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Résumé
La �brillation atriale (FA) est l'arythmie soutenue la plus couramment diagnostiquée

dans la pratique clinique. Elle est responsable de taux élevés d'hospitalisation et de décès.
Les mécanismes électrophysiologiques qui sous-tendent ce trouble du rythme cardiaque ne
sont pas complètement compris. Une stratégie non invasive et e�cace pour étudier cette
arythmie consiste à analyser l'activité atriale (AA) présente dans l'électrocardiogramme
(ECG) de surface. Toutefois, l'AA est masquée par l'activité ventriculaire (AV) dans
chaque battement, et elle a une amplitude faible, ce qui rend di�cile son analyse.

Au �l des années, des méthodes de traitement du signal ont aidé les cardiologues pour
l'étude de la FA en extrayant l'AA de l'ECG. En particulier, des méthodes matricielles
de séparation aveugle de sources (SAS) se sont révélées des outils d'extraction de l'AA
e�caces. Cependant, certaines contraintes doivent être imposées pour garantir l'unicité
de ces techniques de factorisation matricielle et, bien que mathématiquement cohérentes,
elles peuvent manquer de fondements physiologiques, avec pour conséquence d'entraver
l'interprétation des résultats.

En revanche, les décompositions tensorielles peuvent garantir l'unicité sous des con-
traintes moins restrictives. En particulier, la décomposition en termes de blocs (Block
Term Decomposition, BTD), récemment proposée comme technique SAS, peut être
unique sous certaines contraintes satisfaites par les facteurs matriciels, facilement ver-
i�ées tant du point de vue mathématique que physiologique. Par ailleurs, les sources
cardiaques peuvent être bien modélisées par des fonctions mathématiques spéci�ques
qui, lorsqu'elles sont mappées dans les facteurs matriciels structurés de la BTD, présen-
tent un lien avec leur rang. Un autre avantage par rapport aux méthodes matricielles
est que l'approche tensorielle est capable d'extraire l'AA à partir d'enregistrements ECG
très courts.

Dans la présente thèse de doctorat, on étudie tout d'abord le modèle Hankel-BTD
comme outil d'extraction d'AA dans des épisodes de FA persistante, avec une validation
basée sur des expériences statistiques concernant une population de patients atteints de
FA et plusieurs types de segments ECG. Les enregistrements ECG avec des intervalles
courts entre les battements cardiaques et de l'AA à faible amplitude sont des cas di�ciles
courants à ce stade de l'arythmie. Ces cas motivent l'utilisation d'une autre approche
tensorielle, appelée Löwner-BTD, pour estimer un signal AA de meilleure qualité. Une
telle approche est présentée dans le cadre d'une nouvelle stratégie optimale pour assurer
la structure de Löwner qui est implémentée comme une variante d'un algorithme robuste
récemment proposé pour le calcul de la BTD. Une autre contribution est la modélisation
des ECG en FA persistante par le modèle dit de Hankel-BTD couplé, qui o�re une
meilleure extraction d'AA avec un coût de calcul réduit par rapport à son homologue
non couplé.

D'autres contributions concernent les dé�s qui découlent du problème de l'extraction
d'AA des ECG de FA, tels que la détection de la source d'AA parmi d'autres sources sé-
parées dans des expériences réelles, où la vérité est inconnue. Pour cette tâche, plusieurs
approches utilisent des algorithmes d'apprentissage automatique et des réseaux de neu-
rones sont évaluées, o�rant une précision satisfaisante. Un autre dé� à relever est la
di�culté de mesurer la qualité de l'estimation de l'AA. De nouveaux indices sont pro-
posés et évalués pour quanti�er la qualité de l'estimation AA sur l'enregistrements ECG
pendant la FA.



En résumé, cette thèse de doctorat fournit la première étude approfondie de
l'application des techniques de traitement du signal tensoriel pour l'analyse de la
�brillation atriale, en mettant en évidence l'intérêt de l'approche tensorielle et son
potentiel pour la prise en charge et la compréhension de ce trouble cardiaque complexe.

Mots clés: Décomposition en Terme de Bloc, Décompositions Tensorielles, Électrocar-
diogramme, Fibrillation Atriale, Séparation des Sources.





Abstract
Atrial Fibrillation (AF) is the most common sustained arrhythmia diagnosed in clin-

ical practice, responsible for high hospitalization and death rates. Furthermore, the elec-
trophysiological mechanisms underlying this cardiac rhythm disorder are not completely
understood. A non-invasive and e�cient strategy to study this challenging cardiac con-
dition is analyzing the atrial activity (AA) from the electrocardiogram (ECG). However,
the AA during AF is masked by the ventricular activity (VA) in each heartbeat and often
presents a very low amplitude, hampering its analysis.

Throughout the years, signal processing methods have helped cardiologists in the
study of AF by extracting the AA from the ECG. In particular, matrix-based blind source
separation (BSS) methods have proven to be e�cient AA extraction tools. However, some
constraints need to be imposed to guarantee the uniqueness of such matrix factorization
techniques that, although mathematically coherent, may lack physiological grounds and
hinder results interpretation.

In contrast, tensor decompositions can ensure uniqueness under more relaxed con-
straints. Particularly, the block term decomposition (BTD), recently proposed as a BSS
technique, can be unique under some constraints over its matrix factors, easily satisfy-
ing in the mathematical and physiological sense. In addition, cardiac sources can be
well modeled by speci�c mathematical functions that, when mapped into the structured
matrix factors of BTD, present a link with their rank. Another advantage over matrix-
based methods is that the tensor approach is able to extract AA from very short ECG
recordings.

The present doctoral thesis has its �rst focus on the investigation of the Hankel-BTD
as an AA extraction tool in persistent AF episodes, with validation based on statistical
experiments over a population of AF patients and several types of ECG segments. ECG
recordings with a short interval between heartbeats and an AA with signi�cantly low
amplitude are challenging cases common in this stage of the arrhythmia. Such cases
motivate the use of other tensor-based approach to estimate an AA signal with better
quality, the Löwner-BTD. Such an approach is presented along a novel optimal strategy
to ensure the Löwner structure that is implemented as a variant of a recently proposed
robust algorithm for BTD computation. Another contribution is the model of persistent
AF ECGs by a coupled Hankel-BTD, which shows some advantages in terms of improved
AA extraction and reduced computational cost over its non-coupled counterpart.

Further contributions focus on challenges that arise from the problem of AA ex-
traction from AF ECGs, such as detecting the AA source among the other separated
sources in real experiments, where the ground truth its unknown. For this task, sev-
eral approaches that use machine learning algorithms and neural networks are assessed,
providing satisfactory accuracy. Another challenge that is dealt with is the di�culty in
measuring the quality of AA estimation. Here, new indices for AA estimation quality
from ECG recordings during AF are proposed and assessed.

In summary, this PhD thesis provides the �rst thorough investigation of the appli-
cation of tensor-based signal processing techniques to the analysis of atrial �brillation,
showing the interest of the tensor approach and its potential in the management and
understanding of this challenging cardiac condition.

Keywords: Atrial Fibrillation, Block Term Decomposition, Electrocardiogram, Source
Separation, Tensor Decompositions.
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Notation
Scalars, vectors, matrices, and tensors are represented, respectively, by lower-case (a,

b, c, ...), boldface lower-case (a, b, c, ...), boldface capital (A, B, C, ...), and calligraphic
(A, B, C, ...) letters. If nothing else is explicitly stated, the meaning of the following
symbols are:

(·)T - matrix transpose

(̂·) - estimate of its argument
|| · ||2 - l2-norm
|| · ||2,1 - matrix mixed l2,1-norm, de�ned as the sum of the l2-norms of its

argument's columns
|| · ||F - Frobenius norm
| · | - absolute value
E[·] - mathematical expectation
diag(·) - builds a diagonal matrix by placing its vector argument along the

diagonal
Di(A) - represents the diagonal matrix with the ith row of a matrix A

forming its diagonal
bdiag(·) - builds a block diagonal matrix by placing its vector or matrix ar-

gument along the diagonal
vec(·) - builds a column vector by stacking the columns of its matrix ar-

gument
◦ - outer product
⊗ - Kronecker product
� - Khatri-Rao product (column-wise Kronecker product)
� - Khatri-Rao product (partition-wise Kronecker product)
�K - block Khatri-Rao product
IN - identity matrix of order N
1N - a column vector of ones of length N
0M×N - a matrix of zeros of dimensions M ×N

Given a third-order tensor A ∈ CI×J×K , with scalars ai,j,k, its frontal slices are
represented by A..k ∈ CI×J . Given a matrix A ∈ CI×J , with scalar entries ai,j , its ith
row and the jth column are represented by ai. and a.j , respectively. When not stated
otherwise, the mean and standard deviation are represented by µ and σ, respectively.
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ABS - Average Beat Subtraction
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AGL - Alternating Group Lasso
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1.1 Context and motivation

Atrial Fibrillation (AF) is the most frequent sustained arrhythmia encountered in
clinical practice, responsible for an increasingly high number of hospitalizations and
deaths [51], [78], [59]. This challenging cardiac condition is known as the last great fron-
tier in cardiac electrophysiology, as the electrophysiological mechanisms responsible for
its triggering and maintenance are not completely understood [60]. A non-invasive and
cost-e�ective way to study this cardiac rhythm disorder is analyzing the atrial activity
(AA) signal from the electrocardiogram (ECG). However, the AA during AF is charac-
terized by low-amplitude �brillatory waves, called f-waves, that are masked by the QRS
complex, responsible for the ventricular activity (VA), in each heartbeat and sometimes
present an amplitude lower than the noise, making di�cult its analysis [74].

Over the years, signal processing techniques have helped cardiologists to better un-
derstand AF by extracting and analyzing the AA from the ECG. Pioneering techniques
focused on subtracting an average beat from each QRS complex of the ECG [96], [101].
Such techniques require long duration recordings and assume that an average beat can
well model each QRS complex [2], which actually presents some variations due to respi-
ratory and muscular activity. An alternative approach takes advantage of the fact that
AA and VA during AF are decoupled and uses matrix-based blind source separation
(BSS) methods to perform the AA extraction [66], [88]. Matrix factorization techniques
requires imposing some constraints and assumptions about the sources in order to guar-
antee uniqueness. Such contraints may be mathematically coherent, but they are not
always physiologically satis�ed and may lack physiological grounds, making di�cult re-
sults interpretation.

On the other hand, tensor decompositions present some remarkable features, such as
uniqueness up to mild conditions. In particular, the block term decomposition (BTD)
[64], which was recently proposed as a tensor-based BSS method [65], can be unique
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by imposing some contraints over its matrix factors that are both mathematically and
physiologically easy to satisfy. Also, cardiac sources can be well modeled by particular
mathematical functions that, when mapped into structured matrix factors, lead quite
naturally to this tensor decomposition, pointing to its suitability for AF ECG analysis.
To date, this decomposition has not yet been fully explored in the BSS approach for
AA analysis during AF, opening some challenging questions about the feasibility and
performance of tensor factorization approaches in this increasingly active research �eld
of biomedical engineering.

1.2 Objectives

The present doctoral thesis takes a step from the matrix-based BSS formulation, aim-
ing to investigate and explore the feasibility and e�ciency of the tensor-based formulation
in this challenging biomedical scenario. Such approach is motivated by the remarkable
features presented by tensor decompositions and its connection with mathematical mod-
els that can well approximate physiological signals in AF ECGs.

1.2.1 General objectives

The �rst goal of the present thesis is to validate and investigate the performance of
the Hankel-BTD in varying-length segments in a population of patients su�ering from
persistent AF, as well as analyze the source signals after performing BSS. Such inves-
tigation leads to the de�nition of new indices to measure AA estimation quality and
complexity, novel approaches to classify cardiac sources, and the use of new tensor-based
techniques for challenging persistent AF scenarios. The latter results in an improved
optimization strategy that ensures the structure of the employed tensor decomposition,
proving to be essential to the improvement of BSS performance.

1.2.2 Speci�c objectives

More detailed, the speci�c objectives of the present doctoral thesis are the following:

• Investigate and validate the feasibility and performance of the Hankel-BTD as an
AA extraction tool for AF analysis.

• Propose new indices to measure AA estimation quality and complexity in AF ECGs.

• Propose and validate new tensor models to perform AA extraction in challenging
scenarios of persistent AF ECGs.

• Assess classi�cation algorithms to accurately select the AA source among the other
source estimates after performing BSS.

• Propose and implement a novel optimal strategy to ensure the structure of the
Löwner-BTD matrix factor.

1.3 Database and preprocessing

The experiments reported in this doctoral thesis consider segments of synthetic mod-
els and real standard 12-lead AF ECG recordings from di�erent patients su�ering from
persistent AF.
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The real AF ECG recordings belong to the PERSIST database provided by the Car-
diology Department of the Princess Grace Hospital Center, Monaco. All the recordings
are acquired at a 977 Hz sampling rate and are preprocessed by a zero-phase forward-
backward type-II Chebyshev bandpass �lter with cuto� frequencies of 0.5 and 40 Hz, in
order to suppress high-frequency noise and baseline wandering. A detailed description of
the real AF ECG database used in the experiments is given at each chapter of the Part II
of the present doctoral thesis. Experiments consider a population of up to 58 persistent
AF patients.

When not stated otherwise, the synthetic signals are generated as follows. To simulate
the AA signal during AF, the model proposed in [101] that mimics the f waves is used.
This model is given by:

SAA(m) = −
∑P

p=1 ap(m) sin (p θ(m)) (1.1)

with modulated amplitude and phase respectively given by:

ap(m) = 2
pπ

[
a+ ∆a sin

(
2π faFs

m
)]

and
θ(m) = 2π f0Fs

m+
(

∆f
Ff

)
sin
(

2π
Ff

Fs
m
)

where a is the sawtooth amplitude, ∆a the modulation peak amplitude, fa the amplitude
modulation frequency, Fs the sampling frequency, f0 the frequency value around which
θ(m) varies sinusoidally, ∆f the maximum frequency deviation and Ff the modulation
frequency.

In order to simulate the VA signal, a synthetic T-wave modeled by a cosinus function
as in [31] and three synthetic QRS complexes modeled by rational functions were gener-
ated according to the model function proposed in [4] and added together. This model is
given by:

SV A(m) = R(e−iΘrna (eim)) (1.2)

where Θ is the coe�cient parameter and rna (·) is a basic normalized rational function
given by:

rna (z) :=

[
1− |a|
1− āz

]n
(1.3)

where ā is the reciprocal of the pole a and n is a multiplicity order. The three synthetic
models are given by varying di�erent values of Θ ∈ {π2 ,

π
4 , 0}.

Finally, the noise signal that simulates the interference present in ECGs is represented
by an additive white Gaussian noise (AWGN) with zero-mean and variance σ2. The
mixing matrix is also generated according to a Gaussian distribution, with scaling factors
chosen chosen to obtain an average power ratio between the signals consistent with clinical
ECGs.

In addition, alternative models to generate synthesized AF recordings can be found
in the literature [91], [104], [83].

1.4 Thesis structure and contributions

The remaining of the present doctoral thesis consists in 8 chapters (Chapters 2 � 9)
grouped in 3 parts. Part I includes the present chapter and other 3 chapters (Chapters 2
� 4) and presents a theoretical background necessary for the comprehension of this thesis,
as well as the fundamental state-of-the-art that supports and motivates the contributions
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reported later. Part II consists in 4 chapters (Chapters 5 � 8) and presents the original
contributions of the present doctoral thesis. Finally, Part III concludes this work and
consists in a single chapter, that is, Chapter 9. More speci�cally:

• Chapter 2 presents the basic concepts of cardiology, starting from the anatomy
of the human heart and its conduction system. Then, a particular attention is
given to the ECG, a well-known non-invasive tool whose interpretation and prepro-
cessing are fundamental to detect arrhythmias, generally described in this chapter.
The last section of this chapter is entirely devoted to AF. First some statistics on
AF are presented, followed by theories and current knowledge of the electrophysio-
logical mechanisms underlying this challenging arrhythmia. The section continues
presenting some classi�cation schemes of AF and �nishes by describing its main
therapies.

• Chapter 3 describes the main literature behind the problem of noninvasive AA
extraction for AF analysis. First, the classical methods that focus on VA cancel-
lation are presented, then the matrix- and tensor-based BSS approaches �nish the
chapter.

• Chapter 4 enters in the mathematical background part of the present doctoral the-
sis, introducing the fundamental concepts of multilinear algebra, with particular
attention to the main tensor decompositions, including those used in the experi-
ments reported in the following chapters, i.e., BTD and coupled BTD.

• Chapter 5 is the �rst chapter of the contributions part, focusing on the proposed
indices to measure the AA estimation quality of a source. Di�erent approaches for
AA source detection are also explored in this chapter.

• Chapter 6 focuses on the investigation of the feasability and reproducibility of
Hankel-BTD as an AA extraction tool. Experiments over a population of patients
su�ering from persistent AF and a whole AF ECG recording are reported in this
chapter.

• Chapter 7 proposes alternative tensor-based approaches to perform AA extraction
for AF analysis. First, the Löwner-BTD is introduced as a tool to estimate the
VA that, when subtracted from the original ECG, ideally results in the AA signal.
Then, the coupled Hankel-BTD is introduced as a more cost-e�ective AA extraction
tool than its non-coupled counterpart.

• Chapter 8 starts by presenting a recently proposed algorithm, called alternating
group lasso (AGL), to compute the BTD that presents interesting advantages over
the existing ones. Then, its Hankel-constrained version is assessed as an AA ex-
traction tool over a few patients su�ering from persistent AF. The chapter �nishes
with a proposal of an optimal strategy, yielding the Löwner-constrained version of
AGL, to compute the Löwner-BTD approach presented in Chapter 7. The Löwner-
constrained AGL is also validated as an AA extraction tool at the end of this
chapter.

• Chapter 9 concludes the manuscript by summarizing the study that has been
conducted and discussing the experimental results that validate the presented con-
tributions. Then, the present doctoral thesis is ended by focusing on potential new
perspectives of tensor-based AA extraction for persistent AF analysis.
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Figure 1.1: Block diagram summarizing the di�erent contributions of the present doctoral
thesis and their links.

To facilitate the comprehension of the di�erent contributions and their links presented
in this doctoral thesis, a block diagram is shown in Figure 1.1.

1.5 Scienti�c production

The results of the present doctoral thesis have yielded several publications in high
quality international journals and conferences.

1.5.1 Journals

1. J. H. de M. Goulart, P. M. R. de Oliveira, R. C. Farias, V. Zarzoso, and P. Comon,
�Alternating group lasso for block-term tensor decomposition and application to
ECG source separation�, IEEE Transactions on Signal Processing, vol. 68, pp.
2682-2696, 2020.

2. P. M. R. de Oliveira and V. Zarzoso, �Block term decomposition of ECG recordings
for atrial �brillation analysis: temporal and inter-patient variability�, Journal of
Communication and Information Systems, vol. 34, no. 1, pp. 111-119, Apr. 2019.

3. P. M. R. de Oliveira, J. H. de M. Goulart, C. A. R. Fernandes and V. Zarzoso,
�Persistent atrial �brillation analysis using a tensor decomposition with Löwner
constraints�, submitted, 2020.
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2.1 Introduction

The present chapter �rst aims at providing a general description of the human heart
anatomy, the cardiac conduction system, the basic concepts of the ECG and its 12-lead
con�guration. The main objective of this �rst part of the chapter is to provide the reader
the fundamental knowledge of the heart activity and the electrophysiological mechanisms
behind it. Particular attention is given to the mechanisms of the ECG and its 12-lead
con�guration, a well-known tool used to record heart's electrical activity and essential for
a rapid diagnosis of arrhythmias. The second part of this chapter is entirely devoted to
AF, showing some statistics and the current knowledge of the mechanisms, classi�cation
and treatments of this challenging cardiac condition. The goal of this second part is
to show the reader the worrisome scenario of AF and provide the electrophysiological
knowledge necessary to understand the connections between AF and the signal processing
techniques presented later in this thesis.

2.2 The human heart

Located within the thoracic cavity, between the two lungs and above the diaphragm,
the heart is one of the most important organs in the human body. Its function is to
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pump oxygenated blood from the lungs to all the tissues of the body and pump back
deoxygenated blood from all the body tissues to the lungs, for oxygenation. The heart
is covered by a thick �broelastic sac called pericardium, which is composed of three
layers: epicardium (the outer membrane), myocardium (the middle cardiac muscle), and
endocardium (the thin inner layer).

The internal anatomy of the heart is illustrated in Figure 2.1 and consists in four
chambers made entirely of myocardium. The two upper chambers are named atria,
whereas the two lower chambers are called ventricles. The right side of the heart is
responsible to pump blood from the body to the lungs and it is separated by a wall
of tissue called septum from the left side, whose function is to pump blood from the
lungs throughout the body [106]. More speci�cally, the circulatory circuit consists in the
following steps:

1. The right atrium (RA) receives deoxygenated blood from the body via the superior
vena cava and inferior vena cava, sending it right after to the right ventricle (RV)
through the tricuspid valve.

2. The RV then sends the blood to the lungs for oxygenation via the pulmonary artery,
passing through the pulmonary valve. After, the blood now rich in oxygen is sent
to the left atrium (LA) through the four pulmonary veins and then from the LA
to the left ventricle (LV) via the mitral valve.

3. Passing through the aortic valve, the blood is now pumped from the LV into the
aorta artery, which is the largest and most important artery in the human body.
The aorta then sends the oxygenated blood to all the body tissues.

4. The deoxygenated blood returns from the body to the heart entering in the RA
and the cycle starts again.

The �rst two steps compose the pulmonary circuit, whereas the last two steps consist
in the systemic circuit. Together, the pulmonary and systemic circuits establish the
circulatory circuit, allowed by the relaxation and contraction of the four chambers of
the heart. The phase of the circulatory circuit when the heart muscles relaxes is called
diastole and the phase when occurs the contraction is called systole. The blood�ow in
the heart cycle is illustrated by white arrows in Figure 2.1, where the right side of the
heart is in purple color, representing the deoxygenated blood, and the left side is in light
red color, representing the oxygenated blood.

2.3 Cardiac conduction system

The cardiac conduction system is an electrophysiological system where the my-
ocardium performs its contraction independently, that is, without the necessity of any
external incitement. Brie�y, this contraction is initiated by an electrical impulse and
propagates through the atria and ventricles [55].

During the normal sinus rhythm (NSR), i.e., the normal activation of the heart,
an electrical impulse is generated from the sinoatrial (SA) node, located in the RA.
This impulse propagates uniformly throughout the atria (causing its contraction) via
internodal pathways, until it reaches the atrioventricular (AV) node. Before conducting
the impulse to the bundle of His, the AV node delays it by a fraction of seconds. This

1https://commons.wikimedia.org/wiki/File:Diagram_of_the_human_heart_(cropped).svg

https://commons.wikimedia.org/wiki/File:Diagram_of_the_human_heart_(cropped).svg
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Figure 2.1: Anatomy of the human heart1.

delay is vital to guarantee the atrial-ventricular synchrony. Finally, the electrical impulse
travels through the bundle of His, which is divided in two branches (right bundle branch
and left bundle branch), ending in the Purkinje �bers, located in the inner ventricular
chambers. The Purkinje �bers are responsable for the ventricular contraction, being
essential to ensure a regular and synchronized heart rhythm. The His-Purkinje system is
in charge of rapidly conducting the electric impulse in the ventricles. It coordinates the
contraction of the ventricles in order to ensure that su�ciently blood is pumped.

An abnormal cardiac conduction system can be the cause of cardiac diseases, as for
example, arrhythmias, a�ecting millions of people worldwide as will be discussed later in
the chapter. The normal cardiac electrical conduction system is illustrated in Figure 2.2,
where the conduction pathway of the cardiac impulse is highlighted in green color.

2.4 Principles of electrocardiography

Recalling from the previous section that, during the circulatory circuit, the heart
performs contraction and relaxation, induced by an electrical impulse that propagates
through the heart chambers. In this process, one part of the myocardium is depolarized
and another part polarized, resulting in an electric dipole, i.e., a charge separation system.
This electric dipole is responsable for the generation of an electric �eld throughout the
body, whose voltage can be detected by using electrodes on the body surface, providing
then the electrocardiogram (ECG) [33].

The ECG is a voltage versus time graph of the heart's electrical activity. The process
of producing an ECG is called electrocardiography and the machine that produces the
ECG is called electrocardiograph. In 1842, Carlo Matteucci reported for the �rst time
an electrical current in the heart. Willem Einthoven discovered the mechanisms of the
ECG in 1885 and, along with Étienne-Jules Marey, invented the �rst practical electro-
cardiograph in 1903. Later in 1924, Willem Einthoven was awarded with the Nobel Prize
in Physiology or Medicine for his contributions. The cardiac signals are detected by elec-

2https://www.medicalexamprep.co.uk/wp-content/uploads/2016/02/

Cardiac-Conduction-System.jpeg

https://www.medicalexamprep.co.uk/wp-content/uploads/2016/02/Cardiac-Conduction-System.jpeg
https://www.medicalexamprep.co.uk/wp-content/uploads/2016/02/Cardiac-Conduction-System.jpeg
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Figure 2.2: Electrical conduction system of the heart during a NSR2.

trodes placed on the body surface, ampli�ed, and recorded by the electrocardiograph,
generally in mV per second. The instantaneous di�erence of voltage measured between
each pair of electrodes is called lead. Conventionally, 10 electrodes are placed on the body
surface in order to generate 12 leads, producing then the well-known standard 12-lead
ECG.

ECGs are a noninvasive, cheap and e�cient tools in clinical practice for detecting
several cardiac problems by analyzing abnormalities in the ECG waveform or duration of
wave intervals [76]. Indeed, cardiac diseases like myocardial infarction, coronary artery
disease, arrhythmias, etc., can be e�ciently detected by ECGs, which are also frequently
used to monitor surgeries and interventions like catheter ablation.

During a normal circulatory circuit, the ECG waveform of a cardiac cycle is illustrated
in Figure 2.3, where it can be observed the following characteristic waves, segments and
intervals:

• P wave: represents the depolarization, i.e., activation, of the atria and has around
80-100 ms of duration. With an amplitude typically smaller than 0.25 mV, this
wave is the �rst de�ection on the ECG recording.

• QRS complex: it is composed of 3 waves (Q, R, and S waves) that, together,
represents the ventricular depolarization. It has around 60-120 ms of duration and
its shape varies depending on the lead where it is recorded. In parallel with the
ventricular depolarization, the atria are performing the repolarization. However,
its e�ect is usually not detected in the ECG, due to the much larger amount of
myocardium that is involved in the generation of the QRS complex [33].

• T wave: it is the last wave recorded in the ECG of one heart cycle and it represents
the repolarization of the ventricles. Normally, the T wave has a duration of 100-
250 ms and always succeeds the QRS complex and precedes the P wave of the next
cardiac cycle.

3https://commons.wikimedia.org/wiki/File:SinusRhythmLabels.svg

https://commons.wikimedia.org/wiki/File:SinusRhythmLabels.svg
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Figure 2.3: A typical ECG waveform during NSR for one cardiac cycle3.

• PR segment: it is the time segment measured from the end of the P wave to the
beginning of the QRS complex. This segment represents the time delay between
atrial and ventricular depolarization, which is around 60 ms.

• ST segment: measured from the end of the QRS complex to the beginning of the T
wave, the ST segment can have a duration ranging from 5 to 150 ms. It represents
the time period in which the ventricles are completely depolarized, performing
contraction.

• PR interval: from the beginning of the P wave to the beginning of the QRS
complex, this intervals re�ects the propagation time of the electrical impulse from
the SA node to the Purkinje �bers. A normal PR interval has between 120 to 200
ms of duration.

• QT interval: it is the time interval from the moment when the ventricles start
depolarizing to the moment when they are completely depolarized. This interval is
typically 400 ms long and it is measured from the beginning of the QRS complex
until the end of the T wave.

