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Introduction

Following the ever-increasing expansion of large cities observed in the last
decades, almost 75% of European citizens currently live in urban areas. De-
spite being an important component of the quality of life, the sound environ-
ment is barely taken into account in the design of those areas. This has led to
an important increase of noise pollution [2], which is responsible for several
public health issues [3, 4, 5]. In order to mitigate current hazards and to be
able to propose new ways that would incorporate the sound modality in the
urban planning process, there is an important need to rigorously monitor
and gather information about the acoustic environment in urban areas.

Subsequently, monitoring sound environments has become an active field
of research, with studies mainly investigating noise assessment and reduc-
tion applications. In particular, such is the objective of the 2002/49/CE
directive, which requires large European cities to maintain publicly available
noise maps [6]. Beyond noise reduction applications, we believe that a de-
velopment is needed in order to better characterize and control urban sound
environments, by modeling and predicting their impact on the quality of life
of urban residents and passers-by. To do so, it is necessary to measure sound
environments, and infer meaningful information to communicate to citizens
and influence the design of urban areas.

In terms of measuring sound environments, the recent advent of the In-
ternet of Things (IoT) has enabled the development of large-scale acoustic
sensor networks [7, 8]. Several projects have implemented such networks to
monitor urban sound environments, where indicators describing the acoustic
content are continuously measured and stored on servers to be processed
into relevant quantities. Many of these projects are developed in the con-
text of noise assessment studies, with improving predictive noise maps as
the primary objective. For example, in the RUMEUR network, 45 sensors
continuously gather acoustic information in Paris [9]. In addition, several
short-term measurement campaigns specifically refine assessments of aircraft
noise. The project also includes a study on graphical representations and car-

16
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tography of sound environments to better communicate information about
their quality to both citizens and administrative parties. The DYNAMAP
European project [10] further investigates the potential of low-cost sensor
networks in monitoring sound environments of large cities. The developed
approach implements a limited number of sensors at important locations of
road infrastructures throughout the target cities of Rome and Milan. The
network aims at capturing the diversity of traffic conditions in the city, in-
cluding traffic density, road type, and weather conditions. The gathered
data corrects estimations of predictive sound propagation models to produce
maps of short-term noise level variations [11]. The Cense project, to which
the present work is applied, proposes a different approach where dense sen-
sor grids are implemented in the main districts and streets of Lorient [12].
The sensor network comprises a larger number of low-cost sensors compared
to previous studies. Part of the project focuses on data assimilation be-
tween predictive models and the spatially dense sensor measurements, with
a study on the uncertainties of emission-propagation models. In addition
to traditional noise maps, continuously recording informative acoustic data
enables the study of more comprehensive approaches to the characterization
of sound environments. In order to produce multimodal noise maps easily in-
terpretable by the citizens, part of the project is thus dedicated to assessing
the perceptual quality of measured sound environments by both residents
and passers-by. To this aim, the soundscape approach is prevalent in re-
cent studies on the perception of sound environments [13]. In this approach,
soundscape quality can be modeled efficiently from the perceived activity of
sources on short time periods. Continuous measurements in dense sensor
networks should allow the prediction of these quantities of interest, in order
to propose detailed short-term maps of sound quality.

Relatedly, recent developments in signal processing have resulted in new
efficient tools to model audio signals. Deep learning methods now achieve
state-of-the-art results in sound event detection and sound scene classifi-
cation. The growing Detection and Classification of Acoustic Sounds and
Events (DCASE) community specifically investigates this range of appli-
cations, and proposes a recurring challenge on several related tasks1. Some
studies have also successfully applied deep learning approaches to monitoring
sound environments in the context of large-scale acoustic sensor networks.
For example, the SONYC project [14] implements a low-cost sensor network
in New York City and develops automatic methods for urban sound tag-
ging [15]. Large collected measurement datasets also enable techniques such

1http://dcase.community
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Figure 1: Overview of research topics where deep learning approaches are
investigated in the current work.

as unsupervised representation learning for environmental audio [16].
This dissertation focuses on two contributions, that build on recently

proposed deep learning techniques to i) predict perceptual attributes and ii)
synthesize acoustic scenes from sensor data, as shown in Figure 1. We believe
that the scientific advances in these two domains will allow to better inform
citizens and city administrators about sound environments, by communicat-
ing easily interpretable information inferred from acoustic sensor networks.

Deep learning approaches to infer perceptual attributes of environmental
sounds, either describing high-level properties (e.g. pleasant, lively) or the
activity of sound sources, remain largely unexplored. The first contribution
of this thesis is thus to propose an original approach using deep learning
techniques to predict descriptors of perceived sound quality from sensor data.
This includes the design of sufficiently large datasets and their annotation
in terms of relevant underlying quantities describing the content of sound
environments. In this context, recent studies in psychoacoustics identify the
perceived activity of sources of interest as relevant descriptors.

Chapter 1 first establishes a summary of previous studies on the per-
ception of environmental sounds and soundscape quality. After reviewing
acoustic indicators that can be considered to represent perceptual quanti-
ties in published models, the potential of deep learning architectures in the
estimation of high-level perceptual attributes is discussed. Specifically, the
proposed original approach introduces predictions of perceived source pres-
ence from such architectures in models developed on large-scale studies on
urban soundscape perception.

The information content recorded by sensors is subject to privacy reg-
ulations. Some applications enforce this constraint by obfuscating speech
in voice activity segments obtained with source separation algorithms [17].
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Instead, the Cense network anonymizes recorded data by directly measuring
spectral sound levels [18]. The information content of measurements is insuf-
ficient to recover waveform audio with fully identifiable sound sources, and
thus to manually annotate extracts for the desired task. Chapter 2 discusses
the interest of sound scene simulation tools for automatic annotation of large
datasets. The developed methodology allows the simulation of diverse sound
scenes by combining extracts of isolated source occurrences according to re-
alistic scenarios extrapolated from a corpus of annotated recordings. A lis-
tening experiment compares perceptual assessments of simulated scenes to
results from the literature. An indicator is then proposed that models the
saliency of a given source with respect to all others, from separated source
contributions available in simulated scenes. This indicator is associated to
the perceived presence of sources of interest in case of active listening of the
sound environment by passers-by. Evaluation of the proposed annotation is
done against state-of-the-art acoustic indicators, with respect to subjective
assessments obtained in the listening test.

In Chapter 3, the developed indicator automatically annotates a large
dataset of simulated scenes on the perceived presence of sources of interest.
Two trained models, including convolutional and recurrent architectures,
are able to predict source presence in synthetic data with high accuracy.
Nonetheless, experiments evidence the incompleteness of simulated scenes
with respect to sound environments of the application. In particular, the
taxonomy of sound sources and associated spectral patterns in simulation
processes may limit the adaptability of models to sound sources specific to
target environments.

Chapter 4 addresses those limitations by localizing deep learning models
to sound environments measured by the Cense sensor network. To do so,
transfer learning approaches infer relevant information from large amounts
of unlabeled sensor data in pretext tasks. Informative latent audio repre-
sentations learned with these methods enable the training of low-complexity
architectures predicting the perceived source presence. For this purpose, a
second corpus of simulated sound scenes is constructed from on-site record-
ings of isolated source occurrences. The proposed experiments compare the
relevance of latent audio representations obtained with two discriminative
tasks relying on sensor metadata as well as an unsupervised regressive task.
Evaluations done on a corpus of annotated recordings gathered in the target
sound environments show that localizing simulated data highly contributes
to prediction accuracy. Transfer learning and self-supervision further im-
proves the effectiveness of architectures trained on simulated sound corpora
with limited domain correspondence, data quantity, or diversity. The pro-
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posed approach of perceived source presence prediction is adapted to the
target in vivo sound environments, although future work remains regard-
ing its potential embedding into low-cost sensors and its integration to the
Geographic Information System (GIS) of the sensor network.

The second contribution aims at producing artificial sound environments
that are conditioned with spectral information issued from the sensor net-
work. Listening to waveform audio examples associated to sensor measure-
ments is useful to provide citizens and urban planners with reference sound
scenes illustrating noise maps. In some sensor networks, for instance the
SONYC project, waveform audio is directly recorded and stored on secure
servers. However, this is not always possible nor desirable due to regula-
tions on privacy constraints. In the Cense project, sensor measurements
sufficiently degrade the information content so that no waveform audio with
intelligible speech can be retrieved [18]. This is also detrimental to the
identification of other sound sources in reconstructed audio. In recent liter-
ature, deep learning architectures are successfully applied to the synthesis
of speech (vocoders) and musical (musical synthesizers) signals. However,
few approaches are applied to environmental sound synthesis, which con-
tain complex polyphonies as well as diverse spectral signatures associated
to sound source contributions. Thus, the second part of this thesis focuses
on proposing deep learning models to synthesize plausible sound scenes that
correspond to privacy-aware sensor measurements. Sound synthesis being
a difficult task, the present work aims at proposing a preliminary study on
original approaches to solve issues specific to environmental scenes process-
ing. The developed methods thus require significant future work in order to
achieve production-ready sound scene synthesis from sensor network mea-
surements.

The use of deep generative models to synthesize plausible waveform audio
from privacy-aware sensor data is investigated in Chapter 5. Two spectral
approaches are considered where a magnitude spectrogram is reconstructed
from measured third-octave sound levels, and phase information is recov-
ered using iterative algorithms to obtain a waveform signal. Specifically,
the first proposed architecture deterministically refines estimations from a
data-independent baseline by learning a priori information from a dataset of
acoustic scenes. The second proposed architecture upsamples log-frequency
spectral representations, and is trained in an adversarial setting to enforce
both the realism and the fidelity of generated spectra. The models are eval-
uated against deep and non-deep baselines available in the literature using
spectral and waveform reconstruction metrics, as well as objective perceptual
metrics and automatic classification performance.
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We believe that those technical contributions will allow better citizen
information and soundscape design in urban areas. The prediction of per-
ceptual source activity descriptors is satisfying for the target environment,
even if the proposed design and evaluation paradigms should be replicated in
other urban areas. The availability of privacy-aware measurements through
dense acoustic sensor networks allows exposing useful information about ur-
ban sound environments, and deep learning approaches are a promising av-
enue of research to do so.

The task of sound scene synthesis being inherently difficult, many under-
lying problems are still open in the deep learning community. The contribu-
tion developed in this thesis focuses on architectures enforcing invariance of
regression loss functions to important variations in the magnitude of envi-
ronmental sound spectra across frequencies. While experiments demonstrate
the usefulness of the proposed approach, much work is still required to fully
understand and tackle the fascinating problem of high-rate audio synthesis
with deep learning paradigms.



Chapter 1

Perception of urban sound
environments

The soundscape approach is prevalent in recent studies
to qualify and quantify the perception of sound environ-
ments. This chapter reviews recent literature on the sub-
ject, including the characterization of soundscape quality
by standardized perceptual dimensions and their relation
to the activity of sound sources. In the context of con-
tinuous acoustic monitoring with sensor networks, these
perceptual quantities can be efficiently approximated by
acoustic indicators.
A framework is then proposed where such indicators
are replaced by deep learning architectures. Specifically,
the task of estimating the perceived time of presence of
sources is formulated as an tractable problem of binary
presence prediction on small temporal frames, related to
event detection and classification tasks thoroughly inves-
tigated in deep learning communities. Predictions are in-
troduced in linear models, validated in large-scale percep-
tual studies, to obtain estimations of high-level attributes
of soundscape quality.

22
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1.1 Soundscape quality

The impact of environmental sounds on society is traditionally associated
with the notion of noise. This approach only addresses the negative implica-
tions of sound energy in an environmental setting. Thus, the acoustic quality
of sound environments is inherently tied to the notion of annoyance. Par-
ticularly, in urban environments noise assessment is often reduced to traffic
activity as the main contributor to sound levels and an important cause of
annoyance. The concept of soundscape, initially proposed by [19], funda-
mentally differs from the noise approach. The soundscape is defined as "the
acoustic environment as perceived or experienced and/or understood by a
person or people, in context" [20]. In other terms, it represents the overall
human perception of sound environments. The soundscape approach is thus
a more comprehensive alternative to noise annoyance, that considers the en-
semble of sounds that occur simultaneously with potentially positive effects
instead of focusing purely on energetic aspects of the resulting sound environ-
ments. Despite its complexity, several studies have attempted to qualify the
soundscape and its quality through sets of high-level perceptual attributes,
or perceptual dimensions.

In [21], 27 descriptors of soundscape perception are evaluated in both in
situ and laboratory conditions. A principal components analysis reduces this
set to three dimensions that explain most of the variance in quality assess-
ments, and respectively correlated to affective impressions and preferences
(i.e. pleasant, comfortable, stimulating), activity due to sound presence of
human beings (e.g. bustling, marked by living creatures, noisy) and au-
ditory expectations (e.g. unexpected). Ten years later, a larger study is
conducted in [22] with 116 subjective attributes. Likewise, a principal com-
ponents analysis yields three main dimensions of soundscape perception. In
the first two dimensions, axes are associated with the pleasantness and the
eventfulness or liveliness, and explain 50% and 18% of the assessments vari-
ance respectively. Another space is obtained by applying a 45◦ rotation on
the principal components space, in which axes are associated with the inter-
est and calmness of sound environments. Similar results are also obtained
in [23] where the two main dimensions are the calmness and vibrancy. The
four axes in [22], corresponding to eight high-level attributes arranged in
differential scales, are further proposed as part of a soundscape quality eval-
uation protocol for Swedish urban environments in [24]. In [25] the authors
assess the challenges of standardizing this procedure to diverse cultures and
languages by comparing results of laboratory listening tests in France, Korea
and Sweden. Although the correspondence of assessments is verified for most
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perceptual descriptors, the study concludes on the importance of carefully
choosing translations as to not alter the meaning of descriptors. This subject
is still investigated in recent work, with a translation of standardized English
questionnaires for soundscape quality assessment [26] proposed in [27].

The two-dimensional model of pleasantness and liveliness is prevalent
in recent literature. Nonetheless, some studies propose other descriptors of
soundscape quality such as appropriateness [28] or music-likeness [29], with
a review available in [30]. Furthermore, soundscape quality is increasingly
associated with the dimension of pleasantness by itself [31].

1.2 Content-based assessment of soundscape qual-
ity

One of the important considerations stemming from the soundscape ap-
proach compared to the assessment of noise annoyance is the disparity be-
tween the sound level in an acoustic environment and its perceived quality.
Noise annoyance does not discriminate between sound sources composing the
environment, thus all contributions to the overall sound level are considered
to affect perception negatively. A large-scale study is conducted in [32] by
comparing in situ questionnaires with equivalent sound level measurements
and the composition of sound environments in terms of sound objects in 14
urban environments across Europe, with assessments gathered for several
years and different seasonal contexts. The observed relation between the
measured sound level and the subjective acoustic comfort in this study is
weak, whereas the activity of pleasant sound sources explains discrepancies
of comfort evaluations in environments with equally high sound level. A
similar conclusion on the importance of source types in soundscape quality
assessment is reached in [33] from questionnaires answered by residents of
French cities. Spontaneous descriptions of soundscape quality link positive
judgments to nature, birds and most human activity sound sources, and neg-
ative judgments to mechanical sources such as traffic, cars and construction
works.

In [34], a model of the unpleasantness is first constructed on a corpus of 20
stimuli evaluated in a laboratory setting. Evaluations include the perceived
loudness as well as the presence, proximity and prominence (i.e. combined
presence and proximity) of sound sources. Multiple linear regressions show
that, in addition to the perceived loudness, significant negative contribu-
tions of traffic event sources (buses, mopeds) and a positive contribution of
children voices to soundscape quality. Similar models obtained for in situ
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evaluations also show positive contributions of bird sources, but underline
changes in the perception of sources for different environments such as parks
or streets. This phenomenon is further investigated in [31], by analysing
about 3400 evaluations in diverse environments in Paris. The clustering of
locations results in 7 distinct classes, for which models of soundscape qual-
ity are constructed independently. The authors also propose general models
which they argue may be preferable in mapping applications, as ambiance
classification uncertainties could compensate the differences in soundscape
quality prediction performance. The best general model with 52% explained
variance includes visual amenity as a predictor. However, in real situations
visual and acoustic quality are naturally correlated [35, 36]. Laboratory
studies are then necessary to decorrelate these factors in order to study the
influence of visual parameters on sound quality, which is found to be much
lower at around 10%. Alternatively, a second model only focusing on sound
achieves 34% explained variance, and shows contributions of the perceived
overall loudness as well as the activity of traffic, voices and bird sound sources
to soundscape quality. The activity of each source is evaluated by its time
of presence, that is the ratio of perceived presence from "rarely present" to
"frequently present". The overall loudness and the time of presence of traf-
fic sources contributes negatively to soundscape quality, whereas voices and
birds have a positive effect.

This high-level sound source taxonomy in conjunction with the perceived
time of presence as a source activity descriptor seems sufficient to model the
pleasantness dimension of soundscape quality. In [1], a perceptual model of
pleasantness is obtained for subjective assessments during soundwalks with
the same predictors and slightly different coefficients. A multilevel variance
analysis of the model further shows that the combination of the overall loud-
ness and the time of presence of the three source types explain 90% of the
variance in assessments related to the change of sound environments. This
is also a significant improvement compared to addressing only the overall
loudness, which yields 65% explained variance.

In [37, 22], sound source categories are generalized even further, to tech-
nological (e.g. traffic, construction, ventilation), human, and nature (e.g.
birds, water, wind) sources. Models of soundscape quality and pleasantness
constructed in these studies take the source dominance as the activity de-
scriptor. However, the definition of dominance and its evaluation method
differs across studies. In [22], the dominance is binary (0 or 1) and in most
cases only one source category is regarded as dominant. Conversely, in [37]
the dominance is evaluated on a 5-point scale from "never heard" to "com-
pletely dominating". The same scale is selected in [25] with a different sound



26

source taxonomy including separate evaluation of water, bird and wind activ-
ity. In general, refining the taxonomy by decomposing general source types
into subclasses (e.g. types of vehicles or voice expressiveness), or introducing
new sources may be useful. For instance, the sounds of a water fountain can
indirectly contribute to pleasantness by masking traffic noise to perception
in some environments [38]. Other sources may also contribute to high-level
subjective attributes besides the pleasantness, and should be investigated in
future studies.

1.3 Acoustic indicators

The modeling of perceptual soundscape quality requires subjective inputs
from in situ experiments (e.g. soundwalks) or laboratory listening tests with
reproduced sound environments. This approach is limited by the spatial and
temporal locality of sound environments investigated in the conducted exper-
iments. Consequently, characterizing the perception of sound environments
through objective descriptors is a growing interest of the community. In
particular, the availability of low-cost acoustic sensor networks could en-
able continuous perceptual monitoring of the soundscape. In part moti-
vated by the 2002/49/CE directive, several projects such as RUMEUR [9],
DYNAMAP [10], SONYC [14] or CENSE [12] recently implemented sen-
sor networks in large cities. Sensor data are typically composed of spectral
energy measurements relevant to the development of cartography applica-
tions, as shown in Figure 1.1. Acoustic indicators could be derived from
these measurements to construct predictive models of soundscape quality,
with applications in evaluation and design of acoustical properties of urban
spaces.

Current acoustic monitoring applications mainly focus on the negative
impact of noise, quantified by indicators of sound energy. Maps produced
in compliance with the 2002/49/CE directive [6] are based on the Lden in-
dicator. The Lden is computed as the average of A-weighted sound levels
during day, evening and night, weighted by the duration of each period (resp.
6h-18h, 18h-22h, 22h-6h). Evening and night sound levels are penalized by
5dBA and 10dBA respectively to represent the additional disturbance gener-
ated by noise during these periods. Although the Lden is useful in long-term
noise-only approaches, it does not contain information about the variations
in content associated with perceptual properties of the soundscape. Moni-
toring applications widely rely on other energy indicators such as the LAeq.
However, they also fail to describe the short-term temporal variations in the
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sound environment, and are too sensitive to noise peaks when aggregated
over shorter periods of time [39].

Other indicators have been introduced in studies that mostly focus on
the description of traffic noise. First, derivations of energy indicators can
quantify temporal variations in the signal, for example the moments of
the short-term sound level, or statistical descriptors. Statistical descrip-
tors mostly consist in percentile values of the sound level distributions over
time, and provide information on the average event, background or overall
levels, or emergence of sound events (resp. LA10, LA90, LA50, LA10−LA90).
Emergence-based descriptors also describe sound events, including the num-
ber of noise events and mask index, corresponding to the number of occur-
rences and cumulative time where the short term sound level is greater than
a threshold value [40]. Some indicators are based on spectral contents of the
sound. For instance, the LCeq−LAeq provides information on low-frequency
content [37] and the spectral center of gravity evaluates the overall spectral
content [41]. Lastly, psychoacoustic indicators based on the perception of
amplitude modulations (e.g. roughness, loudness) or spectral density (e.g.
sharpness) are found to characterize well the subjective annoyance of traffic
noise [42].

To find which set of acoustic indicators is useful for general soundscape
characterization, several studies propose to classify soundscapes with cluster-
ing algorithms. The obtained classes are validated against subjective eval-
uations and an optimal set of indicators is extracted that contributes the
most to classification. In [43] a set of statistical descriptors composed of
percentiles values of sound levels and psychoacoustic indicators successfully

Figure 1.1: Example of sensor network developped as part of the CENSE
project, and noise map (Lden) for the city of Lorient.
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categorizes recordings of 370 soundwalks. In [44] 49 acoustic and psychoa-
coustic indicators are similarly investigated, and band-specific sound levels
are found to outperform statistical descriptors in the optimal set. In [45],
a limited set is sufficient to categorize sound environments, including the
LAeq, its standard deviation to describe temporal variations, and the spec-
tral centroid describing spectral content.

In a soundscape quality prediction context, direct modeling of sound-
scape quality descriptors from sets of acoustic indices has also been studied.
As shown in [46], energy-based indicators (Leq, LAeq) and psychoacoustic
indicators (loudness, sharpness) correlate well with the unpleasant character
of some sound environments, but not with pleasant evaluations of others.
[37] identify energy-based indicators, specifically the LA50, as strong pre-
dictors of the soundscape quality. However, the significant contribution of
perceived nature and technological source activity is not well described by
existing indicators for spectral content and temporal variations. Similarly,
in [31] the best linear regression model of soundscape quality is obtained with
the L50, correlated to the perceived overall loudness, and the LA10 − LA90.
The explained variance of this model (R2

adj = 0.21) is lower than that of
the general perceptual model on the same corpus described in Section 1.2
(R2

adj = 0.34), indicating the lack of acoustic indicators accurately describ-
ing perceived source activity. In [1] the time and frequency second derivative
(TFSD) is introduced as a potential source-specific activity descriptor. The
TFSD is computed as the discrete derivative, i.e. variation, of a third-octave
spectrum L(f, t):

TFSDf,t =

∣∣∣ d2L

dfdt

∣∣∣(f, t)
∑f1=16kHz

f1=31.5Hz

∣∣∣ d2L

df1dt

∣∣∣(f1, t)

(1.1)

where f and t denote the frequency and time dimensions of the spectrum.
The scale of the time dimension can be changed by aggregating information
on longer time scales before computing the TFSD. Thus, the TFSD can high-
light spectral and temporal variations at different levels. For example, bird
activity is associated with fast variations in high frequencies. The TFSD
indicator computed at a 125 ms time scale and for the 4 kHz third-octave
band is found to correlate well to the time of presence of birds evaluated
during a soundwalk. To a lesser extent the TFSD computed with 1 s mea-
surements for the 500 Hz band correlates with the perceived time of presence
of voices. Both indicators are validated in a multiple linear regression model
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of pleasantness with the L50,1 kHz as predictor for the perceived overall loud-
ness and no specific predictor for traffic activity. TFSD variants outperform
the compared reference indicators, including the number of sound events,
the spectral center of gravity, and emergence descriptors.

Recent work also investigates the potential of machine learning methods
in estimating perceptual responses to sound environments. In [47], neural
networks are trained to directly predict soundscape quality from acoustic
data in 19 urban environments. Networks trained for individual locations
perform well but no general model is found. Support vector regression mod-
els are trained in [48] to predict the pleasantness and eventfulness of acoustic
scenes. A bag-of-frames approach with Mel-frequency cepstral coefficients
as input features yields estimations within the variance of individual par-
ticipant assessments. The authors of [49] design a deep learning model to
predict which sound sources are likely to be identified within an urban park
environment. The architecture includes a recurrent component to model the
perception of subsequent events. Linear regression models of perceived me-
chanical, nature, and human source activity, as well as soundscape quality,
are then constructed with model predictions and other acoustic indicators
as predictors.

Machine learning tools could also prove useful for isolating source-specific
content. For instance, a source separation method was recently proposed
in [50] for the estimation of traffic sound levels in urban environments. Source
separation using deep learning models has also been successfully applied in
speech and music domains, but remains relatively unexplored for environ-
mental sounds.

State-of-the-art approaches converge towards the content-based model-
ing of perceptual quality. The current best performing indicators attempt to
identify individual sound sources within the mix by filtering time-frequency
representations of the audio signal. For example, the TFSD indicator un-
derlines variations in a spectral representation at time scales representative
of the sources of interest. However, this type of acoustic indicators is sensi-
tive to sound sources overlapping in time and frequency, particularly sources
characterized by similar time-frequency modulations but different perceptual
implications. These issues could be mitigated with more complex models to
identify content of interest within sound environments. Deep learning ap-
proaches provide the possibility of developing arbitrarily complex, highly
nonlinear models able to capture the differences between patterns charac-
terizing objects within a mix. With a well-motivated architecture, a deep
learning model could thus efficiently identify sound sources based on time-
frequency modulations, and link them to perceptual quantities without the
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need for handcrafted acoustical descriptors.

1.4 Framework for soundscape quality prediction
with deep learning

The present work aims at improving upon acoustic indicators presented in
Section 1.3 with deep learning models, in order to predict the soundscape
quality attributes in a large-scale sensor network context. Generally speak-
ing, a deep neural network is a parametric transformation applied to an input
x to predict an output y:

y = fw(x) (1.2)

Typical architectures are composed of an arbitrary number of linear trans-
formations, either linear projections or filterbanks, each followed by the ap-
plication of a nonlinear activation function to the output data.

h(1) = g(1)(fw(1)(x))

h(i) = g(i)(fw(i)(h(i−1))) (1.3)

ŷ = h(N) = g(N)(fw(N)(h(N−1)))

where fw(i) is linear with learned parameters wi, g(i) is a differentiable non-
linear function and N is the number of layers in the model. In a supervised
learning setting, the prediction ŷ is compared to a ground truth label y using
a differentiable loss function fL, which is minimized for optimal parameters
w of the model:

L = fL(ŷ, y) = fL(fw(x), y) (1.4)
wopt = arg min

w
fL(fw(x), y) (1.5)

As the transformation fw is highly non linear, the loss is non-convex and
direct optimization is difficult. However, the transformation is always differ-
entiable. Thus, the parameters are optimized by stochastic gradient descent
methods [51] for batches of examples of paired inputs and outputs {xi, yi}Mi=1,
where M is the number of available examples in the training dataset.

Because the architecture design of deep neural networks are arbitrary,
they are regarded as universal approximators [52]. Despite being mainly ap-
plied to the extraction of physical information from input representations in
the literature, the developed architectures are generally task-agnostic. Fur-
thermore, they perform particularly well on discriminative tasks where a
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Figure 1.2: Possible configurations for the prediction of soundscape quality
attributes from sensor data. (a) Direct prediction of high-level attributes.
(b) Prediction of intermediary source activity descriptors and application of
a perceptual model. (c) Approach developed in the literature, derivation of
acoustic indicators and linear modeling of perceptual attributes.

low-dimensional output is predicted from a high-dimensional input repre-
sentation. In the present study, a deep learning model can thus be intro-
duced in a framework predicting perceptual soundscape quality attributes
from sensor data, with possible configurations shown in Figure 1.2. A naive
formulation of the soundscape quality prediction task consists in directly es-
timating high-level attributes from third-octave sound levels (Figure 1.2 (a)).
In this setting, the model needs to both extract the relevant spectral patterns
from the input representation and learn their impact on the desired output.
This is a complex task as the model is given no prior information on which
spectral patterns are relevant to modeling the attribute. On the other hand,
the relationships between some soundscape quality attributes such as the
pleasantness and descriptors of perceived source activity are available in the
form of linear models discussed in Section 1.2. In the second setting shown in
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Figure 1.2 (b), the deep learning model predicts intermediary source activity
descriptors. These predictions are then fed to linear perceptual models to ob-
tain estimates of high-level attributes. Although source activity descriptors
are still perceptual in nature, their correspondences to time-frequency struc-
tures in the signal should be more straightforward to unveil. Thus, training
a model to predict source-specific descriptors as intermediary dimensions of
soundscape quality is preferable. This allows the introduction of predicted
quantities in well-established perceptual models, developed in the literature
with the configuration in Figure 1.2 (c), and also enables introducing more
complex models or adaptations for specific environments in future research.
Furthermore, source activity is useful as additional information easily inter-
pretable by the citizen [53]. In this study, the dimension of pleasantness is
specifically addressed, as it is increasingly associated to soundscape quality
in recent studies. Perceptual models from source activity assessments are
thoroughly investigated in the literature [31], providing a strong reference to
evaluate the proposed approach. However, the proposed approach could be
applied similarly to other high-level attributes.

