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Summary

The most common practice to evaluate the ultimate strength of a relatively "soft" floating structure is to compare the maximum dynamic vertical bending moment (VBM) after a slamming event derived from hydro-elastic calculations to the quasi-static hull girder capacity. In other words, the structural behavior is considered as linear and elastic in the hydro-elastic coupling, and as non-linear elastoplastic in the ultimate strength evaluation. Therefore, some doubts are cast on the capability of the current hydroelastic methods to accurately predict the extreme dynamic response based on a linear elastic structural model. Aside from that, the whipping induced stresses have a higher frequency than the ordinary waveinduced stresses; hence, the dynamic effects such as inertia and strain rate effects may provide additional strength reserves for the ship structure and should be investigated.

The first part of the thesis is dedicated to the numerical investigations of dynamic ultimate strength for various ship structures. In order to analyze the influence of the inertia and strain rate effects, different load functions are used, starting from the simplest ones where the loads are defined as half-sine functions, to more realistic ones where the loads are induced by equivalent design waves. The dynamic ultimate strength is defined as the maximum load level that leads to a non-collapse scenario, and it is determined through a newly developed iterative algorithm. Finally, the dynamic ultimate strength is compared with the quasi-static ultimate strength, and the dynamic load factors are derived in order to obtain a proper estimator of the dynamic collapse effect.

The second part of the thesis is dedicated to the development of a new method to calculate the nonlinear whipping response, where the elastoplastic structural response is considered. Although modern container ships are of truly gigantic size, such ships can be very well represented as a thin beam for the purpose of dynamic analysis. Furthermore, it is essential to take into account that in real cases, only a very limited extent of the structure collapses. Therefore, the hull girder is modeled as two non-uniform Timoshenko beams, connected with a non-linear hinge, described by the non-linear relation between the internal bending moment and the relative rotation angle. The exact coupling between the structural and the 3D hydrodynamic models is achieved by constructing the hydrodynamic boundary value problem for each shape function of the finite element. The fully coupled hydro-elastoplastic problem is solved within a partly non-linear time-domain seakeeping program. The proposed model allows for reasonably fast computations of non-linear whipping response, and therefore it can be applied to calculate the response of the hull girder for a series of equivalent design waves, or design sea states. Finally, the nonlinear whipping response is compared with the linear whipping response in order to derive the whipping reduction coefficients.
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Résumé

La méthode classique pour évaluer la résistance ultime d'une structure flottante relativement souple consiste à comparer le moment de flexion maximal, calculé à partir d'une analyse hydroélastique de slamming, à la résistance quasi-statique de la structure. Autrement dit, le comportement de la structure est supposé linéaire élastique lors du couplage hydro-élastique, et non-linéaire élastoplastique pour le calcul de la résistance ultime. Il en résulte des interrogations quant à la précision de la réponse dynamique extrême à partir d'une analyse hydroélastique avec un modèle structurel élastique. D'autre part, les contraintes induites par le fouettement sont associées à des fréquences plus élevées que celles des vagues ordinaires. De ce fait, les effets dynamiques tels que l'inertie ou la vitesse de déformations qui peuvent apporter un gain en résistance pour la structure, doivent être étudiés.

La première partie de cette thèse est consacrée à l'étude numérique de la résistance ultime dynamique de différentes structures navales. Afin d'évaluer l'influence de l'inertie et de la vitesse de déformation, plusieurs cas de chargement sont considérés, des plus simples, de la forme d'une demie sinusoïde, aux plus réalistes, issus de vagues de design. La résistance ultime dynamique est définie comme le niveau maximal de chargement qui ne conduit pas à la ruine de la structure, et est calculée par un nouvel algorithme itératif. Enfin, la résistance ultime dynamique est comparée à la résistance ultime quasistatique, ce qui permet de calculer des coefficients de chargements dynamiques, qui évaluent correctement l'influence de la dynamique sur la ruine.

La deuxième partie de cette thèse porte sur le développement d'un nouvelle méthode pour le calcul de la réponse au fouettement, en prenant en compte le comportement élasto-plastique de la structure. La structure est modélisé avec deux poutres non uniformes, reliées par une rotule non linéaire, dont le comportement est décrit par une relation entre le moment de flexion et la variation d'angle. Le problème hydrodynamique est traité par une méthode à éléments de frontière 3D. Le problème couplé hydroélastoplastique est ensuite résolu dans le domaine temporel grâce à un logiciel de tenue à la mer. Les calculs sont réalisés sur une large gamme de navires, avec plusieurs cas de chargement réalistes. Ceci permet enfin de calculer un coefficient de résistance dynamique, par comparaison des réponses nonlinéaires et linéaires. v Chapter 1

Introduction

When technically specifying ships for the future, the following aspects are examples of what we will have even more focus on than today: bigger, lighter, and faster. Thereby, the whipping type of structural hydro-elastic response will be more and more significant. Whipping can be defined as a transient elastic vibration of the ship hull girder due to wave impacts, as illustrated in Fig. 1.1. The preliminary investigations by [START_REF] Bishop | Hydroelasticity of ships[END_REF] fostered an understanding of the physical phenomena behind the hydro-elasticity of ships. Since then, several more or less sophisticated models were proposed, where the hydro-elastic problem is solved at different levels of complexity and accuracy [START_REF] Tuitman | Fully coupled seakeeping, slamming, and whipping calculations[END_REF], Kim et al. 2013[START_REF] Seng | Slamming and whipping analysis of ships[END_REF][START_REF] Takami | Numerical investigation into combined global and local hydroelastic response in a large container ship based on two-way coupled cfd and fea[END_REF]. Hitherto, it is fair to say that the importance of whipping on the hydro-elastic responses is well-known.

Needless to say, the modern world is driven by the need for safe, environmentally friendly, and economic ship designs. Unfortunately, in the recent past, two catastrophic accidents happened: MSC Napoli [START_REF] Lee | A study on the application of material properties in ship collision analysis[END_REF]MOL Comfort (2013). The container ship MSC Napoli encountered several large waves while transiting the English channel, which leads to a series of structural failures [START_REF] Branch | Report on the investigation of the structural failure of msc napoli, english channel on 18 january 2007[END_REF]. Fig. 1.2 shows the ship following the structural failure, from which we can infer that MSC Napoli had 'broken her back.' The container ship MOL Comfort experienced a fracture of the midship part while transiting the Indian Ocean (ClassNK 2014). Following this, the ship broke into two halves, as shown in Fig. 1.3. In both accidents, the investigation reports showed that one of the possible causes of the accidents is the buckling of the bottom shell plating due to hull girder loads exceeding the hull girder strength.

After the two accidents, many researchers investigated the importance of whipping on the extreme hull girder loads, finding out that the slamming induced whipping may increase the extreme vertical bending moment with up to 30% [START_REF] Andoniu | Full scale measurements of the hydro-elastic behavior of a 13000 teus container ship[END_REF]. A typical hull girder response due to bow slamming impact measured by a long base strain gauge on a 9400 TEU container ship [START_REF] Andersen | Measurements in a container ship of wave-induced hull girder stresses in excess of design values[END_REF], is depicted in Fig. 1.4. However, the consequence of slamming induced whipping response on the hull girder's collapse is still unclear. The most common practice to evaluate the ultimate strength of a relatively 'soft' floating structure is to compare the maximum dynamic vertical bending moment (VBM) after a slamming event, which is derived from hydro-elastic calculations, with the quasi-static hull girder capacity. Where the quasi-static ultimate hull girder ultimate strength is determined either by simplified methods such as the so-called Smith's method, or by some more advanced methods such as idealized structural unit method, or non-linear finite element analyses.

Some aspects regarding the current procedure remain unclear, like the capability of the current hydroelastic methods to accurately predict the extreme dynamic response on the basis of a linear elastic structural model. Moreover, the whipping-induced stresses have a higher frequency than the ordinary waveinduced stresses; hence, the dynamic effects such as inertia and strain rate effects may provide additional strength reserves for the ship structure and should be investigated. Aside from that, it is worth mentioning that in reality, the collapse behavior is not resulting from the imposed forces, nor displacements (rotations). Instead, it results from the interaction between the collapsing structure and the loads acting on the structure, as pointed out by [START_REF] Lehmann | Discussion on report of committee iii. 1: ultimate strength[END_REF]. Thus, there is a need for hydro-elastoplastic models in order to assess the influence of geometric non-linearities (buckling and large deformations), as well as the material non-linearities (yielding) over the hydrodynamic loads acting on the structure. This is the starting point for the research work presented in this thesis, with the title "The analysis of slamming induced whipping effects over the ultimate strength of ships." The first part of the thesis is dedicated to the numerical investigations of dynamic ultimate strength for various ship structures, while the second part is dedicated to the development of a new method to calculate the non-linear whipping response, which accounts for the non-linear structural behavior.

In the first part of the thesis, the ultimate dynamic strength is calculated by making use of non-linear finite element method (NL-FEM), in which both material and geometric nonlinearities are taken into account. Since one of the objectives is to investigate the influence of the inertia and strain rate effects, it is necessary to define the applied load as a function of time. With regard to this, different load functions are used, starting from the simplest ones where the loads are defined as half-sine functions, to more realistic ones where the loads are represented by equivalent design waves. If the load applied during the dynamic analysis leads to collapse, then such a load level is of very limited interest for the designer.

Therefore, when computing the ultimate dynamic strength, one should determine the maximum load that the structure can withstand without collapsing; any load higher than this level will lead to the structural collapse.

In order to determine the maximum load that the hull girder can withstand without collapsing, an iterative algorithm is developed. Starting from a load level equal to the quasi-static ultimate strength (i.e., without dynamic effects), the applied load is increased until the structure collapses. The structure is considered collapsed when the end-rotation accelerates rapidly, and also when the time variation of the internal bending moment decreases sharply. Then the dynamic capacity is the maximum load level that leads to a non-collapse of the structure. The developed methodology is applied for the dynamic ultimate strength analysis of 1) different stiffened panels subjected to in-plane biaxial compression and to water pressure lateral loads, 2) three frame-bay models representative of two ultra-large container ships where the structure is subjected to pure bending moment, and 3) a two cargo holds model where the hull girder is subjected to complex loading scenarios, including bending moment, water pressure, and cargo weight. Finally, the dynamic ultimate strength is compared with the quasi-static ultimate strength, and the dynamic load factors are derived in order to obtain a proper estimator of the dynamic collapse effect.

The second part of the thesis is dedicated to the development of a new method to calculate the nonlinear whipping response, where the elastoplastic structural response is considered. Although modern container ships are of truly gigantic size, for the purpose of dynamic analysis, such ships can be very well represented as a thin beam. Furthermore, it is essential to take into account that in real cases, only a very limited extent of the structure collapses. Therefore, the hull girder is modeled as two non-uniform Timoshenko beams, connected with a non-linear hinge. The behavior of this hinge is described by the non-linear relation between the internal bending moment and the relative rotation angle, i.e., the wellknown moment-curvature curve used to describe the ultimate strength of a ship section.

The exact coupling between the structural model and the 3D hydrodynamic model is achieved by constructing the hydrodynamic boundary value problem (BVP) for each shape function of the finite element.

The main advantage of the shape function approach is that the entire base of degrees of freedom is used, allowing for the inclusion of the non-linear structural response. At first, the complex BVP-s are solved for a range of frequencies yielding the hydrodynamic coefficients in terms of added mass, wave damping, and wave excitation. Then the time-domain simulation is performed by making use of the frequencydependent hydrodynamic coefficients, and by computing the radiation force from the memory-response functions and the history of velocities. Aside from that, the non-linear loads due to slamming are computed using the Modified Logvinovich Model. At every time-step, the slamming loads are computed based on the actual relative motions, and then the 2D slamming pressures are integrated over the 3D hydrodynamic mesh. The global response of the hull girder is obtained by solving the hydro-elastoplastic coupled problem within an iterative manner. The proposed model allows for reasonably fast computations of non-linear whipping response, and therefore it can be applied to calculate the response of the hull girder for a series of equivalent design waves, or design sea states.

Finally, the non-linear whipping response (i.e., using a non-linear structural behavior) is compared with the linear whipping response (i.e., using a linear elastic structural model) in order to derive the dynamic ultimate capacity factor, as the maximum allowable linear whipping response equivalent to a non-linear whipping response reaching the failure point.

Part I DYNAMIC ULTIMATE STRENGTH

Chapter 2

Background & The Challenges

The modern world is driven by the need for safe, environmentally friendly, and economic ship designs; in consequence, the prediction of wave-induced loads is of paramount importance for the structural integrity. One of the critical issues a naval architect has to cope with is to ensure that the global structural strength is capable of withstanding an extreme loading scenario. This problem is also relevant from an economic point of view since the collapse of the hull girder is the most catastrophic failure event because it almost always generates the complete loss of the structure.

The ultimate strength of a ship is influenced by several mechanisms, and the structural collapse may appear in different ways depending on the loads acting on the structure, or the fact that real-life structures are imperfect by definition. The real margin of safety is the difference between the ultimate strength and the maximum loads acting on the ship during its lifetime. In general terms, the design condition for the hull girder ultimate strength can be expressed as follows:

M U γ U - γ L L i > 0 (2.1)
where M U is the ultimate strength and L i is the i-th load component; γ U and γ L are the partial safety factors associated with the ultimate strength and the load components, respectively. These safety factors are introduced in order to take into account some uncertainties for the material properties, geometry and scantlings, encountered loads, etc.

Ship-shaped structures

Until the middle of 20 th century, the design criterion of ship strength was the conventional elastic bending analysis. [START_REF] Caldwell | Ultimate longitudinal strength[END_REF] performed the first attempt to evaluate the ultimate longitudinal strength of a ship's hull girder. According to [START_REF] Caldwell | Ultimate longitudinal strength[END_REF], the ultimate strength of a ship is the bending moment, which will "break the back" of the hull girder; and the real margin of safety is the difference between the ultimate bending moment and the maximum bending moment acting on the ship during its lifetime.

In his work, he presumed a bending stress distribution over the hull cross-section, in which all structural components in compression are reaching their buckling plastic collapse state, and all components in tension are reaching a fully plastic state. Because the stress distribution presumed by [START_REF] Caldwell | Ultimate longitudinal strength[END_REF] was not representative for modern ship structures, several improved methods have been reported over the years [START_REF] Paik | A simple formulation for predicting the ultimate strength of ships[END_REF], [START_REF] Paik | Modified paik-mansour formula for ultimate strength calculations of ship hulls[END_REF]). These methods are assuming different stress distribution at collapse, taking into account plasticity and buckling. Although analytical methods are simple and easy to apply, these methods are not providing any information about the severity of the collapse.
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Several years after [START_REF] Caldwell | Ultimate longitudinal strength[END_REF] developed the first methodology of evaluating the ultimate strength, a new method was proposed by [START_REF] Smith | Influence of local compressive failure on ultimate longitudinal strength of a ship's hull[END_REF], known as the progressive collapse method. In this method, the cross-section is divided into small elements composed of stiffeners and their attached plating. Curvature is applied to the section, which defines the strain acting on each component. Based on this strain, the average stress can be determined by using specific load-deformation curves for each element. Therefore, integrating all stresses over the cross-section yields the bending moment. Finally, after increasing the curvature progressively up to a certain level, the result is a non-linear moment-curvature diagram, where its peak value defines the structural capacity. In spite of their limitations related to the inability to handle initial imperfections or lateral loads, the methods based on the progressive collapse [START_REF] Smith | Influence of local compressive failure on ultimate longitudinal strength of a ship's hull[END_REF], [START_REF] Adamchak | Ulstr: A program for estimating the collapse moment of a ship's hull under longitudinal bending[END_REF], [START_REF] Yao | Progressive collapse analysis of a ship's hull under longitudinal bending (2nd report)[END_REF], IACS (2015)) are still in wide use because of the computational efficiency. During the last years, some more advanced progressive collapse methods have been proposed. [START_REF] Tanaka | Analysis method of ultimate hull girder strength under combined loads[END_REF] extended the Smith method to include the shear stresses in order to compute the ultimate strength of a ship section subjected to combined vertical bending and torsional moments. In their methodology, a correction of the average stress-average strain relationship is made to consider the effect of shear stress. [START_REF] Fujikubo | Progressive collapse analysis of a container ship under combined longitudinal bending moment and bottom local loads[END_REF] proposed an extended method to account for the effect of the bottom lateral loads. The double bottom is idealized as a grillage of beam elements, which allows the out-of-plane deflection due to the lateral loads.

A different numerical approach has been proposed by [START_REF] Ueda | An ultimate transverse strength analysis of ship structure[END_REF], and it is known as the Idealized Structural Unit Method (ISUM). The structural units used in ISUM are more sophisticated than the elements used in the FEM and are based on mathematical approximations [START_REF] Ueda | The idealized structural unit method and its application to deep girder structures[END_REF], [START_REF] Ueda | Official discussion to the report of special task committee vi.2: Ultimate hull girder strength[END_REF]. However, the structural units are considerably bigger than the finite elements used in FEM. Hence, the computational time is significantly reduced. Several improvements to the ISUM have been reported over the years. [START_REF] Paik | Ultimate strength of ship hulls under combined vertical bending, horizontal bending, and shearing forces. discussion. authors' closure[END_REF] developed a program for the ultimate strength analysis of large structures composed of stiffened panels, using five types of ISUM units (beam-column unit, plate unit, stiffened plate unit, hard unit, and virtual unit). A summary of different ISUM theories and analysis of different possible applications of ISUM is presented in [START_REF] Paik | A concise introduction to the idealized structural unit method for nonlinear analysis of large plated structures and its application[END_REF]. [START_REF] Fujikubo | Isum approach for collapse analysis of double-bottom structures in ships[END_REF] improved the existent ISUM formulation in order to include the effect of web buckling in bending. [START_REF] Underwood | Ultimate collapse strength assessment of damaged steel-plated structures[END_REF] proposed a new ISUM for the ultimate strength analysis of damaged structures. [START_REF] Lindemann | Idealized Structural Unit Method for Collapse Analyses of Plate Structures Under Inplane and Lateral Loads[END_REF] improved the shape function for lateral pressure loads. [START_REF] Kaeding | New simplified model for collapse analysis of stiffened plates and its application to offshore structures[END_REF] used the ISUM to analyze the collapse behavior of a VLFS. [START_REF] Paik | Methods for ultimate limit state assessment of ships and ship-shaped offshore structures: Part iii hull girders[END_REF] validated the ultimate strength computed by ALPS/HULL software, based on ISUM, with the ultimate strength computed by NL-FEM analysis, using ANSYS software. [START_REF] Lindemann | Application of the idealized structural unit method for ultimate strength analyses of stiffened plate structures[END_REF] used the ISUM for the analysis of the ultimate strength of stiffened plate structures under lateral pressure and in-plane stresses.

Before the twenty-first century, the non-linear finite element method (NL-FEM) was rarely employed for computing the hull girder capacity. Basically, because the ship's hull is a very complicated stiffened panel structured and in consequence, it poses a great demand for computer and human resources. The first paper where the nonlinear FE theory was employed in the analysis of the hull girder ultimate strength was by [START_REF] Chen | Ultimate strength of ship structures[END_REF], followed by [START_REF] Kutt | Evaluation of the longitudinal ultimate strength of various ship hull configurations[END_REF] and [START_REF] Valsgård | Ultimate hull girder strength margins and present class requirements[END_REF]. [START_REF] Schlüter | Fem-calculations for the structure stability of inland vessels[END_REF] analyzed the ultimate strength of large open inland vessels by using a nonlinear FE model which includes the alteration of the structure due to the in-service imperfections and damage. [START_REF] Ikeda | Assessment of ultimate longitudinal strength of aged tankers. In Practical Design of Ships and Other Floating Structures[END_REF] used the explicit FE analysis to investigate the strength of aged single hull tankers. It was found that the ultimate hull girder strength decreases linearly with respect to the reduced section modulus due to corrosion.

In the last decade, the rapid increase in computer performance led to the possibility of applying the NL-FEM to perform complex collapse analysis of entire ship structures. [START_REF] Amlashi | Ultimate strength analysis of a bulk carrier hull girder under alternate hold loading condition-a case study: Part 1: Nonlinear finite element modelling and ultimate hull girder capacity[END_REF] analyzed the alternate hold loading effect on the ultimate strength of a bulk carrier. The FE results were used to contribute to the development of simplified methods for the analysis of ship hulls under combined global and local loads. Also, they documented some essential aspects of the methodology for the non-linear FE modeling and analysis. [START_REF] Pei | Simulation on progressive collapse behaviour of whole ship model under extreme waves using idealized structural unit method[END_REF] used a combined FEM/ISUM complete ship model of a bulk carrier to analyze the reduction of ultimate strength due to lateral pressure loads. The numerical results showed that the ultimate strength for hogging bending moments is reduced by 20%.

The ultimate strength of container ships under combined bending moment and lateral pressure loads has been investigated by [START_REF] Fujikubo | Ultimate strength of ship hull girder under combined longitudinal bending and local loads[END_REF], [START_REF] Tatsumi | Finite element analysis of longitudinal bending collapse of container ship considering bottom local loads[END_REF], [START_REF] Fujikubo | Progressive collapse analysis of a container ship under combined longitudinal bending moment and bottom local loads[END_REF], showing that the lateral loads are reducing the ultimate strength by 18%. [START_REF] Mohammed | Design safety margin of a 10,000 teu container ship through ultimate hull girder load combination analysis[END_REF] analyzed the ultimate strength of container carriers under combined torsional and bending moments. It was shown when for a torsional moment close to the ultimate torsional moment, the ultimate strength for bending loads is reduced by less than 20%. This aspect was also investigated by [START_REF] Tanaka | Analysis method of ultimate strength of ship hull girder under combined loads: Application to an existing container ship[END_REF]. [START_REF] Matsumoto | Examination of effect of lateral loads on the hull girder ultimate strength of large container ships[END_REF] investigated the effect of lateral loads on the hull girder ultimate strength of large container ships. The analyses were conducted on eighteen container ships with various sizes between 4000 TEU and over 10000 TEU. The numerical results indicated that the lateral load effect would reduce the ultimate strength by up to 30%, depending on the ship configuration; for twelve of the ships, the ultimate strength reduction was around 10%. [START_REF] Darie | Hull girder ultimate strength of container ships in oblique sea[END_REF] have used complete ship models of three large container ships (9000, 13000 and 14000 TEU) to analyze the ultimate strength in the oblique sea (i.e., the combined effect of vertical bending and torsional moments). For each ship, several equivalent design waves have been defined and used to compute the usage factors, as the ratio of the applied load and hull girder ultimate strength. It was found that the effects associated with the oblique sea are covered in the existing rules for the hull girder ultimate strength assessment by a partial safety factor applied on the vertical wave bending moment.

In addition, the non-linear FEM was employed in the analysis of the hull girder ultimate strength for post-accidental scenarios, considering collision or grounding damage. The load-carrying capacity of damaged structures can be significantly reduced, and this aspect has been investigated by [START_REF] Jia | Reliability analysis of oil tankers with collision damage[END_REF], [START_REF] Hussein | Reliability and residual strength of double hull tankers designed according to the new iacs common structural rules[END_REF], [START_REF] Faisal | Rapid hull collapse strength calculations of double hull oil tankers after collisions[END_REF], [START_REF] Parunov | Residual ultimate strength assessment of double hull oil tanker after collision[END_REF].

In all the procedures mentioned above, the intact hull girder ultimate strength evaluation is performed under quasi-static conditions, disregarding the dynamic effects such as strain rate and inertia. It seems that, so far, only the study by [START_REF] Yamada | Dynamic collapse mechanism of global hull girder of container ships subjected to hogging moment[END_REF] has been carried out to investigate the effect of strain rate over the ultimate strength of container ships subjected to hogging moment. They have used five different numerical models of an 8000 TEU container ship having various extensions: from one framebay model to a complete ship model. The strain rate sensitivity was included in the analysis by using the well-known Cowper-Symonds model. From the numerical analyses, it was found that the ultimate strength is increased by 10-20% range due to the strain rate effect, depending on the loading period. However, it should be noted that the set of coefficients used by [START_REF] Yamada | Dynamic collapse mechanism of global hull girder of container ships subjected to hogging moment[END_REF] for the Cowper-Symonds model: C=40 and q=5, does not correspond with the recommendation from [START_REF] Paik | Ultimate limit state design of steel-plated structures[END_REF] regarding the usage of Cowper-Symonds model for high tensile steels (i.e., C=3200 and q=5). Hence, this increased capacity observed by [START_REF] Yamada | Dynamic collapse mechanism of global hull girder of container ships subjected to hogging moment[END_REF] is partly due to the improper set of coefficients used in the Cowper-Symonds model. It is also due to their definition of the dynamic ultimate capacity, which we do not agree with. The effect of this "inconsistency" in the definition of the dynamic capacity will be discussed later in this thesis.

Finally, it should be mentioned that over the last 100 years, several full-scale or reduced-scale experiments have been reported. These experiments are mostly used for validating analytical and numerical methods. [START_REF] Kell | Inverstigation of structural characteristics of destroyers" preston" and" bruce" part idescription[END_REF][START_REF] Kell | Investigation of structural characteristics of destoryers" preston" and" bruce" part iianalysis of data and results[END_REF] reported the full-scale experimental investigations of the ultimate strength under sagging and hogging conditions of two US Navy destroyers. [START_REF] Vasta | Lessons learnt from full-scale ship structural test[END_REF] also reported a number of full-scale collapse tests performed during World War II. [START_REF] Mansour | An experimental investigation of ship hull ultimate strength[END_REF] studied the ultimate strength of a 75600 dwt tanker using a scaled-model of the midship area. They also performed tests over the ultimate strength of open deck ships. [START_REF] Dow | Testing and analysis of a 1/3-scale welded steel frigate model[END_REF] investigated the ultimate limit state of a frigate, using a 1/3 model. [START_REF] Sun | An experimental study of ultimate torsional strength of a ship-type hull girder with a large deck opening[END_REF] analyzed the ultimate strength of ships with large deck openings and compared the experimental results with NL-FEM results. More recently, [START_REF] Gordo | Tests on ultimate strength of hull box girders made of high tensile steel[END_REF] performed extensive tests on different stiffened box girders made of high-tensile steels. [START_REF] Tanaka | Analysis method of ultimate hull girder strength under combined loads[END_REF] used three models of a 5250 TEU container ship at the scale of 1/30 to investigated their ultimate strength under combined bending moment and torsion.

Stiffened panels

Furthermore, the effects of whipping-induced stresses can also be investigated on local structural models. Even if the ship's hull is a complicated stiffened panel structure, at the moment when the hull girder ultimate strength is reached only a few panels from the bottom plating are suffering plastic strains (Matsumoto et al. 2016, Fujikubo and[START_REF] Fujikubo | Progressive collapse analysis of a container ship under combined longitudinal bending moment and bottom local loads[END_REF]). Therefore, it is possible to extract some significant stiffened panels from the bottom plating of a container ship and analyze their dynamic ultimate strength, as illustrated in Fig. 2.1. A typical stiffened panel, as shown in Fig. 2.1, is composed of a thin plate and several stiffeners. It is important to note that stiffened panels are especially vulnerable to buckling, since the predominantly loads are in-plane. Given the importance, buckling and ultimate strength of stiffened panels have been widely studied in the last century. Considering that the published literature on ultimate strength analysis of stiffened panels is overwhelming, only a short historical review together with some recent contributions are presented here. A throughout review of the recent developments regarding the analysis of stiffened panels can be found in the reports from International Ship Structures Committee [START_REF] Yoshikawa | ISSC2015 -Committee III.1 Ultimate Strength[END_REF], [START_REF] Czujko | ISSC2018 -Committee III.1 Ultimate Strength[END_REF].

The foundations of the linear elastic buckling theory for an ideal axial compressed column have been formulated by [START_REF] Euler | Sur la force des colonnes[END_REF]. However, the pioneering work on large deflection plate theory is attributed to [START_REF] Kirchhoff | Uber das gleichgewicht und die bewegung einer elastischen scheibe[END_REF], who discovered the importance of the non-linear terms for large deformations. The final form of the plate differential equations for large deformations was derived by von [START_REF] Von Kármán | Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens insbesondere aus den Laboratorien der technischen Hochschulen[END_REF]. Some recent work in the field of analytic or semi-analytic buckling formulations has been performed by [START_REF] Lin | Structural longitudinal ship modelling[END_REF], who proposed a polynomial-type empirical formula that includes two collapse modes: plate-induced and column-like collapse modes. A few years later, [START_REF] Paik | Ultimate strength formulations for stiffened panels under combined axial load, in-plane bending and lateral pressure: a benchmark study[END_REF] developed a new method, based on Lin's formula, to predict the ultimate strength of stiffened panels subjected to combined axial load, in-plane bending, and lateral pressure. The collapse patterns are classified into six groups, namely overall grillage collapse, yielding at the corners of plating between stiffeners, yielding of the plate-stiffener combination at mid-span, local buckling of stiffener web, lateral-torsional buckling of stiffener and gross yielding. Using extensive numerical analyses, [START_REF] Khedmati | Empirical formulations for estimation of ultimate strength of continuous stiffened aluminium plates under combined in-plane compression and lateral pressure[END_REF] developed closed-form formulations for predicting the ultimate strength of welded stiffened aluminum plates under combined axial in-plane loads and different levels of lateral pressure. [START_REF] Zhang | Buckling and ultimate capability of plates and stiffened panels in axial compression[END_REF] proposed a new semi-analytical formula for estimating the ultimate strength of stiffened panels using the NL-FEM results for a series of 61 stiffened panels. [START_REF] Zhang | A review and study on ultimate strength of steel plates and stiffened panels in axial compression[END_REF] developed a formula for the ultimate strength of steel stiffened panels in axial compression using over 100 non-linear finite element analyses.

The demand for accurate empirical formulations for estimating the capacity of stiffened panels fostered the further development of new and more advanced methods. [START_REF] Xu | Empirical formula for predicting ultimate strength of stiffened panel of ship structure under combined longitudinal compression and lateral loads[END_REF] proposed an advanced multi-parameter empirical formula based on 11 parameters for the evaluation of the ultimate strength of stiffened panels under longitudinal compression and lateral loads. More recently, [START_REF] Kim | Ultimate strength prediction of t-bar stiffened panel under longitudinal compression by data processing: A refined empirical formulation[END_REF] used advanced data processing techniques to develop closed-form shape empirical formulation for the ultimate strength of stiffened panels. Their empirical formulation is based on a total of 10500 cases, on which NL-FEM analyses have been performed.

The finite element method (FEM) was first introduced in 1956 by [START_REF] Turner | Stiffness and deflection analysis of complex structures[END_REF], but only about 20 years later, the FEM was extensively used for the analysis of stiffened plates and marine structures by [START_REF] Soreide | On the behavior and design of stiffened plates in ultimate limit state[END_REF]. Nowadays, it is a standard practice in structural engineering to perform non-linear finite element analysis to assess the structural capacity of stiffened panels. Therefore, in order to obtain accurate results, several papers have been written to develop some useful insights on non-linear finite element method application for ultimate limit state assessment of plate elements (Paik and Seo (2009a), [START_REF] Paik | Nonlinear finite element method models for ultimate strength analysis of steel stiffened-plate structures under combined biaxial compression and lateral pressure actions-part ii: Stiffened panels[END_REF], [START_REF] Zhang | A procedure for non-linear structural collapse analysis[END_REF]). [START_REF] Choung | Lateral pressure effect on average compressive strength of stiffened panels for in-service vessels[END_REF] investigated the effect of lateral pressure on the ultimate strength of 189 stiffened panels, and compared the NL-FEM results to the CSR formulation. [START_REF] Fujikubo | Finite element modeling of a continuous stiffened panel under combined inplane shear and thrust[END_REF] analyzed the influence of shear on the load shortening behavior of a plate or stiffened panel. [START_REF] Gannon | Nonlinear collapse analysis of stiffened plates considering welding-induced residual stress and distortion[END_REF] investigated the effect of residual stress and initial imperfections due to welding on the behavior of stiffened plates under axial compression.

Similar to the analysis of the hull girder's ultimate strength, relatively little work has addressed the dynamic collapse of stiffened panels due to whipping. [START_REF] Jiang | Nonlinear finite element dynamic collapse analyses of stiffened panels[END_REF] performed dynamic buckling analyses to investigate the influence of various factors on the ultimate strength of ship structures subjected to whipping. The applied load in the non-linear dynamic analyses was defined as the quasi-static capacity multiplied by a factor of 1.2. Thus, by using a significantly higher load, [START_REF] Jiang | Nonlinear finite element dynamic collapse analyses of stiffened panels[END_REF] observed that the buckling stress increased during the dynamic collapse. Since the cross-sectional area remains constant, this can be interpreted as an increase of the critical buckling load, which represents the ultimate strength of the structure. The dynamic ultimate strength was calculated as the applied load at the moment when the axial displacement started to accelerate rapidly. However, the prescribed external load continued to increase beyond this point, and the stiffened panel developed very significant deformations. Indeed, this increased load was reached only during the panel collapse, it is a load level that the panel cannot sustain without collapsing, and thus it is of very limited interest for the designer. Therefore, we consider that this methodology used to determine the dynamic ultimate capacity of the stiffened panel seems inconsistent. Its effect on the estimation of the stiffened panel's capacity will be discussed later in this thesis.

Objectives

Wrapping up the recent developments in the field of hull girder ultimate strength, it can be seen that several researchers have investigated the quasi-static ultimate strength considering simple loading scenarios (i.e., pure bending), or more complex loading scenarios (i.e., vertical bending, torsion and lateral loads). Others have briefly investigated the influence of the dynamic effects (i.e., strain rate and inertia) over the ultimate strength of stiffened panels [START_REF] Jiang | Nonlinear finite element dynamic collapse analyses of stiffened panels[END_REF]) and over the hull girder ultimate strength [START_REF] Yamada | Dynamic collapse mechanism of global hull girder of container ships subjected to hogging moment[END_REF]), but their methodology is questionable.

Moreover, Det Norske Veritas (2015) has introduced a partial safety factor of 0.9 reducing the effectiveness of whipping during the collapse. This coefficient represents the dynamic collapse effect, and the main assumption is that the strain rate and inertia effects may provide additional load carrying capacity when the hull girder structure is subjected to dynamic loads.

Hitherto, it is fair to say that the influence of slamming induced whipping over the hull girder's ultimate strength still represents an open-problem, and to the author's knowledge, there are no comprehensive analyses to determine the influence of whipping-induced stresses over the hull girder's ultimate strength.

Therefore, the aim of the research work presented in the first part of this thesis is:

• to develop an accurate and efficient methodology for the analysis of dynamic ultimate strength;

• to investigate systematically the dynamic ultimate strength of different ship structures;

• to to provide fundamental insights on the influence of the dynamic effects and to derive a proper dynamic collapse effect coefficient.

Organization of the current work

The first part of this thesis is built up of seven chapters, organized in the following way:

Chapter 2 introduces the motivation and objective of the dynamic ultimate strength analysis. Moreover, an overview of some relevant previous works is given.

Chapter 3 gives the theoretical background related to the definition of dynamic ultimate strength, and to the numerical procedure. Moreover, an overview of previous investigations regarding the strain rate sensitivity of materials is presented. Finally, the hydro-elastic methodology used to derive realistic loading scenarios is presented.

Chapter 4 presents the numerical investigation of sixteen stiffened panels extracted from different container ships. These panels are subjected to some simple loading scenarios, using a half-sine load amplitude function. The load periods are representative for the wave-and whipping-induced stresses on a modern ULCS. Moreover, different combinations of in-plane biaxial stresses and lateral loads are considered. Finally, several representative loading sequences are extracted from the time-series of a design sea state, and used to determine the ultimate strength of stiffened panels under realistic loading scenarios.

Chapter 5 presents a parametric study performed on one stiffened panel, where the load amplitude curves are defined analytical in order to obtain a better understanding of how different load components are affecting the dynamic load factors. Hence, a broad range of realistic scenarios can be considered. Finally, the limitations and uncertainties of the current strain rate sensitivity model are discussed. A new model is proposed to correctly describe the strain rate sensitivity of high tensile steels at low strain rates while maintaining the same level of accuracy for intermediated and high strain rates.

Chapter 6 presents systematic non-linear finite element analyses of dynamic ultimate strength of three frame-bay models. These models are representing the structure of two container ships with a cargocarrying capacity of 9600 TEU and 16000 TEU, respectively. The dynamic ultimate strength is firstly computed for six simple half-sine loading scenarios, using the typical periods for wave-and whippinginduced stresses. Then, the dynamic ultimate strength is computed for several equivalent design waves, where the high-frequency stresses are combined with low-frequency stress in order to derive the dynamic load factors for realistic loading scenarios. Finally, the dynamic collapse effect obtained on three framebay sections is compared with the values obtained on local structural models of representative stiffened panels from the bottom plating.

Chapter 7 continues the numerical investigations over the dynamic ultimate strength of ultra-large container ships but for the sagging condition. Although container ships are usually sailing with a high hogging still-water bending moment, some of the recent designs are with very low values of the 'minimum hogging still-water bending moment'. Combined with high whipping-induced sagging moments, it cases some doubts on the probability of buckling appearance in the upper structure. This chapter presents the numerical analysis of the dynamic ultimate strength using two models that are extended over one-frame and one-bay. It is shown that in order to capture the buckling of the structure in the passageway properly, a one-bay model should be used. Finally, the dynamic ultimate strength is computed for different wave and whipping scenarios. The dynamic load factors are calculated in order to obtain a proper estimator of the dynamic collapse effect under sagging conditions.

Chapter 8 presents the ultimate strength of a two hold bay model under realistic loading scenarios.

The loading scenarios considered are combining the global hull girder bending moment with the local loads due to different cargo scenarios, and lateral pressures. The global external loads are determined from direct hydro-elastic analysis, where a ULCS is subjected to an equivalent design wave. The resulting time-series of bending moment are directly applied at the both-ends of the finite element model. Moreover, two loading scenarios are considered: full load condition with uniform cargo distribution, and full load condition with a one-bay empty condition, without ballast in the double bottom. At first, the major reduction factors of the quasi-static ultimate strength are discussed, then the dynamic ultimate strength is computed for all cases, and the dynamic load factors are derived.

Chapter 3

Theoretical Background

Dynamic ultimate strength

It is well-known that the whipping-induced stresses have a higher frequency than the ordinary waveinduced stresses. Aside from that, it is known that the dynamic effects are important in the case of accidental loading scenarios, such as collision or grounding. However, there is no evidence that the dynamic effects may provide additional strength reserves for the ship structure when subjected to whippinginduced stresses. Therefore, the main objective of the first part of this thesis is to analyze the influence of the whipping-induced stresses over the hull girder's capacity.

At first, it is essential to differentiate the two main dynamic effects: inertia and strain rate. Firstly, the inertia of the structure affects the structural response, and mainly the amplitude of the internal load, which can be higher or lower than the applied external load. Secondly, the strain rate effect represents the dynamic enhancement of the yield strength and increases when the loading speed increases.

When analyzing the ultimate strength of a structure using a static simulation, the maximum load is clearly defined, since no static equilibrium can be found when this load level is exceeded. This is not true in the case of a dynamic simulation, where the load can theoretically be arbitrarily increased, the excess of load leading to an acceleration of the structure associated with very high distortion. However, when the dynamic effects (i.e., the strain rate and inertia) are included in a dynamic simulation, it is necessary to use realistic load-amplitude curves, and moreover, it is critical how the dynamic collapse is defined.

In the current thesis, the investigations of the dynamic ultimate strength are carried out numerically, using the state-of-the-art non-linear finite element analysis software ABAQUS. Since it is necessary to perform the analyses in a time-domain solver, the FEA solver of choice is the dynamic implicit solver, where both material and geometrical non-linearities were taken into account.

A critical aspect of evaluating structural capacity under dynamic loads is the definition of ultimate strength. If the load applied during the dynamic analysis leads to collapse, then such a load level is of minimal interest for the designer. Therefore, when computing the dynamic ultimate strength, one should determine the maximum load that can be applied on the structure without collapsing; any load higher than this level will lead to the structural collapse.

Going back in the literature, in the studies reported by [START_REF] Jiang | Nonlinear finite element dynamic collapse analyses of stiffened panels[END_REF][START_REF] Yamada | Dynamic collapse mechanism of global hull girder of container ships subjected to hogging moment[END_REF] the load amplitude curves are fixed, where the maximum amplitude is set to 120% of the quasi-static structural capacity. It is worth mentioning that in both investigations the Cowper-Symonds strain rate sensitivity model is used. [START_REF] Jiang | Nonlinear finite element dynamic collapse analyses of stiffened panels[END_REF] defined the critical buckling load (i.e., the ultimate strength) as the applied load at the instant when the axial displacement accelerates rapidly. In the study by [START_REF] Yamada | Dynamic collapse mechanism of global hull girder of container ships subjected to hogging moment[END_REF], the dynamic ultimate strength was defined as the maximum internal bending moment reached during the simulation.

Moreover, in the studies by [START_REF] Jiang | Nonlinear finite element dynamic collapse analyses of stiffened panels[END_REF][START_REF] Yamada | Dynamic collapse mechanism of global hull girder of container ships subjected to hogging moment[END_REF] the structure largely collapse at the end of the simulation. This basically means that the load level reached during the collapse represents a load level that the structure cannot withstand. Aside from that, by applying a load level significantly higher than the quasi-static ultimate strength the strain rate effect will be overestimated.