Another interval that is not shown in Figure 2.3 but is important to describe is the RR
interval, measured by the distance between the R waves of two consecutive cardiac cycles.
RR intervals are usually 600-1200 ms long and are crucial to determine the heart rate
(HR) and heart rate variability (HRV). The TQ segment also deserves some attention. It
measures the time distance between the end of the T wave to the beginning of the QRS
complex and it is about 400 ms long. As will be presented later, the AA is visible and
free from VA in the TQ segments during AF episodes. It is also important to highlight
that segments are used to analyze variations in the isoelectric line of the ECG, di�erent
from intervals, which are used to analyze their duration.
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2.5 The 12-lead electrocardiogram system

Commonly, the ECG is measured by placing 10 electrodes on the body surface, gener-
ating 12 leads, each measuring a speci�c electrical potential. The standard 12-lead ECG
is subdivided in three limb leads, three augmented limb leads, and six precordial leads.
The limb leads are bipolar, i.e., they measure the electrical potential di�erence between
two electrodes, whereas the augmented limb leads and precordial leads are unipolar,
i.e., they record the absolute electrical potential at one electrode, relative to a reference
potential.

2.5.1 Limb leads

Forming the Einthoven's triangle, bipolar leads I, II and III are denoted limb leads.
Each limb lead measures the electrical potential di�erence between two electrodes out of
the three electrodes, placed in both arms and the left leg. More precisely:

• Lead I measures the electrical potential di�erence between the electrode placed on
the left arm (ΦLA

) and the one placed on the right arm (ΦRA
):

I = ΦLA
− ΦRA

.

• Lead II measures the electrical potential di�erence between the electrode placed on
the left leg (ΦLL

) and the one placed on the right arm (ΦRA
):

II = ΦLL
− ΦRA

.

• Lead III measures the electrical potential di�erence between the electrode placed
on the left leg (ΦLL

) and the one placed on the left arm (ΦLA
):

III = ΦLL
− ΦLA

.

Bipolar limb leads I, II and III are illustrated in Figure 2.4 and are linearly dependent
between them, as according to Kirchho�'s law, each one of them can be expressed as a
linear combination of the other two. Indeed, one can note that I = II−III, II = I+III

and III = II − I.

2.5.2 Augmented limb leads

Also referred as Goldberger's leads, the three augmented limb leads measure the
electrical potential between one limb electrode and a theoretical reference potential called
Wilson Central Terminal (WCT), which is considered to be zero in ideal circumstances.
TheWCT can be seen in Figure 2.5 and is created as a combination of two limb electrodes,
forming the negative end. Then, the positive end of the augmented limb lead is created
by the limb electrode that is referenced against the WCT. For this reason, the augmented
limb leads are unipolar and are expressed as:

aV F = ΦLL
− 1

2
(ΦRA

+ ΦLA
) = II − 1

2
I

aV L = ΦLA
− 1

2
(ΦRA

+ ΦLL
) = I − 1

2
II

aV R = ΦRA
− 1

2
(ΦLA

+ ΦLL
) = −I + II

2
.

4https://commons.wikimedia.org/wiki/File:Limb_leads_of_EKG.png#/media/File:Limb_leads_

of_EKG.png

https://commons.wikimedia.org/wiki/File:Limb_leads_of_EKG.png# /media/File:Limb_leads_of_EKG.png
https://commons.wikimedia.org/wiki/File:Limb_leads_of_EKG.png# /media/File:Limb_leads_of_EKG.png
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Figure 2.4: The six bipolar leads: three limb leads and three augmented limb leads4.

Figure 2.5: The six precordial leads and the WCT5.

One can see that the electrical potential di�erence between the left leg and the WCT
generated by a combination of the electrical potential in the right and left arms produces
the lead aVF. Augmented leads aVL and aVR are produced analogously. Together with
the bipolar limb leads, the unipolar augmented limb leads record the cardiac electrical
activity forming a frontal plane, relative to the heart.

2.5.3 Precordial leads

Providing a di�erent view of the cardiac electrical activity, the six unipolar precordial
leads (or chest leads) record the voltage between positive electrodes placed in speci�c
regions around the rib cage and the WCT. Leads V1 and V2 are called septal leads, leads
V3 and V4 are denoted anterior leads, while leads V5 and V6 are referred as lateral (or
anterolateral) leads. Their speci�c placement over the chest is illustrated in Figure 2.5.
Together, the six precordial leads (V1-V6) form a transverse plane, which is orthogonal
to the frontal plane, and are linearly independent, i.e., they cannot be mathematically
derived from the other leads.
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2.5.4 Interpretation and preprocessing

In the standard 12-lead ECG there are only 8 independent leads. However, it is
important to record the other redundant leads, as they provide information in di�erent
planes and angles, enhancing pattern recognition [76]. The 12-lead ECG is considered
one of the most important tools for diagnosing cardiovascular diseases and is commonly
used in clinical practice. Indeed, ECG waveform interpretation have a diagnostic signif-
icance. For example, determination of the PR intervals provides information about the
conduction through the AV node, elevation of the ST segment normally indicates ven-
tricular ischemia [33], variations in the RR interval are solid indicators of arrhythmias,
common cardiac diseases that will be detailed later in this chapter.

The ECG interpretation can be hindered by interference, noise and artifacts that may
change its isoelectric waveform, also modifying important information about the cardiac
electrical activity. For this reason, a proper preprocessing of the ECG signal is crucial to
suppress such interfering components, giving then a clear electrophysiological signal and
easing its interpretation. Interference can be technical or physiological. Understanding
their origin is an important task before choosing and applying the preprocessing methods
that suits the objectives of ECG interpretation.

2.6 Arrhythmias

Arrhythmias, also called cardiac arrhythmias, are heart diseases characterized by
abnormal ECG waveforms where the heartbeat is irregular, beating too fast (tachycardia)
or too slow (bradycardia). There are two groups of heart rhythm conditions:

• Ventricular arrhythmias: a�ecting the ventricles, this group of arrhythmias
makes the heart beat too fast, preventing the oxygenated blood from circulating to
the body tissues. Examples of ventricular arrhythmias are:

� Ventricular �brillation: characterized by a very rapid and irregular electri-
cal activation of the ventricles, leading to sudden cardiac death if not treated
rapidly. Several deaths per year are caused by this type of arrhythmia, which
requires medical attention as soon as it is detected.

� Premature ventricular contractions: as the name tells, this rhythm dis-
order occurs when the ventricles contract too soon. Typically this arrhythmia
is not serious and does not require treatment, unless the patient already has
some heart disease or history.

• Supraventricular arrhythmias: occur in the area above the ventricles, usually
the atria, and are also known as atrial arrhythmias. They can cause shortness of
breath and a fast pulse. Some examples are:

� Supraventricular tachycardia: happens when the electrical signals from
the atria �re abnormally, making the heart rate very rapid.

� Atrial �utter: is a common abnormal arrhythmia whose activation starts
in the atria, producing a fast heart rate. It is characterized by waves with a
saw-tooth pattern on the ECG.

� Atrial �brillation (AF): abnormal generation and conduction of electrical
impulses throughout the atria, causing impaired atrial contraction. This type

5https://ecgwaves.com/topic/ekg-ecg-leads-electrodes-systems-limb-chest-precordial/

https://ecgwaves.com/topic/ekg-ecg-leads-electrodes-systems-limb-chest-precordial/
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of arrhythmia is the focus of the present doctoral thesis, and for this reason
it will be detailed later in the remaining of this chapter.

2.7 Atrial �brillation

2.7.1 Statistics

Especially a�ecting the eldery, AF is the most common sustained cardiac arrhythmia
encountered in clinical practice, considered as the last great frontier of cardiac electro-
physiology [110]. Decreasing life quality and increasing healthcare costs, this supraven-
tricular tachyarrhythmia is characterized by an uncordinated, chaotic and irregular atrial
activation. This challenging cardiac condition represents an important economical bur-
den, as a patient with AF costs, anually, approximately $8 700 more to the healthcare
system than a patient without AF. Indeed, the treatment of AF is estimated to add
$26 billion per year to the USA healthcare costs [51]. Also a major health and social
concern, AF has about 467 000 hospitalizations as the primary diagnosis every year in
USA, and the number of deaths are estimated to be more than 99 000 [51]. In 2010, it
was estimated that the number of patients su�ering from AF worldwide is around 33.5
million [78] and, about 160 000 new patients are diagnosed with AF every year only in
USA, with similar numbers reported in European countries. By 2050, if the number of
hospitalizations per year stays stable, AF prevalence is expected to increase from 2.3 to
about 12.1 � 15.9 million patients only in USA, becoming then a new epidemic [74].

With its electrophysiological mechanisms still not completely understood, the num-
ber of patients su�ering from AF is increasing each year worldwide. Considering this
worrisome scenario, the intensive clinical research of this challenging cardiac rhythm dis-
turbance has increased in the past decades and is expected to increase further in the
following years.

2.7.2 Mechanisms

Earlier in this chapter, it was described that in a NSR an electrical impulse is gen-
erated in the SA node and travels towards the LA and the ventricles. This normal
activation makes the atria beat in a regular and synchronized way with the ventricles.
During AF episodes, electrical impulses are generated elsewhere in the atria, typically
around the pulmonary veins. These abnormal impulses propagate in a chaotic and irreg-
ular way across the atria, making it beat in a irregular and unsynchronized way with the
ventricles.

In an AF ECG, the P wave is replaced by �brillatory waves, called f waves, which �re
at around 150-300 bpm and are present throughout the whole ECG recording. However,
they are masked by the QRS complex and the T wave in each heartbeat. While AF
is mainly characterized by an abnormal AA, ventricular response is also a�ected, as
re�ected by irregular RR intervals in an AF ECG. Figure 2.6 illustrates a comparison
between the electrical propagation during a NSR and AF episodes.

The precise electrophysiological mechanisms underlying AF are still unclear, re�ect-
ing in the suboptimal success rate of AF treatments. Indeed, a better understanding
of such mechanisms is essential to improve strategies for AF termination. In general,
the temporal evolution of this arrhythmia has three phases: initiation, transition, and
maintenance, which are described in more detail next.

6https://medimoon.com/wp-content/uploads/2014/02/atrial-fibrillation.jpg

https://medimoon.com/wp-content/uploads/2014/02/atrial-fibrillation.jpg
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Figure 2.6: NSR versus AF6.

2.7.2.1 Initiation

This temporal phase of AF consists in the rapid activation from several sources, such
as the pulmonary veins and other venous (or non-venous) structures. Nonetheless, there
is an intense debate about the mechanism of such activations [60].

In [11] it is suggested that this rapid activation is due to triggered activity, caused
by an increase in the delay after depolarizations. The work [48] points out other ectopic
mechanisms that can re�ect unusual handling of calcium. Other studies suggest that
this rapid activation is related to the cellular architecture and some electrophysiological
properties of the pulmonary vein myocardium [34], [12], [68].

The initiation phase can last up to 2 minutes long (although the precise duration is
still unclear) and leads to the transition phase.

2.7.2.2 Transition

This phase is characterized by functional wavefront block and induction of reentry,
that can be eased by several factors, as described in [60]. For example, atrial �brosis,
decreased activation latency, slowed conduction velocity, etc. The speci�c function of
each factor (or the combinations of them) is still unclear, and may be speci�c to di�erent
patients. Research into treatments of the transition phase of AF are still being performed
and focus on reducing the probability of wavefront block and induction of reentry.

2.7.2.3 Maintenance

The main factor responsible for AF maintenance is still unclear. The major theories
have been put forward in the literature [60]:

• Multiwavelet reentry: basically states that, during ongoing AF, the increased
number of random wavelets promote sustained AF, di�culting its spontaneous
termination [77].

• Pulmonary vein triggers: the role of pulmonary vein triggers during the initia-
tion phase is generally acknowledged. However, their role during the maintenance
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phase is an ongoing debate. The e�cacy of pulmonary vein isolation is referred as
an evidence to support this theory [102].

• Autonomic sources: this hypothesis a�rms that sites with a great number of
autonomic nerves, present throughout the atria, may play the role of AF sources,
as a consequence of autonomic remodeling [85].

• Rotors: despite the little evidence of rotor sources in human AF, some studies
have shown excellent outcomes in rotor ablation of AF [61], [71].

2.7.3 Classi�cation

According to the clinical guidelines of the European Society of Cardiology [56], AF
can be classi�ed in �ve forms, regarding clinical presentation and duration of the episodes:

• First detected AF: when an AF episode is diagnosed for the �rst time by any
electrocardiographic device. This �rst detection does not take into account the
duration or the gravity of the AF episodes.

• Paroxysmal AF: also known as intermittent AF, it is a type of AF that self-
terminates in less than 7 days, commonly within 48 hours.

• Persistent AF: represents a particularly complex case of this arrhythmia, where
extensive atrial remodelling has taken place due to sustained AF, signi�cantly af-
fecting AA and AF perpetuation itself. Usually, persistent AF episodes last longer
than 7 days and need termination by cardioversion.

• Long-standing AF: in this form of AF, episodes last longer than one year. Strate-
gies to restore a normal heart rhythm are required. However, those methods are
less likely to be e�ective than in earlier forms of the disease.

• Permanent AF: episodes are present for more than one year and strategies to
restore a normal heart rhythm have failed or are no longer attempted. At this
stage, the arrhythmia is accepted by both patient and cardiologist.

In addition to these �ve-type classi�cation of AF, this arrhythmia can be also clas-
si�ed as Valvular AF, when it is caused by problems with the valves, like mitral valve
stenosis or mitral regurgitation, and Nonvalvular AF, when the causes are not valve-
related problems, like high blood pressure or stimulants (alcohol, ca�eine, tobacco, etc).
This binary classi�cation is somehow important, as it has strong signi�cance on appro-
priate AF treatments.

Another AF classi�cation scheme was proposed in [54], that takes into account the
degree of organization of the episodes, based on the bipolar atrial electrogram morphology
and its baseline nature. This classi�cation system characterizes AF into four types:

• Type I: distinguished by discrete atrial electrogram complexes of variable mor-
phology. The isoelectric baseline is free of perturbation.

• Type II: atrial electrogram complexes are similar to Type I. However, the baseline
is not isoelectric and has perturbations of several degrees.

• Type III: in this type, atrial electrograms have neither discrete complexes nor
isoelectric intervals, presenting a completely chaotic nature.



20 Chapter 2. Fundamentals of Cardiology

• Type IV: re�ected by alternating periods between atrial electrograms similar to
Type III and the ones similar to Type I or Type II (or both).

Having knowledge of the type of this challenging cardiac arrhythmia is essential to
decide what treatment is the most appropriate for the patient.

2.7.4 Treatments

AF treatments focus on the prevention of AF burdens and the suppression of AF
episodes, restoring the normal heart rate and rhythm. The choice of the best treatment
for the patient signi�cantly depends on several factors, including, AF type, patient health
condition, cardiac disease history, etc. Mainly, there are three well-known types of AF
treatments: pharmacological, electrical cardioversion, and catheter ablation.

2.7.4.1 Pharmacological treatment

Pharmacological treatment is typically employed in patients su�ering from an early
stage of AF (like paroxysmal AF), where the episodes are short, since the e�cacy of
the medicaments are considerably reduced as AF episodes last longer than 48 hours [76].
There are three main drug categories that are employed in AF patients:

• Blood clots prevention: the risk of stroke is signi�cantly increased with AF and
is necessary to reduce the probability of blood clots formation. For this purpose,
some medications like apixaban and edoxaban may be employed.

• Normal heart rate restoration: AF is a tachyarrhythmia, and then it is often
necessary to reduce the heart rate. Some medications as atenolol, verapamil and
propranolol may be used.

• Normal heart rhythm restoration: in addition to the fast heart rate, AF is
characterized by the irregular heart beat, i.e., when the atria is unsynchronized
with the ventricles. Medications like �ecainide and amiodarone may be prescribed
to restore NSR.

2.7.4.2 Electrical cardioversion

The electrical cardioversion is a simple and e�cient procedure in which a low-voltage
electric current is applied to the chest wall to reset the heart rhythm back to NSR.
The electric current causes all the heart cells to perform contraction at the same time,
terminating the abnormal heart rhythm. If the initial shocks do not provide any success,
the cardiologist can repeat the procedure again.

This is a non-emergency procedure to terminate AF that has not self-terminated and
its success depends on the duration of AF episodes, being less successful for patients with
AF episodes longer than 1 year.

2.7.4.3 Catheter ablation procedure

When pharmacological treatment, electrical cardioversion, and other non-invasive
AF therapies do not work, the cardiologist may suggest the catheter ablation procedure.
It is a minimally invasive intervention that focuses on destroying sources of abnormal
electrical activity in the heart tissue, in order to restore the normal heart rate and
rhythm, terminating AF.
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In this procedure, the cardiologist will insert several �exible thin tubes, named
catheters, into the patient's blood vessels, usually through the femoral vein. The
catheters are guided through the blood vessels towards the heart to burn (ablate) �bril-
latory targets in the atria. Catheter ablation for AF has a signi�cant success rate, which
strongly depends on the correct choice of �brillatory sites to be ablated. A common ab-
lation strategy is pulmonary vein isolation, where the catheters are used to prevent that
abnormal electrical signal triggers originating in the pulmonary veins enter the atria.

Generally, there are two types of catheter ablation, that are distinguished by the type
of energy that is applied:

• Radiofrequency ablation: it is a heat-based procedure where electrical energy is
delivered through the catheter to the �brillatory sites in order to stop the abnormal
rhythm conduction from these sites to the rest of the heart.

• Cryoablation: it is a cold-based procedure that focuses on removing the heat
from the �brillatory sites by using extreme cold. This way, the selected tissue will
be destroyed, preventing the abnormal electrical conduction.

This procedure presents some risks, like bleeding, damage to the heart, infection, etc.
After the ablation procedure �nishes, the patient may rest in the bed for up to 8 hours
and go home in the following day.

2.8 Summary

This introductory chapter has provided fundamental concepts of cardiology, electro-
physiology and a general overview of the current knowledge of AF. Detailed description
of the cardiac conduction system and the 12-lead ECG system con�guration helps the
reader to distinguish the di�erences between NSR and AF. A general description of this
challenging cardiac disease, including its main causes and the known information about
its electrophysiological mechanisms, generation and maintenance, show the reader the
worrisome scenario caused by AF nowadays. Termination becomes increasingly di�cult
in advanced stages of this arrhythmia. Among the existing therapies, catheter ablation is
a invasive procedure, that, although having a signi�cant success rate, presents some risks.
All this knowledge is necessary to understand the importance of non-invasive techniques
to analyze AF, which is the focus of the next chapter.
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3.1 Introduction

This chapter presents the main signal processing techniques for non invasive AA
extraction during AF that can be formulated by means of matrix algebra tools. The goal
of this chapter is to provide the reader a state-of-the-art of the matrix-based methods
along with their physiological links and constraints. The importance of this chapter relies
on the limitations presented by the most used matrix-based AA extraction tools, which
motivates the approach of the present doctoral thesis, that takes a step forward with the
use of tensor factorization techniques to perform this task.

3.2 Average beat subtraction

Average beat subtraction (ABS) was �rst proposed as a method for P-wave identi�-
cation in ventricular tachycardias [95]. A couple of years later, this method was used to
extract f-waves from ECG recordings for AF analysis [96], since, during AF episodes, AA
is assumed to be uncoupled from VA. Basically, this method consists in the computation
of an average beat from an single lead of the ECG recording and its subtraction from
each QRST complex, resulting in a signal that, ideally, contains the AA [100].

Before performing the subtraction, it is essential to align in time each average beat to
each QRST complex, in order to avoid a resulting AA signal with ventricular residuals.
This temporal alignment can be formulated as the following minimization problem:

min
τ
ε(τ) , ||x− Jτ x̄||2 (3.1)
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where x ∈ RN×1 is the observed signal with N samples and x̄ ∈ RN+2∆×1 is the average
beat signal with 2∆ additional samples, which are used for time alignment. The aver-
age beat is performed using algorithms for beat detection, such as the Pan-Tompkins
algorithm [81]. Note that ABS performance is a�ected if incorrect detection appears. In
order to allow for a temporal delay, a shift matrix Jτ is used, given by:

Jτ =
[
0N×∆+τ IN 0N×∆−τ

]
∈ RN×N+2∆ (3.2)

where τ is the time shift value.
ABS is easy implementable and, for single lead ECG processing, is the most widely

used method, based on the assumption that an average beat can precisely model each in-
dividual QRST complex [2]. However, the QRST waveform is sensitive to some variations,
mainly due to respiratory activity and ectopic beats, which have signi�cant in�uence on
the ECG leads, resulting in some ventricular residuals after performing ABS.

3.3 Weighed average beat subtraction

The weighed average beat subtraction (WABS) algorithm was later proposed in order
to reduce the distortion present in the AA signal extracted by ABS [18]. This algorithm
models the QRS template as the weighed average of the adjacent QRS complexes.

The QRS in ith heartbeat can be expressed as:

xi(m) = xV Ai (m) + xAAi (m), for m = 1, . . . ,M (3.3)

where xV Ai (m) and xAAi (m) are the VA and AA, respectively, and M is the length of the
QRS complex. The QRS template is computed as:

xt(m) =
N∑
n=1

pn,mxn(m) (3.4)

where
∑N

n=1 pn,m = 1. The estimated AA signal is then given by:

x̂AAi (m) = xi(m)− xt(m) (3.5)

= xV Ai (m) + xAAi (m)−
N∑
n=1

pn,mxn(m) . (3.6)

The estimating error can be expressed as:

ei(m) = xV Ai (m)−
N∑
n=1

pn,mx
V A
i (m)−

N∑
n=1

pn,mx
AA
i (m) . (3.7)

Since AA and VA are uncoupled during AF episodes, xAAi and xV Ai can be seen as
independent sources. Then, assuming that E(xAA) = 0 (which can be done by vertically
shifting the ECG recording) one can have that:

E[e2
i (m)] = σ2

xAA

N∑
n=1

p2
n,m + σ2

xV A(m)

(
1− 2pi,m +

N∑
n=1

p2
n,m

)
. (3.8)

Then, considering Pm = [p1,m, p2,m, . . . , pN,m], the optimum coe�cients acquired by
solving P̂m = arg minE[e2

i (m)] subject to
∑N

n=1 pn,m = 1 are given by [18]:

P̂n,m =


σ2
xAA/N

σ2
xAA+σ2

xV A(m)

, n 6= i

σ2
xV A(m)

+σ2
xAA/N

σ2
xAA+σ2

xV A(m)

, n = i
(3.9)
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The WABS algorithm provides a better performance than the ABS method, specially
when the QRS morphology varies more. However, the WABS cannot model a T wave
template, as in many AF episodes the T wave is di�cult to detect, and only the QRS
complex is cancelled with this technique.

3.4 Spatio-temporal QRST cancellation

Aiming to overcome the limitation of ABS by exploring multi-lead ECG processing,
the spatio-temporal QRST cancellation method [101] replaces the single lead vector x ∈
RN×1 by the multi-lead matrix X ∈ RN×K , composed of K signal leads with N samples
each. As stated before, AA and VA are assumed to be uncoupled during AF, allowing
X to be modeled as:

X = XAA +XV A +N (3.10)

where N is an additive noise, representing other interference signals, XAA is the AA
signal, and XV A is the VA signal, modeled as:

XV A = Jτ X̄S (3.11)

where X̄ ∈ RN+2∆×K is the average beat matrix and S ∈ RK×K is a spatial alignment
matrix that admits the factorization S = DQ, withD being a diagonal amplitude scaling
matrix and Q a rotation matrix. The role of matrix S is to transfer information between
ECG leads, in order to compensate for some variations in the electrical axis of the heart
and tissue conductivity [100].

Now, replacing (3.11) in (3.10), we have:

X− Jτ X̄DQ = XAA +N . (3.12)

From (3.12) one can see that the accuracy of the �ttingX−Jτ X̄DQ is limited not only
by N, but so also by XAA. To handle this, an intermediate estimate X̃AA, representing
a reconstructed signal that contains only �brillatory waveforms, is subtracted from both
sides of (3.12):

Y− Jτ X̄DQ = XAA − X̃AA +N (3.13)

where Y = X − X̃AA. This strategy is called AF reduction, and reconstructs a signal
with �brillatory waveforms by interpolating successive TQ intervals (where only AA is
observed) in order to �ll the QT interval with f-waves [101]. Then the problem relies on
the estimation of τ , D and Q by solving the following minimization problem:

min
τ,D,Q

ε(τ,D,Q) , ||Y− Jτ X̄DQ||2F . (3.14)

In (3.14), it is assumed that D is known and Q is minimized with an alternating and
iterative approach using the singular value decomposition (SVD), whereas τ is minimized
by an exhaustive search in the interval [−∆,∆] [100], [101].

3.5 Adaptive singular value cancellation

Also in order to overcome the limitations of the ABS technique, an alternative QRST
cancellation method called adaptive singular value cancellation (ASVC), applied to each
single beat, was proposed in [2]. This strategy is able to extract the VA basis signal
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by exploiting the mutual information available in the set of QRST complexes under
processing.

First, all the R waves are detected by the Pan-Tompkins algorithm. Then, the ith

QRST complex start point is de�ned as:

si = ri − 0.3RRmin (3.15)

where ri is the R peak wave event and RRmin is the minimum RR interval found in the
analyzed ECG. The ith QRST complex end point is then selected as ei = ri + 0.7RRmin.

Representing each N-sample QRST complex as a column vector xi and stacking them
into a matrix as X =

[
x1 x2 . . . xK

]
∈ RN×K , one can express the SVD of X as:

X = UΣVT (3.16)

where matrix U holds the K normalized principal components of X and matrix Σ holds
the amplitude coe�cients corresponding to the K principal components of matrix X [2].

Then, the K non-normalized principal components can be obtained as the columns
of the matrix P = UΣ, where the �rst component corresponds to the main VA, the
following components are related to AA, and the remaining ones to the noise. This way,
one can use the �rst principal component of X, denoted t, as a QRST template to cancel
out VA, as it contains the basis representation of the QRST complexes in the analyzed
ECG [2].

Finally, each amplitude is individually adapted to each QRST complex as:

vai =
QRi
QRt

t (3.17)

where QRi and QRt are the amplitude distances between the Q and R points of the ith

complex and the template, respectively [2].
Stacking each column vector vai into a matrix as VA =

[
va1 va2 . . . vaK

]
∈

RN×K , the AA estimation contained in each QRST interval can be acquired as:

X̂AA = X−VA ∈ RN×K . (3.18)

The ASVC technique is able to individually adapt the amplitude to each heart beat,
providing a better performance than the ABS method. However, this technique still
requires a su�cient number of beats to explore the mutual information among di�erent
QRST complexes of the same ECG. Also, one must note that the estimated AA will con-
tain the noise present in the ECG, although part of this interference signal is suppressed
during the pre-processing.

3.6 Other methods for VA suppression

Many other methods for VA cancellation are proposed apart from the classical ones
previously described. In [18] an AA extraction method based on maximum likelihood
estimation is put forward. This method is optimum by means of maximum probability,
as it aims to obtain the most possible AA signal. It basically consists in modeling the
probability density functions of AA and VA signals using a Gaussian model and then,
extracting the AA by maximing the likelihood function. Two di�erent methods are
proposed in [69]. The �rst one is an ABS-based method that creates two templates:
one for the ventricular depolarization and other for the ventricular repolarization. The
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second one consists in suppressing the VA in each heartbeat in an independent way and
also treats the ventricular depolarization and repolarization separately. A novel method
based on an echo state neural network is introduced in [84], which suppresses the VA by
estimating the time-varying, nonlinear transfer function between two leads: one with AA
and other without. The network adapts the weights that de�ne the output layers for every
new sample to be processed. More recently, we may cite the method proposed in [75],
which is an ABS-based algorithm, where the VA template is estimated by combining the
di�usion distance and the non-local Euclidean median. This algorithm operates on single
leads and is very suitable for long-term monitoring, such as Holter recordings. Also, we
may cite the work [90], where a Bayesian �ltering framework is put forward to separate
AA and VA during AF episodes. In this framework, the waves that represent the VA are
modeled with a sum of Gaussian functions, whereas the f waves, representing the AA,
are modeled using a trigonometrical function. Then, the state variables of both models
are estimated using a Kalman smoother.

