
HAL Id: tel-03179102
https://theses.hal.science/tel-03179102v1

Submitted on 24 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Management of Resources in Heterogeneous
Platforms

Clément Mommessin

To cite this version:
Clément Mommessin. Efficient Management of Resources in Heterogeneous Platforms. Performance
[cs.PF]. Université Grenoble Alpes [2020-..], 2020. English. �NNT : 2020GRALM065�. �tel-03179102�

https://theses.hal.science/tel-03179102v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministériel : 25 mai 2016

Présentée par

Clément MOMMESSIN

Thèse dirigée par Denis TRYSTRAM

et codirigée par Giorgio LUCARELLI

préparée au sein du Laboratoire d’Informatique de Grenoble
et de l’École Doctorale MSTII

Gestion Efficace des Ressources
dans les Plates-formes Hétéro-
gènes
Efficient Management of Resources in Hetero-
geneous Platforms

Thèse soutenue publiquement le 11 décembre 2020,
devant le jury composé de :

Olivier BEAUMONT
Directeur de Recherche, LaBRI, Inria, France, Examinateur

Anne BENOIT
Maître de Conférences, ENS Lyon, LIP, Lyon, France, Rapportrice

Noël DE PALMA
Professeur, LIG, Université Grenoble Alpes, France, Président

Giorgio LUCARELLI
Maître de Conférences, LCOMS, Université de Lorraine, Metz, France, Co-
encadrant de thèse
Yanik NGOKO
Chargé de Recherche, Université Paris 13, et Ingénieur de Recherche, Qarnot
Computing, France, Invité
Krzysztof RZADCA
Associate Professor, Institute of Informatics, University of Warsaw, and Google,
Poland, Rapporteur
Denis TRYSTRAM
Professeur des Universités, LIG, Grenoble INP, France, Directeur de thèse

„ I solemnly swear that I am up to no good

— Messrs. Moony, Wormtail, Padfoot, and
Prongs

Remerciements
(Acknowledgments)

Je dédie ces quelques lignes à Dobby, l’elfe libre...

Tout d’abord, je souhaite remercier mes encadrant et directeur, Giorgio LUCARELLI et
Denis TRYSTRAM, qui m’ont accueilli, porté, supporté et aidé durant toutes ces années.
Je remercie bien entendu également tous les membres du jury, et en particulier Anne
BENOIT et Krzysztof RZADCA pour avoir réussi à lire l’ensemble de ce manuscrit et
proposé des commentaires éclairés.

Mes remerciements vont ensuite à l’ensemble des équipes jumelles DATAMOVE et
POLARIS – a.k.a. POLAMOVE – pour toute cette animation dans les couloirs, ces
discussion au petit matin, ces goûters post-séminaires. Merci d’avoir fondé une
aussi grande famille. Famille gérée par une main de maître par Annie, super Annie,
qui fait un travail incroyable tous les jours pour tous nous aider et sans qui la
boutique ne tournerait pas aussi bien. Merci aussi à tous mes collègues de bureau, de
passage ou de long terme : merci aux vieux, Raphaël, Millian, Michael, au nouveau,
Quentin, à Alexis qui nous a quittés trop vite, à Flora pour ces séances d’origami
et de chasse au trésor. Muito obrigado Andrei, euqaristw Kimon kai Mitsos, danke
und gesundheit Malin. Merci également à Vincent, l’infiltré du bureau d’à côté, pour
son imagination débordante, et bien sûr à tous les autres que je ne nommerai pas,
stagiaires, doctorants, post-docs, ingénieurs, permanents des bureaux voisins. Enfin,
last but not least, un énorme merci à Danilo, qui a les cheveux comme une piscine,
et à Salah, Sa Luminosité, pour tous ces moments partagés au bureau. Je suis désolé
d’avoir fait échouer un de tes objectifs les plus chers, tu n’auras pas réussi à me faire
boire du café.

Plus généralement, un grand merci à la team Batsim, à tous les membres du groupe
Info Sans Ordi de Grenoble et de Navarre, aux nombreux membres du club Rock de
Grenoble INP, et puis à tous mes amis, qu’ils proviennent de l’équipage du Capitaine,
de la petite bourgade de Claix ou de contrées plus lointaines.

Finalement, un grand merci à ma famille, qui pourra dire, je le pense, que ces années
de thèse m’ont beaucoup raplauti.

iii

This work is supported by the ANR GRECO project 16-CE25-0016-01.

The work presented in Chapter 6 was partially supported by FAPESP (São Paulo
Research Foundation, grant #2012/23300-7) and ANR Moebus Project.
All the experiments of this chapter were performed on the Froggy platform of the
CIMENT infrastructure1, which is supported by the Rhône-Alpes region (GRANT
CPER07_13 CIRA) and the Equip@Meso project (reference ANR-10-EQPX-29-01) of
the program “Investissements d’Avenir” supervised by the French Research Agency
(ANR).

1https://ciment.ujf-grenoble.fr

iv

https://ciment.ujf-grenoble.fr

Abstract / Résumé

Abstract

The world of Information Technology (IT) is in constant evolution. With the ex-
plosion of the number of digital and connected devices in our everyday life, the IT
infrastructures have to face an ever growing amount of users, computing requests
and data generated. The Internet of Things has seen the development of computing
platforms at the edge of the network to bridge the gap between the connected de-
vices and the Cloud, called the Edge Computing. In the domain of High Performance
Computing, the parallel programs executed on the platforms require always more
computing power in a search for improved performances. Besides, we observed in
the past years a diversification of the hardware composing these infrastructures. This
complexification of the (network of) computing platforms pose several optimisation
challenges that can appear at different levels. In particular, it led to a need for better
management systems to make an efficient usage of the heterogeneous resources
composing these platforms.

The work presented in this thesis focuses on resource optimisation problems for
distributed and parallel platforms of the Edge Computing and High Performance
Computing domains. In both cases, we study the modelling of the problems and
propose methods and algorithms to optimise the resource management for better
performance, in terms of quality of the solutions. The problems are studied from
both theoretical and practical perspectives. More specifically, we study the resource
management problems at multiple levels of the Qarnot Computing platform, an Edge
Computing production platform mostly composed of computing resources deployed
in heaters of smart-buildings. In this regard, we propose extensions to the Batsim
simulator to enable the simulation of Edge Computing platforms and ease the design,
development and comparison of data and job placement policies in such platforms.
Then, we design a new temperature prediction method for smart-buildings and
propose a formulation of a new scheduling problem with two agents on multiple
machines.
In parallel, we study the problem of scheduling applications on hybrid multi-core
machines with the objective of minimising the completion time of the overall ap-
plication. We survey existing algorithms providing performance guarantees on the

v

constructed schedules and propose two new algorithms for different settings of the
problem, proving performance guarantees for both. Then, we conduct an experimen-
tal campaign to compare in practice the relative performance of the new algorithms
with existing solutions in the literature.

vi

Résumé

Le monde des Technologies de l’Information (IT) est en constante évolution. Avec
l’explosion du nombre d’appareils numériques et connectés dans notre vie de tous
les jours, les infrastructures IT doivent faire face à une constante augmentation du
nombre d’utilisateurs, de requêtes informatiques et de données générées. L’Internet
des Objets a vu le développement de plates-formes de calcul en bordure du réseau
pour combler l’écart entre les appareils connectés et le Cloud, appelé le Edge
Computing. Dans le domaine du Calcul à Haute Performance, les programmes
parallèles exécutés sur les plates-formes demandent toujours plus de puissance de
calcul à la recherche d’une amélioration des performances. De plus, il a été observé
au cours des dernières années une diversification des composants matériels dans
ces infrastructures. Cette complexification des (réseaux de) plates-formes de calculs
pose plusieurs problèmes d’optimisation qui peuvent apparaître à divers niveaux.
En particulier, cela a mené au besoin de meilleurs systèmes de gestion pour une
utilisation efficace des ressources hétérogènes qui composent ces plates-formes.

Le travail présenté dans cette thèse se focalise sur des problèmes d’optimisation de
ressources pour les plates-formes parallèles et distribuées du Calcul à Haute Per-
formance et du Edge Computing. Dans les deux cas, nous étudions la modélisation
des problèmes et nous proposons des méthodes et des algorithmes de gestion de
ressources pour de meilleures performances. Les problèmes sont étudiés à la fois sur
des plans théoriques et pratiques. Plus spécifiquement, nous étudions les problèmes
de gestion de ressources à différents niveaux de la plate-forme Qarnot Computing,
une plate-forme de production Edge principalement composée de ressources de
calculs déployées dans des radiateurs de bâtiments intelligents. Pour cela, nous
proposons des extensions au simulateur Batsim pour permettre la simulation de
plates-formes Edge et pour faciliter le design, le développement et la comparaison de
politiques de placement de données et de tâches sur de telles plates-formes. Ensuite,
nous proposons une nouvelle méthode de prédiction de la température pour des
bâtiments intelligents et nous formulons un nouveau problème d’ordonnancement à
deux agents sur machines multiples.
En parallèle, nous étudions le problème d’ordonnancement d’applications sur ma-
chines multi-cœur hybrides dont l’objectif est la minimisation du temps total de
complétion de l’application. Nous faisons une revue des algorithmes existants avec
des garanties de performance, puis nous proposons deux nouveaux algorithmes pour
différentes variantes du problème et nous donnons des preuves de leur garanties
de performance. Enfin, nous conduisons une campagne expérimentale pour compa-

vii

rer la performance relative de nos algorithmes avec des solutions existantes de la
littérature.

viii

Contents

Acknowledgments iii

Abstract / Résumé v

Contents ix

1 Introduction 1
1.1 Resource and Job Management in Heterogeneous Platforms 1
1.2 Contextualisation of Edge Computing 2
1.3 Infrastructure Simulation . 4
1.4 Plan and Summary of Contributions 5

2 Edge Infrastructures: a Case Study 7
2.1 The Qarnot Computing Platform . 7

2.1.1 Platform Overview . 7
2.1.2 Platform Components in Details 9

2.2 Users and Requests . 14
2.2.1 Temperature Requests . 14
2.2.2 Cloud Computing Requests 15
2.2.3 IoT Requests . 16

2.3 Challenges . 17
2.3.1 Data Management and Communications 17
2.3.2 Resources Availability . 18
2.3.3 Users and Objectives . 20

3 A Simulation Tool for Edge Computing Infrastructures 23
3.1 Related Work . 24
3.2 Batsim and SimGrid in a Nutshell . 25

3.2.1 SimGrid . 25
3.2.2 Batsim and the Decision Process 26
3.2.3 SimGrid Plug-ins . 27

3.3 New Extensions . 28
3.3.1 External Events Injector . 28
3.3.2 Storage Controller . 29

ix

3.4 Future Extensions . 30

3.5 Simulating the Qarnot Platform . 31

3.5.1 Platform Description . 32

3.5.2 Workload Description . 32

3.5.3 Data-sets Description . 33

3.5.4 External Events Description 33

3.5.5 Temperature Modelling . 34

3.5.6 Input Files Generation . 35

3.5.7 Decision Process Implementation 35

3.6 Investigating Placement Strategies 36

3.6.1 Data/Job Scheduling Policies 36

3.6.2 Simulated Workloads . 37

3.6.3 Simulation Results . 38

4 Temperature Modelling and Prediction 43
4.1 A Need for Temperature Prediction 43

4.2 Related Work . 44

4.3 Problem Formulation and Thermodynamics 46

4.4 Temperature Prediction Methods . 48

4.4.1 Lumped Thermal Model . 49

4.4.2 A Naive Iterative Approach 50

4.4.3 A Linear Algebra Approach 51

4.4.4 Multiple Sources Extension 55

4.5 Experiments . 56

4.5.1 Preparation of the Data . 57

4.5.2 Learning of Physical Constants 58

4.5.3 Evaluated Prediction Methods 58

4.5.4 Temperature Prediction Accuracy 60

4.5.5 Computation Time Evaluation 62

4.5.6 Results Discussion . 64

5 Overview of Scheduling on Two Types of Resources 67
5.1 Problem Statement . 67

5.2 Problem Variants . 68

5.2.1 Dependent and Independent Tasks 68

5.2.2 Off-line and On-line Settings 69

5.3 Performance Guarantees . 69

5.4 Related Work . 70

5.5 Best Known Solutions . 71

x

6 Generic Algorithms for Scheduling Applications on Heterogeneous Plat-
forms 75
6.1 Contribution Summary . 75
6.2 Definitions and Notations . 77
6.3 Preliminaries . 77
6.4 Algorithms . 86

6.4.1 Off-line Setting . 86
6.4.2 On-line Setting . 87

6.5 Generalisation on Q Resource Types 92
6.6 Benchmark Creation . 96
6.7 Experiments . 97

6.7.1 Off-line Setting . 98
6.7.2 On-line Setting . 102

7 Semi On-Line Two-Agent Scheduling 107
7.1 Context . 107
7.2 Related Work . 107
7.3 Problem Modelling . 109
7.4 Resource Augmentation . 110

8 Conclusion 113

Bibliography A1

List of Figures A13

List of Tables A14

xi

Introduction 1
Since the dawn of time, mankind is obsessed with optimisation. It started with the
creation of tools from silex stones with cutting edges, bows and arrows to make
hunting easier. Then, the wheel appeared, people invented means of transportation,
tasks were automatised. Iteratively, humans developed tools and improved their
technique in the search for boosting their efficiency to mainly serve one purpose.
Why would a caveman decide to go bow hunting? Why would a farmer in Middle
Age transport a haystack on a wheel cart? Why would you drive 10 km/h faster than
the speed limit on an empty country road? The reason is to perform a task more
easily, faster, to save time and/or energy. Hence the optimisation.

Now, do not be mistaken! This manuscript does not discuss anthropological questions
about the race of humans against the time. We are here to talk about optimisation
in computer science, and, more specifically, about the efficient management of jobs
and resources in heterogeneous distributed and parallel computing platforms.

1.1 Resource and Job Management in Heterogeneous
Platforms

Since the emergence of large-scale distributed and parallel platforms in the past
decades, we have observed a diversification of the computing units used in such
systems. With the integration of hardware accelerators, such as General Purpose
Graphical Processing Units (GPUs), that are often combined with multiple Central Pro-
cessing Units (CPUs) on the same chip sharing the same common memory [Lee+10],
the platforms become more and more heterogeneous. As an instance of this, the
number of platforms of the TOP500 equipped with accelerators has significantly
increased during the last years, going from 36 platforms in 2011 to 149 platforms out
of 500 in 2020 [@top500]. In the future it is expected that the nodes of such plat-
forms will be even more diverse than today: they will be composed of fast computing
nodes, hybrid computing nodes mixing general purpose units with accelerators, I/O
nodes, and specialised nodes such as Field Programmable Gate Arrays (FPGAs) or
Tensor Processing Units (TPUs). The interconnect of a huge number of such nodes

1

will also lead to more heterogeneity. Using heterogeneous platforms would lead to
better performance through the use of more appropriate resources depending on
the computations to perform, but it has a cost in terms of code development and
more complex resource management, thus leaving a huge place for optimisation.

A key ingredient of any computing system is the scheduler, which is responsible for
handling the tasks submitted by the users and the computing resources. Specifically,
the scheduling algorithm has to decide which task to execute first, when to start
its execution, and where to allocate it (i.e., which resources to use). Due to the
importance of these decisions, the efficiency of the scheduler is crucial for the overall
performance of the whole system.
Scheduling is a well understood problem in the context of homogeneous platforms
composed of identical resources, since there exist both efficient theoretical algo-
rithms [Dro09] and their practical counterpart implementations in actual batch
schedulers, such as SLURM [YJG03]. However, the case of heterogeneous resources,
which is crucial in practice due to the evolution of architectures, is not so well
understood and it has been the focus of a vast literature in recent years.
The main focus of this manuscript is to study different aspects of scheduling problems
in heterogeneous High Performance Computing and Edge Computing platforms.

1.2 Contextualisation of Edge Computing

In parallel to the development of distributed and parallel platforms, we have wit-
nessed the emergence of in-situ processing. The in-situ processing paradigm is driven
by the conviction that, because of fundamental limitations of network and storage
performances growth compared to computation, the data processing and analysis
should be performed as close as possible to where and when the data is produced.

With the explosion of the number of connected devices – Cisco predicts 29.3 billion
devices in 2023 [@cisco] – and the ever growing amount of data generated, it has
become clear that the current Cloud-centric vision, where most of the computation is
off-loaded to Cloud data-centres, is out of order with a saturation of the network
bandwidth and high latency penalties [Zha+15]. Not to mention the energetic,
privacy and security concerns of sending every request to be processed in the
Cloud. Hence emerged the Edge (or Fog) Computing paradigm [Shi+16], whose
main objective is to move towards a local vision in which on demand computations
are performed close to the place where the data are produced to mitigate data
exchanges and provide real-time responses. This trend was further accelerated with

2 Chapter 1 Introduction

the proliferation of Internet of Things (IoT) applications [AIM10], as well as the
advent of new technologies such as Mobile Edge Computing [AA16] and Network
Function Virtualisation [Mij+15] that favoured the deployment of Cloud Computing-
like capabilities distributed at the edge of the network, such as in smart buildings
and emerging smart cities.

In the meantime, the energy consumption of data-centres has become one of the
main concerns in the past years. As data-centres gather thousands of servers, they
are huge energy consumers with the biggest requiring more than 100 MW of power
capacity. Between 2010 and 2018, the total number of computing requests in data-
centre has been multiplied by 6.5 and the total number of IP traffic was multiplied
by 11, while the global energy consumption only increased by 6% and stayed within
the 1%-1.5% range of worldwide electricity use [Mas+20].
However, even if the power efficiency keeps increasing each year, the energy used
only for the cooling of the servers continues to be an important portion of the total
energy consumption. In 2017, Ni and Bai [NB17] studied the air conditioning
energy performance of 100 data-centres. They reported that the average Power
Usage Effectiveness (PUE) – the total power consumption of the facility divided by
the effective power used by the Information Technology (IT) resources – of the data-
centres was 2.13, meaning that for 100 W used by the IT resources there was an
additional average of 113 W used by the power supply, the cooling system, fans and
other equipments of the data-centre. The authors also reported that the cooling
system alone accounted for 38% of the total energy consumption of the facility
on average, with figures ranging between 61% for the least efficient systems to
21% for the most efficient. This introduces an increasing need for better power
and thermal management within the computing infrastructures and an opportunity
for companies like Qarnot Computing [@qarnot], Cloud&Heat [@cloudheat] or
DigiPlex [@digiplex] to emerge, proposing approaches to reduce IT waste heat
by directly using the servers as the heating systems in buildings. In addition, by
bringing IT servers within the buildings, this becomes an answer to the ever growing
computing needs of the IoT world.

Edge Computing can be viewed as an extension of Cloud Computing, with storage
and computing capabilities brought closer to the users. This entails several chal-
lenges for an efficient management of, first, the resources, as they are heterogeneous,
dynamic, not always accessible and distributed over the edge of the network, and,
second, the multiple users accessing these resources which often have different
objectives.
It is worth to notice that Edge Computing platforms are usually hierarchical, with
connected devices, storage and computing resources at different levels of the hierar-

1.2 Contextualisation of Edge Computing 3

chy, and that resource management problems can emerge at multiple points of the
platforms. We can take the example of the Qarnot Computing company [@qarnot],
whose hierarchical platform is mainly composed of computing resources embedded
in heaters and distributed in smart buildings. This platform is of particular interest
since an efficient management of its resources is required at different levels of the
platform with: 1) a global load balancing of the data placements and computing
requests across the different Edge sites; 2) a local scheduling problem within an Edge
site; 3) a thermal management of the heaters hosting the computing resources.

1.3 Infrastructure Simulation

In the High Performance Computing and Cloud Computing domains, the design,
test and analysis of new resource management policies is mostly performed by
simulation. Of course, the use of experimental test-beds, whenever they exist, can
serve this purpose and would provide results of a real execution. However, such a
solution is both costly and time consuming, as a one-month experiment on a large
platform would consume a huge amount of core-hours and – obviously – take one
month to execute in an environment that may not be fully controllable and noisy. In
comparison, the same experiment in simulation can be run on a regular laptop for
a few minutes, and would rarely last for more than one hour, enabling to quickly
test various settings and resource management policies with a deterministic and
controlled environment.
Another point in favor of the simulation is that it enables researchers and developers
to confront the simulated infrastructure with larger-scale scenarios or emergency
situations. For example, one could easily test the behaviour of a job scheduling
policy on a platform whose number of machines and job submissions is multiplied
by one or more orders of magnitude, or in a scenario where half the total number of
machines crashes at some point of the execution. Besides, simulation also enables to
test scenarios that are not – yet – feasible on a real platform, such as a new feature
or a change in the infrastructure, to study whether it is worth investing time and
money in this direction for a production platform.
It is worth to emphasize that simulation is not simply the holy grail of experimental
testing. It also has some drawbacks. The simulation of a platform does not provide
real but realistic results, as it only captures the effects that are modelled by the
simulation engine. In this regard, an effort should be made in the implementation
and validation of the models that are simulated.

4 Chapter 1 Introduction

The story goes the same way in the world of IoT and Edge Computing platforms.
Similarly to what has been proposed for the Cloud Computing paradigm [Leb+19],
we strongly believe that a dedicated simulation toolkit to help researchers investigate
resource management strategies at the Edge should be released soon. Besides
resource heterogeneity, network specifics (latency, throughput), and workloads,
Edge Computing infrastructures differ from Cloud Computing platforms because
of the uncertainties: connectivity between resources is intermittent, storage and
computation resources are more heterogeneous than in the Cloud and can join
or leave the infrastructure at any time for an unpredictable duration. In other
words, a part of the infrastructure can be isolated or unavailable for minutes/hours,
preventing the access to some data-sets or assigning new computations. Thus, Cloud
Computing simulators are not appropriate to study Edge Computing challenges.
One of the biggest challenges that had received a lot of interest in the past years
is the Service Placement Problem [ADL19], i.e., where to transfer data-sets according
to their sources and schedule computations to optimise metrics such as the Quality
of Service and Quality of Experience of the users, or the platform utilisation. Taking
a look at the literature, one can find a myriad of works dealing with the Service
Placement Problem in the IoT [Ait+19; BF17; Don+19; Naa+17; Ska+17; Xia+18;
You+18]. However, it is difficult to understand how each proposal behaves in
a different context and with respect to different objectives, such as scalability or
reactivity. In addition to having been designed for specific use-cases, available
solutions have been evaluated either using ad hoc simulators or through limited in-
vivo experiments, limiting the capability to perform fair comparisons between them.
We aim in this work at solving this weakness by extending an existing simulation
toolkit to the Edge Computing paradigm and proposing methodology examples to
help researchers/engineers evaluate state-of-the-art and new resource management
policies.

1.4 Plan and Summary of Contributions

Throughout this dissertation, we will first take a focus at a typical Edge Computing
platform to address different resources management problems appearing at multiple
levels of such infrastructures. We study different parts of the platform involving
an efficient management of resources and propose solutions for improvement both
theoretically and through simulation, which can benefit other Edge Computing
platforms.

1.4 Plan and Summary of Contributions 5

In Chapter 2, we first present in details the Qarnot Computing platform and its
interactions with the users and requests. We then expose some main challenges
which Edge Computing owners and managers are confronted with, and provide
some examples applied to such platforms. We introduce in Chapter 3 the simulation
toolkit Batsim/SimGrid [Dut+16; Cas+14] and the modifications that were made
to enable the simulation of Edge Computing infrastructures. Then, a complete
simulation of the Qarnot Computing platform and a simple experimental campaign
to compare scheduling variants are presented. The objective here is to demonstrate
a tool allowing researchers and engineers to perform fair and easy evaluations
and comparisons between various scheduling and data placement strategies in this
kind of platform. Then, we address in Chapter 4 the problem of predicting the
temperature of a smart-building environment. More precisely, we are interested in
the evolution of temperatures of a room with heaters and propose different solutions
for the prediction of the temperature for a heater and its surrounding air.

In the second part of the dissertation, we focus on theoretical scheduling problems
in the domain of High Performance Computing. More specifically, we introduce in
Chapter 5 different versions of the problem of scheduling a parallel application on a
hybrid multi-core platform and quickly survey the best known results in the litera-
ture. Then, in Chapter 6, we detail our own contributions regarding this problem.
We provide two new scheduling algorithms for different settings of the problem,
prove theoretical guarantees on their performances and conduct an experimental
campaign to compare in practice their performances with baseline algorithms of the
literature.

Finally, we introduce in Chapter 7 the formulation of a new two-agent scheduling
problem on parallel machines applied to the context of an Edge site, and conclude
this dissertation in Chapter 8.

In addition to the scientific work, scientific mediation occupied a great time during
the preparation of this dissertation, with the creation of mediation activities in
mathematics and computer science, the participation of diverse manifestations such
as the French Fête de la Science, and the help in the translation of the CS Unplugged
website [@CSU].

6 Chapter 1 Introduction

Edge Infrastructures: a Case
Study

2

This chapter discusses Edge infrastructures and takes focus on the platform of
the Qarnot Computing company, as it will be our main case study throughout the
first part of this dissertation. The first sections give a complete description of the
Qarnot Computing platform, its users and the decisions taken to service the different
requests that are made by the users. The last section presents the main challenges
emerging from such Edge infrastructures and gives examples related to the Qarnot
Computing platform.

2.1 The Qarnot Computing Platform

Incorporated in 2010, the Qarnot Computing company (Qarnot in short) aimed
at developing “a disruptive solution able to turn IT waste heat into a viable heating
solution for buildings”. In other words, Qarnot deploys a Distributed Cloud Computing
platform that re-uses the heat produced from computing as a heating source for
smart buildings [NDT16]. The Qarnot platform mainly consists of a collection of
digital heaters embedding several processing units attached with a large aluminum
heat-sink to diffuse heat locally. Totally silent and based on free cooling, these
heaters leverage the heat dissipated by the processors making useful computations
to provide the heating service. In 2016, Qarnot started to work on adapting the
computing capabilities of the platform to be used both for smart-building processes
and Distributed Cloud Computing.

2.1.1 Platform Overview

The Qarnot Computing platform is a hierarchical platform composed of 3 layers
and is summarised in Figure 2.1. Is it mostly distributed at the edge of the network,
where all the computing resources of the platform are located. The computing
resources are disk-less machines – called QMobos – embedded in smart heaters

7

REST
server

QRad

CEPH

QNode

QBox

Internet

Figure 2.1: Scheme of the Qarnot Computing platform. User interfaces are colored in black,
computing resources in red, storage resources in green and decision-making
components in blue.

– the QRads – deployed in rooms of housing buildings, offices and warehouses
across several geographical sites in France. This constitutes the bottom-level of the
platform, or the QRad-level.

On each of the geographical sites there is a server – called the QBox – connected
to every QRad of the site and in charge of monitoring and managing them. The
QBox also embeds an NFS-based storage – called the QBox disk – with a few TBs of
capacity that enables the computing resources to manipulate data. This constitutes
the middle-level of the platform, or the QBox-level.

All QBoxes are connected to the Internet, and to French data-centres used by Qarnot.
These data-centres – called the QNodes– are hosting the control and monitoring
services of the whole platform and the central storage system CEPH. There are also
servers implementing RESTful web services that serves as a gateway for the clients.
This constitutes the top-level of the platform, or the QNode-level.

Each component of the Qarnot platform can be classified into four different cate-
gories: the user interfaces, the computing resources, the storage resources or the
decision makers, which are respectively colored in black, red, green and blue in
Figure 2.1. The roles of each component, and their interactions, are described in
detail in Section 2.1.2.

8 Chapter 2 Edge Infrastructures: a Case Study

At the time I write these lines, the whole platform is composed of about about 3,000
disk-less computing machines embedded in 1,000 QRads distributed across 20 Edge
sites, and it is growing quickly. On a daily basis, the Qarnot platform processes from
a few hundred to several thousands of batch jobs, thousands of cores are provisioned
to dedicated corporate customers, and up to tens of GBs of data are replicated from
the central storage to the QBox disks.

The platform acts both as a heating service provider for the inhabitants where the
heaters are deployed, and as an offloading platform for Cloud Computing. Users
can interact with the platform from two entry points, the QRads and the REST
servers. We denote by inhabitants the users interacting with the QRads, while the
ones interacting with the REST servers are clients or Cloud Computing users of
the Qarnot platform.

Two different user requests originate from these interactions: the temperature
requests and the computing requests, which are detailed in Section 2.2.

A temperature request comes from a QRad when the target temperature of its
ambient air has been changed by the inhabitants. Depending on whether the new
target is higher or lower than the current air temperature, the request is then
translated into a need for heating or cooling of the QRad, inducing a change in the
available computational power of the QRad.

A computing request comes from a REST server when a client wants to execute
a program, denoted as a job, on a computing resource of the Qarnot platform.
These computing requests are then to be scheduled and executed on the computing
resources inside the QRads.

As one can see, these two requests are somewhat intricated: Heating requests mean
that some processors inside a QRad are available and waiting for a job to execute,
while computing requests mean that some jobs are waiting for available processors
to execute them.

2.1.2 Platform Components in Details

REST Servers

The REST servers make the interface between the Qarnot platform and Cloud
Computing users. The servers are connected to the QNodes and propose an API for
the users to manage authentication and authorisation aspects, invoicing, as well as
computing jobs submission and execution.

2.1 The Qarnot Computing Platform 9

REST servers are also the interface between the CEPH and Cloud Computing users,
and enables them to push data that will be used by the computing jobs, or get the
results of jobs that completed successfully.

QNodes

QNodes are the “global” resource managers of the platform. They manage and mon-
itor all the underlying QBoxes and implement scheduling and deployment engines.
Due to security and privacy reasons, each private client of the Qarnot platform is
associated to a separate QNode, and all QNodes manage and use concurrently the
QBoxes and QRads of the platform. For simplicity, we will restrict our vision to a
single logical QNode that manages all client requests.

The QNode maintains a scheduling queue containing Cloud Computing job requests
received from the REST servers. Periodically, every QBox reports to the QNode
information about their state and the state of their QRads, such as the number of
QMobos that are currently computing or are available for computing. From the
information received in the periodic reports, the QNode takes scheduling decisions
and dispatches jobs to QBoxes providing them enough work load to satisfy the
heating requirements of their QRads.

CEPH

Somewhere in the Cloud is deployed a CEPH cluster1, which is the main storage
server of the Qarnot platform.

Each Cloud Computing user has a given storage space in the CEPH where they can
upload all input data related to their computing requests, and get all the output
data that were uploaded by the computing requests once they have been serviced.
These data are accessed by the clients via the REST servers. Note that it is the role
of the clients to manage their own storage space. In particular, Cloud Computing
users have to make sure that the required data for a given job have been completely
uploaded to the CEPH and that there is enough available space for its output data
before submitting this job.

1https://ceph.com

10 Chapter 2 Edge Infrastructures: a Case Study

https://ceph.com

QBoxes

While a QNode acts as a global resource manager for the whole platform, the QBoxes
handle this role closer to the edge of the network, being “local” resource managers of
a deployment site (usually a smart building). A QBox is a server that hosts services
related to the monitoring of the QRads they are connected to and the scheduling
of jobs onto the computing resources embedded in these QRads. Thus, a QBox
manages a sub-network of the whole platform.

A QBox frequently gathers information from the QRads, such as their state, their
temperature and the ambient temperature of the room, and the number of QMobos
currently running jobs or available for computing new ones. From these information,
the QBox computes the heating requirements of the QRads to take scheduling
decisions and to decide the execution of the jobs dispatched from the QNode.

During the periodic reports, the QBox sends to the QNode the number of QMobos
that are available for computing, meaning that some QRads need heating and jobs
should be executed on them. The periodic reports also contain information about the
current execution of the jobs, which are then made available to the Cloud Computing
users through the REST servers.

Figure 2.2 depicts a typical example of a deployment site of the Qarnot platform
with a QBox and several QRads attached to it in a smart building.

QBox disk

Each QBox has its own local storage, the QBox disk, which is connected to the CEPH
via the Internet. Since the computing resources of the Qarnot platform are disk-less,
the QBox disk implements an NFS (Networked File System) enabling the jobs to
read input data and write their output.

The QBox disk acts as a local cache, in the sense that all input data and the container
holding the program of a job are replicated onto the QBox disk before a job starts.
During execution, a job can read this input data and write its output to the disk,
which is then uploaded to the CEPH upon job completion.

In practice, the storage capacity of the QBox disk is a few TBs, which enables the disk
to keep in storage many job input data. This is to avoid redundant data movements,
in the event that other jobs with the same requirements are dispatched to this QBox
in the future.

