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A.1 Nine nodes solid-shell nite element SB9 . . . . . . . . . . . . . . . . .

Éléments nis solide-coques hexaédrique et prismatique pour la modélisation non linéaire des structures minces et moyennement épaisses Les structures à faibles ou moyennes épaisseurs sont naturellement présentes dans la plupart des installations de production d'énergie : bâtiment réacteur, tuyauteries sous pression, réservoirs métalliques ou bâches, cuve de réacteur, liners métalliques des enceintes de con nement pour ne citer que ceux-là. Un besoin actuellement exprimé par les unités d'ingénierie d'EDF est la modélisation des phénomènes de cloquage de liners métalliques des bâtiments réacteur. Un liner est une structures de type tôle métallique assurant la fonction d'étanchéité des centrales nucléaires. Sa modélisation nécessite la prise en compte d'un phénomène de contact-frottement engendrant du pincement sur la coque, de la plasticité sous l'e et de cloquage et de la non linéarité géométrique (instabilité de type ambement). Pour modéliser le comportement thermomécanique d'une structure pareille, les éléments nis de plaques et coques actuellement disponible ne semblent pas être à la hauteur. Le premier verrou attribuable à ces éléments est l'hypothèse des contraintes planes qui empêche la prise en compte de certaines lois de comportement nativement tridimensionnelles. En deuxième lieu, du fait de leur formulation avec des degrés de liberté de rotations ces éléments n'o rent pas une facilité d'utilisation lorsqu'il s'agit de résoudre des problèmes prenant en compte les e ets non-linéaires telles que les grande transformations géométriques, le contact-frottement bi-facial, le ambement et les pressions suiveuses. Une alternative serait d'utiliser des éléments volumiques standards. Cependant le coût de calcul prohibitif des ces derniers est di cilement accessible pour de nombreuses applications industrielles. Le but de ces travaux est de proposer une solution à cette problématique. Nous avons proposé une formulation élément ni de type solid-coque enrichie en pincement et capable de reproduire les comportements des structures minces avec une précision satisfaisante. Ce nouvel éléments ni fonctionnent avec tout type de loi de comportement tridimensionnelle sans restriction sur les champs de contraintes. On peut également l'utiliser pour tous les types de problèmes mécaniques : linéaire et non linéaire, contact frottement, grande transformation, ambement, pression suiveuse etc. Les simulations numériques réalisées montrent des performances satisfaisantes.

MOTS CLÉS : Éléments ni solide-coque, Loi 3D, Champs de déformation enrichis, Intégration Réduite, Champ de déformation assumé, Contrainte normale enrichie Hexahedral and prismatic solid-shell nite elements for nonlinear analysis of thin and medium-thick structures Thin or medium-thick structures are naturally present in most power generation facilities: reactor building, pressurized pipelines, metal tanks or tarpaulins, reactor vessel, metal liners of containment chambers, to name but a few. A need currently expressed by EDF's engineering units is the modeling of the blistering phenomena of metal liners in reactor facilities. A liner is a metal sheet type structure that provides the impermeability function of nuclear power plants. Its modeling requires taking into account a contact-friction phenomenon causing pinching on the shell, plasticity under the e ect of blistering and geometric nonlinearity (buckling type instability).

To model the thermo-mechanical behavior of such a structure, the nite elements of plates and shells currently available do not seem to be up to the task. The rst limitation attributable to these elements is the assumption of plane stresses which prevents the consideration of some natively three-dimensional constitutive laws. Secondly, due to their formulation with rotational degrees of freedom these elements do not o er facility of use when solving problems that take into account non-linear e ects such as large geometric transformations, bi-facial friction-contact, buckling and following pressures. An alternative would be to use standard volume elements. However, the prohibitive computing cost of the latter is di cult to access for many industrial applications.

The aim of this work is to propose a solution to this problem. We have proposed a solid-shell nite element formulation enriched in their pinching stress and strain and capable of reproducing accurately the behaviour of thin structures. This new nite element works with any type of three-dimensional behaviour law without restriction on stress elds. It can also be used for all types of mechanical problems: linear and nonlinear, frictional contact, large transformation, buckling, displacement-dependent pressure, etc. The numerical simulations carried out show satisfactory performances.

MOTS CLÉS : Solid-shell nite element, 3D constitutive Law, Enhanced assumed strain, Reduced Integration, Assumed natural strain, Enhanced pinching stress Introduction 1 Background on the modeling of shell like structures 1.1 1.5.3 The Enhanced Assumed strain (EAS) method . . . . . . . . . . . 1.5.4 The Assumed Natural Strain (ANS) method . . . . . . . . . . . . 1.5.5 Modi ed deformation gradient .

2 Nine and seven nodes solid-shell elements 

Nine nodes solid-shell element (SB9

Introduction

The mission of the EDF Group (Electricité de France), as the operator of its power generation facilities (nuclear, hydroelectric, wind power, etc.), is to contribute to the supply of electricity in France and in some countries in Europe. To do this, it must maintain its generating facilities in good condition, carry out any repairs and justify to the authorities that they are in good working order both in operation and in the event of incidents. In particular, the Fukushima accident in 2011 led the French nuclear safety authority (ASN) to raise its requirements in terms of safety and security of production facilities. In addition, EDF wishes to extend the life of its nuclear eet beyond 40 years (or even 50 years).

In order to meet these new safety requirements, while controlling repair and compliance costs, EDF is relying increasingly on numerical simulation. This often proves to be the only tool available to EDF because justi cation by experimental means, in addition to being costly, is long and complex.

In this context, EDF R&D develops internally many numerical simulation codes according to the physical problems to be addressed. For structural mechanics, the ER-MES department is in charge of developing the nite element calculation code code_aster. code_aster is an open-source software developed since 1989 to meet and anticipate the needs of EDF's engineering departments as well as for the needs of the research carried out internally within EDF R&D for all that concerns the thermomechanics of non-linear structures. In addition, this code is developed with the quality assurance system required by the nuclear industry. For several years now, code_aster has been integrated into the numerical simulation platform salome_meca in order to have in open-source all the tools necessary for complete mechanical studies, including in particular pre-and post-treatments, and a user-friendly graphical interface for data entry.

The higher requirements in terms of operating safety of production units necessitate increasingly realistic simulations in order to justify the resistance of equipment to aging. A large majority of the equipment in the energy production facilities is composed of thin or medium-thick structures like: reactor building, pipelines, tanks, reactor vessel, metal liners, to name but a few. Numerical studies dedicated to the analysis of these thin structures involve the use of complex numerical models in order to obtain very precise results that can justify the long-term performance of the structures. A need currently expressed by the 'Direction Technique' (TD) is the modelling of blistering phenomena of the metal liners in reactor buildings. These liners provide a sealing function of nuclear power plants. The dimensional ratios (thickness/radius) that can be less than 0.5%, while taking into account strong non-linearity such as contact-friction causing pinching, the plasticity of sheet under the e ect of blistering and the geometric non-linearity (like buckling type instability). To model the thermomechanical behavior of these thin structures, code_aster has several types of nite elements, DKT/DKQ(QUAD4, TRIA3, Kirchho -love), DST/Q4G(QUAD4, TRIA3, Mindlin-Reissner), COQUE_3D (QUAD9, Naghdi-Reissner) or SHB (HEXA8, solid-shell). The audit of the plate and shell modeling showed that these nite elements are not complete (either in their formulation or in their numerical implementation) to address EDF's current speci c needs in dealing with non-linear mechanical problems on shells. The DKT, which is the most complete element currently in code_aster, is not usable (in code_aster) in large rotations and does not take into account the displacement-dependent pressures. The nite element COQUE_3D, on the other hand, does not take into account the continuous contact formulations and exhibits eccentricity problems. The SHB, which works under the hypothesis of plane stress (like DKT and COQUE_3D by the way), requires the modi cation of the constitutive laws by using the Deborst type algorithms which, very often, converge hardly. An alterna-Introduction tive to shell-type nite elements would be to use classical isoparametric nite elements (3D, D_PLAN, AXIS). These elements work with purely three-dimensional behaviour laws and can handle several non-linearities such as contact/friction, fracture mechanics, elasto-plasticity or large geometrical transformations. Unfortunately they have the disadvantage of being too rigid to reproduce correctly the behaviour of thin structures. They require very ne discretization in the thickness direction (leading to discretization in other directions to avoid attening the elements too much) to give good results. This is very expensive in terms of calculation time. Overall, advanced studies in numerical mechanics, in code_aster, on thin structures are limited by two obstacles.

The rst is the hypothesis of plane stresses usually adopted in nite elements of shells, which makes it di cult to carry out certain studies such as fracture mechanics or to take into account certain natively three-dimensional constitutive laws. The second limitation concerns non-linear e ects (large geometrical transformations, elasto-plastic behaviour, contact/friction) which require reliable, robust and high-performance nite elements.

Objectifs of this thesis

EDF's need is to be able to carry out highly non-linear, robust and high-performance quasi-static calculations to demonstrate the mechanical strength of important nuclear components in critical situations. Recent work in the literature shows that the so-called solid-shell nite elements are very promising in addressing the issue just discussed. This is why their development is currently in full expansion. Indeed, both in the eld of process simulation (sheet metal forming) and in the calculation of elongated structures (under extreme solicitations), the demand for the use of three-dimensional solid elements with behaviours close to the kinematics of shells is more and more important, in particular due to their ability to use non-linear behaviour laws with a large number of internal variables without the hypothesis of plane stress. The hypothesis of plane stress requires to completely reconsider the modeling of the nonlinear three-dimensional behaviour laws and can lead to numerical di culties such as plastic incompressibility for example. In this context, the aim of this thesis is to develop a new class of solid-shell nite elements which allows the kinematics of Kirchho -Love and Reissner Mindlin, but without the hypothesis of plane stresses (in order to use three-dimensional behaviour laws). These elements must have only translational degrees of freedom, authorizing transverse shear as well as pinching stresses to be evaluated, but also contact and friction on the outer surfaces. This new class of solid-shell nite elements should also be used for large transformations. More generally, the objective of this thesis is to propose and develop a new solid-shell nite element that meets the following requirements:

• no restriction on the constitutive laws : indeed, the new nite elements will thus be a break with respect to the classical shell approaches and work with full 3D constitutive law.

• taking into account non-linear phenomena in thickness such as pinching or transverse shear.
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• taking into account the large geometrical transformations involving displacementdependent pressures, buckling etc.

• No restriction on the interface laws: contact mechanics essentially, but without restriction in the using of di cult interface laws such as de-cohesion or fracture mechanics. Due to the plane stress hypothesis, the classical shell elements do not deal with fracture mechanics.

In addition to these requirements we aim also to develop and implement solid-shell nite elements that perform accurately with :

1. No locking for incompressible materials 2. Good bending behavior 3. No locking in the limit of very thin elements 4. Distortion insensitivity 5. Good coarse mesh accuracy 6. Simple implementation of nonlinear constitutive laws 7. Automatic and robust stabilization in nonlinear situations

Easy mesh generation

The rst aim is essential requirement to be able to model nearly incompressible materials. Such material behavior occurs in rubber like materials or in metal plasticity.

The second and third aims are required for structural elements, such as plate, shell and beams elements. The fourth aim is important because in discretizing an arbitrary geometry the existence of distorted elements is inevitable. In addition, elements can get highly distorted during nonlinear simulations including nite deformations. The fth aim results from the fact that many engineering problems have to be modeled as 3D problems. Due to computer limitations, quite coarse meshes have to be used often to solve these problems. Thus, an element which provides good coarse mesh accuracy is valuable in these situations. The sixth aim is associated with the fact that more and more nonlinear computations involving nonlinear constitutive models have to be performed to design engineering structures. Thus, an element formulation which allows a straightforward implementation of such constitutive equations is desirable. In many solid-shell formulations available in the literature, the stabilization techniques used relies on some coe cient that are often user-dependent. The seventh aim is to propose a more e cient way of stabilization, automatic and user-independent. This thesis includes an introduction in which the objectives of the thesis are detailed, three chapters, a conclusion which sums up the work carried out, followed by a few perspectives and nally supporting documents (appendices) to provide additional information on subjects addressed but not detailed in the body of the document. The rst chapter recalls the di erent methods available to model the behaviour of shell-like structures, their evolution and their limits. The second chapter details the formulation of two new solid-shell nite elements. Finally, in the third chapter these two solid-shell nite elements are tested and validated on di erent types of mechanical problems.

Chapter 1

Background on the modeling of shell like structures Contents 1.4 The 3D standard nite element . 

Introduction

Shell-like structures are largely present in most engineering design and process control. To model such structures, engineers generally use classical shell elements based on the degenerated shell concept or classical shell theories. These elements perform well for the simulation of bending problems ; in linear as well as for some nonlinear problems. However in certain engineering problems, like sheet metal forming or any structural problem where strong nonlinearity are in play, those elements can show some inadequacy related to the complexity of their formulations or the hypothesis they are embedded with. The main limiting hypothesis being the plane stress state, which literally means that the normal transverse stress is negligible. Under such assumption, one must modify the 3D nonlinear constitutive law to be numerically integrated. This is very often a laborious work particularly when the material law is intrinsically three dimensional. There are several approaches one can use to overcome the problem of plane stress state in shell element.

A rst approach would be to use the so called 'shell-solid' element. These elements are based mainly upon Mindlin-Reissner shell elements with three displacements and two local rotational degrees of freedom at each node while the three-dimensional (3D) constitutive behavior is enforced via additional degrees of freedom giving the so-called 5, 6 or 7-parameters shell models, see for example,[SIM 90a, BRA 94, BET 96, BIS 97, KEM 98, BIS 00, ELA 00, CAR 02, BRA 02, CAR 05, BRA 05, SUS 13, KUL 08, KIM 08, KLI 99] among many others.The 5-parameter shell models have been enriched by a desired number of parameters at nodes to permit a representation of through-thickness stretching. Several shell elements have been developed which explicitly account for the thickness change as an additional degree of freedom leading to 6-parameter models. But due to the coupling with the Poisson ratio in bending dominated cases, the linear displacement eld in thickness direction gives a constant strain which in turn causes an arti cial normal stress. As a remedy, either the coupling terms have to be removed from the constitutive law by a plane stress state or the shell formulation has to be extended by a linear normal strain, leading to a 7-parameter model. This is achieved by a quadratic variation of the normal displacement eld and the details can be found in References [SIM 90a, BRA 94, BET 96, BIS 97, BIS 00, ELA 00, CAR 02, CAR 05]. In a recently published paper [SAN 11], Sansalone and co-authors have proposed a approach in the same kind but a little di erent where an additional node is introduced in the center of three-node and four-node shell elements with only two through-thickness translational degrees of freedom of the upper and lower surfaces of the shell. Then a full 3D constitutive strain-stress behavior can be used. For triangles in bending state, either based on Kirchho 's or on Mindlin's assumptions, it has been shown that the results are exactly the same as those given by the initial formulation of these elements using a plane stress hypothesis. For quadrilaterals, the results are slightly di erent but many numerical examples including nonlinear computations prove that those di erences are not signi cant. While these elements work without the plane stress hypothesis, they still have a 2D topology and have rotational degrees of freedom which make their implemen-1. Background on the modeling of shell like structures tation in nonlinear nite element very complex. Also their 2D topology is limiting in a sense that it is hard to link them with 3D elements when a structure is composed of structural part and continuum part.

A second way to model shell like structure would be to use 3D standard isoparametric nite elements as an alternative to the plane stress hypothesis. These elements operate with purely three-dimensional behaviour laws and can handle several nonlinearities such as contact/friction, fracture mechanics, elastic-plastic or large geometrical transformations. Unfortunately they have the disadvantage of being too rigid to reproduce correctly the behaviour of thin structures. They require very ne discretization in the thickness direction (leading to a ne discretization in other directions as well, to avoid attening the elements too much) to give good results. This is very expensive in terms of calculation time.

Faced with such an impasse, several works have been conducted over the last thirty years leading to the development of the so-called solid-shell nite elements (see [PAR 95, WRI 96a, HAU 98, HAU 00, SZE 00, VUQ 03, LEG 03, FON 05, KIM 05, REE 07, DES 07, CAR 08, SCH 09, MAS 00, ABE 02, ABE 09, KLI 06, CAR 05, REE 00, SOU 06, KLI 97, WRI 96c] to name just a few contributions). Solid-shell nite elements have the particularity of being able to model the behaviour of shell-like structures while giving an overview of the existing phenomena in the thickness. The so called solid-shell elements are very attractive and are still the subject of many researches. Like standard elements, solid-shell elements can incorporate the normal stress along thickness direction if the pinching is correctly handled. General 3D-constitutive material can be used without any assumption on the normal stress. These elements have only translational degrees of freedom (DOF) which make their formulation very simple. The di culties associated with complex shell formulation with nodal rotation are then avoided. Moreover, since they have only translational DOF, solid-shell elements can easily be connected with standard solids elements when there is coexistence of three-dimensional and structural zones. Now, for a solid-shell to perform accurately, it must avoid the amount of locking phenomena that standard low-order elements encounter when modeling shell structures. If not handled conveniently, solid-shell elements su er from locking pathologies that lead the elements to give poor results, specially in case of out-of-plane bending load analysis or isochoric plasticity.

The rst locking pathology that low order solid-shell element encounter is volumetric locking which arises when the material is incompressible or nearly-incompressible, as for rubber like material (see the work of Reese and Wriggers [REE 97]) or for metal plasticity (see Simo and Taylor[SIM 85], Miehe[MIE 04] to name just a few). In such material the non-vanishing volumetric strain makes the element sti er, resulting in excessively small deformations. Several solutions have been proposed to solve volumetric locking. There are, among others, The reduced or selective integration technique proposed by Zienkiewicz [ZIE 77], the B-bar approach of Hughes [HUG 81a], applied for solid elements in the work of Belytschko [LIU 98] and the enhanced assumed strain initially proposed by Simo and co-authors [SIM 90a, SIM 92a, SIM 93]. These methods are largely applied in many solid-shell formulations. Poisson thickness locking is due to resulting incorrect-constant distribution of the normal stress in the thickness direction. To avoid this locking phenomenon it is necessary to assure that the normal stress varies linearly along the thickness direction in bending situation. It can be done using a quadratic interpolation or the compatible normal displacement e.g. Parisch [PAR 95]. Another and most often used method is to enrich the transverse normal strain by mean of the enhanced-assumed stress method [SIM 92a, SOU 06, REE 07].

A further locking e ect observed for solid-shell element is the phenomenon of a so called curvature locking or sometime trapezoidal locking. This phenomenon is found in structures where the out of plane element edges are not perpendicular to the mid-layer, which is the case for originally curved or heavily deformed structures. This locking e ect can be overcomed by using the naturally assumed interpolation of the normal strain as proposed by Bischo and Ramm [BIS 97] or Betsch and Stein [BET 96].

Another commonly encountered locking pathology in solid-shell is the transverse shear locking. This happens because normal strains of linear element are coupled by shear strain. Low order elements do not have pure bending modes to behave correctly for pure bending load cases. Hence, there are parasitic shear strains that appear and become more important than normal strain. This makes the element sti er than necessary resulting in a poor bending behavior. An interesting remedy is the Assumed Natural Strain (ANS) method rst proposed by Hughes and Tezduyar [HUG 81b], followed by Wempner [WEM 82] then by Dvorkin and co-authors [DVO 84, DVO 95b, DVO 95a] for shell elements. The approach has since then been applied in solid-shell formulation by many authors. See e.g. [HAU 98, HAU 01, KLI 97, CAR 05, CAR 08, SCH 09].

The goal of this chapter is to give a short review about the di erent formulations used to model shell like structures (as discussed above). We will highlight their fundamentals assumptions and particularities as well as their advantages and limitations in the solving of industrial problems. Section 1.3 is all about classical faceted-shell elements with 2D topology. In section 1.4 we will discuss about the 3D standard element and why it's not convenient to use it for shell like structure due to many locking problems. And nally in section 1.5 we will see how the standard 3D element is modi ed and enriched to give solid-shell nite elements capable to e ciently model shell like structures. 

Background on the modeling of shell like structures

Nonlinear analysis of mechanical structures

Let's consider a continuous domain with a reference con guration Ω 0 which undergoes a transformation over time φ, making it pass into a current con guration Ω. Following this transformation, a point at the initial position X ∈ Ω 0 in the reference con guration is transformed into a point x ∈ Ω, with x = φ (X,t), in the current con guration. So the displacement eld between the two positions is

u (X,t) = x -X = φ (X,t) -X (1.1)
To describe the motion of the solid between the current con guration and the reference con guration a gradient tensor of transformation F is de ned by

F = ∂x ∂X = 1 + ∇u (1.2)
An in nitesimal vector dx of the deformed con guration can be expressed as a function of an in nitesimal vector dX of the reference con guration using the transformation gradient tensor F dx = F • dX.

(1.3)

Green Lagrange strain tensor

To evaluate the deformation of the solid, the Green-Lagrange deformation tensor E is de ned as follows:

E = 1 2 F T F -1 = 1 2 ∇u + ∇ T u + ∇ T u∇u (1.4)

Stress tensor

To evaluate the stresses that apply to a section of a solid, the Cauchy tensor σ is generally calculated. It is the natural stress tensor since it directly measures the force per unit area in the current con guration. Let's consider an oriented surface element NdS in the reference con guration, where dS is the surface of the element and N is its unitary outgoing normal, and after transformation this surface element is deformed into a surface element nds in the current con guration with ds in the scalar measurement of the surface and n its outgoing normal. Assuming that on this surface element (current con guration) an elementary force df is applied, the Cauchy tensor, is written as follows df = σnds (1.5)

The second Piola Kirchho stress tensor is then described as follows :

S = JF -1 σF -T (1.6)
Where J = detF. If we assume the strain energy density to be W , the constitutive relation can be obtained by di erentiating W with respect to the Lagrangian strain E, to obtain

S = ∂W (E) ∂E (1.7)

Principle of Minimum Potential Energy

The weak form of a nonlinear elastic system can be obtained from the principle of minimum potential energy. The potential energy of an elastic system is the di erence between the stored strain energy π int and the work done by external forces π ext . For simplicity, it is assumed that the applied forces are conservative, which means that the applied load is independent of deformation. Therefore, these forces can be transformed to the undeformed geometry. Using the strain energy and work done by applied forces, the potential energy of an elastic system can be obtained as

π (u) = π int (u) -π ext (u) = Ω 0 W (E)dΩ 0 - ∂Ω 0 u T • fd(∂Ω 0 ) - Ω 0 u T • bdΩ 0 (1.8)
where f represents a surface force and b a body force. In order to nd the displacement at the minimum potential energy, a perturbation method is often used. Let us assume that the displacement eld u is perturbed in the direction of δu (arbitrary) and τ is the parameter that controls the perturbation size. The perturbed displacement is denoted by

u τ = u + τδu (1.9)
δu then corresponds to the virtual displacement in the principle of virtual work. The rst variation of the potential energy can be obtained by taking the rst-order variation of π (u) in the direction of δu, as

δπ (u, δu) = d dτ π (u + τδu) | τ=0 (1.10)
where the symbol δ represents the rst-order variation of a function. The process of variation is similar to the di erentiation of a function. Using the potential energy in equation ( 1.8) and equating the rst variation to zero, the following variational equation can be obtained

δπ (u, δu) = Ω 0 ∂W (E) ∂E : δE dΩ 0 - ∂Ω 0 δu T • fd(∂Ω 0 ) - Ω 0 δu T • bdΩ 0 (1.11)
For the variation of the strain energy, using the chain rule of di erentiation, the strain energy density is di erentiated with respect to the Lagrangian strain, and then the variation of the Lagrangian strain is taken from its de nition in equation (1.4)

δE(u, δu) = 1 2 ∇δu + ∇ T δu + ∇ T u∇δu + ∇ T δu∇u = sym(∇δu T F) (1.12)
where sym(•) denotes the symmetric part of a tensor. The principle of minimum potential energy says that if the system is in equilibrium, the variation in equation ( 1.11) must vanish for all δu that belongs to the space of kinematically admissible displacements

Z = v ∈ H 1 (Ω 0 ) d |v = 0 in ∂Ω 0 .
The variational equation for the nonlinear elastic system can be written as

a(u, δu) = l(δu), ∀δu ∈ Z (1.13)
where a(u, δu) is the energy form and l(δu) is the load form, de ned as

a(u, δu) = Ω 0 ∂W (E) ∂E : δE dΩ 0 , (1.14) 
and

l(δu) = ∂Ω 0 δu T • fd(∂Ω 0 ) + Ω 0 δu T • bdΩ 0 (1.15)
Note that a(u, δu) and l(δu) are linear with respect to δu but are nonlinear with respect to displacement u. The nonlinearity comes from the fact that the stress and strain implicitly depend on u.

Linearization (Tangent Sti ness)

In practice, the nonlinear variation equation ( 1.13) cannot be solved easily due to the nonlinearity involved in the displacement-strain relation, or in the constitutive relation. Newton-Raphson iterative method through a sequence of linearization is generally used to solve this nonlinear equation. If we assume that the equilibrium in equation ( 1.13) is not satis ed, then, the di erence between the left-and right-hand sides is de ned as a residual, R = a(u, δu)l(δu) (1.16)

In the Newton-Raphson method, the Jacobian of the residual is required in each iteration. Since the Jacobian in a one-dimensional problem is nothing but a tangent line at the current solution, it is often called a tangent sti ness, and the process is called linearization. Let the linearization of a function f (x) in the direction of ∆u is denoted as

L[ f ] = d dω f (x + ω∆u)| ω=0 = ∂ f T ∂x ∆u (1.17)
If right superscript k denotes the iteration counter, then the linear incremental solution procedure of the nonlinear equation f (x k+1 ) = 0 becomes

∂ f T ∂x k ∆u k = -f (x k ) u k+1 = u k + ∆u k x k+1 = X + u k+1 (1.18)
This way the nonlinear system (1.16) is solved iteratively until the residual term vanishes.

The nonlinear equation ( 1.13) can be linearized following the same procedure. Since the load is assumed to be independent of displacement, it is not necessary to linearized it. Linearization of the energy form in equation ( 1.13) is written as follows

L[a(u, δu)] = Ω 0 ∆S : δE + S : ∆ (δE) dΩ (1.19)
where ∆S is the stress increment and ∆ (δE) is the increment of strain variation. For simplicity, let's for example consider a St. Venant-Kirchho material, the stress-strain relation is linear, and thus, the increment of stress can be written as

∆S = ∂S ∂E : ∆E = D : ∆E (1.20)
where D is a four-order constitutive tensor and ∆E is the increment of Lagrangian strain. By noting that the increment of deformation gradient is ∆F = ∇ 0 ∆u, the increment of Lagrangian strain and its variation can be obtained as follows

∆E(u, ∆u) = sym(∇ 0 ∆u T F) (1.21) and ∆(δE)(∆u, δu) = sym(∇ 0 δu T ∇ 0 ∆u) (1.22)
Thus, the linearization of the energy form can be explicitly derived with respect to displacement and its variation as

L[a(u, δu)] = Ω 0 δE : D : ∆E + S : ∆ (δE) dΩ = a * (u; ∆u, δu) (1.23)
We use the notation a * (u; ∆u, δu) to show that the equation implicitly depends on the total displacement u and is bilinear with respect to ∆u and δu. 

; ∆u k , δu) = l(δu) -a( n u k , δu) (1.24)
and the total displacement is updated using

n u k+1 = n u k + ∆u k (1.25) Note that equation (1.24) is in the form of n K k • ∆u k = n R k
and is solved iteratively until the residual vanishes, which means that the original nonlinear equation is satis ed.

Finite Element Formulation

So far, formulations and solution procedures of nonlinear problems have been discussed in the continuum domain. In practice, the structure is discretized by nite elements and the equilibrium equations are applied to these elements. This section does not aim to recall all nite element theory but to provide elements for a better understanding of the following paragraphs. It will also allow us to have clear ideas on the steps of construction of a nite element and at the same time introduces some notations. A detailed presentation of the nite element method is made by Zienkiewicz [ZIE 77], Dhatt [DHA 05], or Batoz [BAT 90b]. Finite element approximation is a move from the search for a continuous variable (the displacement at any point) to the search for discrete variables (nodal unknowns). The link between the two is made through the use of interpolation functions that are generally polynomial. In the iso-parametric mapping and displacement-based implementation of nite elements method, the approximation of the initial X and current geometry vector x and displacement vector u at the element level are read as

X e = no ∑ I=1 N I X I ; x e = no ∑ I=1 N I x I ; u e = no ∑ I=1 N I u I (1.26)
where the superscript e refers to quantities at the element level and no being the number of nodes of the element type considered (for example : no = 8 for hexahedral element or no = 6 for prismatic element). N I are the standard shape functions, X I , x I and u I are respectively the vectors of nodal coordinates and displacements. The displacement variation and increment required by the linearization of the variational are interpolated as follows where B is the standard strain-displacement matrix and is function of displacement u e and U a larger vector containing the nodal displacements u I . The increment of strain variation ∆(δu) is written as follows, (see equation (1.22))

∆(δE) = δU T B∆U (1.29)
where B is the standard nonlinear strain-displacement matrix. Equation (1.23) can then be discretized as follows

L[a(u, δu)] = δU T Ω 0 B T DBdΩ + Ω 0 BSdΩ ∆U = δU T K T ∆U (1.30)
Where K T is the tangent sti ness matrix. In addition, the discrete external and internal force vector can be derived from the de nition of the load form as

l(δu) = δU T F ext (1.31) a(u, δu) = δU T Ω 0 B T SdΩ = δU T F int (1.32)
The discretized version of incremental equation ( 1.23) can now be written in the form of nite element matrix equation as

δU T K T ∆U = δU T (F ext -F int ) (1.33)
The above linear system of equations needs to be solved iteratively until the residual force (right-hand side) vanishes. Now that the basic fundamentals of continuum mechanics and nite elements method have been recalled, we can discuss about the di erent numerical methods used to model shell like structures.

Conventional 2D shell nite element

In this section classical and degenerated shell elements are brie y introduced. We will brie y discuss about the disadvantages of the conventional shell elements, such as modi ed material models, variation of thickness, contradictions of assumptions etc, without going deep in the equations (for more details about these formulations, the reader is referred to the appendix C). Their are two approaches to formulate conventional shell nite elements. The rst formulation uses the classical strain, displacement and momentum (equilibrium) equations for shell to develop a weak form of the equilibrium equations. These elements are called classical shell elements. The second formulation is directly derived from continuum element by structural assumptions on the weak form or on the discrete equations. The continuum nite element is modi ed so that it behaves like shell; this is called the continuum based approach. [AHM 70, DVO 84].

1. Background on the modeling of shell like structures

Classical shell theories

A plate is an area in which one dimension, called thickness, is smaller than the other two. It can be made of a homogeneous material or be obtained by the composition of several layers of di erent materials. A shell therefore is considered as a curved form of a plate and its structural action is a combination of stretching and bending [ZIE 00]. It is possible to perform a nite element analysis of a shell by using what is called a facet representation, meaning the shell surface is replaced by a at triangular and/or quadrilateral plate elements in which a membrane sti ness (membrane element) is superposed on a bending sti ness (plate bending element). Such a model is understandably inaccurate in the sense that with very coarse meshes, they do not capture the bending-stretching coupling of thin shell behavior. There are two main theories to study plate-like structures:

• Kirchho -love theory: based on the assumption of preservation of normal. In other words, all material points located on a normal to the undeformed mid-surface remain on the same normal to the deformed mid-surface. In this model, which is well adapted to thin plates, the transverse shear is assumed to be zero. Kirchholove assumptions are generally accepted if L h >20, L being a characteristic dimension of the plate in the mean plane.

• Mindlin-Reissner theory: based on the kinematic hypothesis of straight sections : the normal to the mid-surface remains straight. In this model, adapted to the study of thick plates, transverse shear is taken into account. The Mindlin-Reissner hypotheses are generally accepted if 5 < L h ≤ 20, L being a characteristic dimension in the mean plane.

Shell theories, see [ZIE 00], proved that the Kirchho -Love assumptions are the most accurate in predicting the behavior of thin shells. For thick shells, the Mindlin-Reissner assumptions are more accurate because transverse shear e ects become important. Generally speaking, Kirchho 's theory can be interpreted as a special case of Reissner-Mindlin theory. Indeed, the straight section hypothesis includes the so-called normal conservation hypothesis. Also a good nite element model based on the Reissner-Mindlin theory should give results in accordance with the Kirchho -Love theory if the structure is thin (negligible CT) (see [BAT 90a]). In plate theory, contrary to the three-dimensional solid theory, the elementary mechanical entity is not a material particle (x 1 , x 2 , x 3 ) but a material segment of coordinates (x 1 , x 2 , z)

N (x 1 , x 2 , z) = {(x 1 , x 2 , z) , |z| h (x 1 , x 2 )} (1.34)
A plate is therefore a family of N (x 1 , x 2 , z) line segments which, in the reference con guration, are normal and centered on the mean plane (O, x 1 , x 2 ). The fundamental premise of plate theory is that each of these segments has a rigid body motion. The motion of any segment is then described by a six-component kinematic torsor. Nevertheless, the rotation of a segment around its axis being indi erent, it remains to consider ve kinematic variables: the membrane displacements (u, v), the transverse displacement w and the When Poisson's ratio is not equal to zero the latter two assumptions are contradictory because the normal must stretch when σ zz = 0. Furthermore, employing the second assumption requires modi cations of the 3D-material law. This work is not simple in such an approach, especially for complicated material laws which are described only for 3D-continuum. Moreover, due to the presence of rotational degree of freedom, the equations for nonlinear shells are very complex and di cult to deal with. This makes this theory very di cult to use in the modeling of nonlinear shell problems. 

Degenerated shell elements

Among the rst to attempt to provide an answer to the problems of shell were Ahmad and co-authors [AHM 70] for proposing a degenerated shell nite element. It is simply a matter of attening a volume element into a shell element. An example for degenerating a hexahedral nite element is that each pair of nodes having the same ξ and η coordinates in the reference frame is replaced by a middle node of coordinates (ξ, η, ζ = 0). The shell element is thus de ned by the 4 (if the attened volume element had 8 nodes) nodes delimiting its mid-surface. On each of these nodes, a vector is de ned and directs the segment connecting the corresponding upper and lower vertices. In the hypothesis of small deformations a point of the shell element, at instant k, in the natural base (ξ, η, ζ), is de ned by its cartesian coordinates as follows

k x (ξ, η, ζ) = 4 ∑ i=1 N i (ξ, η) k x i + ζ 2 4 ∑ i=1 h i N i (ξ, η) k V i n (1.35) 
where : N i is the isoparametric interpolation function corresponding to node i k x i position of node i at instant k h i the thickness at node i (assumed invariant) k V i n the vector linking the initially degenerated nodes i. k V i n = 1. Assuming small perturbations, the displacement at the moment k is written (for simplicity we omit the superscript k for the displacement) as follows

u (ξ, η, ζ) = 4 ∑ i=1 N i (ξ, η) u i + ζ 2 4 ∑ i=1 h i N i (ξ, η) k V i n -0 V i n (1.36)
If we de ne at the node i two vectors 0 V i 1 and 0 V i 2 such as the base 0 V i 1 , 0 V i 2 , 0 V i n is orthonormal, we can write, assuming the small rotations that :

k V i n = 0 V i n + k θ i ∧ 0 V i n k θ i = α 0 i V i 1 + β 0 i V i 2 k V i n = 0 V i n + β 0 i V i 1 -α 0 i V i 2
Therefore the displacement of a point of the element can be written as follows

u (ξ, η, ζ) = 4 ∑ i=1 N i (ξ, η) u i + ζ 2 4 ∑ i=1 h i N i (ξ, η) β 0 i V i 1 -α 0 i V i 2 (1.37)
Thus each node of this element will also have 5 degrees of freedom (3 translations and the 2 rotations of the vector associated with this node). At rst this may seem very similar to what is known for Reissner/Mindlin shell elements but there are fundamental distinctions : Ahmad's degenerate nite elements function under a purely three-dimensional formulation. Also quadrilaterals obtained by degeneracy of the 3D elements support warping (non-planarity of the nodes) much better. However, one can note similar hypothesises to those governing the classical plates :

1. the segments connecting two nodes (directed by a director vector) are straight through the transformation.

2. A segment initially normal to the mean surface remains inextensible during the transformation (which means that the deformation in the thickness is nil).

3. The stress in the thickness is nil. This necessitates modifying the 3D constitutive law to respect this hypothesis.

It is immediately noticeable that the second hypothesis necessarily implies to remain in the hypothesis of small deformations. Moreover, this hypothesis is in contradiction with the one stipulating that the stress in the thickness is nil (3rd hypothesis) but also with the fundamental hypothesis of mass conservation. If a plate element is extended horizontally, it should lose thickness to conserve its mass. Thus, in order to satisfy all these hypotheses at the same time, these elements operate with modi ed constitutive laws. Unlike the classical shell element mentioned above, the continuum-base approach is very straight forward 1.4 The 3D standard nite element

Another way to model shell like structure would be to use 3D standard isoparametric nite elements as an alternative to the plane stress hypothesis. These elements operate with purely three-dimensional behaviour laws and can handle several nonlinearities such as contact/friction, fracture mechanics, elastic-plastic or large geometrical transformations. Unfortunately they have the disadvantage of being too rigid to reproduce correctly the behaviour of thin structures. They require very ne discretization to give good results, in the modeling of shell like structures. This is very expensive in terms of calculation time.

