NTU-120. First four rows show the variety
in human subjects and camera views. Fifth row depicts the intra-class variation of the
performances.
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Figure 2.12: Number of video clips per action in Smarthome and the relative distribution
across the different camera views. C1 to C7 represent 7 camera views. All the action
classes have multiple camera views, ranging from 2 to 7.

Figure 2.13: Sample frames from Smarthome dataset: 1-7 label at the right top corner
respectively correspond to camera view 1, 2, 3, 4, 5, 6 and 7 as marked in the plan of the
apartment on the right. Image from camera view (1) Drink from can, (2) Drink from bottle,
(3) Drink form glass and (4) Drink from cup are all fine grained activities with a coarse
label drink. Image from camera view (5) Watch TV and (6) Insert tea bag show activities
with low camera framing and occlusion. Image with camera view (7) Enter illustrates the
RGB image and the provided 3D skeleton.
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Figure 2.14: A glimpse of the 31 action classes in Smarthome.
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Figure 2.15: A glimpse of the action classes in North-western UCLA multi-view action
dataset. The samples are taken from three actions captured across three different views.



Chapter 3

Multi-modal Video Representation
for ADL

3.1 Introduction

As explained in the previous chapters, the major challenge in video analytics involves dis-

criminative representation of temporal information in videos. We argue that multi-modal

cues provide rich features to deal with the challenging scenarios in ADL. Consequently in

this chapter, we propose a new architecture aiming to be effective and efficient for ADL

recognition from RGB-D videos. The work presented in this chapter has been published

as a full conference paper in AVSS 2018 [58] and as a special session industrial paper in

MMM 2019 [136].

Over time, with the development of technology, features used for action recognition

have taken new strides from computing simple SIFT features to dense trajectory [10]

based features. Further, the emergence of deep learning, inspired the authors in [1] to use

CNN features for modeling the appearance of actions in video sequences. On the other

hand, introduction of cheap kinect sensors motivated the researchers to use 3 dimensional

information of human poses to exploit the human skeleton geometry [52, 5]. Notably, ap-

proaches ranging from the handcrafted approaches using local features to approaches us-

ing DNN architectures on RGB images (CNNs) and 3D poses (RNNs) attempted to handle

the temporal dimension in videos. Henceforth in this chapter, we describe our approach

that leverages the advantages of using handcrafted features along with features from deep

networks.

Compared to object detection, action recognition involves encoding object information

involved in the action, pose information of the subject performing the action and their mo-

tion. Time is an important factor in this problem domain. Besides, the diversity of actions

in ADL makes the problem of action recognition complex. This problem can be solved by
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using different visual cues as in [1, 98] where each cue is responsible for modeling actions

of specific categories. Current approaches using multi-modal video representation fail to

achieve high performance rate and consistency in modeling the ADL. One of the primary

reason behind their limitation [1, 56, 98, 103] is that these methods mostly rely on combi-

nation of appearance (RGB) and short-motion (optical flow) based features. Combination

of these aforementioned cues performs effectively on videos from internet sources where

the appearance and motion describing an action are prominent as well as distinct from

one another. Clear visualization of motion in the absence of real-world challenges like

occlusion or view-point changes makes the previous state-of-the-art methods in this do-

main, effective on datasets like UCF-101 [22] or HMDB-51 [23]. But what about scenarios

where actions have subtle motion, occlusions, and poses similarities? Such scenarios are

real challenges for ADL recognition.

In this chapter, we propose an answer to the following questions:

1. Which visual cue is effective for which action?

2. How these visual cues should be combined in order to mitigate the disadvantages of

each cue?

3. How to disambiguate similar actions?

Consequently, we propose a novel two-level fusion strategy to combine the features in

a common feature space to appropriately model the actions. We also address the chal-

lenge of recognizing similar actions in daily living activities by proposing a mechanism for

similar action discrimination.

In the following, we present a broad view of the importance of each modalities for

recognizing different action types in section 3.2, present our proposed architecture lever-

aging multiple modalities in section 3.3, present the experimental analysis on three public

datasets in section 3.4, and finally conclude in section 3.5.

3.2 Feature Relevance depending on Action types

ADL consists of high variation of actions categories ranging from actions with similar

poses like stacking and unstacking objects, rubbing two hands and clapping, actions with

low motion like typing keyboard, relaxing on couch, and actions having temporal evolution

of body dynamics like walking, falling down and so on. For optimizing action recognition

it is important to establish a proper relationship between the nature of features and action

categories to be modeled.

For ADL, features corresponding to mainly three types of visual cues are widely used in

the literature, say
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• appearance modeling the spatial layout varying with time in the action videos.

• short-term motion which is often computed through optical flow for instantaneous

motion or based on short-term tracklets as in dense trajectories [10, 40].

• pose based motion obtained from modeling the temporal evolution of 3D articu-

lated poses.

In fig. 3.1, we show a comparison of action recognition accuracy for some actions

(Drinking, Gaming, writing, playing guitar, talking on phone, writing on board and some

random actions) using short-term and pose based motion. For short-term motion, we use

dense trajectories [10]. We ignore the HoG features in order to neglect appearance and

have a fair comparison with pose based motion features from LSTM. In spite of both fea-

tures modeling the motion, fig. 3.1 shows the complementary nature of both the features

and their relevance with temporal dynamics of the subject performing action. On the

other hand in table 3.1, we show the importance of appearance based features for action

recognition. While computing Dense Trajectories, we compute the local features around

the interest points for each image frame. More the number of interest points denote high

motion within the neighboring frames. Thus, we average number of interest points of

some actions to describe the motion of the actions. The 3rd column in table 3.1 shows

the difference in classification accuracy using appearance and short-term motion features

(where D = Accuracy(Appearance)-Accuracy(Motion)).

Now, the question is how to combine the features to take advantage from each visual

cue? The possible solutions are (i) early fusion of features where classification takes place

in a common feature space, and (ii) late fusion of classifier scores where independent

classifiers are trained on the features separately.

Early fusion is preferred when all the features characterize the actions because the correla-

tion between them materialize in a precise level. If not, it is better to compute late fusion

in order to balance the feature weights at the latest stage. So, we propose a two level

fusion strategy to combine the relevant features at the most appropriate level depending

on action categories.

3.3 Proposed Architecture for Action Recognition

In this section, we describe feature extraction of different cues followed by a two level

fusion strategy and then, we explain how to disambiguate similar actions in ADL. Fig. 3.5

shows the overall architecture for the testing phase.
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Figure 3.1: Comparison of action recognition accuracy on MSRDailyActivity3D [9] us-
ing short-term and pose based motion. Short-term motion is modeled by dense trajecto-
ries [10] and pose based motion is modeled by LSTM [11].

Table 3.1: Comparison of action recognition on CAD-120 [13] and MSRDailyActiv-
ity3D [9] based on appearance and motion. The table shows average number of detected
features using Dense Trajectories [10] taken from [14]. Third Column represent the ac-
tion classification accuracy improvement with appearance. This column shows that the
appearance dominates the classification of action with subtle motion.

Action Number of D
features

Relaxing on couch 1346 +100 %
Working on computer 1356 +50%
Still 1510 +75%
Talking on couch 2060 +50%
Drinking water 3079 -50%
Cooking (chopping) 4448 0%
Cooking (Stirring) 4961 0%
Brushing teeth 5527 -25%
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3.3.1 Feature Extraction

In this section, we describe the different feature extractors we use for processing the

multiple cues. Different cues are processed through different architectures designed for

video-level classification.

Appearance Extraction - In [45], the authors have used the concept of two streams

on the different parts of the human body for recognizing fine-grained actions. The human

body parts are extracted from their skeleton joint information. As actions in ADL also

involve fine-grained motion patterns, inspired from [45] we extract deep features from

different body regions of the human to represent their appearance. The main objective

behind using these features is to model the static appearances along with encoding the

object information carried while performing the actions. We also employ a feature selec-

tion technique to select the best image region involved in the training data distribution.

In appearance based feature extractor, CNN features from the left hand, right hand,

upper body, full body and full images from each frame (cropped using their 2D joint

information) are extracted to represent each body region for the classification task as

illustrated in fig. 3.2. One approach is to use the 2D joint information extracted from the

3D joint information (from depth map). This projection of 3D joint information to 2D joint

information has been used and detailed in the next chapter. In this chapter, we extract the

2D joints from RGB using pose estimation algorithm Convolutional Pose Machine [60].

These body joint information are used to extract the crops of human body parts.

Our experimental studies show that the aforementioned body region representation

leads to a lot of redundancy. Sometimes, wrong patches extracted due to side view actions

mislead the classifier converging to a wrong action. Thus, we propose a technique to select

the best representation of the appearance feature by focusing on the body region with the

most discriminative information. The patch representation for a given image-region i is

convolutional network fCNN () with parameters θCNN , taking as input a crop taken from

image It at the position of the part patch i:

zit = fCNN (crop(It, patchi); θCNN ) i = {1, ..., 5} (3.1)

We use pre-trained Resnet-152 for fCNN () to extract the deep features from the last fully

connected layer which yields 2048 values described as our frame descriptors zit for each

part i. The next step is to compute a video descriptor. This video descriptor should be fixed

in length irrespective of the number of frames in the video. Thus, we perform a temporal

aggregation of the frame descriptors to compute the video descriptor. We consider min

and max aggregation by computing minimum and maximum values for each descriptor
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dimension j over T video frames

mj = min
1≤t≤T

zit(j), Mj = max
1≤t≤T

zit(j) (3.2)

The motivation behind using the extremes instead of average pooling is to capture the

salient information in the temporal information. Note that this pooling mechanism might

be effective in laboratory setting but not in real-world scenarios where extremes could be

sensitive to the noises. The static video descriptor for part i is defined by the concatenation

of time-aggregated k dimensional frame descriptors as

vistat = [m1, ....,mk,M1, ...,Mk]T (3.3)

For ResNet-152 as in our case, k is 2048. To capture temporal evolution of per-frame

descriptors, we also consider temporal differences of the form ∆f it = f it+∆t−f it for ∆t = 4

frames. Similar to 3.3.1 we compute minimum ∆mj and maximum ∆Mj aggregations of

∆zit and concatenate them into the dynamic video descriptor

vidyn = [∆m1, ....,∆mk,∆M1, ...,∆Mk]T (3.4)

Finally, video descriptors for appearance for all parts and different aggregation schemes

are normalized and concatenated into the CNN feature vector. The normalization is per-

formed by dividing video descriptors by the average L2−norm of the zit from the training

set.

Note: Through out this chapter we use the term validation set for a portion of training

data (around 20%) which is used to tune the learning parameters. The feature selection

is done by feeding these CNN features zi to a linear SVM classifying separately each patch

i. These SVMs compute classification scores on a validation set separately for each patch

i. We select the patch i of image-region with the best classification score on the validation

set. This allows us to select the best body region for characterizing the appearance feature.

As per our observation, these selected appearance features not only represent the best

static appearances but also have the best combinational power with the motion based

information.

Short-term Motion Extraction - For modeling short-term motion, we use improved

dense trajectories toolbox provided in [40]. As explained in chapter 2, the PoI are tracked

through out the video and described by the local features around them. These local fea-

tures include HoG [42], HoF [43] and MBH [44] features. However, these frame-level

features require a video-level representation. Such video-level representations must have

fixed dimension to promote the use of efficient linear classifiers like SVM. Thus, a fisher
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Figure 3.2: Each image frames are divided into five parts from their pose information
which are input to ResNet-152 followed by max-min pooling. The classification from the
SVM determines the part to be selected.

vector encoding is used to compute a video descriptor from the frame-level local features.

Fisher vector representation of a video is obtained using standard Mixture of Gaussians

(MoG) model as described in [137].

Pose based Motion Extraction - The main focus of the previous methods [5, 54, 53]

includes using the RNNs to discover the dynamics and patterns for 3D human action

recognition. The sequential nature of the 3D skeleton joints over the time makes the

RNN learn the discriminative dynamics of the body. In pose based motion extractor, we

fed transformed body pose information (to be described) to a 3-layer stacked LSTM so

as to model the temporal information as shown in fig. 3.4. The main reason for stacking

LSTM is to allow for greater model complexity, to perform hierarchical processing on

large temporal tasks and naturally capture the structure of sequences. A pre-processing

step (transformation os skeleton) is performed following [5] to normalize the 3D skeleton

in camera coordinate system as illustrated in fig. 3.3. The 3D skeleton joint is translated

to the hip − center followed by a rotation of the X axis parallel to the 3D vector from

"right hip" to the "left hip", and Y axis towards the 3D vector from "spine base" to "spine".

At the end, we scale all the 3D joints based on the distance between "spine base" and

"spine" joints. Thus the transformed 3D skeleton vt at time frame t which is represented as

[xr,t, yr,t, zr,t] for r ∈ joints (J) and (x, y, z) being the spatial location of rth joint is input to

the LSTM at time stamp t. We normalize the time steps in videos by padding with zeros.

This is done to keep fixed time steps in LSTM to process a video sample.

Traditionally, authors in [63, 52, 5] solve action recognition problem as a many to one

sequence classification problem. The loss is generally computed at the last time step of
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Figure 3.3: A set of pre-processing step on 3D articulated poses for transforming the
skeletons to a normalized coordinate plane.
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Figure 3.4: Three-layer stacked LSTM with t = T time steps. The skeleton joint coordi-
nates vt are input at each time step. L is the loss computed over time and h is the latent
vector from last layer LSTM.
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the video which is back-propagated through time. In this work, we compare the LSTM

cell output with the true label of the video at each time step. In this way we get time-step

number of sources to correct errors in the model (via backpropagation) rather than just

one at the end for each video. Thus the cost function of the LSTM for videos is computed

by averaging the loss at each frame as follows

L = − 1

N

N∑
i=1

T∑
t=1

yi log(pit) (3.5)

where L is categorical cross-entropy computed for N video samples in a mini-batch over

T time-steps, yi is the sample label, and pit ∈ (0, 1) : Σt = 1∀i, t is the prediction for a

video. This loss L is back-propagated through time. Here, the LSTM treats each temporal

sequence independently as a sample, whose prediction is again determined by the cur-

rent and previous gate states. This method provides better performance compared to the

minimization of the loss at the last time step only due to better feedback back-propagated

through time. So, we extract the latent vectors from every time step t of the last layered

LSTM as shown in fig. 3.4.

For convenience of understanding, hereon we denote the appearance based features,

short-term motion and pose based motion features by F1, F2 and F3 respectively.

3.3.2 Two-level Fusion Strategy

In order to fuse the features extracted from different cues, we propose a two-level fusion

strategy to take advantage of each cue. The first level of fusion (early) combines the

features in a balanced way to address actions which are characterized by most of the

features. The second level of fusion (late) puts more emphasis on selection of features

which are characterizing specific actions in a prominent manner.

For early fusion, we concatenate appearance (F1) and short-term motion (F2) leading

to Fx = [F1, F2] because they are highly correlated. For late fusion, we put more impor-

tance on pose based motion because this feature is very complementary to the previous

ones. Temporal information from poses is not discriminative for all the actions, so fusing

temporal information at an early stage adds noise to the classifier. For actions like relaxing
on couch, talking on phone, writing on whiteboard and so on temporal information may

not be important. Thus encoding the pose based motion to a feature space along with ap-

pearance and short-term motion leads to common feature space where the actions are not

discriminative. Such a strategy of early feature fusion of all the cues introduce high bias

to the models leading to under-fitting of the training data distribution. We provide more

details about this observation in our experimental section. Consequently, we propose to

fuse the pose based motion (F3) features using a late fusion strategy where the fusion
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Figure 3.5: Big picture of the architecture proposed to combine the features with two-
level fusion strategy for the testing phase. The action-pair memory module keeps track of
action pairs with high similarities. Such action pairs are forwarded to binary classifier to
disambiguate the similar actions.

focuses on the individual strength of modalities.

In the two-level fusion strategy, the fused representation of appearance and motion of

a video Fx and the pose based motion representation of a video F3 is input to two linear

SVM classifiers. Classifiers clf1 and clf2 learn the mapping X → Y, where Fx ∈ X for

clf1, F3 ∈ X for clf2 and y ∈ Y is a class label. For a given SVM parameter θ, the algo-

rithm performs a parameter search on a large number of SVM parameter combinations

to obtain the optimal value θ∗. So, θ∗1 and θ∗2 are the optimal SVM parameter of clf1 and

clf2 respectively. The second level of fusion is performed on the test set by fusing the

classification scores of the respective classifiers. For this, we introduce a fusion param-

eter α to balance the visual cues; α ranging between [0,1]. Let scores1 = P (y|Fx, θ
∗
1)

and scores2 = P (y|F3, θ
∗
2) be the classification scores computed by clf1 and clf2 respec-

tively (see fig. 3.5). Then the second level of fusion is performed by computing the action

classification score s.

s = αP (y|Fx, θ
∗
1) + (1− α)P (y|F3, θ

∗
2) (3.6)

A small value of α means that the pose based temporal information (F3) is the dominant

visual cue. Thanks to the fusion strategy, an optimized pool of features is extracted to feed

the classifiers dedicated to the different action categories.

3.3.3 Similar Action Discrimination

ADL datasets have similarity in action-pairs like stacking, unstacking objects; cleaning ob-
jects, taking food and so on. Thus, a classifier trained with generic features mis-classifies
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Figure 3.6: A fine picture of Similar Action Discrimination Module in the training phase.
We have illustrated an example of the information stored in an action-pair memory mod-
ule.

the similar action types in the absence of finer analysis. Thus, there are samples in the

training data distribution which are vulnerable to mis-classification due to the lack of

prominent discriminative features. These samples require a stable classifier to discrim-

inate them from the other action categories. So, we propose a mechanism for similar

action discrimination consisting of a memory module and a binary classifier. The objec-

tive is to disambiguate similar actions by exploiting their predicted scores from the fusion

phase.

Training phase - The algorithm checks for the confused pair of actions in the fused scores

of the validation set as illustrated in fig. 3.6. Let C be the confusion matrix of the actions

classified in the validation set and ar represents the action r, then the algorithm checks

the false positives in C. If C(i, j) + C(j, i) ≥ ε with i 6= j, then action ai and aj are prone

to mis-classification. The action pair memory module depicted in fig. 3.6 keeps a track

of these action pairs in descending order of mis-classification score in the validation step.

The last level of classifier is a binary classifier that classifies the similar action pair (ai, aj).

Thus, classifiers are dedicated to a small set of ambiguous actions which are very sim-

ilar to each other. Handling ambiguities through binary classifier also includes a selection

of features. As these actions may have similar motion, pose or temporal dynamics, dif-

ferent feature combination strategies are exploited to classify the two ambiguous actions.
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Thus, the action-pair memory module also keeps track of which features to use or fuse

for disambiguating the similar actions in the validation set. The feature or combination

of features with maximum classification accuracy in the validation set is recorded in the

action-pair memory module. In the training phase, the action-pair memory module learns

the similar action pairs along with the feature type required to disambiguate them by a

greedy approach from the validation set.

Testing Phase - The classification scores are generated from the fusion phase (scores from

the late fusion). The video samples with predicted labels if present in the action pair mod-

ule, are classified by a conditional binary classifier. This dedicated binary classifier uses

the features recorded in the action-pair memory module. The final classification score

is updated from the classification score of the binary classifier and the same process is

repeated until all the actions susceptible to mis-classification as per the action-pair mem-

ory module undergoes binary classification. This finite looping of discriminating similar

actions in a binary classifier is bounded by the number of action-pairs recorded in the

action-pair memory module in terms of time complexity. This strategy of noiseless clas-

sification through a conditional binary classifier results in discriminating similar actions

which is a common challenge in ADL.

3.4 Experiments

We validate our proposed action recognition approach on 3 public datasets - CAD-60,

CAD-120, and MSRDailyActivity3D. We also validate this proposed method on NTU-60 in

order to compare with other end-to-end methods fabricated for large scale datasets. An

illustration of similar action-pair is shown in fig. 3.7 for better understanding of the chal-

lenges in ADL. In this section, we first present the implementation details of our proposed

method, hyper-parameter setting, followed by a set of ablation studies. This ablation

studies include qualitative, quantitative results and the effectiveness of proposed Similar

Action Discrimination module.

3.4.1 Implementation Details

Feature Extraction - For appearance extraction, we use 2D convolutional features (from

ResNet-152 pre-trained on ImageNet) for different body regions. We compute 2D poses

for human body crop extraction using Convolutional Pose Machines [60]. In the case of

availability of large training database, we also use 3D convolutional features from I3D [3]

network. For pose based motion extraction, we build a 3 layered stacked LSTM framework

on the platform of keras toolbox [138] with TensorFlow [139]. The number of neurons for

each LSTM layer is set to 64, 64, 128, 512 for CAD-60, CAD-120, MSRDailyActivity3D and
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wearing a shoe taking off a shoe

read booktyping keyboard

unstacking objectsstacking objects

Figure 3.7: Examples of action-pair with high degrees of similarity from CAD-120 and
NTU60 datasets.
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NTU-60 dataset. Dropout [140] is used with a probability of 0.5 to eliminate the problem

of over-fitting. The concept of Gradient clipping [141] is used by restricting the norm of

the gradient to not to exceed 1 in order to avoid the gradient explosion problem. Adam

optimizer initialized with learning rate 0.005 is used to train the network.

Fusion of Features - For classfier1 and classifier2, we use scikit-learn [142] implemen-

tation of SVM.

Similar Action Discrimination - This stage to disambiguate similar actions is imple-

mented in Python with a scikit-learn [142] implementation of SVM for the binary classifier.

3.4.2 Hyper-parameter setting

Parameter α responsible for score fusion of classifiers clf1 and clf2 is trained in the feature

fusion phase. This is done by globally searching the best value of α ranging between [0,1]

for which the validation data yields maximum action classification accuracy in the training

phase. This trained α is used for testing.

