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GENERAL INTRODUCTION

Context

Graph layout problems are a particular class of combinatorial optimization problems.
Graph layout problems aim to find a linear layout of a given graph with respect to prede-
fined optimization criteria. There are many problems which can be formulated as graph
layout problems: bandwidth problem, cutwidth problem, sum cut problem, minimum lin-
ear arrangement problem and so on ([DPS02]). In this thesis, we focus on two problems: the
cyclic bandwidth problem (CBP) [LVW84] and the minimum linear arrangement problem
(MinLA) [Har64]. As a variant of the bandwidth problem, CBP is to find an arrangement
on a cycle to minimize the longest cyclic distance. MinLA is a min-sum problem whose
goal is to find a linear arrangement of an input graph to minimize the sum of all edges.
The study of these two problems is meaningful for many fields such as very large-scale
integration (VLSI) circuit design [BT84; Har64], bioinformatics [DPS02] and code designs
[Chu88]. Given their importance, the research on these problems becomes more and more
intense in recent years.

However, both problems are known to be NP-hard [Har82; Lin94]. It is unlikely to
find the global optimal solution in a polynomial time unless P = NP . Even for small
instances, exact algorithms would consume much time to find the optimal solution. But
for most of their applications, feasible solutions of good quality are sufficient. Therefore,
it is meaningful to develop effective heuristic and metaheuristic algorithms to find such
solutions in a reasonable time. This thesis aims to develop effective heuristic algorithms for
these problems. To assess the proposed algorithms, extensive experiments are carried out
over available benchmarks and comparisons with state-of-the-art methods in the literature
are shown. Moreover, we also investigate the key components of the proposed algorithms
to reveal their influences on the performances of the algorithms.

Objectives

The main objectives of this thesis are summarized as follows:

9



General Introduction

— Understand deeply CBP and MinLA and analyse the main difficulty of developing
heuristic algorithms for these problems.

— Explore effective and meaningful neighborhoods to operate efficiently in the local
search procedure.

— Design problem-specific evaluation functions to help distinguish the solutions which
have same objective value.

— Develop effective perturbation strategies to help escape from the local optimum
traps.

— Investigate different recombination operators for the memetic algorithm (MA) to
find out the feature for a suitable crossover.

— Evaluate the proposed algorithms over well-known benchmark instances and carry
out a comprehensive comparison with the state-of-the-art algorithms.

Contributions

The main contributions of this thesis are summarized below:
— For CBP, we achieved the following results:

— Firstly, we proposed an iterated three-phase search approach (ITPS). The
algorithm relies on three complementary search components to ensure a suit-
able balance of search intensification and diversification, guided by an enriched
evaluation function. Computational assessments on a test-suite of 113 popu-
lar benchmark instances in the literature demonstrate the effectiveness of the
proposed algorithm. This work has been published in IEEE Access.

— Secondly, we proposed a new iterated local search algorithm (NILS). The algo-
rithm relies on a simple, yet powerful local optimization procedure reinforced by
two complementary perturbation strategies. The local optimization procedure
discovers high-quality solutions in a particular search zone while the perturba-
tion strategies help the search to escape from local optimum traps and explore
unvisited areas. We present computational results on 113 benchmark instances
from 8 different families, and show performances that are never achieved by
current best algorithms in the literature. This study was presented in a paper
submitted to Knowledge-Based Systems.

— Thirdly, we investigated five classical permutation crossovers within a basic
memetic algorithm integrating a simple descent local search procedure. We

10



General Introduction

studied the correlation between algorithmic performances and population di-
versity measured by the average population distance and entropy. This work
has been selected by the conference Artificial Evolution 2019 and published in
Lecture Notes in Computer Science.

— For MinLA, we studied a set based neighborhood heuristic algorithm under the
framework of two phase iterated local search. The main contribution is the in-
troduction of a set based neighborhood with a decomposition method in the de-
scent phase. We compared the proposed algorithm with a traditional neighborhood
heuristic algorithm, and computational results show that the set based neighbor-
hood performs better than the traditional neighborhood in the local search phase.

Organization

The thesis is organized in the following way:
— In the first chapter, after introducing CBP and MinLA, we present related appli-

cations and a brief overview of existing algorithms. The test benchmark and the
computational assessments are shown at the end of the chapter.

— In the second chapter, we study the cyclic bandwidth problem and make a brief re-
view of the existing algorithms. Then, we introduce the iterated three-phase search
(ITPS) approach. We present experimental results of the proposed algorithm, as
well as comparisons with state-of-the-art algorithms.

— In the third chapter, we propose another heuristic algorithm for CBP: the new
iterated local search algorithm (NILS). After introducing the simple but powerful
neighborhood, the directed perturbation phase and special strong perturbation
phases are presented. Then, experimental results of NILS and the state-of-the-art
algorithms including ITPS and TScb are shown over benchmark instances.

— In the fourth chapter, we focus on the study of different recombination operators
for CBP. The general outline of the memetic algorithm for CBP is first described
and 5 different crossovers are presented. Afterwards, computational results of the
memetic algorithm with different crossovers are presented. Moreover, we investigate
the correlation between the performance and the diversity of population.

— In the last chapter, we consider the minimum linear arrangement problem. We
present the set based neighborhood with the decomposition method under the
framework of two phase iterated heuristic algorithm. Comparative results with the
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General Introduction

algorithm using the traditional 2-flip neighborhood as well as the state-of-the-art
algorithm are presented.
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Part I, Chapter 1 – Introduction

1.1 Graph layout problems

Graph layout problems (GLP) are a class of combinatorial optimization problems.
Starting from the bandwidth minimization problem (BMP) [Har64] in the 1960s, GLP
are to find a linear layout of an input graph in such a way that a certain objective function
is optimized. Because of the strong application background, there are many theoretical
and practical studies on GLP in the past decades. In this thesis, we mainly focus on two
GLP: the cyclic bandwidth problem (CBP) and the minimum linear arrangement problem
(MinLA).

— The cyclic bandwidth problem (CBP).
Let G(V,E) be a finite undirected graph of order n and Cn a cycle graph where
V represents the set of vertices and E depicts the set of edges. Given a bijection
ϕ : V → V which represents an embedding (also called a labeling) of G in Cn, the
cyclic bandwidth (the cost) for G with respect to ϕ is defined as:

Cb(G,ϕ) = max
(u,v)∈E

{|ϕ(u)− ϕ(v)|n}, (1.1)

where |x|n = min{|x|, n − |x|}, with |x| ∈ (0, n), is called the cyclic distance, and
ϕ(u) denotes the label associated to vertex u. The cyclic bandwidth Cb(u, ϕ) for
a particular vertex u, with set of adjacent vertices |A(u)| = deg(u), under the
embedding ϕ can be computed as follows:

Cb(u, ϕ) = max
v∈A(u)

{|ϕ(u)− ϕ(v)|n} . (1.2)

The objective of CBP is thus to find an embedding ϕ∗ such that Cb(G,ϕ∗) is
minimized:

ϕ∗ = arg min
ϕ∈Ω

{Cb(G,ϕ)}, (1.3)

where Ω represents the set of all possible embeddings. The embedding ϕ∗ satisfying
this condition in Equation 1.3 is called an optimal or exact embedding of the given
graph.

— The minimum linear arrangement problem (MinLA).
Let G(V,E) be a finite undirected graph, where V (|V | = n) represents the set
of vertices and E depicts the set of edges. Given a mapping ϕ : V → {1, 2, ...n}
which represents a linear arrangement ϕ, the sum of edge length (the cost) for G

16



1.2. Applications

with respect to ϕ is defined as:

SLA(G,ϕ) =
∑

(u,v)∈E
|ϕ(u)− ϕ(v)| (1.4)

The objective is to find an arrangement ϕ∗ whose the sum of total edge length
SLA(G,ϕ∗) is minimal.

CBP and MinLA are both NP-hard problems and their decision problems are known
to be NP-complete [Har82; Lin94].

1.2 Applications

CBP has many applications in the real world. One of them is to design a ring inter-
connection network [LVW84] for a couple of computers to ensure every message to be
sent at its destination in less than certain steps. Another application is the VLSI design
[BT84]. In the circuit layout domain, the maximum delay determines the clock-period of
the system in the circuit. To increase the speed of the chip, it is essential to decrease the
maximum delay by producing a layout with the longest edge as short as possible. Also,
CBP is applied in data structure representations [RS78]. The replacement of the logical
data structure with the physical storage structure is unavoidable step in the algorithm
implementation procedure. This encoding of data structure could be seen as a match be-
tween a “logical" guest structure and a “physical" host structure. An optimal solution for
an input graph will offer a good match for the encoding which will improve the efficiency
of the computers. Moreover, CBP is involved in the interconnection networks for parallel
computer systems [Hro+92].

MinLA is a min-sum problem whose objective is to find a linear arrangement to mini-
mize the sum of edge length for an input graph. It is widely used in many fields. First of
all, the optimal solution of MinLA can derive the lower bound and upper bound for the bi-
partite crossing number problem [Sha+00]. Concerning the design of the error-correcting
codes [Har64], the application of MinLA will help minimize the average absolute error
in message transmission. Also, in the field of VLSI, the vertices represent the pin on the
chip while the edges depict the wire between the pin. The cost of the arrangement stands
for the total wire length [AH73]. In addition, MinLA has other applications in biological
fields, graph drawing, software diagram layout and job scheduling.

17



Part I, Chapter 1 – Introduction

1.3 Algorithms of the cyclic bandwidth problem and
the minimum linear arrangement problem

The existing algorithms for CBP and MinLA fall into two categories: the exact algo-
rithms and the heuristic algorithms.

For CBP, the majority of the studies focused on theoretical work: getting the exact
value for certain family of graphs [LSC97; LSC02; Lin97] and finding lower bounds for the
general graphs [CLS08; KNS11; Zho00]. There are few practical algorithms to solve CBP.
To our knowledge, there is only one exact algorithm, i.e. a branch and bound algorithm in
[RRR12] which can solve small problem instances. Concerning the heuristic algorithms, a
heuristic algorithm based on tabu search was presented in [Rod+15] to handle large and
general instances.

For MinLA, there exist some exact methods to get the optimal solution for some
special families of graphs such as trees, rooted trees, hypercubes, meshes, outerplanar
graphs, and others ([DPS02]). Besides that, several heuristic algorithms were developed
such as the spectral sequencing method (SSQ) [JM92], improved frontal increase mini-
mization (IFIM) [Mca99], multi-scale algorithm (MS) [KH02], algebraic multigrid scheme
(AMG) [SRB04], simulated annealing (SA) [Pet03a][Pet03b][RHT08a], population-based
algorithms [RHT06] [Por05][SS09] and variable neighborhood search [MUP16].

The detailed review of previous work will be made for each considered problem in the
following chapters.

1.4 Algorithm assessment

The assessment of the performance of an algorithm is based on experimental results
over benchmark instances. In this section, we will make a brief introduction of the bench-
mark instances and some indicators describing the algorithm performances.

1.4.1 Benchmarks

For CBP, the benchmark graphs are organized in two different groups.
— Standard Graphs. The first group is made up of 85 graphs belonging to 7 dif-

ferent families of standard graphs (paths, cycles, two dimensional meshes, three
dimensional meshes, complete r-level k-ary trees, caterpillars and r-dimensional
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1.4. Algorithm assessment

hypercubes). Their order |V | varies in the range from 9 to 8192, while their size
|E| goes from 8 to 53248. The optimal solutions for these graphs are known, the
reader is referred to [Rod+15] for the details. Therefore, attaining the optimal so-
lutions for these instances is an important factor to evaluate the performance of
algorithms.

— Harwell-Boeing Graphs. The second group contains 28 graphs from theHarwell-
Boeing Sparse Matrix Collection. 1 These instances were directly constructed from
sparse adjacency matrices produced in practical and engineering real world ap-
plications. Their order fluctuates in the interval 9 ≤ |V | ≤ 715 and their size is
in the range 46 ≤ |E| ≤ 3720. The optimal solutions for 7 small graphs are al-
ready known, while for the remaining 21 graphs lower and upper bounds can be
calculated according to [Lin97].

For MinLA, the benchmark instances were introduced in [Pet03b]. There are 21 graphs
which are classified into 5 groups. 2.

— Random Graphs. This group consists of 5 graphs including 4 random graphs
and a random geometric graph. The number of vertices of these graphs is 1000 and
the number of edges is between 4974 and 49820.

— Regular Graphs. There are 3 graphs in this group: a complete binary tree with
10 levels, a 10-dimension hypercube and a 33×33 mesh graph. It is noticed that
the optimal solutions of these graphs are known.

— FE Graphs. This group includes 3 graphs from finite element discretization. The
numbers of vertices of these graphs are 4720, 4253 and 9800 respectively and the
numbers of edges are 13722, 12289 and 28989 respectively.

— VLSI Graphs. This is a set of 5 graphs from the VLSI design. Their order fluc-
tuates 828 ≤ |V | ≤ 1366 and their size are in the range 1749 ≤ |E| ≤ 2915.

— GD Graphs. It is composed of 5 graphs from graph drawing competitions. Four
of them are in small size which have less than 180 vertices and 228 edges. And the
other has 1096 vertices and 1676 edges.

1.4.2 Metaheuristic algorithms evaluation

To evaluate the performances of heuristic algorithms, the general method is to compare
the results of different algorithms under the same environment over the same benchmark

1. They are downloadable at http://math.nist.gov/MatrixMarket/data/Harwell-Boeing
2. They are downloadable on https://www.tamps.cinvestav.mx/~ertello/minla.php
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Part I, Chapter 1 – Introduction

set. Due to the stochastic nature of heuristic algorithms, a common practice is to run the
heuristic algorithm multiple times with different seeds (for example, we run our algorithms
50 times independently for each instance). Then we collect the results of each execution
and establish the comparison between the proposed algorithms and the state-of-the-art
algorithms. Normally, we consider the best objective value found, the average objective
value for each instance, the running time to get the best value and the deviation of the
solution quality. In this thesis, we also used other indicators such as the overall relative
root mean square error to describe the overall performance of the algorithm. The sta-
tistical significance test is implemented to verify whether the differences are statistically
significant.

To shed light on the key components and reveal their influences to the performance
of the proposed algorithm, additional control experiments are needed. Usually, we create
several variants of the proposed algorithm by disabling or replacing some components.
The variants will follow the same experiment setting of the proposed algorithm over the
benchmark set. This method is widely used in the following chapters and we will make
specific presentation for each algorithm.
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Chapter 2

AN ITERATED THREE-PHASE SEARCH

APPROACH FOR SOLVING THE CYCLIC

BANDWIDTH PROBLEM

In this chapter, we introduce an iterated three-phase search approach which relies on
three complementary search components to ensure a suitable balance of search intensi-
fication and diversification, guided by an enriched evaluation function. Computational
assessments on a test-suite of 113 popular benchmark instances in the literature demon-
strate the effectiveness of the proposed algorithm. In particular, it improves on 19 best-
known computational results of the current best-performing algorithm for the problem
and discovers 12 new record results (updated upper bounds). The key components of the
proposed algorithm are investigated to shed light on their influences over the performance
of the algorithm. The content of this chapter has been published in IEEE Access.
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Part II, Chapter 2 – An iterated three-phase search approach for solving the cyclic bandwidth
problem

2.1 Introduction

The Cyclic Bandwidth Problem (CBP) is a general and useful model able to formulate
a number of practical applications. Initially introduced in the context of designing ring
interconnection networks [LVW84], CBP involves finding an arrangement on a cycle for a
set V of computers with a known communication pattern, given by the graph G(V,E) to
ensure that every message could be sent to its destination in at most k steps. The decision
problem of CBP is known to be NP-complete [Lin94]. Also, it has some other important
applications in VLSI design [BT84], data structure representations [RS78], code designs
[Chu88] and parallel computer systems [Hro+92].

Let G(V,E) be a finite undirected graph of order n and Cn a cycle graph. Given a
bijection ϕ : V → V which represents an embedding (also called a labeling) of G in Cn,
the cyclic bandwidth (the cost) for G with respect to ϕ is defined as:

Cb(G,ϕ) = max
(u,v)∈E

{|ϕ(u)− ϕ(v)|n}, (2.1)

where |x|n = min{|x|, n − |x|}, with |x| ∈ (0, n), is called the cyclic distance, and ϕ(u)
denotes the label associated to vertex u. The cyclic bandwidth Cb(u, ϕ) for a particular
vertex u, with set of adjacent vertices |A(u)| = deg(u), under the embedding ϕ can be
computed as follows:

Cb(u, ϕ) = max
v∈A(u)

{|ϕ(u)− ϕ(v)|n} . (2.2)

The main objective of CBP is thus to find an embedding ϕ∗ such that Cb(G,ϕ∗) is
minimized:

ϕ∗ = arg min
ϕ∈Ω

{Cb(G,ϕ)}, (2.3)

where Ω represents the set of all possible embeddings. The embedding ϕ∗ satisfying this
condition is called an optimal or exact embedding of the given graph.

Table 2.1 – Table of cyclic distances for all the edges of graph G depicted in Fig. 2.1.

x = (u, v) ∈ E (a, b) (a, e) (a, f) (a, h) (b, d) (b, g) (c, e) (c, j) (d, i) (e, g) (f, g) (f, j) (h, i)
|x| = |ϕ(u)− ϕ(v)| 4 3 2 1 8 1 4 1 7 8 7 4 4
|x|n = min(|x|, n− |x|) 4 3 2 1 2 1 4 1 3 2 3 4 4

Fig. 2.1 shows a graph with ten vertices (n = 10) named from a to j with an embedding
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or vertex labeling indicated in red from 1 to 10. In Fig. 2.2, the vertices of G are reordered
clockwise on a cycle according to the label numbers (in red). So for each edge (u, v) ∈ E,
it is easy to calculate the labels ϕ(u) and ϕ(v) to get the absolute distance |x| and the
cyclic distance |x|n (see Table 2.1). For instance, the edge x = (f, g) (in blue) has an
absolute distance |x| = 7 (i.e., the number of vertices from f to reach g in a clockwise
direction in the cycle) while its cyclic distance |x|n equals 3 (min{7, 10− 7}, which is also
the number of vertices from f to reach g in a counterclockwise direction). According to
(2.1), the cyclic bandwidth Cb(G,ϕ) of this graph is the maximum value among all the
|x|n, i.e., Cb(G,ϕ) = 4 which concerns the edge x = (a, b) of Fig. 2.2 indicated in red.

Figure 2.1 – The vertices are named from a to j and a labeling is represented by the red
numbers from 1 to 10.

Until now, the majority of the existing studies concern either special graphs whose
exact cyclic bandwidths can be determined theoretically or propositions to define lower
and upper bounds of a general graph. For instance, in [YZ95], it was shown that for every
unit interval graph, there exists a simultaneously optimal labeling for several labeling
problems including CBP. The study of [Hro+92] established the relationships between
the bandwidth BP (G) and the cyclic bandwidth Cb(G): BP (G) ≥ Cb(G) ≥ 1

2BP (G).
Following this result, studies of [LSC97; LSC02; Lin97] identified the criterion condi-

tions for two extreme cases BP (G) = Cb(G) and 1
2BP (G) = Cb(G), and further obtained

some exact values for special graphs including trees, planar graphs, triangulation meshes,
grids with specific characteristics and some other graphs with particular conditions.

In [Zho00], a systematic method was proposed to achieve a number of lower bounds
for the bandwidth of a graph, which is then used to obtain lower bounds for CBP in terms
of some distance- and degree-related parameters.
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Figure 2.2 – The graph G of Fig. 2.1 with its vertices a to j reordered clockwise on a cycle
according to the label numbers 1 to 10 (in red).

The work of [CLS08] was devoted to the upper bound of the cyclic bandwidth of a
general graph with an edge added. By exploring the property that the cyclic distance
between any pair of adjacent vertices will not be affected by shifting all vertices in the
cyclic order the same distance, a sharp upper bound was obtained.

The study of [KNS11] used the semi-definite programming (SDP) relaxations of the
quadratic assignment problem to propose two new lower bounds on the bandwidth and
cyclic bandwidth, which are shown to be better than two other previous SDP bounds.

In addition to these theoretical results, little effort has been made to develop practical
solution methods for CBP. To our knowledge, there are only three published algorithms
on solving CBP. In [RRR12], a branch and bound algorithm was proposed that can
solve some standard instances (like path, mesh and cycle) of small sizes limited to 40
vertices. To handle larger instances, a heuristic algorithm based on the tabu search meta-
heuristic (named TScb) was presented in [Rod+15]. The authors also adapted a highly
effective simulated annealing designed for the related Bandwidth Minimization Problem
(BMP) [Har64] to the cyclic bandwidth problem. Their experimental assessment on a set
of benchmark instances demonstrated the superiority of TScb over the simulated anneal-
ing algorithm. As a result, TScb can be considered as the state-of-the-art algorithm for
CBP and will serve as the main reference for our computational study.

Our literature review indicates that contrary to the BMP, for which various solution
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methods have been proposed (e.g., [Mla+10; Piñ+04; RHT08b; Tor+15]), effective algo-
rithms dedicated to CBP remains scarce. To enrich the practical solution arsenal for this
important optimization problem, we introduce in this work an iterated three-phase search
algorithm (ITPS) for solving CBP. The algorithm is characterized by the following fea-
tures. First, the algorithm is composed of three key search components: a double neighbor
descent phase to find a local optimal solution, a responsive threshold-based search phase
to explore the nearby regions for the purpose of discovering better solutions and a special
perturbation phase to displace the search to a new and distant region. The algorithm
also integrates an extended evaluation function which enriches the optimization objective
by additional information. This function is used to discriminate many solutions with the
same cyclic bandwidth and provides a relevant means for guiding the search process.

We assess the proposed algorithm on a set of 113 well-known benchmark instances
taken from the literature. This set of instances includes 85 standard graphs (e.g., paths,
cycles, caterpillars, etc) and 28 Harwell-Boeing graphs which arise from diverse engineering
and scientific real-world problems. The comparisons with the results produced by the
state-of-the-art reference method show the competitiveness of our algorithm. For the set
of 85 standard graphs, our algorithm improves on 19 best computational (upper) bounds
and matches 60 best-known computational results from the literature. For the set of
28 Harwell-Boeing graphs, our algorithm discovers new record results (updated upper
bounds) for 12 graphs and matches the best-known results for 15 other graphs.

The remainder of this chapter is organized as follows: Section 2.2 first introduces the
main scheme of the proposed algorithm. Then, the implementation details of the neighbor-
based descent procedure as well as the responsive threshold-based search method are pre-
sented. In Section 2.3 a set of computational experiments is presented. They are devoted
to determine the best input parameter values for the ITPS algorithm and to compare its
performance with respect to the reference algorithm in the literature, TScb [Rod+15]. Sec-
tion 2.4 experimentally investigates the extent to which key components of the ITPS al-
gorithm can influence its global performance. Finally, the main conclusions drawn from
this work in Section 2.5.
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2.2 Iterated three-phase search for CBP

2.2.1 Main scheme

The proposed ITPS algorithm was inspired by the three-phase approach presented
in [FH15]. Even if the work of [FH15] concerns a particular optimization problem (i.e.,
the quadratic minimum spanning tree problem), the approach is of general interest and
has been applied to other problems such as clique partitioning [ZHG16]. In this work, we
adapted this three-phase approach to CBP by reusing its general framework and making
dedicated adaptations to deal with the particular features of our considered problem.

Let G = (V,E) be a graph of order |V | = n and a cycle graph Cn = (V ′, E ′), the search
space Ω considered by our ITPS algorithm is composed of all candidate embeddings (la-
bellings or solutions) of G in Cn, ϕ : V → V ′. In our implementation, an embedding
ϕ is represented by a permutation of {1, 2, . . . , n} such that the i-th element denotes
the label assigned to vertex i ∈ V . To effectively explore the space Ω, ITPS combines
a double neighborhood descent search, a responsive threshold-based search as well as a
specific perturbation. To cope with the difficulty of discriminating many equal-cost can-
didate solutions, ITPS integrates an extended evaluation function using graph structure
information.

The pseudo-code of the ITPS algorithm is presented in Algorithm 1. It starts with
a randomly generated solution ϕ. Then the algorithm enters the main ‘while’ loop (lines

Algorithm 1 ITPS algorithm for CBP
1: Input: Finite undirected graph G(V,E), neighborhoods N1 and N2, extended evaluation function
fe, search depth δ and cutoff time limit Tmax

2: Output: The best solution found ϕ∗
3: ϕ← InitialSolution()
4: ϕ∗ ← ϕ
5: while the cutoff time limit Tmax is not reached do
6: NonImp← 0
7: while NonImp < δ do
8: (ϕ,ϕ∗)← DNDS(ϕ,ϕ∗, N1, N2) // Section 2.2.3
9: (ϕ,ϕ∗)← RTBS(ϕ,ϕ∗, N1, N2) // Section 2.2.4
10: NonImp← NonImp+ 1
11: end while
12: ϕ← Purturbation(ϕ) // Section 2.2.5
13: end while
14: return ϕ∗
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5-13), Alg. 1) to explore solutions of increasing quality in terms of the extended evaluation
function fe. At each iteration, the descent search (first phase, Section 2.2.3) is first run
to find a local optimal solution using two neighborhoods N1 and N2 (line 8, Alg. 1). This
phase is followed by the responsive threshold-based search (second phase, Section 2.2.4)
to discover additional local optima of better quality from the incumbent solution (line 9,
Alg. 1). These two phases are repeated δ times. At this point, the search is judged to be
trapped in a deep local optimum. To overcome the trap, the perturbation procedure (third
phase, Section 2.2.5) is triggered to strongly transform the incumbent solution ( line 12,
Alg. 1). The search then goes back to the first phase with the perturbed solution as its
new starting solution. During the search, each time a solution better than the previous
best recorded solution is found, ϕ∗ is updated. The whole search process stops when a
given cutoff time limit (Tmax) is reached. As the output of the algorithm, the best recorded
solution ϕ∗ is returned.

2.2.2 Extended evaluation function

A notable feature of CBP is that many solutions may have the same objective value.
This is because there are (n− 1)!/2 possible solutions while there are only bn/2c different
possible objective values, see equation (2.1). From the local optimization perspective, it
is critical to discriminate the solutions with the same objective value. For this purpose,
we devise an extended evaluation function fe as follows.

Let ϕ ∈ Ω be a candidate solution with cyclic bandwidth cost Cb(G,ϕ). LetNumE(Cb(G,ϕ))
represent the number of edges whose cyclic bandwidth equals Cb(G,ϕ):

NumE(Cb(G,ϕ)) =
∑

(u,v)∈E
Xuv , (2.4)

where Xuv = 1 if |ϕ(u) − ϕ(v)|n = Cb(G,ϕ); otherwise Xuv = 0. Then, the extended
evaluation function fe is given by:

fe(ϕ) = Cb(G,ϕ) + NumE(Cb(G,ϕ))
|E|

. (2.5)

As we show below, this evaluation function is able to distinguish the solutions that un-
der the conventional evaluation function presented in (2.1) have the same objective value.
An analysis of the influence of the new evaluation function fe is provided in Section 2.4.1.

Figure 2.3 shows an example of the extend evaluation function fe applied to two solu-
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(a) (b)

Figure 2.3 – An illustration of the extended evaluation function fe applied to two different
embeddings. (a) ϕ1. (b) ϕ2. Both embeddings have the same cost (cyclic bandwidth) under
the conventional evaluation function (2.1). However, the new function fe discriminates
these embeddings by assigning to them two different values fe(ϕ1) = 4 + 1/13 = 4.0769
and fe(ϕ2) = 4 + 3/13 = 4.2307.

tions with the same objective value Cb(G,ϕ) = 4. According to the extended evaluation
function, fe(ϕ1) = 4 + 1/13 = 4.0769, whilefe(ϕ2) = 4 + 4/13 = 4.3076. The embedding
ϕ1 is considered to be “better” than the embedding ϕ2. This is reasonable, because one
notices, from Fig. 2.3(a), that for reducing the cost value Cb(G,ϕ) of the embedding ϕ1 it
is necessary to deal with only one edge (marked in red), while for embedding ϕ2, depicted
in Fig. 2.3(b), there are four edges (marked in red) that should be considered. Thus, it is
easier to operate with ϕ1 than with ϕ2 to reduce the cyclic bandwidth of G.

2.2.3 First phase - Double neighborhood descent search

To explore the given search space, we first apply the double neighborhood descent
search procedure (DNDS) whose general scheme is shown in Algorithm 2. Basically, DNDS
explores the two neighborhoods N1 and N2 defined below and iteratively replaces the
incumbent solution by a neighbor solution selected from a set of candidate neighbors.
At each iteration, DNDS uses either N1 or N2 to create the candidate list (CLst) by
identifying the solutions no worse than the incumbent solution in terms of the evaluation
function fe (lines 6-16, Alg. 2). A priority is always given to N1 and N2 is examined only if
the neighbor solutions inN1 are all worse than the incumbent solution. If the candidate list
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2.2. Iterated three-phase search for CBP

Algorithm 2 Double neighborhood descent search
1: Input: input solution ϕ, best optimum found ϕ∗, neighborhoods N1 and N2, evaluation function
fe, maximum non-improving limit Ld, and best neighbor move strategy probability ρbest

2: Output:last local optimum ϕ, best optimum found ϕ∗
3: NonImpCounter ← 0
4: Improving ← True
5: while NonImpCounter < Ld do
6: if Improving then
7: N ← N1
8: else
9: N ← N2

10: end if
11: CLst← ∅
12: for each ϕ′ ∈ N(ϕ) do
13: if fe(ϕ′) ≤ fe(ϕ) then
14: CLst← CLst ∪ {ϕ′}
15: end if
16: end for
17: if CLst 6= ∅ then
18: if rand(0, 1) < ρbest then
19: ϕ← BestSol(CLst) // With probability ρbest
20: else
21: ϕ← RandomSol(CLst)
22: end if
23: Improving ← True
24: else
25: Improving ← False
26: end if
27: if fe(ϕ) < fe(ϕ∗) then
28: NonImpCounter ← 0
29: ϕ∗ ← ϕ
30: else
31: NonImpCounter ← NonImpCounter + 1
32: end if
33: end while
34: return ϕ, ϕ∗

is not empty (i.e., it contains at least one improving or non-worsening neighbor solution),
either one best neighbor solution, or a random neighbor solution is chosen from CLst

to become the new current solution according to probability ρbest (lines 18-22, Alg. 2).
Notice that given the criterion used to build CLst, the selected neighbor solution is always
at least as good as the replaced solution. In case CLst contains no candidate solution,
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DNDS moves to the next iteration without performing a solution transition (the number
of consecutive non-improving iterations is indicated by NonImpCounter, line 31, Alg. 2).
During the search, the best-found solution ϕ∗ is updated each time a better solution is
attained. The DNDS process terminates if the best-found solution ϕ∗ cannot be updated
during Ld consecutive iterations. In this case, DNDS has attained a local optimum and the
ITPS algorithm switches to the responsive threshold-based search method for escaping
this local optimum trap and to continue looking for new better quality solutions.