3.7 Blind source separation

The previous mentioned methods focus on the VA cancellation by the suppression of
the QRST complex from the ECG. Despite di�erences in performance, they share the
same limitations, like the inability to eliminate artifacts from electrode movement [88] and
the needing of ECG recordings of long duration, in order to perform an accurate average
beat estimation. Nonetheless, recalling that AA and VA are assumed to be uncoupled
during AF, this allows, under certain assumptions, the AA extraction problem to accept
a blind source separation (BSS) formulation [88]. In AF ECG recordings, AA and VA
are mixed at the electrode outputs in the ECG.

Indeed, ECG recordings from K leads composed of N time samples can be stored in
a matrix:

Y = MS ∈ RK×N (3.19)

whereM ∈ RK×R is the mixing matrix, modeling the propagation of the cardiac electrical
sources from the heart to the body surface, S ∈ RR×N is the source matrix that contains
the atrial, ventricular and some interference sources (noise, respiration, muscular activity,
etc.), and R is the number of sources [109]. Since the goal is to estimate M and S from
matrixY (the only observed data), it is clear that AA extraction in an AF ECG recording
is a BSS problem. The BSS model is justi�ed by considerations from the direct problem
in electrocardiography [88].

The main disadvantage of the matrix model (3.19) is the lack of uniqueness. Indeed,
consider the matrices M′ = MA and S′ = A−1S, where A ∈ RR×R is an arbitrary
nonsingular matrix, one can see that:

Y = (MA)(A−1S) = M′S′ . (3.20)

For this reason, matrix-based techniques need to impose further constraints on M

and S in order to ensure the uniqueness of the decomposition.

3.7.1 Principal component analysis

The principal components analysis (PCA) consists in performing an orthogonal linear
transformation of the data by maximizing the joint variance in the least-squares sense
of the resulting principal components [53]. When applied to multi-lead ECG recordings,
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PCA becomes a BSS tool that was �rst used for AA extraction during AF in [66]. This
method decomposes the multi-lead ECG in a way that the �rst components correspond
to VA signals, whereas the next components typically includes the AA signal and noise
signals present in the ECG [100].

Considering the ECG data matrix Y in (3.19), PCA exploits inter-lead correlation
by estimating the correlation matrix as:

R̂Y Y =
1

N
YYT ∈ RK×K . (3.21)

Then, the orthogonal linear transformation used to compute the principal components
is given by the eigenvectors Ψ resulting from the diagonalization of R̂Y Y . The mutually
uncorrelated principal components are then given by:

w.n = ΨTy.n . (3.22)

Comparing (3.22) and (3.19), one can see that PCA obtains the following BSS esti-
mates:

M̂ = Ψ

Ŝ = ΨTY .

Note that M̂ always has, by de�nition, orthogonal columns. Hence, PCA is only
expected to provide a successful source separation when the true mixing matrix M also
has orthogonal columns.

3.7.2 Independent component analysis

The performance of PCA considerably depends on the orthogonality of the columns
of the mixing matrix. Generally, such orthogonality can only be assured through an
appropriate placement of electrodes and will be strongly patient-dependent. Also, PCA is
a second-order statistical approach, and since AA and VA are assumed to be independent
at orders higher than two with non-Gaussian distribution [101], [88], a method that
exploits higher order statistics is expected to provide a better performance.

The independent component analysis (ICA) [14] is a powerful method that separates
a multivariate signal into subcomponents, assuming that they are statistically mutually
independent with non-Gaussian distribution. Considering the BSS model of (3.19), the
goal of ICA is to solve the following linear equation system:

Ŝ = ΩY (3.23)

where the source matrix estimate Ŝ contains signals that are statistically independent and
the linear transformation matrix Ω has full column rank, being able to have any structure.
Many ICA-based methods have been developed over the years [16], like FastICA [50] and
RobustICA [112]. Such algorithms have been applied in several research areas, with a
particular success in biomedical engineering. In particular, RobustICA presents some
advantages over other ICA techniques, such as:

• The treatment of real- and complex-valued source signals by the same algorithm.

• No requirement of prewhitening, avoiding the limitations it imposes and improving
asymptotic performance.
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• The capability to deal with sub- and super-Gaussian sources.

• A considerably high convergence speed by means of source extraction quality versus
number of operations.

RobustICA is based on the normalized kurtosis contrast function, which is globally
optimized by an algebraically iterative technique, being able to extract any independent
component with non-zero kurtosis. This algorithm along with all its advantages are
described in [112].

In AA extraction for AF analysis, ICA was �rst applied in [89] and needs the ful�ll-
ment of three basic assumptions [88]:

1. Statistical independence between AA and VA: during AF episodes, several
independent electrical impulses are generated and propagated throughout the atria.
However, only a small part of them reaches the AV node, which tends to limit the
ventricular activation [70], [51]. This makes the atria and the ventricles beat in a
unsynchronized and irregular way, making reasonable to consider AA and VA as
physically independent activities, thus, being generated by statistically independent
cardioelectric sources [88].

2. AA and VA have non-Gaussian distribution: during the circulatory circuit,
VA presents low values except during the ventricular depolarization, presenting
high values represented by the QRS complex in the ECG. This makes the his-
togram of VA present a super-Gaussian distribution [93]. During AF episodes, the
f-waves characterizing AA can be well-modeled as a sawtooth signal with several
harmonics [101], whose histogram presents then a sub-Gaussian distribution.

3. ECG is an instantaneous linear mixture model: in [88], it was shown that
the electrical potential at any point of the body surface can be obtained by a linear
combination of the heart potentials, that is:

ΦB = TBHΦH , (3.24)

where ΦB and ΦH are potential column vectors on the body surface (representing
the leads) and on the epicardium (representing the sources), respectively, and TBH
is a transfer matrix. From (3.24) one can see that the ECG data matrix corresponds
to a linear mixing model where a set of potentials on the body surface (leads) are
obtained by a linear combination of a set of bioelectric potentials (cardiac sources).

It is important to highlight that interference sources that come from outside the heart
(respiration, muscular activity, etc.) are necessarily independent. However, some types
of interference sources, as muscular activity, are approximately Gaussian [13], which may
cause some muscular residuals in the component that contains the AA.

Matrix-based techniques to solve BSS problems, such as PCA and ICA previously de-
scribed, have proven useful in noninvasive AA extraction [66], [35], [88], [10], [109], [100].
However, matrix decompositions are known to have some limitations, since constraints
need to be imposed to guarantee uniqueness: orthogonality of the mixing matrix (PCA)
or statistical independence between the sources (ICA). Such constraints are mathemat-
ically convenient, but they may lack physiological grounds, making di�cult the results
interpretation.
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Table 3.1: Summary of the matrix-based AA extraction techniques with their goals,
advantages and limitations.
Method Goal Advantage Limitations

ABS QRST suppresion Easy implementation
Sensitive to QRST variations

Long ECG recordings

WABS QRST suppresion Optimum QRS template
Cannot model T wave
Long ECG recordings

S-T QRST Canc. QRST suppresion Multi-lead ECG
Artifacts from electrode movement

Long ECG recordings

ASVC QRST suppresion QRST mutual information
Noise residuals

Long ECG recordings

PCA BSS
Uncoupling of VA and AA Orthogonal mixing matrix
Short ECG recordings Performance patient-dependent

Multi-lead ECG Second-order statistics

ICA BSS

Uncoupling of VA and AA
Sources statistical independent

Short ECG recordings
High-order statistics

Muscular residuals
Multi-lead ECG

3.8 Summary

This chapter provided a global overview of the main non-invasive AA extraction tools,
with their advantages and limitations. To date, the techniques that fully exploit the spa-
tial diversity of the ECG are the matrix-based methods to solve BSS problems. However,
such matrix factorization tools require strong constraints to guarantee uniqueness. PCA
requires the columns of the mixing matrix M to be orthogonal. On the other hand, ICA
assumes an arbitrary mixing matrix M as long as it is full column rank, but imposes
statistical independence between the sources, requiring high-order statistics for proper
exploitation. Matrix-based AA extraction techniques with their goals, advantages and
limitations are summarized on Table 3.1.

In the next chapter, it will be shown that, if compared to matrix-based techniques,
tensor decompositions present some remarkable features like, for example, their essential
uniqueness under more relaxed constraints. Another example is the fact that the rank of
the tensor can exceed its largest dimension, whereas in matrices the rank is limited by
its lowest dimension. These interesting features open promising prospects for the use of
tensor techniques for BSS in general and AA extraction in AF ECGs in particular.
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4.1 Introduction

ECG analysis techniques studied in this doctoral thesis are based on tensor decom-
positions. In order to facilitate the comprehension of the tensor-based ECG modeling
and further contributions presented later in the thesis, this chapter introduces the basic
concepts and tools of multilinear algebra. Important de�nitions of the tensor algebra
are �rst introduced, followed by the main tensor decompositions. The chapter ends pre-
senting the BTD built from Hankel matrices and its application in the non-invasive AA
extraction from AF ECGs.

4.2 Introduction to multilinear algebra

In the literature, one can �nd di�erent de�nitions of the word tensor. Indeed, de-
pending on the research �eld, the de�nition of tensors can be a little bit di�erent. Our
approach is focused on digital signal processing, where a tensor is used to generalize the
representations of scalars, vectors, and matrices. In the literature, several de�nitions of
tensors that leads to the same concept can be found. For example, [15] de�nes a tensor
as a mathematical entity that has multilinearity properties after a change of the coordi-
nate system. In [58] a tensor is de�ned as a multidimensional array. In other words, a
N th-order (or N -way) tensor is a multilinear array that results from the tensor product
of N vector spaces, where each one has its own coordinate system. Also, [63] interprets a
N th-order tensor as an array that o�ers a linear dependency regarding N vector spaces,
where elements can be accessed by N indices.

The present doctoral thesis will use the de�nition that treats a tensor as a multi-
dimensional array [58]. A zero-order tensor is a scalar, a �rst-order tensor is a vector,
a second-order tensor is a matrix, a third-order tensor is a rectangular cuboid, and so
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on. N th-order tensors, where N ≥ 3, are called higher-order tensors. The goal of this
chapter is to provide an overview of higher-order tensors, as well as some of its most
known decompositions.

Some de�nitions are very important to the understanding of tensor algebra, like, for
example, the outer product between tensors. Let X ∈ CI1×I2×...×IN be a N th-order
tensor and Y ∈ CJ1×J2×...×JM a M th-order tensor. The outer product between these two
arbitrary tensors is given by:

Zi1,i2,...,iN ,j1,j2,...,jM = [X ◦ Y]i1,i2,...,iN ,j1,j2,...,jM = xi1,i2,...,iN yj1,j2,...,jM . (4.1)

Note that the outer product of X and Y is another tensor Z, with order given by the
sum of the orders of the two other tensors, that is, N +M .

Given matrices A ∈ CI1×I2 , B ∈ CI3×I4 and C ∈ CI5×I2 , the Kronecker product,
represented by ⊗, between matrices A and B is given by:

A⊗B =

 a11B . . . a1I2B
...

. . .
...

a1I1B . . . aI1I2B

 ∈ CI1I3×I2I4 . (4.2)

The Khatri-Rao (column-wise Kronecker) product, represented by �, between matri-
ces A and C is given by:

A �C =
[
a.1 ⊗ c.1 . . . a.I2 ⊗ c.I2

]
∈ CI1I5×I2 . (4.3)

If the matrices A and C are partitioned into matrices, i.e., A =
[
A1 . . . AR

]
and

C =
[
C1 . . . CR

]
, where Ar ∈ CI1×Lr and Cr ∈ CI5×Kr , then we can alternatively

de�ne the Khatri�Rao product as the partition-wise Kronecker product, denoted �,
as [64]:

A�C =
[
A1 ⊗C1 . . . AR ⊗CR

]
∈ CI1I5×

∑R
r=1 LrKr . (4.4)

The block Khatri-Rao product, represented by �K , between matrices X =

[x1 · · ·xR] ∈ CI×R and Y = [y1 · · ·yKR] ∈ CJ×KR, yields a horizontal block matrix
that has its rth block given by:

[X �K Y]r = xr ⊗
[
y(r−1)K+1 · · ·y(r−1)K+K

]
∈ CIJ×K . (4.5)

Another important de�nition in tensor algebra is the concept of the rank of a tensor.
Considering the previously de�ned N th-order tensor X , its rank is denoted by rank(X )

and is de�ned as the minimal number of rank-1 tensors that linearly combined yield
exactly X . Particularly, a rank-1 tensor can be written as the outer product of N
vectors, that is:

X = v(1) ◦ v(2) ◦ ... ◦ v(N) , (4.6)

where X is the rank-1 tensor and v(n) ∈ CIn , for n = 1, ..., N , are the vectors called
the components of X . In the present doctoral thesis as well as in many works based on
tensor algebra, the Frobenius norm of a tensor, that is interpreted as the energy of the
tensor, is often used. The Frobenius norm of the arbitrary tensor X , is given by:

||X ||F =

 I1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

|xi1,i2,...,iN |
2

 1
2

. (4.7)
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Figure 4.1: Matrix slices of a third-order tensor.

Figure 4.2: Mode-1 matrix unfolding of a third-order tensor.

Before presenting and describing some remarkble tensor decompositions, three basic
concepts need to be introduced. The �rst one is the de�nition of the matrix slices, which
are all the two-dimensional sections of a tensor, by �xing all but two indices of it [58].
For an arbitrary third-order tensor, Figure 4.1 illustrates the three modes matrix slices.

The second one is the concept of matrix unfoldings of a tensor. The nth-mode ma-
trix unfolding Tn of a tensor T ∈ CI1×I2×...×IN is de�ned as a matrix of dimensions
I1I2...In−1In+1IN × In, which is obtained by stacking all the matrix slices that compose
the nth-mode of the tensor. Indeed, by using the de�nition of slices previously described,
one can say that the matrix unfolding is obtained by all the matrix slices stacked in a
given mode of the tensor. The way that these slices are stacked depends on the de�nition
of the matrix unfolding, which may vary among di�erent works in the literature. Again,
we follow the de�nition of [58].

In Figure 4.2, the mode-1 matrix unfolding of dimensions I2I3 × I1 of an arbitrary
third-order tensor T ∈ CI1×I2×I3 is illustrated for clarity. Mode-2 and mode-3 matrix
unfoldings can be derived analogously.

The third and last one is the concept of mode-n rank of a tensor, which is de�ned
as the rank of its mode-n matrix unfolding, i.e., rank(Tn). A third-order tensor has
multilinear rank-(L1, L2, L3) if its mode-1 rank, mode-2 rank, and mode-3 rank are
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equal to L1, L2, and L3, respectively [64, De�nition 1.6].

4.3 Tensor decompositions

Tensor decompositions aim at representing a tensor as a sum of simpler tensors or
components. In turn, each component is obtained from some matrix or vector factors.
For instance, in the PARAllel FACtor (PARAFAC) decomposition, the tensor is repre-
sented by a linear combination of outer product factors, as it will be described later in
this chapter. Tensor decompositions are very useful tools in problems where the multi-
linear nature of the data can be explored. Signi�cant contributions of these remarkable
multilinear factorization methods have been made in several research �elds, as for ex-
ample, signal processing, wireless communications, biomedical engineering, blind source
separation, chemometrics, psychometrics, and many others.

4.3.1 PARAFAC decomposition

The PARAFAC decomposition (or polyadic decomposition, or even CANDECOMP)
was �rst proposed by Frank L. Hitchcock [47] in 1927 and then, was developed by Richard
A. Harshman [45] and J. Douglas Carroll & Jih-Jie Chang [9] in di�erent works in 1970.
Considering a third-order tensor, one can say that this decomposition is a sum of triple
products, or equivalently, a sum of several rank-1 tensors. The PARAFAC decomposition
of an arbitrary third-order tensor X ∈ CI1×I2×I3 can be written in scalar form as:

xi1,i2,i3 =
R∑
r=1

ai1,rbi2,rci3,r , (4.8)

where ai1,r, bi2,r and ci3,r are the scalar components of factor matrices A ∈ CI1×R,
B ∈ CI2×R and C ∈ CI3×R, respectively, and R is the rank of the decomposition (or the
number of factors). If R is minimal, then the decomposition is called canonical, referred
to as canonical polyadic decomposition (CPD), and then R is the rank of the tensor. The
PARAFAC decomposition can also be written using the outer product notation as:

X =

R∑
r=1

A.r ◦B.r ◦C.r =

R∑
r=1

ar ◦ br ◦ cr . (4.9)

where ar, br, and cr are the rth column vectors of matricesA, B, andC, respectively, and
are also known as factor vectors. A compact notation of the PARAFAC decomposition
can be written as:

X = [[A,B,C]] . (4.10)

A PARAFAC decomposition of an arbitrary third-order tensor X is illustrated in
Figure 4.3 as a sum of R rank-1 tensors.

One can represent the matrix slices of the PARAFAC decomposition of the third-order
tensor previously de�ned as:

Xi1.. = BDi1(A)CT (4.11)

X.i2. = CDi2(B)AT (4.12)

X..i3 = ADi3(C)BT . (4.13)
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Figure 4.3: Illustration of the PARAFAC or polyadic decomposition of a third-order
tensor as a sum of R rank-1 tensors.

A celebrated property states that:

A �B =

BD1(A)
...

BDI1(A)

 . (4.14)

If we stack the �rst-, second- and third-mode slices, according to (4.14) we will have
the matrix unfoldings given by:

X1 =

X.1.
...

X.I2.

 =

CD1(B)
...

CDI2(B)

AT = (B �C)AT ∈ CI2I3×I1 (4.15)

X2 =

X..1
...

X..I3

 =

AD1(C)
...

ADI3(C)

BT = (C �A)BT ∈ CI3I1×I2 (4.16)

X3 =

X1..
...

XI1..

 =

BD1(A)
...

BDI1(A)

CT = (A �B)CT ∈ CI2I1×I3 . (4.17)

The PARAFAC decomposition can be unique for ranks greater than one up to scaling
and permutation factors. To understand the PARAFAC uniqueness condition, lets �rst
de�ne the concept of Kruskal-rank (k-rank), proposed by Kruskal in 1977 [62].

The k-rank of a matrix A, denoted krank(A), is the maximum number k such that
every set of k columns ofA is linearly independent. One can see that the k-rank krank(A)

is always less than or equal to the rank of A, that is:

krank(A) ≤ rank(A) ≤ min(I1, R) . (4.18)

Let us consider the set of factor matrices A, B and C, previous de�ned in Equa-
tion (4.9). A, B, and C are unique up to permutation and scaling factors if [58]:

krank(A) + krank(B) + krank(C) ≥ 2R+ 2 . (4.19)

That is, if (4.19) holds, any matrices Ã, B̃, and C̃ that satisfy (4.9) are connected to
A, B, and C as:

Ã = AΠ∆A (4.20)

B̃ = BΠ∆B (4.21)

C̃ = CΠ∆C , (4.22)
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where Π is a permutation matrix and ∆A, ∆B, and ∆C are diagonal matrices such that:

∆A∆B∆C = IR . (4.23)

Condition (4.19) is the most general condition to assure the uniqueness of a
PARAFAC decomposition, being su�cient, but not necessary. Other more relaxed su�-
cient conditions have been proposed through the years to assure the uniqueness of some
speci�c PARAFAC decompositions. In [99, Theorem 4.6], for example, it is shown that
if C is known, B has full-column rank, and:

rank([C �A, cr ⊗ II1 ]) = I1 +R− 1, ∀r ∈ 1, ..., R , (4.24)

then the PARAFAC decomposition is unique. Generically, the above conditions hold if:

min((I3 − 1)I1 + 1, I2) ≥ R . (4.25)

A variant of the PARAFAC model, called nested PARAFAC model, was proposed
in [19] and it corresponds to two nested third-order PARAFAC models sharing a common
matrix factor. Let us consider an arbitrary fourth-order tensor X ∈ CI1×I2×I3×I4 , its
Nested PARAFAC decomposition can be written in scalar form as:

xi1,i2,i3,i4 =

R1∑
r1=1

R2∑
r2=1

a
(1)
i1,r1

b
(1)
i2,r1

a
(2)
i3,r2

b
(2)
i4,r2

gr1,r2 , (4.26)

where a(1)
i1,r1

, b(1)
i2,r1

, a(2)
i3,r2

, b(2)
i4,r2

, and gr1,r2 are the scalar components of the matrices

A(1) ∈ CI1×R1 , B(1) ∈ CI2×R1 , A(2) ∈ CI3×R2 , B(2) ∈ CI4×R2 , and G ∈ CR1×R2 ,
respectively.

The PARAFAC decomposition and its variants have proven useful in several research
�elds, such as chemometrics [7], neuroscience [80], psychometrics [9], signal processing
[94], and many others.

4.3.2 Tucker-3 decomposition

The Tucker-3 decomposition [103] was proposed in 1966 by Ledyard R. Tucker. This
tensor decomposition represents a tensor X ∈ CI1×I2×I3 in scalar form as:

xi1,i2,i3 =
P∑
p=1

Q∑
q=1

R∑
r=1

ai1,pbi2,qci3,rgp,q,r , (4.27)

where ai1,p, bi2,q and ci3,r are the scalar components of the matrices AI1×P , BI2×Q

and CI3×R, respectively, and gp,q,r is a scalar component of the so-called core tensor
G ∈ CP×Q×R. P , Q, and R are the number of factors in the �rst, second, and third mode
of the tensor. Figure 4.4 illustrates this tensor decomposition for an arbitrary third-order
tensor X . Tucker decomposition is an extension of CPD, allowing for interactions between
vector factors with diferent indices. Indeed, a Tucker decomposition with identity core
tensor is equivalent to a CPD.

One can see that the Tucker-3 decomposition is not unique, since there exists in�nite
solutions for the core tensor and the factor matrices that lead to the same tensor X .

There exist two special cases of the Tucker decomposition known as Tucker-2 and
Tucker-1 decompositions. Considering the Tucker-3 decomposition in (4.27), one can
rewrite this equation as:

xi1,i2,i3 =

P∑
p=1

Q∑
q=1

ai1,pbi2,q

(
R∑
r=1

ci3,rgp,q,r

)
=

P∑
p=1

Q∑
q=1

ai1,pbi2,qhp,q,i3 . (4.28)
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Figure 4.4: Illustration of the Tucker-3 decomposition of a third-order tensor.

One can see that (4.28) is the scalar form of the Tucker-2 decomposition, where ci3,r and
gp,q,r form the equivalent core tensor hp,q,i3 .

Equation (4.27) can also be rewritten as:

xi1,i2,i3 =
P∑
p=1

ai1,p

 Q∑
q=1

R∑
r=1

bi2,qci3,rgp,q,r

 =

P∑
p=1

ai1,pfp,i2,i3 . (4.29)

Equation (4.29) is the scalar form of the Tucker-1 decomposition, where bi2,q, ci3,r,
and gp,q,r form the equivalent core tensor fp,i2,i3 .

Generalizing to an arbitrary N th-order tensor X ∈ CI1×I2×...×IN , the N th-order
Tucker decomposition of this tensor is given by:

xi1,i2,...,iN =

R1∑
r1=1

R2∑
r2=1

...

RN∑
rN=1

a
(1)
i1,r1

a
(2)
i2,r2

...a
(N)
iN ,rN

gr1,r2,...,rN , (4.30)

where ain,rn is the scalar component of the matrix AIn×Rn and gr1,r2,...,rN is a scalar
component of the N th-order core tensor G ∈ CR1×R2×...×RN .

A Tucker-based model was proposed in [36], called nested Tucker decomposition. This
tensor factorization writes a fourth-order tensor X ∈ CI1×I2×I3×I4 in scalar form as:

xi1,i2,i3,i4 =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

R4∑
r4=1

ai1,r1c
(1)
r1,i2,r2

rr2,r3c
(2)
r3,i3,r4

bi4,r4 , (4.31)

where ai1,r1 , c
(1)
r1,i2,r2

, rr2,r3 , c
(2)
r3,i3,r4

, and bi4,r4 are the scalar components of A ∈ CI1×R1 ,

C(1) ∈ CR1×I2×R2 , R ∈ CR2×R3 , C(2) ∈ CR3×I3×R4 , and B ∈ CI4×R4 , respectively.
Generalizing this decomposition for an arbitrary N th-order tensor X ∈ CI1×I2×...×IN ,

one can write its scalar form as:

xi1,i2,...,iN =

R1∑
r1=1

R2∑
r2=1

...

RN∑
rN=1

a
(1)
i1,r1

c
(1)
r1,i2,r2

a(2)
r2,r3c

(2)
r3,i3,r4

...c
(N−2)
r2N−5,iN−1,r2N−4

a
(N−1)
iN ,r2N−4

,

(4.32)

where a(1)
i1,r1

, a(N−1)
iN ,r2N−4

, a(n+1)
r2n,r2n+1 , and c

(n)
r2n−1,in+1,r2n

are the scalar components of A(1) ∈
CI1×R1 , A(N−1) ∈ CIN×R2N−4 , A(n+1) ∈ CR2n×R2n+1 , and C(n) ∈ CR2n−1×In+1×R2n , re-
spectively.

The Tucker decomposition has applications in research �elds such as neuroscience
[79], chemometrics [97], and others.
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Figure 4.5: PARATUCK-2 decomposition of a third-order tensor.

4.3.3 PARATUCK decomposition

Once the PARAFAC and Tucker models have been presented, it is now presented a
tensor model that shares some features of both models, i.e., this decomposition can be
considered as a combination of PARAFAC and TUCKER-2 [58]. This tensor model called
PARATUCK was proposed in 1996 by Richard A. Harshman & Margaret E. Lundy [46].
Consider an arbitrary third-order tensor X ∈ CI×J×K , its PARATUCK-2 decomposition
can be written in scalar form as:

xi,j,k =

R2∑
r2=1

R1∑
r1=1

ai,r1d
(a)
k,r1

rr1,r2d
(b)
k,r2

br2,j , (4.33)

where ai,r1 , d
(a)
k,r1

, rr1,r2 , d
(b)
k,r2

, and br2,j are the scalar components of the matrices

A ∈ CI×R1 , D(A) ∈ CK×R1 , R ∈ CR1×R2 , D(B) ∈ CK×R2 , and BT ∈ CR2×J . This
tensor decomposition is illustrated in Figure 4.5. We can also express the PARATUCK-2
decomposition in matrix slices terms as:

X..k = ADk(D
(A))RDk(D

(B))BT . (4.34)

Generalizing, we can write the PARATUCK-N decomposition of the same arbitrary
third-order tensor in matrix slices terms as:

X..k = A(N+1)Dk(D
(N))A(N)...Dk(D

(2))A(2)Dk(D
(1))A(1)T . (4.35)

In [22] it was shown that the PARATUCK-N decompositon can alternatively be rep-
resented as a PARATUCK-2 model, with di�erent sets of su�cient uniqueness conditions.
Furthermore, in [46] it was proved the uniqueness for the general PARATUCK-2 model,
considering D(A) = D(B), and under the conditions that R1 = R2 and R has no zeros.
In this case, [46] supposes that there is an alternative representation of X..k given by:

X..k = ÃDk(D̃
(A)

)R̃Dk(D̃
(B)

)B̃
T
. (4.36)

where Ã, D̃
(A)

, R̃, D̃
(B)

, and B̃
T

have the same size and structural forms as their
equivalent terms in (4.34).

The representations in (4.34) and (4.36) are related as

Ã(ΠA∆A) = A (4.37)

B̃(ΠB∆B) = B (4.38)

(∆̄A∆−1
A ΠT

A)R̃(ΠB∆−1
B ∆̄B) = R , (4.39)

and for any X..k 6= 0:

(zkΠ
T
A)Dk(D̃

(A)
)(ΠA∆̄−1

A ) = Dk(D
(A)) (4.40)
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Figure 4.6: Visual representation of the block term decomposition of an arbitrary third-
order tensor.

(z−1
k ΠT

B)Dk(D̃
(B)

)(ΠB∆̄−1
B ) = Dk(D

(B)) , (4.41)

where ∆̄A, ∆̄B, ∆A and ∆B are diagonal matrices, ΠA and ΠB are permutation ma-
trices, and zk are nonzero scalars.

The PARATUCK decomposition is mainly applied in signal processing for communi-
cation systems [22], [32].

