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Summary

Numerical Homogenization and Model Reduction for Transient Heat,

Diffusion and Coupled Mechanics Problems

This dissertation presents computationally efficient numerical homogenization tech-

niques for transient diffusion phenomena in heterogeneous materials. The transient

behavior arises due to the material properties, the characteristic length scales and

the time varying loading conditions. Homogenization of such materials generally

requires computationally expensive solution schemes for the transient diffusion

equations at the macro- and the micro-scale. Concepts from numerical techniques

like computational homogenization, component mode synthesis and data-driven

mechanics are used to efficiently homogenize problems for heat diffusion, mass

diffusion and mass diffusion coupled to mechanics. The background and motiva-

tion is presented in Chapter 1.

In Chapter 2, as a preliminary step, a model reduction for the transient heat

diffusion equation is performed at the micro-scale using component mode synthesis,

which provides an emergent enriched-continuum description of the homogenized

level at the macro-scale. Assuming linear material behavior and relaxed separa-

tion of scales, the microscopic response is decomposed into a steady-state and a

transient part. For the steady-state response static-condensation is used, whereas

for the model reduction of the transient response an eigenvalue problem is solved

and the system of equations is projected onto a reduced number of eigenbases. As

a consequence, the microscopic problem is replaced by a set of decoupled ordinary

differential equations which are computationally inexpensive to solve. The numer-

ical examples solved at the micro-scale confirm the accuracy and computational

efficiency of the method.

Chapter 3 deals with different solution methods for the macro-scale enriched-

continuum for transient mass diffusion problems. Two spatial discretization schemes

are discussed for the enrichment-variables. The primary macroscopic field is inter-

polated with finite element shape functions, while the enrichment-variables can ei-

ther be interpolated using finite elements, leading to a multi-field solution method,

v



or evaluated at the Gauss quadrature points, leading to an internal-variable so-

lution method. Different time integration methods are also presented for the

internal-variable solution method. Enriched-continuum results are compared with

those obtained from classical transient homogenization and direct numerical sim-

ulations for evaluating the accuracy and computational gains.

The proposed model reduction method is extended to the transient mass dif-

fusion coupled to the mechanics, in Chapter 4, with application to lithium-ion

batteries operating in a linear regime. Using the Legendre transformation, the

primary variables of the coupled model are converted to the chemical poten-

tial and strain fields, which allows the use of standard C0-continuous finite el-

ements. A model reduction using component mode synthesis is performed and

an enriched-continuum for mass diffusion coupled to mechanics is obtained. The

micro-scale problem, which usually involves an expensive solution of the coupled

mass diffusion-mechanics problem, is now replaced by a set of ordinary differential

equations.

Chapter 5 constitutes a novel model reduction and homogenization procedure

for history dependent diffusion at the macro-scale using data-driven mechanics. It

replaces the solution of the microscopic problems with a direct search in a data-set.

The data-set is generated efficiently using the enriched-continuum formulation in

an offline stage. The enrichment-variables serve as a pointer in time for keeping

track of the history dependent diffusion. It also provides a route to extend the

proposed model reduction method to the non-linear regime. Finally, conclusions

and future research directions are discussed in Chapter 6.
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CHAPTER1
Introduction

1.1 Background and Motivation

All physical phenomena in materials tend towards an equilibrium state. A non-

equilibrium state can be caused by a difference in the concentration of a quantity

across a region. For example, a gradient in temperature causes heat diffusion, and

the spatial difference in the mass concentration of species causes mass diffusion.

To achieve an equilibrium state, heat or mass irreversibly flows from a region of

higher concentration to a lower one. During the diffusion process, the material

also stores some part of the heat or species energy. The speed of diffusion of a

quantity and the storage capacity are the physical properties of the material. If

the net flow of a quantity across a region is constant, the diffusion is said to be

in a steady-state, otherwise it is transient. Heterogeneous materials are formed

when two or more materials with different physical properties are combined. The

effective diffusion and effective storage capacity of a heterogeneous material are

obviously different from those of its constituents. In this dissertation, the transient

diffusion phenomenon in heterogeneous materials will be analyzed.

1.1.1 Examples

Transient diffusion in heterogeneous materials occurs in numerous natural phe-

nomena and engineering applications. For example, in modern-day computers,

the increasing demand for computational power requires to pack as many tran-

sistors in a small processor (CPU) packaging as possible. During operation of

a CPU, a large amount of heat energy is generated which should be evacuated

to keep the system running. It involves a complex thermal management system

from the component level to the system level. Specifically tailored heterogeneous

materials with overall excellent diffusivity and low storage capacity are required.

1



Chapter 1. Introduction

Figure 1.1(a) shows a heterogeneous material, made of 40% silicon-carbide (SiC)

inclusions embedded in the copper (Cu) matrix, used for the CPU heat sink [1].

The percentage of SiC in Cu is modified according to the application and desired

mechanical and thermal properties.

(a) (b)

Figure 1.1: Engineering applications of transient diffusion phenomena using het-

erogeneous materials. (a) The heat sink material for the processor of a com-

puter, the irregularly shaped silicon-carbide particles are embedded in a copper

matrix [1, 2]. (b) The electrolyte-electrode system of a lithium-cobalt-oxide bat-

tery, the large circular active particles are embedded in the matrix [3, 4].

For mass diffusion problems, in poly-crystalline materials [5], the diffusion in

grain boundaries happens faster than in the grains i.e. , the grain boundaries reach

a steady-state while the grains remain in a transient-state. In the electrolyte-

electrode system of a lithium-ion battery, shown in Figure 1.1(b) [4], the diffusion

of lithium ions follows a similar trend. The lithium-ions diffuse orders of magnitude

faster in the electrolyte, while coupled to the diffusion of lithium in the active

particles.

1.1.2 Analysis Techniques

To analyze such engineering problems, the governing equation describing the tran-

sient balance law needs to be solved in each constituent. The energy balance equa-

tion allows to determine the heat diffusion, whereas the mass balance equation

enables to determine the mass diffusion. Due to the complexity of the procedure,

numerical methods have to be used for analyzing diffusion in heterogeneous mate-

rials with complicated morphologies and random distribution of the phases. One of

the commonly used numerical techniques is the finite element method (FEM) [6].

It divides the region under consideration into sub-regions (elements) and solves

2



Chapter 1. Introduction

the transient balance laws in the discretized domain. To approximate the phenom-

ena accurately enough, a large number of elements are typically required, which

renders the method prohibitively time consuming for transient diffusion problems

in heterogeneous materials.

To circumvent this pitfall, homogenization techniques [7–9] are used, which sub-

stitute the heterogeneous material domain by an equivalent homogeneous macro-

scale domain and a small but representative heterogeneous micro-scale volume

element. The homogeneous material response is obtained by averaging the prop-

erties of the constituents at the micro-scale. At the macro-scale, due to the adopted

homogeneous (smooth) description, usually, only a few finite elements are required

to accurately capture the diffusion response. If the diffusion through the micro-

scale is instantaneous, i.e. , the material properties and the boundary conditions

are such that micro-scale reaches a steady-state instantly, then a full separation of

scales holds. Otherwise, if the micro-scale constituents show transient behavior,

the micro- and macro-scales can no longer be assumed to be completely separable.

In this regime, the micro-scale transient diffusion equation needs to be solved at

every macroscopic material point in time, which also becomes computationally

expensive.

Devising an efficient numerical solution technique enables a faster decision mak-

ing process during the design phase of a component. For example, if the simu-

lations are not time-consuming, one can analyze a large number of parameters:

shape, size, or percentage of inclusion material, to identify an application-specific

heat sink material. Model reduction techniques can be used to reduce compu-

tational costs. There exists a large body of related literature, see [10] and the

references therein, in the field of homogenization and model reduction. However,

the literature is mostly limited to elasticity problems or diffusion problems with a

full separation of scales. Hence, there is a clear need to develop numerical meth-

ods that efficiently solve diffusion problems in heterogeneous materials when the

assumption of full separation of scales does not apply.

1.2 Objective and Research Questions

The main objective of this dissertation is to develop reduced-order numerical ho-

mogenization techniques for capturing the transient diffusion in heterogeneous ma-

terials with transient micro-scale phenomena. To this end, this thesis addresses

the following research questions:

3



Chapter 1. Introduction

• How to properly define the (non) separation of scales regimes for the homog-

enization of transient diffusion problem? In which regime is model reduction

applicable?

• What kind of homogenized macroscopic description is obtained when ho-

mogenization is performed by model reduction at the micro-scale? Is it as

accurate as the expensive homogenization methods?

• Which spatial and temporal discretization methods can be used to solve

the new, enriched, macroscopic description? Does it accurately capture the

expensive FEM solution and how efficient is it compared to the expensive

homogenization method?

• Is it possible to extend the newly developed reduced-order homogenization

technique to coupled multi-physics problems?

• What are the options to relax the assumptions on linear material properties?

Is there a different methodology available for the homogenization of transient

diffusion problems with nonlinear material properties?

1.3 Outline of the thesis

This thesis addresses the above-mentioned research questions in detail and is ar-

ranged as follows: In Chapter 2, first, the separation of scales is defined in

the context of heat diffusion problems in heterogeneous materials. Next, model

reduction is performed for a specific separation of scales regime and linear ma-

terial behavior. The homogenization is performed by the equivalence of power

between the micro- and macro-scales. Numerical examples demonstrate the ac-

curacy, computational efficiency and limitations of the proposed framework. The

macroscopic enriched homogenized description is implemented using different spa-

tial and temporal discretization schemes in Chapter 3. The solution procedures

are discussed and numerical examples are solved for transient mass diffusion prob-

lems. The developed reduced-order homogenization method is demonstrated to

capture the fully resolved FEM solution accurately with large computational time

gains. Chapter 4 extends the developed homogenization method to multi-physics

problem. To this end, the model reduction is performed at the micro-scale to re-

place the coupled mass diffusion-mechanics problem with a reduced model. The

4



Chapter 1. Introduction

accuracy and computational efficiency are compared with expensive homogeniza-

tion methods. Chapter 5 presents the basis for extending the framework towards

nonlinear material behavior by using a data-driven approach. It uses the developed

reduced-order homogenization method to generate large data-sets in an efficient

manner. The emergent macroscopic behavior is well captured by the data-driven

approach and it presents a straightforward extension toward nonlinear regimes. Fi-

nally, in Chapter 6, conclusions based on the present work and recommendations

for future research are provided.

5
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Chapter 2. Model Reduction in Computational Homogenization for Transient
Heat Diffusion

Abstract

This chapter presents a computationally efficient homogenization method for tran-

sient heat conduction problems. The notion of relaxed separation of scales is in-

troduced and the homogenization framework is derived. Under the assumptions of

linearity and relaxed separation of scales, the microscopic solution is decomposed

into a steady-state and a transient part. Static condensation is performed to ob-

tain the global basis for the steady-state response and an eigenvalue problem is

solved to obtain a global basis for the transient response. The macroscopic quan-

tities are then extracted by averaging and expressed in terms of the coefficients

of the reduced basis. Proof-of-principle simulations are conducted with materi-

als exhibiting high contrast material properties. The proposed homogenization

method is compared with the conventional steady-state homogenization and tran-

sient computational homogenization methods. Within its applicability limits, the

proposed homogenization method is able to accurately capture the microscopic

thermal inertial effects with significant computational efficiency.

2.1 Introduction

With the advent of micro-fabrication technologies [11], the demand for miniature

devices utilizing heterogeneous materials is steadily increasing. These devices en-

compass a variety of applications, ranging from electronic machinery [12, 13] to a

special class of engineered materials called thermal meta-materials [14] which can

be used to harvest thermal energy [15–17], manipulate heat flux [18, 19], as well

as to perform thermal cloaking [20–22]. In order to design these components, it is

important to correctly simulate and capture the underlying physics. Usually, an

energy balance equation is solved to capture the heat transfer using a numerical

method such as finite elements [6]. However, a high contrast in material proper-

ties, a complex topology and time varying thermal loads render the coefficients

in the energy balance equation highly oscillatory, which requires an excessively a

very fine discretization in both space and time. Consequently, simulations become

computationally intractable.

The homogenization of heterogeneous medium [23–27] introduces the concept of

an equivalent homogeneous macroscopic medium, representing an effective behav-

ior of the microscopic medium with highly variable coefficients. Homogenization

enables reduction of the computational cost, since an approximate response can
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be captured with a coarser discretization. It is achieved by solving a two-scale

problem in a coupled manner, which requires the solution of the energy balance

equation at the micro-scale, usually using a representative volume element (RVE),

associated to each macroscopic material point, followed by an averaging proce-

dure to extract homogenized effective macroscopic quantities that are used in the

energy balance equation at the macro-scale. To include transient terms in the

energy balance equation, certain conditions on the material properties and load-

ing should hold [7, 28–30], which requires a proper definition of the separation of

scales. For heat conduction problems, separation of scales is defined based on the

characteristic diffusion times tk associated to each k−th material constituent and

the characteristic loading time T .

For the homogenization of transient diffusion problems, the ratios between the

different characteristic diffusion times and the loading time determines if the micro-

scale and the macro-scale are separated or not. A full separation of scales indicates

that the characteristic macroscopic loading time scale is much larger than all the

microscopic characteristic diffusion times, independently of the ratios between the

characteristic diffusion times of the different microstructural constituents. In such

regimes, transient effects are negligible at the micro-scale and it is appropriate to

use a steady-state energy balance equation at the micro-scale. This assumption has

been widely used in the literature, see for example [28, 30–35]. The macroscopic

thermal gradient is then the only conjugate quantity for the macroscopic heat flux

and the macroscopic heat capacity can be calculated using the rule of mixtures. For

a linear material model, in the regime of full separation of scales, the microscopic

analysis and averaging performed only once to recover the (constant) effective

macroscopic quantities.

However, when the microscopic characteristic diffusion times are of the same or-

der of magnitude as the characteristic macroscopic loading time scale, the assump-

tion of full separation of scales is no longer valid and the macro and micro-scale

phenomena are coupled. In such regimes, significant transient effects are present at

the micro-scale, in some or all microstructural constituents, which must be taken

into account when homogenization is performed. If steady-state is assumed in such

regimes, the microscopic transient effects, due to so-called micro-scale thermal in-

ertia [9], will not be captured in the homogenized macroscopic description. Taking

into account the transient micro-scale effects, the energy balance equation with

the transient term should be solved at both scales. Homogenization in such tran-

sient regimes for thermal diffusional [8, 9, 36, 37] and mechanical vibration [38–41]
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problems have already been developed. Since, the microscopic problem has to be

solved at each macroscopic material point in time, the homogenization in tran-

sient regimes comes with a substantially higher computational cost. The present

work aims at reducing the computational cost for homogenization in such transient

regimes.

A reduced order model based on sub-structuring technique such as Craig-

Bampton mode synthesis [42] was proposed for the homogenization of mechanical

acoustic meta-materials [43]. It makes use of material linearity and the relaxed

separation of scales. Substructuring of a mechanical system involves the divi-

sion of the whole structure into smaller sub-structures with connected boundaries.

Each substructure boundary is assumed to experience a rigid body motion and

the dynamic effects only exist internally. If the boundary of the substructure is

also dynamic then the substructuring provides a stiffer approximation [43]. For

the homogenization of transient mechanical problems, the relaxed separation of

scales implies that the matrix remains quasi-static under transient loading condi-

tions and only the inclusions experience dynamic effects [38]. In the context of

computational homogenization, when relaxed separation of scales is satisfied, each

microscopic domain attached to a macroscopic material point is assumed to be a

substructure attached to the macroscopic domain.

Similarly, in transient heat conduction problems, the relaxed separation of

scales constitutes a thermal diffusion phenomenon in which the matrix remains

in steady-state under transient thermal loads and only the inclusions exhibit tran-

sient heat diffusion. Assuming linear material properties and relaxed separation of

scales, an additive decomposition is performed to compute the microscopic steady-

state and transient response, separately. The reduced basis is obtained using a

static condensation for the steady-state part and an eigenvalue problem is solved

for the transient part. To benefit from the model reduction, the microscopic prob-

lem is projected on the reduced basis subspace, which yields an evolution equation

for the micro-scale thermal inertia in terms of the coefficients of the reduced basis.

These evolution equations for the amplitudes of the reduced variables, together

with the macroscopic energy balance and the effective homogenized constitutive

equations give rise to an enriched-continuum description at the macro-scale. This

chapter deals with the model reduction at the micro-scale and compares the pro-

posed formulation with a conventional transient computational homogenization

scheme [8, 9]. The solution of the macro-scale enriched-continuum, emerging from

the model reduction at the micro-scale, and the comparison to direct numerical
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simulations are beyond the scope of this contribution and will be addressed in the

future work.

A related work has been published recently [44], which focuses primarily on the

error analysis for the model reduction in transient computational homogenization.

However, in that work no discussion is made on the separation of scales and the

limitations it imposes on reduced order computational homogenization. To the

best of authors’ knowledge the novel aspects of the current work, in the context

of computational homogenization for transient heat conduction problems, are:

• introduction of the relaxed separation of scales.

• a model reduction technique for the micro-scale which leads to an enriched-

continuum formulation at the macro-scale.

2.1.1 Outline

In this chapter, the homogenization framework is derived in section 2.2; the notion

of the separation of scales is here defined, the generalized Hill-Mandel condition,

upscaling, and downscaling relations are presented. In section 2.3, a computational

method combined with model reduction is developed. Section 2.4 presents the

proof-of-principle numerical examples. The chapter ends with concluding remarks

and future perspectives.

2.1.2 Symbols and Notations

Macroscopic quantities are represented with a bar on top: for example a scalar, a

vector and a second-order tensorial macroscopic quantity are written as a, a, and A,

respectively. Microscopic quantities are represented without a bar on top, a micro-

scopic scalar, vector and second-order tensorial quantity are written as a, a and A.

The same Cartesian basis is adopted at the macro and micro scales. The dot prod-

uct between two vectors and between a second-order tensor and a vector is repre-

sented as a·b := aibi andA·a := Aijajei, respectively. A tensorial dyadic product

is denoted with a⊗b := aibjei⊗ej and A⊗a := Aijakei⊗ej ⊗ek. The gradient

of a scalar and a vector is defined as ∇a := ∂a/∂xiei and ∇a := ∂ai/∂xjei ⊗ ej.
Similarly, the divergence operates as ∇ · a := ∂ai/∂xi and ∇ ·A := ∂Aij/∂xiej.

For linear algebra operations, columns are represented with a tilde underneath a

lowercase letter e.g. , a˜ and matrices are represented with a bar underneath an up-

percase letter e.g. , A . A tensorial product between two column arrays of vectors
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is defined as a˜T⊗b˜, where

⊗ :=


⊗ 0 . . . 0

0 ⊗ ...
...

. . .

0 0 . . . ⊗

 . (2.1)

The microscopic domain and its boundary are represented by Ω� and ∂Ω�, re-

spectively. The volume average of a microscopic quantity • is defined as〈
•
〉

:=
1

V

∫
Ω�

•dΩ� , (2.2)

where, V =
∫

Ω�
dΩ� is the volume of the microscopic domain Ω�. Acronyms

RTH, CTH and SSH are used for reduced transient computational homogenization

(present contribution), conventional transient homogenization (i.e. , without model

reduction) and steady-state computational homogenization, respectively. The ma-

terial with the lowest characteristic diffusion time is called “fast” and the material

with large characteristic diffusion time is called “slow”.

2.2 Homogenization Framework

In this section, the relaxed separation of scales is defined for heat conduction prob-

lems. The energy balance equations at the micro and macro-scales are presented

and finally, the downscaling and upscaling relations are derived.

2.2.1 Separation of Scales

The separation of scales in homogenization of transient diffusion problems is de-

fined in terms of the characteristic diffusion times that are linked to the loading

conditions, material properties and characteristic length scales. In this work, a

two-phase periodic medium is considered in which the connected phase is the ma-

trix and the embedded particulates are the inclusions. The characteristic diffusion

times for the matrix tm and inclusions ti are defined as

tm :=
`2
m

Dm
, and ti :=

d2

Di
, (2.3)
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where `m and d are the characteristic lengths, e.g. , the spacing between the in-

clusions and the inclusion diameter, respectively, and Dm and Di are the thermal

diffusivity coefficients of the matrix and inclusions, respectively. The characteristic

loading time T is the inverse of the ratio of the rate of change of the macroscopic

temperature field ˙̄θ with respect to the macroscopic temperature θ̄

T ∼ 1

ω
:=

(
˙̄θ

θ̄

)−1

, (2.4)

where ω is the (angular) loading frequency. Different relations between tm, ti

and T define different separation of scales regimes. For the development of the

reduced computational homogenization and comparison to conventional methods

a few separation of scales regimes are defined here.

Full Separation of Scales: In a full separation of scales regime the characteristic

diffusion times at the micro-scale are much smaller than the characteristic loading

time T , i.e. , the material constituents reach steady-state instantly

T � (tm ∼ ti) , or T � (tm < ti) , or T � (tm > ti) . (2.5)

The ratio between the characteristic diffusion times of different constituents does

not matter in this case. Under these conditions, the classical steady-state homog-

enization is sufficient to capture the heat diffusion phenomena in a heterogeneous

medium. For example, the homogenization procedure adopted in [32] assumes a

steady-state micro-scale model for the simulation of refractory bricks used in a

furnace lining. The macroscopic heat flux is obtained through the computational

homogenization and the heat storage capacity is obtained by using the rule of

mixtures.

Non-separating Scales: In these regimes, the microscopic diffusion times of

the matrix, the inclusions or both are of the same order of magnitude as the

macroscopic loading time. As a consequence, transient phenomena are active at

the micro-scale. Some of these regimes can be represented as

T ∼ tm ∼ ti , (2.6a)

(T ∼ tm) > ti , (2.6b)

(T ∼ ti) > tm . (2.6c)

In (2.6)(a) both the matrix and the inclusions are transient, in (2.6)(b) the matrix
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is more transient than the inclusion and (2.6)(c) shows the regime in which the

inclusions experience more transient effects than the matrix. The energy balance

equation with the transient terms has to be used at the micro-scale to capture

thermal inertia accurately. For example in [9], a sintering problem is solved using

transient computational homogenization, the material properties and the loading

conditions were such that they are adequately represented by the separation of

scales regime of equation (2.6)(c). Therefore, both the macroscopic heat flux and

the rate of change of the macroscopic internal energy are calculated by compu-

tational homogenization; if the rule of mixture would have been used instead, it

would entail significant errors.

Relaxed Separation of Scales: This intermediate regime is characterized by

specific material properties: a fast matrix, i.e. , it attains the steady state almost

instantaneously, and slow inclusions. It can be defined as

(T ∼ ti)� tm . (2.7)

This is a limiting case of the regime given by equation (2.6)(c) and represents no

or negligible transient effects in the matrix. Heterogeneous materials operating

in this regime are characterized by a high conductivity and low heat storage ca-

pacity in the matrix and low conductivity and high heat storage capacity in the

inclusions. Since the evolution of the temperature field in the matrix is different

from that in the inclusions, the microscopic temperature field can be decomposed

into steady-state and transient parts. To capture the micro inertia effects, the

transient balance of energy has to be solved at the micro-scale and both, the

macroscopic heat flux and rate of change of macroscopic internal energy, must be

computed/upscaled using computational homogenization.

2.2.2 Energy Balance Equation at the Macro- and Micro-

scales

To model the transient heat conduction at the macro-scale, the energy balance

equation with the transient term is used

∇ · q + ε̇ = 0 , (2.8)

where q and ε̇ are the macroscopic heat flux and the rate of change of macroscopic

internal energy. The constitutive forms for q and ε̇ are yet unknown, and in the
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computational homogenization are obtained through an upscaling procedure. The

macro-scale problem is complemented by boundary and initial conditions as given

by the particular problem at hand. To capture the thermal inertia effects, the

transient energy balance equation is considered at the micro-scale as well

∇ · q + ε̇ = 0 , (2.9)

where q and ε̇ are the microscopic heat flux and the rate of change of the micro-

scopic internal energy. The constitutive relations, for each micro-scale constituent,

are assumed to be known and may in general be nonlinear. In the present work only

linear micro-constituent materials will be considered to facilitate the application

of the model reduction. For the microscopic heat flux, Fourier’s law q = −λ∇θ

is used and for the internal energy ε the constitutive relation ε = ρcθ applied. In

this work, an isotropic material behavior is assumed for simplicity, even though

the methodology would be directly applicable to general anisotropic materials as

well. To ensure consistent scale transition in computational homogenization, spe-

cific types of boundary conditions are required at the micro-scale, which will be

defined through the downscaling procedure.

2.2.3 Downscaling

The microscopic temperature field is defined as a first order Taylor’s approximation

around a macroscopic point x̄

θ(x̄,x, t) := θ̄(x̄, t) + ∇θ̄(x̄, t) · (x− x̄) + θ̃(x̄,x, t) , (2.10)

where x denotes the position vector at the micro-scale and θ̃ represents the higher

order term in the expansion which are the fluctuations in the temperature field at

the micro-scale. These fluctuations arise due to the difference in material prop-

erties between the constituents subjected to transient loading conditions. The

micro-scale is positioned relative to the macroscopic point such that 〈x− x̄〉 = 0.

Downscaling is a procedure to transfer information from the macro-scale to the

micro-scale. In the first-order computational homogenization, both the macro-

scopic temperature and its gradient are transferred to the micro-scale and assumed

to be constant over the considered microstructure domain. The downscaling re-

lations in transient computational homogenization provide two constraints to be

satisfied:
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1. The average of the microscopic temperature field should be equal to the

macroscopic temperature field at the macroscopic point x̄

θ̄(x̄, t) =
〈
θ(x̄,x, t)

〉
, (2.11)

which by using equation (2.10) and 〈x− x̄〉 = 0, requires the average of the

fluctuation field at the micro-scale vanish

〈θ̃〉 = 0 (2.12)

2. The average of the microscopic temperature gradient field should be equal

to the macroscopic temperature field

∇θ̄(x̄, t) =
〈
∇θ(x̄,x, t)

〉
. (2.13)

It is obtained by taking the gradient of the microscopic temperature field,

in equation (2.10), and averaging it over the microscopic domain〈
∇θ
〉

= ∇θ̄ +
〈
∇θ̃
〉
, (2.14)

where the identity ∇(x− x̄) = I is used. To fulfill the condition in equation

(2.14), the average of the gradient of the fluctuation field has to be zero

〈∇θ̃〉 = 0, which after applying Gauss’s divergence theorem, is written as∫
∂Ω�

θ̃n da = 0 . (2.15)

where n is the unit-normal outward vector on the microscopic boundary ∂Ω�

with infinitesimal surface area da.

Constraint (2.12) enforces the macroscopic temperature θ̄(x̄, t) to be the reference

temperature in the microscopic domain and constraint (2.15) requires specific types

of boundary conditions to be used at the micro-scale. Typical choices for these

boundary conditions adopted in the literature are (i) zero fluctuation boundary

conditions or (ii) periodic fluctuation boundary conditions. Now that, the micro-

scopic temperature field and the downscaling relations are defined, the upscaling

relations are established next.
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2.2.4 Upscaling

Upscaling is performed to transfer information from the micro-scale to the macro-

scale through an averaging procedure. For transient computational homogeniza-

tion, a generalized Hill-Mandel condition is used [8, 9], which states that the vol-

ume average of the virtual power at the micro-scale is equal to the virtual power

(per unit of volume) at the associated macroscopic point x̄

−∇δθ̄ · q + δθ̄ε̇ =
〈
−∇δθ · q + δθε̇

〉
. (2.16)

Substitution of the perturbation of the microscopic temperature field (2.10) and

its gradient in the right hand side of equation (2.16) provides

−∇δθ̄ ·q+δθ̄ε̇ =
〈
−
(
∇δθ̄ + ∇δθ̃

)
· q +

(
δθ̄ + ∇δθ̄ · (x− x̄) + δθ̃

)
ε̇
〉
. (2.17)

Expanding and rearranging the above expression for δθ̄ and δθ̃ gives

−∇δθ̄ ·q−δθ̄ε̇ =
〈 [
−∇δθ̄ · (q + (x− x̄)ε̇) + δθ̄ε̇

]
+
[
−∇δθ̃ · q + δθ̃ε̇

]〉
. (2.18)

The last term in equation (2.18) is the weak form of the microscopic balance of

energy with admissible temperature fluctuation field δθ̃, which by using integration

by parts and the divergence theorem can be written as〈
−∇δθ̃ · q + δθ̃ε̇

〉
=
〈
δθ̃ (∇ · q + ε̇)

〉
−
∫
∂Ω�

δθ̃q · n da . (2.19)

The first term in the right hand side of the above equation is the balance of energy

at the micro-scale (2.9) which is satisfied by the micro-scale solution and therefore

equals zero. The second term is also zero when appropriate boundary conditions

are used, as discussed at the end of the previous section, for more details see [32].

Finally, equation (2.18) reduces to

−∇δθ̄ · q + δθ̄ε̇ = −∇δθ̄ ·
〈
q − (x− x̄)ε̇

〉
+ δθ̄

〈
ε̇
〉
, (2.20)

from where the macroscopic heat flux is recognized as

q =
〈
q − (x− x̄)ε̇

〉
, (2.21)
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and the rate of change of the macroscopic internal energy as

ε̇ =
〈
ε̇
〉
. (2.22)

The second term in equation (2.21) is the moment of the rate of change of the

microscopic internal energy, which is responsible for transferring the micro-scale

thermal inertia to the macro-scale. It also carries the information about the size

of the micro-scale, which makes transient computational homogenization sensitive

to the micro-scale size. In the limit, when the RVE size is vanishingly small, the

transient effects disappear and a classical SSH result q = 〈q〉 is obtained.

Substituting the definition of the microscopic temperature field (2.10) into the

constitutive equation (2.22) reveals that it is also a function of the macroscopic

temperature gradient i.e. , ε = ε(θ̄,∇θ̄). This non-local dependence is not present

in classical irreversible thermodynamics and requires a non-local thermodynamic

description at the macro-scale. In the gradient enriched thermodynamics, an addi-

tional dissipation term is added in the entropy inequality at the macro-scale, upon

averaging the (classical) dissipation at the micro-scale and applying proper bound-

ary conditions, which can be recognized as the second term in the expression of

macroscopic flux in equation (2.21). For a more detailed analysis of the emerging

macroscopic thermodynamics in computational homogenization of transient dissi-

pative phenomena the reader is directed to the recent articles on the topic [45, 46].

Also in [47], a thermodynamical model including temperature gradients is devel-

oped and rationalized using homogenization of heterogeneous media. However a

steady-state assumption was made in that case. For a general analysis of extended

thermodynamic theories the reader is directed to the review article [48].

Converting the volume integrals of equation (2.21) and (2.22) into boundary

integrals using the divergence theorem and the microscopic energy balance (2.9),

allows to write the macroscopic heat flux as

q =
1

V

∫
∂Ω�

qn(x− x̄) da , (2.23)

and the rate of change of macroscopic internal energy as

ε̇ = − 1

V

∫
∂Ω�

qn da , (2.24)

where qn = q·n is the normal outward heat flux at the boundary of the microscopic

domain. Once qn is known, the macroscopic quantities are obtained. Next, the
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solution procedure will be discussed, along with the model reduction to obtain qn.

2.3 Model Order Reduction

In this section, first the balance of energy at the micro-scale, equation (2.9), is

written in a discrete form using the finite element formulation. Next, the reduced

basis is obtained for the steady-state and transient parts of the microscopic re-

sponse. The macroscopic constitutive equations and the microscopic balance of

energy are then written in terms of the coefficients of the reduced variables leading

to a thermal enriched-continuum resulting from the model reduction. Finally, the

guidelines to identify the transient reduced basis are discussed.

2.3.1 Micro-scale Discrete Problem

The semi-discrete form of the balance of energy at the micro-scale reads

Kθ˜+ C θ̇˜ = −q˜n , (2.25)

where K and C are thermal conductivity and capacity matrices, respectively, θ˜ is

the column of nodal temperature values and −q˜n is the incoming heat flux. The

constraints following from equations (2.12) and (2.15) are applied using the master-

slave approach [49]. The periodic boundary conditions are applied by setting the

fluctuation fields on opposite sides of the microscopic domain to be equal i.e. ,

θ̃R = θ̃L and θ̃T = θ̃B, where R denotes right, L− left, T− top and B− bottom

boundary of the unit cell as shown in Figure 2.1. Inserting θ̃R = θ̃L and θ̃T = θ̃B

in equation (2.10) provides the constraint equations

θL − θR = ∇θ̄ · (xL − xR) ,

θB − θT = ∇θ̄ · (xB − xT ) .
(2.26)

For temperature independent material properties, constraint (2.12) can be applied

by prescribing the microscopic temperature θ(x̄,x, t) at a point in the microscopic

domain to be equal to the macroscopic temperature θ̄(x̄, t). It is allowed to fix

one point to apply the constraint (2.12) under the following assumptions:

• the material properties are linear;

• the relaxed separation of scales hold true i.e., classical homogenization, q =

〈q〉 and ε̇ = 〈ρc〉 ˙̄θ, is sufficient to represent the matrix behavior;
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• a symmetric shaped RVE, as shown in Figure 2.1, is used and it is attached

to the macroscopic point at the center i.e., x̄ = xc, where xc is the center

coordinates of the RVE, providing 〈x− x̄〉 = 0;

• the prescribed point should be in the matrix.

However, if there are transient effects in the matrix then this constraint may not

be applied in this manner. In that case, (2.12) can be enforced through Lagrange

multipliers, as implemented in [132, 133] for elastodynamics problem. Here, this

point is chosen to be node 1 at position x1. Then by applying (2.26) to the corner

nodes 1,2,3 and 4, the temperature at these nodes is fully prescribed and given by

θ˜p = I˜pθ̄ + ∇θ̄ · (x˜p − I˜px1) , (2.27)

where p = {1, 2, 3, 4} and I˜p is a column of ones with dimension (p×1). The set of

the corner nodes thus will be called “prescribed”. The constraint equations (2.26)

can then also be written in a discrete setting in terms of the prescribed corner

nodes as
θ˜R = θ˜L + I˜θ2 − I˜θ1 ,

θ˜T = θ˜B + I˜θ4 − I˜θ1 ,
(2.28)

where I˜ is a column of ones. In equation (2.28), the temperature fields on the

left hand side are dependent on the temperature fields on the right hand side. To

apply these boundary conditions, the microscopic degrees of freedom (DOF) are

first split into tied (dependent) ‘t’ and retained (independent) ‘r’ DOFs. The

retained DOFs are then further subdivided into prescribed ‘p’ (nodes 1,2,3,4) and

free ‘f ’ parts as shown in Figure 2.1. Following the master-slave implementation

procedure, a matrix of tying relations M is created from the constraint equations

(2.28), which eliminates the tied DOFs by mapping the complete set of DOFs to

the retained DOFs only

θ˜ =

θ˜t
θ˜r
 = M θ˜r , (2.29)

where θ˜t are the temperature values of the tied DOFs and θ˜r are the temperature

values of the retained DOFs. The constraints are applied by substituting the

expression of θ˜ from (2.29) into (2.25), and pre-multiplying it with M T , giving

M TKM θ˜r +M TCM θ̇˜r = −M T q˜n , (2.30)
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Tied (dependent) nodes ‘t’.

Retained (independent) nodes ‘r’.

Prescribed nodes ‘p’.

Free nodes ‘f ’.

Matrix

Inclusion

T

R

B

L

Figure 2.1: Discretized microscopic domain. The total set of DOFs are first di-

vided into tied (dependent) and retained (independent) parts and then the retained

DOFs are further subdivided into the prescribed and free parts. (This figure is for

illustrative purpose only; calculations were performed on a material and geometry

conforming mesh).

which reduces the dimensionality of the problem to the retained DOFs only

∗
Kθ˜r +

∗
C θ̇˜r = −q˜rn , (2.31)

where
∗
K , and

∗
C are the reduced thermal conductivity and capacity matrices,

respectively, and q˜rn is the column of the incoming reaction heat fluxes at the

retained DOFs. In the subsequent text the superscript ‘r’ will be dropped from

θ˜r and q˜rn for brevity.

2.3.2 Micro-scale Model Reduction

To calculate the macroscopic quantities q and ε̇, the expressions given in (2.23)

and (2.24) are used. These expressions contain the incoming heat flux qn. In a

discrete setting, the incoming (reaction) heat flux at the prescribed nodes can be

post-processed once the solution of the micro-scale problem is available. After

further partitioning the system of equations (2.31) into the prescribed and free

parts, it reads as ∗Kpp
∗
Kpf

∗
Kfp

∗
Kff

  θ˜p
θ˜f
+

 ∗Cpp ∗
Cpf

∗
Cfp

∗
Cff

 θ̇˜p
θ̇˜f
 =

 −q˜pn
0˜f
 . (2.32)
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Solving this system for each macroscopic point x̄ in time is a computationally

expensive task, especially for a large macroscopic problem with a complex mi-

crostructural topology that usually requires a fine discretization in space and time.

