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Emanuel Radoi
Professeur des Universités, Université de Bretagne Occidentale Rapporteur
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General Introduction

Scientific Context

The earth is covered with about 70% water and approximately 95% of the oceans and 99% of the seabed remain

unexplored. In other words, most of our blue planet and its resources are still to be discovered. Somehow, the hostility

of the undersea environment has inherently protected this secret world until recently. But the interest for the marine

world, as illustrated on one side by the link between the arctic melt and the rising water and on the other side by the

competition for the exploitation of undersea energetic resources, opens the ethical question of how to find a satisfying

balance between the ever-increasing humankind needs and the fragility of our eco-system faced to the ever-growing

human population.

Research for understanding the underwater environment and exploiting its rich resources have led to the rise of

underwater exploration for first military and then scientific and economic purposes. To be able to observe, monitor,

and explore the oceans, we can use seabed observatories, sensor networks, or underwater vehicles either remotely

operated (Remotely Operated Vehicles - ROV), or autonomous (Autonomous Underwater Vehicles - AUV).

All these exploration and observation systems require means of communication with the surface for instrumentation

and control, or for data transfer. In the submarine environment, this communication can be achieved by a wired way

with means of cables (although often equipped with optical fiber); this is the case with wired observatories such as

NEPTUNE (Ifremer) located on the Juan de Fuca tectonics shelf, off Canada. This is also the case for ROVs for which

the umbilical is used to control the robot and retrieve the acquired data. The interest of cable communication lies in

its speed (up to several PetaBits/s for intercontinental submarine cables) and its very low latency, however, its price is

very high (up to 600 kC/km) and the maintenance of such systems is complex. In addition, wired communication poses

serious mobility problems as observed with ROVs.

Another approach is wireless underwater communication that does not require a physical link between the transmitter

and the receiver, and therefore a lower cost of installation and maintenance. However, as we will see in the following the
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Figure 1: Comparison of underwater ranges according to the channel media.

reliability and transmission rate are lower compared to wired communication. To transmit information wirelessly in an

underwater environment, the classic media are Radio frequency (RF) waves, optical waves and finally acoustic waves.

A comparison of the range of these different transmission media is illustrated by figure 1 [1].

RF waves are very strongly attenuated by water (on the order of 3 to 5 dB/m depending on the frequency), therefore

they require high transmission power and/or large transducers. Underwater RF communications can be thus interesting

for transmitting high speed (of the order of Mbit/ s) at a very short distance (up to 10 m). At higher frequencies,

optical waves allow communication at very high speed (up to a few Gbit/s) but quickly undergo diffusion and absorption

phenomena due to water (1 dB/m and up to 11 dB/m in turbid water) limiting the range of communication to a few tens

of meters. The alignment of light beams between the transmitter and the reception is also an important issue for such

communications systems. The interest in optical waves is revealed when one wants to quickly transfer a large volume

of data over a short distance, especially by means of underwater robots.

Finally, acoustic waves undergo relatively low attenuation in water (of the order of 0.1 to 4 dB/km) and allow com-

munication over relatively large distances (from a few kilometers to several hundred kilometers). This has helped make

acoustic waves, the transmission vector most used in an underwater environment. Underwater Acoustic Communi-

cations are however severely disturbed by the attenuations of the acoustic waves, noise, the phenomenon of multiple

paths, the temporal spreading of the channel, and finally by the Doppler effect. All these effects combined make the

underwater acoustics channel unique since it is variable in time, frequency, and space thereby limiting the transmission

rates (depending on frequency) at a few tens of kbit/s per kilometer. Finally, the speed of sound waves in water (around

1500 m/s depending on various physical parameters) causes significant latency in communication.

Modern techniques of underwater acoustics communications began to be developed for military purposes during

the Second World War In 1945, the first submarine communication system saw the day in the United States of America

in order to establish a communication link between submarines [2]. This first modem used Single Side Band (SSB)
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modulation in the frequency band 8 - 11 kHz for a distance of several kilometers. Up to the end of the 1970s, other

acoustic modems were referenced in the literature, all based on analogue transmission techniques which is a serious

limitation faced to distortions brought by the underwater acoustic channel. From the 1980s, with the development of

highly integrated electronic circuits, Very-Large-Scale Integration (VLSI) and the advent of compact DSP processors

with reduced consumption, it has become possible to implement, within transmitters/ submerged receivers, complex

signal processing algorithms opening up the way to digital transmission technologies. Thus, during these last forty

years, considerable progress has been made in the development of acoustic modems both in terms of communication

range and transmission rate.

Outline of the Thesis

In this thesis, we are interested by the scientific context of the European H2020 project called Bridges for which UME

and U2IS laboratories of ENSTA Paris were both involved. In this project, a glider (a rather non-expensive AUV of less

than 2 meters long) navigates and exchanges information with various sensors deployed in a circle of about less than

1 km radius. In this underwater Internet of things (IoT) context, we focalize on the digital communication problems

raised by the acoustic environment and we thus keep in mind that complexity is a key issue for those autonomous

energy-efficient objects.

Chapter 1 recalls properties of the underwater propagation environment. We review the degradations brought by

the channel on large and small scales and their impact on the communication channels. We also illustrate the double-

selectivity of the acoustic channel.

Chapter 2 is a classical chapter that synthesizes several digital communication solutions to face the channel degra-

dations. In particular, we review the choice of a modulation scheme, the Peak-to-Average Power Ratio (PAPR) limitation,

the effect of diversity on the system performance and some results about equalization.

The following chapters propose some contributions to the previous problematic. In chapter 3, we concentrate on

a form of diversity called Signal Space Diversity (SSD). We suggest to apply SSD for underwater communications

because it is spectrally efficient. We also propose a PAPR reduction scheme for SSD OFDM modulations.

Chapter 4 is dedicated to the equalization problem. As the channel impulse response can be very long because of

the relatively low celerity of acoustic waves, we propose a sparse equalizer with joint phase recovery. We also present

a fully adaptive architecture with adaptive step-size.

Finally, we summarize this work and give some concluding remarks as well as suggestions for future research.
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Chapter 1

Underwater Propagation Environment
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1.2 Impact of Environmental Physics on Communication Signals . . . . . . . . . . . . . . . . . 23

1.2.1 Optimal Frequency and Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2.2 Doppler Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
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1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

The goal of a digital communication system is to transmit information from transmitters to receivers, in the form of

symbols or binary bits, at a rate usually measured in symbols or bits per second. This transmission takes place in an

environment that dictates the propagation laws of waves which carry information signals. These signals correspond to

the symbols containing the information and occupy a determined bandwidth in the frequency spectrum, around one or

more carrier frequencies. The physical environment is called the communication channel. Communication channels

have a capacity in terms of number of symbols per second that can be transmitted with an arbitrarily low error rate.
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When a communication is established through a channel, a certain physical resource of this channel is used: typically,

a certain frequency band is used by a system for a certain period of time. One of the main problems when designing

communications networks is the sharing of the available resources to establish reliable transmissions between each

element of the network. When several non-cooperative systems compete for the use of a resource, they interfere at the

expense of both their robustness and reliability.

Besides the case of very short distances (less than 100 m), electromagnetic waves are not suited to underwater

communications, as the water is a conducting medium that absorbs quickly most of the transmitted energy. Differently,

the physical properties of the underwater environment allow acoustic waves to propagate over long distances. Under-

water acoustic waves are thus the preferred medium for communication signals in this environment. However, physics

also presents itself as a factor limiting the performance of underwater acoustic communication modems which operate

at very low data rates compared to radio frequency (RF) modems. These performance differences reflect the differences

in orders of magnitude between some basic physical parameters of the two propagation media. For example, the ratio

between the speed of the electromagnetic wave in the air and that of the underwater acoustic wave is 105 (3.108 m/s

against around 1500 m/s, respectively). The carrier frequency of RF communications can reach a few gigahertz (109

Hz), while for underwater acoustic communications, they do not exceed a few tens of kilohertz. The bandwidth in this

medium is strictly limited, especially as the transmission distance increases. Consequently, the underwater acoustics

communication channel is often considered to be wide-band, the carrier frequency and the width of the transmission

band having the same order of magnitude. The current performance limit of underwater acoustic modems results

in a transmission rate-distance product usually less than 40 kbits/s × km [3]. On the one hand, due to the lack of

interoperability, and on the other hand, due to the lack of resources available to communicate without interference be-

tween users, the coexistence of acoustic sources of different origins in the same channel is also difficult. This, coupled

with the long propagation delays, leads to difficulties in designing reliable and efficient protocols adapted to communica-

tions networks. Finally, the underwater environment presents variability and heterogeneity on several spatial and time

scales, which requires flexibility and the ability to adapt underwater acoustics modems to the dynamic environment in

which they operate.

The objective of the first chapter is to present in detail the particularities of the underwater acoustics environment,

considered as the communication channel, in order to give the reader a better understanding of the different working

hypotheses that will be presented in the following chapters. First, the important physical properties of the underwater

acoustics channel are introduced, and then the distortion suffered by the underwater communication signal is explained

in detail.
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1.1 Physical Properties of the Propagation Medium

1.1.1 Acoustic Wave Speed

The wave speed in the medium is the basic physical parameter which determines its propagation. The speed of the

underwater acoustic wave is around 1500 m/s. This means that the information delay (e.g. D= 0.667 s for a distance of

1 km) is large compared to the electromagnetic case. This incompressible delay is problematic for real time applications

and from the network point of view. In addition, as seen in next subsection, multi-paths adds some variable delays that

corresponds to relatively small fractions of D but have additional small-scale effects. One can also note that 1500 m/s is

only a coarse approximation and that the underwater environment is not ISO-standard. This speed ca varies according

to the temperature, the salinity and the depth (because of the pressure) according to the relation [4]:

ca = 1449.2 + 4.6Ta − 0.055T2
a + 0.00029T3

a + (1.34− 0.01Ta)(Sa − 35) + 0.016Da, (1.1)

where Ta is the temperature in Celsius, Sa is the salinity (in percentage (%)) and Da is the depth (in meters). In a water

column, the velocity curve gives the relationship between sound velocity and depth. Generally, the speed of sound

waves in the marine environment is between 1440 and 1540 m/s.

There is a significant difference between the velocity distribution of the deep-sea environment and the shallow-water

environment. In shallow water, where the depths of the water column rarely exceed one hundred meters, the speed

of sound is mainly determined by temperature. It decreases with temperature, and therefore, generally, with depth.

In the deep sea, the temperature becomes low and homogeneous from a certain depth, whereas the speed of sound

increases due to an increase in pressure. These differences strongly limit the propagation of sound waves, which will

be explained in the next section.

1.1.2 Multiple Paths - Small Scale Effects

The underwater acoustic wave follows multiple propagation paths as it passes through the environment. This phe-

nomenon can be explained by two physical properties: the reflection interfaces formed by the surface of the water and

the seabed, and the speed varying with depth.

The reflections at the interfaces are mainly responsible for the phenomenon of multiple paths in shallow channels.

The variation in celerity is similar to the variation in refractive index and from Snell-Descartes laws, it is possible to show

that the rays, defined as the perpendicular directions to the wave front, tend to bend towards the region of the water

column where the celerity is minimal. Refraction is the main cause of the multi-path phenomenon in the case of long
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distance transmissions in a deep sea channel. In addition, the curvature of the rays can create gray areas where no

acoustic energy related to the wave considered can be perceived. The effects of the various phenomena responsible

for multi-path propagation are illustrated in figures 1.1 and 1.2 [4, 5].

Figure 1.1: (a) Example of a typical speed profile of a deep sea channel. (b) Ray tracing with a source at a depth of
1500 m. black: surface and bottom reflections, blue: bottom reflection, green: surface reflection, red: direct path.

Figure 1.2: (a) Example of a typical speed profile of a shallow water channel. (b) Ray tracing with a source at a depth
of 10 m. black: surface and bottom reflections, blue: bottom reflection, green: surface reflection

1.1.3 Propagation Losses - Large Scale Effects

Signal propagation in underwater acoustic channel suffers from propagation losses. This phenomenon is slowly varying

when compared to the multiple paths effect of section 1.1.2 but it results in a continuous decreasing received power,
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as the distance between the transmitter and the receiver becomes larger and larger, and it ultimately limits the range

of the communication. These losses depend on both the frequency and the transmission distance. Frequency depen-

dence comes from damping losses (in dB/km) which depend on the propagation medium; the distance dependence is

explained by the losses caused by geometric divergence resulting from the spatial spread of acoustic energy when the

wave propagates. In seawater, the attenuation of acoustic waves is due to, on one hand, the viscosity of water and the

dissipation of thermal energy, and on the other hand, the quick response of chemical compounds such as boric acid [6].

These losses increase with frequency.

Assume that a signal of frequency f (in kHz) propagates in the acoustic channel along a path of length d (in meters).

The propagation losses suffered by this signal (in dB), neglecting the reflection losses, are given by [7]:

AdB(d, f) = Kd × 10log10(d) + 10−3 × d× αdB(f), (1.2)

where Kd is a spatial dispersion factor between 1 and 2 (1: cylindrical diffusion, 2: spherical diffusion) and αdB(f) is

the damping coefficient as a function of frequency (in dB). Several models exist for this coefficient, where parameters

such as salinity, water temperature and depth can be taken into account. In underwater acoustic communications, the

commonly used model is that given by Thorp’s formula [7, 8], that is:

αdB(f)≈0.11× f2

(f2 + 1)
+ 44× f2

(f2 + 4100)
+ 2.75× 10−4 × f2 + 0.003, (1.3)

Figures 1.3 (a) and 1.3 (b) [5] show the influence of both the distance and the frequency of an underwater acoustic

signal on the losses by diffusion and damping.

The reflections on bottoms and surfaces also lead to losses. These two interfaces are not perfectly flat and have

random irregularities due to bulges and waves caused by wind and tides. A wave, in contact with an irregular surface, is

reflected into a coherent specular component and a randomly distributed component in all directions. Part of the energy

is also transmitted to the second medium. During the reflection, the incident wave suffers from losses in both the diffuse

and transmission part, the importance of which depends on several parameters such as the state of the sea in the case

of reflection on the surface, the landform of the seabed, and the sediments when reflection occurs on the seabed.

The energy loss of the reflected coherent component compared to the initial energy of the incident wave can be

modeled by a reflection coefficient expressed as a function of the frequency f (in kHz), the speed ca and the angle of

incidence ψ on the ideal diopter surface, given by [8]:

R̃(ψ) = R(ψ)e
−2(

2πf
ca σ)2cos2ψ

, (1.4)
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Figure 1.3: Propagation losses in underwater acoustic channel. (a) damping coefficient. (b) propagation losses accord-
ing to equation (1.2).

where σ is the standard deviation of the random irregularities of the surface around the ideal diopter. R(ψ) depends

on the acoustic characteristics of the water (ρ, ca) and the second medium
(
ρ
′
, c
′
a

)
in terms of density and celerity, as

well as the angle of refraction ψ
′

of the wave transmitted to the second medium. It is given by:

R(ψ) =
ρca cosψ

′
− ρ
′
c
′
a cosψ

ρca cosψ
′

+ ρ
′
c
′
a cosψ

. (1.5)

Thus we see from equation (1.4) that the frequency of the signal also participates in losses by reflections. Its increase

also contributes to reducing the ratio of the energy of the coherent specular component to the energy of the diffused

component after reflection.

1.1.4 Noise Sources and Models

The underwater environment is noisy because apart from the noises caused by human activities, it is populated by

many sources of sound, even in its natural state. The power spectral density of ambient noise can be described by

empirical models [9–12]. In underwater acoustic communication, the model of [9] is commonly used [13]. This model

offers turbulence, marine traffic, waves, and thermal noise as the main sources of ambient noise. These different

contributions are each predominant in a frequency band. They are modeled by random variables whose respective

power spectral densities are expressed by Hertz and in dB with respect to a pressure of 1µPa at 1 meter from the
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SW 10 1-3 4-6 7-10 11-16 17-21 22-27
Sea state(Beaufort) 0 1 2 3 4 5 6

N0(dB/Hz) 44.5 50 55 61.5 64.5 66.5 68.5

Table 1.1: Correspondences between wind speed (in knots), see state in Beaufort and the constant N0 in dB/Hz.

source, according to the following formulas:

Turbulence : NT (f) = 17− 30 log10(f)

Marine traffic : NS(f) = 40 + 20(Km − 0.5) + 26 log10(f)− 60 log10(f + 0.03)

Waves : NW (f) = 50 + 7.5
√

SW + 20 log10(f)− 40 log10(f + 0.4)

Thermal noise : NC (f) = −15 + 20 log10(f)

, (1.6)

where f is the frequency given in kHz, Km is a factor of maritime traffic between 0 and 1, and SW is the wind speed in

m/s.

This model obviously does not take into account all possible noise sources encountered in the ocean. Biological

sources (snapping of shrimps, marine mammals, etc.), for example, are neglected here. Examples of noise power

spectral densities are illustrated in figure 1.4 (b) [5], and the details of different contributions of equation (1.6) are

illustrated in figure 1.4 (a) [5] for several values of the wind speed and maritime traffic activity parameters. In the

frequency band ranging from 100 Hz to 50 kHz, where the majority of underwater acoustics communication systems

operate, the noise power spectral density can be approximated by a decreasing linear function on the logarithmic scale

of frequencies [10]:

NK (f) = N0 + 18 log10(f), (1.7)

where the frequency f is given in kHz and N0 is a constant chosen according to the sea state. Table 1.1 gives the

correspondence between the state of the sea, the wind speed and the constant N0 of the simplified noise model. The

latter model is useful for evaluating the performance of underwater acoustics communication systems by simulations

when precise information about the intensity and the property of ambient noise sources is not available. You can also

configure the constant N0 according to a noise power specified in the considered transmission band.

Underwater acoustics ambient noise is often considered to be distributed according to normal law with a continuous

power spectral density [8, 13]. However, it should be noted that, depending on the context, these assumptions may be

in default. For example, the snapping of shrimps is rather modeled by a Lévy distribution than by a Gaussian [14], and

boat noises may have power spectral density consisting of spectral lines at the rotational frequencies of the propellers

and their harmonics.
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Figure 1.4: (a) Power spectral density of noise according to the model of equation (1.6). (b) Noise power spectral
density by summing the different contributions. Simplified model according to equation (1.7) with N0 = 50 dB/Hz.

1.1.5 Heterogeneities and Variability of the Underwater Environment

The underwater environment is heterogeneous and dynamic in essence. The physical properties that determine the

propagation of acoustic waves fluctuate spatially and timely, and at different scales.

As mentioned in section 1.1.1, due to changes in temperature, salinity and pressure, the velocity curve varies

according to geographic regions. Seasonal cycles and tides also decide the speed patterns, especially in shallow water

due to temperature changes. The propagation conditions can therefore be very different depending on the location of

the globe and the time of the year.

At more local scales, changes in propagation conditions from a source to a receiver may occur due to movements

of the source and/or the receiver. These movements may be voluntary or the result of waves or drifting from the ocean

current. The distortion effects produced by the propagation of the acoustic wave on the transmitted signal can vary with

small variations in transmission distances and depths. The variable roughness of the bottom and surface interfaces is

also a source of fluctuations in the amplitudes, phases and delays of the reflected echoes [15]. Certain more occasional

phenomena cause unpredictable variations in noise levels, for example, human activity, chirping of marine mammals,

or the formation of air bubbles on the surface due to waves.

From the point of view of communications theory, phenomena with time dynamics from day to season can be

considered responsible for long-term variations in the signal-to-noise ratio (SNR), whose impact on the theoretical

performance of the receiver is known [16, 17]. The phenomena whose variabilities occur on the symbol time, packet, or

frame time scale affects the instant performance of the receiver.
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1.2 Impact of Environmental Physics on Communication Signals

1.2.1 Optimal Frequency and Bandwidth

Based on the noise and propagation loss model given in the previous section, see equation (1.2) and (1.7), it is possible

to establish link budget for a sinusoid signal of frequency f propagating on a path of length d [13]. Considering a direct

path, the quantity PdB(d, f) = −AdB(d, f)−NK (f) expresses the loss in terms of signal-to-noise ratio suffered by the

sinusoid in dB, where the frequency f is given in kHz and the distance d in km.

Figure 1.5 [5] illustrates several examples of this signal-to-noise ratio (SNR) as a function of frequency for different

transmission distances. Several observations can be made. First, a propagation path is more selective in frequency

as the distance increases. This implies that the bandwidth available for communication and therefore, the associated

channel capacity decrease with distance. It then appears that there is an optimal frequency in the sense that the link

budget losses are minimal for a fixed distance and transmission band. Finally, the underwater acoustics channel is

generally wide-band because the width of the usable frequency band is of the same order as its center frequency.