Similarly, parameter ε used for selecting confused action-pairs is handcrafted. Its value

depends on the action categories present in the training samples. The value of ε is set

manually in function of the confusion matrix during training of the second level fusion

stage. Higher values are set for data distribution where confused action pairs have more

likelihood. For instance, the value of ε ranges from 0.1 for NTU-60 to 0.44 for CAD-120.

3.4.3 Qualitative Results

In this section, we perform a qualitative evaluation of our two-level fusion strategy by visu-

alizing the high dimensional data using t-SNE tool [12]. t-Distributed Stochastic Neighbor

Embedding (t-SNE) is a technique for dimensionality reduction that is particularly well

suited for the visualization of high-dimensional data. In fig. 3.8, we visualize the actions

drink and sitdown using short-term motion, appearance, and their combination. These

actions are mis-classified when the person performs the action drinking while sitting on a

sofa. From the figure, it is clear that the action groups are visually better discriminated

using combination of the cues. This depicts the effectiveness of using common feature

space for appearance and short-term motion.

3.4.4 Quantitative Results

In this section, we report the action classification scores of the individual features along

with their combination. Table 3.2 reports the action classification accuracy on three

datasets CAD-60, CAD-120 and MSRDailyActivity3D using appearance, short-term and
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Figure 3.8: t-SNE [12] representation of drink (in red) and sitdown (in blue) action using
(a)short-term motion only (1st column), (b)appearance only (2nd column) and (c)both
appearance and short-term motion (3rd column) where the actions are more discriminated
as compared to their individual feature space.

Table 3.2: Ablation study on how each feature performs individually and with different
combination techniques for action classification on CAD-60, CAD-120 and MSRDailyAc-
tivity3D. The performance is evaluated in terms of action classification accuracy (in %). In
early fusion, we fused all the features with l2− normalization and proposed fusion is our
two-level fusion strategy. MSR3D signifies MSRDailyActivity3D, F1 is appearance, F2 is
short-term motion and F3 is pose based motion.

Dataset F1 F2 F3 F1 + F2 F1 + F2 + F3 Proposed
(2D-CNN) (IDT) (LSTM) Early Fusion Fusion

CAD-60 89.70 72.05 67.64 95.58 70.58 98.53
CAD-120 72.58 79.84 63.70 83.06 63.70 87.90
MSR3D 80.93 81.87 91.56 90 91.56 97.81

pose based motion. The performance obtained using different features are very data-

dependent. For example, we get better results on MSRDailyActivity3D using pose based

motion, CAD-120 using short-term motion and CAD-60 using appearance features. Ta-

ble 3.2 shows the importance of using the two-level fusion scheme which takes into ac-

count the distinguishable characteristics of all features by performing a late fusion of ap-

pearance, short-term motion with pose based motion. This is shown by comparing our

fusion strategy with naive early fusion of all features. Our proposed fusion outperforms

the former as depicted in table 3.2.

3.4.5 Effect of using the mechanism of Similar Action Discrimination

This section presents an ablation study on the similar action discrimination mechanism

and how the action-pair module works. In table 3.3, we show the confused actions with

their corresponding mis-classification rate in CAD-120 for every cross-actor split (men-

tioned in section 2.5). The action-pair module keeps a track of the confused actions which
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Table 3.3: Action-pair memory content for different splits in CAD-120 (left). Each split
signifies cross-actor setup for classification evaluation. The second column represents
the action pairs confused among each other with their summation of mis-classification
accuracy in third column (with validation set). The threshold for this dataset is set to 0.4.

split Action Pairs C(i, j)+
C(j,i)

1 cleaning object and taking food 0.44
1 stacking and unstacking objects 0.67
2 cleaning object and taking food 0.66
2 stacking and unstacking objects 0.66
3 stacking and unstacking objects 0.55
4 cleaning object and taking food 0.55
4 stacking and unstacking objects 0.44

Table 3.4: Improvement in action classification accuracy on using conditional binary clas-
sifier for all the datasets used. MSR3D signifies MSRDailyActivity3D.

Dataset Acc. before Acc. after
binary classifier binary classifier

CAD-60 98.52 % 98.52 %
CAD-120 87.90% 94.40 %
MSR3D 97.81% 97.81 %
NTU-60 84.95 % 87.09 %

are classified separately by a binary classifier which is also a linear SVM. For CAD-120,

IDT+FV (short-term motion along with appearance because of presence of the HOG) dis-

criminates the confused action pairs with 100 % accuracy. The drawback of this module

includes its dependency on the distribution of the validation set. This drawback is de-

picted in table 3.3 where the cross-validation fails to capture confused action pairs like

cleaning objects and taking food (in 3rd row, left). Table 3.4 reports the action classification

accuracy on all the datasets used before and after applying the action-pair module. This

module does not have any effect on CAD-60 and MSRDailyActivity3D on which the actions

are already classified with remarkable accuracy.

3.5 Runtime Analysis

The fully automated architecture has been trained on two GTX 1080 Ti GPUs (each for

extracting RGB based video descriptors from CNN network and training LSTM on skeleton

sequences) and a single CPU (for extracting IDT features with fisher vector encoding) in

parallel. IDT being computationally expensive (with a processing speed of less than 4 fps)

decides the computational time involved in the feature extraction process. The proposed
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architecture including the fusion strategy along with the action-pair module only takes as

additional cost 10 ms time delay for a forward pass of an image frame on a single CPU.

3.6 Conclusion

In this chapter, we have proposed a framework for action recognition mixing a high level

fusion strategy and machine learning techniques. The proposed hybrid architecture is fully

automated enabling the hyper-paramaters except ε to learn themselves. We justify the use

of this two-level fusion mechanism by qualitative and quantitative analysis. We also pro-

pose an action-pair memory module to disambiguate similar actions. Our proposed action

recognition architecture datasets is effective for small scale datasets like CAD-60, CAD-

120 and MSRDailyActivity3D. However, for scaling up such large dataset like NTU-60 is

not optimal. This is because the deep features extracted are optimized independently and

finally used as feature extractors rather than taking the full advantage of DNN methods,

which is global optimization.

We emphasize the fact that the existing features are quite capable of distinguishing the

ADL if combined in a strategic way. The quality of recognition rate achieved in this work

ranging from 87 % to 98% is satisfactory. But, what about addressing a large diversity

of actions? That would require a model training over a large distribution of data in an

optimal manner. Thus, incorporating the feature extraction process along with fusion

mechanisms and similar action discrimination should be approached in a single network.

We also need to make sure that such network leverages the pros of different modalities.

With this aim, a possible direction of research is attention mechanism using privileged

modalities.





Chapter 4

Attention Mechanisms for Visual
Representation

4.1 Introduction

As discussed in the previous chapter, scaling up the action recognition algorithms to ad-

dress a wide diversity of actions is the need of the hour. One possible solution is going

towards end-to-end video convolutional networks. But can these networks address the

challenges in ADL?

In this chapter, we present an action recognition framework in section 4.2, present our

proposed frameworks P-I3D in section 4.3, Separable STA in section 4.4, and VPN in sec-

tion 4.5. We present our experimental analysis on four public datasets in section 4.6, and

finally conclude in section 4.7.

The parts of this work have been published in conference venues - WACV 2019 [143],

ICCV 2019 [132] and ECCV 2020 [144].

In this chapter, we discuss how the current video convolutional networks like

C3D [71], I3D [3] are fabricated for generic videos. These networks with the same ker-

nel operation over the whole spatio-temporal video cannot handle the challenges in ADL.

Although, recent studies show [71, 73, 145] that 3D convolutional operations can better

model the temporal information than other recurrent operations popular in this domain.

But, challenges like recognizing fine-grained actions and disambiguating similar actions

require functionalities beyond fixed kernel operations. Thus, in this thesis, we focus on

improving the 3D convolutional networks with additional functionalities that can address

the challenges in ADL. These functionalities include attention mechanism.

Previous attention mechanisms for action recognition are based on RNNs as the clas-

sification network [112, 115]. However, the effectiveness of the 3D convolutional net-

works inspire us to use them as classification network. The question remains, how can
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we invoke attention mechanisms in 3D ConvNets? Few studies [85, 146, 4] have shown

improvements over traditional 3D ConvNets as video backbone as discussed in chapter 2.

However, these algorithms largely address the concerns in generic videos retrieved from

internet sources.

On the other hand, from the last chapter, we concluded the pros of using different

modalities for action recognition. Each modality with complementary features discrimi-

nates the actions when combined in a strategic manner. With the above studies on 3D

ConvNet, we argue that such networks with spatio-temporal kernels operating over the

video volume models the appearance and short-term motion simultaneously. Thus, in our

work, we rely on 3D ConvNets for modeling appearance and short-term motion without

actually using optical flow. Moreover, optical flow in ADL which mostly contain subtle

motion do not contribute much for discriminating action representation.

But what about poses? We have presented in the last chapter that 3D poses do provide

the view-invariance property whereas lacks appearance information. Moreover, fusing

poses which are processed in dissimilar networks compared to RGB or optical modalities,

is challenging. One of the reason appears to be over-fitting as illustrated in [147]. Multi-

modal networks fusing lately the modalities, generally have higher train accuracy and

lower validation accuracy. One may suspect that the over-fitting is caused by the increased

number of parameters in the multi-modal networks. Thus, we focus on using poses to

provide information regarding the Region of Interests (RoIs) in a video. Consequently,

we propose algorithms based on pose driven attention mechanisms that provide pertinent

attention weights to guide the RGB classification network which is 3D ConvNets in our

case.

In this chapter, we present three novel pose driven attention mechanisms for discrimi-

native visual representation of actions. Each proposed method complements the former by

improving their underlying drawbacks. Each method includes primarily a video backbone,

an attention network and a classifier. The attention network is driven by 3D articulated

poses that provide attention weights to the RGB cue processed by the video backbone. In

summary the methods described in this chapter include -

• An action recognition framework where the attention network assigns soft-weights

to the different human body parts relevant for an action.

• An action recognition framework which generalizes over a wide variety of actions by

invoking a focusing of attention on the RoIs in a spatio-temporal feature map. Here,

we introduce the concept of dissociating the spatial and temporal attention weights.

• An action recognition framework improved by providing an accurate and tight em-

bedding between the RGB images and their corresponding mis-aligned 3D poses. We
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Figure 4.1: Schema of our Action Recognition Framework with input as RGB snippets and
3D poses. It consists of a video backbone for spatio-temporal video representation, a pose
driven attention network, finally a classifier module which combines the attention weights
and finally classifies the actions.

also improve the functionalities of the attention network by processing the 3D articu-

lated poses through GCNs considering their graphical structure and finally, providing

a joint spatio-temporal attention weights.

Below we describe our Action Recognition Framework that is used throughout out this

chapter.

4.2 Action Recognition Framework

Our action recognition framework consists of a video backbone, an attention network, and

a classifier as shown in fig. 4.1.

Video Backbone - This is a sub-network in the framework that processes the video in-

put. The video backbone processes the input stack of images to compute a spatio-temporal

feature map. Practically, this video backbone is a 3D ConvNet f() with parameters θ. The

input to this video backbone are successive crops of human body along the video. In case

of multiple persons in the scene, we extract an image crop encapsulating all of them. The

cropping operation crop() is explained in details in the next proposed framework. The

input dimension of the RGB modality is T ×M ×N × C where, T is the number of input
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stack of images, M × N represents the spatial resolution of each image and C = 3 rep-

resents the three channels in RGB. Starting from the input of T human-cropped frames

from a video V , the spatio-temporal representation g is the feature map extracted from an

intermediate layer of the 3D ConvNet like I3D [3]. The feature map g is thus, given by

g = f(crop(V ); θ) (4.1)

The resulting dimension of g is tc×m×n×c, where tc time, m×n the spatial resolution

and c channels are all spatio-temporally squeezed by the operations performed in the 3D

ConvNet f(). Thus, the pose driven attention mechanism provides attention weights to

the video representation g.

Attention Network - The pose driven attention network contains first, a sub-network

called pose backbone to process the 3D poses and then subsequent operations to learn the

attention weights for the end-task. The end-task in this case is classifying the actions. The

attention network is initialized with uniform weights and then with the cross-entropy loss

optimizing the model output, learns relevant attention weights. Note that the only way

of evaluating such mechanisms is by evaluating the performance of the classification task

since no ground-truth for the attention weights are available.

Classifier - This module performs the linear combination of the attention weights and

the spatio-temporal feature maps. In order to compute the linear combination, the atten-

tion weights must match the dimension of the spatio-temporal feature map g. Thus, the

attention weights are duplicated to match the desired dimension. The resultant feature

map is called modulated feature map. This module includes all kinds of feature com-

binations of the spatio-temporal feature maps. These combinations are detailed in the

proposed frameworks. This module also consists of a Global Average Pooling (GAP) over

the modulated spatio-temporal feature map. This operation squeezes the feature map into

a low dimension feature vector. This feature vector retains only the saliency in the former

feature map.

Finally, the classifier consists of a bottleneck or a 1 × 1 × 1 convolutional operation

with number of filters equal to the number of classes. Then, the resultant feature vector is

flattened and soft-max activated with a dense layer to assign the action classes.

4.3 Spatial attention (P-I3D)

Previous studies [45, 114, 148] have shown significant improvement in discriminating

similar actions in ADL by focusing on human body parts. Capturing appearance infor-

mation from human body parts could ensure modeling of high-level object information.

Individual human body parts compared to the whole scene as input to the state-of-the-art
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Figure 4.2: Schema of our proposed framework for an action "donning". The 3D pose
information determines the attention weights to be given to the spatio-temporal features
extracted from the RGB videos corresponding to three relevant body parts of the person
performing the action.

action recognition networks could actually facilitate them to better capture fine-grained

details of the objects interacted with while performing an action. Therefore, we propose

a weighted aggregation of human body parts to train an end-to-end action classification

framework. Weighting the body parts for action classification is a mutually recursive prob-

lem. Body part selection for action classification depends on action and vice-versa. So,

we propose a pose driven spatial attention mechanism to weight the body parts for action

classification. We call it spatial attention because the weighting of human body parts can

be considered as an operation performed in the spatial scale.

Fig. 4.2, shows a schema of our proposed framework. The action "donning" is recog-

nizable by looking at the motion of the object grasped by the hands (which is the jacket).
Spatio-temporal features extracted from these body parts could be sufficient to model the

action. On one hand, for actions like "jumping", "running", and so on, simple aggregation

(summation or concatenation) of the representation from the human body parts models

the actions better than using the human body part representations individually. On the

other hand, for actions like "drinking" and "making a phone call" simple aggregation of

the human body parts diminishes the distinctness of the spatio-temporal features for ac-

tion classification because of providing equal weightage to relevant and irrelevant body

parts. So, we propose an RNN attention mechanism to provide appropriate weights to

the relevant human body parts involved in the action. Such attention mechanism further

improves the action classification.

We propose and end-to-end 3D convolutional network with soft attention mechanism

for action classification. We exploit the 3D articulated poses of the actor performing action

to determine which part of the body can best model an action category. Fig. 4.3 shows the
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overall architecture, which consists of three I3D [3] sub-networks for extracting spatio-

temporal features from human body parts (left hand, right hand and full body) and RNN

attention sub-network to assign different degrees of importance to the body parts. The

input to the network is the RGB video with the sequence of corresponding 3D joints. The

challenge in this task includes identifying the appropriate feature space where the spatio-

temporal features from the tracks of human body parts are required to be aggregated.

Another challenge includes the joint training of the video backbone and the attention net-

work to weight the relevant body parts.

In the following, we discuss the body part representation, RNN attention from the articu-

lated human poses and joint training these sub-networks together to model the actions.

4.3.1 Body Part representation

Different body parts have different degrees of importance for a particular human action.

Fine-grained human action recognition can be performed by extracting cues from RGB

streams. We employ a cropping operation to extract the tracks of human body parts, for

instance - full body, left hand and right hand from the pixel coordinates detected by the

middleware.

For illustration, we present the cropping operation of full body in fig. 4.4. Consider the

3D poses Pt = (Pt,1, Pt,2, ·Pt,J) for Pt,j ∈ <3 at time t. These 3D poses with coordinates

(x′, y′, z′) are first transformed to 2D poses (x, y) in the camera coordinate system using -

x =
Pcamera.x

′

Pcamera.z′
; y =

Pcamera.y
′

Pcamera.z′
(4.2)

where Pcamera is camera to world matrix specific for a type of sensors. Thus, now we

have P 2D
t = (P 2D

t,1 , P
2D
t,2 , ·P 2D

t,J ) for P 2D
t,j ∈ <2 at time t. Now in the 2D-plane, we compute

the characteristic bounding box coordinates Pmax
t and Pmin

t from P 2D
t for full body crops

using

Pmax
t = maxy(minx(P 2D

t )); Pmin
t = miny(maxx(P 2D

t )) (4.3)

where maxx represents the max operation along x-axis and so on. Thus, the top corner

coordinate Pmax
t − λ and bottom corner coordinate Pmin

t + λ are used to extract the full-

body crop. Note that λ is an excess pixel factor added to the image crops.

The hands and the full body are of higher relevance to the actions performed in ADL.

So unlike [45], we only crop these three body parts instead of five body parts. But in

practice, our framework is not restricted to these three body parts and can be extended

to K body parts depending upon its application type. We aggregate the spatio-temporal

representation of the human body parts in order to leverage the representation of the rel-

evant body parts for an action. Before aggregating, the part based sub-networks depicted
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Figure 4.3: End to End action classification network (P-I3D). The input to the network
is RGB videos with 3D skeletons. Actor body regions like left hand, full body and right
hand are extracted from their corresponding 2D pose information. RNN based attention
network takes 3D skeleton input (trained on action classification) to provide spatial at-
tention on the spatio-temporal features from I3D (extracted from global average pooling
layer after all inception blocks).

in fig. 4.3, are pre-trained using the human body parts for the task of classification. This

leads to a generation of high-level spatio-temporal features representing each human body

part.

The body part representation is obtained from a video backbone f() explained in the

previous section. Taking as input a stack of cropped images from a video Vi, the body

part representation gi of the body part i is computed by spatio-temporal convolutional

network f(), with parameters θ using equation 4.1. Thus, the body part representation is

formulated by

gi = f(crop(Vi); θ) i = {1, ...,K} (4.4)

4.3.2 RNN Attention Network

The action of a person can be described by a series of articulated human poses represented

by the 3D coordinates of joints. We use the temporal evolution of human skeletons to

model the attention to be given to different body parts. The 3D skeleton from depth-map
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Figure 4.4: Illustration of extraction of a full body crop from its 3D poses.

captured by kinect sensor is exploited to pre-train a pose backbone for action classification

to learn the temporal dynamics of skeleton joints for different action classes. This pre-

training of the pose backbone is required to extract latent features with spatio-temporal

structure for soft weighting the human body parts involved in an action. An obvious choice

of this pose backbone is an RNN which models the temporal evolution of the skeletons

joints for action discrimination.

Consequently, the pose backbone consists of three LSTM layers as used in the state-

of-the-art with Pt = (Pt,1, ..., Pt,J) with Pt,j ∈ <3 and J the number of joints as input.

Note that poses are stacked along tp temporal dimension. hs is the concatenated hidden

state vector of all the tp time steps from the last LSTM layer. This LSTM which is used

as a pose backbone computes high-level information describing the variance of poses in a

video. Thus, the next step is to place few learnable parameters to compute the attention

weights from this pose based feature vector hs. Therefore, a dense fully connected layer

is added on top of the LSTM with tanh activation to obtain the scores s. These scores s

learn the importance of different body parts which is formulated as

s = Wstanh(Whh
s + bs) + bus (4.5)

where Ws, Wh are the learnable parameters, bs, bus are the bias. Similar to [113, 114],

our proposed attention network learns the attention weights from the output of LSTM cell
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Figure 4.5: A detailed picture of RNN attention model which takes 3D skeleton poses
input and computes weight attention on the spatio-temporal features from different body
region of the actor.

states at each time step. The novelty of our spatial attention network lies in obtaining

the attention scores from the latent spatio-temporal information of the whole video. The

objective of such video based attention mechanism is to soft weight the spatio-temporal

body parts representation. The global transition of the 3D poses in the whole video could

only determine the importance of the relevant human body parts. The next step involves

learning the relevant attention weights from the scores s. Finally, the obtained scores are

normalized using a softmax layer to obtain the attention weights. For the kth body part,

the activation as the part selection gate is computed as

αk =
exp(sk)

ΣK
i=1exp(si)

(4.6)

The RNN attention network provides weights to the different body parts representa-

tion. The part based feature maps are aggregated to obtain a fixed representation for an

action video. Now, the remaining question is to choose the appropriate feature space in the

3D ConvNet, say I3D to aggregate the body part features. We chose the feature aggrega-

tion space at the penultimate layers in the 3D ConvNet. Consequently, the spatio-temporal

features from the last layer of I3D are used for aggregating the body parts because these

features are spatio-temporally rich and distinct with respect to action categories. The

aggregation of these body part features lead to the formation of distinguishable spatio-

temporal features F as

F = ΣK
k=1inflate(αk) ◦ gk (4.7)
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where gk is the kth 4-D body part representation, ◦ is the hadamard product and the

inflate(.) operation duplicates the attention weights to match the dimension of the fea-

ture map g. For aggregation, we also explore assigning attention at different levels of

spatio-temporal feature space in I3D with both summation and concatenation operations

for aggregation, discussed later in ablation studies. The former tends to squash feature

dynamics by pooling strong feature activations in one body part with average or low ac-

tivations in other body part. Whereas the concatenation operation leads to formation

of high dimensional features before classification. This leads to a drop of classification

performance due to increase in training parameters in the penultimate layer of the frame-

work.