2.1 The Qarnot Computing Platform 11

Internet

QBox
QBox
disk

Switch

Mini
switch

QMobo

QMobo

QMobo

QRad

Mini
switch

QMobo

QMobo

QMobo

QRad

...Mini
switch

QMobo

QMobo

QMobo

QRad

Figure 2.2: Example of a deployment site with one QBox and several QRads in a building.
The switches, QRads and QMobos are in the same Local Area Network with
1 Gbps links while the QBox is connected to the Qarnot platform through the
Internet.

In case the available space is not sufficient when input data of a job should be copied
to the disk, a classic LRU (Least Recently Used) eviction policy is used to remove old
data.

QRad

Totally silent and based on free cooling, the QRads are deployed in homes, offices
and warehouses where they support two different roles in the Qarnot platform.

On the IT side, a QRad is a small multi-core server embedding between one and four
QMobos interconnected by a network switch. All QRads of a deployment site are
interconnected between them, and to the QBox, in the same local network through
another switch, as depicted in Figure 2.2.

On the physical side, a QRad is an aluminum heat-sink case that allows the embedded
processors to cool down, playing the role of the heater. It is also equipped with
different sensors, such as temperature of the QRads and its ambient air, CO2 levels,
noise and humidity captors, etc., and makes the interface with the inhabitants

12 Chapter 2 Edge Infrastructures: a Case Study

enabling them to turn on and off the heating or select the desired target temperature
of the ambient air.

The QRad is responsible for its embedded QMobos and heating management. At all
times, a Frequency Regulator runs on each QRad to ensure that the ambient air is
close to the target temperature set by the inhabitant, by regulating the frequencies
of the processors executing jobs or completely turning off a QRad when it is too
warm.

If the ambient temperature is too low, then the QRad needs more heating. This
results in an increase of the computing capacity to satisfy the heating needs. This
heating need can be serviced by an increase in the frequency of the processors
already executing jobs in the QRad, or by starting the execution of new jobs. If no
regular Cloud Computing job is available for computing, the Frequency Regulator
will automatically start volunteer computing [Dav04] or crypto-currency mining
programs. In addition, when the heat generated from computation is not sufficient
to satisfy the heating requirements, auxiliary resistors embedded in the QRad can
also be turned on to complement the heating. In total, a QRad can provide up to
about 750 W of heat when all QMobos are computing jobs and all auxiliary resistors
are turned on.

On the contrary, if the ambient temperature is above the target temperature, the
QRad needs to cool down. In that case, the Frequency Regulator turns off all
auxiliary resistors and lowers down the frequency of the processors executing jobs
in the QRad to reduce the heat produced from computation while not stopping the
execution of the jobs. As a last resort, if the QRad is too hot for a long period of
time, all executing jobs are killed and the QRad is turned off for cooling. The jobs
that have been killed are then returned back to the QNode to be re-dispatched later
on.

QMobo

QMobos are the only computing resources of the Qarnot platform. Embedded in
QRads, each QMobo is equipped with a multi-core CPU, either Intel Core i7 or AMD
Ryzen 7 in the current platform, between 16 and 32 GBs of RAM and a network
controller.

By default, every QMobo is turned off and is only waken up when a dispatched
job should be executed on that QMobo. Once the job has completed, the QMobo
automatically turns off until a new job arrives.

2.1 The Qarnot Computing Platform 13

We recall that, due to security reasons since QRads are physically located in people’s
rooms and offices, QMobos (and QRads) do not embed resilient storage. Thus, upon
starting a new job, QMobos are booted over the network with a clean environment,
and data reading and writing during the execution of a job are performed directly to
the QBox disk through NFS. Moreover, even if a job only uses one core during its
execution, the whole QMobo is reserved for that job, to prevent jobs from different
users to share a QMobo.

2.2 Users and Requests

There are currently two types of users of the Qarnot platform, and each is associated
to a specific type of request, either a temperature or a computing request. We detail
in the following these two types of requests and how they impact the platform. We
also introduce another kind of computing request related to the Internet of Things
world.

2.2.1 Temperature Requests

Temperature requests originate from QRads whose target temperature has changed
from actions of the inhabitant. These requests directly impact the computing capacity
depending on whether the new target is higher or lower than the current ambient
temperature.

The temperature requests are resilient, in the sense that an action of the inhabitant
simply changes the value of the target temperature but the heating or cooling needs
must be continuously serviced. It is the role of the QRad and its Frequency Regulator
to maintain an ambient temperature as close as possible to the target. If the absolute
difference between the target and ambient temperatures is smaller than one degree2

the temperature requirements are considered to be met and the Frequency Regulator
does not change the QRad behavior. When the ambient temperature is more than
one degree below the target, the temperature is too low and the QRad goes into
heating mode. In that case, the Frequency Regulator will try to fulfill this heating
need by increasing the frequencies of the QMobos, computing more jobs or turning
on auxiliary resistors, as described in Section 2.1.2. Conversely, when the ambient
temperature is more than one degree above the target temperature, the QRad goes

2Any mention of degree here and in the rest of the chapter will refer to Celsius degree.

14 Chapter 2 Edge Infrastructures: a Case Study

into cooling mode. The Frequency Regulator will in that case turn off resistors, lower
down the frequency of the QMobos or kill jobs being computed.

It is worth noticing that, even if the target temperature does not change, the heating
and cooling needs of a QRad can vary due to the local environment directly impacting
the ambient temperature. Among the factors impacting the ambient temperature is
the level of thermal isolation of the room, combined with the weather conditions and
the temperature outside the room. For example, passing from a bright sunny day to
a stormy cold evening in spring may quickly decrease the ambient temperature near
the QRads. The number of people inside the room also has a great impact on the
ambient temperature, as a single human body at rest produces between 80 and 120
W of heat. Thus, the computing availabilities of the platform are not only impacted
by the direct action of the inhabitants on the target temperatures, but also by the
local environment of the QRads.

2.2.2 Cloud Computing Requests

Cloud Computing requests, or computing requests in short, are made through the
REST servers by clients needing computing resources to run their programs.

A computing request submitted to the Qarnot platform is denoted by a QTask. To
execute a program on the platform, a Cloud Computing user needs to upload in the
CEPH all the input data of their program as well as a Docker image containing the
program to run. Then, the user creates the QTask via the REST API by providing
the Docker image, the input data to use and the command to execute. Note that a
QTask can also use an image already present in the Docker Hub. A QTask can be
decomposed as a bag of several jobs, denoted by instances in the Qarnot terminology.
All instances of a QTask share the same Docker image and input data but each
instance has a different command to execute. This is of particular interest for
example when one wants to process each frame of a given movie by providing each
instance a single frame or a range of frames to process.

Upon creation of a QTask by a user, the REST server submits all instances of the
QTask to the QNode scheduler, which regularly dispatches the instances onto QBoxes
where QMobos are available for computing. When new instances are dispatched to
a QBox, their data dependencies are retrieved from the CEPH and their execution
starts as soon as the data arrived on the QBox disk.

This kind of request represents the majority of the work load of the Qarnot platform,
which can be seen as “batch” jobs as each job executes on a single computing unit

2.2 Users and Requests 15

and is independent from the others. Another type of computing request is the
cluster job. A cluster job corresponds to a request of several computing resources
that can communicate between each other. Such a request is made for users wanting
to execute parallel programs or to perform service provisioning. For example, one
could run on a cluster job a personal server that takes requests from a website
through the internet and then deploys on one of the computing resources allocated
to the cluster a program to service the request.

Contrarily to regular jobs where instances can be dispatched on different QBoxes,
all computing resources of a cluster job must be within the same local network for
the resources to communicate with each other. This imposes that a cluster job must
be fully dispatched to a single QBox.

Servicing the Computing requests involves all three levels of the Qarnot platform. A
first scheduling round is periodically performed by the QNode to dispatch as much
QTask instances and cluster jobs as possible to QBoxes where computing resources
are available. Then, the QBox schedules each received instance or cluster job on
the available QMobos, depending on the heating needs of the QRads. Finally, the
QMobos inside the QRads actually execute the computing requests.

2.2.3 IoT Requests

Since 2016, Qarnot Computing is working to integrate into the platform the exe-
cution of programs coming from the smart-building environment. Such programs
can be for example the periodic monitoring of microphones for alarm sound detec-
tion [DNC17], a federated learning program that executes on multiple resources
distributed in the building or sporadic programs of the type sense-process-actuate
that are more regular in the IoT world.

This new kind of computing requests, that we denote by IoT requests, will be han-
dled by a similar mechanism as for the Cloud Computing requests in the exception
that they will be directly addressed to a particular QBox and must be executed on
computing resources of that QBox.

The constraint of staying within a QBox sub-network follows an argument of locality
and security: the data that will be used by these requests will most likely be
generated close to the Edge site where the QBox is deployed (within a smart
building for example) and stored in the QBox disk. This way, an IoT request and its
input data do not have to transit through the network to the QNode and another
QBox, and the request can be serviced with smaller delays.

16 Chapter 2 Edge Infrastructures: a Case Study

2.3 Challenges

As any platform deployed at the edge of the network, the Qarnot platform has to
deal with numerous challenges that make it both interesting to study and difficult to
manage. We present in this section some challenges common to Edge Computing
platforms and how they apply to the Qarnot platform.

2.3.1 Data Management and Communications

The main motivation of the Edge Computing paradigm is to reduce data movements
and consume the data as close as possible to where they are produced, instead of
relying blindly on the Cloud Computing capabilities. Going a step further, we could
state that computing requests should also be serviced as close as possible to where
the requests are made to improve the quality of service (e.g., reduce the response
time). This paradigm also bears arguments of security and privacy since the data and
computations would stay in the vicinity. For example, IoT requests originating from
an inhabitant of a smart building could be processed on the computing resources
located in their own apartment.

In this context of keeping the data and computation close to where they originate, an
effort must be made to efficiently exploit the resources, either for computing or for
storage. A simple policy that always selects the closest resource to store the data or
service a request would be unrealistic since the resources at the edge of the network
are usually limited. Thus, there is a trade-off to be made between using the closest
resources with a risk of overloading, and using more farther, theoretically unlimited,
resources at the cost of more data movements and latencies in the requests.

For the Qarnot Computing platform, this problem is related to the dispatching of
instances to the QBoxes. Whenever an instance should be started on a QMobo, all
its input data must be fetched from the CEPH, except for the data already in the
local cache of the QBox disk. It may appear during the dispatch of instances that
the QBoxes already having the input data in their disk have no available computing
resources, while other QBoxes having available resources do not have the input data
in their disk and data transfers would be required. In addition, since the network
links are not the same for all Edge sites of the platform, the time to transfer the data
to different QBoxes will vary, impacting the expected starting time of the instances.

To overcome such problems, a good solution is to have a prediction of the time it
would take to transfer the data to different Edge sites and take scheduling decisions

2.3 Challenges 17

based on these predictions. Such a prediction mechanism would nonetheless be
difficult to implement as a general knowledge on the state of the network is required,
which is known to be uncertain and variable.

Another solution to reduce the response time of computing requests is to perform
data replication. Whenever there are new data which may be used by multiple
requests, these data are automatically replicated on several storage spaces. This way,
a computing request depending on these data would have more computing resource
candidates and its response time would be improved. Again, this solution is a matter
of trade-off as it is in contradiction with the primary objective of reducing the data
movement but with the goal of improving the quality of service for the users. As it
will be witnessed in Chapter 3 for the case of the Qarnot platform, replicating data
increases drastically the number and volume of data transfers for a performance
gain that may not be satisfactory enough.

2.3.2 Resources Availability

The problem of resources availability is a common challenge of all Edge infrastruc-
tures. In many cases, the difficulty resides in having a strong connection between
the user and the platform. As the users are usually mobile (e.g., someone using
web services from a smartphone) or remote with limited power (e.g., sensors and
actuators), the connection with the Edge platform is unreliable and unpredictable.
Unfortunately, this is the price to pay for being remotely connected.

In some platforms, the computing resources may be unavailable at times. This is
the case for volunteer computing which, adapted to an Edge scenario, consists in
leveraging the idle computing power of registered smartphones and computers in
a network (e.g., a smart building) to perform useful computation originating from
the IoT instead of offloading these computation to more traditional servers in the
Cloud. The Qarnot platform also falls in this category since the availability of the
computing resources is directly linked to the heating demand of the QRads.

These computing resource availabilities are uncertain and very difficult to predict as
they depend on factors that are external to the platform, such as the users’ utilisation
of their smartphones and computers in the first case, and the weather and actions of
the inhabitants in the case of Qarnot.

One solution to overcome such uncertainties is to employ machine learning tech-
niques to uncover availability patterns for the computing resources and habits of
the users (inhabitant and smartphone owner). Unfortunately, in addition to the

18 Chapter 2 Edge Infrastructures: a Case Study

security and privacy aspects of learning users’ habits, these users are human, which
means that they can be unpredictable and the learning of usage patterns can be
completely inefficient. A mean to strengthen this solution is to attribute a score
to each computing resource indicating how stable and predictable are the resource
availabilities? For example, the QRad of an inhabitant changing randomly the target
temperature will have a very bad score for its embedded computing resources, while
a QRad whose target temperature changes each day at 8:00 am and 6:00 pm will
have a very good score.

In addition to the uncertainty in the availability of the computing resources, plat-
forms have to deal with their dynamic heterogeneity. Keeping our examples with
smartphones and QRads, these resources are not simply available for computing or
not. Depending on external factors such as the battery discharge and the processor
temperature of the smartphone, or the current need for heating of the QRad, the
frequency of the processors can be limited to reduce the power usage and preserve
battery life or limit the heat generation. Thus, the computing power of these re-
sources is heterogeneous over time. Unfortunately, we do not have time to study
and deal with these challenges in detail.

In other platforms, even if the resources are available, they may not be reachable.
This is the case for instance with users of the platform that are mobile (e.g., someone
using their smartphone) or remote with limited power (e.g., sensors and actuators).
Such users may experience unreliable connection to the network, or connection with
highly variable bandwidth or latency, rending the use of the resources difficult or
even impossible. This could entail unexpected consequences on the behaviour of
an IoT application and its impact on the physical world if the connection between
servers and the sensors and actuators is not stable.

It is also worth mentioning that resources availability can also be limited by design,
due to their environment. In the case of the Qarnot platform, since the only
computing resources are embedded in heaters, these resources are only available
when heating is required, which is greatly dependent of the weather and the period
of the year. As I write these lines, it is close to 28 degrees in my office and I would
not be happy if the heater on the wall suddenly started to warm even more the
room to compute jobs for users I do not know. Thus, the design of the platform
tends to offer more computing power during winter and close to null in summer.
Fortunately in this case, this limitation can be overcome by embedding processors in
other systems where the demand is uninterrupted, such as digital boilers that would
use the heat generated from computation to warm up water for domestic use. This

2.3 Challenges 19

is the main solution of the Cloud&Heat company [@cloudheat] and is currently in
development in the Qarnot company.

2.3.3 Users and Objectives

In classical Edge Computing platforms, multiple users compete for the resources and
services of the platform, with different objectives to optimise. For example, one type
of user could be interested in the minimisation of the response time of the servers
when submitting requests, while another type of user would prefer to minimise the
overall completion time of all its requests. This matter is related to the problem of
scheduling with multiple agents and is further discussed in Chapter 7.

Taking a look at the Qarnot platform, the first type of user would be a client asking
to deploy cluster jobs or to execute programs emerging from the IoT. The second
type would correspond for example to a user submitting thousands of small jobs to
perform image processing for an animation movie. In that case, the fast completion
of a few jobs does not matter much if some others are delayed for a long time, since
the only concern is to have the whole set of jobs processed as soon as possible.

Besides, there may be other types of users of an Edge platform who do not make
computing requests but can impact the behaviour of the platform and the availability
of the resources. In the example of the Qarnot platform these are the inhabitants of
the smart buildings. Such users have a direct impact on the computing availability
of the QRads as they can turn them off or change the target temperature, and their
objective may be opposed to computing users’ objectives when the weather is too
warm.

In addition to the users’ objectives, the personal objectives of the owner or the
platform manager has to be taken into account. Usually, the primary objectives are
“make profit” or “maximise platform utilisation” while more secondary objectives can
be “make clients happy” and “reduce platform energy consumption”. Sometimes these
objectives are contradictory with each other, for example maximising the platform
utilisation while minimising its consumption, and a compromise has to be made.
Conversely, some objectives blend well together and with the clients’ objectives. This
is the case for example when the client’s objectives are favoured, making clients
happy with more requests serviced and thus more profit made.

This applies without surprise to the Qarnot company: On the one hand, Qarnot
earns money from successfully executing jobs of the Cloud Computing and IoT
clients, which tend to favour the clients’ objectives as well. On the second hand,

20 Chapter 2 Edge Infrastructures: a Case Study

the platform provides free heating for the inhabitants, meaning that the Qarnot
company pays the electricity bill of the QBoxes and QRads deployed at the Edge
sites, which brings the need to minimise the energy consumption of the platform.
In addition, recall that the computing availabilities of the resources are limited and
driven by the heating demand, and that, on a thermal point of view, a useful or a
useless computation makes no difference in the quantity of heat dissipated by the
processors. Thus, it is preferable for the Qarnot company to favor the execution of
computing jobs before performing non-profit heating such as volunteer computing
or with auxiliary resistors.

On an energy point of view, one could have difficulties in apprehending how the
energy consumption could be minimised, as the amount of energy to reach a target
temperature starting from a given temperature is theoretically constant. However,
the combination of an overheating and cooling phases to increase the temperature
consumes more energy than a constant heating with the proper amount of power
consumption. In this regard, having a temperature model being able to predict what
will be the temperature after a given time considering an initial temperature and a
constant power consumption would be of great interest for this objective of energy
consumption minimisation. This matter is further discussed in Chapter 4.

2.3 Challenges 21

A Simulation Tool for Edge
Computing Infrastructures

3
In this chapter, we present in the first part several extensions implemented on top
of the Batsim/SimGrid toolkit [Dut+16; Cas+14] to favour fair evaluations and
comparisons between various scheduling and data placement strategies for Edge
Computing infrastructures. In particular, we developed an external module to allow
injecting in the simulation any type of unforeseen event that could occur (e.g., a
machine became unavailable at time t). We also implemented a Storage Controller
to supervise all transfers of data-sets within the simulated platform.

We chose to rely on Batsim/SimGrid instead of any other available Edge simula-
tors [SOE17; Qay+18] for the following reasons:

• Batsim has been especially designed to test and compare resource manage-
ment policies in distributed infrastructures. In other words, the design of
Batsim enforces researchers to use the same abstractions and, thus, favours
straightforward comparisons of different strategies, even if they have been
implemented by different research groups;

• Batsim promotes separation of concerns and enables the decoupling between
the core simulator and the decision process implementing the scheduler al-
gorithm. Moreover, Batsim uses a text-based protocol to communicate with
the decision process that makes the development of a scheduling strategy
accessible for a large number of researchers using any programming language
of their choice;

• The accuracy of the internal models (computation and network) of SimGrid has
been already validated [Deg+17; Vel+13] and extensively used [@SGpublis];

• SimGrid provides a plug-in mechanism, which is of particular interest to deal
with the diversity of Edge devices: it lets researchers add new models of specific
Edge facilities without requiring intrusive modifications into the simulation
engine.

• Most simulator projects seem abandoned or vaguely maintained, while Batsim
and SimGrid are active with regular feature additions and releases.

23

By extending Batsim to the Edge Computing paradigm, we aim at proposing a tool
that will enable researchers/engineers to re-evaluate major state-of-the-art load
balancing strategies. In particular, we think about scheduling strategies that have
been proposed in desktop computing platforms, volunteer computing and computa-
tional grids [All+02; Dav04] as these infrastructures have several characteristics in
common with Edge platforms.

In the second part of the chapter, we demonstrate the utility of these new extensions
with a complete simulation of the Qarnot Computing platform, which enabled us to
test and study the behaviour of the platform with different job and data placement
strategies. The Qarnot platform is a good use-case to simulate an Edge infrastructure
as it is mainly composed of computing units distributed across several sites with a
mix of local and global computing jobs with data-set dependencies.

This chapter presents a work done in collaboration with Adwait BAUSKAR, Anderson
Andrei DA SILVA, Adrien LEBRE, Pierre NEYRON, Yanik NGOKO, Yoann RICORDEL,
Denis TRYSTRAM and Alexandre VAN KEMPEN. The work was published in the SBAC-
PAD 2020 conference and in an extended Research Report [Bau+20a; Bau+20b].

3.1 Related Work

We present in this section the main competitors and argument for our simulation
tool.

There are in the literature many simulation tools for Edge platforms, but most of
them focus on the IoT applications and the simulation of connected devices such as
sensors and actuators. Among the proposed solutions, we find open-source projects
such as MobIoTSim [Pfl+16], DPWSim [Han+14] and FogTorch [BF17], but we also
find commercially available simulators like SimpleIoTSimulator [@simpleIoTsim]
or even papers presenting solutions that could not be found on the Internet, like
IoTSim [Zen+17] or SimIoT [Sot+14].

In our work, we are more interested in the simulation of Edge Computing platforms
that will handle the requests issued from the connected devices. It is still worth
mentioning that, as it will be explained in Section 3.2.3, the simulation of any type
of model and device from the IoT world is made possible with our solution thanks
to the plug-ins mechanism of SimGrid.

24 Chapter 3 A Simulation Tool for Edge Computing Infrastructures

In the past five years, Edge Computing simulation frameworks close to our work
have emerged, such as iFogSim [Gup+16] and EdgeCloudSim [SOE17]. However,
these solutions have been built on top of the reference Cloud Computing platforms
simulator CloudSim [Cal+11]. Although widely used to study algorithms and
applications for the Cloud, CloudSim is based on a top-down approach of Cloud
environments. This approach is efficient to deliver the right abstractions to the
end-users but unfortunately lacks of validation for the underlying low-level models,
as opposed to our solution relying on the validated models of SimGrid.

Another weakness to highlight for most of the existing simulation solutions is
that they fail at proposing a modular approach for the resource management poli-
cies of the platform. In addition to the above mentioned simulators, we can cite
FogNetSim++ [Qay+18], a tool to simulate large Edge networks based on OM-
Net++ [@omnet]. With these simulators, researchers have to implement a lot of
business logic that is redundant each time they want to investigate a new scheduling
policy, and they are bound to use the same programming language as the simulator.
On the contrary, Batsim delivers all this logic in a language-independent and generic
manner, making it more versatile and user-friendly for researchers/engineers.

3.2 Batsim and SimGrid in a Nutshell

Our proposed Edge infrastructure simulator relies on extensions developed in the
Batsim/SimGrid toolkit. Released in 2016, Batsim [Dut+16] delivers a high-level
API on top of SimGrid [Cas+14] to ease the development and simulation of resource
management algorithms.

We briefly introduce in this section the different components, namely SimGrid,
Batsim and the decision process connected to it, as well as their role and interactions
during the simulation, as schematised in Figure 3.1. For more details on SimGrid and
Batsim mechanisms, we invite the reader to refer to Heinrich’s [Hei19, Chapter 4]
and Poquet’s manuscripts [Poq17, Chapter 4]. Besides, we present the plug-in
mechanism of SimGrid that researchers can leverage to provide models of particular
Edge devices for the simulation.

3.2.1 SimGrid

SimGrid [Cas+14] is a state-of-the-art simulation toolkit that enables the simulation
of distributed systems and applications. SimGrid’s relevance in terms of performance

3.2 Batsim and SimGrid in a Nutshell 25

SimGrid

Batsim host

Simulated
platform

Decision process

Scheduler

Platform
Workload

Inter-process
communication

Input data

Figure 3.1: Scheme of a simulation with Batsim and SimGrid.

and validity has been backed-up by many publications [@SGpublis]. In addition
to providing the program to be evaluated, performing simulations with SimGrid
requires writing a platform specification and interfacing the program to simulate.
SimGrid enables the description of complex platforms, such as hierarchical infrastruc-
tures composed of many interconnected devices with possibly highly heterogeneous
profiles, such as the Edge ones.

SimGrid is an open source project whose public repository is available on GitHub [@SG-
git].

3.2.2 Batsim and the Decision Process

Batsim [Dut+16] is an infrastructure simulator built on top of SimGrid, which
proposes a specialised API to help researchers design and analyse jobs and I/O
scheduling systems. Such systems are for instance Batch Schedulers (a.k.a. Resources
and Jobs Management Systems), in charge of managing resources in large-scale
computing centres. Batsim allows researchers to simulate the behaviour of a com-
putational platform in which workloads are executed according to the rules of a
decision process communicating with Batsim.

26 Chapter 3 A Simulation Tool for Edge Computing Infrastructures

The decision process connected to Batsim embeds the actual scheduling code to be
evaluated. In other words, to simulate a given scheduling algorithm, an experimenter
has to implement this decision process. Internally, the decision process: (i) reacts
to the simulation events received from Batsim; (ii) takes decisions according to the
given scheduling algorithm; (iii) drives the simulated platform by sending back its
decisions to Batsim.

Batsim and the decision process communicate via a language-agnostic text-based
synchronous protocol. The communication uses a simple event-based interface: as
soon as an event occurs, Batsim stops the simulation and reports what has happened
to the decision process. The decision process will in turn answer Batsim with the
decisions it has taken and that must be applied in simulation.

Events reported by Batsim can be for example the new submission of a job, or
the completion of a job that was running on the platform. To such events, the
decision process can for example ask to start the execution of the submitted job on a
certain machine, or to wait a given period of time before starting another round of
scheduling.

Batsim is an open source project whose public repository is available on GitHub [@bat-
git]. Since its first release, a rich ecosystem has developed around Batsim, with
several projects implementing the Batsim communication protocol and expos-
ing an API to implement scheduling algorithms in different languages, including
C++ [@batsched], Python [@pybatsim] and Rust [@batrust], as well as projects to
ease experimentations with Batsim [@robin] and visualise results [@evalys].

3.2.3 SimGrid Plug-ins

When designing an Edge simulator, it is a nonsense to foresee all the models and
devices that may compose the platform. There are just too many. However, we claim
that leveraging generic models is not the right solution either and so a trade-off
should be found. We thus propose to leverage the SimGrid plug-ins capability that
facilitates the implementation of new models without requiring intrusive changes
in the simulation engine. An existing plug-in of particular interest for us is the host
energy plug-in [Hei+17] that enables the computation of energy consumption of
every host (a computing resource) of the platform, which will be used to compute
temperatures during the simulation of the Qarnot platform. There are also plug-ins
computing the load or enabling DVFS on computing resources, as well as computing
the energy consumption of the network links.

3.2 Batsim and SimGrid in a Nutshell 27

Unfortunately, we underline that this plug-in mechanism is part of SimGrid, and
there is no generic manner of exposing information captured by the plug-ins directly
to the scheduler through Batsim. Hence, some modifications might be required to
extend the communication protocol of Batsim and exchange information between
a particular plug-in and the decision process. Examples of such modifications are
explained for the case of the Qarnot platform in Section 3.5. This is the trade-off to
be able to cope with the high heterogeneity of Edge infrastructures while targeting
accuracy of sub-models.

3.3 New Extensions

To ease the study of job scheduling and data placement strategies for Edge platforms,
we have been working on a couple of extensions for Batsim. We present in this
section the extensions already available, namely the external events injector and
the storage controller. Modifications made to Batsim and its Python API for this
work are integrated in the main branch of their repositories [@batgit; @pybatsim].

3.3.1 External Events Injector

To simulate the execution of an Edge infrastructure, which is by essence subject to
very frequent unexpected or unpredictable changes, our simulator offers the oppor-
tunity to inject external events on demand. Those events impact the behaviour of
the platform during the execution and thus the choices of the scheduling strategy.
For example, one would be interested in studying the behaviour and resilience of a
scheduling policy when a range of machines becomes unexpectedly unavailable for
a period of time, due to a failure or action (e.g., from a local user) occurring at the
edge of the network.

An external event is represented as a JSON (JavaScript Object Notation) object
composed of two mandatory fields: a timestamp that indicates when the event
occurs, and the type of the event. Depending on the type of event, other fields can
complement the event description, such as for instance the name of the unavail-
able resource, the new value of an environment parameter such as the network
bandwidth, or anything of interest to the decision process.

Similarly to the workload submissions, external events are replayed thanks to the
injector process of Batsim. For each external event file given as input to Batsim, with
one aforementioned JSON object per line in the file, an external events submitter is

28 Chapter 3 A Simulation Tool for Edge Computing Infrastructures

created during the initialisation of Batsim. Each submitter parses the list of external
events from the input file and iterates over the list to submit the external events to
the main process of Batsim at the right simulation times. Then, the external event is
processed by Batsim, the state of the platform is updated and the occurring external
event is forwarded to the decision process.

This event injection mechanism is generic by concept: users can define their own
types of event and associated fields, which will simply be forwarded to the decision
process without requiring any modification in the code of Batsim.

3.3.2 Storage Controller

The Storage Controller is a module included in Batsim’s Python API to ease the
management of storage entities and data-sets, and supervise data transfers during
the simulation.

At the beginning of the simulation, the Storage Controller retrieves the list of storage
resources of the platform and initialises one storage object per resource. These
created storages are empty by default, but they can be filled on demand by the
decision process by providing a single or a list of data-sets to be added to a storage.
A data-set is represented by two fields, id and size, denoting the unique identifier of
the data-set and its size in bytes.

The Storage Controller exposes to the decision process an API to add data-sets to
storages during the initialisation of the simulation. It also exposes functions to ask,
for example, for the copy of a data-set from one storage to another, or to retrieve
the list of all storages holding a copy of a given data-set during the simulation.

When a data-set should be copied from one storage to another, the Storage Controller
creates a specific Batsim job for data transfers describing that a given amount of
bytes should be transferred from the source to the destination storage resource.
Once Batsim notifies that this job has completed, the Storage Controller notifies back
the decision process that the requested data transfer has completed.

A timestamp is saved for each data movement. In other words, there is a timestamp
associated to each data-set in each storage. This timestamp corresponds to the last
time the data-set has been requested on this storage.

When adding a new data-set to a storage, the Storage Controller makes sure that
there is enough available space in the destination storage before starting the data

3.3 New Extensions 29

transfer. In the case there is not enough space, an eviction policy is used to determine
which data-sets should be removed to free space for the new data-set. The default
policy in use is LRU (Least Recently Used), which removes the data-set with the small-
est timestamp in the storage. However, this eviction policy can be easily overridden
by end-users of our simulator without diving into the main code. When implement-
ing their decision process, end-users should simply create a call that inherits from
the Storage Controller and override the eviction method. This enables the evaluation
of more advanced eviction policies that can impact the overall scheduling decisions
without requiring direct modifications in the code of the Storage Controller.

Finally, the presence of a particular data-set on a storage can be enforced through the
Storage Controller API by assigning meta-information on a data-set. This information
can then be used by the eviction policy to prevent for instance the deletion of the
data-set while being used by running jobs.

3.4 Future Extensions

In addition to the external events injector, we envision to design and integrate in
Batsim an automatic and probabilistic injector of machine and network failures
based on statistical studies of the platform logs and learning techniques. Being
able to model the dynamic of Edge infrastructures would be also an important
added-value for our simulation framework to capture side effects of such events on
scheduling strategies.

Regarding the Storage Controller, there are a few improvements in our plans. We
are working on extensions to monitor additional information regarding the data on
the platform, such as the number of on-going data transfers. We are also discussing
with the SimGrid team to see how we can leverage information about the current
load of the links between storage resources to have estimations of bandwidth and
latency or the time to transfer a particular data-set from a source to a destination.

Finally, one weakness of the Storage Controller is that it is implemented in Batsim’s
Python API and can only be used by schedulers using this API. We are currently
working on the integration of the Storage Controller directly in the main code of
Batsim, which would make its features accessible to decision processes written in
any language, and not only in Python.

30 Chapter 3 A Simulation Tool for Edge Computing Infrastructures

Figure 3.2: Scheme of the simulated Qarnot Computing infrastructure.

3.5 Simulating the Qarnot Platform

We detail in this section how we modelled and instantiated the Qarnot Computing
infrastructure with our simulation toolkit, summarised in Figure 3.2.

We provide details about the description of the platform, the workload, the data-sets
and the external events, as well as the temperature modelling and how the input
files of a simulation can be generated from logs of the real platform. We also give
information about the scheduling algorithms that are implemented in the decision
process.

The modifications of Batsim that are specific to the simulation of the Qarnot platform,
such as the simulation and management of the temperature, are available in a
separate branch of the repository [@battemp]. The temperature plug-in is also
available in a separate personal SimGrid repository [@SGtemp].

Unfortunately, even if I strongly advocate open source and reproducible research,
we cannot provide access to the source code of the input files generator from the
Qarnot logs and the generated files used for the experiments of this chapter due to
the company policy and users’ privacy reasons.

3.5 Simulating the Qarnot Platform 31

3.5.1 Platform Description

All details about the platform description are modelled by the XML platform file
given to SimGrid at the beginning of the simulation.