In order to illustrate the limitations and errors induced by using an over-increased load approach, let us consider a stiffened panel extracted from the bottom plating of a ULCS, subjected to pure axial compression. The main particulars of the stiffened panel are as follows: the plate thickness is 22.5 mm, and the stiffeners are 400x100x11.5/18mm angle bar profiles. The stiffened panel span, the spacing between transverse frames (denoted by a), is 3264 mm, and the spacing between the longitudinal stiffeners (denoted by b) is 841 mm. Both the plate and the stiffeners are made of high-tensile steel (σ 0 = 315 MPa).

The details of FE modeling can be found in Chapter 4.

At first, the quasi-static ultimate strength (i.e., without the dynamic effects) of the stiffened panel is computed using a static solver based on the arc-length method. For the analysis of the dynamic ultimate strength, the stiffened panel is subjected to a simple half-sine loading scenario. The period of the load is 1.6 seconds, which may be considered as a representative period of the slamming induced whipping response. The amplitude of the load is firstly set to 1.2 • CF 0 , where CF 0 is the quasi-static ultimate strength. It should be mentioned that in a quasi-static simulation, the applied load CF 0 is equal to the internal load F 0 . However, this is no longer valid in the dynamic computations when the external load differs from the internal one. The maximum internal axial force reached during this dynamic scenario is

F X = 1.082 • F 0 .
Then, if a new scenario where the load amplitude is set to 1.082 • CF 0 is defined, the maximum internal axial force reached is F X = 1.075 • F 0 . Several such iterations are necessary until the load amplitude reaches a level that the structure can withstand. This basically means that any higher load level will lead to structural collapse. For the considered panel, the dynamic capacity is found when the applied load is 1.061 • CF 0 . By increasing the load a little bit more, for a dynamic load 1.062 • CF 0 , the panel collapses, as shown in Fig. 3.1.

In this thesis, it is considered that the structure collapsed when the end-displacement accelerates rapidly, with a rapid reduction in stiffness and the loss of structural stability. This can be seen in Fig. 3.1(c), showing the time variation of the longitudinal strain. Moreover, the structural collapse can also be determined from the variation of the internal loads: the structure collapse when the internal loads decrease sharply. Fig. 3.1(b) presents the time variation of the internal axial force. Aside from that, the load vs. end-shortening curve is depicted in Fig. 3.1(d) from which we can infer that for a dynamic load, CF = 1.061 • CF 0 the structure suffers permanent deformations without collapsing. By increasing the load a little bit more, for a dynamic load CF = 1.062 • CF 0 , the end-displacement accelerates rapidly, and the structure collapses. Therefore, the maximum capacity of the stiffened panel is achieved for a dynamic load of 1.061 • CF 0 .

In Fig. 3.2(a) it can be seen that the plate and the attached stiffeners are showing concentrated plastic strains and out-of-plane deformations at the end of the unloading phase, but the structure has enough strength to withstand a load of 1.061 • CF 0 . However, if the load is increased a little bit more, the structure collapses, the plate and the attached stiffeners are losing their stability and develop significant plastic deformations, as Fig. 3.2(b) bears out.

The numerical results depicted in Fig. 3.1, are showing the necessity of developing a new approach for determining the dynamic ultimate strength of a structure. The dynamic ultimate strength represents the maximum load that the structure can withstand without collapsing, and should be calculated using an iterative approach. For practical reasons, it is more convenient to start from the quasi-static ultimate strength and to increase the load amplitude. It should be mentioned that each iteration requires a dynamic simulation to be solved in time-domain. Hence, the entire procedure can become extremely costly. With 

Strain rate sensitivity

Dynamic load effects can induce changes in the material strength properties, and many researchers showed that the plastic flow of some materials is sensitive to strain rate. This may be regarded as a property of steel, and it is well-known that mild steel and titanium alloys exhibit this behavior most strongly, while high tensile steels, on the other hand, are much less strongly affected.

Early experiments reported by [START_REF] Manjoine | Influence of rate of strain and temperature on yield stresses of mild steel[END_REF] showed that the lower yield stress and the ultimate tensile stress increased with an increase in the strain rate for low-carbon steels. A few years later, [START_REF] Cowper | Strain-hardening and strain-rate effects in the impact loading of cantilever beams[END_REF] gathered all experimental results and proposed the constitutive equation 3.1 for the strain rate sensitive materials, which is used extensively in numerical studies.

σ d σ 0 = 1 + ε C 1/q (3.1)
A similar investigation of the dynamic tensile behavior of low carbon mild steel specimens was reported by [START_REF] Campbell | Yield and flow of low-carbon steel at medium strain rates[END_REF] for a wide range of strain rates, between 10 -5 and 10 2 s -1 . The experimental results showed that the lower and upper yield stresses are increasing when the strain rate is increasing, similar to the results of [START_REF] Manjoine | Influence of rate of strain and temperature on yield stresses of mild steel[END_REF]. However, the ultimate tensile stress increases more slowly.

Within the investigations performed by the Ship Structural Committee, several reports have been published regarding the effect of strain rate on the toughness of ship steels [START_REF] Rolfe | Ship Structures Committee Report[END_REF], [START_REF] Francis | Ship structures committee report[END_REF]). [START_REF] Rolfe | Ship Structures Committee Report[END_REF] proposed preliminary criteria for ensuring adequate structural properties of a broad range of ship steels. The hypothesis proposed by [START_REF] Rolfe | Ship Structures Committee Report[END_REF] was further evaluated by [START_REF] Francis | The effect of strain rate on the toughness of ship steels[END_REF] in SSC-275 by performing dynamic yield stress tests for seven grades of ship steels, including mild steel and high tensile steel. Laboratory experiments were performed at various strain rates and temperatures. For the static yield stress, a strain rate of 1.3 × 10 -4 s -1 was used, for the dynamic case, a strain rate of 8 × 10 -3 s -1 , and for the impact case, a strain rate of 5 s -1 . The experimental results are showing that the dynamic yield stress is equal to the static yield stress plus a dynamic over-stress, which is temperature-dependent. The results are in good agreement with the assumption introduced in SSC-244.

However, some materials used for the previously reported experimental investigations are not relevant anymore, since they are no longer in use. Therefore, in the last ten years, several researchers [START_REF] Jones | Structural impact[END_REF], [START_REF] Choung | Dynamic hardening behaviors of various marine structural steels considering dependencies on strain rate and temperature[END_REF], [START_REF] Paik | Test database of the mechanical properties of mild, high-tensile and stainless steel and aluminium alloy associated with cold temperatures and strain rates[END_REF]) reported on the strain rate sensitivity of various steels used in shipbuilding. [START_REF] Choung | Dynamic hardening behaviors of various marine structural steels considering dependencies on strain rate and temperature[END_REF] proposed a new formula to estimate the material constant C of Cowper Symonds constitutive equation, while the second constant is fixed, q = 5. Tensile tests have been carried out at five strain rate levels from quasi-static to intermediate strain rates, and different temperature conditions, low temperature, room temperature, and high temperature.

C = α + βε 2 p (3.2)
Based on the experimental test results for DH36 and EH36 steels, [START_REF] Choung | Dynamic hardening behaviors of various marine structural steels considering dependencies on strain rate and temperature[END_REF] proposed equation 3.2, where coefficients α and β are listed in Table 3.1, and ε p denotes the plastic strain.

Moreover, [START_REF] Choung | Dynamic hardening behaviors of various marine structural steels considering dependencies on strain rate and temperature[END_REF] compared the dynamic yield stress obtained using equation 3.2 with the results obtained using [START_REF] Lee | A study on the application of material properties in ship collision analysis[END_REF] [START_REF] Lee | A study on the application of material properties in ship collision analysis[END_REF] proposed equation 3.3 to approximate the material constant C, while the value of the second constant is fixed, q = 5. 2017) developed a new test database of the mechanical properties of materials for marine applications, including mild steel and high tensile steel. The test database covers strain rates between 10 -3 and 10 2 s -1 , and temperatures between room temperature, low temperature and cryogenic temperature. The new experimental results for the dynamic yield stress ratio of mild steels are in very good agreement with the Cowper-Symonds constitutive equation, as Fig. 3.3 bears out. It should be noted that in the tests of [START_REF] Paik | Test database of the mechanical properties of mild, high-tensile and stainless steel and aluminium alloy associated with cold temperatures and strain rates[END_REF], the static yield stress was determined for a strain rate of 10 -3 s -1 , which does not correspond with the recommendations of international standards. According to the classification societies rules (Bureau Veritas 2018, Det Norske Veritas 2018), for the determination of the upper yield stress, R eH , the test shall be carried out with an elastic stress rate between 6 and 60 MPa s -1 . On the other hand, in order to minimize the measurement uncertainty, [START_REF] Iso | metallic materials-tensile testing-part 1: Method of test at room temperature[END_REF] proposed a different method to be used when the strain rate sensitive parameters are analyzed. For determination of the upper yield stress, R eH , the strain rate shall be kept as constant as possible, between 7 × 10 -5 and 2.5 × 10 -4 s -1 .

C = 92000 • exp σ 0 364 -19400 if σ 0 > 270 MPa 40 if σ 0 ≤ 270 MPa (3.3) Paik et al. (
For the high tensile steel, the comparison between experimental results and the Cowper-Symonds constitutive equation is presented in 3.4. The coefficients proposed by [START_REF] Paik | Ultimate limit state design of steel-plated structures[END_REF] are giving a better approximation at low strain rates (i.e., less than 1 s -1 ) if we consider the experimental test results obtained on modern materials used in marine constructions. Therefore, in order to analyze the strain rate effect on the dynamic ultimate strength, the following constants: C = 3200, q = 5 were used for the Cowper-Symonds constitutive material model, presented in equation 3.1.

Hydro-elastic model

Within the first part of thesis, several hydro-elastic analyses are performed in order to determine realistic loading scenarios. These hydro-elastic analyses are performed using the software HOMER, developed and maintained by Bureau Veritas [START_REF] Derbanne | Validation of the global hydroelastic model for springing & whipping of ships[END_REF][START_REF] Malenica | Homer-integrated hydro-structure interactions tool for naval and offshore applications[END_REF].

The hydrodynamic problem is solved by making use of a 3D-BEM method using pulsating Green's sources. For calculating the hydro-elastic response, the generalized modes approach is used. Where the structural response is basically described as a series of pre-calculated elastic modes, or more exactly by the eigenmode shapes of the structure. The structural problem is solved using a non-uniform Timoshenko beam model. Hereafter, a briefly description of the coupling procedure is given.

Linear frequency domain hydro-elastic seakeeping model

A more detailed description of the applied 3D-BEM model can be found in [START_REF] Newman | Wave effects on deformable bodies[END_REF], [START_REF] Malenica | Hydroelastic response of a barge to impulsive and non-impulsive wave loads[END_REF]. The well-known classical approach to determine ship motions and wave loads is based on the linear frequency domain theory. In contrast to the well-known rigid body seakeeping model, the hydro-elastic model basically extends the motion representation with additional modes of motion/deformation chosen as a series of the dry structural natural modes: 

ξ i (t)h i (x, y, z) = n i=1 ξ i (t)[h i x (x, y, z)i + h i y (x, y, z)j + h i z (x, y, z)k] (3.4)
where h i (x, y, z) denotes the general motion/deformation mode, which can be either rigid or elastic.

This modal approach implies the definition of supplementary radiation potentials with the following body boundary conditions:

∂φ Rj ∂n = h j n (3.5)
After solving the different Boundary Value Problems (BVP), the resulting pressure is calculated using Bernoulli's equations and integrated over the mean wetted surface in order to obtain the corresponding forces, so that the following coupled dynamic equation can be written:

-ω 2 e (m + A(ω e )) -iω e (B(ω e )) + (k + C) ξ = F DI (ω e ) (3.6)
where ω e represents the encounter frequency, m and k represents the modal genuine mass and the modal structural stiffness, respectively. A, B and C denote the hydrodynamic matrices for added mass, damping, and stiffness. ξ represents the modal amplitude for rigid and elastic modes, and the modal excitation vector is denoted as F DI . The solution of equation 3.6 gives the motion amplitudes and phase angles for six rigid body modes and a certain number of elastic modes.

Non-linear time-domain seakeeping model

Unfortunately, the application of the frequency domain method is relatively simple only in the linear case, and the inclusion of nonlinearities quickly becomes very complicated. This is not the case with the time-domain simulations where the handling of the nonlinearities is much easier. In order to compute the hydrodynamic forces in time-domain, the linear radiation and diffraction coefficients, computed in the frequency domain, are used (Tuitman andMalenica 2009, Tuitman et al. 2012). In this way, the following time-domain equation is obtained:

(m + A(∞)) ξ(t) + t 0 K(t -τ ) ξ(τ )dτ + (k)ξ(t) = F DI (t) + Q(t) (3.7)
where overdots denote the time derivatives, A(∞) represents the infinite frequency added mass matrix, and K(t) represents the matrix of impulse response functions.

It is shown by [START_REF] Ogilvie | Recent progress toward the understanding and prediction of ship motions[END_REF] that the impulse response functions can be calculated from the frequencydependent damping coefficients B ij :

K ij (t) = 2 π ∞ 0 B ij (ω) cos ωtdω (3.8)
After the impulse response functions K ij have been calculated, the motion equation 3.7 is integrated in time using the Runge Kutta 4 th order scheme. The main advantage of the time-domain method lies in the fact that we can introduce non-linear components in the excitation forces Q(t). In this study, we include the so-called Froude Krylov correction for the wave excitation and the non-linear hydrostatic pressure.

Moreover, in order to calculate the slamming induced whipping response, the slamming forces should be calculated and added to the force vector Q(t) of equation 3.7. Even if the hydrodynamic modeling of slamming is extremely complex, the most common procedure used is to compute the slamming loads using the Generalized Wagner Model (GWM) (Tuitman andMalenica (2009), De Lauzon et al. (2015)). GWM allows for evaluation of the impact pressure along an arbitrary ship section and an arbitrary penetration velocity. Due to the 2D assumption of the GWM, the practical procedure to include 3D effects passes through the so called strip theory approach where the part of the ship is cut into several strips each of them being considered separately from slamming point of view.

Design methodologies

From the ultimate strength point of view, the objective of the hydro-elastic analysis is to predict the extreme events. Usually, the ULCS owner requires the possibility to operate worldwide, which means that the ship will encounter the most extreme wave events existing in all the oceans worldwide. According to IACS, the most serious sea state is the so-called North Atlantic scatter diagram. It should be noted that the operating conditions do not mean the sea state definition only, and the sea state should always be associated with the ship loading conditions, wave heading, and ship's speed. The usual practice is to take a uniform probability distribution for the headings and to assume a speed of five knots.

There are two principal design methodologies for the identification of the maximum hydrodynamic loads: equivalent design waves (EDW) and design sea-state.

Equivalent design wave

An equivalent design wave is a wave on which a selected response is equal to a targeted value, often a load parameter (such as vertical bending moment, acceleration, etc.). But it can also be any type of ship response (local pressure, stress, etc.). In the current context, the governing parameter of the EDW is the vertical bending moment. Since there is an infinity of waves fitting the governing parameter, the aim is to select the wave that leads to the most representative response on the design sea-state. Currently, the design waves are widely used in the industry, and the most simplified approach is a regular wave (RW). Nevertheless, there are more advanced EDW, such as the uni-directional response conditioned wave (RCW) and the directional response conditioned wave (DRCW) [START_REF] Dietz | Application of conditional waves as critical wave episodes for extreme loads on marine structures[END_REF], de Hauteclocque et al. 2012;2013, Bureau Veritas 2019a).

In this thesis, the RCW type is used to compute the non-linear VBM response. Such a wave is defined as an irregular wave train, containing several components, leading to the mean of all the possible responses on a uni-directional sea-state, as illustrated in Fig. 3.5. 

Design sea-state

The aim of a design sea-state is to determine one single sea-state on which the extreme values are most likely to occur. This sea state is an output of spectral post-processing based on a linear model because it is assumed that the non-linearities are weak enough to consider that this most contribution sea state to the linear extreme is also the one for the non-linear extreme. it is called a directional design sea state (DDSS).

In order to reduce the computational time, the wave height of the design sea state is artificially increased, which causes the extreme targeted value to be reached more often, and the return period to be decreased.

This new sea state is called an increased design sea state (IDSS). This increase shall be high enough to allow a diminution of the calculation time, but low enough to ensure that the extreme event remains rare on the sea state. Furthermore, it is necessary to choose the time domain simulation duration at least 20 times longer than the return period in order to obtain a converged extreme valued. Additional details about the IDSS methodology can be found in [START_REF] Derbanne | Comparison of design wave approach and short term approach with increased wave height in the evaluation of whipping induced bending moment[END_REF].

Chapter 4

Dynamic Ultimate Strength of Stiffened Panels Considering Real Loading Scenarios

This chapter is partially as presented in Jagite et al. (2019a).

Introduction

This chapter presents the analysis of sixteen stiffened panels extracted from the bottom plating of different container ships. The stiffened panels are subjected to in-plane stresses and lateral loads associated with hydrodynamic pressures. At first, the quasi-static ultimate strength is determined. Then, the dynamic ultimate strength (i.e., considering inertia and strain rate effects) is computed. This research work aims to analyze the influence of the dynamic effects on the load-carrying capacity. Hence, the dynamic load factors (the ratio between the dynamic ultimate strength and the quasi-static ultimate strength) are determined for different scenarios. Finally, the ratio between the whipping load scenario and wave load scenario is derived in order to determine how a stiffened panel capacity will be affected by whipping response.

Numerical data

Geometry

The numerical models are based on the bottom plating stiffened panels of different container ships. The dimensions of these panels and the scantlings of the stiffeners are summarized in Table 4.1. The spacing between adjacent transverse frames is denoted by a and the distance between adjacent longitudinal stiffeners is denoted by b. The plate slenderness ratio, denoted by β, is calculated using the Equation 4.1 where t represents the plate thickness, σ 0 represents the material yield stress, and E represents the Young's modulus. The column slenderness of the beam constituted by the stiffener and its associated plated, denoted by λ, is calculated using Equation 4.1 where r represents the gyration radius of the stiffener with its attached plating.

β = b t • σ 0 E , λ = a πr • σ 0 E (4.1)
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Material properties

In the numerical analysis, the material of the stiffened panels is high tensile steel (AH32 and AH36) with Young's modulus of 205.8 GPa, a Poisson ratio of 0.3 and yield stress of 315 MPa, and 355 MPa, respectively. Firstly, for the quasi-static analysis, it is defined as elastic-plastic material, including strain hardening with a slope of 1/1000. Finally, in order to analyze the strain rate effect on the dynamic ultimate strength, the following constants: C = 3200, q = 5 are used for the Cowper-Symonds constitutive material model, presented in Equation 3.1. It is important to notice that according to this model, the flow stress is already increased by 3% at strain rates as low as 10 -4 s -1 , i.e., strain rates that are reached during "quasi-static" experiments. The effect of this "inconsistency" on the estimation of the panels' capacity will be discussed later in this chapter.

Load cases

A systematic non-linear finite element analysis has been carried out to study the dynamic effects on the ultimate strength of stiffened panels. For each panel, six load cases of combined compressive longitudinal stress σ x and transverse stress σ y are defined. Table 4.2 summarizes all load cases applied to the panel. For each load case, four different levels of lateral pressure are applied: 0.0, 0.1, 0.2, and 0.3 MPa, respectively. The stress ratio, denoted as SR, is defined as the ratio between the axial stress and the sum of axial and transversal stresses. 

Boundary conditions

The choice of the boundary conditions is crucial for the accuracy of the numerical results. Therefore, in the analysis of the ultimate capacity of a stiffened panel, the boundary conditions are adopted as a combination of simply supported boundary conditions and constraint equations. The primary supporting members (i.e., web frames) are idealized and modeled by constraint equations. Thus, at the intersection lines between the plate and the primary supporting members, shown as a dotted line in Fig. 4.1, the plate is simply supported (U Z = 0). For each intersection between a stiffener's web and a transverse web frame, shown as a solid line, all nodes of the stiffener's web are forced to have the same longitudinal and transverse translation, using constraint equations.

For the edges along with longitudinal stiffeners, denoted by BC and AD (colored in blue), simply supported boundary conditions (i.e., zero rotational restraints) are used. Furthermore, the edges, along with transversal frames, denoted by AB and DC (colored in red), are forced to remain straight using symmetry boundary conditions. Finally, the nodes on CD are constrained by equations to follow the same translation on X-axis as node C. Similar constraints are imposed for the nodes on AD to follow the same translation on Y-axis as node A. Thus, the loads will be applied as concentrated forces on nodes A and C to generate various in-plane bi-axial loads.

The boundary conditions are illustrated in Fig. 4.1. Where UX, UY and UZ denote the translations along X, Y and Z axes. Similarly, RX, RY and RZ denote the rotations around X, Y and Z axes. 

Non-linear finite element analyses

Finite element analyses using the computer code ABAQUS (2017) were employed in this study, in which both material and geometric nonlinearities were taken into account. In order to determine the quasi-static capacity, i.e., without any dynamic effects taken into account, the arc-length method is used. This method allows the load to be automatically increased until the ultimate capacity is reached and automatically decreased during the collapse process. If the panel is subjected to lateral pressure and combined in-plane loads, then the loads are applied in two consecutive steps. In the first step, the lateral pressure is applied and kept constant over the second step when the bi-axial compression is applied.

In the arc-length procedure, the load proportionally factor (LPF) represents one additional degree of freedom in the analysis. Therefore it is not possible to use this procedure when analyzing the dynamic effects. A dynamic solver must be used for the analysis of strain rate and inertia effect. Thus, the applied loads are defined as a function of time, using a half-sine loading function described by Equation 4.2, where T represents the period of the load and CF is the amplitude of the load.

f (t) = CF • sin 2π T • t (4.2)
Two different scenarios are considered to study the influence of the load period on the panel capacity:

• wave period scenario, with T = 8s

• whipping period scenario, with T = 1.6s

It should also be mentioned that, at the scale of the entire ship, whipping is not a load but the structural response to an impulsive load. However, in the case of a stiffened panel, whipping will be considered as a periodic load imposed by the surrounding structure.

Similar loading scenarios, associated with whipping, were considered by [START_REF] Jiang | Nonlinear finite element dynamic collapse analyses of stiffened panels[END_REF] to analyze the ultimate capacity of a stiffened panel under uniform axial loads. In their study, the applied load in the non-linear dynamic analysis was defined as the quasi-static capacity CF 0 multiplied by a factor of 1.2. By scaling the quasi-static capacity by a factor of 1.2, they created a load scenario in which the panel collapsed, and they observed that during the dynamic collapse, the applied load gets higher than the panel static capacity.

According to [START_REF] Jiang | Nonlinear finite element dynamic collapse analyses of stiffened panels[END_REF], the critical buckling load represents the applied load, f (t ib ), at the instant: t ib when the axial displacement started to accelerate rapidly. This time point is defined as "initiation of buckling." Since the definition based on the rapid acceleration of axial displacement is quite arbitrary and interpretive, a new definition for the "initiation of buckling" point is proposed in this chapter. Therefore, the failure point of a structure subjected to a load equal to 1.2 • CF 0 is determined as the point where the slope of the axial displacement vs. time curve is ten times bigger than the initial slope. Finally, [START_REF] Jiang | Nonlinear finite element dynamic collapse analyses of stiffened panels[END_REF] defined the dynamic capacity (i.e., the critical buckling load) as follows:

CF dib = 1.2 • CF 0 • sin 2π T • t ib (4.3)
Thus, the dynamic capacity increase can be written as follow:

f dib = 1.2 • sin 2π T • t ib -1 (4.4)
We consider that this is not a proper definition of the panel dynamic capacity. Indeed, this increased load was reached only during the panel collapse, it is a load level that the panel cannot sustain without collapsing, and thus it is of very limited interest for the designer.

As presented in section 3.1, the dynamic capacity of a stiffened panel is the maximum load that the structure can withstand without collapsing, any load higher than this level will lead to a structural collapse. The dynamic capacity is denoted as CF max . Since we are interested in the modification of the panel capacity, we define the dynamic load factor f d as follows:

f d = CF max CF 0 -1 (4.5)
Furthermore, the dynamic load factor obtained for a wave period scenario is denoted as f d wave , while for the whipping period scenario is indicated as f d whip . Where CF max wave and CF max whip are the maximum values of the applied load that the panel can withstand for wave and whipping load scenarios, respectively.

Finally, for the comparison of the dynamic load factors obtained in the whipping period and wave period scenarios, the following ratio is introduced:

f DU = CF max whipping CF max wave -1 (4.6)

Structural Model Extent

Withing this research work, a model extent of 1 /2 + 1 + 1 /2 frame spacings in longitudinal direction and five stiffeners in transverse direction is considered, as Fig. 4.2 bears out. However, in order to quantify the effects of different models extents, a sensitivity study is carried out. Six different models are created, having two ( 1 /2 + 1 + 1 /2), and three ( 1 /2 + 2 + 1 /2) frame spacings in the longitudinal direction. While in the transversal direction, the FE model extent is two, five, and seven stiffeners, respectively. The effect of the model extent is very small (less than 1%), as Table 4.3 bears out. The ultimate strength is presented as the ratio between the ultimate axial stress (σ Xu ) and the material yield stress (σ 0 ). It is worth mentioning that these results are obtained for model ia841t225, where a medium-mesh density was used for analyzing the influence of the structural model extent. 

Mesh sensitivity study results

Furthermore, a mesh convergence study is carried out. Table 4.4 summarizes the average mesh size and number of elements on the plate (between stiffeners), on the stiffener web and on the stiffener flange.

The aspect ratio of each element was kept within the range 1:1 to 1:2.

The results of the sensitivity study on mesh sizes, obtained for model ia841t225, are presented in Table 4.5, where the relative difference is computed with regard to medium mesh size. Judging from these results, the effect of mesh size over the dynamic load factor is negligible. However, there is a small influence over the quasi-static ultimate capacity; therefore, in the following analyses, the FE model with medium mesh size is used. 

Geometric initial imperfections

A typical steel structure is usually fabricated by flame cutting and welding, and thus initial imperfections may appear and will reduce the structural capacity. These initial imperfections may be classified into initial distortions and residual stresses. Only initial imperfections related to initial distortions are considered in this study. Several researchers reported on the importance of the geometric initial imperfections for buckling and ultimate strength analysis. According to [START_REF] Paik | Ultimate limit state design of steel-plated structures[END_REF] the initial imperfections shape in numerical analysis can be defined as the fundamental buckling mode for each case of biaxial compression or only for pure longitudinal compression.

An alternative method to the buckling analysis is to define the shape of initial imperfections using analytical expressions and the nodal translation approach [START_REF] Paik | Ultimate limit state design of steel-plated structures[END_REF]. Therefore, the number of half-waves in the longitudinal direction, denoted as n hw , for a plate subjected to biaxial compression is determined as the smallest integer value that satisfies the Equation 7.1 [START_REF] Paik | Ultimate limit state design of steel-plated structures[END_REF].

(n 2 hw /a 2 + 1/b 2 ) 2 n 2 hw /a 2 + c/b 2 ≤ [(n hw + 1) 2 /a 2 + 1/b 2 ] 2 (n hw + 1) 2 /a 2 + c/b 2 (4.7)
where c represents the ratio between the transverse compression σ y and the longitudinal compression σ x .

After choosing the shape of the initial geometric imperfections, the next step is to define their maximum amplitude. In the current industry practice (Paik et al. 2008a[START_REF] Zhang | A procedure for non-linear structural collapse analysis[END_REF][START_REF] Paik | Ultimate limit state design of steel-plated structures[END_REF], an average magnitude for the initial imperfections is usually considered, assuming that the maximum amplitude is a function only of the distance between stiffeners, as shown in Equation 4.8.

w pl = 0.005 • b (4.8) [START_REF] Smith | Strength and stiffness of ships'plating under in-plane compression and tension[END_REF] proposed three different levels for the maximum amplitude of the initial geometrical imperfections, as a function of plate slenderness ratio, plate thickness, and a coefficient, denoted as c A , obtained from statistical analysis, as shown in Equation 4.9.

w pl = c A β 2 t and c A =      0.
025 for a slight level 0.100 for an average level 0.300 for a severe level (4.9)

A sensitivity study regarding the shape and amplitude of the initial geometric imperfections is performed, and the results are summarized in Table 4.6 for a stiffened panel (model ia841t225) subjected to axial compression and lateral pressure. The numerical results are showing that the quasi-static ultimate strength is decreasing when the initial imperfections amplitude increases. Also, the dynamic load factors for wave scenario and whipping scenarios are proportionally increased with the increase of the initial imperfections amplitude. However, the ratio between the dynamic load factors for whipping and wave scenarios is slightly influenced by the initial imperfections amplitude. Therefore, in the current study, the initial imperfections are generated as a combination of:

• local imperfection obtained from a linear buckling analysis. The fundamental buckling mode is retained and scaled so that the deflection of the plate is equal to 1/200 of the stiffeners' spacing. Fig. 4.4(a) shows the local imperfection with a 250 magnification factor.

• global imperfection defined analytically, corresponding to column buckling of the stiffeners and their associated plate, with a deflection equal to 1/1000 of the stiffeners span. Fig. 4.4(b) shows the global imperfection magnified with a factor of 100.

• global imperfection defined analytically, corresponding to torsional buckling of the stiffeners, with a deflection equal to 1/1000 of the stiffeners span. Fig. 4.4(c) shows the global imperfection magnified with a factor of 100.

Results and discussions

Prior to the non-linear dynamic analyses, the first step is to analyze the quasi-static collapse behavior of the stiffened panels under combined in-plane compression and lateral pressure. The typical deformed 

Inertia effect

One purpose of this study is to investigate the influence of the inertial forces. To this effect, in the first step, the strain rate effect is excluded from the analysis by using a simple bi-linear plasticity model. The numerical results are indicating that the inertial effect on the ultimate strength of a stiffened panel is negligible for a load period varying from 1.6 s to 16 s. On the other hand, if the duration of the dynamic loading applied to the stiffened panel is very small, the inertia effect will slightly increase the panel's capacity, as shown in Fig. 4.6. For a load with a period of 0.2 s, the dynamic ultimate strength is increased with less than 1%. 

Strain rate effect

After analyzing the inertial effect on the ultimate strength, the next step is to study the influence of the strain rate on the ultimate capacity using a series of dynamic analyses. Therefore, starting from the quasistatic capacity of the stiffened panels, the dynamic capacity for each panel is determined by increasing the load amplitude until the panel fails. A typical example of the variation of the dynamic load factor under all scenarios and different load combinations is presented in Fig. 4.7. Similar results were obtained for all other models analyzed in this research work. By examining the results from the non-linear dynamic analyses, it can be concluded that the dynamic load factor increases when the load period decreases and also when the applied lateral pressure increases. Also, it can be concluded that the highest values of the dynamic load factor are obtained for pure axial compression, SR = 1. Therefore, in the following comparison, only the worst load case will be considered for each stiffened panel.

Next, a comparison between dynamic load factors obtained using Jiang's definition (Equation 4.4) on the one hand, and using our new definition (Equation 4.6) on the other hand is presented. The numerical results are summarized in Table 4.7, from which we can infer the importance of correctly defining the dynamic ultimate strength. These results are obtained for a whipping period scenario. When the stiffened panel's structure is subjected to a load equal to 1.2 • CF 0 , the dynamic effects will increase the ultimate strength from 8.8% to 10.5%. However, when the dynamic ultimate strength is correctly evaluated with our new definition, the dynamic capacity increase is only 4.8% to 7.2%. It can be observed that the whipping dynamic capacity increase with our definition is systematically lower than the one with Jiang's definition. The corollary is that none of the panels can actually withstand the load defined by Jiang's definition without collapsing. This confirms the need for a new definition. From the results shown in Table 4.8 and Fig. 4.8, we can observe that the effect of strain rate is already existent for the wave period scenarios. This is not surprising since, as mentioned in Section 4.2.2, with the considered Cowper-Symonds model, it was expected that some strain rate effects are observed in response to "quasi-static" loads. However, this is in contradiction with the long-established industry practice to consider the wave periods as quasi-static.

We believe that two different interpretations can be made of this finding. The first interpretation is that this apparently increased capacity in response to the wave scenario is an artifact of the considered strain rate model, and of the inconsistency mentioned in Section 3.2. As a consequence, the industry practice would be confirmed, and we should change the Cowper-Symonds model, or define another equation that would give no increase for strain rates below 10 -3 s -1 , and thus no (or negligible) increased capacity for Fig. 4.9 shows the dependency of the dynamic load factor with the maximum local strain rate obtained during the analysis. The numerical results are indicating that a wave scenario produces strain rates up to 10 -2 s -1 . On the other hand, during the whipping period scenario, the strain rates are about one order of magnitude higher, in a range from about 10 -2 s -1 to 10 -1 s -1 .

These results show that the part of the Cowper-Symonds constitutive model involved in the wave period scenarios and also in the whipping period scenarios is the part where the validity of the model is questionable, as discussed in Section 3.2. The Cowper-Symonds curve is not very consistent with the results of the "quasi-static yield stress experiments", as Fig. 4.10 bears out. By construction, the curve is significantly above the experimental data in this range of strain rates. The only exceptions are a few experimental points for which it is not clear how the "quasi-static" yield stress used to normalize the data has been defined since these points are far above 1.0 at very low strain rates. The second possible interpretation of the apparently increased capacity for the wave period scenarios is that the strain rate model with the Cowper-Symonds parameters proposed by [START_REF] Paik | Ultimate limit state design of steel-plated structures[END_REF] is correct, and thus this increased capacity is real, although the industry practice is to neglect it. In this case, it would not be consistent to consider the whole capacity increase for whipping scenarios, and the logic is only to retain the whipping increase relative to the wave one: f DU . In conclusion, it is considered that the relative increase f DU represents the proper estimator of the increased capacity that could be used when designing or checking the structure against whipping. In this case, the increment of the stiffened panel capacity under the whipping scenario is between 1.6% and 2.1% when pressure is applied and between 1.2% and 1.7% without pressure, as shown in Fig. 4.11.

Real loading scenarios

Although it was shown in the previous section that the strain rate effect is already existent in the wave loads, and if the panel is subjected to high-frequency transient loads, the strain rate effect will slightly increase the ultimate capacity. In a real environment, the high-frequency transient loads (whipping) are always combined with low frequency (wave) loads. Therefore, it can be anticipated that the strain rates obtained in the simplified "whipping period" scenarios in which 100% of the load was varying at the whipping frequencies were overestimated, and so was the strain rate effect on the capacity of the panels.

In order to obtain a better estimation of the actual panel capacity increase in the context of whipping, a hydro-elastic analysis is performed on an ultra-large container ship to determine more realistic whipping loading scenarios. The software HOMER, developed and maintained by Bureau Veritas, is used to perform the hydro-elastic coupling between a 3D BEM model for the seakeeping part, and a beam model based on the non-uniform Timoshenko beam theory for the hull girder [START_REF] Derbanne | Validation of the global hydroelastic model for springing & whipping of ships[END_REF][START_REF] Malenica | Homer-integrated hydro-structure interactions tool for naval and offshore applications[END_REF]. The theory of the hydro-elastic coupling is presented in Section 3. The principal characteristics of the ULCS used in this study are presented in Table 4.9. Furthermore, in order to determine a more realistic load-amplitude curve for the wave and wave+whipping loading scenarios, a design sea state is created. Fig. 4.12 shows a representative time variation of vertical wave bending moment(VWBM) at midship with and without slamming induced whipping.

Based on the load time series, several significant time samples are extracted, and these loads are applied to the stiffened panel model. During the first loading step, the lateral pressure loads are defined using a smooth step amplitude function. In a second loading step, the axial compression due to vertical wave bending moment (with and without whipping) is applied. For each "real loading" scenario, shown in The numerical results presented in Table 4.10 and Fig. 4.14 are showing that the strain rate effect is already existent in the wave loads, and if the panel is subjected to wave+whipping loads the strain rate will increase. Due to the higher strain rate, the panel's capacity is increased by 0.4% to 1.3%. In a realistic loading scenario, the low-frequency loads are combined with the high-frequency loads; and therefore, it can be concluded that the simplified whipping scenario, defined in Section 4.4, over predicts the increase of dynamic load factors due to whipping.

The whipping-wave dynamic load ratios (f DU ) obtained for pure axial compression (i.e., without lateral pressure) for the real loading scenarios are compared to the results obtained for simplified scenarios in 

f DU f d whip f DU f d whip f DU f d whip f DU f d whip f DU ia732t28
0.0 5.6 0.57 5.8 0.76 5.9 0.86 5.8 0.86 5.9 0.95 0.3 6.5 0.76 6.7 0.95 7.2 1.32 6.8 1.14 6.8 1.14 ia840t145 0.0 3.7 0.39 3.8 0.39 4.0 0.58 4.0 0.68 3.9 0.58 0.15 5.2 0.57 5.3 0.57 5.5 0.76 5.4 0.76 5.6 0.96 ia840t185 0.0 4.5 0.48 4.6 0.58 5.0 0.86 4.7 0.77 4.7 0.77 0.25 5.7 0.57 6.0 0.76 6.0 0.76 6.0 0.86 6.1 0.95 ia841t225 0.0 4.9 0.58 5.0 0.57 5.5 1.05 5.1 0.77 5.1 0.77 0.3 6.2 0.66 6.5 0.85 6.5 0.85 6.5 1.04 6.6 1.14 ia910t22 0.0 4.6 0.48 4.7 0.48 4.7 0.48 4.8 0.67 4.9 0.77 0.3 5.8 0.57 5.9 0.67 6.1 0.76 6.1 0.95 6.2 1.05 ia840t27 0.0 5.1 0.48 5.3 0.67 5.7 1.05 5.4 0.86 5.4 0.86 0.3 6.3 0.66 6.5 0.76 7.0 1.23 6.7 1.14 6.8 1.23 Fig. 4.15. It can be observed that real loading scenarios lead to a significantly smaller ratio. 

Conclusion

In this chapter, the numerical results of the dynamic collapse analysis for sixteen stiffened panels, extracted from different container ships, are presented. Each panel is subjected to in-plane biaxial loads and water pressure lateral loads. In the first part of the analysis, the quasi-static capacity of these panels was determined. In the second part, the quasi-static capacity was used to define dynamic load time scenarios for two typical periods associated with wave and whipping. A new and proper definition of the panel dynamic ultimate capacity was introduced. By analyzing the numerical results, it can be concluded that the inertial effect on the ultimate capacity of stiffened panels is negligible for a periodic load varying from 1.6 to 16 s. On the other hand, the strain rate effect on the material constitutive law has some impact on the panel's ultimate strength. With the new consistent definition of the dynamic capacity, the capacity increase, originally in a [8.8% -10.5%] range, is reduced to [4.8 -7.2 %].

However, under the hypotheses on the strain rate effect on the material yield stress that have been considered, the increase in ultimate capacity for wave loadings is already in the range of 3.5-6% while the industry practice is to consider no strain rate effect for such loads. The question of whether this capacity increase for wave loads is real or is a bias due to the hypotheses is still open, but this result leads us to the conclusion that the capacity increase for whipping period scenarios has to be considered relative to the increase for the wave period scenarios. When this is taken into account, the stiffened panel capacity increase under the simplified whipping period scenario is only 1.2% to 2.1%. The objective of the last part of the current research work was to compare the strain rate effect on the stiffened panel dynamic capacity under a real loading scenario, obtained from a hydro-elastic analysis on a ULCS. The numerical results obtained from non-linear finite element analyses are showing that under a real wave+whipping loading scenario, the stiffened panel's capacity is increased by 0.4% to a maximum 1.3% comparing to a real wave loading scenario. It shows that simplified scenarios tend to over-predict the increase of the panel's capacity due to whipping.

Fig. 4.16 summarizes all the results presented in this paper. It shows that by over-increasing the applied load, as per Jiang's definition, the dynamic capacity, interpreted as the critical buckling load, was overestimated. However, using an improved definition, the dynamic load factors are significantly reduced. Furthermore, considering that the wave scenario is accepted as quasi-static, the increase due to whipping is only between 1.2% and 2.1%. Moreover, the use of realistic loading scenarios further reduces the increase of the capacity with a factor of two. Therefore, it seems that the usual assumption that the strain rate effect is negligible in the analysis of the ultimate strength of ship structures subjected to wave load can be extended to the analysis of structures subjected to whipping-induced stresses. 

Introduction

This chapter continues the numerical investigations presented in Chapter 4, and the new objective is to obtain a better understanding of how different load components are affecting the dynamic load factor (the ratio between the ultimate dynamic strength and the quasi-static ultimate strength). Thus, instead of directly using the load time series obtained from a hydro-elastic analysis, the load time series for the non-linear structural analysis are generated using analytical formulae. Hence, a broad range of scenarios with different assumptions can be studied.

The first part of this chapter is dedicated to the hydro-elastic analyses on a database of fourteen container ships with cargo-carrying capacity varying from 1000 to 14000 TEU. Then, the global hydro-elastic responses are used to determine realistic ranges from each dominant load parameter (DLP): still-water load, wave load, whipping load, wave and whipping periods, etc. By considering realistic values for each DLP, the time-dependent loads are obtained using some analytical functions and the superposition principle. In the second part of this chapter, the analytical loads are used on systematic non-linear finite element analyses (FEA) of the dynamic effects (i.e., strain rate and inertia) on the ultimate strength of a stiffened panel. Furthermore, the dynamic load factors are computed, and the numerical results are discussed. Finally, the limitations and the uncertainties of the current strain rate sensitivity constitutive model are discussed. A new model is proposed to correctly describe the strain rate sensitivity of high tensile steels at low strain rates (10 -3 to 10 -1 s -1 ) while maintaining the same level of accuracy for intermediate and high strain rates.