4.4 Block term decomposition

The block term decomposition (BTD) was introduced in [64] and factorizes an arbi-
trary third-order tensor T ∈ RI1×I2×I3 in the form of:

T =

R∑
r=1

Er ◦ cr , (4.42)

where cr ∈ RI3 is a nonzero vector and Er ∈ RI1×I2 is a matrix that has rank Lr and
therefore admits a factorization Er = ArB

T
r , where Ar ∈ RI1×Lr and Br ∈ RI2×Lr have

full column rank Lr. Equation (4.42) may then be rewritten as:

T =
R∑
r=1

(
ArB

T
r

)
◦ cr . (4.43)

The visual representation of BTD as a sum of the outer product of its matrix and
vector factors is shown in Figure 4.6. One can see that the BTD is a decomposition of
T in multilinear rank-(Lr,Lr,1) terms. The structure of matrices Er is the same as that
of the mode-3 matrix slices of tensor T and may vary depending on the nature of the
signal to be decomposed. In the present doctoral thesis, two well-known structures are
explored: the Hankel structure, that focus on separating exponential functions, and the
Löwner structure, focusing on the separation of rational functions.

Several conditions that guarantee the essential uniqueness of this decomposition are
presented in [64], and further results were provided in [65]. For example, in [65, Theorem
2.2], it is shown that the BTD is essentially unique if the following su�cient conditions
are satis�ed:

1. The matrix factors A =
[
A1 A2 . . . AR

]
∈ RI1×

∑R
r=1 Lr and B =[

B1 B2 . . . BR

]
∈ RI2×

∑R
r=1 Lr are full-column rank. This condition requires

that
∑R

r=1 Lr ≤ I1, I2.

2. Matrix C =
[
c1 c2 . . . cR

]
∈ RI3×R does not contain proportional columns.



40 Chapter 4. Concepts of Tensor Algebra

Essential uniqueness means that the decomposition is subject only to the following
indeterminacies [64]:

1. The di�erent multilinear rank-(Lr,Lr,1) terms can be arbitrarily permuted.

2. Ar can be postmultiplied by any nonsingular matrix, given that Br is premultiplied
by the inverse of that nonsingular matrix.

3. As long as the resulting product remains the same, the factors of the same multi-
linear rank-(Lr,Lr,1) term can be arbitrarily scaled.

Considering the matrix factors A, B and C, previously de�ned, one can write the
matrix unfoldings of T as:

T1 = (B�C)AT ∈ CI2I3×I1 (4.44)

T2 = (C�A)BT ∈ CI3I1×I2 (4.45)

T3 = [(A1 �B1)1L1 . . . (AR �BR)1LR
]CT ∈ CI1I2×I3 . (4.46)

Expressions for the matrix slices of T can be given by:

Ti1.. = Bbdiag([(A1)i11 . . . (A1)i1L1 ]T , . . . , [(AR)i11 . . . (AR)i1LR
]T )CT ∈ CI2×I3 (4.47)

T.i2. = Cbdiag([(B1)i21 . . . (B1)i2L1 ], . . . , [(BR)i21 . . . (BR)i2LR
])AT ∈ CI3×I1 (4.48)

T..i3 = Abdiag(ci31IL1 , . . . , ci3RILR
)BT ∈ CI1×I2 . (4.49)

4.5 Coupled block term decomposition

Considering a set of BTD tensors T (n) ∈ RIn×Jn×K , for n = 1, ..., N , with matrix
factors Ar,nB

T
r,n that have rank Lr,n and a common vector factor cr, the coupled BTDs

of T (n), can be written in the following form [98]:

T (n) =

R∑
r=1

(Ar,nB
T
r,n) ◦ cr . (4.50)

Considering mode-1 matrix unfoldings, a matrix representation of the overall coupled
BTD can be given by:

T = [(T
(1)
1 )T , ..., (T

(N)
1 )T ]T = FCT ∈ R(

∑N
n=1 InJn)×K (4.51)

where T(n)
1 is the mode-1 matrix unfolding of T (n), for n = 1, ..., N , C = [c1, ..., cR] ∈

RK×R, and F ∈ R(
∑N

n=1 InJn)×R is given by:

F =

 vec(B1,1A
T
1,1) . . . vec(BR,1A

T
R,1)

...
. . .

...
vec(B1,NA

T
1,N ) . . . vec(BR,NA

T
R,N )

 . (4.52)

The coupled BTDs in (4.50) are illustrated in Figure 4.7 and can be arbitrarily
permuted. Also, the matrix and vector factors of the same coupled multilinear rank-
(Lr,n, Lr,n, 1) tensor can be arbitrarily scaled, as long as the overall coupled multilinear
rank-(Lr,n, Lr,n, 1) term remains the same [98]. Uniqueness conditions for the overall
coupled BTD tensor with cr as a common factor are presented in [98]. For example,

consider Âr,n, B̂
T
r,n and ĉr the matrix and vector factors that form an alternative coupled
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Figure 4.7: Visual representation of coupled BTDs of arbitrary third-order tensors with
common factor cr, for r = 1, 2, ..., R.

BTD of the tensors T (n) in Equation (4.50). The coupled BTD of tensors T (n) is unique
up to a permutation of the coupled multilinear rank-(Lr,n, Lr,n, 1) terms and up to the
following indeterminacies in each term:

Âr,n = αr,nAr,nHr,n

B̂r,n = βr,nBr,nH
−1
r,n

ĉr = γrcr ,

where Hr,n are nonsingular matrices and αr,n, βr,n and γr are scalar factors with unitary
product, i.e, αr,nβr,nγr = 1.

Also, from Equation (4.51), one can see that two necessary conditions for the unique-
ness of the coupled BTD of (4.50) are:

1. krank(C) ≥ 2, where C = [c1, ..., cR].

2. Matrix F has full column rank.

4.6 Hankel-BTD as an AA extraction tool

In [65], the Hankel-BTD is proposed as a solution of a BSS problem like (3.19). The
idea to obtain a tensor from Y is to map each of its kth row onto a Hankel matrix
H

(k)
Y ∈ RI×J , where I = J = N+1

2 if N is odd or I = N
2 and J = N

2 + 1 if N is even,
with:

[H
(k)
Y ]i,j , yk,i+j−1 , (4.53)

where i = 1, ..., I, j = 1, ..., J , and k = 1, ...,K. This process is called hankelization.
Next, the tensor is built by stacking each Hankel matrix along the third-mode (as frontal
slices) of a third-order tensor Y ∈ RI×J×K , that is:

Y..k = H
(k)
Y . (4.54)

In scalar form, the third-order tensor Y can be written as:

yi,j,k =
R∑
r=1

mk,rsr,i+j−1 . (4.55)
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The kth matrix slice of this tensor can be represented as:

Y..k =

R∑
r=1

mk,rH
(r)
S , (4.56)

where H(r)
S ∈ RI×J is a Hankel matrix built from the rth row of S. One can see that

for each r, the outer product between matrix H(r)
S and the rth column of M, i.e., m.r, is

being performed to obtain the contribution of each source to the observed tensor. This
way, the third-order tensor Y can be written as

Y =
R∑
r=1

H
(r)
S ◦m.r . (4.57)

ConsideringY as an ECG data matrix, where each row represents a lead, and compar-
ing Equations (4.42) and (4.57), it can be concluded that the ECG data tensor obtained
by hankelization follows a BTD tensor model with the following correspondence:

(T )⇐⇒ (Y) (4.58)

(Er, cr)⇐⇒ (H
(r)
S ,m.r) (4.59)

(I1, I2, I3, R)⇐⇒ (I, J,K,R) . (4.60)

Recalling the two su�cient uniqueness conditions for BTD in Section 4.4, for ECG
signal processing, su�ciently long segments directly imply that I, J ≈ N+1

2 ≥
∑R

r=1 Lr.
Also, matrix C corresponds to the mixing matrix M, whose columns represent the con-
tribution of each source to the ECG leads, which are not proportional.

The Hankel-BTD suits the characteristics of AA in AF episodes, since atrial signals
can be approximated by all-pole (or exponential) models and mapped onto Hankel matri-
ces with rank equal to the number of poles [110]. Indeed, due to the quasi-periodic nature
of AF signals, atrial sources can be represented by the all-pole (exponential) model:

sr,n =

Lr∑
`=1

λ`,rz
n−1
`,r , (4.61)

where n = 1, ..., N represents the discrete-time index, r = 1, .., R, Lr is the number of
exponential terms, z`,r is the `th pole of the rth source, and λ`,r is the scaling coe�cient.
This way, their associated Hankel matrices accept the Vandermonde decomposition [5]:

H
(r)
S = Vrdiag(λ1,r, λ2,r, ..., λLr,r)V̂

T
r , (4.62)

with

Vr =


1 1 . . . 1

z1,r z2,r . . . zLr,r
...

...
. . .

...
zI−1

1,r zI−1
2,r . . . zI−1

Lr,r

 ∈ RI×Lr (4.63)

and

V̂r =


1 1 . . . 1

z1,r z2,r . . . zLr,r
...

...
. . .

...
zJ−1

1,r zJ−1
2,r . . . zJ−1

Lr,r

 ∈ RJ×Lr . (4.64)
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In the case of di�erent poles, the Vandermonde matrix with Lr ≤ I, J will have full-
column rank Lr, so if M does not have proportional columns, the BTD in (4.57) will be
essentially unique. In the case of equal poles, milder conditions can assure the uniqueness
of (4.57) [65].

The Hankel-BTD was introduced as an AA extraction tool from AF ECGs in [87],
outperforming the BSS matrix-based approaches regarding AA extraction in �xed short
AF ECG recordings of a single patient su�ering from persistent AF. However, no major
conclusions can be drawn, as the performance analysis carried out in [87] is rather limited,
where experiments were performed only in synthetic signals and in a single patient.

In order to overcome this limitation, the �rst goal of this doctoral thesis is to validate
the Hankel-BTD in a population of patients and in a whole ECG recording, by performing
more thorough experimental analysis. As mentioned earlier in Chapter 1, other challeng-
ing issues are also addressed in this doctoral thesis, such as the problem of AA source
classi�cation and quanti�cation, alternative tensor models to perform AA extraction in
di�cult AF ECG recordings, the impact of BTD initialization and model parameters on
AA extraction performance, the use of improved algorithms for BTD computation, etc.

4.7 Summary

This chapter summarized the tensor algebra fundamentals, necessary to understand
the mathematical part of this doctoral thesis. First, basic concepts of multilinear algebra
were introduced, followed by the main tensor decompositions and their applications.
Among the existing tensor decompositions, the Hankel-BTD was identi�ed as particularly
suitable for noninvasive AA extraction in AF episodes, although some limitations were
remarked that this work aims to overcome. The next part of this manuscript contains
the contributions of the present doctoral thesis.
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5.1 Introduction

This chapter is an important previous step before presenting the experimental eval-
uation of the BSS techniques studied in this doctoral thesis, as it presents the proposed
AA quanti�cation indices used in the following chapters. The contributions presented
next start with the proposition of new indices to quantify the quality of the AA extrac-
tion after performing BSS. Later, the problem of automatically detecting the AA source
among the other estimated sources is dealt with automated methods and two arti�cial
intelligence approaches: machine learning and neural networks. This chapter provided
the following publications:

• I. N. Lira, P. M. R. de Oliveira, W. Freitas Jr and V. Zarzoso, �Automated atrial
�brillation source detection using shallow convolutional neural networks�, to appear
in Proc. CinC-2020, Computing in Cardiology 2020, Rimini, Italy, Sep. 13-16,
2020.
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• P. M. R. de Oliveira, V. Zarzoso and C. A. R. Fernandes, �Source classi�cation in
atrial �brillation using a machine learning approach�, in Proc. CinC-2019, Com-

puting in Cardiology 2019, Biopolis, Singapore, Sep. 8-11, pp. 1-4, 2019.

• P. M. R. de Oliveira and V. Zarzoso, �Source analysis and selection using block term
decomposition in atrial �brillation�, in Proc. LVA/ICA-2018, 14th International

Conference on Latent Variable Analysis and Signal Separation, Guildford, United
Kingdom, Jul. 2-6, pp. 46-56, 2018.

5.2 Indices for AA quanti�cation

Signal processing techniques used to solve BSS problems separate the observed signal
in several sources. In AF ECGs, typically at least one of these sources contains the AA.
It is still unknown if the AA is concentrated only in a single source. However, in the
present doctoral thesis, as in previous works, it is considered that the AA is concentrated
only in one source, and the source with the most signi�cant AA content is called the
atrial source.

Measuring the quality of the estimation or the AA content of real signals is a chal-
lenging task. Since there is no ground truth for comparison, one needs to take advantage
of some features present in AA during AF. For example, in the frequency domain, the
AA during AF has a peak between 3 and 9 Hz, as illustrated in Figures 5.3, 5.4 and
5.5. The position of this peak is called dominant frequency (DF). As in [24], it is de�ned
as potential atrial source any source with DF in such an interval. However, a spectral
peak in this interval may not be necessarily associated with an atrial component. A
well-known index for AA content measurement is the spectral concentration (SC), that
is, the relative amount of energy around the DF. The SC is computed as in [10]:

SC =

∑1.17fp
fi=0.82fp

PS(fi)∑Fs/2
fi=0 PS(fi)

(5.1)

where fp is the value of the DF, Fs is the sampling frequency, fi is the frequency value
and PS is the power spectrum of the source signal computed using Welch's method as
in [10]. The Welch's method basically consists in splitting the signal into overlapping
segments and windowing them before applying the discrete Fourier transform (DFT).
Then, the average of the periodograms is computed, resulting in a smoother signal in the
frequency domain [107].

However, one can see in (5.1) that the SC depends on the DF and the de�nition of
a suitable interval for interpretation. Aiming to overcome this dependency, the kurtosis,
denoted κ, of the signal in the frequency domain acquired by a 4096-point fast Fourier
transform (FFT) is proposed as an AA quality index for AF [24]. As in [112], the general
expression of kurtosis valid for non-circular complex data is used, given by:

κ =
E[|Sr|4]− 2E[|Sr|2]2 − |E[S2

r ]|2

E[|Sr|2]2
(5.2)

where Sr is the FFT of the rth source. It is known that AA in AF is typically a quasi-
harmonic signal, characterized by a sparse frequency spectrum with few values signi�-
cantly di�erent from zero. Also, kurtosis is a measure of peakedness and sparsity of a
distribution and, when computed in the frequency domain, it naturally provides a quan-
titative measure of harmonicity of the signal. A high kurtosis in the frequency domain
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Figure 5.1: Scatter plot showing the correlation between kurtosis and SC of the selected
atrial source by the Hankel-based BTD, for an observed population of 20 AF patients.
A positive correlation can be seen.

means that the power spectral density is sparse, which is suggestive of a quasi-harmonic
signal like AA in AF. In addition, kurtosis is parameter free, not depending on the DF
and the de�nition of a suitable interval for interpretation [26].

In Figure 5.1 it can be seen how kurtosis and SC of the estimated atrial sources, by
the Hankel-based BTD, are correlated across an observed population of 20 AF patients
[26]. It is observed that these parameters are positively correlated, since in general, as
long as the values of kurtosis increase, the values of SC also increase. Moreover, it is
valid to point that, in the observed population, for high values of kurtosis we will always
have high values of SC. However, for some patients it is observed a high value of SC but
a low value of kurtosis, as shown in Figure 5.1.

A second index is put forward, to discard sources with irrelevant content that can be
mistaken as the atrial source. The power contribution to lead V1, denoted P (r), is given
by [24]:

P (r) =
1

N
||m(V 1)

r sr.||2 (5.3)

in mV2, where m(V 1)
r is the contribution of the rth source to lead V1 (given by the

corresponding element of the estimated mixing matrix) and sr. is the rth source in time
domain, corresponding to the rth row of the source matrix S in (3.19). The power
contribution to lead V1 by an AA source is expected to be relatively strong (> 10−4 mV2,
based on previous experiments), since this lead is the one that typically best re�ects AA
in AF ECGs. Indeed, lead V1 strongly correlates with the AA from the right atrium and
moderately correlates with the AA from the left atrium [86].

Finally, taking advantage of the TQ segment in AF ECGs, where only the AA is
observed, an additional AA estimation quality index is proposed: the normalized mean
square error (NMSE) between the TQ segment of the original AF ECG recording and
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the estimated source. This index is denoted NMSE-TQ and is given by [28]:

NMSE-TQ =

[
||m(V 1)

r sr. − y(V 1)||2F
||y(V 1)||2F

]
TQ

(5.4)

where m(V 1)
r is the contribution of the rth source estimate to lead V1, sr. is the rth

source estimate and y(V 1) is the original recording on lead V1. Note that lead V1 is also
chosen as reference for this parameter, for the same reason previously explained.

5.3 Automated methods for source classi�cation

5.3.1 Classical method

To select the estimated source with the most signi�cant AA activity, the classical
method considers two parameters: DF and SC. It makes the assumption that the atrial
source is concentrated in a single source only. This method consists of the following steps
[110], [111], [39]:

1. Select all the estimated sources with DF between 3 and 9 Hz, these signals are
referred as potential atrial sources.

2. Select the potential atrial source with the highest SC.

5.3.2 Proposed method 1

In the literature, the classical automated method described above has been used to
detect the atrial source among the other estimated sources. However, in some cases, this
method may not precisely select the atrial source, as will be illustrated later in this work.
In Figures 5.4 and 5.5, for example, the atrial source does not correspond to the potential
source with the highest SC, despite the fact that they have close values of SC at very
close DF positions.

Aiming at a higher accuracy in the selection of the AA signal, it is proposed to
eliminate the weak sources that can be mistaken as the atrial source. Using the power
contribution to the lead V1 as a new parameter, the classical method becomes:

1. Select all the estimated sources with DF between 3 and 9 Hz (potential atrial
sources).

2. Select all the potential atrial sources with power contribution higher than 10−4

mV2. We refer to this subset of sources as likely atrial sources.

3. Select the likely atrial source with the highest SC.

Selecting the sources with power contribution higher than 10−4 mV2 is needed in
order to eliminate all sources that may present AA-like signature but are actually too
weak to represent meaningful AA components. This threshold is chosen based on initial
experiments that showed that sources with power contribution lower than 10−4 mV2 do
not present any signi�cant contribution to the original signal.
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Figure 5.2: A single-beat segment of an AF ECG recording of one patient in lead II. The
vertical line marks the location of the T-wave o�set.

5.3.3 Proposed method 2

In order to better select the source with the most signi�cant AA content among the
other estimated sources, a new automated method is now proposed. The �rst two steps
of this method are the same as those of the proposed method previously introduced. The
third and last step of this new method is to select the source with the highest value of
kurtosis in the frequency domain [24].

In the experiments below, it will be shown that selecting the source with the highest
kurtosis provides a better performance than selecting the source with the highest SC.
A possible explanation is that kurtosis is computed from the whole signal and does not
require the estimation of the DF, while SC is only computed around the DF and require
the prior estimation of this parameter.

5.3.4 Experimental data and setup

The reported experiments are divided in two parts: (i) potential atrial source de-
tection and (ii) atrial source identi�cation. The recordings used in those experiments
belong to the PERSIST database, described in Section 1.3. To analyze the potential
atrial sources, we consider a randomly selected heartbeat (QRST complex + TQ seg-
ment) of a standard 12-lead ECG recording from a single persistent AF patient. A
single-beat segment of this patient is shown in Figure 5.2, where we can see the TQ
interval just after the QRST complex in bipolar limb lead II. The beat from this patient
used to analyze the potential atrial sources is chosen randomly and has 1300 samples.

To asses the atrial selection methods, a population of 10 patients su�ering from
persistent AF is used in the same way previously described. Similarly, one beat from each
of the ten patients is chosen randomly to evaluate atrial source selection performance.
The lengths of the chosen beats is between 1000 and 1400 samples (1.02 and 1.43 seconds,
respectively). The physiological characteristics of the observed 10-patient population are
described on Table 5.1. It must be reported that there are missing data values for one
patient regarding AF history and LA diameter and such values were replaced by the
average.
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Table 5.1: Overall physiological characteristics of the 10-patient population.
Patient characteristics µ ± σ Min Max

Age (years) 65.4 ± 8 47 76
Height (cm) 174.2 ± 4.7 169 185
Weight (kg) 80.8 ± 11.1 64 103

AF History (months) 85.8 ± 67.8 8 228
LA Diameter (mm) 49 ± 5.9 36 56

The Hankel-BTD is implemented using the non-linear least squares (NLS) approach
with the Gauss-Newton method available in Tensorlab MATLAB toolbox [105] choosing
R = 12 and Lr = 95, for r = 1, 2, ..., 12. This choice is made based on the work [110],
which showed that these values provided good results for the heartbeat with the largest
TQ segment of one of the patients in the present observed population. The tolerance
threshold for convergence is set to 10−9 and the maximum number of iterations is set
to 1000. The NLS method is known to be dependent on a suitable initialization of its
factors. The experiments reported in this section evaluate the in�uence of Hankel-BTD
factors initialization on source estimation performance and atrial source selection. Ten
Monte Carlo runs, with normalized Gaussian random initialization for the matrix and
vector factors at each run, are used to analyze the potential atrial sources found by
Hankel-BTD and compare them with the ones found by the matrix-based methods PCA
(Section 3.7.1) and RobustICA-f (Section 3.7.2). All the beats are downsampled by a
factor of two, since the third-order tensor built from the original 12-lead ECG beat poses
some computational di�culties to be processed by the Gauss-Newton algorithm for BTD
computation.

5.3.5 Source analysis and classi�cation

For the observed patient used to analyze the potential atrial sources, PCA found 6
potential sources, RobustICA-f found 5 potential sources and Hankel-BTD found a mean
of 7.2 potential sources. In 7 out of the 10 independent runs, the Hankel-BTD found
more potential sources than the matrix-based methods, re�ecting the ability of the tensor
technique to perform undertermined source separation. Finding several potential atrial
sources is interesting, since it increases the possibility of �nding some features that,
although weakly contributing to the AA, may provide useful physiological and clinical
information about the arrhythmia. In this work, however, we assume as in the previous
literature of this topic, that all AA can be represented by a single source. For the sake
of clarity, only two potential atrial sources for PCA, RobustICA-f and Hankel-BTD are
shown in Figures 5.3 � 5.5. The other sources were disregarded for presenting a very
weak power contribution.

Looking at Figure 5.3, we can see that the atrial source estimated by PCA (located in
the second row) has SC equal to 62.5%, while looking at Figure 5.4, the estimated atrial
source by RobustICA-f (located in the second row) has SC equal to 68.3%. For Hankel-
BTD, 8 out of the 10 independent runs estimated an atrial source with higher SC than
PCA and 6 with higher SC than both matrix-based methods, giving an average SC over
the 10 runs equal to 67.8%. Figure 5.5 shows the results for a particular initialization
of Hankel-BTD, where the estimated atrial source (located in the second row) has SC
equal to 76.5%. The DF position of both PCA and RobustICA-f are located at 5.96 Hz,
while in Hankel-BTD it lies between 5.72 and 5.96 Hz. For comparison, the DF position
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Figure 5.3: Potential atrial sources contribution to lead V1 estimated by PCA. Left: time
domain (in mV). Right: frequency domain (in mV/
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obtained from an electrogram simultaneously acquired by a catheter located in the left
atrial appendage of the same patient, is 4.77 Hz.

As ground truth, the sources are visually analyzed in time and frequency domain with
guidance of the indices previously described. The source with the strongest representation
of AA content is taken as the atrial source.

The classical method and the two proposed methods of atrial source selection are
assessed in 10 segments of 10 di�erent patients, as previously explained. From a total of
120 runs for the 10 patients (100 for Hankel-BTD, 10 for PCA and 10 for RobustICA-
f) the classical method succeeds only in 45.8% of runs. Applying the �rst proposed
method (Section 5.3.2), the index of success increases to 75%, while the second proposed
technique (Section 5.3.3) succeeds in 83.7% of the trials. It should be mentioned that
in 35.8% of the trials, both the classical and the second proposed method are able to
select the source with the strongest AA content. Also, in 12.5% of trials none of the
methods are able to select the AA signal. This means that the existing methods are
suboptimal regarding the AA source selection. However, from the reported experiments,
it is believed that a balanced combination between power contribution and kurtosis may
lead to an optimal or at least a better method.

5.4 Machine learning approach for source classi�cation

Searching for a higher accuracy in classifying the AA source among the other esti-
mated sources after BSS, this section presents a machine learning approach to perform
this challenging task.
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5.4.1 Methods

In these experiments, three di�erent BSS methods are applied in di�erent segments of
ECG recordings from 30 di�erent patients su�ering from persistent AF, in order to com-
pute an estimate of the sources that compose the original AF ECG: PCA, RobustICA-f
and Hankel-BTD.

Classi�ers are machine learning algorithms that operate on labeled data, predicting
in which class (or category) the data belong to. Such algorithms are also de�ned as
supervised learning models, as they need labeled data (training set) to learn and perform
the classi�cation of new data points (test set). Three well-known classi�ers are used
in these experiments to classify the source estimates provided by the BSS techniques,
introduced in the previous section, into AA and non-AA sources: linear discriminant
analysis (LDA) [37], quadratic discriminant analysis (QDA) [37], and support vector
machine (SVM) [6]:

• LDA: commonly used for data classi�cation and dimensionality reduction, LDA
guarantees maximal separability with a linear decision region between the classes
by computing discriminant scores for each observation obtained by a linear com-
bination of the training data (orthogonal projection on the direction de�ning the
hyperplane that separates the classes). LDA assumes that the data are normally
distributed and all classes identically distributed.

• QDA: unlike LDA, this method separates the given classes with a quadratic de-
cision region. In this method, the discriminant scores for each observation are
obtained by a non-linear combination of the training data. Since QDA has more
degrees of freedom, it tends to perform better than LDA. However, if the database
is too small, LDA may provide a better performance.

• SVM: this popular classi�er aims to separate the classes by creating a linear (or
non-linear) decision hyperplane. An optimal separating hyperplane can be found by
minimizing the distance between misclassi�ed data points and the decision margin.
These misclassi�ed observations are called support vectors, as they determine how
SVM discriminates between classes, supporting the classi�cation. In the present
work, a Gaussian kernel is used.

Three parameters are extracted and used as features for classi�cation: spectral con-
centration (SC) in %, kurtosis of the signal in frequency domain and the NMSE-TQ [28].
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5.4.2 Experimental data and setup

All ECG recordings belong to the PERSIST database and are preprocessed as de-
scribed in Section 1.3. Experiments are performed on di�erent segments of ECG record-
ings from 30 di�erent patients su�ering from persistent AF, processing all the 12 leads.
The physiological characteristics of the patients used in the present experiments are de-
tailed on Table 5.2. It must be reported that, there are missing values of Weight and
Height for one patient, AF history for two patients, and LA diameter for three patients.
As before, these values were replaced by the average.

Table 5.2: Overall physiological characteristics of the 30-patient population.
Patient characteristics µ ± σ Min Max

Age (years) 60.6 ± 10.3 38 76
Height (cm) 175.8 ± 7.2 156 195
Weight (kg) 84 ± 12.6 54 105

AF History (months) 74.5 ± 102.7 3.5 576
LA Diameter (mm) 46.9 ± 8.2 33 64.1

The Hankel-based BTD is implemented using the NLS approach with the Gauss-
Newton method available in Tensorlab MATLAB toolbox [105] choosing R = 6 and
Lr = L, for r = 1, 2, ..., R, with L taking values in the set {17, 48, 95}. The choice of R is
based on the SVD of the observed data matrix, taking into account the most signi�cant
singular values. The choice of Lr is based on the work [110], that shows that such values
provide good results for the heartbeat with the largest TQ segment of one of the patients
considered in the present experiments. Also, in [25] it is shown that Lr = 48 provides
satisfactory results for consecutive segments of the whole ECG recording of the same
patient.