Each QMobo is simulated as a single-core SimGrid host (representing a machine)
as they are the only computing units of the platform. A host holds information
such as its unique identifier, the list of speeds and corresponding power usage of
its processor, and additional values such as the thermal coefficients required for the
temperature modelling, the QRad and QBox ids to which the QMobo belongs to and
the name of the city where it is deployed. We keep the same hierarchical structure
of the Qarnot platform: QMobos belonging to the same QRad are aggregated in
the same SimGrid zone (representing a network) where we also added a router
(acting as a switch). Similarly, all QRads of a same QBox are aggregated within the
same zone with a router connected to all QRad routers, as well as all QBoxes of the
QNode.

The simulation of storage spaces is done by adding to the platform description special
hosts, which carry the Batsim storage role. Thus, in each QBox zone, there is one
additional storage host for the QBox disk. Similarly, there is one storage host and a
router in a separate zone within the QNode zone to represent the central storage
server. The router of this zone was connected to each QBox router to simulate the
internet connection between the QBoxes and the storage server.

REST servers are not part of the platform description since they only are the interface
between the platform and the computing users. The simulation of job submissions is
directly handled by Batsim, as described in the next section.

Finally, for Batsim’s simulation mechanisms to work properly, a master host was
added in a separate zone of the QNode zone and connected to each QBox routers.

3.5.2 Workload Description

The workload to simulate is represented by a JSON file fed to Batsim that contains a
list of job and profile descriptions.

Job descriptions are defined by the user requests and contain: the id of the job,
its submission time, and the job profile to use. A profile description represents
how a job should be simulated, plus other information specific to our use-case, and
contains: the type of the job to simulate, the number of flops to compute, the job
priority and the list of data-sets required as inputs.

32 Chapter 3 A Simulation Tool for Edge Computing Infrastructures

Each instance of a given QTask in Qarnot can run independently from the others, so
we transcribed each instance as one Batsim job and profile. Instances belonging to
the same QTask have the same data-set dependencies and submission times.

3.5.3 Data-sets Description

The list of data-sets is described as a list of JSON objects (one per line). Each data-set
is represented by the unique identifier of the data-set and its size in bytes. This file
is read by the decision process and fed to the Storage Controller at the beginning of
the simulation to initialise the state of the storage server.

3.5.4 External Events Description

The list of external events to replay is described as a list of JSON objects (one per
line). We designed four types of external events that can occur during a simulation
of the Qarnot platform.

A qrad_set_target_temperature event means that the target temperature of a QRad
was modified by the inhabitant. In addition to the type and timestamp fields that
appear in every external event, the JSON object describing this event contains two
other fields: qrad, the identifier of the QRad whose target temperature changed, and
new_temperature, the new target temperature in Celsius.

A site_set_outside_temperature event means that the temperature of the outside
world of an Edge site has changed. The additional fields for this event are site, the
name of the city whose outside temperature changed, and new_temperature, the new
outside temperature in Celsius.

These two types of external events are related to the temperature simulation and
their handling will be detailed in the next section.

The two other types of external events are machine_available and machine_unavailable
and they both contain an additional field resources which lists the computing hosts of
SimGrid (representing the QMobos) impacted by the events. These events simulate
the fact that some machines have become (un)available at the time the event occurs,
and they are handled by the decision process.

When some QMobos become unavailable, this means that the QRad containing those
QMobos was turned off or that the QBox in charge of the QMobos is no longer
reachable by the QNode (due to network partitioning for example). In such a case,

3.5 Simulating the Qarnot Platform 33

the QBox scheduler in charge of these QMobos kills every job that was executing
on these QMobos. The scheduler also marks these QMobos as unavailable and will
not try to schedule jobs on them until a machines_available external event for these
QMobos is received.

3.5.5 Temperature Modelling

As temperature plays an important role in the platform dynamicity and the schedul-
ing decisions, we leveraged the plug-in mechanism of SimGrid to implement our
own temperature model. Built on top of the existing energy plug-in [Hei+17], our
plug-in computes the temperature of a QRad and its ambient air after a given time
period using a novel prediction method that will be detailed in Chapter 4.

As stated previously, the target and outside temperature changes are simulated
through external events. When a change in the target temperature of a QRad occurs,
the information of the external event is forwarded to the QBox scheduler in charge of
the QRad and its target temperature is updated. We also modified Batsim to relay an
event related to the outside temperature directly to the SimGrid temperature plug-in,
and we modified the communication protocol to periodically forward the ambient
air temperature of each QRad to the QBox schedulers in the decision process.

Recall that one QRad of the Qarnot platform may embed several QMobos, and that
a QMobo is simulated as a SimGrid host. Thus, in the description of the SimGrid
platform, we attached a particular property temperature_role to each host. For this
property, one host of a QRad was attributed the value master and the others the
value slave to have only one host responsible of computing the temperatures.
During the simulation, when a change in the power consumption of a host is detected,
the update function of the plug-in for that host is called. If this host is a master1 then
it will retrieve the energy consumed by each host of the QRad since the last update
and compute the new temperature of the QRad and the ambient air. If the host is a
slave then it will call the update of its corresponding master host.
Notice that it is not necessary to periodically update the temperature but only at the
end of a (potentially long) time period during which the power consumption was
constant.

In addition to the update function, the temperature plug-in also exposes functions
to get the temperature of the QRad and of the ambient air, to set the current

1Master in the sense of the temperature plug-in, not to be confused with the general master_host of
Batsim.

34 Chapter 3 A Simulation Tool for Edge Computing Infrastructures

temperature of the outside and to get the total energy consumed by all hosts of a
QRad.

3.5.6 Input Files Generation

A log extractor was built to generate all the input files from real logs of the Qarnot
platform, for a given time period. This includes the XML file for the platform
description, the JSON file describing the workload to simulate, and the two files
containing the list of data-sets present in the central storage server and the list of
external events to replay during the simulation.

For our experiments, the external events describing the outside temperature changes
of an Edge site were generated on a one-hour basis, retrieving temperature records
from the Meteo60 website [M60]. Moreover, since we want to simulate the Qarnot
platform during an exact time period, we added in the external events input file a
special event that enforces the simulation to stop at a particular time.

3.5.7 Decision Process Implementation

To leverage the Storage Controller component presented in Section 3.3.2, we im-
plemented the decision process that will be connected to Batsim using its Python
API [@pybatsim]. As explained in Section 2.1, scheduling decisions in the Qarnot
platform are taken at two different levels of the hierarchy: at the QNode and at the
QBox levels. Thus, we implemented the scheduling algorithms for both levels as two
different Python objects. At the initialisation of a simulation, the decision process
creates one instance of the QNode scheduler, one instance of the Storage Controller
provided by Batsim’s Python API and one instance of the QBox scheduler for each
QBox of the simulated platform, as depicted in Figure 3.2.

During a simulation and upon receiving a message from Batsim, each simulation
event is forwarded to the Storage Controller or the scheduler that should handle it.
For example, an event notifying the submission of a new job in the system will be
forwarded to the QNode scheduler that will dispatch the job in its next scheduling
round, while an event notifying the completion of a job will be forwarded to the
QBox scheduler in charge of the QMobo that was executing this job. Moreover, even
if no simulation event occurred, the decision process asks Batsim to periodically
wake him up to initiate the periodic reports mechanism between the QBoxes and the
QNode, and to perform the frequency regulation of the QMobos.

3.5 Simulating the Qarnot Platform 35

3.6 Investigating Placement Strategies

We test in this section various job and data placement strategies in simulation to
have a better understanding of how the Qarnot Computing platform can adapt with
different scenarios. We expect the results to drive future design of policies for the
real platform.

Two kinds of experiments have been performed to investigate the Qarnot use case.
The first aimed to compare the standard scheduling policy used in the real Qarnot
platform with a policy based on locality of the data-sets. The second experiment
enabled us to study the impact of replication policies for the data-sets that are
uploaded on the platform (i.e., how they affect the scheduling decisions). The code
of all the evaluated schedulers is available in a dedicated branch of Batsim’s Python
API repository [@pytemp] in the schedulers/greco folder.

3.6.1 Data/Job Scheduling Policies

Along with the real Standard Qarnot scheduler that serves as a baseline for our
experiments (see Section 3.5), we implemented a variant of the QNode scheduler
using the data locality to take scheduling decisions, denoted by LocalityBased.
Upon dispatching instances, LocalityBased gives priority to the QBoxes already
having the data-set dependencies of the instances on their storage disk. This variant
aims at taking benefit from the data locality and reducing the data transfers.

To evaluate the impact of data placement on the scheduling decisions, we also imple-
mented three variants of replication policies upon the submission of a QTask2. The
question we want to answer with these variants is whether replicating data-sets can
achieve significant improvements for the Quality of Service, and at which cost? The
first two variants, denoted by Replicate3 and Replicate10, respectively replicates
the data dependencies of a submitted QTask on the 3 and 10 least loaded QBox disks
among the 20 QBoxes in the platform, before applying the LocalityBased scheduling
algorithm. These two variants aim at reducing the waiting time of the instances by
providing more QBox candidates for the LocalityBased dispatcher. The last variant,
denoted by DataOnPlace, instantaneously copies all data-set dependencies on all
QBox disks upon the submission of a QTask. Even if it is unrealistic, this variant
aims at visualising the behaviour of the standard scheduling policy without having
any impact caused by the data transfers.

2Recall that a QTask is a group of instances of a user submitted at the same time with identical
data-set dependencies.

36 Chapter 3 A Simulation Tool for Edge Computing Infrastructures

0 10 20 30 40
Data set IDs

0

500

1000

1500

2000

2500

3000

3500
Nu

m
be

r o
f i

ns
ta

nc
es

1471

319
162

10
143

73
165

3700

16547
173196

87
168

81052366125

1778

1235

416

1003

124

527493

211615433111010236481

Number of data_sets: 47
 Number of instances: 5506

Figure 3.3: Number of instances using each data-set for the third workload.

3.6.2 Simulated Workloads

We extracted 4 different simulation inputs corresponding to logs of the Qarnot plat-
form for a 1-week period each. Since the simulation and the scheduling algorithms
are deterministic, we ran one simulation with each combination of scheduler and
workload. Each simulation took less than 20 minutes to run, with about 60% of the
time spent in the decision process.

The considered workloads contained between 5,000 and 9,000 instances and be-
tween 40 and 60 different data-sets. In each workload, there was at least one
data-set used by 50% of the instances, and up to 7 data-sets were used by almost
500 instances out of 5506 in workload 3 (as depicted in Figure 3.3). This infor-
mation shows that using replication of data-sets should improve the quality of the
schedules compared to standard scheduling decisions.

In our simulations, we compared the quality of the produced schedules using the
waiting time of the instances, the total number of transfers that occurred, and the
total data transferred in GB. For one instance, the waiting time denotes the difference
between its starting and submission times.

3.6 Investigating Placement Strategies 37

Workload: 1 Workload: 2 Workload: 3 Workload: 4

0

500

1000

To
ta

l d
at

a
tra

ns
fe

rre
d

(G
B)

Workload: 1 Workload: 2 Workload: 3 Workload: 4

0

500

1000

1500

N
um

be
r o

f t
ra

ns
fe

rs

Schedulers Standard
LocalityBased

Replicate3
Replicate10

DataOnPlace

Figure 3.4: Number of transfers and total data transferred in GB.

3.6.3 Simulation Results

Figure 3.4 shows the amount of manipulated data we observed through simulation
for the four workloads, while Figure 3.5 shows the waiting time distribution achieved
by each scheduler, separated in 3 intervals for better clarity. Note that Figure 3.5
only shows the waiting time distribution for workload 3. Since the other workloads
showed similar results, we omit the corresponding figures and focus our analysis on
workload 3.

Impact of data locality

As depicted on Figure 3.5, for each scheduler, more than 60% of the instances waited
less than one second before starting their execution. The last column shows that
a few instances waited a long time before starting their execution (around 1,455
seconds). This is due to the long transfer time of one of their data dependencies that
was as large as 36 GB, while other data-sets were smaller than 5 GB. Comparing
the behaviour of Standard and LocalityBased, we do not observe a big difference in
the distribution of the waiting times, except for the amount of instances that waited

38 Chapter 3 A Simulation Tool for Edge Computing Infrastructures

Total = 3472

Total = 3525

Total = 3771

Total = 4196

Total = 4217

DataOnPlace

Replicate10

Replicate3

LocalityBased

Standard

0.0 2.5 5.0 7.5 10.0

0
1000
2000
3000
4000

0
1000
2000
3000
4000

0
1000
2000
3000
4000

0
1000
2000
3000
4000

0
1000
2000
3000
4000

waiting time

Figure 3.5: Waiting time distribution (in seconds) of all instances of the third workload.

3.6 Investigating Placement Strategies 39

for 1,455 seconds. This is confirmed by the average value over all instances of 39
seconds for Standard and 34.6 for LocalityBased.

Regarding the amount of data manipulated that Figure 3.4 shows, the results from
the LocalityBased scheduler are as expected: dispatching instances on QBoxes
already having the data-set dependencies on their disk permits to reduce the number
of transfers by about 44%, and between 30 and 65% the total data transferred,
compared to Standard.

To conclude, considering data locality decreases the amount of data transfer as
expected but does not seem to be satisfactory enough to significantly improve the
waiting times of the instances.

Transferring data has a cost

Replicating data-sets permits to reduce the mean waiting times of the instances but
at a cost of more data transfers, as depicted in Figure 3.4. More precisely for the
3rd workload, the mean waiting time of the instances decreases from 34.6 to 32.6,
28.6 and 22.2 seconds respectively for LocalityBased, Replicate3, Replicate10 and
the unrealistic DataOnPlace strategies. While these results look encouraging, it is
important to take into account the associated overhead in terms of data transfer:
from 90 GB to 384 GB for Replicate3, 599 GB for Replicate10 and 1,056 GB for
DataOnPlace. This respectively corresponds to an overhead in terms of data transfer
of 4.3x, 6.7x and 11.7x.

Consequently, it is not clear whether replicating data-sets at a high ratio is a valid
approach. On the first hand, taking into account only the data locality is not
sufficient to have good waiting time performance (LocalityBased). On the second
hand, it is crucial to control data-set exchanges as they have an impact on the overall
performance. For instance, it may make sense to have a replication ratio that is
dynamic according to the popularity of the data-set and the status of the platform. In
other words, it is crucial to also consider the time spent in data transfer before taking
scheduling decisions. This is critical as the size of data-sets should be increased with
respect to IoT-based scenarios envisioned by Qarnot Computing. In this regard, we
plan to extend the Storage Controller to estimate the transfer time of a data-set to a
given storage entity at a certain time. This information is valuable for the schedulers
to decide when triggering data transfers and on which QBoxes. Besides, we plan to
leverage our proposal to evaluate whether exchanging data-sets directly between
QBoxes can help us reduce the data transfer time.

40 Chapter 3 A Simulation Tool for Edge Computing Infrastructures

Finally, we recall that our goal through this study was not to find the best scheduling
algorithm but to illustrate the use of our simulation toolkit on a concrete scenario,
and to demonstrate how such a simulator would help to drive the design of schedul-
ing and data placement strategies. Capturing the aforementioned observations in
the Qarnot Computing production platform would have been impossible.

3.6 Investigating Placement Strategies 41

Temperature Modelling and
Prediction

4
We study in this chapter the problem of modelling the temperature of a body and
its surroundings and propose different solutions to predict the evolution of these
temperatures. More precisely, we apply this problem in a smart building environment
and are interested in studying the evolution of temperature of the ambient air in a
room with heaters. At the end of this chapter, we would like to be able to answer the
following question: “given a room whose ambient temperature is at 20 °C, what will
be the temperature after one hour if a radiator dissipates heat with a constant power
consumption of 500 W?1”

In the following, we first argument in the need for temperature prediction mod-
els and review existing works in the literature related to thermal prediction and
management. Then, we introduce two basic thermodynamics formulae and the
thermal model under study and propose different prediction methods to solve our
problem. Finally, we conduct an experimental campaign to compare the temperature
predictions of the different solutions and the execution times to compute these
predictions.

This chapter presents an ongoing work in collaboration with Danilo CARASTAN-
SANTOS, Anderson Andrei DA SILVA and Denis TRYSTRAM.

4.1 A Need for Temperature Prediction

With the constant increase in power consumption of the computing resources, ther-
mal regulation has become an important part of the management of computing
environments to, first, limit fault and failures of hardware components due to their
operating at high temperatures and, second, to reduce the power consumption of
the cooling systems.
In 2017, Ni and Bai [NB17] studied the air conditioning system of 100 data-centres

1Any mention of degree here and in the rest of the chapter will refer to Celsius degree, unless the
unit is specified.

43

and showed that the total energy consumption of the cooling infrastructure ac-
counted for, on average, 38% of the total energy consumption of the facility and that
it could be even larger than the IT equipment energy consumption. In this regard,
any mean of reducing the energy consumption of the cooling system is explored. For
example, the usual inlet airflow temperature in data-centres is in the range 20-24 °C,
but Wang et al. showed that every increase of the inlet temperature by one degree
could reduce the energy consumption by 4.3% to 9.8% [WZX13].
However, increasing the inlet temperature increases the average operating tempera-
ture of the hardware components and increases as well their failure rate. Hence the
need for thermal management at the level of the servers and processors.

The thermal regulation of servers in data-centres is usually performed with a feed-
back control loop that monitors the processors temperature and reacts to events,
such as reducing the processor speed with DVFS when the temperature exceeds
a given threshold. This is a reaction-based thermal management, which may not
be appropriate to deal with high variabilities in the temperatures, as highlighted
by Ramos and Bianchini [RB08]. For example, when the temperature of a server
exceeds the upper limit for which the server should operate, a reaction to lower the
temperature is taken. However, the reaction may not be effective fast enough and
the temperature could continue to rise until a critical limit is reached, forcing to shut
down the server to prevent damaging its components.

On the contrary, being able to predict the temperature of a processor or a server after
a certain time period, based on the actual temperatures and power consumption,
would permit prediction-based thermal management. In such a case, the quick rise
in temperature would have been anticipated and a faster and more drastic reaction
to lower the temperature of the server would have been taken.

Other use-cases of such a temperature prediction model for servers and processors is
for example to compute the maximal power consumption of a processor to ensure
that the temperature remains below a given threshold, or to combine with a task
scheduling algorithm to take better placement decisions when the thermal/energy
profile of the tasks is known.

4.2 Related Work

One can find in the literature many works to predict the temperature of processors,
servers or airflow in data-centres [WB04; Cho+07; Hea+06; Zha+18; TZQ18].
One model of particular interest is the Lumped Thermal Model [Sub13; Woj14],

44 Chapter 4 Temperature Modelling and Prediction

that leverages the duality between heat transfer and electric current to model the
heating/cooling of a body as an exponential charging/discharging process. However
widely used [FMO07; Ska+04; Hua+06; POD15; Get+15; JM08; LQ10], this model
assumes a constant temperature of the surroundings of the studied body during
the transient process of heating or cooling, and cannot be applied to our tackled
problem where the temperatures of the heater and the ambient air varies over long
periods of time.
In the context of smart buildings, the forecasting of indoor temperature is usu-
ally performed with machine learning techniques and/or time series analysis using
various inputs such as temperature, power consumption, humidity and light sen-
sors [Rua+06; TS07; Pau+18; Xu+18].

A work similar to ours, by Hietaharju et al. [HRL18], presents an analytical method to
predict the air temperature of large buildings from indoor and outdoor temperature
and heating power values. The equations used by the authors are close to the ones
presented in this chapter, but consider the heating power of the air as an input,
whereas in our solution it is computed from the temperature difference between the
heating device and the air and is variable depending on the inertia of the heating
device.
To the best of our knowledge, we are the first to study with this work an analytical
method that takes into account the power consumption of the heating device to
predict temperatures of both the heater and air temperatures in a smart building.
With such temperature prediction methods, we aim at proposing solutions for better
simulation and thermal management of smart buildings, which could be of interest
in companies such as Qarnot Computing and Lancey [@lancey].

Regarding the scheduling community, there also exist works offering temperature-
aware scheduling and data placement algorithms. We think for example of Moore et
al. [Moo+05] and Kaushik and Nahrstedt [KN12] that respectively propose work-
load and data placement algorithms that leverage hot and cool spots in data-centres
to reduce the cooling costs.
Other works can be found for reducing the peak temperature in data-centres, such
as task sequencing and scheduling algorithms proposed by Ramkumar and Mi-
tra [JM08] or Liu and Qiu [LQ10].

4.2 Related Work 45

4.3 Problem Formulation and Thermodynamics

We consider the problem of modelling and predicting the evolution of temperatures
of a heater and its ambient air in a room.
The system under study can be modelled with three bodies as follows: A first body,
the heater or radiator, consuming power that is dissipated in the form of heat, is
encased inside a second body, the ambient air of the room, which itself is encased
in the third body, the outside world.

From this model, we want to compute the temperature of the radiator and the
ambient air of the room after a given time period from initial temperature values
and a constant power consumption of the radiator, assuming that the temperature
of the outside world remains constant during the process.

Before diving into the details of our temperature prediction methods, we must
introduce some thermodynamic basics and formulae [Dem17].
Table 4.1 summarises the parameters and units used in the rest of the chapter.

For the simplicity of the equations and computations, we make the following usual
assumptions [Woj14]:

• The temperature of the outside world remains constant;

• The temperatures within the radiator and the air bodies are uniform;

• The physical properties (mass, volume and thermal properties) of the bodies
remain constant;

• The internal thermal resistance of the radiator is very low and negligible
compared to the external thermal resistance between the radiator and its
surrounding air (denoted by Rrad in Table 4.1);

• The energy consumed by the radiator is entirely dissipated in the form of heat,
as no mechanical process is involved.

Moreover, we will also assume that the air body is a well-mixed fluid that can be
considered as a solid body to neglect heat convection, and that its internal thermal
resistance is very low and negligible compared to the external thermal resistance at
its boundaries with the outside world (denoted by Rair in Table 4.1).

Please note that having a small ratio between the internal and external thermal
resistances of a body, also denoted as the Biot number, is required to ensure a

46 Chapter 4 Temperature Modelling and Prediction

Table 4.1: Summary of the notations used in the thermodynamics formulae

Parameter Notation Unit

Radiator temperature Trad °C
Ambient air temperature Tair °C
Outside temperature Tout °C
Energy lost from radiator to the air Elost_rad J
Energy lost from air to the outside Elost_air J
Radiator power consumption Prad W
Radiator external thermal resistance Rrad °C/W
Radiator thermal capacitance Crad J/°C
Ambient air external thermal resistance Rair °C/W
Ambient air thermal capacitance Cair J/°C

relatively uniform temperature within the body compared to its surroundings, which
is required to ensure the validity of the studied models.

Since we are working with temperature and heat, the first formula of interest is
the one for thermal energy, or heat capacity. This formula links the temperature
variation ∆T [K] of a body of mass m [g] and specific heat c [J.g−1.K−1] to an
amount of energy Q [J] transferred to the body as follows2:

Q = m× c×∆T. (4.1)

Note that the value of Q will be negative for a temperature decrease.
This formula can be rewritten into:

Q = C ×∆T (4.2)

where C = mc [J.K−1] is the thermal capacitance of the body.

When there is a temperature difference between two bodies, or between two regions
of a body, heat transfer occurs from the warmer region to the colder one. This
process can involve two types of heat transfer: the heat conduction and the heat
convection. On the one hand, heat conduction occurs within a solid body or
between a solid body and its surroundings, without matter movement. On the
other hand, heat convection occurs within a fluid body where the heat is transferred
through movement of the matter.

From the assumptions we made, there are in this work two energy exchanges by
heat conduction: the first between the radiator and the ambient air, and the second
between the air and the outside world.

2The Celsius degree and Kelvin units can be used interchangeably in the equations of this chapter.

4.3 Problem Formulation and Thermodynamics 47

The conductive heat transfer formula denotes the rate at which heat is transferred
between two bodies based on the temperature difference between the bodies, and
can be expressed as follows:

Q

dt
= ∆T

R
(4.3)

where Q denotes the energy transferred by conduction in dt seconds between two
mediums having a temperature difference of ∆T and a thermal resistance of R
[K.W−1].

Note that there is also a third type of heat transfer, the thermal radiation, that
emits heat from a body to its surroundings. However, this radiation does not have a
sufficient impact for the range of temperatures we are dealing with in this work and
will thus be neglected.

4.4 Temperature Prediction Methods

We present in this section the Lumped Thermal Model and introduce different meth-
ods to solve our temperature prediction problem.
All the presented methods use a different approach to predict the radiator tem-
perature and the air temperature after a given time period from the following
inputs:

• the time period duration (n);

• the power consumption of the radiator (Prad);

• the initial radiator temperature (Trad(0));

• the initial air temperature (Tair(0));

• the outside temperature (Tout);

• the constant physical properties thermal capacitance and thermal resistance of
the radiator and the air (Crad, Rrad, Cair and Rair).

48 Chapter 4 Temperature Modelling and Prediction

4.4.1 Lumped Thermal Model

The Lumped Thermal Model [Sub13] leverages the similarity of a heat transfer
between two mediums with an electric current passing through a resistor to model
the transient temperature variation resulting from heat exchange between a body
and its surroundings.

This model may be used to solve a simplified version of our problem where we are
only interested in predicting the temperature of a body A while the temperature
of the surrounding body B remains constant. This corresponds for example to
predicting the temperature of a radiator while the temperature of the surrounding
air remains constant, or to predicting the temperature of the ambient air with a
constant temperature of the outside world. In the latter case, we assume that the
energy transferred from the radiator to the air is equal to the energy consumed by
the radiator, and corresponds to the internal energy gain of the air in the system
composed only by the air and the outside world.

Thus, there is only one heat flow between the body of higher temperature to the
body of lower temperature. If there is no internal energy gain in A (e.g., the power
consumption of the heater is null), its temperature follows an exponential variation
towards the temperature of B. In this case, the temperature of A after n seconds
can be written as

TA(n) = TA(0) · e−αn + TB · (1− e−αn)

where TA(0) is the initial temperature of A, TB is the constant temperature of B
and α = 1

Rrad·Crad
[s−1] is the inverse of the product of the thermal capacitance and

resistance of the radiator, which can be interpreted as “how fast the transient process
is?”
If A is the body of higher temperature, then the exponential variation will be a
decrease. Conversely, if A is the body of lower temperature, then the heat flow will
be from B to A and the temperature of A will follow an exponential increase.

If the internal energy gain of A is positive, the temperature of A will tend to
TB + PA ·RA following the equation

TA(n) = TA(0) · e−αn + (TB + PA ·RA) · (1− e−αn)

where PA and RA respectively are the power consumption and thermal resistance of
A during the process, and can be rearranged as

4.4 Temperature Prediction Methods 49

TA(n) = PA ·RA + TB + (TA(0)− PA ·RA − TB) · e−αn. (4.4)

More details about how these equations are derived from the thermal energy and
conductive heat transfer formulae, as well as extensions of this model, can be found
in the Encyclopedia of Thermal Stresses [Woj14].

4.4.2 A Naive Iterative Approach

The first solution to solve our temperature prediction problem is a naive iterative
approach, which consists in computing the energy gains and losses of the radiator
and the air during one second, update the new temperatures of the radiator and the
air, and repeat the process for each second in the time period. Thus, with a time
period of n seconds, we will make n computation steps.

Suppose we are at step t ∈ [0, n), the energy gained by the radiator due to its power
consumption is

Egained_rad = Prad × 1.

The energy lost by the radiator is computed from the conductive heat transfer
formula and is

Elost_rad = Trad(t)− Tair(t)
Rrad

× 1.

Similarly, the energy lost by the air is

Elost_air = Tair(t)− Tout
Rair

× 1.

The new temperature of the radiator at the end of the step, using the thermal energy
formula, is

Trad(t+ 1) = Trad(t) +
Egained_rad − Elost_rad

Crad
. (4.5)

50 Chapter 4 Temperature Modelling and Prediction

Figure 4.1: Summary of the energy transfers and temperature changes in a computation
step.

Similarly, the new temperature of the ambient air is

Tair(t+ 1) = Tair(t) +
Elost_rad − Elost_air

Cair
. (4.6)

Figure 4.1 summarises a computation step of dt seconds with the different energy
transfers to and from the three bodies.

Finally, by setting to Trad(0) and Tair(0) the initial temperatures of the radiator and
the ambient air, the resulting temperatures at the end of the process are Trad(n) and
Tair(n).

4.4.3 A Linear Algebra Approach

The naive solution presented in the previous section is very simple. However, the
number of computations and the time it takes to compute them grow linearly with
the time period. We now present a second approach based on linear algebra to
reduce the time complexity.

From Equations (4.5) and (4.6), we can write the temperatures of the radiator and
the air in the form of sequences as

Trad(n) = Trad(n− 1)− Trad(n− 1)− Tair(n− 1)
RradCrad

+ Prad
Crad

(4.7)

Tair(n) = Tair(n− 1) + Trad(n− 1)− Tair(n− 1)
RradCair

− Tair(n− 1)− Tout
RairCair

(4.8)

with the parameters Trad(0) and Tair(0) being the initial temperatures.

Then, the two sequences can be grouped into(
Trad(n)
Tair(n)

)
= A ·

(
Trad(n− 1)
Tair(n− 1)

)
+
(

Prad
Crad
Tout

RairCair

)

4.4 Temperature Prediction Methods 51

and then (
Trad(n)
Tair(n)

)
= An ·

(
Trad(0)
Tair(0)

)
+ Sn ·

(
Prad
Crad
Tout

RairCair

)
(4.9)

where

A =
[
1− a a

b 1− b− c

]
(4.10)

with a = 1
RradCrad

, b = 1
RradCair

, c = 1
RairCair

, and Sn = (Id2 + A+ A2 + · · ·+ An−1)
with Id2 being the identity matrix of dimension 2.

Note that, since Det(Id2 −A) = ac 6= 0, (Id2 −A) is invertible and we can rewrite
Sn as

Sn = (Id2 −A)−1 · (Id2 −An). (4.11)

We could stop here and simply use Equation (4.9) to compute the radiator and air
temperatures since we have reduced our time complexity to a matrix exponentiation
and a few side computations. However, we can continue our efforts and further
reduce the complexity of computing An by diagonalising the matrix A. In other
words, we want to find an invertible matrix P and a diagonal matrix D such that
A = PDP−1 [GV13]. This way, the exponentiation of A would reduce to the
exponentiation of a diagonal matrix, which is straightforward.

To do so, we first compute the eigenvalues of A, which are the roots of the polyno-
mial

p(λ) = Det(A− λId2)

= (1− a− λ) · (1− b− c− λ)− ab

= λ2 + λ · (a+ b+ c− 2) + (ac− a− b− c+ 1).

Its discriminant is

∆ = (a+ b+ c− 2)2 − 4(ac− a− b− c+ 1)

= a2 + b2 + c2 + 2ab− 2ac+ 2bc

= (a− c)2 + b2 + 2ab+ 2bc

and is strictly positive. Thus, A has two eigenvalues:

λ1 = 1
2(2− a− b− c−

√
∆)

λ2 = 1
2(2− a− b− c+

√
∆)

52 Chapter 4 Temperature Modelling and Prediction

Second, we compute the eigenvector associated to each eigenvalue of A. For λ1, its
eigenvector x satisfies [

1− a− λ1 a

b 1− b− c− λ1

]
· x = 0

leading to: {
(1− a− λ1) x1+ a x2 = 0

b x1+ (1− b− c− λ1) x2 = 0

Taking x2 = 1 we obtain for the second row

x1 = λ1 + b+ c− 1
b

= a− b− c+
√

∆
−2b

which makes the eigenvector

V1 =
(
a−b−c+

√
∆

−2b
1

)
. (4.12)

With a similar reasoning with λ2 we get

V2 =
(
a−b−c−

√
∆

−2b
1

)
. (4.13)

Finally, our diagonal matrix D is composed of the two eigenvalues of A on its
diagonal and P is the concatenation of the two associated eigenvectors:

D =
[
λ1 0
0 λ2

]

P =
[
xV1 xV2

1 1

]

P−1 = 1
xV1 − xV2

·
[

1 −xV2

−1 xV1

]

with xV1 and xV2 respectively being the first coordinate of the eigenvectors V1

(Equation (4.12)) and V2 (Equation (4.13)) and we can write An = PDnP−1.

The exponentiation of A to the power n is now pretty fast and reduces to the
exponentiation of λ1 and λ2, and a few fixed number of matrix multiplications.