Hydro-elastic analyses

In Section 4.5, the method based on the design sea state was applied to a ULCS to obtain the time history of VBM at midship. From the resulting load time series for VBM, only significant extreme waves were selected and applied directly to analyze the dynamic capacity of several stiffened panels. However, the aim here is to perform a more comprehensive analysis in order to be able to provide more general conclusions. Thus, the equivalent design wave (EDW) method, presented in Section 3.3.3, is applied to a database of fourteen container ships, and the output of these analyses is used to generate an extensive range of scenarios. Those ships have been selected among the Bureau Veritas fleet, covering a wide range of sizes. The hydro-elastic analyses are performed using the software HOMER, developed and maintained by Bureau Veritas [START_REF] Derbanne | Validation of the global hydroelastic model for springing & whipping of ships[END_REF][START_REF] Malenica | Homer-integrated hydro-structure interactions tool for naval and offshore applications[END_REF].

Ships database

The principal characteristics are presented in Table 5.1, where LBP represents the length between perpendiculars, B represents the molded breadth of the ship, D and T are the construction depth and respectively the draft. The cargo-carrying capacity, expressed in terms of TEU (twenty-foot equivalent unit), is denoted as CC, and c B represents the block coefficient of the ship. Also, the wet frequencies for the first two vertical vibrational modes are shown in the last two columns. 

Hydro-elastic results

A typical EDW of type response conditioned wave (EDW-RCW) is illustrated in Fig. 5.1(a), while the time history for the VBM at midship is shown in Fig. 5.1(b). For each wave, the following load components can be identified:

SW BM still water bending moment VW BM wave bending moment which includes the non-linear effects GWM BM wave bending moment which includes slamming induced whipping T wave wave period, associated with VW BM T whip whipping period, associated with slamming induced vibrations T shif t time shift between maximum VW BM and maximum GWM BM When performing the ultimate strength analysis of a stiffened panel, it is not possible to directly apply the bending moments derived from the hydro-elastic analyses, and some post-processing would be required. However, instead of transforming the global response (bending moments) to axial stresses, a different approach is used in this paper. For each ship, the hull girder ultimate strength, denoted as HG ULS , is computed using the progressive collapse method. Then, the coefficient α SW is computed as the ratio between the still water bending moment, and the hull girder ultimate strength. The coefficient β GW M is the ratio between the high-frequency load component (GWM BM ) and the low-frequency load component (VW BM ). Thus, when defining the axial load acting on a stiffened panel, we can maintain realistic ratios between the different loading components. The results are obtained using the EDW-RCW approach, and the normalized coefficients are summarized in Figure 5.2.

α SW = SW BM HG ULS , β GW M = GWM BM -VW BM VW BM (5.1)
Based on the numerical results shown in Figure 5.2, we define a realistic range for each dominant load parameter, as Table 5.2 bears out. These values will be used as input for creating the load amplitude curves. Aside from that, a lateral load associated with the still water pressure is used, having the constant value p=0.12 MPa. Also, a dynamic pressure p=0.04 MPa, associated with wave loads, is defined as a time depended lateral load. 

T whip 0.9 [s] 2.3 [s] T shif t -0.5 T whip +0.5 T whip α SW 0.1 0.5 β GW M
0.1 0.5

Non-linear structural analysis

Geometry

The stiffened panel is part of the outer bottom structure of a ULCS. The main particulars of the stiffened panel are as follows: the plate thickness is 20 mm, and the stiffeners are 400x150x11/18mm tee bar profiles. The stiffened panel span, the spacing between transverse frames (denoted by a), is 3250 mm, and the spacing between the longitudinal stiffeners (denoted by b) is 840 mm. The details of FE modeling are kept the same as in Chapter 4.

Load cases

This research aims to investigate the dynamic ultimate strength of a stiffened panel subjected to waveand whipping-induced stresses. In order to derive realistic load amplitude curves, the in-plane axial compression is created by superimposing several simple mathematical functions, including three components: (i) a constant component representing the still water stress; (ii) a low-frequency component representing the wave-induced stress; (iii) a high-frequency component representing the whipping-induced stress. It should be noted that for creating a load scenario for wave-induced stresses, the high-frequency component will be disregarded. Hence, the wave-induced force CF wave , and wave+whipping-induced force CF whip can be expressed as follows:

CF wave (t) = CF 0 • (a sw (t) + a wave (t)) (5.2) CF whip (t) = CF 0 • (a sw (t) + a wave (t) + a whip (t)) (5.3)
where CF 0 is the quasi-static ultimate strength of the stiffened panels. Moreover, the intensity of the force is controlled using the parameters: a sw , a wave , and a whip for the still-water, wave and whipping load components, respectively. They are computed as follows:

a sw (t) = α SW • A sw (5.4) a wave (t) = (1 -α SW ) • A wave • sin 2π T wave • t (5.5) a whip (t) = β GW M • A whip • sin 2π T whip • (t + T shif t ) (5.6)
The coefficients α SW and β GW M have been defined in the previous section, and A sw , A wave and A whip are the amplitude modulation functions for the three load components. The constant component is gradually applied over one second using a smooth amplitude function, as shown in equation 5.7, and it is maintained constant. After another second, the dynamic components are applied and are gradually increased over the first interval, in the second interval the dynamic components are maintained constant, and during the last interval, the loads are gradually decreased, as Figure 5.3 bears out.

A sw =      0 , t ≤ 0 6t 5 -15t 4 + 10t 3 , 0 ≤ t ≤ 1 1 , 1 ≤ t (5.7) A whip = A wave = 1 2                        0 , t ≤ 2 6t 5 -15t 4 + 10t 3 , 2 ≤ t ≤ 0.5T wave +2; t = 2t T wave 1 + sin 2π T wave • t , 0.5T wave +2 ≤ T wave +2 6 t5 -15 t4 + 10 t3 , T wave +2 ≤ t ≤ 1.5T wave +2; t = 3T wave -2t T wave 0 , 1.5T wave +2 ≤ t (5.8)
Furthermore, in a realistic environment, the stiffened panels located on the bottom plating of ships are subjected to complex loadings, composed of lateral loads and in-plane stresses. Therefore, three different loading cases are defined as a combination of axial compression, hydrostatic pressure, and dynamic pressure. The hydrostatic pressure is applied quasi-statically, having the same load amplitude curve (i.e., A sw ), as the constant component for the still water stress. The dynamic pressure is associated with the wave loads, and it is applied using the low-frequency load amplitude curve (i.e., A wave ). Please note that for each case, the axial compression can be associated with a wave load (CF wave ), or a wave+whipping load (CF whip ). 

Definition of the dynamic load factors

This paper aims to quantify the influence of strain rate and inertia effects over the ultimate strength of a stiffened panel subjected to wave-and whipping-induced stresses. Hence, in order to obtain a better understanding of how the dynamic effects are modifying the panel's capacity, we define the dynamic load factor f d as follow:

f d = CF max CF 0 -1 (5.9)
where CF 0 is the quasi-static ultimate strength (i.e., without the dynamic effects), and CF max is the dynamic ultimate strength, which is defined as the maximum load that can be applied on the panel without collapsing (as presented in Section 3.1). It is worth mentioning that within the iterative algorithm employed in the computation of the dynamic ultimate strength, only the dynamic components (wave and whipping load components) are scaled. The constant load component due to still water load is kept constant. Furthermore, the dynamic load factor obtained for a wave load scenario is denoted as f d wave , while for the combined wave and whipping load scenario it is indicated as f d whip . CF max wave and CF max whip are the maximum values of the applied load that the panel can withstand for wave and wave+whipping load scenarios, respectively.

Finally, the dynamic collapse effect is defined as the ratio between the ultimate strength determined for a wave+whipping scenario and the ultimate strength determined for wave load scenario, as follows:

f DU = CF max whipping CF max wave - 1 
(5.10)

Results and discussions

Quasi-static ultimate strength results

Numerous studies have been published over the years, aiming to develop simplified or empirical methods for predicting the ultimate strength of stiffened panels. These methods are intensively used, especially during the design phase, where using the NL-FEM method is still too expensive. Several representative methods have been used to compute the ultimate strength under pure axial stress. The results are compared in Table 5.4, from which we can infer that some empirical methods are giving a reasonable agreement, for example, [START_REF] Zhang | Buckling and ultimate capability of plates and stiffened panels in axial compression[END_REF], [START_REF] Xu | Empirical formula for predicting ultimate strength of stiffened panel of ship structure under combined longitudinal compression and lateral loads[END_REF]. However, the ultimate strength predicted by the following methods [START_REF] Lin | Structural longitudinal ship modelling[END_REF], [START_REF] Paik | An empirical formulation for predicting the ultimate compressive strength of stiffened panels[END_REF], [START_REF] Kim | An empirical formulation for predicting the ultimate strength of stiffened panels subjected to longitudinal compression[END_REF][START_REF] Yamada | Approach to simulate dynamic elasto-plastic whipping response of global hull girder of a large container ship due to slamming load[END_REF] is within the range 9.51 to 15.35 % from the NL-FEM results. The ultimate strength is presented as the ratio between the ultimate axial stress (σ Xu ) and the material yield stress (σ 0 ). It is worth mentioning that the quasi-static ultimate strength is computed by making use of the arc-length method (ABAQUS 2017), and adopting a simple bi-linear plasticity model, as presented in Section 4.2.2.

It is worth mentioning that different empirical formulations are developed on different data sets based on either experimental tests, numerical simulations, or both. Most empirical formulations are based on the plate slenderness ratio, denoted as β, and on the stiffener slenderness ratio, denoted as λ. For example, [START_REF] Paik | An empirical formulation for predicting the ultimate compressive strength of stiffened panels[END_REF] collected the experimental data available in the literature and proposed and empirical formulation using five coefficients and higher-order terms. [START_REF] Zhang | Buckling and ultimate capability of plates and stiffened panels in axial compression[END_REF] developed a new formulation using the NL-FEM results of seven stiffened panels. [START_REF] Xu | Empirical formula for predicting ultimate strength of stiffened panel of ship structure under combined longitudinal compression and lateral loads[END_REF] proposed a polynomial expression with eleven coefficients using 1296 cases of numerical simulations. [START_REF] Kim | Ultimate strength prediction of t-bar stiffened panel under longitudinal compression by data processing: A refined empirical formulation[END_REF] used conventional data processing technique to develop empirical formulation using the data of 10500 NL-FEM analyses. Finally, it is critical to mention that different empirical formulae use different assumptions for the boundary conditions, initial imperfections, model extension, etc.

The distribution of equivalent plastic strain of the considered stiffened panel under pure axial compression is presented in Figure 5.4 at the ultimate strength, and in the post-ultimate state. Plastic strains are concentrated across its mid-span, and the failure mechanism can be characterized as a plastic hinge along the transverse direction. Furthermore, the quasi-static ultimate strength under combined axial compression and lateral loads is computed. For the considered stiffened panel, the still water pressure (p=0.12 MPa) reduces the ultimate strength by 3.55%. While the combined still water(p=0.12 MPa) and dynamic pressures (p=0.04 MPa) are reducing the ultimate strength by 5.25%. Fig. 5.5 illustrates the effect of lateral loads on the ultimate strength of a stiffened panel.

Verification of the NL-FEM analysis procedure

For the sake of numerical results verification, several NL-FEM analyses were carried out for a stiffened panel available in the literature [START_REF] Paik | Nonlinear finite element method models for ultimate strength analysis of steel stiffened-plate structures under combined biaxial compression and lateral pressure actions-part ii: Stiffened panels[END_REF]. The characteristics of the selected stiffened panel are as follows: plate thickness t=17.8 mm, spacing between stiffeners b=815 mm, spacing between trans- verse frames a=4300 mm, and the stiffeners are 463x172x8/17mm tee bar profiles. The same material behavior and initial imperfections, as in [START_REF] Paik | Nonlinear finite element method models for ultimate strength analysis of steel stiffened-plate structures under combined biaxial compression and lateral pressure actions-part ii: Stiffened panels[END_REF], have been considered.

The ultimate strength under pure axial compression from the present NL-FEM analysis is σ Xu /σ 0 =0.8177, while from Paik's FE results using ANSYS software was σ Xu /σ 0 =0.8139. Moreover, for the ultimate strength under axial compression and a lateral pressure p=0.16 MPa is σ Xu /σ 0 =0.7553 from the present NL-FEM analysis and σ Xu /σ 0 =0.7488 from [START_REF] Paik | Nonlinear finite element method models for ultimate strength analysis of steel stiffened-plate structures under combined biaxial compression and lateral pressure actions-part ii: Stiffened panels[END_REF]. For both cases, the difference is less than 1%, showing a very good agreement between results.

Dynamic ultimate strength

It is anticipated that the influence of some load parameters, presented in Table 5.2 could be negligible on the dynamic ultimate strength of a stiffened panel. Therefore, several analyses are performed regarding the sensitivity of the results to the still water load component (α SW ), the amplitude of the whipping load component (β GW M ), and the time shift (T shif t ). In all the sensitivity analyses presented hereafter, the stiffened panel is subjected to pure axial compression, as per loading case 1 (see Table 5.3).

The first sensitivity study refers to the analysis of the influence of the still water load component. The following load periods and ratios are used: T wave = 8 s, T whip = 1.6 s, T shif t = 0 s and β GW M = 0.3. The ratio: α SW is varied within the range [0.1, 0.5]. The numerical results are summarized in Table 5.5. For each value of the load parameter α SW , two computations are performed. At first, the dynamic ultimate strength is determined for a wave load scenario, denoted as wave. Secondly, the dynamic ultimate strength is calculated for a wave+whipping load scenario, denoted as whip. σ sw represents the maximum Von Mises stress, and ∆ x represents the end displacement due to still water loads. These values are identical for both scenarios, and are measured at the instant t=2s, representing the response of the structure after the still water load component is applied (as shown in Figure 5.3). Then, σ max and εmax are the maximum Von Mises stress and the maximum strain rate obtained during the analysis, all over the model. In conclusion, the numerical results, in terms of dynamic load factors, are showing that the effect of the still water load component on the dynamic capacity is negligible for a still water load amplitude within a [0.1, 0.5] range.

Next, for the sensitivity of the dynamic capacity due to whipping load component, the following load periods and ratios are used: T wave = 8 s, T whip = 1.6 s, T shif t = 0 s and α SW = 0.3. The ratio: β GW M is varied within the range 0.1 to 0.5. The numerical results presented in Table 5.6 are showing that the effect of the load ratio between the whipping load component and wave load component is negligible over the dynamic capacity increase rate if the β GW M load ratio varies from 0.1 to 0.5. Finally, for the analysis of the sensitivity to time shift between wave load component and whipping load component, the following load periods and ratios are used: T wave = 8 s, T whip = 1.6 s, α SW = 0.3 and β GW M = 0.3. The ratio: T shif t is varied within the range [-0.5, 0.5] T whip . The numerical results presented in Table 5.7 are showing that the dynamic capacity increase rate is not much influenced by the time shift between the maximum whipping load component and the maximum wave load component. Therefore, in order to maximize the dynamic capacity increase rate, but to keep the assumptions in a realistic domain, the following hypothesis is adopted: Summarizing the results of the three sensitivity studies, the following parameters: α SW , β GW M , and T shif t have no (or negligible) effect on the ultimate dynamic capacity of a stiffened panel. Therefore, the load parameters governing the axial load component that have a significant contribution to the dynamic ultimate strength are the wave and whipping periods. A test matrix for different combinations of wave and whipping load periods is defined. The wave period (T wave ) is varied within a [8, 13]s range, and the whipping period (T whip ) is varied within a [0.9, 2.3]s range. Moreover, for each loading scenario composed of a different wave and whipping period, three computations are performed, representing the three load cases defined in Table 5.3. Hence, the total number of combinations to analyze is n total = 126 (i.e., 6T wave , 7T whip , 3cases). Also, it is worth mentioning that the following parameters are kept constant: α SW = 0.3, β GW M = 0.3 and T shif t = 0.25 • T whip .

T shif t = 0.25 • T whip .
Figures 5.6 and 5.7 are presenting the dynamic load factors obtained for the wave load, and wave+whipping load scenarios, respectively. For each whipping period, six different wave periods have been used. Hence, in order to simplify the representation of the results, the dynamic load factors obtained for wave+whipping scenarios are presented as the mean value, shown as a solid line, and the standard deviation of the results, shown as the shaded area. The mean value is simply the sum of the results divided by the number of elements (i.e., x = N i=1 x i/N ). While the standard deviation is the square root of the average of the squared deviations from the mean (i.e., std = ( As expected, the dynamic load factor increases when the load period decreases. More importantly, it can be observed that the strain rate effect is already existent for the scenarios where the applied loads are only the still water and wave components. The strain rate effects observed in response to "quasistatic" loads are in contradiction with the long-established industry practice to consider the wave periods as quasi-static. To the authors' opinion, this is a limitation of the considered Cowper-Symonds model. Therefore, in order to obtain a clearer and proper interpretation of the strain rate effect on the dynamic capacity of a stiffened panel, we should only retain the whipping increase relative to the wave one: f DU , presented in equation 4.6. The numerical results, in terms of relative capacity increase (f DU ) vs. whipping period (T whip ), are presented in Figure 5.8, where the solid line denotes the mean value, and the shaded area represents the standard deviation. Thus, the ultimate strength of a stiffened panel subjected to wave+whipping-induced stresses is increased within a [0.5, 1.7]% range, in comparison to wave-induced stresses. This capacity increase is mainly due to the strain rate effect since the inertia effect is negligible (see Jagite et al. (2019a)). 

N i=1 (x i -x) 2 /N)).

New strain rate sensitivity constitutive model

Wrapping up all those discussed above, the existing capacity increase under wave loads may be attributable to the limitations of the Cowper-Symonds strain rate model. Going back in the literature, [START_REF] Francis | The effect of strain rate on the toughness of ship steels[END_REF] performed experiments for several strain rates in order to determine the dynamic yield strength of high tensile steel. They considered a strain rate of 10 -4 s -1 as a quasi-static reference value, and the dynamic yield stress factors have been obtained for two different strain rates: 8 × 10 -3 and 5 s -1 . However, in the experimental results reported by [START_REF] Paik | Test database of the mechanical properties of mild, high-tensile and stainless steel and aluminium alloy associated with cold temperatures and strain rates[END_REF] and [START_REF] Choung | Dynamic hardening behaviors of various marine structural steels considering dependencies on strain rate and temperature[END_REF], the strain rate considered for the quasi-static testing was chosen as 10 -3 s -1 and the dynamic yield strength was determined for different strain rates: 0. 09, 1.8 and34 s -1 andrespectively 1, 10, 100 and200 s -1 . Notwithstanding this, it is important to notice that according to the Cowper-Symonds constitutive material model, presented in equation 3.1, the flow stress is already increased by 5% at a strain rate as low as 10 -3 s -1 . This is in contradiction with the experimental results reported by [START_REF] Paik | Test database of the mechanical properties of mild, high-tensile and stainless steel and aluminium alloy associated with cold temperatures and strain rates[END_REF] and [START_REF] Choung | Dynamic hardening behaviors of various marine structural steels considering dependencies on strain rate and temperature[END_REF], as Fig. 3.4 bears out. With this in mind, one could use a piecewise-defined function to approximate the ideal model presented in Fig. 5.9, having the following objectives:

• no dynamic amplification for ε ≤ 10 -3 ;

• equal to the Cowper-Symonds model for strain rates above a chosen value ε0 , in the order of 10 -1 ;

• having a smooth monotonic function for strain rates ranging from 10 -3 to ε0 ;

• keep it simple.

One of the simplest mathematical equation able to describe the smooth shape function in the range 10 -3 < ε ≤ ε0 is a logarithmic equation, as follows:

f ( ε) = 1 + 1 a ln ε 10 -3
(5.11)

In order to ensure the continuous transition of new strain rate model, the equation 5.11 must fulfill the following constraints:

f (10 -3 ) = 1 , f ( ε0 ) = σ d σ 0 ( ε0 ) = 1 + ε0 C 1/q
(5.12)

Aside from that, the continuity of the new strain rate model at ε0 implies the continuity of its tangent; thus, the following expression can be written:

df ( ε0 ) d ε = d σ d σ 0 ( ε0 ) d ε (5.13)
If one uses the known Cowper-Symonds coefficients C and q, then the coefficients a and ε0 can be easily derived by combining equations 5.12 and 5.13, as follows:

a = q e • 10 -3 C 1/q , ε0 = 10 -3 • e q (5.14)
Hence, the new strain rate constitutive model can be expressed by the following piecewise-defined function:

σ d σ 0 =            1 , ε ≤ 10 -3 1 + 1 a ln ε 10 -3 , 10 -3 < ε ≤ ε0 1 + ε C 1/q , ε0 < ε (5.15)
where: C = 3200, q = 5, a = 36.8 and ε0 = 0.148 for high-tensile steels. 

Application of the new strain rate sensitivity model

The dynamic capacity increase rate is calculated using the new strain rate sensitivity model for the scenarios presented in Section 5.4.2.

The results for the wave scenarios are presented in Figure 5.11. These results are showing that the dynamic capacity increase rate is reduced from a [4.0, 5.0]% range to [0.6, 1.3]%. Taking into account that for a wave scenario, the strain rates are varying within the range 10 -3 to 10 -2 s -1 , it is reasonable to have a small increase in the dynamic capacity of a stiffened panel when it is subjected to wave loads.

The variation of the dynamic load factor for wave+whipping scenarios vs. whipping load period is presented in Fig. 5.12. As described in the previous section, the dynamic load factors for wave+whipping scenarios are presented as a functional dependency of whipping periods, where the solid line represents the mean value, and the shaded area represents the standard deviation of the results obtained for different wave periods. Since the strain rate effect is very small, but still existent in the wave loads, the relative capacity increase is calculated with Equation 5.9, and it is illustrated in Fig. 5.13. The numerical results are showing that the dynamic capacity of a stiffened panel may be increased by 0.6 to 2.2 % due to a higher strain rate induced by the high-frequency stresses. Furthermore, it can be seen that the range of this relative increase becomes wider than the one obtained using the well-known Cowper-Symonds material model, shown in equation 3.1. In the authors' opinion, this extended range is due to a steeper slope of the ( ε, σ d /σ 0 ) curve in the vicinity of low strain rates [10 -3 , 10 -1 ]s -1 , for the new strain rate sensitivity constitutive model, presented in equation 5.15.

Conclusions

This chapter presents a series of numerical analyses performed to investigate the whipping effects over the ultimate strength of stiffened panels. The first part presents the results of a complex investigation on the real hydrodynamic loads, both with and without whipping, on fourteen container-ships with sizes varying from 1000 to 14000 TEU. The hydro-elastic load results are used to define the parameters of some analytical formulae describing the time-dependent loads. The main benefit of using analytical formulae for the structural analysis is that an extensive range of scenarios with different assumptions can be studied.

In the second part of this chapter, the analytical formulae are used to describe the loads and to perform a comprehensive study on the parametric dependencies of the dynamic capacity. The numerical results show that the still water load component, the whipping load amplitude, and the time shift between the maximum wave and the maximum whipping load have no (or negligible) influence on the dynamic capacity increase rate. Then the results of a complex test matrix are presented. The stiffened panel is subjected to different combinations of axial compression and lateral loads, for different wave and whipping periods. The quasi-static and the ultimate dynamic strengths are used to define the dynamic capacity increase rate for two scenarios: wave loads and combined wave+whipping loads. The relative increase between the dynamic whipping capacity and the wave one is then calculated, and the numerical results are showing that it varies within a [0.5, 1.7]% range.

The reason for using the relative increase f DU as a proper estimator of the increased capacity when designing or checking the structure against whipping is that the considered Cowper-Symonds model already includes increased flow stress, by about 5%, at strain rates as low as 10 -3 s -1 . This is considered to be a limitation of the well-known Cowper-Symonds model since the strain rate effect observed in response to "quasi-static" loads are in contradiction with the experimental testing procedures and with the long-established industry practice.

The objective of the last part is to propose a new strain rate model capable of predicting the flow stress accurately on a broader range of strain rates. This new model requires a more complex equation in order to obtain the dynamic yield stress ratio as close as possible to unity, at strain rates of 10 -3 s -1 , and to maintain the same values as the Cowper-Symonds model at intermediate and high strain rates. The new strain rate sensitivity constitutive model is defined as a piecewise function. For low strain rates, a logarithmic equation is used, while for intermediate and high strain rates, the original Cowper-Symonds model is preserved.

By using the new strain rate constitutive model the dynamic load factor for wave loads is substantially smaller, from a [4, 5]% range to a [0.5, 1.3]% range, and it confirms the industry practice to consider the wave loads as "quasi-static." Aside from that, the relative increase due to whipping is slightly increased, from a [0.5, 1.7]% range to a [0.5, 2.2]% range. This extended range of the f DU is due to a steeper slope of the ( ε, σ d /σ 0 ) curve in the vicinity of low strain rates [10 -3 , 10 -1 ]s -1 for the new strain rate sensitivity constitutive model.

As previously shown in Chapter 4, the dynamic capacity increase of sixteen stiffened panels subjected to simple half-sine (using a period of 1.6 seconds for whipping, and 8 seconds for wave, respectively) loading scenarios varies from 1.2% to 2.1%. For the stiffened panel considered in this work, the dynamic capacity increase under simple half-sine loading scenarios varies from 1.3 to 1.9%, depending on the intensity of the lateral loads. When the same panel is subjected to realistic loading, considering a broad range of scenarios, the dynamic capacity increase varies within a [0.5, 1.7]% range. It is fair to say that when the high-frequency whipping-induced stresses are superimposed to low-frequency wave-induced stresses, the dynamic capacity increase will be smaller than the one obtained on pure whipping scenarios.

Chapter 6

Examination of the dynamic effects on the hull girder ultimate strength of ultra-large container ships

This chapter is partially as presented in: Jagite et al. (2019b)

Introduction

The previous two chapters were dedicated to the analysis of the dynamic effects over the ultimate strength of stiffened panels. The main reason for studying first the dynamic ultimate strength of stiffened panels is that according to several reports (Matsumoto et al. 2016, Fujikubo andTatsumi 2016), at the moment when the ultimate capacity of a ULCS is reached very few structural members undergo plastic deformation. Since the rest of the structure remains elastic, the strain rate effect on the hull girder ultimate bending strength of ULCS should be similar to the one of a bottom stiffened panel. Therefore, in this chapter, systematic non-linear finite element analyses are carried out on three frame-bay models, representing the structure of two container ships with a cargo-carrying capacity of 9600 TEU and 16000 TEU, respectively. The dynamic ultimate strength is firstly computed for six simple half-sine loading scenarios, using the typical periods for wave-and whipping-induced stresses. Then, the dynamic ultimate strength is computed for several equivalent design waves, where the high-frequency stresses are combined with low-frequency stress in order to derive the dynamic load factors for realistic loading scenarios. Finally, the dynamic ultimate strength is compared with the quasi-static ultimate strength (i.e., without the dynamic effects), and the dynamic load factors are derived to obtain a proper estimator of the dynamic collapse effect. Moreover, the dynamic collapse effect obtained on three frame-bay sections is compared with the values obtained on local structural models of representative stiffened panels from the bottom plating.

Numerical data

Geometry

Two ultra-large container ships have been considered, having the cargo-carrying capacity of 9600TEU, and 16000TEU, respectively. The midship sections are illustrated in Fig. 6.1.

The full data of the considered ships is confidential, and therefore it is not possible to provide detailed information regarding the geometrical characteristics, loading conditions, etc. However, some details of the typical scantling of longitudinal stiffeners at the bottom and inner bottom, together with the associated plate thickness and the typical spacing, are given in Table 6.1. Where a denotes, the spacing between 

Material properties

For the selected ships, the structural components are built from mild steel (σ y =235MPa) and high tensile steels (σ y =315, 355, 390, 460 MPa) with Young's modulus of 205.8 GPa and a Poisson ratio of 0.3. In the numerical analysis, the materials are defined with a bi-linear elastic-plastic model, including strain hardening with a slope of 1/1000.

In order to analyze the strain rate effect on the hull girder's ultimate strength, the following constants [START_REF] Paik | Ultimate limit state design of steel-plated structures[END_REF]): C=3200, q=5 for high tensile steels and respectively C=40.4, q=5 for mild steel, were used for the Cowper-Symonds constitutive material model, presented in Equation 3.1.

Boundary conditions

In the analysis of the hull girder ultimate strength, the following boundary conditions were adopted. The fore-and the aft-end cross-sections of the model were assumed to be rigid. A master node is set on the cross-sections, and the rest of the nodes are linked to the master node by rigid body elements (MPC in ABAQUS). The model is simply supported at the master nodes. Since both the ship's structure and loadings are symmetrical with respect to the centerline, only half of the ship was modeled. Therefore the symmetrical condition is imposed on the centerline (CL).

The boundary conditions are shown in Fig. 6.2. Where UX, UY, and UZ denote the translations along X, Y, and Z axes. Similar, RX, RY, and RZ denote the rotations around X, Y, and Z axes. Moreover, the master nodes were also used for applying the global bending moment on the FE model. 

Load cases

The primary concern is to assess the ultimate strength under dynamic loads associated with slamming induced whipping response. Therefore, for each ship, six simplified scenarios are defined, using a halfsine loading function described by Equation 6.1, where T represents the period of the load, and A is the amplitude of the load. The load periods used in this numerical investigation are representative of the typical periods for wave responses and whipping responses obtained from a series of hydro-elastic analyses. Table 6.2 summarizes all load cases applied. It is worth mentioning that the loading is performed by enforcing moments on the extremities of the three frame-bay models. Hence, the dynamic solver computes at each time step the fore-and aft-end rotations, and the internal bending moment at the neutral axis. During the post-processing phase, the relative rotation is transformed in curvature, considering the entire length of the FE model.

f (t) = A • sin 2π T • t (6.1)

Finite element model

A typical example of the FE model used for the analysis is shown in Fig. 6.3. The geometry of the three frame-bay models was modeled with a high detail level, and the FE models were generated using the ABAQUS CAE interface. The element of choice in this work is S4: a general shell element with four nodes, which can be used for both thin and thick shells as well as small and large strain applications.

In areas where collapse occurs, a mesh with a higher density is required. In order to quantify the influence of mesh size on the quasi-static ultimate strength, a mesh convergence study is carried out. Table 6.3 summarizes the number of elements on the plate (between stiffeners and between transversal frames), The results of the sensitivity study on mesh size, obtained for the 9600TEU container ship, are presented in Fig. 6.4. Although a complete convergence could not be reached, the results of the two finest models are very close. Therefore, taking into account the computational costs implied by the very fine mesh, it is considered that the FE model with fine mesh size (100mm) has sufficient accuracy for the following analyses. 

Initial imperfections

When dealing with plates or stiffened panels, the best practice to define the initial geometric imperfections is to perform a linear buckling analysis and to retain the fundamental buckling mode. However, for more complex structures, suitable initial imperfections shapes have to be extracted from higher eigenmodes, and this process becomes time-consuming. Therefore, in the current context, an alternative approach is proposed.

On a first step, a local model for a representative stiffened panel extracted from the bottom plating is developed, and it undergoes a linear buckling analysis. Fig. 6.5 shows the fundamental buckling mode obtained from the linear buckling analysis. On a second step, the same shape of the initial geometrical imperfections is created on the three frame-bay structure by using the analytical expressions proposed by [START_REF] Paik | Ultimate limit state design of steel-plated structures[END_REF] and the nodal translation method. This alternative approach to defining the initial geometrical imperfections, however, requires that the user manually makes sure that the imperfections patterns are consistent across the boundaries between the separately treated regions of a complex structure, and thus, it requires several verifications. Fig. 6.6 shows the local imperfection with a 50 magnification factor.

It should be noted that the initial imperfections are applied only in the fine mesh area, on the bottom and inner bottom plating, side girders, and longitudinal stiffeners. Aside from that, the residual stresses caused by welding were ignored in this investigation.

After choosing the shape of the initial geometric imperfections, the next step is to define their maximum amplitude. As the best industry practice (Paik et al. 2008a[START_REF] Zhang | A procedure for non-linear structural collapse analysis[END_REF][START_REF] Paik | Ultimate limit state design of steel-plated structures[END_REF], an average magnitude for the initial imperfections was considered, assuming that the maximum amplitude is a function only of the distance between stiffeners, as follows: w pl = 0.005b. 

Definition of the dynamic ultimate capacity

Finite element analyses using the computer code ABAQUS (2017) were performed in this study, in which both material and geometric nonlinearities were taken into account. A dynamic solver must be used for the analysis of the dynamic effects (i.e., strain rate and inertia), where the applied enforced moment is defined as a function of time. In the beginning, a simple half-sine function is used (eq. 6.1.), while in the last part of this Chapter, several realistic EDW will be used. It is worth mentioning that, due to practical reasons, the dynamic implicit solver was used.

The period of the load-time function is fixed, and the amplitude of the half-sine function is increased in order to obtain a load scenario, which leads to structural failure. It should be noted that by overincreasing the amplitude of the load, the strain rate effect will be over-estimated. In the paper by Yamada (2019b) the load amplitude was set to 120% of the quasi-static hull girder ultimate strength, denoted by M U quasi-static . Yamada (2019b) interpreted the maximum internal bending moment during the simulation as being the dynamic ultimate capacity, although the hull girder is largely collapsed at the end of the simulation.

As previously discussed, this is not a proper way to assess the dynamic capacity of the hull girder because the increased load reached during the collapse represents a load level that the structure cannot sustain without collapsing. For example, the maximum internal bending moment reached during a 1.8s period scenario with a load amplitude of 1.2 • M U quasi-static might be as high as 1.145 • M U quasi-static (see Table 6.5, 16000TEU); but if a new scenario with a 1.145 • M U quasi-static amplitude is tested, then the structure will collapse again, and the maximum internal bending moment during this scenario will be reduced to 1.126 • M U quasi-static . Several such iterations might be necessary until a load amplitude to which the structure can resist is found. The maximum moment reached in a scenario during which the structure collapses is therefore of very limited interest for the designer.

The dynamic capacity of the hull girder, denoted by M U dynamic , should be defined as the maximum load the hull girder can resist without collapsing. Thus, an iterative approach is necessary to compute the dynamic capacity. Either by decreasing the amplitude of the applied load until the structure survives, as described above, or preferably by increasing the amplitude of the applied load gradually until the structural failure is reached, starting from the conventional quasi-static capacity. Each iteration requires a dynamic simulation to be solved in the time domain.

The iterative procedure starts from A 0 = M U quasi-static , where M U quasi-static represents the quasistatic ultimate hull girder strength. Then on the second iteration, the applied load is A 1 = A 0 +δA, where δA represents the iteration step. In this work, an adaptive iteration step was chosen until the difference between a non-failure scenario and a failure scenario is less than 0.001 • M U quasi-static . The iterative process ends when the objective function is satisfied, where the objective is to find the maximum value of the load amplitude, denoted by A d , for which the structural failure is not reached.

In this research work, the structure is considered collapsed when the end-rotation accelerates rapidly (Fig. 6.7(a)), and also when the internal bending moment vs. time diagram decreases sharply (Fig. 6.7(b)).

The dynamic capacity, denoted by M U dynamic , represents the maximum bending moment for the load scenario of amplitude A d , leading to a non-collapse scenario. Figures 6.7(a) and 6.7(b) are showing time histories of end-rotation and internal bending moment, respectively; in Fig. 6.7(c) the variation of the internal bending moment vs. curvature is illustrated. In these figures, four different amplitudes are presented: one leading to a non-failure scenario, one leading to near-failure (which represents the dynamic capacity), the third one showing a failure scenario, and the last one showing a severe failure scenario due to over-increase loads.

Since one of the objectives is to asses the influence of the dynamic effects over the hull girder capacity, the following dynamic load factor is introduced, f d :

f d = M U dynamic M U quasi-static -1 (6.2)
Moreover, in order to determine the dynamic collapse effect associated with slamming induced whipping, in comparison with the dynamic effect that is observed for wave loadings and is widely considered as negligible (see Chapter 4). Hence, the following ration between the dynamic ultimate strength associated with a whipping scenario, and the one associated with a wave scenario is computed: The first investigation refers to the analysis of the quasi-static ultimate strength, with and without initial imperfections. In order to determine the quasi-static capacity, i.e., without any dynamic effects taken into account, the arc-length method was used. The numerical results, in terms of moment vs. curvature diagram, are presented in Figures 6.8(a) and 6.8(b). The FE results are compared with the Smith method results, which were obtained using MARS2000 software Bureau Veritas (2019b). The hull girder ultimate strength calculated using the simplified analysis is about 1% less than the one by nonlinear FE model without initial imperfections. These results are consistent with the previous finding by [START_REF] Matsumoto | Examination of effect of lateral loads on the hull girder ultimate strength of large container ships[END_REF] that the ratios of the ultimate capacity, in case of container ships, between elastoplastic analyses, without imperfections, and Smith method were from 0.96 to 1.04.

γ DU = M U dynamic-whipping M U dynamic-wave -1 (6.3)
It is further noted that the initial imperfections are playing an important role. The ultimate strength is reduced by around 9% when an average level of imperfections is considered in the model. The numerical results are summarized in Table 6.4. A general overview of the plastic deformations developed at the moment when the ultimate strength is reached (FE model with imperfections) is given in Figures 6.9(a) and 6.9(b) for the 9600 and 16000 TEU, respectively. It is worth mentioning that plastic strains and out-of-plane deformations take place in the bottom plates and side girders, and only some localized plastic strains are generated in the inner bottom plates. For this investigation, the dynamic ultimate strength was computed using the methodology proposed by [START_REF] Yamada | Dynamic collapse mechanism of global hull girder of container ships subjected to hogging moment[END_REF]. Therefore, the FE models were subjected to a load level, which is about 20% larger than the quasi-static ultimate strength. The dynamic ultimate capacity is then defined as the maximum value of the internal bending moment during the simulation, and the dynamic load factors are derived for each simplified loading scenario. f d 1.2 denotes the dynamic load factor obtained using this over-increased load approach. By examining the results presented in Fig. 6.10 it can be said that it is crucial to use the proper coefficients for each type of structural steel when the dynamic ultimate strength is assessed. Moreover, since only a relatively small part of the transverse web frames is built with mild steel, the dynamic capacity obtained using the high tensile steel coefficients for all structural components is almost the same with the one obtained using the proper Cowper-Symonds coefficients for each structural material. Aside from that, it can be seen in Fig. 6.10 that for some whipping period scenarios, circled in red, the structural failure does not take place.

From now on, all further analyses are based on the models with proper coefficients associated with each steel type.

Dynamic analyses, influence of "capacity" definition

Furthermore, in order to show the importance of correctly evaluating the dynamic ultimate strength, the above results, obtained for a load level equal to 1.2 • M U quasi-static , are compared with the dynamic load factors obtained through the iterative procedure presented in Section 6.3. The results are presented in Table 6.5. It appears that the dynamic hull girder capacity obtained for a load level equal to 1.2 • M U quasi-static does not represent the "ultimate" strength of the hull girder, since the hull girder collapses for a significantly smaller load, and this clearly confirms the need for the new definition. The first conclusion is as expected, the dynamic load factor increases when the load period decreases. More importantly we can observe that the dynamic effects are already existent for the scenarios associated with wave loads (i.e., T=8, 10.5, 12.1s). As it was discussed previously in Chapters 4 and 5, this is considered to be a limitation of the considered Cowper-Symonds model since the strain rate effects observed in response to "quasi-static" loads are in contradiction with the long-established industry practice to consider the wave periods as quasi-static. Therefore, in order to obtain a clearer and proper interpretation of the dynamic effects on the hull girder ultimate strength, we should calculate the relative capacity increase between the whipping and wave scenarios.

f d [%] f d 1.2 [%] f d [%] f d 1.2 [%] T = 1.6 [
Taking into account the above mentioned, the dynamic collapse effect associated with slamming induced whipping is calculated with Equation 6.3 as relative to the mean wave value, and it is presented in Fig. 6.11. By examining the numerical results it can be concluded that the dynamic collapse effect varies from 1.88% to 2.26% for the 9600TEU container ship, and from 1.82% to 2.10% for the 16000TEU one. 

Inertia effect

In order to understand how the different dynamic effects (i.e., strain rate and inertia) are affecting the dynamic hull girder ultimate strength, the strain rate effect can be excluded from the numerical model by using a simple bi-linear plasticity model. The dynamic capacity is then determined again for different load periods from 0.2s to 12.1s, using the same iterative procedure as in Section 6.3. The numerical results, presented in Fig. 6.12, are indicating that the inertial effect on the hull girder ultimate strength is negligible for a load period equal to 0.8s and above. On the other hand, if the loading period is very small, the inertia effect will increase the ultimate strength. For a load with a period of 0.2s the dynamic capacity is increased by around 2%.

Comparison with stiffened panels dynamic capacity

In case of container ships, the local strength of the double bottom structure has a close relationship with the quasi-static hull girder ultimate strength [START_REF] Matsumoto | Examination of effect of lateral loads on the hull girder ultimate strength of large container ships[END_REF]. One can then, assume that the dynamic collapse effect obtained for the hull girder will be about the same value as the dynamic collapse effect obtained for a bottom stiffened panel.

In order to verify this hypothesis, the methodology described in Chapter 4, for the analysis of the dynamic ultimate strength of stiffened panels, is applied to representative stiffened panels extracted from the bottom plating of the two container ships.