The randomly chosen recordings are of 0.82 to 1.75 seconds in length and are down-
sampled by a factor of two, since the third-order tensors built from the original sample
rate pose some computational di�culties to be processed by the NLS method used to
compute the Hankel-BTD. For the matrix-based techniques PCA and RobustICA-f, no
downsampling is needed. Monte Carlo runs with Gaussian random initialization for the
spatial and temporal factors of Hankel-BTD at each run are used. Monte Carlo runs are
needed since the performance of the NLS method depends strongly on the initialization
of its factors. These three BSS methods are applied to short ECG recordings from the
observed AF patient database, generating 1283 sources that are visually labeled as 551
AA sources and 732 non-AA sources.

5.4.3 Classi�cation

After performing BSS using the techniques previously mentioned, the three features
(SC, kurtosis and NMSE-TQ) are extracted from the estimated sources. Using these
three features, LDA, QDA and SVM are applied to classify the database in AA sources
and non-AA sources. Figure 5.6 illustrates these two classes for one of the patients,
where it can be seen the original recording in gray and some sources estimates by the
Hankel-BTD. The AA source is shown in blue, followed by non-AA sources. In this case
the VA source estimate and noise of di�erent amplitudes can be seen.

From the 1283 generated source estimates, 1046 are used for training the classi�ers,
while 237 are used for testing. A cross-validation with equally sized 5 partitions, i.e.,
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Figure 5.6: Original ECG recording, AA source estimate and non-AA source estimates
(VA and noises) on lead V1. The signals are vertically shifted for clarity.

5-fold cross-validation, is performed in all classi�ers. This strategy consists in training
the model using 4 partitions and testing it in the remaining partition of the data. The
performance measure is then the average of the values computed in this loop. Figure
5.7 illustrates the accuracy performance of all the methods compared in this work. The
classical method provides an accuracy of 49.90%, being outperformed by the two tech-
niques PM1 and PM2 previously described [24] (Sections 5.3.2 and 5.3.3), which provide
65.66% and 74.53%, respectively. The proposed parameter NMSE-TQ on its own pro-
vides 73.07% of accuracy (the signal with the lowest NMSE-TQ is chosen as AA source),
almost the same performance as PM2, while the LDA, QDA and SVM classi�ers provide
84.39%, 87.34% and 91.98% of accuracy, respectively. As expected, QDA performs bet-
ter than LDA, as it uses a non-linear region to separate the classes, which seems to suit
better the AA source classi�cation problem in AF.

It should be emphasized that if the AA is represented by more than one source in
a particular ECG recording, the classi�ers are able to discriminate all of them from the
non-AA sources. This is not possible with the other techniques here compared, since
they are based on the assumption that the AA is represented by a single source.

Table 5.3 shows the confusion matrix of the three classi�ers. It can be seen that
LDA misclassi�es the largest number of sources, with 37 misclassi�ed sources (26 AA
and 11 non-AA sources). QDA correctly classi�es all the AA sources, but misclassi�es
more non-AA sources than LDA (30 non-AA sources). SVM, the classi�er that provides
the highest accuracy, misclassi�es the shortest number of sources, with 19 misclassi�ed
sources (9 AA and 10 non-AA sources).

It is also observed that the mean and standard deviation (µ ± σ) of SC, kurtosis
and NMSE-TQ for the AA sources is 61.8 ± 15.1, 141.3 ± 65.4 and 1.6 ± 3.0, while for
the non-AA sources is 37.8 ± 14.5, 41.7 ± 29.1 and 34.9 ± 111.0, respectively. It can be
seen that AA sources have very small NMSE-TQ values concentrated in a short range,
while non-AA sources have large NMSE-TQ values varying in a long range. This shows
that the proposed parameter discriminates very well these signals, which explains why it
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Figure 5.7: AA source selection accuracy by di�erent techniques. Left: SC proposed in
[10]; PM1 and PM2 [24] (Sections 5.3.2 and 5.3.3). Right: NMSE-TQ; and the three
classi�ers: LDA, QDA and SVM.

Table 5.3: Confusion matrix of LDA, QDA and SVM. AcA: actual AA sources, AcN:
actual non-AA sources, PrA: predicted AA sources and PrN: predicted non-AA sources.

N = 237
LDA QDA SVM

PrA PrN PrA PrN PrA PrN

AcA 82 26 108 0 99 9
AcN 11 118 30 99 10 119

provides a satisfactory performance when used alone for classi�cation in this challenging
application.

5.5 Neural networks approach for source classi�cation

Aiming to improve even more the results reported in the previous section, prelimi-
nary experiments using a convolutional neural network (CNN) are now brie�y reported.
Recently, deep learning architectures like the CNN have gained attention mainly by their
power of automatically extract complex features from signals and classifying them.

In this scenario, preliminary experiments have trained a shallow CNN model to au-
tomatically detect AA sources without the need of hands-on feature extraction steps
[72]. The proposed model requires fewer parameters than the well established CNN ar-
chitectures and also less data in the training phase. Consequently the training time is
considerably lower. A tensor-based BSS technique called constrained alternating group
lasso (CAGL), that will be introduced later in this thesis, is applied to 116 random seg-
ments of 58 12-lead ECG recordings from 58 persistent AF patients of the PERSIST
database (Section 1.3), generating 509 sources that are visually labeled as AA, VA and
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unknown sources. These segments have around 1 second of duration and a binary clas-
si�cation problem is set to classify AA sources and non-AA sources. The physiological
characteristics of the patients used in the present experiments are detailed on Table 5.4.
It must be reported that, there are missing values of Weight and Height for six patients,
AF history for four patients, and LA diameter for �ve patients. As before, these values
were replaced by the average.

Table 5.4: Overall physiological characteristics of the 58-patient population.
Patient characteristics µ ± σ Min Max

Age (years) 61.8 ± 10.2 38 78
Height (cm) 174.5 ± 7.4 154 195
Weight (kg) 83.7 ± 13.1 54 125

AF History (months) 69.9 ± 84.1 3.5 576
LA Diameter (mm) 46.9 ± 7.2 33 64.1

5.5.1 Data augmentation

Due to the low number of segments available, the training of deep learning models
can su�er from over�tting. To overcame this problem, a window slicing (WS) based
method is applied to augment the data and consequently provides more samples to the
training process. This method was �rst introduced in [17] also in the context of time
series classi�cation using CNN and it has proved useful to increase model performance.
It a�ects the training as well as the prediction phase.

For a given ECG segment and its class (xi, yi), a window with sizeW < |xi| is applied
to extract a subsignal xi,j . The window is moved by S ≤ W samples to obtain a new
signal xi,j+1 and the process is repeated until the original segment is completely split.

By applying the WS strategy during the training step, each signal xi generates a
set of subsignals Xi = {(xi,0, yi), . . . , (xi,N , yi)}, all of them sharing the same label yi.
For the prediction phase, we propose to estimate the value of the class probability ỹi by
averaging the model scores of the subsignals, as described in Equation (5.5).

ỹi =
1

N

N∑
j=0

ỹi,j (5.5)

whereN is the number of the generated subsignals from xi and ỹi,j is the model prediction
for xi,j . Just after the data augmentation process, a random oversampling step is applied
over the minority class (AA source) in order to balance the training data.

5.5.2 Convolutional neural networks

The CNN is a deep learning model initially designed for multi-dimensional data like
images. The main components of a CNN are the convolutional layers, the pooling layers
and fully connected layers. During the convolutional operation, a bank of �lters is applied
over the whole input signal using the same weights and it generates activations for each
receptive �eld that are combined to form a feature map [52]. Each set of weights are
optimized by a gradient algorithm to detect speci�c type of features along the input
signal.
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Along with the convolutional operation, the pooling layers perform a reduction in the
feature space and combine similar features [67]. For example, the max-pooling kernel
slides the feature space getting the maximum value from small regions.

5.5.3 Architecture optimization

To �nd a suitable CNN con�guration for the task of AA source detection, a Bayesian
algorithm is applied using BoTorch [3], a framework used for optimization tasks. Di�erent
shallow CNN architectures are compared changing the following paramenters: number
of hidden nodes, training epochs, convolutional/pooling layers, kernel size, kernel stride
and batch size.

The maximal number of convolutional layers is set to 3 which keeps the CNN model
simpler and much shallower than the common CNN models found in the literature.
This reduces the number of trainable weights, thus avoiding over�tting. Along with the
model architecture parameters, the augmentation settings (window size and stride) are
also optimized. Furthermore, the upper bound value for the window size is limited by
the length of the shortest extracted ECG source.

Let L be the number of convolutional layers and ki,l the size of the convolutional kernel
i in the layer l. The constraint ki,l ≤ ki,l+1 is imposed on each layer l ∈ {1, . . . , L − 1}.
Another constraint requires all kernels from layer l to have the same size Kl. Similarly,
the stride Sl for the kernels have to follow the inequality Sl ≤ Sl+1. By doing that, it is
produced an increasing reduction in the feature space.

A �nal constraint is de�ned to have an increasing number of channels in consecutive
layers which allows the model to capture more complex features from the signals.

5.5.4 Model training and evaluation

The weights for the shallow CNN models are optimized using the Adam optimizer
with a learning rate being selected by the Bayesian algorithm. Their values are within
the range [10−4, 10−3]. Each model is evaluated on the validation set with respect to the
Area Under the ROC Curve (AUC) aiming to �nd the model that provides the maximum
possible score.

In this work, we consider the AA sources as being the positive class, and the non-AA
sources as the negative one. The sensitivity and speci�city metrics are used to measure
the model performance for each class individually. The sensitivity is de�ned as:

SEN =
TP

TP + FN
(5.6)

where TP are the true positive samples and FN the False Negatives. Similarly, the
speci�city is computed by (5.7) using the TN as the number of true negative samples
and FP the quantity of false positive samples:

SPE =
TN

TN + FP
. (5.7)

Finally, the accuracy is computed to measure the overall model precision.

5.5.5 Experimental results

After running 100 trials, the best architecture is chosen with an AUC validation score
of 97.5%. The best parameters for the CNN are in the Table 5.5. The must appropriate
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batch size shown is 124 samples, and for the augmentation window size the best value is
472 with a stride percentage of 21% resulting in an absolute stride of 99 samples.

Table 5.5: Optimized parameters for the shallow CNN architecture.
Layer Kernel Size Strides Output Size

ECG Signal - - 1× 472

Batch Normalization - - 1× 472

Convolution 1× 4 3 19× 157

ReLu - - 19× 157

MaxPool 1× 2 1 19× 156

Convolution 1× 8 3 29× 50

ReLu - - 29× 50

MaxPool 1× 10 3 29× 14

Dropout - - 29× 14

Linear - - 1× 762

Dropout - - 1× 762

Linear - - 1× 2

Softmax - - 1× 2

The model evaluation is performed applying a 10-fold cross validation (CV) to com-
pute accuracy (called here ACC, for simplicity) and AUC. Not all data are used in the
evaluation; instead, the CV folds are computed only over the training data, since the
CNN architecture is selected on the validation set. The average AUC and ACC achieved
are 96.3% and 93.6%, respectively and the results across the CV folds are plotted in a
boxplot in Figure 5.8.
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Figure 5.8: Boxplot of the AUC and ACC metrics over CV.

Additionally the model performance is represented in a confusion matrix in Figure
5.9 whose values are based on the CV folds. From the matrix, the obtained sensitivity
and speci�city metrics are 91.75% and 94.19%, respectively.

5.6 Summary

This chapter introduced new indices to quantify the AA content of a cardiac source,
after performing BSS, fundamental to understand the analysis that will be carried out in
the following chapters. Also, the problem of AA source classi�cation was dealt with using
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automated and machine learning approaches. The chapter �nishes with preliminary,
but promising, results from experiments using a shallow CNN architecture in a larger
database of AF patients. The next chapter will use the indices introduced in this chapter
to assess the Hankel-BTD in a population of AF patients and also through a whole ECG
recording.
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6.1 Introduction

To date, the Hankel-BTD has only been assessed in �xed ECG segments of a single
patient su�ering from persistent AF. Aiming to further exploit the performance and fea-
sibility of this tensor-based method, this chapter reports more throughout experiments.
First, the Hankel-BTD is assessed in consecutive segments of a whole ECG recording.
Then, the observation window size of a processed segment is varied. These two experi-
ments result in an outcome called here as intra-patient variability. Finally, the Hankel-
BTD is assessed in short segments of a population of persistent AF patients, yielding
an evaluation of inter-patient variability. The performance of all BSS methods that are
used in this chapter are measured by means of the indices presented on Chapter 5. The
results reported in this chapter provided the following publications:

• P. M. R. de Oliveira and V. Zarzoso, �Block term decomposition of ECG recordings
for atrial �brillation analysis: temporal and inter-patient variability�, Journal of
Communication and Information Systems, vol. 34, no. 1, pp. 111-119, Apr. 2019.

• P. M. R. de Oliveira and V. Zarzoso, �Temporal stability of block term decom-
position in noninvasive atrial �brillation analysis�, in Proc. Asilomar-2018, 52nd

Annual Asilomar Conference on Signals, Systems, and Computers, Paci�c Grove,
U.S.A, Oct. 28-31, pp. 816-820, 2018.
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Figure 6.1: The �rst 3 segments of the AF ECG recording composed of 56 segments.
Although all the 12 leads are processed, only limb lead II is shown for clarity.

• P. M. R. de Oliveira and V. Zarzoso, �Block term decomposition analysis in long seg-
ments of atrial �brillation ECGs�, in Proc. SBrT-2018, XXXVI Simpósio Brasileiro
de Telecomunicações e Processamento de Sinais, Campina Grande, Brazil, Sep. 16-
19, pp. 578-582, 2018.

6.2 Intra-patient variability: window position

This section will assess the Hankel-BTD in consecutive segments of an AF ECG
recording of a single patient. Performance is measured by means of SC, kurtosis and
power contribution to lead V1, presented in Chapter 5.

6.2.1 Experimental data and setup

The reported experiments in this section consider 56 segments of a single standard 12-
lead AF ECG recording from the PERSIST database (Section 1.3). The patient is chosen
as the same as in the work [110], in order to take advantage of the model parameters
estimated in that work. All 56 segments compose the whole ECG recording.

The �rst three segments in lead II from the observed patient are shown in Figure 6.1.
All the segments have a �xed length of 1500 samples (about 1.53 seconds) and all the 12
leads are used in the experiments. The segments are downsampled by a factor of four,
resulting in third-order tensors of dimensions 188 × 188 × 12, since the originally built
third-order tensors of dimensions 750× 751× 12 pose some computational di�culties to
the NLS algorithm used to compute the Hankel-BTD.

The Hankel-BTD is implemented using the NLS approach with the Gauss-Newton
method available in Tensorlab MATLAB toolbox [105] choosing R = 12 and Lr = L, for
r = 1, 2, ..., R, with L taking values in the set {17, 48, 95}. This choice is chosen based
on the work [110], as explained in Chapter 5. The tolerance threshold for Hankel-BTD
convergence is set to 10−9 and the maximum number of iterations is set to 1000. Monte
Carlo runs with Gaussian random initialization for the spatial and temporal factors at
each run are used to analyze the performance of Hankel-BTD in each segment regarding
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Figure 6.2: Distribution of SC values (%) for each version of Hankel-BTD, as well as
PCA and RobustICA-f.

AA signal extraction. Monte Carlo runs are needed since the performance of the NLS
method depends strongly on the initialization of its factors as explained in the previous
chapter.

In order to adapt each ECG segment to a speci�c model parameter Lr, three experi-
ments in the whole AF ECG recording are performed [25]:

• BTD-1: A single Monte Carlo run for each segment using Lr = 48.

• BTD-2: 10 Monte Carlo runs for each segment using Lr = 48, then the best
performance out of the 10 independent runs is chosen, considering the quality of
the estimation measured by the indices introduced in Chapter 5.

• BTD-3: For the segments with unsatisfactory AA extraction, i.e., with low values
of SC and K, in the second experiment, 10 new Monte Carlo runs are performed
changing the rank Lr to 17 or 95 (the one which performed best), then the best
performance out of the 10 Monte Carlo runs is chosen, as in the second experiment.

6.2.2 Experimental results

In Figures 6.2 and 6.4, the blue box, the red line, the whiskers and the red dots
represent the 25th and 75th percentiles, the median, the extreme values and the outliers,
respectively, of the data.

Figure 6.2 shows how the SC of the atrial source is distributed over the 56 segments
that compose the whole AF ECG for the three experiments performed with Hankel-BTD,
as well as PCA and RobustICA-f. The improvement of BTD-2 over BTD-1 is expected
and illustrates the dependence of the NLS method on the initialization of the matrix
factors, since the model parameters are kept �xed and only more Monte Carlo runs are
performed. The improvement of BTD-3 over the previous experiments illustrates the
need for choosing the right model parameters in order to have satisfactory performance.
This improvement is also expected, since this experiment tries to adapt the multilinear
rank to each segment, using the same number of Monte Carlo runs as BTD-2. Figure 6.2
also shows that if the right initialization and model parameters are chosen, Hankel-BTD
can clearly outperform PCA and RobustICA-f, two well-know matrix-based methods.
These improvements are observed as the SC becomes more concentrated around high
values, which means more stability in successful AA extractions.
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Figure 6.3: Variation of SC values (%) over the 56 segments for BTD-3, PCA and
RobustICA-f.

Table 6.1: Mean values of SC (%) and K for the three versions of Hankel-BTD, as well
as PCA and RobustICA-f.

SC K

BTD-1 53.02 151.33
BTD-2 71.80 242.35
BTD-3 76.95 260.41
PCA 42.75 95.72
RobustICA-f 66.10 216.06

In Figure 6.3, the temporal stability of Hankel-BTD can be seen from another per-
spective, showing how the SC values of the AA signal varies over the 56 segments. For
the sake of clarity, only BTD-3, the tensor version that provided the best performance, is
shown together with PCA and RobustICA-f. It can be seen that the matrix-based meth-
ods present considerable variations over the whole ECG, whereas BTD-3 provides a SC
more concentrated in high values, showing that this technique can provide a satisfactory
AA extraction performance stable over time.

The superiority of Hankel-BTD as an AA extraction tool over the matrix-based tech-
niques is also shown in Table 6.1. It can be seen that as the initialization of the factors
and the model parameters are adapted to each segment, the average AA extraction qual-
ity is improved, as measured by SC and K. In these experiments, the index P (r) is used
only to eliminate weak sources and not to measure the quality of the AA extraction, thus
it is not shown in Table 6.1.

Since AA signals in AF ECGs are non-stationary, it is expected that the DF slowly
changes with time, i.e., over the segments of the same recording. Figure 6.4 shows that
the DF of the estimated atrial source by BTD-2, BTD-3, PCA and RobustICA-f lies in
the interval 5.24-6.67 Hz, despite the outliers. In BTD-1 the DF interval is expected to
be greater, since for many of the segments this method did not provide a satisfactory
AA extraction, as we used �xed parameters to compute the Hankel-BTD with a single
initialization of its factors.

Indeed, BTD-1 provides an unsatisfactory AA extraction in 21 out of the 56 segments.
For BTD-2 this number dropped to 5, while for BTD-3 no unsatisfactory AA extractions
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Figure 6.4: Variation of DF (Hz) for each version of Hankel-BTD, as well as PCA and
RobustICA-f.
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Figure 6.5: Power contribution to lead V1 values (mV2) for the selected atrial source
over the 56 segments for each version of Hankel-BTD, as well as PCA and RobustICA-f.

are performed. It is fair to report that PCA performed 9 unsatisfactory AA extractions
and RobustICA-f only 7. In Figure 6.5 it can be seen that some estimated atrial sources
for PCA, BTD-1 and BTD-2 have a P (r) value under 10−4 mV2. This is suggestive
of an unsatisfactory AA extraction, since a source with power contribution to lead V1
under this threshold does not present signi�cant AA content, as reported in [24] and in
Chapter 5 of the present doctoral thesis.

6.3 Intra-patient variability: window size

Experiments reported in this section will analyze the impact of the observation win-
dow size of the processed ECG segment, by varying this parameter.

6.3.1 Experimental data and setup

To assess intra-patient variability, experiments are performed in 4 segments varying
the observation window size of a standard 12-lead ECG recording from a single patient
su�ering from persistent AF of the PERSIST database. The recordings are preprocessed
as described in Section 1.3. All 12 leads are considered. A 15-second segment in lead II
from this patient is shown on Figure 6.6. The segments assessed for this patient have
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Figure 6.6: A 15-second segment of an AF ECG recording from the patient used for eval-
uate the time variability. For concision, only lead II is shown; all 12 leads are processed.

about 2.5, 5, 10 and 15 seconds and they all have the same starting sample. They
are downsampled by a factor of 4, 8, 16 and 24, respectively, since the originally built
third-order tensors pose some computational di�culties to the NLS method used. Down-
sampling includes a low-pass �ltering with cuto� frequency fc = f ′s/2, where f

′
s is the

new sampling frequency. For the matrix-based techniques PCA and RobustICA-f, no
downsampling is needed.

Hankel-BTD is implemented using the NLS approach with the Gauss-Newton method
available in Tensorlab MATLAB toolbox [105] choosing R = 12 and Lr = 95, for all
r = 1, 2, ..., R. This choice is made also based on the work [110]. The tolerance threshold
for Hankel-BTD convergence is set to 10−9 and the maximum number of iterations is set
to 1000. Ten Monte Carlo runs, with Gaussian random initialization for the matrix and
vector factors at each run, are used to analyze the performance of Hankel-BTD regarding
AA signal extraction. This tensorial technique is compared to the matrix-based methods
PCA and RobustICA-f, which have already proven their e�ectiveness in solving BSS
problems for this particular application.

6.3.2 Experimental results

Table 6.2 shows the values of SC in % for PCA and RobustICA-f. The mean of the
ten independent runs and the maximum value is shown for Hankel-BTD. It can be seen
in Table 6.2 that the mean of the SC for Hankel-BTD is very close to the matrix-based
techniques, outperforming PCA in all the observed segments and RobustICA-f in 3 out
of the 4 segments with di�erent lengths. Also, Hankel-BTD is superior for all observed
segments in 5 to 8 out of the 10 independent runs, showing that it can easily have superior
performance if the right model parameters (R, Lr) and initialization are chosen. It can
also be seen that the maximum SC presents a high value (≥ 75%) for all the observed
segments, and in all cases, superior to that of matrix techniques, meaning that, with
the right initialization, BTD outperforms the matrix-based techniques for the considered
window lengths.

In the observed segments with di�erent lengths, Hankel-BTD �nds more potential
atrial sources than PCA and RobustICA-f. Discovering more than one potential atrial
sources may be an interesting outcome, since it increases the possibility of �nding some
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Table 6.2: Values of SC (%) for PCA and RobustICA-f. For Hankel-BTD, the maximum
(BTDmax) and the mean (BTDmean) values of SC (%) of ten independent runs are shown.

BTDmax BTDmean PCA RobustICA-f

2.5s 94.04 74.03 55.29 69.08
5s 77.88 65.56 49.03 66.13
10s 90.93 73.49 56.40 72.22
15s 93.01 77.87 54.36 71.80

0 5 10 15

Time (s)

(d)

(c)

(b)

(a)

Lead V1

BTD

RobustICA-f

PCA

P
BTD

 = 1.06x10
-3

 mV
2

P
RobustICA-f

 = 6.46x10
-4

 mV
2

P
PCA

 = 1.43x10
-3

 mV
2

Figure 6.7: Atrial source contribution to lead V1 estimated by Hankel-BTD, RobustICA-
f and PCA, for the 15-second segment, showed in the time domain (in mV). AA signal
estimates are vertically shifted for clarity. The power contribution to lead V1 for each
technique is also shown.

features that, although weakly contributing to the overall AA, may provide useful phys-
iological and clinical information about the arrhythmia. This possibility, however, will
not be explored in the present doctoral thesis.

Figures 6.7 and 6.8 illustrate the estimated atrial source by the three BSS techniques
compared in this section, in the time and frequency domain, respectively, for the best
performance of Hankel-BTD in the 15-second segment. These two �gures show the
satisfactory performance of Hankel-BTD in estimating the AA in long segments of an
AF ECG, as well as its superiority compared to the matrix-based methods, as quanti�ed
by the higher SC and kurtosis values and illustrated by a cleaner frequency spectrum,
less contaminated by noise and interference.

The observation window size used in the experiments extends from 2.5 to 15 seconds
in order to analyze its in�uence on Hankel-BTD performance. Figures 6.9 and 6.10
show the variation of SC and kurtosis, respectively, over the 10 independent runs for the
window observation sizes analyzed in these experiments. This variation is illustrated by
box-and-whisker plots.

It can be seen that there exists a certain variation of SC and kurtosis over the runs,
for each observation window size. This is expected, since the performance of the used
Hankel-BTD computation method, the NLS algorithm, depends considerably on the
initialization of its model factors. However, there is no clear trend in the computed
parameters, which seems to indicate that the in�uence of the observation window size on
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Figure 6.8: Atrial source contribution to lead V1 in the 15-second segment estimated by
Hankel-BTD, RobustICA-f and PCA in the frequency domain (in mV/

√
Hz).

the performance of Hankel-BTD is not very signi�cant or critical [26].
The only drawback observed when processing long segments of ECG using BTD is

the fact that the original segment must be downsampled by high factors, since the used
Hankel-BTD computation algorithm has some di�culties in processing a tensor with large
dimensions [23]. Downsampling by a high factor could cause some loss of information in
the signal, due to the frequency �lter used to avoid spectral aliasing. However, previous
experiments in short segments show that the impact of the downsampling factor on the
SC is negligible. Actually, it is observed that the downsampled segments provide a slightly
lower SC compared to the original segment (without any downsampling), which makes
the results reported here a lower bound of Hankel-BTD performance in the considered
scenario.

6.4 Inter-patient variability

The Hankel-BTD is now assessed in short ECG segments from a population of pa-
tients su�ering from persistent AF, �xing the model parameters, in order to analyze the
sensibility of this technique over signals with di�erent physiological signature.

6.4.1 Experimental data and setup

To assess the inter-patient variability, experiments in a population of AF patients are
performed, providing more relevant clinical results. Experiments consider a randomly
selected heartbeat (QRST complex + TQ segment) of 20 real standard 12-lead AF ECG
recordings from 20 di�erent patients su�ering from PERSIST database (Section 1.3). A
single-beat segment in lead II from one of the patients in the 20-patient population is
shown on Figure 6.11, where the TQ interval can be seen just after the QRST com-
plex. All the beats (one per patient) have between 1000 and 1400 samples (1.02 and
1.43 seconds). They are downsampled by a factor of 2, for the same reason previously
explained. The physiological characteristics of the observed 20-patient population are
described on Table 6.3. It must be reported that there are missing data values for one
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Figure 6.9: SC (%) of the AA signals estimated by Hankel-BTD from the observed AF
ECG segments over ten independent runs. Runs that did not provided a sucessful AA
extraction are not included.

patient regarding AF history and LA diameter and such values were replaced by the
average.

Table 6.3: Overall physiological characteristics of the 20-patient population.
Patient characteristics µ ± σ Min Max

Age (years) 63.5 ± 8.5 42 76
Height (cm) 176.8 ± 6.5 166 195
Weight (kg) 86.1 ± 11.8 64 105

AF History (months) 73.1 ± 57.9 8 228
LA Diameter (mm) 47.2 ± 7.5 33 62

The setup of Hankel-BTD computation is the same used in the experiments of the
previous section.

6.4.2 Experimental results

Table 6.4 shows the values of SC in % for PCA and RobustICA-f in the 20-patient
population. The mean of the ten independent runs and the maximum value is shown
for Hankel-BTD. We can see in Table 6.4 that the mean of the SC for Hankel-BTD is
very close to the matrix-based techniques, outperforming PCA in almost all the observed
patients (except patients 8, 12 and 16) and RobustICA-f in 11 patients. Also, Hankel-
BTD is superior for all patients in 3 to 7 out of the 10 independent runs, showing again
that it can easily have superior performance if the right parameters (R, Lr) and the
right initialization are chosen. We can also see that the maximum SC is satisfactory
(≥ 65%) for all but three patient (P10, P11 and P19), and in all but two cases (P11 and
P20), superior to that of matrix techniques, meaning that, with the right initialization,
Hankel-BTD is superior in almost all cases of this experiment.

