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CONTEXTE ET ORGANISATION DE
LA THÈSE

Motivation

Les robots humanoïdes, bien adaptés pour évoluer dans les milieux humains, peuvent
avec leurs bras et mains effectuer des tâches complexes. Ils peuvent être considérés comme
l’un des robots ultimes. Ils suscitent un grand engouement dans la société humaine car
ils peuvent devenir des partenaires très utiles dans le quotidien et en milieux industriels.
Cependant, la marche bipède reste un phénomène complexe qui n’a pas été entièrement
compris. Les robots humanoïdes étant des systèmes très complexes avec des degrés de
liberté (ddl) élevés, de nombreux modèles simplifiés ont été étudiés. L’un des modèles
les plus simples et les plus populaires est le modèle pendule inversé linéaire (LIP) [1].
Avec le modèle LIP, le robot est supposé être une masse concentrée avec une accélération
verticale nulle du centre de masse (CdM), des pieds pointus et des jambes sans masse.
Une approche de commande classique est le modèle de commande prédictif (MCP) [2],
qui a été utilisé pour de nombreux robots humanoïdes avec des pieds. Il peut être adapté
dans de nombreux environnements complexes. Une autre méthode populaire est fondée
sur les approches qui utilisent le point de capture (CP) [3] qui fonctionnent bien pour
rejeter une perturbation comme une poussée extérieure appliquée au robot humanoïde.
Ces approches, y compris certaines méthodes de commande basées sur l’optimisation [4],
sont appelées commande de haut niveau, qui se réfère à des approches basées sur la
prédiction des états futurs du CdM et des emplacements des pieds.

On sait que la marche des humains sur un sol relativement plat ne nécessite pas
d’attention [5] et il existe une phase de déséquilibre pendant la marche. La stabilité de
marche des êtres humains est obtenue en changeant alternativement la jambe de position.
Un problème canonique est de savoir comment concevoir un correcteur basé sur la phase
de déséquilibre. L’approche de commande basée sur les contraintes virtuelles [6] est un bon
outil pour étudier ce problème. Les contraintes virtuelles sont les relations fonctionnelles
entre les états du système, c’est-à-dire que les variables commandées sont définies comme
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des fonctions d’une variable de mise en phase basée sur l’état interne du robot au lieu
du temps. Cela signifie que lorsqu’une démarche est perturbée, le système n’a pas à se
resynchroniser avec le temps après la perturbation. Avec un bon choix de contraintes
virtuelles, une auto-synchronisation et une auto-stabilisation peuvent être obtenues. Les
notions d’auto-synchronisation et d’auto-stabilisation se réfèrent à la synchronisation et à
la stabilité obtenues sans commande de haut niveau mentionné précédemment. La notion
d’auto-synchronisation qui a été proposée par Razavi et al. [7], se réfère aux périodes des
mouvements pendulaires dans les plans sagittal et frontal tendant à une période commune.

En 2000, un groupe de laboratoires français comprenant Irccyn (l’ancien nom de LS2N)
avec Université du Michigan (UM) construit Rabbit [8], qui est un robot planaire avec 5
corps et 4 actionneurs. Il y a donc 1 degré de sous-actionnement lors d’un simple appui du
robot bipède sur le sol. Notez que comme il n’y a pas d’actionnement aux extrémités des
jambes, ce qui fait avancer le robot est la gravité. Pour Rabbit, les quatre articulations
actionnées sont choisies comme variables commandées. Un autre choix peut être la position
du pied pivotant dans l’espace Cartésien ou l’orientation du torse. La variable de phasage
doit être monotone. Ainsi, l’angle entre l’axe vertical et la ligne reliant le pied d’appui
et la position CdM de la hanche ou sagittale peut être choisi comme variable de mise
en phase. Lorsque les variables commandées suivent parfaitement l’évolution souhaitée,
un système d’ordre réduit peut être obtenu, appelé dynamique zéro hybride (HZD) [9].
Dans les travaux de Chevallereau et Aoustin [10], il a été prouvé que dans l’espace 2D, la
stabilité est obtenue si la vitesse du CdM est dirigée vers le bas à la fin d’une étape.

L’objectif général de la thèse est d’essayer de comprendre les conditions physiques que
les allures doivent satisfaire dans l’espace 3D pour maintenir la stabilité dans la marche
périodique, et de produire une stratégie de commande avec laquelle l’auto-synchronisation
et l’auto-stabilisation peuvent être obtenues.

Organisation de la thèse

— Dans la première partie (Chapitre 2), le LIP modèle est utilisé pour étudier les
stratégies de commande. L’influence du placement du pied libre sur le sol et les
conditions de changement de jambe d’appui, en fonction du temps ou de l’état in-
terne du robot sont étudiées. Il est montré que ni l’auto-synchronisation ni l’auto-
stabilisation ne sont observées lorsque la commutation de jambe d’appui est fondée
sur le temps ou lorsque la longueur et la largeur de pas sont fixes. D’autre part,
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l’auto-synchronisation peut être obtenue lorsque la condition de transfert de la
jambe d’appui est fondée sur une combinaison linéaire des positions du CdM le
long des axes sagittal et frontal. De plus, l’auto-stabilisation peut être obtenue
lorsque la vitesse du CdM dans le plan sagittal est prise en compte. Lorsque
l’auto-stabilisation est obtenue, aucune méthode de commande du haut niveau
n’est requise.

— Dans la deuxième partie (Chapitre 3), afin d’analyser l’influence de l’oscillation
verticale du CdM du robot sur la stabilité de marche, le modèle de pendule inversé
de longueur variable (VLIP) est utilisé. Il est démontré que l’oscillation verticale
du CdM, le placement du pied libre et le choix de la condition de transfert jouent
un rôle crucial dans la stabilité. De plus, un correcteur proportionnel intégral (PI)
en fonction de la vitesse du CdM le long de l’axe sagittal est également proposé de
telle sorte que la vitesse de marche du robot puisse converger vers un mouvement
périodique choisi avec une vitesse de marche donnée.

— Dans la dernière partie (Chapitres 4-5) un nouveau modèle de marche, nommé
le modèle essentiel est proposé. Il a la même dimension que le modèle 3D LIP
mais il prend en compte la dynamique complète de l’humanoïde. Le modèle es-
sentiel définit la dynamique de la position horizontale du CdM en fonction d’une
trajectoire souhaitée du zéro moment point (ZMP). Les trajectoires de référence
des variables commandées sont définies en fonction des états internes du robot
et/ou d’informations externes, générant ainsi des modèles à des fins différentes. La
stratégie de commande proposée pour les modèles LIP et VLIP est étendue à travers
le modèle essentiel pour commander un modèle humanoïde complet. L’introduction
du modèle complet modifie légèrement la gamme des paramètres qui conduisent à
des allures auto-stables. L’algorithme de marche proposé ci-dessus est appliqué sur
les robots humanoïdes Roméo et TALOS.

Certains des résultats de la thèse ont été publiés ou acceptés dans des conférences ou
des revues.

Revues internationales

— Q. Luo, V. De-León-Gómez, A. Kalouguine, C. Chevallereau and Y. Aoustin, Self-
Synchronization and Self-Stabilization of Walking Gaits Modeled by the Three-
Dimensional LIP Model[J], dans IEEE Robotics and Automation Letters, 2018,
3(4): 3332-3339 (presenté dans IROS2018)
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— V. De-León-Gómez, Q. Luo, A. Kalouguine, J.A. Pámanes, Y. Aoustin, and C.
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ABSTRACT

Humanoid robot, which can walk by two legs and perform skillful tasks using both
arms with hands, could be considered as one of the ultimate robots. They are especially
desirable in human society as they can work well in the environments that have been de-
signed for humans, and become our partners. However, bipedal walking remains a complex
phenomenon that has not been fully understood.

The thesis is dedicated to find some physical insights that can explain the stability of
periodic walking on horizontal floor. In human walking, the gait is usually expressed as a
function of a phasing variable based on the internal state instead of time. The controlled
variables (swing foot trajectories, vertical oscillation of center of mass, upper body motion,
etc.) of the robots are based on a phasing variable via the use of virtual constraints and
the step timing is not explicitly imposed but implicitly adapted under disturbances.

In the first part, a simplified model of the robot: the linear inverted pendulum (LIP)
model is used to study control strategies. Landing positions of the swing foot, and con-
ditions to switch the stance leg, based on time or on the internal state of the robot are
studied. It is shown that neither self-synchronization nor self-stabilization is observed
when the stance leg switching is based on time or when both the step length and width
are fixed. On the other hand, self-synchronization can be obtained when the switching
condition of the stance leg is based on a linear combination of the positions of the center
of mass (CoM) along the sagittal and frontal axes. Moreover, self-stabilization can be
obtained when the velocity of the CoM in the sagittal plane is taken into account. When
self-stabilization is obtained, no high-level control methods are required (such as model
predictive control, capture point-based control, optimization-based control etc.).

In order to analyze the influence of the vertical oscillation of the robot CoM on walking
stability, the variable length inverted pendulum (VLIP) model is used. It is shown that
the vertical CoM oscillation, positions of the swing foot and the choice of the switching
condition play a crucial role in stability. Moreover, a PI controller of the CoM velocity
along the sagittal axis is also proposed such that the walking speed of the robot can
converge to a chosen periodic motion with a given walking speed.

In the last part, the essential model is proposed, which is a novel model for walking that
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has the same dimension as the 3D LIP model but considers the complete dynamics of the
humanoid. It can be written based on the internal states of the robot and possible external
information, thereby generating models for different purposes. The essential model defines
the dynamics of the horizontal position of the CoM as a function of a desired trajectory of
the ZMP, assuming a perfect tracking of the reference trajectories. The proposed control
strategy for the LIP and VLIP models is extended through the essential model to control a
complete humanoid model. Introducing the complete model modifies slightly the range of
parameters leading to self-stable gaits. The walking algorithm proposed above is applied
on the humanoid robots Romeo and TALOS.

Key words: Humanoid and bipedal locomotion, passive walking, dynamic stability,
hybrid systems, modeling
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Chapter 1

INTRODUCTION

1.1 Background

Humanoid robots, which can walk with two legs and perform skillful tasks using both
arms with hands, could be considered as one of the ultimate robots. They are especially
desirable in human society as they can work well in indoor environments and use the tools
that have been designed for humans, and become partners of human beings. Back in 1996,
the great success of HONDA humanoid robot boosted worldwide research on humanoid
robots [11]. Developing a humanoid robot that is able to accomplish the tasks like human
beings is not only an academic pursuit, it also becomes a more and more imperative issue
due to the labor shortages caused by declining global birthrate.

One of the applications of humanoid robots is service robotics. It can work as a life
companion, a housekeeper, a reception or a security guard. Thanks to their anthropo-
morphic appearance, it is easier for human beings to interact with them in the daily life.
Humanoid robots can also be used to take care of aged people and monitor their health
situation.

Besides service robotics, it is also expected that humanoid robots can be used in
disaster rescue and work in an environment that is impossible or dangerous for human-
beings, such as the earthquake, tsunami, nuclear accidents, space exploration or work in
an environment full of contagious virus or bacteria, such as the outburst of COVID-19
happened lately [12]. It would be better to use robots to replace human beings when
performing daily care or delivery of food to the quarantined people.

Humanoid robots will play a crucial role for building the factory of future. In some
environments such as building sites, aircraft facilities or shipyards, robot technologies can
assist workers to accomplish some specific tasks. It is difficult to rebuild the facilities that
have been designed for human beings to be suitable for robots. Because humanoid robots
physically resemble people, they can work without requiring environmental changes, pos-
sibly relieving workers of heavy labor.
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Knowledge of humanoid robots can also be useful for medical application and re-
habilitation. The knowledge of humanoid equilibrium or walking can be useful to build
exoskeletons, prostheses or rehabilitation systems.

1.2 The development of humanoid robots

Figure 1.1 – Presentation of different robots.

Back in 1495, Leonardo da Vinci, one of the greatest geniuses of the Italian Renais-
sance, designed and constructed a mechanical knight, which cannot be called a ‘robot’
yet. In 1970s, Takanishi Laboratory of Waseda University developped the world’s first
full-scale anthropomorphic robot WABOT-1 [13]. This robot was able to perform static
walking.

In 1990, McGeer [14] built the first planar passive robot with four links. It is able to
walk down a slope with only the gravity. Passive robots have the advantage of very high
walking efficiency. They have no static stability but only dynamic stability. Then Collins
et al. [15] developped a passive robot in three dimensional (3D) space. By adding some
actuators to control certain joints, the robot is able to walk in the flat ground. Initiated in
1997, a robot, named RABBIT [16] was developped and able to perform dynamic motions,
such as high speed walking and running. It was a joint effort by several French research
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laboratories and University of Michigan. RABBIT has point feet, and only 2D motion in
the sagittal plane is considered. This project has contributed two major achievements: the
concept of virtual constraints [6], and the concept of hybrid zero dynamics (HZD) [9,17].
Researchers from University of Michigan developped MABEL robot [18], which was the
world’s fastest bipedal robot with knees back then. From 2D to 3D, researchers from
Oregon State University developped ATRIAS robot [19]. At the same time, researchers
from University of Michigan were also working on the same prototype, and they named
it MARLO [20]. Under their efforts, this prototype succeeded to conquer terrain with
innovative control algorithms. In 2016, researchers built Cassie [21], which is the result of
engineering optimization on the design principles of ATRIAS. Both ATRIAS and Cassie
were licensed to Agility Robotics for commercialization. In 2019, Agility Robotics added
the upper body and created a humanoid robot named Digit [22] which is able to navigate
in complex environments and carry out tasks like package delivery. In January 2020,
Agility Robotics has announced that Digit is now for sale.

The famous ASIMO robot [23] was shown to the public around 2000. Until now, after
several major upgrades, it is capable of accomplishing a serial of highly difficult tasks,
such as high speed running, jumping, walking on an uneven ground and climbing up and
down stairways.

Another famous robotic platform from Japan is the HRP series, including HRP-1
[24], HRP-2 [25], HRP-3 [26], HRP-4 [27], HRP-4C [28] and the latest model HRP-5P
[29]. In the development of the HRP series, AIST has collaborated with several private-
sector companies, including Kawada Industries Inc. (now Kawada Robotics Corp.), and
has developed basic technologies for practical application. HRP-2 was capable of bipedal
walking, lying down, standing up, walking on narrow paths, overstepping large obstacles
[30] and other actions [31, 32]. HRP-3 could walk on slippery surfaces and tighten bolts
on bridges by remote control. HRP-4 has achieved the new, light-weighted and slim body
while succeeding the concept of the conventional models HRP-2 or HRP-3, where the
robots coexist with humans and assist or replace human operations or behavior. Within
the series, HRP-5P has unsurpassed physical capabilities enabling it to substitute for
people doing heavy labor.

In the DARPA Robotics Challenge held in 2013, SCHAFT robot [33], originally de-
signed in Jouhou System Kougaku (JSK) robotic laboratory of the University of Tokyo and
now owned by SCHAFT Inc., performed surprisingly well and won the championship. The
JSK robotic laboratory also developped a bio-inspired musculoskeletal robot Kengoro [34].
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What is special about this robot is that it imitates sweating to cool its high-torque mo-
tors. Until now, Kengoro is capable of doing push-ups and playing badminton, but not
walking yet.

There is no doubt that the most amazing humanoid robot in 2019 is Atlas built by
Boston Dynamics. In 2019, the successful backflip [35] and ‘parkour’ [36] demonstrated
by Atlas have drawn attention from all over the world, especially that of researchers
working in the field of humanoid robotics. Equipped with 28 hydraulically actuated joints,
Atlas is capable of carrying objects and performing highly dynamic locomotion. Some
European institutions have also developped some impressive humanoid robots, such as
TALOS [37] by PAL Robotics and iCub [38] by Italian Institute of Technology (IIT).
Figure 1.1 presents the robots mentioned above.

Starting late in the field of humanoid robotics, China is playing catch-up, and also has
achieved some significant results. It is worth mentioning that the walker robot (shown in
Figure 1.2) developped by Ubtech Robotics is now capable of accomplishing a range of
indoor tasks, aiming to be ‘an intelligent bipedal humanoid robot that is an indispensable
part of your family’ [39].

Figure 1.2 – The walker robot.

Over the last 50 years, humanoid robots have evolved a lot. From being barely able
to walk, to ‘parkour’ and interacting with human beings. This great evolution is a joint
effort of many generations of researchers who devoted themselves to the field of humanoid
robots. We believe that in the near future, the combination of artificial intelligent (AI)
and humanoid robots will create more miracles, and the dream of having robot partners
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described in the films can be realized.

1.3 Gait patern generation

1.3.1 Control with Simplified model

As humanoid robots are very complex 3D systems with high numbers of degrees of
freedom (DoF), many simplified models have been proposed to understand their dynamic
behaviors better. One of the most used simplified models is the 3D linear inverted pen-
dulum (LIP) model proposed by Kajita [1, 40]. This model assumes that the mass of the
humanoid robot is concentrated in its center of gravity with a zero vertical acceleration.
The 3D LIP model is interesting because an analytical expression to define the center of
mass (CoM) evolution exists and its dynamics in sagittal and frontal planes are decoupled.
In [41], authors assumed that the CoM moves along a slope by using the LIP model so
that the robot can walk on a rugged terrain.

One of the main difficulties of walking studies is the equilibrium of the robot, i.e. to
satisfy the contact hypothesis and in particular to avoid the rotation of the stance foot.
Thus, the constraint on the Zero Moment Point (ZMP) is crucial (see [42]). The ZMP is a
point where the horizontal ground reaction moment of the ground reaction force is zero.
The tipping over of the support foot can be avoided as long as the ZMP is located inside
the support polygon (the convex hull of the feet contact area). In this case, the ZMP is
identical to the CoP (center of pressure) [43]. To deal with the ZMP error caused by the
difference between a simple model and the precise multibody model, Kajita et al. [2] used
model predictive control (MPC) with the LIP model to plan the CoM walking pattern.
Wieber [44] improved this method by continuously taking into account the actual state
of the robot to deal with strong perturbations. Similar work has been done by Nishiwaki
et al. [45].

Englsberger et al. [3] proposed a capture point (CP) based controller, which decom-
poses the 3D LIP model into two cascaded first-order systems. The capture point proposed
by Pratt et al. in 2006 [46] is a point on the ground where the robot can step to in order
to bring itself to a complete stop. The CP based controller exploits the natural dynamics
of the LIP in order to get a gait pattern generator. This result was then extended to 3D
in [47].

In [4] an optimal control problem using an approximate value function derived from
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the 3D LIP model while respecting the dynamic, input, and contact constraints of the
full robot dynamics is solved. Recently, in [48] the 3D LIP model was used to design a
biped walking pattern based on a new way of discretization named spatially quantized
dynamics (SQD). In [49] the 3D LIP model is studied along with their energy-optimal gait
planning based on geodesics in order to achieve a stable walking gait. As shown, the 3D
LIP model is still largely used in the literature, however, as it is an approximate model, the
resulting walking gaits cannot be directly implemented, since they do not have the same
performance when they are realized by the complete model. Therefore, as shown in these
works, complementary control techniques or adjustments must be taken into account.

1.3.2 Passive based control

Completely passive robots [14, 15, 50] have very high walking efficiency, but they can
only walk down a slope and are very sensitive to the physical parameters and external
environment. Many researches tried to focus on underactuated walking by adding some
control methods based on passive walking, so that the robots can walk on a flat ground
or up a slope.

Goswami et al. [51] developped an active control scheme that mimics a passive system
by tracking a virtual energy field, assuming that the hip as well as the ankles are actuated.
Asano et al. [52, 53] introduced virtual passive dynamic walking with a virtual gravity
field using robot actuators, which mimics the gravity field observed in slope walkers.
Then they proposed an energy-constraint control and a stable walking pattern can be
generated [54, 55]. Spong et al. [56] proposed a method based on the so-called controlled
symmetry independent of the particular ground slope.

For an underactuated system, the stability is studied for the hybrid dynamic model.
The stability of an underactuated system is not ensured at each instant but for the
complete cycle. The underactuated walking gait is usually periodic, and is represented by
stable limit cycles [57] in the phase space of the robot. The Poincaré return map [6, 58],
is the appropriate mathematical tool for analyzing the stability of periodic orbits for
underactuated systems. In this context, the stability is the convergence toward an orbit
or periodic motion.
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1.3.3 Virtual constraints and hybrid zero dynamics (HZD)

When constraints are imposed on a system via feedback control, we call them virtual
constraints [6, 59]. The virtual constraints are functional relations among the evolution
of various links and an internal phasing variable based on the system’s states instead of
time. In many researches [6,60–64], the stance leg angle is used to be the phasing variable
for defining the remaining states, while in some others like [65], the position of robot’s
hip along the sagittal axis is used. The notion of virtual constraints is combined with the
concept of HZD proposed by Westervelt et al. [9,66], which is a low-dimensional submodel
of the closed-loop hybrid robot model assuming that the control law zeroes the controlled
output.

Many researchers [6, 67, 68] used the method of virtual constraints to transfer the
problem of motion planning to the parameter optimization of the virtual constraints.
Grizzle et al. [69,70] designed an event-based PI controller based on the restricted Poincaré
map of the HZD to regulate the robot’s average walking rate. Griffin and Grizzle [71]
introduced a class of virtual nonholonomic constraints that depend on velocity through
(generalized) angular momentum. Including angular momentum in the virtual constraints
allows foot placement control to be designed on the basis of the full dynamic model of
the biped. This method leads to a new class of control laws that are robust to a variety
of common gait disturbances. Then the method of virtual constraints and HZD were
extended to 3D underactuated walking in [72–75]. Westervelt et al. [66, 76] proposed a
sample-based HZD control, which does not use a pre-chosen family of virtual constraints,
to enlarge the basin of attraction of the gait of a passive dynamic walker.

The stability of a 3D walking system can be achieved depending of the chosen virtual
constraints. The stability can be tested numerically via the Poincaré approach. The ap-
proach based on virtual constraints and HZD was chosen because it is a good compromise
between the passive walking which has a good energetic performance and the ZMP based
approach which ensures a good contact of the foot with the ground but does not necessar-
ily take advantage of the role of gravity as the driving source of walking. And numerical
approaches, like optimization [68], can be used to obtain stable and robust gaits. Different
from the methods mentioned above, one objective of this thesis is to try to understand
the physical condition that the gaits must satisfy to produce stable walking.
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1.4 Overview and outlines of the dissertation

Our objective is to try to understand what are the physical conditions that the gaits
must satisfy to produce stable walking and to produce a control strategy that does not
require high-level control, since we assume that humans’ walking on even grounds does not
require attention [5, 77]. The high-level control represents the control approaches where
several online adjustments must be defined in order to achieve stability. This includes
methods based on prediction (or preview control), online optimization, and event-based
control that updates the parameters of the controller to stabilize the walking. The terms of
self-synchronization and self-stabilization are used when synchronization or stabilization
of walking gaits can be achieved without high-level control. Razavi et al. first introduced
the notion of synchronization for the 3D LIP model in 2015 [7], which refers to periods of
the pendular motions in the sagittal and frontal planes tending to a common period.

After this short introduction, Chapter 2 proposes a walking algorithm with which
self-synchronization and self-stabilization can be obtained for the robot modeled by the
3D LIP model. In [78], Razavi et al. introduced an ellipse-shaped switching manifold to
achieve self-synchronization. Inspired by this work , this chapter proposed a new switching
manifold that works for a more general choice of swing foot locations, and introduces
a phasing variable to coordinate all the joint motions. Different conditions to switch
the stance leg, based on time or on the internal state of the robot are studied first. At
the same time, different landing positions of the swing foot are also studied. Besides
synchronization, walking stability of robots is another dominant feature to be analyzed.
In this chapter, a slight modification of the switching manifold is proposed to achieve self-
stabilization. Different from [79], the step timing applied in this chapter is not explicitly
but implicitly adapted by the transition between steps based on the CoM position. The
MATLAB® code of the proposed walking algorithm can be found on GitHub [80].