Therefore, a reduced model is sought which approximates the solution with a fewer

DOFs only. The incoming heat flux q˜pn can then be written in terms of the coef-

ficients of the reduced basis, making the homogenization process computationally

efficient. To perform the model reduction at the micro-scale, the microscopic

temperature field θ is decomposed into its steady-state θss and transient θtr parts

θ = θss + θtr . (2.33)

This additive split is always warranted for linear problems in the relaxed separation

of scales regime, where the transient temperature field in the inclusions evolves

independently of the temperature field in the matrix. This decomposition is also

advantageous because the reduced global bases for the steady-state and transient

parts are calculated separately, and later a linear superposition is performed to

reconstruct the total microscopic temperature field.

2.3.2.1 Steady-State Contribution

The steady-state part of the micro-scale solution θss represents very slow time

variations, where the micro-scale still follows the macro-scale instantaneously. In

the physical sense, this is a micro-scale that reaches steady-state very quickly. To

obtain the steady-state response, the discrete system (2.32) is written in terms of

θss only
∗
Kppθ˜p +

∗
Kpfθ˜fss +

∗
Cppθ̇˜p +

∗
Cpf θ̇˜fss = −q˜pss , (2.34)

∗
Kfpθ˜p +

∗
Kffθ˜fss +

∗
Cfpθ̇˜p +

∗
Cff θ̇˜fss = 0˜f . (2.35)

Equation (2.34) provides the steady-state reaction fluxes q˜pss at the prescribed

DOFs and (2.35) is the evolution equation for the steady-state part of the micro-

scopic temperature field at the free DOFs. Imposing the steady-state assumption

on (2.35) requires to fulfill the following constraint

∗
Cfpθ̇˜p +

∗
Cff θ̇˜fss = 0˜f , (2.36)
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which provides the steady-state response θss in terms of the prescribed temperature

field θ˜p as  θ˜p
θ˜fss

 =

 I pp

S

 θ˜p , (2.37)

where S = −(
∗
K ff )−1

∗
K fp and I pp is the unit diagonal matrix with dimension

(p×p). The columns of S can be interpreted as the steady-state reduced basis for

each θ in θ˜p. To obtain the steady-state reaction fluxes in terms of the temperature

at the prescribed DOFs, the constraint (2.36) is projected on the prescribed DOFs

by premultiplying it with S T and the taking transpose of the expression i.e. ,

∗
CpfS θ̇˜p + S T

∗
CffS θ̇˜p = 0˜p , (2.38)

and then added to equation (2.34) which yields

q˜pss = −Kss θ˜p − Css θ̇˜p , (2.39)

where the steady-state conductivity Kss and capacity Css matrices are defined as

Kss :=
∗
Kpp +

∗
KpfS ,

Css :=
∗
Cpp + 2

∗
CpfS + S T

∗
CffS .

(2.40)

The steady-state contribution does not capture the thermal inertia and micro-scale

size effects. The transient contribution will therefore be added next.

2.3.2.2 Transient Contribution

The transient part of the microscopic solution is described through the reduced

basis vector Φ˜(k) and the corresponding reduced degrees of freedom η(k), where

k = 1, 2, ...,Nq and Nq � N , with Nq as the number of the reduced degrees of

freedom and N the total number of the degrees of freedom of the original problem.

The transient part of the microscopic solution can then be written as θ˜p
θ˜ftr
 =

 0 pq

∗
Φ

 η˜ , (2.41)

where 0 pq is a (Np×Nq) matrix of zeros,
∗
Φ is the matrix combining all the reduced

basis vectors and η˜ is the column of the coefficients of the reduced basis. The
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energy balance equation (2.9) is a parabolic partial differential equation, which

has a natural solution that decays exponentially in time i.e. , θ˜ = Φ˜(k) exp[−α(k)t],

substituting this expression in the free part of (2.32)

∗
Kffθ˜f +

∗
Cff θ̇˜f = 0˜f , (2.42)

provides

(
∗
Kff − α(k)

∗
Cff )Φ˜(k) = 0˜ . (2.43)

Since the transient heat problem at the micro-scale is linear, equation (2.43) can

be solved as a classical eigenvalue problem leading to the eigenvalues α(k) and

eigenvectors Φ˜(k). It is a standard procedure used in model reduction and stability

analyses of time integration schemes for transient diffusion problems see [6, 50,

51]. Provided that
∗
Kff is semi-positive definite and

∗
Cff is positive definite, the

eigenvectors Φ˜(k) are orthogonal and the corresponding eigenvalues α(k) are real

and can be arranged in a diagonal matrix α

α =


α(1) 0 0

0
. . . 0

0 0 α(Nq)

 . (2.44)

When the eigenvalue problem (2.43) is solved, the number of eigenvectors is the

same as the number of DOFs in the original discrete system of equations and at

this point no reduction has been performed. The reduction from the full tran-

sient basis Φ to the reduced basis
∗
Φ is performed by selecting a limited set of

eigenvectors, based on criteria proposed at the end of this section. In heat con-

duction problems, the eigenvectors are the temperature distributions inside the

domain and the corresponding eigenvalues are the inverse of decay/rise times i.e. ,

τ (k) = 2π/α(k) [50]. Normalizing the eigenvectors Φ˜(k) with respect to the capacity

matrix,

(Φ˜(k))T
∗
CffΦ˜(k) = 1 , (2.45)

yields the eigenvalues as

(Φ˜(k))T
∗
KffΦ˜(k) = α(k) . (2.46)

Now that the the transient reduced basis
∗
Φ is identified through the eigenproblem

analysis, it can be used for model reduction of the free part of the discrete system
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of equation (2.32). Substituting equation (2.41) in (2.32) yields

∗
Kff

∗
Φη˜+

∗
Cff

∗
Φ η̇˜ = 0˜f , (2.47)

providing a set of decoupled ordinary differential equations (ODE). Using the

normalization conditions (2.45) and (2.46) equation (2.47) takes the form

αη˜+ η̇˜ = 0˜ . (2.48)

Equation (2.48) represents the transient evolution of the microscopic solution in

terms of the variables η˜, which in this form it is not influenced by the macro-

scale excitation. Next, the micro-scale steady-state and transient responses will

be coupled through linear superposition.

2.3.2.3 Linear Superposition

The microscopic steady-state and transient temperature fields, given by equations

(2.37) and (2.41) are superposed to obtain the total response θ˜p
θ˜f
 =

 θ˜p
θ˜fss + θ˜ftr

 =

I pp 0pq

S
∗
Φ

 θ˜p
η˜
 . (2.49)

The right-hand side of this expression resembles the Craig-Bampton reduction

matrix as originally proposed in [42] in the context of structural dynamics. Sub-

stituting (2.49) into (2.32) yields a set of coupled equations

∗
Kpf

∗
Φη˜+

∗
Cpf

∗
Φ η̇˜+

∗
Kppθ˜p +

∗
KpfS θ˜p +

∗
Cppθ̇˜p +

∗
CpfS θ̇˜p = −q˜pn , (2.50)

∗
Kff

∗
Φη˜+

∗
Cff

∗
Φ η̇˜+

∗
Kfpθ˜p +

∗
KffS θ˜p +

∗
Cfpθ̇˜p +

∗
CffS θ̇˜p = 0˜f . (2.51)

Equation (2.50) relates the incoming heat flux at the prescribed nodes to the

temperature at the prescribed nodes θ˜p and the coefficients η˜ (i.e. , macro-scale

variables) of the transient reduced basis. Equation (2.51) is the micro-scale evo-

lution equation for η˜ in terms of θ˜p. Premultiplying equation (2.47) with S T and

using the expression for the steady-state reduced basis S = −(
∗
Kff )−1

∗
Kfp provides

the expression for the first term in equation (2.50) as
∗
Kpf

∗
Φη˜ = S˜T ∗Cff ∗Φ η̇˜. Adding

the constraint (2.38) to (2.50) and then rearranging for η̇˜, θ˜p and θ̇˜p, allows to
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write the heat fluxes at the prescribed nodes as

q˜pn = −%η̇˜−Kss θ˜p − Css θ̇˜p , (2.52)

where the matrix % is defined as

% := S T
∗
Cff

∗
Φ +

∗
Cpf

∗
Φ . (2.53)

% provides the coupling between microscopic transient effects and the macroscopic

quantities through η˜. Equation (2.51) is projected onto the orthogonal basis by

premultiplying it with ΦT

∗
ΦT

∗
Kff

∗
Φη˜+

∗
ΦT

∗
Cff

∗
Φ η̇˜+

∗
ΦT

∗
Kfpθ˜p+∗

ΦT
∗
KffS θ˜p +

∗
ΦT

∗
Cfpθ̇˜p +

∗
ΦT

∗
CffS θ̇˜p =

∗
ΦT0˜f . (2.54)

Using
∗
K fp = −

∗
K ffS cancels out the third and the fourth terms in the above

equation and finally using the normalization conditions (2.45) and (2.46) leads to

αη˜+ η̇˜ = −%T θ̇˜p . (2.55)

Unlike equation (2.48), the above equation is coupled to the macro-scale through

%T θ̇˜p, which is the forcing term for this ordinary differential equation and that

serves as the input from the macro-scale in terms of the prescribed temperature

field θ˜p. Next, the expression for q˜p given by equation (2.52) is used to express the

homogenized macroscopic constitutive equations (2.23) and (2.24) in terms of the

coefficients of the steady state and transient reduced bases i.e. , θ˜p and η˜.
2.3.3 Macroscopic Quantities

In the discrete form, the boundary integral of the macroscopic heat flux (2.23)

reads,

q =
1

V
(∆x˜p)T q˜pn , (2.56)

where ∆x˜p = (x˜p − I˜px̄), and the discrete form of the rate of change of the

macroscopic internal energy (2.24) is written as

ε̇ = − 1

V
(I˜p)T q˜pn . (2.57)
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Substituting the expression for the reaction heat flux at the prescribed part of the

boundary q˜pn from equation (2.52) in equation (2.56) and using the discrete form of

the prescribed temperature field, given by equation (2.27), the macroscopic heat

flux q is written as

q = −a˜T η̇˜− bθ̄ −B ·∇θ̄ − c ˙̄θ −C ·∇ ˙̄θ , (2.58)

where,

a˜ =
1

V
(∆x˜p)T% , (Column of Nq 1st-order tensors)

b =
1

V
(∆x˜p)T [Kss I˜p] , (1st-order tensor)

B =
1

V

[
(∆x˜p)TKss

]
⊗∆x˜p , (2nd-order tensor)

c =
1

V
(∆x˜p)T [Css I˜p] , (1st-order tensor)

C =
1

V

[
(∆x˜p)TCss ]⊗∆x˜p . (2nd-order tensor)

(2.59)

Similarly, substituting the expression for the reaction heat flux from equation

(2.52) in (2.57) and using the discrete form of the prescribed temperature field,

given by equation (2.27), leads to the expression for the rate of change of the

macroscopic internal energy

ε̇ = d˜T η̇˜+ eθ̄ + e ·∇θ̄ + f ˙̄θ + f ·∇ ˙̄θ , (2.60)

where,

d˜ =
1

V
(I˜p)T% , (Column of Nq scalars)

e =
1

V
(I˜p)T [Kss I˜p] , (Scalar)

e =
1

V
(I˜p)T [(∆x˜p)TKss

]
, (1st-order tensor)

f =
1

V
(I˜p)T [Css I˜p] , (Scalar)

f =
1

V
(I˜p)T [(∆x˜p)TCss ] . (1st-order tensor)

(2.61)

The evolution of the microscopic (modal) DOFs η˜ can also be expressed in terms

of θ̄ and ∇θ̄ using equation (2.55) in conjunction with equation (2.27)

αη˜+ η̇˜ = −V
(
d˜T ˙̄θ + a˜T ·∇ ˙̄θ

)
. (2.62)
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For the selected microscopic RVE, with known (constant) material properties, the

calculation of, the steady-state basis, the eigenvectors Φ˜(k), decay times τ (k) and

the coefficients in equations (2.59) and (2.61) are performed in an off-line stage

once and for all. The online stage consists of the solution of only the macroscopic

enriched-continuum equations which are specialized in the following subsection.

2.3.4 Thermal Enriched-Continuum at Macro-scale

Together, the energy balance equation at the macro-scale (2.8), the constitutive

equation for the macroscopic heat flux (2.58), the constitutive equation for the

rate of change of macroscopic internal energy (2.60) and the evolution equation

for η˜ (2.62) constitute an enriched-continuum model at the macro-scale

∇ · q + ε̇ = 0

q =− a˜T η̇˜− bθ̄ −B ·∇θ̄ − c ˙̄θ −C ·∇ ˙̄θ

ε̇ = d˜T η̇˜+ eθ̄ + e ·∇θ̄ + f ˙̄θ + f ·∇ ˙̄θ

η̇˜ =− αη˜− V
(
d˜T ˙̄θ + a˜T ·∇ ˙̄θ

) (2.63)

The modal amplitudes η˜, can be considered at the macroscopic description as in-

ternal variables which are responsible for the representation of the lagging behavior

due to thermal inertia. To solve the system of equations (2.63) different solution

schemes can be adopted. For example, η˜ can be condensed out at the macroscopic

integration points leading to a single field (macroscopic temperature θ̄) solution

scheme, or both η˜ and θ̄ can be solved as macroscopic degrees of freedom, which

leads to a multi-field solution scheme. The solution of the enriched macro-scale

continuum is not the scope of the present work, but will be provided in future

work instead.

2.3.5 Identification of Transient Reduced Basis

Here, we discuss the selection of the transient reduced basis
∗
Φ from the complete

basis Φ obtained by solving the eigenvalue problem (2.43). Since the right-hand

side of equation (2.62) acts as the forcing term for each k-th equation, the variable

η(k) corresponding to a higher value of the coupling term d(k) or a
(k)
i will have a

higher amplitude. This information is exploited to identify the eigenvectors with

a significant contribution to the thermal inertia at the macro-scale, whereas the

other eigenvectors can be neglected in the analysis. The eigenvectors associated
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to d(k) with relatively high contribution are identified using

Ed(k) =
|d(k)|

max |d(k)|
, (2.64)

and the eigenvectors associated to a
(k)
i with relatively high contribution are iden-

tified by,

E
a
(k)
i

=
||a(k)||

max |a(k)
i |

, (2.65)

Then, a reduced transient eigenbasis
∗
Φ can be obtained by requiring a minimum

threshold ε

∗
Φ d˜ = {Φ˜(k) ∈ Φ : Ed(k) ≥ ε} , (2.66a)

∗
Φa˜i = {Φ˜(k) ∈ Φ : E

a
(k)
i
≥ ε} , (2.66b)

∗
Φ =

∗
Φ d˜ ∪

∗
Φa˜i . (2.66c)

2.4 Numerical Examples

In this section, numerical examples are presented for a microstructure with ran-

domly distributed circular inclusions. First, the steady-state and the transient

reduced basis are identified, then the identification criteria for the transient re-

duced basis are assessed by analyzing the η(k) evolution and the error norms.

The temperature profile and the macroscopic quantities computed with the pro-

posed reduced order homogenization method are compared with the conventional

steady-state and transient computational homogenization. Finally, an analysis is

performed for different separation of scales regimes and micro-scale domain sizes,

which explores the range of validity of the proposed reduced order homogenization.

2.4.1 Problem Settings

A microscopic domain, shown in Figure 2.2, with mono-dispersed circular inclu-

sions is generated using a level set based random sequential adsorption method [52].

The inclusions are allowed to cross the RVE boundary under the applied periodic-

ity constraint. The RVE is discretized with a periodic finite element mesh, which

ensures that opposite sides of the domain have corresponding nodes to match pe-

riodicity. The default parameters used in the numerical examples are provided

in Table 2.1. A high contrast two phase material is considered in the simula-
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ℓ

d

Figure 2.2: A microscopic domain (RVE) with mono-dispersed circular inclusions;

‘`’ is the characteristic size of the RVE and ‘d’ the diameter of the inclusion.

tions, such that the ratio between the diffusivity of the matrix and the inclusion is

Dm/Di = 105. The microscopic domain is excited by the macroscopic temperature

θ̄ and its gradient ∇θ̄ oscillating in time as

θ̄(x̄, t) = θ̄max sin(ωt)

∇θ̄(x̄, t) = (∇θ̄)max sin(ωt)
(2.67)

where ω = 2π/T is the angular frequency and T is the total loading time. In the

simulations, one period of the loading cycle has been considered. Note, that the de-

fault material parameters, microscopic length scales and the characteristic loading

time satisfy the relaxed separation of scales as presented in section 2.2. The RVE

is discretized with three-node linear triangular finite elements with a finer mesh

inside the inclusion. The time integration is performed using a backward-Euler

scheme with a time step size of ∆t = 10−3T . Finally, a non-dimensional problem

is solved, in which the total time is normalized with respect to the characteristic

diffusion time of the inclusion i.e. , t̂ = t/ti, the lengths are normalized with re-

spect to the characteristic length of the RVE i.e. , ˆ̀= x/`, and the temperature is

normalized with the maximum attainable temperature in the microscopic domain

i.e. , θ̂ = θ/θmax, where θmax = θ̄max + ∇θ̄max · xmax and xmax = [`, `]. Next, we

identify the steady-state and transient reduced basis.

2.4.2 Reduced Basis Identification

The reduced bases are computed during an off-line stage, which consists in per-

forming the static condensation, solving an eigenvalue problem and computing the

coefficients given in equation (2.59) and (2.61).
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Table 2.1: Default parameters used in the simulation.

Parameter Symbol Value Units

RVE length ` 1.0 [mm]

Inclusion diameter d 0.3 [mm]

Matrix volume fraction Vfm 0.4349

Inclusion volume fraction Vfi 0.5651

Matrix Diffusivity Dm 1× 105 [m2/s]

Inclusion Diffusivity Dm 1 [m2/s]

Matrix characteristic time tm = `2/Dm 1× 10−5 [s]

Inclusion characteristic time ti = d2/Di 0.09 [s]

Number of elements 20620 TRI3

Number of nodes 10484

Total loading time T 0.1ti [s]

Loading frequency ω 1

Maximum macroscopic θmax 30 [K]

temperature (normalized)

Maximum macroscopic ∇θ̄max [3, 3] [K/m]

temperature gradient (normalized)

2.4.2.1 Steady-State Basis

The steady-state part of the microscopic temperature field θss is given by equation

(2.37), where each column S˜(k) of S is a load case constituting the steady-state

global basis. The corresponding prescribed temperature degrees of freedom in θ˜p
are the coefficients. The size of the steady-state reduced basis is dependent on

the type of boundary conditions used at the micro-scale. If, for example, zero

fluctuations boundary condition is applied to all nodes on the boundary to fulfill

the scale transition relations then the size of the steady-state reduced basis will

be equal to the number of nodes on the RVE boundary and the corresponding

coefficients will be the prescribed temperature degrees of freedom at all the nodes

of the RVE boundary. For the periodic boundary conditions, as used in this

work, θ˜p includes the temperature values of the three prescribed nodes, i.e. , which

are defined at nodes 1,2 and 4 and the size of the steady state reduced basis

consequently equals three corresponding to the three load cases to be solved. For

the considered microstructural model, the steady-state response is decomposed

into its reduced basis and corresponding coefficients as shown in Figure 2.3.
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S
˜

1 S
˜

2
S
˜

3

θss = S θ
˜

p = θ1+ θ
2+ θ4

1.20−1.2

Figure 2.3: The steady-state part of the temperature field θss decomposed into

its reduced basis S and corresponding coefficients θp.

2.4.2.2 Transient Basis

To identify the transient basis, an eigenvalue problem is solved for the first 200

eigenvectors Φ, through which the transient reduced basis
∗
Φ is identified. The

size of the transient reduced basis depends on the micro-structure topology and

material contrast between the matrix and the inclusions. It is selected by the crite-

ria provided in equation (2.66) based on the relative contribution of the coupling

terms d˜ and a˜. The transient response θtr is decomposed into its reduced ba-

sis,
∗
Φ = {Φ˜(1),Φ˜(5),Φ˜(41),Φ˜(42),Φ˜(47),Φ˜(113),Φ˜(119)} ∈ Φ and corresponding coeffi-

cients, as shown in Figure 2.4. Since the relaxed separation of scales is satisfied, the

eigenvectors have non-negligible contributions only inside the inclusions. In gen-

eral, when using a reduced basis description for the transient analysis of a heat con-

duction problem, only the first or first few consecutive eigenvectors with the lowest

eigenvalues are commonly used [6]. This is different in the current analysis, where

based on the coupling terms d˜ and a˜, eigenvectors {Φ˜(41),Φ˜(42),Φ˜(47),Φ˜(113),Φ˜(119)},
with high eigenvalues have also been selected, which are significantly important

for capturing the effect of the micro-scale thermal inertia at the macro-scale. This

will be verified in the following by assessing the evolution of the η(k) fields, and

comparing the error norms with respect to the reference CTH solution.

The evolution of η˜ is obtained by time integration of equation (2.55) for the

given θ̄ and ∇θ̄. Seven η(k) with the highest amplitude are shown in Figure

2.5. These η(k) values correspond to the reduced transient basis shown in Figure

2.4, selected by the criteria (2.66). The selected eigenvectors, even these with

higher eigenvalues, are important for an adequate approximation of the macro-

scopic quantities q and ε̇. Next, we perform an error analysis to verify this asser-

tion.

32



Chapter 2. Model Reduction in Computational Homogenization for Transient
Heat Diffusion

Φ ˜

(1
)

Φ ˜

(5
)

Φ ˜

(4
1
)

Φ ˜

(4
2
)

Φ ˜

(4
7
)

Φ ˜

(1
1
3
)

Φ ˜

(1
1
9
)

θ
t
r
=

∗ Φ
η ˜

=
η
(1

) +
η
(5

)
+

η
(4

1
)
+

η
(4

2
)
+

η
(4

7
)
+

η
(1

1
3
)
+

η
(1

1
9
)

−
7

0
7

F
ig

u
re

2.
4:

T
h
e

tr
an

si
en

t
p
ar

t
of

th
e

te
m

p
er

at
u
re

fi
el

d
θ t
r

d
ec

om
p

os
ed

in
to

it
s

re
d
u
ce

d
b
as

is
Φ

an
d

co
rr

es
p

on
d
in

g
co

effi
ci

en
ts
η
.

33



Chapter 2. Model Reduction in Computational Homogenization for Transient
Heat Diffusion

0 0.05 0.1

-1

-0.5

0

0.5

1

η(1)

η(5)

η(41)

η(42)

η(47)

η(113)

η(119)

t̂

η
(k

)

Figure 2.5: The time evolution of the η(k) coefficients acting on the transient

reduced basis
∗
Φ.

Considering the computational transient homogenization (CTH) solution as the

reference one, the selection criteria for the reduced transient basis
∗
Φ can be verified

using a-posteriori error measures. To evaluate the effect of the addition of each new

eigenvector on the accuracy of the microscopic temperature field θRTH calculated

with the reduced transient homogenization (RTH), it is enriched sequentially with

Nq eigenvectors i.e. ,

θ˜RTHNq = θ˜ss + θ˜tr = S θ˜p +

Nq∑
k=1

Φ˜(k)η(k) , Nq = 1, 2, 3, ..., 200 . (2.68)

A time averaged relative-L2 error norm with respect to the reference CTH solution

can be written as

εθNq =
1

T

∫
T

||θ˜CTH(t)− θ˜RTHNq (t)||L2

||θ˜CTH(t)||L2

∆t , Nq = 1, 2, 3, ..., 200 . (2.69)

Figure 2.6(a) shows that the decrease in the error εθNq only occurs with the addi-

tion of particular eigenvectors, which are exactly the ones identified by criterion

(2.66) and shown in Figure 2.4. Similarly, an error measure is formulated for the

macroscopic quantities, in this case for the rate of change of macroscopic internal

energy as

εε̇Nq =
|ε̇CTH − ε̇RTHNq |
|ε̇CTH|

, Nq = 1, 2, 3, ..., 200 . (2.70)
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Figure 2.6: (a) Time averaged relative-L2 error norm for the microscopic tem-

perature field. (b) relative error norm for the rate of change of macroscopic in-

ternal energy ε̇. The error is computed relative to the reference CTH solution for

the sequential enrichment of the microscopic transient basis by addition of extra

eigenvectors.

The accuracy of the macroscopic quantity ε̇ also increases only with the addi-

tion the dominant eigenvectors indicated by the criteria in equation (2.66). This

a-posteriori analysis is carried out for validation purposes only. Because of its

associated computational costs, it is not recommended to be used in an actual

multi-scale analysis.

2.4.3 Homogenization Results

Next, we compare the microscopic temperature field and the macroscopic quanti-

ties computed with the proposed reduced transient homogenization (RTH), method

the conventional steady-state (SSH) and the transient computational homogeniza-

tion (CTH) methods.

2.4.3.1 Microscopic Temperature Field

In this work, conventional transient homogenization (CTH) is considered as the

reference solution, which is proven against DNS in the literature, for example

see [8, 9]. Therefore, we chose not to repeat the validation of CTH against DNS.
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In general, homogenization methods require the solution of the primary variable

at the micro-scale and then averaging is performed to obtain macroscopic quanti-

ties. To calculate the temperature fields in SSH and CTH standard finite element

computations (with periodic boundary conditions) on the microstructural domain

(RVE) are performed. For computing the temperature field in RTH, first the η˜
variables are solved using equation (2.62), then the total microscopic response

is obtained by substituting η˜ and θ˜p into equation (2.49). Figure 2.7 shows the

temperature profiles at time step t = 156 × ∆t[s] for RTH in the center, SSH on

the left and CTH on the right. The RTH response is further decomposed into its

steady-state θss and transient θtr parts. The steady-state RTH part is equal to the

SSH full microscopic response θSSH (i.e. , computed using steady-state assumption

at the micro-scale). The steady-state approximation is not able to capture the

transient effects and be used in the transient regimes represented by equations

(2.6) and (2.7). The RTH properly accounts for the transient and inertial effects

and the resulting solution field is approximately equal to the reference, but compu-

tationally expensive, CTH response. Next, we compare the effective macroscopic

quantities calculated with the different homogenization methods.

2.4.3.2 Effective Macroscopic Quantities

The effective macroscopic quantities are post-processed from the microscopic tem-

perature field. The procedure for the evaluation of the effective quantities differ

for the different homogenization schemes. In the SSH and CTH schemes, the com-

putation of θ˜f and post-processing to obtain q˜pn follows from the solution of the

finite element system of equations and (2.32), respectively. For calculating the

macroscopic heat flux q, in both SSH and CTH, equation (2.56) is used. For cal-

culating the rate of change of the macroscopic energy ε̇ for CTH, expression (2.57)

is utilized. Since in SSH transient inertia effects are disregarded, following the

work of [32], the rule of mixtures for the effective thermal capacity is used. In

RTH, once the coefficients terms in (2.59) and (2.61) are calculated, the macro-

scopic heat flux q and the rate of change of the macroscopic internal energy ε̇ are

computed directly using (2.58) and (2.60), respectively. The expressions for the

macroscopic quantities used in different homogenization schemes are summarized

in Table 2.2. As shown in Figure 2.8, the effective macroscopic quantities calcu-

lated with the proposed RTH method approximate very well the reference solution

calculated with the CTH method. This indicates that the RTH method adequately

captures the macroscopic phenomena. The macroscopic heat flux calculated with
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Table 2.2: Expressions for the effective macroscopic quantities in different homog-

enization schemes.

Quantity RTH CTH SSH

q −a˜η̇˜− bθ̄ −B ·∇θ̄ − c ˙̄θ −C ·∇ ˙̄θ 〈q − ε̇(x− x̄)〉 〈q〉
ε̇ d˜η̇˜+ eθ̄ + e ·∇θ̄ + f ˙̄θ + f ·∇ ˙̄θ 〈ε̇〉 θ̇〈ρc〉
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Figure 2.8: Comparison of (a) effective macroscopic heat flux q and (b) effective

rate of change of macroscopic internal energy ε̇ computed with the CTH, RTH and

SSH method.

SSH is nearly equal to the one calculated with the transient homogenization meth-

ods, which implies that for the considered example, the difference 〈ε̇(x − x̄)〉 is

negligible compared to 〈q〉. Indeed, due to the “fast” connected matrix, the heat

flux reaches a steady-state almost instantaneously when the temperature changes

at the prescribed part of the boundary. When some transient phenomena in the

matrix are not negligible, for example in the regime given by equation (2.6) (c),

the difference 〈ε̇(x − x̄)〉 becomes significant. However, such regimes are outside

the limits of applicability of RTH; this limitation is further examined in section

2.4.4. In SSH, the rate of change of the macroscopic internal energy ε̇ is overesti-

mated due to the use of the rule of mixtures. The thermal inertia, due to the slow

transient inclusions, results in a lagging behavior which is well captured by CTH

and the proposed RTH method.
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Figure 2.9: CPU time as a function of the number of microscopic problems solved

with with computational expensive CTH and the proposed reduced order RTH

method.

2.4.3.3 Computational Costs

In RTH, the solution of the micro-scale problem is obtained in two steps; an

off-line step and an on-line step. In the off-line step, the eigenvalue problem is

solved and the coefficients (2.59) and (2.61) are calculated and stored. In the

on-line step, evolution of the modal coefficients is obtained by solving (2.62) and

subsequently used to extract the effective quantities. In CTH, the solution to the

micro-scale problem is obtained by an on-line step, only involving the solution of

the system of equations (2.32). Comparison between the computational times for

CTH and RTH, should be made only for the on-line solution stage corresponding

to the costs of computing the effective quantities for a macroscopic point, since

the RTH off-line stage and storage of the coefficients is done once and for all on

beforehand. Figure 2.9 shows the computational times, as a function of the number

of the underlying microscopic problems (in a two-scale macroscopic simulation

this corresponds to an increasing number of elements at the macro-scale). The

simulations were performed on a computer with a core-i7@4.4GHz processor and

16Gb RAM using Matlab 2018b. The computational gain with RTH is significant.

The ratio between the simulation times using CTH and RTH was of the order of

104 in all cases. Considering the resulting high accuracy, as shown in Figure 2.6,

and the computational gain observed here, RTH is qualified for replacing CTH in

the regimes where it is applicable. To properly assess the limits of applicability of

RTH the separation of scales due to changes in material properties and the size of

microscopic domain are scrutinized next.
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Table 2.3: Material properties used to achieve different scale separation regimes.

Scale separation regime Di [m2/s] Dm [m2/s]

T ∼ tm ∼ ti (2.6a) 1 5

(T ∼ tm) > ti (2.6b) 1× 10−3 1

(T ∼ ti) > tm (2.6c) 1 1× 102

2.4.4 Applicability Limits of RTH

Performing RTH for mechanical problems [43] is equivalent to substructuring in

structural dynamics systems [42], in which the boundary of each substructure is

assumed to accommodate a rigid body motion with respect to the loading condi-

tions, for which neglecting the dynamic effects of the boundary may lead to a too

stiff mechanical response. Similar phenomena are observed here for heat conduc-

tion problems, i.e. , when the combination of material properties of the micro-scale

constituents and the loading conditions do not satisfy the relaxed separation of

scale, pushing RTH outside its applicability limits, as illustrated in the following.

2.4.4.1 Scale Separation Regimes

To perform this analysis, only the material properties are varied to achieve different

scale separation regimes in equation (2.6). These material properties are given in

the Table 2.3.

When significant transient phenomena exist in the matrix, represented by equa-

tion (2.6a) and (2.6b), the results are shown in Figure 2.10 (a and b). In this case,

the proposed RTH method over- or underestimates the macroscopic quantities as

compared to CTH. However, when the matrix is comparatively less transient, as

in equation (2.6c), RTH approximation becomes better again.

2.4.4.2 Size Effect

To obtain non-zero time averaged macroscopic quantities, the normalized loading

frequency is changed to ω = 0.25. The effect of the non-dimensional microscopic

length ˆ̀ on the time-averaged macroscopic quantities can be seen in Figure 2.11.

As discussed earlier, the SSH method relies on the steady-state assumption at the

micro-scale and is therefore unable to capture the size effects; the SSH response

remains constant as the RVE size increases. Both CTH and RTH methods capture

the size effect, however as the RVE size increases the characteristic diffusion time
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Figure 2.10: Comparison of the time evolution of the macroscopic quantities,

effective heat flux - (a),(b) and (c) and the rate of change of internal energy -

(d), (e) and (f), calculated using RTH and CTH with different material properties

leading to different separation of scales regimes as shown in Table 2.3.
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Figure 2.11: Effect of RVE size ˆ̀ on the time averaged (a) macroscopic heat flux

and (b) the rate of change of macroscopic internal energy calculated with the SSH,

CTH and RTH methods.

of the matrix also increases, which leads to a “stiff” response and RTH becomes

slightly less accurate compared to the reference CTH solution.

2.5 Conclusions and Perspectives

A reduced model for the homogenization of transient heat conduction problems

was developed. It is based on the relaxed separation of scales, under material

linearity, in which the matrix always remains in steady-state and only inclusions

experience transient effects. The effective macroscopic quantities for transient ho-

mogenization were obtained using the extended Hill-Mandel condition adopted for

the transient thermal problems. The main contribution of this work is the devel-

opment of a model reduction approach at the micro-scale, where the microscopic

solution and the macroscopic quantities are represented in terms of the steady-

sate and transient reduced bases along with their corresponding coefficients. This

reduced homogenization technique adequately captures microscopic transient ef-

fects in its target regime of scale separation. Significant computational gain was

observed as compared to the conventional transient homogenization scheme. In

future work, the enriched-continuum formulation resulting from the reduced tran-

sient homogenization procedure will be used to solve macroscopic boundary value

problems. A reduced model for coupled thermo-mechanical problems can also be
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formulated in which both the thermal and mechanical problems can be solved with

a similar reduced approach.
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Abstract

This chapter addresses the two-scale problem underlying the enriched-continuum

for transient diffusion problems, which was previously developed and tested at the

single scale level only. For a linear material model exhibiting a relaxed separa-

tion of scales, a model reduction was proposed at the micro-scale that replaces

the micro-scale problem with a set of uncoupled ordinary differential equations

(ODEs). At the macro-scale, the balance law, the ODEs and the macroscopic

constitutive equations collectively represent an enriched-continuum description.

Examining different discretization techniques, distinct solution methods are pre-

sented for the macro-scale enriched-continuum. Proof-of-principle examples are

solved for a mass diffusion system in which species diffuse slower in the inclusion

than in the matrix. The results from the enriched-continuum formulation are com-

pared with the computational transient homogenization (CTH) and direct numer-

ical simulations (DNS). Without compromising the solution accuracy, significant

computational gains are obtained through the enriched-continuum approach.

3.1 Introduction

Composite materials are used in a wide range of applications from large struc-

tures to micrometer size components [53]. The contrast between the properties

of the constituents may differ by several orders of magnitude [54]. In general,

it is computationally very expensive to simulate such heterogeneous materials at

the micro-scale since the analysis involves a large number of degrees of freedom

to capture the physical phenomena. Homogenization can be used instead, which

provides the effective properties through an averaging procedure. Various homog-

enization methods can be found in the literature, i.e. , analytical bounds [55, 56],

self-consistent methods [57] and asymptotic homogenization [23, 24, 28]. Most of

these homogenization methods assume a steady-state condition at the micro-scale

to calculate the effective properties. However, in reality, due to the high contrast

in material properties and time varying loading conditions, this assumption is of-

ten not valid. For example, the steady-state assumption is not appropriate in the

case of diffusing species in polycrystaline materials, where the diffusion process

in the grain boundaries reaches steady-state while the grain interior still remains

transient [5]. Similar phenomena are observed for fluid and solute transport in
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geo-materials [58], diffusion in porous gels [59] and diffusion of Lithium-ions in

electrode-electrolyte systems of Li-ion batteries [60].

Computational homogenization (CH) [7, 32, 34, 61] is a more recent and robust

homogenization procedure, which has been extended to transient problems [38],

including diffusion [8, 9]. For a detailed review and perspectives of CH see [62–

64]. Computational homogenization for transient problems, despite its robustness,

suffers from a high computational cost. It requires the solution of a micro-scale

problem at each macroscopic material point, which in transient problems must

be solved at each time increment. To circumvent this problem, reduced models

for the effective diffusion response in transient regimes have recently been pro-

posed [65, 66], in which a chemical creep function is obtained. This chemical

creep function behaves similar to phenomenological models of viscoelasticity and

consists of an infinite number of Kelvin-Voigt units. A reduced model is then

obtained by selecting a finite number of Kelvin-Voigt units. In [66], an analyti-

cal expression is obtained for a transient inclusion, embedded in an infinitely fast

matrix, which is only possible for certain inclusion morphologies.