4.3.3 Joint training the sub-networks

Joint training the I3D sub-networks consisting of several inception blocks and RNN at-

tention network is a challenge due to the vanishing gradient problem and different back-

propagation strategy (BPTT in case of LSTM). Thus we pre-train all the sub-networks

separately and joint train them freezing the RNN layers to backpropagate. This strategy

along with the formulated cross entropy loss discussed below enables the network to as-

sign weights to the body parts, thus modeling the actions.

Regularized Objective Function - We formulate the objective function of the end-to-end

network with a regularized cross-entropy loss and K being the number of body parts as,

L = Lc + λ1

K∑
k=1

(1− αk)2 + λ2||Wuv||2 (4.8)

Lc =
C∑
i=1

yi log ŷi (4.9)

where y = (y1, ..., yC) represents the ground-truth labels. yi=1 if it belongs to ith class

and yj=0 for j 6= i. ŷi denotes the probability of the sample belonging to class i, where

ŷi = p(C i|X). λ1 and λ2 are the regularization parameters.

The first regularization item forces the model to pay attention at each human parts. This

is because the model is prone to ignoring some body parts completely though they have

valuable contribution in modeling the actions. So, we impose a penalty as αk ≈ 1 en-

couraging the model to pay more balanced attentions to different tracks of human parts.

The second regularization item is to reduce over-fitting of the networks. Wuv denotes the

weight matrix in connecting the layer u and v. In practice, this regularization is applied in

the last layer of the framework.

The optimization is difficult due to the mutual influence of the I3D sub-networks and the
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pose based RNN attention network. The methodology of separate pre-training of the pose

based sub-networks ensures faster convergence of the networks. The training procedure

is described in algorithm 1.

Algorithm 1 Joint Training of the RNN attention network with body part I3D sub-networks
Input: RGB video, 3D joint coordinates, model training parameters N1, N2 (e.g., N1

= 10, N2 = 25).
1: Initialize I3D sub-networks with model weights trained on IMAGENET and Kinetics.

//Pre-train I3D sub-networks.
2: Fine-tune I3D network with RGB data from different body parts individually.

//Pre-train Pose backbone which is a 3-layer stacked LSTM.
3: Train the three layered stacked LSTM network for action classification taking as input

3D skeleton of actors in video frames.
//Initialize other attention network parameters.

4: Add a Fully connected layer tanh and a softmax layer on top of stacked LSTM and
initialize the attention scores with equal values and the remaining network parameters
using Gaussian.

5: Jointly train the Pose based RNN network with part-wise I3D network forN1 iterations
to obtain the attention scores.
//Jointly Train the Whole Network

6: Fine-tune the whole network by fixing the learned Pose backbone for further N2 iter-
ations.
Output: the learned network.

The drawback of this proposed framework includes generalizing it over a wide variety

of actions. (1) The body part representation involving a 3D ConvNet for each body parts

is expensive in terms of the number of parameters. So, choosing an optimal number of

body part for a data distribution is trivial. (2) The next issue with the proposed framework

is the absence of temporal attention mechanism and completely relying on the temporal

operations of the 3D kernels of I3D. An interesting question can be - Is temporal attention

important? Previous methods like [115, 106] show that temporal attention significantly

improves the model by providing relatively higher degree of importance to the key frames

in an action. Thus, the next proposed framework Separable STA aims at alleviating these

two underlying drawbacks.

4.4 Separable Spatio-Temporal Attention (Separable STA)

To address the limitations in the previous framework, we propose a novel attention mech-

anism on top of currently high-performing spatio-temporal convolutional networks [3].

Firstly, we aim at generalizing our framework by eliminating the requirement of body part

based representation. Thus, we propose to have a focus of attention on those pixels in
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the spatial domain with high relevance. Secondly, we aim at incorporating the concept of

temporal attention to the RGB cue by exploiting the 3D poses.

Inspired by [149], our framework uses both spatial and temporal attention mecha-

nisms. We dissociate the spatial and temporal attention mechanisms (instead of coupling

them). Coupling spatial and temporal attention is difficult for spatio-temporal 3D ConvNet

features as the spatial attention should focus on the important parts of the image, and the

temporal attention should focus on the pertinent segments of the video. As these pro-

cesses are different, our idea is to dissociate them. In our architecture, two sub-networks

independently regress the attention weights, based on 3D human skeletons inputs. The

proposed attention mechanism aims at addressing a wide diversity of action eliminating

its dependence on the restricted human body parts representation. On one hand, actions

with human-object interaction require spatial attention to encode the information on the

object involved in the action. On the other hand, actions with temporal dynamics such as

sitting or standing up require temporal attention to focus on the key frames that charac-

terize the motion.

Similar to our Spatial attention, we use pose driven attention mechanism on top of the

3D ConvNets [3]. The spatial and temporal saliency of human activities can be extracted

from the time series representation of pose dynamics, which are described by the 3D joint

coordinates of the human body.

4.4.1 Spatio-temporal representation of a video

The input of our model is successive crops of human body along the video and their

3D pose information. Note that these crops are the full human body crops. In using,

these full body crops, we loose the spatial resolution compared to the concept of using

different human body parts as in P-I3D. But, data augmentation through random cropping

within the full body crops should tackle this issue. We focus on the pertinent regions of

the spatio-temporal representation from 3D ConvNet, which is a 4-dimensional feature

map. Starting from the input of T human-cropped frames from a video V , the spatio-

temporal representation g is the feature map extracted from an intermediate layer of a

video backbone. The sampling of these T frames from the whole video is detailed in the

implementation details. Similar to our P-I3D, here the video backbone is a 3D ConvNet

- I3D [3] f(.), with parameter θ using equation 4.1. We define two separate network

branches, one for spatial and one for temporal attention (see fig. 4.6). These branches

apply the corresponding attention mechanism to the input feature map g and output the

modulated feature maps gs (for spatial attention) and gt (for temporal attention). gs and

gt are processed by a Global Average Pooling (GAP) layer and then concatenated. Finally,

the prediction is computed from the concatenated feature map via a 1×1×1 convolutional
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Figure 4.6: Proposed end-to-end separable spatio-temporal attention framework. The
input of the network is human body tracks of RGB videos and their 3D poses. The two
separate branches are dedicated for spatial and temporal attention individually, finally
both the branches are combined to classify the activities. Dimension c for channels has
been suppressed in the feature map for better visualization.

operation followed by a softmax activation function.

4.4.2 Separable attention network

In this section, we elaborate our pose driven separable attention network shown in fig. 4.7.

In this attention network, we learn two distinct attention sets, one for spatial and one

temporal weights. These weights are linearly multiplied with the feature map g, to output

the modulated feature maps gs and gt.

We use 3D skeleton poses to compute the spatio-temporal attention weights. The

inputs to the attention network are the feature vectors computed by a Pose backbone on

the 3D poses. Similar to the previous framework, the aforementioned Pose backbone is

a 3 layered stacked LSTM pre-trained on 3D joint coordinates for activity classification.

The input is a full set of J joints per skeleton where the joint coordinates are in the form

Pt = (Pt,1, ..., Pt,J) for Pt,j ∈ <3 at time step t. Similar to P-I3D, poses are stacked along

tp temporal dimension. The attention network consists of two separated fully connected

layers with tanh squashing followed by fully connected layers that compute the spatial

and temporal attention scores s1 and s2, respectively (see fig. 4.7). The scores s1 and s2

express the importance of the elements of the convolutional feature map g along space
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Figure 4.7: A detailed picture of pose driven RNN attention network which takes 3D pose
input and computes m×n spatial and tc temporal attention weights for the tc×m×n× c
spatio-temporal features from I3D.

and time. These scores sr (i.e., s1 and s2 for r = 1, 2) can be formulated as:

sr = Wsr tanh(Whrh
∗
r + bhr) + bsr (4.10)

where Wsr , Whr are learnable parameters and bsr , bhr are the biases. h∗r is the concate-

nated hidden state vector of all the time steps from the Pose backbone.

The attention weights for spatial (α = {α1, α2, ..., αm×n) and temporal (β =

{β1, β2, ..., βtc}) domain are computed from the scores s1 and s2 as:

αk =
exp(s1,k)

exp(s1,k) + 1
; βk =

exp(s2,k)

Σtc
i=1exp(s2,i)

(4.11)

where s1 = {s1,1, s1,2, ..., s1,m×n} and s2 = {s2,1, s2,2, ..., s2,tc} is obtained from equa-

tion 4.10. Normalizing the high number of m× n spatial attention weights with softmax

leads to extremely low values, which can hamper their effect. To avoid this, we use sig-

moid activation as in [113]. These attention weights play the role of soft selection for

m× n spatial elements of the convolutional feature map g.

Finally, the modulated feature maps with spatial and temporal attention (gs & gt) are

computed as

gs = inflate(α) ◦ g; gt = inflate(β) ◦ g (4.12)

where ◦ is the hadamard product and the inflate(.) operation duplicates the attention
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weights to match the dimension of the feature map g. The attention model is joint-trained

with the 3D ConvNet.

4.4.3 Training jointly the attention network and 3D ConvNet

Unlike the existing attention networks for activity classification [113, 114], jointly train-

ing the separable spatio-temporal attention network and the 3D ConvNet is relatively

straightforward as depicted in algorithm 2. The training phase involves fine-tuning the

3D ConvNet without the attention branches for activity classification. Then, the attention

network is jointly trained with the pre-trained 3D ConvNet. The training procedure is

described in algorithm 2. This ensures faster convergence as demonstrated in [106]. The

3D ConvNet along with the attention network is trained end-to-end with a regularized

cross-entropy loss L formulated as

L = LC + λ1

m×n∑
j=1

||αj ||2 + λ2

tc∑
j=1

(1− βj)2 (4.13)

where LC is the cross-entropy loss for C activity labels. λ1 and λ2 are the regularization

parameters. The first regularization term is used to regularize the learned spatial attention

weights α with the l2 norm to avoid their explosion. The second regularization term forces

the model to pay attention to all the segments in the feature map as it is prone to ignore

some segments in the temporal dimension although they contribute in modeling activities.

Hence, we impose a penalty βj ≈ 1. We impose different regularization constraint for

learning spatial and temporal attention weights. This is because of different activations

for learning spatial and temporal attention weights. Sigmoid activation for learning spatial

attention weights transforms each scalar component of score s1 in the range [0,1] whereas

Softmax activation for learning temporal attention weights normalizes the scores s2 to 1.

In this framework, we improve the efficiency of the our framework by reducing the

number of training parameters by K times, where K is the number of human body parts.

Separable STA generalizes the spatial attention framework by attending over the RoIs in

the convolutional feature map. Moreover, Separable STA also introduces temporal atten-

tion driven by poses for features generated from 3D ConvNets.

The limitations that remains - (i) there is no accurate correspondence between the 3D

poses and the RGB cues in the process of computing the attention weights [114, 115, 106,

143, 132]; (ii) the attention sub-networks [114, 115, 106, 143, 132] neglect the topology

of the human body while computing the attention weights; (iii) the attention weights

in [143, 132] provide identical spatial attention along the video. As a result, action pairs

with similar appearance like jumping and hopping on one foot are mis-classified.

Therefore, next we propose a framework based on Video-Pose Network (VPN) to miti-
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Algorithm 2 Joint Training of the Separable attention network with video backbone I3D
network

Input: RGB video, 3D joint coordinates, model training parameters N1 (e.g., N1 =
10).

1: Initialize I3D network with model weights trained on IMAGENET and Kinetics.
//Pre-train I3D network.

2: Fine-tune I3D network with RGB data from full body body crops.
//Pre-train Pose backbone which is a 3-layer stacked LSTM.

3: Train the three layered stacked LSTM network for action classification taking as input
3D skeleton of actors in video frames.
//Initialize other attention network parameters.

4: Add a Fully connected layer with tanh activation. This is followed by two branches.
One with Fully connected layer to learn s1 and another with Fully connected layer
to learn s2. Normalise s1 using a sigmoid activation and s2 with a softmax activation.
Initialize the attention scores with equal values and the remaining network parameters
using Gaussian.
//Jointly Train the Whole Network

5: Jointly train the separable attention network with the I3D network for N1 iterations
to obtain the attention scores.
Output: the learned network.

gate the drawbacks of the previous proposed framework and most importantly generalize

the use of RGB and 3D pose modalities in an appropriate way.

4.5 Video Pose Network (VPN)

As we have discussed, previous attempts have been made to utilize 3D poses to weight the

discriminative parts of a RGB feature map [115, 106, 114, 143, 132]. But these methods

have improved the action recognition performance but they do not take into account the

alignment of the RGB cues and the corresponding 3D poses. Therefore, we propose a

spatial embedding to project the visual features and the 3D poses in the same referential.

Before describing this framework, we answer two intuitive questions below.

First, why is spatial embedding important? - The pose driven attention networks can

be perceived as guiding networks to help the RGB cues focus on the salient information

for action classification. For these guiding networks, it is important to have an accurate

correspondence between the poses and RGB data. So, the objective of the spatial em-

bedding is to find correspondences between the 3D human joints and the image regions

representing these joints as illustrated in fig 4.8. This task of finding correlation between

both modalities can (i) provide informative pose aware feedback to the RGB cues, and (ii)

improve the functionalities of the guiding network.

Second, why not performing temporal embedding? - We argue that the need of em-
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Figure 4.8: Illustration of spatial embedding. Input is a RGB image and its corresponding
3D poses defined in the 3D camera referential. For convenience, we only show 6 relevant
human joints. The embedding enforces the human joints to represent the relevant regions
in the image.

bedding is to provide proper alignment between the modalities. Across time, the 3D

poses are already aligned assuming that there is a 3D pose for every images. However,

even if the number of 3D poses does not correspond to the number of image frames (as

in [115, 106, 114, 143, 132]), the fact that variance in poses for few consecutive frames

is negligible, especially for ADL, implies temporal embedding is not needed.

We propose a recognition framework based on a Video-Pose Network, VPN to rec-

ognize a large variety of human actions. VPN consists of a spatial embedding and an

attention network. VPN exhibits the following characteristics: (i) a spatial embedding

learns an accurate video-pose embedding to enforce the relationships between the visual

content and 3D poses, (ii) an attention network learns the attention weights with a tight

spatio-temporal coupling for better modulating the RGB feature map, (iii) the attention

network takes the spatial layout of the human body into account by processing the 3D

poses through Graph Convolutional Networks (GCNs).

This framework is end-to-end trainable and our proposed VPN can be used as a layer on

top of any 3D ConvNets.

Our objective is to design an accurate spatial embedding of poses and visual content to
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Figure 4.9: Proposed Action Recognition Framework: Our framework takes as input
RGB images with their corresponding 3D poses. The RGB images are processed by a video
backbone which generates a spatio-temporal feature map g. The proposed VPN takes as
input the feature map g and the 3D poses P . VPN consists of two components: an attention
network and a spatial embedding. The attention network consists of a Pose Backbone and
a Spatio-temporal Coupler. VPN computes a modulated feature map g′. This modulated
feature map g′ is then used for classification.

better extract the discriminative spatio-temporal patterns. As shown in fig. 4.9, the input

of our proposed recognition model are the RGB images and their 3D poses. The 3D poses

are either extracted from depth sensor or from RGB using LCRNet [134]. The framework

based on Video-Pose Network VPN takes as input the visual feature map and the 3D poses.

Below, we discuss the action recognition framework in details.

4.5.1 Video Representation

As in Separable STA, taking as input a stack of human cropped images from a video clip,

the spatio-temporal representation g is computed by a 3D convolutional network f(.) (the

video backbone in fig. 4.9) with parameters θ using equation 4.1. Then, the feature map

g and the corresponding poses P are processed by the proposed network.

4.5.2 VPN components

VPN can be thought as a layer which can be placed on top of any 3D convolutional back-

bone. VPN takes as input a 3D feature map (g) and its corresponding 3D poses (P ) to

perform two functionalities. First, to provide an accurate alignment of the human joints

with the feature map g. Second, to compute a modulated feature map (g′) which is further

classified for action recognition. The modulated feature map (g′) is weighted along space

and time as per its relevance. VPN exploits the highly informative 3D pose information
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Figure 4.10: We present a zoom of the attention Network with: (A) a GCN Pose Backbone,
and (B) a spatio-temporal Coupler to generate spatio-temporal attention weights AST

to transform the visual feature map g through spatial embedding and finally, compute

the attention weights. This network has two major components as shown in fig 4.9: (I)

an attention network and (II) a spatial embedding. Though the intrinsic parameters of

the attention network and the spatial embedding learn in parallel, we present these two

components in the following order for better understanding.

4.5.2.1 Attention Network

The attention network consists of a Pose Backbone and a spatio-temporal Coupler as

shown in fig. 4.10. Such a framework for pose driven attention network is unique com-

pared to the other state-of-the-art methods using poses and RGB. The proposed attention

network unlike [115, 106], P-I3D and Separable STA takes into account the human spatial

configuration and it also learns coupled spatio-temporal attention weights for the visual

feature map g.

Pose Backbone - The input poses along the video are processed in a Pose Backbone. The

pose based input of VPN are the 3D human joint coordinates P ∈ R3×J×tp stacked along

tp temporal dimension, where J is the number of skeleton joints. The Pose Backbone pro-

cesses these 3D poses to compute pose features h∗ which are used further in the attention

network for computing the spatio-temporal attention weights. They carry meaningful in-

formation in a compact way, so the proposed attention network can efficiently focus on

salient action parts.
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For the Pose Backbone, we use Graph Convolutional Networks (GCNs) to learn the

spatial relationships between the 3D human joints to provide attention weights to the

visual feature map g. We aim at exploiting the graphical structure of the 3D poses. In

fig. 4.10, we illustrate our GCN pose backbone (marked (A)). For each pose input Pt ∈
R3×J with J joints, we first construct a graph Gt(Pt, E) where E is the J × J weighted

adjacency matrix:

eij =


0, if i = j

α, if joint i and joint j are connected

β, if joint i and joint j are disconnected

These connections defined in the adjacency matrix are obtained from the skeleton

anatomy which is specific depending on the pose generation algorithms. For instance,

if the poses are obtained from Kinect sensor, the anatomy differs from the one computed

using algorithms like LCRNet [134]. Each graph Gt at time t is processed by a GCN to

compute feature P+
t :

P+
t = D−

1
2 (E + I)D−

1
2GtWt, (4.14)

whereWt is the weight matrix andD is the diagonal degree matrix withDii = Σj(Eij+Iij)

its diagonal elements. For all t = 1, 2, ..., tp, the GCN output features P+
t are stacked along

time, resulting in a 3D tensor [P+
1 , P

+
2 , ..., P

+
tp ].

Finally, the 3D pose tensor is combined with the original pose input by a residual connec-

tion followed by a set of convolutional operations. Now, the GCN pose backbone provides

salient features h∗ because of its use of the graphical structure of the 3D joints.

Spatio-temporal Coupler - The attention network in VPN learns the spatio-temporal at-

tention weights from the output of Pose Backbone in two steps as shown in fig. 4.10 (B).

In the first step, the spatial and temporal attention weights (AS and AT ) are classically

trained as in [113] to get the most important body part and key frames for an action. The

output feature h∗ of Pose Backbone follows two separate non-linear mapping functions to

compute the spatial and temporal attention weights. These spatial AS and temporal AT

weights are defined as

AS = σ(z1); AT = softmax(z2) (4.15)

where zr = Wzr tanh(Whrh
∗ + bhr) + bzr (for r = 1, 2) with sub-scripted W and b, the

corresponding weights and biases are the latent spatial and temporal attention vectors.

The dissociated attention weights AS and AT having dimension m×n and tc respectively,

can undergo a linear mapping to obtain spatially and temporally modulated feature maps.

The resultant model is equivalent to the separable STA framework. In contrast, now we



4.5. Video Pose Network (VPN) 87

Embedding Loss
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Figure 4.11: The spatial Embedding computing loss Le. This back-propagates through the
visual cue and the pose backbone.

propose to further perform a coupling of the spatial and temporal attention weights. Thus

in the second step, joint spatio-temporal attention weights are computed by performing a

Hadamard product on the spatial and temporal attention weights. In order to perform this

matrix multiplication, the spatial and temporal attention weights are inflated by duplicat-

ing the same attention weights in temporal and spatial dimension respectively. Hence, the

m× n× tc dimensional spatio-temporal attention weights AST are obtained by

AST = inflate(AS)◦inflate(AT ) (4.16)

This two-step attention learning process enables the attention network to compute

spatio-temporal attention weights in which the spatial saliency varies with time. The

obtained attention weights are crucial to disambiguate actions with similar appearance as

they may have dissimilar motion over time.

Finally, the spatio-temporal attention weights AST are linearly multiplied with the

input video feature map g, followed by a residual connection with the original feature

map g to output the modulated feature map g′. The residual connection enables the

network to retain the properties of the original visual features.
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4.5.2.2 Spatial Embedding of RGB and Pose

The objective of the embedding model is to provide tight correspondences between both

pose and RGB modalities used in VPN. The previous two attention mechanisms (P-I3D and

Separable STA) attempt to provide the attention weights on the RGB feature map using

3D pose information without projecting them into the same 3D referential. The mapping

with the pose is only done by cropping the person within the input RGB images. The

spatial attention computed through the 3D joint coordinates does not correspond to the

part of the image (no pixel to pixel correspondence), although it is crucial for recognizing

fine-grained actions. To correlate both modalities, an embedding technique inspired from

image captioning task [150, 151] is used to build an accurate RGB-Pose embedding in

order to enable the poses to represent the visual content of the actions (see fig. 4.11).

We assume that a low dimensional embedding exists for the global spatial represen-

tation of video feature map gs = Σtc
i=1g(i, :, :, :) (a Dv-dimensional vector) and its corre-

sponding pose based latent spatial attention vector z1 (a Dp-dimensional vector). The

mapping function can be derived from this embedding by

ge = Tvgs and Pe = Tpz1, (4.17)

where Tv ∈ RDe×Dv and Tp ∈ RDe×Dp are the transformation matrices that project the

video content and the 3D poses into the common De dimensional embedding space. This

mapping function is applied on the global spatial representation of the visual feature map

and the pose based features in order to attain the aforementioned objective of the spatial

embedding.