The objective of Chapter 3 is to find some physical conditions that lead to self-
stabilization based on a simplified model with vertical CoM oscillation. How the features
of the switching surface and the vertical motion of the CoM affect the stability of the
system has been analyzed. As an extension of Chapter 2, this chapter proves that for a
variable length inverted pendulum (VLIP) model, self-stabilization can be obtained when
the switching condition is based on a linear combination of the CoM positions along the
sagittal and frontal axes. Moreover, it is proved that when the CoM velocity feedback in
the sagittal plane is taken into account, the system is able to converge asymptotically to
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a new periodic motion without the complex procedure of finding a periodic motion.
Chapter 4 proposes a new model of the same dimension as the 3D LIP model, i.e. of

dimension four, that considers the whole dynamics of humanoid robots. The new model is
called essential model. This model has been developed by taking into account the notion
of HZD, which is a very useful tool to analyze the internal dynamics of a system [81].
Unlike the 3D LIP model, the essential model is not based on a mechanical approximation
(concentrated mass) of the robot. Instead, the motion and dynamics of the whole robot
body are taken into account. With this model, it is possible to impose a desired location
for the ZMP during the whole step or make the ZMP follow a desired path while the robot
performs its motion. Then the applications of this model to the humanoid robots Romeo
and TALOS with different walking patterns are presented in the end of this chapter.

Chapter 5 discusses the stability of the HZD that considers the complete dynamics
of the robots Romeo and TALOS with the walking algorithm proposed in Chapters 2
and 3. Different walking patterns are considered: different swing foot motion, different
vertical CoM motion, the switching manifold configuration. A general conclusion can be
deduced on the design of a gait that proper choices of virtual constraints will lead to
a stable walking. The condition that the transition from one step to the following one
should be based on the horizontal position of the CoM is one major criterion. One other
very important characteristic is the choice of the foot position that must be designed in
order to prepare the next step, because the relative position of the CoM with respect to
the stance foot at the beginning of the step is an essential condition. Similar results are
obtained while studying the cases of the robot Romeo and TALOS. This suggests that
the conclusion can be extended to many humanoid robots.

Finally, several concluding remarks and perspectives are discussed in Chapter 6.

1.5 Contributions of the dissertation

The main contributions corresponding to this work are the followings:
C1. Analysis of the physical conditions that the gaits must satisfy to produce a stable

walking;
C2. Design of a novel walking algorithm based on virtual constraints and HZD to

imitate the intrinsic nature of human walking without using online optimization
or predictive control methods;

C3. A phasing variable based on the internal state of the CoM has been proposed to
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coordinate the evolution of joints instead of time;
C4. An essential model has been proposed, which is a novel dynamic model that has

the same dimension as the 3D LIP model but considers the complete dynamics
of the robot. This essential model is especially useful for fully actuated humanoid
robots with feet, because it is able to generate walking gaits that ensures the ZMP
to be kept in an expected position or trajectory;

C5. The proposed walking algorithm has been validated on simplified models (i.e.
LIP model and VLIP model), and then extended to the study of humanoid robots
considering the complete dynamics.
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Chapter 2

SELF-SYNCHRONIZATION AND

SELF-STABILITY OF LIP MODEL

2.1 Introduction

The linear inverted pendulum (LIP) model is often used to study walking gaits, but the
transition from one step to the following step is often neglected, while it is really important
for the walking stability. This chapter studies different landing positions of the swing foot,
and different conditions to switch the stance leg, based on time or on the configuration
of the robot. It is shown that self-synchronization of the motion in sagittal and frontal
planes is dependent on different switching conditions. Neither self-synchronization nor
self-stabilization is observed when the stance leg switching is based on time or when
both the step length and width are fixed. On the other hand, self-synchronization can be
obtained when the switching condition of the stance leg is based on a linear combination
of the positions of the center of mass (CoM) along the sagittal and frontal axes. Moreover,
self-stabilization can be obtained when the velocity of the CoM in the sagittal plane is
taken into account. Finally, the robustness of a pendulum walking on uneven grounds is
discussed.

This chapter is outlined as follows: Section 2.2 introduces the hybrid dynamic model
for LIP; Section 2.3 introduces the vertical and horizontal trajectories of the swing foot;
Section 2.4 introduces the Poincaré method; Section 2.5 presents the instability of the pe-
riodic motion in the case when the transition is based on time; Section 2.6 and Section 2.7,
propose switching conditions that lead to self-synchronization and self-stabilization of the
walking gait; In Section 2.8, walking on an uneven ground is simulated to show the ro-
bustness of the proposed method; Finally, several concluding remarks are discussed in
Section 2.9.
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Figure 2.1 – A simplified model of a 3D biped robot.

2.2 Modeling of the walking gait via LIP model

2.2.1 General description.

In 3D LIP model, the robot is approximated as a point mass with point feet and
the CoM trajectory is constrained to a plane for 3D walking. In this chapter, the CoM
trajectory is constrained to a horizontal plane. The gait is composed of two phases: single
support (SS) phase and double support (DS) phase. During the SS phase, while one foot
is stationary on the ground, the other foot swings from the rear to the front. For the DS
phase, the following hypotheses are imposed:

— The DS phase is instantaneous;
— The swing leg naturally lifts from the ground without interaction;
— The contact between the swing leg and the ground doesn’t modify the velocity of

CoM [40];
— The foot of the robot is considered as a point.

2.2.2 Model in SS phase.

In Figure 2.1, a simplified model of a 3D biped robot is illustrated. Each leg is massless
and has variable length. The robot is assumed to have 6 DoFs : 4 rotations and 2 prismatic
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joints. Among them, 4 DoFs are active: the 2 prismatic joints and the 2 rotational joints
at the hip. The other 2 DoFs (i.e. the 2 rotations at the stance ankle) are passive. At the
contact point, the stance leg rotates passively around x and y axes, the rotation around
z axis is not considered since this rotation is usually inhibited by friction in normal biped
locomotion. There are two degrees of freedom (DoFs) at the hip, allowing to control the
positions of the swing foot along x and y axes. The rotation along the leg axis is not
considered since it does not modify the positions of the swing foot. When the robot
is considered as a whole, the two fundamental equations of dynamics, the equilibrium
in translation and in rotation around the CoM, give a dynamic model that highlights
the difficulty of walking, also called the Centroidal model [82] (see Figure 2.1). Here,
the position of the CoM is denoted by c = [xc, yc, zc]>, and the mass of the robot
is denoted by mc. The linear acceleration of the CoM is c̈ and its angular momentum
around the CoM is denoted as L 1. In this model, the external forces that act on the robot
are emphasized, which are: the gravity force denoted as Fg = [0, 0,−mcg]> where g is
the gravitational acceleration; the reaction force and moment applied by the ground is
written as F = [Fx, Fy, Fz]> and M = [0, 0, M∗

z ]>. Thus, the dynamic equation can be
written as

mcc̈ = Fg + F , (2.1)

L̇ = (p− c)× F +M, (2.2)

where p = [px, py, pz]> denotes the CoP point. The constraint of the contact wrench to
avoid takeoff, sliding and rotation of the support foot can be expressed based on equations
(2.1) and (2.2) for any humanoid robot.

— The constraint of no takeoff implies that Fz > 0, i.e. from the third row of (2.1),
z̈ > −g.

— The constraint of no slipping implies that Ftan =
√
F 2
x + F 2

y < µFz = Ffric, where
µ is the friction coefficient between the sole of the support foot and the ground.
This constraint can be also written in terms of the acceleration of the CoM, i.e.
ẍc

2 + ÿc
2 < µ2(z̈c + g)2.

— The constraint of no tipping of the foot implies that the ZMP is always kept inside
the convex hull of the support area, i.e. CoP = ZMP. This constraint cannot be

1. For a multi-body system, the angular momentum around the CoM is given by L =∑N
i=1 [Iiωi + mi(c− ci)× vi], where N is the number of bodies of the robot, Ii is the inertia tensor

at the CoMi, ωi is the angular velocity and ci and vi are the position and velocity of the CoMi

27



Partie , Chapter 2 – Self-synchronization and self-stability of LIP model

easily written in terms of c̈.
The last condition is the most constraining, therefore it is important to know the position
of the CoP during all the walking gait. This position can be easily obtained from equations
(2.1) and (2.2) as

px = xc −
zcẍc
z̈c + g

− L̇y
mcz̈c +mcg

, (2.3)

py = yc −
zcÿc
z̈c + g

+ L̇x
mcz̈c +mcg

. (2.4)

By making the assumptions that the vertical acceleration of the CoM and the time
derivative of the angular momentum are zero, the 3D LIP model arises. The last assump-
tion implies two possibilities: 1) the total mass of the robot is constrained in one point; 2)
the total angular momentum around the CoM is constant (this choice could restrict the
motion of the CoM, that is why it is not often used). Thus, by using these assumptions
in equations (2.3) and (2.4) we have

px = xc −
zcẍc
g
, (2.5)

py = yc −
zcÿc
g
. (2.6)

From these equations, the 3D LIP model proposed by Kajita [1] is obtained, which is
given by

ẍc = g

zc
(x− px), (2.7)

ÿc = g

zc
(y − py). (2.8)

The 3D LIP model is often used to study walking gaits due to the fact it captures some
essential properties of walking, such as the limit of the ZMP and the effect of gravity. This
model is composed of two linear differential equations of second order that allow to define
the evolution of the CoM when the position of the CoP is known. Moreover, its dynamics
in the sagittal plane is decoupled from those in the frontal plane.

In order to explore simultaneously the dynamic characteristics of periodic orbits for
many step lengths and widths, a dimensionless dynamic model of the pendulum will
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be used. The normalized scaling factors applied along the x and y axes depend on the
desired step length S and desired step width D. Thus, a new set of variables is defined as:
[X, Y, zc, Xs, Ys, zs]> = [xc

S
, yc

D
, zc,

xs

S
, ys

D
, zs]>, where [xs, ys, zs]> represent the swing foot

positions along x, y and z axes.
For a 3D LIP model with px = 0; py = 0, the equations of motion for a normalized 3D

LIP with respect to the reference frame attached to the stance foot are:

Ẍ = ω2X,

Ÿ = ω2Y,
(2.9)

where ω =
√

g
zc

characterizes the LIP and varies with the height of the CoM. As the legs
of the robot are assumed to be massless, the swing leg motions Xs, Ys, zs do not affect the
equation of dynamics of the 3D LIP. The solution to this system is [1]:

X(t) = X+ cosh(ωt) + Ẋ+

ω
sinh(ωt),

Y (t) = Y + cosh(ωt) + Ẏ +

ω
sinh(ωt),

Ẋ(t) = ωX+ sinh(ωt) + Ẋ+ cosh(ωt),

Ẏ (t) = ωY + sinh(ωt) + Ẏ + cosh(ωt),

(2.10)

where X+ and Y + denote the initial position of the CoM in x direction and y direction
respectively during the SS phase, while Ẋ+ and Ẏ + denote the initial velocity of it.

The orbital energies [83]:
Ex = Ẋ2 − ω2X2,

Ey = Ẏ 2 − ω2Y 2,
(2.11)

and the synchronization measure

L = ẊẎ − ω2XY (2.12)

are conserved during a SS phase [7]. We can say that the solution in one step is synchro-
nized if and only if the synchronization measure is zero. The notion of self-synchronization
refers to the periods of the pendular motions in the sagittal and frontal planes tending
to a common period. In fact, this condition L(X, Y, Ẋ, Ẏ ) = 0 defines a one-dimensional
submanifold. Any solution starting from this submanifold is synchronized and leads to
periodic motion.
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2.2.3 Transition between steps.

Due to the hypothesis that the contact between the swing foot and the ground does
not affect the velocity of the CoM, the velocity of CoM will be conserved at each transition
of stance leg. Since the reference frame is always attached to the stance foot and the y
axis is directed toward the CoM, the sign of the velocity along y axis will be changed from
positive to negative [78], i.e.

Ẋ+
k+1 = Ẋ−k ,

Ẏ +
k+1 = −Ẏ −k .

(2.13)

The state before the transition, i.e. at the end of a step, is expressed by superscript
− and that after the transition, i.e. at the beginning of a step, is expressed by +. The
variables corresponding to the step k, are denoted with index k, while those of the next
step are denoted with k + 1.

After transition, the swing foot placement becomes the new stance foot placement.
Thus the CoM position after transition along x axis equals the CoM position before
transition minus the swing foot position. Similar result can be obtained for the CoM
position along y axis:

X+
k+1 = X−k −X−s,k,

Y +
k+1 = −Y −k + Y −s,k.

(2.14)

Knowing the final state of the SS phase, the transition models (2.13) and (2.14) de-
termine the initial state of the ensuing SS phase.

2.2.4 Hybrid model.

An overall model of walking is obtained by combining the model in SS phase and the
transition model to form a hybrid system. The transition is assumed to occur when the
swing foot touches the ground, i.e. the height of the swing foot zs is zero. A switching
manifold is defined below:

S := {x|zs = 0, żs < 0}, (2.15)

where x := [X, Y, Ẋ, Ẏ ]> is the state of the robot. The transition models (2.13) and (2.14)
can be rewritten as:

x+ = ∆lip(x−), (2.16)

where ∆lip indicates the transition map of the LIP model.
Assuming a perfect tracking of the desired evolution of joints, a reduced order system,
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lip

lip

Figure 2.2 – The hybrid model of walking

called hybrid zero dynamics (HZD) can be obtained combining the dynamic equations
(2.9) and the transition model (2.16):

Σlip :

ẋ = flip(x), x− /∈ S

x+ = ∆lip(x−), x− ∈ S
(2.17)

A representation of the resulting model as a simple hybrid system is shown in Figure 2.2.

2.2.5 Periodic motion.

For a normalized system, periodic symmetric motion varies from

[X∗+;Y ∗+] = [−1
2; 1

2] (2.18)

to
[X∗−;Y ∗−] = [12; 1

2], (2.19)

where the superscript ∗ denotes the periodic motion. Since the orbital energy [83] is
conserved during one step, the norm of the velocity at the beginning and end of a step
is conserved, while the sign of it along y axis is changed due to the change of reference
frame:

Ẋ∗− = Ẋ∗+,

Ẏ ∗− = −Ẏ ∗+.
(2.20)

Thus, the initial velocity of the CoM for a periodic motion with duration T can be
pointed out by solving equation (2.9):

Ẋ∗+ = ω
1 + cosh(ωT )

2 sinh(ωT ) ,

Ẏ ∗+ = ω
1− cosh(ωT )

2 sinh(ωT ) .
(2.21)
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Figure 2.3 – Periodic motions in normalized variables for several values of T .

In normalized variables, the cyclic motion for different values of step duration T is
presented in Figure 2.3. We characterize the orientation of the velocity at the end of the
SS phase by

α = Ẏ ∗−

Ẋ∗−
= − Ẏ

∗+

Ẋ∗+
. (2.22)

For a periodic motion in normalized coordinates, 0 < α < 1.

2.3 The swing foot motion

In order to consider the general case, a normalized variable Φ monotonically increasing
from 0 to 1 during one step, named phasing variable is defined to describe the desired
trajectory of the controlled variables. For the case when transition is based on time, Φ
is time normalized with respect to the desired step duration. And for the case when
transition is based on the CoM position, Φ is a function of X and Y . The trajectories of
the swing foot are defined as functions of Φ: Xs = Xs(Φ), Ys = Ys(Φ), zs = zs(Φ). The
vertical evolution of the swing foot determines the condition of transition between steps,
while the horizontal evolution determines the foot locations. The advantage of introducing
a phasing variable is that this method can be extended to a complete model of robots by
using the phasing variable to coordinate all the joint motions of the robot.
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2.3. The swing foot motion

2.3.1 The vertical swing foot motion.

An intermediate value of the phasing variable 0 < Φm < 1 is defined, so that when
Φ = Φm, hs = max

0<Φ<1
{zs}. For the vertical motion of swing foot, the boundary conditions

are:
zs(0) = 0, zs(Φm) = hs, zs(1) = 0,

żs(0) = 0, żs(Φm) = 0, żs(1) = vs,
(2.23)

where hs is the desired height of the swing foot when Φ = Φm, and vs < 0 denotes the
desired downward velocity of the swing foot at the end of a step. In this chapter, zs(Φ) is
defined as a cubic spline function, which allows us to control both the height of the swing
foot and its velocity.

zs =

p11Φ3 + p12Φ2 + p13Φ + p14, 0 ≤ Φ < Φm

p21Φ3 + p22Φ2 + p23Φ + p24, Φm ≤ Φ ≤ 1
(2.24)

where
p11 = −2hs

Φm

3
, p12 = 3hs

Φm

2
, p13 = p14 = 0,

p21 = vs − vsΦm + 2hs
(−1 + Φm)3 ,

p22 = vs(1 + Φm − 2Φ2
m) + 3(1 + Φm)hs

(−1 + Φm)3 ,

p23 = Φm(vs(−2 + Φm + Φ2
m)− 6hs)

(−1 + Φm)3 ,

p24 = −vs(−1 + Φm)Φ2
m + (−1 + 3Φm)hs

(−1 + Φm)3 .

(2.25)

By using the cubic spline function, the swing foot will keep moving downward even
when the ground is uneven. When Φ is bigger than one, the height of the swing foot is
negative, as shown in Figure 2.4.

2.3.2 The horizontal swing foot motion.

The position where the swing foot lands must be chosen cautiously. In order to analyze
several cases, the swing foot positions at the end of step k is expressed in a generalized
form:

X−s,k = (1− kS)(X−k −X∗−) + 1,
Y −s,k = (1− kD)(Y −k − Y ∗−) + 1,

(2.26)
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x [m]

z
[m
]

Figure 2.4 – The trajectory of the swing foot in sagittal plane is represented by the blue
curve, and the black curve represents an uneven ground. In this figure, Φm = 0.6, hs =
0.2 m is taken as an example.

where 0 ≤ kS ≤ 1 and 0 ≤ kD ≤ 1. How the parameters kS and kD affect the foot locations
is illustrated in Figure 2.5. The case kS = kD = 0 allows to nullify the CoM position error
at the beginning of the next step, i.e.

δX+
k+1 = X+

k+1 −X∗+ = 0,

δY +
k+1 = Y +

k+1 − Y ∗+ = 0,
(2.27)

while the case kS = kD = 1 corresponds to fixed step length and width.
The boundary conditions for the motion of the swing foot along x and y directions

are:
Xs(0) = X+

s,k, Ẋs(0) = 0,

Xs(1) = X−s,k, Ẋs(1) = 0,

Ys(0) = Y +
s,k, Ẏs(0) = 0,

Ys(1) = Y −s,k, Ẏs(1) = 0,

(2.28)

where X+
s,k and Y +

s,k are the swing foot positions at the beginning of step k, which can be
known according to the information of the previous step. Since the swing leg is massless
and the impact is not considered, the velocities of the swing foot after transition is zero.
The horizontal velocities of the swing foot at the end of a step is taken to be zero to avoid
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2.3. The swing foot motion

Figure 2.5 – Influence of kS and kD on the foot locations. a) Step length and width are
fixed; b) The initial CoM position error is nullified; c) The general case. The black and
the red dots represent respectively the stance feet during the current and the next steps.
The curved line represents the CoM trajectory, and the cross the CoM position at the end
of the current step.
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the possible slide. For the case when the initial error is nullified:

X+
s,k = −(X−k−1 + 0.5), X−s,k = X−k + 0.5,

Y +
s,k = Y −k−1 + 0.5, Y −s,k = Y −k + 0.5.

(2.29)

For the case when the stride is imposed at a fixed step size:

X+
s,k = −1, X−s,k = 1,

Y +
s,k = 1, Y −s,k = 1.

(2.30)

According to these boundary conditions, the trajectory in x and y directions can be
defined as 3rd order polynomial functions of Φ.

Xs = −2(X−s,k −X+
s,k)Φ3 + 3(X−s,k −X+

s,k)Φ2 +X+
s,k,

Ys = −2(Y −s,k − Y +
s,k)Φ3 + 3(Y −s,k − Y +

s,k)Φ2 + Y +
s,k.

(2.31)

2.4 The Poincaré return map

The classical technique for determining the existence and local stability properties of
periodic orbits in nonlinear systems involves Poincaré return maps [84, 85], which is the
intersection of a periodic orbit in the state space of a continuous dynamical system with
a certain lower-dimensional subspace S, called the Poincaré section, transversal to the
flow of the system. The Poincaré return map transforms the problem of finding periodic
orbits into one of finding fixed points of a map, which in turn can also be viewed as the
problem of finding equilibrium points of a particular discrete-time nonlinear system. The
method of Poincaré sections is rigorous: it provides necessary and sufficient conditions for
the existence of stable, asymptotically stable, or exponentially stable periodic orbits [6].
The difficulty is that it is almost impossible to determine the return map analytically
for a typical system, because it requires the closed-form solution of a nonlinear ordinary
differential equation. Numerical schemes can be used to find fixed points of the return
map and to estimate eigenvalues for determining exponential stability.

Usually for a bipedal locomotion system, the Poincaré section is defined just before
the impact with the ground. The impact map yields new initial conditions for the swing
phase differential equation when the switching manifold S is reached. Assume x∗ ∈ S is
a state vector for a periodic motion of the hybrid system. x(0) is an initial state of the
system in the neighbourhood of x∗. The state of the system starts from x(0), follows the
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2.4. The Poincaré return map

Figure 2.6 – The Poincaré return map

dynamic function, and intersects with the Poincaré section S again. The state at the kth

intersection with S is noted as x(k). Thus the Poincaré return map P : S 7→ S (shown in
Figure 2.6) is defined as:

x(k + 1) = P(x(k)). (2.32)

A limit cycle corresponds to a fixed point of the Poincaré return map, i.e.

x∗ = P(x∗). (2.33)

In the general case the Poincaré first return map is linearized around the fixed point
by means of Taylor expansion,

P(x∗ + δx) = P(x∗) + dP
dx (x∗)δx

= P(x∗) + J(x∗)δx. (2.34)

Thus, for x = x∗ + δx, we have:

x(k + 1)− x∗ = P(x∗ + δx)− x∗ = J(x∗)δx. (2.35)

Equations (2.34) and (2.35) formalize the fact that at step k the distance between x
and the fixed point is δx, then at step k + 1 the distance will be J(x∗)δx. In order to
ensure stability, the distance of the system state and the fixed point has to decrease, i.e.
the norm of the eigenvalues of the Jacobian J(x∗) is strictly less than one.
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One way to compute the fixed point is to find the numerical solution of (2.33). After
the fixed point x∗ is obtained, the Jacobian of the Poincaré first return map can be
computed by add a perturbation ei on the fixed point as below:

Ji = P(x∗ + ei)− P(x∗ − ei)
2ei

, (2.36)

where i denotes the ith column of the Jacobian.
The eigenvalues of J determine the stability of the Poincaré map P , and hence the

stability of the periodic motion. A fixed point of the Poincaré map is exponentially stable,
if, and only if, the eigenvalues of J have magnitude strictly less than one [58].

2.5 Transition based on time

In this section, the phasing variable is defined as Φ = t
T ∗ , where T ∗ is the desired step

duration. With this phasing variable, the step timing of each step is strictly T = T ∗. The
control is assumed to be perfect so that the reference trajectories of the swing foot Xs,
Ys and zs can be tracked precisely.

2.5.1 Stability study.

The Jacobian matrix of the Poincaré return map at the fixed point is calculated nu-
merically in the state space [X−k , Y −k , L−k , K−k ]>, where L−k is the synchronization measure
defined by equation (2.12) and K−k is the kinetic energy at the end of step k.

The eigenvalues of several cases for different values of kD and kS have been studied,
and two extreme cases kS = kD = 0 and kS = kD = 1 among them are illustrated in Figure
2.7. It can be seen clearly that for both cases, there always is more than one eigenvalue
larger than or equal to one, which means that for the transition based on time, stability
of walking is not obtained without using a high-level controller.

2.5.2 Simulation

One example of simulation for kS = kD = 0 starting slightly out of the periodic motion
is analyzed here. The step length S and step widthD are 0.4 m and 0.2 m respectively, and
the height of the CoM z is 1 m. The desired step duration is set to be 0.6 s. Disturbance
imposed on the initial state for the simulation is taken as ex = 10−3 m, ey = 10−3 m. The
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Figure 2.7 – Values of the four eigenvalues for different step durations T when transition
is based on time.

eigenvalues calculated for the linearized restricted Poincaré map are:

|λ1| = |λ2| = 0,
|λ3| = |λ4| = 2.497.