In the previous chapter, an alternative reduced order model was proposed for

the micro-scale problem, first for dynamics [43] and then for diffusion problems

in the context of heat conduction [67]. It is based on computational homogeniza-

tion and applies a reduction technique to the whole unit-cell (as opposed to the

inclusion only in [66]). This numerical approach accounts for different complex

RVE morphologies. It is applicable in the relaxed separation of scales regime in

which the characteristic diffusion time τm of species in the matrix is much smaller

than the characteristic diffusion time τi in the inclusions. Moreover, the macro-

scopic loading time T is such that the matrix can be assumed in a steady-state

regime while the inclusion exhibits transient inertia effects. The relaxed separa-

tion of scales can be expressed in terms of the characteristic diffusion times of the

constituents and the characteristic loading time as follows

τm � (T ∼ τi) , (3.1)

For more discussion on the relaxed separation of scales in diffusion problems,

see [28, 66]. Assuming a linear material model for both the matrix and inclusions,

allows to perform an additive decomposition of the microscopic solution field into

a steady-state and a transient part. The reduced model is defined by means of

a static condensation of the steady-state part of the response, and by project-

ing the transient part onto a reduced (eigen)basis. The size of the microscopic
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system of equations is thereby reduced from N coupled finite element degrees of

freedom (d.o.f) to just a few Nq decoupled d.o.f with Nq � N . An averaging is

performed to obtain the macroscopic constitutive equations in terms of the co-

efficients of the reduced basis and the emerging macroscopic (internal) variables.

The resulting set of equations to be solved at the macro-scale describes what is

called an enriched-continuum, consisting of the macroscopic mass balance, consti-

tutive equations obtained by homogenization and an evolution equation for the

enrichment-variables. The coefficients of the micro-scale reduced basis are called

enrichment-variables and the vectors, constituting the micro-scale reduced basis

are called enrichment-functions. For a certain microscopic domain and material

properties, the enrichment-functions and the coupling terms in the macroscopic

constitutive equations are computed once and for all, and the subsequent on-line

computation only consists in solving Nq decoupled ordinary differential equations

along with the macroscopic mass balance equation. Such an enriched-continuum

formulation can be applied to a heterogeneous medium which exhibits transient

diffusion phenomena within the assumption of linear material properties and the

relaxed separation of scales, for example mass diffusion problems in batteries where

these assumptions are valid in application for some ranges.

The enriched-continuum formulation for (heat) diffusion problems was devel-

oped in [67] and validated at the micro-scale unit-cell level against full transient

computational homogenization results. No macro-scale enriched-continuum simu-

lations were used in [67]. The aim of this work is to demonstrate the applicability of

the reduced order framework to the solution of transient problems with an under-

lying microstructure obeying the relaxed separation of scales. Since the resulting

macroscopic problem consists of an enriched-continuum with enrichment-variables

and corresponding evolution equations, dedicated solution techniques have to be

adopted. To this end, two solution methods based on different spatial discretiza-

tion schemes are analyzed. First, a multi-field solution method is presented, in

which both the enrichment-variables and the primary macroscopic field are com-

puted on the nodes and interpolated using finite element shape functions. Next, an

internal-variable solution method is presented, in which the enrichment-variables

are evaluated at the macroscopic quadrature points and considered as internal

variables, while the macroscopic primary field variable is interpolated in a classi-

cal manner using the finite element shape functions, as shown in Figure 3.1. The

advantage of the multi-field solution method is that the macroscopic primary vari-

able and the enrichment-variables are solved in a coupled manner at each time
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Macro-scale Variable

Enrichment Variables

(a) Multi-Field (b) Internal-Variable

Figure 3.1: Spatial discretizations schemes for the enriched-continuum. (a) Multi-

field: both the macro-scale and enrichment-variables are interpolated using bi-

linear quadrilateral finite elements. (b) Internal-variable: the macro-scale variable

is interpolated by bi-linear quadrilateral finite elements while the enrichment-

variables are computed at the Gauss quadrature points.

step; the disadvantage is the significantly increased size of the finite element sys-

tem of equations. In the internal-variable method, the enrichment-variables are

eliminated by substitution and only the macroscopic primary field is solved at the

current time step. Once the solution of the macroscopic variable field is available,

the enrichment-variables are evaluated and stored for the next time increment,

i.e. , a staggered approach in time is used. This allows to use different time inte-

gration schemes for the enrichment-variables as opposed to the primary field, e.g. ,

to better capture micro-scale transient effects. These two solution methods will

be assessed here. The novel contributions of the work presented here are:

• the two-scale enriched macroscopic continuum implementation emerging from

the model order reduction approach, applied to the solution of diffusion

boundary value problems with incorporation of micro-structural transient

effects;

• the proposed different solution methods for the enriched-continuum for tran-

sient diffusion problems;

• a comparison between the two-scale diffusion enriched-continuum macro-

scopic solution, the conventional transient homogenization and direct nu-

merical simulations, allowing to evaluate the associated computational cost

reduction.

3.1.1 Outline

Section 3.2 summarizes the enriched-continuum equations with expressions for

the effective mass flux and the effective concentration rate. Section 3.3 presents

the analyzed solution methods for the macro-scale enriched-continuum. First,

the time integration schemes are presented and, subsequently, the multi-field and
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the internal-variable solution methods are derived. In section 3.4, proof-of-concept

numerical examples are solved for species diffusion in a material with high contrast

material properties. This will demonstrate the ability of the enriched-continuum

formulation to reliably reproduce the results obtained by conventional transient

homogenization (CTH) or direct numerical simulations (DNS), which are both will

be shown to be outperformed in terms of computational efficiency.

3.1.2 Symbols and Notations

The (homogenized) macroscopic quantities are shown with a bar on top, e.g. , a

scalar, a vector and a second-order tensor are represented with a, a, A. There is

no bar on top of a quantity belonging to the heterogeneous micro-scale problem,

i.e. , a scalar, a vector and a second-order tensor are written as a, a, A. The

same Cartesian coordinate system is used at the micro- and macro-scale. Standard

calculus operators are used in this work. For example, the dot product between

two vectors is a · b = aibi, between a second-order tensor and a vector is A · b =

Aijbjei. The tensorial dyadic product between two vectors is a⊗ b = aibjei ⊗ ej
and between a second-order tensor and a vector is A ⊗ b = Aijbkei ⊗ ej ⊗ ek,
where ei represent the vectors of the Cartesian basis. The gradient of a scalar,

a vector and a second-order tensor is defined as ∇a := ∂a
∂xi
ei, ∇a := ∂ai

∂xj
ei ⊗ ej

and ∇A :=
∂Aij
∂xk
ei ⊗ ej ⊗ ek, respectively. Similarly, the divergence operates

as ∇ · a := ∂ai
∂xi

and ∇ · A :=
∂Aij
∂xi
ej. For linear algebra notation, columns are

represented with a tilde underneath a lowercase letter, e.g. , a˜, and matrices with

a bar underneath an uppercase letter, e.g. , A . A tensorial product between two

column arrays of vectors is defined as a˜T⊗b˜, where

⊗ :=


⊗ 0 . . . 0

0 ⊗ ...
...

. . .

0 0 . . . ⊗

 . (3.2)

The microscopic domain and its boundary are represented by Ω� and ∂Ω�, re-

spectively. The volume average of a microscopic quantity • is defined as〈
•
〉

:=
1

V

∫
Ω�

•dΩ� , (3.3)

where, V =
∫

Ω�
dΩ� is the volume of the microscopic domain Ω�.
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3.2 Enriched-Continuum Formulation

In this section, the transient mass diffusion problem is presented briefly, first for

a heterogeneous domain and then for a homogenized domain, for which the two-

scale computational homogenization and the resulting enriched-continuum will be

considered.

3.2.1 Direct Numerical Simulation

The diffusion of species in solids is governed by the mass balance equation,

∇ · j + ċ = 0 , in Ω , (3.4)

where, ċ is the rate of change of the concentration field c, j = −M ·∇µ is the

mass flux, µ = Λ(c − c0) is the chemical potential, Λ is the chemical modulus,

c0 is the reference concentration of a specie, M is the mobility tensor; Ω is the

heterogeneous macro-scale domain, as shown in Figure 3.2(a). The numerical

procedure to solve the diffusion equation (3.4) in Ω, with corresponding initial

and boundary conditions

µ(0) = µ0 , in Ω ,

µ = µ̂ , on ∂Ωµ ,

−j · n = jn , on ∂Ωj .

(3.5)

is referred to as the direct numerical simulation (DNS) in this work. In here, ∂Ωµ

and ∂Ωj are the Dirichlet and Neumann parts of the heterogeneous domain Ω,

respectively, and n is the outward unit-normal vector on its boundary ∂Ω.

3.2.2 Computational Homogenization

Given its exorbitant computational cost, the DNS problem is commonly replaced

by a computationally homogenized problem which represents an equivalent homo-

geneous problem by solving a coupled two-scale (macro-scale and a micro-scale)

problem, as shown in Figure 3.2(b). The heterogeneous domain, in Figure 3.2(a),

is replaced by a homogeneous one Ω, to which at each point, a microscopic do-

main Ω� is attached. This microscopic domain is a representative volume element

(RVE) or a unit-cell in the case of a periodic medium. In transient computational

homogenization, at the macro-scale a transient mass balance equation is solved
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which is complemented by the initial and boundary conditions i.e. ,

∇ · j̄ + ċ = 0 , in Ω ,

µ̄(0) = µ̄0 , in Ω ,

µ̄ = ˆ̄µ , on ∂Ωµ̄ ,

−j̄ · n = jn , on ∂Ωj .

(3.6)

Where, ∂Ωµ̄ and ∂Ωj are the Dirichlet and Neumann parts of the macroscopic

domain Ω, respectively, n is the outward unit-normal vector to the macroscopic

boundary ∂Ω, jn is the prescribed mass influx and ˆ̄µ is the prescribed chemical

potential. The constitutive responses for the macroscopic mass flux j̄ and the

macroscopic rate of change of concentration field ċ are obtained by solving a micro-

scale problem for the microscopic chemical potential field µ, which in the first-order

computational homogenization is based on the following ansatz

µ = µ̄+ ∇µ̄ · (x− x̄) + µ̃ , (3.7)

where, µ̃ is the fluctuation in the chemical potential at the micro-scale due to the

difference in material properties of the microconstituents properties and transient

loading conditions, imposed through the macroscopic chemical potential µ̄ and

its gradient ∇µ̄, see Figure 3.2(b). The transient mass diffusion problem which

is solved at the micro-scale is accompanied by specific boundary conditions that

satisfy the extended Hill-Mandel condition. In computational homogenization

it is assumed that the average of the microscopic chemical potential equals to

the macroscopic chemical potential and the gradient of the microscopic chemical

potential to be equal to the gradient of the macroscopic chemical potential.

∇ · j + ċ = 0 , in Ω� ,

〈µ〉 = µ̄ , in Ω� ,

〈∇µ〉 = ∇µ̄ , in Ω� .

(3.8)

The constitutive response of the microscopic mass flux j = −M ·∇µ and µ =

Λ(c − c0) are the same as used in the DNS. By using the equivalence of virtual

power between the micro-scale and the macroscopic material point x̄ (the extended

Hill-Mandel conditions) the macroscopic flux and concentration can be obtained
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from the micro-scale fields as

j̄ =
〈
j − ċ(x− x̄)

〉
, and ċ =

〈
ċ
〉
. (3.9)

Despite of its robustness, computational homogenization is still very expensive

in solving a transient mass diffusion problem, since it requires the solution of

a microscopic problem (3.8) at each macroscopic point x̄ at each time instance

(increment). For more details on the transient computational homogenization and

its solution schemes, the reader is referred to [8, 9].

3.2.3 Enriched-Continuum

To alleviate the computational cost of the transient computational homogenization

scheme, for linear problems, a model reduction technique was presented for heat

conduction in [67], which provides an enriched-continuum at the macro-scale. It

replaces the microscopic problem (3.8) with a set of uncoupled ordinary differential

equations by projecting the weak Galerkin form of (3.8) onto an orthogonal set

of reduced basis functions Φ˜, here called enrichment-functions. The microscopic

chemical potential field is written in terms of the macroscopic quantities and the

enrichment-functions as

µ(x) = S
(
µ̄+ ∇µ̄ · (x− x̄)

)
+

Nq∑
k=1

Φ(k)(x)η(k) , (3.10)

where η(k), called enrichment-variables, are the coefficients of the corresponding

enrichment-function Φ(k). Nq is the number of enrichment-functions used, which

is much smaller than the number of degrees of freedom N used to solve the mi-

croscopic problem (3.8) in computational homogenization, i.e. , Nq � N . S rep-

resents the steady-state counter part of the Φ(k) and it is obtained through static-

condensation. It maps the loading applied on the boundary of the micro-scale to

the inside of the micro-scale and in its discrete form, S has the dimension of free

times prescribed d.o.f. This reduction in the number of the degrees of freedom

at each macroscopic point x̄ provides a significant reduction in computational

time. The effective macroscopic transient mass balance equation remains consis-

tent with the one used in transient computational homogenization scheme, i.e. ,

equation (3.6). However, the expression for the macroscopic mass flux j̄ and the

macroscopic rate of change of concentration field ċ are now written in terms of the
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(reduced) enrichment-variables η˜ i.e. ,

j̄ = −a˜T η̇˜−B ·∇µ̄− c ˙̄µ−C ·∇ ˙̄µ , (3.11)

and

ċ = d˜T η̇˜+ e ·∇µ̄+ f ˙̄µ+ f ·∇ ˙̄µ . (3.12)

The coefficients in (3.11) and (3.12) are computed only once for a given microstruc-

ture in an off-line computation stage and used at the macro-scale during the on-line

stage where µ̄ and η˜ are solved for. A detailed derivation of the expressions for the

coefficients in equation (3.11) and (3.12) are provided in Appendix A.1 for mass

diffusion problems. For more details on the enriched-continuum formulation and

its derivation the readers are directed to our prior work on heat conduction [67].

Through model reduction of the micro-scale problem, evolution equations for η˜
emerge, which are a set of (uncoupled) ordinary differential equations, given by

η̇˜ = −αη˜−
∗
a˜ ·∇ ˙̄µ−

∗
d˜ ˙̄µ , (3.13)

where α is the diagonal matrix of size (Nq×Nq) containing the eigenvalues which

are obtained by solving a generalized eigenvalue problem at the micro-scale during

the off-line stage, expressions for
∗
a˜ and

∗
d˜ are given in Appendix A.1. Equations

(3.6), (3.11), (3.12) and (3.13) represent the enriched-continuum model capturing

the diffusion problem in the relaxed separation of scales regime (3.1). Next, we

discuss the solution methods for the set of equations for the enriched-continuum.

3.3 Solution Methods

In this section, first the time integration schemes are presented for the macroscopic

variable µ̄ and the enrichment-variables η˜. Then, the multi-field and the internal-

variable solution methods are derived.

3.3.1 Time Integration Schemes

The rate of change of the macroscopic chemical potential ˙̄µ is integrated in time

using a backward-Euler time integration scheme. For example, the general equa-

tion

˙̄µ = F(t) , (3.14)
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can be discretized as
µ̄n+1 − µ̄n

∆t
= F(tn+1) . (3.15)

In the enriched-continuum formulation, the microscopic transient effects are cap-

tured at the macro-scale through the enrichment-variables η˜. This allows to com-

pute the transient effects, present at the micro-scale, on a coarse macroscopic

mesh. In the internal-variable solution method, the internal-variables η˜ are con-

densed out of the final system of equations, therefore different time integration

schemes can be used for equations (3.6) and (3.13). Following the literature on

visco-elasticity, as recalled in [68], a one-step second-order accurate time integrator

can be obtained by writing equation (3.13) in a convolution form

η˜ = exp[−αt]
∫ t

0

exp[αs]

[
−
∗
a˜ ·∇ ˙̄µ(s)−

∗
d˜ ˙̄µ(s)

]
ds . (3.16)

Using the semi-group property of an exponential and the additive property of an

integral, the approximation in (3.16) can be written as

η˜n+1 = η˜n exp[−α∆t] +

∫ tn+1

tn
exp[−α(t+∆t−s)]

[
−
∗
a˜ ·∇ ˙̄µ(s)−

∗
d˜ ˙̄µ(s)

]
ds . (3.17)

A midpoint approximation of the integral in equation (3.17) provides a one-step

second-order accurate time integration scheme to evaluate η˜n+1,

η˜n+1 = η˜n exp[−α∆t] + exp[−α∆t/2]
[
−
∗
a˜ · (∇µ̄n+1 −∇µ̄n)−

∗
d˜(µ̄n+1 − µ̄n)

]
,

(3.18)

which, as argued in [68], is unconditionally stable. This second-order accurate

scheme will be compared to the first-order accurate backward-Euler scheme for

which the approximation for η˜n+1 is given by

η˜n+1 = (I + ∆tα )−1

[
η˜n −

∗
a˜ · (∇µ̄n+1 −∇µ̄n)−

∗
d˜(µ̄n+1 − µ̄n)

]
. (3.19)

3.3.2 Multi-Field Method

In a multi-field approach, the primary field µ̄ as well as the enrichment field η˜,
are discretized on a finite element mesh. A combined residual Q(µ̄, δµ̄, η˜, δη˜) is

formulated by multiplying the macroscopic mass balance equation (3.6) and the

evolution equation (3.13) with the appropriate admissible test functions δµ̄ and
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δη˜, respectively

Q(µ̄, δµ̄; η˜, δη˜) = R(µ̄, δµ̄) + E(η˜, δη˜) = 0

=

∫
Ω

δµ̄
(
∇ · j̄ + ċ

)
dv +

∫
Ω

δη˜
(
η̇˜+ αη˜+

∗
a˜ ·∇ ˙̄µ+

∗
d˜ ˙̄µ

)
dv = 0 .

(3.20)

where, R(µ̄, δµ̄) and E(η˜, δη˜) are the individual residuals for the weighted residual

form of the equations (3.6) and (3.13). Integrating by parts and applying the

divergence theorem on R(µ̄, δµ̄), provides the weak form as follows

Q(µ̄, δµ̄; η˜, δη˜) = −
∫

Ω

∇δµ̄ · j̄ dv +

∫
Ω

δµ̄ċdv +

∫
∂Ω

δµ̄jnda

+

∫
Ω

δη˜
(
η̇˜+ αη˜+

∗
a˜ ·∇ ˙̄µ+

∗
d˜ ˙̄µ

)
dv = 0 ,

(3.21)

where jn = −j̄ ·n is the mass flux through the macroscopic boundary ∂Ωj, n is the

outward unit normal, dv and da is the small differential volume and area elements

associated to the domain Ω. Substituting the constitutive expressions (3.11) and

(3.12) for the macroscopic flux j̄ and the macroscopic chemical concentration rate

ċ yields a coupled system in terms of µ̄ and η˜,
Q(µ̄, δµ̄; η˜, δη˜) =

∫
Ω

∇δµ̄ ·
[
a˜T η̇˜+B ·∇µ̄+ c ˙̄µ+C ·∇ ˙̄µ

]
dv

+

∫
Ω

δµ̄
[
d˜T η̇˜+ e ·∇µ̄+ f ˙̄µ+ f ·∇ ˙̄µ

]
dv

+

∫
Ω

δη˜
(
η̇˜+ αη˜+

∗
a˜ ·∇ ˙̄µ+

∗
d˜ ˙̄µ

)
dv +

∫
∂Ω

δµ̄jnda = 0 .

(3.22)

3.3.2.1 Finite element implementation

In the multi-field solution method, the macroscopic variable µ̄ and the enrichment-

variables η˜ are interpolated using the finite element nodal shape functions

µ̄ =
Ne∑
I=1

N I µ̄I = N˜ Tµ̄ µ̄˜, and η˜ =
Ne∑
I=1

N Iη˜I = N T
η˜ {η} , (3.23)

where, N I is the shape function value associated to the I-th node of an element

and Ne is the number of nodes in an element. N˜ µ̄ and N η˜ are the column and
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matrix, respectively, containing the respective shape functions and µ̄˜ is the column

of the degrees of freedom of µ̄, while {η} = {η(1)
1 ..η

(1)
Nq , η

(2)
1 ..η

(2)
Nq , ..., η

(Ne)
1 ..η

(Ne)
Nq } is

the column vector of degrees of freedom of the vector fields η˜ containing the nodal

enrichment degree of freedoms. Equation (3.22), can then be written in discrete

form as

δµ̄˜T (B 1 + E 1)︸ ︷︷ ︸
K

µ̄˜ + δµ̄˜T (C 1 + C 2 + F 1 + F 2)︸ ︷︷ ︸
M

˙̄˜µ+ δµ̄˜T (A +D )︸ ︷︷ ︸
N

˙{η}+

δ{η}TE ˙{η}+ δ{η}TA{η}+ δ{η}T
(
∗
AT +

∗
DT

)
︸ ︷︷ ︸

∗
NT

˙̄˜µ = δµ̄˜TF˜ µ̄ . (3.24)

The matrices in the above equation are given by

A =
∫

Ω
N T

η˜a˜T ·∇N˜ µ̄dv , B 1 =
∫

Ω
(∇N˜ Tµ̄ ·B) ·∇N˜ µ̄dv ,

C 1 =
∫

Ω
N˜ Tµ̄c ·∇N˜ µ̄dv , C 2 =

∫
Ω

(∇N˜ Tµ̄ ·C) ·∇N˜ µ̄dv ,

D =
∫

Ω
N T

η˜ d˜TN˜ µ̄dv , E 1 =
∫

Ω
∇N˜ Tµ̄ · eN˜ µ̄dv ,

F 1 =
∫

Ω
N˜ Tµ̄fN˜ µ̄dv , F 2 =

∫
Ω
∇N˜ Tµ̄ · fN˜ µ̄dv ,

E =
∫

Ω
N T

η˜N η˜ dv , A =
∫

Ω
N T

η˜αN η˜ dv ,

F˜ µ̄ = −
∫
∂Ω
N˜ Tµ̄ jnnda ,

∗
D =

∫
Ω
N T

η˜
∗
d˜ TN˜ µ̄dv ,

∗
A =

∫
Ω
N T

η˜
∗
a˜ T ·∇N˜ µ̄dv .

Taking into account that equation (3.24) should hold for all admissible δµ̄˜ and

δ{η} provides

K µ̄˜ + M ˙̄˜µ+ N ˙{η} = F˜ µ̄,∗
NT ˙̄˜µ+ E ˙{η}+A{η} = 0˜.

(3.25)

In the multi-field method, ˙{η} appears in the final equation together with ˙̄µ,

which suggests the same time integration scheme for both variables. Selecting the

backward-Euler time integration scheme (3.15) for both ˙̄µ and ˙{η}, we obtain

∆tK µ̄˜n+1 + M(µ̄˜n+1 − µ̄˜n) + N({η}n+1 − {η}n) = −∆tF˜ µ̄, (3.26)

∗
NT (µ̄˜n+1 − µ̄˜n) + ∆tA{η}n+1 + E ({η}n+1 − {η}n) = 0˜ . (3.27)
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Rearranging terms to gather all the unknowns at time tn+1 on the left hand side,

the coupled system of equations to be solved at each time step can be written as∆tK + M N
∗
NT ∆tA + E

 µ̄˜n+1

{η}n+1

 =

−∆tF˜ µ̄ + Mµ̄˜n + N{η}n
∗
NT µ̄˜n + E {η}n

 . (3.28)

3.3.3 Internal-Variable method

In the internal-variable method, the macroscopic chemical potential µ̄ is inter-

polated using finite element nodal shape functions, while the evolution equation

(3.13) for η̇˜ is integrated at the macroscopic Gauss quadrature points. The residual

R(µ̄, δµ̄) is built by multiplying equation (3.6) with an admissible test function δµ̄

R(µ̄, δµ̄) =

∫
Ω

δµ̄(∇ · j̄ + ċ)dv = 0 , (3.29)

which, after applying integration by parts and the divergence theorem, takes the

following form

R(µ̄, δµ̄) = −
∫

Ω

∇δµ̄ · j̄ dv +

∫
Ω

δµ̄ċdv +

∫
∂Ω

δµ̄jnda = 0 . (3.30)

Substituting the expressions for the macroscopic flux from equation (3.11) and

the concentration rate from equation (3.12), the weak form of equation (3.30) can

then be written as

R(µ̄, δµ̄) =

∫
Ω

∇δµ̄ ·
[
a˜T η̇˜+B ·∇µ̄+ c ˙̄µ+C ·∇ ˙̄µ

]
dv

+

∫
Ω

δµ̄
[
d˜T η̇˜+ e ·∇µ̄+ f ˙̄µ+ f ·∇ ˙̄µ

]
dv +

∫
∂Ω

δµ̄jnda = 0 .

(3.31)

3.3.3.1 Finite element implementation

Here, as an example, the derivation is performed using the backward-Euler time

integration scheme for both µ̄ and η˜; a similar derivation applies to the integral

form given by equation (3.18). Using the finite element discretization (3.23) only
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for µ̄, equation (3.31) takes the following form

∫
Ω

∇N˜ Tµ̄δµ˜ · (a˜Tη˜n+1)dv +

∫
Ω

N˜ Tµ̄δµ˜(d˜Tη˜n+1)dv

+ δµ˜T [∆tB + c + C + ∆tE + f + F ] µ̄˜n+1

= −∆t

∫
∂Ω

N˜ Tµ̄δµ˜jn+1
n da+ δµ˜TA˜n + δµ˜TD˜n

+ δµ˜T [c + C + f + F ] µ̄˜n, (3.32)

where the matrices are calculated using

B =
∫

Ω
∇N˜ Tµ̄ ·B ·∇N˜ µ̄dv , c =

∫
Ω
∇N˜ Tµ̄cN˜ µ̄dv , C =

∫
Ω
∇N˜ Tµ̄ ·C ·∇N˜ µ̄dv ,

E =
∫

Ω
N˜ Tµ̄e ·∇N˜ µ̄dv , f =

∫
Ω
N˜ Tµ̄fN˜ µ̄dv , F =

∫
Ω
N˜ Tµ̄f ·∇N˜ µ̄dv ,

A˜n =
∫

Ω
∇N˜ Tµ̄ · ∗a˜ η˜ndv , D˜n =

∫
Ω
N˜ Tµ̄

∗
d˜ η˜ndv .

Next, substitution of the expression for η˜n+1 from (3.19) into the above equation

leads to

δµ˜T [∆t(B + E) + c + C + f + F + 1A + 2A + 4A + 5A
]︸ ︷︷ ︸

K

µ̄˜n+1

= δµ˜TA˜n + δµ˜TD˜n + δµ˜T 3A˜n + δµ˜T 6A˜n + δµ˜T [c + C + f + F ] µ̄˜n︸ ︷︷ ︸
δµ˜T F˜intn

+

−∆t

∫
∂Ω

N˜ Tµ̄˜ δµ˜ jn+1
n da︸ ︷︷ ︸

δµ˜T F˜extn+1

(3.33)

where the finite element matrices are recognized as

1A =
∫

Ω
∇N˜ Tµ̄ · (a˜TA ∗a˜) ·∇N˜ µ̄dv, 2A =

∫
Ω
∇N˜ Tµ̄ · (a˜TA

∗
d˜)N˜ µ̄dv,

3A˜n =
∫

Ω
∇N˜ Tµ̄ · (a˜TAη˜n)dv, 4A˜ =

∫
Ω
N˜ Tµ̄ (d˜TA ∗a˜) ·∇N˜ µ̄dv,

5A˜ =
∫

Ω
N˜ Tµ̄ (d˜TA

∗
d˜)N˜ µ̄dv, 6A˜n =

∫
Ω
N˜ Tµ̄ (d˜TAη˜n)dv.

here A = (I + ∆tα )−1. Finally, taking into account that equation (3.33) should

hold for all δµ˜, the system of linear equations to be solved at each time step is

given by

K µ̄˜n+1 = F˜extn+1 + F˜intn. (3.34)
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Once the solution for the chemical potential field µ̄˜n+1 is known, η˜n+1 is calculated

using equation (3.19) (or (3.18) if the second-order accurate scheme is used for η̇˜)
at the Gauss integration point.

3.4 Numerical Examples

Numerical examples are conducted for species diffusion in a heterogeneous material

with high contrast in properties, with slower diffusion in the inclusion than in

the matrix. The microscopic domain is chosen to be a square unit-cell with a

single centered circular inclusion, as shown in Figure 3.3. A chemical potential

ˆ̄µ, harmonically varying in time is prescribed on the left side of the macroscopic

boundary ∂Ωµ̄ while a zero-flux boundary condition is applied on the top, right

and bottom sides of the macroscopic boundary ∂Ωj. The prescribed chemical

potential field and the boundary fluxes are given by

ˆ̄µ(t) = µ̄max(1− ax2) sin(ωt) , on ∂Ωµ̄ , ∀x2 ∈ [0, Lx2 ]

jn = −j̄ · n = 0 , on ∂Ωj .
(3.35)

µ̄max is the maximum achievable chemical potential in the matrix, given by µ̄max =

Λ(cmax− c0), where Λ = kbT/c0 is the chemical modulus, cmax and c0 = 0.19cmax is

the maximum and reference concentration values in the matrix, respectively. Using

a non-zero parameter ‘a’ in equation (3.35) implies that the chemical potential

field can be linearly varied along ∂Ωµ̄; in (3.35) ω = 2π
T

is the angular loading

frequency and T is the total loading time. The material properties, length scales

and the loading conditions are such that the relaxed separation of scales (3.1) is

satisfied. The default parameters for the geometry, material and mesh are given

in Table 3.1. To obtain the enrichment-functions and construct the coefficient

terms for equations (3.11), (3.12) and (3.13), according to the expressions given

in Appendix A.1, an eigenvalue problem with the periodic boundary conditions

is solved on the unit-cell. The eigenvectors corresponding to the relatively higher

values of the coupling terms d˜ and a˜ are chosen to constitute a reduced basis set;

for more discussion on the selection of the reduced basis see [67]. The selected

enrichment-functions Φ(k) for the considered unit-cell are shown in Figure 3.4. To

solve the eigenvalue problem, a converged unit-cell mesh consisting of∼ 4400 linear

triangular elements (∼ 2200 nodes) was used. The DNS domain was discretized

accordingly, with approximately the same number of linear triangular elements

in each unit-cell. The macroscopic homogenized domain Ω, replacing the DNS
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µ =−1.3 0 1.3
×10(3) [Jmol−1]

τ
(1) = 480.69 [s] τ

(6) = 91.01 [s] τ
(15) = 36.87 [s] τ

(30) = 19.73 [s] τ
(51) = 12.21 [s] τ

(74) = 8.25 [s]

Φ(1) Φ(6) Φ(15) Φ(30) Φ(51) Φ(74)

Figure 3.4: The selected enrichment-functions Φ(k) obtained by solving the gener-

alized eigenvalue problem (A.7) for mass diffusion equation (3.8). An associated

decay/rise time τ (k) = 1
α(k) , with α(k) the k-th eigenvalue, is also given for each

enrichment-function Φ(k).

domain, is discretized with rectangular four node bi-linear elements for both µ̄ and

η˜ in the multi-field method, or for µ̄ only in the internal variable method. The

effect of the macroscopic mesh size on the homogenized results will be discussed in

section 3.4.3. The smallest and the largest element size in the macroscopic domain

are ` and 10`, respectively. A default time step size of ∆t = 3.6[s] is used in all

the simulations unless otherwise stated.

3.4.1 Accuracy of the Time Integration Schemes for the

Internal-Variable Method

In the internal variable method, the time integration for ˙̄µ and η̇˜ can be chosen

independently. In section 3.3, two different time integration schemes for the ap-

proximation of η̇˜ were presented, i.e. , a second-order accurate approximation in

equation (3.18) and a first-order accurate approximation in equation (3.19). In

this regard, simulations were performed using the internal-variable method on a

mesh of nelx1 × nelx2 = 50× 5 elements, where nelx1 and nelx2 are the number of

elements in x1 and x2 direction, respectively. For each time integration scheme, a

reference solution η˜(1)
ref (t), which is the column of enrichment-variables in time, is

taken as the one with a time step size of ∆t = 3.6× 10−2[s]. Then, a relative error

for the first enrichment-variable η˜(1)(t) is computed by

err∆t :=
||η˜(1)(t)− η˜(1)

ref (t)||

||η˜(1)
ref (t)||

. (3.36)

where, || • || is the vector Frobenius norm. The enrichment variable η˜(1)(t) was

stored at the Gauss integration point located at x = (4.2, 4.2) × 10−4[m] in the
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Figure 3.5: Error analysis for the local time integration schemes, to be used with

the internal variable method. The one step second-order accurate time integrator,

equation (3.18) reveals a higher accuracy than the first-order backward-Euler time

integrator, (3.19). The expression for err∆t is given in equation (3.36).

first element. In this example, a characteristic element length `e = 1 × 10−2[m]

was used and the time step size ∆t was varied resulting in different values of the

Fourier number Fo = Deff11
∆t
`2e

, where Deff11 is the first component of the effective

macroscopic diffusivity tensor Deff = ΛB, the effective mobility B is given in

(A.9). The results are shown in Figure 3.5. As expected, the backward-Euler

first-order time integration scheme converges with a rate of convergence equal to

one, while the time integration scheme given in equation (3.18) converges with a

rate of convergence of almost two, providing a more accurate approximation of η̇˜.
However, the second-order method changes towards to first-order accuracy, which

due to the backward-Euler time integration scheme used at the macro-scale which

limits the overall convergence rate. For example, for the default time step size of

∆t = 3.6[s], the second-order scheme provides three orders more accurate result

than the backward-Euler time integration method. Since the second-order scheme

given by equation (3.18) is a one-step time integration scheme, no extra memory

or computational costs are associated with it. Therefore, it is suggested to use the

second-order accurate time integration scheme whenever possible to capture the

transient effects more accurately.

3.4.2 Homogenized Solution

Next, the results computed using the homogenized enriched-continuum formula-

tion are compared to the direct numerical simulations (DNS). To do so, the DNS
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Figure 3.6: Comparison between the macroscopic concentration rate ċ(x̄, t), com-

puted with equation (3.12), and the DNS solution 〈 µ̇
Λ
〉λ averaged over the unit-cell

sized domain λ around a point x = x̄ = (2.5, 2.5) × 10−2[m]. The homogenized

solution is computed using the internal-variable method and plotted with a blue

marker every 25th time step.

solution µ(x, t) is averaged over the heterogeneous unit-cell sized domain λ around

the point x = (2.5, 2.5)× 10−2[m], as shown in Figure 3.3 with a small square. In

this example, the homogenized domain was discretized with nelx1×nelx2 = 10×3

elements, with four Gauss quadrature points (ngp) per element. Figure 3.6 shows

the time evolution of the macroscopic concentration rate ċ(x̄, t), given by equation

(3.12), and the averaged DNS solution 〈 µ̇
Λ
〉λ . These results are in perfect agree-

ment with each other, which demonstrates the ability of the enriched-continuum

formulation to capture the transient DNS solution.

3.4.3 Macroscopic Discretization Effect

In this section, the effect of the macroscopic mesh size (in both x1- and x2- di-

rections), on the accuracy of the macroscopic solution, µ̄ is examined. The DNS

solution is taken as the reference. The homogenization level ‘h’ is defined as the

ratio between the number of unit-cells ‘nuc’ composing the DNS domain to the

number of integration points to be solved in the homogenized domain. This pro-

vides an indicator for the trade-off between the accuracy and the computational

cost. A higher h value indicates more homogenization, and thus lower computa-

tional costs. In a two-dimensional setting, with a quadrilateral discretization, the

homogenization level can be written as

h :=
nuc

nelx1 × nelx2 × ngp
. (3.37)
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In the subsequent simulations, the parameters, nuc = 1000 and ngp = 4 per

element are fixed. The number of elements in x1- and x2-directions, nelx1 and

nelx2 , are varied, resulting in a different value of h.

In figure 3.7, the heterogeneous chemical potential field µ, calculated with the

direct numerical simulation (DNS) is compared with the homogenized chemical

potential field µ, obtained by the enriched-continuum formulation solved with

the multi-field method. The homogenization level h given in equation (3.37)

is increased by decreasing the number of elements in the macroscopic domain,

while keeping the ratio nelx2 =
nelx1

10
fixed. Different numbers of elements in

x1-direction nelx1 = 50, 40, 30, 20, 10 imply the following homogenization levels

h = 1, 1.56, 2.78, 6.25, 25. At h = 1, where the number of unit-cells is the same

in both the heterogeneous and homogenized domains, the enriched-continuum

response captures the DNS almost perfectly. In this example, due to a non-

homogeneous boundary condition on ∂Ωµ, as given in equation (3.35), the ho-

mogenization problem requires high finite element density in x2-direction in the

vicinity of ∂Ωµ, lower element density is needed in x1-direction.