In the observed population of patients, Hankel-BTD found more potential atrial
sources (DF ∈ [3, 9] Hz) than PCA and RobustICA-f. As previously explained, �nd-
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Figure 6.10: Kurtosis of the AA signals estimated by Hankel-BTD from the observed AF
ECG segments over ten independent runs. Runs that did not provided a sucessful AA
extraction are not included.

ing several potential atrial sources may be an interesting result, increasing the possibility
of �nding features that weakly contribute to the AA, while providing important physio-
logical and clinical information about a complex arrhythmia like persistent AF.

As previously explained, this doctoral thesis assumes, as in previous works, that the
AA is concentrated on a single source, which is selected as the source presenting the most
signi�cant AA content, measured by the indices previously presented. However, in the
present experiments, in some runs of 5 out of the 20 patients, AA appears in more than
one source estimated by Hankel-BTD. This can be seen in Figure 6.12(a), where two
estimated sources by Hankel-BTD present signi�cant AA content (signals 2 and 3). This
could mean that Hankel-BTD is able to extract more information about the AA than
the other methods compared here. To keep the focus on the subject of this work, a deep
analysis of the cases where Hankel-BTD provided more than one source with signi�cant
AA is not discussed in this thesis.

Figure 6.12 shows the 3 most relevant potential atrial sources of one of the observed
patients (Patient 6). For clarity, all the potential atrial sources with power contribution
to lead V1 less than 10−4 are not shown here, since they do not present signi�cant features
as they are very weak. In the time domain, shown in Figure 6.12(a), we can see that
the two last sources have the atrial signature and present a high power contribution to
lead V1, while looking at the frequency domain, in Figure 6.12(b), we can see that those
sources present high kurtosis and SC, represented by indexes K and SC in the �gure
legend, respectively. The �rst source seems to contain mainly a ventricular residual.

Figure 6.13 shows how the SC of the atrial source is distributed over the 10 indepen-
dent runs for the population of 20 observed AF patients. We can see that the median
(red line) and the percentiles (blue box) present signi�cant variations over Hankel-BTD
initialization and over patients. A �xed tensor-model parameter choice and Gaussian
random initializations for each run are used to compute the Hankel-BTD in 20 AF pa-
tients, providing generally satisfactory results. However, it can be observed that the
chosen parameters work better in some patients than in others, recalling that Hankel-
BTD performance depends strongly on its parameters and initialization, and opening the
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Figure 6.11: A single heartbeat segment of an AF ECG recording, shown in lead II, from
one patient of the observed population. A heartbeat consists in the QRST complex,
followed by the TQ segment, where only AA is observed.

challenge of �nding the best �xed choice of tensor-model parameters for a particular pa-
tient. This challenge is faced with a novel algorithm that will be presented in Chapter 8
of this doctoral thesis.

It can be pointed out that in patients 9, 10, 15 and 17 the matrix-based methods could
not successfully extract the AA signal from the considered segment, while the Hankel-
BTD could easily extract it from the observed AF ECG segments. Despite its higher
computational complexity, this outcome shows that Hankel-BTD is capable of extracting
the AA signal from segments where the matrix-based techniques here compared could
not, pointing out the superiority of Hankel-BTD as an AA extraction tool.

We can see in Figure 6.14 that the DF of the estimated atrial source by Hankel-BTD
does not change considerably over the runs for a given patient (except for the �rst runs
of Patient 12), which means that Hankel-BTD seems to be able to target the AA source
consistently, although with varying accuracy depending on the algorithm convergence.
Over the population of observed patients, the DF of the atrial sources estimated by
Hankel-BTD are in the interval of 4.77 to 6.67 Hz, very close to the DF interval of the
atrial sources estimated by PCA and RobustICA-f, which lie in 4.77 to 6.44 Hz.

6.5 Summary

This chapter reported several experiments in order to assess the performance and
feasibility of the Hankel-BTD as an AA extraction tool. Experiments in consecutive seg-
ments of a single AF ECG recording have shown the strong dependency of this technique
on its initialization and model parameters, being capable of providing stable perfor-
mance if the best tensor-model parameters are chosen. Further experiments varying the
observation window size did not shown any signi�cant variation of the AA extraction
performance of this tensor-based technique. Finally, experiments over short ECG seg-
ments from a population of AF patients, �xing the tensor-model parameters, have shown
the variability performance through di�erent physiological signals.
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Table 6.4: Values of SC (%) for PCA and RobustICA-f. For Hankel-BTD, the maximum
(BTDmax) and the mean (BTDmean) values of SC (%) of ten independent runs are shown.

BTDmax BTDmean PCA RobustICA-f

P1 78.03 67.69 62.54 68.27
P2 96.15 80.08 65.14 81.25
P3 90.01 70.36 65.16 74.04
P4 92.67 85.88 68.38 69.76
P5 85.30 77.60 58.36 74.91
P6 85.32 69.16 45.57 61.76
P7 77.12 60.93 46.88 64.78
P8 93.78 70.60 74.47 79.33
P9 67.13 53.84 none none
P10 53.01 45.46 none none
P11 54.97 47.02 none 71.07
P12 65.02 48.23 48.73 60.25
P13 90.27 66.92 60.18 61.75
P14 90.36 70.15 none 53.35
P15 68.56 60.53 none none
P16 81.46 58.44 68.43 77.69
P17 87.70 68.58 none none
P18 78.78 73.08 none 70.06
P19 57.29 51.87 none 48.64
P20 72.97 64.77 48.18 84.61

Until now, only the BTD built from Hankel matrices has been considered and assessed.
Also, only AF ECGs with long TQ segments and signi�cant AA content were used. The
next chapter will provide alternative tensor models of an AF ECG to perform the AA
extraction in more challenging scenarios of persistent AF.
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Figure 6.12: Potential atrial sources contribution to lead V1 estimated by Hankel-BTD
for Patient 6. (a) In the time domain, measured in mV. (b) In the frequency domain,
measured in mV/

√
Hz.
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Figure 6.13: Variation of SC (%) of the atrial source estimated by Hankel-BTD over 10
tensor factor initializations for the observed population of AF patients. Runs that did
not provided a sucessful AA extraction are not shown.
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Figure 6.14: Variation of DF (Hz) of the atrial source estimated by Hankel-BTD over
independent runs for the observed population of AF patients. Runs that did not provided
a sucessful AA extraction are not shown.
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7.1 Introduction

In persistent AF ECGs, it is common the presence of short TQ segments, hampering
the estimation of AA. Also, AA signals with very low amplitude are quite frequent in per-
sistent forms of AF [82]. The Hankel-BTD fails to extract the AA signal from ECGs that
present such characteristics. This motivates another tensor-based approach, presented in
the �rst section of this chapter. This alternative approach is based on Löwner matrices.
Later, assuming that consecutive ECG segments share the same spatial signature, a novel
tensor model can be employed, reducing iteration cost of the computing algorithm and
providing better AA extraction performance. The present chapter provided the following
publications:

• P. M. R. de Oliveira, V. Zarzoso and C. A. R Fernandes, �Coupled tensor model of
atrial �brillation ECG�, to appear in Proc. EUSIPCO-2020, 28th European Signal

Processing Conference, Amsterdam, Netherlands, Jan. 18-22, 2021.

• P. M. R. de Oliveira and V. Zarzoso, �Löwner-based tensor decomposition for blind
source separation in atrial �brillation ECGs�, in Proc. EUSIPCO-2019, 27th Eu-

ropean Signal Processing Conference, A Coruña, Spain, Sep. 2-6, pp. 1-5, 2019.

7.2 Löwner-based block term decomposition

The Hankel-BTD has proven to be a useful and powerful AA extraction tool in AF
analysis. However, a satisfactory performance is only achieved for segments with long RR
intervals and with well de�ned AA, visible in most of the segment. However, recordings
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with short RR intervals (< 0.75 s) and weak AA (amplitude of the f waves lower than 0.1
mV) are quite common during persistent AF episodes. When assessed in these challenging
cases, the Hankel-BTD as well as the matrix-based techniques do not provide satisfactory
results [27]. Automatically selecting the AA signal among the estimated sources after
performing BSS is also an issue, since no optimal method is reported in the literature
for this application. The solutions presented in Chapter 5 can only be considered as
sub-optimal.

In a bid to avoid such limitations in these common and challenging scenarios of
persistent AF, it is proposed the BTD built from Löwner matrices as a solution for BSS
of rational functions [30] to model the VA and separate it from the AA. This strategy
suits the characteristics of VA in a ECG recording, since the QRS complex can be well
approximated by rational functions [73], [38], and when mapped onto Löwner matrices,
the degree of the rational function matches the rank of the Löwner matrix [30]. Modeling
VA instead of AA is a reasonable strategy in these di�cult cases (weak AA and/or short
RR intervals) common in persistent AF episodes, as the AA signal becomes very di�cult
to model [27]. The VA estimated by the Löwner-BTD is then subtracted from the ECG
signal, resulting in a signal that contains mainly AA content. Through this method, no
technique for atrial source selection is needed, since the resulting signal is already the
desired signal.

Since the QRST morphology is not signi�cantly changed during AF, it is reasonable
to focus on VA estimation, as, when subtracting the VA estimate from the ECG, the
resulting signal will ideally contain the AA signal. Even if signi�cant changes in QRST
morphology are present, VA modeling can be performed in a beat-to-beat basis, relying
on the power of tensor-based techniques to provide satisfactory performance on short data
records. This ability has been illustrated in the experimental analysis of the Hankel-BTD
approach in Chapter 6 of this doctoral thesis.

7.2.1 Model derivation

The idea is to map each row of the data matrix Y into a Löwner matrix L(k) ∈ RI×J
as [30]:

L(k) =


yk,x1−yk,z1
x1−z1 . . .

yk,x1−yk,zJ
x1−zJ

...
. . .

...
yk,xI−yk,z1
xI−z1 . . .

yk,xI−yk,zJ
xI−zJ

 (7.1)

where I + J = N and yk,tn is the tthn time sample for the kth row of Y, sampled in the
time set T = {t1, t2, ..., tN}, which is partitioned in two di�erent non-overlapping time
sets: X = {x1, x2, ..., xI} and Z = {z1, z2, ..., zJ}.

Two simple partitioning methods are the interleaved partition, i.e., X = {t1, t3, t5, ...},
and Z = {t2, t4, t6, ...}, and the block partition, i.e., X = {t1, t2, ..., tI}, and Z =

{tI+1, tI+2, ..., tN}. As stated in [30], both partitioning methods give similar perfor-
mance.

Each element of L(k) is given by:

`
(k)
i,j =

yk,xi − yk,zj
xi − zj

(7.2)

where i = 1, ..., I and j = 1, ..., J . Note that this construction is invariant to a vertical
shift of the signal, i.e., the Löwner matrix built from signal yk. is equal to the one built
from y′k. = yk. + c, where c ∈ R is a constant.
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Next, the tensor is built by stacking each Löwner matrix along the third dimension (as
frontal slices) of a third-order tensor YL ∈ RI×J×K . Similarly to the Hankel counterpart,
one can show that:

Y..k = L(k) =
R∑
r=1

mk,rL
(r)
S (7.3)

where L(r)
S ∈ RI×J is a Löwner matrix built from the rth row of S, similarly as in (7.1).

One can see that the procedure for construction Y..k in (7.3) is a linear mapping and,

for each r, the outer product between matrix L(r)
S and the rth column of M, i.e., m.r, is

performed to build a third-order tensor containing the contribution of the rth source to
the ECG tensor. Putting together the contribution of all sources, the third-order tensor
YL admits a BTD tensor model and can be written as:

YL =

R∑
r=1

L
(r)
S ◦m.r . (7.4)

The Löwner-BTD suits the characteristics of VA in the ECG, since QRS complexes
can be approximated by rational functions of low degree [30], [73], [38]:

s(t) = a(t) +

F∑
f=1

Df∑
d=1

cf,d
(t− pf )d

(7.5)

where a(t) is a polynomial of degree A, F is the number of pf complex poles, Df is the
multiplicity, t is the continuous time, and cf,d = 1/(uf − vd) are the scalar entries of a
Cauchy matrix based on the vectors u ∈ CF and v ∈ CDf , with uf 6= vd, ∀f, d. When
mapped onto Löwner matrices, the degree of the rational function matches the rank of
the matrix [30].

The experiments reported next assess the performance of the Löwner-BTD in two
challenging scenarios typical of persistent AF.

7.2.2 Experimental data and setup

All the recordings belong to the PERSIST database and were preprocessed as de-
scribed in Section 1.3. Experiments are performed in 10 di�erent segments of ECG
recordings from 10 di�erent patients su�ering from persistent AF, where 5 of these seg-
ments have a disorganized and/or weak AA, and the other 5 have very short RR intervals.
In order to exploit all spatial diversity, while reducing the computational cost, only 8
independent leads are processed (I, II, V1-V6). The two type of segments used in the
reported experiments are shown in lead II in Figure 7.1. The physiological characteristics
of the observed 10-patient population are described on Table 7.1.

Table 7.1: Overall physiological characteristics of the 10-patient population.
Patient characteristics µ ± σ Min Max

Age (years) 61.1 ± 11.1 42 74
Height (cm) 176.3 ± 3.7 170 184
Weight (kg) 81.3 ± 6.5 68 92

AF History (months) 86.5 ± 66.6 12 228
LA Diameter (mm) 46 ± 6.6 36 56
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Figure 7.1: Top: A 1.5-second segment of an AF ECG recording with 4 QRS complexes
from one patient (P2). The RR intervals are short and represented by the time di�erence
between the peaks. Bottom: a single heartbeat segment of an AF ECG recording with
a weak AA signal, from another observed patient (P6). Only bipolar limb lead II is
shown for clarity, although the 8 independent leads (I, II, V1-V6) are processed in the
experiments reported here.

The 5 segments with short RR intervals from 5 di�erent patients (P1-P5) have 1.5
seconds of duration with at least 2 QRS complexes. The other 5 segments with disorga-
nized and/or weak AA, from other 5 di�erent patients (P6-P10), are composed by one
heartbeat, i.e., the QRS complex followed by the T wave and the visible f waves, and
have between 1.3-1.7 seconds. All the 10 segments are downsampled by a factor of 2,
since the originally built third-order tensors pose some di�culties to be computed.

The BTD is implemented using the NLS approach with the Gauss-Newton method
available in Tensorlab MATLAB toolbox [105]. For the Hankel-BTD, the choice R = 6

and Lr = 48, for r = 1, 2, ..., R, is made. The choice of R is based on the SVD of the
observed data matrix, taking into account the most signi�cant singular values. The choice
of Lr is based on the work of [110] and [25], for the same reason previously explained.

For the Löwner-BTD, the choice R = {2, 3} and Lr = L, for r = 1, 2, ..., R, with
L taking values in the set {3, 4, 5, 6} is made. This choice is made based on previous
experiments that aimed at estimating only the VA from the original recording, and
then subtract it from the ECG, providing the signal with mainly AA content. Previous
experiments show that the VA subspace is mainly present in the �rst 2 or 3 principal
singular values of the ECG matrix, with low rank values.

For both techniques, the maximum number of iterations is set to 1000. Monte Carlo
runs with Gaussian random initialization for the spatial and temporal factors (Ar, Br

and cr, for r = 1, ..., R in (4.43)) at each run are used to analyze the performance of
BTD in each segment regarding the separation of VA from AA.

7.2.3 Segments with short RR intervals

Table 7.2 shows the values of SC in % of the estimated AA and the number of
iterations until convergence of the NLS method for the Löwner- and Hankel-BTDs. The
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Table 7.2: SC values (%) of the AA and the number of iterations (mean ± standard
deviation) of the NLS method for the Löwner-BTD (BTD-L) and the Hankel-BTD (BTD-
H) in ten Monte Carlo runs.

Patients
BTD-L BTD-H

SC (%) Iterations SC (%) Iterations

P1 51.2 60 ± 18.1 44.1 185.7 ± 47.2
P2 54.6 60.3 ± 22.4 33.8 181 ± 68.1
P3 46.1 46.7 ± 15.4 30.9 164.9 ± 58.1
P4 63.5 125.3 ± 36.5 61.9 143.5 ± 37.1
P5 33.7 44 ± 16.9 none none

P6 60.1 28.2 ± 6.7 none none
P7 60.0 29.9 ± 11.5 none none
P8 52.9 33.3 ± 18.2 none none
P9 40.7 35 ± 12.8 none none
P10 56.9 36.8 ± 12.1 none none

best performance of the ten independent runs is shown. Patients P1-P5 correspond to
the patients whose segments have short RR intervals. We can see in Table 7.2 that the
SC of the AA, resulting from the subtraction of VA from the ECG, for the Löwner-BTD
is always higher than the one estimated by the Hankel-BTD. Moreover, the mean of the
number of iterations of the NLS method until convergence is always shorter, meaning that
the proposed approach provides a better performance with less computational cost. In
addition, the Löwner-BTD can separate the VA from AA in all the population of patients
whose segments have a short RR intervals, while the Hankel-BTD cannot successfully
separate them for patient P5. The DF of both tensor approaches lies in the interval
5.48− 7.15 Hz, while the P (r) values of the Löwner-BTD lie in the interval 7.2× 10−4−
9.1 × 10−3 mV2, which are consistently higher than the P (r) values of the Hankel one,
in the interval 5.7× 10−4 − 2.5× 10−3 mV2.

In Figure 7.2 we can see the observed segment of Patient P4, the only patient where
the four signal processing techniques could successfully separate the sources. The pro-
posed technique provides a signal with clearer AA content and a higher P (r) value than
the other methods.

7.2.4 Segments with disorganized and/or weak AA

For the patients whose segments are characterized by a very weak and/or disorga-
nized AA contribution, the matrix-based methods and the Hankel-BTD could not clearly
separate the sources. The AA signal was not identi�ed due to its very weak content or,
in some cases, signi�cant VA residuals in the signal. For the Löwner-BTD, the AA sig-
nal was successfully separated from the VA with a relatively satisfactory performance,
considering the nature of the recording.

In Table 7.2, patients P6-P10 correspond to the patients whose segments have dis-
organized and/or weak AA contribution. We can see that a relatively low number of
iterations provide a satisfactory performance regarding the quality of AA content. The
values of P (r) lie in the range of 4.6× 10−4 − 1.7× 10−3 mV2, showing that each source
has signi�cant AA content, despite its weak contribution to the ECG recording.

In Figure 7.3 we can see the observed recording, as well as the estimated VA and
AA of the processed segment of one of the patients in the observed population, for the



82 Chapter 7. BTD Models for AF Analysis

0 0.5 1 1.5

Time (s)

P(r) = 1.00x10
-4

 mV
2

P(r) = 4.97x10
-4

 mV
2

P(r) = 2.50x10
-3

 mV
2

P(r) = 4.90x10
-3

 mV
2

PCA

ECG Lead V1

Löwner-BTD

Hankel-BTD

RobustICA-f

Figure 7.2: Estimated atrial sources contribution to lead V1 in a segment of short RR
intervals of Patient P4 by Hankel- and Löwner-BTDs, RobustICA-f and PCA in the time
domain. AA signal estimates are vertically shifted for clarity with their respectives power
contributions to lead V1.

best performance of ten Monte Carlo runs. The segments are shown in lead II for a
better clarity of the estimated VA. It can be seen that even the T wave is estimated
by the proposed method, that is, not only the ventricular depolarization, but also its
repolarization are successfully modeled.

Regarding the performance of the matrix-based techniques, PCA could only success-
fully separate VA from AA in patient P4, with a SC of 55.4% and DF = 5.72 Hz, while
RobustICA-f could only separate them in patients P1 and P4, with SCs and DFs equal
to 40.7%/6.91 Hz and 60.8%/5.72 Hz, respectively. These outcomes demonstrate, once
more, the superiority of tensor techniques over matrix approaches in AA extraction from
AF ECGs.

7.3 Coupled block term decomposition

Coupled tensor decompositions have been gaining space in biomedical signal process-
ing problems [49], [1]. Exploring the spatial and temporal diversity of ECG signals, the
coupled BTD [98] built from Hankel matrices � called hereafter in this section coupled
BTD � is now put forward as a novel noninvasive AA extraction method, modeling
consecutive AF ECG segments, assuming that they share the same spatial signatures.
To the best of the author's knowledge, no coupled tensor approach has yet been applied
to ECG signal processing. Also, this is the �rst time that the coupled BTD is used in
a biomedical signal processing scenario. After presenting the coupled approach in Sec-
tion 7.3.1, Coupled BTD is assessed in Section 7.3.2 in synthetic signals that simulate
an AF ECG and validated in Section 7.3.3 in real ECG recordings from two patients
su�ering from persistent AF. In both scenarios, the coupled BTD is compared with the
Hankel-BTD � called hereafter in this section just BTD � regarding the AA extraction
peformance and computational cost.
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Figure 7.3: Original recording, VA and AA estimates in lead II by the Löwner-BTD of
Patient P7. The AA signal is vertically shifted for clarity.

7.3.1 Model derivation

Recall that, for the particular case of AF ECGs, the third-order tensor Y in (4.57) is
the tensorization of the AF ECG data matrix Y obtained by mapping each of its rows
into a Hankel matrix and stacking them as frontal slices of T . Matrices H(r)

S have a
Hankel structure, built from each source of S, and vectors cr represent each column of
the mixing matrix M.

Assuming that consecutive segments of an AF ECG recording fromK leads composed
by M time samples Y ∈ RK×M have the same spatial signature, i.e., the same mixing
matrix (which implies the same number of sources), they can be modeled as coupled
BTD tensors, sharing the same nonzero vectors cr [29]. So, dividing Y in N consecutive
segments of length Mn, where

∑N
n=1Mn = M , the coupled BTDs can be given by:

Y(1) =
R∑
r=1

(Ar,1B
T
r,1) ◦ cr

...

Y(N) =
R∑
r=1

(Ar,NB
T
r,N ) ◦ cr . (7.6)

Dividing an ECG recording in N consecutive segments divides the original tensor in
N smaller tensors. For the case where the segments are of same length, the total number
of scalar entries is reduced by a factor of ≈ 1/N . Indeed, the number of scalar entries of
the tensor build from the whole ECG recording is ≈ (M2 )2K, whereas each tensor with
Mn = M/N samples has ≈ ( M2N )2K = 1

N2 (M2 )2K scalar entries. Since we have N smaller
tensors, the total number of scalar entries to be processed is 1

N (M2 )2K.
Jointly processing the N third-order tensors is expected to reduce the computational

cost, comparing as if they are processed separately. Also, the non-stationarity of AA
signals during AF allows the exploitation of the temporal diversity, as the signals will be
jointly estimated by the coupled tensor approach with di�erent time signatures.
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Figure 7.4: Generated synthetic signal modeling an ECG with AF patterns plotted in
time domain, where t = m/Fs are the time values in seconds and YAF (t) is the amplitude.

For the particular case of ECGs, we have C = M ∈ RK×R, Ar,n ∈ RIn×Lr,n and
Br,n ∈ RJn×Lr,n , where In + Jn = (Mn + 1). Hence, for the two necessary conditions
presented in the end of Section 4.5, we have that:

1. A necessary condition for kC ≥ 2 to be satis�ed is K ≥ R ≥ 2. This holds for
the cases of AF ECGs, where, typically, the number of sources is smaller than the
number of leads and greater than 2.

2. For matrix F (4.52) to have full column rank it must ful�ll
∑N

n=1 InJn ≥ R. We
have that

∑N
n=1 InJn ≥ InJn ≥Mn, forMn ≥ 2. Since for AF ECGsMn � R > 2,

the necessary condition holds.

In the next subsections, the coupled tensor approach is evaluated in synthetic and
real data.

7.3.2 Evaluation on synthetic data

The performance of the coupled BTD for ECG source separation is now assessed in
two consecutive synthetic AF segments by means of the NMSE between the estimated
and original signals. The segments contain 3 sources: AA, VA, and a noise source.

To simulate the AA signal during AF, the model proposed in [101] presented in
Section 1.3 is used. In order to simulate the VA signal, a synthetic T-wave modeled by a
cosinus function [31] and three synthetic QRS complexes modeled by rational functions
[4] were generated, as in Section 1.3. The noise signal that simulates the interference
present in ECGs and the mixing matrix are also generated according to Section 1.3. The
generated ECG data is divided in two consecutive segments as illustrated in Figure 7.4.

Coupled BTD is implemented using a straightforward strategy based on the NLS
approach, which consists in computing the BTD for the �rst tensor and keeping the factor
C as known for the remaining tensors. BTD is implemented also using the NLS approach
with the Gauss-Newton method, both available in Tensorlab MATLAB Toolbox [105],
choosing R = 3 and Lr = 17, for r = 1, 2, 3. The choice of R and Lr is based on previous
experiments, guided by the work of [110]. The tolerance threshold for BTD convergence
is set to 10−9 and the maximum number of iterations is set to 1000. Ten Monte Carlo
runs with Gaussian random initialization for the spatial and temporal factors at each run
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Table 7.3: NMSE (dB) between the estimated and original AA sources for the coupled
BTD and BTD.

Segments Coupled BTD BTD

1 −18.9 −15.4

2 −19.2 −13.5

are used to analyze the AA extraction performance of BTD and coupled BTD in each
segment. The best out of the 10 independent initializations is chosen.

Table 7.3 shows the NMSE in dB between the estimated and original AA sources
(NMSEAA) of segments 1 and 2, for coupled BTD and BTD. It can be seen that the AA
sources of both segments are jointly estimated with a satisfactory performance for the
coupled BTD, as con�rmed by both NMSE values, which are lower than those provided
by BTD. In addition, coupled BTD takes 281 iterations to converge to this solution, while
BTD takes 283 and 150 iterations to provide a solution for segments 1 and 2, respec-
tively, adding up to a total of 433 iterations. For the record, processing the BTD in the
full segment with such con�gurations does not provide a satisfactory source separation,
requiring the choice of higher Lr values. Still, the number of iterations to converge for
the best solution out of ten Monte Carlo runs is 371.

7.3.3 Evaluation on real data

Now the evaluation of the coupled tensor approach in real AF ECG recordings is
presented.

7.3.3.1 Experimental data and setup

The real recordings belong to the PERSIST database (Section 1.3). Experiments are
performed in 5 di�erent segments of ECG recordings from 2 di�erent patients su�ering
from persistent AF, where 3 of these segments belong to Patient 1, and the other 2 belong
to Patient 2. In order to fully exploit the multi-lead diversity, the 12 leads are processed.
For a better visualization of the AA, Figure 7.5 shows lead V1 of the two types of segments
used in the reported experiments. The 3 consecutive segments from Patient 1 have 1.20,
0.75 and 0.97 seconds of duration, respectively. The other 2 consecutive segments from
Patient 2 have both 1.13 seconds of duration. All the 5 segments are downsampled by
a factor of 4 in order to reduce tensor dimensions and subsequent computational time,
without increasing any loss of information.

Both tensor-based techniques are implemented with the same con�guration as in the
experiments with synthetic data reported in Subsection 7.3.2, just changing the value of
the number of sources to R = 4, choice made based on preliminary experiments.

7.3.3.2 Experimental results

Table 7.4 shows the values of SC in %, κ, and P (r) in mV2 of the estimated AA
signal by BTD and coupled BTD, for all the consecutive segments of both patients. The
best performance out of the ten independent runs regarding AA estimation quality and
source separation is shown.

We can see in Table 7.4 that for all the segments of both patients, coupled BTD
provides a higher SC than BTD. For the parameters κ and P (r), coupled BTD provides
higher values than BTD in all but two segments. From this table one can conclude
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Figure 7.5: Top: the AF ECG recording of Patient 1 divided in three consecutive seg-
ments of di�erent lengths. Bottom: the AF ECG recording of Patient 2 divided in
two consecutive segments of same length. Only lead V1 is shown to ease visualization,
although the 12 leads are processed in the experiments reported here.

that both coupled BTD and BTD provide satisfactory AA sources estimates, with a
signi�cant superiority of the coupled approach. However, the main advantage of the
coupled approach is its ability to jointly estimate more than one segment with the same
number of iterations as BTD takes to converge for a single segment, as it will be detailed
later in this section.

