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Résumé (en Français)

La thèse se compose de 6 articles sur 4 sujets: 3 sur les invariants différentiels, 1 sur les courants harmoniques dirigés, 1 sur les fibrés holomorphes en droites et 1 sur les matrices circulantes.

(1) Sur les invariants différentiels des surfaces paraboliques Nous étudions le problème d'équivalence, sous l'action du groupe SA 3 (R), des surfaces analytiques dans R 3 dont le hessien est de rang constant 1.

Une surface est cylindrique ssi l'invariant relatif d'ordre 3: S ≡ 0. Lorsque S = 0, la surface est conique ssi l'invariant d'ordre 4: W ≡ 0. Les deux invariants X, Y d'ordres 5, 7 sont générateurs de l'algèbre de tous les invariants différentiels.

Lorsque W = 0 = S, la surface est tangentielle à une courbe avec torsion. Alors W et M d'ordre 5 sont générateurs.

Nous généralisons les formules de récurrence de Fels-Olver pour des branches dégénérées en "poussant en avant" les algèbres de Lie prolongées vers le sous-espace des jets paraboliques P J n 2,1 .

(2) Formes normales pour les hypersurfaces C 2,1 rigides dans C 3 Nous étudions les hypersurfaces rigides 2-non-dégénérées de rang de Levi constant 1 modulo le groupe des biholomorphismes rigides. Par une réduction de type Cartan, Foo, Merker et Ta ont obtenu 3 invariants relatifs: V 0 , I 0 (primaires) et Q 0 (dérivé). En coordonnées z, ζ, w = u + iv, pour une surface graphée {u = F (z, ζ, z, ζ)}, nous établissons la forme normale de Poincaré-Moser Nous calculons les invariants relatifs V 0 , I 0 , Q 0 en tout point comme les coefficients G 0,1,4,0 , G 0,2,3,0 , Re G 3,0,1,1 ayant 11, 52, 824 monômes au numérateur. Ceci établit un "pont" entre les théories de Poincaré et de Cartan.

u = zz + 1 2 z 2 ζ + 1 2 z 2 ζ 1 -ζζ + a,
(3) Surfaces non-dégénérés affinements homogènes dans C 3 et algèbres d'invariants différentiels Considérons, sous l'action de Aff 3 (C), une surface complexe dans C 3 dont le hessien est de rang 2. En 1999, Eastwood et Ezhov ont obtenu une liste de modèles homogènes en déterminant les champs de vecteurs tangentiels possibles. À partir des formules de récurrence, nous obtenons des conditions nécessaires pour l'homogénéité. En les résolvant, nous organisons tous les modèles homogènes en branches inéquivalentes.

(4) Courants harmoniques dirigés près des singularités linéarisées non hyperboliques Soit (D 2 , F , {0}) un feuilletage holomorphe singulier du bidisque unité D 2 définie par

z ∂ ∂z + λw ∂ ∂w où λ ∈ C * .
Ce feuilletage a une singularité linéarisée non dégénérée en 0. Soit T un courant harmonique dirigé par F qui ne charge pas les séparatrices (z = 0) et (w = 0). En 2014, Nguyên a prouvé que si 0 est une singularité hyperbolique, i.e. λ / ∈ R, le nombre de Lelong de T en 0 est nul. Dans le cas non hyperbolique λ ∈ R * , en supposant que l'extension triviale à travers 0 est dd c -fermée, nous démontrons que le nombre de Lelong en 0 est: 1) strictement positif si λ > 0;

2) nul si λ ∈ Q <0 ; 3) nul si λ < 0 et si T est invariant sous l'action d'un sous-groupe cofini du groupe de monodromie.

(5) Un contre-exemple à l'extension de type Hartogs des fibrés en droites holomorphes

z ∂ ∂z + λw ∂ ∂w
where λ ∈ C * . Such a foliation has a non-degenerate linearized singularity at 0. Let T be a harmonic current directed by F which does not give mass to any of the two separatrices (z = 0) and (w = 0). In 2014 Nguyên proved that when 0 is a hyperbolic singularity, i.e. λ / ∈ R, the Lelong number of T at 0 vanishes.

For the non-hyperbolic case λ ∈ R * , assuming that the trivial extension across 0 is dd c -closed, we show that the Lelong number at 0 is: 1) strictly positive if λ > 0;

2) zero if λ ∈ Q <0 ; 3) zero if λ < 0 and if T is invariant under the action of some cofinite subgroup of the monodromy group.

(5) A counterexample to Hartogs' type extension of holomorphic line bundles Consider a domain Ω in C n with n 2 and a compact subset K ⊂ Ω such that Ω\K is connected. We address the problem whether a holomorphic line bundle defined on Ω\K extends to Ω.
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Introduction (en français)

Sur les invariants différentiels des surfaces paraboliques

Le contenu de cette section est accepté pour être publié dans Dissertationes Mathematicae.

[1] Chen, Z.; Merker, J.: On differential invariants of parabolic surfaces, to appear in Dissertationes Mathematicae, arxiv.org/abs/1908.07867/, 105 pages.

Nous sélectionnons deux résultats. Pour plus de résultats et de détails, voir l'introduction du Chapitre 4. Soit u = F (x, y) une surface analytique représentée graphiquement dans R 3 dont la Hessienne est de rang constant 1. On peut supposer que F xx F yy -F 2 xy ≡ 0 = F xx . Nous considérons le groupe spécial affine:

SA 3 (R) = SL 3 (R) R 3 ,
qui consiste en des transformations linéaires inversibles (x, y, u) -→ (s, t, v) avec des translations: Nous considérons toujours les transformations spéciales affines proches de l'identité, donc on peut voir SA 3 (R) comme un groupe de Lie local. Le groupe affine complet sera noté A 3 (R) = GL 3 (R) R 3 .

s = a x + b y + c u + d, t = k x + l y + m u + n, v = p x + q y + r u + s,
Dans l'espace-source (x, y, u), nous considérons la surface S 2 ⊂ R 2 x,y × R 1 u représentée graphiquement comme u = F (x, y) avec une série entière convergente F ∈ R{x, y}, et de même, dans l'espace-cible (s, t, v), nous considérons la surface analytique représentée graphiquement comme v = G(s, t)

u = ∞ j=0 ∞ k=0 F j,k x j j! y k k! , v = ∞ l=0 ∞ m=0 G l,m s l l! t m m! .
Problème 1.1.2. Déterminer quand deux surfaces données u = F (x, y) et v = G(s, t) sont SA 3équivalentes.
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Quand cela a lieu, par une transformation spéciale affine, chaque point x, y, F (x, y) est envoyé sur un point s, t, G(s, t) , et une équation fondamentale est satisfaite dans R{x, y} p x + q y + r F (x, y) + s ≡ G a x + b y + c F (x, y) + d, k x + l y + m F (x, y) + n . / / S = 0

/ / W ≡ 0 / / % % X ≡ 0 X = 0 / / % % Y ≡ 0 W = 0 / / % % M ≡ 0 Y = 0 M = 0
Cet arbre se décompose en 3 branches principales, extraites dans trois diagrammes ci-dessous, juste avant les énoncés de 3 théorèmes associés. Dans la première branche du haut, S et P sont invariants relatifs [START_REF] Fels | On relative invariants[END_REF], c'est-à-dire multipliés par un facteur non nul sous l'action du groupe SA 3 (R)

S := F xx F xxy -F xy F xxx F 2 xx , P := 1 3 -5 F 2 xxx + 3 F xx F xxxx F 2 xx ,
tandis que C est un invariant différentiel

C := 1 √ 3 9 F 2 xx F xxxxx -45 F xx F xxx F xxxx + 40 F 3 xxx ± 3 F xx F xxxx ∓ 5 F 2 xxx 3/2 .
Dans la seconde branche du milieu, W est un invariant différentiel, mais il est supposé disparaître identiquement, donc il est trivial, et de plus, X et Y sont des invariants différentiels d'ordre 5 et 7. Leurs expressions explicites se trouvent dans le Chapitre 4.

Dans la troisième, dernière, branche inférieure, W est un invariant différentiel non trivial La branche principale (la plus importante) est:

W := F 2 xx F xxxy -F xx F xy F xxxx + 2 F xy F 2 xxx -2 F xx F xxx F xxy (F xx ) 2 F xx F xxy -F xy F xxx 2/3
F xx = 0 ≡ H F / / S = 0 $ $ W = 0 / / % % M ≡ 0 M = 0.
Théorème 1.1.4. Dand la branche principale S = 0, W = 0:

(1) Il existe un seul invariant différentiel M, d'ordre 5, différentiellement indépendant de W;

(2) Chaque surface S 2 ⊂ R 3 est SA 3 -équivalent à u = x 2 2 + x 2 y 2 + F 3,1

x 3 y 6 + x 2 y 2 2 + F 5,0

x 5 120 + 6 F 3,1 x 3 y 2 12 + x 2 y 3 2 + + j+k 6

F j,k x j y k , avec: F 3,1 = valeur de W à l'origine, F 5,0 = valeur de M à l'origine;

(3) Toute autre surface v = G(s, t) dans la même branche mise sous la forme G l,m s l t m , est SA 3 -équivalente à u = F (x, y) ci-dessus si et seulement si tous les coefficients de Taylor (indépendants) dans l'espace des jets parabolique se correspondent

v = s 2 2 + s 2 t 2 + G 3,
G 3,1 = F 3,1 , G 5,0 = F 5,0 , G l,0 = F l,0 (l 6), G l,1 = F l,1 (l 5).
Il est bien connu que les surfaces paraboliques coïncident avec les surfaces développables. En normalisant les repères mobiles du groupe SA 3 (R) des surfaces paraboliques et en utilisant le formalisme de Cartan, Guggenheimer a obtenu des branches dégénérées de cylindres et de cônes dans [43, p. 295]. Son travail peut être ré-exprimé en termes d'invariants différentiels explicites. La seconde moitié, en particulier la section 5.8, est soumise à Confluentes Mathematici. Nous sélectionnons un résultat principal. Pour plus de résultats et de détails, voir l'introduction du chapitre 5.

Nous commençons par une hypersurface analytique rigide M 5 ⊂ C 3 z,ζ,w=u+iv représentée graphiquement sous la forme:

u = Re(w) = F (z, ζ, z, ζ).
Le rang de Levi constant 1 signifie, éventuellement après une transformation linéaire en C 2 z,ζ , que: (3) satisfait aux conditions de normalisation sporadiques: e iϕ(a+2b-c-2d) .

F zz = 0 ≡ F zz F ζz F zζ F ζζ =: Levi(F ), (1.
G 3,0,0,1 = 0 = G 0,1,3,0 , Im G 3,0,1,1 = 0 = Im G 1,
De plus, les invariants relatifs explicites V 0 , I 0 et Q 0 sont calculés égaux à G 0,1,4,0 , G 0,2,3,0 et Re G 3,0,1,1 ayant 11, 52, 824 monômes dans leurs numérateurs.

Surfaces non-dégénérés affinements homogènes dans C 3 et algèbres d'invariants différentiels

Le contenu de cette section est soumis à Differential Geometry and its Applications.

[3] Chen, Z.; Merker, J.: Affine Homogeneous Surfaces with Hessian rank 2 and Algebras of Differential Invariants, arxiv.org/abs/2010.02873/, 20 pages.

Nous sélectionnons un résultat. Pour plus de résultats et de détails, voir l'introduction du Chapitre 6. Considérons une surface locale holomorphe S 2 dans C 3 x,y,u représentée graphiquement comme

(1.3.1) u = F (x, y) = j+k 0 F j,k x j j! y k k! .
En utilisant les translations de Aff 3 (C), nous pouvons supposer F (0, 0) = 0, donc j + k 1. Le déterminant de la Hessienne

Fxx Fxy

Fyx Fyy est un invariant relatif du groupe GL 3 (C), et nous supposons qu'il ne s'annule jamais. Après des transformations élémentaires de GL 3 (C), on peut prénormaliser u = F comme u = x y + G 3,0

x 3 6 + G 0,3

y 3 6 + j+k 4 G j,k x j j! y k k! ,
où tous les G j,k = G j,k (F •,• ) s'expriment en termes de F l,m avec l + m j + k. Sur un ordinateur, nous stockons ces (longues) expressions.

Le stabilisateur d'une telle forme prénormale consiste en des bi-dilatations (x, y, u) -→ µx, λy, µλu , avec λ, µ ∈ C * , et de l'échange x ←→ y. Par conséquent, G 3,0 et G 0,3 , et même tous les coefficients d'ordre supérieur G j,k , sont des invariants relatifs 1 . Théorème 1.3.2. Dans la première branche B 1 où G 3,0 (F •,• ) = 0 = G 0,3 (F •,• ), les assertions suivantes sont vraies.

(1) L'équation graphique se normalise comme u = x y +

x 3 6 + y 3 6 + j+k 4

I j,k (F •,• ) x j j! y k k! ,
où tous les I j,k sont invariants différentiels, modulo l'échange x ←→ y et le groupe discret

G 0 := x = ω j x, y = ω -j y, u = u | j = 0, 1, 2
où ω := e 2πi/3 , une racine cubique de l'unité.

(2) L'algèbre des invariants différentiels est générée par I 4,0 , I 3,1 , I 1,3 , I 0,4 et toutes leurs dérivées invariantes D α 1 x D α 2 y (•), avec α 1 , α 2 ∈ N. En particulier, I 2,2 peut être résolu I 2,2 = 8 9 I 4,0 I 0,4 -1 9 I 1,3 I 3,1 + 2 9 I 4,0 I 3,1 -1 36 D x I 3,1 + 1 36 D y I 4,0 .

(3) L'espace de modules de tous les modèles homogènes possibles est décrit, dans l'espace des coefficients I 4,0 , I 3,1 , I 2,2 , I 1,3 , I 0,4 ∈ C 5 , par la variété algébrique complexe de dimension 2 définie par Une manière pratique de mesurer la densité des courants harmoniques est d'utiliser la notion de nombre de Lelong introduite par Skoda [START_REF] Skoda | Prolongement des courants, positifs, fermés de Masse finie, (French)[END_REF]. En effet, le Théorème 7.1.2 ci-dessus est équivalent à l'affirmation que le nombre Lelong de T soit nul partout en dehors de E. Le même résultat reste valable aux singularités hyperboliques.

Théorème 1.4.3 (Nguyên [73]). Soit (D 2 , F , {0}) un feuilletage holomorphe sur le bidisque unité D 2 défini par le champ de vecteurs linéaire Z(z, w) = z ∂ ∂z + λ w ∂ ∂w , avec λ ∈ C\R, c'est-à-dire 0 est une singularité hyperbolique. Soit T un courant harmonique dirigé par F qui ne donne de masse à aucune des deux séparatrices (z = 0) et (w = 0). Alors, le nombre de Lelong de T en 0 est nul.

Nguyên a prouvé que le nombre de Lelong de tout courant harmonique dirigé qui ne donne aucune masse aux hyperplans invariants, est nul aux singularités faiblement hyperboliques dans C n [START_REF] Nguyên | Ergodic theorems for laminations and foliations: recent results and perspectives[END_REF]. Ensuite, il applique ce résultat pour prouver l'existence d'exposants de Lyapunov pour des feuilletages holomorphes singuliers sur des surfaces projectives compactes [START_REF] Nguyên | Singular holomorphic foliations by curves I: integrability of holonomy cocycle in dimension 2[END_REF]. Ce résultat est optimal, voir [START_REF] Dinh | Harmonic currents directed by foliations by Riemann surfaces[END_REF]. Le problème de la distribution de masse serait achevé une fois que les comportements des courants harmoniques proches des singularités non hyperboliques et proches des singularités dégénérées seraient compris.

L'article présent [START_REF] Chen | Directed harmonic currents near non-hyperbolic linearized singularities[END_REF] répond (en partie) au problème dans le cas d'une singularité non-hyperbolique linéarisable.

Théorème 1.4.4. Soit (D 2 , F , {0}) un feuilletage holomorphe sur le bidisque unité D 2 défini par le champ de vecteurs linéaire Z(z, w) = z ∂ ∂z + λ w ∂ ∂w , avec λ ∈ R * . Soit T un courant harmonique dirigé par F qui ne donne de masse à aucune des deux séparatrices (z = 0) et (w = 0). Supposons que l'extension triviale T de T en 0 soit dd c -fermée. Alors le nombre de Lelong de T en 0

• est strictement positif si λ > 0,

• est nul si λ ∈ Q <0 .

Pour le feuilletage concerné (D 2 , F , {0}), une feuille locale P α , avec α ∈ C * , peut être paramétrée par (z, w) = (e -v+iu , α e -λv+iλu ). Le groupe de monodromie autour de la singularité est généré par (z, w) → (z, e 2πiλ w). C'est un groupe cyclique d'ordre fini quand λ ∈ Q * , d'ordre infini quand λ / ∈ Q. Nous sommes maintenant prêts à introduire la notion de courant périodique, un outil essentiel de cet article. Un courant harmonique dirigé T est appelé périodique s'il est invariant sous un sous-groupe cofini du groupe de monodromie, c'est-à-dire sous l'action de (z, w) → (z, e 2kπiλ w) pour un entie k ∈ Z >0 . Observons que si λ ∈ Q * alors tout courant harmonique dirigé est périodique. Mais quand λ / ∈ Q * , la périodicité est une hypothèse non triviale. Théorème 1.4.5. En utilisant la même notation que ci-dessus, le nombre de Lelong de courants T en la singularité est 0 lorsque λ < 0 et le courant est périodique.

La question suivante reste ouverte: le nombre de Lelong d'un courant non-périodique T est-il toujours strictement positif lorsque λ < 0 est irrationnel?

Il est à noter qu'en complément de l'ergodicité unique dans l'esprit du Théorème 1.4.1, il existe une autre notion d'ergodicité pour les feuilletages au sens de Hudai-Verenov et Il'yashenko. Plus précisément, le théorème suivant est principalement dû à Il'yashenko.

Pour chaque d 2, on note F d (C 2 ) l'espace des feuilletages F ∈ F d (CP 2 ) qui sont tangents à une droite projective, disons la droite à l'infini L ∞ . Théorème 1.4.6 (Il'yashenko). Pour tout d 2, il existe un ensemble A d ⊂ F d (C 2 ) ayant une mesure de Lebesgue totale telle que tout feuilletage F ∈ A d a un nombre fini de singularités et satisfait:

• Minimalité: chaque feuille (à l'exception de la droite invariante à l'infini) est dense en C 2 ;

• Ergodicité: tout ensemble mesurable de feuilles a une mesure de Lebesgue nulle ou totale;
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• Rigidité: si F ∈ F d (C 2 ) est conjugué à F par un homéomorphisme Φ : CP 2 → CP 2 proche de l'identité, alors F et F sont également conjugués par une transformation affine.

Loray et Rebelo [START_REF] Loray | Minimal, rigid foliations by curves on CP n[END_REF] prouvent le même résultat pour un sous-ensemble ouvert non vide de l'espace de tous les feuilletages holomorphes singuliers avec un degré donné d 2 sur CP k pour toute dimension k 2. Leur preuve repose sur l'étude de certains pseudo-groupes générés par les groupes d'holonomie de plusieurs feuilles (voir par exemple [START_REF] Rebelo | Ergodicity and rigidity for certain subgroups of Diff ω (S 1 )[END_REF]).

1.5 Un contre-exemple à l'extension de type Hartogs des fibrés en droites holomorphes

Le contenu de cette section est publié dans le Journal of Geometric Analysis. Notons O * le faisceau des fonctions holomorphes inversibles. Il est naturel de poser Question 1.5.1. Étant donné un fibré en droites holomorphe L sur Ω\K, existe-t-il un fibré en droites holomorphe L sur Ω tel que L| Ω ∼ = L? De manière équivalente, l'application de restriction

H 1 Ω\K, O * -→ H 1 Ω, O * (1.5.2)
est-elle surjective? Si oui, est-elle bijective?

En 2013, Fornaess, Sibony et Wold ont donné une réponse positive [START_REF] Fornaess | Q-complete domains with corners in P n and extension of line bundles[END_REF] sous certaines hypothèses géométriques.

Théorème 1.5.3. [START_REF] Fornaess | Q-complete domains with corners in P n and extension of line bundles[END_REF] Soit Ω ⊂ C n (n 3) un domaine pseudoconvexe avec une fonction d'exhaustion strictement plurisubharmonique (psh) ρ de classe C ∞ . Donc pour chaque a ∈ R, l'ensemble de sous-niveau K a := ρ -1 (-∞, a] est compact dans Ω. Alors, chaque fibré en droites holomorphe sur Ω\K a s'étend à Ω. L'extension est unique modulo un isomorphisme.

Une autre motivation réside dans l'existence d'hypersurfaces Levi-plates dans P 2 . S'il était possible d'étendre les racines de faisceaux linéaires en dimension 2, une stratégie d'Ohsawa [START_REF] Ivashkovich | Bochner-Hartogs type extension theorem for roots and logarithms of holomorphic line bundles[END_REF] donnerait l'inexistence d'hypersurfaces Levi-plates analytiques réelles dans P 2 . Mais ce n'est pas vrai à cause du contre-exemple d'Ivashokovich dans C 2 [START_REF] Ivashkovich | Bochner-Hartogs type extension theorem for roots and logarithms of holomorphic line bundles[END_REF] où K n'est pas relativement compact.

De plus, si nous supprimons l'hypothèse d'exhaustion psh de K et ne demandons que Ω\K soit connexe comme dans le théorème d'extension de Hartogs, alors les contre-exemples peuvent être explicitement construits dans n'importe quelle dimension n 2 dans mon article [START_REF] Chen | A counterexample to Hartogs' type extension of holomorphic line bundles[END_REF].

Dans C n (n 2), pour 0 < < n, nous introduisons le domaine:

G := z ∈ C n : n j=1 log |z j | 2 < , CHAPTER 1. INTRODUCTION (EN FRANÇAIS)
qui contient le tore standard n-dimensionnel totalement réel:

T n = |z 1 | = • • • = |z n | = 1 ∼ = (S 1 ) n .
Pour 0 < n petit, G apparaîtra comme un mince tube de Grauert autour de T n . Ce tube est borné, strictement pseudoconvexe et admet des fibrés en droites holomorphes non-triviaux puisque H 1 (G ) ∼ = Z ( n 2 ) est non trivial. Nous allons vérifier que le domaine G est relativement compact dans la boule: L'idée clé est de recoller un fibré en droites non trivial L nt sur U = G avec un fibré en droites trivial L triv en dehors de la limite pénétrée (Ω\U ) ∪ U p pour obtenir L cex . Il ne peut pas être étendu à la boule Ω où tous les fibrés en droites holomorphes sont triviaux.

Ω := B 2 √ n e √ centrée à
On pourrait restreindre le fibré en droites L cex sur certains domaines plus petits en dehors d'un ensemble de sous-niveau d'une fonction strictement psh et l'étendre par la méthode FSW, mais ce n'est pas l'extension de L cex puisque le théorème d'unicité pour les fonctions holomorphes ne se généralise pas aux fibrés en droites.

Sur la non-singularité des matrices circulantes

Le contenu de cette section est publié dans Linear Algebra and its Applications.

[6] Chen, Z.: On nonsingularity of circulant matrices, Linear Algebra Appl.

612 (2021), 162-176, DOI : 10.1016/j.laa.2020.12.010, arxiv.org/abs/1810.09893/.

Le résultat est cité par un article [START_REF] Wan | Combination Networks with End-user-caches: Novel Achievable and Converse Bounds under Uncoded Cache Placement[END_REF] et une thèse de doctorat [START_REF] Wan | Limites fondamentales de stockage pour les réseaux de diffusion de liens partagés et les réseaux de combinaison[END_REF] en communication et codage.

SUR LA NON-SINGULARITÉ DES MATRICES CIRCULANTES

Dans ce domaine de la science appliquée, les ingénieurs veulent traduire des signaux en multipliant une matrice circulante unitale C(a 0 , . . . , a n-1 ) :=

     a 0 a 1 • • • a n-1 a n-1 a 0 • • • a n-2
. . . . . . . . . . . .

a 1 a 2 • • • a 0     
, où a 0 , . . . , a n-1 ∈ {0, 1}. Ils s'attendent à ce qu'une telle matrice soit inversible. La matrice singulière triviale apparaît lorsque la matrice est récurrente, c'est-à-dire que la séquence a 0 , . . . , a n est une répétition d'une sous-séquence. Si r|n et a j = a j chaque fois que j ≡ j (mod r) alors C(a 0 , . . . , a n-1 ) a la même rangé que C(a 0 , . . . , a r-1 ), donc singuliére.

Pour exclure les contre-exemples triviaux, les ingénieurs ont besoin de n = 2k + 1 et il y a exactement k uns et k + 1 zéros. Cependant, il y a encore des matrices singulières construites dans mon article [START_REF] Chen | On nonsingularity of circulant matrices[END_REF].

Théorème 1.6.1. [START_REF] Chen | A counterexample to Hartogs' type extension of holomorphic line bundles[END_REF]] Ces matrices sont toujours non singulières si • 2k + 1 = p e pour certains nombre premier p 3, ou • 2k + 1 = p q pour 2 nombres premiers distincts avec 3 p < q.

Pour les autres tailles, c'est-à-dire 2k + 1 = p q r où 3 p < q sont deux nombres premiers distincts et r > 3 est un entier impair, nous pouvons toujours construire des matrices singulières.

Le premier exemple singulier apparaît lorsque (p, q, r) = (3, 5, 3), i.e. 2k + 1 = 45. Par exemple si

E 22 := {0, 9 , 18, 27, 36, 3, 12, 21, 30, 39, 1, 16, 31, 2, 17, 32, 4, 19, 34, 5, 20, 35}. 
et si a j = 1 pour j ∈ E 22 et a j = 0 pour j / ∈ E 22 , alors C(a 0 , ..., a 44 ) est singulière.

La possibilité que de telles matrices soient singulières est plutôt faible, inférieure à 10 -4 lorsque 2k + 1 = 45. Et quand 2k + 1 < 45 toutes les matrices sont inversibles. Mon résultat est satisfaisant pour les ingénieurs puisqu'il leur assure d'utiliser de petites matrices dans les applications [START_REF] Wan | Combination Networks with End-user-caches: Novel Achievable and Converse Bounds under Uncoded Cache Placement[END_REF]Theorem 13,Remark 5].

En 1956, en étudiant le rang minimum des matrices circulantes, Ingleton [START_REF] Ingleton | The rank of circulant matrices[END_REF] a construit le pont entre la décomposition de la fonction caractéristique f (x) := n-1 j=0 a j x j par polynômes cyclotomiques et le rang des matrices circulantes. Dans la démonstration du théorème principal, une version légèrement plus forte de sa décomposition concernant les matrices unitales et le théorème chinois est utilisée.

Chapter 2

General introduction 2.1 On differential invariants of parabolic surfaces

The content of this section is accepted to be published in Dissertationes Mathematicae.

[1] Chen, Z.; Merker, J.: On differential invariants of parabolic surfaces, to appear in Dissertationes Mathematicae, arxiv.org/abs/1908.07867/, 105 pages.

We are selecting two results. For more results and details, see the introduction of Chapter 4. Let u = F (x, y) be a graphed analytic surface in R 3 whose Hessian has constant rank 1. We may assume that

F xx F yy -F 2 xy ≡ 0 = F xx .
We consider the special affine group:

SA 3 (R) = SL 3 (R) R 3 ,
which consists of invertible linear transformations (x, y, u) -→ (s, t, v) coupled with translations:

s = a x + b y + c u + d, t = k x + l y + m u + n, v = p x + q y + r u + s, 1 =
a b c k l m p q r , (2. 1.1) preserving volume and orientation. We have

dim SA 3 (R) = 3 • 3 -1 + 3 = 11.
We will always consider special affine transformations not far from the identity, hence we may view SA 3 (R) as a local Lie group. The full affine group will be denoted A 3 (R) = GL 3 (R) R 3 .

In the source space (x, y, u), we consider surfaces S 2 ⊂ R 2 x,y × R 1 u graphed as u = F (x, y) with convergent power series F ∈ R{x, y}, and similarly, in the target space (s, t, v), we consider graphed analytic

surfaces v = G(s, t) u = ∞ j=0 ∞ k=0 F j,k x j j! y k k! , v = ∞ l=0 ∞ m=0 G l,m s l l! t m m! .
Problem 2.1.2. Determine when two given surfaces u = F (x, y) and v = G(s, t) are SA 3 -equivalent.
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When this holds, by a special affine transformation, every point x, y, F (x, y) is mapped to a point s, t, G(s, t) , and a fundamental equation holds in R{x, y} p x + q y + r F (x, y) + s ≡ G a x + b y + c F (x, y) + d, k x + l y + m F (x, y) + n . Problem 2.1.3. Classify surfaces u = F (x, y) under the SA 3 (R) action, especially, find all (locally) homogeneous models.

Our results, at first, if we abbreviate

root := 0 = F xx 0 ≡ F xx F yy -F 2 xy = F xx = 0 ≡ H F
the branching diagram which summarizes everything is

P ≡ 0 C ≡ 0 S ≡ 0 9 9 
/ / P = 0 9 9

/ / C = 0 root ; ;

/ / S = 0

/ / W ≡ 0 / / % % X ≡ 0 X = 0 / / % % Y ≡ 0 W = 0 / / % % M ≡ 0 Y = 0 M = 0
This tree decomposes in 3 main branches, extracted in three diagrams below, just before the statements of 3 associated theorems.

In the first, top branch, S and P are relative invariants [START_REF] Fels | On relative invariants[END_REF], i.e. are multiplied by a non-zero factor under a SA 3 (R) action

S := F xx F xxy -F xy F xxx F 2 xx , P := 1 3 -5 F 2 xxx + 3 F xx F xxxx F 2 xx , while C is a differential invariant C := 1 √ 3 9 F 2 xx F xxxxx -45 F xx F xxx F xxxx + 40 F 3 xxx ± 3 F xx F xxxx ∓ 5 F 2 xxx 3/2 .
In the second, middle branch, W is a differential invariant, but it is assumed to vanish identically, hence it is trivial, and further, X and Y are differential invariants of order 5 and 7. Their explicit expressions are in Chapter 4.

In the third, last, bottom branch, W is a nontrivial differential invariant

W := F 2 xx F xxxy -F xx F xy F xxxx + 2 F xy F 2 xxx -2 F xx F xxx F xxy (F xx ) 2 F xx F xxy -F xy F xxx 2/3 , 2.2. NORMAL FORMS FOR RIGID C 2,1 HYPERSURFACES M 5 ⊂ C 3
and M is also a differential invariant of order 5, whose rather long explicit expression is in Chapter 4.

In the main (thickest) branch

F xx = 0 ≡ H F / / S = 0 $ $ W = 0 / / % % M ≡ 0 M = 0.
Theorem 2.1.4. Within the main branch S = 0, W = 0:

(1) There is a single differential invariant M, of order 5, differentiably independent of W;

(2) Every surface S 2 ⊂ R 3 is SA 3 -equivalent to u = x 2 2 + x 2 y 2 + F 3,1

x 3 y 6 + x 2 y 2 2 + F 5,0

x 5 120 + 6 F 3,1 x 3 y 2 12 + x 2 y 3 2 + + j+k 6

F j,k x j y k , with: F 3,1 = value of W at the origin, F 5,0 = value of M at the origin;

(3) Any other surface v = G(s, t) within the same branch similarly put into the form G l,m s l t m , is SA 3 -equivalent to u = F (x, y) above if and only if all (independent) Taylor coefficients in the parabolic jet space match

v = s 2 2 + s 2 t 2 + G 3,
G 3,1 = F 3,1 , G 5,0 = F 5,0 , G l,0 = F l,0 (l 6), G l,1 = F l,1 (l 5).
It is well known that parabolic surfaces coincide with developable surfaces. While normalizing the SA 3 (R)moving frames of parabolic surfaces using Cartan's formalism, Guggenheimer obtained degenerate branches of cylinders and cones in [43, p. 295]. His work can be re-expressed in terms of explicit differential invariants.

Theorem 2.1.1. A parabolic surface is a cylinder if and only if S ≡ 0; a cone if and only if S = 0 and W ≡ 0; a tangential surface (tangents of a space curve) if and only if S = 0 and W = 0.

Normal forms for rigid

C 2,1 hypersurfaces M 5 ⊂ C 3
One half of this section [not paper] is published in The Taiwanese Journal of Mathematics. 

u = Re(w) = F (z, ζ, z, ζ).
Constant Levi rank 1 means, possibly after a linear transformation in C 2 z,ζ , that:

F zz = 0 ≡ F zz F ζz F zζ F ζζ =: Levi(F ), (2.2.1)
while 2-nondegeneracy means that:

0 = F zz F zz F zzζ F zzζ . (2.2.2)
We write C 2,1 for the set of such hypersurfaces.

Inspired by Alexander Isaev, we study rigid biholomorphisms:

(z, ζ, w) -→ f (z, ζ), g(z, ζ), ρ w + h(z, ζ) =: (z , ζ , w ).
The Gaussier-Merker model

u = zz + 1 2 z 2 ζ + 1 2 z 2 ζ 1 -ζζ
has 7-dimensional rigid automorphisms group. By a Cartan-type reduction to {e}-structure, Foo-Merker-Ta obtained 3 relative invariants of order 5: V 0 , I 0 (primary) and Q 0 (derived 

u = zz + 1 2 z 2 ζ + 1 2 z 2 ζ 1 -ζζ + a,b,c,d∈N a+c 3 G a,b,c,d z a ζ b z c ζ d ,
with a simplified remainder G which:

(1) is normalized to be an O z,z (3);

(2) satisfies the prenormalization conditions

G = O z (3) + O ζ (1) and G = O z (3) + O ζ (1): G a,b,0,0 = 0 = G 0,0,c,d , G a,b,1,0 = 0 = G 1,0,c,d , G a,b,2,0 = 0 = G 2,0,c,d ; 2.3. AFFINELY HOMOGENEOUS SURFACES
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(3) satisfies in addition the sporadic normalization conditions:

G 3,0,0,1 = 0 = G 0,1,3,0 , Im G 3,0,1,1 = 0 = Im G 1,1,3,0 .
Furthermore, two such rigid C ω hypersurfaces M 5 ⊂ C 3 and M 5 ⊂ C 3 , both brought into such a normal form, are rigidly biholomorphically equivalent if and only if there exist two constants ρ ∈ R * + , ϕ ∈ R, such that for all a, b, c, d:

G a,b,c,d = G a,b,c,d ρ a+c-2 2
e iϕ(a+2b-c-2d) .

Moreover, the explicit relative invariants V 0 , I 0 , and Q 0 are calculated equal to G 0,1,4,0 , G 0,2,3,0 and Re G 3,0,1,1 having 11, 52, 824 monomials in their numerators.

Affinely homogeneous surfaces with Hessian rank 2 and algebras of differential invariants

The content of this section is submitted to Differential Geometry and its Applications. We are selecting one result. For more results and details, see the introduction of Chapter 6. Consider a holomorphic local surface S 2 in C 3 x,y,u graphed as

(2.3.1) u = F (x, y) = j+k 0 F j,k x j j! y k k! .
Using translations of Aff 3 (C), we may assume F (0, 0) = 0, so j + k 1. The Hessian determinant

Fxx Fxy

Fyx Fyy is a GL 3 (C)-relative invariant, and we assume it is nowhere vanishing. After elementary GL 3 (C) transformations, we can prenormalize u = F to

u = x y + G 3,0 x 3 6 + G 0,3 y 3 6 + j+k 4 G j,k x j j! y k k! ,
where all the G j,k = G j,k (F •,• ) express in terms of the F l,m with l + m j + k. On a computer, we store these (long) expressions.

The stabilizer of such a prenormal form consists of bi-dilations (x, y, u) -→ µx, λy, µλu , with λ, µ ∈ C * , and of the swap x ←→ y. Consequently, G 3,0 and G 0,3 , and even all the higher order G j,k , are relative invariants 1 . Admitting Lie's principle that any (relative) invariant can be assumed either ≡ 0 or = 0 after restriction to some open subset, G 3,0 and G 0,3 create 3 branches, up to x ←→ y.

B 1 : G 3,0 = 0 and G 0,3 = 0. B 2 : G 3,0 = 0 and G 0,3 ≡ 0. B 3 : G 3,0 ≡ 0 and G 0,3 ≡ 0.
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Abbreviating 'root' to denote the Hessian rank 2 assumption F 2 1,1 -F 2,0 F 0,2 = 0, here is the complete branching diagram to which the next five statements will refer.

G 3,0 = 0 = G 0,3 G 4,0 = 0 G 3,1 = 0 root B 1 9 9 B 2 / / B 3 % % G 3,0 = 0 ≡ G 0,3 B 2•1 9 9 B 2•2 / / G 4,0 ≡ 0 B 2•2•1 : : B 2•2•2 / / G 3,1 ≡ 0 G 3,0 ≡ 0 ≡ G 0,3 B 3•1 / / B 3•2 % % G 2,2 = 0 G 2,2 ≡ 0
In this tree, any two surfaces landing in one of the six different terminal branches are always A(3)-inequivalent.

Theorem 2.3.1. In the first branch B 1 where

G 3,0 (F •,• ) = 0 = G 0,3 (F •,•
), the following hold.

(1) The graphed equation normalizes as

u = x y + x 3 6 + y 3 6 + j+k 4 I j,k (F •,• ) x j j! y k k! ,
where all I j,k are differential invariants, up to the swap x ←→ y and a discrete group

G 0 := x = ω j x, y = ω -j y, u = u | j = 0, 1, 2
where ω := e 2πi/3 , a cube root of unity.

(2) The algebra of differential invariants is generated by I 4,0 , I 3,1 , I 1,3 , I 0,4 and all their invariant derivatives

D α 1 x D α 2 y (•), with α 1 , α 2 ∈ N.
In particular, I 2,2 can be solved

I 2,2 = 8 9 I 4,0 I 0,4 -1 9 I 1,3 I 3,1 + 2 9 I 4,0 I 3,1 -1 36 D x I 3,1 + 1 36 D y I 4,0 .
(3) The moduli space of all possible homogeneous models is described, in the space of coefficients I 4,0 , I 3,1 , I 2,2 , I 1,3 , I 0,4 ∈ C 5 , by the complex algebraic variety of dimension 2 defined by

(E1) 0 = 8 I 0,4 I 4,0 -I 1,3 I 3,1 + 2 I 3,1 I 4,0 -9 I 2,2 , (E2) 0 = 2 I 0,4 I 1,3 + 8 I 0,4 I 4,0 -I 1,3 I 3,1 -9 I 2,2 , (E3) 0 = 4 I 0,4 I 3,1 -I 1,3 I 2,2 -4 I 2,2 I 4,0 + 2 I 2 3,1 + 9 I 1,3 + 18 I 4,0 , (E4) 0 = 4 I 0,4 I 2,2 -2 I 2 1,3 -4 I 1,3 I 4,0 + I 2,2 I 3,1 -18 I 0,4 -9 I 3,1 .
Precisely, there is a one-to-one correspondence between A(3)-equivalence classes of homogeneous surfaces S 2 ⊂ C 3 in branch B 1 and points I 4,0 , I 3,1 , I 2,2 , I 1,3 , I 0,4 ∈ C 5 satisfying (E1), (E2), (E3), (E4), modulo the swap and G 0 . In Chapter 6" we resolve these equations and reobtain, without overlap, models N 1, N 2, N 3, N 4 of [START_REF] Eastwood | On affine normal forms and a classification of homogeneous surfaces in affine three-space[END_REF].
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It is elementary to verify that any affine vector field which is tangent to the surface is a linear combination of the two independent ones

e 1 := 1 -1 2 I 2,2 u + 1 4 u -1 3 I 1,3 x -2 3 I 4,0 x ∂ x + -1 2 I 3,1 u -2 3 I 1,3 y -1 3 I 4,0 y -1 2 x ∂ y + -I 1,3 u -I 4,0 u + y ∂ u , e 2 := -1 2 I 1,3 u -1 2 y -2 3 I 3,1 x -1 3 I 0,4 x ∂ x + 1 -1 2 I 2,2 u + 1 4 u -1 3 I 3,1 y -2 3 I 0,4 y ∂ y + -I 0,4 u -I 3,1 u + x ∂ u .
Moreover, computing the Lie bracket [e 1 , e 2 ] and subtracting appropriate linear combinations of e 1 and e 2 to get a vector field vanishing at the origin, this pair of vector fields does constitute a 2D Lie algebra with the uniquely defined Lie bracket:

[e 1 , e 2 ] = -2 3 I 3,1 -1 3 I 0,4 e 1 + 1 3 I 4,0 + 2 3 I 1,3 e 2 ,
if and only if equations (E1), (E2), (E3), (E4) hold.

The other branches will be discussed in Chapter 6.

Directed harmonic currents near non-hyperbolic linearized singularities

The content of this section is submitted to Ergodic Theory and Dynamical Systems.

[4] Chen, Z.: Directed harmonic currents near non-hyperbolic linearized singularities, arxiv.org/abs/2011.05909/, 24 pages.

The dynamical properties of holomorphic foliations have drawn great attention recently [START_REF] Nguyên | Ergodic theorems for laminations and foliations: recent results and perspectives[END_REF]. Let us see one of the recent interesting results.

Theorem 2.4.1 (Dinh-Nguyên-Sibony [START_REF] Dinh | Unique Ergodicity for foliations on compact Kahler surfaces[END_REF]). Let F be a holomorphic foliation with only hyperbolic singularities in a compact Kähler surface (X, ω). Assume that F admits no directed positive closed current. Then there exists a unique positive dd c -closed current T of mass 1 directed by F .

The first version was stated for X = P 2 and proved by Fornaess-Sibony [START_REF] Fornaess | Unique ergodicity of harmonic currents on singular foliations of P 2[END_REF]. Later Dinh-Sibony proved unique ergodicity for foliations in P 2 with an invariant curve [START_REF] Dinh | Unique ergodicity for foliations in P 2 with an invariant curve[END_REF]. So one may expect to describe recurrence properties of leaves by studying the density distribution of directed harmonic currents. One has the following the result about leaves. Theorem 2.4.2 (Fornaess-Sibony [START_REF] Fornaess | Unique ergodicity of harmonic currents on singular foliations of P 2[END_REF]). Let (X, F , E) be a hyperbolic foliation on a compact complex surface X with singular set E. Assume that 1. there is no invariant analytic curve; 2. all the singularities are hyperbolic; 3. there is no non-constant holomorphic map C → X such that out of E the image of C is locally contained in a leaf.

Then every harmonic current T directed by F gives no mass to each single leaf.

A practical way to measure the density of harmonic currents is to use the notion of Lelong number introduced by Skoda [START_REF] Skoda | Prolongement des courants, positifs, fermés de Masse finie, (French)[END_REF]. Indeed Theorem 7.1.2 above is equivalent to the statement that the Lelong number of T vanishes everywhere outside E. Another result holds near hyperbolic singularities.

Theorem 2.4.3 (Nguyên [73]). Let (D 2 , F , {0}) be a holomorphic foliation on the unit bidisc D 2 defined by the linear vector field Z(z, w) = z ∂ ∂z + λ w ∂ ∂w , where λ ∈ C\R, that is to say, 0 is a hyperbolic singularity. Let T be a harmonic current directed by F which does not give mass to any of the two separatrices (z = 0) and (w = 0). Then the Lelong number of T at 0 vanishes.
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Nguyên proved that the Lelong number of any directed harmonic current which gives no mass to invariant hyperplanes, vanishes near weakly hyperbolic singularities in C n [START_REF] Nguyên | Ergodic theorems for laminations and foliations: recent results and perspectives[END_REF]. Next, he applies this result to prove the existence of Lyapunov exponents for singular holomorphic foliations on compact projective surfaces [START_REF] Nguyên | Singular holomorphic foliations by curves I: integrability of holonomy cocycle in dimension 2[END_REF]. This result is optimal, see [START_REF] Dinh | Harmonic currents directed by foliations by Riemann surfaces[END_REF]. The mass-distribution problem would be completed once the behaviour of harmonic currents near non-hyperbolic and near degenerate singularities would be understood.

The present paper [START_REF] Chen | Directed harmonic currents near non-hyperbolic linearized singularities[END_REF] answers (partly) the problem in the non-hyperbolic linearizable singularity case.

Theorem 2.4.4. Let (D 2 , F , {0}) be a holomorphic foliation on the unit bidisc D 2 defined by the linear vector field Z(z, w) = z ∂ ∂z + λ w ∂ ∂w , where λ ∈ R * . Let F be a harmonic current directed by F which does not give mass to any of the two separatrices (z = 0) and (w = 0). Suppose the trivial extension T across 0 is dd c -closed. Then the Lelong number of T at 0

• is strictly positive if λ > 0, • vanishes if λ ∈ Q <0 .
For the concerned foliation (D 2 , F , {0}), a local leaf P α , with α ∈ C * , can be parametrized by (z, w) = (e -v+iu , α e -λv+iλu ). The monodromy group around the singularity is generated by (z, w) → (z, e 2πiλ w). It is a cyclic group of finite order when λ ∈ Q * , of infinite order when λ / ∈ Q. It is now ready to introduce the notion of periodic current, an essential tool of this paper. A directed harmonic current T is called periodic if it is invariant under some cofinite subgroup of the monodromy group, i.e. under the action of (z, w) → (z, e 2kπiλ w) for some k ∈ Z >0 . Observe that if λ ∈ Q * then any directed harmonic current is periodic. But when λ / ∈ Q * , the periodicity is a nontrivial assumption.

Theorem 2.4.5. Using the same notation as above, the Lelong number of T at the singularity is 0 when λ < 0 and the current is periodic, in particular, when λ

∈ Q <0 .
It remains open to determine the possible Lelong number values of non-periodic T when λ < 0 is irrational. It is worthy noting that in complement to the unique ergodicity in the spirit of Theorem 2.4.1, there is another notion of ergodicity for foliations in the sense of Hudai-Verenov and Yu. Il'yashenko. Namely, the following theorem is mainly due to Yu. Il'yashenko.

For every d 2, we denote by F d (C 2 ) the space of foliations F ∈ F d (CP 2 ) which are tangent to a projective line, say the line L ∞ at infinity. Theorem 2.4.1 (Il'yashenko). For any d 2, there is a set A d ⊂ F d (C 2 ) having total Lebesgue measure such that any foliation F ∈ A d has a finite number of singularities and satisfies:

• Minimality: each leaf (apart from the invariant line at infinity) is dense in C 2 ;

• Ergodicity: any measurable set of leaves has zero or total Lebesgue measure;

• Rigidity: if F ∈ F d (C 2
) is conjugate to F by an homeomorphism Φ : CP 2 → CP 2 close to the identity, then F and F are also conjugate by an affine transformation.

Loray and Rebelo [START_REF] Loray | Minimal, rigid foliations by curves on CP n[END_REF] prove the same result for a non-empty open subset of the space of all singular holomorphic foliations with a given degree d 2 on CP k for any dimension k 2. Their proof relies on the study of some pseudo-groups generated by the holonomy groups of several leaves (see example [START_REF] Rebelo | Ergodicity and rigidity for certain subgroups of Diff ω (S 1 )[END_REF] etc).

A counterexample to Hartogs' type extension of holomorphic line bundles

The content of this section is published in The Journal of Geometric Analysis. 

H 0 (Ω, O) → H 0 (Ω\K, O) is bijective.
Denote by O * be the sheaf of invertible holomorphic functions. It is natural to ask Question 2.5.2. Given a holomorphic line bundle L over Ω\K, does there exist a holomorphic line bundle L over Ω such that L| Ω ∼ = L? Equivalently, is the restriction map

H 1 Ω\K, O * -→ H 1 Ω, O * (2.5.1)
surjective? If yes, is it bijective?

In 2013, Fornaess, Sibony and Wold gave a positive answer [START_REF] Fornaess | Q-complete domains with corners in P n and extension of line bundles[END_REF] under some geometrical assumptions.

Theorem 2.5.3. [Fornaess-Sibony-Wold 2013] Let Ω ⊂ C n (n 3) be a pseudoconvex domain with a C ∞ strictly plurisubharmonic (psh) exhaustion function ρ, i.e. for each a ∈ R, the sublevel set K a := ρ -1 (-∞, a] is compact in Ω. Then every holomorphic line bundle over Ω\K a extends to Ω. The extension is unique modulo isomorphism.

Another motivation lies in the existence of Levi flat hypersurfaces in P 2 . If it were possible to extend roots of line bundles in dimension 2, a strategy by Ohsawa [START_REF] Ivashkovich | Bochner-Hartogs type extension theorem for roots and logarithms of holomorphic line bundles[END_REF] would give the nonexistence of real analytic Levi flat hypersurfaces in P 2 . But this is not true due to Ivashokovich's counterexample in C 2 [START_REF] Ivashkovich | Bochner-Hartogs type extension theorem for roots and logarithms of holomorphic line bundles[END_REF] where K is not relatively compact.

Moreover, if we remove the psh exhaustion assumption of K and only require Ω\K as in the Hartogs' extension theorem, then counterexamples can be explicitly constructed in any dimension n 2 in my article [START_REF] Chen | A counterexample to Hartogs' type extension of holomorphic line bundles[END_REF].

In C n (n 2), for 0 < < n, we introduce the domain:

G := z ∈ C n : n j=1 log |z j | 2 < ,
which contains the n-dimensional standard totally real torus:

T n = |z 1 | = • • • = |z n | = 1 ∼ = (S 1 ) n .
For 0 < n small, G will appear to be a thin Grauert tube around T n . This tube is bounded, strongly pseudoconvex and admits non-trivial holomorphic line bundles since H 1 (G ) ∼ = Z ( n 2 ) non-trivial. We will check that the domain G is relatively compact in the ball:

Ω := B 2
√ n e √ centered at the origin and of radius 2 √ n e

√

. Also, we will take a small open ball p ⊂ U p ⊂ C n centered at the point:

p := e √ /n , . . . , e √ /n ∈ ∂G ,
penetrating the boundary ∂G ε through a small hole at p.
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Our main result is Theorem 2.5.4. [START_REF] Chen | A counterexample to Hartogs' type extension of holomorphic line bundles[END_REF]] With the compact as the penetrated boundary

K := ∂G U p ,
the open set Ω\K is connected, and there exists a (nontrivial) holomorphic line bundle L cex on Ω\K having the property that there exists no holomorphic line bundle L on Ω with L cex = L Ω\K . Here 'cex' stands for 'counterexample'

The key idea is to glue a nontrivial line bundle L nt on U = G with a trivial line bundle L triv outside the penetrated boundary (Ω\U ) ∪ U p to get L cex . It cannot be extended to the ball Ω where all holomorphic line bundles are trivial.

One could restrict the bundle L cex on some smaller domains outside a sub-level set of a strictly psh function and extend it by FSW method, but it is not the extension of L cex since unicity theorem for holomorphic functions does not generalize to bundles.

On nonsingularity of circulant matrices

The content of this section is published in Linear Algebra and its Applications.

[6] Chen, Z.: On nonsingularity of circulant matrices, Linear Algebra Appl.

612 (2021), 162-176, DOI : 10.1016/j.laa.2020.12.010, arxiv.org/abs/1810.09893/.

The result is cited by a paper [START_REF] Wan | Combination Networks with End-user-caches: Novel Achievable and Converse Bounds under Uncoded Cache Placement[END_REF] and a Phd Thesis [START_REF] Wan | Limites fondamentales de stockage pour les réseaux de diffusion de liens partagés et les réseaux de combinaison[END_REF] in communication and coding.

In this area of applied science, engineers want to translate signals by multipliying a unital circulant matrix

C(a 0 , . . . , a n-1 ) :=      a 0 a 1 • • • a n-1 a n-1 a 0 • • • a n-2 . . . . . . . . . . . . a 1 a 2 • • • a 0     
, where a 0 , . . . , a n-1 ∈ {0, 1}. They expect such matrix to be invertible.

Trivial singular matrix appears when the matrix is reccurent, i.e. the sequence a 0 , . . . , a n is a repetition of a subsequence. If r|n and a j = a j whenever j ≡ j (mod r) then C(a 0 , . . . , a n-1 ) has the same rank as C(a 0 , . . . , a r-1 ), hence singular.

To exclude the trivial counterexamples, the engineers require n = 2k + 1 and there are exactly k ones and k + 1 zeros. However, there are still singular matrices constructed in my paper [START_REF] Chen | On nonsingularity of circulant matrices[END_REF].

Theorem 2.6.1. [START_REF] Chen | A counterexample to Hartogs' type extension of holomorphic line bundles[END_REF]] Such matrices are always nonsingular if • 2k + 1 = p e for some prime p 3, or • 2k + 1 = p q for 2 distinct primes with 3 p < q.

For the other sizes, i.e. 2k + 1 = p q r where 3 p < q are two distinct primes and r > 3 is an odd integer, we can always construct some singular matrices.

The first singular example appears when (p, q, r) = (3, 5, 3), i.e. 2k + 1 = 45. For example if 18, 27, 36, 3, 12, 21, 30, 39, 1, 16, 31, 2, 17, 32, 4, 19, 34, 5, 20, 35}. and if a j = 1 for j ∈ E 22 and a j = 0 for j / ∈ E 22 , then C(a 0 , ..., a 44 ) is singular.

E 22 := {0, 9,
The possibility for such matrices being singular is rather low, smaller than 10 -4 when 2k + 1 = 45. And when 2k + 1 < 45 all matrices are invertible. My result are satisfactory to the engineers since it ensures them to use small matrices in applications [START_REF] Wan | Combination Networks with End-user-caches: Novel Achievable and Converse Bounds under Uncoded Cache Placement[END_REF]Theorem 13,Remark 5].

In 1956, when studying the minimum rank of circulant matrices, Ingleton [START_REF] Ingleton | The rank of circulant matrices[END_REF] built the bridge between the decomposition of the characteristic function f (x) := n-1 j=0 a j x j by cyclotomic polynomials and the rank of circulant matrices. In the proof of the main theorem, a slightly stronger version of his decomposition concerning unital matrices and the Chinese Reminder Theorem is used.

Chapter 3

The power of differential invariants

The chapter summerizes the various problems that differential invariants can attack. More details are shown in the three papers of the next three chapters. The theory of differential invariants originated from the following Cartan's equivalence problem Question 3.0.1. Given M, N ⊂ R n two smooth submanifolds, G a local Lie group acting on R n . Fix p ∈ M, q ∈ N two points. Is there a diffeomorphism ϕ ∈ G between two neighborhoods U p , V q ⊂ R n of p, q such that ϕ(p) = q and ϕ(U p ∩ M ) = V q ∩ N ?

If such a diffeomorphism exists, we say M , N are G-equivalent. In this thesis only analytic problems are treated, i.e. G is a subgroup of local analytic diffeomorphisms and M , N are locally analytic. For example

• the (equi-)affine equivalence problem: when M, N are surfaces in R 3 and G = Aff(3) := GL(3) R 3 or SA(3) := SL(3) R 3 (finite-dimensional).
The equi-affine equivalence problem of generic surfaces with non-degenerate Hessian is treated by Olver in [START_REF] Olver | Differential invariants of surfaces[END_REF];

• the biholomorphic equivalence problem: when M, N are hypersurfaces in C n and G is the group of local biholomorphisms (infinite-dimensional). The problem was raised by Poincaré in [START_REF] Poincaré | Les fonctions analytiques de deux variables complexes et la représentation conforme[END_REF] and the Levinondegenerate case was studied by Chern-Moser in [START_REF] Chern | Real Hypersurfaces in Complex Manifolds[END_REF].

Differential invariants appears to be the central tool for the equivalence problem after decades of study. There are several equivalent ways to express the invariants.

(1) Analytic functions I(x i , u α , ∂u α ∂x i , . . . ), 1 i p, 1 α N -p, on jet spaces J n p,N -p which are invariant under lifted action of the Lie group.

(2) Non-constant coefficients in Cartan's structure equations of moving frames.

(3) (When the Lie group is transitive on the ambient space R N or C N ) Free Taylor coefficients of a normalized power series at the origin.

The first idea is well developed by Fels-Olver [36] [37]. The second comes from Cartan's moving frame method. The third is inspired from the established normal forms: equi-affine case in [START_REF] Spivak | A comprehensive introduction to differential geometry[END_REF], CR case by Chern-Moser in [START_REF] Chern | Real Hypersurfaces in Complex Manifolds[END_REF].

While studying the equi-affine equivalence problem of parabolic surfaces [START_REF] Chen | On differential invariants of parabolic surfaces[END_REF], we set up an elementary but powerful algorithm, power series method of calculating explicit differential invariants from normalized power series. We accomplished the following tasks.

Task 1: Find relations among the three expressions of invariants and calculate explicit differential invariants Between (3) to (1) is our algorithm: take an arbitrary Taylor series of a surface graphed by functions like u = F (x, y) = F j,k j!k! x j y k . We normalize the lower order terms to a simpler function u = G(x, y), that is we calculate explicitly how the Taylor coefficients change under certain group action. Then we get the relation among the normalized coordinates G j,k in term of F j,k . These relations give the explicit differential invariants.

CHAPTER 3. THE POWER OF DIFFERENTIAL INVARIANTS

Between (2) and (1): we computer explicitly the Cartan invariants for an arbitrary surface and they turn out to be the same as the power series invariants, up to multiplication by a constant sometimes.

The explicit invariants sometimes involves hundreds of terms in its numerator, e.g. 824 monomials in Q 0 in [START_REF] Chen | Normal Forms for Rigid C 2,1 Hypersurfaces M 5 ⊂ C 3[END_REF]. Although complicated, the expressions give us explicit algorithm to determine whether the given two manifolds are equivalent immediately.

Task 2: Describe the inequivalent branches with different symmetries and different invariants. This is done by calculating relative invariants. A relative invariant is a function R(x i , u α , ∂u α ∂x i , . . . ), 1 i p, 1 α Np, on jet spaces J n p,N -p which, under lifted action of the Lie group, is multiplied by a nonvanishing function. In case the Lie group contains dilations or rotations, relative invariants will show up and play an important role in branching. The property that R = 0 is invariant, and raises two inequivalent branches at generic points of the manifold: R ≡ 0 and R = 0. In the non-degenerate branch one can further normalize R by using dilations or rotations, while in the degenerate branch one has to normalize higher order terms. Manifolds in the degenerate branch usually have more symmetries and higher order invariants than those in the non-degenerate branch.

Task 3: Find a finite set of generating differential invariants.

The explicit (relative) invariants depends on the choice of normalization, either of power series or of Cartan moving frames. But the generators of all invariants at each order are canonical, in the sense that two generating sets of invariants coming from different normalizations generate each others.

Moreover, lower order invariants can generated higher order invariants. There are several equivalent ways to do this: taking derivatives in Cartan's structure equations, taking covariant derivatives of curvature tensors, taking invariant differentiations of differential invariants.

Suppose the prolonged action of G on a manifold M of dimension p is free at some order r, then there are p linearly independent linear combinations of total differential operators D x i := A i,j D x j , where A i,j are analytic functions on the domain of the branch in J r+1 , sending invariants to higher order invariants. Fels-Olver's recurrence formulas [START_REF] Fels | Moving coframes. I. A practical algorithm[END_REF] describe the relation between derivatives of lower order invariants and higher order ones in the domain of non-degenerate branch in J n p,q . We generalize this theory to the degenerate branches by pushing forward the prolonged Lie algebras on invariant subjets, e.g. the parabolic jet space P J n 2,1 . Task 4: Find recurrence formulas of invariants under infinite-dimensional Lie group actions.

The existence of differential invariants under infinite-dimensional Lie group actions has been already confirmed by Poincaré in 1907 by a plain counting argument [89, pp. 194-195]. He pointed out that real hypersurfaces M 3 ⊂ C 2 must a priori possess infinitely many invariants under biholomorphic transformations. A general theorem to this effect was proved in [START_REF] Tresse | Sur les invariants différentiels des groupes continus de transformations[END_REF] by elimination.

Fels-Olver's recurrence formulas, although powerful, require the freeness of the group action on the jet space of certain order. But an infinite-dimensional Lie group, e.g. the group of biholomorphisms, never act freely on any jet space of finite order. Cartan's reduction method gives some fundamental relative invariants like I 0 , V 0 , Q 0 in [START_REF] Foo | Rigid equivalences of 5-dimensional 2-nondegenerate rigid real hypersurfaces M 5 ⊂ C 3 of constant Levi rank 1[END_REF]. Still, an analogue of recurrence formulas among derivatives of the invariants are expected.

Inspired from Chern-Moser's pre-normalization [START_REF] Chern | Real Hypersurfaces in Complex Manifolds[END_REF], in [START_REF] Chen | Normal Forms for Rigid C 2,1 Hypersurfaces M 5 ⊂ C 3[END_REF] we truncate the group of rigid biholomorphisms the moduli space of rigid C 2,1 hypersurfaces M 5 ⊂ C 3 by degrees. The infinite-dimensional Lie group action factorises through the finite-dimensional truncations. The group orbits, the cross-sections in the jet spaces and the Fels-Olver's moving frames truncated to each order, form compatible projective systems. From order 6 we see free actions. The recurrence formulas for the truncated group thus provide us the relations among differential invariants under profinite-dimensional Lie groups.

Task 5: Classifying homogeneous manifolds into inequivalent branches.

A manifold is homogeneous if and only if the Lie group acts transitively on it. One direct method is solve the vector fields L tangent to the power series candidates u = F (x i ) [START_REF] Eastwood | On affine normal forms and a classification of homogeneous surfaces in affine three-space[END_REF][START_REF] Loboda | Holomorphically homogeneous real hypersurfaces in C 3[END_REF]. The solvability conditions of the system L u -F (x i ) | u=F (x i ) turn out to be algebraic equations on the Taylor series of F (x i ).

While hunting the affine homogeneous surfaces in [START_REF] Chen | Affine Homogeneous Surfaces with Hessian rank 2 and Algebras of Differential Invariants[END_REF], we discover another method by using the recurrence formulas. A necessary condition of a manifold being homogeneous is that all its differential invariants I being constant. Hence 0 = D x i I = D x i D x j I = . . . , which provide us with infinitely many algebraic equations on differential invariants. It turns out that finitely many lower order equations are sufficient for us to determine the existence of homogeneous manifolds and to calculate their differential invariants. By this method we can classify homogeneous models into inequivalent branches. Task 6: Find geometric interpretations of differential invariants, or equivalently, find invariant PDE's of invariant geometric properties.

The curvature κ and the torsion τ of a curve in R 3 are euclidean invariants. The curve is planar iff τ ≡ 0, and is a straight line iff κ ≡ 0. These are PDE's of order 2 and 3, invariant under euclidean transformations. They describe the invariant properties of being planar and being straight.

Higher order analogues are expected. It is well known that parabolic surfaces coincide with developable surfaces. While normalizing the SA 3 (R)-moving frames of parabolic surfaces using Cartan's formalism, Guggenheimer obtained degenerate branches of cylinders and cones in [43, p. 295]. Being cylindrical and conical are SA 3 (R) invariant properties. We express such properties in terms of the explicit relative invariant

S := F xx F xxy -F xy F xxx F 2 xx ,
of order 3 and the invariant

W := F 2 xx F xxxy -F xx F xy F xxxx + 2 F xy F 2 xxx -2 F xx F xxx F xxy (F xx ) 2 F xx F xxy -F xy F xxx 2/3
, of order 4: a parabolic surface is a cylinder if and only if S ≡ 0; a cone if and only if S = 0 and W ≡ 0; a tangential surface (tangents of a space curve) if and only if S = 0 and W = 0.

After the treatment of the rank 2 case by Olver, we determine the structures of various algebras of differential invariants in all possible branches, and we employ the power series method in order to compute all incoming relative or absolute differential invariants.

Starting with our rank 1 root hypothesis

F xx = 0 ≡ F xx F yy -F 2
xy , we quickly encounter the first relative differential invariant

S := F xx F xxy -F xy F xxx F 2 xx . A surface {u = F (x, y)} is SA 3 (R)-equivalent to a curve {u = F (x)} times R y (a cylinder) if and only if S ≡ 0.
This branch S ≡ 0 amounts to the (well known) A 2 (R)-equivalence problem for planar curves.

In the more interesting branch S = 0, we find the first absolute differential invariant

W := F 2 xx F xxxy -F xx F xy F xxxx + 2 F xy F 2 xxx -2 F xx F xxx F xxy (F xx ) 2 F xx F xxy -F xy F xxx 2/3
. When W ≡ 0, the surface is conical, and we establish that two differential invariants, X of order 5 and Y of order 7, generate the full algebra of differential invariants.

In the thickest branch W = 0 ( = S), we find another differential invariant M of order 5 whose numerator has 57 differential monomials, and we show that M, W are generators.

Mainly, we set up the celebrated Fels-Olver recurrence formulas for differential invariants under the assumptions that one or two (relative) differential invariants vanish identically. These degenerate cases, apparently, have not been studied before in the literature, and will be developed further.

Introduction

In continuous and discrete mathematics, group actions are widespread. They also arise in various fields of applied science, especially in classical mechanics [START_REF] Auffray | A minimal integrity basis for the elasticity tensor[END_REF][START_REF] Desmorat | Harmonic factorization and reconstruction of the elasticity tensor[END_REF][START_REF] Olive | About Gordan's algorithm for binary forms[END_REF]. Invariants may be used e.g. to take into account physical symmetries of a body, with the aim of reducing the data size of its analysis.

When available, the associated (algebraic or differential) group invariants enable one to solve equivalence problems, to classify geometric objects, to set up canonical forms for them, to know their symmetries, and to find complete lists of homogeneous models.

This article deals more specifically with differential invariants, group actions being in general nonlinear. It also attempts to handle extended explicit expressions.

Our computational requirements are: be algorithmic, be explicit, and be synthetic -what algorithms usually are not! Two main goals are in our minds: compute collections of generating sets of invariants, and understand differential relations among such collections.

We will touch neither rewriting procedures in terms of the generating invariants, nor algorithms for computing inside algebras of invariants. In any case, as soon as the number of independent variables becomes 2, it is well known that one encounters a high complexity in symbolic expressions. Although objects are inserted in several theoretically satisfactory frameworks, everybody is often left with frustratingly small achievements while playing on any computer.

Most problems in the (infinitely wide) Lie-Cartan theory come up with a given action of a certain rdimensional Lie group G acting on an m-dimensional manifold M with m 2. Attacking these questions often involves studying the induced action of G on submanifolds S p ⊂ M m of a prescribed dimension p, with 1 p m -1.

While exploring deeper such problems, the occurrence of certain submanifolds S p ⊂ M m repeats itself as producing certain (new) sub-submanifolds S p 2 2 ⊂ S p ⊂ M m , sub-sub-submanifolds S p 3 3 ⊂ S p 2 2 ⊂ S p ⊂ M m , and so on, most of the times after replacing M m with some appropriate, cut-down and branched, jet subspace. Then new (invariant) equations appear, new (invariant) bifurcations are created. So here S p and M m should be thought of as being sub-objects within some of the branches of a certain root problem lying at departure.

Since the dimension r of the group is often (much) higher than the dimension m of the ambient space, in order to somehow 'des-intricate' the group action, one prolongs it to the jet bundles J n p,q of any order n 0, where q := mp is the codimension. Certain general (but complicated) formulas going back to Lie [START_REF]Theory of Transformation Groups I. General Properties of Continuous Transformation Groups. A Contemporary Approach and Translation[END_REF]Ch. 25]) show how tangent directions attached to S p ⊂ M m , and also higher order jets as well, transfer through diffeomorphisms from the base M to the jet bundles J n p,q of any order n. Chapter 4.3 presents these formulas, and thanks to them, the action of G on M lifts as a G-action on every jet space J n p,q . The geometry of submanifolds under Lie transformation groups: their equivalences, their symmetries, their normal forms; is entirely governed by what is known as differential invariants. They are best visualized inside J n p,q .

A differential invariant is a (perhaps locally defined) real-valued function I : J n p,q -→ R that is invariant under the prolonged group action. Any finite-dimensional Lie group action admits an infinite number of functionally independent differential invariants of progressively higher and higher orders.

A universal question is to find a minimal set of generating differential invariants. Certainly, the minimal number of generating differential invariants cannot be fixed a priori: it strongly depends on the particularities of the group action. Since the 19 th Century, the question of finite generation of differential invariants was addressed by several authors, also in the more general context of (infinite-dimensional) Lie pseudo-groups. The fundamental Basis Theorem states that all the differential invariants can be generated, from a finite number of low order invariants, by repeated invariant differentiations.

Serendipitously indeed ( [START_REF] Fels | Moving coframes. II. Regularization and theoretical foundations[END_REF]), there always exist p = dim S linearly independent invariant differential operators D 1 , . . . , D p with the property that each D j maps every differential invariant I to a differential invariant D j I . The great value of such invariant derivations is that one can explicitly write down their action on invariantized jet monomials, and compare the outcome with higher order invariants. This comparison, which 4.1. INTRODUCTION 43 incorporates appropriate correction terms, is captured by the celebrated recurrence formulas, set up in the widest context by Fels-Olver in [START_REF] Fels | Moving coframes. II. Regularization and theoretical foundations[END_REF], see also Chapter 4.14.

Let us repeat that, notwithstanding their power, recent symbolic implementations are often led to unsurmountable obstacles while attempting to explicitly compute invariants, or even cross-sections to the G-action on jet spaces. Our Chapter 4.11 illustrates this difficulty. But serendipitously again, from the computational side, a minimal amount of data is necessary to set up the key recurrence formulas of Fels-Olver. Remarkably, these formulas can be explicitly determined without knowing the actual formulas for either the differential invariants, or the invariant differential operators, or even the moving frame itself (!).

Indeed, the recurrence formulas can be written with only the knowledge of the infinitesimal generators of the action and the equations of the cross-section. Therefore, understanding these recurrence formulas is the 'master key', according to Olver, that 'unlocks' the structure of the algebra of differential invariants, the determination of generators, and the classification of syzygies. The only required ingredients are the prolongation formulas for the infinitesimal generators, or, equivalently, the Lie matrix, along with the specification of the cross-section normalizations.

Nevertheless, our slogan will be:

Explicit expressions of invariants are necessary in exploring classification branches.

In differential invariant contexts where no branching is tracked, explicit expressions of invariants are not crucial. In [START_REF] Olver | Differential invariants of surfaces[END_REF], Olver showed that the algebra of differential invariants of a suitably generic hyperbolic or elliptic surface S ⊂ R 3 under the equi-affine group action is generated by a single differential invariant, the third order Pick invariant, with its invariant derivatives. The proof was based on the straight equivariant approach to the method of moving frames. We believe anyway that classification bifurcations also exist for hyperbolic and elliptic surfaces. (at all points (x,y)), then creates a differential relation which must be differentiated again and again to build up the relevant parabolic jet spaces PJ n 2,1 , of any order n 2. These differential relations also have strong influence on the recurrence formulas. Knowing explicitly the Hessian is unavoidable to study this branch: the category of parabolic surfaces. Other more complicated branching invariants will come up in our deeper explorations, as we will summarize in the next Chapter 4.2.

The present article therefore opens up a new natural context of jet spaces with differential relations, in which the (cut-down) pulled back recurrence formulas have an entirely invariant meaning. The principle of passing to (bifurcating) submanifolds will be illustrated several times on examples.

It is well known (see Chapter 4.3) that the coefficients of the prolonged infinitesimal generators of any group action are polynomial functions of the jet coordinates. In particular, if the action of G is transitive on M , which is often the case, and if one normalizes all the order zero coordinates, this implies that the Maurer-Cartan invariants, which appear in the fundamental recurrence formulas, are also rational functions of the collection of generating invariants. As a consequence of the theory, all the higher order differential invariants are rational functions of the generating differential invariants.

Rationality holds true of all the structures studied in this article. The same algebraicity features hold for a large class of pseudo-group actions: the differential invariant algebra is intrinsically rational, in the sense that all recurrence formulas, commutation relations and syzygies, involve rational functions of the basic differential invariants, all of order 1.

Beyond transitivity of the G-action, in Theorem 4.12.6, we provide a condition on G insuring that all basic differential invariants are of order 2.

Last but not least, following the approach of Fels-Olver (cf. the recent [START_REF] Olver | Normal forms for submanifolds under group actions, Symmetries, differential equations and applications[END_REF]), we offer in this article another interpretation of Cartan's method of G-structure reductions, the application of which goes beyond the plain determination of normal forms for power series given at the origin. One of its advantages is that it includes an explicit approach to finding generating invariants. This method will be presented by elaborating on several examples, before a general theoretical description which will be expressed in a forthcoming publication.
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Presentation of the Results on Parabolic Surfaces

We can now start a precise desciption of our results. Several aspects are true generally, but we restrict ourselves to a presentation of the 2-dimensional case. Most of our considerations will be of local nature. We will assume real analyticity throughout.

We consider the special affine group:

SA 3 (R) = SL 3 (R) R 3 ,
which consists of invertible linear transformations (x, y, u) -→ (s, t, v) coupled with translations:

s = a x + b y + c u + d, t = k x + l y + m u + n, v = p x + q y + r u + s, 1 = a b c k l m p q r , (4.2.1)
preserving volume and orientation. We have

dim SA 3 (R) = 3 • 3 -1 + 3 = 11.
We will always consider special affine transformations not far from the identity, hence we may view SA 3 (R) as a local Lie group. The full affine group will be denoted

A 3 (R) = GL 3 (R) R 3 .
In the source space (x, y, u), we consider surfaces S 2 ⊂ R 2 x,y × R 1 u graphed as u = F (x, y) with convergent power series F ∈ R{x, y}, and similarly, in the target space (s, t, v), we consider graphed analytic

surfaces v = G(s, t) u = ∞ j=0 ∞ k=0 F j,k x j j! y k k! , v = ∞ l=0 ∞ m=0 G l,m s l l! t m m! .
Problem 4.2.2. Determine when two given surfaces u = F (x, y) and v = G(s, t) are SA 3 -equivalent.
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When this holds, by a special affine transformation, every point x, y, F (x, y) is mapped to a point s, t, G(s, t) , and a fundamental equation holds in R{x, y}

p x + q y + r F (x, y) + s ≡ G a x + b y + c F (x, y) + d, k x + l y + m F (x, y) + n .
Problem 4.2.3. Classify surfaces u = F (x, y) under the SA 3 (R) action, especially, find all (locally) homogeneous models.

Problem 4.2.3 has been studied by means of Lie-theoretical methods. The classification of all A 3 (R)homogeneous surfaces with identically vanishing Pick invariant in general affine geometry was obtained in [START_REF] Abdalla | Affine homogeneous surfaces in R 3 with vanishing Pick invariant[END_REF].

In [START_REF] Doubrov | Homogeneous surfaces in the three-dimensional affine geometry[END_REF], all locally homogeneous two-dimensional surfaces in the three-dimensional affine geometry were described, with a list of 18 items. There exist similar classifications for equiaffine geometry [START_REF] Guggenheimer | Differential Geometry[END_REF][START_REF] Jensen | Higher order contact of submanifolds of homogeneous spaces[END_REF].

We denote a general element of the special affine group by g ∈ SA 3 (R), and the general transformation as: with a nowhere vanishing factor, at least when g ∈ SA 3 (R) is not far from the identity.

s = s g, x, y, u , t = t g, x, y, u , v = v g, x
A starting observation (Section 4.7) is that the Hessian determinant is a relative invariant

G ss G tt -G 2 st = nonzero • F xx F yy -F 2 xy ,
even under general affine transformations. Moreover, Proposition 4.8.6 shows that the rank of the Hessian matrix remains unchanged through any (special) affine transformation.

For the general theory of surfaces, this implies an elementary initial branching 

Hessian F ≡ 0 0 0 0 / / {u = 0} u = F (x, y)

CHAPTER 4. ON DIFFERENTIAL INVARIANTS OF PARABOLIC SURFACES

Geometrically, it is clear that the case where the Hessian matrix is identically zero

0 ≡ F xx ≡ F xy ≡ F yy ,
is flat in the proper sense, hence there exists a special affine transformation which maps any such u = F (x, y) to a reference plane {v = 0}. This branch is hence trivial. The rank 2 case is a wide story in itself, it conducts to the so-called Pick invariant1 , of order 3, and to further order 4 differential invariants, cf. [START_REF] Spivak | A comprehensive introduction to differential geometry[END_REF][START_REF] Olver | Differential invariants of surfaces[END_REF].

In this memoir, we will study the middle branch only. After a rotation in the (x, y) space, we can assume that F xx (x, y) = 0 is nowhere vanishing (our reasonings are local). Then our main root hypothesis will constantly be

F xx = 0 ≡ F xx F yy -F 2 xy .
Solving

F yy ≡ F 2 xy F xx ,
we may differentiate once

F xyy = 2 F xy F xxy F xx - F 2 xy F xxx F 2 xx , F yyy = 3 F 2 xy F xxy F 2 xx -2 F 3 xy F xxx F 3 xx ,
and so on.

(1,0)(2,0) (0,0) (0,1)(1,1)

(n-1,1)

(n,0) j +k = n It is easy to convince oneself (see Section 4.10) that every partial derivative F x j y k with k 2 expresses in terms of the partial derivatives F x j j j+k , F x j y j j+k-1 .

This conducts us to introduce the parabolic jet spaces of any order n 2

PJ n 2,1
x, y, uy, ... ... u x n-1 y , u, ux, ..., u x n-1 , u x n ∈ R 3+2n .

In effective differential invariant theory, for instance in the case of (not necessarily parabolic) surfaces, under any action of a (local) Lie group G, certain relative invariants are encountered, call them

P = P x, y, u, u x j y k 1 j+k n , Q, R, . . .
According to Definition 4.2.6, their zero-sets P = 0 , Q = 0 , . . . , are invariant under G. They are responsible for the creation of branches and of further subbranches

Q ≡ 0, P ≡ 0 6 6 / / Q = 0, ( * ) 7 7 
' '

P = 0 / / ( ( R ≡ 0, R = 0.
We adopt Lie's principle of thought ([59, Chap. 1]), which admits that either a (relative) differential invariant is identically zero, or it is assumed to be nowhere zero, after restriction to an appropriate open subset. Mixed cases where some (relative) invariant is nonzero on some nonempty open subset and vanishes on a nonempty closed subset are excluded from exploration.