3.4.4 Computational Efficiency

Next, the efficiency of the proposed approach compared to the direct numeri-

cal simulations (DNS) and conventional computational transient homogenization

(CTH) scheme is investigated. All simulations were performed on a computer

with a core-i5@3.2GHz processor and 8Gb RAM using Matlab 2018b. It can be

seen in Figure 3.8, that the CPU time increases for all the homogenization meth-

ods as h → 1. The CTH is the most expensive among the considered methods,

since (when implemented in its standard form) for each time increment at each

macroscopic Gauss quadrature point it requires the solution of a micro-scale fi-

nite element problem (one computation of the effective flux and two sensitivity

problems) followed by the assembly of the internal flux vector. For the complete

solution procedure of the CTH see [8] and [9]. For low levels of homogenization, it

becomes even more expensive than the DNS problem.

Since the enriched-continuum formulation replaces the microscopic finite el-

ement problem with a set of ordinary differential equations, the computational

gains are remarkably high. The internal-variable solution method is a little more

expensive than the multi-field method because it requires the assembly of the in-

ternal flux vector at each time increment using the data from the previous time

step. In the internal variable method, the enrichment-variables are computed at

67



Chapter 3. Two-scale Analysis of Transient Diffusion Problems Through a
Homogenized Enriched-Continuum

µ
=
−
1
.1

0
1
.1×
10

8
[J
m
ol

−
1]

D
irect

N
u
m

erica
l

S
im

u
la

tio
n

H
o
m

o
g
en

ized
S
o
lu

tio
n

h
=

1

H
o
m

o
g
en

ized
S
o
lu

tio
n

h
=

1
.56

H
o
m

o
g
en

ized
S
o
lu

tio
n

h
=

2
.78

H
o
m

o
g
en

ized
S
o
lu

tio
n

h
=

6
.25

H
o
m

o
g
en

ized
S
o
lu

tio
n

h
=

25

F
igu

re
3.7:

T
h
e

ch
em

ical
p

oten
tial

fi
eld

µ
in

th
e

h
eterogen

eou
s

d
om

ain
(top

p
lot)

ob
tain

ed
b
y

th
e

d
irect

n
u
m

erical
sim

u
lation

(D
N

S
).

T
h
e

h
om

ogen
ized

ch
em

ical
p

oten
tial

fi
eld

µ
ob

tain
ed

b
y

en
rich

ed
-con

tin
u
u
m

form
u
lation

solved
u
sin

g
m

u
lti-fi

eld
m

eth
o
d

w
ith

in
creasin

g
h
om

ogen
ization

levels
h

(from
th

e
secon

d
p
lot

to
th

e
b

ottom
).

68



Chapter 3. Two-scale Analysis of Transient Diffusion Problems Through a
Homogenized Enriched-Continuum

1 5 10 15 20 25

10
0

10
2

10
4

10
6

10
8

Homogenization level - h

C
P

U
T

im
e

[s
]

CTH
Internal-variable
Multi-field
DNS

Figure 3.8: Computational effort in CPU time for different solution techniques

(internal-variable and multi-field) for the enriched-continuum formulation, con-

ventional computational transient homogenization (CTH) and direct numerical

simulation (DNS).

the macroscopic Gauss quadrature points entailing higher memory requirements

than the multi-field method, since the total number of integration points in the

model is usually (much) larger than the total number of finite element nodes.

The multi-field method is the least expensive because the finite element assembly

is performed only once and it does not require the assembly of the internal flux

vector at each time step. Moreover, if a reordering algorithm is used, such as

Cuthill-McKee [69], the direct linear solvers can be optimized resulting in even

lower computation times. The CPU time comparison has been performed for the

same time integration scheme, i.e. , backward-Euler, for all considered methods.

Notice, however, that as discussed before, the internal variable methods allows for

more flexibility, e.g. , in the choice of different time integration schemes.

3.5 Conclusions

In this work, the enriched-continuum formulation, which emerges from model re-

duction at the micro-scale, is applied to the solution of a heterogeneous diffusion

boundary value problem with pronounced microstructural transient effects. Dif-

ferent solution methods for the enriched-continuum transient diffusion problem

formulation are discussed. These solution methods make use of two discrete spa-

tial discretization schemes for the enrichment-variables. The primary macroscopic
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field variable is always interpolated using the finite element shape functions, while

the field of enrichment-variables can either be discretized using finite elements,

leading to a multi-field solution method, or evaluated at the Gauss quadrature

points, leading to an internal-variable solution method. To capture the transient

effects more accurately, a one-step second-order accurate time integration scheme

is proposed for the internal-variable method. Results for the enriched-continuum

formulation with the proposed solution methods are compared with the conven-

tional computational transient homogenization (CTH) scheme and direct numeri-

cal simulations (DNS). The proposed solution methods provide the same accuracy

with respect to DNS as the expensive CTH with high gains in computational times.

The CPU time and the memory requirements for the multi-field method was the

lowest among the proposed solution methods.
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Chapter 4. Enriched-Continuum for Multi-scale Transient Diffusion Coupled to
Mechanics

Abstract

In this chapter, we present a computationally efficient homogenization technique

for linear coupled diffusion-mechanics problems. It considers a linear chemo-

mechanical material model at the fine scale, and relies on a full separation of

scales between the time scales governing diffusion and mechanical phenomena,

and a relaxed separation of scales for diffusion between the matrix and the inclu-

sion. When the characteristic time scales associated with mass diffusion are large

compared to those linked to the deformation, the mechanical problem can consid-

ered to be quasi-static, and a full separation of scales can be assumed, whereas

the diffusion problem remains transient. Using equivalence of the sum of virtual

powers of internal and transient forces between the micro-scale and the macro-

scale, a homogenization framework is derived for the mass diffusion, while for the

mechanical case, considering its quasi-static nature, the classical equivalence of the

virtual work of internal forces is used instead. Model reduction is then applied at

the micro-scale. Assuming a relaxed separation of scales for diffusion phenomena,

the microscopic fields are split into steady-state and transient parts, for which dis-

tinct reduced bases are extracted, using static condensation for the steady-state

part and the solution of an eigenvalue problem for the transient part. The model

reduction at the micro-scale results in emergent macroscopic enrichment field vari-

ables, evolution of which is described with a set of ordinary differential equations

which are inexpensive to solve. The net result is a coupled diffusion-mechanics

enriched-continuum at the macro-scale. Numerical examples are conducted for the

cathode-electrolyte system characterizing of a lithium-ion battery. The proposed

reduced order homogenization method is shown to be able to capture the coupled

behavior of this system, whereby high computational gains are obtained relative

to a full computational homogenization method.

4.1 Introduction

Coupled diffusion-mechanics problems arise in many application areas, when the

diffusion of solute particles causes volumetric swelling of a host material, inducing

chemical stresses which in turn affect the mass flux [70, 71]. It has a broad range

of applications ranging from biological tissues to microelectromechanical systems

devices. For example, the swelling of brain tissues, known as edema, due to water

diffusion [72] or the bending of thin plates due to chemical saturation [73]. Another
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typical example is the swelling of the active material due to the lithiation process

in lithium-ion batteries [74], which is also governed by coupled diffusion-mechanics

phenomena.

The fundamental physics behind coupled diffusion-mechanics takes place at

the atomic scale where the atomic or ionic diffusion occurs [70, 75]. The diffusion

rate of the solute particles and the swelling of the host material depends on the

atomic size of the materials involved [76] and on the activation energy which causes

the jump of atoms inside the crystal lattice [77]. The jump directions and the

frequencies are affected by the stresses inside the material, which in turn alter the

activation energy and hence the mass flux. At the continuum level, the diffusion of

species are described as driven by the gradient of the chemical potential [78]. The

induced chemical stresses affect the chemical potential, which in turn influences

the mass flux in the material [78–81]; this is known as the Gorsky effect [82].

This chapter addresses the application of coupled diffusion-mechanics described

by the simulation of swelling in lithium-ion batteries. A lithium-ion battery con-

sists of four components: two electrodes - a cathode and an anode, an electrolyte

and the separator. Through an electro-chemical reaction, the chemical energy is

converted to electrical energy in a discharge cycle; the reverse reaction takes place

during the charging cycle. During charging the chemical potential across the cell

forces the lithium-ions to diffuse towards the anode compartment via the elec-

trolyte while passing through the separator [83]. At the anode, the lithium-ions

are deposited in the active particles during an intercalation process which increases

the volume of the active particle. Upon discharging, a similar reaction occurs in

which the lithium in the anode is oxidized into lithium-ions and electrons. The

electrons flow through the external circuit to the cathode and lithium-ions diffuse

towards the cathode where they intercalate into the active particles.

The amount of swelling of the active particles depends on the cathode and

anode materials. For example, swelling in the cathode of up to 6.5% is reported in

different lithium-metal-oxides and up to 10% in lithium-cobalt-oxide [84], Silicon-

based anode active particles can swell up to 300% [85]. Even when the deformation

of cathode materials is small, e.g. , LiCoO2, LiMn2O3 and LiFePO4, the cyclic

lithiation and delithiation of active particles leads to cracks and loss of contact

with the matrix, which gradually results in a capacity loss and eventually failure

of the battery [4, 86]. Hence, to design a longer lifetime and higher energy density

batteries, simulation of coupled diffusion-mechanics is of primary importance [87,

88].
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Most of the work done in the literature on the simulation of coupled diffusion-

mechanics in batteries is based on the pioneering works of Larche and Cahn [89],

in which a framework for solid-state diffusion was developed for compositional

changes in the solid state [74]. In general, due to its multiphysics and multiscale

nature, the simulation of lithium-ion batteries is a challenging task [4]. Analyti-

cal methods for the solution of coupled diffusion-mechanics problems are limited

to simple geometrical shapes [90], therefore approximate solutions using numer-

ical techniques such as finite elements are often required [4]. However, with a

complex microstructures [91] and transient phenomena [92], the direct numerical

simulations (DNS) become prohibitively expensive.

Computational homogenization is a well known technique to reduce the com-

putational costs associated with the modeling of physical phenomena in complex

microstructures [93, 94]. It replaces a highly heterogeneous medium with an equiv-

alent homogeneous one by decomposing the problem into smooth macro-scale and

highly oscillatory micro-scale problems.The effective behavior is computed from

a representative microscopic element (RVE) [95] and transferred to the macro-

scale. The computational homogenization of transient phenomena, as associated

with lithium diffusion in batteries, has been the focus of research recently [66, 92].

Effective responses have to be computed at each macroscopic material point at

each time step, making homogenization of transient phenomena computation-

ally demanding. For a general overview of multi-scale computational modeling

of lithium-ion batteries, see [96, 97].

In this work, we propose a computationally efficient method for the homoge-

nization of coupled diffusion-mechanics for the cathode material of a lithium-ion

battery. The homogenization of the underlying diffusion and mechanical problems

is performed separately by using the method proposed in [92]. For the diffu-

sion problem, equivalence of virtual power (extended Hill-Mandel condition) is

considered, while for the mechanical problem equivalence of virtual work is used

(standard Hill-Mandel). Assuming linear material properties and small strains,

the relaxed separation of scales allows the decomposition of the microscopic fields

into their steady-state and transient parts. The mechanical response relies on

the assumption of full scale separation since the characteristic time of the elastic

deformation for the considered problem is very small compared to the charac-

teristic diffusion time [71, 78]. Moreover, the characteristic diffusion time in the

active material particles is several orders of magnitude larger, than the one of elec-

trolyte (considered here as a matrix in which active particles are embedded) [66].
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Therefore, the lithium-ions travel instantly in the electrolyte as compared to their

diffusion in the active material. This allows for a so-called relaxed separation of

scales, in which diffusive species migrate instantly in the matrix and very slowly

in the inclusions [67]. Next, a model reduction technique, inpired by [43] for

elasto-dynamic problems and applied in [67] to heat conduction problems, can be

performed to extract the reduced bases for the steady-state and transient parts of

the microscopic response. Although mechanical inertia effects can be neglected,

the mechanical deformation is coupled to the transient diffusion, i.e. , it evolves

in time with the concentration field. Hence, a decomposition of the microscopic

displacement field into a steady-state and a transient part is also required.

Through model reduction, the fine scale coupled-diffusion equations are re-

placed by a set of ordinary differential equations for the emergent macroscopic

field variables, giving rise to an enriched-continuum at the macro-scale. These

equations are to be solved at the macro-scale together with the macroscopic mass

and linear momentum conservation and the constitutive effective mass flux, rate

of change of concentration and stress, obtained through the reduced order ho-

mogenization. The resulting enriched-continuum macroscopic problem is compu-

tationally significantly less expensive than the original fully resolved problem or

the direct transient computational homogenization.

4.1.1 Outline

The general framework of the coupled diffusion-mechanics framework is presented

in section 4.2, where the classical formulation in terms of concentration and strain

is summarized. Next, a computationally more convenient formulation expressed in

the terms of the chemical potential and strain is derived. Section 4.3 presents the

homogenization framework, in which the relaxed separation of scales is defined.

The downscaling is performed and the macroscopic effective constitutive responses

are obtained through an upscaling procedure. The model reduction is carried out in

section 4.4. First, a finite element discretization is introduced and the partitioned

equations are shown. The reduced bases are identified, the macroscopic quantities

are written in terms of the coefficients of the reduced bases and finally mode

selection criteria are discussed. Numerical examples for the cathode material of a

lithium-ion battery are presented in section 4.5.
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4.1.2 Symbols and Notation

Macroscopic quantities are represented with a bar on top: for example scalar,

vector and second-order tensor macroscopic quantities are written as a, a, and A,

respectively. Microscopic quantities are represented without a bar; microscopic

scalar, vector and second-order tensorial quantities are written as a, a and A,

respectively. The same Cartesian basis is adopted at the macro and micro scales.

The dot products between two vectors, and between a second-order tensor and a

vector are represented as a·b := aibi andA·a := Aijajei, respectively. A tensorial

dyadic product is denoted as a⊗b := aibjei⊗ej andA⊗a := Aijakei⊗ej⊗ek. The

gradient of a scalar and a vector is defined as ∇a := ∂a
∂xi
ei and ∇a := ∂ai

∂xj
ei ⊗ ej.

Similarly, the divergence operates as ∇ · a := ∂ai
∂xi

and ∇ ·A :=
∂Aij
∂xi
ej. For linear

algebra operations, columns are represented with a tilde underneath a lowercase

letter, e.g. , a˜, and matrices are represented with a bar underneath an uppercase

letter e.g. , A . The matrices and columns of vectors and tensor quantities are

written with bold symbol, for example a matrix of a vector or a tensor quantity is

written as A . A tensorial product between two column arrays of vectors is defined

as a˜T⊗b˜, where

⊗ :=


⊗ 0 . . . 0

0 ⊗ ...
...

. . .

0 0 . . . ⊗

 . (4.1)

The microscopic domain and its boundary are represented by Ω� and ∂Ω�, re-

spectively. The volume average of a microscopic quantity • is defined as〈
•
〉

:=
1

V

∫
Ω�

•dΩ� , (4.2)

where V =
∫

Ω�
dΩ� is the volume of the microscopic domain Ω�.

4.2 Coupled Diffusion-Mechanics Formulation:

Coupled diffusion-mechanics equations describing the fully resolved (heteroge-

neous) problem are presented in this section. The conservation laws and the

boundary conditions are written for the chemical and mechanical problems, fol-

lowed by the derivation of the form of the constitutive equations [78]. First, the

formulation considering the concentration and the displacement (strain) as the
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primary field variables is presented, which requires C1-continuity and is therefore

cumbersome to implement numerically. Next, using a Legendre transform, the pri-

mal field variables are transformed to the chemical potential and strain [92]. This

formulation requires only C0-continuity and standard finite elements can be used

for the implementation. Finally, the material model to be used for the micro-scale

constituents is presented.

4.2.1 Conservation Laws

To take into account the large time scales associated with the mass diffusion prob-

lem a transient mass conservation equation is considered (without the volumetric

source/sink term)

∇ · j + ċ = 0 in Ω , (4.3)

which states that the divergence of the mass flux j in a domain Ω 1 is opposite

to the time rate of the concentration field ċ. Equation (4.3) is supplemented with

Dirichlet and Neumann boundary conditions, plus an initial condition

c = ĉ on ∂Ωĉ ,

j · n = ĵn on ∂Ωĵn
,

c(0) = c0 at t = 0 ,

(4.4)

where ĉ is the prescribed value of the concentration field on the Dirichlet part of the

boundary ∂Ωĉ, and ĵn is the prescribed normal outward mass flux on the Neumann

part of the boundary ∂Ωĵn
such that ∂Ωĉ ∪ ∂Ωĵn

= ∂Ω and ∂Ωĉ ∩ ∂Ωĵn
= ∅. The

initial value of the concentration at time t = 0 is denoted by c0.

Considering the short characteristic times of phenomena associated with the

mechanical problem, it is justified to assume a conservation of linear momentum

neglecting inertial terms, which without volumetric forces reads

∇ · σ = 0 in Ω , (4.5)

requiring the divergence of stress field σ in a body Ω vanish. Conservation of linear

momentum (4.5) is also supplemented with the Dirichlet and Neumann boundary

1Here, the domain Ω is used as a general description of a continuum body and should not be
confused with the description of a microscopic domain Ω� used in computational homogenization.
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conditions

u = û on ∂Ωû ,

σ · n = tn on ∂Ωt̂n
,

(4.6)

where u is the displacement field, û is the prescribed displacement value on the

Dirichlet part of the boundary ∂Ωû, and t̂n is the traction force applied on the

Neumann part of the boundary ∂Ωtn such that ∂Ωû∪∂Ωtn = ∂Ω and ∂Ωû∩∂Ωtn =

∅. Constitutive equations for the mass flux j, the concentration c and the stress

σ are required to close the problem (4.3)–(4.6).

4.2.2 (c, ε) Formulation

Following [78], the dissipation inequality for a coupled diffusion-mechanics problem

can be written as

ϕ = σ : ε̇+ µċ− ψ̇ − j ·∇µ ≥ 0 , (4.7)

where, µ is the chemical potential, ϕ is the dissipation density at a material point

x and ψ̇ is the time derivative of the Helmholtz’s free energy density. For coupled

diffusion-mechanics problems, the Helmholtz’s free energy density ψ depends on

the concentration field c and the strain ε, related to the displacement field u by

ε = sym(∇u) (assuming linear kinematics). Using the chain-rule, its material

time derivative can be written as

ψ̇ = ψ̇(c, ε) =
∂ψ

∂c
ċ+

∂ψ

∂ε
: ε̇ , (4.8)

substituting the expression of ψ̇ from equation (4.8) into the dissipation inequality

(4.7) and rearranging terms yields

ϕ =

(
σ − ∂ψ

∂ε

)
: ε̇+

(
µ− ∂ψ

∂c

)
ċ− j ·∇µ ≥ 0 . (4.9)

In the inequality (4.9), the restriction on the dissipation density to be positive is

partially fulfilled by setting

σ =
∂ψ

∂ε
and µ =

∂ψ

∂c
, (4.10)

which provides, for a given expression for the Helmholtz potential ψ, the constitu-

tive equations for the stress and the chemical potential, respectively. Considering
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a quadratic Helmholtz free energy density [78]

ψ = ψ(c, ε) = 1
2
ε : C : ε+ S : ε(c− c0) + 1

2
Λ(c− c0)2 , (4.11)

results in linear constitutive expressions for the stress and the chemical potential

given by

σ =
∂ψ

∂ε
= C : ε+ S(c− c0) , (4.12)

and

µ =
∂ψ

∂c
= S : ε+ Λ(c− c0) , (4.13)

where C is the elastic stiffness tensor, S the chemical strain modulus tensor, c0 the

initial concentration and Λ is the chemical modulus. The constitutive model based

on energy density function given in equation (4.11) is an alternative approach to

the approach in which the microscopic strain field is decomposed in an elastic and

volumetric swelling part, for more details see [98]. The remaining dissipation term

in (4.9)

− j ·∇µ ≥ 0 , (4.14)

asserts a restriction on the constitutive form of the mass flux j. Here, we use Fick’s

second law which states that the mass flux j depends linearly on the gradient of

the chemical potential ∇µ i.e. ,

j = −M ·∇µ , (4.15)

where M is the second-order mobility tensor which has to be positive definite to

satisfy (4.14). Next, the constitutive equations (4.12), (4.13) and (4.15) can be

introduced in the mass conservation equation (4.3),

∇ · [M ·∇(Λ(c− c0) + S : ε)]− ċ = 0 , (4.16)

and in the conservation of linear momentum (4.5)

∇ · [C : ε+ S(c− c0)] = 0 . (4.17)

The mass and the linear momentum conservation equations (4.16) and (4.17) can

be solved together for the concentration and displacement fields (c,u). Equation

(4.16), however, involves the third-order derivative of u and its numerical solu-

tion therefore requires a C1-continuous finite element formulation. Various other
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solution techniques have also been proposed in the literature for this type of prob-

lems, see for example [92, 99]. In the current work, following [92], a Legendre

transform is performed on the Helmholtz’s free energy density function ψ(c, ε) to

obtain a dual energy density function ζ, for which the primary field variables are

the chemical potential µ and the strain ε.

4.2.3 (µ, ε) Formulation

Now, we derive the constitutive equations for stress σ, concentration c and mass

flux j considering (µ, ε) as the primary field variables. A Legendre transform can

be performed on the Helmholtz’s free energy density function (4.11) to obtain the

dual energy density function ζ

ζ(µ, ε) = ψ(c(µ, ε), ε)− µc(µ, ε) , (4.18)

which is now a function of the chemical potential µ and the strain ε. The consti-

tutive equations for the concentration and the stress fields (c,σ) can be obtained

by the standard Coleman-Noll procedure. Substituting ψ = ζ + µc from (4.18)

into (4.7) provides the dissipation inequality

ϕ = σ : ε̇− ζ̇ − µ̇c− j ·∇µ ≥ 0 . (4.19)

Using the chain-rule, the time derivative of the dual energy density ζ̇ can be

written as

ζ̇(µ, ε) =
∂ζ

∂µ
µ̇+

∂ζ

∂ε
: ε̇ . (4.20)

Substituting the expression for ζ̇, from equation (4.20), into the dissipation in-

equality (4.19) and rearranging terms yields

ϕ =

(
σ − ∂ζ

∂ε

)
: ε̇−

(
c+

∂ζ

∂µ

)
µ̇− j ·∇µ ≥ 0 . (4.21)

From here, the constitutive forms for the stress σ and the concentration field c

are found as

σ =
∂ζ

∂ε
and c = −∂ζ

∂µ
. (4.22)
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Using constitutive equations (4.22) in conjunction with (4.18) and (4.11) provides

the constitutive equations for the stress

σ =
∂ζ

∂ε
=

(
C− S ⊗ S

Λ

)
: ε+

µS

Λ
, (4.23)

and for the concentration field

c = −∂ζ
∂µ

=
µ

Λ
− S

Λ
: ε+ c0 . (4.24)

For the remaining dissipation term −j ·∇µ ≥ 0, again Fick’s second law (4.15)

can be used. Introducing the stress (4.23), the concentration field (4.24) and the

mass flux (4.15) into the mass conservation (4.3) gives

∇ · (M ·∇µ) +
S : ε̇

Λ
− µ̇

Λ
= 0 , (4.25)

while the conservation of linear momentum (4.5) reads

∇ ·
[
(C− S ⊗ S

Λ
) : ε+

µS

Λ

]
= 0 , (4.26)

Equations (4.25) and (4.26) are solved for the chemical potential µ and the dis-

placement u. The requirement of C1-continuity on u is now relaxed by using the

(µ, ε) formulation, as can be seen from (4.26), for which a standard C0-continuous

finite element formulation can be used.

4.2.4 Linear Isotropic Constitutive Model

A isotropic material model is considered for both mass diffusion and mechanical

problems. The isotropic mobility tensor is given by

M = MI , (4.27)

where I is the second order identity tensor and M is the scalar mobility coefficient.

The chemical strain modulus S is assumed to have the following form [71]

S = −γKI , (4.28)

where K = 3λ+2G
3

is the bulk modulus, λ, G are Lamé’s constants and γ is the

partial molar volume of the material, which is the volumetric increase of a material
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by the introduction of one mole of other substance. The linear elastic stiffness

tensor C is expressed in terms of Lamé’s constants as

C = λI ⊗ I + 2GI , (4.29)

where I is the fourth order identity tensor. Next, the computational homoge-

nization framework for the two-scale coupled diffusion-mechanics problem will be

presented.

4.3 Computational Homogenization

In this section, the computational homogenization of a two-scale coupled diffusion-

mechanics problem is presented. First, the separation of scales regimes are defined

for the mass diffusion and mechanics problems. Then, the governing equations at

the micro- and the macro-scales are presented. The boundary conditions on the

microscopic domain are defined through the constraints imposed by the downscal-

ing relations. Finally, the upscaling is performed via equivalence of the virtual

powers of the macro- and micro-scales providing the constitutive forms for the

macroscopic quantities.

The solution of the coupled diffusion mechanics problem on the fully resolved

heterogeneous domain, as shown in Figure 4.1(a), is referred to as direct numerical

simulation (DNS). Due to the computational expense of the DNS problem it is

preferred, when possible, to divide the problem into micro and macro scales and

solve a homogenized problem in a two-scale manner, as shown in Figure 4.1(b).

The homogenizability of the DNS problem depends on the separation of scales,

which is discussed next.

4.3.1 Separation of Scales

The separation of scales can be defined through the material properties of the con-

stituents, their characteristic length and time scales, and the characteristic scales

of the physical phenomena under consideration [28]. For the coupled problem

studied here, coupled scales for the mass diffusion, have to be considered, while for

the mechanical phenomena a full separation of scales can be assumed. For more

details on separation of scales see for example [28].

Mechanics: For the mechanical problem, a full separation of scales is adopted since

the microscopic characteristic length scales (`i < `m) are much smaller than the
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macroscopic characteristic length scale L, which is typically the length over which

the macroscopic fields vary over time i.e. ,

(`i < `m)� L , (4.30)

where `m and `i are the characteristic lengths of the microstructural components

(matrix and inclusions, respectively) and L is the characteristic size of the macro-

scopic domain.

Mass diffusion: In the mass diffusion problem, the separation of scales can be

quantified based on the characteristic times associated with each material con-

stituent. The characteristic times for the matrix tm and the inclusion ti can be

written as

tm :=
`2
m

Dm
and ti :=

`2
i

Di
, (4.31)

where Dm and Di are the mass diffusivity coefficients of the matrix and inclusions,

respectively. In the present work, a relaxed separation of scales is considered for

the diffusion problem, which is a special case of coupled scales. In the regime of

relaxed separation of scales, the characteristic diffusion time of the matrix tm is

very small compared to the one of the inclusion ti, and the macroscopic loading

time T :

tm � (T ∼ ti) . (4.32)

A relaxed separation of scales is applicable to the homogenization of mass diffu-

sion problems in lithium-ion batteries, where the lithium-ions diffuse essentially

instantaneously through the electrolyte material (matrix) in contrast to the very

slow diffusion in the active particles (inclusions). The relaxed separation of scales

has a direct implication for the model reduction presented in section 4.4, since it

allows the decomposition of the microscopic solution fields into the steady-state

and transient parts. The separation of scales also indicates whether the transient

terms in the conservation laws at the micro- and macro-scales should be included

or not. These conservation laws are stated next.

4.3.2 Conservation Laws at Micro and Macro-scales

Mass conservation: the mass conservation at the macro-scale reads:

∇ · j̄ + ˙̄c = 0 in Ω , (4.33)
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where j̄ and ˙̄c are the macroscopic mass flux and the macroscopic rate of change of

the concentration field, respectively. To capture the time dependent mass diffusion

behavior inside transient inclusions, the mass conservation is considered at the

micro-scale:

∇ · j + ċ = 0 in Ω� , (4.34)

where j and ċ are the mass flux and the rate of change of concentration at the

micro-scale.

Conservation of Linear Momentum: For the considered problem, mechanical iner-

tia can be neglected, for which the macroscopic linear momentum balance equation

reads:

∇ · σ = 0 in Ω , (4.35)

where σ is the macroscopic stress tensor. Given the full separation of scales for

the mechanical problem, the conservation of linear momentum at the micro-scale

also does not include transient terms neither and reads

∇ · σ = 0 in Ω� . (4.36)

where σ is the microscopic stress tensor.

The constitutive equations for the macroscopic quantities σ, j̄ and ˙̄c are yet

unknown; in the computational homogenization, these are obtained through an

upscaling procedure. The boundary and initial conditions at the macro-scale are

given by the particular problem at hand. At the micro-scale, the constitutive

equation for σ, j and c are assumed to be known, as presented in section 4.2. The

boundary conditions at the micro-scale are obtained by downscaling relations,

which will be presented next.

4.3.3 Downscaling

In first-order computational homogenization, the microscopic fields are approxi-

mated as the first-order Taylor’s series expansion around a macroscopic point x̄.

The chemical potential µ in a microscopic domain Ω� can then be written as

µ(x̄,x, t) := µ̄(x̄, t) + ∇µ̄(x̄, t) · [x− x̄] + µ̃(x̄,x, t) , (4.37)

where µ̄ and ∇µ̄ are the macroscopic chemical potential and its gradient, respec-

tively, and µ̃ is the fluctuation field of the chemical potential at the micro-scale.

The latter is due to the difference in material properties of the constituents, and
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the transient loading conditions at the macro-scale. Similarly, the microscopic dis-

placement field u can also be expressed as the first order Taylor’s series expansion

around a macroscopic point x̄

u(x̄,x, t) := ū(x̄, t) + ∇ū(x̄, t) · [x− x̄] + ũ(x̄,x, t) , (4.38)

where ū and ∇ū are the macroscopic displacement field and its gradient, respec-

tively, and ũ is the microfluctuation of the displacement field.

In computational homogenization, downscaling is referred to as the transfer of

macroscopic quantities to the micro-scale, as shown in Figure 4.1(b). Macroscopic

quantities which are to be transferred to the micro-scale depend on the physical

phenomena under consideration. For instance, in first-order transient computa-

tional homogenization, both for diffusion processes [8] and dynamics [38, 40], both

the primary macroscopic field and its gradient are transferred to the micro-scale.

In a steady-state/static computational homogenization scheme, only the gradient

information needs to be transferred to the micro-scale.

In transient computational homogenization, the first constraint on the micro-

scale solution is that the volume average of the microscopic primary field is enforced

to be equal to the corresponding macroscopic field〈
µ(x̄,x, t)

〉
= µ̄(x̄, t) ,〈

u(x̄,x, t)
〉

= ū(x̄, t) ,
(4.39)

which, by using the definitions (4.37) and (4.38) a chosen positioning of the micro-

scopic domain such that 〈x− x̄〉 = 0, requires that the average of the microfluc-

tuations over the microscopic domain vanishes〈
µ̃(x̄,x, t)

〉
= 0 ,〈

ũ(x̄,x, t)
〉

= 0 .
(4.40)

The second constraint on the microscopic solution fields is that the average of

the microscopic gradient fields should be equal to the corresponding macroscopic

gradients 〈
∇µ(x̄,x, t)

〉
= ∇µ̄(x̄, t) ,〈

∇u(x̄,x, t)
〉

= ∇u(x̄, t) ,
(4.41)
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which by using equation (4.37) and (4.38) and the identity ∇(x− x̄) = I can be

written as 〈
∇µ(x̄,x, t)

〉
= ∇µ̄(x̄, t) +

〈
∇µ̃(x̄,x, t)

〉
,〈

∇u(x̄,x, t)
〉

= ∇ū(x̄, t) +
〈
∇ũ(x̄,x, t)

〉
.

(4.42)

The last terms in the above equations, i.e. , the average of the gradient of the

microfluctuation fields 〈∇µ̃〉 and 〈∇ũ〉 should vanish to satisfy the requirements

(4.41). After applying Gauss’s theorem, these can be written as∫
∂Ω�

µ̃nda = 0 ,∫
∂Ω�

ũ⊗ nda = 0 .

(4.43)

where n is the outward unit-normal vector to the microscopic boundary ∂Ω� with

an infinitesimal surface area da.

Constraints (4.40) can be applied by prescribing the respective fields at one

point in the microscopic domain, along with the elimination of rigid body motion,

to the corresponding macroscopic field values. To apply constraints (4.43), specific

types of boundary conditions are used at the micro-scale. Typical choices for these

boundary conditions are (i) zero fluctuation boundary conditions or (ii) periodic

fluctuation boundary conditions as used later in this work.

4.3.4 Upscaling

Next, we discuss the upscaling relations which provide the constitutive equations

for the macroscopic quantities. In computational homogenization, upscaling refers

to the transfer of information from the micro-scale to the macro-scale by requiring

equality of the macroscopic and volume averaged microscopic (virtual) powers,

known as the (extended) Hill-Mandel conditions in the literature [9, 40, 67]. The

microscopic primary field ansatz e.g. , (4.37) and (4.38), is then injected in the ex-

pression of the virtual power average and the macroscopic quantities are obtained

by applying proper boundary conditions.

Mass Diffusion: The micro-macro scale equivalence of the virtual power due to

mass diffusion

−∇δµ̄ · j̄ + δµ̄ ˙̄c =
〈
−∇δµ · j + δµċ

〉
. (4.44)
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Substituting the variation of the microscopic chemical potential δµ using (4.37) in

the right hand side of (4.44) yields

−∇δµ̄·j̄+δµ̄ ˙̄c =
〈
−∇δµ̄ · j −∇δµ̃ · j + δµ̄ċ+ ∇δµ̄ · (x− x̄)ċ+ δµ̃ċ

〉
. (4.45)

Rearranging the above expression for δµ̄ and δµ̃ yields

−∇δµ̄·j̄+δµ̄ ˙̄c =
〈
−∇δµ̄ · [j − ċ(x− x̄)] + δµ̄ċ

〉
+
〈
−∇δµ̃ · j + δµ̃ċ

〉
. (4.46)

The last term in the above expression, after applying the chain rule and the diver-

gence theorem, reflects the weak form of the microfluctuation mass conservation〈
−∇δµ̃ · j + δµ̃ċ

〉
=
〈
δµ̃(∇ · j + ċ)

〉
− 1

V

∫
∂Ω�

δµ̃j · nda . (4.47)

The first term on the right hand side of the above expression is the weighted

residual of the microscopic conservation of mass (4.34), whose solution at the

micro-scale should vanish. For the prescribed zero microfluctuation boundary

condition or the periodic boundary conditions, the second term also vanishes and

equation (4.46) reduces to

−∇δµ̄ · j + δµ̄ ˙̄c = −∇δµ̄ ·
〈
j − ċ(x− x̄)

〉
+ δµ̄

〈
ċ
〉
, (4.48)

from where the macroscopic mass flux can be recognized as

j̄ =
〈
j − ċ(x− x̄)

〉
, (4.49)

and the rate of change of the macroscopic concentration as

˙̄c =
〈
ċ
〉
. (4.50)

The volume averages in equation (4.49) and (4.50) can also be converted to bound-

ary integrals using the divergence theorem and the microscopic mass conservation

(4.34)

j̄ =
1

V

∫
∂Ω�

jn(x− x̄)da , (4.51)

and

ċ = − 1

V

∫
∂Ω�

jnda . (4.52)

with jn = j · n the normal outward mass flux.
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Mechanics: In the absence of inertia effects, the standard Hill-Mandel condition

∇δū : σ =
〈
∇δu : σ

〉
, (4.53)

applies for the homogenization of the mechanical problem. Following similar steps

as described above, allows identification of the (standard) macroscopic stress

σ =
〈
σ
〉
, (4.54)

which can be converted to an expression in terms of tractions at the microscopic

boundary

σ =
1

V

∫
∂Ω�

tn ⊗ (x− x̄)da . (4.55)

Once the solution to the microscopic problem (4.34) and (4.36) is known, the

reaction mass fluxes jn and the reaction forces tn can be computed and post-

processed to obtain the macroscopic quantities j̄, ċ and σ. Next, we discuss the

solution procedure to obtain the reaction fluxes jn and forces tn through a reduced

order model, rather than the fully resolved model of the microscopic domain.

An alternative homogenization route is to average the dissipation, given in

equation (4.7), at the micro-scale and equating it to an assumed macroscopic dis-

sipation expression. For a first-order computational homogenization approach, the

ansatz in equations (4.40) and (4.43) can be inserted into the microscopic dissipa-

tion. Expanding and applying the required boundary conditions to eliminate the

fluctuation fields, the corresponding macroscopic quantities can be obtained along

with the weak forms of the balance laws at the micro-scale.