Figure 1.5: Link budget for a sinusoid signal of frequency f propagating at different distances. Simplified noise model
according to equation (1.7) with N0 = 50 dB.

Finally, we note that the link budget model is too optimistic to carry out realistic studies of underwater acoustics

modem performance or channel capacity as detailed in the following section. In practice, one must add to the link

budget, the effect of multi-path on the frequency selectivity of the channel, as well as its time variability. It is useful to

give frequency bands which can be reasonably used for a fixed transmission distance. Figures 1.6 (a) and 1.6 (b) [5]

show the optimal central frequency and 3 dB band, respectively, as a function of the transmission distance.
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Figure 1.6: (a) Optimal frequency as a function of distance. (b) 3 dB bandwidth around the optimal frequency.

1.2.2 Doppler Effects

There are two sources of Doppler effect degradation on the communication link, namely environmental (moving waves,

boats, currents...) and shifts with velocity ~v of the transducers, the latter effect possibly being more important due to

the relative low value of acoustic celerity (cm ' 1500 m/s) through the parameter v/cm. From the receiver’s point of

view, when it and/or the source are in motion, the low speed of underwater acoustics waves results in pronounced

Doppler effects due to the perceived signal modified by the movement and speed of the terminals relatively to that of

the wave. In a narrow band channel, where the carrier frequency is very large compared to the bandwidth of the signal,

this effect is approximated by a simple shift in the central frequency of the received signal. In the wide-band underwater

acoustics channel, this effect explicitly involves time compression/dilation of the signal by re-scaling the time variable

[18]. Considering s (t) as the signal from the acoustic source and r (t) as the signal received after propagation through

an ideal channel, only affected by the Doppler effect, we have:

r(t) = s((1−∆)t), (1.8)

where ∆ = v/cm is the Doppler factor, ratio (negative or positive) of the relative speed v of the movements between

the source and the receiver to the speed cm in the medium. As mentioned in the previous section, the movement of the

source and the receiver can be voluntary or the result of the movement imparted to them by waves or currents.

The Fourier transform of the signal affected by the Doppler contraction/dilation effect s((1−∆)t) is given by S(
f
∆)/|∆|.

Considering that the signal s (t) occupies a band B around its center frequency fc, the Doppler effect then causes a

frequency dilation/compression and shift, so that it occupies a band [−B2 (1−∆); +B
2 (1−∆)] around (1−∆) fc.
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1.2.3 Impulse Response of Doubly Dispersive Channel

A signal sent by a transmitter is received after propagation in the underwater acoustics channel, as a sum of delayed

echoes whose amplitude and phase fluctuate over time (see section 1.1.2). Each echo is the result of a particular

propagation path, frequency selective and whose time fluctuations reflect the marine environment. In addition, the

delay of each echo is itself variable over time due to possible Doppler effects (see section 1.2.2). Mathematically

summarized and using a complex baseband-equivalent model, we have the following general model for the impulse

response of the underwater acoustics channel, expressed as a function of the delay τ and time t:

h(τ, t) =

K∑
l=1

cl(t)gl(τ − τl(t)), (1.9)

where K is the number of paths, cl(t) is a complex coefficient modeling the time fluctuations of the path l, gl(τ)

expresses its frequency selectivity due to absorption, and the dependency on time delay τl(t) reflects the wide-band

characteristics of the channel and the Doppler effect. For a signal s(t) transmitted through the channel h(τ, t), the

received signal is expressed by :

r(t) =

∫
h(τ, t)s(t− τ)dτ, (1.10)

The channel is called time dispersive (or frequency selective) if for s(t) = δ(t), the duration of r(t) is strictly positive.

Conversely, a channel is frequency dispersive (or time selective) if for s(t) = ej2πf0t, the bandwidth occupied by r(t)

is strictly positive. Time dispersion occurs when the number of paths K is larger than 1, while the frequency dispersion

results in the time dependency of the phase, the amplitude and the delay of these paths, through the coefficients

cl(t) and the delay τl(t). Due to the multi-path propagation of the acoustic wave and time fluctuations of the marine

environment, the underwater acoustics channel is doubly dispersive.

Time fluctuations in the marine environment depend on a large number of physical parameters, which themselves

vary on different time scales. It is therefore difficult to adopt a deterministic channel model. Therefore, the impulse

response h(τ, t) is rather modelled as a stochastic process. When the channel can be considered as Wide-Sense

Stationary Uncorrelated Scattering (WSSUS), it is possible to describe more easily how the channel disperses energy

in the domain of delay and Doppler frequencies through the diffusion function [3, 19]. The diffusion function is defined

as the Fourier transform of the autocovariance of the impulse channel response:

Sh(τ, f) =

∫
Rh(τ, u)e−j2πfudu, (1.11)
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where:

Rh(τ, u) = E[(h(τ, t)− E[h(τ, t)]) (h(τ, t+ u)− E[h(τ, t+ u)])∗], (1.12)

is the autocovariance of the Wide-Sense Stationary channel with respect to time t and the time-varying impulse re-

sponse h(τ, t) is defined in equation (1.9).

From this function, the Doppler spectrum can be derived:

S∆(f) ,
∫
|Sh(τ, f)|2dτ, (1.13)

which characterizes the frequency dispersion of the channel, and the power-delay profile:

Sd(τ) ,
∫
|Sh(τ, f)|2df, (1.14)

that characterizes its time dispersion.

The time spread of the channel can be defined through the delay-power profile by [20]:

τrms =

√∫
(τ − τg)2Sd(τ)dτ)∫

Sd(τ)dτ
, (1.15)

where Sd(τ) is defined by equation (1.14) and τg =

∫
τSd(τ)dτ∫
Sd(τ)dτ

. The time spread of an underwater acoustics

channel can be on the order of several tens of milliseconds for less than 1km distances and increases with

the distance / depth ratio in shallow water channels [3, 13, 20]. The time dispersion of the channel is the dual

phenomenon of its frequency selectivity, and knowledge of the time spread also informs us about the frequency band

that can be used without suffering from ISI (see chapter 2). The channel coherence bandwidth is generally defined as

the inverse of its time spread, as:

Bcoh =
1

τrms
. (1.16)

It corresponds to an average bandwidth for which the channel can be approximated as non-frequency selective. Con-

sidering the typical time spread of underwater acoustics channels, the corresponding coherence bandwidth

can be in the order of a few hundred Hz.

Frequency spread (or Doppler spread) is defined similarly to temporal spread, that is:

fDo =

√∫
(f − fg)2S∆(f)df)∫

S∆(f)df)
, (1.17)
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Figure 1.7: Impulse response of an underwater acoustics channel surveyed in the Mediterranean Sea

where S∆(f) is defined by equation (1.13) and τg =

∫
fS∆(f)df)∫
S∆(f)df)

. The coherence time is generally defined by:

Tcoh =
1

fDo
. (1.18)

This coherence time corresponds to the average duration for which the channel can be considered as no time selective.

Typical underwater acoustics communication channels have a coherence time on the order of tens to hundreds

of milliseconds, or even on the order of a second for the most stable channels [20]. When in addition, the

transceivers are moving faster, the coherence time becomes smaller because of the relatively low value of the acoustic

celerity (≈ 1500 m/s).

Unfortunately, the WSSUS hypothesis can be put in default by many underwater acoustics channels [20, 21] and

its validity depends both on the observation time scale and the intrinsic properties of the channel; indeed, the statistics

of the underwater acoustics channel can fluctuate more or less slowly, according to the phenomena of different time

scales described in section 1.1.5. Finally, there is no consensus on statistical model of fading channel in the underwater

acoustics communication. We can cite [21] where a Rice distribution is chosen for the fast fading model, which assumed

to be stationary considering the long-term fluctuations of the channel as deterministic. These fluctuations are modelled

by a log-normal distribution law in [22]. A Rayleigh distribution is chosen in [23] for the fast fading channels surveyed at

sea, while other channels seem to be better modeled by a K distribution [24]. Thus, the choice of a statistical underwater

acoustics channel model is still open to discussion, each real channel may be more or less close to the model depending
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Figure 1.8: Levels and frequencies of some underwater acoustics sources: anthropogenic (orange), biological (green),
abiotic (red and blue)

.

on where and when it was surveyed. Figure 1.7 [5] shows a channel probed in Toulon harbor (the time compression /

dilation due to the Doppler effect has been compensated), at a frequency of 10.5 kHz on an 8 kHz band. This figure

illustrates well the typical delay and time variability of underwater acoustics channels leading to a doubly-selective (time

and frequency) medium.

1.3 The Underwater Acoustic Channel As an Interference Channel

Unlike terrestrial communication channels, the time and frequency activity of the acoustic sources occupying the under-

water acoustic channel is not regulated. Many heterogeneous entities transmit their signals in similar frequency bands.

In addition, there is no pre-established network infrastructure and standardized (or even commonly accepted) protocols

for organizing and controlling access to the channel’s physical resources. Figure 1.8 [25] shows the emission levels and

frequency bands of the different underwater acoustic sources that can be encountered. When several of these sources

coexist in the same geographical area, congestion of the underwater acoustic spectrum is likely to occur, and will occur

more frequently as human activities linked to the world of the sea are increasing [25, 26].
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1.4 Standardization

Until April 2017, the only existing standard for communication systems was the old standard NATO - STANAG 1074

for analog underwater telephones using single-sideband modulations. Recently, the JANUS digital communications

protocol has been standardized by NATO [27]. This protocol aims at enabling interoperability between heterogeneous

underwater acoustic systems by providing them with a framework for communication through modulation, coding, and

framing. The physical layer implemented in JANUS has been designed to ensure, on the one hand, a certain robustness

of the communication links and, on the other hand, an easy integration into the existing commercial modems [28]. In

this first version, the standard offers a frequency-hopping spread spectrum modulator (FHSS-FSK) with 13 tone pairs

distributed over a band of 4160 Hz centered on 11520 Hz. The media access layer protocol, based on carrier sense

multiple access (CSMA), is also oriented towards simplicity of integration and implementation. However, it is limited in

terms of the number of sources that can coexist without collisions and is sensitive to the typical long propagation delays

of the underwater acoustic channel (given the low speed of the wave in the medium).

Although the standardization of JANUS is likely to mark the beginning of a new period in the development of un-

derwater acoustic communications, the protocol does not provide all the answers to the problem of the coexistence

between heterogeneous underwater acoustic sources. This is obvious for example for biological sources. Furthermore,

the modulation proposed by this protocol is of limited applicability to low throughput applications or those requiring

only sporadic exchange of small amount of data. The same goes for the method of access to the medium CSMA, for

which the number of sources that can coexist without collision is limited. It is known that long propagation delays easily

defeat this type of method, because depending on the transmission distances between users, listening to the channel

before transmission can be done late or early with respect to the signals, which will conflict with the receiver receiving

messages. Eventually, JANUS can be used to allow users to establish fair resource sharing before their respective

transmissions. However, propagation delays can be problematic in a distributed framework, where repeating exchanges

of messages between users are necessary to diffuse information on channel states perceived by each user. The cen-

tralization of this sharing in terms of a single receiver which would then send instructions to the different transmitters in

the network is of limited applicability, as not all networks are centralized by nature. Finally, JANUS may suffer from a

lack of adaptive capacity, in the sense that the variability of the submarine channel is not explicitly taken into account.

Generally speaking, underwater acoustic communications can be considered as non-cooperative: the emission of

underwater acoustic waves can take place without great restriction, interoperability between systems of different origins

is almost non-existent at present, and interference is caused and suffered unconsciously when several sources compete

for the use of the physical resource offered by the channel. It is therefore very difficult to achieve effective sharing of

this resource.
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1.5 Conclusion

The underwater acoustic communication channel is often presented as difficult, due to its physical characteristics and

the heterogeneities of the environment. These difficulties are one of the main reasons why the development of under-

water acoustic communications has been slower than that of radio frequency communications, since the techniques

used in this field cannot be transposed directly to the underwater environment. The widebandness of the channel, the

different scales of environmental variability, as well as the lack of standardized network protocols and infrastructures for

organizing access to the channel, pose great challenges. Next chapter recalls how digital communications systems try

to face these challenges.
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This chapter presents the general model of a digital communication chain and specifies the framework in which this

thesis work was conducted.

The first section presents the components of the transmission chain and this chapter first focuses on the transmitter

parameters. The digital Quadrature Amplitude Modulation (QAM) is first used as a vehicle of digital information through

the transmission channel. Soft demapping is used in the rest of this work. Next part of this chapter introduces OFDM

(Orthogonal Frequency Division Multiplexing) modulation and the PAPR (Peak-to-Average Power Ratio) problem is pre-

sented. The third section of this chapter illustrates how a digital communication system faces the channel degradation,

the concept of diversity is introduced and the last section presents the equalization concept.

2.1 Presentation of the Transmission Chain

2.1.1 Transmission on a Limited Band Channel

Figure 2.1 [29] recalls the general structure of a digital transmission system.

• Source coding

The main purpose of source coding is to reduce the amount of information to be transmitted (compression), which

consists in eliminating any unnecessary redundancy in the messages and thus maximising the entropy. The encryption

of the transmitted message can also be considered as another function of source coding.

• Channel coding
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Figure 2.1: Complex equivalent representation in base-band.

The purpose of channel coding is to minimize the rate of bit error, obtained by introducing useful redundancies in

the message. It is intended to combat the imperfect channel (random noise n (t), fading, interference, etc.).

• Mapper

The digital message, as a series of bits, is an abstract quantity. To transmit this message, it is therefore necessary

to associate it with a physical representation, in the form of a signal. This is the role of the concatenation of the mapper

with the emission filter. The mapper uniquely associates a symbol denoted ak chosen from an alphabet of M = 2m

values with each binary word of m bits. At the output of the mapper, the signal a(t) can be written as:

a (t) =
∑
k

akδ (t− kT ) , (2.1)

where δ (t) is the Dirac function and T is the symbol period.

• Transmission filter

We convolute a(t) by a pulse he(t) to emit a continuous, band-limited signal. Typically, he(t) is a root-raised-

cosine filter, which can occupy a relatively limited bandwidth while facilitating the operation of the receiver (inter-symbol

interference). After the convolution operation, the signal can be written as:

xe (t) = a (t)⊗ he (t) =
∑
k

akhe (t− kT ) . (2.2)

• Frequency carrier modulation / demodulation (not shown in fig. 2.1)

Several types of digital modulations can be considered for the transmission of the signal xe (t). For instance, we
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consider the case of QAM (Quadrature Amplitude Modulation) modulation that will extensively be used in this work.

Take the elementary case of a single carrier modulation. We know that the multiplication of xe (t) by exp (j2πf0t) (and

keeping the real part) shifts the spectrum of xe (t) around±f0. The information signal xe (t) thus modulates a sinusoidal

carrier that carries energy. At the receiver side, the received signal is multiplied by the same wave exp (−j2πf0t) at

the same frequence f0 : a simple low-pass filter makes it possible to recover the transmitted signal xe (t) in the ideal

case of perfect synchronization. Since these operations are transparent compared to the processes carried out in the

modem (see 2.1.2.3), we only consider operations made in base-band.

• Transmission channel

The transmission channel in base-band can be considered, as a first approximation, as an invariant linear channel

of impulse response h (t). Ocean noise sources (see section 1.1.4) radio frequency disturbances and crosstalk can be

modelled by adding random n (t) noise. The components of the transmission chain also contribute to this noise. This

part will be introduced in detail in section 2.3.

• Receiver filter and equalizer

Let us assume the transmission of only one BPSK symbol (i.e. |a0|2). On the receiver side, a matched filter (MF)

with impulse response hr(t) maximizes the signal to noise ratio at the sampling instant t0 + nT and thus minimizes the

error probability in the case of a Gaussian channel. For a Gaussian channel, (i.e. h (t) = δ (t)), the optimum matched

filter is defined by equation (2.3):

hr(t) = h∗e (T − t) . (2.3)

To recover this classic result, we observe that the received signal y can be written as:

y (t) = (xe (t) + n (t))⊗ hr (t)

= xe (t)⊗ hr (t) + n (t)⊗ hr (t)

= X (t) +N (t) ,

(2.4)

where n (t) is the additive white Gaussian noise (AWGN). The signal power at time instant T and average noise power

are given by:

|X (T ) |2 = |
∫ +∞

−∞
Xe (f)Hr (f) ej2πfT df |2,

E
[
N2 (T )

]
=
N0
2

∫ +∞

−∞
|Hr (f) |2df.

(2.5)
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The output SNR at sampling instant T is given by:

SNRo =
|X (T ) |2

E
[
N2 (T )

] =
|
∫+∞
−∞ Xe (f)Hr (f) ej2πfT df |2

N0
2

∫+∞
−∞ |Hr (f) |2df

. (2.6)

Using Schwartz inequality, one simply obtains:

|
∫+∞
−∞ Xe (f)Hr (f) ej2πfT df |2

N0
2

∫+∞
−∞ |Hr (f) |2df

≤
∫+∞
−∞ |Xe (f) ej2πfT |2df

∫+∞
−∞ |Hr (f) |2df

N0
2

∫+∞
−∞ |Hr (f) |2df

. (2.7)

The equality is thus achieved in the frequency domain when Hr (f) =
[
Xe (f) ej2πfT

]∗
which is equivalent to equation

(2.3). Hence, the MF maximizes the output SNR which equals to 2/N0
∫+∞
−∞ | Xe (f) |2 df .

Indeed, at the receiver, in order to recover the value of the transmitted symbol ak, the receiver samples the received

signal at time instant (t0 + nT ) as:

y (t0 + nT ) =
∑
k

akrc (t0 + (n− k)T ) + n (t0 + nT )

= anrc (t0) +
∑
k 6=n

akrc (t0 + (n− k)T ) + n (t0 + nT ) ,

(2.8)

where t0 is the propagation time of the channel; in this expression, rc(t) denotes the concatenation of the shaping and

reception filters with the transmission channel of impulse response h(t), as summarized in equation (2.9):

rc (t) = he (t)⊗ h (t)⊗ hr(t). (2.9)

Notice that y (t0 + nT ) not only depends on symbol an, but also on other symbols. For a simple AWGN channel,

that is to say h (t) = δ (t), the receiver filter eliminates ISI where hr(t) is chosen to satisfy the following condition:

rc (t0 + (n− k)T ) = 0,∀n 6= k. (2.10)

Equation (2.10) represents the Nyquist criterion in the time domain; for the case of the AWGN channel with matched

filter, this criterion can be written in the frequency domain as:

+∞∑
n=−∞

| He
(
f − n

T

)
|2= constant, (2.11)
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e

Figure 2.2: Raised cosine filter.

where |He (f) |2 is the frequency response of the global (transmission and receiver) filter. In particular, when a root-

raised-cosine filter is used as the transmission and receiver filter, the global filter (raised-cosine filter) fulfils this condition

(see in Figure 2.2 [29]). This filter depends on the parameter α called the roll-off factor and is commonly used in

transmission systems. For a high roll-off factor (near to 1), time synchronisation is facilitated at the expense of a large

signal bandwidth. In our simulations, the roll-off factor is set at 0.3.

The AWGN channel is poorly suited to model wireless channels. Over such channels, the receiver receives many

versions of the transmitted signal that arrive at distinct instants. Therefore, ISI emerge and seriously damage the system

performance. To work around this issue, the receiver need to perform equalization before decoding the received signals,

and the equalization function is described in detail in section 2.4.

The matched filter (MF) over the AWGN channel maximizes the signal-to-noise ratio, therefore it provides a reference

for such channels and it is used as the basis for certain forms of equalization.

• Demapping

At the output of the equalizer, we obtain noisy symbols; the role of the Soft demapping is to calculate the Log-

Likelihood Ratio value of the coded bits, noted LLR (see section 2.1.2.6), which will be transmitted to the soft-input

soft-output channel decoder. The sign of the LLR corresponds to the hard decision on the bit considered and its

absolute value represents a measure of the reliability of the decision.

• Channel decoding and source decoding
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The purpose of these blocks is to perform the inverse functions of the source and channel coding to estimate the

transmitted information bits.

2.1.2 Quadrature Amplitude Modulation (QAM)

As we mentioned earlier, the QAM modulation will extensively be used in this work. The presentation of some theoretical

notions concerning QAM modulation is essential for understanding the modulation technique used.