Case study

To illustrate the di culty of standard 3D nite elements for modeling thin structures, a simple study is carried out. Let us consider a thin square plate with side length a = 1m and thickness e = 0.01m, clamped on one side and undergoing a bending force on the opposite side. The material characteristics of the plate are given in the table 1.1. The plate is then meshed with standard 3D nite elements. A mesh convergence study is performed and compared with a reference solution given by a Discrete-Kirchhoquadrangle (DKQ) mesh. The CPU time of each study is also collected and introduced in the comparisons. The results are reported in the table 1.2. On the latter table we can see how di cult it is for the 3D standard nite element to give a good result for this simple bending problem. For the same number of elements, the 3D standard nite element gives a displacement of 9.5e -7 m, where the DKQ element gives 1.9e -3 m. One can re ne by increasing the number of elements by ×3000 and thus multiply the CPU time by a factor of 1000 and still not get the right result. This shows the di culty of rst order standard nite elements to model bending problems in thin structures. Due to the tri-linearity of their shape functions, these elements su er from several locking phenomena when modeling bending problems of thin structures. 

.2 Locking phenomena

To investigate the locking phenomena the low-order standard solid element goes trough, let's consider the following trilinear displacement eld, which is conventionally employed for the eight-node standard element, see Figure 1.5. To facilitate understanding, the analysis is restricted to a cubic geometry element so that the physical system (x, y, z) and the isoparametric natural system (ξ, η, ζ) can be used interchangeably. In the frame (x, y, z), the displacements (u, v, w) of any point can be written in the following trilinear form u = a 0 + a 1 x + a 2 y + a where a i , b i , and c i (i = 0, ..., 7) are constant coe cients. For the sake of simplicity, locking e ects are simply considered with in nitesimal strains. It means we consider innitesimal strains ε instead of Green-Lagrange strain E. All types of locking and their remedies for low-order solid elements will be mentioned in details in the following section.

Transverse shear locking

Transverse shear locking occurs when the EF discretization overestimates shear sti ness at the expense of bending sti ness, when modeling a thin or very thin structure. Shear locking is the most frequently encountered locking phenomenon but also the most severe locking. Not only does it slow down convergence but its numerical management requires considerable e ort. In classical elasticity theory, when an element is subject to pure bending, the shear term should be zero. But this is not the case with the tri-linear form de ned in the hexahedral element. the shear strain is written as follows

γ xz = ∂u ∂z + ∂v ∂x = (a 1 + b 1 ) + (a 5 + b 6 ) z + a 4 x + b 4 y + a 7 xz + b 7 yx (1.39)
In fact, the above shear strain can only be zero if all the coe cients of the linear shape are zero. Which is impossible since this would be opposed to the completeness of the shape function space. To better illustrate this phenomenon, it is simpler to consider the deformation modes of a beam in a bending problem. Let's consider a rectangular beam as in the gures (1.6.a) and (1.6.b). Assuming that the deformation of the beam is independent of the Y-direction, the displacements can be obtained in the following way

u = c 1 + c 3 x + c 5 z + c 7 xz w = c 2 + c 4 x + c 6 z + c 8 xz (1.40)
Logically, this means that the hexahedral element with tri-linear form functions is reduced to a quadrangular element with bilinear functions. The coe cients c 1 and c 2 are rigid body deformations, c 3 and c 4 are constant deformations, and c 7 and c 8 are linear deformation modes. During pure bending in the (x, z) plane (see gures 1.6) the shear mode c 7 remains active in the normal strain ε x . In other words, with the 1st order shape functions, it is impossible to have a strain ε x without it being accompanied by a parasitic shear term.

Modes

u c 1 0 c 3 x 0 c 5 z 0 c 7 xz 0 w 0 c 2 0 c 4 x 0 c 6 z 0 c 8 xz ε x 0 0 c 3 0 0 0 c 7 z 0 ε z 0 0 0 0 0 c 6 0 c 8 x γ XZ 0 0 0 c 4 c 5 0 c 7 x c 8 z Table 1.3: Deformation modes of bilinear element
The phenomenon of transverse shear locking then occurs when this term is preponderant. The example of the beam clearly shows this fact. When a beam is bent by a moment couple M ( gure 1.6.a), continuum mechanic predicts the following stresses

   σ z = M I z σ x = τ xz = 0 (1.41)
I being the moment of inertia of the beam. By integrating equation (1.41), it comes:

     u = M EI zx + c 1 z + c 2 w = - M 2EI x 2 + νz 2 -c 1 x + c 3 (1.42)
c 1 , c 2 and c 3 are integration constants. By imposing a symmetry boundary condition with respect to the plane x=0, the vertical displacements of the 4 nodes are zero. This results in the following displacements

     u = M EI xz w = M 2EI a 2 -x 2 - M 2EI ν b 2 -z 2 (1.43) 1.
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             ε x = M EI z ε z = - Mν EI z if ν = 0, ε z = 0 else γ xz = ∂u ∂z + ∂w ∂x = 0 (1.44)
This solution satis es the conditions of pure bending. however, for the nite element solution, when pure bending occurs, only the mode c 7 is active (see table 1.3), it means

u = c 7 xz w = 0 (1.45)
Therefore the nite element solution commits an error ∆γ xz = c 7 x which does not vanish and is likely to be preponderant with respect to the pure bending mode, when the thickness of the structure becomes small. This is the cause of shear locking. Note also that, when the Poisson ratio is not null, the nite element commits also an error in the normal strain ∆ε 4 = -Mν EI z, which lead to Poisson thickness locking (see next subsection). In conclusion, note that transverse shear locking occurs because normal strains of linear elements are coupled by shear strains. Therefore, these elements do not have a pure bending mode that allows a pure bending behaviour to be correctly modelled. When the plate thickness becomes thin, shear modes become preponderant and absorb a large part of the bending deformation energy. This results in very small bending deformations compared to what would be obtained by analytical mechanics. Increasing the number of elements will allow a more accurate modeling of the curvature, and reduce the e ects of shear locking. Shear locking can also be prevented through the use of higher-order nite elements.

Poisson thickness locking

Considering still the bending beam problem, the analytical solution gives a pinching strain worth: ε z = -Mν EI z, whereas the linear nite element model gives

ε z = ∂w ∂z = c 6 + c 8 x (1.46)
This means that at a given position x, the pinching strain is constant in the thickness direction. However in a real structure, the analytical solution of the beam gives a normal displacement ε x = Mz EI which by Poisson e ect leads to a pinching strain depending on the thickness direction ε z = -νε x . With low-order nite elements, this is not satis ed. Thus the pinching stress

σ z = E (1 + ν) (1 -2ν) ((1 -2ν) ε z + νε x ) (1.47)
is di erent from what an analytical solution would yield. This causes Poisson thickness locking for low order elements.

Volumetric locking

Volumetric locking is a stability problem encountered when nite elements, formulated in displacement, are used to model the behaviour of incompressible or quasiincompressible materials. This instability is primarily related to the mathematical formulation of the problem. Indeed, in mechanics, a material is said to be incompressible when its Poisson ratio ν is 0.5. If it is deformed, such a material does not undergo any variation in volume and should verify the following relationship

ε v = tr(ε) = ∂u ∂x + ∂v ∂y + ∂w ∂z = 0 (1.48)
However if one consider, the interpolations form in the sections above, the strain ε v is rather written as follows :

ε v = (a 1 + b 2 + c 3 ) + (b 4 + c 6 )x + (a 4 + c 5 )y + (a 6 + b 5 )z + (c 7 xy + a 7 yz + b 7 zx) (1.49)
In other words, it's impossible to satisfy the ε v = 0 condition. Thus, for such a material, the rst-order nite elements cause an overrigidity of the elementary sti ness matrix inducing a locking solution. Hooke's law for continuous and isotropic materials is

σ = E 1 + ν ε + ν 1 -2ν ε v I (1.50) 
One can see right away that when the ν → 0.5, the ratio ν 1-2ν tends towards in nity. Therefore, the elasticity matrix in the product B T DB, see equation (1.30) is composed of elements tending towards in nity. The resulting sti ness matrix becomes an in nite wide number, providing in nitely small displacement values.

Membrane locking

Membrane locking is a locking phenomenon that usually occurs when beam and shell type structures with high curvature are subject to bending. It is often confused with trapezoidal or transverse shear locking because the latter a ects membrane e ects, however they are completely di erent types of locking. To better illustrate the membrane locking phenomenon, consider a curved beam with a length of 2l and a radius of curvature R (Figure 1.7). The circumferential displacement is referred to as u and radial displacement as w. The curvilinear abscissa carried by the mid-line of the beam is called s. Membrane and bending deformations can be written as follows (see Prathap [PRA 01])

ε = u ,s + w R χ = u ,s R -w ,ss (1.51) 
From these equations, we can immediately see that at least C 0 continuity is required for the circumferential displacement and C 2 for the radial displacement. It is then possible 

u = a 0 + a 1 ξ w = b 0 + b 1 ξ + b 2 ξ 2 + b 3 ξ 3 (1.52)
where the coe cients a i and b i are generalized displacements corresponding to the degrees of freedom of the nodes. It is then possible to rewrite equations (1.51)

ε = a 1 l + b 0 R + b 1 R ξ + b 2 R ξ 2 + b 3 R ξ 3 χ = a 1 Rl - 2b 2 l 2 - 6b 3 l 2 ξ (1.53)
When this element is used to model a pure bending structure (without membrane extension) the membrane strain must vanish. This is only true if the following conditions are met

a 1 l + b 0 R = 0 ∀i = 1, 2, 3 b i R = 0 (1.54)
It's possible to arrange to physically meet the rst condition. However, the other conditions b i R = 0 cannot be met without being in contradiction to the hypothesis of equation (1.52). The coe cients b i , (i = 1, 2, 3) are then the cause of membrane locking.

In conclusion, membrane locking occurs if the interpolations are unable to model the in-extensional behavior in in-extensional bending problems. Consequently, a sti ening e ect occurs when pure bending deformations are accompanied by parasitic membrane stresses.

Trapezoidal locking

Trapezoidal locking is a locking phenomenon encountered when the side faces of a 3D nite element are not perpendicular to the mid-plane of the element. It usually occurs when a mesh structure is curved (e.g. cylinder) or heavily deformed. However, curvature locking only occurs when the elements include thickness strains. In other words, degenerated shell elements and at plate geometry for which the normal deformation (1.56)

Or by using the iso-parametric coordinates

u a = ξ(ζ -αζ 2 ) w a = - 1 2 ξ 2 (1 -αζ) 2 (1.57)
The displacements in terms of nite elements are written by (see McNeal [MAC 93])

u e f = Λ(ξζ -αξ) w e f = - 1 2 Λ 2 (1 -αζ + α 2 ) (1.58)
And the corresponding strains are written as follows

ε e f x = (ζ -α) (1 -αζ) ε e f z = Λ 2 α 2γ e f xz = Λξ 1 + α(ζ -α) (1 -αζ) (1.59) 1.
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ε a x = ζ ε a z = 0 2γ a xz = 0 (1.60)
From equations (1.59) and (1.60), it is visible that the nite element solution is di erent from the analytical solution when α =0. These parasitic terms that appear when α becomes large cause the trapezoidal locking. In conclusion, note that trapezoidal locking occurs when 2D or 3D nite elements with oblique edges (with respect to the mean line or surface) used to model the behavior of curved structures.

One way to avoid the locking problems of low-order 3D nite elements would be to use them in a very re ned mesh. Another natural strategy to overcome these locking phenomenon would be to use 3D nite elements with higher degrees of interpolation. However, the latter is less attractive due to high computational cost, especially in non-linear applications. And both methods are of high computational cost. It is then preferable to use rst order interpolations and to nd ways to reduce locking phenomena. Shear locking of solid element can be alleviated by using the assumed natural strain (ANS) method [HUG 81b, WEM 82, DVO 84, DVO 95b, DVO 95a, KLI 97, HAU 98, HAU 01, CAR 05, CAR 08, SCH 09]. Also the ANS method applied to the transverse normal strain allows to eliminate trapezoidal locking as well, see Bischo and Ramm [BIS 97] or Betsch and Stein [BET 96]. To avoid Poisson thickness locking additional terms with linear distribution in thickness direction is introduced for the transverse normal strain, see [SIM 92a, SOU 06, REE 07] to name just a few. This assures the normal stress to vary linearly along the thickness in bending situations. The reduced integration method allows to eliminate volumetic locking and some membrane locking 3D standard element with all this methods incorporated in their formulations are called solid-shell elements. They are naturally design to overcome the disadvantages of 3D low-order standard element while correctly reproducing the behavior of shell like structures.

The rise of solid-shell elements

Because of their simplicity, rst order nite elements are widely used for structural modeling. However, as we have seen previously, when used to model the behavior of thin structures, these elements exhibit severe locking problems like transverse shear locking, membrane, Poisson thickness, trapezoidal or volumetric locking. Parasitic shear or membrane modes become predominant and engulf the bending modes resulting in membrane or shear locking. When incompressible or quasi-incompressible materials are used, volumetric locking occurs. Several methods have been proposed in recent years to construct 3D nite elements capable of modeling the behavior of shell like structures : they are called solid-shell nite elements. The best known and used methods to alleviate locking phenomenon are the assumed strain methods (EAS, ANS), and the selective or reduced integration methods. In this section details about these methods are given as they are useful to understand the solid-shell elements that are going to be presented in the next chapter.

Reduced integration (RI) method

A very attractive method for removing locking phenomenon is the reduced integration technique. It consists of taking a number of Gauss integration points aligned in the thickness direction of the element and centred on the mid-plane. The main advantage is the reduction of calculation time while removing membrane and volumetric locking.

Figure 1.9: Full integration scheme to reduced integration scheme However, reduced integration elements may generate zero energy modes associated with non-zero deformations. This causes strong distortions, creating areas where no stress accompanies the observed deformation of the element. This is known as the Hourglass (or hourglass) phenomenon. Several stabilization methods have been introduced by Belytschko and co-authors [BEL 83, BEL 84] or Reese and co-authors [REE 00, REE 07] in order to prevent the appearance of these Hourglass patterns. The selective integration technique is also often used and consists in cleverly combining the full and reduced integration techniques (e.g. full integration for bending sti ness matrix and reduced integration for shear sti ness matrix).

Incompatible method

Incompatible method, also called assumed displacement method, is derived from the potential energy variational principle. We here present the incompatible method as a reference to motivate for the EAS method presented in the next section. Hence, the incompatible method is brie y introduced and only considered in linear elastic theory. The standard solid elements pose the following di culties: locking phenomena for bending and incompressible problems. By adding incompatible displacements to 3-D isoparametric nodes, the mentioned di culties are canceled.

Consider a continuum body occupying a volume Ω 0 in a space of boundary surface ∂Ω 0 . Let's assume that the body force and the tension force are conservative and the object is in static state. Under the theory of linear elasticity, the principle of minimum 1. Background on the modeling of shell like structures potential energy can be stated as :

π (u) = 1 2 Ω 0 (ε com (u)) T Dε com (u)dΩ 0 -π ext (u) (1.61)
where ε com is the compatible small deformation. When the solid continuum is discretized into a nite number of elements, the above variational is rewritten in the form as

π (u) = Nbr ∑ e=1 { 1 2 Ω 0 (Bu) T e D(Bu) e dΩ 0 -π e ext (u)} (1.62)
where Nbr is the number of elements. In the nite element formulation the element displacements (u) e are interpolated in terms of nodal displacements that may be at both boundary nodes (Serendipity elements) and internal nodes (Lagrange elements). Elements can also be formulated by adding to the original element displacements (u) e , which are in terms of nodal displacements (U) e higher-order displacements α, which are not expressed in terms of nodal displacements of the boundary nodes. For example, the displacements u and v for the standard four-node quadrilateral element are based on bilinear interpolation functions, see subsection (1. 4.2). They are incomplete in quadratic terms (see equation 1.40). Improvement of the performance of a four nodes element can be made by adding terms such that the displacements are complete in quadratic terms. Wilson et al [WIL 73] suggested the addition of incompatible displacements that vanish at all corner nodes. In these cases the element strain ε = (Bu) e can be expressed as follows

ε = B u B α U e α e
( 1.63) where B u and B α are respectively the compatible and incompatible strain matrices. 

U e = [U 1 ,V 1 ,W 1 , .
K e = (B u ) T DB u (B u ) T DB α (B α ) T DB u (B α ) T DB α (1.64)
where (B u ) T DB u is the standard sti ness matrix of the element, (B α ) T DB α the incompatible sti ness matrix of the element and (B u ) T DB α the incompatible-standard sti ness matrix of the element. In the same way we can de ne the standard nodal force vector F e ext and the incompatible nodal force vector F e α as follows

F e ext = ∂Ω 0 N T u • fd∂Ω 0 + Ω 0 N T u • bdΩ 0 F e α = ∂Ω 0 N T α • fd∂Ω 0 + Ω 0 N T α • bdΩ 0 (1.65)
The incompatible vector α e consists of internal variables. Hence it can be, in some cases, condensed out of the variational formulation by setting ∂π ∂α = 0 in order to get α e in function of U e as

α e = -[(B α ) T DB α ] -1 ((B α ) T DB u • U e -f e α ) (1.66) 
Doing so, the equivalent element sti ness matrix and the equivalent nodal force are written as .67)

k e = (B α ) T DB α -[(B α ) T DB u ][(B α ) T DB α ] -1 [(B α ) T DB u ] T (1 
f e = f e ext -[(B α ) T DB u ][(B α ) T DB α ] -1 f e α (1.68)
Finally, assembling k e into a global matrix K and f e into a global nodal vector F, the total potential energy is

π (u) = 1 2 U T • K • U -U T • F (1.69)
Where U is the global nodal displacement vector, K = ∑ Nbr e=1 k e and F = ∑ Nbr e=1 f e . The variation of π (u) with respect to the global displacement vector U imposed equal to zero, gives the equation for displacement solution :

K • U = F (1.70)
After solving the system (1.70), all the nodal displacements are known, and other variables like strains and stresses are obtained as in the standard manner. Note that for the seven and nine nodes solid-shell elements presented in the next chapter, the condensation technique mentioned in this section is not followed due to the pinching stress enhancement that will be detailed in chapter 2.

In the next section, the EAS method, based on the three eld Hu-Washizu variational principle, is presented. The EAS method is considered as a generalized approach of the incompatible method as pointed by Simo and Rifai [SIM 90b].

The Enhanced Assumed strain (EAS) method

Due to their e ciency and simple geometry, low-order solid elements are often preferred in structural mechanics. But, as mentioned above, the low-order standard displacement elements exhibits, in many cases, severe sti ening e ects known as locking. Shear locking occurs when simulating thin-walled structures by the low-order standard displacement elements, where pure bending modes are spoiled by parasitic shear strains. Membrane locking is encountered in high aspect ratio elements when bending modes cannot be separated from membrane strains and, thus, not allowing the veri cation of pure inextensional modes. For incompressible or nearly incompressible conditions, volumetric locking may also occur; in this case, deviatoric modes always come along undesirably with volumetric strains. The class of EAS elements presented below allows the systematic development of low-order elements with enhanced accuracy for coarse 1. Background on the modeling of shell like structures meshes. This method whose formalism is based on the Hu-Washizu three-eld formulation was initially proposed by Simo and Rifai [SIM 90a, SIM 90b] in small deformations, then extended to large deformations by Simo and co-authors [SIM 92b, SIM 93] before being applied to thermomechanical problems by Adam and Ponthot [ADA 05]. The idea of the EAS technique is to enhance the usual deformation of a nite element by enriching it with a deformation intelligently chosen to eliminate locking phenomena. Finite elements with the EAS approach have been applied to simulate geometrically and materially nonlinear problems due to the fact that they perform well in severe situations as the nearly incompressible limit and pure bending situations, when coupled with the reduced integration technique.

Three elds variational formulation

The EAS method aims to enhance elements displacement gradient and further improves volumetric and Poisson thickness locking. The Hu-Washizu principle is generally the starting point. As being proposed by Simo and Rifai [SIM 90b], the displacement eld u ∈ V , the conjugated Green-Lagrange strain tensor E ∈ E and the admissible second Piola-Kirchho stress S ∈ S are treated as independent variables. V , E and S being respectively the space of admissible displacement, strain and stress. The Hu-Washizu principle is derived as

π HW (u, E, S) = Ω 0 W (E) dΩ 0 + Ω 0 S : 1 2 F T F -I -E dΩ 0 -π ext (u) (1.71)
Where (W ) is the strain energy, F the compatible deformation gradient depending on the displacement eld u and de ned in section 1.2 and I the metric tensor. According to the EAS method the independent strain eld is given

E = E mod = E u + E eas with E u = 1 2 F T F -I (1.72)
Where we call E u the compatible strain eld and E eas the enhanced assumed strain eld. Let's call E mod the modi ed strain eld. Introducing the modi ed strain E mod into equation (1.71), the variational basis for the EAS method is written

π HW u, E mod , S = Ω 0 W (E) dΩ 0 + Ω 0 S : E u -E mod dΩ 0 -π ext (u) (1.73)
Once the modi ed strain tensor E mod is obtained, the gradient deformation tensor F mod can be consistently derived through the use of a polar decomposition, (see section 1.5.5).

In general, as proposed by Simo [SIM 90a], the approximation of E eas and S are chosen to satisfy the following orthogonality condiditon

Ω 0 S : E eas dΩ 0 = 0 (1.74)
The rise of solid-shell elements

Applying the orthogonality condition, the three eld variational is reduced to a two eld variational principle as follows :

π HW (u, E eas ) = Ω 0 W (E u + E eas ) dΩ 0 -π ext (u) (1.75)
which immediately gives the rst variation

δπ HW (u, E eas ) = Ω 0 (δE u + δE eas ) : S mod dΩ 0 -δπ ext (u) (1.76)
Where the modi ed second Piola-Kirchho stress S mod is given by

S mod = ∂W ∂E mod (1.77)
Following the nite element method detailed in section 1.2, The variation δE u and increment ∆E u of the compatible Green-Lagrange strain at the element level are interpolated as follows

δE u = B u δU and ∆E u = B u ∆U (1.78)
where B u is the compatible standard strain-displacement matrix and is function of the compatible displacement u. The enhanced strains is function of a enhanced strain interpolation matrix Γ and internal strain parameters α. The variation and increment of the enhanced strains are δE eas = Γδα and ∆E eas = Γ∆α (1.79)

Note that there are many ways to de ne the enhancement interpolation and the number of internal parameters (see [AND 93, KLI 97, TAY 76] among many others). The EAS method has two major roles: to reduce the volumetric locking (in the constant eld) and also the Poisson locking de ciency. Recently, in the works of Alves de Sousa and co-authors [SOU 05, SOU 06] , it has been shown that only a single enhancing parameter was enough to considerably reduce those locking pathologies on the constant strain matrices, thus giving rise to an element that can retain its computational e ciency, offering an almost perfect combination between EAS and reduced integration schemes. Therefore in the following sections and chapters we will only consider the EAS method with only one parameter.

Linearization of discrete weak form

Using equation (1.75), we formulate the linearization of the weak form δπ HW (u, E eas ) at the element level by employing the truncated Taylor series about the (k + 1) th iteration The internal virtual work is then written as follows

δπ u k+1 , E eas k+1 = δπ (u k , E eas k ) + ∂δπ e ∂ u k , E eas k | (uk,E eas k ) • (∆u k , ∆E eas k ) = δπ (u k , E eas k ) + D(δπ e )| (uk,E eas k ) • (∆u k , ∆E eas k ) (1.
δπ e int = Ω 0 (BδU e ) T S mod dΩ 0 + Ω 0 (Γδα e ) T S mod dΩ 0 = δU T f e int + δα T f e eas (1.82) With f e int = Ω 0 B T S mod dΩ 0 and f e eas = Ω 0 Γ T S mod dΩ 0 (1.83)
Assuming that the external force is displacement-independent, the external virtual work is written as

δπ e ext = -δUf e ext (1.84) 
where f e ext is same as in section 1. 2. Lets now derive the right hand side of equation ( 1.81)

D (δπ e ) • (∆u, ∆E eas ) = ∂ (δπ e int ) ∂U • ∆U + ∂ (δπ e int ) ∂α ∆α = δU T ∂ (δf e int ) ∂U • ∆U + δα T ∂ (δf e eas ) ∂α ∆U + δU T ∂ (δf e int ) ∂α • ∆α + δα T ∂ (δf e eas ) ∂α ∆α = δU T k e uu + δα T k e αu • ∆U + δU T k e uα + δα T k e αα • ∆α (1.85)
Where k e uu is the compatible-standard sti ness matrix same as K T in section 1.2, k e αα the incompatible sti ness matrix and k e uα the standard-incompatible sti ness matrix. The constitutive tensor in the physical space is now expressed through the following stressstrain relationship

D = D i jkl = ∂S (i j)mod ∂E mod kl (1.86)
The standard sti ness matrix of the element includes the material part k e mat and geometrical part k e geo as

k e uu = ∂f e int ∂U = k e mat + k e geo = Ω 0 B uT DB u dΩ + Ω 0 BS mod dΩ (1.87)
where, for a geometrical nonlinear theory the strain-displacement matrix B, is a function of the displacements u as in section 1. 2. Furthermore, the strain-displacement matrix contains the derivatives of the shape functions with respect to the global coordinates X in the reference con guration. 

H IJ = Ω 0 N I,K S KL N J,L dΩ 0 ; K, L = 1, 2, 3 (1.89) 
The enhanced-compatible sti ness matrix of the element is

k e αu = (k e αu ) T = ∂f e int ∂α T = Ω 0 Γ T DB u dΩ 0 (1.90)
while the enhanced sti ness matrix of the element is as follows

k e αα = ∂f e eas ∂α = Ω 0 Γ T CΓdΩ 0 (1.91)
The combination of (1.83),(1.87),(1.90) and (1.91) gives the discrete linearized system of equations to solve for the increment ∆U and ∆α (see [KLI 97])

k e uu k e uα k e αu k e αα ∆U ∆α = f ext -f int -f eas (1.92)
The equation (1.92) is the elementary equilibrium equation of a solid-shell nite element operating with the EAS method. The latter is very e ective in eliminating Poisson thickness and volumetric locking, see Andel nger and Ramm [AND 93], Wriggers and Korelc [WRI 96c], Alves de Sousa and al [SOU 03]. However, although interesting in eliminating locking phenomena, solid-shell elements operating with the EAS method can be computationally time consuming due to the additional degrees of freedom. However, according to Alves de souza and co-authors [SOU 05, SOU 06], it is possible to reduce volumetric locking with just one EAS parameter. It has also been shown that there are signs of instability under certain loads such as in compression, see Wriggers and Reese [WRI 96b], De Sousa Neto et al [SOU 95]. Furthermore, EAS elements are e ective in eliminating volumetric and Poisson thickness locking but not in completely eliminating transverse shear locking, especially for thin structures under bending situations. This is the reason why this method is very frequently associated with the assumed natural strain (ANS) method. 1. Background on the modeling of shell like structures

The Assumed Natural Strain (ANS) method

The EAS method presented above does not give satisfactory results in eliminating transverse shear locking phenomena, especially when modelling a thin structure subjected to bending loading. The method that is then widely used is the ANS or Assumed Natural ... Strain method, which has proven to be more e ective in eliminating transverse shear lockings [BIS 97]. This new Assumed Natural Strain technique consists of replacing the transverse shear deformation with an assumed shear strain obtained by interpolation in the natural base of the element, hence the name Assumed Natural Strain. The most commonly used plate element currently used in design codes works with this technique to overcome transverse shear locking [DVO 84]. In addition to facilitating the management of shear locking, interpolation in the natural base gives elements working with this method the ability to be accurate even with a more or less distorted mesh. Therefore, it is necessary to de ne a convected description, which naturally preserves the objectivity (in the convected description, the material base vectors re ect the geometrical and kinematic aspects, hence, the corresponding components are indi erent with respect to their material base vectors). To this end, let's denote the position vectors of the reference con guration Ω 0 and the current con guration Ω t in the local coordinates system by X and x, respectively. the convected basis vector G i and its components G i j in the initial basis system are de ned by

G i = ∂X ∂ξ i ; G i j = G i • G j ; i = 1, 2, 3 (1.93) 
While the contravariant vector G j and its components G i j are de ned as follow

G i • G j = δ i j ; G j = G i j G i ; i, j = 1, 2, 3 (1.94) 
In the same manner the convected basis vector g i and its components g i j in the current basis system are de ned as follows

g i = ∂x ∂ξ i = G i + ∂u ∂ξ i ; g i j = g i • g j ; i = 1, 2, 3 (1.95) 
While the contravariant vector g j and its components g i j are de ned as following

g i • g j = δ i j ; g j = g i j g i ; i, j = 1, 2, 3 (1.96) 
The deformation gradient can then be written by combining the equations (1.93) and (1.95)

F = ∂x ∂X = ∂x i ∂ξ k e i ⊗ ∂ξ k ∂X j e j = g i ⊗ G i (1.97)
The Green-Lagrange strain tensor de ned in section 1.2 becomes

E = 1 2 (F T F -I) = E i j e i ⊗ e j = 1 2 (g i j -G i j )G i ⊗ G j = Êi j G i ⊗ G j = 1 2 G i • ∂u ∂ξ j + ∂u ∂ξ i • G j + ∂u ∂ξ j • ∂u ∂ξ i G i ⊗ G j (1.98)
Now instead of using the standard computation of equation ( 1.98), which leads to shear locking, the transverse shear strains E 13 and E 23 are assumed, according to Dvorkin and Bathe [DVO 95a], to be interpolated through the use of certain sampling points as follows (using Voigt notations)

E =               E 11 E 22 E 33 2E 12 2E 13 2E 23               = Q               0.5(g 11 -G 11 ) 0.5(g 22 -G 22 ) 0.5(g 33 -G 33 ) (g 12 -G 12 ) 1 2 (1 -η)(g 13 -G 13 ) (A) + 1 2 (1 + η)(g 13 -G 13 ) (C) 1 2 (1 -ξ)(g 23 -G 23 ) (D) + 1 2 (1 + ξ)(g 23 -G 23 ) (B)               (1.99)
Where T is a function of G i and convert the strain from the natural base to the initial base. These assumed strains can be implemented in the standard solid element in a straightforward manner. These assumptions allow the element to represent pure bending modes without any spurious shear e ect. The modi ed shear strains lead to the new operator matrix B u in the natural space. However, the formulation can be slightly modi ed so that no explicit strain evaluation at the sampling points is necessary in the numerical calculation. The physical assumed strain-displacement matrix at node I of the eight-node solid element is

B I = Q               N I,ξ g T 1 N I,η g T 2 N I,ζ g T 3 N I,ξ g T 2 + N I,η g T 1 1 2 (1 -η)(N I,ξ g T 3 + N I,ζ g T 1 ) (A) + 1 2 (1 + η)(N I,ξ g T 3 + N I,ζ g T 1 ) (C) 1 2 (1 -ξ)(N I,η g T 3 + N I,ζ g T 2 ) (D) + 1 2 (1 + ξ)(N I,η g T 3 + N I,ζ g T 2 ) (B)               (1.100)
The ANS method has the advantage of being free of locking and is insensitive to small mesh distortions. The results also remain correct even when the mesh is relatively coarse 

Modi ed deformation gradient

The ANS and EAS methods modify the initial Green Lagrange strain E and gives a new Green Lagrange strain E mod . The associated modi ed deformation gradient F mod is required if the element is implemented in a source code based on the updated Lagrange formulation or when a material algorithm for large elasto-plastic strains is needed. The original deformation gradient can be split into right-stretch tensor U and rotation tensor R as

F = RU (1.101) 
Introducing U and R into the formulation for calculating Green-Lagrange strain tensor we have:

E = 1 2 (F T F -I) (1.102) = 1 2 (U 2 -I) (1.103)
Clearly, Green-Lagrange strain tensor depends only on the right-stretch tensor U. Thus, from the modi ed strain E mod we can derive the associated modi ed right-stretch tensor U mod . According to Hauptmann et al [HAU 01]., the modi ed deformation gradient F mod is calculated as

F mod = RU mod (1.104)
One can see that the computation of F mod requires twice a polar decomposition. The rst step consists in the calculation of rotation tensor R in (1.101). The second step is the calculation of the modi ed right-stretch tensor U mod from E mod . These calculations will increase a little bit the computational cost of the algorithm when the deformation gradient F mod is required.

Conclusion

First-order solid elements su er from many locking phenomena. When the materials are incompressible, the rigidity matrix tends towards in nity, generating very small deformations: this is volumetric locking. This can be remedied either by using reduced integration techniques with additional use of stabilization techniques, or by using the EAS method by adding incompatible deformations to satisfy the incompressibility condition [AND 93]. However, the EAS method can be time consuming due to the additional degrees of freedom. That's why it is recommended to use only one EAS parameter, since it is enough to reduce volumetric lockings. The reduced integration technique, in the other hand, is very advantageous in terms of time calculations. However, it is necessary to ensure that zero energy modes are well stabilized. It should also be noted that these two techniques also alleviate membrane and shear lockings. To eliminate transverse shear lockings, e.g. for a thin structure in bending, the ANS assumed method is very suitable. It is a method that has been proposed speci cally to deal with transverse shear lockings. It can also be used to eliminate the trapezoidal locking phenomenon with some interpolation of the deformation in the thickness direction: see the work of Bischo and Ramm [BIS 97], Betch and Stein [BET 96]. In order to overcome Poisson thickness locking, the transverse normal strain must be enriched in order to have at least a linear distribution. Which is also satis ed by the EAS approach. Generally speaking, a solid element becomes a solid-shell if it is able to overcome all the locking di culties encountered by a standard solid element in modeling a thin structure in a bending-dominant situation [WIL 73]. In the next chapter we present a hexahedral and prismatic solid-shell elements using the methods presented in this chapter.

Introduction

The combination of the RI, ANS and EAS method in a standard solid element gives good performing solid-shell using 3D constitutive law. In fact the EAS parameter is added to solve Poisson thickness locking and volumetric locking by transforming a linear normal strain into a quadratic normal strain. However the value of this parameter is so low that it does not improve the pinching stress that much. In a problem with a shell structure under pressure in one or both side, the solid-shell element with EAS parameter alone gives a normal stress that is almost constant (see next chapter), and does not verify the Neumann boundary conditions. To overcome this, Sansalone and co-authors [SAN 11] add a additional node to a quadrangular and triangular shell element. The latter node is added to create a quadratic interpolation of the transverse displacement and consequently enrich the element pinching strain. This way the element can accurately work with a three dimensional constitutive law without the common plane stress hypothesis. Poisson thickness locking is then naturally avoided (like the EAS). But not only that, the additional dof allows to enrich the element pinching stress (enhancement of normal stress) and further match the upper and lower boundaries condition of the shell. This new method goes beyond the EAS approach. Therefore, the aim of this chapter is to extend this methodology by using an additional node at the center of an eight-node (respectively six-nodes) brick elements in a speci c solid-shell formulation. Bassa and co-authors [BAS 12] have proposed a similar approach. Nevertheless the studies have shown a low convergence performance of that formulation in a implicit code, specially in nonlinear problems, due to the three-parameters stabilization procedure. Furthermore, the shear strain adopted in the SB9γ25 was interpolated following the work of Dvorking and Bathe [BAT 85, BAT 86, DVO 95b]. The Reissner multiplicative function was used as interpolation through the thickness direction to ensure a static admissibility condition. Such interpolation is only valid in linear isotropic situations.

It is then essential to realize that in this thesis, approach proposed by Sansalone [SAN 11] is here applied to a hexahedral and prismatic solid-shell elements. The Hexahedral solid-shell element is inspired by the work of Bassa [BAS 12] (see appendix D) but with a perfectly new formulation. The rst di erence is this new formulation is written in total Lagrangian. Secondly, the stabilization procedure that used to depend on the user (the three-parameters stabilization) is now completely automatic and depends only on the evolution of the problem. And nally, the assumed natural strain (ANS) is changed in a way that should allow the element to perform with friction contact, which was not the case with the initial formulation of Bassa. We also apply the ANS method to the pinching strain in order to eliminate trapezoidal locking.

For the prismatic solid-shell element we almost implement the formulation proposed by Hu and Hamila [XIO 18] with little improvement, due the lack of time, in the stabilization coe cient and in the elimination of trapezoidal locking.

An additional node is then introduced with only one through-thickness translational dof with a robust stabilization procedure that performs well in implicit code. This gives a nine (SB9) and seven (SB7) nodes solid-shell elements. The rst eight (respectively six) nodes are those of a classical hexahedral (respectively prismatic) element and have three translation degrees of freedom each. The ninth (respectively seventh) node is a additional node that has only one translation degree of freedom, in the element-thickness direction. Those central nodes act as EAS parameters, but not only. As been shown by Voldoire [VOL 93], attempting to improve shell modeling using only kinematic assumptions is less e ective than working on both kinematic and static assumptions. Thus from those additional dof, a new distribution is made on the applied pressure forces, generating a volume contribution. This allows to go beyond the EAS method, allowing to improve considerably the pinch stresses. These two elements work with three-dimensional behaviour laws and are under integrated (reduced integration). Some stabilization procedures are necessary to handle hourglass modes resulting from the reduced integration method. The stabilization technique used are following the work of Belytschko [BEL 93] and Schwartz [SCH 09]. The ANS method is also applied in both formulation to reduce transverse shear locking. We adopt the ANS technique with 4 tying points for the shear strain as well as the normal transverse strain for the SB9 element while the 2 points ANS method from [BOI 94] is applied for the SB7 element. These new elements have a wide range of applications, showing very good convergence, robustness and accuracy in nonlinear problems. These elements have been implemented implemented into the quasi-static and dynamic implicit software code_aster [Ele 20] developed by EDF.