The choice of a source activity descriptor then conditions the task that
the deep learning model has to solve. In perceptual studies of Section 1.2,
source activity is generally evaluated on discretized scales corresponding to
continuous quantities. This is for example the case for the perceived loudness
or emergence of sources of interest. The associated prediction task amounts
to a statistical regression by nature, and typically requires large amounts of
training data covering the range of possible input and output distributions.
The estimation problem can be cast to a more tractable single-label classifica-
tion task by quantizing the descriptor scale, and regarding each quantization
step as an independent class. This technique has for example been applied to
the prediction of individual audio samples in the WaveNet architecture [54].
However, classification loss functions such as the cross-entropy do not inher-
ently account for class proximity, which can lead to additional difficulties in
the training process [55]. The time of presence is also a quantitative and
continuous scale, bounded between never heard (0) and always heard (1).
However, its prediction may be formulated as a detection or classification
task under the assumption that perception over time is stationary. That is,
the perceptual time of presence can be obtained as the aggregation over time
of the binary presence (absent-present) of sources of interest, evaluated at
time scales relevant to perception. In this case, the problem is formulated as
a multiple-label classification task where each class is associated to a sound
source of interest, and multiple labels (i.e. sound sources) can be active
simultaneously. This is akin to object recognition in image processing, for
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which deep learning models are known to perform well.

Chapter conclusion

Recent studies model high-level perceptual attributes of soundscape quality
from descriptors of source activity. We believe that deep learning approaches
can efficiently infer these content-based descriptors from acoustic measure-
ments. In particular, the perceived time of presence of sound sources is of
interest. By approximating the time of presence as the aggregation over
time of the perceived source presence in relevant temporal segments, its pre-
diction amounts to a tractable multilabel classification task. Chapters 2
through 4 thus investigate an approach where deep learning models predict
the perceived source presence from sensor measurements, and estimates of
high-level attributes (e.g. pleasantness) are obtained with well-established
perceptual models.



Chapter 2

Automatic annotation of
perceived source activity for
large controlled datasets

Training deep learning models to predict the perceived
presence of sources of interest requires large datasets of
labeled sound scenes. As an alternative to manually anno-
tating recordings, controlled datasets of simulated acous-
tic scenes enabling automatic annotation are discussed.
A listening test is first conducted to verify that sound
scenes simulated with the proposed method yield simi-
lar perceptual properties compared to recordings, both in
terms of the relation between high-level attributes and
their behavior with respect to content-based perceptual
descriptors.
An emergence indicator is then developed to derive an-
notations of perceived source presence on short texture
frames in simulated scenes. On the listening test corpus,
this annotation correlates better to perceptual descrip-
tors of traffic, voice and bird activity than state-of-the-art
acoustic indicators proposed in the literature.

34
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2.1 Introduction

Training a deep learning model to predict the perceived presence of sources
as described in Section 1.4 requires annotated data in sufficient amounts.
Supervised classification datasets are typically composed of several hours of
audio [56]. For recordings of sound environments, labels of perceived pres-
ence for the sources of interest over time could be manually annotated by
a small panel. However, this process is time-consuming and thus not scal-
able, as extending the scope of the study to include additional sources or
environments requires repeating the annotation process for all new data. Al-
ternatively, sound scenes can be automatically annotated with an acoustic
indicator correlated with the perceived presence of sources. The predictions
of trained deep learning models are at best of the same quality as that of
labels in the training dataset. Thus, to justify automatic annotations, they
should correlate better with the perceived time of presence of sources than
state-of-the-art acoustic indicators in Section 1.3 such as the TFSD indica-
tors [1]. As a result, training a deep learning model with presence labels
extracted using acoustic indicators that can be computed on third-octave
sensor data has no benefit compared to directly applying such indicators
to the prediction of perceptual attributes. However, only the training pro-
cess requires presence labels to optimize model parameters. An automatic
method for annotating source presence can therefore be based on any infor-
mation available on the training corpus, even if equivalent information is not
available when applying the learned model to sensor data at evaluation.

In this context, sound scene simulation tools provide a great level of
control over the composition of sound scenes by design, and thus ground
truth knowledge about the physical activity of sources of interest. From this
information, a robust and efficient perceived source presence indicator can
be derived to automatically annotate a large training dataset.

Figure 2.1 shows the sound scene construction process for the two main
simulation libraries available: simScene [57] and Scaper [58]. Scaper and the
replicate mode of simScene function similarly: scenes are simulated based
on an input scenario describing the background and event activity of sources
of interest over time. Background sources are active for the duration of
the sound scene. The first background (class traffic in Figure 2.1) consti-
tutes the reference in terms of sound level. Additional background sources
(class crowd in Figure 2.1) are associated with an event-to-background ratio
(EBR) corresponding to the emergence of the event compared to the overall
background activity (expressed in dB), and from which the corresponding
extracts are scaled.
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Sampling and scaling of audio extracts

Source contribution channelsMixed sound scene

Background 1: Traffic

Background 2: Crowd

Event 1: Car

Event 2: Voice

Event 3: Birds

Figure 2.1: Overview of the scene simulation process from scenarios and a
database of isolated source samples.

Event sources are defined by onset and offset timestamps, as well as an
event-to-background ratio with all combined background sources as refer-
ence. From the input scenario, source contributions are pseudo-randomly
sampled from a database of isolated samples, which comprises extracts of
isolated occurences of a specific source. The simulation process outputs con-
tributions of each source as separate channels, and combines them additively
to produce the sound scene. For sound event detection (SED) datasets cre-
ation, Scaper additionally allows data augmentation on the isolated samples
database with pitch shifting and time stretching techniques.
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Figure 2.2: Map of the soundwalks and 19 recording locations in the 13th
district of Paris presented in [1]. Sound levels shown on the soundwalk path
are interpolated from measurements at each location.

The generate mode of simScene is oriented towards creative use cases,
as it allows the generation of original scenarios. The term scenario refers to
an ensemble of all properties characterizing sounds in polyphonic scenes, in-
cluding the taxonomy of sources and structural parameters describing their
activity [59]. Instead of scalar onset-offset and event-to-background ratio
values, the simulation process in this mode is given the mean and standard
deviation of a normal distribution for each source and simulation parame-
ter. Original scenarios are composed by pseudo-randomly sampling these
distributions. This process can be seen as performing data augmentation on
a reference (average) sound scene scenario by applying random variations
to its defining high-level properties, where these variations are controlled to
remain plausible. Conditioning distributions on ambiances, i.e. inferring a
different set of reference sound scenes as well as variation range for each cat-
egory of sound environment, then results in a large dataset of sound scenes
covering diverse scenarios encountered in urban environments.

The capacity of a deep learning model to generalize to possible urban
sound environments depends on the quality of the training data. In other
terms, the simulated scenes composing the training dataset should contain
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diverse scenarios covering as many real-life situations as possible while re-
maining within the scope of plausible environments. To do so, the corpus
of 74 recordings proposed in [1] is taken as a reference for the parameters of
the scenario generation process.

This reference corpus, on which the TFSD indicator described in Sec-
tion 1.3 is developed, was gathered as part of the GRAFIC project during
four soundwalks in the 13th district of Paris. Sound scenes ranging from 55 s
to 4.5 min in duration were recorded at 19 locations (P1-19) with diverse en-
vironments as shown in Figure 2.2. These recordings were classified in [60] as
representing quiet street, noisy street, very noisy street and park ambiances.

2.2 Subjective annotations

2.2.1 Motivation

The capabilities of simScene’s generate mode are useful for creating large
datasets with diverse ambiances and polyphonic levels, but raise some con-
cerns about perceptual responses produced by simulated scenes. A deep
learning model will be trained to predict perceptual descriptors on simu-
lated scenes, then applied to real-life sensor data derived from recordings.
There is thus a need to ensure that intrinsic differences between simulated
and recorded scenes do not result in significant changes in terms of percep-
tion, both overall and in terms of active sound sources. Such differences exist
at two levels: the additive composition of simulated scenes does not fully re-
flect the propagation and interactions of sound sources in real-life conditions,
and the scenarios, although derived from existing environments, are original.
The effect of the first factor on perception can be studied by manually an-
notating reference recordings, and using the resulting scenarios to simulate
sound scenes with almost identical content in terms of source activity. Dif-
ferences between perceptual evaluations of paired recorded-replicated sound
scenes on individual descriptors can then be investigated. Assessing the im-
pact of the second factor is less straightforward, because there is no direct
correspondence between real-life and generated scenarios to compare quan-
titative assessments on. Evaluation should thus be conducted on a larger
corpus to assess potential changes in the behavior of perceptual quantities.

Furthermore, the performance of an indicator proposed for the auto-
matic annotation of perceived source presence in simulated scenes has to
be evaluated with respect to subjective annotations of the time of presence.
Lastly, the quality of high-level attributes estimated from predictions of a
deep learning model as described in Section 1.4 should be evaluated in the
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same manner.
Addressing these concerns thus requires perceptual annotations on a cor-

pus of sound scenes. To this aim, a pilot study is first conducted with a
listening test on a limited corpus of simulated scenes, that leads to the propo-
sition of the perceptual time of presence annotation indicator presented in
Section 2.4 [61]. This study is followed by a second test with the same design
and objectives conducted on a larger simulated corpus [62], which is reported
in this document.

2.2.2 Listening test corpus

To fulfill the objectives described in Section 2.2.1, a corpus of 100 sound
scenes is constructed for the listening test. This corpus is composed of 6
recorded scenes, 19 replicated scenes and 75 simulated scenes. A duration
of 45 s is chosen for all sound scenes to reduce participant fatigue during the
listening test. Although many studies dealing with environmental acoustic
quality rely on acoustic measurements ranging from a few seconds [63, 64]
to 15 min [65, 66] and even to 80 min [67], stimuli between 30 s and 60 s are
often preferred for laboratory tests.

First, the 74 scenes in the reference corpus are manually annotated in
terms of traffic, human voice, and bird background and event activity. For
sound events, annotations include the onset and offset as well as the event-
to-background ratio (EBR). In the case of multiple sources active in the
background, one is taken as reference and the event-to-background ratio
for subsequent sources is also estimated. To do so, the recorded scenes
are replicated with simScene’s replicate mode from annotated event onsets-
offsets and initial guesses of the event-to-background ratios as inputs. Each
replicated scene is compared to the reference recording by informal listening
and the EBR for each sound event is adjusted until they correspond.

The 19 replicated scenes corresponding to one of the four soundwalks
in [1] are selected as part of the listening test corpus. 45 second segments
are selected such that they do not contain one single overwhelming event.
For 6 of the 19 replicated scenes (P1, P3, P4, P8, P15 and P18), the matching
45 second segments are extracted from the recordings and included in the
listening test corpus for paired analysis. These 6 locations represent all of
the 4 ambiances found in [60], with sound levels ranging from 63.9 dB SPL
to 79.4 dB SPL.

Original scenarios of simulated scenes are then generated with simScene’s
generate mode. As described in Section 2.1, the scenario generation tool
takes the first background source as reference, and samples an event-to-
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background ratio applied to subsequent backgrounds from a normal distri-
bution. For events of a given source, onsets are sampled successively from an
input distribution of inter-onsets. Similarly, the event-to-background ratio
is sampled independently for each event from a normal distribution. In this
study the input distribution parameters as well as the probability of appear-
ance are obtained for each source and ambiance by summarizing annotations
of the 74 recordings in the reference corpus. The source taxonomy is limited
to traffic, human voices, and birds as the main sources of interest in the es-
timation of pleasantness in Section 1.2, and because too few occurrences of
other sources are present in the reference corpus to extract meaningful statis-
tics. Each simulated sound scene thus contains at most six distinct source
contributions, corresponding to either the background or event activity of
one of the three sources in the taxonomy. The isolated samples database
is constructed from a subset of the LibriSpeech [68] corpus for voice events
and Freesound contributions for remaining sources. The isolated samples
database contains 8 min, 17 min and 37 min of background traffic, voice and
bird extracts respectively, as well as 3 min, 37 min, and 5 min of event traffic,
voice and bird extracts respectively. No neutral background noise is added to
simulated scenes, although several extracts in the isolated samples database
contain uncontrolled noise components. During the simulation process, ex-
tracts corresponding to sound events are faded in and out for 10% of their
duration to avoid unrealistic sudden cuts.

A fifth square ambiance is introduced with predominant voice activity.
Scenario generation parameters for this ambiance are derived empirically
from other ambiances as it is not represented in the reference corpus. For
other ambiances, the standard deviations of event inter-onsets and event-
to-background ratio distributions are increased to maximize the diversity
of generated environments. As this may lead to implausible scenarios, for
example with multiple events overlapping or overly loud birdsong, the realism
of all simulated scenes is informally checked. Each simulated scene is further
associated to a sound level sampled from a normal distribution conditioned
on the ambiance. A summary of the parameters conditioning the scenario
generation process is shown in Appendix A.

From these parameters, 200 sound scenes of 45 s each are first simulated
with equal distribution over the five available ambiances (resp. park, quiet
street, noisy street, very noisy street and square). 75 scenes are then selected
as part of the listening test corpus. To do so, the indicator presented in Sec-
tion 2.4.1 and initially proposed in [61] provides an estimate of the perceived
time of presence of sources, between 0 (no presence) and 1 (presence 100%
of the time). This indicator is computed for each of the 3 sources of interest,
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and the resulting values are treated as coordinates in a 3-dimensional space.
The 75 scenes that maximize the minimum pairwise Euclidean distances in
this space, i.e. the 75 most isolated scenes, are selected. Figure 2.3 shows
the distribution of selected simulated scenes. Note that not all ambiances
are represented by the same number of simulated scenes in the final listening
test corpus. Playback sound levels range from 46.6 dB SPL to 77.1 dB SPL
over the 75 simulated scenes.
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Figure 2.3: Time of presence of sources estimated by the indicator proposed
in Section 2.4 for the 75 simulated scenes in the listening test corpus.

2.2.3 Subjective annotation procedure

Perceptual assessments are gathered on the corpus constructed in Section 2.2.2.
During the listening test, participants are asked to evaluate each sound scene
on 8 perceptual attributes. Each attribute is quantized on 11-point semantic
differential scales (0-10). The first 4 descriptors are high-level attributes cor-
responding to the major and minor axes found in the first two dimensions of
the principal components analysis of soundscape quality descriptors in [22].
They are translated using terminology from [25] and presented in French:

• Pleasantness: Unpleasant - Pleasant (Désagréable - Agréable),

• Liveliness: Inert, amorphous - Lively, eventful (Inerte, amorphe - An-
imé, mouvementé),

• Interest: Boring, uninteresting - Stimulating, interesting (Ennuyeux,
inintéressant - Stimulant, intéressant),

• Calmness: Agitated, chaotic - Calm, tranquil (Agité, chaotique - Calme,
tranquille).

The overall loudness is also evaluated as it appears in several perceptual
models of soundscape quality:
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Figure 2.4: Screenshot of the Python interface presented during the listening
test.

• Overall loudness: Quiet - Noisy (Silencieux - Bruyant).

Additionally, to assess the perceived source activity 3 questions are presented
to the participants and evaluated on the same 11-point semantic differential
scales:

• Time of presence of traffic, voice and bird sources: Never - Continu-
ously (Jamais - Continuellement).

These time of presence assessments are referred to as TT,p, TV,p and TB,p for
traffic, human voice, and birds respectively in this study, where p denotes
a perceptual evaluation. The listening test is conducted in a laboratory
setting, and presented with a Python interface shown in Figure 2.4. The
depicted sound level of passing vehicles scale is omitted in the analysis, as it
is correlated to the perceived time of presence of traffic, and its potential is
limited in the framework developed in Section 1.4. Furthermore, participants
receive a short verbal introduction prior to the test to ensure that perceptual
attributes are well understood.

A total of 23 students aged from 22 to 23 years (16 male students and
7 female students) at Ecole Centrale de Nantes completed the test, all re-
ported normal hearing. All participants gave written consent prior to the
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experiment, and evaluations were further anonymized. Each participant only
listens to 50 of the 100 sound scenes to reduce hearing fatigue. They all evalu-
ate the 6 recorded and 19 replicated scenes, and 25 of the 75 simulated scenes.
The 25 scenes are chosen according to an incomplete block design [69], where
each group of 3 consecutive participants cover all 75 simulated scenes. Thus,
with 23 participants, the incomplete block design is not perfectly balanced:
50 of the 75 simulated scenes are evaluated by 8 participants whereas the
remaining 25 are evaluated by 7 participants. Participants first evaluate the
most quiet and loudest of the 6 recorded scenes, resp. P3 and P15 at 63.9 dB
SPL and 79.4 dB SPL, to allow them to calibrate their subsequent ratings.
The 48 remaining scenes are presented in random order. This allows us to
control ordering effects over participants, i.e. a potential bias introduced by
the hearing of previous scenes on the evaluation of the current scene. Fur-
thermore, participants can only listen to an acoustic scene once, and must
listen to the full extract and evaluate it on every attributes before proceeding
to the next. However, they are allowed to start evaluating the scene before
the end of the playback. The average duration of the test was about 45 min.

Each acoustic scene in the listening test corpus is associated with a sound
level in dB at which the scene would be heard in real-life conditions. Thus,
a calibration procedure is applied to ensure that sound scenes are heard
at the desired sound level by every participants. All participants listen to
sound scenes played through Beyerdynamics DT-990 Pro headphones. Fur-
thermore, the scenes are played with the same computer sound card and
software parameters, including Python libraries versions, sound card con-
figuration, and software volume. The calibration of the headphones was
carried out in a free field situation and consisted in characterizing the re-
lationship between voltage at the headphone input and the corresponding
binaural sound pressure. To do so, the following procedure was conducted
in a semi-anechoic chamber:

1. A pink noise generator is set at an arbitrary level and its output RMS
voltage Vgen is measured.

2. Small DPA 4060 binaural microphones are set at the entrance of the ear
canals of a human participant [70]. The pink noise generator is input
to the headphones, placed over the head of the participant. The RMS
voltage at the output of the binaural microphones Vbin is measured.

3. The headphones are removed, and the generator input to a Genelec
1031A loudspeaker placed at a distance of 1 m from the participant’s
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Figure 2.5: Measurements and linear model of the playback sound level of
Beyerdynamics DT-990 Pro headphones (Lhead) as a function of input pink
noise electrical level (log(Vgen)).

head. The loudspeaker’s amplification is tuned until the same RMS
voltage Vbin is measured at the output of the binaural microphones.

4. The head is replaced by a class 1 sound level meter measuring the
sound level Lhead (in dB) of the loudspeaker. This corresponds to the
binaural sound level produced by the headphones for an output voltage
of the pink noise generator Vgen.

By repeating this procedure for different settings of the generator level,
the relation between the logarithm of the generator output voltage and head-
phones playback sound level in dB is obtained in Figure 2.5. This relation
is approximated as a linear function:

Lhead = 1.70 · 20log10 (Vgen) + 94.7 (2.1)

To complete the calibration for the listening test, a pink noise extract
with RMS amplitude Lnum (amplitude in the [−1, 1] range) is played on the
desired computer and the RMS voltage at the output of the sound card,
equivalent to Vgen, is measured. Again, a linear relationship between Vgen
and Lnum is obtained for this hardware and software configuration. From
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Table 2.1: Mean differences of perceptual assessments (resp. Pleasantness,
Liveliness, Overall Loudness, Interest, Calmness, Time of presence of Traffic,
Voices, and Birds) between recorded and replicated sound scenes. Significant
differences as per a Wilcoxon signed-rank test are shown in bold (n=23,
p<0.05)

P L OL I C TT,p TV,p TB,p
P1 0.43 -1.65 -1.04 0.43 0.13 0.39 -2.09 0.61
P3 0.26 -0.43 0.30 -1 0.30 1.04 -4 0.22
P4 0.91 0 -1.83 0.48 1.30 -5.22 1.43 0.04
P8 0.26 -1.65 -0.87 -0.96 0.65 -0.91 0.09 -1.43
P15 -1.35 0.52 0.52 -1.17 0.09 0.13 1.96 -2.74
P18 1.13 -0.30 -1.17 -0.43 1.39 -1.83 0.83 1.30

these two models, a scaling factor is applied to each sound scene so that its
RMS amplitude Lnum results in the expected sound level Lhead.

Subjective assessments obtained during the test are pre-processed by
conducting an outlier detection procedure, where the mean and standard
deviation of assessments for each of the 8 perceptual attributes and 100
sound scenes is computed. Participants with more than 10% of assessments
differing from the mean by more than 3 standard deviations are removed
from the study. This method does not evidence any outlier participant for
this test.

2.3 Perceptual validation of simulated acoustic scenes

2.3.1 Simulated scene construction

The effect of the simScene simulation process by additive combination of
isolated sound sources is first studied. To this aim, perceptual assessments for
the 6 pairs of recordings and corresponding replicated scenes in the listening
test corpus are compared. For individual locations, Table 2.1 shows the mean
differences of subjective attributes evaluated on 0-10 semantic differential
scales by the 23 participants (n=23). Statistically significant differences in
assessment distributions are computed with Wilcoxon signed rank tests [71]
and shown in bold. This statistical test relies on the signs of differences
between paired assessments and is non parametric. However, it ignores zero-
differences in paired samples, commonly found when comparing quantities
evaluated on discrete scales. Thus, Pratt’s modifications of the test [72] are



46

further implemented to address this issue by randomly assigning a sign to
zero-differences.

For all studied locations, the mean paired differences in high-level at-
tributes is lower than 2 points. Although some statistically significant dif-
ferences are found between paired assessment distributions, no consistent
pattern emerges over the addressed locations. Furthermore, statistically sig-
nificant differences in high-level attribute assessments can sometimes be ex-
plained by corresponding discrepancies in the perception of sound sources.
For example, in the P1 location the perceived time of presence of human
voices is higher for the replicated scene by 2.09 points on average. This dif-
ference is reflected in liveliness assessments for this location (-1.65 points),
which is expected as both attributes are known to be correlated [1]. Simi-
larly, the difference in perceived traffic activity in the P4 location translates
to lower overall loudness and higher calmness.

In terms of perceived sound sources, high discrepancies are found that
can be attributed to errors in the annotation and replication process. In the
recorded scene for the P4 location, background traffic activity varies along
time: it is louder in the first half of the scene than in the second half. This
activity was annotated as a background source associated with a constant
sound level throughout the scene. As a result, background traffic is louder
for about half the duration of the replicated scene than it is in the original
recording, which results in a 5.22 point increase in the perceived time of
presence of traffic. A similar annotation issue for background voice activity
explains the 4 points difference in the perceived time of presence of voices
in the P3 location. Smaller statistically significant differences could also be
attributed to the choice of isolated samples in the replication process. These
samples are chosen semi-randomly according to annotations on a high-level
source taxonomy (traffic, voice, and birds). In this study, for voice events no
distinction is made between infant or adult speech, or between shouts and
conversations. All share a common class in the isolated samples dataset,
which is composed of samples from a database of recordings of read texts
with generally neutral expressiveness. Similarly, traffic events are annotated
regardless of the types of vehicles.

To further assess the effect of the replication process on overall percep-
tion, a principal components analysis is carried out on assessments of the five
high-level attributes (resp. pleasantness, liveliness, overall loudness, interest
and calmness) for the 6 recorded and 19 replicated scenes (n=25, see Sec-
tion 2.3.2 for details). Individual assessments for paired recorded and repli-
cated scenes are projected onto the resulting perceptual space. Figure 2.6
shows the distribution of projected assessments on the first two principal
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Figure 2.6: Biplot of the principal components analysis of average assess-
ments for the 5 high-level perceptual attributes on the 6 recorded and 19
replicated scenes (n=25). Arrows indicate differences between projections
of assessments for the recorded (base) and replicated (head) scenes of each
location. For the P1 location ellipses show the distributions of individual
assessments.

components for the P1 location as ellipses, where the center is the projected
mean and axes represent standard deviations. Similar projections for the
other 5 locations are available in Appendix B. For the 6 investigated lo-
cations, distributions have large intersections. This proximity confirms the
perceptual likeness of replicated scenes compared to their reference record-
ings in diverse ambiances.

2.3.2 Scenario generation

Sound scenes simulated by simScene’s generate mode further differ from
recordings as their scenarios are pseudo-randomly generated. In this case
no paired comparison with recordings is possible. Assessing the effect of
scenario generation on perception is thus done by studying the behaviors
of perceptual attributes and potential relationships among them. To do so,
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Figure 2.7: Biplot of the principal components analysis of average assess-
ments for the 5 high-level perceptual attributes on the 6 recorded and 19
replicated scenes (n=25).

the perceptual space generated by assessments of the five high-level percep-
tual attributes (resp. pleasantness, liveliness, overall loudness, interest and
calmness) is investigated. Following [22], the perceptual space is obtained
by performing a principal components analysis (PCA) on arithmetic means
of assessments over participants. Individual assessments are obtained in the
range 0-10, and no standardization is applied to the data. Figure 2.7 and
Figure 2.8 compare the first two components obtained for the 6 recorded and
19 replicated scenes (n=25) and the 75 simulated scenes (n=75) respectively.
The perceptual space is similar for real-life and generated scenarios, although
a slight rotation of the overall loudness and pleasantness axes is visible be-
tween the two spaces. The variance explained by the first two components
is also similar for the two subsets, with 79.4% - 18.1% and 79.6% - 15.2%
respectively. Both the distribution of attributes in the perceptual space and
the variance explained by the main components are consistent with studies
on perceptual dimensions in the literature [22, 23]. Assessments for individ-
ual simulated scenes are projected onto the principal components space in
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Figure 2.8: Biplot of the principal components analysis of average assess-
ments for the 5 high-level perceptual attributes on the 75 simulated scenes
(n=75). Assessments of simulated scenes (active individuals) are projected
as dots, and recorded and replicated scenes (supplementary individuals) are
projected as crosses.

Figure 2.8 as dots, and assessments for recorded and replicated scenes are
projected as supplementary individuals and represented by crosses. The dis-
tribution of simulated scenes with generated scenarios covers that of scenes
with real-life scenarios. This demonstrate the sufficient diversity of generated
scenarios compared to the reference corpus of recordings.

On the whole listening test corpus, the relation between source activity
descriptors and high-level attributes is further investigated. Table 2.2 shows
the Pearson’s correlation coefficients between perceptual attributes with as-
sessments averaged over participants (n=100), with two-tailed significance
tests. The correlations are consistent with the literature for the pleasant-
ness, which is mainly influenced positively by birds and negatively by traffic.
However, no correlation is found between pleasantness and voice activity on
this corpus. This can be attributed to the nature of voice events in the iso-
lated samples database from which the simulation process constructs acous-
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Table 2.2: Pearson’s correlation coefficients between perceptual attributes
averaged over participants, resp. Pleasantness, Liveliness, Overall Loudness,
Interest, Calmness, Time of presence of Traffic, Voices, and Birds (n=100,
*: p<0.05, **: p<0.01)

P L OL I C TT,p TV,p TB,p
P 1 -0.53** -0.89** 0.66** 0.88** -0.76** 0.05 0.57**
L 1 0.76** 0.06 -0.78** 0.17 0.60** -0.36**
OL 1 -0.39** -0.96** 0.59** 0.17 -0.45**
I 1 0.35** -0.67** 0.38** 0.48**
C 1 -0.55** -0.24* 0.48**
TT,p 1 -0.35** -0.42**
TV,p 1 -0.21*
TB,p 1

tic scenes: most extracts are recordings of read english texts (audiobooks)
with overall neutral tone. The influence of voice events on pleasantness can
depend on its expressiveness, with differences between shouts, laughs, con-
versations, adult or infant voices [33]. This distinction has less effect on the
perceived liveliness of the scene, as shown by a high correlation value of 0.60
on this corpus. High correlations are also found between source activity de-
scriptors, particularly between traffic and bird sources (-0.42). This is also
found in in situ studies [1], and is due to the contents of specific ambiances.
For example, parks or pedestrian areas contain few traffic events but high
bird activity, while busy streets without vegetation may contain high traffic
and low bird activity.