4.4 Temperature Prediction Methods 53

We can even go a step further and use the diagonalised form to manually compute
each coefficients of An and Sn. For An we have

An = 1
xV1 − xV2

·
[
xV1 · λn1 − xV2 · λn2 xV1 · xV2 · (λn2 − λn1)

λn1 − λn2 xV1 · λn2 − xV2 · λn1

]
. (4.14)

Combining Equations (4.10), (4.11) and (4.14) we have

(Id2 −A)−1 = 1
ac
·
[
b+ c a

b a

]

and

(Id2−An) = 1
xV1 − xV2

·
[
xV1 · (1− λn1) + xV2 · (λn2 − 1) xV1 · xV2 · (λn1 − λn2)

λn2 − λn1 xV1 · (1− λn2) + xV2 · (λn1 − 1)

]

which gives

Sn = 1
ac
· 1
xV1 − xV2

·
[
s1,1 s1,2

s2,1 s2,2

]
(4.15)

with

s1,1 = (b+ c) · (xV1 · (1− λn1) + xV2 · (λn2 − 1)) + a · (λn2 − λn1),

s1,2 = (b+ c) · xV1 · xV2 · (λn1 − λn2) + a (xV1 · (1− λn2) + xV2 · (λn1 − 1)) ,

s2,1 = b · (xV1 · (1− λn1) + xV2 · (λn2 − 1)) + a · (λn2 − λn1),

s2,2 = b · xV1 · xV2 · (λn1 − λn2) + a (xV1 · (1− λn2) + xV2 · (λn1 − 1)) .

Finally, we can plug Equations (4.14) and (4.15) into Equation (4.9) and unroll all
matrix multiplications. We end up with two independent – rather ugly – closed-form
expressions for Trad(n) and Tair(n), whose time complexity consists of the exponen-
tiation of λ1 and λ2, and a fixed number of scalar additions and multiplications:

Trad(n) = Trad(0) · xV1 · λn1 − xV2 · λn2
xV1 − xV2

+ Tair(0) · xV1 · xV2 · (λn2 − λn1)
xV1 − xV2

+ Prad ·
s1,1

ac · (xV1 − xV2) · Crad

+ Tout ·
s1,2

ac · (xV1 − xV2) ·Rair · Cair

(4.16)

54 Chapter 4 Temperature Modelling and Prediction

Tair(n) = Trad(0) · λn1 − λn2
xV1 − xV2

+ Tair(0) · xV1 · λn2 − xV2 · λn1
xV1 − xV2

+ Prad ·
s2,1

ac · (xV1 − xV2) · Crad

+ Tout ·
s2,2

ac · (xV1 − xV2) ·Rair · Cair

(4.17)

4.4.4 Multiple Sources Extension

We propose in this section a simple extension of the iterative and linear algebra
approaches for temperature prediction with multiple heat sources in the room.
The objective is to predict the temperature of the ambient air and all the radiators
after a given time period based on their initial temperature, their constant power
consumption and the temperature of the outside world.

Consider K ≥ 2 radiators with, for each radiator k ∈ [1,K], a temperature Tk,
a power consumption Pk, a thermal resistance Rk and a thermal capacitance Ck.
Considering that there is a heat transfer from each radiator to the ambient air, the
equations for each step of the iterative approach of Section 4.4.2 can be extended
as:

Egained_k = Pk ∀k ∈ [1,K]

Elost_k = Tk(t)− Tair(t)
Rk

∀k ∈ [1,K]

Elost_air = Tair(t)− Tout
Rair

Tk(t+ 1) = Tk(t) +
Egained_k − Elost_k

Ck
∀k ∈ [1,K]

Tair(t+ 1) = Tair(t) +
∑
k∈[1,K]Elost_k − Elost_air

Cair

Similarly, Equations (4.7) and (4.8) are extended to:

Tk(n) = Tk(n− 1)− Tk(n− 1)− Tair(n− 1)
Rk · Ck

+ Pk
Ck

∀k ∈ [1,K]

Tair(n) = Tair(n− 1) +
∑

k∈[1,K]

(
Tk(n− 1)− Tair(n− 1)

Rk · Cair

)
− Tair(n− 1)− Tout

Rair · Cair

4.4 Temperature Prediction Methods 55

The linear algebra approach is also extended by dealing with square matrices and
vectors of dimension K + 1. In a similar reasoning as for Equation (4.9) we can
group the K + 1 previous sequences into

T1(n)
...

TK(n)
Tair(n)

 = An(K) ·

T1(0)

...
TK(0)
Tair(0)

+ S(K),n ·

P1
C1
...
PK
CK
Tout

RairCair

where A(K) is the extension of matrix A with K + 1 dimensions expressed as

A(K) =

1− 1
R1·C1

0 . . . 0 1
R1·C1

0 1− 1
R2·C2

... 1
R2·C2

... 0 . . . 0
...

0 . . . 1− 1
RK ·CK

1
RK ·CK

b b . . . b 1− 1
Rair·Cair

−
∑
k∈[1,K]

1
Rk·Ck

and
S(K),n = (IdK+1 +A(K) +A2

(K) + · · ·+An−1
(K)).

Note that it can easily be shown that (IdK+1−A(K)) is invertible and, thus, similarly
to Equation (4.11), we can rewrite S(K),n as:

S(K),n = (IdK −A(K))−1 · (IdK −An(K))

The diagonalisation of A(K) is however not as simple as in two dimensions and, for
the sake of maintaining the reader’s sanity, we will stop our exhibit of complicated
formulae here.

4.5 Experiments

To assess our temperature prediction model, we conducted a set of experiments to
compare the accuracy of the different prediction methods presented in the previous
section, and the time the methods take, to predict the temperatures of a Qarnot
Computing QRad and its ambient air.

56 Chapter 4 Temperature Modelling and Prediction

4.5.1 Preparation of the Data

The data we used for the experiments are taken from 18 QRads of the Qarnot
Computing platform deployed in the city of Bordeaux in France. We chose only a
subset of the whole Qarnot platform because each of these QRads was alone in its
room and embedding a single processor.
For the same privacy reasons as for the data used in the experiments of Chapter 3,
we cannot provide access to the data used in this chapter.

We retrieved logs for almost 5 months between October 8th, 2019 and February
25th, 2020 containing data from different sensors that were logged every 10 seconds
when the QRad was turned ON. In particular, for each timestamp in the logs, we
were interested in the temperature of the ambient air and the QRad, as well as
the power consumption of the whole QRad. The power consumption of the whole
QRad takes into account both the consumption of the auxiliary resistors and of the
processing components of the QRad. We also retrieved from the weather station
of Bordeaux Mérignac the outside temperature taken every hour for this 5-month
period.

From these data, for each QRad we cut the sequence of timestamps into subsets of
contiguous timestamps with near-constant power consumption and constant outside
temperature. A cut was performed if the power consumption absolute difference
between the current timestamp and the first of the sequence was strictly greater than
15 W, or if the outside temperature changed. Then, for each sequence of timestamp
we created an entry containing: the timestamp, the QRad and the air temperatures
at the beginning and at the end of the sequence, the outside temperature and the
average power consumption of the QRad during the sequence, and the length (in
seconds) of the sequence.

In the logs, the air temperature is updated every 5 minutes. Thus, we only kept en-
tries whose length was more than 300 seconds (5 minutes) to be sure a temperature
difference was observed between the beginning and the end of a time period. We
also completely discarded two QRads which had about 50 and 100 entries, that we
judged insufficient to present relevant results.

The number of entries for the 16 remaining QRads were between 320 and 2,071.
The first half of entries for each QRad was used to learn the thermal resistances
of the QRad and its ambient air while the second half was used to compare the
different prediction methods.

4.5 Experiments 57

4.5.2 Learning of Physical Constants

There are multiple physical constants involved in our temperature prediction meth-
ods, namely the thermal resistance and capacitance of the radiator and of the
ambient air. For the 16 QRads selected for our experiments, we know the volume of
the room each QRad is placed in and we can compute the thermal capacitance Cair

for the air in the room by multiplying the volume, density and specific heat of air,
considered constant in our range of temperatures.
We took the values for the air density and the specific heat at 20 °C, which are
respectively 1, 200 g.m−3 and 1.005 J.g−1.K−1, and computed the corresponding
thermal capacitance of the air in the room of each QRad accordingly.

A QRad is an object of 28 kilograms and its main mass comes from the aluminum
heat-sink. Thus, we computed the thermal capacitance Crad of a QRad as the product
of its mass, 28, 000 g, and specific heat, 0.9 J.g−1.K−1.

The thermal resistance values are more difficult to compute and we used a machine
learning technique to find these values. We used the non-linear regression function
curve_fit of the scipy optimize Python package to learn the values of Rrad and Rair

that best fit our closed-form temperature prediction function to the data, with respect
to both the radiator and the air temperatures.
We learned the thermal resistance values for each QRad, and used the first 50% of
entries in our prepared data.

Without surprise, we noticed that the learned values of Rrad were similar for all
QRads, as all radiators are identical, with an average value of 0.05. Thus, we used
this as a constant value for all QRad thermal resistances and ran again the curve
fit optimisation to learn the Rair value for each QRad with this new fixed value for
Rrad. The obtained values for the Rair ranged between 0.01 and 0.27.
It is worth noticing that, contrarily to that of the QRads, the thermal resistance of
the air across all QRads is highly variable as it depends on many parameters, such
as the configuration of the room, its orientation and sun exposure, the number of
doors and windows, etc.

4.5.3 Evaluated Prediction Methods

During our experiments we compared different prediction methods. We used as
input of the prediction methods the same 9 inputs as described at the beginning of
Section 4.4, namely the duration of the time period, the power consumption of the

58 Chapter 4 Temperature Modelling and Prediction

radiator during the time period, the temperatures of the radiator, the air and the
outside at the beginning of the time period as well as the thermal resistances and
capacitances of the radiator and the air.

The first method is our proposed theoretical method introduced in Section 4.4 and
is declined in four flavours:

• Iterative: This is the naive iterative method presented in Section 4.4.2 that
uses Equations (4.5) and (4.6) to predict the radiator and air temperatures at
the end of the time period.

• Matrix: This is the first version of the linear algebra approach presented in
Section 4.4.3 and uses Equation (4.9) to predict the temperatures.

• Diagonal: This is the second version of the linear algebra approach leveraging
the diagonalisation of matrix A. The decomposition An = PDnP−1 is plugged
into Equations (4.9) and (4.11) to predict the temperatures.

• ClosedForm: This is the last version of the linear algebra approach where
all matrix multiplications are unrolled to use the two closed-form equations
(4.16) and (4.17) to predict the temperatures.

As these four versions are different representations of the same set of equations,
they give the same temperature predictions. Thus, we will only use the ClosedForm
version to compare the temperature prediction accuracy with the other methods in
Section 4.5.4. A comparison of the computation time to perform the predictions of
these four versions, along with the other prediction methods, will be presented in
Section 4.5.5.

The second prediction method, denoted by Lumped, uses the Lumped Thermal Model
presented in Section 4.4.1 to predict the temperatures. As underlined in the section,
this prediction method supposes a constant temperature of the surroundings of
the studied body and is not well-suited for our temperature problem as we want
to predict both the temperatures of the heater and the air. However, we will use
this method as a baseline since it is widely used in other temperature prediction
problems.
To predict the temperature of the radiator, the power consumption of the radiator
and the initial temperatures of the radiator and of the air are used as inputs of Equa-
tion (4.4). Similarly, the power consumption of the radiator, the initial temperature
of the air and the temperature of the outside world are used as input of the same

4.5 Experiments 59

equation to predict the temperature of the air.

When dealing with problems that are difficult to model and study theoretically,
or with parameters that are hard to find, it is common to use machine learning
approaches to try and have good approximations of the solution that can sometimes
outperform methods based on real theoretical models. Our problem is not an excep-
tion. Thus, our third prediction method, denoted by Keras, uses neural networks to
predict the temperatures.
We designed two very simple neural networks, one for the radiator and one for the
air temperature, with one layer to capture the 9 inputs, no hidden layer and one
layer for the output. A second version of the neural networks, denoted by Keras2,
was designed, in which we added two dense hidden layers with 18 nodes each.
These neural networks were trained with the aggregation of the first half of entries
for all QRads and the optimisation metric was the minimisation of the mean squared
error between the temperature predictions and the real values, which is the most
classical optimisation metric used.

We implemented all these prediction methods in modern Python (version 3.7.6),
relying on the Numpy package (version 1.18.1) to perform the vector and matrix
computations and on the Keras package (version 2.3.1) for our neural network
solution.

4.5.4 Temperature Prediction Accuracy

We are interested in methods that predict the temperatures as close as possible
to what will be the real temperatures. In other words, we want to minimise the
distance between the predicted and the real temperatures for both the radiator and
the ambient air. Thus, we compared the accuracy of the prediction methods using
the mean absolute error (MAE) metric.

Figure 4.2 shows the radiator and air temperature predictions of ClosedForm (in
red), Keras2 (green) and Lumped (blue) along with the real temperature (black)
for two QRads, denoted by QRad1 and QRad2. We selected these two QRads as
they contained long periods of activities and presented the best results for the MAE
metric. The temperature predictions for Keras are not shown and discussed as the
method was consistently outperformed by Keras2.

60 Chapter 4 Temperature Modelling and Prediction

20

40

60

80
QRad temperature

100 105 110 115 120 125 130 135 140

20

30

40

50
Air temperature

Real ClosedForm Keras2 Lumped

(a) QRad1

20

40

60

QRad temperature

95 100 105 110 115 120
0

10

20

30

Air temperature

Real ClosedForm Keras2 Lumped

(b) QRad2

Figure 4.2: Real temperature (black) and temperature prediction of ClosedForm (red),
Keras2 (green) and Lumped (blue) for two QRads. The x-axis shows the day
number since the beginning of the data acquisition (October 8th, 2019). The
y-axis shows the temperature in Celsius degree.

4.5 Experiments 61

As one can observe, all methods are able to predict the general behaviour of the
QRad temperature, but with large errors for ClosedForm and Lumped. The average
MAE of the prediction of all QRads for ClosedForm and Lumped are respectively of
5.61 and 2.87, with maximum values at 10.84 and 3.47, which cannot be considered
as accurate for a temperature range of 20-70 °C. On the contrary, Keras2 is able to
predict the radiator temperature with a good accuracy with an average MAE of 0.85
with a maximum at 1.45.

For the prediction of the air temperature, the results are similar with an average
MAE of 5.54, 6.8 and 1.06 for ClosedForm, Lumped and Keras2, with maximum values
at 9.66, 11.75 and 2.15, respectively.
These results show that a simple neural network is able to predict temperatures with
an average precision of almost one degree with limited amount of training data,
while the two analytical methods fail to predict the temperatures with inaccuracies
that can go up to 13 degrees for the air temperature in the case of QRad2.

The relative better performance of Lumped compared to ClosedForm for the prediction
of the radiator temperature may appear surprising, as the Lumped Thermal Model is
a simplification of our temperature model that considers a constant temperature of
the air to compute the temperature of the radiator. In theory, with variations of a
few degrees, or even half a degree, ClosedForm should provide better predictions
over Lumped. However, the air temperature is pretty stable over the time periods of
the data, with a maximum absolute difference between the air temperature at the
beginning and the end of a time period of 0.17 degree over all QRads, which makes
the assumption of a constant surrounding temperature for the Lumped Thermal
Model appropriate.

4.5.5 Computation Time Evaluation

Having accurate temperature predictions is our main objective, but it is sometimes
relevant to trade off a small performance decrease in terms of accuracy of the
solution to gain a great improvement in terms of time to find the solution. Indeed, a
method that would predict temperatures within 0.1 degree of the real values would
be completely inefficient in practice if it always took seconds to compute.

In this section we compare the time taken by the different methods presented in
Section 4.5.3 to predict temperatures. More precisely, we compute the mean time,
and the mean absolute percentage error (MAPE) with respect to the mean time, to

62 Chapter 4 Temperature Modelling and Prediction

Table 4.2: Computation time comparison of the temperature prediction methods. Values
show the mean time in microseconds to make a prediction for a total of 1,000
predictions.

Time Period (s) Iterative Matrix Diagonal ClosedForm Lumped Keras2

10 7.47 205.59 246.55 6.93 3.04 417.55
60 22.79 227.46 234.98 6.89 3.06 417.52
300 97.06 244.17 237.04 6.93 3.04 420.7
600 194.16 250.35 236.24 6.99 3.01 419.0
1800 579.29 258.15 235.46 7.06 2.99 418.16
3600 1155.31 264.07 236.47 6.98 3.04 440.46
7200 2325.72 275.47 236.02 6.95 3.02 417.43
18000 5762.66 287.31 235.65 7.04 3.02 419.2
36000 11516.18 305.37 239.86 7.11 3.12 422.0

perform a temperature prediction for a total of 1,000 predictions with time periods
ranging from 10 seconds to 10 hours.
Table 4.2 shows the timing results with values in microseconds. Notice that, as Keras
and Keras2 use the same approach with different neural networks, we will only
present one result for both of them.

Without surprise, we first observe that the time to make a prediction for the iterative
method is linear with the length of the time period. Iterative is faster than Matrix
and Diagonal for time periods smaller than 600 seconds, mostly due to the static
cost of creating matrices, but is outperformed by all other methods for time periods
beyond 1, 200 seconds.
On the contrary, the computation time of all other methods does not seem to depend
on the length of the time period, except for Matrix which has a slightly positive
slope.

A second observation to make is that the diagonalisation of the matrix A does
not seem to bring big performance increases compared to the version without
diagonalisation. As Table 4.2 witnesses, the gain of the diagonalisation only appears
for time periods longer than 300 seconds. A 10% speedup is achieved for time periods
of one hour and a 20% of speedup is achieved only for time periods longer than 10
hours, with prediction time between 200 and 300 microseconds. This small gain in
performance is probably due to the efficient implementation of matrix operations
performed by the Numpy package. An implementation of these prediction methods
in other programming languages may prove Diagonal much more efficient than
Matrix.

4.5 Experiments 63

Regarding the three methods used during the prediction accuracy comparison of the
previous section, the results confirm what we guessed: having prediction methods
with good accuracy has a cost. Keras2 performs temperature predictions in about
450 microseconds with accuracy in the predictions within a single degree, while
ClosedForm and Lumped perform predictions in less than 10 microseconds at a cost
of greatly decreasing the temperature accuracy.
It is worth to mention that the transformation from matrices computations to closed-
form formulae introduced in Section 4.4.3 enabled the temperature prediction
times to decrease from about 250 microseconds to 7 microseconds with ClosedForm,
achieving similar timing results than Lumped.

The MAPE metric can be interpreted as how stable is the time required to make a
prediction? The lower MAPE was achieved by Iterative with values around 0.01,
followed by Matrix, Diagonal and Keras with values around 0.03, and ClosedForm
and Lumped with values between 0.1 and 0.16. It is not surprising to see such
high variability for the timings of ClosedForm and Lumped as one prediction takes
only a few microseconds, compared to the other methods taking more than 200
microseconds for a single prediction.

4.5.6 Results Discussion

We presented in this section preliminary experiments to compare the accuracy of the
various temperature prediction methods presented in the chapter. As results showed,
the two analytical methods (ClosedForm and Lumped) completely failed to predict
temperatures within acceptable error ranges.

We believe that the nature of the data had a great impact on these results.
First, the data comes from QRads in the production platform, where inhabitants’
actions impacted the behaviour of the QRad and the ambient temperature. The heat
flow and the thermal resistance between the room and the outside world may be
highly variable due to external parameters, such as someone entering the room,
openning the window, or a time period when the sun directly hit the windows of the
room, thus rendering the room temperature variations difficult to predict.
Second, the observed temperatures in the data are very stable. The average absolute
difference of temperatures between the beginning and the end of a time period
for the 16 QRads was of 0.08 degrees for the air temperature, and 1.07 for the
radiator. These stable temperatures are not well-suited for the learning of the thermal
resistances and capacitances, as these physical constants should reflect the behaviour
of the energy transfers and temperature variations of the bodies. Moreover, such

64 Chapter 4 Temperature Modelling and Prediction

stable data do not seem well-suited for the comparison of temperature prediction
methods. In fact, a naive prediction method that considers the temperature as
constant for the whole time period would greatly outperform the other prediction
methods with these data, but would absolutely not be relevant in practice.

For these reasons, we are currently working with the Qarnot team to try and collect
data of QRads in a more controlled environment with different heating and cooling
phases with an amplitude of between 2 and 10 degrees, taken at different points in
time with different outside temperatures. We strongly believe that, with this new
data, we will be able to retrieve the physical constants by calculus and not from
machine learning, and that the overall accuracy of the prediction methods will be
improved, even for long time periods.
In addition, we also would like to refine our prediction models to include more
semantic information about the room and the outside, such as the sun exposure or
the number and area of windows. Such information could be computed in some
weights to factor the inputs of the analytical prediction methods, or directly fed as
inputs for the neural network solution.

4.5 Experiments 65

Overview of Scheduling on
Two Types of Resources

5
Taking a step away from the world of connected devices and Edge Computing, we
will focus now on a particular resource management problem in the domain of High
Performance Computing.

This chapter introduces the problem of efficiently scheduling an application repre-
sented by a precedence task graph on a parallel machine composed of two different
types of computing resources to minimise the overall execution time of the ap-
plication. First, we give a formal definition of the addressed scheduling problem
and its variants, and expose related work. Second, we highlight the current best
known algorithms for the different variants of this scheduling problem, as well as
the current lower bounds on the performance guarantees for these solutions.

The work presented in this chapter is part of a collaboration with Olivier BEAUMONT,
Louis-Claude CANON, Lionel EYRAUD-DUBOIS, Giorgio LUCARELLI, Loris MARCHAL,
Bertrand SIMON and Denis TRYSTRAM, and led to a publication in ACM Computing
Surveys 2020 [Bea+20].

5.1 Problem Statement

The problem we tackle in this chapter is the efficient scheduling of a parallel
application on a hybrid platform with the objective of minimising its completion
time. The considered platform is a multi-core machine composed of two sets of
resources, where each set contains identical processors.

A parallel application consists of a set of tasks that are linked by precedence relations.
Each task is characterised by two processing times depending on which type of
processor it is assigned to. We assume that an exact estimation of both these
processing times is available to the scheduler. This assumption can be justified by
several existing models to estimate the execution times of tasks [Ama+16].
In several applications, we always observe an acceleration of the tasks if they are

67

executed on a GPU compared to their execution on a CPU. However, we consider the
more general case where the relation between the two processing times can differ
for different tasks.

For this problem, we want to focus on the analysis of the qualitative behavior
induced by heterogeneity since it may be assumed that the computations dominate
local shared memory costs. Thus, no memory assignment or overhead for data
management are considered, nor communication times between the shared memory
and the processors, or between two processors of different types. Without loss of
generality, we denote in the following by CPU and GPU the two types of processors,
and we will assume a greater number of CPUs compared to the number of GPUs.

The main goal of this problem is, given an application to be executed on a hybrid
machine, to construct a schedule that decides when each task of the application will
be executed, and on which computing unit, to optimise an overall objective. As the
application developers are mainly looking for performance, the objective is usually
to minimise the completion time of the last finishing task, denoted by makespan,
which is one of the most commonly studied objectives [Dro09]. In a heterogeneous
context, minimising the makespan of an application corresponds to minimising the
maximum between the makespan of the tasks assigned on each set of processors.

5.2 Problem Variants

We present in this section different variants of the tackled problem regarding the
submission and execution of the tasks composing the parallel application to be
scheduled. Two orthogonal variants are proposed, which can be combined to make
4 different version of the scheduling algorithm.

5.2.1 Dependent and Independent Tasks

The original scheduling problem considers a parallel application composed of a set of
tasks that are linked by precedence constraints. A relation of precedence between
a task A and a task B simply means that the task B cannot start its execution strictly
before the task A has completed. Such constraints can model for example a data
dependency between two tasks, where the task B requires data inputs that are
generated by the task A.

68 Chapter 5 Overview of Scheduling on Two Types of Resources

The first variant of the problem that we consider is to relax all the precedence
constraints between the tasks of the application. In such a case, all tasks are
independent to each other and can be executed in any order.

5.2.2 Off-line and On-line Settings

Usually, scheduling problems consider that the whole set of tasks of an application
and their processing times are known in advance, prior to any scheduling decision.
We say in that case that the problem is off-line.

A second variant to consider is the on-line setting where the tasks arrive one by
one and there is no a priori knowledge of the upcoming tasks. In this case, we
assume that: (i) a task arrives in the system when it becomes ready, i.e., when
all its predecessors have been processed; (ii) when a task arrives, its processing
time on any type of resource is known to the scheduler; (iii) the scheduler must
schedule a task immediately and irrevocably upon its arrival. This corresponds to
the clairvoyant on-line context as defined by Leung [Leu04, Chapter 15]. In the
particular case when multiple tasks become ready at the same time, we consider
that they arrive in the system in any order. This is the case for independent tasks
that are all ready at time 0.

The on-line setting is more difficult than the off-line one, but it is of particular
interest in the context of large-scale heterogeneous platforms. Indeed, in the context
of heterogeneous platforms, programmers of parallel applications, including for
regular applications such as dense linear algebra, rely of runtime dynamic systems.
These schedulers, such as Quark [YKD11], ParSeC [Bos+13], StarSs [Pla+09] and
StarPU [Aug+11], make all their allocation and scheduling decisions at runtime.
These on-line decisions are based on the state of the platform, the set of available
(ready) tasks, and possibly on static pre-allocation strategies and task priorities that
have been computed offline.

5.3 Performance Guarantees

In general, due to combinatorial explosion, it is NP-hard to find an optimal solution
of an (interesting) optimisation problem. For this reason, researchers are designing
algorithms to approximate as much as possible an optimal solution of a problem
in polynomial time, instead of trying to find an optimal solution that can take an
exponential time.

5.3 Performance Guarantees 69

The scheduling theory is not an exception, and this problem is NP-hard since it is
a generalisation of the scheduling problem on identical machines. Thus, we are
interested in designing and studying generic algorithms that generate schedules for
hybrid computing systems that provide guaranteed performance and behave well in
practice, i.e., when they are actually used to run parallel applications.

To compare the theoretical guarantees of different algorithms, we rely on the notions
of approximation ratio and competitive ratio presented by Hochbaum [HS87].
The approximation ratio ρA of an off-line algorithm A is defined as the maximum,
over all possible instances1 I of the considered problem, of the ratio Cmax(I)

C∗max(I) , where
Cmax(I) denotes the makespan of A on the instance I and C∗max(I) is the optimal
makespan on this instance. The competitive ratio of an on-line algorithm is defined in
a similar way, comparing the algorithm makespan with the optimal off-line makespan.
The approximation/competitive ratio of an algorithm denotes an upper bound on
the objective value for a given instance compared to the optimal value. For example,
a 3-competitive algorithm will produce schedules with a makespan being at most 3
times the makespan of an optimal schedule.
However, as we will show in Chapter 6, this upper bound is only theoretical and
achieved for rare worst-case instances, while in practice the algorithms succeed in
generating schedules with makespans close to the optimal ones.

5.4 Related Work

Most papers of the huge existing literature about scheduling using GPUs concern
specific applications. There are only few papers dealing with generic scheduling
in mixed CPU/GPU architectures, and very few of them consider precedence con-
straints.

Using the three-field notation for scheduling problems introduced by Graham et
al. [Gra+79], our addressed problem can be denoted as (Pm,Pk) | prec | Cmax,
where m and k respectively denote the number of CPUs and GPUs of the machine,
while the variant with independent tasks can be denoted as (Pm,Pk) || Cmax. From
a theoretical perspective, these problems are harder to solve than the problems on
parallel identical machines, denoted by P || Cmax and P | prec | Cmax, which are
known to be NP-hard [GJ90] but admit Polynomial Time Approximation Schemes
(PTAS) [HS87; HS89]. However, they are easier to solve than scheduling problems

1Instances of the scheduling problem, not to be confused with the Qarnot-specific QTask instances of
the previous chapters

70 Chapter 5 Overview of Scheduling on Two Types of Resources

on unrelated machines (R || Cmax and R | prec | Cmax) since we consider only two
types of resources. Although several approximation algorithms and PTAS have been
proposed for these scheduling problems on unrelated machines [LST90; ST93; SV05;
GMW07], their cost makes them impractical for runtime schedulers. Moreover, PTAS
have been proposed for the problems we tackle when considering a constant number
Q of processor types [BW12; Geh+16], but the cost of these approaches is however
prohibitive even with Q = 2.

A closely related problem, in which the architecture consists of Q ≥ 2 different types
of resources and each task can be executed only on some of them, has also been
studied in the literature. This problem generalises the dedicated processors case if
each processor consists of several identical cores, while a (Q + 1)-approximation
algorithm has been proposed for it [LL78]. Note that, given an allocation, the prob-
lem of scheduling in hybrid machines reduces to the above generalised dedicated
processors problem.

On a more practical side, there exist some work about off-line scheduling, such as
the well-known algorithm HEFT introduced by Topcuoglu et al. [THW99], which
has been implemented on the run-time system StarPU [Aug+11].

In the case of independent tasks, a systematic comparison of various heuristics
has been performed by Braun et al. [Bra+01]. Specifically, the authors examined
11 different heuristics and provided a good basis for comparison and insights on
circumstances why a technique outperforms another. Finally, experimental compar-
isons of the algorithms in the more recent literature for independent tasks can be
found [Ble+15; BEK17; CMV17].

5.5 Best Known Solutions

We present in this section the algorithms achieving the best known performance
guarantees for the 4 versions of the addressed scheduling problem.

In addition to the design of algorithms providing good approximation/competitive
ratios, researchers in scheduling theory are also interested in finding lower bounds
of these ratios. For certain scheduling problems, it is possible to design an instance
that is considered as hard to solve, i.e., an instance for which any polynomial al-
gorithm will fail to produce a schedule whose makespan is within a given factor
away from the optimal makespan. For example, to prove a lower bound of 2 for a

5.5 Best Known Solutions 71

Table 5.1: Summary of lower bounds and best known approximation or competitive ratios.

Setting Off-line On-line

Independent tasks
Lower bound - 2 [CYZ14]
Best known 1 + ε [Ked+18] 3.85 [CYZ14]

Tasks with
precedences

Lower bound 3 [Fag+19]
√

m
k [Can+19]

Best known 3 + 2
√

2 [Fag+19] 2
√

m
k + 1− 1√

mk
[Can+19]

given scheduling problem, one must find an instance of the problem for which all
schedules constructed by an algorithm will have a makespan of at least twice the
optimal makespan for this instance. Finding a lower bound on a performance ratio
is a strong result, as it proves that it is not possible to design a scheduling algorithm
achieving a performance ratio smaller than this lower bound.

Table 5.1 summarises the approximation ratio of the best known solution, as well as
the current lower bound on this ratio, for the different versions of our scheduling
problem.

First of all, since this scheduling problem is NP-hard, a trivial lower bound on the
approximation ratio is 1 excluded, as an approximation ratio of 1 would mean that
the algorithm is able to find an optimal solution in polynomial time.

For the simplest version of our problem, namely the off-line case with independent
tasks, Kedad-Sidhoum et al. [Ked+18] proposed a methodology combining dual ap-
proximation techniques [HS87] and dynamic programming to construct algorithms
of approximation ratio 1 + ε, with ε > 0 as small as desired. Thus, this problem is
said to be closed, as there is no place for improvement in a theoretical point of view
between the lower bound and the approximation ratio of the best solution.
However, although such algorithms, called PTAS, are able to produce near-optimal
schedules, their time complexity is exponential in the inverse of ε. For this reason,
other algorithms of much lower complexity have been designed at the expense of
a reduced performance guarantee with an approximation ratio of 2. We think for
example of the algorithms BalancedEstimate and BalancedMakespan of Canon et
al. [CMV17], CLB2C of Cheriere and Saule [CS15] or HeteroPrio of Beaumont et
al. [BEK17]. Notice that, to achieve an approximation ratio of 2, the two latter
assume that the largest processing time of any task of the application is smaller than
the optimal makespan, which is a fair assumption.

72 Chapter 5 Overview of Scheduling on Two Types of Resources

Taking a look at the problem with precedence constraints, a recent work from Fagnon
et al. [Fag+19] proved a lower bound of 3 on the approximation ratio and extended
the linear program-based algorithm of Kedad-Sidhoum et al. [KMT15] with a new
rounding technique, improving its approximation ratio in the general case from 6
to 3 + 2

√
2 and tending to 3 when the ratio m/k between the number of CPUs and

GPUs in the machine tends to 1. The original algorithm will be further detailed and
discussed in Chapter 6.

In the on-line context when tasks arrive one by one, Chen et al. [CYZ14] were
the first to propose algorithms to schedule independent tasks on a hybrid machine
with a 3.85-competitive algorithm in the general case with an arbitrary number of
CPUs and GPUs, and a 1 +

√
3-competitive algorithm in the balanced case where

k = m. They also showed a simple lower bound of 2 for the competitive ratio of
such algorithms.