To measure the correspondence between the video content and the 3D poses, we com-

pute the distance between their mappings in the embedding space. Thus, we define an

embedding loss as a hyper-sphere feature metric space

Le = ||T̂vgs − T̂pz1||22 s.t. ||Tv||2 = ||Tp||2 = 1 (4.18)

T̂vgs = Tvgs
||Tvgs||2 and T̂pz1 =

Tpz1
||Tpz1||2 are the feature representations projected to the unit

hyper-sphere. The norm constraint ||Tv||2 = 1 & ||Tp||2 = 1 simply prevents the trivial

solution T̂v = T̂p = 0. In equation 4.18, T̂vgs = Tvgs
||Tvgs||2 = ge

||ge||2 and T̂pz1 =
Tpz1
||Tpz1||2 =

Pe
||Pe||2 are the feature representations projected to the unit hypersphere. Here, we compute

the norm ||ge||2 and ||Pe||2 using

||ge||2 =
√

Σig2
ei + ε & ||Pe||2 =

√
ΣiP 2

ei + ε (4.19)

where ε is a small positive value to prevent dividing by zero.
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The embedding loss Le along with the global classification loss provide a linear trans-

formation on the RGB feature map that preserves the low-rank structure for the action

representation and introduces a maximally separated features for different actions. Now,

the kernels at the visual backbone are updated with a gradient proportional to (ge − Pe),

which in turn transforms the visual feature map to learn pose aware characteristics. Con-

sequently, we strengthen the correspondences between video and poses by minimizing

the embedding loss. This embedding ensures that the pose information to be used for

computing the spatial attention weights aligns with the content of the video.

Note that the embedding loss also provides feedback to the pose based latent spatial

attention vectors (z1), which in turn transfers knowledge from the 2D image space to pose

3D referential. This allows the attention network to provide better and meaningful spatial

attention weights (As) compared to the attention network without the embedding. We

will quantify this observation in the experiments.

4.5.3 Training jointly the 3D ConvNet and VPN

VPN can be trained as a layer on top of any 3D ConvNet. The 3D ConvNet can be pre-

trained for the action classification task for faster convergence. Finally, VPN is plugged into

the 3D ConvNet for an end-to-end training as presented in algorithm 3 with a regularized

loss L formulated as

L = λ1LC + (1− λ1)Le + λ2La (4.20)

Here, LC is the cross-entropy loss, Le is the embedding loss; the trade-off between these

two losses is captured by linear fusion with a positive parameter λ1; La is the attention

regularizer with λ2 weighting factor. The attention regularizer consists of the spatial and

temporal attention weight regularizer and is formulated as

La =
m×n∑
j=1

||As(j)||2 +

tc∑
j=1

(1−Atc(j))
2 (4.21)

This additional regularization term La ensures that the attention weights are not biased

to provide extremely high values to the parts of the spatio-temporal feature map with

more relevance and completely neglecting the other parts. The different regularization

constraint for learning the spatial and temporal attention weights follow the same strategy

as in Separable STA.

Hence, in this chapter we present three novel action recognition frameworks based on

pose driven attention mechanism. Our action recognition framework has evolved from

using pose driven attention mechanism for selecting human body parts to a general mech-
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Algorithm 3 Joint Training of VPN with video backbone I3D network
Input: RGB video, 3D joint coordinates, model training parameters N1 (e.g., N1 =

10).
1: Initialize I3D network with model weights trained on IMAGENET and Kinetics.

//Pre-train I3D network.
2: Fine-tune I3D network with RGB data from full body body crops.

//Incorporate the Pose backbone which is a stack of tp GCNs.
//Initialize the attention network parameters.

3: Add a Fully connected layer with tanh activation. This is followed by two branches.
One with Fully connected layer to learn z1 and another with Fully connected layer to
learn z2. Normalise z1 using a sigmoid activation and z2 with a softmax activation to
yield AS and AT . Then, perform an inflation operation followed by a hadamard prod-
uct of the attention weights to compute the final spatio-temporal attention weights
AST . Initialize the attention scores with equal values and the remaining network pa-
rameters using Gaussian.
//Jointly Train the Whole Network

4: Jointly train VPN with the I3D network forN1 iterations to obtain the attention scores.
Output: the learned network.

anism within full human body representation. We incorporated spatial and temporal at-

tention mechanisms by providing a tight coupling between them. Finally, in VPN we also

provide an accurate embedding between the 3D poses and the RGB cue to enforce them

in common semantic space.

4.6 Experiments

In this section, we validate the effectiveness of our proposed action recognition frame-

works on public datasets. First, we discuss the implementation details of each framework

for conducting the experiments.

4.6.1 Implementation details

Training - For all the frameworks, we initialize the video backbone - I3D from the

Kinetics-400 [24] + ImageNet [20] classification models. Data augmentation and training

procedure for training the I3D on tracks of human body follow [3]. For fine-tuning the

video backbone independently, we use SGD optimizer with an initial learning rate of 0.01.

We use a regularization with a weighting factor of 0.001 between the penultimate layer

and the classification layer in I3D. The video backbone takes T = 64 video frames as input.

These 64 frames are sampled from the whole video clip with the starting frame randomly

selected within the first half of the video. All the subsequent frames are sampled with a

stride of 2. In case, the size of the video is less than 64, we loop around the video, i.e.
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continue stacking up the frames from the beginning of the video. Feature map g in the

video representation stage of the frameworks, is extracted from the output of GAP layer

(in case of P-I3D) or output of Mixed_5c (in case if Separable STA and VPN). Hence, the

dimension of the feature map g which is modulated is tc = 7, m× n = 1× 1 and c = 1024

for P-I3D and tc = 8, m× n = 7× 7 and c = 1024 for Separable STA and VPN.

Now, next is incorporating the attention network with the video backbone. The pose

backbone takes as input a sequence of tp 3D poses uniformly sampled from each clip.

The pose backbone is three layer stacked LSTM in Spatial attention and Separable STA

framework while it is a single layer tp temporally stacked GCNs in VPN framework. Hyper-

parameter tp = 20, 20, 30 and 5 for NTU-60, NTU-120, Smarthome and N-UCLA respec-

tively.

For pose backbone in P-I3D and Separable-STA, each LSTM layer consists of 512, 512,

128 and 128 LSTM units (neurons) for NTU-60, NTU-120, Smarthome and NUCLA re-

spectively. The LSTMs have tp time steps each of which yields an output of dimension

equal to the number of neurons. The output vector from each time step is concatenated

to compute h∗.

For pose backbone in VPN, we use tp number of GCNs, each processing a pose from the

sequence. The weighting parameters α and β for computing the adjacency matrix of the

pose based graph are set to 5 and 2 respectively. GCN projects the input joint coordinates

to a 64 − dimensional space. The output of the GCN is passed to a set of convolutional

operations (see fig. 4.10(I)(A)) which consists of three 2D convolutional layers each is

followed by a Batch Normalization layer and a ReLU layer to compute h∗. The output

channels of the convolutional layers are 64, 64 and 128.

Hyper-parameter settings - For P-I3D, we perform all the experiments with k = 3, i.e.

three human body parts. We also set λ1 to 0.00001 for NTU-60, NTU-120, and Smarthome

and 0.0001 for N-UCLA datasets respectively, and λ2 to 0.001 for all the datasets. For

Separable STA, we set λ1 & λ2 to 0.00001 for all the datasets. For VPN, the trade off

(λ1) and regularizer (λ2) parameters are set to 0.8 and 0.00001 respectively for all the

datasets.

For training the entire global network for the task of classification, a global-average

pooling layer followed by a dropout [140] of 0.3 and a softmax layer are added at the

end of the network for class prediction. The network is trained with a 4-GPU machine

where each GPU has 4 video clips in a mini-batch. We sample 10% of initial training set as

a validation set, for hyper-parameters optimization and for early stopping. Our network

is trained for 30 epochs in total, with Adam optimizer [152] having initial learning rate of

0.01 and decay rate of 0.1 after every 10 epochs.
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Inference. For the classification at test time, we perform fully convolutional inference in

spatial space as in [85] for Separable STA and VPN. For P-I3D, we take the body crops

depending on K at training time. The classification is performed for all stack of 64 frames

in a video to cover the temporal space as well. The final classification is obtained by

max-pooling the softmax scores.

We present a summary of the implementation details in table 4.1.

Table 4.1: Summary of implementation details for P-I3D, Separable STA and VPN

Components P-I3D Separable STA VPN
Video backbone I3D I3D I3D
& input dimension 64× 224× 224× 3 64× 224× 224× 3 64× 224× 224× 3

Extraction Layer of g GAP Mixed_5c Mixed_5c
& output dimension 7× 1× 1× 1024 8× 7× 7× 1024 8× 7× 7× 1024

Pose backbone 3-layer LSTM 3-layer LSTM GCN
& input dimension tp × (3 ∗ J) tp × (3 ∗ J) tp × (3 ∗ J)

hyper-parameters λ1 ∈ [0.0001, 0.00001] λ1 = 0.00001 λ1 = 0.8
λ2 = 0.001 λ1 = 0.00001 λ1 = 0.00001

4.6.2 Ablation study of Spatial attention (P-I3D)

In this section, we show the effectiveness of P-I3D by performing ablation studies on NTU-

60 and NUCLA datasets. Table 4.2 and 4.3 show the performance of different image

patches based on tracks of human body parts. The statistics show a considerable improve-

ment in the classification accuracy on focusing at the individual body parts rather than

using the whole images and thus including the unnecessary background information. In

table 4.2, we also quantitatively analyze the best position in the I3D [3] network to aggre-

gate the latent spatio-temporal features from the different human body parts. By sum_r,

we mean the aggregation of the spatio-temporal features after (9 − r) inception blocks

pre-trained on individual body parts in I3D and then using r inception blocks to further

extract meaningful information from the aggregated features. Our observation depicts

that aggregation at the last inception block without the need of further inception blocks

best models the action implying that aggregation of high-level rich features trained on

individual body parts does not need further 3D convolutional operations to extract dis-

tinguishable spatio-temporal features. For aggregation, we explore the use of summation

(sum_r) and concatenation (concat_r) operator at the end of I3D network (since concate-

nation at earlier layers is not feasible because of curse of dimensionality). Experimental

results (in table 4.2 and 4.3) show the effectiveness of summation operation of spatio-
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temporal features unlike the usual concatenation operation of spatial features as in [114].

In addition, table 4.3 also shows the effectiveness of using NTU-60 pre-training for NU-

CLA. This corroborates the fact that how much important is the step of pre-training of

such deep attention network in order to be effective on small datasets. Finally, we also

present the action classification accuracy using our proposed attention mechanism given

that the body part features are aggregated by a summation operation. We denote this final

result by sum + attention in table 4.2 and 4.3. A significant improvement in the action

classification accuracy on incorporating the attention mechanisms shows its efficacy for

learning discriminative representation for ADL.

Table 4.2: Ablation study on NTU RGB+D dataset with Cross-Subject (CS) and Cross-View
(CV) protocol. The values denote action classification accuracy (in %)

Methods CS CV Avg
Full image 70.93 80.53 75.73
Left hand 84.31 84.75 84.53
Right hand 82.94 81.83 82.38
Full body 85.47 87.26 86.36
sum_2 89.30 92.02 90.66
sum_1 90.39 92.19 91.29
sum_0 90.8 92.5 91.65
concat_0 89.05 92.07 90.56
sum+attention 93 95.4 94.2

Table 4.3: Ablation study on Northwestern-UCLA Multi-view Action 3D with Cross-View
V 3

1,2 protocol. The values denote action classification accuracy (in %)

Methods V 3
1,2 V 3

1,2

(NTU pre-trained)

Full image 83.95 87.93
Left hand 77.37 80.60
Right hand 78.50 80.38
Full body 85.99 88.79
sum_0 86.80 91.37
concat_0 86.63 90.30
sum+attention 87.50 93.10

Effectiveness of the Proposed Attention Model - In this section, we define the notion of

successful and unsuccessful attention scores for a video by looking at the body part based

classification accuracy for the corresponding action category. For instance, if an action X
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is classified with a higher average action classification accuracy using a human body part

P1 compared to other human parts, then the average attention score of body part P1 for

action X should be higher than the other parts. If the aforementioned condition is not

satisfied, we call it an unsuccessful attention.

In fig. 4.12, we illustrate the attention scores for some representative action cate-

gories. In fig. 4.13, we illustrate the corresponding average classification accuracy of each

human body part, their aggregation and proposed attention framework for the same ac-

tion categories illustrated in fig. 4.12. The body part with highest classification accuracy

is correctly assigned with attention weights resulting in improved classification accuracy

of our proposed sum + attention network. However, the other body parts may not receive

meaningful attention scores. The activity regularizer dynamically focus on all the body

parts which in turn may overlap with one another.

In fig. 4.14, we illustrate the unsuccessful attention scores for some representative action

categories. In fig. 4.15, we show the effect of unsuccessful attention scores on our P-I3D

framework. Failure in computing the right spatial attention on human body parts does

not affect the framework and performs similar to the aggregation framework (with no

attention) for actions like "drinking water" and "brushing teeth". This is because of the

dominance of all the human body parts involved in the action. For action like "touching
head", unsuccessful attention delivered to the appearance based spatio-temporal features

degrades the performance of the whole network.

In fig. 4.16, we show some sample visualization of the human body parts with their respec-

tive attention scores. The actions are drinking, kicking, brushing hair where the left hand,

full body and again the left hand respectively seem to be relevant for classifying the action.

The corresponding attention scores show the correctness of the attention mechanism.

4.6.3 Ablation study of Separable STA

In this section, we perform an ablation study on Separable STA to show the superiority of

this framework compared to its baselines. Here, we find answer to this question: Why this

attention network: Separable STA offers dissociated attention weights?

Table 4.4 evaluates other strategies to implement the proposed attention mechanism.

Among the strategies we include the implementation of single attention mechanisms (spa-

tial or temporal) and all the different ways to combine them. The strategies included in

the study are: I3D base network with (1) no attention (No Att); (2) only m × n dimen-

sional spatial attention (SA); (3) only t dimensional temporal attention (TA); (4) temporal

attention applied after SA (SA+TA); (5) spatial attention applied after TA (TA+SA); and

with (6) m × n × t spatio-temporal attention coupled together from pose driven model

(joint STA). For the implementation of SA+TA and TA+SA, we adopt the joint training
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Figure 4.12: Examples of successful attention scores on some action categories.
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Figure 4.13: Examples of average classification accuracy on individual body parts, their ag-
gregation and our proposed attention network on action categories presented in fig. 4.12
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Figure 4.14: Examples of unsuccessful attention scores on some action categories.
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Figure 4.15: Examples of average classification accuracy on individual body parts, their ag-
gregation and our proposed attention network on action categories presented in fig. 4.14

mechanism proposed in [113]. Our proposed separable STA outperforms all other strate-

gies by a significant margin. It is interesting to note that coupling spatial and temporal

attention as in joint STA for 3D ConvNets decreases the classification accuracy. The reason

for this can be seen from the classification accuracy achieved by SA and TA separately on

the different datasets. In Smarthome and NUCLA, spatial attention is much more effective

than temporal attention because several activities of both datasets involve interactions

with objects. On the other hand, NTU contains activities with substantial motion (such

as kicking, punching) and human-object interaction. Therefore, both spatial and tempo-

ral attention contribute to improve the classification accuracy. However, the possibility

for the second attention to significantly modify the I3D feature maps is limited once the

first attention has modified it. For this reason, we believe that dissociating both attention

mechanisms is more effective than coupling them in series.

Comparison of Separable STA with baseline I3D - Figure 4.17 compares I3D base net-

work with or without separable STA. The comparison is based on the per-class accu-

racy improvement on Smarthome and NTU-CS (cross-subject protocol). For Smarthome,

the spatial attention alone contributes to a large improvement due to the ability to rec-

ognize fine-grained activities involving interactions with objects, such as Pour.fromkettle
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Figure 4.16: Example of video sequences with their respective attention scores. The action
categories presented are drinking water with left hand (1st row), kicking (2nd row) and
brushing hair with left hand (last row).
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Table 4.4: Action classification accuracy (in %) on NTU, NUCLA and Smarthome datasets
to show the effectiveness of our proposed separable spatio-temporal attention mechanism
(separable STA) in comparison to other strategies. No Att indicates no attention.

Datasets No Att SA TA SA+TA TA+SA Joint STA Separable STA
NTU-CS 85.47 90.46 90.76 89.07 90.01 90.30 92.20
NTU-CV 87.26 93.69 91.25 92.39 92.60 92.48 94.61
NUCLA 85.47 90.09 79.31 74.57 74.35 87.93 92.46
Smarthome-CS 72.09 73.13 70.30 71.25 70.40 71.68 75.31
Smarthome-CV1 56.61 60.27 43 41.94 40.93 55.71 61.06
Smarthome-CV2 61.58 66.36 57.03 58.31 56.61 61.95 68.25

(+21.4%) for CS and Uselaptop (+13.4%), Eat.snack (42.8%) for CV. The temporal at-

tention improves the classification of activities with low and high motion. Examples of

this are static activities such as WatchTV (+8.8%) for CS and Readbook (+9.6%) for CV;

and dynamic activities such as sitdown (+22.2%). For NTU-CS, the largest accuracy gains

are observed for brushing hair (+28.2%), taking off a shoe (+23.3%) and cross hands in
front (+20.6%). These are activities in which the distinctive features are localized in space

and time. Even for those classes for which our separable STA performs worse than I3D

alone, the accuracy drop is very limited.

But, what we ignore with Separable STA is handling noisy poses, which is crucial for

such pose-driven attention mechanisms. Recognizing actions with subtle motion like cut-
ting bread, using stove under constraints of the subject being occluded or not in the middle

of the frame, still remains a challenge. This is where VPN provides a spatial embedding to

handle the mis-alignment of noisy 3D poses.

4.6.4 Ablation Study of VPN components

In this section, we perform an ablation study to show the effectiveness of the VPN compo-

nents. The presence of ADL challenges like fine-grained and similar appearance activities

is in higher magnitude in NTU-120 and Smarthome datasets. So, we perform all our

ablation studies on these two datasets. Our VPN based framework includes two novel

components, the spatial embedding and the attention network. Both of them are critical

for good performance on ADL recognition. We show the importance of the attention net-

work and the spatial embedding of VPN in table 4.5. We also show the effectiveness of the

spatial embedding with different instantiation of the attention network in table 4.6.

How effective is VPN? In order to answer this point, we show the action classification

accuracy with baseline I3D (l1) which is the video backbone and then incorporate the

VPN components: the attention network (l2) and the spatial embedding (l3) one-by-one

in table 4.5. The attention network (l2) improves significantly the classification of the ac-

tions (relatively upto 10.9% on NTU-120 and 11.9% on Smarthome) by providing spatio-
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Figure 4.17: Per-class accuracy improvement on Smarthome and NTU-CS when using
separable STA in addition to I3D. For Smarthome, we present the top 11, top 5 and top
5 classes for CS, CV1 and CV2 respectively. For NTU-CS, we present the 10 best and 10
worst classes.

Table 4.5: Ablation study to show the effectiveness of each VPN component.

VPN components NTU-120 NTU-120 Smarthome Smarthome
CS1 CS2 CS CV2

l1: visual backbone 77.0 80.1 53.4 45.1
l2: l1 + attention network 85.4 86.9 56.4 50.5
l3: l2 + spatial embedding 86.3 87.8 60.8 53.5
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Table 4.6: Performance of VPN with different choices of Attention Network.

Model Pose Coupler NTU-120 NTU-120 Smarthome Smarthome
Backbone CS1 CS2 CS CV2

l4: VPN LSTM × 84.7 83.6 57.1 50.6
l5: VPN GCN × 85.6 86.8 60.1 53.1
l6: VPN LSTM X 85.3 84.1 57.6 51.5
l7: VPN GCN X 86.3 87.8 60.8 53.5

Table 4.7: Performance of VPN with different embedding losses le.

Loss NTU-120 NTU-120 Smarthome Smarthome
CS1 CS2 CS CV2

KL-divergence DKL(fe||Pe) 85.5 87.1 57.2 50.9
KL-divergence DKL(Pe||fe) 85.6 86.9 57.0 51.1
Bi-directional KL-divergence 86.1 87.2 57.2 51.7
Normalized Euclidean loss 86.3 87.8 60.8 53.5

temporal saliency to the I3D feature maps. With the spatial embedding (l3), the action

classification further improves (relatively upto 1% on NTU-120 and 7.8% on Smarthome).

Diagnosis of the attention network - In table 4.6, we further illustrate the importance of

each component in the attention network, i.e. the Pose Backbone and the spatio-temporal

coupler. We have designed a baseline attention network with LSTM as pose backbone fol-

lowing our previous frameworks in P-I3D and Separable STA. We compare the LSTM pose

backbone in l4 and l6 with our proposed GCN instantiation in l5 and l7. The attention net-

work without a spatio-temporal coupler provides dissociated spatial and temporal atten-

tion weights in l4 and l5 in contrast to our proposed coupler in l6 and l7. Firstly, we observe

that the GCN pose backbone makes use of the human joint topology, thus improves the

classification accuracy in all scenarios with or without the coupler. Consequently, actions

like Snapping Finger (+24.5%) and Apply cream on face (+23.9%) improves significantly

with GCN instantiation (l6) compared to LSTM (l7). Secondly, we observe that the spatio-

temporal coupler provides fine spatial attention weights for the most important frames

in a video, which enables the model to disambiguate actions with similar appearance but

dissimilar motion. Consequently, the coupler (l7) improves the classification accuracy up

to 1.1% both on NTU-120 and Smarthome w.r.t. dissociating the attention weights (l5).