Importantly, as soon as some (relative) invariant vanishes identically, like our Hessian determinant

H F := F xx F yy -F 2 xy ,
one must express all differential consequences of this assumption in order to explore properly the concerned branch. When, on some (sub)branch, there occurs a simultaneous vanishing of two or more (relative) invariants, one must at first express the differential consequences under a closed workable form, like setting up a meaningful Gröbner basis for the differential ideal generated.

We can now start to present our results. At first, if we abbreviate

root := 0 = F xx 0 ≡ F xx F yy -F 2 xy = F xx = 0 ≡ H F
the branching diagram which summarizes everything is

P ≡ 0 C ≡ 0 S ≡ 0 6 6 
/ / P = 0 6 6 / / C = 0 root 7 7 
/ / S = 0 / / ! ! W ≡ 0 / / ( ( X ≡ 0 X = 0 / / ( ( Y ≡ 0 W = 0 / / ( ( M ≡ 0 Y = 0 M = 0 48 CHAPTER 4.
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This tree decomposes in 3 main branches, extracted in three diagrams below, just before the statements of 3 associated theorems.

In the first, top branch, S and P are relative invariants

S := F xx F xxy -F xy F xxx F 2 xx , P := 1 3 -5 F 2 xxx + 3 F xx F xxxx F 2 xx , while C is a differential invariant C := 1 √ 3 9 F 2 xx F xxxxx -45 F xx F xxx F xxxx + 40 F 3 xxx ± 3 F xx F xxxx ∓ 5 F 2 xxx 3/2 .
In the second, middle branch, W is a differential invariant, but it is assumed to vanish identically, hence it is trivial, and further, X and Y are differential invariants In the third, last, bottom branch, W is a nontrivial differential invariant

X := 1 9 F xx F xxy -F xy F xxx 9 F 2 xx F xxxxx -45 F xx F xxx F xxxx + 40 F 3 xxx F 6 xx , Y := 1 18 (FxxyFxx -FxxxFxy)
W := F 2 xx F xxxy -F xx F xy F xxxx + 2 F xy F 2 xxx -2 F xx F xxx F xxy (F xx ) 2 F xx F xxy -F xy F xxx 2/3
, and M is also a differential invariant It is important to show these invariants, because they not only cause the branchings, but also, they will constitute generating collections for the full algebras of differential invariants.

We may now state our results for the three kinds of branches. We always start from our root assumption

P ≡ 0 C ≡ 0 S ≡ 0 6 6 
/ / P = 0 6 6 / / C = 0 F xx = 0 ≡ H F 5 5
The full affine group in two dimensions is

A 2 (R) = GL 2 (R) R 2 .
Theorem 4.2.7. Within the branch S ≡ 0:

(1) Every surface S 2 ⊂ R 3 is special affinely equivalent to the product of a curve in R 1+1

x,u and R 1 y , and SA 3 (R)-equivalences amount to A 2 (R)-equivalences of such curves;

(2) There is a relative invariant P of order 4;

(3) When P ≡ 0, the surface is SA 3 -equivalent to u = x 2 , the product of a parabola and R 1 y , and conversely; (4) When P = 0, the surface is, in a unique way, SA 3 -equivalent to

u = x 2 2! ± x 4 4! + F 5,0 x 5 5! + j 6 F j,0 x j j! ,
and the collection of coefficients F 5,0 , F j,0 j 6 is in one-to-one correspondence with equivalence classes. Infinitely many differential invariants correspond to these coefficients F j,0 , as we will soon explain.

Question 4.2.8. How to compute explicitly differential invariants?

It is clear that SA 3 (R) contains all translations

s = x + d, t = y + n, v = u + s.
This implies -exercise from Definition 4.2.4, or see Theorem 4.12.3 -that every differential invariant

I x, y, u absent , u x j y k 1 j+k n ,
must depend only on jet derivatives of order 1.

To compute these invariants I, we start from a power series at the origin

u = j+k 1 F j,k x j j! y k k! ,
and we progressively perform (several) 'simple', 'natural', special affine transformations in order to annihilate normalize as much as possible Taylor coefficients F j,k . Rigorous descriptions illustrated by examples will be provided in Sections 4.13, 4.16, 4.17, 4.18, 4.19, but here, we only present general ideas.

One main feature of the process is its progressive nature.

At the end, we reach a certain 'normal form'

v = l+m 1 G l,m s l l! t m m! ,
in which several coefficients G l,m are 'simplified', for instance as in Theorem 4.2.7 above

G 1,0 = G 0,1 = 0, G 2,0 = 1, G 3,0 = 0, etc.
Certainly, the full composition of all the progressively normalizing maps belongs to SA 3 (R), hence is of the form (4.2.1) for some specific constants a, . . . , s. These constants are complicated at the end, but step-by-step they are simple, only the full composition of normalizing maps creates complexity. After the process is pushed at its farthest point, the identity map of SA 3 (R) is the only transformation which leaves untouched the 'normal form' of the power series v = G(s, t).

While normalizing low order Taylor coefficients, we also keep track (on a computer) of the way how the other (higher order) Taylor coefficients are modified. At the end, we receive formulas

G l,m = Π l,m F j,k 1 j+k l+m (l + m 1).
Then granted that F j,k = u x j y k (0, 0), all the desired genuine differential invariants are obtained simply by replacing in these formulas Taylor coefficients by jet coordinates I l,m := Π l,m u x j y k (x, y) 1 j+k l+m

(l + m 1).
Importantly, the hypothesis that the group contains all translations guarantees (Theorem 4.12.3) that we obtain the expressions of all differential invariants at every point (x, y) near the origin. This process could be explained abstractly in any dimension (forthcoming). During normalizations, relative invariants play a crucial role. Observation 4.2.9. Any (relative) invariant P:

• Either creates a new branch P ≡ 0 to be explored farther;

• or is absorbed, when P = 0, into some constant by normalization. This is, for instance, true of S, P, W, X: when they are nonzero, they will be used to normalize some Taylor coefficients.

Theorem 4.2.10. With the assumption S = 0, there is exactly one differential invariant of fourth order, W.

We can now state our second result for the second, middle branch (The third, bottom branch will also assume S = 0)

F xx = 0 ≡ H F / / S = 0 / / W ≡ 0 / / ( ( X ≡ 0 X = 0 / / ( ( Y ≡ 0 Y = 0
Theorem 4.2.11. Within the branch S = 0, W ≡ 0:

(1) There is a single invariant, X, of order 5;

(2) When X ≡ 0, every surface

S 2 ⊂ R 3 is SA 3 -equivalent to the model u = 1 2 x 2 1 -y = x 2 2 + x 2 y 2 + x 2 y 2 2 + x 2 y 3 2 + • • • + x 2 y k 2 + • • • ;
(3) When X = 0, every surface is SA 3 -equivalent to u = x 2 2 + x 2 y 2 + x 2 y 2 2 + F 5,0

x 5 120 + x 2 y 3 2 + 4 F 5,0

x 5 y 120 + x 2 y 4 2 + F 7,0

x 7 5 040 + 20 F 5,0 x 5 y 2 240 + x 2 y 5 2 + + j+k 8

F j,k x j y k , with F 5,0 = value of X at the origin, F 7,0 = value of Y at the origin;

(4) The collection of coefficients F 5,0 , F 7,0 , F j,0 j 8 is in one-to-one correspondence with equivalence classes.

Lastly, we treat the main (thickest) branch

F xx = 0 ≡ H F / / S = 0 " " W = 0 / / ( ( M ≡ 0 M = 0.
Theorem 4.2.12. Within the main branch S = 0, W = 0:

(1) There is a single differential invariant M, of order 5, differentiably independent of W;

(2) Every surface S 2 ⊂ R 3 is SA 3 -equivalent to

u = x 2 2 + x 2 y 2 + F 3,1
x 3 y 6 + x 2 y 2 2 + F 5,0

x 5 120 + 6 F 3,1 x 3 y 2 12 + x 2 y 3 2 + + j+k 6
F j,k x j y k , with: F 3,1 = value of W at the origin, F 5,0 = value of M at the origin;

(3) Any other surface v = G(s, t) within the same branch similarly put into the form

v = s 2 2 + s 2 t 2 + G 3,1 s 3 t 6 + s 2 t 2 2 + G 5,0 s 5 120 + 6 G 3,1 s 3 t 2 12 + s 2 t 3 2 + + l+m 6 G l,m s l t m ,
is SA 3 -equivalent to u = F (x, y) above if and only if all (independent) Taylor coefficients in the parabolic jet space match

G 3,1 = F 3,1 , G 5,0 = F 5,0 , G l,0 = F l,0 (l 6), G l,1 = F l,1 (l 5).
In these three Theorems 4.2.7, 4.2.11, 4.2.12, there always exist, according to Fels-Olver [START_REF] Fels | Moving coframes. II. Regularization and theoretical foundations[END_REF], two invariant differential operators D 1 and D 2 satisfying

D i differential invariant = differential invariant (i = 1, 2),
and they are non-commuting, in general. Invariantly derivating an invariant means applying D 1 and D 2 several times, in any order. More explanations will be given in Sections 4.4, 4.5, 4.14, see especially (4.14.2). Theorem 4.2.13. The full algebra of differential invariants under the action of SA 3 (R) is generated by: In the branch S ≡ 0, P = 0 C and its invariant derivatives;

In the branch S = 0, W ≡ 0 X, Y and their invariant derivatives;

In the branch S = 0, W = 0 W, M and their invariant derivatives.

It is well known that parabolic surfaces coincide with developable surfaces. While normalizing the SA 3 (R)moving frames of parabolic surfaces using Cartan's formalism, Guggenheimer obtained degenerate branches of cylinders and cones in [43, p. 295]. His work can be re-expressed in terms of explicit differential invariants. In Section 4.22, we will prove that a parabolic surface is a cylinder if and only if S ≡ 0; a cone if and only if S = 0 and W ≡ 0; a tangential surface (tangents of a space curve) if and only if S = 0 and W = 0.

Graph Transformations and Jet Spaces

We provide here a reminder on how graphs and their transformations can be lifted to jet spaces of any order. All functions and geometric objects will be assumed analytic, or smooth, or even of a finite but high enough differentiability class, provided all differentiations necessary in our processes are permitted. Over either R or C, we will mostly work in a local framework, not mentioning restricted open (sub)sets in which calculations are true. We will deal only with finite-dimensional Lie groups (but see [START_REF] Olver | Moving frames for Lie pseudo-groups[END_REF][START_REF] Olver | Differential invariant algebras of Lie pseudo-groups[END_REF]).

3.1. Jet spaces and jet notations. Consider p 1 independent variables (x 1 , . . . , x p ) and also q 1 variables (u 1 , . . . , u q ) which are dependent in the sense that they should be components u α = u α (x), 1 α q, of maps u : R p -→ R q . For any n 0, introduce the n th order jet space of such maps

J n x,u := J n R p x -→ R q u ≡ J n p,q .
This J n x,u is equipped with coordinates

z (n) := x j , u α , u β x J ,
where J = (j 1 , . . . , j λ ) is an unordered multi-index, with 1 λ = |J| n, with 1 j 1 , . . . , j λ p, and where each u α

x J ≡ u α J is an independent real coordinate corresponding to the partial derivative

∂u α (x) ∂x j 1 . . . ∂x j λ ←→ u α x J ≡ u α J (1 α q, J = (j 1 ,...,j λ )).
For instance when p = q = 1, we will denote jet coordinates sometimes u x , u xx , u xxx , . . . , sometimes u 1 , u 2 , u 3 , . . . Thus dim J n p,q = p + q p + n n .

When p 2, say with p = 2 and q = 1 to simplify, an alternative multi-index notation will sometimes be employed, especially when working on any current computer algebra system like MATHEMATICA, MAPLE, SAGE and others, for instance

u x 1 ≡ u 1 ≡ u [1,0] , u x 2 ≡ u 2 ≡ u [0,1] , u x 1 x 2 x 1 ≡ u 1,2,1 ≡ u [2,1] .
To translate, we just count the number of times every index 1 i p appears in the sequence j 1 , . . . , j λ κ i := Card 1 ν λ : j ν = i , and we admit the notational coincidences

u x j 1 •••x j λ ≡ u j 1 ,...,j λ ≡ u [κ 1 ,...,κp] .
Sometimes even, when employing the second multi-index notation, we will drop the brackets

u [κ 1 ,...,κp] ≡ u κ 1 ,...,κp ,
especially when studying parabolic surfaces S 2 ⊂ R 3 later on. There will be no risk of confusion.

3.2. Prolongations of diffeomorphisms to jet spaces. Without full proofs but with presentations of ideas, let us review the fundamental prolongation formulas which are anyway rarely used in applications because of their complexity. For completeness of the exposition, it is nevertheless necessary to be a bit specific about that, since in some cases anyway, symbolic computer softwares happen to be able to handle such formulas. Consider a diffeomorphism φ : R p+q -→ R p+q between equidimensional spaces

(x, u) -→ X(x, u), U (x, u) = (X, U ),
the target space R p+q X,U being equipped with similar coordinates X ∈ R p and U ∈ R q . In later paragraphs, we will employ the notation (y, v) instead of (X, U ) -clearer here as it indicates parallels and formal analogies.

We must also introduce functional symbols for the first p components and the last q components of such a diffeomorphism

X i = ϕ i (x, u), U α = ψ α (x, u) (1 i p, 1 α q).
But at the end, we will come back to the more parallel notation

X i = X i (x, u), U α = U α (x, u) (1 i p, 1 α q).
The splitting R p x × R q u is motivated by the fact that we are interested in submanifolds u = f (x) that are graphs of maps R p x -→ f (x) ∈ R q . Similar graphs U = F (X) exist in the target space R p X × R q U . We are mainly interested in how source graphs u = f (x) are transformed into target graphs U = F (X) , provided our diffeomorphism

(x, u) -→ ϕ(x, u), ψ(x, u)
is not too far from the identity map, and especially, does not "rotate" too much tangent directions to our graph u = f (x) . More precisely, we assume that on restriction to the graph u = f (x) , the first p coordinates ϕ 1 , . . . , ϕ p or the diffeomorphism when equated to p target independent horizontal coordinates X 1 , . . . , X p X = ϕ x, f (x) ←→ Υ(X) = x, can be solved by means of the implicit function theorem. Equivalently, we are assuming that the Jacobian determinant of the map x -→ ϕ(x, f (x) between equidimensional R p -→ R p is nowhere vanishing

0 = det ∂ ∂x i ϕ j x, f (x) 1 i p columns 1 j p rows = det ∂ϕ j ∂x i + 1 α q ∂f α ∂x i ∂ϕ j ∂u α 1 i p 1 j p
, so that the implicit function theorem really applies to the p equations X j = ϕ j x, f (x) to solve x = (x 1 , . . . , x p ) in terms of X = X 1 , . . . , X p by means of a certain map Υ : R p -→ R p as written above

x i = Υ i X 1 , . . . , X p (1 i p).
By definition, the map X -→ Υ(X) satisfies p identities

X j ≡ ϕ j Υ(X), f Υ(X) (1 j q),
which can be differentiated with respect to all the X for 1 p

δ j = p i=1 ∂ϕ j ∂x i ∂Υ i ∂X + q α=1 ∂ϕ j ∂u α p i=1 ∂f α ∂x i ∂Υ i ∂X = p i=1 ∂ϕ j ∂x i + 1 α q ∂f α ∂x i ∂ϕ j ∂u α recognize Jacobian determinant ∂Υ i ∂X ,
and since the determinant is assumed nonzero, this linear system can be inverted in order to determine the partial derivatives ∂Υ i ∂X .
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Before doing this, in order to rewrite this system in a more compact and conceptual form, let us introduce the p total differentiation operators

D x i := ∂ ∂x i + q α=1 u α i ∂ ∂u α + # J 1 q α=1 u α J,i ∂ ∂u α J (1 i p).
These D x i are here written as infinite formal operators, but anyway, they will always act in a finite truncated way on every function encountered, for instance

D x i ϕ j = ∂ ∂x i + q α=1 u α i ∂ ∂u α + 0 ϕ j (x, u) .
On restriction (pullback) to a graph x, f (x) , the independent jet variables u α i ←→ ∂f α ∂x i (x) become of course partial derivatives of the graphing functions f α (x 1 , . . . , x n ), and therefore the above linear system rewrites compactly as

δ j = p i=1 D x i ϕ j ∂Υ i ∂X (1 j, p).
For instance, in the case where p = 1

1 = D x (ϕ) Υ X , we can solve Υ X = 1 D x (ϕ)
, while an unpleasant matrix inversion will be required as soon as p 2.

Next, in the simplest case where p = 1 = q, the graph x, f (x) is transformed into the target graph

U = ψ x, f (x) = ψ Υ(X), f Υ(X) =: F (X),
whose tangent directions are obtained by plain derivation

F X = ψ x + f x ψ u Υ X = D x (ψ) Υ X = D x (ψ) D x (ϕ) .
Forgetting the functions f (x) and F (X) which represent graphs, and replacing their first-order derivatives f x and F X by our independent jet variables u x and U X , we have finished to present the basic Theorem 4.3.3. [START_REF] Engel | Theorie der Transformationsgruppen, Erster Abschnitt[END_REF][START_REF]Theory of Transformation Groups I. General Properties of Continuous Transformation Groups. A Contemporary Approach and Translation[END_REF][START_REF] Bluman | Symmetries and differential equations[END_REF][START_REF] Olver | Applications of Lie groups to differential equations[END_REF][START_REF] Olver | Equivalence, invariants, and symmetry[END_REF][START_REF] Merker | Lie symmetries of partial differential equations and CR geometry[END_REF] 

When p = 1 = q, every diffeomorphism from R 1 x × R 1 u to R 1 X × R 1 U φ : (x, u) -→ X(x, u), U (x, u)
possesses a lift as a diffeomorphism

φ (1) : (x, u, u x ) -→ X(x, u), U (x, u), U X (x, u, u x )
from the open subset GJ 1 x,u (graphed jets) of J 1 x,u defined by

0 = D x X = X x + u x X u , 1. (automatic) making commutative the diagram GJ 1 x,u φ (1) / / J 1 X,U R 1+1 x,u φ / / R 1+1 X,U ,
2. preserving the contact ideal, i.e. dU -U X dX = ( * ) duu x dx , where ( * ) is a nowhere zero function, uniquely determined by the formula

U X = D x (U ) D x (X) = U x + u x U u X x + u x X u .
For higher jet orders

U XX = 1 D x (X) D x U X , U XXX = 1 D x (X) D x U XX , • • • • • • .
Once the case p = q = 1 has been understood, the technicalities concerning higher dimensional cases (involving many indices) become more accessible.

Indeed, coming back to the compact linear system for the partial derivatives of the Υ i left above, using the notation X j (x, u) instead of ϕ j (x, u), we see that this system can be rewritten in matrix form as

     1 0 • • • 0 0 1 • • • 0 . . . . . . . . . . . . 0 0 • • • 1      =      Υ 1 X 1 Υ 2 X 1 • • • Υ p X 1 Υ 1 X 2 Υ 2 X 2 • • • Υ p X 2 . . . . . . . . . . . . Υ 1 X p Υ 2 X p • • • Υ p X p      •      D x 1 (X 1 ) D x 1 (X 2 ) • • • D x 1 (X p ) D x 2 (X 1 ) D x 2 (X 2 ) • • • D x 2 (X p ) . . . . . . . . . . . . D x p (X 1 ) D x p (X 2 ) • • • D x p (X p )      , which means that    Υ 1 X 1 • • • Υ p X 1 . . . . . . . . . Υ 1 X p • • • Υ p X p    =    D x 1 (X 1 ) • • • D x 1 (X p ) . . . . . . . . . D x p (X 1 ) • • • D x p (X p )    -1
.

We also remind that the nonvanishing of the Jacobian determinant of the map x -→ X x, f (x) can be re-expressed after a transposition as the invertibility of this matrix

0 = det    D x 1 (X 1 ) • • • D x 1 (X p ) . . . . . . . . . D x p (X 1 ) • • • D x p (X p )    u=f (x), u x j =f x j (x)
.

The geometric meaning of our assumption that graphs are transformed into graphs is that the composition of three maps: lifting to the graph; performing the diffeomorphism; projecting horizontally

(x, f (x)) φ / / X(x, f (x)), U (x, f (x)) x O O X(x, f (x)),
is invertible.
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Similarly as we did in the simple case p = 1 = q, we transform the graph x, f (x) to X(x, f (x)), U (x, f (x) point-wisely, and we solve U in terms of X

U α = ψ α x, f (x) = ψ α Υ(X), f Υ(X) =: F α (X) (1 α q).
Next, for fixed α, we differentiate these equations with respect to X 1 , . . . , X p

U α X 1 = p i=1 ∂ψ α ∂x i ∂Υ i ∂X 1 + p i=1 q β=1 ∂ψ α ∂u β ∂f β ∂x i ∂Υ i ∂X 1 , • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • U α X p = p i=1 ∂ψ α ∂x i ∂Υ i ∂X p + p i=1 q β=1 ∂ψ α ∂u β ∂f β ∂x i ∂Υ i ∂X p ,
that is to say after reorganization

U α X 1 = p i=1 ∂Υ i ∂X 1 ∂ψ α ∂x i + q β=1 ∂f β ∂x i ∂ψ α ∂u β , • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • U α X p = p i=1 ∂Υ i ∂X p ∂ψ α ∂x i + q β=1 ∂f β ∂x i ∂ψ α ∂u β .
Coming back to the notation U (x, u) instead of ψ(x, u), and recognizing the actions of the total differentiation operators, we get, still for any fixed

1 α q    U α X 1 . . . U α X p    =    Υ 1 X 1 • • • Υ p X 1 . . . . . . . . . Υ 1 X p • • • Υ p X p       D x 1 (U α ) . . . D x p (U α )    .
We can now state the fundamental general theorem, recalling how we denote coordinates

x i , u α , u β x j ∈ J 1 x,u and X i , U α , U β X j ∈ J 1 X,U ,
with trivial projections from the first jet spaces onto the ground manifolds

x i , u α , u β x j X k , U γ , U δ X l (x i , u α ), X k , U γ .
Theorem 4.3.4. [START_REF]Theory of Transformation Groups I. General Properties of Continuous Transformation Groups. A Contemporary Approach and Translation[END_REF][START_REF] Bluman | Symmetries and differential equations[END_REF][START_REF] Olver | Applications of Lie groups to differential equations[END_REF][START_REF] Olver | Equivalence, invariants, and symmetry[END_REF][START_REF] Merker | Lie symmetries of partial differential equations and CR geometry[END_REF] For any p 1 and any q 1, every diffeomorphism

φ : R p+q x,u -→ R p+q X,U (x i , u α ) -→ X k (x i , u α ), U γ (x i , u α ) ,
possesses a lift as a diffeomorphism φ (1) :

(x i , u α , u β x j ) -→ X k (x i , u α ), U γ (x i , u α ), U δ X l (x i , u α , u β x j )
from the open subset GJ 1 x,u of J 1 x,u defined by

0 = det    D x 1 (X 1 ) • • • D x 1 (X p ) . . . . . . . . . D x p (X 1 ) • • • D x p (X p )    , 1. (automatic) making commutative the diagram GJ 1 x,u φ (1) / / J 1 X,U R p+q x,u φ / / R p+q X,U ,
2. preserving the contact ideal, i.e.

   dU 1 -U 1 X 1 dX 1 . . . dU q -U q X p dX p    =    * • • • * . . . . . . . . . * • • • *    •    du 1 -u 1 x 1 dx 1 . . . du q -u q x p dx p    ,
where the transition matrix is everywhere invertible, uniquely determined by the formula

   U α X 1 . . . U α X p    =    D x 1 (X 1 ) • • • D x 1 (X p ) . . . . . . . . . D x p (X 1 ) • • • D x p (X p )    -1    D x 1 (U α ) . . . D x p (U α )    .
For higher jet orders, with J = j 1 , . . . , j λ , with 1 j 1 , . . . , j λ p arbitrary, and with

1 α q    U α X J X 1 . . . U α X J X p    =    D x 1 (X 1 ) • • • D x 1 (X p ) . . . . . . . . . D x p (X 1 ) • • • D x p (X p )    -1    D x 1 (U α X J ) . . . D x p (U α X J )    .
The explicit higher order jet formulas can be obtained by iterating the above formulas, as is explained in [8, Chap. 2.3].

Introducing the modified total differentiation operators

   E x 1 . . . E x p    :=    D x 1 (X 1 ) • • • D x 1 (X p ) . . . . . . . . . D x p (X 1 ) • • • D x p (X p )    -1    D x 1 . . . D x p    ,
the first prolongation of the diffeomorphism φ rewrites as

U α X j = E x j U α .
Theorem 4.3.5. For all 1 α q and 1 j 1 , . . . , j λ p

U α X j 1 •••X j λ = E x j 1 • • • E x j λ (U α ) • • • .
4.3. GRAPH TRANSFORMATIONS AND JET SPACES 59 3.6. Prolongations of vector fields to jet spaces. So we agree that every (local) diffeomorphism φ : (x, u) -→ X(x, u), U (x, u) has uniquely determined lifts φ (n) to the jet spaces of any order n 1, even if the explicit formulas for the components of φ (n) are very unwieldy, due to the inversion of the matrix D x i X j , and due to the well known exponential symbolic swelling of formulas through iterated differentiations. Fortunately, as discovered by Lie, linearization of φ (n) sheds new light, and simplifies the formulas.

Indeed, every vector field on the base

v = p i=1 ξ i (x, u) ∂ ∂x i + q α=1 ϕ α (x, u) ∂ ∂u α ,
produces by integration a 1-parameter group of diffeomorphisms

φ t (x, u) := exp t v (x, u) (t ∈ R small),
satisfying by definition

d dt t=0 φ t (x, u) = v (x,u) .
Of course, each φ t possesses lifts to domains of graphed jets of any order n 1

GJ n x,u φ (n) t / / J n X,U R p+q x,u φt / / R p+q X,U ,
and it comes naturally to mind to differentiate such a lifted 1-parameter family φ

(n) t of diffeomorphisms, obtaining a uniquely determined vector field upstairs

v (n) := d dt t=0 φ (n) t x i , u α , u β x J .
Without recalling the explanations which can be found in the literature, employing again the p total differentiation operators

D x i = ∂ ∂x i + q α=1 u α i ∂ ∂u α + # J 1 q α=1 u α J,i ∂ ∂u α J (1 i p),
we can compute the coefficients ϕ α J of the prolonged vector field

v (∞) = v + #J 1 q α=1 ϕ α J x i , u β , u γ x K ∂ ∂u α J ,
by using Theorem 4.3.7. [START_REF]Theory of Transformation Groups I. General Properties of Continuous Transformation Groups. A Contemporary Approach and Translation[END_REF][START_REF] Olver | Applications of Lie groups to differential equations[END_REF][START_REF] Olver | Equivalence, invariants, and symmetry[END_REF][START_REF] Merker | Lie symmetries of partial differential equations and CR geometry[END_REF] For any 1 α q and every J = j 1 , . . . , j λ with 1 j ν p, one has

ϕ α J = D x J ϕ α - 1 i p ξ i u α i + 1 i p ξ i u α J,i .
Here of course, we define

D x J := D x j 1 • • • D x j λ ,
where the order does not matter, since these total differentiation operators commute. It is important to point out that, due to the obvious relation

D x J u α i ) = u α J,i ,
the last p terms ξ i u α J,i in the formula for ϕ α J which incorporate jets of order #J + 1 do in fact disappear, hence all ϕ α J are functions of jet variables of order #J, as they must be. The above "direct formulas" for the coefficients ϕ α J are quite convenient when working on a computer. Sometimes, alternative formulas proceeding by recurrence happen to be also useful

ϕ α J,j = D x j ϕ α J - 1 i p D x j (ξ i ) u α J,i .
These recurrence formulas were closed and synthetized in [66, Chap. II] to produce explicit formulas for all the ϕ α J by means of multiple Kronecker symbols.

The Moving Frame Method

We now present the moving frame method, developped by Olver and his collaborators ( [START_REF] Fels | Moving coframes. II. Regularization and theoretical foundations[END_REF][START_REF] Olver | Moving frames and singularities of prolonged group actions[END_REF][START_REF] Olver | Joint invariant signatures[END_REF][START_REF] Olver | Differential invariants of surfaces[END_REF][START_REF] Olver | Lectures on moving frames[END_REF][START_REF] Olver | Normal forms for submanifolds under group actions, Symmetries, differential equations and applications[END_REF]).

4.1. Source and target jet coordinates. We keep the previous notation for the coordinates in the source space z = (x, u) = x 1 , . . . , x p , u 1 , . . . , u q , but instead of (X, U ), we will denote the coordinates in the target space by w = (y, v) = y 1 , . . . , y p , v 1 , . . . , v q .

For any jet order n 0, jet coordinates will accordingly be denoted by

z (n) = x i , u α , u β x J , w (n) = y j , v γ , v δ y K ,
with J = j 1 , . . . , j λ , with 1 λ n, with 1 j 1 , . . . , j λ p, and similarly, with K = k 1 , . . . , k µ , with 1 µ n, with 1 k 1 , . . . , k µ p. Sometimes, we will abbreviate m := p + q.

Later, we will need to renumber the coordinates by increasing length of derivatives

w (n) 1 , . . . , w (n) N = y j , v γ , v δ 1 y K 1 , . . . , v δn y Kn ,
where the total number N is the dimension of the jet space J n p,q N = N p,q (n) := p + q p + n n ,

where #K 1 = 1, . . . , #K n = n, and where we choose any ordering for the subcollection of jet coordinates v δ h y K h with 1 δ h q and #K h = h. The first p + q coordinates w

(n) 1 , . . . , w (n) 
p+q belong in fact to the zero th jet order space, hence should be written w (0) 1 , . . . , w (0) p+q . By convention, for any jet order n n, the trivial projection J n p,q -→ J n p,q allows to identify w

(n ) k ≡ w (n) k as soon as w (n) k is a coordinate of J n p,q .
4.2. Prolongations of groups actions. Next, assume that a finite-dimensional local Lie group G acts on R p+q x,u , and denote its dimension by

r := dim G (1 r < ∞).
Indeed, it is convenient (and theoretically wider) to assume that G is a local Lie group, as did Lie in [START_REF] Engel | Theorie der Transformationsgruppen, Erster Abschnitt[END_REF][START_REF]Theory of Transformation Groups I. General Properties of Continuous Transformation Groups. A Contemporary Approach and Translation[END_REF]. Therefore, the diffeomorphisms φ : R p+q x,u -→ R p+q y,v we are considering are 'parametrized' by group elements g ∈ G in some neighborhood of the identity element e ∈ G, and local Lie group axioms about composition and inversion hold. A detailed introduction to local Lie groups can be found in [59, pp. 29-32].

We will not employ functional symbols φ = (ϕ, ψ) like in Section 4.3, but instead, we will denote diffeomorphisms 'parametrized' by group elements g ∈ G as Lie did

y = y(g, x, u), v = v(g, x, u).
Sometimes, we will also use the more compact notation w = g • z instead of w = w(g, x, u).

Definition 4.4.3. The action of G on R p+q x,u is said to be free if the isotropy subgroup of every z = (x, u) reduces to the identity:

{e} = g ∈ G : g • z = z =: G z (∀ z ∈ R m ).
In general, the action of G on R p+q x,u is not free, just because as soon as r m + 1, isotropy subgroups G z are of dimension rm 1. As soon as the maps g -→ w(g, x, u) are not of full rank r, freeness is lost.

A good substitute is to assume that the ranks of the maps g -→ w(g, x, u) are constant. In this case, after perhaps passing to smaller open subsets, the G-orbits of the local Lie group G are of constant dimension, and their union foliates some open set in R p+q x,u . In the analytic category, group actions are generically of local constant rank, in appropriate subdomains which have an invariant meaning, hence rank constancy is essentially no assumption in Lie theory. This principle of thought is explained in Chapter 1 of [START_REF]Theory of Transformation Groups I. General Properties of Continuous Transformation Groups. A Contemporary Approach and Translation[END_REF].

All these observations remain valid in jet spaces of any order n 0, because thanks to Theorem 4.3.4, every group-diffeomorphism z -→ g • z (close the identity mapping) lifts upstairs as a jet diffeomorphism:

J n z g• / / J n w R m z g• / / R m w , z (n) g• / / w (n) g, z (n) z g• / / w(g, z),
vertical arrows being (trivial) projections, as before. The advantage of prolongating is that the ambient dimension increases polynomially with

n dim J n p,q = p + q p + n n ,
and hence, granted that prolongation commutes with projections from higher order n n 0 jet spaces

J n z g• / / J n w J n z g• / / J n w R m z g• / / R m w , CHAPTER 4. ON DIFFERENTIAL INVARIANTS OF PARABOLIC SURFACES
it is clear that the (generic) ranks of the maps g -→ w (n) g, z (n) are increasing with n. Of course, the ranks of these maps g -→ w (n) g, z (n) are considered for g ∼ e close to the identity element, and for z (n) in J (n) p,q , or in some appropriate open subsets of J (n) p,q -more will be said soon about that. We shall use the abbreviation N := N p,q (n) := p + q p+n n . For most of the existing local Lie group actions (and for all the ones studied in the present article), there always exists a minimal finite jet order

0 n G < ∞, such that rank g -→ w (nG) g, z (nG) = r = dim G,
and hence the action of the local Lie group G is free. A necessary -and often sufficient -condition is that

p + q p+nG nG = N p,q n G r. Example 4.4.4. Let the affine group A 2 (R) on the plane R 2 x,u have general transformations y = a x + b u + c and v = k x + l u + m with 0 = a b k l .
With the modified total differentiation operator

E x := 1 a + b u x ∂ ∂x + u x ∂ ∂u + ∞ i=1 u x i+1 ∂ ∂u x i ,
an application of Theorem 4.3.5 yields the second prolongation on graphed curves u = u(x) of such affine transformations

v yy = E x E x (v) = al -bk (a + b u x ) 3 u xx .
We readily see that the condition u xx = 0 is affinely invariant, hence the second order jet space stratifies A 2 (R)-invariantly as J 2

x,u = u xx = 0 ∪ u xx = 0 . Of course, the flatness condition u xx (x) ≡ 0 which means that the graph u(x) = λ x + µ being a straight line is affinely invariant! 4.5. Foliated G-actions and differential invariants. For general actions of finite-dimensional Lie groups on graphs in R p+q

x,u , a case-by-case study is required to determine the stratification of jet spaces J n x,u in appropriate invariant pieces wherein the lifted action of G has constant rank properties. Definition 4.4.6. A lifted action of a local Lie group G to a jet space J n p,q is called foliated at a point z

(n) 0 ∈ J n
p,q when all G-orbits have constant dimension equal to a certain integer s with 0

s r = dim G in a neighborhood of z (n) 0 , with maps g -→ w (n) g, z (n) having constant rank s for all z (n) near z (n)
0 and all g near e ∈ G.

Under this assumption, the rank theorem guarantees that the collection of G-orbits indeed constitutes a local foliation by s-dimensional manifolds in a neighborhood of z x,u , the induced action of G on some jet space J n

x,u (even of low order) becomes almost everywhere foliated, although not necessarily free.

Assuming the action of G is foliated at some z of dimension complementary to the dimension of G-orbits

(n) 0 ∈ J n p,q , let us choose a transversal T n to the G-orbits at z (n) 0 , namely a local submanifold z (n) 0 ∈ T n ⊂ J n p,q 4.4. THE MOVING FRAME METHOD 63 0 R N-s R s T n z (n) straightening z (n) 0
dim T n = N p,q (n) -s, which is also transversal to the G-orbit G • z (n) 0 in the sense of transversality theory T z (n) 0 T n ⊕ T z (n) 0 G • z (n) 0 = T z (n) 0 J n p,q .
After a local straightening diffeomorphism, we can make G-orbits horizontal, directed by R s × {0}, and the transversal T n vertical as well, directed by {0} × R N-s . This means that we can get Ns functions

I 1 z (n) , . . . . . . , I N-s z (n) , vanishing at z (n) 0 , such that the union of G-orbits near z (n) 0 is represented as c 1 ,...,c N-s I 1 = c 1 , . . . , I N-s = c N-s ,
with arbitrary constants c 1 , . . . , c N-s all close to 0. In general, producing such functions I 1 , . . . , I N-s requires an application of the implicit function theorem. Hence explicitness can be lost.

Certainly, such G-invariants I 1 , . . . , I N-s are functionally independent in the sense that

R I 1 (z (n) ), . . . , I N-s (z (n) ) ≡ 0 =⇒ R = 0,
because this property is trivially true after straightening, and is invariant under diffeomorphisms. Equivalently, the differentials of these invariants are linearly independent

0 = dI 1 z (n) ∧ • • • ∧ dI N-s z (n) (∀ z (n) near z (n) 0 ). Definition 4.4.7. A (local) differential invariant I : J n p,q -→ R is a function defined in a neighborhood of some z (n) 0 ∈ J n p,q which is constant on (local) G-orbits I g • z (n) = I z (n) (∀ g ∈ G).
Of course, G is a local Lie group as before. In true applications, as we will soon e.g. in the context of parabolic surfaces S 2 ⊂ R 3 , the behavior of differential invariants, their number, their syzygies, will be constant in certain Zariski open subsets of the jet spaces J n p,q , for every n 0. [START_REF] Engel | Theorie der Transformationsgruppen, Erster Abschnitt[END_REF][START_REF] Olver | Applications of Lie groups to differential equations[END_REF][START_REF] Olver | Equivalence, invariants, and symmetry[END_REF][START_REF]Theory of Transformation Groups I. General Properties of Continuous Transformation Groups. A Contemporary Approach and Translation[END_REF]] Given an action on R p x × R q u of a local Lie group G, for any jet order n 0, given the induced action of G on the space J n p,q of jets of maps x -→ u(x), with N = N p,q (n) = dim J n p,q , at any point z (n) 0 ∈ J n p,q at which the induced G-action is foliated of rank s, with 0 s r being the dimension of leaves, there are exactly N p,q (n)s functionally independent differential invariants I 1 , . . . , I N-s defined near z (n) 0 so that any other differential invariant I is a certain, uniquely defined, function of these

I = F I 1 , . . . , I N-s .
4.9. Free actions and moving frames. Assume now that n 0 is large enough so that the induced action of G on J n p,q is locally free near some z

(n) 0 ∈ J (n)
p,q , and also foliated. As before, denote by n G the minimal such n. Presently, we will work only with jet orders n n G .

Thus, all G-orbits on J n p,q have maximal possible dimension r = dim G. Thanks to the preceding Theorem 4.4.8, we know that there are exactly N p,q (n)r functionally independent differential invariants.

We now take n := n G minimal possible, so the number of independent differential invariants is N p,q (n G )-r. The geometrically evident fact that every local G-orbit intersects the transversal T nG ⊂ J nG p,q in a single point explains the Lemma 4.4.10. For every z (nG) near z (nG) 0

z (n) ρ(z (n) ) ∈ G T n z (n) 0 ρ(z (n) ) • z (n)
, there exists a unique group element g ∈ G near e such that

g • z (nG) ∈ T nG .
As in [START_REF] Fels | Moving coframes. II. Regularization and theoretical foundations[END_REF], we will denote this unique group element by ρ z (nG) , so that

ρ z (nG) • z (nG) ∈ T nG .
We can be more specific about how the map ρ : J nG p,q -→ G can be handled in concrete situations. Remind from Subsection 4.4.1 our notation for coordinates on J nG p,q

w (nG) 1 , . . . , w (nG) Np,q (nG) = y j , v γ , v δ 1 y K 1 , . . . , v δn G y Kn G .
A transversal to the G-orbits is usually constructed after a detailed study of specific features of the group action. Generally, a number r = dim G of integers 

1 ν 1 < • • • < ν h < • • • < ν r N, w (n 1 ) ν 1 z (n) 0 T n w (n) g, z (n) w (n) ν T n target w ( 
ν 1 = c 1 , . . . , w (nr) νr = c r .
are then 'selected' in some 'natural' way, and constants c 1 , . . . , c r ∈ R -often equal to 0 or 1 -are also 'chosen' so that, viewed in the target jet space as on the right hand side of the figure above, the transversal has defining equations of the shape

w (n 1 ) ν 1 = c 1 , . . . . . . , w (n h ) ν h = c h , . . . . . . , w (nr) νr = c r ,
where for 1 h r, the integer (n h ) is the minimal jet space order to which the jet coordinate w (nG)

ν h = w (n h ) ν h
belongs, and where we have n r = n G , by definition of n G . Viewed in the source space as on the left of the figure above, the equations of the transversal T nG ⊂ J nG p,q then read by understanding that the w

(n h ) h
are coordinates of the prolongation of the G-action

w (n 1 ) ν 1 g, z (n 1 ) = c 1 , . . . . . . . . . , w (nr) νr g, z (nr) = c r ,
and the assumption that T nG is a transversal is equivalent to the fact that all the group parameters g = (g 1 , . . . , g r ) can be solved from these r equations by means of the implicit function theorem g = ρ z (n 1 ) , . . . , z (nG) ≡ ρ z (nG) .

For every n n G , a transversal T n ⊂ J n p,q can be chosen to have exactly the same equations as a transversal T nG ⊂ J nG p,q in the minimal order n G jet space as written above. For later applications, e.g. to parabolic surfaces S 2 ⊂ R 3 , we want to emphasize that the map

z (n) -→ ρ z (n) = ρ z (nG)
only depends on jets of this minimal possible order n G . We can now formulate a definition valid for any n n G . x,u of a local Lie group G lifted to an n th jet space J n p,q is a map ρ : J n p,q -→ G, defined near some jet z

J n x,u ρ g• / / J n y,v ρ " " G G •g -1 o o R p+q x,u g• / / R p+q y,v 66 
(n) 0 ∈ J n p,q which is right equivariant, i.e. satisfies ρ g • z (n) = ρ z (n) • g -1 ,
for all g ∈ G near e and all z (n) near z

(n) 0 . z (n) ρ g• / / g • z (n) ρ % % ρ g • z (n) ρ(z (n) ) • g -1 ρ(z (n) ) •g -1 o o
Lemma 4.4.12. [37, Sec. 4] For any choice of a transveral T nG ⊂ J nG p,q as above, and for any n n G , the map constructed above by means of the implicit function theorem ρ z (n) = ρ z (nG) automatically satisfies the right equivariancy rule.

The proof, short, will be skipped here, as well as the proof of the next elementary Theorem 4. 4.13. [37,Sec. 4] If the action of G lifted to J n p,q is foliated at a point z (n) 0 , the following three conditions are equivalent:

(i) a moving frame exists in a neighborhood of z (n) 0 ; (ii) G acts locally freely near z (n) 0 ; (iii) G-orbits have maximal dimension r = dim G near z (n) 0 . When studying parabolic surfaces S 2 ⊂ R 3 , with G := SA 3 (R) = SL 3 (R) R 3 of
dimension 11, we will see that in some subspace P J 4 2,1 ⊂ J 4 2,1 , which we will call the parabolic jet space, and which has also dimension 11, the G-orbits have constant dimension 10 = 11 -1. Then Theorem 4.4.8 guarantees that there exists one differential invariant of order 4, which we will call W. But the G-action is not free on P J 4 2,1 , since the orbit dimension, equal to 10, is smaller than the group dimension, 11. So Theorem 4.4.13 does not apply to this context. Question 4.4.14. Is there an appropriate substitute to a moving frame when G-orbits have constant dimension 0 s r -1 smaller than dim G?

Luckily, this question is answered by Valiquette's Inductive moving frames [START_REF] Valiquette | Inductive moving frames[END_REF] on the regular points. In fact we are essentially doing the same job there.

In presence of a moving frame, Theorem 4.4.8 becomes the 

(n) -→ ρ z (nG) • z (n)
constitute a complete generating set of differential invariants of order at most n.

Concretely, after having solved the group parameters g = (g 1 , . . . , g r ) from the r equations w ν h = c h , 1 h r, of some transversal T nG ⊂ J nG p,q , one replaces these solutions g = ρ z (nG) in all the other coordinate formulas w ν g, z (n) for the prolonged G-action, and one obtains a generating set of N p,q (n)r differential invariants of order at most n

I ν := w ν ρ(z nG ), z (n) (1 ν Np,q (n), ν = ν 1 ,...,νr), When n 1 + n G , this means that all indices N p,q (n G ) + 1 ν N p,q (n)
are concerned by such a replacement. By definition of how the implicit function theorem applies to the equations w ν h = c h , if one replaces g = ρ z (nG) in the coordinates w ν 1 , . . . , w νr which were used to construct the moving frame, one gets trivial constants

w ν 1 ρ(z (nG) ), z (n 1 ) ≡ c 1 , . . . . . . . . . , w νr ρ(z (nG) ), z (nr) ≡ c r . Terminology 4.4.16. [37] These r differential quantities w ν h ρ(z (nG) ), z (n h ) ≡ c h are called phantom differ- ential invariants.
These ghost objects will be very useful later.

What it Really Means to Be a Differential Invariant

As before, let G be a local Lie group acting on graphs u = u(x) in R p x × R q u , of finite dimension 1 r = dim G < ∞. The action of an element g ∈ G lifts to all jet spaces J n

x,u of any order n 0, as in the following diagrams

J n x,u g• / / J n y,v R p+q x,u g• / / R p+q y,v , z (n) g• / / w (n) g, z (n) z g• / / w(g, z).
By definition, a differential invariant of order n is a function

I : J n x,u -→ R satisfying I g • z (n) = I z (n) (∀ g ∈ G),
a property that can be diagrammatized as follows

R J n x,u g• / / I + + J n y,v I 7 7 R p+q x,u g• / / R p+q y,v , I z (n) I g • z (n) z (n) g• / / I 0 0 g • z (n) . I 68 CHAPTER 4.
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Viewed as such, a differential invariant is a function defined on the jet space J n x,u equipped with independent jet coordinates z (n) = x j , u α , u β x J , but it has another more interesting meaning.

Indeed, remember that we are considering graphs u = u(x) in the source space and their transforms, which are graphs v = v(y) in the target space. So pulled back to any graph {u = u(x)}, a differential invariant becomes a function of the coordinates x = (x 1 , . . . , x p ) on the graph

x -→ I x, u α (x), u β x J (x) .
Hence a differential invariant takes various values at various points of a graphed manifold {u = u(x)}. Then what does it really mean, for I x j , u α , u β x J , to be a differential invariant?

Of course, in the target space R p+q y,v , the same function I of the target arguments must be considered

I y k , v γ , v δ y K .
But what is the relation with I x j , u α , u β x J ? Recall that any diffeomorphism φ : (x, u) -→ ϕ(x, u), ψ(x, u) not far from the identity induces a horizontal diffeomorphism between the graphing horizontal spaces R p x and R p y , simply through three maps: lifting to the graph; performing the diffeomorphism; projecting horizontally

(x, u(x)) φ / / ϕ(x, u(x)), ψ(x, u(x)) x O O ϕ(x, u(x)).
We therefore assume that we have a (local In our case of the action of a local Lie group G, we have a family of diffeomorphisms parametrized by g ∈ G, that we can denote as (x, u) -→ ϕ(g, x, u), ψ(g, x, u) .

) diffeomorphism R p x -→ R p y x ----------→ ϕ x, u(x) . y(g, x) y(g, x), v g, y(g, x) x J n x,u g• g• x, u(x) R p y R p x x, u α (x), u β x J (x) y(g, x), v γ g, y(g, x) , v δ y K g, y(g, x) J n y,v
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On restriction to a graph u = u(x) , this becomes

x, u(x) -→ ϕ g, x, u(x) , ψ g, x, u(x) .

Furthermore, as we did in Section 4.3, we must express how a graph {u = u(x)} is transferred to the target space.

At first, let us abbreviate the family of horizontal diffeomorphisms as

x -→ ϕ g, x, u(x) =: y(g, x) =: y.

Also, let us denote the family of inverse diffeomorphisms as

x := x(g, y) ←-y,
by means of certain maps x(g, •) coming from an application of the implicit function theorem. Then the source graph {u = u(x)} becomes a family of graphs over the R p y space v = ψ g, x(g, y), u x(g, y)

=: v(g, y).

In summary, the action of a local Lie group G on R p+q provides a family of diffeomorphisms

φ g (•) = ϕ(g, •), ψ(g, •) together with: • a G-parametrized family of horizontal diffeomorphisms x -→ y(g, x) from R p x to R p y ; • a G-parametrized family of graphs v = v(g, y) in the target space;
which are both associated to any given graph {u = u(x)} in the source space.

Hence as in the figure above, for any g ∈ G, when x ∈ R p varies, points x, u(x) in a source graph are sent to points y(g, x), v g, y(g, x) in a target graph so that the pointwise one-to-one correspondence between these two graphs reads

x, u(x) ←→ y(g, x), v g, y(g, x) .

We can now express what it really means to be a differential invariant.

Theorem 4.5.2. A differential invariant I = I x j , u α , u β x J takes identical values at points which correspond one to another through the action of any group element g ∈ G

I x, u α (x), u β x J (x) ≡ I y(g, x), v γ g, y(g, x) , v δ y K g, y(g, x) (∀ x ∈ R p ).

Solving Cross-Section Equations for Curves

C 1 ⊂ R 2 Under SA 2 (R)
We illustrate this cross-section approach ( [START_REF] Fels | Moving coframes. II. Regularization and theoretical foundations[END_REF][START_REF] Olver | Differential invariants of surfaces[END_REF][START_REF] Olver | Normal forms for submanifolds under group actions, Symmetries, differential equations and applications[END_REF]) in the case of curves

C 1 ⊂ R 2 under the action of the equiaffine group SA 2 (R), consisting of area-preserving affine transformations R 1+1 x,u -→ R 1+1 y,v y = a x + b u + c, v = k x + l u + m, 1 = a b k l .
According to the preceding sections, any (local) invertible diffeomorphism

φ : R 2 x,u -→ R 2 y,v
with det Jac φ = 0 which is not far from the identity transforms, through an application of the implicit function theorem, sends every graphed curve u = F (x) into a similar graphed curve y = G(v) . Then tangents are transferred from one curve to the other, and higher order jets as well. This means that the diffeomorphism φ lifts as an invertible transformation between corresponding n th jet spaces

J n x,u φ (n) / / J n y,v R 2 x,u g / / R 2 y,v ,
with successive

φ (1) : x, u, u 1 -→ y(x, u), v(x, u), v 1 x, u, u 1 , φ (2) : x, u, u 1 , u 2 -→ y(x, u), v(x, u), v 1 x, u, u 1 , v 2 x, u, u 1 , u 2 ,
whose first two components are of course those of φ, with certain uniquely determined functions v 1 x, u, u 1 , v 2 x, u, u 1 , u 2 , etc., which use the total differentiation operator

D x = ∂ ∂x + u 1 ∂ ∂u + ∞ i=1 u i+1 ∂ ∂u i , namely v 1 = D x (v) D x (y) , v 2 = D x (v 1 ) D x (y) , v 3 = D x (v 2 ) D x (y) , • • • • • • .
However, the expanded formulas are known to rapidly become unwieldy, especially in higher dimensions. At least here with just one independent variable x, we have up to jet order 2 ( [START_REF] Lie | Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischen x, y, die eine Gruppe von Transformationen gestaten I-IV[END_REF][START_REF] Merker | Lie symmetries of partial differential equations and CR geometry[END_REF])

v 1 = v x + u 1 v u y x + u 1 y u , v 2 = 1 (y x + u 1 y u ) 3 u 2 y x y u v x v u + y x y xx v x v xx + u 1 2 y x y xu v x v xu - y xx y u v xx v u + u 2 1 y x y uu v x v uu -2 y xu y u v xu v u -u 3 1 y uu y u v uu v u .
When the diffeomorphism is a special affine transformation

y = a x + b u + c, v = k x + 1+bk a u + m,
a computer yields compact formulas 7 .

v 1 = ak + (1 + bk) u 1 a (a + b u 1 ) , v 2 = u 2 (a + b u 1 ) 3 , v 3 = -3b u 2 2 + a u 3 + b u 1 u 3 (a + b u 1 ) 5 , v 4 = -10b 2 u 1 u 2 u 3 -10ab u 2 u 3 + 15b 2 u 3 2 + 2ab u 1 u 4 + b 2 u 2 1 u 4 + a 2 u 4 (a + b u 1 )
The natural cross-section (cf. Section 4.13)
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enables one to solve the 5 group parameters a, b, c, k, m as

a = 3 u 2 2 -u 1 u 3 3 u 5/3 2 , b = u 3 3 u 5/3 2 , c = -3 xu 2 2 + xu 1 u 3 -uu 3 3 u 5/3 2 , k = - u 1 u 1/3 2 , m = -u + xu 1 u 1/3 2
, which provides the moving frame map ρ : J n x,u -→ SA 2 (R) for any n 3, and then, replacing in the formula for v 4 , we obtain what we will call the parabolas invariant

P := 1 3 -5 u 2 3 + 3 u 2 u 4 u 8/3 2
, and which is also known as the equiaffine curvature.

Equiaffine

Group SA 3 (R) and its Action on Graphed Surfaces S 2 ⊂ R 3

Let a source space R 3 be equipped with coordinates (x, y, u), and let a target space R 3 be equipped with coordinates (s, t, v). We are interested in how local analytic graphed surfaces u = F (x, y) are mapped to local analytic graphed surfaces v = G(s, t) through simple transformations R 3

x,y,u -→ R 3 s,t,v . 7.1. Affine and special affine transformations. The affine group

A 3 (R) := GL 3 (R) R 3 consists of invertible linear transformations in GL 3 (R), coupled with translations s = a x + b y + c u + d, t = k x + l y + m u + n, v = p x + q y + r u + s, 0 = a b c k l m p q r =: δ.
When the determinant δ = 1, so that the volume (and the orientation) of geometric objects remains unchanged, the transformation is called special affine, or equi-affine

SA 3 (R) := SL 3 (R) R 3 .
Both groups A 3 (R) and SA 3 (R) act on surfaces S 2 ⊂ R 3 graphed as u = F (x, y) .

We write R{x, y} to denote the ring of convergent power series defined in some neighborhood of the origin (0, 0) ∈ R 2 . Each element F (x, y) ∈ R{x, y} admits a power series expansion

F (x, y) = F 0,0 + F 1,0 x 1 1! + F 0,1 y 1 1! + F 2,0 x 2 2! + F 1,1 x 1 y 1 1! 1! + F 0,2 y 2 2! + • • • , namely F (x, y) = ∞ k=0 ∞ l=0 F k,l x k k! y l l! (F k,l ∈ R).
The two monomials x and y generate the maximal ideal x, y ⊂ R{x, y} formed of power series with F (0, 0) = 0. For any order O 0, the quotient R{x, y} x, y O+1 , is a free R-module of rank O+2 2 , plainly generated by all the monomials x j y k with j + k O. In this article, we will focus on local analytic graphing functions F (x, y) ∈ R{x, y} of this sort, and on similar functions G(s, t) ∈ R{s, t}, possibly with F (0, 0) = 0 = G(0, 0). Definition 4.7.2. Two local graphed surfaces u = F (x, y) and v = G(s, t) are (special) affinely equivalent if there exists a (special) affine transformation which sends the one to the other -a concrete criterion follows in a second.

We will always consider transformations in A 3 (R) or in SA 3 (R) which are not far from the identity, so that graphs are transformed into graphs. Thus, if we let act a (special) affine transformation (x, y, u) -→ (s, t, v) as above, any point x, y, F (x, y) is sent to the point s, t, G(s, t) and we must have

p x + q y + r u + s = G a x + b y + c u + d, k x + l y + m u + n u=F (x,y) .
Equivalently, the following fundamental equation

p x + q y + r F (x, y) + s = G a x + b y + c F (x, y) + d, k x + l y + m F (x, y) + n , (4.7.3) must hold identically in the domain of convergence of F (x, y). Question 4.7.4. How to determine equivalence classes of surfaces S 2 ⊂ R 3 modulo A 3 (R) or SA 3 (R)?
As already presented in a general context, we will see that there exist rational combinations of derivatives of the graphing function F which are invariant under A 3 (R), or SA 3 (R), called differential invariants. We will realize that if u = F (x, y) is equivalent to v = G(s, t) , differential invariants are 'the same', namely correspond to each other as explained in Section 4.5. We will also see that differential invariants determine equivalence classes of (local) surfaces. All this will be clearer later.

7.5. Three types of substitutions. For now, in order to avoid confusion, it is important to differentiate three types of use of the action of a transformation group like A 3 (R) or SA 3 (R). (S1) Equivalence: Be given an explicit (special) affine equivalence between two given surfaces u = F (x, y) and v = G(s, t) , as above -a situation which rarely occurs a priori. (S2) Transformation: Start from a given surface u = F (x, y) , apply a (special) affine transformation, and ask what is the equation of the new surface v = G(s, t) -the answer relying on an application of the implicit function theorem. (S3) Normalization: Start from a given surface u = F (x, y) and ask whether there is an appropriate special affine transformation which puts the target graphed surface v = G(s, t) into a 'simpler', 'normalized', form -the core of the problem, which, once solved, tells whether two given surfaces are equivalent. In particular, if for each graphed surface there is a unique transformation which puts it into a unique normal form, then two given graphed surfaces are equivalent if and only if they receive the same normal form.

In both situations (S2) and (S3), experience tells us that it is more appropriate to consider the inverse transformation (x, y, u) ←-(s, t, v). We choose to define such an inverse (special) affine transformation using the same letters for group parameters

x = a s + b t + c v + d, y = k s + l t + m v + n, u = p s + q t + r v + s, 0 = a b c k l m p q r =: δ.
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For instance, if F (x, y) is given, we can answer (S2) by plugging (x, y, u) in terms of (s, t, v) inside 0 = u + F (x, y), which gives

0 = -p s -q t -r v -s + F a s + b t + c v + d, k s + l t + m v + n ,
and then the graphing function G(s, t) of the transformed surface is obtained by solving this equation for v, using the implicit function theorem, provided the partial derivative with respect to v is nonvanishing

0 = -r + c F x + m F y ,
a condition which holds automatically when the transformation is close to the identity, since r ≈ 1, while c ≈ 0 ≈ m.

Later, we will mainly work in order to perform normalizing substitutions of the sort (S3), first in our treatment of curves done in Sections 4.13, 4.16, and then more intensively when studying parabolic surfaces S 2 ⊂ R 3 , in Sections 4.17 

Affine Invariancy of the Ranks of Hessian Matrices

For now, we come back to the simple situation (S1) in which an equivalence is given, not sought for. Differentiating the fundamental equation (4.7.3) with respect to x and to y, we get

p + r F x = a + c F x G s + k + m F x G t , q + r F y = b + c F y G s + l + m F y G t . (4.8.1)
Therefore, for those transformations of SA 3 (R) satisfying

0 = Λ := a + c F x k + m F x b + c F y l + m F y , (4.8.2)
a condition which certainly holds for transformations close to the identity, we can solve G s and G t in terms of

F x , F y G s := 1 Λ p + r F x k + m F x q + r F y l + m F y G t = a + c F x p + r F x b + c F y q + r F y .
Beyond, by further differentiating the two sides of the fundamental equation (4.7.3), we can progressively solve every partial derivative G s l t m in terms of the partial derivatives F x j y k j+k l+m .

Lemma 4.8.3. For every order O 0, the affine group A 3 (R) and the special affine

SA 3 (R) groups act on Taylor coefficients with l + m O G l,m = formula a, b, c, d, k, l, m, n, p, q, r, s, F j,k j+k l+m .

Such (complicated) formulas express the induced action of

A 3 (R) or of SA 3 (R) on the spaces of Taylor coefficients R ( O+2 2 ) ∼ = R{x, y} x, y O+1 .
In the context of jet spaces, Section 4.3 already showed how to obtain such formulas, provided one restricts considerations to the fiber over the origin (0, 0) of the jet space J O

x,y . Indeed, remember we introduced the modified total differentiation operators that we can now write after pull-back to the graph {u = F (x, y)} as

E x E y = l+mFy Λ -k-mFx Λ -b-cFy Λ a+cFx Λ D x D y ,
where D x , D y are total differentiation operators, and then, similarly as in Theorem 4.3.5 -but only over the origin (0, 0), not over every point (x, y) -, we have

G s = E x p x + q y + r F (x, y) + s , G t = E y p x + q y + r F (x, y) + s .
and beyond

G ss = E x G s , G st = E x G t = E y G s = G ts , G tt = E y G t .
By differentiating (4.8.1) once more with respect to x and y, we obtain

r Fxx = c Fxx Gs + m Fxx Gt + a + c Fx 2 Gss + 2 a + c Fx k + m Fx Gst + k + m Fx 2 Gtt, r Fxy = c Fxy Gs + m Fxy Gt + a + c Fx b + c Fy Gss + a + c Fx l + m Fy + b + c Fy k + m Fx Gst + k + m Fx l + m Fy Gtt, r Fyy = c Fyy Gs + m Fyy Gt + b + c Fy 2 Gss + 2 b + c Fy l + m Fy Gst + l + m Fy 2 Gtt.
As is known, the Hessian matrix of a graphed surface u = F (x, y) is

Hessian F = F xx F xy F yx F yy .
We will denote its determinant by

H F = det Hessian F = F xx F yy -F 2 xy .
When all entries of the Hessian matrix are identically 0 ≡ F xx ≡ F xy ≡ F yy , the Taylor series of F reduces to its first order terms F 0,0 + F 1,0 x + F 0,1 y, and it is easy to verify the Proposition 4.8.4. For a graphed surface u = F (x, y) , the following two properties are equivalent:

(i) there is a special affine transformation (x, y, u) -→ (s, t, v) sending it to a plane {v = 0};

(ii) the Hessian matrix Hessian(F ) ≡ ( 0 0 0 0 ) is identically zero.

The preceding section showed formulas giving

F x , F y , F xx , F xy , F yy in terms of G s , G t , G ss , G st , G tt .
Then a direct check -using a computer! -yields a formula ([67, 5.2]) for the transfer of Hessians determinants

H G = nonzero • H F ,
valid for any (not necessarily special) affine transformation with nonzero quantities

0 = δ = a b c k l m p q r and Λ = a + c F x k + m F x b + c F y l + m F y = 0.
Theorem 4.8.5. One has

G ss G tt -G 2 st = δ 2 Λ 4 F xx F yy -F 2 xy .
Consequently, the vanishing or the nonvanishing of the Hessian determinant is an affinely invariant property. In fact, this is a consequence of a more informative Proposition 4.8.6. The rank and the signature of the Hessian matrix of a graphed surface u = F (x, y) are unchanged after any affine transformation. More precisely, under any affine transformation, one has

a + c F x k + m F x b + c F y l + m F y • G ss G st G ts G tt • a + c F x k + m F x b + c F y l + m F y t = δ Λ F xx F xy F yx F yy .
Proof. We already wrote above two formulas giving G s and G t in terms of F x , F y . Using a computer, starting from the three formulas for second derivatives written above, we may similarly solve G ss , G st , G tt in terms of F xx , F xy , F yy , F x , F y . Since the formulas are large, we do not show them. Equivalently, with v := p x + q y + r F (x, y) + s

G ss = E x E x (v) , G st = E x E y (v) , G tt = E y E y (v) .
Still on a computer, we verify that this matrix identity holds.

Definition 4.8.7. A point p = (x p , y p ) on a graphed surface u = F (x, y) is called:

• flat if Hessian F (p) = ( 0 0 0 0 ); • parabolic if Hessian F (p) has rank 1;
• elliptic if Hessian F (p) has rank 2 and signature (2, 0) or (0, 2);

• hyperbolic if Hessian F (p) has rank 2 and signature (1, 1).

Of course, these 4 circumstances are mutually exclusive. After an elementary special affine transformation, we can assume that the graph u = F (x, y) passes through the origin p = 0 and that Hessian F (0) is as shown below.

F (x, y) Hessian F at the origin Type of the origin

O(3) 0 0 0 0 flat 1 2 x 2 + O(3) 1 0 0 0 parabolic 1 2 (x 2 + y 2 ) + O(3) 1 0 0 1 elliptic 1 2 (x 2 -y 2 ) + O(3) 1 0 0 -1 hyperbolic The map (x, y) -→ rank Hessian F (x, y)
is lower semicontinuous, namely, if the Hessian matrix has rank τ p with 0 τ p 2 at some point (x p , y p ), then at all nearby points q ∼ p, it has rank τ q τ p . If it has rank 2 at some point, then it has rank 2 in some neighborhood of that point.

If we agree to make rank constancy assumptions, as we will do throughout this article, analytic surfaces S 2 ⊂ R 3 can be classified as:

• everywhere flat, if the Hessian matrix is identically of rank 0;

• everywhere parabolic, if the Hessian matrix is identically of rank 1;

• everywhere nondegenerate, if the Hessian matrix is everywhere of rank 2.

Without rank constancy assumptions, there are two mixed types:

• flat in a proper closed subset, and parabolic elsewhere, in some dense open subset;

• flat or parabolic in some proper closed subset, and elliptic or hyperbolic elsewhere, in some dense open subset.

In this paper, we will avoid studying mixed types, because it would engage towards singularity theory. Before we focus our attention on everywhere parabolic surfaces, let us briefly review known works about everywhere nondegenerate surfaces S 2 ⊂ R 3 .

4.9 Everywhere Elliptic or Hyperbolic Surfaces S 2 ⊂ R 3 : A Review By lower semicontinuity of the rank of a matrix, if the origin is an elliptic (or hyperbolic) point, then there exists a sufficiently small neighborhood which is everywhere elliptic (or hyperbolic). Theorem 4.9.1. [94, III, p. 165] Under the action of the equi-affine group SA 3 (R), every elliptic surface

S 2 ⊂ R 3 is equivalent to u = 1 2 x 2 + y 2 + C 6 x 3 -3 xy 2 + O x,y (4),
while every hyperbolic surface is equivalent to one and only of the following three

u = 1 2 x 2 -y 2 + C 6 x 3 + 3 xy 2 + O x,y (4), u = 1 2 x 2 -y 2 + C 6 3 x 2 y + y 3 + O x,y (4), u = 1 2 x 2 -y 2 + 1 6 x + y 3 + O x,y (4),
where C is unique up to sign.

This C is a Taylor coefficient at the origin, but the method of the next Section 4.12 will show, thanks to the fact that the action of SA 3 (R) is (trivially) transitive, that the computation of C for a power series at the origin provides the expression of a corresponding differential invariant at every point (x, y). Definition 4.9.2. The quantity

P := 1 2 C 2
is a 3 rd -order equi-affine invariant, called the Pick invariant.

Its explicit expression, at an elliptic point, is

P = 1 512 1 u xx u yy -u 2 xy 11/2 -18 u xx u xxy u xy u xyy u yy + 12 u xxx u 2 xy u xyy u yy + + 9 u 2 xx u 2 xyy u yy + 9 u xx u 2 xxy u 2 yy -6 u xxx u xxy u xy u 2 yy - -6 u xx u xxx u xyy u 2 yy + u 2 xxx u 3 yy + 12 u xx u xxy u 2 xy u yyy - -8 u xxx u 3 xy u yyy -6 u 2 xx u xy u xyy u yyy -6 u 2 xx u xxy u yy u yyy + + 6 u xx u xxx u xy u yy u yyy + u 3 xx u 2 yyy 2 .
At a hyperbolic point, we replace the factor

u xx u yy -u 2 xy -11/2 by u 2 xy -u xx u yy -11/2 .
When C is nonzero, we may assume C > 0. Then the only element in SA 3 (R) fixing the standard form above is the identity, hence all the coefficients in the Taylor expansion of O x,y (4) are also differential invariants.

Under some non-degeneracy conditions, Olver proved in [START_REF] Olver | Differential invariants of surfaces[END_REF] that all those higher order differential invariants can be generated by C and its differentials. Once C is captured in a small neighborhood of the origin, all the differential invariants are known there. 

Parabolic Jet Relations

Take a graph u = F (x, y) , and assume that the Hessian matrix of F

Hessian F = F xx F xy F yx F yy
has rank 1 at every point. After a rotation in the (x, y)-space (if necessary), this assumption amounts to

F xx = 0 ≡ F xx F yy -F 2 xy .
Therefore, we can solve

F yy = F 2 xy F xx . (4.10.1)
Jet spaces will be equipped with coordinates denoted x, y, u, u 1,0 , u 0,1 , u 2,0 , u 1,1 , u 0,2 , u 3,0 , u 2,1 , u 1,2 , u 0,3 , . . . . . . . Sometimes, we will fix an order O 0. At first, we have to express all the differential consequences of the resolution (4.10.1) for F yy . For jets of order 3, we obtain by differentiating with respect to x and to y and by performing replacements

(1,0)(2,0) (0,0) (0,1)(1,1) (O -1,1) (O,0) k+l = O k l
F xyy = 2 F xy F xxy F xx - F 2 xy F xxx F 2 xx , F yyy = 3 F 2 xy F xxy F 2 xx -2 F 3 xy F xxx F 3 xx ,
and also for jets of order 4 

Fxxyy = -4 Fxy Fxxy Fxxx F 2 xx + 2 Fxy Fxxxy Fxx + 2 F 2 xxy Fxx + 2 F 2 xy F 2 xxx F 3 xx - F 2 xy Fxxxx F 2 xx , Fxyyy = -12 F 2 xy Fxxx Fxxy F 3 xx + 6 Fxy F 2 xxy F 2 xx + 6 F 3 xy F 2 xxx F 4 xx + 3 F 2 xy Fxxxy F 2 xx -2 F 3 xy Fxxxx F 3 xx , Fyyyy = -24 F 3 xy Fxxx Fxxy F 4 xx + 12 F 2 xy F 2 xxy F 3 xx + 4 F 3 xy Fxxxy F 3 xx + 12 F 4 xy F 2 xxx F 5 xx - 3 
F x k k k+l , F x k y k k+l-1 ,
with denominators containing only powers

F xx * .
Using the jet notation, this means that we will exclusively work in the submanifold of the jet spaces J O

x,u defined by

u 0,2 = u 2 1,1 u 2,0 , next u 1,2 = 2 u 1,1 u 2,1 u 2,0 - u 2 1,1 u 3,0 u 2 2,0 , u 0,3 = 3 u 2 1,1 u 2,1 u 2 2,0 -2 u 3 1,1 u 3,0 u 3 2,0 , further u 2,2 = 2 u 2 2,1 u 2,0 -4 u 1,1 u 2,1 u 3,0 u 2 2,0 + 2 u 1,1 u 3,1 u 2,0 + 2 u 2 1,1 u 2 3,0 u 3 2,0 - u 2 1,1 u 4,0 u 2 2,0 , u 1,3 = 6 u 1,1 u 2 2,1 u 2 2,0 -12 u 2 1,1 u 3,0 u 2,1 u 3 2,0 + 3 u 2 1,1 u 3,1 u 2 2,0 + 6 u 3 1,1 u 2 3,0 u 4 2,0 -2 u 3 1,1 u 4,0 u 3 2,0 , u 0,4 = 12 u 2 1,1 u 2 2,1 u 3 2,0 -24 u 3 1,1 u 2,1 u 3,0 u 4 2,0 + 12 u 4 1,1 u 2 3,0 u 5 2,0 + 4 u 3 1,1 u 3,1 u 3 2,0 -3 u 4 1,1 u 4,0 u 4 2,0
, and so on. Again, this is nothing on a computer.

4.11

In Search of a Resolved Cross-Section for Parabolic Surfaces S 2 ⊂ R 3

Now, if we let a general affine transformation

s = a x + b y + c u + d, t = k x + l y + m u + n, v = p x + q y + r u + s, δ = a b c k l m p q r = 0,
act on graphed surfaces, the first prolongation formulas are

v 1,0 = lp -kq + lr -mq u 1,0 + mp -kr u 0,1 al -bk + cl -bm u 1,0 + am -ck u 0,1 , v 0,1 = aq -bp + cq -br u 1,0 + ar -cp u 0,1 al -bk + cl -bm u 1,0 + am -ck u 0,1 ,
and we of course recognize from (4.8.2) the denominator

Λ = al -bk + cl -bm u 1,0 + am -ck u 0,1 .
Next, for second-order jets v 2,0 , v 1,1 , v 0,2 , we consider only v 2,0 , v 1,1 , because the jet v 0,2 = v 2 1,1 v 2,0 is dependent. Furthermore, we have to take account of the parabolic jet relations explained in Section 4.10. Using a computer, we obtain

v 2,0 = δ Λ 3 u 2,0 l u 2,0 + m u 0,1 u 2,0 -k u 1,1 -m u 1,0 u 1,1 = Π 2 , v 1,1 = δ Λ 3 u 2,0 Π c u 1,0 u 1,1 + a u 1,1 -b u 2,0 -c u 0,1 u 2,0 ,
while the formulas for the two independent third-order jets v 3,0 and v 2,1 start to become large

v 3,0 = δ Λ 5 u 3 2,0 Π 2 48 monomials homogeneous of degree 3 in a, b, c, d, k, l, m, n, p, q, r, s , v 2,1 = δ Λ 5 u 3 2,0
Π 135 monomials homogeneous of degree 4 in a, b, c, d, k, l, m, n, p, q, r, s . and the last two useful formulas start to become huge

v 4,0
factor in the numerator containing 720 monomials, v 4,1 factor in the numerator containing 14 156 monomials.

We were not able, on a computer, to solve for the 11 group parameters a, b, c, d, k, l, m, n, p, q, r, s from the 11 natural cross-section equations

s = 0, t = 0, v = 0, v 1,0 = 0, v 0,1 = 0, v 2,0 = 1, v 1,1 = 0, v 3,0 = 0, v 2,1 = 1, v 4,0 = 0, v 4,1 = 0.
Fortunately, an alternative, more progressive, method works, as we will see in Sections 4.17 By solving order-by-order the cross-section equations, they progressively simplify -a lot! -, and we never have to deal with huge expresssions.

The Power Series Method

Consider a local Lie group G 0 acting on R p+q x,u , and assume that all of its elements fix the origin z = 0

g 0 • 0 = 0 (∀ g 0 ∈ G 0 ).
As usual, we denote coordinates on the target space R p+q y,v as w = (y, v). For the moment, we do not necessarily assume that G 0 is the isotropy subgroup of the origin for the action of a certain larger group G ⊃ G 0 .

When working with power series, we will abandon the notation J = j 1 , . . . , j λ used for jet spaces in the preceding sections, with 1 j 1 , . . . , j λ p not recording repetitions, and instead, we will employ the standard multi-index notation -with the same letter(s) -

J = j 1 , . . . , j p ∈ N p .
The advantage is that we can introduce useful quantities which would be otherwise difficult to denote

J! := j 1 ! • • • j p ! and |J| := j 1 + • • • + j p ,
and also

x J := x j 1 1 • • • x jp p .
As before, we denote the G 0 -action by w = g 0 • z, or equivalently

y = y g 0 , x, u), v = v g 0 , x, u).
Now, consider a (converging) power series mapping R p x -→ F (x) ∈ R q in the source space which vanishes at the origin

u α = |J| 1 F α J x J J! .
Every diffeomorphism z -→ g 0 • z =: w corresponding to a group parameter g 0 ∈ G 0 close to the identity element then transforms the graph u = F (x) of this power series into another graph v = G(g 0 , y) depeding on g 0 , still passing through the origin (y, v) = (0, 0), whose graphing function also has a power series expansion

v β := |K| 1 G β K y β K! , with coefficients G β K = G β K g 0 , F γ L 1 γ q
1 |L| |K| , depending on the coefficients of the source power series, and on the group parameters as well -of course. Here, G β K only depends on power series coefficients F α J of order |J| |K|. Definition 4.12.1. A power series invariant of order n 1 is a function of the Taylor coefficients

I = I F α J 1 α q 1 |J| n ,
which has unchanged value after the action of any element in our local Lie group

I G β K g 0 , F γ L 1 γ q 1 |L| |K| 1 β q 1 |K| n = I F α J 1 α q 1 |J| n . (∀ g 0 ∈ G 0 ).
This concept has a meaning only at the origin! It only concerns the derivatives at 0 of the graphing functions u α (x) u α x J (0)

1 α q J∈N p * .
By contrast, the general theory of differential invariants is able to handle derivatives at all points in the source horizontal space u α x J (x)

1 α q J∈N p * , x varies in R p . So it seems that this notion of power series invariant is quite restrictive! But a bit paradoxically -and quite the contrary! -, we will rapidly realize that the power series invariants do capture all differential invariants at any point x ∈ R p , provided only that the larger group G ⊃ G 0 = Iso(G, 0) contains the ambient translations.

In [START_REF] Olver | Normal forms for submanifolds under group actions, Symmetries, differential equations and applications[END_REF], it is shown how:

invariants in jet spaces power series invariants.

Our goal now is to explore the reverse transmission:

invariants in jet spaces power series invariants, which will bring some computational advantages. Taking a local Lie group G acting on a neighborhood of 0 ∈ R p+q x,u , not necessarily fixing the origin, we will make two kinds of assumptions. Hypothesis 4.12.2. The group G contains all translations of the ambient space

x i , u α -→ x i + a i , u α + b α , whence dim G p + q.
Equivalently, the Lie algebra g = Lie(G) of its action contains all the unit coordinate infinitesimal generators

∂ x i , ∂ u α .
The proof of the following result is elementary.

Theorem 4.12.3. If G contains all ambient translations, then for any jet order n 0, all differential invariants of G are independent of x i , u α

I = I u β x J 1 β q 1 |J| n ,
and there is a one-to-one correspondence:

Differential invariants of G ←→ Power series invariants of G.

More precisely -and this is the interesting aspect! -, the theorem tells us that starting from a power series invariant determined in a way that will be explained later on

I = I F α J 1 α q 2 |J| n = I u α x J (0) 1 α q 2 |J| n ,
one deduces instantly a differential invariant by just replacing the origin with any horizontal x ∈ R p

I = I u α x J (x) 1 α q 2 |J| n ,
and in particular, at the origin, one recovers the starting power series invariant.