When it comes to tasks with precedences, the on-line setting seems to become much
more difficult as the performance guarantees are no longer constant values. In fact,
Canon et al. [Can+19] prove that no algorithm can achieve a competitive ratio
lower than

√
m/k and extend the algorithm of Amaris et al. [Ama+18] to improve

the competitive ratio from 4
√
m/k to 2

√
m/k+ 1− 1√

mk
. The original algorithm for

this problem will also be further detailed in Chapter 6.

For a more complete review of existing algorithms for these 4 versions of scheduling
on hybrid machines, we strongly recommend the reader to read our survey on this
matter [Bea+20].

5.5 Best Known Solutions 73

Generic Algorithms for
Scheduling Applications on
Heterogeneous Platforms

6

This chapter details our own contributions regarding the problem of scheduling
parallel applications on two resources types introduced in Chapter 5.

This work was done in collaboration with Marcos AMARIS, Giorgio LUCARELLI and
Denis TRYSTRAM and was published in the Concurrency and Computations: Practice
and Experience 2020 journal [Ama+18]. A preliminary version was published in the
EuroPar 2017 conference [Ama+17].

6.1 Contribution Summary

We study both the off-line and the on-line settings of the problem of scheduling a
parallel application with precedence constraints on a hybrid machine, and our goal
is to design algorithms through a solid theoretical analysis that can be practically
implemented in actual heterogeneous systems.

Contrarily to most existing approaches (e.g., [THW99]), we address the problem by
separately focusing on the following two phases:

• allocation: each task is assigned to a type of resources, either CPU or GPU;

• scheduling: each task is assigned to a specific pair of resource and time
interval respecting the decided allocation as well as the precedence constraints.

In the off-line mode, we aim to study the two phases separately motivated by the
fact that there are strong lower bounds on the approximability of known single-
phase algorithms. On the one hand, the approximation ratio of the well-known
Heterogeneous Earliest Finish Time (HEFT) algorithm [THW99] cannot be better
than Ω(m

k2) when k ≤
√
m (Section 6.3). On the other hand, it can be easily shown

that List Scheduling policies have arbitrarily large approximation ratios, even if

75

we consider some enhanced order of tasks, like prioritising the task of the largest
acceleration, i.e., the ratio between the processing time on a CPU and on a GPU.

The two-phase approach has been used by Kedad-Sidhoum et al. [KMT15], where
a linear program (which we call Heterogeneous Linear Program or simply HLP) in
conjunction with a rounding have been proposed for the allocation phase, while the
greedy Earliest Starting Time (EST) policy has been applied to schedule the tasks.
This algorithm, called HLP-EST, achieves an approximation ratio of 6 and we show in
Section 6.3 that this ratio is tight. In fact, our worst-case example does not depend
on the scheduling policy applied in the second phase.

Based on this negative result, we propose to revisit both phases. In Section 6.4.1,
we replace the EST policy in HLP-EST by a specific ordering of tasks combined to a
classical List Scheduling. The task ordering is based on both the allocation decisions
taken during the first phase (linear program) and the critical path. This refined
algorithm, denoted by HLP-OLS, preserves the tight approximation ratio of 6 and
achieves good practical performances.

In Section 6.4.2 we study the on-line version of the problem, where tasks arrive in
any order that respects the precedence constraints, and the scheduler has to take
irrevocable decisions for their execution at the time of their arrival. We present a
combination of low-complexity rules for deciding the allocation of a task upon its
arrival, which takes into account the actual schedule and the relation between its
processing times on both types of resources. We show that these rules, combined
with List Scheduling, lead to an algorithm of competitive ratio Θ(

√
m
k). This is the

first on-line algorithm when precedence constraints are considered in the hybrid
context.

In Section 6.5 we propose an extension of HLP-EST and HLP-OLS and their analysis
for the case where Q ≥ 2 types of identical processors are available. We show that
both algorithms achieve a tight approximation ratio of Q(Q+ 1).

Section 6.6 describes the generation of a benchmark used to perform the experi-
mental evaluation of the discussed off-line and on-line algorithms, whose results are
presented in Section 6.7. In the off-line setting, experiments showed that the new
scheduling method based on HLP (HLP-OLS) outperforms HLP-EST on both contexts
with 2 or 3 resource types with an average improvement in the makespan of 10%.
Comparisons with HEFT showed that HLP-OLS offered similar performances with
an improvement of 2% on average for 2 resource types, but a decrease of 4% on
average for 3 resource types. In the on-line setting, results showed that our proposed

76 Chapter 6 Generic Algorithms for Scheduling Applications on Heteroge-
neous Platforms

algorithm outperformed a greedy policy by an average improvement of 16% but was
outperformed by the Earliest Finish Time (EFT) policy by 10% on average.

6.2 Definitions and Notations

We consider a parallel application that should be scheduled on m identical CPUs and
k identical GPUs. Without loss of generality, we assume that m ≥ k. The application
is represented by a Directed Acyclic Graph G = (V,E) whose nodes correspond to
sequential tasks and arcs correspond to precedence relations among the tasks. We
denote by T the set of all tasks. By slightly abusing the notation, we can write
T ≡ V . The execution of a task needs a different amount of time if it is performed
by a CPU or by a GPU. Let pj (resp. pj) be the processing time of a task Tj if it
is executed on any CPU (resp. GPU). Given a schedule S, we denote by Cj the
completion time of a task Tj in S. In any feasible schedule, for each arc (i, j) ∈ E,
the task Tj cannot start its execution before the completion of Ti. We say that Ti
is a predecessor of Tj and we denote by Γ−(Tj) the set of all predecessors of Tj .
Similarly, we say that Tj is a successor of Ti and we denote by Γ+(Ti) the set of all
successors of Ti. We call descendant of Tj each task Ti for which there is a path
from j to i in G.

The objective is to create a feasible non-preemptive schedule of minimum makespan.
In other words, we seek a schedule that respects the precedence constraints among
tasks, does not interrupt their execution and minimises the completion time of the
last finishing task, i.e., Cmax = maxTj{Cj}. Extending the three-fields notation
for scheduling problems introduced by Graham, this problem can be denoted as
(CPU,GPU) | prec | Cmax.

6.3 Preliminaries

In this section, we briefly present the two basic existing approaches for scheduling
on heterogeneous/hybrid platforms and we discuss their theoretical efficiency by
presenting lower bounds on their performance guarantee.

The first approach is the scheduling-oriented algorithm HEFT [THW99]. According
to HEFT, the tasks are initially prioritised with respect to their precedence relations
and their average processing times. Then, following this priority, tasks are scheduled
with possible back-filling on the available pair of processor and time interval in

6.2 Definitions and Notations 77

Table 6.1: Sets of tasks composing the instance for which HEFT achieves an approximation
ratio of m+k

k2

(
1− 1

ek

)
.

Set of tasks # tasks per set pj pj

Ai, 1 ≤ i ≤ m k
(

m
m+k

)i (
m

m+k

)i
Bi, 1 ≤ i ≤ m m

(
m

m+k

)i
k
m2

(
m

m+k

)m

which they feasibly complete as early as possible. Note that HEFT is a heuristic
that works for platforms with several heterogeneous resources and also takes into
account possible communication costs. However, even for the simpler setting without
communication costs, with only two types of resources and k = 1, HEFT cannot have
a worst-case approximation guarantee better than m

2 [Ble+15]. This result depends
only on the number of CPUs, since the example provided uses just one GPU. The
following theorem slightly improves the above result for the case of a single GPU.
More interestingly, it expresses the lower bound to the approximation ratio of HEFT
using both the number of CPUs and of GPUs.

Theorem 1. For any k ≤
√
m, the worst-case approximation ratio for HEFT is at least

m+k
k2

(
1− 1

ek

)
, even in the hybrid model with independent tasks.

Proof. We describe an instance that consists of independent tasks, and hence no
communication costs are defined. We also consider the hybrid platform model where
we only have a set of m identical CPUs and a set of k identical GPUs. Then, the rank
of each task Tj ∈ T computed by HEFT is simplified as follows:

rank(Tj) =
mpj + kpj

m+ k

HEFT considers the tasks in decreasing order with respect to their rank and assigns
each task to the CPU or GPU where its completion time is minimised. In case of ties,
we assume, without loss of generality, that HEFT prefers to assign the task to a GPU,
while it chooses arbitrarily between CPUs or GPUs. Notice that, since all tasks are
independent, no idle times are introduced in the schedule.

Our instance consists of 2m sets of km + m2 tasks in total, as shown in Table 6.1.
The rank of each task Tj ∈ Ai, 1 ≤ i ≤ m, is

rank(Tj) =
(m+ k)

(
m

m+k

)i
m+ k

78 Chapter 6 Generic Algorithms for Scheduling Applications on Heteroge-
neous Platforms

while the rank of each task Tj ∈ Bi, 1 ≤ i ≤ m, is

rank(Tj) =
m
(

m
m+k

)i
+ k2

m2

(
m

m+k

)m
m+ k

.

According to the above ranks, HEFT will schedule all tasks in Ai+1 (resp. Bi+1) after
all tasks in Ai (resp. Bi), 1 ≤ i ≤ m− 1.
Moreover, for any Tj ∈ Ai and Tj′ ∈ Bi, 1 ≤ i ≤ m, we have:

(m+ k)
(
rank(Tj)− rank(Tj′)

)
= (m+ k)

(
m

m+ k

)i
−m

(
m

m+ k

)i
− k2

m2

(
m

m+ k

)m
= k

((
m

m+ k

)i
− k

m2

(
m

m+ k

)m)

≥ k
((

m

m+ k

)m
− k

m2

(
m

m+ k

)m)
> 0

where the last inequality holds since k ≤ m.
For any Tj ∈ Bi and Tj′ ∈ Ai+1, 1 ≤ i ≤ m− 1, we have:

(m+ k)
(
rank(Tj)− rank(Tj′)

)
= m

(
m

m+ k

)i
+ k2

m2

(
m

m+ k

)m
− (m+ k)

(
m

m+ k

)i+1

>

(
m

m+ k

)i (
m− (m+ k) m

m+ k

)
= 0

Based on the above equations, HEFT will consider the sets of tasks according to the
following order:

A1 ≺ B1 ≺ A2 ≺ B2 ≺ · · · ≺ Ai ≺ Bi ≺ Ai+1 ≺ · · · ≺ Am ≺ Bm

Initially, HEFT will schedule the k tasks in A1 in a different GPU. Hence, to minimise
the completion times of the m tasks in B1, each one should be scheduled on a
different CPU. Note that, all tasks in A1 ∪ B1 finish at the same time, i.e., at time
m

m+k . Similarly, the tasks in A2 will be scheduled on a different GPU, the tasks in
B2 on a different CPU, and all of them will finish at the same time, i.e., at time
m

m+k +
(

m
m+k

)2
.

6.3 Preliminaries 79

time

GPUs

A1 A2 Am

A1 A2 Am

� � �

� � �

. . .
...

...
...

CPUs

B1 B2 Bm� � �

B1 B2 Bm� � �

...
...

. . .
...

time

S
Bi

...

A1 A1 A1

AmAmAm

Figure 6.1: Possible schedule of HEFT (left) and optimal schedule (right). Notice that the
gray area represents idle times.

The scheduling procedure continues in the same way for the tasks in the remaining
sets. The left-hand side of Figure 6.1 shows a schedule produced by HEFT. In this
schedule, all machines finish their execution at time

m∑
i=1

(
m

m+ k

)i
=

1−
(

m
m+k

)m+1

1− m
m+k

− 1

'
1− m

m+k
1
ek

1− m
m+k

− 1

= (m+ k)ek −m
kek

− 1

= mek −m
kek

= m

k

(
1− 1

ek

)
.

On the other hand, we can create a schedule of makespan at most km
m+k . To see this,

we assign all tasks of Ai, 1 ≤ i ≤ m, on CPU i, while to each of the k GPUs we assign
m2

k different tasks of
⋃m
i=1Bi. The right-hand side of Figure 6.1 visualises such a

80 Chapter 6 Generic Algorithms for Scheduling Applications on Heteroge-
neous Platforms

schedule, whose makespan is dominated either by the load of CPU 1 or by the load
of any of the GPUs. Specifically, the makespan will be equal to:

max
{
k

(
m

m+ k

)
,
m2

k

k

m2

(
m

m+ k

)m}
≤ km

m+ k

Since an optimal schedule could have an even smaller makespan the theorem
follows.

The second approach for scheduling on hybrid platforms is proposed by Kedad-
Sidhoum et al. [KMT15] and distinguishes the allocation and the scheduling deci-
sions. For the allocation phase, an integer linear program is proposed which decides
the allocation of tasks to the CPU or GPU side by optimising the standard lower
bounds for the makespan of a schedule which are proposed by Graham [Gra69],
namely the critical path and the load. To present this integer linear program, let xj
be a binary variable which is equal to 1 if a task Tj is assigned to the CPU side, and
zero otherwise. Let also Cj be a variable that indicates the completion time of Tj
and λ the variable that corresponds to the maximum over all lower bounds used,
i.e., to a lower bound of the makespan. Then, the Heterogeneous Linear Program
(HLP) is as follows:

minimise λ subject to:

Ci + pjxj + pj(1− xj) ≤ Cj ∀Tj ∈ T , Ti ∈ Γ−(Tj) (6.1)

pjxj + pj(1− xj) ≤ Cj ∀Tj ∈ T : Γ−(Tj) = ∅ (6.2)

Cj ≤ λ ∀Tj ∈ T (6.3)
1
m

∑
Tj∈T

pjxj ≤ λ (6.4)

1
k

∑
Tj∈T

pj(1− xj) ≤ λ (6.5)

xj ∈ {0, 1} ∀Tj ∈ T (6.6)

Cj ≥ 0 ∀Tj ∈ T

Constraints (6.1), (6.2) and (6.3) describe the critical path, while Constraints (6.4)
and (6.5) impose that the makespan cannot be smaller than the average load on
CPU and GPU sides. Note that the particular problem of deciding the allocation
to minimise the maximum over the three lower bounds is NP-hard, since it is
a generalisation of the PARTITION problem to which it reduces if all tasks are
independent, m = k, and pj = pj for each Tj .

6.3 Preliminaries 81

Table 6.2: Sets of tasks composing the instance for which HLP-EST achieves an approxima-
tion ratio of 6−O(1

m).

Set of tasks # tasks per set pj pj

A 1 m(2m+1)
m−1 ∞

B1 2m+ 1 2m− 1 1

B2 2m+ 1 1 2m− 1

After relaxing the integrality Constraint (6.6), a fractional allocation can be found in
polynomial time. To get an integral solution, the variables xj are rounded as follows:
if xj ≥ 1

2 then Tj is assigned to the CPU side, otherwise Tj is assigned to the GPU
side.

Finally, the Earliest Starting Time (EST) policy is applied for scheduling the tasks:
at each step, the ready task with the earliest possible starting time is scheduled re-
specting the precedence relations and the decided allocation. We call this algorithm
HLP-EST.

HLP-EST achieves an approximation ratio of 6 [KMT15]. The following theorem
shows that this ratio is tight.

Theorem 2. There is an instance for which HLP-EST achieves an approximation ratio
of 6−O(1

m). Hence, the ratio for HLP-EST is tight.

Proof. Consider a hybrid system with an equal number of CPUs and GPUs, i.e, m = k.
The instance consists of 2m + 3 tasks that are partitioned into 3 sets as shown in
Table 6.2.

The only precedence relations exist between tasks of B1 and B2. Specifically, for
each task Tj ∈ B2 we have that Γ−(Tj) = B1, that is no task in B2 can be executed
before the completion of all tasks in B1. Note that there are no precedences between
tasks of the same set.

Any optimal solution of the relaxed HLP for the above instance will assign the task
TA on a CPU, i.e., xA = 1. Hence, the objective value of any optimal solution will
be at least m(2m+1)

m−1 due to Constraints (6.2) and (6.3). The following technical
proposition shows that an optimal solution for the relaxed HLP has exactly this
objective value, by describing a feasible fractional assignment for the remaining
tasks.

82 Chapter 6 Generic Algorithms for Scheduling Applications on Heteroge-
neous Platforms

Proposition 1. There is a small constant ε > 0 for which the assignment xA = 1,
xj = 1

2 for each Tj ∈ B1, xj = 1
2 − ε for each Tj ∈ B2, and λ = m(2m+1)

m−1 corresponds
to a feasible solution for the relaxed HLP.

Proof. We will show that every constraint of the relaxed HLP is satisfied by the
assignment of the binary variables xj proposed in the statement and by setting
λ = m(2m+1)

m−1 . But before this, we need to give feasibly value for Cj , for each Tj ∈ T ,
based on Constraints (6.1) and (6.2).

For the task TA, we set

CA = m(2m+ 1)
m− 1 ,

for each task Tj ∈ B1, we set

Cj = 1
2(2m− 1) + 1

2 = m,

and for each task Tj ∈ B2, we set

Cj = m+ (1
2 − ε) + (1

2 + ε)(2m− 1) = 2m+ 2ε(m− 1),

satisfying by definition Constraints (6.1) and (6.2).

To show the feasibility of Constraint (6.3), it suffices to prove it for TA as well as for
a task Tj ∈ B2. For these cases, we have

CA = m(2m+ 1)
m− 1 = λ and

Cj = 2m+ 2ε(m− 1) ≤ λ,

where the last inequality holds for arbitrarily small ε, and hence Constraint (6.3) is
satisfied.

6.3 Preliminaries 83

For Constraint (6.4), we have

∑
Tj∈T

pjxj = pAxA +
∑

Tj∈B1∪B2

pjxj

= m(2m+ 1)
m− 1 + (2m+ 1)2m− 1

2 + (2m+ 1)(1
2 − ε)

<
m(2m+ 1)
m− 1 +m(2m+ 1)

= m
m(2m+ 1)
m− 1

= mλ

and hence it is satisfied.

For Constraint (6.5), we have

∑
Tj∈T

pj(1− xj) = pA(1− xA) +
∑

Tj∈B1∪B2

pj(1− xj)

= 0 + (2m+ 1)1
2 + (2m+ 1)(2m− 1)(1

2 + ε)

< m(2m+ 1) + ε(4m2 − 1)

≤ mλ

= kλ

where the last inequality is true for an arbitrarily small ε, and hence the constraint is
satisfied.

Concluding, all constraints are satisfied with λ = m(2m+1)
m−1 , and thus the proposition

holds.

Given the optimal fractional assignment proposed above, HLP-EST will round the
fractional variables and allocate the tasks as follows: the task TA is assigned to the
CPU side, each task Tj ∈ B1 is assigned to the CPU side, and each task Tj ∈ B2 is
assigned to the GPU side. Then, HLP-EST schedules the tasks according to the EST
policy. However, we will argue here for any scheduling policy and thus any possible
schedule.

Assuming that an algorithm has scheduled the task TA on any CPU during any
interval [t, t+ pA) and m ≥ 3, there is only one meaningful family of schedules for
the tasks in B1 ∪B2. Specifically, the 2m+ 1 tasks of B1 will be scheduled during

84 Chapter 6 Generic Algorithms for Scheduling Applications on Heteroge-
neous Platforms

GPUs

B2 B2 B2

: : :

B2 B2

B2 B2

CPUs

B1 B1 B1

: : :

B1 A

B1 B1 B1

0
(2m � 1)

2(2m � 1)
3(2m � 1)

4(2m � 1)
5(2m � 1)

6(2m � 1)

A

B2

B1

0 3 m(2m+1)
m�1

Figure 6.2: Resulting schedule of HLP-EST (left) and optimal schedule (right) for the
proposed instance. Notice that the gray areas represent idle times.

the interval [0, 3(2m− 1)) on the m CPUs, while at least one of them completes at
time 3(2m− 1). Then, the 2m+ 1 tasks of B2 will be scheduled during the interval
[3(2m − 1), 6(2m − 1)) on the k = m GPUs, while at least one of them completes
at time 6(2m − 1). Clearly, we should define t such that t + pA ≤ 6(2m − 1). An
illustration of the above schedule is given in the left-hand side of Figure 6.2.

The makespan of the created schedule is equal to 6(2m − 1), while an optimal
schedule, depicted in the right-hand side of Figure 6.2, places TA on a CPU, all tasks
of B1 on the k = m GPUs and all tasks of B2 on the remaining m−1 CPUs, achieving
a makespan of m(2m+1)

m−1 . Hence, the approximation ratio achieved for this instance is

6(2m− 1)
m(2m+1)
m−1

= 6−O
(1
m

)

and the theorem follows.

Note that the proof of the previous theorem implies a stronger result since the worst
case example does not depend on which scheduling policy will be applied after the
allocation step, and hence the following corollary holds.

6.3 Preliminaries 85

Corollary 1. Any scheduling policy which is applied after the allocation decisions taken
by the rounding of an optimal solution of the relaxed HLP leads to an approximation
algorithm of ratio at least 6−O(1

m).

6.4 Algorithms

In this section, we propose algorithms for both the off-line and on-line settings of
the addressed problem.

6.4.1 Off-line Setting

We propose in the following a new scheduling policy, which prioritises the tasks
based on the solution obtained for HLP after the rounding step. The motivation of
assigning priorities to the tasks is for taking into account the precedence relations
between them. More specifically, we want to prioritise the scheduling of critical
tasks, i.e., the tasks on the critical path, before the remaining (less critical) tasks.

To do this, we define for each task Tj a rank Rank(Tj) in the same sense as in HEFT.
However, in our case, the rank of each task depends on the allocation given by HLP,
while in HEFT it depends on the average processing time of the task. Specifically,
the rank of each task Tj is computed after the rounding operation of the assignment
variable xj and corresponds to the length, in the sense of processing time, of the
longest path between this task and its last descendant in the precedence graph. Thus,
each task will have a larger rank than all its descendants. The rank of the task Tj is
recursively defined as follows:

Rank(Tj) = pjxj + pj(1− xj) + max
i∈Γ+(Tj)

{Rank(Ti)}

After ordering the tasks in decreasing order with respect to their ranks, we apply the
standard List Scheduling algorithm adapted to two types of resources and taking into
account the rounding of the assignment variables xj . We call the above described
policy Ordered List Scheduling (OLS), while the newly defined algorithm (including
the allocation) is denoted by HLP-OLS.

Although this policy performs well in practice, as we will see in Section 6.7, its
approximation ratio cannot be better than 6 due to the lower bound presented in
Theorem 2. On the other hand, it is quite easy to see that HLP-EST and HLP-OLS

86 Chapter 6 Generic Algorithms for Scheduling Applications on Heteroge-
neous Platforms

have the same approximation ratio by following the same reasoning as in Lemmas 4
and 5 of Kedad-Sidhoum et al. [KMT15].

Consider the schedule produced by HLP-OLS and partition the time interval I =
[0, Cmax) into two subsets ICP and IW . The set ICP contains every time slot where
at least one processor of each type is idle, while the set IW consists of the remaining
time slots in I, i.e., IW = I\ICP . We then can divide the set IW into two possibly
non-disjoint subsets ICPU (resp. IGPU) containing the time slots where all the CPUs
(resp. GPUs) are busy. Denoting by |I| the number of unitary time slots in an interval
I we have

|ICP | ≤ CP ,

|ICPU | ≤
WCPU

m
and

|IGPU | ≤
WGPU

k

where CP , WCPU and WGPU denote respectively the length of the critical path,
the total work load on all CPUs and the total work load on all GPUs based on the
assignment decided by the rounding of the fractional solution of HLP. Because of the
rounding, each of these three quantities are bounded above by twice the objective
value λ of the optimal solution of HLP. Since λ is smaller than the feasible optimal
makespan C∗max, we deduce the following bound for the makespan of HLP-OLS:

Cmax ≤ |ICPU |+ |IGPU |+ |ICP |

≤ WCPU

m
+ WGPU

k
+ CP

≤ 6C∗max

Corollary 2. HLP-OLS achieves an approximation ratio of 6. This ratio is tight.

6.4.2 On-line Setting

In the HLP-EST algorithm, an integer linear program is used to find an efficient
allocation of each task to the CPU or GPU side. Although this program optimises
the classical lower bounds for the makespan, and hence informally optimises the
allocation, the resolution of its relaxation has a high complexity in practice and
cannot be used in an on-line setting.

6.4 Algorithms 87

In what follows, we present an algorithm for the on-line scheduling problem in the
hybrid context. Our algorithm first decides the allocation of a task to a resource type
upon its arrival by using a set of rules. These rules take into account both the actual
schedule and the relation between the processing times of a task, in a similar way
as in the 4-competitive algorithm proposed by Chen et al. [CYZ14] for the on-line
problem with independent tasks. Then, a List Scheduling is applied to schedule each
task respecting the decided allocation and precedence relations.

To describe the new rules, we define τgpu to be the earliest time when at least one
GPU is idle. Let also Rj,gpu = max{τgpu,maxTi∈Γ−(Tj){Ci}} be the ready time of Tj
for GPUs, i.e., the earliest time at which Tj can be executed on a GPU. Then, the set
of rules is defined as follows:

Step 1: If pj ≥ Rj,gpu + pj then assign Tj to the GPU side;

Step 2: Else if pj√
m
≤

pj√
k

then assign Tj to the CPU side. Otherwise assign Tj to the
GPU side.

Intuitively, the rule of Step 2 tries to balance the load between the two types of
resources, while Step 1 ensures that the GPU side is favoured for the tasks that are
greatly accelerated on GPUs.

This set of rules is combined with a greedy List Scheduling policy that schedules
each task as early as possible on the CPU or GPU side already decided by the rules.
We call the algorithm obtained by this combination ER-LS (Enhanced Rules - List
Scheduling). In the following, we give upper and lower bounds for the competitive
ratio of ER-LS.

Theorem 3. ER-LS achieves a competitive ratio of 4
√

m
k .

Proof. Let WCPU , WGPU and CP be the total load on all CPUs, the total load on
all GPUs and the length of the critical path produced by the allocation of tasks
decided by the rules, respectively. With the same reasoning as in Section 6.4.1, for
the makespan of the schedule produced by ER-LS we can observe that

Cmax ≤
WCPU

m
+ WGPU

k
+ CP. (6.7)

In the following, we bound the average load of both sides (WCP U
m + WGP U

k) by
3
√

m
k C
∗
max and the length of the critical path by

√
m
k C
∗
max. Recall that C∗max denotes

88 Chapter 6 Generic Algorithms for Scheduling Applications on Heteroge-
neous Platforms

the makespan of the optimal off-line solution of the instance.

We denote by SAcpu (resp. SAgpu) the set containing the tasks placed on the CPU
(resp. GPU) side in both a solution of the algorithm and the optimal solution, by
SBgpu the set containing tasks placed by Step 1 on the GPU side in a solution of the
algorithm but on the CPU side in the optimal solution, and by SCcpu (resp. SCgpu)
the set containing tasks placed by Step 2 on the CPU (resp. GPU) side in a solution
of the algorithm but on the GPU (resp. CPU) side in the optimal solution.

We also denote by sacpu, sagpu, sbgpu, sccpu and scgpu the sum of processing times of
all tasks in the sets SAcpu, SAgpu, SBgpu, SCcpu and SCgpu, respectively. Note that
we use here the processing times according to the allocation of ER-LS.

Bounding the loads.
Consider Tj0 to be the last finishing task in SBgpu. Since the task is scheduled
according to Step 1, we know that pj0 ≥ Rj0,gpu + pj0 ≥

sbgpu

k . We also know that
Tj0 is scheduled on a CPU in the optimal solution so we have pj0 ≤ C∗max and thus:
sbgpu

k ≤ C∗max.

Each task in SCgpu is scheduled on the CPU side in the optimal solution. According
to Step 2, the total processing time of tasks in SCgpu in the optimal solution is at least√

m
k scgpu, so we have for the cpu side

sacpu+
√

m
k
scgpu

m ≤ C∗max. The same reasoning

for the GPU side gives
sagpu+

√
k
m
scgpu

k ≤ C∗max.

By adding the three inequalities we have the following:

sbgpu
k

+
sacpu +

√
m
k scgpu

m
+
sagpu +

√
k
msccpu

k
≤ 3C∗max

By separating the loads on CPU and on GPU on the left-hand side of the above
inequality and taking into account that m ≥ k we have

sacpu
m

+ sccpu√
mk
≥ sacpu + sccpu

m
≥

√
k

m

sacpu + sccpu
m

and

sagpu + sbgpu
k

+ scgpu√
mk

= sagpu + sbgpu
k

+ scgpu
k

√
k

m
≥

√
k

m

sagpu + sbgpu + scgpu
k

.

6.4 Algorithms 89

Summing these two bounds we finally obtain√
k

m
(sacpu + sccpu

m
+ sagpu + sbgpu + scgpu

k
) ≤ 3C∗max

and thus
WCPU

m
+ WGPU

k
≤ 3

√
m

k
C∗max. (6.8)

Bounding the critical path.
Consider the sets SACPcpu ⊆ SAcpu, SACPgpu ⊆ SAgpu, SBCPgpu ⊆ SBgpu, SCCPcpu ⊆ SCcpu
and SCCPgpu ⊆ SCgpu to be the sets containing only the tasks belonging to the critical
path obtained by the algorithm, with the same notation in lower case for the sum of
processing times of all tasks in each set and the same notation with a star ∗ for the
sum of processing times of all tasks in the optimal solution.

For the sets SACPcpu and SACPgpu, by definition, as placement is the same, we have:

saCPcpu + saCPgpu = saCP
∗

cpu + saCP
∗

gpu

According to Step 1, every task in SBCPgpu has a processing time smaller than in the
optimal solution, so sbCPgpu ≤ sbCP

∗
gpu . According to Step 2, every task Tj in SCCPcpu

(resp. SCCPgpu) verifies pj ≤
√

m
k pj (resp. pj ≤

√
k
mpj), so we have scCPcpu ≤

√
m
k sc

CP ∗
cpu

and scCPgpu ≤
√

m
k sc

CP ∗
gpu .

By summing the previous inequalities for the critical path we get:

CP = saCPcpu + saCPgpu + sbCPgpu + scCPcpu + scCPgpu

≤
√
m

k
(saCP ∗cpu + saCP

∗
gpu + sbCP

∗
gpu + scCP

∗
cpu + scCP

∗
gpu)

≤
√
m

k
CP ∗

Since CP ∗ ≤ C∗max, we have CP ≤
√

m
k C
∗
max and, combining this inequality with

Equations (6.7) and (6.8), the theorem follows.

Theorem 4. There is an instance for which ER-LS achieves a competitive ratio of
√

m
k .

Proof. Consider a hybrid system with m CPUs and k ≤ m GPUs. The instance
consists of m+ k tasks that are partitioned into 2 sets as shown in Table 6.3.

90 Chapter 6 Generic Algorithms for Scheduling Applications on Heteroge-
neous Platforms

Table 6.3: Sets of tasks composing the instance for which ER-LS achieves a competitive
ratio of

√
m
k .

Set of tasks # tasks per set pj pj

A k
√
m
√
m

B m
√
m

√
k

The k tasks of type A are independent to each other and the m tasks of type B are
with precedence constraints as follows:

B1 ≺ B2 ≺ · · · ≺ Bm

The tasks are ordered in a list by first taking all tasks of type A and then the tasks of
type B respecting the precedences.

The ER-LS algorithm will first place the k tasks of type A on a GPU according to
Step 1. The completion time of these tasks is then

√
m. Then, since

√
m ≤

√
m+
√
k,

the task B1 will be placed on a CPU according to Step 2, with completion time
√
m.

The task B2 will also be placed on a CPU according to Step 2, starting at time
√
m

and completing at time 2
√
m. With the same reasoning, each task Bi, i ∈ {1,m} is

placed on a CPU according to Step 2 starting at time (i− 1)
√
m and completing at

time i
√
m. Thus, the schedule produced by ER-LS for this instance has a makespan

of Cmax = m
√
m.

An optimal schedule would have all tasks of type A placed on the CPU side with
a completion time for each task of

√
m. The tasks of type B would be placed on

the GPU side with a completion time for each task Bi, i ∈ {1,m}, of i
√
k. Thus, the

optimal makespan is C∗max = m
√
k.

Hence, ER-LS achieves a competitive ratio Cmax
C∗max

=
√

m
k for this instance and the

theorem holds.

As Theorems 3 and 4 showed, there is a gap between the lower and upper bound
on the competitive ratio of ER-LS. In fact, as mentioned in Chapter 5, Canon et
al. [Can+19] showed that the upper bound could be reduced to 2

√
m/k + 1− 1√

mk

by removing Step 1 of the algorithm, and that the ratio of this new algorithm was
almost tight.
Note also that if the number of CPUs and GPUs are close, then the competitive ratio
of ER-LS becomes constant.

6.4 Algorithms 91

6.5 Generalisation on Q Resource Types

In this section, we generalise the addressed scheduling problem for Q ≥ 2 different
types of identical processors. Specifically, we explain how to extend HLP-EST and
HLP-OLS, which are designed for the case Q = 2, to handle more types of computing
resources. In this direction, we first present a modified linear program and a new
rounding method to decide the allocation for Q ≥ 2. Then, we explain the modi-
fications made on the scheduling policy OLS. Note that the EST policy is directly
generalised for multiple resource types. Finally, we give an upper bound on the
approximation ratio of these two new algorithms.