The dimensions of these panels and the scantlings of the stiffeners are summarized in Table 6.1. To determine the dynamic capacity of a stiffened panel, the numerical model is extending over 1 /2 + 1 + 1 /2 frame spacings in the longitudinal direction and over five stiffeners in the transverse direction. Table 6.6 summarizes the dynamic load factors computed for the stiffened panels.

The local dynamic collapse effect is then compared with the one obtained for the hull girder: γ DU , as Fig. 6.13 bears out. The dynamic collapse effect on the hull girder capacity is about the same as the one on the bottom stiffened panel capacity. It turns out that due to the dynamic effects (i.e., strain rate and inertia) the increase of the hull girder ultimate strength is between 1.82% and 2.26%, while the local In the author's opinion, this slightly higher increased capacity observed for the hull girder relatively to the stiffened panels is due to the influence of the local dynamic capacity of some components, for example, the bottom girders, which, in some cases, are reaching their ultimate strength before the bottom stiffened panels. When the hull girder approaches its ultimate capacity such components are in their post-collapse behavior with high plastic strains and thus potentially high strain rate effects.

Equivalent design waves scenarios

It is worth mentioning that, in reality, the high-frequency whipping-induced stresses are always coupled with the low-frequency wave-induced ones. Hence, in order to determine the dynamic collapse effect under more realistic loading scenarios, several hydro-elastic analyses are performed on four ultra-large container-ships. These hydro-elastic analyses are performed using software Homer, and the methodology is presented in Chapter 3. For each container-ship, the time histories of the vertical bending moment at midship, with and without slamming induced whipping response, are presented in Fig. 6.14.

From Fig. 6.14, it can be seen that all the curves are including the still water bending moment. Hence, in order to apply these load histories on the finite element models, one should first include a smooth amplitude function for applying the still-water bending moment. One example of the load amplitude curve that includes the increasing still-water bending moment is shown in Fig. 6.15. One critical aspect that must be mentioned is that during the iterative approach employed for computing the dynamic ultimate strength, only the dynamic part of the load-amplitude curves is scaled until the structure fails. This means that the still water part remains constant, as in reality.

The time histories for the vertical bending moment for wave and wave+whipping loading scenarios are directly enforced on the finite element model of the 16000 TEU container ship. Then, the dynamic capacity is determined for all realistic loading scenarios presented in Fig. 6.14. The dynamic load factors and the relative capacity increase are presented in Table 6.7. In Fig. 6.16(a), the moment vs. curvature diagrams for near-failure scenarios are presented. If the load level increases a little bit more, the structure loses its stability and collapses. This can be seen in Fig. 6.16, which presents the moment vs. curvature diagrams for the failure scenarios.

As previously discussed, one should only retain the relative capacity increase between a whipping scenario and a wave one in order to determine the dynamic collapse effect of the hull girder when subjected to whipping-induced stresses. Moreover, the dynamic collapse effect obtained for realistic EDW scenarios varies between 0.6% to 1.4%, while for simplified half-sine loading scenarios varies between 1.8% to 2.3%. Hence, it is fair to say that when the high-frequency whipping induced stresses are superimposed 5.5 6.7 1.14 EDW 3 5.5 6.9 1.33 EDW 4 5.5 6.9 1.33

to the low-frequency wave-induced ones, the dynamic collapse effect will become smaller than the values obtained from the simple loading scenarios. This supports the previous conclusions obtained on local structural models. 

Conclusions

This chapter embodies the numerical simulation of three frame-bay models representing the structure of two container ships, with a cargo carrying capacity of 9600 TEU and 16000 TEU respectively, subjected to pure bending moment in order to obtain the hull girder ultimate strength. The focus is on computing the dynamic collapse effect and more exactly to understand how the dynamic effects (i.e., strain rate and inertia) are affecting the ultimate strength.

Both quasi-static and dynamic computations are carried out. At first the quasi-static ultimate strength is determined, and it is confirmed that hull girder capacity is significantly reduced due to the initial imperfections. Furthermore, to simulate the dynamic failure, six simplified scenarios where the load period varies from 1.6s to 12.1s have been defined. A new and proper definition of the dynamic hull girder ultimate strength is introduced.

As results of the examination, it is observed that under state of the art hypotheses the increase in ultimate capacity for wave periods scenario is already in the range of 5.8-6.3%, while for a whipping period scenario the increase in ultimate capacity varies between 7.9% and 8.4%.

One should keep in mind that the industry practice is to consider the wave loads as quasi-static and to disregard the strain rate effect. Furthermore it seems that the Cowper-Symonds model is not very consistent with the experimental data at low strain rates. Therefore, in order to answer the question whether the hull girder ultimate strength should be treated differently in the context of slamming induced whipping, than in the usual context, the relative dynamic collapse effect between whipping and wave scenarios is considered. When this is taken into account, the dynamic collapse effect varies from 1.8% to 2.3%.

Figure 6.17: Summary of the dynamic capacity increase Fig. 6.17 summarizes all the results presented in this paper. For each scenario the color bar shows the average value between the two results for the two considered ships, while the error bar represents the min-max variation. Using similar hypotheses as Yamada (2019b), similar results have been obtained (between 16% and 21%). After setting the Cowper-Symonds material model coefficients to the values that are widely recognized as the proper ones for high tensile ship building steels, the dynamic effects are significantly reduced. Using an improved definition, the dynamic load factors are significantly reduced again. Furthermore, considering that, as per best industry practice, the wave loads are accepted as quasistatic, the increase specifically due to whipping is less than 3%.

Moreover, in the case of container ships, the local strength of the double bottom structure has a close relationship with the quasi-static hull girder ultimate strength. The numerical results are showing that the dynamic collapse effect obtained for the bottom stiffened panel is about the same value as the one obtained for the hull girder.

Finally, since in reality, the high-frequency whipping-induced stresses are always coupled with the lowfrequency wave-induced ones, the last part of this chapter presents the dynamic ultimate strength of a ULCS subjected to realistic loading scenarios. In the current work, the time histories of the bending moment are obtained for several equivalent design waves, and enforced on the FE model. The numerical results obtained from non-linear finite element analyses are showing that the dynamic collapse effect obtained for realistic EDW scenarios varies between 0.6% to 1.4%, while for simplified half-sine loading scenarios varies between 1.8% to 2.3%. Hence, when the high-frequency whipping induced stresses are superimposed to the low-frequency wave-induced ones, the dynamic collapse effect will become smaller than the values obtained from the simple loading scenarios.

Chapter 7

Examination of the dynamic effects on the hull girder ultimate strength of ultra-large container ships under sagging condition

This chapter is partially as presented in: Jagite et al. (2020a)

Introduction

This chapter continues the numerical investigations over the dynamic ultimate strength of ultra-large container ships. To the author's knowledge, no investigations have been reported for the sagging condition, mainly because container ships are typically sailing with a high hogging still-water bending moment. However, some of the recent designs are with very low values of the 'minimum hogging still-water bending moment.' Combined with high whipping-induced sagging moments, it casts some doubts on the probability of buckling appearance in the upper structure. Noteworthy, in the modern container ships, the span in the passage way is doubled, and although the plates are very thick, there exists a risk that buckling might appear. Therefore, the aim of this chapter is to investigate the dynamic ultimate strength of the entire hull girder section, subjected to sagging bending moment associated with wave loads and whipping response. Then, the dynamic ultimate strength is compared with the quasi-static ultimate strength (i.e., without the dynamic effects) and the dynamic load factors are derived to obtain a proper estimator of the dynamic collapse effect.

Geometry, computational strategy and numerical approach

Structural model

The structural model is depicted in Fig. 7.1, where it can be seen that above the passage way the span of the stiffened panels is doubled. In other words, between the partial bulkhead (PBhd), and the watertight bulkhead (WBhd) there is only one web-frame, located at the middle of the hold.

Material properties

The materials used in the structural model are mainly high tensile steels, with a yield limit of 315, 355, 390, and 460 MPa, respectively. Aside from that, some local reinforcements made of mild steel are present. In the numerical analysis, the materials are defined with a bi-linear elastic-plastic model, including strain hardening with a slope of 1/1000. In order to analyze the strain rate effect on the hull girder's ultimate strength, the following constants [START_REF] Paik | Ultimate limit state design of steel-plated structures[END_REF]): C=3200, q=5 for high tensile steels and respectively C=40.4, q=5 for mild steel, were used for the Cowper-Symonds constitutive material model, 

Finite element models

Two different extents of the FE models are proposed within the current study: one frame-bay, and one hold models, as Fig. 7.3 bears out. In both cases, the geometry of the structure is represented with a high detail level. Then, the FE discretization of the structure is mainly from quad elements (S4), and some triangular elements when necessary. The size of the elements where the collapse is expected to appear is of around 100mm, usually eight elements over the spacing between stiffeners, as per best practice. The aspect ratio of each element was as close as possible to 1:1. It should be mentioned that the remaining part of the structure, far away from the collapse area, was modeled with shell elements of around 250x250 mm in size. The FE model of some structural details is depicted in Fig. 7.2.

Boundary conditions

The boundary conditions used in the present work are the classical ones, where the aft-and the fore-end cross-sections are assumed to be rigid. This condition is achieved by defining rigid elements which are connecting the master nodes: N D af t and N D f ore , to every node of the cross-sections. Then the model is simply supported at the master nodes. Moreover, symmetry conditions are imposed on the center-line, as illustrated in Fig. 7.3. 

Loads

As presented above, the loads are applied as enforced moments on the master nodes located in the aftand fore-end sections of the model. The loads are defined as having a half-sine time function. Where the load periods, summarized in Table 7.2, were selected among the typical periods for wave loads and whipping responses of container ships. 

Initial imperfections

One of the most popular ways in defining the initial geometrical imperfections for complex structures is to make use of some analytical expressions to modify the position of the nodes within the structural mesh [START_REF] Paik | Ultimate limit state design of steel-plated structures[END_REF]. The number of half-waves in the longitudinal direction, denoted as n hw , for a plate subjected to biaxial compression is determined as the smallest integer value that satisfies the equation 7.1, proposed by [START_REF] Paik | Ultimate limit state design of steel-plated structures[END_REF].

(n 2 hw /a 2 + 1/b 2 ) 2 n 2 hw /a 2 + c/b 2 ≤ [(n hw + 1) 2 /a 2 + 1/b 2 ] 2 (n hw + 1) 2 /a 2 + c/b 2 (7.1)
where c represents the ratio between the transverse compression stress σ y and the longitudinal compression stress σ x . The spacing between adjacent transverse frames is denoted by a and the distance between adjacent longitudinal stiffeners is denoted by b.

The next step after choosing the shape of the initial geometric imperfections is to define the maximum amplitude of the initial imperfections. In the current industry practice, an average magnitude for the initial imperfections is usually considered, assuming that the maximum amplitude is a function only of the distance between stiffeners, as shown in equation 7.2.

w pl = 0.005b (7.2)
A different approach is proposed by [START_REF] Smith | Strength and stiffness of ships'plating under in-plane compression and tension[END_REF] and allows for the definition of the maximum amplitude of the initial imperfections as a function of plate slenderness ratio β, plate thickness t, and a coefficient, denoted as c A , obtained from statistical analysis, as shown in equation 7.3.

w pl = c A β 2 t and c A =      0.
025 for a slight level 0.100 for an average level 0.300 for a severe level

(7.3)
After determining the number of half-waves in the longitudinal direction, and the amplitude of the local imperfections, the next step is to apply these imperfections on the finite element model by making use of the nodal translation method. These local imperfections are applied to all stiffened panels from the fine mesh area. A sensitivity study regarding the amplitude of the initial geometric imperfections is performed, and the results will be discussed later in this chapter.

Results and discussions

Quasi-static Ultimate Strength

At first, the objective is to analyze the influence of the amplitude of the initial imperfections, and as well, of the model extension. The results in terms of quasi-static ultimate strength are summarized in Table 7.3. Where F B denotes the results obtained on the one-frame bay model, and HB denotes the results obtained on the one-hold model. Aside from that, the slight, severe levels of initial imperfections are computed using equation 7.3, while the average level of initial imperfections is as per equation 7.2. Additionally, the ultimate strength predicted by the simplified method based on the Smith approach, available in MARS2000 (Bureau Veritas 2019b), is presented. This comparison shows that the ultimate strength predicted by the models extended over the one-frame bay is slightly higher than the one predicted by the longer model. This is due to the fact that the buckling behavior of the plates located under the main deck, where the span is doubled, is not well predicted. Finally, it can be seen that the amplitude of the initial imperfections has a slight influence on the structural capacity. In this regard, within the current research work, it is decided to stick to the best practice and to consider an average amplitude of the initial imperfections of 0.005b.

Dynamic Ultimate Strength

Using the methodology described in Section 3.1, the dynamic capacity is determined for each loading period, using the model extended over one-hold of the container ship. The numerical results are depicted in Fig. 7.4. It can be seen that if the load is increased a little bit more than the near-failure scenarios (Fig. 7.4(a)), the structure loses its stability and collapses (Fig. 7.4(b)). The first conclusion which can be drawn is as expected; the dynamic ultimate strength increases when the load period decreases.

Aside from that, it can be seen that before reaching the failure level the structure suffers from significant permanent deformations at the end of the unloading phase, this behavior will be discussed in detail within the next section. As previously discussed in Section 6.4.3, the dynamic effects are already existent for the scenarios associated with wave loads (i.e., T=8, 10.5, 12.1s). It is worth mentioning that the strain rates obtained during these wave period scenarios are usually with one order lower than the strain rates obtained when the hull girder is subjected to whipping period scenarios, as Table 7.4 bears out. The strain rates presented in Table 7.4 represent the maximum values obtained during the analysis. These highest strain rates occurred on the stiffened panels above the passageway on the inner hull and/or side shell. As previously discussed, in order to obtain a clearer and proper interpretation of the dynamic effects on the hull girder ultimate strength, we should calculate the relative capacity increase between the whipping and wave scenarios, which is expressed as follows:

γ DU = M U dynamic-whipping M U dynamic-wave -1 (7.4)
The relative capacity increase varies between 1.5% and 2.5%, for a whipping load period from 1.6s to 2.1s, and a wave load period from 8s to 12s, as presented in Fig. 7.5. 

Collapse Behavior

The collapse behavior is similar for all loading scenarios considered, as can be seen in Fig. 7.4. Therefore, only the results obtained for a load scenario with a load period of T=1.6s are presented hereafter.

At first, the time-variation of the end-rotation is presented in Fig. 7.6. It is further noted that for a scenario with a load level of 1.0 • M U -qs , the structure shows only some very localized plastic strains, and the permanent rotation angle at the end of the unloading process is negligible. Then, for a load level of 1.04 • M U -qs , some stiffeners under the main deck will buckle. Furthermore, when the load level reaches 1.074 • M U -qs , the structure almost loses its stability, showing significant permanent deformations, and if the load increases a little bit more, to 1.075 • M U -qs , then the hull girder collapses.

When the load level is about 1.040•M U -qs , the stiffened panels located under the main deck had started to lose their stability, as illustrated in Fig. 7.7. The stiffeners below the main deck are showing concentrated plastic strains, and the supporting plates are suffering from out-of-plane deformations. This happens on both the inner hull and side shell panels. Then when the load level increases to 1.074 • M U -qs , the buckling of the stiffened panels located above the passage way horizontal stringer appears, as shown in Fig. 7.8. In addition, the out-of-plane deformation of the stiffened panels under the main deck is accentuated, as Fig. 7.10 bears out. Due to the double-span of the passage way's structural components, the inner hull and the side shell can go through significant out-of-plane deformations before reaching the ultimate strength, and this explains the sizeable residual rotation angle shown at the end of the unloading process (Fig. 7.6). Finally, if the load is increased a little bit more, to 1.075 • M U -qs , the hull girder will collapse; the stiffened panels from the upper part of the inner hull, and as well on the side shell will lose their stability and develop significant plastic deformations. Also, due to the loss of stability, the relative rotation of the aft-and fore-end sections will rapidly accelerate, which leads to high local strain rates, up to 10 s -1 . 

Energy characteristics

Another key thing to investigate is how the external work is dissipated into the hull girder. Figure 7.12 illustrates the time variation of different energy components for the whipping scenario with a period of At first, it should be mentioned that from the two different dynamic effects (i.e., strain rate and inertia), the strain rate effect is preponderant, while the inertial effect on the hull girder ultimate strength is negligible for a load period equal to 1.6s and above (as shown in Section 6.4.4). This aspect is also visible in Fig. 7.12 where it can be seen that for both load levels, the external work is nearly equal to the internal energy. Aside from that, the variations of the total energy are negligible, and it can be said that the total energy is constant and zero, as Fig. 7.12a bears out.

Next, the internal energy can be decomposed in: (i) strain energy which represents the energy stored by the hull girded during elastic deformations; (ii) inelastic dissipated energy which represents the amount of internal energy absorbed by the structure and transformed in plastic deformations; (iii) artificial strain energy, which is primarily the energy dissipated to control singular modes, and in the current model is zero or negligible. Furthermore, from the variation of plastic dissipated energy, it can be seen in Fig. 7.12 that for a load level of 1.074 • M U -qs a significant amount of energy is absorbed through plastic deformations, but the inelastic dissipated energy stops increasing soon after the load decreases. On the other hand, for a load level of 1.075 • M U -qs , the energy dissipated through plastic deformations keeps increasing, which indicates the structural collapse.

Conclusion

This chapter embodies the numerical simulation of the hull girder ultimate strength subjected to sagging bending moment. The focus is on computing the dynamic collapse effect and more exactly to understand how the dynamic effects (i.e., strain rate and inertia) are affecting the ultimate strength. At first, the quasi-static ultimate strength is determined, and the uncertainties related to the model extension and the initial geometrical imperfections are discussed. Then, the dynamic capacity is determined for six simplified scenarios where the load period varies from 1.6s to 12s. Finally, the load factors are derived in order to quantify the dynamic effects over the hull girder's capacity. It is found that the dynamic load factors obtained for the wave period scenarios vary between 4.7% and 5.7%, while for the whipping period scenario, the increase of capacity varies between 6.8% and 7.4%.

Nevertheless, the long-established industry practice is to consider the wave loads as quasi-static and to disregard the strain rate effect. As a consequence, in order to determine the increase of capacity when the hull girder is subjected to high-frequency loads, which can be associated with the whipping response, the relative dynamic collapse effect between whipping and wave scenarios is considered. When this is taken into account, the dynamic collapse effect varies from 1.5% to 2.5%, for a whipping load period from 1.6s to 2.1s and a wave load period between 8s and 12s.

Finally, some important insights about the collapse of the hull girder under sagging condition are documented. More efforts are also needed to assess the interaction between the low-and high-frequency loads over the dynamic ultimate strength since, in reality, the whipping response is always superimposed with the wave loads. However, it is expected that the dynamic collapse effect will be reduced when more complex loading scenarios are used. Therefore, it seems that the usual assumption that the strain rate effect can be negligible in the analysis of the ultimate strength analysis of ship structures subjected to wave load can be extended to the analysis of structures subjected to whipping loads. As a consequence, the effectiveness of whipping should not be reduced under the assumption that the strain rate effect will provide an additional load carrying capacity.

Chapter 8

Dynamic ultimate strength of a ultra-large container ship considering realistic loading scenarios

Introduction

Several researchers previously investigated the effect of combining local loads and global loads over the hull girder ultimate strength. [START_REF] Amlashi | Ultimate strength analysis of a bulk carrier hull girder under alternate hold loading condition-a case study: Part 1: Nonlinear finite element modelling and ultimate hull girder capacity[END_REF] have analyzed the alternate hold loading effect on the ultimate strength of a bulk carrier. The FE results were used to contribute to the development of simplified methods for the analysis of ship hulls under combined global and local loads. [START_REF] Shu | Ultimate strength of a capesize bulk carrier in hogging and alternate hold loading condition[END_REF] studied the ultimate strength of a bulk carrier under an alternate hold loading condition using a three-cargo holds model. They found that the influence of different loading paths is relatively small. Moreover, it was found that the alternate hold loading condition decreases the ultimate strength with almost 37%. [START_REF] Pei | Collapse behaviour of ship hull girder of bulk carrier under alternative heavy loading condition[END_REF] used a complex ship model to analyze the collapse behavior of a bulk carrier under alternate hold loading conditions, founding that the structural capacity reduced by about 20%. Moreover, the double bottom bending of bulk carriers and oil tankers is covered within the Common Structural Rules for Bulk Carriers and Oil Tankers (IACS 2014) by applying a partial safety factor. The applicability of this factor was discussed by [START_REF] Darie | Ultimate strength of a cape size bulk carrier under combined global and local loads[END_REF].

However, not only bulk carriers are sailing with empty cargo holds. Although most of the time, container ships are loaded over the full length, there exists a possibility of sailing with an empty hold. [START_REF] Matsumoto | Examination of effect of lateral loads on the hull girder ultimate strength of large container ships[END_REF] investigated the effect of lateral loads on the hull girder ultimate strength of large container ships considering full load condition with an empty bay and without ballast in the double bottom.

The analyses were conducted on eighteen container ships with various sizes between 4000 TEU and over 10000 TEU. The numerical results indicated that the lateral load effect would reduce the ultimate strength by up to 30%, depending on the ship configuration; for twelve of the considered ships, the ultimate strength reduction was around 10%. [START_REF] Tatsumi | Ultimate strength of container ships subjected to combined hogging moment and bottom local loads part 1: Nonlinear finite element analysis[END_REF] analyzed the effect of the combined hogging moment and bottom local loads over the ultimate strength of container ships. By performing progressive collapse analysis of two ULCS, they concluded that the ultimate hogging strength is mainly reduced due to increased longitudinal thrust in the outer bottom plate, and due to the reduced effectiveness of the inner bottom plating.

In the study reported by [START_REF] Matsumoto | Examination of effect of lateral loads on the hull girder ultimate strength of large container ships[END_REF], the non-linear FEM analyses are carried out using an explicit solver, where the applied bending moment is monotonously increased. On the other hand, Tatsumi and Fujikubo (2020) used a static solver based on the arc length method. Both studies are considering elastic-perfectly plastic material behavior. Moreover, the dynamic effects such as inertia and strain rate effect are disregarded in both investigations.

The research work presented in this chapter aims to analyze the dynamic ultimate strength of a container ship under realistic loading scenarios. The loading scenarios considered are combining the global hull girder bending moment with the local loads due to different cargo scenarios, and lateral pressures. The global external loads are determined from direct hydro-elastic analysis, where a ULCS is subjected to an equivalent design wave. The resulting time-series of bending moment are directly applied at the both-end of the finite element model. Moreover, two loading conditions are considered: full load condition with uniform cargo distribution, and full load condition with one-bay empty, without ballast in the double bottom.

A 

Finite element models and initial imperfections

The geometry of the ship is modeled with a high detail level, and the FE model is generated using the ABAQUS CAE interface. The element of choice in this work is S4: a general shell element with four nodes, which can be used for both thin and thick shells as well as small and large strain applications.

The area where collapse is expected to occur is modeled with higher density, as Fig. 8.3 bears out.

The size of the elements in the collapse area is around 100mm, usually eight elements over the spacing between stiffeners, as per best practice. The aspect ratio of each element was as close as possible to The initial imperfections are applied on the double bottom structure and are defined using analytical expressions to modify the position of the nodes, as proposed by [START_REF] Paik | Ultimate limit state design of steel-plated structures[END_REF]. Three type of initial geometric imperfections are considered:

• local plate imperfections, defined as: w pl = A pl • sin n hw πx /a • sin πy /b, where the maximum amplitude is a function only of the distance between stiffeners: A pl = 0.005 • b;

• global column type imperfections of plate between primary supporting members, defined as:

w col = A col • sin πx /a • sin πy /b,
where the maximum amplitude is a function only of the distance between girders: A col = 0.001 • a;

• global stiffeners torsional imperfections, defined as: w tor = A tor • z /hw • sin πx /a, where the maximum amplitude is a function only of the distance between girders:

A tor = 0.001 • a.
where a is the stiffeners span, b is the stiffeners spacing, h w is the stiffeners' web height. The number of half-waves in the longitudinal direction, denoted as n hw , for a plate subjected to axial compression is determined as the smallest integer value that satisfies the equation 8.1, proposed by [START_REF] Paik | Ultimate limit state design of steel-plated structures[END_REF].

a b ≤ (n hw (n hw + 1)) (8.1)

Material properties

The structural components are built from mild steel (σ y =235MPa) and high tensile steels (σ y =315, 355, 390, 460 MPa) with Young's modulus of 205.8 GPa and a Poisson ratio of 0.3. In the numerical analysis, the materials are defined with a bi-linear elastic-plastic model, including strain hardening with a slope of 1/1000. In order to analyze the strain rate effect on the hull girder's ultimate strength, the following constants [START_REF] Paik | Ultimate limit state design of steel-plated structures[END_REF]): C=3200, q=5 for high tensile steels and respectively C=40.4, q=5 for mild steel, were used for the Cowper-Symonds constitutive material model, presented in Equation 3.1.

Boundary conditions

In the analysis of the hull girder ultimate strength, the following boundary conditions are adopted. The fore-and the aft-end cross-sections of the model are assumed to be rigid. A master node is set on the cross-sections, and the rest of the nodes are linked to the master node by rigid body elements (MPC in ABAQUS). The model is simply supported at the master nodes, denoted by ND af t , and ND f ore , respectively, as illustrated in Fig. 8.5(a). Since both the ship's structure and loadings are symmetrical with respect to the centerline, only half of the ship was modeled. Therefore the symmetrical condition is imposed on the centerline. Moreover, it is worth mentioning that the stiffeners located on the centerline are modeled with half thickness, and their lateral deflection is allowed. A detailed view of the boundary conditions on the centerline is shown in Fig. 8.5(b)

Loading conditions

The main objective of this research work is to investigate the influence of dynamic effects associated with slamming induced whipping. Hence, two scenarios are considered: a wave scenario, and a wave+whipping scenario. In a wave+whipping scenario, the high-frequency whipping-induced stresses are superimposed to the low-frequency wave-induced stresses.

In order to maintain a realistic ratio between the two load components, and to have realistic periods, the load amplitude curves of the bending moments are obtained from a direct hydro-elastic analysis. The hydro-elastic analysis is performed by coupling a 3D-BEM model to solve the sea-keeping problem and the 1D-FEM model for the structural problem. The coupling is performed using the generalized modes approach, as presented in Section 3.3. The time histories are obtained using an equivalent design wave Finally, the total lateral loads acting on the hull girder are composed of the hydrostatic pressure corresponding to the design draught of 14.5 meters, and the hydrodynamic pressures for the considered EDW which is calculated as specified in Bureau Veritas (2019c). The hydrodynamic pressure is applied using the load-amplitude curve of the wave bending moment.

The above mentioned load components are combined into three loading conditions, as follows:

• pure bending condition: only the external bending moment is applied on the two master nodes;

• full-load condition: the external bending moment is combined with the lateral loads and with an uniform cargo weight distribution;

• one-bay empty condition: the external bending moment is combined with the lateral loads and with one-bay empty cargo weight distribution.

Results and discussion

Quasi-static ultimate strength

At first, the collapse under quasi-static conditions (i.e., disregarding the strain rate and inertia effects) is analyzed for all loading conditions. The internal bending moment-end rotation relationships are shown in Fig. 8.7. The ultimate strength without initial imperfections is shown as a dotted line, while the ultimate strength with imperfections is shown as a solid line. Moreover, Table 8.1 summarizes the ultimate strength values for hogging condition. The ultimate strength under pure bending obtained on the two cargo holds model, denoted as 2HM, is compared with the value obtained on the three frame-bay model, denoted 3FB, and with the result obtained using the simplified Smith approach, as discussed in Chapter 6. From Fig. 8.7 and Table 8.1, we can infer that there are two separate factors of ultimate strength reduction: initial imperfections, and lateral loads effects. On the one hand, the initial imperfections are reducing the ultimate strength by about 10%. On the other hand, the lateral loads are reducing the ultimate strength by 8.2% for the full-load condition and 13.5% for the one-bay empty condition compared with the quasi-static ultimate strength obtained on the two-hold model under pure bending condition.

Moreover, it can be seen that the ultimate strength computed using the FE model extended over two holds is in very good agreement with the value obtained using the model extended over three frame-bay.

Furthermore, the collapse behavior of the considered container ship is analyzed for all loading conditions. The distribution of equivalent plastic strain in the target bay at ultimate strength is depicted in Figs. 8.8(a), 8.9(a), and 8.10(a) for the pure bending, full loading, and one-bay empty conditions, respectively. In all cases, at the moment when the ultimate strength is reached, only the bottom plating and the attached stiffeners are showing concentrated plastic strains. Aside from that, it can be seen that on the side girders, some plastic strains are visible under the manholes. Moreover, it should be noted that the deformation of the bottom stiffeners is different between the purebending scenario and lateral-load scenarios. A detailed view is presented in Fig. 8.11 where it can be seen that under bottom pressure, all the stiffeners are deflecting towards the side shell, while under pure 

Dynamic ultimate strength

The dynamic ultimate strength is determined for each loading condition using a wave loading scenario, denoted as wave, and a wave+whipping loading scenario denoted as whip. It is worth mentioning that within the iterative algorithm employed in the computation of the dynamic ultimate strength, the static components: still-water bending moment and hydrostatic pressures are kept constant. Aside from that, the hydrodynamic pressures are kept constant, further study is necessary where the equivalent design wave height is increased, and thus, all the dynamic load components will be scaled at each iteration until the structure collapses. However, in the current research work, the dynamic ultimate strength is determined using the methodology described in Section 3.1 by scaling only the dynamic bending moment until the structure collapses.

In order to quantify the influence of the dynamic effects over the structural capacity the dynamic load factors are computed as the ratio between the dynamic ultimate strength and the quasi-static ultimate strength, as follows:

f d = M U dynamic M U quasi-static -1 (8.2)
The dynamic capacity, M U dynamic , is obtained for the maximum load level, which leads to a no failure scenario. Any higher load above this level will lead to structural failure. From practical reasons, the difference between a near-failure, and a failure scenario is chosen as 0.001% of M U quasi-static , as depicted in Fig. 8.12. The maximum dynamic capacity is obtained when the dynamic load factor is 5.1%, and 6.7% for the wave and whipping scenarios, respectively; if the load level increases a bit more, the structure collapses.

γ DU = M U dynamic-whipping M U dynamic-wave -1 (8.3)
However, according to the considered strain rate sensitivity model, the flow stress increases by around 5% at strain rates as low as 10 -3 s -1 . This is in contradiction with the long-established industry practice to consider the wave loads as quasi-static and to disregard the dynamic effects associated with the wave loads. Hence, the dynamic collapse effect is computed as the ratio between the whipping and wave load scenarios, as shown in equation 8.3. Therefore, for the considered container ship, the dynamic collapse effect is about 1.05% when the structural model is subjected to a pure bending moment. On the other hand, for the full load condition, it is about 1.52%, and for the one-bay empty condition, it is about 2.26%. Hence, it can be concluded that the lateral loads are slightly increasing the dynamic capacity. This aspect was also observed in the analysis of stiffened panels presented in Chapter 4.

Furthermore, the collapse behavior and the localization of plastic strains for the dynamic ultimate strength analysis are similar with the ones from the quasi-static analysis; hence it will not be repeated hereafter.

However, it should be mentioned that the strain rates obtained for the whipping loading scenario are usually with an order of magnitude higher than the ones obtained for the wave loading scenarios. The distributions of the strain rate for the near-failure wave and whip load scenarios are depicted in Figs. 8.13, 8.14, and 8.15, respectively. If the load increases a little more, the structure fails, the aft-and fore-end rotations will accelerate rapidly. As a consequence, the local strain rates reached during collapse will be with one or two orders of magnitude higher. Fig. 8.16 shows the strain rate distribution for a wave load scenario under full load condition. The maximum strain rate obtained for a near-failure load level is about 3.2 × 10 -3 s -1 , while the maximum strain rate achieved during the collapse, for a slightly higher load-level, is about 4.2 × 10 -1 s -1 .

Furthermore, as presented in Fig. 8.6, the time series of the external bending moment contains several loading cycles. It is important to mention that after the first hogging loading cycle is completed, the structure shows only some plastic strains located on the side girders from the double bottom structure, as depicted in Fig. 8.6. These limited plastic deformations do not affect the unloading and/or the loading path for the following hogging loading cycle, as shown in Fig. 8.12. 

Conclusions

This chapter presents a series of dynamic collapse analyses for a 16000 TEU container ship. The numerical model is extended over two holds in order to investigate the ultimate strength under realistic loading. The hull girder is subjected to three different loading conditions named: pure bending, full load, and one-bay empty in order to analyze the effect of combined bending moment and lateral loads over the dynamic ultimate strength. The load amplitude curves of the vertical bending moment for the wave-induced bending moment and wave+whipping-induced bending moment are computed by direct hydro-elastic analysis.

At first, the quasi-static ultimate strength, i.e., without any dynamic effects, is calculated using the two holds model. The numerical results are compared with the ones obtained on a three frame-bay model, and with the ones obtained using the simplified Smith method. The two major factors that are reducing the hull girder capacity are initial imperfections, with a reduction of about 10%, and lateral loads effect, with an additional reduction between 8.2% and 13.5%.

Furthermore, the dynamic ultimate strength is calculated using the implicit NL-FEM solver existent in ABAQUS ( 2017), where both material and geometrical nonlinearities are taken into account. It should be mentioned that the strain rate sensitivity effect is described using the well-known Cowper-Symonds model. The dynamic capacity is determined using an iterative approach, where each iteration requires an indepenendet time-domain analysis to be performed. More importantly, the dynamic capacity is defined as the maximum load that the structure can withstand without collapsing, any higher load level would lead to a structural failure. In order to quantify the influence of the dynamic effects, the dynamic load factors are computed as the ratio between the dynamic ultimate strength, and the quasi-static one. The dynamic load factors vary between 4.8% and 6.0% for a wave loading scenario, and between 5.9% and 8.4% for a whipping loading scenario.

However, the long-established industry practice is to consider the wave loads as quasi-static, and to disregard any dynamic effects associated with the wave loads. Thus, it is decided to compute the dynamic collapse effect as the relative value between whipping and wave scenarios. Therefore, the dynamic collapse effect can be used to quantify the increase of structural capacity due to slamming-induced whipping. For the considered ship, the dynamic collapse effect varies from 1.05% to 2.26%. The lowest value is obtained for the pure-bending loading condition, while the highest value is for the one-bay empty condition. It can be concluded that the lateral loads are leading to a higher dynamic collapse effect. Similar behavior was observed on the analysis of stiffened panels under in-plane compression and lateral loads, presented in Chapter 4.

Finally, for a 16000 TEU container ship, the dynamic collapse effect obtained for simple half-sine pure bending moments on a three-frame bay model varies from 1.8% to 2.2%, while when using an extended two-hold model under realistic loading scenarios, the dynamic collapse effect varies from 1.0% to 2.2%. Therefore, it seems that the usual assumption that the strain rate effect is negligible in the analysis of the ultimate strength of ship structures subjected to wave load can be extended to the analysis of structures subjected to whipping-induced stresses.

Chapter 9

Background & The Challenges

If the structural deformation is negligible during the determination of hydrodynamic responses for the design of rigid ships, in the case of relatively flexible structures (ULCS, VLFS, etc.) the structural and hydrodynamic problems cannot be treated separately, and the two problems must be coupled to account for the wave radiation in the analysis of the structural response. Henceforth, the evaluation of the waveinduced structural loads for a flexible ship becomes a hydro-elastic problem. In other words, the pressures acting on the hull are inducing dynamic loads, and as a result, the response of the structure disturbs the pressure field around the hull.

The first developments for the hydro-elastic seakeeping modeling can be attributed to [START_REF] Bishop | Hydroelasticity of ships[END_REF]. In their work, they used a Timoshenko beam model as a simplified model of the structure and strip theory for the hydrodynamic part. [START_REF] Bishop | Hydroelasticity of ships[END_REF] introduced the use of additional modes to describe the flexibility of the hull girder. For example, these additional modes can be expressed by the 'dry' eigenmodes of the structure. The main idea is to represent the structural deflection by a superposition of several pre-calculated elastic modes. It should also be mentioned that by using the generalized modes approach, a direct coupling between the seakeeping code and the structural solver is avoided.

Since then, several more or less sophisticated models were proposed, where the hydro-elastic problem is solved at different levels of complexity and accuracy. A comprehensive review of research in the field of hydro-elasticity can also be found in the International Ship and Offshore Structures Congress [START_REF] Ergin | Issc committee ii. 2-dynamic response[END_REF], or for example, by Chen et al. (2006), [START_REF] Hirdaris | Hydroelasticity of ships: recent advances and future trends[END_REF], [START_REF] Temarel | Prediction of wave-induced loads on ships: Progress and challenges[END_REF][START_REF] El Moctar | Nonlinear computational methods for hydroelastic effects of ships in extreme seas[END_REF].

Hitherto, most of the hydro-elastic coupling procedures are using the potential flow to solve the hydrodynamic problem. This trend indicates that the potential theory reached its maturity and provides a certain degree of accuracy and trustworthiness. One of the well-established methods was proposed by [START_REF] Tuitman | Fully coupled seakeeping, slamming, and whipping calculations[END_REF], and it solves the fully coupled hydro-elastic problem by making use of the generalized modes approach. The natural modes can be calculated either using a 1D beam model or the full 3D FEM model of the ship structure. After solving the general seakeeping problem in the frequency domain using a 3D BEM method based on Green's sources, the time-domain simulation is performed following the approach proposed by [START_REF] Cummins | The impulse response function and ship motions[END_REF]. Aside from that, several non-linear effects are added, such as the Froude-Krylov correction and the slamming loads, which are calculated using the Generalized Wagner Model [START_REF] De Lauzon | Improved generalized wagner model for slamming[END_REF]. The method allowed for the computation of springing and whipping responses, and was validated with both experimental and full-scale results [START_REF] Derbanne | Validation of the global hydroelastic model for springing & whipping of ships[END_REF]). More recently, [START_REF] Kim | Fully coupled bem-fem analysis for ship hydroelasticity in waves[END_REF] developed a similar fully coupled hydro-elastic method. In their method, the hydrodynamic problem is solved using a B-Spline 3D Rankine panel method, while the structural model can also be either a 1D or a 3D FEM model; the slamming loads are also determined us-95 ing the Generalized Wagner Model (GWM). The coupling between the structural and the hydrodynamic model is made directly, which allows direct access to the structural responses at any required position. The method showed good results when compared with the model tests [START_REF] Kim | Comparison of fully coupled hydroelastic computation and segmented model test results for slamming and whipping loads[END_REF]).

Nevertheless, the CFD techniques have evolved significantly in the past decade. Seng (2012) developed a numerical method for computing the springing and slamming-induced whipping responses of a ship using OPENFOAM (an open-source CFD package, [START_REF] Weller | A tensorial approach to computational continuum mechanics using object-oriented techniques[END_REF]). The structural part was modeled as a classical non-uniform Timoshenko beam model, and the transfer of the displacement and fluid forces was performed using the modal spaces. The coupling between the structural problem and the hydrodynamic one was performed by making use of a partitioned FSI scheme, with Aitken's acceleration [START_REF] Irons | A version of the aitken accelerator for computer iteration[END_REF], for a strongly coupled solution. The procedure developed by Seng agreed satisfactory with model tests and showed the potential to accurately predict the global hydro-elastic responses using the so-called field methods [START_REF] Seng | Global hydroelastic model for springing and whipping based on a free-surface cfd code (openfoam)[END_REF]). More recent work by [START_REF] Takami | Numerical investigation into combined global and local hydroelastic response in a large container ship based on two-way coupled cfd and fea[END_REF] investigated the combined global and local hydro-elastic response in a large container ship based on two-way coupled CFD and FEA. For the hydrodynamic part, they adopted a commercial solver, named STAR-CCM+; on the other hand, the structural part is modeled as a 3D FE model, and the FEA solver of choice was the dynamic explicit solver implemented in LS-DYNA. The two-way coupling is performed in a staggered manner and showed a reasonable agreement with the experimental data. However, the cost of running a two-way strongly coupled simulation is very high: 30 hours per psychical 10 s in full scale on a modern workstation.

It is fair to say that the fully consistent non-linear hydro-structure calculations are not practically possible, mainly because both fluid and structure models include transient terms. This poses a certain difficulty for the mathematical model, but also the computational complexities can become extremely expensive (CPU time and engineering effort).

Notwithstanding the constant improvements in solving the hydrodynamic part of the problem more efficiently and accurately, the structural component is still treated as linear and elastic. After the two accidents: MSC Napoli and MOL Comfort [START_REF] Branch | Report on the investigation of the structural failure of msc napoli, english channel on 18 january 2007[END_REF], ClassNK 2014), the importance of whipping on the extreme hull girder loads has received much attention, but its consequence on the hull girder's collapse is still unclear. It is worth mentioning that in reality, the collapse behavior is not resulting from the imposed forces, nor displacements (rotations). Instead, it results from the interaction between the collapsing structure and the loads acting on the structure, as pointed out by [START_REF] Lehmann | Discussion on report of committee iii. 1: ultimate strength[END_REF]. Thus, there is a need for hydro-elastoplastic models in order to assess the influence of geometric non-linearities, as well as the material non-linearities over the hydrodynamic loads acting on the structure.