Example 4.12.4. Consider the action of the special Euclidean group SE 2 (R) :

= SO 2 (R) R 2 on curves {u = F (x)} in R 2
x,u . Because this action is transitive, we can restrict our attention to curves passing through (0, 0) and to rotations

x = cos θ y -sin θ v, u = sin θ y + cos θ v, abbreviated as x = c y -s v, u = s y + c v, with s 2 + c 2 = 1.
When we deal with the local Lie group near the identity (s, c) = (0, 1), we may assume c > 0. Two graphed power series

u = F (x) = F 1 x 1 1! + F 2 x 2 2! + • • • and v = G(y) = G 1 y 1 1! + G 2 y 2 2! + • • • are equivalent if and only if 0 ≡ -s y -c G(y) + F c y -s G(y) (in C{y}).
In this identity, the first and second order terms read

0 ≡ -s -c G 1 + c F 1 -s F 1 G 1 y 1 1! + -c G 2 -s F 1 G 2 + c 2 F 2 -2 cs F 2 G 1 + s 2 F 2 G 2 1 y 2 2! + O y (3).
We can make G 1 := 0 thanks to the choice of θ ∈ R satisfying

0 = -sin θ + cos θ F 1 ⇐⇒ s c = F 1 .
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Next, we may verify that the transformation of SO 2 (R) with c > 0 which stabilizes this normalization of first order terms, namely sends

u = 0 + F 2 x 2 2! + • • • to v = 0 + G 2 y 2 2! + • • • ,
is the identity. Looking at the second order term above, with G 1 = 0, we get

G 2 = F 2 c 1 + s c F 1 = F 2 c 1 + F 2 1 ,
and using

1 = s 2 + c 2 = c 2 F 2 1 + c 2 , which gives c = 1 √ 1+F 2 1
, we conclude that we have obtained a power

series invariant v yy (0) = u xx (0) 1 1 + u x (0) 2 3/2 ,
which yields, at any point x, a differential invariant

u xx (x) 1 1 + u x (x) 2 3/2 ,
We have thus recovered the Euclidean curvature of curves in the plane by applying the power series method. This method also works for the full Euclidean group SE 2 (R), not just the local one. A similar calculation for c ∈ [-1, 1] instead of c > 0 shows that there are two normal forms

: v = 0+G 2 y 2 2 +• • • and v = 0-G 2 y 2
2 -• • • , for every nonlinear curve. These two forms are equivalent to each other by a semi-circle rotation (s, c) = (0, 1). So our power series invariant for the full group of order 2 is

|G 2 | = |F 2 | (1+F 2 1 ) 3/2 , which yields, at any point x, a differential invariant |u xx (x)| 1 1 + u x (x) 2 3/2 .
Beyond this (too) simple example, we will see how the method works in many other contexts.

Furthermore, the interesting reverse transmission:

invariants in jet spaces power series invariants, holds in other situation, as is expressed by our second Hypothesis 4.12.5. The group G contains all translations of the ambient space, and all shearings

x i , u α -→ x i , u α + 1 i p c α i x i , whence dim G p + q + p q.
Equivalently, the Lie algebra g = Lie(G) contains all the infinitesimal generators

∂ x i , ∂ u α , x j ∂ u β .
Theorem 4.12.6. If G contains all ambient translations and all shearings, then for any jet order n 0, all differential invariants of G are independent of x i , u α , u β

x j I = I u γ x J 1 γ q 2 |J| n ,
and there is a one-to-one correspondence:

Differential invariants of G ←→ Power series invariants of G. More precisely, in order to compute invariants, it suffices to study the power series of order at least 2

u α = |J| 2 F α J x J J!
under the action of the subgroup stabilizing this form.

At least three aspects of the power series method are attractive.

• Prolongations of a G 0 -action to jet spaces of any order n 0 can be performed 'automatically', especially on a computer, for there is no need to write down the complicated formulas E k (v α ) of Theorem 4.3.5, they are implicitly performed after replacement of y = y(g 0 , x, u) and v = v(g 0 , x, u) inside 0 =v + G(y).

• The search for power series invariant takes place above only 1 point, the origin 0 ∈ R m , no differentiations are required anymore, just computations with Taylor coefficients, which are constants, that is to say, thenonlinear! -action of G 0 is considered just on a vector space, not on a (jet) bundle.

• In presence of differential relations, as will be illustrated in Sections 4.17, 4.18, 4.19, 4.20, such differential relations can also be 'automatically' implemented on Taylor series, and this saves computation time.

Lastly, there is another advantage of the power series method.

• A progressive stratification of the normalisations of group parameters for increasing fixed orders |J| = 1, 2, 3, . . . conducts to a high proximity with the Cartan method of equivalence, and its famous reductions and prolongations of G-structures.

To explain these claims, let us exhibit another elementary example, that of curves in the plane R 1+1

x,u under the special affine group.

Special Affine Power Series Invariants of Curves in R 2

In R 2 (x, u), we consider a graphed curve passing through the origin normalized to order

1 0 = -u + F (x) = -u + F 2 x 2 2! + F 3 x 3 3! + • • •
which satisfies F 2 = 0. These formal coefficients F i will be re-initialized in later stages of the process. But at the beginning, these Taylor coefficients

F i := u i = u i (x),
represent the initial data of an arbitrary smooth curve passing an arbitrary point. All power series computations we will perform at the origin will therefore have an interesting meaning at every point of any curve in R 2 : such is the 'power' of power series! 13.1. First loop. The special affine linear group SL 2 (R) consists of matrices a b c d having determinant 1 = adbc. Without primes or bars, target coordinates will be denoted (y, v).

We consider special affine transformations

R 2 x,u -→ R 2 y,v
which are not too far from the identity, so that any analytic graph u = F (x) is sent to a similar graphed curve v = G(y) . Since the source power series

F (x) = i 2 F 2 x i
i! is given and since we want to simplify the target power series G(y) = j 2 G j y j j! , it is more natural to work with the inverse special affine transformation, which is also represented by means of an SL 2 (R) matrix as

x = a y + b v, u = c y + d v, u R 2 x R 2 v y v = G(y) u = F (x)
special affine inverse Then the graphing function G(y) is uniquely determined, by a fundamental equation

0 ≡ -c y + d v + F a y + b v replace v=G(y) (in R{y}),
holding identically as a power series of the single horizontal variable y -why and how G is thusly determined will be clear in a while. The game is to use the group parameters freedom a, b, c, d in order to 'kill' as much as possible coefficients G j .

After an affine transformation, we may of course assume that our target graph enjoys a similar first-order

normalization v = O y (2), namely 0 = -v + G(y) = -v + G 2 y 2 2! + G 3 y 3 3! + • • • .
Then performing the plain replacement above (4.13.2)

0 ≡ -c y -d G(y) + F a y + b G(y) ,
we glean first-order terms which must vanish

0 ≡ -c y + O y (2) (in R{y}). Lemma 4.13.3. The subgroup of SL 2 (R) sending v = O y (2) to u = O x (2) is 2-dimensional and consists of matrices G (1)
stab :

a b 0 1 a (a = 0).
Thus, we have computed the subgroup which stabilizes the current normal form of our power series. In later stages of the process, higher order jets stabilizer subgroups

SL 2 (R) ⊃ G (1) stab ⊃ G (2) stab ⊃ G (3) stab ⊃ • • • ⊃ G (τ ) stab = {e}
will naturally appear until final reduction to identity. A deep proximity exists with Cartan's method of equivalence.

But before jumping to the second loop of the 'algorithm', we must examine how this reduced subgroup G

(1) stab acts on the second order term y 2 in (4.13.2), getting

0 ≡ -1 a G 2 + a 2 F 2 y 2 2! + O y (3).
From our assumption F 2 = 0, we deduce that G 2 = 0 is inherited. , we can make G 2 := 1 by means of the specific matrix -we choose b := 0 for simplicity -

1 F 1/3 2 0 0 F 1/3 2 ∈ G (1)
stab .

Then with this precise special affine transformation, a computation of the higher order terms in (4.13.2) gives us

0 ≡ -F 1/3 2 G 3 + F 3 F 2 y 3 3! + -F 1/3 2 G 4 + F 4 F 4/3 2 y 4 4! + -F 1/3 2 G 5 + F 5 F 5/3 2 y 5 5! + • • • ,
and we obtain as promised unique determinations

G i := F i F 1+i 3 2 (i 3).
Finally, remembering that the F i were formal variables representing the functional jets

u x i (x) = u i (x) = u i = F i , we see that the coefficients of the transformed curve v = G(y) have become G 2 := 1, G i := u i u 1+i 3 2 (i 3).
13.4. Second loop. In order to avoid indices heaviness, we keep the same notation u = F (x) and v = G(y) , which means that what we now call F is the G of the end of the previous loop. So in terms of the initial functional jets u i , we have in fact re-assigned

F 2 := 1, F i := u i u 1+i 3 2 (i 3).
Keeping this in memory, we will now work formally with power series coefficients F i and G j , and only at the end of the current loop will we express the result in terms of these

F i = u i u (1+i)/3 2
. So both our source and target graphed curves may be assumed to have terms normalized up to order 2 included u = x 2 2! + F 3

x 3 3! + • • • and v = y 2 2! + G 3 y 3 3! + • • • .
Remembering that Lemma 4.13.3 already showed that stabilization up to order 1 forces c = 0, in order to determine the subgroup

G (2) stab ⊂ SL 2 (R), we can work within G (1) stab . Lemma 4.13.5. The subgroup of SL 2 (R) sending u = 1 2 x 2 + O x (3) to v = 1 2 y 2 + O y (3) is 1-dimensional and consists of matrices G (2) stab : 1 b 0 1 .
Proof. Hence with c = 0, back to (4.13.2), we get a 3 = 1 from

0 ≡ -1 a + a 2 y 2 2! + O y (3).
Thus, as promised, we have determined the subgroup G

stab which stabilizes the current normal form of our power series, and as we will see soon, the process will stop at stage 3 stab acts on the third order term y 3 in (4.13.2)

SL 2 (R) ⊃ G (1) stab ⊃ G (2) stab ⊃ G (3) stab = {e}.
0 ≡ -G 3 + F 3 + 3 b y 3 3! + O y (4).
We can make G 3 = 0 with b := -1 3 F 3 , by means of the specific matrix

1 -F 3 /3 0 1 .
Then with this precise special affine transformation, higher order vanishing terms

0 ≡ -G 4 -5 3 F 2 3 + F 4 y 4 4! + -G 5 -5 3 F 3 G 4 + F 5 + 5 3 F 2 3 -10 3 F 3 F 4 y 5 5! + O y (6)
conduct us to

G 4 := -5 3 F 2 3 + F 4 , G 5 := F 5 + 40 9 F 3 3 -5 F 3 F 4 .
Coming back to the functional jets, we obtain

G 2 := 1, G 3 := 0, G 4 := 1 3 -5 u 2 3 + 3 u 2 u 4 u 8/3 2 , G 5 := 1 9 9 u 2 2 u 5 -45 u 2 u 3 u 4 + 40 u 3 3 u 4 2 .
13.6. Third loop. We start by re-assigning

F 2 := 1, F 3 := 0, F 4 := 1 3 -5 u 2 3 + 3 u 2 u 4 u 8/3 2 , F 5 := 1 9 9 u 2 2 u 5 -45 u 2 u 3 u 4 + 40 u 3 3 u 4 2 .
We again work with formal u = F i

x i i and v = G j y j j! assuming the normalizations F 2 = 1, F 3 = 0 and G 2 = 1, G 3 = 0.
Naturally, since only 1 degree of freedom was left at the previous stage, the condition that the coefficient 0 of The algorithm therefore stops, and a first result, valid only at the level of power series at the origin, is a corollary of this reduction to an {e}-group. Theorem 4.13.8. (1) Given a real analytic curve u = F (x) in R 2 passing through the origin which satisfies

F xx (0) = 0,
there always exists an SL 2 (R) transformation which puts it into the form

u = x 2 2! + 0 + F 4 x 4 4! + F 5 x 5 5! + i 6 F i x i i! .
(2) Any other such real analytic curve v = G(y) similarly put into the form 

v = y 2 2! + 0 + G 4 y 4 4! + G 5 y 5 5! + j 6 G j y j j! , is SL 2 (R)-equivalent to u = F (x)
G 4 = F 4 , G 5 = F 5 , G i = F i (∀ i 6).
As explained in Section 4.12, the power series coefficients so obtained F 4 , F 5 , are differential invariants at any point x, u(x) of the curve, and beyond, the explicit expressions of the next two are

F 6 := 1 9 9 u 3 2 u 6 -63 u 2 2 u 3 u 5 + 105 u 2 u 2 3 u 4 -35 u 4 3 u 16/3 2 , F 7 := 1 9 9 u 4 2 u 7 -84 u 3 2 u 3 u 6 + 210 u 2 2 u 2 3 u 5 -105 u 2 2 u 3 u 2 4 + 210 u 2 u 3 3 u 4 -280 u 5 3 u 20/3 2 .
Furthermore, in terms of the total differentiation operator

D x := ∂ ∂x + u 1 ∂ ∂u + ∞ i=1 u i+1 ∂ ∂u i
the affine-invariant differential operator

D x := 1 u 1/3 2
D x (4.13.9) enables to produce higher order invariants, for instance

D x 1 3 -5 u 2 3 + 3 u 2 u 4 u 8/3 2 = 1 9 9 u 2 2 u 5 -45 u 2 u 3 u 4 + 40 u 3 3 u 4 2 .
More will be said in Section 4. [START_REF] Chen | Normal Forms for Rigid C 2,1 Hypersurfaces M 5 ⊂ C 3[END_REF].

Next, we present an ancient result ( [START_REF] Halphen | Sur l'équation différentielle des coniques[END_REF]). (3) P(u) ≡ 0 implies C(u) ≡ 0.

Proof. [START_REF] Abdalla | Affine homogeneous surfaces in R 3 with vanishing Pick invariant[END_REF] The target being v = y 2 , we have after an affine transformation whose linear part a b k l ∼ ( 1 0 0 1 ) may be assumed close to the identity

k x + l u + m = a x + b u + c 2 ,
hence we may solve for u thanks to the positivity of the discriminant

u = l -2 bc -2 ab x ± 4 b 2 k -4 abl x + l 2 -4 bcl + 4 b 2 m 2 b 2 .
Thus with different constants the general equation of parabolas is

u = d x + e + 2 g x + h.
At first, in order to eliminate d and e, we just differentiate two times Conversely, from P(u) ≡ 0, using u xx = 0, one reconstitutes by integration (exercise) the general equation

u xx = - g 2 2 g x + h 3/2 ,
u = d x + e + √ 2 g x + h.
(2) Now, the target is a general conic in the R 2 y,v -plane, hence an x 2 monomial must be present under the square root The converse is also left as an exercise.

u = d x + e + f x 2 + 2 g x + h.

Quite similarly

u xx = f h -g 2 f x 2 + 2 g x + h 3/2 , whence 1 
u 2/3 xx = f (f h -g 2 ) 2/3 x 2 + 2 g (f h -g 2 ) 2/3 x + h (f h -g 2 ) 2/3 ,
(3) follows from a direct differentiation of 0 ≡ 3 u xx (x) u xxxx (x) -5 u xxx (x) 2 , and will now be explained in a more theoretical framework.

4.14 Recurrence formulas for Differential Invariants 14.1. Prolongations of infinitesimal generators. As before, let G be a local Lie group of finite dimension 1 r < ∞ acting on graphs in R p+q x,u . Abbreviate z = (x, u) and z (n) = x, u (n) . Choose any basis e 1 , . . . , e r for the Lie algebra g := Lie(G) and introduce the r infinitesimal generators of the G-action on the considered space

v σ := d dt t=0 exp t e σ • z (1 σ r).
We thus get r vector fields forming a Lie algebra, which we will write as

v σ = p i=1 ξ i σ (x, u) ∂ ∂x i + q α=1 ϕ α σ ∂ ∂u α (1 σ r).
For any jet order O 0, and even up to infinity, the prolongations of these fields 

v (∞) σ = v σ + # J 1 q α=1 ϕ σ α J x, u (J) ∂ ∂u α J , 4 
ϕ σ α J = D x J ϕ α σ - 1 i p ξ i σ u α i + 1 i p ξ i σ u α J,i ,
where, by a slight abuse of notation, we have denoted u (J) instead of u (#J) . Next, we recall that the modified total differentiation operators are

   E x 1 . . . E x p    :=    D x 1 (y 1 ) • • • D x 1 (y p ) . . . . . . . . . D x p (y 1 ) • • • D x p (y p )    -1    D x 1 . . . D x p    ,
and after perfoming abstractly the matrix inversion, this means that there exist coefficient-functions such that

E x i = 1 j p Z j i g, x, u (1) D x j . (4.14.2)
Following [START_REF] Fels | Moving coframes. II. Regularization and theoretical foundations[END_REF], we may invariantize these E x i by replacing the group parameters g = (g 1 , . . . , g r ) by their values g := ρ z (nG) solved from the cross-section equations, and in this way, we produce p invariant horizontal differential operators

D i := inv E x i := 1 j p Z j i ρ(z (nG) ), x, u (1) D x j .
Observation 4.14.3. Such invariant differential operators D 1 , . . . , D p have coefficients which depend on jets of order n G ,where n G is the minimal jet order for which the action of G on J n x,u becomes locally foliated (free) of rank equal to r = dim G.

Knowing that a moving frame map ρ : J nG p,q -→ G is often difficult to construct explicitly, these D i are almost never explicit! Definition 4.14.4. The invariantization of an arbitrary function F = F z (n) defined on any n th order jet space J n

x,u with n 0 is defined by replacing firstly z (n) in its argument by the target value w (n) = w (n) g, z (n) and secondly the group parameters g = g 1 , . . . , g r by their expressions solved from the (not canonical) cross-section equations

F := inv F z (n) := F w (n) ρ(z (nG) ), z (n) .
Of course, inv(F ) is always a differential invariant. In particular, one can invariantize all jet monomials

J i := inv x i = y i ρ(z (nG) ), x, u , I α K := inv u α K = v α K ρ(z (nG) ), x, u (K) ,
where, as before, 1 i p, 1 α q, K = k 1 , . . . , k λ , 1 k 1 , . . . , k λ p. We will call them monomial differential invariants.

Convention 4.14.5. When K = ∅, we agree that I α ∅ = I α is the invariantization of the un-differentiated u α . Most of the times -at least for all group actions considered in this article -, the action of G is transitive on R p+q x,u , hence the cross-section equations can be assumed to contain the p + q equations y i = 0, u α = 0, and then

J i = 0, I α = 0.
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We will abbreviate

I (n) := J i , I α K 1 α q 0 #K n ,
and we can at last present the fundamental recurrence formulas.

Theorem 4.14.6. [START_REF] Fels | Moving coframes. II. Regularization and theoretical foundations[END_REF] [Recurrence relations] The invariant derivatives of all the monomial invariants I α K with respect to D 1 , . . . , D p express as differential invariants of order #K + 1 raised by one unit

D j I α K = I α K,j + 1 σ r ϕ σ α K I (K) • K σ j I (nG+1) ,
with the peculiar case of

D j J i = δ i j + 1 σ r ξ i σ I (0) • K σ j I (nG+1) ,
plus some correction remainders which incorporate the invariantizations

ϕ σ α K I (K) of the coefficients ϕ σ α K z (K) of the prolonged vector fields v (∞) 1 , . . . , v (∞)
r , as well as certain special differential invariants K σ j of order n G + 1 -called of 'Maurer-Cartan' type. Moreover, for each fixed 1 j p, the linear system of r equations in the r unknows K 1 j , . . . , K r j constituted of the r recurrence relations written only for the r phantom invariants:

inv w (n 1 ) ν 1 = c 1 , . . . . . . , inv w (nr) νr = c r , has left-hand sides all equal to 0 = D j (c 1 ) = • • • = D j (c r )
, is of Cramer type, and can be solved uniquely for K 1 j , . . . , K r j in terms of the other present differential invariants, all of order at most:

1 + max 1 h r n h = 1 + n G .
The last sentence justifies why these Maurer-Cartan invariants can be written K σ j = K σ j I (nG+1) . They appear in a wider theoretical context ( [START_REF] Fels | Moving coframes. II. Regularization and theoretical foundations[END_REF]), but in all applications, the most efficient way to determine these K σ j is to set up and solve the mentioned p Cramer systems. This fundamental theorem has (at least) three types of values. • To provide all possible differential relations between differential invariants ( [START_REF] Fels | Moving coframes. II. Regularization and theoretical foundations[END_REF]).

• To be applicable without the need of computing explicitly any -even a single one which is not phantom!differential invariant, a task which reveals itself desperately beyond the reach of any modern symbolic software.

• To jump at a synthetic level at which calculations amount to plain linear algebra in low dimension, hence are very accessible. 14.7. Groups containing translations. Now, assume that our local Lie group G contains all translations

x i , u α -→ x i + a i , u α + b α .
This assumption is justified throughout the article, because we will mainly deal with the standard affine or special affine groups of transformations acting on R p+q .

We take a reference point p 0 ∈ R p+q , at which we center the coordinates (x, u), so that p 0 = (0, 0) is the origin. With z = (x, u) and w = (y, v), we recall that we denote the G-action from R m to R m as z -→ w(g, z), where m = p + q.

So the initial graphs u α = F α (x) we are considering satisfy F α (0) = 0, while the target G-transformed graphs v β = G β (g, y) do not necessarily pass through the origin -but our goal is to reduce ourselves to having G β (g, 0) = 0 too, at the price of reducing G. Like for the G-structures of the Cartan method of equivalence, this principle of progressive reduction will be practically very powerful.
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For this purpose, we introduce the isotropy subgroup of the origin

G 0 := g ∈ G : w(g, 0) = 0 .
It is a local Lie group too, just because fixing a point is preserved by composition. Since our group G which contains all translations is trivially transitive, we have

dim G 0 = r -(p + q) =: r 0 .
After a reordering, we may assume that a basis for g = Lie(G) as introduced before is organized so that g = Span e 1 , . . . , e m , e m+1 , . . . , e r , Lie(G 0 ) =: g 0 = Span e m+1 , . . . , e r .

If as before, we also introduce the infinitesimal generators of the action of

G on R m v σ := d dt t=0 exp t e σ • z (1 σ r),
then as is well known since Lie ( [START_REF] Engel | Theorie der Transformationsgruppen, Erster Abschnitt[END_REF][START_REF]Theory of Transformation Groups I. General Properties of Continuous Transformation Groups. A Contemporary Approach and Translation[END_REF]), all the ones associated to G 0 do vanish at the origin

0 = v m+1 0 = • • • = v r 0 .
Since G contains all translations, it is clear that we may assume that the first p + q infinitesimal generators are plainly

v i = ∂ x i , v p+α = ∂ u α (1 i p, 1 α q).
Furthermore, on the jet space J nG x,u of the appropriate order n G , we may assume that the cross-section equations to the lifted action of G on J nG x,u contain the (p + q) equations y i g, x, u = 0, v α g, x, u = 0, and that these equations are the first m among the r cross-section equations we wrote abstractly as

0 = w (n 1 ) ν 1 =1 z, g = • • • = w (nm) νm=m z, g .
Therefore, among the phantom differential invariants, there are the p + q

J i = inv y i , I α ∅ = inv v α .
A quick inspection of the prolongation formulas of Theorem 4.3.7 convinces of an Observation 4.14.8. The prolongations of the translational vector fields are all trivial

v (∞) i = v i + 0, v (∞) p+α = v p+α + 0.
Then in the fundamental recurrence formulas of Theorem 4.14.6, we decide to set aside the p + q ones concerning these first phantom invariants, namely

D j J i = δ i j + 1 • K i j + m+1 σ r ξ i σ I (0) • K σ j I (nG+1) , D j I α ∅ = I α j + 1 • K p+α j + m+1 σ r ϕ α σ I (0) • K σ j I (nG+1) ,
and to conserve only the recurrence relations that are of order #K 1

D j I α K = I α K,j + 1 σ r ϕ σ α K I (K) • K σ j I (nG+1) = I α K,j + 0 + m+1 σ r ϕ σ α K I (K) • K σ j I (nG+1)
but then our observation that ϕ σ α K = 0 or all 1 σ m shows that m terms drop in all the correction sums. If we now write only the r-m recurrence formulas which concern the remaining r-m phantom differential invariants inv w (n m+1 ) ν m+1 (z, g) , . . . . . . , inv w (nr) νr (z, g) , we obtain for every fixed j a system of rm linear equations in the rm Maurer-Cartan invariants K m+1 j , . . . , K r j . This system is a subsystem of the full r × r system of Theorem 4.14.6 for K 1 j , . . . , K m j , K m+1 j , . . . , K r j , and by triangularity (by blocks), the (rm) × (rm) subsystem is also of Cramer type, hence can be solved uniquely for K m+1 j , . . . , K r j in terms of I (nG+1) . 14.9. Groups containing translations and shearings. Assume now that G contains not only translations, but also all shearings

v α = u α + q α 1 x 1 + • • • + q α p x p (1 α q).
Thus, dim G = r p + q + p q. The p q infinitesimal generators are

x i ∂ u α (1 i p, 1 α q).
An application of Theorem 4.3.7 shows that their infinite prolongations are truncated after first order

x i ∂ u α (∞) = x i ∂ u α + ∂ u α i + 0.
We list the first p + q + p q infinitesimal generators as

v i := ∂ x i , v p+α := ∂ u α , v p+q+1 , . . . , v p+q+pq = x i ∂ u α .
Hence we have

1 σ p + q, #K 1 =⇒ ϕ σ α K = 0, p + q + 1 σ p + q + p q, #K 2 =⇒ ϕ σ α K = 0.
Among the cross-section equations, we may take

y i = 0, v α = 0, v α i = 0.
This conducts to p + q + p q phantom invariants

J i = 0, I α ∅ = 0, I α i = 0.
Then in the fundamental recurrence formulas of Theorem 4.14.6, we decide to set aside the p + q + p q ones concerning these first phantom invariants, and the interesting recurrence relations are, for any #K 2

D j I α K = I α K,j + 1 σ r ϕ σ α K I (K) • K σ j I (nG+1) = I α K,j + 0 + m 1 +1 σ r ϕ σ α K I (K) • K σ j I (nG+1) ,
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where we abbreviate m 1 := p + q + p q. It remains rm 1 infinitesimal generators v m 1 +1 , . . . , v r . If we now write only the rm 1 recurrence formulas which concern the remaining rm 1 phantom differential invariants inv w (n m 1 +1 ) ν m 1 +1 (z, g) , . . . . . . , inv w (nr) νr (z, g) ,

we receive for every fixed j a system of rm 1 linear equations in the rm 1 Maurer-Cartan invariants K m 1 +1 j , . . . , K r j . This system is a subsystem of the full r × r system of Theorem 4.14.6 for K 1 j , . . . , K m 1 j , K m 1 +1 j , . . . , K r j , and by triangularity (by blocks), the (rm 1 ) × (rm 1 ) subsystem is also of Cramer type, hence can be solved uniquely for K m 1 +1 j , . . . , K r j in terms of I (nG+1) . This observation will be useful later on, in Section 4.20.

Moving Frame Method and Recurrence Relations for Curves

In general, the structure of the full algebra of differential invariants can be understood thanks to the recurrence formulas obtained by Fels and Olver in [START_REF] Fels | Moving coframes. II. Regularization and theoretical foundations[END_REF].

For any integer n 0, let J n x,u be the space of n th order jets of functions R x -→ u(x) ∈ R, equipped with coordinates

x, u, u 1 , . . . , u n , where the u i stand for ∂ i u ∂x i (x), as abstract independent variables. According to [START_REF]Theory of Transformation Groups I. General Properties of Continuous Transformation Groups. A Contemporary Approach and Translation[END_REF]Ch. 23] and to [START_REF] Olver | Equivalence, invariants, and symmetry[END_REF][START_REF] Merker | Lie symmetries of partial differential equations and CR geometry[END_REF], the n th prolongation of a general vector field on the (x, u) space

v = ξ(x, u) ∂ ∂x + η(x, u) ∂ ∂u is a vector field on J n x,u v (n) := v + 1 i n Φ i x, u, u 1 , . . . , u i ∂ ∂u i ,
which has extended coefficients uniquely defined as

Φ i := D x • • • D x i times η -ξ u 1 • • • + ξ u i+1 (1 i n).
In [START_REF] Merker | Lie symmetries of partial differential equations and CR geometry[END_REF], one finds closed explicit formulas for all these coefficients Φ i in any jet order n 1, even for an arbitrary number of independent variables x 1 , . . . , x p and for an arbitrary number of dependent variables u 1 , . . . , u q . However, in small dimensions and for small jet order, it is better and almost straightforward to capture these Φ i using a computer.

In the present context, the group SL 2 (R) has 3 natural infinitesimal generators

v 1 := x ∂ x -u ∂ u , v 2 := u ∂ x , v 3 := x ∂ u ,
whose prolongations to the n th order jet space are, as a computer tells us

v (n) 1 = x ∂ x -u ∂ u -2 u 1 ∂ u 1 -3 u 2 ∂ u 2 -4 u 3 ∂ u 3 -• • • -(n + 1) u n ∂ un , v (n) 2 = u ∂ x -u 2 1 ∂ u 1 -3 u 1 u 2 ∂ u 2 -4 u 1 u 3 + 3 u 2 2 ∂ u 3 -5 u 1 u 4 + 10 u 2 u 3 ∂ u 4 - -6 u 1 u 5 + 15 u 2 u 4 + 10 u 2 3 ∂ u 5 -7 u 1 u 6 + 21 u 2 u 5 + 35 u 3 u 4 ∂ u 6 - -8 u 1 u 7 + 28 u 2 u 6 + 56 u 3 u 5 + 35 u 2 4 ∂ u 7 -• • • , v (n) 3 = x ∂ u + ∂ u 1 ,
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For any jet order n 1, we would write

v (n) κ = v κ + 1 i n Φ i κ ∂ u i (1 κ 3).
and reading the first terms of v

(n) 1 , v (n) 3 , it is visible that Φ (1) 3 = 1, Φ (2) 
3 = • • • = Φ (n) 3 = 0, Φ (k) 1 = -(k + 1) u k (1 k n),
while it can be proved (exercise) that when n =: 2n is even

Φ 2n 2 = - 1 k n 2n+1 k u k u 2n+1-k ,
and when n =: 2n + 1 is odd

Φ 2n+1 2 = - 1 k n 2n+2 k u k u 2n+2-k -1 2 2n+2 n+1 u n+1 2 .
Fels and Olver in [START_REF] Fels | Moving coframes. II. Regularization and theoretical foundations[END_REF] introduced an invariantization operator 'inv' which transforms every function on the jet space into a differential invariant. After having centered our surface at the origin by means of a translation, and after having set to constant three other Taylor coefficients as in Theorem 4.13.8, we come to

inv(x) = 0, inv(u) = 0, I 1 := inv u x = 0, I 2 := inv u xx = 1, I 3 := inv u xxx = 0.
Generally, every pure jet monomial produces a differential invariant

I k := inv u x k (k 0),
whose expression is most of the time lengthy and complex, while the 5 constantified invariants inv(x), inv(u), I 1 , I 2 , I 3 are called phantom invariants.

The recurrence formulas obtained by Fels and Olver in [START_REF] Fels | Moving coframes. II. Regularization and theoretical foundations[END_REF] can be set up without knowing the (huge) explicit expressions of differential invariants and are of the form (4.15.1)

I k+1 = D x I k - 1 κ 3 inv Φ k κ R κ (k 0),
where the invariant differentiation operator D x already introduced above in (4.13.9) is a nonzero multiple of the total differentiation operator D x , where all invariantized coefficients of the prolonged vector fields are simply inv Φ k κ x, u, u 1 , u 2 , u 3 , u 4 , . . . , u k = Φ k κ 0, 0, 0, 1, 0, I 4 , . . . , I k due to the fundamental commutation

invariantization • function = function • invariantization,
and where the Maurer-Cartan coefficients R 1 , R 2 , R 3 -which are also differential invariants -can be determined by solving the linear system composed of the three recurrence relations applied to the three phantom invariants, technically as follows.

One writes the 3 × 3 matrix of the coefficients of the three generators v 1 , v 2 , v 3 of sl 2 (R) with respect to the three basic fields ∂ u 1 , ∂ u 2 , ∂ u 3 corresponding to the three invariants inv(u 1 ), inv(u 2 ), inv(u 3 ) which were phantom: 

∂ u 1 ∂ u 2 ∂ u 3 v 1 -2u 1 -3u 2 -4u 3 v 2 -u 2 1 -3u 1 u 2 -4u 1 u 3 -3u 2 2 v 3 1 0 0 invariantize --------→   0 -3 0 0 0 -3 1 0 0   , 4 
I 2 I 3 I 4   =   D x (I 1 ) D x (I 2 ) D x (I 3 )   -   0 0 1 -3 0 0 0 -3 0     R 1 R 2 R 3   ,
which, if we abbreviate the parabolas invariant as

P := inv u xxxx become   1 0 P   =   0 0 0   -   0 0 1 -3 0 0 0 -3 0     R 1 R 2 R 3   ,
and this simple linear system has as the unique solution

R 1 := 0 R 2 := 1 3 P, R 3 := -1.
Once these three Maurer-Cartan invariants have been determined, they can be plugged in all the other recurrence formulas (4.15.1). In particular for k = 4, 5, determining first the coefficients of

∂ u 4 , ∂ u 5 ∂ u 4 ∂ u 5 v 1 -5u 4 -6u 5 v 2 -5u 1 u 4 -10u 2 u 3 -6u 1 u 5 -15u 2 u 4 -10u 2 3 v 3 0 0 invariantize --------→   -5 P -6 I 5 0 -15 P 0 0   ,
we reach an invariant which we abbreviate as

M := I 5 = D x P --5 P • 0 -0 • 1 3 P -0 • (-1) = D x P , I 6 = D x I 5 --6 M • 0 --15 P • 1 3 P -0 • (-1) = D x D x (P) + 5 P 2 .
These first two formulas suggest that the parabolas invariant P together with all its invariants derivatives D ν

x P generate the algebra of differential invariants, a result established by Olver in [START_REF] Olver | Normal forms for submanifolds under group actions, Symmetries, differential equations and applications[END_REF]. Let us explain this a bit more.

Indeed, if we abbreviate the relevant invariantizations of the coefficients of v

(n) 2 as Λ k := inv Φ k 2 (k 4),
then we have Although it is clear that D ν x P ν∈N generates the full algebra of differential invariants of curves under SA 2 (R), it is an open question ( [START_REF] Olver | Normal forms for submanifolds under group actions, Symmetries, differential equations and applications[END_REF]) to get closed explicit formulas for all the I k .

Λ4 = 0, I5 = DxI4 + P 3 Λ4 = DxP, Λ5 = 15 I4, I6 = DxI5 + P 3 Λ5 = D 2 x P + 5 P 2 , Λ6 = 21 I5, I7 = DxI6 + P 3 Λ6 = D
In summary, what we have done in our basic Section 4.13 is to decompose into successive steps -stratified by increasing jet orders viewed in power series centered at the origin -all the elimination computations which are required to normalize plane curves under special affine transformations, while the famous moving frame method proceeds with a choice of a suitable cross-section in a sufficiently high order jet space so as to perform all the elimination computations in one stroke.

Of course, the two processes are mathematically equivalent, but the interest to decompose computations into steps is to be able to grasp some explicit expressions of at least a few differential invariants, and in dimension 2 for parabolic surfaces S 2 ⊂ R 3 , we will soon see that an explicit knowledge of certain 'bifurcating' invariants is necessary in order to study the full ramified tree of equivalence classes.

Affine Differential Invariants of Curves in R 2

But before we pass to dimension 2, let us show how the story changes much when considering the full affine group A 2 (R), with 6 > 5 parameters. In fact, such a study is not an improvisation. It will be applied in a certain (thin) branch later when we will study the SA 3 (R) equivalence of parabolic surfaces.

As all symbolic computation softwares do handle polynomials very efficiently, we will employ the power series method, and we will proceed as explained in the beginning of Section 4.13. As for SL 2 (R), we may assume that first-order terms are normalized to vanish Next, assuming of course still that

u = O x (2) and v = O y (2).
F 2 = 0 = G 2 in u = F 2 x 2 2! + O x (3) and v = G 2 y 2 2! + O y (3),
we examine how this reduced group G

stab acts on the second order term y 2 of the fundamental equation (4.16.2)

0 ≡ -d G 2 + a 2 F 2 y 2 2! + O y (3).
Consequently, we can make G 2 := 1 for the curve in the target space R 2 y,v by choosing d := a 2 F 2 , and with the simplest choice a := 1, we apply the invertible matrix

1 0 0 F 2 ∈ G (1) 
stab .

Calculations of further terms in the fundamental equation (4.16.2) provide 

G 3 = F 3 F 2 , G 4 = F 4 F 2 , G 5 = F 5 F 2 , 4 
G 2 := 1, G 3 := u 3 u 2 , G 4 := u 4 u 2 , G 5 := u 5 u 2 .
16.4. Second loop. We restart from equations normalized up to order 2

u = x 2 2! + F 3 x 3 3! + • • • , v = y 2 2! + G 3 x 3 3! + • • • .
To determine the subgroup G

(2)

stab ⊂ G (1) 
stab which stabilizes these normalizations, we compute the first term in the fundamental equation (4.16.2)

0 ≡ -d + a 2 y 2 2! + O y (3). Lemma 4.16.5. The subgroup of GL 2 (R) sending v = y 2 2! + O y (3) to u = x 2 2! + O x (3) is 2-dimensional and consists of matrices G (2) stab : a b 0 a 2 (a = 0).

Next, we examine how this reduced group G

(2) stab acts on the third order term

y 3 0 ≡ -a 2 G 3 + 3 ab + a 3 F 3 y 3 3! + O y (4).
Consequently, we can make G 3 := 0 by choosing b := -1 3 a 2 F 3 , and with the simple matrix

1 -1 3 F 3 0 1 , we transform u = F (x) into v = y 2 2! + 0 + F 4 -5 3 F 2 3 y 4 4! + F 5 -5 F 3 F 4 + 40 9 F 3 3 y 5 5! + O y (6).
Lastly, coming back to the initial functional jets, we get new values

G 2 := 1, G 3 := 0, G 4 := F 4 -5 3 F 2 3 = 1 3 -5 u 2 3 + 3 u 2 u 4 u 2 2 , G 5 := F 5 -5 F 3 F 4 + 40 9 F 3 3 = 1 9 9 u 2 2 u 5 -45 u 2 u 3 u 4 + 40 u 3 3 u 3 2 .
16.6. Third loop. We restart from equations normalized up to order 3

u = x 2 2! + 0 + F 4 x 4 4! + • • • , v = y 2 2! + 0 + G 4 y 4 4! + • • • .
To determine the subgroup G At this stage, because a = 0, a bifurcation necessarily occurs, according to whether F 4 = 0 or F 4 = 0. In fact, coming back to functional jets

F 4 = 1 3 -5 u 2 3 + 3 u 2 u 4 u 2 2
, the branch F 4 ≡ 0 must be interpreted as an identical vanishing in the 4 th order jet space, and we have the elementary 

0 ≡ 1 3 -5 F 2 xxx + 3 F xx F xxxx F 2 xx .
Proof. A possible proof has already been left as an exercise in Lemma 4. [START_REF] Chen | A counterexample to Hartogs' type extension of holomorphic line bundles[END_REF] 

= F (x) is transformed into a graph v = G(y) through x = a y + b v + c, u = k y + l v + m (al -bk = 0), then F xx = al -bk a + b G y 3 G yy , - 5 
F 2 xxx + 3 F xx F xxxx = (al -bk) 2 a + b G y 8 -5 G 2 yyy + 3 G yy G yyyy .
Therefore, after some preliminary affine transformation as done in Section 4.13, we can assume that the equation of our curve is already normalized as

v = G(y) = y 2 + 0 + O y (4).
Again, we have 0 ≡ -5 G 2 yyy + 3 G yy G yyyy and G yy = 0 as well. To conclude, it would then suffice to show that the remainder O y (4) ≡ 0 vanishes identically -very easy! Indeed, we can solve

G yyyy = 5 3 G 2 yyy G yy ,
and from G yyy (0) = 0, we deduce G yyyy (0) = 0. Let us abbreviate this relation as

G yyyy = R G yyy ,
where R = R(y) denotes an unspecified function. Then we may differentiate it and replace

G yyyyy = R y G yyy + R G yyyy = R G yyy ,
to deduce similarly G yyyyy (0) = 0. Obviously, induction yields G y k = R G yyy for any k 4, whence G y k (0) = 0, and we conclude O y (4) ≡ 0, since we assume analyticity.

The case F 4 = 0 being now fully understood, we can assume that F 4 = 0, and then, two symmetric subcases occur F 4 > 0 and F 4 < 0.

Assuming F 4 > 0, we can then make G 4 := 1 by means of the simple matrix

F -1/2 4 0 0 F -1 4 .
Looking at next terms in the fundamental equation, we get

G 5 := F 5 F 3/2 4 , G 6 := F 6 F 2 4 , G 7 := F 7 F 5/2 4
.

Coming back to functional jets

F 5 := 1 √ 3 9 u 2 2 u 5 -45 u 2 u 3 u 4 + 40 u 3 3 3 u 2 u 4 -5 u 2 3 3/2 , F 6 := 9 u 3 2 u 6 -63 u 2 2 u 3 u 5 + 105 u 2 u 2 3 u 4 -35 u 4 3 3 u 2 u 4 -5 u 2 3 2 .
16.9. Fourth loop. The subgroup stabilizing equations normalized up to order 4

u = x 2 2! + 0 + x 4 4! + • • • , v = y 2 2! + 0 + y 4 4! + • • • .
is easily seen to reduce to the identity. The algorithm therefore stops, and a first result, valid only at the level of power series at the origin, is a corollary of this reduction to an {e}-group. there always exist a GL 2 (R) transformation which puts it into the form

u = x 2 2! + 0 ± x 4 4! + F 5 x 5 5! + i 6 F i x i i! .
(2) Any other such real analytic curve v = G(y) similarly put into the form

v = y 2 2! + 0 ± y 4 4! + G 5 y 5 5! + j 6 G j y j j! .
is GL 2 (R)-equivalent to u = F (x) above if and only if all Taylor coefficients match We take the 4 infinitesimal generators of the the action of

G 5 = F 5 , G i = F i (∀ i 6).
GL 2 (R) ⊂ A 2 (R) on R 2 x,u v 1 := x ∂ x , v 2 := u ∂ u , v 3 := u ∂ x , v 4 := x ∂ u ,
the prolongations of which we write as

v (∞) κ = v κ + k 0 Φ k κ x, u, u 1 , . . . , u k ∂ ∂u k (1 κ 4).
Generally, every pure jet monomial produces a differential invariant

I k := inv u x k (k 0),
and the recurrence formulas are of the form

I k+1 = D x I k - 1 κ 4 inv Φ k κ R κ (k 0),
for some uniquely defined invariant differentiation operator D x which is a nonzero multiple of the total differentiation operator D x , and where, as before, all invariantized coefficients of the prolonged vector fields are simply

inv Φ k κ x, u, u 1 , u 2 , u 3 , u 4 , u 5 , . . . , u k = Φ k κ 0, 0, 0, 1, 0, ±1, I 5 , . . . , I k ,
and where the Maurer-Cartan invariants R 1 , R 2 , R 3 , R 4 can be determined as follows.

One writes the 4 × 4 matrix of the coefficients of the four generators v 1 , v 2 , v 3 , v 4 of gl 2 (R) with respect to the four basic fields ∂ u 1 , ∂ u 2 , ∂ u 3 , ∂ u 4 corresponding to the four invariants inv(u 1 ), inv(u 2 ), inv(u 3 ), inv(u 4 ) which were phantom

∂ u 1 ∂ u 2 ∂ u 3 ∂ u 4       v 1 -u 1 -2u 2 -3u 3 -4u 4 v 2 u 1 u 2 u 3 u 4 v 3 -u 2 1 -3u 1 u 2 -4u 1 u 3 -3u 2 2 -5u 1 u 4 -10u 2 u 3 v 4 1 0 0 0 invariantize --------→     0 -2 0 ∓4 0 1 0 ±1 0 0 -3 0 1 0 0 0     ,
one invariantizes this matrix, one transposes it, and one gets the phantom recurrence relations for k = 1, 2, 3, 4

    I 2 I 3 I 4 I 5     =     D x (I 1 ) D x (I 2 ) D x (I 3 ) D x (I 4 )     -     0 0 0 1 -2 1 0 0 0 0 -3 0 ∓4 ±1 0 0         R 1 R 2 R 3 R 4     , which become     1 0 ±1 I 5     =     0 0 0 0     -     0 0 0 1 -2 1 0 0 0 0 -3 0 ∓4 ±1 0 0         R 1 R 2 R 3 R 4     ,
and this simple linear system has as the unique solution

R 1 := ± 1 2 I 5 , R 2 := ± I 5 , R 3 := ± 1 3 , R 4 := -1. 4.17. PARABOLIC SURFACES S 2 ⊂ R 3 : INVARIANT W OF ORDER 4 101 
Once these four Maurer-Cartan invariants have been determined, they can be plugged in

∂ u 5 ∂ u 6       v 1 -5u 5 -6u 6 v 2 u 5 u 6 v 3 -6u 1 u 5 -15u 2 u 4 -10u 2 3 -7u 1 u 6 -21u 2 u 5 -35u 3 u 4 v 4 0 0 invariantize --------→     -5 I 5 -6 I 6 I 5 I 6 ∓15 -21I 5 0 0     .
We deduce

I 6 = D x (I 5 ) ± 3 2 I 2 5 + 5, I 7 = D x (I 6 ) ± 2 I 5 I 6 ± 7 I 5 ,
and it is easy to verify that the algebra of differential invariants is generated by I 5 and its invariant derivatives D ν

x (I 5 ) of any order ν 1.

4.17 Parabolic Surfaces S 2 ⊂ R 3 : Invariant W of Order 4

Recall from Section 4.10 that we are interested in parabolic surfaces S 2 ⊂ R 3 graphed as u = F (x, y) , whose Hessian matrix is degenerate, of rank 1 < 2, whence after a rotation in the (x, y)-space, we may assume

F xx = 0 ≡ F xx F yy -F 2 xy .
In the same Section 4.10, we also showed that the relation

F yy = F 2 xy
Fxx has infinitely many differential consequences, namely, for every (j, k) with k 2, there exists a certain universal rational expressions R j,k such that

F x j y k = R j,k F j ,0 0 j j+k , F j ,1 0 j j+k-1 ,
the denominators of these R j,k being certain powers F xx * . Inside the order n jet space J n x,u , this means that u j,k = R j,k u j ,0 0 j j+k , u j ,1 0 j j+k-1 . (4.17.1) Theorem 4.8.5 already showed that the assumption that the Hessian determinant is identically zero is stable under (special) affine transformations. It is then interesting to have a confirmation of this basic fact by means of prolongations of vector fields.

We start by selecting an appropriate basis for the 11-dimensional Lie algebra of infinitesimal generators of the action of SA 3 (R) on the space R 3

x,y,u , and we choose the same generators as in [START_REF] Olver | Differential invariants of surfaces[END_REF] v

1 := x ∂ x -u ∂ u , v 2 := y ∂ y -u ∂ u , v 3 := y ∂ x , v 4 := u ∂ x , v 5 := x ∂ y , v 6 := u ∂ y , v 7 := x ∂ u , v 8 := y ∂ u , w 1 := ∂ x , w 2 := ∂ y , w 3 := ∂ u .
Among these 11 vector fields, 5 are essentially useless, namely the three translational w 1 , w 2 , w 3 , and the two from shearings v 7 , v 8 , according to Theorem 4.12.6. A confirmation of this fact is provided by a computation of the prolongations of these 5 vector fields to any order

∂ x ∂ y ∂ u ∂ u 1,0 ∂ u 0,1 ∂ u k,l 2 k+l           v 7 0 0 x 1 0 0 v 8 0 0 y 0 1 0 w 1 1 0 0 0 0 0 w 2 0 1 0 0 0 0 w 3 0 0 1 0 0 0 , (4.17.2)
with absolutely zero coefficients in front of all ∂ u j,k with j + k 2. Up to a permutation of rows and columns, we thus have a block triangular matrix with two identity blocks of sizes 3 × 3 and 2 × 2. This permuted 5 × 5 identity matrix is followed, on its right, by a zero matrix.

Consequently, if, for any fixed jet order n 2, above any point (x, y), we want to determine

rank Span v (n) 1 , v (n) 2 , v (n) 3 , v (n) 4 , v (n) 5 , v (n) 6 , v (n) 7 , v (n) 8 , w (n) 1 , w (n) 2 , w (n) 3 
, it suffices to determine the rank of only 6 prolonged vector fields v

(n) 1 , . . . , v (n) 
6 , with first-order parts truncated dropped

∂ u 2,0 ∂ u 1,1 ∂ u 3,0 ∂ u 2,1 ∂ u 1,2 ∂ u 0,3 ∂ u k,l 4 k+l               v 1 * * .
Let us denote the submanifold u j,k = R j,k of parabolic jets as Also, let us introduce the projection from the full jet space onto the parabolic jet space pj x, y, u j,k j+k n := x, y,

PJ n 2,1 ⊂ J n 2,1 (n 0), with dim PJ n 2,1 = 3 + 2 n < 2 + 2+n n = dim J n 2,
u 0,1 , ... ... u n-1,1 , u, u 1,0 , ..., u n-1,0 , u n,0 ∈ R 3+2n . 4.17. PARABOLIC SURFACES S 2 ⊂ R 3 : INVARIANT W OF ORDER 4 103 A general vector field v = ξ(x, y, u) ∂ ∂x + η(x, y, u) ∂ ∂y + ϕ(x, y, u) ∂ ∂u ,
prolongs infinitely as

v ∞ = v + 1 j+k Φ j,k x, y, u (j+k) ∂ ∂u j,k ,
with coefficients Φ j,k given by mean of the two (infinite, commuting) total differentiation operators

D x := ∂ ∂x + u 1,0 ∂ ∂u + 1 j+k u j+1,k ∂ ∂u j,k , 
D y := ∂ ∂y + u 0,1 ∂ ∂u + 1 j+k u j,k+1 ∂ ∂u j,k
, by the formulas of Theorem 4.3.7

Φ j,k := D j x D k y ϕ -ξ u 1,0 -η u 0,1 + ξ u j+1,k + η u j,k+1 ,
are functions on J j+k 2,1 . Assertion 4.17.3. For any jet order n 2, all the 11 prolonged vector field on

J n 2,1 v (n) 1 , v (n) 2 , v (n) 3 , v (n) 4 , v (n) 5 , v (n) 6 , v (n) 7 , v (n) 8 , w (n) 1 , w (n) 2 , w (n) 3 , 
are tangent to the (smooth, graphed) submanifold PJ n 2,1 ⊂ J n 2,1 of parabolic jets.

Proof. By differentiating one-parameter subgroups, this is a consequence of Theorem 4.8.5.

Next, the push-forward to the (horizontal) space R 3+2n of parabolic jets of such a prolonged vector field is obtained by just 'killing' all the ∂ ∂u j,k having k 2

pj * v (∞) = v + 1 j pj * Φ j ,0 ∂ ∂u j ,0 + 0 j pj * Φ j ,1 ∂ ∂u j ,1 ,
and when we restrict ourselves to a finite order n 0, this becomes

pj * v (n) = v + 1 j n pj * Φ j ,0 ∂ ∂u j ,0 + 0 j n-1 pj * Φ j ,1 ∂ ∂u j ,1
,

where pj * Φ j and pj * Φ j ,1 are push-forwards of Φ j ,0 and Φ j ,1 to PJ j 2,1 and PJ j +1 2,1 . To summarize, the push-forward process consists of • dropping all ∂ ∂u j,k with k 2;

• in the kept coefficients Φ j ,0 = Φ j ,0 x, y, u (j ) , Φ j ,1 = Φ j ,1 x, y, u (j +1) , replacing all jet coordinates u j ,k with k 2 by R j ,k . For confirmation, for confidence, for coherence, the following observation may (for fun) be checked on whatever computer for many low jet orders n 2. Observation 4.17.4. [Exercise] In order to push forward the 11 generators of the action of SA 3 (R) via pj * , it suffices to know parabolic jets relations only for k = 2, and for any j 0 u j,2 = R j,2 u j ,0 2 j j+2 , u j ,1 1 j j+1 . Observation 4.17.5. [Exercise] The process of replacing u j,2 by R j,2 occurs only when one calculates pj * v (n) 5

and pj * v

(n) 6
for n 2. Now, although Theorem 4.8.5 already gave a full explanation, we want to verify in another way that the hypothesis that the Hessian is identically zero is stable under (special) affine transformations. So we fix the jet order n = 2, whence parabolic jets are defined by a single equation

PJ 2 2,1 = u 2,0 u 0,2 -u 2 1,1 ,
and equivalently, because we are working on the space u 2,0 = 0 , we can solve

u 0,2 = u 2 1,1 u 2,0 . 
Clearly, v (2) 
7 , v

8 , w

1 , w

2 , w

3 are (trivially) tangent to this submanifold

PJ 2 2,1 ⊂ J 2 2,1 , since they incor- porate only derivatives ∂ x , ∂ y , ∂ u , ∂ u 1,0 , ∂ u 0,1 , nothing of higher order ∂ u j,k with j + k 2.
Next, we must verify that the 6 remaining vector fields v

(2) 1 , v (2) 2 , v (2) 3 , v (2) 4 , v (2) 5 , v (2) 
6 are also tangent to PJ n 2,1 . We write their coefficients matrix as

∂ u 2,0 ∂ u 1,1 ∂ u 0,2               v 1 -3u 2,0 -2u 1,1 -u 0,2 v 2 -u 2,0 -2u 1,1 -3u 0,2 v 3 0 -u 2,0 -2u 1,1 v 4 -3u 2,0 u 1,0 -2u 1,1 u 1,0 -u 2,0 u 0,1 -2u 1,1 u 0,1 -u 0,2 u 1,0 v 5 -2u 1,1 -u 0,2 0 v 6 -2u 1,1 u 1,0 -u 2,0 u 0,1 -2u 1,1 u 0,1 -u 0,2 u 1,0 -3u 0,2 u 0,1 . 
Also, let us abbreviate

H u := u 2,0 u 0,2 -u 2 1,1 .
The tangency in question is verified on a computer, or else with a pen, as follows.

Assertion 4.17.6. The quotients

v σ H u H u have values, for σ = 1, 2, 3, 4, 5, 6 -4, -4, 0, -4 u 1,0 , 0, -4 u 0,1 .
Thus, H u = 0 implies v σ H u = 0, which is tangency! One also observes that there is a 2 × 2 minor of the above matrix which is nowhere vanishing

-u 2,0 -2u 1,1 0 -u 2,0 = u 2 2,0 .
Question 4.17.7. Are there differential invariants of order 2?
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No! Because at every point of u 2,0 = 0 = H u , we realize that

dim PJ 2 2,1 = 7 = rank Span pj * v (2) 2 , pj * v (2) 3 , pj * v (2) 7 , pj * v (2) 8 
,

pj * w (2) 1 , pj * w (2) 2 
, pj * w

(2) 3

, by looking at the triangular-by-blocks 7 = 2 + 2 + 3 matrix

∂ x ∂ y ∂ u ∂ u 1,0 ∂ u 0,1 ∂ u 2,0 ∂ u 1,1                   v 2 0 y -u -u 1,0 -2u 0,1 -u 2,0 -2u 1,1 v 3 y 0 0 0 -u 1,0 0 -u 2,0 v 7 0 0 x 1 0 0 0 v 8 0 0 y 0 1 0 0 w 1 1 0 0 0 0 0 0 w 2 0 1 0 0 0 0 0 w 3 0 0 1 0 0 0 0
, whose determinant equals u 2 2,0 = 0. Consequently, the set we are working on

u 2,0 = 0 = u 2,0 u 0,2 -u 2 1,1
contains only 7-dimension orbits, in fact only a unique orbit, for the prolonged action of SA 3 (R). So any transversal to the orbits is zero-dimensional, and there are no differential invariants of order 2. In particular, the Hessian H u is not a differential invariant. Now, let us adopt the general viewpoint of Section 4.4.

Terminology 4.17.8. For the action of a local Lie group G on graphs {u = u(x)} in R p+q z , a function P = P z (n) on the n th order jet space J n z is called a relative invariant if

P w (n) g, z (n) = nonzero • P z (n) (∀ g ∈ G).
Immediately, the zero-set of a relative invariant is invariant

P w (n) g, z (n) = 0 = P(z (n) ) = 0 .
For instance, the Hessian is a relative invariant under the special affine action.

Next, we examine what occurs in the 3 rd order jet space. Recall that we are working only in the domain

u 2,0 = 0 = u 2,0 u 0,2 -u 2 1,1 .
The submanifold PJ 3 2,1 ⊂ J 3 2,1 of parabolic 3 rd order jets is now defined by three equations (the last one being in fact not used) 

u 0,2 := u 2 1,1 u 2,0 u 1,2 = 2 u 1,1 u 2,1 u 2,0 - u 2 1,1 u 3,0 u 2 2,0 , u 0,3 = 3 u 2 1,1 u 2,1 u 2 2,0 -2 u 3 1,1 u 3,0 u 3 
Υ := l + m F y F xx -k + m F x F xy , it holds G ss G sst -G st G sss G 2 ss = F xx Υ F xx F xxy -F xy F xxx F 2 xx .
This implies that, in the submanifold PJ 3 2,1 of parabolic jets of order 3, the zero-set

u 2,0 u 2,1 -u 1,1 u 3,0 = 0 ,
is invariant under the prolongation of the SA 3 -action, namely, for every g ∈ SA 3 (R) not far from the identity

g (3) u 2,0 u 2,1 -u 1,1 u 3,0 = 0 ⊂ v 2,0 v 2,1 -v 1,1 v 3,0 = 0 .
We now want to see the same property from the vector fields point of view. Let us abbreviate 

S u := u 2,0 u 2,1 -u 1,1 u 3,0 u 2 2,0 . (4.
,1 u 2,0 , u 1,1 u 1,0 -u 2,0 u 0,1 u 2,0 . 3, 4, 5, 6 0, -1, 0, 0, u 1 
Question 4.17.12. Are there differential invariants of order 3?

Again: No! Because at every point of u 2,0 = 0 = H u , we realize that

dim PJ 3 2,1 = 9 = rank Span pj * v (3) 1 , pj * v (3) 2 
, pj * v

(3) 3 , pj * v (3) 4 
,

pj * v (3) 7 
, pj * v

, pj * w

, pj * w

, pj * w

, by looking at the triangular-by-blocks 9 = 4 + 2 + 3 matrix

∂x ∂y ∂u ∂u 1,0 ∂u 0,1 ∂u 2,0 ∂u 1,1 ∂u 3,0 ∂u 2,1                             v1 x 0 -u -2u1,0 -u0,1 -3u2,0 -2u1,1 -4u3,0 -3u2,1 v2 0 y -u -u1,0 -2u0,1 -u2,0 -2u1,1 -u3,0 -2u2,1 v3 y 0 0 0 -u1,0 0 -u2,0 0 -u3,0 v4 0 0 u -u 2 1,0 -u1,0u0,1 -3u2,0u1,0 -2u 1,1 u 1,0 -u 2,0 u 0,1 -4u 3,0 u 1,0 -3u 2 2,0 -3u 2,1 u 1,0 -3u 1,1 u 2,0 -u 3,0 u 0,1 v7 0 0 x 1 0 0 0 0 0 v8 0 0 y 0 1 0 0 0 0 w1 1 0 0 0 0 0 0 0 0 w2 0 1 0 0 0 0 0 0 0 w3 0 0 1 0 0 0 0 0 0 ,
and by realizing that the determinant of the upper-right 4 × 4 block

-3u 2,0 -2u 1,1 -4u 3,0 -3u 2,1 -u 2,0 -2u 1,1 -u 3,0 -2u 2,1 0 -u 2,0 0 -u 3,0 -3u 2,0 u 1,0 -2u 1,1 u 1,0 -u 2,0 u 0,1 -4u 3,0 u 1,0 -3u 2 2,0 -3u 2,1 u 1,0 -3u 1,1 u 2,0 -u 3,0 u 0,1 = 9 u 3 2,0 u 2,0 u 2,1 -u 1,1 u 3,0 recognize Su , 4.17. PARABOLIC SURFACES S 2 ⊂ R 3 : INVARIANT W OF ORDER 4 
107
is not identically zero. Our domain u 2,0 = 0 = u 2,0 u 0,2u 2 1,1 stratifies as

S u ≡ 0 ∪ S u = 0 .
So on the dense open subset where S u = 0, the above 9 vector fields span the tangent space to the 9dimensional parabolic jet space PJ 3 2,1 , whence any transversal to the orbits of the (prolonged) SA 3 -action is zero-dimensional, and there are no differential invariants at a generic point.

Be careful! The closed subset S u = 0 is SA 2 -invariant. In it, the rank in question degenerates, since the above determinant has value 0. But since u 2,0 = 0, the equation S u = 0 can be solved for

u 2,1 = u 1,1 u 2,0 u 3,0 .
According to Lie's general principle of thought, in the study of graphs u = F (x, y) , there is bifurcation branching Identical degeneracy S F ≡ 0,

S F 6 6 
( ( Nowhere vanishing S F = 0, namely one studies either graphs for which F xxy ≡ Fxy Fxx F xxx , or graphes for which F xx F xxy -F xy F xxx = 0 at every point (x, y). In other words, we disregard mixed types for which S F (x, y) ≡ 0, while S F (x, y) = 0 = ∅.

Our main study, in the next Sections 4.18, 4.19, 4.20, will concern the branch S F = 0. For now, let us summarize how the branch S F ≡ 0 can be easily handled.

So our assumptions are

F xx = 0, F yy ≡ F 2 xy F xx , F xxy ≡ F xy F xx F xxx . (4.17.13)
This leads to a new (smooth) submanifold of the n th order jet space

CPJ n 2,1 ⊂ PJ n 2,1 ⊂ J n 2,1 ,
defined by the equations

u 2,0 = 0, u 0,2 = u 2 1,1 u 2,0 , u 2,1 = u 1,1 u 2,0 u 3,0 ,
together with their differential consequences (exercise).

When n 2, this submanifold is equipped with horizontal coordinates

CPJ n 2,1 = R 5+n x, y, u 0,1 , u 1,1 ,
u, u 1,0 , u 2,0 , u 3,0 , u 4,0 , u 5,0 , ..., u n,0 .

After an elementary affine transformation, we can assume that a graphed surface satisfying these assumptions starts at order 2 terms u = F 2,0

x 2 2! + F 1,1 xy + F 0,2 y 2 2! + O x,y (3) 
. 

Since F 0,2 = F 2 1,1 F 2,0 , we can write u = F 2,0 2 x + F 1,1 F 2,0 y 2 + O x,y (3) 
, and making the special affine change of coordinates

x := x + F 1,1 F 2,0 y, y := F 2,0 y, u := 1 F 2,0 u,
we come, dropping the primes, to a normalized form

u = x 2 2! + O x,y (3). 
Importantly, our assumptions (4.17.13) are (special) affinely invariants, and then, in the new system of coordinates, they continue to hold. As in the proof of Lemma 4.16.8, let us write the two PDEs in question as

F yy = R F xy , F xxy = R F xy ,
where R = R(x, y) denotes an unspecified function.

Assertion 4.17.14. In the normalized form, the remainder O x,y (3) = O x (3) depends only on x, not on y.

Proof. At first, we see F xxy (0) = 0 since F xy (0) = 0. Differentiating with respect to x, we get

F xxxy = R x F xy + R F xxy = R F xy ,
whence similarly F xxxy (0) = 0. An easy induction yields F x k y = R F xy for every k 2, whence F x k y (0) = 0.

Next, we see F yy (0) = 0. Differentiating and inducting, we get F x k yy = R F xy for every k 0, whence F x k yy (0) = 0. By another induction, F x k y l = R F xy for all k 0, l 2, whence F x k y l (0) = 0, and this concludes because we assume analyticity. So surfaces S 2 ⊂ R 3 satisfying assumptions (4.17.13) are of the form

u = f (x) = x 2 2! + O x (3),
they are products of curves in R 2

x,u and the straight R 1 y , which is a degenerate situation. From any special affine equivalence in SA 3 (R) we can extract a 2-dimensional equivalence must only be nonzero, not necessarily equal to 1. In other words, our curves u = f (x) with f xx = 0 are considered modulo affine transformations of the plane R 2 x,u , not special affine ones. We have already studied plane curves modulo A 2 (R) in Section 4. [START_REF] Chen | On differential invariants of parabolic surfaces[END_REF]. Hence we only need to adapt (slightly) these results in our present context.

s = a x + b y + c u + d, t = k x + l y + m u + n, v = p x + q y + r u + s specialize --------→ s = a x + c u + d, t = l y + n, v = p x + r u + s extract --------→ s = a x + c u + d, v = p x + r u + s,
• There is a relative invariant P := -5 u 2 3,0 + 3 u 2,0 u 4,0 , which creates a branching.

• One has P ≡ 0 if and only if the surface u = F (x, y) is special affinely equivalent to the product {v = s 2 } of a parabola with R 1 t .

• When P = 0, as in Theorem 4.16.10, the surface is SA 3 -equivalent to

u = x 2 2! + 0 ± x 4 4! + F 5 x 5 5! + i 6 F i x i i! ,
where F 5 , F 6 , F 7 , . . . are diffferential invariants, for instance in the case of + All the other differential invariants I 6 , I 7 , . . . express in terms of I 5 and its invariant derivatives D ν x (I 5 ). • The degenerate case where I 5 ≡ 0 means, according to Lemma 4.13.10, that there exist constants such that

u = d x + e + f x 2 + 2g x + h.
There are unique such constants so that the right-hand side has fourth-order terms normalized as above [START_REF] Arnold | Ordinary differential equations[END_REF]. All this study justifies that we can from now on and until the end of the paper assume that at every point (x, y)

u = 3 -9 -3 x 2 , u = -3 + 9 + 3 x 2 = x 2 2! + 0 + x 4 4! + 0 + O x (6), = x 2 2! + 0 -x 4 4! + 0 + O x ( 
0 = S F = F xx F xxy -F xy F xxx .
Question 4.17.15. Are there differential invariants of order 4?

Yes, at last! Remind that we already pointed out the coincidence

dim PJ 4 2,1 = 11 = dim SA 3 (R).
One could expect that the 11 vector fields prolonged to J Indeed, thanks to our earlier observation (4.17.2) that the last 5 vector fields have identically zero coefficients in front of all the ∂ ∂u j,k with j + k 2, it suffices to examine the rank of the first 6 vector fields in the space of jets of order 2, namely, it suffices to determine the rank at a generic point of the following matrix of coefficients

∂u 2,0 ∂u 1,1 ∂u 3,0 ∂u 2,1 ∂u 4,0 ∂u 3,1                 v1 -3u2,0 -2u1,1 -4u3,0 -3u2,1 -5u4,0 -4u3,1 v2 -u2,0 -2u1,1 -u3,0 -2u2,1 -u4,0 -2u3,1 v3 0 -u2,0 0 -u3,0 0 -u4,0 v4 -3u2,0u1,0 -2u 1,1 u 1,0 -u 2,0 u 0,1 -4u 3,0 u 1,0 -3u 2 2,0 -3u 2,1 u 1,0 -3u 1,1 u 2,0 -u 3,0 u 0,1 -5u 4,0 u 1,0 -10u 2,0 u 3,0 -4u 3,1 u 1,0 -4u 1,1 u 3,0 -6u 2,0 u 2,1 -u 4,0 u 0,1 v5 -2u1,1 Φ 1,1 5 -3u2,1 Φ 2,1 5 -4u3,1 Φ 3,1 5 v6 -2u 1,1 u 1,0 -u 2,0 u 0,1 Φ 1,1 6 -3u 2,1 u 1,0 -3u 1,1 u 2,0 -u 3,0 u 0,1 Φ 2,1 6 -4u 3,1 u 1,0 -4u 1,1 u 3,0 -6u 2,0 u 2,1 -u 4,0 u 0,1 Φ 3,1 6
, in which precisely 6 entries shall be replaced by the parabolic jet relations shown at the end of Section 4.10

Φ 1,1 5 = - u 2 1,1 u 2,0 , Φ 2,1 5 = -4 u 1,1 u 2,1 u 2,0 + 2 u 2 1,1 u 3,0 u 2 2,0 , Φ 3,1 5 = -6 u 1,1 u 3,1 u 2,0 + 12 u 3,0 u 1,1 u 2,1 u 2 2,0 -6 u 2 3,0 u 2 1,1 u 3 2,0 -6 u 2 2,1 u 2,0 + 3 u 4,0 u 2 1,1 u 2 2,0 
, and where

Φ 1,1 6 = - u 1,0 u 2 1,1 u 2,0 -2 u 1,1 u 0,1 , Φ 2,1 6 = -4 u 1,0 u 1,1 u 2,1 u 2,0 + 2 u 1,0 u 2 1,1 u 3,0 u 2 2,0 -3 u 2 1,1 -2 u 2,1 u 0,1 , Φ 3,1 6 = -6 u 1,0 u 1,1 u 3,1 u 2,0 + 12 u 1,0 u 3,0 u 1,1 u 2,1 u 2 2,0 -6 u 1,0 u 2 3,0 u 2 1,1 u 3 2,0 -6 u 1,0 u 2 2,1 u 2,0 + + 3 u 1,0 u 4,0 u 2 1,1 u 2 2,0 -12 u 1,1 u 2,1 + 2 u 3,0 u 2 1,1 u 2,0 -2 u 3,1 u 0,1 .
Assertion 4.17.16. [On a computer] The determinant of the above 6 × 6 matrix vanishes identically.

Question 4.17.17. Then what is the dimension of the generic orbits?

Assertion 4.17 defined by

u 2,0 = 0, u 2,0 u 2,1 -u 1,1 u 3,0 = 0.
Proof. Denote by M i,j the 5 × 5 submatrix of the above 6 × 6 matrix for which the i th row and the j th column 

M 4,6 = -18 u 2,0 u 2,0 u 2,1 -u 1,1 u 3,0 3 u 2 2,0 u 2 2,1 -u 1,1 u 2,0 u 2,1 u 3,0 -2 u 2 1,1 u 2 3,0 -2 u 1,1 u 2 2,0 u 3,1 + 2 u 2 1,1 u 2,0 u 4,0 , det M 5,6 = -18 u 2,0 u 2,0 u 2,1 -u 1,1 u 3,0 3 u 3 2,0 u 2,1 -3 u 1,1 u 2 2,0 u 3,0 -5 u 1,0 u 2,0 u 2,1 u 3,0 + 5 u 1,0 u 1,1 u 2 3,0 + 2 u 1,0 u 2 2,0 u 3,1 -2 u 2 1,1 u 2,0 u 4,0 , det M 6,6 = -18 u 2,0 u 2,0 u 2,1 -u 1,1 u 3,0 -5 u 2,0 u 2,1 u 3,0 + 5 u 1,1 u 2 3,0 + 2 u 2 2,0 u 3,1 -2 u 1,1 u 2,0 u 4,0 .
Suppose these three determinants are simultaneously 0. Then in our domain u 2,0 = 0 = u 2,0 u 2,1 -u 1,1 u 3,0 we have

0 = 3 u 2 2,0 u 2 2,1 -u 1,1 u 2,0 u 2,1 u 3,0 -2 u 2 1,1 u 2 3,0 -2 u 1,1 u 2 2,0 u 3,1 + 2 u 2 1,1 u 2,0 u 4,0 , 0 = 3 u 3 2,0 u 2,1 -3 u 1,1 u 2 2,0 u 3,0 -5 u 1,0 u 2,0 u 2,1 u 3,0 + 5 u 1,0 u 1,1 u 2 3,0 + 2 u 1,0 u 2 2,0 u 3,1 -2 u 2 1,1 u 2,0 u 4,0 , 0 = -5 u 2,0 u 2,1 u 3,0 + 5 u 1,1 u 2 3,0 + 2 u 2 2,0 u 3,1 -2 u 1,1 u 2,0 u 4,0 .
Abbreviating

A := u 2,0 u 2,1 -u 1,1 u 3,0 and B := u 2,0 u 3,1 -u 1,1 u 4,0 , this is 0 = 3 u 2,0 u 2,1 + 2 u 1,1 u 3,0 A -2 u 1,1 u 2,0 B, 0 = 3 u 2 2,0 -5 u 1,0 u 3,0 A + 2 u 1,0 u 2,0 B, 0 = -5 u 3,0 A + 2 u 2,0 B.
One can eliminate u 2,0 B and get 0 = 3 A 2 , 0 = 3 u 2 2,0 A.

These equations clearly have no solution in our domain. So the three minors cannot degenerate simultaneously, although each one can degenerate somewhere.

Consequently, there is one and only 1 = 6 -5 invariant. On a computer, one can solve the system of 11

PDEs 0 ≡ pj * v (4) σ W ≡ pj * w (4) τ W (1 σ 8, 1 τ 3),
for an unknown function W of the 11 jet variables

x, y,

u 0,1 , u 1,1 , u 2,1 , u 3,1 , u, u 1,0 , u 2,0 , u 3,0 , u 4,0 ,
and obtain its explicit expression.

Proposition 4.17.19. [On a computer] This invariant is

W F := F 2 xx F xxxy -F xx F xy F xxxx + 2 F xy F 2 xxx -2 F xx F xxx F xxy (F xx ) 2 F xx F xxy -F xy F xxx 2/3 .
Because computers rarely succeed as soon as either the number of variables or the degree increases, it would be better to have a method for computing W which would also apply to determine the explicit expressions of some higher order invariants. To this aim are devoted the next two Sections 4.18, 4.19. 

Relative Invariant S and First Invariant W

As in Section 4.13 for the case of curves, we apply the power series method presented in Section 4.12 to study equivalences of analytic parabolic surfaces S 2 ⊂ R 3 centered at the origin

u = j+k 2 F j,k x j j! y k k! ,
under the action of the group SL 3 (R) of special linear transformations. Because the special affine group SA 3 (R) contains all translations, Theorem 4.12.3 already justified that the computation at the origin of the power series SL 3 -invariants, in the sense of Definition 4.12.1, is sufficient to know the differential SA 3 -invariants at every nearby point (x, y). Furthermore, because SL 3 (R) also contains all shearings, Theorem 4.12.6 already justified that we may assume the first order terms F 0,0 + F 1,0 x + F 0,1 y = 0 are already normalized to zero, as was written above.

We can therefore apply the progressive cross-section method of Section 4.13. The formal coefficients F j,k will be re-initialized in later stages of the process. At the beginning, we assign them to be functional jets F j,k := u j,k , having in mind u x j y k (x, y) in order to receive true differential invariants -but all computations will be performed at the origin. We consider special affine transformations R 3

x,y,u -→ R 3 s,t,v , which are not too far from the identity, so that any analytic graph u = F (x, y) is sent to a similar graphed surface v = G(s, t) .

Since the source power series F (x, y) = F j,k

x j y k j! k! is given and since we want to simplify the target power series G(s, t) = G l,m s l t m l! m! , it is more natural to work with the inverse special affine transformation

x = a s + b t + c v, y = k s + l t + m v, u = p s + q t + r v.
Then the graphing function G(s, t) is uniquely determined, by a fundamental equation

0 ≡ -p s -q t -r v + F a s + b t + c v, k s + l t + m v replace v = G(s,t)
, which holds identically as a power series in the two horizontal variables (s, t).

The goal is to use the group parameters freedom a, b, c, k, l, m, p, q, r, in order to normalize as much as possible coefficients G l,m .

18.1. First loop. After an affine transformation, we may of course assume that our target graph enjoys a similar first-order normalization

v = l+m 2 G l,m s l l! t m m! .
Then we perform the replacement (4.18.2)

0 ≡ -p s -q t -r G(s, t) + F a s + b t + c G(s, t), k s + l t + m G(s, t) ,
and we glean first-order terms which must vanish

0 ≡ -p s -q t + O s,t (2) 
. Next, second order terms in (4.18.2) are

0 ≡ k 2 F 2 1,1 F 2,0 + a 2 F 2,0 + 2 ak F 1,1 -r G 2,0 s 2 2 + + ab F 2,0 + bk F 1,1 + al F 1,1 -r G 1,1 + kl F 2 1,1 F 2,0 st + ( * ) t 2 + O s,t (3) 
,

where ( * ) is unimportant. We can normalize G 2,0 := 1 and G 1,1 := 0 with the choice of the simple transformation

    1 F 1/3 2,0 - F 1,1 F 2,0 0 0 1 0 0 0 F 1/3 2,0     ∈ G (1)
stab , and the parabolic jet relation u 0,2 =

u 2 1,1 u 2,0 satisfied by G(s, t) gives G 0,2 = 0.
After these normalizations, third order terms become

0 ≡ -F 1/3 2,0 G 3,0 + F 3,0 F 2,0 s 3 6 + -F 1/3 2,0 G 2,1 - F 3,0 F 1,1 F 5/3 2,0 + F 2,1 F 2/3 2,0 s 2 t 2 + ( * ) st 2 + ( * ) t 3 + O s,t (4) 
.

We solve for the G l,m and we come back to the initial functional jets

G 3,0 = F 3,0 F 4/3 2,0 = u 3,0 u 4/3 2,0 , G 2,1 = F 2,0 F 2,1 -F 1,1 F 3,0 F 2 2,0 = u 2,0 u 2,1 -u 1,1 u 3,0 u 2 2,0 G 4,0 = F 4,0 F 5/3 2,0 = u 4,0 u 5/3 2,0 , G 3,1 = F 2,0 F 3,1 -F 1,1 F 4,0 F 7/3 2,0 = u 2,0 u 3,1 -u 1,1 u 4,0 u 7/3 2,0 . 
18.4. Second loop. We restart with two formal power series normalized up to order 2

u = x 2 2! + j+k 3 F j,k x j j! y k k! and v = s 2 2! + l+m 3 G l,m s l l! t m m! ,
and with the previous stabilizer subgroup G

(1)

stab . The fundamental equation (4.18.2) is 0 ≡ -r G(s, t) + F a s + b t + c G(s, t), k s + l t + m G(s, t) ≡ -r + a 2 s 2 2 + ab st + ( * ) t 2 2 + O s,t (3) 
.

Thus r = a 2 , then b = 0, and 1 = alr, so l = a -3 .