As discussed in Section 1.4, this study focuses on pleasantness as the
main soundscape quality descriptor. In this context, the correspondence
between the expression of pleasantness from sound source activity descriptors
and perceptual models in the literature is verified. Multilinear regression
models of pleasantness are built from the overall loudness and the time of
presence of the three sources of interest. Model parameters are fitted on the
arithmetic mean of assessments over participants (n=100). Each of the 15
possible combinations (with 1, 2, 3 or 4 predictors) among the 4 predictors
is investigated, and for each combination a variance inflation factor (VIF)
check is performed, where a combination is considered valid if all predictors
verify V IF < 5. The criterion for selecting the best performing model is the
adjusted coefficient of determination of the fitted model (R2

adj). The best
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model with statistically significant parameter estimates (p < 0.05) is:

P̂1,p = 8.99− 0.67 OL− 0.15 TT,p + 0.08 TV,p + 0.12 TB,p (2.2)

where OL, TT,p, TV,p and TB,p are the overall loudness and time of pres-
ence of traffic, voices, and birds respectively. The F-statistic of this model
is F (4, 95) = 229 (p<0.0001) and the t-statistics (99 degrees of freedom) are
26.6, -15.5, -4.5, 2.9 and 4.8 for the intercept, OL, TT,p, TV,p and TB,p re-
spectively. As expected from correlation coefficients in Table 2.2, traffic and
bird sources have negative and positive contributions to pleasantness respec-
tively. However, a smaller positive contribution of voice activity is found in
this model despite the absence of direct correlation to pleasantness. Overall,
this expression of the pleasantness is close to perceptual models in the litera-
ture in Section 1.2, including studies relying on in situ questionnaires [1] and
laboratory experiments with recordings of sound environments [31]. These
results further confirm the adequacy of the proposed sound scene simulation
method.

2.4 Indicator for the automatic annotation of sim-
ulated datasets

2.4.1 Formulation

An indicator for the automatic annotation of perceived source presence in
simulated scenes is proposed within the framework of deep learning pre-
diction discussed in Section 1.4. This indicator should perform better than
other state-of-the-art acoustic indicators mentioned in Section 1.3 if it wisely
considers additional information available in simulated scenes.

Source contributions for each simulated scene are available in the form
of separate channels as discussed in Section 2.1. These contributions are
assumed to represent the ground truth, although some extracts from the
isolated samples database may also contain other sources or background noise
as they are recorded in real-life environments. Finely annotated corpora of
simulated scenes were previously introduced in environmental sound event
detection challenges [73]. The corresponding deep learning task consists in
predicting event onsets and offsets with precision in tens of milliseconds.
Physical source presence is trivially annotated in this case: the source is
considered present at time t if the energy around time t is greater than zero
in the corresponding channel.
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Figure 2.9: Lowest equal-loudness contour (dB SPL) in the ISO 226:2003
norm, taken as an absolute threshold of hearing curve.

However, the task investigated in the present study differs from this
paradigm and addresses perceptual presence instead. As discussed in Sec-
tion 1.4, this notion only makes sense at longer time scales of about 1 s. In
addition, perceptual presence implies that the source is heard within the mix-
ture. First, this may not be the case if its sound level is too low. The lowest
equal-loudness contour defined in the ISO 226:2003 norm [74] and shown in
Figure 2.9 is thus regarded as a hearing threshold and applied to each source
contribution independently, with the equivalent sound level associated to the
scene as reference. This hearing threshold curve is not fully accurate as it
assumes harmonic signals, but it provides a lower bound in case of sound
objects with full-band energy. Second, in polyphonic environments a source
s may be masked by other events simultaneously occurring. Accounting for
interactions between individual sound sources in the mix is thus necessary.

This problem is related to the characterization of mechanisms of audi-
tory attention and the salience of sound events within an environment, which
have been the subject of extensive research [75, 76]. Typical approaches view
a sound scene as an ensemble of auditory streams with defining acoustical
properties (e.g. different sources). The attention switches between streams
over time through bottom-up and top-down mechanisms, respectively based
on the saliency of auditory streams and voluntary attention. The authors of
[77] propose a method for computing saliency maps of sounds from time-
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frequency amplitudes and variations (contrast). In [78], time-dependant
saliency scores are obtained by applying binary time-frequency masks cor-
responding to auditory streams to this saliency map of the mixed sound
scene. The saliency scores are input to a model simulating auditory attention
switching. In [79] a more complex saliency map is proposed that specifically
exploits the temporal properties of sounds, with features such as the enve-
lope, pitch and bandwidth. The authors of [80] apply a similar approach to
characterize attention for two sound scenes heard simultaneously.

Although attention mechanisms naturally occur in listening experiments,
the concept of perceptual source presence investigated here is not explic-
itly constrained to a single active sound object at a given time. Relevant
time-dependant saliency scores could still be derived from separate streams
of sound source contributions. However, for the purpose of simplicity and
control, this study instead addresses a simplified context of active listening
by the passer-by of the sound environment. A new indicator is thus devel-
oped that solely addresses the audibility of components in polyphonic scenes.
Specifically, the indicator relies on the local emergence of sound sources to
roughly approximate auditory masking effects.

Consider a polyphonic sound object composed of an harmonic at 125 Hz
and a stationary noise component. Figure 2.10 illustrates the spectral con-
tent of both components for white and pink noise and for signal to noise
ratios (SNR), i.e. emergence of the harmonic signal, of −15 dB and 15 dB.
In cases (b) and (d) where the SNR is 15 dB, both components can be heard
in the mix. However, when the SNR is −15 dB the harmonic is heard with
white noise (a) but not with pink noise (c). This points to limitations in
the capacity of the full band emergence to describe the perceived presence of
a source, which compares sound levels aggregated over the range of audible
frequencies.

A real-life example of this phenomenon is the simultaneous activity of
traffic and bird sources. If the traffic source has low energy in high frequen-
cies, the bird source will likely be heard despite low full-band emergence.
Conversely, the same traffic source with an added high-frequency component,
for instance braking sounds, can mask the bird source. A source masking
model should thus be defined from the emergence in individual frequency
bands as opposed to the full-band emergence. However, using emergences
on high-resolution fine-band spectra is not straightforward, as it requires
accounting for critical bands where a locally harmonic signal masks com-
ponents in surrounding frequencies [81]. Here, an indicator based on the
third-octave emergence is instead proposed. The emergence of source s is
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Figure 2.10: Spectra of harmonic and noise components in polyphonic signals
for different signal to noise ratios and noise colors. The harmonic component
is perceptually masked only in (c).

defined as:
∆Ls (t, f) = Ls (t, f)− Ls̄ (t, f) (2.3)

where Ls is the sound level of source s, Ls̄ is the sound level of all other
sources combined by adding the corresponding channels in the time domain,
and t and f refer to 1 s frames and third octave spaced frequency bands
respectively. First, third octave bands where the source of interest s is
emergent are selected by applying a threshold α on ∆Ls (t, f), under which
the source is considered as completely masked:

1∆Ls(t,f)>α (2.4)

where 1 denotes the indicator function, i.e. 1∆Ls(t,f)>α returns 1 if ∆Ls(t, f) >



55

α and 0 otherwise. Then, on a given 1 s time frame the source is considered
present if the average emergence of third octave bands selected by eq.2.4 is
greater than a threshold value β:

1

∑Nf

f=1 ∆Ls(t, f)1∆Ls(t,f)>α∑Nf

f=1 1∆Ls(t,f)>α

> β

 (2.5)

where Nf is the number of third octave bands. It is expected that β should
be greater than α, thus more restrictive, as otherwise eq. 2.5 returns 1 if
eq. 2.4 returns 1 for at least one third octave band. Note that the average
is taken over logarithmic sound levels, thus it cannot be associated to a full
band sound level.

This binary source presence indicator annotates 1 s frames in simulated
scenes to train a deep learning model in Chapter 3. However, an estimation of
the time of presence is necessary as part of models of high-level perceptual
attributes. Here, the estimated time of presence for source s, designated
T̂s(α, β), is obtained by averaging presence labels given by eq.2.5 over time:

T̂s(α, β) =
1

Nt

Nt∑
t=1

1

∑Nf

f=1 ∆Ls(t, f)1∆Ls(t,f)>α∑Nf

f=1 1∆Ls(t,f)>α

> β

 (2.6)

where Nt is the number of 1 s frames in the sound scene.
The α and β parameters of the model are optimized so that the correla-

tion between T̂s(α, β) and the perceived time of presence Ts,p is maximized.
To do so, the optimization criterion is the average Pearson correlation coef-
ficient r between both variables averaged over all Ns = 3 sources:

αopt, βopt = arg max
α,β

1

Ns

Ns∑
s=1

r
(
Ts,p, T̂s(α, β)

)
(2.7)

Optimal values of α and β are found via grid search with α, β ∈ [−20dB, 10dB]
by steps of 1 dB. On the 19 replicated scenes and 75 simulated scenes of the
listening test corpus annotated in Section 2.2.3, optimal values are found
as α = −14dB and β = −7dB. As expected, β is greater than α, which
justifies the interest two separate thresholds compared to only α. The same
optimisation process was previously carried out on a similar dataset in [61],
with different optimal values of α = −6dB and β = −5dB. However, the
optimisation criterion is found to be very stable to changes in both parame-
ters. This is illustrated by Figure 2.11 on the current listening test corpus.
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Figure 2.11: Average Pearson correlation coefficient between the proposed
time of presence estimation T̂s(α, β) and subjective annotations as a function
of α and β values.

The proposed source presence indicator suffers from limitations due to
its simplicity. First, the α emergence is applied independently on each time
frame and frequency band. Thus, spectral and temporal masking effects
where a component with locally high energy can mask other components
in surrounding frequencies and time frames respectively, are not explicitly
taken into account. In the case of temporal masking, this issue is attenuated
on third octave representations: temporal masking typically occurs on scales
shorter than 100 ms, whereas the proposed indicator is defined on frames of
1 s of audio. Similarly, third octave bands attenuate the influence of spectral
masking by averaging information over large bandwidths, particularly in high
frequencies. Also, the proposed approach only models energetic masking as it
is based on sound level differences, whereas informational masking, i.e. the
masking of information within a source by a simultaneously active source
with similar components, is not represented.

Second, time of presence estimations T̂s(α, β) are obtained by averaging
presence labels over time. This assumes that the impact of a sound event on
the perceived time of presence does not depend on its time of occurrence, and
that no interaction exists between subsequent events from different sources.
A more complete model would estimate the time of presence as a weighted
average of presence labels with varying weights along time. Alternatively, a
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recurrent process could better account for the impact of the time of occurence
of events, both independently and in the context of other source activity
within the scene. Here, the two parameters of the proposed indicator are
optimized on a small corpus of 94 sound scenes. The number of parameters
is thus deliberately limited to avoid overfitting on the available subjective
annotations. However, because of these simplifications, the validity of the
proposed indicator with found optimal parameter values is not ensured for
different scene duration. The scope of validity of this study is therefore
limited to 45 s sound scenes.

2.4.2 Evaluation

The performance of the proposed time of presence indicator T̂s(α, β) is first
evaluated by its relation to the perceived time of presence for traffic, voice
and bird sources, as well as high-level perceptual attributes annotated in
Section 2.2.3. To do so, it is compared to state-of-the-art acoustic indicators
presented in Section 1.3. The following acoustic indicators recurring in mon-
itoring applications or models of soundscape quality are computed on from
the mixed sound scene using the Matlab ITA-toolbox [82]:

• Z-weighted Leq and A-weighted LAeq equivalent sound levels in dB and
dBA respectively.

• L10, L50 and L90: 10th, 50th and 90th percentiles of the Z-weighted
sound level, in dB. These indicators are associated to the sound level
of emergent events, the overall sound level, and the sound level of
background sources respectively.

• LA50: 50th percentile of the A-weighted sound level in dBA, as an
alternative to the L50.

• L50,1kHz: 50th percentile of the Z-weighted sound level for the 1 kHz
frequency band in dB, also associated to the overall sound level of the
sound scene.

• LA10 − LA90: Emergence indicator in dBA, included in the pleasant-
ness prediction model presented in [31].

• TFSD4kHz(1/8s) and TFSD500Hz,1s: Time and Frequency Second Deriva-
tive proposed in [1] as descriptors of bird and voice activity respectively.

In the case of simulated scenes, ground truth source contributions are
outputs of the generation process. Additional source-specific indicators are
derived from this information:
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• Leq,s: Equivalent sound level for source s in dB.

• ∆Ls: Full-band emergence of source s in dB, taken as the difference
between the sound level of source s and that of all other sources.

The s subscript in these indicators, as well as in the proposed T̂s(α, β) time
of presence estimation is replaced with T , V or B for traffic, voice and bird
sources respectively.

Table 2.3: Pearson’s correlation coefficients between physical and perceptual
(resp. Pleasantness, Liveliness, Overall Loudness, Interest, Calmness, Time
of presence of Traffic, Voices, and Birds) indicators (n = 92).

P L OL I C TT,p TV,p TB,p
LAeq -0.86** 0.68** 0.92** -0.37** -0.88** 0.66** 0.07 -0.41**
LA50 -0.84** 0.67** 0.91** -0.33** -0.87** 0.63** 0.06 -0.35**
Leq -0.88** 0.67** 0.91** -0.44** -0.88** 0.71** 0.06 -0.46**
L10 -0.87** 0.65** 0.90** -0.44** -0.86** 0.71** 0.06 -0.47**
L50 -0.89** 0.65** 0.92** -0.43** -0.89** 0.71** 0.03 -0.44**
L90 -0.86** 0.68** 0.92** -0.39** -0.89** 0.67** 0.07 -0.40**

L50,1kHz -0.88** 0.69** 0.92** -0.42** -0.89** 0.73** 0.08 -0.50**
L10 − L90 0.13 -0.18 -0.24* -0.06 -0.22* -0.01 -0.01 -0.09

TFSD500Hz,1s 0.07 0.41** 0.11 0.28** -0.15 -0.39** 0.74** -0.17
TFSD4kHz,1/8s 0.52** -0.43** -0.49** 0.41** 0.52** -0.54** -0.18 0.63**

Leq,T -0.58** 0.20 0.46** -0.46** -0.42** 0.71** -0.16 -0.36**
Leq,V -0.17 0.50** 0.31** 0.08 -0.37** -0.04 0.71** -0.40**
Leq,B 0.27* -0.04 -0.11 0.35** 0.18 -0.24* -0.04 0.71**
∆LT -0.45** -0.11 0.26* -0.59** -0.22* 0.66** -0.51** -0.26*
∆LV 0.04 0.50** 0.17 0.35** -0.20 -0.38** 0.59** -0.01
∆LB 0.21* -0.25* -0.26* 0.08 0.25* -0.25* -0.10 -0.03

T̂T (αopt, βopt) -0.53** -0.05 0.35** -0.57** -0.29** 0.81** -0.39** -0.37**
T̂V (αopt, βopt) 0.12 0.44** 0.05 0.35** -0.11 -0.39** 0.81** -0.16
T̂B(αopt, βopt) 0.56** -0.30** -0.46** 0.55** 0.51** -0.57** -0.08 0.91**

Table 2.3 shows the Pearson correlation coefficients between acoustic in-
dicators and the arithmetic mean of perceptual assessments on the listening
test corpus, with two-tailed significance tests (*:p<0.05, **:p<0.01). Ground
truth source contributions are unknown for the 6 recorded scenes, thus the
proposed indicator T̂s(α, β), the source sound level Leq,s and emergence ∆Ls
cannot be computed and these scenes are removed from the study for fair
comparison. Additionally, two simulated scenes where only one of the three
sources of interest is active yield infinite emergence values. These scenes are
removed from the study to ensure numerical stability of emergence indica-
tors. As a result, this analysis is conducted on n = 92 sound scenes among
the 100 in the listening test corpus.
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Even if it considers each source independently, the source-specific sound
level Leq,s correlates consistently well with the perceived time of presence for
the three sources of interest (r=0.71). The full band emergence ∆Ls how-
ever fails to describe the perceived bird activity (r=-0.03). This is consistent
with observations in Section 2.4.1 where masking depends on the spectral
distribution of energy. The proposed indicator T̂s(αopt, βopt) is correlated
to corresponding subjective assessments for the three sources, with r=0.81,
r=0.81 and r=0.91 for traffic, voice and bird time of presence respectively.
It also performs better than the state-of-the-art descriptors of voice and bird
activity, TFSD500Hz,1s (r=0.74) and TFSD4kHz,1/8s (r=0.63) respectively.
The T̂s(αopt, βopt) indicator correlates poorly with the perceived time of pres-
ence of other sources, indicating good discriminative properties similarly to
the TFSD variants. High negative correlation between the subjective activ-
ity of traffic and the predicted activity of bird sources (r=-0.57) is attributed
to the contents of sound scenes from different ambiances as discussed in Sec-
tion 2.3.2. Correlations between T̂s(αopt, βopt) and high-level attributes are
also expected, for example high negative (r=-0.53) and positive (r=0.56) con-
tributions of traffic and bird sources to pleasantness are found, and liveliness
is mainly correlated to human voice activity (r=0.44).

In the framework described in Section 1.4, the deep learning model is
trained to predict source presence resulting in the estimation of the T̂s(αopt, βopt)
indicator. These estimations are then input to a linear model in order to ob-
tain the pleasantness of the sound scene. This model can first be found by
direct optimisation over the assessments on the listening test corpus. To do
so, a multilinear regression model of pleasantness is constructed. Existing
perceptual models in Section 1.2 include the perceived overall loudness in
addition to the time of presence of traffic, voice and bird sources. In Ta-
ble 2.3, all overall sound level indicators achieve similar performance (r>0.9)
in describing the perceived overall loudness of the sound scene. The L50 is
the best performing indicator, and is taken as a predictor. The three other
predictors are composed of T̂s(αopt, βopt) for the three sources of interest.
The variance inflation factor (VIF) is computed for all combinations of pre-
dictors and only those verifying V IF < 5 are included in the same model
to avoid collinearities. On n=92 sound scenes, the best model obtained in
terms of R2

adj , i.e. adjusted coefficient of determination, is:

P̂1,ϕ = 16.74− 0.18 L50 + 1.01 T̂B(αopt, βopt) (2.8)

where ϕ indicates a model from acoustic indicators. The F-statistic of the
P̂1,ϕ model is F (2, 89) = 210 (p<0.0001) and the t-statistics (91 degrees of
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Table 2.4: Performance of baseline models for pleasantness prediction.

RMSE R2
adj r

P̂1,p 0.61 0.90 0.95**
P̂1,ϕ 0.83 0.82 0.91**
P̂2,ϕ 0.90 0.79 0.89**
P̂3,ϕ 0.91 0.78 0.89**

**: p<0.01

freedom) are 21.6, -15.8, and 3.8 for the intercept, L50 and T̂B(αopt, βopt)
coefficient estimates respectively. Contrary to perceptual models in Sec-
tion 2.3.2 and the literature, traffic and voice contributions as described by
T̂s(αopt, βopt) are not found to contribute significantly to the prediction of
pleasantness for this corpus. The absence of a traffic descriptor is attributed
to high correlations between the L50 and the perceived time of presence of
traffic TT,p in Table 2.3 (r=0.71). A possible explanation is the construc-
tion of simulated scenes, which only contain the three sources of interest.
Traffic activity thus contributes more to the overall sound level than in real
life situations: quiet ambiances such as parks and pedestrian streets are less
likely to have continuous traffic, while high sound levels in busy streets are
always due to traffic. Thus, the absence of other typically loud sources to
the taxonomy, such as construction work and other forms of transportation,
increases the correlation between sound level and traffic activity. Voice ac-
tivity is not significantly correlated to pleasantness in Table 2.3 (r=0.12),
resulting in its absence in the P̂1,ϕ model. This can also be explained by
the limited diversity of voice event sources in the simulated scene corpus:
voice events are primarily composed of recordings of read English with few
different speakers and mostly neutral expressiveness.

The P̂1,ϕ model is compared to baselines proposed in [31] and in [1],
referred to as P̂2,ϕ and P̂3,ϕ respectively. The P̂2,ϕ model does not explicitly
involve specific sound sources and instead considers the L10−L90 to describe
overall event emergence. The TFSD500Hz,1s and TFSD4kHz,1/8s appear in
the P̂3,ϕ as descriptors of voice and bird sources. Coefficients for both models
are re-optimized on the studied data for a fair comparison:

P̂2,ϕ = 18.67− 0.20 L50 − 0.02 (L10 − L90) (2.9)

P̂3,ϕ = 30.18− 0.16 L50,1kHz + 8.92 TFSD500Hz,1s

+ 2.99 TFSD4kHz,1/8s

(2.10)
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On the listening test corpus the L10 − L90 emergence in P̂2,ϕ does not
contribute significantly to the model (p>0.05), and the same overall perfor-
mance metrics are obtained with only the L50. Table 2.4 summarizes the
performance of compared models from acoustic indicators, compared to the
perceptual model found in Section 2.3.2. As expected, the perceptual model
P̂1,p yields the best prediction performance with a root mean squared error of
0.61. However, the error of other models remains below the average standard
deviation of pleasantness assessments for this experiment: 1.77 on a 11-point
scale. P̂1,ϕ outperforms both P̂2,ϕ and P̂3,ϕ, although its expression is likely
a result of the specific corpus of this study. Its relevance for pleasantness
prediction in real-life environments should thus be validated on a corpus of
more diverse sound scenes, in terms of ambiances and source taxonomy.

Alternatively, proposed indicators can be substituted in a state-of-the-art
perceptual model of pleasantness. In this case, estimations of the perceived
time of presence are obtained by applying an affine transformation to the
T̂s(αopt, βopt) indicator independently for the three sources. Optimizing these
transformations on the listening test corpus yields:

T̂T,p = 6.65 T̂T (αopt, βopt) (2.11)

T̂V,p = 6.46 T̂V (αopt, βopt) + 1.64 (2.12)

T̂B,p = 7.15 T̂B(αopt, βopt) + 2.58 (2.13)

ÔL = 0.18 L50 − 3.52 (2.14)

P̂4,ϕ = 7.11− 0.38 ÔL− 0.14 T̂T,p + 0.20 T̂V,p + 0.15 T̂B,p (2.15)

where coefficients in eq. 2.15 are not optimized, but taken from the per-
ceptual pleasantness model proposed in [31] instead. However, without
re-optimization of the perceptual model’s coefficients the performance of
this model is poor on the listening test corpus, on all evaluated metrics
(RMSE = 1.22, R2

adj = 0.62, r = 0.80) compared to all models with opti-
mized coefficients in Table 2.4. Replacing coefficients in P̂4,ϕ by those of the
perceptual model optimized on the listening test corpus in eq. 2.2 with the
same predictors yields RMSE = 0.96, R2

adj = 0.75 and r = 0.87. In terms of
pleasantness prediction performance this model is closer to baseline models
from acoustic indicators, but still yields slightly higher prediction errors.

Chapter conclusion

Constructing a database of isolated samples of sources of interest as well
as distributions of source activity extracted from annotated recordings al-
lows the generation of large datasets with diverse scenarios. The perceptual
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properties of simulated corpora, including the space induced by high-level
perceptual attributes and their relation to scene content, match those of
recordings. Simulated scenes can be annotated with labels of source presence
that correlate well with subjective assessments using the proposed indicator.
This allows the creation of large simulated corpora labeled for the perceived
source presence prediction task, with sufficient total duration and diversity
of scenarios and polyphonies to train predictive deep learning architectures.
In Chapter 3, these results lead to the design and training of deep learning
architectures on the target task.



Chapter 3

Prediction of the perceived
time of presence from sensor
measurements using deep
learning

Two deep learning architectures are proposed to predict
labels of perceived source presence from spectral repre-
sentations measured by acoustic sensors. These architec-
tures rely on a frame-independent or recurrent decision
processes respectively to produce predictions. Both mod-
els operate at faster than real-time speeds, and can thus
be applied to sensor networks in continuous monitoring
applications.
Evaluation is conducted on a large dataset of simulated
scenes automatically annotated in terms of perceived
source presence. In this setting, experiments show that
the proposed models predict presence labels with satisfy-
ing accuracy.

3.1 Introduction

The relevance of deep learning models is investigated for the task of predict-
ing the perceived presence of sources in the applicative context of continuous

63
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monitoring with sensor network measurements, and specifically in the Cense
project. Data from the Cense sensor network implemented in Lorient is com-
posed of third-octave spectra with 29 frequency bands in the [20Hz, 20kHz]
range and information aggregated on 125 ms (fast) temporal frames. On the
other hand, the indicator proposed in Section 2.4.1 can automatically anno-
tate audio frames of 1 s in terms of binary (absent-present) traffic, voices,
and birds sources presence. The inputs and outputs of the task are thus con-
strained to textures of sensor measurements over 1 s, i.e. 8 frames of consec-
utive fast third-octave measurements, associated with presence labels. The
presence prediction task is formulated as a multilabel classification problem
where any number of sources within the taxonomy can be active simultane-
ously.

To the best of our knowledge, this task has not been specifically investi-
gated in the literature. However, it is related to several tasks actively studied
by the detection and classification of acoustic scenes and events (DCASE)
community1:

• Environmental sound classification (ESC), which consists in categoriz-
ing short monophonic excerpts of sound events within a taxonomy.

• Acoustic scene classification (ASC), which consists in classifying longer
extracts as ambiances or environments.

• Sound event detection (SED), which consists in predicting the onset-
offsets of specific sound events within monophonic or polyphonic sound
scenes.

Although the scopes of these tasks are different, they all require extract-
ing information about the contents of the audio signal in terms of active
sound sources and can thus be formulated similarly. Early approaches rely
on traditional machine learning tools such as support vector machines [83]
or Gaussian mixture models [84] together with carefully selected representa-
tions of the audio signal. These methods are outperformed by recent deep
learning approaches, with convolutional and recurrent networks as the most
popular model architectures [85]. Convolutional neural networks were first
proposed in the image processing community [86] to extract visual patterns
from images using groups of translation-invariant filters, in order to perform
object recognition. In environmental sounds, sources are often characterized
by time-frequency patterns in spectral representations of the signal. These
patterns can thus be efficiently identified by convolutional networks, leading

1https://dcase.community/



65

to state-of-the-art performances in classification tasks [87, 15, 88]. Recur-
rent neural networks regard the signal as a sequence of short frames, and
propagate information along time by updating a recurrent hidden state to
draw local predictions based on short-term and long-term context. Recurrent
architectures perform particularly well in event detection tasks [89, 90].

In terms of input audio signal representations, most approaches pro-
cess spectral transforms such as linear magnitude spectrograms, Mel spec-
trograms or Mel frequency cepstral coefficients (MFCC). These representa-
tions are computed on very short time scales, typically tens of milliseconds
with overlapping frames, and with sufficient frequency resolution to capture
modulations characterizing all sources of interest. The multilabel classifi-
cation task investigated here differs from the literature in this regard, as
the input representation is constrained to that measured by sensors of the
Cense network. These measurements are third-octave energies aggregated
on 125 ms non-overlapping frames. Sources characterized by modulations on
scales shorter than 125 ms or narrow high-frequency bands, such as birdsong,
may thus be difficult to identify. However, the current task does not intro-
duce constraints on the architecture of the deep learning model, which can
be inspired from existing approaches for classification or event detection.

3.2 Controlled dataset

A dataset is constructed for the purpose of training and evaluating deep
learning models on the prediction of the perceived presence of traffic, voices,
and birds sources. To allow automatic annotation with the T̂s(αopt, βopt)
indicator proposed in Section 2.4.1, this dataset is composed of sound scenes
simulated by simScene’s generate mode. Typical datasets for related tasks
range from a few hours to tens of hours in duration depending on the task [91,
92, 93, 56].

The deep learning dataset is composed of a development subset and an
evaluation subset. The development set is generally split into a training and a
validation subsets, respectively to optimize model parameters and to monitor
convergence and overfitting behaviors. The development set contains 400
sound scenes of 45 s each for a total duration of 5 h. The scenes are equally
distributed over the five ambiances (quiet street, noisy street, very noisy
street, park, square) in the taxonomy. Model performance is assessed after
training on the independent evaluation set, which contains 200 sound scenes
of 45 s each (total duration of 2.5 h).

The scene simulation process for this dataset retains the taxonomy of
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Figure 3.1: Architecture of the proposed convolutional neural network for
source presence prediction in 1 s textures of third-octave fast measurements.

ambiances and sound sources described in Section 2.2.2, as well as source ac-
tivity distributions extracted from the corpus of recordings in the GRAFIC
project from which scenarios are generated. The isolated samples database
from which scenes are constructed is different from that of the listening test
corpus, and contains 12 min 12mn, 49 min, and 73 min of background traffic,
voice and bird extracts respectively, and 32 min, 12 min, and 5 min of event
traffic, voice and bird extracts respectively. Yet, the origin of samples is sim-
ilar: all voice events are extracts of read English texts from the Librispeech
dataset, and other sound sources are represented by recordings selected in
the Freesound repository. Furthermore, the development and evaluation sub-
sets must be independent to ensure that metrics computed during evaluation
reflect the generalisation capabilities of the model. Thus, the isolated sam-
ples database is split in two parts. Two-thirds of available extracts for each
source are dedicated to simulating scenes in the development set only, and
evaluation scenes contain samples from the remaining one-third of available
extracts.