Before continuing, we need some additional notations. Let Mq be the set of proces-
sors of type q, 1 ≤ q ≤ Q, and mq = |Mq| its size. The execution of a task Tj ∈ T on
a processor of type q, 1 ≤ q ≤ Q, takes pj,q time units.

In what follows, we extend the linear program HLP to take into account more
resource types. To do this, we replace the binary variable xj by xj,q which indicates
if the task Tj ∈ T is assigned to the resource type q. As before, let Cj be a variable
corresponding to the completion time of Tj and λ be the variable that represents a
lower bound to the makespan. Then, we consider the following modification of HLP,
which we call QHLP:

minimise λ subject to:

Ci +
Q∑
q=1

pj,qxj,q ≤ Cj ∀Tj ∈ T , Ti ∈ Γ−(Tj) (6.9)

Q∑
q=1

pj,qxj,q ≤ Cj ∀Tj ∈ T : Γ−(Tj) = ∅ (6.10)

Cj ≤ λ ∀Tj ∈ T (6.11)
1
mq

∑
Tj∈T

pj,qxj,q ≤ λ 1 ≤ q ≤ Q (6.12)

Q∑
q=1

xj,q = 1 ∀Tj ∈ T (6.13)

xj,q ∈ {0, 1} ∀Tj ∈ T , 1 ≤ q ≤ Q (6.14)

Cj ≥ 0 ∀Tj ∈ T

λ ≥ 0

92 Chapter 6 Generic Algorithms for Scheduling Applications on Heteroge-
neous Platforms

The main difference here concerns Constraint (6.13), which assures that each task is
integrally assigned to exactly one type of resources.

After relaxing the integrality Constraint (6.14) of QHLP, we can solve in polynomial
time the obtained relaxation. To get an integral allocation, we assign each task Tj to
the resource type q′ for which the assignment variable xj,q has the greatest value, i.e.,
q′ = argmax1≤q≤Q{xj,q}. In other words, for such q′ we set xj,q′ = 1 and xj,q = 0
for any q 6= q′. In case of ties, we give priority to the resource type for which Tj has
the smallest processing time. Once the assignment step is done, we use the Earliest
Starting Time policy taking into account the precedence constraints as well as the al-
location provided by the rounding of xj,q variables. We call this algorithm QHLP-EST.

For the scheduling policy OLS, we modify the computation of the rank for each task
as follows:

Rank(Tj) =
Q∑
q=1

pj,qxj,q + max
i∈Γ+(Tj)

{Rank(Ti)}

The algorithm HLP-OLS can be extended using the linear program QHLP and the
new rounding method to get an integral allocation of the tasks. We then obtain the
algorithm QHLP-OLS using the modified OLS policy.

In the following, we show that the approximation ratio of QHLP-EST is Q(Q + 1)
and that this ratio is tight. Note that, as in the case Q = 2 presented in Section 6.4.1,
the same reasoning can be applied for QHLP-OLS leading to the same result.

Theorem 5. QHLP-EST achieves an approximation ratio of Q(Q + 1). This ratio is
tight.

Proof. We analyse the structure of a schedule produced by the algorithm to give an
upper bound on the approximation ratio.

We denote by Wq, 1 ≤ q ≤ Q, the total load on all processors of type q in the
obtained schedule. We also denote by CRmax, WR

q and LR the objective value, the
total load on all processors of type q and the length of the longest path in the
fractional optimal solution of the relaxed QHLP, respectively. Finally, we define by

6.5 Generalisation on Q Resource Types 93

C∗max the optimal makespan over all feasible schedules for our problem. Then, the
following inequalities hold:

LR ≤ CRmax ≤ C∗max (6.15)

WR
q

mq
≤ CRmax ≤ C∗max, 1 ≤ q ≤ Q (6.16)

To analyse the structure of the schedule, we partition the time interval of the
schedule I = [0, Cmax) into two disjoint subsets of intervals ICP and IW . The set
ICP contains every time slot where at least one processor of each type is idle, while
the set IW consists of the remaining time slots in I, i.e., IW = I\ICP . We then can
divide the set IW into Q, possibly non-disjoint, subsets Iq, 1 ≤ q ≤ Q, which contain
respectively every time slot where all processors of type q are busy. Henceforth, we
denote by |I| the length of I, i.e. the number of unitary time slots in I. Then, we
have:

Cmax = |I| ≤ |ICP |+
Q∑
q=1
|Iq|

In the following, we will bound above by QC∗max the length of the subset ICP and
each subset Ii, 1 ≤ i ≤ Q.

Due to the rounding policy, we know that if xj,q = 1 then xRj,q ≥ 1
Q . Hence, we have:

xj,q ≤ Q · xRj,q ∀Tj ∈ T , 1 ≤ q ≤ Q (6.17)

Consider first the subset of intervals ICP . There is a directed path P of tasks being
executed during any time slot in ICP . The construction of P is the same as described
by Graham [Gra69] and Kedad-Sidhoum et al. [KMT15]. Since the directed path
P covers every time slot in ICP , the length of ICP is smaller than the length of P

94 Chapter 6 Generic Algorithms for Scheduling Applications on Heteroge-
neous Platforms

and the length of P in the optimal solution of QHLP , noted PR, is smaller than LR.
Thus, using the inequalities (6.15) and (6.17), we have the following bound:

|ICP | ≤ |P|

≤
∑
j∈P

Q∑
q=1

pj,qxj,q

≤ Q
∑
j∈P

Q∑
q=1

pj,qx
R
j,q

= Q · |PR|

≤ Q · LR

≤ Q · C∗max

Consider now each subset Iq, 1 ≤ q ≤ Q. For each time slot in Iq all processors of
type q are busy, so |Iq| is smaller than the average load on all the processors of type
q. Using the inequalities (6.16) and (6.17), we have the following bounds:

|Iq| ≤
Wq

mq

≤ 1
mq

∑
xj,q=1

pj,q

≤ Q

mq

∑
j∈V

pj,qx
R
j,q

≤ Q ·
WR
q

mq

≤ Q · C∗max

Thus, by combining the calculated bounds we get:

Cmax = |I|

≤ |ICP |+
Q∑
q=1
|Iq|

≤ Q(Q+ 1)C∗max

The tightness for Q = 2 comes directly from Theorem 2. For any value Q > 2, the
instance given in Theorem 2 can be easily extended to prove that the approximation
ratio given above is tight. Hence, the theorem follows.

6.5 Generalisation on Q Resource Types 95

6.6 Benchmark Creation

In this section, we describe the generation of a general benchmark for evaluating
scheduling algorithms for the addressed problem. The benchmark is composed of
5 applications generated by Chameleon, a dense linear algebra software which is
part of the MORSE project [Agu+12], and a more irregular application (fork-join)
generated using GGen, a library for generating directed acyclic graphs [Cor+10].

The applications of Chameleon, named getrf, posv, potrf, potri and potrs, are composed
of multiple sequential basic tasks of linear algebra. Different numbers, denoted
by nb_blocks, and sizes, denoted by block_size, of sub-matrices have been used
for the applications; specifically we set nb_blocks ∈ {5, 10, 20} and block_size ∈
{64, 128, 320, 512, 768, 960}, for a total of 18 instances per application. Table 6.4
shows the total number of tasks for each application and each value of nb_blocks.
Notice that the value of block_size does not impact the number of tasks.

For the setting with 2 resource types, the applications were executed with the
runtime StarPU [Aug+11] on a machine with two Dual core Xeon E7 v2 with a
total of 10 physical cores with hyper-threading of 3 GHz and 256 GB of RAM. The
machine had 4 GPUs NVIDIA Tesla K20 (Kepler architecture) with each 5 GB of
memory and 200 GB/s of bandwidth.

For 3 resource types, the applications were executed with the runtime StarPU on
an Intel Dual core i7-5930k machine with a total of 6 physical cores with hyper-
threading of 3.5 GHz and 12 GB of RAM. This machine had 2 NVIDIA GPUs: a
GeForce GTX-970 (Maxwell architecture) with 4 GB of memory and 224 GB/s of
bandwidth; and a Quadro K5200 (Kepler architecture) with 8 GB of memory and
192 GB/s of bandwidth. We forced each task to run first on CPU and then on GPU
(or on both GPUs for the case with 3 resource) and stored the processing times for
each type of resource.

The fork-join application corresponds to a real situation where the execution starts
sequentially and then forks to width parallel tasks. The results are aggregated by
performing a join operation, completing a phase. This procedure can be repeated
p times, the number of phases. For this benchmark, we set p ∈ {2, 5, 10} and
width ∈ {100, 200, 300, 400, 500}, for a total of 15 instances.

The processing time of each task on CPU was computed using a Gaussian distribution
with center p and standard deviation p

4 . To generate the processing times of a task
on each of the two types of GPUs, we define the notion of acceleration factor with

96 Chapter 6 Generic Algorithms for Scheduling Applications on Heteroge-
neous Platforms

Table 6.4: Number of tasks for each instance of the Chameleon applications.

blocks
Application

getrf_nopiv posv potrf potri potrs

5 55 65 35 105 30

10 385 330 220 660 110

20 2870 1960 1540 4620 420

Table 6.5: Number of tasks for each instance of the fork-join application.

phases
Width

100 200 300 400 500

2 203 403 603 803 1003

5 506 1006 1506 2006 2506

10 1011 2011 3011 4011 5011

respect to the processing time on CPU already computed. Our goal is to create a
more irregular application than the 5 from Chameleon to study the importance of
the allocation decision. For this reason, 5% of the parallel tasks of each phase are
highly decelerated when executed on a GPU by choosing uniformly at random an
acceleration factor for each of them in [0.1, 0.5]. For each of the remaining tasks, we
randomly chose an acceleration factor in [0.5, 50], which corresponds to the range of
acceleration factors observed for the 5 applications of Chameleon. Note that the 5%
of highly decelerated tasks are separately selected at random for each of the two
types of GPUs. Table 6.5 shows the total number of tasks for each instance of the
fork-join application.

The data-sets and other information are available under Creative Commons Public
License [@bench].

6.7 Experiments

In this section, we compare the performance of various scheduling algorithms by
a simulation campaign using a benchmark composed of 6 parallel applications,
presented in Section 6.6. First, we compare the off-line algorithms for the studied
problem with 2 and 3 resource types. We then compare the on-line algorithms for 2
resource types.

6.7 Experiments 97

6.7.1 Off-line Setting

Algorithms and machine configurations.
We compared the performance, in terms of makespan, of HLP-OLS (Section 6.4.1)
with HLP-EST (Section 6.3) and HEFT ([THW99]). The algorithms were imple-
mented in Python (v. 2.7.6). The command-line glpsol (v. 4.52) solver of the GLPK
package was used for the linear program. Each algorithm was implemented with
a second version adapted for 3 types of resources, using the generalisation of the
algorithms presented in Section 6.5 for the 2 linear program-based algorithms. We
denote by QHLP-EST, QHLP-OLS and QHEFT these algorithms for 3 resource types.

For the machine settings, we determined different sets of pairs (Nb_CPUs, Nb_GPUs).
Specifically, we used 16, 32, 64 and 128 CPUs with 2, 4, 8 and 16 GPUs for a total of
16 machine settings for the case with 2 resource types. For the case with 3 resource
types, we determined different sets of triplets (Nb_CPUs, Nb_GPU1s, Nb_GPU2s)
with the same numbers of CPUs and for either types of GPUs, for a total of 64
machine settings.

We define a configuration to be a combination of an instance of application and a ma-
chine setting. Recall that an instance of an application defines its parameters, such
as the number and size of the blocks for a Chameleon application, or the number
and width of the phases for the fork-join application. We executed the algorithms
only once with each configuration since all algorithms are deterministic. For each
run, we stored the optimal objective solution of the linear program, denoted by LP ∗,
and the makespans of the six algorithms. For the application instance giving the
highest number of tasks, solving the linear program took about 100 seconds while
the running time of each algorithm took at most 10 seconds, once a solution of HLP
was found for the linear program-based algorithms.

Results for 2 resource types.
To study the performance of the 3 algorithms, we computed the ratio between
each makespan and the optimal solution LP ∗ of the linear program HLP, which
corresponds to a good lower bound of the optimal makespan. Fig. 6.3 shows the
ratio of each configuration. Notice that the bigger dot represents the mean value of
the ratio for each application. We can see that HLP-EST is outperformed, on average,
by the two other algorithms. The performances of HLP-OLS and HEFT are quite
similar, on average, but we observe that HEFT creates more outliers.

Fig. 6.4 compares in more detail the two HLP-based algorithms (top), and the algo-
rithms HLP-OLS and HEFT (bottom), by showing the ratio between the makespans

98 Chapter 6 Generic Algorithms for Scheduling Applications on Heteroge-
neous Platforms

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●

●

●●

●●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
● ●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●
●

●

●
●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●●●●
●●●●

●●●●

●●●●

●

●

●

●

●

●

●

●

●
●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

HLP_EST HLP_OLS HEFT

ge
trf

po
sv

po
trf

po
tri
po

trs

fo
rk

Jo
in

ge
trf

po
sv

po
trf

po
tri
po

trs

fo
rk

Jo
in

ge
trf

po
sv

po
trf

po
tri
po

trs

fo
rk

Jo
in

1.2

1.5

1.8

Application

M
ak

es
pa

n
ov

er
 L

P*

Figure 6.3: Ratio of makespan over LP ∗ for each configuration grouped by application for
the off-line algorithms with 2 resource types. Notice that the big square shows
the mean, for each application.

of the two algorithms. We can see that HLP-OLS outperforms HLP-EST, except for a
few configurations with the application potri, with an improvement close to 8% on
average. Comparing HLP-OLS and HEFT we notice that, even if the two algorithms
have similar performances, HEFT is on average outperformed by HLP-OLS by 2%,
with a maximum of 60% of improvement for HLP-OLS with some configurations
of potri. Moreover, HEFT has a significantly worse performance than HLP-OLS in
strongly heterogeneous applications where there is a bigger perturbation in the
(dis-)acceleration of the tasks on the GPU side, like forkJoin, since in these irregular
cases the allocation problem becomes more critical.

Results for 3 resource types.
To study the performance of the 3 algorithms, we computed the ratio between
each makespan and the optimal solution LP ∗ of the linear program QHLP, which
corresponds to a good lower bound of the optimal makespan. Fig. 6.5a shows the
ratio of each configuration. Notice that the bigger dot represents the mean value of
the ratio for each application. We can see that QHLP-EST is on average outperformed
by the two other algorithms. We also observe that even if QHEFT presents many

6.7 Experiments 99

●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●

●
●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●●●
●
●●●
●
●●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●●

●

●

●●

●

●●●

●

●●●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●●

●

●●●

●

●●●

●

●

●●

●●

●●
●

●

●●

●

●

●
●

●

●
●●

●●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

●

●●●

●

●●●

●

●●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●●●

●

●●●
●
●●●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

1.0

1.1

1.2

1.3

1.4

getrf posv potrf potri potrs forkJoin
Application

H
L

P-
E

ST
 /

H
L

P-
O

L
S

●●●●●●●●●●●●●●●●

●●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●●
●

●

●●●

●

●

●

●

●

●

●

●

●
●●●●

●

●●●●●●●

●

●●●

●

●

●●

●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●
●
●●

●

●●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●
●●

●

●

●●●●●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●●●●●

●

●●●

●

●●●●●●●

●

●●●

●

●

●●

●

●

●●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●●●●●●●●●●●

●

●

●●●
●
●●

●

●●●

●

●●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●

●

●●●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●
●

●

●

●●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●
●
●●●

●

●●●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●
●

●

●●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●●●●●●●●●●●●●●●●

●

●
●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●
●
●

●

●
●●

●

●

●●
●●●●●●●●●●●●●●●●

●

●●●

●

●●●

●

●

●●

●

●

●●

●

●

●
●●

●

●●
●

●

●
●

●

●
●

●●●●●●●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●●

●

●●●

●

●●●

●

●●●

●
●

●●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

0.8

1.0

1.2

1.4

1.6

getrf posv potrf potri potrs forkJoin
Application

H
E

FT
 /

H
L

P-
O

L
S

Figure 6.4: Ratio between the makespans of HLP-EST and HLP-OLS (top), and HEFT and
HLP-OLS (bottom) for each configuration, grouped by application. Notice that
the big square shows the mean, for each application.

100 Chapter 6 Generic Algorithms for Scheduling Applications on Heteroge-
neous Platforms

●

●●
●
●

●
●
●

●

●

●

●

●●

●
●
●
●●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●
●
●
●

●
●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●
●

●●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●
●●●

●

●

●
●

●

●

●

●

●●
●●
●

●●

●

●

●

●

●

●

●●

●
●
●
●

●

●
●●

●

●

●

●

●
●
●

●

●●

●
●
●●
●
●

●

●

●●
●●●
●
●
●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●
●

●●

●

●
●

●

●

●
●
●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●
●
●

●

●●●

●

●
●

●

●●
●
●
●
●
●

●●

●

●

●●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●●●
●●
●
●
●●

●

●
●

●
●
●●●
●

●

●●
●
●●

●

●●
●
●
●

●

●
●

●

●●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●
●

●

●

●●
●

●

●

●●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●●●
●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●
●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●●
●
●
●
●

●

●●
●

●●

●

●●

●

●

●●●

●
●●

●●●

●

●

●●●●
●

●

●●
●●

●

●

●

●

●

●

●

●

●
●●●●
●

●

●

●
●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●●●
●

●

●

●●
●●●

●
●
●●

●

●

●●

●

●
●

●

●●

●

●

●
●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●
●●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●
●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●
●

●
●
●

●●

●
●

●

●

●●

●

●

●●●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●
●●●●●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●●●●●●
●●●●●●●●●●●●●
●●

●
●
●
●
●

●

●

●●

●

●●

●

●

●●
●
●●●

●

●

●●●●●●●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●
●●
●●●

●

●
●●
●●●●

●

●●●
●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●●●●●●●

●●

●●

●
●●
●

●
●●●

●

●

●●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●
●
●
●●●

●

●

●
●

●

●

●
●
●
●●●

●

●
●

●

●

●

●

●

●●●

●●●●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●
●●●●●●●●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●
●

●●●●●
●●●●
●
●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●●
●
●●●●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●
●●●●

●

●●●
●●●●

●

●
●●
●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●

●●
●●●●

●

●

●

●

●

●

●●
●●●●

●

●
●●●●●

●

●●●●●●●

●

●
●●●●●●

●

●
●●●●●●

●

●

●
●

●

●

●

●

●●

●

●

●●●

●

●

●
●

●

●

●●●●●

●

●

●

●

●

●

●
●
●●●●

●

●●●

●
●
●

●
●●●

●●●●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●●
●●

●●
●
●●
●
●
●

●●

●●●●●

●●

●●

●

●

●

●

●

●●
●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●●

●
●●●●

●

●

●

●

●

●●●

●

●

●

●

●
●●

●

●●

●
●●

●

●●

●
●●

●
●●●

●

●●

●

●

●●

●

●

●●

●

●

●●

●● ● ●
●

●

●

QHLP_EST QHLP_OLS QHEFT

ge
trf

po
sv

po
trf

po
tri
po

trs

fo
rk

Jo
in

ge
trf

po
sv

po
trf

po
tri
po

trs

fo
rk

Jo
in

ge
trf

po
sv

po
trf

po
tri
po

trs

fo
rk

Jo
in

1.0

1.5

2.0

2.5

Application

M
ak

es
pa

n
ov

er
 L

P*

(a) Ratio of makespan over LP ∗ for each configuration, grouped by application for
the algorithms generalised for 3 resource types. Notice that the big square

shows the mean, for each application.

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●●
●

●

●

●

●

●

●

●
●
●

●

●

●●●●●

●

●●

●●
●●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●●●●●●●●

●
●●

●●

●
●●
●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●
●

●
●

●

●

●

●

●

●●

●●

●

●

●
●●●
●●

●●
●
●

●

●

●

●

●
●

●●

●

●

●●

●

●●●●●●●●●●●

●

●

●●

●

●●●●●●●●●●●●

●

●●

●

●●●●●●●

●

●●●

●

●●●

●

●●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

●
●●

●

●●●

●

●
●

●

●

●

●

●●●

●
●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●
●

●

●
●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●
●

●●●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●●

●
●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●
●

●
●

●

●●●●●●●●●●
●

●

●●

●

●

●●●●●●●●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●●

●

●●●●●●●●●●●●

●

●

●●

●●●●●●●●●●●●

●

●

●
●
●

●●●●●●●●●●●

●

●

●

●

●●●●●●●
●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●

●

●●

●

●●●
●
●●●

●

●●●●●●●

●

●●●

●

●●●
●
●●●●
●

●●

●

●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●
●●

●●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●●

●●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●●

●●

●●

●
●

●●

●

●

●●
●
●

●●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●●

●●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●
●
●●●

●
●●●

●

●

●

●

●

●●●

●
●●●

●●●●

●

●
●

●

●

●●●●

●●●
●
●●

●

●
●

●

●

●

●
●

●
●

●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●●

●
●

●●

●

●●●

●

●
●●

●

●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●●●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●

●
●

●

●●●●

●

●●●

●

●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●

●●●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●●
●

●●

●

●

●

●
●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●

●

●

●
●

●

●●●

●●

●●

●●

●

●

●

●

●●

●
●●●

●

●●●

●
●

●
●
●

●

●●

●

●●●

●

●

●

●
●

●

●

●

●

●●
●

●

●
●●●●●●

●

●●●
●●●
●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●

●

●
●
●
●●●●●●●●●●●●

●

●
●●

●●●●●●●●●●●●

●

●
●●

●●●●
●●●●●●●●

●

●

●●

●●●●
●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●
●
●●●●●●●●●●●●●

●

●
●●
●●●●●●●●●●●●

●

●

●●●
●●●●●●●●●●●

●

●

●●●●
●
●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●●

●

●

●

●

●●

●
●●
●

●

●●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●
●

●●●

●

●●●

●

●●●

●

●
●

●

●

●●●

●

●●●

●

●●●

●

●
●
●
●

●●●

●

●●●

●

●●●

●

●
●
●

●

●
●●

●

●●●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●●

●

●●
●

●

●

●

●

●
●

●●●

●

●

●

●

●

●
●

●●●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●
●

●

●

●●

●

●
●
●

●

●●●●

●
●●●●●●●●●●●
●●●●
●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●
●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●
●

●●●●

●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●●●
●●●●●●●●●

●
●●●

●●●
●●●●●●●●●

●
●●●

●●●●
●●●●●●●●

●

●●●

●●●●
●●●●●●●●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●●

●

●●●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●●●

●●

●●●●●●●●●●●

●●●●

●●

●●●●●●●●●●

●●●●

●●●

●●●●●●●●●

●●●●

●●●●

●●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●●●●●●

●

●

●
●

●

●

●

●
●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●●

●

●●

●

●

●●

●

●

●●

●

●
●
●●

●

●

●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●

●●

●

●

●●
●

●

●●●

●

●●
●●

●●

●

●

●

●

●

●

●

●

●●

●

●
●●●●●●●●●●

●

●●●
●●●●
●●●●●●●
●●●
●
●●
●●●

●
●●
●
●
●

●
●●
●

●
●

●

●

●

●

●

●

●
●

●

●●●

●●●

●

●
●●●
●●

●

●●

●

●

●●●

●

●●●

●

●●●

●

●
●

●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●●●

●

●●●

●

●●●

●

●
●

●

●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●●●●

●●
●

●

●

●

●

●●
●

●

●

●
●
●

●

●●●

●

●

●●

●●●

●

●

●
●
●

●●

●

●

●
●

●

●

●●

●

●●●

●

●●●

●

●

●

●●

●

●●

●

●●●

●

●●●

●

●●

●

●
●●●

●

●●●

●

●●●

●

●
●●
●

●●●

●

●●●

●

●●●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●●●●●●

●

●●●

●

●

●●

●

●●●

●

●●●
●
●●●

●

●

●

●
●

●●●
●
●●●
●
●●●

●

●●

●
●

●●●

●

●●●

●

●●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●●

●

●●

●●

●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●
●

●

●

0.6

0.8

1.0

1.2

getrf posv potrf potri potrs forkJoin
Application

Q
H

E
FT

 /
Q

H
L

P-
O

L
S

(b) Ratio between the makespan of QHEFT and QHLP-OLS for each
configuration, grouped by application. Notice that the big square shows

the mean, for each application.

Figure 6.5 6.7 Experiments 101

outliers for the applications getrf, posv and potrf, the algorithm outperforms on
average QHLP-OLS.

Fig. 6.5b (bottom) compares in more detail QHEFT and QHLP-OLS, by showing the
ratio between the makespans of the two algorithms. Comparing QHLP-OLS and
QHEFT, we can see that QHEFT presents an improvement over QHLP-OLS of 5% on
average. We also observe that the ratios for the most irregular application, fork-join,
are spread with configurations favorable to QHEFT (up to 45% of improvement) and
other configurations favorable to QHLP-OLS (up to 36% of improvement). Similar
results were observed between QHLP-EST and QHLP-OLS as for 2 resource types
and thus are not showed here.

Finally, we notice that the approximation ratios, computed with a lower bound of
the optimal makespan, do not exceed 2 and thus are far from the theoretical bounds
of the algorithms, even for the case with 3 resource types.

6.7.2 On-line Setting

Algorithms.
We compared the performance, in terms of makespan, of the algorithm ER-LS
(Section 6.4.2) with 3 baseline algorithms: EFT, which schedules a task on the
processor which gives the earliest finish time for that task; Greedy, which allocates a
task on the processor type which has the smallest processing time for that task; and
Random, which randomly assigns a task to the CPU or GPU side. For the algorithms
Greedy and Random, we used a List Scheduling algorithm to schedule the tasks once
the allocations have been made. The algorithms were implemented in Python (v.
2.8.6). For the machine settings, we used the same sets of pairs as for the off-line
setting with 16, 32, 64 and 128 CPUs, and 2, 4, 8 and 16 GPUs.

We executed the algorithms only once with each configuration since all algorithms
are deterministic, except Random. The running times of the algorithms were similar
and took at most 5 seconds for the application instance giving the highest number
of tasks.

Results.
Fig. 6.6a compares the ratios between the makespan of each of the on-line algorithms
and LP ∗. Due to large differences between the performances of Random and the 3
other algorithms, we kept only the algorithms ER-LS, EFT and Greedy. Results show
that Greedy is on average outperformed by ER-LS and EFT, and that EFT creates

102 Chapter 6 Generic Algorithms for Scheduling Applications on Heteroge-
neous Platforms

●●
●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●●●●●

●

●

●

●

●●●
●

●
●●●

●

●

●
●●●●

●

●

●

●

●
●
●●
●●
●

●

●

●
●

●
●

●●●
●
●●
●

●

●

●●

●●●●●●●
●●●
●●
●
●
●
●

●

●
●
●
●

●●
●

●●

● ● ● ● ●
● ●●●●

●
●●
●●
●●
●
●
●●●
●
●
●
●●●

●●
●
●●
●●
●
●
●●
●
●

●

●
●
●●●●●
●
●●
●
●

●
●
●
●●●●

●
●●●
●
●●●

●●●●●
●●●
●●●●
●●
●
●

●

●
●
●●●●●
●●
●●
●
●●●
●●●●
●
●

●

●
●●●
●●

●●●●●●●●●●●●
●
●●
●
●●
●
●●
●
●●●●●●
●
●
●
●
●
●
●
●

●

●
●

●

●
●

●

●
●

●

●
●●●●●
●
●
●
●
●
●
●
●

●

●
●

●

●
●

●

●
●

●

●
●● ● ● ● ●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●
● ●

●

●

●

ER_LS EFT Greedy

ge
trf

po
sv

po
trf

po
tri

po
trs

fo
rk

Jo
in

ge
trf

po
sv

po
trf

po
tri

po
trs

fo
rk

Jo
in

ge
trf

po
sv

po
trf

po
tri

po
trs

fo
rk

Jo
in

5

10

Application

M
ak

es
pa

n
ov

er
 L

P*

(a) Ratio of makespan over LP ∗ for each configuration, grouped by
application for the on-line algorithms with 2 resource types. Notice that

the big square shows the mean, for each application.

●
●
● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

2

4

6

2 4 6 8
sqrt(m/k)

M
ak

es
pa

n
ov

er
 L

P*

Application
● potri

forkJoin

(b) Mean competitive ratio of ER-LS (plain), EFT (dashed) and Greedy
(dotted) as a function of

√
m
k

.
Notice that error bars show the standard error.

Figure 6.6

6.7 Experiments 103

less outliers than the 2 other algorithms. Fig. 6.7 compares in more detail Greedy
and ER-LS (top), and EFT and ER-LS (bottom), by showing the ratio between the
makespans of the two algorithms. We can see that ER-LS outperforms Greedy on
average, with a maximum for the potri application where ER-LS performs 11 times
better than Greedy. More specifically, there is an improvement of between 8% and
36% on average for ER-LS depending on the application considered, except for potrs
whose makespans are on average 10% greater than for Greedy.

Comparing EFT and ER-LS, we can see that ER-LS is outperformed by EFT with a
decrease of 11% on average, and up to 60% for certain configurations of fork-join.
However, the worst-case competitive ratio for EFT can be directly obtained from
the proof of the worst-case approximation ratio for HEFT, presented in Section 6.3.
More specifically, if the adversary presents to EFT the list of tasks ordered as in the
counter-example for HEFT (Theorem 1), i.e., by decreasing order of the rank, then
we obtain the same lower bound.

We also study the performance of the 3 algorithms with respect to the theoretical
upper bound given in Section 6.4.2. Fig. 6.6b shows the mean competitive ratio of
ER-LS, EFT and Greedy along with the standard error as a function of

√
m
k associated

to each configuration. To simplify the lecture, we only present the applications potri
and fork-join, since other Chameleon applications showed similar results. We observe
that the competitive ratio is smaller than

√
m
k and far from the theoretical upper

bound of 4
√

m
k for ER-LS.