(2.37)

The stance foot position and the CoM evolution for both periodic and disturbed
motions are illustrated in Figure 2.8, while the state evolutions are illustrated in Figure
2.9. The periodic motion is represented with the black curves and lines while the disturbed
motion represented with the blue curves and lines in Figures 2.8 and 2.9. It can be seen
clearly that the CoM position diverges quickly when disturbances exist. In this case, the
effect of instability is that the walking is not along the expected path (here along x axis)
but the direction of walking is perturbed along right or left direction depending on the
perturbation. This kind of motion is often observed on the humanoid robots as Nao for
example.

In consequence, this kind of control is not naturally synchronized and a high-level
control must be added to produce a synchronized or stable walking gait. In the following
sections, we will prove that by defining proper virtual constraints and a phasing variable
depending on the state of the robot, self-synchronization and self-stabilization of the
walking gait can be obtained.
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Figure 2.8 – Evolution of CoM of the LIP model when transition is based on time with
kS = kD = 0 for 5 steps. The black and blue circles represent the stance feet and the
asterisks the CoM positions at the end of each step.
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Figure 2.9 – Evolution of the states of the LIP model when transition is based on time
for kS = kD = 0 for 5 steps.
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Figure 2.10 – The step finishes when the CoM crosses the switching manifold. The dashed
line is the periodic motion of the CoM, and the solid line the CoM motion under an initial
position perturbation.

2.6 Transition based on the horizontal CoM position

2.6.1 The virtual constraints

The vertical trajectory of the swing foot is defined as a function of a phasing variable
based on the horizontal CoM position Φ(X, Y ). The transition happens when the swing
foot touches the ground, which defines a relationship between the two variables X and Y .
An infinite number of CoM positions satisfy it. This set of positions are grouped in the
switching configuration manifold defined by:

S = {(X, Y )|zs(Φ) = 0}. (2.38)

There will be infinite sets of positions of the CoM that satisfy this condition. In this
chapter, we choose a phasing variable such that the robot switches its stance leg when
the CoM crosses the switching manifold defined by

S = {(X, Y )|(X −X∗−) + C(Y − Y ∗−) = 0}. (2.39)

The switching manifold S is defined as a line parameterized by C, represented by the
red line in Figure 2.10. Many other sets of positions can be considered but since stability
studied here is a local property, a straight line is a convenient choice. The choice of S
directly affects the final CoM position for a step.
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2.6.2 The phasing variable

In presence of error, the final CoM position of the robot is defined by equation (2.39),
i.e the error on the final position of the CoM satisfies:

δX− + CδY − = 0 (2.40)

where δX− and δY − are the CoM position errors along x and y axes at the end of a step.

If Φ is expressed as a linear expression of X and Y , no monotonic evolution of Φ has
been found numerically for a periodic gait of the 3D LIP. Therefore, a quadratic expression
of X and Y is proposed, i.e.

Φ = a1X + a2Y + a3XY + a4X
2 + a5Y

2 + a6. (2.41)

Since the phasing variable must be zero at the beginning of a step, we have

Φ(X+, Y +) = 0, (2.42)

whereX+ and Y + are known from equation (2.14). Besides, in order to make the switching
manifold (2.38) and (2.39) equivalent, the phasing variable at the end of a step should
equal one:

Φ(X−, Y −) = 1. (2.43)

In order to simplify the writing, δ is used here to replace δY −, thus we have X− =
X∗− −Cδ, Y − = Y ∗− + δ according to equation (2.40). The expression of Φ at the end of
a step can be written as a function of δ:

Φ(X−, Y −) =a1(X∗− − Cδ) + a2(Y ∗− + δ) + a3(X∗− − Cδ)(Y ∗− + δ)

+ a4(X∗− − Cδ)2 + a5(Y ∗− + δ)2 + a6

=(a1X
∗−+a2Y

∗−+a3X
∗−Y ∗−+a4(X∗−)2+a5(Y ∗−)2 +a6)

+ (−a3C + a4C
2 + a5)δ2

+ (−a1C+a2−a3CY
∗−+a3X

∗−−2a4CX
∗−+2a5Y

∗−)δ

(2.44)

Since all the above constraints given by equations (2.42) and (2.43) must be satisfied
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for an arbitrary value of δ, three more equations can be obtained and we have:


a1X
+ + a2Y

+ + a3X
+Y + + a4(X+)2 + a5(Y +)2 + a6 = 0,

a1X
∗−+a2Y

∗−+a3X
∗−Y ∗−+a4(X∗−)2+a5(Y ∗−)2 +a6 =1,

−a3C + a4C
2 + a5 = 0,

−a1C+a2−a3CY
∗−+a3X

∗−−2a4CX
∗−+2a5Y

∗−=0.

(2.45)

There are six variables {a1, a2, a3, a4, a5, a6} while the number of equations is only four.
For simplification, the value of a3 is set to be 0, thus Φ is expressed as a function of a4.
After calculation, the phasing variable can be rearranged as:

Φ = M1

M2
+ a4M3M4 (2.46)

M1 =X −X+ + CY − CY +

M2 =X∗− −X+ + CY ∗− − CY +

M3 =X −X∗− + CY − CY ∗−

M4 =X −X+ − CY + CY +.

(2.47)

During a step, the phasing variable must be monotonic and increasing, thus the deriva-
tive of Φ with respect to time should always be positive.

Φ̇ = a1Ẋ + a2Ẏ + 2a4XẊ + 2a5Y Ẏ > 0 (2.48)

Monotonicity of Φ for the periodic motion, i.e. when X+ = X∗+, Y + = Y ∗+, is analyzed.
A set of a4 varying from -0.3 to -0.6 is chosen to satisfy the condition of monotonicity.
The minimum values of Φ̇ for different values of C, T and a4 are shown in Figure 2.11.
Obviously, when the minimum value of Φ̇ is larger than zero, Φ is monotonically increasing.
From the result shown in Figure 2.11, a4 = −0.4 is taken for the following simulation
because it allows a larger range of acceptable values of C with respect to different values
of T .

2.6.3 Stability study.

To study the stability of the walking gait, the Poincaré return map is used. Since X−

and Y − are coupled via the switching manifold (2.39), and the dynamic is autonomous
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Figure 2.11 – The minimum value of Φ̇ as a function of C and T for different a4. The colored
areas, with respect to the white areas, indicate that the phasing variable is monotonic.
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(time does not appear), Y − can be deleted and the chosen independent state variables are
[X−, L−, K−]>. The Jacobian is defined for a given periodic motion, and is characterized
by the direction of the velocity of the CoM α (as defined by equation (2.22)).

For the 3D LIP model, the eigenvalues of the Poincaré map at the fixed points are
{λλλ, 1}, where λλλ is the set of eigenvalues except for the one respect to kinetic energy. The
eigenvalue 1 corresponds to neutral stability in kinetic energy. And if ∀|λi| ∈ λλλ < 1, the
symmetric periodic orbits are self-synchronized. This means that the period of oscillations
in the x direction eventually matches that in the y direction, and the 3D LIP biped follows
a periodic orbit. That is, if a small perturbation is applied to the 3D LIP, it will still
become synchronized but will eventually follow a periodic orbit with a different level of
kinetic energy.

General case: ∀kD, kS 6= 0

The expression of the Jacobian matrix of Poincaré return map in an analytical form
can be deduced as follows (The procedure is detailed in Appendix A):

J =


−kD+αCkS

(kS+αC)
4αCkS

ω2(1+αC)(α−1) 0
J21

2α(kD−CkS)+(1−αC)(α+1)
(1+αC)(α−1) 0

∗ ∗ 1

 , (2.49)

with
J21 = (kD + αCkS)(C − 1 + CkS − kD)ω2

2(1 + αC)CkS
. (2.50)

Note that this calculation is general except for the case when kS = 0. The characteristic
equation of J does not depend on the two elements denoted by ∗. The eigenvalue associated
with K− is always 1, and this means that the walking velocity cannot be controlled. It is
possible to find a proper set of parameters C, kS and kD to achieve self-synchronization.
A numerical calculation of the largest norm of the eigenvalues associated to the 2 × 2
left-upper part of (2.49), for different values of kD and kS is shown in Figure 2.12. The
main conclusion is that when kD and kS decrease, the norm of the eigenvalues is smaller
for an appropriate choice of C, for any T ∈ (0, 1]s.
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Particular case: kD = kS = 0

To nullify the error in pose for the CoM at the beginning of a step, kD and kS are
supposed to be zero. Thus the Jacobian becomes

J =


0 0 0

α(−1+C)ω2

2(1+αC)
(−1+αC)(α+1)
(1+αC)(1−α) 0

∗ ∗ 1

 (2.51)

It has to be noted that with the proposed control strategy (the initial error in position
of CoM is null), the decrease of synchronization measure, at the first order, is independent
of the direction of the velocity error.

The eigenvalues are λ1 = 0, λ3 = 1 and λ2 = (−1+αC)(α+1)
(1+αC)(1−α) . The term (1+α)

(1−α) is always
greater than 1 for 0 < α < 1, its diverging effect increases when α increases. A condition
on C to have synchronization can be easily deduced to meet the condition:

−1 < (−1 + αC)(α + 1)
(1 + αC)(1− α) < 1 (2.52)

which gives:
1 < C <

1
α2 (2.53)

The condition λ2 < 1 ensures convergence toward a synchronized motion, thus is a
condition of self-synchronization. The case kS = kD = 0 is especially interesting since the
eigenvalues of the Jacobian matrix can be very small for an appropriate choice of C. This
case has been explored in [75]. One drawback of this choice is the lateral error that can
appear on the walking path due to the variation of the step width to nullify the error
along y direction.

Particular case: kD = kS = 1

In this case, the Jacobian matrix (2.49) becomes

J =


−1 4αC

ω2(1+αC)(α−1) 0
(C−1)ω2

C
2α(1−C)+(1−αC)(α+1)

(1+αC)(α−1) 0
∗ ∗ 1

 (2.54)
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The eigenvalues of the Jacobian matrix are

λ1, λ2 =
(1 + α)(1− αC)± 2

√
α(C − 1)(α2C − 1)

(1 + αC)(α− 1)
λ3 = 1

(2.55)

When α(C − 1)(α2C − 1) < 0 , it can be proven that all the norms of the eigenvalues are
strictly equal to 1. In the other case at least one eigenvalue has a norm greater than 1. In
both cases, no self-synchronization can be achieved.

Particular case : kD ≤ 1, kS = 0

In this case, the error in x direction at the beginning of a step is nullified, there is no
connection between Xk and Xk+1. The previous choice of Poincaré map cannot be applied
in this case. Instead of [X−, L−, K−]>, new coordinate system [Y −, L−, K−]> is chosen to
be the coordinate system, and the Jacobian matrix needs to be calculated specifically:

J =


− kD(ω2+αω2)

(−1+α)(1+αC)ω2
4αkD

(−1+α)(1+αC)ω2 0
(−1+C−kD)ω2

2+2αC
1+α−α(1+α)C+2αkD

(1+αC)(α−1) 0
∗ ∗ 1

 . (2.56)

In the following part of this chapter, kS = 0, kD = 1 will be chosen, because kS = 0
can contribute to achieve self-synchronization while kD = 1 can prevent the robot from
deviating from its original direction.

2.6.4 Choice of C.

The manifold of C and T that makes the walking gait self-synchronized is defined as

Qsyn := {(C, T )|λ1,2(C, T ) < 1, λ3(C, T ) = 1}. (2.57)

Meanwhile, the manifold of C and T that makes the phasing variable Φ monotonic for
the periodic gait is defined as

M := {(C, T )| min
0≤t≤T

{Φ̇(C, T )} > 0}. (2.58)

Thus, in order to accomplish a step, the values of C and T must be located inside of
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Figure 2.12 – Numerical calculation of the largest norm of the eigenvalues associated to
the 2× 2 left-upper part of (2.49) and (2.56), for different values of kD and kS
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Figure 2.13 – Intersection of Qsyn andM for kS = 0, kD = 1

the intersection of Qsyn andM, i.e. (C, T ) ∈ Qsyn∩M. Figure 2.13 shows the acceptable
values of C and T for kS = 0, kD = 1.

2.6.5 Simulation

The step length S and step width D are 0.4 m and 0.2 m respectively, and the height
of the CoM zc is 1 m. The desired step duration is 0.6 s. According to Figure 2.13, the
chosen value of C is 3. Note that C is defined for normalized step length and width. The
proper value of C for real step length and width is proportional to the ratio of S andD, i.e.
C ′ = C · S

D
. The walking algorithm proposed by Kajita in [1] is integrated in the simulation

for the first and the last steps and is not explained in detail in this work, because it does
not affect the self-synchronization or self-stabilization of the periodic motion.

Figure 2.14a shows the evolution of the CoM and the footprints for 15 steps, and
the convergence to a periodic gait motion is observed. However, the actual step duration
T does not converge to the desired one T ∗, as shown in Figure 2.14b. It means that the
walking velocity of the gait is not controlled in the sense that a perturbation of such a gait
will result in the convergence of the gait to another periodic motion with a different gait
velocity. At the first and the last steps, the step duration is 0.6 s due to the application
of the walking algorithm proposed by Kajita. In Figure 2.15, the states of the CoM in the
Poincaré section converge to constant values but not the fixed values, which means that
the walking gait is self-synchronized but not self-stabilized.
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Figure 2.14 – 15 steps for the 3D LIP model when transition is based on the CoM position.
The blue lines in (a) represent the switching manifolds, the blue dots and diamonds the
stance feet during the SS phase, and starting and stopping phases, and the red asterisks
the CoM positions at the end of each step.
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Figure 2.15 – Evolution of the states of the CoM when transition is based on the CoM
position
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2.7 Transition based on the CoM position and veloc-
ity feedback

For a self-synchronized walking gait, a perturbation on the state of the robot may
cause a change of the walking velocity. Thus in order to control the walking velocity of
the 3D LIP, a new method that leads to self-stabilization is proposed in this section.

2.7.1 The virtual constraints

The feedback of the velocity of CoM is introduced into the switching condition of the
stance leg, and a new switching manifold is proposed:

Sv = {(X, Y )|(X −X∗− − l) + C(Y − Y ∗−) = 0} (2.59)

As shown in Figure 2.16, the new switching manifold is a line with an offset l from the
switching condition proposed in last section. The offset is defined as l = kv(Ẋ∗+ − Ẋ+),
where Ẋ+ is the velocity of the CoM along x axis at the beginning of a step, which is
updated at each step 3, and kv is a parameter that must be chosen carefully to satisfy the
stability condition.

2.7.2 The phasing variable

With the CoM velocity feedback along x axis, the CoM position at the end of a step
is modified, i.e. X− = X∗− − Cδ + l, Y − = Y ∗− + δ. Thus the phasing variable Φ can be
deduced by applying X− and Y − into Φ(X−, Y −) = 1:

Φ = M1 + a4M2M3M4 − a4M4l + a4(M3 −M2)M4l
2

M2 + l
. (2.60)

By adjusting the position of the switching manifold, the difference between the cur-
rent velocity and the desired velocity along x direction can be controlled to obtain self-
stabilization.

3. The correction can be based on the mean value of velocity during the previous step to increase
robustness to the measurement noise
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Figure 2.16 – The new switching condition is an offset from the one proposed in last
section. The dashed line is the periodic motion, while the solid line is the CoM motion
under an initial position perturbation.
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Figure 2.17 – The maximum norms of the eigenvalue as a function of C and kv for
different values of T . The colored areas, with respect to the white areas, indicate the
self-stabilization condition.
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(a) kv = 0.04 (b) kv = 0.08

Figure 2.18 – Intersections of Qstab andM that keep Φ monotonic and produces a stable
walking gait for kv = 0.04 and kv = 0.08 respectively

2.7.3 Stability study

With this new phasing variable, the stability of the gait is analyzed through the
numerical calculation of the eigenvalues of the Jacobian matrix for different values of
C, kv and T . The contour of the maximum norm of the eigenvalues is shown in Figure
2.17. It can be seen that when both the values of C and kv are located inside the colored
area, all the norms of the eigenvalues will be smaller than one. Under this situation, the
self-stabilization of the system can be obtained. Whereas in the white area at least one
eigenvalue is larger than one.

2.7.4 Choice of C.

In order to make the walking gait stable, the manifold of C and T is defined as:

Qstab := {(C, T )|λi < 1(i = 1, · · · , n)}, (2.61)

where n is the number of eigenvalues. Considering the fact that C and T must also satisfy
the constraint that Φ is monotonic, the values of C and T must be located inside of
the intersection of Qstab and M, i.e. (C, T ) ∈ Qstab ∩M. Figures 2.18a and 2.18b show
the acceptable values of C and T for kS = 0, kD = 1 when kv = 0.04 and kv = 0.08
respectively.

55



Partie , Chapter 2 – Self-synchronization and self-stability of LIP model

2.7.5 Simulation

The step length S and step width D are 0.4 m and 0.2 m respectively, and the height
of the CoM zc is 1 m. From the result shown in Figure 2.18, C = 3 is chosen. Based on the
result shown in Figure 2.17, kv = 0.08 when T ∗ = 0.6 s, and kv = 0.04 when T ∗ = 0.8 s
to ensure stability.

The same method proposed by Kajita as that in Section 2.6.3 is adopted for the first
and last step. The desired step duration T ∗ is increased from 0.6 s to 0.8 s at the 15th

step, in order to show the convergence of the walking gait in velocity.
Figure 2.19a illustrates the evolution of the CoM and the placement of feet. Due to

the increase of step duration, the amplitude of the motion of the CoM along y direction
increases obviously after 15 steps. And Figure 2.19b indicates that the actual step du-
ration T starts from 0.6 s, and increases to 0.8 s after 15 steps. In Figure 2.20, it can
be seen that the introduction of the displacement l plays an important role during the
motion. It permits that the velocity along x axis converges to a desired value, i.e. self-
stabilization is obtained. Note that when an increase of step duration is expected, only ẋ
is constrained, and ẏ converges automatically to a value that corresponds to the periodic
motion determined by ẋ with the proposed walking algorithm.

2.8 Robustness of walking on an uneven ground

In order to test the robustness of the walking gait, the humanoid robot is lead to an
uneven ground after several steps of walking on a flat ground, and then back to the flat
ground again. The variation of the height of the ground is unknown to the robot, thus it
will follow the predetermined trajectory proposed in the previous sections until the swing
foot touches the ground. A sinusoidal ground is considered:

zG(xG) = hG cos(ωGxG) (2.62)

where hG denotes the magnitude of the sinusoidal ground and ωG characterizes the fre-
quency of the ground variation.

The simulation of a pendulum walking on a sinusoidal ground is given in this section.
The magnitude of the sinusoidal ground hG = 0.035 m, and the frequency ωG = 2π is
taken as an example. The height of the pendulum zc = 1 m, the step length and width
S = 0.4 m, D = 0.2 m. The ground and the pendulum are demonstrated in Figure 2.21.
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Figure 2.19 – Simulation of 30 steps for the LIP model when transition is based on the
CoM position and velocity. The blue lines in figure (a) represent the switching manifolds,
the blue dots and diamonds the stance feet during the SS phase, and starting and stopping
phases, and the red asterisks the CoM positions at the end of each step.
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Figure 2.20 – Evolution of the states of the 3D LIP during 30 steps when transition is
based on the CoM position and velocity. The fixed value is shown with the dash line.
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Figure 2.21 – Demonstration of a pendulum walking on a sinusoidal ground.
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Figure 2.22 – Simulation of 30 steps for the pendulum walking on a sinusoidal ground.
The dashed lines in subfigure (b) illustrate the trajectories of the swing foot, while the
circles illustrate the stance foot of each step.

For a step timing T ∗ = 0.6 s, the parameters of the switching condition are C = 3,
kv = 0.1 to ensure stability. To consider the case with a fixed step width as an example,
kD = 1 is taken. The initial CoM position error along x axis is nullified to ensure stability.
In the simulation, 30 steps are performed.

It can be seen from Figure 2.22a that CoM trajectory is perturbed when the pendulum
walks on the sinusoidal ground, and converges to the periodic motion when it returns to
the flat ground. Figure 2.22b illustrates the trajectories of the swing foot and positions
of the stance foot for each step. The stance leg is switched as soon as the swing foot
touches the ground. The trajectory proposed in Section 2.3.1 makes sures that the swing
foot keeps going downward even when the ground is below the expected height. Figure
2.23 shows that the states of the system converge asymptotically to the periodic values,
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Figure 2.23 – Evolution of the states of the system.

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

Figure 2.24 – Evolution of the step timing.
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and Figure 2.24 shows that the step timing has a big variation to resist the perturbation,
and converges to the expected value within serval steps after the perturbation disappears.
The result shows that robustness can be observed when the robot walks on a non-flat
floor with a height varying from −3.5% to +3.5% limited of the height of the CoM. The
video showing this motion can be found on line [86]. For the case with kS = kD = 0, can
could increase the magnitude of the sinusoidal ground to ±4.2%.

2.9 Conclusion

In this chapter, the switching conditions for obtaining self-synchronization or self-
stabilization for the periodic walking gait based on LIP model are discussed. It has been
proven that self-synchronization cannot be achieved when the stance foot is switched based
on time or when both the step length and width are fixed. In this case, synchronization and
stabilization of walking gaits can be achieved only by using high-level control techniques.
Thus this chapter proposes to define the switching condition based on the CoM position
to achieve self-synchronization. This condition is expressed as a linear function of the
CoM position in a switching manifold parameterized by a parameter denoted by C. It
is shown that for an appropriate value of C, if the swing foot placement is chosen such
that the initial CoM position error is reduced step by step at least in one direction,
synchronization of the walking can be naturally obtained. Furthermore, it has been proven
that the introduction of the CoM velocity feedback into the phasing variable permits to
achieve self-stabilization of walking gaits. The last part of this chapter has shown that the
robustness of a pendulum walking on an even ground can be obtained with the proposed
walking algorithm.
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Chapter 3

SELF-STABILITY OF THE 3D VLIP
MODEL

3.1 Introduction

In human walk, the height of the CoM is not constant [87], and the vertical oscilla-
tion of the CoM must be considered. Lee and Farley [88] observed that during walking
the maximum vertical displacement increases from 0.013± 0.001 m (mean±S.E.M.) for a
walking speed 0.5 m/s to 0.031±0.007 m for a walking speed 2.5 m/s. Several approaches
have been proposed to extend the LIP to have a more human-like behavior. Omran et
al. [89] investigated the effect of vertical motion of the CoM during humanoid walking.
Numerical tests show a consequent reduction of the robot torque solicitation when the
CoM oscillates vertically. Garofalo et al. [90] mapped the simple dynamics of the bipedal
spring loaded inverted pendulum (SLIP) model to multi-body robots to obtain a desired
behavior for the CoM, yet an upper level controller is necessary to deal with the stabiliza-
tion of the SLIP model. Harada et al. [91] captured the walking motion of a human, and
applied the obtained information on real humanoid robot. Here the 3D variable length
inverted pendulum (VLIP) model is used, which allows to control the vertical oscillations
of CoM by the actuation of hip and knee joints. It has been proven by Chevallereau and
Aoustin [10] that the vertical oscillation induces a self-stabilization of the walk for specific
virtual constraints. The work in this chapter extends these preliminary results into a more
systematic study of the virtual constraints by extending the results of self-synchronization
obtained with a LIP model in Chapter 2. When the desired walking gait is defined as vir-
tual constraints i.e. as functions of a phasing variable based on the internal state of the
robot instead of on time, for the evolution of the swing foot and the vertical oscillation
of the CoM, the walk will asymptotically converge to the periodic motion with proper
choices of the virtual constraints, thus the self-stabilization is obtained. It is shown that
the vertical CoM oscillation, positions of the swing foot and choice of the switching con-

63



Partie , Chapter 3 – Self-stability of the 3D VLIP model

dition play crucial roles in stability. Moreover, a proportional–integral (PI) controller of
the CoM velocity along the sagittal axis is also proposed such that the walking speed of
the robot can converge to another periodic motion with a different walking speed. This
way, a natural walking gait is illustrated as well as the possibility of velocity adaptation
as observed in human walking.