3.3 Architectures

3.3.1 Convolutional neural network

In the applicative context of continuous source presence prediction from
acoustic sensor network data, the proposed model should be limited in terms
of computational and memory complexity. In addition to their capacity at
extracting time-frequency patterns from audio spectra, convolutional neural
networks are uniquely suited to this purpose as filters in convolution layers
can be applied in parallel.
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The architecture of the proposed model is shown in Figure 3.1. It is
composed of four convolution layers with common kernel size 5x5 and 128,
64, 32 and 32 output channels respectively, and a fully connected layer with
output size 3. Each example processed by the model is an 8x29 input matrix
of third-octave measurements, associated to three ground truth output values
corresponding to the absence (0) or presence (1) of each source of interest in
the input spectrum. The inputs are not normalized so that the model may
include sound level information in the inference process.

The role of convolution layers is to extract time-frequency patterns from
the input representation that are relevant to solving the presence prediction
task, i.e. that characterize specific sound sources. The first convolution layer
applies a filterbank of 128 filters to the input third-octave spectrum. The
receptive field of filters is given by their kernel size of 5x5, thus filters in the
first layer have a receptive field of 5 temporal frames (625 ms) and 5 third-
octave bands. Here, no stride is applied during convolutions and the input is
zero-padded so that the layer’s output is of the same dimension (8x29), i.e.
convolutions do not change the sampling rate of the input representation.
The output of the first convolution layer is thus composed of 128 filtered
spectra referred to as channels. In following layers, for an input represen-
tation with M channels and an output representation with N channels, the
output is obtained by applying N independent groups of filters to the input.
Each group contains M filters each applied to a different input channel, and
a single output channel is obtained by summing the results. Formally, for
input channels hi−1

m and filters kimn, output channels hin are computed as:

hin =

M∑
m=1

kimn ∗ hi−1
m , n = 1, .., N (3.1)

Each subsequent convolution layer with kernel size K increases the receptive
field of the model by K − 1 in time and frequency. With 5 layers the total
receptive field of the convolution block is thus 17x17, although it is limited
in practice by the input size to 8x17, as examples only span 8 frames (1 s)
of signal. Each of the four convolution layers is followed by a leaky recti-
fied linear unit (LeakyReLU) activation of expression max(αx, x) applied
element-wise to the hidden states [94]. The α parameter is constant and
equals 0.01 in all experiments.

The output of the last convolution layer is flattened into a vector of
dimension 7424 and input to a fully connected layer. This final layer is a
linear projection from R7424 to R3 parametrized by a matrixW of dimension
3x7424 and a bias term of dimension 3. The role of this projection is to
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summarize information in the time, frequency and channel dimensions of the
convolution block’s output to predict three scalar values, each corresponding
to a source of interest (resp. traffic, voices, and birds). A sigmoid activation
is further applied to the output values to obtain predictions in the ]0, 1[ range,
which can be interpreted as probabilities for each source to be present in the
input representation. Powerful loss functions based on the negative log-
likelihood then guide the training process of the model (See Section 3.3.3 for
details). During evaluation, binary decisions on the presence of sources are
obtained by applying a threshold of 0.5 to each output value independently.
The corresponding source is considered present (1) on the 1 s time frame of
the input if the model outputs a value greater than 0.5, and absent (0) if the
output is less than 0.5. The model is fully deterministic and contains a total
of about 300 000 parameters.

3.3.2 Recurrent decision process

The convolutional neural network presented in Section 3.3.1 predicts the
presence of sources of interest on independent 1 s textures of acoustic data.
However, some event sound sources are characterized by activity on longer
time scales, particularly traffic-related events. Accounting for information
of past context in the decision process may thus help identify these events.
Recurrent neural networks are specifically designed to model this type of se-
quential relationships. In a simple recurrent layer, information is propagated
along time by adding a parametric recurrent connection to a fully connected
layer:

h
(i)
t = f(W

(i)
r h

(i)
t−1 +W (i)h

(i−1)
t + b(i)) (3.2)

where h(i)
t is the hidden state of layer i at timestep t, W i

r is the projection
matrix of the recurrent connection, W i is the projection matrix of the input
connection, f is a nonlinear activation function and bi is a learned bias term.
At each timestep, a new element of the input sequence is introduced to the
recurrent layer in order to update the hidden state, which is then processed
to produce an output for that timestep. Backpropagation through time of
the gradient during training is achieved by unrolling the network, that is
computing gradients of the loss function with respect to model parameters
at each timestep independently, then summarizing contributions along time
to obtain a single update per parameter.

Given that the transformation from t − 1 to t in the recurrent layer is
a linear projection defined by a matrix Wr, backpropagating one timestep
multiplies the gradient at time t by Wr to obtain the gradient at time t− 1.
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Backpropagating over a sequence of T timesteps thus implies that the gradi-
ent is multiplied by Wr T times, allowing recurrent cells to capture depen-
dencies in long sequences is limited [95]. If the recurrent projection matrix
Wr contains small weights, the gradient in early timesteps becomes too small
compared to that of last timesteps to have a significant impact on parameter
updates. This behavior is known as vanishing gradient and causes difficul-
ties in learning long-term dependencies in data sequences. Conversely, if Wr

contains large weights, the gradient in early timesteps explodes in value. As
a result the learning process may become unstable and model parameters
may fail to converge. The potential for vanishing or exploding gradients
within a recurrent model is formally measured by the spectral radius of the
recurrent projection matrix Wr, defined as the largest of its eigenvalues λ.
If maxi|λi| < 1 the model is prone to vanishing gradients, and maxi|λi| > 1
indicates a risk of exploding gradients, with both behaviors occuring expo-
nentially in O(nT ) where T is the total duration of the sequence.

The Long Short-Term Memory (LSTM) [96] is an alternative to the re-
current cell that solves vanishing gradients. To do so, it introduces a second
hidden state that is never directly transformed by a projection. Instead, the
output hidden states of the LSTM cell at time t are an additive combination
of the hidden states at time t−1 and the current input. Information is filtered
by three parametric gates (resp. input, forget, output). However, because
of the three gates the LSTM cell contains four times as many parameters
as a normal recurrent cell with the same hidden state dimension, and mem-
ory usage is further increased by the additional hidden state. These factors
result in a significantly higher computational complexity, which makes the
LSTM unsuitable in the current application.

The gated recurrent unit (GRU) [97] is introduced as a simplification
of the LSTM cell that conserves its gradient backpropagation stability. As
shown in Figure 3.2, the GRU cell only contains one hidden state and two
parametric gates controlling the propagation of information from the current
input (reset gate rt) and the combination of the current input with past
information (update gate ut):

ut = σ

(
Wu

(
xt
ht−1

)
+ bu

)
(3.3)

rt = σ

(
Wr

(
xt
ht−1

)
+ br

)
(3.4)

ht = ut�ht−1 + (1− ut)� fW (ht−1, rt � xt) (3.5)

where σ is the elementwise sigmoid function, ht and xt are the hidden state
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Figure 3.2: Information flow in a gated recurrent unit cell. The update
(blue) and reset (red) gates filter information from the current input xt and
recurrent state ht−1 to compute the hidden state ht.

and the input of the layer at time t respectively, and � denotes an element-
wise multiplication.

The architecture of the proposed convolutional neural network with re-
current decision using a gated recurrent unit is shown in Figure 3.3. The
network processes a sequence of T textures of dimension 8x29 corresponding
to 1 s of third-octave measurements, and outputs T predictions of source
presence, i.e. one for each timestep. Two consecutive textures in the input
sequence contain overlapping information for 875 ms as illustrated in Fig-
ure 3.4. At each timestep of the sequence, the model extracts information
from the input 1 s texture using the same block of convolution layers as the
first proposed model in Section 3.3.1. Flattened outputs of this block are
input to a single gated recurrent unit layer with a hidden state of dimension
128. A fully connected layer projects the recurrent hidden state at time t
to 3 output values. Again, a sigmoid activation is applied to these outputs
and presence predictions are obtained at evaluation by applying a threshold
value of 0.5. The model contains a total of about 3 million parameters.

3.3.3 Training procedure

The two proposed models, respectively the convolutional architecture in Sec-
tion 3.3.1 and the recurrent architecture in Section 3.3.2, are trained on the
development set described in Section 3.2. The dataset is split into training
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Figure 3.3: Architecture of the proposed recurrent neural network for source
presence prediction in 1 s textures of third-octave fast measurements (un-
rolled view). Parameters are shared along all timesteps.

and validation subsets containing 70% and 30% of the 400 simulated scenes,
thus 280 and 120 scenes respectively. For the proposed convolutional network
an input example consists in a 8x29 texture corresponding to 1 s of third-
octave fast measurements. To maximize the number of training examples,
1 s textures are extracted from simulated scenes with a hop (temporal step)
size of 125 ms. This process is illustrated in Figure 3.4. The total number
of 1 s textures in the training subset is thus about 105. This corresponds to
the number of training examples for the convolutional network, whereas the
recurrent network takes sequences of consecutive textures as input to learn
dependancies over time. The length of sequences processed by the recurrent
network is set to T = 16 in all experiments, as a result the recurrent network
is trained on about 6000 example sequences of 2.875 s each.

Outputs of the models are compared to the binary labels for the presence
of traffic, voices and, birds annotated by the T̂s(αopt, βopt) indicator on corre-
sponding 1 s textures. To do so, the loss function is the binary cross-entropy:

BCE(y, ŷ) = −
∑
s

yslog (ŷs) + (1− ys)log (1− ŷs) (3.6)

where s is the source, ys and ŷs are the target and predicted presence for
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0 Time (s)1
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Figure 3.4: Extraction of 1 s textures xn with 875 ms overlap from third-
octave measurements, input sequentially to the recurrent neural network.

source s where ys is binary and ŷs is in the ]0− 1[ range.
The binary cross-entropy loss is minimized using the Adam algorithm [98],

a popular stochastic gradient descent method. This algorithm iteratively ap-
plies small updates to model parameters from the gradient of the loss func-
tion as well as its first and second order moments, summarized over batches
of examples. Default Adam hyperparameters β1 = 0.9 and β2 = 0.999 are
taken in all experiments, and parameter updates are applied with a learning
rate λ = 0.0001. The batch size is 128 examples for the convolutional neu-
ral network, and 8 for the proposed model with recurrence to compensate
the sequence length of 16. Thus, both models require the same number of
training iterations to process the entire dataset.

Both models are trained for 20 epochs, i.e. iterations over the entire
training dataset. This corresponds to about 15000 total iterations of the
gradient descent algorithm. At the end of each epoch the loss is computed
on the validation subset to ensure that the model has not overfitted on the
training data. Figure 3.5 shows the evolution of the training and validation
losses for both proposed models. At the end of the training process, the
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training loss has converged for both models. The convolutional network (left)
quickly overfits as the validation loss starts increasing from epoch 6 while
the training loss still decreases. The state of the model at the end of epoch 5
is thus retained for evaluation. Similarly the model with recurrent decision
(right) overfits, although only from epoch 13 to the end of the training, which
can be explained by the higher complexity of this model. Parameters values
are taken at the end of epoch 12 for evaluation. Validation losses for the
two models have similar minimal values, respectively 0.148 and 0.131, and
similar overall evaluation performances are thus expected.
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Figure 3.5: Evolution of training and validation losses of the convolutional
(left) and recurrent (right) neural networks.

3.4 Evaluation

3.4.1 Source presence predictions

The performance of the two proposed models is first investigated on the eval-
uation dataset. The evaluation set is composed of 200 simulated scenes each
containing 344 1 s textures overlapping by 875 ms. The convolutional neu-
ral network processes each texture separately, whereas the recurrent neural
network processes a sound scene as a single sequence, thus its prediction at
time t summarizes information propagated from all previous textures. Ac-
curacy metrics are computed by comparing texture-specific predictions of
source presence to corresponding T̂s(αopt, βopt) labels (n=68800). Table 3.1
summarizes the prediction accuracy metrics, including overall accuracy and
true positive, true negative, false positive and false negative prediction rates.
Both deep learning models perform well with over 90% accuracy on all
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Table 3.1: Performance of the predictions of source presence by deep learn-
ing models trained with binary ground truth labels T̂s(αopt, βopt). Presence
metrics in % are computed for n=68800 1 s frames and time of presence met-
rics on n=200 45 s scenes. (TP: true positive, TN: true negative, FP: false
positive, FN: false negative)

Convolutional network All sources Traffic Voices Birds
Presence accuracy (%) 91.87 92.62 93.34 89.64

Presence TP (%) 90.76 89.98 94.46 87.55
Presence TN (%) 93.24 98.98 92.11 91.23
Presence FP (%) 6.76 1.02 7.89 8.77
Presence FN (%) 9.24 10.02 5.54 12.45

T̂s(αopt, βopt) RMSE 0.12 0.16 0.06 0.12
Recurrent network All sources Traffic Voices Birds
Presence accuracy (%) 93.67 96.15 92.96 91.90

Presence TP (%) 94.81 95.44 97.64 90.34
Presence TN (%) 92.26 97.86 87.84 93.09
Presence FP (%) 7.74 2.14 12.16 6.91
Presence FN (%) 5.19 4.56 2.36 9.66

T̂s(αopt, βopt) RMSE 0.09 0.08 0.08 0.10

sources, indicating that their low complexity is still sufficient to perform
the presence prediction task. The recurrent architecture improves accuracy
by almost 2% (91.87% to 93.67%) at the cost of higher computation costs
and number of parameters.

The recurrent network is more permissive on traffic and voice sources as
shown by higher false positive rates (1.02% to 2.14% and 7.89% to 12.16%)
and lower false negative rates (10.02% to 4.56% and 5.54% to 2.36%) for
the two sources. The false negative rate of traffic detection is lower for the
recurrent neural network than for the convolutional network, respectively at
4.56% and 10.02%. This indicates that including past context in the decision
process with parametric recurrence helps identify traffic events that typically
span several seconds. An increase in performance is also seen in bird pres-
ence prediction (89.64% to 91.90%), part of which may be due to the better
identification of traffic events that sometimes contain high-frequency com-
ponents mistaken for birds by the convolutional network. Still, the accuracy
is lowest for bird presence detection in both models. An explanation is that
the time and frequency resolutions of the input representation is too low for
some patterns characterizing bird activity to appear.
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Table 3.2: Pearson’s correlation coefficients between the time of presence es-
timated by averaging presence labels predicted by the proposed deep learning
model over time, and subjective annotations obtained during the listening
test. (n=94)

Source presence indicator Traffic Voices Birds
Convolutional network outputs 0.88** 0.87** 0.79**
Recurrent network outputs 0.84** 0.85** 0.83**

Ground truth T̂s(αopt, βopt) annotations 0.82** 0.82** 0.91**

**: p<0.01

T̂s(αopt, βopt) time of presence estimates are obtained by averaging source
presence predictions over 45 s in each simulated scene of the evaluation
dataset (n=200). The overall root mean squared error (RMSE) compared
to automatically annotated labels is higher with the convolutional network
(0.12) than with the recurrent network (0.09) on a 0-1 time of presence scale.
This is mainly due to the improved accuracy on traffic activity detection with
the recurrent model, which leads to an RMSE of 0.08 compared to 0.16.

3.4.2 Application to the estimation of subjective attributes

Predictions of perceived source presence are applied to the estimation of the
perceived time of presence of sources and pleasantness. To do so, predictions
are compared to subjective assessments obtained on the listening test corpus
in Section 2.2.3. The listening test corpus contains 6 recorded, 19 replicated
and 75 simulated sound scenes which are evaluated separately to assess the
generalisation capabilities of the trained models. Simulated sound scenes
in this set are similar in construction and content to the deep learning de-
velopment and evaluation datasets of Section 3.2. However, the simulation
process involves a different database of isolated samples. The performance
of deep learning models on this subcorpus should thus be similar to metrics
computed on the evaluation corpus. Replicated sound scenes are also gener-
ated by simScene, but they are characterized by more complex scenarios and
polyphonies, with additional sources not present in the training dataset (e.g.
planes, construction work) annotated in [60]. Lastly, performance metrics
computed on recorded sound scenes should provide an insight on whether
the trained models can correctly identify sound sources in real-life sound
environments.

Metrics of presence prediction accuracy cannot be computed on the lis-
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tening test corpus as subjective assessments are on the time of presence over
45 s. Estimations of the T̂s(αopt, βopt) indicator are therefore obtained by
averaging source predictions output by the deep learning architectures over
time. These estimations are compared to assessments of the perceived time
of presence using the Pearson correlation coefficient. Table 3.2 shows results
for the two proposed architectures compared to ground truth T̂s(αopt, βopt)
values automatically annotated from separate source contributions. These
labels are not available for the 6 recorded scenes, which are thus excluded
from the analysis for fair comparison with deep learning model predictions.
For the two proposed models, correlations between averaged presence pre-
dictions and the subjective time of presence is higher than for ground truth
annotations on traffic and voices sources. Although this is not expected, a
possible explanation is that the ground truth annotations do not correlate
entirely with subjective assessments (r=0.82), and some wrongful predic-
tions by the deep learning models are thus due to false labels. This would
indicate that the T̂s(αopt, βopt) indicator is too permissive on traffic sources
leading to high false negative rates in learned model predictions, and simi-
larly that it suppresses some voices activity leading to higher false positive
rates in the predictions. However, the correlation is lower for both learned
models on birds sources, which is expected as the corresponding accuracy is
lower than for other sources. Because the correlation between the annota-
tion and the subjective time of presence of birds is very high (r=0.91), bird
activity misdetected by the model is likely to have a negative impact on the
correlation. As previously noted in Section 3.4.1 the recurrent network has
more consistent results across sources, and it performs slightly worse than
the convolutional network on traffic and voices but better on bird activity.

Pleasantness predictions are then obtained by substituting the T̂s(αopt, βopt)
estimations of relevant sound sources to the best model from acoustic vari-
ables found in Section 2.4.2, i.e. the P̂1,ϕ in eq. 2.8. Thus, only predictions
of birds presence are taken into account. Pleasantness estimations from
outputs of the two proposed deep learning architectures are compared to
the P̂1,ϕ model from ground truth T̂s(αopt, βopt) annotations in Table 3.3.
Predictions from both deep learning models perform comparably to ground
truth source presence labels when applied to the pleasantness model. Inter-
estingly, pleasantness estimations are better on the replicated subset for all
three methods, despite the presence of additional sources that are not present
in simulated scenes on which deep learning models are trained. The two
deep learning architectures also yield higher pleasantness estimation errors
on recorded scenes than on simulated scenes. This is expected as recorded
scenes are more complex in terms of polyphonies and interactions between
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Table 3.3: Quality of pleasantness predictions on the listening test corpus
using deep learning models to predict source presence compared to ground
truth labels. The corpus is split in three parts: the 6 recorded scenes (Rec.),
the 19 replicated scenes (Rep.), and the 75 scenes with simulated scenarios
(Sim.).

Model Sub-corpus RMSE r R2
adj

P1,ϕ with convolutional
network outputs

All 0.87 0.90** 0.81
Rec. 1.04 0.90** 0.50
Rep. 0.70 0.92** 0.78
Sim. 0.89 0.89** 0.77

P1,ϕ with recurrent
network outputs

All 0.86 0.90** 0.81
Rec. 1.05 0.92** 0.50
Rep. 0.68 0.93** 0.79
Sim. 0.88 0.89** 0.78

P1,ϕ with ground truth
T̂s(αopt, βopt) labels

All 0.83 0.91** 0.82
Rep. 0.72 0.92** 0.79
Sim. 0.86 0.89** 0.79

**: p<0.01

sources. Still, the pleasantness root mean squared error on this sub-corpus
is about 1.05 for the two models, which is below the average standard de-
viation in individual assessments of 1.77 (see Section 2.4.2 for details). No
direct comparison with T̂s(αopt, βopt) labels is available on recordings and
metrics are computed on n=6 sound scenes only. While these results are
promising, evaluation on a larger corpus of subjectively annotated recorded
scenes would thus be necessary to conclude on the generalisation capabilities
of the trained models.

3.4.3 Application to sensor data in Lorient

The proposed deep learning models are applied to sensor data from the Cense
network in Lorient. Specifically, the time of presence of traffic, voices and
bird sources is estimated on the 20th of August, 2020 between 22h and 22h10.
Data from 37 sensors active during this time period is dynamically requested
from storage servers and processed by the deep learning architectures on a
remote computer. Figure 3.6 shows maps of the time of presence estimations
at sensor locations by the convolutional (top) and recurrent (bottom) neural
networks. Including data querying, the total computation time was about
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Always present
Never present
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Figure 3.6: Maps of predictions by the convolutional (top) and recurrent
(bottom) networks of the time of presence of traffic (left), voices (middle),
and birds (right), for data collected by the Cense network on the 20th of
August 2020 between 22h and 22h10.

1 min for the convolutional network and 3 min for the recurrent network.
Because of the data query format each sensor was processed sequentially.
Running time of presence estimation models on data servers would allow fully
parallelizing the processing of measurements from multiple sensors, further
reducing the computation durations significantly. The proposed approach
can thus be regarded as scalable in the context of continuous monitoring
with large-scale sensor networks.

The two architectures behave similarly on sensor data and simulated
scenes of the evaluation dataset in Section 3.4.3, as the recurrent network
predicts more traffic and voices activity and less bird activity compared to
the convolutional network. Overall, the predictions correspond to expecta-
tions, for example high voice activity on Franchet d’Esperey Bvd. (north-
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west on the map) and Jules Ferry Sq. (south) with several restaurants and
cafes, traffic on the main streets and bird activity matching green spaces
locations. However, quantitatively evaluating the quality of predictions is
difficult because sensors do not record waveform audio. Thus, no perceptual
assessments are available on sensor data. Recording and annotating acoustic
scenes in Lorient is necessary to fully evaluate the generalisation of trained
models.

In general, the performance of deep learning models is limited by the
quantity and quality of available training data. First, the quantity of train-
ing data refers to the amount of unique scenarios and spectral patterns in
the dataset. The quantity of scenarios that can be generated is theoretically
infinite, although redundancy is introduced by the relatively low size of the
isolated samples database, on which the diversity of spectral patterns in the
training dataset depends. Second, the quality of training data refers to both
its diversity and its closeness to sound sources and environments encountered
in the application. The scope of generated scenarios in simulated scenes is
validated in Chapter 2 for a district of Paris and are not expected to differ
significantly in the case of Lorient. However, the extracts composing the
isolated samples database for simulating sound scenes may not match all
sources of interest encountered in the studied environments. For example,
seagulls are an important and near omnipresent sound source in Lorient,
but are not represented in the isolated samples database. Wether seagulls
should be perceptually categorized as birds is debatable and lies beyond the
scope of the present study. In any case, they are characterized by unique
spectral signatures which the deep learning models should be trained to rec-
ognize. Furthermore, time-frequency structures characterizing each source
may vary in recordings made with different microphones due to their re-
spective impulse responses. Here, the samples are gathered from FreeSound
contributions and microphone types are unknown. Thus, ideally the isolated
samples database would be composed of recordings made in Lorient, with
the same microphones as in acoustic sensors.

Chapter conclusion

The developed deep learning models are able to predict source presence from
sensor data, with high accuracy and faster than real-time speeds. Pres-
ence predictions yield low errors on the estimation of the perceived time of
presence of sources of interest and pleasantness. However, these results are
obtained by comparison to subjective assessments on a corpus mostly com-
posed of simulated sound scenes. Simulated training data are constructed
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from a location-independent isolated samples database, where some sources
present in the target sound environments of Lorient are not represented.
Chapter 4 thus investigates methods to improve and evaluate the adaptabil-
ity of deep learning models, where knowledge about the specific application
environments is introduced.
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Chapter 4

Domain adaptation techniques
for robust learning of acoustic
predictors

In order to achieve the domain specialization of deep
learning architectures trained on simulated data to tar-
get environments, a new set of experiments is conducted
that investigates the relevance of transfer learning tech-
niques to improve the performance of time of presence
predictors.
To do so, latent audio representations are learned on a
pretext task from large amounts of sensor data. This
type of data has the advantage of corresponding to the
application domain, but cannot be labeled for the target
task.
A low-complexity recurrent decision architecture is then
trained on simulated data to predict source presence from
these robust latent representations. To do so, a second
simulated training dataset is constructed from source-
specific extracts recorded in sound environments of the
application.
Three pretext tasks are investigated, including two dis-
criminative supervised tasks and a regressive unsuper-
vised task. Evaluation conducted on manually annotated
on-site recordings demonstrates that audio representa-
tions learned on pretext tasks improve presence prediction
accuracy when the domain correspondence, dataset dura-
tion or sample diversity of simulated corpora are limited.
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4.1 Introduction

4.1.1 Design of deep learning architectures

On synthetic evaluation data, the deep learning architectures presented in
Chapter 3 achieve excellent source presence detection accuracy, and pre-
dicted labels result in estimations of the perceived time of presence with low
errors. However, the performance metrics are mainly evaluated on simulated
acoustic scenes. These scenes are similar in distribution to sound scenes on
which model parameters are optimized, but different from measurements col-
lected by sensors in the final application. Here, the distribution (or domain)
of data refers to its contents in terms of the sound source taxonomy, the
covered spectral signatures representing sound sources as well as the range
of possible polyphonies and scenarios. In particular, the taxonomy of sources
in simulated scenes is incomplete. Deep learning models are thus not trained
to identify spectral patterns associated to missing classes (e.g. construction
works, water sounds) or some subclasses of sources of interest (e.g. bird
species). Due to these limitations of simulated scenes, there is no guaran-
tee that trained architectures are capable to generalize to real-life situations
encountered in Lorient sound environments. Generalization properties of
deep learning models depend on two necessary conditions. First, sufficient
amounts of training data must be available, where quantity is defined by
both the number of training examples and their diversity. Second, this data
must belong to the same domain (distribution) as the data processed by
trained models in the application. Because learning model parameters di-
rectly on Lorient sensor data is not possible, transfer learning techniques
are instead investigated in this chapter, in order to evaluate their ability to
localize detection tools based on deep learning techniques.

Transfer learning techniques exploit the design of most architectures
aimed at solving discriminative tasks, which follows the principles depicted
in Figure 4.1. An encoder part first processes the input signal and returns a
latent representation. Its role is to extract and decorrelate useful information
in the input representation, leading to a lower-dimensional representation of
the signal. In addition, information that is not necessary to solve the task is
ideally discarded or reduced. The latent representation should then allow a
decision architecture with low complexity, i.e. low number of parameters and
nonlinearities, to efficiently complete the task. Encoder-decoder models are
similarly designed to learn a low-dimensional code containing sufficient infor-
mation to reconstruct a high-dimensional signal. In these architectures the
decision architecture is replaced by a decoder architecture with complexity
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Encoder

DecisionInput
representation X

Decoder

Predicted labels y
dim(y) << dim(X)

Output representation Y
dim(Y) = dim(X)

Discriminative models

Generative encoder-decoder models

Latent representation L
dim(L) < dim(X)

Figure 4.1: Typical architecture design of deep discriminative or encoder-
decoder approaches. Similar encoder architectures are relevant to solve a
variety of related tasks, whereas the decision or decoder is task-specific.

equivalent to that of the encoder.
Although its parameters are adapted to the task during the training

process, the encoder architecture in discriminative or encoder-decoder ap-
proaches is task-agnostic, and typically composed of stacked convolutional
layers corresponding to a highly nonlinear filterbank applied to the input
signal. In contrast, the decision architecture is entirely motivated by the
studied task. In discriminative models, the encoder comprises the majority
of the final architecture’s parameters, whereas the decision is composed of a
limited number of fully connected, convolutional or recurrent hidden layers.
An example is the source presence prediction architectures proposed in Chap-
ter 3. Transfer learning and self-supervised learning approaches specifically
utilize the general-purpose properties of the encoder.

4.1.2 Transfer learning

Transfer learning and self-supervised learning methods aim at solving prob-
lems in which only a limited number of examples are labelled for the desired
task. To do so, these methods rely on the availability of large amounts of
related data, either annotated for another task or unlabeled respectively.
The objective is to learn robust latent data representations by extracting
underlying information in large datasets. Optimal parameters of an encoder
architecture trained to produce this representation are then a good initial
state for parameters of the model solving the target task. In contrast, train-
ing a model from scratch (random initialization) on insufficient amounts of
data compared to the network complexity would yield direct overfitting to
training training examples.