Lemma 4.18.5. The subgroup G

stab ⊂ G

(1)

stab which sends v = 1 2 s 2 +• • • to u = 1 2 x 2 +• • • consists of matrices G (2) stab :   a 0 c k a -3 m 0 0 a 2   .
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Next, third order terms are, with no stars present 0 ≡a 2 G 3,0 + 3 a 2 k F 2,1 + 3 ac + a 3 F 3,0

s 3 6 + + -a 2 G 2,1 + 1 a F 2,1 s 2 t 2 + O s,t (4) 
.

Solving

G 2,1 = 1 a 3 F 2,1 , we deduce from a = 0 an Observation 4.18.6. After normalization of second order terms, the properties F 2,1 = 0 and F 2,1 = 0 are SL 3 (R)-invariant.

Coming back to the initial functional jets, remind we have obtained just above in terms of functional jets

G 2,1 = u 2,0 u 2,1 -u 1,1 u 3,0 u 2 2,0
, hence we recognize the relative invariant S u already shown in (4.17.10). After our normalization, S u becomes simply

S u u 2,0 =1 u 1,1 =0 = u 2,0 u 2,1 -u 1,1 u 3,0 u 2 2,0 u 2,0 =1 u 1,1 =0 = u 2,1 ,
and this explains why we obtained the relation G 2,1 = F 2,1 a 3 between the plain monomials G 2,1 and F 2,1 .

Recall that the branch S u ≡ 0 has already been studied fully in Section 4.17. So we can assume S u (x, y) = 0 at every point (x, y), and in the present context of power series invariants, this means that we can assume

F 2,1 = 0 = G 2,1 .
Then we can normalize G 2,1 := 1 and G 3,0 := 0 by means of the simple transformation

    F 1/3 2,1 0 0 -1 3 F 3,0 F 2/3 2,1 1 F 2,1 0 0 0 F 2/3 2,1     ∈ G (2) 
stab .

Looking at terms of order 4 and solving, we obtain

G 4,0 = - 4 3 F 3,1 F 3,0 F 1/3 2,1 + 4 3 F 2,1 F 2 3,0 F 1/3 2,1 + F 2/3 2,1 F 4,0 , G 3,1 = F 3,1 F 2/3 2,1 -2 F 1/3 2,1 F 3,0 ,
hence coming back to functional jets

G 4,0 = 1 3 4 u 3,0 u 2,0 u 4,0 u 1,1 -4 u 3,0 u 2 2,0 u 3,1 + 4 u 2 3,0 u 2,1 u 2,0 -4 u 3 3,0 u 1,1 + 3 u 4,0 u 2 2,0 u 2,1 u 4 2,0 u 2,0 u 2,1 -u 1,1 u 3,0 1/3 G 3,1 = -u 2,0 u 4,0 u 1,1 + u 2 2,0 u 3,1 -2 u 3,0 u 2,1 u 2,0 + 2 u 2 3,0 u 1,1 u 2 2,0 u 2,0 u 2,1 -u 1,1 u 3,0 2/3
.

Before continuing, we observe that thanks to the parabolic jet relations shown in Section 4.10 and thanks to G 1,1 = 0, it comes G 1,2 = 0, G 0,3 = 0.

18.7. Third loop. We restart with two formal power series normalized up to order 3

u = x 2 2 + x 2 y 2 + j+k 4 F j,k x j j! y k k! and v = s 2 2 + s 2 t 2 + l+m 4 G l,m s l l! t m m! ,
and with the previous stabilizer subgroup G

(2)

stab . The fundamental equation (4.18.2) is

0 ≡ -a 2 G(s, t) + F a s + c G(s, t), k s + a -3 t + m G(s, t) ≡ 3 a 2 k + 3 ac s 3 6 + -a 2 + 1 a s 2 t 2 + O s,t (4) 
.

Thus a = 1 and k =c. 

stab ⊂ G

(2)

stab which sends v = 1 2 s 2 + s 2 t 2 + • • • to u = 1 2 x 2 + x 2 y 2 + • • • consists of matrices G (3) stab :   1 0 c -c 1 m 0 0 1   .
Next, fourth order terms are

0 ≡ -G 4,0 + 3 c 2 + 6 m -4 c F 3,1 + F 4,0 s 4 24 + + -G 3,1 + F 3,1 s 3 t 6 + O s,t (5) 
. Observation 4.18.9. There exists a (single) 4 th order invariant G 3,1 = F 3,1 .

Its expression in terms of functional jets was already finalized at the end of the previous loop, and we attribute a name to this invariant

W := u 2 2,0 u 3,1 -u 2,0 u 4,0 u 1,1 + 2 u 2 3,0 u 1,1 -2 u 3,0 u 2,1 u 2,0 u 2 2,0 u 2,0 u 2,1 -u 1,1 u 3,0 2/3 .
This confirms what has already been presented with prolonged vector fields in Section 4.17, cf. Proposition 4.17.19.

Furthermore, we can make G 4,0 := 0 with the simple transformation

  1 0 0 0 1 -1 6 F 4,0 0 0 1   ∈ G (3) 
stab .

Looking at terms of order 5 and solving, we obtain

G 5,0 = - 5 3 F 4,0 F 3,1 + F 5,0 , G 4,1 = F 4,1 -3 F 4,0 ,
and coming back to functional jets

G5,0 = 1 9 1 u 6
2,0 u2,0 u2,1 -u1,1 u3,0 5 u3,0 u 2 2,0 u 2 4,0 u 2 1,1 -25 u3,0 u 3 2,0 u4,0 u1,1 u3,1

+ 30 u 3 3,0 u2,0 u4,0 u 2 1,1 + 20 u3,0 u 4 2,0 u 2 3,1 -40 u 3 3,0 u 2 2,1 u 2 2,0 + 80 u 4 3,0 u2,1 u2,0 u1,1 -40 u 5 3,0 u 2 1,1 + 15 u 2 4,0 u 3 2,0 u2,1 u1,1 -15 u4,0 u 4 2,0 u2,1 u3,1 + 30 u3,0 u 3 2,0 u4,0 u 2 2,1 + 9 u5,0 u 4 2,0 u 2 2,1 -3 u3,0 u 3 2,0 u5,0 u1,1 u2,1 -6 u 2 3,0 u 2 2,0 u5,0 u 2 1,1 -15 u3,0 u 4 2,0 u4,1 u2,1 + 15 u 2 3,0 u 3 2,0 u4,1 u1,1 -60 u 2 3,0 u 2 2,0 u4,0 u1,1 u2,1 , G4,1 = 8 u 2 3,0 u2,1 u2,0 -8 u 3 3,0 u1,1 + 7 u3,0 u2,0 u4,0 u1,1 -4 u3,0 u 2 2,0 u3,1 -u 2 2,0 u5,0 u1,1 + u 3 2,0 u4,1 -3 u4,0 u 2 2,0 u2,1 u 4 2,0 u2,0 u2,1 -u1,1 u3,0 1/3 .
According to our general principles, we must take account of the branching that the invariant W causes Identical degeneracy W F ≡ 0,

W F 5 5 
) )

Nowhere vanishing W F = 0.

As usual, it is then natural to study first W F ≡ 0. But before doing this in the next Section 4.19, we prefer to run a bit further our power series algorithm, since it will reconfirm the existence of this branching in the equivalence problem. Before continuing, we observe that from the parabolic jet relations shown in Section 4.10, it comes

G 2,2 = 2, G 1,3 = 0, G 0,4 = 0.
18.10. Fourth loop. Therefore, we restart with two formal power series normalized up to order 4

u = x 2 2 + x 2 y 2 + W x 3 y 6 + 2 x 2 y 2 4 + j+k 4 F j,k x j j! y k k! , v = s 2 2 + s 2 t 2 + W s 3 t 6 + 2 s 2 t 2 4 + l+m 4 G l,m s l l! t m m! .
We repeat that for them to be SA 3 -equivalent, their (3, 1) coefficients must be equal

F 3,1 = W = G 3,1 .
We also restart with the previous stabilizer subgroup G

(3) 

stab . The fundamental equation (4.18.2) is 0 ≡ -G(s, t) + F s + c G(s, t), -c s + t + m G(s, t) ≡ 6 m + 3 c 2 -4 c F 3,1 s 4 24 + O s,t (5).
G (4) stab :   1 0 c -c 1 2 3 c W -1 2 c 2 0 0 1   .
0 ≡ 5 c 2 W + 20 3 c W 2 -G 5,0 -5 c F 4,1 + F 5,0 s 5 120 + + -G 4,1 -2 c W + F 4,1 s 4 t 24 + O s,t (6) 
.

Only when W = 0, we can normalize G 4,1 := 0 with c :=

1 2 F 4,1
W , with the simple transformation    1 0

1 2 F 4,1 W -1 2 F 4,1 W 1 1 3 F 4,1 -1 8 F 2 4,1 W 2 0 0 1    ∈ G (4) 
stab .

The reason we normalize G 4,1 not G 5,0 when W = 0 is that the range of G 5,0 = 5 c 2 W + . . . is the range of a quadratic function of c. It has either a maximum or a minimum. We cannot always normalize it to 0 or any fixed real number. In other words, every orbit crosses the hyperplane {G 4,1 = 0} exactly once, but some do not touch {G 5,0 = 0}.

This confirms our claim that the invariant W causes a bifurcation, and we will now explore the two branches.

Branch W ≡ 0 and Branch W = 0

Let us treat the branch W ≡ 0. We thus have two differential relations

0 ≡ F xx F yy -F 2 xy , 0 ≡ F 2 xx F xxxy -F xx F xy F xxxx + 2 F xy F 2 xxx -2 F xx F xxx F xxy ,
which, thanks to the assumption F xx = 0, can be solved as

F yy = F 2 xy F xx , F xxxy = F xy F xxxx F xx -2 F xy F 2 xxx F 2 xx + 2 F xxx F xxy F xx .
These two relations have differential consequences as well.

( defined by up to order 4 by

1,0)(2,0) (0,0) (3,0)(4,0) (1,1) (0,1) (2,
F0,2 = F 2 1,1 F2,0 , F0,3 = 3 F 2 1,1 F2,1 F 2 2,0 -2 F 3 1,1 F3,0 F 3 2,0 , F0,4 = 12 F 2 1,1 F 2 2,1 F 3 2,0 + F 4 1,1 F4,0 F 4 2,0 -16 F 3 1,1 F3,0 F2,1 F 4 2,0 + 4 F 4 1,1 F 2 3,0 F 5 2,0 , F1,2 = - F 2 1,1 F3,0 F 2 2,0 + 2 F1,1 F2,1 F2,0 , F1,3 = 6 F1,1 F 2 2,1 F 2 2,0 + F 3 1,1 F4,0 F 3 2,0 -6 F 2 1,1 F3,0 F2,1 F 3 2,0 , F2,2 = F4,0 F 2 1,1 F 2 2,0 -2 F 2 1,1 F 2 3,0 F 3 2,0 + 2 F 2 2,1 F2,0 , F3,1 = F1,1 F4,0 F2,0 -2 F1,1 F 2 3,0 F 2 2,0 + 2 F3,0 F2,1 F2,0 .
Observe that in contrast to the general branch H ≡ 0 = W, the jet coordinates F 3,1 , F 4,1 , . . . , are dependent.

Higher differential relations will also be needed, for instance

F0,5 = 60 F 2 1,1 F 3 2,1 F 4 2,0 + F 5 1,1 F5,0 F 5 2,0 -120 F 3 1,1 F 2 2,1 F3,0 F 5 2,0 + + 15 F 4 1,1 F4,0 F2,1 F 5 2,0 -15 F 5 1,1 F3,0 F4,0 F 6 2,0 + 60 F 4 1,1 F2,1 F 2 3,0 F 6 2,0 , F1,4 = -12 F 4 1,1 F3,0 F4,0 F 5 2,0 + 12 F 4 1,1 F 3 3,0 F 6 2,0 + 12 F 3 1,1 F2,1 F4,0 F 4 2,0 + + F 4 1,1 F5,0 F 4 2,0 + 24 F1,1 F 3 2,1 F 3 2,0 -36 F 2 1,1 F3,0 F 2 2,1 F 4 2,0 , F2,3 = -9 F3,0 F 3 1,1 F4,0 F 4 2,0 -18 F2,1 F 2 1,1 F 2 3,0 F 4 2,0 + 12 F 3 3,0 F 3 1,1 F 5 2,0 + + 9 F2,1 F 2 1,1 F4,0 F 3 2,0 + F 3 1,1 F5,0 F 3 2,0 + 6 F 3 2,1 F 2 2,0 , F3,2 = 6 F 3 3,0 F 2 1,1 F 4 2,0 -6 F3,0 F 2 1,1 F4,0 F 3 2,0 + 6 F 2 2,1 F3,0 F 2 2,0 + + 6 F1,1 F4,0 F2,1 F 2 2,0 -12 F 2 3,0 F1,1 F2,1 F 3 2,0 + F5,0 F 2 1,1 F 2 2,0 , F4,1 = 3 F4,0 F2,1 F2,0 -3 F3,0 F1,1 F4,0 F 2 2,0 + F1,1 F5,0 F2,0 .
In the branch H ≡ 0 ≡ W the first three loops are the same as in the preceding Section 4.18. So we do not repeat the constructions.

Fourth loop. Assuming

F 3,1 = G 3,1 = W = 0, we restart from u = x 2 2 + x 2 y 2 + 0 + x 2 y 2 2 + j+k 5 F j,k x j j! y k k! , v = s 2 2 + s 2 t 2 + 0 + s 2 t 2 2 + l+m 5 G l,m s l l! t m m! .
When computing the coefficient F 5,0 in terms of the initial functional jets, we must take account of the differential relations written above, and we obtain We also see that

F 5,0 = 1 9 u 2,0 u 2,1 -u 1,1 u 3,0 9 u 2 2,
F 4,1 = 0, F 3,2 = 0, F 2,3 = 6, F 1,4 = 0, F 0,5 = 0.
We also restart with the group G

stab of Lemma 4.18.11 but in which we set W := 0

G (4) stab :   1 0 c -c 1 -1 2 c 2 0 0 1   .
This group (stabilizes

) sends v = s 2 2 + s 2 t 2 + s 2 t 2 2 + O s,t (5) to u = x 2 2 + x 2 y 2 + x 2 y 2 2 + O x,y (5) 
. Next, we look at 5 th order terms, and we realize that G 5,0 = F 5,0 , hence the expression (4.19.3) of F 5,0 is a differential invariant. We will call it

X := 1 9 u xx u xxy -u xy u xxx 9 u 2 xx u xxxxx -45 u xx u xxx u xxxx + 40 u 3 xxx u 6 xx .
We observe that in the current branch u xx = 0 = S, we have

X ≡ 0 ⇐⇒ 9 u 2 xx u xxxxx -45 u xx u xxx u xxxx + 40 u 3 xxx ≡ 0.
The following result has been proved for the larger, full affine group A 3 (R) in [START_REF] Merker | On Degenerate Affine and Cauchy-Riemann Geometries[END_REF]Thm. 4.1]. We verify that it also holds for SA 3 (R). x,y × R 1 u which satisfies

F xx = 0, F xx F yy -F 2 xy ≡ 0, F xx F xxy -F xy F xxx = 0,
the following two conditions are equivalent:

(i) it is special affinely equivalent to v = 1 2 s 2 1 -t ; (ii) W(F ) ≡ 0 ≡ X(F ), that is to say 0 ≡ F 2 xx F xxxy -F xx F xy F xxxx + 2 F xy F 2 xxx -2 F xx F xxx F xxy , 0 ≡ 9 F 2 xx F xxxxx -45 F xx F xxx F xxxx + 40 F 3 xxx .
Proof. Only (ii) =⇒ (i) matters. We have seen that after some SA 3 (R) transformation, we have

u = F (x, y) = x 2 2 + x 2 y 2 + x 2 y 2 2 + O x,y (5) 
.

Because W and M are differential invariants, the conditions W ≡ 0 and M ≡ 0 still hold. This graphing function F satisfies

0 = F xy (0), 0 = F yy (0), 0 = F xxx (0), 1 = F xxy (0), 0 = F xyy (0) = F yyy (0), 0 = F xxxx (0), 0 = F xxxy (0), 2 = F xxyy (0), 0 = F xyyy (0) = F yyyy (0).
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The condition M(x, y) ≡ 0, valid at every point, can be solved as

F xxxxx = 5 F xxxx F xx - 40 9 
F 2 xxx F 2 xx F xxx = R • F xxx .
We claim that F x j = R F xxx + R F xxxx for all j 4. This is true for j = 4, 5, and the induction is

F x j+1 = R x F xxx + R F xxxx + R x F xxxx + R F xxxxx = R F xxx + R F xxxx .
Since F xxx (0) = 0 = F xxxx (0), we get F x j (0) = 0 for all j 3. Next, we solve from W(x, y) ≡ 0

F xxxy = -2 F xy F xxx F 2 xx + 2 F xxy F xx F xxx + F xy F xx F xxxx = R F xxx + R F xxxx .
The same argument gives F x j y (0) = 0 for all j 3. We claim that F x j y k (0) = 0 for all j 3 and all k 2. Indeed, by induction from This offers F x j y k (0) = 0 for all j 3, all all k 2, and hence F reduces to

F x j y k-1 = R F xxx + R F xxxx , we get F x j y k = R y F xxx + R F xxxy + R y F xxxx + R F xxxxy = R F xxx + R F xxxx .
F (x, y) = F 0 (y) + x F 1 (y) + x 2 F 2 (y),
with F 2 (0) = 1 2 , and due to the normalization above, we have F 0 (y) = O y (5) and F 1 (y) = O y (4). We can now take account of our constant hypothesis that the Hessian determinant vanishes

0 ≡ 2 F 2 (y) F 0,yy + x F 1,yy + x 2 F 2,yy -F 1,y + 2x F 2,y 2 .
The coefficients of x 0 , x 1 yield -remind F 2 (0) = 0 - From F 1,y (0) = 0, we get F 1,yy (0) = 0. By iteration

F 0,yy = F 2 1,y 2 F 2 = R F 1,y , F 1,yy = 4 F 1,y F 2,y 2 F 2 = R F 1,y .
F 1,yyy = R y F 1,y + R F 1,yy = R F 1,y , F 1,y k = R F 1,y (k 3),
so F 1,y k (0) = 0, whence F 1 (y) ≡ 0. It comes F 0,yy (y) ≡ 0, and lastly, F 0 (y) ≡ 0. In sum

F (x, y) = x 2 F 2 (y) =: x 2 T (y),
with T (0) = 1 2 = T y (0). Back to the Hessian

0 ≡ 2 T • x 2 T yy -2 x T y 2 ,
we solve

T yy = 2! (T y ) 2 T =⇒ T yyy = 2! 2 T y T yy T -2! (T y ) 2 T y T 2 = 3! (T y ) 3 T 2 =⇒ T y k = k! (T y ) k T k-1 , whence T y k (0) = k! 1 2
, and thus

T (y) = 1 2 + 1 2 y + 1 2 y 2 + • • • + 1 2 y k + • • •
, and finally, after having performed only special affine transformations u = 1 2

x 2 1y .

Consequently, we can assume that X = 0.

19.5. Fifth loop. We restart from

u = x 2 2 + x 2 y 2 + 0 + x 2 y 2 2 + X x 5 5! + x 2 y 3 2 + j+k 6 F j,k x j j! y k k! , v = s 2 2 + s 2 t 2 + 0 + s 2 t 2 2 + X s 5 5! + s 2 t 3 2 + j+k 6 G l,m s l l! t m m! ,
with a common coefficient X = 0. We examine how the 1-dimensional subgroup G

stab acts on the single independent 6 th order coefficient [START_REF] Berndtsson | The ∂ equation on a positive current[END_REF], Thus, we can normalize G 6,0 := 0 by means of the simple transformation

0 ≡ -G(s, t) + F s + c G(s, t), -c s + t -1 2 c 2 G(s, t) ≡ -3 c X + F 6,0 -G 6,0 s 6 6! + O s,t
   1 0 1 3 F 6,0 X -1 3 F 6,0 X 1 -1 18 F 2 6,0 X 2 0 0 1    ∈ G (4) stab .
Then in terms of functional jets, there is an invariant of order 7, that we call 122
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The synthesis for this branch is made in Theorem 4.2.11.

Next, we treat the branch W = 0. At the end of Section 4.18, we have seen that when W = 0, we can normalize G 4,1 = 0. Solving the other coefficient there, we get

G 5,0 = - 5 4 
F 2 4,1 F 3,1 + 10 3 F 3,1 F 4,1 + F 5,0 .
Since the last group parameter c has been consumed, it is not necessary to do a fifth loop, and we conclude that:

Observation 4.19.6. In the branch W = 0, there is a (single) 5 th order SA 3 -invariant.

In terms of functional jets, its explicit expression incorporates 57 monomials in the numerator, and we call it M.

The synthesis for this branch is made in Theorem 4.2.12.

Recurrence Relations for Parabolic Surfaces

Since the branch S ≡ 0 has already been done in Section 4.16, we assume from now on that S = 0, still with 

F xx = 0 ≡ H.
= x 2 2 + x 2 y 2 + W x 3 y 6 + x 2 y 2 2 + M x 5 5! + 6 W x 3 y 2 3! 2! + x 2 y 3 2 + O x,y (6) 
.
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123 Later, we will need from parabolic jet relations

F 4,2 = 6 F 3,1 2 = 6 W 2 .
All invariants are I j,k := inv u x j y k

(j + k 2).
Of course, SA 3 (R) contains all translations and all shearings, hence Theorem 4.12.6 applies. Moreover, by Section 4.14.9, we can reduce ourselves to the 6 vector fields

v 1 := x ∂ x -u ∂ u , v 2 := y ∂ y -u ∂ u , v 3 := y ∂ x , v 4 := u ∂ x , v 5 := x ∂ y , v 6 := u ∂ y ,
and we have the recurrence formulae

D 1 I j,k = I j+1,k + 1 σ 6 Φ j,k σ I (j+k) • K σ 1 , D 2 I j,k = I j,k+1 + 1 σ 6 Φ j,k σ I (j+k) • K σ 2 .
According to what precedes, the 6 relevant phantom invariants are

I 2,0 = 1, I 1,1 = 0, I 3,0 = 0, I 2,1 = 1, I 4,0 = 0, I 4,1 = 0.
We denote specially W := I 3,1 and M := I 5,0 , and we apply the first collection of recurrence formulas

        0 0 0 0 0 0         =         D 1 I 2,0 D 1 I 1,1 D 1 I 3,0 D 1 I 2,1 D 1 I 4,0 D 1 I 4,1         =         0 1 0 W M I 5,1         +         -3 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 -3 -3 0 -3 -2 0 0 0 0 0 0 0 0 -4 W -6 0 0 -M -10 W -24 W -18                 K K K K K K         .
This Cramer system has the unique solution

K 1 1 = - 1 3 W, K 2 1 = W, K 3 1 = 1, K 4 1 = 2 M W - 1 2 
I 5,1 W , K 5 1 = -2 M W + 1 2 I 5,1 W , K 6 1 = 3 2 M - 1 3 I 5,1 .
The second collection is

        0 0 0 0 0 0         =         D 2 I 2,0 D 2 I 1,1 D 2 I 3,0 D 2 I 2,1 D 2 I 4,0 D 2 I 4,1         =         1 0 W 2 0 6 W 2         +         -3 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 -3 -3 0 -3 -2 0 0 0 0 0 0 0 0 -4 W -6 0 0 -M -10 W -24 W -18                 K 1 2 K 2 2 K 3 2 K 4 2 K 5 2 K 6 2        
, and has the unique solution

K 1 2 = 0, K 2 2 = 1, K 3 2 = 0, K 4 2 = -W, K 5 2 = 4 3 W, K 6 2 = - W 2 .
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For the three non-phantom invariants I 3,1 =: W, I 5,0 =: M, I 6,0 , the recurrence formulae are

  D 1 W D 1 M D 1 I 6,0   =   0 I 6,0 I 7,0   +   -4W -2W 0 -6 -6 0 -6M -M 0 0 0 -10W -7I 6,0 -I 6,0 0 -21M -6I 5,1 0           K K K K K K         , and 
  D 2 W D 2 M D 2 I 6,0   =   6W I 5,1 I 6,1   +   -4W -2W 0 -6 -6 0 -6M -M 0 0 0 -10W -7I 6,0 -I 6,0 0 -21M -6I 5,1 0           K K K K K K        
. Looking at these equations, we see that we can solve the 6 th order invariants I 6,0 and I 5,1 in terms of W, M, D 1 M, D 2 M. We can also solve I 7,0 , I 6,1 in terms of W, M and their invariant derivatives. An elementary induction yields: Proposition 4.20.2. Within the branch S = 0, W = 0, all invariants are generated by W, M and their invariant derivatives. Moreover, M cannot be obtained from W and its invariant derivatives.

So we obtain

D 1 W = - 2 W 2 3 , D 2 W = 2 W, D 1 M = I 6,0 -14 M W + 10 3 I 5,1 W, D 2 M = I 5,1 -M + 80 9 W 3 ,
Proof. Indeed, both D 1 W = -2 3 W 2 and D 2 W = 2 W do not raise the jet order.

20.3.

Branch W ≡ 0. Thus, we assume S = 0 and W ≡ 0. Since the case X ≡ 0 has already been covered by Theorem 4.19.4, we may also assume X = 0. According to Theorem 4.2.11, the normal form is

u = x 2 2 + x 2 y 2 + x 2 y 2 2 + F 5,0
x 5 120 + x 2 y 3 2 + 4 F 5,0

x 5 y 120 + x 2 y 4 2 + F 7,0

x 7 5 040 + 20 F 5,0 x 5 y 2 240 + x 2 y 5 2 + + j+k 8 F j,k x j y k ,
and this means that we have 6 phantom invariants

I 2,0 = 1, I 1,1 = 0, I 3,0 = 0, I 2,1 = 1, I 4,0 = 0, I 6,0 = 0.
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We denote specially X := I 5,0 and Y := I 7,0 , and we apply the first collection of recurrence formulas

        0 0 0 0 0 0         =         D 1 I 2,0 D 1 I 1,1 D 1 I 3,0 D 1 I 2,1 D 1 I 4,0 D 1 I 6,0         =         0 1 0 0 X Y         +         -3 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 -3 -3 0 -3 -2 0 0 0 0 0 0 0 0 0 -6 0 0 0 -21 X -24 X 0                 K 1 1 K 2 1 K 3 1 K 4 1 K 5 1 K 6 1         .
This Cramer system has the unique solution

K 1 1 = 0, K 2 1 = 0, K 3 1 = 1, K 4 1 = - Y 3 X , K 5 1 = Y 3 X , K 6 1 = 1 6 X.
The second collection is

        0 0 0 0 0 0         =         D 2 I 2,0 D 2 I 1,1 D 2 I 3,0 D 2 I 2,1 D 2 I 4,0 D 2 I 6,0         =         1 0 0 2 0 0         +         -3 -1 0 0 0 0 0 0 -1 0 0 0 0 0 0 -3 -3 0 -3 -2 0 0 0 0 0 0 0 0 0 -6 0 0 0 -21 X -24 X 0                 K 1 2 K 2 2 K 3 2 K 4 2 K 5 2 K 6 2        
, and has the unique solution

K 1 2 = 0, K 2 2 = 1, K 3 2 = 0, K 4 2 = 0, K 5 2 = 0, K 6 2 = 0.
For the three non-phantom invariants I 5,0 =: X, I 7,0 =: Y, I 8,0 , the recurrence formulae are

  D 1 X D 1 Y D 1 I 8,0   =   0 I 8,0 I 9,0   +   -6X -X 0 0 0 0 -8Y -Y 0 0 0 -105X -9I 8,0 -I 8,0 0 -36Y -48Y 0           K 1 1 K 2 1 K 3 1 K 4 1 K 5 1 K 6 1         , and   D 2 X D 2 Y D 2 I 8,0   =   4X 6Y 7I 8,0   +   -6X -X 0 0 0 0 -8Y -Y 0 0 0 -105X -9I 8,0 -I 8,0 0 -36Y -48Y 0           K 1 2 K 2 2 K 3 2 K 4 2 K 5 2 K 6 2         . So we obtain D 1 X = 0, D 2 X = 3 X, D 1 Y = I 8,0 - 35 2 X 2 , D 2 Y = 5 Y, D 1 I 8,0 = I 9,0 -4 Y 2 X , D 2 I 8,0 = 6 I 8,0 .
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Looking at these equations, we see that we can solve the 8 th order invariant I 8,0 in terms of X, Y and their invariant derivatives. An elementary induction yields: Proposition 4.20.4. Within the branch S = 0, W ≡ 0, the algebra of differential invariants is generated by X, Y and their invariant derivatives. Moreover, Y cannot be obtained from X and its invariant derivatives.

Proof. Indeed, both derivatives D 1 X = 0 and D 2 X = 3 X do not raise the jet order.

Commutators of invariant differentials.

Besides taking invariant derivatives D 1 , D 2 , as in [START_REF] Olver | Differential invariants of surfaces[END_REF], there is another way to get syzygies among differential invariants: by means of the commutator D 1 , D 2 . For our group SA 3 (R), Olver in [START_REF] Olver | Differential invariants of surfaces[END_REF] obtained the following formulas

D 3 := D 1 , D 2 := D 1 • D 2 -D 2 • D 1 = Z 1 D 1 + Z 2 D 2 ,
with the two differential invariants

Z 1 := 1 σ 6 ∂ξ σ ∂x (0, 0, 0) K σ 2 - ∂ξ σ ∂y (0, 0, 0) K σ 1 = K 1 2 -K 3 1 , Z 2 := 1 σ 6 ∂η σ ∂x (0, 0, 0) K σ 2 - ∂η σ ∂y (0, 0, 0) K σ 1 = K 5 2 -K 2 1 .
Within the branch S = 0, W = 0, we have

Z 1 = 0 -1 = -1, Z 2 = 4 3 W -W = 1 3 W. Hence D 1 , D 2 = -D 1 + 1 3 W D 2
, an operator which can raise the order by at most 1. The commutator does not generate anything other than the invariant derivations D 1 , D 2 would do. One can double-check this formula by calculating

D 1 , D 2 W = 4 3 W 2 = -D 1 W + 1 3 W D 2 W. Note that when D 2 M = 0, from D 3 M = -D 1 M + 1 3 W D 2 M,
the invariant W is solved in terms of M and its invariant differentials, so are all the other differential invariants; indeed, we check that D 2 M ≡ 0 in general, with numerator having 107 differential monomials. Within the branch S = 0, W ≡ 0, we have To fix ideas, we will content ourselves to examine the branch W = 0. One strategy would be to follow the general theory presented in the previous sections, but we already saw in Section 4.11 that it seems impossible to directly compute in terms of a cross-section, which we were unable to make explicit.

Z 1 = 0 -1 = -1, Z 2 = 0 -0 = 0. Hence D 1 , D 2 = -D 1 ,
Therefore, we will trace another route. At first, applying the power series method of Sections 4.17 and 4.18, we compute explicitly the differential invariants W ≡ I 3,1 , M ≡ I 5,0 (already shown) and also I 6,0 , I 5,1 . The numerator of I 6,0 has 225 monomials, that of I 5,1 (only) 69.

In advance, on a computer, we express the pushforward of vector fields from J n 2,1 to P J n 2,1 as substitutions ∂ ∂u j,k = 0, ∀j 0, k 2 and

u 0,2 = u 2 1,1 u 2,0 , u 1,2 = 2 u 2,0 u 1,1 u 2,1 -u 2 1,1 u 3,0 u 2 2,0
, and so on, up to u 5,2 (those which will be useful for D y below), and we expand the two total differentiation operators

Dx = ∂ ∂x + u1,0 ∂ ∂u + u2,0 ∂ ∂u1,0 + u1,1 ∂ ∂u0,1 + u3,0 ∂ ∂u2,0 + u2,1 ∂ ∂u1,1 + u4,0 ∂ ∂u3,0 + u3,1 ∂ ∂u2,1 + u5,0 ∂ ∂u4,0 + u4,1 ∂ ∂u3,1 + u6,0 ∂ ∂u5,0 + u5,1 ∂ ∂u4,1 + u7,0 ∂ ∂u6,0 + u6,1 ∂ ∂u5,1 and 
Dy = ∂ ∂y + u0,1 ∂ ∂u + u1,1 ∂ ∂u1,0 + u0,2 ∂ ∂u0,1 + u2,1 ∂ ∂u2,0 + u1,2 ∂ ∂u1,1 + u3,1 ∂ ∂u3,0 + u2,2 ∂ ∂u2,1 + u4,1 ∂ ∂u4,0 + u3,2 ∂ ∂u3,1 + u5,1 ∂ ∂u5,0 + u4,2 ∂ ∂u4,1 + u6,1 ∂ ∂u6,0 + u5,2 ∂ ∂u5,1 .
According to the general theory, there are coefficients α, β, γ, δ so that

D 1 = α D x + β D y and D 2 = γ D x + δ D y .
Consequently, two appropriate pairs of recurrence relations seen in Section 4.20 read as two linear systems satisfied by the two pairs {α, β} and {γ, δ}

α D x W + β D y W = -2 3 W 2 , α D x M + β D y M = I 6,0 -14 WM + 10 3 WI 5,1 ,
and γ D x W + δ D y W = 2 W, γ D x M + δ D y M = I 5,1 -M + 80 9 W 3 .
Contrary to what could be expected/hoped, the common determinant

∆ := DxW DyW DxM DyM = - 1 54
complicated numerator u 8 2,0 (u2,0u2,1 -u1,1u3,0) 8/3 u1,1u2,0u4,0 -u 2 2,0 u3,1 + 2u2,0u2,1u3,0 -2u1,1u Properties of ruled surfaces and developable surfaces can be found in [START_REF] Guggenheimer | Differential Geometry[END_REF][START_REF] Do Carmo | Differential geometry of curves & surfaces[END_REF]. For instance, a C 2 -smooth surface is developable if and only if its Gaussian curvature is identically 0. In this section, we will assume as before that geometric objects are analytic. Parabolic surfaces are developable since their Gaussian curvature is constantly zero. A developable surface is called:

• cylindrical if all rules are parallel;

• conical if all rulers pass through the same point;

• tangential if all rulers are tangent to a certain curve in R 3 .

Near a C 2 -smooth point, a developable surface is locally cylindrical or conical or tangential [26, p. 197].

Being locally cylindrical (or conical, or tangential) is clearly a SA 3 (R)-invariant local property. It is expected that such properties can be characterized by some differential SA 3 (R)-invariants. Indeed • a cone if and only if S = 0 and W ≡ 0,

• a tangential surface if and only if S = 0 and W = 0.

In [43, p. 295], the degenerate branches of cylinders and cones are characterized by the vanishing of some coefficients in the Cartan's structure equations.

Proof. It suffices to prove that at any smooth point of (1) any cylinder, S ≡ 0,

(2) any cone, S = 0 and W ≡ 0,

(3) any tangential surface, S = 0 and W = 0.

(1) Any cylinder passing by a point p ∈ R 3 , after some SA 3 (R) action, can be viewed as R y times a curve in R 2

x,u , while p is mapped to the origin with the tangent plane R 2 x,y . The cylinder is then a graph

u = F (x) = F 2,0 2 x 2 + F 3,0 6 x 3 + • • • .
We calculate S = FxxFxxy-FxyFxxx F 2 xx = 0 at the origin. Since p is arbitrarily chosen, S ≡ 0.

(2) A cone can be parameterized by where v < 1, t ∈ (-1, 1), α(t) parametrizes a smooth directrix and A := p is the apex. For any smooth marked point B on the cone, we apply the following three steps of SA 3 (R)-actions.

x(t, v) = (1 -v) α(t) + v p,
First, we translate B to the origin. Second, we fix the origin and rotate the cone so that its tangent plane at B is spanned by e x := (1, 0, 0) and e y := (0, 1, 0), while the generatrix BA is parallel to e y .

Finally, we apply a dilation of the type x = λx, y = λ -1 y, u = u to make sure |BA| = 1, i.e. A = (0, 1, 0).

The new cone has the apex (0, 1, 0) and the marked point (0, 0, 0). By intersecting this new cone with R 2

x,u = {y = 0}, we get another directrix t, 0, c(t) passing the origin. Thus, our cone is

SA 3 (R)-equivalent to x(t, v) = (1 -v) t, y(t, v) = v, u(t, v) = (1 -v) c(t),
where c(t) is smooth (analytic) and c(0) = c (0) = 0. Since the marked point B is arbitrarily chosen, it suffices to check that for the new cone above, the invariant S = 0 and W = 0 at the origin. Suppose such a conical surface is a graph of u = F (x, y) around the origin. Assuming c(t), F (x, y) analytic, expand

c(t) = c 2 2 t 2 + c 3 6 t 3 + • • • , F (x, y) = F 1,0 x + F 0,1 y + F 2,0 2 x 2 + F 1,1 x y + F 0,2 2 y 2 + • • • .
In the fundamental identity holding for t, v near 0

u(t, v) ≡ F x(t, v), y(t, v) ,
the Taylor coefficients of all monomials t j v k should be the same. Identifying and solving, we get

F 1,0 = 0, F 0,1 = 0, F 2,0 = c 2 , F 1,1 = 0, F 0,2 = 0, F 3,0 = c 3 , F 2,1 = c 2 , F 1,2 = 0, F 0,3 = 0, F 4,0 = c 4 , F 3,1 = 2 c 3 , F 2,2 = 2 c 2 , F 1,3 = 0, F 0,4 = 0.
We may then compute

S := F 2,0 F 2,1 -F 1,1 F 3,0 F 2 2,0 , W := 2F 1,1 F 2 3,0 + F 2 2,0 F 3,1 -2F 2,0 F 2,1 F 3,0 -F 2,0 F 1,1 F 4,0 F 2 2,0 (F 2,0 F 2,1 -F 1,1 F 3,0 ) 2/3
, to get S = 1 and W = 0.

Let us remark that in the branch W ≡ 0, there are 2 generators of SA 3 (R)-invariants: X of order 5 and Y of order 7. Indeed at the origin of the normalized cone

X = 40c 3 3 -45c 2 c 3 c 4 + 9c 2 2 c 5 9c 4 2 is the Monge invariant. The model u = x 2
2(1-y) is a cone with apex (0, 1, 0) and directrix (t, 0, t 2 /2). One can verify that W = 0 and X = 0 at the origin.
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(3) A tangential surface can be parametrized by

x(t, v) = α(t) + v α (t),
where v ∈ R, t ∈ (-1, 1) and α(t) parametrizes a smooth (analytic) directrix.

For any smooth point B = x(t 0 , v 0 ) on the surface, let A = x(t 0 , 0) be the corresponding point on the directrix. There is a SA 3 (R)-action sending A to (0, -1, 0) and B to (0, 0, 0). The original surface is sent to tangents of a curve passing by (0, -1, 0) with tangent direction e y := (0, 1, 0). The curve can be locally reparametrized as a(t), -1 + t, c(t) . Thus our tangential surface is SA 3 (R)-equivalent to

x(t, v) = a(t) + v a (t), y(t, v) = -1 + t + v, u(t, v) = c(t) + v c (t),
where v ∈ R, t ∈ (-1, 1), a(t) and c(t) are analytic with a(0) = c(0) = a (0) = c (0) = 0. Note that x(0, 1) = (0, 0, 0) is the marked point B. We may rotate the (x, u)-space while fixing the y-axis to make sure the surface is not vertical at the origin. Then the surface is graphed as u = F (x, y). Assuming a(t), c(t), F (x, y) analytic in t, we have

a(t) = a 2 2 t 2 + a 3 6 t 3 + • • • , c(t) = c 2 2 t 2 + c 3 6 t 3 + • • • , F (x, y) = F 1,0 x + F 0,1 y + F 2,0 2 x 2 + F 1,1 x y + F 0,2 2 y 2 + • • • .
By expanding the fundamental identity holding for (t, v) near (0, 1)

u(t, v) ≡ F x(t, v), y(t, v) ,
by identifying Taylor coefficients of monomials t j (v -1) k , and by solving, we obtain

F 1,0 = c 2 a 2 , F 0,1 = 0, F 2,0 = -a 3 c 2 + a 2 c 3 a 3 2 , F 1,1 = 0, F 0,2 = 0, F 2,2 = 2(-a 3 c 2 + a 2 c 3 ) a 3 2 , F 1,3 = 0, F 0,4 = 0.
A computation conducts to the compact expression

W = (a 3 c 2 -a 2 c 3 ) -1/3 .
On the other hand, observe that for the curve α(t) = a(t), -1 + t, c(t) , the torsion is

τ (t) = 1 + a (t) 2 + c (t) 2 a (t) 2 + c (t) 2 2 c (t) a (t) -a (t) c (t) .
We shall exclude the case τ (t) ≡ 0, since in this degenerate case, the curve is locally planar, whence the tangential surface is locally flat, contradicting our assumption F xx = 0. If t = 0 is an isolated zero of τ (t), then the tangential surface has a cuspidal edge along x(0, v) [START_REF] Cleave | The form of the tangent-developable at points of zero torsion on space curves[END_REF], contradicting our overall assumption that the surface is smooth (and analytic) at x(0, 1). Thus τ (0) = 0 necessarily, and this guarantees that c 2 a 3 -c 3 a 2 = 0.

In conclusion, W = 0. 

Special Affinely Homogeneous Models

The complete classification of A 3 (R)-homogeneous surfaces S 2 ⊂ R 3 was terminated by Doubrov-Komrakov-Rabinovich [START_REF] Doubrov | Homogeneous surfaces in the three-dimensional affine geometry[END_REF], who solved a long-standing open problem. Also, Abdalla-Dillen-Vrancken [START_REF] Abdalla | Affine homogeneous surfaces in R 3 with vanishing Pick invariant[END_REF] Because any differential invariant I satisfies, according to Sections 4.4 and 4.5

I g • z (n) = I z (n) ,
when the horizontal group action, namely the projection of g • z (n)

x, u(x) -→ ϕ g, x, u(x) , ψ g, x, u(x) , is transitive, this forces I to be constant.

Observation 4.23.2. All differential invariants are constant for geometric objects that are homogeneous.

Consequently, all invariant derivatives of any order 1 are trivially zero

D j 1 1 • • • D jp p I ≡ 0.
This yields interesting simplications in the recurrence relations of Theorem 4.14.6, that are better rewritten as

I α K,j = D j I α K • - 1 σ r ϕ σ α K I (K) • K σ j I (nG+1) .
Generally, the power series of the graphing functions u α = F α (x 1 , . . . , x p ), α = 1, . . . , q, can be fully determined from these recurrence relations, when the group action is transitive. We now illustrate this general idea in our elementary context.

P ≡ 0 C ≡ 0 S ≡ 0 6 6 
/ / P = 0 6 6 / / C = 0 root 7 7 
/ / S = 0 / / ! ! W ≡ 0 / / ( ( X ≡ 0 X = 0 / / ( ( Y ≡ 0 W = 0 / / ( ( M ≡ 0 Y = 0 M = 0
Coming back to the complete branching diagram of Section 4.2 copied above, we remember that the branch S ≡ 0 corresponds to cylindrical surfaces, namely surfaces that are the product of a curve C 1 ⊂ R x,u with R 1 y . We also observe that SA 3 (R)-equivalence classes of such cylindrical surfaces are in one-to-one correspondence with A 2 (R)-equivalence classes of the corresponding curves, because one can always use appropriate dilations along the dumb axes R 1 y to adjust preservation of the volume, so that the volume-preserving condition in R 3 is not transmitted as an aera-preserving condition in R 2 .
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• Clearly, the relative invariant I 2 := F xx vanishes identically if and only if the curve is affinely equivalent to the straight line {u = 0}.

• On the branch I 2 = 0, there is the relative differential invariant

I 4 := 1 3 -5F 2 xxx +3FxxFxxxx F 2 xx
. Then Lemma 4.13.10 (1) already showed that I 4 ≡ 0 if and only if the curve is A 2 (R)-equivalent to the parabola {u = x 2 }. • On the branch I 2 = 0 = I 4 , with ε := ±1 denoting the sign of I 4 , there comes the first absolute (i.e. not relative) differential invariant

I2 = 0 ≡ 0 u = 0 I4 u = x 2 = 0 ≡ 0 I5 = 0 ≡ 0 Two 1-parameter families of homogeneous models a = 0 u = x 2 2 + ε x 4 4! + ax 5 + • • • u = ε √ 1 + εx 2 -ε ε = ±1
I 5 := 1 √ 3 9 F 2 xx F xxxxx -45 F xx F xxx F xxxx + 40 F 3 xxx (ε [3 F xx F xxxx -5 F 2 xxx ]) 3/2
. Then Lemma 4.13.10 (2) already showed that {u = F (x)} is contained in a nondegenerate conic (hence not a parabola) if and only if I 5 ≡ 0. One can verify that only two normalized equations occur

u = ε 1 + ε x 2 -ε,
a circle for ε = 1, and a hyperbola for ε = -1. Both are well known to be affinely homogeneous.

• Lastly, it remains to consider the branch I 5 = 0. Then according to Observation 4.23.2, for homogeneity to hold, I 5 ≡ a ∈ R\{0} must necessarily be constant. Furthermore, the recurrence relations written at the end of Section 4.16 become

I 6 = D x (I 5 ) • ± 3 2 I 2 5 + 5, = ± 3 2 a 2 + 5, I 7 = D x (I 6 ) • ± 2 I 5 I 6 ± 7 I 5 = 3 a 3 ± 17 a.
Beyond, we have for every k 5

I k+1 = D x I k • - 1 κ 4 inv Φ k κ R κ ,
hence knowing the values of the R κ , computing the values of inv Φ k κ , we realize that all I k 5 are uniquely determined polynomials in a. Thus, the power series reads

4.23.3 u = x 2 2! ± x 4 4! + a x 5 5! + 5 ± 3 2 a 2 x 6 6! + 3 a 3 ± 17 a x 7 7! + • • • .
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By employing the Cauchy majorant method, one could prove that this power series has a radius of convergence > 0 for any parameter a, but this would be tedious.

Another more elementary and straightforward method is to test whether an affine infinitesimal transformation with 6 unknowns

L := A x + B u + C ∂ ∂x + E x + F u + G ∂ ∂u
, is tangent to the above graph, and to realize by examining Taylor coefficients only up to order 5, that one comes to the single solution -up to dilation -

L := ± 1 -1 2 a x -1 3 u ∂ ∂x + ± x -a u ∂ ∂u .
Furthermore, one can verify that this vector field is indeed tangent to the graph 4.23.3 truncated to any order, and that the recurrence relations are equivalent to such a tangency condition.

Therefore, the homogeneous curve can simply be taken as the orbit of the origin 0 ∈ R 2 by the flow of the vector field L, and since L is analytic with L(0) = 0, its flow and its local orbits are analytic too. Alternative classifications provide closed, explicit expressions for homogeneous graphs {u = F (x)}, but this then requires discussions (see e.g. [START_REF] Merker | On degenerate para-CR structures: Cartan reduction and homogeneous models[END_REF]) about ranges of incoming parameters in order to determine in which precise (invariant) branches do sit the corresponding homogeneous models. We will not touch these aspects here. Now, we come to the non-cylindrical surfaces, those having S = 0. From Theorem 4.19.4, we already know that when W ≡ 0 ≡ X, there is, up to SA 3 (R), the single graph u = 1 2

x 2 1y , which is equivalent to a smooth part of the standard straight cone {x 2 1 + x 2 2x 2 3 = 0}. Furthermore, one can verify that this model is special affinely homogeneous, with its algebra of infinitesimal transformations contained in sa 3 (R) being generated by 1-y , there are no non-cylindrical special affinely homogeneous parabolic surfaces S 2 ⊂ R 3 .

e 1 := -u ∂ x + x ∂ y , e 2 := (1 -y) ∂ x + x ∂ u ,
Proof. Coming back to the complete branching diagram copied above, it remains to examine the two branches W ≡ 0 = X and W = 0, with no need of going to subbranches.

• When W ≡ 0 = X, by homogeneity we have X =: a ∈ R\{0} constant, but one of the recurrence relations shown at the end of Subsection 4.20.3 immediately brings a contradiction 0 = D 2 X = 3 X.

• When W = 0, we also have W =: b ∈ R\{0} constant, but one of the recurrence relations shown at the end of Subsection 4.20.1 again brings an immediate contradiction
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Introduction and presentation of results on CR Hypersurfaces

Introduction on the CR equivalence problem

The problem of equivalence for CR manifolds was begun by Poincaré in 1907, who, by a plain counting argument, pointed out that real hypersurfaces M 3 ⊂ C 2 must a priori possess infinitely many invariants under biholomorphic transformations.

Nous pourrons [. . . ] supposer que F est de la forme

F = X -Φ(Y, X, X ), et il y a alors N = (n+1)(n+2)(n+3) 6 - 1 
coefficients arbitraires réels [. . . ]. Enfin, les équations de la transformation peuvent s'écrire

3 Z = ψ(z, z ), Z = ψ 1 (z, z ),
ψ et ψ 1 étant deux fonctions analytiques complexes développables suivant les puissances de z et de z : nous avons besoin des termes jusqu'au n e ordre, ce qui fait 2

(n+1)(n+2) 2 -1
coefficients arbitraires complexes, ou, ce qui revient au même,

N = 2 n 2 + 6 n
coefficients arbitraires réels que nous appellerons les coefficients C. [89, pp. 194-195] Thus in C 2 , there are more hypersurfaces, namely ∼ n 3 6 , than there are biholomorphisms, namely ∼ 2 n 2 , did argue Poincaré.

As in the theory that Lie erected in the end of the XIX th Century with his students Engel, Scheffers, Kowalevski and others, the existence of (local) invariants creates a (local) classification problem, not even terminated nowadays for hypersurfaces in C 3 .

Analogously, given the action of a finite-dimensional Lie group on a manifold M which induces an action on (local) graphs embedded in M , Lie discovered that prolongations of the G-action to jet bundles of sufficiently high order automatically create infinitely many differential invariants [START_REF]Theory of Transformation Groups I. General Properties of Continuous Transformation Groups. A Contemporary Approach and Translation[END_REF][START_REF] Olver | Equivalence, invariants, and symmetry[END_REF], hence various classification problems can be undertaken.

Throughout all of this memoir, concentrated on CR geometry, all CR manifolds will be assumed real analytic (C ω ). An elementary complex Frobenius theorem proved e.g. by Paulette Libermann in [START_REF] Libermann | Sur les structures presque complexes et autres structures infinitésimales régulières[END_REF], guarantees embedabbility in some C N . We will restrict ourselves to the definite class of hypersurfaces M 2n+1 ⊂ C n+1 , which are automatically CR. Results for embedded hypersurfaces M 2n+1 ⊂ C n+1 of class C ∞ or C K with K 1 sufficiently high can be formulated, and proofs easily adapted. In fact, only C ω hypersurfaces M 3 ⊂ C 2 and M 5 ⊂ C 3 will be studied here.

The interest of studying rigidly equivalent -in Alexander Isaev's terminology -rigid hypersurfaces was pointed out to us during his February 2019 stay in Orsay. In recent publications [START_REF] Isaev | Affine rigidity of Levi degenerate tube hypersurfaces[END_REF][START_REF] Isaev | On the CR-curvature of Levi degenerate tube hypersurfaces[END_REF][START_REF] Isaev | Zero CR-curvature equations for Levi degenerate hypersurfaces via Pocchiola's invariants[END_REF][START_REF] Isaev | Rigid Levi degenerate hypersurfaces with vanishing CR-curvature[END_REF], Alexander tackled to integrate Pocchiola's zero CR curvature equations W = 0 = J of tube and rigid 2-nondegenerate constant Levi rank 1 hypersurfaces M 5 ⊂ C 3 (more will be said later).

A local hypersurface M 2n+1 ⊂ C n+1 with coordinates Z = (Z 1 , . . . , Z n+1 ) is said to be rigid if there exists an infinitesimal CR automorphism, namely a vector field T tangent to M of the form T = X + X with a nonzero holomorphic vector field X = n+1 i=1 a i (Z) ∂ Z i , which is transversal to the complex tangent space T c M in the sense that T M = T c M ⊕ RT . After a local biholomorphic straightening, one makes X = i ∂ ∂w with w = Z n+1 , and tangency of X + X = 2 ∂ ∂v to M shows that, restricting considerations to dimensions n + 1 = 2, 3, writing coordinates C 2 (z, w) and C 3 (z, ζ, w), the right-hand side C ω graphing functions:

M 3 : u = F (z, z), M 5 : u = F (z, ζ, z, ζ),
are independent of v, where w = u + i v:
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141 A graphed hypersurface M 5 ⊂ C 3 is of type C 2,1 if it is both
• of constant Levi rank 1, i.e. the complex Hessian

F z z F z ζ F ζ z F ζ ζ
has constant rank 1. We may assume F z z = 0 and

F z z F ζ ζ -F z ζ F ζ z ≡ 0.
• 2 non-degenerate, i.e. the matrix

F z z F z ζ F z 2 z F z 2 ζ
is invertible. Alexander Isaev's concept of rigid biholomorphic transformation is less popular or widespread. In C 2 and in C 3 , such are biholomorphisms of the form:

(z, w) -→ f (z), ρ w + g(z) , (z, ζ, w) -→ f (z, ζ), g(z, ζ), ρ w + h(z, ζ) ,
where f , g, h are holomorphic of their arguments, independently of w, and where ρ ∈ R * . The interest is that rigid biholomorphisms trivially send rigid hypersurfaces to rigid hypersurfaces: they respect the pre-given CR symmetry, and much more will be explained later. Indeed, rigid biholomorphisms in C 3 , close to the identity, send graphed hypersurfaces of type C 2,1 to those of the same type. As Poincaré did, but without assuming that the origin is left fixed, for any integer d 1, writing f (z) =

0 k d f k z k with f k ∈ C and similarly g(z) = g k z k
, the (rough) "number" of rigid biholomorphisms of degree d is the number of incoming real parameters, namely 2 (d + 1) + 1 + 2 (d + 1) = 4 d + 5 ∼ 4 d, while the (rough) "number" of rigid hypersurfaces u = j+k d F j,k x j y k of degree d too, with F j,k ∈ R, is equal to d+2 2 ∼ 1 2 d 2 , hence much larger as d -→ ∞. Similarly in C 3 , the (rough) "space" of rigid biholomorphisms of degree d is of real dimension:

2 d+2 2 + 2 d+2 2 + 1 + 2 d+2 2 = 3 (d + 2)(d + 1) + 1 ∼ 3 d 2 ,
much smaller than the dimension of the "space" of hypersurfaces of degree d too:

d+4 4 ∼ 1 24 d 4 .

The Cartan-Moser bridge

To classify CR manifolds, two methods exist in the supermarket: that of Cartan, and that of Moser.

Cartan devised a quite sophisticated and proteiform method of equivalence. Given a manifold M equipped with a certain class of geometric, say CR here, structures, Cartan's method of equivalence consists in constructing a bundle π : P -→ M together with an absolute (co)parallelism on P , namely a coframe of everywhere linearly independent 1-forms θ 1 , . . . , θ dim P on P such that:

P Π / / π P π M Φ / / M
• every local CR diffeomorphism Φ : M -→ M between two CR manifolds lifts uniquely as a diffeomorphism Π : P -→ P satisfying Π * θ i = θ i for 1 i dim P , with P and the θ i similarly constructed;

• conversely, every diffeomorphism Π : P -→ P commuting with projections π, π whose horizontal part is a diffeomorphims M -→ M and which satisfies Π * θ i = θ i for 1 i dim P , has a horizontal part which is Cauchy-Riemann diffeomorphism (or, more generally, a diffeomorphism respecting the considered geometric structure).

Rexpressing the exterior differentials dθ i and dθ i from both sides in terms of the basic 2-forms provided by the two ambient coframes:

dθ i = j<k T i j,k (p) θ j ∧ θ k and dθ i = j<k T i j,k (p ) θ j ∧ θ k ,
certain structure functions appear, defined for p ∈ P and for p ∈ P , and the exact pullback relations Π * θ i = θ i force individual invariancy of all them:

T i j,k Φ(p) = T i j,k (p) (∀ p ∈ P ).
As is known, Cartan's method is computationally extremely intensive, especially in CR geometry, where several normalizations and prolongations are required. Explicit expressions of intermediate torsion coefficients which conduct to the final T i j,k (p) grow dramatically in complexity. One reason for such a complexity is the presence of large isotropy groups for the CR automorphisms groups of (standard) models, which imposes a great number of steps. Another reason is the nonlinear character of differential algebraic polynomial expressions that must be handled progressively. The last reason is that Cartan's method studies geometric structures at every point of the base manifold, and there is a price to pay for this generality.

In most existing references (cf. the bibliography), the trick that Cartan himself devised to avoid nonlinear complications while retaining anyway some essential information, is the so-called Cartan Lemma. It is explicit only at the level of linear algebra. Even admitting to only deal with linear algebra computations, as Chern always did, Cartan's method is often long and demanding.

In his works, Moser usually searched for wisdom rather than simply knowledge, and thus he strongly emphasized developments of methods and insights over pushing a specific result to the limit. Accordingly, he sometimes described the outcome of his own work as methods rather than theorems. [55, p. 1348] Moser's method is more 'down to Earth', computationally speaking, since it usually proceeds at only one point, often the origin, of a manifold, manipulating power series expanded at that point. Hence it needs geometric objects of class C ω , while adaptations to the C ∞ or C K 1 classes can concern only formal Taylor expansions at the point.

Coming from problems and techniques in Dynamical Systems and Celestial Mechanics, Moser's method consists in constructing certain normal forms for the objects studied, in order to simplify them and hence to enable one to rapidly determine whether two given objects are the same, up to equivalence.

For instance, for our rigid toy hypersurfaces {u = F (z, z)} in C 2 , assuming that they are Levi nondegenerate at the origin:

u = zz + O z,z (3) = zz + j+k 3 F j,k z j z k ,
Moser's game consists in applying several local rigid biholomorphisms in order to obtain a simpler graphing function F (z, z), e.g. with as many as possible coefficients F j,k = 0 disappearing, so that the equation becomes closest as possible to the model Heisenberg sphere {u = zz}. It is not difficult to realize that the isotropy subgroup of the origin, namely the group of rigid biholomorphisms fixing (0, 0) ∈ C 2 , is 2-dimensional, and consists of weighted scalings coupled with 'horizontal rotations': z = ρ 1/2 e iϕ z, w = ρ w, (5.1.2)
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143 with ρ ∈ R * and ϕ ∈ R. Then Section 5.2 will elementarily show that one can annihilate all F j,0 = 0 = F 0,k and all F j,1 = 0 = F 1,k as well, except of course F 1,1 = 1, bringing any two rigid hypersurfaces in M ⊂ C 2 and M ⊂ C 2 to the normalized forms:

u = zz + j,k 2 F j,k z j z k and u = z z + j,k 2 F j,k z j z k ,
and then an analysis of what freedom remains in the group of rigid biholomorphisms will (easily) show that only two real parameters remain free to send M in normal form to M also in normal form, namely (ρ, ϕ) above. Moreover, it will follows that M and M are rigidly biholomorphically equivalent if and only if they exchange through such a trivial scaling-rotation transformation, hence if and only if there exist ρ ∈ R * + and ϕ ∈ R such that:

F j,k = ρ j+k-2 2 e i ϕ (j-k) F j,k (j 2, k 2).
Thus, once two normal forms are constructed, whether M ∼ M or not can be straightforwardly seen.

What is true of the toy will be true of higher dimensional CR objects. In particular, crude normal forms cannot be made unique, they are defined only up to the action of a certain finite-dimensional Lie group, namely the isotropy sugroup of the (always transitive) model.

Beyond, in most circumstances, e.g. when F 2,2 = 0 above, one can push further Moser's method, and obtain normal forms for which all remaining coefficients F j,k are uniquely defined, so that F j,k = F j,k exactly, with no isotropy ambiguity. This is analog to what one can do in Cartan's method when some curvature torsion coefficients are nonvanishing: one can indeed normalize some group parameters present in some T i j,k further and further, and thereby decrease the dimension of the bundle P -→ M , reducing it to smaller subbundles

P P 1 P 2 • • • .
In comparison to Cartan's method, we repeat that one drawback of Moser's method is that it seems to capture invariants only at one point. Fortunately, Moser's method can be applied simultaneously to all nearby points, especially to determine all homogeneous models of a given class of geometries, and in a CR context, this was done e.g. in Loboda's works [START_REF] Loboda | Homogeneous strictly pseudoconvex hypersurfaces in C3 with two-dimensional isotropy groups[END_REF][START_REF] Loboda | On the determination of a homogeneous strictly pseudoconvex hypersurface from the coefficients of its normal equation[END_REF][START_REF] Loboda | Affinely homogeneous real hypersurfaces in C 2[END_REF].

In the first part of this thesis [START_REF] Chen | On differential invariants of parabolic surfaces[END_REF] an alternative (probably known) method is presented to capture differential invariants at all points while working only at one point. This method avoids then to move the origin everywhere nearby by translations, and it works most of the times, namely when the group of transformations is only assumed transitive, either finite or infinite dimensional, see especially [START_REF] Chen | On differential invariants of parabolic surfaces[END_REF]Sec. 12]. Hence this method clearly applies to the group of rigid biholomorphisms. Chen-Merker studied mainly parabolic (real) surfaces S 2 ⊂ R 3 under the group of special affine transformations of R 3 , and developed an analog of Moser's method in this context.

Links between Affine Geometry and CR geometry have been studied in depth by Alexander Isaev in his monograph [START_REF] Isaev | Spherical tube hypersurfaces[END_REF]. Here, to a given a parabolic surface {u = F (x, y)}, namely a surface whose graphing function F satisfies everywhere:

F xx = 0 ≡ F xx F xy F yx F yy ,
one can associate the tube hypersurface M 5 ⊂ C 3 defined as M 5 := S 2 × (i R) 3 . The paper [START_REF] Merker | On Degenerate Affine and Cauchy-Riemann Geometries[END_REF] shows that Pocchiola's invariant W associated to M 5 produces a seemingly new affine invariant W aff for parabolic S 2 ⊂ R 3 . During Alexander Isaev's stay in Orsay, and after fruitful exchanges with Peter Olver, it became clear that an independent study of affine differential invariants of parabolic surfaces S 2 ⊂ R 3 should be endeavoured, and this was pushed to an end in [START_REF] Chen | On differential invariants of parabolic surfaces[END_REF]. There, by keeping memory of all terms in the power series that lie above those coefficients that are progressively normalized, Chen-Merker obtained certain (complicated) differential-algebraic expressions made from Taylor coefficients at the origin, from which one can straightforwardly recover differential invariants at every point. But traditionally instead, people only look at lowest order currently normalized coefficients in each step, so that computations remain simple.

Since the technique of [START_REF] Chen | On differential invariants of parabolic surfaces[END_REF] seems not to have been well developed or understood by CR geometers up to now, we decided to write up the present memoir. Its main goal is to construct a bridge: During fall 2019, in October in Warsaw, then in November and December in Paris, the authors benefited from countless oral exchanges with Paweł Nurowski (Center For Theoretical Physics), who explained, developed, and even taught in the latest details his deep knowledge of Cartan's method of equivalence (production of homogeneous models), whose tenuous relationships with the theory of normal forms à la Poincaré and à la Moser will continue to be explored and unveiled in several upcoming memoirs.

Results in C 2

In C 2 , on the Cartan side of the bridge, we construct in Section 5.2 an absolute parallelism on P 5 := M 3 × C equipped with coordinates (z, z, v, c, c) consisting of 5 differential 1-forms:

ρ, ζ, ζ, π, π (ρ = ρ),
which satisfy invariant structure equations of the shape:

dρ = (π + π) ∧ ρ + i ζ ∧ ζ, dζ = π ∧ ζ, dζ = π ∧ ζ, dπ = 1 cc R ζ ∧ ζ, dπ = -1 cc R ζ ∧ ζ,
where there is only invariant function:

R := F zzzz F zz -F zzz F zzz (F zz ) 2 .
We show that M is rigidly equivalent to {u = zz} if and only if R(F ) ≡ 0.

On the Moser side of the bridge, starting from a given u = j+k 1 F j,k z j z k passing by the origin, we perform as said above a few normalizing biholomorphisms in order to reach:

0 = F j,0 = F 0,k (j 1, k 1), 1 = F 1,1 , 0 = F j,1 = F 1,k (j 2, k 2),
and the key feature of the method is to keep track of all performed rigid biholomorphic transformations, which will give us at the end:

u = zz + F 2,2 F 1,1 -F 2,1 F 1,2 F 3 1,1 z 2 z 2 + z 2 z 3 • • • + z 3 z 2 • • • ,
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145 and from this rational expression of the final F 2,2 coefficient at the origin, it is easy to recognize reconstitute translate Cartan's invariant R(F ) at every point (up to a nowhere vanishing factor const • F zz ), as explained in [START_REF] Chen | On differential invariants of parabolic surfaces[END_REF]Sec. 12].

Principle In all CR equivalence problems (and outside CR geometry too), there exists a way of computing with power series at only one point which generates all Cartan-like invariants together with their syzygies.

In fact, relations (syzygies) require the theory of recurrence relations, developed for infinite-dimensional Lie groups by Olver-Pohjanpelto [START_REF] Olver | Moving frames for Lie pseudo-groups[END_REF][START_REF] Olver | Differential invariant algebras of Lie pseudo-groups[END_REF].

The Gaussier-Merker model in C 3

The graphed equation for the homogeneous model light cone M LC ⊂ C 3 in C 2,1 used here was discovered by Gaussier-Merker in [START_REF] Gaussier | A new example of a uniformly Levi degenerate hypersurface in C 3[END_REF]:

M LC : u = zz + 1 2 z 2 ζ + 1 2 z 2 ζ 1 -ζζ =: m z, ζ, z, ζ .
here m stands for model. Fels-Kaup showed in [START_REF] Fels | CR manifolds of dimension 5: a Lie algebra approach[END_REF], inter alia, that the Gaussier-Merker model is locally biholomorphically equivalent to the tube in C 3 over the light cone in R 3 having equation x 2 2x 2 3 = x 2 1 , as other model candidates in [START_REF] Isaev | Reduction of five-dimensional uniformly degenerate Levi CR structures to absolute parallelisms[END_REF][START_REF] Medori | The equivalence problem for 5-dimensional Levi degenerate CR manifolds[END_REF][START_REF] Merker | Explicit absolute parallelism for 2-nondegenerate real hypersurfaces M 5 ⊂ C 3 of constant Levi rank 1[END_REF]. Moreover, in different notations, this cone has local graphed equation:

u =
x 2 1y with x, y, u being the real parts of three complex coordinates on C 3 , coincident with one model of parabolic surface occurring in [START_REF] Chen | On differential invariants of parabolic surfaces[END_REF]. Details of the equivalences among the three equations are in [START_REF] Chen | Normal Forms for Rigid C 2,1 Hypersurfaces M 5 ⊂ C 3[END_REF].

Although Lie-theoretic methods in [START_REF] Fels | CR manifolds of dimension 5: a Lie algebra approach[END_REF][START_REF] Doubrov | Homogeneous surfaces in the three-dimensional affine geometry[END_REF][START_REF] Eastwood | On affine normal forms and a classification of homogeneous surfaces in affine three-space[END_REF] seem to be undoubtedly the best to determine homogeneous structures, they lose their power when dealing with generic, non-homogeneous, structures. Only Cartan's and Moser's methods of equivalence are able to handle all geometric objects of a given kind.

The Cartan's side result in C 3

From the Cartan's side, it was only in the years 2010's that the three papers [START_REF] Isaev | Reduction of five-dimensional uniformly degenerate Levi CR structures to absolute parallelisms[END_REF][START_REF] Medori | The equivalence problem for 5-dimensional Levi degenerate CR manifolds[END_REF][START_REF] Merker | Explicit absolute parallelism for 2-nondegenerate real hypersurfaces M 5 ⊂ C 3 of constant Levi rank 1[END_REF] achieved the construction of 10-dimensional {e}-structure bundles (or Cartan connections) P 10 -→ M 5 . Among these, only Pocchiola's Ph.D. [START_REF] Pocchiola | Explicit absolute parallelism for 2-nondegenerate real hypersurfaces M 5 ⊂ C 3 of constant Levi rank 1[END_REF], published as [START_REF] Merker | Explicit absolute parallelism for 2-nondegenerate real hypersurfaces M 5 ⊂ C 3 of constant Levi rank 1[END_REF], really performed sufficiently advanced computations to determine what are the primary curvature invariants under the non-rigid group, he called W and I. The full expression of I involves millions of terms.

The rigid case treated by Foo-Merker-Ta in [START_REF] Foo | Rigid equivalences of 5-dimensional 2-nondegenerate rigid real hypersurfaces M 5 ⊂ C 3 of constant Levi rank 1[END_REF] is much shorter. Consider as before a rigid M 5 ⊂ C 3 with 0 ∈ M , which is 2-nondegenerate and has Levi form of constant rank 1, i.e. belongs to the class C 2,1 , and which is graphed as:

u = F z 1 , z 2 , z 1 , z 2 .
The letter ζ is protected, hence not used instead of z 2 , since ζ will denote a 1-form. The two natural generators of T 1,0 M and T 0,1 M are:

L 1 := ∂ z 1 -i F z 1 ∂ v and L 2 := ∂ z 2 -i F z 2 ∂ v ,
in the intrinsic coordinates (z 1 , z 2 , z 1 , z 2 , v) on M . The Levi kernel bundle K 1,0 M ⊂ T 1,0 M is generated by:

K := k L 1 + L 2 ,
where

k := - F z 2 z 1 F z 1 z 1 , CHAPTER 5. NORMAL FORMS FOR RIGID C 2,1 HYPERSURFACES M 5 ⊂ C 3
is the slant function. The hypothesis of 2-nondegeneracy is equivalent to the nonvanishing:

0 = L 1 (k).
Also, the conjugate K generates the conjugate Levi kernel bundle K 0,1 ⊂ T 0,1 M . There is a second fundamental function, and no more:

P := F z 1 z 1 z 1 F z 1 z 1 .
In the rigid case, it looks so simple. But in the nonrigid case, P has a numerator involving 69 differential monomials.

Foo-Merker-Ta produced in [START_REF] Foo | Rigid equivalences of 5-dimensional 2-nondegenerate rigid real hypersurfaces M 5 ⊂ C 3 of constant Levi rank 1[END_REF] reduction to an {e}-structure for the equivalence problem, under rigid (local) biholomorphic transformations, of such rigid M 5 ∈ C 2,1 . They constructed an invariant 7-dimensional bundle P 7 -→ M 5 equipped with coordinates: c,c , with c ∈ C, together with a collection of seven complex-valued 1-form which make a frame for T P 7 , denoted: ρ,κ,ζ,κ,ζ,α,α (ρ = ρ), which satisfy 7 invariant structure equations of the form:

z 1 , z 2 , z 1 , z 2 , v,
dρ = α + α ∧ ρ + i κ ∧ κ, dκ = α ∧ κ + ζ ∧ κ, dζ = α -α ∧ ζ + 1 c I 0 κ ∧ ζ + 1 cc V 0 κ ∧ κ, dα = ζ ∧ ζ - 1 c I 0 ζ ∧ κ + 1 cc Q 0 κ ∧ κ + 1 c I 0 ζ ∧ κ,
conjugate structure equations for dκ, dζ, dα being easily deduced.

Here, as in Pocchiola's Ph.D., there are exactly two primary Cartan-curvature invariants:

I 0 := - 1 3 K L 1 L 1 (k) L 1 (k) 2 + 1 3 K L 1 (k) L 1 L 1 (k) L 1 (k) 3 + + 2 3 L 1 L 1 (k) L 1 (k) + 2 3 L 1 L 1 (k) L 1 (k) , V 0 := - 1 3 L 1 L 1 L 1 (k) L 1 (k) + 5 9 L 1 L 1 (k) L 1 (k) 2 - - 1 9 
L 1 L 1 (k) P L 1 (k) + 1 3 L 1 (P) - 1 9 P P.
One can check that Pocchiola's W 0 which occurs under general biholomorphic transformations of C 3 (not necessarily rigid!), when written for a rigid M 5 ⊂ C 3 , identifies with:

I 0 F (z 1 , z 2 , z 1 , z 2 ) ≡ W 0 F (z 1 , z 2 , z 1 , z 2 ) .
Furthermore, there is one secondary invariant whose unpolished expression is:

Q 0 := 1 2 L 1 I 0 - 1 3 P - L 1 L 1 (k) L 1 (k) I 0 - 1 6 P - L 1 L 1 (k) L 1 (k) I 0 - 1 2 
K (V 0 ) L 1 (k) .
Visibly indeed, the vanishing of I 0 and V 0 implies the vanishing of Q 0 . In fact, a consequence of Cartan's general theory is:

0 ≡ I 0 ≡ V 0 ⇐⇒ M is rigidly equivalent to the Gaussier-Merker model. CHAPTER 5. NORMAL FORMS FOR RIGID C 2,1 HYPERSURFACES M 5 ⊂ C 3
The three relative invariants of order 5: V 0 , I 0 , Q 0 gives four branches:

• I 0 = 0 = V 0 ;

• I 0 = 0 while V 0 = 0;

• I 0 ≡ 0 while V 0 = 0;

• I 0 ≡ 0 ≡ V.
In the first two branches, we can normalize I to 1 by a unique rotation and dilation. In the third branch, we can normalize V to 1 by a rotation and dilation, unique up to z = -z. In the last branch the surface is equivalent to the Gaussier-Merker model.

We calculate the recurrence formulas for the infinitely dimensional Lie group truncated to finite degree.

Theorem 5.1.1. In the first branch I 0 = 0 = V 0 , the true invariants

V Ī2 , V I 2 , Q I Ī
and their invariant derivatives generate all invariants.

As a consequence of the Cartan-Moser bridge, we confirm the correspondence between (V 0 , I 0 , Q 0 ) and (G 0,1,4,0 , G 0,2,3,0 , ReG 3,0,1,1 ). They have 11, 52, 824 monomials in their numerators.

The bridge reveals that Q 0 is real-valued, but a finalized expression was missing in [START_REF] Foo | Rigid equivalences of 5-dimensional 2-nondegenerate rigid real hypersurfaces M 5 ⊂ C 3 of constant Levi rank 1[END_REF]. A clean finalized expression of Q 0 , in terms of only the two fundamental functions k, P (and their conjugates), from which one immediately sees real-valuedness, is:

Q 0 := 2 Re 1 9 K L 1 (k) L 1 L 1 (k) 2 L 1 (k) 4 - - 1 9 
K L 1 L 1 (k) L 1 L 1 (k) L 1 (k) 3 - 1 9 K L 1 (k) L 1 L 1 (k) P L 1 (k) 3 - - 1 9 
L 1 L 1 (k) L 1 L 1 (k) L 1 (k) 2 + 1 9 K L 1 L 1 (k) P L 1 (k) 2 - - 2 9 
L 1 L 1 (k) P L 1 (k) - 1 9 
L 1 L 1 (k) P L 1 (k) + 1 3 L 1 L 1 L 1 (k) L 1 (k) + 1 6 L 1 (P) - 1 9 P 2 + 1 3 L 1 L 1 (k) L 1 (k) 2 .
Indeed, to finish this introduction, we can at last say that the key idea of the bridge is presented in Sections 5.8 and 5.9.

Rigid Equivalences of Rigid Hypersurfaces in C 2 : A Toy Study

We first consider the equivalence problem of rigid hypersurfaces in C 2 under the action of rigid biholomorphic transformations. We will solve this problem with both Cartan's method of equivalence and Moser's method of normal forms. The calculations here are simple, and they will serve as a toy model for our more substantial problem in C 3 later. Throughout this section, we use the complex coordinates (z, w) on C 2 with w = u + iv, where u, v ∈ R.

We recall that a real analytic hypersurface in C 2 is called rigid if it can be written u = F (z, z) , where F is a converging power series in z, z. A local biholomorphic map of C 2 of the form:

(z, w) -→ f (z), a w + g(z) , (5.2.1) with a ∈ R * , c ∈ R, will be called called rigid. Most of the times, we will assume that the origin is fixed, whence 0 = f (0) = g(0).

Since rigid transformations send rigid hypersurfaces to hypersurfaces which are again rigid, it then makes sense to consider rigid equivalences of rigid hypersurfaces in C 2 , as we do here. The homogeneous model here is (still) the Heisenberg sphere {u = zz}, whose rigid automorphisms fixing the origin can be extracted from the set of general automorphisms of the sphere (exercise).

As a starter, consider a rigid biholomorphic map (z, w) -→ f (z), a w + g(z) =: (z , w ) between two hypersurfaces {u = F (z, z)} in C 2 and {u = F (z , z )} in C 2 too. From:

F f (z), f (z) = F z , z = u = a u + Re g(z) = a F (z, z) + 1 2 g(z) + 1 2 g(z),
it comes the fundamental equation, identically satisfied:

F f (z), f (z) ≡ a F (z, z) + 1 2 g(z) + 1 2 g(z). (5.2.2)
Lemma 5.2.3. Through a rigid biholomorphism between two rigid hypersurfaces {u = F } and {u = F } in C 2 , it holds:

F zz = 1 a f z 2 F z z .
Proof. Applying ∂ z ∂ z eliminates g and g above and yields the result.

Thus, F zz is a relative invariant: it is nonvanishing in one system of coordinates if and only if it is nonvanishing in any other system of coordinates. Of course, M is Levi nondegenerate in the classical sense if and only if F zz = 0. We will constantly assume that this holds at every point.