The chapter is structured as follows: Section 3.2 introduces the hybrid model of the
VLIP; Section 3.3 introduces the virtual constraints and the phasing variable for the VLIP
model; Section 3.4 introduces the cyclic motion of VLIP; Section 3.5 analyzes the stability
of the VLIP model with the proposed switching conditions that leads to self-stabilization
of the walking gait; Simulations illustrate the property of self-stabilization. Section 3.6
shows how a feedback on walking velocity can be used to adapt the periodic motion to a
desired walking speed. Finally, several concluding remarks and perspectives are discussed
in Section 3.7.

3.2 Modeling

The gait is composed of two phases: SS phase and DS phase. During the DS phase,
the following hypotheses are recalled: 1) The double support phase is instantaneous; 2)
Since the model is based on a concentrated mass, the contact between the swing foot and
the ground does not modify the velocity of the CoM [40].

3.2.1 The 3D VLIP Model

During the SS phase, the 3D VLIP model is used. Compared with the 3D LIP model, the
VLIP model is closer to the real human walking behavior, because the height of the CoM
is not constant during walking.

The VLIP model consists of two massless legs with variable length and a concentrated
mass at the hip, as shown in Figure 3.1. The stance leg is free to rotate about the axes
x and y at the ground, while the rotation around the z axis is not considered as in the
human walking because this rotation is avoided to inhibit the friction of the foot. The
length of each leg can be modified through actuation, allowing a desired vertical motion of
the pendulum to be obtained. We also assume that the actuation of the swing leg allows
a controlled displacement of the swing leg end via the two degrees of actuation at the hip
and knee actuators. There are four actuators, thus four variables can be controlled. In this
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Figure 3.1 – The VLIP model.

chapter, the variables [zc, xs, ys, zs]> i.e. the height of the CoM and the spatial position
of the swing foot are chosen to be the controlled variables.

The configuration of the robot is defined via the position of the concentrated mass
c = [xc, yc, zc]> and the position of the swing foot [xs, ys, zs]> with respect to a reference
frame attached to the stance foot. Since the legs are massless, the motion of the swing
leg does not affect the dynamic model. Angular momenta is denoted by σ = [σx, σy, σz]>,
and it can be expressed as:

σ = c× (mċ), (3.1)

thus 
σx

σy

σz

 =


myżc −mẏczc
mzẋc −mżcxc
mxẏc −mẋcyc

 . (3.2)

The moment balance equation of the pendulum around the rotation axes x and y is:
σ̇x = −mgyc,

σ̇y = mgxc.
(3.3)

In order to explore simultaneously the existence and stability of periodic orbits for
robots with any step length and width, a dimensionless dynamic model is used [10]. The
normalized scaling factors applied along x and y axes depend on the desired step length
S, desired step width D, and the robot mass m. Thus, a new set of variables is defined:
[X, Y, zc, Xs, Ys, zs, σX , σY ]> = [xc

S
, yc

D
, zc,

xs

S
, ys

D
, zs,

σx

mD
, σy

mS
]>. Thus the normalized evolu-

65



Partie , Chapter 3 – Self-stability of the 3D VLIP model

tion of the angular momentum along x and y axes for a VLIP can be rewritten as:


σX = żcY − zcẎ ,

σY = −żcX + zcẊ,

σ̇X = −gY,

σ̇Y = gX.

(3.4)

The controlled variables [zc, Xs, Ys, zs]> are determined by virtual constraints as func-
tions of the phasing variable Φ(X, Y ), where X and Y are defined as free variables or
uncontrolled variables qf = (X, Y ). The definition of the phasing variable will be dis-
cussed in detail in Section 3.3.2. The height of the CoM and its velocity can be expressed
as:

zc = fz(Φ),

żc = ∂fz(Φ)
∂Φ ( ∂Φ

∂X
Ẋ + ∂Φ

∂Y
Ẏ ) = ∂fz

∂X
Ẋ + ∂fz

∂Y
Ẏ .

(3.5)

Assuming that the control law allows that the vertical motion of the CoM is perfectly
tracked, equation (3.5) can be used to rewrite the zero dynamics [6] as :


q̇f = M−1

XY · [σX ;σY ]>,

σ̇X = −gY,

σ̇Y = gX,

(3.6)

where

MXY =
 ∂fz

∂X
Y ∂fz

∂Y
Y − fz

fz − ∂fz

∂Y
Y −∂fz

∂Y
X

 . (3.7)

3.2.2 Transition between steps

Due to the hypothesis of massless legs, the contact between the swing foot and the ground
does not affect the velocity of the CoM, and the velocity of CoM is conserved at each
transition of stance leg. Since the reference frame is always attached to the stance foot
and the y axis is directed toward the CoM, the sign of the velocity along y axis will be

66



3.3. Virtual Constraints

changed from positive to negative, i.e.

Ẋ+
k+1 = Ẋ−k ,

Ẏ +
k+1 = −Ẏ −k ,
ż+
c,k+1 = ż−c,k.

(3.8)

The state before the transition, i.e. at the end of a step, is expressed by superscript
− and that after the transition, i.e. at the beginning of a step, is expressed by +. The
variables corresponding to the step k, are denoted with index k, while those of the next
step are denoted with k + 1.

After transition, the swing foot placement becomes the new stance foot placement,
and the horizontal CoM position after the impact is given by:

X+
k+1 = X−k −X−s,k,

Y +
k+1 = −Y −k + Y −s,k,

z+
c,k+1 = z+

c,k.

(3.9)

3.2.3 Hybrid model.

The transition occurs when the height of the swing foot zs is zero. A switching manifold
is defined below:

S := {x|zs = 0, żs < 0} (3.10)

where x := [X, Y, Ẋ, Ẏ ]> is the state of the robot. The transition model (3.8) and (3.9)
can be rewritten as:

x+ = ∆vlip(x−) (3.11)

where ∆vlip indicates the transition map of the VLIP model. Thus the combination of
the dynamic equations (3.6) and the transition model (3.11) forms the hybrid dynamical
system:

Σvlip :

ẋ = fvlip(x), x− /∈ S

x+ = ∆vlip(x−), x− ∈ S
(3.12)

3.3 Virtual Constraints

A normalized variable Φ monotonically increasing from 0 to 1 during one step, named
phasing variable is defined to describe the desired trajectories of the controlled variables.
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The trajectories of the swing foot and the vertical oscillation of CoM are defined as a
function of Φ: Xs = Xs(Φ), Ys = Ys(Φ), zs = zs(Φ), zc = zc(Φ). The vertical evolution
of swing foot determines the step timing while the horizontal evolution determines foot
locations.

3.3.1 Switching manifold

In Chapter 2, the switching manifold for a 3D LIP model is defined as a segment with
a certain orientation inside of the plane at the same level as the CoM, as described by
equation (2.39). For a VLIP model whose CoM does not stay in the same height, this
switching manifold must be extended into the 3D space.

The phasing variable is chosen such that the robot switches its stance leg when the
CoM crosses a vertical plane:

S = {(X, Y, zc)|(X −X∗−) + C(Y − Y ∗−) = 0}. (3.13)

Similar as in Chapter 2 The orientation of the switching manifold S is parameterized
by C, represented by the gray surface in Figure 3.2. In this figure, z0 is the desired CoM
height at the end of a step for a periodic motion. Many other sets of positions can be
considered but since stability studied here is a local property, a flat surface is a convenient
choice. The choice of S directly affects the final CoM position of a step.

3.3.2 Phasing Variable

As introduced in Chapter 2, the phasing variable Φ is defined as a function of X and
Y with six parameters:

Φ = a1X + a2Y + a3XY + a4X
2 + a5Y

2 + a6, (3.14)

and the phasing variable must vary from 0 to 1 for a step and be monotonic.
According to the constraints introduced by equation (2.45), parameters a1, a2, a5, and

a6 can be obtained as functions of a3 and a4. There are many standards to choose the
values of a3 and a4. For example, in Chapter 2, the value of a3 was taken to be zero,
and only the value of a4 needs to be analyzed. Also, the values of a3 and a4 can be
chosen as optimization variables to ensure the monotony of Φ. Here, the criterion of this
optimization is chosen to minimize the difference between Φ(t) and t at each sampling
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Figure 3.2 – The step finishes when the CoM crosses the switching manifold, which is
represented by the gray surface. The curved dashed line is the periodic motion, and the
curved solid line the CoM motion under an initial perturbation.

time as follows:
J = Σ(Φ(t)i − ti)2. (3.15)

The matlab function fmincon® is used off-line when virtual constraint are designed.

3.3.3 The Motion of the swing foot

For the 3D VLIP model, the impact is ignored and the initial velocity of the swing
foot at the beginning of each step is supposed to be zero. Thus, the motion of the swing
foot along z axis is defined as the same cubic spline function as in Section 2.3.1.

For a periodic motion, the final CoM position along x and y axes at the end of a step
is no longer S/2 and D/2. The swing foot position considering any final CoM position at
the end of a step is expressed in a generalized form:

X−s = (1− kS)(X− −X∗+) + kSS,

Y −s = (1− kD)(Y − + Y ∗+) + kDD.
(3.16)

The same boundary conditions as in Section 2.3.2 are taken. Note that the expected
final swing foot position proposed by equation (2.26) is a specific case of equation (3.16)
when X∗− = S/2 and Y ∗− = D/2. With the expected final swing foot position defined
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by equation (3.16), the trajectories along x and y directions can be defined as 3rd order
polynomial functions of Φ.

3.3.4 Vertical Oscillation of the CoM

It has been proven by Chevallereau and Aoustin [10] that the vertical oscillation of
the CoM can asymptotically stabilize a periodic walking gait. A polynomial function that
keeps the motion of CoM continuous is used considering the following constraints:

zc(0) = z+
c ; zc(1) = z0;

żc(0) = żc
+; żc(1) = vm.

(3.17)

where vm represents the desired vertical CoM velocity before the transition of steps. The
polynomial function is adapted at each step based on the measured values of z+

c and
żc

+. The oscillations are chosen such that the final velocity for each step is downward i.e.
vm < 0.

3.4 Periodic gait of VLIP

For a 3D VLIP, the change of support is characterized by a change of the point where
the angular momentum is calculated, thus we have [10]:

σ
+
X = σ−X −Dżc−

σ+
Y = −σ−Y +Dżc

−
(3.18)

As the vertical velocity of the CoM right before the change of support is downward,
it implies that the angular momenta σX and σY decrease at the change of support. In
order to obtain a periodic motion, these angular momenta must therefore increase during
the stance phase, and thus it is necessary to slightly shift the relative position of the
support leg and the CoM. The position of the CoM at the beginning of the step is then
written as X+ = −1/2 +DS, Y + = 1/2−DD and at the end of the step X− = 1/2 +DS,
Y − = 1/2 +DD, where DS = X++X−

2 ≥ 0 and DD = Y −−Y +

2 are the shifts along x and y
axes, as shown in Figure 3.3.

Since the model of walking is a hybrid model as shown in Section 3.2.3, a classical tool
to define a periodic motion is to define the fixed point of the Poincaré return map. In this
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Figure 3.3 – The CoM trajectory of a periodic motion, and its projections in sagittal and
horizontal planes.

study, we assume that a perfect tracking of the controlled variables is obtained, and the
Poincaré section is defined by equation (3.13). In this context, since virtual constraints
expressed as functions of Φ(X, Y ) are used,the state of the robot in the Poincaré section
is reduced to [X−, Y −, Ẋ−, Ẏ −]> and the Poincaré return map of steps k and k + 1 can
be written:

[X−k+1, Y
−
k+1, Ẋ

−
k+1, Ẏ

−
k+1] = P(X−k , Y −k , Ẋ−k , Ẏ −k ). (3.19)

The periodic motion is characterized by the fixed point of the Poincaré return map
and satisfies:

[X−k , Y −k , Ẋ−k , Ẏ −k ]− P(X−k , Y −k , Ẋ−k , Ẏ −k ) = 0 (3.20)

The elements DS = X−k − 1/2, DD = Y −k − 1/2, Ẋ−k , Ẏ −k are calculated by a given
initial guess and MATLAB®function fsolve with equation (3.20). As this optimization
technique is applied for normalized parameters, the corresponding periodic steps for any
step length and step width can be deduced.
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Figure 3.4 – The minimum value of Φ̇ as a function of C and T when c = −0.8213, d =
−0.6152. The colored areas, with respect to the white areas, indicate that the phasing
variable is monotonic.

3.4.1 Monotonicity analysis of the phasing variable

In this chapter, step timing varying between 0.2 s and 0.8 s and parameter C varying
between 0.4 and 4 are analyzed for normalized step length and width. Considering the
middle values of C and T , i.e. 0.5 s and 2.2 respectively, the derivative of Φ respect to time
are calculated for any desired walking patterns. Here a walking pattern with parameters:
kS = kD = 0, z0 = 0.7 m, vm = −0.001 m/s, vs = −0.1 m/s is taken as an example.
By using the optimization criterion give by equation (3.15), the values of c and d can be
calculated:

a3 = −0.8213; a4 = −0.6152.

Thus, the other four parameters can be calculated:

a1 = 1.4667; a2 = 0.8992; a5 = −0.2568; a6 = 0.2179.

With these parameters, the minimum value of Φ̇ can be calculated for different values of
C and T .

The values of C and T must be located inside the colored area shown in Figure 3.4 to
make sure that the phasing variable is monotonic. The swing foot motion and the vertical
CoM oscillation does not determine the monotonicity of the phasing variable. Since the
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ratios of DS

S
and DD

S
are relatively small, the values of DS and DD do not determine

the monotonicity either. To avoid calculating the values of phasing variable coefficient
repeatedly, once the phasing variable coefficient is obtained, it can be used for walking
gaits with different periodic motions and different virtual constraints.

3.4.2 The influence of C on the fixed point

The trajectory of the vertical CoM motion is a function of phasing variable Φ, whose
value is affected by the value of C via solving the equation (2.45). Thus the solution of
the periodic motion is affected by the value of C. How large the influence of C on the
fixed point is studied here. The calculation is based on the parameters vm = −0.1 m/s
and z0 = 0.7 m.
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Figure 3.5 – Comparison of DS, DD, Ẋ and Ẏ for C = 0.4, C = 2 and C = 3.

The characteristics of the cyclic motion as functions of T obtained for C = 0.4, C = 2
and C = 3 respectively are shown in Figure 3.5. It can be seen from Figure 3.5 that
the influence of C on the fixed point is large but rather limited when the step duration
increases. Figure 3.6 shows the influence of C on the CoM evolution when T = 0.8 s.
The drawback is when the value of C changes, the periodic motion must be recalculated.
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Figure 3.6 – The CoM trajectories for T = 0.8 s, C = 0.4, 2 and 3.

Since the influence is limited, the fixed point obtained for one value of C can be taken as
a reference for finding the fixed point for another C.

3.5 The stability of control strategy applied to the
3D VLIP model

The stability of the walking gait based on the virtual constraints defined in Section
3.3 is now analyzed via the stability of the Poincaré return map. Since X− and Y − are
coupled via the switching manifold, the Jacobian matrix of the Poincaré return map at
the fixed point and its eigenvalues are calculated numerically in the coordinate system
[X, Ẋ, Ẏ ]>.

3.5.1 Influence of C, T , kS and kD on the stability

The values of kS and kD determine the landing position of the swing foot, and con-
sequently the initial CoM position for the next step. From the study with the 3D LIP
model [92], we have observed that theses parameters are crucial for the stability of walk-
ing, thus the effect of these parameters is now considered in the case of the 3D VLIP
model. Cases for different values of kS and kD are studied here. The other parameters
are: vm = −0.1 m/s, z0 = 0.7 m. The value vm = −0.1 m/s has been chosen according to
the human vertical oscillations of the CoM. It has to be noted that in our study the DS
phase is considered as instantaneous, while it is not instantaneous in human walk. This
assumption of instantaneous phase is made to simplify the study and due to the fact that
it increases the difficulty to have stable walking as the stability margin can be improved
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using DS phase [93]. The evaluation of a pertinent choice of vm to mimic human-like gait
is not obvious since it varies with the placement of the instantaneous DS phase in the
gait, thus we consider that a value 0 ≤ vm ≤ −0.2m/s is convenient.
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Figure 3.7 – Maximal norm of eigenvalues as functions of C and T for different kS and
kD. Contrary to the white areas, the colored areas indicate self-stabilization condition.

From Figure 3.7, it can be seen that when kS and kD are smaller, that is when the
initial CoM error in position is smaller, larger stability region can be obtained. When
kS = 1, kD = 1, the proper value of T for stability is too small, only very fast steps can be
achieved with stability. When T is relatively big, the range of C that satisfies the stability
condition for kS = 0 is larger than that for kS = 1. Thus, kS = 0 appears to be a good
choice for stable walking. In the following we will consider the case kS = 0, kD = 0, that
corresponds to placing the foot in order to nullify the initial error on the CoM position
in horizontal plane for the next step. In presence of perturbation, this choice will induce
some deviation in the lateral axis since kD = 0 will prevent the robot from having a strict
straight line motion [10]. In order to be able to avoid this lateral motion, the specific case
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kS = 0, kD = 1 is also considered for the following sections where the influence of the
choice of vm is considered.

3.5.2 Influence of C, T and vm on the stability

To study the influence of C, T and vm on the eigenvalues, the values of z0 is taken
as constant: z0 = 0.7 m. The results of the eigenvalues as a function of C and T for
vm = −0.001 m/s, vm = −0.01 m/s, vm = −0.1 m/s and vm = −0.2 m/s are calculated
for the cases kS = 0, kD = 0 (shown in Figure 3.8) and kS = 0, kD = 1 (shown in Figure
3.9).
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Figure 3.8 – Maximal norm of eigenvalues as functions of C and T for different vm when
kS = 0, kD = 0. Contrary to the white areas, the colored areas indicate self-stabilization
condition.

It can be seen from Figures 3.8 and 3.9 that with a negative vertical CoM velocity
at transition and proper choice of C and T , it is possible to obtain eigenvalues smaller
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Figure 3.9 – Maximal norm of eigenvalues as functions of C and T for different vm when
kS = 0, kD = 1. Contrary to the white areas, the colored areas indicate self-stabilization
condition.

than one, i.e. CoM oscillation can transfer a self-synchronized walking to a self-stabilized
walking. The bigger the magnitude of vm, the smaller the eigenvalue for a proper choice
of C and T , which generally means faster convergence. For the case kS = 0, kD = 1, along
with the increase of vm, the area of proper T and C that satisfies the stability condition will
decrease. When kS = 0, kD = 0, the eigenvalues are smaller than the case kS = 0, kD = 1,
but the range of proper C is smaller when T is big. To obtain self-stabilization, the value
of vm must be chosen cautiously according to the desired step timing or walking velocity.

Note that C is defined for normalized step length and width. The proper value of C
for real step length and width is proportional to the ratio of S and D, i.e.

C ′ = C · S
D
. (3.21)
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3.5.3 Simulations

To test the robustness and self-stabilization of the walking algorithm, simulations for
kS = 0, kD = 0 and kS = 0, kD = 1 are made. The step length and width S = 0.3 m,
D = 0.15 m are taken, while the desired height and vertical velocity of the CoM at the
end of a step for a periodic motion are: z0 = 0.7 m and vm = −0.1 m/s respectively. When
T ∗ = 0.6 s, according to the results shown in Figures 3.8c and 3.9c, C1 = 1.2 and C2 = 2.5
are proper values for obtaining self-stabilization when kS = 0, kD = 0 and kS = 0, kD = 1
respectively. Thus, C ′1 = 2.4, C ′2 = 5. When the key parameters describing the walking are
chosen, the virtual constraints can be defined (see Section 3.3) and the periodic motion
can be calculated (see Section 3.4).

In the simulations, we integrate a starting and stopping configuration where the robot
is assumed to be in double support and to have a rest configuration. For the first step, the
CoM of the VLIP starts from a position close to the future stance foot with a zero velocity,
and for the last step, the CoM stops at a position close to the previous stance foot. As for
the first and the last steps, the motion of the CoM is far from the periodic motion, the
phasing variable based on the horizontal CoM position might not be monotonic. Thus for
the starting and ending phase, controlled variables are chosen to be as functions of time.
To obtain a CoM velocity of the VLIP in horizontal plane close to the periodic one at the
end of the first step, the LIP model is used to estimate the initial CoM position for the
first step [40]:

x0 = ẋ∗

sinh(ωT ∗)ω ;

y0 = ẏ∗

sinh(ωT ∗)ω

(3.22)

where ω =
√
g/zc characterizes the LIP. With the same initial CoM position, at the end

of the first step, the CoM of the VLIP will end up with smaller velocity along x axis than
the LIP. When the velocity is too small and is outside of the basin of attraction, the robot
will fall down after several steps. To increase the safety margin, the maximum CoM height
of the VLIP is taken when calculating x0 and y0. Thus, the obtained initial position is
[x0; y0] = [0.0407; 0.0133] m. At the last step, an optimization method to minimize the
CoM velocity is applied so that the CoM will stop to rest.

As shown in Figure 3.10, for the case when kS = 0, kD = 0, the CoM of the pendulum
starts from a position close to the stance foot with a zero velocity. The red asterisks
represent the CoM positions at transition. It can be seen in Figure 3.10 that these asterisks
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Figure 3.10 – The projection of the VLIP motion in horizontal plane for 25 steps when
kS = 0, kD = 0. The black curves represent the CoM evolution, the blue circles represent
the stance foot placements, and the blue lines represent the switching manifold.

do not have the same value of y at transition during the periodic motion due to the
existence of DD. A change of the landing position of the swing foot along y axis can be
observed. This is due to the fact that the landing position strategy consists to nullify
the initial CoM position error. From Figure 3.11, it can be seen that after the first step,
the system has a state different from that of the periodic motion, and then converges
asymptotically to the periodic motion for the following steps, thus self-stabilization is
obtained. For the case when kS = 0, kD = 1, similar results are obtained, as shown in
Figures 3.12 and 3.13. In this case, except for the first and the last steps which use a
different landing strategy, the landing positions of the swing foot stay in a straight line
i.e. the step width is constant. Faster convergence can be observed for the case kS = 0,
kD = 0, which corresponds to the results shown in Figure 3.7. It can also be observed for
both cases, the position converges faster than the velocity.

3.6 Change of the walking velocity

Due to the self-stabilization property of the control approach based on virtual con-
straints, different reference motions correspond to different walking velocities. When the
humanoid has to adapt its walking velocity, the virtual constraints have to be changed.
This can be done for example by inclining forward the torso to increase the walking veloc-
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ẋ
[m

/s
]

the real value

the desired value

0 5 10 15 20 25

step

-0.1

0

0.1

0.2

0.3

ẏ
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Figure 3.11 – CoM position and velocity evolutions for 25 steps when kS = 0, kD = 0 in
the local reference frame.

ity [6]. In this section we explore the possibility to be able to adapt the walking velocity
without recomputing new virtual constraints but only based on a feedback on the current
walking speed. Different from the method proposed by Apostolopoulos et el. [94], the
complex procedure of calculating the new periodic motion is unnecessary in this work.

It has been shown in Chapter 2 that the feedback of the CoM velocity along sagittal
axis can provide self-stabilization for a LIP model. How this feedback affects the stability
of a VLIP model is discussed here. By introducing the feedback of the walking speed, a
new switching manifold was proposed:

Sv = {(X, Y, z)|(X −X∗− − l) + C(Y − Y ∗−) = 0}. (3.23)

As shown in Figure 3.14, the new switching manifold Sv is a surface with an offset l
from the switching manifold proposed in Section 3.3.1 along x axis. The offset is defined
as l = kv(Ẋ∗+ − Ẋ+), where Ẋ+ is the CoM velocity along x axis at the beginning of
the current step. It allows to adjust the position of the switching manifold according to
the velocity feedback of the CoM for each step. kv is a parameter that must be chosen
carefully to satisfy the stability condition.
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Figure 3.12 – The projection of the VLIP motion in horizontal plane for 40 steps when
kS = 0, kD = 1. The black curves represent the CoM evolution, the blue circles represent
the stance foot placements, and the blue lines represent the switching manifold.

3.6.1 Influence of C, kv and vm on the stability

Here, T ∗ = 0.6 s is taken and eigenvalues are calculated as functions of C and kv

for vm = 0 m/s and vm = −0.1 m/s. The results of two cases kS = 0, kD = 0 and
kS = 0, kD = 1 are shown in Figures 3.15 and 3.16 respectively.