A preliminary investigation on the hydro-elastoplastic response of a ship subjected to slamming induced whipping was reported by [START_REF] Dow | Evaluation of ultimate ship hull strength[END_REF]. They developed a numerical model that considers the ship as 21 lumped masses connected by beam elements. The lumped masses included the hydrodynamic added mass of the first elastic mode. For the structural part, only four of the total beam elements were enforced with a precomputed moment-curvature behavior; others kept a purely elastic behavior. [START_REF] Dow | Evaluation of ultimate ship hull strength[END_REF] applied a short impulse load (0.05 seconds), near the fore-end of the ship, which was supposed to represent the bottom impact slamming. Their preliminary results showed that the hull girder capacity is increased by about 70-95% when short impulsive loads are applied. However, [START_REF] Dow | Evaluation of ultimate ship hull strength[END_REF] acknowledged that the loading scenarios considered are not representing the reality, and more realistic scenarios should be considered, where the high-frequency loads (whipping) are combined with the low-frequency loads (wave loads), and with the still water component.

About 30 years later, [START_REF] Iijima | Hydroelasto-plasticity approach to predicting the post-ultimate strength behavior of a ship's hull girder in waves[END_REF] investigated the dynamic collapse of a ship's hull girder in waves, having a focus on the post-ultimate strength behavior. In their model, the hydrodynamic problem was solved by making use of the non-linear strip theory, while the structural part was considered as two rigid bodies connected to each other by a non-linear hinge. The numerical model was validated against several experimental investigations that considered both structural and hydrodynamic similarities. The model developed by [START_REF] Iijima | Hydroelasto-plasticity approach to predicting the post-ultimate strength behavior of a ship's hull girder in waves[END_REF] shows the capability of following a precomputed moment-curvature behavior and computes the severity of the collapse under large single wave loads. Several similar investigations on the post-collapse behavior of the ship's hull girder have been reported by [START_REF] Xu | Investigation into post-ultimate strength behavior of ship's hull girder in waves by analytical solution[END_REF], [START_REF] Iijima | Post-ultimate strength behavior of very large floating structure subjected to extreme wave loads[END_REF][START_REF] Lindemann | Idealized Structural Unit Method for Collapse Analyses of Plate Structures Under Inplane and Lateral Loads[END_REF][START_REF] Paik | Ultimate limit state design of steel-plated structures[END_REF]. It is worth mentioning that the recent studies considered the hull girder as two elastic beams connected by a non-linear hinge, and the hydrodynamic problem being solved by making use of the boundary element method. However, the structure is subjected only to low-frequency loads, and none of these investigations are taking into account the slamming induced whipping response. 2016) pointed out the necessity of using real loading sequences and showed that simple loading scenarios, as pure slamming impacts on still water, will overestimate the dynamic ultimate capacity factor.

Yamada (2019a) investigated the possibility of using a commercial 3D FEM solver to simulate the dynamic elastic-plastic whipping response of the hull girder of a large container ship due to slamming load. The full FE model of a container ship has been subjected to a series of time-domain simulations where the slamming load is applied to the fore-end. In addition to the slamming load, the still water pressure has been considered, but the wave loads are missing. Aside from that, the model is not considered as a free-floating body, as in a realistic scenario, but it is simply supported on the aft end. Also, the slamming load is balanced either by using the inertia relief method or using an initial rotational velocity. These aspects are making the method developed by Yamada (2019a) as being far from the real physical mechanism of the slamming induced whipping response. Therefore, the proposed methodology will not yield correct information on the dynamic elastic-plastic response of ships.

Objectives

It can be seen that some researchers have questioned the validity of comparing the conventional hull girder ultimate capacity with the whipping induced extreme bending moment. Fewer have pointed the inconsistency in considering the ship's structural response as linear and elastic in the hydro-elastic whipping load on the one hand, and as non-linear and elastic-plastic in the ultimate strength capacity on the other hand. To the author's point of view, it is necessary to develop a non-linear whipping model that considers geometric non-linearities as well as material non-linearities. This aspect is important for the design of modern ships, and it has never been addressed in a satisfactory way.

Therefore, the aim of the research work presented in the second part of this thesis is:

• to develop an accurate and efficient method for the dynamic elastoplastic analysis of the hull-girder structural response;

• to develop the hydro structure interaction method for solving directly the hydro-elastic response, which should include the fully-coupled seakeeping-slamming computations;

• to develop a non-linear whipping model that considers geometric non-linearities as well as material non-linearities in the calculation of the hull girder response when subjected to impulsive loading from slamming;

• to investigate the effect of non-linear structural behavior over a broad range of ships systematically in order to derive the safety coefficients as the ratio between linear and non-linear whipping responses.

Needless to say, whipping is by nature always "non-linear" from a hydrodynamic point of view, the distinction between "linear" and "non-linear" in the forthcoming chapters pertains to the structural model.

Organization of the current work

The second part of this thesis is built up of four chapters, organized in the following way:

Chapter 9 introduces the motivation and objective of analyzing the non-linear whipping response of ships. Moreover, an overview of some relevant previous works is given.

Chapter 10 presents the theoretical background and the validation of the newly developed model for solving the elastoplastic problem of a ship's hull girder when subjected to dynamic loading. The hull girder is modeled as two non-uniform Timoshenko beams connected via a non-linear hinge. The behavior of this hinge is described by the non-linear relation between the internal bending moment and the relative plastic rotation angle and can be derived from the well-known moment-curvature curve used to describe the ultimate strength of a ship section. The numerical algorithm developed for solving the nonlinear elastoplastic structural problem is presented. Finally, the newly developed method is validated by comparing the results with the ones obtained from a more advanced non-linear finite element method available in commercial software.

Chapter 11 presents the hydrodynamic model used for solving the general seakeeping problem. The hydrodynamic model is made under the potential flow assumptions, and the boundary element method based on the pulsating Green's sources is used to solve the corresponding boundary value problems (BVP). The exact coupling between the finite beam element of the structure and the three-dimensional hydrodynamic model is achieved by constructing the hydrodynamic BVP-s for each shape function of the finite elements, hence, for each degree of freedom. After solving these BVP-s, the resulting pressure is calculated using Bernoulli's equation, and it is integrated over the wetted surface in order to obtain the corresponding coupling coefficients. These coefficients are in the form of the added mass, damping, and wave excitations. The linear time-domain hydrodynamic loads are derived from the linear radiation and diffraction coefficients, with the addition of the convolution integrals of the history of the velocity. The non-linear slamming loads are added in the time-domain equation of motion to obtain the slamming induced whipping response.

Chapter 12 firstly presents the methodology for solving the fully coupled hydro-elastoplastic problem.

Then, the newly developed method is employed in the analysis of the non-linear whipping response in head waves. A systematic analysis is performed on a broad database of ships ranging from 160m to 350m. The non-linear hinge's behavior is calculated using two different methods: the simplified "Smith" approach, and the more advanced non-linear finite element method. Furthermore, the non-linear whipping response is calculated for every ship, and the dynamic ultimate capacity factor is derived to reflect the maximum allowable linear response equivalent to a non-linear dynamic response. Finally, the results obtained using the newly developed method are compared with the ones available in the literature.

Chapter 10

Structural model

The first reference about the concept of hull girder, and that ships can be modeled as elastic beams is attributable to [START_REF] Inglis | Natural frequencies and modes of vibration in beams of non-uniform mass and section[END_REF]. Since then, ships changed a lot, but even if modern container ships are of truly gigantic size, for the purpose of dynamic analysis, such a ship can be very well represented as a thin beam. Therefore, it is normal for the naval architects to consider the ship's longitudinal structure as the 'hull girder.' Moreover, over the last 30 years, numerous researchers used different beam theories to model the hull girder's behavior by making use of the finite element technique.

When simply checking the quasi-static hull girder capacity, the length of the hull girder that suffers from collapse (or more generally of "non-linear increased curvature") is not of interest. However, in the non-linear whipping model, this is a critical point because it will influence the dynamic behavior.

It is essential to take into account that in real cases, only a very limited extent of the structure collapses, as shown in the first part of this thesis. The reason for this is that in the real structures, there are heterogeneous loads and strengths, and one "frame spacing" tends to fail while the others do not. Hence the collapse area associated with a "weak frame" in the hull girder can be concentrated at a node of the beam model when using the finite element method.

Therefore, the hull girder is modeled as two non-uniform Timoshenko beams, connected with a nonlinear hinge. The structural model is illustrated in Fig. 10.1. The non-linear hinge can be modeled as two coincident nodes. In this model, the additional rotation due to the collapse is represented as the relative rotation between the two rotational degrees of freedom: one associated with the left part (or aft part) of the model, one associated with the right part (fore part) of the model. In this case, it is necessary to link the vertical displacement DOFs of these nodes that need to remain identical, i.e., continuity of the vertical displacement. Besides that, the continuity or discontinuity of the rotations field will be determined from a precomputed behavior for the non-linear hinge, and it will be described as the non-linear relation between the internal bending moment and the relative plastic rotation angle. 99

Characterization of the non-linear structural behavior

When dealing with hull girder ultimate strength, the non-linear bending behavior is typically described by a moment versus curvature diagram. The two main procedures for obtaining such a curve are:

• the analytical method known as "Smith method";

• a non-linear FE analysis using the 3D FEM model of a "slice" of the hull girder; a static arc-length analysis procedure is preferred in order to capture the "post-collapse" part of the characteristic.

On the one hand, the output of the simplified "Smith" approach is the moment versus curvature curve, where the model length is the distance between two reinforced frames. On the other hand, the raw output of the non-linear FE analysis is the moment versus relative rotation curve, which is usually translated into an "average curvature" by dividing it with the model length.

Usually, when performing the ultimate strength evaluation of a ship's section of length L within a 3D NL-FEA software, the hull girder's section is subjected to pure bending moment: M ext . As a consequence, the structure will respond with the rotations of the aft-and fore-end sections denoted as θ af t , and θ f ore , as depicted in Fig. 10.2. If one directly evaluates the relative rotation given by the 3D NL-FEA model θ = θ af t -θ f ore , then this rotation will contain the linear part, which is proportional to the extent of the section L, and the non-linear part which can be considered to be independent of L. The linear elastic rotation due to internal moment M int on extent L is given by: θ linear = M int L/EI. But since the evaluation of the ultimate strength is performed under quasi-static conditions, the internal bending moment is equal to the external one:

M int = M ext .
However, when the non-linear behavior is reduced to a node, the linear part of the stiffness is already included in the Timoshenko beam elements adjacent to the non-linear hinge, as shown in Fig. 10.2. Henceforth, in order to avoid the situation where the linear elastic behavior of the hull girder is taken twice into account (i.e., once in the beam elements, and once in the hinge itself) the linear part must be removed from the precomputed non-linear behavior, and the hinge should only include the non-linear part, as follows:

M = f N L (θ -θ linear ) = f N L (θ p ) (10.1)
This can be precomputed beforehand, to define a new hinge characteristic M int = f N L (θ p ), as illustrated in Fig. 10.3. Where θ p = θ L -θ R is the relative rotation angle of the non-linear hinge. From Fig. 10.3, it can be observed that the hinge's behavior is non-linear plastic, and as previously discussed, the elastic part is included in the adjacent beam elements. This represents a simplification of the non-linear elastoplastic model of the hull girder, since the elastic part is considered fully linear, and the plastic part is considered fully plastic and non-reversible.

The non-linear hinge induces "stiff" relationships between degrees of freedom in the model, in order to enforce the equality of DoFs of the coincident nodes Lagrange multipliers are used in this thesis.

Non-uniform Timoshenko beam model

It is considered that the hull girder is divided in N e beam finite elements, as figure 10.4 bears out. Each hull element is theoretically equivalent to a beam element, is subjected to bending loads and takes into account the shearing deformations, according to the well-known elastic Timoshenko beam model [START_REF] Timoshenko | Theory of elasticity 2nd edition[END_REF]. The displacements for a two dimensional Timoshenko beam element in (XZ)-plane are presented in Fig. 10.5. The element has two nodes, each node has two degrees of freedom, i.e., one vertical translation and one rotation. The nodal displacement vector δ (k) defined with respect to the element axes is denoted by:

δ (k) = w (k) 1 θ (k) 1 w (k) 2 θ (k) 2 T (10.2)
where w

(k) 1 , w (k) 
2 are the translational displacements in z-direction, and θ

(k) 1 , θ (k) 
2 are the rotational displacements in (XZ)-plane for a finite element (k). According to the standard finite element procedure, the elastic deformation of an arbitrary point of the beam can be expressed as

w (k) (x) = 4 i=1 N (k) i (x)δ (k) i = N (k) T δ (k) (10.3)
where N (k) is the vector of the shape functions used to model the deformation of the beam element. In this case, the shape functions used for translational and rotational bending deformations are the conventional cubic Hermitian polynomials that incorporate shear deformation parameters in order to account for the effects of shearing.

It is worth mentioning that the following geometrical and mass properties for each section are required as input data: I is the moment of inertia about the y-axis, A is the section area, A s is the vertical shear area, J is the mass moment of inertia about the y-axis, and µ is the mass per unit length of the dry ship hull. where w b (x) is the displacement due to bending and w s (x) is the displacement due to shearing. The rotation due to bending is θ, and the rotation due to shearing is ϕ s .

Derivation of shape functions

The equilibrium conditions for a finite element k of length l can be written as:

dM dx = Q , dQ dx = 0 , EI dθ dx = -M , GA s ϕ s = Q (10.5)
where M , Q are the bending moment and the shearing force, respectively, E is the modulus of elasticity, G is the shear modulus, I is the moment of inertia of cross-section, and A s is the shear area.

From equations 10.4 and 10.5 it results:

dQ dx = 0 =⇒ GA s dϕ s dx = 0 =⇒ ϕ s = constant (10.6) d 4 w(x) dx 4 = 0 , d 3 θ(x) dx 3 = 0 , d 2 w(x) dx 2 = dθ(x) dx (10.7)
Using equations 10.6 and 10.7, the interpolation functions of the displacement field can be written as:

w(x) = α 1 + α 2 x + α 3 x 2 + α 4 x 3 , θ(x) = dw dx -ϕ s = α 2 + α 4 + 2α 3 x + 3α 4 x 2 -ϕ s dθ(x) dx = 2α 3 + 6α 4 x , ϕ s (x) = - Φl 2 2 α 4 , Φ = 12EI GA s l 2 (10.8)
To express the coefficients α i in terms of the bending deformations and slopes, the following boundary conditions must be satisfied:

w(0) = w 1 , w(l) = w 2 θ b (0) = θ 1 , θ b (l) = θ 2 (10.9)
Applying conditions 10.9 to equations 10.8 yields:

α 1 = w 1 α 2 = 1 1 + Φ - Φ l w 1 + 1 2 θ 1 (2 + Φ) + Φ l w 2 - Φ 2 θ 2 α 3 = 1 1 + Φ - 3 l 2 w 1 - 1 2l θ 1 (4 + Φ) + 3 l 2 w 2 - 1 2l θ 2 (2 -Φ) α 4 = 1 l(1 + Φ) 2 l 2 w 1 + 1 l θ 1 - 2 l 2 w 2 + 1 l θ 2 (10.10)
Substituting the values of α i into the expression of w(ξ = x/l) and simplifying, one obtains:

w(ξ) = 1 1 + Φ 1 -3ξ 2 + 2ξ 3 + Φ (1 -ξ) w 1 + l 1 + Φ ξ -2ξ 2 + ξ 3 + Φ 2 ξ -ξ 2 θ 1 + 1 1 + Φ 3ξ 2 -2ξ 3 + Φξ w 2 + l 1 + Φ -ξ 2 + ξ 3 + Φ 2 -ξ + ξ 2 θ 2 (10.11)
Hence, the interpolation function for the displacement field, w(ξ), can be written in the following form:

w(ξ) = N w1 w 1 + N w2 θ 1 + N w3 w 2 + N w4 θ 2 (10.12)
where:

N w1 = 1 1 + Φ 1 -3ξ 2 + 2ξ 3 + Φ (1 -ξ) , N w2 = l 1 + Φ ξ -2ξ 2 + ξ 3 + Φ 2 ξ -ξ 2 N w3 = 1 1 + Φ 3ξ 2 -2ξ 3 + Φξ , N w4 = l 1 + Φ -ξ 2 + ξ 3 + Φ 2 -ξ + ξ 2 (10.13)
Similarly, substitute α i into the equation for the interpolation functions for the rotation field due to bending, θ(ξ), to get:

θ(ξ) = 6 l(1 + Φ) -ξ + ξ 2 w 1 + 1 1 + Φ 1 -4ξ + 3ξ 2 + Φ (1 -ξ) θ 1 + 6 l(1 + Φ) ξ -ξ 2 w 2 + 1 1 + Φ -2ξ + 3ξ 2 + Φξ θ 2 (10.14)
Hence, θ(ξ) can be written in the form:

θ(ξ) = N θ1 w 1 + N θ2 θ 1 + N θ3 w 2 + N θ4 θ 2 (10.15)
where:

N θ1 = 6 l(1 + Φ) -ξ + ξ 2 , N θ2 = 1 1 + Φ 1 -4ξ + 3ξ 2 + Φ (1 -ξ) N θ3 = 6 l(1 + Φ) ξ -ξ 2 , N θ4 = 1 1 + Φ -2ξ + 3ξ 2 + Φξ (10.16)
Similarly, substitute α i into the equation for the rotations due to shearing, ϕ s (ξ) to get:

ϕ s (ξ) = - Φ l(1 + Φ) w 1 - Φ 2(1 + Φ) θ 1 + Φ l(1 + Φ) w 2 - Φ 2(1 + Φ)
θ 2 (10.17) Hence, ϕ s (ξ) can be written in the form:

ϕ s (ξ) = N ϕs1 w 1 + N ϕs2 θ 1 + N ϕs3 w 2 + N ϕs4 θ 2 (10.18)
where:

N ϕs1 = - Φ l(1 + Φ) , N ϕs2 = - Φ 2(1 + Φ) N ϕs3 = + Φ l(1 + Φ) , N ϕs4 = - Φ 2(1 + Φ) (10.19)
The above equations can be written in a more compact form:

w(x) = N w (x)δ , θ(x) = N θ (x)δ , ϕ s (x) = N ϕs (x)δ (10.20)
where δ represents the nodal displacement vector.

Derivation of the stiffness matrix

The internal deformation energy of a beam element has the following expression:

U = 1 2 (V ) {σ} T {ε} dV = 1 2 (V ) (σ xx ε xx + τ xy γ xy ) dV (10.21)
Taking into account that σ xx = Eε xx and τ xy = Gγ xy , the internal deformation energy is expressed as:
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U = 1 2 (V ) σ 2 xx E dV + 1 2 (V ) τ 2 xy G dV = U b + U s (10.22)
The internal deformation energy due to bending can be written as:

U b = 1 2 (V ) Eε 2 xx dV = 1 2 l 0 E d 2 w b dx 2 2 (A) y 2 dA dx = 1 2 l 0 EI d 2 w b dx 2 dx (10.23)
Similarly, the internal deformation energy due to shearing can be written as:

U s = 1 2 (V ) τ 2 xy G dV = 1 2 l 0 Q(x) 2 G 1 I 2 (A) S 2 t 2 dA dx = 1 2 l 0 Q(x) 2 GA s dx (10.24)
Substituting equations 10.24 and 10.23 in equation 10.22 yields:

U = U b + U s = 1 2 l 0 M 2 (x) EI dx + 1 2 l 0 Q(x) 2 GA s dx = 1 2 l 0 EI d 2 w b dx 2 dx + 1 2 l 0 GA s d 2 ϕ s dx 2 dx (10.25)
Then, by combining equations 10.20 and 10.25 the internal deformation energy can be expressed as:

U = 1 2 δ T EI l 0 N θ (x) T N θ (x) dx + GA s l 0 (N ϕs (x)) T (N ϕs (x)) dx δ (10.26)
Applying Castigliano's first theorem on equation 10.26 and assuming linear elastic behavior of the element one obtains:

∂U ∂δ = F (el) = c (el) δ (10.27)
where F (el) represents the external force applied on the finite element, and the elemental stiffness matrix c (el) can be written as:

c (el) = EI l 0 N θ (x) T N θ (x) dx + 12 Φl 2 l 0 (N ϕs (x)) T (N ϕs (x)) dx (10.28)
Finally, the terms of the stiffness matrix c are obtained by direct integration of equation 10.28, and it can be expressed as follows:

c (el) = EI (1 + Φ) l 3     12 6l -12 6l 6l (4 + Φ)l 2 -6l (2 -Φ)l 2 -12 -6l 12 -6l 6l (2 -Φ)l 2 -6l (4 + Φ)l 2     (10.29)
The elemental stiffness matrix presented in 10.29 is the same as in [START_REF] Przemieniecki | Theory of matrix structural analysis[END_REF] (see equation 5.119).

Derivation of mass matrix

The kinetic energy of a beam element of length l under bending loads and taking into account the rotational inertia J can be expressed as follows:

E c = 1 2 l 0 ρA ∂w(x, t) ∂t 2 dx + 1 2 l 0 J ∂θ b (x, t) ∂t 2 dx = 1 2 ( ẇ(x)) T m (el) ( ẇ(x)) (10.30)
where A is the cross-sectional area, ρ is the material density, and m (el) is the elemental mass matrix.

Hence, the mass matrix for a two dimensional 2-node Timoshenko beam element is:

m (el) = l 0 ρA (N w (x)) T (N w (x)) dx + l 0 J (N θ (x)) T (N θ (x)) dx (10.31)
Considering the following notation, Ψ = J/µl 2 , where µ represents the mass per unit length of the dry ship hull, and J is the mass inertial moment per unit length, the terms of the mass matrix m (el) are obtained by direct integration. Hence, m (el) can be written as follows: (10.32) where:

m (el) = µl (1 + Φ) 2     m 11 m 12 l m 13 -m 14 l m 21 l m 22 l 2 m 23 l -m 24 l 2 m 31 m 32 l m 33 -m 34 l -m 41 l -m 42 l 2 -m 43 l m 44 l 2    
m 11 = m 33 = 13 35 + 7 10 Φ + 1 3 Φ 2 + 6 5 Ψ m 12 = m 21 = m 34 = m 43 = 11 210 + 11 120 Φ + 1 24 Φ 2 + Ψ 1 10 - 1 2 Φ m 22 = m 44 = 1 105 + 1 60 Φ + 1 120 Φ 2 + Ψ 2 15 + 1 6 Φ + 1 3 Φ 2 m 13 = m 31 = 9 70 + 3 10 Φ + 1 6 Φ 2 - 6 5 Ψ m 14 = m 41 = 13 420 + 3 40 Φ + 1 24 Φ 2 + Ψ 1 10 - 1 2 Φ m 23 = m 32 = 13 420 + 3 40 Φ + 1 24 Φ 2 -Ψ 1 10 - 1 2 Φ m 24 = m 42 = 1 140 + 1 60 Φ + 1 120 Φ 2 + Ψ 1 30 + 1 6 Φ - 1 6 Φ 2
(10.33)

The elemental mass matrix presented in 10.32 is the same as in Przemieniecki (1968) (see equation 11.35).

Assembly of global matrices

As it was shown in Fig. 10.4, it can be observed that the elements are connected serially (i.e., end-toend). Hence, respecting the connectivity of the local elements in the global structure, the transformation from the local coordinates to global coordinates is done by superimposing the local matrices along the diagonal of the global matrices, as is typical in the finite element formulations [START_REF] Przemieniecki | Theory of matrix structural analysis[END_REF]).

As exemplification, the global stiffness matrix is written as follows: (2) 21 c

c =              c ( 
(1) (10.34) where, c

44 + c (2) 22 . . . . . .             
(n) ij are the terms of the elemental stiffness matrices, with n denotes the element number.

Damping matrix

In the traditional hydro-elastic coupling methodology, the structural damping is defined as a modal damping matrix, by specifying the amount of damping for the specific modes (i.e., roll motion, 1 st vibrational mode, 2 nd vibrational mode, etc.). Since the method employed in this thesis is a direct one, where we use the elemental degrees of freedom, as opposed to the modal approach where the motions are described in modal coordinates, the modal damping matrix cannot be further used. Therefore, in order to define the structural damping matrix, the approach selected in this thesis is to use the proportional damping matrix, as proposed by [START_REF] Rayleigh | The Theory of Sound[END_REF].

The damping matrix is constructed by making a weighted sum of the mass and stiffness matrices, such that:

b = αm + βc (10.35)
and the damping rations α and β for the i -th mode are defined as:

ξ i = 1 2 α 1 ω i + βω i (10.36)
where α and β can be determined from specific damping rations ξ i and ξ j , and their frequencies ω i and ω j , respectively.

Hence, the following linear system is obtained:

α β = 2ω i ω j ω 2 j -ω 2 i ω j -ω i -1/ω j 1/ω i ξ i ξ j (10.37)
It is worth mentioning that the structural damping of ships cannot be calculated and it can only be measured in the presence of hydrodynamic damping, which makes its approximation to remain an openproblem. The best practice is to consider the structural damping as a percentage of critical damping. While the critical damping is defined as the value of damping such that the structure returns to equilibrium without oscillations after an impulsive load is applied. It is known that the ships' structures are lightly damped, and usually critical damping between 1% and 3% is assumed.

In this thesis, the damping parameters are calculated using the frequencies of two-and three-node vibrational modes together with a critical damping ratio as per best practice recommendations.

Hull girder model with a non-linear hinge

The hull girder is modeled with two non-uniform Timoshenko beams, as illustrated in 10.7, where n 1 and n 2 are the number of elements for the first beam and second beam, respectively. Hence, the total number of elements is n = n 1 + n 2 . In addition to the local DOFs for the vertical displacement and rotation, which are defined at the neutral axis of the ship, one should include the global rigid-body DOF for the ship's surge motion, which is the axial translation along the X-axis and it is defined at the center of gravity.

The introduction of the rigid-body surge motion implies that all the structural matrices must be enhanced with one additional line and column. On the mass matrix the first element of the diagonal will be M, which is the total mass of the ship. The remaining terms of the first line and first column are symmetrical and contain the coupling between surge and pitch motions. The coupling vector for surge-pitch motions is having the following form for the left beam:

M P S 1 = 0 M 0 Z GC 0 0 M 1 Z GC 1 . . . 0 M n 1 Z GC n 1 (10.38)
where Z GC j = Z G -Z C j ; Z G denotes the z coordinate of ship's center of gravity; Z C j and M j are the center of gravity and the mass, respectively, associated to node j.

Therefore, the equation of motion is written in the following form:

  M M P S 1 M P S 2 T M P S 1 m 1 0 T M P S 2 0 m 2   ẍ(t n+1 ) +   0 0 0 0 b 1 0 0 0 b 2   ẋ(t n+1 ) +   0 0 0 0 c 1 0 0 0 c 2   x(t n+1 ) = F ext (t n+1 ) (10.39)
where:

x = u x w 0 θ 0 w 1 θ 1 . . . w n+1 θ n+1 (10.40)

F ext = F x F 0 M 0 F 1 M 1 . . . F n+1 M n+1 (10.41)
m i , b i , c i are the mass, damping and stiffness matrices, respectively; x is the vector of displacements and ẋ, ẍ are the velocity and acceleration vectors; F ext is the vector of external nodal forces.

The equation of motion depicted in eq. 10.39 can be written in a more compact form as follows:

m ẍ(t n+1 ) + b ẋ(t n+1 ) + cx(t n+1 ) = F ext (t n+1 ) (10.42)
Furthermore, for simplification, we define the following notations for the displacement vector x, from equation 10.40,

w L = x[2(n 1 + 1) -1] θ L = x[2(n 1 + 1) + 0] w R = x[2(n 1 + 1) + 1] θ R = x[2(n 1 + 1) + 2]
(10.43)

The global model, composed from two beams, is subjected to the following conditions: w L = w R and θ R -θ L = θ. Where θ = 0 if the bending moment is smaller than the yielding limit, or θ = f N L (M int ) if the bending moment is higher than the yielding limit and permanent deformations are appearing.

As previously discussed, a set of Lagrange multipliers are used to enforce the behavior of the non-linear hinge. The constraints to be imposed can be seen as:

B L • x = h.
As consequence, one could include the boundary condition matrix B L , and its transpose in the enhanced stiffness matrix, c, as follows:

c = c B T L B L 0 , x = x λ , Fext = F ext h (10.44)
The enhanced force vector, Fext , embodies the constraints to be imposed on the system, denoted by the vector h. On the other hand, the enhanced vector of displacements x includes the vector λ, which can be seen as the internal load required to maintain the boundary conditions. As a consequence, the equation of motion will become a non-linear problem since the values of the enforced constraints are dependent on the internal loads and vice-versa. The numerical algorithm and the methodology developed to solve the elastoplastic problem of the non-linear hinge in order to follow the precomputed behavior will be discussed later in this chapter.

Besides, it should be mentioned that the first component of the Lagrange multipliers represents the internal vertical shear force applied from the right node to the left node in order to enforce the continuity of the vertical displacements. The second component represents the internal vertical bending moment between the degrees of freedom denoted as θ R and θ L .

Furthermore, the notation tilde ( ˜ ) has been adopted to differentiate the components whose size was increased with a specific number of Lagrange multipliers. Hence, the equation of motion presented in equation 10.42 becomes:

mẍ (t n+1 ) + b ẋ(t n+1 ) + cx(t n+1 ) = Fext (t n+1 ) (10.45)

Numerical time-integration

There are numerous numerical methods available to solve second order differential equations, as the equation of motion. These methods are used for obtaining numerical approximations and can be categorized into implicit and explicit methods. The explicit methods, such as Runge-Kutta, calculate the solution of a system at a later time from the state of the system at the current time. On the other hand, implicit time-integration schemes, such as Newmark-β, find a solution by solving an equation involving both the current state of the system and the later one [START_REF] Géradin | Mechanical vibrations: theory and application to structural dynamics[END_REF]. Furthermore, if for explicit schemes, it is necessary to have a tiny time step to obtain accurate solutions, for the implicit analysis each time increment has to converge; hence, it allows for using relatively long time increments [START_REF] Noels | Contributions aux algorithmes d'intégration temporelle conservant l'énergie en dynamique non-linéaire des structures[END_REF].

When implicit schemes are applied to a constrained system, some numerical errors in the form of numerical instabilities occur even though the scheme is unconditionally stable for unconstrained systems. [START_REF] Cardona | Review of hydroelasticity theories for global response of marine structures[END_REF]. Those numerical instabilities can be seen as a virtual dynamic equation with a stiffness component, but no inertia. Therefore, by imposing constraints to a dynamic system will introduce some infinite frequencies in the system, and these infinite frequencies are responsible for the numerical instability.

For ensuring numerical stability, the remedy is to add numerical damping for high-frequencies in the time-stepping scheme. A well-known and established time-integration scheme for constrained systems is the Hilber-Hughes-Taylor (HHT) α-method, which was proposed to damp out high-frequencies while not affecting the accuracy of the solution at lower-frequencies [START_REF] Hibbitt | Improved numerical dissipation for time integration algorithms in structural dynamics[END_REF]. The HHT method is widely used in the structural dynamics community for the numerical integration of linear and non-linear systems. Also, it is used in commercial codes such as ABAQUS or ANSYS.

According to [START_REF] Hibbitt | Improved numerical dissipation for time integration algorithms in structural dynamics[END_REF], it is possible to include a specific amount of numerical damping in the system only by averaging elastic, inertial, and external forces between the current state of the system and the later one. The new form of the discretized equations of motions, presented in 10.45, can be written as:

mẍ (t n+1 ) + (1 + α) b ẋ(t n+1 ) + cx(t n+1 ) -α b ẋ(t n ) + cx(t n ) = (1 + α) Fext (t n+1 ) -α Fext (t n ) (10.46)
where:

α ∈ - 1 2 , 0 , γ = 1 2 + α , β = 1 4 (1 + α) 2 (10.47)
The smaller the value of α, the more damping is induced in the numerical solution. Clearly, if α = 0, the HHT method reduces to Newmark's scheme.

Being a descendant of the Newmark method, the computational procedure is similar to that of the Newmark algorithm [START_REF] Newmark | A method of computation for structural dynamics[END_REF]. The following approximation formulas allows us to compute the velocities and displacements of a system at time t n+1 :

ẋ(t n+1 ) = ẋ(t n ) + (1 -γ)∆t ẍ(t n ) + γ∆t ẍ(t n+1 ) x(t n+1 ) = x(t n ) + ∆t ẋ(t n ) + 1 2 -β ∆t 2 ẍ(t n ) + β∆t 2 ẍ(t n+1 ) (10.48)
Or, by rewriting equations 10.48 with regards xn+1 , as presented below, we can solve the equations of motion for displacements instead of accelerations.

ẍ(t n+1 ) = 1 β∆t 2 ( x(t n+1 ) -x(t n )) - 1 β∆t ẋ(t n ) + 1 - 1 2β ẍ(t n ) ẋ(t n+1 ) = γ β∆t ( x(t n+1 ) -x(t n )) + 1 - γ β ẋ(t n ) + 1 - γ 2β ∆t ẍ(t n ) (10.49)
The displacements of a system at time t n+1 can be approximated by a linearized expression of the form:

x(t n+1 ) = x(t n ) + ∆ x.
By making use of linearization techniques and substituting in equation 10.46 the approximation formulas presented in equation 10.49, the equations of motion can be written in the following compact form, so as to solve for the displacements' increment: (10.50) where the effective stiffness matrix, KE , and the effective force vector, FE , are given as:

KE • ∆ x = FE
KE = 1 β∆t 2 m + (1 + α) γ β∆t b + (1 + α) c (10.51) FE = (1 + α) Fext (t n+1 ) -α Fext (t n ) + m 1 β∆t ẋ(t n ) + 1 2β -1 ẍ(t n ) + (1 + α) b γ β -1 ẋ(t n ) + γ 2β -1 ∆t ẍ(t n ) + α b ẋ(t n ) -c x(t n ) (10.52)

Solving the non-linear elastoplastic problem

The system composed of two beams connected by a non-linear hinge represents a non-linear problem due to the direct dependency of the discontinuity of the rotations field, θ disc , and the internal bending moment at the discontinuity, BM disc . This problem can be solved iteratively in order to follow the precomputed behavior. As presented in section 10.1, the non-linear relation between the plastic angle, θ p , and the internal bending moment, M , is precalculated in ABAQUS and it is described by the curve Γ, as Fig. 10.8 bears out. We define the function f BM as being the linear interpolation function over the curve Γ. At each event, when the internal bending moment exceeds the yield limit, the iterative algorithm will search for a new discontinuity angle, higher than the previous one, to follow the precomputed behavior. Whenever the discontinuity is increased, the yield limit must be updated. Hence, this interpolation function will be used to determine the new yield limit for the cumulated discontinuity.

f BM (θ) = interpolate(θ p , M ) (10.53)
The search for the new plastic rotation angle starts when the internal bending moment, BM disc , computed at time instant t n , exceeds the yield limit. At iteration 0 we have the point θ

(0) n , BM (0) 
disc which is located above the curve Γ, as depicted in Fig. 10.9(a). The discontinuity θ is increased at each iteration with an increment ∆θ, as follows:

θ i n = θ i-1 n + ∆θ (10.54)
After increasing the discontinuity the force vector is updated and the linear system is solved yielding a new solution, which can be represented by the point θ

(1)

n , BM (1) 
disc . The iterative procedure continues until the new solution, θ

(i) n , BM (i)
disc , is situated below the yield limit, delimited by curve Γ, as shown in Fig. 10.9(b).

The final solution is represented by the intersection point between the curve Γ and the curve delimited by the points θ

(i-1) n , BM (i-1) disc and θ (i) n , BM (i)
disc , as Fig. 10.9(c) bears out.

Within the current thesis, new software has been developed, named DYANA2, which solves the elastoplastic response of the hull girder. The iterative algorithm employed in the newly developed software for solving the elastoplastic problem is depicted in Fig. 10.10.

Validation of the non-linear structural model

The last two sections of this chapter are dedicated to the validation and verification of the foregoing model. Due to the confidentiality issues, it is not possible to use the real structure of an ultra-large container ship and to provide the detailed geometrical properties for each cross-section and the mass distribution plan. However, the following collapse problem of a free-floating-like flexible steel tube can be defined. The structural model is depicted in Fig. 10.11. Along the length of the flexible tube, two different thicknesses are used, with a thinner tube in the middle, in order to create a "weak-frame" scenario. Moreover, the structural model is supported on a set of springs and dashpots in order to simulate the hydrodynamic damping and the restoring stiffness. The main particulars of the numerical model are as follows: length L=20m, tube diameter D=0.5m, tube thickness t 1 =2mm, and t 2 =1mm (for the collapse area), the stiffness of the springs is about 0.005N per unit length, and the dashpots coefficient is 0.3N/s/m; Young's modulus of 205.6 GPa, and the Poisson ratio of 0.3. The mass density has been adjusted to ρ=10 -6 t/mm 3 in order to obtain the frequencies for the first and second vertical modes of 0.68Hz, and 1.85Hz, respectively.

The non-linear structural behavior to be enforced on the collapse area is precomputed from a quasi-static analysis, using the NL-FEA solver, where both geometrical and material non-linearities are taken into account. The material model of choice is a bi-linear elastoplastic model, including strain hardening with a slope of 1/1000. The validation is done by comparing the structural response between the presented methodology, which is implemented in the software DYANA2, with the results from ABAQUS. In ABAQUS, the precomputed behavior is enforced on the middle element, representing the collapse area, by making use of the nonlinear generalized cross-section option (ABAQUS 2017). The non-linear section response is assumed to be defined as a functional dependence of the bending moment in the function of curvature.

It is worth mentioning that in ABAQUS, the non-linear behavior is associated with an element of length L, as Fig. 10.12(a) bears out, and the non-linear sectional response includes the linear elastic part. In DYANA2, the non-linear behavior contains only the plastic part since it is associated with a non-linear Resulting in a total of twelve elements in DYANA2, and eleven elements in ABAQUS, respectively. Furthermore, as the time-integration method implemented in DYANA2 is the same as in ABAQUS, the same time-step increment size, and same integration parameters are used: ∆t = 0.01 s, α =-0.05, β = 0.275, γ = 0.55. From Fig. 10.15, it can be seen than the whipping induced bending moment reaches the yield limit at the instant t=67s. With the further increase of the internal bending moment, permanent deformations are formed, and the plastic rotation angle θ p shows the severity of the collapse. Then, after t=80s, the structure starts to be unloaded, and its behavior will be elastic, but with a permanent deformation at the collapse area.

The capability of the proposed model to follow the precomputed non-linear behavior is presented in Furthermore, the non-linear hinge model can account for the cumulative permanent plastic deformation; the memory effect when the structure is subjected to several critical load scenarios. It is shown in Fig. 10.16 that the hardening behavior is well-captured.

Verification of the non-linear structural model

The sensitivity of the calculated elastoplastic structural response with regard to the number of elements is investigated. The aft-and fore-parts are modeled each with n 1 elements, while the collapse area, where the non-linear hinge is located is modeled with n 2 elements, as Fig. 10.17 bears out. It is worth mentioning that all elements have linear elastic behavior, while the hinge behavior is non-linear. Four different mesh densities are used, from a coarse one with a total of 8 elements to a very fine one with a total of 48 elements. For the mesh sensitivity investigation the time-step size is fixed: ∆t = 0.01 s. The maximum vertical displacement at the non-linear hinge location, the maximum plastic rotation angle, and the maximum internal bending moment are presented in Table 10.1. And the time histories are depicted in Fig. 10.18. It is found that between a medium-mesh and a very fine mesh density, the influence over the vertical displacement and internal bending moment is negligible. Although the relative difference between the plastic rotation angle is bigger, the absolute difference is also negligible, being of order 10 -5 radians. 

Conclusions

This chapter presents the theoretical background and the validation of the newly developed method for calculating the elastoplastic response of a ship's hull girder subjected to dynamic loading. The hull girder is modeled as two non-uniform Timoshenko beams connected via a non-linear hinge. This hinge behavior can be precalculated from the typical moment versus curvature diagram, which describes the ultimate strength of a ship section. It is essential to point out that when the non-linear behavior is reduced to a node, the linear part of the stiffness is already included in the Timoshenko beam elements adjacent to the non-linear hinge. Therefore, it is necessary to remove the linear-elastic part from the precomputed non-linear behavior. Thus, the non-linear hinge should include only the non-linear part given as the relationship between the plastic rotation angle and the internal bending moment.

In order to follow the precomputed behavior of the non-linear hinge, an iterative algorithm is developed. Hence, if the internal bending moment at the location of the non-linear hinge becomes greater than the yield limit, the discontinuity between the aft-and the fore-beam is gradually increased until the new solution characterized by the plastic rotation angle and the internal bending moment follows the precomputed non-linear behavior. It is worth mentioning that Lagrange multipliers are used to enforce different relationships between different degrees of freedom of the system.

The validation of the proposed model is made by comparing the results with the ones obtained from a more advanced non-linear finite element method available in the commercial software ABAQUS. A free-floating-like flexible steel tube composed of a non-uniform circular tube supported on springs and dashpots is created for validation purposes. In ABAQUS, a non-linear finite element is used in the middle of the structure, while in DYANA2 the collapse area is modeled as two elastic elements connected via a non-linear hinge. The structural response calculated using the two different methods is in very good agreement. Thus, the newly developed model can follow the precomputed non-linear behavior accurately in order to obtain the elastoplastic response. Furthermore, several verifications regarding different modeling parameters are made in order to quantify different uncertainties.

Finally, it should be mentioned that the proposed model allows for fast computation of the non-linear elastoplastic structural response. Moreover, the non-linear hinge model can account for the cumulative permanent plastic deformation; the memory effect when the structure is subjected to several critical load scenarios.