In addition, when applying BTD to the whole recording, i.e., without dividing it into
consecutive segments, the method cannot separate the sources with a low choice of Lr
and the number of iterations until convergence easily exceeds 1000. This highlights even
more the advantages of segmenting the recording, as the tensor approach can success-
fully extract the AA from short ECG recordings, whereas techniques based on QRST
cancellation cannot. Indeed, such techniques presented in Chapter 3 require relative long
recordings and are not operative in the short segments analyzed in this doctoral thesis.
As an example, for ASVC, it is typically required a segment with duration longer than
30 s � 1 min [2].

Figure 7.6 illustrates the AA source estimates in the time and frequency domain for
Patient 2. At the top it can be seen how the VA is well suppressed, as at the bottom the
peak in a frequency between 3 and 9 Hz is clearly visible, typical of an AA source during
AF. It is valid to state that the DF of the AA sources estimated by coupled BTD are
exactly the same of the ones estimated by BTD, for all segments of both patients. This
shows the consistency of the coupled approach, since BTD has already been validated as
an AA extraction tool [26] (See Chapter 6 of this doctoral thesis).

Figure 7.7 compares the number of iterations to provide the best solution by both
tensor-based techniques. Unlike coupled BTD, conventional BTD does not jointly es-
timate the source signals for all segments, so the sum of the number of iterations of
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Table 7.4: Values of SC (%), κ, and P (r) in mV2 of the AA signal estimated by coupled
BTD and BTD, for all the processed segments of both patients. The best solution out
of ten Monte Carlo runs is chosen.

Coupled BTD
Patient 1 Patient 2

1 2 3 1 2

SC (%) 58.6 67.1 64.8 72.3 64.3
κ 138.8 94.3 143.8 138.6 207.8

P(r) (×10−3) 2.3 1.2 3.3 0.9 2.0

BTD
Patient 1 Patient 2

1 2 3 1 2

SC (%) 57.4 61.8 56.3 71.2 62.7
κ 94.4 95.4 98.4 155.7 196.7

P(r) (×10−3) 0.8 1.0 3.5 0.8 2.8

each segment is added to each other and shown in the graphs, which provides a number
considerably higher, compared to the coupled approach. It is also observed that coupled
BTD is less sensitive to initialization, as out of the 10 Monte Carlo runs, around 70% of
solutions provided satisfactory source separation performance, whereas only around 50%
of BTD solutions provided a satisfactory separation of the sources.

7.4 Summary

This chapter proposed two ECG tensor models to perform AA extraction for AF
analysis. The �rst tensor model is based on the BTD built from Löwner matrices, focusing
on the VA estimation for further cancellation from the ECG. This approach proves to
be e�cient in scenarios were the persistent AF patient presents short TQ segments and
a weak/chaotic AA signal. The second tensor model assumes that consecutive segments
share the same spatial signature, making it possible to jointly extract the AA signal
from them. This approach provided a better performance than its non-coupled version,
increased robustness to initialization of the computation algorithm and fewer iterations
to converge for a satisfactory solution.

Existing algorithms require the prior knowledge of the tensor model structure (R, Lr)
in order to compute the BTD. Also, such algorithms are strongly dependent on the ini-
tialization and may not guarantee the structure of the matrix factors. Overcoming these
limitations, a novel algorithm was recently proposed, being more robust to initialization
and able to estimate the tensor model structure while searching for the matrix factors of
BTD, with structured guaranteed by a linear projection. The next chapter will describe
and assess this recently proposed algorithm for BTD computation in synthetic and real
AF ECG recordings. Both Hankel and Löwner approaches are exploited.
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8.1 Introduction

This chapter �rst introduces an improved algorithm, as compared to the state-of-
the-art, to compute the BTD. Then, its Hankel- and Löwner-constrained versions are
described and assessed as AA extraction tools. The Hankel-constrained version, in par-
ticular, is also proposed as a tool to measure AF complexity. The Löwner-constrained
version is assured by an orthogonal projection detailed described in this doctoral thesis.
This chapter yielded a journal publication and a submission under review:

• J. H. de M. Goulart, P. M. R. de Oliveira, R. C. Farias, V. Zarzoso, and P. Comon,
�Alternating group lasso for block-term tensor decomposition and application to
ECG source separation�, IEEE Transactions on Signal Processing, vol. 68, pp.
2682-2696, 2020.

• P. M. R. de Oliveira, J. H. de M. Goulart, C. A. R. Fernandes and V. Zarzoso,
�Persistent atrial �brillation analysis using a tensor decomposition with Löwner
constraints�, submitted, 2020.

8.2 Alternating group lasso and its constrained version

8.2.1 Mathematical derivation

In general, an approximate BTD is computed by minimizing, in the least-squares
sense, the distance between the oberved data tensor Y ∈ CI×J×K and a model of �xed
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structure, de�ned by R and Lr, with respect to the model components, i.e.,

f(A,B,C) ,
∥∥∥Y −∑R

r=1

(
ArB

T
r

)
◦ cr

∥∥∥2

F
. (8.1)

In the special case of AA extraction using Hankel-BTD, Hr = ArB
T
r must belong to

the subspace of Hankel matrices with dimensions (I×J), denoted SH . The mode-3 slices
Y..k of the observed tensor are Hankel by construction. However, a solution (Â, B̂, Ĉ) of
(8.1) may not satisfy ÂrB̂

T
r ∈ SH , due to noise and modeling imperfections. Note that

even if the sum
∑R

r=1(ÂrB̂
T
r )ĉk,r is Hankel, there is no guarantee that so are matrices

ÂrB̂
T
r . Also, most algorithms based on (8.1) are strongly dependent on the initialization

of its matrix factors and do not estimate the model parameters, i.e., the number of blocks
and their ranks.

In [42] the use of group sparsity for robust low-rank approximation of tensors is
detailed studied, showing that the low rank decomposition problem can be solved without
any knowledge of the true rank. More precisely, in [43] a novel robust method that
imposes group sparsity is proposed to compute the CPD. Also, in [44], a functional
promoting group sparsity of the decomposition factor columns was minimized to estimate
appropriate structural parameters of an (unconstrained) BTD model, but not the model
itself. Moreover, in [44] it is only considered the case where all Lr are equal.

Overcoming such limitations, instead of using a �xed BTD structure as (8.1), a tech-
nique called alternating group lasso (AGL) and its constrained version described for Han-
kel matrices called CAGL, are introduced in [20] and summarized next. This method
includes penalization terms promoting low-rank blocks and controlling the number of
blocks as:

F (A,B,C) , f(A,B,C) + γ g(A,B,C) (8.2)

where f(·, ·, ·) is the same as in (8.1), γ > 0 is a regularization parameter and g is a
regularization function of the form:

g(A,B,C) , ‖A‖2,1 + ‖B‖2,1 + ‖C‖2,1 . (8.3)

Due to the geometric properties of the mixed `2,1-norm, solutions where A, B and
C have null columns (for su�ciently high γ values) will be induced, allowing us to
automatically select the relevant low-rank blocks. This method is called group lasso and
is a generalization of the lasso (least absolute shrinkage and selector operator) estimator
principle [108].

Since problem (8.2) is nonconvex (and nonsmooth), but convex by blocks, a block
coordinate descent (BCD) approach is employed [20]. BCD consists in partitioning the
set of optimization variables and sequentially solving convex subproblems in each subset
of variables, �xing the others.

Consider Â(x−1), B̂(x−1) and Ĉ(x−1) the estimates of A, B and C, respectively,
obtained at iteration x− 1. Fixing B = B̂(x−1) and C = Ĉ(x−1) in (8.2) the subproblem
in A of iteration (x) becomes [20]:

min
A

1

2
‖Y − W

(x)
A (A)‖2F + γ ‖A‖2,1 (8.4)

where W
(x)
A is a linear map that depends on B̂(x−1) and Ĉ(x−1).

Subproblem (8.4) is now convex, but it may not be strictly convex, since W
(x)
A may

not be injective at some iterations. This can be solved by adding a proximal term, so the
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Hessian of the LS term becomes positive de�nite [20]. Subproblem (8.4) can be written
now as:

min
A

1

2
‖Y − W

(x)
A (A)‖2F + γ ‖A‖2,1 + τ

2‖A− Â(x−1)‖2F (8.5)

where τ is positive.
Analogously, strictly convex subproblems can be derived for B and C. AGL solves

these subproblems alternatively, through the updates of Â(x), B̂(x) and Ĉ(x), in this
order, at each iteration x. When all subsets are updated, one iteration of the algorithm
is completed.

In order to ensure the Hankel structure of the matrix factors at the end of iterations, a
structured low-rank approximation (SLRA) is applied at each iteration of AGL, yielding
CAGL. For this purpose, the Cadzow's Algorithm [8] is used at the end of the iterations,
which consists in performing alternating projections onto the Hankel subspace SH , so
that Ĥr ≈ ÂrB̂

T
r ∈ SH .

Table 8.1: Pseudocode for CAGL algorithm [20].

Inputs:
Data tensor Y, penalty parameter γ, proximal term weight τ ,
initial point (A(0),B(0),C(0))

Outputs: Approximate BTD factors (A,B,C)

1: x← 1

2: while stopping criteria not met do
3: Solve group lasso subproblem (8.5) to obtain C(x) from A(x−1), B(x−1) and C(x−1)

4: Solve group lasso subproblem in B analogous to (8.5) to obtain B(x) from A(x),
B(x−1) and C(x−1)

5: for r = 1, . . . , R do

6: L
(x)
r ← rank

(
A

(x)
r (B(x))Tr

)
7: (A

(x)
r ,B

(x)
r )← slra(A

(x)
r (B

(x)
r )T , L

(x)
r )

8: (A
(x)
r ,B

(x)
r )← ([A

(x)
r 0

I×L−L(x)
r

], [B
(x)
r 0

I×L−L(x)
r

])

9: Solve group lasso subproblem in C analogous to (8.5) to obtain C(x) from A(x),
B(x) and C(x−1)

10: x← x+ 1

The CAGL algorithm is summarized in Table 8.1, where slra denotes the SLRA
algorithm and symbol (̂·) is removed from the computed estimates, for simpli�cation and
clarity. It should be noted that for the unconstrained AGL algorithm, lines 5-8 must be
removed.

Note also that each application of slra re-estimates both Ar and Br. Finally, one
should note that, since Â

(x)
r and B̂

(x)
r always have L columns, zeros must be added in

those blocks after applying slra (line 8).

8.2.2 Experimental evaluation of CAGL as an AA extraction tool

The usefulness of CAGL for ECG source separation in AF episodes is now assessed
through experiments with semi-synthetic AF data models and real AF ECGs.

8.2.2.1 Semi-synthetic AF data

To simulate AA during AF, the model proposed in [101], which is described in Sec-
tion 1.3, is used. It is �rst considered a scenario with one AA source, generated accord-
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Table 8.2: Parameters of the synthetic AA signal model of (1.1).
Model P a ∆a fa Fs f0 ∆f Ff
1 5 150 50 0.08 1000 6 0.2 0.10
2 3 60 18 0.50 1000 8 0.3 0.23

ing to (1.1) with the parameters of Model 1 in Table 8.2. This signal is illustrated in
Fig. 8.1(a). A random spatial signature x ∈ R12 over the 12 ECG leads is generated for
this source, having standard normal independent and identically distributed components.
The VA source is taken from a real standard 12-lead ECG of a healthy subject, after P
wave suppression as in [87]. This ECG, which belongs to the Physionet database [40],
is acquired at a sampling rate of 1 kHz and is preprocessed by a zero-phase forward-
backward type-II Chebyshev bandpass �lter with cuto� frequencies of 0.5 and 30 Hz, in
order to suppress high-frequency noise and baseline wandering. AWGN with variance σ2

is added to simulate some perturbations typically present in ECG signals. The overall
semi-synthetic AF ECG model is given by:

Y = V+ αxsT +N ∈ R12×N (8.6)

where V represents the normalized VA signal, s ∈ RN is the AA signal, N represents the
AWGN and α = 2 is a scaling factor chosen to obtain an average atrial-to-ventricular
power ratio consistent with clinical observations. An observation window of around
1.2 seconds is used, yielding 1221 samples. The overall generated AF signal is illustrated
in Fig. 8.1(b) (dashed line). Mapping each ECG lead into a Hankel matrix and stacking
them alongside the third-mode, yields a tensor of dimensions 611 × 611 × 12. Since an
approximate BTD of a tensor of such dimensions demands a large computing time, the
signals are downsampled by a factor of 10 before computing the decomposition, yielding
a resulting tensor Y with dimensions 62× 62× 12.

CAGL is run from an initial random solution and using γ = γ0 as penalization factor
in 8.2. The value of γ0 is chosen empirically. For the p = 1, ..., P − 1 solution, CAGL is
run with γ = γp = (p+ 1)γ0 using the solution obtained for p− 1 as the initial point. In
this scenario, γ takes 30 equispaced values in the interval [8× 10−4, 0.33× 10−2] and the
last solution is kept. For γ0, the algorithm starts from random blocks, with the initial
guess of R = 6 and L = 40. Among the estimated sources, the AA source is chosen as
the one that maximizes (in absolute value) the correlation coe�cient ρ with respect to
the ground-truth AA source.

The NLS approach with the Gauss-Newton method from Tensorlab (BTD-NLS) is
setup with R blocks of �xed rank L, for all combinations (R,L) ∈ {4, 5, 6}×{1, . . . , 40}.
For each rank L, the initial point is generated by �lling the L columns of Ar and Br

with the �rst L columns used to initialize these variables in CAGL.
This procedure is repeated 30 times for each of 10 di�erent realizations of (x,N). It

is observed that CAGL is more robust to initialization, as it produces results with very
similar estimates regardless of the chosen initial point. Particularly, for 95% of the runs,
the �nal number of estimated blocks is 4. By contrast, the results obtained with BTD-
NLS are much more sensitive to initialization. Speci�cally, the value of L that yields the
best performance for a given run is not the same across di�erent runs, as illustrated by
the empirical cumulative distribution function (ECDF) in Fig. 8.2(a). For CAGL, the
rank chosen for the AA source block is almost always 10 as also shown in Fig. 8.2(a).

Even though the most suitable choice for BTD-NLS seems to be R = 4 and L ∈
{10, . . . , 15}, its performance is highly variable for this range of L. This is observed
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Figure 8.1: Examples of generated semi-synthetic models: (a) AA sources generated
as (1.1) with the parameters shown in Table 8.2; (b) overall semi-synthetic ECG signals
in lead V1.

in Fig. 8.3(a), which displays the histogram of the correlation coe�cient ρ (in absolute
value) between the estimated AA source and the ground-truth. All results produced by
BTD-NLS for L ∈ {10, . . . , 15}, and all results produced by CAGL are included. One
can see that the choice of R signi�cantly a�ects performance, and a large proportion of
results given by BTD-NLS achieves a poor ρ for every R. By contrast, ρ is very likely to
be quite close to 1 for CAGL.

To sum up, BTD-NLS only produces good results with a suitable combination of its
model parameters (R, L) and initialization. By contrast, CAGL only requires the choice
of a reasonable range for its penalization term (γ) and behaves much more robustly with
regard to initialization.

Now, it is considered a scenario with two AA sources. In this scenario, the VA source
is still the same as in the previous scenario, but now two AA sources are generated, each
one using the parameters of one row in Table 8.2. These AA signals are illustrated in
Fig. 8.1(a). Accordingly, the model now is given by:

Y = V+ XST +N ∈ R12×N (8.7)

where the columns of S ∈ RN×2 contain the AA signals and those of X ∈ R12×2 con-
tain their respective spatial signatures. All signals are again downsampled by a factor
of 10, yielding data tensors with the same dimensions as before. Fig. 8.1(b) displays one
example of the overall generated ECG signal (solid line).

CAGL and BTD-NLS are run following the same procedure as in the previous scenario
(with one AA source). However, now the AA source estimates are extracted by choosing
�rst the block with the highest correlation coe�cient, in absolute value, with one of the
ground-truth AA sources, and secondly the block maximizing the correlation with the
remaining AA source.

The corresponding results are shown in Fig. 8.2(b) and Fig. 8.3(b). The conclu-
sions are similar to the previous scenario, with three main di�erences in terms of model
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Figure 8.2: ECDF of rank chosen by CAGL for the AA source and of rank L yielding
the best AA extraction for BTD-NLS with di�erent numbers of blocks R. The curves
are shown only up to L = 30, for clarity.

Figure 8.3: Histogram of computed correlation coe�cient ρ (in absolute value) between
ground-truth and estimated AA sources by both algorithms.
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Table 8.3: Block ranks of the ECG sources extracted by CAGL and characteristics of the
potential AA sources.

Patient
Non-AA source AA

SC (%) DF (Hz) κ̂
AA source

ranks source rank

1 3, 9, 10, 16, 18 1 80.23 6.44 163.69 8

2 28, 32
1 59.36 6.20 116.77 29
2 82.05 6.20 163.77 12

3 21, 27, 29 1 66.13 6.20 132.29 20
4 8, 16, 20 1 74.51 5.96 196.16 10

5 32, 38, 39
1 91.70 5.72 348.42 10
2 78.63 5.01 166.95 21

structure recovery:

• BTD-NLS now performs best with R = 5 instead of R = 4, which is expected since
two atrial sources are now present, thus yielding richer AA content.

• For R = 5, BTD-NLS performance is closer to that of CAGL.

• Two choices of rank are most often made by CAGL (rather than one), namely
Lr = 6 and Lr = 8.

It is important to highlight that CAGL is run following exactly the same procedure as
in the previous scenario. By contrast, BTD-NLS now yields best results with a di�erent
choice of R. This emphasize the fact that CAGL can e�ectively adapt to a given dataset,
typically behaving more stably than the usual approach across di�erent circumstances.

8.2.2.2 Real AF data

In order to validate CAGL as an AA extraction tool, experiments with real standard
12-lead ECG recordings from a population of �ve patients su�ering from persistent AF
are performed in this section. These recordings belong to the PERSIST database and
are preprocessed as described in Section 1.3. For each patient, the heartbeat with the
largest TQ segment is chosen for the experiment, making the recordings lengths range
from about 1.08 to 1.40 seconds.

As in the previous experiments with semi-synthetic data, all signals are downsam-
pled by a factor of 10, decreasing computing cost, with practically no information loss.
After normalization of each signal tensor, CAGL is applied using the same γ-sweeping
strategy as before. However, in this scenario with real data the �nal solution is chosen
by inspection of the separated signals (i.e., from all solutions CAGL provided, the best
is chosen), as the ground truth is unknown.

To assess AA estimation quality, two performance parameters described in Chapter 5
are employed: SC (in %) and kurtosis (κ).

Table 8.3 shows a quantitative assessment of the potential AA sources extracted for
each patient, while Fig. 8.4 illustrates the estimated overall and AA signals for each
patient along with the observed signals. In all experiments, we have chosen the initial
model parameters (R,L) = (6, 40), which was su�cient to produce satisfying results.
Note that, for Patients 2 and 5, two blocks were identi�ed as potential AA sources;
accordingly, the estimated AA signals in Fig. 8.4(b) and Fig. 8.4(e) are given by the
linear combinations of these blocks multiplied by their corresponding spatial weights for
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Figure 8.4: Results produced by CAGL with real ECGs: observed and estimated signals
on lead V1. The estimated AA signals are vertically shifted by −0.2 mV for clarity.
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lead V1. These distinct potential AA sources for Patients 2 and 5 are shown in Fig. 8.5,
along with their respective spatial weights (i.e., their associated columns in X). The
shown signals are normalized as [maxn |sr(n)|]−1 sr(n), and the corresponding spatial
weights are then rescaled so as to absorb the factor maxn |sr(n)|. Based on the results of
Table 8.3 and Fig. 8.4, it is seen that a satisfying extraction is achieved, as the potential
AA sources have typical f-wave features, relatively high SC and physiologically plausible
DF between 5 and 6.5 Hz.

Regarding Patient 2, the values of SC and κ̂ for its AA source 1 are not so high
due to the residual of the T-wave (ventricular repolarization), which can be seen around
0.3 seconds of Fig. 8.5(a). Furthermore, Fig. 8.5(b) shows that the contribution of AA
source 2 decays along the path V1�V2�V3, which suggests that this source may re�ect
electrical activity mainly occurring in the right atrium, and is almost null on other leads.
By contrast, AA source 1 gives signi�cant contributions to most leads, which suggests
that the associated electrical propagation pattern may be harbored in a region including
both atria. In fact, these sources have very di�erent spatial signatures: the cosine of the
angle between their respective columns of X is around −0.13, and so they are far from
being collinear. Furthermore, despite having the same DF, their observed power spectra
are considerably di�erent. The lack of temporal synchronization between the estimated
atrial sources, as manifested by the time lag between the maxima of the two signals
plotted in Fig. 8.5(a), further supports the hypothesis that the associated activities may
arise from di�erent areas of atrial tissue.

Patient 5 provides another example in which two potential AA sources with consid-
erably di�erent spatial signatures are extracted: their respective columns in X form an
angle whose cosine is about 0.09. Moreover, the dominant frequencies computed for these
sources also di�er signi�cantly: 5.72 for AA source 1 and 5.01 for AA source 2. Here, it
is AA source 2 that exhibits signi�cant contributions to most leads, while AA source 1
manifests itself mostly on lead V1 and thus may correspond to more localized electrical
activity taking place in the right atrium.

While the possibility of extracting more than one atrial source presents great interest
for the noninvasive analysis of AF, a thorough validation of this result would be required
by means of ground truth data such as a full electroanatomical mapping of the atria
performed, for instance, during catheter ablation interventions. Such a validation is out
of the scope of the present doctoral thesis.

A �nal important observation is that for all but one patient, the sum of the estimated
block ranks exceeds the dimension of the Hankel matrices (M × M): for Patient 1,∑

r Lr = 64 > M = 63; for Patient 2,
∑

r Lr = 101 > M = 74; for Patient 3,
∑

r Lr =

97 > M = 71; and for Patient 5,
∑

r Lr = 140 > M = 58. This corroborates the practical
importance of the case where

∑
r Lr exceeds all tensor dimensions. Furthermore, for all

patients the sum of block ranks far exceeds the number of leads, i.e.,
∑

r Lr > K, which
showcases the bene�t of using a tensor method, since a matrix decomposition approach
could not possibly identify all the poles constituting each model.

8.3 CAGL as an AF complexity measurement tool

Step-wise catheter ablation (CA) is an e�ective therapy to treat persistent AF and
restore sinus rhythm [57]. Hence, methods to measure AF complexity at each procedural
step are relevant to improve clinical analysis and guide CA in real time. Furthermore,
it would be desirable to clarify the impact on AF of each intervention step such as pul-
monary vein isolation (PVI) and other widely used techniques [41], [92]. Due to the
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Figure 8.5: Estimated AA sources produced by CAGL with ECG data from Patients 2
and 5.

cost-e�ciency of the ECG, the interest in noninvasive techniques to assess AF electro-
physiological complexity is increasingly high. However, existing methods for noninvasive
quanti�cation of AF complexity are limited due to the fact that su�ciently long ECG
recordings are required, hindering their use in clinical practice.

The complexity of a signal constructed from complex exponential sums is intrinsically
related to the number of poles. Since the tensor block correlated with the AA signal
presents a Hankel structure, the rank of its matrix factor Lr is equal to the number of
poles [110]. Therefore, the proposed index is measured from the rank of the block that
represents the atrial source, that allows a more global view of what goes on in the atria,
while a catheter provides more local information. Since CAGL is able to estimate the
rank Lr of each matrix factor, it is now proposed as a noninvasive tool to quantify AF
complexity.

8.3.1 Database and experimental setup

Experiments with a database of 59 ECG recordings from 20 patients su�ering from
persistent AF (Section 1.3) show that CAGL is able to quantify AF complexity from
very short ECG recordings. All the patients had undergone step-wise catheter ablation
(CA) that ended in AF termination. The physiological characteristics of the observed
20-patient population are described on Table 8.4. It must be reported that there are
missing data values for one patient regarding AF history and LA diameter and such
values were replaced by the average.

Table 8.4: Overall physiological characteristics of the 20-patient population .
Patient characteristics µ ± σ Min Max

Age (years) 60.6 ± 9.4 42 76
Height (cm) 177.8 ± 6.2 169 195
Weight (kg) 85.6 ± 12.7 64 105

AF History (months) 68.6 ± 59.6 3 228
AF Episode (months) 16.3 ± 25.2 0.5 86
LA Diameter (mm) 45.8 ± 7.9 33 62

The segment with the largest TQ segment is chosen for each patient, length ranging
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from 0.72 to 1.42 seconds. A window with length 1.06 s, yields 1037 samples, a direct
row-Hankelization of this matrix results in a tensor of dimensions 519 × 519 × 12,
whose approximate BTD demands a large computing time. Therefore, the signals are
downsampled by a factor of 10 before applying the decomposition, in order to reduce
its computing time, with practically negligible information loss. In this example, the
resulting tensor Y have dimensions 52 × 53 × 12.

CAGL is applied to ECG recordings after each CA step, with a γ-sweeping procedure,
inspired by solution-path techniques, by taking 50 equispaced values in the interval [8×
10−4, 0.5×10−2] and keeping the last solution. The algorithm starts with R = 6 random
blocks and rank Lr = 40 as initial guesses [20]. The task of measuring estimation quality
is challenging since the ground truth is unknown. Nevertheless some AA characteristics
during AF must be exploited to guide sources selection. The parameters used to evaluate
AA extraction are spectral concentration (SC), dominant frequency (DF) and kurtosis
as well as visual inspection, as detailed in [26], [24], [112].

8.3.2 Experimental Results

8.3.2.1 AA complexity in�uence by PVI

The impact of CA at each step on AA complexity is assessed in terms of rank esti-
mation by CAGL in the whole dataset. Before CA, ranks range from 12 to 33, whereas
after all steps of the CA procedure, ranks range from 6 to 16, referred to, respectively,
as `Initial' and `Outcome' in Figure 8.6. Initially, the population present a median rank
21.5, while at intermediaries steps is 15 and after CA it becomes 10.5, illustrating that
the rank decreases at each step of the CA procedure as shown in Figure 8.6.
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Figure 8.6: Right: Boxplot showing the rank estimated by CAGL for all patients at
di�erent CA steps: initial (before ablation); intermediaries (CA between the �rst and
penultimate steps); outcome (after the last CA step). Left: Boxplot at the beginning of
CA and after PVI for the group of 17 patients who underwent this CA step. Notation
(n) indicates the number of ECG segments considered in each box.

In observed segments, the rank of extracted AA sources becomes less complex as the
ablation is performed as one could intuitively expect. In addition, a separate assessment
of the 17 patients undergoing PVI is also shown in Figure 8.6, presenting a drastic
reduction of the proposed index after this CA step, from a median value of 20 to 14.



100 Chapter 8. Improved Algorithms for BTD Computation

8.3.2.2 AF recurrence and complexity

To assess the relationship between population's features, Pearson correlation (r) be-
tween the initial rank estimated by CAGL, i.e., before any patient had undergone CA
procedure, and AF recurrence, i.e., the time that each patient remained in sinus rhythm
before AF relapse is −0.63. A statistical relevant value of negative correlation well il-
lustrated by its scatter plot and linear regression in Figure 8.7, seems to indicate an
in�uence of initial rank on AF recurrence.

Finally, 2 patients registered ranks 12 and 18 but had no information about AF
recurrence after the CA procedure, since they dropped out of the study. Hence, they
were excluded from this assessment.
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Figure 8.7: Scatter plot of the initial estimated rank (before CA) of the tensor block that
provides the AA signal versus AF recurrence. A negative correlation can be observed.

8.4 Löwner-constrained alternating group lasso

It is now presented a Löwner-constrained version of AGL along with a signi�cant
extension of the previous results reported in Chapter 7. Indeed, an improved method to
compute the Löwner-BTD is provided, together with more relevant results, by increasing
the size of the AF patient database. This section formulates an orthogonal strategy for
CAGL that deals with Löwner constraints, imposing a low-rank Löwner structure. The
strategy is explicitly described as an orthogonal projection in the Löwner subspace, used
to guarantee the speci�ed structure in the matrix factors. The Löwner-constrained AGL
(LCAGL) is compared to the Löwner-BTD computed with the NLS method (used in
previous experiments reported in Chapter 7), as well as the recently proposed CAGL,
dealing with Hankel constraints.