Cartan's method of equivalence

Consider a real analytic graphed hypersurface M 3 = {u = F (z, z)} passing through the origin in C 2 . Its holomorphic tangent space T 1,0 M := (C ⊗ T M ) ∩ T 1,0 C is a 1-dimensional complex vector bundle on M . One can check directly that the vector field

L := ∂ ∂z -iF z ∂ ∂v generates T 1,0 M , in the intrinsic coordinates (z, z, v) on M . We abbreviate A := -i F z so that L = ∂ ∂z + A ∂ ∂v and L = ∂ ∂z + A ∂ ∂v .
Assume that M is everywhere Levi nondegenerate, namely F zz = 0. Next, define the real vector field T on M by T := -i [L , L ] = ∂ ∂v , where := -2F zz . As in [START_REF] Foo | Rigid equivalences of 5-dimensional 2-nondegenerate rigid real hypersurfaces M 5 ⊂ C 3 of constant Levi rank 1[END_REF], introduce also the auxiliary function on M :

P := z = F zzz F zz .
Lemma 5.2.4. The vector fields T , L , L constitute a frame on C ⊗ T M , with Lie brackets:

T , L = -P T , T , L = -P T , L , L = -i T .
Next, denote by ρ 0 , ζ 0 , ζ 0 the (complex) 1-forms on M which are dual to the (complex) vector fields T , L , L , respectively. More precisely, the expressions of ρ 0 , ζ 0 , ζ 0 in terms of dv, dz, dz are:

ρ 0 := 1 dv -A dz -A dz , ζ 0 := dz, ζ 0 = dz.
This gives us an initial coframe for C ⊗ T M having structure equations:

dρ 0 = P ρ 0 ∧ ζ 0 + P ρ 0 ∧ ζ 0 + i ζ 0 ∧ ζ 0 , dζ 0 = dζ 0 = 0. CHAPTER 5. NORMAL FORMS FOR RIGID C 2,1 HYPERSURFACES M 5 ⊂ C 3
We now look at the action of rigid transformations on M in order to setup an initial G-structure. Observe that if a rigid biholomorphism h : (z, w) -→ f (z), aw + g(z) =: (z , w ) fixing the origin maps a rigid hypersurface M ⊂ C 2 to another rigid hypersurface M ⊂ C 2 , then h sends T 1,0 M to T 1,0 M , i.e. h * (T 1,0 M ) = T 1,0 M . Without loss of generality, it can be assumed that the target M = {u = F (z , z )} is also graphed, and is equipped with a similar frame {T , L , L }. It follows that there exists a uniquely defined nowhere vanishing function c :

M -→ C * so that h * (L ) = c L . Similary, h * (T ) = a T + b L + b L . From Definition 5.2.1, it is clear that h * (∂ v ) = a ∂ v . Since T = ∂ v and T = ∂ v , it comes h * (T ) = a T . Hence b = 0. Furthermore: h * (T ) = h * -i [L , L ] = -i h * (L ), h * (L ) = -i c L , c L = c c T ,
with necessarily 0 ≡ L (c ) while expanding the bracket thanks to b = 0, and we conclude that the function a = c c is determined.

Consequently, under the action of h, the frame {T , L , L } changes as:

h *   T L L   =   c c 0 0 0 c 0 0 0 c     T L L   (c = 0).
This gives us the transfer relation between the two dual coframes, in terms of a nowhere vanishing function

c : M -→ C * : h *   ρ 0 ζ 0 ζ 0   =   cc 0 0 0 c 0 0 0 c     ρ 0 ζ 0 ζ 0   .
The initial G-structure is now obtained as follows. Such a function c is replaced by a free variable c ∈ C * , an unknown of the problem. The structure group is the 2-dimensional Lie group of matrices of the form:

g =   cc 0 0 0 c 0 0 0 c   (c = 0),
and we introduce the lifted coframe:

  ρ ζ ζ   := g •   ρ 0 ζ 0 ζ 0   .
We are now in the position to apply Cartan's method of equivalence to the G-structure just obtained. First, we compute the Maurer-Cartan matrix as:

dg • g -1 =   dc c + dc c 0 0 0 dc c 0 0 0 dc c   ,
and there is only one (complex-valued) Maurer-Cartan form α := dc c . The structure equations are the following:

dρ = α + α ∧ ρ + 1 c P ρ ∧ ζ + 1 c P ρ ∧ ζ + i ζ ∧ ζ, dζ = α ∧ ζ, dζ = α ∧ ζ.
We proceed to absorption of torsion by introducing the modified Maurer-Cartan form: 

π := α -1 c P ζ,
dρ = (π + π) ∧ ρ + i ζ ∧ ζ, dζ = π ∧ ζ, dζ = π ∧ ζ.
At this point, no more absorption can be performed, because if one modifies the 1-form π as π := π -A ρ -B ζ -C ζ, which transforms the structure equations into:

dρ = π + π ∧ ρ -(B + C) ρ ∧ ζ -(B + C) ρ ∧ ζ + i ζ ∧ ζ, dζ = π ∧ ζ + A ρ ∧ ζ -C ζ ∧ ζ,
all the functions A, B, C must be zero to conserve the same shape. In other words, the prolongation reduces to identity, and π is uniquely defined.

Therefore, Cartan's process stops, and to finish, it remains to finalize the expression of:

dπ = dα • + 1 c dc c P ∧ ζ -1 c dP ∧ ζ -1 c P dζ = 0 + 1 c π + 1 c P ζ P ∧ ζ -1 c P z dz + P z dz ∧ ζ -1 c P π ∧ ζ = -1 c P z 1 c ζ + P z 1 c ζ ∧ ζ,
where we need to know abbreviate just: which satisfy invariant structure equations of the shape:

P z = F zzzz F zz -F zzz F zzz (F zz ) 2 =: R, whence: dπ = 1 cc R ζ ∧ ζ. Visibly, R = R is real, because F = F is, whence F z a z c = F z a z c .
dρ = (π + π) ∧ ρ + i ζ ∧ ζ, dζ = π ∧ ζ, dζ = π ∧ ζ, dπ = 1 cc R ζ ∧ ζ, dπ = -1 cc R ζ ∧ ζ.
Another way to see that R = R is real from the structure equations is as follows, using Poincaré's relation:

0 = d • dρ = dπ + dπ ∧ ρ -π + π ∧ dρ + i dζ ∧ ζ -i ζ ∧ dζ = 1 cc R ζ ∧ ζ ∧ ρ + 1 cc R ζ ∧ ζ ∧ ρ -π + π π + π • ∧ ρ + i ζ ∧ ζ + i π ∧ ζ ∧ ζ -i ζ ∧ π ∧ ζ = 1 cc R -R ρ ∧ ζ ∧ ζ.
Thus, the only invariant here is:

R := F zzzz F zz -F zzz F zzz (F zz ) 2 . (5.2.6)
When R ≡ 0, the structure equations have constants coefficients, which shows, by Cartan's theory, that all rigid hypersurfaces with R ≡ 0 are rigidly equivalent to each other, and equivalent to the model {u = zz}. There also are straightforward arguments to get this. 

0 ≡ R(F ) ≡ F zzzz F zz -F zzz F zzz .
Proof. Recall that the condition R(F ) ≡ 0 is invariant under rigid biholomorphisms.

Trivially, F := zz implies R(F ) ≡ 0.

For the converse, Lemma 5.2.3 guarantees that M is of course Levi-nondegenerate too, and by invariancy of R = 0, we can assume that F = zz + O z,z [START_REF] Andreotti | Théorème de finitude pour la cohomologie des espaces complexes[END_REF].

Set G := F zz , a function which is also real-valued, with G(0) = 1. Thus:

0 ≡ G zz G -G z G z ⇐⇒ log G zz ≡ 0.
Consequently log G(z, z) = ϕ(z) + ϕ(z) for some holomorphic function with ϕ(0

) = 0, whence G(z, z) = ψ(z) • ψ(z) with ψ(0) = 1, and 
F (z, z) = z 0 ψ(ζ) dζ • z 0 ψ(ζ) dζ =: f (z) • f (z), with f (z) = z + O z (2). Thus u = f (z) f (z)
, and the rigid biholomorphism z := f (z) terminates.

We know from Lemma 5.2.3 that F zz is a relative invariant. What about R? It suffices to examine how the numerator of R behaves under transformations. Lemma 5.2.8. Through a rigid biholomorphism (z, w) -→ f (z), a w + g(z) =: (z , w ) between two rigid hypersurfaces {u = F } and {u = F } in C 2 , it holds:

F zzzz F zz -F zzz F zzz ≡ 1 a 2 f z f z 3 F z z z z F z z -F z z z F z z z .
Proof. Differentiate the fundamental identity (5.2.2) four appropriate times:

a F zz ≡ f z f z F z z , a F zzz ≡ f zz f z F z z + f z f z f z F z z z , a F zzz ≡ f z f zz F z z + f z f z f z F z z z , a F zzzz ≡ f zz f zz F z z + f zz f z f z F z z z + f z f zz f z F z z z + f z f z f z f z F z z z z ,
perform the necessary products, substract, and get the result.

Method of normal forms of Moser

In this subsection, following the method of Moser, we will approach the equivalence problem for rigid hypersurfaces in C 2 under rigid biholomorphisms by constructing a normal form. Notice that although the problem is (much) simpler than that considered by Moser for general hypersurfaces in C 2 , our problem here is not a special case of what is already known. The goal is to simplify the defining function u = F (z, z) of a given hypersurface M 3 ⊂ C 2 as much as possible by applying rigid holomorphic changes of variables (z, w) → f (z), ρ w + g(z) =: (z , w ), with ρ ∈ R * . We will find step by step changes, so that the transformed graphing functions F for successive M = u = F (z , z ) will contain more and more zero coefficients.

Take a real analytic hypersurface M = {u = F (z, z)} passing through the origin in C 2 , and expand: F j,0 z j , in order to subtract all harmonic monomials F j,0 z j and F 0,k z k to obtain:

u = 1 2 w + w = j+k 1 F j,k z j z k , 5.2. 
u = j 1 k 1 F j,k z j z k = F 1,1 zz + j+k 3 j 1 and k 1 F j,k z j z k .
The invariant property F 1,1 = 0 characterizes Levi nondegeneracy of M at the origin (hence in a neighborhood). Switching u -→u if necessary, we may assume F 1,1 > 0.

Next, make the rigid biholomorphism z := F 1,1 z with w := w, drop the prime, single out monomials of degree 1 in either z or z, factorize, and point out remainders:

u = zz + j+k 3 j 1 and k 1 F j,k F1,1 j+k z j z k = zz + z F2,1 F 3/2 1,1 z 2 + j 3 Fj,1 F (j+1)/2 1,1 z j + z F1,2 F 3/2 1,1 z 2 + k 3 F 1,k F (1+k)/2 1,1 z k + F2,2 F 2 1,1 z 2 z 2 + j+k 5 j 2 and k 2 F j,k F (j+k)/2 1,1 z j z k = z + F2,1 F 3/2 1,1 z 2 + j 3 Fj,1 F (j+1)/2 1,1 z j z + F1,2 F 3/2 1,1 z 2 + k 3 F 1,k F (1+k)/2 1,1 z k - F2,1 F1,2 F 3 1,1 z 2 z 2 -z 2 z 3 • • • -z 3 z 2 • • • + + F2,2 F 2 1,1 z 2 z 2 + z 2 z 3 • • • + z 3 z 2 • • • .
Such a factorization suggests to perform the rigid biholomorphism:

z := z + F 2,1 F 3/2 1,1 z 2 + j 3 F j,1 F (j+1)/2 1,1 z j ,
again with untouched w := w. Its inverse is of the form z = z 1 + z 2 (• • • ) , so O z l z m = O z l z m , and finally, dropping primes, we have proved the Proposition 5.2.9. Any rigid M = u = F j,k z j z k can be brought, by a rigid biholomorphic transformation fixing the origin, to:

u = zz + F 2,2 F 1,1 -F 2,1 F 1,2 F 3 1,1 z 2 z 2 + z 2 z 3 • • • + z 3 z 2 • • • .
In other words:

0 = F j,0 = F 0,k (j 1, k 1), 1 = F 1,1 , 0 = F j,1 = F 1,k (j 2, k 2).
Can one normalize the graphing function F further? For instance, can one annihilate some other F j,k ? Not much freedom is left, as states the next Lemma 5.2.10. If two rigid hypersurfaces in C 2 having the form:

u = zz + j,k 2 F j,k z j z k and u = z z + j,k 2 F j,k z j z k ,
are equivalent through a rigid biholomorphism fixing the origin, then there exist ρ ∈ R * + and ϕ ∈ R such that:

z = ρ 1/2 e iϕ z, w = ρ w.
In particular, this shows that the group of rigid transformations fixing the origin of the Heisenberg sphere {u = zz} is 2-dimensional, generated by these obvious rotation dilation commuting transformations (solution of the exercise).

Proof. Write as above (z , w ) = f (z), ρ w + g(z) , with f (0) = 0 = g(0). The fundamental equation (5.5.10) reads:

ρ F (z, z) + 1 2 g(z) + 1 2 g(z) ≡ F f (z), f (z) 
. Put z := 0, get g(z) ≡ 0. Thus:

ρ zz + z 2 z 2 (• • • ) ≡ f (z)f (z) + f (z) 2 f (z) 2 • • • , and using f (z) = O(z): ρ zz ≡ f (z)f (z) + z 2 z 2 • • • .
Invertibility of the Jacobian yields f z (0) = 0. Apply ∂ z 0 and get:

ρ z ≡ f (z) f (0), so f (z) = λ z for some λ ∈ C * .
Lastly, ρ = λλ, which concludes.

Corollary 5.2.11. Two rigid hypersurfaces in C 2 :

u = zz + j,k 2 F j,k z j z k and u = z z + j,k 2 F j,k z j z k ,
are rigidly biholomorphically equivalent if and only if there exist ρ ∈ R * + and ϕ ∈ R such that:

F j,k = ρ j+k-2 2 e i ϕ (j-k) F j,k (j 2, k 2).
At any point (z 0 , w 0 ) ∈ M close to the origin, all these results are also valid, and using the recentered holomorphic coordinates zz 0 and ww 0 , one obtains:

u -u 0 = (z -z 0 ) z -z 0 + 4 F zzzz (z 0 ) F zz (z 0 ) -2 F zzz (z 0 ) 2 F zzz (z 0 ) F zz (z 0 ) 3 (z -z 0 ) 2 z -z 0 2 + • • • .
The (2, 2)-coefficient at various points z 0 is, up to a power of F zz in the denominator, exactly equal to the relative invariant function R found in (5.2.6) by applying Cartan's method. According to Lie's principle of thought ([59, Chap. 1]), a relative invariant is assumed to be either identically zero, or nowhere zero, after restriction to an appropriate open subset. Since Proposition 5.2.7 already understood the branch R ≡ 0, it remains only to treat the branch R = 0. This is left as an exercise.

Two Invariant Determinants for Hypersurfaces

M 5 ⊂ C 3
Consider a rigid biholomorphism:

H : (z, ζ, w) -→ f (z, ζ), g(z, ζ), ρ w + h(z, ζ) =: z , ζ , w (ρ ∈ R * ), hence with Jacobian f z g ζ -f ζ g z = 0, between two rigid C ω hypersurfaces: w = -w + 2 F z, ζ, z, ζ =: Q and w = -w + 2 F z , ζ , z , ζ =: Q .
Plugging the three components of H in the target equation: 

ρ w + h(z, ζ) + ρ w + h(z, ζ) = 2 F f (z, ζ), g(z, ζ), f (z, ζ), g(z, ζ) ,
2 ρ F z, ζ, z, ζ + h(z, ζ) + h(z, ζ) ≡ 2 F f (z, ζ), g(z, ζ), f (z, ζ), g(z, ζ) .
By differentiating it (exercise! use a computer!), one expresses as follows the invariancy of the Levi determinant defined for general biholomorphisms [START_REF] Merker | Equivalences of PDE systems associated to para-CR structures[END_REF] as:

Q z Q ζ Q w Q zz Q zζ Q zw Q ζz Q ζζ Q ζw = 2 2 F z F ζ -1 F zz F zζ 0 F ζz F ζζ 0 . Proposition 5.3.1.
Through any rigid biholomorphism:

F z z F z ζ F ζ z F ζ ζ = ρ 2 f z f ζ g z g ζ f z f ζ g z g ζ F zz F zζ F ζz F ζζ .
Consequently, the property that the Levi form is of constant rank 1 is biholomorphically invariant. The 2-nondegeneracy property [START_REF] Merker | Equivalences of PDE systems associated to para-CR structures[END_REF] then expresses as the nonvanishing of:

Q z Q ζ Q w Q zz Q zζ Q zw Q zzz Q zzζ Q zzw = 2 2 F z F ζ -1 F zz F zζ 0 F zzz F zzζ 0 . Proposition 5.3.2.
When the Levi form is of constant rank 1, through any rigid biholomorphism:

F z z F z ζ F z z z F z z ζ = ρ 2 g ζ F zz -g z F ζz 3 f z f ζ g z g ζ 3 f z f ζ g z g ζ F zz F zζ F zzz F zzζ .
Recall that we denote the class of (local) hypersurfaces M 5 ⊂ C 3 passing by the origin 0 ∈ M that are 2-nondegenerate and whose Levi form has constant rank 1 as: C 2,1 .

Rigid Infinitesimal CR Automorphisms of the Gaussier-Merker Model

The appropriate model M LC is rigid and was set up by Gaussier-Merker in [START_REF] Gaussier | A new example of a uniformly Levi degenerate hypersurface in C 3[END_REF] and Fels-Kaup in [START_REF] Fels | CR manifolds of dimension 5: a Lie algebra approach[END_REF]:

M LC : u = zz + 1 2 z 2 ζ + 1 2 z 2 ζ 1 -ζζ =: m z, ζ, z, ζ .
It is a locally graphed representation of the tube in C 3 over the future light cone in R 3 . The 10-dimensional simple Lie algebra of its infinitesimal CR automorphisms:

g := aut CR M LC ∼ = so 2,3 (R),
has 10 natural generators X 1 , . . . , X 10 , which are (1, 0) vector fields having holomorphic coefficients with X σ + X σ tangent to M LC . Assigning weights to variables, to vector fields, and the same weights to their conjugates:

[z] := 1 [ζ] := 0, [w] := 2 ∂ z := -1 ∂ ζ := 0 ∂ w := -2, (5.4.1) CHAPTER 5. NORMAL FORMS FOR RIGID C 2,1 HYPERSURFACES M 5 ⊂ C 3
this Lie algebra of vector fields isomorphic to so 2,3 (R) can be graded as:

g = g -2 ⊕ g -1 ⊕ g 0 ⊕ g 1 ⊕ g 2 ,
where, as shown in [START_REF] Gaussier | A new example of a uniformly Levi degenerate hypersurface in C 3[END_REF][START_REF] Foo | Rigid equivalences of 5-dimensional 2-nondegenerate rigid real hypersurfaces M 5 ⊂ C 3 of constant Levi rank 1[END_REF]:

g -2 := Span i ∂ w , g -1 := Span (ζ -1) ∂ z -2z ∂ w , (i + iζ) ∂ z -2iz ∂ w ,
where g 0 = g trans 0 ⊕ g iso 0 :

g trans 0 := Span zζ ∂ z + (ζ 2 -1) ∂ ζ -z 2 ∂ w , izζ ∂ z + (i + iζ 2 ) ∂ ζ -iz 2 ∂ w , g iso 0 := Span z ∂ z + 2w ∂ w , iz ∂ z + 2iζ ∂ ζ ,
while:

g 1 := Span z 2 -ζw -w) ∂ z + 2zζ + 2z ∂ ζ + 2zw ∂ w , -iz 2 + iζw -iw ∂ z + -2izζ + 2iz ∂ ζ -2izw ∂ w , g 2 := Span izw ∂ z -iz 2 ∂ ζ + iw 2 ∂ w .
Calling these X 1 , . . . , X 10 in order of appearance, the five X σ + X σ for σ = 1, 2, 3, 4, 5 span T M 5 while those for σ = 6, 7, 8, 9, 10 generate the isotropy subgroup of the origin. 

Prenormalization

F z, ζ, z, ζ ≡ F z, ζ, z, ζ . The 4 independent derivations ∂ z , ∂ ζ , ∂ z , ∂ ζ commute. Applying 1 a! ∂ a z 1 b! ∂ b ζ 1 c! ∂ c z 1 d! ∂ d ζ at the origin (0, 0, 0, 0), it comes: F c,d,a,b = F a,b,c,d .
With χ(z, ζ) := F (z, ζ, 0, 0) which is holomorphic, setting w := w -2 χ(z, ζ), we get: 

w +w 2 = u = F z, ζ, z, ζ -χ(z, ζ) -χ z, ζ =: F z, ζ, z, ζ , with now 0 ≡ F (z, ζ, 0, 0) ≡ F (0, 0, z, ζ). By O x ( 3 
F z, ζ, z, 0 = zz + 1 2 ζz 2 + O z (3).
Proposition 5.5.7. In prenormalized coordinates, one has

G = O z,z (3). 
Proof. Expand:

m = zz i 0 ζ i ζ i + 1 2 z 2 i 0 ζ i ζ i+1 + 1 2 z 2 i 0 ζ i+1 ζ i = zz + 1 2 z 2 ζ + 1 2 z 2 ζ + O z,ζ,z,ζ (4) 
,

G = k 4 a+b+c+d=k G a,b,c,d z a ζ b z c ζ d =: k 4 G k . Of course, F k = m k + G k , with G 2 = G 3 = 0.
Assertion 5.5.8. For every k 2, one has

G k = O z,z (3). 
Proof. For some k 4, assume by induction that

G 2 , G 3 , . . . , G k-1 are O z,z (3) 
, whence:

G zz = O z,z (1) 
,

G ζz = O z,z (2) = G zζ , G ζζ = O z,z (3) 
(1 k-1).

Next, insert F = i 2 F i in the Levi determinant:

0 ≡ i F i zz j F j ζz i F i zζ j F j ζζ = 4 i+j= i,j 2 F i zz F j ζζ -F i zζ F j ζz .
Behind , all terms are of constant homogeneous order i -2 + j -2 = -4, hence 0 ≡ i+j= for each 4. Take := k + 2 and expand:

0 ≡ F 2 zz F k ζζ + 3 i k-1 F i zz F k+2-i ζζ + F k zz F 2 ζζ • - -F 2 zζ • F k ζz - 3 i k-1 F i zζ F k+2-i ζz -F k zζ F 2 ζz • . Observe from (5.5.6) that 1 ≡ F 2 zz while 0 ≡ F 2 ζζ ≡ F 2 zζ ≡ F 2 ζz . Of course, Levi determinant vanishing holds for F := m: 0 ≡ m 2 zz m k ζζ + 3 i k-1 m i zz m k+2-i ζζ + m k zz m 2 ζζ • - -m 2 zζ • m k ζz - 3 i k-1 m i zζ m k+2-i ζz -m k zζ m 2 ζz • . Substituting the boxed term F k ζζ with m k ζζ + G k ζζ , solving for G k ζζ , substituting as well the other F •• = m •• + G •• ,
and subtracting, we obtain:

-G k ζζ ≡ 3 i k-1 m i zz G k+2-i ζζ + G i zz m k+2-i ζζ + G i zz G k+2-i ζζ - - 3 i k-1 m i zζ G k+2-i ζz + G i zζ m k+2-i ζz + G i zζ G k+2-i ζz .
Since we also have 3 k + 2i k -1, induction applies to all six products to get

G k ζζ = O z,z (3). By integration, G k = λ k (z, ζ, z) + λ k (z, ζ, z) + O z,z (3) 
. After absorption in O z,z (3), we can assume that λ k is of degree 2 in (z, z), hence contains only monomials z a ζ b z c with a + c 2 and a

+ b + c = k. So b k -2. CHAPTER 5. NORMAL FORMS FOR RIGID C 2,1 HYPERSURFACES M 5 ⊂ C 3 Further, G k (z, ζ, 0, 0) ≡ 0 imposes λ k (z, ζ, 0) ≡ 0. So 1 c 2.
Consequently, λ k can contain only three monomials:

λ k (z, ζ, z) = a zζ k-1 + b zz ζ k-2 + c z 2 ζ k-2 .
Since k 4, we see that the conjugate λ

k (z, ζ, z) is multiple of ζ k-2 2 , hence: G k z, ζ, z, 0 = λ k (z, ζ, z) + λ k (z, 0, z) • + O z,z (3) 
.

Finally, because the prenormalized coordinates of Proposition 5.5.

1 require G k (z, ζ, z, 0) = O z (3), we reach λ k (z, ζ, z) = O z,z (3), which forces a = b = c = 0 = λ k , so as asserted G k = O z,z (3). In conclusion, G = G k = O z,z (3) 
.

According to [START_REF] Foo | Rigid equivalences of 5-dimensional 2-nondegenerate rigid real hypersurfaces M 5 ⊂ C 3 of constant Levi rank 1[END_REF], the Lie group G of rigid CR automorphisms of the Gaussier-Merker model {u = m} has Lie algebra g -2 ⊕ g -1 ⊕ g 0 of dimension 7, generated by X 1 , . . . , X 7 . The 2-dimensional isotropy subgroup G 0 ⊂ G of the origin 0 ∈ C 3 has Lie algebra g iso 0 generated by:

X 6 := z ∂ z + 2w ∂ w , X 7 := iz ∂ z + 2iζ ∂ ζ .
By computing the flows exp t X σ (z, ζ, w) for t ∈ R and σ = 6, 7, one verifies that G 0 consists of scalings coupled with 'rotations':

z = ρ 1/2 e iϕ z, ζ = e 2iϕ ζ, w = ρ w (ρ ∈ R * + , ϕ ∈ R).
Next, any holomorphic function e = e(z, w) decomposes in weighted homogeneous terms as:

e(z, w) = a,b e a,b z a ζ b = k 0 b e k,b ζ b z k =: k 0 e k .
Mind notation: for weights, indices e k are lower case, while for orders, as e.g. in G k before, they were upper case. Similarly:

E z, ζ, z, ζ = k 0 a+c=k b,d E a,b,c,d ζ b ζ d z a z c =: k 0 E k .
According to what precedes, we can assume that both the source M and the target M rigid hypersurfaces are prenormalized. Assume therefore that a rigid biholomorphism:

H : (z, ζ, w) -→ f (z, ζ), g(z, ζ), ρ w + h(z, ζ) =: z , ζ , w ),
fixing the origin is given between:

u = F = zz + 1 2 z 2 ζ + O z (3) = m + G = zz+ 1 2 z 2 ζ+ 1 2 z 2 ζ 1-ζζ + O z,z (3), u = F = z z + 1 2 z 2 ζ + O z (3) = m + G = z z + 1 2 z 2 ζ + 1 2 z 2 ζ 1-ζ ζ + O z ,z (3) 
. Observation 5.5.9. Scalings and rotations (z , ζ , w ) -→ ρ 1/2 e iϕ z , e 2iϕ ζ , ρw preserve prenormalizations.

Since T c

0 M = {w = 0} and T c 0 M = {w = 0}, and since [START_REF] Alessandrini | Plurisubharmonic currents and their extension across analytic subsets[END_REF]. After the scaling w -→ 1 ρ w , we may therefore assume that the last component of

H * T c 0 M = T c 0 M , we necessarily have h = O z,ζ
H is w + O z,ζ (2).
Let us decompose the components of H in weighted homogeneous parts:

f = f 0 +f 1 +f 2 +f 3 +• • • , g = g 0 +g 1 +g 2 +• • • , h = h 0 +h 1 +h 2 +h 3 +h 4 +• • • .
Plug in the components of H in the target rigid equation

w +w 2 = F (z , ζ , z , ζ ): w + h(z, ζ) + w + h z, ζ = 2 F f (z, ζ), g(z, ζ), f z, ζ , g z, ζ ,
and then, substitute w + w = 2 F to get a fundamental equation, holding identically: 

2 F (z, ζ, z, ζ) + h(z, ζ) + h z, ζ ≡ 2 F f (z, ζ), g(z, ζ), f z, ζ ,
f = z + f 2 + f 3 + • • • , g = ζ + g 1 + g 2 + • • • , h = w + h 3 + h 4 + • • • .
or equivalently:

f 0 = 0, f 1 = z; g 0 = ζ; h 0 = 0, h 1 = 0, h 2 = w. Proof. Recall that F = m + G, that m = m 2 and that G = G 3 + G 4 + • • • , with the same about F = m + G . So F and F have no terms of weights 0 or 1. Of course f 0 = f 0 (ζ), g 0 = g 0 (ζ), h 0 = h 0 (ζ) depend on ζ only.
In (5.5.10), pick terms of weight zero:

0 + h 0 (ζ) + h 0 (ζ) ≡ 2 F f 0 (ζ), g 0 (ζ), f 0 (ζ), g 0 (ζ) ,
put ζ := 0, use F (z , ζ , 0, 0) ≡ 0, and get h 0 = 0. Once again, pick in (5.5.10) terms of weight zero using

F = m + O z ,z (3) 
:

0 ≡ f 0 (ζ)f 0 (ζ) + 1 2 f 0 (ζ) 2 g 0 (ζ) + 1 2 f 0 (ζ)g 0 (ζ) 1 -g 0 (ζ)g 0 (ζ) + O f 0 (ζ),f 0 (ζ) (3). 
We claim that f 0 (ζ) ≡ 0. Otherwise,

f 0 = c ζ ν + O ζ (ν + 1
) with c = 0, but on the right, the monomial cc ζ ν ζ ν cannot be killed -contradiction. This finishes examination of weight zero, for it remains only 0 ≡ 0. Hence, pass to weight 1. We claim that h 1 = 0. Of course,

f 1 = zf 1 (ζ) and h 1 = zh 1 (ζ). Since m is weighted homogeneous of degree 2, we have F = O z ,z (2) 
, and we get from (5.5.10) 

what forces h 1 = 0: O z,z (2) + z h 1 (ζ) + z h 1 (ζ) ≡ O zf 1 (ζ),zf 1 (ζ) (2) ≡ O z,z (2). Before passing to weight 2, since f = zf 1 (ζ) + O z (2) and g = g 0 (ζ) + zg 1 (ζ) + O z (2), the nonzero Jacobian fz f ζ
gz g ζ has value at the origin f 1 (0) 0 g 1 (0) g 0 (0) , hence f 1 (0) = 0 = g 0 (0). Lastly, picking weighted degree 2 terms in (5.5.10), we get:

2 m(z, ζ, z, ζ) + z 2 h 2 (ζ) + z 2 h 2 (ζ) ≡ 2 m zf 1 (ζ), g 0 (ζ), zf 1 (ζ), g 0 (ζ) .
This identity means that the map (z, ζ, w) -→ zf 1 (ζ), g 0 (ζ), w + z 2 h 2 (ζ) is an automorphism of the Gaussier-Merker model fixing the origin, hence is a rotation, so that

f 1 (ζ) = e iϕ , g 0 (ζ) = e 2iϕ ζ, h 2 (z, ζ) ≡ 0.
Post-composing with the inverse rotation, we attain the conclusion. 

Normal Form

The assumption that the Levi form is of constant rank 1:

F zz = 0 ≡ F zz F ζζ -F ζz F zζ ,
enables to solve identically as functions of (z, ζ, z, ζ):

F ζζ ≡ F ζz F zζ F zz .
By successively differentiating this identity and performing replacements, we get formulas. 

F z a ζ b z c ζ d ≡ 1 Fzz N a,b,c,d P a,b,c,d F z a z c a +c n , F z a ζ b z c b 1 a +b +c n , F z a z c ζ d d 1 a +c +d n .
In other words, the Levi rank 1 assumption implies that all Taylor coefficients at the origin of 

F a,0,c,0 a 0, c 0 ∪ F a,b,c,0 a 0, b 1, c 0 ∪ F a,0,c,d a 0, c 0, d 1 .
In subsequent computations, we will therefore normalize only these free (independent) Taylor coefficients at the origin, while those (dependent) attached to monomials that are multiple of ζζ will then be automatically determined by the formulas of Lemma 5.7.1.

As promised, we can now explore Observation 5.5.13 further. What precedes shows that it is best appropriate to expand G with respect to (ζ, ζ):

G = a,c 0 G a,0,c,0 z a z c + b 1 ζ b a,c 0 G a,b,c,0 z a z c + d 1 ζ d a,c 0 G a,0,c,d z a z c + b,d 1 a,c 0 G a,b,c,d z a ζ b z c ζ d .
The last quadruple sum gathers all dependent jets. We will abbreviate this remainder as ζζ(• • • ). With different notations, we can therefore write:

G = a(z, z) + k 0 ζ k+1 Π k (z, z) + k 0 ζ k+1 Π k (z, z) + ζζ • • • , with a(z, z) ≡ a(z, z) real, but no reality constraint on the Π k (z, z). Recall that G = O z,z (3) 
. In view of Proposition 5.6.2, we must, for every weight ν 3, extract G ν , while writing

ζ k+1 = ζ ζ k : G ν = a ν,0 z ν + a ν-1,1 z ν-1 z + • • • + a 1,ν-1 zz ν-1 + a 0,ν z ν + + k 0 ζ ζ k z ν Π k,ν,0 + z ν-1 z Π k,ν-1,1 + • • • + zz ν-1 Π k,1,ν-1 + z ν Π k,0,ν + + k 0 ζ ζ k z ν Π k,ν,0 + z ν-1 z Π k,ν-1,1 + • • • + zz ν-1 Π k,1,ν-1 + z ν Π k,0,ν + + ζζ • • • .
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To reorganize all this in powers of (z, z), let us introduce the two collections for all 0 µ ν of (anti)holomorphic functions (mind the inversion νµ ←→ µ at the end):

B ν-µ,µ (ζ) := k 0 ζ k Π k,ν-µ,µ and C ν-µ,µ (ζ) := k 0 ζ k Π k,µ,ν-µ .
The definition of these B 

G ν = z ν a ν,0 + ζ B ν,0 (ζ) + ζ C ν,0 (ζ) + z ν-1 z a ν-1,1 + ζ B ν-1,1 (ζ) + ζ C ν-1,1 (ζ) + + • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • + + zz ν-1 a ν-1,1 + ζ B ν-1,1 (ζ) + ζ C ν-1,1 (ζ) + z ν a ν,0 + ζ B ν,0 (ζ) + ζ C ν,0 (ζ) + ζζ • • • .
Of course, all these weighted homogeneous functions G ν automatically satisfy

G ν = O z,z (3) 
, since ν 3 thanks to Proposition 5.5.7. Now, Observation 5.5.13 also requires that they satisfy, since they are real:

G ν = O z (3) + O ζ (1) = O z (3) + O ζ (1). (5.7.2)
Lemma 5.7.3. For each weight ν 5, the function G ν satisfies (5.7.2) if and only if it is of the form:

G ν = z ν 0 + 0 + ζ C ν,0 (ζ) 
+ z ν-1 z 0 + 0 + ζ C ν-1,1 (ζ) 
+ z ν-2 z 2 0 + 0 + ζ C ν-2,2 (ζ) 
+ z ν-3 z 3 a ν-3,3 + ζ B ν-3,3 (ζ) + ζ C ν-3,3 (ζ) + • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • + + z 3 z ν-3 a ν-3,3 + ζ C ν-3,3 (ζ) + ζ B ν-3,3 (ζ) + z 2 z ν-2 0 + ζ C ν-2,2 (ζ) + 0 + z 1 z ν-1 0 + ζ C ν-1,1 (ζ) + 0 + z ν 0 + ζ C ν,0 (ζ) + 0 + ζζ • • • .
Just after, we will treat the two weights ν = 3, 4 separately.

Proof. Putting ζ := 0 above, it must hold that:

O z (3) + 0 = G ν ζ=0 = z ν a ν,0 + ζ B ν,0 (ζ) + 0 + z ν-1 z a ν-1,1 + ζ B ν-1,1 (ζ) + 0 + + z ν-2 z 2 a ν-2,2 + ζ B ν-2,2 (ζ) + 0 + O z (3) + 0.
Thus, all the appearing a •,• and B •,• should vanish, as stated, and the converse is clear.
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Proceeding similarly, the reader will find for ν = 3 that G 3 satisfies (5.7.2) if and only if:

G 3 = z 3 0 + 0 + ζ C 3,0 (ζ) + z 2 z 0 + 0 + 0 + zz 2 0 + 0 + 0 + z 3 0 + ζ C 3,0 (ζ) + 0 + ζζ • • • ,
as well as:

G 4 = z 4 0 + 0 + ζ C 4,0 (ζ) + z 3 z 0 + 0 + ζ C 3,1 (ζ) 
+ z 2 z 2 0 + 0 + 0

+ zz 3 0 + ζ C 1,3 (ζ) + 0 + z 4 0 + ζ C 4,0 (ζ) + 0 + ζζ • • • . Now, consider a rigid biholomorphism z = f (z, ζ), ζ = g(z, ζ), w = ρ w + h(z, ζ
) between two rigid hypersurfaces M and M . Of course, as in Question 5.5.12, we may assume that both M and M have already been prenormalized, and thanks to Proposition 5.5.11 also that f

= f 2 + f 3 + • • • , g = g 1 + g 2 + • • • , ρ = 1, h = h 3 + h 4 + • • • .
The goal is to normalize M even further, by means of appropriate choices of f , g, h.

We saw that it is natural to decompose

G = G 3 + G 4 + G 5 + • • • and G = G 3 + G 4 + G 5 + • •
• in weighted homogeneous parts, and we just finished to express what prenormalization means about these G ν and G ν . Proceeding with increasing weights ν = 3, 4, 5, . . . , we therefore consider biholomorphisms of the shape

z = z + f ν-1 , ζ = ζ + g ν-2
, w = w + h ν , and we recall that Proposition 5.6.2 showed that:

G ν z, ζ, z, ζ = G ν z, ζ, z, ζ -2 Re z+zζ 1-ζζ f ν-1 (z, ζ) + (z+zζ) 2 2(1-ζζ) 2 g ν-2 (z, ζ) -1 2 h ν (z, ζ) .
The freedom to 'normalize' G ν even more that G ν , namely the term -2 Re {• • • }, is parametrized by the complely free choice for the triple of holomorphic functions (f ν-1 , g ν-2 , h ν ). However, prenormalizations should be left untouched. 

G ν (z, ζ, z, ζ) = O z (3) + O ζ (1) = G ν z, ζ, z, ζ ,
or equivalently, the 'freedom function' respects prenormalization:

O z (3) + O ζ (1) = 2 Re z+zζ 1-ζζ f ν-1 (z, ζ) + (z+zζ) 2 2(1-ζζ) 2 g ν-2 (z, ζ) -1 2 h ν (z, ζ) =: Φ(z, ζ, z, ζ), if and only if 0 = f ν-1 = g ν-2 = h ν .
Proof. It is easy to verify that the vanishings G ν (z, ζ, 0, 0) ≡ 0 ≡ G ν (z, ζ, 0, 0), which hold from the very beginning (of Proposition 5.5.1) already suffice to force h ν (z, ζ) ≡ 0.

Next, write:

f ν-1 (z, ζ) = z ν-1 f (ζ) = z ν-1 f 0 + f 1 ζ + f 2 ζ 2 + • • • , g ν-2 (z, ζ) = z ν-2 g(ζ) = z ν-2 g 0 + g 1 ζ + g 2 ζ 2 + • • • .
The goal is to show that f (ζ) ≡ 0 and g(ζ) ≡ 0.

Prenormalization being expressed modulo ζζ(• • • ), when we expand the two denominators of Φ, we have by luck 1 1-ζζ ≡ 1 and

1 2 (1-ζζ 2 )
≡ 1 2 , and hence it suffices to require that:

O z (3) + O ζ (1) ? = 2 Re z + z ζ z ν-1 k 0 f k ζ k + 1 2 z + z ζ 2 z ν-2 k 0 g k ζ k .
Using ν 5 to guarantee that there is no interference when extracting the first three powers z ν , z ν-1 z, z ν-2 z 2 , let us compute the three relevant terms of the freedom function:

Φ(z, ζ, z, ζ) = z + zζ z ν-1 f0 + f1 ζ + f2 ζ 2 + • • • + 1 2 z 2 + zzζ + 1 2 z 2 ζ 2 z ν-2 g0 + g1 ζ + g2 ζ 2 + • • • + + z + zζ z ν-1 f 0 + f 1 ζ + f 2 ζ 2 + • • • + 1 2 z 2 + zzζ + 1 2 z 2 ζ 2 z ν-2 g 0 + g 1 ζ + g 2 ζ 2 + • • • = z ν f0 ζ + f1 ζζ + f2 ζ 2 ζ + • • • • + 1 2 g0 ζ 2 + 1 2 g1 ζζ 2 + 1 2 g2 ζ 2 ζ 2 + • • • • + z ν-1 z f0 + f1 ζ + f2 ζ 2 + • • • + g0 ζ + g1 ζζ + g2 ζ 2 ζ + • • • • + z ν-2 z 2 1 2 g0 + 1 2 g1 ζ + 1 2 g2 ζ 2 + • • • + z 3 • • • + ζζ • • • .
Since the underlined terms can be absorbed into the remainder ζζ(• • • ), it remains only:

Φ(z, ζ, z, ζ) = 1 2 z ν 2f 0 ζ + g 0 ζ 2 + z ν-1 z f 0 + f 1 ζ + f 2 ζ 2 + • • • + g 0 ζ + 1 2 z ν-2 z 2 g 0 + g 1 ζ + g 2 ζ 2 + • • • + z 3 • • • + ζζ • • • .
Putting ζ := 0, the result should be an O z (3), hence the first three lines should vanish, and lines 2 and 3 conclude that f (ζ) ≡ 0 ≡ g(ζ), as aimed at.

Next, inspect the two remaining weights ν = 3, 4. For ν = 3, again modulo ζζ(• • • ), the freedom function is:

Φ 3 ≡ 2 Re z + zζ z 2 f 0 + f 1 ζ + f 2 ζ 2 + • • • + 1 2 z 2 + zzζ + 1 2 z 2 ζ 2 z 1 g 0 + g 1 ζ + g 2 ζ 2 + • • • . Assertion 5.7.5. Prenormalization Φ 3 = O z (3) + O ζ (1)
is preserved if and only if:

0 = f 0 + 1 2 g 0 , 0 = f 1 , 0 = f 2 , 0 = g 0 + 1 2 g 1 , 0 = g 2 , . . . .
Consequently, only 1 complex constant is free, f 0 , in terms of which:

g 0 = -2 f 0 , g 1 = -4 f 0 .
With this, how can one normalize

G 3 = G 3 -Φ 3 further? Still modulo ζζ(• • • ): Φ 3 ≡ z 3 f 0 ζ -f 0 ζ 2 + z 2 z (0) + zz 2 (0) + z 3 f 0 ζ -f 0 ζ 2 , hence: G 3,0,0,1 = G 3,0,0,1 -f 0 , G 3,0,0,2 = G 3,0,0,2 + f 0 .
It is natural to normalize the lowest jet order 4 = 3 + 0 + 0 + 1 coefficient here.

Assertion 5.7.6. One can normalize G 3,0,0,1 := 0 by choosing f 0 := G 3,0,0,1 . 

u = m + G, G ∈ N 2,1 , u = m + G , G ∈ N 2,1 ,
are rigidly biholomorphically equivalent if and only if there exist two constants ρ ∈ R * + , ϕ ∈ R, such that for all a, b, c, d:

G a,b,c,d = G a,b,c,d ρ a+c-2 2 
e iϕ(a+2b-c-2d) .

Granted that hypersurfaces can be put into such a normal form, this criterion is quite effective to determine whether two M, M ∈ C 2,1 are rigidly equivalent.

Caves Beneath a Waterfall

This section displays the technique of calculating differential invariants under infinite dimensional lie group action. First, introduce some notations. 

Finite dimensional approximations

RT := (z, ζ, w) → (z , ζ , w ) = f (z, ζ), g(z, ζ), ρ w ,
where ρ ∈ R * and f , g are holomorphic functions near 0 ∈ C 2 with f (0, 0) = g(0, 0) = 0 and with invertible Jacobian

f z f ζ g z g ζ .
Multiplications and inversions are induced by compositions and inversions of transformations.

Proposition 5.8.2. (f, g) defines a biholomorphism between neighborhoods of 0 ∈ C 2 if and only if the jacobian matrix is invertible at 0.

Proof. Let us explain only the existence of a formal inverse. Expand the holomorphic functions f, g as

f (z, ζ) = ∞ n=1 n j=0 f j,n-j j! (n-j)! z j ζ n-j , g(z, ζ) = ∞ n=1 n j=0 g j,n-j j! (n-j)! z j ζ n-j .
Let us construct progressively the formal inverse, which will be expanded as

f (z, ζ) = ∞ n=1 n j=0 fj,n-j j! (n-j)! z j ζ n-j , g(z, ζ) = ∞ n=1 n j=0 gj,n-j j! (n-j)! z j ζ n-j . Then f f (z, ζ), g(z, ζ) ≡ z, g f (z, ζ), g(z, ζ) ≡ ζ.
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At each degree we get a linear system. For example at degree 1 we have

f 1,0 f 0,1 g 1,0 g 0,1 • f1,0 f0,1 g1,0 g0,1 = 1 0 0 1 .
Here f1,0 , f0,1 , g1,0 , g0,1 can be uniquely solved thanks to the invertibility of the Jacobian of (f, g).

Suppose by induction, for some δ ∈ Z 1 that all the coefficients fj,k and gj,k with j + k δ have been already solved as rational functions of f l,n-l and g l,n-l with n δ. Then for j + k = δ + 1, we expand f ( f , g) and g( f , g) to degree δ + 1 and compare the coefficients of z j ζ δ+1-j :

0 = Coef z j ζ δ+1-j δ+1 n=1 n l=0 f l,n-k l! (n-l)! f (z, ζ) j g(z, ζ) n-l = f 1,0 fj,δ+1-j + f 0,1 gj,δ+1-j + Coef z j ζ δ+1-j δ+1 n=2 n l=0 f l,n-k l! (n-l)! f (z, ζ) j g(z, ζ) n-l , 0 = Coef z j ζ δ+1-j δ+1 n=1 n l=0 g l,n-l l! (n-l)! f (z, ζ) j g(z, ζ) n-l = g 1,0 fj,δ+1-j + g 0,1 gj,δ+1-j + Coef z j ζ δ+1-j δ+1 n=2 n l=0 g l,n-l l! (n-l)! f (z, ζ) j g(z, ζ) n-l . i.e. f 1,0 f 0,1 g 1,0 g 0,1 • fj,δ+1-j gj,δ+1-j + R 1 R 2 = 0 0 ,
where R 1 and R 2 are polynomials of f l,n-l , g l,n-l with n δ + 1 and fp,q , gp,q with p + q δ. By inductive assumption fp,q , gp,q are rational functions of f l,n-l , g l,n-l with n δ. So R 1 and R 2 are rational functions of f l,n-l , g l,n-l with n δ + 1. We can solve fj,δ+1-j and gj,δ+1-j as rational functions of f l,n-l , g l,n-l with n δ + 1.

Definition 5.8.3. The space of all Levi-rank 1 and 2 non-degenerate CR graphed hypersurfaces passing by the origin in C 3 is denoted by

H := u := Re(w) = F (z, ζ, z, ζ)
where

• (real-valued analytic) F is an analytic and real-valued function in a neigborhood of (0, 0) ∈ C 2 ;

• (passing by the origin) F (0, 0, 0, 0) = 0;

• (no harmonic monomials) ∂ a z ∂ b ζ F (0, 0, 0, 0) = 0, for any a, b 0.

• (Levi-rank 1) the matrix

F z z F z ζ F ζ z F ζ ζ
has rank 1 everywhere;

• (2-non degenerate) the matrix

F z z F z ζ F z z z F z z ζ is invertible at the origin. CHAPTER 5. NORMAL FORMS FOR RIGID C 2,1 HYPERSURFACES M 5 ⊂ C 3
There is a natural action of the group RT on the space H : a graphed hypersurface u = Re(w) = F (z, ζ, z, ζ) is transformed into another hypersurface u = Re(w ) = F (z , ζ , z , ζ ). The expression of F is obtained by solving the fundamental equation

F f (z, ζ), g(z, ζ), f (z, ζ), g(z, ζ) = ρ F (z, ζ, z, ζ). Indeed F (z, ζ, z, ζ) = ρ F f (z, ζ), g(z, ζ), f (z, ζ), g(z, ζ)
where ( f , g) is the inverse of (f, g). The inverse transformation brings convenience to obtain the explicit action.

Both the group RT and the space H are infinite-dimensional in the sense that they admet infinitely many linearly independent parameters.

For RT , any transformation is defined by ρ ∈ R * and two holomorphic functions f , g with expansions

f (z, ζ) = ∞ n=1 n j=0 f j,n-j j! (n-j)! z j ζ n-j , g(z, ζ) = ∞ n=1 n j=0 g j,n-j j! (n-j)! z j ζ n-j .
where f j,k , g j,k ∈ C, f 1,0 g 0,1f 0,1 g 1,0 = 0. The group RT is hence parametrized by f j,k , g j,k and ρ.

For H , any graphed hypersurface admets an expansion

u = F (z, ζ, z, ζ) = ∞ n=2 a+b+c+d=n F a,b,c,d a! b! c! d! z a ζ b z c ζ d ,
where

F a,b,c,d ∈ C, F c,d,a,b = F a,b,c,d , F a,
b,0,0 = 0 and conditions of constant Levi-rank 1 and of 2-non degeneracy are satisfied. The space is hence parametrized by F a,b,c,d . But these infinite-dimensional objects have finite dimensional approximations. They can be truncated by degrees in expansions. Then they can be viewed as inverse or projective limits of those finite-dimensional truncations.

Definition 5.8.4. The δ th residue group Res δ is the subgroup of RT with

f (z, ζ) = z + O(δ), g(z, ζ) = ζ + O(δ), ρ = 1.
Proposition 5.8.5. The group Res δ is a normal subgroup of RT . Definition 5.8.6. The δ th approximation group RT δ is the quotient group RT /Res δ+1 . Each element has a representative

f (z, ζ) = δ n=1 n j=0 f j,n-j j! (n-j)! z j ζ n-j , g(z, ζ) = δ n=1 n j=0 g j,n-j j! (n-j)! z j ζ n-j .
The group RT δ is a finite dimensional Lie group parameterized by ρ and f j,n-j , g j,n-j with n δ. Its multiplication and inversion are obtained by dropping terms of degree δ + 1 in the multiplication and inversion of RT . Proposition 5.8.7. For any δ, δ ∈ Z + with δ > δ there is a projection RT δ → RT δ induced by the injection Res δ → Res δ . For any δ, δ , δ ∈ Z + with δ > δ > δ The following diagram commutes.

RT δ / / # # RT δ RT δ .
These projections define a projective system {RT δ } δ∈Z + . Projections π δ : RT → RT δ are compatible with this system. By the universal property of the projective limit, there is a morphism

RT → lim ←- δ RT δ
which is indeed an inclusion whose image consists of all convergent power series. Definition 5.8.8. For any δ 2, the δ th approximation of H is a manifold

H δ := u := F (z, ζ, z, ζ) = δ n=2 a+b+c+d=n F a,b,c,d a! b! c! d! z a ζ b z c ζ d ,
where • (passing by the origin) F 0,0,0,0 = 0;

• (real-valued) F a,b,c,d = F c,d,
• (no harmonic monomials) F a,b,0,0 = F 0,0,c,d = 0 for any a, b, c, d 0.

• (2-non-degenerate) the matrix F 1,0,1,0 F 1,0,0,1 F 2,0,1,0 F 2,0,0,1 is invertible.

• (Levi-rank 1 until degree δ) F 1,0,1,0 , F 1,0,0,1 = F 0,1,1,0 and F 0,1,0,1 are not simultaneously 0. The complex Hessian of F (z, ζ, z, ζ) vanishes up to order δ -2, i.e.

F z z F ζ ζ -F z ζ F ζ z = O(δ -1).
The last condition may look strange, but it is reasonable, as shows the Proposition 5.8.9.

A polynomial F (z, ζ, z, ζ) = δ n=2 a+b+c+d=n F a,b,c,d a! b! c! d! z a ζ b z c ζ d is a degree δ truncation of a formal power series F (z, ζ, z, ζ) with Fz z Fζ ζ -Fz ζ Fζ z = 0 if and only if F z z F ζ ζ -F z ζ F ζ z = O(δ -1).
Proof. (only if) When calculating the complex Hessian of a power series

F (z, ζ, z, ζ) = ∞ n=2 a+b+c+d=n Fa,b,c,d a! b! c! d! z a ζ b z c ζ d , the δ -2 degree terms of Fz z Fζ ζ -Fz ζ Fζ z involve only coefficients Fa,b,c,d with a + b + c + d δ. Let F (z, ζ, z, ζ) be its degree δ truncation F (z, ζ, z, ζ) := δ n=2 a+b+c+d=n Fa,b,c,d a! b! c! d! z a ζ b z c ζ d . Then F z z F ζ ζ -F z ζ F ζ z = Fz z Fζ ζ -Fz ζ Fζ z + O(δ -1) = O(δ -1).
To prove the (if) part, let us introduce dependent and independent coordinates. The manifolds H and H δ are covered by 3 open subsets: {F 1,0,1,0 = 0}, {F 1,0,0,1 = F 0,1,1,0 = 0} and {F 0,1,0,1 = 0}. We only treat F 1,0,1,0 = 0 case because the other two cases can be transformed into this one by changes of coordinates

(z , ζ ) = (z + ζ, z -ζ) or (z , ζ ) = (z, ζ) preserving the Levi-rank.
When F 1,0,1,0 = 0 we have F z,z = 0 in a neighborhood of the origin. The Levi-rank 1 condition is now equivalent to Moreover, only powers of F z z appears in the denominators. For example:

F ζ ζ ≡ F z ζ F ζ z
F z ζ,ζ ≡ F z ζ z F z ζ F z z + F z 2 ζ F ζ z F z z - F z 2 z F z ζ F ζ z F 2 z z
.

Taking their values at the origin, the coefficients F a,b,c,d with b 1 and d 1 can be uniquely expressed as rational functions of F a ,b ,c ,0 with a + b + c a + b + c + d and F a ,0,c ,d with a + b + c a + b + c + d. Moreover, only powers of F 1,0,1,0 appear in the denominators. For example: 

F 1,1,0,1 = F 1,1,1,0 F 1,0,0,1 F 1,0,1,0 + F 2,0,0,1 F 0,1,1,0 F 1,0,1,0 - F 2,0,1,0 F 1,0,0,1 F 0,1,1,0 F 2 1,0,1,0 . Definition 5 
H δ " " / / H δ H δ .
These projections define a projective system {H δ } δ∈Z + . Projections π δ : H → H δ are compatible with this system. By the universal property of the projective limit, there is a morphism

H → lim ←- δ H δ .
which is indeed an inclusion.

The manifold H δ is a finite-dimensional manifold parameterized by the independent coefficients F a,b,c,d with a + b + c + d δ and b d = 0. The action of the group RT on H induces an action on each manifold H δ , ∀δ 0:

H π δ / / (f,g,ρ) H δ H π δ / / H δ .
More precisely, a polynomial F (z, ζ, z, ζ) ∈ H δ is a degree δ truncation of a (not unique) convergent power series F (z, ζ, z, ζ) ∈ H , which is transformed to another convergent power series F (z, ζ, z, ζ) by the fundamental equation 

F (z, ζ, z, ζ) = ρ F f (z, ζ), g(z, ζ), f (z, ζ), g(z, ζ) = ρ δ n=2 a+b+c+d=n F a,b,c,d a!b!c!d! f (z, ζ) a g(z, ζ) b f (z, ζ) c g(z, ζ) d + O(δ + 1).
RT × H δ / / H δ RT δ-1 × H δ .
a!b!c!d! f (z, ζ) a g(z, ζ) b f (z, ζ) c g(z, ζ) d .
Each monomial is a product of at least 2 terms among The theory of differential invariants of finite-dimensional Lie group actions applies: the orbit dimension of RT δ-1 on H d is at most equal to dim R RT δ-1 and the equality is achieved only when the action is locally free. We see immediately that the dimension of transversal, which equals to the number of linearly independent differential invariants up to order δ, is positive when δ 6.

{ f (z, ζ), g(z, ζ), f (z, ζ), g(z, ζ)}. Each term f (z, ζ) = ∞ n=1 fj,n-j j!(n-j)! z j ζ n-j , g(z, ζ) = ∞ n=1 gj,n-j j!(n-j)! z j ζ n-
The infinite-dimensional Lie group RT can be interpreted as an infinitely long flow of water. The space H can be interpreted as an infinitely high valley. At the beginning, water fills the space up. But later on as the waterfall grows wider, water cannot fill the space. Some caves, corresponding to the transversal Thus, to calculate differential invariants of order δ under RT is equivalent to calculate those under the finite-dimensional Lie group RT δ-1 . The algorithm goes as follows:

(1) Write down how (f, g, ρ) ∈ RT δ-1 acts on some independent parameters F a,b,c,d .

(2) Choose certain (f, g, ρ) ∈ RT δ-1 to normalize as many independent parameters F a,b,c,d to 0 or 1 as possible, i.e. (f, g, ρ) send F a,b,c,d to F

a,b,c,d and some F

a,b,c,d = 0 or 1.

(3) Calculate how the other independent parameters F

a,b,c,d are changed under this special (f, g, ρ) action, i.e. express them as rational functions of F a,b,c,d , f j,n-j , g j,n-j and ρ.

(4) Calculate the "stabilizer", the subgroup RT We fix δ = 5 in this section. The goal is to show the existence of order 5 invariants and to compute their explicit expressions.

First normalization: degree 2 terms = z z

We may assume that F 1,0,1,0 = 0. In this case

F (z, ζ, z, ζ) = F 1,0,1,0 z z + F 1,0,0,1 zζ + F 0,1,1,0 ζ z + F 1,0,0,1 F 0,1,1,0 F 1,0,1,0 ζ ζ + O(3) = F 1,0,1,0 z + F 0,1,1,0 F 1,0,1,0 ζ z + F 1,0,0,1 F 1,0,1,0 ζ + O(3) = F 1/2 1,0,1,0 z + F 0,1,1,0 F 1/2 1,0,1,0 ζ =:z F 1/2 1,0,1,0 z + F 1,0,0,1 F 1/2 1,0,1,0 ζ =:z +O(3).
After the rigid transformation: 3). The other independent parameters F 

z = F 1/2 1,0,1,0 z + F 0,1,1,0 F 1/2 1,0,1,0 ζ, ζ = ζ, w = w, the polynomial F (z, ζ, z, ζ) becomes F (1) (z , ζ , z , ζ ) = z z + O(
F a,b,c,d a!b!c!d! 1 F 1/2 1,0,1,0 z - F 0,1,1,0 F 1,0,1,0 ζ a ζ b 1 F 1/2 1,0,1,0 z - F 1,0,0,1 F 1,0,1,0 ζ c ζ d ,
we calculate the coefficient of z a ζ b z c . On the left hand side, it is F

a,b,c,0 . On the right hand side only F j,a+b-j,c,0 with a j a + b contribute. Since

F j,a+b-j,c,0 j!(a+b-j)!c! 1 F 1/2 1,0,1,0 z - F 0,1,1,0 F 1,0,1,0 ζ a ζ a+b-j 1 F 1/2 1,0,1,0 z - F 1,0,0,1 F 1,0,1,0 ζ c = F j,a+b-j,c,0 j!(a+b-j)!c! j! a!(j-a)! 1 F 1/2 1,0,1,0 z a - F 0,1,1,0 F 1,0,1,0 ζ j-a ζ a+b-j 1 F 1/2 1,0,1,0 z c + irrelevant monomials,
We get

F (1)
a,b,c,0 = a+b j=a F j,a+b-j,c,0 a!(j-a)!(a+b-j)!c!

1 F 1/2 1,0,1,0 a - F 0,1,1,0 F 1,0,1,0 j-a 1 F 1/2 1,0,1,0 c = b j=0 F a+j,b-j,c,0 a!j!(b-j)!c! 1 F 1/2 1,0,1,0 a+c - F 0,1,1,0 F 1,0,1,0 j . F (1)
a,b,c,d :

F (2) 0,1,2,0 = F (1) 0,1,2,0 , F (2) 0,1,3,0 = -3 F (1) 0,1,2,0 F (1) 1,0,2,0 + F (1) 0,1,3,0 , F (2) 0,1,4,0 = 15 F (1) 0,1,2,0 (F (1) 1,0,2,0 ) 2 -4 F (1) 0,1,2,0 F (1) 1,0,3,0 -6 F (1) 0,1,3,0 F (1) 1,0,2,0 + F (1) 0,1,4,0 , F (2) 0,2,2,0 = -F (1) 0,2,1,0 F (1) 1,0,2,0 + F (1) 0,2,2,0 , F (2) 0,2,3,0 = 3 F (1) 0,2,1,0 (F (1) 1,0,2,0 ) 2 -F (1) 0,2,1,0 F (1) 1,0,3,0 -3 F (1) 0,2,2,0 F (1) 1,0,2,0 + F (1) 0,2,3,0 , F (2) 0,3,2,0 = 3 F (1) 0,2,1,0 F (1) 1,0,2,0 F (1) 1,1,1,0 -3 F (1) 0,2,1,0 F (1) 1,1,2,0 -F (1) 0,3,1,0 F (1) 1,0,2,0 + F (1) 0,3,2,0 , F (2) 1,1,2,0 = -F (1) 1,0,2,0 F (1) 1,1,1,0 + F (1) 1,1,2,0 , F (2) 1,1,3,0 = 3 (F (1) 1,0,2,0 ) 2 F (1) 1,1,1,0 -3 F (1) 1,0,2,0 F (1) 1,1,2,0 -F (1) 1,0,3,0 F (1) 1,1,1,0 + F (1) 1,1,3,0 , F (2) 1,2,2,0 = F (1) 0,2,1,0 F (1) 1,0,2,0 F (1) 2,0,1,0 + 2 F (1) 1,0,2,0 (F (1) 1,1,1,0 ) 2 -F (1) 0,2,1,0 F (1) 2,0,2,0 -F (1) 1,0,2,0 F (1) 1,2,1,0 -2 F (1) 1,1,1,0 F (1) 1,1,2,0 + F (1) 1,2,2,0 , F (2) 2,0,2,0 = -F (1) 1,0,2,0 F (1) 2,0,1,0 + F (1) 2,0,2,0 , F (2) 2,0,3,0 = 3 (F (1) 1,0,2,0 ) 2 F (1) 2,0,1,0 -3 F (1) 1,0,2,0 F (1) 2,0,2,0 -F (1) 1,0,3,0 F (1) 2,0,1,0 + F (1) 2,0,3,0 , F (2) 2,1,2,0 = 3 F (1) 1,0,2,0 F (1) 1,1,1,0 F (1) 2,0,1,0 -F (1) 1,0,2,0 F (1) 2,1,1,0 -2 F (1) 1,1,1,0 F (1) 2,0,2,0 -F (1) 1,1,2,0 F (1) 2,0,1,0 + F (1) 2,1,2,0 , F (2) 3,0,2,0 = 3 F (1) 1,0,2,0 (F (1) 2,0,1,0 ) 2 -F (1) 1,0,2,0 F (1) 3,0,1,0 -3 F (1) 2,0,1,0 F (1) 2,0,2,0 + F (1)
3,0,2,0 .

We define H

(2) 5 It will be a bit strange to talk about stabilizer group from this step. We in fact need to introduce a new definition of stabilizer. But after the final step, we will recover the stabilizer in the standard sense. Definition 5.9.3. For any fixed element F (2) 

:= {u := F (2) (z, ζ, z, ζ) = z z + O(3)|F
(z, ζ, z, ζ) ∈ H (2)
5 , the subset of RT (1) 0,4 consisting of elements f, g, ρ which send F (2) 

(z, ζ, z, ζ) to another element in H (2)
5 , is defined as RT (2) 0,4 (F (2) ). It depends on the choice of the original element F (2) .

The stabilizer RT

(2) 4 (F (2) ) is a codimension 24 subgroup of RT (1)

4 hence dim R RT (2)
4 (F (2) ) = 54-24 = 30. It contains elements (f, g, ρ) = r e i θ z + O(2), g, r 2 ∈ RT [START_REF] Abdalla | Affine homogeneous surfaces in R 3 with vanishing Pick invariant[END_REF] 4 such that

f 2,0 = -r e i θ F (2) 2,0,0,1 g 1,0 g 0,1 -1 , f 3,0 = -r e i θ F (2) 
3,0,0,1 g 1,0 g 0,1

-1 , f 4,0 = -r e i θ F (2) 4,0,0,1 g 1,0 g 0,1 -1 , f 0,2 = 0, f 1,1 = 0, f 0,3 = 0, f 1,2 = 0, f 2,1 = 0, f 0,4 = 0, f 1,3 = 0, f 2,2 = 0, f 3,1 = 0,
which are in total 12 conditions on complex coefficients.

Third normalization:

F (3) 2,0,0,1 = F (3) 0,1,2,0 = 1
Any element in H

(2) 5

has expansion:

F (2) (z, ζ, z, ζ) = z z + F (2) 2,0,0,1 2 z 2 ζ + F (2) 2,0,0,1 2 z 2 ζ + O(4). f (z, ζ) = r e i θ z, g(z, ζ) = e 2 i θ s + O(4), ρ = r 2 .
This group sends I 0 , V 0 , Q 0 to I 0 , V 0 , Q 0 with relations

I 0 = r -1 e -i θ I 0 , V 0 = r -2 e 2 i θ V 0 , Q 0 = r -2 Q 0
So if we ignore dilations and rotations (z , ζ , w ) = (r e i θ z, e 2 i θ ζ, r 2 w), then I 0 , V 0 , Q 0 are invariants. Each

F (t)
a,b,c,d is a rational function of

F (t-1)
a ,b ,c ,d for t = 5, 4, 3, 2 and each F

a,b,c,d is a rational function of F a ,b ,c ,d . By composing these rational functions, one can express I 0 , V 0 , Q 0 in terms of original coordinates F a,b,c,d :

I 0 =
52 terms in degree 9

F 3/2 1,0,1,0 (F 0,1,1,0 F 1,0,2,0 -F 0,1,2,0 F 1,0,1,0 ) 3 (F 1,0,0,1 F 2,0,1,0 -F 1,0,1,0 F 2,0,0 ,1 ) 
, V 0 = 11 terms in degree 4 3 F 1,0,1,0 (F 0,1,1,0 F 1,0,2,0 -F 0,1,2,0 F 1,0,1,0 ) 2 , Q 0 = 824 terms in degree 18 6 F 3 1,0,1,0 (F 0,1,1,0 F 1,0,2,0 -F 0,1,2,0 F 1,0,1,0 ) 4 (F 1,0,0,1 F 2,0,1,0 -F 1,0,1,0 F 2,0,0,1 ) 4 . The numerator of I 0 is

F 3 0,1,1,0 F 1,0,0,1 F 2 1,0,1,0 F 1,0,2,0 F 2,0,1,0 F 2,0,3,0 -F 3 0,1,1,0 F 1,0,0,1 F 2 1,0,1,0 F 1,0,3,0 F 2,0,1,0 F 2,0,2,0 + 2 F 3 0,1,1,0 F 1,0,0,1 F 1,0,1,0 F 3 1,0,2,0 F 3,0,1,0 -6 F 3 0,1,1,0 F 1,0,0,1 F 3 1,0,2,0 F 2 2,0,1,0 -F 3 0,1,1,0 F 3 1,0,1,0 F 1,0,2,0 F 2,0,0,1 F 2,0,3,0 + F 3 0,1,1,0 F 3 1,0,1,0 F 1,0,3,0 F 2,0,0,1 F 2,0,2,0 -2 F 3 0,1,1,0 F 2 1,0,1,0 F 3 1,0,2,0 F 3,0,0,1 + 6 F 3 0,1,1,0 F 1,0,1,0 F 3 1,0,2,0 F 2,0,0,1 F 2,0,1,0 -F 2 0,1,1,0 F 0,1,2,0 F 1,0,0,1 F 3 1,0,1,0 F 2,0,1,0 F 2,0,3,0 -6 F 2 0,1,1,0 F 0,1,2,0 F 1,0,0,1 F 2 1,0,1,0 F 2 1,0,2,0 F 3,0,1,0 + F 2 0,1,1,0 F 0,1,2,0 F 1,0,0,1 F 2 1,0,1,0 F 1,0,3,0 F 2 2,0,1,0 + 18 F 2 0,1,1,0 F 0,1,2,0 F 1,0,0,1 F 1,0,1,0 F 2 1,0,2,0 F 2 2,0,1,0 + F 2 0,1,1,0 F 0,1,2,0 F 4 1,0,1,0 F 2,0,0,1 F 2,0,3,0 + 6 F 2 0,1,1,0 F 0,1,2,0 F 3 1,0,1,0 F 2 1,0,2,0 F 3,0,0,1 -F 2 0,1,1,0 F 0,1,2,0 F 3 1,0,1,0 F 1,0,3,0 F 2,0,0,1 F 2,0,1,0 -18 F 2 0,1,1,0 F 0,1,2,0 F 2 1,0,1,0 F 2 1,0,2,0 F 2,0,0,1 F 2,0,1,0 + F 2 0,1,1,0 F 0,1,3,0 F 1,0,0,1 F 3 1,0,1,0 F 2,0,1,0 F 2,0,2,0 -F 2 0,1,1,0 F 0,1,3,0 F 1,0,0,1 F 2 1,0,1,0 F 1,0,2,0 F 2 2,0,1,0 -F 2 0,1,1,0 F 0,1,3,0 F 4 1,0,1,0 F 2,0,0,1 F 2,0,2,0 + F 2 0,1,1,0 F 0,1,3,0 F 3 1,0,1,0 F 1,0,2,0 F 2,0,0,1 F 2,0,1,0 -2 F 2 0,1,1,0 F 1,0,0,1 F 3 1,0,1,0 F 1,0,2,0 F 1,1,3,0 F 2,0,1,0 + 2 F 2 0,1,1,0 F 1,0,0,1 F 3 1,0,1,0 F 1,0,3,0 F 1,1,2,0 F 2,0,1,0 + 2 F 2 0,1,1,0 F 4 1,0,1,0 F 1,0,2,0 F 1,1,3,0 F 2,0,0,1 -2 F 2 0,1,1,0 F 4 1,0,1,0 F 1,0,3,0 F 1,1,2,0 F 2,0,0,1 + 6 F 0,1,1,0 F 2 0,1,2,0 F 1,0,0,1 F 3 1,0,1,0 F 1,0,2,0 F 3,0,1,0 -18 F 0,1,1,0 F 2 0,1,2,0 F 1,0,0,1 F 2 1,0,1,0 F 1,0,2,0 F 2 2,0,1,0 -6 F 0,1,1,0 F 2 0,1,2,0 F 4 1,0,1,0 F 1,0,2,0 F 3,0,0,1 + 18 F 0,1,1,0 F 2 0,1,2,0 F 3 1,0,1,0 F 1,0,2,0 F 2,0,0,1 F 2,0,1,0 + 2 F 0,1,1,0 F 0,1,2,0 F 1,0,0,1 F 4 1,0,1,0 F 1,1,3,0 F 2,0,1,0 -2 F 0,1,1,0 F 0,1,2,0 F 1,0,0,1 F 3 1,0,1,0 F 1,0,3,0 F 1,1,1,0 F 2,0,1,0 CHAPTER 5. NORMAL FORMS FOR RIGID C 2,1 HYPERSURFACES M 5 ⊂ C 3 -2 F 0,1,1,0 F 0,1,2,0 F 5 1,0,1,0 F 1,1,3,0 F 2,0,0,1 + 2 F 0,1,1,0 F 0,1,2,0 F 4 1,0,1,0 F 1,0,3,0 F 1,1,1,0 F 2,0,0,1 -2 F 0,1,1,0 F 0,1,3,0 F 1,0,0,1 F 4 1,0,1,0 F 1,1,2,0 F 2,0,1,0 + 2 F 0,1,1,0 F 0,1,3,0 F 1,0,0,1 F 3 1,0,1,0 F 1,0,2,0 F 1,1,1,0 F 2,0,1,0 + 2 F 0,1,1,0 F 0,1,3,0 F 5 1,0,1,0 F 1,1,2,0 F 2,0,0,1 -2 F 0,1,1,0 F 0,1,3,0 F 4 1,0,1,0 F 1,0,2,0 F 1,1,1,0 F 2,0,0,1 -F 0,1,1,0 F 0,2,2,0 F 1,0,0,1 F 4
1,0,1,0 F 1,0,3,0 F 2,0,1,0 + F 0,1,1,0 F 0,2,2,0 F 5 1,0,1,0 F 1,0,3,0 F 2,0,0,1 + F 0,1,1,0 F 0,2,3,0 F 1,0,0,1 F 4 1,0,1,0 F 1,0,2,0 F 2,0,1,0 -F 0,1,1,0 F 0,2,3,0 F 5 1,0,1,0 F 1,0,2,0 F 2,0,0,1 -2 F 3 0,1,2,0 F 1,0,0,1 F 4 1,0,1,0 F 3,0,1,0 + 6 F 3 0,1,2,0 F 1,0,0,1 F 3 1,0,1,0 F 2 2,0,1,0

+ 2 F 3 0,1,2,0 F 5 1,0,1,0 F 3,0,0,1 -6 F 3 0,1,2,0 F 4 1,0,1,0 F 2,0,0,1 F 2,0,1,0 + F 0,1,2,0 F 0,2,1,0 F 1,0,0,1 F 4 1,0,1,0 F 1,0,3,0 F 2,0,1,0 -F 0,1,2,0 F 0,2,1,0 F 5 1,0,1,0 F 1,0,3,0 F 2,0,0,1 -F 0,1,2,0 F 0,2,3,0 F 1,0,0,1 F 5 1,0,1,0 F 2,0,1,0 + F 0,1,2,0 F 0,2,3,0 F 6 1,0,1,0 F 2,0,0,1 -F 0,1,3,0 F 0,2,1,0 F 1,0,0,1 F 4 1,0,1,0 F 1,0,2,0 F 2,0,1,0 + F 0,1,3,0 F 0,2,1,0 F 5 1,0,1,0 F 1,0,2,0 F 2,0,0,1 + F 0,1,3,0 F 0,2,2,0 F 1,0,0,1 F 5 1,0,1,0 F 2,0,1,0 -F 0,1,3,0 F 0,2,2,0 F 6 1,0,1,0 F 2,0,0,1 . The numerator of V 0 is 3 F 2 0,1,1,0 F 1,0,2,0 F 1,0,4,0 -5 F 2 0,1,1,0 F 2 1,0,3,0 -3 F 0,1,1,0 F 0,1,2,0 F 1,0,1,0 F 1,0,4,0 + 12 F 0,1,1,0 F 0,1,2,0 F 1,0,2,0 F 1,0,3,0 + 10 F 0,1,1,0 F 0,1,3,0 F 1,0,1,0 F 1,0,3,0 -12 F 0,1,1,0 F 0,1,3,0 F 2 1,0,2,0 -3 F 0,1,1,0 F 0,1,4,0 F 1,0,1,0 F 1,0,2,0 -12 F 2 0,1,2,0 F 1,0,1,0 F 1,0,3,0 + 12 F 0,1,2,0 F 0,1,3,0 F 1,0,1,0 F 1,0,2,0 + 3 F 0,1,2,0 F 0,1,4,0 F 2 1,0,1,0 -5 F 2 0,1,3,0 F 2 1,0,1,0 .
We define H

a codimension 3 submanifold of H 

1,1,3,0 ) = 0. For any fixed element F (6) ∈ H [START_REF] Arnold | Ordinary differential equations[END_REF] 5 , the stabilizer RT [START_REF] Arnold | Ordinary differential equations[END_REF] 4 (F (6) ) is a codimension 3 subgroup of some RT [START_REF] Arnaldsson | Invariants of surfaces in three-dimensional affine geometry[END_REF] 4 (F (6) ). Hence dim R RT [START_REF] Arnold | Ordinary differential equations[END_REF] 4 (F (6) ) = 15 -3 = 12. It contains elements (f, g, ρ) ∈ RT [START_REF] Arnaldsson | Invariants of surfaces in three-dimensional affine geometry[END_REF] 4 (F (6) ) of the form

f (z, ζ) = r e i θ z, g(z, ζ) = e 2 i θ ζ + O(4), ρ = r 2 .
Note that this stabilizer group no longer depends on the choice of F (6) ∈ H (6) [START_REF] Arnaldsson | Invariants of surfaces in three-dimensional affine geometry[END_REF] . We simply write it as RT (6) 4 .

Passing to the infinite dimension

After these six normalizations, we killed f 0,1 and g 1,0 . It is a miracle that now we can work directly on the infinite dimensional objects. We define H (7) be the subspace of H consisting of all power series u = F (7) 

(z, ζ, z, ζ) = F (7) a,b,c,d a!b!c!d! z a ζ b z c ζ d such that • F (7) 
a,b,1,0 = 0, ∀(a, b) = (1, 0); F

1,0,1,0 = 1;

• F

a,b,2,0 = 0, ∀(a, b) = (0, 1); F

0,1,2,0 = 1;

• F

3,0,0,1 = 0, F

3,0,1,1 = F

1,1,3,0 . It is both infinitely-dimensional and infinitely-codimensional in H . But it has a finitely-dimensional stabilizer.

By definition, any element in H (7) has its degree 5 truncation in H

5 . Theorem 5.9.4. Any element u = F (z, ζ, z, ζ) in H can be sent to some element u = F (7) (z, ζ, z, ζ) in H (7) by some (but not unique) element in RT . The ambiguity can be controlled in the following sense: any element (f, g, ρ) ∈ RT sending one element F (7) ∈ H (7) to another F (7) ∈ H (7) The last two terms are 0 because they only contain monomials with deg z = 0

or deg z + deg ζ 2.
The first term gives us 0 = r e -i θ f j,n-j j!(n-j)! . Hence f (z, ζ) = r e i θ z. When we compare the coefficients of z j ζ n-j z 2 for any n 2 and 0 j n:

0 = Coef z j ζ n-j z 2 F (7) f (z, ζ), g(z, ζ), f (z, ζ), g(z, ζ) = Coef z j ζ n-j z 2 f (z, ζ) f (z, ζ) + Coef z j ζ n-j z 2 c=0,d=1 (. . . ) g(z, ζ) + Coef z j ζ n-j z 2 1 2 g(z, ζ) f (z, ζ) 2 + Coef z j ζ n-j z 2 c=1,d=1 (. . . ) f (z, ζ) g(z, ζ) + Coef z j ζ n-j z 2 c=0,d=2 (. . . ) g(z, ζ) 2 + Coef z j ζ n-j z c+d 3 (. . . ) f (z, ζ) c g(z, ζ) d
Each term, except the third, is 0. The third term gives us 0 = 1 2 r 2 g j,n-j j!(n-j)! . Hence g(z, ζ) = e 2 i θ ζ.