It can be seen from Figures 3.15a and 3.16a that for a LIP model (corresponding to
the case vm = 0), stability is obtained only for positive value of kv. Contrary to this, it
can been seen from Figures 3.15b and 3.16b that when kv = 0, the eigenvalues are smaller
than one, which means that the vertical oscillation of the CoM is enough to guarantee
convergence to a periodic gait. From Figure 3.15b, it can be seen that a positive value of
kv helps to decrease the amplitude of the eigenvalue when kS = 0, kD = 0, while the effect
is not so obvious when kS = 0, kD = 1 as shown in Figure 3.16b. However, for both cases,
a feedback on the CoM velocity to define the switching manifold is useful if a specific
walking velocity is desired.

3.6.2 Simulations

This section illustrates the change of switching manifold to control the walking velocity
of the robot along the axis x. The same virtual constraints are used for all the simulations
with desired velocities Ẋ∗+ and Ẋ∗+ + ∆Ẋ, where ∆Ẋ represents the desired increase of
the CoM velocity along x axis.

81



Partie , Chapter 3 – Self-stability of the 3D VLIP model

0 10 20 30 40

step

-0.1

0

0.1

0.2

x
[m

]
the real value

the desired value

0 10 20 30 40

step

0

0.02

0.04

0.06

0.08

y
[m

]

the real value

the desired value

0 10 20 30 40

step

0

0.5

1

ẋ
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Figure 3.13 – CoM position and velocity evolutions for 40 steps when kS = 0, kD = 1 in
the local reference frame.

Since the periodic motions for different velocities correspond to different X∗− and
Y ∗−, these values corresponding to Ẋ∗++∆Ẋ are unknown. The equation of the switching
manifold (3.23) is conserved and not adapted to the desired velocity, thus the walk will not
converge to the cyclic position nor to the desired velocity. In order to compensate the static
error, an integration term of the velocity error is added into the offset l, which gives l =
kv(Ẋ∗+−Ẋ+)+kI

k∑
i=1

(Ẋ∗+i −Ẋ+
i ), where k is number of the current step. The introduction

of kv and kI allows the CoM to converge to a new periodic motion without defining
explicitly the new periodic gait. While the desired CoM velocity along x axis increases
(or decreases), its velocity along y axis will decrease (or increase) correspondingly.

The same parameters as in Section 3.5.3 are taken: S = 0.3 m, D = 0.15 m, T ∗ = 0.6 s,
z0 = 0.7 m and vm = −0.1 m/s. The values of kv and C are chosen to be kv = 0.08, C = 1.1
for the case kS = 0, kD = 0 and kv = 0.03, C = 2.5 for the case kS = 0, kD = 1 respectively
based the results from Figures 3.15b and 3.16b. In order to show the convergence from
one periodic motion to another one, an optimization method is used to determine the
initial CoM position at the starting phase so that the state of the first step can be more
close to the periodic motion. This is not discussed in detail because it does not affect the
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Figure 3.14 – The step finishes when the CoM crosses the switching manifold, which is
represented by the darker gray surface. The curved dashed line is the periodic motion,
and the curved solid line is the CoM motion under an initial position perturbation.

stability of the system. At the 10th step, the desired CoM velocity along x axis ẋ∗+ is
increased by 0.2 m/s.

It can be seen from Figures 3.17 and 3.19 that along with the increase of walking speed,
the amplitude of the lateral CoM oscillations is reduced. For the case kS = 0, kD = 0
(shown in Figure 3.17), a large change of position along y axis can be also observed,
while for the case kS = 0, kD = 1 (shown in Figure 3.19), the robot keeps walking along a
straight line despite of the change of speed. From Figures 3.18 and 3.20, it can be observed
that due to the change of the desired velocity from the 10th step, the CoM velocity along
x axis of the robot is drifted from its original velocity, and eventually converges to the
desired velocity. Faster convergence can be observed for the case kS = 0, kD = 0, which
corresponds to the results shown in Figures 3.15 and 3.16.

3.7 Conclusion

In this chapter, the model of the robot is simplified as a 3D VLIP model in order to
describe a walking with a limited number of parameters and to highlight the parameters
contributing to the stability of walking. The control law is based on virtual constraints. A
switching manifold that decides when to switch the stance foot has been proposed. When
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Figure 3.15 – Maximal norm of eigenvalues for different vm as a function of C and kv
when kS = 0, kD = 0.

the switching manifold is a linear combination of the CoM position in horizontal plane,
self-stabilization can be obtained when the vertical velocity of the CoM is negative, i.e.
pointing downward. With proper choice of the values of the switching manifold parame-
ters, the walk will asymptotically converge to the periodic motion, thus self-stabilization
is obtained. The key parameters are : the vertical velocity of the CoM at the transition
between steps that must be negative; the position of the foot at the transition that must
reduce the position error of the CoM in the horizontal plane for the next step at least in
sagittal plane; the orientation of the switching manifold that defines the position of the
CoM in horizontal plane at transition between steps. Meanwhile, this chapter provided
a simple way to define the trajectories of the controlled variables, such as the vertical
CoM oscillation and the swing foot motion, by proposing a phasing variable that contains
the free variables X and Y . Moreover, when a PI feedback of the CoM velocity along
sagittal axis is taken into account, the walking speed of the robot can converge to another
periodic motion with a different walking speed. This provides a novel approach for finding
a periodic motion of bipedal robots without using an explicit method.
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Figure 3.16 – Maximal norm of eigenvalues for different vm as a function of C and kv
when kS = 0, kD = 1.
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Figure 3.17 – The projection of the VLIP motion in horizontal plane for 40 steps when
kS = 0, kD = 0. The black curves represent the CoM evolution, the blue circles represent
the stance foot placements, and the blue lines represent the switching manifold.
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Figure 3.18 – CoM position and velocity evolutions for 40 steps when kS = 0, kD = 0 in
the local reference frame.

0 5 10 15

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 3.19 – The projection of the VLIP motion in horizontal plane for 50 steps when
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the stance foot placements, and the blue lines represent the switching manifold.
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Chapter 4

THE ESSENTIAL MODEL

4.1 Introduction

In the previous chapters, simplified models are used, because they show some essential
factors of the walking, i.e. the equilibrium of the robot. However, with simplified models,
some important dynamical effects are neglected. When replicating the walking gaits ob-
tained for simplified models on the complete model of humanoid robots, the assumption
that the ZMP stays inside of the convex hull of support may not be ensured for a fully
actuated robot. In this chapter, the Essential Model is proposed, which is a novel model
for walking that has the same dimension as the 3D LIP model but considers the complete
dynamics of the humanoid. It can be written based on the internal states of the robot
and possible external information, thereby generating models for different purposes. A
particular case is when the motions of the robot are expressed as functions of a phasing
variable based on the horizontal CoM position. This case is especially interesting in the
context of this thesis. By considering this case, the Essential Model is then compared
with the 3D LIP model by performing the same motion task. The proposed Essential
Model is able to generate walking gaits which ensure that the ZMP is kept in an ex-
pected position or trajectory. Moreover, impacts between the swing foot and the ground
can be considered to compute the periodic walking gaits. In the end of this chapter, the
virtual constraints based walking algorithm proposed in the previous chapters is applied
on this Essential Model to show the advantages of this model by performing numerical
simulations of walking gaits for the humanoid robots Romeo and TALOS.

This chapter is structured as below: Section 4.2 introduces the hybrid dynamic model;
Section 4.3 presents the procedure of obtaining the proposed Essential Model in detail.
The connection between the Essential Model and the complete model in order to deduce
the desired joint motions and the corresponding torques is also detailed in this section;
Section 4.4 presents a brief discussion on generation of periodic walking patterns; Different
cases showing the application of Essential Model on humanoid robots Romeo and TALOS
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are shown in Section 4.5 and Section 4.6. Finally, conclusions of this chapter is discussed
in Section 4.7.

4.2 The hybrid dynamic model

One step of the humanoid robot’s walk contains two phases: the SS phase and the DS
phase. This DS phase is assumed to be instantaneous. Continuous differential equations
and discrete components are used to describe the motion of the robot and the transition
between steps during the SS phase and the DS phase.

4.2.1 The continuous phase

The motion of biped walking during the single support phase is governed by nonlinear
functions. For a robot with N joints, the dynamic model during the SS phase can be
defined as follows:

D(q)q̈ +H(q, q̇) = Bu (4.1)

where q ∈ RN denotes the joint coordinates for a humanoid robot. For Romeo, N = 31
and for TALOS, N = 30. D(q) ∈ RN×N is the inertia matrix, H(q, q̇) ∈ RN groups the
centrifugal, Coriolis and gravity terms, B ∈ RN×r is the input matrix and u ∈ Rr is the
vector of torques applied by actuators at each joint, where r represents the number of
actuators. For a fully actuated humanoid robot, we have r = N and B = IN×N .

Let x = [qT, q̇T]T represent the states of the robot, and the state-variable model can
be written as:

ẋ = f(x) + g(x)u (4.2)

This modeling assumes that the robot has a full contact between the sole of the foot
and a rigid floor. The joints are defined assuming that the reference frame is fixed at the
stance foot and thus the reaction force applied by the ground on the stance foot does not
produce work and does not appear in the model.

4.2.2 Transition between steps

It is assumed that the local frame is always attached at the stance foot pointing
towards the CoM of the robot, and the stance foot changes its role instantaneously when
the swing foot touches the ground. Along with the change of the stance foot, the position
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and direction of the local frame is changed in the world frame. The transition contains
two phases: 1) the change of the joint rate caused by the impact between the swing foot
and the ground; 2) the relabeling of joints due to the change of the local frame.

Impact model

Different from the previous chapters, the dynamic characteristics of the swing leg must
be considered in the complete model of the robot, thus the impact model presented in
Ref. [6] is discussed when the landing velocity of the swing foot is not zero. The impact is
modeled as a contact between two rigid bodies, and the following hypotheses are made:

— HI1) an impact results from the contact between the swing foot and the ground;
— HI2) the impact is instantaneous;
— HI3) the impact results in no rebound and no slipping of the swing leg;
— HI4) at the moment of impact, the stance leg lifts from the ground without inter-

action;
— HI5) the externally applied forces during the impact can be represented by im-

pulses;
— HI6) the actuators cannot generate impulses and hence can be ignored during

impact;
— HI7) the impulsive forces may result in an instantaneous change in the robot’s

velocities, but there is no instantaneous change in the configuration.
Considering the reaction forces at the swing foot, the development of the impact model

requires (N + 6)-DoF model of the robot. A generalized set of coordinates qg = [q; xs;φs]
is considered, xs = [xs; ys; zs] and φe = [ψs; θs;ϕs] are the position and orientation of the
swing foot. Using qg in the method of Lagrange results in:

Dg(qg)q̈g +H(qg, q̇g) = Bgu+ δFext (4.3)

where δFext represents the vector of the external forces acting on the robot due to the
contact between the foot and the ground, and Dg is the inertia matrix associated to the
generalized coordinates.

Here we use ‘−’ to denote the moment just before impact and ‘+∗’ to denote the
moment just after impact but before the relabeling. Integrating equation (4.3) from the
instant right before and after the impact obtains [95]:

Dg(q+∗
g )q̇+∗

g −Dg(q−g )q̇−g = Fext, (4.4)
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where Fext :=
∫ t+
t− δFext(τ)dτ represents the integration of the impulsive contact force

over the impact duration. According to hypothesis HI7, the impact does not change the
robot’s position. Since the walking gait is supposed to be symmetric, we have q+∗

g = q−g ,
thus Dg(q+∗

g ) = Dg(q−g ).
The external force can be calculated as:

Fext = Js(qg)>Fimp (4.5)

where Js(qg) is the Jacobian of the swing foot. Fimp is the impact intensity and remains
unknown. The hypothesis HI3 gives:

Js(q+∗
g )q̇+∗

g = 0 (4.6)

Combining equation (4.4) and (4.6) yields:
Dg(q+∗

g ) (−Js(q+∗
g ))>

Js(q+∗
g ) 06×6

 q̇+∗
g

Fimp

 =
Dg(q−g )q̇−g

06×1

 (4.7)

Equation (4.7) can be solved using the Schur complement [96], giving the expression
of the joint velocities after the impact as function of the joint velocities before the impact

q̇+∗
g = (I(N+6)×(N+6) −D−1

g J>s (JsD>g J>s )−1)Jsq̇−g (4.8)

The first N rows of equation (4.8) give the post impact map of the joint velocities:

q̇+∗ = ∆(q)q̇− (4.9)

where ∆(q) is a matrix that relates the joint velocities after and before the impact. Notice
that if there is no impact at transition, i.e. when the landing velocity of the swing foot is
zero, ∆(q) = IN×N .

Relabeling

Since the y axis of the local frame is inverted and the numbering of the joints starts
from the local frame, the sign conventions for all angles that are not in the sagittal
plane are flipped and the joints need to be relabeled. Define the robot joints for the new
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coordinates by:
q+ = Eq−. (4.10)

The superscripts + and − represent the instants just after and just before the transition,
and the matrix E defines the interchange of joint positions. With equation (4.9), the
impact map of the joint velocities is given by:

q̇+ = E∆(q)q̇− (4.11)

4.2.3 The hybrid model

At transition, the height of the swing foot is zero. Thus, a switching manifold can be
defined:

S := {x|zs = 0} (4.12)

where zs represents the height of the swing foot.
By combining the continuous model (4.2) and the transition models (4.10) and (4.11),

the hybrid dynamic model of the robot can be obtained:

Σ :

ẋ = f(x) + g(x)u, x− /∈ S

x+ = ∆x(x−), x− ∈ S
(4.13)

where ∆x(x−) = [(Eq−)T, (E∆(q)q̇−)T]T.

4.2.4 The complete dynamic model

The dynamic model (4.1) considers the inertial frame linked to the stance foot. The
ground reaction force does not appear in this equation since parametrization with implicit
contact is used. Combining the ground reaction wrench [F>0 ,M>

0 ]> with the dynamic
equation (4.1) yields the dynamic model in SS phase [65]:


F0

M0

u

 =


DF (q)
DM(q)
D(q)

 q̈ +


HF (q, q̇)
HM(q, q̇)
H(q, q̇)

 := NE(q, q̇, q̈) (4.14)

where F0 = [Fx, Fy, Fz]> is a force vector generated in world frame Σ0;M0 = [Mx,My,Mz]>

is a torque vector generated in world frame Σ0; DF ∈ R3×N , DM ∈ R3×N , HF ∈ R3×1, and
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HM ∈ R3×1 are matrices and vectors used to compute the reaction wrench. The first six
lines correspond to the global equilibrium of the robot, thus the centroidal equation [40].
The last N lines of the model correspond to equation (4.1), while the first six lines give
the reaction force acting on the stance foot. Rearranging equation (4.14) yields:


F0

M0

u

 = De(q)q̈ +He(q, q̇) (4.15)

where De = [D>F , D>M , D>]> ∈ R(N+6)×N , and He = [H>F , H>M , H>]> ∈ R(N+6)×1.

4.3 The proposed Essential Model

The main objective of the proposed Essential Model is to link the horizontal position
of the CoM and ZMP or more precisely second derivative of the horizontal position of
the CoM and ZMP as for the 3D LIP model. It has the same dimension as the 3D LIP
model but considers the complete dynamics of the humanoid robot, and no approximation
is made. The motion of the robot is coordinated based on some internal and/or external
information. Furthermore, this Essential Model can be used to generate walking gaits that
consider impacts with the ground and still keep the ZMP in a desired location as will be
shown in further sections.

4.3.1 Development of the Essential Model

In this chapter, the horizontal CoM position xc and yc are chosen as free variables
or internal variables, i.e. qf = [xc, yc]>. With the Essential Model, it is desired to obtain
the dynamics of the CoM in the horizontal plane by imposing the ZMP location. A fully-
actuated robot model is considered here. At the ZMP, the reaction force does not produce
any moment in the horizontal direction, i.e.

pdxFz +My = 0

pdyFz −Mx = 0
(4.16)

where pdx and pdy are the expected coordinates of the ZMP.
Usually, it is difficult to directly propose some trajectories for the joints that produce a
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desired evolution of the ZMP, i.e. fulfil the conditions (4.16). Therefore, points of interest of
the robot can be chosen as controlled variables qc in order to define the desired trajectories
for them. These points of interest can be the robot’s extremities such as the hands or the
swing foot, or directly the joints.

A generalized variable ξ ∈ RN is defined here, which is a vector that has the same
dimension as q, containing all the coordinates of the chosen points of interest, such as the
position and orientation of the swing foot, the orientation of the torso, the joints of the
arms, etc. Since the values of the internal states qf are crucial to develop the Essential
Model, they must be included as points of interest. Therefore, only N − 2 controlled
outputs qc(q) can be chosen. Thus, vector ξ will be composed of the controlled variables
qc(q) and the two internal non-controlled variables qf , i.e.

ξ =
 qc(q)
qf (q)

 =


qc(q)
xc(q)
yc(q)

 := fξ(q). (4.17)

Roughly speaking, this model can be viewed as a geometric model for the robot that
gives the positions of points of interest and horizontal position of the CoM as functions
of the joint coordinates.

On the other hand, a desired trajectory for the N −2 controlled variables is defined as
functions of Φ i.e. qdc (Φ), where Φ is a phasing variable based on qf or possible external
information. When trajectories qdc (Φ) are defined, the output vector is created

yout = qc(q)− qdc (Φ). (4.18)

Let us call ξd the vector of desired generalized variables defined by

ξd =
 qdc (Φ)

qf

 =


qdc (Φ)
xc

yc

 := fd(ϑ), (4.19)

where ϑ = [xc, yc, φ]> ∈ Rm+2 is a generalized vector. Here, φ ∈ Rm is a possible external
variable vector with m ≥ 0. For example, when the external variable is time, i.e. φ = t,
then m = 1. If the external variable vector φ is used for modifying the evolution of the
joints, the time derivatives, i.e. φ̇ and φ̈ must be known.

When the system achieves the desired trajectory qdc (Φ), i.e. yout ≡ 0, the internal
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dynamics due to the non-controlled variables is the only dynamics that remains and the
system is said to evolve on the zero dynamics [97]. Recalling that the simplification of the
Essential Model is based on the assumption of a perfect tracking, we have ξ ≡ ξd, thus
the position of the controlled variables qc(q) can be deduced by just knowing the states
ϑ.

In order to compute the joint motions, the first and second time derivatives of equation
(4.17) are needed, i.e

ξ̇ = Jξ(q)q̇ (4.20)

and

ξ̈ = Jξ(q)q̈ + J̇ξ(q)q̇ (4.21)

where Jξ(q) = ∂f(q)
∂q
∈ RN×N .

From the first and second time derivatives of equation (4.19) we have

ξ̇d = ∂fd(ϑ)
∂ϑ

ϑ̇ = Jd(ϑ)ϑ̇ (4.22)

and

ξ̈d = Jd(ϑ)ϑ̈+ J̇d(ϑ)ϑ̇ (4.23)

where Jd(ϑ) ∈ RN×(m+2) is defined as

Jd(ϑ) =


∂qd

c (Φ)
∂x

∂qd
c (Φ)
∂y

∂qd
c (Φ)
∂φ1

· · · ∂qd
c (Φ)
∂φm

1 0 0 · · · 0
0 1 0 · · · 0

 .

It is assumed that yout ≡ 0, ẏout ≡ 0 and ÿout ≡ 0. So, by relating equations (4.17) and
(4.19), (4.20) and (4.22), and (4.21) and (4.23) we have

fxi(q) = fd(ϑ) (4.24)

Jξ(qd(ϑ))q̇ = Jd(ϑ)ϑ̇ (4.25)

Jξ(qd(ϑ))q̈ + J̇ξ(qd(ϑ))q̇ = Jd(ϑ)ϑ̈+ J̇d(ϑ)ϑ̇ (4.26)
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Thus, joint variables q, q̇ and q̈ can be deduced from the state ϑ and its time derivatives
ϑ̇ and ϑ̈, as

q=f−1
ξ (fd(ϑ)) (4.27)

q̇=J−1
ξ (ϑ)Jd(ϑ)ϑ̇ (4.28)

q̈=J−1
ξ (ϑ)

[
Jd(ϑ)ϑ̈+ J̇d(ϑ, ϑ̇)ϑ̇− J̇ξ(ϑ, ϑ̇)J−1

ξ (ϑ)Jd(ϑ)ϑ̇
]

(4.29)

where Jξ is invertible by assuming a convenient choice of qdc , and (4.29) comes from solving
q̈ in (4.26) and using (4.28).

Thus, by substituting (4.29) into (4.15) we have:

NE = DeJ
−1
ξ (ϑ)

[
Jd(ϑ)ϑ̈+ J̇d(ϑ, ϑ̇)ϑ̇− J̇ξ(ϑ, ϑ̇)J−1

ξ (ϑ)Jd(ϑ)ϑ̇
]

+He (4.30)

where NE = [F0, M0, u]>, and then rearrange equation (4.30), we have:

NE = Dϑϑ̈+Hϑ (4.31)

where Dϑ(ϑ) ∈ R(N+6)×(m+2) and Hϑ(ϑ, ϑ̇) ∈ RN+6 are given by

Dϑ = DeJ
−1
ξ Jd

Hϑ = De[J−1
ξ J̇dϑ̇− J−1

ξ J̇ξJ
−1
ξ Jdϑ̇] +He.

Notice that −J−1
ξ J̇ξJ

−1
ξ = d

dt

(
J−1
ξ

)
1.

Equation (4.31) can be split into

NE = Dϑ(:, 1)ẍc +Dϑ(:, 2)ÿc +Dϑ(:, 3)φ̈1 + . . .+Dϑ(:,m)φ̈m +Hϑ. (4.32)

1. From the fact that d
dt

(
JξJ

−1
ξ

)
= 0N×N , it can be expanded it as J̇ξJ

−1
ξ + Jξ

d
dt

(
J−1
ξ

)
= 0 and the

equivalence is obtained.
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By taking into account rows 3 to 5 of equation (4.32) we have that

Fz =Dϑ(3, 1)ẍc +Dϑ(3, 2)ÿc +Dϑ(3, 3)φ̈1

+ . . .+Dϑ(3,m)φ̈m +Hϑ(3)

Mx =Dϑ(4, 1)ẍc +Dϑ(4, 2)ÿc +Dϑ(4, 3)φ̈1

+ . . .+Dϑ(4,m)φ̈m +Hϑ(4)

My =Dϑ(5, 1)ẍc +Dϑ(5, 2)ÿc +Dϑ(5, 3)φ̈1

+ . . .+Dϑ(5,m)φ̈m +Hϑ(5)

(4.33)

In order to obtain the desired position of the ZMP, equations (4.16) must be satisfied.
Then, by using (4.33) into (4.16) we get

pdx
[
Dϑ(3, 1)ẍc +Dϑ(3, 2)ÿc +Dϑ(3, 3)φ̈1 + · · ·+Dϑ(3,m)φ̈m +Hϑ(3)

]
+[

Dϑ(5, 1)ẍc +Dϑ(5, 2)ÿc +Dϑ(5, 3)φ̈1 + · · ·+Dϑ(5,m)φ̈m +Hϑ(5)
]

= 0
(4.34)

pdy
[
Dϑ(3, 1)ẍc +Dϑ(3, 2)ÿc +Dϑ(3, 3)φ̈1 + · · ·+Dϑ(3,m)φ̈m +Hϑ(3)

]
−[

Dϑ(4, 1)ẍc +Dϑ(4, 2)ÿc +Dϑ(4, 3)φ̈1 + · · ·+Dϑ(4,m)φ̈m +Hϑ(4)
]

= 0.
(4.35)

Equations (4.34) and (4.35) can be arranged by splitting the internal states and ex-
ternal variables, such as

Df (ϑ, p)q̈f +Dφ(ϑ, p)φ̈+HR(ϑ, ϑ̇) = 0, (4.36)

where Df (ϑ, p) ∈ R2×2, Dφ(ϑ, p) ∈ R2×m and HR(ϑ, ϑ̇) ∈ R2 are given by

Df =
 pdxDϑ(3, 1) +Dϑ(5, 1) px,dDϑ(3, 2) +Dϑ(5, 2)
pdyDϑ(3, 1) +Dϑ(4, 1) pdyAϑ(3, 2) +Dϑ(4, 2)


Dφ =

 pdxDϑ(3, 3) +Dϑ(5, 3) · · · pdxDϑ(3,m) +Dϑ(5,m)
pdyDϑ(3, 3) +Dϑ(4, 3) · · · pdyDϑ(3,m) +Dϑ(4,m)


HR =

 pdxHϑ(3) +Hϑ(5)
pdyHϑ(3) +Hϑ(4)

 .