2.1.2.1 The Transmitted QAM Symbol

In such a modulation system, two phase quadrature components of a carrier are each multiplied by a discrete value

(data pair Ik and Qk corresponding to the encoded bits) taken from a finite set of predefined values (constellation QAM,

when assuming here a rectangular pulse of duarion T for the transmit filter he). Then these two quadrature components

are added together to build the desired QAM signal (modulated signal of duration T seconds). Each pair of values or

coordinates Ik and Qk can be represented by a point in a two-dimensional coordinate system. Figure 2.3 gives an

example of a 4-QAM constellation

Phase

Q
u

a
d

ra
tu

re

0100

10 11

Phase: real part Ik of QAM symbol

Quadrature: imaginary part Qk of QAM symbol

QAM symbol: ak = Ik + jQk

Figure 2.3: The 4-QAM Constellation.

Note M = 2m the number of symbols in the QAM constellation; m represent the number of bits associated with a

symbol of the QAM constellation.

The QAM symbol transmission rate D is then:

D =
m

T
bit/s. (2.12)
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For m > 1, the symbol rate and thus the spectrum are reduced when compared to a binary modulation. Also, as

displayed in section 2.3.1.1 ”Fading channel model”, the symbol duration T is a key factor on which the engineer can

play to face the temporal degradation (delay spread, coherence time) of the channel. The price paid for this spectrum

amelioration is a symbol error rate degradation (see section 2.1.2.3).

2.1.2.2 Theoretical Principle of QAM Modulation

Let fc be the carrier frequency on which we want to transmit the desired QAM symbol:

sk (t) = Ik cos (2πfct)−Qk sin (2πfct) , (2.13)

where Ik (resp. Qk) is the in phase (resp. quadrature) component of the QAM symbol. The QAM symbol in Equation

(2.13) can be written as:

sk (t) = rk cos
(
2πfct+ ϕk

)
, (2.14)

where rk and ϕk is the polar coordinate of the QAM symbol. If we consider a QAM modulation transmission of several

symbols, each having a duration T , the transmitted signal becomes:

s (t) =
∑
k

[
Ik cos (2πfct)−Qk sin (2πfct)

]
Π (t− kT ) , (2.15)

where:

Π (t) =

 1, t ∈ [0, T ]

0, else
. (2.16)

2.1.2.3 Concept of the Complex Signal Envelope

Let the real signal s (t) = Re (sa (t)) where sa (t) is given by:

sa (t) = s (t) + jš (t) , (2.17)

where š (t) is the Hilbert transform of the signal s (t).

The signal in Equation (2.17) can be developed as:

sa (t) = s (t)⊗
(
δ (t) + j

1

πt

)
. (2.18)
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We then have:

Sa (f) =


2Sf , f > 0

Sf , f = 0

0, f < 0

. (2.19)

sa (t) can be written in form:

sa (t) = xe (t) ej2πfct, (2.20)

where xe (t) is the complex signal envelope and represents the base-band signal. This notation allows to avoid modu-

lation in the study of a transmission system. In the case of QAM modulation, the complex envelope is given by:

xe (t) =
∑
k

akΠ (t− kT ) , (2.21)

and we have:

s (t) = Re
(
xe (t) ej2πfct

)
. (2.22)

This representation is particularly interesting because frequency transposition by In phase / quadrature modulation can

then be considered as a transparent operation to the receiver.

2.1.2.4 Real QAM Modulator and Demodulator

Figure 2.4 [29] presents a QAM modulator and demodulator scheme. In a QAM system, the two Digital-to-analog

converters (DAC) deliver one pulse for each QAM symbol at a rate of 1/T pulses/sec. In the case of a shaping filter with

rectangular response of duration T , in the frequency domain the spectrum of these pulses in sin (f) /f (sinc function) is

slowly decreasing and too large (spectrum spoilage). In order to limit the signal band, other filters are most widely used

in practice, such as the root-raised-cosine filter. The complex envelope of the signal can be written for a transmission

filter of impulse response he (t):

xe (t) =
∑
k

akhe (t− kT ) . (2.23)

2.1.2.5 Performance of the AWGN Channel

We consider the transmission of a QAM symbol over a AWGN channel of variance σ2 =
N0
2

∫+∞
−∞ |hr(t)|2dt, where

N0 is the mono-lateral spectral density of the noise. The receiver decodes the received signal using the Maximum
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Figure 2.4: QAM modulator and demodulator

Likelihood criterion: it search the closest constellation point to the noisy received observation in terms of Euclidean

distance.

Consider the case of a 2-PAM (two possible symbols −A and A), the error probability for a unit energy transmission

filter (given the normalisation
∫+∞
−∞ |hr(t)|2dt = 1 and σ2 =

N0
2

) is given by :

Pes = Pr (n > A) =

∫ +∞

A

1√
2πσ2

e
− x2

2σ2 dx

=
1

2
erfc

(
A

σ
√

2

)

=
1

2
erfc

√ Eb
2σ2

 ,

(2.24)

where erfc (x) = 2√
π

∫+∞
x e−u

2
du and Eb = A2.

For general case of M-QAM modulation, the QAM symbol error probability is [17]:

Pes =
2
(√

M − 1
)

√
M

erfc

(√
3mEb

4 (M − 1)σ2

)
, (2.25)

and the bit error probability for Gray mapping can be approximated by:

Peb =
(0.2 + 3.6/m)

(√
M − 1

)
2
√
M

erfc

(√
3mEb

4 (M − 1)σ2

)
. (2.26)

Figure 2.5 [17] shows the bit error rates for different QAM constellations, as a function of the signal to noise ratio. As

announced in section 2.1.2.1, we can observe a degradation of the bit error rate when the number of the constellation
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points increases.

2.1.2.6 Soft Demapper

The soft demapping consists in calculating the LLR value, defined as:

Λ
(
ski

)
= ln

Pr
(
ski = 1 | yk

)
Pr
(
ski = 0 | yk

)
 , (2.27)

where ski is the i-th bit associated with the considered symbol and yk is the received symbol at time instant k. The

probability Pr
(
ski = b | yk

)
with b ∈ {0, 1} can be developed as

Pr
(
ski = b | yk

)
=

∑
Qm|qmi =b

Pr
(
Qm | yk

)
Pr (Qm) , (2.28)

where Qm | qmi = b denotes the constellations symbols whose i-th bit is equal to b. We then have:

Λ
(
ski

)
= ln


∑

Qm|qmi =1
Pr
(
Qm | yk

)
Pr (Qm)

∑
Qm|qmi =0

Pr
(
Qm | yk

)
Pr (Qm)

 . (2.29)
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Using the Bayes’ law, for equiprobable symbols, we obtain:

Λ
(
ski

)
= ln


∑

Qm|qmi =1
Pr
(
yk | Qm

)
∑

Qm|qmi =0
Pr
(
yk | Qm

)
 . (2.30)

For a Gaussian noise, we simply have:

Pr
(
yk | ak = Qm

)
=

1

πσ2
exp

(
−
|yk −Qm|

2

σ2

)
. (2.31)

Using Equation (2.31), (2.27) can finally be written as:

Λ
(
ski

)
= ln


∑

Qm|qmi =1
exp

(
−|yk−Qm|

2

σ2

)
∑

Qm|qmi =0
exp

(
−|yk−Qm|

2

σ2

)
 . (2.32)

For example, consider for the 4-QAM constellation in Figure 2.6, the received symbol y = 0.5− 0.5j, then the LLR value

of the first bit of y can be calculated by:

Λ (b1) = ln

exp

(
−|0.5−0.5j−(−1−j)|2

σ2

)
+ exp

(
−|0.5−0.5j−(1−j)|2

σ2

)
exp

(
−|0.5−0.5j−(−1+j)|2

σ2

)
+ exp

(
−|0.5−0.5j−(1+j)|2

σ2

)
 . (2.33)

For σ2 = 1, we get Λ (b1) = 2, the sign indicates that the first transmitted bit is more likely to be equal to 1, as it could

be expected when looking at figure 2.6.

2.1.3 Orthogonal Frequency Division Multiplexing (OFDM)

In order to satisfy the need for high flow rate, short bit and symbol duration are often required. As mentioned above,

when T is not negligible compared to the maximum delay τmax, ISI occurs, thus limits the system performance. To

limit the ISI with low complexity, multi-carrier modulation was proposed. It consists in dividing the frequency band into

sub-bands and simultaneously sending one part of the information on each of the available sub-carriers. This allows to

have a large symbol duration T , hence, it limits the ISI while maintaining a high bit rate.

To benefit from good spectral efficiency in addition, the sub-carriers should be orthogonal, separated by 1
T (see
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Figure 2.7 [30]). Indeed, despite the overlap between the spectrum of different sub-carriers, this allows to avoid inter-

ference between orthogonal sub-carriers. The spectrum of the different sub-carriers add up and the resulting spectrum

is roughly flat in the band used, of width approximately
Np
T (ignoring side lobes at the edges) [31].
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Figure 2.7: Spectrum of different sub-carriers.
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During any given OFDM symbol duration, the analog base-band signal can be written as:

xe (t) =

Np−1∑
k=0

ske
j2πktT , (2.34)

where Np is the number of sub-carriers and sk is an information symbol on the k-th sub-carrier. The occupied band is

[−fmax, fmax] where the maximum frequency is fmax =
Np
2T . With Shannon sampling theorem [32], the signal can

be sampled with a frequency fe = 2fmax and the sampled signal is therefore written as:

xe (i) = xe

(
iT

Np

)
=

Np−1∑
k=0

ske
j2πkiT . (2.35)

Note that the modulation consists in simply carrying out a simple inverse discrete Fourier transform of the symbols which

can be implemented efficiently by an Inverse Fast Fourier Transform (IFFT) block. Considering that each sub-carrier

carries during a time of T seconds, a symbol taken among a fixed QAM constellation of size 2m, the bit-rate is then

given by:

D = Np
m

T
bit/s. (2.36)

(2.36) generalizes (2.12) by transmitting even more bits in parallel. A cyclic prefix helps at padding the signal against

inter-symbol interference and will facilitates the equalization process at the receiver. As explained below, considering

a flat-fading for each sub-channel and a perfect synchronisation [33–35], the received signal discretized with the same

frequency fe is written as:

r (i) = r

(
iT

Np

)
=

Np−1∑
k=0

skhke
j2πkiT + n (i) , (2.37)

where n (i) designates the additive noise often considered as AWGN.

To recover each subchannel in parallel, the receiver reversely proceeds to a direct discrete Fourier transform of the

received symbols, which can be implemented effectively by a Fast Fourier Transform (FFT); this allows to obtain for

each subchannel of index k, the product skhk of the corresponding symbol and attenuation and then to recover the Np

symbols if the attenuations have been estimated on pilot subcarriers.

The spectral efficiency and simplicity of implementation of the OFDM using FFT, make this modulation particularly

interesting for high speed communications [36]. Therefore, many telecommunications standards have adopted it such

as LTE, WiFi, WPAN, DVB-T2.... Finally, note that the spectral loss due to the addition of the cyclic prefix, the out-of-band

(OoB) emission due to the use of a rectangular shaping filter or the vulnerability to time or frequency synchronization
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errors has led to the emergence of alternative candidates for the implementation of multi-carrier modulations such as

FBMC, UFMC, and GFDM in the literature [37].

For practical OFDM underwater communications, besides the Peak-to-Average Power Ratio problem that will be

studied in the next section, the OFDM synchronization is a critical problem and OFDM is restricted to short (a few

hundred meters long) line of sight communications, 20 Hz to 40 Hz being typical inter-subcarrier values.

2.2 Peak-to-Average Power Ratio (PAPR)

The OFDM signal is characterized by a strong fluctuation of the signal with large peaks over time. Indeed, since an

OFDM signal is the sum of a large number of independently modulated sub-carriers (see Equation (2.35)), the resulting

signal follows a distribution often considered to be near normal. This is problematic because, with large peaks, the

analog amplifier must operate at a low level to prevent these peaks from reaching their saturation region (see Figures

2.8 [30] and 2.9) which results in a loss of energy efficiency and coverage. Otherwise, if the amplifier operates near its

saturation region, a nonlinear distortion would appear leading to a significant loss of performance (see figure 2.9 [38]).

We can characterize the fluctuations of a signal by its PAPR; it is simply the ratio of the maximum instantaneous

power to the average signal power. Thus, the PAPR is a dimensionless measurement of a waveform that indicates how

wide the signal peaks are. For the discrete case, the PAPR is given by:

PAPR =
maxn=0,...,Np−1 | xe (n) |2

E
(
| xe (n) |2

) , (2.38)
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Figure 2.9: An OFDM symbol with a large PAPR (see the right down corner of the figure), both the actual (in red) and
ideal (in blue) response for an amplifier (see the right upper corner of the figure) and finally the amplifier output (on the
left upper corner of the figure).

where the expression of xe (n) is given by Equation (2.35) in the case of an OFDM signal.

The PAPR is generally analyzed by its Complementary Cumulative Distribution Function (CCDF), i.e. the probability

that the PAPR exceeds a certain threshold γ. Assuming that the symbol sk are independent and identically distributed

(i.i.d.), therefore, the symbol xe (n) are also i.i.d and CCDF can be developed as follows:

CCDF (γ) = Pr (PAPR > γ)

= 1− Pr (PAPR ≤ γ)

= 1−
Np−1∏
n=0

Pr

 | xe (n) |2

E
(
| xe (n) |2

) ≤ γ


= 1−
(∫ γ

0
exp (−z) dz

)Np
= 1− (1− exp (−γ))Np ,

(2.39)

where the fourth line in Equation (2.39) comes from the fact that |xe(n)|2

E
(
|xe(n)|2

) follows an exponential distribution with

unit expectation (i.e. | xe (n) | follows a chi-square distribution with two degrees of freedom).

Figure 2.10 [30] compares the results of Monte Carlo simulations with the theoretical results based on the central

limit approximation. We can see that the result of the simulations correspond well to the theory for Np ≥ 64 [38].
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Figure 2.10: CCDF (γ) for several Np sub-carrier values. In dotted lines, the results of Monte-Carlo simulations and in
continuous lines, the results of equation (2.39).

2.2.1 PAPR Reduction Techniques

To address the high PAPR problem, various PAPR reduction techniques have been proposed so far in the literature.

These methods make it possible to reduce the PAPR at the cost of a degradation of BER performance, a loss of

spectral or energy efficiency and/or an increase in computational complexity. Therefore, no technique can be suitable

for all communication systems [39–42]. An appropriate method for a system should possibly meet its requirements as

best as possible.

In the rest of this section, we’ll briefly review the main techniques proposed. These methods can generally be

classified into three main categories: signal distortion techniques, coding techniques and probabilistic techniques.

2.2.1.1 Signal Distortion Techniques

As the name suggests, these techniques intentionally introduce signal distortion in order to reduce the PAPR. The most

basic method of this class is to simply replace the peaks of the OFDM signal with a predetermined value in case the

peak amplitude exceeds it (clipping). The nature of the processing introduces a distortion of the signal as well as an

out-of-band emission. To limit the latter, it is customary to filter the signal at the risk of seeing peaks reappear above the

threshold. At the expense of high complexity, an iterative method can be used to limit out-of-band emission and ensure

a desirable reduction in PAPR [43].

Contrary to clipping methods where the processing performed on the transmitter side is irreversible, other so-called

compression-extension (companding) methods are proposed in the literature. Indeed, these techniques recommend
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the use of a monotonic function to reduce the peak values and at the same time to increase the low values of the signal.

However, the reduction of the PAPR is always achieved at the expense of a degradation of BER due to a relocation of

the constellation symbols as well as an increase in the noise level during decompanding. Several techniques of compo-

sitions (companding) have been proposed in the literature such as ”µ-law companding” and ”exponential companding”

[44–46].

2.2.1.2 Coding Techniques

The basic idea of these techniques is quite simple: it consists in choosing a subset of code words with a desirable

PAPR. The input data bit blocks are then mapped to one of the pre-selected code words with a correction code (e.g.

a cyclic code) [47, 48]. This method reduces the PAPR at the expense of a higher complexity on the transmitter and

receiver side, as well as a reduction in spectral efficiency.

2.2.1.3 Probabilistic Techniques

Among the probabilistic methods, we first find the SeLective Mapping (SLM) algorithms [39, 42]. With this technique, the

transmitter generates several possible OFDM symbols in parallel for the same information symbols block, by multiplying

the symbols by different phase sequences and it chooses for transmission, the OFDM symbol with the lowest PAPR. This

technique can statistically reduce the PAPR at the expense of high complexity on the transmitter side, since several IFFT

blocks are required on the transmitter side, and a spectral loss because for each OFDM symbol, the phase sequence

index used must be encoded and transmitted to the receiver, because the latter is essential for decoding in traditional

SLM algorithms.

To avoid any spectral loss, blind SLM algorithms have been proposed in the literature [49–51]. They propose to use

algorithms based on the ML criterion on the receiver side to estimate the index of the phase sequence used. The high

complexity on the receiver side motivated the proposal of other detection algorithms such as the hard ML decoder and

a two-step estimator based on a Viterbi algorithm followed by a verification and correction step [52].

Finally, it is important to note a saturation effect for SLM techniques, because the additional gain in PAPR decreases

as the number of possible phase sequences increases.

Moreover, the principle of probabilistic interleaving techniques is quite similar to that of SLM techniques. Instead

of multiplication by phase sequences, the transmitter swaps the original symbols in several ways and generates the

corresponding OFDM symbols in order to transmit the one with the lowest PAPR [53]. Similar to the classic SLM

technique, this method induces a spectral loss due to the emission of the index of the interleaver used by the transmitter.

In order to preserve spectral efficiency [54], proposes to incorporate the interleaver index into the pilot symbols for
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estimating the channel response. However, this may weaken the equalization performance on the receiver side and this

technique is not suitable for the case of a slow fading channel [55].

The so-called Tone Reservation (TR) techniques sacrifice a few sub-carriers to transmit a PAPR reduction signal

instead of information symbols. A good choice of this PAPR reduction signal can then reduce the peaks of the original

signal and thus reduce the PAPR [56]. In addition to the loss of spectral and energy efficiency, there is also a complexity

on the transmitter side in optimizing the choice of the PAPR reduction signal. By ignoring the reserved sub-carriers, the

receiver decodes the information symbols without additional complexity.

The so-called Tone Injection (TI) methods consist in increasing the constellation size so that a point of the original

constellation can be mapped differently. One point of the original constellation is then replaced by another in the

extended constellation in order to reduce the PAPR [57]. These techniques can increase the average signal power and

increase the complexity on the transmitter side.

Finally, the so-called Active Constellation Extension (ACE) methods map symbols on the outer edges of the original

constellation to arbitrary positions without reducing the minimum distance between symbols. This freedom of mapping

can be exploited to reduce the PAPR [58]. Unlike Tone Injection techniques, the increase in average signal power with

ACE is smaller. However, the performance in terms of PAPR reduction decreases as the constellation size increases

due to the nature of ACE.

2.3 Effect of a Fading Channel on Communications, Diversity Techniques

2.3.1 Fading Channel

2.3.1.1 Fading Channel Model

Fading can be classified based on their temporal and frequency characteristics which characterize the channel selec-

tivity in two dimensions.

• Temporal characteristics

Fading can be divided into slow fading and fast fading. The terms slow and fast fading refer to the rate at which the

magnitude and phase changes.

Slow fading occurs when the coherence time of the channel is large compared to the signal symbol period. In this

case, the amplitude and phase changements can be considered to be approximately constant over the transmission

period. Slow fading can for instance be caused by events such as shadowing, where a large obstruction such as a

hill or large building obscures the main signal path between the transmitter and a slowly moving receiver. From the
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digital communication point of view, it is often considered that Tcoh ≥ 103T is sufficient to consider the fading as slow.

However, in addition, it is often necessary that the channel must be considered as stable within a frame, that is N

consecutive symbol durations for a single carrier system, because in practice, the channel is often estimated only once

during the training period (i.e. a fraction of few tens consecutive symbols).

On the contrary, fast fading arises when the coherence time of the channel cannot be considered as small compared

to the signal symbol period. In practice, digital communications performances are degraded by fast fading when T >

Tcoh
1000 ; that is fDoT > 10−3 when the channel variation begins to be perceived within a fraction of the symbol duration.

• Frequency characteristics

Fading can also be classified into flat fading and frequency selective fading according to the multi-path effect of the

wireless channel. Generally, multi-path signals arrive at the receiver at different times, and if the maximum delay is

negligible compared to the symbol period (the coherent bandwidth of the channel is larger than the bandwidth of the

transmitted signal), it can be considered that multi-path signals arrive at the receiver almost simultaneously. In this case,

multi-path does not cause any significant ISI. It is often considered that this favorable case occurs when T ≥ τrms
10 .