Neighborhoods

The two neighborhoods N1 and N2 explored by DNDS are defined by the general swap
operator. Let ϕ be the incumbent solution, then a neighbor solution ϕ′ can be generated
by exchanging the labels of vertices u and v with the operation swap(u, v). Without any
restriction, the swap operator leads to a neighborhood of size of order O(n2), which is too
large to be explored efficiently. Following the idea of [Rod+15], we use two constrained
neighborhoods by imposing specific conditions on the vertices that take part in a swap
operation.

The first neighborhood N1(ϕ) is given by the set of neighbor solutions obtained by
swapping a critical vertex u ∈ C(ϕ) and a specific vertex v ∈ S(u) adjacent to u:

N1(ϕ) ={ϕ′ = ϕ⊕ swap(u, v) : u ∈ C(ϕ),

v ∈ S(u), swap(u, v) /∈ TL} ,
(2.6)

where ϕ′ = ϕ⊕ swap(u, v) denotes the neighbor solution obtained by applying swap(u, v)
to transform ϕ, TL is the so-called tabu list that records the swaps that were recently
performed (see Section 2.2.3). The set C(ϕ) contains a group of critical vertices w ∈ V
having a cyclic bandwidth Cb(w,ϕ) = Cb(G,ϕ), while S(u) ⊆ V is the set containing
those vertices z currently labeled with values closer tomid(u) than to ϕ(u) (i.e., |mid(u)−
ϕ(z)|n < |mid(u)−ϕ(u)|n). The value mid(u) stands for the middle point of the shortest
path in the cycle Cn containing all the vertices adjacent to u [Rod+15].

The descent procedure uses this strongly constrained neighborhood N1(ϕ) to make an
intensified exploration of candidate solutions.

Figure 2.4 depicts an illustrative example of the neighborhood N1(ϕ). It presents an
embedding ϕ containing a critical vertex c ∈ C(ϕ) (marked in red), which has the label 6
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Figure 2.4 – A simple illustration of the neighborhood N1(ϕ). The embedding ϕ containing
a critical vertex c ∈ C(ϕ) (marked in red), as well as the set S(c) = {a, h, f} of suitable
vertices eligible to be swapped with vertex c (highlighted in blue) are depicted.

assigned to it. Using its adjacent vertices A(c) = {e, j} (edge (c, e) and edge (c, j) marked
in green), we identify the vertex h (having label 4) as the middle point mid(c) of the
shortest path in the cycle Cn containing all the vertices in A(c). Thus, all the vertices
highlighted in blue (i.e., a, h and f) are in the suitable set S(c) and are eligible to be
swapped with vertex c.

For the purpose of search diversification, the descent procedure employs also a larger
neighborhood N2(ϕ) which is specified by the following expression:

N2(ϕ) ={ϕ′ = ϕ⊕ swap(u, v) : u ∈ C(ϕ),

v ∈ Rγ(u), swap(u, v) /∈ TL} ,
(2.7)

where the set Rγ(u) ⊆ V contains γ ∗n randomly selected vertices (γ ∈ (0, 1]). Compared
to N1(ϕ), the swap operator can exchange a critical vertex u with any other vertex in
the graph, leading to a much higher freedom for a swap operation. Since the neighbor
solutions of N2(ϕ) are more varied, this neighborhood promotes search diversification.

Compared to swapping all pairs of labels to generate neighbor solutions, the neighbor-
hoods N1(ϕ) and N2(ϕ) are much smaller in size. Indeed, N1(ϕ) contains |C(ϕ)| ∗ |S(.)|
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neighbor solutions, where |S(.)| is the average number of suitable vertices for a critical
vertex with respect to the current solution ϕ, while N2(ϕ) has |C(ϕ)| ∗ γ ∗ n neighbor
solutions.

Our preliminary experiments indicated that for the tested instances |C(ϕ)| ≤ 0.1 ∗ n
and |S(.)| ≤ 0.1 ∗ n hold. For this reason the value of γ was set to 0.05 or 0.1 in our
experiments. As a result, each iteration of the descent procedure only considers 0.01n2

candidate solutions, which significantly accelerates the search process.
Finally, we adopted a fast incremental technique to evaluate a neighbor solution ϕ′

according to the evaluation function fe. Let ϕ′ be an embedding obtained by swapping u
and v in ϕ. Then, to obtain fe(ϕ′) from fe(ϕ), we need only to recalculate the changing
part |A(u)| + |A(v)| (|A(u)| and |A(v)| represent the number of adjacent vertices to u
and v, respectively). This ensures that each iteration of the algorithm requires a time
complexity bounded by O((|A(u)|+ |A(v)|) ∗ n2).

Tabu list management

Since the double neighborhood descent search only accepts non-deteriorating (i.e.,
improving or equal cost) neighbor solutions, it is possible that a previously visited solution
is reconsidered at a later iteration, leading to search cycling. To avoid this problem, the
DNDS procedure integrates a tabu list that is a key concept of the tabu search method
[GL97]. The idea is to keep track of the performed swaps and forbid the reverse swap
operations during the next τ iterations (τ is an input parameter called the tabu tenure).
So when swap(u, v) is performed to transform the current solution, swap(u, v) is added
in the tabu list and it is forbidden to swap vertices v and u during the period fixed by the
tabu tenure. In principle, the tabu tenure can take a fixed value or can be dynamically
calculated during the search. We adopt a dynamic tabu tenure technique introduced in
[GBF11]. As shown in other studies [LH16; WH13], this technique proves to be robust
and effective in different settings and was also used in [Rod+15] for CBP. This technique
applies a periodic step function that takes as argument the number of iterations iter for
computing the tabu tenure value. The value returned by this function for a particular
iteration iter is given by (aj)j=1,2,...,15 = (1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1) × d, where d
is a parameter fixing the minimum tabu tenure (set to 100 in this work) and index j is
computed by j = b iter mod 1500

100 c + 1. Therefore, each period of this function is composed
of 1500 iterations divided into 15 intervals.
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Discussions

Like [Rod+15], the first phase of our ITPS algorithm is based on two neighborhoods.
However, there are some notable differences. First, our neighborhood N1 uses a set C(ϕ)
of critical vertices defined by the condition Cb(w,ϕ) = Cb(G,ϕ), which is more restrictive
than the condition Cb(w,ϕ) ≥ α ∗ Cb(G,ϕ) (α is a prefixed parameter between 0 and
1) used in [Rod+15]. In this way, the set of critical vertices is reduced and each iteration
needs to examine fewer candidate solutions. Second, we make a swap move after visiting
all candidate solutions induced by all critical vertices in C(ϕ) while in [Rod+15] a swap
move is performed after visiting the candidate solutions of only one critical vertex. The
advantage of our strategy is that we could encounter a better solution at each iteration,
and have less chance to miss an elite solution. Third, in [Rod+15], the two neighborhoods
are used according to a probability. In our work, N1 is always applied with priority and N2

is used only whenN1 is exhausted (i.e., when a local optimum is attained withN1). Finally,
our first phase uses the descent procedure to ensure an efficient search intensification (i.e.,
no worsening neighbor solution is allowed), while the algorithm of [Rod+15] uses tabu
search which may accept worsening solution transitions.

2.2.4 Second phase - Responsive threshold-based search

As explained in Section 2.2.3, the double neighborhood based descent search only
accepts non-deteriorating neighbor solutions. As such, it can be trapped in local optima.
When this happens, we trigger the second search phase and apply the responsive threshold-
based search (RTBS) to escape such traps. During the second phase, both improving and
deteriorating neighbor solutions can be accepted in order to favor a large exploration of
the search space.

Like the double neighborhood based descent search, the responsive threshold-based
search also relies on the neighborhoods N1 and N2. However, RTBS adopts the threshold
accepting heuristic [Due93; DS90] as the criterion for solution transitions. As such, a
solution whose quality does not drop below a given threshold can be accepted to replace
the incumbent solution. To further enforce search exploration, the two neighborhoods are
considered alternatively according to a probability ρN1 . The general responsive threshold-
based search procedure is described in Algorithm 3.

RTBS starts each iteration by calculating the responsive threshold, denoted by T (line
5, Alg. 3). Then it iteratively makes transitions from the current solution to a neighbor
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Algorithm 3 Responsive threshold-based descent procedures
1: Input: input solution ϕ, best found solution ϕ∗, neighborhoods N1 and N2, evaluation function
fe, maximum non-improving limit Lt, neighborhood N1 application probability ρN1 , and best
neighbor move strategy probability ρbest

2: Output: best found solution ϕ∗, last solution ϕ
3: NonImpCounterT ← 0
4: while NonImpCounterT < Lt do
5: T ← Threshold(ϕ)
6: if rand(0, 1) < ρN1 then
7: N ← N1 // With probability ρN1

8: else
9: N ← N2
10: end if
11: CLst← ∅
12: for each ϕ′ ∈ N(ϕ) do
13: if fe(ϕ′) ≤ T then
14: CLst← CLst ∪ {ϕ′}
15: end if
16: end for
17: if CLst is not empty then
18: if rand(0, 1) < ρbest then
19: ϕ← BestSol(CLst) // With probability ρbest
20: else
21: ϕ← RandomSol(CLst)
22: end if
23: end if
24: if fe(ϕ) < fe(ϕ∗) then
25: NonImpCounterT ← 0
26: ϕ∗ ← ϕ
27: else
28: NonImpCounterT ← NonImpCounterT + 1
29: end if
30: end while
31: return ϕ, ϕ∗
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solution which is selected by examining the neighborhoods N1 and N2. The former is
applied with probability ρN1 , while the latter is employed at a (1− ρN1) rate (lines 6-10,
Alg. 3). This is simulated with a random number generated in the interval (0, 1). Then
all neighbor solutions whose quality is no worse than the threshold T are identified to
form the CLst (lines 12-16, Alg. 3). Finally, according to the probability ρbest, either a
best solution or a random solution is selected from CLst (like DNDS does) and used to
replace the current solution (lines 18-22, Alg. 3). The best solution found ϕ∗ during the
search is updated each time a better solution is discovered (lines 24-29, Alg. 3). If ϕ∗ is
not updated, we increase the counter of non-improving iterations NonImpCounterT and
move to the next iteration. This process stops if the best local optimum found during
this run can not be updated during Lt consecutive iterations. In this case, the search is
supposed to be trapped in a deep local optimum.

One key issue concerns the threshold T . Indeed, if T takes a value that is far from
the current objective value (T − Cb(G,ϕ)�0), even very bad neighbor solutions can
be accepted, leading to a random-like search. On the other hand, if T takes a value
that is too close to the current objective value (T − Cb(G,ϕ) ≈ 0), the search will
behave like the descent search and can hardly escape local optimum traps. To iden-
tify a suitable threshold T , we follow the work of [CH15] and use a responsive mech-
anism to dynamically tune T according to the current objective value Cb(G,ϕ) and
a threshold ratio r. Specifically, we set T as follows T = (1 + r) ∗ Cb(G,ϕ), where
r = 1/(a ∗ Cb(G,ϕ) + b) + c. The coefficients a, b, and c were empirically fixed at
0.00891104, 0.52663736 and 0.16331589, respectively. It was carried out by solving si-
multaneously three equations produced with the following pairs of (Cb(G,ϕ), r) values
obtained from preliminary experiments: {(2, 2), (150, 0.7), (3000, 0.2)}. As a result, the
threshold T evolves according to Cb(G,ϕ) and the threshold ratio r. T tends to become
small when the current solution is of high quality so that only improving or limited wors-
ening neighbor solutions are accepted. Inversely, T tends to become large when the current
solution is not so good in order to encourage more exploration.

2.2.5 Third phase - Shift-Insert-based perturbation

With its threshold accepting strategy, the responsive threshold-based search ensures
a large exploration of solutions of various quality. When this second phase is exhausted,
we trigger a strong perturbation to displace the search to a new and distant region of
the search space. Specifically, this is achieved by applying the ShiftInsert operator to
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transform the current solution as follows.
Let ϕ be the current solution with cyclic bandwidth Cb(G,ϕ). Let W = {(u, v) ∈ E :

|ϕ(u)−ϕ(v)|n = Cb(G,ϕ)} be the set of edges whose cyclic distance equals Cb(G,ϕ). Let
e = (u, v) be an edge randomly taken fromW such that ϕ(u) > ϕ(v). The ShiftInsert(u, v)
operator first removes u, then shifts all vertices between u and v clockwise or anti-clockwise
at random, and finally inserts u at the position of v. In practice, ShiftInsert(u, v) is re-
alized by performing Cb(G,ϕ)− 1 successive swap(u, x) operations where x denotes the
inverse clockwise nearby vertex of u in the solution undergoing transformation until x
reaches vertex v.

An illustrative example is shown in Fig. 2.5(a) (solution before the ShiftInsert op-
eration) and Fig. 2.5(b) (solution after the ShiftInsert operation). In this example,
Cb(G,ϕ) = 4 and edge (c, e) is chosen for ShiftInsert amongW = {(c, e), (f, j), (h, i), (a, b)},
which is the set of edges with a cyclic distance of 4. ShiftInsert(c, e) is performed by
three successive swap operations: swap(c, a), swap(c, h), and swap(c, f). Table 2.2 indi-
cates the changes of the cyclic distances of the edges impacted by the ShiftInsert(c, e)
operation.

The Shift-Insert-based perturbation has some interesting features. On the one hand,
by displacing a significant number of vertices, this strategy helps to break long standing
ties and forces the search to overcome deep local traps. Second, by considering edges
whose cyclic distance is equal to the current cyclic bandwidth, this strategy maintains
the quality of the transformed solution at a reasonable level and thus avoids searching
from a lower quality solution.

When the third phase is triggered, the Shift-Insert-based perturbation is applied one
time to transform the current solution. The modified solution is then used as the new
starting solution of the next round of the ITPS algorithm. In Section 2.4.3, we investigate
the usefulness of the Shift-Insert-based perturbation.

Table 2.2 – Changes of the cyclic distances associated to the edges impacted by the
ShiftInsert operation when applied over the solution depicted in Fig. 2.5.

(u, v) (f, g) (f, j) (h, i) (h, a) (a, f) (a, e) (a, b)
|ϕ(u)− ϕ(v)|n 3 4 4 1 2 3 4
|ϕ(u)− ϕ(v)|n 4 3 3 1 2 4 3
Change +1 -1 -1 0 0 +1 -1
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(a) (b)

Figure 2.5 – An illustrative example of the Shift-Insert-based perturbation. (a) Solution
ϕ before applying the ShiftInsert perturbation. (b) Solution ϕ after applying the per-
turbation ShiftInsert(c, e).

2.3 Computational experiments

This section is dedicated to an experimental assessment of the proposed ITPS algo-
rithm, the experimental setup, the test-suite, the procedure used to set the parameter
values and a performance comparison between ITPS and TScb (the reference state-of-
the-art method) [Rod+15].

2.3.1 Experimental setup

The ITPS algorithm described in the previous section was coded in the C++ pro-
gramming language 1. We have also the C source code of the TScb algorithm 2. Thus,
both algorithms were compiled with g++ version 4.4.7 using the optimization flag -O3.
All the experiments presented in this work were run sequentially on the same computa-
tional platform with a CPU Intel Xeon X5650 at 2.66 GHz, 2 GB of RAM with Linux
operating system. For each benchmark instance a total of 50 independent executions, us-
ing different random seeds, of the analyzed algorithms were accomplished due to their
stochastic nature.

1. The source code of our ITPS algorithm is available at: https://github.com/thetopjiji/ITPS
2. The source code of the TScb algorithm reported in [Rod+15] is available at: https://www.tamps.

cinvestav.mx/~ertello/cbmp.php
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The test-suite used for the experiments presented in this work is composed of 113
topologically diverse graphs 3 previously tested in the literature [Rod+15]. It is divided
into two subsets. The first one consists of 85 standard graphs from seven different families
(r-dimensional hypercubes, three dimensional meshes, complete r level k-ary trees, paths,
cycles, two dimensional meshes, and caterpillars). These instances have 9 to 8192 ver-
tices and 8 to 53,248 edges. Their optimal values are known, which have been obtained
theoretically as indicated in Section 4.3.1. of [Rod+15]. One notices that no existing
heuristic algorithm is able to attain all the optimal values. The second subset is com-
posed of 28 problem instances, with unknown optimal cost. These instances are from
the Harwell-Boeing Sparse Matrix Collection 4 and corresponds to graphs from scientific
and engineering practical problems. Most of the graphs in this subset (24 of them) were
previously used by Duarte et al. [Dua+11] and Lozano et al. [Loz+12] as benchmark
instances for the related antibandwidth problem [LVW84] and employed in [Rod+15]
for the first time as test instances for the cyclic bandwidth problem. The instances in
the second subset have a size ranging from 9 to 715 vertices and 46 to 3,720 edges. For
a detailed description of this test-suite as well as the current best known results of the
benchmark instances, the reader is referred to [Rod+15].

For the performance comparison of the analyzed algorithms we employed the criteria
commonly used in the literature related with graph embedding algorithms, i.e., the best
cyclic bandwidth yielded for each instance (smaller values are better) and the computation
time in seconds. Following [Rod+15], we applied two other comparison metrics. The first
one is the relative root mean square error (RMSE), which is computed for each instance
t in the test-suite. A smaller RMSE value (≥ 0) indicates a better performance while
zero means that the algorithm achieved Cb∗(t) for each of R runs. To assess the global
performance of the studied algorithms, we additionally used the overall relative root mean
square error (O-RMSE), which averages the RMSE values over the instances of the test-
suite.

To analyze the statistical significance of the experimental data produced in this work
the following procedure was systematically used. Normality of data distributions was eval-
uated by using the Shapiro-Wilk test. In the case of non-normal data, the nonparametric
Kruskal-Wallis test was applied. In contrast, when the data follows a normal distribution
the homogeneity of the variances across the samples is first verified with the Bartlett’s test.

3. Available at https://www.tamps.cinvestav.mx/~ertello/cbmp.php
4. http://math.nist.gov/MatrixMarket/data/Harwell-Boeing
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Then, for homogeneous data the ANOVA parametric test is executed, whereas Welch’s t
test is employed in the presence of heteroskedasticity. For all these statistical tests a 0.05
significance level was considered.

2.3.2 Determination of the input parameter values for ITPS

The proposed ITPS algorithm, like most meta-heuristic algoithms, has a number of
input parameters. In general, one can tune these parameters on an instance-by-instance
basis to identify the best parameter values for each considered problem instance. However,
fine-tuning of parameters becomes a tedious task when one wants to solve a large number
of instances (like in our case), and moreover, renders it difficult to make fair comparisons
with other algorithms. For the purpose of this work, we accomplished the task of tuning
parameters of the ITPS algorithm by employing the popular irace utility [Lop+16], which
is one of a number of automatized parameter tuning tools such as ParamILS [Hut+09]
and GGA++ [Ans+15]. This tool uses a (small) training set of instances to determine
the most suitable parameter values for the training instances. In our case, we used 20
out of the 113 benchmark instances of Section 2.3.1 for the parameter tuning task with
irace (see below). Finally, we comment that the parameter values obtained by irace can
be considered to define the default parameter setting of ITPS, though fine-tuning some
parameters for a particular instance could enable the algorithm to achieve better results.

There are seven parameters associated with our ITPS algorithm. The first two of them
(δ and Tmax) are directly used by ITPS, while the other five parameters are required by
the double neighborhood descent and the responsive threshold-based search procedures
(Ld, ρbest, ρN1 , Lt, and γ). To ensure a fair comparison between our ITPS algorithm
and the TScb method, the same cutoff time limit reported in [Rod+15] was adopted
(i.e., Tmax = 600 seconds). Table 2.3 presents for each of the six remaining parameters
considered in the tuning process its description, its type, and the values provided to
configure irace.

For our tuning experiment we have selected a subset of 20 graphs from the original
test-suite of 113 benchmark instances described in Section 2.3.1. The criteria used to
compose this subset was to include large and complex instances covering all graph types
present in the original benchmark. We have observed, from our preliminary tuning tests,
that the performance of ITPS presented some variations depending on the graph family.
For this reason, we have divided the subset of 20 graphs into three groups:

— path200, path650, path825, path1000, cycle200, cycle300, cycle650, cycle1000, cater-
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Table 2.3 – Parameters to be tunned with irace for the ITPS algorithm.

Parameter Description Type Range/Values

δ Search depth Integer [1, 10]
Ld Maximum non-improving limit Categorical {5, 10, 20, 50, 100}
ρbest Best neighbor move strategy probability Real [0.00, 1.00]
Lt Maximum non-improving limit Categorical {0.1, 0.5, 0.7, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0}
ρN1 Neighborhood N1 application probability Real [0.00, 1.00]
γ percentage of vertices employed in neighborhood N2 Real [0.01, 1.00]

Table 2.4 – Final values found by irace after the parameter calibration experiments.

Instance group δ Ld ρbest Lt ρN1 γ

1 3 50 0.50 1.00 0.03 0.03
2 2 100 0.29 0.10 0.48 0.27
3 3 100 0.10 3.00 0.97 0.03

pillar29, tree2×9, mesh2D5×25, mesh2D20×50, mesh3D12×12×12
— dwt_592, can_715, can_445, 494_bus, 662_bus, 685_bus
— hypercube11
Each group of instances was then used independently for a tuning process. The maxi-

mum number of executions (i.e., maximum budget of experiments, maxExperiments) of
irace was fixed to 2,000, where each one of them was limited to 600 seconds as suggested
in CBP literature [Rod+15]. The final values returned by these parameter calibration
experiments, for each group of instances, are summarized in Table 2.4.

2.3.3 Comparison with the state-of-the-art algorithm

The comparative experiments presented in this section have as main objective to assess
the performance of the proposed ITPS algorithm with respect to TScb [Rod+15], which
is the current best-performing CBP reference method. These experiments were carried out
using the experimental conditions presented in Section 2.3.1, and the parameter setting
determined in Section 2.3.2.

The computational results of this experiment are summarized in Table 2.5 and orga-
nized according to the type of the graphs evaluated. Columns 1 and 2 present the graph
type and the number of instances of that family. Then, for each compared algorithm and
each graph family, we indicate the following average data: the best cyclic bandwidth cost
reached (Avg. Cbbest), the computation time in seconds needed to reach its best solution
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Table 2.5 – Summary of the comparison between TScb and ITPS over 113 benchmark
instances: 85 standard graphs from 7 different types with known optimal solutions, and
28 Harwell-Boeing instances with unknown optimal cost arising from scientific and engi-
neering practical problems.

TScb ITPS

Graph type Num. Avg. Cbbest Avg. Tbest O-RMSE % Best Avg. Cbbest Avg. Tbest O-RMSE % Best I M F
path 15 2.53 62.38 1.98 66.67 1.80 148.34 2.78 80.00 4 11 0
cycle 15 2.40 25.15 1.84 73.33 2.47 145.68 4.04 73.33 2 12 1
mesh2D 15 27.73 53.38 1.80 60.00 12.07 76.17 0.43 40.00 3 9 3
mesh3D 10 163.30 177.21 1.46 40.00 139.40 174.73 1.37 70.00 6 4 0
tree 12 55.17 36.39 0.02 91.67 54.67 18.49 0.00 100.00 1 11 0
caterpilar 15 15.20 41.90 0.07 86.67 15.07 67.56 0.07 100.00 2 13 0
hypercube 3 1532.00 497.41 0.34 0.00 1991.67 550.32 0.57 0.00 1 0 2
Harwell-Boeing 28 22.25 97.82 2.64 28.57 21.36 109.64 3.18 28.57 12 15 1
Total 113 31 75 7

(Avg. Tbest), the overall relative root mean square error (O-RMSE), as well as the percent-
age of instances for which an algorithm attains the optima (for the standard graphs) or the
best-known solutions (for the Harwell-Boeing graphs) (% Best). The last three columns
list the number of instances for which our ITPS algorithm improved (I ), matched (M ) or
failed (F) to attain the best cyclic bandwidth costs reported by TScb [Rod+15]. The de-
tailed instance-by-instance results from this experiment are provided in Tables 6.1 and 6.2
listed in the Appendix 6.1.

Table 2.5 shows that for 5 out of the 7 tested families of standard graphs, our ITPS al-
gorithm produced an average best cyclic bandwidth (see column Avg. Cbbest) which is
considerably lower (better) than that produced by TScb. Two exceptions are the cycle
graphs and the hypercubes for which TScb was able to score a smaller average best cyclic
bandwidth than ITPS (2.78% and 30.00% smaller, respectively). As these seven types of
graphs have known optimal solutions, it is important to assess if the compared algorithms
attain those optimal values. Comparing columns 6 and 10 (% Best) it is easy to see that
ITPS found a greater percentage of optimal Cb values than TScb for the following graph
types: paths, three dimensional meshes, complete r level k-ary trees, and caterpillars. For
the cycle graphs, both of the compared algorithms found the same percentage of optimal
solutions (73.33%). However, our ITPS algorithm was able to solve to optimality 100%
of the tree and caterpillar graphs.

In contrast, TScb outperformed ITPS in this regard over the two dimensional meshes,
and both algorithms failed to reach the optimal cost for any of the r-dimensional hyper-
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cubes; indicating that this type of graphs is still an open challenge for metaheuristic algo-
rithms. The columns listing the O-RMSE values disclose that in average ITPS presents
a slightly higher deviation with respect to the known optimal costs than TScb (1.56 vs.
1.27), notwithstanding ITPS showed to be more effective for finding global optimal em-
beddings. By inspecting the row allocated for the Harwell-Boeing graphs of Table 2.5,
we notice that TScb achieved an average best solution cost (Avg. Cbbest) which is 4.18%
higher than that produced by ITPS (22.25 vs. 21.36). Even thought the two compared
algorithms attained the same number of theoretical lower bounds (i.e., % Best equals
28.57%) for this type of graphs, it is clear that TScb is the one providing the smallest
O-RMSE value (2.64 vs. 3.18), showing in average a more stable behavior.

From the data generated in this experiment, it is thus possible to conclude that
ITPS is certainly a very competitive approach, with respect to the state-of-the-art algo-
rithm TScb, for solving CBP in the case of graphs with standard topologies, and those
coming from practical scientific and engineering problems. In fact, ITPS was able to es-
tablish new lower bounds for 31 instances, and to equal the best solution cost reached by
TScb for other 75 graphs (see Figure 2.6). For the remaining 7 instances (6.19%) TScb still
offers the best-known results.

Finally, the statistical analysis carried out for this experiment, and presented in the
last two columns of Tables 6.1 and 6.2, allows us to verify that a statistically significant
performance amelioration was achieved by ITPS with respect to TScb on 37 instances
(32.74% of the graphs). Nevertheless, ITPS was significantly surpassed by TScb in 24 in-
stances (21.24%). For the remaining 52 graphs (46.02%), a significant difference between
the two compared methods could not be concluded. Furthermore, the excellent perfor-
mance of ITPS was attained by consuming only a slightly higher CPU time than that
expended by TScb (in average 161.37 vs. 123.95 seconds), which could be justified by the
good final embeddings produced.

2.4 Analysis

We present additional experiments to investigate the key components of the ITPS al-
gorithm: a) the extended evaluation function (fe) of Section 2.2.2, b) the responsive
threshold-based search (RTBS) method of Section 2.2.4, and c) the Shift-Insert-based
perturbation mechanism of Section 2.2.5. For these experiments, we adopted the same
subset of 20 representative graphs (14 standard topology graphs and 6 Harwell-Boeing
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Figure 2.6 – Performance evaluation of the best solutions found by the algorithms
TScb and ITPS, over a standard test-suite of graphs. (a) Graphs with regular topologies,
with respect to the known optimal solutions; the plot includes only the 22 instances whose
optimal solutions were not reached by neither of the compared algorithms. (b) Harwell-
Boeing instances with unknown optimal cost, with respect to the theoretical lower bounds
proposed by Lin [Lin97].
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graphs) that were used for parameter tuning in Section 2.3.2.