5.9.8 Branches: I 0 = 0, V 0 = 0 and

I 0 ≡ 0 ≡ V 0
To get a normal form under the full rigid transformation group, including rotations and dilations

z = r e iθ z, ζ = e 2 i θ ζ, ρ = r 2 ,
we should normalize I 0 or V 0 . Such a rotation and a dilation would send (I 0 , V 0 , Q 0 ) to (I 0 , V 0 , Q 0 ) with

I 0 = r -1 e -i θ I 0 , V 0 = r -2 e 2 i θ V 0 , Q 0 = r -2 Q 0 .
We avoid the mixed type and focus on the 3 possible branches:

• I 0 = 0;

• I 0 ≡ 0 but V 0 = 0;

• I 0 ≡ 0 ≡ V 0 . Branch I 0 = 0
In this branch we can normalize I 0 to 1 by choose r e i θ = I 0 . More precisely, for any surface in H (7) graphed by:

F (7) (z, ζ, z, ζ) = z z + 1 2 z 2 ζ + 1 2 ζ z 2 + 1 6 Q 0 z ζ z 3 + 1 6 Q 0 z 3 z ζ + 1 24 V 0 ζ z 4 + 1 24 V 0 z 4 ζ + 1 12 I 0 ζ 2 z 3 + 1 12 I 0 z 3 ζ 2 + ζ ζ (. . . ) + O(6),
where I 0 = 0, after the transformation

z = I 0 z, ζ = I 2 0 |I 0 | 2 ζ, , ρ = |I 0 | 2 , CHAPTER 5. NORMAL FORMS FOR RIGID C 2,1 HYPERSURFACES M 5 ⊂ C 3
Theorem 5.9.5. Within the branch I 0 ≡ 0:

1. When V 0 ≡ 0, the surface is equivalent to the Gaussier-Merker model u =

z z+ 1 2 ζ 2 z+ 1 2 z 2 ζ 1-ζ ζ
, and conversely;

2. When V 0 = 0, the surface is, up to z → -z, equivalent to:

u = z z + 1 2 z 2 ζ + 1 2 ζ z 2 + 1 6 Q 0 |V 0 | z ζ z 3 + 1 6 Q 0 |V 0 | z 3 z ζ + 1 24 ζ z 4 + 1 24 z 4 ζ + ζ ζ (. . . ) + a+b+c+d 6, b d=0 F a,b,c,d a!b!c!d! z a ζ b z c ζ d ,
without any harmonic monomial z j ζ n-j , ∀n 0, 0 j n and any monomial z a ζ b z c , ∀a + b 2, c ∈ {1, 2}. Pairs of collection of coefficients:

Q 0 |V 0 | , F a,b,c,d a+b+c+d 6, b d=0 , Q 0 |V 0 | , (-1) a+c F a,b,c,d a+b+c+d 6, b d=0
are in one-to-one correspondence with equivalent classes.

Within the branch I 0 = 0, the surface is, in a unique way, equivalent to: 

u = z z + 1 2 z 2 ζ + 1 2 ζ z 2 + 1 6 Q 0 |I 0 | 2 z ζ z 3 + 1 6 Q 0 |I 0 | 2 z 3 z ζ + 1 24 V 0 I 0 2 ζ z 4 + 1 24 V 0 I 2 0 z 4 ζ + 1 12 ζ 2 z 3 + 1 12 z 3 ζ 2 + ζ ζ (. . . ) + a+b+c+d 6, b d=0

Recurrence formulas of the rigid transformation group

Recurrence Formulas

According to Olver, by taking invariant differentials, lower order invariants generate higher order ones. The explicit equations can be obtained by Olver's recurrence formulas. The goal of the section is to find out a finite set of generators of all differential invariants.

There are 4 cases, whether I 0 , V 0 are identically 0 or nonzero. If I 0 ≡ 0 ≡ V 0 then the surface is equivalent to the Gaussier-Merker model hence all differential invariants are constant. The other 3 cases are

• when I 0 = 0, V 0 = 0.
• when I 0 = 0, V 0 ≡ 0.

• when I 0 ≡ 0, V 0 = 0. 

• F a,b,0,0 =0, • F a,b,1,0 =0, except F 1,0,1,0 = 1, • F a,b,2,0 =0, except F 0,1,2,0 = 1, • F 3,0,0,1 =0, • F 3,0,1,1 = F 1,1,3,0 .
There are 3 differential invariants of order 5: V := F 0,1,4,0 , V := F 4,0,0,1 and Q := F 3,0,1,1 . Here V is complex valued while Q is real valued.

The Levi rank 1 condition, together with F 1,0,1,0 = 1 = 0, implies that all the coefficients F a,b,c,d with b 1 and d 1 can be expressed as a rational combination of those F a ,b ,c ,d with a + b + c + d a + b + c + d and b d = 0, where the denominator is a power of F 1,0,1,0 . So all the non-phantom invariants of order k 6 can be classified into three types.

• Type 1: I a,0,k-a,0 := F a,0,k-a,0 for 3 a k -3;

• Type 2: I l-b,b,k-l,0 := F l-b,b,k-l,0 for 1 b l, 1 l k -3;

• Type 2c: I k-l,0,l-d,d := F k-l,0,l-d,d for 1 d l, 1 l k -3, which are conjugates of Type 2.

Recurrence formulas at order 5

At order 5 we have

D z V = I 1,1,4,0 -2 I 4,0,0,2 V D ζ V = I 0,2,4,0 -4 Q -4 V D z V = I 0,1,5,0 -2 I 3,0,1,2 V -4 V D ζ V = -2 I 3,0,0,3 V D z Q = 1 2 I 2,1,3,0 + 1 2 I 4,0,1,1 -I 1,2,3,0 Q -I 4,0,0,2 Q -2 Q V + 1 6 Q + 1 6 V D ζ Q = 1 2 I 1,2,3,0 -I 0,3,3,0 Q -2 Q + 1 2 V + 1 6
together with their conjugates

D z V = I 5,0,0,1 -2 I 1,2,3,0 V -4 V D ζ V = -2 I 0,3,3,0 V D z V = I 4,0,1,1 -2 I 0,2,4,0 V D ζ V = I 4,0,0,2 -4 Q -4 V D z Q = 1 2 I 3,0,2,1 + 1 2 I 1,1,4,0 -I 3,0,2,1 Q -I 0,2,4,0 Q -2 Q V + 1 6 Q + 1 6 V D ζ Q = 1 2 I 3,0,2,1 -I 3,0,0,3 Q -2 Q + 1 2 V + 1 6
in total 12 equations. There are 13 non-phantom invariants of order 6:

• Type 1: I 3,0,3,0 ;

• Type 2: I 0,1,5,0 , I 1,1,4,0 , I 0,2,4,0 , I 2,1,3,0 , I 1,2,3,0 , I 0,3,3,0 ;

• Type 2c: I 5,0,0,1 , I 4,0,1,1 , I 4,0,0,2 , I 3,0,2,1 , I 3,0,1,2 , I 3,0,0,3 . When V = 0, the 12 invariants of Type 2 and Type 2c can be solved from the 12 equations.

I 0,1,5,0 = 2 V 2 + 8 Q V -2 Q D ζ V + 4 V D ζ Q -2 3 V + D z V, I 0,2,4,0 = D ζ V + 4 Q + 4 V, I 0,3,3,0 = - D ζ V 2 V , I 1,1,4,0 = 8 Q V + 8 V V + 2 V D ζ V + D z V, I 1,2,3,0 = 1 3 V (12 Q V -3 Q D ζ V -3 V 2 + 6 V D ζ Q -V ), I 2,1,3,0 = 1 3 V (48 Q 2 V -6 Q 2 D ζ V + 6 Q V 2 + 12 Q V D ζ Q + 6 Q V D ζ V -24 V V 2 -6 V 2 D ζ V -3 Q V -V 2 + 6 V D z Q -3 V D z V ), I 3,0,0,3 = - D ζ V 2 V , I 3,0,1,2 = 1 3 V (12 Q V -3 Q D ζ V -3 V 2 + 6 V D ζ Q -V ), I 3,0,2,1 = 1 3 V (48 Q 2 V -6 Q 2 D ζ V + 6 Q V 2 + 6 Q V D ζ V + 12 Q V D ζ Q -24 V 2 V -6 V 2 D ζ V -3 Q V -V 2 -3 V D z V + 6 V D z Q), I 4,0,0,2 = D ζ V + 4 Q + 4 V , I 4,0,1,1 = 8 Q V + 8 V V + 2 V D ζ V + D z V , I 5,0,0,1 = 2 V 2 + 8 Q V -2 Q D ζ V + 4 V D ζ Q -2 3 V + D z V
To solve I 3,0,3,0 one has to investigate recurrence formulas at order 6.

Recurrence formulas at order 6

There are in total 52 equations. 

D z I 1,1,4,0 = I 2,1,4,0 -14/3 Q 2 + 1/3 QI 0,2,4,0 -2 V I 1,1,4,0 + 2/3 V V -4 I 3,0,3,0 -I 1,2,3,0 I 1,1,4,0 -2 I 4,0,0,2 I 1,1,4,0 D ζ I 1,1,4,0 = I 1,2,4,0 -4 I 1,1,4,0 -14/3 Q + 1/3 I 0,2,4,0 -4 I 2,1,3,0 -I 0,3,3,0 I 1,1,4,0 D z I 1,1,4,0 = I 1,1,5,0 -4 V I 1,1,4,0 -5 QV + 1/3 V I 0,2,4,0 -I 0,2,4,0 I 1,1,4,0 -2 I 3,0,1,2 I 1,1,4,0 D ζ I 1,1,4,0 = I 0,1,5,0 -2 I 1,1,4,0 + 2/3 V -2 I 3,0,0,3 I 1,1,4,0 D z I 0,2,4,0 = I 1,2,4,0 -8/3 Q -2 I 0,2,4,0 V + 2/3 V -2 I 2,1,3,0 + 2 I 4,0,1,1 -I 1,
D z I 3,0,2,1 = I 4,0,2,1 -I 3,0,3,0 -Q/18 + 1/3 Q 2 -2 V I 3,0,2,1 + V /18 + 2/3 V I 3,0,1,2 -1/6 I 2,1,3,0 + 1/6 I 4,0,1,1 -I 1,2,3,0 I 3,0,2,1 -2 I 4,0,0,2 I 3,0,2,1 D ζ I 3,0,2,1 = 3 I 2,1,3,0 + 2 I 4,0,1,1 -1/18 -4 I 3,0,2,1 + 7/3 Q -1/6 I 1,2,3,0 + V /6 -I 0,3,3,0 I 3,0,2,1 D z I 3,0,2,1 = I 3,0,3,1 -4 V I 3,0,2,1 -V /18 + 7/3 QV + Q/18 + 2/3 QI 3,0,1,2 -1/6 I 1,
D z I 3,0,1,2 = I 3,0,2,2 -4 I 3,0,1,2 V -V /3 + 1/3 QI 3,0,0,3 -2 I 3,0,1,2 2 
D ζ I 3,0,1,2 = I 3,0,1,3 + 1/3 I 3,0,0,3 -2 I 3,0,1,2 I 3,0,0,3 D z I 3,0,0,3 = 2 V I 3,0,0,3 + I 1,2,3,0 I 3,0,0,3 -2 I 4,0,0,2 I 3,0,0,3 -3 I 3,0,1,2 + I 4,0,0,3 -3 D ζ I 3,0,0,3 = I 0,3,3,0 I 3,0,0,3 -4 I 3,0,0,3 + 3 D z I 3,0,0,3 = -4 V I 3,0,0,3 + I 0,2,4,0 I 3,0,0,3 -2 I 3,0,1,2 I 3,0,0,3 + I 3,0,1,3 They can be generated from these recurrence relations of order k 0 : where the correction terms are of order at most k 0 hence generatable, so do the three types of terms of ordre k 0 + 1.

D ζ I 3,0,0,3 = -2 I 3,0,0,3 2 + 2 I 3,0,0,3 + I 3,0,0,4 D z I 4,0,1,1 = I 5,0,1,1 -5 QV -4 V I 4,0,1,1 + 1/3 V I 4,0,0,2 -2 I 1,2,3,0 I 4,0,1,1 -I 4,0,0,2 I 4,0,1,1 D ζ I 4,0,1,1 = I 5,0,0,1 -2 I 4,0,1,1 + 2/3 V -2 I 0,3,3,0 I 4,0,1,1 D z I 4,0,1,1 = I 4,0,2,1 -2 V I 4,0,1,1 + 2/3 V V -14/3 Q 2 + 1/3 QI 4,
D z I a,

Commutators

Four equations

[D z , D z ] = I 0,2,4,0 D z -1 3 V D ζ -I 4,0,0,2 D z + 1 3 D ζ D ζ , D ζ = (-I 3,0,0,3 + 2) D ζ + (I 0,3,3,0 -2) D ζ [D z , D ζ ] = I 0,3,3,0 D z + (-I 1,2,3,0 + I 4,0,0,2 -2 V -1 3 ) D ζ D z , D ζ = 2 D z -D z + (I 1,2,3,0 -I 4,0,0,2 + 2 V ) D ζ plus two conjugates of the last two D z , D ζ = I 3,0,3,0 D z + (I 0,2,4,0 -I 3,0,1,2 -2 V -1 3 ) D ζ [D z , D ζ ] = -D z + 2 D z + (I 3,0,1,2 -I 0,2,4,0 + 2 V ) D ζ
In some non-degenerate case, their coefficients may able to further minimize the generating set, by the technique of Olver in [START_REF] Olver | Differential invariants of surfaces[END_REF] 5.11.2 Branch I 0 = 0, V 0 ≡ 0

We normalize I 0 to 1. There is only one differential invariant of order 5:

Q := F 1,1,3,0 = F 3,0,1,1 .
The Levi rank 1 condition implies that all F a,b+1,c,d+1 can be solved in terms of F a ,b ,c ,d with b d = 0. The vanishing of V 0 and of V 0 implies that F a+4,b,c,d+1 and F a,b+1,c+4,d can be solved in terms of F a ,b ,c ,d with (a < 4 or d < 1) and (b < 1 or c < 4). So all the non-phantom independent invariants of order k 6 can be classified into three types 

Recurrence formulas at order 5

At order 5 we have

D z Q = -4 Q 2 + 1 6 Q + 1 2 I 2,1,3,0 -I 1,2,3,0 Q D ζ Q = 1 6 -2 Q + 1 2 I 1,2,3,0 -I 0,3,3,0 Q D z Q = 1 2 I 3,0,2,1 -4 Q 2 + 1 6 Q -I 3,0,1,2 Q D ζ Q = 1 2 I 3,0,1,2 + 1 6 -2 Q -I 3 
,0,0,3 Q in total 4 equations. There are 7 non-phantom independent invariants of order 6:

Commutators

Four equations

[D z , D z ] = I 4,0,1,1 2 D z - I 1,1,4,0 2 D z -1 3 D ζ + 1 3 Dζ D ζ , D ζ = -2 Q D ζ + 2 Q D ζ [D z , D ζ ] = ( I 1,1,4,0 -I 5,0,0,1 2 ) D ζ D z , D ζ = -2 Q D z -D z + ( -I 1,1,4,0 +I 5,0,0,1 2 
)Dζ, plus two conjugates of the last two

D z , D ζ = ( I 4,0,1,1 -I 0,1,5,0 2 
)

Dζ [D z , D ζ ] = -D z -2 Q D z + ( -I 4,0,1,1 +I 0,1,5,0 2 
) D ζ .
In some non-degenerate case, their coefficients may able to further minimize the generating set.

Introduction to affine homogeneous surfaces

In continuation with Eastwood-Ezhov's power series method [START_REF] Eastwood | On affine normal forms and a classification of homogeneous surfaces in affine three-space[END_REF][START_REF] Olver | Normal forms for submanifolds under group actions, Symmetries, differential equations and applications[END_REF][START_REF] Chen | On differential invariants of parabolic surfaces[END_REF][START_REF] Arnaldsson | Invariants of surfaces in three-dimensional affine geometry[END_REF], we study the algebras of differential invariants of surfaces in 3-dimensional space, under the affine Aff(3) -or special affine SA(3)transformation group. To fix the context, we work over C, and we study surfaces S 2 ⊂ C 3 under Aff 3 (C) whose Hessian has (maximal) rank 2. We investigate ramifications of the Lie-Tresse theorem, following the theory of Fels-Olver [START_REF] Fels | Moving coframes. I. A practical algorithm[END_REF][START_REF] Fels | Moving coframes. II. Regularization and theoretical foundations[END_REF]. Mainly, we explore what the powerful recurrence relations provide, firstly to determine the structures of the concerned algebras of differential invariants, and secondly to determine all Aff 3 (C)-homogeneous nondegenerate surfaces S 2 ⊂ C 3 . The homogeneous classification was terminated in [START_REF] Abdalla | Affine homogeneous surfaces in R 3 with vanishing Pick invariant[END_REF][START_REF] Doubrov | Homogeneous surfaces in the three-dimensional affine geometry[END_REF][START_REF] Eastwood | On affine normal forms and a classification of homogeneous surfaces in affine three-space[END_REF], without regard to algebras of differential invariants. In this paper, we synthesize Eastwood-Ezhov's power series method [START_REF] Eastwood | Homogeneous hypersurfaces with isotropy in affine four-space[END_REF][START_REF] Eastwood | A classification of non-degenerate homogeneous equiaffine hypersurfaces in four complex dimensions[END_REF][START_REF] Eastwood | Classifying the homogeneous hypersurfaces in a homogeneous space[END_REF] and the theory of differential invariants.

Interestingly, we really need to know the explicit expressions of certain key (relative or absolute) differential invariants which create bifurcation branches.

Thus, consider a holomorphic local surface S 2 in C 3 (x, y, u) graphed as (6.1.1)

u = F (x, y) = j+k 0 F j,k x j j! y k k! .
Using translations of Aff 3 (C), we may assume F (0, 0) = 0, so j + k 1. The goal is to normalize the power series coefficients F j,k using the GL 3 (C) action.
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199 where all I j,k are differential invariants, up to the swap x ←→ y and a discrete group

G 0 := x = ω j x, y = ω -j y, u = u | j = 0, 1, 2
where ω := e 2πi/3 , a cube root of unity.

(2) The algebra of differential invariants is generated by I 4,0 , I 3,1 , I 1,3 , I 0,4 and all their invariant derivatives D α 1 x D α 2 y (•), with α 1 , α 2 ∈ N. In particular, I 2,2 can be solved (3) The moduli space of all possible homogeneous models is described, in the space of coefficients I 4,0 , I Precisely, there is a one-to-one correspondence between Aff 3 (C)-equivalence classes of homogeneous surfaces S 2 ⊂ C 3 in branch B 1 and points I 4,0 , I 3,1 , I 2,2 , I 1,3 , I 0,4 ∈ C 5 satisfying (E1), (E2), (E3), (E4), modulo the swap and G 0 . In Section 6.3, we resolve these equations and reobtain, without overlap, models N 1, N 2, N 3, N 4 of [START_REF] Eastwood | On affine normal forms and a classification of homogeneous surfaces in affine three-space[END_REF].

It is elementary to verify that any affine vector field which is tangent to the surface is a linear combination of the two independent ones

e 1 := 1 -1 2 I 2,2 u + 1 4 u -1 3 I 1,3 x -2 3 I 4,0 x ∂ x + -1 2 I 3,1 u -2 3 I 1,3 y -1 3 I 4,0 y -1 2 x ∂ y + -I 1,3 u -I 4,0 u + y ∂ u , e 2 := -1 2 I 1,3 u -1 2 y -2 3 I 3,1 x -1 3 I 0,4 x ∂ x + 1 -1 2 I 2,2 u + 1 4 u -1 3 I 3,1 y -2 3 I 0,4 y ∂ y + -I 0,4 u -I 3,1 u + x ∂ u .
Moreover, computing the Lie bracket [e 1 , e 2 ] and subtracting appropriate linear combinations of e 1 and e 2 to get a vector field vanishing at the origin, this pair of vector fields does constitute a 2D Lie algebra with the uniquely defined Lie bracket:

[e 1 , e 2 ] = -2 3 I 3,1 -1 3 I 0,4 e 1 + 1 3 I 4,0 + 2 3 I 1,3 e 2 ,
if and only if equations (E1), (E2), (E3), (E4) hold.

All the other branches

B 2•1 , B 2•2•1 , B 2•2•2 , B 3•1 , B 3•2 have 0 ≡ G 0,3 (F •,• ).
Similarly as for the study of parabolic surfaces (constant Hessian rank 1) achieved in [START_REF] Chen | On differential invariants of parabolic surfaces[END_REF], it is necessary to insert this differential relation and its consequences into the power series normalizations and into all recurrence relations as well. In Section 6.4, we introduce the relevant notion of subjets. As a matter of fact, G 0,3 (F •,• ) ≡ 0 can be solved as F y 3 = R 0,3 (•), with some complicated remainder, whence all derivatives F x j y k with k 3 are dependent. Theorem 6.1.2. In the second branch B 2•1 where G 3,0 = 0 ≡ G 0,3 and G 4,0 = 0, the following holds.

( 

I j,k (F •,• ) x j j! y k k! ,
where all I j,k are differential invariants.
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(2) The algebra of differential invariants is generated by I 3,1 , I 2,2 , I 5,0 and all their invariant derivatives D α 1 x D α 2 y (•), with α 1 , α 2 ∈ N. In particular, I 4,1 can be solved

I 4,1 = -8 I 2 3,1 + 2 I 5,0 I 3,1 + D x I 3,1 + 7 2 I 2,2 -2 I 3,1 .
(3) The moduli space of all possible homogeneous models is exactly described, in the space C 3 I 3,1 , I 2,2 , I 5,0 , I 4,1 , I 3,2 , by the complex-algebraic variety of dimension 1 defined by the 4 + 3 equations 

(E41) 0 = I 4,1 + 8I 2 3,1 -7 2 I 2,2 + 2I 3,1 -2I 5,0 I 3,1 , (E42) 0 = 4I 3,1 I 2,2 + 2I 2 3,1 -2I 4,1 I 3,1 + I 3,2 , (E43) 0 = 12I 3,1 I 2,2 -3I 5,0 I 2,2 + 4I 2,2 + I 3,2 , (E44) 0 = 6I 2 2,2 + 4I
+ 56 I 3 3,1 -14 I 2 3,1 I 5,0 + 12 I 2 3,1 + 64 I 4 3,1 -32 I 3 3,1 I 5,0 + 4 I 2 5,0 I 2 3,1 , (F 53) 0 = -I 3,1 (-16 I 2 3,1 + 4 I 3,1 I 5,0 + 3 I 2,2 -6 I 3,1 ) (-32 I 2 3,1 + 8 I 3,1 I 5,0 + 6 I 2,2 -13 I 3,1 ).
The Lie symmetry algebra is always of dimension 2, generated by

e 1 := 1 + (1 -I 5,0 + 4I 3,1 ) x -1 2 I 2,2 u ∂ x + -1 2 x + (3 -2I 5,0 + 8I 3,1 ) y -1 2 I 3,1 u ∂ y + y + (4 -3I 5,0 + 12I 3,1 ) u ∂ u , e 2 := (I 3,1 -I 4,1 + 2I 2,2 ) x ∂ x + 1 + (3I 3,1 + 4I 2,2 -2I 4,1 ) y -1 2 I 2,2 u ∂ y + x + (4I 3,1 + 6I 2,2 -3I 4,1 ) u ∂ u , having Lie bracket [e 1 , e 2 ] = I 3,1 -I 4,1 + 2I 2,2 e 1 + -3 + 2I 5,0 -8I 3,1 e 2 ,
if and only if the above 7 equations are satisfied. We solve these equations and recover models N 5 and N 6 of [START_REF] Eastwood | On affine normal forms and a classification of homogeneous surfaces in affine three-space[END_REF].

In the next branch B 2•2 , two differential relations exist, G 0,3 (F •,• ) ≡ 0 and G 4,0 (F •,• ) ≡ 0. These two PDEs can be solved as F y 3 = R 0,3 (•) and F x 4 = R 4,0 (•), with complicated but explicit right-hand sides. The power series reads:

u = x y + x 3 6 + G 3,1 x 3 y 6 + G 2,2 x 2 y 2 4 + G 3,2
x 3 y 2 12 + dependent remainder.

Only 3 independent coefficients remain, and by analyzing the three compatibility conditions

D 4 x (R 0,3 ) = D 3 y (R 4,0 ), D 5 x (R 0,3 ) = D x D 3 y (R 4,0 ), D 6 x (R 0,3 ) = D 2 x D 3 y (R 4,0 ),
where D x and D y are the two total differentiation operators, we find G 2,2 = 0 and G 3,2 = 0. It remains only G 3,1 . But there is still one degree of freedom (x, y, u) -→ (µx, µ 2 y, µ 3 u) with µ ∈ C * . Then G 3,1 is a relative differential invariant, which causes the two branches B 

I j,k (F •,• ) x j j! y k k! ,
has all its coefficients uniquely determined and is automatically homogeneous, with 2-dimensional affine Lie symmetry algebra generated by

e 1 := ∂ x + -1 2 u -1 2 x) ∂ y + y ∂ u , e 2 := (1 + y) ∂ y + (x + u) ∂ u , having Lie bracket [e 1 , e 2 ] = 0. An explicit form is u = (1 + y) √ 2 tan x √ 2 -x.
In particular, there is no way of getting any 'algebra' of differential invariants, because all I j,k are constant! This is model N 7 of [START_REF] Eastwood | On affine normal forms and a classification of homogeneous surfaces in affine three-space[END_REF], while model N 8 is recovered by Proposition 6.1.4. In the fourth branch

B 2•2•2 where G 3,0 = 0 ≡ G 0,3 ≡ G 4,0 ≡ G 3,1 , the unique normal form is Cayley's cubic u = x y + x 3 6 ,
with 3D affine symmetries In February 2020, at IHES, we came to the following Question 6.1.6. Can one reconstitute the branching tree of differential invariants in Cartan's classification [START_REF] Cartan | Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes I[END_REF] of homogeneous real hypersurfaces M 3 ⊂ C 2 ?

e 1 := ∂ x -1 2 x ∂ y + y ∂ u , e 2 := ∂ y + x ∂ u , e 3 := x ∂ x + 2y ∂ y + 3u ∂ u , having 
Beyond, here is a more demanding question, which requires in principle to go up to order 6.

Question 6.1.7. Can one determine the branching tree of differential invariants related to the classification(s) of multiply transitive real hypersurfaces M 5 ⊂ C 3 due to Loboda [START_REF] Loboda | Holomorphically homogeneous real hypersurfaces in C 3[END_REF], and to Doubrov-Medvedev-The [START_REF] Doubrov | Homogeneous Levi non-degenerate hypersurfaces in C 3[END_REF]?

(1) Explain bifurcations caused by some specific (relative) differential invariants.

(2) Set up appropriate recurrence relations taking account of ambient subjets, and find a finite set of generators.

(3) Determine moduli spaces of homogeneous models, solve equations, and classify sharply.
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Normalization, relative invariants and branchings

There is an order 3 relative invariant called Pick invariant. If it is non-zero we can normalize it to 1. If it is zero by homogeneity we assume it is constant 0. The numerator is We will see Pick when we normalize the Taylor coefficients.

P := 6F yyy F xy F xyy F 2 xx -9F yy F 2 xyy F 2 xx -F 2 yyy F 3 xx -12F yyy F

First loop

Start from a general Taylor expansion of a graphed surface in

C 3 u = F (x, y) = j+k 0 F j,k j!k! (x -x 0 ) j (y -y 0 ) k .
After certain elementary Aff 3 (C) action we may assume (6.2.1)

u = O(2) = F 2,0 2 x 2 + F 1,1 xy + F 0,2 2 y 2 + j+k 3 F j,k j!k! x j y k .
First, we look at a surface close to the form u = x 2y 2 + O(3), i.e. (F 2,0 , F 1,1 , F 0,2 ) in a neighborhood of (2, 0, -2). We want to find an affine transformation 

= F 2,0 2 x + F 1,1 F 2,0 y 2 + F 0,2 F 2,0 -F 2 1,1 2F 2,0 y 2 = F 2,0 2 x + F 1,1 2F 2,0 y x 2 - F 2 1,1 -F 0,2 F 2,0 2F 2,0 y y 2 .
The transformation

x = F 2,0 2 x + F 1,1 2F 2,0 y, y = F 2 1,1 -F 0,2 F 2,0 2F 2,0 y, u = u is well defined for (F 2,0 , F 1,1 , F 0,2
) in a neighborhood of (2, 0, -2), and tends to the identity when (F 2,0 , F 1,1 , F 0,2 ) tends to (2, 0, -2).

Next, we look at a surface close to the form u = xy + O(3), i.e. (F 2,0 , F 1,1 , F 0,2 ) in a neighborhood of (0, 1, 0). Again we want to find an affine transformation close to the identity, sending u = O(2) to u = x y +O(3). This can be done after the change of coordinates (x, y) = (s+t, s-t) and (x , y ) = (s +t , s -t ). Our original surface becomes

u = j+k 2 F j,k j!k! (s + t) j (s -t) k = F 2,0 + 2F 1,1 + F 0,2 2 s 2 + (F 2,0 -F 0,2 )st + F 2,0 -2F 1,1 + F 0,2 2 t 2 + O(3) while our target surface is u = s 2 -t 2 + O(3). Here the new coefficients (F 2,0 + 2F 1,1 + F 0,2 , F 2,0 - F 0,2 , F 2,0 -2F 1,1 + F 0,2
) are in a neighborhood of (2, 0, -2). We plug them in the transformation above. We conclude that the transformation

s = F 2,0 + 2F 1,1 + F 0,2 2 s + F 2,0 -F 0,2 √ 2 F 2,0 + 2F 1,1 + F 0,2 t, t = 2(F 2 1,1 -F 2,0 F 0,2 ) F 2,0 + 2F 1,1 + F 0,2
t, u = u does the job. Hence in coordinates (x, y) and (x , y ), the transformation is

x = F 2,0 + F 1,1 + F 2 1,1 -F 2,0 F 0,2 √ 2 F 2,0 + 2F 1,1 + F 0,2 x + F 1,1 + F 0,2 -F 2 1,1 -F 2,0 F 0,2 √ 2 F 2,0 + 2F 1,1 + F 0,2 y, y = F 2,0 + F 1,1 -F 2 1,1 -F 2,0 F 0,2 √ 2 F 2,0 + 2F 1,1 + F 0,2 x + F 1,1 + F 0,2 + F 2 1,1 -F 2,0 F 0,2 √ 2 F 2,0 + 2F 1,1 + F 0,2 y, u = u normalizes the surface to a new graph u = G(x , y ) = x y + j+k 3 G j,k j!k! x j y k ,
where we can solve G j,k in terms of F j,k . In particular

G 3,0 = P 36 2 √ 2(F 2,0 + 2F 1,1 + F 0,2 ) 3 2 (F 2 1,1 -F 2,0 F 0,2 ) 3 2 
, where P 36 is a polynomial in Z[F j,k , F 

[F j,k , F 2 1,1 -F 2,0 F 0,2 ] is not a UFD. Let X := F 2 1,1 -F 2,0 F 0,2 . Then F 2 1,1 -X 2 = F 2,0 F 0,2 . Thus (F 1,1 -X)(F 1,1 + X) = F 2,0 F 0,2 . That ring is not a UFD.
As a consequence of the remark Hence we get 3 branches.

• B 1 : both G 3,0 and G 0,3 are non-zero. This is Pick non-vanishing branch.

• B 2 : only G 3,0 is non-zero while G 0,3 ≡ 0, so Pick vanishes.

• B 3 : both G 3,0 and G 0,3 are identically zero, so Pick vanishes as well.

In the branch B 1 , we normalize G 3,0 and G 0,3 to 1 by a unique choice of µ and λ. We conclude that every non-degenerate surface with non-vanishing Pick is Aff 3 (C)-equivalent to a graph

u = xy + x 3 6 + y 3 6 + O(4).
The stabilizer is a discrete group

G 0 := x = ω j x, y = ω -j y, u = u | j = 0, 1, 2
where ω := e 2πi/3 , a cube root of unity. We will study this branch further in the next section.

In the branch B 2 , we normalize G 3,0 to 1 by a unique choice of λ depending on µ. Thus the group element

l = F 2,1 2F 3,0 , k = F 1,2 2 , λ = 1 F 3,0 , µ = 1, sends u = xy + j+k 3 F j,k j!k! x j y k to u = x y + x 3 6 + O(4). Again we can solve all G j,k in terms of F j,k . For j + k = 4 G 0,3 = F 0,3 F 2 3,0 (in branch B 2 , both sides are 0), G 4,0 = - 2F 2,1 F 3,0 -F 4,0 F 3,0 , G 3,1 = -3F 2 2,1 -4F 1,2 F 3,0 + 2F 3,1 2 , G 2,2 = -3F 1,2 F 2,1 F 3,0 + F 2,2 F 3,0 , G 1,3 = -3F 2 1,2 F 2 3,0 + 2F 1,3 F 2 3,0 -4F 0,3 F 2,1 F 2 3,0 2 , G 0,4 = F 0,4 F 3 3,0 -2F 0,3 F 1,2 F 3 3,0 .
In B 2 when we assume G 0,3 ≡ 0, G 3,0 becomes a relative invariant I rel 3,0 . In terms of the original Taylor 206 CHAPTER 6. AFFINELY HOMOGENEOUS SURFACES coefficients (6.2.3)

I rel 3,0 = - 1 2 √ 2(F 2,0 + 2F 1,1 + F 0,2 ) 3 2 (F 2 1,1 -F 2,0 F 0,2 ) 3 2 × -4F 0,3 F 3 1,1 + 6F 0,2 F 2 1,1 F 1,2 + 3F 0,2 F 0,3 F 1,1 F 2,0 -6F 0,3 F 2 1,1 F 2,0 -3F 2 0,2 F 1,2 F 2,0 + 9F 0,2 F 1,1 F 1,2 F 2,0 + 3F 0,2 F 0,3 F 2 2,0 -3F 0,3 F 1,1 F 2 2,0 + 9F 0,2 F 1,2 F 2 2,0 + 3F 1,1 F 1,2 F 2 2,0 -F 0,3 F 3 2,0 + 4F 0,3 F 2 1,1 F 2 1,1 -F 0,2 F 2,0 -6F 0,2 F 1,1 F 1,2 F 2 1,1 -F 0,2 F 2,0 -F 0,2 F 0,3 F 2,0 F 2 1,1 -F 0,2 F 2,0 + 6F 0,3 F 1,1 F 2,0 F 2 1,1 -F 0,2 F 2,0 -9F 0,2 F 1,2 F 2,0 F 2 1,1 -F 0,2 F 2,0 + 3F 0,3 F 2 2,0 F 2 1,1 -F 0,2 F 2,0 + 3F 1,2 F 2 2,0 F 2 1,1 -F 0,2 F 2,0 -3F 2 0,2 F 1,1 F 2,1 -9F 2 0,2 F 2,0 F 2,1 -9F 0,2 F 1,1 F 2,0 F 2,1 -6F 2 1,1 F 2,0 F 2,1 + 3F 0,2 F 2 2,0 F 2,1 + 3F 2 0,2 F 2 1,1 -F 0,2 F 2,0 F 2,1 -9F 0,2 F 2,0 F 2 1,1 -F 0,2 F 2,0 F 2,1 -6F 1,1 F 2,0 F 2 1,1 -F 0,2 F 2,0 F 2,1 + F 3 0,2 F 3,0 + 3F 2 0,2 F 1,1 F 3,0 + 6F 0,2 F 2 1,1 F 3,0 + 4F 3 1,1 F 3,0 -3F 2 0,2 F 2,0 F 3,0 -3F 0,2 F 1,1 F 2,0 F 3,0 + 3F 2 0,2 F 2 1,1 -F 0,2 F 2,0 F 3,0 + 6F 0,2 F 1,1 F 2 1,1 -F 0,2 F 2,0 F 3,0 + 4F 2 1,1 F 2 1,1 -F 0,2 F 2,0 F 3,0 -F 0,2 F 2,0 F 2 1,1 -F 0,2 F 2,0 F 3,0
which is non-zero in this branch.

Final loop for the branch B 2

The stabilizer of

u = F (x, y) = xy + x 3 6 + O(4) = xy + x 3 6 + j+k 4 F j,k j!k! x j y k , is x = µx, y = µ 2 y, u = µ 3 u | µ ∈ C * .
It acts on fourth order Taylor coefficients by sending F 4-k,k to µ k+1 F 4-k,k . So all fourth order Taylor coefficients F 4-k,k , k = 0, 1, 2, 3, 4 are relative invariants. We denote them by I rel 4-k,k , k = 0, 1, 2, 3, 4. They can be explicitly calculated by composing the two relations G j,k in terms of F j,k obtained in previous subsections. This gives

I rel 4,0 = P 264 √ 2(F 2,0 + 2F 1,1 + F 0,2 ) 1 2 (F 2 1,1 -F 2,0 F 0,2 ) 3 2 P 36 , I rel 3,1 = P 284 16(F 2,0 + 2F 1,1 + F 0,2 ) 2 (F 2 1,1 -F 2,0 F 0,2 ) 3 , I rel 2,2 = - P 26 P 36 16 √ 2(F 2,0 + 2F 1,1 + F 0,2 ) 3 2 (F 2 1,1 -F 2,0 F 0,2 ) 9 2 
,

I rel 1,3 = Q 284 P 2 36 128(F 2,0 + 2F 1,1 + F 0,2 ) 5 (F 2 1,1 -F 2,0 F 0,2 ) 6 , I rel 0,4 = Q 264 P 3 36 64 √ 2(F 2,0 + 2F 1,1 + F 0,2 ) 13 2 (F 2 1,1 -F 2,0 F 0,2 ) 15 2 
, where P 36 is the numerator of I rel 3,0 and where P 264 , P 284 ,

P 26 , Q 264 , Q 284 are polynomials in Z[F j,k , F 2 1,1 -F 2,0 F 0,2 ]
having the indicated number of monomials. Moreover,

P 264 -Q 264 = R 156 , P 284 -Q 284 = 4(F 2,0 + 2F 1,1 + F 0,2 ) F 2 1,1 -F 2,0 F 0,2 R 66 ,
where R 156 and R 66 are polynomials in Z[F j,k ] having the indicated number of monomials. 

I 4-k,k (4 -k)!k! x 4-k y k + O(5)
where

I 4-k,k = I rel 4-k,k
(I rel 4,0 ) k+1 are invariants. Here we use Lie's principle: whenever we obtain a relative invariant, we only treat the cases where the relative invariant is non-zero or identically zero. This is true for generic points, i.e. points outside an analytic subset of codimension at least 1 on the concerned surface.

We may conclude our branching by a diagram

F 2 1,1 -F 2,0 F 0,2 = 0 / / ) ) Pick = 0, Pick ≡ 0 / / # # I rel 0,3 ≡ 0 = I rel 3,0 / / ) ) I rel 4,0 = 0, I rel 4,0 ≡ 0, I rel 0,3 ≡ 0 ≡ I rel 3,0 .
The following sections study the existence of homogeneous models branch by branch. 

I j,k j!k! x j y k .
The stabilizer group is discrete. By Fels-Olver's theory [START_REF] Fels | Moving coframes. II. Regularization and theoretical foundations[END_REF]Thm 13.3], all invariants are generated by the order 4 invariants I j,4-j for j = 0, 1, 2, 3, 4 and their derivatives. Olver's recurrence formulas, at order 4, are There are 10 equations. One can solve the 6 order 5 invariants I j,5-j for j = 0, 1, 2, 3, 4, 5 in terms of the order 4 invariants and their derivatives.

For simplicity, we say two functions R(

I j 1 ,k 1 , D j 2 x D k 2 y I j 3 ,k 3 ) and R are conjugate if R(I k 1 ,j 1 , D k 2 x D j 2 y I k 3 ,j 3 ) = R(I j 1 ,k 1 , D j 2 x D k 2 y I j 3 ,k 3 ),
i.e. after switching x and y, they are the same. Two equations are conjugate if they can be written as 0 = R and 0 = R for some conjugate pair R and R. For example, the 10 recurrence formulas of order 4 contain 5 conjugate pairs of equations. From the two conjugate equations we get a conjugate solution

I 2,2 = 2 9 I 1,3 I 0,4 + 8 9 I 4,0 I 0,4 -1 9 I 1,3 I 3,1 + 1 36 D x I 0,4 -1 36 D y I 1,3 .
To conclude, I 2,2 can be solved in terms of the other 4 invariants and their derivatives. Under extra assumptions on genericity, for example det D x I j,4-j D y I j,4-j D 2

x I j,4-j D y D x I j,4-j = 0, for some 0 j 4, one may find generating systems with fewer elements by investigating the Lie bracket

[D x , D y ] = ( 2 3 I 3,1 + 4 3 I 0,4 ) D x + (-4 3 I 4,0 -2 3 I 1,3 ) D y
and by using the same method in [START_REF] Olver | Differential invariants of surfaces[END_REF][START_REF] Arnaldsson | Invariants of surfaces in three-dimensional affine geometry[END_REF]. But it is not the case for homogeneous surfaces, where D x I j,4-j = D y I j,4-j = 0 since I j,4-j are constant. For homogeneous surfaces, all invariants have to be constant. Thus all left hand sides in these recurrence formulas are 0. The over-determined linear system is solvable if and only if 4 more conditions among I j,4-j are satisfied: In the equation (E1) we solve (6.3.2)

I 2,2 = 8 9 I 0,4 I 4,0 - 1 9 I 1,3 I 3,1 + 2 9 I 3,1 I 4,0 .
We put this solution back to (E2), (E3), (E4) 

(F 1) 0 = I 1,3 I 0,4 -I 4,0 I 3,1 , (F 2) 0 = 4 I 0,4 I 3,1 -8 9 I 0,4 I 1,3 I 4,0 + 1 9 I 2 1,3 I 3,1 + 2 9 I 1,3 I 3,1 I 4,0 -32 9 I 0,4 I 2 4,0 -8 9 I 3,1 I 2 4,0 + 2 I 2 3,1 + 9 I 1,3 + 18 I 4,0 , ( F 
H1 ) 0 = 2I 2 3,1 + 1 9 I 2 1,3 I 3,1 + 9I 1,3 , (H2 ) 0 = -1 9 I 1,3 I 2 3,1 -9I 3,1 -2I 2 1,3 . ( 
We calculate the two sides of I 3,1 (H1 ) + I 1,3 (H2 )

0 = 2 (I 3 3,1 -I 3 1,3 ) 6.4. VANISHING I REL 0,3 BUT I REL 4,0 = 0, BRANCH B 2•1 211 
There is a natural projection π n from SJ n 2,1 to the span of independent coordinates. The prolonged group action and its infinitesimal generators on J n 2,1 , restricted to the invariant submanifold SJ n 2,1 (invariant because I rel 3,0 = 0 is an invariant property), can be pushed forward to the space of independent coordinates. Thus we can run Olver's recurrence formulas on the span and get relations among invariants associated to independent coordinates. In this branch B 2•1 we assume I rel 4,0 = 0, so we normalize it to 1. The normal form is

u = xy + x 3 6 + x 4 24 + I 3,1 6 x 3 y + I 2,2 4 
x 2 y 2 + I 1,3 6 xy 3 + I 0,4 24 y 4 + O(5).

There are 2 invariants I 3,1 and I 2,2 of order 4 from the independent coordinates. The other 2 invariants I 1,3 , I 0,4 are dependent because if we solve I rel 0,3 = 0 for this power series, we get I 1,3 = 0 and I 0,4 = 0. There are 3 order 5 invariants I 5,0 , I 4,1 and I 3,2 . Again by Fels-Olver's theory [START_REF] Fels | Moving coframes. II. Regularization and theoretical foundations[END_REF]Thm 13.3], all invariants are generated by I 3,1 , I 2,2 , I 5,0 , I 4,1 and their derivatives.

Olver's recurrence formulas, at order 4, are

D x I 3,1 = I 4,1 + 8I 2 3,1 -7 2 I 2,2 + 2I 3,1 -2I 5,0 I 3,1 , D y I 3,1 = 4I 3,1 I 2,2 + 2I 2 3,1 -2I 4,1 I 3,1 + I 3,2 , D x I 2,2 = 12I 3,1 I 2,2 -3I 5,0 I 2,2 + 4I 2,2 + I 3,2 , D y I 2,2 = 6I 2 2,2 + 4I 3,1 I 2,2 -3I 4,1 I 2,2 .
In the first formula, we can solve and by using the same method in [START_REF] Olver | Differential invariants of surfaces[END_REF][START_REF] Arnaldsson | Invariants of surfaces in three-dimensional affine geometry[END_REF]. But again it is not the case for homogeneous surfaces, where D x I 3,1 = D y I 3,1 = 0. Homogeneous surfaces always have constant invariants, i.e. D x I j,k = D y I j,k = 0. So for homogeneous surfaces the formulas are

I 4,1 = -8 I 2 3,1 + 2 I 5,0 I 3,1 + D x I 3,1 + 7 2 I 2,2 -2 I 3,1 . Thus I 3,1 , I 2,
(E41) 0 = I 4,1 + 8I 2 3,1 -7 2 I 2,2 + 2I 3,1 -2I 5,0 I 3,1 , (E42) 0 = 4I 3,1 I 2,2 + 2I 2 3,1 -2I 4,1 I 3,1 + I 3,2 , (E43) 0 = 12I 3,1 I 2,2 -3I 5,0 I 2,2 + 4I 2,2 + I 3,2 , (E44) 0 = 6I 2 2,2 + 4I 3,1 I 2,2 -3I 4,1 I 2,2 .
We may solve from (E41), (E42) (6.4.1)

I 4,1 = -8 I 2 3,1 + 2 I 5,0 I 3,1 + 7 2 I 2,2 -2 I 3,1 , I 3,2 = -16 I 3 3,1 + 4 I 2 3,1 I 5,0 + 3 I 2,2 I 3,1 -6 I 2 3,1 .
We put them back to (E43), (E44) 1. there is no invariant analytic curve;

2. all the singularities are hyperbolic;

3. there is no non-constant holomorphic map C → X such that out of E the image of C is locally contained in a leaf.

Then every harmonic current T directed by F gives no mass to each single leaf.

A practical way to measure the density of harmonic currents is to use the notion of Lelong number introduced by Skoda [START_REF] Skoda | Prolongement des courants, positifs, fermés de Masse finie, (French)[END_REF]. Indeed Theorem 7.1.2 above is equivalent to the statement that the Lelong number of T vanishes everywhere outside E. Another result holds near hyperbolic singularities.

Theorem 7.1.3 (Nguyên [START_REF] Nguyên | A: Directed harmonic currents near hyperbolic singularities[END_REF]). Let (D 2 , F , {0}) be a holomorphic foliation on the unit bidisc D 2 defined by the linear vector field Z(z, w) = z ∂ ∂z + λ w ∂ ∂w , where λ ∈ C\R, that is to say, 0 is a hyperbolic singularity. Let T be a harmonic current directed by F which does not give mass to any of the two separatrices (z = 0) and (w = 0). Then the Lelong number of T at 0 vanishes.

Nguyên proved that the Lelong number of any directed harmonic current which gives no mass to invariant hyperplanes, vanishes near weakly hyperbolic singularities in C n [START_REF] Nguyên | Ergodic theorems for laminations and foliations: recent results and perspectives[END_REF]. Next, he applies this result to prove the existence of Lyapunov exponents for singular holomorphic foliations on compact projective surfaces [START_REF] Nguyên | Singular holomorphic foliations by curves I: integrability of holonomy cocycle in dimension 2[END_REF]. This result is optimal, see [START_REF] Dinh | Harmonic currents directed by foliations by Riemann surfaces[END_REF]. The mass-distribution problem would be completed once the behaviour of harmonic currents near non-hyperbolic and near degenerate singularities would be understood.

The present paper answers (partly) the problem in the non-hyperbolic linearizable singularity case.

Theorem 7.1.4. Let (D 2 , F , {0}) be a holomorphic foliation on the unit bidisc D 2 defined by the linear vector field Z(z, w) = z ∂ ∂z + λ w ∂ ∂w , where λ ∈ R * . Let T be a harmonic current directed by F which does not give mass to any of the two separatrices (z = 0) and (w = 0). Suppose the trivial extension T across 0 is dd c -closed. Then the Lelong number of T at 0

• is strictly positive if λ > 0, • vanishes if λ ∈ Q <0 .
For the concerned foliation (D 2 , F , {0}), a local leaf P α , with α ∈ C * , can be parametrized by (z, w) = (e -v+iu , α e -λv+iλu ). The monodromy group around the singularity is generated by (z, w) → (z, e 2πiλ w). It is a cyclic group of finite order when λ ∈ Q * , of infinite order when λ / ∈ Q. It is now ready to introduce the notion of periodic current, an essential tool of this paper. A directed harmonic current T is called periodic if it is invariant under some cofinite subgroup of the monodromy group, i.e. under the action of (z, w) → (z, e 2kπiλ w) for some k ∈ Z >0 . Observe that if λ ∈ Q * then any directed harmonic current is periodic. But when λ / ∈ Q * , the periodicity is a nontrivial assumption.

Theorem 7.1.5. Using the same notation as above, the Lelong number of T at the singularity is 0 when λ < 0 is irrational and the current is periodic.

It remains open to determine the possible Lelong number values of non-periodic T when λ < 0 is irrational. We hope to treat the higher dimensional case for Theorem 7.1.4 in the future. We think that the study of the pseudo-groups generated by the holonomy groups as in [START_REF] Loray | Minimal, rigid foliations by curves on CP n[END_REF] and [START_REF] Rebelo | Ergodicity and rigidity for certain subgroups of Diff ω (S 1 )[END_REF] will be useful for this purpose.

Background on directed harmonic currents

To start with, recall the definition of singular holomorphic foliation on a complex surface M . Let E ⊂ M be some closed subset, possibly empty, such that M \E = M . A singular holomorphic foliation (M, E, F ) consists of a holomorphic atlas {(U i , Φ i )} i∈I on M \E which satisfies the following conditions. 1. For each i ∈ I, Φ i : U i → B i × T i is a biholomorphism, where B i and T i are domains in C.

2. For each pair (U i , Φ i ) and (U j , Φ j ) with U i ∩ U j = ∅, the transition map

Φ ij := Φ i • Φ -1 j : Φ j (U i ∩ U j ) → Φ i (U i ∩ U j ) has the form Φ ij (b, t) = Ω(b, t), Λ(t) ,
where (b, t) are the coordinates on B j × T j , and the functions Ω, Λ are holomorphic, with Λ independent of b.

Each open set U i is called a flow box. For each c ∈ T i , the Riemann surface Φ -1 i {t = c} in U i is called a plaque. The property (2) above insures that in the intersection of two flow boxes, plaques are mapped to plaques.

A leaf L is a minimal connected subset of M such that if L intersects a plaque, it contains that plaque. A transversal is a Riemann surface immersed in M which is transverse to each leaf of M .

The local theory of singular holomorphic foliations is closely related to holomorphic vector fields. One recalls some basic concepts in C 2 ([75], [START_REF] Brunella | Birational geometry of foliations[END_REF]). Definition 7.2.2. Let Z = P (z, w) ∂ ∂z + Q(z, w) ∂ ∂w be a holomorphic vector field defined in a neighborhood U of (0, 0) ∈ C 2 . One says that Z is 1. singular at (0, 0) if P (0, 0) = Q(0, 0) = 0, 2. linear if it can be written as In this article, all singularities are assumed to be non-degenerate. Then the foliation defined by integral curves of Z has an isolated singularity at 0. Degenerate singularities are studied in [START_REF] Brunella | Birational geometry of foliations[END_REF]. Seidenberg's reduction theorem [START_REF] Seidenberg | Reduction of singularities of the differential equation Ady = Bdx[END_REF] shows that degenerate singularites can be resolved into non-degenerate ones after finitely many blow-ups.

Z = λ 1 z ∂ ∂z + λ 2 w ∂ ∂w
Definition 7.2.4. A singularity of Z is hyperbolic if the quotient λ := λ 1 λ 2 ∈ C * \R. It is non-hyperbolic if λ ∈ R * . It is in the Poincaré domain if λ / ∈ R 0 . It is in the Siegel domain if λ ∈ R <0 .
One can verify that the quotient is unchanged by multiplication of Z by any non-vanishing holomorphic function.

One could consider λ -1 = λ 2 λ 1 instead of λ, but then λ / ∈ R iff λ -1 / ∈ R. Thus the notion of hyperbolicity is well-defined. Also, being non-hyperbolic, in Poincaré domain or in Siegel domain, is well-defined. The complex number λ will be called eigenvalue of Z at the singularity, with an inessential abuse due to this exchange λ ↔ λ -1 . The unordered pair {λ, λ -1 } is invariant under local biholomorphic changes of coordinates. When λ < 0, the range of v is bounded for each fixed α. In this article, the notations and stand for inequalities up to a multiplicative non-zero constant depending only on λ. We write ≈ when both inequalities are satisfied.

Geometry of leaves when λ > 0

For any α ∈ C * fixed, the leaf L α is contained in a real 3-dimensional Levi flat CR manifold |w| = |α| |z| λ , which can be viewed as a curve in |z| = e -v , |w| = |α| e -λv coordinates. The norms |z| and |w| depends only on v. When v → +∞, the point on the leaf tends to the singularity (0, 0) described by the following figures: green curve in Figure 7.8 is not only the image of L α,r for u ∈ [2π, 4π) but also the image of L α e 2πiλ ,r for u ∈ [0, 2π). This raises ambiguity while doing normalization on a leaf L α . Such ambiguity can be resolved once one restricts everything to an open subset U := {(z, w) ∈ D 2 | arg(z) ∈ (0, 2π -), z = 0, w = 0} for some fixed ∈ [0, π). Any leaf L α on U decomposes into a disjoint union of infinitely many components:

L α ∩ U = k∈Z (e -v+iu , α e 2kπiλ e -λv+iλu ) | u ∈ (0, 2π -), v > log + |α| λ .
Such a parametrization is yet not unique. For example for any k 0 ∈ Z one can do

L α ∩ U = k∈Z (e -v+iu , α e 2kπiλ e -λv+iλu ) | u ∈ (2k 0 π, 2k 0 π + 2π -), v > log + |α| λ .
The parametrization is unique once one fixes k 0 , for example k 0 = 0. But I leave a hint that all other choices of k 0 will be useful in a later proof.

Once one specifies the range of u by fixing k 0 = 0, then the leaf on U is uniquely parametrized. ∈ R 0 , w = 0} will be used.

Rational case

: λ = a b ∈ Q, λ ∈ (0, 1] Say λ = a b where a, b ∈ Z 1 are coprime. Then in D 2 , for any α ∈ C * , the union L α ∪ {0} is the algebraic curve {w b = α b z a } ∩ D 2 .
In other words, every leaf is a separatix. In this section it will be shown that any directed harmonic current T has non-zero Lelong number.

The parametrization map ψ α (ζ) := (e iζ , α e iλζ ) is now periodic:

ψ α (ζ +2πb) = ψ α (ζ). Let T be a directed harmonic current. Then T | Pα has the form h α (z, w)[P α ]. Let H α (u + iv) := h α • ψ α u + iv + i log + |α| λ .
It is a positive harmonic function for µ-almost all α ∈ C * defined in a neighborhood of the upper half plane 

H := {(u + iv) ∈ C | v > 0}. Moreover it is periodic: H α (u + iv) = H α (u + 2πb + iv). Periodic harmonic functions can be characterized by kv b + a -k e -kv b , B k (v) = b k e kv b -b -k e -kv b , A 0 (v) = a 0 + b 0 v, for some a k , a -k , b k , b -k ∈ R.
(0) = h α • ψ α (i log + |α| λ ) = 1.
The mass of the current T is

| |T | | D 2 = (z,w)∈D 2 T ∧ i∂ ∂(|z| 2 + |w| 2 ).
In particular, one calculates the (1, 1)-form i∂ ∂(|z| 2 + |w| 2 ) on L α , where z = e -v+iu , w = α e -λv+iλu , using dz = ie -v+iu due -v+iu dv, dz = -ie -v-iu due -v-iu dv, dw = iα λ e -λ v+iλ u duα λ e -λ v+iλ u dv, d w = -iᾱ λ e -λ v-iλ u duᾱ λ e -λ v-iλ u dv, 

whence i∂ ∂(|z| 2 + |w| 2 ) = idz ∧ dz + idw ∧ d w = 2 e -2v + λ 2 |α| 2 e -2λ v du ∧ dv. 7.4. RATIONAL CASE: λ = A B ∈ Q, λ ∈ (0, 1] 227 Thus ||T || D 2 = α∈T h α (z, w) Pα i∂ ∂(|z| 2 + |w| 2 ) dµ(α) = α∈T 2πb u=0 v>0 H α (u + iv) 2 e -2(v+ log + |α| λ ) + λ 2 |α| 2 e -2λ (v+ log + |α| λ ) du ∧ dv dµ(α) = α∈T,|α|<1 2πb 
a 0 (α) + b 0 (α)v 2(e -2v + λ 2 |α| 2 e -2λ v ) dv dµ(α) + α∈T,|α| 1 v>0 a 0 (α) + b 0 (α)v 2(|α| -2 λ e -2v + λ 2 e -2λ v ) dv dµ(α) = 2πb |α|<1 a 0 (α) (1 + |α| 2 λ)dµ(α) + |α| 1 a 0 (α) (|α| -2 λ + λ)dµ(α) + |α|<1 b 0 (α) 1 2 + 1 2 |α| 2 dµ(α) + |α| 1 b 0 (α) 1 2 + 1 2 |α| -2 λ dµ(α) ≈ α∈C * a 0 (α) dµ(α) + α∈C * b 0 (α) dµ(α).
The Lelong number can now be calculated as follows

L (T, 0) = lim r→0+ 1 r 2 ||T || rD 2 = lim r→0+ 1 r 2 2πb α∈T,|α|<r 1-λ v>-logr a 0 (α) + b 0 (α)v 2 (e -2v + λ 2 |α| 2 e -2λ v ) dv dµ(α) + α∈T,r 1-λ |α|<1 v> log|α|-logr λ a 0 (α) + b 0 (α)v 2 (e -2v + λ 2 |α| 2 e -2λ v ) dv dµ(α) + α∈T,|α| 1 v> -logr λ a 0 (α) + b 0 (α)v 2 (|α| -2 λ e -2v + λ 2 e -2λ v ) dv dµ(α) = lim r→0+ 2πb α∈T,|α|<r 1-λ a 0 (α) (1 + λ |α| 2 r 2λ-2 ) dµ(α) + α∈T,|α| r 1-λ a 0 (α) (|α| -2 λ r 2 λ -2 + λ) dµ(α) + α∈T,|α|<r 1-λ b 0 (α) 1 2 + 1 2 |α| 2 r 2λ-2 -logr -λ |α| 2 r 2λ-2 logr dµ(α) + α∈T,r 1-λ |α|<1 b 0 (α) 1 2 + 1 2 |α| -2 λ r 2 λ -2 -logr -|α| -2 λ λ -1 r 2λ-2 logr + log|α| + λ -1 |α| -2 λ log|α| r 2λ-2 dµ(α) + α∈T,|α| 1 b 0 (α) 1 2 + 1 2 |α| -2 λ r 2 λ -2 -logr -λ -1 |α| -2 λ r 2λ-2 logr dµ(α) .
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First one analyzes the a 0 (α) part. When |α| < r 1-λ ,

1 < 1 + λ |α| 2 r 2λ-2 < 1 + λ r 2-2λ r 2λ-2 = 1 + λ, (7.4.2)
is uniformly bounded with respect to α and r. When |α| r Let T be a harmonic current directed by F . Then T | Pα has the form h α (z, w)[P α ]. One may assume that h α is nowhere 0 for every α. Let

1-λ λ < |α| -2 λ r 2 λ -2 + λ < 1 + λ, ( 7 
H α (u + iv) := h α • ψ α u + iv + i log + |α| λ .
It is a positive harmonic function for µ-almost all α ∈ C * defined in a neighborhood of the upper half plane H = {(u + iv) ∈ C | v > 0}, determined by the Poisson integral formula

H α (u + iv) = 1 π y∈R H α (y) v v 2 + (y -u) 2 dy + C α v.
One can normalize H α by setting H α (0) = 1. But by doing so one may normalize data over the same leaf for multiple times. The ambiguity is described by In other words, they differ by a translation and a multiplication by a non-zero constant.

Proof. When |α| < 1, by definition H α (u + iv) = h α (e -v+iu , α e -λ v+i λ u ), H α (0) = h α (1, α).

Thus the normalized harmonic function is

H α (u + iv) = h α (e -v+iu
, α e -λ v+i λ u ) h α (1, α) ,

and for the same reason H β (u + iv) = h β (e -v+iu , β e -λ v+i λ u ) h β (1, β) .

The two functions h α and h β are the positive harmonic coefficient of T on the same leaf L α = L β , hence they differ up to multiplication by a positive constant C > 0, h α (e -v+iu , α e -λ v+i λ u ) = C • h β (e -v+iu , α e -λ v+i λ u ) = C • h β (e -v+iu , β e -2k π i λ e -λ v+i λ u ) = C • h β (e -v+i(u-2k π) , β e -λ v+i λ (u-2k π) ). By the same argument as above one concludes.

Periodic currents, still a Fourrier series

Periodic currents behave similarly as currents in the rational case λ ∈ Q. Suppose H α is periodic, i.e. there is some b ∈ Z 1 such that H α (u + iv) = H α (u + 2πb + iv) for any u + iv ∈ H. Periodic harmonic functions are characterized as (7. The Lelong number is strictly positive, the same as in the case λ ∈ Q ∪ (0, 1).

Non-periodic current

For periodic currents, one takes an average among b expressions (7.4.1) in the previous section. For nonperiodic currents, there is no canonical way of normalization. The key technique is to calculate expressions (7. Proof. This can be calculated directly, F (u, v)du = 2πb (p + q v) 0.

∂ ∂v - 1 2 v v 2 + (u -y) 2 e -2v = v v 2 + (u -y) 2 + - 1 2 1 v 2 + (u -y) 2 + - 1 2 v(-2v) v 2 + (u -y) 2 2 e -2v ∂ ∂v -1 2 v v 2 +(u-y) 2 e -2v v v 2 +(u-y) 2 e -2v = 1 + - 1 2 1 v + v v 2 + (u -y) 2 ∈ 1 - 1 2v , 1 + 1 v ⊆ 1 2 , 2 
Thus p 0 and q -C -1 p. One may write p + q v = p (1 -C -1 v) + (q + C -1 p) v with p =: a 0 0 and q + C -1 p =: b 0 0.

For periodic currents one may assume It is more subtle to talk about monotonicity of I a (r) and I b (r). We expect upper bounds of I a (r)/I a (1) and I b (r)/I b (1) for r ∈ (0, 1] which are independent of α, i.e. depend only on λ. Lemma 7.6.2. For any r ∈ (0, 1) and any α ∈ C with 0 < |α| < r 1-λ < 1, one has 0 < I a (r) < I a (1). It suffices to show that d dr I a (r) > 0 when r ∈ (0, 1) and 0 < |α| < r 1-λ .

H α (u + iv) = k∈Z,k =0

Proof. A differentiation gives

Introduce the new variable t := |α| r 1-λ ∈ (0, 1). In the big parentheses, replace |α| by t r It is not true that I b (r) is increasing on (0, 1], but on a smaller half-neighborhood of 0, independent of α, it is increasing. This suffice to give an upper bound of I b (r)/I b (1). -2(1λ)log(t)

>0 > |α| -2 λ r 2 λ λ 2 r 3 -λ 2 (t 2+ 2 λ -1) + 2 λ (1 -λ) (λ 2 t 2+ 2 λ + 1) <0 log(r) < 1 2λ(1-λ) <0 > |α| -2 λ r 2 λ λ 2 r 3 -λ 2 (t 2+ 2 λ -1) + λ 2 t 2+ 2 λ + 1 = |α| -2 λ r 2 λ λ 2 r 3 λ 2 + 1 > 0.
End of proof of Theorem 7. Ω a := {ρ > a}, they proved that for any point p in the level set Γ a := {ρ = a}, there exists a small neighborhood U p ⊂ Ω of p such that L a | Up∩Ω a is trivial and L a can be extended trivially to Ω a ∪ U p , no matter p is a critical point of the Morse function ρ or not. Since the level set Γ a is compact, after finitely many steps, L a extends as L b over Ω b with some b < a.

Keep extending L a until a local minimum q of ρ is reached. The minimum q is an isolated point. There exists some small punctured ball B * q centered at q such that H 1 (B * q , O * ) = 0 when n 3, by a special case of Andreotti-Grauert theory, Proposition 12 in [START_REF] Andreotti | Théorème de finitude pour la cohomologie des espaces complexes[END_REF], which is also proved in [START_REF] Scheja | Riemannsche Hebbarkeitssätze für Cohomologieklassen[END_REF]. Thus one can extend any holomorphic line bundle trivially across any such local minimum. This proves Theorem 8.1.4.

The crucial point above is the following uniqueness result, which a consequence of [START_REF] Fornaess | Q-complete domains with corners in P n and extension of line bundles[END_REF]. Let us call it 'downward uniqueness', since the isomorphism passes to a lower super level set. 

1 q 2 Γ c Γ b Γ a Γ a
However, by the gluing Lemma 8.1.7, we can lose uniqueness when we extend through compact sets having shapes different from K a . In our cex constructed in Section 8.4, the ball Ω = B( 2√ n e √ ) admits a strongly psh exhaustion function ρ(z) = -log(d(z, ∂Ω)). Since K is compact in Ω, there exists some a ∈ R such that Ω a = {ρ > a} ⊂ Ω\K. We could restrict the non-extendable holomorphic line bundle L cex , mentioned above, to Ω a , and extend L cex | Ω a to Ω by Theorem 8.1.4. But in this way we will get a trivial line bundle, which does not agree with the initial bundle L cex over Ω\K. In other words, we have the following commutative diagram of restriction maps that are group homomorphisms . By Theorem 8.1.4, the map res 6 is bijective. But res 5 is not injective since the nontrivial line bundle L cex and a trivial one L triv over Ω\K have the same restriction on Ω a . Consequently res 4 is not surjective. In conclusion, the map (8.1.2) is not always surjective, in any dimension n 2.

Acknowledgments. The author adresses sincere thanks to Joël Merker for driving him to this problem and for useful discussions. The author also thanks an anonymous referee for pointing out minor mistakes in the first version.

Background

Now we present the ingredients (1) and (2) mentioned in the Introduction.

Theorem 8.2.1. [Cartan's theorem B] Let X be a Stein manifold, F be a coherent analytic sheaf on X. Then H r (X, F ) = 0 (r 1).

A proof can be found in Cartan's original paper [START_REF] Cartan | Variétés analytiques complexes et cohomologie[END_REF]. Recall the exponential sequence

0 → Z ×2πi ---→ O exp --→ O * → 0
of sheaves over X induces an exact sequence of cohomologies

H 1 (X, O) → H 1 (X, O * ) → H 2 (X, Z).
When X is stein, by Cartan's theorem B we know H 1 (X, O) = 0. Moreover, if H 2 (X, Z) = 0, for example when X is contractible, then we get H 1 (X, O * ) = 0. So we have the following criterion: Corollary 8.2.2. Every holomorphic line bundle over a Stein contractible manifold is trivial.

In particular, every convex domain in C n (n 1) is Stein and contractible. The next ingredient is the extension of holomorphic functions across a totally real plane.

Proof of Lemma 8.4.1. It suffices to consider the case where U , V , W are non-empty. Denote the projection maps by π U : E U → U and π V : E V → V . Let {(U i , ϕ i )} be a trivialization of E U , {(V j , ψ j )} be a trivialization of E V . We will use the notations U i 1 ,...,is := s x=1 U ix , V j 1 ,...,jt := t y=1 V jy . By trivializations of these vector bundles, we mean that {U i } is an open cover of U , {V j } is an open cover of V and

ϕ i : π -1 U (U i ) → U i × C r , ψ j : π -1 V (V j ) → V j × C r ,
are homeomorphisms and the transition functions f i 2 ,i 1 , g j 2 ,j 1 defined by

ϕ i 2 • (ϕ i 1 ) -1 : U i 1 ,i 2 × C r → U i 1 ,i 2 × C r (z, l) -→ z, f i 2 ,i 1 (z) • l , ψ j 2 • (ψ j 1 ) -1 : V j 1 ,j 2 × C r → V j 1 ,j 2 × C r
(z, l) -→ z, g j 2 ,j 1 (z) • l , are holomorphic maps valued in G L r (O)(U i 1 ,i 2 ), G L r (O)(V j 1 ,j 2 ), satisfying the cocycle conditions: f i 3 ,i 2 (z) • f i 2 ,i 1 (z) = f i 3 ,i 1 (z) (z∈U i 1 ,i 2 ,i 3 ), (8.4.1) g j 3 ,j 2 (z) • g j 2 ,j 1 (z) = g j 3 ,j 1 (z) (z∈V j 1 ,j 2 ,j 3 ). (8.4.2) In fact, we can use the notation H 0,0 ∂ (U I , E U ) for the set of holomorphic sections of E U over U I where I = {i 1 , . . . , i s }. It is indeed a free H 0 (U I , O)-module of rank r. If we use e 1 , . . . , e r as the standard basis of the C-vector space C r , then {(ϕ i ) -1 (z, e 1 ), . . . , (ϕ i ) -1 (z, e r )} is a set of nowhere vanishing holomorphic sections of E U | U i which generate H 0,0 ∂ (U i , E U ). So actually f i 2 ,i 1 is a H 0 (U i 1 ,i 2 , O)-coefficients invertible linear map such that for α = 1, . . . , r, (ϕ i 2 ) -1 (z, e α ) = r β=1 f i 2 ,i 1 (z) α,β (ϕ i 1 ) -1 (z, e β ) (β=1,...,r; z∈U i 1 ,i 2 ), and the cocycle conditions are automatically satisfied.

In the language of Čech cohomology we would say that E U is represented by the open cover {U i } of U and the 1-cocycle {f i 2 ,i 1 } ∈ Z 1 {U i }, G L r (O) . We have similar statements for E V , {V j }, {g j 2 ,j 1 } .

Then {W j i := U i ∩ V j } is an open cover of W trivializing E U and E V simultaneously, i.e. H 0,0 ∂ (W j i , E U ) resp. H 0,0 ∂ (W j i , E V ) is a rank r free H 0 (W j i , O)-module generated by {(ϕ i ) -1 (z, e 1 ), . . . , (ϕ i ) -1 (z, e r )} resp. {(ψ j ) -1 (z, e 1 ), . . . , (ψ j ) -1 (z, e r )} . The isomorphism h : E U | W ∼ = E V | W induces an isomorphism between the rank r free H 0 (W j i , O)-modules H 0,0 ∂ (W j i , E U ) and H 0,0 ∂ (W j i , E V ). It is determined by h j i ∈ H 0 W j i , G L r (O) such that for α = 1, . . . , r, (ψ j ) -1 (z, e α ) = r β=1 h j i (z) α,β (ϕ i ) -1 (z, e β ) (β=1,...,r; z∈W j i ).
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Use the notation W j 1 ,...,jt i 1 ,...,is := ( s x=1 U ix ) ∩ ( t y=1 V jy ). For any indices i 1 , i 2 , j 1 , j 2 we get the transition equations f i 2 ,i 1 (z) = h j 2 i 2 (z) -1 • g j 2 ,j 1 (z) • h j 1 i 1 (z) (z∈W j 1 ,j 2 i 1 ,i 2

).

(8.4.3)

Now we define E, a holomorphic vector bundle over U ∪ V . Note that {U i , V j } is actually an open cover of U ∪ V . We let E to be trivial on each U i and V j and define transition functions l ∈ Z 1 {U i , V j }, G L r (O) by l i 2 ,i 1 := f i 2 ,i 1 , l j 2 ,j 1 := g j 2 ,j 1 , l j i := h j i .

The cocycle conditions among (U i 1 , U i 2 , U i 3 ) and (V j 1 , V j 2 , V j 3 ) are satisfied because of (8.4.1) and (8.4.2). We only need to check the cocycle conditions among (U i 1 , U i 2 , V j ) and (U i , V j 1 , V j 2 ), i.e.

h j i 2 (z) • f i 2 ,i 1 (z) = h j i 1 (z) (z∈W j i 1 ,i 2
), g j 2 ,j 1 (z) • h j 1 i (z) = h j 2 i (z) (z∈W j 1 ,j 2 i ).

But this can be achieved by taking j 1 = j 2 = j or i 1 = i 2 = i in (8.4.3) and using f i,i = id, g j,j = id. We have E| U ∼ = E U , because both bundles are given by the same transition functions {l i 2 ,i 1 = f i 2 ,i 1 } with respect to the same open covering {U i } of U . For the same reason E| V ∼ = E V . (ii) G is pseudoconvex with smooth boundary;

A Stein manifold with a nontrivial holomorphic line bundle

(iii) G is connected. In fact G contracts to a n-dimensional torus. Its Picard group is H 1 (G , O * ) ∼ = Z ( n 2 ) . In particular, G carries a nontrivial holomorphic line bundle. we deduce that each coefficient a l 1 n p q +s ∈ A s , l 1 ∈ {0, . . . , p q -1} is a sum of the form a l 1 n p q +s = b l 2 n p q +s + c l 3 n p q +s , where l 2 ∈ {0, . . . , q -1}, l 3 ∈ {0, . . . , p -1} such that l 1 ≡ l 2 mod q and l 1 ≡ l 3 mod p. Thus by the Chinese Reminder Theorem, B s + C s = A s ⊂ {0, 1, . . . , d}.

Proof. (i) Since

Since x) but not a root of f (x). These contradictions prove that f (x) admits no unital recurrent decomposition (Table 9.1). 9.5 Case where 2k + 1 is a product of two distinct primes Proof of Theorem 9.1.8. Write 2k + 1 = p q, where p, q are two distinct primes. Suppose C(a 0 , . . . , a 2k ) is singular. Let f (x) ∈ Z [0,1] [x] be its corresponding unital polynomial. Since neither p nor q divides k, by Lemma 9.3.1 we know none among Φ 1 (x), Φ p (x) and Φ q (x) divides f (x). So Φ p q (x) divides f (x). By Theorem 9.4.4 we have f (x) = h q (x) G(p q, q; x) + h p (x) G(p q, p; x), for some h q (x), h p (x) unital. As before, we write f (x) = p q-1 j=0 a j x j , h q (x) = A 0 := {a l : l = 0, . . . , p q -1}, B 0 := {b l : l = 0, . . . , q -1}, C 0 := {c l : l = 0, . . . , p -1}.

We have k = f (1) = h q (1) q + h p (1) p. Since neither p nor q divides k, we know h q (1) = 0, h p (1) = 0, hence 1 ∈ B 0 , 1 ∈ C 0 . By the Chinese Reminder Theorem we know B 0 + C 0 = A 0 , hence 2 ∈ A 0 , contradicting the hypothesis that f (x) is unital.

Other cases: constructing a singular matrix

Proof of Theorem 9.1.9. In all other cases we can write 2k + 1 = p q r where p, q are two distinct primes and r 3 is an odd integer. We may assume p < q and p r by choosing p, q as the first and the second smallest prime factors of 2k + 1. To construct a singular circulant matrix of our type, it suffices to find a unital polynomial f (x) ∈ Z[x] with degf (x) < p q r, f (1) = k such that Φ p q r (x) divides f (x). Since k = p q r-1 2 3p q-1 2

> p q, we have unique a, b ∈ Z 1 with b p -1 such that a p + b q = k. Define f (x) : = (1 + x q r + x 2q r + • • • + x b q r-q r ) G(p q r, p r)(x) + j∈Ra x j G(p q r, q r)(x),

where R a ⊂ {0, 1, . . . , q r -1}\{0, r, . . . , q r -r} is a set of a elements. Such R a exists if and only if a q rq. This is true since q rqa = q rq -k-b q p = q rq -p q r-1-b q 2p = q r 2q + 1+b q 2p r-2 2 q > 0.

Clearly we have f (x) ∈ Z[x] and degf (x) < p q r. Since Φ p q r (x) divides both G(p q r, p r; x) and G(p q r, q r; x) it also divides f (x). Moreover f (1) = b G(p q r, p r)(1) + a G(p q r, q r)(1) = b q + a p = k. The condition R a ∩ {0, r, . . . , q r -r} = ∅ ensures that f (x) is unital.

The smallest k in this case is 22, when 2k + 1 = 45 = 3 2 × 5. Here we take p = r = 3, q = 5. Note that 22 = 4 × 3 + 2 × 5. In this case we can construct a singular matrix as above, by taking R 4 = {1, 2, 4, 5}. Then f (x) = (1 + x 3 ) (1 + x 9 + x 18 + x 27 + x 36 ) + (x + x 2 + x 4 + x 5 ) (1 + x 15 + x 30 ) represents a 45 × 45 singular circulant unital matrix with 22 ones in its first row. This reveals how we constructed E 22 in Corollary 9.1.10.

The number of singular matrices when k = 22

Finally we count the number of such singular matrices and estimate the probability of a circulant matrix of our type to be singular. We study the easiest case when k = 22. There are in total 45 22 = 4116715363800 choices of such matrices. Suppose f (x) is a corresponding polynomial of a singular circulant matrix of our type. Then there exists some r dividing 45 such that Φ r (x) divides f (x). Since neither 3 nor 5 divides f (1), by Lemma 9.3.1 we know none among Φ 1 (x), Φ 3 (x), Φ 5 (x) and Φ 9 (x) divides f (x). Thus either Φ 15 (x) or Φ 45 (x) divides f (x).

Proof. (Existence) For any (p, q)-recurrent decomposition h n p (x), h n q (x) of f (x) with respect to n, define e s := minB s ∈ Q, g(x) := n p q -1 s=0 e s x s . Then h n p (x)g(x) G( n p , n p q ; x), h n q (x) + g(x) G( n q , n p q ; x) is p-uniformized.