For instance, with dissociation of the attention weights, rubbing two hands was confused

with clapping and flicking hair was confused with putting on headphone. With VPN, the

coupler improves the classification accuracy of actions rubbing two hands and flicking hair
by 25% and 19.6% respectively.
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Table 4.8: Impact of Spatial Embedding on Spatial Attention. Note that all the models use
spatial attention mechanism.

Model Pose Spatial Temporal NTU-120 NTU-120 Smarthome Smarthome
Backbone Embedding Attention CS1 CS2 CS CV2

VPN LSTM × × 81.7 81.2 45.5 50.0
VPN LSTM X × 82.7 82.0 56.5 52.6
VPN GCN × × 82.6 84.3 49.1 51.7
VPN GCN X × 83.1 85.3 58.4 53.1
VPN GCN X X 86.3 87.8 60.8 53.5

Which loss is better for learning the spatial embedding? In this ablation study (Ta-

ble 4.7), we compare different losses for projecting the 3D poses and RGB cues in a com-

mon semantic space. First, we compare the KL-divergence losses [153, 102] (DKL(ge||Pe)

and DKL(Pe||ge)) from Pe to ge and vice-versa. The KL-divergence losses DKL(ge||Pe) and

DKL(Pe||ge) for n samples are computed by

DKL(ge||Pe) =

n∑
i=1

f ielog(
gie
P i
e

) (4.22)

DKL(Pe||ge) =

n∑
i=1

P i
elog(

P i
e

gie
) (4.23)

where f ie and P i
e are visual and pose embedding of the ith input sample. Then, we compare

a bi-directional KL-divergence loss [154, 155, 156] (DKL(fe||Pe) + DKL(Pe||fe)) to our

normalized euclidean loss. We observe that (i) the loss usingDKL(fe||Pe) andDKL(Pe||fe)
deteriorates the action classification accuracy as the feedback is in one direction either

towards RGB or poses, implying two-way feedback for the visual features and the attention

network is necessary, (ii) our normalized euclidean loss outperforms the bi-directional KL

divergence loss, exhibit its superiority.

Impact of Embedding on Spatial attention - In table 4.8, we show the impact of spatial

embedding on the attention network providing spatial attention only. We perform the ex-

periments with different choice of Pose Backbone, i.e. LSTM as in P-I3D or Separable STA

and our proposed GCN. The spatial embedding provides a tight correspondence between

the RGB data and poses. As a result, it boosts the classification accuracy in all the experi-

ments. It is worth noting that the improvement is significant for Smarthome as it contains

many fine-grained actions with videos captured by fixed cameras in an unconstrained

Field of View for the person performing the action. Thus, enforcing the embedding loss

enhances the spatial precision during inference. As a result, the classification accuracy of

fine-grained actions like pouring water (+77.7%), pouring grains (+76.1%) for making
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Figure 4.18: The heatmaps of the activations of the 3D joint coordinates (output of GCN)
in the attention network of VPN. The area in the colored bounding boxes shows that
different joints are activated for similar actions.

coffee, cutting bread (+50%), pouring from kettle (+42.8%) and inserting teabag (+35%)

improves VPN with GCN pose backbone compared to its counterpart without embedding.

Finally, we also show the impact of using temporal attention which significantly improves

the action classification accuracy on all the datasets.

Qualitative Analysis of VPN Fig. 4.18 visualizes the activation of the human joints at

the output of pose backbone (with GCNs) in VPN. The figure depicts the activations of the

3D joints. They are presented in a sequence of the human body topological order (follow

first row of fig. 4.18) for convenient visualization. VPN is able to disambiguate actions

with similar appearance like hopping and jumping due to high order activation at relevant

joints of the human legs. The discriminative leg joints with high activation have been

marked with a red bounding box in fig. 4.18 (third row). Similarly, for actions like put
on headphone with two hands and flicking hair with one hand, the blue bounding boxes

demonstrate high activation of both the hand joints for the former action as compared to

high activation of a single hand joints for the latter. For a very fine-grained action like
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Figure 4.19: Heatmaps of visual feature maps & corresponding activated kernels for dif-
ferent time stamps. These heatmaps show that VPN has better discriminative power than
I3D.

thumbs up, the thumb joint is highly activated as compared to the other joints. This shows

that the GCN pose backbone in VPN is a crucial ingredient for better action recognition.

In fig. 4.19, we compare the heatmap of the VPN and I3D feature maps for different time

stamps. We observe the sharpness in the VPN feature maps compared to that of I3D for

thumbs down action which is localized over a small space. For similar actions like put on
headphone and flicking hair, along with salience precision of the VPN feature map, the

activations of their corresponding receptive fields show the discriminative power of VPN.

Illustration to show the impact of VPN components - In fig. 4.20, we illustrate a set

of graphs showing the top-5 improvement of action classification accuracy using different

components of VPN compared to I3D baseline. As discussed in the ablation study above,

each component in VPN is critical for good performance on ADL recognition.
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Figure 4.20: Graphs illustrating the superiority of each component of VPN compared to
their counterparts (without the respective components). We present the Top-5 per class
improvement for (A) VPN with embedding vs without embedding (only Spatial Attention),
(B) VPN with GCN vs LSTM Pose Backbone, and (C) attention in VPN with vs without
spatio-temporal coupler.

• The spatial embedding provides an accurate alignment of the RGB images and the

3D poses. As a result, the recognition performance of the fine-grained actions im-

proves compared to its counterpart without embedding (see fig. 4.20 (A)).

• The LSTM pose backbone as used in P-I3D and Separable STA firstly fails globally

optimize the attention network. Whereas, the GCN pose backbone of the attention

network, not only provides a strategy to globally optimize the recognition model but

also takes the human joint configuration into account for computing the attention

weights. This further boosts the action classification performance (see fig. 4.20 (B)).

• The spatio-temporal coupler of the attention network provides discriminative spatio-

temporal attention weights which enables the recognition model to better disam-

biguate the actions with similar appearance (see fig. 4.20 (C)). For instance, rub two
hands together is confused with clapping and flicking hair is confused with taking on
headphones when classified with baseline I3D. Now, with VPN the mis-classification

between these action pairs drop significantly.

Comparison of VPN with baseline I3D - In fig. 4.21, we illustrate the performance of

VPN w.r.t. I3D baseline for the dynamicity of an action along the videos. This dynamicity

is computed by averaging the Procrustes distance [157] between subsequent 3D poses

along the videos. If the average distance is large, it means the poses change a lot in an

action. VPN significantly improves for actions with subtle motion like hush (+52.7%),

staple book (+40.7%) and reading (+36.2%) which indicates the efficacy of VPN for fine-

grained actions. Note that these actions hush, staple book and reading possessing subtle

motion falls in the range between [0, 0.25] of action dynamicity. The degradation of the

VPN performance for high action dynamicity is negligible (-0.8%).
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Figure 4.21: We compare our model against baseline I3D across action dynamicity. Our
model significantly improves for most actions.

In fig. 4.22, we show the t-SNE plots of the feature spaces produced by I3D and VPN for

some selected actions with similar appearance. It clearly shows the discriminative power

of VPN for actions with similar appearance which is a frequent challenge in ADL.

We provide some visual results in fig. 4.23 where VPN outperforms I3D baseline. These

are the sample examples where VPN is able to distinguish between the action pairs that are

often confused with I3D. Hence, the concept of guiding networks utilizing poses improve

the representation learned for the visually similar actions. We also provide the confusion

matrix for action classification on NTU RGB+D 120 and Toyota Smarthome using VPN. In

fig 4.24, we present the confusion matrix of VPN on NTU RGB+D (on right) and a zoom of

it around the red bounding box (on left). We also present the corresponding zoom of the

confusion matrix of I3D. We are particularly interested in the mis-classifications performed

by VPN and thus, we zoom into the region with relatively low classification accuracy. We

observe that actions like staple book and taking something out of bag were confused with

cutting papers and put something into a bag respectively when classified with I3D. However,

with VPN these actions with similar motion are now better discriminated, improving their

classification accuracy by approximately 42% and 27% respectively.

Similarly, in fig. 4.25, we present the confusion matrix of VPN on Toyota Smarthome

dataset. In fig. 4.26, we show the poses for some images belonging to action videos
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Figure 4.22: t-SNE plots of feature spaces produced by I3D and VPN for similar appearance
actions.

GT: jump up

Pred I3D: hopping (.68)

Pred VPN: jump up (.99)

GT: thumbs down

Pred I3D: thumbs up (.97)

Pred VPN: thumbs down (.98)

GT: arm swings

Pred I3D: tennis bat swing (.79)

Pred VPN: arm swings (.55)

GT: flick hair

Pred I3D: put on headphone (.39)

Pred VPN: flick hair (.85)

Figure 4.23: Visual results from NTU RGB+D 120 where VPN outperforms I3D.

mis-classified by I3D. Thanks to the high quality 3D poses for these videos, now VPN

can correctly classify these actions taking the human topology of the 3D poses into ac-

count. However, we notice that actions like Drink from glass are not recognized due to

extremely low number of training samples. We further notice that actions like using tablet
are recognized with low accuracy of 13% and largely confused with using laptop. How-

ever, I3D completely mis-classifies the action using tablet. In fig. 4.25, we also show (with

red bounding boxes) the set of actions that are still highly mis-classified. What are these

actions? These are the fine-grained actions - the same action performed with different

objects like drinking with a can, bottle or cup. A possible reason for this is that the 3D Con-

vNets compromises with the spatial dimension of the input while handling the temporal

dimension in the same network.
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Confusion Matrix of VPN on NTU RGB+D (CS protocol)

Figure 4.24: Confusion matrix of VPN on NTU RGB+D (CS Protocol) on the right. Zoom
of the red bounding box on the left along with the corresponding confusion matrix of I3D.
The intend to show this confusion matrix is to state the fact that challenges still remain in
datasets with laboratory settings in spite of achieving higher accuracies.
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Figure 4.25: Confusion matrix of VPN on Toyota Smarthome (CS protocol). Red bounding
boxes in the figure shows the set of fine-grained actions mis-classified among themselves.
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Figure 4.26: Illustration of poses for activities mis-classified with I3D but correctly classi-
fied with VPN.
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4.6.5 Discussion

In this section, we discuss our assumptions and analysis made for the experiments per-

formed.

Why do we sample different number of 3D poses and RGB frames? We have performed

all our experiments with T 6= tp. And still, we utilize these tp number of poses to compute

temporal attention weights for T number of RGB frames. One may argue that why these

number of samples for both modalities are not the same? We believe that our temporal

attention mechanism takes place with a latent representation of the stack of RGB images.

And the attention weights are also computed from a latent representation h∗ of the 3D

poses. Both these latent representations depict the actions in temporal segments. The

difference in number of samples for both the modalities is due to the different networks

processing them. Therefore, we strategize to learn temporal attention weights in a latent

space where the actions are represented with similar number of temporal segments for

both the modalities.

What are the problems that still remain? As shown through the confusion matrix of

VPN on Smarthome dataset, the action classification accuracy is still low for certain fine-

grained actions. Actions like drinking when performed with different object should be able

to be distinguished easily just by focusing on the objects. But often the video backbones

like I3D or C3D fails to have a clear notion of the objects. We have often observed that

our proposed models are prone to mis-classify action where the person is eating snack

keeping a book nearby in the scene. The model often classifies it to the action read book
completely ignoring the posture. We believe that the current state-of-the-art fails to model

the associativity of the different objects in the scene with the human performing an action.

Inspite of these 3D ConvNets which are pre-trained on ImageNets and then inflated for

the task of video classification does not handle the spatial information effectively. It is

because of a trade-off between handling space and time. These models incorporating upto

128 frames in a video, compromises with the spatial dimension by restricting the input

frame size to 224× 224.

What if the 3D poses are noisy? Since our attention mechanisms are pose driven. It

depends on the quality of the 3D poses. But in datasets like Smarthome, the 3D poses are

not of high quality. The reason is low camera framing and instances of high occlusions.

Whatsoever, our VPN tackles such situations of noisy poses through its spatial embedding.

But, does it improve the quality of noisy poses? How much noise can be tolerated by these

pose driven attention networks to compute meaningful attention weights? These are some

interesting analysis that could affect the performance of our proposed frameworks. We

plan to do these analysis in the near future.
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4.6.6 Runtime

In this section, we provide details regarding run-time for training and testing our proposed

frameworks. Below all the statistics have been provided while training and testing our

models in 4 GTX 1080 Ti GPUs.

P-I3D - Pre-training the part-wise I3D network on the Smarthome dataset with CS setting

takes 12 hours. Pre-training the Stacked pose based LSTM takes 1 hour. Pre-training

the RNN Network for developing attention for the human body parts take 15 hours and

further fine-tuning takes 4 hours. At test time, a single forward pass of an image frame

over the full model takes 547ms on a single GPU.

Separable STA - Training separable STA framework end-to-end takes 5h on Smarthome in

CS settings. Pre-training the I3D base network with RGB human crops and stacked LSTM

with 3D poses takes 21h and 2h respectively. At test time, a single forward pass for a video

takes 338ms on 4 GPUs.

VPN - Training VPN framework end-to-end takes 6h on Smarthome in CS settings. Pre-

training the I3D base network with RGB human crops takes 21h. At test time, a single

forward pass for a video takes 378ms on 4 GPUs.

Our codes for P-I3D have been open-sourced at https://github.com/srijandas07/P-

I3D. The codes for Separable STA have been successfully deployed to Toy-

ota Motors Europe. Details of this work is provided in our project page

https://project.inria.fr/toyotasmarthome/. We plan to open-source the codes for VPN in

future.

4.7 Conclusion

In this chapter, we present three major contributions for effective and efficient visual rep-

resentation. We present three pose driven attention mechanisms to improve the function-

alities of RGB network like I3D, namely P-I3D, Separable STA and VPN. We enriched our

attention network from - (i) spatial attention to dissociated spatio-temporal attention and

finally from dissociated to coupled attention mechanism; (ii) poses being processed con-

sidering only their temporal evolution to now exploiting their graphical structure in VPN;

(iii) simple straightforward exploitation of poses to compute attention weights to take the

mis-alignment of 3D poses with the image frames into account.

Our ablation studies on each framework show that the components proposed in our atten-

tion networks accomplish their purpose and encourage the classifier to provide discrimi-

native video representation. In this chapter, we address the challenges of similar action

discrimination and recognition of fine-grained actions through our attention network. We

https://github.com/srijandas07/P-I3D
https://github.com/srijandas07/P-I3D
https://project.inria.fr/toyotasmarthome/
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also select the state-of-the-art video based CNN to better handle the temporal informa-

tion in ADL videos. But, these video based CNN like I3D are typically fabricated for short

videos. Are we still addressing the complexities involved in handling long composite ac-

tions? So, the next step is going towards temporal representation of long and complex

actions.



Chapter 5

Temporal Representation for ADL

5.1 Introduction

In the previous chapter, we have seen how attention mechanisms can yield better video

representations for recognizing ADL. However, our proposed frameworks are limited to

short action videos and we aim at understanding representations for long and complex ac-

tions in videos. Therefore, in this chapter, we focus on temporal representation of videos.

While handling temporal information in videos, we evolved from using short-term motion

using Dense Trajectories [40] to RNNs [27] and finally to 3D ConvNets [71]. But, still

these networks are fabricated for modeling temporal information limited to 128 frames.

What about videos where action ranges for several minutes? What about actions like vari-

ants of cooking that are composed of several sub-actions. In fig. 5.1 , we show an example

of a person cooking which comprises of sub-actions like cutting, stirring, using stove, stir-
ring and using oven. Recognizing such complex actions require fine-grained understanding

of all the event with precision followed by developing a relationship among them.

Figure 5.1: An illustration of a long complex action. A person cooking which comprises
sub-actions like cutting, stirring, using stove, stirring and using oven.

As explained, the 3D ConvNets have been tailored to capture the short-term dynamics
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of full 2D+T volume of a video. The use of attention mechanisms on top of these 3D Con-

vNets somewhat alleviates the challenge of recognizing (i) fine-grained actions and (ii)

similar action discrimination. However, these models fail to capture long-range temporal

information of actions. Thus, these challenges (i.e., (i) and (ii)) often described as low

inter-class variation are aggravated in the presence of long & complex actions. Hence,

challenges pertaining to low inter-class variation require temporal attention for discrim-

inating them correctly. Such low inter-class variation is often caused by either similar

motion with subtle variation such as taking out something from pocket/putting something
inside pocket, or complex long-term relationship such as stirring while cooking/using stove
while cooking.

Also, actions with similar motion tend to have discriminative spatio-temporal features

over a small time scale. For instance, wearing and taking off a shoe can be distinguished

by taking into account whether or not the shoe is separated from the human body in the

first few frames. In order to solve the aforementioned challenge, we need to process the

videos at multiple time scales to capture specific subtle motion. Thus, our objective is

to capture spatio-temporal relations at multiple time scales and link them over time to

disambiguate such temporally complex actions.

As described in chapter 2, there are several studies dealing with the challenge of mod-

eling long temporal relationships in videos. Popular methods like TSN [80, 81] and

TRN [79] make use of uniformly sampled image frames from the whole video. These

methods show convincing results on internet videos having strong motion varying in long

temporal space. Whereas for ADL, subtle motion varies for a very short time-interval

which limits these methods on ADL. For ADL, dense temporal information is required to

be processed so as to not miss the subtle motion involved in fine-grained actions. This

objective inspires us to use the concept of temporal granularity, i.e. temporal windows

of different lengths to process the same image frames. Thus, the subtle motion can be

represented from the spatio-temporal feature output of 3D ConvNets.

The next challenge remains modeling of long temporal relationship. RNNs have been used

in many such problems [158] to link features over time. Attention mechanisms like non-

local networks have addressed this underlying challenge in 3D ConvNet (long-temporal

relationships), ranges to 128 time steps at max. This non-local network computes the rel-

ative distance (using Gaussian embedding) among all its pixels in a spatio-temporal cube.

However, this operation computing the affinity between the features does not go beyond

the spatio-temporal cube, thus does not account for long-term temporal relations. Thus,

these non-local blocks are mostly limited to short internet videos. Recently, Timecep-

tion [4] has been developed on top of 3D ConvNets for the purpose of accounting dense

temporal information and modeling them for long complex actions. But, this module with

dedicated kernels fails to capture the variations of motion involved in ADL and in the wild.
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Thus, we propose to invoke a two-level attention mechanism to better provide a temporal

representation of a video.

Consequently, in this chapter, we propose a Temporal Model to have a focus of at-

tention on the spatio-temporal features of the relevant time scale. This is effectuated by

splitting the videos into uniform temporal segments at different time scale (namely granu-

larity). This is followed by a two-level attention mechanism to manage 1) relative impor-

tance of each segment for a given granularity and to manage 2) the various granularities

(see fig 5.2).

The Temporal Model which comprises the classification network and the attention

network, is trained end-to-end for recognizing actions. We make two hypotheses: the

input video clip contains a single class label, and the articulated poses are available as

in the previous chapter. Why do we need the poses? Based on our past experiences and

concluded statistics, 3D poses with its robust and invariant characterization provide crucial

hints for learning spatio-temporal attention weights. Based on previous studies regarding

temporal evolution of 3D poses [5, 113], we believe that 3D poses can certainly guide

the RGB cue to enhance the temporal representation of a video. This is supported by the

effectiveness of 3D poses for the task of detecting actions in an untrimmed videos [159].

Thus, similar to the previous chapter, we utilize the 3D poses as input to our attention

network which in turn provides temporal attention weights.

To summarize, in this chapter we present:

• an end-to-end Temporal Model to address the recognition of temporally complex

actions. This is done by

– splitting a video into several temporal segments at different levels of temporal

granularity.

– employing a two-level pose driven attention mechanism. First to manage the

relative importance of the temporal segments within a video for a given granu-

larity. Second to manage the relative importance of the various temporal gran-

ularities.

• An extensive ablation study to corroborate the effectiveness of our proposed Tem-

poral Model. Besides, we propose a Global Model to have a generic and complete

approach for action recognition.

In this chapter, we present a Temporal Model in section 5.2, a Global Model for action

recognition in section 5.3 and we present our experimental analysis on four public datasets

in section 5.4. Finally, we conclude in section 5.5. The work presented in this chapter has

been published as a full conference paper in WACV 2020 [160].
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Figure 5.2: Framework of the proposed approach in a nutshell for two temporal granular-
ities. The articulated poses soft-weight the temporal segments and the temporal granular-
ities using a two-level attention mechanism.

5.2 Temporal Model

In this section, we present the Temporal Model for learning and recognizing actions that

exhibit complex temporal relationships. This approach involves three stages (see fig. 5.3)

to classify the actions. Stage A consists in splitting the video into several temporal seg-

ments at different levels of temporal granularity (see subsection 5.2.1). Stage B classifies

the temporal segments of each granularity. It has a Recurrent 3D Convolutional Neural

Network (R−3DCNN) and an attention mechanism (TS−att) so that the different tem-

poral segments are tightly coupled in an optimized manner (see subsection 5.2.2). Stage
C performs the fusion of the different temporal granularities to classify the action videos

(see subsection 5.2.3).