Figure 4.2 summarizes the framework of transfer learning and self-supervised
learning approaches. First, a model is trained to solve a pretext task on data
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Figure 4.2: General framework of transfer learning approaches. An encoder
is trained to solve a pretext task on a large dataset, and the same encoder
architecture in the downstream task is initialized with obtained optimal pa-
rameters architecture, in order to stabilize training with few labeled exam-
ples.

unlabeled for the target task. Once the training process is completed, op-
timal parameters of the encoder are retained to initialize the same encoder
architecture in the downstream (target) task model. Two approaches are
then possible when training the model on the downstream task: i) freeze
the pre-trained encoder parameters and learn only the decision sub-network,
and ii) learn parameters of the entire model, i.e. fine-tune parameters of the
encoder. In the first approach, the decision part has a low capacity due to
a limited number of parameters and nonlinearities (depth). Thus, its effi-
ciency depends on the closeness between the pretext and downstream tasks
in terms of the needed information extracted by the encoder. If the two tasks
are close, latent representations of the input signal should be similar for the
corresponding optimal models. Conversely, if the two tasks are unrelated
training a low-complexity decision sub-network may be insufficient to solve
the downstream task. Fine-tuning encoder parameters allows us the latent
representation to change in information content. In this case, the entire
model, trained with a low amount of data with respect to the complexity of
the network, overfits rapidly. However, because most of the model’s param-
eters are initialized with an already good solution, the aim of fine-tuning the
encoder is to achieve a better state before overfitting compared to starting
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the training process with random parameters. Generally, the fine-tuning ap-
proach yields better performance. Still, we found that freezing the encoder
weights may be preferable in the case where there are very few annotated
examples available for the downstream task.

Domain adaptation refers to the subset of problems where the pretext
and downstream tasks are the same, but available large datasets are not in
the same domain as the target data (e.g. pitch classification with a large
piano dataset adapted to a small violin dataset, or birdsong detection in two
environments with different bird species). In that case, pre-trained parame-
ters of the decision architecture may also provide a relevant initial state in
the downstream task.

Pretext tasks can be formulated as supervised discriminative tasks (trans-
fer learning) or unsupervised tasks associated with encoder-decoder architec-
tures (self-supervised learning), depending on the availability of auxiliary la-
bels in large datasets. Different information content is then found in the cor-
responding latent representation. The encoder in a discriminative model only
retains information useful to solving the task. Thus, choosing related super-
vised pretext tasks is important to ensure that all necessary information for
the downstream task is contained in the latent representation. In an encoder-
decoder architecture, the latent representation is an information bottleneck
as input and output representations have similarly higher dimensions. The
main role of the encoder is thus to perform efficient dimensionality reduction
of input signals. Latent representations in encoder-decoder models contain
sufficient information to allow the estimation of high-dimensional signals,
thus their information content should be sufficient to solve the downstream
discriminative task. However, because the decoder architecture is typically
as complex in terms of depth and number of parameters as the encoder, a
low-complexity decision architecture may not be sufficient to link informa-
tion in the latent representation to the desired outputs in the downstream
task.

4.1.3 Pretext tasks for audio

Several pretext tasks have been investigated for unsupervised audio repre-
sentation learning. In [16], the unsupervised learning of embeddings from
sensor data is specifically addressed. The proposed method (TriCycle) relies
on available timestamps metadata associated to sensor measurements as la-
bels. A convolutional architecture first encodes the input audio into a latent
representation. The decision architecture is an ensemble of three identical
fully connected networks, that process the obtained embedding in addition
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to sensor identifier information to respectively predict the time of day, the
day of the week and the month of the year. Directly predicting scalar values
for the three temporal cycles introduces issues of proximity (e.g. around
midnight for the time of day). Instead, each position in temporal cycles is
coded as a phase, and the model predicts the corresponding cosine and sine
values. The obtained audio embedding improves the performance of models
predicting the sensor identifier from audio as a downstream task.

When available, multimodal data can provide useful additional informa-
tion in learned latent representations. In [99], the authors address the task of
audio-visual correspondence in a dataset of videos. Examples are composed
of an image and a sound extract extracted from the same or different videos
at random. Separate convolutional encoder architectures extract information
from the two inputs into embeddings, and a low-complexity fusion architec-
ture predicts whether the inputs are matched. The encoder architecture
processing audio content is then applied to train a support vector machine
(SVM) on several classification tasks. The proposed approach achieves state-
of-the-art performances on the environmental sound classification (ESC-50)
dataset, as well as on ambiance classification with the DCASE2013 task 1
dataset. Design considerations for the multimodal approach are further in-
vestigated in [100]. The authors find that for environmental classification
downstream tasks, the pretext task can be trained on data from a different
domain (e.g. music). The most important factors on which the performance
of learned latent representations depends are instead found to be the quan-
tity of pretext training data, as well as the choice of input audio features.

Training an encoder architecture with a triplet loss is investigated in [101].
Triplets are formed by sampling two audio texture frames from the same ex-
ample as well as a third texture frame from a different example. Each texture
is encoded independently, and the training process minimizes the distance
between latent representations of matching textures while maximizing the
distance between embeddings of non-matching textures. Matching textures
can also be obtained by transforming a reference sample, for example adding
noise or time-frequency shifting.

An unsupervised regression pretext task is proposed in [102], that is in-
spired by the success of the Word2Vec representation learning method in
natural language processing applications [103]. The approach is character-
ized by an encoder-decoder model where both parts are composed of recur-
rent layers. In the first setting of skip-gram, an audio texture is input to the
model, which predicts an arbitrary number of plausible context textures, i.e.
the N past and N future texture frames. In the second setting of continuous
bag of words (CBoW) [104], inputs and targets of the model are swapped.
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The context textures frames are encoded and the decoder produces an es-
timation of the central texture frame. The model, initially proposed for
representation learning of speech signals, is evaluated against other meth-
ods on environmental data in [105]. Results show that when training the
downstream task on a very low number of labeled examples (1000), the Au-
dio2Vec approach outperforms discriminative pretext tasks with auxiliary
data as labels, as well as the triplet loss.

Lastly, the authors of [106] develop an encoder architecture simultane-
ously trained on multiple pretext tasks. An input speech segment in the
waveform domain is encoded by a convolutional architecture, and the result-
ing embedding is input to several fully connected architectures each associ-
ated to a task. Some of these tasks are regressive with common handcrafted
features as targets, including the signal waveform, Mel frequency cepstral co-
efficients and the log-power spectrum. Other tasks are discriminative, such
as determining whether two examples are produced by the same speaker.
This combination of simultaneously trained tasks yields well-generalized and
task-agnostic latent representations of the audio signal.

4.1.4 Localized embeddings

In the current study, large amounts of third-octave data are available from
the Cense sensor network in Lorient. However, corresponding annotations
for the target task of source presence prediction are not available. Relevant
information about the target domain of sensor data can thus only be inferred
by learning latent audio representations on pretext tasks, and the presence
prediction task can then be trained on simulated data, for which labels are
computed automatically. Acoustic scenes simulated using the simScene pro-
cess are incomplete in terms of the scenarios, polyphonies, and diversity of
spectral signatures associated to sound sources in isolated samples. This
setting is different from typical transfer learning and domain adaptation ap-
plications, in which the downstream task is always trained on data from the
target domain.

In this study, we hypothesize that transfer learning techniques enables
the localization of models trained on simulated datasets. Pre-training an
encoder on large amounts of sensor data yields a latent audio representation
well-generalized to the target domain of Lorient sound environments. Despite
part of this information being lost when training the presence prediction task
on simulated sound scenes, knowledge about Lorient-specific polyphonies
and spectral patterns should remain in the final source presence prediction
architecture with optimal parameters. In this regard the proposed approach



89

is still akin to domain adaptation.
However, several considerations must be observed. First, the implica-

tions of fine-tuning or freezing the encoder parameters learned on pretext
tasks are not as straightforward as in typical transfer learning approaches.
On one hand, because the downstream task is not trained on data from the
target domain, fine-tuning encoder parameters trained to optimality on sen-
sor data may be detrimental, because the encoder forgets information not
contained in simulated data. On the other hand, the latent representation
is nearly optimal for solving the pretext task, but is certainly suboptimal to
solve the downstream task. Freezing encoder weights increases the difficulty
of solving the presence prediction task with a low-capacity decision archi-
tecture. In any case, it is important that the distribution of simulated data
is as close as possible to that of sensor data. If so, fine-tuning the encoder
parameters while learning the downstream task leads to only a small amount
of the target distribution, learned during pretext task training, being lost.
In practice, the diversity of environments covered by simulated datasets can
be artificially increased by simulating arbitrarily more scenarios. Arbitrarily
more labeled data are thus available to train the downstream task compared
to typical transfer learning. However, the correspondence between simu-
lated and recorded data distributions is limited by the quality of the isolated
samples database and the scenario generation parameters in the simulation
process.

Furthermore, the pretext and downstream tasks should be as close as
possible in terms of the necessary information to solve them. Two closely
related tasks will likely yield similar information content in optimal latent
representations of the audio data. Thus, if the information needed to solve
the pretext and downstream tasks is sufficiently close, the learning process
operates fewer modifications of the encoder to obtain an optimal latent rep-
resentation for the the downstream task. Pretext tasks that require the
propagation of more information than the downstream task, such as gener-
ative tasks, are an interesting alternative. The role of the decision architec-
ture in the downstream task then becomes to filter useful properties from
very informative learned latent representations of audio. In this case, fine-
tuning the encoder parameters is less important as the latent representation
likely contains enough information to solve the presence prediction task, and
freezing them to retain knowledge generalized to Lorient sensor data may be
preferable.
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Figure 4.3: Map of sensors implemented as part of the Cense network in
Lorient. The SpecCense dataset is composed of data from the 16 sensors
shown in blue.

4.2 Audio representation learning from sensor data

4.2.1 Large dataset of sensor measurements

A large dataset is constructed for the purpose of training pretext tasks. This
dataset, termed SpecCense in the following sections, is composed of mea-
surements from the Cense sensor network in Lorient. Each sensor records
the timestamped third-octave spectrum in the [20Hz − 20kHz] range every
125 ms. This dataset was constructed from the first available measurements
following the implementation of the sensor network, with technical issues
and power failures leading to high temporal discontinuity in stored data.
16 sensors among 74 in the network were automatically selected that maxi-
mized the temporal continuity of available spectral data. The location of all
sensors is shown in Figure 4.3, and selected sensors are highlighted as blue
points. In practice, sensors on the same street are connected to the same
controller which sometimes failed in the early network implementation. Sen-
sors selected to maximize measurement continuity thus correspond to specific
controllers, and only cover part of the target sound environments. In future
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work, deep learning datasets should instead be constructed by eliminating
information redundancy yielded by sensor proximity, and maximizing the
diversity of sound environments and polyphonies.

The SpecCense dataset initially comprises third-octave measurements
collected by the 16 selected sensors between December 1st, 2019 and De-
cember 5th, 2019. In theory, this results in about 2000 h of audio data.
However, to facilitate data processing in the training of deep learning mod-
els, a preprocessing step is applied that eliminates non-continuous blocks of
measurements. Due to various transient failures of the network, timestamps
of adjacent third-octave frames may be separated by more than 125 ms. Here,
a tolerance of 125 ms is allowed for continuity, i.e. two adjacent frames for
which the timestamps are less than 250 ms apart are regarded as continuous
measurements. Even within the subset of selected sensors, longer downtime
periods occur where no measurements are available, due to power malfunc-
tion or on-board computation bottlenecks. Thus, the final dataset contains a
total of 1280h of spectral data. This duration is still two orders of magnitude
higher than datasets typically considered for event detection, and 25 times
longer than the dataset of simulated scenes on which the presence prediction
model in Chapter 3 is trained.

The dataset is split into training, validation, and evaluation independent
subsets to respectively perform optimization, monitor generalization, and
evaluate the performance of models on pretext tasks. The split is done
along time: the training subset contains the first 70% of measurements for
each sensor, the validation and evaluation subsets contain the next 10% the
last 20% of measurements respectively. Note that because measurements
are not available across the entire measurement period for some sensors, the
timestamps separating data from different subsets may differ for each sensor.

4.2.2 Encoder architecture

In Section 4.1.4, the models solving the pretext and downstream tasks share
an identical encoder architecture, and encoder parameters in the downstream
task are initialized with optimal values obtained by training on the pretext
task. The same paradigm is adopted in the current study, where the down-
stream task is the prediction of source presence from spectral sensor mea-
surements. The proposed encoder architecture takes as input a texture frame
of 1 s of fast third-octave measurements (8 × 29) and outputs a real-valued
vector (128× 1) as a latent representation of the audio data.

The architecture of the proposed encoder is shown in Figure 4.4. It is
composed of 6 convolutional layers characterized by 3× 3 filters and 64, 64,
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Figure 4.4: Proposed encoder architecture to extract information from 1 s
third-octave texture frames. This architecture is common to all studied
models in a transfer learning setting.

128, 128, 256 and 256 separate output channels respectively. Convolutional
layers are followed by batch normalization layers [107] that normalize each
batch of input examples, then apply learned scale and shift parameters to
the result:

y = γ

(
x− µx√
σ2
x + ε

)
+ β (4.1)

where x and y are the input and outputs of the layer, γ and β are learned
scale and shift parameters, µx and σx are the mean and standard devia-
tion of x computed along the examples dimension in the batch and ε is a
small constant for numerical stability. Batch normalization layers stabilize
the training process by removing the potential variance in level observed in
different batches of examples. This typically helps model parameters con-
verge with fewer iterations, which is desirable when training architectures on
very large datasets. A rectified linear unit (ReLU) element-wise activation
is further applied to the output of batch normalization layers to introduce
nonlinearity to the model. Groups of two convolutional layers each followed
by batch normalization and ReLU layers are designated convolution blocks.
After each convolution block the representation is downsampled by a factor
of two in the time and frequency dimensions, by applying a max-pooling op-
erator to each channel independently. For all 2 × 2 non-overlapping groups
of adjacent values in the representation, max-pooling returns the maximum
value of this group. This is an alternative to strided convolution layers pre-
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Figure 4.5: Proposed architectures for the SensorID and Time pretext tasks
models.

sented in Section 3.3, in which filters are moved by more than one step during
convolution to downsample data representations. The max-pooling operator
following the last convolution block reduces the time-frequency representa-
tion in each channel to a scalar value. As a result its output is a vector in
R256, where 256 is the number of output channels in the last convolutional
layer. Lastly, a fully connected layer transforms this vector into another with
the desired embedding size, which is set to 128 in this study. This output
is the latent representation that is input to task-specific decision or decoder
architectures. The total number of parameters in the encoder architecture
is about 1.2 million.

4.2.3 Supervised pretext tasks

Two supervised pretext tasks are first investigated to train the encoder archi-
tecture on the SpecCense dataset, in order to obtain latent representations
of audio data that are well generalized to Lorient environments. These tasks
are discriminative and rely on metadata available with sensor measurements.
Specifically, the use of sensor identifier and timestamp informations is pro-
posed.
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The first pretext task under study consists in predicting the sensor iden-
tifier associated to an input 1 s third-octave texture frame. This is a single-
label classification task with 16 classes, and is termed SensorID in this chap-
ter. The architecture of the proposed deep learning model for this task is
shown in Figure 4.5(a). Input 1 s third-octave texture frames are first en-
coded by the architecture presented in Section 4.2.2. The resulting latent
representation is processed by a low-complexity decision architecture that
predicts a real-valued vector of dimension 16. The decision part is composed
of two fully connected layers. The first layer is followed by a rectified lin-
ear unit nonlinear activation applied element-wise to the data. The second
layer has no activation function, and its output is instead passed through
a softmax layer that scales the predicted values so that their sum equals 1.
The scaled vector can then be interpreted as a discrete probability distribu-
tion where each value corresponds to a class. The network is trained with a
cross-entropy loss to minimize the negative log-likelihood of predictions. If
i is the active ground truth label, i.e. the correct class, this yields:

ŷi = softmax(xi) =
exi∑I
i=1 e

xi
(4.2)

CE(ŷi) = −log(ŷi) (4.3)

where I is the number of classes, and xi is the output of the last fully
connected layer for class i.

The second pretext task consists in estimating of the time of the day at
which a given 1 s third-octave texture frame is recorded. This task is re-
ferred to as Time in this chapter. The problem is cast to the prediction of
two values in the [−1, 1] range in the TriCycle model [16], which corresponds
to the cosinus and sinus of the phase of the hour clock hand. Compared to a
scalar prediction of the time, this solves the discontinuity problem that oc-
curs at midnight. The proposed architecture is shown in Figure 4.5(b). It is
very similar to that of the SensorID task, although the first fully connected
layer has a slightly lower number of neurons (64) than for the SensorID task
(100) to account for the lower number of output predictions. Outputs of the
last layer are compressed into the [−1, 1] range by applying an element-wise
hyperbolic tangent (Tanh) activation. Network parameters are then opti-
mized to minimize a mean squared error loss function comparing predicted
values to the sinus and cosinus of the ground truth time of day, as given by
timestamps.

Both models are trained on the SpecCense dataset using the Adam al-
gorithm with default parameters and a learning rate of 0.0001. The models
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Figure 4.6: Evolution of training and validation losses for the SensorID and
Time pretext task models.

are trained for 20 epochs with batch size 64, which corresponds to about
140000 iterations. Figure 4.6 shows the evolution of training and validation
losses for the SensorID (top) and Time (bottom) tasks. Both models rapidly
converge, then slowly overfit to the training data. Model states yielding the
lowest validation losses are retained, at the end of epoch 8 for SensorID and
epoch 2 for Time. On the evaluation dataset, these models yield about 75%
sensor identification accuracy and 3 h time estimation error respectively.

4.2.4 Unsupervised pretext task

In addition to the two discriminative pretext tasks, the Audio2Vec task is
considered as a generative alternative [105], which does not require the avail-
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Figure 4.7: Encoder-decoder architecture proposed to solve the Audio2Vec
pretext task by predicting a third-octave texture frame from context texture
frames.

ability of auxiliary labels. In discriminative models the encoder extracts
information useful to the prediction into a low-dimensional latent represen-
tation, and discards information content that does not contribute to solving
the task. The objective of the encoder in a generative encoder-decoder model
is different, as it must retain enough information to reconstruct a signal in
the same domain and dimensions as its inputs. Thus, in an encoder-decoder
architecture the latent representation is an information bottleneck, and the
encoder’s focus is more oriented towards dimensionality reduction than infor-
mation filtering. Studying the effect of these information content differences
in the context of transfer learning is of interest to the current study.

The Audio2Vec task consists in predicting the 1 s third-octave texture
frame at time t given the previous P and next P texture frames. This is
illustrated in Figure 4.7 for a context size P = 2. The input and output
texture frames are continuous but do not overlap. This task is entirely unsu-
pervised, as it does not rely on metadata recorded by sensors. The associated
architecture is an encoder-decoder model, with each context texture frame
processed independently by the encoder, yielding 2P separate latent repre-
sentations. The concatenation of these representations are input to a decoder
with similar complexity to the encoder, both in terms of parameter number
and nonlinearity level.

The architecture of the decoder is shown in Figure 4.8. It mirrors ap-
proximately that of the encoder. A fully connected layer first transforms the
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Figure 4.8: Decoder architecture proposed to solve the Audio2Vec pretext
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Figure 4.9: Evolution of the training and validation losses of the Audio2Vec
model trained on sensor data.

concatenated latent representations to a vector of size 128. Max-pooling lay-
ers are replaced by nearest-neighbor upsampling layers with the same kernel
size to revert their effect in terms of dimension changes. Convolution blocks
are composed of two convolution layers with 3x3 kernels followed by batch
normalization layers and rectified linear unit activations, with reversed num-
ber of channels (resp. 256, 128, 128, 64, 64, 1). The model is trained using a
mean squared error loss function comparing the predicted and ground truth
third-octave texture frame on each time-frequency cell.

Model parameters are optimized on the SpecCense dataset using the
Adam algorithm with default parameters and a learning rate of 0.001. This
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value is higher than in the training process of previous models in order to
accelerate convergence, as the process was stable but slow with a learning
rate of 0.0001. Optimization is performed for 20 epochs with batches of 64
examples. In discriminative pretext tasks, an example is available for each
1 s third-octave texture frame in the dataset. To obtain a similar number of
iterations, each 1 s texture frame appears as the target in a training example.
Thus, a given texture frame is part of multiple examples as either an input
or the target. As shown in Figure 4.9, the training and validation losses
converge to very low errors after a few epochs. Interestingly, the model does
not appear to overfit to training data. Thus, optimal parameters are taken
at the end of the training process.

4.3 Presence prediction with transfer learning

4.3.1 Local controlled dataset

The downstream task of source presence prediction on 1 s third-octave tex-
ture frames is investigated, using the encoder architecture pre-trained in Sec-
tion 4.2 on pretext tasks. Ideally, deep learning models for this task would
be trained on measurements from the Cense sensor network. However, an-
notations for this task are not available on sensor data. Thus, the models
are trained on sound scenes simulated with simScene, for which annotations
can be computed. In Chapter 3 a dataset is simulated for this purpose from
isolated samples associated to sources of interest. These isolated samples
are obtained from the Freesound database, or from other publicly available
datasets. The corresponding recordings are made with a wide of micro-
phones whose characteristics are largely unknown, and does not necessarily
matches sources found in the application environment of Lorient (e.g. some
bird species or vehicle types). Thus, this dataset is referred to as TVBUni-
versal in the remainder of this chapter. From the discussion in Section 4.1.4,
the dataset on which the downstream task models are trained should be as
close as possible to sensor data recorded in Lorient in terms of distributions.
When simulated sound scenes, the two major aspects that can be studied to
improve this correspondence are i) the curation of the database of isolated
samples and ii) the careful setting of the design parameters for the generation
of scene scenarios. To address the first case, a database of isolated samples
specific to Lorient environments and sources is constructed from short on-
site recordings. Adapting scenario generation parameters to Lorient requires
the annotation of source activity for a large number of acoustic scenes for
several ambiances to obtain relevant distributions, similarly to Section 2.2.2.
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This process is not feasible on sensor measurements as no waveform audio is
recorded. Although longer on-site recordings could be obtained and anno-
tated manually, this study does not address this approach due to the time
consumption involved. Thus, this dataset termed TVBCense contains scenes
with temporal distribution of events typical of urban areas, but not specifi-
cally tailored to Lorient. In [108], this was shown to have a lower impact on
generalization with respect to the isolated sound dataset.

To build the isolated sound dataset, a set of 10 sensors from the Cense
network, chosen to monitor a wide range of scene types, is selected. Over a
period of three months, the sensor is given third-octave profiles correspond-
ing to sources of interest. A cosine similarity measure continuously tests
if measured third-octave spectra match the given profiles, and any corre-
spondence triggers the recording of a short waveform audio clip. Spectral
profiles correspond to subclasses of sound sources of interest found in Lo-
rient: cars, motorcycles, trucks, conversations, crowd noises, laughs, small
birds, and seagulls. Particular care is taken to ensure that no intelligible
speech can be heard in recorded extracts, and access to the waveform audio
is restricted to a few researchers. Each audio clip is listened to and deleted
if it may contain intelligible speech, if it does not contain a source of in-
terest or is not monophonic. Otherwise, the extract is trimmed to only the
sound event, and in some voice and bird extracts background noise is reduced
with state-of-the-art noise reudction techniques available within the Adobe
Audition CC software. Obtaining clean extracts representing background
activity for sources of interest with the same recording method is difficult,
in particular for voice and bird sources. Instead, neutral background noise
extracts are taken in all simulated sound scenes. Some extracts are directly
obtained from recordings in Lorient, and others are obtained by removing
sound events from recordings with Adobe Audition CC software. Thus, in
simulated scenes sources of interest are only active during sound events, con-
trary to TVBUniversal where both background and event activity is possible.
This yields both positive and negative effects to the training process of deep
learning architectures: the network learns to identify sound sources from
background noise, but the overall number and complexity of polyphonies in
generated scenes is reduced.

The isolated samples database for TVBCense is split into a development
and evaluation independent subsets containing two-thirds and one-third of
available samples, similarly to TVBUniversal. Table 4.1 summarizes the
distribution of collected extracts and the corresponding total duration for
the two subsets. Note that the total duration of background noise extracts
is not representative, as in a simulated scene a single extract is taken and
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Table 4.1: Contents of the isolated samples database from which simulated
scenes in the TVBCense dataset are generated.

Subset Source type Source class Extracts Duration (m)

Development

Background Neutral noise 16 3:41

Event
Traffic 128 31:20
Voice 10 2:22
Birds 28 3:19

Evaluation

Background Neutral noise 7 0:54

Event
Traffic 63 17:16
Voice 10 2:10
Birds 17 2:33

Isolated samples database
TVBUniversal

Freesound

Librispeech

Isolated samples database
TVBCense

SpecCense

Waveform audio

Third-octave spectra

SimScene

TVBCense

TVBUniversal

Grafic corpus

Cense sensor network

Source activity
distributions

Figure 4.10: Comparison of the construction process for the TVBUniversal,
TVBCense and SpecCense datasets in this study.

looped so that it is active for the duration of the scene.
A development set and an evaluation set are simulated from the con-

structed isolated samples database, together with source activity distribu-
tions obtained in Section 2.2.2. The total duration of subsets is identical to
that of the TVBUniversal dataset. The development set is composed of 400
scenes of 45 s each (total 5 h) and the evaluation set contains 200 scenes of
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45 s each (total 2.5 h). Both sets are balanced in terms of ambiances (resp.
quiet street, noisy street, very noisy street, park, square). The simScene gen-
eration procedure is similar to the construction of the TVBUniversal dataset,
except that the background source is always characterized by a single extract
of neutral background noise. Because background noise extracts contain less
signal information and lower energy compared to source specific background
extracts in TVBUniversal, applying the same event-to-background ratios for
sound events results in very salient events in simulated scenes. In particular,
event extracts containing some background noise themselves lead to an un-
realistic increase to the background noise level for their duration. To palliate
this issue and improve the realism of simulated scenes, the mean event-to-
background ratios for all event sources are reduced by 6 dB compared to
TVBUniversal. To compensate the lack of source specific backgrounds and
increase the number of polyphonies in generated scenes, the mean event
inter-onsets are also empirically divided by a factor of 2, i.e. on average
twice as many sound events are present in simulated scenes from TVBCense
than in simulated scenes from TVBUniversal. All other distributions input
to simScene and described in Appendix A remain unchanged.

All waveform extracts in the isolated samples database are deleted after
simulated scenes are generated. Furthermore, after the source presence an-
notation is obtained waveform simulated sound scenes are also deleted, as
they are not useful to train deep learning models. Figure 4.10 summarizes
the construction of the TVBCense dataset compared to others throughout
this study.

4.3.2 Source presence prediction architecture

The best performing model in Chapter 3 on the source presence prediction
task is composed of a time-independent convolutional encoder architecture
extracting useful information from the input third-octave representation, as
well as a recurrent decision process to predict source presence from this
information. Thus, a similar model architecture is developed in this chapter.
The architecture is shown in Figure 4.11. To enable transfer learning from
previous models trained on pretext tasks, the convolutional part of the model
in Section 3.3.2 is replaced with the encoder architecture of Section 4.2.2.
Sequences of 1 s third-octave texture frames with 875 ms overlap are input
to the model, and individual texture frames are processed independently
by the encoder architecture. Obtained latent representations are fed to a
single-layer gated recurrent unit, that updates an internal recurrent state
characterized by a vector of dimension 128 (see Section 3.3.2 for details). A
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Figure 4.11: Decision architecture for the downstream task of source presence
prediciton.

fully connected layer predicts the presence or absence of traffic, voice and bird
sources at each timestep of the model, i.e. for each input 1 s texture frame,
from information in this recurrent state. Model parameters are optimized by
minimizing a cross-entropy loss function using the Adam gradient descent
algorithm with default parameters. During training, the batch size is set to
64 and the learning rate parameter is set to 10−4.