(Uniqueness) If there are two p-uniformized (p, q)-recurrent decompositions h n p (x), h n q (x) and h n p (x), h n q (x) of f (x) with respect to n, by Theorem 9.7.1 there exists some δ(x) ∈ Q[x] with degδ(x) < n p q satisfying (9.7.1). Write B s , B s as a collection of coefficients of h n p (x) and h n p (x) respectively, as in Definition 9.7.2. Write δ(x) = n p q -1 s=0 δ s x s . From (9.7.1) we have minB s = minB sδ s . So δ s = 0 for all s = 0, . . . , n p q -1. We conclude that these two decompositions are equivalent.

(Unital) In Theorem 9.4.4 we have already constructed a p-uniformized unital (p, q)-recurrent decomposition when f (x) is unital. • minB s = 0,

• if 1 ∈ B s then C s = {0}.
Case (1.1): there is only 1 s such that 1 ∈ C s . There are 3 Write f (15) (x) := 14 j=0 d j x j ∈ Z[x] where d j := a j + a j+15 + a j+30 ∈ {0, 1, 2, 3}. In fact it is the residue of f (x) divided by x 15 -1, hence divisible by Φ 15 (x). Such f (15) Then minB 0 = 0. By the Chinese Reminder Theorem we have B 0 + C 0 = A 0 . Thus C 0 = {0} + C 0 ⊂ B 0 + C 0 ⊂ {0, 1, 2, 3} and B 0 ⊂ [0, +∞) ∩ (A 0 + {0, -1, -2, -3}) = {0, 1, 2, 3}. Moreover we have f (15) (1) = 22 = 3h 5 (1) + 5h 3 (1) where h 3 (1), h 5 (1) ∈ Z 0 , hence h 5 (1) = 4, h 3 (1) = 2. Each f (15) (x) corresponds to a unique choice of b 0 , . . . , b 4 , c 0 , . . . , c 2 ∈ {0, 1, 2, 3} satisfying the following conditions (Table 9.2):

1. We can write down a complete list of possible values of (b u ), (c v ) up to permutations. Note that • each f (15) (x) is uniquely determined by values of (b u ), (c v );

• for each f (15) (x) = 

Type of values

Permutations Choices of f (x) for each f (15) (x) (0, 0, 0, 2, 2), (0, 1, 1) By summing up (Permutations) × Choices of f (x) for each f (15) (x) we get 88376670 choices of unital f (x) divisible by Φ 15 (x), corresponding to 88376670 singular matrices. for some unital h 5 (x), h 3 (x) ∈ Z[x] with degh 5 (x) < 5, degh 3 (x) < 3.

We have 4 = h 15 (1) = 3h 5 (1) + 5h 3 [START_REF] Abdalla | Affine homogeneous surfaces in R 3 with vanishing Pick invariant[END_REF], where h 5 (1), h 3 (1) ∈ Z 0 . However there is no solution h 5 (1), h 3 (1) to this equation. We conclude that there is no unital f (x) with degf (x) < 45, f (1) = 22 and f (x) divisible by both Φ 15 (x) and Φ 45 (x).

We have 88378695 singular unital circulant matrices having exactly 22 ones in their first rows. The possibility of a unital circulant matrix in our type being singular is about 2.15 × 10 -5 < 10 -4 . This algorithm can be generalized to all n with only 2 distinct prime factors.

b,c,d∈N a+c 3 G

 3 a,b,c,d z a ζ b z c ζ d , avec 0 = G a,b,0,0 = G a,b,1,0 = G a,b,2,0 et 0 = G 3,0,0,1 = Im G 3,0,1,1 .

  le volume et l'orientation. Nous avons dim SA 3 (R) = 3 • 3 -1 + 3 = 11.

Problème 1 . 1 . 3 . 0 S ≡ 0 9 9 / / P = 0 9 9 /

 113099 Classifier les surfaces u = F (x, y) sous l'action SA 3 (R), en particulier, trouver tous les modèles (localement) homogènes.Si nous abrégeonsracine := 0 = F xx 0 ≡ F xx F yy -F 2 xy = F xx = 0 ≡ H F le diagrammede branchement qui résume tous nos résultats est P ≡ 0 C ≡ / C = 0 root ; ;

, 1 . 1 .

 11 SUR LES INVARIANTS DIFFÉRENTIELS DES SURFACES PARABOLIQUES et M est aussi un invariant différentiel d'ordre 5, dont l'expression explicite assez longue se trouve dans le Chapitre 4.

Théorème 1 . 1 . 5 .

 115 Une surface parabolique est un cylindre si et seulement si S ≡ 0; un cône si et seulement si S = 0 et W ≡ 0; une surface tangentielle (tangentes à une courbe d'espace) si et seulement si S = 0 et W = 0.

CHAPTER 1 .Figure 1 . 1 :

 111 Figure 1.1: Un cylindre, un cône et une surface tangentielle
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 2 Chen, Z.; Foo, W.; Merker, J.; Ta T.: Normal Forms for Rigid C 2,1 Hypersurfaces M 5 ⊂ C 3 ,Taiwanese J. Math. -1(-1), (2021), 1-32, DOI : 10.11650/tjm/200903, arxiv : 1912.01655.

2 . 1 )= zz + 1 2 z 2 ζ + 1 2 z 2 ζ 1 - 1 . 2 . 3 .( 2 )

 2111232 et 2-non-dégénérée signifie que:0 = F zz F zz F zzζ F zzζ . (1.2.2)On écrit C 2,1 pour l'ensemble de ces hypersurfaces.Inspiré d'Alexander Isaev, nous étudions les biholomorphismes rigides:(z, ζ, w) -→ f (z, ζ), g(z, ζ), ρ w + h(z, ζ) =: (z , ζ , w ).Le modèle de Gaussier-Merker u ζζ a un groupe d'automorphismes rigides de dimension 7. Par une réduction de type Cartan à une {e}-structure, Foo-Merker-Ta ont obtenu 3 invariants relatifs d'ordre 5: V 0 , I 0 (primaire) et Q 0 (dérivé). Par une normalisation de type Poincaré-Moser de la série de Taylor de F (z, ζ, z, ζ) nous avons prouvé Théorème Chaque hypersurface M 5 ∈ C 2,1 est équivalente, par un biholomorphisme local rigide, à une hypersurface C ω rigide M 5 ⊂ C 3 qui, en supprimant les primes pour les coordonnées cibles, est une perturbation du modèle de Gaussier-Merker:u = zz + 1 2 z 2 ζ + 1 2 z 2 ζ 1ζζ + a,b,c,d∈N a+c 3 G a,b,c,d z a ζ b z c ζ d ,1.3. SURFACES AFFINEMENTS HOMOGÈNES avec un reste simplifié G qui: (1) est normalisé pour être un O z,z (3); satisfait aux conditions de prénormalisation G = O z (3) + O ζ (1) et G = O z (3) + O ζ (1): G a,b,0,0 = 0 = G 0,0,c,d , G a,b,1,0 = 0 = G 1,0,c,d , G a,b,2,0 = 0 = G 2,0,c,d ;

1 , 3 , 0 .

 130 De plus, deux de ces hypersurfaces C ω rigides M 5 ⊂ C 3 et M 5 ⊂ C 3 , toutes deux ramenées à de telles formes normales, sont rigidement biholomorphiquement équivalentes si et seulement s'il existe deux constantes ρ ∈ R * + , ϕ ∈ R, telles que pour tout a, b, c, d: G a,b,c,d = G a,b,c,d ρ a+c-2 2

(

  E1) 0 = 8 I 0,4 I 4,0 -I 1,3 I 3,1 + 2 I 3,1 I 4,0 -9 I 2,2 , (E2) 0 = 2 I 0,4 I 1,3 + 8 I 0,4 I 4,0 -I 1,3 I 3,1 -9 I 2,2 , (E3) 0 = 4 I 0,4 I 3,1 -I 1,3 I 2,2 -4 I 2,2 I 4,0 + 2 I 2 3,1 + 9 I 1,3 + 18 I 4,0 , (E4) 0 = 4 I 0,4 I 2,2 -2 I 2 1,3 -4 I 1,3 I 4,0 + I 2,2 I 3,1 -18 I 0,4 -9 I 3,1 . 1.4. COURANTS HARMONIQUES DIRIGÉS CHAPTER 1. INTRODUCTION (EN FRANÇAIS)

[ 5 ]

 5 Chen, Z.: A counterexample to Hartogs' type extension of holomorphic line bundles. J. Geom. Anal. 28 (2018), no. 3, 2624-2643, DOI : 10.1007/s12220-017-9923-z, arxiv : 1705.10572. Considérons un domaine Ω dans C n avec n 2 et un sous-ensemble compact K ⊂ Ω tel que Ω\K soit connexe. Notons O le faisceau des fonctions holomorphes. Rappelons le théorème d'extension de Hartogs pour les fonctions holomorphes Théorème 1.5.1. [Hartogs] L'application de restriction H 0 (Ω, O) → H 0 (Ω\K, O) is bijective.

  5.4.[START_REF] Chen | A counterexample to Hartogs' type extension of holomorphic line bundles[END_REF]] Avec le compact comme frontière pénétrée K := ∂G U p , l'ensemble ouvert Ω\K est connexe, et il existe un fibré en droites holomorphe (non trivial) L cex sur Ω\K ayant la propriété qu'il n'existe aucun fibré en droites holomorphe L sur Ω avec L cex = L Ω\K . Ici, 'cex' signifie 'contre-exemple'.
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 2 Chen, Z.; Foo, W.; Merker, J.; Ta T.: Normal Forms for Rigid C 2,1 Hypersurfaces M 5 ⊂ C 3 , Taiwanese J. Math. -1(-1), (2021), 1-32, DOI : 10.11650/tjm/200903, arxiv : 1912.01655.The second half, especially Section 5.8, is submitted to Confluentes Mathematici.
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 21 Figure 2.1: A cylinder, a cone and a tangential surface

[ 3 ]

 3 Chen, Z.; Merker, J.: Affine Homogeneous Surfaces with Hessian rank 2 and Algebras of Differential Invariants, arxiv.org/abs/2010.02873/, 20 pages.
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 5 Chen, Z.: A counterexample to Hartogs' type extension of holomorphic line bundles. J. Geom. Anal. 28 (2018), no. 3, 2624-2643, DOI : 10.1007/s12220-017-9923-z, arxiv : 1705.10572. Consider a domain Ω in C n with n 2 and a compact subset K ⊂ Ω such that Ω\K is connected. Denote by O the sheaf of holomorphic functions. Recall the Hartogs' extension theorem for holomorphic functions 2.5. HARTOGS' TYPE EXTENSION Theorem 2.5.1. [Hartogs] The restriction map
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 411 What about parabolic surfaces? These are (local) surfaces S 2 ⊂ R 3 of the graphed form u = F (x, y) whose hessian matrix Fxx Fxy Fyx Fyy is identically of rank 1, not 2 (elliptic or hyperbolic cases). The vanishing of the Hessian determinant 0 ≡ F xx F yy -F 2 xy

Figure 4 . 1 :

 41 Figure 4.1: Dependent jets discarded in a shaded region and remaining parabolic jets truncated to order n.

CHAPTER 4 .

 4 ON DIFFERENTIAL INVARIANTS OF PARABOLIC SURFACES Here F 5,0 = F xxxxx (0) = value of C at the origin.

  of the time, for any action of a local Lie group G on graphs {u = u(x)} in R p+q

Figure 4 . 2 :

 42 Figure 4.2: Straightening of local G-orbits and a transversal.

CHAPTER 4 .

 4 ON DIFFERENTIAL INVARIANTS OF PARABOLIC SURFACES Theorem 4.4.8.

Figure 4 . 3 :

 43 Figure 4.3: A point z (n) is moved back to the transversal T n by a uniquely defined group element ρ(z (n) ) ∈ G.

nr ) νr c1 crFigure 4 . 4 :

 c144 Figure 4.4: A representation of a transversal to the G-orbits as defined by equations of the form w (n 1 )

CHAPTER 4 .

 4 ON DIFFERENTIAL INVARIANTS OF PARABOLIC SURFACES Definition 4.4.11. [36, 37] A (local) right moving frame for the action on R p+q

4. 5 .

 5 WHAT IT REALLY MEANS TO BE A DIFFERENTIAL INVARIANT 67 Theorem 4.4.15. [37, Sec. 4] If ρ : J n p,q -→ G is a right moving frame, with n n G , then in coordinates, all components of the map z

Question 4 .

 4 5.1. 

Figure 4 . 5 :

 45 Figure 4.5: Diffeomorphism associated to the action of a group element g ∈ G represented on the horizontal spaces, on the graphs, and on the jet spaces.

  , 4.18, 4.19, 4.20.

4. 10 .

 10 PARABOLIC JET RELATIONS 77

Figure 4 . 6 :

 46 Figure 4.6: Two infinite horizontal collections of parabolic jets F x k and F x k y .

  , 4.18, 4.19, 4.20. 

4. 13 .

 13 SPECIAL AFFINE POWER SERIES INVARIANTS OF CURVES IN R 2 83

Figure 4 . 7 :

 47 Figure 4.7: Equivalence of two local graphed curves through a special affine transformation.

4. 13 . 85 Furthermore, taking a := 1 F

 13851 SPECIAL AFFINE POWER SERIES INVARIANTS OF CURVES IN R 2

CHAPTER 4 .

 4 ON DIFFERENTIAL INVARIANTS OF PARABOLIC SURFACESFor the time being, let us examine how this reduced group G[START_REF] Alessandrini | Plurisubharmonic currents and their extension across analytic subsets[END_REF] 

x 3 3 !

 3 is left unchanged drops the group dimension by 1, and it is easy to verify the Lemma 4.13.7. The subgroup of SL 2 (R) sending v = y 2 2 + 0 + O y (4) to u = x 2 2 + 0 + O x (4) is 0-dimensional and reduces to the identity G

Lemma 4 .( 2 )

 42 13.10. (1) A curve u = u(x) with u xx = 0 is affinely equivalent to a parabola v = y 2 if and only if 0 ≡ P(u) := 1 3 3 u xx u xxxx -5 u 2 A curve u = u(x) with u xx = 0 is affinely equivalent to a nondegenerate conic in the plane if and only if 0 ≡ C(u) := 1 9 9 u 2 xx u xxxxx -45 u xx u xxx u xxxx + 40 u 3 xxx u 4 xx .

CHAPTER 4 . 1 u

 41 ON DIFFERENTIAL INVARIANTS OF PARABOLIC SURFACESand next, to eliminate the remaining constants, we upside-down

1 u 2

 12 and lastly we have to differentiate three times to get rid of all remaining constants xx u xxxxx -45 u xx u xxx u xxxx + 40 u 3

16. 1 .

 1 First loop. Leaving aside the condition adbc = 1, we therefore start with general GL 2 (R) matrices a b c d (adbc = 0). With x = a y + b v and u = c y + d v, the fundamental equation writes again (4.16.2) 0 ≡c yd G(y) + F a y + b G(y) .

Lemma 4 . 16 . 3 .

 4163 The subgroup of GL 2 (R) sending v = O y (2) to u = O x (2) is 3-dimensional and consists of matrices G

  stab which stabilizes these normalizations, we compute the first term in the fundamental equation (4.16.2) 0 ≡ 3 ab y 3 3! + O y (4). Lemma 4.16.7. The subgroup of GL 2 (R) sending v = y 2 2! + 0 + O y (4) to u = x 2 2! + 0 + O x (4) is 1-dimensional and consists of matrices G

CHAPTER 4 . 4 4!

 44 ON DIFFERENTIAL INVARIANTS OF PARABOLIC SURFACES Next, we examine how this reduced group G (3) stab acts on the third order term y 4 0 ≡a 2 G 4 + a 4 F 4 y + O y (5).

Lemma 4 . 16 . 8 .

 4168 A plane curve u = F (x) with F xx = 0 is affinely equivalent to the model parabola v = y 2 if and only if

Theorem 4 .

 4 16.10. (1) Given a real analytic curve u = F (x) in R 2 passing through the origin which satisfiesF xx (0) = 0 and ± F xx F xxxx -5 3 F 2 xxx > 0,

16. 11 . 100 CHAPTER 4 .

 111004 Recurrence relations. Similarly as in Section 4.15, let us set up the corresponding recurrence relations. By Theorem 4.16.10, we come to inv(x) = 0, inv(u) = 0, I 1 := inv u x = 0, I 2 := inv u xx = 1, I 3 := inv u xxx = 0, I 4 := inv u xxxx = ±1. ON DIFFERENTIAL INVARIANTS OF PARABOLIC SURFACES

1 , 4 11 < 17 ,Figure 4 . 8 :

 141748 Figure 4.8: Parabolic jets up to order 4 and dependent (shaded) jets.

17

 17 

. 10 )

 10 The tangencies to S u = 0 follow from an Assertion 4.17.11. The quotients pj * v σ S u S u have values, for σ = 1, 2,

Figure 4 . 9 :

 49 Figure 4.9: Representation of independent jets in the degenerate branch S F ≡ 0.

4. 17 .

 17 PARABOLIC SURFACES S 2 ⊂ R 3 : INVARIANT W OF ORDER 4 109 but then, since the transformation in the y-space does not change the graphed equation, we can adjust the central parameter l := 1 a rc p ,in order to guarantee that the determinant has value 1, while the determinant of the 2-dimensional transforma-

x 4 4 !F 5 = I 5

 455 

  .18. [On a computer] The above 6 × 6 matrix has rank 5 at every point in the domain of PJ 4 2,1

CHAPTER 4 .

 4 ON DIFFERENTIAL INVARIANTS OF PARABOLIC SURFACES

4. 18 . 113 Lemma 4 . 18 . 3 .with 1 =

 1811341831 RELATIVE INVARIANT S AND FIRST INVARIANT W The subgroup of SL 3 (R) sending v = O s,t (2) to u = O x,y (2) is 6-dimensional and consists of matrices G albk r.

Lemma 4 . 18 . 8 .

 4188 The subgroup G

Lemma 4 .

 4 18.11. The subgroup G stab is only 1-dimensional and consists of matrices

4. 19 .

 19 BRANCH W ≡ 0 AND BRANCH W = 0 117 Next, fifth order terms are

  0 u 5,0 -45 u 2,0 u 3,0 u 4,0 + 40 u 3 . BRANCH W ≡ 0 AND BRANCH W = 0 119

Theorem 4 . 19 . 4 .

 4194 For a local real analytic graph u = F (x, y) at the origin of R 2

Figure 4 . 11 :

 411 Figure 4.11: Successive annihilations of jets at the origin for a graph in the branch W(F ) ≡ 0 ≡ X(F ).

4. 19 .

 19 BRANCH W ≡ 0 AND BRANCH W = 0 121

20. 1 .

 1 Branch W = 0. By what precedes, the normalization at the origin takes the form u = F (x, y)

and D 1 2 W 7 M - 2 I 5 ,1 4 M -I 5 D 2 I

 12725452 I 6,0 = I 7,0 -3 6,0 = I 6,1 -I 6,0 + 21 W M -8 W I 5,1 .

Theorem 4 .

 4 22.1. A parabolic surface is• a cylinder if and only if S ≡ 0,

Figure 4 .

 4 Figure 4.12: A non-developable ruled surface.Figure 4.13: A cylindrical surface.

Figure 4 .

 4 Figure 4.12: A non-developable ruled surface.Figure 4.13: A cylindrical surface.

Figure 4 .

 4 Figure 4.14: A conical surfac.e Figure 4.15: A tangential surface.

Figure 4 .

 4 Figure 4.16: An SA 3 (R)-normalized cone.

Figure 4 .

 4 Figure 4.17: An SA 3 (R)-normalized tangential surface.

Figure 4 . 18 :

 418 Figure 4.18: Tangential surface of a curve with an isolated zero torsion point at A = (0, -1, 0).

Figure 4 . 19 :

 419 Figure 4.19: Invariant branching tree for planar curves under A 2 (R).

Figure 4 . 20 :

 420 Figure 4.20: Flow of L By construction, different values of the parameter a ∈ R\{0} conduct to affinely inequivalent homogeneous curves. This is the main interest of the use of differential invariants.Alternative classifications provide closed, explicit expressions for homogeneous graphs {u = F (x)}, but this then requires discussions (see e.g.[START_REF] Merker | On degenerate para-CR structures: Cartan reduction and homogeneous models[END_REF]) about ranges of incoming parameters in order to determine in which precise (invariant) branches do sit the corresponding homogeneous models. We will not touch these aspects here.

e 3 :

 3 = (1y) ∂ y + u ∂ u , with Lie structure [e 1 , e 2 ] = -e 3 , [e 1 , e 3 ] =e 1 , [e 2 , e 3 ] = e 2 , isomorphic to sl 2 (R).

4. 23 .Observation 4 . 23 . 4 . 2 x 2

 23423422 SPECIAL AFFINELY HOMOGENEOUS MODELS 137 Excepting the straight cone u = 1

  Cartan's methodMoser's method, and exhibit how differential invariants pass from one side of the river to the other side, computationally. Reading the toy Section 5.2 below is enough to understand the key arch-ideas of such a bridge. We indeed first focus on the toy case of rigid equivalences of rigid hypersurfaces in C 2 (easily reached results), before passing to the not so simple case of rigid equivalences in the rigid class denoted C 2,1 by Alexander Isaev which consists, as written above, of 2-nondegenerate constant Levi rank 1 hypersurfaces M 5 ⊂ C 3 with 0 ∈ M . Acknowledgments. The realization of this research work in Cauchy-Riemann (CR) geometry has received generous financial support from the scientific grant 2018/29/B/ST1/02583 originating from the Polish National Science Center (NCN).

5. 2 .

 2 RIGID EQUIVALENCES OF RIGID HYPERSURFACES IN C 2 : A TOY STUDY 151 in terms of which the structure equations contract as:

Theorem 5 . 2 . 5 .

 525 The equivalence problem under local rigid biholomorphisms of C ω rigid real hypersurfaces {u = F (z, z)} in C 2 whose Levi form is everywhere nondegenerate reduces to classifying {e}-structures on the 5-dimensional bundle M 3 × C equipped with coordinates (z, z, v, c, c) together with a coframe of 5 differential 1-forms: ρ, ζ, ζ, π, π (ρ = ρ),

CHAPTER 5 .

 5 NORMAL FORMS FOR RIGID C 2,1 HYPERSURFACES M 5 ⊂ C 3 Proposition 5.2.7. A rigid M = {u = F (z, z)} in C 2 is rigidly biholomorphically equivalent to the Heisenberg sphere {u = z z } if and only if:

  RIGID EQUIVALENCES OF RIGID HYPERSURFACES IN C 2 : A TOY STUDY 153 with F j,k = F k,j . At first, set z := z and: w := w -2 j 1

5. 4 .

 4 RIGID INFINITESIMAL CR AUTOMORPHISMS OF THE GAUSSIER-MERKER MODEL 155 and replacing w + w = 2 F , one receives the fundamental equation expressing H(M ) ⊂ M :

1 F

 1 In coordinates (z, ζ, w) ∈ C 3 with w = u + i v, consider a local C ω rigid hypersurface M 5 ⊂ C 3 graphed as u = F (z, ζ, z, ζ) passing through the origin. Expand a+b+c+d 1 F a,b,c,d z a ζ b z c ζ d , and define by conjugating only coefficients: F z, ζ, z, ζ := a+b+c+d a,b,c,d z a ζ b z c ζ d . The reality u = u forces F (z, ζ, z, ζ) = F (z, ζ, z, ζ) which becomes:

  ), we mean a (remainder) function equal to x 3 (• • • ), where (• • • ) is any function of one or several variables. By O x,y (2), we mean x 2 (• • • ) + xy(• • • ) + y 2 (• • • ), and so on. Proposition 5.5.1. After a rigid biholomorphism, an M ∈ C 2,1 satisfies:

  g z, ζ . (5.5.10) Proposition 5.5.11. Possibly after a rotation (z , ζ , w ) -→ (e iϕ z , e 2iϕ ζ , w ), one has:

CHAPTER 5 .

 5 NORMAL FORMS FOR RIGID C 2,1 HYPERSURFACES M 5 ⊂ C 3

Lemma 5 . 7 . 1 .

 571 For every jet multiindex (a, b, c, d) ∈ N 4 with b 1 and d 1, abbreviating n := a + b + c + d, there exists a polynomomial P a,b,c,d in its arguments and an integer N a,b,c,d 1 such that:

  a,b,c,d F a,b,c,d z a ζ b z c ζ d for which b 1 and d 1 are determined by the free Taylor coefficients:

  •,• and C •,• enables us to emphasize that the obtained functions ζ B •,• (ζ) and ζ C •,• (ζ) vanish when either ζ := 0 or ζ := 0, and we therefore obtain, taking also account of the fact that G ν is real:

Lemma 5 . 7 . 4 .

 574 At every weight level ν 5, only the identity biholomorphic transformation z = z, ζ = ζ, w = w stabilizes prenormalization in source and target spaces:

CHAPTER 5 . 3 Corollary 5 . 7 . 11 .

 535711 NORMAL FORMS FOR RIGID C 2,1 HYPERSURFACES M 5 ⊂ C Two rigid C ω hypersurfaces M 5 ⊂ C 3 and M 5 ⊂ C 3 belonging to C 2,1 , both brought into normal form:

Definition 5 . 8 . 1 .

 581 The rigid transformation group of C 2+1 fixing the origin is denoted by:

  R RT δ 9 21 37 57 81 109 141 2 δ 2 + 6 δ + 1

  a,b for any a, b, c, d 0 ;

F

  z z . By differentiating both sides, all terms F z a ζ b z c ζ d with b 1 and d 1 can be uniquely expressed as rational functions of F z a ζ b z c with a + b + c a + b + c + d and F z a z c ζ d with a + b + c a + b + c + d.

. 8 . 10 .δ 3 + 3 δ 2 -

 81032 The coefficient F a,b,c,d will be called dependent if b 1 and d 1. Otherwise, it will be called independent.Elements in the opensubset {F 1,0,1,0 = 0} of H and H δ are uniquely determined by the independent coefficients F a,b,c,d with b d = 0. Since F is real-valued, i.e. F c,d,a,b = F a,b,c,d , one has dim R H δ = # (a, b, c, d)|a + b 1, c + d 1, a + b + c + d δ, b d = 0 . 5 δ) To prove the (if) part of Proposition 5.8.9, one shall construct a power series F (z, ζ, z, ζ) = F (z, ζ, z, ζ) + ∞ n=δ+1 a+b+c+d=n Fa,b,c,d a!b!c!d! z a ζ b z c ζ d with Fz z Fζ ζ -Fz ζ Fζ z = 0. This can be achieved by taking all the independent coefficients Fa,b,c,d = 0 with a + b + c + d n + 1 and b d = 0 and calculate all the dependent coefficients Fa,b,c,d with b 1 and d 1 by their rational expressions of the independent ones. Proposition 5.8.11. For any δ, δ ∈ Z + with δ > δ there is a projection H δ → H δ by dropping terms of degree δ + 1. For any δ, δ , δ ∈ Z + with δ > δ > δ The following diagram commutes.

8 8 Proof.

 88 When calculating the Taylor coefficients F a,b,c,d in F (z, ζ, z, ζ) = δ n=2 F a,b,c,d a!b!c!d! z a ζ b z c ζ d + O(δ + 1), we are calculating coefficients of z a ζ b z c ζ d with a + b + c + d δ from ρ

  of RT δ-1 which preserves current normalizations.

( 5 )

 5 Repeat (2) (3) (4) by studying RT (1) δ-1 actions on F

  ,c,d and so on, until no more terms can be normalized, i.e. RT (k) δ-1 fixes all F (k) a,b,c,d . (6) Express those non-constant F (k) a,b,c,d in terms of F a,b,c,d . They are rational functions fixed by RT δ-1 , i.e. they are differential invariants of order δ.

( 1 ) 1 FF 1

 111 a,b,c,d with a + b 1, c + d 1, b d = 0 can also be uniquely expressed as rational functions of F a,b,c,d , by the fundamental equation. Since all the independent parameters F (1) a,b,c,d have b d = 0 and F (1) c,d,a,b = F (1) a,b,c,d , it suffices to calculate F (1) a,b,c,0 in terms of F a,b,c,d . The inverse transformation is z = ,0,1,0 ζ , ζ = ζ , w = w . In the fundamental equality a,b,c,d F (1) a,b,c,d a!b!c!d! z a ζ b z c ζ d = a,b,c,d F a,b,c,d a!b!c!d! z a ζ b z c ζ d = a,b,c,d

( 2 ) 1 ) 5 .) 5 = 47 -

 215547 a,b,1,0 = 0, ∀(a, b) = (1, 0)}, a codimension 24 submanifold of H (So dim R H (224 = 23.

  has the form f (z, ζ) = r e i θ z, g(z, ζ) = e 2 i θ ζ and ρ = r 2 . CHAPTER 5. NORMAL FORMS FOR RIGID C 2,1 HYPERSURFACES M 5 ⊂ C 3

F

  a,b,c,d a!b!c!d! z a ζ b z c ζ d , without any harmonic monomial z j ζ n-j , ∀n 0, 0 j n and any monomial z a ζ b z c , ∀a + b 2, c ∈ {1, 2}. Collections of coefficients: V 0 I 0 2 , Q 0 |I 0 | 2 and F a,b,c,d a+b+c+d 6, b d=0 , are in one-to-one correspondence with equivalent classes.

5. 11 . 1

 111 Branch I 0 = 0, V 0 = 0 We normalize I 0 to 1 and there are 3 differential invariants of order 5: V, V and Q. The surface, after a unique rigid transformation, is equivalent to a graph of the normal form u = F (z, ζ, z, ζ) = a,b,c,d F a,b,c,d a!b!c!d! z a ζ b z c ζ d satisfying 5.11. RECURRENCE FORMULAS 189
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 5 NORMAL FORMS FOR RIGID C 2,1 HYPERSURFACES M 5 ⊂ C 3

D

  z I 0,1,5,0 = -5 QV -3 I 4,0,0,2 I 0,1,5,0 + I 1,1,5,0 D ζ I 0,1,5,0 = I 0,2,5,0 -6 I 0,1,5,0 -5 V -5 I 1,1,4,0 D z I 0,1,5,0 = -5 V 2 -6 V I 0,1,5,0 -3 I 3,0,1,2 I 0,1,5,0 + I 0,1,6,0 D ζ I 0,1,5,0 = -3 I 3,0,0,3 I 0,1,5,0

2 D

 2 2,3,0 I 0,2,4,0 -I 4,0,0,2 I 0,2,4,0 D ζ I 0,2,4,0 = I 0,3,4,0 -8/3 -2 I 0,2,4,0 -2 I 1,2,3,0 + 2 V -I 0,3,3,0 I 0,2,4,0 D z I 0,2,4,0 = I 0,2,5,0 -4I 1,1,4,0 -2 V I 0,2,4,0 -11/3 V + 2/3 Q + 2 I 3,0,2,1 -I 0,2,4,0 2 -I 3,0,1,2 I 0,2,4,0 D ζ I 0,2,4,0 = 4 V + 2/3 -2 I 0,2,4,0 + 2 I 3,0,1,2 -I 0,2,4,0 I 3,0,0,3D z I 3,0,3,0 = QI 2,1,3,0 + V I 3,0,2,1 -4 V I 3,0,3,0 -2 I 1,2,3,0 I 3,0,3,0 -2 I 4,0,0,2 I 3,0,3,0 + I 4,0,3,0D ζ I 3,0,3,0 = -2 I 0,3,3,0 I 3,0,3,0 + I 2,1,3,0 -4 I 3,0,3,0 + I 3,1,3,0 D z I 3,0,3,0 = QI 3,0,2,1 + V I 2,1,3,0 -4 V I 3,0,3,0 -2 I 0,2,4,0 I 3,0,3,0 -2 I 3,0,1,2 I 3,0,3,0 + I 3,0,4,0 D ζ I 3,0,3,0 = -2 I 3,0,0,3 I 3,0,3,0 + I 3,0,2,1 -4 I 3,0,3,0 + I 3,0,3,1 5.11. RECURRENCE FORMULAS 191 D z I 2,1,3,0 = I 3,1,3,0 + Q/18 + 2/3 I 1,2,3,0 Q -4 V I 2,1,3,0 -V /18 + 7/3 QV + 1/6 I 2,1,3,0 -1/6 I 4,0,1,1 -2 I 1,2,3,0 I 2,1,3,0 -I 4,0,0,2 I 2,1,3,0 D ζ I 2,1,3,0 = I 2,2,3,0 + 1/18 -2 I 2,1,3,0 + 5/6 I 1,2,3,0 -V /6 -2 I 0,3,3,0 I 2,1,3,0 D z I 2,1,3,0 = I 2,1,4,0 -I 3,0,3,0 -2 V I 2,1,3,0 + V /18 + 2/3 V I 1,2,3,0 + 1/3 Q 2 -Q/18 + 1/6 I 1,1,4,0 -1/6 I 3,0,2,1 -2 I 0,2,4,0 I 2,1,3,0 -I 3,0,1,2 I 2,1,3,0 D ζ I 2,1,3,0 = 2 I 1,1,4,0 + 3 I 3,0,2,1 -1/18 -4 I 2,1,3,0 + 7/3 Q + V /6 -1/6 I 3,0,1,2 -I 3,0,0,3 I 2,1,3,0 D z I 1,2,3,0 = I 2,2,3,0 + 1/3 QI 0,3,3,0 -4 I 1,2,3,0 V -V /3 -2 I 1,2,3,0 ζ I 1,2,3,0 = I 1,3,3,0 + 1/3 I 0,3,3,0 -2 I 1,2,3,0 I 0,3,3,0 D z I 1,2,3,0 = I 1,2,4,0 -2 I 2,1,3,0 + 1/3 V I 0,3,3,0 -10/3 Q -2 I 1,2,3,0 I 0,2,4,0 D ζ I 1,2,3,0 = I 0,2,4,0 + 8 Q -1/3 -4 I 1,2,3,0 D z I 0,3,3,0 = -4 V I 0,3,3,0 -2 I 1,2,3,0 I 0,3,3,0 + I 4,0,0,2 I 0,3,3,0 + I 1,3,3,0 D ζ I 0,3,3,0 = -2 I 0,3,3,0 2 + 2 I 0,3,3,0 + I 0,4,3,0 D z I 0,3,3,0 = 2 V I 0,3,3,0 -2 I 0,3,3,0 I 0,2,4,0 + I 0,3,3,0 I 3,0,1,2 + I 0,3,4,0 -3 I 1,2,3,0 -3 D ζ I 0,3,3,0 = I 0,3,3,0 I 3,0,0,3 -4 I 0,3,3,0 + 3

1 D 1 D 2 D

 112 1,4,0 + 1/6 I 3,0,2,1 -I 0,2,4,0 I 3,0,2,1 -2 I 3,0,1,2 I 3,0,2,ζ I 3,0,2,1 = I 3,0,2,2 + 1/18 -2 I 3,0,2,1 + 5/6 I 3,0,1,2 -V /6 -2 I 3,0,0,3 I 3,0,2,z I 3,0,1,2 = I 4,0,1,2 -2 I 3,0,2,1 -10/3 Q + 1/3 V I 3,0,0,3 -2 I 4,0,0,2 I 3,0,1,ζ I 3,0,1,2 = 8 Q + I 4,0,0,2 -1/3 -4 I 3,0,1,2

1 D 1 D 2 D 3 ••

 1123 0,0,2 -2 I 0,2,4,0 I 4,0,1,1 -4 I 3,0,3,0 -I 3,0,1,2 I 4,0,1,ζ I 4,0,1,1 = I 4,0,1,2 -4 I 4,0,1,1 -14/3 Q + 1/3 I 4,0,0,2 -4 I 3,0,2,1 -I 3,0,0,3 I 4,0,1,z I 4,0,0,2 = I 5,0,0,2 -4 I 4,0,1,1 + 2/3 Q -11/3 V -2 V I 4,0,0,2 + 2 I 2,1,3,0 -I 1,2,3,0 I 4,0,0,2 -I 4,0,0,2 ζ I 4,0,0,2 = 4 V + 2/3 -2 I 4,0,0,2 + 2 I 1,2,3,0 -I 4,0,0,2 I 0,3,3,0 D z I 4,0,0,2 = I 4,0,1,2 -2 I 4,0,0,2 V + 2/3 V -8/3 Q + 2 I 1,1,4,0 -2 I 3,0,2,1 -I 4,0,0,2 I 0,2,4,0 -I 4,0,0,2 I 3,0,1,2 D ζ I 4,0,0,2 = I 4,0,0,3 -8/3 -2 I 4,0,0,2 + 2 V -2 I 3,0,1,2 -I 4,0,0,2 I 3,0,0,Type 2: I l-b,b,k 0 +1-l,0 for 1 b l, 1 l k 0 -3; Type 2c: I k 0 +1-l,0,l-d,d for 1 d l, 1 l k 0 -3, which are conjugates of Type 2.

  0,k 0 -a = I a,0,k 0 +1-a,0 + {correction terms}D z I l-b,b,k 0 -l,0 = I l-b,b,k 0 +1-l,0 + {correction terms} D z I k 0 -l,0,l-d,d = I k 0 +1-l,0,l-d,d + {correction terms}

• Type 1 :

 1 I a,0,k-a,0 := F a,0,k-a,0 for 3 a k -3;• Type 2: I k-3-b,b,3,0 := F k-3-b,b,3,0 for 1 b k -3; • Type 2c: I 3,0,k-3-d,d := F 3,0,k-3-d,d for 1 d k -3, which are conjugates of Type 2.

I 2 , 2 = 8 9 I

 229 4,0 I 0,4 -1 9 I 1,3 I 3,1 + 2 9 I 4,0 I 3,1 -1 36 D x I 3,1 + 1 36 D y I 4,0 .

, 1 ,

 1 I 2,2 , I 1,3 , I 0,4 ∈ C 5 , by the complex algebraic variety of dimension 2 defined by(E1) 0 = 8 I 0,4 I 4,0 -I 1,3 I 3,1 + 2 I 3,1 I 4,0 -9 I 2,2 , (E2) 0 = 2 I 0,4 I 1,3 + 8 I 0,4 I 4,0 -I 1,3 I 3,1 -9 I 2,2 , (E3) 0 = 4 I 0,4 I 3,1 -I 1,3 I 2,2 -4 I 2,2 I 4,0 + 2 I 2 3,1 + 9 I 1,3 + 18 I 4,0 ,(E4) 0 = 4 I 0,4 I 2,2 -2 I 2 1,3 -4 I 1,3 I 4,0 + I 2,2 I 3,1 -18 I 0,4 -9 I 3,1 .

  solvable Lie structure [e 1 , e 3 ] = e 1 , [e 2 , e 3 ] = 2e 2 . Next, in the branch B 3 , when G 3,0 (F •,• ) ≡ 0 ≡ G 0,3 (F •,• ), two PDEs of the form F x 3 = R 3,0 (•) and F y 3 = R 0,3 (•) are satisfied by F (x, y), hence all F x j y k with either j 3 or k 3 are dependent. Only G 2,2 remains unnormalized, and it is a relative invariant, since the remaining freedom is (x, y, u) -→ (µx, λy, µλu), with µ, λ ∈ C * . Then G 2,2 creates the last two branches B 3•1 and B 3•2 , which we gather in a single statement. Proposition 6.1.5. (a) In the fifth branch B 3•1 where G 3,0 ≡ G 0,3 ≡ 0 = G 2,2 , there exists a single surface u = x y + x with uniquely determined I j,k ∈ C, which is automatically homogeneous, having 3D symmetries e 1 :=x ∂ x + y ∂ y , e 2 := (u -2) ∂ x -2y ∂ u , e 3 := (u -2) ∂ y -2x ∂ u , with structure ∼ = sl(2, C) given by [e 1 , e 2 ] = e 2 , [e 1 , e 3 ] =e 3 , [e 2 , e 3 ] = -2 e 1 . A closed form is u = 2 -2 1xy. (b) In the sixth, last branch B 3•2 where G 3,0 ≡ G 0,3 ≡ G 2,2 ≡ 0, the normal form is the basic quadric u = x y, having 4D symmetries e 1 :=x ∂ x + y ∂ y , e 2 := x ∂ x + u ∂ u , e 3 := ∂ x + y ∂ u , e 4 := ∂ y + x ∂ u , with solvable Lie structure [e 1 , e 3 ] = e 3 , [e 1 , e 4 ] =e 4 , [e 2 , e 3 ] =e 3 .

x

  = ax + by, y = cx + dy, u = u 6.2. NORMALIZATION, RELATIVE INVARIANTS AND BRANCHINGS 203 close to the identity, sending u = O(2) as in (6.2.1) to u = x 2y 2 + O(3). We may proceed as follows u

( 6 . 3 . 1 )DxI 3 , 1 = - 4 I 1 , 3 I 3 , 1 - 2 , 2 - 4 I 2 , 2 I 3 , 1 - 36 I 3 , 1 + I 2, 3 , 1 , 3 = -8 I 2 1 , 3 -

 63131413312242231363131313 DxI 4,0 = -8 I 1,3 I 4,0 -160 I 2 4,0 -144 I 3,1 + I 5,0 , DyI 4,0 = -32 I 0,4 I 4,0 -40 I 3,1 I 4,0 -48 I 2,2 + I 4,1 + 216, 32 I 3,1 I 4,0 -84 I 2,2 + I 4,1 + 216, DyI 3,1 = -16 I 0,4 I 3,1 -8 I 2 3,1 -72 I 1,3 -72 I 4,0 + I 3,2 , DxI 2,2 = -4 I 1,3 I 2,2 -16 I 2,2 I 4,0 -36 I 1,3 + I 3,2 , DyI 2,2 = -16 I 0,4 I DxI 16 I 1,3 I 4,0 -72 I 0,4 -72 I 3,1 + I 2,3 , DyI 1,3 = -32 I 0,4 I 1,3 -4 I 1,3 I 3,1 -84 I 2,2 + I 1,4 + 216, DxI 0,4 = -40 I 0,4 I 1,3 -32 I 0,4 I 4,0 -48 I 2,2 + I 1,4 + 216, DyI 0,4 = -160 I 2 0,4 -8 I 0,4 I 3,1 -144 I 1,3 + I 0,5 .

208CHAPTER 6 . 2 I 2 , 2 = 8 9 I

 62229 AFFINELY HOMOGENEOUS SURFACES From D y I 4,0 = -32 I 0,4 I 4,0 -40 I 3,1 I 4,0 -48 I 2,2 + I 4,1 + 216, D x I 3,1 = -4 I 1,3 I 3,1 -32 I 3,1 I 4,0 -84 I 2,2 + I 4,1 + 216, we can eliminate I 4,1 and solve I 2,4,0 I 0,4 -1 9 I 1,3 I 3,1 + 2 9 I 4,0 I 3,1 -1 36 D x I 3,1 + 1 36 D y I 4,0 .

  E1) 0 = 8 I 0,4 I 4,0 -I 1,3 I 3,1 + 2 I 3,1 I 4,0 -9 I 2,2 , (E2) 0 = 2 I 0,4 I 1,3 + 8 I 0,4 I 4,0 -I 1,3 I 3,1 -9 I 2,2 , (E3) 0 = 4 I 0,4 I 3,1 -I 1,3 I 2,2 -4 I 2,2 I 4,0 + 2 I 2 3,1 + 9 I 1,3 + 18 I 4,0 , (E4) 0 = 4 I 0,4 I 2,2 -2 I 2 1,3 -4 I 1,3 I 4,0 + I 2,2 I 3,1 -18 I 0,4 -9 I 3,1 .

4 I 1 , 3 I 3 , 1 + 16 9 I 0 , 4 I 3 , 1 I 4 , 0 - 2 I 2 1, 3 - 4 I 1 , 3 I 4 1 . 1 : 3 I 4 , 1 209Subcase 1 - 1 :+ b 24 y 4 + 4 . 1 .

 41331904314022341341134111441 I 4,0 -18 I 0,4 -9 I 3,Case If I 4,0 = 0 we solve I 3,1 = I 0,4 I 1,0 . Replace I 2,2 and I 3,1 in (E3) and (E4) we get (G1) 0 = 2I 4,0 + I 1,3 9I 2 4,0 I 0,4 I 2 1,3 I 4,0 -16I 0,4 I 3 4,0 + 18I 2 0,4 I 1,3 + 81I 2 4,0 , (G2) 0 = 2I 4,0 + I 1,3 9I 2 4,0 I 2 0,4 I 2 1,3 -16I 2 0,4 I 2 4,0 + 18I 1,3 I 2 4,0 + 81I 4,0 I 0,4 . 6.3. NON-VANISHING PICK, BRANCH B If I 1,3 = -2I 4,0 then all relations are satisfied. If we write a := I 4,0 , b := I 0,4 thenI 3,1 = -2b, I 1,3 = -2a, I 2,2 = 0, a ∈ C * , b ∈ C. O(5), a ∈ C * , b ∈ C,and it corresponds to N1 in[START_REF] Eastwood | On affine normal forms and a classification of homogeneous surfaces in affine three-space[END_REF] with a ∈ C * , b ∈ C. Subcase 1-2: I 1,3 = -2I 4,0 . Then (G1) and (G2) become(H1) 0 = I 0,4 I 2 1,3 I 4,0 -16I 0,4We calculate the two sides of I 0,4 (H1) -I 4,0 (H2)0 = 18 I 1,3 (I 3 0,4 -I 3 4,0 ).Subsubcase 1-2-1: If I 1,3 = 0 then by (F 1), I 3,1 = 0. The equations (H1), (H2) become 0 = -16I 0,4 I 3 4,0 + 81I 2 4,0 , 0 = -16I 2 0,4 I 2 4,0 + 81I 4,0 I 0,4 , and we solve I 0,4 = 81 16 I 4,0 . Put back to (6.3.2) we get I 2,2 = 9 2 . That is N4 in [29]. Subsubcase 1-2-2: If I 1,3 = 0 then I 0,4 = I 4,0 ω j for some j = 0, 1, 2. Here we recall ω = e 2πi/3 the cube root of unity. By a transformation in G 0 , they are equivalent to I 0,4 = I 4,0 ∈ C * which implies I 3,1 = I 1,3 by (F 1). Put it back to (H1), (H2) we get the same equation 0 (I 1,3 + 9 -4 I 4,0 ) (I 1,3 + 9 I 4,0 + 4 I 4,0 ). Thus either I 3,1 = I 1,3 = 4 I 4,0 -9, I 2,2 = 6 I 4,0 -9, I 0,4 = I 4,0 ∈ C * , corresponds to N3 in [29] with b ∈ C * , or I 3,1 = I 1,3 = -4 I 4,0 -9, I 2,2 = -16 9 I 2 4,0 -10 I 4,0 -9, I 0,4 = I 4,0 ∈ C * , corresponds to N2 in [29] with b ∈ C * . Case 2: If I 4,0 = 0, then I 1,3 I 0,4 = 0 from (F 1). Subcase 2-1: If I 1,3 = 0, then (F 2) and (F 3) becomes 0 = (2I 0,4 + I 3,1 )I 3,1 , 0 = 2I 0,4 + I 3,The solution is I 0,4 = b ∈ C, I 3,1 = -2b, corresponds to N1 in [29] with a = 0, b ∈ C. Subcase 2-2: If I 1,3 = 0 then I 0,4 = 0, and (F 2), (F 3) become

2 ,

 2 I 5,0 are generators. Like in the branch B 1 , under extra assupmtions on genericity, for example det D x I 3,1 D y I 3,1 D 2 x I 3,1 D y D x I 3,1 = 0, one may find generating systems with fewer elements by investigating the Lie bracket [D x , D y ] = (-I 3,1 -2 I 2,2 + I 4,1 ) D x + (8 I 3,1 + 3 -2 I 5,0 ) D y

(F 41

 41 ) 0 = -16 I 3 3,1 + 4 I 2 3,1 I 5,0 + 15 I 2,2 I 3,1 -3 I 2,2 I 5,0 -6 I 2 3,1 + 4 I 2,2 , (F 42) 0 = -I 2,2 2 (-48 I 2 3,1 + 12 I 3,1 I 5,0 + 9 I 2,2 -20 I 3,1 ).
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 2 BACKGROUND ON DIRECTED HARMONIC CURRENTS 219 Definition 7.2.1.

Figure 7 . 1 :Figure 7 . 2 :

 7172 Figure 7.1: The region of (|α|, v) for P α Figure 7.2: The region of (|α|, v) for P (r) α

Figure 7 . 3 :

 73 Figure 7.3: The region of (|α|, v) for P α Figure 7.4: The region of (|α|, v) for P (r) α

Figure 7 . 5 : 1 Figure 7 . 6 :

 75176 Figure 7.5: Case |α| < 1 Figure 7.6: Case |α| 1 If one fixes some v = -logr, then |z| = r and |w| = |α| r λ is fixed. The set T 2 r := {(z, w) ∈ D 2 : |z| = r, |w| = |α| r λ } is a torus and the intersection of the leaf L α with this torus is a smooth curve L α,r := L α ∩ T 2 r . When λ ∈ Q, this curve L α,r is closed.

Figure 7 .Figure 7

 77 Figure 7.7: a closed curve on a torus

Figure 7 . 10 :

 710 Figure 7.10: The curve L 1,1 in red and the curve L e 2πiλ ,1 in green

F

  One obtains the equality. If F | H 0, then for any v 0, 2πb u=0 (u, v)du = 2πb(a 0 + b 0 v) 0. Thus a 0 , b 0 0. For α, β ∈ C * , the two maps ψ α and ψ β parametrize the same leaf L α = L β if and only if β = α e 2πi k b for some k ∈ Z, i.e. α and β differ from multiplying a b th -root of unity. Thus a transversal can be chosen as the section T := {α ∈ C * | arg(α) ∈ [0, 2π b )}. One fixes a normalization by setting H α

HH

  α (u + iv) 2 e -2v + λ 2 |α| 2 e -2λ v du ∧ dv dµ(α) α (u + iv) 2 |α| -2 λ e -2v + λ 2 e -2λ v du ∧ dv dµ(α).ByLemma 7.4.1, (7.4.1) H α (u + iv) = k∈Z,k =0 a k (α) e kv b cos( ku b ) + b k (α) e kv b sin( ku b ) + a 0 (α) + b 0 (α) v, where a 0 (α), b 0 (α) are positive for µ-almost all α. Thus ||T || D 2 = 2πb α∈T,|α|<1 v>0

  .4.3) is also uniformly bounded with respect to α and r. Thus L (T, 0) ≈ α∈T a 0 (α) dµ(α) linear part + lim r→0+ b 0 (α) part with v part . Next one analyses the b 0 (α) part. Lemma 7.4.2. The Lelong number of T at 0 is finite only if b 0 (α) = 0 for µ-almost all α ∈ T. Proof. Suppose not, i.e. α∈T b 0 (α) dµ(α) = B 0 > 0. Then L (T, 0) lim r→0+ 2πb α∈T,|α|<r 1-λ b 0 (α)logr dµ(α) + α∈T,|α| r 1-λ b 0 (α)logr dµ(α) = 2πb B 0 lim r→0+ (-logr) = +∞, would contradict the finiteness of the Lelong number stated in Theorem 7.2.10. Thus one may assume b 0 (α) = 0 for µ-almost all α ∈ T. Then the Lelong number L (T, 0) ≈ α∈T a 0 (α) dµ(α) ≈ ||T || D 2 , is strictly positive.

7. 5

 5 Irrational case λ / ∈ Q, λ ∈ (0, 1) Now {z = 0} and {w = 0} are the only 2 separatrices in D 2 . For each fixed α ∈ C * , the map ψ α (ζ) = (e i ζ , α e i λ ζ ) is injective since λ / ∈ Q. Any pair of equivalent numbers α ∼ β, β = α e 2kπiλ , may provide us with two different normalizations H α and H β on the same leaf L α = L β . A major task is to find formulas for the mass and the Lelong number independent by the choice of normalization.

7. 5 .Proposition 7 . 5 . 1 .

 5751 IRRATIONAL CASE λ / ∈ Q, λ ∈ (0, 1)229 If β = α e 2k π i λ for some k ∈ Z, then the two normalized positive harmonic functions H α and H β satisfy H α (u + iv) = H α (2kπ) H β (u -2kπ + iv).

ThusH

  α (u + iv) = h α (e -v+iu , α e -λ v+i λ u ) h α (1, α) = C • h β (e -v+i(u-2k π) , β e -λ v+i λ (u-2k π) ) C • h β (1, α) = h β (e -v+i(u-2k π) , β e -λ v+i λ (u-2k π) ) h β (1, β) • h β (1, β) h β (1, α) = H β (u -2k π + iv) • h β (1, β) h β (1, α) . When u = 2k π and v = 0 one has H α (2k π) = h β (1,β) h β(1,α) . Thus one gets the equality. The proof for the case |α| > 1 is similar. Take the open subset U := {(z, w) ∈ D 2 | z / ∈ R 0 , w = 0}.

Figure 7 .

 7 Figure 7.11: Domain U in coordinates (z, w) Figure 7.12: Domain U in coordinates (u, v)

(|α| 1 )( 7 . 5 . 1 ) 2 .Lemma 7 . 5 . 2 .

 17512752 Since H is harmonic in a neighborhood of H, it is continuous in H. So||T || U = lim →0+ α∈C * v>0 2π+ u=0 H α (u + iv)||ψ α || 2 du dv dµ(α) = lim →0+ ||T ||k∈Z Lα e 2kπiλ = ||T || D Thus we can express the mass by a formula independent of the choice of normalization ||T || D 2 = α∈C * v>0 2π u=0 H α (u + iv)||ψ α || 2 du dv dµ(α). For each k 0 ∈ Z fixed, ||T || D 2 = α∈C * v>0 2k 0 π+2π u=2k 0 π H α (u + iv)||ψ α || 2 du dv dµ(α). Proof. The disjoint union L α ∩ U = k∈Z Lα e 2kπiλ can be parametrized in many other ways. For instance L α ∩ U = k∈Z (e -v+iu , α e 2kπiλ e -λv+iλu ) | u ∈ (2k 0 π, 2k 0 π + 2π), v > log + |α| λ .

4 . 1 )H+ |α| 1 v>0 2πb u=0 Ha 0 2 ||T || rD 2 = lim r→0+ 1 r 2 λ r 2 λ - 2 +|α| 2 r 2 λ - 2 - 1 b 0 2 λ - 2 -

 41u=00222222221022 of Lemma 7.4.1. According to Lemma 7.5.2, the mass is||T || D 2 = α∈C * v>0 2k 0 π+2π u=2k 0 π H α (u + iv)||ψ α || 2 du ∧ dv dµ(α), 7.5. IRRATIONAL CASE λ / ∈ Q, λ ∈ (0, 1)231for any k 0 ∈ Z, in particular, for k 0 = 0, 1, . . . , b -1. Thus, we may calculateb||T || D 2 = α∈C * v>0 2πb u=0 H α (u + iv)||ψ α || 2 du ∧ dv dµ(α), ||T || D 2 = 1 b α∈C * v>0 2πb u=0 H α (u + iv)||ψ α || 2 du ∧ dv dµ(α), α (u + iv) 2(e -2v + λ 2 |α| 2 e -2λ v ) du ∧ dv dµ(α) α (u + iv) 2(|α| -2 λ e -2v + λ 2 e -2λ v ) du ∧ dv dµ(α) , (α) + b 0 (α)v 2(e -2v + λ 2 |α| 2 e -2λ v ) dv dµ(α) + |α| 1 v>0 a 0 (α) + b 0 (α)v 2(|α| -2 λ e -2v + λ 2 e -2λ v ) dv dµ(α) , = 2π |α|<1 a 0 (α) (1 + |α| 2 λ)dµ(α) + |α| 1 a 0 (α) (|α| -2 λ + λ)dµ(α) α) dµ(α) + α∈C * b 0 (α) dµ(α),which is the same expression as in the case λ ∈ Q >0 . Next, the Lelong number is calculated asL (T, 0) = lim r→0+ 1 r 2π |α|<r 1-λ v>-logr a 0 (α) + b 0 (α)v 2 (e -2v + λ 2 |α| 2 e -2λ v ) dv dµ(α) + r 1-λ |α|<1 v> log|α|-logr λ a 0 (α) + b 0 (α)v 2 (e -2v + λ 2 |α| 2 e -2λ v ) dv dµ(α) + |α| 1 v> -logr λ a 0 (α) + b 0 (α)v 2 (|α| -2 λ e -2v + λ 2 e -2λ v ) dv dµ(α) = lim r→0+ 2π |α|<r 1-λ a 0 (α) (1 + λ |α| 2 r 2λ-2 ) dµ(α) + |α| r 1-λ a 0 (α) (|α| -2 λ) dµ(α) 2λ-2logrλ |α| 2 r 2λ-2 logr dµ(α) logrλ -1 |α| -2 λ r 2λ-2 logr + log|α| + λ -1 |α| -2 λ log|α| r 2λ-2 dµ(α) + |α| (α) 1 2 + 1 2 |α| -2 λ r logrλ -1 |α| -2 λ r 2λ-2 logr dµ(α) .exactly the same expression as in the case λ = 1. Using the same argument as in Lemma 7.4.2 one may assume CHAPTER 7. DIRECTED HARMONIC CURRENTS that b 0 (α) = 0 for µ-almost all α ∈ C * . One concludes that L (T, 0) ≈ α∈C * a 0 (α) dµ(α) ≈ ||T || D 2 .

4 . 1 ) 2 |α|<r 1 - 1 λ > 1

 412111 for all k 0 ∈ Z. The Lelong number is expressed byL (T, 0) = lim r→0+ 1 r λ v>-logr 2π u=0 H α (u + iv)||ψ α || 2 du dv dµ(α) + r 1-λ |α|<1 v> log|α|-logr λ 2π u=0 H α (u + iv)||ψ α || 2 du dv dµ(α) + |α| 1 v> -logr λ 2π u=0 H α (u + iv)||ψ α || 2 du dv dµ(α)Recall the Poisson integral formula after multiplying a nonzero constantH α (u + iv) = 1 π y∈R H α (y) v v 2 + (yu) 2 dy + C α v.Using the same argument as in Lemma 7.4.2, one may assume C α = 0 for all α ∈ C * . Lemma 7.5.3. For any v and for any u ∈ R,

2 + 2 + 2 ,

 222 (uy) 2 e -2λv = v v 2 + (uy) 2 + -(u-y) 2 e -2λv v v 2 +(u-y) 2 e -2λv = 1 + -(v1λ ).

7. 5 .Corollary 7 . 5 . 4 . 1 r 2

 575412 IRRATIONAL CASE λ / ∈ Q, λ ∈ (0, 1)233 For any r such that 0 < r e -1 λ , v>-logrH α (u + iv)||ψ α || 2 dv ≈ H α u + (-logr)i , (0<|α|<r 1-λ ) 1 r 2 v> log|α|-logr λ H α (u + iv)||ψ α || 2 dv ≈ H α u + ( log|α|-logr λ )i , (r 1-λ |α|<1) 1 r 2 v> -logr λ H α (u + iv)||ψ α || 2 dv ≈ H α u + ( -logr λ )i , (|α| 1)

Figure 7 . 13 : 1 r 2 ( 1 λ 2 +H)i |α| -2 λ r 2 λ + λ r 2 )≈ r 2 H 2 λ + λ r 2 ) 1 2λ z, e 1 2λHLemma 7 . 5 . 5 .L 2 α∈C * y∈I 0 H 2 k

 7132122222211755202 Figure 7.13: 1 r 2 (The integration over v > -logr) ≈ (The value at the boundary line v = -logr)

7. 6 .

 6 CASE λ < 0. PERIODIC CURRENT, INCLUDING ALL CURRENTS WHEN λ ∈ Q <0 235 7.6 Case λ < 0. Periodic current, including all currents when λ ∈ Q <0 For any α ∈ C * fixed, the leaf L α is contained in a real 3-dimensional analytic Levi-flat CR manifold |w| = |α| |z| λ , which can be viewed as a curve in |z|, |w| coordinates. The norms |z| and |w| depends only on v. No leaf L α tends to the singularity (0, 0). For r sufficiently small, the leaf L α is outside of r D 2 .

Figure 7 . 14 : 2 ||T || rD 2 = lim r→0+ 1 r 2 0<|α|<r 1 H

 714221 Figure 7.14: Case λ < 0

aH-2|α| -2 λ r 2 λ - 2 λ r 2 λ - 2 + 2 λ 2 2 log|α|-logr λ v=-logr 2 v 2 - |α| -2 λ r 2 λ

 222222222 k (α) e kv b cos( ku b ) + b k (α) e kv b sin( ku b ) + a 0 (α) (1 -λ log|α| v) + b 0 (α) v, (7.6.1) for some a k (α), b k (α) ∈ R with a 0 (α) 0 and b 0 (α) 0. According to Lemma 7.5.2, for any k 0 ∈ Z, use the jacobian (7.5.1)||T || D 2 = H α (u + iv) 2 (e -2v + λ 2 |α| 2 e -2λ v ) du dv dµ(α).Next, using 0 = 2πb 0 cos( ku b )du for k = 0 and the same for sin( ku b ), let us calculate the average among k 0 = 0, 1, . . . , b -1 for the mass||T || D 2 α (u + iv) 2 (e -2v + λ 2 |α| 2 e -2λ v ) du dv dµ(α) α) (1 -λ log|α| v) + b 0 (α) v 2 (e -2v + λ 2 |α| 2 e -2λ v ) dv dµ(α),and for the Lelong numberL (T, 0) = lim r→0+ 1 r 2 ||T || rD 2 = lim r→0+ 1 b r 2 0<|α|<r 1-λ log|α|-logr λ v=-logr 2πb u=0 H α (u + iv) 2 (e -2v + λ 2 |α| 2 e -2λ v ) du dv dµ(α) a 0 (α) (1 -λ log|α| v) + b 0 (α) v 2 (e -2v + λ 2 |α| 2 e -2λ v ) dv dµ(α).Introduce the two functions of r ∈ (0, 1] given by elementary integralsI a (r) λ log|α| v) (e -2v + λ 2 |α| 2 e -2λ v ) dv, = 1 + λ |α| 2 r 2λ-2 + 1 2log|α| log(r) + λ|α| -2 |α| 2 r 2λ-2 log(r)λ |α| 2 r 2λ-2 , I b (r) := 1 r (e -2v + λ 2 |α| 2 e -2λ v ) dv = 1 -2 (λ + 2log|α| -2log(r)) λ + |α| 2 r 2λ-2 (1 -2λlog(r)) -2log|α| ,7.6. CASE λ < 0. PERIODIC CURRENT, INCLUDING ALL CURRENTS WHEN λ ∈ Q <0 237 to describe the contributions from a 0 (α) part and from b 0 (α) part.

Figure 7 . 15 : 2 λ

 7152 Figure 7.15: The green = the blue dotted (gives I a (r)) + the yellow dashed (gives I b (r))

λ 2 |α| 2+ 2 λ r 2λ -r 2 λ- 2 ( 1 -λ) λ 3 |α| 2+ 2 λ r 2λ + r 2 λ

 2212 log(r) -2(1λ)λ 2 |α| 2+ 2 λ r 2λ log|α| .

Lemma 7 . 6 . 3 . 2 λ λ 2 r 3 >0-λ 2 |α| 2+ 2 λ r 2λ -r 2 λ+ 2 ( 1 -λ) λ 3 |α| 2+ 2 λ r 2λ + r 2 λ- 2 ( 1 -λ)r 2 λ 1 2 2 λ r 2 λ λ 2 r 3 >0-λ 2

 7632322122121232 For any r ∈ (0, e 1 2 λ (1-λ) ) and any α ∈ C with 0 < |α| < r 1-λ < 1, one has0 < I b (r) < I b (e 1 2λ(1-λ) ) e 1 -λ (1-λ) I b (1). Proof. A differentiation gives d dr I b (r) = |α| -log(r) log|α|It suffices to show that d dr I b (r) > 0 when 0 < r < e λ (1-λ) and 0 < |α| < r 1-λ . Again, introduce the variable t := |α| r 1-λ ∈ (0, 1) and replace α and log|α| in the parenthesesd dr I b (r) = |α| -(t 2+ 2 λ -1) + 2 λ (1λ) (λ 2 t 2+ 2 λ + 1) log(r)

1 . 5 . 1 2λ( 1 1 - 2 λ

 151112 From what precedes, the Lelong number is zeroL (T, 0) = 2 π lim r<e -λ) ,r→0+ 0<|α|<r 1-λ a 0 (α) I a (r) + b 0 (α) I b (r) dµ(α) < 2 π lim r→0+ 0<|α|<r 1-λ a 0 (α) I a (1) + b 0 (α) e (1-λ) I b (1) dµ(α) ≈ 2 π lim r→0+ 0<|α|<r 1-λ a 0 (α) I a (1) + b 0 (α) I b (1) dµ(α) = 0,7.6. CASE λ < 0. PERIODIC CURRENT, INCLUDING ALL CURRENTS WHEN λ ∈ Q <0 239 since ||T || D 2 = 2 π 0<|α|<1 a 0 (α) I a (1) + b 0 (α) I b (1) dµ(α) is finite. CHAPTER 8. HARTOGS' TYPE EXTENSION

Proposition 8 . 1 . 8 .

 818 (Downward uniqueness) If L, L are two holomorphic line bundles defined over Ω b that are isomorphic over Ω a = ∅ with b < a, then they are isomorphic over Ω b .

H 1 ( 6 'H 1 (

 161 Ω, O * ) res 4 / / res ' Ω\K, O * )

res 5 H 1 (

 51 Ω a , O * )

Corollary 8 . 2 . 3 .

 823 Every holomorphic line bundle over a convex domain in C n (n 1) is trivial.

  Take ρ : (C * ) n → [0, +∞), (z 1 , . . . , z n ) → n j=1 (log|z j |) 2 . For any > 0, define G := ρ -1 [0, ). Denote by B(r) := { n j=1 |z j | 2 <r 2 } the open ball centered at the origin of radius r > 0 in C n . Proposition 8.4.4. For every > 0, (i) G ⊂ B( √ ne √ ) is bounded;

(

  log|z j |) 2 < =⇒ (log|z j |) 2 < (j=1,...,n) Actually the boundary ∂G = ρ -1 ( ).We know that ρ is smooth on (C * ) n and dρ = n j=1 log|z j |(dz j z j + dz j zj ). dρ = 0 ⇐⇒ |z j | = 1 (j=1,...,n) ⇐⇒ ρ = 0.

  minB s = 0 we have C s = {0} + C s ⊂ B s + C s ⊂ {0, 1, . . . , d} and B s ⊂ (A s -C s ) ∩ Q 0 = {-d, -d + 1, . . . , d} ∩ Q 0 = {0, 1, . . . , d}, i.e. both h n p (x) and h n q (x) are in Z [0,d] [x]. Example 9.4.5. If n has more than two distinct prime factors, Theorem 9.4.4 may be false, i.e. a unital polynomial f (x) divisible by Φ n (x) may not admit any unital recurrent decomposition. A counterexample appears when n = 105 = 3 × 5 × 7 and f (x) = x 5 + x 6 + x 10 + x 25 + x 27 + x 35 + x 40 + x 48 + x 50 + x 65 + x 69 + x 70 + x 80 + x 85 + x 95 + x 100 = (1 + x 5 + x 10 + x 15 + x 25 + x 30 ) G(105, 35; x) + x 6 G(105, 21; x) -G(105, 15; x). Here f (x) is unital and f (1) = 16. However if we suppose f (x) = h 35 (x) G(105, 35; x) + h 21 (x) G(105, 21; x) + h 15 (x) G(105, 15; x) for some unital h 35 (x), h 21 (x) and h 15 (x), then 16 = 3 h 35 (1) + 5 h 21 (1) + 7 h 15 (1), where h 35 (1), h 21 (1), h 15 (1) ∈ Z 0 . The only solutions h 35 (1), h 21 (1), h 15 (1) to this equation are (0, 2, 2) and (1, 0, 3), hence either h 21 (1) or h 15 (1) is 0, i.e. either h 21 or h 15 is 0 since they are unital. In the first case e 2πi 15 is a root of h 35 (x) G(105, 35; x) + h 21 (x) G(105, 21; x) but not a root of f (x). In the second case e 2πi 21 is a root of h 35 (x) G(105, 35; x) + h 15 (x) G(105, 15;

Table 9 . 1 :

 91 The values of each polynomial at 3 special points G(105, 35; x) G(105, 21; x) G(105, 15;

q- 1 u=0b 1 v=0 c v x v , 264 CHAPTER 9 .

 112649 u x u , h p (x) = p-ON NONSINGULARITY OF CIRCULANT MATRICES and write

By 44 j=0 a j x j , h 15 (x) = 14 u=0 b u x u , h 9 (x) = 8 v=0c

 44151498 Corollary 9.7.3 we have a unique 3-uniformized unital (3, 5)-recurrent decomposition of f (x) with respect to 45, i.e. f (x) = h 15 (x) G(45, 15; x) + h 9 (x) G(45, 9; x), where h 15 (x), h 9 (x) ∈ Z[x] are unital and if we writef (x) = v x v ,for s = 0, 1, 2 we may define A s := {a 3l+s : l = 0, . . . , 14} ⊂ {0, 1}, B s := {b 3l+s : l = 0, . . . , 4} ⊂ {0, 1}, C s := {c 3l+s : l = 0, . . . , 2} ⊂ {0, 1}.Here we have minB s = 0 for any s = 0, 1, 2. Moreover 22 = f (1) = 3h 15 (1) + 5h 9 (1) where h 15 (1), h 9 (1) ∈ Z 0 , hence h 15 (1) = 4, h 9 (1) = 2.Each f (x) corresponds to a unique choice of b 0 , . . . , b 14 , c 0 , . . . , c 8 ∈ {0, 1} satisfying the following conditions:

  choices. Case (1.2): there are 2 s such that 1 ∈ C s . There are 3 choices. Hence there are 2025 choices of unital f (x) divisible by Φ 45 (x), corresponding to 2025 singular matrices.

9. 7 . 2

 72 Case (2): Φ 15 (x) divides f (x)

3 d

 3 (x) corresponds to 14 j=0 j unital f (x).

  For

9. 7 . 4 u=0b u x u , h 3 (x) = 2 v=0c

 7432 THE NUMBER OF SINGULAR MATRICES WHEN K = 22 267 any f(15) (x) divisible by Φ 15 (x), by Corollary 9.7.3 it admits a unique 3-uniformized unital (3, 5)-recurrent decomposition with respect to 15:f (15) (x) = h 5 (x) G(15, 5; x) + h 3 (x) G(15, 3; x),where h 5 (x), h 3 (x) ∈ Q[x] and if we writeh 5 (x) = v x v ,defineA 0 := {d l : l = 0, . . . , 14} ⊂ {0, 1, 2, 3}, B 0 := {b l : l = 0, . . . , 4}, C 0 := {c l : l = 0, . . . , 2}.

2 .

 2 minB 0 = 0, 3. maxB 0 + maxC 0 3.

14 j=0d j x j there are 14 j=0 3 d

 143 j = 3 #{j : d j =1,2} choices of unital f (x).

Table 9 . 2 :

 92 Possible values of (b 0 , . . . , b 4 ), (c 0 , c 1 , c 2 ) up to permutations

268CHAPTER 9 .

 9 ON NONSINGULARITY OF CIRCULANT MATRICES 9.7.3 Double counts: both Φ 15 (x) and Φ 45 (x) divide f (x) Suppose a unital f (x) with degf (x) < 45 is divisible by both Φ 15 (x) and Φ 45 (x). As in case (1) there exist some unital h 15 (x), h 9 (x) such that f (x) = h 15 (x) G(45, 15; x) + h 9 (x) G(45, 9; x), with h 15 (1) = 4. Take value at ζ 15 := e 2πi 15 . Since f (x) is divisible by Φ 15 (x) we have f (ζ 15 ) = 0. We also have G(45, 15; ζ 15 ) = 3, G(45, 9; ζ 15 ) = 0. Hence h 15 (ζ 15 ) = 0. We conclude that h 15 (x) is divisible by Φ 15 (x). It is also unital and degh 15 (x) < 15. By Theorem 9.4.4, h 15 (x) admits a unital (3, 5)-recurrent decomposition with respect to 15: h 15 (x) = h 5 (x) G(15, 5; x) + h 3 (x) G(15, 3; x),

  pénétrant la frontière ∂G ε à travers un petit trou en p.

	au point:	l'origine et de rayon 2 √ n e √ p := e . Aussi, nous prendrons une petite boule ouverte p ⊂ U p ⊂ C n centrée √ /n , . . . , e √ /n ∈ ∂G ,

  , y, u . Definition 4.2.4. A differential invariant of order n is a function of the horizontal coordinates and the partial derivatives of the graphing function up to order n I s, t, G s l t m (s, t) 0 l+m n ≡ I x, y, F x j y k (x, y) 0 j+k n , which is unchanged after replacement of (s, t, v) in terms of g, x, y, u , for every g ∈ SA 3 (R). Describe the structure of the algebra of differential invariants of surfaces under the action of SA 3 (R).

	Problem 4.2.5. In this memoir, we will focus on Problems 4.2.2 and 4.2.5, in the spirit of [79, 37, 80, 82, 83, 85].
	To a graphed surface u = F (x, y) is associated its Hessian matrix
	Hessian F =	F xx F xy F yx F yy	.
	Definition 4.2.6. [36] A relative invariant is a function satisfying	
	P s, t, G s l t m (s, t) 0 l+m n ≡ nonzero • P x, y, F x j y k (x, y) 0 j+k n ,

5/3 Fxx 10 9 FxxxxxFxx 2 -45 FxxxFxxxxFxx + 40 Fxxx 3 11200 Fxxx 8 -12600 Fxxx 3 FxxxxxFxx 3 Fxxxx + 13230 FxxxFxxxxxFxx 4 Fxxxx 2 + 1134 FxxxFxxxxxFxx 5 Fxxxxxx -3150 Fxxx 2 FxxxxFxx 4 Fxxxxxx -810 FxxxxxxxFxx 5 FxxxFxxxx -33600 Fxxx 6 FxxxxFxx -7875 Fxxx 2 Fxxxx 3 Fxx 3 -756 Fxxx 2

  Fxxxxx 2 Fxx 4 + 6720 Fxxx 5 FxxxxxFxx 2 + 31500 Fxxx 4 Fxxxx 2 Fxx 2 -4725 Fxxxx 4 Fxx 4 -189 Fxxxxxx 2 Fxx 6 + 1890 Fxxxx 2 Fxx 5 Fxxxxxx -2835 FxxxxFxx 5 Fxxxxx 2 + 162 FxxxxxxxFxx 6 Fxxxxx + 720 FxxxxxxxFxx 4 Fxxx 3 .

1

  Fxx 6 (-FxxyFxx + FxxxFxy) FxxFxxxxFxy -Fxx 2 Fxxxy + 2 FxxxFxxyFxx -2 Fxxx 2 Fxy 270 Fxx 6 FxxxxyFxxy 2 Fxxxx -72 FxxxFxxxxxFxx 5 Fxxy 3 + 820 FxxxFxx 3 Fxxxx 3 Fxy 3 -2195 Fxxx 3 Fxx 2 Fxxxx 2 Fxy 3 + 2560 Fxxx 5 FxxFxxxxFxy 3 + 2000 Fxxx 2 Fxx 5 Fxxxy 2 Fxxy -2000 Fxxx 3 Fxx 4 Fxxxy 2 Fxy -3040 Fxxx 3 Fxx 4 FxxxyFxxy 2 -3040 Fxxx 5 Fxx 2 FxxxyFxy 2 -3840 Fxxx 5 Fxxy 2 Fxx 2 Fxy + 3840 Fxxx 6 FxxyFxxFxy 2 -420 Fxxxx 3 Fxx 4 FxxyFxy 2 + 480 FxxxxFxx 4 Fxxy 3 Fxxx 2 -420 FxxyFxx 6 FxxxxFxxxy 2 + 192 Fxxx 4 Fxx 2 FxxxxxFxy 3 -120 Fxxx 2 Fxx 5 FxxxxyFxxy 2 -120 Fxxx 4 Fxx 3 FxxxxyFxy 2 + 36 FxxxxxFxx 6 Fxxy 2 Fxxxy + 45 Fxx 6 Fxxxxy 2 FxxxFxy -45 Fxx 5 Fxxxxx 2 Fxy 2 Fxxy + 45 Fxx 4 Fxxxxx 2 Fxy 3 Fxxx -120 Fxx 4 FxxxxxFxy 3 Fxxxx 2 -120 Fxx 6 FxxxxxFxyFxxxy 2 + 120 Fxx 5 FxxxxyFxxxx 2 Fxy 2 + 1280 Fxxx 4 Fxxy 3 Fxx 3 -400 FxxxFxx 6 Fxxxy 3 -45 Fxx 7 Fxxxxy 2 Fxxy -405 Fxxy 3 Fxx 5 Fxxxx 2 + 120 Fxx 7 FxxxxyFxxxy 2 -1280 Fxxx 7 Fxy 3 -5200 Fxxx 2 Fxx 4 FxxxxFxyFxxxyFxxy + 432 FxxxFxx 4 FxxxxFxy 2 FxxxxxFxxy -360 FxxxFxx 5 FxxxxFxyFxxxxyFxxy + 108 FxxxFxx 5 FxxxyFxxxxxFxyFxxy -2040 FxxxFxx 4 Fxxxx 2 Fxy 2 Fxxxy + 1985 Fxxx 2 Fxx 3 Fxxxx 2 Fxy 2 Fxxy + 1620 FxxxFxx 5 FxxxxFxyFxxxy 2 + 4600 Fxxx 3 Fxx 3 FxxxxFxy 2 Fxxxy + 1600 Fxxx 3 Fxx 3 FxxxxFxyFxxy 2 -4640 Fxxx 4 Fxx 2 FxxxxFxy 2 Fxxy + 6080 Fxxx 4 Fxx 3 FxxxyFxxyFxy + 840 Fxxxx 2 Fxx 5 FxxyFxyFxxxy + 615 Fxxxx 2 Fxx 4 Fxxy 2 FxyFxxx + 600 FxxxxFxx 5 Fxxy 2 FxxxyFxxx + 336 Fxxx 2 Fxx 4 FxxxxxFxyFxxy 2 -456 Fxxx 3 Fxx 3 FxxxxxFxy 2 Fxxy -126 Fxxx 2 Fxx 3 FxxxxFxy 3 Fxxxxx + 90 Fxxx 2 Fxx 4 FxxxxFxy 2 Fxxxxy -144 Fxxx 2 Fxx 4 FxxxyFxxxxxFxy 2 -306 Fxx 5 FxxxxxFxyFxxxxFxxy 2 + 240 Fxxx 3 Fxx 4 FxxxxyFxxyFxy -180 FxxxFxx 6 FxxxyFxxxxyFxxy + 180 Fxxx 2 Fxx 5 FxxxyFxxxxyFxy + 90 Fxx 6 FxxxxxFxyFxxxxyFxxy -90 Fxx 5 FxxxxxFxy 2 FxxxxyFxxx + 240 Fxx 5 FxxxxxFxy 2 FxxxxFxxxy -240 Fxx 6 FxxxxyFxxxxFxyFxxxy .