Conversely, if the maximum delay of multi-path signals is not negligible compared to the symbol period, symbols

arriving at different times overlap, causing ISI. This fading is then called frequency selective fading, because the fre-

quency response of this channel is not flat in the frequency band used. An equalizer is often needed to face this issue,

as studied in the last section of this chapter.

To summarize, the wireless channel can be classified into 4 different cases according to the relative value of the

symbol duration T compared to the timing characteristics of the channel (coherence time and delay spread):

- Slowly flat fading (simple equalization)

- Fast flat fading (difficult)

- Slowly frequency-selective fading (difficult)

- Fast frequency-selective fading (doubly selective: very difficult)

In particular, OFDM allows a degree of freedom by choosing an intercarrier bandwidth preventing frequency distortion

but the symbol duration is still restricted by the time selectivity (see figure 2.11 [59]).

• Some well known models

Fading channel models are classically used to model the effects of electromagnetic transmission of information over

the air in cellular networks and broadcast communication. The classic statistical models for wireless communication

channel are the Rayleigh fading and the Rician fading models.
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Figure 2.11: Trade-off between bandwidth and symbol length.

Rayleigh fading assumes that there is no line of sight between the transmitter and the receiver and that many (almost

simultaneous) paths interfere.

According to central limit theorem, with a high number of multi-paths, the impulse response h (τ ; t) is modeled as a

complex-valued Gaussian process with zero-mean and variance σ2
Rayleigh. Equivalently, the phase obeys a uniform

distribution in 0 to 2π, and the envelope | h (τ ; t) | at any instant t is Rayleigh-distributed. The probability density function

of the Rayleigh distribution is:

f (z) =
z

σ2
Rayleigh

e

− z2

2σ2
Rayleigh , z > 0. (2.40)

In addition one can note that in 3GPP modes, one often finds channel models that consider several independent

Rayleigh fading models that affect independently several consecutive symbols (frequency selective channel).

If, in addition to the signals received by reflection, refraction, scattering, etc., there is signal directly arriving from the

transmitter to the receiver in the received signal, then the total signal strength obeys the Rician distribution. The Rician

distribution can actually be understood as the sum of the main signal and the multi-path signal components that obey

the Rayleigh distribution. The probability density function of the Rician distribution is:
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f (z) =
z

σ2
Rician

e

−
z2+A2

p

2σ2
Rician · I0

(
zAp

σ2
Rician

)
, z > 0, (2.41)

where Ap is the peak value of the main signal amplitude, σ2
Rician is the power of the multi-path signal component,

I0 is the modified Bessel function of the first kind with order zero. There is no agreement among the ocean research

community for a general model. Note that the Rayleigh fading is the most defavorable case as there is no direct path

and therefore it is often chosen as the reference for the worst case.

2.3.2 Diversity Techniques

Diversity technique is widely used to combat random fading; the idea of this technique is to send various copies of the

information symbols over independent fading channels. As there is a limited probability that all the attenuation of these

channels are simultaneously below a critical threshold, this ensures that reliable communication can be carried out.

In the literature, several techniques to provide the receiver with L independent fading replicas of the signal carrying

the same information have been proposed. For instance [60]:

• time diversity : the signal in transmitted at L different time instants, separated by at least the coherence time Tcoh

of the channel.

• frequency diversity : the signal in transmitted on L different carriers, separated by at least the coherence bandwidth

Bcoh of the channel.

• spacial diversity : the information is sent and/or received L times over several sufficiently separated antennas in

space (of the order of a few wavelengths in practice).

In chapter 3, we will see that rotated constellation also allows to achieve diversity. All these techniques can be

considered as a simple repetition code. All received versions can then be combined on the receiver side in a coherent

way in order to increase the signal to noise ratio with the Maximal Ratio Combiner (MRC).

We now analyse the bit error rate for this technique. The received signal on the L independent flat channels can be

written in vector form as:

r = hs1 + n, (2.42)

where h =
[
h1, h2, . . . , hL

]T , r =
[
r1, r2, . . . , rL

]T and n =
[
n1, n2, . . . , nL

]T are respectively the channel attenua-

tion, the received observation and the Gaussian noise vector.
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Consider BPSK modulation, with s1 = ±a on L independent Rayleigh channels. Suppose the channel attenuations

hl are known to the receiver. By combining received observations with a MRC, we get:

h∗

‖h‖
r = ‖h‖ s1 +

h∗

‖h‖
n. (2.43)

The instantaneous error probability for the AWGN channel can simply be derived as [17]:

Perr|h = erfc

(√
2 ‖h‖2 SNR

)
, (2.44)

where SNR = a2/N0 is the signal-to-noise ratio, whereas ‖h‖2 SNR is the instantaneous SNR. To obtain the average

error probability, we need to calculate the expectation over the fading attenuation of equation (2.44) over all values of

‖h‖2. For Rayleigh channels, with unit variances, we obtain [61]:

Perr =

1−
√

SNR
1+SNR
2

L L−1∑
l=0

(
L− 1 + l

l

)1 +
√

SNR
1+SNR
2

l , (2.45)

where
(L−1+l

l
)

is the binomial coefficients.

At high SNR, the probability Perr can be approximated by:

Perr ≈
(

2L− 1

L

)
1

(4SNR)L
. (2.46)

It is therefore clear that the order of diversity L has a great impact on the performance of the communication on

such a fading channel. Instead of the traditional exponential BER decrease of the AWGN channel with the SNR, the

decrease of the BER is only inversely proportional to (SNR)L (i.e. inversely proportional to SNR if there is no diversity).

Increasing L dramatically decreases the error probability (see Figure 2.12 [61]). Finally, other methods to increase

diversity can be found in the literature, such as spread spectrum, channel coding with Bit-Interleaved Coded Modulation

(BICM) and precoding technique [17, 60].

2.3.3 The Rotated Constellation

In chapter 3, we will study a form of diversity called signal diversity (or rotated constellations) which has the advantage

of being implicitly included in the transmitted signal, without having the drawback of explicit repetition (as for diversity

such as frequency, time, space. . . ).

53



0 5 10 15 20 25 30 35

SNR(dB)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
e

rr

L=1

L=2

L=3

L=4

L=5

Figure 2.12: The error probability as a function of SNR for several orders of diversity L.

2.3.3.1 Operating Principle

The diversity techniques discussed in subsection 2.3.2 can be seen as one form of repetition code. [62–65] propose

another more sophisticated form of coding known as Signal Space Diversity (SSD), which inherently increases diversity.

This diversity allows a coding gain on selective fading channels and thus a gain in performance without compromising

the spectral and energy efficiency of the communication system, though there might be some loss due to some residual

interference between the channels [30, 66]. To do this, the first step consists of a simple rotation of the classical

constellation noted S by a rotation angle θ. The symbols of the rotated constellation are then given by:

x = R

 s1

s2

 , (2.47)

where R is the rotation matrix:

R =

 cos θ − sin θ

sin θ cos θ

 , (2.48)

and θ ∈ [0, 2π] is a rotation angle. The rotation by itself does not allow again in diversity, however, it is essential

to transmit the components x1 and x2 of a rotated symbol x on two independent channels, for example, to exploit

frequency diversity on a frequency selective channel; this diversity could not be exploited if the symbols were not

rotated before transmission. To better illustrate the operating principle, consider the classical QPSK constellation. The
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corresponding rotated symbols are given by:

xA = R

 a

a

 , xB = R

 −a
a

 , xC = R

 −a
−a

 , xD = R

 a

−a

 . (2.49)

The received signal is written as:

ri = hizi + ni, i = 1, 2, (2.50)

where z denotes the transmitted symbol, h1 (resp. h2) represents the fading coefficient of the in-phase component z1

(resp. in quadrature z2) and ni is a white Gaussian noise of variance N0.

Figure 2.13: The classic (in blue) and rotated (in red) QPSK constellations.

Unlike the classical constellation (not rotated), each symbol of the rotated constellation has its own in-phase compo-

nent and its own quadrature component (see figure 2.13 [30]), distinct from the other components of all other points (in

red) of the constellation. If one of these two components is erased by the channel, it is lost with the classical constel-

lations, while the receiver could still find all the information (in phase and in quadrature) with the rotated constellations,

since the only component received carries both the original phase and quadrature information and uniquely identifies a

symbol of the classical constellation.

To better understand the modulation diversity, we examine the error probability below [61]. Suppose the symbol xA

is transmitted; the probability of error can be upper-bounded with the union bound:

Pe ≤ Pr
{
xA → xB

}
+ Pr

{
xA → xC

}
+ Pr

{
xA → xD

}
. (2.51)
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The conditional probability Pr
{
xA → xB | h1, h2

}
is written as:

Pr
{
xA → xB | h1, h2

}
= erfc


√√√√h2

1

(
xA1 − xB1

)2 + h2
2

(
xA2 − xB2

)2
2N0

 = erfc


√√√√SNR

(
h2

1d
2
1 + h2

2d
2
2

)
2

 ,

(2.52)

where SNR = a2/N0 and:

d =

 d1

d2

 =
1

a

(
xA − xB

)
=

 2 cos θ

2 sin θ

 . (2.53)

Using inequality erfc (x) ≤ 1
2e
−x2

2 [67] and then by making the expectation with respect to h1 and h2, assuming that

these two variables are independent and follow Rayleigh’s law with unit variance, we obtain [61]:

Pr
{
xA → xB

}
≤

 1

1 + SNR
(
d2
1/4
)
 1

1 + SNR
(
d2
2/4
)
 . (2.54)

For θ 6=
[
0, π4

]
(so that d1 6= 0 and d2 6= 0), we can rewrite Equation (2.54) for a high SNR:

Pr
{
xA → xB

}
≤ 16

δAB
SNR−2, (2.55)

where δAB is the so-called product distance between xA and xB and is written as:

δAB = (d1d2)2 . (2.56)

Similarly, we obtain Pr
{
xA → xC

}
and Pr

{
xA → xD

}
. We can finally rewrite Equation (2.51) :

Pe ≤
48

min
j=B,C,D

δAj
SNR−2. (2.57)

It is therefore clear that for any indexes i and j, δij > 0 and the diversity obtained by rotation is equal to 2. Several

rotation angles make it possible to obtain a diversity equal to 2. In the next section, we examine the criteria proposed in

the literature for the selection of the rotation angle.
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2.3.3.2 Selection of the Rotation Angle

The rotation angle determines the performance of the system, it must therefore be chosen wisely [61, 63, 64, 68–73]. In

the literature, some criteria have been proposed for this purpose. First, Equation (2.57) suggests that the optimal angle

is the one which maximizes the minimum product distance between the symbols of the rotated constellation χ:

θ = arg max
α

 min
x,y∈χ

2∏
i=1

| xi − yi |

 . (2.58)

Regardless of the size of the constellation, this criterion leads to the angles of the golden number [63]:

θ1 = arctan

(
1±
√

5

2

)
. (2.59)

The high number of neighbors at the minimum product distance called ”kissing number” can make the choice of θ1

sub-optimal. An alternative criterion is to study the probability of an average symbol error [69, 70]:

Ps
(
θi
)
≤ 1

| χ |
∑
x∈χ

Pr (x)
∑

x̂ 6=x∈χ
Pr {x→ x̂} , (2.60)

where | χ | is the constellation size; Pr {x→ x̂} can be upper-bounded in the following expression which generalize

Equation (2.54):

Pr {x→ x̂} ≤ 1

2

2∏
i=1

1

1 +

(
xi−x̂i

)2
8N0

. (2.61)

Minimizing Equation (2.60) by a gradient descent algorithm, [69] then proposes some rotation angles for the QPSK,

8-PSK and 16-QAM constellations on a Rayleigh channel.

In addition, other criteria have been considered in the literature such as the minimum squared Euclidean distance

between the components of rotated symbols, the average Hamming distance between neighboring symbols in terms

of product distance, the maximization of the BICM capacity and the capacity of coded modulation [71–73]. In addition,

rotation angles have also been proposed to give the best performance on a Rice and Nakagami channel and for a

BICM-ID system [74–77].

Finally, the DVB-T2 standard recommends the use of a rotation angle for each constellation size [78, 79]. They

are summarized in Table 2.1. There is therefore no optimum rotation angle in all cases because they depend on the

modulation, the channel and the coding scheme, however it should be remembered that it is generally necessary to

carry out preliminary simulations which can avoid certain less favorable angles while many rotation angles allow fairly
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QPSK 16-QAM 64-QAM 256-QAM
29◦ 16.8◦ 8.6◦ 3.3◦

Table 2.1: The rotation angle values for the DVB-T2 standard.

close performances.

2.3.3.3 Demodulation Complexity

The soft demapping process involves calculating the LLR value for each bit:

Λ
(
li (x)

)
= log

 ∑
x∈χi0

Pr (r | x, h)

− log

 ∑
x∈χi1

Pr (r | x, h)



= log

 ∑
x∈χi0

exp

{
−

(
| r1 − h1x1 |2

σ2
+
| r2 − h2x2 |2

σ2

)}

− log

 ∑
x∈χi1

exp

{
−

(
| r1 − h1x1 |2

σ2
+
| r2 − h2x2 |2

σ2

)} ,

(2.62)

where li (x) represents the i-th bit of the symbol x, h is the channel vector (h1, h2), σ2 denotes the noise variance by

dimension, χi0 (resp. χi1) designates the set of symbols of the rotated constellation whose i-th bit is equal to 0 (resp.1),

and x1 (resp. x2) denotes the in-phase (resp. quadrature) component of the symbol x.

A soft demapping solution with negligible loss [79] often used in practice is obtained with the Max-Log approximation,

written as:

Λ
(
li (x)

)
=

1

σ2
min
x∈χi1

{
| r1 − h1x1 |

2 + | r2 − h2x2 |
2
}

− 1

σ2
min
x∈χi0

{
| r1 − h1x1 |

2 + | r2 − h2x2 |
2
}
. (2.63)

Since the rotated modulations break the independence between the I and Q components, the two components must

be considered together for the calculation of Λ
(
li (x)

)
for each transmitted bit bi with i = 0, 1, ..., log2M , where M is the

constellation size. Therefore, the calculation of the exact LLR (2.62) or obtained with the max-log approximation (2.63)

requires exploring all constellation symbols. For high constellation size such as 64-QAM or 256-QAM, such demappers

therefore have a high computational complexity which has a non-negligible impact on the design of the receiver [80].
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In order to reduce this computational complexity, the use of a sub-optimal demapper based on the Max-Log ap-

proximation is generally preferred in practice. Moreover, in the literature, decorrelation methods such as Zero-Forcing

(ZF) and Minimum Mean Square Error (MMSE) are proposed [81]; channel attenuation, along with the rotation matrix,

are then processed by the receiver as the response of a MIMO channel with 2 inputs and 2 outputs. Therefore, with

a classical equalization, the two components can be separated and the demapping of ”equalized” symbols can there-

fore be done in a traditional way with a complexity in O (log2M). However, the increase in noise level and the loss in

performance when the channel response matrix is singular make these ”one-dimensional” demapping methods highly

sub-optimal and poorly suited to rotated modulations.

To address this performance loss, we will now summarize the contribution of several two-dimensional demappers

proposed in the literature [82–86]. These methods allow better performance than one-dimensional demappers but with

higher complexity.

[82] proposes to decompose the space of the QAM constellation into 4 sub-regions according to the sign of the

real and imaginary part of the equalized symbol. The soft demapping is then carried out in one of these regions.

Although this method reduces the complexity for an M-QAM and allows better performance than [81], the complexity of

demapping always remains high in the order of O (M).

In addition, [83] propose to divide the constellation into 2
√
M sub-regions for I and Q components respectively, and

to select two sub-regions for each bit according to the equalized symbol. This method is simpler than [82]. However, due

to the low dependency among the bits of a QAM symbol, the total number of constellation points required for demapping

the bits of a symbol is approximately equal to
√
M ((log2M) /2), which makes the complexity of this technique finally

comparable to that proposed in [82].

Moreover, [84] proposes to separate the space of the constellation into 16 independent sub-quadrants. For each

of these sub-quadrants, [84] constructs a histogram of the constellation points involved in the calculation of the Max-

Log LLR. Therefore, 16 histograms are used for demapping where the associated complexity and the total number of

constellation points involved in the soft demapping procedure depend on the SNR.

Finally, [85, 86] proposes a method to select 2
√
M points of the constellation. The LLR values for the bits of a symbol

are calculated with these points already selected. This method allows, with reduced complexity, to achieve the same

performance as the Max-Log algorithm. In chapter 3, we will focus on a specific rotation angle that allows very low

computational complexity without any performance loss and we will apply it to the underwater communication channel.

Note that other geometric transformations that simple rotations can also be applied to constellations in order to obtain

signal diversity [87].
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2.4 Equalization

Equalization is the reversal operation for the distortion incurred by the frequency-selective multi-path channel [88]. It

tends to reduce ISI and thus enhance the overall system performance. Somehow, by combining successive received

symbols, it can be seen as a form of diversity.

2.4.1 Linear Equalization

Over multi-path channels, the received observation at time instant t contains copies of symbols belonging to other

time instant. With linear equalization, this ISI is considerably reduced by multiplying these received symbols by certain

weights and adding them can eliminate interference from neighbor symbols.

We now describe the Minimum Mean Square Error (MMSE) equalization. The goal of the MMSE approach is to

minimize the sum of ISI and the Gaussian noise. Assuming filter matched at the front-end, and a sampler operating at

frequency 1/Ts (i.e. in practice, usually Ts = T ), the received samples y(nTs) can be modeled as [88]:

y (nTs) =
∑
k

rc (nTs − kT ) sk + n (nTs) , (2.64)

where rc(t) denotes the concatenation of the filters in the transmission chain (see equation (2.9)) and n(t) is the AWGN

noise.

Suppose that the P received samples y
(
k0T + dpTs

)
are used to detect symbol sk0

, dp = 0, . . . , P − 1; notice that

the integer delays dp are relative to k0 and are parameters to be optimized as part of the equalizer design. These

samples can be gathered in a vector y, written as:

y =
∑
k

rc (k) sk + n, (2.65)

where the j-th element of rc (k) is given by:

rc (k)j = rc
(
dpTs + (k0 − k)T

)
. (2.66)

Observe that rc (k0)j = rc
(
dpTs

)
is independent of k0, thus rc (k0) can be replaced by rc, where:

rc =
[
rc (d0Ts) , rc (d1Ts) , . . . , rc

(
dP−1Ts

)]T . (2.67)
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The output of the MMSE linear equalization is given by:

zk0
= WHy, (2.68)

where W is a P -dimensional column vector of the weight coefficients optimized according to a given criteria and ()H is

the Hermitian operator.

Thereafter, the receiver estimates the transmitted symbol ŝk0
among S, the set of possible QAM constellation points,

using the maximum likelihood criterion:

ŝk0
= arg max

Sj∈S
Pr
(
zk0
| sk0

= Sj

)
= arg max

Sj∈S
− | zk0

−As (k0)Sj |
2

= arg min
Sj∈S

| zk0
−As (k0)Sj |

2,

(2.69)

where:

As (k0) = WHrc (k0) = WHrc. (2.70)

Using Equation (2.69), the receiver simply searches the constellation point Sj such that As (k0)Sj is the closest to zk0

in terms of Euclidean distance.

The weight vector W is designed to minimize the cost function J given by:

J = E
{
| zk0

− sk0
|2
}

= E
{(
zk0
− sk0

)(
zk0
− sk0

)∗}
= E

(
| sk0

|2
)
−WHE

(
ys∗k0

)
− E

(
sk0

yH
)
W +WHE

(
yyT

)
W .

(2.71)

Using Equation (2.65), we obtain:

E
(
ys∗k0

)
= Esrc (k0) = Esrc,

E
(
yyH

)
= EsCy,

(2.72)

where Cy is the data correlation matrix.

Thus Equation (2.71) can be rewritten as:

J = E
(
| sk0

|2
)
−WHEsrc − (Esrc)HW +WHEsCyW . (2.73)
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To determine the MMSE solution, we take the derivation of J with respect to the real and imaginary parts of each

element in W and set the derivatives to 0; we obtain:

− 2Esrc + 2EsCyW = 0. (2.74)

Therefore, the MMSE weight vectors can by obtained by solving the following equation:

W = C−1
y rc. (2.75)

The MMSE solution requires the knowledge of channel characteristics at the receiver side; here, in practice, the receiver

usually performs channel estimation to estimate rc before performing MMSE equalization.

2.4.2 Adaptive Equalization

In practice, the channel characteristics are unknown a priori, and in many cases, the channel response is time-varying.