Chapter 11

Hydro-elastic model

A thorough understanding of the ship behavior in real conditions is important for estimating the ship's motions and the loads acting on the structure. However, even without considering the ship's structural responses, the numerical modeling of the ship hydrodynamic behavior remains an open problem, and no finally satisfactory numerical solution is available yet. The most critical part in the hydrodynamic simulation is the correct modeling of the waves generated by the interaction of the body with the sea waves. Numerical simulations are especially tricky, mostly due to the non-linearities that one has to cope with. Basically, the free surface represents a highly non-linear boundary condition which is not known in advance.

Needless to say, in the traditional ship design, the evaluation of the wave-induced structural loads treats the structural and hydrodynamic analyses separately. This approach is valid for stiff structures, where the structural response is considered as "quasi-static" due to the significant gap between the eigenfrequencies of the hull girder and the frequencies of the encountered waves. Therefore, the ship is considered as a rigid body, and it is described by six rigid-body modes including translations (surge, sway, heave) parallel to the Cartesian axes, and rotations (roll, pitch, yaw) about the same axes, as illustrated in Fig. 11.1. However, for relatively 'soft' floating structures (ULCS, VLFS, etc) the structural and hydrodynamic problems cannot be treated separately, and the two problems must be coupled to account for the wave radiation in the analysis of the structural response. Henceforth, the evaluation of the wave-induced structural loads for a flexible ship becomes a hydro-elastic problem.

The first developments for the hydro-elastic seakeeping modeling can be attributed to [START_REF] Bishop | Hydroelasticity of ships[END_REF]. In their work, they used a Timoshenko beam model as a simplified model of the structure and strip theory for the hydrodynamic part. [START_REF] Bishop | Hydroelasticity of ships[END_REF] introduced the use of additional modes to describe the flexibility of the hull girder. For example, these additional modes can be expressed by the "dry" eigenmodes of the structure. The main idea is to represent the structural deflection by a superpos-ition of several pre-calculated elastic modes. It should also be mentioned that by using the generalized modes approach a direct coupling between the seakeeping code and the structural solver is avoided. Since then several more or less sophisticated models were proposed: Domnisoru and Domnisoru (1998), [START_REF] Tuitman | Fully coupled seakeeping, slamming, and whipping calculations[END_REF], [START_REF] Derbanne | Validation of the global hydroelastic model for springing & whipping of ships[END_REF], [START_REF] Seng | Slamming and whipping analysis of ships[END_REF], [START_REF] Kim | Fully coupled bem-fem analysis for ship hydroelasticity in waves[END_REF], [START_REF] Takami | Numerical investigation into combined global and local hydroelastic response in a large container ship based on two-way coupled cfd and fea[END_REF].

The hydro-elastic problem can be solved at different levels of complexity and accuracy. Although the CFD techniques have evolved significantly in the past decade, the potential theory is still the most used by the researchers for solving the general seakeeping problem. Aside from that, the generalized modes approach is widely used in the analysis of various deformable body motions where the structural response is linear and deformations are continuous.

Howbeit, the objective of this thesis is to compute the nonlinear whipping response, which implies a nonlinear structural behavior. Therefore, the generalized modes approach cannot be further used. Fortunately, [START_REF] Malenica | Hydroelastic coupling of beam structural model with 3d hydrodynamic model[END_REF] proposed an analogous method to perform the exact coupling between a flexible beam and a 3D hydrodynamic model, hereafter named shape function approach. In this method, the hydrodynamic boundary value problems are defined for each shape function of the finite elements. The solution of these BVPs yields the hydrodynamic coefficients in terms of added mass, damping, and wave excitations for every degree of freedom of the system. Finally, by assembling the hydrodynamic terms and coupling them with the structural terms allows one to write the equation of motion for the coupled hydro-elastic model.

Henceforth, this is the method used in this thesis, together with a 3D-BEM method based on pulsating Green's sources for solving the hydrodynamic problem. This chapter firstly explains the mathematical model used to determine the frequency-dependent coefficients by solving the Boundary Value Problem (BVP). The second section presents the procedure for obtaining the time-domain hydrodynamic terms. Finally, the last two sections present the validation and verification of the shape function approach against the well-known method based on the generalized modes approach.

Input data 11.1.1 Meshes

In order to solve the hydro-elastic problem, two meshes are necessary to model the geometry of the ship, namely the structural, and the hydrodynamic mesh. The structural mesh is the 1D-FEM mesh of the hull girder, and it is composed of beam elements connected serially (i.e., end-to-end connection), as presented in Fig. 10.4. The hydrodynamic mesh describes the outer shell of the ship, and it contains the wetted part but also the part above the waterline. In order to solve the linear Boundary Value Problem (BVP) in the frequency domain, it is enough to provide the mesh of the wetter part of the ship hull in still water, as Fig. 11.2 bears out. However, the still water position is not known in advance, and it is determined after performing the still water balancing. After determining the aft-and fore-drafts, the mesh is cut on the still water plane

11.1. Input data 121 in order to obtain the wetted part. This process is relatively straightforward and will not be presented in this thesis.

Also, the 2D slamming sections are created from the hydrodynamic mesh and are obtained by intersecting the mesh with every plane defining a slamming section. Nonetheless, the geometry of the 2D slamming sections is smoothed. The main reason of doing this is that usually the mesh of the ship's hull is relatively coarse, and the surface is distorted.

Projection of the shape functions on the hydrodynamic mesh

The exact coupling between the beam finite element model of the structure with the complete threedimensional hydrodynamic model can be achieved by constructing the BVP for each shape function of the finite elements. After solving the different BVP-s, the resulting pressure is calculated using Bernoulli's equation, and it is integrated over the wetted surface in order to obtain the corresponding coupling coefficients. These coefficients are in the form of the added mass, damping, and wave excitations so that the coupled system of equations for the unknown displacements of the beam can be constructed.

The derivation of the shape functions was presented in Chapter 10, and will not be repeated here. But for the sake of clarity, we just note that the shape functions for a Timoshenko beam element can be written as follows:

N w1 = 1 1 + Φ 1 -3ξ 2 + 2ξ 3 + Φ (1 -ξ) , N w2 = l 1 + Φ ξ -2ξ 2 + ξ 3 + Φ 2 ξ -ξ 2 N w3 = 1 1 + Φ 3ξ 2 -2ξ 3 + Φξ , N w4 = l 1 + Φ -ξ 2 + ξ 3 + Φ 2 -ξ + ξ 2 (11.1)
where ξ = x/l; and the nodal rotations' shape functions are:

N θ1 = 6 l(1 + Φ) -ξ + ξ 2 , N θ2 = 1 1 + Φ 1 -4ξ + 3ξ 2 + Φ (1 -ξ) N θ3 = 6 l(1 + Φ) ξ -ξ 2 , N θ4 = 1 1 + Φ -2ξ + 3ξ 2 + Φξ (11.2)
For an isolated finite element k of length l the shape functions are illustrated in Fig. 11.3. The mode shapes are projected on the hydrodynamic mesh using the following methodology. For a mode j, the first step is to find all the hydrodynamic points which fall within the limits of element k. Then, for every hydrodynamic point, P , the displacement vector, h j , is computed and can be seen as: 11.3) where:

h j (P ) = h j x (P ) i + h j y (P ) j + h j z (P ) k ( 
h j x (P ) = -N θi (x) z(P ) -z k N A
, h j y (P ) = 0 , h j z (P ) = N wi (x) (11.4) and i, j, and k are the unit vectors in the x, y, and z direction, respectively. z(P ) is the vertical coordinate of the point P , and z k N A is the vertical position of the neutral axis for the element k. The procedure is repeated for all the shape functions: N i , i = 1, . . . , 4, and for all the elements k = 1, . . . , n elem , where n elem represents the total number of elements. There are two different ways to assemble the vector containing the shape function projection for each mode. In Fig. 11.4, the individual shape function projection is illustrated, the total number of additional modes to be considered for the hydrodynamic problem is 4•n elem . While in Fig. 11.5, the shape functions are coupled at nodes in order to reduce the total number of modes to be used for solving the additional hydrodynamic problem. By coupling the shape functions at nodes the total number of modes is reduced from 4 • n elem to 2 (n elem + 1). However, since our objective is to consider the non-linear structural behavior, the hull girder will be modeled as two beams. Therefore, the total number of modes to be included in the hydrodynamic problem will be 2 (n elem + 2). Although, after integrating the pressures over the wetted surface, the second option yields the assembled added mass and damping matrices for each beam. In this thesis, the first option is chosen. Mainly, it is necessary to compute all force components for each element separately to perform the direct integration of internal loads. Thus, by integrating the pressures over the wetted surface, the hydrodynamic coefficients are obtained for each element, which can be easily assembled into the global system. An example of the projection of the mode shapes for a container ship is shown in Fig. 11.6. 

Linear frequency domain hydro-elastic seakeeping model

In this thesis, the method employed to determine the ship motions and wave loads is based on the linear frequency domain theory. It is well known that the frequency-domain approach allows the naval architect to obtain a rapid solution for linear seakeeping behavior. After computing the response to waves with different frequencies and headings, one could calculate the response for different sea states using the superposition principle.

Incoming waves

In linear frequency domain theory, some assumptions have to be made. The first one assumes that the waves are linear sinusoidal waves in deep water. The second assumption is that the waves are small, hence the motion of the body will be of small amplitude. In this thesis a heading of zero degrees results in following waves, and 180 degrees results in head waves, as depicted in Fig. 11.7. The wave elevation, denoted by ζ, of a single wave component is equal to:

ζ(t) = ζ a cos(ωt + ε) (11.5)
where ζ a is the wave amplitude, ω denotes the wave frequency, and ε is the phase angle.

It should be noted that for the case with forward velocity, the body will encounter the waves at different frequency, as follows:

ω e = ω -kU cosµ (11.6) 
where k = ω 2 /g is the wave number, U is the mean forward speed of the ship, and µ is the heading angle, as depicted in Fig. 11.7.

Fluid assumptions

Next, in order to calculate the hydrodynamic coefficients, one should first determine the pressure at the hull. To do this, a few assumptions are necessary to be able to solve the fluid motions using a BVP:

• the fluid is assumed to be incompressible, inviscid, irrotational and without surface tension;

• water depth is assumed to be infinite;

• body motions are assumed to have small amplitudes;

• the fluid and the body motions are harmonic.

Assumption that the fluid is incompressible means that the density cannot change, that means that the mass in a given volume cannot change, so the net inflow must be zero. Irrotational fluid physically means that there is no net rotations in the flow, so that the curl of velocity is zero. With these assumptions in mind, the fluid motion is determined by solving a BVP using potential flow. It should be noted that this BVP is first formulated for the zero speed case. While for the case with forward velocity, the zero speed solution is partly adopted to account for the encounter wave frequency.

Zero speed problem

The total velocity potential of the fluid can be split in a space-and time-dependent part, such that:

Φ(x, y, z, t) = R ϕ(x, y, z)e -iωt (11.7) 
Then, the total velocity potential is decomposed into the incident, diffracted, and the radiated component for every degree of freedom:

ϕ = ϕ I + ϕ D -iω N dof j=1
ϕ Rj (11.8) where:

ϕ I incident potential; ϕ D diffraction potential; ϕ Rj j-th radiation potential; N dof number of degree of freedom.
The space dependent part of the incident wave potential is equal to:

ϕ I =
-iζ a g ω e k(z-ixw) (11.9)

The diffraction and radiation velocity potentials are solved using the following BVP: (11.10) where V n denotes the normal velocity which depends on the considered potential.

                 ∆ϕ = 0 , in the fluid -kϕ + ∂ϕ ∂z = 0 , z=0 ∂ϕ ∂n = V n , on S b lim √ kR ∂ϕ ∂R -ikϕ = 0 , R → ∞
The first equation of the BVP presented in equation 11.10 ensures the conservation of mass. Which is governed by the continuity equation, it basically states that the net inflow of fluid in the volume is equal to the rate at which mass leaves the system. The second equation is the linearized free surface boundary condition, which ensures that a water particle that is in the free surface will always be in the free surface, this is called the kinematic boundary condition. Also, there is a dynamic boundary condition stating that the pressure is zero at the free surface. Of course in reality there is atmospheric pressure, but a constant pressure can always be discarded since it will give a total force of zero on the body. The third equation of equation 11.10 represents the boundary condition on the vessel, the normal velocity in the fluid equals the normal velocity of the vessel, so no fluid is penetrating through the hull. Finally, the last equation is the radiation condition, which ensures that the diffracted and radiated potentials approach zero far away from the body. Which means that the normal velocity at the sea-bed is zero, and also that at infinity there is no disturbance of incoming waves.

This complex BVP is solved numerically by using pulsating Green's source functions over the hydrodynamic mesh, presented in Fig. 11.2. These functions fulfill the linearized free surface boundary condition and the radiation condition. Moreover, the Green's source strengths are solved by satisfying the body boundary condition at the Gauss points on the hydrodynamic mesh.

Finally, after solving the boundary value problem, the pressure components are calculated from the velocity potentials using the linearized Bernoulli equation, which leads to: 11.11) where p I , p D and p Rj are the incident pressure, the diffraction pressure and the radiation pressure, respectively.

p I = iωρϕ I , p D = iωρϕ D , p Rj = iωρϕ Rj (
One should keep in mind that the BVP presented in equation 11.10 needs to be solved for a range of frequencies. Furthermore, due to the existence of the irregular frequencies, which are caused by the artificial resonance of the wave system inside the body, some numerical tricks are necessary. However, the problem is alleviated by placing additional panels at the free surface inside the body [START_REF] Malenica | On the irregular frequencies appearing in wave diffraction-radiation solutions[END_REF].

Another possible difficulty might arise if one tries to solve the BVP for very high frequencies. The size of the hydrodynamic mesh is governed by the smallest wavelength, which is inverse proportional to the wave frequency. Hence, a very high frequency will require a lot of computational effort, especially a tremendous amount of memory. Fortunately, the small wavelength possesses negligible energy, and therefore the hydrodynamic damping is insignificant for such high frequencies.

Adjustments for forward velocity

The case when the vessels is moving with a constant velocity leads to the necessity of making some adjustments of the equations presented above. One should keep in mind that it is still very difficult to consistently solve the BVP for forward speed seakeeping problems, even for purely rigid-body problems. However, some assumptions can be made in order to partially include the forward velocity effect.

As we have mentioned before in equation 11.6, the relative frequency, called the encounter frequency, can be calculated in order to adjust it for the forward speed. Besides, a second adjustment is to account for the contribution of the velocity in the body boundary conditions. Hence, the still water fluid flow around the body due to the forward velocity has to be solved first. The traditional method for computing the potential φ is based on the double body approach.

According to [START_REF] Newman | The theory of ship motions[END_REF], the velocity vector of the steady flow relative to the moving reference frame is expressed as follows:

W = U ∇ ( φ -x) (11.12)
Due to the forward velocity the body boundary conditions of equation 11.10 becomes:

∂ϕ Rj ∂n = h j n + 1 ω e {(∇W ) ih j -(∇h j ) W } (11.13)
The last adjustment necessary to partially include the forward velocity effect is to modify the pressure equation, as follows:

p = iω e ρϕ -ρW ∇ϕ (11.14) Finally, the free surface boundary condition remains equal to the zero speed condition.

Hydrodynamic coefficients

The hydrodynamic coefficients are obtained by an integration of the pressure over the wetted surface, by using the Gauss points distributed over the integration mesh. Thus, the hydrodynamic coefficients can be expressed as: 11.16)

F i,I = s B p I h i ndS (11.15) F i,D = s B p D h i ndS ( 
A ij + iω e B ij = s B p Rj h i ndS (11.17) where: 
F I incident wave force; F D diffraction force; A hydrodynamic added mass; B hydrodynamic damping.

The method presented above for solving the seakeeping problem by using a 3D BEM method based on the pulsating Green's sources exists in the commercial software HYDROSTAR, which is developed and maintained by Bureau Veritas. Therefore, HYDROSTAR program was used in this thesis to solve the BVP and to calculate the pressures. For the calculation of the incident wave and diffraction forces, and also for calculating the hydrodynamic coefficients, the pressures are integrated numerically using the Gauss quadrature method [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF].

Restoring stiffness

According to [START_REF] Malenica | Some aspects of hydrostatic restoring for elastic bodies[END_REF], the restoring coefficient can be defined as 'the ratio in between the reaction force and the displacement which produces it when the body is moved from the initially equilibrated position in calm water.' Although the subject received attention from many researchers [START_REF] Newman | Wave effects on deformable bodies[END_REF][START_REF] Huang | The hydrostatic stiffness of flexible floating structures for linear hydroelasticity[END_REF][START_REF] Molin | Hydrostatique d'un corps deformable[END_REF][START_REF] Senjanović | An explicit formulation for restoring stiffness and its performance in ship hydroelasticity[END_REF], the calculation of the hydrostatic matrix is still an open discussion in the literature [START_REF] Malenica | Some aspects of hydrostatic restoring for elastic bodies[END_REF], and hitherto no entirely satisfactory formulations have been proposed.

In this thesis the hydrostatic restoring is obtained by the integration of the restoring pressure on the hydrodynamic mesh using the formulas presented in [START_REF] Malenica | Some aspects of hydrostatic restoring for elastic bodies[END_REF]. Where the restoring pressure is defined as the variation of the hydrostatic pressure due to the change in the relative vertical position between the hull and the free surface, and can be expressed as: 11.18) One should keep in mind that the above expression represent only the hydrostatic restoring coefficient, and the gravity related part has to be added in order to obtain the final restoring coefficients. This gravity part can be obtained straightforwardly in the form:

C H ij = ρ • g • S h j z h i x n x + h i y n y + h i z n z dS ( 
C M ij = g • V h j x ∂h i z ∂x + h j y ∂h i z ∂y + h j z ∂h i z ∂z dm (11.19)
Finally, the complete restoring coefficient becomes:

C ij = C H ij + C M ij (11.20)
It is important to point out that the approach presented in this thesis shows good results and it is validated for the rigid-body modes. Moreover, the integrals presented in Equations 11.18,and 11.19 are computed numerically using the Gauss quadrature method.

Equation of motion in frequency domain

Even if the objective of this thesis is to solve the equation of motion in time-domain directly and to compute the non-linear whipping response, due to its simplicity, the motions are also solved in the frequency domain to provide a direct comparison with the results from the well-known general modes approach.

When assuming harmonic motion the Newton equation is expressed as:

(m + A(ω e )) ẍ + (b + B(ω e )) ˙ x + (c + C) x = F DI (ω e )R e -iωet (11.21) 
where m, b, and c are representing the structural matrices for mass, damping, and stiffness, respectively; while A, B, and C are the hydrodynamic matrices for added mass, wave damping, and restoring stiffness, respectively.

The motion response is calculated for each frequency by writing the resulting harmonic motion as: 11.22) where x a is the complex response amplitude operator (RAO), which is found by solving the following system of equations:

x = x a • R e -iωet ( 
-ω 2 e (m + A(ω e )) -iω e (b + B(ω e )) + (c + C) x a = F DI (ω e ) (11.23) 
After the motions of the ships are determined, then the internal loads can be easily computed. Next section presents how the hydrodynamic coefficients obtained from a linear frequency domain model can be transferred to the time domain.

Direct time-domain hydro-elastic seakeeping model

Keeping in with the desire of predicting the non-linear structural response of a ship subjected to slamming loads it is necessary to perform the calculations in the time domain. From the numerical point of view, the application of the frequency domain method is relatively simple only in the linear case, and the inclusion of nonlinearities quickly becomes very complicated. This is not the case with the time-domain simulations where the handling of the nonlinearities is much more comfortable. Furthermore, instead of solving directly the time-domain hydrodynamic problem, which can be extremely expensive, one wellknown solution is to determine the hydrodynamic coefficients in time-domain by using the frequencydependent added mass, damping, and diffraction forces.

One of the main goals is the computation of ship's loads and motions in an irregular sea-state, which can be represented by a combination of single wave components, having the same direction. Hence, the total wave elevation ζ(t) of a wave-train, consisting of N waves , can be expressed as:

ζ(t) = Nwave i=1 ζ a (i)cos (ω(i)t + ε(i)) (11.24)
It is worth mentioning that the wave components can be based on a sea spectrum or measured wave elevation.

Equation of motion in time-domain

The equation of motion in time-domain resemble the usual equation, with the addition of the convolution integral over the past history for the velocity, as presented by [START_REF] Cummins | The impulse response function and ship motions[END_REF]:

(A(∞) + m) ẍ(t n+1 ) + b ẋ(t n+1 ) + t n+1 0 K(t n+1 -τ ) ẋ(τ )dτ + (C + c)x(t n+1 ) = F (t n+1 ) + Q(t n+1 ) (11.25) 
where the force vector is composed of:

F (t n+1 ) = (F DI + F G + F SW ) (t n+1 ) (11.26) 
In equation 11.25 the overdots denote the time derivatives, A(∞) represents the infinite frequency added mass matrix, and K(t) represents the matrix of impulse response functions. On the right-hand side, the two force vectors F (t n+1 ) and Q(t n+1 ) are representing the linear and the non-linear forces, respectively. The force vector F is composed of the diffraction force F DI , the force due to gravity acceleration F G , and the force due to still water pressure F SW .

Loads Radiation force

The radiation force is calculated using the equation presented by [START_REF] Cummins | The impulse response function and ship motions[END_REF]: 11.27) where K is the matrix of impulse response functions, or the retardation functions, and can be calculated from the frequency-dependent damping coefficients B ij , as shown by [START_REF] Ogilvie | Recent progress toward the understanding and prediction of ship motions[END_REF]: 11.28) As equation 11.28 bears out, it is necessary to integrate the damping curve up to the infinite frequency. Howbeit, it is well known that when solving the hydrodynamic BVP numerically, one must ensure that the panel size is proportional to the wave-length. And for high frequencies, the required panel size will be reduced, and as a consequence, the total number of panels will be increased quadratically. This aspect can be easily seen from the relation between the encountered frequency and the wave-length: λ = 2πg/ω 2 e . Also, one should keep in mind that the required computer memory increases significantly, making it almost impossible to obtain an accurate solution for high frequencies.

F R (t) = t 0 K(t -τ ) ẋ(τ )dτ ( 
K(t) = 2 π ∞ 0 (B(ω) -B(∞)) cos (ω e t) dω e ( 
To exemplify, Fig. 11.8 depicts the computed damping curve for a ULCS with a length of about 350 meters and with a forward speed of 5 knots in head waves. It can be seen that above a specific frequency, some instabilities are appearing in the computed damping curve. These instabilities are associated with a too coarse mesh and are not related to the so-called irregular frequencies. Since for the calculation of the impulse response functions it is necessary to determine the damping at the infinite frequency, but the computed damping curve is accurate for the encounter frequencies up to 3 rad/s, for the finest mesh. One well-known solution is to extrapolate the damping curve, which can be done using a function of type a/ω b e + c, as shown by [START_REF] Van Oortmerssen | The motions of a moored ship in waves[END_REF]. The values of the variables a, b, and c are determined numerically by imposing several conditions: the continuity of the first derivative for the damping curve at the highest frequency for which the damping curve can be computed accurately, and by imposing the start and end damping values. In this thesis, it is assumed that the infinite frequency value is located at about two times the highest frequency.

Once the damping curve is extrapolated up to the infinite frequency, the equation 11.28 can be solved using a semi-analytical approach, by rewriting it as: 11.29) which can be seen as:

K(t) = 2 π ∞ 0 (a(ω e ) + b) cos (ω e t) dω e ( 
K(t) = 2 π N f req -1 i=1 ω e(i+1)
ω e(i)

(a i (ω e ) + b i ) cos (ω e t) dω e (11.30) Solving analytically the integral in equation 11.30 is straightforward, and will not be presented in this thesis.

Finally, it is worth mentioning that the computed radiation force, represented by the convolution integral, is solved only on a limited time span in order to reduce the computation effort. In the present context, this is a valid assumption since the waves generated by the motions much earlier in time are already far away from the ship, and their contribution to the loads is negligible.

Diffraction force

The time-dependent diffraction force is calculated using the complex RAOs for the diffraction force F DI calculated in the frequency domain. It should also be mentioned that the diffraction force depends on the actual wave elevation around the body, and can be expressed as:

F DI (t) = N f req i=1 ζ a (ω i ) ((R(F DI (i)) • cos(ω i t + ε ζ (ω i )) + I(F DI (i)) • sin(ω i t + ε ζ (ω i ))) (11.31)
For most applications, the wave frequencies are different from the frequencies at which the hydrodynamic coefficients are calculated. Henceforth, the coefficients of the diffraction force are determined by making use of linear interpolation functions.

Gravitation force

The force due to the gravity acceleration is equal to: (11.32) where M is the mass matrix, and g is the gravity acceleration vector. The acceleration due to the gravity field is -g, and it is applied in the heave direction.

F G (t) = -Mg

Still water force

At any point P on the ship hull which is below the still water line, the hydrostatic pressure from the sea is calculated using the following expression:

p sw (P ) = ρg(T -z(P )) (11.33) where ρ is the density of the sea water, T is the draft of the ship, and z(P ) is the vertical coordinate of point P . The still water force is determined by integrating the hydrostatic pressure over the ship hull using the Gauss quadrature method.

Slamming force

The fore part of the ship is divided into multiple slamming sections as shown in Fig. 11.9. The slamming loads are calculated using a 2D approach for every slamming section.

The 2D method employed in this thesis is the Modified Logvinovich Model (MLM) [START_REF] Korobkin | Modified logvinovich model for hydrodynamic loads on asymmetric contours entering water[END_REF], which can calculate the slamming loads with reasonable accuracy while being fast and robust. The slamming loads for a 2D section entering initial still water are calculated using the flatplate assumption, but taking into account the real shape of the section. In addition to Wagner's theory, it includes the non-linear terms in the Bernoulli equation for the hydrodynamic pressures. Moreover, it should be noted that this method can only handle the water-entry problem, while the exit problem is disregarded. A typical for-end slamming section extracted from an ULCS is illustrated in Fig. 11.10(a). The MLM method works only for monotonically increasing sections, hence the 2D section must be modified accordingly, as Fig. 11.10(b) bears out. After the slamming pressures are computed with the MLM method, the pressures are integrated for every ship's section using Gauss quadrature method, yielding the total force acting in the section plane. Then the sectional force is projected on the global coordinates, and it is applied to the hull girder.

Coupling between seakeeping and slamming

The non-linear hydro-elastic problem poses some challenges for coupling the seakeeping and the slamming computations accurately. Not only that, the seakeeping problem is solved in 3D, and the slamming problem is solved in 2D, but also because the slamming time is much shorter than the time scale of the seakeeping problem.

The slamming sections are extracted from the hydrodynamic mesh before solving the hydro-elastic problem. Each slamming section is included on a user-defined plane. These plates are given as an array of points in the longitudinal direction. Moreover, the Z-coordinate of the reference points and the desired angle of rotation around the Y-axis are required. The procedure for cutting the mesh and extracting the 2D sections is relatively easy and will not be presented in this thesis. For exemplification purposes, Fig. 11.9 shows the typical slamming sections created for a ULCS. It should be mentioned that the slamming sections extracted from the hydrodynamic mesh are smoothed in order to remove any sharp corners or discontinuities. The 2D sections are further modified in order to obtain monotonically increasing width, for increasing draught, as it is required for the MLM method.

During the seakeeping computation, at each time step, the relative quantities are computed for every slamming section. Then, if the relative velocity is above a user-defined threshold, the slamming com-putation starts. The slamming computation ends when the relative velocity becomes lower than a userdefined threshold. Nonetheless, the threshold criteria can be different for starting/ending the slamming calculations. The relative displacement, x r , of each slamming section represents the distance between the point located on the keel line for every section and the instantaneous wave profile, as Fig. 11.11 bears out. It should be noted that the wave profile considered is the undisturbed one, which can be expressed as:

ζ(t, x) = Nwave i=1 ζ a cos(ω(i)t -xk(i) + ε(i)) (11.34)
The relative velocity and the relative acceleration are calculated using the following relations:

ẋr (t) = x r (t) -x r (t -1) ∆t , ẍr (t) 
= ẋr (t) -ẋr (t -1) ∆t (11.35) Within this thesis, the equation of motion is solved using an implicit time-integration scheme, together with a Newton-Raphson algorithm to handle the nonlinearities. The slamming force at instant t n depends on the response at instant t n , and vice-versa. Therefore, at each time-step, each iteration, the relative motions will be computed in order to check the starting/ending conditions for slamming. Thus, if at time step t n , the relative velocity is below the user-defined threshold, and at the next time step (t n+1 ), the relative velocity becomes higher than the threshold, the slamming starting point will be determined from linear interpolation. Nonetheless, the time of the slamming event is relatively short comparing to the time step used for the seakeeping computations. Hence, between two consecutive seakeeping time steps (t n+1 → t n+2 ), the slamming pressures will be calculated using twenty-five equidistant sub-time-steps.

Finally, the slamming force to be applied at t n+2 will be the average of slamming forces determined at each sub-time-steps.

Internal loads

The internal loads are computed using two different approaches. On the one hand, the internal loads at the nodes of the structural model are calculated by direct integration of the difference between the internal loads and the external loads acting on each element. On the other hand, the internal loads at any location along the beam, excepting the nodes of the finite element model, are calculated using the second and the third derivatives of the elemental shape functions. Although it is possible to compute the internal loads at the nodes using the modal approach, it is considered that the direct approach is more accurate than the modal approach.

Numerical time-integration

Within the present thesis it was decided to employ the Hilber-Hughes-Taylor (HHT) scheme (10.47), which is an implicit time-integration method. As a consequence, the solution at the current time step depends on the current state and the later one. Therefore, the equation of motion can be written as follows:

(A(∞) + m) ẍ(t n+1 ) + (1 + α) b ẋ(t n+1 ) + t n+1 0 K(t n+1 -τ ) ẋ(τ )dτ + (C + c)x(t n+1 ) - α b ẋ(t n ) + tn 0 K(t n -τ ) ẋ(τ )dτ + (C + c)x(t n ) = (1 + α) (F (t n+1 ) + Q(t n+1 )) -α (F (t n ) + Q(t n )) (11.36)
The first step towards solving the non-linear hydro-elastic problem is to upgrade the equations of motion presented in equation 11.36 with a set of Lagrange multipliers. In the current context, the notation tilde ( ˜ ) has been adopted to differentiate the components whose size was increased with a specific number of Lagrange multipliers. The constraints to be imposed can be seen as:

B L • x = h.
As a consequence, one could include the boundary condition matrix B L , and its transpose in the enhanced stiffness matrix, c, as follows: 11.37) the boundary condition matrix firstly enforces the linear surge motion to handle the horizontal motions of the ship, then two boundary conditions are added to implement the continuity of the two beams in order to compute the hydro-elastic behavior. λ is a vector of three components: the axial force, the shear force, and the vertical bending moment required to maintain the enforced conditions. h contains the values to be enforced using Lagrange multipliers, and can be written as: 11.38) The equation of motion for the non-linear hydro-elastic problem becomes:

c = c B T L B L 0 , x = x λ , Fext = F ext h ( 
h = u x lin 0 0 T , λ = F x SF d BM d T (
( Ã(∞) + m) ẍ(t n+1 ) + (1 + α) b ẋ(t n+1 ) + t n+1 0 K(t n+1 -τ ) ẋ(τ )dτ + ( C + c) x(t n+1 ) - α b ẋ(t n ) + tn 0 K(t n -τ ) ẋ(τ )dτ + ( C + c) x(t n ) = (1 + α) F (t n+1 ) + Q(t n+1 ) -α F (t n ) + Q(t n ) (11.39)
The system of equations represents a non-linear system since the load vector Q(t n+1 ) depends on the vector of displacements x(t n+1 ). Hence, in order to solve the non-linear problem, Newton-Raphson scheme is used to minimize the vector of residuals, which can be written as follows:

R k (t n+1 ) = (1 + α) F k (t n+1 ) + Qk (t n+1 ) -α F (t n ) + Q(t n ) -( Ã(∞) + m) ẍk (t n+1 ) -(1 + α) b ẋk (t n+1 ) + t n+1 0 K(t n+1 -τ ) ẋ(τ )dτ + α b ẋ(t n ) + tn 0 K(t n -τ ) ẋ(τ )dτ -(1 + α)( C + c) xk (t n+1 ) + α( C + c) x(t n ) (11.40)
The velocities and accelerations at the current time step can be written as function of displacements using the Newmark's equations, as follows:

ẍ(t n+1 ) = 1 β∆t 2 ( x(t n+1 ) -x(t n )) - 1 β∆t ẋ(t n ) + 1 - 1 2β ẍ(t n ) ẋ(t n+1 ) = γ β∆t ( x(t n+1 ) -x(t n )) + 1 - γ β ẋ(t n ) + 1 - γ 2β ∆t ẍ(t n ) (11.41)
The displacement at time t n+1 , at iteration k can be approximated by a linearized expression of the form xk (t n+1 ) = xk (t n+1 )+∆ x. Hence, by adding the incremental displacement vector ∆ x into Newmark's equations and after some rearrangement, one can write:

∆ ẋ = γ β∆t ∆ x , ∆ ẍ = 1 β∆t 2 ∆ x (11.42)
By writing the vectors of acceleration, velocity and displacement in an incremental form (i.e., xk (t n+1 ) = xk-1 (t n+1 ) + ∆ x), and substituting in equation 11.40, yields:

R k (t n+1 ) = (1 + α) F k (t n+1 ) + Qk (t n+1 ) -α F (t n ) + Q(t n ) -( Ã(∞) + m) ẍk-1 (t n+1 ) -(1 + α) b ẋk-1 (t n+1 ) + t n+1 0 K(t n+1 -τ ) ẋ(τ )dτ + α b ẋ(t n ) + tn 0 K(t n -τ ) ẋ(τ )dτ -(1 + α)( C + c) xk-1 (t n+1 ) + α( C + c) x(t n ) -( Ã(∞) + m)∆ ẍ + (1 + α) b + 1 2 K[0] ẋ + C + c∆ x (11.43)
Hence, the non-linear system of equations is solved using Newton-Raphson scheme for the increment of displacements by setting R k (t n+1 ) = 0, and rearranging the terms, yields: 11.44) where K E is the effective stiffness matrix, which can be expressed as: 11.45) and F E is the effective force vector, which can be expressed as: 11.46) In order to quantify the accuracy of the time-stepping scheme, [START_REF] Hibbitt | Improved numerical dissipation for time integration algorithms in structural dynamics[END_REF] introduced the concept of "half-increment residuals." This basically means that by monitoring the residuals at t n+0.5 , one could verify the accuracy of the solution. The half-increment residuals are based on the assumption that the acceleration varies linearly over the time-step. Hence, one could write:

K E • ∆ x = F E ( 
K E = ( Ã(∞) + m) 1 β∆t 2 + (1 + α) γ β∆t b + 1 2 K[0] + C + c ( 
F E = (1 + α) F k (t n+1 ) + Qk (t n+1 ) -α F (t n ) + Q(t n ) -( Ã(∞) + m) ẍk-1 (t n+1 ) -(1 + α) b ẋk-1 (t n+1 ) + t n+1 0 K(t n+1 -τ ) ẋ(τ )dτ + α b ẋ(t n ) + tn 0 K(t n -τ ) ẋ(τ )dτ -(1 + α)( C + c) xk-1 (t n+1 ) + α( C + c) x(t n ) -( Ã(∞) + m)∆ ẍ + (1 + α) b + 1 2 K[0] ẋ + C + c∆ x ( 
ẍ(t n+0.5 ) = 1 /2 ẍ(t n ) + 1 /2 ẍ(t n+1 ) (11.47)
The half-increment residuals are computed after solving the response at t n+1 , so the velocity and displacement at half-time step can be easily obtained, as follows:

ẋ(t n-0.5 ) = ẋ(t n-1 ) + (1 -γ)∆t ẍ(t n-1 ) + γ∆t ẍ(t n-0.5 ) x(t n-0.5 ) = x(t n-1 ) + ∆t ẋ(t n-1 ) + 1 2 -β ∆t 2 ẍ(t n-1 ) + β∆t 2 ẍ(t n-0.5 ) (11.48)
Furthermore, the half-increment residuals are computed by solving the following equation:

R(t n+1 ) = (1 + α) F (t n+0.5 ) + Q(t n+0.5 ) -α F (t n ) + Q(t n ) -( Ã(∞) + m) ẍ(t n+0.5 ) -(1 + α) b ẋ(t n+0.5 ) + t n+0.5 0 K(t n+0.5 -τ ) ẋ(τ )dτ + α b ẋ(t n ) + tn 0 K(t n -τ ) ẋ(τ )dτ -(1 + α)( C + c) x(t n+0.5 ) + α( C + c) x(t n ) (11.49)
The maximum half-increment residual is simply the largest value of R(t n+0.5 ) vector, and it is denoted by R max (t n+0.5 ). This half-increment residual R max (t n+0.5 ) provides a measure of the accuracy of the solution for a given time-step. So, if F max (t n+1 ) is the largest force acting on the system at the time instant t n+1 , then:

• if R max (t n+0.5 ) 0.1 • F max (t n+1
), the time-stepping solution has high accuracy;

• if R max (t n+0.5 ) 1.0 • F max (t n+1 ), the time-stepping solution has moderately good accuracy;

• if R max (t n+0.5 ) 10 • F max (t n+1 ), the time-stepping solution is rather coarse.

The iterative procedure stops when the norm of the residual vector drops below a user-defined threshold, denoted by ε conv. . The computational procedure employed for solving the non-linear hydro-elastic problem is depicted in Fig. 11.12.

Validation of the hydro-elastic model

For the validation and verification of the proposed methodology, the numerical results are compared with those obtained by making use of HOMER2, a software developed and maintained by Bureau Veritas. In HOMER2, the fully coupled hydro-elastic problem is solved by making use of the generalized modes approach [START_REF] Tuitman | Generalized modes in time-domain seakeeping calculations[END_REF]. The natural modes can be calculated either using a 1D beam model or the full 3D FEM model of the ship structure. After solving the general seakeeping problem in the frequency domain using a 3D Boundary Element Method (BEM) method based on Green's sources, the time-domain simulation is performed following the approach proposed by [START_REF] Cummins | The impulse response function and ship motions[END_REF]. The slamming loads can be calculated using the Generalized Wagner Model De [START_REF] De Lauzon | Improved generalized wagner model for slamming[END_REF] or the Modified Logvinovich Model (MLM) [START_REF] Korobkin | Modified logvinovich model for hydrodynamic loads on asymmetric contours entering water[END_REF]. The numerical results computed using HOMER2 were validated with both experimental and full-scale results [START_REF] Derbanne | Validation of the global hydroelastic model for springing & whipping of ships[END_REF].

For this purpose, a large container ship with a length of 350m is defined and used to validate the hydroelastic coupling methodology by comparing the numerical results from DYANA2 to the ones obtained from HOMER2. For the hydrodynamic computations, a number of 2500 panels per half-body have been used, while the ship's structure was modeled with 20 non-uniform Timoshenko beam elements. The ships speed is set to five knots, while the structural damping is assumed to be 2% for these computations.

In order to facilitate the comparison of the hydrodynamic coefficients, the full hydrodynamic matrices of size n mods With a beautiful agreement on the RAOs for the frequency-dependent hydrodynamic coefficients, the validation can move forward to direct time-domain simulation results. In the current context, the hull girder is subjected to an equivalent design wave targeting the maximum hogging bending moment at midship. At first, the linear time-domain hydro-elastic response, i.e., without slamming, is compared in Fig. 11.15. The agreement between the linear time-domain calculations performed with DYANA2 and HOMER2 is perfect. Moreover, it is important to point out that in HOMER2, it is possible to include several non-linear effects, such as the Froude-Krylov correction or the non-linear hydrostatic pressure correction. The effect of such non-linear load components over the hydro-elastic response is shown in Fig. 11.15. It can be seen that the influence of the non-linear load components over the sagging response is significant. However, the influence over the hogging response is relatively small. Thus, this is considered to be a limitation of the hydro-elastic model developed in DYANA2.

Furthermore, the non-linear slamming loads are included in order to compute the linear whipping structural response. In both numerical codes, the slamming loads are calculated using the Modified Logvinovich Model. Moreover, aside from the non-linear slamming loads, the structural response calculated with HOMER2 includes the Froude-Krylov correction and the non-linear hydrostatic pressure correction.

The hull girder response in terms of the vertical displacement at midship and at the fore-end, together with the nodal rotation and the internal vertical bending moment at midship are compared in Fig. 11.16.

The comparison of the presented results, obtained by two different methods, is in very good agreement, showing the trustworthiness of the hydro-elastic model implemented in DYANA2.

Verification of the hydro-elastic model

Several verifications are performed in order to quantify the sensitivity of the results to different parameters. These verifications are performed on the same container ship used for validation purposes. However, for computational simplicity, a ship speed of zero knots has been adopted. The first verification refers to the influence of discretization parameters over the linear frequency-domain hydro-elastic results. Hence, 

Linear frequency domain hydro-elastic computations

The nine models are further used for computing the response amplitude operators (RAOs) by solving the linear frequency domain hydro-elastic problem for a range of frequencies. The equation of motion in frequency domain is presented in Section 11.2.7.

At first, the surge motion defined at the center of gravity, the local motions in terms of vertical displacements and nodal rotations, and the internal loads in terms of bending moment and shear force are compared in Fig. 11.19. For each of these fields the value obtained for a wave frequency of 0.4 [rad/s] is extracted and summarized in Table 11.2.