104 Chapter 6 Generic Algorithms for Scheduling Applications on Heteroge-
neous Platforms

●●●●●●●●●●●●●●●●

●

●●
●

●

●
●●

●

●
●●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●●
●
●●●
●
●●
●
●
●●●

●

●

●●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●
●●
●
●
●
●●
●
●●●
●

●

●●●

●

●●
●

●

●
●
●

●

●
●●

●
●●●

●

●
●●

●

●

●●

●

●

●
●
●●●●

●

●●●

●
●

●●

●●
●

●
●●●●
●●●●
●

●
●●
●

●●

●
●●●●
●●●●

●

●●
●

●

●●●
●●
●●
●●●
●
●●●●
●
●●●

●●●●
●
●●●

●
●●●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●
●●●●

●

●●●

●

●
●
●

●

●●●

●
●●●

●

●
●●

●

●

●
●

●

●

●

●
●●●
●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●
●●
●●●
●
●●●●●●●●

●

●●●

●

●
●●

●

●
●●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●●
●
●

●●
●
●

●●●
●

●●●●●
●
●
●
●

●
●
●●

●●

●

●
●●●

●

●
●
●

●

●

●●

●

●

●●

●●●●●●●●

●

●●●

●●

●●
●●●●
●●●●
●

●●●

●
●

●●
●●●●
●●●●
●
●●●

●

●●●●●●●●●●●●●●●●●●●
●
●●●
●
●●●
●
●●●
●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●
●●●●
●
●●●
●
●
●●
●

●●
●

●

●●●

●

●
●●

●

●

●●

●

●

●

●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●
●
●

●

●

●●

●

●

●
●

●

●

●
●●●●
●
●●●
●●●●●●●●●

●

●
●●

●

●
●●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●

●

●●●

●●

●●

●●●

●
●
●
●●●
●●
●
●

●
●
●●

●●
●

●
●●●

●

●
●●

●

●

●
●

●

●

●●

●●●●●●●●

●

●●●

●

●

●●
●
●●●
●
●●●
●
●
●
●

●●

●●
●●●●
●●●●
●●●●

●

●●●
●
●●●
●
●●●
●
●●●
●
●●●

●

●●●

●

●
●
●

●

●
●●
●●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●
●●●●
●

●
●●

●

●●●

●

●

●●

●

●

●●

●

●

●

● ●●●
●
●●●
●●●●●●●●●

●

●●
●

●

●●●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●

●●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●
●
●
●

●
●
●●

●

●
●
●

●
●●●

●

●●●

●

●

●●

●

●

●
●

●●●●

●

●●●

●

●

●
●

●

●

●

●
●●●●●●●●

●
●
●●

●●

●
●
●●●●
●●●●
●
●
●
●

●

●
●
●

●●●●

●●
●●

●
●●
●

●

●

●
●

●
●●●
●●
●●

●
●
●
●

●●
●
●

●

●
●
●

●

●●
●

●

●●●

●

●
●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●
●●
●●
●
●●
●

●

●●
●

●

●●●

●

●●●

●

●

●●

●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●
●●
●●
●●●
●
●●●●●●●●
●●●●●●●●
●
●●●
●
●●●

●

●●●

●

●●●

●

●●●

●

●●●●●●
●
●●●●●●
●●
●●●
●

●

●●
●
●

●●●
●
●●●
●
●

●●

●

●●
●

●

●●
●
●

●●
●
●

●●●●

●
●●

●●

●
●

●●●

●

●
●●●

●●
●●

●●
●
●

●
●

●
●

●
●●

●

●
●●●

●●●
●

●
●

●
●

●

●●

●
●●
●●

●
●
●
●

●
●●
●

●●

●●
●
●●●

●●

●
●

●

●
●

●

●
●●
●

●●●●●
●●
●
●

●●
●●

●●
●

●
●

●●

●
●

●
●

●
●

●
●

●

●

●
●

●
●●
●

●

●
●
●

●

●
●

●

●

●

●

●

●
●
●
●

●
●
●

●

●

●
●●

●

●

●
●
●
●●

●

●

●
●●

●

●
●
●

●

●

●
●
●
●
●
●

●
●
●

●

●

●
●●

●

●

●●

●
●

●●

●

●

●●

●

●

●●

●

●

●●

●
●●
●

●
●●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●
●
●

●

●

●
●

●

●
●

●
●
●
●
●

●
●
●
●

●

●
●
●

●

●

●
●●
●
●
●

●
●
●
●

●

●
●
●

●

●

●●●

●

●●

●

●

●●

●

●

●●

●

●

●●

●
●
●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●
●
●

●
●
●
●

●

●
●

●

●

●

●

●
●
●
●
●

●
●
●
●

●

●
●
●

●

●

●
●●
●
●
●

●
●
●
●

●

●
●
●

●

●

●
●

● ● ●
●

●
●

0

3

6

9

getrf posv potrf potri potrs forkJoin
Application

G
re

ed
y

/ E
R

-L
S

●●●●●●●●●●●●●●●●

●●●

●

●●
●●
●●●●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●●

●

●●

●●

●●●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●
●
●
●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●●

●
●

●

●

●

●

●●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●●●

●

●●●●

●

●●●

●

●

●●

●

●

●
●

●

●●
●
●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●●●●●●●●●●●●●●

●

●

●
●

●

●

●●
●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●●●●●●●

●
●
●

●
●●●

●

●●●●●●●●

●

●

●

●

●
●

●
●

●
●
●●●●●

●

●

●

●
●

●●

●

●

●●●

●

●●●●

●

●

●

●

●
●

●

●

●
●●

●

●
●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●
●●

●●

●
●

●●●

●

●
●
●
●
●
●
●●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●
●
●
●

●
●
●
●

●●

●
●

●

●●
●

●

●●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●●●

●

●

●●●

●●

●●

●●●

●

●

●

●

●

●

●

●

●

●
●●
●

●●●●

●

●

●

●

●●

●

●

●●●

●

●●●●

●

●
●

●

●●
●

●

●●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●●●●●●●

●

●●●

●

●

●●●●●●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●●●
●
●●●●

●

●

●

●●

●●●

●●

●●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●●●●●●●●●

●

●●●

●●

●●

●●●

●

●●●●

●●

●
●

●●●

●

●●●●●●●●
●
●
●●

●●
●
●

●●●
●
●●●●

●●

●●

●●●

●

●●●●●●●●

●

●

●

●

●●

●

●

●●●

●

●●●●
●

●

●

●

●
●

●

●

●
●
●

●

●●

●
●

●●●

●

●

●●●

●

●

●●

●●

●

●

●

●
●

●

●●●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

● ●

●

0.4

0.6

0.8

1.0

1.2

getrf posv potrf potri potrs forkJoin
Application

E
FT

 /
E

R
-L

S

Figure 6.7: Ratio between the makespans of Greedy and ER-LS (top), and EFT and ER-LS
(bottom) for each configuration, grouped by application. Notice that the big
square shows the mean, for each application.

6.7 Experiments 105

Semi On-Line Two-Agent
Scheduling

7

In this chapter, we propose the formulation and modelling of a particular setting of
a two-agent non-preemptive scheduling problem on parallel machines. Since we are
still in the early stages in the study of this problem, we will only present the model
and related work.

This is an ongoing work in collaboration with Vincent FAGNON, Giorgio LUCARELLI

and Denis TRYSTRAM.

7.1 Context

As opposed to the placement problem discussed in Chapter 3 dealing with a whole
distributed infrastructure, we place ourselves in a more local environment within
an Edge site. In this context, the target platform is a parallel machine composed of
identical processors dedicated to service the computing requests originating from
the smart building and its vicinity. These computing requests are submitted to the
system one by one and should be executed as soon as possible. In addition, when
there are no local requests to service, the computing resources are made available
for processing off-loaded tasks coming from neighbouring Edge sites or Cloud data-
centres. Such off-loaded tasks are submitted to the platform by a superior entity and
are executed in a best effort manner until new requests from the smart building
arrive. The superior entity is in charge of managing multiple Edge sites and ensuring
a global load balancing of the off-loaded tasks between these sites.
Figure 7.1 summarises this context.

7.2 Related Work

Our problem can be viewed as an extension of the non-preemptive two-agent
scheduling problem on a single machine, which has been extensively studied in the

107

Local tasks
queue

O

Figure 7.1: Scheme of an Edge site with two tasks queues corresponding to two agents
competing for the computing resources.

literature. However, the solutions presented in the following are not suited for our
problem as, in our case, the tasks of one agent are submitted on-line with release
dates.

Agnetis et al. [Agn+04] consider the problem where each agent has its own objective
function to minimise, such as the sum of a regular function, the (weighted) sum of
tasks completion time, or the sum of tardy tasks. They study multiple combinations
of objective functions with two different methods to solve the problem. The first
method is to transform the multi-objective into a single-objective problem, by
transforming the objective of the second agent into a constraint. The second solution
is to find the set of non-dominated pairs of objective values on the Pareto front.
This work was further extended to the multi-agent scheduling problem on multiple
machines [Agn+14].

Li et al. [LCF16] address a variant of the problem where each agent has a family
of tasks to schedule. When the first task of a family is scheduled, or when a task
is scheduled after the task of another family, a setup time is appended prior to
the starting time of the task. The authors transform the second objective into a
constraint and propose polynomial- and pseudo-polynomial-time algorithms to solve
the problem with multiple objective functions, such as the sum of completion times,
the maximum lateness or the number of tardy tasks.

108 Chapter 7 Semi On-Line Two-Agent Scheduling

Cheng et al. [Che+19] study the problem with due dates, where the first agent
wants to minimise the sum of lateness while the second agent wants to minimise the
number of tardy tasks, and propose a method to find the non-dominated solutions.
This problem is further studied by Yin et al. [YWC20], considering more objective
functions for the two agents.

Baker and Smith [BS03] study the problem with two or three agents competing for
the single resource, and the overall optimisation objective is a weighted combination
of the objective of each agent, considering the maximum completion time, the sum
of (weighted) completion time or the maximum lateness of the tasks.
On a similar way, Liu et al. [LGL19] study the off-line problem with release dates,
where the objective is a linear combination of the maximum tasks completion time
of each agent. They propose an algorithm whose approximation ratio depends
on the linear coefficients in the objective function, and a fully polynomial time
approximation scheme, to solve the considered problem.

One can also find extensions of the scheduling problem with more than two agents
and more than one machine. For example, Saule and Trystram [ST09] focus on the
problem with arbitrary number of agents competing to schedule tasks on a parallel
machine, where the objective of an agent is either the minimisation of the maximum,
or the sum, of completion time of their tasks. They propose inapproximability
bounds and give algorithms with approximation ratio depending on the number of
agents.

Another scheduling problem of interest is the problem of multi-organisation schedul-
ing [Coh+11; Dut+11], where each organisation has its own computing resources
and its own set of tasks to execute. The objective is to minimise the overall comple-
tion time of all organisations with the ability to off-load tasks from one organisation
to another. However, this corresponds to a broader view of our addressed problem
that considers multiple Edge sites at once.

7.3 Problem Modelling

We consider in this work a particular setting of the problem of two-agent non-
preemptive scheduling, and model the problem as follows. The target platform is
a parallel machine composed of m identical processors. Two agents compete for
the resources of the platform to execute their own set of non-preemptive sequential
tasks and optimise their own objective.

7.3 Problem Modelling 109

time
0 Cj

pj

rj

Fj

Tj
L

L

L

L
L

Figure 7.2: Summary of notations for the execution of a local task.

The first agent corresponds to the grouping of all users submitting computing
requests from the smart building. We denote by SL the set of all nL local tasks TLj ,
with j ∈ [1, nL]. Local tasks are submitted in an on-line fashion with release dates,
meaning that a task TLj and its processing time pLj becomes known to the system
only at its release time rLj . Given a schedule, we denote by CLj the completion time
of a local task and by FLj = CLj − rLj its flow-time, which corresponds to the time
spent by the task in the system. Figure 7.2 summarises all these notations.

Similarly, the tasks from the second agent correspond to the tasks off-loaded to this
platform by the superior entity. We denote by SG the set of all nG global tasks TGj ,
with j ∈ [1, nG]. These global tasks are submitted off-line as a batch, all ready at
time 0 and with known processing time pGj , ∀j ∈ [1, nG]. We also denote by CGj the
completion time of a global task in a given schedule.

The addressed problem is bi-objective and each agent has its own objective to op-
timise. The objective of the local agent is the minimisation of the sum flow-time
of its tasks, denoted by

∑
FL =

∑
j∈[1,nL] F

L
j , while the objective of the global

agent is the minimisation of the maximum completion time of its tasks, denoted by
CGmax = maxj∈[1,nG]C

G
j .

7.4 Resource Augmentation

Resource augmentation is a well-known technique to help break theoretical lower
bounds on the competitive ratio of scheduling algorithms in the on-line setting by
giving more power to the algorithm when comparing to the optimal.

Different resource augmentation techniques have been introduced in the past years,
from machine augmentation [Phi+97] – the algorithm is given more machines
to schedule the tasks – and speed augmentation [KP00] – the algorithm is given
machines that execute tasks faster – to task rejection[Cho+15] – the algorithm may
decide to reject some tasks and not execute them at all.

110 Chapter 7 Semi On-Line Two-Agent Scheduling

A lower bound on the competitive ratio of an algorithm reveals its weaknesses by
presenting a worst-case, or pathological, instance for which the algorithm fails to
produce a good solution compared to the optimal. In such a case, simply endowing
the algorithm a little bit more power could help cope with the problematic instance
and reduce drastically the gap between the algorithm solution and the optimal
one, reducing the competitive ratio from an unbounded value depending on some
parameters of the instance input to a constant performance guarantee. For example,
Lucarelli et al. applied different resource augmentation techniques to the on-
line problem of scheduling non-preemptive tasks on unrelated machines with the
objective of minimising the total weighted flow-time of the tasks [Luc+16]. Despite
the strong lower bound of Ω(

√
n) for the simplified off-line problem on a single

machine, where n is the number of tasks, they showed that a combination of speed
augmentation and rejection permitted to design an algorithm with a competitive
ratio depending on the speed increase and the rejection allowed to the algorithm.

In our context, global tasks are off-loaded to the platform to take benefit from the
idle times when there are no local tasks to execute. At times, it may happen that
there is a burst of local task submissions but there are not enough available machines
due to the execution of global tasks. In fact, it can be shown in an example, with
a long global task and a short local task to be executed on a single machine, that
any scheduling decision could lead to arbitrarily bad objective value for the local
task. It simply consists in submitting the local task right after the time when the
algorithm decided the global task to start. In this case, the achieved competitive
ratio for the local task is the ratio of processing time between the global and the
local tasks, which can be arbitrarily large.
For this reason, to reduce the impact of scheduling global tasks over local ones, we
introduce in our model the rejection of tasks, which was already studied in the off-
line problem of two-agent scheduling on a single machine by Feng et al. [Fen+14],
where the rejection of a task induces a penalty on the objective function of the
corresponding agent. However, we restrict in our case the algorithm to reject only an
ε-fraction of the global tasks, in terms of number of tasks, and thus do not consider
any penalty on the objective function.

The reason why we allow the rejection of only the global tasks, and not the local
ones, is to comply with our application of the problem in practice, where global
tasks are off-loaded by the superior entity and executed in a best effort manner, while
local tasks originates from the local environment and must be executed on place.
Moreover, when a global task is rejected, it is sent back to the superior entity that
will re-submit this task in a future batch of global task off-loaded to another Edge
site.

7.4 Resource Augmentation 111

Notice that the rejection of tasks should not be mixed up with the notion of preemp-
tion. The preemption of a task consists in stopping its execution on a processor for a
given time and resume the execution afterwards, to leave space and execute a task
of higher priority for example. In our addressed problem, the preemption of tasks
is not allowed, as it requires time and memory to save the state of tasks, which is
costly and even may not be feasible in practice.

112 Chapter 7 Semi On-Line Two-Agent Scheduling

Conclusion 8
Through the different chapters of this dissertation, we studied both theoretical and
practical aspects of resource management problems in heterogeneous platforms.

First, we discussed challenges raised by the evolution of Edge Computing platforms
and took a focus on the production platform of the Qarnot Computing company as a
case study. The implementation of new features in Batsim, a simulator originally
designed for High Performance Computing infrastructures, allowed us to perform
a complete simulation of the Qarnot platform. Although not fully validated, our
simulated platform enabled us to quickly design and test variants of data and
job placement policies, corresponding to the scheduling problem at the top-level
of the Qarnot platform. We hope that such an example of how to leverage the
Batsim/SimGrid toolkit to simulate a complex Edge Computing platform and its
internal mechanisms will encourage researchers to move away from the development
of ad hoc simulators for the purpose of a single experiment/publication, and widely
adopt a common simulation toolkit like Batsim.

Second, at the border between theory and practice, we introduced a model to predict
the temperature of heaters and their ambient air in rooms and offices. We designed
a prediction method based on thermodynamics formulae and compared it with a
simpler prediction method widely used in the literature, and a machine learning
approach using a simplistic neural network. Using real logs from the heaters of the
Qarnot platform, we observed very low accuracy for the two analytical prediction
methods compared to the machine learning-based method. We are currently working
on retrieving a new set of data and refining our prediction method to try and improve
the results.

Third, we theoretically studied the problem of scheduling a parallel application on
hybrid multi-core machines. We detailed the problem and several setting variants
and exposed, for each variant, the current algorithms achieving the best known per-
formance guarantees and their lower bounds. We also proposed two new algorithms
and gave proofs of their performance guarantees. Then, we circled back in the
practical aspect of the work by comparing the performances between our scheduling
algorithms and baselines with applications derived from linear algebra kernels.
Taking a step further, one great improvement for this work would be to introduce in

113

the model a communication cost between two tasks of the application when both
tasks are executed on different resource types. One can find in the literature some
work on that matter considering a hybrid machine with CPUs and GPUs [AZM18;
AMP19]. However, a stronger model introducing also communication costs between
two GPUs should be considered, to bring the theory closer to what is happening in
practice.

Finally, on a more open perspective, we proposed the formulation of a new setting
of the two-agent scheduling problem on parallel machines. This problem corre-
sponds to the resource management problem of an Edge site and is related to the
bottom-level scheduling problem of the Qarnot platform. We decided to include this
formulation in the manuscript, even if it is still an on-going work without results yet,
because it completes our tour of the Qarnot use-case by addressing another resource
management problem at the bottom-level of the platform.
Furthermore, Chapter 7 embodies a major step in any theoretical analysis, which
is the modelling and formulation of the optimisation problem under investigation.
Such a step is difficult and it may take several iterations to refine the model from
a real-world problem to a sound formulation that can be analysed theoretically.
Thus, the reader should not be mistaken by the rather small size of the chapter,
as it summarises several months of thinking and modelling choices to shape up
the proposed formulation. Yet, the study of this scheduling problem, and all of its
possible variants with different machine settings and objectives, is left as an open
door, as there is enough space for a whole thesis.

On a personal note, all this work around a production platform and its simulation
greatly improved my practical background and helped me better grasp the links
between theoretical and practical problems. I believe that an effort should be made
to reduce the gap between theoretical optimisation problems and their application
in practice. In fact, linking the theoretical, possibly simplified, aspect of a problem
to its practical counterpart gives meaning to the solution produced, as opposed to
solutions using simple heuristics or coming from pure black-box techniques such as
with deep learning. This is why we chose to develop a new temperature prediction
method based on thermodynamics formulae and use it in our simulations, instead
of relying on classical machine learning solutions. Unfortunately, our experiments
showed that it was not that simple.

Yet, we saw that it was sometimes difficult to have a good theoretical analysis of
optimisation problems. This brings us to ask ourselves what will be the future
of scheduling and more generally resource management problems. As the next

114 Chapter 8 Conclusion

generation of computing platforms will continue to grow in complexity, the related
optimisation problems may require even more assumptions and simplifications to
have theoretical analysis proving constant approximation guarantees. One solution
would be to break down and tackle smaller, more localised, problems that could be
combined together to bring solutions to the whole picture. This is what we intended
to do with the Qarnot use-case by distinguishing the global and local placement
problems to replace the actual all-in-one solution. However, such solutions would
have to compete with more simple – low-complexity – heuristics that are usually
preferred in practice, even if they do not provide any performance guarantees.

Furthermore, one can find in the literature many works based on machine learning
techniques, such as a methodology to derive scheduling policies for High Perfor-
mance Computing platforms [CD17] or temperature prediction methods, as we saw
in Chapter 4. With the constant progress of neural networks and data analytics,
one can simply wonder “will these techniques become the new standard for solving
optimisation problems?”

115

Bibliography

[@batgit] Batsim Github Repository. URL: https://github.com/oar-team/batsim
(visited on Sept. 25, 2020). cit. on pp. 27, 28

[@batrust] Batsim-rust Gitlab Repository. URL: https://gitlab.inria.fr/batsim/
batsim-rust (visited on Sept. 25, 2020). cit. on p. 27

[@batsched] Batsched Gitlab Repository. URL: https://gitlab.inria.fr/batsim/
batsched (visited on Sept. 25, 2020). cit. on p. 27

[@battemp] Batsim Temperature Branch. URL: https://gitlab.inria.fr/batsim/
batsim/tree/temperature-sbac-2020 (visited on Sept. 25, 2020).

cit. on p. 31

[@bench] Heterogeneous SWF GitHub Repository. URL: https : / / github . com /
marcosamaris/heterogeneous-SWF (visited on Sept. 25, 2020).

cit. on p. 97

[@cisco] Cisco Annual Internet Report (2018-2023) White Paper. URL: https :
//www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.
html (visited on Sept. 25, 2020). cit. on p. 2

[@cloudheat] Cloud&Heat Website. URL: https://www.cloudandheat.com (visited on
Sept. 25, 2020). cit. on pp. 3, 20

[@CSU] Computer Science Unplugged. URL: https : / / csunplugged . org / en/
(visited on Sept. 25, 2020). cit. on p. 6

[@digiplex] DigiPlex Website. (Visited on Sept. 25, 2020). cit. on p. 3

[@evalys] Evalys Github Repository. URL: https://github.com/oar-team/evalys
(visited on Sept. 25, 2020). cit. on p. 27

[@lancey] Lancey Website. URL: https://www.lancey.fr/en/ (visited on Sept. 25,
2020). cit. on p. 45

[@omnet] OMNet++ Github Repository. URL: https://github.com/omnetpp/
omnetpp (visited on Sept. 25, 2020). cit. on p. 25

[@pybatsim] Pybatsim Gitlab Repository. URL: https://gitlab.inria.fr/batsim/
pybatsim (visited on Sept. 25, 2020). cit. on pp. 27, 28, 35

[@pytemp] Pybatsim Temperature Branch. URL: https://gitlab.inria.fr/batsim/
pybatsim/tree/temperature-sbac-2020 (visited on Sept. 25, 2020).

cit. on p. 36

A1

https://github.com/oar-team/batsim
https://gitlab.inria.fr/batsim/batsim-rust
https://gitlab.inria.fr/batsim/batsim-rust
https://gitlab.inria.fr/batsim/batsched
https://gitlab.inria.fr/batsim/batsched
https://gitlab.inria.fr/batsim/batsim/tree/temperature-sbac-2020
https://gitlab.inria.fr/batsim/batsim/tree/temperature-sbac-2020
https://github.com/marcosamaris/heterogeneous-SWF
https://github.com/marcosamaris/heterogeneous-SWF
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cloudandheat.com
https://csunplugged.org/en/
https://github.com/oar-team/evalys
https://www.lancey.fr/en/
https://github.com/omnetpp/omnetpp
https://github.com/omnetpp/omnetpp
https://gitlab.inria.fr/batsim/pybatsim
https://gitlab.inria.fr/batsim/pybatsim
https://gitlab.inria.fr/batsim/pybatsim/tree/temperature-sbac-2020
https://gitlab.inria.fr/batsim/pybatsim/tree/temperature-sbac-2020

[@qarnot] Qarnot Computing Website. URL: https://www.qarnot.com/en/home
(visited on Sept. 25, 2020). cit. on pp. 3, 4

[@robin] Batexpe Gitlab Repository. URL: https://gitlab.inria.fr/batsim/
batexpe (visited on Sept. 25, 2020). cit. on p. 27

[@SGgit] SimGrid Github Repository. URL: https://github.com/simgrid/simgrid
(visited on Sept. 25, 2020). cit. on p. 26

[@SGpublis] SimGrid Publications. URL: http://simgrid.org/publications.html
(visited on Sept. 25, 2020). cit. on pp. 23, 26

[@SGtemp] SimGrid Temperature Branch. URL: https://github.com/Mommessc/
simgrid/tree/temperature-sbac-2020 (visited on Sept. 25, 2020).

cit. on p. 31

[@simpleIoTsim] SimpleIoTSimulator Web Site. URL: http://www.smplsft.com/SimpleIoTSimulator.
html (visited on Sept. 25, 2020). cit. on p. 24

[@top500] TOP500 Website. URL: https://www.top500.org/ (visited on Sept. 25,
2020). cit. on p. 1

[AA16] Arif Ahmed and Ejaz Ahmed. “A Survey on Mobile Edge Computing”.
In: 2016 10th International Conference on Intelligent Systems and Control
(ISCO). Jan. 2016, pp. 1–8. cit. on p. 3

[ADL19] Farah Ait Salaht, Frédéric Desprez, and Adrien Lebre. “An Overview of
Service Placement Problem in Fog and Edge Computing”. In: RR-9295
(Oct. 2019), pp. 1–43. cit. on p. 5

[Agn+04] Alessandro Agnetis, Pitu B. Mirchandani, Dario Pacciarelli, and Andrea
Pacifici. “Scheduling Problems with Two Competing Agents”. In: Opera-
tions Research 52.2 (2004), pp. 229–242. cit. on p. 108

[Agn+14] Alessandro Agnetis, Jean-Charles Billaut, Stanislaw Gawiejnowicz, Dario
Pacciarelli, and Ameur Soukhal. Multiagent Scheduling - Models and Algo-
rithms. Springer, 2014. cit. on p. 108

[Agu+12] Emmanuel Agullo, George Bosilca, Bérenger Bramas, et al. “Poster: Ma-
trices Over Runtime Systems at Exascale”. In: 2012 SC Companion: High
Performance Computing, Networking Storage and Analysis. Nov. 2012,
pp. 1330–1331. cit. on p. 96

[AIM10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. “The Internet of
Things: A survey”. In: Computer networks 54.15 (2010), pp. 2787–2805.

cit. on p. 3

[Ait+19] Farah Ait Salaht, Frédéric Desprez, Adrien Lebre, Charles Prud’Homme,
and Mohamed Abderrahim. “Service Placement in Fog Computing Using
Constraint Programming”. In: SCC 2019 - IEEE International Conference
on Services Computing. IEEE, July 2019, pp. 1–9. cit. on p. 5

A2 Bibliography

https://www.qarnot.com/en/home
https://gitlab.inria.fr/batsim/batexpe
https://gitlab.inria.fr/batsim/batexpe
https://github.com/simgrid/simgrid
http://simgrid.org/publications.html
https://github.com/Mommessc/simgrid/tree/temperature-sbac-2020
https://github.com/Mommessc/simgrid/tree/temperature-sbac-2020
http://www.smplsft.com/SimpleIoTSimulator.html
http://www.smplsft.com/SimpleIoTSimulator.html
https://www.top500.org/

[All+02] Bill Allcock, Joe Bester, John Bresnahan, et al. “Data Management and
Transfer in High-Performance Computational Grid Environments”. In:
Parallel Computing 28.5 (2002), pp. 749–771. cit. on p. 24

[Ama+16] Marcos Amaris, Raphael Y. de Camargo, Mohamed Dyab, Alfredo Gold-
man, and Denis Trystram. “A comparison of GPU execution time pre-
diction using machine learning and analytical modeling”. In: IEEE 15th
International Symposium on Network Computing and Applications. Oct.
2016, pp. 326–333. cit. on p. 67

[Ama+17] Marcos Amaris, Giorgio Lucarelli, Clément Mommessin, and Denis Trys-
tram. “Generic Algorithms for Scheduling Applications on Hybrid Multi-
core Machines”. In: Euro-Par: International Conference on Parallel and
Distributed Computing. 2017, pp. 220–231. cit. on p. 75

[Ama+18] Marcos Amaris, Giorgio Lucarelli, Clément Mommessin, and Denis Trys-
tram. “Generic Algorithms for Scheduling Applications on Heterogeneous
Platforms”. In: Concurrency and Computation: Practice and Experience
(July 2018), pp. 1–29. cit. on pp. 73, 75

[AMP19] Massinissa Ait Aba, Alix Munier-Kordon, and Guillaume Pallez. “Schedul-
ing on Two Unbounded Resources with Communication Costs”. In: Euro-
Par - European Conference on Parallel Processing. Gottingen, Germany,
Aug. 2019. cit. on p. 114

[Aug+11] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André
Wacrenier. “StarPU: A Unified Platform for Task Scheduling on Hetero-
geneous Multicore Architectures”. In: Concurrency and Computation:
Practice and Experience 23.2 (2011), pp. 187–198. cit. on pp. 69, 71, 96

[AZM18] Massinissa Ait Aba, Lilia Zaourar, and Alix Munier-Kordon. “Approxima-
tion algorithm for scheduling applications on hybrid multi-core machines
with communications delays”. In: IPDPS Workshops 2018, 2018 IEEE
International Parallel and Distributed Processing Symposium Workshops.
Vancouver, Canada: IEEE, May 2018, pp. 36–45. cit. on p. 114

[Bau+20a] Adwait Bauskar, Anderson da Silva, Adrien Lebre, et al. “Investigating
Placement Challenges in Edge Infrastructures through a Common Simu-
lator”. In: SBAC-PAD (2020). cit. on p. 24

[Bau+20b] Adwait Bauskar, Anderson da Silva, Adrien Lebre, et al. “Investigating
Placement Challenges in Edge Infrastructures through a Common Simu-
lator”. HAL Technical Report. Feb. 2020. cit. on p. 24

[Bea+20] Olivier Beaumont, Louis-Claude Canon, Lionel Eyraud-Dubois, et al.
“Scheduling on Two Types of Resources: A Survey”. In: ACM Comput.
Surv. 53.3 (May 2020). cit. on pp. 67, 73

Bibliography A3

[BEK17] Olivier Beaumont, Lionel Eyraud-Dubois, and Suraj Kumar. “Approxima-
tion Proofs of a Fast and Efficient List Scheduling Algorithm for Task-
Based Runtime Systems on Multicores and GPUs”. In: IEEE International
Parallel & Distributed Processing Symposium (IPDPS). Orlando, United
States, May 2017. cit. on pp. 71, 72

[BF17] Antonio Brogi and Stefano Forti. “QoS-aware Deployment of IoT Appli-
cations Through the Fog”. In: IEEE Internet of Things Journal 4.5 (Oct.
2017), pp. 1185–1192. cit. on pp. 5, 24

[Ble+15] Raphael Bleuse, Safia Kedad-Sidhoum, Florence Monna, Grégory Mounié,
and Denis Trystram. “Scheduling independent tasks on multi-cores with
GPU accelerators”. In: Concurrency and Computation: Practice and Experi-
ence 27.6 (2015), pp. 1625–1638. cit. on pp. 71, 78

[Bos+13] George Bosilca, Aurélien Bouteiller, Anthony Danalis, et al. “PaRSEC: A
programming paradigm exploiting heterogeneity for enhancing scalabil-
ity”. In: Computing in Science and Engineering 15.6 (Nov. 2013), pp. 36–
45. cit. on p. 69

[Bra+01] Tracy D. Braun, Howard Jay Siegel, Noah Beck, et al. “A Comparison of
Eleven Static Heuristics for Mapping a Class of Independent Tasks onto
Heterogeneous Distributed Computing Systems”. In: Journal of Parallel
and Distributed Computing 61.6 (2001), pp. 810–837. cit. on p. 71

[BS03] Kenneth R. Baker and J. Cole Smith. “A Multiple-Criterion Model for
Machine Scheduling”. In: J. Scheduling 6.1 (2003), pp. 7–16.

cit. on p. 109

[BW12] Vincenzo Bonifaci and Andreas Wiese. “Scheduling unrelated machines
of few different types”. In: arXiv preprint arXiv:1205.0974 (2012).

cit. on p. 71

[Cal+11] Rodrigo Calheiros, R. Ranjan, Anton Beloglazov, Cesar De Rose, and
Rajkumar Buyya. “CloudSim: A Toolkit for Modeling and Simulation of
Cloud Computing Environments and Evaluation of Resource Provisioning
Algorithms”. In: Software Practice and Experience 41 (Jan. 2011), pp. 23–
50. cit. on p. 25

[Can+19] Louis-Claude Canon, Loris Marchal, Bertrand Simon, and Frédéric Vivien.
“Online Scheduling of Task Graphs on Heterogeneous Platforms”. In: IEEE
Transactions on Parallel and Distributed Systems (2019).

cit. on pp. 72, 73, 91

[Cas+14] Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson,
and Frédéric Suter. “Versatile, Scalable, and Accurate Simulation of
Distributed Applications and Platforms”. In: Journal of Parallel and Dis-
tributed Computing 74.10 (June 2014), pp. 2899–2917.

cit. on pp. 6, 23, 25

A4 Bibliography

[CD17] Danilo Carastan-Santos and Raphael Y. De Camargo. “Obtaining Dynamic
Scheduling Policies with Simulation and Machine Learning”. In: Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. SC ’17. Denver, Colorado: Association
for Computing Machinery, 2017. cit. on p. 115

[Che+19] Chen-Yang Cheng, Shu-Fen Li, Kuo-Ching Ying, and Yu-Hsi Liu. “Schedul-
ing Jobs of Two Competing Agents on a Single Machine”. In: IEEE Access
7 (2019). cit. on p. 109

[Cho+07] Jeonghwan Choi, Youngjae Kim, Anand Sivasubramaniam, et al. “Mod-
eling and Managing Thermal Profiles of Rack-mounted Servers with
ThermoStat”. In: 2007 IEEE 13th International Symposium on High Perfor-
mance Computer Architecture. 2007, pp. 205–215. cit. on p. 44

[Cho+15] Anamitra Roy Choudhury, Syamantak Das, Naveen Garg, and Amit Kumar.
“Rejecting jobs to Minimize Load and Maximum Flow-time”. In: Proceed-
ings of the 2015 Annual ACM-SIAM Symposium on Discrete Algorithms.
2015, pp. 1114–1133. cit. on p. 110

[CMV17] Louis-Claude Canon, Loris Marchal, and Frédéric Vivien. “Low-Cost Ap-
proximation Algorithms for Scheduling Independent Tasks on Hybrid
Platforms”. In: Euro-Par 2017: 23rd International European Conference
on Parallel and Distributed Computing. Santiago de Compostela, Spain:
Springer, Aug. 2017. cit. on pp. 71, 72

[Coh+11] Johanne Cohen, Daniel Cordeiro, Denis Trystram, and Frédéric Wagner.
“Multi-Organization Scheduling Approximation Algorithms”. In: Concur-
rency and Computation: Practice and Experience 23.17 (2011), pp. 2220–
2234. cit. on p. 109

[Cor+10] Daniel Cordeiro, Grégory Mounié, Swan Perarnau, et al. “Random Graph
Generation for Scheduling Simulations”. In: ICST (SIMUTools). 2010.