In this case, the equalizer is designed to be adjustable to the channel response and, for time-variant channels, to

be adaptive to the time variations in the channel response. This section introduces the Least-Mean Squares (LMS)

algorithm that can inherently adjust the equalizer coefficients in time-varying channel.

In the minimization of the MSE described in section 2.4.1, the optimum equalizer coefficients vector W opt are

determined from the solution of Equation (2.75) by inverting the covariance matrix Cy . Alternatively, to lower down the

complexity burden, the receiver can use the gradient descent approach to find W opt; it is arbitrarily initialized with a

vector W 0; after, the filter coefficients are updated such as:

W k+1 = W k − β
(

1

2

∂J
W k

)
, (2.76)

where 1
2
∂J
W k

is the gradient vector, given by:

1

2

∂J
W k

= −y∗k
(
sk − zk

)
. (2.77)

The vector W k represents the set of coefficients at the k-th iteration and zk is given by equation (4.42). The step

size β is chosen to ensure convergence of the iterative procedure; not only it influences the convergence time, but also

the asymptotic MSE, therefore, it needs to be carefully chosen.
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Using Equation (2.77), (2.76) can be rewritten as:

W k+1 = W k + βy∗k
(
sk − zk

)
. (2.78)

In practice, as the transmitted symbol sk is generally unknown by the receiver, sk in Equation (2.78) is replaced by the

tentative decision on the equalizer output, which leads to the so-called decision-directed equalizer [89].

2.4.3 Turbo Equalization

Following the first step of Joachim Hagenauer, turbo equalization was proposed by Catherine Douillard in 1995 [90]; the

data is protected by convolutional codes and the receiver consists of two trellis-based detectors, one for the equalizer

and one for channel decoder. Turbo equalization approaches the performance of the maximum a posteriori (MAP)

receiver via iterative soft information passing between a soft-in soft-out (SISO) equalizer and a SISO decoder. It has

shown a significant improvement in bit error rate.

We now describe the system model of turbo equalization. At the transmitter side, a vector of bits bi ∈ {0, 1} of

length Kb are first coded into coded bits of length Kc using a convolutional code, and then mapped to the alphabet S

of the signal constellation. For convenience, we consider the binary shift keying is used, i.e., S = {+1,−1}, thus coded

symbols ak ∈ S, k = 1, . . . ,Kc. The interleaver then permutes ak and transmits the symbols sk.

The receiver input yk is given by:

yk =

L−1∑
l=0

(rc)l sk−l

+ nk. (2.79)

• Turbo equalization using the MAP criterion [91]

MAP 
Equalizer

MAP 
Decoder

 

 

𝑦𝑘  

 

 

Deinterleaver

  

 

Λ𝐸(𝑠𝑘) Λ(𝑎𝑘) Data
 estimate

Interleaver
Λ𝐷(𝑎𝑘) Λ(𝑠𝑘) 

Figure 2.14: A receiver performing turbo equalization.

Figure 2.14 depicts the receiver structure for turbo equalization. The MAP equalizer computes the a posterior probability
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Pr
(
sk = s|y1, . . . , yKc

)
, given the Kc received symbols yk, and outputs the extrinsic information to the decoder:

ΛE
(
sk
)
, ln

Pr
(
sk = +1|y1, . . . , yKc

)
Pr
(
sk = −1|y1, . . . , yKc

) − ln
Pr
(
sk = +1

)
Pr
(
sk = −1

) . (2.80)

The LLR given by equation (2.80) is then used by the channel decoder as a priori information on the received

symbol
(
sk
)
. The MAP decoder computes the a posterior probabilities Pr

(
ak = s|Λ (a1) , . . . ,Λ

(
aKc

))
, given Kc

code bit LLRs Λ
(
ak
)
, and outputs the difference:

ΛD
(
ak
)
, ln

Pr
(
ak = +1|Λ (a1) , . . . ,Λ

(
aKc

))
Pr
(
ak = −1|Λ (a1) , . . . ,Λ

(
aKc

)) − ln
Pr
(
ak = +1

)
Pr
(
ak = −1

) , (2.81)

where the equalizer output ΛE
(
sk
)

is considered to be the a priori LLR Λ
(
sk
)

for the decoder. The decoder and the

demapper may perform several iterations, at the end, the MAP decoder finally find the estimated data bit:

b̂i , arg max
b∈{0,1}

Pr
(
bi = b|Λ (a1) , . . . ,Λ

(
aKc

))
. (2.82)

This algorithm has good performance but with high complexity. In the next part, we examine another algorithm with

lower complexity.

• Turbo Equalizer Using MMSE Equalization [89, 91]

MMSE 
Equalizer

 

 

𝑦𝑘  

 

 

Demapper

  

 

𝑠 𝑘  𝛬𝐸(𝑠𝑘) 

E(𝑠𝑘) Λ(𝑠𝑘) Demapper
Cov(𝑠𝑘 , 𝑠𝑘) 

Figure 2.15: A SISO equalizer based on MMSE equalization.

In order to reduce the computational complexity of the turbo equalization (exponential in the number of d = τrms
T

states), in practice P = 4d where linear equalizer is usually used instead of the MAP equalizer. For the MMSE equalizer,

the filter parameters are obtained by minimizing the cost function J = E
(
|sk − ŝk|

2
)

. Figure 2.15 depicts the general

class of SISO equalizers for an MMSE equalizer.

The SISO equalizer output in Equation (2.80) is obtained using the estimate ŝk instead of yk, which requires the
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knowledge of the probability density function (PDF) distribution f
(
ŝk|sk = s

)
, s ∈ S; ΛE

(
sk
)

can be rewritten as:

ΛE
(
sk
)
, ln

Pr
(
sk = +1|ŝk

)
Pr
(
sk = −1|ŝk

) − ln
Pr
(
sk = +1

)
Pr
(
sk = −1

)
= ln

Pr
(
ŝk|sk = +1

)
Pr
(
ŝk|sk = −1

) . (2.83)

To perform MMSE Equalization, the expectation s̄k = E
(
sk
)

and covariance νk = Cov
(
sk, sk

)
of the symbols sk

are required:

s̄k =
∑
s∈S

s · Pr
(
sk = s

)
= Pr

(
sk = 1

)
− Pr

(
sk = −1

)

=
eΛ
(
sk
)

1 + eΛ
(
sk
) − 1

1 + eΛ
(
sk
) = tanh

(
Λ
(
sk
)

2

)
,

νk =
∑
s∈S
|s− s̄k|

2 · Pr
(
sk = s

)
= 1− |s̄k|

2.

(2.84)

The MMSE equalizer is a linear equalizer, consisting of a length P filter with time-varying coefficients Wk,p, p =

−P1, 1− P1, . . . , P2, where P = P1 + P2 + 1. In practice P ' 4d, where d = τrms
T . Minimizing the MMSE [88] gives:

ŝk = E
(
sk
)

+ Cov
(
sk,yk

)
Cov

(
yk,yk

)−1 (yk − E
(
yk
))
, (2.85)

where yk ,
[
yk−P1

, yk−P1+1, . . . , yk+P2

]T
.

Equation (2.85) can be rewritten as:

ŝk = s̄k + νkS
H
(
σ2
wIP + CVkCH

)−1 (
yk −Cs̄k

)
, (2.86)

where IP is the P × P identity matrix, C is the P × (P + L− 1) channel convolutional matrix:

C ,



(rc)L−1 (rc)L−2 · · · (rc)0 0 · · · 0

0 (rc)L−1 (rc)L−2 · · · (rc)0 0 · · · 0

. . .

0 · · · 0 (rc)L−1 (rc)L−2 · · · (rc)0


. (2.87)
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and

s̄k ,
[
s̄k−L−P2+1, s̄k−L−P2+2, . . . , s̄k+P1

]T
,

Vk , Diag
(
νk−L−P2+1, νk−L−P2+2, . . . , νk+P1

)
,

S , C

[
01×(P2+L−1) 1 01×P1

]T
.

(2.88)

This yields to the final expression :

ŝk = WH
k

(
yk −Cs̄k + s̄kS

)
, (2.89)

where the coefficient vector W k is given by:

W k ,
(
σ2
wIP + CVkCH +

(
1− νk

)
SSH

)−1
S. (2.90)

In the literature, the PDFs f
(
ŝk|sk = s

)
, s ∈ S are generally considered Gaussian with parameters µk,s , E

(
ŝk|sk = s

)
and σ2

k,s , Cov
(
ŝk, ŝk|sk = s

)
:

f
(
ŝk|sk = s

)
≈ φ

((
ŝk − µk,s

)
/σk,s

)
/σk,s, (2.91)

where φ (s) = e
−s2

2 /2. This assumption tremendously simplifies the computation of the SISO equalizer output LLR

ΛE
(
sk
)
. From the expression of ŝk, the statistics µk,s and σ2

k,s are computed as:

µk,s = WH
k

(
E
(
yk|sk = s

)
−Cs̄k + s̄kS

)
= s ·WH

k S.

σ2
k,s = WH

k Cov
(
yk,yk|sk = s

)
W k

= WH
k

(
σ2
wIP + CVkCH − νkSS

H
)
W k

= WH
k S

(
1− SHW k

)
.

(2.92)

The output LLR follows as:

ΛE
(
sk
)

= ln
φ
((
ŝk − µk,+1

)
/σk,+1

)
/σk,+1

φ
((
ŝk − µk,−1

)
/σk,−1

)
/σk,−1

= 2
ŝkµk,+1

σ2
k,+1

= 2WH
k

(
yk −Cs̄k + s̄kS

)
/
(

1− SHW k

)
.

(2.93)

Note that similarly to linear equalization of section 2.4.1, the channel must be estimated to find C.
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2.5 Conclusion

In this chapter, we first recalled some elementary basics of digital communications, and then presented the main char-

acteristics of fading channels. In general, the signals from the multiple paths can add up in a constructive or destructive

way; fading channels are therefore unreliable, leading to a need for diversity techniques. In addition, when the link is

frequency selective, the signal transmitted on this type of channel follows different paths to arrive at the receiver on

successive symbols, so that equalization at the receiver side is thus required. Finally, this chapter introduces several

equalizer proposed in the literature, the LMS algorithm, the MMSE equalizer and turbo equalization.

In the following chapter we will elaborate some more on a special angle to obtain signal diversity. This signal diversity

does not spoil any channel resources and this is of particular interest for the acoustic underwater channel for which the

bandwidth is particularly scarce.
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The underwater acoustic channel is time-varying with a particularly limited bandwidth. This makes reliable commu-

nications difficult to achieve and limits the information rate. The rotated constellation is an effective technique that saves

both bandwidth and energy, as it allows to take advantage of the channel diversity and thus to enhance performance

of rotated constellations over some fading channels such as underwater acoustic channels. However, the real cost

of this technique is the high complexity of the demodulation that prevented its wider use. To face this problem, this

chapter proposes to focus on the M-QAM rotated modulation using a series of rotation angle θ = arctan(1/
√
M) which

introduces several structural properties that can be used to tremendously ease up the soft demapping process.

This chapter is organized as follows in two main sections. In the first section, the first subsection introduces the

BICM communication system model with the rotated constellation; then, the structural properties of the series of angles

θ = arctan(1/
√
M) are presented in the second subsection and the following subsection details the soft demapping

solution; the performance of the rotation angles θ = arctan(1/
√
M) on underwater channels and those of the demapper

solution are given in the last subsection.

The second section describes an original PAPR reduction technique for OFDM systems using rotated constellations,

the first subsection briefly outlines the proposed technique and describes the system model, the second subsection

details the proposed low-complexity decoder and provides a complexity analysis of the proposal, some simulation

results are shown in the following subsection. Finally, we draw conclusions at the end of this chapter.

3.1 Uniformly Projected Rotated and Cyclic Q-delayed QAM

As we showed in chapter 2, rotated constellations bring inherent diversity to a system without any spectral spoilage.

The DVB-T2 standard was the first industrial standard to use rotated M-QAM constellations which theoretically performs

better than conventional M-QAM constellations over fading channels. Nevertheless, this solution increases dramatically

the complexity at the receiver side. Indeed, the two-dimensional demappers proposed in the literature have a high

computational complexity which has a non-negligible impact on the design of the receiver.

In this section, we will be interested in a particular series of rotation angles with interesting structural properties.

Building on these, we will detail a low complexity demapper dedicated to these angles and will test it on two underwater
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Figure 3.1: BICM system model with RCQD constellation

channels.

3.1.1 System Model

Figure 3.1 presents the system model and we consider the M-QAM constellations. A message frame passes through

a channel encoder and generates a codeword c. The codeword is then interleaved to ensure that consecutive bits

are transmitted through independent fading subchannels. Then every group of log2M bits is transformed, with Gray

mapping, into a complex symbol of the M-QAM constellation:

s (k) = s1 (k) + js2 (k) , (3.1)

where s1 (k) (resp. s2 (k)) is the in-phase (resp. quadrature) component at time k. The components sm can be

expressed in another way such as:

sm (k) = −
√
M + 1 + 2pm, (3.2)

where index m is in {1, 2} and pm takes an integer value in
{

0, 1, . . . ,
√
M − 1

}
. Note that similarly to the Gray mapping

defined in DVB-T2 [79], s1 (k) (or p1) is mapped from the even-indexed bits whereas s2 (k) (or p2) is mapped from the

odd-indexed bits.

The first step to generate rotated symbols (Rotated and Cyclic Q-Delayed (RCQD)) is to correlate the components

s1 (k) and s2 (k) through the multiplication with a properly designed rotation factor exp (jθ), so that the in-phase compo-

nent x1 (k) and quadrature component x2 (k) of the rotated symbol x (k) contain the complete information of the original
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unrotated symbol s (k):

x (k) = x1 (k) + jx2 (k) = s (k) exp (jθ) , (3.3)

where 
x1 (k) = s1 (k) cos θ − s2 (k) sin θ

x2 (k) = s1 (k) sin θ + s2 (k) cos θ

. (3.4)

The second step of the RCQD modulation consists in cyclically delaying the Q component x2 (k), so that the com-

ponents x1 (k) and x2 (k) of the rotated symbol x (k) pass through independently attenuated subchannels as follows:

z (k) = β
(
x1 (k) + jx2

(
k +DT

))
, (3.5)

z
(
k −DT

)
= β

(
x1
(
k −DT

)
+ jx2 (k)

)
, (3.6)

where β is the normalization factor of the QAM constellation (e.g., β = 1/
√

170 for a 256-QAM signal) and DT is the

integer delay.

At the output of the channel as already mentioned in chapter 2, the receiver must first achieve synchronization and

equalization of the signal. We will elaborate some more on these topics in chapter 4, but to focus on the study of rotated

constellations, we assume in a first step that there is no ISI and synchronization is absolutely perfect so that the received

observation r1 (k) (resp. r2 (k)) of the transmitted component x1 (k) (resp. x2 (k)) is approximated by:

rm (k) = βhm (k)xm (k) + vm (k) , (3.7)

where m is in {1, 2}, h1 (k) and h2 (k) are the channel attenuation terms, and v (k) = v1 (k) + jv2 (k) is a complex

Gaussian noise of variance σ2. In order to simplify the notation, in the sequel, the index (k) is dropped. Subsequently,

the receiver calculates the LLRs of the bits using equation (2.62). With a negligible loss in performance, the calculation

of LLRs can also be done with the Max-Log approximation (2.63).

Finally, from the calculated and deinterleaved LLRs, channel decoding is performed in order to best estimate the

information bits.
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3.1.2 Properties of the Rotated Constellation with Rotation Angle θ = arctan
(
1/
√
M
)

We propose to use the rotation angle θ = arctan
(

1/
√
M
)

[30, 92]. x1 and x2 in equation (3.4) can then be rewritten

as: 
x1 =

(√
Ms1 − s2

)
sin θ

x2 =
(√

Ms2 + s1

)
sin θ

, (3.8)

where s1 (resp. s2) is the in-phase (resp. quadrature) component (see (3.2)) of the non-rotated M-QAM symbol s.

Property 1 The components x1 (k) (resp. x2 (k)) of the rotated symbols are uniformed projected on I (resp. Q) axes

with a constant minimum distance dm = 2 sin θ between two consecutive points.

This property can be observed in Figure 3.2 for the 4-QAM constellation. Therefore, rotated constellations with the

rotation angle θ = arctan
(

1/
√
M
)

are referred in the sequel to as the Uniformly Projected RCQD (UP-RCQD) constel-

lations.

Property 2 There is a one-to-one correspondence between the rotated component x1 (resp. x2) and an integer pair

(p1, p2).
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Define an integer pair
(
Tx,1, Tx,2

)
as: 

Tx,1 = M−1
2 +

x1
2 sin θ

Tx,2 = M−1
2 +

x2
2 sin θ

, (3.9)

where Tx,m take integer values in {0, 1, . . . ,M − 1}, m ∈ {1, 2} (see (3.8) and (3.9)). One value taken by Tx,1 can

uniquely determine one integer pair (p1, p2) (recall definition in (3.2)) as:


p1 = b

Tx,1√
M
c

p2 =
√
M − 1−

(
Tx,1 −

√
Mp1

) , (3.10)

where bac designates the integer part of a. Reversely, one value taken by Tx,2 can uniquely determine one integer pair

(p1, p2) as: 
p2 = b

Tx,2√
M
c

p1 = −
√
Mp2 + Tx,2

. (3.11)

Property 3 Any
√
M consecutive integers Tx,1 (resp. Tx,2) contain every possibly taken integer values p2 (resp. p1).

This property is illustrated in Figure 3.3 for the UP-RCQD 16-QAM constellation.

These three properties will be used in the demodulator described in section 3.1.3 below, which exploits the regular

structure of the rotated constellation and the fact of being able to work with the integer couple
(
Tx,1, Tx,2

)
.

3.1.3 Soft Demapper for the UP-RCQD M-QAM Constellation

On the receiver side, the observation components rm can be transformed as following:

Rm =
rm

2βhm sin θ
+
M − 1

2

=
xm

2 sin θ
+

vm
2βhm sin θ

+
M − 1

2

= Tx,m +
vm

2βhm sin θ
, (3.12)

where m ∈ {1, 2} and Tx,m is given by (3.9).

Therefore, the term |rm − hmβxm|2 can be expressed as:

|rm − hmxmβ|2 = (2β sin θ)2 |hm
(
Rm − Tx,m

)
|2. (3.13)
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Figure 3.3: (TI , TQ) and the corresponding binary representation (b0b1b2b3) of the 16-QAM signal.

3.1.3.1 Calculation of LLRs in the Integer Domain

With (3.13), the Max-Log LLR computation (2.63) becomes:

Λ
(
li(x)

)
=

(2β sin θ) 2

σ2
min

Tx∈Ti1

{
|h1

(
R1 − Tx,1

)
|2 + |h2

(
R2 − Tx,2

)
|2
}

− (2β sin θ) 2

σ2
min

Tx∈Ti0

{
|h1

(
R1 − Tx,1

)
|2 + |h2

(
R2 − Tx,2

)
|2
}
, (3.14)

where Ti0 (resp.Ti1) is the set of the constellation points whose i-th bit is 0 (resp.1).

For the fading channel, the Max-Log demapper in (3.14) indicates that computing log2M LLR values requires

2 log2M minimal distance terms (i.e. min
Tx∈Ti

b

{
|h1

(
R1 − Tx,1

)
|2 + |h2

(
R2 − Tx,2

)
|2
}

). Among these Euclidean

distances, half (i.e. log2M distance terms) can be found once the point which maximizes the likelihood (ML), denoted

Topt = (T1,opt, T2,opt) (i.e., the nearest constellation point to the received observation), is located; while the other

log2M terms in (3.14) requires to find the closest constellation point (to the received point) Ticplm = (Ti1,cplm, T
i
2,cplm)

whose i-th information bit is complementary to the i-th bit of the global optimum Topt.

Therefore, the soft demapping algorithm comprises two steps: first locating the global optimum point and then
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searching for complementary points. Finally, the receiver calculates the LLRs of the bits as follows:

Λ(li(x)) =


(2β sin θ)2

σ2

(
d
(
Ticplm,R

)
− d

(
Topt,R

))
, li(Topt) = 0

(2β sin θ)2

σ2

(
d
(
Topt,R

)
− d

(
Ticplm,R

))
, li(Topt) = 1

, (3.15)

where d (To,R) denotes the two-dimensional Euclidean distance between the point To (Topt or Ticplm) and the equalized

observation R:

d(To,R) = |h1(R1 − T1,o)|2 + |h2(R2 − T2,o)|2. (3.16)

3.1.3.2 Determination of the Global Optimum Topt

Proposition 1 For the UP-RCQD M-QAM constellation, the local optimum Tm,Loc opt where m ∈ {1, 2} denotes the I

or Q component (i.e., the nearest point to the equalized observation Rm) is obtained by minimizing (3.13) as follows:

Tm,Loc opt =


0, if Rm ≤ 0,

round (Rm) , if 0 ≤ Rm < (M − 1) ,

M − 1, if Rm ≥ (M − 1) .