4.4 Model Reduction Leading to an Enriched-

Continuum

In this section, a model reduction of the microscopic coupled diffusion-mechanics

problem is presented. The microscopic chemical potential and displacement fields

are first decomposed into their steady-state and transient parts and reduced bases

are identified. The reaction fluxes and tractions, which are required to compute

the macroscopic quantities, are written in terms of the coefficients of these reduced

bases. Next, the expressions for the macroscopic quantities are derived explicitly.

Finally, an emergent macroscopic enriched-continuum formulation, which arises as

a consequence of model reduction at the micro-scale, is presented.
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4.4.1 Finite Element Discretization

Using the finite element discretization, the linear momentum balance (4.36), the

mass conservation (4.34) and the constitutive models (4.27)–(4.29), the discretized

coupled diffusion-mechanics problem in terms of the unknown nodal values of the

chemical potential µ˜ and displacements u˜ can be written as

K µµµ˜ +M µµµ̇˜ +K µu · u̇˜ = −j˜n , (4.56)

K uµµ˜ +K uu · u˜ = t˜n , (4.57)

where K µµ, M µµ, K uu and K uµ are the mobility, mass, stiffness and coupling

matrices, respectively, and K µu = − [K uµ]T. The right hand sides j˜n and t˜n are

the vector of reaction fluxes and reaction forces.

In the computational homogenization framework, once the solution for the mi-

croscopic primary fields µ˜ and u˜ is known, the reaction fluxes j˜n and reaction

forces t˜n can be computed. In a two-scale setting, this is an expensive task, espe-

cially in the transient regime, since it requires the solution of a coupled problem

at each macroscopic material point at each time step. Hence, an approximate

solution based on a model reduction technique is called for.

To apply the model reduction, instead of solving a coupled system of equa-

tion (4.56)–(4.57), we first analyze each equation separately and then the coupling

effect is taken into account when the reduced bases are constructed. The homog-

enization conditions in equation (4.40) amounts to kinematically constraint the

micro-scale to the macroscopic point x̄ and requires the macroscopic chemical po-

tential µ̄ to be the average value of the microscopic chemical potential field µ. In

a discrete setting, it can be achieved by prescribing the microscopic fields µ and

u degrees of freedom (DOF), at a point x in the microscopic domain, equal to

the corresponding reference values of macroscopic fields µ̄ and ū. It is allowed to

fix the displacement field and the chemical potential at a point in the micro-scale

because all the material properties i.e. , C,S,M and Λ are independent of these

solution fields. Also, the displacement field u at the micro-scale are defined up

to the rigid body motion and the chemical potential µ can also be defined up

to a constant since the microscopic flux j, given in equation (4.15), depends on

the gradient of chemical potential ∇µ and linear momentum balance, given in

equation (4.26), is not affected by adding a constant term to the chemical poten-

tial. In this study this point is chosen to be x1 which is at the lower left corner

90



Chapter 4. Enriched-Continuum for Multi-scale Transient Diffusion Coupled to
Mechanics

of the rectangular microscopic domain. The constraint (4.43) is satisfied by ap-

plying the periodic boundary conditions on the fluctuation fields µ̃ and ũ. Due

to the applied periodicity, the DOFs at the other three corner nodes, denoted as

points x2,x3 and x4, are also fully prescribed, while the rest of the DOFs in the

microscopic domain are considered free. More details on applying the boundary

conditions in a discrete setting for a scalar field like µ can be found in [67] and

for a vector field like u in [43]. The discretized mass diffusion equation (4.56)

partitioned into prescribed ‘p’ and free ‘f ’ degree of freedoms takes the formK pp
µµ K pf

µµ

K fp
µµ K ff

µµ

µ˜p
µ˜f
+

M pp
µµ M pf

µµ

M fp
µµ M ff

µµ

µ̇˜p
µ̇˜f
+

K pp
µu K pf

µu

K fp
µu K ff

µu

 ·
u̇˜p
u̇˜f
 =

−j˜pn
0˜f
 .

(4.58)

Similarly, the mechanical equation after partitioning into its prescribed and free

DOF can be written asK pp
uµ K pf

uµ

K fp
uµ K ff

uµ

µ˜p
µ˜f
+

K pp
uu K pf

uu

K fp
uu K ff

uu

 ·
u˜p
u˜f
 =

t˜pn
0˜f
 . (4.59)

For the microscopic response, both the chemical potential µ˜ and displacement u˜
are next split into their steady-state and transient parts.

4.4.2 Microscopic Fields Decomposition

According to the relaxed separation of scales, the transient response of the sys-

tem evolves independently from the steady-state one. The steady-state response

depends on the macroscopic input parameters (µ̄, ū, ∇µ̄, and ∇ū) through the

prescribed DOFs µ˜p and u˜p, whereas the transient response only affects the in-

clusions that are part of the free DOFs. (In a discrete setting this requires that

the prescribed DOFs always reside in the matrix material so that the transient re-

sponse can evolve independently.) Consequently, the free parts of the microscopic

solution fields are decomposed into a steady-state and a transient part. The free

part of the chemical potential field can be written as

µ˜f = µ˜fss + µ˜ftr , (4.60)

where µ˜fss is the steady-state and µ˜ftr is the transient part. Since the mechanical

response is coupled to that of the mass diffusion, the displacement field will also

evolve in time due to the change of the chemical potential. The free part of the
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microscopic displacement field u˜f is also decomposed into its steady-state u˜fss and

transient u˜ftr part

u˜f = u˜fss + u˜ftr , (4.61)

Next, the steady-state and transient reduced bases have to be determined for both

the chemical and mechanical fields.

4.4.3 Steady-State Response

The steady-state part of the micro-scale solution follows the macro-scale solution

instantaneously. To obtain the steady-state response, the discrete systems of equa-

tion (4.58) and (4.59) are written considering the steady-state contributions µ˜ss
and u˜ss only.

4.4.3.1 Mass Diffusion

Substituting the steady-state chemical potential field µss in the second line of

equation (4.58) yields

K fp
µµµ˜p +K ff

µµµ˜fss +M fp
µµµ̇˜p +M ff

µµµ̇˜fss +K fp
µu · u̇˜p +K ff

µu · u̇˜fss = 0˜f . (4.62)

Equation (4.62) is the evolution equation for µfss. Under the steady-state condition

it holds that

M fp
µµµ̇˜p +M ff

µµµ̇˜fss +K fp
µu · u̇˜p +K ff

µu · u̇˜fss = 0˜f , (4.63)

The steady-state part of the chemical potential µ˜ss can then be expressed in terms

of the prescribed DOF µ˜p as

µ˜fss = S fp
µµµ˜p , (4.64)

where S fp
µµ = −[K ff

µµ]–1K fp
µµ is the Schur-compliment. When multiplied with the

macroscopic quantities S fp
µµ provides the steady-state homogenized response for

the linear material model and thus can be considered as the steady-state reduced

basis for the chemical potential field.
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4.4.3.2 Mechanics

Similarly, to obtain the steady-state displacement field u˜fss the second line of equa-

tion (4.59) is considered

K fp
uµµ˜p +K ff

uµµ˜fss +K fp
uu · u˜p +K ff

uu · u˜fss = 0˜f . (4.65)

Substituting expression (4.64) for µ˜fss in the equation (4.65) yields

K fp
uµµ˜p +K ff

uµS
fp
µµµ˜p +K fp

uu · u˜p +K ff
uu · u˜fss = 0˜f , (4.66)

from where the expression for u˜fss can be computed in terms of µ˜p and u˜p
u˜fss = S fp

uµµ˜p + S fp
uu · u˜p , (4.67)

where S fp
uµ = −[K ff

uu]–1
(
K fp

uµ +K ff
uµS

fp
µµ

)
and S fp

uu = −[K ff
uu]–1K fp

uu.

4.4.4 Transient Response

As stated in section 4.4.2, due to the relaxed separation of scales, to identify the

transient reduced basis it is justified to use the free DOFs only. From equation

(4.58) with account for (4.64), the free part of the discrete mass conservation

equation can be written as

K ff
µµµ˜ftr +M ff

µµµ̇˜ftr +K ff
µu · u̇˜ftr = 0˜f , (4.68)

and from equation (4.59) with account for (4.65), the free part of the discrete

conservation of linear momentum can be written as

K ff
uµµ˜ftr +K ff

uu · u˜ftr = 0˜f , (4.69)

from where

u˜ftr = S ff
uµµ˜ftr , (4.70)

with S ff
uµ = −

[
K ff

uu

]−1
K ff

uµ.

Assuming that the transient part of the microscopic solution fields, µ˜ftr and

u˜ftr, can be expressed in terms of a set of reduced basis functions, the transient

chemical potential µ˜ftr is written in terms of these reduced basis functions Φ˜(k)
µ and
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the corresponding coefficients η
(k)
µ as

µ˜ftr ≈
Nµq∑
k=1

Φ˜(k)
µ η(k)

µ =
∗
Φµη˜µ , (4.71)

where
∗
Φµ is the matrix containing the columns of the reduced transient functions

Φ˜(k)
µ and N µ

q is the number of reduced basis functions for the chemical potential,

which is much smaller than the total number of the free DOF Nf , i.e. , N µ
q � Nf .

Similarly, the transient displacement field u˜tr can also be written in terms of the

reduced basis functions Φ˜ (k)
u and their corresponding coefficients η

(k)
u as

u˜ftr ≈
Nu
q∑

k=1

Φ˜ (k)
u η(k)

u =
∗
Φuη˜u . (4.72)

where N u
q is the number of reduced basis for the displacement field. We will show

later thatN µ
q andN u

q and ηu and ηµ are the same. The selection criteria for the set

of Nq basis functions will also be presented later. Next, the reduced basis functions

in equations (4.71) and (4.72) are identified using a spectral decomposition scheme.

4.4.4.1 Mass Diffusion

Substituting u˜ftr from equation (4.70) into equation (4.68) provides

K ff
µµµ˜ftr +

?

M µµ
ff µ̇˜ftr = 0˜f , (4.73)

where
?

M µµ
ff = M ff

µµ+K ff
µuS

ff
uµ is the coupled mass matrix. The mass conservation

(4.34) is a parabolic partial differential equation which has a natural solution that

decays exponentially in time, i.e. , µ˜ = Φ˜(k) exp[−α(k)t], substituting it in equation

(4.73) yields the eigenvalue problems

(K ff
µµ − α(k)

?

M µµ
ff )Φ˜(k) = 0˜f , (4.74)

where Φ˜(k) is the k-th eigenvector and α(k) the associated k-th eigenvalue. For the

diffusion problem (4.34), the eigenvectors are the chemical potential distribution

modes inside the domain and the corresponding eigenvalues are the inverse of a

decay/rise time, i.e. , τ (k) = 2π
α(k) . Normalizing the eigenvectors Φ˜(k) with respect
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to the mass matrix
?

M µµ
ff ,

[
Φ˜(k)

]T ?

M µµ
ffΦ˜(k) = 1 , (4.75)

yields [
Φ˜(k)

]T
K ff

µµΦ˜(k) = α(k) . (4.76)

The transient basis functions
∗
Φµ in equation (4.71) can now be identified as the

eigenvectors
∗
Φ obtained from the solution of the eigenvalue problem (4.74) i.e. ,

µ˜ftr =

Nq∑
k=1

Φ˜(k)ηk =
∗
Φη˜ , (4.77)

where η(k) can be interpreted as the modal amplitude, and η˜ is a column of size

Nq.

4.4.4.2 Mechanics

Substituting the expression of µ˜ftr from equation (4.77) in (4.70) provides the

transient mechanical response

u˜tr =

Nq∑
k=1

S ff
uµΦ˜(k)η(k) = S ff

uµ

∗
Φη˜ . (4.78)

with
∗
Φu = S ff

uµ

∗
Φ. Next, we reconstruct the total solution for the chemical po-

tential and displacement fields from their respective transient and steady-state

responses.

4.4.5 Linear Superposition

Substituting the expressions for µ˜ss from (4.64) and µ˜tr from (4.77) into (4.60),

the total chemical potential field at the micro-scale can be written as

µ˜ = µ˜ss + µ˜tr = S fp
µµµ˜p +

∗
Φη˜ , (4.79)

where only the reduced basis
∗
Φ is coupled to the microscopic mechanical problem

via the coupled mass matrix
?

M µµ
ff appearing in the eigenvalue problem (4.74).

Similarly, the total microscopic displacement field u˜ can be reconstructed by

substituting the expression for u˜ss from (4.67) and u˜tr from (4.78) into equation
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(4.61) i.e. ,

u˜ = u˜ss + u˜tr = S fp
uµµ˜p + S fp

uu · u˜p + S ff
uµ

∗
Φη˜ . (4.80)

Both, the steady-state and transient parts of the microscopic displacement field

are coupled to the chemical problem as the coupling matrix K uµ appears in the

matrices S ff
uµ, S

ff
uµ and

∗
Φ. Equations (4.79) and (4.80) shows that the micro-

scopic solution fields, µ˜ and u˜, are completely given by the chemical potential µ˜p,
the displacement u˜p at the prescribed DOFs and the coefficients of the transient

reduced basis η˜. Generally, in a two-scale setting, the microscopic fields at the

prescribed DOFs, where the microfluctuations µ̃ and ũ are zero, are given by the

macroscopic quantities, as can be seen in equation (4.37) and (4.38). Therefore,

the only remaining unknown fields at the micro-scale are η˜ which can be obtained

from the evolution equation, derived in the next subsection.

4.4.6 Evolution Equation

The time evolution of η˜ can be obtained from the free part of equation (4.58)

K fp
µµµ˜p +K ff

µµµ˜f +M fp
µµµ̇˜p +M ff

µµµ̇˜f +K fp
µu · u̇˜p +K ff

µu · u̇˜f = 0˜f , (4.81)

Substituting the expressions for µ˜f from equation (4.79) and u˜f from equation

(4.80) into (4.81) and rearranging terms

(K ff
µµ

∗
Φ)η˜+ (M ff

µµ

∗
Φ +K ff

µuS
ff
uµ

∗
Φ)η̇˜ = −(K fp

µµ +K ff
µµS

fp
µµ)µ˜p

− (M fp
µµ +M ff

µµS
fp
µµ +K ff

µuS
fp
uµ)µ̇˜p − (K fp

µu +K ff
µuS

fp
uu) · u̇˜p . (4.82)

Using the definition S fp
µµ = −

[
K ff

µµ

]−1
K fp

µµ, the first term on the right hand side

of (4.82) drops out. Pre-multiplying the remaining equation with [
∗
Φ]T, equation

(4.82) is written as

[
∗
Φ]TK ff

µµ

∗
Φη˜+ [

∗
Φ]T

(
M ff

µµ +K ff
µuS

ff
uµ

) ∗
Φ η̇˜ =

− [
∗
Φ]T

(
M fp

µµ +M ff
µµS

fp
µµ +K ff

µuS
fp
uµ

)
µ̇˜p − [

∗
Φ]T

(
K fp

µu +K ff
µuS

fp
uu

)
· u̇˜p , (4.83)

which after using the normalization conditions in (4.75) and (4.76) takes the form

αη˜+ η̇˜ = −
(

?

M µµ
qp µ̇˜p +

?

K µu
qp · u̇˜p

)
, (4.84)
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where,

?

M µµ
qp = [

∗
Φ]T

(
M fp

µµ +M ff
µµS

fp
µµ +K ff

µuS
fp
uµ

)
,

?

K µu
qp = [

∗
Φ]T

(
K fp

µu +K ff
µuS

fp
uu

)
.

(4.85)

Equation (4.84) is a set of Nq decoupled ordinary differential equations (ODEs)

which represent the reduced order model for the evolution of diffusion-mechanics

behavior at the micro-scale. The right hand side of (4.84) acts as the forcing term

to the set of ODEs in terms of macroscopic fields present in µ˜p and u˜p.
4.4.7 Reaction Fluxes and Forces

Next, we write the reaction mass fluxes j˜pn and tractions t˜pn in terms of the coeffi-

cients of the steady-state and transient bases functions.

4.4.7.1 Reaction Fluxes

The reaction mass fluxes j˜pn can be obtained from the first line of the discrete mass

conservation equation (4.58)

K pp
µµµ˜p +K pf

µµµ˜f +M pp
µµµ̇˜p +M pf

µµµ̇˜f +K pp
µu · u̇˜p +K pf

µu · u̇˜f = −j˜pn . (4.86)

Substituting the expressions for µ˜f and u˜f from equation (4.79) and (4.80) respec-

tively yields

K pp
µµµ˜p +K pf

µµS
fp
µµµ˜p +K pf

µµ

∗
Φη˜+M pp

µµµ̇˜p +M pf
µµS

fp
µµµ̇˜p +M pf

µµ

∗
Φ η̇˜

+K pp
µu · u̇˜p +K pf

µuS
fp
uµµ̇˜p +K pf

µuS
fp
uu · u̇˜p +K pf

µuS
ff
uµ

∗
Φ η̇˜ = −j˜pn . (4.87)

Making use of µ˜f =
∗
Φη˜ in the free part of the mass conservation equation (4.73),

then pre-multiplying it with
[
S fp
µµ

]T
and using S fp

µµ = −
[
K ff

µµ

]−1
K fp

µµ, with ac-

count for the symmetry of K µµ, replaces the third term K pf
µµ

∗
Φη˜ in equation (4.87)

with
[
S fp
µµ

]T ?

M µµ
ff
∗
Φ η̇˜ i.e. ,

K pp
µµµ˜p +K pf

µµS
fp
µµµ˜p +

[
S fp
µµ

]T ?

M µµ
ff
∗
Φ η̇˜+M pp

µµµ̇˜p +M pf
µµS

fp
µµµ̇˜p +M fp

µµ

∗
Φ η̇˜

+K pp
µu · u̇˜p +K pf

µuS
fp
uµµ̇˜p +K pf

µuS
fp
uu · u̇˜p +K pf

µuS
ff
uµ

∗
Φ η̇˜ = −j˜pn . (4.88)
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Now the steady-state constraint (4.63), projected onto the prescribed DOF, should

be added to equation (4.88). For projecting the steady-state constraint (4.63) onto

the prescribed DOF, it is first pre-multiplied with
[
S fp
µµ

]T
, then the expressions of

the steady-state chemical potential from (4.64) and the steady-state displacement

field from (4.67) are substituted and finally the transpose of the whole expression

is performed

K pp
µµµ˜p +K pf

µµS
fp
µµµ˜p +

[
S fp
µµ

]T ?

M µµ
ff
∗
Φ η̇˜+M pp

µµµ̇˜p +M pf
µµS

fp
µµµ̇˜p +M fp

µµ

∗
Φ η̇˜

+K pp
µu · u̇˜p +K pf

µuS
fp
uµµ̇˜p +K pf

µuS
fp
uu · u̇˜p +K pf

µuS
ff
uµ

∗
Φ η̇˜+

M pf
µµS

fp
µµµ̇˜p +

[
S fp
µµ

]T
M ff

µµS
fp
µµµ̇˜p +

[
S fp

uµ

]T
K ff

uµS
fp
µµµ̇˜p+[[

K fp
µu

]T
S fp
µµ

]T

· u̇˜p +
[[
S fp

uu

]T
K ff

uµS
fp
µµ

]T

· u̇˜p = −j˜pn . (4.89)

Rearranging terms gives the resulting reaction mass flux

j˜pn = −
?

M µµ
pq η̇˜−

?

K µµ
ppµ˜p −

?

M µµ
pp µ̇˜p −

?

M µu
pp · u̇˜p , (4.90)

where

?

M µµ
pq =

[
S fp
µµ

]T ?

M µµ
ff
∗
Φ +M pf

µµ

∗
Φ +K pf

µuS
ff
uµ

∗
Φ ,

?

M µµ
pp = M pp

µµ +M pf
µµS

fp
µµ +M pf

µµS
fp
µµ +

[
S fp
µµ

]T
M ff

µµS
fp
µµ+[

S fp
uµ

]T
K ff

uµS
fp
µµ +K pf

µuS
fp
uµ ,

?

K µµ
pp = K pp

µµ +K pf
µµS

fp
µµ ,

?

M µu
pp = K pp

µu +K pf
µuS

fp
uu +

[[
K fp

µu

]T
S fp
µµ

]T

+
[[
S fp

uu

]T
K ff

uµS
fp
µµ

]T

.

(4.91)

4.4.7.2 Reaction Forces

Similarly, the first part of the equation (4.59) provides the expression for the

reaction forces t˜pn at the prescribed DOF

K pp
uµµ˜p +K pf

uµµ˜f +K pp
uu · u˜p +K pf

uu · u˜f = t˜pn . (4.92)

Substituting the expressions for µ˜f and u˜f from (4.79) and (4.80) into (4.92), gives

K pp
uµµ˜p +K pf

uµS
fp
µµµ˜p +K pf

uµ

∗
Φη˜+K pp

uu · u˜p
+K pf

uuS
fp
uµµ˜p +K fp

uuS
fp
uu · u˜p +K pf

uuS
ff
uµ

∗
Φη˜ = t˜pn , (4.93)
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which after rearranging for terms can be written as

t˜pn =
?

K uµ
pq η˜+

?

K uµ
ppµ˜p +

?

K uu
pp · u˜p , (4.94)

where

?

K uµ
pq = K pf

uµ

∗
Φ +K pf

uuS
ff
uµ

∗
Φ ,

?

K uµ
pp = K pp

uµ +K pf
uµS

fp
µµ +K pf

uuS
fp
uµ ,

?

K uu
pp = K pp

uu +K pf
uuS

fp
uu .

(4.95)

In the expressions of reaction fluxes (4.90) and reaction forces (4.94), the only

unknown is η˜ which needs to be solved for in combination with the evolution

equation (4.84), while µ˜p and u˜p are written in terms of the given (prescribed)

macroscopic quantities.

4.4.8 Macroscopic Quantities

Next, the expressions for the macroscopic quantities σ, j̄ and ċ are derived in

terms of macroscopic DOF, and the coefficients of the microscopic transient basis

η˜.
4.4.8.1 Macroscopic Flux

In the discretized form, the boundary integral (4.51) of the macroscopic flux j̄ can

be written as

j̄ =
1

V

[
∆x˜p]T j˜pn , (4.96)

where ∆x˜p = (xp − I˜px̄), with I˜p is the column of ones with dimension (p × 1).

Substituting the expression for j˜pn from (4.90) in (4.96) gives

j̄ = − 1

V

[
∆x˜p]T

(
?

M µµ
pq η̇ +

?

K µµ
ppµ˜p +

?

M µµ
pp µ̇˜p +

?

M µu
pp · u̇˜p

)
, (4.97)

which after substituting the discretized form of expression (4.37) for µ˜p gives

µ˜p = I˜pµ̄+ ∇µ̄ ·∆x˜p , (4.98)

and (4.38) for u˜p as

u˜p = I˜pū+ ∇ū ·∆x˜p . (4.99)
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After rearranging terms, (4.97) takes the following form

j̄ =
[

1M˜ η̇
]T
η̇˜+ 2M∇µ̄ ·∇µ̄+ 1M

˙̄µ ˙̄µ+ 2M∇ ˙̄µ ·∇ ˙̄µ+ 3M∇ ˙̄u :
[
∇ ˙̄u

]T
. (4.100)

Where, in the notation nA•, n is the tensorial order and • denotes the macroscopic

quantity to which the coefficient M belongs to. The coefficients on the right hand

side of equation (4.100) are given by

[
1M˜ η̇

]T
= − 1

V

[
∆x˜p]T ?

M µµ
pq , (Row of Nq 1st-order tensors (vectors))

2M∇µ̄ = − 1

V

[
∆x˜p]T ?

K µµ
pp⊗∆x˜p , (2nd-order tensor)

1M
˙̄µ = − 1

V

[
∆x˜p]T ?

M µµ
pp I˜p , (1st-order tensor)

2M∇ ˙̄µ = − 1

V

[
∆x˜p]T ?

M µµ
pp⊗∆x˜p , (2nd-order tensor)

3M∇ ˙̄u = − 1

V

[
∆x˜p]T⊗ ?

M µu
pp⊗∆x˜p . (3rd-order tensor)

(4.101)

where it has been taken into account that
[
∆x˜p]T ?

K µµ
pp I˜p =

[
∆x˜p]T⊗ ?

M µu
pp I˜p = 0.

4.4.8.2 Macroscopic Concentration Rate

In its discrete form, the expression for the rate of change of the macroscopic

concentration field ċ, equation (4.52), can be written as

ċ = − 1

V

[
I˜p]T j˜pn . (4.102)

Substituting the expressions of µ˜p and u˜p from equation (4.98) and (4.99) in equa-

tion (4.90) for j˜pn respectively, and then rearranging terms in expression (4.102)

gives

ċ =
[

0C˜ η̇]T η̇˜+ 0C
˙̄µ ˙̄µ+ 1C∇ ˙̄µ ·∇ ˙̄µ+ 2C∇ ˙̄u :

[
∇ ˙̄u

]T
, (4.103)

where the coefficients on the right hand side of equation (4.103) are given by

[
0C˜ η̇]T =

1

V

[
I˜p]T ?

M µµ
pq , (Row of Nq scalars)

0C
˙̄µ =

1

V

[
I˜p]T ?

M µµ
pp I˜p , (Scalar)

1C∇ ˙̄µ =
1

V

[
I˜p]T ?

M µµ
pp∆x˜p , (1st-order tensor)

2C∇ ˙̄u =
1

V

[
I˜p]T ?

M µu
pp⊗∆x˜p , (2nd-order tensor)

(4.104)

100



Chapter 4. Enriched-Continuum for Multi-scale Transient Diffusion Coupled to
Mechanics

where
[
I˜p]T ?

K µµ
pp I˜p =

[
I˜p]T ?

K µµ
pp∆x˜p =

[
I˜p]T ?

M µu
pp I˜p = 0 has been used.

4.4.8.3 Macroscopic Stress

Similarly, the expression (4.55) for the macroscopic stress σ in its discrete form

can be written as

σ =
1

V

[
∆x˜p]T⊗t˜pn . (4.105)

Substituting the expression for the reaction forces t˜pn from equation (4.94) provides

σ =
1

V

[
∆x˜p]T⊗

(
?

K uµ
pq η˜+

?

K uµ
ppµ˜p +

?

K uu
pp · u˜p

)
, (4.106)

which after using the discretized µ˜p and u˜p from equations (4.98) and (4.99) take

the following form

σ = 2Cηη˜+ 2Cµ̄µ̄+ 3C∇µ̄ ·∇µ̄+ 4C∇ū :
[
∇ū

]T
. (4.107)

The coefficients in equation (4.107) are given by

[
2Cη
]T

=
1

V

[
∆x˜p]T⊗ ?

K uµ
pq , (Rows of Nq 2nd-order tensors)

2Cµ̄ =
1

V

[
∆x˜p]T⊗ ?

K uµ
pp I˜p , (2nd-order tensor)

3C∇µ̄ =
1

V

[
∆x˜p]T⊗ ?

K uµ
pp⊗∆x˜p , (3rd-order tensor)

4C∇ū =
1

V

[
∆x˜p]T⊗ ?

K uu
pp⊗∆x˜p , (4th-order tensor)

(4.108)

where
[
∆x˜p]T⊗ ?

K uu
pp I˜p = 0 has been accounted for.

4.4.9 Mode Selection Criteria

The microscopic fields µ˜ and u˜, given by equations (4.79) and (4.80), can be fully

described by the macroscopic fields (µ̄, ū), their gradients (∇µ̄, ∇ū) and the

coefficients of the reduced bases η˜. The size of the original eigenvalue problem is

equal to the number of free DOF Nf present in the system, which provides the

complete set of eigenvectors Φ. Owing to the fact that in diffusion problems the

lowest eigenvalues α(k) are the most important ones, the eigenvectors correspond-

ing to the first (several hundreds) lowest eigenvalues could be taken as the reduced

basis. However, this would still entails a computationally inefficient scheme, since

in a two-scale setting, where η˜ is solved at the macroscopic quadrature points
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as internal variables, solving hundreds of ordinary differential equations for the

internal variables would still require noticeable computational efforts. Therefore,

the reduced set of eigenvectors
∗
Φ can be extracted from Φ by taking into account

that the right hand side of (4.84) acts as the forcing term and the modal coordi-

nate η(k) corresponding to the forcing terms with a higher magnitude will have a

higher amplitude and therefore contribute more to the homogenized behavior at

the macro-scale. Substituting the expressions for the prescribed chemical poten-

tial µ˜p and displacement u˜p fields, equations (4.98) and (4.99), in the evolution

equation (4.84) provides

αη˜+ η̇˜ = −
(

?

M µµ
qp
[
I˜p ˙̄µ+ ∇ ˙̄µ ·∆x˜p]+

?

K µu
qp ·
[
I˜p ˙̄u+ ∇ ˙̄u ·∆x˜p]

)
, (4.109)

which after using the definition of the coupling terms in (4.101), (4.104) and (4.108)

takes the following form

αη˜+ η̇˜ = −
(

0Ĉ˜ η̇ ˙̄µ+
[

1M̂˜ η̇
]T

·∇ ˙̄µ+
[

2Ĉ˜η
]T

: ∇ ˙̄u

)
, (4.110)

where 0Ĉ˜ η̇ = V (0C˜ η̇), 1M̂˜ η̇ = V (1M˜ η̇) and 2Ĉ˜η = V (2C˜η), and takes into account

that
?

K µu
qp I˜p = 0˜q. The coefficients 0Ĉ˜ η̇, 1M̂˜ η̇ and 2Ĉ˜η couple the microscopic

transient behavior, in terms of η(k), to the macro-scale fields. The higher the value

of a coefficient, the higher the contribution of the respective η(k) to the macro-

scale behavior. This information can be exploited to identify a reduced set of eigen

vectors
∗
Φ. The eigenvectors associated to 0Ĉ˜ η̇ with a relatively high contribution

are identified using

E0Ĉη̇,(k) =
|0Ĉ η̇,(k)|

max|0Ĉ˜ η̇|
, (4.111)

where | • | is the absolute value of •. Similarly, for each component of 1M̂˜ η̇
it can

be stated

E
1M̂

η̇,(k) =
||1M̂

η̇,(k)
||

max||1M̂˜ η̇
||
, (4.112)

and for each component of 2Ĉ˜η using

E2Ĉη,(k) =
||2Ĉη,(k)||

max||2Ĉ˜η|| . (4.113)
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Then, a reduced eigenbasis
∗
Φ can be obtained by requiring a minimum threshold

e• for a coefficient •, such that

∗
Φ 0Ĉη̇,(k) = {Φ˜(k) ∈ Φ : E0Ĉη̇,(k) ≥ eĈ} ,
∗
Φ

1M̂
η̇,(k) = {Φ˜(k) ∈ Φ : E

1M̂
η̇,(k) ≥ eM̂} ,

∗
Φ 2Ĉη,(k) = {Φ˜(k) ∈ Φ : E2Ĉη,(k) ≥ eĈ} ,

∗
Φ =

∗
Φ 0Ĉη̇,(k) ∪

∗
Φ

1M̂
η̇,(k) ∪

∗
Φ 2Ĉη,(k) .

(4.114)

For a macroscopic simulation, during an offline stage, individual threshold value

signifies the corresponding macroscopic quantity and it should be selected accord-

ingly.

4.4.10 Macro-scale Enriched-Continuum

The model reduction at the micro-scale leads to an enriched-continuum formula-

tion, as shown in Figure 4.1(c), at the macro-scale with η˜ as the emergent (internal)

variables and the set of equations (4.110) as their evolution equations. The de-

veloped reduced computational homogenization consists of two stages: an offline

stage and an online stage. For a specific microstructure with given material prop-

erties and the finite element matrices (equations (4.56) and (4.57)), the offline

stage consists of the solution of the eigenvalue problem (4.74), the selection of

relevant eigenvectors using (4.114), and the computation of the coefficients for the

macroscopic quantities (4.101), (4.104) and (4.108). Through the model reduction

of the microscopic problem, (4.56)–(4.57), each macroscopic material point entails

a set of Nq decoupled ordinary differential equations, which are inexpensive to

solve. The evolution equations (4.110) are to be solved during the online stage

along with the macroscopic conservation equations (4.33) and (4.35), the constitu-

tive equations obtained through the homogenization (4.100), (4.103) and (4.107).

All together this constitutes the enriched coupled diffusion-mechanics continuum

description as follows
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Macroscopic mass conservation:

∇ · j̄ + ċ = 0

Macroscopic flux:

j̄ =
[

1M˜ η̇
]T
η̇˜+ 2M∇µ̄ ·∇µ̄+ 1M

˙̄µ ˙̄µ+ 2M∇ ˙̄µ ·∇ ˙̄µ+ 3M∇ ˙̄u :
[
∇ ˙̄u

]T
Macroscopic concentration rate:

ċ =
[

0C˜ η̇]T η̇˜+ 0C
˙̄µ ˙̄µ+ 1C∇ ˙̄µ ·∇ ˙̄µ+ 2C∇ ˙̄u :

[
∇ ˙̄u

]T
Macroscopic momentum conservation:

∇ · σ = 0

Macroscopic stress:

σ =
[

2C˜η]T η˜+ 2Cµ̄µ̄+ 3C∇µ̄ ·∇µ̄+ 4C∇ū :
[
∇ū

]T
Internal variable evolution:

αη˜+ η̇˜ = −
(

0Ĉ˜ η̇ ˙̄µ+
[

1M̂˜ η̇
]T

·∇ ˙̄µ+
[

2Ĉ˜η
]T

: ∇ ˙̄u

)
Different solution methods can be adopted to solve the coupled diffusion-mechanics

enriched-continuum problem, depending on whether η˜ is evaluated at the macro-

scopic quadrature points, leading to an internal variable solution scheme, or at the

nodes along with µ̄ and ū, which leads to a multi-field solution scheme. Numerical

analysis for the solution of the enriched-continuum formulation will be discussed

in a future contribution.

4.5 Numerical Examples

In this section, the proposed reduced order homogenization for coupled transient

diffusion-mechanics is analyzed at the micro-scale. First, the problem setting is

presented. The coupled transient bases are identified. Then, the microscopic fields

and macroscopic quantities computed with the reduced order homogenization are

compared with those obtained through the expensive, fully resolved, conventional

computational homogenization scheme. Finally, the computational efficiency of

the proposed reduced order homogenization is assessed.

4.5.1 Problem Setting

Lithium-ion battery electrodes are majorly composed of two components: the elec-

trolyte (matrix) and the active particles (inclusions). As an example, in this study
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d

ℓ

(a) (b)

Figure 4.2: (a) Two dimensional representation of a lithium-ion battery cathode-

electrolyte system with mono-dispersed circular active particles (inclusions); ` is

the characteristic size of the RVE and d is the diameter of the inclusions. (b) A

fragment of the finite element mesh corresponding to the area indicated by the box

in Figure 4.2(a). The full FE mesh consists of 25498 linear triangular elements

and 12494 nodes.

a cathode-electrolyte system is considered, in which the electrolyte is lithium hexa-

fluoro phosphate (LiPF6) and the embedded active particles are made of lithium

cobalt oxide (LiCO2). For simplicity, it is assumed that the active particles are

surrounded by the electrolyte only. All the other materials, e.g. , the polymer

binders, conductive particles etc., are disregarded following similar simplifications

made in [97, 100]. The material and geometric parameters are listed in Table 4.1.

All material properties are assumed to be constant and do not change with the

chemical potential or stresses in the material. For a given material, the chemical

modulus Λ and the mobility coefficient M combine to form the diffusivity coef-

ficient D = ΛM of the material. The diffusivity Dm of the lithium-ions is much

larger in the electrolyte as compared to the diffusivity Di in the active particles,

indicating that the relaxed separation of scales (4.32) holds for the considered

problem. It is assumed that the electrolyte material does not swell with the in-

troduction of lithium-ions. The active particles are spherical in shape, vary in

size and are placed randomly in the electrolyte which creates a poly-disperse het-

erogeneous medium [91]. In this example (for simplicity reasons), we consider a

two dimensional mono-dispersed heterogeneous medium, as shown in Figure 4.2,

which is generated by a level set based random sequential adsorption method [52].

In the simulations, all the parameters were non-dimensionalized, the time was

normalized with respect to the characteristic diffusion time of the inclusion, i.e. ,

t̂ = t
ti

, the lengths are normalized with respect to the characteristic length of the

microscopic domain, i.e. , x̂ = x
`
, the chemical potential is normalized with respect
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to the maximum attainable chemical potential in the inclusion µ̂ = µ
µmax

, where

µmax = Λi(cmax − c0), the displacement field is normalized with respect to the

characteristic length of the microscopic domain, i.e. , û = u
`

and the stresses are

normalized with respected to the Young’s modulus of the inclusion Ei.