Several training strategies are possible for transfer learning. First, the
entire model can be trained from scratch, that is without first optimizing en-
coder parameters on a pretext task. This is the reference setting, and should
yield comparable performance to models in Chapter 3. Second, the encoder
parameters can be initialized with optimal values learned on a pretext task.
The encoder can then be frozen during the training procedure on the down-
stream task. In this case, only parameters of the recurrent decision process
are modified. The latent representation output by the encoder can then be
regarded as a set of handcrafted features independent of the downstream
task model. Because the decision part of the model has a low number of
parameters compared to the encoder, the parameters are less likely to overfit
on simulated data during training. This also allows us to retain information
learned on sensor data in the pretext task, which guarantees good general-
ization to Lorient environments. However, the low number of parameters
and nonlinearities also limit the capacity of the network, which can result in
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low performance at convergence if the latent representation is not adapted to
the task. Thus, training only the decision architecture has clear advantages
in the proposed approach, but requires very close pretext and downstream
tasks to yield acceptable performance. Alternatively, the encoder parame-
ters are fine-tuned. In this case optimal parameters learned on pretext tasks
replace pseudo-random values as a better initialization. Thus, with three
pretext tasks the downstream task architectures can be trained with seven
different settings on each simulated dataset.

4.3.3 Evaluation of model performance on target sound en-
vironments

Evaluating trained deep learning models on simulated scenes yields limited
information regarding their localization capabilities to Lorient environments.
Evaluation subsets in simulated datasets are constructed by the same sim-
Scene process as for training subsets. Thus, they follow the same data distri-
bution and differences compared to sensor data, in terms of missing sources,
polyphonies, or ambiances. To better conclude on the generalization of pres-
ence prediction models to sensor data in Lorient, this evaluation paradigm
is therefore insufficient, and evaluation is done on on-site recordings instead.

To do so, recordings of Lorient sound environments were collected. The
recording session took place in one day, and consisted in phases of stationary
recording and walking to different locations. Recordings were made with a
Zoom h4n microphone as a mobile sensor was not available at this time.
As such, there is a discrepancy in terms of frequency response between the
microphone in this recording session and acoustic sensors implemented in
the Cense network. We assume that the impact of this discrepancy is weak,
but should be addressed in further research nonetheless. Every few minutes
during the recording session, the A-weighted sound level (in dBA) was mea-
sured by a class 1 sound level meter. This allows to scale the level of extracts
being processed by the learning models to match sensor measurements in the
SpecCense dataset. In total, about 2 h of recorded audio in the waveform
domain are obtained. 30 non-overlapping scenes of 45 s each are extracted
from these recordings (total of 22.5 min). The extracts are only taken dur-
ing parts of the recording where the person holding the microphone is not
walking to avoid sounds of footsteps. Because the recording gain of Zoom
microphones varied over the recording session, the scenes are then scaled
so that their level difference in dBA matches that recorded by the sound
level meter. These sound scenes constitute another dataset referred to as
EvalLorient in this chapter.
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The 30 recorded sound scenes are annotated by a panel of researchers with
expertise on acoustics or auditory perception. Two quantities are annotated:
the perceived time of presence over 45 s sound scenes and a finer annotation
of source activity. Predicting the perceived time of presence is the final
objective of trained deep learning models within the framework proposed in
Section 1.4. However, the low number of scenes reduces the robustness of
this quantity as an evaluation metric. Evaluating trained models on source
presence predictions for 1 s third-octave texture frames is thus beneficial, as
it allows statistically more robust performance metrics and more thorough
investigation of each model’s prediction errors. The annotation procedure
repeated for each scene is as follows:

1. The sound scene is listened to in its entirety, once and without pausing.
The participant annotates a perceived time of presence in the [0 − 1]
range for traffic, voice and bird sources. Background and event sources
are not addressed separately.

2. The sound scene is listened to a second time with repeating, pausing
and spectrogram viewing freely allowed. The participant annotates
finely the scene in terms of activity onsets and offsets for each of the
three sources. Annotations are made with 125 ms or more precision,
which corresponds to the hop size of frames processed by deep learn-
ing models. Furthermore, sound events separated by less than 1 s are
merged as deep learning models process texture frames of that dura-
tion.

No distinction is made between subclasses of sounds (e.g. small birds and
seagulls) to reduce the time needed to complete the annotation process. As
participants listen to audio excerpts with their personal computers and head-
phones, the playback sound levels are not calibrated. Thus, participants are
not asked to annotate high-level perceptual attributes (e.g. pleasantness), as
they often correlate with the perceived loudness. However, participants are
instructed to avoid changing the software audio level during the procedure
to conserve correct relative sound levels between sound scenes. Perceived
time of presence were annotated by a total of 6 participants, however only
5 among them also completed the fine annotation of sound source activity
due to the time consumption involved.

To obtain a single annotation of the perceived time of presence for each
source and scene, the assessed perceived time of presence is averaged over
participants (n=6). The performance of trained models is then measured by
the root mean squared error between the resulting average values and those
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Figure 4.12: Histograms of the maximum difference in time of presence an-
notations within the same scene among participants.

predicted by the models. This method is valid if the distribution of annotated
times of presence has only one mode. However, on some sound scenes high
variances in annotated time of presence are observed. In particular, several
extracts with background noise resembling traffic activity are perceived as
traffic by some participants, yielding time of presence annotations close to
1. Other participants do not perceive these background sources as traffic,
resulting in low perceived time of presence annotations in the scenes. This
creates a two-mode annotation distribution, thus taking the average as a
reference may be ineffective in this case: the average time of presence is
close to 0.5 whereas annotations are bimodal with means around 0 or 1.
Histograms of the maximum annotation differences for each source are shown
in Figure 4.12. Removing the corresponding scenes from the study is difficult
as the number of evaluation points is already limited (n=30).

The annotated source activity onset and offset timestamps are quan-
tized with 125 ms precision, i.e. they are rounded to the nearest multiple of
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125 ms. From these values, a vector of binary source presence for each third-
octave 125 ms frame of the sound scene is available for each participant. A
unique annotation of source presence is obtained by majority voting, where
the source is considered present on a 125 ms frame if the corresponding times-
tamp is inside an activity onset-offset pair for a majority of participants, and
absent otherwise. The presence prediction accuracy of deep learning mod-
els can then be simply evaluated by comparing the resulting binary labels
to model outputs. However, this metric does not account for annotation
variance across participants: annotations are unanimous on 58.8% of labels
only, whereas on others they are divided. This phenomenon is particularly
observed around the beginning and end of sound events, where it is unclear
whether the source should be considered present or absent. To address this
issue, a measure of label confidence is proposed that accounts for the una-
nimity level of labels across participants:

Accuracy =
1∑
iwi

∑
i

wi1ŷi=yi (4.4)

wi = 2

∣∣∣∣∣∣
 1

P

P∑
p=1

yi,p

− 0.5

∣∣∣∣∣∣ (4.5)

where wi is a label confidence value, P is the number of participants in
the annotation process, yi and ŷi are the annotated and predicted labels for
the third-octave frame i, and 1 is the indicator function. The confidence is
the absolute difference between the mean of annotated binary activity labels
and 0.5. Thus, temporal frames for which the source is unanimously labeled
present or absent result in an associated confidence score of 1 and contribute
fully to the accuracy metric. Conversely, temporal frames for which half
of participants considered the source present and the others considered the
source absent yield a confidence score close to 0 and are omitted in the
computation of accuracy. On the 30 scenes in the EvalLorient dataset, the
average confidence score of labels is 0.73.

4.4 Experiments

4.4.1 Evaluation of the transfer learning approach

A first set of experiments is conducted to assess the interest of learning audio
representations on pretext tasks in order to localize source presence predic-
tion tools. The proposed deep learning architecture for the downstream
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Table 4.2: Source presence prediction accuracy (%) of models with encoder
parameters pre-trained on pretext tasks compared to learning from scratch.
The three metrics are respectively the accuracy on the TVBCense evaluation
subset, the standard accuracy on the EvalLorient corpus, and the accuracy
modified with label confidence on the EvalLorient corpus.

Encoder training TVBCense EvalLorient EvalLorient (Conf.)
Scratch 82.40 76.90 83.30

SensorID, frozen 79.17 67.22 70.40
SensorID, finetuned 79.27 74.90 82.73

Time, frozen 80.81 65.75 68.42
Time, finetuned 81.66 71.83 79.61
Audio2Vec, frozen 78.67 66.12 65.88

Audio2Vec, finetuned 84.17 76.89 83.31

task is trained on the TVBCense dataset with the 7 settings discussed in
Section 4.3.2. These settings include training both the encoder and the deci-
sion from scratch, and using either frozen or fine-tuned encoder parameters
pre-trained for each of the SensorID, Time and Audio2Vec pretext tasks.
Accuracy metrics for source presence prediction on individual third-octave
texture frames are first discussed. Table 4.2 compares the performances of
trained models on the TVBCense evaluation subset, as well as on recorded
scenes in the EvalLorient dataset. Both the standard accuracy and the mod-
ified accuracy that includes a measure of label confidence (see Section 4.3.3)
are compared.

On the TVBCense evaluation dataset, the highest accuracy (84.17%) is
obtained by pre-training the encoder architecture on the Audio2Vec task.
This setting slightly outperforms training from scratch (82.40%) as well as
other pre-training settings (around 80%).

The accuracy of the best model on the TVBCense evaluation set is also
lower than that of models trained in Chapter 3 on the TVBUniversal dataset
(93.67% with a recurrent architecture), by about 10%. This is mostly due to
a high false positive rate on traffic activity detection, which is at 46.7% in the
model trained from scratch and similar in all settings involving pre-trained
encoders with finetuning. Sound scenes in TVBCense are simulated with
a neutral background noise source instead of source-specific background ex-
tracts in TVBUniversal. This background noise is often interpreted as traffic
by the models. To help reduce this issue, the training procedure is repeated
with an added class corresponding to neutral background noise. This forces
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models to identify background noise sources from events. Presence labels are
computed in the same way as for the three sources of interest using the in-
dicator developed in Section 2.4. However, this method yields slightly worse
overall performance in all model training settings.

On both accuracy metrics computed on Lorient recordings in the EvalLo-
rient dataset, pre-training encoder parameters on the Audio2Vec and fine-
tuning them in the downstream task learning process leads to the same
performance as the model trained from scratch (83.31% to 83.30%). As ex-
pected, the accuracy is higher for all models when label confidence is intro-
duced. Discriminative pretext tasks yield worse performance than training
from scratch with both frozen and fine-tuned encoder parameters. Overall,
pre-training encoder parameters does not increase model accuracy in the
current setting. This result may be due to two factors: the domain of TVB-
Cense matches well that of sensor data, or the information content of learned
latent representations to be relevant for solving the target task, i.e. pretext
tasks are not sufficiently related to source presence prediction.

Freezing encoder parameters during the downstream task training pro-
cess also results in worse performance compared to fine-tuning them in all
cases. As discussed in Section 4.1.4, fine-tuning encoder weights in the pro-
posed approach compromises between improving the capacity of the deep
learning architecture and losing information learned on sensor data during
the training of pretext task, that is not contained in simulated scenes. In
other terms, there is a point where freezing encoder parameters is beneficial
if the downstream task dataset domain is too different from that of sensor
data, and if the pretext task is closely related to the downstream task. Thus,
this result may indicate that the content and diversity in the TVBCense sim-
ulated dataset is sufficiently close to that of sensor data, so that the loss of
information learned in the pretext tasks is outweighted by the benefits of
increased model capacity.

Next, the final task objective is investigated, by studying the error in
perceived time of presence estimations compared to human annotations. Es-
timations of the time of presence are obtained by averaging predictions of
deep learning models over time. Trained models are evaluated on the root
mean squared error (RMSE) metric on a [0− 1] scale, and results are shown
in Table 4.3. Similarly to local presence prediction accuracy, the model with
an encoder pre-trained on the Audio2Vec task performs as well as the model
trained from scratch. Other settings with finetuning of pre-trained encoder
parameters result in higher time of presence errors across all sources. Inter-
estingly, models with frozen encoder parameters always yield better estimates
of the time of presence of traffic compared to their finetuned counterpart.
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Table 4.3: Time of presence prediction root mean squared errors on a [0-1]
scale yielded by predictions of proposed models on Lorient recordings (n=30).

Encoder training All sources Traffic Voices Birds
Scratch 0.26 0.36 0.20 0.19

SensorID, frozen 0.39 0.37 0.41 0.39
SensorID, finetuned 0.31 0.44 0.23 0.20

Time, frozen 0.39 0.35 0.50 0.28
Time, finetuned 0.33 0.46 0.28 0.20
Audio2Vec, frozen 0.35 0.26 0.46 0.28

Audio2Vec, finetuned 0.27 0.36 0.23 0.21

However this performance is balanced by poorer estimations for voice and
bird sources. Overall high errors are obtained, especially compared to results
in Chapter 3 obtained from annotations in a listening test. This is in part
explained by high annotation variance among participants as discussed in
Section 4.3.3, where bimodal annotation distributions limit the validity of
perceived time of presence averages in some sound scenes.

Pre-training encoder architectures on pretext tasks does not improve
source presence detection or time of presence estimations on the EvalLo-
rient dataset compared to training from scratch. We hypothesize that this
result is due to a combination of two conditions. First, the domain of TVB-
Cense is sufficiently close to that of sensor data. Thus, the large dataset of
sensor data provides limited knowledge that is not also contained in TVB-
Cense. Secondly, with a total of 5 h of audio the downstream task dataset
is sufficiently large so that trained models generalize well. In contrast, do-
main adaptation problems are generally investigated for very low amounts
of downstream task data available. The following experiments thus aim at
testing the two parts of this hypothesis in order to determine the conditions
under which pre-training is beneficial.

4.4.2 Content of simulated training datasets

The TVBCense dataset is simulated from a localized isolated samples database
with recordings made in target environments. To assess the impact of this
localization and resulting higher domain proximity with sensor data, TVB-
Cense is compared with the TVBUniversal dataset designed in Chapter 3.
Although both datasets have the same total duration of 5 h, the isolated sam-
ples database in TVBUniversal contains samples obtained from online repos-
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Figure 4.13: Comparison of presence prediction accuracy in EvalLorient
recorded scences between models trained on the TVBUniversal and TVB-
Cense simulated datasets.

itories. Deep learning models are trained on the TVBUniversal development
subset and evaluated on the source presence prediction modified accuracy for
scenes recorded in Lorient (EvalLorient). Figure 4.13 compares the accuracy
of models trained on the two datasets of simulated scenes. When training
the downstream task model from scratch, TVBUniversal achieves poorer ac-
curacy (66.42%) compared to TVBCense (83.30%). Large differences are
also found in settings where the encoder architecture is pre-trained, with the
exception of the Time pretext task. Both training settings with this pre-
text task outperform training from scratch, and the model with finetuned
encoder parameters achieves 75.43% accuracy. In contrast, the benefits of in-
formative latent representations obtained with the Audio2Vec and SensorID
tasks are not well exploited by the downstream task training process on the
TVBUniversal dataset.

These results confirm the effectiveness of matching content in the down-
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stream task training dataset to target sound environments, in order to im-
prove the localization of prediction tools. If obtaining local recordings of
isolated source occurences is not possible, pre-training encoder parameters
on the Time pretext task improves accuracy, by about 9% in this experiment.

4.4.3 Quantity of downstream task training data

In a typical transfer learning setting, representation learning on pretext tasks
is particularly useful when very low amounts of data annotated for the down-
stream task are available. Experiments are conducted to assess whether a
similar behavior is observed in the context of localizing architectures trained
on simulated data. In datasets of simulated scenes, intrinsic data quantity
mainly depends on two factors. First, the diversity of spectral patterns as-
sociated to sources of interest, which contributes to the generalization of
trained deep learning models, depends on the size and sample diversity of
source-specific extracts in the isolated samples database. Second, the diver-
sity of scenarios and polyphonies is linked to the number of sound scenes
simulated in the training dataset. The effects of these two factors are partly
correlated. Increasing the number of sound scenes improves the diversity of
polyphonies and scenarios in the dataset, although the maximum diversity
attainable is dictated by that of the isolated samples database. Similarly,
the effect of increasing the size of the isolated samples database is limited
if the simulated dataset is too small to contain polyphonies with all source
extracts.

The impact of varying the number of sound scenes is first studied, i.e.
the diversity level of the isolated samples database taken to generate the sim-
ulated scenes remains unchanged in all experiments. To do so, experiments
are conducted where the number of sound scenes in the training subset of the
downstream task is reduced. Specifically, models trained on the full TVB-
Cense development set (5 h) are compared to models trained on datasets
reduced to 30 min and 1 h of data respectively. The reduced datasets are
obtained by selecting only 40 and 80 of the 400 simulated scenes in the
full development set. These subsets are balanced in terms of ambiances
(quiet street, noisy street, very noisy street, park and square). Performances
are evaluated on the modified accuracy metric for the EvalLorient recorded
scenes. Figure 4.14 shows the evolution of the presence prediction accuracy
as a function of increasing dataset size.

With a dataset duration of 1 h, both models pre-trained on the Audio2Vec
and Time pretext tasks slightly outperform the model trained from scratch.
The difference is amplified for a dataset of 30 min, where pre-training on
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Figure 4.14: Performance of models trained with a limited number of simu-
lated scenes evaluated on source presence accuracy in Lorient recordings.

Time and SensorID yields 75.61% and 75.84% accuracy respectively, whereas
the accuracy of the model trained from scratch drops to 72.99%. The model
trained on the full TVBCense set with pre-training on the Time task achieves
lower accuracy compared to that trained on only 1 h of simulated data. This
points to the possible overfitting of model parameters to properties specific
to simulated data. This type of overfitting may not be detected during the
training process due to validation examples being also simulated.

For total dataset durations of over 5 h, accuracy metrics should converge
to a maximum value associated to each encoder training setting. This value
is close for settings where the entire model is trained from scratch and where
the encoder is pre-trained on the Audio2Vec or SensorID pretext tasks, at
around 83%. This difference illustrates the distance between distributions
of sensor data and simulated environments. Thus, a small difference further
indicates that the diversity of scenarios and spectral patterns associated to
sources of interest in simulated data, although limited, represents well the
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corresponding diversity found in acoustic environments in Lorient.
In practice, simulation tools paired with automatic annotation proce-

dures allow the generation of arbitrarily large number of labeled sound scenes
with different scenarios. The main factor limiting information content in
simulated datasets is thus the richness of the associated isolated samples
database. The second experiment thus evaluates models trained on datasets
with reduced isolated samples databases in order to determine wether pre-
training is beneficial when the number of available extracts is low. Specifi-
cally, two settings are addressed where the number of samples corresponding
to each class in Table 4.1 is divided by 2 and 4 respectively. For example,
the number of traffic event extracts is reduced to 64 and 32 in the two set-
tings respectively. Instead of considering equal number of samples for each
class, this approach is motivated by the higher difficulty of obtaining clean
samples for some sources, in particular human voice. The number of back-
ground noise extracts is also reduced as they are similarly obtained from
local recordings.

Because the number of generated sound scenes is not limited, all train-
ing datasets contain 5 h of audio. Figure 4.15 shows model accuracy on
EvalLorient as a function of the isolated samples database reduction ra-
tio. Interestingly, models pre-trained on the Audio2Vec task respond best
to lower diversity in simulated datasets, with an accuracy of 80.36% and
75.52% with isolated samples databases divided by 2 and 4 respectively. In
contrast, the accuracy of the model trained from scratch increases almost
linearly as a function of the isolated samples dataset size (resp. 73.11%,
76.46% and 83.30%). All settings including encoder pre-training outperform
the model trained from scratch on the simulated dataset with an isolated
samples database reduced by a factor of 4. Further reducing the isolated
samples database is difficult in the current experiment as the smallest only
contains 3 voice extracts.

The two experiments demonstrate the interest of pre-training encoder
parameters when fewer training examples are available, or when they contain
less diverse spectral patterns. In the first case, discriminative pretext tasks
are preferable, although it is not likely in practice due to the ability of
simulation tools to generate arbitrarily large datasets. In the second case
the Audio2Vec generative pretext task performs better overall. Retaining a
large number of training examples in the downstream task is necessary for
pre-training with the Audio2Vec pretext task to be beneficial, compared to
the two discriminative tasks. This behavior may be linked to the information
content of corresponding latent audio representations which should be higher
in the Audio2Vec pretext task, thus making downstream training prone to
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Figure 4.15: Performance of models trained with a limited isolated samples
database evaluated on source presence accuracy in Lorient recordings.

overfitting with lower amounts of data.
In the investigated setting, freezing learned encoder parameters always

leads to worse performance. This is possibly due to the high number of
labeled examples in simulated datasets, which mitigates overfitting issues
typically encountered in domain adaptation problems where only few training
examples are available.

Chapter conclusion

The adaptability of deep learning models trained on location-independent
simulated datasets (Chapter 3) to in situ sound environments of Lorient is
limited. Experiments conducted in this chapter demonstrate that the local-
ization properties of simulated corpora are an important factor of the per-
formance of predictive models, and including on-site recordings of sources in
their construction increases prediction accuracy on evaluation recordings. In
some cases, transfer learning techniques enable the domain specialization of
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trained models, by learning well-generalized latent audio representations on
large amounts of sensor data. Specifically, discriminative pretext tasks such
as Time can mitigate the domain mismatch between location-independant
datasets and sensor data, and improve model adaptability when few labeled
examples are available. Conversely, the generative Audio2Vec pretext task
outperforms other settings when spectral patterns of sources in localized sim-
ulated scenes are less diverse. Work still remains to enrich simulated corpora
with additional location-specific scenarios and sound sources. Regarding the
pretext tasks, future work should consider enlarged training datasets both
in terms of spatial diversity and time span. Nonetheless, the developed ap-
proach can be implemented as presented within the Cense sensor network.
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Chapter 5

Acoustic scene synthesis from
sensor features

The ability to listen to audio extracts corresponding to
sensor measurements is beneficial to citizen information
and urban design. In the current application, sensors
measure log-frequency spectral representations with infor-
mation content limited by privacy constraints. Recover-
ing sound scene examples from such representations is an
open problem in the deep learning community. Here, two
deep learning approaches are developed to approximate
the inversion of the non-invertible third-octave transform
to short-term Fourier transform magnitudes.
The first approach is a deterministic architecture which
builds upon an initial estimation obtained by application
of a third-octave transform pseudoinverse, by inferring a
corrective term. This method improves reconstruction
quality on objective metrics, but does not recover fine
structures. The second model is designed to better ac-
count for the polynomial decay of environmental sound
spectra with respect to frequency, which causes regression
loss functions to ignore errors in high-frequency content
prediction. To do so, separate architectures produce con-
tent in different frequency bands in a limited weight shar-
ing paradigm. Furthermore, the model is stochastic and
trained in an adversarial setting to enable the production
of relevant spectral variations in generated examples.
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5.1 Introduction

In accordance to privacy regulations, sensors implemented as part of the
Cense project record limited information about sound environments. Specif-
ically, the information content of measurements should not allow the re-
construction of intelligible speech [18]. To do so, sensors measure spectral
representations through non-invertible signal processing operations, that are
yet sufficient to infer acoustic indicators in traditional monitoring applica-
tions. This chapter investigates synthesizing waveform audio examples from
these privacy-aware representations.

The main motivation of this contribution is to ultimately provide citi-
zens, city administrators, and urban planners with easily interpretable in-
formation about the sound environments associated to continuous spectral
measurements, along with perceptual attributes discussed in previous chap-
ters. Although perfect reconstruction of waveform audio is not necessary to
this aim, synthesized sound scenes should contain recognizable sources and
convey relevant perceptual properties about the represented type of environ-
ment.

Sound synthesis, and particularly in strongly conditioned contexts where
high-dimensional information is available, is a difficult task and an open
problem in the deep learning community. Although methods are now be-
ing actively developed for synthesizing speech and music signal [109, 110],
applications rarely address environmental sounds. Compared to music and
speech sounds, environmental sounds have specific characteristics, often with
a high level of polyphony as well as very diverse spectral patterns produced
by a large range of sound sources. As such, the associated synthesis task is
highly complex and requires important modeling capabilities in deep learning
approaches.

In the applicative context of the Cense sensor network, measurements
are third-octave energies in the range of audible frequencies, with a step size
of 125 ms between non-overlapping audio frames. This design introduces two
types of information loss to account for during resynthesis, one along the time
axis and the other along the frequency axis. First, there is no information
redundancy between adjacent analysis frames in sensor measurements. Such
redundancy is necessary to the inversion of spectrograms to waveform au-
dio with the overlap-add method, as well as to guarantee the convergence of
phase recovery iterative algorithms. Secondly, applying a third-octave trans-
form summarizes spectral magnitudes on logarithmically spaced frequency
bands. In this chapter, we choose to focus only on the recovery of the in-
formation lost due to third-octave analysis, and leave the interesting issue
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of temporal interpolation to future work. To do so, we consider a simplified
setting where temporal analysis frames overlap.

5.2 Related work

The task of inverting informative spectral features to realistic waveform au-
dio has been extensively investigated in the literature. In particular, the
current problem of recovering audio from third-octave spectrograms is simi-
lar to the vocoding of Mel spectrograms or derived Mel-Frequency Cepstral
Coefficients (MFCC) in the speech processing community. Traditional sig-
nal processing approaches consider approximate inversion of the application
of Mel filterbanks, which can be formulated as matrix multiplication in the
spectral domain. To do so, a pseudoinverse of the forward transformation
matrix can be computed [111]. However, this inverse approximation only
depends on the filterbank and does depend on a priori information on the
properties of considered audio. In subsequent works, general properties of
speech signals are taken into account by introducing constraints on the Mel
pseudoinverse estimation. For example, in [112] the optimization process
of a pseudoinverse of the Mel filterbank matrix is subject to non-negativity
constraints in order to guarantee the non-negativity of recovered fine-band
spectra. The approach developed in [113] is based on minimizing a L1 ob-
jective function to better match the sparsity of clean speech spectra, instead
of the typical least squares setting for which the optimal solution is the
pseudoinverse.

Recent work in spectral feature inversion and general sound synthesis
is mainly based on deep learning approaches. In spectral sound synthesis
approaches, time–frequency representations are considered as images, and
architecture designs are typically borrowed from the image synthesis com-
munity. Iterative algorithms then recover the remaining phase component
necessary to invert spectrograms to waveform audio. The most successful ap-
proaches in recent literature on image synthesis are based on generative ad-
versarial networks (see Section 5.5.1 for details). An adversarial architecture
is proposed in [114] to solve the task of unconditioned synthesis of short-term
Fourier transform (STFT) magnitude spectrograms. A similar approach is
applied in [115] to the inversion of speech Mel spectrograms, with the AdVoc
auto-encoder generator architecture conditioned on the pseudoinverse esti-
mation of STFT magnitudes. Section 5.3.3 further presents this architecture
which constitutes a baseline to in comparison to the developed approach.

By modeling waveform audio signals directly, sample-based approaches
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currently achieve state-of-the-art performance both in speech and music gen-
eration tasks. These methods include likelihood-based autoregressive models
such as WaveNet [54, 116] and SampleRNN [117], which model the condi-
tional distribution of each audio sample given past samples by modeling
temporal structures at different rates. In particular, a WaveNet architec-
ture vocodes waveform speech from generated Mel spectrograms for text-
to-speech in [109]. However, the capability of autoregressive architectures
to model long-term structures in audio signals while synthesizing audio with
high sample rates generally depends on the number of parameters and overall
computational complexity of the model. Other developed sample-based ap-
proaches perform better in terms of long-term structure learning for weakly
conditioned or unconditioned synthesis, including flow-based models [118]
and variational auto-encoders (VAE). The current state of the art in music
synthesis is achieved in [119], where transformer architectures [120] condi-
tion vector-quantized VAE decoders modeling waveform music at different
levels of abstraction (time scales). The trained architecture is able to capture
long-term structure up to a few seconds, but totals several billion parameters
resulting in important data and computation capability needs.

Recently, the authors of [110] have proposed the Differentiable Digital
Signal Processing (DDSP) framework, that allows to include either exact or
differentiable approximations of signal processing operations in the training
process of deep learning architectures. This represents a shift from paradigms
considered in the best performing sample-based approaches. Models such as
Jukebox [119] rely on very large number of model parameters and conven-
tional deep learning layers regarded as universal function approximators to
learn increasingly complex patterns and long-term structure of sounds. In
contrast, DDSP allows the development of architectures well motivated by
the task objective, with the aim of providing more interpretable models as
well as higher parameter efficiency. This approach is thus a promising alter-
native to large sample-based models in future studies.

There is thus in recent approaches a tradeoff between information con-
tent in synthesized audio and model complexity. Spectral approaches re-
quire less parameters and data to train, but do not account for phase infor-
mation. Sample-based approaches circumvent phase recovery by modeling
waveform signals directly, but they are dependent on very large architectures
and datasets to synthesize audio at sufficiently fine scales while accounting
for long-term patterns.
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Figure 5.1: Proposed spectral approach to waveform reconstruction from
third-octave spectrograms. A deep learning architecture outputs an estima-
tion of the fine-band spectrogram, which an iterative phase recovery algo-
rithm inverts to waveform audio.