(3.17)

This proposition indicates that each received observation Rm (where m is in {1, 2}) identifies a unique 1D local

nearest point (see example on Figure 3.4); in the case where T1,Loc opt and T2,Loc opt given by (3.17) lead to the

same (p1, p2) pair (see (3.10)-(3.11)), then this pair is necessarily the global optimum because the two Euclidean

distances (3.13) are both minimized (see (3.14)). However, in poor channel conditions, the two local optima T1,Loc opt

and T2,Loc opt can lead to two distinct pairs (p1, p2) and the global optimum which minimizes (3.14) may not be one of

these two pairs. In this case, one may increase the number of candidate points by searching points centered around

R1 and R2. The integer radius of the searching region is ra. This region can be rewritten as:

T̃m =


{0, · · · , 2ra − 1}, if Rm < ra,

{M − 2ra, · · · ,M − 1}, if Rm ≥M − ra,

{bRmc − ra + 1, · · · , bRmc+ ra}, otherwise.

(3.18)

Each point Tx in T̃m determines a pair (p1, p2) and this pair designates a unique symbol of the conventional (not

rotated) constellation (s1, s2). T̃m contains exactly 2ra points. Note that the probability of finding the true global
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optimum Topt among the 4d points of the sets T̃1 and T̃2 increases with the radius ra.

Moreover, differently from the sphere decoding [93], the studied algorithm uses the equalized observation Rm rather

than rm. In addition, note that the radius ra implies an exact number of points (see (3.18)) used in the calculation of

LLRs, while in [93], one cannot predetermine the number of points involved in the demapping.

3.1.3.3 Search for Complementary Points Ticplm

According to property 3, the region centered on the local optimum T1,Loc opt (resp. T2,Loc opt) with a radius ra =
√
M/2 contains all possible values of p2 (resp. p1). Therefore, T̃1 and T̃2 guarantee to find the complementary point

Ticplm for any index bit i corresponding to the complementary of T1,Loc opt or T2,Loc opt considered bit.

Example: For the UP-RCQD 16-QAM constellation mapped with Gray mapping, let (R1 = 4.4, R2 = 9.3) be the

received and equalized observations pair.

Using (3.17), we obtain these two local optima: the closest in-phase component point T1,Loc opt = 4 (cf. (p1, p2) =

(1, 3)) and the closest quadrature component point T2,Loc opt = 9 (cf. (p1, p2) = (1, 2)) (see figure 3.4). The two

regions centered on the received observation with a radius ra =
√

16/2 = 2 are T̃1 = {3, 4, 5, 6} and T̃2 = {8, 9, 10, 11}.

The region T̃1 comprises the symbols (p1, p2) = (0, 0), (1, 3), (1, 2), (1, 1) and the region T̃2 comprises the symbols

(p1, p2) = (0, 2), (1, 2), (2, 2), (3, 2) (see Figure 3.4). We can notice that the region centered on R1 (resp. R2) contains all

the possible values of p2 (resp. p1), thus guarantee to find all the points complementary to T1,Loc opt (resp. T2,Loc opt).

3.1.3.4 Summary of the Studied Soft Demapping Algorithm

Bringing together the results of the previous sections, we now briefly overview the 4 steps of the previously described

soft demapping algorithm:

1. Using (3.12), r1 and r2 are transformed into R1 and R2.

2. Finding
√
M points centered around R1 and

√
M points centered around R2 using (3.18) with ra =

√
M/2, then

find the global optimum point within 4ra points by calculating the minimum distance from R. Note that the global

optimum Topt is directly obtained if the two local optima lead to the same (p1, p2) pair.

3. For each bit, all the points with i-th bit complementary to the i-th bit of Topt are selected among 4ra points, then

calculate the minimum distance using (3.16).

4. Once the minimum Euclidean distances have been obtained for Topt in the second step and for the complementary

points in the third step, the calculation of the LLR is then performed for all the bits using (3.15).
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( )

Figure 3.4: Example of determining the two local optima and complementary points for the UP-RCQD 16-QAM.

3.1.3.5 Complexity Analysis of the Studied Soft Demapping Algorithm

The complexity of the studied soft demapping algorithm is evaluated in number of Candidate Points (CP), Real Multipli-

cations (RM), Real Comparisons (RC), Real Inversions (RI) and Real Summations (additions or subtractions) (Rs).

For a rotation angle θ, the x1 and x2 components of a symbol of the rotated M-QAM constellation are obtained with

(3.4), this operation requires 4 RMs and 2 RSs. However, when the rotation angle is θ = arctan
(

1/
√
M
)

, the x1 and

x2 components are obtained with (3.8), the multiplication by a factor
√
M can be implemented by (log2M)/2 left-shifts,

the rotation operation in this case therefore only requires 2 RMs and 2 RSs.

The demodulation complexity on the receiver side is detailed below:

• In Step 1, ( 1
2βhm sin θ

) and ((M − 1)/2) are constant and therefore do not need to be recalculated for each

component received; the transformation (3.12) from r1 to R1 and r2 to R2 requires only 2 RSs, 2 RMs and 2 RIs.

• In Step 2, the selection of two regions requires 4 RCs (see (3.18)). Each term |h1

(
r1 − Tx,1

)
|2+|h2

(
r2 − Tx,2

)
|2

requires 4 RMs and 3 RSs. So globally, 2
√
M distance terms need 8

√
M RMs and 6

√
M RSs and to compare

2
√
M distance terms in order to find the minimum distance needs (2

√
M -1) RCs. So step 2 totally requires 8

√
M

RMs, 6
√
M RSs and (2

√
M+3) RCs.

• In Step 3, log2M minimum distances are required for the log2M complementary bits. Since each bit requires

2(
√
M -1) RCs, this step requires a total of 2(

√
M − 1) log2M RCs.

77



Table 3.1: The measurement parameters.

Parameters NOF1 NCS1 BCH1 KAU1 KAU2
Environment Fjord Shelf Harbour Shelf Shelf

Time of the year June June May July July
Water depth 10 m 80 m 20 m 100 m 100 m

-3dB freq. band 10–18 kHz 10–18 kHz 32.5–37.5 kHz 4–8 kHz 4–8 kHz
Duration 32.9 s 32.6 s 59.4 s 32.9 s 32.9 s

Type SISO SISO SIMO SIMO SIMO
Hydrophones 1 1 4 16 16

• In Step 4, multiply the term (2β sin θ)2

σ2 requires 1 RMs. There is therefore a total of log2M RMs and log2M RSs

for log2M bits.

Summing the complexity of the previous four steps, we find that the total complexity of calculating LLR values

(3.15) of one symbol equals to 2
√
M CPs, (8

√
M + log2M + 2) RMs, (5 +

(
2
√
M − 2

)
(1 + log2M)) RCs, 2 RIs and

(6
√
M + log2M + 2) RSs.

3.1.4 Numerical Results

This section contains two parts. The first part presents the performance of the UP-RCQD M-QAM constellations in

terms of BER over some underwater acoustic channels. The second one compares the demapper complexity and BER

of the studied soft demapping algorithm to other methods currently in use.

3.1.4.1 BER Underwater Performance

Several physical layer algorithms and modulation techniques have been proposed in recent years for underwater com-

munications. However, it is difficult to compare the performance of these proposals objectively because the simulation

conditions are different. WATERMARK is a Matlab platform which includes a library containing impulse responses from

5 actual underwater acoustic channels measured in Norway, France and Hawaii [94]. The measurement parameters

are summarized in Table 3.1. Figure 3.5 and 3.6 shows the impulse responses obtained at times t = 0, 1, 2s of two

submarine channels (a submarine channel measured off the western side of Kauai, HI, USA, noted KAU2 and a sub-

marine channel from Norway-Oslofjorden noted NOF1 [95]. These two figures point out that the considered channels

are frequency and time selective. The coherence time (resp. the symbol duration) is equal to 128 ms (resp. 0.25 ms)

for both channel.
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Figure 3.5: Impulse responses at times t = 0, 1 and 2 s of KAU2.
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Figure 3.7: BER comparison between the studied soft demapping method and α1 and conventional QPSK signals on
KAU2 channel.
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Figure 3.8: BER comparison between the studied soft demapping method and α1 and conventional QPSK signals on
NOF1 channel.

Figure 3.7 and 3.8 show the performances in terms of Bit Error Rate (BER) of the rotation angle θ = arctan(1/
√
M),
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Table 3.2: Comparison of the complexity of different demapping method

CP RC RI

Studied soft demapping method 2
√
M 5 +

(
2
√
M − 2

)
(1 + log2M) 2

Max-Log M (M − 2) log2M 0

Sub-Region
(√

M
2 + 1

)2
((√

M
2 + 1

)2
− 2

)
log2M 0

MMSE
√
M

(√
M − 2

)
log2M 6

PD-DEM
√
M

(
log2M

2 + 1

)
3
√
M +

(
7
4

√
M − 7

2

)
log2M − 3 0

RS RM

Studied soft demapping method 6
√
M + log2M + 2 8

√
M + log2M + 2

Max-Log 3M + log2M 4M + log2M

Sub-Region 3

(√
M
2 + 1

)2
+ log2M 4

(√
M
2 + 1

)2
+ log2M

MMSE 2
√
M + log2M + 8 2

√
M + log2M + 24

PD-DEM
√
M
(

3
2 log2M + 5

)
+ log2M − 1

√
M (2 log2M + 8) + log2M − 2

the reference angle α1 = arctan((1−
√

5)/2) which is often considered as asymptotically optimal [63], and the conven-

tional non-rotated QPSK constellation on KAU2 and NOF1 channels. In this simulation, we use a 5/6 rate Turbo code

and each simulated packet contains 512 bits (64 bytes). As the considered underwater channels are multi-path, the

received signals are turbo-equalized as detailed in chapter 4, and the BER curves are estimated through Monte Carlo

simulations.

Figure 3.7 and 3.8 show that the performances of the studied soft demapping method exceed those of the conven-

tional QPSK signals by approximately 2 dB and exceed those of the rotated signals with angle α1 by 0.75 dB for both

channels. Once again, these results underline that the UP-RCQD signal allows good performance and that the inherent

diversity provided by the rotation results in better performance than non-rotated constellations.

3.1.4.2 Demapper Comparison

Table 3.2 compares for different algorithms the complexity required, in terms of number of CPs, RMs, RSs, RCs and

RIs, for the demodulation of a symbol of the M-QAM constellation. In addition, the complexity cost function of different

demapping methods for demmaping one received rotated symbol are compared in Figure 3.9, including the studied soft

demapping method, the full-complexity Max-Log method, the Sub-Region method, the MMSE method and PD-DEM

method. We assume that the cost of RC and RS are one, RM or RI is two or four respectively. It can be observed

that the MMSE demapper has the lowest complexity among the considered demappers; nevertheless, it gives the worst

performances in terms of BER because algorithms based on decorrelation are not optimal for rotated constellations
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(see [93] and Figure 3.10). We can also note that, among the algorithms studied, the two-dimensional demappers

can achieve near-optimal performance. In particular, the studied soft demapping method achieves almost the same

performance as the Max-Log algorithm. Moreover, in comparison with the PD-DEM method, the 2D method of lowest

complexity in the literature, the studied soft demapping algorithm reduces the complexity and allows better performance.

3.2 Low-Complexity Blind PAPR Reduction for OFDM Systems with Rotated

Constellations

As recalled in chapter 2, the OFDM solution can be an alternative to underwater mono-carrier communications for short

range (a few hundred meters) stable channels; this is because its good spectral efficiency is paid at the price of a high

sensitivity to both synchronization and PAPR problems. The high PAPR of OFDM signals leads to a serious system

performance degradation which in particular limits the communication range.

To work around this issue, several algorithms have been proposed in the literature (see chapter 2) to reduce the

PAPR, but, they often suffer from multiple limitations; in particular, the main issue with interleaving techniques is the

spectral efficiency loss, as the transmission of a Side Information (SI) is generally required.

In contrast to previous works, this section proposes a blind interleaving technique for OFDM systems with Signal

Space Diversity (SSD) [96]. Indeed, with Rotated and Cyclically Q-Delayed (RCQD) constellations, the In-phase (I)

and Quadrature (Q) components of constellations symbols are correlated, which allows the receiver to estimate the

interleaver index without any SI. Moreover, to lower down the complexity burden at the receiver side, we first design

a blind decoder based on the Minimum Mean Square Error (MMSE) criterion and we then propose a low complexity

decoder for the Uniformly Projected RCQD (UP-RCQD) QAM, as we have shown in the first part of this chapter that this

constellation has several interesting structural properties and achieves near optimum BER performance.

3.2.1 Overview of the Proposed Blind PAPR Reduction Technique with SSD

We now describe the communication system depicted in Figure 3.11.

3.2.1.1 At the Transmitter Side

Each message frame is first channel encoded and interleaved; then every block ofNp (log2(M)) bits are converted into a

series of Np complex-valued M-QAM symbols s(k) (see 3.1) with Gray mapping. Then, the proposed transmitter rotates

the QAM symbol as x(k) (see (3.3 and 3.4)). Traditionally, the second step of the RCQD modulation is to cyclically delay
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Transmitter

Receiver

Figure 3.11: System model.

the Q components x2(k) so that the components x1(k) and x2(k) of the rotated symbol x(k) experiment independent

channels. In this section, the transmitter possesses an alphabet of D two-component interleavers {(σ(d)
1 , σ

(d)
2 ), d =

0, 1, · · · , D − 1}; the transmitter generates in parallel D OFDM symbols by applying each possible two-component

(in-phase and quadrature) interleavers; one thus obtains, for every index d, the sequence:

z
(d)
f

(k) = x1(σ
(d)
1 (k)) + jx2(σ

(d)
2 (k)). (3.19)

The transmitter then builds in parallel D OFDM symbols:

z
(d)
t (k) =

Np−1∑
n=0

z
(d)
f

(n)e

2πnk

Np . (3.20)

Before proceeding to any transmission, for each two-component interleaver (σ
(d)
1 , σ

(d)
2 ), the transmitter computes the

corresponding PAPR(d) as:

PAPR(d) =
maxk=0,··· ,Np−1|z

(d)
t (k)|2

E(|Z(d)
t )|2

, (3.21)

where Zt
(d) = (z

(d)
t (0), z

(d)
t (1), · · · , z(d)

t (Np − 1))T and E denotes the expectation.

Finally, the transmitter selects index d̃ such that:

d̃ = argmin
d=0,1,··· ,D−1

PAPR(d), (3.22)
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and only delivers the corresponding OFDM symbol at the channel input.

3.2.1.2 Interleaver Estimation at the Receiver Side

The received signal after Fast Fourier Transform (FFT) can be expressed as:

y(k) = H(k)z
(d̃)
t (k) + n(k), (3.23)

where d̃ is the actual interleaver index, H(k) is a Rayleigh random variable with unit variance and n(k) = n1(k)+jn2(k),

where n1(k) and n2(k) are independent zero-mean Gaussian random variables with known variance N0. In addition, it

is considered that the receiver has a perfect channel state information (CSI).

The receiver first has to deinterleave the received observations according to each possible two-component inter-

leaver (σ
(d)
1 , σ

(d)
2 ), such that the deinterleaved received signals are:

r(d)(k) = r
(d)
1 (k) + jr

(d)
2 (k),

= y1

((
σ

(d)
1

)−1
(k)

)
+ jy2

((
σ

(d)
2

)−1
(k)

)

= h
(d)
1 (k)x1

((
σ

(d)
1

)−1
(σ

(d̃)
1 (k))

)

+ jh
(d)
2 (k)x2

((
σ

(d)
2

)−1
(σ

(d̃)
2 (k))

)
+ v(d)(k),

(3.24)

where v(d)(k) and h(d)
m (with the index m is in {1, 2}) have the same statistical model characteristics as n(k) and H(k)

respectively.

Two points should be noted; first, in order to have an increased signal space diversity, the two-component interleaver

(σ
(d)
1 , σ

(d)
2 ) must guarantee that the I and Q components of the rotated symbol x(k) experience independent fading

channels. Second, in contrast to conventional QAM constellations, with a properly designed rotation angle, the I and

Q components of x(k) are correlated. This property inherently allows the receiver to estimate the index of the two-

component interleaver used in the broadcast with no side information. Indeed, using the ML criterion, one can estimate,
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among the known alphabet of two-component interleavers, the one used in the broadcast such as:

d̂ = argmax
d=0,1,··· ,D−1

P (R(d))

= argmax
d=0,1,··· ,D−1

Np−1∑
k=0

log
(
P (r(d)(k))

)

= argmax
d=0,1,··· ,D−1

Np−1∑
k=0

log

∑
x∈X

P (r(d)(k)|x)

 ,

(3.25)

where R(d) = (r(d)(0), r(d)(1), · · · , r(d)(Np− 1))T and X is the set of possible rotated symbols. Moreover, from (3.24)

the probability P (r(d)(k)|x) can be developed as:

P (r(d)(k)|x) =
1

2πN0
e

−
∑2
m=1

∣∣∣∣r(d)
m (k)− h(d)

m (k)xm

∣∣∣∣2
2N0 . (3.26)

Using the Max-Log approximation in (3.26), (3.25) can then be simply evaluated with Euclidean distances as:

d̂ = argmax
d=0,1,··· ,D−1

Np−1∑
k=0

max
x∈X

{
log
(
P (r(d)(k)|x)

)}

= argmin
d=0,1,··· ,D−1

Np−1∑
k=0

min
x∈X


2∑

m=1

∣∣∣∣r(d)
m (k)− h(d)

m (k)xm

∣∣∣∣2
 .

(3.27)

After having estimated the interleaver index d̂, the receiver computes the Log-Likelihood Ratio (LLR) of the mapped bits.

Finally, the deinterleaved LLR values are fed to the channel decoder in order to estimate the information bits b̂.

3.2.2 Detailed Proposal and Complexity Considerations

We now successively design a low-complexity MMSE-based decoder, enhance the analysis for the case of the Uniformly

Projected RCQD QAM and analyze the complexity of the method proposed in section 3.2.1.
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3.2.2.1 Low Complexity MMSE-based Decoder

The deinterleaved received observations r(d)
1 (k) and r(d)

2 (k) in (3.24) can be rewritten as:

r(d)
1 (k)

r
(d)
2 (k)

 =

h(d)
1 (k) 0

0 h
(d)
2 (k)

×

x1

((
σ

(d)
1

)−1
(σ

(d̃)
1 (k))

)

x2

((
σ

(d)
2

)−1
(σ

(d̃)
2 (k))

)
+

v(d)
1 (k)

v
(d)
2 (k)

 .

(3.28)

For any interleaver index d = d̃, (3.28) can be developed as:

r(d)
1 (k)

r
(d)
2 (k)

 = A(d)(k)×

s1(k)

s2(k)

+

v(d)
1 (k)

v
(d)
2 (k)

 , (3.29)

where:

A(d)(k) =

h(d)
1 (k) 0

0 h
(d)
2 (k)

cos(θ) −sin(θ)

sin(θ) cos(θ)

 . (3.30)

With an MMSE decorrelator, we then obtain:

sMMSE(k) = (A(d)(k)TA(d)(k) +N0I)−1A(d)(k)T

r(d)
1 (k)

r
(d)
2 (k)

 , (3.31)

where I is the identity matrix of size 2.

Thereafter, the receiver searches the closest constellation point to sMMSE(k) in terms of Euclidean distance and finds

the corresponding rotated symbol x̂MMSE(k).

Finally, the receiver decodes the interleaver index as:

d̂ = argmin
d=0,1,··· ,D−1

Np−1∑
k=0


2∑

m=1

∣∣∣∣r(d)
m (k)− h(d)

m (k)x̂MMSE
m (k)

∣∣∣∣2
 . (3.32)

As shown in subsection 3.2.2.3, this algorithm reduces considerably the complexity compared to to the Max-Log algo-

rithm (compared to (3.27), there is no minimum to calculate among all the points of the rotated constellation) without any

BER degradation for system operating at moderate to high SNR over fading channels; however, this method increases

the noise level and its detection performance becomes poor when the 2 × 2 channel matrix is singular. Such is not
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the case for the Uniformly Projected RCQD decoder and in the following subsection, we derive a low-complexity index

interleaver decoder for the Uniformly Projected RCQD.