Variational formulation

The Hu-Washizu principle as prsented in the subsection 1.5. 3.1 is the starting point for the elements formulations. It is written as follows

π HW (u, E, S) = Ω 0 W (E) dΩ 0 + Ω 0 S : 1 2 F T F -I -E dΩ 0 -π ext (u) (2.1)
Where (W ) is the strain energy, F the deformation gradient depending on the displacement eld u, I the metric tensor and π ext (u) the external force power. As being advocated rst by Andel nger and Ramm [AND 93] and further by Bischo and Ramm [BIS 97] for large deformation with (EAS) method, the approach proposed herein is also based on an enrichment of the Green-Lagrange strain tensor.

E = E u + E eas with E u = 1 2 F T F -I (2.2)
This means that the eight (respectively six) vertices nodes displacement-dependent strain tensor E u of the element is enriched by an additional enhanced assumed strain E eas ∈ E eas thanks to the ninth node (respectively the seventh). The variation of the above functional is obtained from the directional derivative and leads to

δπ HW (u, E eas , S) = Ω 0 ∂W ∂E : δE H + ∂W ∂E : δE eas dΩ 0 -δπ ext - Ω 0 S : δE eas dΩ 0 - Ω 0 δS : E eas dΩ 0 (2.3)
As in many researches, the three-eld functional is reduced to a two eld functional as suggested by Simo and Rifai [SIM 90b], by choosing the interpolation such that S and E eas become orthogonal. A slightly di erent approach is applied in this new formulation. If the element is not pinched, in a sense that there is no pressure applied above or below the element, the formulation goes with the orthogonality condition. Otherwise, if the element is pinched, let's say by an upper pressure P u and a lower pressure P l , the second Piola Kirchho stress S is chosen such that the corresponding Cauchy stress be linearly dependent to the applied pressure

σ 33 = - 1 2 (1 -ζ) P l - 1 2 (1 + ζ) P u (2.4)
ζ being the element thickness parameter, in the covariant frame. This way, the element normal stress is statically enhanced so that a correct pinching stress is derived.

Assuming a nil body force, the Euler-Lagrange equations [BIS 97] associated with equation ( 2.3) are the standard equilibrium equation of the domain

div F ∂W ∂E = 0 S - ∂W ∂E = 0 E eas = 0 (2.5) 
Although E eas = 0 for the continuum problem, in general E eas h = 0, when we introduce nite element approximations. By denoting D the domain occupied by the body, we can observe that the space of enhanced strain eld is in [L 2 (D)] 6 (see Simo [SIM 90b]). Hence, no inter-element continuity on the E eas needs to be enforced when constructing the nite element approximation. Note also that the enhanced strain interpolation E eas h and the standard strain interpolation de ned by S V h are independent in the sense that :

E eas h ∩ S V h = ∅ 2.
3 Nine nodes solid-shell element (SB9)

Kinematics

The SB9 element has nine nodes, one in-plane integration point and the ability to accommodate several integration points along the thickness direction of the element. Figure (2.1) represents the element topology with the order of node numbering (related to the isoparametric coordinate system of the element, de ned by the natural coordinates ξ, η, ζ). Also, in the same gure, the distribution of Gauss-Lobatto integration points is given. Compared with the other eight-node 'solid-shell' bricks, the presence of a supplementary node has two main aims. First getting a linear normal strain component which, along with a full three-dimensional constitutive strain-stress behavior, allows to achieve similar results in bending cases as those obtained with the usual plane stress For that, the ninth node DOF plays the role of an extra parameter essential for a quadratic interpolation of the displacement in the thickness direction. The second advantage is that this DOF has a physical meaning and, for instance, a strength equivalent to a normal pressure can be prescribed to improve the normal stress when the shell structure is moderately thick. In this section we focus on the interpolation of the 8 vertices nodes, we will give more details about the ninth node in the subsection (2. 3.6).

The location of nodes in the isoparametric coordinate system is given by the following isoparametric vectors:

a I 1 = {-1, +1, +1, -1, -1, +1, +1, -1} a I 2 = {-1, -1, +1, +1, -1, -1, +1, +1} a I 3 = {-1, -1, -1, -1, +1, +1, +1, +1} (2.6) 
where I means node number. Auxiliary vectors are de ned from previous combinations of the isoparametric vectors:

h I 1 = {-1, -1, +1, -1, +1, -1, +1, -1} h I 2 = {+1, +1, -1, -1, -1, -1, +1, +1} h I 3 = {+1, -1, -1, +1, -1, +1, +1, -1} h I 4 = {-1, +1, -1, +1, +1, -1, +1, -1} (2.7) 
These vectors form the basis for the interpolation eld of the nodal displacements.

The shape functions N I (ξ, η, ζ) are obtained from a linear combination of the abovementioned (equations 2.6 and 2.7) isoparametric vectors

N I = 1 8 (1 + ξa I 1 + ηa I 2 + ζa I 3 + ξηh I 1 + ηζh I 2 + ξζh I 3 + ξηζh I 4 ) (2.8)
The derivatives of the shape functions with respect to the isoparametric coordinates are also spanned by the isoparametric vectors in the form :

N I,ξ = 1 8 (a I 1 + h I 2 ζ + h I 3 η + h I 4 ηζ) N I,η = 1 8 (a I 2 + h I 1 ζ + h I 3 ξ + h I 4 ξζ) N I,ζ = 1 8 (a I 3 + h I 1 η + h I 2 ξ + h I 4 ξη) (2.9)
One of the advantages of the SB9 element is the use of only translational degrees of freedom. Therefore the position of a point inside the element in the initial (X) or the current (x) state is obtained from the interpolation of the nodal translational degrees of freedom

X(ξ, η, ζ) = N I (ξ, η, ζ)X I (2.10) x(ξ, η, ζ) = N I (ξ, η, ζ)x I (2.11)
where x I and X I are the nodal coordinates in the current and initial positions. The displacement eld is also obtained from nodal values after a proper interpolation with shape functions

u(ξ, η, ζ) = N I (ξ, η, ζ)u I (2.12)
where u I are the nodal displacement. Keep in mind that the e ect of the ninth node will be discussed in a later section. The derivatives of displacements in the isoparametric coordinate system are interpolated from the shape functions derivatives as

u ,ξ (ξ, η, ζ) = N I,ξ (ξ, η, ζ)u I u ,η (ξ, η, ζ) = N I,η (ξ, η, ζ)u I u ,ζ (ξ, η, ζ) = N I,ζ (ξ, η, ζ)u I (2.13)

Mapping between the contravariant and the Cartesian basis

From equation (2.9) the Jacobian matrices in the initial and the current con gurations can be written as follows :

J = ∂X ∂ξ (2.14) j = ∂x ∂ξ = ∂X ∂ξ + ∂U ∂ξ = J + D (2.15)
where ξ = {ξ, η, ζ} is the vector of natural coordinates and D = ∂U ∂ξ represents the derivative of the displacement vector U with respect to the vector of natural coordinates ξ. J and D can be decomposed into constant, linear and bi-linear components depending on ξ, η, ζ, ξη, ζη, ζξ as follows

J = J 0 + ξJ ξ + ηJ η + ζJ ζ + ξηJ ξη + ηζJ ηζ + ξζJ ξζ (2.16) D = D 0 + ξD ξ + ηD η + ζD ζ + ξηD ξη + ηζD ηζ + ξζD ξζ (2.17)

Nine and seven nodes solid-shell elements

This procedure is required for the construction of the hourglass strain eld that stabilizes the SB9 element. The components of equation ( 2.16 and 2.17) are given as follows, considering the Einstein convention for the repeated superscript

J 0 = 1 8   a I 1 X I 1 a I 1 X I 2 a I 1 X I 3 a I 2 X I 1 a I 2 X I 2 a I 2 X I 3 a I 3 X I 1 a I 3 X I 2 a I 3 X I 3   D 0 = 1 8   a I 1 U I 1 a I 1 U I 2 a I 1 U I 3 a I 2 U I 1 a I 2 U I 2 a I 2 U I 3 a I 3 U I 1 a I 3 U I 2 a I 3 U I 3   (2.18) J ξ = 1 8   0 0 0 h I 1 X I 1 h I 1 X I 2 h I 1 X I 3 h I 3 X I 1 h I 3 X I 2 h I 3 X I 3   D ξ = 1 8   0 0 0 h I 1 U I 1 h I 1 U I 2 h I 1 U I 3 h I 3 U I 1 h I 3 U I 2 h I 3 U I 3   (2.19) J η = 1 8   h I 1 X I 1 h I 1 X I 2 h I 1 X I 3 0 0 0 h I 2 X I 1 h I 2 X I 2 h I 2 X I 3   D η = 1 8   h I 1 U I 1 h I 1 U I 2 h I 1 U I 3 0 0 0 h I 2 U I 1 h I 2 U I 2 h I 2 U I 3   (2.20) J ζ = 1 8   h I 3 X I 1 h I 3 X I 2 h I 3 X I 3 h I 2 X I 1 h I 2 X I 2 h I 2 X I 3 0 0 0   D ζ = 1 8   h I 3 U I 1 h I 3 U I 2 h I 3 U I 3 h I 2 U I 1 h I 2 U I 2 h I 2 U I 3 0 0 0   (2.21) J ξη = 1 8   0 0 0 0 0 0 h I 4 X I 1 h I 4 X I 2 h I 4 X I 3   D ξη = 1 8   0 0 0 0 0 0 h I 4 U I 1 h I 4 U I 2 h I 4 U I 3   (2.22) J ξζ = 1 8   0 0 0 h I 4 X I 1 h I 4 X I 2 h I 4 X I 3 0 0 0   D ξζ = 1 8   0 0 0 h I 4 U I 1 h I 4 U I 2 h I 4 U I 3 0 0 0   (2.23) J ηζ = 1 8   h I 4 X I 1 h I 4 X I 2 h I 4 X I 3 0 0 0 0 0 0   D ηζ = 1 8   h I 4 U I 1 h I 4 U I 2 h I 4 U I 3 0 0 0 0 0 0   (2.24)
An e cient hourglass stabilization of a reduced integration nite element should be integrated analytically over the element domain. The best way to do so is to work with integrands which are polynomials. For this reason it's interesting to seek for a polynomial approximation of the inverse Jacobian matrix J -1 , which still allows to display arbitrary element shapes with su cient accuracy. ), the inverse of the Jacobian matrix is decomposed keeping only the constant and linear terms as follows

J -1 ≈ J -1 | ξ=0 + 3 ∑ i=1 J -1 ,ξ i | ξ=0 ξ i (2.25) 
The constant term being easily determined, the work will be to determine the linear terms with very limited resources. To do so, equation (2.26) is simply derived with respect to the corresponding convective parameter and gives the equation (2.27).

JJ -1 ≈ (JJ -1 )| ξ=0 + 3 ∑ i=1 (JJ -1 ) ,ξ i | ξ=0 ξ i (2.26) 0 = (JJ -1 ) ,ξ i | ξ=0 = J ,ξ i | ξ=0 J -1 | ξ=0 + J| ξ=0 J -1 ,ξ i | ξ=0 (2.27)
From equation (2.27) one can easily determine the linear Jacobian terms, as follows, all terms being known or determined easily.

J -1 ,ξ i | ξ=0 = -(J 0 ) -1 J ξ i (J 0 ) -1 (2.28)
Hence, a good representation of the inverse Jacobian matrix is :

J -1 ≈ J -1 | ξ=0 - 3 ∑ i=1 (J 0 ) -1 J ξ i (J 0 ) -1 ξ i (2.29)

Strain Field

The deformation gradient is written as follows

F = ∂x ∂X = ∂x i ∂ξ k e i ⊗ ∂ξ k ∂X j e j = g i ⊗ G i (2.30)
F is a tensor which maps the reference basis G i to the current one g i (Figure 2.2). e i is the Cartesian base vector. For simplicity, the superscript u will be omitted and E u will be written as E. Further the Green Lagrange strain tensor is represented by it's Cartesian and covariant components as follows

E = 1 2 (g i • g j -G i • G j )G i ⊗ G j = E i j e i ⊗ e j = Êi j G i ⊗ G j = 1 2 G i • ∂u ∂ξ j + ∂u ∂ξ i • G j + ∂u ∂ξ j • ∂u ∂ξ i G i ⊗ G j
(2.31) E i j and Êi j being respectively the components of the Green Lagrange tensor in the Cartesian and covariant frame. In Voigt notation the Cartesian and covariant Green-Lagrange strain are related as follows

E = Q Ê (2.32) with E = {E 11 , E 22 , E 33 , 2E 12 , 2E 23 , 2E 13 } T and Ê = { Êξξ , Êηη , Êζζ , 2 Êξη , 2 Êηζ , 2 Êξζ } T (2.33
) and Q a second-order matrix which contains the terms of the inverse of the jacobian J matrix as follows

Q =          J 2 11 J 2 21 J 2 31 J 11 J 21 J 21 J 31 J 11 J 31 J 2 12 J 2 22 J 2 32 J 12 J 22 J 22 J 32 J 12 J 32 J 2 13 J 2 23 J 2 33
J 13 J 23 J 23 J 33 J 13 J 33 2J 11 J 12 2J 21 J 22 2J 31 J 32 J 12 J 21 + J 11 J 22 J 22 J 31 + J 21 J 32 J 12 J 31 + J 12 J 32 2J 12 J 13 2J 22 J 23 2J 32 J 33 J 13 J 22 + J 12 J 23 J 23 J 32 + J 22 J 33 J 13 J 32 + J 12 J 33 2J 11 J 13 2J 21 J 23 2J 31 J 33 J 13 J 21 + J 11 J 23 J 23 J 31 + J 21 J 33 J 13 J 31 + J 11 J 33

         (2.34)
By naming D 1 , D 2 , D 3 the row vectors of D and J 1 , J 2 , J 3 the row vectors of J (see equation 2.16 and 2.17) the convective strain can be derived as follows

Ê =         E cξξ E cηη E cζζ Γ cξη Γ cηζ Γ cξζ         =         J T 1 D 1 + 1/2D T 1 D 1 J T 2 D 2 + 1/2D T 2 D 2 J T 3 D 3 + 1/2D T 3 D 3 J T 1 D 2 + J T 2 D 1 + D T 1 D 2 J T 2 D 3 + J T 3 D 2 + D T 2 D 3 J T 1 D 3 + J T 3 D 1 + D T 1 D 3         (2.35)
From the variation of the rst line of equation ( 2.31) we can write the covariant straindisplacement BI at the node I(I = 1, ..., 8), such that δ ÊI = BI δU I as follows

BI =         N I,ξ g T 1 N I,η g T 2 N I,ζ g T 3 N I,ξ g t 2 + N I,η g T 1 N I,ξ g t 3 + N I,ζ g T 1 N I,η g t 3 + N I,ζ g T 2         =         N I,ξ j T 1 N I,η j T 2 N I,ζ j T 3 N I,ξ j T 2 + N I,η j T 1 N I,ξ j T 3 + N I,ζ j T 1 N I,η j T 3 + N I,ζ j T 2         (2.36)
The SB9 element utilizes a reduced integration scheme with integration points aligned along the thickness direction ξ = (0, 0, ζ) (see Figure 2.1). Following this way, the cartesian compatible Green-Lagrange strain (equation 2.35) can be split into one part related to the integration and another part called hourglass strain In the covariant frame, each of the shear deformation Êηζ and Êξζ are interpolated using the equivalent shear deformation from four di erent tying points ( gure 2.3). E(-1, 0, -1), F(1, 0, -1), G(1, 0, 1) and H(-1, 0, 1), for Êηζ and J(0, -1, -1), K(0, 1, -1), L(0, 1, 1) and M(0, -1, 1) for Êξζ . Hence the assumed 

Ê = Êri + Êstab (2.
ÊANS ξζ = N J ÊJ ξζ + N K ÊK ξζ + N L ÊL ξζ + N M ÊM ξζ ) ÊANS ηζ = N E ÊE ηζ + N F ÊF ηζ + N G ÊG ηζ + N H ÊH ηζ ) (2.41) with N I = 1 4 (1 + ζ I ζ)(1 + η I η) for I = J, . . . , M N J = 1 4 (1 + ζ J ζ)(1 + ξ J ξ) for J = E, . . . , H (2.42) 2.3.4 
ÊANS ζζ = N A ÊA ζζ + N B ÊB ζζ + N C ÊC ζζ + N D ÊD ζζ (2.43) N k = 1 4 (1 + ξ k ξ)(1 + η k η) for k = A, . . . , D (2.44) 

Stabilization procedure 2.3.5.1 Green Lagrange strain stabilization

The goal of the stabilization procedure is to correct the rank de ciency of the sti ness matrix coming from the adopted reduced integration scheme. 

Q ≈ Q 0 + ξQ ξ + ηQ η + ζQ ζ (2.45)
It has been shown in [SCH 09] that a very good accuracy is reached just using the constant and linear terms of Q. Hence, the bilinear terms are ignored. In the same way, the covariant Green Lagrange strain tensor can be split into it's constant, linear and bilinear terms and the Cartesian Green Lagrange strain can then be derived as follows

E ≈ Q 0 + ξQ ξ + ηQ η + ζQ ζ Ê0 + ζ Êζ + ζ 2 Êζζ + ξ Êξ + η Êη + ξη Êξη + ξζ Êξζ + ηζ Êηζ ≈ E 0 + ζE ζ + ζ 2 E ζζ E ri + ξE ξ + ηE η + ξηE ξη + ξζE ξζ + ηζE ηζ E stab (2.46) with E 0 = Q 0 Ê0 (2.47) 
E ζ = Q 0 Êζ + Q ζ Ê0 (2.48) 
E ζζ = Q 0 Êζζ + Q ζ Êζ (2.49) E ξ = Q 0 Êξ + Q ξ Ê0 (2.50) E η = Q 0 Êη + Q η Ê0 (2.
51)

E ξη = Q 0 Êξη c + Q ξ Êη + Q η Êξ c (2.52) E ηζ = Q 0 Êηζ + Q η Êζ + Q ζ Êη (2.53) E ξζ = Q 0 Êξζ + Q ξ Êζ + Q ζ Êξ (2.54
)

Thus E = E ri + E stab (2.55)
The strain-displacement gradient can be split in the same way

B ≈ Q 0 + ξQ ξ + ηQ η + ζQ ζ B0 + ζ Bζ + ζ 2 Bζζ + ξ Bξ + η Bη + ξη Bξη + ξζ Bξζ + ηζ Bηζ ≈ B 0 + ζB ζ + ζ 2 B ζ 2 B ri + ξB ξ + ηB η + ξηB ξη + ξζB ξζ + ηζB ηζ B stab (2.56) with B 0 = Q 0 B0 (2.57) 2.
Nine and seven nodes solid-shell elements

B ζ = Q 0 Bζ + Q ζ B0 (2.58) B ζζ = Q 0 Bζζ + Q ζ Bζ (2.59) B ξ = Q 0 Bξ + T ξ B0 (2.60) B η = Q 0 Bη + Q η B0 (2.61) B ξη = Q 0 Bξη c + Q ξ Bη + Q η Bξ c (2.62) B ηζ = Q 0 Bηζ + Q η Bζ + Q ζ Bη (2.63) B ξζ = Q 0 Bξζ + Q ξ Bζ + Q ζ Bξ (2.64)
so that B can be written as

B = B ri + B stab (2.
65) E stab and B stab represent the terms cancelled in the reduced integration. The process of stabilization consists in analytically restoring those terms into the sti ness matrix. Furthermore to eliminate volumetric locking, the B-bar approach [HUG 80] is adopted. Hence the hourglass counterpart of the stabilized strain end strain-displacement operators are split into there volumetric and deviatoric components, and only the deviatoric part are kept

B stab = B stab dev (ξ, η, ζ) + B stab vol (0, 0, 0) (2.66) 
Since no constant term is present in the expansion of B stab (see equation 2.56)

B stab vol (0, 0, 0) = 0 (2.67) and B stab = B stab dev (ξ, η, ζ) (2.68)
The stabilization components of the strain and strain-displacement matrices being well identi ed, a similar approach is used to identify the stabilization stress.

Second Piola Kirchho stress stabilization

From equation (2.55), since the two parts of the Green Lagrange strain tensor are orthogonal, the internal energy is split like

W (E) = W ri (E ri ) +W stab (E stab ) (2.69)
Since second Piola Kirchho tensor is the derivative of the internal energy with respect to Green-Lagrange strain, the stabilization counterpart can be identi ed by simply writing the derivative

S = ∂W (E) ∂E (2.70) = ∂W ri (E ri ) ∂E ri ∂E ri ∂E + ∂W stab (E stab ) ∂E stab ∂E stab ∂E (2.71) = S ri (E ri ) + S stab (E stab ) (2.72)
S ri (E ri ) is Piola Kirschho obtained from the integration of constitutive law and S stab (E stab ) Piola Kirchho stress for stabilization. The key point of the stabilization is to nd an optimal way to evaluate that stabilization stress without integrating it so that the computation time is minimized. Now just as being explained before, to avoid volumetric locking, only the deviatoric part of the Piola Kirchho stabilization tensor is kept. Doing so, the stabilization of the stress is given as

S stab = C stab : E stab (2.73)
C stab being the deviatoric part of St Venant Kirchho material given as follows

C stab = µ stab         4 3 -2 3 -2 3 0 0 0 -2 3 4 3 -2 3 0 0 0 -2 3 -2 3 4 3 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1         (2.74)
With µ stab the shear modulus evaluated, in elastic material behavior, as µ stab = E/2(1 + ν), in which E and ν are respectively the Young's modulus and the Poisson ratio. For inelastic materials, using the elastic shear modulus lead to an overestimation of the stabilization stress. To overcome such problem the secant modulus as de ned in Belytschko and Bindeman [BEL 93] is used

2µ stab = π S π E , (2.75) 
where

π S = 1 2 S dev : S dev , π E = 1 2 E dev : E dev (2.76)
These ways of evaluating the stabilization parameter µ stab is very convenient because there is no need for consistent linearization of stabilization constitutive matrix, which is very interesting in terms of computation time. Moreover, the proposed de nition of C stab ensures an e cient and robust stabilization as will be shown in chapter 3 in di erent numerical examples.

The ninth node

The additional central node is endowed with only one translation degree of freedom in the element thickness direction ζ. The enhanced normal displacement in the thickness direction is written as follows One can then write the variation of the pinching strain in the covariant basis as follows

u ζ (ξ, η, ζ) = u H ζ (ξ, η, ζ) + (1 -ζ 2 )u 9 ζ (2.
δE ζζ = BH 3 δu H ζ -2ζδu 9 ζ (2.79)
BH 3 being the third line of matrix BH .

Seven nodes solid-shell element (SB7)

The assumed strain method and reduced integration technique as applied in a hexahedral element does not eliminate the locking problems in a prismatic solid-shell nite element. Hence, in addition to using the assumed strain method, the reduced integration technique and the EAS method, the bending deformation of the DKT6 element is used to enrich the deformation of the SB7 nite element. Since DKT6 is a classical shell nite element with rotational degrees of freedom in small perturbation, it is then di cult to formulate SB7 in Total Lagrangian as is the case with SB9. An updated Lagrangian formulation with co-rotational frame is then adopted.

Local frame and objective stress rate

In the updated Lagrangian approach, it is useful to establish a set of con gurations related to which each particle in the deforming body can be referred to. In this sense, we distinguish three con gurations: the material (reference), the spatial (current) and the parametric (convective) con guration. Consider the natural coordinates s = (ξ, η, ζ) representing the isoparametric prismatic domain (Figure 2.4). Without loss of generality, the reference con guration can be related to a converged state (n, the last increment), whereas the current con guration points corresponds to the next time increment (n+1). For the solid-shell topology treated in this part, any point in the reference con guration can be de ned by the position vector x(s) as

n x(s) = 1 2 (1 + ζ) 3 ∑ i=1 N i x i t + 1 2 (1 -ζ) 3 ∑ i=1 N i x i b N 1 = ξ N 2 = η N 3 = 1 -ξ -η (2.80)
where the subscripts t and b denote the projections of the variable onto the top (ζ = +1) and bottom (ζ = -1) surfaces, respectively and N i the isoparametric shape function.

The corresponding position after incremental deformation (current con guration) can The partial derivatives of the position vector n x(s) allows for the de nition of the covariant basis vector in the current and reference con gurations, in the form

n g a = ∂ n x ∂s a , a = (1, 2, 3) n+1 g a = ∂ n+1 x ∂s a (2.81) 
The incremental deformation gradient F between con gurations (n) and (n + 1) and the incremental displacement-based Green-Lagrange strain tensor (E u ) can then be written as

n+1 n F = ∂ n+1 x ∂ n x (2.82) n+1 n E = 1 2 ( n+1 n F T n+1 n F -I) (2.83) n+1 n E u ab = 1 2 ( n g a • ∂ n+1 n u ∂ n s b + ∂ n+1 n u ∂ n s a • n g b + ∂ n+1 n u ∂ n s a • ∂ n+1 n u ∂ n s b ) (2.84)
with I as the second-order identity tensor. The convective frame is selected as the departure point for the strain components and also for the enhancing strain eld used in this element. As work conjugate measure for the Green-Lagrange strain tensor, the second Piola-Kirchho stress tensor S is chosen

S = S ab n g a ⊗ n g b (2.85)
Due to the nonorthogonal character of the convective frame, a local orthonormal frame r = (r 1 , r 2 , r 3 ) is de ned at the element center

(ξ = 1/3, η = 1/3, ζ = 0) as r 1 = n g 1 n g 1 r 2 = n g 2 + g c n g 2 + g c r 3 = r 1 ∧ r 2 (2.86)
where g c ensures orthogonality and is de ned as follows

g c = - n g 1 • n g 2 n g 1 • n g 1 n g 1 (2.87)
After being de ned in the undeformed con guration, the local frame is subjected to the rigid-body part of the relative deformation gradient, evaluated between con gurations (n) and (n + 1). In fact, the polar decomposition applied to the relative deformation gradient of Equation ( 2.82) leads to

n+1 n F = n+1 n R n+1 n U (2.88)
where n+1 n R and n+1 n U are, respectively, the rotation tensor and the right-stretch tensor. Doing so, the local orthonormal coordinate system can be easily updated between stages (n) and (n + 1) in the form

n+1 n r = n+1 n R n r (2.89)
In this way, the local coordinate system for a given point is only a ected by the rigidbody component of the total deformation, characterizing this frame as a corotational one, with material strain (and stress) tensors being rotated as if they were frozen into the deformed continuum [CAR 05]. The main advantage of the adoption of a corotational local frame is the simpli ed treatment of nonlinearities, either geometric or material, for solids subjected to nite rotations and displacements. A complete description of the constitutive behaviour of a given body can be obtained resorting to material stress and strain corotational tensors, continuously referred to the local frame and, consequently, following the deformation path from the beginning. Examples of such tensors are the rotated second Piola-Kirchho stress tensor and the rotated Green-Lagrange strain tensor, evaluated at the continuously rotated local reference system. This fact turns to be very useful, once the adopted EAS procedure is entirely designed resorting to the material frame. Additionally, the use of material tensors grants the objectivity within the formulation. In fact, the primary choice of a reference system rotating with the continuum body ful lls the objectivity requirements, for an observer situated at the body and a ected by the rotation (but not the stretch) part of the deformation [SIM 98]. The update of the stress tensor and the internal force in the corotational framework is made under the assumption that the magnitude of the incremental strain is small, and is comparable to the order of strain in small deformation theory. The rotated stress rate σ in an incremental form, and without loss of generality, assumes the rate of change of σ to be constant within the step [MAS 00]

n+1 σ = n σ + ∆t σ = n σ + n+1 n σ = n σ + 1 J n+1 n F n+1 n S n+1 n F T (2.90)
where n+1 n σ is the incremental Cauchy stress, n+1 n S the incremental second Piola-Kirchho stress tensor in the rotated reference and J = det( n+1 n F). If the load incremental or the step size is kept small, the pure deformation part of the incremental motion is a small quantity as compared to the element dimensions when measured in the local co-rotated frame. Consequently, it is reasonable to make the following two assumptions:

• The changes in element shapes are small in each individual local increment, meaning that n+1 n F ≈ I and therefore J = 1.

• The gradients of pure deformational part of the incremental motion, when measured in the local co-rotated frame are of order of magnitude as the small strains. Therefore, quadratic terms in the Green-Lagrange strain tensor de ned on the rotated frame can be neglected. (See Belytschko and Hsieh [BEL 73])

Based on these assumptions, the stress update (2.90) can be expressed in an iterative form as

n+1 σ = n σ + C B n+1 n r T ∆U (2.91)
with C as the constitutive tensor and B the standard strain-displacement operator that is de ned in the next sections. This approach is equivalent to the adoption of a hypoelastic constitutive model representative of a Green-Naghdi objective stress rate, which will derive an additive constitutive update of the stress tensor also in the nonlinear material range.

Strain tensor

The conventional Jacobian matrix in the local frame is written as follows The Green-Lagrange strain tensor can be interpolated all over the element's domain as follows

J =    
E = B u d (2.93)
where B u is the standard [6 × 18] strain-displacement operator, well-de ned in the literature

B uI =            ∂N I ∂x 0 0 0 ∂N I ∂y 0 0 0 ∂N I ∂z ∂N I ∂y ∂N I ∂x 0 ∂N I ∂z 0 ∂N I ∂x 0 ∂N I ∂z ∂N I ∂y            (2.94)
From the reduced integration scheme used in this work, the shape function derivative can be split as follows

∂N I ∂X ≈ ∂N I ∂X | ( 1 3 , 1 3 ,0) + z ∂ ∂z ( ∂N I ∂X )| ( 1
where X = (x, y, z). Considering the equation (2.95) the terms of matrix B u can also be split into two parts as follows

B u = B u | ( 1 3 , 1 3 ,0) + zB u z (2.96)
The deformation de ned in equation ( 2.93) can be separated into tree parts : the in plane (IP) part E IP , the normal or pinching part E P and the transverse shear part

E SH E = E IP + E P + E SH (2.97)
For the SB7 to perform well in the simulation of bending shell like structures, some treatments have to be made to eliminate locking phenomena.

In plane strain enhancement

To treat properly the in-plane deformation E IP , it is splitted as the combination of two contributions : the rst, constant, being a membrane contribution and the second, depending on z, viewed as a bending contribution (see equation 2.98).

E IP = E m IP + zE b IP (2.98) 
where

E m IP =   E m 11 E m 22 2E m 12   =   m T x 0 0 m T y m T y m T x   d and E b IP =   E b 11 E b 22 2E b 12   =   b T x 0 0 b T y b T y b T x   d (2.99) with   m T x m T y m T z   = (J -1 ∂N ∂ξ )| ( 1 3 , 1 3 ,0) and   b T x b T y b T z   = ∂ ∂z (J -1 ∂N ∂ξ )| ( 1 3 , 1 3 ,0) (2.100) 
Now if the bending contribution is kept as in equation ( 2.98) the SB7 element would be very rigid and would show poor results in bending dominant problems. To circumvent this issue, E b IP is replaced by a curvature κ directly derived from shell theory (Discrete Kirchho triangular element or DKT6, see [ ROE 92])

E IP = E m IP + zκ (2.101)
For the prism described here, Figure 2.5.(a) shows the mean triangular area de ned by points 1, 2 and 3 (midpoints of the edges i-l, j-m, k-n, respectively), the normal to this surface being e z . Figure 2.5.(b) shows this mid-surface as a 6-node triangular element whose degrees of freedom de ning bending e ects are three translations (w 1 , w 2 , w 3 ) in the e z direction and three rotations (θ 4 , θ 5 , θ 6 ) in the direction of each side, at the nodes 4, 5 and 6 located at the midpoints of these sides. Finally Figure 2.5.(c) shows how to express, for example, θ 4 by using nodal displacement components (projection on the axis r 4 ) of nodes i, j, m, l of the prism. And it would be the same for θ 5 by using translational dof of nodes j, k, n, m and for θ 6 with translations of nodes k, I, l, n of the prism. Finally, rotations θ 4 , θ 5 , θ 6 are connected to the nodal displacements. Otherwise, w 1 is obtained with the translations of nodes i and l, w 2 with the translations of nodes j and m, and w 3 with the translations of nodes k and n.

DKT6 Shell Finite element

The DKT6 [ROE 92] element de nes the bending of a plate with a Kirchho kinematic. It has three translational dof normal to the surface, located at the vertices, and three rotational dof, located at midpoints of the sides (Figure 2.5.(b)). Conventionally, interpolation functions use area coordinates (A: area of the triangle)

w(x, y) = N 1 • w 1 + N 2 • w 2 + N 3 • w 3 , N i (x, y) = A i (x, y)/A (2.102) θ x (x, y) = (1 -2N 3 ) • θ x4 + (1 -2N 1 ) • θ x5 + (1 -2N 2 ) • θ x6 (2.103) θ y (x, y) = (1 -2N 3 ) • θ y4 + (1 -2N 1 ) • θ y5 + (1 -2N 2 ) • θ y6 (2.104)
Hence at node 4 (middle of the side 1-2), θ x = θ x4 , θ y = θ y4 and the same goes for the node 5 (middle of the side 2-3) and the node 6 (middle of the side 3-1). After derivations

N 1,x (x, y) = 1 2A (y 2 -y 3 ); N 1,y (x, y) = 1 2A (x 2 -x 3 ) (2.105) N 2,x (x, y) = 1 2A (y 3 -y 1 ); N 2,y (x, y) = 1 2A (x 1 -x 3 ) (2.106) N 3,x (x, y) = 1 2A (y 1 -y 2 ); N 3,y (x, y) = 1 2A (x 2 -x 1 ) (2.107)
For simplicity, the following notation is used : x mn = x mx n ; y mn = y my n We can then write the curvature deformation as follows x 32 x 13 y 12 x 12 y 23 x 23 y 31 x 31

          θ x4 θ y4 θ x5 θ y5 θ x6 θ y6         (2.108)
It is useful to express the normal vectors and the tangential vectors in the local basis (see Figure 2.6) 

n 1 = c 1 e x +
c 3 = y 21 L 3 and s 3 = - x 21 L 3 (2.117)
L 1 , L 2 , and L 3 being respectively the side length 2-3, 3-1 and 2-1 (see Figure 2.6). The decomposition of the rotation vectors in their local basis can be given as .118)

θ 4 = θ x4 e x + θ y4 e y = θ 4 t 3 + w 2 -w 1 L 3 n 3 ( 2 
θ x4 = -s 3 θ 4 + c 3 w 2 -w 1 L 3 , θ y4 = c 3 θ 4 + s 3 w 2 -w 1 L 3 (2.119)
θ 5 , θ 6 , θ x5 , θ y5 , θ x6 , θ y6 are given by permuting the indices. The curvatures will be expressed in terms of the rotational degrees of freedom and the normal nodal displacement

κ = B θ   θ 4 θ 5 θ 6   + B w   w 1 w 2 w 3   (2.120)
where the matrices B θ and B w are given like this

B θ = 1 A   c 2 3 L 3 c 2 1 L 1 c 2 2 L 2 s 2 3 L 3 s 2 1 L 1 s 2 2 L 2 2c 3 s 3 L 3 2c 1 s 1 L 1 2c 2 s 2 L 2  
(2.121)

B w = 1 A   c 2 s 2 -c 3 s 3 c 3 s 3 -c 1 s 1 c 1 s 1 -c 2 s 2 c 3 s 3 -c 2 s 2 c 1 s 1 -c 3 s 3 c 2 s 2 -c 1 s 1 2(c 2 3 -c 2 2 ) 2(c 2 1 -c 2 3 ) 2(c 2 2 -c 2 1 )   (2.122)

Linking the triangle to the prism

In the local frame of the triangular nite element, which is also the frame of the associated prism, the displacement of the six nodes of the prism projected on e z are denoted : w i , w j , w k , w l , w m , w n . A trivial method gives directly w 1 , w 2 , w 3 as a function of w i , w j , w k , w l , w m , w n w 1 = w i + w l 2 ; w 2 = w j + w m 2 ; w 3 = w k + w n 2 ;

(2.123)

Using B w (B wi j being the i th row and the j th column component ) and performing a base change to make the nodal translations U Xi ,U Yi ,U Zi ,U X j , ...,U Zn be expressed in the global frame of the structure (X,Y, Z), a matrix B b w detailed in equation (2.124) is obtained. This matrix connects the part of the curvatures due to the normal translations to the global displacements of the six nodes.