5.3 Experimental protocol

5.3.1 Considered approach

Due to the computational complexity of sample-based approaches, this study
instead addresses spectral feature inversion. Figure 5.1 summarizes the
method, where a deep learning model reconstructs plausible short-term Fourier
transform magnitude spectrograms from input third-octave texture frames.
The phase component is then recovered by iterative algorithms further de-
scribed in Section 5.3.4.

5.3.2 Dataset

Training deep learning models for the task of spectral feature inversion re-
quires the availability of reference spectrograms associated to third-octave
examples. This information is not collected by sensors in the Cense network.
Instead, architectures presented in this chapter are trained on the popular
and publicly available TUT Acoustic Scenes 2017 dataset, proposed as part
of the DCASE2017 challenge task 1 [56]. This dataset of environmental
sound scenes is referred to as the DCASE2017 dataset in the rest of this
chapter.

The DCASE2017 dataset is composed of two independent subsets for
development and evaluation, with a total of 13 h and 4.5 h of waveform audio
respectively. It is constructed from indoor and outdoor recordings collected
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in Finland between 2015 and 2017. The recordings of several minutes are
split in 10 s segments corresponding to individual sound scenes. Sound scenes
extracted from the same recordings are always placed in the same subset to
ensure the independence of the evaluation set.

The DCASE2017 dataset is designed for acoustic scenes classification
tasks. Thus, each sound scene is annotated with an ambiance among 15
classes (beach, bus, cafe/restaurant, car, city center, forest path, grocery
store, home, library, metro station, office, park, residential area, train, tram).
Both the development and evaluation subsets are balanced in terms of am-
biances. Furthermore, four independent and balanced splits of the devel-
opment dataset are provided for cross-validation purposes. For each split,
parameter optimization is done on 75% of the subset and validation is done
on the remaining 25% of examples. All experiment results presented in this
chapter are obtained with the first split configuration.

Sound scenes in the DCASE2017 dataset are pre-processed to obtain
training and evaluation examples. In order to ensure the validity of com-
parative studies with the AdVoc deep learning baseline considered in Sec-
tion 5.3.3, audio pre-processing steps are designed so that its architecture
needs not be modified. All sound scenes are thus resampled to 22.5 kHz,
and fine-band spectrograms are extracted by applying a short-term Fourier
transform on frames of 1024 samples (46.4 ms) with 75% overlap. High
information redundancy between adjacent frames is in accordance with the
proposition in Section 5.1 to only focus on the frequency degradation in third-
octave spectra. Third-octave spectra are computed for each 46 ms frame for
bands with center frequency in the 20 Hz to 8 kHz range (total of 26 bands).
All objective metrics and loss functions in this chapter are computed within
this range. Individual examples are constructed as groups of 256 adjacent
frames, which corresponds to about 3 s of audio data. These examples are
processed independently by the AdVoc baseline as well as the proposed deep
learning models.

5.3.3 Baselines

Two baseline methods of spectral feature inversion proposed in the literature
are considered. The first baseline only relies on the properties of the third-
octave transform to estimate short-term Fourier transform magnitudes. The
third-octave analysis consists in applying a filterbank to an input waveform
audio example, and summarizing the energy of the filtered signal over tem-
poral analysis frames. This transformation can be formulated in the Fourier
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domain as a matrix multiplication:

X = ΦXf , Xf = |F(x)|2 (5.1)

where X is the third-octave spectrogram with dimensions B × T , Φ is the
third-octave filterbank matrix with dimensions B × F , Xf is the fine-band
spectrogram of dimensions F × T , x is the input waveform audio and F
denotes the short-term Fourier transform. Since the number of third-octave
bands B is lower than the number of fine bands F , the transform matrix
Φ has no left inverse. However, a Moore-Penrose pseudoinverse Φ† exists,
and its application to the third-octave spectrogram X produces an estimate
of Xf . Pseudoinverse approximations can be computed using either a least
squares solver or the singular value decomposition (SVD) of the forward
transformation matrix Φ. Both methods yield almost identical results in
the current study. However, pseudoinverse computation algorithms are not
subject to non-negativity constraints. A threshold X̂ = max(0, X̂) further
sets negative negative spectral magnitude estimations to 0. This results in a
lower estimation error than imposing a non-negativity constraint to the Φ†

matrix directly.
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Figure 5.2: Frequency response of third-ocrave filters in the [20Hz −
12500Hz] range (a), and weights of the associated pseudoinverse matrix (b).

The performance of pseudoinverse baseline is intrinsically limited by the
fact that it is independent from the content of processed data. Thus, it uses
no prior knowledge about the spectral energy distribution in environmen-
tal sounds, or about the relation between temporal frames. Third-octave
filters have a flat frequency response between cutoff frequencies, as shown
in Figure 5.2(a). The pseudoinverse in Figure 5.2(b) therefore assumes that
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the magnitude of the original signal is flat in the corresponding frequency
range. In other terms, the pseudoinverse approach is optimal in the case
of white noise signals. Figure 5.3(a) shows an example of environmental
sound average spectrum and its reconstruction by the pseudoinverse trans-
form. Environmental sounds typically display inversely polynomial decrease
in power as a function of frequency, close to 1/f [121]. This property results
in high variations of the estimation error at filter cutoff frequencies, whereas
the error is on average close to 0 around the center frequency of third-octave
bands. This behavior is illustrated in Figure 5.3(b). In contrast, applications
of this method on speech signals in the literature performs well because of
the relative limited bandwidth occupied by speech information, as well as
the shape of filters in other filterbanks (e.g. Mel filters).
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Figure 5.3: Average power spectrum of acoustic scenes in the DCASE2017
development dataset and its reconstruction by the pseudoinverse transform
(a). The estimation error resembles a sawtooth waveform due to flat esti-
mations within filter bandwidths (b).

As a second baseline, the Adversarial Vocoder (AdVoc) deep learning ap-
proach is considered [115]. This method is initially proposed for the inversion
of Mel spectrograms and applied to speech signals. Input Mel spectrograms
are constructed from waveform audio sampled at 22 050 Hz, and consist in
texture frames of Mel spectra computed on 46 ms frames with 75% overlap.
Mel filters are only in the [125Hz, 7600Hz] range, in which nearly all energy
from speech signals is contained. Input examples are groups of 256 frames,
about 3 s of audio signal. The pseudoinverse of the Mel transformation is first
applied to input spectrograms, yielding an estimation of the associated fine-
band spectrogram. This estimation is then processed by an encoder-decoder
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generator architecture. The encoder is composed of 8 convolutional layers
that downsample the input representation to a vector of dimension 512. The
decoder mirrors the encoder with 8 transposed convolutions that upsample
the embedding to the initial spectrogram dimensions (see Section 5.5.2 for
details). The generator is trained in an adversarial setting: a discriminator
model jointly learns to classify real and fake (generated) examples, with the
objective function in eq. 5.7. The discriminator provides a gradient to the
generator so that the distribution of generated samples converges towards
that of real samples. Additional detail about the training of generative ad-
versarial networks is discussed in Section 5.5.1. Furthermore, training on
an adversarial loss only forces the generator to produce realistic examples,
i.e. examples that match the distribution of data in the training set. Be-
cause the synthesized fine-band spectrogram should also correspond to the
specific input example, an additional L1 loss term is minimized between the
generator’s output and the ground truth fine-band spectrogram associated
to the input. Parameters of the generator are thus optimized to minimize
a combination of two losses, respectively influencing the realism and corre-
spondence with the ground truth of synthesized spectrograms. The phase
component necessary to invert generated magnitude spectrograms to wave-
forms is obtained with an iterative optimization method, the Local Weighted
Sums (LWS) algorithm proposed in [122]. This algorithm is briefly described
in Section 5.3.4.

No modification of the implementation proposed by the authors is neces-
sary in order to apply the AdVoc model to the current problem, as the same
audio pre-processing parameters are considered. Yet, input third-octave
spectrograms with 26 bands are zero-padded in the frequency dimension
to match the size of the expected input representation (Mel spectrograms
with 40 filters) in the original implementation. Experiments also retain the
optimization method and hyper-parameters proposed by the authors.

5.3.4 Phase recovery

The proposed approach consists in reconstructing fine-band magnitude spec-
trograms from third-octave measurements. In order to produce audio in the
waveform domain, the phase component also lost during analysis must be
recovered. To do so, the first method applies the original phase of the audio
signal before third-octave analysis. This method is termed the oracle phase
in experiments, as this information is typically not available in the applica-
tion. However, it allows the comparison of synthesized sound scenes with the
corresponding ground truth on phase-sensitive metrics, in particular metrics
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involving sample-wise waveform errors such as the signal-to-reconstruction
ratio presented in Section 5.3.5.

In a context where ground truth phase information is not available,
phase recovery algorithms can recover estimations the magnitude spectro-
gram. Waveform samples in the AdVoc baseline are obtained with the Local
Weighted Sums (LWS) algorithm [122]. This method is based on the same
principles as the Griffin-Lim algorithm [123], i.e. it iteratively updates an
estimate of the phase component to maximize the consistency of the result-
ing waveform signal y, where consistency is given by the distance between
y and ISTFT(STFT(y)) (resp. the inverse and forward short-term Fourier
transform). This method achieves similar performances to the Griffin-Lim al-
gorithm, although with faster convergence. To remain comparable with the
AdVoc baseline, phase estimations for all discussed methods are obtained
with 60 iterations of the LWS algorithm.

5.3.5 Objective metrics

The investigated synthesis task is strongly conditioned with input third-
octave spectrograms, each associated with ground truth waveform audio ex-
amples in the dataset. The content of generated spectra should match that
of corresponding ground truth sound scenes. This differs from weakly con-
ditioned synthesis tasks, for example the synthesis of realistic spectrograms
representative of an ambiance with no constraint on specific scenarios and
active sources, where only the realism and correspondence to a conditioning
class label are evaluated. It is thus necessary to assess model performance on
two separate qualities: i) the correspondence between generated and ground
truth spectrograms, and ii) the presence of sufficient fine-grain detail in syn-
thesized spectra to identify sound sources as well as the type of environment.

The performance of models in terms of correspondence between synthe-
sized and ground truth sound scenes is evaluated on signal reconstruction
metrics. The Signal-to-Reconstruction Ratio (SRR) is first considered as
a waveform domain metric. The SRR is computed between a synthesized
signal ŷ(t) and a target signal y(t) as:

SRR(ŷ, y) = 10 log10

( ∑
t y(t)2∑

t(ŷ(t)− y(t))2

)
(5.2)

Comparing a signal with itself yields SRR = +∞, and the SRR decreases as
the mean squared error (ŷ(t)− y(t))2 increases. In the current experiments,
the SRR is computed for time-domain signals obtained using both the oracle
phase and the Local Weighted Sums (LWS) algorithm. However, because
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it involves the sample-wise difference between the synthesised and ground
truth signals, the SRR is extremely phase-sensitive, and is not expected to
yield reliable performance evaluation with approximate phase recovery.

The Log-Spectral Distance (LSD) is considered as a reconstruction metric
in the spectral domain. The LSD is defined as the mean squared error (L2

distance) between log-power synthesized Ŷ (t, f) and ground truth Y (t, f)
spectrograms:

LSD(Ŷ , Y ) =
1

T

T∑
t=1

√√√√ 1

F

F∑
f=1

(
log10

Y (t, f)2

Ŷ (t, f)2

)2

(5.3)

where T and F are the time and frequency dimensions of spectrograms re-
spectively. The LSD is positive, and reaches 0 for two equal power spectra.

Some metrics have further been proposed that correlate well with human
assessments of reconstruction quality. Here, the Perceptual Similarity Metric
(PSMt) is considered, which is based on a model of peripheral auditory
processes and proposed as part of the PEMO-Q method [124]. The PSMt
metric is computed between generated and ground truth waveform signals
using the implementation available in the PEASS software library [125, 126].

The second evaluated aspect is the ability of synthesized audio examples
to realistically convey perceptual attributes specific to the type of environ-
ment. To do so, the Inception Score (IS) is considered. The IS is proposed
in [127] as an evaluation metric for generative adversarial networks. The
metric relies on the availability of class labels associated with dataset ex-
amples, as well as a classifier model C trained to accurately predict these
classes from real examples. It is defined as:

IS = exp

(
1

N

N∑
n=1

DKL(p(yC |xn)||p(yC))

)
(5.4)

where xn is a generated example, N is the total number of generated ex-
amples, DKL is the Kullback-Leibler divergence, p(yC |xn) is the probability
distribution of classes predicted by the classifier C, and p(yC) is the marginal
class distribution of examples in the dataset. In practice, p(yC) can be ap-
proximated as:

p̂(yC) =
1

N

N∑
n=1

p(yC |xn) (5.5)

The IS considers two qualities that generated examples should simultane-
ously verify. First, each generated example xn should be clearly associated
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to a class, i.e. the classifier output p(yC |xn) should have low entropy with
high probability for one class and low probability for others. This is partly
a measure of the realism of generated examples, although its interpretability
as such depends on the confidence of the classifier model on real examples.
Second, the model should generate diverse examples in terms of associated
classes, i.e. p(yC) should have high entropy, ideally with equal probability
for each class. A well-performing generative model according to these criteria
will thus yield a higher IS.

In the current study, examples in the DCASE2017 dataset are annotated
with one of 15 ambiance classes (see Section 5.3.2). Contrary to synthe-
sis tasks conditioned on class labels, for which the IS is initially proposed,
the diversity of generated samples is already ensured by strong condition-
ing on input third-octave representations. However, the IS still provides
information about the presence of sufficient fine-grain information in gener-
ated examples to identify types of sound environments. Furthermore, the
DCASE2017 evaluation set is balanced in terms of classes. Thus, a lower
entropy of the marginal class probability p(yC) for generated samples would
likely indicate limitations of the synthesis model in generating examples for
some ambiances, and result in lower IS.

The DCASE2017 task 1 baseline model is taken as a sound environment
classifier [56]. It is re-implemented identically for the present study, and the
implementation is validated against published performances. This classifier
is a multi-layer perceptron (MLP) architecture with 3 fully connected layers.
Input representations are log-Mel spectrograms computed on frames of 40 ms
with 50% overlap. The Mel filterbank includes 40 bands in the [0Hz −
22050Hz] range. Individual input examples are textures of 5 frames reshaped
into a vector of dimension 200×1. The first two fully connected layers have 50
output neurons and are followed by Rectified Linear Unit (ReLU) activations.
Furthermore, dropout is applied after these layers with probability 0.2. The
last layer outputs a vector of dimension 15× 1 and is followed by a softmax
activation. Each output value then corresponds to the predicted probability
that the input example is associated to each of the 15 ambiance classes. The
model is trained using the Adam gradient descent algorithm with a learning
rate of 0.001, for 200 epochs or until convergence is observed on the validation
subset. The model is trained once on the development set of the DCASE2017
dataset (see Section 5.3.3 for details), and predicts class distributions for
real and generated samples of the evaluation set. However, because in the
considered task setting models only reconstruct spectral information in the
[20Hz−8000Hz] range, training examples are pre-processed by a band-pass
filter with these cutoff frequencies.
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Figure 5.4: Proposed architecture to refine estimations of fine-band spectro-
grams obtained by application of the third-octave transform pseudoinverse.
A convolutional neural network outputs corrections added to the input esti-
mation to produce the prediction.

5.4 Deterministic approach

5.4.1 Architecture

As discussed in Section 5.3.3, applying the pseudoinverse of the matrix as-
sociated with the third-octave transform filterbank provides optimal recon-
struction with no a priori information on the audio data. The first proposed
approach, termed CNN in the remainder of this chapter, thus consists in
extracting such knowledge from the training dataset, to improve on initial
estimations of the fine-band spectrogram obtained by applying the trans-
form pseudoinverse. To do so, a deterministic convolutional neural network
is considered in the setting illustrated in Figure 5.4. The pseudoinverse trans-
formation associated to the third-octave filterbank is first applied to an input
3 s third-octave spectrogram with 26 frequency bands in the [20Hz−8000Hz]
range. This initial estimation of the fine-band spectrogram (513 bands) is
input to a convolutional neural network, and further added to the model’s
output in a residual connection. Thus, during optimization the output of the
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Table 5.1: Evaluation metrics for examples synthesized with the proposed
CNN compared to the pseudoinverse baseline, in terms of reconstruction
error (resp. signal to reconstruction ratio, log-spectral distance, percep-
tual similarity metric) and inception score. Statistics are computed on the
DCASE2017 evaluation dataset (n=1620). Results shown in bold for spe-
cific metrics are not statistically different from the best performing system
(p<0.05).

Model SRR Oracle (dB) SRR LWS (dB) LSD PSMt IS
Reference +∞ -3.94 ±0.41 0 0.933±0.048 0.089

Pseudoinverse 18.01 ±7.12 -3.95 ±0.37 0.416 ±0.158 0.644 ±0.045 0.086
CNN 18.11 ±7.76 -3.69 ±0.51 0.358 ±0.126 0.695 ±0.044 0.089

last convolutional layer is compared to the error between the ground truth
fine-band spectrogram and the initial pseudoinverse estimation. In other
terms, the convolutional architecture does not predict absolute magnitude
values of the spectrogram, but small correction terms reducing errors in the
pseudoinverse estimation.

The neural architecture is composed of 5 convolutional layers with kernel
size K = (9, 9). No filter stride or downsampling layers are applied, and
the input of each layer is zero-padded so that the input and output repre-
sentations have identical dimensions in time and frequency. The number of
convolution channels (64) in hidden layers is also kept constant throughout
the network, and the output representation has a single channel. Rectified
Linear Unit (ReLU) activations are applied to the output of each layer ex-
cept the last, as the network should predict zero-centered corrections of the
pseudoinverse estimation error. The network is characterized by a total of
1.2 million parameters.

The loss minimized during training is the L1 distance between pseu-
doinverse estimations refined by the convolutional network outputs Ŷn and
ground truth fine-band spectra Yn, averaged over Nb examples in batches:

L(Ŷn, Yn) =

Nb∑
n=1

∑
t,f

|Ŷn(t, f)− Yn(t, f)| (5.6)

The model is trained using the Adam gradient descent algorithm with a
learning rate of 0.0001 on batches of 32 examples for 50 epochs.
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5.4.2 Evaluation

The performance of the proposed convolutional network is evaluated in com-
parison to the pseudoinverse baseline on metrics presented in Section 5.3.5.
Table 5.1 summarizes the mean and standard deviations of evaluation metrics
over the DCASE2017 evaluation dataset (n=1620). All metrics are computed
on synthesized audio where the phase is recovered using the LWS algorithm
unless specified. The SRR as described in eq.5.2 involves a sample-wise dif-
ference between the reconstructed and ground truth waveform signals. Thus,
it is very sensitive to small variations in the phase of synthesized audio. The
LWS algorithm estimates a phase component through an iterative optimiza-
tion process, and its output thus varies from the ground truth phase. As a
result, although the SRR of audio with phase recovered through the LWS
algorithm is low for all approaches, it is similarly low for reference sam-
ples where the phase component is discarded then retrieved with the LWS
method. This metric is thus not discussed further.

Computing the SRR on waveform audio synthesized with the oracle
(ground truth) phase results in similar performances of the proposed CNN
and the pseudoinverse baseline. However, the CNN significantly improves
estimations in terms of the LSD. The inception score for the CNN is close to
that of reference sound scenes (0.89). This indicates that the spectral prop-
erties necessary for the DCASE2017 baseline classifier to identify the type
of sound environment are sufficiently well recovered by the approach. How-
ever, informal listening shows that the fine structure in generated spectra is
not well recovered, which results in a difficulty to identify harmonic sources.
This is illustrated by examples of synthesized spectrograms in Figure 5.5.
Compared to the pseudoinverse baseline (b), the CNN improves estimations
mostly by smoothing discontinuities at third-octave filter cutoff frequencies,
but is unable to generate fine harmonic structures found in the reference
spectrogram.

Several factors may limit the ability of the proposed convolutional net-
work to recover fine-grain structure in generated spectra. As a deterministic
architecture, it may learn to account for overall properties of spectra asso-
ciated to environmental sounds in the training dataset, but it is much more
challenging to generate specific local variations that are characterizing dif-
ferent sources in the scenes. Furthermore, only using error-based regression
losses (e.g. L1) shifts the focus of the training process towards regions where
the estimation error is large. As discussed in Section 5.3.3 (Figure 5.3(b)),
the estimation obtained by applying the pseudoinverse of the third-octave
filterbank yields, on average, a "sawtooth"-like error of fine-band magnitude
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Figure 5.5: Example of spectrograms generated with the pseudoinverse base-
line (b) and the proposed CNN (c). The CNN corrects discontinuities at
third-octave filter cutoff frequencies, but does not produce fine structure.

102 103

Frequency (Hz)

0

100

200

300

400

500

A
m
p
li
tu
d
e

Environmental (DCASE2017 task 1)
Speech (LibriSpeech)
Music (GTZAN)

(a)

0 1000 2000 3000 4000

Frequency (Hz)

0

100

200

300

400

500

A
m
p
li
tu
d
e

Environmental (DCASE2017 task 1)
Speech (LibriSpeech)
Music (GTZAN)

(b)

Figure 5.6: Average spectra of normalized audio extracts in datasets of en-
vironmental sounds (DCASE2017 task 1), clean speech (LibriSpeech) and
music (GTZAN).

estimations. The convolutional architecture must also compensate for this
error term, which is generally of higher amplitude than fine-grain variations
in magnitude lost during third-octave analysis. Because of this discrepancy,
the network is likely to prioritize the matching of the overall spectral shape
while disregarding local variations, likely to convey the spectral attributes
necessary to trigger human recognition of sound objects.
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Table 5.2: Signal-to-reconstruction ratio obtained by the proposed CNN in
comparison to the pseudoinverse baseline, as a function of sound environment
types in the DCASE2017 evaluation dataset (n=108).

SRR, oracle (dB)
Ambiance Pseudoinverse CNN
beach 10.07± 3.60 9.77± 3.59
bus 26.49± 6.98 27.33± 7.21

cafe/restaurant 12.76± 3.13 12.95± 3.12
car 28.25± 5.77 30.57± 7.05

city center 18.74± 2.78 18.11± 2.78
forest path 18.05± 5.23 17.12± 5.35
grocery store 17.78± 2.73 17.71± 2.91

home 11.16± 4.60 10.26± 3.91
library 18.45± 6.58 18.27± 6.43

metro station 15.46± 3.98 15.55± 4.20
office 11.75± 2.42 10.77± 2.20
park 16.57± 3.37 16.55± 3.19

residential area 17.77± 5.14 17.27± 5.31
train 26.71± 4.04 27.84± 3.92
tram 20.06± 5.58 21.65± 5.60

The properties of environmental sounds further reinforce limitations of
fine structure generation in deterministic models trained on regression loss
functions. Environmental sounds are generally characterized by full-band
spectra with polynomial energy decay as a function of increasing frequency.
Such properties are found in all types of sounds, but induce particularly
high in environmental sounds where energy is found in very low frequencies
(20 Hz-50 Hz). This is illustrated in Figure 5.6 that compares the average
normalized spectra of environmental sounds, clean speech, and music, com-
puted on recordings in the DCASE2017 task 1 [56], LibriSpeech [68], and
GTZAN 1 datasets respectively. This issue has to be faced for each compu-
tational approximation paradigm. For example, it has been tackled for the
non negative matrix factorisation techniques by considering scale invariant
divergence such as the Itakura-Saito divergence [128].

Averaging along frequency bands in regression loss functions thus gives
the most importance to low-frequency content, whereas estimation errors in
high frequencies are likely ignored. This behavior appears in the CNN, and is

1http://marsyas.info/downloads/datasets.html
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Figure 5.7: Box plots of the distributions of spectral centroids in sound scenes
of the DCASE2017 dataset, separated by labels of type of sound environment
(n=108).

demonstrated by computing reconstruction metrics on extracts representing
separate ambiances. Results are presented in Table 5.2, and Figure 5.7 shows
the distribution of spectral centroids in scenes associated to each ambiance
for reference. The proposed model yields improvements on the SRR for
ambiances with primarily low-frequency content, such as car or tram. Its
performance is however similar to the pseudoinverse for calmer environments
where low-frequency information is less important, for example home and
office.

A potential solution to this problem is to apply a "whitening" transfor-
mation or a logarithm function to magnitude spectrograms before computing
losses. This scales amplitudes to the same order of magnitude across frequen-
cies, and thus ensures similar contributions from errors in all frequency bands
to the global loss (scale invariance). However, these methods are found dif-
ficult to control as they also amplify high-frequency noise, which result in
unstable training procedures.
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5.5 Generative approach

Results discussed in Section 5.4.2 underline two main considerations for the
design of deep learning spectral feature inversion models. First, producing
spectra with fine structures is difficult with fully deterministic architectures.
The role of these structures is to enable human identification of content
within synthesized scenes, and perfect reconstruction is not required to this
aim. Stochastic generative approaches have the potential to improve the
quality of generated examples on this aspect, by introducing more degrees
of freedom in the synthesis process. Second, even if the model is capable of
producing small scale structures, the constraint of correspondence between
generated and associated reference spectrograms must be enforced in the
considered feature inversion problem. Doing so with regression losses (e.g.
L1 distance) can result in high-frequency content being ignored during the
training process. This section introduces a new stochastic generative model
with an architecture specifically designed to synthesize fine structure with
equal focus across all frequencies.

5.5.1 Generative adversarial networks

The current task of synthesizing short-term Fourier transform magnitudes
from log-frequency spectra can be formulated as the upsampling (or inter-
polation) of third-octave spectrograms in the frequency dimension. This is a
well-known task in the image processing community, where state-of-the-art
performances are achieved by generative adversarial networks [129, 130, 131].
Similar systems can be applied to the spectral feature inversion task. This
section thus presents the general motivations and design paradigms of ad-
versarial approaches to solving synthesis tasks.

Generative adversarial networks are first proposed in [132] with the gen-
eral framework shown in Figure 5.8. GANs are composed of two neural
architectures: a generator and a discriminator. In an unconditioned setting,
the generator G takes as input a random vector z sampled from a distribu-
tion p(z), and outputs a prediction x̃ = G(z). The discriminator D is then
tasked to identify fake samples from the generator and real samples x ∼ Px,
where the discriminator learns to infer Px from examples in the training
dataset. The discriminator outputs a scalar value in the [0, 1] range, where
0 corresponds to a fake sample and 1 corresponds to a real sample. Using
a cross-entropy loss, the associated objective function of the optimization
process is a minimax objective:

min
G

max
D

Ex∼Px [log(D(x))] + Ex̃∼Px̃
[log(1−D(x̃))] (5.7)
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Figure 5.8: Original framework of generative adversarial networks. A gen-
erator architecture synthesizes examples from input random vectors. A dis-
criminator is tasked to identify generated examples from real examples in
the dataset, and both models are trained jointly in a minimax setting. An
additional input optionally conditions synthesis.

In other terms, the generator is trained to match the distribution Px so that
the discriminator cannot identify fake samples from real samples.

The authors of [133] note that the original formulation of the adversarial
loss in eq. 5.7 leads to unstable training in some cases. If the discrimina-
tor is trained to optimality, the gradient of the cross-entropy loss is close to
zero. Backpropagating this gradient then yields very small updates to the
generator parameters, which stops the convergence towards an acceptable
solution. Conversely, an insufficiently trained discriminator provides no use-
ful gradients for the generator to shift its output distribution towards that
of the dataset Px. As an alternative, they propose the Wasserstein-GAN
framework, in which the discriminator is replaced by a critic architecture
that can be trained to optimality while retaining useful gradients. Instead
of predicting a label of fake or real samples, the critic outputs a real-valued
score. During critic training the score is maximized for real samples and min-
imized for fake samples from the generator. The generator is then trained
to maximize the critic score associated to its output samples:

min
D

Ex̃∼Px̃
[D(x̃)]− Ex∼Px [D(x)] (5.8)

min
G
− Ex̃∼Px̃

[D(x̃)] (5.9)

The authors show that the critic approximates the Wasserstein-1 (Earth
Mover) distance if its associated function is K-Lipschitz. This constraint is



137

initially achieved by clipping the critic parameters to [−c, c] after each critic
optimization step, where c is a small constant (e.g. 0.01). In [134], task
examples are found where weight clipping leads to failure of convergence of
the training process, or where the generator fails to capture the underlying
distribution Px of real examples. Instead, a gradient penalty is proposed
to enforce the Lipschitz constraint. The gradient penalty is added as a
regularization term to the loss minimized during critic optimization (see
Section 5.5.4 for details).

Following this argument, the current study addresses the design of a
generative model trained in a Wasserstein-GAN setting with gradient penalty
to reconstruct short-term Fourier transform spectrograms by upsampling the
input log-frequency spectral representation.