cit. on p. 96

[CS15] Nathanael Cheriere and Erik Saule. “Considerations on Distributed Load
Balancing for Fully Heterogeneous Machines: Two Particular Cases”. In:
2015 IEEE International Parallel and Distributed Processing Symposium
Workshop. May 2015, pp. 6–16. cit. on p. 72

[CYZ14] Lin Chen, Deshi Ye, and Guochuan Zhang. “Online Scheduling Of Mixed
CPU-GPU Jobs”. In: International Journal of Foundations of Computer
Science 25.06 (2014), pp. 745–761. cit. on pp. 72, 73, 88

[Dav04] David P. Anderson. “BOINC: a System for Public-Resource Computing and
Storage”. In: Fifth IEEE/ACM International Workshop on Grid Computing.
2004, pp. 4–10. cit. on pp. 13, 24

[Deg+17] Augustin Degomme, Arnaud Legrand, Georges Markomanolis, et al. “Sim-
ulating MPI applications: the SMPI approach”. In: IEEE Transactions on
Parallel and Distributed Systems 28.8 (Aug. 2017), p. 14. cit. on p. 23

Bibliography A5

[Dem17] Wolfgang Demtröder. “Thermodynamics”. In: Mechanics and Thermody-
namics. Cham: Springer International Publishing, 2017, pp. 253–319.

cit. on p. 46

[DNC17] Amaury Durand, Yanik Ngoko, and Christophe Cérin. “Distributed and
In-Situ Machine Learning for Smart-Homes and Buildings: Application
to Alarm Sounds Detection”. In: 2017 IEEE International Parallel and
Distributed Processing Symposium Workshops, IPDPS Workshops 2017.
2017, pp. 429–432. cit. on p. 16

[Don+19] Bruno Donassolo, Ilhem Fajjari, Arnaud Legrand, and Panayotis Mer-
tikopoulos. “Fog Based Framework for IoT Service Provisioning”. In: IEEE
CCNC. Jan. 2019. cit. on p. 5

[Dro09] Maciej Drozdowski. Scheduling for Parallel Processing. Springer Publishing
Company, 2009. cit. on pp. 2, 68

[Dut+11] Pierre-François Dutot, Fanny Pascual, Krzysztof Rzadca, and Denis Trys-
tram. “Approximation Algorithms for the Multiorganization Scheduling
Problem”. In: IEEE Transactions on Parallel and Distributed Systems 22.11
(2011), pp. 1888–1895. cit. on p. 109

[Dut+16] Pierre-François Dutot, Michael Mercier, Millian Poquet, and Olivier Richard.
“Batsim: a Realistic Language-Independent Resources and Jobs Manage-
ment Systems Simulator”. In: 20th Workshop on Job Scheduling Strategies
for Parallel Processing. May 2016. cit. on pp. 6, 23, 25, 26

[Fag+19] Vincent Fagnon, Imed Kacem, Giorgio Lucarelli, and Bertrand Simon.
Scheduling on Hybrid Platforms: Improved Approximability Window. 2019.
arXiv: 1912.03088 [cs.DS]. cit. on pp. 72, 73

[Fen+14] Qi Feng, Baoqiang Fan, Shisheng Li, and Weiping Shang. “Two-agent
scheduling with rejection on a single machine”. In: Applied Mathematical
Modelling 39.3 (2014), pp. 1183–1193. cit. on p. 111

[FMO07] Alexandre P. Ferreira, Daniel Mossé, and Jan C. Oh. “Thermal Faults
Modeling Using a RC Model with an Application to Web Farms”. In: 19th
Euromicro Conference on Real-Time Systems (ECRTS’07). 2007, pp. 113–
124. cit. on p. 45

[Geh+16] Jan Clemens Gehrke, Klaus Jansen, Stefan EJ Kraft, and Jakob Schikowski.
“A PTAS for Scheduling Unrelated Machines of Few Different Types”.
In: SOSFEM: Theory and Practice of Computer Science. Springer, 2016,
pp. 290–301. cit. on p. 71

[Get+15] Vladimir Getov, Darren J. Kerbyson, Matt Macduff, and Adolfy Hoisie.
“Towards an Application-Specific Thermal Energy Model of Current Pro-
cessors”. In: Proceedings of the 3rd International Workshop on Energy
Efficient Supercomputing. E2SC ’15. Austin, Texas: Association for Com-
puting Machinery, 2015. cit. on p. 45

A6 Bibliography

https://arxiv.org/abs/1912.03088

[GJ90] Michael R. Garey and David S. Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1990. cit. on p. 70

[GMW07] Martin Gairing, Burkhard Monien, and Andreas Woclaw. “A faster com-
binatorial approximation algorithm for scheduling unrelated parallel
machines”. In: Theoretical Computer Science 380.1 (2007), pp. 87–99.

cit. on p. 71

[Gra+79] Ronald L. Graham, Eugene L. Lawler, Jan K. Lenstra, and Alexander
H. G. Rinnooy Kan. “Optimization and Approximation in Deterministic
Sequencing and Scheduling: a Survey”. In: Discrete Optimization II. Vol. 5.
Annals of Discrete Mathematics. Elsevier, 1979, pp. 287–326.

cit. on p. 70

[Gra69] Ronald. L. Graham. “Bounds on Multiprocessing Timing Anomalies”. In:
SIAM Journal On Applied Mathematics 17.2 (1969), pp. 416–429.

cit. on pp. 81, 94

[Gup+16] Harshit Gupta, Amir Vahid Dastjerdi, Soumya Ghosh, and Rajkumar
Buyya. “iFogSim: A Toolkit for Modeling and Simulation of Resource
Management Techniques in Internet of Things, Edge and Fog Computing
Environments”. In: Software: Practice and Experience (June 2016).

cit. on p. 25

[GV13] Gene H. Golub and Charles F. Van Loan. “Matrix Computations, 4th”. In:
2013. cit. on p. 52

[Han+14] Son N. Han, Gyu M. Lee, Noel Crespi, et al. “DPWSim: A Simulation
Toolkit for IoT Applications Using Devices Profile for Web Services”. In:
2014 IEEE World Forum on Internet of Things (WF-IoT). 2014, pp. 544–
547. cit. on p. 24

[Hea+06] Taliver Heath, Ana Paula Centeno, Pradeep George, et al. “Mercury and
Freon: Temperature Emulation and Management for Server Systems”. In:
SIGPLAN Not. 41.11 (Oct. 2006), pp. 106–116. cit. on p. 44

[Hei+17] Franz C. Heinrich, Tom Cornebize, Augustin Degomme, et al. “Predicting
the Energy Consumption of MPI Applications at Scale Using a Single
Node”. In: Cluster 2017. IEEE. Sept. 2017. cit. on pp. 27, 34

[Hei19] Franz Christian Heinrich. “Modeling, Prediction and Optimization of
Energy Consumption of MPI Applications Using SimGrid”. PhD thesis.
Univ. Grenoble Alpes, France, 2019. cit. on p. 25

[HRL18] Petri Hietaharju, Mika Ruusunen, and Kauko Leiviskä. “A Dynamic Model
for Indoor Temperature Prediction in Buildings”. In: Energies 11 (June
2018), p. 1477. cit. on p. 45

[HS87] Dorit S. Hochbaum and David B. Shmoys. “Using Dual Approximation
Algorithms for Scheduling Problems Theoretical and Practical Results”.
In: J. ACM 34.1 (Jan. 1987), pp. 144–162. cit. on pp. 70, 72

Bibliography A7

[HS89] Leslie A. Hall and David B. Shmoys. “Approximation schemes for con-
strained scheduling problems”. In: 30th Annual Symposium on Founda-
tions of Computer Science. Oct. 1989, pp. 134–139. cit. on p. 70

[Hua+06] Wei Huang, Shougata Ghosh, Sivakumar Velusamy, et al. “HotSpot: A
Compact Thermal Modeling Methodology for Early-Stage VLSI Design”.
In: IEEE Transactions on Very Large Scale Integration Systems - VLSI 14
(May 2006), pp. 501–513. cit. on p. 45

[JM08] Ramkumar Jayaseelan and Tulika Mitra. “Temperature Aware Task Se-
quencing and Voltage Scaling”. In: Proceedings of the 2008 IEEE/ACM
International Conference on Computer-Aided Design. ICCAD ’08. San Jose,
California: IEEE Press, 2008, pp. 618–623. cit. on p. 45

[Ked+18] Safia Kedad-Sidhoum, Florence Monna, Grégory Mounié, and Denis Trys-
tram. “A Family of Scheduling Algorithms for Hybrid Parallel Platforms”.
In: International Journal of Foundations of Computer Science 29.1 (2018),
pp. 63–90. cit. on p. 72

[KMT15] Safia Kedad-Sidhoum, Florence Monna, and Denis Trystram. “Scheduling
tasks with precedence constraints on hybrid multi-core machines”. In:
HCW - IPDPS Workshops. 2015, pp. 27–33.

cit. on pp. 73, 76, 81, 82, 87, 94

[KN12] Rini T. Kaushik and Klara Nahrstedt. “T*: A Data-Centric Cooling Energy
Costs Reduction Approach for Big Data Analytics Cloud”. In: SC ’12: Pro-
ceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis. 2012, pp. 1–11. cit. on p. 45

[KP00] Bala Kalyanasundaram and Kirk Pruhs. “Speed is as Powerful as Clairvoy-
ance”. In: J. ACM 47.4 (July 2000), pp. 617–643. cit. on p. 110

[LCF16] Shi-Sheng Li, Ren-Xia Chen, and Qi Feng. “Scheduling Two Job Families
on a Single Machine with Two Competitive Agents”. In: J. Comb. Optim.
32.3 (2016), pp. 784–799. cit. on p. 108

[Leb+19] Adrien Lebre, Jonathan Pastor, Anthony Simonet, and Mario Südholt.
“Putting the Next 500 VM Placement Algorithms to the Acid Test: The
Infrastructure Provider Viewpoint”. In: IEEE Transactions on Parallel and
Distributed Systems 30.1 (Jan. 2019), pp. 204–217. cit. on p. 5

[Lee+10] Victor W. Lee, Changkyu Kim, Jatin Chhugani, et al. “Debunking the
100X GPU vs. CPU Myth: An Evaluation of Throughput Computing on
CPU and GPU”. In: SIGARCH Computer Architecture News 38 (2010),
pp. 451–460. cit. on p. 1

[Leu04] Joseph Y.T. Leung. Handbook of scheduling: algorithms, models, and per-
formance analysis. CRC Press, 2004. cit. on p. 69

[LGL19] Peihai Liu, Manzhan Gu, and Ganggang Li. “Two-Agent Scheduling on
a Single Machine with Release Dates”. In: Computers and Operations
Research 111 (2019), pp. 35–42. cit. on p. 109

A8 Bibliography

[LL78] Jane W. Liu and C. L. Liu. “Performance Analysis of Multiprocessor Sys-
tems Containing Functionally Dedicated Processors”. In: Acta Informatica
10.1 (1978), pp. 95–104. cit. on p. 71

[LQ10] Shaobo Liu and Meikang Qiu. “Thermal-Aware Scheduling for Peak Tem-
perature Reduction with Stochastic Workloads”. In: In 16th IEEE Real-Time
and Embedded Technology and Applications Symposium. 2010, pp. 59–62.

cit. on p. 45

[LST90] Jan Karel Lenstra, David B Shmoys, and Éva Tardos. “Approximation
algorithms for scheduling unrelated parallel machines”. In: Mathematical
programming 46.1-3 (1990), pp. 259–271. cit. on p. 71

[Luc+16] Giorgio Lucarelli, Nguyen Kim Thang, Abhinav Srivastav, and Denis Trys-
tram. “Online Non-preemptive Scheduling in a Resource Augmentation
Model based on Duality”. In: European Symposium on Algorithms (ESA
2016). Vol. 57. 63. Aarhus, Denmark, Aug. 2016, pp. 1–17.

cit. on p. 111

[M60] Meteo60 Website. URL: https://www.meteo60.fr (visited on Sept. 25,
2020). cit. on p. 35

[Mas+20] Eric Masanet, Arman Shehabi, Nuoa Lei, Sarah Smith, and Jonathan
Koomey. “Recalibrating Global Data Center Energy-Use Estimates”. In:
Science 367.6481 (2020), pp. 984–986. eprint: https : / / science .
sciencemag.org/content/367/6481/984.full.pdf. cit. on p. 3

[Mij+15] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, et al. “Network Func-
tion Virtualization: State-of-the-art and Research Challenges”. In: IEEE
Communications Surveys & Tutorials 18.1 (2015), pp. 236–262.

cit. on p. 3

[Moo+05] Justin Moore, Jeff Chase, Parthasarathy Ranganathan, and Ratnesh
Sharma. “Making Scheduling "Cool": Temperature-Aware Workload Place-
ment in Data Centers”. In: Proceedings of the Annual Conference on USENIX
Annual Technical Conference. ATEC ’05. Anaheim, CA: USENIX Association,
2005, p. 5. cit. on p. 45

[Naa+17] Mohammed Islam Naas, Philippe Raipin Parvedy, Jalil Boukhobza, and
Laurent Lemarchand. “iFogStor: An IoT Data Placement Strategy for Fog
Infrastructure”. In: ICFEC’17. 2017, pp. 97–104. cit. on p. 5

[NB17] Jiacheng Ni and Xuelian Bai. “A Review of Air Conditioning Energy Per-
formance in Fata Centers”. In: Renewable and Sustainable Energy Reviews
67 (2017), pp. 625–640. cit. on pp. 3, 43

[NDT16] Yanik Ngoko, Pierre-François Dutot, and Denis Trystram. “Heating as
a Cloud-Service, A Position Paper (Industrial Presentation)”. In: Euro-
Par 2016: Parallel Processing. Springer International Publishing, 2016,
pp. 389–401. cit. on p. 7

Bibliography A9

https://www.meteo60.fr
https://science.sciencemag.org/content/367/6481/984.full.pdf
https://science.sciencemag.org/content/367/6481/984.full.pdf

[Pau+18] Debayan Paul, Tanmay Chakraborty, Soumya Kanti Datta, and Debolina
Paul. “IoT and Machine Learning Based Prediction of Smart Building
Indoor Temperature”. In: Aug. 2018, pp. 1–6. cit. on p. 45

[Pfl+16] T. Pflanzner, A. Kertesz, B. Spinnewyn, and S. Latré. “MobIoTSim: To-
wards a Mobile IoT Device Simulator”. In: 2016 IEEE 4th International
Conference on Future Internet of Things and Cloud Workshops (FiCloudW).
2016, pp. 21–27. cit. on p. 24

[Phi+97] Cynthia A. Phillips, Cliff Stein, Eric Torng, and Joel Wein. “Optimal Time-
Critical Scheduling via Resource Augmentation (Extended Abstract)”. In:
Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of
Computing. STOC ’97. El Paso, Texas, USA: Association for Computing
Machinery, 1997, pp. 140–149. cit. on p. 110

[Pla+09] Judit Planas, Rosa M. Badia, Eduard Ayguadé, and Jesus Labarta. “Hier-
archical task-based programming with StarSs”. In: International Journal
of High Performance Computing Applications 23.3 (2009), pp. 284–299.

cit. on p. 69

[POD15] Wojciech Piatek, Ariel Oleksiak, and Georges Da Costa. “Energy and
Thermal Models for Simulation of Workload and Resource Management
in Computing Systems”. In: Simulation Modelling Practice and Theory 58
(2015). Special Issue on Techniques and Applications for Sustainable
Ultrascale Computing Systems, pp. 40–54. cit. on p. 45

[Poq17] Millian Poquet. “Simulation approach for resource management. (Ap-
proche par la simulation pour la gestion de ressources)”. PhD thesis.
Grenoble Alpes University, France, 2017. cit. on p. 25

[Qay+18] Tariq Qayyum, Asad W. Malik, Muazzam A. Khan Khattak, Osman Khalid,
and Samee U. Khan. “FogNetSim++: A Toolkit for Modeling and Simula-
tion of Distributed Fog Environment”. In: IEEE Access 6 (2018), pp. 63570–
63583. cit. on pp. 23, 25

[RB08] Luiz Ramos and Ricardo Bianchini. “C-Oracle: Predictive thermal man-
agement for data centers”. In: 2008 IEEE 14th International Symposium
on High Performance Computer Architecture. 2008, pp. 111–122.

cit. on p. 44

[Rua+06] Antonio Ruano, E.M. Crispim, Eusébio Conceição, and Maria Lúcio. “Pre-
diction of Building’s Temperature Using Neural Networks Models”. In:
Energy and Buildings 38 (June 2006), pp. 682–694. cit. on p. 45

[Shi+16] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. “Edge
Computing: Vision and Challenges”. In: IEEE Internet of Things Journal
3.5 (Oct. 2016), pp. 637–646. cit. on p. 2

[Ska+04] Kevin Skadron, Mircea R. Stan, Karthik Sankaranarayanan, et al. “Temperature-
Aware Microarchitecture: Modeling and Implementation”. In: ACM Trans.
Archit. Code Optim. 1.1 (Mar. 2004), pp. 94–125. cit. on p. 45

A10 Bibliography

[Ska+17] Olena Skarlat, Matteo Nardelli, Stefan Schulte, Michael Borkowski, and
Philipp Leitner. “Optimized IoT Service Placement in the Fog”. In: SOC
11.4 (Dec. 2017), pp. 427–443. cit. on p. 5

[SOE17] Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy. “EdgeCloudSim: An En-
vironment for Performance Evaluation of Edge Computing Systems”. In:
2017 Second International Conference on Fog and Mobile Edge Computing
(FMEC). May 2017, pp. 39–44. cit. on pp. 23, 25

[Sot+14] Stelios Sotiriadis, Nik Bessis, Eleana Asimakopoulou, and Navonil Mustafee.
“Towards Simulating the Internet of Things”. In: 2014 28th International
Conference on Advanced Information Networking and Applications Work-
shops. 2014, pp. 444–448. cit. on p. 24

[ST09] Erik Saule and Denis Trystram. “Multi-users scheduling in parallel sys-
tems”. In: 23rd IEEE International Symposium on Parallel and Distributed
Processing, IPDPS 2009, Rome, Italy, May 23-29, 2009. 2009, pp. 1–9.

cit. on p. 109

[ST93] David B Shmoys and Éva Tardos. “An approximation algorithm for the
generalized assignment problem”. In: Mathematical programming 62.1-3
(1993), pp. 461–474. cit. on p. 71

[Sub13] R Shankar Subramanian. “"Unsteady Heat Transfer: Lumped Thermal Ca-
pacity Model”. In: Department of Chemical and Biomolecular Engineering,
Clarkson University (2013). cit. on pp. 44, 49

[SV05] Evgeny V. Shchepin and Nodari Vakhania. “An optimal rounding gives a
better approximation for scheduling unrelated machines”. In: Operations
Research Letters 33.2 (2005), pp. 127–133. cit. on p. 71

[THW99] Haluk Topcuoglu, Salim Hariri, and Min-You Wu. “Task scheduling al-
gorithms for heterogeneous processors”. In: Heterogeneous Computing
Workshop (HCW). 1999, pp. 3–14. cit. on pp. 71, 75, 77, 98

[TS07] Bertil Thomas and Mohsen Soleimani-Mohseni. “Artificial Neural Net-
work Models for Indoor Temperature Prediction: Investigations in two
Buildings”. In: Neural Computing and Applications 16 (Jan. 2007), pp. 81–
89. cit. on p. 45

[TZQ18] Shubbhi Taneja, Yi Zhou, and Xiao Qin. “Thermal Benchmarking and
Modeling for HPC Using Big Data Applications”. In: Future Generation
Computer Systems 87 (May 2018). cit. on p. 44

[Vel+13] Pedro Velho, Lucas Schnorr, Henri Casanova, and Arnaud Legrand. “On
the Validity of Flow-level TCP Network Models for Grid and Cloud Simu-
lations”. In: ACM Transactions on Modeling and Computer Simulation 23.4
(Oct. 2013). cit. on p. 23

[WB04] Andreas Weissel and Frank Bellosa. “Dynamic Thermal Management
for Distributed Systems”. In: Workshop on Temperature-Aware Computer
Systems (TACS’04). 2004. cit. on p. 44

Bibliography A11

[Woj14] Janusz Wojtkowiak. “Lumped Thermal Capacity Model”. In: Encyclopedia
of Thermal Stresses. Ed. by Richard B. Hetnarski. Dordrecht: Springer
Netherlands, 2014, pp. 2808–2817. cit. on pp. 44, 46, 50

[WZX13] Nan Wang, Jiangfeng Zhang, and Xiaohua Xia. “Energy Consumption
of Air Conditioners at Different Temperature Set Points”. In: Energy and
Buildings 65 (2013), pp. 412–418. cit. on p. 44

[Xia+18] Ye Xia, Xavier Etchevers, Loïc Letondeur, Thierry Coupaye, and Frédéric
Desprez. “Combining Hardware Nodes and Software Components Ordering-
Based Heuristics for Optimizing the Placement of Distributed IoT Appli-
cations in the Fog”. In: Proc. of the ACM SAC. 2018, pp. 751–760.

cit. on p. 5

[Xu+18] Chengliang Xu, Huanxin Chen, Jiangyu Wang, Yabin Guo, and Yue Yuan.
“Improving Prediction Performance for Indoor Temperature in Public
Buildings Based on a Novel Deep Learning Method”. In: Building and
Environment 148 (Nov. 2018). cit. on p. 45

[YJG03] Andy B. Yoo, Morris A. Jette, and Mark Grondona. “SLURM: Simple
Linux Utility for Resource Management”. In: Job Scheduling Strategies for
Parallel Processing, 9th International Workshop, JSSPP 2003, Seattle, WA,
USA, June 24, 2003, Revised Papers. 2003, pp. 44–60. cit. on p. 2

[YKD11] Azim YarKhan, Jakub Kurzak, and Jack J. Dongarra. QUARK Users’ Guide:
QUeueing And Runtime for Kernels. UTK ICL. 2011. cit. on p. 69

[You+18] Ashkan Yousefpour, Ashish Patil, Genya Ishigaki, et al. “QoS-aware Dy-
namic Fog Service Provisioning”. In: CoRR abs/1802.00800 (2018). arXiv:
1802.00800. cit. on p. 5

[YWC20] Yunqiang Yin, Dujuan Wang, and T.C.E. Cheng. Due Date-Related Schedul-
ing with Two Agents - Models and Algorithms. Springer, 2020.

cit. on p. 109

[Zen+17] Xuezhi Zeng, Saurabh Kumar Garg, Peter Strazdins, et al. “IOTSim: a
Cloud Based Simulator for Analysing IoT Applications”. In: J. Syst. Archit.
72.C (Jan. 2017), pp. 93–107. cit. on p. 24

[Zha+15] Ben Zhang, Nitesh Mor, John Kolb, et al. “The Cloud is Not Enough:
Saving IoT from the Cloud.” In: HotStorage. 2015. cit. on p. 2

[Zha+18] Kaicheng Zhang, Akhil Guliani, Seda Ogrenci-Memik, et al. “Machine
Learning-Based Temperature Prediction for Runtime Thermal Manage-
ment Across System Components”. In: IEEE Transactions on Parallel and
Distributed Systems 29.2 (2018), pp. 405–419. cit. on p. 44

A12 Bibliography

https://arxiv.org/abs/1802.00800

List of Figures

2.1 Scheme of the Qarnot Computing platform. User interfaces are col-
ored in black, computing resources in red, storage resources in green
and decision-making components in blue. 8

2.2 Example of a deployment site with one QBox and several QRads in
a building. The switches, QRads and QMobos are in the same Local
Area Network with 1 Gbps links while the QBox is connected to the
Qarnot platform through the Internet. 12

3.1 Scheme of a simulation with Batsim and SimGrid. 26
3.2 Scheme of the simulated Qarnot Computing infrastructure. 31
3.3 Number of instances using each data-set for the third workload. . . . 37
3.4 Number of transfers and total data transferred in GB. 38
3.5 Waiting time distribution (in seconds) of all instances of the third

workload. 39

4.1 Summary of the energy transfers and temperature changes in a com-
putation step. 51

4.2 Real temperature (black) and temperature prediction of ClosedForm
(red), Keras2 (green) and Lumped (blue) for two QRads. The x-axis
shows the day number since the beginning of the data acquisition
(October 8th, 2019). The y-axis shows the temperature in Celsius
degree. 61

6.1 Possible schedule of HEFT (left) and optimal schedule (right). Notice
that the gray area represents idle times. 80

6.2 Resulting schedule of HLP-EST (left) and optimal schedule (right) for
the proposed instance. Notice that the gray areas represent idle times. 85

6.3 Ratio of makespan over LP ∗ for each configuration grouped by ap-
plication for the off-line algorithms with 2 resource types. Notice that
the big square shows the mean, for each application. 99

6.4 Ratio between the makespans of HLP-EST and HLP-OLS (top), and
HEFT and HLP-OLS (bottom) for each configuration, grouped by
application. Notice that the big square shows the mean, for each
application. 100

A13

6.5 . 101
6.6 . 103
6.7 Ratio between the makespans of Greedy and ER-LS (top), and EFT

and ER-LS (bottom) for each configuration, grouped by application.
Notice that the big square shows the mean, for each application. . . . 105

7.1 Scheme of an Edge site with two tasks queues corresponding to two
agents competing for the computing resources. 108

7.2 Summary of notations for the execution of a local task. 110

List of Tables

4.1 Summary of the notations used in the thermodynamics formulae . . 47
4.2 Computation time comparison of the temperature prediction methods.

Values show the mean time in microseconds to make a prediction for
a total of 1,000 predictions. 63

5.1 Summary of lower bounds and best known approximation or com-
petitive ratios. 72

6.1 Sets of tasks composing the instance for which HEFT achieves an
approximation ratio of m+k

k2

(
1− 1

ek

)
. 78

6.2 Sets of tasks composing the instance for which HLP-EST achieves an
approximation ratio of 6−O(1

m). 82
6.3 Sets of tasks composing the instance for which ER-LS achieves a

competitive ratio of
√

m
k . 91

6.4 Number of tasks for each instance of the Chameleon applications. . . 97
6.5 Number of tasks for each instance of the fork-join application. 97

A14

List of Communications

Additionally, the work conducted in preparation of this dissertation led to the
following communications.

International journals

• Marcos Amaris, Giorgio Lucarelli, Clément Mommessin, and Denis Trystram.
“Generic Algorithms for Scheduling Applications on Heterogeneous Platforms”.
In: Concurrency and Computation: Practice and Experience (July 2018), pp. 1–
29.

• Olivier Beaumont, Louis-Claude Canon, Lionel Eyraud-Dubois, et al. “Schedul-
ing on Two Types of Resources: A Survey”. In: ACM Comput. Surv. 53.3 (May
2020).

International conferences with proceedings

• Marcos Amaris, Giorgio Lucarelli, Clément Mommessin, and Denis Trystram.
“Generic Algorithms for Scheduling Applications on Hybrid Multi-core Ma-
chines”. In: Euro-Par: International Conference on Parallel and Distributed
Computing. 2017, pp. 220–231.

• Adwait Bauskar, Anderson da Silva, Adrien Lebre, et al. “Investigating Place-
ment Challenges in Edge Infrastructures through a Common Simulator”. In:
SBAC-PAD (2020).

• Clément Mommessin, Matthieu Dreher, Tom Peterka, and Bruno Raffin. “Auto-
matic Data Filtering for In Situ Workflows”. In: IEEE International Conference
on Cluster Computing. Hawai, United States, Sept. 2017.

International workshops (invited)

• Clement Mommessin, Giorgio Lucarelli, and Denis Trystram. “Scheduling at
the Edge”. In: 14th Scheduling for Large Scale Systems Workshop. Bordeaux,
France, June 2019, pp. 1–28.

• Denis Trystram, Giorgio Lucarelli, Clement Mommessin, and Yanik Ngoko.
“Challenges for scheduling at the Edge”. In: MCST 2019 - Workshop on Math-
ematical Challenges in Scheduling Theory. Sanya, China, Oct. 2019, pp. 1–
33.

Abstract
The world of Information Technology (IT) is in constant evolution. With the explosion of the number of digital and
connected devices in our everyday life, the IT infrastructures have to face an ever growing amount of users, computing
requests and data generated. The Internet of Things has seen the development of computing platforms at the edge of the
network to bridge the gap between the connected devices and the Cloud, called the Edge Computing. In the domain of
High Performance Computing, the parallel programs executed on the platforms require always more computing power in
a search for improved performances. Besides, we observed in the past years a diversification of the hardware composing
these infrastructures. This complexification of the (network of) computing platforms pose several optimisation challenges
that can appear at different levels. In particular, it led to a need for better management systems to make an efficient
usage of the heterogeneous resources composing these platforms.
The work presented in this thesis focuses on resource optimisation problems for distributed and parallel platforms of the
Edge Computing and High Performance Computing domains. In both cases, we study the modelling of the problems
and propose methods and algorithms to optimise the resource management for better performance, in terms of quality
of the solutions. The problems are studied from both theoretical and practical perspectives. More specifically, we
study the resource management problems at multiple levels of the Qarnot Computing platform, an Edge Computing
production platform mostly composed of computing resources deployed in heaters of smart-buildings. In this regard, we
propose extensions to the Batsim simulator to enable the simulation of Edge Computing platforms and ease the design,
development and comparison of data and job placement policies in such platforms. Then, we design a new temperature
prediction method for smart-buildings and propose a formulation of a new scheduling problem with two agents on
multiple machines.
In parallel, we study the problem of scheduling applications on hybrid multi-core machines with the objective of
minimising the completion time of the overall application. We survey existing algorithms providing performance
guarantees on the constructed schedules and propose two new algorithms for different settings of the problem, proving
performance guarantees for both. Then, we conduct an experimental campaign to compare in practice the relative
performance of the new algorithms with existing solutions in the literature.

Résumé
Le monde des Technologies de l’Information (IT) est en constante évolution. Avec l’explosion du nombre d’appareils
numériques et connectés dans notre vie de tous les jours, les infrastructures IT doivent faire face à une constante
augmentation du nombre d’utilisateurs, de requêtes informatiques et de données générées. L’Internet des Objets a vu
le développement de plates-formes de calcul en bordure du réseau pour combler l’écart entre les appareils connectés
et le Cloud, appelé le Edge Computing. Dans le domaine du Calcul à Haute Performance, les programmes parallèles
exécutés sur les plates-formes demandent toujours plus de puissance de calcul à la recherche d’une amélioration des
performances. De plus, il a été observé au cours des dernières années une diversification des composants matériels
dans ces infrastructures. Cette complexification des (réseaux de) plates-formes de calculs pose plusieurs problèmes
d’optimisation qui peuvent apparaître à divers niveaux. En particulier, cela a mené au besoin de meilleurs systèmes de
gestion pour une utilisation efficace des ressources hétérogènes qui composent ces plates-formes.
Le travail présenté dans cette thèse se focalise sur des problèmes d’optimisation de ressources pour les plates-formes
parallèles et distribuées du Calcul à Haute Performance et du Edge Computing. Dans les deux cas, nous étudions la
modélisation des problèmes et nous proposons des méthodes et des algorithmes de gestion de ressources pour de
meilleures performances. Les problèmes sont étudiés à la fois sur des plans théoriques et pratiques. Plus spécifiquement,
nous étudions les problèmes de gestion de ressources à différents niveaux de la plate-forme Qarnot Computing, une
plate-forme de production Edge principalement composée de ressources de calculs déployées dans des radiateurs de
bâtiments intelligents. Pour cela, nous proposons des extensions au simulateur Batsim pour permettre la simulation de
plates-formes Edge et pour faciliter le design, le développement et la comparaison de politiques de placement de données
et de tâches sur de telles plates-formes. Ensuite, nous proposons une nouvelle méthode de prédiction de la température
pour des bâtiments intelligents et nous formulons un nouveau problème d’ordonnancement à deux agents sur machines
multiples.
En parallèle, nous étudions le problème d’ordonnancement d’applications sur machines multi-cœur hybrides dont
l’objectif est la minimisation du temps total de complétion de l’application. Nous faisons une revue des algorithmes
existants avec des garanties de performance, puis nous proposons deux nouveaux algorithmes pour différentes variantes
du problème et nous donnons des preuves de leur garanties de performance. Enfin, nous conduisons une campagne
expérimentale pour comparer la performance relative de nos algorithmes avec des solutions existantes de la littérature.

	Front Matter
	Cover
	Epigraph
	Acknowledgments
	Abstract / Résumé
	Contents

	Main Matter
	1 Introduction
	1.1 Resource and Job Management in Heterogeneous Platforms
	1.2 Contextualisation of Edge Computing
	1.3 Infrastructure Simulation
	1.4 Plan and Summary of Contributions

	2 Edge Infrastructures: a Case Study
	2.1 The Qarnot Computing Platform

	3 A Simulation Tool for Edge Computing Infrastructures

	Back Matter
	Bibliography
	List of Figures
	List of Tables
	Back Cover