5.2.1 Temporal Segment Representation

In the first stage (stage A), our goal is to split the video into several partitions. However,

determining the number of such partitions is a difficult task and depends on the content

of the action. Thus, for a coarse-to-fine video analysis, a hierarchy of temporal segments



5.2. Temporal Model 119

𝑅𝐺𝐵
+

3𝐷 𝑃𝑜𝑠𝑒

𝑺𝒕𝒂𝒈𝒆 𝑨
𝐺𝑟𝑎𝑛𝑢𝑙𝑎𝑟𝑖𝑡𝑦 𝑠𝑝𝑙𝑖𝑡𝑠

𝑆21+𝑃21

𝑆31+𝑃31

𝑆32+𝑃32

𝑆Gmax1+
𝑃Gmax1

𝑆 Gmax2+
𝑃 Gmax2

𝑆GmaxGmax
+

𝑃GmaxGmax

𝑅 − 3𝐷𝐶𝑁𝑁G=2

𝑅 − 3𝐷𝐶𝑁𝑁G=3

𝑅 − 3𝐷𝐶𝑁𝑁G=Gmax

T
e
m

p
o
ra

l 
G

ra
n
u
la

ri
ty

 F
u
s
io

n

Segments

𝑅𝐺𝐵

3𝐷
𝑃𝑜𝑠𝑒

𝑅𝐺𝐵

3𝐷
𝑃𝑜𝑠𝑒

3𝐷
𝑃𝑜𝑠𝑒

𝑅𝐺𝐵

𝑆33+𝑃33

𝑆22+𝑃22
𝑇𝑆 − 𝑎𝑡𝑡G=2

𝑇𝑆 − 𝑎𝑡𝑡G=3

𝑇𝑆 − 𝑎𝑡𝑡G=Gmax

P
re
d
ic
ti
o
n

𝐺 = 3

𝑺𝒕𝒂𝒈𝒆B
𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑁𝑒𝑡𝑤𝑜𝑟𝑘

𝑺𝒕𝒂𝒈𝒆C
𝐹𝑢𝑠𝑖𝑜𝑛

Figure 5.3: Proposed Model with three stages. Stage A splits the video into different
segments at different granularities. stage B is the classification network composed of Re-
current 3D CNN (R − 3DCNN) and an attention mechanism. Stage C performs a fusion
of the temporal granularities for predicting the action scores.
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Figure 5.4: A drinking video (from NTU-RGB+D [5]) with RGB frames (at left) and 3D
poses (at right) is represented with coarse to fine granularities. G representing granularity
ranges from 2 to Gmax(≤ N).

is built. For a given level in the hierarchy (or granularity), the video is divided into non-

overlapping segments of equal length.

Formally, given a video V (RGB+Pose) at granularity G, we divide it into G tem-

poral segments. The video with N frames is processed at different levels of granu-

larity {2, 3, ..., Gmax | Gmax ≤ N}. Thus at granularity G, each temporal segment

SGi | i = {1, 2, .., G} is a stack of RGB images and PGi | i = {1, 2, .., G} is a stack of

3D poses. See an example with a drinking video from NTU-RGB+D [5] in fig. 5.4.

Note that G = 1 represents the whole video and is not input to the proposed Temporal

Model.

5.2.2 Classification Network

Stage B follows several steps to process the temporal segments for each granularity as

described below (see fig. 5.5).

5.2.2.1 Recurrent 3D Convolutional Neural Network

A. Processing the Temporal Segments - The first step (step 1) computes the local features

for each temporal segment SGi. These features are computed by a video backbone which
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Figure 5.5: A zoom of the classification network (stage B) for a given granularity G.
The inputs to the RNN RS

G are the flattened 3D convolutional features of the temporal
segments SGi. Temporal segment attention soft-weighs the temporal segments.

is a 3D CNN, called f(.). The spatio-temporal representation ST (V,G) is given by:

ST (V,G) = ST ({SG1, SG2, ...SGG})

= [f(SG1; θw), f(SG2; θw), .., f(SGG; θw)]

The output of the video backbone f(.) with parameters θw is a 4-dimensional convolu-

tional feature map. This ST representation is obtained at each level of temporal granular-

ities. In step 2, these convolutional features for each segment SGi are resized to a single

dimensional tensor by a flatten(.) operation.

B. Combining the Temporal Segments - Step 3 is the global sequential processing of the

video at a granularity (G) by the combination of all its temporal segments SGi. For each

granularity G, the aforementioned combination is performed by a recurrent network RS
G

which models the long-term dependencies among the dense temporal segments. Thus,

R−3DCNN in fig. 5.5 is the recurrent network RS
G with 3D CNN f(.) as a backbone. The

input of RS
G with parameters θSG, is the succession of flattened feature maps f(SGi). The

output UGi at each time step i of the recurrent network RS
G is given by:

UGi = RS
G(flatten(f(SGi)); θ

S
G) (5.1)
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Step 4 of the classification network combines the output of step 3 with soft-weights pro-

vided by a temporal attention mechanism, which is described below.

5.2.2.2 Attention on Temporal Segments

For a video, some of the segments may contain discriminative information while the others

provide contextual information. We argue that poses (3D joint coordinates) are clear

indicators to select the prominent sub-sequences in a video as proposed in [113, 114].

This is because of their capability to understand the human body dynamics which is an

important aspect in daily living actions.

For a granularity G, the temporal segment attention (TS − att) includes two parts

(see fig. 5.6). First, the 3D poses of the temporal segments PGi are processed by an

RNN Rp
G,i (with parameters θpG,i). Then, the output set of the first RNNs are processed

by another RNN Rp
G (with parameters θpG) to combine all the temporal segments

into G weights corresponding to the importance of the temporal segments. The soft at-

tention αG,j for jth segment of a given granularity G is predicted by learning the mapping:

αG,j =
exp(Rp

G(Rp
G,j(PGj ; θ

p
G,j); θ

p
G))∑G

i=1 exp(R
p
G(Rp

G,i(PGi; θ
p
G,i); θ

p
G))

(5.2)

Thus the final output vG of the classification network is a result of adaptive pooling of UGi,

given by:

vG =

G∑
j=1

inflate(αG,j) ◦ UGj (5.3)

where the inflate(.) operation duplicates the attention weights to match the dimension

of UGj and ◦ is the hadamard product. Note that the last time step output feature YG of

the pose based RNN Rp
G is forwarded to the next step for computing temporal granularity

attention.

For each granularity G, (G+ 1) recurrent networks are required for G ≥ 2, which may

look expensive but at the same time they operate on lightweight 3D pose information.

Thus, for Gmax granularities, number of required recurrent networks η are

η = 3 + 4 + ...+ (Gmax + 1)

= (1 + 2 + 3 + 4 + ...+Gmax)− 2

=
Gmax(Gmax + 1)

2
− 2

(5.4)
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Figure 5.6: Temporal Segment attention (TS − att) from 3D poses for a given granularity
G. PGi being input to the RNN Rp

G,i followed by their combination using RNN gpG to assign
soft-weights αG,j . Note that the output features of the last time step YG is forwarded to
the next step for temporal granularity attention.

Again, for each recurrent network with n−dimensional input and m−dimensional output

numberofparameters = 4(nm+ n2 + n) (5.5)

This equation independent of the number of time steps of the recurrent network. In our

case, n varies from 150 (in case of Kinect sensor) to 39 (in case of 3D poses extracted from

RGB). And m depends on the number of hidden neurons in the recurrent network. Thus,

with a low dimensional n and m, our pose driven attention network are computationally

very efficient. Moreover, the choice of granularities may not be sequential like G = 2, 3, 4

but non-sequential like G = 2, 5, 7. This depends on an expert’s knowledge who decides

this hyper-parameter based on the length of the videos in the training distribution.

5.2.3 Fusion of different temporal granularities

Clipping videos into shorter segments may not be an optimal solution for capturing the

subtle motion of an action. So, we propose a temporal granularity attention (TG − att)
to find the extent of fine temporal segments required to recognize an action. In stage
C of fig. 5.3, the temporal segment attention (TS − att) described above is extended

to soft-weight the output features of the classification network (R − 3DCNN) for each

granularity (see fig. 5.7). The last time step output features of the pose based RNN Rp
G

which are forwarded in the last step, are now concatenated to form a feature vector Y .

So, Y = [Y2, Y3, .., YGmax ] where YG = Rp
G(Rp

G,j(PGj ; θ
p
G,j); θ

p
G) for j ∈ [1, Gmax] and
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Figure 5.7: Attention for temporal granularity (TG − att) to globally focus on the video
representation vG for a given granularity. The model extended from fig 5.6 soft-weights
the video representations for Gmax granularities of the video.

G ∈ [2, Gmax]. The attention weight βG for Gth granularity is computed by

βG =
exp(YG)∑Gmax

i=2 exp(Yi)
(5.6)

This attention weight is used for focusing on the pertinent temporal granularities. Finally,

the prediction for C classes is the weighted summation of the scores at all the granularities

followed by a softmax operation:

prediction = softmax(

Gmax∑
G=2

inflate(βG) ◦ vG) (5.7)

where the inflate(.) operation duplicates the attention weights βG to match the dimension

of vG and ◦ is the hadamard product.

We use categorical cross-entropy loss (Lc) to train the whole network. Note that we do

not use any attention regularizer in this framework as it does not improve the performance

of our Model. The reason is because the Temporal Model is not trained jointly unlike the

previous frameworks with the video backbone which allows the optimization to take place

without any constraints.

5.3 Global Model for Action Recognition

Above, we have described our Temporal Model where temporal segments with different

granularities (Gmax ≥ 2) are dynamically fused to classify actions. We call a video back-

bone used for the whole video sequence without any temporal decomposition (i.e. G = 1),

as the Basic Model. The Basic Model is simply the video backbone of the Temporal Model
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Algorithm 4 Training of Temporal Model
Input: RGB video, 3D joint coordinates, model training parameters.

1: Initialize I3D network with model weights trained on IMAGENET and Kinetics.
//Pre-train I3D network.

2: Fine-tune I3D network with RGB data from full body crops.
3: Extract the I3D features ST (V,G) at each granularity G for all the temporal segments.

//Initialize the Temporal Model - classification network and the attention net-
work parameters.

4: Classification network RG
S is a one layer GRU at granularity G. Attention network

constitutes Rp
G,j and Rp

G at a granularity G which are also single layer GRUs.
5: Output of RP

G at jth time step is normalized with softmax to compute attention weight
αG,j for jth temporal segment and granularity G.

6: Output of RP
G for all G = 1 : Gmax are combined and add a FC layer. The output of

this FC layer is normalized with a softmax activation to compute attention weights βG
for granularity G. Initialize the attention scores with equal values and the remaining
network parameters using Gaussian.
//Train the Whole Network

7: Jointly train classification network with the attention network with cross-entropy loss
Lc to classify the actions.
Output: the learned network.

to classify the actions. Note that the Basic Model though termed Basic can also be a com-

plex architecture, for instance when the video backbone is any of our previous attention

framework. With a slight abuse of term, the model is termed Basic to denote the non

temporal decomposition of the videos while processing them, unlike the Temporal Model.

As stated in [161], temporally segmenting videos can destroy the local structure of

some short actions. So, we define a Global Model for action classification by performing

a late fusion of the proposed Temporal Model and the Basic Model. This is done by

performing dot product operation of the model scores at logit level. We do not perform

soft weighting of the temporal segment with G = 1 (i.e., the Basic Model) to classify

the actions. The reason is the presence of asymmetric operations in the sub-networks

(RNN and 3D CNN) with G = 1 and with G > 1 which makes the proposed attention

model difficult to train. The training algorithm of the Temporal Model is presented in

algorithm 4. The algorithm involves first pre-training the video backbone for the task

of action classification. Then, the Temporal Model is trained along with the 3D poses

as input to the attention network. Upon convergence, the attention network learns to

provide relative importance to the temporal granularities and temporal segments relevant

to an action.
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5.4 Experiments

In this chapter, we perform all our ablation studies on NTU-60 and NUCLA datasets. How-

ever, we also action classification results for NTU-60, NTU-120, Smarthome and NUCLA

datasets when the Temporal Model uses our proposed attention based video backbones

(P-I3D, Separable STA and VPN).

5.4.1 Implementation details

Network architectures - For the 3D CNN f(.), we use I3D [3] pre-trained on Ima-

geNet [162] and kinetics [3]. Shareable parameters are used to extract spatio-temporal

representations of each temporal segment. Spatio-temporal features are extracted from

the Global Average Pooling layer of I3D. Recurrent networks RS
G modeling global temporal

structure are Gated Recurrent Networks (GRUs) with single hidden layer of size 512. All

the recurrent networks for Rp
G,j and Rp

G are also GRUs with a hidden state of size 150. We

use 3D pose information from depth based middle-ware [55] or obtain the 3D poses from

RGB using LCRNet [134].

Training - First, we initialize the video backbone - I3D from the Kinetics-400 [24] + Im-

ageNet [20] classification models. Data augmentation and training procedure for training

the I3D on tracks of human body follow [3]. For fine-tuning the video backbone indepen-

dently, we use SGD optimizer with an initial learning rate of 0.01. We use a regularization

with a weighting factor of 0.001 between the penultimate layer and the classification layer

in I3D. The feature vector ST (V,G) at granularity G is obtained from the output of GAP

(Global Average Pooling) layer.

Then the classification network is trained using the Adam Optimizer [152] with an

initial learning rate of 0.0005. We use mini-batches of size 32 on 4 GPUs. Straightforward

categorical cross-entropy with no regularization constraints on the attention weights has

been used to train the network end-to-end. For training the pose driven attention network,

similar to [5], we uniformly sample the pose segments into sub-sequences of respectively

5 and 4 frames for NTU and N-UCLA. We use the 3D CNN (I3D) trained on NTU as a

pre-trained model and fine-tuned it on N-UCLA.

Hyper-parameter settings - The hyper-parameter Gmax is the most sensitive choice in

our Temporal Model. We have tested different values of Gmax: 2,3, and 4. In the ablation

study, we show that the choice of taking up to 4 granularities is meaningful for the short

actions described above.
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5.4.2 Ablation study for Temporal Attention

In this section, we show the effectiveness of our proposed two-level attention mechanism

on NTU (CS and CV) and NUCLA datasets. We provide two ablation studies to evaluate

the benefit of the (A) temporal segment attention (TS−att), (B) temporal granularity

attention (TG− att) compared to baseline I3D.

(A) Fig. 5.8 is a plot of action classification accuracy w.r.t. the number of granularities.

The dotted and solid lines represent the classification results without/ with (TS − att)

respectively. The relatively higher accuracy scores of the solid line for G > 1 as compared

to the dashed line indicates the effectiveness of the proposed first level TS−att attention.

Fig. 5.8 also shows that, as we introduce the Temporal Model for G > 1, the classification

performance improves as compared to the performance of baseline I3D network (G =

1) for NTU-60. This implies that the temporal decomposition in the Temporal Model

improves the classification of temporally complex action videos (examples provided at

the end of this section). As we go for finer granularities from G = 2 to 4, the action

classification accuracy goes down, say from 89.7% to 87.4% for NTU-CS with TS − att.
This is due to the short duration of actions present in the database mentioned above

such as clapping (-7.2%), taking out something from pocket (-6.4%) which lack temporal

structure. It is interesting to note that the classification performance degrades for N-

UCLA, when processed in segments. This is due to the small duration of the actions whose

temporal structures are hampered while decomposing them into segments. However, we

observe that actions like pick up something with one hand or two hands are now classified

correctly when processed with Temporal Model rather than the Basic Model. Thus, the

visual features learned in the Temporal Model are complementary to that of the Basic

model.

(B) Table 5.1 shows the improvement of the classification score with the combination of

granularities (G = 2, 3, 4). In table 5.1, our Temporal Model without temporal granular-

ity attention indicates simple summation of the features from each granularity. Whereas

our Temporal Model with temporal granularity attention performs weighted summation

to combine the granularity based features. We observe that the accuracy of the Temporal

Model from the Basic model improves by 5.2% on NTU, even without employing tem-

poral granularity attention (TG − att). TG − att attention further improves the action

classification score by 0.85% on NTU dataset. Table 5.1 also shows the importance of

fusing together the Basic and Temporal Model into a Global Model. There are some ac-

tions which are correctly recognized by the Basic Model but mis-classified by the Temporal

Model such as punching (-13.4%) and throwing (-8.4%). Temporal decomposition of these

actions with very few key frames, does not improve their recognition. So, thanks to the
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Figure 5.8: A plot of Accuracy in % (vertical axis) vs number of granularities G (horizontal
axis) to show the effectiveness of the temporal segment attention (TS−att) on NTU-RGB
(CS & CV) and N-UCLA(V 3

1,2). Note that the accuracy forG = 1 is on the I3D base network.

late fusion of the aforementioned Models, we manage to recover the correct recognition

of these actions. Thus, the Global Model improves the action classification performance

by approximately 2% as compared to the Temporal Model over all the datasets.

Comparison of Global Model with Basic Model - To analyze the gain obtained by the

Temporal Model, we study the difference in classification accuracy between the Basic

Model and the Global Model for the 20 best classes in fig. 5.9. Our Global Model im-

proves 53 out of 60 action classes. The most significant improvements concern actions

with repetitive cycles like brushing teeth (+17.1%), handwaving (+16.9%), and use a fan

Table 5.1: Ablation study to show the effectiveness of the temporal granularity attention
(TG−att) and the Global Model compared to the Basic and Temporal Models on NTU-RGB
(CS & CV) and N-UCLA(V 3

1,2). Acc. denotes action classification accuracy.

Model G TG− att NTU-CS NTU-CV N-UCLA
Acc. (%) Acc. (%) Acc. (%)

Basic 1 × 85.5 87.2 88.8
Temporal 2,3,4 × 89.9 91.9 88.2
Temporal 2,3,4 X 90.6 92.8 89.5

Global 1,2,3,4 X 92.5 94.0 91.0
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Figure 5.9: Accuracy difference per action label of the 20 best classes for NTU dataset
between the Temporal Model and the Global Model. The base network is I3D and the
results are averaged over the CS and CV protocols.

(+16.4%). These actions have long-term temporal structure (the repetition of actions)

which our proposed Temporal Model successfully deciphers. The Basic Model fails when

it has to distinguish between action pairs with similar poses and subtle motion, such as

wearing and taking off a shoe and wearing and taking off glasses. On the contrary, the tem-

poral decomposition of these actions into segments enables the classifier to discriminate

between similar pairs, and thus improves the recognition of wearing a shoe (+14.1%) and

wearing glasses (+14.0%). For these actions, the temporal segments contain very specific

and discriminative parts which enables the classifier to discriminate the similar ones. See

fig. 5.10 in which our proposed Global Model outperforms the Basic Model (I3D). For

action taking on a shoe, the first temporal segment S21 for granularity G = 2 discrimi-

nates it from taking off a shoe. Similarly, for action put something inside pocket, the second

temporal segment S32 for temporal granularity G = 3 enables the classifier to recognize

the action correctly. Actions like cross hands in front (-4.0%) and punching (-3.1%) are

the two major worst classes. The Global Model has difficulties recovering these actions

because the Temporal Model may add noise to the recognition score acquired by the Basic

Model during their fusion. However, these drops in performance are not as significant as

the improvements.

In table 5.2, we show the action classification accuracy of Temporal Model on four

public datasets with video backbones proposed in the last chapter. As discussed how

our proposed spatio-temporal attention mechanisms improve the action representation for

short-term videos in the last chapter. So, we incorporate those as video backbones or Basic

Model in this proposed framework. Consequently, we improve the action classification

performance significantly on all the datasets compared to I3D as baseline video backbone.
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Table 5.2: Action classification accuracy (in %) on 4 public datasets using different video
backbone in Temporal Model. We also provide the corresponding accuracy on the Global
Models. We denote Smarthome dataset by SH.

Methods NTU-60 NTU-60 NTU-120 NTU-120 SH SH NUCLA
CS CV CS1 CS2 CS CV V 3

1,2

Temporal Model (I3D base) 90.6 92.8 85.2 86.5 55.4 52.8 89.5
Temporal Model (P-I3D base) 92.4 95.2 - - - - 88.6
Temporal Model (STA base) 91.1 93.0 85.7 87.1 56.6 49.5 90.8
Temporal Model (VPN base) 92.5 96.2 85.5 87.1 60.4 49.9 91.4
Global Model (I3D base) 92.5 94.0 85.9 87.3 58.5 54.3 91.0
Global Model (P-I3D base) 93.9 96.1 - - - - 93.5
Global Model (STA base) 93.6 95.4 87.0 88.1 60.0 54.6 92.8
Global Model (VPN base) 94.1 96.5 87.5 89.0 62.6 55.5 93.7
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Figure 5.10: Examples of videos at left (taking on a shoe and put something inside pocket)
and attention weights of temporal segments and granularities at right. Our proposed
Global Model classifies these action videos correctly but Basic Model (I3D) does not. The
distinctive context or gesture in the pertinent temporal segment is highlighted with yellow
box.
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5.4.3 Discussion

In this subsection, we discuss the limitations and possible future research directions for

temporal representation of videos. As we have presented that our Temporal Model is

sensitive to the choice of the hyper-parameter Gmax, which is the number of granular-

ities. The choice of this hyper-parameter is based on expert’s knowledge regarding the

distribution of the training data along temporal domain. Thus, an arbitrary choice of this

hyper-parameter Gmax can affect the performance of the whole model. We also believe

that temporal representation of videos could be improved by processing the temporal seg-

ments within a granularity through Temporal Convolutional Networks (TCNs). Duration

of actions may vary in time depending on several factors. These TCNs with dilation are

capable of handling temporal variance within an action. Finally, utilizing our proposed

Temporal Model for the task of action detection could be a possible future extension of

this work.

5.4.4 Runtime

Training the Temporal Model end-to-end takes 3 hours with a single job spread over 4

GTX 1080 Ti GPUs. Pre-training the Basic Model on the NTU dataset takes 15 hours. 3D

CNN (I3D) features are extracted in parallel over 16 GPUs for 4 granularities and thus

varying the granularity does not affect the run time of the model. At test time, RGB pre-

processing takes one second (loading Full-HD video and extracting 3D CNN features). The

Temporal Model with granularity Gmax= 4, takes 1.1 ms including the prediction from the

Basic Model on a single GPU. The temporal attention module is very efficient because it

works only on the 3D pose joints. Classification can thus be done close to real-time.

Our codes for Temporal Model have been open-sourced at

https://github.com/srijandas07/temporal_model.