2.4.1 Influence of the extended evaluation function

As we pointed out in Section 2.2.2, the objective function of CBP is unable to estab-
lish preferences among different potential embeddings with the same cyclic bandwidth
cost. This function could leads to large plateaus in the fitness landscape [PA12; Sta92], on
which identifying a promising search direction may become difficult for local search meth-
ods [Mar+11; MAK07]. This problem could seriously compromise the search efficiency of
the search algorithm. The extended evaluation function (fe) proposed in this work was
designed to cope with this delicate problem. To evaluate its impact on the ITPS global
performance, we provide a comparison of ITPS with a ITPS variant, named ITPSnofe,
which only employs the conventional evaluation function of CBP. Table 2.6 summarizes
the computational results of this comparison. Columns 1 to 3 present for each instance
the name, the number of vertices (|V |) and edges (|E|). For the first 14 instances, column
4 reports the known optimal costs, whereas for the 6 remaining graphs the theoretical
lower bounds are listed (Cb∗). Next, for each compared algorithm five columns are used
to show: the best (Cbbest), the average (Avg. Cb) and standard deviation (Dev.) of the
cyclic bandwidth cost reached over 50 independent executions, the average CPU time in
seconds needed for attaining their best solutions (Avg. Tbest), and the relative root mean
square error (RMSE) with respect to the best-known solutions (Cb∗) indicated in column
4. The last two columns provide the results of a statistical significance analysis which
was executed with the method described in Section 2.3.1 over this experimental data.
The obtained p-value is presented in column 15. Cells in column 16 (SS) are marked +
if a statistically significant difference in favor of ITPS is found over ITPSnofe, or − if
this difference is against ITPS. Those cells with the ? symbol indicate that no signif-
icant difference can be detected between the analyzed algorithms for the corresponding
benchmark instance.

By observing the average data presented at the bottom of Table 2.6, it is possible to
identify that the ITPSnofe algorithm, using only the conventional evaluation function,
achieved worse values for both the best and average cyclic bandwidth costs (columns
Cbbest and Avg. Cb) than those of ITPS (92.85 vs. 52.90 and 101.91 vs. 77.06). On the
one hand, this confirms the weak discrimination capacity furnished by the conventional
evaluation function. On the other hand, it discloses the positive influence of the fe function
in the global performance of ITPS, when it is employed for assessing the quality of the
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visited potential solutions. The results of our statistical significance analysis indicate
that ITPS significantly outperformed ITPSnofe on 11 instances. However, ITPSnofe
significantly surpassed ITPS in 8 graphs. It is interesting to remark that 6 of these graphs
are paths and cycles of order n ≥ 650. This suggests that the proposed fe function has
some trouble in discriminating potential solutions for graphs with these specific topologies,
but further studies are needed to gain understanding on this behavior.

Table 2.6 – Performance comparison between ITPS and ITPSnofe over 20 selected graphs.

ITPSnofe ITPS

Graph |V | |E| Cb∗ Cbbest Avg. Cb Dev. Avg. Tbest RMSE Cbbest Avg. Cb Dev. Avg. Tbest RMSE p-value SS

path200 200 199 1 1 1.06 0.24 132.18 0.24 1 1.00 0.00 74.64 0.00 2.3E-20 +
path650 650 649 1 1 3.62 1.10 321.17 2.84 3 6.00 2.97 473.59 5.80 3.2E-18 −
path825 825 824 1 3 6.18 2.50 476.68 5.74 4 12.86 6.08 532.00 13.30 2.2E-17 −
path1000 1000 999 1 4 11.16 5.68 535.62 11.61 8 20.90 5.40 562.32 20.60 6.6E-18 −
cycle200 200 200 1 1 2.34 1.87 83.85 2.28 1 2.34 1.52 71.53 2.01 6.8E-01 ?

cycle300 300 300 1 1 3.70 2.06 127.81 3.39 1 3.00 1.95 180.95 2.78 7.2E-19 +
cycle650 650 650 1 3 6.22 2.57 323.75 5.81 4 7.50 2.59 469.61 6.99 2.6E-18 −
cycle1000 1000 1000 1 5 14.76 5.29 560.68 14.72 12 24.32 7.67 541.70 24.53 1.2E-17 −
mesh2D5x25 125 220 5 6 6.00 0.00 4.61 0.20 6 6.00 0.00 0.90 0.20 1.8E-20 −
mesh2D20x50 1000 1930 20 23 40.58 11.95 496.91 1.19 22 38.58 54.32 375.06 2.84 4.4E-16 +
mesh3D12 1728 4752 114 435 437.06 1.20 484.29 2.83 108 325.04 0.49 411.07 2.80 1.4E-18 +
tree2x9 1023 1022 57 58 60.94 1.92 429.94 0.08 57 57.34 0.48 215.84 0.01 1.2E-20 +
caterpillar29 494 463 24 24 24.98 2.22 114.65 0.10 24 24.00 0.00 43.14 0.00 9.5E-09 +
hypercube11 2048 11264 526 907 923.84 6.57 593.52 0.76 548 561.46 7.86 457.93 0.07 4.3E-18 +
can_445 445 1682 6 46 64.76 11.46 178.11 9.97 46 59.72 7.63 313.35 9.04 2.7E-20 +
494_bus 494 586 5 54 65.52 4.32 219.85 12.13 30 41.94 6.23 271.86 7.49 9.2E-19 +
dwt_592 592 2256 7 30 32.28 4.14 326.00 3.66 29 36.00 23.80 405.82 5.34 5.7E-17 −
662_bus 662 906 5 95 107.94 6.01 174.85 20.62 61 72.30 4.98 336.13 13.50 3.3E-18 +
685_bus 685 1282 6 99 116.02 4.10 212.21 18.35 33 72.68 12.88 343.03 11.31 5.3E-18 +
can_715 715 2975 52 61 109.22 20.00 110.99 1.16 60 168.12 74.02 231.48 2.64 1.0E-13 −

Average 92.85 101.91 4.76 295.38 5.88 52.90 77.06 11.04 315.60 6.56
? 1

Total + 11
− 8

2.4.2 Influence of the responsive threshold-based search

In our ITPS algorithm, the first phase employs a double neighborhood descent search
procedure (DNDS) to explore embeddings of increasing quality until a local optimal so-
lution is reached. To escape from the basin of attraction [PA12], ITPS triggers a sec-
ond phase using a responsive threshold-based search (RTBS), which accepts neighboring
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solutions that are not worse than the incumbent solution by more than a given thresh-
old (uphill moves). In this section we evaluate the effect of applying RTBS on the final
outcome produced by our iterated three-phase search algorithm. To this end, we com-
pletely removed the responsive threshold-based search from our ITPS algorithm; and
compared experimentally this algorithmic variant, called ITPSnoth, with respect to the
full ITPS method. Table 2.7 presents the results from this comparison, using the same
column organization previously described for Table 2.6.

It is clear, from Table 2.7, that the inclusion of the responsive threshold-based search
in the second phase of the ITPS algorithm enables ITPS to obtain for 15 out of 20
instances better average final results (smaller values in column Avg. Cb) than those pro-
duced by the ITPSnoth approach, resulting in a smaller O-RMSE value (6.56 vs. 8.59).
For some of the analyzed instances (e.g., mesh3D12 and hypercube11 ), ITPS is even able
to attain improvements in the final Cb cost of two orders of magnitude with respect to
that produced by ITPSnoth. Furthermore, from our statistical significance analysis one
observes that ITPS, including the RTBS phase, significantly outperformed ITPSnoth in
14 instances. It scored significantly worse results than ITPSnoth in only 4 graphs. For the
path825 instance, no statistically significant difference is observed between the compared
algorithms.

2.4.3 Influence of the Shift-Insert-based perturbation

After the conclusion of the second phase in our ITPS algorithm, a shift-insert per-
turbation is applied to the incumbent solution in order to move out search to a distant
new region of the search space. As in the two previous sections, we assess the impact
of using this shift-insert perturbation on the cost of the final solutions produced by our
ITPS algorithm. We prepared an algorithm, named ITPSnosi, which excludes the shift-
insert perturbation phase. It was then contrasted experimentally against the complete
ITPS algorithm. The data produced in this experiment is shown in Table 2.8, which has
the same column headings defined for Table 2.6.

As shown in Table 2.8, the algorithm that removed the shift-insert perturbation phase
(ITPSnosi) was significantly outperformed by the full ITPS version in 16 instances,
leading in average to a higher O-RMSE value (9.22 vs. 6.56). It indicates that ITPSnosi
presented in average a much higher deviation with respect to the best-known solutions.
These observations provide a solid confirmation of the usefulness of applying the third
phase, based on the shift-insert perturbation, within our ITPS algorithm.
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Table 2.7 – Performance comparison between ITPS and ITPSnoth over 20 selected graphs.

ITPSnoth ITPS

Graph |V | |E| Cb∗ Cbbest Avg. Cb Dev. Avg. Tbest RMSE Cbbest Avg. Cb Dev. Avg. Tbest RMSE p-value SS

path200 200 199 1 1 1.40 0.81 109.81 0.89 1 1.00 0.00 74.64 0.00 2.2E-20 +
path650 650 649 1 5 11.06 2.42 522.89 10.34 3 6.00 2.97 473.59 5.80 3.7E-18 +
path825 825 824 1 10 18.30 3.75 553.66 17.69 4 12.86 6.08 532.00 13.30 3.1E-01 ?

path1000 1000 999 1 19 28.28 4.13 572.21 27.58 8 20.90 5.40 562.32 20.60 5.1E-18 +
cycle200 200 200 1 1 2.34 1.45 110.52 1.96 1 2.34 1.52 71.53 2.01 9.3E-01 ?

cycle300 300 300 1 1 3.24 1.36 254.60 2.62 1 3.00 1.95 180.95 2.78 1.6E-18 +
cycle650 650 650 1 6 11.90 2.32 473.54 11.14 4 7.50 2.59 469.61 6.99 5.4E-18 +
cycle1000 1000 1000 1 19 29.14 4.65 567.59 28.51 12 24.32 7.67 541.70 24.53 1.0E-17 +
mesh2D5x25 125 220 5 6 6.00 0.00 14.74 0.20 6 6.00 0.00 0.90 0.20 6.5E-23 −
mesh2D20x50 1000 1930 20 21 43.84 11.90 552.03 1.33 22 38.58 54.32 375.06 2.84 2.6E-05 +
mesh3D12 1728 4752 114 433 433.04 0.20 427.26 2.80 108 325.04 0.49 411.07 2.80 1.6E-18 +
tree2x9 1023 1022 57 57 57.24 0.74 251.39 0.01 57 57.34 0.48 215.84 0.01 8.0E-20 −
caterpillar29 494 463 24 24 27.82 4.78 248.55 0.25 24 24.00 0.00 43.14 0.00 5.2E-13 +
hypercube11 2048 11264 526 662 684.02 5.07 567.99 0.30 548 561.46 7.86 457.93 0.07 4.2E-18 +
can_445 445 1682 6 46 63.48 11.07 147.87 9.75 46 59.72 7.63 313.35 9.04 2.7E-20 +
494_bus 494 586 5 30 57.56 10.17 150.06 10.70 30 41.94 6.23 271.86 7.49 7.8E-19 +
dwt_592 592 2256 7 29 34.12 6.22 397.57 3.97 29 36.00 23.80 405.82 5.34 4.7E-07 −
662_bus 662 906 5 57 90.76 8.63 220.13 17.24 61 72.30 4.98 336.13 13.50 4.0E-18 +
685_bus 685 1282 6 69 96.40 8.48 260.64 15.13 33 72.68 12.88 343.03 11.31 1.2E-17 +
can_715 715 2975 52 60 116.56 31.42 281.04 1.38 60 168.12 74.02 231.48 2.64 1.0E-19 −

Average 77.80 90.83 5.98 334.20 8.19 52.90 77.06 11.04 315.60 6.56
? 2

Total + 14
− 4

2.5 Conclusions and future work

Cyclic bandwidth minimization in graphs is a relevant model with a number of signif-
icant applications. Given its computational complexity, it is quite challenging to devise
solution methods able to solve the problem effectively. In this paper, we have presented an
iterated three-phase search algorithm (ITPS) for the problem. The algorithm originally
integrates a double neighbor-descent phase, a threshold-based search phase and a special
perturbation phase, which are guided by an enriched evaluation function. These differ-
ent algorithmic components play complementary roles in terms of search intensification
and diversification and together ensure a highly effective examination of the search space.
This algorithm enriches the solution methods for the cyclic bandwidth problem, which
currently remain scarce.

We have assessed the proposed algorithm on two groups of 113 benchmark graphs from
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Table 2.8 – Performance comparison between ITPS and ITPSnosi over 20 selected graphs.

ITPSnosi ITPS

Graph |V | |E| Cb∗ Cbbest Avg. Cb Dev. Avg. Tbest RMSE Cbbest Avg. Cb Dev. Avg. Tbest RMSE p-value SS

path200 200 199 1 1 1.02 0.14 82.20 0.14 1 1.00 0.00 74.64 0.00 2.6E-20 +
path650 650 649 1 3 6.26 2.72 504.29 5.91 3 6.00 2.97 473.59 5.80 2.4E-18 +
path825 825 824 1 5 13.38 6.43 521.80 13.92 4 12.86 6.08 532.00 13.30 7.1E-11 +
path1000 1000 999 1 11 21.72 5.56 568.06 21.44 8 20.90 5.40 562.32 20.60 1.2E-143 +
cycle200 200 200 1 1 3.08 1.68 28.25 2.66 1 2.34 1.52 71.53 2.01 2.5E-02 +
cycle300 300 300 1 1 3.48 2.04 140.50 3.20 1 3.00 1.95 180.95 2.78 2.6E-18 +
cycle650 650 650 1 3 8.06 3.01 476.23 7.66 4 7.50 2.59 469.61 6.99 2.8E-20 +
cycle1000 1000 1000 1 8 25.54 8.05 550.77 25.80 12 24.32 7.67 541.70 24.53 3.2E-20 +
mesh2D5x25 125 220 5 6 6.00 0.00 12.64 0.20 6 6.00 0.00 0.90 0.20 7.2E-21 −
mesh2D20x50 1000 1930 20 22 32.56 34.38 384.03 1.81 22 38.58 54.32 375.06 2.84 7.0E-03 −
mesh3D12 1728 4752 114 433 433.52 0.54 387.14 2.80 108 325.04 0.49 411.07 2.80 1.6E-18 +
tree2x9 1023 1022 57 57 57.30 0.46 204.22 0.01 57 57.34 0.48 215.84 0.01 5.8E-21 −
caterpillar29 494 463 24 24 24.00 0.00 70.27 0.00 24 24.00 0.00 43.14 0.00 1.4E-06 −
hypercube11 2048 11264 526 548 564.72 7.88 490.95 0.08 548 561.46 7.86 457.93 0.07 5.2E-18 +
can_445 445 1682 6 149 149.00 0.00 0.74 23.83 46 59.72 7.63 313.35 9.04 2.7E-20 +
494_bus 494 586 5 46 54.74 4.50 268.50 9.99 30 41.94 6.23 271.86 7.49 3.8E-20 +
dwt_592 592 2256 7 198 198.00 0.00 1.87 27.29 29 36.00 23.80 405.82 5.34 2.1E-20 +
662_bus 662 906 5 75 90.60 5.86 284.35 17.16 61 72.30 4.98 336.13 13.50 4.1E-18 +
685_bus 685 1282 6 77 106.54 10.00 200.23 16.84 33 72.68 12.88 343.03 11.31 1.4E-17 +
can_715 715 2975 52 61 235.44 25.17 30.68 3.56 60 168.12 74.02 231.48 2.64 5.3E-19 +

Average 86.45 101.75 5.92 260.39 9.22 52.90 77.06 11.04 315.60 6.56
? 0

Total + 16
− 4

the literature including 85 standard graphs (e.g., paths, cycles, caterpillars, etc) and 28
Harwell-Boeing graphs which arise from diverse engineering and scientific real-world prob-
lems. The computational results are compared with those provided by the best reference
algorithm in the literature, showing a very competitive performance. For the 85 standard
graphs, the proposed algorithm is able to improve on the best computational results of the
reference algorithm for 19 graphs, while matching the best computational results for 60
instances. For the 28 Harwell-Boeing graphs, the proposed algorithm discovers new record
results (updated upper bounds) for 12 graphs, while matching the best-known results for
15 instances.

We have performed additional experiments to shed light on the roles of the key compos-
ing ingredients of the algorithm including: the extended evaluation function, the threshold-
based search and the shift-insert-based perturbation strategy. We have shown that these
components contribute positively to the performance of the algorithm.
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2.5. Conclusions and future work

In the next chapter, we will carry on studying CBP and propose a new iterated local
search algorithm.
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Chapter 3

A NEW ITERATED LOCAL SEARCH

ALGORITHM FOR THE CYCLIC

BANDWIDTH PROBLEM

In this chapter, We will present another effective heuristic algorithm based on the gen-
eral iterated local search framework integrating dedicated search components. Specifically,
the algorithm relies on a simple, yet powerful local optimization procedure reinforced by
two complementary perturbation strategies. The local optimization procedure discovers
high-quality solutions in a particular search zone while the perturbation strategies help
the search to escape from local optimum traps and explore unvisited areas. We present
intensive computational results on 113 benchmark instances from 8 different families, and
show performances that are never achieved by current best algorithms in the literature.
The content of this chapter has been submitted to Knowledge-Based Systems.

3.1 Introduction

In this work, we aim to advance the state-of-the-art of solving CBP. We investigate
a new iterated local search (NILS) algorithm which distinguishes itself by two original
features. First, we devise a new and effective strategy to explore candidate neighbor solu-
tions generated by the conventional swap operator. Second, we employ two perturbation
procedures with different intensities to better diversify the search. Compared to the two
existing heuristic algorithms TScb and ITPS, the proposed algorithm is simpler (e.g., it
uses only one neighborhood against 2 for TScb and ITPS) and requires fewer parameters
(4 against 8 for TScb and 9 for ITPS), making it much easier to use.

To assess the performance of the proposed algorithm, we show computational results
on the set of 113 well-known benchmark instances in the literature and make compar-
isons with the results of TScb and ITPS. Our experiments indicate that the proposed
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algorithm dominates the reference algorithms and achieves a performance that has never
been reported in CBP literature.

The remainder of the chapter is organized as follows. In Section 3.2, we present the
main framework of the proposed algorithm and its key components. In Section 3.3, we show
the computational results on the benchmark instances and comparisons with reference
results in the literature. In Section 3.4, we report additional experiments to investigate
the influences of main algorithmic components on the global performance of the algorithm.
Conclusions are drawn in Section 3.5.

3.2 New iterated local search algorithm

Iterated local search [LMS03] is a general search framework with numerous successful
application examples (e.g., [FH17; GJL09; MK19; ZH17]. The basic idea of this approach
is to use a local optimization procedure to find local optima and a perturbation proce-
dure to move away from each local optimum discovered. The new iterated local search
algorithm (NILS) presented in this work for CBP follows this general approach and relies
on three key components specially designed for this problem: a dedicated tabu search
procedure (DTS) with a specific neighborhood exploration strategy, a directed perturba-
tion procedure (Directed_Pertub) with a randomized shift-insert operator and a strong
perturbation procedure with a destruction-reconstruction heuristic (Strong_Pertub). The
algorithm employs the dedicated tabu search procedure to attain high-quality local opti-
mal solutions and probes additional nearby local optimal solutions with the help of the
directed perturbation procedure. To better diversify its search, the algorithm uses the
strong perturbation procedure to displace the process to more distant unexplored regions.
These three procedures are iterated to ensure a large exploitation and exploration of the
whole search space.

The pseudo-code of the NILS algorithm is presented in Algorithm 4. The algorithm
starts with a random initialization solution ϕ. The inner ‘while’ loop iteratively performs
the dedicated tabu search procedure (Section 3.2.1), followed by the directed perturbation
procedure (Section 3.2.2). At each iteration, the input solution is first improved by DTS
which is based on the neighborhood Nf (Section 3.2.1) and the evaluation function fe (See
below). When DTS stagnates, Directed_Pertub is used to modify the incumbent solution
to provide a new input solution for the next round of DTS. The process of DTS and
Directed_Pertub is repeated L3 times (L3 is a parameter called exploration limit). When
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the inner ‘while’ loop terminates, we consider that the search has sufficiently examined
the current and close regions. As a result, we heavily alter the incumbent solution with
the strong perturbation procedure to move the search to a far and away region, then the
‘DTS-Directed_Pertub’ process is triggered to explore new local optimal solutions. The
whole algorithm is repeated until a given cut off time limit Tmax is reached, and the best
solution found ϕ∗ is returned.

Algorithm 4 New iterated local search algorithm for CBP
1: Input: Finite undirected graph G(V,E), neighborhood Nf , evaluation function fe, tabu search

depth L1, directed perturbation strength L2, exploration limit L3, controlling percent α and
cutoff time limit Tmax

2: Output: The best solution found ϕ∗
3: ϕ← InitialSolution()
4: ϕ∗ ← ϕ
5: while the cutoff time limit Tmax is not reached do
6: Count← 0
7: while Count < L3 do
8: (ϕ,ϕ∗)← DTS(ϕ,ϕ∗, Nf , fe, L1) // Local optimization with dedicated tabu search,

Section. 3.2.1
9: (ϕ,ϕ∗)← Directed_Perturb(ϕ,ϕ∗, fe, L2) // Directed perturbation, Section. 3.2.2

10: Count← Count+ 1
11: end while
12: ϕ← Strong_Perturb(ϕ, α) // Strong perturbation, Section 3.2.3
13: end while
14: return ϕ∗

To assess the quality of a candidate solution ϕ, the algorithm adopts the extended
evaluation function fe(ϕ) introduced in [RHR19], which is defined as follows.

fe(ϕ) = Cb(G,ϕ) + Z(Cb(G,ϕ))
|E|

(3.1)

where Z(Cb(G,ϕ)) = ∑
{u,v}∈E

Iuv represents the number of edges whose cyclic distances

equal Cb(G,ϕ), and the indicator variable Iuv = 1 if |ϕ(u) − ϕ(v)|n = Cb(G,ϕ), and
Iuv = 0 otherwise. The second term of fe(ϕ) in the range (0, 1] is used to distinguish
solutions with the same cyclic bandwidth.

3.2.1 Dedicated tabu search

The dedicated tabu search (DTS) procedure (Algorithm 5) is designed to exploit can-
didate solutions with the help of the neighborhood Nf (see below). DTS starts with an
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Algorithm 5 New tabu search phase
1: Input: input solution ϕ, best solution ϕ∗, neighborhood Nf , evaluation function fe and tabu

search depth L1
2: Output: improved solution ϕ, updated best solution ϕ∗
3: l← 0 // Counter of non-improving iterations
4: ϕ′ ← ϕ // Copy of the current solution
5: ϕb ← ϕ // Local best solution
6: ϕib ← ϕ // Best solution in inner loop
7: while l < L1 do
8: C(ϕ′)← CriticalSet(ϕ′) // Identify the critical vertices
9: for Each u ∈ C(ϕ′) do
10: ϕ← FindBestNeighbor(Nf (ϕ, u)) // Choose a best neighbor solution
11: Update tabu list
12: if fe(ϕ) < fe(ϕib) then
13: ϕib ← ϕ
14: end if
15: end for
16: ϕ′ ← ϕ
17: if fe(ϕib) < fe(ϕb) then
18: l← 0
19: ϕb ← ϕib
20: else
21: l← l + 1
22: end if
23: if fe(ϕb) < fe(ϕ∗) then
24: ϕ∗ ← ϕb
25: end if
26: end while
27: return ϕ, ϕ∗

input solution ϕ and iteratively makes transitions from the current solution to a neighbor
solution. At each iteration of the outer ‘while’ loop, DTS first identifies the critical vertices
relative to the current solution (line 8, Alg. 5), and then for each critical vertex, swaps the
label of this vertex against the label of another specifically selected vertex to generate a
neighbor solution (lines 9-15, Alg. 5). After each solution transition, the performed swap
operation is recorded in the so-called tabu list [GL97] to avoid revisiting the replaced
solution. Once all the critical vertices are examined, operations are performed to update
the counter of non-improving iterations, local best solution found during DTS and global
best solution. DTS terminates when the local best solution cannot be improved for L1

consecutive iterations.
To transform the incumbent solution, DTS uses the conventional swap operator which
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operates on specifically identified vertices. Let ϕ be the current solution, and ϕ⊕swap(u, v)
be the neighbor solution obtained by exchanging the labels of vertices u and v. Like
[Rod+15], we constraint the candidate vertex u to a specific subset of critical vertices
C(ϕ) defined as follows.

Let Cb(u, ϕ) = maxv∈A(u){|ϕ(u) − ϕ(v)|n} (A(u) is the set of adjacent vertices of u)
be the cyclic bandwidth of vertex u with respect to ϕ. Then the critical vertex set C(ϕ)
is given by C(ϕ) = {w ∈ V : Cb(w,ϕ) = Cb(G,ϕ)}.

Now for a given critical vertex u ∈ C(ϕ), let mid(u) denote the middle point of the
shortest path in the cycle graph Cn containing all the vertices adjacent to u [Rod+15].
Then we define S(u) ⊆ V to be the set of vertices which are closer than u ∈ C(ϕ) to
the middle point mid(u) or equal to mid(u), i.e., S(u) = {v ∈ V : |mid(u) − ϕ(v)|n ≤
|mid(u)− ϕ(u)|n}.

It is worth noting that S(u) is related not only to the critical vertex u but also to the
labeling ϕ.

Given a solution ϕ and a critical vertex u ∈ C(ϕ), we use Nf (ϕ, u) to denote the set
of solutions that can be obtained by swapping u and a vertex in S(u).

Then, based on C(ϕ) and S(·), DTS applies at each iteration the swap operator to
transform ϕ to a new (neighbor) solution. For a vertex u ∈ C(ϕ), the associated S(u) is
identified and the best eligible swap(u, v) (v ∈ S(u)) is applied (see Alg. 5, line 10) to
obtain a new incumbent solution (a swap is eligible if it is not forbidden by the tabu list
or if it leads to the best solution found so far). Then the performed swap(u, v) is added
in the tabu list and the reverse operation swap(v, u) will not be allowed for the next
tl iterations (tl is called tabu tenure). In this work, we adopt the dynamic tabu tenure
method used in [RHR19; Rod+15], which fixes tl according to a periodic step function.

Fig. 3.1 provides a simple illustration of solution transformation. According to the
definition of set S(u) above, we identify the critical set C(ϕ) = {e, i, g, j}. Then the swap
operation is applied to a vertex u ∈ C(ϕ) with a suitable vertex of S(u). For instance,
starting from the critical vertex e, the middle point mid(e) is recognized as i with label
6. Then, the distance between e and i is 1 and S(e) = {i, d}. So for the critical vertex
e, there are two possible swaps: swap(e, i) and swap(e, d). Since swap(e, d) generates a
better solution than swap(e, i) does, it is applied to obtain the new incumbent solution.
Note that when one examines next critical vertex, its S(·) will be defined relative to
the new solution. After all the critical vertices are examined, DTS terminates its current
iteration and starts its next iteration with a new critical set.
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3.2.2 Directed perturbation with randomized shift-insert

When DTS stops, the search is considered to be trapped in a local optimum (it is stag-
nating since it cannot improve its best solution during L1 iterations). To escape from the
trap, we apply a directed perturbation procedure (depicted in Algorithm 6), which relies
on a randomized version of the ShiftInsert operator [RHR19]. Our RandomizedShiftInsert
operator works as follows. First, we identify an edge e = {x, y} with the largest cyclic
distance (i.e., Cb(G,ϕ)). Then, one endpoint of the edge is chosen (say x) and used to
perform β (a random number between 1 and Cb(G,ϕ)) chained swaps where each swap
involves x and the next vertex in the direction of decreasing the cyclic distance of edge e.
Based on this operator, the directed perturbation procedure modifies the input solution
by applying L2 times the RandomizedShiftInsert operator. This perturbation procedure
has the desirable property that it changes the input solution without deteriorating too
much of its quality.

In the example shown in Fig. 3.2(a), the edge with the largest cyclic distance is {i, j}
indicated in green. The RandomizedShiftInsert operator uses i as the starting vertex to
perform 2 swaps (2 is randomly determined from 1 and 4) in a clockwise direction, leading
to the solution shown in Fig. 3.2(b).

We investigate the degree of influence of the directed perturbation procedure over the
search performance of the proposed NILS algorithm in Section 3.4.

Figure 3.1 – Illustration for solution transformation: a graph with its labeling ϕ, critical
set C(ϕ) = {e, i, g, j} and set S(e) for the first critical vertex e.
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Algorithm 6 Directed perturbation
1: Input: input solution ϕ, best solution ϕ∗, and perturbation strength L2
2: Output: perturbed solution ϕ, updated best solution ϕ∗
3: Counter ← 0
4: while Counter < L2 do
5: ϕ← RandomizedShiftInsert(ϕ)
6: Counter ← Counter + 1
7: if fe(ϕ) < fe(ϕ∗) then
8: ϕ∗ ← ϕ
9: end if

10: end while
11: return ϕ, ϕ∗

(a) (b)

Figure 3.2 – Illustration of the RandomizedShiftInsert operator: (a) The cycle graph before the operation, (b) The cycle
graph after the operation (i.e., swap(i, a) followed by swap(i, b)).

3.2.3 Strong perturbation with destruction-reconstruction

When the process of DTS and directed perturbation stops, the search is considered
to be trapped in a deep local optimum. To enable the algorithm to continue its search,
we introduce a strong perturbation to definitely bring the search to a distant new region.
The core idea is to move uncritical vertices to get closer to the critical vertices. For this
purpose, the strong perturbation performs two steps: erase the labels of some specifically
selected vertices (destruction step) and then re-assign new labels to them according to a
greedy strategy (reconstruction step).