B b w = B b w B b w (2.124) with B b w =   B w(1,i) e T z B w(2,i) e T z B w(3,i) e T z   , i = 1, 2, 3 (2.125) 
The last development for the expression of bending e ects consists in linking θ 4 , θ 5 , θ 6 to the 18 displacements U Xi ,U Yi ,U Zi ,U X j , ...,U Zn of the prism's nodes. For example, for the rotation θ 4 , we proceed as follows Two points 'a' and 'b' are located on the middle of the edge i-j and m-l (see Figure 

s 4 = 12 12 (2.127) 
q 4 = r 4 ∧ s 4 (2.128)
with 12 is the vector connecting the middle point 1 to the middle point 2, see Figure 2.7. The area surface A 4 formed by the points i-j-m-l can be evaluated using their coordinates in the above de ned frame

A 4 = ((s (4) m -s (4) i )(q (4) l -q (4) j ) + (s (4) j -s (4) l )(q (4) m -q (4) i ))/2
(2.129)

We can then de ne the rotation θ 4 like

θ 4 = w ,q 4 with w ,s 4 w ,q 4 = 1 2A 4 q (4) j -q (4) l q (4) m -q (4) i q (4) l -q (4) j q (4) i -q (4) m s (4) l -s (4) j s (4) 
is

ms

(4) i       w (4) i w (4) j w (4) m w (4) l      
(2.130) Precisely, it is possible to nd the latter relation by analogy with a conventional shape in the i-j-m-l quadrilateral : 's' takes the place of 'x' and 'q' of 'y' while 'r' corresponds to 'z' and 'w' is the translation in the normal surface de ned by the nodes i,j,m,l. We are therefore interested in the derivatives w ,x and w ,y while the usual interpolation in the parent rectangular shape involves the parameter ξ and η ranging from -1 to +1

w = 1 4 (1-ξ)(1-η)w (4) i + 1 4 (1+ξ)(1-η)w (4) j + 1 4 (1+ξ)(1+η)w (4) m + 1 4 (1-ξ)(1+η)w (4) l 
(2.131) The derivatives w ,ξ and w ,η at ξ = 0 and η = 0 (position of the node '4' in the middle of the face i-j-m-l) are expressed by the nodal displacements of the nodes of the face.

w ,ξ w ,η 0,0 = 1 4 -1 1 1 -1 -1 -1 1 1       w (4) i w (4) j w (4) m w (4) l      
; and w ,ξ w ,η (0,0) = J 0 w ,s 4 w ,q 4 (0,0) (2.132)

Using these derivatives and the local coordinates of the nodes i, j, m, l the 4 components of the matrix J 0(2×2) and those of J -1 0 lead to the expression of θ 4 .

θ 4 = P 4 (r 4 • U i ) + Q 4 (r 4 • U j ) -Q 4 (r 4 • U m ) -P 4 (r 4 • U l ) (2.133) 
where

P 4 = s (4) l -s (4) j 2A 4
and

Q 4 = s (4) i -s (4) m 2A 4 .
The expressions are similar for θ 5 and θ 6 with just some index permutations. The following relations between the three rotations and the translational displacements are then derived :

  θ 4 θ 5 θ 6   = T 3x18 • U nodes (2.134)
with U nodes the nodal displacements of the element and T 3x18 a transformation matrix detailed like 

T 3×18 =   P 4 r T 4 Q 4 r T 4 -P 4 r T 4 -Q 4 r T 4 P 5 r T 5 Q 5 r T 5 -P 5 r T 5 -Q 5 r T 5 Q 6 r T 6 P 6 r T 6 -Q 6 r T 6 -P 6 r T 6   ( 2 
x m = N i (ξ, η)x i m z = N i (ξ, η) h i 2 ζZ i (2.138) 
Where

N i ∈ [1 -ξ -η, ξ, η]
is the shape function associated to the ith DOF. The same interpolation is used for the displacement

u = u m + u z (2.139)
Where u m is the displacement at the associated point in the mid-surface and u z is the displacement given by the pseudo-normal rotation, with

u = N i (ξ, η)(u i m + u i z ) u i z = h i 2 ζ(x i -x i 0 ) = h i 2 ζ(R i -I)x i 0 , (2.140) 
where R i is the orthogonal tensor vector that transform x i 0 to x i , and I is the secondorder identity tensor. An orthogonal frame

(V i 10 , V i 20 , V i 30 ) is de ned at each node with V i 30 = x i 0 .
Assuming that the rotations in the loading step are small enough and denoting by θ the rotation vector at node i,

θ = θ i 1 V i 10 + θ i 2 V i 20 (R i -I)x i 0 = θ i ∧ x i 0 (2.141)
The displacement interpolation is given as follows According to the interpolation of displacement, strain components can be obtained in di erent covariant frames. Here, the transverse shear is concerned, and is interpolated directly from the values of those components at nodes

u = N i (ξ, η)u i m + ζN i (ξ, η) h i 2 (-θ i 1 V i 20 + θ i 2 V i 10 ) (2.142)
ε α3 = N 1 ε 1 α3 + N 2 ε 2 α3 + N 3 ε 3 α3 ; α = 1, 2 (2.143) 
In order to calculate the values of nodal transverse shear strains ε α3 , a covariant frame is built from the material coordinates along the element edges and the transverse shear strain ε i * α3 in the associated contravariant frame is assumed to be constant along the sides connected to node i. In the middle of each edge of the prism, we de ne a covariant basis

f i 1 , f i 2 , f i 3 associated to the contravariant coordinates (r 1 i , r 2 i , r 3 
i ) using the natural basis of the prismatic element, see Figure (2.9)

g 1 = ∂x ∂ξ , g 2 = ∂x ∂η , g 3 = ∂x ∂ζ • In node 1 : f 1 1 = g 1 , f 1 2 = g 2 and r 1 1 = ξ, r 2 1 =
η which gives a transformation matrix between the two frames as

D 1 = 1 0 0 1 • In node 2 : f 2 1 = -g 1 + g 2 , f 1 2 = g 2 and r 2 1 = η, r 2 2 = 1 -ξ -η
which gives a transformation matrix between the two frames as

D 2 = 0 -1 1 -1 • In node 3 : f 3 1 = -g 2 , f 3 2 = -g 2 + g 1 and r 3 2 = ξ, r 3 1 = 1 -ξ -η
which gives a transformation matrix between the two frames as

D 3 = -1 1 -1 0
The transverse shear strain components ε i * α3 in f i 1 , f i 2 , f i 3 along the sides can be expressed as

ε i * α3 = 1 2 ( ∂u ∂ζ f α i + ∂u ∂r i α g 3 )| m α = 1, 2 and m = 4, 5, 6 (2.144) 
The derivative ∂u ∂ζ in the middle node m is taken as the average of that derivative in nodes i and i + 1

∂u ∂ζ | m = 1 2 ( ∂u ∂ζ | i + ∂u ∂ζ | i+1 ) = 1 4 h i (-θ i 1 V i 20 + θ i 2 V i 10 ) + 1 4 h i+1 (-θ i+1 1 V i+1 20 + θ i+1 2 V i+1 10 ) (2.145) 
and one can easily demonstrate that

∂u ∂r i 1 = u i+1 -u i ∂u ∂r i 2 = u i-1 -u i (2.146)
The nodal transverse shear strain in f i 1 , f i 2 , f i 3 can be transformed with the expressions detailed in [BOI 94] by the following form

2ε i * α3 = C i • U tria3 and 2ε i α3 = D i 2ε i * α3 (2.147)
The shear strain in the covariant base is then given as the combinations of the three shear strain given in each node i

2ε α3 = ∑ N i D i C i • U tria3 (2.148) 
The transverse shear strain components in the cartesian basis and at the barycenter of the triangle are interpolated and re-expressed in function of the dofs of the triangle

2ε α3 = J -1 2x2 ∑ N i D i C i • U tria3 , (2.149) 
where J -1 2x2 is the middle surface plane Jacobian matrix and

U tria3 = [u 1 , v 1 , w 1 , θ 1 1 , θ 1 2 , u 2 , v 2 , w 2 , θ 2 1 , θ 2 2 , u 3 , v 3 , w 3 , θ 3 1 , θ 3 2 ] T
From now on, the next step is to link U tria3 to U nodes

Linking the triangle to the prism

Like in the in-plan shear part, the passage of this triangular element to the prismatic element can be expressed by the displacements of the nodes of the prism. The displacement of M (arbitrary point in the edge i of prism) u i M , i = 1, 2, 3 can be interpolated by the displacements of the two nodes (top and bottom) with relation

u i M = 1 2 (1 -ζ)u i b + 1 2 (1 + ζ)u i t = 1 2 (u i b + u i t ) + 1 2 (u i t -u i b )ζ = u i + u i R (2.150)
Where u i is the displacement of point i(i = 1, 2, 3), u i R is the displacement due to the relative rotation of the prismatic edge which can also be described

u i R = h i 2 ζθ i ∧ x i 0 with θ i = θ i 1 V i 10 + θ i 2 V i 20 (2.151)
The rotations θ i 1 , θ i 2 of the points i = 1, 2, 3 can be expressed in function of nodal displacements of the prism with the equations

θ i 1 = - 1 2h i (u i t -u i b )V i 20 θ i 2 = - 1 2h i (u i t -u i b )V i 10 , (2.152) 
with the vectors V i 10 , V i 20 , V i 30 de ned as follows

V i 30 = x i t -x i b x i t -x i b V i 20 = (x i+1 -x i ) ∧ V i 30 (x i+1 -x i ) ∧ V i 30 V i 10 = V i 20 ∧ V i 30 (2.153)
Hence, the relation of the displacements of triangular element and the displacements of prism is linked with a transformation matrix T ts detailed like this

U tria3 = T ts • U nodes (2.154)
where

T ts =         I 1 I 2 I 3 I 1 I 2 I 3 α 1 0 0 -α 1 0 0 I 1 I 2 I 3 I 1 I 2 I 3 0 α 2 0 0 -α 2 0 I 1 I 2 I 3 I 1 I 2 I 3 0 0 α 3 0 0 -α 3         (2.155) 
with

I 1 =   1 0 0 0 0 0 0 0 0   I 2 =   0 0 0 1 0 0 0 0 0   I 3 =   0 0 0 0 0 0 1 0 0   α i = 1 h i V Ti 20 -V Ti 10 .
(2.156)

Nine and seven nodes solid-shell elements

The transverse shear stain matrix is then written as follows

E SH = J -1 2x2 ∑ N i D i C i • T ts • U nodes (2.157)
Now E SH is the shear strain at the element middle surface. To obtain the shear strain in all element thickness, the latter is multiplied by the well known Reissner function as follows

E SH = 5 6 (1 -ζ 2 )E SH (2.158)

Pinching Strain and seventh node

The normal strain is simply given as follows As with the SB9, the additional central node of the SB7 is endowed with only one translation degree of freedom in the element thickness direction ζ. The enhanced normal displacement in the thickness direction is written as follows (2.161)

E P = 0 0 m T z U nodes (2.
u ζ (ξ, η, ζ) = u H ζ (ξ, η, ζ) + (1 -ζ 2 )u 7 ζ ( 2 
with B 7 = [0 0 - 4 h ζ 0 0 0] T
Where h is the element average thickness. The pinching strain is then written as follows

E zz = B H 3 u H z - 4 h ζu 7 ζ (2.

162)

B H 3 = m T z being the third line of matrix B H .

Stabilization of twist mode

Now the reduced integration technique utilized with the SB7 introduces a twist hourglass mode. To alleviate this mode it's important to introduce a stabilization term as it has been

Equivalent generalized nodal pressure forces 

h 1 = [0, 0, -1, 0, 0, -1] T h 2 = [0, -1, 0, 0, -1, 0] T γ k = 1 2 (h k -(h T k • x j ) • m j ) j = 1, 2, 3 (2.163) 
We can then de ne a stabilization matrix B Stab as follows

B Stab = J -1 33 γ T 1 0 0 γ T 2 (2.164)
and a stabilization stress given like

S Stab = D Stab • J -1 33 γ T 1 0 0 γ T 2 d, (2.165) 
with

D Stab = 1 3 α stab 2 1 1 2 , ( 2.166) 
with α stab = 0.01 ∑ npg i=1

σ 2 33 E 2 
33 ω i a stabilization coe cient and ω i Gauss-lobatto weight.

Equivalent generalized nodal pressure forces

The advantage of having real extra dof instead of simple parameters is the possibility to physically act on them. For example, the nodal forces equivalent to a normal pressure are prescribed at the vertices but also on the extra node in order to get the proper normal stress distribution. This has been previously done for the element Q5TTS [SAN 11] and a similar method is presented here for the SB7 and SB9 solid-shell elements. To easily nd the distribution of the required forces at each node, let us consider an element (Fig. 2.10) on which are de ned two normal pressures P s in the upper face and P i in the lower face. From equation (2.79), assuming a small change of direction of covariant vector g 3 2. Nine and seven nodes solid-shell elements we can deduce the variation of the actual normal strain, in the Ahmad base frame as follows

δε 33 = δu + add -δu - add h -4ζ δu add h (2.167)
where δu + add and δu - add are respectively the variation of the average normal displacement of the upper and lower face of the element, h the element average thickness and δu add the variation of the ninth node displacement [BAS 12]. Assuming the pinching stress σ 33 is linear through the element thickness

σ 33 = 1 2 (ζ -1) P i - 1 2 (ζ + 1) P s (2.168)
the virtual equilibrium condition in the thickness direction can then be written and the equivalent nodal force distribution deduced as follows

8 ∑ i=1 F i δu i + F add δu add = S 0 (P i -P s ) δu i dS 0 + Ω 0 δε 33 • σ 33 dΩ 0 (2.169) 
F i = 1 n P i A i , i = 1, .., n F j = 1 n P s A s , j = n + 1, .., 2n 
F add = 2 3 (P s A s -P i A i ) (2.

170)

with A i and A s being the element lower and upper surface area. Note that n = 3 for the prismatic element and n = 4 for the cube element. It is well known that solid-shells with only one layer of elements over the thickness are not able to reproduce a transverse normal stress state which is equal to the applied facials pressures. The new formulation herein (2.170) improves this lack, so the normal stress gives the accurate values corresponding to the applied pressures in the boundaries with only one element in the thickness direction.

Static equilibrium

In order to solve the nonlinear variational equation, we use a Newton-Raphson iterative method through a sequence of linearization. Assuming that the external energy is displacement independent, we only give details of the linearization of the internal energy.

L [δπ int ] = Ω 0 (∆S : δE + S : ∆(δE))dΩ 0 (2.171) Static equilibrium
Equation (2.171) can be split into a material sti ness and a geometrical sti ness.

Ω 0 ∆S : δEdΩ 0 = δU Ω 0 (B ri ) t DB ri dΩ 0 + Ω 0 (B stab ) t DB stab dΩ 0 ∆U = δU t K ri m + K stab m ∆U (2.172)
and

Ω 0 S : ∆(δE)dΩ 0 = δU Ω 0 B ri S ri dΩ 0 + Ω 0 B stab S stab dΩ 0 ∆U = δU t K ri g + K stab g ∆U (2.173)

For SB9 nite element

Material and geometric sti ness

K ri m = 4J 0 1 -1 (B 0 + ζB ζ + ζ 2 B ζ 2 ) t D(B 0 + ζB ζ + ζ 2 B ζ 2 )dζ (2.174) 
K stab m = J 0 B ηt DB η + B ξt DB ξ 8 3 + J 0 B ξηt DB ξη + B ξζt DB ξζ + B ηζt DB ηζ 8 9
(2.175)

K ri g = J 0 1 -1 (B 0 + ζB ζ + ζ 2 B ζ 2 )S ri dζ (2.176) K stab g = J 0 B ξ S ξ + B η S η 8 3 + J 0 B ξη S ξη + B ηζ S ηζ + B ξζ S ξζ 8 9
(2.177)

K ri m and K stab m are respectively the integrated sti ness matrix and its stabilization counterpart, K ri g and K stab g respectively the geometrical sti ness matrix and it's counterpart. J 0 is the determinant of the Jacobian matrix. Note that the stabilization matrices are computed analytically without numerical integration. Details about the components of the geometric sti ness, B 0 and similar matrices are given in appendix A.

Internal forces

In the same way, one can write the internal force and it's stabilization counterpart as

F ri int = 4J 0 1 -1 (B 0 + ζB ζ + ζ 2 B ζ 2 ) T Sdζ F stab int = J 0 B ξt S ξ + B ηt S η 8 3 + J 0 B ξηt S ξη + B ξζt S ξζ + B ηζt S ηζ 8 9
(2.178)

For SB7 nite element

Material and geometric sti ness

K ri m = J 0 1 -1 (B ri ) T DB ri dζ (2.179) K stab m = J 0 1 -1 (B stab ) T DB stab dζ (2.180) K ri g = J 0 1 -1 (B G ) T ΣB G dζ (2.181) K stab g = 0 (2.182)
K ri m and K stab m are respectively the integrated sti ness matrix and its stabilization counterpart, K ri g and K stab g respectively the geometrical sti ness matrix and it's counterpart. J 0 is the determinant of the Jacobian matrix.

Internal forces

In the same way, one can write the internal force and it's stabilization counterpart as

F ri int = J 0 1 -1 B riT Sdζ F stab int = J 0 ( 1 -1 B stabT D stabT B stab dζ)U (2.183)

Elements Inertia Matrices

For a nite element of n nodes, the consistent mass matrix is written like this

M = V ρ[N] T [N]dV, (2.184) 
with

[N] =   N 1 0 0 . . . N n 0 0 0 N 1 0 . . . 0 N n 0 0 0 N 1 . . . 0 0 N n   (2.185)
For SB9 and SB7, since the last node has only one degree of freedom, we will write the [N] matrix as follows:

[N] =   N 1 0 0 . . . N n-1 0 0 0 0 N 1 0 . . . 0 N n-1 0 0 0 0 N 1 . . . 0 0 N n-1 N n   (2.186)
where N i , i = 1, 2, ..., n -1 are the shape functions of the vertex nodes and N n = 1ζ 2 is the shape function associated with the additional node.

Element inertia of the SB9 element

The matrix [N] of equation (2.186) is applied into the equation (2.184) to give the element inertia matrix.

Element inertia of the SB7 element

It is the same as the SB9, but lets give some details.

• For i, j ∈ {1, 2...6}

A typical element M i j of the element inertia of the SB7 is given as follows

ρc A +1 -1 N i N j dζdA = ρc 4 +1 -1 (1 + ζ i ζ)(1 + ζ j ζ)dζ A L i L j dA = ρc 4 2(1 + 1 3 ζ i ζ j ) ×      A 6 L i = L j A 12 L i = L j (2.

187)

Where A is the area of the triangular cross-section, c the height of the prismatic element and L i ∈ {ξ, η, 1ξ -η}. Using this results gives the following inertia matrix

• For i = 7 and j ∈ {1, 2...6, 7}

M 7 j = ρc 2 +1 -1 (1 + ζ j ζ)(1 -ζ 2 )dζ A L j dA, j ∈ {1, 2...6} M 77 = ρcA 2 +1 -1 (1 -ζ 2 )(1 -ζ 2 )dζ (2.188)

Conclusion

In this chapter we have formulated two new solid-shell nite elements called SB9 and SB7. Although inspired by the SB9γ25 developed by Bruno Bassa et al [BAS 12] in their way of adding an extra node in the middle of a hexahedral element, the SB9 is a completely di erent formulation from the SB9γ25. Indeed, the new nite element is written in total Lagrangian formulation, which eliminates the need for a local corotational frame to ensure objective modeling. This new element uses an assumed transverse shear strain with four control points per component instead of the 2 control points per component as used in the SB9γ25. This eliminates the need for the Reissner function in the transverse shear interpolation. In addition, the assumed natural strain method is also used in the pinch strain to eliminate trapezoidal locking. The polynomial decomposition of the inverse Jacobian is a plus, which allows to take more precisely the geometrical shape of the element and thus to improve its accuracy. In addition, the new automatic and user-independent stabilization (depends only on the problem) is analytically integrated. The SB7, on the other hand, is a revision of the SB7γ19 with a slight modi cation of the stabilization coe cient. We have also used the assumed natural strain in the pinch strain to eliminate trapezoidal locking. However the SB7 is formulated in a co-rotational updated Lagrangian formulation due to the fact that this element incorporate some features from the DKT6 element. This is necessary to enhanced the element strain and avoid other locking phenomena.

In the next chapter, performance of the two solid-shell elements are investigated with various linear and nonlinear tests. 
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Introduction

In Chapter 2 two solid-shell elements, SB9 and SB7, has been developed. In this chapter, various numerical tests are presented to demonstrate the capabilities of the proposed solid-shell elements. The SB9 elements is tested in linear as well as in nonlinear (geometric and material), but also in modal analysis and linear buckling. The SB7 element in the otherhand, implemented at the end of this thesis, has only been tested in linear and nonlinear (geometric) analysis, due to lack of time. As mentioned in the Introduction of this thesis, the aim of this work is to develop solid-shell element that perform accurately: The patch test has been originally proposed in the mid-sixties as a simple means to proof convergence of an element. Beside a numerical veri cation there is also the possibility of a theoretical analysis. The patch test checks, whether a constant distribution of any state variable within an arbitrary element patch (i.e. a distorted mesh) can be represented exactly. It is especially useful for nite element formulations which violate the compatibility condition (and thus cannot be proven to be consistent), such as the ANS, EAS, etc. Nature of the patch test is to verify an element's ability to represent a constant strain/stress eld, and thus ensure completeness and an ability to converge in the limit as the element size decreases. As the problem is linear, only 5 integration points are used across the thickness, located at the usual positions of the Lobatto quadrature. Displacements are imposed at the nodes on the contour and computed at the inner nodes to assess the test. For solidshell formulation to be competitive the membrane patch test must be strictly ful lled, but if the goal is to have a robust and reliable element the bending patch test must also be passed.

Membrane patch test

The peripheral nodes of the plate are imposed a plane displacement such that :

u x = x + y 2 × 10 -3 u y = y + x 2 × 10 -3 (3.1)
To allow the contraction due to Poisson e ect the lower face's nodes are xed in the normal direction such that u z = 0. The present element gives the correct results for both displacements of the inner nodes as de ned in (Eq. 3.1) and the stress at all integration points are also correct (σ xx = σ yy = 1333.3 MPa and σ xy = 400 MPa).

Bending patch test

The displacement eld in this cas is :

u x = ± x + y 2 z 2 × 10 -3 u y = ± y + x 2 z 2 × 10 -3 u z = x 2 + xy + y 2 1 2 × 10 -3 (3.
2) This displacement is imposed on the boundary nodes of both shell faces. Again the SB9 gives the expected values, for both the displacements applied and the stresses at the Gauss points (σ xx = σ yy = ±0.667 MPa and σ xy = ±0.200 MPa).

Clamped square plate

In this example we study the fully clamped plate in the purpose of assessing the element in-plane distortion sensitivity. The length of the plate is L = 100mm and its thickness t = 1mm. The mechanical properties of the material are E = 10 4 MPa and ν = 0.3. A central point load of value P = 16.3527N is chosen so that the analytic displacement (Kirchho theory) of the plate center is u z = 1mm. For the sake of simplicity, only onequarter of the geometry is analysed, using meshes of 2 × 2 elements.To assess distortion sensitivity the central node of the meshed domain is moved a distance inside the range 0 d 12mm as show in the Figure 3 It can be seen that the distortion sensitivity is similar for all elements compared and that the present element provides results closer to the analytic solution. Now all these elements give sensibly the same results because they all use the ANS method. Now since the SB7 is prismatic, it is less sensitive to this test due to the prismatic form of the element. Therefore, for the most distorted case, the element still gives a good result. 

Circular clamped plate

The goal of this test is to show the main advantage of the ninth node compared to a EAS parameter alone. We consider a disk of radius R = 100mm and of thickness t = 1mm. The material is isotropic. The Young modulus is E = 2 × 10 5 MPa and the Poisson ratio ν = 0.3. Two studies have been done. In the rst study a uniform normal pressure P u = 0.01172N/mm 2 is applied in the upper side of the plate. In the second study two normal pressures P u = 2 × 0.01172N/mm 2 and P l = 0.01172N/mm 2 have been respectively applied in the upper and lower faces of the circular plate. The theoretical displacement of the plate center (C in Figure 3.4) is (U) C = 1mm according to Kirchho 's theory. Table 3.1 and table 3.2 show respectively the results for study 1 and study 2 from di erent nite elements. It is interesting to notice that all di erent nite elements give good result if we look at the plate center displacement. However the interesting thing to notice is the pinching stress given by the di erent elements. The SHB8PS and the S4R of abaqus give a nil value for the pinching stress, which is normal since they work with plane stress state. The EAS-only (here used with 5 Gauss points), the SB7 and the SB9 elements are all using a full 3D constitutive law but we can see a non negligible di erence in the pinching stress. In table 3.3 and 3.4 the pinching stress for the two elements are detailed in order to have a broad view of what is happening in the shell thickness. The pinching stress is almost constant in the thickness direction for the EAS solid-shell, while for the SB9 or the SB7 element we have a better normal stress which satisfy the boundary condition. This is the main bene ce of utilizing a additional node compared to a simple EAS parameter. It allows to split the applied pressure so that the pinching stress is more accurate. Thanks to their additional nodes the Q5TTS, the SB7 and the SB9 use a 3D constitutive law and give a pinching stress that is very accurate, on the contrary of the other elements that use the plan stress assumption or only the EAS parameter.

Under pressure cylinder

This test case, like the previous one, is designed to study the pinch response of the SB9 element but this time with a curved structure. We consider a cylinder under internal and external pressure and evaluate the normal stress (pinching stress). For symmetry reasons only one eighth of the cylinder is meshed, the gure 3.5 being obtained by several reections relative to the axes of symmetries. The results are compared to an approximate analytical solution : In this test also, we nd the static admissibility σ rr = [σ • n] • n = -p, where σ is the stress eld, n the normal on the face and p the applied pressure. We can thus see the interest of the additional term compared with a EAS parameter alone without enhancing the pinching stress.

             σ rr (r) = P R 2t -P -P R 2t R

Spherical shell with 18°hole

This very popular test case is particularly severe due to the curvature of the geometry, which considerably accentuates the transverse shear and membrane locking. We consider a very thin hemispherical shell (radius R = 10, thickness t = 0.04) perforated at its top at an opening angle equal to 18 • [Figure 3.6], which is subjected to two diametrically opposed pinching forces along the Y axis (F y = -2N and F y = 2N) and two diametrically opposed extension forces along the X axis (F x = -2N and F x = 2N). The useful characteristics of the material are Young's modulus (E= 6.825 × 10 7 ) and Poisson ratio (ν = 0.3). Using the (XZ) and (YZ) planes of symmetry, a quarter of the hemisphere is meshed with two unit forces in the X and Y directions. The boundary conditions are free, however, in order to avoid rigid body movements, the displacement in Z direction of one point is blocked in addition to the conditions relative to the two planes of symmetry. The reference solution given by many authors is 0.094 (see [SCH 09]). A convergence study has been carried out with SB9 in comparison with other types of nite elements of the solid-shell type, on di erent meshes. The results are reported in the table 3 

Pinched cylinder

The purpose of this test case is almost the same as that of the pinched hemisphere: to confront the element to a well curved environment to see its capacity to resist the phenomena of membrane and transverse shear locking. With the help of symmetries, only one eighth of the pinched cylinder is meshed with di erent discretizations to see elements converge with mesh re nement. One can also observe that the SB7 elements is a little bit soft compared to the SB9 for this test case which is due to the di erence of the Assumed Natural strain used for each element. 

Geometric nonlinear elastic studies

Bending of a cantilever beam

In this test we investigate the out-of-plane bending of a cantilever beam under a tip load.

The problem has been analyzed by many authors [SIM 92a, BÜC 94, MIE 98, HAU 01, FON 05, REE 07]. As shown in gure 3.11, the beam has a side length of L = 10mm and a rectangular cross section of width B = 1mm and a thickness t = 0.1mm. The material is isotropic and has a Young modulus E = 10 7 N/mm 2 and a Poisson ratio ν = 0.3. The total load is F max = 40N introduced in ten time increments for the SB9 modelization and 100 times for the SB7 modelization. Since the SB7 element is formulated in a co-rotational updated Lagrangian formulation, it necessitate small time increment to converge correctly. The Beam is discretized by one element along the width and thickness direction and 16 elements along the length. The numerical integration is performed with Gauss points through the thickness direction. A rst study has been made to assess the convergence of the two nite elements for this test, using a regular mesh and then a highly distorted mesh. Figure 3.12-a gives the load displacement path for the two di erent meshes and for the two modelizations. The displacement at convergence is in agreement with the analytic solution U z = 7.083mm given in [FRI 62]. The load displacement path is identical for both the regular and distorted mesh for the SB9 and and almost the same for the SB7 element, proving that these two solid-shell nite elements are insensitive to mesh distortion. 

SB9 v = 0.3 SB7 v = 0.3 SB9 v = 0.4999 SB7 v = 0.

Spherical shell with 18 degree hole

In this example the hemispherical shell with an 18 degree circular cut out at it's pole is studied. The shell is loaded by an alternating radial point forces F at 90 degree intervals, see gure 3.13. This is a well known problem as it has been considered by many authors [SIM 90a, SAL 90, SAN 92, SZE 04, REE 07], to name just a few. Thanks to symmetry, only one-quater of the shell is modeled with a 16 × 16 mesh. The geometrical parameters used are the same used by [SZE 04] with a radius of R = 10.0mm and a thickness of t = 0.04mm which give a ratio R/t = 250. So this is a relatively severe test more likely to exhibit locking e ects. The structure is subdued to two concentrated force F = 100N as shown in gure 3.13. This load is high enough to create a geometric nonlinear deformations. Therefore this test allows to observe the reaction of the SB7 and the SB9 in large geometric transformations. The material parameters are the Young modulus E = 6.825 × 10 7 N/mm 2 and the Poisson ratio ν = 0.3. The total number of increment to reach the maximum load is 10. In Figure 3.14, the deformation path of the points A and B are plotted and compared to the values given by Sze [SZE 04]. The results given by the SB9 and SB7 elements is in good agreement with the reference solutions. 

Stretched cylinder with free edge

Loaded by two opposite singles forces, see gure 3.9, the cylinder undergoes a signicantly large rotation combining bending and membrane e ects. The geometric is de ned by a length L = 10.35, a radius R = 4.953 and a thickness T = 0.094mm. The material properties are given by the Young modulus E = 10.5 × 10 6 N/mm 2 and the Poisson ratio ν = 0.3125 and the applied load in each side is F = 40KN. Due to the symmetry of the problem, only one eighth of the system is discretized. In order to investigate the convergence several meshes re nements are tested including 8 × 12, 16 × 24 and 20 × 30, with only a single element through the thickness. Using the present formulation of the SB9 the problem is modeled using a 16 × 24 mesh and the results are compared to those tabulated in Sze et al [SZE 04]. Figure 3.16 shows the results in term of load versus radial displacements at points A, B and C. Point A corresponds to the point under the loading, while point B and C are on the side of the cylinder and undergo horizontal displacements see gure 3.16. As it can be seen in the load-displacement curves, the overall response exhibits two regimes : a rst stage dominated by bending e ect and characterized by large displacements and rotations, and a second phase dominated by membrane e ects, which may cause locking. It's also important to note the snap-through phenomenon arising when the loading reaches the critical value of around 20KN. This can be seen through the displacement reversal that occurs on the load displacement curve of point C. This new formulation of the SB9 element gives results in very good agreement with the reference solution, with no locking e ect. 

Plastic studies

Most of Code_Aster's constitutive laws can be used under the hypothesis of small perturbations, which makes it possible to take the initial con guration as the current geometrical con gurations. However, when the deformations become signi cant (the limit is usually set at 5%), this hypothesis is no longer veri ed. The notions of particle and partial derivatives are then di erent, and as a result the incrementally formulated constitutive laws lose their objectivity. In order to restore objectivity, which is therefore 96 essential to guarantee a good reliability of the result, a large deformation strategy is possible. This is the large deformation model based on a logarithmic measurement of the deformation, with a particular duality stress tensor. A complete presentation of this model can be found in C.Miehe, N.Apel and M.Lambrecht [MIE 04].

Preprocessing of the logarithmic strain space

A key point in the setting up of the logarithmic framework of nite plasticity is the de nition of an elastic strain measure E e . As pointed out in [Miehe, 36,37], there do exist several conceptual possibilities for the de nition of the elastic strain measure. Following Miehe, we focus on the elementary additive form

E e := E -E p (3.4)
consistent with the approach proposed by Miehe in term of the logarithmic Langrangian total and plastic strains

E := 1 2 lnC mod and E p := 1 2 lnG p (3.5) 
respectively. The logarithmic strain measure E is a function of the current metric C mod , which in turn is a function of the deformation F mod , see section 1.5.5 of chapter 1. The easiest way to compute C mod is

C mod = 2E mod + I, (3.6) 
E mod being the Green Lagrange strain of the solid-shell element. Of key importance for the subsequent treatment is the sensitivity of the logarithmic strain measure with respect to a change of the deformation. To this end, we introduce the relationships

Ė = P : Ḟmod and Ṗ = L : Ḟmod (3.7)
where, in terms of the fourth-and sixth-order nominal transformation tensors

P := ∂ F mod E and L := ∂ 2 F mod F mod E, (3.8) 
respectively. These transformation tensors play a central role in the subsequent treatment. Closed-form algorithmic approaches to these types of tensors have recently been outlined in the more general context for the class of Seth-Hill strain measures in [45].

The stress power can then be represented like P (t) = T(t) : Ė(t) with T := P : P -1 .

(3.9)

T is the Lagrangian stress tensor work-conjugate to the logarithmic strain measure E and P the rst Piola Kirchho stress. The symmetric Lagrangian tensors T and E provide a convenient pair of dual external variables of the local material element associated with the logarithmic strain space.

Constitutive model in the logarithmic strain space

Now we assume a constitutive model of plasticity that is exclusively restricted to the logarithmic strain space. This model is considered as a constitutive box, its input is given by the logarithmic strains E and a set T := E p , ... of internal variables consisting of the logarithmic plastic strain tensor E p and some additional hardening variables. The output of the box is the current stress T dual to the logarithmic strain and the associated elastic-plastic tangent moduli

E ep E, T -→ MODEL -→ {T, E ep } (3.10)
In the continuous setting the tangent moduli exist for the rate-independent theory of plasticity and govern the rate of the stress with respect to rate of the logarithmic strain Ṫ = E ep : Ė.

(3.11)

The attractive feature of the constitutive model is that it can preserve the structure of plasticity models of the geometrically linear theory. Thus the model may adopt standard constitutive structures of the small strain theory. This section speci es a constitutive model in the logarithmic strain space with a structure adopted from the geometrically linear theory. We focus on a formulation suitable for the modelling of problems in metal plasticity.

Energy storage and elastic stress response

The stress-strain relation can be obtained by de ning a local dissipation function with respect to unit volume and using the Clausius Planck inequality

D := T : Ė -ψ 0 (3.12) with ψ R 6 × R 6 × R -→ R a free energy function de ned like ψ = ψ(E -E p , A, α) (3.13)
where E p is the logarithmic plastic strain, A a symmetric second-order tensor for the description of the kinematic hardening and α a scalar variable that models isotropic hardening. Using the Coleman's method, one can write the constitutive equation like

T = +∂ E e ψ(E -E p , A, α) B = -∂ A ψ(E -E p , A, α) β = -∂ α ψ(E -E p , A, α) (3.14)
The rst equation is the constitutive expression for the stresses in the logarithmic strain Assuming metal plasticity, see [58] for a micromechanical motivation, a fully decoupled representation of the energy function can be written as

ψ = ψ e (E -E p ) + ψ k (A) + ψ i (α) (3.16)
A typical example is the quadratic storage function

ψ = 1 2 E -E p 2 E + k 2 A 2 + 1 2 α 2 (3.17)
where

E e E := E e : E : E e
is the norm of elastic strain measure E e with respect to a constant fourthorder tensor E that characterizes the macroscopic elasticity moduli.

k ∈ R + and h ∈ R + are elastic material parameters associated with the kinematic and isotropic hardening, respectively. For this quadratic function, the stresses and internal forces turn out to be linear functions of the strain-like variables

T = +E : (E -E p ) B = -kA β = -hα . 
(3.18)

Dissipation and plastic ow response

Consider the plastic ow to be constrained by a convex elastic domain in the space of the internal forces

E = {(T, B, β) ∈ R | f (T, B, β) 0} (3.19)
where f = f (T, B, β) is a convex level set function. Then a canonical form of the evolution equations for the internal variables is determined by a thermodynamic extremum principle, the well-known principle of maximum plastic dissipation. It yields the normality rules

Ṫp = γ∂ T f (T, B, β) Ȧ = γ∂ B f (T, B, β) α = γ∂ β f (T, B, β) (3.20)
which determine the evolution of the plastic ow and the hardening variables in terms of gradients of the yield criterion function. Here, the plastic parameter γ is in the rateindependent case determined by the Kuhn-Tucker-type loading-unloading conditions γ 0, f 0, γ f = 0 (3.21)

Postprocessing

Once the stresses and tangent moduli in the logarithmic strain space have been obtained from the constitutive model, equation (3.10), we map them to the nominal stresses and nominal moduli based on straightforward application of the transformation rules introduced in subsection 3. in terms of the fourth-and sixth-order Lagrangian transformation tensors P L and L L , respectively. They appear in the closed form

P L := 2∂ C mod E and L L := 4∂ 2 C mod C mod E, (3.25) 
as derivatives of the logarithmic strain measure with respect to the convected current metric C mod . The Lagrangian elastic-plastic tangent moduli C ep L govern the sensitivity of the symmetric second Piola stress

Ṡ = C ep L : 1 2 Ċ (3.26)
with respect to the Lagrangian rate Ċmod /2 of deformation.

Simply supported plate

In this example the simply supported plate under pressure is addressed 3.27 shows the deformation state of the sheet. This concludes that for these kind of problems the SB9 element is very robust, gives excellent results and is quite e cient.