5.5 Conclusion

In this chapter, we have presented a new temporal representation of videos into tempo-

ral granularities. Each temporal granularity is again represented by temporal segments.

A video representation constitutes a weighted combination of the granularities and the

segments. The weighted combination is achieved by a pose driven attention mechanism.

A two-level attention mechanism to soft-weight the relevant temporal segments within

a granularity and to weight the relevant temporal granularities, yields a discriminative

video representation. This temporal representation of videos addresses the underlying

challenges of ADL which are long and often complex.

https://github.com/srijandas07/temporal_model
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The future work with the Temporal Model includes adapting the Model for the task

of action detection. We believe that these Models can be exploited for fast and efficient

computation of temporal proposals of actions within a video.



Chapter 6

State-of-the-art comparison

6.1 Introduction

In this chapter, we provide the comparison of the proposed methods with the state-of-

the-art. As discussed in chapter 2, we perform our experiments on both small-scale and

large-scale public datasets. For our first contribution (detailed in chapter 3), we present

the state-of-the-art results on three small-scale datasets CAD-60, CAD-120 and MSRDai-

lyActivity3D. As this contribution, namely multi-modal video representation is difficult to

implement on large datasets due to exhaustive resource requirement, we perform minor

changes in the optimization strategy to adapt it for large scale datasets like NTU-60. We

discuss about these changes in the optimization while presenting the state-of-the-art re-

sults on NTU-60.

We present this chapter in two folds, firstly presenting the state-of-the-art comparison

for the three small scale datasets for multi-modal fusion strategy. Then, we present the

state-of-the-art results on the relatively large-sale datasets, namely NTU-60, NTU-120,

Smarthome and NUCLA for all our proposed attention mechanisms.

6.2 Comparison of Multi-modal Method with the state-of-the-

art

In this section, we compare action classification accuracy of our proposed Multi-modal

Method with the state-of-the-art on three public datasets. We present these comparisons,

datasets-wise in Table 6.1, 6.2 and 6.3.

In chapter 3, we have shown how our proposed fusion strategy and similar action

discrimination module are effective on the small-scale ADL datasets. Now, we show that

our proposed Multi-modal method is superior than other state-of-the-art methods. In
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Method Year Data Accuracy [%]
STIP [163] 2014 RGB + Depth 62.50
Object Affordance [164] 2013 RGB + Poses 71.40
HON4D [165] 2013 RGB + Poses 72.70
Actionlet Ensemble [46] 2012 RGB + Poses 74.70
Dynamic Skeletons [166] 2015 RGB + Poses 84.10
MSLF [137] 2016 RGB + OF 80.36
P-CNN Fusion [58] 2017 RGB + OF 95.60
Multi-modal Method 2019 RGB + OF + Pose 98.52

Table 6.1: Comparison of our Multi-modal video representation for different modalities
with the state-of-the-art methods on CAD-60. The state-of-the-art methods are indicated
by their year of publication. The different modalities include RGB, Optical Flow (OF), 3D
Poses, and Depth.

our state-of-the-art comparison, we indicate the data modalities used by different previ-

ous methods. For CAD-60, we outperform the state-of-the-art by 2.9% approximately as

shown in table 6.1. The previous state-of-the-art method [58] though very close to our

classification accuracy does not make use of the 3D poses. However, we observe that this

method which does not take the temporal evolution of 3D poses into account for classi-

fying actions is limited to learn discriminative representations for human-object interac-

tions. We see later how this method [58] fails to obtain high accuracy on other datasets

like MSRDailyActivity3D (as shown in Table 6.3).

We also observe in our experimental analysis on CAD-60 that the use of optical flow

through dense trajectories improves the classification of actions with low amount of mo-

tion like relaxing on couch, working on computer and staying still. Similarly, actions like

brushing teeth and drinking water are correctly classified with pose information due to

these action having discriminative motion ranging over time. Finally, most of these ac-

tions with object interaction are classified with high accuracy only with the use of RGB

modality. As a consequence, the fusion of all these modalities results in a high classifica-

tion accuracy on CAD-60 dataset.

CAD-120 is a challenging dataset with the presence of temporally opposite actions

like stacking and unstacking objects. Thus, the inter-class variation in this dataset is very

low which makes this dataset highly challenging in addition to low number of training

samples. However, our proposed Multi-modal method outperforms all the state-of-the-art

methods by a margin of 4.7% as shown in Table 6.2. Lin et al. [167] in RSVM + LCNN

models the spatio-temporal layout of CNN features, in addition it arbitrarily divides each

action into a fixed number of segments (which is 4). We argue that such a temporal

decomposition of videos may not be optimal for all the actions. We also show this phe-
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Method Year Data Accuracy [%]
P-CNN Fusion [58] 2017 RGB + OF 71.0
Salient Proto-Objects [168] 2014 RGB 78.20
SVM + CNN [167] 2016 RGB 78.30
TDD [169] 2015 RGB + OF 80.38
STS [170] 2013 RGB + Poses 84.20
Object Affordance [164] 2013 RGB + Poses 84.70
MSLF [137] 2016 RGB + OF 85.48
R-HCRF [171] 2016 RGB + Poses 89.80
RSVM + LCNN [167] 2016 RGB 90.10
Multi-modal Method 2019 RGB + OF + Poses 94.40

Table 6.2: Comparison of Multi-modal video representation for different modalities with
the state-of-the-art methods on CAD-120 dataset. The state-of-the-art methods are indi-
cated by their year of publication. The different modalities include RGB, Optical Flow
(OF), 3D Poses, and Depth.

nomenon in Chapter 5 with our Temporal Model which inspired us to propose a Global

Model ensuring completeness of the framework. Also, we observe that the significant

improvement in our proposed Multi-modal method is due to the similar action discrimina-

tion module which successfully disambiguate similar actions like stacking and unstacking
objects or cleaning object and taking food.

We present the state-of-the-art comparison on MSRDailyAcitivity3D in Table 6.3. This

dataset consists of challenging scenarios with the same action performed in two ways like

in sitting and standing position. This results in high intra-class variation in this dataset. We

observed in chapter 3 that the 3D poses with considerably long duration of videos prove

to be useful for discriminating actions correctly. The 3D poses when fed to simple LSTM

accounts for 91.6% of action classification accuracy alone compared to 90% accuracy with

combined RGB and optical flow as shown in 3.2. Thus, we outperform the state-of-the-art

results on MSRDailyActivity3D by 0.3% only. The previous state-of-the-art method [172]

although with a performance close to our method without the use of optical flow, fails on

large datasets like NTU-60 (see Table 6.4). Also, note the lower classification accuracy

of P-CNN Fusion [58] on this dataset compared to our Multi-modal video method. As

discussed earlier, although this method attains high classification accuracy on dataset like

CAD-60, is not consistent in terms of performance. This is due to its lack of modeling pose

based temporal relationships.

For a better comparison, we also present the results of our Multi-modal method on

NTU-60 dataset in the next section. In addition, next we present the state-of-the-art results

of our proposed attention mechanism based frameworks on four public datasets (to be

discussed one-by-one).
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Method Year Data Accuracy [%]
NBNN [173] 2013 RGB + Poses 70.00
HON4D [165] 2013 RGB + Poses 80.00
STIP + skeleton [163] 2014 RGB + Poses 80.00
SSFF [174] 2014 RGB + Poses 81.90
DSCF [175] 2013 RGB + Poses 83.60
P-CNN Fusion [58] 2017 RGB + OF 84.40
Actionlet Ensemble [46] 2012 RGB + Poses 85.80
RGGP + fusion [176] 2013 RGB + Poses 85.60
MSLF [137] 2016 RGB + OF 85.95
Super Normal [177] 2014 RGB + Poses 86.26
BHIM [178] 2015 RGB + Depth 86.88
DCSF + joint [175] 2013 RGB + Poses 88.20
Dynamic Skeletons [166] 2015 RGB + Poses 95.0
Range Sample [179] 2015 RGB + Poses 95.6
DSSCA-SSLM [172] 2018 RGB + Poses 97.50
Multi-modal Method 2019 RGB + OF + Pose 97.81

Table 6.3: Comparison of Multi-modal video representation for different modalities with
the state-of-the-art methods on MSRDailyActivity3D dataset. The state-of-the-art methods
are indicated by their year of publication. The different modalities include RGB, Optical
Flow (OF), 3D Poses, and Depth.

6.3 NTU-RGB+D-60

NTU-RGB+D is a large dataset and is suitable for using deeper models. In this section,

we present the state-of-the-art results on NTU-60 dataset in Table 6.4. We present the

results in sections, categorized based on the input data modalities of the methods (Pose,

RGB, Pose + RGB). We also indicate the year of publication of the previous methods or

the chapter that presents the proposed method in this thesis. We also indicate whether the

methods use any kind of attention mechanism.

Firstly, we present the action classification accuracy of our Multi-modal method on

Cross-Subject protocol. This method achieves state-of-the-art performance even with using

a 2D CNN based appearance model (ResNet-152) compared to 3D inflated ResNet-50

in case of Glimpse clouds [106]. In order to scale the Multi-modal method for large-

scale dataset like NTU-60, we used SGD optimizer with hinge loss instead of using linear

classifiers like SVM. This enables our optimization to occur in batch-wise iteration instead

of taking all the training samples together in a single iteration as in case of SVM. With

the aforementioned change, we could train a fusion based model on NTU-60, however

with the lack of global optimization strategy, it is evidently not the optimal solution. We

also use I3D [3] to model the appearance instead of using 2D CNN (2D ResNet-152) and
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Table 6.4: Comparison between the proposed methods and the state-of-the-art methods
using different modalities (3D poses and RGB) on NTU-60 dataset. The dataset is evalu-
ated in terms of action classification accuracy (in %) on Cross-Subject (CS) and Cross-View
(CV) protocols. Att indicates attention mechanism. ◦ denotes the poses are used only at
training time. ∗ indicates that this method has been re-implemented for this dataset.

Methods Year Pose RGB Att CS CV
Lie Group [180] 2014 X × × 50.1 52.8
Skeleton Quads [181] 2014 X × × 38.6 41.4
HBRNN-L [148] 2014 X × × 59.1 64.0
Dynamic Skeletons [166] 2015 X × × 60.2 65.2
Deep LSTM [5] 2016 X × × 60.7 67.3
p-LSTM [5] 2016 X × × 62.9 70.3
ST-LSTM [54] 2016 X × × 69.2 77.7
STA-LSTM [113] 2017 X × X 73.2 81.2
Ensemble TS-LSTM [182] 2017 X × × 74.6 81.3
GCA-LSTM [183] 2017 X × X 74.4 82.8
JTM [184] 2018 X × × 76.3 81.1
VA-LSTM [53] 2017 X × × 79.4 87.6
view-invariant [159] 2017 X × × 80.0 87.2
AGC-LSTM [89] 2019 X × X 89.2 95.0
DGNN [95] 2019 X × × 89.9 96.1
C3D [71] 2015 × X × 63.5 70.3
ResNet50 + LSTM [106] 2019 × X × 71.3 80.2
I3D∗ [3] 2017 × X × 85.4 87.2
Action Machine [185] 2018 × X × 94.3 97.2
DSSCA-SSLM [172] 2018 X X × 74.9 -
MTLN [98] 2017 X X × 79.6 84.8
STA-Hands [114] 2017 X X X 82.5 88.6
altered STA-Hands [115] 2018 X X X 84.8 90.6
Glimpse Cloud [106] 2018 ◦ X X 86.6 93.2
PEM [186] 2018 X X × 91.7 95.2
RRNX3D101+MS-AAGCN [187] 2019 X X × 96.1 99.0
Multi-modal method 2019 X X × 87.0 -
Multi-modal method (with I3D) 2019 X X × 92.2 -
P-I3D 2019 X X X 93.0 95.4
Separable STA 2019 X X X 92.2 94.6
VPN 2020 X X X 93.5 96.2
Temporal Model (I3D base) 2020 X X X 90.6 92.8
Temporal Model (P-I3D base) 2020 X X X 92.4 95.2
Temporal Model (STA base) 2020 X X X 91.1 93.0
Temporal Model (VPN base) 2020 X X X 92.5 95.5
Global Model (I3D base) 2020 X X X 92.5 94.0
Global Model (P-I3D base) 2020 X X X 93.9 96.1
Global Model (STA base) 2020 X X X 93.6 95.4
Global Model (VPN base) 2020 X X X 94.1 96.5
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report 92.2% accuracy (illustrated by - with I3D). This performance boosting is because

I3D can model better appearance and motion (90.4%) for large available data compared

to 2D CNN architectures.

Next, we observe in Table 6.4 that our P-I3D framework is able to extract discrimi-

native spatio-temporal features by efficiently weighing the relevant body parts needed for

modeling an action. Its effectiveness is corroborated by the increase in action classification

accuracy compared to its I3D baseline [3]. P-I3D outperforms the state-of-the-art results

on NTU-60. On the contrary, Separable STA under-performs on NTU-60 compared to P-

I3D. But it is to be noted that, Separable STA with a single I3D video backbone compared

to K (= 3) I3D video backbones in P-I3D, generalizes over the actions. This general-

ization of Separable STA is evident from the action classification results on Smarthome

dataset which comprises of occlusion scenarios and so on.

Note that in table 6.4, Glimpse Cloud [106] uses pose information only for learning but

performs significantly worse for cross-subject protocol on NTU dataset. We also argue that

PEM [186], whose results are close to those obtained by P-I3D and Separable STA, uses

saliency maps of pose estimation. However, these saliency maps can be noisy in case of

occlusions, which occur often in Smarthome as well as in most real-world scenarios. On

the contrary, our attention mechanism computes attention weights from poses, and the

classification ultimately relies on the appearance cue. Our attention mechanisms signif-

icantly improve the results especially on NTU-60, by focusing on people interaction and

human-object interaction.

Next, we compare VPN to the state-of-the-art on NTU-60. VPN outperforms all the

previous methods including our P-I3D and Separable STA. In table 6.4, for input modality

RGB+Poses, VPN improves the P-I3D by up to 0.8% on NTU-60 even by using one-third

parameters compared to P-I3D. The state-of-the-art using Poses only [95] yields classifi-

cation accuracy near to VPN for cross-view protocol (with 0.1% difference) due to their

robustness to view changes. However, the lack of appearance information restricts these

methods [95, 89] to disambiguate actions with similar visual appearance, thus resulting

in lower accuracy for cross-subject protocol.

Next, our Temporal Model and Global Model are compared with previous methods.

For Temporal and Global Model, we present the results with different video backbones.

First with I3D base and then with our proposed P-I3D, Separable STA and VPN as Basic

Model. In Table 6.4, we see that although the Temporal Model alone under-performs

the other video backbones proposed in Chapter 4, they carry complementary information.

This is evident when the Temporal Model is combined with the Basic Model - namely, the

Global Model. We call them Global Model (I3D base) or (P-I3D base) and so on - with the

base network in parentheses. With the Global Model, we recover the recognition of those

actions that are under-represented in the Temporal Model. Such an under-representation
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is due to temporal decomposition of extremely short actions (ranging for few seconds).

P-I3D [143] with 42M trainable parameters as compared to simple I3D’s 12M trainable

parameters outperforms the state-of-the-art results on NTU (95% average over CS and

CV) datasets when used as a backbone of the Temporal Model. The Global Model with

P-I3D as base network has 80M trainable parameters and improves action, with similar

motion like wearing glasses (+2.5%) and taking off glasses (+2.1%) compared to the Basic

Model (P-I3D). Whereas, Temporal Model with VPN backbone with parameters compara-

ble to Separable STA and one-third times lower than P-I3D results in superior classification

accuracy. Thus, more effective the video backbone, more effective is the Temporal Model.

Finally, we note that methods like Action machine [185] and RNX3D101+MS-

AAGCN [187] outperform our models on both the protocols. This is because of their

usage of deeper 3D CNN (with 3D ResNet50 and ResNeXt101 respectively) compared to

our InceptionV1 configuration of I3D.

6.4 NTU-RGB+D-120

NTU-120, an extension of NTU-60 dataset introduces the challenge of more similar actions

compared to its former version. The similar state-of-the-art methods applied on NTU-60 do

not perform effectively on this extended dataset as seen in Table 6.5. Similar to NTU-60,

in this section, we present a comparison of all our proposed attention based methods with

the state-of-the-art methods for multiple modalities (RGB, Pose) on NTU-120 in Table 6.5.

Although both Separable STA and VPN use attention mechanisms and both the meth-

ods outperform the state-of-the-art methods on this dataset. But it is worth noting that

VPN improves further the classification of actions (by 4.7%) with similar appearance as

compared to Separable STA. For example, actions like clapping (+44.3%) and flicking hair
(+19.1%) are now discriminated with better accuracy. In addition, the superior perfor-

mance of VPN in cross-view protocol for both NTU-120 implies that it provides better

view-adaptive characterization compared to all the prior methods.

We also notice that the Temporal Model improves the classification accuracy when used

with I3D or Separable STA as video backbone. Whereas VPN degrades the classification

accuracy. But the complementary nature of this model shows its efficacy while evaluating

for the Global Model. We clearly see in Table 6.5 that the Global Model with VPN video

backbone outperforms all the state-of-the-art results on NTU-120 dataset. This also shows

that VPN with its spatial embedding already classifies videos with challenging actions,

especially the fine-grained ones. As a result, the Temporal Model with VPN as backbone

does not significantly improve the action classification performance.
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Table 6.5: Comparison between the proposed methods with state-of-the-art methods using
different modalities (3D poses and RGB) on NTU-120 dataset. The dataset is evaluated
in terms of action classification accuracy (in %) on Cross-Subject (CS1) and Cross-Setup
(CS2) protocols. Att indicates attention mechanism. ∗ indicates that this method has been
re-implemented for this dataset.

Methods Year Pose RGB Att CS1 CS2

p-LSTM [5] 2016 X × × 25.5 26.3
Dynamic Skeletons [166] 2015 X × × 50.8 54.7
ST-LSTM [54] 2016 X × X 55.7 57.9
Internal Feature Fusion [188] 2016 X × X 58.2 60.9
view-invariant (single stream) [159] 2017 X × × 60.3 63.2
GCA-LSTM [183] 2017 X × X 61.2 63.3
Multi-Task CNN [189] 2018 X × × 62.2 61.8
PEM (single stream) [186] 2018 X × X 64.6 66.9
2s-AGCN∗ [97] 2019 X × X 82.9 84.9
MS-G3D [190] 2020 X × X 86.9 88.4
Two-streams [1] 2014 × X × 58.5 54.8
I3D∗ [3] 2017 × X × 77.0 80.1
Two-streams + ST-LSTM [125] 2019 X X × 61.2 63.1
P-I3D 2019 X X X - -
Separable STA 2019 X X X 83.8 82.5
VPN 2020 X X X 86.3 87.8
Temporal Model (I3D base) 2020 X X X 85.2 86.5
Temporal Model (P-I3D base) 2020 X X X - -
Temporal Model (STA base) 2020 X X X 85.7 87.1
Temporal Model (VPN base) 2020 X X X 85.5 87.1
Global Model (I3D base) 2020 X X X 85.9 87.3
Global Model (P-I3D base) 2020 X X X - -
Global Model (STA base) 2020 X X X 87.0 88.1
Global Model (VPN base) 2020 X X X 87.5 89.0
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6.5 Toyota Smarthome dataset

Smarthome consists of very diverse videos of activities performed with or without inter-

actions with objects. Existing state-of-the-art methods fail to address all the challenges

posed by Smarthome (see Table 6.6).

The dense trajectories (DT) [10] obtain competitive results for actions with relatively

high motion. However, dense trajectories are local motion based features and thus fail to

model actions with fine-grained details and to incorporate view-invariance in recognizing

activities. LSTM, fed with informative 3D joints, models the coarse activities based on

body dynamics of the subject performing the activity, but fails to discriminate fine-grained

activities due to the lack of object encoding.

Recent inflated convolutions [3] have shown significant improvement compared to

RNNs. The non-local behavior of non-local block on top of I3D [85], along space-time in

Smarthome is not view-invariant because its attention mechanism relies on appearance.

On the contrary, our proposed attention mechanisms are guided by 3D pose information,

which is view-invariant. The significant improvement of our attention mechanisms (P-

I3D, Separable STA and VPN) on cross-view protocols shows its view-invariant property

compared to existing methods. In fig. 6.1 we provide some visual examples in which Sep-

arable STA outperforms I3D (without attention). We also observe that, VPN significantly

improves the state-of-the-art results on Smarthome. This is largely due to better under-

standing of the fine-grained actions like cut bread, cooking.stirring and so on, by VPN. We

also note that the Temporal Model in this dataset sometimes outperforms the video back-

bone itself, for instance in CS protocol using Temporal Model with P-I3D and Separable

STA as video backbones. This shows the importance of modeling temporal information

in this dataset. As a consequence, the Global Model, especially VPN, shows significant

improvement compared to all our results on Smarthome. Our results also substantiates

the fact that how important is this pose driven attention mechanism for real-world action

recognition. Even today when we are dealing with noisy 3D poses obtained from pose

estimation algorithms [134] in the wild, our attention mechanisms recognize the actions.

It is to be noted that AssembleNet++ [191] outperforms our models due to the additional

use of optical flow as well as object cues. Moreover, it is a NAS architecture which leads

to low generalization power of the framework.

We illustrate in fig. 6.2, the top-5 per-class classification improvement with VPN com-

pared to baseline I3D [3] and to Separable STA [132], utilizing 3D poses. The significant

accuracy improvements for actions with subtle motion like hush (+52.7%), staple book
(+40.7%) and reading (+36.2%) as depicted in fig. 6.2 (a) illustrate the efficacy of VPN

for fine-grained actions. It is worth noting that VPN improves further the classification of

actions possessing similar appearance as compared to separable STA in fig. 6.2 (b). For
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Figure 6.1: Separable STA correctly discriminates the activities with fine-grained details.
The model without attention (I3D) is mislead by imposter objects (displayed in red boxes)
in the image whereas our proposed separable STA manages to focus on the objects of
interest (displayed in green boxes).