In order to ensure the Löwner structure of the matrix factors at the end of iterations,
a formulation to deal with Löwner constraints in CAGL, called here LCAGL, is proposed.
It should be noted that LCAGL follows the same principle of CAGL, which is to ensure
a speci�ed structure over the block matrices. However, instead of using a projection on
the Hankel subspace as described in [20], LCAGL uses a linear projection on the Löwner
subspace that will be detailed here.
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The Löwner constraints can be enforced by solving a SLRA problem for each block
matrix at each iteration of LCAGL. For this purpose, it is used the Cadzow's Algorithm
at the end of each iteration. Cadzow's Algorithm perform alternate projections, where
the one that leads to the set of matrices with rank up to Lr is performed by the truncated
SVD, whereas the one that leads to the Löwner subspace is formulated in the following. It
is important to highlight that, in practice, the rank of the matrices in the �rst projection
is computed by counting the number of simultaneously nonzero columns of Ar and Br.

8.4.1 Mathematical derivation of LCAGL algorithm

It is considered here signals with an even number of samples, i.e., I = J = N/2, and

the interleaved partitioning method. This way, we can rewrite the matrix L(k) ∈ R
N
2
×N

2

of Equation (7.1) as:

L(k) =


yk,t1−yk,t2
t1−t2 . . .

yk,t1−yk,tN
t1−tN

...
. . .

...
yk,tN−1

−yk,t2
tN−1−t2 . . .

yk,tN−1
−yk,tN

tN−1−tN

 . (8.8)

Considering that the signals are regularly sampled with a sampling period ∆ =

tn − tn−1, for n = 1, ..., N , Equation (8.8) becomes:

L(k) =


yk,t1−yk,t2
−∆ . . .

yk,t1−yk,tN
−(N−1)∆

...
. . .

...
yk,tN−1

−yk,t2
(N−3)∆ . . .

yk,tN−1
−yk,tN
−∆

 (8.9)

where each element is given by:

`
(k)
i,j =

yk,t2i−1
− yk,t2j

[2(i− j)− 1]∆
. (8.10)

Note that this formulation can be easily adapted to signals that are irregularly sam-
pled. For this other scenario, the denominator [2(i − j) − 1]∆ in (8.10) is replaced by
∆ij = t2i−1 − t2j . Since in general the signals are regularly sampled, the formulation of
(8.10) will be kept.

For a given matrix E(k) ∈ RI×J , with a probably non-Löwner structure, its projection
onto the Löwner subspace can be obtained by minimizing the LS cost function given by
[21]:

F(a,b) =

N/2∑
i=1

N/2∑
j=1

[
e

(k)
i,j −

ai − bi
∆[2(i− j)− 1]

]2

. (8.11)

where ai = ŷk,t2i−1
and bj = ŷk,t2j , for i, j = 1, ..., N/2, with ŷk. being the estimation of

yk..
Taking the derivative of F with respect to an arbitrary variable ap we have:

N/2∑
j=1

2

[
e

(k)
p,j −

ap − bj
∆[2(p− j)− 1]

] [
−1

∆[2(p− j)− 1]

]
= 0 . (8.12)

Then,

N/2∑
j=1

[
e

(k)
p,j +

bj
∆[2(p− j)− 1]

] [
−1

∆[2(p− j)− 1]

]
=

N/2∑
j=1

[
−ap

(∆[2(p− j)− 1])2

]
. (8.13)
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This way, the solution of ap, for p = 1, ..., N/2, can be given as:

âp =

∑N/2
j=1

[
e

(k)
p,j +

bj
∆[2(p−j)−1]

] [
1

∆[2(p−j)−1]

]
∑N/2

j=1

[
1

(∆[2(p−j)−1])2

] . (8.14)

Similarly, for bp we have:

b̂p =

∑N/2
i=1

[
e

(k)
i,p −

ai
∆[2(i−p)−1]

] [
1

∆[2(i−p)−1]

]
−
∑N/2

i=1

[
1

(∆[2(i−p)−1])2

] . (8.15)

The necessary conditions for optimality can be expressed as:{
âp − α−1

p

∑N/2
j=1 up,jbj = zp

b̂p + β−1
p

∑N/2
i=1 vi,pai = wp

(8.16)

for p = 1, ..., N/2, where:

αp =

N/2∑
j=1

up,j , with up,j = 1/{∆[2(p− j)− 1]}2 (8.17)

βp =

N/2∑
i=1

vi,p , with vi,p = −1/{∆[2(i− p)− 1]}2 (8.18)

and

zp =

{ N/2∑
j=1

yp,j
∆[2(p− j)− 1]

}
α−1
p (8.19)

wp =

{ N/2∑
i=1

yi,p
∆[2(i− p)− 1]

}
β−1
p . (8.20)

This way, a system of linear equations can be solved in order to estimate â =

[â1, ..., âN/2] and b̂ = [b̂1, ..., b̂N/2]:

[
IN/2 −diag(α−1)U

diag(β−1)VT IN/2

] [
â

b̂

]
=

[
z

w

]
(8.21)

where matrices U and V, and vectors α, β, z and w are constructed from up,j , vi,p, αp,
βp, zp and wp in (8.16), (8.17), (8.18), (8.19) and (8.20), respectively. Note that this
linear system has an in�nite number of solutions, because the block matrix of (8.21) has
rank N − 1, as a consequence of the vertical shift invariance of the Löwner structure.
However, without loss of generality, we can assume that the �rst sample is null, i.e.,
a1 = 0, this way the linear system has now (N − 1) variables, providing now a unique
solution. A matrix with assured Löwner structure can be then reconstructed from â and
b̂ [21]. It is important here to highlight that the resulting matrix is the desired projection
(that is, not only it has the desired structure, but is the closest one to the input matrix
among all Löwner matrices).
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Table 8.5: Parameters of the synthetic AA signal models
Model P x ∆x fx Fs f0 ∆f Ff
Top 5 150 50 0.08 1000 6 0.2 0.10

Bottom 3 60 18 0.50 1000 8 0.3 0.23

8.4.2 Synthetic AF data

Having derived the LCAGL algorithm, it is now presented some numerical results
with synthetic data, which are convenient for assessing its performance. This assessment
is carried out using two di�erent synthetic signals that simulate persistent AF recordings.
Both signals contain 12 leads, generated by a Gaussian mixing matrix and 3 sources: AA,
VA, and a noise source.

To simulate the VA signals, two synthetic QRS complexes modeled by rational func-
tions are generated according to the model function proposed in [4], presented in Section
1.3. Two synthetic QRS models with parameters a = 0.8, m = 2, and θ = {π/2, 0} are
generated. To simulate the AA signal during AF, the model proposed in [101] that mim-
ics the f waves is used. Two synthetic f-wave models are generated with the parameters
presented in Table 8.5

To simulate the interference typically present in an ECG, additive white Gaussian
noise (AWGN) with zero-mean and variance σ2, is introduced. Finally, the mixing matrix
is also generated according to a Gaussian distribution, with scaling factors chosen to
obtain an average power ratio between the signals consistent with clinical ECGs, as
previously described in Section 1.3.

One generated ECG signal mimics the challenging scenario where the AA is weak,
while the other synthetic signal mimics the scenario where the RR interval is short,
as in the experiments of Chapter 7. Both synthetic AF ECG signals are illustrated in
Figure 8.8.

The NMSE in dB between the estimated and original signals is computed to evaluate
estimation quality. This performance index can be computed because the ground-truth
is known in this experiment. As LCAGL is relatively robust to initialization, no Monte
Carlo runs are performed and the value of γ that provided the best solution is chosen.

Figure 8.9 shows the VA estimates (blue dashed line) and the respectives ground-
truths (gray solid line) for the two synthetic signals along with the computed error
described previously and the rank of the block. The low NMSE shows that a successful
estimation is achieved while the Löwner structure of the block is guaranteed. Also, one
can see that the rank of the block increases with the number of QRS complexes in the
segment, as expected, since the signal has more transient components, needing more
poles to be well modeled.

8.4.3 Real AF Database and Experimental Setup

All the recordings belong to the PERSIST database and are preprocessed as described
in Section 1.3. Experiments are performed using 20 segments of ECG recordings from
20 di�erent patients su�ering from persistent AF, where 10 of these segments have a
disorganized and/or weak AA, and the other 10 have very short RR intervals. To exploit
all spatial diversity while reducing the computational cost, only 8 independent leads are
processed (I, II, V1-V6) for all tensor-based techniques. The two types of segments used
in these experiments are illustrated in lead V1 in Figure 8.10 (solid lines). Basically, two
types of recordings: short RR intervals (top line) and disorganized/weak AA (bottom
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Figure 8.8: Synthetic AF ECG models simulating the challenging cases where the AA
signal is weak (Top) and the RR intervals are short (Bottom). The blue, red and yellow
lines represent the VA, AA and noise interference, respectively.

line), as when studying the Löwner-BTD method in Chapter 7. The physiological char-
acteristics of the observed 20-patient population are described on Table 8.6. It must be
reported that there are missing data values for one patient regarding AF history and for
two patients regarding LA diameter. As before, such values were replaced by the average.

Table 8.6: Overall physiological characteristics of the 20-patient population used in the
experiments with LCAGL.

Patient characteristics µ ± σ Min Max

Age (years) 60.8 ± 11.5 38 78
Height (cm) 176.9 ± 7.9 154 193
Weight (kg) 84.5 ± 13.2 64 120

AF History (months) 73.9 ± 57.8 3.5 228
LA Diameter (mm) 46.4 ± 6.1 36 58

The 10 segments with disorganized and/or weak AA, from patients P1 to P10 are
composed by one heartbeat, i.e., the QRS complex followed by the T wave and the
visible f waves, and have between 0.8 and 1.7 seconds. The other 10 segments with short
RR intervals from patients P11 to P20 have 1.5 seconds of duration with at least 2 QRS
complexes. All the 20 segments are downsampled by a factor of 10, since this signi�cantly
reduces the computing cost of processing them without any noticeable loss of quality, as
the signals' energy is concentrated in lower frequencies [20].

The NLS approach with the Gauss-Newton method used in the experiments is avail-
able in Tensorlab MATLAB Toolbox [105] and is set up as in [27]. As this method is
often very sensitive to initialization, 10 Monte Carlo runs are performed for each segment
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Figure 8.9: Original and estimated VA signals in blue dashed and gray solid lines, re-
spectively, along with the NMSE (dB) between them and the rank of its block, rankB.

and the best solution regarding the AA extraction is chosen. For CAGL and LCAGL, no
Monte Carlo runs are needed and the value of γ that yields the best solution is chosen.

8.4.3.1 Segments with disorganized and/or weak AA

In Figure 8.11, we can see the observed recording, the estimated VA and AA of the
processed segment of Patient P2 by LCAGL, for a chosen value of γ that gave the best
source separation. The segments are shown now in lead V1 for a better clarity of the
estimated AA, shown in time domain on the left and in frequency domain on the right,
with a DF equal to 6.67 Hz, typical of AA. It can be seen that the SC provided by LCAGL
is 58.73% and P (r) value equal to 2.02 × 10−4 mV2, while the ones provided using the
Löwner-BTD computed by the NLS method, choosing the best match (R,Lr), are 5.36%

and 1.59 × 10−4 mV2, respectively, for the same segment. It should be noted that the
Hankel-BTD computed by CAGL was not able to extract the AA from this recording, nor
from any other used recording characterized by a disorganized and/or weak AA. Indeed,
Hankel-BTD attempts to model the AA present in the recording, which is a di�cult
task under these conditions. Due to the weak AA amplitude, its estimate is basically a
straight line as shown in Figure 8.10 (Top).

Expanding the previous result for the population of 10 patients with segments pre-
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Figure 8.10: Top lines: an example of a single heartbeat segment of an AF ECG recording
with a weak AA signal (solid green) and its respective AA signal estimate (dashed red)
by the Hankel-BTD method CAGL. Bottom lines: an example of an AF ECG recording
used in these experiments with 3 QRS complexes (solid blue) and its respective AA signal
estimate (dashed orange), also by CAGL. It can be seen that the Hankel-based method
fails to perform the AA extraction.

senting this particular characteristic, Figure 8.12 (Top) shows the SC values of the AA
source estimated by the Löwner-BTD computed by the NLS method and LCAGL, for
each patient. Regarding this AA quality index, LCAGL outperformed the NLS method in
all but patient P4, where the SC of NLS is 1% higher than the one provided by LCAGL.
In addition, the NLS method is not able to successfully extract the AA from patient P7,
and CAGL could not successfully extract the AA from any of the 10 observed patients,
as stated before. Also, the average of the SC over the 10 observed patients is 45.48% for
LCAGL, whereas for the NLS method this value is 27.12%.

Figure 8.13 shows how the P (r) values vary through the population of patients for
both Löwner-based methods. No signi�cant di�erence between the methods can be ob-
served. However, a considerable di�erence is observed between the two patient popula-
tions. The P (r) of the patients with a disorganized and/or weak AA signal is lower than
the ones characterized by short RR intervals and varies in a shorter range.

8.4.3.2 Segments with short RR intervals

Figure 8.12 (Bottom) shows the SC values of the AA source estimated by the Löwner-
BTDs computed by the NLS method and LCAGL, for each patient whose segments are
characterized by short RR intervals. In 6 out of the 10 patients of this population,
LCAGL provided an AA estimate with considerably higher SC than NLS, while for the
other 4 patients the SCs of both methods are practically the same. More precisely, for
those 4 patients LCAGL produces a slightly higher SC value (around 1%). In addition,
the mean SC over these 10 patients is 45.72% for the LCAGL, whereas for the NLS
method it is 39.25%.

Figure 8.14 shows the VA and AA estimates of the processed segment in lead V1 of
patient 20. One can see that the several QRS complexes are well estimated, resulting in
a clear AA signal, when subtracted from the original ECG. The SC provided by LCAGL
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Figure 8.11: Left: Original recording, VA and AA estimates in lead V1 by LCAGL of
Patient P2 in time domain. Right: Power spectrum of AA estimate. The AA signal is
vertically shifted for clarity.

is 52.48%, practically equal to the one using the NLS method, choosing the best match
(R,Lr), that is 52.45%, for the same segment. LCAGL provides a slightly stronger P (r),
than the NLS method, which yields 3.11× 10−3 mV2 for this segment.

Figure 8.15 shows the observed segment of Patient P18 in lead V1 and compares AA
source estimations by the tensor-based methods. The AA estimate by CAGL (blue line)
is deformed, probably due to the presence of 2 QRS complexes and the shape of the AA
that may not be well approximated by an all-pole model, hampering the AA extraction,
which loses its typical physiological shape, as happens also in Figure 8.10 (Bottom).
Although the AA source estimated by NLS is better than the one produced by imposing
the Hankel structure, it contains some ventricular residuals, due to an inaccurate VA
source estimation, and seems to be out of phase relative to the true AA present in the
recording. Finally, it can be seen that for this segment, LCAGL is the method that
provides the best VA cancellation from the original recording, yielding the most accurate
AA estimate (green line).

It is valid to state that, for all but patients P8 and P17, both Löwner-based methods
(NLS and LCAGL) provided the same DF for the AA source estimate.

Before concluding this chapter, it is important to highlight that other classical
techiques that focus on estimating the VA and subtract it from the ECG to acquire
the AA, as ABS and ASVC, do not work in theses cases of short recording, as they need
long-duration ones to perform an accurate VA estimation.
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Figure 8.12: SC values (%) of the AA source estimated by NLS and LCAGL for each
patient of the observed database. Top: patients P1-P10 with segments presenting disor-
ganized and/or weak AA signals. Bottom: patients P11-P20 whose segments are char-
acterized by short RR intervals.

8.5 Summary

This chapter presented an improved algorithm to compute the BTD, named AGL,
and its Hankel-constrained version, named CAGL. The main advantage of AGL over
the existing algorithms is the simultaneous estimation of the model factors and model
structure of the BTD tensor, as well as more robustness to initialization. CAGL was
�rst proven to be a successful AA extraction tool in synthetic and real AF ECG record-
ings, being able to ensure the Hankel structure of the matrix factors at the end of the
computation. The estimated matrix factor rank associated with AA was also proposed
as a novel index to measure AF complexity in short recordings, validated in complexity
evolution in CA procedures. Later in this chapter, it was derived the Löwner-constrained
version of AGL, named LCAGL, using an orthogonal projection to ensure the Löwner
structure of the matrix factor of BTD. The LCAGL was assessed in synthetic and real
AF ECGs of challenging scenarios, common in this arrhythmia, where the Hankel-BTD
fails in extracting the AA.

The following chapter concludes the present doctoral thesis by summarizing all the
contributions presented so far and describing the prospects of future works.
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Figure 8.13: The power contribution to lead V1 in mV2 of the AA source estimated
by NLS and LCAGL for each patient of the observed database. Left: patients P1-P10
with segments presenting disorganized and/or weak AA signals. Right: patients P11-P20
whose segments are characterized by short RR intervals.
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Figure 8.14: Original recording, VA and AA estimates in lead V1 of Patient P20 by
LCAGL. The AA signal is vertically shifted for clarity.
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intervals of Patient P18 by CAGL and the Löwner-BTDs computed by the NLS method
and LCAGL. AA signal estimates are vertically shifted for clarity.
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9.1 Summary and conclusions

The present doctoral thesis has put forward and investigated several tensor-based
approaches as AA extraction tools for persistent AF analysis. Motivated by the impor-
tance of AA extraction from ECG in the noninvasive AF analysis and the limitation
of matrix-based BSS tools, it has been shown that tensor-based methods, in particular
the BTD and its variants, can outperform the matrix approach in this challenging ap-
plication. Experiments from synthetic and real AF data illustrated the ability of BTD
to extract more information from the ECG and provide an AA signal with better esti-
mation quality. Di�erent variants of BTD have been shown to be suitable in di�erent
AF scenarios. The Hankel-BTD provides a better performance in cases where the AA
can be well represented by exponential models, whereas the Löwner-BTD outperforms
its Hankel counterpart in cases where the AA presents an extremely low amplitude or
the observed ECG recording has short RR intervals. The coupled Hankel-BTD has been
shown to provide an equivalent e�ciency to its non-coupled version, with a gain in the
computation cost measured by the number of iterations for the algorithm's convergence.
Furthermore, the AGL, a recently proposed algorithm to compute BTD shown to over-
come the ones present in the literature, has been validated as an AA extraction tool
and AA complexity measurement tool. An optimal strategy to deal with its Löwner-
constrained version was also put forward and assessed in synthetic and real AF ECGs.
This thesis has also dealt with some problems that arise from the AA extraction from
AF ECGs. For the problem of AA estimation quality measurement in experiments with
real data (where the ground-truth is unknown), new indices have been proposed and
assessed, complementing the ones available in the literature. Regarding the AA source
classi�cation after performing BSS, several approaches have been assessed, showing sat-
isfactory accuracy. The contributions presented in this doctoral thesis are detailed in the
next section.
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9.2 Contributions

9.2.1 Quanti�cation of AA content and source classi�cation

When dealing with the BSS of real AF ECG data, quantifying the quality of AA
estimation is a challenging task, since, by de�nition, the ground-truth is unknown in
a blind problem. In order to provide more information about the AA source estimate,
three new indices to measure the AA content of a source were proposed and assessed.
Furthermore, detecting the AA source among the other sources can often be di�cult,
as the AA estimate can be mistaken with other low-amplitude interference sources with
similar characteristics in the time and frequency domains. Several classi�cation strategies
for this problem, including machine learning algorithms and neural networks have been
assessed, providing satisfactory accuracy.

9.2.2 Patient evaluation of Hankel-BTD performance

The Hankel-BTD was proposed as a potential AA extraction tool, assessed in �xed
short AF ECG segments of selected patients su�ering from persistent AF. The �rst aim of
the present doctoral thesis was to validate this tensor-based approach as an AA extraction
tool through experiments over a population of persistent AF patients and over a whole
ECG recording of a patient of the observed population. The impact of the observation
window size of the processed ECG signals were also assessed regarding the quality of the
AA estimation. It was concluded that this tensor approach indeed provides a better AA
extraction than the BSS matrix-based techniques, however, its performance is strongly
dependent on its model structure and initialization of its matrix factors.

9.2.3 BTD models for AF analysis

ECG recordings with an extremely low AA amplitude and/or short RR intervals
are quite common in persistent AF, where the AA signal can not be approximated by
exponential models, hampering its estimation by the Hankel-BTD. To bridge this gap, a
tensor approach based on the Löwner-BTD was proposed. It consists in estimating the
VA and subtract it from the original ECG, resulting in a signal that, ideally, contains the
AA. Such approach is supported by the fact that, in persistent AF, the morphology of
QRS complexes remains relatively stable and can be well modeled by rational functions.
When mapped into Löwner matrices, rational functions present a link with their rank.
In addition, consecutive AF ECG segments were modeled as coupled Hankel-BTDs, in
order to explore the temporal diversity of segments along with the spatial diversity of
the leads. Such alternative BTD models provide a better performance than Hankel-BTD
and/or less computational cost in terms of number of iterations

9.2.4 Improved algorithms for BTD computation

The AGL is a recently proposed algorithm to compute the BTD that has shown
to have some advantages over other methods in the literature, as it is more robust to
initialization and can estimate the number of blocks with their ranks (model structure).
It was shown that the Hankel-constrained version of AGL, called CAGL, is not only an
e�cient AA extraction tool but also an AA complexity measurement tool in AF episodes.
The latter could improve clinical analysis by providing a noninvasive real-time guidance
in CA procedures. Also, an orthogonal strategy to ensure the Löwner structure of BTD
matrix factor was also presented, yielding the Löwner-constrained version of AGL, called
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LCAGL. Experiments with synthetic data validated LCAGL as an e�cient VA estimator,
whereas experiments with real data have showed that LCAGL can well extract the AA
from the ECG through the proposed Löwner approach, with particular bene�t over the
Hankel approach, when providing AF ECG segments with weak AA or short RR intervals.

9.3 Discussion and limitations

The current state-of-the-art AA extraction methods based on BSS rely on matrix de-
compositions, which not only require imposing constraints in order to guarantee unique-
ness, but limit the number of extracted components by the matrix lowest dimension.
The present thesis took a step forward by showing that tensor decompositions provide a
better performance with more relaxed constraints. First, the Hankel-BTD is presented
to model the AA and extract it from the AF ECG via BSS. Since during AF episodes,
the AA can be approximated by all-pole models and when mapped onto Hankel matrices,
the number of poles matches their rank, this model suits the characteristics of AA during
AF. However, it only works when applied in a segment with su�cient long RR interval,
with the f waves well de�ned. Indeed, when applied in segments that present short RR
intervals or �ne AF, the Hankel-BTD fails to model the AA, due to the amount of VA
interference or the very low AA amplitude. This limitation is dealt with the introduction
of the Löwner-BTD, that focus on the VA modeling. The morphology of the VA during
AF is not signi�cantly changed and can be well approximated by rational functions that,
when mapped onto Löwner matrices, their degree matches the rank of the respective
Löwner matrix. The AA is then acquired by suppressing the estimated VA from the
AF ECG. Both Hankel- and Löwner-based tensor models work satisfactorily in di�erent
scenarios of persistent AF, overcoming the matrix-based BSS methods. However, com-
puting a tensor decomposition may require a high computational cost. Also, applying
the decomposition in each AF ECG segment separately avoids the exploitation of the
inter-segment diversity. Since AF signals are clearly non-stationary, the exploitation of
the inter-segment diversity adds signi�cant information to the decomposition. Assum-
ing that consecutive segments have the same mixing matrix, the coupled Hankel-BTD,
assessed for the �rst time in ECG signal processing, is presented as an AA extraction
tool, exploring all the diversity in an AF ECG recording while reducing the computa-
tional cost. Only the Hankel structure was used to build the coupled tensors, leaving the
coupled Löwner-BTD for further investigation.

Several algorithms exists in the literature to compute the BTD, where the most
used ones are based on the NLS approach. Those NLS methods are very sensitive to
initialization and require the model parameters of the decomposition as input. Also, there
is no guarantee that, at the end of the operations, the structure of the matrix factor will
be respected (Hankel, Löwner, etc). The constrained versions of the recently proposed
algorithm called AGL deal with such limitations as they are more robust to initialization,
guarantee the matrix factor structure at the end of the iterations and estimate the model
parameters of the decomposition, i.e., the number of blocks and their multilinear rank.
However, those algorithms require a penalization term (used in the formulation of the
problem) as input, and an optimal choice of such term remains an open challenge. In
addition, constraining the block matrices brings a heavier computational load, due to use
of the SLRA algorithm, which is typically iterative, and the arguments that show the
convergence of AGL no longer apply for their constrained versions.

Although providing extra information about the AF signal, the proposed indices
present some limitations. The power contribution to lead V1, as the name suggests, is
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only based on this lead. However, in some AF cases, other leads may provide strong AA
content. The NMSE-TQ takes advantage of the AA in the TQ segment that is free from
VA, but in some cases of persistent AF the presence of short RR intervals will hamper the
assessment quality of this index. The proposed strategies to detect the AA source among
the other sources after BSS are also performance-limited, as all of them requires visual
inspection to achieve optimality. For this it is important to highlight that is practically
impossible to acquire optimality in real-world classi�cation problems.

Overall, this thesis has provided the �rst comprehensive study of tensor-based signal
processing techniques applied to noninvasive AA extraction for AF analysis, including
performance evaluation, new models and improved computational algorithms. It is ex-
pected that this work will open interesting further perspectives for the application of the
powerful tensor approach in this challenging biomedical problem, and beyond.

9.4 Further work

The present doctoral thesis had studied and explored several tensor decompositions
as noninvasive AA extraction tools for persistent AF analysis. Some challenges that arise
from the AA extraction problem, as source classi�cation and AA content quanti�cation
were also explored. The results are promising and raise some clinical and mathematical
challenges as well as open questions about the tensor-based approach for AF analysis.

Chapter 5 proposed some approaches based on machine learning and neural networks
for the automatic selection of the AA source among the other source estimates after
performing BSS. These methods provide satisfactory accuracy, but they lack optimality.
A line of research to bridge this gap could focus on the development of novel deep learn-
ing techniques that have proven their interest in medical areas as radiology and cancer
detection, but remain poorly explored in cardiology. In addition, deep learning methods
can be used for automatically detecting ablation zones, helping cardiologists to perform
catheter ablation in an e�cient and cost-e�ective manner and increasing its probability
of long-term success. Hence, another line of research could focus on the proposition of
novel indices for AA quanti�cation, aiming to provide additional physiological informa-
tion about the AA source.

The coupled Hankel-BTD was shown to also have a satisfactory performance, explor-
ing multi-lead and inter-segment diversity simultaneously, which points to the feasibility
of its coupled Löwner variant, i.e, coupling segments with the characteristics described
in Chapter 7. Also, suitable and more powerful algorithms to compute these coupled
tensor decompositions should be developed, aiming to provide better results and identi-
�ability conditions, as for example, a variant of AGL for the coupled case. The coupled
Löwner-BTD is also an interesting perspective of further study, in order to deal with
consecutive segments that presents short RR intervals or AA with very low amplitude,
both very common cases in persistent AF episodes.

CAGL proved to be an e�cient AA extraction tool and a potential AA complexity
measurement tool. Further works should explore the ability of this algorithm to assess
AF complexity in order to guide CA procedures. Also, the proposal and analysis of an
automated algorithm for selecting the best penalization parameter in CAGL would be
of great interest. Further works should also aim in a study on the convergence of CAGL
using a locally optimal SLRA method to impose the linear constraints.

In general, the tensor-based approach has proven useful for AA extraction from the
surface ECG during persistent AF episodes. However, using di�erent databases with
a larger population of patients would be necessary to con�rm and extend the clinical
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relevance of the tensor approach in the study of this challenging cardiac arrhythmia.
In addition, an extensive comparison of the proposed tensor-based techniques with the
methods based on QRST suppression should also be the focus of further works, as the
most recent methods for AA extraction are based on VA cancellation.
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