It has been checked numerically that matrix Df is invertible, and from equation (4.36)
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Figure 4.1 – A summary of the development of the Essential Model.

the Essential Model is computed as

q̈f = −D−1
f

(
Dφφ̈+HR

)
(4.37)

or well  ẍc

ÿc

 = fϑ(ϑ, ϑ̇, φ̈, pdx, pdy). (4.38)

In this way, the dynamic behavior of the humanoid robot with given qdc (ϑ) that keeps
the ZMP in a desired position (pdx, pdy) during all the gait is described by the Essential
Model (4.38), which gives the convenient evolution of the horizontal acceleration of the
CoM, and by integration its horizontal velocity and position. A summary of this procedure
is shown in Figure 4.1. Note that in the Essential Model, the simplification of the model is
not based on any approximation of the dynamics, but on the assumption that the reference
trajectories of the joints are perfectly tracked. This model can be designed as a function
of internal states and possible external variables. In all cases, the Essential Model defines
the acceleration of the non-controlled variables (in this chapter, the horizontal position of
the CoM), as a function of the desired position of the ZMP and the desired configuration
of the robot. Thus, the dimension of the system is four, i.e. the internal variables qf and
q̇f . In the following sections, simple cases of the application of this Essential Model will
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be shown, namely, for virtual constraints defined as a phasing variable based on qf (the
horizontal CoM position) and when the time is included as external information (φ = t).
Let us remark that not only time but other kinds of external variables can be used as
external information, such as the CoM of another biped robot, the CoM of a human, etc.
However, this study is out of the scope here but it can be performed in the future.

4.3.2 Essential model based only on virtual constraints.

The hypothesis for the development of this model is the assumption that the motion of
the joints is defined as a function of a phasing variable based on the internal information
Φ = Φ(qf ), thus we have ϑ = [xc; yc]. Since φ is not considered the term Dφφ̈ on the
Essential Model (4.37) vanishes and the model is reduced to

 ẍc

ÿc

 = −D−1
f HR = fx,y(xc, yc, ẋc, ẏc, pdx, pdy) (4.39)

This particular model can be used to perform walking gaits by making the robot walk only
by considering its state. This description of the gait is based on virtual constraints and it
has been efficiently used in numerous studies such as [8,10,68,98,99], among others. Notice
that, trajectories based on the internal states of the robot are more natural since the robot
will not try to catch a time varying function after some perturbation. Nevertheless, the
desired step time lapse is not ensured.

4.3.3 Essential model based on its CoM and time

The hypothesis for the development of this model is the assumption that the motion
of the controlled variable qc is defined as a function of a phasing variable based on time
i.e. Φ = Φ(t), thus we have ϑ = [xc; yc; t]. Notice that by only including the time, φ̇ = 1
and φ̈ = 0. Thus as the previous case, term Dφφ̈ on the Essential Model (4.37) vanishes
and the model is reduced to ẍc

ÿc

 = −D−1
f HR = fx,y,t(t, xc, yc, ẋc, ẏc, pdx, pdy) (4.40)

This particular model can be used to develop walking gaits that ensure that each step is
performed at the desired step time lapse, as it is done in many works such as in [2,100–102].
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In the following section this model will be compared with the 3D LIP model to highlight
its performance and effectiveness.

4.4 Generation of periodic walking patterns

In this section, the generation of periodic walking patterns is studied. The studied
gaits are composed of a SS phase and an instantaneous DS phase.

4.4.1 The evolution of the CoM

Due to the mass distribution, and to the eventual loss of angular momentum at impact,
a periodic motion of the CoM by considering the complete model is not necessarily a
symmetric motion along the sagittal and frontal planes [10]. Therefore, the periodic motion
characterized by the state of the CoM at the end of a step is defined as

x∗−c = [x∗−c , y∗−c , ẋ∗−c , ẏ∗−c ]> (4.41)

with

x∗−c = S

2 +Dx,

y∗−c = D

2 +Dy,

where S is the step length, D the step width, and Dx and Dy are small displacements of
the CoM in X and Y directions.

By knowing the states of the CoM before impact x∗−c , the joint velocities q̇∗− are
computed by using (4.28), with ϑ∗− = [x∗−c , y∗−c , φ∗−>]> and ϑ̇∗− = [ẋ∗−c , ẏ∗−c , φ̇∗−>]>

where φ∗− and φ̇∗− are the external information at the end of the step. For instance
for the case when φ = t, φ∗− = T and φ̇∗− = 1. Later, by using the transition model
(4.11) the joint velocities after impact q̇+ are obtained. Then, the initial velocities of
the generalized variables after the transition ξ̇(q+, q̇+) are deduced by means of (4.20),
namely, the initial velocities of the controlled variables and the CoM are obtained, i.e.
q̇c(q+, q̇+) and (ẋ∗+c , ẏ∗+c ). Combined with the transition model (4.10) the initial states
of the CoM at the beginning of a periodic step x∗+c (q+, q̇+) = [x∗+c , y∗+c , ẋ∗+c , ẏ∗+c ]> are
deduced. During the transition, the configuration of the robot is constant but the stance
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leg changes, therefore the initial position of the CoM w.r.t the new stance leg is given by

x∗+c = −S2 +Dx,

y∗+c = D

2 −Dy.

Notice that, without impact, the velocities of the CoM before and after the transition
are the same (by taking into account the change in Y direction in the new frame), i.e.
ẋ∗+c = ẋ∗−c , ẏ∗+c = −ẏ∗−c . In the simulations the periodic state is obtained numerically
such that after one cycle (i.e. an instantaneous DS phase plus a SS phase) the same state
is obtained in the case of symmetric motion on right and left legs.

4.4.2 The desired motion of the swing foot and upper body

The motion of the swing foot and upper body is defined by the desired controlled
coordinates qdc (Φ). Since the Essential Model is developed under the assumption that the
reference trajectories (4.18) are fulfilled for all the time, i.e.

yout ≡ 0, ẏout ≡ 0, ÿout ≡ 0, (4.42)

achievable desired trajectories for qdc (Φ) must be generated in so that any well-suited
control law can accomplish (4.42). Therefore, the change of velocity of the controlled
variables after impact must be taken into account to compute the desired trajectories
qdc (Φ).

The motion of the swing foot can be split in two parts: the vertical motion and the
horizontal motion. The design of the vertical trajectory is based on the goal of producing
or not an impact of the landing foot with the ground. For the horizontal motion, the
landing place to step the foot is an important issue on which the performance of the
walking gait will largely depend (see [99]).

On the other hand, several research works, as in [103, 104], have proven that the mo-
tions of the trunk and arms help to improve the walking efficiency and stability. Further-
more, some tasks that allow the robot to interact with the environment can be performed
by the arms while the robot walks. Therefore, depending on the complexity of the task
the desired upper-body motion trajectories can be defined by simple polynomials or more
complex functions.
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4.5 Case study: the humanoid robot Romeo

4.5.1 Introduction of Romeo

In this section, the complete model of the humanoid robot Romeo is considered. Figure
4.2 presents the photo, the numbers of joints and the numbers of frames of Romeo. The
height of Romeo is 1.46m and weight is 40.8kg. This robot has 31 joints, i.e. 31 DoF.
In the complete model, the mass and inertia of each link is modeled, and the actuator
inertias are also included. The reference frame is situated at the projection of the ankle
on the sole. The robot is composed of four kinematic chains:

— The left leg: frame 0 to 14;
— The head: frame 0 to 7, frame 15 to 20;
— The right arm: frame 0 to 7, frame 15, frame 21 to 28;
— The left arm: frame 0 to 7, frame 15, frame 29 to 36
For the robot Romeo, the vertical CoM motion, the swing foot, the torso and the

upper-body joints are chosen as controlled variables, i.e.

qc = [zc, xs, ys, zs, ψs, θs, ϕs, ψt, θt, ϕt, q13, ..., q31]>,

where zc is the height of the CoM of the robot, xs, ys, zs, ψs, θs, ϕs are the position and
orientation of the swing foot (roll, pitch and yaw) 1, ψt, θt, ϕt are the orientation of the
lower torso (the orientation of the hip), and q13 to q31 are the upper-body joints.

Three cases under different scenarios are simulated with the Essential Model to show
its effectiveness and advantages:

— The trajectories of the controlled variables are defined as functions of time. The ver-
tical velocity of the swing foot before landing is zero, thus no impact is involved in
this case. Fixed location of the ZMP is desired for all the steps. i.e. (pdx, pdy) = (0, 0)
with respect to Σ0. By considering a constant vertical CoM position, a comparison
with the 3D LIP model is carried out.

— Virtual constraints define the trajectories of the controlled variables qdc and an
impact of the swing foot with the ground is considered to build an Essential Model
where the ZMP is kept in the same fixed desired position as in the previous case.

— Virtual constraints define the trajectories of the controlled variables qdc and an
impact of the swing foot with the ground is considered. A different upper body

1. Roll: turn around x axis. Pitch: turn around y axis. Yaw: turn around z axis.

103



Partie , Chapter 4 – The Essential Model

Figure 4.2 – The model of humanoid robot Romeo.

motion and a desired trajectory for the ZMP are considered.

4.5.2 Relabeling of Romeo

For the humanoid robot Romeo, the leg joints for the new coordinate system are
defined by:

q+(1 : 12) = Er1q
−(1 : 12) (4.43)
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where

Er1 =



0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0



(4.44)

The torso, neck and head joints for the new coordinate system are defined by:

q+(13 : 17) = Er2q
−(13 : 17) (4.45)

where

Er2 =



−1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


(4.46)

The arm joints for the new coordinate system are defined by:

q+(18 : 31) = Er3q
−(18 : 31) (4.47)
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where

Er3 =



0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0



(4.48)

Thus the relabeling of joints is given by:

q+ = Erq
− (4.49)

where

Er =


Er1 012×5 012×14

05×12 Er2 05×14

014×12 014×5 Er3

 (4.50)

4.5.3 The desired trajectories of the controlled variables

The desired evolutions of the controlled variables are defined as functions of a phasing
variable Φ based on the internal states of the robot or time. The phasing variable Φ varies
from 0 to 1 during one step.
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The motion of CoM

The desired vertical motion of the CoM is defined by using a 5th order polynomial
function with the following boundary conditions

zdc (Φ0) = z0, zdc (Φm) = z0 + αz, zdc (Φf ) = z0 (4.51)

żdc (Φ0) = q̇c,1 żdc (Φm) = 0 żdc (Φf ) = vm

where q̇c,1(q+, q̇+) is the vertical velocity of the CoM after the transition of stance foot 2,
and Φ0 < Φm < Φf is an intermediate value which in this case is chosen as Φm = 0.6. The
values of z0, αz and vm chosen for different cases are shown in Table 4.3. Note that when
the height of the CoM is constant (Case I), the coefficients of the elements containing
the phasing variable are zero, and the polynomial function for the motion of the CoM
becomes constant.

Table 4.1 – Gait parameters for the 3D LIP and Essential models for robot Romeo

Parameter Romeo Description
[unit] Case I Case II Case III

S [m] 0.3 0.3 0.3 Step length
D [m] 0.15 0.15 0.15 Step width
vs [m/s] 0 -0.05 -0.05 Desired landing velocity
T [s] 0.5 0.6 0.6 Step time
hs [m] 0.03 0.05 0.05 Max. swing foot amplitude
ϕf,0 [deg] 0 0 0 Free foot initial rotation
ϕf,f [deg] 0 0 0 Free foot final rotation
g [m/s2] 9.81 9.81 9.81 Gravity acceleration
z0 [m] 0.65 0.6 0.6 Height of the CoM
αz [m] 0 0.03 0.03 Max. CoM amplitude
vm [m/s] 0 -0.1 -0.1 Desired vertical CoM velocity at transition

The desired motion of the swing foot

It is desired that the swing foot lands on the ground with a zero velocity or a negative
velocity. When the vertical velocity of the swing foot at landing is negative, the contact
with the ground is ensured when the swing foot touches it. A 5th order polynomial function
is used to define the vertical evolution of the swing foot, by accomplishing the following

2. q̇c,i is the i-element of the time derivative of qc which is defined at the beginning of Section 4.5.
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boundary conditions

zds (Φ0) = 0 zds (Φm) = hs zds (Φf ) = 0 (4.52)

żds (Φ0) = q̇c,4 żds (Φm) = 0 żds (Φf ) = vs

where q̇c,4(q+, q̇+) is the vertical velocity of the swing foot after impact 3.
For the horizontal motion of the swing foot, 3rd order polynomials are used with

following boundary conditions:

xds(Φ0) = xs0 xds(Φf ) = xsf

ẋds(Φ0) = q̇c,2 ẋds(Φf ) = 0 (4.53)

yds (Φ0) = ys0 yds (Φf ) = ysf

ẏds (Φ0) = q̇c,3 ẏds (Φf ) = 0

where q̇c,2(q+, q̇+) and q̇c,3(q+, q̇+) are the horizontal velocities in X and Y direction of
the swing foot respectively. The initial and final values of the swing foot [xs0; ys0] and
[xsf ; ysf ] are always measured with respect to the support foot, i.e. [xs0; ys0] = [−S;D]
and [xsf ; ysf ] = [S;D] respectively. The swing foot orientation is kept constant and parallel
to the ground all the time. The parameters for the swing foot motion are shown in Table
4.3.

The upper body motion

For the desired trajectories of the controlled variables for the upper body qdc,i with i =
8, . . . , 29, 3rd order polynomial functions are used with the following boundary conditions:

qdc,i(Φ0) = ki qdc,i(Φf ) = ki (4.54)

q̇dc,i(Φ0) = q̇c,i q̇dc,i(Φf ) = 0

where q̇c,i(q+, q̇+) is the velocity of the controlled variable i after impact, and ki is the
i-element of k whose elements are zero except for the ones defined in Table 4.4.

When the upper body is kept constant, the polynomial functions for the upper body
become constant values, as shown in Table 4.4.

3. Since there is a change of support, this velocity corresponds to the foot that was used as support
in the previous step
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Table 4.2 – Upper-body parameters for Romeo (Unit: rad)

Description Romeo
Cases I & II Case III

label k0,i k0,i kf,i
Torso yaw qdc,10 0 0.1745 -0.1745
Torso pitch qdc,9 0.08 0.08 0.08

R. shoulder pitch qdc,16 1.8 1.9199 1.4835
R. shoulder yaw qdc,17 0.2 0.2 0.2
R. elbow roll qdc,18 1.9 1.9 1.9
R. elbow yaw qdc,19 0.3 0.3491 0.7854

L. shoulder pitch qdc,23 1.8 1.9199 1.4835
L. shoulder yaw qdc,24 -0.2 -0.2 -0.2
L. elbow roll qdc,25 -1.9 -1.9 -1.9
L. elbow yaw qdc,26 -0.3 -0.7854 -0.3491

4.5.4 Case I: The Essential Model closest to the 3D LIP model

In order to show the efficiency of the Essential Model with respect to the 3D LIP
model to generate walking gaits, in this section two walking gaits obtained by using
these two models are compared. As known, the 3D LIP model only considers the global
CoM position of the robot, not its mass distribution and inertias. On the other hand, the
Essential Model takes into account the dynamic characteristics of the robot. Consequently,
in order to compare the 3D LIP model and the Essential Model under the same conditions,
it has been chosen:

— To consider a constant height of the CoM. Therefore, the gait parameters chosen
for both models are shown in Table 4.3 (Case I).

— To consider a fixed step length, fixed step width and fixed step time to perform
the gait.

— The evolution of the swing foot as a function of time, i.e. Φ = t/T , in order to
ensure the step is performed at a fixed step time.

— To define the trajectories of the swing foot with a zero vertical velocity before
landing in order to avoid impacts since the 3D LIP model does not consider them.

— To test the obtained periodic motions of both models in the complete model of
Romeo by considering the same swing foot motion and fixed upper body.

In this case only time is used to define the desired trajectories for the controlled
variables i.e. qdc (t) = [z0, x

d
s(t), yds (t), zds (t), k>]>, where the elements of k ∈ R25 are zero
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except for the ones in Table 4.4. Therefore, ϑ = [xc, yc, t]>. The desired position of the
ZMP is (pdx, pdy) = (0, 0) with respect to Σ0. Then, the evolution of the joints can be found
as a function of xc, yc and t. Later, by using the procedure in Section 4.3.3 the Essential
Model is computed.

Numerical comparison

By using the gait parameters described previously, the fixed value for the 3D LIP
model is:

x∗−c = [S2 ,
D

2 , ẋ
∗−
c , ẏ∗−c ]>

= [0.15 m, 0.075 m, 0.777764 m/s, 0.218303 m/s]>,

while the fixed value for the Essential Model is:

x∗−c = [S2 +Dx,
D

2 +Dy, ẋ∗−c , ẏ∗−c ]>

= [0.153232 m, 0.075386 m, 0.730056 m/s, 0.189840 m/s]>,

The fixed values are slightly different between the 3D LIP model and the Essential
Model because the motion of the swing foot and upper body will affect the periodic
motion.

For this case, the motion performed by the robot Romeo for both models is visually
similar and it is illustrated in Figure 4.3 where a simulation of three steps is shown. A
video of the walking gait performed by Romeo in simulation for Case I is found in [105].
In order to see the difference between the two produced gaits Figs. 4.4 and 4.5 are plotted.
Figure 4.4 shows that the spatial evolutions of the CoM of both models are close, but
the amplitude along y of the 3D LIP Model is larger than that of the Essential Model for
a same step duration. On the other hand, the velocity of the CoM is plotted in Figure
4.5. It can be noticed that the variation of the velocity for the Essential Model is smaller
than the 3D LIP model. Finally, Figure 4.6 shows a comparison of the evolution of the
ZMP by using the walking gaits obtained by each model. This plot clearly shows the
advantage of the Essential Model. For a motion used in this case, the 3D LIP model
produces walking gaits where the ZMP evolves outside of the convex hull of support
when they are replicated by the complete model of the humanoid robot. Therefore, some
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Figure 4.3 – Sequence of steps performed by the robot Romeo for Case I

complementary techniques [2, 4] must be taken into account to adjust the evolution of
the joints of the robot, in order to at least keep the ZMP into a place inside the convex
hull of support. Instead, by using the Essential Model, since the dynamics of the robot is
taken into account the produced walking gaits will be always not only inside the support
area, but in the desired location. These results suggest that by using a feedback control
to track qdc the experimental tests can have good performance if the dynamic model of
the robot describes accurately the real prototype.

4.5.5 Case II: As function of phasing variable with a constant
ZMP

In order to have a motion that is more close to the walking gait of human beings,
in this case, the vertical oscillation of the CoM is considered. The swing foot landing
velocity is no longer null, thus the impact must be integrated into the Essential Model.
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Figure 4.4 – Comparison of two steps of the evolution of the CoM for the gaits obtained
with the 3D LIP model and the Essential Model, respectively.

The gait parameters for this case is shown in Table 4.3. The upper body is kept upright
as shown in Table 4.4. Here, the performance of Essential Model that depends on the
internal states of the robot is analyzed, i.e. the controlled variables are defined by virtual
constraints based on the internal states instead of time. It has been proven that when the
trajectories of controlled variables are defined as functions of the quadratic combination
of the horizontal CoM position x and y, self-stabilized or self-synchronized walking gaits
can be achieved. The same phasing variable

Φ = a1xc + a2yc + a3xcyc + a4x
2
c + a5y

2
c + a6 (4.55)

is used such that the robot switches its stance leg when the CoM crosses the switching
manifold

S = {(xc, yc, zc)|(xc − x∗−c ) + C(yc − y∗−c ) = 0} (4.56)

as in Chapters 2 and 3, where C is a parameter that characterizes the orientation of the
switching manifold. For a periodic motion, Φ0 = 0 at the beginning of a step, and Φf = 1
at the end of a step.

In this case the trajectories for the controlled variables are defined as a function of
Φ(xc, yc), i.e. qdc (Φ) = [zc(Φ), xds(Φ), yds (Φ), zds (Φ), qc,5(Φ), · · · , qc,29(Φ)]>, and ϑ = qf =
[xc, yc]>. The desired position of the ZMP is (pdx, pdy) = (0, 0) with respect to Σ0 as in

112



4.5. Case study: the humanoid robot Romeo

Figure 4.5 – Comparison of two steps of the velocity of the CoM with respect to time for
the gaits obtained with the 3D LIP model and the Essential Model, respectively.

the previous case. Then, by following the procedure in Section 4.3.2 the evolution of the
joints can be found as a function of x and y, and the Essential Model is computed.

Numerical results

By using the gait parameters shown in Table 4.3 and the upper-body configuration
for Romeo shown in Table 4.4 the periodic motion is defined by

x∗−c = [S2 +Dx,
D

2 +Dy, ẋ
∗−
c , ẏ∗−c ]>

= [0.152094 m, 0.077590 m, 0.644252 m/s, 0.230389 m/s]>.

The schematic illustration of three steps is shown in Figure 4.7. It shows the starting
and ending configuration of each step. The trajectory of the CoM is highlighted with
black solid curve, where its oscillatory vertical motion is noted. The upper body posture
is fixed. A video of the walking gait performed by Romeo in simulation for this case is
found in [106]. The evolution of the CoM is given by Figure 4.8. The CoM trajectories
are represented by the solid curves while the dashed lines connect the CoM and the ZMP
at the beginning and ending of each step. The ZMP is represented by a circle and a
cross respectively at the beginning and ending of a step. In Figure 4.8, the circle and
cross coincide at the zero position as expected. The projections of the CoM trajectory in
horizontal, sagittal and frontal planes are shown in Figure 4.8. In the horizontal plane of
Figure 4.8, the switching manifold of each step is represented by the solid blue lines. The
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Figure 4.6 – Comparison of the evolution of the ZMP for the gaits obtained with the 3D
LIP model and the Essential Model respectively. It is shown how the gait obtained with
the Essential Model makes the ZMP be kept in the desired location during all the walking
gait. The circles and crosses denote the initial and final points of the ZMP, respectively.

position of the CoM at the end of each step is located inside of this switching manifold.

4.5.6 Case III: As function of the phasing variable with a vary-
ing ZMP

In this case, a walking gait that tracks exactly a user-defined trajectory of ZMP is
developed. The definition of the trajectories of the controlled variables is the same as in
case II, i.e. as functions of a phasing variable proposed in Chapters 2 and 3. The same
switching strategy as in the second case is used. Thus the Essential Model for case III
is also the same as case II. Different from case II, the upper body motion in case III is
considered to be human-like, i.e. with the swing of the arms and turning of the torso.

The desired motion of the ZMP
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Figure 4.7 – Illustration of 3 steps for Case II.

Unlike Cases I and II where a fixed position of the ZMP was desired, a varying ZMP
trajectory while the robot performs a step is proposed in here. Several studies on the
evolution of ZMP for a human walking gait, such as [107–109] can be used with the
Essential Model in order to develop human-like walking gaits.

In this case, 3rd order polynomial functions are used in order to build a desired tra-
jectory of the ZMP in x and y directions, with the following boundary conditions:

pdx(Φ0) = px0 pdx(Φf ) = pxf

ṗdx(Φ0) = 0 ṗdx(Φf ) = 0,

and

pdy(Φ0) = py0 pdy(Φf ) = pyf

ṗdy(Φ0) = 0 ṗdy(Φf ) = 0
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Figure 4.8 – Evolution of the CoM in 3D space and its projections in horizontal, sagittal
and frontal planes for Case II.

where px0 = −0.01 m, pxf = 0.08 m, are the initial and final desired positions of the ZMP
in x direction with respect to the support frame Σ0, and py0 = pyf = 0.02 m, are the
initial and final positions of the ZMP in y direction with respect to the frame Σ0.

Numerical results

By using the gait parameters shown in Table 4.3 and the upper-body configuration

for Romeo shown in Table 4.4 the periodic motion is defined by

x∗−c = [S2 +Dx,
D

2 +Dy, ẋ
∗−
c , ẏ∗−c ]>

= [0.189018 m, 0.076592 m, 0.573714 m/s, 0.166289 m/s]>.