Table 6.6: Comparison between the proposed methods with state-of-the-art methods using
different modalities (3D poses and RGB) on Smarthome dataset. The dataset is evaluated
in terms of mean average action classification accuracy (in %) on Cross-Subject (CS)
and Cross-View (CV) protocols. Att indicates attention mechanism.

Methods Year Pose RGB Att CS CV
DT [10] 2011 × X × 41.9 23.7
LSTM [192] 2016 X × × 42.5 17.2
I3D [3] 2017 × X × 53.4 45.1
I3D+NL [85] 2018 × X X 53.6 43.9
AssembleNet++ [191] 2020 × X X 63.6 -
P-I3D 2019 X X X 54.0 48.7
Separable STA 2019 X X X 54.2 50.3
VPN 2020 X X X 60.8 53.5
Temporal Model (I3D base) 2020 X X X 55.4 52.8
Temporal Model (P-I3D base) 2020 X X X - -
Temporal Model (STA base) 2020 X X X 56.6 49.5
Temporal Model (VPN base) 2020 X X X 60.4 49.9
Global Model (I3D base) 2020 X X X 58.5 54.3
Global Model (P-I3D base) 2020 X X X - -
Global Model (STA base) 2020 X X X 60.0 54.6
Global Model (VPN base) 2020 X X X 62.6 55.5
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Figure 6.2: Graphs illustrating the superiority of VPN compared to the state-of-the-art
methods in terms of accuracy (in %). We present the Top-5 per class improvement for VPN
over (a) I3D baseline and (b) Separable STA. In (c), we present a radar for the average mis-
classification score of few action-pairs: lower scores indicate lesser ambiguities between
the action-pairs.
Table 6.7: Hyper-parameter specifications for various state-of-the-art methods evaluated
on Smarthome.

Methods Hyper-parameter CS CV1 CV2

# Neurons 256 128 128

LRCN
Gradient clipping 1 1 1

Dropout 0.5 0.6 0.5
# Neurons 512 128 128

LSTM
Gradient clipping 1 1 1

Dropout 0.5 0.6 0.5
Kernel Regularization L2 (0.01) L2 (0.01) L2 (0.01)

I3D
Actitvity Regularization L1 (0.01) L1 (0.01) L1 (0.01)

Dropout 0.2 0.5 0.5
# NL blocks 1 1 1

I3D+NL
Kernel Regularization L2 (0.01) L2 (0.01) L2 (0.01)
Activity Regularization L1 (0.01) L1 (0.01) L1 (0.01)

Dropout 0.2 0.5 0.5

example, actions like clapping (+44.3%) and flicking hair (+19.1%) are now discrimi-

nated with better accuracy. Further, in fig. 6.2 (c) we present a radar for the average

mis-classification score of few action-pairs. The smaller area under the curve for VPN

compared to I3D baseline and Separable STA shows that it is able to better disambiguate

the action-pairs even with low inter-class variation.

In table 6.7, we provide an overview of our hyper-parameter selection for the state-

of-the-art methods bench-marked on Smarthome. This is to enable reproducibility of the

results reported in this thesis since this dataset has been bechmarked by us. Note that the

kernel and activity regularizers for I3D and I3D+NL are applied in the softmax layer. For

I3D+NL, we experimented with various numbers of NL blocks at early and late stages.

We obtained the highest accuracy with 1 NL block at the last stage. All hyper-parameter

optimisations are performed on the validation set of Toyota Smarthome dataset.
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6.6 Northwestern - UCLA Multi-view dataset

Northwestern- UCLA multi-view dataset is a human-object interaction dataset. Compared

to the other datasets (NTU and Smarthome), it is a relatively small dataset. This intro-

duces the challenge of training our attention mechanism based framework with millions

of trainable parameters. An important requirement of our attention mechanisms is the

availability of a large number of training samples, which is an issue in NUCLA.

We mitigate the issue of small-scale training samples by pre-training our video back-

bones with NTU-60 dataset. This improves the performance of our model by a large

margin. An ablation study in chapter 4 (table 4.3) corroborates the aforementioned obser-

vation. Note that, we pre-train our video backbone with NTU-60 dataset and not pre-train

the whole framework with the attention network. This is due to the diversity of actions

present in both the datasets. Pre-training the whole framework would result in biased

attention scores based on the maximum likelihood of the data distribution.

The pattern of the results on NUCLA in table 6.8 is similar to that of NTU-60 dataset.

The classification accuracy improves for I3D baseline when combined with our attention

mechanism. It is important to note that similar to NTU-60, here on NUCLA Separable STA

under-performs w.r.t. P-I3D. Consistently, VPN outperforms all the proposed video back-

bones as well as the state-of-the-art results. HPM + TM [193] which achieves classification

accuracy close to our attention models utilizes the depth-map information. The depth map

is useful in this dataset because of multiple camera setups. Consequently, some videos are

captured with the actor performing the action sideways, where the depth information is

more crucial compared to the appearance under such scenario of occlusions.

We also note that our proposed Temporal Model and consequently Global Model does

not significantly improve the action classification accuracy on NUCLA. This is mainly be-

cause of the lack of importance of temporal information in this human-object interaction

dataset. These videos with very short time duration hardly encode any temporal order or

dependencies.

Thus, spatial and temporal attention mechanisms in videos should be handled in a

strategic manner as one or the other domain could be more discriminative while classifying

actions in videos.

6.7 Conclusion

In this chapter, we have evaluated our proposed algorithms based on multi-modal fusion

and attention mechanisms on public datasets. Firstly, we evaluate our Multi-modal Fu-

sion strategy with similar action discrimination module on three public datasets CAD60,

CAD120 and MSRDailyActivity3D. Our results outperform the state-of-the-art results on all
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Table 6.8: Comparison between our proposed methods with state-of-the-art using different
modalities (3D poses, Depth and RGB) on NUCLA dataset. The dataset is evaluated in
terms of action classification accuracy (in %) on Cross-View (V 3

1,2) protocols. Att indicates
attention mechanism. Pose indicates its usage only in the training phase. ∗ indicates that
this method has been re-implemented for this dataset.

Methods Year Data Att V 3
1,2

AOG [124] 2014 Depth × 45.2
DVV [194] 2012 Depth × 58.5
CVP [195] 2013 Depth × 60.6
HPM+TM [193] 2016 Depth × 91.9
Lie group [180] 2014 Pose × 74.2
HBRNN-L [148] 2014 Pose × 78.5
view-invariant [159] 2017 Pose × 86.1
Ensemble TS-LSTM [182] 2017 Pose × 89.2
SGN [196] 2020 Pose × 92.5
Hankelets [197] 2012 RGB × 45.2
nCTE [198] 2014 RGB × 68.6
NKTM [199] 2015 RGB × 75.8
I3D∗ [3] 2017 RGB × 86.0
Action Machine [185] 2018 RGB × 92.3
Glimpse Cloud [106] 2018 RGB+ Pose X 90.1
P-I3D 2019 RGB + Pose X 93.1
Separable STA 2019 RGB + Pose X 92.4
VPN 2020 RGB + Pose X 93.5
Temporal Model (I3D base) 2020 RGB + Pose X 89.5
Temporal Model (P-I3D base) 2020 RGB + Pose X 88.6
Temporal Model (STA base) 2020 RGB + Pose X 90.8
Temporal Model (VPN base) 2020 RGB + Pose X 91.4
Global Model (I3D base) 2020 RGB + Pose X 91.0
Global Model (P-I3D base) 2020 RGB + Pose X 93.5
Global Model (STA base) 2020 RGB + Pose X 92.8
Global Model (VPN base) 2020 RGB + Pose X 93.7
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the three small-scale public datasets. This fusion strategy makes use of all the modalities in

a strategic manner so as to take into account their pros for the task of classifying actions.

Although this method performs substantially well on small scale datasets, not scalable

enough for large datasets. This Multi-modal method relies too much on the distribution of

validation data which makes it a weak classifier for large scale dataset. A method adapting

global optimization to optimize all the cues is a future research direction.

Then we evaluated our proposed attention mechanisms on four public datasets and

compared them with the state-of-the-art methods. We observe that our proposed P-I3D

achieves state-of-the-art results on NTU-60 and NUCLA. Even P-I3D outperforms our pro-

posed Separable STA but with three times more trainable parameters. Simultaneously,

Separable STA is the attempt to generalize the objective of P-I3D, specifically to attain

spatio-temporal attention in set of images without pre-defined constraints of human body

parts. The results of Separable STA on Smarthome dataset validates our approach to gen-

eralize over a challenging scenario where occlusion and temporal ordering plays a vital

role in classifying actions.

But these methods P-I3D and Separable STA do not take into account the mis-alignment

of 3D poses with the image frames. These 3D poses are in turn exploited for computing

attention weights. Our proposed VPN based framework introduces the concept of Spatial

embedding which enforces the 3D poses and the corresponding image frames to be pro-

jected into a common feature space. This enables the aforementioned attention models

to perform exceptionally for all the datasets we validate. In addition, we also make use

of the graphical structure of the 3D poses through GCNs in VPN. Cumulatively, this model

achieves the state-of-the-art results which includes outperforming our proposed P-I3D and

Separable STA on all the four datasets.

Finally we have evaluated our temporal representation of videos through our Tempo-

ral Model on all the datasets. The results on Temporal Model show a similar trend on

NTU-60 and NUCLA, pertaining to lower classification accuracy compared to their video

backbones. But this model extracts complementary information owing to the temporal

representation of the videos and hence when combined with the Basic Model (only the

video backbone probabilistic scores) - achieves the state-of-the-art results. We have val-

idated the Temporal representation of videos with I3D backbone and also with our pro-

posed P-I3D, Separable STA and VPN as video backbones. We also conclude that effective

video backbones result in more effective action classification.



Chapter 7

Conclusion and Future Work

In this thesis we have proposed and evaluated several methods for action recognition in

videos. Our experiments demonstrated that we have outperformed the state-of-the-art

methods on seven public datasets. We conclude our work pointing out key contributions

(section 7.1) and their limitations (section 7.2). Finally, we discuss short and long-term

perspectives of our work (section 7.3).

7.1 Key Contributions

• Multi-modal Video Representation - We proposed a video representation utilizing

multi-modal features from several cues. Current state-of-the-art mainly focuses on

combining RGB and optical Flow, whereas we have proposed an effective way of

combining RGB, optical flow and 3D Poses taking pros from each of them. The nov-

elty in this work includes the two-level fusion mechanism dedicated for the specific

modalities, firstly an early feature fusion of RGB and optical flow and secondly, a

score level fusion of the aforementioned combined cues and 3D poses. We show that

this is one of the most effective fusion mechanism to discriminate videos pertaining

to different actions, utilizing the discriminative features from each modality. Finally,

the challenge to disambiguate similar actions is addressed by proposing a similar

action discriminator module. Based on the distribution of data in the validation set,

this module invokes binary classifiers to disambiguate similar actions.

• Spatio-temporal attention mechanisms - We proposed three variants of attention

mechanism for action recognition in short videos. Inspired from the effectiveness of

our Multi-modal representation of videos, we have proposed a pose driven attention

mechanism which makes use of the temporal evolution of 3D poses (human joints)

to (i) weight the pertinent human body parts, (ii) weight the RoI in an image frame,
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and (iii) weight the key frames in a video, relevant for classifying an action in videos.

We proposed our Spatial attention network (P-I3D) to accomplish (i) and Separable

STA, another attention network to accomplish (ii) and (iii) in a dissociated manner.

Both these variants of attention network provide attention weights based on pose

backbone (which are generally LSTMs) pre-trained for action classification on 3D

poses. This pre-training trick enables the LSTMs to better understand the evolution

of poses.

Then, we proposed a Pose driven attention mechanism for classifying actions, to

provide spatial and temporal attention weights coupled together. We proposed a

module named VPN, which makes use of the graphical structure of human anatomy

through GCNs (instead of LSTMs), and provides spatio-temporal attention weights

to the RGB cue. Apart from these steps to mitigate the limitations of the afore-

mentioned frameworks, we also handled the problem often overlooked in vision

exploiting multiple modalities. That is, the mis-alignment of 3D poses to the image

frames. We proposed a spatial embedding module to enforce the 3D poses and the

image-level features in a common semantic space. This improves the efficacy of our

proposed attention network while enabling the framework to better discriminate

similar and fine-grained actions in the video space compared to the prior methods.

• Temporal representation of videos - Our earlier proposed methods are all designed

for short action videos. The presence of long and complex actions in the daily lives

inspired us to dig deeper towards temporal representation of videos. We have pro-

posed a Temporal Model, which divides a video at different temporal granularities.

At a temporal granularity, the video is divided into several temporal segments, which

correspond to a partition of the video. Our Temporal Model first processes these

temporal segments through 3D CNN and then each granularity is represented by a

linear combination of their constituent segments. Finally, a video is represented by

the combination of all the granularities through a recurrent function. We improve

this global video-level representation by providing a pose driven two-level attention

mechanism - first to soft-weight the different temporal segments for each granular-

ity and then to soft-weight the granularities. We show that this Temporal Model

computes complementary features w.r.t. a model without temporal decomposition.

To ensure completeness of our framework, we proposed a Global Model - a straight-

forward fusion of Temporal Model and a Basic Model (the model without temporal

decomposition). This Global Model with our attention mechanism as video back-

bones outperform state-of-the-art results on four public datasets.
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7.2 Limitations

The methods in this thesis have still some limitations. Some of these limitation can be

extended and solved in the near future. While others are still open research questions.

In this section, we present the limitations of our approach to solve the task of action

recognition.

• Multi-modal Video Representation - Although we show a significant improvement

in the classification accuracy of three public datasets compared to the state-of-the-

art methods, it is not an optimal solution for generic datasets. Firstly, the deep

features extracted are optimized independently and finally used as feature extractors

rather than taking the full advantage of Deep Neural Network methods, which is

global optimization. The next limitation of this fusion strategy is that this method

falls short, as the model designer needs to choose empirically which intermediate

features to consider for fusion. Evaluating all of the possibilities by hand would

be extremely intensive or simply intractable. Indeed, the more modalities and the

deeper they are, the more complicated it is to choose a mixture. This is all the more

true when enabling nested combinations of multi-modal features. It is in fact a large

combinatorial problem.

Finally, the similar action discriminator module which is responsible to disambiguate

similar actions, highly relies on the likelihood of the validation data. If the sampling

of the validation data fails to capture the critical data samples that are not often

separable in a common feature space, the aforementioned module fails to invoke a

binary classifier for similar actions at inference time. Another concern is employing

too many binary classifiers for similar action pair is too costly in terms of space and

time for a model complexity.

• Spatio-temporal attention mechanisms - In our proposed methods for classifying

action in short videos, we use pose driven attention mechanism. We compute the

attention weights for the RoI in an image and also the key frames in a video. This is

how our dependency on the 3D poses to compute rational attention weights which

are never evaluated (due to no Ground-truth). We are aware of the fact that pose

estimation algorithms though deployed in the wild are not effective in complex sce-

narios especially in case of occlusions. Visually, we have seen that the 3D poses

in Smarthome dataset (extracted using LCRNet algorithm) are quite noisy. Thus,

in such scenarios bad quality 3D poses surely hamper the computation of attention

weights.

The next question is where to apply the attention weights? Initially in P-I3D, we

conducted few experiments to conclude that applying attention weights at the last
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layer of a video backbone is more effective than applying it in the earlier layers.

However, we believe that attention weights should be applied from the very initial

convolutional layers, instead of applying them only at the end where the features

represent a squeezed part of the video. Then, why attention does not seems to work

when applied in the earlier layers? It is because of the max pooling operation in

the CNNs which diminishes the semantic information of the video if high attention

weights are applied to a certain region in the initial layers. Anyways, we still believe

that applying attention in the initial layers or replacing conventional layers with

attentional layers will be more effective than conventional way of applying attention

weights.

• Temporal representation of videos - In this method, we explore multiple granular-

ities in a video. However, this number of granularities is a hyper-parameter and is

a choice of an expert depending on the dataset complexity. We observed that this

hyper-parameter Gmax is sensitive to the duration of the videos and also on the na-

ture of actions. For instance, a cooking action composed of several sub-actions is a

complex action in nature compared to an action like drinking. Thus, a wrong choice

of the parameter number of granularities can hamper the performance of the action.

Moreover, at a granularity, we divide the video into equally spaced non-overlapping

partitions that we call temporal segments. This linear partitioning mechanism is a

brute-force mechanism of dividing a video. We also believe that such a mechanism is

not optimal as this might damage the temporal structure or continuity of an action.

7.3 Future Work

7.3.1 Short-term Perspectives

• Generating 3D poses and classifying them for an action - We aim at exploring

more the effects of different algorithms to generate 3D poses for action recogni-

tion. For instance, LCRNet [134] computes frame-wise 3D poses whereas Video-

Pose3D [200] uses temporal convolutions to compute 3D poses in a video. These 3D

poses differ in terms of their quality under occlusions and also in terms of smooth-

ness. However, both these algorithms have their pros, one for generating high-

quality smooth 3D poses for complex situations and another for generating precise

3D poses reflecting the fine-grained motion in the videos. Thus, the required quality

of 3D poses depend on the type of action to be recognized. And so, generating these

3D poses and classifying them in an end-to-end manner is an interesting direction of

research. This strategy should enable the model to generate 3D poses appropriate

for classifying the actions.
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• Improving the Temporal Model - For temporal representation of videos, we have

incorporated our proposed spatio-temporal attention based video backbones for ef-

fectiveness and completeness of our framework. Thus, we use two attention net-

works for these frameworks, one for the video backbone and another for the Tem-

poral Model. In order to have a global optimization, and better learning of attention

weights compared to current dissociated learning mechanism, we could incorporate

both the attention networks into one. This single attention network will serve both

the functionalities of providing attention weights to the video backbone as well as

for the temporal representation of videos.

Another minor replacement can be done with processing the 3D poses in GCNs fol-

lowed by TCNs instead of GRUs. Our literature survey and experiments with VPN

shows a clear improvement of using the graphical structure of the human spatial

configuration while computing attention weights through GCNs.

• Extending Global Model for Action Detection - As mentioned in the beginning of

the thesis, we aim at finally detecting action in complex scenarios. The first step

is action classification in clipped videos. Now, when we have a working frame-

work for action recognition, i.e. the Global Model which could work effectively for

short as well as long actions, extending it for untrimmed videos is an obvious future

work [201].

7.3.2 Long-term Perspectives

• NAS for Multi-modal video representation - One of the limitation of the cur-

rent state-of-the-art multi-modal fusion mechanisms involve handcrafted choice of

feature space where the fusion must take place. In fact, such fusion strategies

do not take into account other possibilities of fusing modalities like (i) at which

layers the fusion must take place, (ii) which convolutional operations and activa-

tions each modalities must undergo before and after fusion. Some automated tech-

niques [202, 8] have been applied to solve this problem using AutoML but limited

to RGB and optical flow modalities. Thus, one possible research direction can be

towards searching models using NAS (Neural Architecture Search) for combining

modalities like RGB and 3D poses for recognition of ADL. The challenges are to (i)

minimize the searching space complexity, (ii) taking benefit of currently available

models pre-trained on Kinetics instead of using models from scratch.

• Towards hard-attention using RL - One of the primary benefit of using soft-

attention is its formulation which is differentiable. This enables these mechanisms

to be trained end-to-end. At the same time, hard attention has its own advantages
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with only processing the most meaningful part of the video ignoring the rest. On

the other side, current state-of-the-art 3D CNNs for action recognition are either

fed with random crops from a video or tracks of human body while training them.

But as we know data augmentation is a complex process for video based networks.

Random cropping is not often optimal for ADL whereas human crops are not op-

timal for sport videos, while training action recognition systems. Thus, to have a

generic model with deeper understanding of the semantics of the actions, a step

towards using Reinforcement Learning (RL) for choosing these crops of image set

(stack of images) can be a possible solution. The other solution can be to use a sim-

ilar concept but with a differential loss. This might lead to an extension of spatial

transformers [109] in the temporal domain. However, the challenge is that unlike in

the image domain, the transformations in a video must not be an affine transforma-

tion to select the RoI in a video. Rather such transformations should be dependent

on the human tracklets.

• View Adaptive Action Recognition - View adaptation is one of the challenge in ac-

tion recognition. We know that CNNs are not view-adaptive. For image classification

networks, we often perform data augmentation technique like rotation specifically

to mitigate the problem of variance in view. However, for video based networks,

this is still a challenging task. We know that 3D poses are robust to views and thus,

somewhat mitigates this problem of view variance in action recognition. But what

about view-invariant property of RGB modality? One possible future direction is to

generate RGB images from a view that facilitate action recognition using adversarial

loss.

• Domain Adaptation for Action Recognition - The limitation of the current action

recognition algorithms is that they exhibit environmental bias. Training a model in

one environment and deploying in another results in a drop in action classification

accuracy due to an unavoidable domain shift. Learning representations that gen-

eralize over source and target distributions for recognizing action is still an open

research problem. Utilizing modality like 3D poses which are robust to domain

shifts, illumination and views are an obvious choice for some sort of control vectors

to accomplish this aforementioned task.

• Weakly-supervised Action Detection - With Action detection algorithms advancing

in the current era, weakly supervised action detection under the absence of tempo-

ral annotations is a possible research direction. Current weakly-supervised action

detection algorithms use Multiple Instance Learning (MIL) to learn the actionness in

an untrimmed video as in [203]. But most of these algorithms are limited to videos
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having the same action instances repeated in an untrimmed video. Consequently, we

aim at using video-level labels to disambiguate set of actions occurring in a video.
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