To destruct a solution, we first identify the set of vertices CR whose labels will be
removed: CR(ϕ) = {w ∈ V : Cb(w,ϕ) ≤ α · Cb(G,ϕ)} where α ∈ [0, 1] is a controlling
parameter. Thus, CR(ϕ) is composed of vertices with a cyclic bandwidth up to α·Cb(G,ϕ).
Then, we use Ła to collect the labels freed by the vertices of CR(ϕ): Ła = {l(w) : w ∈
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CR(ϕ)}.
To reconstruct the solution, we re-assign the labels of Ła to the vertices of CR(ϕ) with

a greedy heuristic. Starting from a random node u ∈ V \ CR(ϕ), we employ a breadth
first search to traverse the whole graph. In order to select a label from Ła for each vertex
v ∈ CR(ϕ)∩A(u) (A(u) is the set of adjacent vertices of u), we first identify the set of labels
Lin(u) whose cyclic distances to l(u) are no more than LB: Lin(u) = {le : |l(u) − le|n ≤
LB, le ∈ Ła} where LB is the analytical lower bound of the graph according to [Lin97]. If
Lin(u) is not empty, a random label from Lin(u) is selected and assigned to v. Otherwise,
a random label from Ła\Lin(u) is assigned to v. Then, the same operation is performed on
each vertex v ∈ A(u). The entire reconstruction step finishes when all vertices in CR(ϕ)
are re-assigned labels.

An illustrative example is shown in Fig. 3.3. Given a graphG(V,E) (|V | = 10, LB = 3),
the objective value of the solution in Fig. 3.3(a) is 4 (Cb(G,ϕ) = 4). For the destruction
step, if we set α to be 0.8, we get CR(ϕ) = {a, b, c, f, h} and Ła = {2, 3, 4, 7, 8}; while
the partial solution after removing the vertices in CR(ϕ) is showed in Fig. 3.3(b). For the
greedy reconstruction step, we starting from a random vertex u ∈ V \CR(ϕ) = {d, e, i, j, g}
(say d in Fig. 3.3(c)), we first allocate labels to vertices v ∈ CR(ϕ)∩A(d) = {b}. According
to the description above, Lin(d) = {2, 3, 4, 8} (labels 9 and 10 are already assigned to
vertices). A random label (2 in Fig. 3.3(c)) is chosen from {2, 3, 4, 8} to be assigned to
vertex b. Once all the adjacent vertices of d ({b, g, e}) are successfully re-assigned, they
will go through the same operation iteratively following the principle of the breadth first
search. And vertices c and a are re-assigned labels 3 and 4 respectively in Fig. 3.3(d).
When we consider allocating labels to the adjacent vertices of c, Lin(c) is empty, so we
choose a label from Ła \Lin(c) = {7, 8} (7 in our case) for vertex f . We repeat the above
operation until each vertex in CR(ϕ) receives a label. And the solution in Fig. 3.3(e) with
a cyclic bandwidth of 4 is returned as the output of the strong perturbation procedure.

The impact of the strong perturbation procedure, introduced here, on the behavior of
the NILS algorithm is investigated in Section 3.4.

3.2.4 Relations with previous studies

NILS distinguishes itself from two previous algorithms TScb [Rod+15] and ITPS

[RHR19] by the following features. First, unlike [RHR19; Rod+15], the dedicated tabu
search procedure of NILS relies on a single neighborhood while both TScb and ITPS

explore two neighborhoods in a probabilistic way. As such, the key optimization compo-
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(a) (b) (c)

(d) (e)

Figure 3.3 – Illustration of the strong perturbation procedure using destruction and reconstruction on a graph with
Cb(G,ϕ) = 4, analytical lower bound LB=3 and controlling parameter α = 0.8. (a) input solution; (b) partial solu-
tion after removing 5 vertices of CR; (c) beginning of solution reconstruction from vertex d; (d) reconstruction in progress;
(e) completion of the reconstruction.

nent of our algorithm is simpler and more focused while making its search more effec-
tive and more computationally efficient. Second, NILS employs two perturbation strate-
gies which are different from the previous studies. The directed perturbation with the
randomized shift-insert operation favors the generation of more diverse solutions, while
the destruction-reconstruction based strong perturbation provides a complementary and
guided strategy to bring the search to new promising search regions. Last but not least,
the NILS algorithm requires much fewer parameters (4 against 8 for TScb and 9 for
ITPS), making it much easier to use and analyze.

As we show in the next section on computational experiments, the NILS algorithm
integrating these specific features performs extremely well on the set of 113 well-known
CBP benchmark instances.
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3.3 Experimental results

This section starts presenting the experimental conditions under which the empirical
comparisons were carried out. It continues by giving details about the methodology used
to identify the most appropriate combination of input parameter values for the proposed
NILS algorithm. This section concludes by providing an in-depth comparative analysis
which considers the proposed NILS algorithm and two solution approaches which are
currently considered as the reference methods in the state-of-the-art: TScb [Rod+15] and
ITPS [RHR19].

3.3.1 Experimental setup

The experimentation of this work was carried out on 113 graphs which were previ-
ously employed to assess the performance of the state-of-the-art algorithms reported by
Rodriguez-Tello et al. [Rod+15], and latter by Ren et al. in [RHR19]. These graphs are
organized in two different groups. The first one is made up of 85 graphs belonging to 7
different families of standard graphs (paths, cycles, two dimensional meshes, three dimen-
sional meshes, complete r-level k-ary trees, caterpillars and r-dimensional hypercubes).
Their order |V | varies in the range from 9 to 8192, while their size |E| goes from 8 to
53248. The values of the optimal solutions for these graphs are known, the reader is re-
ferred to [Rod+15] for consulting the details. Therefore, attaining the optimal solutions
for these instances is an important factor to evaluate the performance of algorithms. The
second group contains 28 graphs coming from the Harwell-Boeing Sparse Matrix Collec-
tion. 1These instances were directly constructed from sparse adjacency matrices produced
in practical and engineer real world applications. Their order fluctuates in the interval
9 ≤ |V | ≤ 715 and their size are in the range 46 ≤ |E| ≤ 3720. The optimal solutions
for 7 small graphs are already known, while for the remaining 21 graphs lower and upper
bounds can be calculated according to [Lin97].

The performance assessment of the three analyzed algorithms was done using the same
comparison metrics previously employed in [Rod+15] and [RHR19], i.e., the best cyclic
bandwidth attained for each instance (smaller values are preferred), the computation
time expended in seconds, the relative root mean square error (RMSE) and the overall
relative root mean square error (O-RMSE). The RMSE indicator permits to evaluate the
performance of an algorithm over an individual benchmark instance, while the O-RMSE

1. http://math.nist.gov/MatrixMarket/data/Harwell-Boeing
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indicator computes average RMSE values over a whole set of test instances.
In order to further analyze the behavior of the three compared algorithms, a sta-

tistical significance analysis was carried out. It starts by evaluating, through the use of
Shapiro-Wilk test, the normality of data distributions. Bartlett’s test is then implemented
to determine whether the variances of the normally distributed data is homogeneous or
not. In case variance homogeneity is confirmed, ANOVA test is applied; on the contrary
Welch’s t parametric tests are executed. When facing non-normal data Kruskal-Wallis
test is carried out. The significance level consistently considered in all the cases is 0.05.
Concretely, we made this analysis by comparing a pair of different algorithm implementa-
tions, say A and B (denoted as A/B). Three different outcomes, represented respectively
as +, −, and ?, can be obtained: 1) algorithm A offers a significant better performance
than B; 2) B significantly outperforms A (i.e., A is defeated by B); and 3) it was not
possible to conclude a statistical significant difference between the compared methods.

The proposed NILS algorithm was coded using the C++ programming language 2.
Given that the source codes of the TScb and ITPS methods are publicly available (see
[RHR19]), the three analyzed algorithms were compiled in gcc 4.4.7 using the optimization
flag -O3. These three algorithms were independently executed 50 times, using different
random seeds, over each test instance and with a maximum running time of 600 seconds.

3.3.2 Tuning of parameters

In order to automatically determine the most suitable combination of input parameter
values for the proposed NILS algorithm, we have decided to employ I/F-Race, an iterated
procedure based on the use of racing and Friedman’s non-parametric two-way analysis
of variances by ranks. It is part of the popular irace package [Lop+16] for automatic
parameter configuration.

For this tuning experiment, the irace parameter controlling the maximum number of
runs of the algorithm being tuned (tuning budget) was fixed to 2000. Then, a subset of 10
instances, identified as challenging for the state-of-the-art algorithms [RHR19; Rod+15],
was selected and consistently used. This subset includes certain Harwell-Boeing instances
(bcsstk06, 494_bus, dwt_592, 662_bus, 685_bus, can_715 ), as well as some graphs from
different standard topologies (path1000, cycle1000, mesh2D20x50, mesh3D13, tree2x9,
caterpillar44, hypercube11 ).

2. The source code of our NILS algorithm will be available at: https://github.com/thetopjiji/
NILS
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Table 3.1 – Description and ranges for the input parameters of theNILS algorithm automatically tuned with irace [Lop+16].

Parameter Description Type Range/Values

L1 Tabu search depth Categorical {1, 2, 5, 10, 20, 50, 100, 200, 500,
1000, 1500, 2000, 3000, 5000, 10000,
20000}

L2 Directed perturbation strength Categorical {1, 2, 5, 10, 20, 50, 100, 200, 500,
1000, 1500, 2000, 3000, 5000, 10000,
20000}

L3 Exploration limit Categorical {1, 2, 5, 10, 20, 50, 100, 200, 500,
1000, 1500, 2000, 3000, 5000, 10000,
20000}

α Controlling percent Real (0.0, 1.0)

Our NILS algorithm requires to define five different input parameters before start
working. The first one is the cutoff time Tmax. It was fixed to 600 seconds for all the
experiments presented in this work, which is the same value employed by the state-of-the-
art algorithms [RHR19; Rod+15]. The other four input parameters of NILS are listed in
Table 3.1, along with their description, type, and range of possible values.

After the execution of our automatized tuning experiments, the parameter values for
obtaining the best performance of NILS identified by irace are: L1 = 100, L2 = 20,
L3 = 2000, and α = 0.84. Hence, these values are consistently employed along the whole
experimentation reported in the following.

3.3.3 Comparisons with state-of-the-art algorithms

This section is devoted to present the results obtained from the experimental per-
formance assessment among the two best performing algorithms in CBP literature (i.e.,
TScb [Rod+15] and ITPS [RHR19]) and our NILS algorithm. This analysis was carried
out under the experimental conditions previously detailed in Section 3.3.1.

Table 3.2 summarizes the results provided by this computational experiment organized
by instance subsets (see column 1). The first seven subsets correspond to standard graph
topologies, whereas the last one is composed of graphs coming directly from engineering
real world problems. column 2 (Num.) shows the number of benchmark instances in each
subset. Four columns are employed to register the results (averaged over all the graphs in
a subset) produced by each compared algorithm: the best cyclic bandwidth reached (Avg.
Cbb), the computational time (in seconds) expended to attain this objective cost (Avg.
Tb), the overall relative root mean square error (O-RMSE), and the success percentage
for finding the optimal (or best-known) solutions (% Best). Detailed results for each of
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the 113 benchmark instances used in this experiment are shown in Tables 6.3 and 6.4
provided in Appendix 6.2.

From Table 3.2, one observes that ourNILS algorithm has reached better average best
cyclic bandwidth values (See column Avg. Cbb) than the two state-of-the-art algorithms
for all the 8 subsets of instances tested. Indeed, NILS was able to attain new best-known
results for 18 standard graphs and for 4 Harwell-Boeing instances, respectively. For the
remaining 91 benchmark graphs it matches the best recorded results in the literature. We
remark that for the first 6 graph types NILS attained the optimal solution values (see
column % Best) for each of its runs, while ITPS could only do this for the subsets tree
and caterpillar. In contrast, TScb could not ensure optimal solutions for any subset of
instances.

It is worth noting that the three larger instances in the subset mesh3D (3-dimensional
meshes) and the three members of the hypercube subset (r-dimensional hypercubes) are
among the most difficult benchmarks for CBP. To illustrate this, consider the graph
mesh3D13 (with 2197 vertices and 6084 edges) for which neither TScb, nor ITPS could
get the optimal solution value of 133 (553 and 551, respectively). Nevertheless, NILS
could find the optimal solution for this graph, which represents an important improvement
in solution quality with respect to that furnished by ITPS and TScb (75.86% and 75.95%).
It proves the effectiveness of NILS for solving challenging instances.
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Table 3.2 – Summary of the experimental performance comparison among the two reference methods in CBP literature
(i.e., TScb [Rod+15] and ITPS [RHR19]) and the NILS algorithm over 113 benchmark instances: 85 standard graphs
with known optimal solutions, and 28 Harwell-Boeing instances.

TScb ITPS NILS

Graph type Num. Avg. Cbb Avg. Tb O-RMSE % Best Avg. Cbb Avg. Tb O-RMSE % Best Avg. Cbb Avg. Tb O-RMSE % Best
path 15 2.53 131.85 2.01 66.67 1.87 158.22 3.01 80.00 1.00 6.24 0.00 100.00
cycle 15 2.40 40.71 1.82 73.33 2.60 162.75 4.22 73.33 1.00 9.38 0.00 100.00
mesh2D 15 27.67 144.52 1.88 66.67 12.07 112.86 0.44 40.00 11.40 10.45 0.00 100.00
mesh3D 10 180.30 328.32 1.47 30.00 140.50 266.65 1.39 70.00 64.50 132.87 0.36 100.00
tree 12 55.08 75.90 0.02 91.67 54.67 23.36 0.00 100.00 54.67 1.52 0.00 100.00
caterpillar 15 15.13 75.31 0.07 93.33 15.07 60.54 0.07 100.00 15.07 18.07 0.00 100.00
hypercube 3 1551.67 546.23 0.34 0.00 2017.33 591.41 0.59 0.00 1492.00 584.21 0.26 0.00
Harwell-Boeing 28 22.21 112.70 2.65 28.57 23.50 141.24 3.90 28.57 20.39 40.69 2.15 28.57
Win/Match/Fail 26/87/0

Table 3.3 – Summary of the statistical signification analysis from the comparison among the two reference methods in
CBP literature (i.e., TScb [Rod+15] and ITPS [RHR19]) and the NILS algorithm over 113 benchmark instances: 85
standard graphs with known optimal solutions, and 28 Harwell-Boeing instances.

NILS / TScb NILS / ITPS
Graph type Num. + ? − + ? −
path 15 8 7 0 5 10 0
cycle 15 5 10 0 10 5 0
mesh2D 15 8 7 0 10 5 0
mesh3D 10 10 0 0 7 3 0
tree 12 4 8 0 1 11 0
caterpillar 15 6 9 0 3 12 0
hypercube 3 2 1 0 3 0 0
Harwell-Boeing 28 15 13 0 11 17 0

Total 185 58 55 0 50 63 0
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Concerning the O-RMSE values scored by the three compared algorithms, our NILS
algorithm reports the ideal value of zero for 5 subsets (path, cycle, mesh2D, tree and
caterpillar). On the other hand, ITPS did it only for one subset (tree) and TScb for none
of them. This means that our algorithm is more robust than the two reference algorithms,
considering it achieved the optimal solution at every execution for all the graphs in most
of the subsets. For the two remaining subsets of instances (mesh3D and hypercube), NILS
also achieved lower O-RMSE values (0.36 and 0.26) than those scored by TScb (1.47 and
0.34) and ITPS (1.39 and 0.59). Moreover, the average computational time expended by
NILS to attain these solutions (see column Avg. Tb) is largely reduced with respect to
that consumed by the competing algorithms. An exception is the case of the hypercube
subset, where the computational effort needed by NILS is 6.50% higher than that of
TScb (584.21 vs. 546.23), but NILS produced much better solutions than TScb.

An in-depth statistical significance analysis, using the methodology described in Sec-
tion 3.3.1, was performed for validating the experimental results produced in our perfor-
mance comparisons. This analysis, presented in Table 3.3, and detailed in the last four
columns of Tables 6.3 and 6.4, revealed that NILS was able to statistically outperform
TScb and ITPS in 51.33% and 44.25% of the 113 tested instances (58 and 50 graphs,
respectively). For the remaining benchmark instances, it was not possible to identify a
statistical difference in performance between NILS and the state-of-the-art algorithms.

3.4 Analysis of the two perturbation strategies

The NILS algorithm applies two perturbation strategies to achieve diversification
effects of different intensities: directed perturbation with the randomized shift-insert op-
eration and strong perturbation using a destruction-reconstruction process. In this section,
we investigate the influence of these perturbation strategies on the performances of the
algorithm. For this purpose, we created two NILS variants: NILS_dp by disabling the
directed perturbation component of NILS and NILS_sp by disabling the destruction-
reconstruction based strong perturbation. We ran both variants to solve the 113 bench-
mark instances according to the condition specified in Section 3.3.1 and reported their
computational results in Tables 3.4 and 3.5 together with those produced by NILS.

In these tables, the information of the compared algorithms is shown employing the
same column headings as those used in Table 3.2. The last three columns (Statistics)
present the statistical results obtained by using the methodology detailed in Section 3.3.1.
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Table 3.4 – Summary of comparative results between NILS and its NILS_dp variant
(i.e., without the directed perturbation component) on the 8 families of 113 benchmark
instances.

NILS_dp NILS Statistics
Graph type Num. Avg. Cbb Avg. Tb O-RMSE % Best Avg. Cbb Avg. Tb O-RMSE % Best + ? −
path 15 1.00 9.48 0.00 100.00 1.00 6.24 0.00 100.00 0 15 0
cycle 15 1.00 14.63 0.38 100.00 1.00 9.38 0.00 100.00 2 13 0
mesh2D 15 58.73 98.56 2.94 66.67 11.40 10.45 0.00 100.00 9 6 0
mesh3D 10 208.20 257.35 1.69 0.00 64.50 132.87 0.36 100.00 10 0 0
tree 12 54.92 66.68 0.02 91.67 54.67 1.52 0.00 100.00 3 9 0
caterpillar 15 17.73 174.91 0.36 73.33 15.07 18.07 0.00 100.00 8 7 0
hypercube 3 1586.00 550.01 0.34 0.00 1492.00 584.21 0.26 0.00 3 0 0
Harwell-Boeing 28 41.00 125.37 10.04 28.57 20.39 40.69 2.15 28.57 15 13 0
Total 113 50 63 0

Table 3.5 – Summary of comparative results between NILS and its NILS_sp variant
(i.e., without the strong perturbation component) on the 8 families of 113 benchmark
instances.

NILS_sp NILS Statistics
Graph type Num. Avg. Cbb Avg. Tb O-RMSE % Best Avg. Cbb Avg. Tb O-RMSE % Best + ? −
path 15 1.00 30.22 0.45 100.00 1.00 6.24 0.00 100.00 10 5 0
cycle 15 1.00 20.50 2.18 100.00 1.00 9.38 0.00 100.00 11 4 0
mesh2D 15 11.40 16.86 0.03 100.00 11.40 10.45 0.00 100.00 1 14 0
mesh3D 10 64.50 136.14 0.57 100.00 64.50 132.87 0.36 100.00 0 10 0
tree 12 54.67 1.70 0.00 100.00 54.67 1.52 0.00 100.00 0 12 0
caterpillar 15 15.07 40.64 0.08 100.00 15.07 18.07 0.00 100.00 4 11 0
hypercube 3 1502.67 536.50 0.25 0.00 1492.00 584.21 0.26 0.00 0 2 1
Harwell-Boeing 28 20.39 49.47 2.53 28.57 20.39 40.69 2.15 28.57 8 20 0
Total 113 34 78 1

From these tables, we observe that removing any of these perturbation strategies
greatly deteriorates the performance of the NILS algorithm.

Specifically, the results of Table 3.4 show that the directed perturbation is important
for 7 out of 8 families of instances in terms of most performance indicators. Without the
directed perturbation, the algorithm leads to worse results in terms of best and average
objective values while its performance is less stable. Globally, the statistical analysis in-
dicates that for 50 instances (44.25%), the directed perturbation plays a significant and
positive role. This is particular the case for instances belonging to three families (mesh2D,
mesh3D, and Harwell-Boeing).

Similarly, the results of Table 3.5 disclose that the strong perturbation also impacts
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the performance of the NILS algorithm even if the impact is less important compared
to that of the directed perturbation. This observation is supported by our statistical
assessment, which revealed that a relevant statistical difference in favor of NILS with
respect to NILS_sp exists for only 34 benchmark instances (30.09%). Disabling the
strong perturbation in our algorithm leads to a less stable implementation for all the
graph families except for the tree family (observe column O-RMSE). The benefit of using
the strong perturbation is particularly visible on instances of four families (path, cycle,
mesh3D, and Harwell-Boeing). In this sense, the strong perturbation is complementary
with respect to the directed perturbation, given that they help to improve the solution of
instances from different families.

In regard to the average expended computational time, we can observe that both
NILS_dp and NILS_sp consume more CPU resources than NILS for most of the
benchmark instances evaluated. Only in the case of the hypercube graphs, NILS makes
use of a higher average computational time than the other two reference algorithms.
But this is largely compensated by the better quality solutions provided by our NILS
algorithm.

To further highlight the benefits of employing the two proposed perturbation strate-
gies, we illustrate in Fig. 3.4 a detailed comparison between NILS and the two variants
NILS_dp and NILS_sp on four representative instances (cycle1000, caterpillar44, hy-
percube13, and 662_bus) from different benchmark families. The plots are based on the
results of 50 independent runs of the algorithms.

Fig. 3.4(a) shows that the results of NILS and NILS_dp share the same median
except that there are several outliers for NILS_dp, while NILS_sp has a worse per-
formance in terms of the median and interquartile range. This indicates the important
role of strong perturbation for instance cycle1000. On the contrary, NILS_sp performs
better than NILS_dp with smaller medians, tighter interquartile ranges and smaller
minimal values for the other 3 instances in Fig. 3.4(b)-3.4(d). It is worth noting that
in Fig. 3.4(c), NILS_sp shows a better performance than NILS with a smaller first
quartile, median and third quartile. That explains why there is a statistical difference
against NILS for one hypercube instance registered in Table 3.5 (column −). However,
NILS has obtained smaller outlier values than NILS_sp, which also leads to a better
average cyclic cost (1492.00 vs. 1502.67). To sum up, this experiment shows that both
NILS_dp and NILS_sp report a worse performance than NILS in each representative
instance in Fig. 3.4, which means that the directed perturbation and strong perturbation
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Figure 3.4 – Boxplots depicting the cyclic bandwidth cost reached by NILS, NILS_dp and NILS_sp when used for
solving four representative instances from the subsets cycle, caterpillar, hypercube, and Harwell-Boeing. The results were
obtained from 50 independent executions of each compared algorithm.

play complementary roles in NILS.

3.5 Conclusions

The NILS algorithm presented in this chapter enriches the practical solution toolbox
for effectively solving CBP. For the 85 standard instances with known optimal solutions,
NILS attains the optimal cyclic bandwidth costs for 82 instances (96.47%) while the two
best performing algorithms in the literature only achieve 59 (69.41%) and 63 (74.12%)
optimal solutions respectively. Remarkably, our algorithm establish new record results
(improved upper bounds) for 4 Harwell-Boeing instances. Moreover, the algorithm is
highly robust across the instances of most tested families with very different structures
and topologies.
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3.5. Conclusions

Finally, the proposed algorithm has the advantage of requiring fewer parameters com-
pared to the two leading algorithms presented in [RHR19; Rod+15]. As a result, it is
easier for the user to apply it to solve new problem instances. Given that the source code
of our algorithm will be publicly available, we hope this work will help to better solve
some practical cyclic bandwidth problems and contribute to design other more powerful
CBP algorithms.

In the next chapter, we will commit a study of recombination operators for CBP under
the framework of memetic algorithm.
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Chapter 4

A STUDY OF RECOMBINATION

OPERATORS FOR THE CYCLIC

BANDWIDTH PROBLEM

In this chapter, a study of CBP with the paradigm of memetic algorithms is presented.
To find out how to choose or design a suitable recombination operator for the problem, we
study five classical permutation crossovers within a basic memetic algorithm integrating
a simple descent local search procedure. We investigate the correlation between algorith-
mic performances and population diversity measured by the average population distance
and entropy. This work invites more research to improve the two key components of the
memetic algorithm: reinforcement of the local search and design of a meaningful recombi-
nation operator suitable for the problem. The content of this chapter has been published
in Lecture Notes in Computer Science.

4.1 Introduction

As a well-known meta-heuristic framework [KS05; MC03], memetic algorithms (MAs)
have been widely used to solve a large number of NP-hard problems [CH16; JHH14; LH16;
WH13; ZHG18]. For permutation problems, MAs have also reported good performances
for the Traveling Salesman Problem (TSP) [FM96; MF01], the Quadratic Assignment
Problem [BH15], and other bandwidth problems [BS11; RB11].

Despite the theoretical and practical relevance of CBP, few studies can be found in the
literature for solving the problem. A branch and bound algorithm was presented [RRR12]
to handle small graphs (n < 40). A tabu search algorithm was proposed [Rod+15] to
deal with standard and random graphs with 8 to 8192 vertices. Very recently, an iterated
three-phase search approach [RHR19] was introduced and improved a number of previous
best results reported in [Rod+15]. To our knowledge, the memetic approach has never
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been experimented to solve CBP in the literature, though MAs have been applied to other
labeling problems such as the cyclic bandwidth sum problem [RNL18] and the antiband-
width problem [RB11]. This work fills the gap by investigating the memetic approach
for CBP. In particular, we focus on the role of the recombination or crossover (used in-
terchangeably in this paper) component and study the contributions of five permutation
recombination operators which are conveniently applicable to CBP. To highlight the im-
pacts of the studied recombination operators, we base our study on a canonical memetic
algorithm which combines a recombination operator for solution generation and a simple
descent local search for solution improvement.

4.2 Memetic Algorithm for CBP

4.2.1 Search space, representation, fitness function

Given a graph G = (V,E) of order |V | = n and a cycle graph Cn, the search space Ω
for CBP is composed of all possible embeddings (labellings, solutions or arrangements)
of G in Cn, ϕ : V → V . Considering the symmetry characteristic of solutions, there exist
(n− 1)!/2 possible embeddings for G [Rod+15].

Figure 4.1 shows a graph with 6 vertices named from ‘a’ to ‘f’ (Fig. 4.1(a)). According
to Equation (2.1), the objective value of Fig. 4.1(b) is 3 (decided by the longest edge ‘dc’
in the example). An embedding arranged in a cycle graph (Fig. 4.1(b)) where the numbers
in red are the labels assigned to the vertices, and two embeddings where the vertices are
rearranged in the cycle graph in clockwise direction (Fig. 4.1(c)) and in anticlockwise
direction (Fig. 4.1(d)). Notice that the relative position of each pair of nodes in Fig.
4.1(b)-4.1(d) is not changed. So according to Equation (2.1), these three embeddings
have the same objective value, and in fact they correspond to the same solution.

In practice, we represent an embedding ϕ by permutations l = {1, 2, . . . , n} such that
the i-th element l[i] denotes the label assigned to vertex i of V . Another representation of
an embedding is proposed in [RHT08b], which maps a permutation ϕ to an array γ indexed
by the labels. The i-th value of γ[i] indicates the vertex whose label is i. We illustrate
these representations with an example. For the embedding of Fig. 4.1(b), we have ϕ=(1
2 3 6 4 5) for the vertices from ‘a’ to ‘f’, and the corresponding γ representation is γ=(a
b c e f d). In our algorithm, the ϕ representation is used in the local search procedure,
because it eases the implementation of the swap operation, while the γ representation is
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(a) Original graph G (b) An embedding on cycle
graph

(c) Clockwise rotation (d) Anticlockwise rotation

Figure 4.1 – Illustration of a graph (a) with an embedding (b) and two equivalent sym-
metric embeddings (c) and (d)
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adopted for the recombination operators, as well as the distance calculation presented in
Section 4.5. The fitness of a candidate embedding ϕ in the search space is evaluated by
Equation (2.1).

4.2.2 General procedure

The studied MA follows the general MA framework in discrete optimization [Hao12].
Staring with an initial population (Section 4.2.3), it alternates between a local search
procedure (Section 4.2.4) and a recombination procedure (Section 4.2.5). The pseudo-code
of the proposed MA is presented in Algorithm 7. The algorithm first fills the population P
with |P | local optimal solutions provided by the local search procedure and then performs
a series of generations. At each generation, two parent solutions ϕF and ϕM are selected
at random from the population and are recombined to generate an offspring solution ϕC .
Then, the local search is used to improve the offspring solution to attain a new local
optimal solution. Finally, the improved solution is used to update the population (Section
4.2.6). This process is repeated until a fixed number of generations (MaxGene) is reached.

4.2.3 Initialization

In the initialization procedure (Ini_Population), |P | embeddings are generated ran-
domly and independently at first. And then each embedding is improved by the local
search procedure of Section 4.2.4 to attain a local optimum (lines 5-10, Alg. 7). The best
solution ϕ∗ in P is also recorded, which is updated during the subsequent search, each
time an improved best solution is encountered.

4.2.4 Local search

Local search (LS) is an important component of the memetic algorithm, which aims
to improve the input solution by searching a given neighborhood. In this work, we ap-
ply a simple Descent Local Search (DLS) in order to highlight the contributions of the
recombination component.