The schematic illustration of three steps is shown in Figure 4.9. It shows the start-
ing and ending configuration of each step. It can be observed that the two arms swing
alternately step after step, and the hip turns around the vertical axis as human beings
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Figure 4.9 – Illustration of 3 steps for Case III.

do. A video of the walking gait performed by Romeo in simulation for this case is found
in [110]. The evolution of the CoM is given by Figure 4.10. The CoM trajectories are
represented by the solid curves while the dashed lines connect the CoM and the ZMP at
the beginning and ending of each step. The ZMP is represented by a circle and a cross
respectively at the beginning and ending of a step. It can be seen that the ZMP starts
from the position [px0, py0] = [−0.01, 0.02] m, follows a desired trajectory, and stop at the
position [pxf , pyf ] = [0.08, 0.02] m as expected. The projections of the CoM trajectory in
horizontal, sagittal and frontal planes are also shown in Figure 4.10.

4.6 Case study: TALOS

4.6.1 Introduction of TALOS

In this section, the application of Essential Model proposed in this chapter is validated
on TALOS, which is a full-size humanoid robot developed by PAL robotics [111] shown in
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Figure 4.10 – Evolution of the CoM in 3D space and its projections in horizontal, sagittal
and frontal planes for Case III.

Figure 4.11. TALOS has a height of 1.75 m and a weight of 95 kg. TALOS has 30 joints
(shown in Figure 4.12), including 6 DoFs for each leg, 2 DoFs for the torso, 2 DoFs for the
neck and head and 7 DoFs for each arm. The reference frame is located at the projection
of the ankle at the sole. The 4 kinematic chains start from the support foot tip and end
with swing foot tip, the head, the left and right arms. Several intermediate frames with
null mass and inertial are set to facilitate the use of frames with chosen orientations.

4.6.2 Relabeling of TALOS

For the humanoid robot TALOS, the leg joints for the new coordinate system are
defined by:

q+(1 : 12) = Et1q
−(1 : 12) (4.57)
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Figure 4.11 – Photo of TALOS.

where

Et1 =



0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0



(4.58)
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24

25

26

27

Figure 4.12 – Joints and frames of TALOS.

The torso, neck and head joints for the new coordinate system are defined by:

q+(13 : 16) = Et2q
−(13 : 16) (4.59)

where

E2 =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (4.60)

The arm joints for the new coordinate system are defined by:

q+(17 : 30) = Et3q
−(17 : 30) (4.61)
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where

Et3 =



0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1
−1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0



(4.62)

Thus the relabeling of joints for TALOS is given by:

q+ = Etq
− (4.63)

where

Et =


Et1 012×4 012×14

04×12 Et2 04×14

014×12 014×4 Et3

 (4.64)

4.6.3 Motion of controlled variables

For the robot TALOS as shown in Figure 4.12, the vertical CoM motion, the swing
foot, the torso and the upper-body joints are chosen as control variables, i.e.

qc = [zc, xs, ys, zs, ψs, θs, ϕs, ψt, θt, ϕt, q13, ..., q30]>,

In this chapter, the swing foot velocity is not null, thus the impact between the swing
foot and the ground must be considered. Due to the jump of joint velocities caused by the
impact, the velocity of the CoM after the impact differs from that before the impact, thus
needs to be measured at the beginning of each step. In this case, the controlled variables
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are chosen as functions of the phasing variable depending on the horizontal position of
the CoM as proposed in Chapters 2 and 3. The oscillation of the CoM of TALOS is
considered, thus the evolution of the CoM is chosen to be a 5th order polynomial function
with boundary constraints given by equation (4.51). The desired motion of the swing foot
along z axis is defined as a 5th order polynomial function with boundary constraints given
by equation (4.52). Similarly, the motions of the swing foot along x and y axes are defined
as a 3th order polynomial function with boundary constraints given by equation (4.53).
The relevant parameters are given in Table 4.3. The upper body motion is chosen to be
fixed with the values given in Table 4.4.

Table 4.3 – Gait parameters for the 3D LIP and Essential models

Parameter Romeo TALOS Description
[unit] I II III

S [m] 0.3 0.3 0.3 0.4 Step length
D [m] 0.15 0.15 0.15 0.15 Step width
vs [m/s] 0 -0.05 -0.05 -0.1 Desired landing velocity
T [s] 0.5 0.6 0.6 0.6 Step time
hs [m] 0.03 0.05 0.05 0.05 Max. swing foot amplitude
ϕf,0 [deg] 0 0 0 0 Free foot initial rotation
ϕf,f [deg] 0 0 0 0 Free foot final rotation
g [m/s2] 9.81 9.81 9.81 9.81 Gravity acceleration
z0 [m] 0.65 0.6 0.6 0.85 Height of the CoM
αz [m] 0 0.03 0.03 0.03 Max. CoM amplitude
vm [m/s] 0 -0.1 -0.1 -0.2 Desired vertical CoM velocity at transition

4.6.4 Numerical analysis

In this case, a varying evolution of the ZMP is chosen, which is a segment starting from
[px0; py0] = [−0.01; 0.02] m to [pxf ; pyf ] = [0.08; 0.02] m. The periodic motion obtained for
TALOS is:

x∗−c = [S2 +Dx,
D

2 +Dy, ẋ
∗−
c , ẏ∗−c ]>

= [0.259423 m, 0.077754 m, 0.785532 m/s, 0.130012 m/s]>.

The motion is supposed to start with a periodic motion. The schematic illustration
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Table 4.4 – Upper-body parameters for Romeo and TALOS (Unit: rad)

Description Romeo TALOS
I & II III

label k0,i k0,i kf,i label k0,i
Torso yaw qdc,10 0 0.1745 -0.1745 qdc,10 0
Torso pitch qdc,9 0.08 0.08 0.08 qdc,12 0.2

R. shoulder pitch qdc,16 1.8 1.9199 1.4835 - -
R. shoulder yaw qdc,17 0.2 0.2 0.2 qdc,15 0
R. elbow pitch - - - - qdc,18 -0.4
R. elbow roll qdc,18 1.9 1.9 1.9 - -
R. elbow yaw qdc,19 0.3 0.3491 0.7854 - -

L. shoulder pitch qdc,23 1.8 1.9199 1.4835 - -
L. shoulder yaw qdc,24 -0.2 -0.2 -0.2 qdc,22 0
L. elbow pitch - - - - qdc,25 -0.4
L. elbow roll qdc,25 -1.9 -1.9 -1.9 - -
L. elbow yaw qdc,26 -0.3 -0.7854 -0.3491 - -

of three steps for TALOS is shown in Figure 4.13. A fixed upper body and oscillated
CoM trajectory can be observed. A video of the walking gait performed by TALOS is in
simulation for this case is found in [112]. The CoM and ZMP trajectories of TALOS are
highlighted in Figure 4.14, where its projection on horizontal, sagittal and frontal planes
are shown. It can be seen that the ZMP starts from the expected initial position, follows a
segment given by a 3rd order polynomial function and ends at the expected final position,
thus stays inside the convex hull of support, i.e. TALOS is able to perform these 3 steps
and will not lose stability. The evolution of the state of the robot is shown in Figure 4.15.
The evolution of the state for each step is the same because the motion is periodic and
there is no perturbation.

4.7 Conclusion

The use of simple models, as the 3D LIP model, for building walking trajectories is
useful. However, the vertical motion of the CoM is constrained and the ZMP is not kept to
its desired location when the motion produced by the 3D LIP model is transplanted on the
complete robot. Therefore, further techniques for keeping the ZMP inside the convex hull
of support are usually carried out. In this chapter, a new model of the same dimension as
the 3D LIP model, called Essential Model, has been proposed in order to deal with these
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Figure 4.13 – Illustration of 3 steps for the robot TALOS.

difficulties. This model is developed by taking into account the whole dynamics of the
robot and the behavior of the robot is given by the hybrid zero dynamics (HZD). Impacts
of the swing foot with the ground can also be considered in the development of walking
gaits. The dynamics of the Essential Model depend always on the internal states of the
robot but can also depend on some external information (such as time). Assuming that a
control law has been defined to follow perfectly the desired motion for a desired ZMP path
such as [113], the Essential Model describes the robot motion in closed loop. In closed
loop, the controlled variables qc will have the desired behaviors but the evolution of the
free variables, i.e. the horizontal position of the CoM, is unknown and must be studied.
It will be done in the next chapter. The Essential Model has been used in this chapter
to define periodic motions that satisfy imposed evolutions of the ZMP. This model can
also be used to produce starting and stopping phases to complement the periodic motion
as shown in [114] and to develop motions in double support phases. The Essential Model
will be used in the next chapter to study the stability of walking gait.
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Figure 4.14 – TALOS CoM evoluction.



0 0.5 1 1.5

0

0.5

1

0 0.5 1 1.5

0.65

0.7

0.75

0 0.5 1 1.5

0.06

0.07

0.08

0.09

0 0.5 1 1.5

-0.1

-0.05

0

0.05

0.1

Figure 4.15 – TALOS state evolution.



Chapter 5

STABILITY ANALYSIS OF ESSENTIAL

MODEL

For a complex hybrid system that is composed of a SS phase and an instantaneous
DS phase, it is impossible to study the stability of a walking gait analytically. A practical
method is to use Poincaré return map as introduced in Chapter 2. The eigenvalues of
the Jacobian matrix of the Poincaré return map can be calculated numerically. It can be
known from the numerical results that any eigenvalue with a norm bigger than one will
lead to unstable system. It has been shown in Chapter 2 that for a LIP model, a self-
synchronized walking gait can be obtained when the controlled variables are defined as
functions of a phasing variable based on the horizontal position of the CoM. And Chapter
3 has proven that for a VLIP model, not only the definition of the swing foot trajectory,
but also the vertical motion of the CoM is crucial for obtaining stability. In the previous
chapters, the stability study has been done for simplified models. In this chapter, how
these parameters (i.e. the swing foot motion, the vertical CoM motion, the switching
manifold configuration etc.) affect the stability of the walking gait that considers the
complete dynamics of the robot is discussed. Besides, how different walking postures and
sizes of the robot affect the stability of the walking gait is also discussed. Since it has
been proven in [6] and [115] that the stability properties of orbits of the hybrid restriction
dynamics carry over to the full-dimensional dynamics, the essential model proposed in
Chapter 4 is used in this chapter to analyze the stability of the walking gaits.

This chapter is structured as below. Section 5.1 analyzes several walking gaits with a
control law that uses a reference motion expressed as a function of time and shows that
this control law based on time is unstable. Section 5.2 analyzes the stability of cases when
the phasing variable is based on the internal state of the robot, for different robots and
different walking patterns. Simulations are carried out in Section 5.3 for robots Romeo
and TALOS to validate the stability of the proposed walking algorithm on the essential
model. The conclusion is made in Section 5.4.
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5.1 Transition based on time

It has been proven in Chapter 2 that for a 3D LIP model, when the controlled variable
(i.e. the swing foot motion) is defined with a phasing variable based on time, i.e. Φ = t

T ∗ ,
the walking stability cannot be obtained with only a good tracking of the controlled
variables. In order to discuss the influence of different walking patterns on the walking
stability applied on the essential model and to compare with the results obtained for the
cases when the phasing variable is based on the internal state of the robot, the eigenvalues
of several cases when the phasing variable is based on time are calculated here.

The Jacobian matrix of the Poincaré return map at the fixed point is calculated
numerically in the coordinate system [x−c , y−c , ẋ−c , ẏ−c ]>, which is the state of the CoM
just before the transition of stance leg. Since the study of stability has been done in
a space of 4 dimensions, 4 eigenvalues can be calculated. The following characters of
walking are analyzed: the vertical CoM motion characterized by vm and z0; the swing
foot motion characterized by hs and vs; the landing position characterized by kS and kD.
The humanoid robot Romeo is taken as an example here. The reference case (denoted by
CasetR) is chosen to have a constant height of CoM, no impact at landing (vS = 0) and
fixed step length and width (kS = kD = 1). The values of these parameters are shown in
Table 5.1. For all the cases, a fixed upper-body motion that keeps the robot upright is
used, and the step length and width are S = 0.3 m, D = 0.15 m. The following cases are
studied to compare with the CasetR:

— CasetI has a non-zero vertical swing foot velocity at landing, i.e. vs = −0.1 m/s;
— CasetII has a landing position that nullifies the initial CoM position error at the

beginning of each step, i.e. kS = kD = 0;
— CasetIII has a variable height of CoM along z axis. The magnitude of the variation

is 0.03 m, while the vertical velocity of CoM before landing is −0.1 m/s.
The other parameters not mentioned above for each case are the same as CasetR.

The maximum norms of the eigenvalues for different cases as functions of time are
shown in Figure 5.1. It can be seen from Figure 5.1 that all of these cases with a reference
motion that is based on time have at least one eigenvalue that is bigger than one, i.e. none
of these cases is stable for any T between 0.3 s and 0.8 s. Compared with CasetR, CasetII
has smaller maximum norms of eigenvalues. This means that choosing kS = kD = 0
reduces significantly the maximum norm of the eigenvalues for all the values of T , but not
enough to make the maximum norm of the eigenvalues smaller than 1. CasetI shows that
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Table 5.1 – Parameters for simulation

CasetR CasetI CasetII CasetIII
vm [m/s] 0 0 0 -0.1
z0 [m] 0.65 0.65 0.65 0.65
az [m] - - - 0.03
hs [m] 0.05 0.05 0.05 0.05
vs [m/s] 0 -0.1 0 0
kS 1 1 0 1
kD 1 1 0 1
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Figure 5.1 – The norms of maximum eigenvalues for different cases as functions of time.
The dashed line represents the value 1.

the impact between the swing foot and the ground with a velocity of −0.1 m/s barely
affects the stablity because the maximum norms of eigenvalues for this case almost overlap
with those of CasetR. The result of CasetIII shows that the vertical oscillation of the
CoM with a negative velocity at transition has a larger influence on the eigenvalues than
CasetII but much smaller than CasetII.
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5.2 Transition based on the internal state of the robot

When the controlled variables of the robot are defined as functions of the phasing
variable based on the internal state of the robot, the phasing variable defined by equation
(2.41) is used. Compared to the simplified models, the stability of the model that considers
the complete dynamics of the robot is affected by more parameters. In this section, six
groups of comparison will be done for the walking patterns : 1) with different landing
positions defined by kS and kD as for the simplified model; 2) for robot Romeo and
TALOS; 3) with a constant height and a variable height of the CoM; 4) with and without
impact with the ground; 5) with and without swing of arms and torso; 6) with a constant
ZMP and with a varying ZMP. Similar comparisons as in groups 1) and 3) have been
studied for the simplified models, and the other groups can be studied only for complete
models. The eigenvalues are expressed with contours as functions of C and T as for the
simplified model..

5.2.1 Influence of different landing positions on the stability

As shown in equation (3.16), the choice of the values of kS and kD will affect the
landing position of the swing foot. Deduced from equation (3.16), the position errors of
the landing foot respect to the fixed values are:

δx−s = (1− kS)δx−c ,

δy−s = (1− kD)δy−c ,
(5.1)

where δx−c and δy−c are the position error of the CoM along x and y axes at the end of a
step.

It has been shown in Chapters 2 and 3 that the values of kS and kD affect the stability
of the LIP and VLIP models. How the values of kS and kD as well as C and T affect
the stability of the essential model is discussed in this section. Eigenvalues are calculated
numerically as functions of C and T for four different cases: 1) kS = kD = 0; 2) kS =
1, kD = 0; 3) kS = 0, kD = 1; 4) kS = kD = 1. For all the cases, the robot Romeo is
considered and it is supposed to have a constant height of the CoM z0 = 0.65 m, no
impact with the ground and a fixed upper body motion. The position of the ZMP is
supposed to be constant and kept at [0; 0]. The step length and width are S = 0.3 m and
D = 0.15 m respectively. The case with kS = kD = 0 is also used as a reference case in
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further studies on the influence of other parameters.
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Figure 5.2 – Influence of kS and kD on the eigenvalues for robot Romeo. Contrary to the
white areas, the colored areas indicate self-stabilization condition.

It can be seen from Figure 5.2 that when at least one of kS and kD equals to zero,
there exist some sets of parameters C and T such that all the eigenvalues are smaller
than one and thus the walk is stable. Though it is unstable for any C and T when the
step length and width are fixed (kS=kD=1) with a constant height of the CoM for the
essential model, because all the eigenvalues are bigger than one as shown in Figure 5.2d.
When kS = kD = 0, larger stability region can be observed. For the case kS = 1, kD = 0,
stability can be obtained when the value of C is small, while for the case kS = 0, kD = 1,
no stability can be obtained for slow walking velocity with a step timing bigger than 0.7 s.
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5.2.2 Comparison of Romeo and TALOS

Romeo and TALOS are two humanoid robots with different heights, weights and in-
ertias. It is interesting to validate the stability of the walking algorithm proposed in this
thesis on different robots. The CoM heights of Romeo and TALOS are 0.7008 m and
0.9424 m respectively when their legs are straightened. During walk, the CoM height of
Romeo is chosen to be 0.65 m and that of TALOS is 0.8 m to avoid being out of workspace.
With bigger size, the step length and width of TALOS are 0.4 m and 0.2 m respectively,
while those of Romeo are 0.3 m and 0.15 m. In this comparison, both robots are supposed
to have a constant CoM height, no impact between the swing foot and the ground, and a
fixed upper body motion. The position of the ZMP is supposed to be constant and kept at
the position [0; 0]. The positions of the swing feet for the two robots are chosen to nullify
the initial CoM position error, i.e. kS = kD = 0.
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Figure 5.3 – Comparison of maximum norms of eigenvalues for Romeo and TALOS.

It can be seen from Figure 5.3 that the areas of proper T and C that satisfy the
stability condition for TALOS is slightly larger than Romeo. When the step duration
increases, the range of proper values of C decreases for both robots. In conclusion, the
stability condition obtained for Romeo can be used as a reference for TALOS when they
have the same motions of controlled variables and the value for C and T are far from the
unstable region.
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5.2.3 Influence of the impact

Sometimes, it is important for the swing foot to have a negative vertical velocity
before landing, because it will ensure that the swing foot continues to move downward
and touches the ground when the ground is uneven. For a complete model, this none-
zero vertical velocity will cause impact between the swing foot and the ground. The
impact model introduced in Section 4.2.2 is used here. Two cases with and without impact
(vs = −0.1 m/s and vs = 0 1) are analyzed for Romeo with the same constant CoM height
(z0 = 0.65 m) and fixed upper body motion. For both cases, S = 0.3 m, D = 0.15 m,
kS = kD = 0, and the ZMP position is fixed at [px; py] = [0; 0].
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Figure 5.4 – Comparison of maximum norms of eigenvalues for different vs for robot
Romeo.

It can be seen from Figure 5.4 that the impact when vs = −0.1 m/s does not affect the
stability of the robot much. Only the change on the contour of eigenvalues equal to 0.8 is
observed. That is to say, the stability condition obtained for the case without impact can
be used for the case with impact when the vertical velocity of the swing foot at landing is
within a certain value. This provides a simpler way to analyze the stability of the walking
gait with impact.

1. For vs = 0, the simulation stops when Φ = 1, but when vs is negative, the simulation stops when
the swing foot touches the ground. For a perfect tracking of the controlled variables, when the floor is
perfectly flat, this does not introduce differences.
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5.2.4 Influence of the vertical CoM motion

As observed in human walking, the CoM of human beings is not constant during a
step. It has been proven in Chapter 3 that the vertical CoM velocity vm < 0 at transition
is crucial for obtaining stability for an inverted pendulum when no high-level control
is performed. How the vertical CoM motion affects the walking stability of the robot
Romeo with the essential model is analyzed here. Two cases with the same magnitude
α = 0.03 m of CoM height but different vm (-0.1 m/s and -0.2 m/s respectively) are
considered to compare with the reference case with a constant CoM height. The CoM
height for the reference case is 0.65 m, while the mean CoM height for the comparison
cases is 0.65 m as well to avoid being out of workspace. All the reference and comparison
cases are supposed to have the same swing foot motion and upper body motion, with S
= 0.3 m, D = 0.15 m, kS = kD = 0, [px; py] = [0; 0].
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Figure 5.5 – Comparison of maximum norms of eigenvalues for different vm for robot
Romeo.

It can be seen from Figure 5.5 that the norms of the eigenvalues are smaller for walking
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gait with larger amplitude of vm. Stability cannot be obtained for slow walking velocities
with step timing larger than 0.8 s when vm = -0.2 m/s. Different from the VLIP model, the
vertical velocity of the CoM being negative is not a necessary condition for the essential
model to obtain stability, because the asymmetries in the system during the gaits due to
the repartition of masses is enough to generate stability [78]. The vertical velocity of CoM
being negative enlarges the area of stability especially for small values of C and reduces
the norms of the eigenvalues. However, when vm is too large, stability cannot be obtained
for large step duration such as T ≥ 0.8 s.

5.2.5 Influence of the upper body motion

As observed in human walking, the human beings swing the arms during a step to
reduce the total angular momentum of the body by creating an angular momentum in the
direction opposing lower limb rotation. When applying this motion on the robot Romeo,
how it affects the stability of the walk is studied here. Two cases with and without upper
body motion, i.e. arm and torso swing are compared here. The upper body motions
mentioned in Sections 4.5.4 and 4.5.6 are used for these two cases respectively. Both cases
are supposed to have no impact and constant CoM height, with S = 0.3 m, D = 0.15 m,
kS = 0, kD = 0, vs = 0, zm = 0.65 m and [px; py] = [0; 0].
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Figure 5.6 – Comparison of maximum norms of eigenvalues for different upper body
motions for robot Romeo.

It can be seen from Figure 5.6 that the result obtained for the motion with arm and
torso swing is almost the same as the result obtained for the fixed upper body motion.
Although it is believed that the upper body swing helps reduce the energy cost [116], the
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contribution of the upper body swing to the stability is not so obvious with the walking
algorithm proposed in this work. On the other hand, this conclusion is interesting since it
shows that the stability condition obtained for one fixed upper body motion can be used
for the case with a different upper body motion.

5.2.6 Influence of ZMP evolution

One main advantage of the proposed essential model is that a desired location or a
path can be imposed for the ZMP during a whole step. This section studies the influence
of the ZMP evolution on the stability of walking gaits. Two cases with a constant ZMP
and a varying ZMP are compared for robot Romeo. For the case with a constant ZMP,
the ZMP is constrained at the zero position, i.e. [px0; py0] = [0; 0] and [pxf ; pyf ] = [0; 0].
For the case with a varying ZMP, the 3rd order polynomial functions as in Section 4.5.6
are applied with [px0; py0] = [−0.01; 0.02] m and [pxf ; pyf ] = [0.08; 0.02] m. Both cases are
supposed to have no impact, constant CoM height and fixed upper body motion, with S
= 0.3 m, D = 0.15 m, kS = 0, kD = 0, vs = 0 and zm = 0.65 m.
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Figure 5.7 – Comparison of maximum norms of eigenvalues for different ZMP evolutions
for robot Romeo.

For the case with a varying ZMP, fast motions with step duration T < 0.21 s cannot be
calculated with the parameters given above. Thus, motion with step duration T ≥ 0.21 s
are considered in this group. The maximum norms of the obtained eigenvalues are shown
in Figure 5.7. It is shown that a varying ZMP enlarges the area of stability in general.
However, for slow motions with T > 0.65 s, the maximum norm of the eigenvalues of the
case with a varying ZMP is larger than that of the case with a constant ZMP.
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5.3 Simulations

By considering the stability conditions discussed in the previous section, simulations
will be done for the complete models of robots Romeo and TALOS in this section. The
starting phase strategy used in the Section 3.5.3 is applied here. Note that the projection
of the initial CoM position should be located inside of the support polygon before the
first step.