Modal analysis

Natural frequencies of a thick cylindrical ring (Doc aster)

This test is inspired by a vibration study carried out on the VVP collector (steam evacuation systems between the primary and secondary circuits). This collector is mediumthick and has a maximum ratio of thickness to average radius of 0.13. This value, which may be typical of an industrial structure, is slightly higher than the limit of validity value usually recognized for plates and shells. In this study, the modeling of the shell collector is then evaluated by comparison with a volume model on a ring, showing the 

ρ = 7800kgm -3 .
The structure is free in space. The eigenmodes searched correspond to the Fourier modes of order 2 and 3 of the ring. The frequencies of a ring can be estimated from an analytical Euler curved beam model [bib1] or numerically with a very ne mesh of 3D standard modelization. The search for clean modes is carried out in the 200-800Hz band. The frequencies associated with the di erent modes, (see gure 3.28), are listed in table 3.10. The SB9 solid-shell element gives very good results for this modal analysis. This element shows more accurate results for the ovalization and the Trifoliated modes compared to the other elements (DKQ, Coque_3D) but a little less accurate results for the out of plane compared to the Coque_3D shell element. This is due to the fact that the Coque_3D shell element has quadratic interpolation functions, but not only that, the Coque_3D is based on Reissner hypothesis allowing it the model medium thick shell structures. The DKQ is based on Kirchho hypothesis and is limited to thin shell-like structures while the SB9 solid-shell element can be used to model thin shell structures as well as medium thick structures.

Free vibration of a compression vane (Doc aster)

This test is used to validate the calculation of the natural frequencies of a linear elastic compression vane. It is a cylindrical panel whose dimensions and material characteristics (homogeneous and isotropic) are given in the table 3.11. The structure is clamped on its BD end, see gure 3.29. The rst six natural frequencies are measured in the interval [80., 570.] and compared with a reference solution corresponding to experimental measurements given in Batoz [ BAT 92]. Comparisons are also made with another shell elements existing in code_aster called Coque_3D, which is a nine-node biquadradic classical shell nite element. The six di erent modes of vibration of the SB9 elements are given in gure 3.30 and the equivalent frequencies are listed in the table 3.12. The results This test represents a dynamic modal analysis calculation of a free-free circular ring, gure 3.33. The geometrical characteristics and material of the corrugated shell are given in the table 3.17. All points of the ring are free and no loading is applied. The calculation method used for the reference solution is:

• Vibration modes in the plane For these modes of vibration, the bending equation for curved beams by V. Boussinesq (1883), without extension of the neutral bre leads to

f i = 1 2π i 2 (i 2 -1) 2 i 2 + 1 EI z ρAR 4 i = 0, 1, 2, ... ( 3 

.28)

The reference solution is established for thin archs such as αR ≥ 100

I z A (3.29)
with α center angle in radians.

• O -plane vibration modes

For transverse vibration modes with rectangular cross section, the solution was established from the results of two calculation codes, using di erent formulations, (see Guide de Validation des Progiciels de Calculs des Structures: SFM, AFNOR technique, ISBN: 2-12-486611-7). The frequencies associated to the vibration modes are given in the table 3.18, and compared to the references solutions. The results, see gure 3.34, given by the SB9 element are here also very accurate. 

Linear buckling analysis

A complete non-linear calculation can be expensive in terms of the computer time that is needed. For stability problems it is desirable to have a simple method which gives an accurate estimate of the critical load at which loss of structural stability occurs. Such a method is known as linear buckling analysis. In this method the complete non-linear analysis in which the entire load-de ection path is followed up to, and possibly beyond the critical load level, is replaced by an eigenvalue analysis. A derivation of the method, starting from the complete set of the non-linear eld equations and elucidating the assumptions that are made, is given below. The basic assumption is that prior to the point where loss of uniqueness occurs, the displacement gradients remain small. With this 

Ω 0 (δ∆u) T B T DB∆udΩ + Ω 0 (δ∆u) T B T NL ΣB NL ∆udΩ = δΩ 0 (δ∆u) T H T t∆udδΩ + Ω 0 ρ(δ∆u) T H T g∆udΩ (3.30)
Since the latter equation must hold for any virtual displacement increment δ∆u, the resulting set of equilibrium equations ensues :

Ω 0 B T DB∆udΩ + Ω 0 B T NL ΣB NL dΩ ∆u = δΩ 0 H T t∆udδΩ + Ω 0 ρH T gdΩ (3.31)
At the critical load level at least two solutions exist which both satisfy incremental equilibrium [DEB 12]. If ∆u 1 denotes the incremental displacement eld belonging to the rst solution and if ∆u 2 is the incremental displacement eld of the second solution, subtraction of the solutions, which must both satisfy Equation (3.31), yields:

Ω 0 B T DB∆udΩ + Ω 0 B T NL Σ c B NL dΩ (∆u 1 -∆u 2 ) = 0 (3.32)
with Σ c the stress matrix at the critical (buckling) load.

We now label Σ e as the stress matrix that is obtained in a linear-elastic calculation for a unit load, and λ the load factor that sets the relation between this elastic solution for a unit load and the stress at the critical load Σ c : Σ c = λΣ e , so that λ is the multiplication factor for a unit load to obtain the critical load at which loss of uniqueness (buckling) occurs. Substitution of this identity in Equation (3.32) yields :

Ω 0 B T DB∆udΩ + λ Ω 0 B T NL Σ e B NL dΩ (∆u 1 -∆u 2 ) = 0 (3.33)
Since by de nition ∆u 1 -∆u 2 = 0, his equation forms a linear eigenvalue problem for which a non-trivial solution exists if and only if the determinant of the characteristic equation vanishes:

det(K 0 + λK e NL ) = 0 (3.34)
where

K 0 = Ω 0 B T DB∆u and K e NL = Ω 0 B T NL Σ e B NL (3.35)
The solution of Equation ( 3.34) results in n eigenvalues, which belong to the load levels at which loss of uniqueness (bifurcation) can occur. The lowest eigenvalue corresponds to the lowest load level for which a bifurcation exists. Multiplication of the elastic solution with this eigenvalue therefore gives the critical load level at which bifurcation is rst possible. It is noted that the load levels predicted by the higher eigenvalues can be so high that the assumptions made for the linear buckling analysis may be violated, and that these eigenvalues can therefore be unrealistic. In computations of structures that have a ne discretization, high eigenvalues may arise that are merely artifacts of the discretization, which is another possible source of unrealistic eigenvalues. In this section we investigate the SB9 and the SB7 through some linear buckling studies following the above mentioned assumptions.

Buckling of a free cylinder under external pressure (Doc aster)

This test represents a stability calculation of a thin cylindrical envelope free at its ends subjected to external pressure. The critical loads leading to Euler's elastic buckling are calculated. The matrix of geometrical sti ness used in solving the eigenvalue problem is that due to the initial constraints. The critical load and eigenmode obtained are compared with an analytical reference solution. The simulated cylinder has a mean radius R = 2m, a length L = 2m and a thickness t = 0.02m. The material parameters are the Young modulus E = 2 × 10 5 N/mm 2 and the Poisson's ratio ν = 0.3. The symmetry of the problem makes it possible to model one eighth of the cylinder, with speci c symmetry conditions. A uniformly distributed pressure of P c = 1Pa is applied to the cylindrical surface. The critical pressure found in the references [TIM 47, DON 75] are given as

P cr = E 12(1 -ν 2 ) ( e R ) 3 n 2 (3.36)
n being the mode's number (with n = 2, 4, 6). The covers of PWR reactor vessels support the nuclear reaction control equipment: the bundles, thermocouples, etc., which penetrate into the interior of the vessel via sealed feedthroughs in the covers. At this level, the mounting anges of the parts are connected by welded parts used for their sealing. During repairs, it has been necessary to qualify the 121 performance of this so-called canopy joint under the pressure exerted by the installation tool (approximately 30 MPa). We have carried out this study with an SB9 model to see the behavior of this new element for an industrial problem. We performed 2 elastic-plastic calculations (Von Mises isotropic hardening) in large deformations. We followed the hardening law in the diagram of gure 3.40. The rst study is made with a combination of Axisymmetric quadratic elements (P2) with reduced integration (quadrangular elements) and fully integrated (triangular elements). : displacement, stress SXX, stress SXY, and the plastic deformation respectively. We can see that the results given by the SB9 modelization are very similar with the results given by the P2 axisymmetric modelization for all variables. This shows the applicability of the SB9 for many engineering problems. From this study we can retain three very interesting conclusions concerning the nite element SB9. The rst is the quality of the results for a nite element of type P1. With a single element in the thickness direction, the results are quite close to those given by the under-integrated P2 elements. The second thing is the ease with which this element ts into a 3D model with a natural connection due to the fact that there are only translation degrees of freedom. The third important conclusion is the ease and manageability of thickness variation that conventional plate elements would be unable to achieve. 

Conclusion

The ninth or seventh node, with one translational degree of freedom through the elements thicknesses, allow the unrestricted use of 3D constitutive law without encountering Poisson thickness locking. Furthermore the adjunction of these middle nodes allow a redistribution of a pinching pressure force between a surface contribution and a volume contribution. This improves considerably the normal stress and gives better results than elements with the EAS parameter alone, without pinching stress enrichment. In addition to eliminating pinching and volumetric locking thanks to the middle node, transverse and trapezoidal shear locking are reduced by the assumed strain method applied to both transverse shear and pinch strain. The two formulated solid-shell nite elements, SB9 and SB7, have been implemented in code_aster. In this chapter these two elements have been test with di erent types of mechanical problems available in the literature or in the documentation of code_aster. The results given by these two nite elements are very satisfying. The elements have been used in linear elastic as well as in large deformation bending problems including quasi-incompressible material. The results are very accurate for both elements. The SB9 solid-shell element have been further tested with material nonlinearity, for modal analysis as well as for buckling of shell like structures. In these case too, the SB9 nite element gives very accurate results in comparison with other classical shell nite elements.

Conclusion and perspectives

The aim of this work was to develop a nite element formulation to model the behaviour of thin structures without restrictive assumptions on the mechanical elds, i.e. stresses and strains. The objective is to propose to EDF a robust and performant formulation adapted to all the problems in terms of mechanical simulations that the company can face to dimension thin and medium thick structures present in the nuclear power plant. An advanced state of the art on nite element literature has shown the di culty faced by engineers in modeling the behavior of thin structures. Conventional plate and shell nite elements are limited by several aspects of their formulation. First of all there is the plane stress hypothesis which states that the stress in the thickness is null. This hypothesis, which remains in contraction with the null pinch deformation, requires the laws of behaviour to be modi ed, often laboriously, in order to respect the conservation of mass and avoid pinch locking. Moreover, due to their bi-dimensional topology, these classical shell nite elements are di cult to use in the presence of nite elements with a tri-dimensional topology without developing techniques to connect the di erent elements. On the other hand, rst order solid elements are very robust and almost usable for many mechanical modelling. However they perform very poorly when used for shell like structures. Indeed as shown in chapter 1 these elements su er from several locking problems that disqualify them for thin structure modeling. furthermore in chapter one it has been shown that by using certain speci c interpolations such as the assumed natural method or by enriching the deformations it is possible to "soften" rst-order solid nite elements making them suitable for the modelling of shell like structures. This has given rise to a new type of nite element called solid-shell nite elements. These elements have the characteristic of being of three-dimensional topology and allow to model the bending of thin structures without restrictive assumptions on the mechanical elds. The goal of this thesis was to formulate a new all-terrain solid-shell nite element capable of modeling the behavior of shell like structures in all mechanical situations. The starting point of this work was the SB9γ25 formulated by Bassa [BAS 12]. Bassa's idea was to add an additional node in the middle of a solid-shell element initially functioning under plane stress hypothesis, to enrich its normal strain and thus allow the use of a 3D constitutive law. Indeed, with a linear normal strain, pinch locking is eliminated and therefore there is no need to impose a plane stress hypothesis. In this thesis work we have borrowed Bassa's idea but in a completely new formulation to propose the SB9 solid-shell nite element. First of all this new nite element is written in total Lagrangian formulation. Which eliminates the need to use a local corotational frame to guarantee an objective modeling. Plus, the SB9 uses an assumed transverse shear strain (ANS) with four control points per component instead of the 2 control points per component used in the Bassa version. This eliminates the need for the Reissner function in transverse shear interpolation which is limiting for the SB9γ25 element. Further important locking e ect, namely the curvature thickness locking , have been overcome utilizing also the ANS concept. To circumvent the volumetric locking and Poisson thickness locking, the EAS concept based on the Hu-Washizu variational principle has been implemented enhancing the Green-Lagrange strain tensor evaluated at the integration points. Herein the EAS concept is satisfy by the additional central node. It is then important to notice that the additional node e ect go beyond the usual EAS parameter since, since this additional node allows a distribution of the applied pressure in a way that enhance the pinching stress. The mapping of the compatible Green-Lagrange strain terms from the contravariant to the Cartesian basis is based on the Taylor expansion of the inverse Jacobian matrix. Hence at the one hand the element geometry is taken into account very accurately and on the other hand a polynomial form of the Cartesian Green-Lagrange strain is obtained which improves the e ciency of the element. Further crucial points are the Taylor expansion of the compatible Green Lagrange strain tensor and the second Piola-Kirchho stress tensor to derive an e cient adaptive hourglass stabilization concept. The corresponding hourglass residual vector and the hourglass stabilization matrix are integrated analytically. this new way of stabilization is automatic and user-independent. To ensure a volumetric locking-free hourglass stabilization, the B-Bar method is adopted in the so-called hourglass kernel. The SB7 nite element is a revision of the SB7γ19 [XIO 18] with a slight modi cation of the stabilization coe cient. We also used the assumed eld method in the pinch to eliminate trapezoidal locking. These elements have been implemented in code_aster and tested on several test cases available in the literature or in the code_aster documentation. The numerical results show that these solid-shell nite elements are well adapted to most engineering problems in thin structure modeling. In particular, for bending problems, under quasi-incompressible conditions, elasto-plasticity, dynamics or for modeling buckling phenomenon of thin structures.

In perspective with the aim of having an all-terrain solid-shell nite element, it would be conceivable to extend the formulation on issues like anisotropy and thermal dilatation. The elements could also be tested on dynamic problems combining contact, material and geometric nonlinearities. To go further, it would be interesting also to use these solid-shell nite elements in formulations with the presence of cracks.

Appendix A

Complement for SB9 formulation A.1 Nine nodes solid-shell nite element SB9

Ê0 c =         J 0T 1 D 0 1 + 1/2D 0T 1 D 0 1 J 0T 2 D 0 2 + 1/2D 0T 2 D 0 2 1/4 ∑ D K=A (J KT 3 D K 3 + 1/2D KT 3 D K 3 ) J 0T 1 D 0 2 + J 0T 2 D 0 1 + D 0T 1 D 0 2 1/4 ∑ H K=E (J KT 2 D K 3 + J KT 3 D K 2 + D KT 2 D K 3 ) 1/4 ∑ M K=J (J KT 1 D K 3 + J KT 3 D K 1 + D KT 1 D K 3 )         (A .1) 
Êζ c =          J 0T 1 D ζ 1 + J ζT 1 D 0 1 + D 0T 1 D ζ 1 J 0T 2 D ζ 2 + J ζT 2 D 0 2 + D 0T 2 D ζ 2 0 J 0T 1 D ζ 2 + J ζT 1 D 0 2 + J 0T 2 D ζ 1 + J ζT 2 D 0 1 + D 0T 1 D ζ 2 + D ζT 1 D 0 2 1/4 ∑ H K=E ζ K (J KT 2 D K 3 + J KT 3 D K 2 + D KT 2 D K 3 ) 1/4 ∑ M K=J ζ K (J KT 1 D K 3 + J KT 3 D K 1 + D KT 1 D K 3 )          (A.2) Êζζ c =          J ζT 1 D ζ 1 + 1/2D ζT 1 D ζ 1 J ζT 2 D ζ 2 + 1/2D ζT 2 D ζ 2 0 J ζT 1 D ζ 2 + J ζT 2 D ζ 1 + D ζT 1 D ζ 2 0 0          (A.3) Êξ c =        0 J 0T 2 D ξ 2 + J ξT 2 D 0 2 + D 0T 2 D ξ 2 1/4 ∑ D K=A ξ K (J KT 3 D K 3 + 1/2D KT 3 D K 3 ) J 0T 1 D ξ 2 + J ξT 2 D 0 1 + D 0T 1 D ξ 2 1/4 ∑ H K=E ξ K (J KT 2 D K 3 + J KT 3 D K 2 + D KT 2 D K 3 )        (A.4) Êη c =         J 0T 1 D η 1 + J ηT 1 D 0 1 + D 0T 1 D η 1 0 1/4 ∑ D K=A η K (J KT 3 D K 3 + 1/2D KT 3 D K 3 ) J 0T 2 D η 1 + J ηT 1 D 0 2 + D 0T 2 D η 1 0 1/4 ∑ M K=J η K (J KT 1 D K 3 + J KT 3 D K 1 + D KT 1 D K 3 )         (A.5) Êηζ c =            J 0T 1 D ηζ 1 + J ηT 1 D ζ 1 + J ζT 1 D η 1 + J ηζT 1 D 0 1 + D 0T 1 D ηζ 1 + D ηT 1 D ζ 1 0 0 J 0T 2 D ηζ 1 + J ηT 1 D ζ 2 + J ζT 2 D η 1 + J ηζT 1 D 0 2 + D 0T 2 D ηζ 1 + D ηT 1 D ζ 2 0 1/4 ∑ M K=J η K ζ K (J KT 1 D K 3 + J KT 3 D K 1 + D KT 1 D K 3 )            (A.6) Êξζ c =            0 J 0T 2 D ξζ 2 + J ξT 2 D ζ 2 + J ζT 2 D ξ 2 + J ξζT 2 D 0 2 + D 0T 2 D ξζ 2 + D ξT 2 D ζ 2 0 J 0T 1 D ξζ 2 + J ηT 2 D ζ 1 + J ζT 1 D ξ 2 + J ξζT 2 D 0 1 + D 0T 1 D ξηζ 2 + D ξT 2 D ζ 1 1/4 ∑ H K=E ξ K ζ K (J KT 2 D K 3 + J KT 3 D K 2 + D KT 2 D K 3 ) 0            (A.7) B0 cI =          g 1I J0T 1 g 2I J0T 2 1/4 ∑ D K=A N K I,ζ JKT 3 g 1I J0T 2 + g 2I J0T 1 1/4 ∑ H K=E (N K I,η JKT 3 + N K I,ζ JKT 2 ) 1/4 ∑ M K=J (N K I,ξ JKT 3 + N K I,ζ JKT 1 )          (A.8) Bζ cI =           h 3I J0T 1 + g 1I JζT 1 h 2I J0T 2 + g 2I JζT 2 0 h 2I J0T 1 + h 3I J0T 2 + g 2I JζT 1 + g 1I JζT 2 1/4 ∑ H K=E ζ K (N K I,η JKT 3 + N K I,ζ JKT 2 ) 1/4 ∑ M K=J ζ K (N K I,ξ JKT 3 + N K I,ζ JKT 1 )           (A.9) Bζζ cI =          h 3I JζT 1 h 2I JζT 2 0 h 2I JζT 1 + h 3I JζT 2 0 0          (A.10) Nine nodes solid-shell nite element SB9 Bξ cI =          0 h 1I J0T 2 + g 2I JζT 2 1/4 ∑ D K=A ξ K N K I,η JKT 3 h 1I J0T 2 + g 1I JζT 2 1/4 ∑ H K=E ξ K (N K I,η JKT 3 + N K I,ζ JKT 2 ) 0          (A.11) Bη cI =          h 1I J0T 1 + g 1I JηT 1 0 1/4 ∑ D K=A η K N K I,ζ JKT 3 h 1I J0T 2 + g 2I JηT 1 0 1/4 ∑ M K=J η K (N K I,ξ JKT 3 + N K I,ζ JKT 1 )          (A.12) Bηζ cI =          h 4I J0T 1 + h 3I JηT 1 + h 1I JζT 1 + g 1I JηζT 1 0 0 h 4I J0T 2 + h 2I JηT 1 + h 1I JζT 2 + g 2I JηζT 1 0 1/4 ∑ M K=J η K ζ K (N K I,ξ JKT 3 + N K I,ζ JKT 1 )  
        (A.13) Bξζ cI =          0 h 4I J0T 2 + h 2I JξT 2 + h 1I JζT 2 + g 2I JξζT 2 0 h 4I J0T 1 + h 3I JξT 2 + h 1I JζT 1 + g 1I JξζT 2 1/4 ∑ H K=E ξ K ζ K (N K I,η JKT 3 + N K I,ζ JKT 2 ) 0          (A.14) B c = B 0 c + ζB ζ c + ζ 2 B ζζ c (A.15) B hg c = ξB ξ c + ηB η c + ξηB ξη c + ηζB ηζ c + ξζB ξζ c (A.16) H =      H 11 H 12 . . . H 18 H 21 H 22 . . . . . . H 81 H 88      (A.17) H 0 IJ = Ŝ T T 0          g 1I g 1J g 2I g 2J 1/4 ∑ D K=A N K I,ζ N K J,ζ g 1I g 2J + g 2I g 1J 1/4 ∑ H K=E (N K I,η N K J,ζ + N K I,ζ N K J,η ) 1/4 ∑ M K=J (N K I,ξ N K J,ζ + N K I,ζ N K J,ξ )          (A.18)

Appendix B

Di culty related to the Discretization of SB9 and SB7 in thickness

B.1 The pinch

In the theoretical part on the formulation of SB9 and SB7 we have seen the writing of the generalized nodal forces when a SB9 or SB7 element is subjected to a pressure loading applied on its upper and/or lower faces ( gure B.1). Indeed, in the linear framework with the quadratic interpolation of the transverse displacement, we can assume that the pinching strain is linear ε33 , which allows to assume also a linear σ p 33 pinching strain.

ε33 = ŵ9 + -ŵ9 - h + 2ζ ŵ9 + -ŵ9 --2 ŵ9 h (B.1) σ p 33 = 1 2 (ζ -1) P i - 1 2 (ζ + 1) P s (B.2)
Since the ninth node is only subject to translation in the thickness direction of the plate, the application of pressure causes the generalized forces to be written as follows, considering only the components in the thickness direction (which are non-zero):

W ext -W int = 0 (B.3) 8 ∑ i=1 F i ŵi + F 9 ŵ9 = S (P i -P s ) ŵi ds + V ε 33 • σ p 33 dV (B .4 
) The equations (B.5) are written considering the relative displacement of the ninth node. So far, there is nothing problematic. Knowing the applied pressures, we are able to determine the generalized nodal forces. The di culty comes when one wishes to superpose two SB9 or SB7 elements. To illustrate that, let us consider two SB9 nite elements superposed in the direction of the thickness of a plate subjected to pressure on its upper and lower faces (P s and P i respectively, see gure B.2). If we call p, the pressure at the interface between the two elements, it is possible to write the generalized nodal forces for each of the SB9 elements. Considering only the direction where the components are non-zero, these e orts are written:

F i = + 1 4 P i A 0 , i = 1, 2, 3, 4 
F j = - 1 4 P s A 0 , j = 5, 6, 7, 8 F 9 = 2 3 (P s -P i ) A 0 (B.
• Element 1

F i = + 1 4 P i A 0 , i = 1, 2, 3, 4 
F j = - 1 4
pA 0 , j = 5, 6, 7, 8

F 1 9 = 2 3 (p -P i ) A 0 (B.6) 138
• Element 2

F j = + 1 4
pA 0 , j = 5, 6, 7, 8

F k = - 1 4 P s A 0 , k = 9, 10, 11, 12 
F 2 9 = 2 3 (P s -p) A 0 (B.7)
Note that we have assumed that the area A 0 is the same for both elements. However, this has no impact on the argumentation. What matters is the surface of the interface shared by the two elements. Now, if we want to put together these generalized nodal e orts, it looks like this:

F i = + 1 4 P i A 0 , i = 1, 2, 3, 4 
F j = - 1 4 pA 0 + 1 4 pA 0 = 0, j = 5, 6, 7, 8 F k = - 1 4 P s A 0 , k = 9, 10, 11, 12 
F 1 9 = 2 3 (p -P i ) A 0 F 2 9 = 2 3 (P s -p) A 0 (B.8)
We can see, in this assembly, that the pressure at the interface is always present, i.e. it does not disappear as it is the case with classical 3D nite elements (HEXA8 for example). Since we don't know the p pressure, we have an additional unknown in the equilibrium system which becomes hypostatic. This is an obstacle in the discretization of these elements in their thickness. This di culty can be solved by the following method. If we look at the equations more closely we realize that we are facing a problem of interface continuity. This can be solved if we nd a way to impose the continuity of the pinch stress. One way to do this would be to add an additional equation to this hypostatic system to make it isostatic. This could be done by imposing a condition of C 0 continuity of the pinch deformations at the interface between two elements, i.e. C 1 continuity of the displacement w (z):

ε 1 zz (ζ = 1) = ε 2 zz (ζ = -1) (B.9)
This condition can be rewritten as the sum of two scalar products:

M U Z + H W = 0 (B.10)
So for each interface unknown p, we have an additional interface equation which then allows us to solve the system. Let's see in detail how we can do this.

B.1.1 Generalized nodal pressure forces for two superposed elements

The question that arises is what is the pressure p at the interface between the two elements. Considering the result of the previous section, the 25th component of the generalized e ort of each element can be written as follows: To simplify the demonstration, we assume that the two elements have the same surface area and that this surface area is A 0 = 1:

• Element 1

F i = + 1 4 P i A 0 , i = 1, 2, 3, 4 
F j = - 1 4
pA 0 , j = 5, 6, 7, 8

F 1 9 = 2 3 (p -P i ) A 0 (B.11)
• Element 2

F j = + 1 4 pA 0 , j = 5, 6, 7, 8 
F k = - 1 4 P s A 0 , k = 9, 10, 11, 12 
F 2 9 = 2 3 (P s -p) A 0 (B.12)
So we have an unknown in the writing of generalized nodal pressure e orts. The objective of this part is to propose a method to calculate the interface pressure. For this we assemble the equations of these elements.

B.1.2 Assembly of the elementary matrices of the 2 interfacing elements

    K XX K XY K XZ 0 K Y X K YY K Y Z 0 K ZX K ZY K ZZ K Zw 0 0 K Zw K ww         U X U Y U Z W     =     F X F Y F Z F W     (B.13)
We are here in the presence of a system of equations with 38 equations and 39 unknowns (38 kinematic unknowns and one static unknown p). To identify the static unknown p, we decompose the last line of the equation system (B.13) into two scalar equations:

K Zw U Z + K ww W = F W (B.14) K 1 Zw U Z + K 1 ww W = F 1 W K 2 Zw U Z + K 2 ww W = F 2 W (B.15)
The pinch

K 1 Zw U Z + K 1 ww W = F 1 9 = 2 3 (p -P i ) K 2 Zw U Z + K 2 ww W = F 1 9 = 2 3 (P s -p) (B.16)
To make the unknown p disappear in one of the above equations, the rst line is replaced by the sum of the two lines. The system becomes:

K 1 Zw + K 2 Zw U Z + K 1 ww + K 2 ww W = 2 3 (P s -P i ) K 2 Zw U Z + K 2 ww W = 2 3 (P s -p) (B.
17)

The overall system can thus be written as follows:

      K XX K XY K XZ 0 K Y X K YY K Y Z 0 K ZX K ZY K ZZ K Zw 0 0 K 1 Zw + K 2 Zw K 1 ww + K 2 ww 0 0 K 2 Zw K 2 ww           U X U Y U Z W     =       F X F Y F Z 2 3 (P s -P i ) 2 3 P s       -       0 0 0 0 2 3 p       (B.18)
By posing:

F 1 W = 2 3 (P s -P i ) F 2 W = 2 3 P s P = 2 3 p (B.19)
The system is written

      K XX K XY K XZ 0 K Y X K YY K Y Z 0 K ZX K ZY K ZZ K Zw 0 0 K 1 Zw + K 2 Zw K 1 ww + K 2 ww 0 0 K 2 Zw K 2 ww           U X U Y U Z W     =        F X F Y F Z F 1 W F 2 W        -       0 0 0 0 P       (B.20)
This system still has 38 equations for 39 unknown. To have an isostatic system, we need an additional equation.

B.1.3 Interface continuity hypothesis of normal deformations

To have an additional equation, let's impose a C 0 continuity condition of pinch deformations at the interface between two elements, i.e. a C 1 continuity of displacement w (z):

ε 1 zz (ζ = 1) = ε 2 zz (ζ = -1) (B.21)
This condition can be rewritten as a scalar product:

M U Z + H W = 0 (B.22)
By adding this additional equation to the system (B.24), we obtain a system with as many equations as there are unknowns (39-39). We can then pass the unknown P to the left of the equation and rewrite the global system as follows:

        K XX K XY K XZ 0 0 K Y X K YY K Y Z 0 0 K ZX K ZY K ZZ K Zw 0 0 0 K 1 Zw + K 2 Zw K 1 ww + K 2 ww 0 0 0 K 2 Zw K 2 ww 1 0 0 M H 0                 U X U Y U Z w 1 9 w 2 9 P         =          F X F Y F Z F 1 W F 2 W 0          (B.23)
By posing:

U =       U X U Y U Z w 1 9 w 2 9       ; F =        F X F Y F Z F 1 W F 2 W        ; C =       0 0 0 0 1       ; L = 0 0 M H (B.24) and K =       K XX K XY K XZ 0 K Y X K YY K Y Z 0 K ZX K ZY K ZZ K Zw 0 0 K 1 Zw + K 2 Zw K 1 ww + K 2 ww 0 0 K 2 Zw K 2 ww       (B.25)
Solving the system of equation (B.23) is equivalent to writing the next block system of equation:

K C L 0 U P = F 0 (B.26)
The interface pressure is then calculated using the following scalar equation:

aP = b avec a = L K -1 C b = L K -1 F (B.27)
This method works in theory but in practice it is very complicated to implement numerically, especially for software that already has an established architecture and often not simple to restructure as code_aster. This method also has the disadvantage of making the resolution matrix non-symmetric. This will require an adapted solver. It also requires to know the neighboring elements of each element (in thickness) which requires more resources in terms of data storage. It also makes the linear systems to be solved considerably heavier, which is costly in terms of computing time.

Another more attractive method in code_aster, would be to add additional nodes in the middle of the lower and upper faces of the element. Indeed, assuming that the pressure is uniform on the face of an element, we can consider it as an unknown and have it carried by a node in the middle of the face. This node will thus only be associated

The transverse shear of the SB7 with static unknowns, as its displacements do not enter into the system of equations. Since this node is coincident between two superposed elements, the two elements see the same pressure at the interface. This solves the problem of pressure continuity at the interface. Element SB9 would become, in a sense, an SB11.

In any case the solid-shell elements are implemented in order to model the behavior of thin structures with simple elements and a relatively coarse mesh compared to what would be required for modeling with standard 3D elements. Thus we recommend using SB9 and SB7 only in cases where these elements can work precisely, without the need to discretize in the thickness, that is in the case of thin and medium thick structures.

B.2 The transverse shear of the SB7

In the formulation of SB7 the transverse shear strain is written as follows:

ε ⊥ = 5 4 1 -ζ 2 B ⊥ 0 + ξB ⊥ ξ + ηB ⊥ η • U e (B. 28 
)
Where U e is the local displacement vector, B ⊥ 0 + ξB ⊥ ξ + ηB ⊥ η the assumed deformation gradient and 5 4 1ζ 2 Reissner's function. Multiplying the deformation gradient assumed by the Reissner function makes it possible to respect the static admissibility of the upper and lower faces of the element when these are free of stress. This gives the parabolic form which is nulli ed at the free edges. However, such a formulation does not hold if the edges are not free, or if SB7 elements are to be superposed in the thickness direction. In fact, by superposing two SB elements, the shape of the transverse shear deformation eld resembles the shape in the following gure B.3 : We have two parabolic pieces that both nullify at the interface, indicating that the transverse shear at this location is zero. That' s not correct. This transverse shear deformation will then have to be rewritten so that there are no inconsistencies during discretization in thickness. One could consider omitting the multiplication of the shear In plane strain

ε 2D =   ε 11 ε 22 2ε 12   =   u 1,1 u 2,2 u 1,2 + u 2,1   + z   β 2,1 β 1,2 β 2,2 -β 1,1   = e + zχ (C.3) with e =   u 1,1 u 2,2 u 1,2 + u 2,1   et χ =   β 2,1 -β 1,2 β 2,2 -β 1,1
  e et χ being the membrane and bending deformations, respectively.

Transverse shear strain

γ = β 2 + w ,1 β 1 + w ,2 (C.4)
The ε 2D deformations are linear in z and the γ transverse shear deformations are constant across the thickness. Consequently, the shear stresses associated with these deformations will be constant across the thickness and will not meet the boundary conditions on the top and bottom faces of the plate. To remedy this a correction is applied to the distribution of these deformations to have the actual transverse shear deformations, respecting the static admissibility. The real deformations are then written as follows : 

ε ⊥ = 2ε 13 2ε 23 = f (z)γ = f (z) β 2 + w ,1 β 1 + w ,2 ( 

C.1.3 Through-thickness integrated stress

Under the assumption of plane constraints and in using Voigt notations, the stress tensor can be decomposed into two vectors: in-plane constraints σ 2D and out-of-plane (transverse) constraints σ ⊥ :

σ 2D =   σ 11 σ 22 σ 12   ; σ ⊥ = σ 13 σ 23 (C.6)
The integrated stresses are calculated by integrating the stresses on the thickness : 

N =   N 1 N 2 N 12   = t 2 -t 2   σ 11 σ 22 σ 12   dz M =   M 1 M 2 M 12   = t 2 -t 2   σ 11 σ 22 σ 12   zdz T = T 1 T 2 = t 2 -t 2 σ 13 σ 23 dz (C.7) N 1 , N 2 , N 12 : membrane forces (en N/m) M 1 , M 2 ,

C.1.4 Constitutive law

The stress-strain relationship is written as follows :

σ 2D = H • ε 2D + σ 2D 0 ; σ ⊥ = H τ • ε ⊥ + σ ⊥ 0 (C.8)
If the material is homogeneous, isotropic and elastic, it comes:

H = E 1 -ν 2   1 ν 0 ν 1 0 0 0 1-ν 2   ; H τ = E 2(1 + ν) 1 0 0 1 (C.9)

C.1.5 Resulting e ort-strain relationship

It is possible to link the integrated stresses directly to the deformation :

     N = H m • e + N 0 M = H b • χ + M 0 T = H s • γ + T 0 (C.10) with H m = t 2 -t 2 Hdz = Eh 1 -ν 2   1 ν 0 ν 1 0 0 0 1-ν 2   ; H b = t 2 -t 2 Hz 2 dz = h 3 12 H (C.11) and N 0 = t 2 -t 2 σ 2D 0 dz ; M 0 = t 2 -t 2 σ 2D 0 z dz ; T 0 = t 2 -t 2 σ ⊥ 0 dz (C.
12)

The H s matrix takes into account the H τ components and a k coe cient called shear strain correction coe cient, obtained by integrating the Reissner function, explained in the following section.

C.1.6 Transverse shear correction

As noted above, the transverse shear deformations γ are constant across the thickness. This results in non-admissible shear stresses on the top and bottom faces of the plate. To remedy this, a correcting constant is applied to the distribution of these deformations in order to have the actual transverse shear deformations meet the static admissibility. Let's consider a homogeneous and isotropic plate. The constitutive matrix H τ linking the shear forces T to the γ deformations is de ned taking into account a continuous shear stress distribution σ ⊥ respecting the equilibrium conditions. To simplify the reasoning, the plate is assumed to be free of initial stress and is placed in the context of pure bend/shear behavior. Thus the following equations are valid :

N = N 0 = M 0 = 0 (C.13)
From the equations ((C.10)) we can write χ = H -1 b • M, then considering the relation (C.9):

σ 2D = H (e + zχ) = H zH -1 b • M (C.14) • Calculation of the matrix H s
The method used is based on static and energy equilibrium considerations so that the transverse shear sti ness of the plate model corresponds as closely as possible to that de ned by the theory of three-dimensional elasticity. In other words, we de ne the matrix H s ((C.10)) so that the density of internal energy per unit area related to the shear strain obtained by a 3D (exact) stress σ 13 et σ 23 , noted U 1 , be identical to U 2 , associated with the plate model based on Reissner-Mindlin assumptions. The problem is then to nd H s such that U 1 = U 2 , with:

U 1 = 1 2 t 2 -t 2 σ ⊥ T H -1 τ σ ⊥ dz et U 2 = 1 2 T T H -1 s T (C.15) T = 1 2 t 2 -t 2 σ ⊥ dz (C.16)
The calculation of H s also requires knowing the distribution of σ ⊥ (z) in the thickness direction. This is obtained by considering the homogeneous equilibrium equations associated with the free edge conditions :

       σ 13 = - z -t 2 (σ 11,1 + σ 12,2 ) dz σ 23 = - z -t 2 (σ 12,1 + σ 22,2 ) dz (C.17)
with conditions at the edges being :

σ 13 z = - t 2 = σ 23 z = - t 2 = 0 (C.18)
Still in the case of pure bending/shear behaviour and using the equations ((C.14)) and ((C.11)) then by integrating over the thickness of the plate we nd the distribution of σ ⊥ (z) :

σ ⊥ (z) = 6 t 3 t 2 4 -z 2 T (C.19)
from where, after integration on the thickness

U 1 = 1 2 6 5t T T H -1 τ T (C.20)
The equivalence U 1 = U 2 gives the transverse shear correction coe cient k = 5 6 . One can then write the stress-strain relationship in transverse shear and deduce the corrected shear deformations :

σ ⊥ (z) = 5 4 1 - 4z 2 t 2 H τ γ then ε ⊥ (z) = 5 4 1 - 4z 2 t 2 γ (C.21)
Not that this interpolation is only valid in linear isotropic.