5.5.2 Generator architecture

The structure of the proposed generator model is shown in Figure 5.9. For
a third octave filterbank with Nb bands, the generator is a group of Nb con-
volutional networks, each tasked with producing the fine-band magnitude
estimations in the frequency range of one third-octave band. Each subnet-
work takes the full third octave spectrogram of dimension 256× 26 as input,
and outputs a matrix of dimension 256 × 513 that corrects the full-band
pseudoinverse spectrogram estimation.

In the Fourier domain, the third-octave filterbank Φ (see Figure 5.2(a))
verifies:

Nb∑
b=1

= 1 (5.10)

within the considered frequency range of [20Hz, 8000Hz], i.e. the filterbank
conserves energy in that range. Thus, the output estimation x̃ can simply
be obtained from subnetwork contributions x̃b as

x̃(t, f) =

Nb∑
b=1

Φb(f) · x̃b(t, f) (5.11)

where Φb is the frequency response of the third-octave filter at band b. Dur-
ing backpropagation, the gradient of the loss function L with respect to
subnetworks outputs x̃b is:

∂L

∂x̃b
=
∂L

∂x̃

∂x̃

∂x̃b
=
∂L

∂x̃
· Φb (5.12)
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Figure 5.9: Proposed generator approach, where separate deep neural net-
works estimate parts of the fine-band magnitude spectrogram corresponding
to each third-octave filter. Combining contributions from the subnetworks
produces the final estimation, and ensures that gradients in subnetworks are
not affected by large magnitude differences across frequencies.

Because the frequency response of third octave filters quickly drops to zero
outside of their bandwidth (see Figure 5.2(a)), gradients of errors in fine-band
frequency bins outside this range are multiplied by 0 during backpropaga-
tion. As a result, the prediction error of any given frequency bin affects the
gradient in a maximum of two subnetworks corresponding to adjacent bands.
Thus, issues observed in Section 5.4.2, where prediction errors in high fre-
quencies are ignored due to larger contributions to the gradient of prediction
errors in low frequencies, do not appear in this formulation. This allows us
to potentially retain useful gradients across all frequencies when quantifying
errors with loss functions that average errors over frequencies.

The architecture of convolutional subnetworks is shown in Figure 5.11.
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Figure 5.10: Example of transposed convolution layer that performs the
parametric upsampling of an input representation, here with an upsampling
factor (fractional stride) of 2 and kernel size 2× 2
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Figure 5.11: Architecture of individual subnetworks in the generator model.
9 transposed convolution layers upsample the input third-octave spectrogram
into an estimation of the fine-band spectrogram. A random component is
introduced with dropout during both learning and evaluation. The number
of channels C in hidden layers is a function of the number of frequency bins
associated with the third-octave filter inverted by the network.

Subnetworks are composed of 9 transposed convolution layers that each up-
sample the input representation along the second (frequency) dimension by
a factor of two. The principle of transposed convolutions, also known as
fractionally-strided convolutions, is illustrated in Figure 5.10. In this exam-
ple, the input matrix of dimensionm×n is first upsampled by a factor of 2 by
inserting zeros. The upsampled matrix is then zero-padded and filtered by
kernels, similarly to regular convolution layers. The output is thus a matrix
of dimension 2m× 2n. In the proposed model, only the second (frequency)
dimension is upsampled and the first (time) dimension remains unchanged
throughout the network. Furthermore, nearest-neighbor upsampling is pre-
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Figure 5.12: Number of frequency bins in the bandwidth of third-octave
filters and number of channels allocated to corresponding subnetworks in
the generator architecture. Both quantities are doubled with each octave.

ferred to zero-insertion to alleviate "checkerboard" patterns in output repre-
sentations. Third-octave bands in input spectrograms are viewed as separate
channels by the network, and the input dimensions are 26 × 256 × 1 (resp.
channels, time, frequency). Thus, the network progressively upsamples the
representation from 1 to 513 bands. The motivation of this approach is that
the frequency dimension of third-octave spectra is logarithmically downsam-
pled from that of fine-band spectra. Transposed convolution layers perform
linear-step upsampling, thus they should not upsample the frequency dimen-
sion of third-octave spectra directly. The kernel size of filters is 9× 3 (resp.
time, frequency), and is identical for all convolution layers.

Each subnetwork predicts short-term Fourier transform magnitudes within
the bandwidth of a different third-octave filter, which corresponds to a · 2b/3
frequency bands where a depends on the precision of the spectrogram. Be-
cause the resulting task difficulty increases with the center frequency of log-
arithmic bands, the capacity of corresponding subnetworks should vary ac-
cordingly. Here, a low number of channels C = 2 is allocated to subnetworks
associated with the lowest third-octave bands. Every three bands this num-
ber of channels is doubled, up to C = 32 in the subnetwork corresponding to
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the highest third-octave band. However, the number of channels only starts
increasing from the third-octave band centered at 160 Hz, in order to reduce
the total number of parameters in the generator. Figure 5.12 summarizes
the allocated number of channels compared to the number of fine bands that
each subnetwork is tasked to predict, i.e. where the frequency response of
the corresponding third-octave filter is not zero. The number of channels is
always set as a power of two to maximize the benefits of distributed parallel
computing, which minimizes the training time.

After each hidden layer, a Leaky Rectified Linear Unit (LeakyReLU) with
slope 0.01 is applied to the representation. Because the generated spectra
should be non negative, a Rectified Linear Unit (ReLU) activation is ap-
plied to the output spectrogram after combining subnetwork contributions.
Lastly, to train the generator in an adversarial setting, a random component
should be introduced. The authors of [135] note that when the generator
is strongly conditioned, for example with a spectral representation, using
a random vector as an additional input does not always result in diverse
outputs. In some cases the generator may choose to ignore this additional
input and act as a deterministic architecture. Instead, they propose to force
stochastic predictions by applying a dropout layer after some of the convo-
lutional layers. Dropout layers set each element of the input representation
to 0 with probability p, then scales the remaining values by 1

1−p , where p is
a fixed hyperparameter of the model. In the literature, dropout is typically
applied only during training of models as a regularization method to reduce
overfitting, and is replaced by the identity function at evaluation. In [115]
dropout layers are retained at evaluation as a source of randomness. We
believe that considering those layers both at training and evaluation is ben-
eficial in strongly conditioned synthesis tasks. However, applying dropout in
early layers where the frequency dimension is low may result in significant
loss of information. Furthermore, applying dropout on the last layer leads
to zeros in the output spectrogram. Thus, dropout probabilities for the 9
layers of each subnetwork are set to [0, 0.1, 0.25, 0.5, 0.5, 0.5, 0.25, 0.1, 0]. In
total, the generator architecture contains about 0.8 million parameters.

5.5.3 Critic architecture

In typical Wasserstein-GAN settings, critic architectures output a real-valued
score that evaluates the fidelity of the entire input representation. This critic
input can be the output of the generator with distribution x̃ ∼ Pg, or an item
of the dataset of real examples with distribution x ∼ Pr. In the current study,
examples consist in about 3 s of audio data (256 frames of 46.4 ms with 75%
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Figure 5.13: Architecture of the critic model rating the realism of patches in
generated and real fine-band spectrograms.

overlap). Instead of the full example, the proposed critic architecture rates
the realism of time-frequency patches in input spectrograms. This allows the
critic model to focus on the fidelity of reconstructed patterns at a smaller
scale, rather than the overall likeness between generator outputs and real ex-
amples from the dataset. The proposed architecture is shown in Figure 5.13.
It is composed of 7 convolution layers each followed by LeakyReLU nonlinear
activations. The third, fifth, and seventh layers are strided convolutions that
downsample the representation by a factor of 2 in the time and frequency
dimensions. The kernel size in these layers is 4× 4, whereas in other layers
a filter size of 5× 5 retains equal dimensions in input and output represen-
tations. The number of channels is set to 32 in the first layer, and doubles
in each strided convolution layer up to 256 in the penultimate layer. This
compensates the dimensionality reduction yielded by strided convolutions,
to retain sufficient information capacity throughout the network. The final
layer outputs a single channel corresponding to critic scores. The output is
a matrix of dimension 32 × 64 where values correspond to a small overlap-
ping patches of the input fine-band spectrogram. The dimensions of these
patches is given by the total receptive field of stacked filters in the model.
Each value in the output matrix follows the same principles as scalar critic
outputs in typical approaches: the discriminator is trained so that high pos-
itive values are output for real examples from the dataset, and high negative
values are output for fake examples from the generator. The total number
of parameters in the critic architecture is of the order of 1 million.
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5.5.4 Training process

The generator and critic architecture are jointly trained by the Wasserstein-
GAN algorithm with gradient penalty [134]. For generator outputs x̃ ∼ Pg
and real examples xn ∼ Px, the critic (D) and generator (G) losses (resp.
LD, LG) minimized during training are:

LD =
1

N

N∑
n=1

D(x̃)−D(x) + λ (||∇x̂D(x̂)||2 − 1)2 (5.13)

LG =
1

N

N∑
n=1

−D(x̃) (5.14)

where N is the batch size, ∇x̂ denotes the gradient with respect to x̂, and
λ is the gradient penalty coefficient set to 10 in this study following [134].
The x̂ term in the gradient penalty corresponds to the weighted sum of a
real sample x and a generated sample x̃:

x̂ = εx+ (1− ε)x̃ (5.15)

where ε is a random scalar drawn from a [0, 1] uniform distribution at each
iteration.

In addition to the realism obtained by training the generator in an adver-
sarial setting, generated spectrograms should correspond in content to the
input third-octave measurements. Following [115], this is achieved by intro-
ducing an additional loss term in the generator optimization. The L1 loss
comparing generator outputs x̃n to corresponding ground truth fine-band
spectrograms xn is taken:

LG =
1

N

N∑
n=1

[−D(x̃) + α|x̃n − xn|] (5.16)

where α is a scalar coefficient determining the trade-off between the adver-
sarial and reconstruction components of the loss function. α = 100 results
in the same order of magnitude for the two components in this study, and is
thus taken in reported experiments.

In the Wasserstein-GAN formulation, the generator benefits from train-
ing the critic to optimality (see Section 5.5.1). Thus, the critic architecture is
initially trained for 10000 iterations using examples from the dataset as real
samples, and outputs of the generator with randomly initialized parameters
as fake samples. The Adam gradient descent algorithm computes parameter
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Table 5.3: Performance of the proposed Ad-SBSR generative approach com-
pared to the convolutional network (CNN) in Section 5.4, pseudoinverse es-
timations, and the AdVoc generative baseline. Metrics are evaluated on the
DCASE2017 evaluation dataset (n=1620). Results shown in bold for spe-
cific metrics are not statistically different from the best performing system
(p<0.05).

Model SRR Oracle (dB) LSD PSMt (LWS) IS
Reference +∞ 0 0.933±0.048 0.089

Pseudoinverse 18.01 ±7.12 0.416 ±0.158 0.644 ±0.045 0.086
CNN 18.11 ±7.76 0.358 ±0.126 0.695 ±0.044 0.089
AdVoc 14.89 ±6.51 0.487 ±0.175 0.739 ±0.051 0.083

Ad-SBSR 17.71 ±7.24 0.407 ±0.142 0.656±0.048 0.092

updates with a learning rate of 0.0001 over batches of 16 examples. Once
the pre-trained critic is obtained, both architectures are jointly trained by
alternating generator and critic optimization iterations. In a group of 6
subsequent iterations, each with a separate batch of examples, 5 iterations
are dedicated to the optimization of the critic parameters, and one to the
optimization of the generator parameters. This allows the critic to remain
near-optimal whenever an optimization step of the generator is computed.
The model is trained for a total of 50 epochs.

5.5.5 Evaluation

The proposed generative approach, named Adversarial Spectral Band-Specific
Reconstruction (Ad-SBSR), is compared to the CNN deterministic approach
of Section 5.4, as well as the pseudoinverse reconstructions and AdVoc deep
generative baselines. Table 5.3 shows reconstruction metrics and incep-
tion scores computed for all methods on the DCASE2017 evaluation dataset
(n=1620).

The deterministic CNN is trained on the L1 distance, and thus strictly
focuses on matching ground truth spectral magnitudes. This results in high
performance on signal processing reconstruction metrics (SRR, LSD). On
the contrary, the AdVoc generative baseline achieves worse performance on
these reconstruction metrics, but improves synthesis quality in terms of the
perceptual similarity metric (PSMt). This is attributed to the combination
of loss functions minimized in its training process (see Section 5.3.3). During
the training of AdVoc the L1 is balanced by the additional adversarial loss,
which favors the correspondence between distributions of generated and real
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spectrograms regardless of the reference associated to synthesized examples,
in order to allow the system to generate more realistic samples. However,
this improvement is only evidenced with the PSMt computed on waveform
signals with LWS phase reconstruction. Synthesizing samples with oracle
phase yields PSMt correlated to the LSD metric. The LWS thus converges
to better phase component estimates on spectra produced by AdVoc than
by other investigated methods.

Short-term Fourier transform spectrograms generated by the Ad-SBSR
architecture obtain similar SRR compared to examples generated by the
pseudoinverse and CNN. We hypothesize that this is due to the addition
of pseudoinverse estimations to the output of band-specific generator sub-
networks, as it provides a strong initial point that the model is trained to
improve. In contrast, AdVoc is only given the pseudoinverse estimations as
inputs, and must fully reconstruct STFT magnitudes. However, enforcing
this strong constraint on the Ad-SBSR architecture output may ultimately
be detrimental to the ability of the training process to converge towards
a perceptually more relevant solution: because the pseudoinverse already
provides a good reconstruction in the least-squares sense, the initial gradi-
ent of the L1 regression loss term is expected to be small, i.e. examples
may not significantly diverge from the pseudoinverse solution during opti-
mization. Still, the Ad-SBSR architecture improves the inception score over
other approaches, indicating an ability to generate properties necessary to
the identification of sound environment types by the DCASE2017 classifier.

Quantitative results discussed here are encouraging and demonstrate the
potential of the Ad-SBSR to tackle the long standing issue of frequency
axis magnitude assymetry in spectral audio processing. That being said,
some experiments remain to be conducted to provide definitive evidence and
hopefully obtain production-ready models supported by relevant evaluation
metrics. Design parameters of the Ad-SBSR approach should be further ex-
plored, including an ablation study to assess performance gains associated
to band-specific reconstruction and stochastic adversarial training respec-
tively. Because objective metrics provide limited information on the percep-
tual quality of synthesized sounds, subjective evaluation through listening
test is also necessary as a conclusive indicator of performance.



Conclusion

This thesis focused on proposing tools to infer humanly interpretable infor-
mation about urban sound environments measured by large-scale acoustic
sensor networks. Specifically, two contributions were proposed to investigate
the modeling potential of deep learning approaches for those matters: the
prediction of perceptual attributes and the synthesis of sound scenes from
privacy-aware spectral representations.

Despite its high potential impact on the characterization of sound en-
vironments, the task of predicting perceptual attributes remains relatively
unexplored by the Detection and Classification of Acoustic Scenes and Events
(DCASE) community. This area of research is inherently interdisciplinary,
at the frontier of machine learning and psychoacoustics. As such, the task of
predicting perceptual quantities related to the activity of sources of interest,
on which attributes of soundscape quality depend, differs from typically con-
sidered event detection contexts. Variations in perceptual descriptors occur
on longer time scales, and sources composing polyphonic sound environments
interact more strongly through salience.

These properties result in difficulties to obtain relevant labels in large
datasets of sound scenes necessary to the training process of deep learning
architectures. In this context, the use of controlled corpora is proposed in
Chapter 2. This approach provides the ability to develop effective methods
for the automatic annotation of perceived source activity. Through data
augmentation at the scene level, sound scene simulation tools then allow us
to generate arbitrary large datasets at a low human labor cost, with sufficient
diversity and annotation quality to train deep learning architectures on the
desired task.

Accurately predicting perceived source presence labels is achieved with
convolutional and recurrent deep learning models, as described in Chapter 3.
However, the generalization to target sound environments highly depends on
the localization properties of simulated corpora. This issue is addressed to
some extent by using on-site recordings of sound sources in the simulation
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process of sound scenes. Chapter 4 further develops an approach that ex-
ploits the availability of very large unlabeled datasets with an original use of
transfer learning techniques. Useful knowledge about the target domain is
extracted by learning latent audio representations in unsupervised or semi-
supervised settings. Results show that considering these representations as
an initial estimation of deep learning model parameters contributes to the
domain specialization of trained predictive architectures when the supervised
target task is trained on simulated data with limited content correspondence,
or when the quantity or diversity of localized simulated data is reduced. In
particular, these results show that recording very few clean samples of source
occurrences is sufficient in future monitoring projects where large amounts
of sensor data are available.

Although the proposed method yields accurate predictions of perceptual
quantities on evaluation recordings, we believe that there remains several
avenues of research to consider in future work. In the present work, ap-
proaches to perceptual source presence annotation and soundscape quality
assessment are developed in a simplified context of active listening, in which
the passer-by is focused on the sound environment. The annotation of sim-
ulated sound scenes in terms of perceived source presence is thus achieved
with an emergence indicator that models auditory masking. More com-
plex saliency models are available in the literature that account for the first
layers of the auditory system. Such models should be considered in appli-
cations where soundscape quality is evaluated from a different perspective,
for example sound quality for city residents at home. However, the general
methodology for simulating large polyphonic corpora as well as predictive
models in Chapters 3 and 4 remains valid for any application scenario.

To maximize the localization characteristics of controlled datasets, sim-
ulation parameters should be more fully obtained from target environments.
In this study, the considered isolated samples of sources are representative
of environments encountered in the application, although the taxonomy of
sound sources is somewhat limited. Additional sources may also influence
high-level perceptual attributes. We believe that including such sources in
datasets and predictions, as well as developing location-specific perceptual
models of soundscape quality, would result in a better characterization of
sound environments. Furthermore, simulated scenarios are extrapolated
from a small corpus of recordings. Manually annotating location-specific
recordings in terms of source activity to extract scenario distributions (Sec-
tion 2.2.2) would thus further improve the adaptability of trained architec-
tures. Alternatively, developing automatic tools for generating large con-
trolled sound scene datasets matching the content and diversity found in
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target environments constitutes an important area of research in future work.
The proposed transfer learning approach implemented in this study con-

siders measurements collected over a single week. While these data are suf-
ficient to learn robust latent audio representations, extending the approach
with measurements spanning over year-long periods would be beneficial to
fully account for the intrinsic variations in sound environments over long
periods of time. Similarly, predictive models should be evaluated against in
situ subjective assessments in diverse conditions, including time of day, day
of the week, and seasons.

In the second part of this thesis, the difficult problem of sound synthesis
is investigated. Although this area of research is supported by very active
deep learning communities, in particular in speech and music applications,
there remains several scientific challenges to be addressed. Here, a study is
conducted on the synthesis of environmental sound scenes strongly condi-
tioned on log-frequency spectral representations. Specifically, the proposed
methods account for the high dissymmetry of spectral audio magnitudes as
a function of frequency, which limits the efficiency of cost functions tradi-
tionally used in regression tasks. The preliminary study demonstrates the
potential of the proposed approach of band specific spectrogram reconstruc-
tion in the highly dissymmetric case of environmental sounds.

In the training process of the proposed approach, the cost function im-
plements a trade-off between realism and reconstruction quality constraints
in synthesized sound scenes. Realism is evaluated as the correspondence be-
tween distributions of generated and ground truth spectrograms by a deep
learning critic model, with no clear relation to the perceptual quality of
produced examples. Similarly, distance functions quantifying reconstruc-
tion errors at evaluation do not necessarily reflect the perceptual differences
yielded by prediction errors. To account for these properties, perceptually
motivated differentiable loss functions and metrics recently proposed [136]
could shift the focus of the training process in synthesis models towards
improving the perceptual similarity of reconstructed sounds. Still, the pro-
posed approach contributes to solving the signal processing problems related
to spectral characteristics of natural sounds in deep learning paradigms. The
discussed results are encouraging, and we hope this contribution will be use-
ful in the very active research domain of sound synthesis, where several
emergent architectures continuously improve the state-of-the-art in recent
studies [109, 110, 119].



Appendix A

Scene level parameters for
acoustic scene simulation

This appendix summarizes the parameters from which the simScene sound
scene simulation process generates original scenarios used in Section 2.2.2.
These parameters are extracted by annotating a corpus of 74 sound scenes
recorded in Paris in terms of event and background source activity. In addi-
tion to quiet street, noisy street, very noisy street and park environment types
represented in this corpus, parameters are empirically derived for square am-
biances with more voice activity. Tables A.1, A.2, A.3, A.4, and A.5 show the
respective corresponding values, further used for simulating large datasets in
Sections 3.2 and 4.3.1.

Table A.1: Scene level parameters to generate quiet street environments.

Source
Probability of
appearance

Event-to-Background
ratio (dB)

Time between
instances (s)

Background
Traffic 1 - -
Voice 0.61 -2.56 ±5.92 -
Birds 0.18 -4.41 ±6.72 -

Event
Traffic 0.83 7.79 ±4.63 39.97 ±10.41
Voice 0.93 -4.75 ±1.5 16 ±6
Birds 0.8 4.7143 ±2.8571 25 ±6
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Table A.2: Scene level parameters to generate noisy street environments.

Source
Probability of
appearance

Event-to-Background
ratio (dB)

Time between
instances (s)

Background
Traffic 1 - -
Voice 0.75 -3.90 ±2.11 -
Birds 0.04 -11.63 ±0 -

Event
Traffic 1 3.26 ±3.43 22.60 ±10.28
Voice 0.87 -7 ±1.5 21 ±6
Birds 0.59 -0.43 ±2.57 35 ±6

Table A.3: Scene level parameters to generate very noisy street environments.

Source
Probability of
appearance

Event-to-Background
ratio (dB)

Time between
instances (s)

Background
Traffic 1 - -
Voice 0.56 -3.92 ±1.02 -
Birds 0 - -

Event
Traffic 1.1 2.33 ±2.67 11.47 ±9.24
Voice 0.53 -8.67 ±1.5 27 ±6
Birds 0.52 -1.5 ±1.5 40 ±6

Table A.4: Scene level parameters to generate park environments.

Source
Probability of
appearance

Event-to-Background
ratio (dB)

Time between
instances (s)

Background
Traffic 0.6 - -
Voice 0.75 2.61 ±3.83 -
Birds 1 3.00 ±6.60 -

Event
Traffic 0.48 3 ±2.33 45.47 ±6
Voice 0.9 -6.5 ±1.5 12 ±6
Birds 1 0 ±2.5 20 ±11.85

Table A.5: Scene level parameters to generate square environments.

Source
Probability of
appearance

Event-to-Background
ratio (dB)

Time between
instances (s)

Background
Traffic 1 - -
Voice 1 4.5 ±4 -
Birds 0.7 -8 ±5 -

Event
Traffic 0.7 4.5 ±3 40 ±7
Voice 1 -6 ±1.5 10 ±6
Birds 0.9 3 ±3 22 ±9



Appendix B

Comparison of perceptual
responses between recordings
and matching synthetic sound
scenes

This appendix contains additional material discussed in Section 2.3.1. A
principal components analysis is applied to the perceptual assessments ob-
tained during the listening test on 6 recorded and 19 replicated sound scenes.
Evaluations of matching recorded and replicated sound scenes by individual
participants are projected on the first two components in the resulting space
for comparison. Figures B.1, B.2, B.3, B.4, and B.5 show distributions of
projections of individual assessments as ellipses, in scenes corresponding to
five locations (resp. P3, P4, P8, P15 and P18). The shift in average per-
ceptual evaluation from a recording to the corresponding replicated scene is
illustrated by an arrow.
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Figure B.1: Biplot of the principal components analysis of average assess-
ments for the 5 high-level perceptual attributes on the 6 recorded and 19
replicated scenes (n=25). Arrows indicate differences between projections
of assessments for the recorded (base) and replicated (head) scenes of each
location. For the P3 location ellipses show the distributions of individual
assessments.
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Figure B.2: Biplot of the principal components analysis of average assess-
ments for the 5 high-level perceptual attributes on the 6 recorded and 19
replicated scenes (n=25). Arrows indicate differences between projections
of assessments for the recorded (base) and replicated (head) scenes of each
location. For the P4 location ellipses show the distributions of individual
assessments.
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Figure B.3: Biplot of the principal components analysis of average assess-
ments for the 5 high-level perceptual attributes on the 6 recorded and 19
replicated scenes (n=25). Arrows indicate differences between projections
of assessments for the recorded (base) and replicated (head) scenes of each
location. For the P8 location ellipses show the distributions of individual
assessments.
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Figure B.4: Biplot of the principal components analysis of average assess-
ments for the 5 high-level perceptual attributes on the 6 recorded and 19
replicated scenes (n=25). Arrows indicate differences between projections
of assessments for the recorded (base) and replicated (head) scenes of each
location. For the P15 location ellipses show the distributions of individual
assessments.
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Figure B.5: Biplot of the principal components analysis of average assess-
ments for the 5 high-level perceptual attributes on the 6 recorded and 19
replicated scenes (n=25). Arrows indicate differences between projections
of assessments for the recorded (base) and replicated (head) scenes of each
location. For the P18 location ellipses show the distributions of individual
assessments.
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Titre : Analyse et synthèse de scènes sonores urbaines par approches d'apprentissage profond 
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Résumé : L'avènement de l'Internet des Objets 
(IoT) a permis le développement de réseaux de 
capteurs acoustiques à grande échelle, dans le 
but d'évaluer en continu les environnements 
sonores urbains. Dans l'approche de paysages 
sonores, les attributs perceptifs de qualité 
sonore sont liés à l'activité de sources, quantités 
d'importance pour mieux estimer la perception 
humaine des environnements sonores. Utilisées 
avec succès dans l'analyse de scènes sonores, 
les approches d'apprentissage profond sont 
particulièrement adaptées pour prédire ces 
quantités. Cependant, les annotations 
nécessaires au processus d'entraînement de 
modèles profonds ne peuvent pas être 
directement obtenues, en partie à cause des 
limitations dans l’information enregistrée par les 
capteurs nécessaires pour assurer le respect de 
la vie privée. 
Pour répondre à ce problème, une méthode 
pour l'annotation automatique de l'activité des 
sources d'intérêt sur des scènes sonores 
simulées est proposée. Sur des données 
simulées, les 

modèles d'apprentissage profond développés 
atteignent des performances « état de l'art » 
pour l'estimation d'attributs perceptifs liés aux 
sources, ainsi que de l'agrément sonore. Des 
techniques d'apprentissage par transfert semi-
supervisé sont alors étudiées pour favoriser 
l'adaptabilité des modèles appris, en exploitant 
l'information contenue dans les grandes 
quantités de données enregistrées par les 
capteurs. Les évaluations sur des 
enregistrements réalisés in situ et annotés 
montrent qu'apprendre des représentations 
latentes des signaux audio compense en partie 
les défauts de validité écologique des scènes 
sonores simulées. 
Dans une seconde partie, l'utilisation de 
méthodes d'apprentissage profond est 
considérée pour la resynthèse de signaux 
temporels à partir de mesures capteur, sous 
contrainte de respect de la vie privée. Deux 
approches convolutionnelles sont développées 
et évaluées par rapport à des méthodes état de 
l'art pour la synthèse de parole. 

 

Title : Analysis and synthesis of urban sound scenes using deep learning techniques 

Keywords : Soundscape, Acoustic sensor networks, Sound source perception, Sound synthesis 

Abstract: The advent of the Internet of Things 
(IoT) has enabled the development of large-
scale acoustic sensor networks to continuously 
monitor sound environments in urban areas. In 
the soundscape approach, perceptual quality 
attributes are associated with the activity of 
sound sources, quantities of importance to 
better account for the human perception of its 
acoustic environment. With recent success in 
acoustic scene analysis, deep learning 
approaches are uniquely suited to predict these 
quantities. Though, annotations necessary to 
the training process of supervised deep learning 
models are not easily obtainable, partly due to 
the fact that the information content of sensor 
measurements is limited by privacy constraints. 
To address this issue, a method is proposed for 
the automatic annotation of perceived source 
activity in large datasets of simulated acoustic 

scenes. On simulated data, trained deep 
learning models achieve state-of-the-art 
performances in the estimation of source-
specific perceptual attributes and sound 
pleasantness. Semi-supervised transfer learning 
techniques are further studied to improve the 
adaptability of trained models by exploiting 
knowledge from the large amounts of unlabelled 
sensor data. Evaluations on annotated in situ 
recordings show that learning latent audio 
representations of sensor measurements 
compensates for the limited ecological validity of 
simulated sound scenes. 
In a second part, the use of deep learning 
methods for the synthesis of time domain 
signals from privacy-aware sensor 
measurements is investigated. Two spectral 
convolutional approaches are developed and 
evaluated against state-of-the-art methods 
designed for speech synthesis. 

 