From Fig. 11.19 and Table 11.2, we can infer than that the modeling details in terms of mesh resolution, has no (or negligible) effect over the linear frequency domain hydro-elastic response. 

Retardation functions

With a perfect agreement obtained for the linear frequency domain computations, we can move further to investigate the sensitivity of the direct time-domain hydro-elastic calculations. With regard to this, the frequency domain results on a hydro-mesh of 2000 elements are used, while the number of elements for the structural model is varied from 12 to 31.

At first, the frequency-dependent part of the radiation force is calculated using the retardation functions in the time domain, as presented in Section 11. To have a better quantitative measure on the time step sizes' influence over the retardation functions, Table 11.3 summarizes the maximum values obtained for all curves shown in Fig. 11.20.

The numerical results presented in Table 11.3 shows that the influence of the time-step size over the retardation functions is minimal. Moreover, for a time step smaller than 0.1 seconds, the numerical results are converging. 

Direct time-domain hydro-elastic computations

The hydro-elastic responses of the container ship are calculated using both frequency-domain and timedomain approaches for a regular and an irregular sea-state, respectively. The time-domain calculations are performed for all three structural models, and two time-step sizes: ∆t = [0.1, 0.05] seconds.

The time histories for the frequency-domain calculations are obtained by inverse FFT transformation of RAOs. The direct time-domain calculations are performed by solving the equation of motion presented in Eq. 11.36. Please note that the slamming loading is not included here. Moreover, from the direct timedomain hydro-elastic results the still water component is subtracted. Hence, the two methods should yield the same results.

At first, the time series of local motions, and internal loads at midship, and fore-end, respectively, obtained for an irregular sea-state are presented in Fig. 11.21.

From Fig. 11.21 we can infer that the solution of the direct hydro-elastic response in the time domain is not influenced by the number of elements used for the structural model. Also, a time-step size of 0.1 or 0.05 seconds is sufficient for obtaining accurate results.

Conclusions

This chapter presents the theoretical background of the hydro-elastic model based on the shape function approach. Comparing to the well-known generalized modes approach, where the structural behavior is described using several eigenmodes, the main advantage of the shape function approach is that the entire base of degrees of freedom is used, allowing for the inclusion of the non-linear structural response.

At first, the linear frequency domain hydro-elastic problem is solved by constructing additional boundary value problems for every shape function of the beam finite element. The solution of these BVPs yields the hydrodynamic coefficients in terms of added mass, damping, and wave excitation. Then, the timedomain hydro-elastic response is obtained by solving the so-called partial time-domain method. The time-dependent diffraction force is calculated using the complex RAOs for the diffraction force obtained in the frequency-domain. In addition, the radiation force is calculated using the retardation functions, and the slamming loads are calculated using a two-dimensional approach. Thus, the fore part of the ship is divided into multiple slamming sections, and for every section, the slamming loads are calculated using the Modified Logvinovich Model, which can calculate the slamming loads with reasonable accuracy while being fast and robust.

Then, the linear hydro-elastic response calculated using the proposed model is validated with the results obtained using a well-known hydro structure interaction software, based on the generalized modes approach and shows perfect agreement. Nonetheless, it should be mentioned that the non-linear load components such as the Froude-Krylov correction and the non-linear hydrostatic pressure correction are not included in this thesis. This is considered a limitation of the hydro-elastic model developed in this thesis and should be considered for further developments. Finally, the non-linear hydro-elastic response due to the non-linear impulsive loads calculated by the proposed methodology is compared with the one obtained from a more advanced hydro-elastic model that includes multiple non-linear load components and shows very good accuracy.

Chapter 12

Fully coupled hydro-elastoplastic model

This chapter is partially as presented in: Jagite et al. (2020c) As discussed in Chapter 9, the available hydro-elastic methods are always computing the whipping response as the internal bending moment of a linear dynamic structural model. However, the relationship between the internal bending moment M int and the curvature χ is usually non-linear, as depicted in Fig. 12.1. Typically, the moment versus curvature relationships is determined from a quasi-static calculation, where the structural model is subjected to a monotonous increasing moment or rotation. Therefore, in the traditional assessment of the hull girder ultimate strength, the maximum whipping response determined on a linear dynamic structural model is compared to the maximum non-linear bending moment determined from a quasi-static analysis. Thus, the ship is safe as long as M int < M U , where M U is called ultimate capacity and represents the maximum point on the typical internal bending moment versus curvature curve. However, it is not fully consistent to consider the ship's structural response as linear and elastic in the hydro-elastic whipping evaluation on the one hand, and as non-linear and elastic-plastic in the ultimate strength capacity on the other hand. Hitherto, to the author's knowledge, there is no software capable of computing the non-linear dynamic response of ships. This aspect is important for the design of modern ships, where the structural response should include the geometric non-linearities as well as material non-linearities. Therefore, this chapter firstly presents the methodology for solving the fully coupled hydro-elastoplastic problem. Then, the presented method is employed in the analysis of the non-linear whipping response in head waves. Needless to say, whipping is by nature always "non-linear" from the hydrodynamic point of view, the distinction between "linear" and "non-linear" in this chapter pertains to the structural model.

Coupling methodology

From the structural point of view, the ship is modeled as two non-uniform Timoshenko beams connected via a non-linear hinge, as Fig. 12.2 bears out. The non-linear hinge's behavior is described by the nonlinear relationship between the internal bending moment and the relative plastic rotation angle. This behavior can be obtained from the well-known moment-curvature curve used to describe the ultimate strength of a ship section by removing the linear-elastic part, as it will be discussed later in this Chapter. The equation of motion for the non-linear elastoplastic structural problem can be seen as:

m ẍ(t n+1 ) + b ẋ(t n+1 ) + cx(t n+1 ) = F (t n+1 ) (12.1)
where m, b, and c are the structural mass, damping and stiffness matrices, respectively. The vectors of displacements, velocities, and accelerations are denoted by x(t n+1 ), ẋ(t n+1 ), and ẍ(t n+1 ), respectively. Please note that the equation of motion presented in equation 12.1 represents a non-linear problem. The vector of displacement at instant t n+1 depends on the external force at instant t n+1 , and vice-versa.

From the hydrodynamic point of view, the seakeeping problem is solved using a partial non-linear timedomain method. This basically means that the time-dependent diffraction force is calculated using the complex RAOs for the diffraction force calculated in the frequency domain. Additionally, the radiation force is calculated using the retardation functions, and the slamming loads are calculated using a twodimensional approach.

The equation of motion for the non-linear sea-keeping problem can be seen as:

(A(∞) + m) ẍ(t n+1 ) + b ẋ(t n+1 ) + t n+1 0 K(t n+1 -τ ) ẋ(τ )dτ + (C + c)x(t n+1 ) = F (t n+1 ) + Q(t n+1 ) (12.2)
where A(∞) represents the infinite frequency added mass matrix, and K(t) represents the matrix of impulse response functions. On the right-hand side, the two force vectors F (t n+1 ) and Q(t n+1 ) are representing the linear and the non-linear forces, respectively. Similar with the structural problem, the equation of motion presented in equation 12.2 represents a non-linear problem. The slamming force at instant t n+1 depends on the response at instant t n+1 , and vice-versa. Moreover, the radiation force depends on the past history of the velocities.

Furthermore, in the fully-coupled hydro-elastoplastic method, the right-hand side of equation 12.2 depends on the non-linear elastoplastic structural response and vice-versa. Thus, the first step towards solving the non-linear hydro-elastoplastic problem is to define the conditions that are to be imposed using a set of Lagrange multipliers, as follows: (i) the linear surge motion in order to handle the horizontal motions of the ship; (ii) the continuity of the vertical displacement field at the non-linear hinge, which can be seen as: w L -w R = 0; (iii) the discontinuity of the rotation field at the non-linear hinge, which can be seen as: θ L -θ R = θ d = f (M int ), and must follow the precomputed behavior. Hence, the vectors h and λ, from equation 11.37 can be seen as:

h = u x lin 0 θ d T , λ = F x SF d BM d T (12.3)
where SF d represents the internal vertical shear force applied from the right node to the left node in order to enforce the continuity of the vertical displacement. BM d represents the internal vertical bending moment between the degrees of freedom denoted θ L and θ R . It is worth mentioning that the internal vertical bending moment is defined as a non-linear function of the enforced discontinuity.

( Ã(∞) + m) ẍ(t n+1 ) + b ẋ(t n+1 ) + t n+1 0 K(t n+1 -τ ) ẋ(τ )dτ + ( C + c) x(t n+1 ) = F (t n+1 ) + Q(t n+1 ) (12.4)

Numerical time-integration

Within the present thesis, it was decided to employ the Hilber-Hughes-Taylor (HHT) scheme for solving the 2 nd order ordinary differential equation which describes the equation of motion [START_REF] Hibbitt | Improved numerical dissipation for time integration algorithms in structural dynamics[END_REF]. Therefore, the new form of the discretized equation of motions, presented in Eqn. 12.4, can be written as: .5) where:

( Ã(∞) + m) ẍ(t n+1 ) + (1 + α) b ẋ(t n+1 ) + t n+1 0 K(t n+1 -τ ) ẋ(τ )dτ + ( C + c) x(t n+1 ) - α b ẋ(t n ) + tn 0 K(t n -τ ) ẋ(τ )dτ + ( C + c) x(t n ) = (1 + α) F (t n+1 ) + Q(t n+1 ) -α F (t n ) + Q(t n ) ( 12 
α ∈ - 1 2 , 0 , γ = 1 2 + α , β = 1 4 (1 + α) 2 (12.6)
The smaller the value of α, the more damping is induced in the numerical solution. Hence, a value of α = -0.05 is used in order to include a slight amount of numerical damping, as recommended for a transient-fidelity structural response. Equation 12.5 is solved numerically by making use of Newmark's equations, presented in 11.41, in order to write the vectors of accelerations and velocities as function of displacements. Then, the displacement at time t n+1 , at iteration i can be approximated by a linearized expression of the form

x(i) (t n+1 ) = x(i-1) (t n+1 ) + ∆ x.
The non-linear problem is solved using Newton-Raphson scheme to minimize the vector of residuals. Thus, the equation of motion at iteration i at time t n+1 can be expressed in the following effective form:

K (i) E • ∆ x = F (i) E (12.7)
where

K (i)
E is the effective stiffness matrix: 12.8) and F

K (i) E = ( Ã(∞) + m) 1 β∆t 2 + (1 + α) γ β∆t b + 1 2 K[0] + C + c ( 
(i)

E is the effective force vector:

F (i) E = (1 + α) F i (t n+1 ) + Q(i) (t n+1 ) -α F (t n ) + Q(t n ) -( Ã(∞) + m) ẍ(i-1) (t n+1 ) -(1 + α) b ẋ(i-1) (t n+1 ) + t n+1 0 K(t n+1 -τ ) ẋ(τ )dτ + α b ẋ(t n ) + tn 0 K(t n -τ ) ẋ(τ )dτ -(1 + α)( C + c) x(i-1) (t n+1 ) + α( C + c) x(t n ) -( Ã(∞) + m)∆ ẍ + (1 + α) b + 1 2 K[0] ẋ + C + c∆ x (12.9)
Nonetheless, the predictions made at iteration i = 0 can be seen as: 12.10) and the corrections can be written as follows:

x(0) (t n+1 ) = x(t n ) + ∆t ẋ(t n ) + (0.5 -β) ∆t 2 ẍ(t n ) ẋ(0) (t n+1 ) = ẋ(t n ) + (1 -γ) ∆t ẍ(t n ) ẍ(0) (t n+1 ) = 0 ( 
x(i) (t n+1 ) = x(i-1) (t n+1 ) + ∆ x ẋ(i) (t n+1 ) = ẋ(i-1) (t n+1 ) + γ /β∆t∆ x ẍ(i) (t n+1 ) = ẍ(i-1) (t n+1 ) + 1 /β∆t 2 ∆ x (12.11) 
The logical scheme for solving the coupled hydro-elastoplastic problem is depicted in Fig. 12.3. At each time step, two iterative loops are necessary to handle the non-linearities. On the one hand, the outeriterations, denoted as j, are for the non-linear structural behavior. On the other hand, the inner-iterations, indicated as i, are for computation of the non-linear loads (i.e., slamming).

The computation stops when the end time is reached, or when the structural failure is reached. The failure is reached when the relative plastic rotation angle becomes higher or equal to the failure point: θ d ≥ θ f . The failure point, indicated as θ f , is defined as the relative plastic rotation angle obtained at the moment when the ultimate strength is reached.

Ship database

The newly developed hydro-elastoplastic model is employed in the analysis of the non-linear whipping response in head waves. In the current thesis, it was decided to use fourteen container ships ranging from 160m to 350m. The principal characteristics are presented in Table 12.1, where L BP represents the length between perpendiculars, B represents the molded breadth of the ship, D and T are the construction depth and respectively the draft. The cargo-carrying capacity, expressed in terms of TEU (twenty-foot equivalent unit), is denoted as CC. The block coefficient of the ship is indicated as c B . The wet frequencies for the first two vertical vibrational modes are shown on the 1 st vb, and 2 nd vb columns. Moreover, the last two columns are showing the allowable still-water bending moment in hogging at midship (M SW ), and the ultimate hogging bending moment (M U ), respectively. Fig. 12.4 presents the variation of cargo carrying capacity, and wet frequencies versus the length between perpendiculars. Thus, it can be easily seen that bigger ships are more flexible. Besides, in Fig. 12.5 we can see that an important loading component for container ships is represented by the still-water ). The moment versus curvature curves are non-dimensionalized in such a way that for each ship, a non-dimensional curvature χ equal one when the linear bending moment versus ultimate strength ratio is equal to unity, as Fig. 12.6 bears out. On the one hand, it was observed that smaller ships, under 200 meters, have a higher failure point, varying between 2.3 and 3.2, as shown in Fig. 12.6(a). On the other hand, the failure point for typical ULCS ranges between 1.2 and 1.4, with an exception for S08, where the failure point is equal to two, as depicted in Fig. 12.6(b). As previously discussed in Section 10.1, the behavior of the non-linear hinge should include only the plastic part, since the linear-elastic part of the stiffness is already included in the adjacent Timoshenko beam elements. Thus, it is necessary to transform the moment versus curvature curves to moment versus plastic rotation angle. At first, the elastic-plastic rotation angle is obtained by multiplying the curvature with the model length θ = χL, where L is assumed to be equal to the distance between two reinforced frames. The linear elastic rotation due to internal moment M int on extent L is given by: θ linear = M int L/EI, where EI is the bending stiffness. Therefore, the plastic rotation angle can be calculated as the difference between the elastic-plastic rotation angle and the linear-elastic one, as depicted in Fig. 12.7. 

NL-FEM analysis of non-linear behavior

Furthermore, the non-linear structural behavior can be calculated using more advanced tools, based on the non-linear finite element method. In the current context, it was decided to create eleven NL-FEM models, each of them being extended over the one-frame bay, i.e., the distance between two reinforced frames. Ten of the models are for ships S01, S02, S05, S06, S07, S09, S10, S12, S13 and S14, having a cargo carrying capacity of 1600, 1600, 2100, 2500, 4500, 5000, 6500, 9300, 12000 and 14000 TEU, respectively. During the analysis, it was observed that bigger ships have a smaller failure point. Thus, it was decided to create and additional model of a ULCS with the length between perpendiculars of around 380 meters, and with a cargo carrying capacity of 20000 TEU. This additional ship indicated as S new 1 , is used to verify if the relationship between the failure point and the ship's length is the same even for modern ULCS. All finite element models are illustrated in Fig. 12.8. For every ship, a relatively fine mesh size is chosen; where the collapse area is modeled with an average mesh size of 100mm, while for the rest of the ship a mesh of around 300mm is adopted. The material behavior is defined as bi-linear elastic-plastic, including a strain hardening with a slope of 1/1000. Moreover, the initial imperfections are generated as per best practice (see Section 6.2.6). The typical moment versus curvature curve describing the ultimate strength of each ship is obtained using the arc length control method ABAQUS (2017) under enforced bending moment.

The raw results obtained from the NL-FEM analyses are in terms of end-rotation angles, and internal bending moment. At first, the moment versus relative rotation curves are non-dimensionalized and presented in Fig. 12.9. The non-dimensionalization is done similarly as for the results obtained using the "Smith" approach; the non-dimensional relative rotation angle θ equal one when the linear bending moment versus ultimate strength ratio is equal to unity. It is important to mention that the failure point calculated by NL-FEM analysis for typical ULCS ranges between 1.1 and 1.25, while the values obtained for the ships under 250 meters varies between 1.5 and 1.8. Furthermore, the non-linear behavior can be easily transformed by removing the linear relative rotation angle from the non-linear one, as presented in Fig. 12.10. In addition, the moment versus plastic rotation angle curve for S12, obtained from NL-FEM analysis is noted as M U . If the wave signal is scaled a little bit more, the structure collapses. Thus, the focus is not on the post-collapse behavior, but only on the occurrence or not of the collapse. The collapse of the hull girder is reached when the relative plastic rotation angle becomes greater than the failure point, as shown in Fig. 12.3. Then, for the same scaled irregular wave train, the linear whipping response and the quasi-static response are calculated.

As an illustration, Fig. 12.13 presents the non-linear whipping response, the linear whipping response, and the quasi-static one obtained for ship S04 using the non-linear behavior calculated by the simplified "Smith" approach. The following values are calculated for each irregular wave train:

• M whip N L = M U representing the maximum non-linear whipping response calculated as the internal bending moment obtained using the hydro-elastoplastic model when the hull girder is subjected to non-linear loads;

• M whip Lin representing the maximum linear whipping response calculated as the internal bending moment obtained on a linear dynamic structural model when the hull girder is subjected to nonlinear loads;

• M QS representing the maximum quasi-static response calculated as the internal bending moment obtained when the hull girder is subjected to the usual "quasi-static" loads (still water + wave bending moment).

Therefore, for the analysis of the non-linear structural behavior effect over the slamming induced whipping response, we can compute the dynamic ultimate capacity factor, as follows:

γ DU = M whip Lin M whip N L (12.
12)

It is worth mentioning that in the investigation reported by [START_REF] Derbanne | Investigations of the dynamic ultimate strength of a ship's hull girder during whipping[END_REF], a similar definition of the dynamic ultimate capacity factor is used. Thus, we can directly compare the values of γ DU calculated by two different methods. Moreover, this dynamic ultimate capacity factor can be used in the verification of the hull girder ultimate strength by writing the design equation as follows: 12.13) Going back to the literature, according to Det Norske Veritas (2015), the design equation for the verification of the ultimate strength assessment including the effect of whipping can be written as follows: is fixed to 0.9 and represents the factor reducing the effectiveness of whipping during collapse, which can be expressed as follows:

M whip Lin < γ DU • M U ( 
γ (DN V ) DU = M whip N L -M QS M whip Lin -M QS (12.15)

Equivalent design wave

The non-linear whipping response is firstly calculated by subjecting the hull girder to an EDW of type RCW (Bureau Veritas 2019a). The typical EDW that targets the maximum hogging bending moment at midship obtained for ship S12 is depicted in Fig. 12.14. Such a wave is defined as an irregular wave train, containing several components, leading to the mean of all possible response on a uni-directional sea-state. Hence, the analysis of the structural response is performed in a simple but realistic loading sequence, composed of a constant component given by the still-water bending moment, a low-frequency one given by the wave loading, and a high-frequency load component given by the response under impulsive loading (i.e., slamming). In the iterative algorithm employed for calculating the maximum nonlinear whipping response, the wave height is gradually scaled, and thus, the still-water component will remain constant while the dynamic components will increase non-linearly. After the maximum EDW height is obtained, the linear whipping response and the quasi-static response are calculated.

The corresponding linear and non-linear responses obtained for ship S12 using the non-linear behavior calculated by the NL-FEM approach are presented in Fig. 12.15. Around the instant t = 0, the internal bending moment reaches the yield limit, and the relative plastic rotation angle increases significantly, resulting in permanent plastic deformations.It should be noted that for the example shown in Fig. 12.15, the dynamic ultimate capacity factor note as γ DU is equal to 1.0018. The non-linear structural response reduces the whipping effectiveness, and thus, the non-linear whipping response is below the linear one.

The time variation of the relative plastic rotation angle between the aft-and the fore-beams is shown in Fig. 12.16(a), while Fig. 12.16(b) shows the capability of the presented model to follow the precomputed behavior describing the non-linear relationship between the internal bending moment and the plastic rotation angle. As previously discussed, the non-linear hinge model accounts for the permanent plastic deformation. Besides, the elastic part is considered fully linear, and the loading and the unloading path The above-mentioned procedure is repeated for all the ships presented in Table 12.1. It is important to mention that for every ship, the hull girder is modeled with twelve elements, while for the hydrodynamic mesh about 2500 panels per half-body are user. The structural damping is set to 2% for these calculations. The linear and non-linear whipping responses are calculated for a forward speed of five knots. Moreover, the equivalent design waves are created in such a way to maximize the hogging bending moment at midship using the so-called North Atlantic scatter diagram. The fully coupled hydro-elastoplastic calculations are performed using a fixed time step of 0.05 seconds, while the value of α = -0.05 is used in the HHT time integration scheme. It should be noted that when subjecting the hull-girder to an equivalent design wave, the computational time is only three seconds for each second in real-time. Thus, the developed methodology for solving the non-linear hydro-elastoplastic problem is efficient and allows for a fast evaluation of the non-linear whipping response.

At first, the non-linear behavior calculated using the simplified "Smith" approach is used to calculate the non-linear whipping response. Then, the more realistic non-linear behavior obtained from the NL-FEM analysis is used. It should be noted that the non-linear behavior calculated using the NL-FEM approach is available only for ten out of fourteen considered ships.

The dynamic ultimate capacity factors calculated with equation 12.12, and the whipping effectiveness coefficient calculated with equation 12.15 are summarized in Table 12.2, Fig. 12.17, and Fig. 12.18. From Fig. 12.17, it can be observed that the dynamic ultimate capacity factors obtained using the nonlinear behavior computed using the "Smith" approach are significantly higher than the ones obtained using the non-linear behavior computed using the more advanced NL-FEM analyses. This is expected since the failure points computed by the NL-FEM analyses are below the ones obtained by the simplified "Smith" approach, as depicted in Fig. 12.12. The dynamic ultimate capacity factor is highly dependent on the failure point, and it decreases with the decrease of the failure point, as shown in Fig. 12.17(b). Moreover, it can be observed that there is a linear dependency between the dynamic ultimate capacity factor and the failure point. This linear dependency can be associated with the ratio between the kinetic energy given by the external forces and the energy dissipated to follow the precomputed behavior through plastic deformations.
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In addition, it should be mentioned that the dynamic ultimate capacity factor is always greater than unity. This basically means that the non-linear whipping response calculated using the method developed in this thesis is always smaller than the linear whipping response. For ultra-large container ships above 250 meters, the dynamic ultimate capacity factor is under 1.01, when the non-linear behavior computed by NL-FEM approach is used, or up to 1.015, when the non-linear behavior calculated by the simplified "Smith" approach is used, as Fig. 12.17(a) bears out. However, for smaller ships, the dynamic ultimate capacity factor can be up to 1.025 when the non-linear behavior computed by the NL-FEM method is used or up to 1.07 when the non-linear behavior calculated by the simplified "Smith" approach is used.

The results obtained on smaller ships are raising some questions regarding the capability of the simplified "Smith" approach for the calculation of the elastoplastic behavior, which is used to derive the non-linear behavior of the hinge.

Furthermore, the whipping effectiveness is calculated using equation 12.15, and presented in Fig 12 .18. On the one hand, it can be observed that for container ships above 250 meters, the whipping effectiveness is above 0.9, and increases when the ship length is increasing. On the other hand, for the ships under 250 meters, there is a significant difference in the results when different non-linear behavior curves are used.

It is important to point out that when calculating the whipping effectiveness, its value is highly dependent on the ratio between the quasi-static response and the non-linear whipping response. If the ratio M QS/M U is close to unity, then the dynamic components will be very small. Thus, the ratio between the non-linear whipping contribution to the linear whipping contribution might lead to smaller values of the whipping effectiveness, as it can be seen in Fig. 12.18(a) for ship S05 (L BP = 185 meters). Additionally, the influence of the high-frequency response over the dynamic ultimate capacity factor is investigated. This aspect was previously analyzed by [START_REF] Derbanne | Investigations of the dynamic ultimate strength of a ship's hull girder during whipping[END_REF], showing that when the ratio between the usual quasi-static bending moment M QS and the non-linear whipping response M whip N L increases the dynamic ultimate capacity factor decreases. In their paper, the sum of still-water and wave excitation was varied from 0.8 to 0.98 of the ultimate strength. A similar approach is employed in this thesis, by adjusting the intensity of the slamming load, different ratios between the whipping response and the "usual" quasi-static response can be obtained. It is worth mentioning that the same equivalent design waves are used for each ship; however, these waves are to be scaled with different factors until maximum wave height leading to collapse is obtained. The numerical results are presented in Fig. 12.19(a) when the non-linear behavior computed using the simplified "Smith" method is used, and in Fig. 12.19(b) when the non-linear behavior calculated by NL-FEM analysis is used.

The results presented in Fig. 12.19(a) and Fig. 12.19(b) confirm the dependency between the quasi-static ratio and the dynamic ultimate capacity factors. Moreover, it can be seen that when the ratio between the "quasi-static" response and the non-linear whipping response gets closer to unity, the dynamic ultimate capacity factor decreases toward one. , may reach some very small values when the ratio between the "quasi-static" response and the non-linear whipping response gets closer to unity. Therefore, the variation of whipping effectiveness is calculated for different M QS/M U ratios is presented in Fig. 12.20. The numerical results present in Fig. 12.20 are illustrating the above mentioned behavior. Please note that for ULCS, when the M QS/M U ratio varies from 0.8 to 0.95, the whipping effectiveness varies between 0.96 and 0.99 when the non-linear behavior computed by NL-FEM approach is used, and between 0.86 and 0.97 when the non-linear behavior computed by "Smith" approach is used. 

Design sea state

The most realistic loading sequence that one could use in designing of modern ships is a design sea-state. Thus, instead of using a single equivalent design wave that maximizes the vertical bending moment at midship, a longer irregular sea-state is considered. When the ship encounters a significant wave, the relative plastic rotation angle will increase, and thus, after several significant waves, the plastic deformation will accumulate. Therefore, the focus of the current investigation is to see how the memory effect due to the cumulative permanent plastic deformation affects the non-linear whipping response. Moreover, since the computational cost increases significantly when a design sea-state is used instead of an equivalent design wave, only some ships will be used for computing the non-linear whipping responses.

The first ship chosen is ship S12, with a length between perpendiculars of 330 meters, and cargo-carrying capacity of 9300 TEU. The design sea state is defined using the JONSWAP spectrum with a significant wave height of Hs=16.8 meters and a significant wave period of Tp=16.2 seconds. The wave elevation obtained for one hour of simulation is shown in Fig. 12.21(a). It can be seen that three significant waves are encountered at the instant t=750, t=1300, and t=3400 seconds, respectively. Using the hydroelastoplastic model, the amplitude of the design sea state is gradually scaled until the non-linear whipping response becomes equal to the ultimate strength, i.e., M whip N L = M U . Then, the linear whipping response, and the quasi-static response are calculated for the same maximum design sea state. The linear and non-linear whipping responses obtained using the non-linear behavior calculated with NL-FEM approach, are shown in Fig. 12.21(b).

The evolution of the relative plastic rotation angle is shown in Fig. 12.22(a). It can be observed that at the instant t=750 seconds when the ship encounters the first significant wave, the plastic rotation angle increases. Then the plastic rotation angle is maintained until t=1400 when a second significant wave is encountered, and the relative plastic rotation angle is further increased. Finally, at t=3400 seconds, the plastic rotation angle almost reaches the failure point. If the amplitude of the design sea state is increased a little bit more, the failure point will be reached, and the structure will collapse. Moreover, the hardening behavior and the accumulation of plastic deformations can be seen in Fig. 12.22(b).

Using the same design sea state, the non-linear whipping response is computed using the non-linear behavior calculated by the simplified "Smith" approach. On the one hand, when using the non-linear behavior computed by the NL-FEM approach, the dynamic ultimate capacity factor is 1.0015. On the other hand, when using the non-linear behavior computed by the simplified "Smith" approach, the maximum value obtained is 1.0050. Thus, the values obtained on a design sea state are smaller than those obtained on an equivalent design wave: 1.0018 and 1.0051, respectively. This aspect was also pointed out by [START_REF] Derbanne | Investigations of the dynamic ultimate strength of a ship's hull girder during whipping[END_REF], showing that the dynamic ultimate capacity factor decreases when more realistic loading sequences are used.

In addition, the calculation of the non-linear whipping response under the design sea state is performed for ships S02, S05, S10, and S13. The dynamic ultimate capacity factor and the whipping effectiveness are summarized in Table 12.3. It can be observed that for all considered ships, the dynamic ultimate capacity factor obtained on design sea-state is smaller than the one obtained on equivalent design waves.

Results discussion

The numerical results obtained using the newly developed hydro-elastoplastic model are further compared with the ones obtained by [START_REF] Derbanne | Investigations of the dynamic ultimate strength of a ship's hull girder during whipping[END_REF]. It is important to point out that in [START_REF] Derbanne | Investigations of the dynamic ultimate strength of a ship's hull girder during whipping[END_REF] the investigations of the dynamic ultimate strength are performed only on ULCS, ranging from 264 to 378 meters. For these ships, the failure point's location, calculated as the non-dimensionalized curvature, ranges from 1.23 to 1.39. These values are very similar to the ones obtained on the ULCS considered in the present research work, as shown in Fig. 12.6(b).

In the study reported by [START_REF] Derbanne | Investigations of the dynamic ultimate strength of a ship's hull girder during whipping[END_REF], the dynamic ultimate strength is calculated using a single where F(t) represents the excitation term. χ represents the curvature, and f (t) represents the internal bending moment. It should be mentioned that the non-linear behavior of each ship, represented by the relationship between the curvature and the internal bending moment, was calculated using the simplified "Smith" approach. More importantly, by using a single DOF system, the non-linear curvature is uniformly distributed along the ship's length. This represents a big limitation of the structural model presented in equation 12.16 since, in reality, the collapse of the hull girder is very localized.

Using the model presented in equation 12.16, Derbanne et al. (2016) firstly calculated the dynamic ultimate capacity factor for a simple, but unrealistic, loading sequence composed of pure slamming impact on calm water by using the energy conservation. Besides, the dynamic ultimate capacity factor was calculated for more realistic loading sequences as an equivalent design wave or design sea state. The results obtained by [START_REF] Derbanne | Investigations of the dynamic ultimate strength of a ship's hull girder during whipping[END_REF] for the ships with the lowest and the highest failure point, which are also the ones with the lowest and the highest dynamic ultimate capacity factor, are summarized in Table 12.4. 12.4), and the ones obtained in the present research work (see Table 12.2 and Table 12.3) are compared in Fig. 12.23.

One of the conclusions from [START_REF] Derbanne | Investigations of the dynamic ultimate strength of a ship's hull girder during whipping[END_REF] was that too simple excitation sequences, such as a pure slamming impact on calm water, are overestimating the dynamic ultimate capacity factor. This aspect is clearly visible in Fig. 12.23. Moreover, it can be observed that when the non-linear whipping response is calculated on a design sea state, instead of an equivalent design wave, the dynamic ultimate capacity factors will reduce by around 50%.

More importantly, the numerical results depicted in Fig. 12.23 are showing that there is a significant reduction of the dynamic ultimate capacity factor calculated by two different methods. On the one hand, with the hydro-elastoplastic approach developed in the present thesis, the plastic deformations are From Fig. 12.24, it can be observed that the whipping effectiveness value recommended by Det Norske Veritas ( 2015) is not conservative. The values obtained on ULCS using the hydro-elastoplastic coupling are higher than the fixed value of 0.9. Also, it is important to mention that the whipping effectiveness calculated on design sea states is significantly higher than the one obtained on the equivalent design waves.

Conclusions

The first part of this chapter describes a new approach developed to compute the non-linear whipping response using a hydro-elastoplastic coupling. Within the proposed method, the structure is modeled as two non-uniform Timoshenko beams connected by a non-linear hinge, while the hydrodynamic part is modeled using the 3D boundary element method. The exact coupling between the structural model and the hydrodynamic one is achieved by constructing the hydrodynamic boundary value problems (BVP-s)

for each shape function of the finite elements. After solving the complex BVP-s for a range of frequencies, the hydrodynamic coefficients in terms of added mass, wave damping, and wave excitation are determined. The time-domain simulation is then performed by making use of the frequency-dependent hydrodynamic coefficients to calculate the incident and diffraction wave loads. In addition, the radiation force is calculated from the memory-response functions and the history of velocities. The non-linear pressures resulting from slamming are calculated on multiple 2D sections and later integrated over the 3D hydrodynamic mesh. Finally, the hydro-elastoplastic problem is solved in time-domain using numerical integration, where different iterations are used to handle the non-linearities.

The hydro-elastoplastic model allows for a fast computation of the non-linear whipping response (i.e., considering the non-linear structural behavior) on realistic scenarios such as equivalent design waves, or design sea states. Comparing to a strongly coupled CFD-FEM approach, where both domains should be considered non-linear, the proposed approach's computational time is significantly reduced: from days to minutes.

The second part of this chapter presents the numerical investigation of the non-linear whipping response using the fully coupled hydro-elastoplastic model on a database of fourteen container ships. A broad range of ships is considered in the current study, from 160m to 350m. The non-linear hinge's behavior is described by the non-linear relationship between the internal bending moment and the relative plastic rotation angle, which is derived from the well-known moment-curvature curve used to describe the ultimate strength of a ship section. For the considered ships, the non-linear behavior is calculated using two different methods: (i) the simplified "Smith" approach where the non-linear curvature is associated with the entire length between two reinforced frames; (ii) the NL-FEM approach where the plastic area is localized between two web frames.

When comparing the output of the two methods, it is observed that the failure point, defined as the relative plastic rotation angle at the moment when the internal bending moment is equal to the ultimate strength, is significantly lower in the results obtained from the more advanced approach based on NL-FEM. This aspect raises some questions regarding the usability of the simplified "Smith" approach in computing the non-linear behavior curves accurately.

Two coefficients, noted γ DU and γ

(DN V ) DU
, are derived in order to account for the influence of the nonlinear structural behavior over the whipping response. The numerical results showed that both coefficients are highly dependent on the ratio between the quasi-static response to the total non-linear whipping response, and on the failure point.

The dynamic ultimate capacity factor calculated on equivalent design waves varies from 1.005 to 1.072 when the non-linear behavior from the simplified "Smith" approach is used, and from 1.001 to 1.023 when the non-linear behavior calculated by the NL-FEM approach is used. It should be mentioned that for ULCS (above 250 meters), the dynamic ultimate capacity factor calculated varies from 1.005 to 1.013 when the non-linear behavior from the simplified "Smith" approach is used, and from 1.001 to 1.010 when the non-linear behavior calculated by the NL-FEM approach is used.

The whipping effectiveness calculated on equivalent design waves varies from 0.42 to 0.97 when the non-linear behavior calculated by the simplified "Smith" approach is used, and from 0.70 to 0.99 when the non-linear behavior calculated by the NL-FEM approach is used. Moreover, for ULCS, the whipping effectiveness varies from 0.89 to 0.97 when the non-linear behavior calculated by the simplified "Smith" approach is used, and from 0.90 to 0.99 when the non-linear behavior calculated by the NL-FEM approach is used. Therefore, it seems that the value γ (DN V ) DU = 0.9 introduced by Det Norske Veritas (2015) is not conservative.

In addition, when the non-linear whipping response is calculated on a design sea state, the dynamic ultimate capacity factor decreases, while the whipping effectiveness increases. This aspect was also pointed out by [START_REF] Derbanne | Investigations of the dynamic ultimate strength of a ship's hull girder during whipping[END_REF]. Thus, it can be said that it is of paramount importance to use realistic loading sequences when analyzing the influence of non-linear structural behavior over the slamming-induced whipping response.

Moreover, it was shown the importance of using a realistic structural model. The dynamic ultimate capacity factors obtained using the single DOF structural model proposed by [START_REF] Derbanne | Investigations of the dynamic ultimate strength of a ship's hull girder during whipping[END_REF] are significantly bigger than the one obtained from the newly developed method. This difference can be explained by the fact that in the single DOF model, the plasticity is uniformly distributed along the hull girder, while in the non-linear hinge model, the plasticity occurs only within one frame. Finally, the above mentioned numerical results are summarized in Fig. 12.25. The outcome of this study provides useful information regarding the effects of non-linear structural behavior on the slamminginduced whipping response of ships. For ultra-large container ships, the dynamic ultimate capacity factor defined as the ratio between the linear whipping response and the non-linear whipping response varies from 1.001 to 1.013. Therefore, it seems that the whipping effectiveness coefficient defined by Det Norske Veritas (2015) is not conservative, and as a consequence, the effectiveness of whipping should no be reduced.
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Conclusions & Recommendations

The main conclusions about the work presented in this thesis are summarized in the first section of this chapter. Recommendations for future research are given in the second section.

Conclusions

The research work presented in this thesis is focused on the analysis of slamming-induced whipping response on the hull girder ultimate strength. The first part of the thesis is dedicated to the numerical investigations of dynamic ultimate strength for various ship structures, while the second part is dedicated to the development of a new method to calculate the non-linear whipping response, which accounts for the non-linear structural behavior.

The first part of the thesis deals with the dynamic ultimate strength analysis by making use of nonlinear finite element method, in which both material and geometric nonlinearities are taken into account.

The dynamic effects influencing the structural capacity are the inertia and the strain rate effect. Firstly, the inertia of the structure affects the structural response, and mainly the amplitude of the internal load, which can be higher or lower than the applied external load. Secondly, the strain rate effect represents the dynamic enhancement of the yield strength and increases when the loading speed increases.

Chapter 3 presents the methodology developed for the ultimate strength analysis under dynamic loading. It is pointed out the importance of using a correct definition of the dynamic ultimate strength. Thus, the dynamic ultimate strength should be calculated as the maximum load that the structure can withstand without collapsing; any load higher than this level will lead to the structure collapse. Moreover, if the load applied during the dynamic analysis leads to collapse, then such a load level is of very limited interest for the designer. Besides, the dynamic effects induced by such a load level will be over-estimated, yielding a false dynamic capacity increase.

The newly developed methodology is employed for a systematic analysis of different structures, considering a broad range of loading scenarios in order to investigate the influence of the dynamic effects over the ultimate strength, as follows:

• Chapter 4 presents a systematic analysis performed on sixteen stiffened panels. For each stiffened panel, the dynamic ultimate strength is calculated using simple half-sine loading scenarios representative for wave-and whipping-induced stresses, and more realistic scenarios extracted from the time series of a direct hydro-elastic analysis.

• Chapter 5, presents the parametric study on the dynamic ultimate strength of a stiffened panel subjected to wave-and whipping-induced stresses. For this investigation, a broad range of load amplitude curves are used, being defined analytically using realistic values for each dominant load 169 parameters.

• In Chapters 6 and 7 the investigation of the dynamic effects over the hull girder ultimate strength of ultra-large container ships under sagging and hogging conditions is presented. The non-linear finite element analyses are performed on three frame-bay models for the hogging condition, and over four frame-bay models for the sagging condition, respectively. In both cases, the hull girder is subjected to simple half-sine loading scenarios, considering different wave and whipping scenarios. Moreover, for the hogging conditions, more realistic loading scenarios are considered by enforcing the bending moment resulting from several equivalent design waves.

• Chapter 8 presents the analysis of dynamic ultimate strength under combined global and local loads. The numerical model is extended over two holds, and it is subjected to wave-and whippinginduced bending moments, lateral loads, and different cargo distributions.

For each of the investigations mentioned above, the dynamic load factors are calculated as the ratio between the dynamic ultimate strength and the quasi-static ultimate strength (i.e., without strain rate and inertia effects).

At first, it should be noted that if the structure is subjected to a load significantly higher than the ultimate strength, for example, a load level with 20% higher than the quasi-static ultimate strength, as used in the investigations reported by [START_REF] Jiang | Nonlinear finite element dynamic collapse analyses of stiffened panels[END_REF] and Yamada (2019b)), the dynamic load factors, noted as f d 1.2 , are varying from 8.5% to 14.7% for whipping-induced stresses.

Then, when using the iterative method developed in this thesis, the dynamic load factors, noted as f d , are varying between 3.5% and 6.3% for wave-induced stresses, and between 5.0% and 8.4% for whippinginduced stresses, when simple half-sine loading scenarios are used. Moreover, when the structure is subjected to more realistic loading scenarios, where the high-frequency whipping-induced stresses are superimposed to the low-frequency wave-induced stresses, the dynamic load factors are varying from 3.3% to 6.0% for wave-induced stresses, and from 3.7% to 8.4% for whipping-induced stresses.

Thus, it can be observed that when using the over-increased load approach, i.e., a load significantly higher than the quasi-static ultimate strength, the dynamic load factors are higher than those obtained using the new definition developed in this thesis. The corollary is that the structure cannot actually withstand the maximum load obtained using the over-increased load approach without collapsing. Therefore, this confirms the need for a new definition.

Furthermore, the dynamic load factors obtained under wave-induced stresses are in contradiction with the long-established industry practice to consider the wave loads as quasi-static and to disregard the dynamic effects associated with the wave-induced stresses.