C.1.7 Principle of virtual works

Two types of external forces can be applied to a plate. A distinction is made between forces per unit length (tangential or normal to the mid-surface) applied to the plate contour and forces per unit area distributed over the mid-surface, again tangential or normal to the mid-surface. The equilibrium based on the deformation energy enables the internal forces to be related to the external forces. The principle of virtual work gives the equilibrium :

W = W int -W ext = 0 (C.22) with W int = V ε2D • σ 2D + γ • σ ⊥ dV W ext = S m û • f + β • m dV + C û • f s + β • m s ds (C.23)
f and m are the forces and moments per unit length applied on the mid-surface S m and f s and m s are the forces and moments per unit length applied on the C contour of the plate.

In general, it is impossible to nd the analytical solutions to the equilibrium equation (C.22). In practice, to determine the displacements corresponding to the applied stresses, the nite element approximate is used.

C.1.8 Finite elements based on classical shell theory

Starting from the plate kinematics established in the section above, it is quite straightforward to propose an associated nite element formulation. The complexity of a plate nite element formulation is due to the rotational degrees of freedom considered at the nodes of the elements and to the bending representation. An approximation of the bending e ects can be done by considering elements based on standard kinematics, or by introducing additional degrees of freedom. Therefore, there are various possibilities for formulating nite plate elements. In this sub-section we focus on the main principles and will only detail the plate nite element method based on displacement formulation. Let's consider the general case of the equilibrium discretization of a plate based on Reissner/Mindlin kinematics. By de ning the basic nite subspace of the shape functions ϕ h = Vect φ 1 , φ 2 , ..., φ n , it is possible to write the displacement eld of any point of a plate.

C.1.8.1 Discretized displacement eld

The Reissner/Mindlin kinematics leads to elements with ve degrees of freedom per node: two displacements in the plane u 1 and u 2 , one transverse displacement w and two rotations β 1 and β 2 . Considering a linear isoparametric plate element, the approximation of the elementary displacement is written as follows :

                                         u = n ∑ j=1 φ j u j = ΦU e 1 v = n ∑ j=1 φ j u j = ΦU e 2 w = n ∑ j=1 φ j u j = ΦU e 3 β 1 = n ∑ j=1 φ j β n j = Φβ n 1 β 2 = n ∑ j=1 φ j β n j = Φβ n 1 (C.24)
U e i (i = 1, 2, 3) β n 1 and β n 2 are respectively the displacements and rotations at the nodes of the element.

C. 1.8.2 The discretized deformations eld Membrane deformation: 

e(u) =   u ,1 v ,2 u ,2 + v ,1   =    ∂ ∂x 0 0 ∂ ∂y ∂ ∂y ∂ ∂x    u v =    ∂ ∂x 0 0 ∂ ∂y ∂ ∂y ∂ ∂x    Φ 0 0 Φ U e

Bending deformation

χ(u) =   β 1,1 β 2,2 β 1,2 + β 2,1   =    ∂ ∂x 0 0 ∂ ∂y ∂ ∂y ∂ ∂x    Φ 0 0 Φ β n 1 β n 2 (C.27) meaning χ = B f β n 1 β n 2 B f =    ∂Φ ∂x 0 0 ∂Φ ∂y ∂Φ ∂y ∂Φ ∂x    (C.28)
B f is the discretized gradient operator for the curvature part (bending).

Transverse shear strain

γ(u) = β 1 + w ,1 β 2 + w ,2 γ(u) = Φ ,1 Φ 0 Φ ,2 0 Φ   U e 3 β 1 n β 2 n   = B ct   U e 3 β n 1 β n 2   (C.29) meaning B ct = Φ ,1 Φ 0 Φ ,2 0 Φ (C.30)
B ct is the discretized gradient operator for the transverse deformation part.

C.1.8.3 Sti ness matrix

The virtual work of the internal forces is then used to calculate the sti ness matrix of the element:

W int = 1 2 [U] T K [U] (C.31)
By identi cation, and assuming that there is no membrane-bending coupling, it is possible to decompose the elementary sti ness matrix according to the three contributions: membrane, bending and shear. 

K = tK m + t 3 K f + tK c (C.32)
K m = B T m C m B m K f = B T f C f B f K ct = B T ct C ct B ct (C.33)
In other words, the overall sti ness matrix is a function of the matrices of membrane sti ness K m , bending K f and transverse shear K ct . t represents the thickness of the plate.

The matrices C m , C f and C ct are behavioral matrices related to membrane, bending and transverse shear e ects, respectively. For a homogeneous and isotropic material these matrices are written:

C m = E 2(1 + ν)   1 ν 0 ν 1 0 0 0 1+ν 2   , C f = 1 12 C m , C ct = E 2(1 + ν) 1 0 0 1 (C.34)
The generalized nodal e orts F n are then calculated by discretizing the work of the external e orts C. 23. Finally, the algebraic system to be solved is the following:

K • U = F ext (C.35)
The displacement formulation just detailed allows to de ne a variety of nite plate elements of triangular or quadrangular type. These elements are often referred to by their shape (Quadrangle or Triangle) and the number of nodes on which the approximation is based: for example Q4 and T3 for 4 node quadrangles and 3 node triangles (Figure C.2). In practice, the nite elements of plates formulated in this way are not directly usable to model the plates or shell type structures. Indeed, they su er from many locking phenomena, and in particular the transverse shear locking which appears when the structure is very thin. To illustrate this transverse shear locking, let's consider a bending plate problem and the Mindlin/Reissner model. Thus, equation (C.32) becomes

K = tK c + t 3 K f
It is then necessary that K c tends towards 0 when t (thickness) tends towards 0 in order to avoid that the transverse shear term becomes preponderant in the expression of the sti ness. Otherwise, locking occurs due to the t dependence of the matrices. The element thus leads to a solution in uenced solely by shear instead of being associated with the bending phenomenon. In this case there is less energy to deform the plate, resulting in an erroneous solution that is too rigid. It is the existence of this arti cial sti ness that is called shear locking. This phenomenon appears signi cantly for plates that have a very low t L ratio.

C. 1.8.4 Importance of higher order interpolation

Increasing the degrees of interpolation improves performance by reducing blockages. In Reissner/Mindlin plates a C 0 continuity is su cient but it is possible to develop richer interpolations to improve the performance of plate nite elements, especially when modeling very thin structures in bending. The immediate approach is to increase the number of nodes to increase the number of degrees of freedom. Two families of elements are generally distinguished: elements with additional inner nodes (Lagrange) and elements with additional nodes just at the edges of the element (Serendip). The nodes inside the element, although they can intervene in the distribution of forces, are not of direct interest in the calculation codes because they do not contribute directly to the overall sti ness through the interaction with the related elements. Generally, static condensing methods are used to eliminate them. However, in Batoz [?], the authors showed that a simple increase in the number of degrees of freedom is not enough to have e cient elements.

With the exact integration technique to model a square plate embedded on the contour (L/t = 100), it was shown that Q9 and Q16 elements can give satisfactory results. Q4, on the other hand, gives very poor results. Also when the L/t ratio becomes very low (L/t < 100 for example) elements Q4, Q8 and Q12 give very poor results. Elements Q9 and Q16, although a little better, also give false answers as soon as the mesh is a little distorted. Thus, despite a considerable number of degrees of freedom for some of these elements, they also su er from the transverse shear locking phenomenon. The displacement variable formulation is subject to various locking phenomena. This is why it is often abandoned in favour of a richer formulation generally called mixed formulation. There are di erent classes of mixed models associated with plate problems but generally a formulation is mixed when the equilibrium equation contains both kinematic unknowns u, β of type C 0 and static variables N, M, T of continuity C -1 . Thus, QM elements (Quadrangle with Mixed formulation) have been proposed. They give much better results than the classical moving quadrangles. The most noticeable improvement concerns the QM4 quadrangle and to a lesser extent the QM8 and QM12 elements. Indeed, it has been shown in [?] that QM8 and QM12 still su er from the locking phenomenon even though it is less important than the locking of quadrangles in simple displacement formulation. The mixed formulation can also be extended to elements with triangular geometry. This is the case of Zienkiewicz's T6/3B3 element [ZIE 88].

C. 1.8.6 Speci c interpolation of the transverse shear A solution to the locking problems induced by the consideration of transverse shear kinematics in Reissner/Mindlin plates consists in replacing the classical shear terms by substitution strain : this is the assumed strain method. There are several variants of the assumed strain method depending on how the condition between the actual strain γ and the substitution strain γ (collocation or integral form) is imposed. The most commonly used variant is the one based on an integral condition between actual and substitution deformations. This method is nd in the formulation of the family of MITC elements (mixed interpolated tensoriel components) proposed in [BAN 87, BAR 81, ?]. This family consists of quadrilateral elements at 4, 8, 9 and 16 nodes, and triangular elements at 7 and 12 nodes. In the Q4γ example a transverse shear strain energy is considered in this form :

U c = 1 2 A γ T H c γ dA (C.36) with γ xy = γ xz γ yz = Jγ ξη (C.37)
and

γ ξη = 1-η 2 γ a ξ + 1+η 2 γ c ξ 1-ξ 2 γ b η + 1+ξ 2 γ d η (C.38)
Then along each side we connect γ and γ per:

1 -1 γ ξ -γ ξ dξ = 0 1 -1 γ η -γ η dη = 0 (C.39)
The quadrangular elements whose transverse shear are thus de ned are tested by several authors and give good results (patch-test, convergence, in uence of distortion), see Batoz [?]. The technique of assumed strain, which is very e cient in eliminating the transverse shear locking, is also taken up by the family of DST (Discrete Shear Triangle) and DSQ (Discrete Shear Quadrangle) elements whose particularity is in the enrichment of discrete rotational degree of freedom. However, despite the use of the assumed strain method, these elements can still show some locking issues when the modeled structure is very thin. In such a situation one can get around the locking problem by turning to the Kircho -Love hypothesis. The discretization of transverse shear deformations is then neglected. This is the case for the DKT and DKQ nite elements.

E u being the classical strain eld of a hexahedral (derivation of the displacement vector) and E eas the enriched strain eld (pinch and assumed transverse shear eld). The threeeld mixed variational formulation is written as follows

π HU (u, E, S) = Ω 0 W (E)dΩ 0 + Ω 0 S : (E u -E)dΩ 0 - Ω 0 ρb • udΩ 0 - ∂Ω 0 f • ud(∂Ω 0 ) (D.2) or alternatively π HU (u, E eas , S) = Ω 0 W (E u + E eas )dΩ 0 - Ω 0 S : E eas dΩ 0 - Ω 0 ρb • udΩ 0 - ∂Ω 0 f • ud(∂Ω 0 ) (D.3)
where W is the constitutive law, S the assumed stress, b being the body forces and f surface forces. The variation in energy can then be written as follows

δπ HU (u, E eas , S) = Ω 0 ∂W ∂E : δE u + ∂W ∂E : δE eas dΩ 0 - Ω 0 ρb • δudΩ 0 - Ω 0 S : δE eas dΩ 0 - Ω 0 δ S : E eas dΩ 0 - ∂Ω 0 f • δud(∂Ω 0 ) (D.4) D.1.2 Kinematics D.1.2.

Displacement eld

The SB9γ25 nite element is an isoparametric element with reduced integration. The element therefore admits a privileged direction. This corresponds to the direction of its thickness along which the integration points are distributed (3 for elasticity, 5, 7 or more for plasticity). The reduced integration gives the element zero-energy modes that will be eliminated by a stabilization sti ness matrix. In order to highlight these zero energy modes more easily, the usual shape functions are rewritten in vector form :

N = 1 8 (s + a 1 ξ + a 2 η + a 3 ζ + h 1 ηζ + h 2 ξζ + h 3 ξη + h 4 ξηζ) (D.5)
The vectors s, a β (β = 1, ..., 3) and h α (α = 1, ..., 4) are given by :

                                 s T = [1, 1, 1, 1, 1, 1, 1, 1] a T 1 = [-1, 1, 1, -1, -1, 1, 1, -1] a T 2 = [-1, -1, 1, 1, -1, -1, 1, 1] a T 3 = [-1, -1, -1, -1, 1, 1, 1, 1] h T 1 = [-1, -1, 1, 1, 1, 1, -1, -1] h T 2 = [1, -1, -1, 1, -1, 1, 1, -1] h T 3 = [1, -1, 1, -1, 1, -1, 1, -1] h T 4 = [-1, 1, -1, 1, 1, -1, 1, -1] (D.6)
The position and the displacement eld at a point on the element are then written:

x i = 8 ∑ i=1 x iI N i (ξ, η, ζ) = x iI N i (ξ, η, ζ) (D.7) u i = 8 ∑ i=1 u iI N i (ξ, η, ζ) = u iI N i (ξ, η, ζ) (D.8)
The small subscripts i range from one to three and represent the directions of the spatial coordinates while capital subscripts I range from one to eight corresponding to the nodes of the feature.

D.1.2.2 Deformation-displacement gradient

The interpolation of the displacement eld (equation (D.8)) allows to write the relations linking the strain eld to the nodal displacements. The linear part of the strain tensor is written:

ε i j = 1 2 u i, j + u j,i (D.9)
Combining equations (D.5), (D.8) and (D.9) we are able to develop the displacement eld as a linear combination of linear terms in x i and terms involving functions h α :

     u i = a 0i + a 1i x 1 + a 2i x 2 + a 3i x 3 + c 1i h 1 + c 2i h 2 + c 3i h 3 + c 4i h 4 i = 1, 2, 3 h 1 = ηζ, h 2 = ζξ, h 3 = ξη, h 4 = ξηζ (D.10)
The x i being the coordinates of a point of the element. In addition, the above equation evaluated at the nodes of the element gives the following three systems of eight equations:

U e i = a 0i s + a 1i X e 1 + a 2i X e 2 + a 3i X e 3 + c 1i h 1 + c 2i h 2 + c 3i h 3 + c 4i h 4 (D.11)
The constants a ji and c αi of the equations (D.10) and (D.11) are obtained by introducing the so-called Hallquist vectors [HAL 83] and taking into account the orthogonality relations :

• Hallquist vectors 

b T i = N ,i (ξ = η = ζ = 0), i = 1, 2, 3 (D.12) • Orthogonality relationship b T i • U e i = 0 b T i • s = 0 b T i • X e j = δ i j h T α • s = 0 h T α • h β = 8δ αβ α, β = 1, 2, 3, 4 i, j = 1,
         a ji = b T i • U e i c αi = γ T α • U e i γ α = 1 8 h α -∑ 3 j=1 (h T α • X j )b j (D.14)
The displacement eld can then be written in a very convenient form:

u i = a 0i + (b T j x j + γ T α h α )U e i i = 1, 2, 3 (D.15)
Deriving this last formula with respect to the three spatial variables x j we nd the deformation gradient:

u i, j = (b T j + γ T α • h α, j ) • U e i i = 1, 2, 3 (D.16)
which then allows the construction of the discretized gradient operator linking the deformation elds to the nodal coordinates:

                           ε 11 ε 22 ε 33 2ε 12 2ε 13 2ε 23                            = B          U e 1 U e 2 U e 3          (D.17) B =               b T 1 + γ T α h α,x 1 0 0 0 b T 2 + γ T α h α,x 2 0 0 0 b T 3 + γ T α h α,x 3 b T 2 + γ T α h α,x 2 b T 1 + γ T α h α,x 1 0 0 b T 3 + γ T α h α,x 3 b T 2 + γ T α h α,x 2 b T 3 + γ T α h α,x 3 0 b T 1 + γ T α h α,x 1               (D.18) D.1.2.

Assumed natural shear strain

The Assumed natural shear strain method consists in interpolating the shear deformations from the calculated deformation in the middle of each face in order to avoid the locking phenomenon. The points at the midpoints of the four faces transverse to the mid-plane of the element are called P i {i = 1, 2, 3, 4}. At each of these points the corresponding transverse shear strain is calculated and then interpolated over the entire element. The transverse shear strain at the point P i is given by the following equation: 

ε ⊥ (P i ) = J 2×2 (P i ) • B ⊥ (P i ) U e (D.19) B ⊥ =   0 b T 3 + γ T α h α,x 3 b T 2 + γ T α h α,x 2 b T 3 + γ T α h α,x 3 0 b T 1 + γ T α h α,x 1   (D.
ε ⊥ = J 2×2 • M int • C e • U e (D.

21)

With J 2x2 the opposite of the Jacobian matrix taken at the origin of the frame (ξ = 0, η = 0, ζ = 0) and M int the interpolation matrix such as:

M int = 1 2 1 -η 0 0 0 1 + η 0 0 0 0 0 0 1 + ξ 0 0 0 1 -ξ (D.22
)

C e =     J 2×2 (P 1 ) • B ⊥ (P 1 ) J 2×2 (P 2 ) • B ⊥ (P 2 ) J 2×2 (P 3 ) • B ⊥ (P 3 ) J 2×2 (P 4 ) • B ⊥ (P 4 )     (D.23)
Then the plane strain is simply multiplied by the Reissner weight function to get the actual strain calculated at any given point on the element:

ε ⊥ = 5 4 1 -ζ 2 J 2×2 • M int • C e • U e (D.24)
Note that the only matrix that contains the space variables in this formula is the M int matrix. Moreover, with the use of the reduced integration method, this matrix loses terms that it needs to be stabilized. Indeed, we can decompose the matrix M int as follows:

M int = M 0 + ξM ξ + ηM η (D.25) with                  M 0 = 1 2
1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1

M ξ = 1 2
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1

M η = 1 2
-1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

(D.26)
Hence, equation (D.24) can also be broken down into three terms:

ε ⊥ = 5 4 1 -ζ 2 B ⊥ 0 + ξB ⊥ ξ + ηB ⊥ η • U e (D.27) with        B ⊥ 0 = J 2×2 • M 0 • C e B ⊥ ξ = J 2×2 • M ξ • C e B ⊥ η = J 2×2 • M η • C e (D .28) 
The rst of these three matrices B ⊥ 0 represents the gradient matrix for the calculation of non-stabilized sti ness. Multiplied by the Reissner function 5 4 1ζ 2 this matrix of shear e ects (unstabilized) is used for the calculation of K 0 while the matrices B ⊥ ξ and B ⊥ η allow, on the other hand, to obtain the sti ness matrices for stabilization of the transverse shear below, calculated in the case of an isotropic linear material:

K ⊥ ξ = 5 6 B ⊥ ξ T µ 0 0 µ B ⊥ ξ V 3 
K ⊥ η = 5 6 B ⊥ η T µ 0 0 µ B ts η V 3 
(D.29)
Identi cation of membrane and bending contribution.

Since transverse shear e ects have been addressed, it may be useful to isolate membrane and bending e ects to better identify them. The rst, second, and fourth lines of the deformation gradient matrix can be decomposed to highlight the membrane and bending parts. The pinch e ect will be discussed in the following paragraphs. 

B m 0 =   b T 1 0 0 b T 2 b T 2 b T 1   (D.31) B b 0 =   J 11 γ T 2 0 0 J 22 γ T 1 + J 21 γ T 2 J 22 γ T 1 + J 21 γ T 2 J 11 γ T 2   (D.32) D.1.2.

Assumed normal displacement

In classical shell theory the transverse displacement is constant in the thickness direction, which means that the transverse strain is zero. Furthermore, this theory generally works under the plane stress hypothesis which states that the stress in the thickness direction is negligible. The novelty of the solid shell element SB9γ25 is to free itself from this restrictive hypothesis of plane stress. It is well understood that in some studies, it is essential to be able to evaluate the stresses in the thickness direction even if they are relatively small. Thus, in order to be able to take into account the pinch stress and at the same time to get rid of the plane stress hypothesis, an additional node is added to the center of the hexahedral element constructed so far. This node is endowed with a single degree of freedom of translation w 9 in the ζ direction of the element's local frame. With this node, it becomes possible to assume a parabolic transverse displacement w. By de ning: The assumed normal displacement ' w' eld is written:

w - 9 = 1 
w (ξ, η, z) = w (ξ, η, 0) + 2z 2 t 2 - z t w - 9 - 2z 2 t 2 + z t w + 9 - 2z 2 t 2 w 9 (D.34)
Then, by deriving, we obtain the pinch component ε 33 :

ε 33 = ∂w ∂x 3 = w + 9 -w - 9 t + 2ζ w + 9 -w - 9 -2w 9 t (D.35)
t being the thickness of the element given by the ratio between the volume of the element and the surface area of the mid-plane (ζ = 0). Note that z = t 2 ζ. it then comes :

w + 9 -w - 9 t = [B p c ] • U e 3 2 w + 9 -w - 9 -2w 9 t = B p ζ • U e 3 + B p w w 9 (D.36) With              B p c = 1 4t -1 -1 -1 -1 1 1 1 1 B p ζ = 1 2t 1 1 1 1 1 1 1 1 B p w = - 4 t
the pinch strain is written: The elementary sti ness matrix K 0 is calculated by combining the e ects of membrane, bending, transverse shear and pinch Equation (D.38). Furthermore, the behaviour law no longer includes a plane stress hypothesis because, with the ninth node, the stress is no longer assumed to be zero in the thickness direction. The calculation of sti ness is done with a purely three-dimensional behaviour matrix, without restrictions. 

ε 33 = B p c + ζB
                            ε 11 ε 22 2ε 12    = B m 0 + ζB b 0    U e 1 U e 2 U e
K 0 = Ω B T • D • B dV = 4 n ∑ i=1 ω(ζ q ) • B T (ζ q ) • D • B(ζ q ) • detJ(0, 0, ζ q ) (D.39)
B being the gradient matrix, D the 3D constitutive law, which is given in linear elasticity form by the equations D.40, n is the number of integration points in the thickness (at least 5 for elastic-plastic behaviour), ω(ζ q ) the Gauss-lobatto weight associated to ζ q along the thickness direction. The factor 4 compensates the fact that detJ(0, 0, ζ q ) is evaluated in the position ξ = η = 0.

D =         λ + 2µ λ λ 0 0 0 λ λ + 2µ λ 0 0 0 λ λ λ + 2µ 0 0 0 0 0 0 µ 0 0 0 0 0 0 µ 0 0 0 0 0 0 µ         (D.40)
The goal of reduced integration is to improve the performance of the element in terms of computing time and to eliminate shear and membrane locking.

D. 1.2.6 Geometric rigidity matrix σ being the stress tensor, we can de ne two matrices Σ and B G so that the geometric rigidity matrix is written as follows: 1.2.7 Pressure matrix

K σ = Ω B T G • Σ • B G dV = 4 n ∑ i=1 ω(ζ q ) • B T G (ζ q ) • Σ • B G (ζ q ) • detJ(0, 0, ζ q ) (D.
Σ =   [σ] 0 0 0 [σ] 0 0 0 [σ]   (D.43) B G =               b T 1 + γ T α h α,x 1 0 0 b T 2 + γ T α h α,x 2 0 0 b T 3 + γ T α h α,x 3 0 0 0 b T 1 + γ T α h α,x 1 0 0 b T 2 + γ T α h α,x 2 0 0 b T 3 + γ T α h α,x 3 0 0 0 b T 1 + γ T α h α,x 1 0 0 b T 2 + γ T α h α,x 2 0 0 b T 3 + γ T α h α,x 3               (D.44) D.
Let's consider a p pressure, applied to a surface ∂V of normal n. By neglecting the e ects of gravity, the virtual work of the external forces for the nite element SB9γ25 is written :

δW ext = - Ω 0 S33 δ Ẽ33 dΩ 0 - ∂V 0 pJn 0 F -T • δud(∂Ω 0 ) (D.45)
Where S33 is the interpolated (assumed) stress written in a Piola Kirchho 2 form, Ẽ33 the assumed normal strain, n 0 the normal vector in the reference con guration, F the gradient of the transformation and J = detF. The assumption that has been made on the normal stress is that the pinch is linear over the thickness of the plate but statically admissible. For example if p is applied on the lower edge of the element and assuming that the upper edge is free, we have σ

p 33 = -1 2 (1 -ζ) p.
The virtual work of the pressure loads becomes linearized in this way:

δW ext (∆u) = -δU T z Ω 0 N T S33 NdΩ ∆U z -L[ ∂Ω 0 pJn 0 F -T • δud(∂Ω)] (D.46) L [ f ]
representing the linearized function f . The second term on the right side of the equation is the formula of the classical displacement-dependent pressure, while the rst term is the e ect of the pinching assumed with the ninth node. This additional term is used to eliminate Poisson thickness locking in solid-shell nite elements.

D.1.3 Stabilization

The Reduced integration method of the SB9γ25 element (5 Gauss points only) aims to considerably reduce the computation time, but also to remove the various locking phenomenon encountered in the numerical implementation of nite elements. However, this reduced-integration has not only advantages: it unfortunately introduces parasitic modes associated with zero energy (hourglass mode). This de ciency of the sti ness matrix, due to the reduced-integration, must therefore be compensated by adding a stabilizing sti ness to the elementary sti ness. The kernel of the new sti ness, thus obtained, must be reduced to the only modes corresponding to rigid body movements.

D.1.3.1 Lost terms

At the 5 Gauss-lobatto coordinate points (ξ I = η I = 0, ζ I = 0), some terms from h α,x i (α = 3, 4; i = 1, 2, 3) and h α,x i (α = 1, 2; i = 1, 2, 3) becomes null. By elaborating the derivatives h α,x i , terms that do not enter into the construction of the sti ness matrix are clearly identi ed:

h 1 = ηζ ⇒          h 1,x 1 h 1,x 2 h 1,x 3          = ζ          J 12 J 22 J 32          + η          J 13 J 23 J 33          (D.47) h 2 = ξζ ⇒        h 2,x 1 h 2,x 2 h 2,x 3        = ζ        J 11 J 21 J 31        + ξ          J 13 J 23 J 33          (D.48) h 3 = ξη ⇒        h 3,x 1 h 3,x 2 h 3,x 3        = η          J 11 J 21 J 31          + ξ          J 12 J 22 J 32          (D.49) h 4 = ξηζ ⇒        h 4,x 1 h 4,x 2 h 4,x 3        = ζ          ηJ 11 + ξJ 12 ηJ 21 + ξJ 22 ηJ 31 + ξJ 32          + ξη          J 13 J 23 J 33          (D.50)
Considering equations D.47 to D.50 it is easy to understand that the deformation gradient matrix is de cient in the ve Gauss points of the reduced integration method.

By constructing a discretized displacement base, it is possible to show that the reduced integration reduces the rank of the discretized sti ness. In fact, with a complete (exact) integration we nd six vectors in the kernel of the sti ness that correspond to the three translations and three rotations of rigid bodies. In addition to these six vectors, the reduced integration adds the six vectors [equation (D.51)] but also other vectors related to the elimination of some terms of the modes h 1 and h 2 .

     h 3 0 0      ,      0 h 3 0      ,      0 0 h 3      ,      h 4 0 0      ,      0 h 4 0      ,      0 0 h 4      (D.51)
This expansion of the kernel of the sti ness matrix is manifested by the apparition of unrealistic deformations called hourglass modes that need to be stabilized.

D.1.3.2 Choosing the local stabilization reference frame

The SB9γ25 is a nite element built to simulate the behavior of thin structures, i.e. structures that have a dimension that is smaller than the two others . So to always identify this direction, the local frame is constructed so that its axis z always coincide with the thickness of the element ζ. Furthermore, the connectivity of the element is, at all times, written in the order 1, 2, 3, 4 (bottom side) and 5, 6, 7, 8 (top side) to take into account the thickness direction. 

g 1i = a 1 • X G i g 2i = a 2 • X G i i = 1, 2, 3 (D.52)
a 1 and a 2 are the vectors de ned in the equations (D.6) and the X G i are the coordinates, in the global frame, of the 8 nodes of the element. These two vectors must then be orthonormalized before calculating the co-rotational base vectors. The correction term g c is computed to ensure the orthogonality relationship:

g 1 • (g 2 + g c ) = 0, meaning g c = - g 1 • g 2 g 1 • g 1 g 1 (D.53)
Finally, the vectors of the co-rotational frame are written as follows:

e 1 = g 1 g 1 e 2 = g 2 + g c g 2 + g c e 3 = e 1 ∧ e 2 (D .54) 
In the following we will call X e i and U e i respectively the coordinates and nodal displacements in the local coordinate system. If we call J the Jacobian matrix such as:

J i j = ∂x i ∂ξ j , (D.55)
the co-rotational frame allows the following simpli cations of the terms of the Jacobian matrix: As already shown the reduced integration cancels some terms of the h 1 and h 2 modes. These combined modes would give a kind of false torsional deformation whose impact can be neglected depending on the modeling. This is why these modes are not stabilized in the initial formulation of the SHB8PS element which was originally intended for the simulation of the forming of thin-thickness structures [BAS 12, ABE 01].

                 ∂x i ∂ξ i = 1 8 a i • X e j ∂x i ∂ξ j = ∂ξ j ∂x i = 0 i = j detJ = a T 1 • X e 1 8 a T 2 • X e 2 8 a T 3 • X e
By combining the terms h 1 and h 2 removed during reduced integration, we can write as follows the deformation gradient matrix used to stabilize these modes.

B s 12 =              J 13 ηγ T 1 + ξγ T 2 0 0 0 J 23 ηγ T 1 + ξγ T 2 0 0 0 J 33 ηγ T 1 + ξγ T 2 J 23 ηγ T 1 + ξγ T 2 J 13 ηγ T 1 + ξγ T 2 0 J 33 ηγ T 1 + ξγ T 2 0 J 13 ηγ T 1 + ξγ T 2 0 J 33 ηγ T 1 + ξγ T 2 J 23 ηγ T 1 + ξγ T 2              (D.57)
It is then possible to calculate the stabilization sti ness matrix of the modes h 1 and h 2 :

K Stab 12 = Ω (B s 12 ) T • D • B s 12 dΩ (D.58) K Stab 12 =   K 11 0 0 0 K 22 0 0 0 K 33      K 11 = 1 3 V µ γ 1 γ T 1 + γ 2 γ T 2 K 22 = 1 3 V µ γ 1 γ T 1 + γ 2 γ T 2 K 33 = 1 3 V (λ + 2µ) γ 1 γ T 1 + γ 2 γ T 2 (D.59)
K 11 , K 22 and K 33 being 8 × 8 matrices.

D.1.3.4 Stabilization of modes h 3 et h 4

The stabilization matrix of the modes h 3 and h 4 is calculated in the co-rotational frame which gives the Jacobian J the properties of a diagonal matrix. In addition, the simplication of the Jacobian leads to the following simpli cations: 

                 h i,i = ∂h i ∂x i = 0 h j,i = 8ξ k a i • X e i h 4,i = 8ξ j ξ k a i • X e i (D.60) B s 34 =              γ T 3 ηJ 11 + ξJ 12 + J 13 γ T 4 ξη 0 
+ J 23 γ T 4 ξη              (D.61)
In order to simplify as much as possible the calculation of the stabilization sti ness matrix but also to deal more e ciently with transverse shear locking, the matrix B s 34 is replaced by the simpli ed matrix Eq:(D.62). This simpli ed form is justi ed by the properties of the co-rotational frame which simplify the Jacobian ( ∂x i ∂ξ j = 0, si i = j).

B s 34 =             ηJ 11 γ T 3 + ζγ T 4 0 0 0 ξJ 22 γ T 3 + ζγ T 4 0 0 0 0 0 0 0 0 0 ηJ 11 cγ T 3 + ζγ T 4 0 0 ξJ 22 cγ T 3 + ζγ T 4             (D.62)
Thanks to the behaviour matrix we can calculate the stabilization sti ness matrix of the modes h 3 and h 4 from the formula:

K Stab 34 =   K 11 0 0 0 K 22 0 0 0 K 33      K 11 = (λ + 2µ) H 11 γ 3 γ T 3 + 1 3 γ 4 γ T 4 K 22 = (λ + 2µ) H 22 γ 3 γ T 3 + 1 3 γ 4 γ T 4 K 33 = µ (H 22 + H 22 ) c 2 γ 3 γ T 3 + 1 3 γ 4 γ T 4 (D.63) with                  H ii = 1 3 a T j • X e j a T k • X e k a T i • X e i H i j = V h i, j h j,i dV 0 = V h i, j dV (D.64)
The simpli cations made so far with the co-rotational frame work if the element has a quite regular geometry with a quasi-constant thickness. In [ABE 09], the authors suggest to take the factor c = 0.1 in order to correctly stabilize the h 3 mode along the thickness if the thickness is not constant.

D.1.3.5 Consequence of assumed shear strain on stabilization

The Assumed strain method and its corresponding stabilization correct the de ciencies of the h 3 mode. In the same way, this stabilization also ensures the stabilization of the missing parts of the modes h 1 and h 2 , a combination of which corresponds to a twist mode around ζ. As a result, the stabilization gradient matrix can be rewritten in a more simpli ed way:

B S =   J 11 η γ T 3 + ζγ T 4 0 0 0 J 22 ξ γ T 3 + ζγ T 4 0 0 0 J 33 ηγ T 1 + ξγ T 2 + ξηγ T 4   (D.65)
With the plane stress behaviour matrix, the stabilization sti ness matrix is rewritten as follows:

K S =   K 11 0 0 0 K 22 0 0 0 K 33      K 11 = (λ + 2µ) H 11 f m γ 3 γ T 3 + 1 3 f b γ 4 γ T 4 K 22 = (λ + 2µ) H 22 f m γ 3 γ T 3 + 1 3 f b γ 4 γ T 4 K 33 = (λ + 2µ) f p H 33 γ 1 γ T 1 + γ 3 γ T 3 + 1 3 γ 4 γ T 4 (D.66) With H ii = J 2 ii V
3 in the co-rotational frame. λ and µ Lamé's constants. The coe cients f m , f b and f p are three stabilization coe cients related to membrane, bending and pinch e ects. If these coe cients are taken equal to 1, the results are close to those obtained with a fully integrated classical hexahedral element ( 2 × 2 × 2). In other words, locking phenomena appear. For the element to work well in solid-shell, these coe cients must be taken small, 10 -4 for example. Recall that the matrix, K S , de ned above must be added to the stabilization matrices of the transverse shears de ned in the equation D.29

D.1.4 Equivalent nodal pressure forces

The advantage of the additional node is also to allow a redistribution of the pressure forces so that the normal pinch stress is more correctly distributed. In order to easily nd the distribution of the latter, we consider a hexahedral element on which is applied a pressure P i , which for a classical shell element would be directly applied on the midplane [ gure D .3]. For an elastic material, it can be assumed that the pinching stress is zero on the free side and is the opposite of the pressure on the side where the pressure is applied. Moreover, in the elastic case, since the transverse displacement is assumed to be parabolic, it immediately follows that the pinching stress is linear; hence the following interpolation of σ zz , the pressure being applied to the bottom face of the element: By noting F i the contribution to node i of the ζ component of the generalized nodal e ort and ŵ the virtual displacement, the equilibrium of the virtual works gives the generalized nodal e orts:

8 ∑ i=1 F i ŵi + F 9 ŵ9 = ∂Ω P i ŵi d(∂Ω) + Ω ε 33 • σ p 33 dΩ (D.68)              F i = 1 3 P i A 0 , i = 1, 2, 3, 4 F j = 1 12 P i A 0 , j = 5, 6, 7, 8 
F 9 = - 2 3 P i A 0 (D.69)
where A 0 is the area of the mid plane of the element. We notice in these formulas that the pressure applied on the lower face of the element is partly absorbed by the nodes of the upper face. For linear calculations this distribution can work very well [BAS 12] but in a perspective of carrying out non-linear calculations such as contact, this distribution of pressure forces can be a real problem. To remedy this drawback the authors in [BAS 12] recommend to consider the relative displacement of the ninth node w * 9 rather than the absolute displacement w 9 . The relationship between the two being:

w 9 = 1 2 w + 9 + w - 9 + w * 9 (D.70)
Remember that w + 9 and w - 9 are respectively the averages of the transverse displacements of the nodes of the upper and lower face. The use of the relative displacement for the 9th node then leads to a new writing of the transverse strain, and then of the generalized nodal forces:

ε33 = ŵ9 + -ŵ9 - h -4ζ ŵ * 9 h (D.71) 8 ∑ i=1 F i ŵi + F 9 ŵ9 = ∂Ω P i ŵi d(∂Ω) + Ω ε 33 • σ p 33 dΩ (D.72) F i = 1 4 P i A 0 , i = 1, 2, 3, 4 
F j = 0, j = 5, 6, 7, 8 
F * 9 = 2 3 P i A 0 (D.73)
This new distribution is closer to what is usually encountered; only the nodes on the pressure side take up e orts. It may seem strange at rst glance that equilibrium is not reached in this con guration (4F i + 4F j + F * 9 = P i A 0 ), as is the case with the rst distribution Eq:(D.69) but remember that the displacement w * 9 is not a real (absolute) displacement. For a SB9γ25 element loaded in pressure P s and P i respectively on their It can be seen that for a fairly large thickness the nite elements HEXA20 and SB9 give almost the same results; HEXA20 being slightly more precise than SB9γ25. On the other hand, for a thickness ten times smaller, HEXA20 remains far less accurate than SB9γ25. Indeed when the thickness is small, in a real plate con guration, the HEXA20 element loses its exibility and shows a severe locking problem. The SB9γ25 element, on the other hand, seems to t both cases. When the plate is thick, because of its solid character, SB9γ25 behaves quite well. When the plate becomes thinner in thickness, it also gives good results due to the many techniques for eliminating locking phenomena: reduced integration, assumed transverse shear elds. SB9γ25 is comparable to the HEXA20 solid nite element in terms of robustness. But in terms of the quality of the simulation of thin structure behavior, the SB9γ25 is far better than the HEXA20 element.