  Every partial derivative F x k y l in the red region with l 2 expresses rationally in terms of the partial derivatives in the black region

	F 4 xy Fxxxx
	F 4 xx

.

Similar quite longer formulas exist for F xxxyy , F xxyyy , F xyyyy , F yyyyy , for the memory of a computer, this is nothing, even for jets up to order 7. It is also easy to prove by induction CHAPTER 4. ON DIFFERENTIAL INVARIANTS OF PARABOLIC SURFACES Observation 4.10.2.

  .14. RECURRENCE FORMULAS FOR DIFFERENTIAL INVARIANTS 89 have coefficients computed by applying Theorem 4.3.7

  .15. MOVING FRAME METHOD AND RECURRENCE RELATIONS FOR CURVES 95 one invariantizes this matrix, one transposes it, and one gets the phantom recurrence relations (4.15.1) for k = 1, 2, 3  

  .16. AFFINE DIFFERENTIAL INVARIANTS OF CURVES IN R 2 97 and if we come back to initial functional jets, we get new values

  .10, but it is enlightening to provide another proof which requires no integration, only basic differential algebra, cf. [67, Thm. 4.1]. The ordinary differential equation 0 ≡ -5F 2 xxx + 3 F xx F xxxx is invariant not only under the SA 2 (R) action, but also under general affine transformations, for one can prove directly ([67, p. 26]) that if a graph u

  Proposition 4.17.9.[67, 5.8] With this hypothesis, in terms of the nowhere vanishing quantity

	2,0

. Beyond Theorem 4.8.5, again with affine transformations not far from the identity, we have the CHAPTER 4. ON DIFFERENTIAL INVARIANTS OF PARABOLIC SURFACES

  ON DIFFERENTIAL INVARIANTS OF PARABOLIC SURFACESare linearly independent at a generic point, hence span the tangent space to PJ4 2,1 almost everywhere, but this is not the case.

	110	CHAPTER 4.					
						4 2,1 and tangent to the submanifold PJ 4 2,1 of parabolic
	jets								
	pj * v pj * v	(4) 1 (4) 7	, pj * v , pj * v	(4) 2 (4) 8	, pj * v , pj * w (4) 3 (4) 1	, pj * v , pj * w (4) 4 (4) 2	, pj * v , pj * w (4) 5 (4) , pj * v 3 ,	(4) 6	,

  4.17. PARABOLIC SURFACES S 2 ⊂ R 3 : INVARIANT W OF ORDER 4
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	are deleted. A computer gives
	det

  Every partial derivative F x k y l in the red region with k + l O and O 2 expresses rationally in terms of the partial derivatives in the black regionF x k k O , FUsing the jet notation, this means that we will exclusively work in the submanifold of the jet space J O

	1) Figure 4.10: Representation of independent jets in the branch W ≡ 0. k l CHAPTER 4. ON DIFFERENTIAL INVARIANTS OF PARABOLIC SURFACES Observation 4.19.1. 118 x,u

y , F xy , F xxy , with denominators containing only powers F xx * .

  .21. EXPLICIT INVARIANT DIFFERENTIAL OPERATORS D 1 AND D 2 127 4.21 Explicit Invariant Differential Operators D 1 and D 2 In order to double-check the overall theoretical coherency of our recurrence formulas satisfied by infinitely many differential invariants, let us raise Question 4.21.1. How to make explicit the two invariant differentiation operators D 1 and D 2 ?

an operator which can raise the order by at most 1. The commutator does not generate anything other than the invariant derivations D 1 , D 2 would do. One can double-check this formula by calculating D 1 , D 2 X = 0 = -D 1 X.

4

  Relation with the classification of developable surfaces: SA 3 (R)-invariant PDEs for cylinders and cones A surface in R 3 is called a ruled surface if it can be parametrized by a family of lines (rulers)

	4.22 x(t, v) = α(t) + v w(t)	(t∈(0,1), v∈R),
	where α(t), w(t) are C 1 -smooth. It is called developable if	
	( w, w , α ) ≡ 0.	
		2	,
		3,0

  finished the 134 CHAPTER 4. ON DIFFERENTIAL INVARIANTS OF PARABOLIC SURFACESdelicate classification of affinely homogeneous surfaces in R 3 having vanishing Pick invariant. This full classification was done again later by Eastwood-Ezhov[START_REF] Eastwood | On affine normal forms and a classification of homogeneous surfaces in affine three-space[END_REF], who employed the power series method, without considering algebras of differential invariants. In the literature, we did not find an answer to the simple Question 4.23.1. What are the special affinely homogeneous surfaces S 2 ⊂ R 3 ?

  The degree δ truncation of F (z, ζ, z, ζ), denoted by F (z, ζ, z, ζ), is the image of F (z, ζ, z, ζ) after the group action. It depends on the coefficients F a,b,c,d with a + b + c + d δ only, hence is independent of the choice of F (z, ζ, z, ζ). The group action is well-defined. More precisely Proposition 5.8.12. There is a group action of RT δ-1 on H δ . The group action of RT on H δ factors through the projection π δ-1 : RT → RT δ-1 , i.e. the following diagram commutes:

  j , as a power series of z, ζ or z, ζ, starts from degree 1. So only fj,n-j , gj,n-j and their conjugations with n δ -1 contribute to F a,b,c,d with a + b + c + d δ. The group action of RT δ-1 on H δ can be well-defined and the commutative diagram is satisfied. CHAPTER 5. NORMAL FORMS FOR RIGID C 2,1 HYPERSURFACES M 5 ⊂ C 3 RT δ-1 9 21 37 57 81 109 141 dim R H δ 3 11 26 50 85 133 196

	Compare the two tables of dimensions:						
	δ 2	3	4	5	6	7	8
	dim R						

  Invariants I 0 , V 0 , Q 0 at Every Point Since the RT action on H δ factors through π δ-1 : RT → RT δ-1 , we have the Proposition 5.9.1. A rational function on H δ is invariant under the RT action if and only if it is invariant under the RT δ action.

					dimension, or
	differential invariants, show up.				
	*				
	*	! ! *			
	*	inv	*		
	*	inv	*	*	
	*	inv	*	inv	*
	5.9				

  3,1 I 2,2 -3I 4,1 I 2,2 , + 36 I 2,2 I 3,1 -40 I 2 3,1 -6 I 3,1 , (F 52) 0 = 30 I 2,2 I 3,1 + 72 I 2,2 I 2 3,1 -18 I 2,2 I 5,0 I 3,1 -63 4 I 2

	(F 51) 0 = 24 I 2 3,1 I 5,0 -2 I 2 5,0 I 3,1 -15 2 I 2,2 I 5,0 + 7 I 5,0 I 3,1 + 21 2 I 2,2 -64 I 3 3,1 2,2

  2•2•1 and B 2•2•2 .In the third branch B 2•2•1 where G 3,0 = 0 ≡ G 0,3 ≡ G 4,0 and G 3,1 = 0, the normal form

	6.1. INTRODUCTION TO AFFINE HOMOGENEOUS SURFACES	201
	Proposition 6.1.3. u = x y +	x 3 6	+	x 3 y 6	+	x 5 30	+	j+k 6

  2 xy F xx F xxy + 18F yy F xy F xyy F xx F xxy + 6F yy F yyy F 2 xx F xxy -9F 2 yy F xx F 2 xxy + 8F yyy F 3 xy F xxx -12F yy F 2 xy F xyy F xxx -6F yy F yyy F xy F xx F xxx + 6F 2 yy F xyy F xx F xxx + 6F 2 yy F xy F xxy F xxx -F 3 yy F 2

	xxx

  Remark 6.2.2. Indeed the polynomial ring C

2 

1,1 -F 2,0 F 0,1 ] with 36 monomials.

  = 0 we can normalize it to 1 by a unique choice of µ. In this case we get the normal form

	6.3. NON-VANISHING PICK, BRANCH B 1		207
	If I rel 4,0 u = xy +	x 3 6	+	x 4 24	+	4 k=1

  where λ 1 , λ 2 ∈ C are not simultaneously zero.3. linearizable if it is linear after a biholomorphic change of coordinates.Suppose the holomorphic vector field Z = P ∂ ∂z + Q ∂ ∂w admits a singularity at the origin. Let λ 1 , λ 2 be the eigenvalues of the Jacobian matrix P z P w Q z Q w at the origin.

Definition 7.2.3. The singularity is non-degenerate if both λ 1 , λ 2 are non-zero. This condition is biholomorphically invariant.

  1-λ and log|α| by log(t) + (1λ)log(r)

	d dr	I a (r) =	|α| -2 λ r λr 3 log|α| 2 λ	λ 2 (t 2+ 2 λ -1) -2 (1 -λ) (t 2+ 2 λ + 1)log(r)
				>0	
				-2 (1 -λ) λ 2 t 2+ 2 λ log(t)
					>0
		>	|α| -2 λ r λr 3 log|α| 2 λ	λ 2 (t 2+ 2 λ -1)	-2 (1 -λ) (t 2+ 2 λ + 1)log(r)	> 0,
					0	>0
	since λ ∈ [-1, 0) implies t 2+ 2 λ	1.	

Nous aimerions mentionner que le produit G3,0 G0,3 est un multiple non nul de l'invariant de Pick, dont l'annulation identique caractérise les surfaces réglées.

We would like to mention that the product G3,0 G0,3 is a nonzero multiple of the so-called Pick invariant, whose identical vanishing characterizes ruled surfaces.

On p. 76, the reader will find its explicit expression. Thanks are adressed to Paweł Nurowski for his help.

* * * * • • • v 2 * * * * * * • • • v 3 * * * * * * • • • v 4 * * * * * * • • • v 5 * * * * * * • • • v 6 * * * * * * • • •

Proof. This is consequence of Fels-Olver[START_REF] Fels | Moving coframes. II. Regularization and theoretical foundations[END_REF] Theorem 13.3]. The proof is by an induction on the order. All non-phantom invariants of order k 6 are generated by V , V , Q and their invariant derivatives. Suppose all non-phantom invariants of order k = k 0 6 are generated by V , V , Q and their invariant derivatives, then for those of order k = k 0 + 1, recall the division of three types:• Type 1: I a,0,k 0 +1-a,0 for 3 a k 0 ;

We would like to mention that the product G3,0 G0,3 is a nonzero multiple of the so-called Pick invariant, whose identical vanishing characterizes ruled surfaces. The numerator of the product G3,0 G0,3 is shown in the beginning of Section 6.2. The numerator of G3,0 is shown in (6.2.3).

This is a joint work with Merker J.. This work was supported in part by the Polish National Science Centre (NCN) via the grant number 2018/29/B/ST1/0258. This is a joint work with Merker J.. This work was supported in part by the Polish National Science Centre (NCN) via the grant number 2018/29/B/ST1/02583.
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is not simple, as its numerator is a non-factorizable homogeneous polynomial of degree 15 in the jet variables up to order 6 having 431 monomials.

For some time, we were afraid that this unpleasant numerator indicated there existed a mistake in our recurrence formulas.

But if one really applies the Cramer formulas to the first linear system

, one realizes that this large complicated numerator is in fact an extraneous factor, namely it cancels as it appears both in numerator and in denominator places for both α and β.

After clearing this factor and cleaning, we receive

1 u 2,0 u 2,0 u 2,1u 1,1 u 3,0 2/3 u 1,1 u 2,0 u 4,0u 2 2,0 u 3,1 + 2u 2,0 u 2,1 u 3,0 -2u 1,1 u 2 3,0 12 u 3,0 u 2 2,1 u 2 2,0 -6 u 3,1 u 2,1 u 3 2,0 -44 u 2 3,0 u 1,1 u 2,1 u 2,0 + 16 u 3,0 u 3,1 u 1,1 u 2 2,0 + 15 u 4,0 u 1,1 u 2,1 u 2 2,0 -3 u 1,1 u 4,1 u 3 2,0 + 32 u 3 3,0 u 2 1,1 -25 u 4,0 u 2 1,1 u 3,0 u 2,0 + 3 u 5,0 u 2 1,1 u 2 2,0 , and β := 1 6 1 u 2,0 u 2,1u 1,1 u 3,0 2/3 u 1,1 u 2,0 u 4,0u 2 2,0 u 3,1 + 2u 2,0 u 2,1 u 3,0 -2u 1,1 u 2 3,0 20 u 2,0 u 2,1 u 2 3,0 -10 u 3,0 u 2 2,0 u 3,1 -9 u 2 2,0 u 2,1 u 4,0 + 3 u 4,1 u 3 2,0 -20 u 1,1 u 3 3,0 + 19 u 3,0 u 1,1 u 2,0 u 4,0 -3 u 1,1 u 2 2,0 u 5,0 .

The same extraneous factor from ∆ also disappears from Cramer's formulas in the second linear system, and we receive rather neat and simpler expressions for γ := -u 2,0 u 1,1 u 2,0 u 2,1u 1,1 u 3,0 and for

A computation of the determinant

confirms a property stated by the general theory

Lastly, with these explicit formulas for D 1 and D 2 , we verify on a computer, after computing independently also, say, I 7,0 , I 6,1 (and so on), that the next few recurrence formulas hold identically.

In conclusion, this confirms explicit coherency of all our formulas. Normal forms for rigid C 2,1 hypersurfaces M 5 ⊂ C 3

One half of this chapter [not paper] is published in The Taiwanese Journal of Mathematics.

[2] Chen, Z.; Foo, W.; Merker, J.; Ta T.: Normal Forms for Rigid C 2,1 Hypersurfaces M 5 ⊂ C 3 , Taiwanese J. Math. -1(-1), (2021), 1-32, DOI :

10.11650/tjm/200903, arxiv : 1912.01655.

The second half, especially Section 5.8, is submitted to Confluentes Mathematici. This is a joint work with Foo W., Merker J. and Ta T.. This work was supported in part by the Polish National Science Centre (NCN) via the grant number 2018/29/B/ST1/0258. The G-M model has 7-dimensional rigid automorphisms group.

A Cartan-type reduction to an {e}-structure was done by Foo-Merker-Ta. Three relative invariants appeared: V 0 , I 0 (primary) and Q 0 (derived). In Pocchiola's formalism, Section 8 provides a finalized expression for Q 0 .

The goal is to establish the Poincaré-Moser complete normal form:

with 0 = G a,b,0,0 = G a,b,1,0 = G a,b,2,0 and 0 = G 3,0,0,1 = Im G 3,0,1,1 .

We apply the method of Chen-Merker to catch (relative) invariants at every point, not only at the central point, as the coefficients G 0,1,4,0 , G 0,2,3,0 , Re G 3,0,1,1 . With this, a complete brige Poincaré ←→ Cartan is constructed.

In terms of F , the numerators of V 0 , I 0 , Q 0 incorporate 11, 52, 824 differential monomials. except of course F 1,0,1,0 = 1 and F 2,0,0,1 = 1 2 = F 0,1,2,0 . An equivalent way to express prenormalization is to write that as a perturbation of the Gaussier-Merker model:

We remark that here the remainder function G here cannot be arbitrary. It must be so that Levi(m + G) ≡ 0.

The subgroup of rigid transformation which fixes this prenormalized form has real dimension 5 (finite). Among them, 3 real dimensions can be used to normalize G 3,0,0,1 = 0, Im G 3,0,1,1 = 0, while the rotation and the dilation z = ρ, e iϕ z, ζ = e -2iϕ ζ, w = ρ 2 w generate the isotropy group stabilizing the form. We may at last state our main Theorem 5.1.3. Every hypersurface M 5 ∈ C 2,1 is equivalent, through a local rigid biholomorphism, to a rigid C ω hypersurface M 5 ⊂ C 3 which, dropping primes for target coordinates, is a perturbation of the Gaussier-Merker model: (3) satisfies in addition the sporadic normalization conditions:

G 3,0,0,1 = 0 = G 0,1,3,0 , Im G 3,0,1,1 = 0 = Im G 1,1,3,0 .

Furthermore, two such rigid C ω hypersurfaces M 5 ⊂ C 3 and M 5 ⊂ C 3 , both brought into such a normal form, are rigidly biholomorphically equivalent if and only if there exist two constants ρ ∈ R * + , ϕ ∈ R, such that for all a, b, c, d: e iϕ(a+2b-c-2d) .

Employing the letter R for unspecified functions, this amounts to: The Levi form being of rank 1 at 0, we may assume:

Assertion 5.5.3. After a rigid biholomorphism fixing 0:

Proof. We can decompose:

with χ = O(2). Then:

) is absorbable, hence:

Thus, we perform the rigid biholomorphism z := z + χ(z, ζ), ζ := ζ, with inverse:

Hence z 2 = z 2 R + ζ R , and lastly:

Next, dropping primes, specifying 3 rd order (real) terms Next, let us look at 4 th order terms which depend only on (z, z), especially at the monomial e z 2 z 2 with e := F 2,0,2,0 ∈ R. We can make e = 0 thanks to ζ := ζ + e z 2 :

So we can assume F 2,0,2,0 = 0. We then write: [START_REF] Alessandrini | Plurisubharmonic currents and their extension across analytic subsets[END_REF] and with no z 2 monomial in the remainder. Hence with some function τ (z) which is an O z (3), and with some function ω(z, ζ) = O z,ζ (1), we devise which biholomorphism to perform:

Assertion 5.5.5. The inverse

Proof. Indeed, by definition:

and it suffices to put ζ := 0 to get a concluding relation which even shows that ord 0 τ = ord 0 τ :

All this enables to reach the goal (5.5.2) since τ (z ) is absorbable in z 3 R :

Coordinates like in Proposition 5.5.1 will be called prenormalized. Equivalently (exercise):

with only three exceptions F 1,0,1,0 = 1 and F 2,0,0,1 = 1 2 = F 0,1,2,0 . During the proof, in (5.5.4), we obtained simultaneously: 

A general M ∈ C 2,1 is just a perturbation of it:

.

Question 5.5.12. Suppose given two rigid hypersurfaces prenormalized as before:

Is it true that the group of rigid biholomorphisms at the origin between them:

Here, the two appearing remainders O z,z [START_REF] Andreotti | Théorème de finitude pour la cohomologie des espaces complexes[END_REF] and

, hence by subtraction, we get that G is more than just an O z,z (3). The synthesis between these two conditions will be made in Section 5.7.

Weighted Homogeneous Normalizing Biholomorphisms

Now, inspired by Jacobowitz's presentation [START_REF] Jacobowitz | An introduction to CR structures[END_REF] of Moser's normal form in C 2 , Propositions 5.5.7 and 5.5.11 justify to introduce the spaces:

where lower indices denote homogeneous components with respect to the weighting (5.4.1) defined by:

The goal is to use the 'freedom' space D of rigid biholomorphisms in order to 'normalize' as much as possible the remainder G in the graphed equation {u = m + G of any given hypersurface. Here, m =

Both G and D decompose as direct sums graded by increasing weights:

and the (upcoming) justification for the shifts in D ν will be due to two multipliers:

One can figure out that G 2 := m and G 2 := m are already finalized normalized. With increasing weights ν = 3, 4, 5, . . . , we shall perform successive holomorphic rigid transformations of the shape:

When ν

1 is high, it is intuitively clear that such transformations close to the identity will preserve previously achieved low order normalizations; to make this claim precise, let us follow and adapt [START_REF] Jacobowitz | An introduction to CR structures[END_REF]Chap. 3]. Proposition 5.6.2. Through any biholomorphism (5.6.1) which transforms:

homogeneous terms are kept untouched up to order ν -1:

while:

Thus, by appropriately choosing (f ν-1 , g ν-2 , h ν ), we will be able to 'kill' many monomials in G ν , hence make G ν simpler, or normalized. Exercise: verify that in fact h ν ≡ 0 necessarily, when F and F are assumed to be prenormalized.

Proof. As already seen, the fundamental equation, holding identically, is:

Decomposing F = m + G, F = m + G and reorganizing, it becomes:

A reduction of the left hand side to the same denominator shows after algebraic simplifications:

that this left-hand side is O(ν), hence has zero π ν-1 (•) = 0. Moreover, its homogeneous degree ν part is obtained by taking only weighted degree zero terms in the denominator, namely numerator (1-ζζ) 2 -Re h ν , and one recognizes reconstitutes m z , m ζ as homogeneous multipliers of weights 1, 2:

It remains to treat π ν (•) of the right-hand side:

Assertion 5.6.3. For each 3 µ ν:

Proof. All possible monomials in G µ with a + c = µ 3 after binomial expansion:

We therefore obtain an identity in which all arguments are (z, ζ, z, ζ):

Applying π ν-1 annihilates both the left-hand side and

Once this is done, it is easy to see that preserving maintaining the normalization:

Assertion 5.7.7. In prenormalized coordinates which satisfy in addition G 3,0,0,1 = 0, the coefficient:

is an invariant (at the origin).

In the next Section 5.9, we will show how to deduce the expression of corresponding invariants at every point (not only the origin) of a rigid hypersurface.

After such a normalization, we get:

with, possible, a nonzero real constant a, and possibly, a remainder that is not prenormalized.

Fortunately, we can apply the process of Proposition 5.5.1 to prenormalize again the coordinates, making in particular a = 0, without perturbing the normalizations obtained up to order 4 included.

Lastly, treat weight ν = 4. The freedom function modulo ζζ(• • • ), is:

is preserved if and only if:

Thus now, only 1 real degree of freedom is left:

With this, how can one normalize

The third line shows an invariant. Notice also that G 4,0,0,1 = G 4,0,0,1 is an invariant. We choose to normalize the lowest jet order 3 + 0 + 1 + 1 = 5 coefficient here. Assertion 5.7.9. One can normalize Im G 3,0,1,1 := 0 by choosing τ := Im G 3,0,1,1 .

Once this is done

Again, we can re-apply the process of Proposition 5.5.1 to prenormalize the coordinates without touching the lower order normalizations.

We already saw in Lemma 5.7.4 that for any weight ν 5, no degree of freedom exists. Since only 2+1 = 3 real degrees of freedom have been encountered, namely f 0 ∈ C in weight ν = 3 and Im g 0 ∈ R in weight ν = 4, we conclude that the answer to Question 5.5.12 is positive.

All this enables us to conclude the present section by stating results which come from our analysis. 

whose Levi form is of constant rank 1 and which is 2-nondegenerate:

is equivalent, through a local rigid biholomorphism:

to a rigid C ω hypersurface M 5 ⊂ C 3 which, dropping primes for target coordinates, is a perturbation of the Gaussier-Merker model -homogeneous of order 2 in (z, z) -:

with a simplified remainder G which:

(2) satisfies the prenormalization conditions

, or equivalently:

(3) satisfies in addition the sporadic normalization conditions:

There is of course no uniqueness of a rigid biholomorphic map which transfers M to an M satisfying all these normalization conditions (1), (2), (3), just because any post-composition with a dilation-rotation map:

will transfer M into an M = {u = m + G } which enjoys again the normalization conditions (1), ( 2), (3), since one obviously has:

Remind that such dilation-rotation maps parametrize the 2-dimensional isotropy group of the origin for the Gaussier-Merker model u = m(z , ζ , z , ζ ) . Fortunately, an examination of our analysis above can show that these two parameters ρ, ϕ are the only ambiguity, since once one assumes that We define H

(1) 5

1,0,1,0 = 1 and F

(1)

= 50 -3 = 47.

Its stabilizer group RT

(1)

4 consists of (f, g, ρ) such that

4 = 57 -3 = 54.

5.9.2 Second normalization: F

a,b,1,0 = 0 for (a, b) = (1, 0). Now, we study the group action of RT

4 on H

5 . Any element in H

(1) 5

has expansion:

After the rigid transformation in RT

: Lemma 5.9.2. The inverse of ( * ) in RT

4 is of the form

. 

2,0,0,1 = 0. So after the rigid transformation:

We define H

(3) 5

For any fixed element F (3) ∈ H

(3) 5 , there exists some

whose third normalization is equal to F (3) . For example, we can take F (2) = F (3) . The stabilizer RT

4 (F (3) ) satisfying g 0,1 = e 2 i θ , i.e.

Fourth normalization:

has expansion: 

4 :

2,0,2,0 z 2 , w = w, ( * * )

The relations are

2,0,2,0 + F

2,0,3,0 .

We define H

5 , a codimension 1 submanifold of H by requiring

= 21-1 = 20.

INVARIANTS I

For any fixed element F (4) ∈ H (4) 5 , the stabilizer RT (4) 4 (F (4) ) is a codimension 1 subgroup of some RT

(3) 4 (F (4) ).

2,0,0,2 g 1,0 2e -4 i θ g 0,2 g 2 1,0e 8 i θ g 0,2 g 1,0 2

2,0,1,1 g 1,0 + 2 e -2 i θ g 1,0 g 1,1 + 2 e 6 i θ g 1,0 g 1,1 + 3 e 2 i θ g 1,0 g 1,0e 4 i θ g 2,0 .

In other words

Re e -2 i θ g 2,0 = Ree -4 i θ F (4) 0,2,2,0 g 2 1,0e -6 i θ g 0,2 g 2 1,0

1,1,2,0 g 1,0 + 2 e -4 i θ g 1,0 g 1,1 + 3 2 g 1,0 g 1,0 .

5.9.5 Fifth normalization: F has expansion:

4 (F (4) ):

The relations are

We define H

(5) 5

a codimension 12 submanifold of H (4) 5

where

= 20 -12 = 8.

For any fixed element F (5) ∈ H

5 , the stabilizer RT

4 (F (5) ) is a codimension 12 subgroup of some RT (4) 4 (F (5) ). Hence dim R RT [START_REF] Arnaldsson | Invariants of surfaces in three-dimensional affine geometry[END_REF] 4 (F (5) 

4 (F (5) ) we have Re e -2 i θ g 2,0 = Re -5 2 g 1,0 g 1,0 .

Thus e -2 i θ g 2,0 = -5 2 g 1,0 g 1,0 + i b 2,0 for some b 2,0 ∈ R. So the last equation becomes

The stabilizer RT

4 (F (5) ) is parametrized by 3 real variables b 2,0 , r, θ and 6 complex variables g 1,0 , g j,4-j for 0 j 4.

Final normalization:

has expansion:

We study how g 1,0 and b 2,0 act on this object, i.e. we consider an arbitrary (f, g, ρ) ∈ RT

4 (F (5) ) with r = 1 and θ = g j,4-j = 0. They have the form

This transformation sends F (5) to F (5) ∈ H

(5) 5 such that

So by a unique choice of g 1,0 and b 2,0 , namely

3,0,0,1 + 3

we can normalize F

3,0,0,1 to 0 and F

3,0,1,1 to a real number. The polynomial

where

1,1,3,0 ∈ R. The relations are

3,0,1,1 .

We define N = H (6) 5

a codimension 3 submanifold of H 

1,1,3,0 ) = 0.

For any fixed element F (6) ∈ N , the stabilizer RT

4 (F (6) ) is a codimension 3 subgroup of some RT [START_REF] Arnaldsson | Invariants of surfaces in three-dimensional affine geometry[END_REF] 4 (F (6) ). Hence dim R RT [START_REF] Arnold | Ordinary differential equations[END_REF] 4 (F (6) 

4 (F (6) ) of the form Proof. One shall simply use the six normalizations above with a bit modification: in the second (killing F a,b,1,0 ) and the fifth (killing F a,b,2,0 ) normalization, we normalize for infinitely many (a, b). More precisely, we start from u = F (z, ζ, z, ζ) in H . After the six normalizations above we get u = F (6) (z, ζ, z, ζ) whose degree 5 truncation π 5 F (6) 

Then we do 2 more normalizations. First

• F a,b,2,0 = 0, ∀a + b 2; F 0,1,2,0 = 1;

) is in H (7) . It is the form we want. Now suppose that (f, g, ρ) ∈ RT sends one element F (7) ∈ H (7) to another F (7) ∈ H (7) . In the truncated setting, π 4 (f, g, ρ) ∈ RT 4 sends π 5 (F (7) ) ∈ H to π 5 (F (7) ) ∈ H (6) 5 . So the truncated action π 4 (f, g, ρ) should be in the stabilizer RT [START_REF] Arnold | Ordinary differential equations[END_REF] 4 . That is to say

Recall the fundamental equation ρ F (7) 

When we compare the coefficients of z j ζ n-j z for any n 2 and 0 j n:

,

We define H (8,1) a codimension 2 submanifold of H (7) by requiring I 0 = 1.

For any fixed element F (8,1) ∈ H (8,1) , the stabilizer RT (8,1) is the identity.

In this branch we can normalize V 0 to 1 by choose r 2 e -2 i θ = V 0 . This equation has two solutions: r e i θ = ±x, where x 2 = V 0 and arg(x) ∈ [0, π). More precisely, for any surface in H (7) graphed by:

where V 0 = 0, after the transformation

where invQ 0 = Q 0 |V 0 | . We define H (8,2) a codimension 2 submanifold of H (7) by requiring V 0 = 1. For any fixed element F (8,2) ∈ H (8,2) , the stabilizer RT (8,2) is a group of two elements: the identity and (-z, ζ, 1).

Since Q 0 can be generated by I 0 , V 0 and their differentials, we have Q 0 ≡ 0. The structure equations degenerate to the model case. The surface is equivalent as the Gaussier-Merker model u =

To conclude, we draw the branches from our root assumption.

/ / V 0 ≡ 0 where I 0 and V 0 are relative invariants of order 5.

From 2 among them,

one can solve I 3,0,3,0 and I 4,0,2,1 , since all the other terms are solved before. In particular

Recall that all the invariants of order 6 on the right hand side can be generated by V, V , Q and their invariant derivatives, so is I 3,0,3,0 . The full expression is a bit large.

11.1. When I 0 = 0 and V 0 = 0, all the non-phantom invariants are generated by V , V , Q and their invariant derivatives.

• Type 1: I 3,0,3,0 ;

• Type 2: I 2,1,3,0 , I 1,2,3,0 , I 0,3,3,0 ;

• Type 2c: I 3,0,2,1 , I 3,0,1,2 , I 3,0,0,3 .

One can solve I 2,1,3,0 , I 1,2,3,0 , I 3,0,2,1 and I 3,0,1,2 in terms of I 0,3,3,0 and I 3,0,0,3 . Thus {Q, I 3,0,3,0 , I 0,3,0,3 , I 3,0,3,0 } is a generating set. It is not yet solved whether this is minimal, even with the huge recurrence formulas at order 6.

Commutators

Four equations

Branch

We normalize V 0 to 1. There is only one differential invariant of order 5:

The Levi rank 1 condition implies that all F a,b+1,c,d+1 can be solved in terms of F a ,b ,c ,d with b d = 0. The vanishing of I 0 and of I 0 implies that F a+3,b,c,d+2 and F a,b+2,c+3,d can be solved in terms of F a ,b ,c ,d with (a < 3 or d < 2) and (b < 2 or c < 3). So all the non-phantom independent invariants of order k 6 can be classified into five types

• Type 1: I a,0,k-a,0 := F a,0,k-a,0 for 3 a k -3;

, which are conjugates of Type 2.

Recurrence formulas at order 5

At order 5 we have

total 4 equations. There are 7 non-phantom independent invariants of order 6:

• Type 1: I 3,0,3,0 ;

• Type 2: I 0,1,5,0 , I 1,1,4,0 , I 2,1,3,0 ;

• Type 2c: I 5,0,0,1 , I 4,0,1,1 , I 3,0,2,1 .

One can solve I 2,1,3,0 and I 3,0,2,1 in terms of the other five invariants, Q and the derivatives of Q. Thus {Q, I 3,0,3,0 , I 0,1,5,0 , I 1,1,4,0 , I 5,0,0,1 , I 4,0,1,1 } is a generating set.

CHAPTER 6. AFFINELY HOMOGENEOUS SURFACES

The Hessian determinant

Fxx Fxy

Fyx Fyy is a GL 3 (C)-relative invariant, and we assume it is nowhere vanishing. After elementary GL 3 (C) transformations done in Section 6.2, we can prenormalize u = F to

where all the G j,k = G j,k (F •,• ) express in terms of the F l,m with l + m j + k. On a computer, we store these (long) expressions.

The stabilizer of such a prenormal form consists of bi-dilations (x, y, u) -→ µx, λy, µλu , with λ, µ ∈ C * , and of the swap x ←→ y. Consequently, G 3,0 and G 0,3 , and even all the higher order G j,k , are relative invariants 1 .

Admitting Lie's principle that any (relative) invariant can be assumed either ≡ 0 or = 0 after restriction to some open subset, G 3,0 and G 0,3 create 3 branches, up to x ←→ y.

Abbreviating 'root' to denote the Hessian rank 2 assumption F 2 1,1 -F 2,0 F 0,2 = 0, here is the complete branching diagram to which the next five statements will refer.

In this tree, any two surfaces landing in one of the six different terminal branches are always Aff 3 (C)inequivalent.

Theorem 6.1.1. In the first branch B 1 where

), the following hold.

(1) The graphed equation normalizes as

Second loop

Now we look at a general surface of the form

The stabilizer, unfortunately, is not connected. To stabilise the form u = xy + O(3), one uses either

a dimension 4 subgroup, or

a dimension 4 coset of G 1 by switching x and y.

We first study the effect of G 1 acting on the third order Taylor coefficients. After a transformation

Now the fundamental equation

for (x, y) in a neighborhood of (0, 0), lead us to solve (6.2.2)

We see that G 3,0 and G 0,3 are relative invariants under G 1 , while G 2,1 and G 1,2 can be normalized to 0 by a unique choice of l and k (depends on λ and µ).

If we switch x and y, we switch G 3,0 and G 0,3 , G 2,1 and G 1,2 . Consequently, G 3,0 G 0,3 is a G 1 and G 2 relative invariant, hence an Aff 3 (C) relative invariant. In terms of the original Taylor coefficients u = j+k 2 F j,k j!k! x j y k , we rediscover the numerator of the Pick invariant shown in the beginning of this section

The numerators of G 3,0 and of G 0,3 are polynomials having 36 monomials and are nonfactorizable. But their product factorizes by P (13 monomials) and

is not a UFD. The first author thanks Z. Jiang (U. Michigan) for giving the following example:

Let

That ring is not a UFD. CHAPTER 6. AFFINELY HOMOGENEOUS SURFACES So I 3,1 = I 1,3 ω j for some j = 0, 1, 2. By a transformation in G 0 , they are equivalent to I 3,1 = I 1,3 = t ∈ C * . Put it back to (H1 ), (H2 ) we get the same equation

So I 3,1 = I 1,3 = t = -9. By (6.3.2), I 2,2 = -9. The solution

corresponds to N2 and N3 in [START_REF] Eastwood | On affine normal forms and a classification of homogeneous surfaces in affine three-space[END_REF] with b = 0.

Vanishing

Suppose I rel 0,3 = 0, by homogeneity I rel 0,3 ≡ 0. Thus we may solve, on the jet space J 3 2,1

By taking total differentials D x and D y , we may solve u 0,4 and u 1,3 on J 4 2,1 . Indeed we can solve u n-3-k,3+k for any 0 k n -3 on J n 2,1 in terms of u j,0 , u j-1,1 and u j-2,2 for 0 j n. We call those u n-3-k,3+k as dependent jet coordinates and the others as independent jet coordinates. Definition 6.4.1. The subjet of I rel 0,3 ≡ 0 is a series of submanifolds SJ n 2,1 ⊂ J n 2,1 for n 3 determined by the PDEs D j

x D k y (I rel 0,3 ) = 0 with 0 j + k n -3. Proposition 6.4.2. The germ of an analytic surface lies in SJ n 2,1 for any n 3 if and only if the surface has I rel 0,3 ≡ 0. Proposition 6.4.3. In a neighborhood of the cross-section corresponding to the normalization

the subjet SJ n 2,1 can be graphed by the solutions u m-3-k,3+k = R m-3-k,3+k (u j,0 , u j-1,1 , u j-2,2 ) for 0 k m -3 and 3 m n obtained above.
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The recurrence formulas of order 5 provide

In the homogeneous case the left hand sides are all 0. Replacing I 4,1 , I 3,2 by their solutions above, the 6 equations become

We solve from (E51), (E52), (E55) while using the solutions (6. We obtain necessary conditions for being homogeneous: (F 41), (F 42), (F 51), (F 52), (F 53).

Case 1: If I 2,2 = 0, then (F 42) is satisfied. The other equations become

Thus either I 3,1 = 0, which corresponds to N6 in [START_REF] Eastwood | On affine normal forms and a classification of homogeneous surfaces in affine three-space[END_REF], or 8 I 3,1 -2 I 5,0 + 3 = 0, which corresponds to N5 in [START_REF] Eastwood | On affine normal forms and a classification of homogeneous surfaces in affine three-space[END_REF]. We put this solution (6.4.3) back to (F 53) 0 = -9 2 I 3 3,1 . Thus I 3,1 = 0. Put it back to (6.4.3) we get I 2,2 = 0 and we return to Case 1.

Vanishing

By I rel 0,3 ≡ 0 we can solve all u 0, 3 . By I rel 4,0 ≡ 0 we can solve all u 4, 0 . Thus only finitely many jet coordinates are independent, namely u 3, 2 . In the previous section we have already normalized

only u 2,2 , u 3,1 , u 3,2 remain free. However, the infinite PDE system of D j x D k y I rel 0,3 = 0 and D j x D k y I rel 4,0 = 0 is not always compatible. The compatibility condition is necessary for a surface to be homogeneous.

From D j x D k y I rel 0,3 = 0 for j + k 4 we solve all u j,k+3 . At the cross-section

we have

and all the other u j,k+3 = 0. From D j x D k y I rel 4,0 = 0 for j + k 3 we solve all u j +4,k . At the same cross-section we have

If the system is compatible, we may replace u j,k+3 from both sides by solutions of D j x D k y I rel 0,3 = 0:

Thus the PDE system of D j x D k y I rel 0,3 = 0 with j + k 4 and

Furthermore, by checking u 5,3 we get

If u 3,2 = 0 then u 2,2 = 0 simplifies the equation as

By checking u 6,3 and using u 3,2 = 0, we get

CHAPTER 6. AFFINELY HOMOGENEOUS SURFACES so u 2,2 = 0. We get a form

The stabilizer, as mentioned in the previous section, is

So when I rel 3,1 = 0 we can normalize it to 1 and get N7 in [START_REF] Eastwood | On affine normal forms and a classification of homogeneous surfaces in affine three-space[END_REF] u = xy + 1 6

When I rel 3,1 ≡ 0 we get N8 in [START_REF] Eastwood | On affine normal forms and a classification of homogeneous surfaces in affine three-space[END_REF] 

which is claimed to be the Cayley surface u = xy + x 3 .

Vanishing

In this branch I rel 0,3 ≡ 0 ≡ I rel 3,0 . There are only finitely many independent jet coordinates u 2, 2 . Among them we have normalized

Thus F 2,2 is a relative invariant. We denote F 2,2 by I rel 2,2 . When I rel 2,2 = 0 we can normalize it to 1 and get

Analysing I rel 0,3 ≡ I rel 3,0 and the recurrence relations, for homogeneous models, we get

which is N9 in [START_REF] Eastwood | On affine normal forms and a classification of homogeneous surfaces in affine three-space[END_REF]. When I rel 2,2 ≡ 0 we may verify that

which is N10 in [START_REF] Eastwood | On affine normal forms and a classification of homogeneous surfaces in affine three-space[END_REF].
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Conclusion

We discover all models in [START_REF] Eastwood | On affine normal forms and a classification of homogeneous surfaces in affine three-space[END_REF].

Directed harmonic currents near non-hyperbolic linearized singularities

The content of this chapter is submitted to Ergodic Theory and Dynamical Systems.

[4] Chen, Z.: Directed harmonic currents near non-hyperbolic linearized singularities, arxiv.org/abs/2011.05909/, 24 pages.

Abstract

Let (D 2 , F , {0}) be a singular holomorphic foliation on the unit bidisc D 2 defined by the linear vector field

where λ ∈ C * . Such a foliation has a non-degenerate linearized singularity at 0. Let T be a harmonic current directed by F which does not give mass to any of the two separatrices (z = 0) and (w = 0). The Lelong number of T at 0 describes the mass distribution on the foliated space.

In 2014 Nguyen proved that when λ / ∈ R, i.e. when 0 is a hyperbolic singularity, the Lelong number at 0 vanishes. Suppose the trivial extension T across 0 is dd c -closed. For the non-hyperbolic case λ ∈ R * the article proves that the Lelong number at 0:

3) vanishes if λ < 0 and T is invariant under the action of some cofinite subgroup of the monodromy group.

Introduction

The dynamical properties of holomorphic foliations have drawn great attention recently [START_REF] Nguyên | Ergodic theorems for laminations and foliations: recent results and perspectives[END_REF]. Let us see one of the recent interesting results. Theorem 7.1.1 (Dinh-Nguyên-Sibony [START_REF] Dinh | Unique Ergodicity for foliations on compact Kahler surfaces[END_REF]). Let F be a holomorphic foliation with only hyperbolic singularities in a compact Kähler surface (X, ω). Assume that F admits no directed positive closed current. Then there exists a unique positive dd c -closed current T of mass 1 directed by F .

The first version was stated for X = P 2 and proved by Fornaess-Sibony [START_REF] Fornaess | Unique ergodicity of harmonic currents on singular foliations of P 2[END_REF]. Later Dinh-Sibony proved unique ergodicity for foliations in P 2 with an invariant curve [START_REF] Dinh | Unique ergodicity for foliations in P 2 with an invariant curve[END_REF]. So one may expect to describe recurrence properties of leaves by studying the density distribution of directed harmonic currents. One has the following the result about leaves. Theorem 7.1.2 (Fornaess-Sibony [START_REF] Fornaess | Unique ergodicity of harmonic currents on singular foliations of P 2[END_REF]). Let (X, F , E) be a hyperbolic foliation on a compact complex surface X with singular set E. Assume that CHAPTER 7. DIRECTED HARMONIC CURRENTS Consider a holomorphic foliation (M, E, F ) where E is discrete. When one tries to linearize a vector field near an isolated singularity, one has to divide power series coefficients by quantities λ 1 m 1 + λ 2 m 2λ j for j = 1, 2 where m 1 , m 2 ∈ Z 1 . To ensure convergence, these quantities have to be nonzero and not too close to zero.

The resonances of (λ 1 , λ 2 ) ∈ C 2 are defined by

Notice that the set {λ 1 m 1 + λ 2 m 2λ j | m 1 , m 2 ∈ Z 1 } has zero as a limit point if and only if the singularity is in the Siegel domain.

We are now ready to state some linearization results in C 2 .

Theorem 7.2.5 (Poincaré [6]). A singular holomorphic vector field with a non-resonant linear part, i.e. R is empty, such that the eigenvalue λ is in the Poincaré domain, is holomorphically equivalent to its linear part.

That is to say, a singularity is linearizable if λ / ∈ R 0 ∪ Q. To get linearization for λ in the Siegel domain, the following result assumes the more advanced Brjuno condition. Theorem 7.2.6 (Brjuno [START_REF] Arnold | Ordinary differential equations[END_REF][START_REF] Brjuno | A local method of nonlinear analysis for differential equations[END_REF]). A singular holomorphic vector field with a non-resonant linear part is holomorphically linearizable if its eigenvalue λ ∈ R satisfies the condition

where p n /q n is the n th approximant of the continuous fraction expansion of λ.

In this article, all singularities are assumed to be linearizable. Let (D 2 , F , {0}) be a holomorphic foliation on the unit bidisc D 2 defined by the linear vector field Z = z ∂ ∂z + λw ∂ ∂w with λ ∈ R * . One may assume 0 < |λ| 1 after switching z and w if necessary. There are always two separatrices {z = 0} and {w = 0}. Other leaves can be parametrized as 

F ) denote the space of functions resp. forms of bidegree (1,1) defined on leaves of the foliation which are compactly supported on M \E, leafwise smooth and transversally continuous. A form

F is said to be positive if its restriction to every plaque is a positive (1,1)-form. A directed harmonic current T on F is a continuous linear form on C 1,1 F satisfying the following two conditions:

1. i∂ ∂T = 0 in the weak sense, i.e. T (i∂ ∂f ) = 0 for all f ∈ C F , where in the expression i∂ ∂f , one only considers ∂ ∂ along the leaves; T is positive, that is T (ι) 0 for all positive forms ι ∈ C 1,1 F .

According to [START_REF] Berndtsson | The ∂ equation on a positive current[END_REF], a directed harmonic current T on a flow box U ∼ = B × T can be locally expressed as (7.2.1)

The h α are non-negative harmonic functions on the local leaves P α and µ is a Borel measure on the transversal T. If h α = 0 at some point on P α , then by the mean value theorem h α ≡ 0. For all such α ∈ T, we replace h α by the constant function 1 and we set dµ(α) = 0. Thus we get a new expression of T where h α > 0 for all α ∈ T. Such an expression is not unique since T = α∈T h α g(α) [P α ] 1 g(α) dµ(α) for any bounded positive function g : T → R >0 . The expression is unique after normalization, which means that for each α ∈ T one fixes h α (z 0 , w 0 ) = 1 at some point (z 0 , w 0 ) ∈ P α .

Each harmonic function h α on the leaf V α can be pulled back by the parametrization Ψ as the harmonic function

The domain of definition for u, v will be precisely described later in this section. In Section 9.1 the notion of periodic current was introduced. Here is an equivalent characterization.

Proposition 7.2.7. A directed harmonic current T is periodic if and only if there exists some k ∈ Z >0 such that H α (u + 2kπ, v) = H α (u, v) for all u, v and for µ-almost all α.

Proof. By definition T is invariant under (z, w) → (z, e 2kπiλ w) for some k ∈ Z >0 , which is equivalent to

) for all u, v and µ-almost all α.

A current T of the form (7.2.1) is dd c -closed on D 2 \{0}. But its trivial extension T across the singularity 0 is not necessarily dd c -closed on D 2 . It is true when T is compactly supported, for example when T is a localization of a current on a compact manifold, by the following argument of Dinh-Nguyên-Sibony in [START_REF] Dinh | Heat equation and ergodic theorems for Riemann surface laminations[END_REF] Lemma 2.5.

Let T be a directed harmonic current on M \E, where M is a compact complex manifold and E is a finite set. The current T can be extended by 0 as a positive current T on M . Next, apply Theorem 7.2.8 (Alessandrini-Bassanelli [START_REF] Alessandrini | Plurisubharmonic currents and their extension across analytic subsets[END_REF]). Let Ω be an open subset of C n and Y an analytic subset of Ω of dimension < p. Suppose T is a negative current of bidimension (p, p) on Ω\Y such that dd c T 0. Suppose T is the trivial extension of T across Y by 0. Then dd c T 0 on Ω.

Here -T is a negative current of bidimension (1, 1) on M \E with dd c (-T ) 0 and E has dimension 0. So for the trivial extension T on M one has dd c (-T ) 0. Moreover T is compactly supported since M is compact. Thus dd c T , 1 = T , dd c 1 = 0.

Combining with dd c T 0 from the extension theorem, one concludes that dd c T = 0 on M . Thus locally near any singularity, the trivial extension T is dd c -closed. Let β := idz ∧ dz + idw ∧ d w be the standard Kähler form. The mass of T on a domain U ⊂ D 2 is denoted by ||T || U := U T ∧ β. In this article, all currents are assumed to have finite mass on D 2 . Definition 7.2.9. (See [START_REF] Nguyên | Singular holomorphic foliations by curves. III: Zero Lelong numbers[END_REF]Subsection 2.4]). Let T be a directed harmonic current on (D 2 , F , {0}). We define the Lelong number by the limit
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The limit can be infinite when the trivial extension T across the origin is not dd c -closed [START_REF] Nguyên | Singular holomorphic foliations by curves. III: Zero Lelong numbers[END_REF]Example 2.11]. When T is dd c -closed, the following theorem assures the finiteness. Theorem 7.2.10 (Skoda [START_REF] Skoda | Prolongement des courants, positifs, fermés de Masse finie, (French)[END_REF]). Let T be a positive dd c -closed (1, 1)-current in D 2 . Then the function r → 1 πr 2 ||T || rD 2 is increasing with r ∈ (0, 1].

In our case, the function

is increasing with r ∈ (0, 1]. In particular

To calculate ||T || D 2 and L (T, 0) one shall study Ψ -1 (r D 2 ) for r ∈ (0, 1]. Define P α := L α ∩ D 2 and P (r)

Lemma 7.2.11. The range of (u, v) for a point (z, w) ∈ P α and P (r) α is either an upper-half plane or a horizontal strip. More precisely, 1. when λ > 0, (z, w)

2. when λ < 0, P α = ∅ for |α| 1, P

α = ∅ for |α| r 1-λ and for the other α

Proof. Recall that (z, w) = (e -v+i u , α e -λ v+i λ u ) on L α . So for any r ∈ (0, 1], (z, w) ∈ P When λ > 0 one has v > -logr and v > log|α|-logr λ . In particular for r = 1, one has v > 0 and v > log|α| λ . When λ < 0 one has -logr < v < log|α|-logr λ . In particular for r = 1, one has 0 < v < log|α| λ . If there is no solution for v then P 

for some functions A k (v), B k (v). They are smooth since F is harmonic. Moreover

Chapter 8

A counterexample to Hartogs' type extension of holomorphic line bundles

The content of this chapter is published in The Journal of Geometric Analysis.

[5] Chen, Z.: A counterexample to Hartogs' type extension of holomorphic line bundles. J. Geom. Anal. 

Abstract

Consider a domain Ω in C n with n 2 and a compact subset K ⊂ Ω such that Ω\K is connected. We address the problem whether a holomorphic line bundle defined on Ω\K extends to Ω. In 2013, Fornaess, Sibony and Wold gave a positive answer in dimension n 3, when Ω is pseudoconvex and K is a sublevel set of a strongly plurisubharmonic exhaustion function. However, for K of general shape, we construct counterexamples in any dimension n 2. The key is a certain gluing lemma by means of which we extend any two holomorphic line bundles which are isomorphic on the intersection of their base spaces.

Introduction on Hartogs' type extension

The Hartogs' extension theorem is one of the most distinctive results in several complex variables. Let Ω ⊂ C n (n 2) be a domain. Let K ⊂⊂ Ω be a compact subset such that Ω\K is connected. Denote by O the sheaf of holomorphic functions on C n . Theorem 8.1.1. (Hartogs' extension theorem for holomorphic functions) The restriction map

A proof using no ∂ techniques can be found in Merker-Porten's paper [START_REF] Merker | A Morse-theoretical proof of the Hartogs extension theorem[END_REF]. Next, let O * be the sheaf of invertible holomorphic functions on C n . Arguing that a nowhere vanishing function f ∈ Ω\K extends holomorphically to Ω as well as its inverse g := 1 f , and that f g ≡ 1 transfers from Ω\K to Ω by the uniqueness principle, one deduces the Corollary 8.1.2. (Extension of invertible holomorphic functions) The restriction map

is bijective.

CHAPTER 8. HARTOGS' TYPE EXTENSION

Beyond functions, it is natural to ask whether for holomorphic line bundles, Hartogs' type extension holds from Ω\K to Ω. If yes, is the extension unique modulo isomorphism?

Recall that there is a bijection between the set of isomorphic classes of holomorphic line bundles over Ω, and the Picard group H 1 (Ω, O * ), constructed in the following way. Any holomorphic line bundle π : L -→ Ω admits an open cover {U i } of Ω together with local trivialization maps ϕ i :

Reciprocally, any element in H 1 (Ω, O * ) can be expressed by some Čech 1cocycle {f ij } with respect to some open cover {U i } of Ω valued in O * . The data ({U i }, {f ij }) gives a holomorphic line bundle.

Using these notations, we may restate our question more precisely.

Question 8.1.3. Given a holomorphic line bundle L over Ω\K, does there exist a holomorphic line bundle L over Ω such that L| Ω\K ∼ = L? Equivalently, is the restriction map

surjective? If yes, is it bijective?

A positive answer, under certain circumstances, was given by Fornaess-Sibony-Wold in [START_REF] Fornaess | Q-complete domains with corners in P n and extension of line bundles[END_REF]. Theorem 8.1.4. (Extension across strictly pseudoconcave level sets) Let Ω ⊂ C n (n 3) be a pseudoconvex domain with a C ∞ strictly plurisubharmonic (psh) exhaustion function ρ, i.e. for each a ∈ R, the sublevel set K a := ρ -1 (-∞, a] is compact in Ω. Then every holomorphic line bundle over Ω\K a extends to Ω. The extension is unique modulo isomorphism.

Actually they proved a stronger version of this theorem, namely existence (resp. uniqueness) of an extension when the Levi form of ρ has at least 3 (resp. 2) positive eigenvalues.

The proof of Theorem 8.1.4 uses (1) the exponential sequence and Cartan's theorem B (2) the extension of holomorphic functions across a totally real plane and (3) Andreotti-Grauert theory. We will present the first two ingredients in Section 8.2 because we are going to use them later. Now, let us come back to Question 8.1.3. For n = 2, Ivashkovich already presented in [START_REF] Ivashkovich | Bochner-Hartogs type extension theorem for roots and logarithms of holomorphic line bundles[END_REF] a local counterexample (cex), but with K ⊂ Ω not compact. In Section 8.3, we will briefly restate his construction, and by taking exponential, we will produce a domain Ω ⊂ C 2 and a compact K ⊂⊂ Ω through which some holomorphic line bundles do not extend. Proposition 8.1.5. There exists a bounded pseudoconvex domain Ω ⊂ C 2 equipped with a C ∞ strictly psh function ρ :

is a compact totally real 2-torus, and there exists a (nontrivial) holomorphic line bundle L on Ω\K having the property that there exists no holomorphic line bundle L on Ω with

However, a similar construction in dimension n 3, again with a compact K = ρ -1 (0) ∼ = (S 1 ) n of the same kind, would fall under the positive (known) extension Theorem 8.1.4.

Hence to really produce a cex to Hartogs' type extension for holomorphic line bundles in all dimensions n 2, the compact K ⊂⊂ Ω should not be of the shape {ρ a}, i.e. a sublevel set of a strictly psh exhaustion function.

In Section 8.4, we will perform an alternative construction. In C n (n 2), for 0 < < n, we introduce the domain: 

For 0 < n small, G will appear to be a thin Grauert tube around T n . We will check that the domain G is relatively compact in the ball: The way we construct this non-extendable L cex is by using the following gluing lemma.

Lemma 8.1.7. Let U, V ⊂ C n be two open subsets, L U , L V be two holomorphic line bundles defined over U and V respectively.

are isomorphic as holomorphic line bundles, then there exists a holomorphic line bundle L defined over

A more general version of this gluing lemma, for holomorphic vector bundles, is stated and proved in subsection 8.4.1.

Note that in this lemma, we assume no geometrical condition on U, V and no triviality of L U , L V . The only condition is that

In particular, when H 1 (U ∩ V, O * ) = 0, e.g. when U ∩ V is convex, this condition is always satisfied.

The picard group

) is nontrivial, which will be proved in Proposition 8.4.4. So we can take a nontrivial holomorphic line bundle L nt over G . As a consequence of Proposition 8.4.5 we show there exists a small ball U p centered at p ∈ ∂G such that U p ∩ G is convex. So in the gluing lemma, if we regard U as G and V as (Ω\ Ū ) ∪ U p , then U ∩ V = U p ∩ G is convex. Thus we can glue L nt with a trivial line bundle L triv over V to obtain a line bundle L cex over U ∪ V = Ω\(∂G \U p ) = Ω\K, which is connected by Proposition 8.4.7. Such L cex is nontrivial since

In dimension n 3, the gluing lemma provides a way to extend holomorphic line bundles different from the method in Theorem 8.1.4.

In [START_REF] Fornaess | Q-complete domains with corners in P n and extension of line bundles[END_REF], the strongly psh exhaustion function is modified to become a nice Morse exhaustion function, also denoted by ρ. For any a ∈ R and any holomorphic line bundle L a , defined over the super level set CHAPTER 8. HARTOGS' TYPE EXTENSION Theorem 8.2.4. Let D ⊂ C n (n 2) be a domain, K ⊂ C n be a totally real plane. Then the restriction map

A proof can be found in the first Chapter of Siu's book [START_REF] Siu | Techniques of extension of analytic objects[END_REF]. We can also apply the argument in the proof of Corollary 8.1.2. Corollary 8.2.5. Under the same assumptions, the restriction map

Compactification of Ivashkovich's Counterexample

In this section we construct a cex in dimension 2. Let

We can represent a generator of this free Z-module explicitly by using the Čech cohomology. Take an open cover

Recall that the exponential sequence
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Since D r is simply connected, the map

is surjective, thus in the long exact sequence (8.3.1), the map

is also surjective. We have im(α) = ker(β) = H 0 (D r \K, O * ) so 0 = im(β) = ker(γ), i.e. γ is injective. We know that the sequence

) represents a nontrivial holomorphic line bundle over D r \K, which cannot be extended to D r since H 1 (D r , O * ) = 0.

Using Čech cohomology, the element γ([c]) can be represented by

Let L be a holomorphic line bundle defined on D r \K, trivial on U 1 and U 2 and the transition function is defined by {f 12 }. Then L is a nontrivial holomorphic line bundle. L cannot be extended to D r , since by Corollary 8.2.3 every holomorphic line bundle over D r is trivial. Now we will construct the following objects:

• a bounded pseudoconvex domain Ω ⊂ C 2 with a strongly C ∞ psh exhaustion function ρ;

• some a ∈ R and some compact K a := ρ -1 (-∞, a] ⊂⊂ Ω;

• a holomorphic line bundle L over Ω\K a which can not be extended to Ω.

This map ϕ is locally biholomorphic. It is bijective, hence biholomorphic from D r onto ϕ(D r ), when r π. When r > π, the image is 

is a strongly psh exhaustion function of Ω and ϕ(K

Recall the covering U of D r \K and the Čech 1-cocycle {f 12 } above. Notice that f 12 is constant along the (x 1 , x 2 )-directions. In particular, ) gives a holomorphic line bundle defined over D 1 which extends ϕ * (L| ϕ(D 1 )\K 0 ). Here ϕ * (L| ϕ(D 1 )\K 0 ) is a holomorphic line bundle defined over D 1 \K, since ϕ -1 ϕ(D 1 )\K 0 = D 1 \K. However, due to our discussion in Section 2, such ϕ * (L| ϕ(D 1 )\K 0 ) is nontrivial hence cannot be extended across K. This contradiction shows that L cannot be extended to Ω.

We can draw Ω ⊂ R 4 as a movie of its 3d-sections (when y 2 is fixed) in R 3 .

Figure 8.1: 3d-sections of Ω, where the red surface is ∂Ω and the blue curve is K 0

In fact, each 3d-section is obtained by rotating the 2d-section (when y 1 = 0) along the x 2 -axis (the dashed line). We can also draw ϕ(U 1 ), ϕ(U 2 ), ϕ(U 1 12 ) and ϕ(U 2 12 ) in this way. 

Counterexamples in general dimension

As announced in the Introduction, we will construct some 'strange' bundles which cannot be extended from Ω\K to Ω. The key idea is a certain gluing lemma describing 'flexibility' of holomorphic line bundles. Actually such lemma holds for holomorphic vector bundles.

Gluing lemma

Roughly speaking, holomorphic vector bundles have more 'flexibility' than holomorphic functions. Let Ω ⊂ C n (n 2) be a domain and U ⊂ Ω be a non-empty open subset. If two holomorphic functions f and g in Ω are equal over U , then they are equal over Ω. However, if two holomorphic vector bundles E and F over Ω are isomorphic over U , then they may not be isomorphic over Ω in general. For example, let E and F be two non-isomorphic holomorphic line bundles over Ω. For any x ∈ Ω, there exists a neighborhood U E (resp. U F ) of x in Ω where E (resp. F ) is trivial. So E and F are trivial over U := U E ∩ U F , another neighborhood of x in Ω. So they are isomorphic over a non-empty open subset U of Ω.

Lemma 8.4.1. (Gluing lemma for holomorphic vector bundles) Let X be a complex manifold, let U, V ⊂ X be two open subsets and let W := U ∩ V . For any integer r 1, let E U be a holomorphic vector bundle of rank r over U . Let E V be a holomorphic vector bundle of rank r over V such that

Remark 8.4.2. Denote by G L r (O) the sheaf of invertible r × r matrices with coefficients in the sheaf O of holomorphic functions. In particular, G L 1 (O) = O * . Using the language of category theory, by the universal property of the fibre product, the following commutative diagram

induces a canonical map

The gluing Lemma 8.4.1 states that q is an epimorphism, by constructing a left inverse of q.

Remark 8.4.3. Note that we only have existence, but not uniqueness in general. That is to say, E is not uniquely determined up to isomorphism by the information of E U and E V . When r = 1, a simple cex to uniqueness can be constructed by taking

and E U := U × C with coordinates (z 1 , s 1 ), E V := V × C with coordinates (z 0 , s 0 ) being trivial line bundles with the identifications

for each n ∈ Z. This defines the holomorphic line bundle O(n), trivial over U and V . But O(n) and O(m) are not isomorphic whenever n = m.

So > 0 is a regular value of ρ, hence ∂G is smooth.

To prove that G is pseudoconvex, we check the Levi-condition. For any z ∈ ∂G and (w 1 , . . . , w n ) ∈ T z (C * ) n = T z C n satisfying n j=1 ∂ρ(z) ∂z j w j = 0, we have n j,k=1

Thus G is pseudoconvex.

(iii) We claim that G contracts to ρ -1 (0) = {|z j | = 1, j = 1, . . . , n} ∼ = S 1 × . . . × S 1 n times = T n . To show this, we construct a contraction map

where λ(z, t)

Then H is a contraction map if for any z ∈ G and any t ∈ [0, 1] we have (8.4.4)

If we take λ(z, t) = -t, then these conditions are satisfied and im H(z, 1) = ρ -1 (0) = {|z j | = 1, j = 1, . . . , n} ∼ = T n . We see G is connected since T n is. Now we calculate the Picard group H 1 (G , O * ). By (ii), G is Stein and by Cartan's theorem B, we have

Since the first and the last term vanish, we have

Recall that by using a Mayer-Vietoris sequence we have

Gluing process

Now we take 0 < < n, for example = n/2. The boundary ∂G is then given by the equation Proof. For j = 1, . . . , n, we have

So the real Hessian is

, where

The real Hessian Hρ is positive definite if and only if for all j, H 2×2 j is positive definite. That is equivalent to tr(H

for all j. The first inequality is achieved since tr(H 2×2 j ) = x 2 j + y 2 j > 0 for all j and all z ∈ ∂G ⊂ (C * ) n . For the second inequality, we calculate

So at p = (e √ /n , . . . , e √ /n ) ∈ ∂G we have det H 2×2 j (p) > 0 for each j = 1, . . . , n. We conclude that Hρ(p) is positive definite. Remark 8.4.6. The condition < n is necessary and sufficient for the existence of some point in ∂G where the real Hessian Hρ is positive definite. This is because when ≥ n, for any p = (z 1 , . . . , z n ) ∈ ∂G there exists at least one j = 1, . . . , n such that (log|z j |) ), Ω := (Ω\G ) ∪ U p and K := Ω\(G ∪ Ω ). In fact we have K = ∂G \U p ⊂⊂ Ω. To prove the proposition, we will use the language in Range's book [START_REF] Range | Holomorphic functions and integral representations in several complex variables[END_REF] Chap 3.7. We call a compact set A ⊂ C n a Stein compactum if it has a neighborhood basis of Stein domains. Hence V ∩ W ⊂ ∂W V . If ∂W V is relatively compact in V , so is W ∩ V . But since W is a connected domain, it is pathly connected. We take a point q ∈ W ∩ V and a path γ in W connecting q and p ∈ W \V . We get a subpath in W ∩ V approaching ∂V . Hence W ∩ V is not relatively compact in V , a contradiction. On nonsingularity of circulant matrices

The content of this chapter is published in Linear Algebra and its Applications.

[6] Chen, Z.: On nonsingularity of circulant matrices, Linear Algebra Appl. 612 (2021), 162-176, DOI : 10.1016/j.laa.2020.12.010, arxiv.org/abs/1810.09893/.

The result is cited by a paper [START_REF] Wan | Combination Networks with End-user-caches: Novel Achievable and Converse Bounds under Uncoded Cache Placement[END_REF] and a Phd Thesis [START_REF] Wan | Limites fondamentales de stockage pour les réseaux de diffusion de liens partagés et les réseaux de combinaison[END_REF] in communication and coding.

Abstract

In Communication theory and Coding, it is expected that certain circulant matrices having k ones and k + 1 zeros in the first row are nonsingular. We prove that such matrices are always nonsingular when 2k + 1 is either a power of a prime, or a product of two distinct primes. For any other integer 2k + 1 we construct circulant matrices having determinant 0. The smallest singular matrix appears when 2k + 1 = 45. The possibility for such matrices to be singular is rather low, smaller than 10 -4 in this case.

Introduction

We begin with definitions and some classical results on circulant matrices, taken from ([45] Section 1).

Definition 9.1.1. A circulant matrix C(a 0 , . . . , a n-1 ) is an n × n matrix of the form

The determinant of a circulant matrix C(a 0 , . . . , a n-1 ) can be calculated by

in terms of the n-th root of unity

A proof can be found in ( [START_REF] Golub | Matrix computations[END_REF] 

is called the associated polynomial of C(a 0 , . . . , a n-1 ). It is called unital if all its coefficients a 0 , . . . , a n-1 are in {0, 1}.

Note that the relation between circulant matrices and their associated polynomials is not '1-1'. For example the identity matrix of any size has f (x) = 1. In fact, a circulant matrix is determined by both its associated polynomial and its size.

Proposition 9.1.3. A circulant matrix C(a 0 , . . . , a n-1 ) is nonsingular if and only if its associated polynomial f (x) and x n -1 share no common roots.

Proof. By what precedes:

detC(a 0 , . . . , a n-1 ) = n-1 j=0 f (ω j ). Definition 9.1.4. A circulant matrix C(a 0 , . . . , a n-1 ) is called r-recurrent with r a proper divisor of n, if a j = a j whenever j ≡ j mod r. It is called non-recurrent if it is not r-recurrent for any proper divisor r of n.

If C(a 0 , . . . , a n-1 ) is r-recurrent for some proper divisor r of n, then it has the same rank as C(a 0 , . . . , a r-1 ) because C(a 0 , . . . , a n-1 ) =      C(a 0 , . . . , a r-1 ) C(a 0 , . . . , a r-1 ) . . . C(a 0 , . . . , a r-1 ) C(a 0 , . . . , a r-1 ) C(a 0 , . . . , a r-1 ) . . . C(a 0 , . . . , a r-1 ) . . . . . . . . . . . . C(a 0 , . . . , a r-1 ) C(a 0 , . . . , a r-1 ) . . . C(a 0 , . . . , a r-1 )

.

Hence an invertible circulant matrix must be non-recurrent. This paper mainly studies circulant unital matrices having k ones and k + 1 zeros in the first row. They are always non-recurrent.

One motivation to study such matrices comes from Communication and Coding where 2k + 1 input signals are 'mixed' by these matrices [97, Theorem 13, Remark 5], [START_REF] Wan | Limites fondamentales de stockage pour les réseaux de diffusion de liens partagés et les réseaux de combinaison[END_REF]Theorem 29]. Experts hope such processes to be invertible. Another motivation comes from [START_REF] Newton | On the summation of periodic sequences. I[END_REF] on summability of polydiagonal matrices for periodic sequences of zeros and ones. The following two questions are equivalent: Question 9.1.5. For fixed k ∈ Z 1 , does there exist a circulant unital matrix having k ones and k + 1 zeros in its first row which is singular? Question 9.1.6. For fixed k ∈ Z 1 , does there exist a unital polynomial f (x) ∈ Z[x] such that degf (x) 2k, f (1) = k and f (x) shares a common root with x n -1?

In this paper we propose a complete answer. Theorem 9.1.7. If 2k + 1 = p e for some prime p, then such matrices are always nonsingular. Theorem 9.1.8. If 2k + 1 = p q for two distinct primes 3 p < q, then such matrices are always nonsingular. Theorem 9.1.9. If 2k + 1 = p q r where 3 p < q are two distinct primes and r 3 is an odd integer, then there exist some singular matrices of such a type. 

annihilates e 2πi 45 , a root of x 45 -1.

Cyclotomic polynomials

By Proposition 9.1.3, C(a 0 , . . . , a n-1 ) is singular if and only if f (x) and x n -1 have a common root. Thus we should study the irreducible and the unital factors of x n -1, namely the cyclotomic polynomials and the fundamental recurrent polynomials (Definition 9.4.1).

Definition 9.2.1. For any n ∈ Z 1 , the n-th cyclotomic polynomial is defined as

We recall the following properties ([56, VI. 3]).

• (Degree) degΦ n (x) = ϕ(n) where ϕ is Euler's totient function.

• For any two distinct n, m ∈ Z 1 , Φ n (x) and Φ m (x) do not divide one another.

• For a prime number p and for e ∈ Z 1 , we have Φ p e (x) = 1 + x p e-1 + x 2p e-1 + • • • + x p e -p e-1 . Hence Φ p e (1) = p. Note that x p e -1 = Φ Proof. When e = 0, since f

for some e ∈ Z 1 , so that by the Gauss Lemma, f 

Recurrent decompositions

Next we introduce the unital factors of x n -1: the fundamental recurrent polynomials. The following notation is taken from Ingleton [START_REF] Ingleton | The rank of circulant matrices[END_REF].

Definition 9.4.1. For any proper divisor r of n, the fundamental r-recurrent polynomial with respect to n is

The name comes from the following fact: for any r-recurrent n × n circulant matrix, the associated polynomial f (x) is a multiple of G(n, r; x).

We have

and in particular, Φ n (x) divides G(n, r; x). For example G(45, 9; x) = Φ 45 (x) Φ 15 (x) Φ 5 (x).

In the previous section, note that we have decomposed

In this section we want to establish the converse. For any f (x) ∈ Q[x] with degf (x) < n, which is divisible by Φ n (x), we want to decompose it as Applying the Euclidean Algorithm we find some g n p j

(x) G(n, n p j ; x). We now need to change the multiplicators q(x) g n p j

(x) to meet the degree bounds.

The quotient

is a polynomial of degree n p j . By Euclidean division, there exists a unique h n p j

(x) G(n, n p j ; x) mod x n -1.

Since degf (x) < n we conclude that f (x) = m j=1 h n p j (x) G(n, n p j ; x).

When f (x) is unital, we expect the existence of a unital decomposition. This is not true in general. A counterexample where m = 3 will be constructed at the end of the section. The case where m = 2 is proved by Ingleton [45,4.1]. We prove a stronger version here.

We write Z [0,d] [x] for the set of polynomials having coefficients in {0, 1, . . . , d}.

Theorem 9.4.4. (Recurrent decomposition in Z [0,d] [x]) Let p < q be two distinct primes. Let n = p e 1 q e 2 with e 1 , e 2 ∈ Z 1 . Let f (x) ∈ Z [0,d] [x] with degf (x) < n be a polynomial which is divisible by Φ n (x). Then f (x) admits a (p, q)-recurrent decomposition in Z [0,d] [x] with respect to n.

In particular, when d = 1, a unital decomposition exists.

Proof. By Theorem 9.4.3, there exist h n p (x), h n q (x) ∈ Q[x] with degh n p (x) < n p , degh n q (x) < n q such that 262 CHAPTER 9. ON NONSINGULARITY OF CIRCULANT MATRICES f (x) = h n p (x) G(n, n p ; x) + h n q (x) G(n, n q ; x). Write f (x) = n-1 j=0 a j x j = n p q -1 s=0

x s p q-1 l=0 a l n p q +s x l n p q , h n p (x) = For every s = 0, . . . , n p q -1, we group the coefficients as A s := {a l n p q +s : l = 0, . . . , p q -1} ⊂ {0, . . . , d}, B s := {b l n p q +s : l = 0, . . . , q -1} ⊂ Q, Using G( n p , n p q ; x) = q-1 l=0

x l n p q , G( n q , n p q ; x) = p-1 l=0

x l n p q , we may subtract and modify the multiplicators as h n p (x) := h n p (x)g(x) G( n p , n p q ; x) = n p q -1 s=0

x s q-1 l=0 (b l n p q +se s ) x l n p q , h n q (x) := h n q (x) + g(x) G( n q , n p q ; x) = n p q -1 s=0

x s p-1 l=0 (c l n p q +s + e s ) x l n p q .

Since G( n p , n p q ; x) G(n, n p ; x) = G( n q , n p q ; x) G(n, n q ; x), we see that h n p (x), h n q (x) is another decomposition of f (x). So we can suppose from the beginning that minB s = 0 for all s.

Given two sets of rational numbers X, Y ⊂ Q, define their sum and difference by X + Y := {x + y : x ∈ X, y ∈ Y }, X -Y := {xy : x ∈ X, y ∈ Y }.

We have X ⊂ (X + Y ) -Y . From h n p (x) G(n, n p ; x) = n p q -1 s=0

x s q-1 l=0 b l n p q +s x l n p q + x (l+q) n p q + • • • + x (l+(p-1)q) n p q , h n q (x) G(n, n q ; x) = Theorem 9.4.4 guarantees the existence of unital recurrent decompositions of f (x), but not the uniqueness. However, we can always control the ambiguity.

Theorem 9.7.1. Suppose n = p e 1 q e 2 has two distinct prime factors p, q. If f (x) ∈ Q[x] with degf (x) divisible by Φ n (x), then for any two (p, q)-recurrent decompositions h n p (x), h n q (x) and h n p (x), h n q (x) of f (x) with respect to n such that degh n q (x) < n q , there exists some δ(x) ∈ Q[x] with degδ(x) < n p q such that h n p (x) = h n p (x)δ(x) G( n p , n p q ; x), h n q (x) = h n q (x) + δ(x) G( n q , n p q ; x). (9.7.1) Proof. By the definition of (p, q)-recurrent decompositions with respect to n, we have h n p (x)h n p (x) G(n, n p ; x) = h n q (x)h n q (x) G(n, n q ; x). Φ n q -j (x) = Φ n (x) G( n q , n p q ; x), G(n, n q ; x) = Φ n (x)

Φ n p -j (x) = Φ n (x) G( n p , n p q ; x).

Hence G( n q , n p q ; x) and G( n p , n p q ; x) share no nontrivial common factors. Dividing both sides of (9.7.2) by Φ n (x), we get h n p (x)h n p (x) G( n q , n p q ; x) = h n q (x)h n q (x) G( n p , n p q ; x).

So there exists some δ(x) ∈ Q[x] such that h n p (x)h n p (x) = δ(x) G( n p , n p q ; x) h n q (x)h n q (x) = δ(x) G( n q , n p q ; x).

We have degδ(x) max{h n p (x), h n p (x)} -degG( n p , n p q ; x) < n p -( n p -n p q ) = n p q .

Definition 9.7.2. As in the proof of Theorem 9.4.4, for any (p, q)-recurrent decomposition h n p (x), h n q (x) of f (x) with respect to n, write

and for any s = 0, . . . , n p q -1 define B s := {b l n p q +s : l = 0, . . . , q -1}.

We call a (p, q)-recurrent decomposition p-uniformized if minB s = 0 for any s = 0, . . . , n p q -1. Corollary 9.7.3. Suppose n = p e 1 q e 2 has two distinct prime factors p, q. Let f (x) ∈ Q[x] with degf (x) < n be divisible by Φ n (x). Then among all the (p, q)-recurrent decompositions of f (x) with respect to n, there exists a unique p-uniformized one. Moreover, if f (x) is unital, its p-uniformized decomposition is also unital. Résumé : La thèse se compose de 6 articles.

(1) Nous calculons les générateurs des SA 3 (R)invariants pour les surfaces paraboliques.

(2) Nous calculons les invariants rigides relatifs pour les hypersurfaces rigides 2-non-dégénérées de rang de Levi constant 1 dans C 3 : V 0 , I 0 , Q 0 ayant 11, 52, 824 monômes au numérateur.

(3) Nous organisons tous les modèles affinement homogènes non-dégénérés dans C 3 en branches inéquivalentes. Abstract : The thesis consists of 6 papers.

(1) We calculate the generators of SA 3 (R)invariants for parabolic surfaces.

(2) We calculate rigid relative invariants for rigid constant Levi-rank 1 and 2-non-degenerate hypersurfaces in C 3 : V 0 , I 0 , Q 0 having 11, 52, 824 monomials in their numerators.

(3) We organize all affinely homogeneous nondegenerate surfaces in C 3 in inequivalent branches. (4) For a directed harmonic current near a nonhyperbolic linearized singularity which does not give mass to any of the trivial separatrices and whose trivial extension across 0 is dd c -closed, we show that the Lelong number at 0 is: 4.1) strictly positive if the eigenvalue λ > 0; 4.2) zero if λ ∈ Q <0 ; 4.3) zero if λ < 0 and if T is invariant under the action of some cofinite subgroup of the monodromy group. [START_REF] Arnaldsson | Invariants of surfaces in three-dimensional affine geometry[END_REF] We construct non-extendable, in the sense of Hartogs, holomorphic line bundles in any dimension n 2. (6) We show that circulant matrices having k ones and k + 1 zeros in the first row are always nonsingular when 2k + 1 is either a power of a prime, or a product of two distinct primes. For any other integer 2k + 1 we exhibit a singular circulant matrix.
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