The microscopic domain is excited by the chemical loading given in terms of

the macroscopic chemical potential µ̄ and the gradient of the macroscopic chemical

potential ∇µ̄ as a function of time

µ̄(t) = µ̄ sinωt ,

∇µ̄(t) = ∇µ̄ sinωt ,
(4.115)

where ω = 2π
T

is the angular loading frequency, T is the time of one period and

µ̄ = µmax and ∇µ̄ = 0.1µmax are assumed. Externally applied mechanical loads

to the micro-scale are neglected here. At the micro-scale, periodic boundary con-

ditions are used to satisfy the Hill-Mandel conditions for both the mass diffusion

and mechanical problems. The microscopic domain, shown in Figure 4.2(b), is dis-

cretized with linear triangular finite elements. For time integration, the backward-

Euler method was used with a time step ∆t = 1× 10−3T [s].

4.5.2 Reduced Basis Identification

After assembling the finite element matrices and applying the boundary conditions

at the micro-scale, the first step of the reduced order homogenization is the solution

of the coupled eigenvalue problem (4.74). This eigenvalue problem is solved for

the first two hundred smallest eigenvalues and the corresponding eigenvectors Φ.

Then, using the mode selection criteria given by equation (4.114), the reduced

basis
∗
Φ ∈ Φ is based on the coupling terms 0Ĉ η̇,(k), 1M̂

η̇,(k)
and 2Ĉη,(k) with the

threshold value eĈ = eM̂ = eĈ = 0.1. The number of eigenvectors selected in

the eigenbasis
∗
Φ depends on the topology of the micro-structure, the strength of

the coupling in diffusion-mechanics and the material contrast between the matrix

and the inclusions. For each selected eigenvector Φ˜(k)
µ , there is a corresponding

coupled mechanical eigenvector Φ˜ (k)
u = S ff

uµΦ˜(k)
µ , both

∗
Φµ and

∗
Φu are shown

for the considered micro-structure in a coupled manner in Figure 4.3. The ten

modes selected are not the modes corresponding to the 10 consecutive smallest

eigenvalues. The inclusions swell where the chemical potential is high, indicated

by the red regions inside the domain and the inclusions shrink where the chemical

potential is low, indicated by the blue regions. The modes have contributions
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in the inclusions only, in accordance with the relaxed separation of scales. If

the material properties do not fulfill the requirements of relaxed separation of

scales (4.32) then the eigenvectors might have contributions in the matrix and

consequently the proposed reduced homogenization method will not capture the

phenomena adequately.

Among the selected eigenvectors, shown in Figure 4.3, there is one eigenvector

with the highest relative importance of the eigenmodes in terms of their contribu-

tion to the macro-scale, which can be quantified by a measure ξ(k)

ξ(k) =
1

3

 |0Ĉ η̇,(k)
|

max|0Ĉ˜ η̇|
+
||1M̂

η̇,(k)
||

max||1M̂˜ η̇
||

+
||2Ĉη,(k)||

max||2Ĉ˜η||
 , (4.116)

where | • | and || • || are the absolute value and Frobenius norm of a quantity •. In

this example, eigenvector numbered 7 has the highest contribution to the macro-

scale, while other eigenvectors in
∗
Φ make only small improvements in capturing

the phenomena. For a more detailed mode selection analysis, in the case of heat

diffusion, the reader is referred to [67].

4.5.3 Micro-scale Simulations

Next, we compare the microscopic fields computed by the model reduction method

and the (expensive) fully resolved finite element calculations. For the fully resolved

finite element analysis, the coupled system of equations (4.56)–(4.57) is solved for

µ˜ and u˜, directly on the finite element mesh of the considered RVE 4.2(b). For

the reduced model, the coefficients η˜ are solved by using equation (4.110); subse-

quently, the microscopic fields µ˜ and u˜, are reconstructed (localization operation)

by post-processing through equations (4.79) and (4.80), respectively. Note that,

in a two-scale simulation the post-processing of microscopic fields µ˜ and u˜, is gen-

erally not done, unless the microscopic fields are also the quantities of interest

in addition to the macroscopic field. Figure 4.4 shows the contour plots of the

normalized chemical potential µ̂ and Figure 4.5 shows the contour plots of the

normalized hydrostatic stress σ̂hyd = σ̂11+σ̂22
3

at time t̂ = 250∆t̂. The minor differ-

ences between the fully resolved solution and the reduced order model are due to

the approximate nature of the model reduction.
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(a) Fully resolved µ̂
FE (b) Reduced order µ̂ROM (c) Error : µ̂FE

−µ̂ROM

0.5(µ̂FE+µ̂ROM )

Figure 4.4: Chemical potential field µ̂ = µ/µmax in the microscopic domain at time

step t̂ = 250∆t̂. (a) Fully resolved finite element solution µ̂FE (b) reduced order

solution µ̂ROM and (c) the relative error with respect to their average µ̂FE−µ̂ROM
0.5(µ̂FE+µ̂ROM )

.

-0.009 0.013 0.035 −9.8× 10−4
−2.2× 10−4 5.4× 10−4

(a) Fully resolved σ̂
FE
hyd (b) Reduced order σ̂ROM

hyd (c) Error:
σ̂FE
hyd−σ̂ROM

hyd

0.5(σ̂FE
hyd

+σ̂ROM
hyd

)

Figure 4.5: Hydrostatic stress σ̂hyd = σ̂11+σ̂22
3

induced at the micro-scale due to

diffusion mechanical coupling at time t̂ = 250∆t̂. (a) Fully resolved finite element

solution σ̂FEhyd (b) reduced order solution σ̂ROMhyd and (c) the relative error with

respect to their average
σ̂FEhyd−σ̂

ROM
hyd

0.5(σ̂FEhyd+σ̂ROMhyd )
.

4.5.4 Effective Macroscopic Quantities

Next, we compare the macroscopic quantities j̄, ċ, σ computed with the conven-

tional transient homogenization and the developed reduced order homogenization.

For conventional computational homogenization, the fully resolved finite element

analysis of the coupled system of equations (4.56)–(4.57) is performed and then the

macroscopic flux j̄ is computed using (4.96), the macroscopic concentration rate ċ

using (4.102) and the macroscopic stress σ using (4.105), where the reaction fluxes

j˜pn and the reaction forces t˜pn are post-processed using the expressions in (4.86) and

(4.92), respectively. For the reduced model calculations, the eigenvalue problem

(4.74) is solved in the offline stage and the coupling terms in (4.101), (4.104) and
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Figure 4.6: Comparison between the macroscopic quantities computed with the

conventional computational homogenization (based on the fully resolved micro-

scale RVE analysis), shown in red, and the reduced order homogenization, shown in

blue. (a) Macroscopic mass flux j1 in x1 direction, (b) macroscopic concentration

rate ċ and (c) macroscopic hydrostatic stress σhyd = σ11+σ22

3
.

(4.108) are calculated and stored. During the online stage, the evolution equation

(4.110) is solved for η˜. Once η˜ is known, the macroscopic quantities are calculated

directly from the expressions (4.100), (4.103) and (4.107) for the macroscopic mass

flux j̄, the macroscopic concentration rate ċ and the macroscopic stress σ, respec-

tively. Figure 4.6 shows the time evolution of the macroscopic quantities computed

with the (expensive) conventional transient computational homogenization (CTH)

method (shown in red) and the proposed inexpensive reduced computational ho-

mogenization (RTH) method (shown in blue). The reduced order homogenization

method shows an excellent approximation without any noticeable discrepancies.

The computational gains achieved with the reduced model are substantial. Ne-

glecting the off-line stage, motivated by the fact that for a specific microstructure

and set of material parameters the off-line stage only needs to be performed once.

Using Matlab 2018b on a computer with Core-i7 4.4GHz processor and 16Gb

memory, for the conventional computational homogenization the coupled problem

(4.56)–(4.57) takes approximately 5000 times more computational time than the

solution of the uncoupled ordinary differential equations (4.110). Next, we asses

the proposed reduced model with different value of coupling coefficient γ and the

microscopic domain size `.
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Figure 4.7: The effect of the coupling term γ on (a) the macroscopic rate term ċ

and (b) the macroscopic equivalent stress σeq. The equivalent stress is calculated

as σeq =
√
σ2

11 + σ2
22 + 2σ2

12.

4.5.5 Diffusion-Mechanics Coupling Effect

In diffusion-mechanics, the coupling is governed by the partial molar volume pa-

rameter γ in equation (4.28). The higher the value of γ, the higher the coupling

will be. The constitutive equation (4.23) has an upper limit of applicability since

the effective elastic tensor
∗
C =

(
C− S⊗S

Λ

)
can become non-positive definite, which

will make the eigenvalues α˜ (4.76) equal to zero or even negative. However, for

the realistic material properties of the cathode in lithium-ion batteries, this is not

a problem since the upper limit for γ is 21× 10−6[mol m−3], which is much greater

than the physical value of γ = 3.497× 10−6[mol m−3]. Figure 4.7 shows the effect

of increasing the γ value. The macroscopic rate term ċ and the macroscopic stress

σ increase as γ increases in accordance with their microscopic counterparts (4.23)

and (4.24), respectively. The proposed model reduction scheme captures the full

finite element solution very well, and hence for clarity the finite element solution

is not shown anymore. Next, we analyze the effect of the microscopic domain size

on the macroscopic quantities.
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Figure 4.8: Influence of the microscopic characteristic length scale ˆ̀ on (a) the

macroscopic concentration rate ċ and (b) the equivalent macroscopic stress σeq.

4.5.6 Size Effect

To measure microscopic size effect on the macroscopic quantities, the material

parameters are kept the same and the characteristic size of the microscopic domain

` is changed while keeping the inclusions size d the same or scaling it along with

the microscopic size. In the first case, the macroscopic quantities do not vary with

the changing RVE size. However, if the inclusions size d is scaled along with the

characteristic microscopic size ` the microscopic and the macroscopic quantities

change. For the later case, the normalized characteristic length of the micro-

scale is changed from ˆ̀ = 1 × 10−2 to ˆ̀ = 1 × 101 and accordingly the inclusion

characteristic length from ˆ̀
i = 0.3 × 10−2 to ˆ̀

i = 0.3 × 101, respectively. As

expected, for the smaller microstructures (up to ˆ̀= 1×10−1 with ˆ̀
i = 0.3×10−1),

due to almost instantaneous mass diffusion in the inclusion at the micro-scale, the

averaged macroscopic transient effects are negligible as compared to the transient

effects computed with a larger unit-cell, as can be seen in Figure 4.8(a). For the

larger microstructural sizes the response is clearly size dependent. In particular,

the macroscopic stresses σ are much higher for small microstructures compared

to the large ones. This is due to the coupling effect and the diffusion rate. For

smaller sizes, the chemical potential (and the concentration of a species) increases

in the inclusion domain, which causes the inclusions to swell and produce higher

stresses on average. Conversely, when the micro-scale size is increased, within the
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Figure 4.9: Hydrostatic stress field σ̂hyd = σ̂11+σ̂22
3

at the micro-scale with different

microscopic sizes ˆ̀.

same time period, the mass diffusion happens to the outer layer of the inclusions,

swelling only that part of the inclusions, which creates higher local stresses, as

can be seen in Figure 4.9. However, due to overall increase in the volume of

the microscopic domain and the small relative volume of high stress regions, the

macroscopic volume average stresses decrease, as can be observed in Figure 4.8.

4.6 Conclusions

In this work, a model reduction based homogenization technique for coupled

diffusion-mechanics problems has been presented. A formulation based on the

chemical potential and linear strain field is derived, which eases the implemen-

tation since it only requires a C0-continuous discretization. This is in contrast

with the conventional formulation used in diffusion-mechanics based on the con-

centration and strain fields, which requires a less convenient C1-continuous finite

element formulation. For the homogenization of the coupled diffusion-mechanics,

the equivalence of the virtual power for mass diffusion (extended Hill-Mandel con-

dition), and the virtual work of internal forces (standard Hill-Mandel condition)

are used for the diffusion and mechanical problems, respectively. A model reduc-

tion technique, inspired by the dynamic mode synthesis approach, is developed for

the coupled system of equations relying on the linearity of the problem and the

relaxed separation of scales. Accordingly, both the microscopic chemical potential

and displacement fields are split into their steady-state and transient parts. Using

static condensation, a reduced basis is first identified for the steady-state fields.

Then for the transient part, a coupled eigenvalue problem is solved for the free part

of the system. The expressions for the macroscopic effective quantities, i.e. , macro-

scopic flux, rate of change of concentration field and the macroscopic stress, are
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finally obtained. As an emergent result of the model reduction at the micro-scale,

a coupled diffusion-mechanics enriched-continuum is obtained, in which the fully

resolved microscopic coupled system of equations is replaced by a set of ordinary

differential equations which are computationally inexpensive to solve. Numerical

examples are presented, and a comparison is made between the fully resolved fi-

nite element calculations and the reduced order model for the cathode-electrolyte

system of a lithium-ion battery. The proposed reduced order homogenization has

been shown to capture the coupled behavior with an excellent accuracy and largely

improved computational efficiency.

Possible extensions to the current work are:

• two-scale implementation of the coupled diffusion-mechanics enriched-continuum,

which can be compared to direct numerical simulations;

• nonlinear regimes, both for elasticity and mass diffusion, can be analyzed,

for example, by using model reduction technique with modal derivatives in

combinations with a discrete empirical interpolation for the nonlinear forcing

terms [102];

• inelastic regimes and large deformations can be performed by using appropri-

ate model reduction methods, e.g. using proper generalized decomposition,

at the micro-scale [10].
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Abstract

In this paper, we propose a data-driven reduced homogenization technique to cap-

ture diffusional phenomena in heterogeneous materials which reveal, on a macro-

scopic level, a history-dependent non-Fickian behavior. The adopted enriched-

continuum formulation, in which the macroscopic history-dependent transient ef-

fects are due to the underlying heterogeneous microstructure is represented by

enrichment-variables that are obtained by a model reduction at the micro-scale.

The data-driven reduced homogenization minimizes the distance between points

lying in a data-set and points associated with the macroscopic state of the ma-

terial. The enrichment-variables are excellent pointers for the selection of the

correct part of the data-set for problems with a time-dependent material state.

Proof-of-principle simulations are carried out with a heterogeneous linear material

exhibiting a relaxed separation of scales. Information obtained from simulations

carried out at the micro-scale on a unit-cell is used to determine approximate values

of metric coefficients in the distance function. The proposed data-driven reduced

homogenization also performs adequately in the case of noisy data-sets. Finally,

the possible extensions to non-linear history-dependent behavior are discussed.

5.1 Introduction

Transient mass diffusion phenomena in heterogeneous materials are prevalent in

engineering applications, for example, Lithium-ion batteries [60], polycrystalline

materials [5], diffusion in porous gels [59], etc. For their analysis, numerical meth-

ods like finite elements in conjunction with transient computational homogeniza-

tion [8, 9] are used. Computational homogenization represents the heterogeneous

domain by a homogeneous macro-scale and a heterogeneous micro-scale and solves

the transient diffusion phenomena in a coupled two-scale setting. Despite the fact

that the individual micro-scale constituents might reveal instantaneously linear

behavior, the homogenization of transient mass diffusion phenomena in hetero-

geneous materials provides an emergent non-Fickian diffusion behavior [66, 103].

This lagging and history-dependent diffusion behavior obtained at the macro-scale

is due to the transient nature of the mass diffusion occurring at the micro-scale.

Diffusion in a heterogeneous material, consisting of inclusions embedded in a ma-

trix material, can be characterized by a characteristic loading time T , a charac-

teristic diffusion time for the inclusions τi = d2/Di and a characteristic diffusion
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time for the matrix τm = `2/Dm, where d is the inclusion size (e.g. diameter), `

is the characteristic size of the representative microscopic domain (e.g. the unit-

cell), Di and Dm are the diffusivity constants for the inclusions and the matrix,

respectively. In the regime of the relaxed separation of scales (τm � τi ∼ T ),

the non-Fickian behavior at the macro-scale is due to the slow diffusion inside the

inclusions. This gives rise to a lagging behavior at the macro-scale, which is more

prominent in the macroscopic storage term than in the diffusion term.

The homogenization in transient regimes is generally computationally very ex-

pensive. In previous work [67], a model reduction technique, based on component

mode synthesis [42, 43] was developed for transient diffusion phenomena in hetero-

geneous materials with linear material properties in the relaxed separation of scales

regime. The microscopic primary field variable was decomposed into a steady-

state and a transient part. Model reduction was achieved by solving an eigenvalue

problem and selecting only a few eigenvectors in the reduced bases set. When

projected onto the reduced bases subspace, the discretized mass balance equa-

tion at the micro-scale provides a set of ordinary differential equations in terms

of the activity coefficients of the eigenvectors. At the macro-scale, the macro-

scopic initial boundary value problem, the ordinary differential equations of the

activity coefficients, and the effective, homogenized, constitutive equations entail

an enriched-continuum description, where the activity coefficients are the emerg-

ing enrichment-variables. These enrichment-variables can be treated as separate

fields or as internal-variables, as used in the constitutive theories involving internal

variables [104]. This method was later extended to coupled diffusion-mechanics

phenomena [105], where diffusion induced stresses were correctly captured with

the reduced method. The major limitation of the enriched-continuum formulation

is the fact that it relies on the linear material models at the micro-scale to obtain

the well-defined eigenvector reduced bases by solving an eigenvalue problem.

In this work, a further extension of the enriched-continuum formulation is pro-

posed, which we call data-driven reduced homogenization. It combines of the

model reduction at the micro-scale to obtain enrichment-variables playing the role

of internal-variables, and the data-driven framework, which was first proposed

in [106].

The data-driven computing [106] eliminates the need for a material model in

computer simulations and instead directly uses raw data obtained from e.g. ex-

periments or micro-scale simulations. In essence, the data-driven method tries to

find a point in the data-set closest to the physical-state of the material obeying
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compatibility and the balance laws (or vice-versa). It was further extended to

noisy data-sets [107], dynamics [108] and inelastic material behavior [109]. Data-

driven computational homogenization, was proposed in [110, 111], where the ex-

pensive micro-scale calculations were performed first to generate data containing

homogenized quantities in an off-line stage, while in an on-line stage, the homoge-

nized macro-scale problem was solved using the data-driven approach. It was also

showed that the search through the data-set is much more efficient than solving

micro-scale problems in a coupled manner.

The data-driven approach proposed in [106] is fundamentally different from

other data-driven methods used in mechanics, where the data is typically used

to learn the behavior of the material in terms of a stress-strain relationship or

an energy potential. Classically, this learning process involves linear/non-linear

regression through, experimentally collected, data points to build a model. The

regression analysis has recently been replaced by techniques such as artificial neu-

ral networks, deep learning, etc. , borrowed from the field of data science. For

example, [112] employed a data-driven method that uses artificial neural networks

to obtain a decoupled and efficient computational homogenization for non-linear

elastic materials by approximating a density energy function. For a data-set with

few points, a data-driven inverse problem was proposed in [113] to recover the

entire constitutive manifold. Notably, [114] developed a multi-scale data-driven

method using recurrent neural networks, which can capture the history-dependent

behavior for plasticity and replaces the micro-scale calculations with a surrogate

model. Detailed reviews for modern data-driven model building techniques can be

found in [115–118].

The data-driven reduced homogenization, that will be proposed in this work,

entails three stages, i.e. (1) model reduction, (2) data-generation, and (3) data-

search.

1. The model reduction at the micro-scale, depending on the material models

of the constituents, can be applied to the discrete mass balance equations. It

can be categorized as a pre-processing stage. In the context of data-driven

reduced homogenization, the central goals of performing model reduction

at the micro-scale are to be able to (i) solve a large number of micro-scale

problems in a computationally efficient manner during the data-generation

stage and (ii) obtain internal-variables to represent the effect of the micro-

scale transient behavior at the macro-scale. For the materials with memory,

the internal-variables approach provides a computationally efficient way to
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keep track of the history dependence [109], hence, easing the computational

efforts later in the data-search stage.

2. The data-generation stage involves the solution of many micro-scale prob-

lems, post-processing, and storage of the results in the form of the macro-

scopic conjugate quantities. The data-generation stage is typically an off-line

stage. To ensure that the data-set contains representative values of conju-

gate quantities involved in the problem, the micro-scale should be probed

under different loading conditions with different frequencies.

3. Finally, the data-search is carried out to find an optimum point that re-

flects the minimal distance from the current physical-state of the material,

satisfying balance equations.

In this work, following [106, 109, 119], a staggered distance-minimizing data-driven

solver is adopted. It iteratively minimizes a quadratic distance function, defined

on the material phase-space, while looking for a point in the data-set. The com-

patibility of the macroscopic primary field is enforced directly and the macroscopic

balance law is enforced with the help of Lagrange multipliers. To find the physical-

state of the material, the stationarity conditions are obtained and then solved by

taking all possible variations of the Lagrangian function. Then, the search through

the data-set is performed by an array indexing lookup operation. The data-search

stage constitutes the on-line stage. The material models (linear) are known at the

micro-scale and the data-driven approach is applied to the macro-scale only. Un-

like usual finite element formulation, where the structure of the problem is highly

dependent on the material model, the structure of the data-driven formulation is

independent of the underlying material behavior (linear or non-linear). Hence, it

can easily be extended to the non-linear history-dependent diffusion problems. In

this preliminary work, the analysis is limited to the linear material behavior, and

the results are compared with the reference enriched-continuum formulation [67],

while the data-driven reduced homogenization approach for non-linear materials

will be analyzed in future work. The novel contributions in this paper are:

• introduction of data-driven reduced homogenization for macroscopic history-

dependent linear diffusion behavior;

• capturing the emergent macroscopic diffusion history dependence via enrichment-

variables in the data-set;
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• proposing a methodology to evaluate optimal numerical values of the coef-

ficients in the distance function based on the information from micro-scale

simulations.

5.1.1 Outline

The diffusion enriched-continuum formulation and model reduction for linear ma-

terials are briefly presented in Section 5.2. The data-driven reduced homogeniza-

tion is derived in Section 5.3: first, the data-set and phase-space are defined; next

the solution procedure and the algorithm is elaborated for a distance minimiz-

ing data-driven solver. All stages of the data-driven reduced homogenization are

evaluated with numerical examples in Section 5.4, where after setting up the micro-

scale and macro-scale problems, the data-generation is performed by micro-scale

simulations. An important discussion is made on the selection of numerical values

of the coefficients in the distance function and the performance and convergence

of the proposed method is assessed with a noisy data-set. Future perspectives,

along with an outlook to extend the proposed data-driven reduced homogeniza-

tion method to non-linear history-dependent diffusion materials, are presented in

Section 5.5 and finally the conclusions are given in Section 5.6.

5.1.2 Symbols and Notation

Macroscopic quantities are represented with a bar on top: for example scalar,

vector and second-order tensor macroscopic quantities are written as a, a, and A,

respectively. Microscopic quantities are represented without a bar; microscopic

scalar, vector and second-order tensorial quantities are written as a, a and A,

respectively. The same Cartesian basis ei, i = 1, 2, 3 is adopted at the macro-

and micro-scales. The dot products between two vectors, and between a second-

order tensor and a vector are represented as a · b := aibi and A · a := Aijajei,

respectively. A tensorial dyadic product is denoted as a ⊗ b := aibjei ⊗ ej and

A ⊗ a := Aijakei ⊗ ej ⊗ ek. The gradient of a scalar and a vector is defined

as ∇a := ∂a
∂xi
ei and ∇a := ∂ai

∂xj
ei ⊗ ej. Similarly, the divergence operates as

∇ · a := ∂ai
∂xi

and ∇ · A :=
∂Aij
∂xi
ej. For linear algebra operations, columns are

represented with a tilde underneath a lowercase letter, e.g. a˜, and matrices are

represented with a bar underneath an uppercase letter e.g. A .
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5.2 Enriched Continuum for Diffusion Problems

Assuming that the micro-scale material properties and microstructural topology

are known, the non-Fickian behavior at the macro-scale can be captured through

a multi-scale approach such as transient computational homogenization [8, 9, 66].

For diffusion problems, the macroscopic behavior, in terms of the macroscopic

chemical potential µ̄ as the primary unknown field, is obtained by solving a macro-

scopic transient mass balance equation

∇ · j̄ + ċ = 0 , in Ω ,

µ̄(t = 0) = µ̄0 , in Ω ,

µ̄ = ˆ̄µ , on ∂Ωµ̄ ,

−j̄ · n = ĵ , on ∂Ωj .

(5.1)

where ∂Ωµ̄ and ∂Ωj are the Dirichlet and Neumann sub-parts of the macroscopic

boundary ∂Ω, respectively, and n is the outward unit-normal vector, ĵ is the

prescribed mass influx and ˆ̄µ is the prescribed macroscopic chemical potential. The

explicit expressions for the macroscopic constitutive equations of the macroscopic

mass flux j̄ and the rate of change of macroscopic concentration ˙̄c are not known

and these are to be determined through homogenization, based on the micro-scale

material behavior and morphological information.

The micro-scale problem is described by the balance equation

∇ · j + ċ = 0 , (5.2)

with the known constitutive equations given by

j = −M · g, where g = ∇µ and µ = Λ(c− c0) , (5.3)

with M the mobility tensor, Λ the chemical modulus and c0 the reference con-

centration. The material properties are assumed to be known for each micro-

structural constituent. Transient computational homogenization involves down-

scaling and up-scaling steps: the former consists in imposing the governing macro-

scopic quantities (µ̄, ḡ), with ḡ = ∇µ̄, on the micro-scale domain, and the latter

involves the computation of the effective conjugate quantities (j̄, ˙̄c), after solv-

ing the transient fully resolved micro-scale problem which can be computationally

rather expensive.
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In the relaxed separation of scales regime (requiring that the characteristic

diffusion time of the matrix τm is much smaller than that of the inclusion τi

which is of the same order of magnitude as the characteristic loading time T

i.e. , τm � τi ∼ T ), for micro-scale constituents with a linear material behavior, a

reduced model has been proposed in [67]. Whereby the computationally expensive

solution of the transient micro-scale problem is replaced by an inexpensive solution

of a set of ordinary differential equations at the macro-scale by using computational

homogenization along with component mode synthesis. A similar approach can be

adopted for transient mass diffusion problems in heterogeneous materials. First,

discretized (e.g. using FEM) the microscopic chemical potential field µ˜ can be

decomposed into its steady-state µ˜ss and transient µ˜tr parts. Next, an Eigenvalue

problem is solved at the micro-scale to obtain the reduced eigenmodes Φ˜(q), where

q = 1, 2, ...,Nq, with Nq are the reduced number of eigenvectors. Finally, the

microscopic discretized problem is projected onto the subspace of the reduced

eigenbasis yielding a decoupled system of first-order ordinary differential equations

η̇˜+ αη˜ = −
∗
d˜ ˙̄µ−

∗
a˜ · ˙̄g . (5.4)

where η˜ is the column of the modal amplitudes, having the meaning of activity

coefficients or reduced degrees of freedom η(q), α is the diagonal matrix of eigen-

values α(q) , and
∗
a(q) and

∗
d(q) are the coefficients that couple the micro-scale to

the macro-scale. Projection onto the reduced degrees of freedom, also provides the

expression for the macroscopic constitutive equations of the macroscopic flux

j̄ = −a˜T η̇˜−B · ḡ − c ˙̄µ−C · ˙̄g , (5.5)

and the rate of change of the macroscopic concentration

˙̄c = d˜T η̇˜+ e · ḡ + f ˙̄µ+ f · ˙̄g . (5.6)

At the macro-scale, equations (5.1), (5.4), (5.5) and (5.6) present a diffusion

enriched-continuum with η˜ as the column of enrichment-variables. The effective co-

efficients (a˜,B, c,C) and (d˜, e, f ,f) are the linear maps between the macroscopic

quantities (η̇˜, ḡ, ˙̄µ, ˙̄g) and (j̄, ˙̄c), respectively. Their magnitudes and directions de-

pend on the microstructural material properties and microstructural morphology.

The reader is referred to [67] for a detailed derivation of the enriched-continuum

formulation in the context of transient heat conduction, and to the Appendix A.1
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for the expressions of the effective coefficients used in equations (5.4)–(5.6) and

the numerical implementation of the enriched-continuum for mass diffusion prob-

lems. The enriched-continuum formulation has also been extended to transient

mass diffusion problems coupled to mechanics in [105].

The non-Fickian diffusion at the macro-scale, represented by j̄ = j̄(η̇˜, ḡ, ˙̄µ, ˙̄g) in

equation (5.5) and ˙̄c = ˙̄c(η̇˜, ḡ, ˙̄µ, ˙̄g) in equation (5.6), allows to capture the complex

history dependence. The enrichment-variables η˜ play similar role to the internal-

variables used in the constitutive theory of inelastic materials [104]. However, here

the macroscopic model is non-classical one since the storage terms ˙̄c also depend on

the internal-variables, which is usually not the case for inelastic materials. In the

data-driven approach, η˜ can serve as an indicator in time for the selection of the

conjugate quantities, hence capturing the history-dependent behavior efficiently.

On the other hand, if instead of an enriched-continuum, the standard transient

computational homogenization scheme [8] would be used for the data-driven ap-

proach, there would be no internal-variables η˜ at the macro-scale. Instead, it would

require the storage of the complete history of the discrete microscopic fields µ˜(t),

for the corresponding macroscopic quantities (µ̄, c̄, ḡ, j̄) together with the data.

The data-search stage would then consist of searching through the entire history

of the discrete microscopic fields µ˜ up to a given time t. This would consume

an enormous amount of computer resources for data-generation, data-storage, and

data-search. Hence, the extraction of an enrichment-variable like quantity through

the model reduction at the micro-scale is a crucial step towards an efficient data-

driven solver for transient diffusion problems in heterogeneous materials. In the

next section, the data-driven homogenization for transient diffusion problems with

history effects is formally derived.

5.3 Data-Driven Reduced Homogenization

In this section, the data-driven reduced homogenization is derived for transient

diffusion problems with history effects at the macro-scale. First, the notions of

data-set and phase-space are presented. Then, a specific class of data-driven solver,

i.e. a distance minimizing data-driven solver, is chosen for the current implemen-

tation, which results in a double minimization of the distance function. Next, the

solution procedure using a staggered scheme is presented and finally, each step

involved of the data-driven simulation algorithm.
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For the sake of simplicity, a temporally and spatially discrete macroscopic prob-

lem is considered. The time is discretized by backward-Euler scheme, in which a

rate term Ḟ can be approximated by

Ḟ =
Fn+1 −Fn

∆t
, (5.7)

where ∆t = tn+1− tn is the time increment between the current tn+1 and previous

tn time instance. Spatial discretization of the domain Ω is performed by finite ele-

ments containing m = 1, 2, ...,M material (integration) points and i = 1, 2, ...,N
nodes. The notations and terminologies adopted here, follow from [109, 121].

5.3.1 Data-Set and Phase-Space

The data-driven reduced homogenization relies on a data-set generated by micro-

scale reduced-order simulations. The choice of the macroscopic quantities to be

stored in the data-set depends on the expressions of the constitutive equations

(5.4)–(5.6) and the data extracted from the micro-scale simulations. Here, we

choose to store all quantities and their rates (except for the flux rate). The local

data-set

Dm =
{(

µ̄′m, ˙̄µ′m, ḡ
′
m, ˙̄g′m, η˜′m, ˙η˜m′, j̄ ′m, c̄′m, ˙̄c′m

)}ndp
I=1

, (5.8)

is available at each material point m of the macroscopic discrete model at each

time instant tn+1. In (5.8) the prime •′ differentiates between a quantity • be-

longing to the physical-state of the macroscopic material or to the data-set Dm;

ndp is the total number of data-points obtained from the micro-scale. However, it

should be noted that after the data-generation stage the homogenization model is

disregarded, and thereafter data-driven problems solely rely on the data at hand

collected in (5.8). The local data-sets Dm, in general, can be different for each

macroscopic material point m. Collectively, from all the material points, the total

number of data-sets available in a discrete system represent a global data-set

D = D1 ×D2 × ...×DM . (5.9)

The physical-state of the material at the homogenized macro-scale can be char-

acterized by a point in the local phase-space Zn+1
m

zn+1
m =

(
µ̄m, ˙̄µm, ḡm, ˙̄gm, η˜m, ˙η˜m, j̄m, c̄m, ˙̄cm

)n+1

∈ Zn+1
m , (5.10)
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evolving in time, whereby the dimensions of the phase-space are dim(Zn+1
m ) =

R1 × R1 × Rsd × Rsd × RNq × RNq × Rsd × R1 × R1, in which sd is the spatial

dimension of the problem under consideration. Once combined, all the local states

zn+1
m make up the global physical-state

zn+1 =
{(

µ̄m, ˙̄µm, ḡm, ˙̄gm, η˜m, ˙η˜m, j̄m, c̄m, ˙̄cm

)n+1 }M
m=1
∈ Zn+1 , (5.11)

in the global phase-space Zn+1 = Zn+1
1 ×Zn+1

2 × ...×Zn+1
M . The physical-state of

the material zn+1 at the macro-scale should obey the macroscopic compatibility

and the discrete macroscopic mass balance laws at each time instance tn+1.

For each material point, in an element of the discretized macroscopic domain,

the compatibility is expressed in terms of the discretized macroscopic chemical

potential, defined at the nodes µ̄n+1
i as

ḡn+1
m =

N∑
i=1

∇Nmiµ̄
n+1
i . (5.12)

The macroscopic mass balance (5.1), once discretized in space and time and after

applying the Dirichlet and the Neumann boundary conditions, reads at each node

i and time instance tn+1 as

−∆t
M∑
m=1

wm∇Nmi · j̄n+1
m +

M∑
m=1

wmNmi(c̄
n+1
m − c̄nm) = −∆tĵ

n+1

i , (5.13)

wherei = 1, 2, ...,N . In equations (5.12) and (5.13), wm contains information

regarding quadrature weights and the volume of the elements, ∇Nmi is the gradi-

ent of finite element shape function Nmi evaluated at integration point m. Here,

for the sake of simplicity of the notation, the finite element shape functions N

and their gradients ∇N , are defined globally on the whole finite element mesh.

Here, it should be noted that the macroscopic flux j̄m as well as the concentration

c̄m, in equation (5.13), are the constitutive quantities which are evaluated at the

material points. The primary unknown field is µ̄i defined on the nodes. This is

different from the typical finite element discretization of the mass balance equation

in which usually the concentration field are assumed primary unknown field. Note

also that similar expressions could be obtained by alternative spatial discretiza-

tion techniques. The compatibility (5.12) and the terms in the macroscopic mass

balance law (5.13) are coupled through the data-set Dm. Through this coupling

the discretized macroscopic chemical potential µ̄n+1
i is solved at the nodes. The
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compatibility (5.12) and the balance law (5.13) pose restrictions on the state zn+1

of the material, hence constraining the phase-space Zn+1 as

En+1 = {zn+1 ∈ Zn+1 : compatibility (5.12) and macroscopic mass balance (5.13)} .
(5.14)

5.3.2 Distance Minimizing Data-Driven Problem

A distance minimizing data-driven problem, as introduced in [106], seeks a com-

patible and equilibrated material physical-state zn+1 ∈ En+1 that has a minimum

distance to a point in the global data-set D. To work with a distance, first the

local phase-space Zn+1
m is equipped with a local norm

|zn+1
m | =

[
1
2

1Cm(µ̄n+1
m )2 + 1

2
2Cm( ˙̄µn+1

m )2 + 1
2

3Cm(ḡn+1
m )2 + 1

2
4Cm( ˙̄gn+1

m )2+

1
2
(η˜n+1
m )T 5Cm(η˜n+1

m ) + 1
2
(η̇˜n+1

m
)T 6Cm(η̇˜n+1

m
) + 1

2
7Cm(j̄n+1

m )2+

1
2

8Cm(c̄n+1
m )2 + 1

2
9Cm( ˙̄cn+1

m )2
]1

2
, (5.15)

where JCm with J = 1, 2, ..., 9 are the coefficients which non-dimensionalize the

measure (5.15) and do not represent any material property. The coefficients 5Cm
and 6Cm are diagonal matrices of size Nq × Nq. The numerical values of these

coefficients are important for the numerical convergence of the data-driven prob-

lem and will be discussed in Section 5.4.4. Each term in the measure (5.15) is

quadratic, which, under the linear constraints of compatibility and equilibrium,

leads to a convex optimization problem. Then, locally, at the material point level,

the distance between two points yn+1
m , zn+1

m ∈ Zn+1
m can be measured as

dm(zn+1
m , yn+1

m ) = |zn+1
m − yn+1

m | . (5.16)

The global norm can be obtained by taking squares and integrating the local

norms over the entire domain

|zn+1| =

(
M∑
m=1

wm|zn+1
m |2

)1
2

, (5.17)
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which metrizes the global phase-space Z. Consequently the global distance from

a point yn+1 ∈ Zn+1 to zn+1 ∈ Zn+1 is measured as

d(zn+1, yn+1) = |zn+1 − yn+1| . (5.18)

The distance minimizing data-driven problem is then written as a double mini-

mization

min
yn+1∈D

min
zn+1∈En+1

d(zn+1, yn+1) = min
zn+1∈En+1

min
yn+1∈D

d(zn+1, yn+1) . (5.19)

It aims to find a point yn+1 in the global data-set D which is closest to a compat-

ible and equilibrated material state En+1, or equivalently, find a compatible and

equilibrated material state En+1 which is closest to a point yn+1 in global data-set

D while both minimizing the global distance function d(zn+1, yn+1).