D.2.2 Study of a pinch problem : SB9γ25 vs Axis

In this test case a pressurized cylinder is studied in order to see the e ciency of the quadratic interpolation of the transverse displacement of the SB9γ25 element. A moderately thick cylinder is considered to observe the e ect of thickness on pinch stress accuracy. We then consider a cylinder of radius R = 1 and thickness e = 0.1 subjected to an internal pressure P i = 200MPa and an external pressure P e = 100MPa. The material parameters being Young's modulus E = 210GPa and Poisson ratio ν = 0.3. Two calculations have been performed: the rst one with SB9γ25 elements and the second one being a modeling with quadratic Axi-symmetric elements. For symmetry reasons, only one eighth of the cylinder is meshed with SB9γ25 elements (8 × 8 × 1). The table D.5 gives three results: the result of a calculation with a single quadratic axis element in the thickness of the plate, a calculation with a re nement (5 quadratic axis elements in the thickness) then the calculation with the SB9γ25 element. For a curved structure with a rather large thickness the SB9γ25 element gives less good results compared to 3D quadratic elements. This is not surprising. The SB9γ25 element is a solid-shell element, it can give fairly good results when the structures are medium thick but when you get closer to 3D structures its performance decreases. This element is not made to be used for 3D structure calculations. Moreover, due to facetization, the mapping e ects intervene in the results, which is less the case with quadratic 3D elements, which more or less match the cylindrical geometry. To improve this result, a re nement in the circumferential and radial directions would have been necessary. However, in its current formulation, SB9γ25 is not immediately discretizable in the thickness direction. The designers of this element were based on the idea that SB9γ25 is a nite element that can be used to model thin structures. Therefore they assumed that only one element was needed to discretize the thickness of the plates.

Radius

D.3 Conclusion

The purpose of this chapter was to present and evaluate the SB9γ25 element through a few test cases. The results given by this element are globally satisfactory. The assumed natural method and the reduced integration technique give this solid element a good plate behaviour. Thus, SB9γ25 gives very good results in the bending tests, without any sign of apparent transverse shear locking. This is not the case with the HEXA20 element, which su ers severely from locking phenomena when the thickness is small. Moreover, unlike many solid-shell elements, the SB9 nite element gives a normal stress. On the one hand, if we compare with the classic plate and shell elements DKT and COQUE_3D, we can see that the results provided by the SB9γ25 is in agreement with the kinematics speci c to thin structures : this is one of the initial objectives which is satis ed with this element. On the other hand, comparing (with axi-symmetric) the pinching quality obtained by the SB9γ25, we nd that the results are in agreement with the reference solution on a test case of a medium thick pinched cylinder. Compared to the AXInite elements of code_aster, we realize that for the same neness of mesh, the SB9γ25 gives quite comparable results. Nevertheless the SB9γ25 exhibits some weaknesses that deserve to be investigated: stabilization and re nement in thickness direction. The stabilization coe cient must be small to respect the shell kinematics. Moreover, the SB9γ25 is formalized in updated Lagrangian which is much slower in nonlinear calculation because it requires a very ne temporal discretization. Moreover, the assumed eld method developed in this element is only valid for isotropic linear cases and does not support frictional contact because the transverse shear is considered null on the upper and lower faces. All these aspects motivated the development of a new solid-shell nite element, inspired by the SB9γ25 but with a more robust and automatic stabilization, without the need for user-entered stabilization coe cients. This new element is also written in total Lagrangian. Actually, this is not the creation of a mesh HEXA9, but just a way of de ning in the code what a HEXA9 is. With this piece of code, we teach code_aster to recognize a nite element whose mesh type is a HEXA9. In this particular case it is informed that a HEXA9 is a type of mesh of dimension 3, composed of 9 nodes. This mesh is also associated with a reference element of 9 nodes (NOEU) of which 8 (NOEU_S ) are located at the vertices. The reference element (ELREFE) works with integration schemes of types SHB5, SHB7 (5 or 7 integration points in thickness). Once this knowledge has been acquired, it is now necessary to go further by specifying the geometrical characteristics of this element: shape functions, position of the gauss points in the natural reference frame of the element, etc. This is the reason why the following Fortran routines have been impacted:

• elraca.F90 General characteristics of the reference element: number and names of the Gaussian point series, coordinates of the nodes, ... In addition, the implementation of this new mesh has changed the number of mesh types known to code_aster. This number went from 69 to 71 (plus SB7) meshes ntymax. Since this number was coded as hard, it was necessary to go through a set of routines to update this change: lrmmdi.F90, lrmmfa.F90,lrmmma.F90,lrmtyp.F90,iradhs.F90 ... (voir arbre thg).

HEXA8_9. This routine calls the next two routines:

• cm09nd.F90: generates the coordinates of the middle node of a HEXA9

• cm09ma.F90: takes care of the mesh update

From now on, it is possible to build a mesh of type HEXA9 directly in code_aster. The command looks like : 

E.3 Mesh modi cation : MODI_MAILLAGE

Although solid, the SB9 nite element is also a shell element. Therefore its connectivity must be written so that the direction of the thickness of the shell it models is always identi ed. In other words, the reference element identi es the direction of its thickness from the connectivity of its geometric support HEXA8. To illustrate, let us consider the volume element of the gure E. 3. If the connectivity of the element is written as follows: [N1 N2 N3 N4 N5 N6 N7 N8], the calculation will be made assuming that the thickness of the plate coincides with the direction from the [N1 N2 N3 N4] face to the [N5 N6 N7 N8] face or vice versa (note that the thickness is a direction, not a vector, so it sense is irrelevant). Now if the true direction of the thickness is that of the arrow ( gure E.3), we will have to rewrite this connectivity as follows: [N1 N4 N8 N5 N2 N3 N7 N6 N2] so the element will know that the direction of the modeled plate is that of the drawn arrow.

As any HEXA8 element produced by a Mesh module such as SMesh (Salomé) has no prede ned direction, i.e. its connectivity is written in a random order, it is then imperative that the user indicates the direction of the thickness of the studied plate by asking code_aster to rewrite the connectivity correctly. If this is not done, the calculation can only be correct if, by chance, the mesher has given a correctly oriented connectivity, i.e. coinciding with the right direction (a probability of 1/3). This was the problem with the SHB element. Because of the lack of correct orientation of the connectivity, the gauss points were not aligned in the thickness direction (reduced integration) which led to incorrect results. To avoid these errors, it is then necessary to rewrite the connectivity to orient the element in the direction of its thickness. To do this, the Catalog MODI_MAILLAGE is impacted by the keyword factor ORIE_SB9 which the user uses to indicate to Code_Aster that certain elements of the mesh are SB9 elements and that they must be oriented. The user then provides a group of volume elements corresponding to the SB9 elements to be reoriented and a group of skin elements indicating the thickness direction of these SB9 elements, see gure E.4. 

=SIMP( statut

= ' f ' ,typ=grma , validators = NoRepeat (),max= ' 1 ' ), ),
The orientation work is done in the Fortran routine orish9.F90 which retrieves the volume mesh groups 'GROUP_MA_VOLU' to be oriented and the surface mesh groups 'GROUP_MA_SURF' which indicate the orientation directions.

The algorithm consists in going through all the groups of volume meshes and for each of the volume meshes we check if there is one of its faces in all the surface groups. If this is the case, the connectivity is rewritten so that the element is oriented in the Thus, the user indicates to code_aster that he wishes to model a mechanical phenomenon using the physics of the nite element SB9. This choice of modeling is made through the operator AFFE_MODELE of code_aster. The catalogue affe_modele.py is then enriched by an additional modeling which is that of SB9 : # ATTENTION THIS CONTENT IS TRUNCATED / REDUCED TO THE ...

ESSENTIAL : 

# ########################################################### AFFE_MODELE =OPER(nom=" AFFE_MODELE ",

E.5 Conclusion

The approach proposed here is valid for SB7 except that SB7 does not need reorientation. The initial connectivity immediately gives the direction of the thickness. Les structures à faibles ou moyennes épaisseurs sont naturellement présentes dans la plupart des installations de production d'énergie : bâtiment réacteur, tuyauteries sous pression, réservoirs métalliques ou bâches, cuve de réacteur, liners métalliques des enceintes de con nement pour ne citer que ceux-là. Un besoin actuellement exprimé par les unités d'ingénierie d'EDF est la modélisation des phénomènes de cloquage de liners métalliques des bâtiments réacteur. Leur modélisation nécessite la prise en compte d'un phénomène de contact-frottement engendrant du pincement sur la coque, de la plasticité sous l'e et de cloquage et de la non linéarité géométrique. Pour modéliser le comportement thermomécanique d'une structure pareille, les éléments nis de plaques et coques actuellement disponible ne semblent pas être à la hauteur. Le premier verrou attribuable à ces éléments est l'hypothèse des contraintes planes qui empêche la prise en compte de certaines lois de comportement nativement tridimensionnelles. En deuxième lieu, du fait de leur formulation avec des degrés de liberté de rotations ces éléments n'o rent pas une facilité d'utilisation lorsqu'il s'agit de résoudre des problèmes prenant en compte les e ets non-linéaires telles que les grande transformations géométriques, le contact-frottement, le ambement et les pressions suiveuses. Une alternative serait d'utiliser des éléments volumiques standards. Cependant le coût de calcul prohibitif des ces derniers est di cilement accessible pour de nombreuses applications industrielles. Le but de ces travaux est de proposer une solution à cette problématique. Nous avons proposé une formulation élément ni de type solide-coque enrichie en pincement et capable de reproduire les comportements des structures minces avec une précision satisfaisante. Ce nouvel éléments ni fonctionnent avec tout type de loi de comportement tridimensionnelle sans restriction sur les champs de contraintes. 
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  TD thus seeks to model structures of the metal sheet type with Introduction (a) Nuclear power plant (b) O shore wind turbines

Figure 1 :Figure 2 :

 12 Figure 1: Example of power generation facilities.

Figure 1 . 1 :

 11 Figure 1.1: Initial and nal con gurations of a transformation

  δE and increment ∆E of the Green-Lagrange strain at the element level are interpolated and written in Voigt form as follows δE = BδU and ∆E = B∆U (1.28)

Figure 1 . 2 : 2 .

 122 Figure 1.2: plate theory kinematic

Figure 1 . 3 :

 13 Figure 1.3: Ahmad degenerated shell nite element

Figure 1 . 4 :

 14 Figure 1.4: Simple Bending of a plate with 3D standard nite elements

  3 z + a 4 xy + a 5 yz + a 6 xz + a 7 xyz v = b 0 + b 1 x + b 2 y + b 3 z + b 4 xy + b 5 yz + b 6 xz + b 7 xyz w = c 0 + c 1 x + c 2 y + c 3 z + c 4 xy + c 5 yz + c 6 xz + c 7 xyz (1.38)
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 11516 Figure 1.5: Hexahedral solid element

1 .

 1 Figure 1.7: Curved beam

Figure 1 . 8 :

 18 Figure 1.8: Trapezoidal element
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 1 Background on the modeling of shell like structures Where D () is the Gateaux derivative operator, see Simo and Hughes [SIM 98]. To alleviate the notation, the right subscript "k" designating the iterative index is omitted. To nd (∆u, ∆E eas ) we let the right hand side of equation (1.23) be nil, which gives -δπ e intδπ e ext = ∂δπ e ∂ (U e , α e ) | (U,α e ) • (∆U e , ∆α e ) (1.81)

1 .

 1 Background on the modeling of shell like structures [PAR 86]. Initially the ANS method was a simple engineering intuition without a solid mathematical basis to support it. Formulated in the 1980s, the ANS method was quickly adopted by the research community: Hughes et Tezduyar [HUG 81b], Bathe et Dvorkin [DVO 84], Wempner et al [WEM 82], Hauptmann et al [HAU 98] to name just a few. A few years later, in two separate publications, Militello [MIL 90] provides a mathematical justi cation of the ANS technique based also on the three-eld mixed formulation of Hu-Washizu. ANS elements are still widely used because of their simplicity but also because of their e ectiveness in eliminating transverse shear locking.
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 21 Figure 2.1: Location of the Gauss-Lobatto integration points for the SB9 element

Figure 2 . 3 :

 23 Figure 2.3: Positions of ANS tying points

  77) u 9 ζ being the one and only relative displacement of the ninth node, in through the thickness direction g 3 as proposed by ahmad [AHM 70], u H ζ the normal displacement of the 2. Nine and seven nodes solid-shell elements eight node element considered alone. A new column is then added to the covariant matrix BH making it a 6 by 25 matrix BB = BH B9 (2.78) with B9 = [0 0 -2ζ 0 0 0] T
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 24 Figure 2.4: Topology of the SB7 solid-shell element

Figure 2 . 5 :

 25 Figure 2.5: Description of prismatic solid-shell element
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 26 Figure 2.6: Normal vectors and tangential vectors for each triangular side

2 .Figure 2 . 7 :

 227 Figure 2.7: Normal vectors and tangential vectors for each triangular side

Figure 2 . 8 :

 28 Figure 2.8: Geometry of C 0 triangular element
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 29 Figure 2.9: De nition of the two covariant basis

  .160) u 7 ζ being the one and only relative displacement of the seventh node, in through the thickness direction g 3 , u H ζ the normal displacement of the six nodes element considered alone. A new column is then added to the deformation-displacement standard matrix B H making it a 6 by 19 matrix B B = B H B 7

Figure 2 .

 2 Figure 2.10: projected view of the SB9 under pressure
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 41 Preprocessing of the logarithmic strain space . . . . . . . . . . . .
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 42 Constitutive model in the logarithmic strain space . . . . . . . . .
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 3131 Figure 3.1: Patch test geometry

  .

2 .

 2 Figure 3.3 gives the evolution of results with the increasing distortion of the SB9 compared with the RESS element [SOU 05], the MITC4 element [DVO 95a] and the Q1ST element [SCH 09].
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 3233 Figure 3.2: Clamped square plate with concentrated load
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 38 Figure 3.8: The SB7 meshes used for this simulation
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 39310 Figure 3.9: The SB7 meshes used for this simulation

Figure 3 . 11 :

 311 Figure 3.11: Mesh form used for this simulation
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 31292 Figure 3.12: Evolution of the cantilever beam's free-edge displacement
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 3 Figure 3.13: Pinched hemisphere with hole

Figure 3 . 14 :

 314 Figure 3.14: Evolution of displacement of hemisphere

Figure 3 .

 3 Figure 3.16: Evolution of displacement of stretched cylinder

Figure 3 . 15 :

 315 Figure 3.15: Stretched cylinder with free edge

Figure 3 .Figure 3 . 18 :

 3318 Figure 3.17: Pinched cylindrical shell mounted over rigid diaphragms

  space. The other equations de ne internal forces F := {T p , B, β} dual to the above introduced internal variables. It can be shown that the internal force T p that derives the Plastic studies plastic strain E p is identical to the stress T. The reduced dissipation inequality is then rewritten like D := T : Ėp + B : Ȧ + β α 0 (3.15)

4 . 1 .

 41 The combination of equations3.7 and 3.9 gives P = T : P and C ep = P T : E ep : P + T : L (3.22) Here, the fourth-order nominal elastic-plastic tangent moduli C ep govern the sensitivity of the nominal stresses Ṗ = C ep : Ḟ (3.23) with respect to the rate of deformation. The symmetric Lagrangian stresses S := F -1 P and their associated elastic-plastic tangent moduli C ep L are obtained analogously to the above derivation of the nominal tensors. We get the formulations S = T : P L and C ep L = P T L : E ep : P L + T : L L (3.24)

  . The problem has been treated by many authors [BET 99, EBE 99, FON 05, HAU 01, REE 07] among others. The geometric parameters of the plate are represented by the side length L = 508mm and the thickness t = 2.54. Thanks to symmetry only one quarter of the plate is represented, Figure3.19-b being obtained by re exion. As boundary conditions, the outer lower side edge of the plate is xed in the vertical direction (u 3 = 0), hence the rotation around these axes is possible. A uniform pressure p = λp 0 with p = 0.01N/mm 2 is applied. The maximum of the load factor is λ max = 40. The material is taken ideally elastic-plastic with E = 6.9 × 10 4 N/mm 2 , ν = 0.3 and the yield stress σ y = 248N/mm 2 . Figure3.20 gives the evolution of the normal displacement of the plate center compared to the results given in [REE 07].
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 319320 Figure 3.19: Simply supported plate : geometric description

3 .

 3 Numerical validations (a) Index of plasti cation (b) Plastic deformation

Figure 3

 3 Figure 3.21: Plastic variables

Figure 3 .

 3 Figure 3.22: Stress Magnitude

  .a and3.24.b show a convergence analysis as the mesh is re ned, where the vertical displacement of point C has been plotted vs. the number of divisions per side. The results have been compared with the reference Flores [MAT 18], and other results presented in the same article, where the results that we have obtained present a very good convergence in comparison.
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 46 Stamping of a sheet by a cylindrical punch (Doc aster)This test represents a calculation of the drawing of a square sheet metal by a rigid cylindrical punch in the presence of large plastic deformations. This test is useful in the simulation of sheet metal forming. The sheet metal is modelled in SB9 elements . The punch and die are rigid elements. The contact between the di erent elements is modelled by a continuous formulation. The side length of the sheet is L = 160mm and thickness e = 2mm. the die is h = 35mm deep with a diameter of D = 100mm. The geometric details of the tools are visible in the Figure3.25. The elastic parameters are the Young modulus E = 200000M pa and the Poisson ratio ν = 0.3 and the hardening law is plotted in gure 3.26. To stamp the sheet, the punch is imposed with a vertical displacement
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 3243 Figure 3.24: Evolution of the cantilever beam's free-edge displacement
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  Figure 3.27: Stamping of a sheet by a cylindrical punch, deformation state

Figure 3 . 28 :Figure 3

 3283 Figure 3.28: Modes propres d'un anneau cylindrique épais
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 330 Figure 3.30: Vibrations libres d'une aube de compression

Figure 3 . 32 :

 332 Figure 3.32: Free vibration of a corrugated metal sheet

Figure 3 . 34 :

 334 Figure 3.34: Free thin circular ring

  Figure 3.36 gives the displacement of the point P function of the time for the SB9 and the HEXA27. The SB9 element gives the sames results as the HEXA27 element.
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 335 Figure 3.35: Vibration of a plate in transitory state

Figure 3 . 36 :

 336 Figure 3.36: Evolution of displacement of the Point P
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  Figure 3.37: Geometry of the cylinder
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 338339 Figure 3.38: Buckling modes of a free cylinder under external pressure
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 3 Figure 3.40: Isotropic hardening diagram
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 3 Figure 3.41: The di erent modelizations
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 3 Figure 3.42: Displacements
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 3 Figure 3.43: Stress SXX
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 3 Figure 3.44: Stress SXY
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 3 Figure 3.45: Plastic deformations

Figure B. 1 :

 1 Figure B.1: SB9 nite element under pressure

Figure B. 2 :

 2 Figure B.2: 2 superposed SB9 nite element under pressure

Figure B. 3 :

 3 Figure B.3: Shear pro le

  C.5) f (z) is the transverse shear correction function or Reissner function.

Figure C. 1 :

 1 Figure C.1: Allure des déformations.

  M 12 : bending forces or moments (en N • m/m) T 1 , T 2 : resultant shear forces or shearing forces (en N/m)

B

  m is the discretized gradient operator for the membrane part.

Figure C. 2 :

 2 Figure C.2: Quadrangular and triangular plate nite elements

Figure C. 3 :

 3 Figure C.3: Enriched quadrangular shell elements

Figure D. 1 :

 1 Figure D.1: Reference geometry of the element and integration points

2 , 3 (

 23 D.13) Provided with the three Hallquist vectors and the orthogonality relationships, the constants a ji et c αi are calculated by multiplying equation (D.11) by b T i and h T α respectively.

20 )J

 20 2×2 being the Jacobian matrix evaluated at the point P i , considering only the in-plane terms (ζ = 0) and B ⊥ (P i ) representing the fth and sixth line of the deformation gradient matrix Eq:(D.20) corresponding to the transverse shear terms. U e is the element displacement vector. It is then possible to write the interpolated transverse shear strain in any point of the mid-plane. (ζ = 0):

  0 la matrice des e ets de membranes et B b 0 celle des e ets de exion:

Figure D. 2 :

 2 Figure D.2: Local frame
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 133 Stabilization of modes h 1 and h 2

Figure D. 3 :

 3 Figure D.3: Reference geometry of the element and integration points

Figure D. 4 :

 4 Figure D.4: Bending plate: thickness=0.1,HEXA20

•

  elraga.F90: De nition of weights and coordinates of Gaussian points • elrfvf.F90: De nition of shape functions • elrfdf.F90: De ning Derivatives of Shape Functions • elrfd2.F90: De nition of the second derivatives of shape functions • nuelrf.F90: Gives the number of the jni00i routine associated with a reference element.

1Figure E. 1 :Figure E. 2 :MeshFigure E. 3 :

 123 Figure E.1: Cube maillé avec 8 éléments HEXA8

Figure E. 4 :

 4 Figure E.4: The two groups of meshes necessary for the reorientation of connectivity

'

  op=18, sd_prod = modele_sdaster , fr=tr("..."),reentrant = ' n ' , regles =( AU_MOINS_UN ( ' AFFE ' , ' AFFE_SOUS_STRUC ' ) ,), MAILLAGE ... =SIMP( statut = ' o ' ,typ= maillage_sdaster ), INFO ... =SIMP( statut = ' f ' ,typ= ' I ' ,defaut =1, into =(1 ,2) ), # AFFE =FACT( statut = ' f ' ,max= ' * * ' , regles =( UN_PARMI ( ' TOUT ' , ' GROUP_MA ' , ' MAILLE ' ,)), TOUT ... =SIMP( statut = ' f ' ,typ= ' TXM ' ,into =("OUI" ,) ), GROUP_MA ... =SIMP( statut = ' f ' ,typ=grma , validators = NoRepeat (),max= ' * * ' ), MAILLE =SIMP( statut = ' c ' ,typ=ma ... ,validators = NoRepeat (),max= ' * * ' ), PHENOMENE =SIMP( statut = ' o ' ,typ= ' TXM ' , ... into =(" MECANIQUE "," THERMIQUE "," ACOUSTIQUE ") ), b_mecanique =BLOC( condition = ... """ equal_to (" PHENOMENE ", ' MECANIQUE ' ) """ , ... fr=tr(" modelisations mecaniques "), MODELISATION ... =SIMP( statut = ' o ' ,typ= ' TXM ' ,validators = NoRepeat (),max =10, into =( "SB9", ) Then in the catalogue phenomenons_modelisations.py one de nes more precisely what this new choice of modeling contains by clearly indicating the meshes involved in this modeling, the physical phenomenon at hand (mechanical), the geometrical and topological dimensions of the elements, the main elements and the edge elements, the attributes etc. The following code summarizes this information: class MECA_SB9 ( Element ): meshType = MT. HEXA9 nodes = ( SetOfNodes ( ' EN1 ' , (1 ,2 ,3 ,4 ,5 ,6 ,7 ,8)), SetOfNodes ( ' EN2 ' , (9RIGI=SHB5 ' , ' MASS=SHB5 ' , ' FPG1=FPG1 ' ,), ... mater =( ' RIGI ' , ' FPG1 ' ,) ,), ElrefeLoc (MT.QU4 , gauss = ( ' RIGI=FPG4 ' , ... ' MASS=FPG4 ' ,) ,), ) calculs = ( # Options elemntaires ) # EXAMPLE OF A COMMAND FILE CONTAINING TESTED ELEMENTARY ... CALCULATIONS # IN A MODELIZATION WITH THE ELEMENT SB9 # DEBUT (); #Mesh : Reading a hexa8 mesh contained in a file ' MED ' MESH0= LIRE_MAILLAGE ( FORMAT = ' MED ' ,); # modification of the mesh: orientation of the connectivity MESH0= MODI_MAILLAGE (reuse=MESH0 , MAILLAGE =MESH0 , ORIE_SB9 =_F( GROUP_MA_VOLU = ' cube ' , GROUP_MA_SURF = ' face_1 ' ,), ); # creation of the HEXA9 mesh MESH= CREA_MAILLAGE ( MAILLAGE =MESH0 ,INFO =2, HEXA8_9 =_F(TOUT= ' OUI ' ,) ,); # MATERIAL : Definition and allocation of material MAT= DEFI_MATERIAU (ELAS=_F(E=1, NU =0.3 ,) ,); MATERIAL = AFFE_MATERIAU ( MAILLAGE =MESH , INFO =2 ,) # TEST the creation of a field at the nodes of the SB9 ... element with given values DEPELNO = CREA_CHAMP ( TYPE_CHAM = ' NOEU_DEPL_R ' , OPERATION = ' AFFE ' , MODELE =MODEL , AFFE=_F( NOM_CMP =( ' DX ' , ' DY ' , ' DZ ' ), VALE =(1.0 , 1.0, 10) , TOUT= ' OUI ' ,), INFO =2 ,) # LOAD ASSIGNMENT (clamp-on) IMPO= AFFE_CHAR_MECA ( MODELE =MODEL , DDL_IMPO =(_F( GROUP_MA = ( ' base ' ), LIAISON = ' ENCASTRE ' , ' UN CHARGEMENT ( Pressure ) CHAR= AFFE_CHAR_MECA ( MODELE =MODEL , PRES_REP =(_F( GROUP_MA =( ' face_1 ' ,), ... _F( CHARGE =CHAR),_F( CHARGE =IMPO))) FIN ();
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 42233 h1(I) * J10(1)+g1(I) * J2XI(1) ... h1(I) * J10(2)+g1(I) * J2XI(2) h1(I) * J10(3)+g1(I) * J2XI(3~,J3]=colomnejacobien(XYZ,XAD(AD,:)); DSF = DSHAPE(XAD(AD,:)); AUX33=AUX33+XAD(AD,2) * (DSF(3,I) * J3)/4; end for JM=1:4 [J1,~,J3]=colomnejacobien(XYZ,XJM(JM,:)); DSF = DSHAPE(XJM(JM,:)); aux13=aux13+XJM(JM,2) * (DSF(1,I) * J3+DSF(3,I) * J1)/4; end COL=3 * (I-1)+1:3 * (I-1)+3; BcETA(:,COL)=[ h1(I) * J10(1)+g1(I) * J1ETA(1) ... h1(I) * J10(2)+g1(I) * J1ETA(2) h1(I) * J10(3)+g1(I) * J1ETA() * J20(1)+g2(I) * J1ETA(1) ... h1(I) * J20(2)+g2(I) * J1ETA(2) h1(I) * J20(3)+g2(I) * J1ETA(3) * J2XI(1)+h1(I) * J1ETA(1) ... h1(I) * J2XI(2)+h1(I) * J1ETA(2) h1(I) * J2XI(3)+h1(I) * J1ETA(3J1,~,J3]=colomnejacobien(XYZ,XJM(JM,:)); DSF = DSHAPE(XJM(JM,:)); AUX13=AUX13+XJM(JM,2) * XJM(JM,3) * (DSF(1,I) * J3+DSF(3,I) * J1)/4) * J20+h2(I) * J2XI+h1(I) * J2ZETA+g2(I) * J2XIZETA; AUX13=h4(I) * J10+h3(I) * J2XI+h1(I) * J1ZETA+g1(I) * J2XIZETA; J2,J3]=colomnejacobien(XYZ,XEH(EH,:)); DSF = DSHAPE(XEH(EH,:)); AUX23=AUX23+XEH(EH,1) * XEH(EH,3) * (DSF(2,I) * J3+DSF(3,I) * J2)DSP,XYZ,XI) % XYZ == CoordonnÃl'es initiales % DSP == DÃl'placement total [Ec0,Eczeta,Eczz,~,~,~,~]=deformatEc(DSP,XYZ); [T0,~,~,TZETA]=matriceTdecomp(XYZ); %% DEFORMATION DEPENDANT DE ZETA ET CONSTANTE E0=T0 * Ec0+XI(3) * (T0 * Eczeta+TZETA * Ec0)+XI(3) * XI(3) * (T0 * Eczz+TZETA * Eczeta); end ¥ function ... [Ec0,Eczeta,Eczz,EcXI,EcETA,EcXIETA,EcETAZETA,EcXIZETA]=deformatEc(DSP,XYZ) % iCI LES COORDONNÃL'ES SONT LES COORDONNÃL'ES INITIALES % ALERTE ECRITURE VERIFIEE % [J10,J1ETA,J1ZETA,J1ETAZETA,... J20,J2XI,J2ZETA,J2XIZETA,... J30,J3ETA,J3XI,J3XIETA]=jacobienDecompose(XYZ); [D10,D1ETA,D1ZETA,D1ETAZETA,... =2 * J0(2,1) * A(2,1) ; TXI(1,3)=2 * J0(3,1) * A(3,1) ; TXI(1,4)=J0(1,1) * A(2,1)+J0(2,1) * A(1,1); TXI(1,5)=J0(2,1) * A(3,1)+J0(3,1) * A(2,1); TXI(1,6)=J0(1,1) * A(3,1)+J0(3,1) * A(1=2 * J0(2,3) * A(2,3) ; TXI(3,3)=2 * J0(3,3) * A(3,3) ; TXI(3,4)=J0(1,3) * A(2,3)+J0(2,3) * A(1,3); TXI(3,5)=J0(2,3) * A(3,3)+J0(3,3) * A(2,3); TXI(3,6)=J0(1,3) * A(3,3)+J0(3,3) * A(1=2 * (J0(3,2) * A(3,3)+J0(3,3) * A(3,2)); TXI(5,4)=(J0(1,3) * A(2,2)+J0(2,2) * A(1,3))+(J0(1,2) * A(2,3)+J0(2,3) * A(1,2)); TXI(5,5)=(J0(2,3) * A(3,2)+J0(3,2) * A(2,3))+(J0(2,2) * A(3,3)+J0(3,3) * A(2,2)); 208 TXI(5,6)=(J0(1,3) * A(3,2)+J0(3,2) * A(1,3))+(J0(1,2) * A(3,3)+J0(3,3) * A(1,2)); % TXI(6,1)=2 * (J0(1,1) * A(1,3)+J0(1,3) * A(1,1)); TXI(6,2)=2 * (J0(2,1) * A(2,3)+J0(2,3) * A(2,1)); TXI(6,3)=2 * (J0(3,1) * A(3,3)+J0(3,3) * A(3,1)); TXI(6,4)=(J0(1,3) * A(2,1)+J0(2,1) * A(1,3))+(J0(1,1) * A(2,3)+J0(2,3) * A(1,1)); TXI(6,5)=(J0(2,3) * A(3,1)+J0(3,1) * A(2,3))+(J0(2,1) * A(3,3)+J0(3,3) * A(2,1)); TXI(6,6)=(J0(1,3) * A(3,1)+J0(3,1) * A(1,3))+(J0(1,1) * A(3,3)+J0(3,3) * A(1,1)); % TETA(1,1)=2 * J0(1,1) * B(1,1); TETA(1,2)=2 * J0(2,1) * B(2,1); TETA(1,3)=2 * J0(3,1) * B(3,1); TETA(1,4)=J0(1,1) * B(2,1)+J0(2,1) * B(1,1); TETA(1,5)=J0(2,1) * B(3,1)+J0(3,1) * B(2,1); TETA(1,6)=J0(1,1) * B(3,1)+J0(3,1) * B(1,1); % TETA(2,1)=2 * J0(1,2) * B(1=2 * J0(3,3) * B(3,3) ; TETA(3,4)=J0(1,3) * B(2,3)+J0(2,3) * B(1,3); TETA(3,5)=J0(2,3) * B(3,3)+J0(3,3) * B(2,3); TETA(3,6)=J0(1,3) * B(3,3)+J0(3,3) * B(1,3); % TETA(4,1)=2 * (J0(1,1) * B(1,2)+J0(1,2) * B(1,1)); TETA(4,2)=2 * (J0(2,1) * B(2,2)+J0(2,2) * B(2,1)); TETA(4,3)=2 * (J0(3,1) * B(3,2)+J0(3,2) * B(3,1)); TETA(4,4)=(J0(1,2) * B(2,1)+J0(2,1) * B(1,2))+(J0(1,1) * B(2,2)+J0(2,2) * B(1,1)); TETA(4,5)=(J0(2,2) * B(3,1)+J0(3,1) * B(2,2))+(J0(2,1) * B(3,2)+J0(3,2) * B(2,1)); TETA(4,6)=(J0(1,2) * B(3,1)+J0(3,1) * B(1,2))+(J0(1,1) * B(3,2)+J0(3,2) * B(14)=(J0(1,3) * B(2,2)+J0(2,2) * B(1,3))+(J0(1,2) * B(2,3)+J0(2,3) * B(1,2)); TETA(5,5)=(J0(2,3) * B(3,2)+J0(3,2) * B(2,3))+(J0(2,2) * B(3,3)+J0(3,3) * B(2,2)); TETA(5,6)=(J0(1,3) * B(3,2)+J0(3,2) * B(1,3))+(J0(1,2) * B(3,3)+J0(3,3) * B(1,2)); 209 % TETA(6,1)=2 * (J0(1,1) * B(1,3)+J0(1,3) * B(1,1)); TETA(6,2)=2 * (J0(2,1) * B(2,3)+J0(2,3) * B(2,1)); TETA(6,3)=2 * (J0(3,1) * B(3,3)+J0(3,3) * B(3,1)); TETA(6,4)=(J0(1,3) * B(2,1)+J0(2,1) * B(1,3))+(J0(1,1) * B(2,3)+J0(2,3) * B(1,1)); TETA(6,5)=(J0(2,3) * B(3,1)+J0(3,1) * B(2,3))+(J0(2,1) * B(3,3)+J0(3,3) * B(2,1)); TETA(6,6)=(J0(1,3) * B(3,1)+J0(3,1) * B(1,3))+(J0(1,1) * B(3,3)+J0(3,3) * B(1,1)); % TZETA(1,1)=2 * J0(1,1) * C(1,1); TZETA(1,2)=2 * J0(2,1) * C(2,1); TZETA(1,3)=2 * J0(3,1) * C(3,1); TZETA(1,4)=J0(1,1) * C(2,1)+J0(2,1) * C(1,1); TZETA(1,5)=J0(2,1) * C(3,1)+J0(3,1) * C(2,1); TZETA(1,6)=J0(1,1) * C(3,1)+J0(3,1) * C(1,1); % TZETA(2,1)=2 * J0(1,2) * C(1,2); TZETA(2,2)=2 * J0(2,2) * C(25)=J0(2,3) * C(3,3)+J0(3,3) * C(2,3); TZETA(3,6)=J0(1,3) * C(3,3)+J0(3,3) * C(1,3); % TZETA(4,1)=2 * (J0(1,1) * C(1,2)+J0(1,2) * C(1,1)); TZETA(4,2)=2 * (J0(2,1) * C(2,2)+J0(2,2) * C(2,1)); TZETA(4,3)=2 * (J0(3,1) * C(3,2)+J0(3,2) * C(3,1)); TZETA(4,4)=(J0(1,2) * C(2,1)+J0(2,1) * C(1,2))+(J0(1,1) * C(2,2)+J0(2,2) * C(1,1)); TZETA(4,5)=(J0(2,2) * C(3,1)+J0(3,1) * C(2,2))+(J0(2,1) * C(3,2)+J0(3,2) * C(2,1)); TZETA(4,6)=(J0(1,2) * C(3,1)+J0(3,1) * C(1,2))+(J0(1,1) * C(3,2)+J0(3,2) * C(15)=(J0(2,3) * C(3,2)+J0(3,2) * C(2,3))+(J0(2,2) * C(3,3)+J0(3,3) * C(2,2)); TZETA(5,6)=(J0(1,3) * C(3,2)+J0(3,2) * C(1,3))+(J0(1,2) * C(3,3)+J0(3,3) * C(1,2)); % B=-J0 * JETA * J0; C=-J0 * JZETA * J0; %% T0=matriceT(XYZ,[0 0 0]); [TXI,TETA,TZETA]=matricetxi(J0,A,B,C); end ¥ function [EH1,EH2,EH12,EH23,EH13]=deformEcartStab(DSP,XYZ) %[Ec0,Eczeta,Eczz,EcXI,EcETA,EcETAZETA,EcXIZETA]=deformatEc(DSP,XYZ); [Ec0,Eczeta,Eczz,EcXI,EcETA,EcXIETA,EcETAZETA,EcXIZETA]=deformatEc(DSP,XYZ); [T0,TXI,TETA,TZETA]=matriceTdecomp(XYZ); %% DEFORMATIONS DE STABILISATION EH1=T0 * EcXI+TXI * Ec0; EH2=T0 * EcETA+TETA * Ec0; EH23=T0 * EcETAZETA+TETA * Eczeta+TZETA * EcETA; EH13=T0 * EcXIZETA+TXI * Eczeta+TZETA * EcXI; EH12=T0 * EcXIETA+TXI * EcETA+TETA * EcXI; end ¥ function B9=calculB9(XYZ,XI) % Calcul de la composante du neuvieme noeuds [T0,~,~,~]=matriceTdecomp(XYZ); Bc9=[0 0 -2 * XI(3) 0 0 0]'; B9=T0 * Bc9; end ¥ function Kg=rigigeo(S,XYZ,XI) zeta=XI(3); %CoordonnÃl'es initiale en entrÃl'e % Cette matrice Kg est celle sur un points de Gauss [T0,TXI,TETA,TZETA]=matriceTdecomp(XYZ); %function ...