DLS adopts the swap-based neighborhood of [Rod+15], where a neighboring solution
of a given solution ϕ is obtained by simply swapping the labels of two vertices of ϕ. To
specify the neighborhood, we first define, for a vertex u, its cyclic bandwidth Cb(u, ϕ)
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Algorithm 7 Pseudo-code of general procedure
1: Input: Finite undirected graph G(V,E), fitness function Cb, fixed size of population |P |

and maximum generations MaxGene
2: Output: The best solution found ϕ∗
3: P = {ϕ1, ϕ2, ...ϕ|P |} ← Init_Population()
4: ϕ∗ ← Best(P )
5: for i = 1 to |P | do
6: ϕi ← Local_Search(ϕi)
7: if Cb(G,ϕi) < Cb(G,ϕ∗) then
8: ϕ∗ ← ϕi

9: end if
10: end for
11: for j = 1 to MaxGene do
12: ϕF , ϕM ← Parent_Selection(P )
13: ϕC ← Recombination_Sol(ϕF , ϕM)
14: ϕC ← Local_Search(ϕC)
15: if Cb(G,ϕC) < Cb(G,ϕ∗) then
16: ϕ∗ ← ϕC
17: end if
18: P ← Update_Pop(ϕC , P )
19: j ← j + 1
20: end for
21: return ϕ∗
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with respect to the embedding ϕ as follows:

Cb(u, ϕ) = max
v∈A(u)

{|l(u)− l(v)|n}, (4.1)

where A(u) denotes the set of vertices adjacent to u of cardinality deg(u). Then the set
of critical vertices is given by:

C(ϕ) = {u ∈ V : Cb(u, ϕ) = Cb(G,ϕ)}. (4.2)

The neighborhood is defined as follows:

N(ϕ) = {ϕ′ = ϕ⊕ swap(u, v) : u ∈ C(ϕ), v ∈ V }. (4.3)

DLS starts with an input embedding, then it iteratively visits a series of neighboring
solutions of increasing quality according to the given neighborhood. At each iteration, only
solutions with a better objective value are considered and the best one is used to replace
the incumbent solution. If there exist multiple best solutions, the first one encountered is
adopted. We repeat this process until no better solution exists in the neighborhood. In
this case, DLS attains a local optimum and the procedure of recombination is triggered
to escape from the local optimum.

4.2.5 Recombination

Recombination is another important part of the MA, which aims to generate new
diversified and potentially improving solutions. In our case, only one offspring solution
is generated at each generation by each recombination application. In Section 4.3, we
present five permutation recombination operators applied to CBP.

4.2.6 Updating population

Each new offspring solution improved by the local search procedure is used to update
the population. In the proposed MA, we apply a simple strategy: we insert the new
offspring into P , and remove the “worst” solution in terms of the objective value.
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4.3 Recombination operators

There are several recombination operators that are already applied to permutation
problems [Dav85; FM96; GL+85; OSH; Sys91]. We consider five crossover operators in-
troduced below. It is worth noting that all the recombination operations work with the γ
representation mentioned in Section 4.2.1.

4.3.1 Order crossover

The Order Crossover operator (OX) [Dav85] generates an offspring solution with a
substring of one parent solution and conserves the relative order of the numbers of the
other parent solution. Let’s consider an example with two parent solutions ϕF=(1 2 3
4 5 6 7 8) and ϕM=(2 4 6 8 7 5 3 1) (each number here denotes the index of a node).
Given two random cut points (in this case, the first cut point is between second and third
positions and the second cut point is between fifth and sixth positions, i.e., ϕF=(1 2 | 3 4
5 | 6 7 8) and ϕM=(2 4 | 6 8 7 | 5 3 1), two offspring solutions first inherit the substring
between the two cut points: ϕC1=(+ + | 3 4 5 | + + +) and ϕC2=(+ + | 6 8 7 | +
+ +). Then, we copy the permutation starting from the second cut point of ϕM to the
end, as well as from the beginning to the second cut point: (5 3 1 2 4 6 8 7). At last,
the new obtained permutation is used to insert into ϕC1 from the second cut point. The
repeated numbers are skipped and we get ϕC1=(8 7 | 3 4 5 | 1 2 6). The same operations
are performed on ϕC2 with ϕF to get ϕC2=(4 5 | 6 8 7 | 1 2 3).

4.3.2 Order-based crossover

The Order-based Crossover operator (OX2) [Sys91] is a modified version of OX. Instead
of choosing two cut points, OX2 chooses several random positions of one parent solution,
and then the order of the selected positions is imposed on the other parent solution. For
instance, we have two parent solutions ϕF=(1 2 3 4 5 6 7 8) and ϕM=(2 4 6 8 7 5 3 1),
and the second, third and sixth positions are picked for ϕM . So the order of “4 6 5" is
kept. For solution ϕF , we remove the corresponding numbers of these positions to get (1
2 3 + + + 7 8). Then we insert the numbers in the order “4 6 5" into ϕF and we get the
offspring solution ϕC1=(1 2 3 4 6 5 7 8). The same operation can be performed for ϕM to
obtain the other offspring solution ϕC2=(2 4 3 8 7 5 6 1).
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4.3.3 Cycle crossover

The Cycle Crossover operator (CX) [OSH] seeks a way to preserve the common in-
formation in both parent solutions. Two new offspring solutions ϕC1 and ϕC2 are created
from two parents ϕF and ϕM where the number of each position in ϕC1 and ϕC2 is decided
by the number of the corresponding position of one parent. For example, we consider two
parent solutions ϕF=(1 2 3 4 5 6 7 8) and ϕM=(2 4 6 8 7 5 3 1). Firstly, the number
of the first position of ϕC1 could be 1 or 2, Supposing that we pick 1 here (1 + + + +
+ + +). Then, the number of the eighth position could not be 1 because it is already
assigned to the first position, hence we allocate it with a number from ϕF to get (1 + +
+ + + + 8). After that, we find the position of ϕM whose number is 8 and assign the
number of ϕF to the corresponding position of ϕC1. We repeat the same operation and
find that the forth and the second number of ϕC1 come from ϕF , which leads to (1 2 + 4
+ + + 8). For the rest of the positions, we fill them with the numbers from ϕM to obtain
a complete offspring solution ϕC1=(1 2 6 4 7 5 3 8). Similarly, we could get the other
offspring solution ϕC2=(2 4 3 8 5 6 7 1).

4.3.4 Partially mapped crossover

The Partially Mapped Crossover operator (PMX) [GL+85] passes the absolute position
information from the parent solutions to the offspring solutions. An offspring solution gets
a substring from one parent and its remaining positions take the values of the other parent.
For example, we consider again ϕF=(1 2 3 4 5 6 7 8) and ϕM=(2 4 6 8 7 5 3 1). At the
beginning, two random cut points are chosen for both parent solutions: ϕF=(1 2 3 | 4 5
6 | 7 8) and ϕM=(2 4 6 | 8 7 5 | 3 1). Then we pass the information between the two cut
points to the offspring solutions: ϕC1=(+ + + | 4 5 6 | + +) and ϕC2=(+ + + | 8 7 5
| + +). Also, we get the mapping for the substrings between the two cut points: 4↔8,
5↔7, 6↔5. After that, the other positions of the offspring solutions are filled with the
other parent solution, hence we get ϕC1=(2 4 6 | 4 5 6 | 3 1) and ϕC2 =(1 2 3 | 8 7 5 | 7
8). For the duplicate labels in the solution, we use the mapping of substrings to replace
the repeated numbers. In this case, 5↔7 and 6↔5 result in 6↔7. Therefore, the offspring
solutions are ϕC1=(2 8 7 | 4 5 6 | 3 1) and ϕC2=(1 2 3 | 8 7 5 | 6 4).
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4.3.5 Distance preserved crossover

The Distance Preserved Crossover operator (DPX) [FM96], designed for solving the
Traveling Salesman Problem (TSP), aims to produce an offspring solution which has the
same distance to each of its parents. It is noteworthy that the distance here is the dis-
tance based on the common connections between two solutions, instead of the Hamming
distance. We come back to this issue in Section 4.5. For DPX, we firstly delete the un-
common connections of two neighboring numbers for both parent solutions. Then, the
parent solutions are separated into different substrings. Finally, we reconnect all the sub-
strings without using any of the connections which are contained in only one of the parent
solutions. For more detailed explanations and examples, please refer to [FM96].

4.4 Experimental results

4.4.1 Instances and settings

In this section, we report experimental results of the MA using the 5 different re-
combination operators introduced in Section 4.3. The study was based on 20 repre-
sentative graphs with 59 to 2048 vertices, selected from a test-suite of 113 benchmark
instances (https://www.tamps.cinvestav.mx/~ertello/cbmp.php). 14 of the chosen
graphs are standard graphs covering 7 dissimilar categories (path, cycle, complete tree,
2-dimension mesh, 3-dimension mesh, caterpillar and hypercube) and the other 6 graphs
(called Harwell-Boeing graphs) come from real-world scientific and engineering appli-
cations and are part of the Harwell-Boeing Sparse Matrix Collection. Considering the
stochastic nature of the algorithm, each instance was independently solved 50 times un-
der the environment of Linux using an Intel Xeon E5-2695 2.1 GHz CPU and 2GB RAM.
Each execution was limited to 20000 generations (MaxGene = 20000) and the population
size |P | was set to 20.

4.4.2 Computational results

Table 4.1 outlines the computational results of our MA variants with the 5 different
recombination operators. The columns“Best" and “Avg" list the best and average objective
values found. According to the definition introduced in Section 4.1, a smaller objective
value indicates a better result. Table 4.1 shows that the algorithm with OX2 obtains
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CX DPX OX OX2 PMX

Graph Best Avg Best Avg Best Avg Best Avg Best Avg

nos6 327 331.28 327 329.74 266 287.98 216 227.84 327 331.98
path1000 461 475.42 462 474.02 254 301.04 226 247.54 468 482.68
nos4 44 46.12 43 45.24 32 39.32 28 34.48 42 45.78
tree10x2 39 42.72 35 40.72 28 32.50 28 29.26 36 41.56
cycle1000 457 476.66 466 473.38 252 296.98 226 246.94 459 480.86
mesh2D8x25 88 93.04 89 91.82 59 75.18 57 62.94 87 93.28
caterpillar29 203 211.48 203 208.70 138 162.98 100 127.32 198 210.14
mesh3D6 102 103.88 101 102.96 86 93.08 73 78.26 102 104.28
hypercube11 1022 1022.76 1022 1022.14 1019 1021.26 952 1010.48 1022 1022.54
cycle475 200 215.16 206 213.36 105 128.36 99 110.76 192 217.30
mesh2D28x30 409 413.40 410 412.06 336 371.76 270 287.46 406 414.06
mesh3D11 660 662.04 660 661.28 625 650.30 507 522.82 660 662.40
can__715 354 355.80 355 355.14 347 353.92 293 316.70 354 355.74
impcol_b 28 28.46 27 27.96 25 27.22 20 26.72 28 28.00
path475 202 214.50 206 212.86 112 132.24 102 112.94 189 217.56
494_bus 220 230.76 222 228.72 135 165.74 128 138.62 216 233.38
tree21x2 199 212.08 203 208.96 139 171.34 124 140.84 200 210.68
caterpillar44 481 493.28 479 491.24 340 400.78 281 321.70 480 495.60
impcol_d 207 209.60 207 208.80 190 202.98 159 169.74 208 209.80
tree2x9 475 489.08 478 485.86 296 330.14 257 276.60 472 491.84

Average 308.90 316.38 310.50 315.75 239.20 262.26 207.30 224.50 307.30 317.47
p-value 6.71e-14

Table 4.1 – Experimental results of MA using 5 different recombination operators.

the best results not only in terms of “Best" but also in terms of “Avg" over the 20 test
instances. From the average values listed in the last row, we find that OX2 is a much more
suitable operator than the other operators for CBP. Also, the non-parametric Friedman
test on the 5 groups of best results leads to a p-value=6.71e-14 < 0.05, confirming that
there exists a statistically significant difference among the compared results.

Table 4.2 reports the comparative results between the best MA with OX2 (called
MAOX2) and TScb, which is the state-of-art algorithm for CBP presented in [Rod+15].
Table 4.2 shows the same information as in Table 4.1, except for the column “CC" which
represents the difference between the best values found by TScb and MAOX2. A negative
“CC" indicates a worse result ofMAOX2 compared to TScb. It is clear that for the 20 test
graphs, MAOX2 does not compete well with TScb. Indeed, TScb is a powerful iterated
tabu search algorithm which uses three dedicated neighborhoods to effectively explore the
search space. Also, the Wilcoxon signed-rank test with the two groups of best values leads
to a p-value=1.31e-4 < 0.05, confirming the statistical significance between the compared
results. This comparison tends to indicate that in practice, it is not enough for the MA
to apply a recombination operator and a simple local search. In addition to a suitable
recombination operator, the MA needs a powerful local optimization procedure to ensure
an effective exploitation.
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MAOX2 TScb
Graph Best Avg Best Avg CC

nos6 216 227.84 22 23.50 -194
path1000 226 247.54 8 8.90 -218
nos4 28 34.48 10 10.00 -18
tree10x2 28 29.26 28 28.00 0
cycle1000 226 246.94 8 8.50 -218
mesh2D8x25 57 62.94 8 8.20 -49
caterpillar29 100 127.32 24 25.80 -76
mesh3D6 73 78.26 31 31.00 -42
hypercube11 952 1010.48 570 582.20 -382
cycle475 99 110.76 5 5.80 -94
mesh2D28x30 270 287.46 30 174.00 -240
mesh3D11 507 522.82 336 336.80 -171
can__715 293 316.70 60 65.80 -233
impcol_b 20 26.72 17 17.00 -3
path475 102 112.94 5 5.60 -97
494_bus 128 138.62 46 56.10 -82
tree21x2 124 140.84 116 116.00 -8
caterpillar44 281 321.70 39 54.00 -242
impcol_d 159 169.74 38 43.10 -121
tree2x9 257 276.60 63 64.20 -194
Average 207.30 224.50 73.20 83.23
p-value 1.31e-4

Table 4.2 – Comparison between MAOX2 and TScb [Rod+15].

4.5 Understanding the performance differences of the
compared crossovers

In Section 4.4, we observe that OX2 excels compared to the other crossover operators.
In this section, we investigate the reasons why OX2 has a better performance than the
other crossovers. For this, we follow [WLH10] and study the evolution of the population
diversity. To this end, we consider two diversity indicators: average solution distance
Davg(P ) and population entropy Ep(P ).

4.5.1 Distance and population entropy

We first introduce the average solution distance Davg(P ) of the population.

Davg(P ) = 2
|P |(|P | − 1)

|P |∑
i=1

|P |∑
j=i+1

dij (4.4)

where dij is the distance between two solutions γi and γj of P , which is defined as the
number of the adjacent connections that are contained in γi but not in γj. For example,
given two solutions γ1={h a b d e f c g} and γ2={b a c h g d f e}. The set of adjacent

83



Part II, Chapter 4 – A study of recombination operators for the cyclic bandwidth problem

connections is {ha, ab, bd, de, ef, fc, cg, gh} for γ1 and {ba, ac, ch, hg, gd, df, fe, eb} for γ2.
The common adjacent connections are {ab, ef, gh} (ba and ab are the same connections).
The distance d12 equals thus 8-3=5. This distance is used in [FM96] to deal with TSP
whose solutions have the symmetry feature. As shown in Fig. 4.1, CBP solutions have the
feature of symmetry, so the use of this distance measure is very important for CBP.

Another indicator to describe the population diversity is the population entropy Ep(P )
[FF96].

Ep(P ) =
−∑n

i=1
∑n
j=1

(
nij

|P |

)
log

(
nij

|P |

)
n log n (4.5)

where nij represents the number of times that variable i is set to value j in all solutions
in P . One notices that Ep(P ) varies in the interval [0,1]. When Ep(P ) equals 0, all the
solutions of P are identical. A large Ep(P ) value indicates a more diverse population.

The instance ‘nos6’ is a representative large graph with 675 nodes from practical ap-
plication and rather difficult, so we use it as a working example. Figure 4.2 shows the
average distance, average entropy and average best objective value found in 50 indepen-
dent executions over the graph ‘nos6’. Under 5000 generations, the population of the MA
with OX2 has a high average distance and entropy, leading to much better solutions. From
generations 5000 to 20000, the entropy is identical to that of OX, and the best average
objective found stops decreasing. These observations remain valid for all test graphs ex-
cept the graph ‘impcol_b’ (even if the MA with OX2 does not have a large population
distance and entropy, it gets good results comparing to others). Therefore, for the opera-
tors CX, OX, OX2 and PMX, a higher entropy and average distance of population leads
to a good quality solution. However, what is surprising is that the average distance and
entropy with DPX always stay at a high level for all test graphs, yet the quality of solu-
tions found is not as good as that of the other operators. To shed light on this behavior,
we show a deeper analysis of the interaction between the crossover mechanism and the
characteristics of problem in the next section.

4.5.2 Interaction between crossover and problem characteristics

In Section 4.5.1, we find that the recombination operator with a higher entropy and
average distance of the population generally helps to find solutions of good quality. How-
ever, the DPX operator fails to reach good solutions even if the entropy and average
distance of population under the MA with DPX always stay at a high level. From Figure
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Figure 4.2 – Distance and population entropy applied to the instance nos6.
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Figure 4.3 – Average objective value of the child solution over 50 independent executions.
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4.3, which presents the average objective value of the offspring solutions of instance nos6
using the average data of 50 independent executions, we find that DPX does not generate
high quality offspring solutions during the search.

To understand why DPX does not help the MA to find good quality solutions, we
first recall that DPX is designed for TSP, which is a quite different problem compared
to CBP considered in this work. In [Boe95], it is observed that for TSP, the average
distance between local optima is similar to the average distance between a local optimum
and the global optimum and common substrings in the local optima also appear in the
global optimum. DPX explores this particular feature of TSP and is thus suitable to TSP.
However, CBP has a totally different objective function and does not share the above
characteristic.

Indeed, to calculate the objective value of a solution of TSP, we only need to consider,
for each vertex, its two linked edges and sum up the edge distances of the tour. In this
case, solution sub-tours (substrings) are clearly a key component which characterizes the
solutions. Yet in a solution of CBP, we need to consider for each vertex all the edges linked
to the vertex in the graph, such that the objective value (see Equation (2.1)) relies on the
largest cyclic bandwidth. In the case of CBP, the key point is the relative position for the
pairs of nodes which are linked by an edge. Therefore given that TSP and CBP have very
different characteristics, a good crossover operator designed for TSP (in our case, DPX)
may fail when it is applied to CBP.

This inspires us that the choice and design of recombination operators are not only
relied on the entropy and average distance of population, but also on the characteristics
of the considered problem.

4.6 Conclusions

In this chapter, we have investigated the memetic framework for solving the NP-hard
Cyclic Bandwidth problem. We have compared five permutation recombination opera-
tors (CX, OX, OX2, PMX and DPX) within a basic memetic algorithm which uses a
simple descent procedure for local optimization. The experimental results indicate that
OX2 achieves the best performance for the test instances. We have studied the popula-
tion diversity measured by the average distance and entropy of the MA variants using
different recombination operators. We have also explored the correlation between the pop-
ulation diversity and the performance of the studies MA variants. This study indicates
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that the basic memetic algorithm combining an existing recombination operator and a
simple descent local search procedure is not competitive compared to the state-of-the-art
algorithms. Additional (preliminary) experiments with MAs using an enforced local op-
timization procedure (such as the powerful local search algorithms presented in [RHR19;
Rod+15]) have not led to more convincing results. Meanwhile, given the excellent per-
formances achieved by MAs on many difficult optimization problems, this work invites
more research effort on seeking meaningful recombination operators suitable for CBP. It
is then expected that a MA integrating such a recombination operator and a powerful
local optimization procedure would achieve state-of-the-art performances.

In the next chapter, we will consider the minimum linear arrangement problem which
is also a graph layout problem. We propose a set based neighborhood heuristic algorithm
to solve it.
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Chapter 5

A SET BASED NEIGHBORHOOD

HEURISTIC ALGORITHM FOR SOLVING

THE MINIMUM LINEAR ARRANGEMENT

PROBLEM

In this chapter, we investigate a set based neighborhood heuristic algorithm under the
framework of iterated local search for MinLA. The algorithm consists of two phases: a
descent phase exploring two neighborhoods (a median based neighborhood and a set based
neighborhood with a decomposition method to reduce the computational complexity)
as well a perturbation phase. Experimental results show that the proposed set based
neighborhood is more effective than the traditional 2-flip neighborhood.

5.1 Introduction

The minimum linear arrangement problem (MinLA) is a well-known labelling prob-
lem, first introduced in [Har64] to minimize the average absolute errors in designing
error-correcting codes. Afterwards, people found other important applications in VLSI
layout, biological applications, graph drawing, software diagram layout and job schedul-
ing [DPS02; LW99]. It is proven to be a NP-hard problem in [Har82].

Its mathematical model could be defined as follows. Let G(V,E) be a finite undirected
graph, where V (|V | = n) represents the set of vertices and E depicts the set of edges.
Given a mapping ϕ : V → {1, 2, ...n} which represents a linear arrangement ϕ, the sum
of edge length (the cost) for G with respect to ϕ is defined as:

SLA(G,ϕ) =
∑

(u,v)∈E
|ϕ(u)− ϕ(v)| (5.1)
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The goal is to find an arrangement ϕ∗ whose sum of edge length SLA(G,ϕ∗) is minimum.
There exist some exact methods to obtain the optimal solutions for special families

of graphs such as trees, rooted trees, hypercubes, meshes, outerplanar graphs, and others
([DPS02]). Besides that, many heuristic algorithms are developed to solve MinLA like
the spectral sequencing method (SSQ) [JM92], improved frontal increase minimization
(IFIM) [Mca99], multi-scale algorithm (MS) [KH02], algebraic multigrid scheme (AMG)
[SRB04], simulated annealing (SA) [Pet03a] [Pet03b] [RHT08a], population-based algo-
rithms [RHT06] [Por05] [SS09] and variable neighborhood search [MUP16]. A detail review
is made in Section 5.2.

Generally, neighborhoods could be classified in two types: parameter-based neighbor-
hoods and set based neighborhoods according to [GR17]. A parameter-based neighborhood
is for example a 2-flip neighborhood in some heuristic algorithms of MinLA. Using the
best-improvement strategy, these algorithms should enumerate all available configurations
by swapping the labels of two vertices and choose one of them to replace the current solu-
tion. On the contrary, a set based neighborhood is generated by restricting enumerating
on some set S which is composed of partial decision variables. A special characterization
of set based neighborhood is that we can identify the best solution in a single step in a
polynomial time for an exponentially large number of solutions. Based on this idea, a class
of set based neighborhoods is introduced in [GR17]. The authors proposed a class of set
based neighborhoods on the vertex set S which is constructed by a maximal independent
set (MIS) of the input graph that could be obtained by a simple greedy heuristic algo-
rithm. The authors also estimated that these set based neighborhoods are more powerful
than other neighborhoods because of the combinatorial leverage and did not verify the
effectiveness of the set based neighborhood for MinLA in a heuristic algorithm. So the
objective of this work is to investigate the effectiveness of the set based neighborhood
compared to the traditional 2-flip neighborhood in computational experiments.

The proposed algorithm is realized by a two phase iterated heuristic: a descent phase
and a perturbation phase. In the descent phase, the algorithm alternates a dedicated
neighborhood (median based neighborhood) to explore the search space efficiently and a
set based neighborhood with a decomposition method to search the solutions in a larger
area. In the perturbation phase, we employ a rotation operation to help escape from local
optimum. The results show that the set based neighborhood is more effective than the
traditional 2-filp neighborhood for improving the solution quality.

This chapter is organized as follows. The previous relevant work is briefly reviewed in
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Section 5.2. Then we introduce our algorithm in Section 5.3. In Section 5.4, computational
results on the benchmark instances and comparisons with reference results in the literature
are presented. After that, we describe additional experiments to investigate the influences
of main algorithmic components on the global performance of the algorithm in Section 5.5.
In the last, conclusions and perspectives are given in Section 5.6.

5.2 Previous work

There has been extensive theoretical and practical researches in recent decades.
Many exact algorithms are developed to solve special graphs like undirected tree

[Shi79], 1/3 balanced decomposition trees of bounded degree graphs [Bar+04], chord
graphs [RH08] and incomplete hypercubes [Mil+15]. There are also some work focusing on
lower bounds of general graphs. For example, using polyhedral approach, a cutting plane
algorithm is presented in [Ama+08]. The results show that the proposed algorithm can
yield competitive lower bounds in a reasonable time. In 2011, a linear-programming based
approach to compute lower bounds of the benchmark instances is proposed in [CLS11]. It
is the first time to show that the best known solutions are not far from the lower bounds
for most benchmark instances. Also, some other theoretical work [Sha+00] has found
that the optimal solution of MinLA can derive the upper bounds and the lower bounds
for the bipartite crossing number problem. Recently, [AMS11] shows that MinLA has no
polynomial time approximation scheme, unless NP-complete problems can be solved in
randomized subexponential time.

For the practical work, much effort has been put into developing effective heuristic
algorithms.

In [JM92], the spectral sequencing method (SSQ) was introduced by using eigenvectors
corresponding to the second smallest laplace eigenvalue of a graph. The results showed that
this method displayed good behavior in most cases. Later, Mcallistar [Mca99] introduced
a heuristic method to construct the sequence order of labels based on the degrees and
previous labeled vertices. This method performed better than the previous method not
only in quality of solutions but also in execution time. It is worth noting that, many
researches made use of the above two methods as the initialization in their algorithms.

In 2002, a linear-time algorithm based on the multi-scale (MS) paradigm was devised
in [KH02]. The multi-scale techniques convert a high-dimensional problem in an iterative
fashion into ones of increasingly lower dimensions, via a process called coarsening. As the
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scale of lower dimension problems is small and easy-solving, they can be solved exactly.
Then the solution is progressively projected back to high dimension problem until the
original problem is returned. The experimental results of this approach were comparable
with the best known results and the running time is much more attractive. Another multi-
scale algorithm based on algebraic multigrid scheme (AMG) was presented in [SRB04].
Compared with MS, AMG uses weighted aggregation other than strict aggregation in
coarsening scheme. The authors declared that AMG can get better results than MS in
linear time.

The simulated annealing method was much studied in the last decade. In [Pet03a] and
[Pet03b], Petit proposed two heuristic algorithms combining SSQ and simulated annealing
(SA) to solve MinLA on a set of large graphs. The two algorithms compared favorably
with other heuristic algorithms in the solution quality and running time. The author
has also presented the benchmark set which is employed in our work and introduced in
Section 5.4.1.

A genetic hill-climbing algorithm was presented in [Por05]. It used a local search
procedure to improve the solution iteratively and two crossover operations to make the
diversification. In the local search, the algorithm randomly chooses one solution ϕn in the
neighborhood to replace the current solution ϕ if ϕn is not worse than ϕ. The improving
procedure ends with a maximum non-improving limit n log10 n (n is the number of vertices
in the instance.). The experiments revealed that randomly taking one solution from the
neighborhood is better than fully examining the neighborhood in terms of the search
efficiency. Two different crossover operators were adopted to provide a weak and a strong
operation respectively. The results showed that it is comparable with other SA algorithms
on most instances.

After that, Rodriguez-Tello et al. proposed a memetic algorithm [RHT06] incorporat-
ing a specialized crossover operator, a local search operator based on SA methodology
and an initialization procedure by Mcallistar method [Mca99]. The results of this algo-
rithm were superior than above algorithms presented. Later in [RHT08a], a two-stage
simulated annealing algorithm (TSSA) was developed to resolve MinLA effectively. The
algorithm operated in two steps: initializing the solution with Mcallistar method [Mca99]
and improving the solution iteratively by simulated annealing based on exchanging two
labels. TSSA alternated the search with two different neighboring functions with a pre-
fixed probability. An extended evaluation function was also employed to differentiate the
solutions with same objective value. The results showed that TSSA outperforms the pre-
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vious algorithms. As the computational results were superior than the other algorithms,
we take TSSA as reference algorithm in this work.

In 2009, Sharma et al. proposed a hybrid approach [SS09] which incorporates SA
under the framework of evolutionary algorithm. It utilised the features of level structure,
Depth First Search (DFS), Frontal Increase Minimisation (FIM) method and Spectral
Sequencing (SS) of the graphs in the procedure of initialization. The proposed technique
produced results that are well comparable with the existing approaches known for their
good results.

Two years later, a new algorithm incorporating scatter search and path relinking
(SSPR) to solve MinLA was proposed in [Glo+11]. The proposed algorithm includes
three parts: the diversification generation method, the improvement method and the
combination method. Based on the Mcallistar method in [Mca99], SSPR introduced a
probability-choosing strategy to increase the diversification of the population. In the im-
provement procedure, SSPR used the ejection chain to enlarge the neighborhood. Finally,
SSPR employed a path relinking methodology to help escape from local optimum. The
experimental results showed that SSPR could be comparable with TSSA in most cases
under the 1000 seconds of cutoff time.

[MUP16] offered a variable neighborhood search (VNS) algorithm to solve MinLA. The
authors used a sequential variable neighborhood descent based on the swapping and rota-
tion operation. When there is no improving solutions in the neighborhoods, the algorithm
enters the perturbation phase to get out of the local optimum. The two procedures are
repeated until the running time reaches 2000 seconds. The computational results showed
that the proposed VNS is comparable with TSSA in some cases.

5.3 Set based neighborhood heuristic algorithm

Iterated local search is an effective framework and it is widely applied in many other
NP-hard problems. As is shown in Algo 8, the proposed set based neighborhood heuristic
algorithm (SBNH) starts by the initialization phase (line 3 in Algo 8) by the Mcall-
sitar method [Mca99] (See Section 5.3.2). As well, the best found solution ϕ∗ and the
recorded solution ϕb are set as the initialization solution ϕ (lines 4-5 in Algo 8). Then
SBNH gets into the descent phase (lines 7-11 in Algo 8) alternating between exploring
the median based neighborhood (See Section 5.3.3) and the set based neighborhood (See
Section 5.3.3) until there is no improving solutions in any of the neighborhoods. After
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that, the perturbation phase (See Section 5.3.4) is triggered to help escape from the local
optimum (line 12 in Algo 8). The two phases repeat until the cutoff time Tmax is reached.