3.2.2.2 Low Complexity Index Estimation for the Uniformly Projected RCQD Constellations

• The Uniformly Projected RCQD transmitted signal

As we have seen in the first part of this chapter, by selecting the rotation angle θ =arctan(1/
√
M), the I (resp.

Q) components of the rotated symbols are uniformly projected with a uniform minimum distance dmin = 2 sin θ

along the I (resp. Q) axes. This allows to use a low-complexity demapper that takes advantage of working with

integers; indeed, each constellation point x corresponds to a unique 2D integer point (Tx,1, Tx,2) defined as (3.9)

and integer pair (p1, p2) determined by Tx,1 (resp. Tx,2) is (3.10) (resp. (3.11)).

• Low-complexity interleaver index estimation

The received components ym (m ∈ {1, 2}) in (3.23) can first be equalized as follows:

yeq,m(k) = Tx,m(k) +
nm

2H(k) sin θ
. (3.33)

Similarly to (3.24), from (3.33) the deinterleaved equalized observations can then be expressed as:

r
(d)
eq (k) = h

(d)
1 (k)Tx,1

((
σ

(d)
1

)−1
(σ

(d̃)
1 (k))

)

+ jh
(d)
2 (k)Tx,2

((
σ

(d)
2

)−1
(σ

(d̃)
2 (k))

)
+

v(d)(k)

2H(k) sin θ
.

(3.34)

The distance term |r(d)
m (k) − h(d)

m xm|2 in (3.27), where m can either be 1 or 2, can then be rewritten as (see

(3.33)): ∣∣∣∣r(d)
m (k)− h(d)

m (k)xm

∣∣∣∣2 = (2sinθ)2
∣∣∣∣h(d)
m (k)

(
r
(d)
eq,m(k)− Tx,m

)∣∣∣∣2 . (3.35)

Using (3.35), the Max-Log based decoder (3.27) becomes:

d̂ = argmin
d=0,1,··· ,D−1

Np−1∑
k=0

min
Tx∈T


2∑

m=1

∣∣∣∣h(d)
m (k)

(
r
(d)
eq,m(k)− Tx,m

)∣∣∣∣2
 , (3.36)

where T is the set of possible points Tx = (Tx,1, Tx,2).

Eq. (3.36) implies that one needs to find, for each d and each k, the global optimum Topt = (Topt,1, Topt,2)
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defined as:

Topt = min
Tx∈T


2∑

m=1

∣∣∣∣h(d)
m (k)

(
r
(d)
eq,m(k)− Tx,m

)∣∣∣∣2
 . (3.37)

Among constellation points, one can easily find the local optimum Loc
(d)
m (k) = (Loc

(d)
m,1(k), Loc

(d)
m,2(k)) that mini-

mizes
∣∣∣∣h(d)
m (k)

(
r
(d)
eq,m(k)− Tx,m

)∣∣∣∣2, with m being either 1 or 2, such that (see 3.33):

Loc
(d)
m,m(k) =



0, if r(d)
eq,m(k) ≤ 0,

round

(
r
(d)
eq,m(k)

)
, if 0 ≤ r(d)

eq,m(k) < (M−1) ,

M − 1, if r(d)
eq,m(k) ≥ (M−1) .

(3.38)

For sake of complexity, instead of searching the global 2D optimum in (3.36) among all constellation points, we

propose to limit the search to 1D regions centered around r
(d)
eq,m(k) with radius ra, where m is in {1, 2}. For

ra > 0, these regions can be expressed as T̃
(d)
m (k) (see (3.18)), whereas for radius ra = 0, T̃

(d)
m (k) contains

only the local optimum Loc
(d)
m (k). Each point Tx within T̃

(d)
m (k) distinctively locates a pair (p1, p2) and this

pair distinctively determines a constellation point (s1, s2). Thus, T̃(d)(k) = T̃
(d)
1 (k) ∪ T̃

(d)
2 (k) has at most 4ra

constellation points. In particular, for ra = 0, T̃(d)(k) contains the two local optimum points Loc
(d)
1 (k) and

Loc
(d)
2 (k) that may lead to the same constellation symbol, which is then the global optimum. To summarize, from

(3.36) with T̃(d)(k) = T̃
(d)
1 (k) ∪ T̃

(d)
2 (k) and (3.18), we choose the interleaver index as:

d̂ = argmin
d=0,1,··· ,D−1

Np−1∑
k=0

min

Tx∈T̃(d)(k)


2∑

m=1

∣∣∣∣h(d)
m (k)

(
r
(d)
eq,m(k)− Tx,m

)∣∣∣∣2
 , (3.39)

We now present the successive steps of the proposed algorithm:

1. For each received component, use (3.33) to transform the received components ym(k) into equalized ver-

sions yeq,m(k).

2. For each received component, locate the region T̃
(d)
m (k) using (3.18) with radius ra; then the distance from

r
(d)
eq,m(k) is computed for all points in T̃

(d)
m (k).

3. For each d and k, given the one dimensional (1D) distance terms already obtained in step 2, compute the

missing 1D distance terms in (3.39) so as to obtain the 2D distance terms from (r
(d)
eq,1(k), r

(d)
eq,2(k)) for all

points in T̃(d)(k). The minimum 2D distance in (3.39) is then selected.
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4. Using the minimum distances obtained in step 3, the interleaver index d̂ can finally be obtained (see (3.39)).

3.2.2.3 Complexity Analysis

The detailed analysis on the complexity of the proposed algorithms is evaluated in terms of Real Multiplications (RM),

Real Comparisons (RC), Real Inversions (RI) and Real Sums (RS), where RS can either designate a real addition or a

real subtraction.

At the transmitter side, note that no multiplication by any phase sequence is required for our proposal; this reduces

the complexity burden by 4Np(D − 1) RMs and 2Np(D − 1) RSs compared to the SLM algorithm in [97, 98].

Furthermore, at the receiver side, the total computational complexity of the proposed MMSE-based blind detector

(see equations (3.30)-(3.32)) is 38DNp RMs, 15DNp RSs, (2log2M − 2)DNp RCs, and DNp RIs.

We now detail the complexity of the index interleaver decoder proposed for the Uniformly Project RCQD (i.e. (3.39)):

1. Equalizing one received component ym(k) into yeq,m(k) (see 3.33), requires 1 RM, 1 RS and 1 RI. Therefore,

equalizing the received observations requires a total of Np RM, 2Np RSs and 2Np RIs (i.e. 2sinθ is a known

constant term and its multiplication by H(k) is performed only once).

2. Locating the region T̃
(d)
m (k) requires 2 RCs. Computing a 1D Euclidean distance requires 2RM and 1 RS. There-

fore, this step takes a total of 4Npra (resp. 2Np) RMs, 2Npra (resp. Np) RSs and 4Np RCs.

3. In step 3, for each d and each k, at least 4ra (resp. 2ra) 1D distance terms like
∣∣∣∣h(d)
m (k)

(
r
(d)
eq,m(k)− Tx,m

)∣∣∣∣2
have already been computed in step 2; thus computing the other 4ra (resp. 2ra) 1D distance terms requires a

total of 8raNpD (resp. 4NpD) RMs and 4Npra (resp. 2Np) RSs for ra > 0 (resp. (ra = 0)). Moreover, obtaining

the 2D Euclidean distance terms requires an additional 4DNpra (resp 2DNp) RS. Finally, selecting the minimum

2D Euclidean distances terms requires DNp(4ra − 1) (resp. DNp) RCs.

4. In step 4, performing the sum of minimum distances requires (Np − 1)D RS and selecting d̂ requires D − 1 RCs.

Two points should be noted; first, the proposed PAPR reduction algorithm can be used with any RCQD signals with

inherent increased modulation diversity. Second, for the proposed blind PAPR reduction technique, the choice of the

rotation angles θ = arctan(1/
√
M) lowers down the complexity twice; on one side, the soft demapper detailed in the first

part of this chapter can be deployed at the receiver end, as we saw that its complexity is low; moreover, both the first

and the second step of the proposed estimation technique are already necessary for the detailed UP-RCQD demapping

solution; therefore, the additional complexity related to the interleaver estimation is just 8raNpD (resp. 4NpD) RMs,

(8ra+ 1)NpD−D (resp. NpD) RSs and (4ra− 1)NpD+D− 1 (resp. (Np+ 1)D− 1) RCs for ra > 0 (resp. for ra = 0).
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Figure 3.12: Interleaver Index Error Rate comparison between the full complexity Max-Log estimator, the proposed
MMSE-based detector and the method for UP-RCQD constellations for several radii ra (16-QAM, N = 256 and D = 16).

3.2.3 Simulation Results

Figure 3.12 presents the Interleaver Index Error Rate (IIER) obtained with the Max-Log decoder and the proposed

techniques (see (3.27), (3.32), (3.36) and (3.39)) for several radii ra without any channel coding. It can be observed that

there is roughly no difference between the proposed method with ra = log2M and the full complexity Max-Log decoder.

Moreover, the performance deteriorates with the diminution of the radius; in particular, the proposed method with a

radius ra = 0 respectively loses about 4 dB compared to the full-complexity Max-Log estimation and 2 dB compared to

the MMSE based detector but it still operates at rather low SNR.

In the sequel, otherwise mentioned, we fix the following parameters : N = 256, D = 16 and 64-QAM. Figure 3.13

compares the BER performance of the considered methods and the case where the receiver has an ideal SI of the

interleaver index for several constellation sizes. In coherence with Figure 3.12, for a system operating at moderate to

high SNR regime, the considered methods lead to a low IIER and therefore to the same overall BER performance.

Considering both the transmitting and the receiving ends, Figure 3.14 compares the total computational complexity,

at both the transmitting and the receiving ends, between the Max-Log estimator, the MMSE-based detector and the

proposed method for UP-RCQD constellations for several radii ra (see Table 3.3 [52]); we assume that the cost of RC

or RS is one, whereas, the cost of RM and RI are two and four respectively. First, we observe that the computational
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Figure 3.13: BER comparison between the ideal RSI, the full complexity Max-Log estimator, the proposed MMSE-based
detector and the method for several radii ra over the Rayleigh channel (N = 256, D = 16).

complexity of our proposal increases with the radius and that the complexity of the Max-Log estimation is much higher

than that of our section 3.2.2 proposals. For M = 256, the MMSE-based detector achieves a 86% of complexity

reduction compared to the Max-Log estimation. With the chosen system parameters, our proposal with ra = 0 achieves

a 96% of complexity reduction compared to the MMSE-based detector; similarly, we obtain 84% of complexity reduction

for the 4-QAM.

Moreover, Figure 3.15 presents for Np = 128 the Complementary Cumulative Distribution Function (CCDF) of the

PAPR obtained by the proposed technique (with D = 2, 4, 8, 16), the TR algorithm defined in DVB-T2 [79] (with a clipping

threshold of 7 dB and 16 iterations), the clipping technique (with clipping level at 75% of the maximum of the original

OFDM symbols) and the optimal PTS (with S = 16 sub-blocks and rotation angles {0, π}). It can be observed that for

any D larger than 2, our proposal achieves a better PAPR reduction than the TR algorithm. Note that, in contrast to

the TR technique, our proposal avoids any spectral spoilage. Moreover, the proposed method outperforms the clip-

ping technique for any D larger than 4. It is worth mentioning that the clipping technique may lead to a serious BER

degradation, especially for low clipping thresholds [39]. Furthermore, the optimal PTS allows a good PAPR reduction

performance; however, this gain is obtained at the expense of a high exponential complexity in S and a large side in-

formation; therefore, several low-complexity PTS schemes have been proposed but they may lead to suboptimal PAPR

reduction performance [99]. Besides, when we jointly use the TR and the proposed algorithms with D = 8, we obtain
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Table 3.3: Comparison of total computational complexities (M1: Max-Log, M2: MMSE-based detector, M3: Proposal,
ra > 0, M4: Proposal, ra = 0 and M5: ML, blind SLM).

RS RC
M1 DNp(3M + 1)−D D(Np(M − 1) + 1)− 1
M2 15DNp DNp(2log2M − 2)
M3 (Np(2 + ra(2 + 8D) +D)−D (4 +D(4ra − 1))Np +D − 1
M3 Np(3 + 5D)−D (Np + 1)D − 1
M5 DNp(3 + 3M) D − 1

RM RI
M1 4NpMD 0
M2 38NpD DNp
M3 Np(1 + ra(4 + 8D)) 2Np
M4 Np(3 + 4D) 2Np
M5 D(Np4 + 2M)) + 1 0
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Figure 3.14: Computational complexity comparison for Np = 256 and D = 16.

similar PAPR reduction performance to the optimal PTS with much lower computational complexity and higher spectral

efficiency. Finally, when compared to the blind SLM method [97, 98], both methods have approximately the same PAPR

reduction performance; however, our proposal for UP-RCQD constellations reduces considerably the computational

complexity both at the transmitter and the receiver sides; in particular, in addition to the computational complexity re-

duction obtained for the LLR computation thanks to the use of the UP-RCQD constellation, the computational complexity

is reduced, with the chosen system parameters, by 97% (see Table 3.3 and Figure 3.14).
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Figure 3.15: CCDFs of the PAPR for the 64-QAM constellation and Np = 128.
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Figure 3.16: CCDFs of the PAPR for the 16-QAM constellation and Np = 64.

Finally, Figure 3.16 confirms the results of Figure 3.15 for other system parameters.
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3.3 Conclusion

In this chapter, we studied a series of rotation angles θ = arctan
(

1/
√
M
)

with interesting structural properties for

different RCQD signals. Based on these properties, we reviewed a low complexity demapper for fading channels

that gives almost the same performance as the optimal Max-Log algorithm. Thanks to the good performance of the

proposed angles and the simplicity of the proposed demapper implementation, the spectral efficiency and the energy

consumption of the underwater communication system can be enhanced. It is important to note that the inherent signal

diversity explored without bandwidth expansion could in turn save even more bandwidth by allowing the use of a higher

rate channel code.

Furthermore, this chapter proposes a new blind interleaving technique for PAPR reduction without any distortion for

OFDM systems using signal space diversity. It is based on the use of rotated constellations as they allow the receiver

to identify, without any SI, the two-component interleaver used in the broadcast. To lower down the complexity burden

at the receiver side, an MMSE-based detector with good performance is proposed. Furthermore, in order to reduce

even more the computation complexity of the demapper, we propose to use again the UP-RCQD constellation as this

constellation brings many interesting structural properties that we employ to design a low-complexity interleaver index

decoder. The main advantages of this technique are as following. Our proposal achieves a large PAPR reduction

performance without neither BER degradation, nor any spectral spoilage. In addition, compared to the blind SLM

method, the proposed technique simplifies both the transmitter and the receiver design and its low-complexity makes it

particularly suited for hardware implementation.

We assumed at the beginning of the chapter that synchronization and equalization were achieved. In the next

chapter we will make more proposals to improve both synchronization and equalization.
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The underwater channel is one of the most challenging channels as the acoustic signal may suffer from both a

very limited coherence bandwidth and from high Doppler effect. In particular the multipath propagation introduce ISI

that can seriously limit the system performance. Following the discovery of turbo decoding, iterative equalization has

been proposed to remove ISI, as the equalizer and the channel decoder can mutually exchange extrinsic information at

each iteration so as to enhance their performances. The phase recovery is yet another issue that the receiver needs

to cope with, particularly in the case of an important Doppler drift. Nevertheless, the complexity of the theoretical

turbo-equalization scheme [90] grows exponentially with the communication parameters, which prohibits its use in real

life applications; also, for a channel with time-varying characteristics, conventional turbo equalization algorithm using

constant step-sizes are unable, by construction, to achieve some satisfying pursuit performances and thus a good trade-

off between the performance and convergence speed. To cope with these issues, this chapter presents two different

and original algorithms for joint equalization and phase estimation. It is divided in two main sections.

The first section proposes a sparse adaptive turbo detector with only a few taps to be updated in order to lower

down the complexity burden. It is organized as follows: the first subsection introduces the adaptive turbo equalization

system model; then, the adaptive equalizer structure is presented in the second subsection, the detailed analysis on

the complexity of the algorithm and BER performance of the proposed algorithm on both underwater channels and a

synthetic channel are given in the last subsection.

The second section of this chapter proposes an original self-optimized equalizer for which the step-sizes of both

the equalizer and the phase estimator are updated adaptively and assisted by soft-information provided by the channel

decoder in an iterative manner. This second section is organized as follows: the first subsection details the algorithm

of the proposed technique and outlines how the proposed equalizer works; some simulation results are shown in the

following subsection. Finally, we draw conclusions at the end of this chapter.

4.1 Low-Complexity Adaptive Turbo Equalization for Multipath Underwater

Communication

This section proposes a low-complexity turbo equalization with only a few coefficients to be updated [100]. This is

because the complexity of an ordinary filter can be prohibitive over long channel impulse responses and as many taps

of the transversal filters are often useless to equalize the channel [101, 102].
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4.1.1 System Model

The transmission scheme is displayed in Fig. 4.1. The channel encoder is a systematic parallel convolutional turbo

code of rate 1/ 3 with generator polynomials (in octal form) equal to (5, 7); similar results would be obtained with polar

codes, LDPC codes or product turbo codes [103–111]. This channel encoder system is used to encode at rate Rc the

information bits b at the transmitter side. To increase the code diversity, the coded bits are interleaved and then each

set of m = log2M interleaved coded bits d are mapped into an M-QAM complex symbols. It is worth mentioning that

in practice a preamble, known by the receiver, is usually added at the beginning of each frame. Indeed, this preamble

is essential for the frame detection and the good convergence of the adaptive synchronization and equalization. The

obtained signal s is finally transmitted through the channel. The received signal at the output of the discrete time-varying

channel can be written as:

rk =
∑
l

hl (k) sk−l + wk, (4.1)

where at time index k, hl (k) indicates the channel response, and wk is a Gaussian noise with known variance σ2
w.

At the receiver side, several signal processing algorithms are needed in order to correctly recover the transmitted

frame. In this subsection, we focus on the design of an algorithm performing jointly the equalization and the phase

synchronization [112]. As detailed in the following subsection, the phase estimation is carried out separately from the

equalization process as it changes more rapidly than the timing synchronization which is assumed to be perfect [113–

117] in the sequel. Note that if phase synchronization [118–125] was not separated from the equalization, there would

be an additional difficulty to update timely all the equalization coefficients to follow rapid channel variations; in addition,

digital PLL phase synchronization techniques are able to work near optimum Cramer-Rao bounds [126–132].
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Figure 4.2: Joint equalizer and phase estimator structure

4.1.2 Adaptive Turbo Equalization

4.1.2.1 Adaptive Equalizer Algorithm

Fig. 4.2 describes a joint equalizer and phase estimator structure. It includes two transversal filters fk and gk fed in

by the received signal sequence Rk =
[
rk+L1

, · · · , rk−L1

]T
and the symbol sequence S̃k =

[
s̃k+L2

, · · · , s̃k−L2

]T
respectively for each iteration p, where s̃k denotes either the known preamble during the training period or the soft

estimated symbol at the previous iteration for p > 1 during the tracking period.

In order to simplify the notation, the index (p) is dropped in this subsection. The output of the equalizer can be

expressed as:

zk = fTkRke
−jϕk − gTk S̃k, (4.2)

where fk = [f−L1
(k) , · · · , fL1

(k)]T (resp. gk = [g−L2
(k) , g0 (k) = 0, · · · , gL2

(k)]T ) is a transversal filter equalizer

of length 2L1 + 1 (resp. 2L2 + 1), and ϕk is the estimated phase error. The coefficients of the filters are updated in

order to minimize the estimated Mean-Square Error (MSE) given by:

J
(
fk, gk, ϕk

)
= E

{
|zk − s̃k|

2
}
, (4.3)

where E (d) designates the expectation of d. Similarly to [89] and [133], the derivation of J with respect to fk, gk and

ϕk leads to the following gradients:


∇fk

(
|zk − s̃k|

2
)

= 2
(
zk − s̃k

)
R∗ke

jϕk

∇gk
(
|zk − s̃k|

2
)

= −2
(
zk − s̃k

)
S̃
∗
k

∇ϕk
(
|zk − s̃k|

2
)

= 2=
(
fTkRke

−iϕk
(
zk − s̃k

)∗)
, (4.4)

where ()∗ designates the conjugate and = (d) designates the imaginary part of d.
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Using the gradient descent algorithm, we obtain the corresponding update coefficients expressed as:

fk+1 = fk − µ
(
zk − s̃k

)
R∗ke

iϕk (4.5)

gk+1 = gk + µ
(
zk − s̃k

)
S̃
∗
k (4.6)

ϕk+1 = ϕk − γ=
(
fTkRke

−iϕk
(
zk − s̃k

)∗) , (4.7)

where µ and γ are the appropriate step sizes. It is worth to note that the channel response of the underwater channel

can be particularly large; thus, in order to have an efficient equalization, as L1 and L2 are proportional to the channel

response and can also be large enough, equation (4.5) and (4.6) may lead to a high computational complexity.