[

  Bc0,BcZETA,BcZZ,BcXI,BcETA,BcETAZETA,BcXIZETA]=matriceBc((XAD(AD,:)); aux033=aux033+DSF(3,I) * DSF(3,J)/4; % DSF = DSHAPE(XEH(AD,:)); aux023=aux023+(DSF(2,I) * DSF(3,J)+DSF(3,I) * DSF(2,J))/4;

  ,3) * (DSF(2,I) * DSF(3,J)+DSF(3,I) * DSF(2,J))/4; % DSF = DSHAPE(XJM(AD,:)); aux013=aux013+(DSF(1,I) * DSF(3,J)+DSF(3,I) * DSF(1,J))/4;

  ,3) * (DSF(1,I) * DSF(3,J)+DSF(3,I) * DSF(1,J))/4; end %mm %aux033 GIJ0=[g1(I) * g1(J); g2(I) * g2(J); aux033; g1(I) * g2(J)+g2(I) * g1() * g1(J)+h3(I) * g2(J)+g2(I) * h3(J)+g1(I) * h2(J) ; GIJZ=[h3(I) * g1(J)+g1(I) * h3(J); h2(I) * g2(J)+g2(I) * h2(* (T0 * GIJZ+TZETA * GIJ0)+zeta * zeta * (T0 * GIJZZ+TZETA * GIJZ); Kg(LIN,COL)=dot(alpha,S) * eye(3); end end end ¥ function [SH1,SH2,SH12,SH23,SH13]=contraintestab(DSP,XYZ,C) % CALCUL DES CONTRAINTES DE STABILISATION % % %[EH1,EH2,EH23,EH13]=deformEcartStab(DSP,XYZ); [EH1,EH2,EH12,EH23,EH13]=deformEcartStab(DSP,XYZ); % On considà ĺre la partie dÃl'viatorique de ces deformations % I=[1 1 1 0 0 0]'; EH1=EH1-(EH1(1)+EH1(2)+EH1(3)) * I/3; EH2=EH2-(EH2(1)+EH2(2)+EH2(3)) * I/3; EH13=EH13-(EH13(1)+EH13(2)+EH13(3)) * I/3; EH23=EH23-(EH23(1)+EH23(2)+EH23(3)) * I/3; EH12=EH12-(EH12(1)+EH12(2)+EH12(3)) * I/3Kmstab=rigistab(BXIdev,BETAdev,BXIETAdev,BETAZETAdev,BXIZETAdev,C) Kmstab=8 * (BXIdev' * C * BXIdev+BETAdev' * C * BETAdev)/3+... 8 * (BETAZETAdev' * C * BETAZETAdev+... BXIETAdev' * C * BXIETAdev+... BXIZETAdev' * C * BXIZETAdev)/9.0; end ¥ function Kgstab=rigigeostab1(XYZ,SH1,SH2,SH23,SH13,SH12) %CoordonnÃl'es initiale en entrÃl'e [T0,TXI,TETA,TZETA]=matriceTdecomp(XYZ); %function ... [Bc0,BcZETA,BcZZ,BcXI,BcETA,BcETAZETA,BcXIZETA]=matriceBc((XAD(AD,:)); AUX33=AUX33+XAD(AD,2) * (DSF(3,I) * DSF(3,J))/4; end for JM=1:4 DSF = DSHAPE(XJM(JM,:)); aux13=aux13+XJM(JM,2) * (DSF(1,I) * DSF(3,J)+DSF(3,I) * DSF(1,J))/4; end GcETA=[ h1(I) * g1(J)+g1(I) * h1((XAD(AD,:)); AUX33=AUX33+XAD(AD,2) * XAD(AD,1) * (DSF(3,I) * DSF(3,J))) * g1(J)+h3(I) * h1(J)+h1(I) * h3(J)+g1(I) * h4(J); AUX12=h4(I) * g2(J)+h2(I) * h1(J)+h1(I) * h2(J)+g2(I) * h4((XJM(JM,:));

for p=1: 3 Bbw(p, 1 )

 31 =0.5 * Bw(p,1) * zX; Bbw(p,2)=0.5 * Bw(p,1) * zY; Bbw(p,3)=0.5 * Bw(p,1) * zZ; Bbw(p,10)=Bbw(p,1); Bbw(p,11)=Bbw(p,2); Bbw(p,12)=Bbw(p,3); Bbw(p,4)=0.5 * Bw(p,2) * zX; Bbw(p,5)=0.5 * Bw(p,2) * zY; Bbw(p,6)=0.5 * Bw(p,2) * zZ; Bbw(p,13)=Bbw(p,4); Bbw(p,14)=Bbw(p,5); Bbw(p,15)=Bbw(p,6); Bbw(p,7)=0.5 * Bw(p,3) * zX; Bbw(p,8)=0.5 * Bw(p,3) * zY; Bbw(p,9)=0.5 * Bw(p,3) * zZ; Bbw(p,16)=Bbw(p,7); Bbw(p,17)=Bbw(p,8); Bbw(p,18)=Bbw(p,91)=(-xi-xj-xk+xl+xm+xn)/6.0; matJ(3,2)=(-yi-yj-yk+yl+ym+yn)/6.0; matJ(3,3)=(-zi-zj-zk+zl+zm+zn)/6.0; %%determinant de J detJ= (matJ(2,2) * matJ(3,3)-matJ(3,2) * matJ(2,3)) * matJ(1,1); detJ=detJ-(matJ(1,2) * matJ(3,3)-matJ(3,2) * matJ(1,3)) * matJ(2,1); detJ=detJ+(matJ(1,2) * matJ(2,3)-matJ(2,2) * matJ(1,3)) * matJ(311)=bx(4) * xY; Bm(2,11)=by(4) * yY; Bm(3,11)=bx(4) * yY+by(4) * xY; Bm(1,12)=bx(4) * xZ; Bm(2,12)=by(4) * yZ; Bm(3,12)=bx(4) * yZ+by(4) * xZ; Bm(1,13)=bx(5) * xX; Bm(2,13)=by(5) * yX; Bm(3,13)=bx(5) * yX+by(5) * xX; Bm(1,14)=bx(5) * xY; Bm(2,14)=by(5) * yY; Bm(3,14)=bx(5) * yY+by(5) * xY; Bm(1,15)=bx(5) * xZ; Bm(2,15)=by(5) * yZ; Bm(3,15)=bx(5) * yZ+by(5) * xZ; Bm(1,16)=bx(6) * xX; Bm(2,16)=by(6) * yX; Bm(3,16)=bx(6) * yX+by(6) * xX; Bm(1,17)=bx(6) * xY; Bm(2,17)=by(6) * yY; Bm(3,17)=bx(6) * yY+by(6) * xY; Bm(1,18)=bx(6) * xZ; Bm(2,18)=by(6) * yZ; Bm(3,18)=bx(6) * yZ+by(6) * xZ; Bm0=Bm; %% parail pour le pincement %% [Bp0]=MatriceBp0(zX,zY,zZ,bz); Bp0(1 )=bz(1) * zX; Bp0(2 )=bz(1) * zY; Bp0(3 )=bz(1) * zZ; Bp0(4 )=bz(2) * zX; Bp0(5 )=bz(2) * zY; Bp0(6 )=bz(2) * zZ; =bz(5) * zZ; Bp0(16)=bz(6) * zX; Bp0(17)=bz(6) * zY; Bp0(18)=bz(6) * zZ; %% [Bc0,Bc1,Bc2]=MatriceBc0(...) % h1=sqrt((xl-xi) * (xl-xi)+(yl-yi) * (yl-yi)+(zl-zi) * (zl-zi)); h2=sqrt((xm-xj) * (xm-xj)+(ym-yj) * (ym-yj)+(zm-zj) * (zm-zj)); h3=sqrt((xn-xk) * (xn-xk)+(yn-yk) * (yn-yk)+(zn-zk) * (zn-zk)g305,g306,V1,V2,V3]=vecteurs _ g30(xi,yi,zi,xj,yj,zj,xk,yk,zk,... xl,yl,zl,xm,ym,zm,xn,yn,zn)=-0.25 * h2 * dot(V2(2,:),g10); C112(5)=+0.25 * h2 * dot(V2(1,:),g10); C212(1)=-1.0 * g305(1); C212(2)=-1.0 * g305(2); p-1,3 * p-1)=0.5 * yY; T(3 * p-1,3 * p)=0.5 * yZ; T(3 * p,3 * p-2)=0.5 * zX; i+3)=-V2(1,i)/h2; Tm(3,i+12)=-Tm(3,i+3); Tm(4,i+12)=-Tm(4,i+3); Tm(5,i+6)=V3(2,i)/h3; Tm(6,i+6)=-V3(1,i)/h3; Tm(5,i+15)=-Tm(5,i+6); Tm(6,i+15)=-Tm(6,i+6); end for i=1:2 Tr(i,1)=Tm(i,1) * xX+Tm(i,2) * yX+Tm(i,3) * zX; Tr(i,2)=Tm(i,1) * xY+Tm(i,2) * yY+Tm(i,3) * zY; Tr(i,3)=Tm(i,1) * xZ+Tm(i,2) * yZ+Tm(i,3) * zZ; Tr(i,10)=-Tr(i,1); Tr(i,11)=-Tr(i,2); Tr(i,12)=-Tr(i,3)j)=(matH(i,j)-hX * Bx(i)-hY * By(i)-hZ * Bz(i))/2.0; end end %% %%matrice gradient pour la stabilisation stabilisation Bsz=zeros(2,18); for j=1:6 %%Bsx pour q1x,q1y; Bsy pour q1y,q2y; Bsz pour q1z,q2z k=3 * (j-1); Bsz(1,k+1)=zX * Vgamma(j,1); Bsz(1,k+2)=zY * Vgamma(j,1); Bsz(1,k+3)=zZ * Vgamma(j,1); Bsz(2,k+1)=zX * Vgamma(j,2); Bsz(2,k+2)=zY * Vgamma(j,2); Bsz(2,k+3)=zZ * Vgamma(j,2); end Bsz=Bsz * invJo(3,3); end ¥ %% %%appel des deux procdures prcdentes Bt _ Bw function [Bt,Bw]=matricesBtBw(x1,y1,x2,y2,x3,y3,aire)
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 4 cotÃl's %%Bt du l'Ãl'lÃl'ment DKT6 function Bt=matriceBt(x21,y21,x32,y32,x13,y13,... aire,c4,s4,c5,s5,c6,s6) Bt(1,1)=(y21) * s4/aire; Bt(1,2)=(y32) * s5/aire; Bt(1,3)=(y13) * s6/aire; Bt(2,1)=(x21) * c4/aire; Bt(2,2)=(x32) * c5/aire; Bt(2,3)=(x13) * c6/aire; Bt(3,1)=((-y21) * c4+(-x21) * s4)/aire; Bt(3,2)=((-y32) * c5+(-x32) * s5)/aire; Bt(3,3)=((-y13) * c6+(-x13) * s6)/aire; xXf,xYf,xZf,yXf,yYf,yZf,zXf,zYf,zZf... xif,yif,xjf,yjf,xlf,ylf,xmf,ymf,dAf... ]=RepereFaceMilieuxij... (Xi,Yi,Zi,Xj,Yj,Zj,Xm,Ym,Zm,Xl,Yl,Zl); Pf=(xlf-xjf)/dAf/2; T(1,1)=Pf * zXf; T(1,2)=Pf * zYf; T(1,3)=Pf * zZf; T(1,13)=-Pf * zXf; T(1,14)=-Pf * zYf; T(1,15)=-Pf * zZf; Qf=(xif-xmf)/dAf/2; xYf,xZf,yXf,yYf,yZf,zXf,zYf,zZf... xjf,yjf,xkf,ykf,xmf,ymf,xnf,ynf,dAf... ]=RepereFaceMilieuxij... (Xj,Yj,Zj,Xk,Yk,Zk,Xn,Yn,Zn,Xm,Ym,Zm); Pf=(xmf-xkf)/dAf/2; =Qf * zYf; T(2,9)=Qf * zZf; T(2,13)=-Qf * zXf; 237 FOLIO ADMINISTRATIF..... . . . . THÈSE . . . . . DE . . . . . . . . . . . . . . . . . . . . L'UNIVERSITÉ . . . . . DE ........ LYON ............ OPÉRÉE ..... AU ....... SEIN ..... DE .......... L'INSA ..... DE ........ LYON NOM: DIA DATE de SOUTENANCE: 9 Juin 2020 Prénoms: MOUHAMADOU TITRE: Éléments nis solide-coques hexaédrique et prismatique pour la modélisation non linéaire des structures minces et moyennement épaisses NATURE: Doctorat Numéro d'ordre: 2020-LYSE-I098 École doctorale: MEGA Spécialité: Mécanique -Génie Mécanique RÉSUMÉ:
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The rise of solid-shell elements

  See for example the work of Massud et al [MAS 00], Alves de Souza [SOU 03, SOU 05, SOU 06], Cardoso et al [CAR 05, CAR 08], Sze and Yao [SZE 00], Klinkel et al [KLI 97]. It's worth noting that the reduced integration or selective integration technique are not cost-free. Indeed appropriate hourglass stabilization techniques are necessary to prevent the spurious deformations modes that may arise and ensure a correct rank of the element sti ness matrix. It's well known that the spurious patterns or hourglass modes correspond to the kernel vectors of the sti ness matrix, aside from the rigid body modes. Di erent techniques have been proposed to deal with the rank de ciency due to selective or reduced integration technique. One can see the remarkable work of Belytschko and co-authors [BEL 83, BEL 84, BEL 93], Reese and co-author [REE 00, REE 07] as well as Combescure and co-authors [ABE 09, LEG 03].

  systems, it is called the tangent sti ness. On the other hand, the second integrand does not exist in linear systems. It only appears in geometric nonlinear problems. It's the initial sti ness or geometric sti ness. Let's consider that the current load step is t n and the current iteration counter be k. Assuming that the applied loads are independent of displacement, the linearized incremental equation (1.16) is obtained as follows a

The rst integrand of equation

(1.23

) depends on the stress-strain relation. Since it is similar to the sti ness term in linear * ( n u k

Table 1 . 1 :

 11 Geometrical and material characteristics of the bent plate

	. It is applicable to arbitrarily large deformations shell problems
	[BOI 94] and yield excellent results for many structural problems. Although Ahmad's
	formulation is innovative, in terms of plate modeling, the degenerated nite elements
	can su er from severe locking problems. Several authors have proposed solutions to al-
	leviate these locking problems. These include the work of Brendel and Ramm [BRE 80],
	Parisch [PAR 95], Hughes [HUG 81a], Bathe and Dvorkin [DVO 84, DVO 95a], Bischo
	[BIS 97] among others. The main limitation of the two types of classical shell nite
	elements discussed above is the plane stress hypothesis. In addition to being in contra-
	diction with the zero normal strain, it requires the modi cation of the constitutive law.
	For some constitutive laws, this is numerically feasible but for others, notably certain
	constitutive laws of natively three-dimensional concrete, plane stresses hypothesises
	are none-sense. Moreover, these attened nite elements do not, to our knowledge,
	handle structures with variable thickness and their connection with other structures of
	thicker types is hardly manageable. As a result of all these di culties, studies are in-
	creasingly turning to 3D type nite elements which are generally more robust, operate
	with three-dimensional tensors and handle several types of nonlinearities encountered
	in mechanics.

Table 1 . 2 :

 12 Displacement of the eight-nodes standard element

	Mesh	Number of elements CPU time results	Ref
	5 × 5 × 1	25	0.05s	9.5e-7m 1.90e-3m
	15 × 15 × 10	2250	0.65s	8.2e-6m 1.90e-3m
	50 × 50 × 30	75 000	65.54s	6.3e-5m 1.90e-3m

  ..U NbrNode ,V NbrNode ,W NbrNode ] and α e = [α 1 , ...α NbrInmode ] are respectively nodal displacement vector and incompatible mode vector element, with NbrNode the number of nodes per element, NbrInmode the number of incompatible modes per element. The element sti ness matrix is then written as follows

  Components of the geometrical part k e geo is de ned as With no still being the number of nodes of the nite element considered. H IJ (I, J = 1, 2, ..., no) is de ned for a node combination I and J as H IJ = H IJ I 3 ; where I 3 is the unit matrix of dimension 3 by 3 and

			H 11 H 11 . . . H 1no		
	k e geo =	   	H 21 H 21 . . . H 2no . . . . . . . . . . . .	   	(1.88)
		H no1 H no1 . . . H nono		

  One possible way to obtain a polynomial form of the inverse Jacobian matrix is to follow Legay and Combescure [LEG 03] and Reese [REE 07] or many other authors, who evaluate the Jacobian matrix only in the center of the element. Doing so the element is represented by means of its equivalent parallelepiped. In this case the Jacobian as well as the inverse Jacobian matrix are constant within the element. However, this assumption is only true for very ne meshes.

		g 3
	G 3	
		G 2	g 2
		G 1	g 1
	e 3	
	e 1	e 2
	Figure 2.2: Con guration of the SB9 element
	work with a polynomial form of the inverse Jacobian matrix, on the other hand arbitrary
	element shapes that deviate from the parallelepiped shape are more realistically taken
	into account.	
	From equation (2.16	

For this reason, we approximate the inverse Jacobian by means of a Taylor expansion with respect to the center of the element, following the work of Schwatze [SCH 09]. This formulation bene ts from that in two important manners: on one hand we are able to

  Êξ + η Êη + ξη Êξη + ξζ Êξζ + ηζ Êηζ This kind of interpolation ensures a systematic respect of the statical condition of shear stress in the element upper and lower faces. However in non-linear problem involving material non linearity and large deformation, that interpolation becomes obsolete since it does not guarantee the satisfaction of statical condition in the shell faces. Beside, such interpolation does not allow the element to naturally handle frictional contact problems since the shear deformation is assumed to be nil in the element upper and lower faces. Also it has been shown that such interpolation lead to a ill conditioned rigidity matrix. To avoid those inconveniences we applied the ANS technique following the work of Cardoso [CAR 08], Alves de Souza [SOU 05, SOU 06], Schwarze [REE 07].

							37)
	with						
		Êri = Ê0 + ζ Êζ			
	Êstab = ξ (2.38)
	By considering equations (2.8) et (2.16), BI can also be decomposed into a reduced
	integrated part Bri						
	I	= ξ	Bξ I + η	Bη I + ξη	Bξη I + ηζ	Bηζ I + ξζ	Bξζ

I and a stabilization part Bstab I as follows BI = Bri I + Bstab I (2.39) with Bri I = B0 I + ζ Bζ I Bstab I (2.40) The components of equations (2.38) and (2.40) are the basic building blocks of all solidshell elements and are detailed in appendix A. 2.3.4 Assumed natural strain 2.3.4.1 Assumed shear strain One way to reduce shear locking is to use the ANS concept following the work of Bathe and Dvorkin [BAT 85, DVO 95b] (see chapter 1). The transverse shear strain is evaluated in the four-middle edges points of the mid-surface of the solid-shell. To interpolate through the volume certain authors multiplied the mid-plane shear strain with the well known Reissner function [SAN 11, BAS 12].

  Howeverfor highly initially distorted meshes that assumption shows lack of accuracy [SCH 09]. In order to take into consideration the realistic shape of the element and stabilize properly the sti ness matrix, a polynomial decomposition of the inverse Jacobian matrix is derived as explicit in the subsection 2.3.2. Using equation (2.29) the matrix Q of equation (2.34) is decomposed into constant and linear terms as follows

	The reader is referred to
	the important work in this subject by Liu, Belytschko and co-authors [LIU 98, BEL 83],
	Cardoso and co-authors [CAR 08, CAR 05], Alves de Souza [SOU 05, SOU 06], schwarze
	[SCH 09]. In some solid-shell formulation, the Jacobian matrix and it's inverse are only

evaluated at the element center, see for example [BAS 12, ABE 02, ABE 09]. Such approximation assumes that the real element can be represented by it's equivalent parallelepiped. And this is quite accurate for thin and not very distorted meshes.

  s 1 e y (2.109) t 1 = -s 1 e x + c 1 e y = c 3 e x + s 3 e y (2.115) t 3 = -s 3 e x + c 3 e y (2.116)

					(2.110)
	c 1 =	y 32 L 1	and s 1 = -	L 1 x 32	(2.111)
	n 2 = c 2 e x + s 2 e y		(2.112)
	t 2 = -s 2 e x + c 2 e y		(2.113)
	c 2 =	y 13 L 2	and s 2 = -	L 2 x 13	(2.114)
	n 3				
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Table 3 .

 3 

		Q5TTS S4R SHB8PS	SB9	SB7	EAS only
	Uc	0.9874 0.995	0.995	0.995	0.995	0.995
	top					
	σ	-0.01172 0.0	0.0	-0.01172 -0.01172 -0.01757
	bottom					
		-0.02343 0.0	0.0	-0.02343 -0.02343 -0.01757
		Table 3.2: Center displacement and normal stress
		σ at Gauss points EAS-only	SB9	
		1	-0.00585 -0.000000	
		2	-0.00585 -0.002021	
		3	-0.00585 -0.005857	
		4	-0.00585 -0.009693	
		5	-0.00585 -0.011717	

1: Center displacement and normal stress Figure 3.4: Circular clamped plate.

Table 3 .

 3 

	σ at Gauss points EAS-only	SB9
	1	-0.01757 -0.01171
	2	-0.01757 -0.01373
	3	-0.01757 -0.01757
	4	-0.01757 -0.02140
	5	-0.01757 -0.02343

3: Pinching stress at Gauss Point : study 1

Table 3 . 4 :

 34 Pinching stress at Gauss Point : study 2

Table 3

 3 r P i and P e are the pressures applied on the inner and outer walls of the cylinder. R and t represent the radius and thickness of the cylinder.

	2

.5: Geometric and material characteristics 86 Figure 3.5: Cylinder's mesh

Table 3

 3 

.6: Pinch stress on the 5 Gauss points

Table 3 . 7 :

 37 Displacements of the solicited nodes, with SB9 modelization elements per side, for the di erent solid-shell nite elements. It can be observed that SB9 and Q1st give the best results for this test. The fact that the SB9 element passes this very severe test demonstrates its ability to withstand the phenomena of membrane and transverse shear locking. This test exhibits the crucial importance of the ANS method to develop shear locking-free element formulations. Concerning the convergence behavior, the SB9 element formulation is among the best if one considers all element formulations

	32

.

7

. The gure 3.7 also compares the normalized displacements as a function of the number of Figure 3.6: Pinched hemisphere Mesh 4 × 4 8 × 8 16 × 16 32 × here presented.

A quick convergence study has also been curried with the SB7 element with two di erent meshes as one can see in gure

3.8

. The results given in table

3.8 

shows a good convergence for the SB7 too.

Table 3 .

 3 

8: Displacements of the solicited nodes

Table 3 .

 3 

	3. Numerical validations		
	Rayon	R	4.953
	Longueur	L	10.35
	Epaisseur	t	0.094
	Module d'Young	E 10.5 × 10 6
	Coe cient de poisson ν	0.3125
	Charge appliquée	F	100N

9: Geometrical and material characteristics of the cylinder the e ect of re nement on the solution. By stressing the structure with two equal and opposite forces F=100N , we try to determine the displacement in the stress direction for the di erent discretizations and then compare it to the reference displacement: 0.1139 [MAC 85]. The geometrical and material characteristics for this test case are given in the table 3.9. The convergence diagram can be see in gure

3.10

. Both the SB7 and SB9

Table 3 .

 3 10: Natural frequencies of a thick cylindrical ring Fourier modes of order 2 (ovalization) and 3 (trifoliate) as well as 2 out-of-plane modes. It is a cylindrical ring, with mean radius R m = 0.369m, thickness t = 0.048m and length L = 0.05m. The material is homogeneous, isotropic, linear elastic. The elastic coecients are Young's modulus E = 185000MPa and ν = 0.3. The density is constant and is

	. Numerical validations			
	Modes	SB9 (Hz)	Ref	Errors SB9 Error DKQ Error Coque_3D
	Ovalization	210.16 210.55	0.18%	0.44%	0.3%
		210.16 210.55	0.18%	0.44%	0.3%
	Trifoliated	587.86 587.92	0.01%	1.75%	0.24%
		587.86 587.92	0.01%	1.75%	0.24%
	Out of plane 209.66 205.89	1.79%	13.99%	0.36%
		209.66 205.89	1.79%	13.99%	0.36%
		596.99 588.88	1.35%	9.75%	0.23%
		596.99 588.88	1.35%	9.75%	0.23%

Table 3

 3 

		.11: Geometrical and material characteristics of the cylinder
	given by the SB9 elements are very satisfying.	
	mode SB9 Coque 3D Référence Erreur relative SB9
	1	85.9	85.85	85.6	0.35%
	2	138.5	138.56	134.5	2.97%
	3	247	246.92	259	4.63%
	4	342	342.71	351	2.56%
	5	386	386.66	395	2.28%
	6	530	531.59	531	0.19%
	Table 3.12: Frequencies in Hertz: comparison SB9 Vs Coque_3D

Table 3

 3 

	cos(α) = 1 -	1 4	h R	(3.27)

This test represents a calculation in dynamic modal analysis of a corrugated sheet in free form, see gure

3.31

. It is initially set up in doc_aster to validate the DKT nite element modelling on a non-planar plate modelled in quadrangles. The goal here is to see if the non-planarity has a consequence in the dynamic modal analysis of a SB9 model. The natural frequencies are then compared with a reference solution obtained with code_aster from a Coque_3D modeling. The geometrical and material characteristics of the corrugated shell are given in the table

(3.13

). The angle α is chosen so that the upper surface of the shell at point X is at (y = 0), i.e. aligned with A and C. planar. The results are very close to those given by quadratic elements (Coque_3D and HEXA 27 nites elements) thanks to the enhancements embedded in this element. The DKT elements on the other hand is less accurate due it's linear interpolations. .15: Mode 2

Table 3 .

 3 17: Geometrical and material characteristics of the ring

	Dimension	Valeur
	E	2 × 10 5 N/mm 2
	ν	0.3
	R	2m
	e	0.02m
	L	2m

Table 3

 3 

.18: Natural frequencies

Table 3

 3 3.37: Geometry of the cylinder

	mode	SB9	Reference Relative Error
	2	71974	73260	1.76%
	4	291378	293040	0.57%
	6	668816	659340	1.44%

.19: Comparison of critical pressure load : SB9 vs reference

  The second study is a three-dimensional one and mixes an SB9 model (hexahedral elements) with classical 3D elements (Tetrahedrons and pyramids), see gure3.41. The Young's modulus of the joint is E=147001.07 MPa with a Poisson's ratio: 0.30. The boundary conditions are : clamp of the edges 1,2,3,4,5 and a pressure load of 30 MPa is applied to the outer edge of the joint corresponding to the edge P, see gure 3.41.a. Figures3.42, 3.43, 3.44 and 3.45 shows the di erent results

  4 (u 31 + u 32 + u 33 + u 34 )

	w + 9 =	4 1	(u 35 + u 36 + u 37 + u 38 )	(D.33)

Table D .

 D 

		2: Normal displacement: plate of thickness 0.1
	the plate thickness is reduced to 0.01		
		Hexa20 DKT Coque 3D SB9g25
	Uz(10 -3 m)	0.0094	1.90	1.90	1.89

Table D.3: Normal displacement: plate of thickness 0.01

Table D . 4 :

 D4 Geometrical and material characteristics of the cylinder Table D.5: Observation of pinch stresses in the inner and outer walls of the cylinder

		Axi (1 Elem) Axi (5 Elem) SB9 ref
	σ int rr (10 8 Pa)	1.97		1.99	2.08 2
	σ ext rr (10 8 Pa)	0.97		0.99	0.93 1
			R	1m
	thickness	t	0.1m
	Young Modulus E 210 × 10 9 Pa
	Poisson ratio	ν	0.3
	Internal Pressure P i 2 × 10 8 Pa
	external Pressure P e 1 × 10 8 Pa

1

  # Definition of a new mesh type to which a reference ... element named SB9 is associated .

	2 HEXA9 = MeshType (nbno =9, dim =3, code= ' SH9 ' )
	3 SH9 = Elrefe ()
	4 SH9. addLocation ( ' NOEU ' , 9)
	5 SH9. addLocation ( ' NOEU_S ' , 8)
	6 SH9. addLocation ( ' SHB5 ' , 5)
	7 SH9. addLocation ( ' SHB7 ' , 7)
	8 SH9. addLocation ( ' FPG1 ' , 1)
	9 HEXA9. addElrefe (SH9)

  %% %%matrice gradient faisant intervenir les rotations au milieu des ...

	x13=x1-x3;	
	y13=y1-y3;	
	L13=sqrt(x13 * x13+y13 * y13);	
	c6=x13/L13;	
	s6=y13/L13;	
	%%	
	%%matrice gradient faisant intervenir les rotations au milieu des ...	
	cotÃl's	
	%%Bt du l'Ãl'lÃl'ment DKT6	
	Bt=matriceBt(x21,y21,x32,y32,x13,y13,aire,c4,s4,c5,s5,c6,s6);	
	%%	
	%%matrice gradient faisant intervenir les translations normales ...	
	aux sommets	
	%%de l'Ãl'lÃl'ment DKT6	
	Bw=matriceBw(aire,c4,s4,c5,s5,c6,s6);	
	end	¥
	x32=x3-x2;	
	y32=y3-y2;	
	L32=sqrt(x32 * x32+y32 * y32);	
	c5=x32/L32;	
	s5=y32/L32;	
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from code_aster .Cata. Syntax import *

from code_aster .Cata. DataStructure import *

from code_aster .Cata. Commons import *

Appendix C

Classical shell theory and associated nite elements C.1 Kinematics C. 1

.1 Displacement eld

Let's consider two points M and P of a segment of the plate such that M is in the mean plane (O, e 1 , e 2 ) and P has a z dimension with respect to this mean plane. The equiprojectivity hypothesis allows to express the displacement eld of the point P with respect to the displacement eld of the point M supposedly known :

u 1 , u 2 , u 3 , β 1 , β 2 being respectively the three displacements of the point M and the two rotations of the segment MP.

C.1.2 Strain eld

As in the general case, the deformations are obtained by calculating the symmetrized gradient of the displacements, taking into account the kinematic assumptions mentioned in the previous paragraph. We also remain under the hypothesis of small perturbations.

In Cartesian coordinates, the strain eld is written in Cartesian coordinates :

For simplicity reason and taking into account the local frame, it is possible to dissociate in-plane deformations (e 1 , e 2 ) and transverse deformations (out-of-plane):

Appendix D Recalls on the classic SB9γ25

D.1 Formulation of the SB9γ25

The SB9γ25 is a hexahedral element with nine nodes (eight vertex nodes and a central node), isoparametric and with linear interpolation. Its design is largely inspired by the solid-shell element named SHB8PS [ABE 02, ABE 09], the SB9γ25 uses the reduced integration method initially introduced by the work of Zienkiewicz and al[ZIE 77], Hughes and al [HUG 81a] ato reduce membrane and shear locking and improve performance in terms of computing time. The resulting zero-energy modes are then stabilized by following Belytschko's numerous researches [BEL 83, BEL 84, BEL 93] on the stabilization of hourglass modes. To go further in the elimination of transverse shear locking, the authors [BAS 12] use the Assumed natural strain (ANS) method of transverse shear. In addition, the special and innovative feature in the design of the SB9γ25 was to add an extra node in the center of the solid-shell element at eight vertex nodes and 24 degrees of freedom (dof). This makes the SB9γ25 a nine-node and 25 dof solid-shell element. This central node has only one degree of freedom of translation normal to the mid-plane of the element. Thanks to this additional dof, a quadratic normal displacement is assumed which allows the assumption of a linear normal deformation. From then on it becomes possible to calculate a true normal stress (pinch) using a purely three-dimensional behaviour law: this is the end of the plane stress hypothesis.

In this chapter, we will detail the di erent phases of the design of the SB9γ25.

D.1.1 Variational formulation

The SB9γ25 element is nothing more than a classical hexahedral element enriched with an assumed natural strain (ANS) of transverse shear and pinch strain (EAS), which is accompanied by a assumed pinch stress. Therefore, the SB9γ25 formulation is based on the Hu-Washizu three-eld formulation. Since the strain eld is enriched, the new eld can be written as

upper and lower faces, the generalized nodal forces can be obtained by superposition:

)

Note that these e orts are given in the element's local frame. It will therefore be necessary to put them back into the global frame before proceeding with the assembly. This is also valid for the elementary sti ness and stabilization matrices developed in this chapter. At this stage we have all the necessary elements for the implementation of this element. Before going into the details of the implementation, we will show, in the following section, the limitations encountered in the formulation of this element.

D.2 Numerical validations SB9γ25

D.2.1 Study of a bending problem : SB9γ25 vs HEXA20

The SB9γ25 element is a solid-shell element with quadratic interpolation of the transverse displacement. It is then natural to ask what interest can the nite element SB9γ25 have compared to the quadratic nite element HEXA20? The purpose of this test is to provide an answer to such a question. We consider a square plate of length 1, clamped on one edge and subjected to a bending load applied on the opposite edge. Two studies were carried out: the rst with a thickness of 0.1 and the second with a thickness of 0.01. In both cases, a null Poisson ratio coe cient is considered in order to be able to compare the solutions to the analytical solution of a beam in bending. We also ran this test on using the two shell nite elements available in code_aster: DKT and Coque_3D.

The mesh size in each model is : 

Appendix E

Impacts on code_aster

In this chapter we will brie y introduce the implementation process of the SB9 element in code_aster. Generally speaking, a nite element is composed of a geometrical support (its mesh), which is enriched with a physics that will drive its behavior during the transformation. We have also seen in chapter 2 that the nite element SB9 has a 9 node hexahedron as geometric support, in other words a classical hexahedron to which a central node is added. Unfortunately, the Mesh module of code_aster does not currently know how to produce HEXA9. The rst implementation work then consisted in solving this problem. Since SMesh (the Mesh module in Salome_meca) knows how to produce HEXA8, the simplest solution is to start from this mesh and then to append it with an additional node directly in code_aster. This is what we will propose next. It should be noted that this impact study does not aim to go through the source code in the slightest details, but only to show the implementation process in a broad outline. Also we will not comment on the Fortran routines but only the impacted parts of the python catalogs.

E.1 Mesh reading command : LIRE_MAILLAGE

As seen in the theoretical part, the geometrical support of the nite element SB9 is a hexahedron with 9 nodes located as follows:

• Vertices (8 nodes)

• Element center (1 node) Since code_aster did not know a hexahedral element with 9 nodes, it was necessary to start by creating this new (type_mesh) which is used as a geometrical (topological) support and to which one can directly associate the reference element SB9. (ELREFE).

The creation of the new mesh HEXA9 is then done by enriching the mesh_types.py catalog with the following code snippet:

E.2 Mesh creation : CREA_MAILLAGE

In the previous section, we taught code master to recognize a nite element whose geometrical support is a HEXA9. However, since the mesh module of Salomé_Méca is not able to provide a mesh of type HEXA9 directly, we will also code a routine which allows to transform a mesh of type HEXA8 into a mesh of type HEXA9, directly from code_aster. This action is done in the CREA_MAILLAGE routine.

It # processing of the keyword factor HEXA8_9 HEXA8_9 =FACT( statut = ' f ' ,fr=tr(" Passage HEXA8 -> HEXA9"), regles =( AU_MOINS_UN ( ' TOUT ' , ' MAILLE ' , ' GROUP_MA ' ) ,), TOUT =SIMP( statut = ' f ' ,typ= ' TXM ' ,into =("OUI" ,) ), MAILLE This tells code_aster that the user wishes to transform the mesh group from HEXA8 to HEXA9. On receipt of this information the Catalog crea_mesh calls the Fortran routine op0167 which will call the routine cm0809 programmed to process the keyword factor thickness direction. With this algorithm it was possible to correct the orientation problems of the SHB8 nite element. 

E.4 Model assignment : AFFE_MODELE

So far, what has been developed concerns only the mesh, the geometrical support of the SB9 nite element. Now we will be able to go into the details of the modeling itself, corresponding to the implementation of the physics that drives the nite element. Once the user has de ned his mesh and made the necessary modi cations (modi_mesh), he can proceed to the creation of the model by adding the following command lines in the command le : In this same catalog is de ned the class of the nite element SB9. The class of the element contains in attribute the mesh type and the reference element with which this nite element works. The methods of the class are the set of elementary options. For code_aster, an elementary calculation option corresponds to a calculation leading to the production of one or more elds per element. For example, the option 'RIGI_MECA' calculates the sti ness of the element (elastic behavior). -----------------------------------------------------------# Class of the element followed by these different . for r=1:2 aux1=aux1+invJo(p,r) * Bdt1(r,q); aux2=aux2+invJo(p,r) * (Bdt3(r,q)-Bdt1(r,q)); aux3=aux3+invJo(p,r) * (Bdt2(r,q)-Bdt1(r,q)); end Bc0(p,q)=aux1; Bc1(p,q)=aux2; Bc2(p,q)=aux3; 

#-