Algorithm 8 Set based neighborhood heuristic algorithm for MinLA
1: Input: Finite undirected graph G(V,E), objective function f(ϕ), repeat times MaxiR, pattern

size SizeP , perturbation strength StrenP and cutoff time limit Tmax
2: Output: The best solution found ϕ∗
3: ϕ← InitialMcallistar()
4: ϕ∗ ← ϕ
5: ϕb ← ϕ
6: while the cutoff time limit Tmax is not reached do
7: while f(ϕ∗) < f(ϕb) do
8: ϕb ← ϕ∗

9: (ϕ,ϕ∗)← LSs(ϕ,ϕ∗)
10: (ϕ,ϕ∗)← LSSB(ϕ,ϕ∗,MaxiR, SizeP )
11: end while
12: ϕ← Perturb(ϕ, StrenP )
13: end while
14: return ϕ∗

5.3.1 Representation and evaluation function

As MinLA is a typical labeling problem, we use a permutation l to represent the solu-
tion, where l(i) represents the label assigned to vertex i. This representation is used in the
descent phase and perturbation phase. For the initialization procedure (See Section 5.3.2),
we use another permutation t where t(i) denotes the vertex assigned to label i. We employ
the original fitness function in Equation 5.1 other than the extended evaluation function
introduced in [RHT08b].

5.3.2 Initialization

A well devised initialization procedure is helpful to promote the searching efficiency.
Our algorithm SBNH employs the Mcallistar method [Mca99] to obtain an initial so-
lution. Mcallistar method uses a greedy heuristic to choose vertices to the labels from 1
to n. First of all, this heuristic method randomly chooses a vertex for label 1. Then it
follows a frontal increase minimization (FIM) strategy to fill the label from 2 to n with
the unplaced vertices. To well describe the mechanism for choosing a vertex for label
i, we first give some preliminary definitions: let Pi (|Pi| = i − 1) represent the set of

94



5.3. Set based neighborhood heuristic algorithm

vertices placed from label 1 to label i − 1, Ui depicts the set of unplaced vertices and
Fi = {u ∈ Ui : v ∈ Pi, (u, v) ∈ E} denotes the set of unplaced vertices which have
adjacent vertices in Pi. The basic idea is to choose the vertex from Fi which has fewest
adjacent vertices in the set Ui−Fi. To realize that, Mcallistar method introduces an index
tf(u) = deg(u) − 2 ∗ tp(u) for each vertex u ∈ Fi to describe its connection with the set
Ui − Fi, where deg(u) denotes the degree for the vertex u, tp(u) depicts the number of
placed vertices that is adjacent to u.

tp(u) = |{v ∈ Pi, (u, v) ∈ E}| (5.2)

At each step, the vertex u ∈ Fi with smallest tf(u) is chosen for the label i. The whole
procedure repeats until all the vertices are set.

5.3.3 Descent phase

In the descent phase, we operate the descent local search in two different neighbor-
hoods. The first neighborhood (See Section 5.3.3) is a median based neighborhood from
[RHT08b]. Because of its simple structure and meaningful design, it is helpful to explore
the search space to reach a local best solution quickly. Another neighborhood is a set
based neighborhood (See Section 5.3.3) to advance the search when there is no improving
solutions in the median based neighborhood.

Median based neighborhood

We first explore the median based neighborhood in the descent phase. As is shown in
Algo 9, a descent local search LSs(ϕ, ϕ∗) operates over the median based neighborhood
Ns(u, ϕ). For each vertex u ∈ V , we evaluate all its neighboring solutions and choose the
best one ϕ′ (line 7 in Algo 9) to replace the current solution ϕ if ϕ′ is better than ϕ (lines
8-10 in Algo 9). Then the best found solution ϕ∗ is updated if an improved solution is met
(lines 11-13 in Algo 9). This local search ends when there exist no improving solutions in
the neighborhood and the current solution ϕ and the best found solution ϕ∗ are returned
(line 16 in Algo 9).

The proposed median based neighborhood Ns(u, ϕ) is introduced in [RHT08b]. It is de-
fined as follows. Given a vertex u ∈ V and its adjacent vertices setA(u) = {v1, v2, v3...vdeg(u)},
we could sort their labels pi ∈ P (u) = {ϕ(v), v ∈ A(u)} in an ascending order: p1 < p2 <
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Algorithm 9 Descent local search LSs(ϕ, ϕ∗)
1: Input: Finite undirected graph G(V,E), objective function f(ϕ), the current solution ϕ and the

best solution found ϕ∗
2: Output: The current solution ϕ and the best solution found ϕ∗
3: ϕt ← ϕ
4: while f(ϕ) < f(ϕt) do
5: ϕt ← ϕ
6: for each u ∈ V do
7: ϕ′ ← Best of Ns(u, ϕ)
8: if f(ϕ′) < f(ϕ) then
9: ϕ← ϕ′

10: end if
11: if f(ϕ′) < f(ϕ∗) then
12: ϕ∗ ← ϕ′

13: end if
14: end for
15: end while
16: return ϕ, ϕ∗

... < pdeg(u). The definition of median label Med(u) of P (u) is given by:

Med(u) =

p(deg(u)+1)/2 if deg(u) is odd,
1
2(pdeg(u)/2 + p(1+deg(u)/2)) if deg(u) is even.

(5.3)

The set of suitable vertices of vertex u is defined as: S(u) = {v ∈ V,Med(u)−2 ≤ ϕ(v) ≤
Med(u)+2}. Then the proposed median based neighborhood for the vertex u with respect
to ϕ could be expressed as follows:

Ns(u, ϕ) = {ϕ′ = ϕ⊕ swap(u, v) : v ∈ S(u)}. (5.4)

where the operation swap(u, v) is to swap the labels of verties u and v. To improve
the computational efficiency, we calculate only the changing part from solution ϕ to
ϕ′. For each swap operation swap(u, v), only the edges related to vertex u and v are
changed. Therefore the complexity of evaluating each neighboring solution ϕ′ isO(deg(u)+
deg(v)) < O(D + D) = O(D), where D is the maximal degree of the vertex u ∈ V . As
the size of set S(u) equals to 5, the complexity for each vertex u is O(5Ḋ) = O(D). That
means that the first local search procedure is fast to carry out and we could rapidly find
out the local optimum by this effective neighborhood. After that, the search explores the
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set based neighborhood to continue the descent search in a larger area.

Set based neighborhood

In [GR17], the authors proposed a class of set based neighborhoods for MinLA without
presenting practical validations. The set based neighborhood is described as follows. Given
a undirected graph G(V,E), the set based neighborhood NSB(N0, ϕ) is generated by
making a full arrangement of the labels in the labeling set L0, where L0 = {ϕ(u), u ∈ N0}
and N0 is the maximal independent set. For example, we are given a 8 vertices graph
V = {a, b, c, d, e, f, g, h} and a solution ϕ = {2, 6, 4, 1, 5, 8, 3, 7} (ϕ(a) = 2, ϕ(b) = 6
and so on.), the MIS N0 = {a, c, h} and its labeling set L0 = {2, 4, 7}. Therefore we
have 3!=6 arrangements in the set based neighborhood NSB(N0, ϕ) with respect to the
solution ϕ and the MIS N0: {2, 6, 4, 1, 5, 8, 3, 7}, {2, 6, 7, 1, 5, 8, 3, 4}, {4, 6, 2, 1, 5, 8, 3, 7},
{4, 6, 7, 1, 5, 8, 3, 2}, {7, 6, 2, 1, 5, 8, 3, 4}, and {7, 6, 4, 1, 5, 8, 3, 2}.

There are n0! solutions in the set based neighborhood, where n0 is the size of the MIS
N0. Even the set based neighborhood is n0! large, we could identify the best solution in
a polynomial time by transforming finding the best solution in the neighborhood into a
minimum-weight perfect matching problem (MWPMP) [CR99]. It is worth noting that,
identifying the MIS of a graph is also a NP-hard problem, we employ a heuristic method
in Algo 10 to find out the MIS for the input graph. Using this method, we could find out
the MIS quickly.

Algorithm 10 A Heuristic to identify the maximum independent set MIS(G)
1: Input: Finite undirected graph G(V,E)
2: Output: The maximum independent set N0
3: N0 ← ∅
4: Nr ← V
5: while Nr 6= ∅ do
6: select a random vertex u ∈ Nr

7: N0 ← N0 ∪ u
8: Nr ← Nr \ (A(u) ∪ {u}) // N(u) depicts the set of adjacent vertices of u
9: end while

10: return N0

To create a MWPMP, we start with generating a MIS by Algo 10. For a given undi-
rected graph G(V,E), the MIS algorithm (Algo 10) firstly initializes the set N0 as an
empty set and the set Nr as V (lines 3-4 in Algo 10). Then we enter the loop to update
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N0 selecting a random vertex u from Nr (lines 6-7 in Algo 10) and update the Nr by delet-
ing the vertex u, as well as its adjacent vertices (line 8 in Algo 10). The cycle ends when
the set Nr gets empty. And the MIS N0 ⊂ E is returned. With the independent vertex
set N0 ⊂ V and its labeling set L0, a MWPMP is created on the graph G0 = (N0, L0, E0)
(See Figure 5.1), where E0 = {(p, q) : p ∈ N0, q ∈ L0} and the weight for each edge w(p, q)
is defined by the follows:

w(p, q) =
∑

k∈N(p)
|ϕ(k)− q| (5.5)

MWPMP is much studied in the past and solved in a polynomial time O(n4
0) [Ger95].

p_n0p_1 p_2 p_3

q_1

N_0

L_0

w(p,q)

q_2 q_3 q_n0

Figure 5.1 – Transforming finding the best solution in the set based neighborhood into
MWPMP.

However, the size of N0 is rather large when the instance is in large scale. For example,
there is an instance named “gd96a” which has 1096 vertices and 1676 edges, and its
maximum independent set N0 generated by Algo 10 normally has over 450 vertices which
leads to lots of time consuming for each iteration. For this reason, we increase the searching
efficiency of the local search LSSB(ϕ, ϕ∗,MaxiR, SizeP ) by employing a decomposition
method [MRW18] which is successfully applied to solve the quadratic assignment problem
(QAP) [Law63]. The main idea of the decomposition method is to divide the set of decision
variables into several no-overlapping subsets and then enumerate all the configurations
generating by the subsets. To apply the set based neighborhood, we divide the maximal
independent set N0 into several subsets and identify the best solution in the neighborhood
generated by each subset with the method in [Ger95].

The pseudo code of the local search LSSB(ϕ, ϕ∗,MaxiR, SizeP ) is presented in Algo 11.
The counter Cnt is initialized as 0 (line 3 in Algo 11). After the recorded solution ϕt is set
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as ϕ (line 5 in Algo 11), we generate the maximum independent set N0 by Algo 10 (line
6 in Algo 11) and divide vertex set N0 into different subsets {P1, P2, ...Pm} where each
subset is an independent vertex set which consists of SizeP vertices (line 7 in Algo 11),
where SizeP is an input parameter to control the size of each subset. In the inner loop,
we replace the current solution ϕ with the best solution in the set based neighborhood
relative to the subset Pi which is achieved by the solver [Ger95] (line 10 in Algo 11). The
best found solution ϕ∗ gets updated if a better solution is obtained in terms of objective
value (lines 11-13 in Algo 11). After visiting all the subsets Pi (i = 1, 2, ...m), the counter
Cnt is set to 0 if the solution ϕ is not improved, otherwise Cnt is added 1 (lines 16-21
in Algo 11). The outer loop ends if the current solution ϕ has not been improved for
MaxiR successive times. Finally the current solution ϕ and the best found solution ϕ∗

are returned (line 22 in Algo 11).

Algorithm 11 Descent local search LSRD(ϕ, ϕ∗,MaxiR, SizeP )
1: Input: Finite undirected graph G(V,E), objective function f(ϕ), repeating times MaxiR, pat-

tern size SizeP , the current solution ϕ and the best solution found ϕ∗
2: Output: The current solution ϕ and the best solution found ϕ∗
3: Cnt← 0
4: while Cnt < MaxiR do
5: ϕt ← ϕ
6: N0 ←MIS(G)
7: {P1, P2, ...Pm} ← DivideN(N0, SizeP )
8: i← 1
9: repeat

10: ϕ←MWPMPSolver(NSB(Pi, ϕ))
11: if f(ϕ) < f(ϕ∗) then
12: ϕ∗ ← ϕ
13: end if
14: i← i+ 1
15: until i>m
16: if f(ϕ) < f(ϕt) then
17: Cnt← 0
18: else
19: Cnt← Cnt+ 1
20: end if
21: end while
22: return ϕ, ϕ∗

With the decomposition method above, we could reduce the time complexity from
O(n4

0) to O(n0 ∗ SizeP 3) and regulate the computational complexity by the input pa-
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rameter SizeP . It is worth noting that the processes of different subsets Pi ⊂ N0 are
independent, which provides some possibility to optimise the computational speed by
parallel computing in the future.

5.3.4 Perturbation phase

When the descent search stops, the perturbation phase is triggered to help escape
from the local optimum. The pseudo-code is presented in Algo 12. We first initialize the
counter Count as 0 (line 3 in Algo 12). Then we randomly choose a vertex u ∈ V and
find its adjacent vertex v ∈ A(u) which is farthest to u based on the label (lines 5-6 in
Algo 12):

v = arg max
v∈A(u)

|ϕ(u)− ϕ(v)|. (5.6)

Then Step is randomly decided as a positive integer less than |ϕ(u) − ϕ(v)| (line 7 in
Algo 12). A rotation operation is carried out with a probability p and the inverse direction
with 1−p (lines 8-13 in Algo 12). The perturbation procedure finishes after StrenP times
operations and the perturbed solution ϕ is returned.

Algorithm 12 Perturbation phase Perturb(ϕ, StrenP )
1: Input: Finite undirected graph G(V,E), perturbation strength StrenP and the current solution
ϕ

2: Output: The current solution ϕ
3: Count← 0
4: while Count < StrenP do
5: u← RandomChoose(V )
6: v ← FindFarNode(u, ϕ)
7: Step← Rand(|ϕ(u)− ϕ(v)|)
8: ρ← Randouble(0, 1)
9: if ρ < 0.5 then
10: ϕ← Rotation(u, v, Step, ϕ)
11: else
12: ϕ← Rotation(v, u, Step, ϕ)
13: end if
14: Count← Count+ 1
15: end while
16: return ϕ
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5.4 Experimental results

In this section, we present the experimental results of the proposed SBNH, a 2-flip
neighborhood heuristic algorithm and the state-of-the-art algorithm TSSA. We first in-
troduce the experimental settings and the instances in Section 5.4.1. Then we present
the method to determine the input parameters for the proposed SBNH in Section 5.4.2.
Because the objective of this work is to reveal the effectiveness of the set based neigh-
borhood, we make comparisons between the proposed algorithm to a 2-flip neighborhood
heuristic algorithm in the following paragraph, as well as the state-of-the-art TSSA in
Section 5.4.3.

The proposed SBNH and the 2-flip neighborhood heuristic algorithm (2FNH) share
the same perturbation phase. The main difference between them is the neighborhoods
in the descent phase. SBNH employs the median based neighborhood Ns presented in
Section 5.3.3 and the set based neighborhood NSB introduced in Section 5.3.3 while the
2FNH integrate Ns and a 2-filp neighborhood Nt which is defined as follows:

Nt(u, ϕ) = {ϕ′ = ϕ⊕ swap(u, v) : u ∈ V, v ∈ V }. (5.7)

5.4.1 Instances and settings

The experimentation of this work was carried out on a set of 21 graphs 1 which are
introduced in [Pet03b]. Table 5.1 summarizes the detailed information of each instance.
Besides the basic information of the graph (graph name, vertex, edge and family), the
lower bounds are given by a linear programming method in [CLS11] in column “Lower
Bound” and the best results found (See column “EveBest”) are also listed 2 with the gap
to the lower bound in the last column (See column “Gap%”). The set of benchmark graphs
consists of 4 random graphs using different probability p to generate edges, one random
geometric graph with a neighborhood radius r = 0.075, three regular graphs with known
optimal values (marked in “*”), three graphs from finite element discretization (FE), five
graphs from very-large-scale integration application (VLSI) and five graphs from graph
drawing competitions (GD). The number of vertices varies in the range between 62 and
9800 while the number of edges is between 125 and 49820.

The SBNH and the compared algorithm (2FNH) are coded in C/C++ and compiled

1. https://www.tamps.cinvestav.mx/ ertello/minla.php
2. https://www.tamps.cinvestav.mx/ ertello/minla.php
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Graph Vertex Edge Family Lower Bound EveBest Gap%
randomA1 1000 4974 p=0.01 140634 866968 83.8
randomA2 1000 24738 p=0.05 4429294 6522206 32.1
randomA3 1000 49820 p=0.1 11463259 14194583 19.2
randomA4 1000 8177 p=0.0164 601130 1717176 65.0
randomG4 1000 8173 r=0.075 39972 140211 71.5
bintree10 1023 1022 10-bintree 3696* 3696 0.0
hc10 1024 5120 10-hypercube 523776* 523776 0.0
mesh33x33 1089 2112 33x33-mesh 31680* 31729 1.5
3elt 4720 13722 FE 44785 357329 87.5
airfoil1 4253 12289 FE 40221 272931 85.3
whitaker3 9800 28989 FE 144854 1143645 87.3
c1y 828 1749 VLSI 59971 62230 3.6
c2y 980 2102 VLSI 76253 78757 3.2
c3y 1327 2844 VLSI 113801 123145 7.6
c4y 1366 2915 VLSI 106942 114936 7.0
c5y 1202 2557 VLSI 88741 96850 8.4
gd95c 62 144 GD 443 506 12.5
gd96a 1096 1676 GD 77860 95242 18.3
gd96b 111 193 GD 1281 1416 9.5
gd96c 65 125 GD 402 519 22.5
gd96d 180 228 GD 2021 2391 15.5

Table 5.1 – Benchmark graphs with the lower bounds and best found results. (known
optimal values are marked by *)

in gcc 4.4.7 using the optimization flag -O3. Considering the stochastic nature of these
algorithms, each instance is executed independently 10 times, employing different random
seeds, with a cutoff time of 3600 seconds. And all experiments are conducted on Linux
system with a 2.5GHz Intel-E5-2670 CPU and 1GB RAM.

5.4.2 Determination of the input parameters

There are four parameters to be determined: the maximum repeating times MaxiR,
the subset size SizeP , the perturbation strength StrenP and the cutoff time Tmax. The
perturbation strength StrenP is empirically fixed as 50 and the cutoff time is set as 3600
seconds. To decide the other two parameters, we have chosen 4 difficult and representative
instances from the set of 21 instances: randomA4, whitaker3, c3y and gd96a.

We test 19 different combinations of (MaxiR,SizeP ) for the proposed algorithm
SBNH. For each combination, 10 independent executions are carried out over each in-
stance using a cutoff time of 3600 seconds. To find out a good combination of parameters,
we illustrate in Fig. 5.2 a curve of algorithm performance over 4 representative graphs
respecting to 19 different combinations of parameters. In Fig 5.2, the y-axis represents the
average best objective values of 10 executions over 4 representative graphs while the x-axis
depicts the 19 different combinations of parameters. The curve in Fig 5.2 shows that for a
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Figure 5.2 – The average best objective values of 10 executions over 4 representative
graphs (randomA4, whitaker3, c3y and gd96a) according to the different combinations of
(MaxiR,SizeP ).

fixedMaxiR, the average result gets worse SizeP increases; and the combination of input
parameter (5,10) has a better result compared to others. For this reason, the parameter
values for obtaining a good performance of SBNH are: MaxiR = 5, SizeP = 10 and
StrenP = 50.

5.4.3 Comparison with the other neighborhood algorithm

This section presents the results obtained from the experimental performance assess-
ment of the reference algorithm 2FNH and our SBNH algorithm. This analysis was
carried out under the experimental conditions in Section 5.4.1.

Table 5.2 summarizes the results provided by this computational experiment organized
by instance (See column Graph). The column “EveBest” depicts the best found values
for each instance. Three columns are used to register the results produced by SBNH

and 2FNH including the best objective value found (column “Best”), the average value
over 10 executions (column “Average”) and the average time to find the best objective
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SBNH 2FNH
Graph EveBest

Best Average Time_avg Best Average Time_avg
∆

randomA1 866968 870256 876713.2 3564.77 871288 878371.9 3550.27 1032

randomA2 6522206 6534039 6557104.5 3402.40 6538720 6564729.4 3553.62 4681

randomA3 14194583 14229092 14251947.4 2833.83 14225595 14252412.4 3321.05 -3497

randomA4 1717176 1727320 1737251.6 3566.52 1733244 1739208.9 3017.24 5924

randomG4 140211 153391 175262.7 3271.34 161528 182245.7 2457.31 8137

bintree10 3696 4549 4839.0 3481.58 6422 6966.5 3572.09 1873

hc10 523776 523776 523776.0 0.00 523776 523776.0 0.00 0

mesh33x33 31729 32652 33175.6 554.82 34037 37377.7 3213.47 1385

3elt 357329 439848 539694.5 3191.96 478596 595144.1 3462.15 38748

airfoil1 272931 352140 414330.3 3581.20 386693 480375.1 3567.86 34553

whitaker3 1143645 1313695 1804234.3 3441.36 1314614 1806072.4 3227.80 919

c1y 62230 62881 64333.2 3189.73 63295 64621.1 3385.05 414

c2y 78757 80030 81630.9 1001.85 80696 82676.7 3494.54 666

c3y 123145 132057 137119.8 2835.83 136138 140975.1 3532.81 4081

c4y 114936 118271 122969.7 3293.06 121109 127815.9 3594.47 2838

c5y 96850 98528 104605.8 3460.93 103877 109673.6 3560.74 5349

gd95c 506 506 506.0 2.83 506 506.0 2.98 0

gd96a 95242 101435 104079.8 3174.46 103718 107436.7 3588.03 2283

gd96b 1416 1416 1429.8 278.87 1416 1431.2 2.22 0

gd96c 519 519 519.0 2.94 519 519.0 4.82 0

gd96d 2391 2391 2425.0 3070.59 2409 2416.6 1370.54 18

Average 1254773.43 1275180.57 1280390.29

Wilcoxon 1.64e-3

Table 5.2 – The experimental results between the SBNH and the heuristic algorithm
2FNH over the 21 instances where each instance is executed 10 times independently.
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value (column “Time.avg”). The last column (“∆”) records the the gap between the best
objective value obtained by 2FNH and SBNH respectively. If the result is positive, it
means that SBNH performs better. Otherwise 2FNH works better.

Obviously, the proposed algorithm presents a better performance than 2FNH in most
instances concerning the best objective values found and the average values of 10 indepen-
dent executions. From the column ∆, we find that SBNH obtains better results concern-
ing the best objective values found over 16 instances, and the compared algorithms achieve
the same best objective value over 4 instances while SBNH performs worse only on one
instance“randomA3”. There is only one instance “gd96d” where 2FNH get a better av-
erage value than SBNH. The average best objective value of all the instances also shows
that SBNH achieves a smaller objective value respecting to the overall performance in
the last row of the Table 5.2. The Wilcoxon signed rank test with the two groups of best
objective values leads to a p-value=1.64e-3 < 0.05, confirming the statistical significance
between the compared results. It is worth noting that both SBNH and 2FNH can find
the optimal values for the instance “hc10” thanks to the initialization using the Mcallistar
method. To sum up, SBNH achieves a better performance than 2FNH for the most of
cases in the benchmark. The set based neighborhood is proved more efficient than the
traditional 2-flip neighborhood.

We also make a rough comparison with the state-of-the-art TSSA [RHT08b] in Ta-
ble 5.3. The experimental results of TSSA in the Table 5.3 are from the reference article
[RHT08b]. The authors executed each instance 10 independent times over 2GHz CPU
and 1 GB Ram with a less than 3600 seconds running time. The information listed in
Table 5.3 is shown employing the same column headings as those used in Table 5.2.

Indeed, TSSA is a powerful two stage simulated annealing algorithm which uses a more
diversified mechanism to effectively explore the search space. Also, the Wilcoxon signed
rank test with the two groups of best objective values leads to a p-value=4.38e-4 < 0.05,
confirming the statistical significance between the compared results. This comparison
shows that, it is not enough for the SBNH to employ descent local search and a simple
perturbation operator. To develop an effective heuristic algorithm, we need a more efficient
mechanism to offer the diversification during the search process.
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Part II, Chapter 5 – A set based neighborhood heuristic algorithm for solving the minimum
linear arrangement problem

SBNH TSSA
Graph EveBest

Best Average Time_avg Best Average Time_avg
∆

randomA1 866968 870256 876713.2 3564.77 866968 866975.4 86.50 -3288

randomA2 6522206 6534039 6557104.5 3402.40 6522206 6522221.6 181.00 -11833

randomA3 14194583 14229092 14251947.4 2833.83 14194583 14194585.5 279.10 -34509

randomA4 1717176 1727320 1737251.6 3566.52 1717176 1717179.6 90.00 -10144

randomG4 140211 153391 175262.7 3271.34 140596 140597.0 76.50 -12795

bintree10 3696 4549 4839.0 3481.58 3696 3697.1 38.80 -853

hc10 523776 523776 523776.0 0.00 523776 523776.0 1.20 0

mesh33x33 31729 32652 33175.6 554.82 31856 31904.2 89.90 -796

3elt 357329 439848 539694.5 3191.96 359151 359176.0 1030.80 -80697

airfoil1 272931 352140 414330.3 3581.20 276381 276866.5 982.10 -75759

whitaker3 1143645 1313695 1804234.3 3441.36 1143645 1145304.7 3330.10 -170050

c1y 62230 62881 64333.2 3189.73 62230 62234.4 32.80 -651

c2y 78757 80030 81630.9 1001.85 78757 78810.8 46.70 -1273

c3y 123145 132057 137119.8 2835.83 123145 123151.1 93.30 -8912

c4y 114936 118271 122969.7 3293.06 114936 114971.6 88.10 -3335

c5y 96850 98528 104605.8 3460.93 96850 96877.2 69.20 -1678

gd95c 506 506 506.0 2.83 506 506.1 2.10 0

gd96a 95242 101435 104079.8 3174.46 95263 95277.9 61.00 -6172

gd96b 1416 1416 1429.8 278.87 1416 1417.8 2.70 0

gd96c 519 519 519.0 2.94 519 519.1 2.80 0

gd96d 2391 2391 2425.0 3070.59 2391 2394.2 5.70 0

Average 1254773.43 1275180.57 1255049.86

Wilcoxon 4.38e-4

Table 5.3 – The experimental results between the SBNH and the state-of-the-art TSSA
over the 21 instances.
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5.5. Investigations of the key components

5.5 Investigations of the key components

There are two important parts in the proposed algorithm: the median based neighbor-
hood and the decomposition method in the set based neighborhood. In this section, we
investigate the influence of these key components on the performances of the algorithm.
For this reason, we create two variants of SBNH: SBNH1 by disabling the median based
neighborhood and SBNH2 by disabling the decomposition method. We ran both variants
to solve the 21 benchmark instances according to the condition specified in Section 5.4.1
and reported their computational results in Tables 5.4 and 5.5 together with those pro-
duced by SBNH.

In these tables, the information of the compared algorithms is shown employing the
same column headings as those used in Table 5.2. The last row gives the statistical sig-
nificance by using the Wilcoxon signed rank test.

5.5.1 Influence of the median based neighborhood

The median based neighborhood Ns is employed in our SBNH in 5.3.3 because of
its simple structure and effectiveness. As the size of Ns is small, we could use it to reach
the local optima rapidly. Moreover, the median based neighborhood Ns includes the con-
figurations by swapping the labels of adjacent vertices. On the contrary, the set based
neighborhood NSB is generated by the maximal independent set where the vertices are
non-adjacent. This means that the label swapping is never performed between the ad-
jacent vertices if we use only the set based neighborhood in the descent phase, which
possibly leads to bad performance even for some simple instances. For this reason, the
employment of the Ns in the descent phase could help break the ties of the non-adjacent
vertices.

Table 5.4 gives the experimental results of SBNH and the first variant SBNH1. By
observing the column ∆, we could find that SBNH obtains better results than SBNH1

in most instances (13 of 21) and it cannot compete with SBNH1 in 5 cases. Considering
the overall performance (See the last row), SBNH has a smaller average best objective
values (1275180.57 VS 1276873.62) than SBNH1. The wilcoxon singed-test shows that
there is no statistical difference (p-value=0.112>0.05) between the two groups of data.
It is worth noting that, SBNH1 takes longer time for exploring some small instances
(“gd95c”, “gd96b” and “gd96c”) to obtain the equal or worse results in SBNH. This
proves that the existence of median based neighborhood Ns could break the ties between
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Part II, Chapter 5 – A set based neighborhood heuristic algorithm for solving the minimum
linear arrangement problem

SBNH SBNH1Graph EveBest
Best Average Time_avg Best Average Time_avg

∆

randomA1 866968 870256 876713.2 3564.77 873461 879244.2 3311.39 3205

randomA2 6522206 6534039 6557104.5 3402.40 6530284 6549459.1 3037.99 -3755

randomA3 14194583 14229092 14251947.4 2833.83 14218935 14244294 3352.21 -10157

randomA4 1717176 1727320 1737251.6 3566.52 1730676 1735348.4 3405.07 3356

randomG4 140211 153391 175262.7 3271.34 155781 176752.6 3575.49 2390

bintree10 3696 4549 4839.0 3481.58 4359 4638.7 3549.90 -190

hc10 523776 523776 523776.0 0.00 523776 523776.0 0.00 0

mesh33x33 31729 32652 33175.6 554.82 32505 33460.9 3473.58 -147

3elt 357329 439848 539694.5 3191.96 456670 574510.5 3596.32 16822

airfoil1 272931 352140 414330.3 3581.20 367439 451462.8 3593.64 15299

whitaker3 1143645 1313695 1804234.3 3441.36 1316291 1808216.7 17.48 2596

c1y 62230 62881 64333.2 3189.73 63647 65119.3 3537.59 766

c2y 78757 80030 81630.9 1001.85 80091 82074.7 3102.06 61

c3y 123145 132057 137119.8 2835.83 133481 138543.9 3385.57 1424

c4y 114936 118271 122969.7 3293.06 118271 124149.5 2229.08 0

c5y 96850 98528 104605.8 3460.93 103475 108408.6 3579.65 4947

gd95c 506 506 506.0 2.83 516 516.6 406.88 10

gd96a 95242 101435 104079.8 3174.46 100339 102359.9 3531.20 -1096

gd96b 1416 1416 1429.8 278.87 1424 1428.6 2739.46 8

gd96c 519 519 519.0 2.94 519 519.7 1865.27 0

gd96d 2391 2391 2425.0 3070.59 2406 2410.5 2667.44 15

Average 1254773.43 1275180.57 1276873.62

Wilcoxon 0.112

Table 5.4 – The experimental results between the SBNH and the variant algorithm
SBNH1 by disabling the median based neighborhood over the 21 instances where each
instance is executed independently 10 times.
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5.6. Conclusions and perspectives

the non-adjacent vertices to help explore the search space more efficiently.
As a matter of fact, the Ns is not the most suitable supplementary neighborhood be-

cause its existence makes some instances get worse results. It encourages us to investigate
other meaningful and powerful k-filp neighborhood in the future.