Table 5.2 – Gait parameters for simulations of Romeo and TALOS

Parameter unit Romeo TALOS Description
kS [m] 0 0 Landing position parameter along x axis
kD [m] 0 0 Landing position parameter along y axis
T [s] 0.7 0.5 Step time
z0 [m] 0.6 0.8 Height of the CoM
hs [m] 0.05 0.05 Max. swing foot amplitude
ϕf,0 [deg] 0 0 Free foot initial rotation
ϕf,f [deg] 0 0 Free foot final rotation
αz [m] 0.05 0.05 Max. CoM amplitude
vm [m/s] -0.1 -0.1 Desired vertical CoM velocity at transition
vs [m/s] -0.1 -0.1 Desired landing velocity

[px0; py0] [m] [-0.01;0.02] [0;0] Starting point of ZMP
[pxf ; pyf ] [m] [0.08;0.02] [0;0] Ending point of ZMP

Table 5.3 – Upper-body parameters for TALOS (Unit: rad)

Description TALOS
label k0,i kf,i

Torso yaw qdc,10 0.1757 - 0.1757
R. shoulder yaw qdc,15 -0.3 0.2
R. elbow pitch qdc,18 -0.3491 -0.7854
L. shoulder yaw qdc,22 -0.2 0.3
L. elbow pitch qdc,25 -0.7854 -0.3491

5.3.1 Simulations of Romeo

In this section, a humanlike walking pattern is considered for robot Romeo, i.e. with
a variable CoM height and swing of arms and torso. The parameters of the CoM and
swing foot motions are shown in Table 5.2, while those of the upper body motion is
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the same as the Case III in Table 4.4 of Section 4.5.6. Except for the first step, the
position of the ZMP is expected to follow a 3rd order polynomial function varying from
[px0; py0] = [−0.01; 0.02] m to [pxf ; pyf ] = [0.08; 0.02] m, and the step timing for the
periodic motion is expected to be 0.7 s. A change of step width of the robot from D1

= 0.15 m to D2 = 0.2 m is expected at the 15th step. The step length for the periodic
value keeps to be S = 0.3 m. Since the proper value of switching manifold parameter C
is proportional to the ratio of S

D
, when C1 for D1 = 0.15 m is chosen to be 3, the value of

C2 for D2 = 0.2 m should be C2 = C1D1
D2

= 2.25. The fixed value for D1 = 0.15 m is:

x∗−c1 = [S2 +Dx1,
D1

2 +Dy2, ẋ
∗−
c1 , ẏ

∗−
c1 ]>

= [0.192454 m, 0.0766134 m, 0.544429 m/s, 0.176781 m/s]>.

and that for D2 = 0.2 m is:

x∗−c2 = [S2 +Dx2,
D2

2 +Dy2, ẋ
∗−
c2 , ẏ

∗−
c2 ]>

= [0.191754 m, 0.101798 m, 0.542622 m/s, 0.257281 m/s]>.

The maximum eigenvalues for these two cases are:

λD=0.15 = 0.725880;

λD=0.2 = 0.786737.

The step timing for the starting phase is chosen to be 0.7 s in order to obtain an initial
CoM position that makes the ZMP located inside of the support polygon. Since the initial
CoM position for the starting phase is calculated based on the 3D LIP model, the ZMP
evolution for the starting phase is chosen to be fixed at [0; 0] to be more close to the 3D
LIP model.

The schematic illustration of the first 5 steps including the starting phase for Romeo
is shown in Figure 5.8. Figure 5.9 presents the projections of the CoM motion of Romeo in
horizontal, sagittal and frontal planes, and the position of the stance ankle for each step.
Note that the local reference frame is attached to the projection of the stance ankle on the
ground, the circles in Figure 5.9(a) represent also the positions of the local frame in the
world frame. From Figure 5.9 it can be seen that the trajectory of the CoM starts from
a position close to the stance foot at the starting phase, and converges to the periodic
motion for D1 = 0.15 m after several steps. At the 15th step, it can been seen clearly
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Figure 5.8 – Illustration of 5 steps for Romeo.

that the step width is increased. The change of the step width at the 15th step causes
an initial CoM position error at the 16th step and this is regarded as a disturbance, and
then the CoM converges to the periodic motion for D2 = 0.2 m. The blue lines in Figure
5.9(a) represent the switching manifold given by equation (3.13). The cyclic motion in
the frontal place shown in Figure 5.9(c) is displaced along y axis due to the change of D
and kD = 0. The evolutions of the ZMP for the first 5 steps are shown in Figure 5.10.
It can be seen that except for the first step that the ZMP stays at the zero position, the
ZMP of the other steps moves from the rear to the front of the sole, following a straight
segment given by the desired values. Figures 5.11 and 5.12 present the evolutions of the
step timing and the state of the robot. Since the step timing is not imposed by the control
law, its value varies after the starting phase and during the change of step width, and
eventually converges to the expected value. The variation of step timing contributes to
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Figure 5.9 – Projections of the CoM trajetory in horizontal, sagittal and frontal planes.
The blue lines represent the switching manifold for each step, and the circles represent
the positions of the ZMP.

resist the perturbation. The fixed values of the first 15 steps in Figure 5.12 is given by
x∗−1 , while that of the last 15 steps is given by x∗−2 . It can be seen that the change of
step width D has a larger influence on the state along y axis than that along x axis. The
state of the robot converges to the periodic motion with D = 0.15 m after the starting
phase, experiences a change of D, and eventually converges to the periodic motion with
D = 0.2 m. The tracking of controlled variables and the ZMP is imposed, and the free
variables i.e. the horizontal position of the CoM converges to the periodic motion. Thus,
self-stabilization is obtained.
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Figure 5.10 – The ZMP evolution of Romeo. The circles and the crosses represent the
starting and ending points of the stance ankle at each step.

5.3.2 Simulations of TALOS

In this section, another humanoid robot TALOS is analyzed. A humanlike walking
pattern that has vertical CoM motion and swing of torso and arms with parameters
shown in Tables 5.2 and 5.3 is considered. The position of the ZMP is expected to be
fixed at the point [pdx; pdy] = [0; 0]. For TALOS, a change of step length from S1 = 0.4
m to S2 = 0.5 m is expected at the 10th step, while the step width is D = 0.2 m. The
switching manifold parameter C1 for S1 = 0.4 m is chosen to be 5 and C2 for S2 = 0.5 m
is C2 = C1S2

S1
= 6.25. The expected step timing for the periodic motion is 0.5 s. The fixed

value for S1 = 0.4 m is:

x∗−c1 = [S2 +Dx1,
D1

2 +Dy2, ẋ
∗−
c1 , ẏ

∗−
c1 ]>

= [0.223876 m, 0.100068 m, 0.932822 m/s, 0.226575 m/s]>.

and that for S2 = 0.5 m is:

x∗−c2 = [S2 +Dx2,
D2

2 +Dy2, ẋ
∗−
c2 , ẏ

∗−
c2 ]>

= [0.278119 m, 0.100222 m, 1.168078 m/s, 0.225770 m/s]>.
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Figure 5.11 – State evolution of step timing for Romeo.

The maximum eigenvalues for these two cases are:

λS=0.4 = 0.482944;

λS=0.45 = 0.484544

The schematic illustration of the first 5 steps including the starting phase for TALOS
is shown in Figure 5.13. Figure 5.14 presents the projection of the CoM motion of TALOS
in horizontal, sagittal and frontal planes, and the position of the ZMP for each step. Since
the ZMP is constrained to be located at the projection of the stance leg ankle on the
ground due to the condition (pdx, pdy) = (0, 0), the circles in Figure 5.14 indicate also the
stance foot locations. It can be seen from Figure 5.14 that the CoM converges to the
periodic motion before and after the change of step length. The distance between the
positions of two stance foot is obviously larger after the 10th step due to the change of
step length. Figures 5.15 and 5.16 present the evolution of step timing and the state of the
robot. The state of the robot converges to the periodic motion during the first 10 step,
and perturbed due to the change of step length. The increase of sagittal position and
velocity is obvious because the step length is increased. Meanwhile, only a slight change
of lateral position and velocity can be observed. Both the step timing and the state of the
robot converge to the new expected periodic motion after the change of step length, thus
self-stabilization is obtained.
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Figure 5.12 – State evolution of Romeo.

5.4 Conclusion

This chapter analyzed the stability of many different walking patterns on robots Romeo
and TALOS. It has been proven that when the controlled variables are defined as functions
of time, no stability can be obtained for any value of kS, kD, vm or vs without a high-level
controller. Then the stability of cases when the phasing variable is based on the internal
state of the robot (i.e. x and y) is analyzed. These cases are divided into six comparison
groups, each of them compares a different character of walking patterns: the landing
positions of the swing foot; size, mass and inertia; the swing foot motion; the vertical
CoM motion, the upper body motion and the ZMP evolution. It has been shown that
the impact and upper body motion barely affect the stability of the system because they
have almost the same eigenvalue contours. The values of kS and kD affect the stability
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Figure 5.13 – Illustration of 5 steps for TALOS.

most, thus stability analysis must be done separately for different choices of kS and kD.
With the same motion of controlled variables, the stability condition of robot Romeo can
serve as a reference for the robot TALOS. As for the vertical CoM motion, it has been
proven that with bigger magnitude of vm, the obtained eigenvalue is smaller. It can be also
observed that a varying ZMP enlarges the stability area. The results of the simulations
have shown that the walk converges to the periodic value from a perturbed value. Thus,
by extending the walking algorithm proposed for the simplified model in this thesis to the
complete model, self-stabilization can also be obtained.
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Figure 5.14 – Projections of the CoM trajetory in horizontal, sagittal and frontal planes.
The blue lines represent the switching manifold for each step, and the circles represent
the positions of the ZMP.
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Figure 5.15 – State evolution of step timing.
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Chapter 6

CONCLUSIONS AND PERSPECTIVES

6.1 Conclusions

When walking on a relatively even ground, human beings do not have to pay attention
to the steps. The main contribution of this thesis is having proposed a novel walking
algorithm which imitates the intrinsic nature of human walking to avoid using online
optimization or predictive control methods. This walking algorithm has been applied to
the simplified models (LIP model and VLIP model) and the complete model of the robot.
With this method, the controlled variables are defined as functions of a phasing variable
based on the internal state of the robot instead of time. Moreover, a switching manifold
has been proposed. With proper choice of the characteristics of the switching manifold and
landing position of the swing foot, self-synchronization or self-stability can be obtained
for the waling gait. Self-synchronization implies that the velocity is not controlled but
that the robot motion converges toward a periodic motion and evolves along a straight
path, while self-stabilization implies that the walking velocity can be chosen. A perfect
tracking of the controlled variables is assumed in this thesis.

For the LIP Model, a phasing variable that is a quadratic function of the horizontal
positions of the CoM along x and y axes has been proposed, and its monotonicity has been
analyzed. It has been shown that self-synchronization can be obtained when controlled
variables are defined with the proposed phasing variable and the swing foot lands at a
position where the initial CoM position error of next step is reduced. Then it has been
proven that the introduction of the CoM velocity feedback into the phasing variable
permits to achieve self-stabilization of the walking gait for a LIP model.

For a VLIP Model, when the vertical CoM velocity of the robot is negative, it is
possible to obtain self-stability by defining the controlled variables as functions of the
phasing variable based on the horizontal position of the CoM. Furthermore, when the
walking velocity is considered in the phasing variable, the robot can converge to another
periodic motion with a different walking speed. This provides a novel approach to find a

147



periodic motion of bipedal robots without using any kind of offline or online search for
fixed points.

For a humanoid robot, the essential model has been proposed, which is a novel dynamic
model that has the same dimension as the 3D LIP model but considers the complete dy-
namics of the robot. This essential model is especially useful for fully actuated humanoid
robots with feet, because it is able to generate walking gaits that ensure the ZMP to be
kept in an expected position or trajectory. Simulations have been done with the robot
Romeo to compare the essential model and the LIP model. It has shown that it is impor-
tant to take into account the complete dynamics for a robot with none-point feet to make
sure that the ZMP stays inside of the support polygon. Then different walking gaits and
ZMP evolutions have been demonstrated on robots Romeo and TALOS with the essential
model.

Then results obtained for the simplified models have been extended to the study of
humanoid robots considering the complete dynamics. The influence of different walking
patterns on the stability of the proposed walking algorithm applied on the essential model
have been analyzed. It has been shown that the impact and upper body motion barely
affect the stability of the walking gait while the landing position of the swing foot affects
the stability most. The vertical CoM motion and ZMP evolution affect the stability a little
but not too much. With the same motion of controlled variables, the stability condition
of robot Romeo can serve as a reference for the robot TALOS.

6.2 Perspectives

In the thesis, numerical simulations have been done to validate the proposed walking
algorithm and the essential model. Some future works on this issue are:

— Experiments on the robot TALOS; tests in Gazebo, which consider the real physical
environment need to be conducted first, and then results can be applied on the real
robot TALOS. The difficulties are the modeling uncertainty and the tracking errors;

— Introducing optimization to the controlled variables i.e. the upper body, the ver-
tical CoM and swing foot motions in order to reduce the joint torques, energy
consumption etc.; in this thesis, polynomial functions or spline functions are used
to define the trajectories of the controlled variables. More choices are possible such
as the Bézier curves [117,118] or the cycloidal curves [87,119];

— Proposing human-like trajectories for the ZMP; It has been shown in [120] that
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in human walking, the ZMP goes from the heel to the tip of each foot, which
corresponds to the rolling motion of the feet and the mobility of the human sole.
In the future, more human-like ZMP trajectories can be studied to imitate the
human walking and the contribution of the ZMP trajectories to the efficiency of
walking gait can be studied;

— Introducing different external information to define the desired trajectories of the
controlled variables, not just the time. This external information could be the CoM
position or velocity of other robots in order to achieve walking synchronization
among robots by using the kv term mentioned in Section 3.6;

— How the motion of the head affects the stability of the walking gaits can also be
studied; since it has been shown in [121] that the head stabilization enables a
humanoid robot to generate intrinsically more stable gait kinematics than a rigid
neck, the influence of the head stabilization on the walking stability can also be
interesting;

— Exploiting the possibility to control the direction of the walking by changing the
orientation of the foot. The swing ankle rotation control proposed in [74] can be
integrated in the walking algorithms proposed in this thesis, thus the direction of
the walking can be controlled.
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Appendix A

APPENDIX A

A.1 Analytical expression of eigenvalue for LIP model

With the landing position of swing foot give by Equation (2.26), we can deduce the
expression of the error in position of the CoM (δX = X − X∗) through the change of
support:

δX+
k+1 = kSδX

−
k

δY +
k+1 = −kDδY −k

(A.1)

In presence of perturbation, deduced from Equation (2.39) the final CoM position
error satisfies:

δX−k + CδY −k = 0 (A.2)

For a chosen evolution of the swing leg, the initial position of CoM can be deduced.

To study the stability of the walking gait, the Poincaré return map is used. Since X−k
and Y −k are coupled via the switching manifold (2.39), and the dynamic is autonomous
(the time does not appear), the chosen independent state variables are (X−k , L−k , K−k ). The
Jacobian is defined for a given periodic motion, and is characterized by the direction of
the velocity of the CoM α.

Due to the existence of disturbance, the initial state of the robot after step k is written
as:

X+
k = X∗+ + δX+

k

Y +
k = Y ∗+ + δY +

k

Ẋ+
k = Ẋ∗+ + δẊ+

k

Ẏ +
k = Ẏ ∗+ + δẎ +

k

(A.3)
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where X0 = −1
2 , Y0 = 1

2 . At the end of the step, the state of the robot is denoted as:

X−k = −X∗− + δX−k
Y −k = Y ∗− + δY −k
Ẋ−k = Ẋ∗− + δẊ−k
Ẏ −k = −Ẏ ∗− + δẎ −k

(A.4)

Using the fact that Ẋ0 and Ẏ0 define a synchronized motion and neglecting the second
order terms, we obtain:

Lk = δẊkẎ0 + Ẋ0δẎk −
ω2

2 (δXk − δYk) (A.5)

We will now express the final error in velocity as function of the initial error for the
step k. As the orbital energies, Ex and Ey and synchronizaiton measure L are conserved
quantities, we have:

(Ẋ−k )2 − ω2(X−k )2 = (Ẋ+
k )2 − ω2(X+

k )2 (A.6)

(Ẏ −k )2 − ω2(Y −k )2 = (Ẏ +
k )2 − ω2(Y +

k )2 (A.7)

Ẋ−k Ẏ
−
k − ω2X−k Y

−
k = L−k (A.8)

Submit equation (A.3) and (A.4) into equation (A.6), (A.7) and (A.8) and neglect the
second order terms, we can obtain:

(δẊ−k )2 + 2δẊ−k Ẋ0 + Ẋ2
0 −

ω2

4 − ω
2δX−k − ω2(δX−k )2 =

(δẊ+
k )2 + 2δẊ+

k Ẋ0 + Ẋ2
0 −

ω2

4 + ω2δX+
k − ω2(δX+

k )2
(A.9)

(δẎ −k )2 − 2δẎ −k Ẏ0 + Ẏ 2
0 −

ω2

4 − ω
2δY −k − ω2(δY −k )2 =

(δẎ +
k )2 + 2δẎ +

k Ẏ0 + Ẏ 2
0 −

ω2

4 − ω
2δY +

k − ω2(δY +
k )2

(A.10)

L−k = Ẋ0δẎ
−
k − δẊ−k Ẏ0 −

ω2

2 (δX−k + δY −k ) (A.11)
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Using these equations and neglecting the second order terms, we obtain:

δẊ−k = ω2

2Ẋ0
(δX−k + δX+

k ) + δẊ+
k (A.12)

δẎ −k = ω2

2Ẏ0
(−δY −k + δY +

k )− δẎ +
k (A.13)

Submit equation (A.12) and (A.13) into equation (A.11) and rearrange it, we obtain:

(1− 1
α

)δY −k + (1− α)δX−k =

αδX+
k −

δY +
k

α
− 4Lk

ω2 − δX
+
k + δY +

k

(A.14)

Because of the fact that:

δX−k = −CδY −k (A.15)

δX+
k = kSC

kD
δY +

k (A.16)

Thus replace δY with δX in equation (A.14) and rearrange it, we obtain:

(−1 + α)(1 + αC)
α

δY −k =

(−1 + α)(αCkS + kD)
αkD

δY +
k −

4Lk
ω2

(A.17)

From the geometric relationship, we know that:

δX+
k+1 = kSδX

−
k (A.18)

δY +
k+1 = −kDδY −k (A.19)

Thus, from equation (A.17), we can obtain:

− [1− 1
α
− C(1− α)]δX+

k+1 =

(kSC
kD

α− 1
α
− kDC

kD
+ 1)δX+

k −
4LkkSC
ω2

(A.20)

and then:
δX+

k+1 = −kD + αCkS
1 + αC

δX+
k + 4αCkS

ω2(−1 + α)(1 + αC)Lk (A.21)
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From equation (A.17), we know that:

δX−k = −C( −4αLk
ω2(−1 + α)(1 + αC) + kD + αCkS

kD + αCkD
δY +

k (A.22)

δY −k = −4αLk
ω2(−1 + α)(1 + αC) + kD + αCkS

kD + αCkD
δY +

k (A.23)

Submit equation (A.22) and (A.23) into equation (A.12) and (A.13), we obtain:

δẊ−k = δẊ+
k + 2CαLk

Ẋ0(−1 + α)(1 + αC)
+ ω2δX+

k

2Ẋ0
−

Cω2(kD + αCkS)δY +
k

2(kD + αCkD)Ẋ0

(A.24)

δẎ −k = −δẎ +
k + 2αLk

Ẏ0(−1 + α)(1 + αC)
+

αω2C(kD − kS)
2(1 + αC)kDẎ0

δY +
k

(A.25)

For the step k + 1, the synchronization measure is:

L−k+1 = Ẋ0δẎ
−
k+1 − δẊ−k+1Ẏ0 −

ω2

2 (δX−k+1 + δY −k+1) (A.26)

Submit equation (A.24) and (A.25) into (A.26) and rearrange it, we obtain the rela-
tionship between Lk+1, Lk and δX+

K :

Lk+1 =(1 + α)(αC − 1)− 2α(kD − CkS)
(1− α)(αC + 1) Lk+

(−1 + C + CkS − kD)(kD + αCkS)ω2

2(1 + αC)CkS
δX+

k

(A.27)

In conclusion, the Jacobian matrix is:

J =


−kD+αCkS

(kS+αC)
4αCkS

ω2(1+αC)(α−1) 0
J21

2α(kD−CkS)+(1−αC)(α+1)
(1+αC)(α−1) 0

∗ ∗ 1

 (A.28)

with J21 = (kD+αCkS)(−1+C+CkS−kD)ω2

2(1+αC)CkS
.
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APPENDIX B

B.1 Publications

B.1.1 Journal Papers

— Q. Luo, V. De-León-Gómez, A. Kalouguine, C. Chevallereau and Y. Aoustin, Self-
Synchronization and Self-Stabilization of Walking Gaits Modeled by the Three-
Dimensional LIP Model[J], IEEE Robotics and Automation Letters, 2018, 3(4):
3332-3339 (presented in IROS2018)

— Q. Luo, C. Chevallereau, and Y. Aoustin, Walking Stability of a Variable Length
Inverted Pendulum Controlled with Virtual Constraints[J], International Journal of
Humanoid Robotics, Vol. 16, No. 06, 1950040 (2019)

— V. De-León-Gómez, Q. Luo, A. Kalouguine, J.A. Pámanes, Y. Aoustin, and C.
Chevallereau, An essential model for generating walking motions for humanoid
robots[J], Robotics and Autonomous Systems, 2019, 112: 229-243.

B.1.2 Conferences

— Q. Luo, V. De-León-Gómez, A. Kalouguine, C. Chevallereau, and Y. Aoustin,
Self-Synchronization and Self-Stabilization of Walking Gaits Modeled by the Three-
Dimensional LIP Model, 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems, October, 1-5, 2018 Madrid, Spain.
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Titre : Marche Bipède 3D Auto-Stabilisante

Mot clés : Robotique, marche bipède, Stabilité

Résumé : Les robots humanoïdes, bien adap-
tés pour évoluer dans le milieux humains,
peuvent avec leurs bras et mains effectuer des
tâches complexes. Ils peuvent être considérés
comme l’un des robots ultimes. Cependant, la
marche bipède reste un phénomène complexe
qui n’a pas été entièrement compris.

La thèse est consacrée à trouver quelques
caractéristiques physiques qui peuvent expli-
quer la stabilité de la marche périodique sur
le sol horizontal. Dans la marche humaine,
la démarche est généralement exprimée en
fonction d’une variable de phase fondée sur
l’état interne au lieu du temps. Les variables
commandées (trajectoires du pied libre, os-
cillation verticale du centre de masse (CdM),
mouvement du haut du corps, etc.) des robots

ont une évolution désirée exprimée en fonc-
tion d’une variable de phase via l’utilisation de
contraintes virtuelles et la durée des pas n’est
pas explicitement imposée mais implicitement
adaptée en présence de perturbations. Dans
la première partie, deux modèles simplifiés du
robot : le modèle du pendule inversé linéaire
(LIP) et le modèle du pendule inversé de lon-
gueur variable (VLIP) sont utilisés pour étudier
les stratégies de commande. La stratégie de
commande proposée pour les modèles LIP et
VLIP est étendue à travers le modèle essentiel
pour commander un modèle humanoïde com-
plet.

L’algorithme de marche proposé ci-dessus
est appliqué sur les robots humanoïdes Ro-
méo et TALOS.

Title: Self-stabilization of 3D Walking of a Biped Robot

Keywords: Robotics, biped walking, stability

Abstract: Humanoid robot, which can walk by
two legs and perform skillful tasks using both
arms with hands, could be considered as one
of the ultimate robots. However, bipedal walk-
ing remains a complex phenomenon that has
not been fully understood.

The thesis is dedicated to find some phys-
ical insights that can explain the stability of
periodic walking on horizontal floor. In human
walking, the gait is usually expressed as a
function of a phasing variable based on the
internal state instead of time. The controlled
variables (swing foot trajectories, vertical os-
cillation of center of mass, upper body motion,

etc.) of the robots are based on a phasing vari-
able via the use of virtual constraints and the
step timing is not explicitly imposed but implic-
itly adapted under disturbances. Firstly, sim-
plified models of the robot: the linear inverted
pendulum (LIP) model and variable length in-
verted pendulum (VLIP) model are used to
study control strategies. The proposed control
strategy for the LIP and VLIP models is ex-
tended through the proposed essential model
to control a complete humanoid model.

The walking algorithm proposed above is
applied on the humanoid robots Romeo and
TALOS.
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