In the current thesis, it is considered that the dynamic capacity increase under wave-induced stresses is a limitation of the well-known Cowper-Symonds strain rate sensitivity model, which shows yield stress increased by about 5% at strain rates as low as 10 -3 s -1 . Thus, in order to determine the influence of whipping-induced stresses over the ultimate strength, it is decided to compute the dynamic collapse effect as the relative one between whipping and wave scenarios. Therefore, the dynamic collapse effect varies between 1.2% and 2.5% when the structure is subjected to simple half-sine loading scenarios. On the other hand, the dynamic collapse effect varies from 0.4% to 2.2% when the structure is subjected to more realistic loading scenarios derived from equivalent design waves.

In order to investigate the influence of the considered strain rate sensitivity model, in the last part of Chapter 5, a new strain rate sensitivity model is proposed. The new model is developed by using a more complex equation in order to obtain the dynamic yield stress ratio as close as possible to unity, at strain rates of 10 -3 s -1 , and maintain the same values as the Cowper-Symonds model at intermediate and high strain rates. Using the new strain rate constitutive model, the dynamic load factor for wave loads is substantially smaller: from up to 5%, it drops to 1%, which confirms the industry practice to consider the wave loads as "quasi-static." With this definition, the dynamic collapse effect is slightly increased, from a maximum value of 1.7% to a maximum value of 2.2%. This is due to a steeper slope of the ( ε, σ d /σ 0 ) curve in the vicinity of low strain rates for the new strain rate sensitivity constitutive model.

Aside from all those discussed above, the following remarks may be added to the conclusions of the first part:

• the strain rates obtained under whipping-induced stresses are usually with one order higher than the ones obtained for wave-induced stresses;

• simplified loading scenarios, i.e., half-sine load amplitude curves, tend to over-predicting the dynamic capacity;

• the dynamic load factor calculated as the ratio between the dynamic capacity and the quasi-static one increases when the load period decreases;

• in order to calculate the influence of slamming-induced whipping response over the ultimate strength, the dynamic collapse effect should be calculated as the relative value between the whipping and wave scenarios;

• the dynamic collapse effect increases when the applied lateral load increases;

• the dynamic collapse effect obtained on an isolated stiffened panel is about the same value as the one obtained when analyzing the entire hull girder section;

• the dynamic capacity increase is mainly due to the strain rate effect.

The second part of the thesis is dedicated to the development of a new approach for computing the non-linear whipping response. If in the traditional hydro-elastic analyses the whipping response is calculated as the internal bending moment of a linear dynamic system, the non-linear whipping response is calculated as the non-linear dynamic response, taking into account the non-linear structural behavior.

In the current thesis, the hull girder is modeled as two non-uniform Timoshenko beams connected via a non-linear hinge. Chapter 10 presents the development of the non-linear hinge model. It is important to mention that the hinge's behavior is derived from the typical moment versus curvature diagram, which describes the ultimate strength of a ship section. Moreover, the non-linear hinge's behavior can be precomputed under quasi-static conditions since the influence of the dynamic effects on the hull girder ultimate strength are negligible, as shown in the first part of this thesis. Furthermore, in order to follow the precomputed non-linear behavior, an iterative algorithm is proposed. Thus, whenever the internal bending moment at the non-linear hinge location becomes greater than the yield limit, the discontinuity between the aft-and the fore-beam is gradually increased until the new solution characterized by the plastic rotation angle and the internal bending moment follows the precomputed non-linear behavior.

The direct coupling between the structural and 3D hydrodynamic models is achieved by constructing the hydrodynamic boundary value problems (BVP-s) for each shape function of the beam finite elements. Thus, instead of performing a fully time-domain hydrodynamic computation, which requires significant computational efforts, the hydrodynamic coefficients in terms of added mass, wave damping, and wave excitation are determined for a range of frequencies by solving the complex BVP-s. The theoretical background of the so-called partial time-domain method is presented in Chapter 11. The time-dependent diffraction force is calculated using the complex RAOs for the diffraction force obtained in the frequencydomain. In addition, the radiation force is calculated from the retardation functions and the history of velocities. Finally, the non-linear pressures resulting from slamming are calculated on multiple 2D sections defined on the ship's fore-extremity and integrated over the 3D hydrodynamic mesh.

Furthermore, Chapter 12 presents the newly developed method for solving the hydro-elastoplastic problem. The non-linear structural problem and the non-linear hydrodynamic problem are coupled in order to calculate the non-linear whipping response. The fully-coupled problem is solved in time-domain using numerical integration, where outer and inner iteration loops are used to handle the non-linearities. Moreover, it is important to mention that the hydro-elastoplastic model allows for fast computation of the non-linear whipping response on realistic scenarios such as equivalent design waves, or design sea states. Comparing to a strongly coupled CFD-FEM approach, where both domains should be considered non-linear, the proposed approach's computational time is significantly reduced: from days to minutes.

The last part of Chapter 12 presents a systematic analysis of the non-linear whipping response on a database of fourteen container ships, ranging from 160m to 350m. For each ship, the typical moment versus curvature relationship is calculated using two different approaches: the simplified "Smith" approach and the more advanced NL-FEM approach. The non-linear behavior curves used to describe the non-linear hinge are derived from the precalculated moment versus curvature results. It is important to mention that in the simplified "Smith" approach, the non-linear curvature is associated with the entire length between two reinforced frames, while in the NL-FEM approach, the plastic area is localized between two web frames. It was observed that the failure point is significantly lower in the results obtained from the more advanced approach based on NL-FEM. This aspect raises some questions regarding the usability of the simplified "Smith" approach in accurately computing the non-linear behavior curves.

The dynamic ultimate capacity factor noted γ DU , calculated on equivalent design waves, varies from 1.005 to 1.072 when the non-linear behavior from the simplified "Smith" approach is used, and from 1.001 to 1.023 when the non-linear behavior calculated by the NL-FEM approach is used. It should be mentioned that for ULCS (above 250 meters), the dynamic ultimate capacity factor calculated varies from 1.005 to 1.013 when the non-linear behavior from the simplified "Smith" approach is used, and from 1.001 to 1.010 when the non-linear behavior calculated by the NL-FEM approach is used. Furthermore, the dynamic ultimate capacity factor decreases when it is calculated on the design sea state. It varies from 1.005 to 1.029 when the non-linear behavior calculated by the simplified "Smith" approach is used and from 1.001 to 1.012 when the non-linear behavior calculated by the NL-FEM approach is used.

Moreover, it was shown the importance of using a realistic structural model. The dynamic ultimate capacity factors obtained using the single DOF structural model proposed by [START_REF] Derbanne | Investigations of the dynamic ultimate strength of a ship's hull girder during whipping[END_REF] are significantly bigger than the one obtained from the newly developed method. This difference can be explained by the fact that in the single DOF model, the plasticity is uniformly distributed along the hull girder, while in the non-linear hinge model, the plasticity occurs only within one frame.

Besides, the whipping effectiveness noted γ

(DN V ) DU
, calculated on equivalent design waves, varies from 0.42 to 0.97 when the non-linear behavior calculated by the simplified "Smith" approach is used, and from 0.70 to 0.99 when the non-linear behavior calculated by the NL-FEM approach is used. For ULCS, the whipping effectiveness varies from 0.89 to 0.97 when the non-linear behavior calculated by the simplified "Smith" approach is used and from 0.90 to 0.99 when the non-linear behavior calculated by the NL-FEM approach is used. Furthermore, when the whipping effectiveness is calculated on the design sea states, it varies from 0.90 to 0.98 when the non-linear behavior calculated by the simplified "Smith" approach is used, and 0.96 and 0.99 when the non-linear behavior calculated by the NL-FEM approach is used. Furthermore, Fig. 12.26 summarizes the influence of slamming-induced whipping over the ultimate strength of ships. In the first part of this thesis, the influence of the dynamic effects over the hull girder ultimate strength is investigated. When the dynamic load factors are calculated using an over-increased load approach, the whipping influence varies from 8.5% to 14.7%. It is important to point out that the structure cannot withstand such a load level without collapsing. The dynamic load factors calculated as the ratio between the dynamic ultimate strength and the quasi-static one using the new definition pro- posed in this thesis varies from 3.7% to 8.4%. Moreover, the dynamic capacity increase calculated as the relative one between the whipping-and wave-induced stresses, varies between 0.4% and 2.5%. In the second part of this thesis, the non-linear structural behavior's influence over the slamming-induced whipping response is analyzed. The dynamic capacity increase defined as the relative one between the linear whipping response and the non-linear whipping response, calculated using the hydro-elastoplastic model developed in this thesis, varies from 0.1% to 7.2%.

Finally, based on the research work presented in this thesis, it can be concluded that:

• the dynamic effects of slamming-induced whipping have a minimal effect on the ultimate strength, increasing the structural capacity from 0.4% to 2.5%. Thus, it seems that the assumption that the strain rate is negligible in the ultimate strength analysis of ship-shaped structures subjected to wave-induced stresses can be extended for the analysis of structures subjected to whipping-induced stresses;

• the effect of the non-linear structural behavior on the slamming-induced whipping response varies from 0.1% to 2.4% when the newly developed hydro-elastoplastic model is used together with the non-linear behavior precomputed by NL-FEM approach. Moreover, it is essential to point out that the whipping effectiveness coefficient of 0.9, defined by Det Norske Veritas (2015), is not conservative, and cannot be safely used in the design. A conservative value of the whipping effectiveness would be 0.99. Thus, it can be concluded that the non-linear structural behavior is negligible in the analysis of the maximum hydro-elastic response.

Recommendations

Recommendations for further research are given in this section. The first are some improvements in the short-term for the topics investigated in this thesis. Then some long-term research perspectives are given.

• For the analysis of the dynamic ultimate strength of stiffened panels, it is important to perform an experimental campaign in order to validate the numerical results. The experimental investigation should consider realistic loading scenarios and not simple half-sine load amplitude curves. Additional efforts are also necessary for investigating the strain rate sensitivity of typical steels used in shipbuilding at lower strain rates.

• The computation of the hull girder ultimate strength should be performed under cyclic loading derived from a long-term hydrodynamic analysis in order to investigate the memory effect due to cumulative permanent plastic deformation. Particular attention should be given to the influence of low-cycle fatigue and/or local structural failure during the cyclic loading and unloading.

• The hydrodynamic model used for the hydro-elastoplastic coupling methodology developed within this thesis should be further improved. The non-linear load components, such as the Froude-Krylov correction and the non-linear hydrostatic forces, can be relatively easily calculated and should be included in the current model. Moreover, the slamming loads could be calculated using the Generalized Wagner Model for a more reasonable estimation of the impulsive forces.

• The structural model used for the calculation of the non-linear whipping response should also be improved. With regard to this, two possible models can be used: (i) an advanced multi-fiber beam element could be used for the collapse area, and therefore the non-linear behavior of the structure will be calculated during the analysis; (ii) a 1D-3D hybrid structural model where the aft-and fore-end extremities are modeled with 1D beam elements, while the middle part will be represented by a partial 3D structural model. In both scenarios, special attention should be given to the shape functions used to calculate the frequency-dependent hydrodynamic coefficients. This will pose certain difficulties since the collapse area cannot be further reduced at a node.

• On the long-term perspective, the fully-coupled CFD-FEM, where both domains are considered non-linear, should be performed. This topic poses certain difficulties not only from the computational costs point of view but also from the mathematical and/or theoretical models' point of view.

The direct coupling between CFD and NL-FEM solvers is necessary in order to solve multiple non-linear problems such as the hydro-elastoplastic response of the hull girder, the green-water impact on the ship structures, the local fluid-structure interaction due to slamming or sloshing, etc.

• The validation of the hydro-elastoplastic models should also be improved in the long-term. There is currently no data available, neither model-nor full-scale experiments, to validate the non-linear whipping models and the numerical predictions.
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 4 Fig.4.13, the dynamic ultimate strength is computed using the iterative procedure described in Section 4.3. The results for the wave and wave+whipping real scenarios are presented in Table4.10.
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 5 Parametric Study on the Dynamic Ultimate Strength of a Stiffened Panel Subjected to Wave-and Whipping-Induced StressesThis chapter is partially as presented in:[START_REF] Jagite | A parametric study on the dynamic ultimate strength of a stiffened panel subjected to wave-and whipping-induced stresses[END_REF] 
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 711 Figure 7.11: Collapse mode of the hull girder section, 1.075 • M U -qs , (view of inner hull)
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 712 Figure 7.12: Variation of different energies vs. time (T=1.6s)

  16000 TEU container ship is used in for analyzing the dynamic ultimate strength under combined global and local loads. The considered model has two watertight bulkheads (WBhd) that are delimiting a cargo hold. And each hold is divided into two 40-foot bays by a partial bulkhead (PBhd). A typical deformation of the double bottom under lateral loads is shown in Fig.8.1. Moreover, in the scenario when the ship sails with one-bay empty, and without ballast in the double bottom, the lateral loads effect is significantly higher. Hence, the combined global and local bending might lead to a bigger reduction of the ultimate strength, as depicted in Fig.8.1.
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 8 Figs. 8.8(b), 8.9(b), and 8.10(b) shows the distribution of equivalent plastic strain in the target bay in the post-collapse state. For the pure bending and one-bay empty conditions, the post-collapse behavior is similar: where the buckling extends to the middle of the inner bottom plating. On the other hand, for the full loading condition, the buckling of the inner bottom plating appears next to the partial support bulkhead, where the 40-foot container support plates are located, and where the vertical force of the cargo stacks is distributed.
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 10 Figure 10.17: Free-floating-like flexible tube
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  • n mods are reduced to generalized matrices by making use of the eigenvectors. The eigenvectors are determined by solving the well-known eigenmodes problem: (c -Ω 2 m)ζ = 0; where Ω are the eigenfrequencies, and ζ are the eigenvectors. Then, the generalized matrices can be easily constructed by multiplying the wanted matrix with the matrix of eigenvectors, and with its transpose: A G (ω) = ζ T A(ω)ζ. The comparison of the hydrodynamic coefficients in terms of added mass and damping RAOs between DYANA2 and HOMER2 is presented in Fig. 11.13 for the heave, pitch, and the first vertical flexible mode.
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 11 Figure 11.17: Mesh distribution over the welted hull surface
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 11 Figure 11.18: Natural vibration modes, sensitivity to mesh density

  Figure 11.19: Influence of modeling parameters over the linear frequency domain hydro-elastic results

  3.2. The retardation functions are created based on the damping RAOs obtained by solving the linear-frequency domain problem. To check the sensitivity of the retardation functions with regard to the time step size, five different time step sizes are used: ∆t = [0.2, 0.1, 0.05, 0.01, 0.001]. To check if the retardation functions are calculated correctly, we can recalculate the damping curves from the retardation functions and compare them to the original frequency-domain results.The comparison between the frequency domain damping RAOs, and the same curves obtained from the retardation functions are depicted in Fig.11.20. The frequency-domain results are indicated by 'frequency,' shown in red, while the results of the retardation functions are shown for each time step size, in black. The agreement between the frequency and time domain is perfect, showing that the retardation functions are correctly calculated. Moreover, from Fig.11.20, we can infer that the extrapolation of the damping curves, using the exponential form, is accurate and provides a stable solution for highfrequencies. (a) surge motion (b) surge motion (c) surge motion (d) vertical displacement (e) vertical displacement (f) vertical displacement
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 124125 Figure 12.4: Evolution of container ships' characteristics vs. length between perpendiculars
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 127 Figure 12.7: Transformation of typical moment vs. curvature behavior, from Smith approach, to moment vs. plastic rotation angle (results obtained for S12)
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 12 Figure 12.8: NL-FEM models of the eleven considered ships
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 a Figure 12.13: Example of linear vs. non-linear whipping for ship S04 under an EDW, using the non-linear behavior computed by "Smith" approach
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 1219 Figure 12.19: Dynamic ultimate capacity factor vs. M QS /M U coefficient
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 3 Figure 12.21: Resulting time series for ship S12, using the non-linear behavior calculated by NL-FEM approach
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 12 Figure 12.26: Influence of slamming-induced whipping on the hull girder ultimate strength

  

  

Table 3

 3 

			.1: Cowper Symonds' constant C coefficients	
		α	β	ε p = 0.05	constant C ε p = 0.10	ε p = 0.15
	DH36	5.54e4	8.54e6	8.02e4	1.36e5	2.50e5
	EH36	8.95e4	3.29e7	3.96e5	4.66e5	5.84e5
	automobile sheet plates.				

Table 4

 4 

		.1: Geometric characteristics of the stiffened panels considered in the present study
	no name	span spacing [mm] [mm] [mm] [mm] t stiffener	material β	λ
	1	ia841t225 3264	841	22.5 L400x100x11.5/16 AH32 1.462 0.320
	2	tb840t20	3250	840	20.0 T400x150x11/18	AH32 1.643 0.278
	3	tb840t27	3250	840	27.0 T425x150x11/18	AH32 1.217 0.269
	4	ia840t215 3250	840	21.5 L350x100x12/17	AH32 1.529 0.346
	5	ia840t185 3250	840	18.5 L350x100x12/17	AH32 1.776 0.359
	6	tb840t24	3250	840	24.0 T400x150x11/18	AH32 1.369 0.267
	7	fb910t26	1625	910	26.0 FB225x21	AH32 1.369 0.371
	8	ia840t145 3200	840	14.5 L250x90x12/16	AH32 2.266 0.476
	9	ia860t13	3160	860	13.0 L250x90x10/15	AH32 2.588 0.463
	10 ia871t155 3150	871	15.5 L300x90x11/16	AH32 2.198 0.397
	11 ia875t16	3300	875	16.0 L300x90x11/16	AH32 2.140 0.420
	12 ia890t20	3150	890	20.0 L350x100x12/17	AH32 1.741 0.347
	13 ia910t22	2100	910	22.0 L250x90x10/15	AH32 1.618 0.296
	14 tb840t24b 4200	840	24.0 T400x150x11.5/25 AH36 1.454 0.351
	15 ia732t28	2100	732	28.0 L250x90x12/16	AH36 1.086 0.376
	16 bb905t18	3445	905	18.0 HP260x11	AH36 2.088 0.678
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 4 

	.3: Model extent influence over the quasi-static ultimate strength (σ Xu /σ 0 ) under axial compression
		2 stiff.	5 stiff.	7 stiff.
	2 web frames	0.917	0.923	0.927
	3 web frames	0.915	0.921	0.924

Table 4

 4 

			.4: Mesh density	
	mesh	elements on	elements on	elements on	elements on
		span	spacing	stiffener height	stiffener flange
	coarse	16	4	2	1
	medium	32	8	4	1
	fine	46	12	6	2
	(a) coarse mesh	(b) medium mesh	(c) fine mesh

Table 4
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	.6: Effect of the initial imperfections amplitude on the quasi-static ultimate capacity and the dynamic
	capacity for wave and whipping scenarios				
	initial imperf prs [MPa]	σ Xu/σ 0	f d wave [%] f d whip [%]	f DU [%]
	best	0	0.921	4.3	5.8	1.4
	practice	0.2	0.855	5.3	7.1	1.7
	slight level	0	0.999	4.0	5.4	1.3
	(Smith)	0.2	0.925	5.1	6.9	1.7
	average level	0	0.929	4.2	5.6	1.3
	(Smith)	0.2	0.863	5.2	7.0	1.7
	severe level	0	0.835	5.0	6.9	1.8
	(Smith)	0.2	0.782	5.8	7.8	1.8

Table 4

 4 Furthermore, the results of the dynamic analyses for all panels under axial compression are summarized in Table4.8. In Fig.4.8, we show a comparison between the dynamic load factors obtained with our new definition for wave and whipping period scenarios, together with those obtained with Jiang's definition for whipping period.

	.7: Comparison of the different definitions of the dynamic capacity increase, for whipping scenario
	model	σ Xu/σ 0	t ib	f dib f d whip	model	σ Xu/σ 0	t ib	f dib f d whip
	ia840t185 0.874 0.292 9.4	5.6	ia732t28	0.969 0.298 10.5	7.2
	ia840t215 0.914 0.295 9.9	5.8	ia860t13	0.829 0.294 9.8	5.2
	ia841t225 0.921 0.295 9.9	6.1	ia871t155 0.787 0.290 9.0	5.2
	fb910t26 0.927 0.294 9.8	6.1	ia875t16	0.800 0.289 8.8	5.0
	ia840t145 0.785 0.289 8.8	4.8	ia890t20	0.866 0.292 9.4	5.4
	ia910t22	0.829 0.297 10.3	5.8	tb840t24	0.955 0.295 9.9	6.2
	tb840t20	0.896 0.294 9.8	5.7	tb840t24b 0.921 0.298 10.5	6.0
	tb840t27	0.961 0.296 10.1	6.5	bb905t18 0.771 0.290 9.0	5.0

Table 4

 4 

		.9: Geometrical characteristics of ULCS	
	Length overall	340 m	Breadth moulded	42.8 m
	Draught	14.8 m	Capacity	8500 TEU
	1st vertical mode frequency 0.492 Hz 2nd vertical mode frequency 1.036 Hz

Table 4

 4 

			.10: Dynamic load factors [%] variation for real loading scenarios	
	case	prs	RS1 f d whip	RS2	RS3	RS4	RS5

Table 5

 5 

				.1: Principal characteristics of ships		
	ship	LBP [m]	B [m]	D [m]	T [m]	c B	CC [TEU]	1 st vb [Hz]	2 nd vb [Hz]
	C01	150	25	15	9.5	0.670	1200	1.086	2.327
	C02	205	31	19	11.0	0.639	1500	0.923	1.953
	C03	160	27	14	8.8	0.701	1600	0.917	1.951
	C04	170	24	12	5.5	0.730	1700	0.886	1.939
	C05	185	30	16	11.0	0.673	2100	0.838	1.803
	C06	220	37	20	12.5	0.678	3600	0.720	1.422
	C07	270	32	21	12.0	0.678	4500	0.540	1.157
	C08	285	32	22	13.5	0.684	5000	0.606	1.306
	C09	260	40	24	12.5	0.626	5900	0.591	1.218
	C10	290	40	24	12.5	0.630	6500	0.628	1.312
	C11	320	43	25	13.0	0.675	8600	0.491	1.035
	C12	330	43	27	13.0	0.688	9300	0.485	1.027
	C13	345	45	30	15.5	0.689 12000 0.529	1.094
	C14	350	51	30	15.5	0.720 14000 0.437	0.903

Table 5

 5 

		.2: Range of load parameters
	parameter	min value	max value
	T wave	8.0 [s]	13.0 [s]

Table 5

 5 

				.3: Loading cases	
				applied load component	
	case name	axial	still water	dynamic wave
			compression	pressure	pressure
	1	Ax	•		
	2	AxSP	•	•	
	3	AxSDP	•	•	•

Table 5 . 4 :

 54 Comparison of the quasi-static ultimate strength (σ Xu /σ 0 ) under axial compression between empirical methods and NL-FEM

	method	σ Xu /σ 0	difference [%]
	Lin (1985)	0.8111	9.51
	Paik and Thayamballi (1997)	0.8014	10.59
	Zhang and Khan (2009)	0.8639	3.62
	Kim et al. (2017)	0.7587	15.35
	Xu et al. (2018)	0.8695	3.00
	Kim et al. (2019)	0.8107	9.55
	present study (NL-FEM)	0.8963	0.00

Table 5 .

 5 5: Dynamic capacity increase rate vs. still water load component ratio

	case	α SW	σ sw [MPa] [mm] ∆ x	σ [MPa] (x10 3 ) (wave) max ε(wave) max	f dwave [%]	σ max (whip) [MPa] (x10 3 ) ε(whip) max	f dwhip [%]
	1	0.1	34.6	1.36	357.6	4.37	4.3	359.8	9.63	5.0
	2	0.2	70.1	2.73	364.3	5.53	4.3	359.9	9.61	5.0
	3	0.3	106.6	4.11	356.2	3.50	4.2	362.7	11.1	4.9
	4	0.4	144.2	5.49	356.4	3.46	4.2	365.1	12.6	4.9
	5	0.5	183.1	6.88	356.8	3.43	4.2	366.4	15.5	4.9
			Table 5.6: Dynamic capacity increase rate vs. whipping load amplitude	
			case	β GW M	σ [MPa] (whip) max		ε(whip) max (x10 3 )	f dwhip [%]		
			1	0.1	359.1		7.46	4.6		
			2	0.2	358.0		7.53	4.7		
			3	0.3	366.8		12.71	4.9		
			4	0.4	364.8		9.64	4.9		
			5	0.5	365.0		11.1	4.9		

Table 5

 5 

			(whip) max	ε(whip) max	f dwhip
			[MPa]	(x10 3 )	[%]
	1	-0.6	361.0	11.6	4.8
	2	-0.3	358.7	11.2	4.9
	3	0.0	361.8	11.5	4.9
	4	0.2	362.8	12.2	5.0
	5	0.4	364.8	14.0	5.0
	6	0.6	363.3	11.0	4.9
	7	0.8	360.9	10.4	4.8

.7: Dynamic capacity increase rate vs. time shift period case T shif t σ

Table 6 . 1 :

 61 Geometric characteristics of the double bottom structure

	Structural component	Properties [mm] 9600 TEU 16000 TEU
	bottom plating	21 -22	24 -26.5
	bottom stiffener	L400x100x11.5/16	L450x125x11.5/18
	inner bottom plate	16	17
	inner bottom stiffener.	L300x90x13/17	HP320x12
	stiffener spacing (b)	840	841
	web-frame spacing (a)	3160	3150

Table 6

 6 

		.2: Load cases		
	case Load scenario	Load Period [s]	
	1-3 wave period	8.0	10.5	12.1
	4-6 whipping period	1.6	1.8	2.1

Table 6 .

 6 

		3: Mesh density details	
	mesh	M1	M2	M3	M4
	el. on span	16	21	32	64
	el on spacing	4	6	8	16
	el on stiff height	2	3	4	8
	el on stiff flange	1	1	1	2
	avg. el. size [mm]	200	150	100	50
	thousands of nodes	38	66	113	405

Table 6

 6 

	.4: Initial imperfections effect on the ultimate strength
	case	M U quasi-static [GNm] 9600 TEU 16000 TEU
	FEM w/o imp.	20.75	34.78
	FEM w imp.	18.92	31.48
	Smith method	20.70	34.40

Table 6

 6 

	.5: Dynamic load factors obtained under simple half-sine loading scenarios
	case	9600 TEU	16000 TEU

Table 6 .

 6 6: Dynamic load factors obtained for the typical stiffened panels extracted from the bottom plating of the two ships

Table 6 .

 6 7: Dynamic load factors obtained from realistic loading scenarios based on equivalent design waves for the 16000 TEU container ship

	γ DU [%]

scenario f d wave [%] f d whip [%]

Table 7 .
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	Properties	Value
	Young's modulus	205.8 GPa
	Poisson ratio	0.3
	C-S parm. for high tensile steel C=3200, q=5
	C-S parm. for mild steel	C=40.4, q=5

1: Material characteristics for the structural model

Table 7

 7 

	.2: Load cases		
	no scenario	Load period [s]
	1-3 Wave scenario	8.0	10.5	12
	4-6 Whipping scenario	1.6	1.8	2.1

Table 7

 7 

			.3: Quasi-static ultimate strength	
	model	M U [GNm] -initial imperfection level
		without	slight	average	severe
	Mars	36.43	-	-	-
	FB	38.52	38.38	38.05	37.43
	HB	37.58	37.30	36.83	36.08

Table 7 .

 7 

			4: Dynamic ultimate strength		
	T [s]	12	10.5	8	2.1	1.8	1.6
	f d [%]	4.7	4.8	5.1	6.8	7.2	7.4
	εmax [s -1 ] 0.029	0.034	0.051	0.171	0.404	0.625

Table 8

 8 

		.1: Quasi-static ultimate strength	
	model	loading condition	M U quasi-static [GNm] w/o imp. w imp.
	Smith method	pure bending	34.40	-
	3FB FEM	pure bending	34.78	31.48
	2HM FEM	pure bending	34.90	31.65
	2HM FEM	full load	32.31	29.05
	2HM FEM	one-bay empty	30.72	27.37

Table 8
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	condition			
	pure bending	4.8	5.9	1.05
	full load	5.1	6.7	1.52
	one-bay empty	6.0	8.4	2.26

.2: Dynamic load factors loading f d wave [%] f d whip [%] γ DU [%]

  [START_REF] Derbanne | Investigations of the dynamic ultimate strength of a ship's hull girder during whipping[END_REF] presented a simplified method to investigate the dynamic hull girder response by considering the non-linear effect of hull girder ultimate strength. The numerical model is the well-known single degree of freedom vibration model, which can take different moment-curvature relation curves and different hydrodynamic loading sequences. From the hydrodynamic point of view, the model deals with realistic loading scenarios, including the still water bending moment, the wave bending moment, and a slamming load.[START_REF] Derbanne | Investigations of the dynamic ultimate strength of a ship's hull girder during whipping[END_REF] introduced the dynamic ultimate capacity factor, as the maximum allowable linear whipping response equivalent to a non-linear dynamic response reaching the failure point. It was shown that the dynamic ultimate capacity factor is highly depended on the non-linear model of the hull girder behavior. However, it is always greater than unity, meaning that the linear dynamic response of the hull girder can exceed the quasi-static ultimate capacity without reaching the failure point. In conclusion,Derbanne et al. (

Table 10 .
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	(max) p	[rad]	M	(max) int	[kNm]

1: Mesh sensitivity results mesh n 1 n 2 total el. w

(max) 

[m] θ

  11.2. Linear frequency domain hydro-elastic seakeeping model 123

Table 11 . 1 :

 111 Frequencies in Hz of the natural vibration modes, sensitivity to mesh density From Fig.11.18 and Table11.1 we can infer that the number of structural elements used to model the hull girder has no (or negligible) influence over the natural vibrational modes.

	struct el.	mode 1	mode 2	mode 3	mode 4	mode 5
	12	0.715	1.444	2.199	2.970	3.787
	21	0.717	1.436	2.205	2.958	3.688
	31	0.721	1.459	2.216	2.952	3.645

Table 11 . 2 :

 112 Mesh sensitivity results for a wave frequency of 0.4 [rad/s] (ms stands for midship node, f e stands for fore-end node)

	struct el. hydro el.	u (cog) x	w (ms)	w (f e)	θ (ms)	M	(ms) Y	(ms) Z F
	12	1000	0.40	0.353	1.785	9.04e-03 7.87e+08 3.62e+06
	12	2000	0.40	0.354	1.785	9.03e-03 7.88e+08 3.63e+06
	12	4000	0.40	0.353	1.784	9.03e-03 7.88e+08 3.53e+06
	21	1000	0.40	0.353	1.785	9.04e-03 7.86e+08 3.63e+06
	21	2000	0.39	0.353	1.780	9.02e-03 7.85e+08 3.64e+06
	21	4000	0.40	0.353	1.784	9.03e-03 7.87e+08 3.54e+06
	31	1000	0.40	0.353	1.782	9.03e-03 7.87e+08 3.64e+06
	31	2000	0.39	0.354	1.783	9.02e-03 7.87e+08 3.65e+06
	31	4000	0.40	0.353	1.781	9.02e-03 7.88e+08 3.55e+06

Table 11 .

 11 3: Sensitivity of mesh density and time-step size over the retardation functions

	DOF	struct el. frequency	0.2 s	0.1 s	time domain, ∆t = 0.05 s	0.01 s	0.001 s
	surge motion	12 21 31	1.20e+06 1.20e+06 1.20e+06 1.20e+06 1.20e+06 1.20e+06 1.20e+06 1.20e+06 1.20e+06 1.20e+06 1.20e+06 1.20e+06 1.20e+06 1.20e+06 1.20e+06 1.20e+06 1.20e+06 1.20e+06
	vertical	12	4.48e+05 4.47e+05 4.48e+05 4.48e+05 4.48e+05 4.48e+05
	displace-	21	1.38e+05 1.38e+05 1.38e+05 1.38e+05 1.38e+05 1.38e+05
	ment	31	5.26e+04 5.25e+04 5.26e+04 5.26e+04 5.26e+04 5.26e+04

Table 12
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					.1: Principal characteristics of ships			
	ship	L BP [m]	B [m]	D [m]	T [m]	c B	CC [TEU]	1 st vb [Hz]	2 nd vb [Hz]	M SW [GNm] [GNm] M U
	S01	160.0	27.0	14.0	8.8	0.700	1600	0.917	1.951	0.72	2.75
	S02	160.0	27.0	14.0	9.2	0.700	1600	1.190	2.566	0.72	2.75
	S03	170.0	24.0	12.0	5.5	0.730	1700	0.886	1.939	0.89	2.61
	S04	170.0	30.0	16.0	11.0	0.610	2000	1.050	2.240	0.77	3.49
	S05	185.0	30.0	16.0	11.0	0.673	2100	0.838	1.803	1.04	4.55
	S06	205.0	31.0	19.0	11.0	0.639	2500	0.923	1.953	1.42	6.30
	S07	260.0	32.0	21.0	12.0	0.678	4500	0.540	1.157	2.94	9.95
	S08	270.0	40.0	24.0	12.5	0.626	5900	0.591	1.218	3.87	12.50
	S09	285.0	32.0	22.0	13.5	0.684	5000	0.606	1.306	3.04	10.56
	S10	290.0	40.0	24.0	12.0	0.630	6500	0.628	1.312	4.41	13.92
	S11	320.0	43.0	25.0	13.0	0.675	8600	0.491	1.035	6.20	19.01
	S12	330.0	43.0	27.0	13.0	0.688	9300	0.485	1.027	6.86	20.72
	S13	345.0	45.0	30.0	15.5	0.689	12000	0.529	1.094	7.06	23.52
	S14	350.0	51.0	30.0	15.5	0.720	14000	0.437	0.903	8.73	27.72

(a) cargo carying capacity vs. length (b) wet frequencies vs. length

Table 12
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				.2: Dynamic ultimate capacity factor of fourteen container ships
	ship	L BP	θ	"Smith" behavior	NL-FEM behavior

Table 12 .

 12 3: Dynamic ultimate capacity factor under design sea state

			ship	S02	S05	S10	S12	S13
	"Smith"	behavior	DSS EDW	M QS /M U 0.7326 γ DU 1.0294 γ (DN V ) DU 0.9009 M QS /M U 0.7609 γ DU 1.0646 γ (DN V ) DU 0.7874	0.7848 1.0097 0.9569 0.9715 1.0381 0.4278	0.8885 1.0053 0.9544 0.9386 1.0074 0.8930	0.8541 1.0050 0.9669 0.8453 1.0051 0.9679	0.7170 1.0061 0.9789 0.8449 1.0096 0.9420
	NL-FEM	behavior	DSS EDW	M QS /M U 0.7206 γ DU 1.0122 γ (DN V ) DU 0.9582 M QS /M U 0.7260 γ DU 1.0222 γ (DN V ) DU 0.9249	0.7766 1.0075 0.9673 0.9537 1.0196 0.7024	0.8855 1.0016 0.9859 0.9348 1.0033 0.9513	0.8512 1.0015 0.9903 0.8429 1.0018 0.9884	0.7171 1.0027 0.9906 0.8395 1.0031 0.9809

Table 12 .

 12 4: Dynamic ultimate capacity factor from Derbanne et al. (2016) The dynamic ultimate capacity factors from Derbanne et al. (2016) (Table

	method	M QS M U	Ship 2, χ f = 1.39 Ship 13, χ f = 1.23 L BP = 280[m] L BP = 375[m] γ DU γ (DN V ) DU γ DU (DN V ) γ DU
	energy conservation (Eq.15)	0.8	1.33	0.38	1.21	0.49
	energy conservation (Eq.14)	0.8	1.29	0.41	1.17	0.54
	equivalent design wave	0.8	1.25	0.44	1.15	0.57
	design sea state	0.8	1.11	0.65	1.08	0.71
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Part II

NON-LINEAR WHIPPING MODEL

Set initial conditions: 𝒙 0 , 𝒙̇0, 𝜃 0 Set time integration parameters: 𝛼, 𝛽, 𝛾, Δ𝑡 Input ship data: *.d2c file Compute the structural matrices: 𝐦, 𝐛, 𝐜 Start time integration: 𝑡 ∈ [0, 𝑡 𝑓𝑖𝑛𝑎𝑙 ] Check if the new solution follows the precomputed curve:

(𝜃 𝑑 (𝑖) , 𝐵𝑀 𝑑 (𝑖) ) ∈ Γ Check the exceedance of yield limit: 𝐵𝑀 𝑑𝑖𝑠𝑐 > 𝑓 𝐵𝑀 (𝜃 𝑛 )

Force vector calculation: 𝑭 ̃(𝑡 𝑛 ) Discontinuity: 𝜃 𝑑 = 𝜃 𝑑-1

Compute the effective stiffness matrix: 𝐊 ̃𝐸 Compute the effective force vector: 𝑭 ̃𝐸 Solve the linear system: 𝐊 ̃𝐸 ⋅ Δ𝒙 ̃= 𝑭 ̃𝐸

Yes

Start the iterative algorithm: 𝜃 𝑑 (0) = 𝜃 𝑑 , 𝐵𝑀 𝑑 (0) = 𝐵𝑀 𝑑 Increase the discontinuity: 𝜃 𝑑 (𝑖) = 𝜃 𝑑 (𝑖-1) + Δ𝜃 hinge, which is considered as a zero-length element, and the two adjacent elastic elements will give the elastic part, as Fig. 10.12(b) bears out. The aft-and the fore-parts are modeled with five elements each. Calculation of the corrections:

Non-linear force convergence?

Store values: 𝒙 𝑛+1 , 𝒙 𝑛+1 , 𝒙 𝑛+1 ← 𝒙 𝑛+1 (𝑖) , 𝒙 𝑛+1 (𝑖) , 𝒙 𝑛+1 bending moment. For the hogging condition, the still-water bending moment is about 30% of the ultimate strength. Hence, it is extremely important to consider realistic loading scenarios when analyzing the nonlinear whipping response.

Non-linear structural behavior

For all fourteen container ships, the ultimate capacity curves in hogging have been firstly computed using the simplified method based on the "Smith" approach, available in MARS2000 software (Bureau Veritas compared with the one obtained using the simplified "Smith" approach in Fig. 12.11. From Fig. 12.11 it can be observed that the failure point obtained using the simplified "Smith" approach is significantly higher than the one obtained using the NL-FEM analysis. To the author's opinion, this difference in the plastic rotation angle is related to the assumption that in the "Smith" approach, the non-linear curvature is associated with the entire length between two reinforced frames, while in the NL-FEM method the plastic strains are localized between two web frames (see Fig. 6.9).

Figure 12.11: Comparison of plastic rotation angle between the NL-FEM analysis and the one obtained using the "Smith" approach (results obtained for a S12)

Furthermore, from Fig. 12.6 and Fig. 12.9 it can be seen that there is correlation of the plastic rotation angle and the ship's length. This aspect was also pointed out by [START_REF] Derbanne | Investigations of the dynamic ultimate strength of a ship's hull girder during whipping[END_REF], showing that the location of the failure point decreases with the increase in the ships' length. Therefore, the relationship between the plastic rotation angle at the ultimate strength, denoted as θ f , and the ships' length is presented in Fig. 12.12. Thus, it is fair to say that the plastic rotation angle at the ultimate strength decreases when the length of the ship increases. Besides, it is important to point out that for ultra-large container ships over 250 meters the plastic rotation angle is relatively small.

Non-linear whipping calculations

In order to determine the influence of the non-linear structural behavior over the maximum slamminginduced whipping response, a similar procedure as in the first part of this thesis is employed. It is important to mention that for the non-linear whipping response calculations, the hull girder can be subjected to either an equivalent design wave or a design sea state. However, in both scenarios, the irregular wave train is gradually scaled until the non-linear whipping response becomes equal to the ultimate capacity, Titre : Analyse des effets de fouettement sur la résistance ultime de poutre navire Mots clés : résistance ultime dynamique, fouettement non-linéaire, hydro-élastoplasticité Résumé : La première partie de cette thèse est consacrée à l'étude numérique de la résistance ultime dynamique de différentes structures navales. Afin d'évaluer l'influence de l'inertie et de la vitesse de déformation, plusieurs cas de chargement sont considérés, des plus simples, de la forme d'une demie sinusoïde, aux plus réalistes, issus de vagues de design. La résistance ultime dynamique est définie comme le niveau maximal de chargement qui ne conduit pas à la ruine de la structure, et est calculée par un nouvel algorithme itératif. Enfin, la résistance ultime dynamique est comparée à la résistance ultime quasi-statique, ce qui permet de calculer des coefficients de chargements dynamiques, qui évaluent correctement l'influence de la dynamique sur la ruine.

La deuxième partie de cette thèse porte sur le développement d'un nouvelle méthode pour le calcul de la réponse au fouettement, en prenant en compte le comportement élastoplastique de la structure. The second part of the thesis is dedicated to the development of a new method to calculate the non-linear whipping response, where the elastoplastic structural response is considered. The hull girder is modeled as two non-uniform beams, connected with a non-linear hinge, described by the non-linear relation between the internal bending moment and the relative rotation angle. The hydrodynamic problem is solved using the 3D boundary element method.

Then, the fully coupled hydro-elastoplastic problem is solved within a partly non-linear time-domain seakeeping program. The calculations are perfomed on a broad range of ships on different realistic loading scenarios Finally, the non-linear and linear whipping resposnes are compared in order to derive the dynamic ultimate capacity factors.