5.5.2 Influence of the decomposition method

As we presented in Section 5.3.3, the set based neighborhood NSB is introduced in
our SBNH because of its advantage: identify the best solution of the n0! solutions in
a polynomial time O(n4

0) 3 by transforming the neighborhood-searching problem into a
minimum-weight perfect matching problem. In order to reduce the computational com-
plexity, we introduce a decomposition method to split the maximum independent set into
several parts. To reveal the influence of decomposition method, we create SBNH2 by
disabling the decomposition part.

From the column “∆” in Table 5.5, one observes that SBNH2 is not able to compare
favorably with SBNH in almost all instances (17 of 21). Especially, SBNH2 costs more
time to get worse results than SBNH in 16 instances. This shows that the decomposition
method is significant in increasing the search speed and in improving the solution quality.
The Wilcoxon signed rank test with the two groups of best objective values gets a p-
value=2.93e-4 < 0.05, confirming the statistical significance between the compared results.

5.6 Conclusions and perspectives

In this chapter, we have proposed a set based neighborhood heuristic algorithm for
solving the NP-hard Minimum Linear Arrangement Problem. The proposed algorithm
explores the search space in two phases: a descent phase integrating a median based
neighborhood and a set based neighborhood with a decomposition method as well as a
perturbation phase to help the search escape from the local optimum. The experimental
results indicate that the set based neighborhood is more efficient than traditional 2-filp
swapping neighborhood in a two phase iterated heuristic framework. We have also in-
vestigated the influence of the key components to the algorithm performance. The result
shows that the median based neighborhood is important to break the ties of non-adjacent
vertices for offering the different neighborhood. Also, the decomposition method is neces-

3. n0 is the size of maximum independent set N0
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Part II, Chapter 5 – A set based neighborhood heuristic algorithm for solving the minimum
linear arrangement problem

SBNH SBNH2Graph EveBest
Best Average Time_avg Best Average Time_avg

∆

randomA1 866968 870256 876713.2 3564.77 917200 928703.0 3601.46 46944

randomA2 6522206 6534039 6557104.5 3402.40 6572228 6603694.2 3599.85 38189

randomA3 14194583 14229092 14251947.4 2833.83 14246002 14263037.0 3150.59 16910

randomA4 1717176 1727320 1737251.6 3566.52 1775997 1791516.0 3594.77 48677

randomG4 140211 153391 175262.7 3271.34 161301 186372.1 3580.75 7910

bintree10 3696 4549 4839.0 3481.58 18180 20007.8 3454.21 13631

hc10 523776 523776 523776.0 0.00 523776 523776.0 0.00 0

mesh33x33 31729 32652 33175.6 554.82 34796 38617.0 3540.56 2144

3elt 357329 439848 539694.5 3191.96 478295 595772.6 3639.66 38447

airfoil1 272931 352140 414330.3 3581.20 386962 480843.1 3652.37 34822

whitaker3 1143645 1313695 1804234.3 3441.36 1314658 1806279.4 25.00 963

c1y 62230 62881 64333.2 3189.73 67288 67858.0 3530.72 4407

c2y 78757 80030 81630.9 1001.85 85891 89265.8 3573.86 5861

c3y 123145 132057 137119.8 2835.83 141733 148150.3 3600.45 9676

c4y 114936 118271 122969.7 3293.06 127165 135225.4 3599.35 8894

c5y 96850 98528 104605.8 3460.93 109496 114252.6 3481.73 10968

gd95c 506 506 506.0 2.83 506 506.0 18.18 0

gd96a 95242 101435 104079.8 3174.46 116333 123452.4 3339.32 14898

gd96b 1416 1416 1429.8 278.87 1416 1431.2 102.60 0

gd96c 519 519 519.0 2.94 519 519.0 4.92 0

gd96d 2391 2391 2425.0 3070.59 2413 2501.2 2785.77 22

Average 1254773.43 1275180.57 1289626.429

Wilcoxon 2.93e-4

Table 5.5 – The experimental results between the SBNH and the variant algorithm
SBNH2 by disabling the decomposition method over the 21 instances where each instance
is executed independently 10 times.
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5.6. Conclusions and perspectives

sary to accelerate the search process and reduce the computational complexity. This study
also indicates that the descent local search combining a simple perturbation method is
not enough to obtain the better results than state-of-the-art algorithms. The more effort
should be put into finding a more powerful diversification method. Moreover, it is possi-
ble to develop some parallel computing algorithms for the decomposition method in the
future.
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CONCLUSIONS

This thesis concerns two NP-hard graph layout problems: the cyclic bandwidth prob-
lem (CBP) and the Minimum Linear Arrangement Problem (MinLA). There exist nu-
merous applications in the real world like very-large-scale-integration layout(VLSI), data
structure representations, code design, graph drawing, software diagram layout and job
scheduling and interconnection networks for parallel computer systems. Much effort has
been put into theoretical and practical studies in the literature. In this thesis, we present
several heuristic algorithms to solve these problems.

In Chapter 2, after studying the solution distribution of CBP, we find that the ex-
istence of many plateaus in the search space leads to the difficulty in identifying better
solutions and escaping from the local optimum. For this reason, we introduced an enriched
evaluation function to discriminate the solutions with same objective value and proposed
an iterated three-phase search algorithm (ITPS) integrating a double neighbor-descent
phase, a threshold-based search phase and a special perturbation phase to ensure a highly
effective examination of the search space. To assess the performance of the proposed
ITPS, we have carried out intensive experiments over two groups of 113 benchmark
graphs from the literature including 85 standard graphs (e.g., paths, cycles, caterpillars,
etc) and 28 Harwell-Boeing graphs which arise from diverse engineering and scientific
real-world problems. Compared with the results of the best reference algorithm in the
literature, the proposed algorithm shows a very competitive performance. Concerning the
85 standard graphs, our ITPS could improve the best known results of 19 instances and
match the best known results of 60 instances. As to the 28 Harwell-Boeing graphs, 12
new records are discovered and 15 best known results are matched by the proposed algo-
rithm. Moreover, additional experiments reveal that the key composing ingredients of the
algorithm including: the extended evaluation function, the threshold-based search and the
shift-insert-based perturbation strategy play an important role in algorithm performance.

In Chapter 3, we presented another effective heuristic algorithm NILS based on the
general iterated local search framework. The proposed algorithm employs a simple but
powerful local optimization procedure to discover high-quality solutions in a particular
search area. NILS also integrates two complementary perturbation strategies: a directed
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perturbation and a strong perturbation to help escape from local optimum and explore
unvisited areas. Especially, the strong perturbation is originally composed of a destruction
step and a reconstruction step to bring the search to a distant and new region. Intensive
experiments on the same 113 benchmark instances are carried out and NILS shows the
performances that are never achieved by current best algorithms in the literature. For
the 85 standard instances with known optimal solutions, NILS attains the optimal cyclic
bandwidth costs for 82 instances (96.47%) while the two best performing algorithms in
the literature only achieve 59 (69.41%) and 63 (74.12%) optimal solutions respectively.
Remarkably, our algorithm established 4 new record results (improved upper bounds)
for 4 Harwell-Boeing instances. Moreover, the algorithm is highly robust across the in-
stances of most tested families with very different structures and topologies. We have also
investigated the influence of the directed perturbation and strong perturbation to the
performance of the proposed algorithm. The experimental results show that the existence
of them gives a positive influence to NILS.

In Chapter 4, we studied the memetic framework for solving CBP. Five different per-
mutation crossovers (CX, OX, OX2, PMX and DPX) are compared under the framework
of a memetic algorithm (MA) using a simple descent procedure to commit the local op-
timization. The experimental results show that the variant of MA with recombination
operator OX2 achieved the best performance for the tested instances in terms of the best
objective value found and the average objective value. Then we conducted an investiga-
tion on the population diversity measured by the average distance and entropy of the
MA variants using different recombination operators. In addition, we have explored the
correlation between the population diversity and the performance of the studied MA vari-
ants. The analysis shows that a higher entropy and average distance of the population
generally helps to find solutions of good quality. This study also indicates that the basic
memetic algorithm combining an existing recombination operator and a simple descent lo-
cal search procedure is not competitive compared to the state-of-the-art CBP algorithms.
Meanwhile, given the excellent performances achieved by MAs on many difficult optimiza-
tion problems, this work invites more research effort on seeking meaningful recombination
operators suitable for CBP. It is then expected that a MA integrating such a recombina-
tion operator and a powerful local optimization procedure would achieve state-of-the-art
performances.

In Chapter 5, we proposed a set-based neighborhood heuristic algorithm (SBNH)
for solving MinLA. The proposed algorithm is realized in two phases: a descent phase
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as a local optimization procedure integrating a median based neighborhood and a set
based neighborhood using a decomposition method as well as a perturbation phase to
help escape from the local optimum. The highlight of this work is that we introduced
a set based neighborhood where we can identify the best solution in exponentially large
number of solutions within a polynomial time by transforming finding the best solution in
the neighborhood into a minimum weight perfect matching problem. We also employed a
decomposition method to accelerate the calculating by splitting the relative maximal inde-
pendent set into multiple subsets. To verify the effectiveness of the set based neighborhood,
we created a SBNH variant (2FNH) which replaces the set based neighborhood with
a traditional 2-flip neighborhood. Intensive experiments on the 21 benchmark instances
were carried out and the computational results indicate that the set based neighborhood
performs more efficient than traditional 2-filp neighborhood under the framework of the
iterated local search. We also investigated the influence of the key components to the al-
gorithm performance. The result shows that the median based neighborhood is important
to break the ties of non-adjacent vertices for offering different neighborhoods. Also, the
decomposition method is necessary to accelerate the search process and reduce the com-
putational complexity. This study also indicates that the descent local search combining
a simple perturbation method is not enough to obtain the better results than state-of-
the-art algorithms. More efforts should be put into finding a more powerful diversification
method.

Perspectives

In this thesis, we mainly focus on developing effective heuristic algorithms and explore
meaningful components of the algorithms for the graph layout problems. For the future,
the study can be extended in the following directions.

Firstly, it is worth studying other forms of extended evaluation functions. After thor-
ough research on CBP, we find that the extended evaluation function can offer a positive
influence to the performance by guiding the search during the local optimization. How-
ever, the extended evaluation function is normally designed for the specified problem and
it is not able to be adjusted with the change of the search space. For this reason, we are
willing to advance the study in introducing machine learning and neural network tech-
nology to create an auto-design and adaptive evaluation function for the combinatorial
optimization problem under consideration.
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Secondly, we would like to develop hybrid algorithms combining heuristic algorithms
and some exact methods. Heuristic algorithms could find sub-optimal solutions in a rea-
sonable time while exact algorithms can ensure a global optimal solution of an instance. It
seems that heuristic algorithms and exact methods are two non-crossing lines to solve the
problem independently. Indeed, there exist some exact methods like branch and bound
method [RRR12] to solve CBP but only for small instances. We have already developed
powerful heuristic algorithms for CBP. Hence, it is possible to develop a hybrid algorithm
for solving CBP more efficiently.

Finally, we will extend the set based neighborhood method to other graph layout
problems like Cyclic Bandwidth Sum Problem (CBSP) [JHa01]. With the use of the set
based neighborhood, it is unnecessary to enumerate configurations in the neighborhood
and we can identify the best configuration in a single step by means of a polynomial-
time algorithm, even though the number of the configurations in the neighborhood is
exponentially large. Also, we will try to combine the decomposition method with parallel
computing technology to improve the computational efficiency.
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Chapter 6

APPENDIX

6.1 Detailed comparison of the ITPS and TScb algo-
rithms

In this appendix we show detailed results of the proposed ITPS algorithm with respect
to the reference TScb method [Rod+15] on the two groups of 113 benchmark instances.
The results for the group of 85 standard graphs with known optima are presented in
Table 6.1, whereas the results for the group of 28 graphs from real-world applications with
unknown optima are listed in Table 6.2. Columns 1-3 in these tables indicate the graph
name, its order (|V |) and size (|E|). The known optimal values (Cb∗) or the theoretical
lower (LB) and upper (UB) bounds are then listed. The remaining columns show the
best (Cbb), average (Avg. Cb) and standard deviation (Dev.) of the cyclic bandwidth cost
reached by each of the compared methods over 50 independent executions, the average
computation time in seconds needed to reach their best solution (Avg. Tbest), and the
difference (D) between its best result (Cbb) and the corresponding best-known bound
(either Cb∗ or LB). A statistical significance analysis was performed for these experiments
by using the procedure detailed in Section 2.3.1 and the resulting p-values are presented.
If a statistically significant difference exists between the results of ITPS and TScb, the
corresponding cells in the last column (SS) are marked either + or − depending on
whether such a difference is in favor of ITPS or not. Cells marked with the symbol ?
indicate that no significant difference exists between the analyzed algorithms.

6.2 Detailed performance evaluation of NILS with
respect to the CBP state-of-the-art algorithms

In this appendix, we present the results of a detailed performance evaluation which con-
siders NILS and two state-of-the-art algorithms: TScb [Rod+15] and ITPS [RHR19].
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Tables 6.3 and 6.4 summarize these results on an instance-by-instance basis. The former
is composed of a set of 85 standard graphs with known optimal solutions while the lat-
ter consists of a set of 28 graphs arising from real-world engineering applications. These
tables list in column 1 to 3 the instance name, its order (|V |) and size (|E|). The op-
timal solution cost (Cb∗), reported from the literature [Chu88; Hro+92; Lin94; Smi95],
is registered in Table 6.3; while the theoretical lower (LB) and upper (UB) bounds for
the instances listed in Table 6.4 (see columns 4 and 5) were computed according to the
formulas LB = d∆(G)/2e and UB = b|V |/2c, where ∆(G) denotes the maximum degree
of the graph G [Lin97]. The rest of the columns in these tables are dedicated to present,
for each algorithm considered in this comparison, the best (Cbb), average (Avg. Cb) and
standard deviation (Dev.) of the cyclic bandwidth cost attained in 50 independent exe-
cutions, the computational time used up to produce this cost (Avg. Tb), and the variation
(D) between its best result (Cbb) and the corresponding best-known bound (either Cb∗ or
LB depending on the type of graph). A statistical significance analysis comparing NILS
first against TScb [Rod+15], and then versus ITPS [RHR19] was executed. The cor-
responding resulting p-values (marked as 1 and 2) as well as the final outcome of the
statistical comparison are presented in the last four columns. A symbol + is used to iden-
tify the cases where NILS offers a significant better performance than the state-of-the-art
algorithms. On the contrary, if NILS is defeated by them the cell is marked with the
symbol −, while a ? is used to record those cases where it was not possible to conclude a
statistical significant difference between the compared solution methods.
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Table 6.1 – Detailed performance assessment of the TScb and ITPS algorithms over 85
standard graphs from 7 different families all of them having tight lower bounds.

TScb ITPS

Graph |V | |E| Cb∗ Cbb Avg. Cb Dev. Avg. Tbest D Cbb Avg. Cb Dev. Avg. Tbest D p-value SS

path20 20 19 1 1 1.00 0.00 0.17 0 1 1.00 0.00 0.03 0 1.0E+00 ?

path25 25 24 1 1 1.00 0.00 0.44 0 1 1.00 0.00 0.08 0 1.0E+00 ?

path30 30 29 1 1 1.00 0.00 1.25 0 1 1.00 0.00 0.12 0 1.0E+00 ?

path35 35 34 1 1 1.00 0.00 2.93 0 1 1.00 0.00 0.23 0 1.0E+00 ?

path40 40 39 1 1 1.00 0.00 4.05 0 1 1.00 0.00 0.28 0 1.0E+00 ?

path100 100 99 1 1 1.00 0.00 59.82 0 1 1.00 0.00 4.55 0 1.0E+00 ?

path125 125 124 1 1 1.00 0.00 148.25 0 1 1.00 0.00 6.98 0 1.0E+00 ?

path150 150 149 1 1 1.34 0.48 190.91 0 1 1.00 0.00 20.55 0 6.7E-06 +
path175 175 174 1 1 1.64 0.48 123.52 0 1 1.00 0.00 38.62 0 8.8E-12 +
path200 200 199 1 1 1.94 0.24 28.63 0 1 1.00 0.00 74.64 0 7.3E-21 +
path300 300 299 1 2 2.96 0.35 46.02 1 1 1.04 0.20 180.24 0 9.8E-22 +
path475 475 474 1 5 5.56 0.50 56.86 4 1 2.34 1.24 330.87 0 2.2E-18 +
path650 650 649 1 6 6.98 0.14 86.92 5 3 6.00 2.97 473.59 2 6.0E-07 +
path825 825 824 1 7 7.92 0.34 66.25 6 4 12.86 6.08 532.00 3 4.5E-10 −
path1000 1000 999 1 8 8.84 0.47 119.71 7 8 20.90 5.40 562.32 7 1.2E-17 −
cycle20 20 20 1 1 1.00 0.00 0.32 0 1 1.00 0.00 0.02 0 1.0E+00 ?

cycle25 25 25 1 1 1.00 0.00 0.86 0 1 1.00 0.00 0.05 0 1.0E+00 ?

cycle30 30 30 1 1 1.00 0.00 0.36 0 1 1.00 0.00 0.11 0 1.0E+00 ?

cycle35 35 35 1 1 1.00 0.00 0.67 0 1 1.00 0.00 0.20 0 1.0E+00 ?

cycle40 40 40 1 1 1.00 0.00 0.67 0 1 1.00 0.00 0.21 0 1.0E+00 ?

cycle100 100 100 1 1 1.00 0.00 3.52 0 1 1.34 0.80 25.85 0 3.4E-03 −
cycle125 125 125 1 1 1.00 0.00 4.63 0 1 1.46 1.03 18.36 0 1.8E-03 −
cycle150 150 150 1 1 1.00 0.00 7.86 0 1 1.86 1.28 49.58 0 7.4E-06 −
cycle175 175 175 1 1 1.00 0.00 9.14 0 1 2.44 1.66 62.03 0 3.2E-08 −
cycle200 200 200 1 1 1.00 0.00 21.39 0 1 2.34 1.52 71.53 0 1.3E-08 −
cycle300 300 300 1 1 2.86 0.57 23.82 0 1 3.00 1.95 180.95 0 8.2E-01 ?

cycle475 475 475 1 4 5.52 0.58 70.24 3 3 5.28 2.71 236.98 2 8.6E-03 +
cycle650 650 650 1 6 7.12 0.56 61.02 5 4 7.50 2.59 469.61 3 9.4E-01 ?

cycle825 825 825 1 7 8.00 0.40 65.70 6 7 13.72 4.56 528.06 6 3.4E-14 −
cycle1000 1000 1000 1 8 8.88 0.59 107.05 7 12 24.32 7.67 541.70 11 1.2E-18 −
mesh2D5x4 20 31 4 4 4.00 0.00 2.29 0 4 4.00 0.00 0.04 0 1.0E+00 ?

mesh2D5x5 25 40 5 5 5.00 0.00 2.86 0 5 5.00 0.00 0.02 0 1.0E+00 ?

mesh2D5x6 30 49 5 5 5.00 0.00 0.86 0 5 5.00 0.00 0.07 0 1.0E+00 ?

mesh2D5x7 35 58 5 5 5.00 0.00 1.49 0 5 5.00 0.00 0.09 0 1.0E+00 ?

mesh2D5x8 40 67 5 5 5.00 0.00 1.48 0 5 5.00 0.00 32.58 0 1.0E+00 ?

mesh2D10x10 100 180 10 10 10.58 0.50 58.15 0 10 10.76 0.43 37.75 0 5.7E-02 ?

mesh2D5x25 125 220 5 5 5.00 0.00 13.00 0 6 6.00 0.00 0.90 1 2.5E-23 −
mesh2D10x15 150 275 10 11 11.00 0.00 12.02 1 11 11.00 0.00 2.80 1 1.0E+00 ?

mesh2D7x25 175 318 7 7 7.02 0.14 73.44 0 8 8.00 0.00 4.19 1 1.8E-22 −
mesh2D8x25 200 367 8 8 8.10 0.30 73.37 0 9 9.00 0.00 7.16 1 2.3E-19 −
mesh2D15x20 300 565 15 16 19.66 14.13 117.35 1 16 16.56 0.50 109.68 1 4.0E-04 +
mesh2D19x25 475 906 19 119 119.82 0.39 55.34 100 20 20.92 0.27 31.77 1 3.7E-21 +
mesh2D25x26 650 1249 25 164 164.00 0.00 15.22 139 26 27.22 3.33 239.91 1 4.4E-21 +
mesh2D28x30 840 1622 28 30 142.34 87.31 194.10 2 29 59.76 66.36 300.47 1 3.1E-08 +
mesh2D20x50 1000 1930 20 22 187.06 102.01 179.68 2 22 38.58 54.32 375.06 2 5.3E-09 +
mesh3D4 64 300 14 14 15.70 0.68 47.01 0 14 14.00 0.00 12.30 0 2.7E-18 +
mesh3D5 125 540 21 21 22.76 3.14 111.95 0 21 21.00 0.00 41.29 0 1.5E-14 +
mesh3D6 216 882 30 30 32.34 5.71 84.38 0 30 30.00 0.00 23.21 0 1.1E-19 +
mesh3D7 343 1344 40 40 45.26 12.47 191.09 0 40 55.14 21.44 239.37 0 1.4E-02 −
mesh3D8 512 1344 52 53 114.38 30.21 190.27 1 52 101.32 37.04 107.42 0 2.0E-05 +
mesh3D9 729 1944 65 68 182.44 16.52 150.34 3 65 157.40 48.71 57.20 0 7.1E-19 +
mesh3D10 1000 2700 80 83 249.60 24.05 212.68 3 80 214.02 70.19 155.73 0 3.6E-18 +
mesh3D11 1331 3630 96 336 336.54 0.50 213.90 240 108 325.04 43.33 218.14 12 1.9E-19 +
mesh3D12 1728 4752 114 435 436.26 0.56 252.79 321 433 433.40 0.49 411.07 319 4.3E-19 +
mesh3D13 2197 6084 133 553 554.40 0.67 317.70 420 551 552.68 1.00 481.57 418 1.4E-13 +
tree2x4 31 30 4 4 4.00 0.00 0.86 0 4 4.00 0.00 0.00 0 1.0E+00 ?

tree3x3 40 39 7 7 7.00 0.00 0.37 0 7 7.00 0.00 0.00 0 1.0E+00 ?

tree10x2 111 110 28 28 28.00 0.00 0.23 0 28 28.00 0.00 0.00 0 1.0E+00 ?

tree3x4 121 120 15 15 15.76 0.43 18.60 0 15 15.00 0.00 0.44 0 6.7E-15 +
continued on the next page ...
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Table 6.1 – – continued from previous page

TScb ITPS

Graph |V | |E| Cb∗ Cbb Avg. Cb Dev. Avg. Tbest D Cbb Avg. Cb Dev. Avg. Tbest D p-value SS

tree5x3 156 155 26 26 26.00 0.00 11.83 0 26 26.00 0.00 0.04 0 1.0E+00 ?

tree13x2 183 182 46 46 46.00 0.00 0.33 0 46 46.00 0.00 0.01 0 1.0E+00 ?

tree2x7 255 254 19 19 20.12 0.39 75.01 0 19 19.00 0.00 0.83 0 2.5E-21 +
tree17x2 307 306 77 77 77.00 0.00 0.50 0 77 77.00 0.00 0.06 0 1.0E+00 ?

tree21x2 463 462 116 116 116.00 0.00 0.87 0 116 116.00 0.00 0.18 0 1.0E+00 ?

tree25x2 651 650 163 163 163.00 0.00 1.02 0 163 163.00 0.00 0.49 0 1.0E+00 ?

tree5x4 781 780 98 98 98.28 0.45 134.45 0 98 98.00 0.00 3.95 0 6.0E-05 +
tree2x9 1023 1022 57 63 64.30 0.79 192.58 6 57 57.34 0.48 215.84 0 6.9E-19 +
caterpillar3 9 8 3 3 3.00 0.00 0.00 0 3 3.00 0.00 0.00 0 1.0E+00 ?

caterpillar4 14 13 3 3 3.00 0.00 0.42 0 3 3.00 0.00 0.00 0 1.0E+00 ?

caterpillar5 20 19 4 4 4.00 0.00 0.49 0 4 4.00 0.00 0.00 0 1.0E+00 ?

caterpillar6 27 26 5 5 5.00 0.00 0.58 0 5 5.00 0.00 0.00 0 1.0E+00 ?

caterpillar7 35 34 6 6 6.00 0.00 0.51 0 6 6.00 0.00 0.00 0 1.0E+00 ?

caterpillar13 104 103 10 10 10.00 0.00 16.33 0 10 10.00 0.00 0.31 0 1.0E+00 ?

caterpillar14 119 118 11 11 11.00 0.00 11.15 0 11 11.00 0.00 0.11 0 1.0E+00 ?

caterpillar16 152 151 13 13 13.00 0.00 10.28 0 13 13.00 0.00 0.34 0 1.0E+00 ?

caterpillar17 170 169 14 14 14.00 0.00 21.29 0 14 14.00 0.00 0.56 0 1.0E+00 ?

caterpillar19 209 208 15 15 15.68 0.47 41.71 0 15 15.00 0.00 2.76 0 9.2E-13 +
caterpillar23 299 298 19 19 19.32 0.47 54.77 0 19 19.00 0.00 5.97 0 1.4E-05 +
caterpillar29 464 463 24 24 25.64 1.75 79.02 0 24 24.00 0.00 43.14 0 4.4E-13 +
caterpillar35 665 664 29 29 34.46 3.88 154.46 0 29 32.52 5.87 281.87 0 2.0E-05 +
caterpillar39 819 818 33 34 40.08 4.19 121.96 1 33 39.24 8.60 275.49 0 6.9E-03 +
caterpillar44 1034 1033 37 38 49.98 5.59 115.59 1 37 54.10 11.19 402.83 0 1.4E-02 −
hypercube11 2048 11264 526 562 584.64 10.92 472.22 36 548 561.46 7.86 457.93 22 1.1E-20 +
hypercube12 4096 24576 988 1224 1351.12 42.00 503.62 236 1508 1546.32 12.88 596.02 520 6.5E-18 −
hypercube13 8192 53248 1912 2810 2916.70 40.69 516.38 898 3919 3952.02 11.50 597.00 2007 5.1E-79 −

Average 89.52 100.55 4.91 75.80 28.88 100 108.54 5.26 119.84 39.32
? 38

Total + 31
− 16
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Table 6.2 – Detailed performance comparison of the TScb and ITPS algorithms over 28
Harwell-Boeing graphs.