The double minimization problem (5.19) is a combination of continuous and dis-

crete optimization problems, the former over the continuous manifold En+1, the

latter in the discrete data-set D. It has a combinatorial complexity, since for each

material point m contributing to the global distance-function (5.18), ndp points

can be evaluated and the minimum should be chosen among those. To efficiently

solve this computationally intensive combinatorial problem, following [119, 121],

a staggered solution scheme is adopted here which freezes the continuous mini-

mization problem while solving the discrete one and vice-versa. It assumes at an

iteration k the optimum point in the data-set
∗
yk
n+1 ∈ D to be known and finds

a closest state zn+1
k+1 ∈ En+1 to that data-set point. This first step represents a

projection operation zn+1
k+1 = PEn+1

∗
yk
n+1, where PEn+1 denotes the closest point

projection from D onto En+1.

Subsequently, in turn, the point zn+1
k+1 can be used to find the closest point in

the data-set for the next iteration
∗
yk+1
n+1 = PDz

n+1
k+1 , where PD denotes the closest

point projection from Zn+1 onto D. The iterations are continued until there is no

other optimum point in the data-set to choose i.e. , PDz
n+1
k+1 = PDz

n+1
k .

5.3.3 Solution Procedure

Assuming a known minimizing point
∗
yn+1
k ∈ D, the projection zn+1

k+1 = PEn+1
∗
yk
n+1 is

followed after minimizing the quadratic distance function d2(•, ∗ykn+1) subject to the

constraints (5.12) and (5.13). The compatibility is imposed directly by introducing

the chemical potential field as in equation (5.12) and the discrete mass balance is

enforced by using Lagrange multipliers λn+1
i at the nodes. The Lagrangian can be
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written as

Ln+1
=

M∑
m=1

wm

[
1
2

1Cm

( N∑
i=1

Nmiµ̄
n+1
i −

∗
µ̄m
n+1

)2

+ 1
2

2Cm

( N∑
i=1

Nmi
µ̄n+1
i − µ̄ni

∆t
−
∗
˙̄µm
n+1

)2

+

1
2

3Cm

( N∑
i=1

∇Nmiµ̄
n+1
i −

∗
ḡm
n+1

)2

+ 1
2

4Cm

( N∑
i=1

∇Nmi
µ̄n+1
i − µ̄ni

∆t
−
∗
˙̄gm
n+1

)2

+

1
2

5Cm
(
η˜n+1
m − ∗η˜n+1

m

)2

+ 1
2

6Cm

(
η˜n+1
m − η˜nm

∆t
−
∗
η̇˜n+1
m

)2

+

1
2

7Cm
(
j̄n+1
m −

∗
j̄m
n+1

)2

+ 1
2

8Cm
(
c̄n+1
m −

∗
c̄m
n+1
)2

+ 1
2

9Cm
(
c̄n+1
m − c̄nm

∆t
−
∗
˙̄cm
n+1

)2
]

+

N∑
i=1

[(
−∆t

M∑
m=1

wm∇Nmi · j̄n+1
m +

M∑
m=1

wmNmi(c̄
n+1
m − c̄nm) + ∆tĵ

n+1
i

)
λn+1
i

]
, (5.20)

where the rate terms in the distance function are approximated using the backward-

Euler time discretization introduced in (5.7).

Next, to find the stationarity conditions for all the variables appearing in the

Lagrangian (5.20), it needs to be perturbed with respect to the admissible fields

δµ̄n+1
i , δη˜n+1

m , δj̄n+1
m , δc̄n+1

m , δλn+1
i . These stationarity conditions are discussed next,

one-by-one. The perturbation with respect to the macroscopic chemical potential

field µ̄n+1
i , discretized at the nodes, provides,

δµ̄n+1
i :

∂Ln+1

∂µ̄n+1
i

= 0 =⇒

M∑
m=1

wm

[
Nmi

(
1Cm +

2Cm
∆t

) N∑
j=1

Nmj+∇Nmi

(
3Cm +

4Cm
∆t

)
·
N∑
j=1

∇Nmj

]
µ̄n+1
j =

M∑
m=1

wm

[
Nmi

2Cm
∆t

N∑
j=1

Nmj + ∇Nmi

4Cm
∆t
·
N∑
j=1

∇Nmj

]
µ̄nj +

M∑
m=1

wm

[
Nmi(

1Cm
∗
µ̄m
n+1 + 2Cm

∗
˙̄µm
n+1) + ∇Nmi · ( 3Cm

∗
ḡm
n+1 + 4Cm

∗
˙̄gm
n+1)

]
,

(5.21)

which can be written in a matrix-column form as

Kµ̄µ̄˜n+1 = M µ̄µ̄˜n + F˜∗
µ̄ . (5.22)

Equation (5.21) is a transient diffusion equation for µ̄ with corresponding bi-linear

forms (Nmi •Nmj) and (∇Nmi •∇Nmj) as the capacity and diffusivity matrices,

respectively. The macroscopic chemical potential field µ̄˜n+1 calculated by (5.22),
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with given (
∗
µ̄m
n+1,

∗
˙̄µm
n+1,

∗
ḡm
n+1,

∗
˙̄gm
n+1) in the forcing term F˜∗

µ̄, is locally compatible

with (
∗
µ̄m
n+1,

∗
ḡm
n+1) in a weak sense and also constrained by the corresponding rate

terms (
∗
˙̄µm
n+1,

∗
˙̄gm
n+1) in the data-set. The Dirichlet boundary conditions, appear-

ing in equation (5.1), are enforced on the µ̄˜ field, while homogeneous Neumann

conditions are considered on the complementary part of the boundary ∂Ωj.

The perturbation with respect to the enrichment-variables reads

δη˜n+1
m :

∂Ln+1

∂η˜n+1
m

= 0

=⇒ η˜n+1
m =

1

(∆t 5Cm + 6Cm)

[
6Cmη˜nm + ∆t 5Cm

∗
η˜n+1
m + ∆t 6Cm

∗
η̇˜n+1
m

]
, (5.23)

which means that locally η˜n+1
m should be consistent with

∗
η˜n+1
m and its rate

∗
η̇˜n+1
m

, present in the data-set. Since η˜m does not appear in the macroscopic balance

equation (5.13) there are no Lagrange multipliers λ˜n+1 in (5.23); η˜m is connected

to the other physical-state variables via the data-set only.

The perturbation with respect to the macroscopic mass flux yields

δj̄n+1
m :

∂Ln+1

∂j̄n+1
m

= 0 =⇒ j̄n+1
m =

∗
j̄m
n+1 + ∆t

1
7Cm

N∑
i=1

∇Nmiλ
n+1
i , (5.24)

which states that the difference between the local macroscopic mass flux j̄n+1
m and

its counterpart in the data-set
∗
j̄m
n+1, at iteration k, should be balanced through the

Lagrange multipliers field λn+1
i . The perturbation with respect to the macroscopic

concentration can be written as

δc̄n+1
m :

∂Ln+1

∂c̄n+1
m

= 0 =⇒

c̄n+1
m =

1

(∆t 8Cm + 9Cm)

[
9Cmc̄nm + ∆t 8Cm

∗
c̄m
n+1 + ∆t 9Cm

∗
˙̄cm
n+1 −∆t

N∑
i=1

Nmiλ
n+1
i

]
,

(5.25)

which gives a local macroscopic concentration field c̄n+1
m consistent with (

∗
c̄m
n+1,

∗
˙̄cm
n+1)

in the data-set, whereby the difference is rectified by the Lagrange multipliers field

λn+1
i .
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Finally, taking the variation with respect to the Lagrange multiplier field λn+1
i

amounts to

δλn+1
i :

∂Ln+1

∂λi
= 0

=⇒ −∆t
M∑
m=1

wm∇Nmi · j̄n+1
m +

M∑
m=1

wmNmi(c̄
n+1
m − c̄nm) + ∆tĵ

n+1

i = 0 , (5.26)

which is the balance between the internal and the external macroscopic mass fluxes

at the nodes. Substituting the expressions of j̄n+1
m and c̄n+1

m from equations (5.24)

(5.25) into equation (5.26) and performing some straight forward manipulations

provides the system of equations for the Lagrange multiplier field λn+1
i as follows

−∆t2
M∑
m=1

wm∇Nmi ·
1

7Cm

N∑
j=1

∇Nmjλ
n+1
j −

∆t

M∑
m=1

wmNmi
1

∆t 8Cm + 9Cm

N∑
j=1

Nmjλ
n+1
j = ∆t

M∑
m=1

wm∇Nmi · j̄∗m −∆tĵ
n+1
i −

M∑
m=1

wmNmi

( 1

∆t 8Cm + 9Cm

[
∆t 8Cmc̄∗m + 9Cmc̄nm + ∆t 9Cm ˙̄c∗m

]
− c̄nm

)
, (5.27)

which in the matrix-column form can be written as

Kλλ˜n+1 = F˜
∗
λ . (5.28)

In equations (5.24)–(5.28), the Lagrange multiplier field can be interpreted as an

equivalent macroscopic chemical potential which minimizes the difference between

the physical-state (j̄n+1
m , c̄n+1

m ) and the point (
∗
j̄m
n+1,

∗
c̄m
n+1,

∗
˙̄cm
n+1) in the data-set,

which are present in F˜
∗
λ. In equation (5.28), the Lagrange multiplier field is subject

to λn+1
i = 0 on ∂Ωµ̄ and there is an influx of mass ĵ, which is zero, at the Neumann

part of the boundary that naturally appears in the system of equations through

the weak form (5.13). For a variational formulation and a detailed discussion on

the boundary conditions on the fields appearing in the data-driven problems, the

reader is directed to [119].

In a staggered approach, after solving for µ̄˜n+1 and λ˜n+1 from equations (5.22)

and (5.28), the projection zn+1
k+1 = PEn+1

∗
yk
n+1 can be obtained by evaluating

η˜n+1
m , j̄n+1

m and c̄n+1
m from (5.4), (5.24) and (5.25), respectively. The subsequent

projection
∗
yk+1
n+1 = PDz

n+1
k+1 is achieved by a simple search through the data to find

a point in the global data-set D which provides the minimum distance to zn+1
k+1 , as

discussed in more detail in the next section.
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5.3.4 Algorithm

The pseudo algorithm for distance minimizing data-driven reduced homogeniza-

tion is shown in Algorithm 1. The data-driven solver initializes with setting the

Algorithm 1: Distance minimizing data-driven reduced homogenization.

I Initialize: maxIter = 100, k = 0, tol = 10−12, n = 1 ;

I Assign:
∗
yk
n+1 = 0 ;

I Assemble: Kµ̄,Kλ,M µ̄,F˜∗
µ̄
k and F˜

∗
λ
k ;

for n = 0 → T do
while k < maxIter do

I Solve: Kµ̄µ̄˜n+1
k+1 = M µ̄µ̄˜nk+1 + F˜∗

µ̄
k (5.22) and Kλλ˜n+1

k+1 = F˜
∗
λ
k (5.28) ;

for m = 1→M do

I Evaluate: zn+1
m,k+1 = PEn+1

∗
ym,k
n+1 ;

I Choose:
∗
ym,k+1
n+1 = PDz

n+1
m,k+1 such that

dm(zn+1
m,k+1,

∗
ym,k+1
n+1 ) ≤ dm(zn+1

m,k+1, Dm) ;

I Integrate: d(zn+1
k+1 ,

∗
yk+1
n+1) from dm(zn+1

m,k+1,
∗
ym,k+1
n+1 ) ;

I Assemble: F˜∗
µ̄
k+1 and F˜

∗
λ
k+1 using

∗
yk+1
n+1 ;

end
if (PDz

n+1
k+1 − PDz

n+1
k ) ≤ tol then

I Terminate ;
else
I k = k + 1 ;

end

end

end

maximum number of allowed iterations maxIter, the data-driven iteration counter

k, the allowed tolerance tol and the time stepping variable n. An initial guess for

the optimum
∗
yk
n+1 ∈ D is made. In the preliminary work [106],

∗
ym,k
n+1 was initial-

ized by assigning randomly a point in the Dm to each material point m. However,

it was observed that an initial guess of
∗
yk
n+1 = 0 requires less number of iterations

to converge to the desired tolerance, both for steady-state and transient problems.

Unlike material model based finite element solvers, independently of the exis-

tence of a potential non-linearity in the material behavior, the distance minimizing

data-driven solver requires the assembly of the matrices Kµ̄,Kλ and M µ̄ only once.

For a specific physical phenomenon under consideration, for instance elasticity, dif-

fusion, or history-dependent materials, the same solver can be used for different

materials and different data-sets. Then, in the time stepping and data-driven
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loops, first the pertinent µ̄˜n+1 and λ˜n+1 problems are solved. In the current for-

mulation these two problems, (5.22) and (5.28), are algebraically independent,

the only coupling is through the data-set D. However, in some other data-driven

problems, as can be seen in the case of dynamics [107] and transient Fickian diffu-

sion [119] (formulated in concentrations), a coupled system of equations emerges

after taking variations of the Lagrangian.

Next, at the material point level, the projection zn+1
m,k+1 = PEn+1

∗
ym,k
n+1 is per-

formed. It involves evaluating the physical-state of the material zn+1
m,k+1, from the

previously calculated
∗
yk
n+1, µ̄˜n+1

k+1 and λ˜n+1
k+1 . The local values of µ̄n+1

m,k+1 are evalu-

ated by interpolating µ̄n+1
i,k+1 using the finite element shape functions Nmi, ḡ

n+1
m,k+1 is

computed by using compatibility (5.12), while η˜n+1
m,k+1, j̄

n+1
m,k+1 and c̄n+1

m,k+1 are calcu-

lated by (5.23), (5.24) and (5.25), respectively and their rates ( ˙̄µm, ˙̄gm, η̇˜m, ˙̄cm)n+1
k+1

using the approximation in (5.7).

The global distance function (5.18) is minimized by finding the minima of the

local distance function (5.16), using all the points in the local data-set Dm, at each

material point m, and then integrating it using numerical quadrature. The mini-

mum for the local distance function (5.16) is found through a simple lookup array

search algorithm, which amounts to performing the projection
∗
ym,k+1
n+1 = PDz

n+1
m,k+1.

Searching through the data-set Dm is the computationally expensive part of data-

driven algorithm. If the data-set is large enough, a smart search algorithm, for

instance, based on a tree search algorithm [122], should be used to accelerate this

step. Then, using the newly found values of
∗
ym,k+1
n+1 , the flux columns F˜∗

µ̄
k+1 and

F˜
∗
λ
k+1 are assembled. Finally, the convergence is checked and the iterations are

terminated if there is no change in the optimum data point. For a noisy data-set,

convergence criteria based on the stagnation of the global distance function can

be used to terminate the data-driven iterations.

5.4 Numerical Examples

In this section, the proposed framework for data-driven reduced homogenization

for transient diffusion problems with history effects is illustrated through numerical

examples. First, the problem settings are presented for the micro-scale and the

macro-scale. Next, the data-generation step is performed by loading the micro-

scale, post-processing, and storing the relevant quantities. After that, the data-

driven simulations are carried out, whereby the homogenized chemical potential

fields obtained by the data-driven approach are compared with the ones obtained
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by the regular enriched-continuum formulation. Information from the reduced

micro-scale model is used to select the coefficients in the distance function. The

micro-scale chemical potential fields are post-processed and also compared. The

performance of the data-driven approach using noisy and different data-sets is also

analyzed. Finally, a convergence analysis, with respect to the number of points in

the data-set, is carried out.

5.4.1 Problem Settings: Micro-scale and Macro-scale

5.4.1.1 Micro-scale

The micro-scale consists of a two-dimensional square unit-cell with side length `

and a single circular inclusion of diameter d embedded in a matrix. The mate-

rial properties and linear constitutive material models for the inclusion and the

matrix are assumed to be known and complying with the relaxed separation of

scales regime (τm � τi ∼ T ). The unit-cell is discretized with nearly 4400 linear

triangular elements and 2200 nodes. The material properties and other param-

eters used in the simulations are listed in Table 5.1. After the assembly of the

finite element system and application of the periodic boundary conditions, at the

micro-scale, an eigenvalue problem is solved for the smallest 100 eigenvalues α

and eigenvectors Φ. Next, a criterion based on either the energy consistency or

coupling terms, as proposed in [67, 105], is used to select a limited number (Nq)
eigenmodes that contribute most, in terms of transient effects, to the macro-scale

response. For the unit-cell with a single inclusion, as shown in Figure 5.1, and the

material properties given in Table 5.1, the selection criteria based on the coupling

terms provides 6 important eigenvectors as a reduced basis set, see [120] for more

details and the contour plots of the selected eigenvectors. Finally, the homoge-

nized coefficients (a˜, ∗a˜,B, c,C, d˜,
∗
d˜, e, f ,f) are determined and stored [67]. The

values for the first components of these coefficients can be found in Table 5.2. Note

that, even though the macro-scale considered here is a one-dimensional domain,

a two-dimensional micro-scale problem has to be solved to obtain the required

values of the homogenized coefficients, since in a one-dimensional micro-scale do-

main the diffusion around the inclusion can not be represented at the macro-scale

through homogenization. The reduced order model (5.4)–(5.6) is now ready for

the data-generation stage.
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Table 5.2: The values of the coefficients appearing in equations (5.5) and (5.6), for

the unit-cell shown in Figure 5.1 with geometrical and material parameters given

in Table 5.1, A(•) indicates the (•) component of the tensor A.

Coefficient a
(1)
(1) B(11) c(1) C(11)

Units [mol m−2 s−1] [J−1 mol2 m−1 s−1] [J−1 mol2 m−2] [J−1 mol2 m−1]

Value 1.3× 10−7 0.6× 10−4 1.3× 10−8 0.6× 10−5

Coefficient d(1) e(1) f f (1)

Units [mol m−3 s−1] [J−1 mol2 m−2 s−1] [J−1 mol2 m−3] [J−1 mol2 m−2]

Value −33.46 −0.6× 10−16 0.534 −0.13× 10−7

5.4.1.2 Macro-scale

The homogenized macroscopic domain Ω, both for the enriched-continuum and

the data-driven simulations, is a one-dimensional bar of length L with a Dirichlet

boundary condition on ∂Ωµ̄ on the left side of the domain and Neumann no-

flux boundary condition on the right side of the domain. It is discretized with

50 linear one-dimensional finite elements, unless stated otherwise, which are in-

tegrated using a two-point Gauss quadrature rule. For consistency, in the fol-

lowing the vectorial/tensorial quantities in one-dimension are still shown with a

tensorial notation. Total loading time is chosen to be T = 0.1τi[s] and both the

enriched-continuum and the data-driven problems are discretized in time using

the backward-Euler time integration scheme. The reference time step size ∆t is

taken to be ∆t = T × 10−3[s]. For the macro-scale simulations, the ramp loading

conditions

µ̄n+1
p (t) =

 t
TR
µ̄max , if t ≤ TR (loading)

µ̄max , TR < t ≤ T (relaxation)
on ∂Ωµ̄ , (5.29)

are used on the Dirichlet part of the macroscopic boundary ∂Ωµ̄, where µ̄max =

Λ(cmax − c0) is the maximum attainable chemical potential during mass diffusion

and TR = T/2. The first part of the ramp till TR represents a loading path

and the second part from TR to T represents a relaxation path. The data-driven

reduced homogenization solver is initialized with an initial guess
∗
yk
n+1 = 0 and

the stagnation criteria |d(zn+1
k+1 ,

∗
yk+1
n+1) − d(zn+1

k+1 ,
∗
yk
n+1)| ≤ tol is used to terminate

the iterations of the staggered scheme. The numerical solution of the enriched-

continuum formulation at the macro-scale is used as a reference solution.

137



Chapter 5. Data-driven Reduced Homogenization for Transient Diffusion
Problems with Emergent History Effects

Gauss quadrature point: x̄m

Nodes: x̄i
Unit-Cell

µ̄p

∂Ωµ̄

Macroscopic Domain Ω

∂Ωj

Figure 5.1: The macroscopic domain Ω with a prescribed macroscopic chemical

potential µ̄p at the Dirichlet part of the boundary ∂Ωµ̄, and zero-flux ĵ = 0 at the

Neumann part of the boundary ∂Ωj. The finite elements nodes are shown with

gray circles. The Gauss quadrature points, where the data-set Dm is available, are

shown with blue crosses. The unit-cell from which the reduced order model and

the data-set are obtained is also shown: the light-gray part of the unit-cell is the

matrix material while the dark gray is the inclusion material.

5.4.2 Data-Generation from Micro-Scale Simulations

5.4.2.1 Input Generation (µ̄n+1
m , ḡn+1

m )

To obtain the data-set D representative of the problem, the data-generation in-

volves micro-scale simulations, ideally with all possible loading scenarios. In prac-

tice, a wide spectrum of loading conditions, i.e. µ̄n+1
m and ḡn+1

m with varying mag-

nitudes and frequencies, may be needed when a stand-alone micro-scale problem

is considered. In the current work, for the validation of the proposed data-driven

solver, the loading conditions (µ̄n+1
m , ḡn+1

m ) are obtained via a post-processing the

solution of the enriched-continuum problem. The solution to (5.1) obtained by

the enriched-continuum formulation subject to different loading conditions given

in Table 5.3 µ̄n+1
m and ḡn+1

m at each time step tn+1, with a reference time step size of

∆t = T×10−3 at the first Gauss quadrature point of each element. As an example,

the outcome for the ramp loading condition (5.31) is shown in Figure 5.2. In this

case, µ̄n+1
m and ḡn+1

m are connected through the macroscopic initial boundary value

problem (5.1) and each µ̄n+1
m graph in Figure 5.2 (a) corresponds to a graph of

ḡn+1
m in Figure 5.2 (b), collectively representing an input in time to the micro-scale

reduced problem (5.4). The ramp effect smooths out as x̄m → L, as indicated by

the red arrow, which provides different magnitudes and types of loading conditions

for the micro-scale problems. In the following, local quantities of interest, such as

macroscopic mass-flux j̄n+1
m and the rate of change of macroscopic concentration

˙̄cn+1
m will be compared at, for the data-driven and the full enriched-continuum so-

lution will be made, a reference point ˆ̄xm, located at the first Gauss quadrature

point of the tenth element, which is indicated with a dark black line in Figure

5.2. The global quantities, for example the macroscopic chemical potential field
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Figure 5.2: (a) Local macroscopic chemical potential field µ̄n+1
m and (b) local

gradient of macroscopic chemical potential field ḡn+1
m (t) to be used as the input for

the micro-scale data-generation step. These are post-processed, from the solution

of the enriched-continuum problem, at the first Gauss quadrature point of every

element in the macroscopic domain loaded with the ramp condition (5.31). The

dark black line represents µ̄n+1
m and ḡn+1

m at a reference macroscopic point ˆ̄xm

which will be used to compare the local elemental quantities. The dashed blue

line is at a reference time T̂ = 0.55T at which the global quantities, at the nodes,

will be compared.

µ̄n+1
i at the nodes will be compared at a time instance T̂ = 0.55T as shown with

a dashed blue line in Figure 5.2.

5.4.2.2 Data-Generation

The data-generation is performed by solving the reduced model (5.4)–(5.6), for

µ̄n+1
m (t) and ḡn+1

m (t) computed in the previous section, with the time discretization

performed using the approximation in equation (5.7). The data is stored in a local

data-set

Dm = {(µ̄′m, ˙̄µ′m, ḡ
′
m, ˙̄g′m, η˜′m, ˙η˜m′, j̄ ′m, c̄′m, ˙̄c′m)}ndpI=1 (5.30)

In current work, for the data-driven simulations the same local data-set Dm is

available to all the material points i.e. , D1 = D2 = ... = DM; in general, a

different data-set can be available for each material point.

As stated before, the selection criteria for the dominant eigenvectors, as pro-

posed in [67, 105], provide Nq = 6 for the considered unit-cell. It turns out,

however, that out of these six, only one eigenvalue has the largest contribution
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to the lagging behavior at the macro-scale. This can be verified from the time

evolution of η
(q),n+1
m and η̇

(q),n+1
m at ˆ̄xm, as shown in Figure 5.3. Therefore, it has

been chosen to use only η
(1),n+1
m and η̇

(1),n+1
m in the data-driven calculations to

capture the history-dependent response. The different loading conditions (Table
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Figure 5.3: (a) Time evolution of the enrichment-variables η(q),n+1(t) and (b) their

rates η̇n+1
m at the reference macroscopic point ˆ̄xm. For the unit-cell shown in Figure

5.1, the eigenvalue and the corresponding eigenvector corresponding to η(1),n+1 are

dominant one.

5.3) have provided different data-sets which are indexed as listed in Table 5.3.

The number of data-points ndp = T/∆t + 1 are also given in the table. After the

data-generation stage, the information about the micro-scale must be discarded,

as the data-driven solver should only rely on the raw data.

Pairs (ḡn+1
m , j̄n+1

m ), ( ˙̄µn+1
m , ˙̄cn+1

m ) and ( ˙̄µn+1
m , η̇

(1),n+1
m , ˙̄cn+1

m ) in DR are visualized in

Figure 5.4 (a), (b) and (c), respectively. The pairs (ḡn+1
m , j̄n+1

m ) show a negative

linear behavior that is independent of the loading path, which indicates that the

history effects are not prominent in the diffusion contribution at the macro-scale

and can also be sufficiently accurately calculated by the standard volume aver-

aging of the Fickian diffusion behavior at the micro-scale. However, a prominent

history dependence and non-Fickian behavior can be observed in the graphs of

( ˙̄µn+1
m , ˙̄cn+1

m ), where there is neither a linear nor logarithmic relation between ˙̄µn+1
m

and ˙̄cn+1
m at the macro-scale. This can also be observed in ( ˙̄µn+1

m , η̇
(1),n+1
m , ˙̄cn+1

m )

graph, which clearly indicates that the history effect emerges from the storage/-

capacitance term at the macro-scale and can be tracked by the internal-variable

η̇
(1),n+1
m . A correct value of η̇

(1),n+1
m , at a spatial point x̄m and time tn+1, selected
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by the projection
∗
ym,k+1
n+1 = PDz

n+1
m,k+1, will direct the other quantities, in the data-

set Dm, to be either in the loading or the relaxation path, hence keeping track

of the history effects. Next, the macroscopic chemical potential field µ̄ and the
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ḡn+1
m

[Jmol−1 m−1]

j̄
n
+
1

m
[m

ol
m

−
2
s−

1
]

(a)

0 1 2 3 4 5

0

0.5

1

1.5

2

2.5

3

˙̄µn+1
m

[Jmol−1 s−1]

˙̄ cn
+
1

m
[m

ol
m

−
3
s−

1
]

(b)

4

20

0.01

1

0
0-0.01

2

3

˙̄µ
n
+
1

m
[J
m
ol

−
1
s−

1 ]

η̇
(1),n+1
m

˙̄ cn
+
1

m
[m

ol
m

−
3
s−

1
]

lo
a
d
in

g

rela
x
a
tio

n

x̄
m
→

L

(c)

Figure 5.4: From the data-set DR, the pairs (a) (ḡn+1
m , j̄n+1

m ), (b) ( ˙̄µn+1
m , ˙̄cn+1

m ) and

(c) ( ˙̄µn+1
m , η̇

(1),n+1
m , ˙̄cn+1

m ) are visualized.

microscopic chemical potential fields µ obtained from the data-driven reduced ho-

mogenization and the enriched-continuum formulation will be compared to provide

an indication of the performance of the data-driven approach.

5.4.3 Homogenized and Microscopic Fields

In this section, the developed data-driven reduced homogenization is verified using

the data-set DR generated from the enriched-continuum problem, with the same

loading condition (5.31) as it is used for the data-driven boundary value problem.

In this scenario, the data-set can be assumed to be ideal and if the data-driven

problem is formulated correctly, both, the enriched-continuum and the data-driven

solutions must match very accurately. In Figure 5.5, the macroscopic chemical

potential field at time T̂ obtained by the enriched-continuum formulation µ̄˜n+1
E

(reference) is shown with the gray line, while the one obtained by the proposed

data-driven reduced homogenization method µ̄˜D using the data-set DR is shown

with the blue line. It can be observed that µ̄˜n+1
E and µ̄˜n+1

D lie on top of each other.

The micro-scale chemical potential fields µ˜n+1
E and µ˜n+1

D , shown in Figure 5.6, are

post-processed at x̄1 = 0.6842[m] using

µ˜n+1
m = S (I˜µ̄n+1

m + ḡn+1
m ·∆x˜m) + Φ˜(1)η(1),n+1

m , (5.34)
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Figure 5.5: Comparison between the macroscopic chemical potential fields ob-

tained via enriched continuum formulation µ̄n+1
E (reference), shown with the gray

line, and the data-driven reduced homogenization µ̄n+1
D using DR, shown with the

blue line, at time step T̂ . The microscopic chemical potential fields µn+1
E and µn+1

D

are post-processed x̄1 = 0.6842[m] .The marker is plotted at every tenth node of

the finite element mesh.

where S is the Schur-complement of the microscopic finite element matrices, I˜ is a

column of ones and ∆x˜m is the microscopic position vector connecting the spatial

coordinates to the center of the unit-cell. For more details on the post-processing

of the microscopic field µ˜m by using (5.34) the reader is referred to [67]. The post-

processed microscopic fields also reveal an excellent agreement with the reference

simulation where the maximum of the absolute error is of the order of 10−11. To

0 1.5× 103 3× 103 [Jmol−1]

µn+1

E

(a)

µn+1

D

(b)

Figure 5.6: Microscopic chemical potential fields µn+1
E and µn+1

D using DR data-set

post-processed at time T̂ and x̄1 = 0.6842[m] using equation (5.34).

obtain these results, the values of the coefficients JCm were chosen based on the

information available from the micro-scale, as will be detailed next.
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5.4.4 Numerical Values of the Coefficients JCm
In the data-driven simulations, the coefficients JCm in the norm (5.15) used in

the distance function (5.18) serve two purposes, one is to non-dimensionalize the

distance function and second is to give different weighs to the parts of the distance

function. In a data-set with a large number of data points ndp, the influence of the

coefficients JCm is insignificant [123]. However, these coefficients play a crucial role

when the data-set has a finite number of data points and if there are inconsistencies

in the data-set such as presence of noise or missing points. In a one dimensional

problem i.e. , sd = 1, the solution of the data-driven reduced homogenization exists

on a manifold in a 7+2Nq dimensional space, which is computationally intractable

to fill in completely. Instead, in data-driven simulations, sparse data-sets are used

and the coefficients in the distance function should be selected carefully to achieve

minimum error with a limited number of iterations.

The total number of coefficients can be reduced by grouping them according

to their “classical” thermodynamic conjugacy. In the norm (5.15) ( ˙̄µm, ˙̄cm) and

(ḡm, j̄m) are the conjugate quantities. The coefficient which goes along with one

of the conjugate quantities should be equal to the inverse of the other. Some

entries of the diagonal matrices 5Cm and 6Cm can be neglected if the activity of a

particular enrichment-variable η
(q),n+1
m and its rate η̇

(q),n+1
m is smaller than that of

the other enrichment variables.

The values for these coefficients can be selected by using the information, if

available, from the micro-scale calculations. The coefficients which go along with

the macroscopic variables appearing in the distance function, are selected to be

equal to the corresponding coupling terms for the respective macroscopic variable

in the macroscopic constitutive equations (5.5) and (5.6). The coefficients whose

corresponding macroscopic variables do not appear in equations (5.5) and (5.6)

and the ones with an insignificant value, as compared to the other coefficients, are

chosen to be zero. The values for these coefficients used in the simulations are

given in Table 5.4. To test the selected values of the coefficients, the data-driven

simulations were conducted with the data-sets D(R+S) and D̃(R+S). The relative

L2-error norm, between the chemical potential fields µ̄n+1
D and µ̄n+1

E , is compared.

Both, the data-driven problem and the enriched-continuum problem are actuated

by the default boundary condition (5.29). The results are shown in Figures A.1,

A.2, A.3 and A.4 in Appendices A.2 and A.3. It can be observed, that the values

of the coefficients selected as proposed above (the black lines in the Figures), for

most of the cases, yield the smallest values of the relative L2-error norms. Also,
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Table 5.4: The values of the coefficients appearing in the norm (5.15) distance

function (5.18).

Coefficient Value Units

1Cm 0 [J−1 mol m−3 s−1]

2Cm 0.534 [J−1 mol m−3 s]

3Cm 0.6× 10−4 [J−1 mol m−1 s−1]

4Cm 0 [J−1 mol m−1 s]

5C(1)

m 0 [J mol−1 m−3 s−1]

6C(1)

m 33.46 [J mol−1 m−3 s]

7Cm 1666 [J mol−3 m s]

8Cm 0 [J mol−3 m3 s−1]

9Cm 1.872 [J mol−3 m3 s]

less iterations k are required for the convergence of the staggered scheme. Similar

trends have been seen using different data-sets with different number of data points

ndp (not shown here for brevity).

5.4.5 Noisy Data-Set

Uncertainties during the data-generation steps may result in a noisy data-set,

which can affect the final result and the convergence of a data-driven solver. To

analyze how the proposed data-driven solver behaves in the presence of the noise

in the data, a white Gaussian noise, with a signal-to-noise ratio of 30, is added to

each element of the original data-sets Dm which results in a data-sets with noise

D̃m = {(˜̄µm′, ˜̄̇µm′, ˜̄gm′, ˜̄̇gm′, η̃˜m′, ˜̇η˜m′, ˜̄jm′, ˜̄cm′, ˜̇̄cm′)}ndpI=1. For the pairs (˜̄gmn+1, ˜̄jmn+1) and

(˜̄̇µmn+1, ˜̇ηm(1),n+1, ˜̇̄cmn+1) in the data-set D̃R the noise in the data is shown in Figure

5.7.

As can be seen in Figure 5.8, the relative L2-error between the macroscopic

chemical potential fields µ̄˜n+1
E and µ̄˜n+1

D increases with the addition of noise in the

data-set. However, with the amount of added noise, this error is still reasonably

small, see Figure 5.8 (a). The data-driven reduced homogenization also captures

the local quantities adequately in the presence of noise as can be seen in Figure

5.8(b) and (c), where the time evolutions of the macroscopic mass flux j̄n+1
m and

the macroscopic concentration c̄n+1
m are evaluated at the macroscopic reference

point ˆ̄xm computed with the noisy and original data-sets. Different values of the

coefficient JCm in the distance function were also checked with the noisy data-set
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Figure 5.7: The white Gaussian noise, with the signal-to-noise ratio of 30,

was added to the original data-set. From the noisy data-set D̃R, (a) the pair

(˜̄gmn+1, ˜̄jmn+1) and (b) the pair (˜̄̇µmn+1, ˜̇ηm(1),n+1, ˜̇̄cmn+1) are shown with blue circular

markers on top of the corresponding points in the original data-set DR, shown

with light gray lines.

D̃(R+S), see Figure A.3 and Figure A.4 in Appendix A.3. In that case, the relative

L2-error increases but there are less differences in the relative L2-error for different

values of the coefficients, which indicates that in the presence of noise the influence

of the value of the coefficient is less significant. However, the coefficients JCm still

play an essential role in terms of the convergence towards the expected solution.

To reduce the effect of noise in a data-set and obtain smoother fields, a re-

gression can be performed on neighboring data-points [124]. Noisy data-sets with

significant outliers may create a larger problem. In that case, clustering techniques

can be used, as proposed in [107]. In the presence of noise, and considering the

way in which the data-set is generated, there is a chance that the first and second

laws of thermodynamics are not strictly obeyed. To circumvent this problem, [125]

formulated the problem in GENERIC framework to guarantee the thermodynamic

consistency in data-driven computations.