Bounds TScb ITPS

Graph |V | |E| LB UB Cb∗ Cbb Avg. Cb Dev. Avg. Tbest D Cbb Avg. Cb Dev. Avg. Tbest D p-value SS

jgl009 9 50 4 4 4 4 4.00 0.00 0.00 0 4 4.00 0.00 0.00 0 1.0E+00 ?

rgg010 10 76 5 5 5 5 5.00 0.00 0.00 0 5 5.00 0.00 0.00 0 1.0E+00 ?

jgl011 11 76 5 5 5 5 5.00 0.00 0.00 0 5 5.00 0.00 0.00 0 1.0E+00 ?

can_24 24 92 4 12 5 5 5.00 0.00 0.02 0 5 5.00 0.00 0.47 0 1.0E+00 ?

pores_1 30 103 5 15 7 7 7.00 0.00 0.15 0 7 7.00 0.00 0.01 0 1.0E+00 ?

ibm32 32 90 6 16 9 9 9.00 0.00 0.03 0 9 9.00 0.00 0.02 0 1.0E+00 ?

bcspwr01 39 46 3 19 4 4 4.10 0.30 167.59 0 4 4.00 0.00 2.90 0 2.2E-02 +
bcsstk01 48 176 6 24 12 12.00 0.00 0.03 6 12 12.00 0.00 0.11 6 1.0E+00 ?

bcspwr02 49 59 3 24 7 7.00 0.00 0.00 4 7 7.00 0.00 0.03 4 1.0E+00 ?

curtis54 54 124 8 27 8 8.00 0.00 0.55 0 8 8.00 0.00 0.43 0 1.0E+00 ?

will57 57 127 5 28 6 6.00 0.00 12.80 1 6 6.00 0.00 0.21 1 1.0E+00 ?

impcol_b 59 281 9 29 17 17.00 0.00 0.47 8 17 17.00 0.00 0.05 8 1.0E+00 ?

ash85 85 219 5 42 9 9.00 0.00 50.30 4 9 9.00 0.00 0.39 4 1.0E+00 ?

nos4 100 247 3 50 10 10.00 0.00 0.69 7 10 10.00 0.00 0.41 7 1.0E+00 ?

dwt_234 117 162 5 58 12 12.00 0.00 19.22 7 11 11.00 0.00 8.74 6 2.5E-23 +
bcspwr03 118 179 5 59 11 11.00 0.00 12.50 6 10 10.00 0.00 2.24 5 2.5E-23 +
bcsstk06 420 3720 14 210 49 49.72 0.57 198.23 35 45 45.00 0.00 200.49 31 6.3E-21 +
bcsstk07 420 3720 14 210 49 49.72 0.61 201.60 35 45 45.00 0.00 204.72 31 7.8E-21 +
impcol_d 425 1267 8 212 37 38.70 0.51 125.60 29 35 39.70 5.17 177.69 27 2.9E-01 ?

can_445 445 1682 6 222 47 47.00 0.00 83.01 41 46 59.72 7.63 313.35 40 2.3E-12 −
494_bus 494 586 5 247 35 38.50 1.30 287.74 30 30 41.94 6.23 271.86 25 4.1E-02 −
dwt_503 503 2762 12 251 45 46.50 3.73 234.31 33 41 59.00 9.61 116.37 29 1.7E-06 −
sherman4 546 1341 3 273 28 28.18 0.39 180.88 25 27 27.66 0.48 139.71 24 2.6E-07 +
dwt_592 592 2256 7 296 32 32.52 0.54 186.54 25 29 36.00 23.80 405.82 22 1.2E-05 −
662_bus 662 906 5 331 55 66.38 3.98 255.91 50 61 72.30 4.98 336.13 56 3.7E-08 −
nos6 675 1290 2 337 19 20.48 0.54 222.10 17 17 21.88 6.42 313.31 15 8.5E-05 −
685_bus 685 1282 6 342 36 39.78 3.11 303.12 30 33 72.68 12.88 343.03 27 2.6E-15 −
can_715 715 2975 52 357 60 60.86 0.53 195.56 8 60 168.12 74.02 231.48 8 7.8E-15 −

Average 22.25 23.19 0.58 97.82 14.32 21 29.21 5.40 109.64 13.43
? 14

Total + 6
− 8
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Table 6.3 – Detailed performance assessment of the NILS algorithm with respect to two state-of-the-art methods:
TScb [Rod+15] and ITPS [RHR19]. It comprises a total of 85 instances with known optimal solution values belonging
to 7 different standard topologies (paths, cycles, two dimensional meshes, three dimensional meshes, complete r-level
k-ary trees, caterpillars and r-dimensional hypercubes).

TScb ITPS NILS

Graph |V | |E| Cb∗ Cbb Avg. Cb Dev. Avg. Tb D Cbb Avg. Cb Dev. Avg. Tb D Cbb Avg. Cb Dev. Avg. Tb D p-value1 SS1 p-value2 SS2

path20 20 19 1 1 1.00 0.00 0.15 0 1 1.00 0.00 0.05 0 1 1.00 0.00 0.00 0 1.00E+00 ? 1.00E+00 ?

path25 25 24 1 1 1.00 0.00 0.58 0 1 1.00 0.00 0.13 0 1 1.00 0.00 0.00 0 1.00E+00 ? 1.00E+00 ?

path30 30 29 1 1 1.00 0.00 1.62 0 1 1.00 0.00 0.19 0 1 1.00 0.00 0.02 0 1.00E+00 ? 1.00E+00 ?

path35 35 34 1 1 1.00 0.00 3.61 0 1 1.00 0.00 0.32 0 1 1.00 0.00 0.08 0 1.00E+00 ? 1.00E+00 ?

path40 40 39 1 1 1.00 0.00 4.28 0 1 1.00 0.00 0.46 0 1 1.00 0.00 0.19 0 1.00E+00 ? 1.00E+00 ?

path100 100 99 1 1 1.00 0.00 66.42 0 1 1.00 0.00 7.08 0 1 1.00 0.00 0.73 0 1.00E+00 ? 1.00E+00 ?

path125 125 124 1 1 1.02 0.14 174.03 0 1 1.00 0.00 9.35 0 1 1.00 0.00 1.54 0 3.17E-01 ? 1.00E+00 ?

path150 150 149 1 1 1.46 0.50 271.56 0 1 1.00 0.00 26.79 0 1 1.00 0.00 1.36 0 5.39E-08 + 1.00E+00 ?

path175 175 174 1 1 1.70 0.46 403.93 0 1 1.00 0.00 52.52 0 1 1.00 0.00 1.72 0 2.85E-13 + 1.00E+00 ?

path200 200 199 1 1 1.94 0.24 324.70 0 1 1.00 0.00 106.34 0 1 1.00 0.00 1.98 0 7.27E-21 + 1.00E+00 ?

path300 300 299 1 2 3.00 0.35 186.25 1 1 1.10 0.36 205.97 0 1 1.00 0.00 4.24 0 3.13E-22 + 4.23E-02 +
path475 475 474 1 5 5.60 0.49 105.16 4 1 2.48 1.25 429.42 0 1 1.00 0.00 8.86 0 5.37E-21 + 8.85E-12 +
path650 650 649 1 6 6.94 0.31 133.60 5 3 6.92 3.64 417.44 2 1 1.00 0.00 15.59 0 2.18E-22 + 2.69E-20 +
path825 825 824 1 7 7.92 0.40 179.72 6 4 13.78 6.26 531.12 3 1 1.00 0.00 23.88 0 5.99E-22 + 3.11E-20 +
path1000 1000 999 1 8 8.90 0.58 122.17 7 9 22.08 5.56 586.12 8 1 1.00 0.00 33.43 0 1.36E-21 + 3.10E-20 +
cycle20 20 20 1 1 1.00 0.00 0.22 0 1 1.00 0.00 0.03 0 1 1.00 0.00 0.01 0 1.00E+00 ? 1.00E+00 ?

cycle25 25 25 1 1 1.00 0.00 0.60 0 1 1.00 0.00 0.08 0 1 1.00 0.00 0.11 0 1.00E+00 ? 1.00E+00 ?

cycle30 30 30 1 1 1.00 0.00 0.42 0 1 1.00 0.00 0.16 0 1 1.00 0.00 0.18 0 1.00E+00 ? 1.00E+00 ?

cycle35 35 35 1 1 1.00 0.00 0.82 0 1 1.00 0.00 0.30 0 1 1.00 0.00 0.39 0 1.00E+00 ? 1.00E+00 ?

cycle40 40 40 1 1 1.00 0.00 0.81 0 1 1.00 0.00 0.32 0 1 1.00 0.00 0.81 0 1.00E+00 ? 1.00E+00 ?

cycle100 100 100 1 1 1.00 0.00 2.51 0 1 1.34 0.80 39.73 0 1 1.00 0.00 2.08 0 1.00E+00 ? 3.36E-03 +
cycle125 125 125 1 1 1.00 0.00 4.58 0 1 1.46 1.03 30.85 0 1 1.00 0.00 2.37 0 1.00E+00 ? 1.78E-03 +
cycle150 150 150 1 1 1.00 0.00 9.15 0 1 1.86 1.28 87.66 0 1 1.00 0.00 3.25 0 1.00E+00 ? 7.36E-06 +
cycle175 175 175 1 1 1.00 0.00 12.49 0 1 2.40 1.62 100.70 0 1 1.00 0.00 4.04 0 1.00E+00 ? 3.21E-08 +
cycle200 200 200 1 1 1.00 0.00 18.12 0 1 2.48 1.58 125.42 0 1 1.00 0.00 5.24 0 1.00E+00 ? 2.26E-09 +
cycle300 300 300 1 1 2.86 0.67 244.25 0 1 3.18 1.93 314.64 0 1 1.00 0.00 9.81 0 5.65E-19 + 3.40E-12 +
Continued on next page ...
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Table 6.3 – Continued from previous page

TScb ITPS NILS

Graph |V | |E| Cb∗ Cbb Avg. Cb Dev. Avg. Tb D Cbb Avg. Cb Dev. Avg. Tb D Cbb Avg. Cb Dev. Avg. Tb D p-value1 SS1 p-value2 SS2

cycle475 475 475 1 4 5.56 0.54 33.94 3 3 5.28 2.71 351.38 2 1 1.00 0.00 11.77 0 6.16E-21 + 2.30E-20 +
cycle650 650 650 1 6 7.00 0.40 47.56 5 4 8.08 2.75 403.19 3 1 1.00 0.00 23.27 0 6.02E-22 + 2.88E-20 +
cycle825 825 825 1 7 7.96 0.28 85.64 6 7 14.32 4.65 472.48 6 1 1.00 0.00 30.99 0 1.49E-22 + 3.10E-20 +
cycle1000 1000 1000 1 8 8.76 0.56 149.60 7 14 25.76 7.63 514.27 13 1 1.00 0.00 46.43 0 3.03E-21 + 3.13E-20 +
mesh2D5x4 20 31 4 4 4.00 0.00 3.21 0 4 4.00 0.00 0.06 0 4 4.00 0.00 0.01 0 1.00E+00 ? 1.00E+00 ?

mesh2D5x5 25 40 5 5 5.00 0.00 2.83 0 5 5.00 0.00 0.04 0 5 5.00 0.00 0.00 0 1.00E+00 ? 1.00E+00 ?

mesh2D5x6 30 49 5 5 5.00 0.00 0.97 0 5 5.00 0.00 0.12 0 5 5.00 0.00 0.01 0 1.00E+00 ? 1.00E+00 ?

mesh2D5x7 35 58 5 5 5.00 0.00 1.29 0 5 5.00 0.00 0.16 0 5 5.00 0.00 0.00 0 1.00E+00 ? 1.00E+00 ?

mesh2D5x8 40 67 5 5 5.00 0.00 2.05 0 5 5.00 0.00 50.23 0 5 5.00 0.00 0.01 0 1.00E+00 ? 1.00E+00 ?

mesh2D10x10 100 180 10 10 10.50 0.51 129.13 0 10 10.74 0.44 215.13 0 10 10.00 0.00 0.05 0 9.22E-09 + 2.44E-14 +
mesh2D5x25 125 220 5 5 5.00 0.00 19.17 0 6 6.00 0.00 1.30 1 5 5.00 0.00 0.58 0 1.00E+00 ? 2.53E-23 +
mesh2D10x15 150 275 10 10 10.90 0.30 97.97 0 11 11.00 0.00 3.87 1 10 10.00 0.00 0.22 0 2.26E-19 + 2.53E-23 +
mesh2D7x25 175 318 7 7 7.02 0.14 80.22 0 8 8.00 0.00 6.18 1 7 7.00 0.00 1.00 0 3.17E-01 ? 2.53E-23 +
mesh2D8x25 200 367 8 8 8.12 0.33 86.30 0 9 9.00 0.00 9.72 1 8 8.00 0.00 0.72 0 1.19E-02 + 2.53E-23 +
mesh2D15x20 300 565 15 16 23.08 19.37 136.00 1 16 16.60 0.49 237.19 1 15 15.00 0.00 2.29 0 3.10E-22 + 5.37E-21 +
mesh2D19x25 475 906 19 119 119.96 0.20 499.62 100 20 20.92 0.27 54.90 1 19 19.00 0.00 8.91 0 6.48E-23 + 1.49E-22 +
mesh2D25x26 650 1249 25 164 164.00 0.00 15.98 139 26 27.30 3.32 328.53 1 25 25.00 0.00 31.20 0 2.53E-23 + 3.27E-21 +
mesh2D28x30 840 1622 28 30 184.94 62.74 592.36 2 29 63.32 69.53 404.77 1 28 28.00 0.00 55.00 0 4.40E-22 + 2.26E-20 +
mesh2D20x50 1000 1930 20 22 184.26 101.62 500.71 2 22 39.86 54.26 380.64 2 20 20.00 0.00 56.72 0 3.47E-21 + 1.75E-20 +
mesh3D4 64 300 14 14 15.68 0.71 274.32 0 14 14.00 0.00 18.11 0 14 14.00 0.00 0.45 0 9.45E-18 + 1.00E+00 ?

mesh3D5 125 540 21 21 23.02 3.37 91.05 0 21 21.00 0.00 60.22 0 21 21.00 0.00 0.52 0 3.62E-16 + 1.00E+00 ?

mesh3D6 216 882 30 30 32.34 5.79 270.53 0 30 30.00 0.00 33.23 0 30 30.00 0.00 1.95 0 5.65E-19 + 1.00E+00 ?

mesh3D7 343 1344 40 41 47.14 14.88 277.81 1 40 60.40 22.92 318.54 0 40 40.00 0.00 5.52 0 6.22E-21 + 1.25E-10 +
mesh3D8 512 1344 52 53 114.30 30.51 474.67 1 52 104.36 35.95 172.07 0 52 52.00 0.00 23.46 0 1.26E-20 + 9.08E-14 +
mesh3D9 729 1944 65 68 180.38 22.36 305.51 3 65 157.40 48.71 112.03 0 65 65.00 0.00 71.37 0 4.37E-22 + 5.54E-21 +
mesh3D10 1000 2700 80 252 252.98 0.47 311.48 172 80 216.92 68.70 378.08 0 80 80.02 0.14 191.61 0 2.10E-21 + 1.89E-20 +
mesh3D11 1331 3630 96 336 336.50 0.51 331.17 240 119 325.38 41.94 589.17 23 96 111.44 46.62 287.46 0 8.29E-19 + 4.43E-19 +
mesh3D12 1728 4752 114 435 436.00 0.53 507.51 321 433 433.48 0.50 466.11 319 114 147.96 73.83 340.38 0 9.47E-19 + 1.54E-17 +
mesh3D13 2197 6084 133 553 554.22 0.74 439.16 420 551 553.16 0.91 518.93 418 133 385.58 195.48 405.94 0 8.15E-19 + 1.21E-18 +
Continued on next page ...
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Table 6.3 – Continued from previous page

TScb ITPS NILS

Graph |V | |E| Cb∗ Cbb Avg. Cb Dev. Avg. Tb D Cbb Avg. Cb Dev. Avg. Tb D Cbb Avg. Cb Dev. Avg. Tb D p-value1 SS1 p-value2 SS2

tree2x4 31 30 4 4 4.00 0.00 0.96 0 4 4.00 0.00 0.00 0 4 4.00 0.00 0.00 0 1.00E+00 ? 1.00E+00 ?

tree3x3 40 39 7 7 7.00 0.00 0.42 0 7 7.00 0.00 0.00 0 7 7.00 0.00 0.00 0 1.00E+00 ? 1.00E+00 ?

tree10x2 111 110 28 28 28.00 0.00 0.25 0 28 28.00 0.00 0.00 0 28 28.00 0.00 0.00 0 1.00E+00 ? 1.00E+00 ?

tree3x4 121 120 15 15 15.70 0.46 161.53 0 15 15.00 0.00 0.53 0 15 15.00 0.00 0.02 0 2.85E-13 + 1.00E+00 ?

tree5x3 156 155 26 26 26.00 0.00 10.39 0 26 26.00 0.00 0.06 0 26 26.00 0.00 0.02 0 1.00E+00 ? 1.00E+00 ?

tree13x2 183 182 46 46 46.00 0.00 0.31 0 46 46.00 0.00 0.01 0 46 46.00 0.00 0.01 0 1.00E+00 ? 1.00E+00 ?

tree2x7 255 254 19 19 20.00 0.20 47.33 0 19 19.00 0.00 1.00 0 19 19.00 0.00 0.50 0 2.81E-22 + 1.00E+00 ?

tree17x2 307 306 77 77 77.00 0.00 0.54 0 77 77.00 0.00 0.07 0 77 77.00 0.00 0.05 0 1.00E+00 ? 1.00E+00 ?

tree21x2 463 462 116 116 116.00 0.00 0.80 0 116 116.00 0.00 0.21 0 116 116.00 0.00 0.12 0 1.00E+00 ? 1.00E+00 ?

tree25x2 651 650 163 163 163.00 0.00 1.08 0 163 163.00 0.00 0.56 0 163 163.00 0.00 0.28 0 1.00E+00 ? 1.00E+00 ?

tree5x4 781 780 98 98 98.24 0.43 133.63 0 98 98.00 0.00 4.66 0 98 98.00 0.00 0.90 0 2.39E-04 + 1.00E+00 ?

tree2x9 1023 1022 57 62 64.16 1.02 553.57 5 57 57.38 0.49 273.19 0 57 57.00 0.00 16.29 0 1.89E-20 + 1.44E-06 +
caterpillar3 9 8 3 3 3.00 0.00 0.00 0 3 3.00 0.00 0.00 0 3 3.00 0.00 0.00 0 1.00E+00 ? 1.00E+00 ?

caterpillar4 14 13 3 3 3.00 0.00 0.50 0 3 3.00 0.00 0.00 0 3 3.00 0.00 0.00 0 1.00E+00 ? 1.00E+00 ?

caterpillar5 20 19 4 4 4.00 0.00 0.50 0 4 4.00 0.00 0.00 0 4 4.00 0.00 0.00 0 1.00E+00 ? 1.00E+00 ?

caterpillar6 27 26 5 5 5.00 0.00 0.61 0 5 5.00 0.00 0.00 0 5 5.00 0.00 0.00 0 1.00E+00 ? 1.00E+00 ?

caterpillar7 35 34 6 6 6.00 0.00 0.54 0 6 6.00 0.00 0.00 0 6 6.00 0.00 0.00 0 1.00E+00 ? 1.00E+00 ?

caterpillar13 104 103 10 10 10.00 0.00 23.33 0 10 10.00 0.00 0.42 0 10 10.00 0.00 0.12 0 1.00E+00 ? 1.00E+00 ?

caterpillar14 119 118 11 11 11.00 0.00 14.83 0 11 11.00 0.00 0.14 0 11 11.00 0.00 0.17 0 1.00E+00 ? 1.00E+00 ?

caterpillar16 152 151 13 13 13.00 0.00 12.86 0 13 13.00 0.00 0.39 0 13 13.00 0.00 0.45 0 1.00E+00 ? 1.00E+00 ?

caterpillar17 170 169 14 14 14.00 0.00 15.93 0 14 14.00 0.00 0.62 0 14 14.00 0.00 0.97 0 1.00E+00 ? 1.00E+00 ?

caterpillar19 209 208 15 15 15.64 0.48 126.78 0 15 15.00 0.00 3.24 0 15 15.00 0.00 2.68 0 8.76E-12 + 1.00E+00 ?

caterpillar23 299 298 19 19 19.26 0.49 85.00 0 19 19.00 0.00 7.11 0 19 19.00 0.00 6.04 0 2.41E-04 + 1.00E+00 ?

caterpillar29 464 463 24 24 26.20 1.53 167.98 0 24 24.00 0.00 52.22 0 24 24.00 0.00 26.78 0 9.83E-19 + 1.00E+00 ?

caterpillar35 665 664 29 29 33.80 3.33 127.57 0 29 32.68 5.85 235.20 0 29 29.00 0.00 50.47 0 1.08E-19 + 7.34E-08 +
caterpillar39 819 818 33 33 39.80 4.38 230.96 0 33 39.08 8.43 242.27 0 33 33.00 0.00 73.56 0 4.30E-19 + 1.71E-06 +
caterpillar44 1034 1033 37 38 49.02 5.63 322.31 1 37 55.26 10.93 366.44 0 37 37.00 0.00 109.86 0 3.12E-20 + 1.57E-18 +
hypercube11 2048 11264 526 562 585.32 11.08 519.82 36 548 565.64 8.35 577.71 22 535 543.70 3.78 559.33 9 6.36E-18 + 3.88E-26 +
hypercube12 4096 24576 988 1235 1356.86 35.18 523.33 247 1551 1580.96 12.64 597.96 563 1112 1179.28 66.86 599.15 124 1.34E-16 + 6.78E-18 +
Continued on next page ...
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Table 6.3 – Continued from previous page

TScb ITPS NILS

Graph |V | |E| Cb∗ Cbb Avg. Cb Dev. Avg. Tb D Cbb Avg. Cb Dev. Avg. Tb D Cbb Avg. Cb Dev. Avg. Tb D p-value1 SS1 p-value2 SS2

hypercube13 8192 53248 1912 2858 2937.64 34.94 595.54 946 3953 3968.74 8.56 598.56 2041 2829 2940.94 32.88 594.15 917 2.44E-01 ? 6.64E-18 +

Average 92.18 101.40 4.35 137.87 31.54 101.02 109.48 5.25 142.78 40.39 72.99 78.75 4.94 44.25 12.35
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Table 6.4 – Detailed performance assessment of the NILS algorithm with respect to two state-of-the-art methods:
TScb [Rod+15] and ITPS [RHR19]. It comprises a total of 28 Harwell-Boeing instances coming from real world
engineering applications whose theoretical lower (LB) and upper (UB) bounds are known.

Bounds TScb ITPS NILS

Graph |V | |E| LB UB Cb∗ Cbb Avg. Cb Dev. Avg. Tb D Cbb Avg. Cb Dev. Avg. Tb D Cbb Avg. Cb Dev. Avg. Tb D p-value1 SS1 p-value2 SS2

jgl009 9 50 4 4 4 4 4.00 0.00 0.00 0 4 4.00 0.00 0.00 0 4 4.00 0.00 0.00 0 1.00E+00 ? 1.00E+00 ?
rgg010 10 76 5 5 5 5 5.00 0.00 0.00 0 5 5.00 0.00 0.00 0 5 5.00 0.00 0.00 0 1.00E+00 ? 1.00E+00 ?
jgl011 11 76 5 5 5 5 5.00 0.00 0.00 0 5 5.00 0.00 0.00 0 5 5.00 0.00 0.00 0 1.00E+00 ? 1.00E+00 ?
can_24 24 92 4 12 5 5 5.00 0.00 0.02 0 5 5.00 0.00 0.18 0 5 5.00 0.00 0.02 0 1.00E+00 ? 1.00E+00 ?
pores_1 30 103 5 15 7 7 7.00 0.00 0.24 0 7 7.00 0.00 0.01 0 7 7.00 0.00 0.01 0 1.00E+00 ? 1.00E+00 ?
ibm32 32 90 6 16 9 9 9.00 0.00 0.03 0 9 9.00 0.00 0.02 0 9 9.00 0.00 0.01 0 1.00E+00 ? 1.00E+00 ?
bcspwr01 39 46 3 19 4 4 4.16 0.37 174.98 0 4 4.16 0.37 71.84 0 4 4.00 0.00 0.32 0 3.35E-03 + 3.35E-03 +
bcsstk01 48 176 6 24 12 12.00 0.00 0.03 6 12 12.00 0.00 0.17 6 12 12.00 0.00 0.02 6 1.00E+00 ? 1.00E+00 ?
bcspwr02 49 59 3 24 7 7.00 0.00 0.01 4 7 7.00 0.00 0.04 4 7 7.00 0.00 0.00 4 1.00E+00 ? 1.00E+00 ?
curtis54 54 124 8 27 8 8.00 0.00 0.48 0 8 8.00 0.00 0.61 0 8 8.00 0.00 0.13 0 1.00E+00 ? 1.00E+00 ?
will57 57 127 5 28 6 6.00 0.00 12.93 1 6 6.00 0.00 0.80 1 6 6.00 0.00 0.20 1 1.00E+00 ? 1.00E+00 ?
impcol_b 59 281 9 29 17 17.00 0.00 0.56 8 17 17.00 0.00 0.13 8 17 17.00 0.00 0.02 8 1.00E+00 ? 1.00E+00 ?
ash85 85 219 5 42 9 9.00 0.00 54.35 4 9 9.00 0.00 1.10 4 9 9.00 0.00 0.10 4 1.00E+00 ? 1.00E+00 ?
nos4 100 247 3 50 10 10.00 0.00 0.97 7 10 10.00 0.00 0.54 7 10 10.00 0.00 0.04 7 1.00E+00 ? 1.00E+00 ?
dwt_234 117 162 5 58 11 11.98 0.14 487.74 6 11 11.00 0.00 2.01 6 11 11.00 0.00 0.39 6 1.79E-22 + 1.00E+00 ?
bcspwr03 118 179 5 59 11 11.00 0.00 12.92 6 10 10.00 0.00 15.39 5 10 10.00 0.00 2.37 5 2.53E-23 + 1.00E+00 ?
bcsstk06 420 3720 14 210 49 49.74 0.53 246.86 35 45 45.00 0.00 215.88 31 45 45.00 0.00 40.01 31 4.26E-21 + 1.00E+00 ?
bcsstk07 420 3720 14 210 49 49.74 0.53 247.87 35 45 45.00 0.00 218.09 31 45 45.00 0.00 40.51 31 4.26E-21 + 1.00E+00 ?
impcol_d 425 1267 8 212 37 38.68 0.51 29.58 29 35 44.18 6.22 91.20 27 35 35.00 0.00 56.08 27 3.03E-21 + 1.07E-19 +
can_445 445 1682 6 222 46 46.96 0.20 24.92 40 46 84.22 36.39 372.86 40 46 46.00 0.00 36.69 40 1.18E-21 + 4.85E-18 +
494_bus 494 586 5 247 35 38.72 1.67 15.23 30 36 51.76 5.16 310.62 31 28 28.96 0.28 318.51 23 9.80E-20 + 3.25E-20 +
dwt_503 503 2762 12 251 45 45.90 0.58 191.34 33 41 60.24 8.12 272.11 29 41 41.00 0.00 33.40 29 2.71E-21 + 4.35E-18 +
sherman4 546 1341 3 273 27 28.28 0.54 377.31 24 27 27.62 0.49 187.02 24 27 27.00 0.00 10.39 24 7.44E-20 + 2.57E-11 +
dwt_592 592 2256 7 296 32 32.68 0.55 301.44 25 29 48.76 50.41 544.67 22 29 29.00 0.00 25.66 22 6.02E-21 + 7.58E-20 +
662_bus 662 906 5 331 59 66.76 3.73 243.33 54 75 89.30 6.09 530.51 70 38 40.74 3.09 274.47 33 4.22E-18 + 2.33E-18 +
nos6 675 1290 2 337 19 20.32 0.68 249.01 17 17 21.16 5.91 212.15 15 16 16.00 0.00 74.95 14 1.09E-20 + 1.11E-20 +
685_bus 685 1282 6 342 34 40.10 3.18 217.07 28 73 102.88 12.14 443.50 67 32 32.00 0.00 64.00 26 2.93E-20 + 1.75E-20 +
can_715 715 2975 52 357 60 60.88 0.52 266.46 8 60 183.14 73.88 463.40 8 60 60.00 0.00 161.11 8 9.89E-16 + 2.70E-20 +

Average 22.21 23.21 0.49 112.70 14.29 23.50 33.30 7.33 141.24 15.57 20.39 20.53 0.12 40.69 12.46
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Titre : Algorithmes d’optimisation pour deux problèmes de disposition des graphes

Mot clés : Problèmes de disposition des graphes, Recherche locale, Métaheuristiques, Expé-

rimentations.

Résumé : Cette thèse considère deux pro-
blèmes de disposition des graphes : le pro-
blème de la bande passante cyclique (CBP)
et le problème de l’agencement linéaire mi-
nimum (MinLA). Le CBP est une extension
naturelle du problème de minimisation de la
bande passante (BMP) et le MinLA est un pro-
blème de somme minimale. Ces problèmes
sont largement appliqués dans la vie réelle.
Puisqu’ils sont NP-difficile, il est difficile de
les résoudre dans le cas général. Par consé-
quent, cette thèse est consacrée au dévelop-
pement d’algorithmes heuristiques efficaces
pour faire face à ces problèmes. Plus préci-
sément, nous introduisons deux algorithmes

de recherche locale itétée, un algorithme mé-
métique avec différents opérateurs de recom-
binaison pour le CBP et une heuristique de
voisinage basée sur un ensemble pour ré-
soudre le MinLA. On montre expérimentale-
ment que pour le CBP, les deux algorithmes
de recherche locale itéré pouvaient concurren-
cer favorablement les méthodes de l’état de
l’art, le croisement approprié est identifié pour
l’algorithme mémétique. On montre également
que pour le MinLA, l’heuristique de voisinage
basée sur l’ensemble s’est avérée plus effi-
cace que des algorithmes avec voisinage tra-
ditionnel à 2-flip.

Title: Optimization algorithms for graph layout problems

Keywords: Graph layout problems, Local search, Metaheuristics, Computational experiments.

Abstract: This thesis considers two graph
layout problems: the cyclic bandwidth prob-
lem (CBP) and the minimum linear arrange-
ment problem (MinLA). The CBP is a natu-
ral extension of the bandwidth minimization
problem (BMP) and the MinLA is a min-sum
problem. These problems are widely applied
in the real life. Since they are NP-hard prob-
lems, it is computational difficult to solve them
in the general case. Therefore, this thesis is
dedicated to developing effective heuristic al-
gorithms to deal with these challenging prob-
lems. Specifically, we introduce two iterated

local search algorithms, a memetic algorithm
with different recombination operators for the
CBP and a set based neighborhood heuris-
tic algorithm to solve the MinLA. The two
iterated local search algorithms are experi-
mentally demonstrated to be able to compete
favourably with state-of-the-art methods, the
feature of a suitable crossover for the memetic
algorithm is identified for the CBP and the
set based neighborhood heuristic algorithm is
proven to be more efficient than the traditional
2-flip neighborhood algorithm.
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