5.4.6 Different Data-Sets

For convergence of the data-driven procedure towards a true solution, data-sets

used in the simulations should include the states (and their histories) representa-

tive for the problem under consideration. To achieve this, a general data-set can be

generated by loading the stand-alone micro-scale problem with a complete range

of inputs and different loading conditions with different rates. In the following,
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Figure 5.8: Comparison between the results for the original data-set DR (gray)

and the noisy data-set D̃R (blue) (a) Time evolution of the relative L2-error for

the macroscopic chemical potential µ̄n+1, (b) macroscopic mass flux j̄n+1
m and (c)

macroscopic concentration c̄n+1
m .

the performance of the proposed data-driven reduced homogenization is studied

on an example where the data-set is obtained under another loading than the final

data-driven problem is solved for. To this end the data-set DS that is obtained

by post-processing the enriched-continuum results with a sine loading, as given

in Table 5.3, is used to solve the problem under the ramp loading (5.29). This
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Figure 5.9: The comparison of the solutions of the data-driven initial boundary

value problem with the ramp loading condition (5.29) using data-sets DR shown

in black, DS shown in gray and D̃S shown in blue. The time evolution of (a)

the relative L2-error norm, (b) macroscopic mass flux j̄n+1
m at ˆ̄xm and (c) the

macroscopic concentration c̄n+1
m at ˆ̄xm.

provides a challenging test case, because there are (non-physical) negative values

of µ̄ present in the data-set, which do not appear in the solution of the problem
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with ramp loading. Also the time evolution of the state variables is different from

the one present in the data. The results of this analysis are shown in Figure 5.9.

In this case, the data-driven algorithm is still able to select the representative

state zn+1
m , for which the macroscopic mass flux j̄n+1

m and the macroscopic concen-

tration c̄n+1
m , evaluated at the reference macroscopic point ˆ̄xm, are shown in Figure

5.9 (b) and (c), respectively. There is an increase in the relative L2-error, as shown

in Figure 5.9(a), when DS is used instead of DR and an even larger increase in

the case of the noisy data-set D̃S. Here, D̃S is obtained by adding white Gaussian

noise, with signal-to-noise ratio of 30, to the data-set DS. Reversely, the data-sets

DR and D̃R cannot be used for the macroscopic initial boundary value problem

under sine loading conditions at all, since the negative values are not present in

these data-sets. Therefore this analysis is not presented here.

5.4.7 Convergence Analysis

The convergence of the proposed data-driven reduced homogenization method with

respect to the increase in the number of data-points ndp = T/∆t + 1 is analyzed

here. The data-sets D(RS), generated by the loading condition (5.33), and D̃(RS),

with added noise to D(RS), were used in this regard to solve the macroscopic

problem with the ramp loading conditions (5.29). As observed in Figure 5.10,

the increase in the number of data points ndp in the data-set decreases the time

averaged relative L2-error for both the noisy and noiseless data-sets, where, the

noisy data-set D̃(RS) reveals higher errors than the noiseless data-set D(RS). After

a certain data-set coverage, in this case ndp = 103, the error first reaches a plateau

and then slightly increases. This behavior suggests, that, for the problem at hand,

the data-set D(RS) has reached its saturation at ndp = 103 and that it is incomplete

by construction, since it does not contain the data-points from all the possible

loading conditions with different frequencies. Even with a data-set containing the

reference solution, the staggered scheme, adopted for the solution of the double-

minimization problem (5.19), may converge to a local minimum. For an algorithm

able to seek the global minimum, see [124].

As the number of data-points ndp increases, the data-driven problem becomes

computationally more expensive because the lookup search through an array of

distance functions in a large data-set is required at each iteration. Similar to the

observation in [106], the number of iterations also increases with an increase in the

number of data-points. In a large dimensional spaces such as here, computationally
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efficient search schemes thus rapidly become necessary. However, these algorithmic

aspects were not explored here.
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Figure 5.10: The convergence analysis of the proposed data-driven reduced ho-

mogenization upon increasing in the data-set size D(RS) (gray line) and D̃(RS) (blue

line). µ̄n+1
D is calculated with data-driven approach and µ̄n+1

E is calculated with

the enriched-continuum approach.

5.5 Future Perspectives

The current work establishes a firm foundation, based on data-driven mechan-

ics, for a computationally efficient homogenization methodology for non-linear

history-dependent diffusion behavior. The model reduction preserves a prominent

two-fold advantage of cheap micro-scale calculations and provides the effective his-

tory tracking through the enrichment-variables. The challenge for the non-linear

case lies in the extraction of a reduced bases set, since an eigenvalue problem is

not at hand, complicating the identification of the enrichment-variables. Possible

extensions of the proposed data-driven reduced homogenization methodology to

the non-linear regime may be inspired by the literature. An example is the nonuni-

form transformation analysis (NTFA), as proposed in [126], where it is possible to

decompose the time-dependent non-linear micro-scale response into a linear and

a non-linear part. Then, the micro-scale is divided into several subdomains based

on, for example, the material distribution of the constituents. An analytical re-

duced bases set is found for the non-linear part of the response in each subdomain

of the micro-scale unit-cell, while the linear response can be obtained through a

simple linear micro-scale calculation. It should be possible to upscale the activity

coefficients of the non-linear reduced bases to the macro-scale.
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The downside of NTFA is the construction of the analytical reduced bases

set. In this context, a more general model reduction method, which relies on

reduced bases set by the proper orthogonal decomposition (POD) [127, 128] of

the primary micro-scale field, can be used instead. It entails performing micro-

scale simulations and collecting the snapshots collected from time responses of

the given micro-structure under various loading scenarios. The responses of these

micro-scale simulations, i.e. snapshots of the primary field variable, are collected

in a matrix format and the reduced bases set is obtained via a proper orthogonal

decomposition. Then, the Galerkin projection onto the reduced bases set can be

performed for the micro-scale discrete system of equations providing the evolu-

tion equations of the activity coefficients of the reduced bases set, which serve as

internal-variables that efficiently capture the history-dependent macroscopic be-

havior in a data-set. A different approach using proper generalized decomposition

(PGD) [129] can also be considered. It parameterizes the micro-scale solution in

spatial directions, time, constituents and nonlinear behavior. The reduced bases

are then constructed iteratively with an alternating direction algorithm.

The structure of the data-driven problems depends on the type of problem un-

der consideration, the terms considered in the distance function, and the form of

the evolution equations emerging as a result of the model reduction. The gen-

eral expressions obtained in (5.4), (5.5) and (5.6) remain valid when the modes

are obtained from a different approach, e.g. NTFA, POD, PGD. In non-linear

data-driven reduced homogenization, the coefficients JCm in the distance function

might also be approximated by the eigenvalue analysis on the linearized micro-

scale material response as presented in section 5.4.4 or some analytical averaging

maybe used technique instead. If on top of the data-set also the micro-scale model

is known, there is not a sufficiently close point in the data-set, then an on-the-

fly micro-scale calculation can be performed to generate the desired point in the

data-set.

The current framework can also be extended to other physical phenomena,

where the emergent macro-scale behavior is caused by the underlying microstruc-

ture. For example, the homogenized response of locally resonant acoustic metama-

terials in the linear regimes was proposed in [43] in which an enrichment-variable

emerges at the macro-scale by performing model reduction at the micro-scale. The

evolution equation of these enrichment-variables is a second-order ordinary differ-

ential equation. To solve this problem by data-driven formulation, a combination
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of a data-driven approach for dynamics problems, as presented in [108], and his-

tory dependent materials using internal-variables, as proposed in [109], can be

used. Similar extensions apply to other multi-physics phenomena, as considered

in [105], where an enriched-continuum formulation for mass diffusion was coupled

to mechanics. There, taking the advantage of the linear material properties and

the relaxed separation of scales, a coupled eigenvalue problem was solved to ob-

tain the enrichment-variables representing the history-dependent coupled chemo-

mechanical behavior at the macro-scale. Obviously, the present work can be ex-

tended to an-isotropic macroscopic and two/three-dimensional behavior.

5.6 Conclusions

In this work, a data-driven reduced homogenization method is proposed for captur-

ing the non-Fickian and history-dependent transient diffusion behavior in hetero-

geneous materials. It is built on the enriched-continuum formulation, developed

earlier in [67] for linear material behavior exhibiting a relaxed separation of scales,

and the data-driven mechanics, proposed in [106]. An enriched-continuum is a

macroscopically homogenized description of a heterogeneous material in which

the transient effects emerging from the micro-scale, through a model reduction,

are captured by enrichment-variables at the macro-scale. For linear material prop-

erties and the relaxed separation of scales, the model reduction at the micro-scale

can be performed by using the eigenvectors, obtained via the solution of an eigen-

value problem at the micro-scale, as the reduced bases. The data-driven method

seeks a physical-state of the material closest to a point in the data-set, which can

be obtained by experiments (in this work micro-scale simulations). Following [109],

instead of using the whole history of the microscopic primary field variables, the

enrichment-variables are used to efficiently keep track of the history-dependent

state of the macroscopic behavior. The data-driven reduced homogenization uses

a staggered solution scheme [121] to tackle the combinatorial complexity of a

mixed, continuous and discrete, double-minimization problem, in which the state

and the closest point in the data-set, which minimizes a global distance function,

are found iteratively. The macroscopic compatibility is imposed directly and the

macroscopic mass balance law is imposed through Lagrange multipliers.

Numerical examples are conducted for a macroscopically isotropic response in

a one-dimensional domain, showing an adequate performance and robustness of
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the proposed methodology. A two-dimensional micro-scale problem, under one-

dimensional loading conditions, is considered to obtain the macroscopic quantities

and to provide the input for generating the data-sets. The enriched-continuum

problem is used as a reference solution, and to generate the data-sets by post-

processing the primary field and its gradient, as well. The actual generation of the

data-set is done using stand-alone micro-scale simulations with different loading

conditions having different frequencies. The obtained point in the data-set can

then be added to the already existing data-set. The large number of coefficients

in the distance function make the current data-driven problem more prone to

numerical errors and instabilities, so a methodology is presented to carefully select

the numerical values of these coefficients, based on the information available from

the micro-scale simulations. By doing so, a substantial decrease in the number of

iterations and numerical error was obtained. Data-driven reduced homogenization

captures the homogenized enriched-continuum response very well and also the

post-processed micro-scale fields are in close agreement with each other. The

proposed data-driven approach performs adequately in the presence of noise in

the data-set and also in the case when a different data-set is used. Finally, by

increasing the number of points in the data-set the error is reduced substantially,

however at the expense of an increased number of iterations and computational

effort.
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Recommendations

This PhD thesis was aimed at the modeling of transient heat and mass diffusion

problems in heterogeneous materials through the development of computationally

efficient homogenization methods. When the full separation of scales is violated,

a steady-state assumption at the micro-scale does not work. Instead, a transient

diffusion problem should be considered at the micro-scale and consequently the

homogenization methods require a computationally expensive solution of a FEM

problem at the micro-scale fully coupled to the macro-scale. In this thesis, a

model reduction was performed at the micro-scale in a two-scale computational

homogenization setting, through which an enriched macroscopic description was

obtained. It adequately captures the results obtained from conventional homoge-

nization methods and also direct numerical simulations at significantly lower com-

putational costs. The model reduction is performed by extracting reduced bases

from an eigenvalue problem, and projecting the solution of the discrete micro-

scale governing equations onto a lower-dimensional subspace. This methodology

was also extended to multi-physics problems. The expressions for the macroscopic

constitutive equations contain additional field variables, hence yielding a more

general micromorphic description at the macro-scale. More importantly, in the

developed homogenization method the micro-scale transient effects can also be

represented by internal-variables appearing in the effective constitutive equations.

These internal-variables are the coefficients of the reduced bases and their acqui-

sition via the model reduction procedure at the micro-scale is the crux of the

current development. The role of the internal-variables at the macro-scale bears a

resemblance to those in viscoelastic material models, however, unlike in viscoelas-

ticity, these are here not postulated but follow from the model reduction of a

well-established micro-scale RVE model. At the homogeneous macro-scale, due to
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the underlying microstructure, the transient diffusion reveals a history-dependent

behavior with internal-variables keeping track of the history. This concept enables

to extend it to nonlinear and more complicated material behavior, for example,

by using the data-driven homogenization approach.

In the following, the main concepts and results obtained in this dissertation are

summarized and followed by recommendations for future research.

6.1 Summary and Results

Model reduction at the micro-scale

Computational homogenization splits the heterogeneous problem into a micro-

scale and a macro-scale. Both scales are solved by finite element methods, because

of the transient nature of the problem; usually, the micro-scale is computationally

more expensive. Therefore, a model reduction can be performed at the micro-

scale to reduce computational cost. The reduced information is then used in

the homogenization procedure to obtain the macroscopic constitutive equations.

The homogenization in transient regimes entails the equivalence of virtual pow-

ers (extended Hill-Mandel conditions) between the micro- and macro-scales. The

proposed reduced order homogenization methods rely on the assumption of re-

laxed scale separation regime; i.e. , short diffusion time in the matrix and long

diffusion times in the inclusions and linear material behavior. In relaxed separa-

tion of scales, the micro-scale primary fields are always steady-state in the matrix

which facilitates the use of a model reduction technique based on component mode

synthesis. The micro-scale primary field was divided into its steady-state and tran-

sient parts and the global reduced bases was found using the Schur-complement

and eigenvalue problem, respectively.

A few eigenvectors were selected for projecting the micro-scale discretized gov-

erning equations onto a lower-dimensional subspace. For this purpose, a criterion

based on the coupling terms is used and then verified by checking the convergence

in the error for the micro-scale field as well as the energy consistency. The activity

coefficients of the reduced bases, at the macro-scale, behave like internal-variables

and in this work are referred to as enrichment-variables. The macroscopic bal-

ance laws, constitutive equations and the evolution equations for the enrichment-

variables are combined together to form an enriched-continuum description. The

expensive solution of the micro-scale problem is, hence, replaced in the “on-line”

154



Chapter 6: Conclusions and Recommendations

stage with the solution of ordinary differential equations obtained through model

reduction in the “off-line” stage.

The developed reduced order homogenization procedure captures the micro-

scale fields accurately. The macroscopic quantities, which are averaged properly,

do not show substantial deviation compared to the quantities computed with con-

ventional transient homogenization. Size effects and the transient (inertial) be-

havior are also captured. However, if the size of the micro-scale RVE, material

properties, or loading conditions change such that the relaxed separation of scales

assumption gets violated, then results obtained with the proposed reduced order

homogenization method deviate from the true (reference) diffusion behavior. The

developed procedure is equally well applicable to both heat and mass diffusion

problems.

For the coupled mass diffusion-mechanics problems, at the micro-scale, the

Legendre transformation is used to obtain the constitutive equations and balance

laws in terms of the chemical potential field and strain field instead of the more

conventional concentration field and strain formulation. This allows to use, com-

paratively simpler, C0 finite element formulation. Next, the micro-scale fields were

decomposed into a steady-state and transient parts and, likewise, the global re-

duced bases were found by the Schur-complement and the solution of a coupled

eigenvalue problem. The mode selection was performed according to the coupling

terms. For the cathode-electrolyte system of a lithium-ion battery material the

transient effects, size-dependent macroscopic behavior, and the coupling effects are

captured very accurately. In the case of coupled micro-scale problems, the com-

putational time gains are substantial, since, the solution of the expensive coupled

chemo-mechanics balance laws is replaced by the solution of ordinary differential

equations.

Macro-scale Enriched-Continuum

Depending on the location of the evaluation of the enrichment-variables, either at

the nodes or the quadrature points of the finite element mesh, different numerical

methods can be used to solve the enriched-continuum at the macro-scale. When

enrichment-variables are evaluated at the quadrature points, these are treated as

internal-variables, hence, giving rise to an internal-variable solution method. The

placement of the enrichment-variables at the nodes yields a multi-field solution

problem. The internal-variable method has the advantage that it allows for the

use of higher-order time integration schemes for capturing the micro-scale transient

effect more accurately. For the number of enrichment-variables used in the current
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work, the multi-field method is computationally more efficient than the internal-

variable method, because it does not involve the calculation of the internal flux

vector and its assembly at each time step. As compared to conventional transient

homogenization and direct numerical simulations, the enriched-continuum based

homogenization has excellent accuracy and is O(103) faster for the examples tested

here.

Data-driven mechanics can be used to homogenize the diffusion phenomena in

heterogeneous materials and poses a great potential to be extended to the nonlin-

ear regime. Transient effects at the micro-scale, represented by the enrichment-

variables at the macro-scale, make the diffusion phenomena at an enriched-continuum

level history-dependent. The enrichment-variables provide an efficient way to keep

track of history by eliminating the need to know the microscopic fields at all time

instances. Data-driven mechanics relies entirely on the data rather than a model.

The data-set can be efficiently generated by the reduced-order homogenization

presented in this work. Then, the data-driven reduced homogenization involves

minimizing the distance between the balanced state of the material and a data

point in the data-set. It poses a double minimization problem which is solved by a

staggered scheme. Different data-sets are generated by different loading conditions

at the micro-scale RVE. The values of the coefficients in the distance function play

an essential role in the rate of convergence and accuracy of the solution, so, these

are selected carefully by looking into the available information from the micro-

scale. The data-driven reduced homogenization scheme is capable of capturing

the enriched-continuum response accurately. However, with noisy and different

data-sets the error increases. Increasing the number of points in the data-set in-

creases the accuracy but on the downside, the computational cost to search a close

point in the data-set increases.

To conclude, it has been demonstrated that it is possible to capture the tran-

sient diffusion phenomena in heterogeneous materials efficiently by using numerical

techniques such as computational homogenization combined with model reduction.

The homogenized macro-scale is enriched by the coefficients of the micro-scale re-

duced bases. Different spatial and temporal discretizations can be chosen for the

solution of the enriched-continuum. The extension towards multi-physics problems

is also at reach. However, the developed methodology is limited to the relaxed

scale separation regimes and the material linearity. Ideas can be borrowed from

the field of data-science to obtain efficient homogenization methods for the non-

linear regimes. Next, recommendations for the future research are made, different
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than those already mentioned in the chapters.

6.2 Recommendations for Future Research

Realistic Micro-Scale Morphologies

In this work, simple morphologies were used to validate the developed homogeniza-

tion method. In reality, materials reveal more complex microstructural features,

e.g. they can contain poly-dispersed, randomly distributed, non-periodic inclu-

sions in a matrix, or randomly shaped grains with separating grain boundaries,

or more than two constituent materials, etc. Therefore, RVE containing a single

or mono-dispersed inclusions, as used in this work, is a crude approximation of

real materials. However, simulation of realistic microstructures with the proposed

reduced homogenization can lead to several complications. The micro-scale RVE

may not be very well defined due to the random and non-periodic material dis-

tribution. In that case, the periodic boundary conditions might not be a proper

choice, while the fully prescribed or flux boundary conditions would be leading to,

respectively, an over or underestimation of the actual response.

To address this concern, ensemble averaging of the macroscopic quantities can

be utilized [130, 131]. It entails calculating macroscopic quantities and averag-

ing their values for different microstructural realizations. It is, however, unclear

which eigenmodes should be used to build the macroscopic quantities in the case

of ensemble averaging. Similar discussion holds for materials with defects, e.g.

when cracks and voids are present at the micro-scale. It can also be tested if

the proposed reduced homogenization is capable of dealing with a macroscopically

anisotropic medium. The macroscopic anisotropy can arise either as a result of

anisotropy present in one or multiple micro-scale constituents or a directional dis-

tribution of isotropic constituents.

Separation of Scales

This work is primarily based on the relaxed separation of scales assumption, which

states that the characteristic diffusion time of the matrix is much smaller than the

characteristic diffusion time of the inclusion. It does extends over the material

properties for which only the steady-state homogenization is applicable. However,

it is still limited to the heterogeneous materials obeying relaxed separation of

scales. It would be interesting to analyze how the proposed framework can be ex-

tended, at least to the vicinity where the relaxed separation of scales is not obeyed
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very strictly. If the characteristic diffusion time of the matrix is not small enough,

as compared to the characteristic diffusion of the inclusion and the characteristic

loading time, there may be transient effects present in the matrix. One conse-

quence of that can be that the application of boundary conditions by prescribing

a point in the microscopic domain to be equal to the macroscopic field, to satisfy

the extended Hill-Mandel conditions, yields a stiffer response. In this regard, La-

grange multipliers can be used to enforce the boundary conditions in a weak sense

at the micro-scale [132, 133]. Also, the size of the reduced basis might increase

due to the presence of transient effects in the matrix. The reduced bases selec-

tion criterion which relies on the coupling terms might not be sufficient, so the

alternative (but computationally expensive) energy consistency criterion can be

used in an off-line stage to build the reduced basis set. In the macroscopic model,

some terms which are negligible due the relaxed separation of scales will have a

significant contribution to the homogenized behavior at the macro-scale. Their

effect on the enriched-continuum description will need to be analyzed properly.

Nonlinear Physical Properties

A general transient nonlinear system can be written as u̇ = L(u)u, where u

is the primary field variable and L(u) is the nonlinear transformation operator

which depends on the primary field variable u. The nonlinearity is assumed to be

weak when it can be sufficiently represented by a linear and a nonlinear operator

u̇ = Lu + εN (u) where ε is a small number and N (u) is a nonlinear opera-

tor. Strong nonlinearity appears when the split is of the form u̇ = Lu + N (u).

When the nonlinearity is weak, based on Taylor’s expansion, the eigenvectors

can be expanded and approximated around the solution of the linear eigenvalue

problem [102]. The derivatives in the higher-order expansion terms can be calcu-

lated by the finite difference method or by solving the sensitivity of the linearized

eigenvalue problem with respect to the activity coefficient (enrichment-variable).

The eigenvector expansion technique is inadequate if the nonlinearity is strong or,

for the coupled diffusion-mechanics problem, if inelastic/large deformations are

present.

In this case, more general model reduction methods such as a-posteriori proper

orthogonal decomposition (POD) or a-priori proper generalized decomposition

(PGD) [10] can be used. POD takes the discrete solution vectors, so-called snap-

shots, of a parameterized problem in a correlation matrix and determines the

reduced bases by solving an singular value decomposition problem. The reduced

system and the internal-variables are obtained by Galerkin projection. In PGD,
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first, the problem is parameterized in spatial directions, time, constituents, and

nonlinearity, then, the problem-specific reduced bases are constructed iteratively

with an alternating directions algorithm.

In nonlinear problems, at the micro-scale the discrete internal flux vector, which

is used to evaluate the macroscopic quantities, still depends on all degrees of free-

doms preserving the full computational complexity. To this end, hyper-reduction

techniques such as discrete empirical interpolation method (DEIM) along with

POD [134] or modal derivatives [102] can be used to efficiently reduce the com-

plexity of the problem.

When different model reduction techniques are used, different number of internal-

variables will appear at the macro-scale. For instance, Taylor’s expansion method

will introduce one extra type of internal-variables, at the macro-scale, which rep-

resent the activity coefficient of the eigenvector derivatives. PGD will introduce

internal-variables which are equal to the number of parameters for the micro-scale

problem. POD will introduce internal variables which are the activity coefficients

of the global shape functions obtained from SVD analysis. With different model

reduction methodologies, adopted at the micro-scale, the enriched-continuum rep-

resentation will be different and will require different solution techniques at the

macro-scale.

Source Term and Multi-Physics

In diffusion problems, the source term describes the addition of species or heat

generation due to e.g. a chemical reaction taking place inside the material. It

is possible to perform model reduction, similar to the one proposed in this work

when the source term belongs to the inclusions only, and instantaneous diffusion

in the matrix still holds. Otherwise, DIEM can be used to approximate the source

term contribution in the micro-scale internal flux vector.

The multi-physics problems tackled in this work consisted of only two fields.

For instance, lithium-ion batteries have a nonlinear and complex multi-physics

nature in which electro-magneto-chemo-thermo-mechanical fields are coupled. It

would be interesting to identify the fields that violate the steady-state assumption

at the micro-scale during charging/discharging cycles and how the model reduc-

tion can be performed for such a complex system.
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Microstructural Optimization

Microstructures can be optimized using topology optimization [135], in which mi-

crostructures can be reverse engineered for specific values of the macroscopic mate-

rial properties [136]. It can be extended to a two-scale setting for time dependent

problems as well [137]. Multi-scale topology optimization entails definition of

macroscopic objective functions in terms of micro-scale design variables and con-

straints on the design space [138]. In continuum mechanics applications, optimiza-

tion is typically performed by a gradient based method, which requires sensitivities

of the objective function and the constraints with respect to the design variables.

It becomes an expensive task in a two-scale and temporal settings [133, 139]. The

proposed reduced order homogenization can provide an efficient way to perform

optimization in these cases.

Modern day material design for engineering applications requires robust and

fast analysis methods. This is a multi-disciplinary subject and involves in-depth

understanding of mechanics, numerical methods and computer science. At the

moment, when Moore’s law has reached its physical limits, the development of

efficient numerical methods for computer simulations bears an utmost importance.

This thesis was a small step towards that goal.
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APPENDIXA
Appendix

A.1 Coupling Terms for Mass Diffusion Problem

The derivation of the coefficients appearing in the expressions for the macroscopic

mass flux j̄ in equation (3.11) and the macroscopic rate of change of concentration

field ċ in equation (3.12) briefly summarized here, for the detailed derivation in

the context of transient heat diffusion, see [67]. The mass balance equation at

the micro-scale (3.8), after using the constitutive forms for the microscopic mass

flux j and concentration c and applying the necessary boundary conditions, which

satisfy the extended Hill-Mandel energy criteria, can be written in its semi-discrete

form as,
∗
Kµ˜ +

∗
M µ̇˜ = −jn˜ , (A.1)

where
∗
K and

∗
M are the so-called stiffness and mass matrices respectively, µ˜ and

jn˜ are the columns of microscopic chemical potential field and the input mass

flux at the micro-scale. This microscopic system of equations is then partitioned

into prescribed ‘p’ and free ‘f ’ parts. The reduced basis is determined using

the static condensation and the solution of the corresponding eigenvalue problem.

The discrete system of equations (A.1), when projected onto the steady state and

transient basis, can be written as,

Kssµ˜p +Mss µ̇˜p + %η̇˜ = −j˜pn , (A.2)

αη˜+ η̇˜+
1

V
%T µ̇˜p = 0˜ , (A.3)

where,

Kss =
∗
Kpp +

∗
KpfS , (A.4)

Mss =
∗
Mpp + 2

∗
MpfS + S T

∗
MffS , (A.5)
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% = S T
∗
Mff

∗
Φ +

∗
Mpf

∗
Φ . (A.6)

S = (
∗
Kff )−1

∗
Kfp is the Schur complement of the stiffness matrix and

∗
Φ are the

enrichment functions obtained by solving the eigenvalue problem

(
∗
Kff − α

∗
Mff )Φ = 0˜ , (A.7)

with α is the diagonal matrix of the eigenvalues arranged in the ascending order.

The model reduction is performed by selecting a limited set of enrichment functions
∗
Φ from a full set of eigenvectors Φ. The expressions for the macroscopic mass

flux and concentration rate term in equation (3.9) can be converted to boundary

integrals by using the divergence theorem, which in their discrete form can be

written as

j̄ =
1

V
(∆x˜p)T j˜pn , and ċ = − 1

V
(I˜p)T j˜pn , (A.8)

where ∆x˜p = (x˜p − x̄) and I˜p is the column of ones of length (p × 1). By

substituting the expression for j˜pn from (A.2) into (A.8) and rearranging the terms,

the macroscopic constitutive form in equations (3.11) and (3.12) are obtained. The

coefficients in these equations are given as follows,

a˜ =
1

V
(∆x˜p)T% , (Column of Nq 1st-order tensors)

∗
a˜ = V a˜
B =

1

V

[
(∆x˜p)TKss

]
⊗∆x˜p , (2nd-order tensor)

c =
1

V
(∆x˜p)T [Mss I˜p] , (1st-order tensor)

C =
1

V

[
(∆x˜p)TMss

]
⊗∆x˜p . (2nd-order tensor)

d˜ =
1

V
(I˜p)T% , (Column of Nq scalars)

∗
d˜ = V d˜
e =

1

V
(I˜p)T [(∆x˜p)TKss

]
, (1st-order tensor)

f =
1

V
(I˜p)T [Mss I˜p] , (Scalar)

f =
1

V
(I˜p)T [(∆x˜p)TMss

]
. (1st-order tensor)

(A.9)

where V is the volume of the microscopic domain Ω� as shown in Figure 3.2(b).
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A.2 Relative L2-Error for Different Coefficient

Values Using Data-Set D(R+S)

The performance of the data-driven reduced homogenization is checked with dif-

ferent values of coefficients JCm, appearing in the definition of the norm (5.15) for

the distance function (5.18), with the data-set D(R+S). The results are presented

in Figure A.1 and A.2.
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Figure A.1: For the coefficients 1Cm 2Cm 3Cmand 4Cm the time evolution of the

relative L2-error norm, calculated as ||µ̄n+1
D − µ̄n+1

E ||/||µ̄n+1
E ||, where µ̄n+1

D is the chemical

potential field obtained by the data-driven reduced homogenization (proposed)

using the data-set Dn+1
(R+S) and µ̄n+1

E is the chemical potential field obtained by

the enriched-continuum formulation (reference) under boundary conditions (5.29).

The default values and the units of the coefficients are given in Table 5.4. The

relative L2-error computed with the proposed default value for the coefficients JCm
is marked with the black lines.
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Figure A.2: For the coefficients 5C(1)

m
6C(1)

m and 8Cm the time evolution of the

relative L2-error norm, calculated as ||µ̄n+1
D − µ̄n+1

E ||/||µ̄n+1
E ||, where µ̄n+1

D is the chemical

potential field obtained by the data-driven reduced homogenization (proposed)

using the data-set Dn+1
(R+S) and µ̄n+1

E is the chemical potential field obtained by

the enriched-continuum formulation (reference) under boundary conditions (5.29).

The default values and the units of the coefficients are given in Table 5.4. The

relative L2-error computed with the proposed default value for the coefficients JCm
is marked with the black lines.

A.3 Relative L2-Error for Different Coefficient

Values Using Data-Set with Noise D̃(R+S)

The performance of the data-driven reduced homogenization is checked with dif-

ferent values of coefficients JCm, appearing in the definition of the norm (5.15) for

the distance function (5.18), with a noisy data-set D̃(R+S), the result is shown in

Figure A.3 and A.4. An increase in the relative L2-error is observed as compared

to the data without noise D(R+S), With the introduction of the noise, the error is
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comparatively less influenced by the numerical values of the coefficients and more

by the noisiness of the data.
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(d) Different numerical values for 4Cm

Figure A.3: For the coefficients 1Cm 2Cm 3Cmand 4Cm the time evolution of the

relative L2-error norm, calculated as ||µ̄n+1
D − µ̄n+1

E ||/||µ̄n+1
E ||, where µ̄n+1

D is the chemical

potential field obtained by the data-driven reduced homogenization (proposed)

using the data-set D̃n+1
(R+S) and µ̄n+1

E is the chemical potential field obtained by

the enriched-continuum formulation (reference) under boundary conditions (5.29).

The default values and the units of the coefficients are given in Table 5.4. The

relative L2-error computed with the proposed default value for the coefficients JCm
is marked with the black lines.
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Figure A.4: For the coefficients 5C(1)

m
6C(1)

m and 8Cm the time evolution of the

relative L2-error norm, calculated as ||µ̄n+1
D − µ̄n+1

E ||/||µ̄n+1
E ||, where µ̄n+1

D is the chemical

potential field obtained by the data-driven reduced homogenization (proposed)

using the data-set D̃n+1
(R+S) and µ̄n+1

E is the chemical potential field obtained by

the enriched-continuum formulation (reference) under boundary conditions (5.29).

The default values and the units of the coefficients are given in Table 5.4. The

relative L2-error computed with the proposed default value for the coefficients JCm
is marked with the black lines.
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[89] F. Larché and J. W. Cahn. A linear theory of thermochemical equilibrium

of solids under stress. Acta Metallurgica, 21(8):1051–1063, 1973.

[90] S. C. Ko, S. Lee, and Y. T. Chou. Chemical stresses in a square sandwich

composite. Materials Science and Engineering: A, 409(1-2):145–152, 2005.

[91] M. Ebner, F. Geldmacher, F. Marone, M. Stampanoni, and V. Wood. X-

ray tomography of porous, transition metal oxide based lithium ion battery

electrodes. Advanced Energy Materials, 3(7):845–850, 2013.

[92] S. Kaessmair and P. Steinmann. Computational first-order homogenization

in chemo-mechanics. Archive of Applied Mechanics, 88(1-2):271–286, 2018.

174



Bibliography

[93] M. G. D. Geers, V. G. Kouznetsova, and W. A. M. Brekelmans. Multi-

scale computational homogenization: Trends and challenges. Journal of

Computational and Applied Mathematics, 234(7):2175–2182, 2010.

[94] C. Miehe and A. Koch. Computational micro-to-macro transitions of dis-

cretized microstructures undergoing small strains. Archive of Applied Me-

chanics, 72(4-5):300–317, 2002.

[95] M. Ender, J. Joos, T. Carraro, and E. Ivers-Tiffée. Three-dimensional re-

construction of a composite cathode for lithium-ion cells. Electrochemistry

Communications, 13(2):166–168, 2011.

[96] A. Salvadori, E. Bosco, and D. Grazioli. A computational homogenization

approach for Li-ion battery cells: Part 1–formulation. Journal of the Me-

chanics and Physics of Solids, 65:114–137, 2014.

[97] A. Salvadori, D. Grazioli, and M. G. D. Geers. Governing equations for a

two-scale analysis of Li-ion battery cells. International Journal of Solids and

Structures, 59:90–109, 2015.

[98] Davide G. Multiscale and Multiphysics Modeling of Li-Ion Battery Cells.
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Titre :  Homogénéisation numérique et réduction de modèle pour les problèmes de transfert de 
chaleur transitoire, de diffusion et de mécanique couplée  
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Résumé : Dans cette thèse, des techniques 
d'homogénéisation numérique efficaces en 
termes de calcul sont présentées pour les 
phénomènes de diffusion dans des matériaux 
hétérogènes. Comme étape préliminaire, une 
réduction de modèle pour l'équation de diffusion 
de chaleur transitoire est effectuée à la micro-
échelle en utilisant la synthèse en mode 
composants, qui fournit une description 
émergente enrichie-continuum à l’échelle 
macroscopique. 
Sur la base de la localisation des variables 
d'enrichissement, soit sur les nœuds d'éléments 
finis, soit sur les points de quadrature, deux 
schémas de discrétisation spatiale sont analysés 
pour le diplacement milieu continu. 
La formulation du potentiel chimique et des 
champs de déformation est utilisée, ce qui permet  

l'utilisation d'éléments finis continus en C0 
standard. Le problème de la micro-échelle, qui 
implique généralement une solution coûteuse 
du problème de la mécanique de diffusion de 
masse couplée est maintenant remplacée par 
un ensemble d'équations différentielles 
ordinaires grâce à la réduction du modèle. 
Enfin, une approche alternative de réduction de 
modèle utilisant la mécanique basée sur les 
données est explorée. Il repose sur une 
recherche directe et une interpolation à partir 
d'une base de données au lieu de la solution 
d'un problème microscopique. La base de 
données est construite et stockée en utilisant les 
calculs microscopiques dans une étape hors 
ligne. Il fournit également une voie pour étendre 
la méthode de réduction du modèle proposée au 
régime non linéaire. 

 

Title :  Numerical Homogenization and Model Reduction for Transient Heat, Diffusion and Coupled 
Mechanics Problems 

Keywords :  computational homogenization, model order reduction, non-Fickian diffusion, data-driven 
mechanics 

Abstract : In this thesis computationally efficient 
numerical homogenization techniques are 
presented for diffusion phenomena in 
heterogeneous materials. As a preliminary step, 
a model reduction for the transient heat diffusion 
equation is performed at the micro-scale using 
component mode synthesis, which provides an 
emergent enriched-continuum description at the 
macro-scale. 
Based on the location of the enrichment-
variables, either on the finite element nodes or 
the quadrature points, two spatial discretization 
schemes are analyzed for the enriched-
continuum. 
The proposed model reduction is also extended 
to the transient mass diffusion coupled to the 
mechanics with application to lithium-ion 
 
 

batteries. Chemical potential and strain fields  
formulation is used which allows the use of 
standard C0-continuous finite elements. The 
micro-scale problem, which usually involves an 
expensive solution of the coupled mass diffusion-
mechanics problem is now replaced by a set of 
ordinary differential equations through model 
reduction. 
Finally, an alternative model reduction approach 
using data-driven mechanics is explored. It relies 
on a direct search and interpolation from a 
database instead of the solution of a microscopic 
problem. The database is constructed and stored 
using the microscopic calculations in an offline 
stage. It also provides a route to extend the 
proposed model reduction method to the non-
linear regime. 

 