Consequently, after the training period, we propose to keep a certain predefined percentage of the filters coefficients

with the highest energy and set the others to zero. The new sparse transversal filters are labeled in the sequel as f
′
k

and g
′
k.

4.1.2.2 Symbol to Bit Converter (SBC)

The role of the SBC (see Fig. 4.1) is to compute the LLR value of the coded bits from the equalized symbol zk which

will be transmitted to the soft-input soft-output channel decoder. zk can be decomposed as the sum of two parts [134]:

zk = g0s̃k + νk, (4.8)

where g0s̃k is the desired signal with a bias factor g0, νk is the sum of the noise and residual interference at the output

of the equalizer. Assuming a Gaussian distribution of the residual ISI, νk follows a complex Gaussian distribution with

zero mean and variance σ2
v = σ2

s̃ g0 (1− g0), where 0 ≤ g0 < 1 and σ2
s̃ is the signal s̃ variance [89, 134]. The extrinsic

LLRs of the mapped bits li(s), (i = 0, 1, ..., log2M − 1) are:

LLR
(
li(s)

)
= ln

∑
x∈χ1

b

exp

(
−|zk−g0x|

2

σ2
v

)

∑
x∈χ0

b

exp

(
−|zk−g0x|

2

σ2
v

) , (4.9)

where li(s) is the i-th bit of symbol s and χib denotes the set of the constellation points whose i-th bit is b = 1 or 0.
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4.1.2.3 Bit to Symbol Converter (BSC)

For all p > 1, one calculates the estimated value s
(p−1)
k

from the BSC using the output LLR values of the channel

decoder at the iteration p− 1. The soft estimation sk is given by [134]:

s
(p−1)
k

=
∑
x.∈χ

x.

log2M∏
i=1

Pr
(
li
(
sk
)

= li (x.)
) , (4.10)

where χ refers to the signal constellation set. Pr(d) represents the probability of d and the product over each bit gives

the probability of the corresponding symbol. The term Pr
(
li
(
sk
)

= j
)

where j can either be 0 or 1 can be written as

[134]:

Pr
(
li
(
sk
)

= 1
)

=
exp

(
LLR

(
li
(
sk
)))

1 + exp
(
LLR

(
li
(
sk
)))

Pr
(
li
(
sk
)

= 0
)

= 1− Pr
(
li
(
sk
)

= 1
)
.

(4.11)

4.1.3 Numerical Results

This subsection first presents the computational complexity of our proposed algorithm. Thereafter, we presents the

performance of our algorithm in terms of BER over some underwater acoustic channels and also over a synthetic

channel.

4.1.3.1 Complexity Analysis

The detailed analysis on the complexity of the algorithm is evaluated in terms of Real Multiplication (RM) and Real Sum

(RS), where a RS can either be a real addition or a real subtraction.

- In equation (4.2) : Multiplying the fk vector by Rk requires 3 (2L1 + 1) + 4L1 RSs and 4 (2L1 + 1) RMs, then

multiplying the term
(
fTkRk

)
by e−iϕk needs 3RSs and 4RMs. Similarly, multiplying the gk vector by S̃k requires

3 (2L2 + 1) + 4L2 RSs and 4 (2L2 + 1) RMs. Therefore, equation (4.2) takes a total of 10L1 + 10L2 + 11 RSs and

8L1 + 8L2 + 12 RMs.

- In equation (4.5): Computing µ
(
zk − s̃k

)
requires 2RSs and 2RMs, multiplying it with e−iϕk needs 3RSs and

4RMs. Multiplying the previous product by R∗k requires 3 (2L1 + 1) RSs and 4 (2L1 + 1) RMs. Thus, equation

(4.5) needs globally 10L1 + 8 RSs and 8L1 + 10 RMs.
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- In equation (4.6): The multiplication with S̃∗k requires 3 (2L2 + 1) RSs and 4 (2L2 + 1) RMs. Thus, equation (4.6)

requires a total of 10L2 + 5 RSs and 8L2 + 4 RMs.

- In equation (4.7): It takes 3RSs and 4RMs to multiply with
(
zk − s̃k

)∗. Thus, equation (4.7) totally requires 4RSs

and 5RMs.

- In equation (4.10): The product of the term Pr
(
li
(
sk
)

= li (x)
)

needs 2M log2M RMs. Thus, equation (4.10)

requires a total amount of 2M RSs and 2M log2M RMs.

Therefore, performing the full complexity equalization of a symbol globally requires (20L1 + 20L2 + 28 + 2M) RSs

and (16L1 + 16L2 + 31 + 2M log2M) RMs, while performing the sparse proposal of a symbol in tracking period requires(
20L
′
1 + 20L

′
2 + 28 + 2M

)
RSs and

(
16L
′
1 + 16L

′
2 + 31 + 2M log2M

)
RMs, where (2L

′
1(resp.L

′
2)+1) is the number

of non-zero coefficients of the filter f
′
k (resp. g

′
k).

Table 4.1 compares the complexity between the full complexity equalizer and the sparse proposal with pmax itera-

tions and Ns (resp. Npre) corresponds to the number of symbols transmitted (resp. preamble).

Real Multiplications Real Sums

Full complexity equalizer

(16L1 + 16L2 + 31)Npre+

(16L1 + 16L2 + 31) pmax
(
Ns −Npre

)
+2MlogM (pmax − 1)Ns

(20L1 + 20L2 + 28)Npre+

(20L1 + 20L2 + 28) pmax
(
Ns −Npre

)
+2M (pmax − 1)Ns

Sparse proposal

(16L1 + 16L2 + 31)Npre+(
16L
′
1 + 16L

′
2 + 31

)
pmax

(
Ns −Npre

)
+2MlogM (pmax − 1)Ns

(20L1 + 20L2 + 28)Npre+(
20L
′
1 + 20L

′
2 + 28

)
pmax

(
Ns −Npre

)
+2M (pmax − 1)Ns

Table 4.1: Complexity comparison between the proposed sparse adaptive and the full complexity equalizers

4.1.3.2 WATERMARK

In our simulations, user frames of 2048 bits are coded with a turbo code of rate 1/3 with generator polynomials equal

to (5, 7)octal. A training sequence made of 511 symbols is added before each user frame for both frame detection

and convergence of the equalizer. The information is transmitted at a bit rate of roughly 2 kbit/s (QPSK) and 4 kbit/s

(16-QAM) at a 14 kHz (resp. 35 kHz) carrier frequency over the channel NOF1 (resp. BCH1). At the first iteration, the

number of taps for fk and gk are equal to 41 and 51 respectively, the central coefficient of fk is set to 1; γ is set to

0.08 (see equation (4.7)). In the training (resp. tracking) period µ is equal to 0.003 (resp. 0.0005) (see equations (4.5)-
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Figure 4.3: BER comparison between the full complexity equalizer and the proposed one over the channel NOF1

(4.6)). The number of turbo equalization is pmax=10. In the tracking period, the sparse equalizer turns off 30 (resp. 38)

among the 41 (resp. 51) coefficients of fk (resp. gk).
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Figure 4.4: BER comparison between the full complexity equalizer and the proposed one over the channel BCH1
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Fig. 4.3 (resp. Fig. 4.4) compares the BER performance between the full complexity algorithm and the sparse

proposal for the QPSK and 16-QAM constellations over the channel NOF1 (resp. BCH1) (see table 3.1). The coherence

time (resp. the symbol duration) is equal to 102 ms (resp. 0.35 ms) for the channel BCH1. It can be observed

that our sparse proposal allows a BER performance improvement of about 0.4 (resp. 0.3) dB. This is because small

coefficients of the full complexity equalizer add supplemental unwanted noise to zk and are weakly related to the

channel. Furthermore, compared to the full complexity equalizer, the computational complexity is reduced by 70%.

4.1.3.3 Time-varying Channels

We now consider the channel given by [89]:

hl (k) =

√
Pl
I

I∑
i=1

e
j
(
kεπ cosψl,i+ζl,i

)
, (4.12)

where the Doppler shift is characterised by ε, Pl denotes the mean power of the l-th channel path, ψl,i and ζl,i are

uniform random variables over [0, 2π]; I is fixed to 10 and (4.12) has three paths having all the same mean power [89]

in our simulation.

In our simulations, the information data were encoded by the same 1/3 rate turbo code, a preamble of 25 symbols is

added at the beginning of each packet of 100 symbols. All packets are successively transmitted over the continuously

varying Rayleigh multipath channel (4.12). At the first iteration, the number of taps for the transversal filter of received

signal fk is equal to 21, and the central coefficient of fk is set to 1; in the training (resp. tracking) period µ is equal to

0.001 (resp. 0.0003) (see equations (4.5)- (4.6)), γ is set to 0.01 (resp.0.006) (see equation (4.7)). After the feedback

of the turbo-decoder, during each iteration, the number of taps of fk and gk are respectively equal to 21 and 31; in the

training (resp. tracking) period µ is equal to 0.001 (resp. 0.0002), and γ is set to 0.01 (resp.0.006). The number of turbo

equalization is pmax = 10. In the tracking period, the sparse equalizer turns off 14 (resp. 21) among the 21 (resp. 31)

coefficients of fk (resp. gk). Thus, the number of non-zero coefficients f
′
k and g

′
k are 7 and 9 respectively.

Fig. 4.5 compares the BER performance between the full complexity algorithm and the proposed sparse technique,

with and without phase synchronization respectively, for the QPSK constellation over the Rayleigh multipath channel.

It can be observed that our sparse algorithm allows a BER performance improvement of about 0.3dB compared with

the full complexity algorithm, and in addition, performing phase synchronization separately with equation (4.7) allows

an additional gain of 0.5dB. Finally, compared to the full complexity equalizer,the computational complexity is reduced

by 60%.
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Figure 4.5: QPSK BER comparison between the full complexity equalizer and the proposed one, with and without
phase synchronization over the Rayleigh multipath channel (4.12)

4.2 Fully Adaptive Equalizer for Fast-varying Doubly Selective Channels

Up to this point, our goal was to consider low-complexity algorithms for the Internet-of-Things applications. In particular,

the standard iterative equalization (see chapter 2) algorithm is often used in real-time estimation thanks to its low-

complexity. However, the performance of such technique depends on its constant step-size; in particular, the step-size

controls both the convergence speed and the steady-state mean square error of the algorithm; if the step-size is chosen

too small, the convergence speed is too slow, but if it is chosen too large, the steady state MSE is poor. In addition,

it is hard to choose a constant step-size which can definitely lead to both bad initialization and poor performance, but

which also might be unable to track changing channel state [135–137]. Hence it affects significantly the behaviour of

the adaptive equalizer. Therefore, in this section, we present a fully adaptive iterative equalization with a joint phase

estimation, using adaptive step-sizes. Similarly to [101, 102, 133], we then apply the obtained results to the underwater

case in the difficult case (see section 2.3.1) of doubly selective underwater channels.
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4.2.1 The Proposed Adaptive Turbo Equalizer

4.2.1.1 Equalizer Structure

The equalizer structure in this section is the same as the one used in the previous one (see Fig. 4.2), the equalized

symbol zk is given by (4.2), the coefficients of the filters are updated in order to minimize the MSE given by:

J
(
fk, gk, ϕk

)
= E
k

(
E

x∈χ|zk

(
| x− zk |

2
))

= E
k

∑
x∈χ

Pr
(
x | zk

)
| x− zk |

2

 ,

(4.13)

where E (d) designates the expectation of d, E
x∈χ|zk

is the expectation given the equalized symbol zk, and Pr
(
x | zk

)
can be developed as:

Pr
(
x | zk

)
=

Pr (x) Pr
(
zk | x

)∑
x
′∈χ

Pr
(
x
′)

Pr
(
zk | x

′) , (4.14)

with (see equation (4.8)):

Pr
(
zk | x̃

)
=

1

πσ2
v

exp

(
−
| zk − g0x̃ |

2

σ2
v

)
. (4.15)

In equation (4.14), we define Ad = Pr (d) Pr
(
zk | d

)
where d is a constellation symbol, to simplify the notation.

Note that in contrast to previous works such as [89, 91, 133, 134, 138–140], the MSE is computed over all possible

constellation points (see (4.13)) and it encompasses all synchronization modes (Data Aided (DA), Non Data Aided

(NDA) and Code Aided (CA)); in particular, for the CA mode, the probability of the constellation point x ∈ χ can be

computed by the LLR values (see (4.14)) at the output of the channel decoder.

Using the gradient descent algorithm, the filter coefficients fk, gk and the phase ϕk can be updated as:


fk+1 = fk −

µ
2
∂J
∂fk

,

gk+1 = gk −
µ
2
∂J
∂gk

,

ϕk+1 = ϕk −
γ
2
∂J
∂ϕk

.

(4.16)

The gradient of the J (see equation (4.13)) with respect to the filter coefficients fk is:

∂J

∂fk
=
∑
x∈χ

(
∂ Pr

(
x | zk

)
∂fk

| x− zk |
2 + Pr

(
x | zk

) ∂ | x− zk |2
∂fk

)
, (4.17)
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where (see equation (4.4)):
∂ | x− zk |

2

∂fk
= −2

(
x− zk

)
R∗ke

jϕk , (4.18)

and the term
∂ Pr

(
x|zk

)
∂fk

in equation (4.17) can be developed as (see equation (4.14)):

∂ Pr
(
x | zk

)
∂fk

=

∂Ax
∂fk

∑
x
′∈χ

A
x
′ −Ax

∂
∑
x
′∈χ

A
x
′

∂fk ∑
x
′∈χ

A
x
′


2

. (4.19)

The term ∂Ax
∂fk

in equation (4.19) can be developed as:

∂Ax
∂fk

=
2Ax

σ2
v

(
g0x− zk

)
R∗ke

jϕk . (4.20)

In order to simplify the notation, we define Bx = g0x− zk and Ck = R∗ke
jϕk in equation (4.20).

Similarly to equation (4.20), the term

∂
∑
x
′∈χ

A
x
′

∂fk
in equation (4.19) can be written as:

∂
∑
x
′∈χ

A
x
′

∂fk
=

2

σ2
v

∑
x
′∈χ

A
x
′B
x
′Ck. (4.21)

Finally, equation (4.19) can be rewritten as:

∂ Pr
(
x | zk

)
∂fk

= ∆xCk, (4.22)

with:

∆x =
2Ax

σ2
v

Bx
∑
x
′∈χ

A
x
′ −

∑
x
′∈χ

A
x
′B
x
′

 ∑
x
′∈χ

A
x
′


2

. (4.23)
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Therefore, the filter coefficients fk in equation (4.16) can be updated as:

fk+1 = fk −
µ

2

∂J

∂fk

= fk −
µ

2

∑
x∈χ

(
∆x | x− zk |

2 −2 Pr
(
x | zk

) (
x− zk

))
Ck.

(4.24)

Similarly to (4.17-4.24), the filter coefficients gk in equation (4.16) are updated as:

gk+1 = gk −
µ

2

∂J

∂gk

= gk +
µ

2

∑
x∈χ

{
∆x | x− zk |

2 −2 Pr
(
x | zk

) (
x− zk

)}
S̃
∗
k.

(4.25)

Finally, the phase error ϕk in equation (4.16) is updated as:

ϕk+1 = ϕk −
γ

2

∂J

∂ϕk

= ϕk −
γ

2

∑
x∈χ

{
Ux | x− zk |

2 −2 Pr
(
x | zk

)
= (Ex)

}
,

(4.26)

where we define: 

Ex = fTkRke
−jϕk

(
x+ gTk S̃k

)∗
,

Dx = Ex − fTkRke
−jϕk (1− g0)x∗,

Ux = 2Ax
σ2
v

=(Dx)
∑
x
′∈χ

A
x
′−

∑
x
′∈χ

A
x
′ =
(
D
x
′
)

 ∑
x
′∈χ

A
x
′


2 .

(4.27)

µ and γ in equation (4.24-4.26) are the step-sizes and to be optimized in the next subsection.

4.2.1.2 Adaptive Step-size Optimization

1. Derivation

In contrast to previous works such as [138–141], µ and γ are not constant neither during the training period nor

during the tracking period; indeed, they are updated in an adaptive manner so as to minimize the MSE (see

(4.13)).
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Using the gradient descent algorithm, the step-size µ can be updated as:

µk+1 = µk −
β

2

∂J

∂µ
, (4.28)

where:
∂J

∂µ
=
∑
x∈χ

(
∂ Pr

(
x | zk

)
∂µ

| x− zk |
2 + Pr

(
x | zk

) ∂ | x− zk |2
∂µ

)
, (4.29)

and where:
∂ | x− zk |

2

∂µ
= 2<

((
zk − x

)∗ ∂zk
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)
. (4.30)

The term
∂zk
∂µ

in equation (4.31) can be developed as :

∂zk
∂µ

= Rke
−jϕk ∂fk

∂µ
− S̃k

∂gk
∂µ

. (4.31)

Using similar derivation method, we obtain:
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)
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=
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2


. (4.32)

To simplify the notation, equation (4.32) is noted as:
∂ Pr

(
x|zk

)
∂µ

= ηx.

Finally, the step-size µk is updated as (see equation (4.28-4.32)):

µk+1 = µk −
β

2

∑
x∈χ

(
ηx | x− zk |

2 +2 Pr
(
x | zk

)
<
((
zk − x

)∗ ∂zk
∂µ

))
. (4.33)

The term
∂fk
∂µ

(resp.
∂gk
∂µ

) in equation (4.31) noted as Fk (resp. Gk), can be updated adaptively by deriving

equation (4.16) with respect to µ as:

∂fk+1
∂µ

=
∂fk
∂µ
− 1

2

∂J

∂fk
−
µk
2

∂

(
∂J
∂fk

)
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,
(4.34)
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and

∂gk+1
∂µ

=
∂gk
∂µ
− 1

2

∂J

∂gk
−
µk
2

∂

(
∂J
∂gk

)
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,
(4.35)

where the term
∂

(
∂J
∂fk

)
∂µ

in equation (4.34) can be developed as (see equation(4.24)):
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and the term
∂

(
∂J
∂gk

)
∂µ

in equation (4.35) can be developed as (see equation(4.25)):
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(4.37)

Furthermore, the term ∂∆x
∂µ

in equation (4.36, 4.37) can be developed as (see equation(4.32)):
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(4.38)

Similar to (4.28-4.38), using the gradient descent algorithm, the step-size γ can be updated as:

γk+1 = γk −
α

2

∂J

∂ϕk

∂ϕk
∂γ

, (4.39)

where the term
∂ϕk
∂γ

can be updated as (see equation(4.26)):
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2

∂

(
∂J
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, (4.40)
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and where
∂
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)
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can be developed as (see equation(4.26)):
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(4.41)

It is worth mentioning that, in contrast to state-of-the-art solutions [89, 134], the proposed adaptive step-sizes are

continuously and blindly updated on the whole information burst; this contributes to obtain a good equalization -

phase error estimation performance. We should also mention that the step sizes should be constrained to belong

to a finite interval where the maximum values prevents the divergence of the algorithm and the minimum value

prevents its from staying still [142, 143].

2. Proposal Outline

Gathering the previous results (4.17-4.41), we now summarize the proposed Fully Adaptive (FA) step-size equal-

izer:

zk = fTkRke
−jϕk − gTk S̃k. (4.42)

For each iteration k, the values of the filter coefficients fk, gk and their adaptive step-size µk are updated as:
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(4.43)
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Finally, ϕk and its adaptive step-size γk are updated as:
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(4.44)

4.2.2 Simulation Results

In our simulations, source information are coded with a turbo code of rate 1/3 with generator polynomials equal to

(5, 7)octal; the coded bits are then interleaved and first transformed into a sequence of BPSK symbols. A training

sequence of 100 symbols is transmitted before each user frame. At the receiver side, the number of iterations (i.e.

equalization/channel decoder) pmax is fixed to 10. We consider the synthetic channel given by equation (4.12), we

evaluate the performance of our proposal by considering the scenario for which the initial Doppler shift is equal to 0.001

and increases to reach the maximum value εmax = 0.005 at the end of the received block. The number of taps for

fk and gk are equal to 13 and 19 respectively, the central coefficient of fk is set to 1. It is worth mentioning that for

the adaptive step-size equalizer, the values of the second-order step-sizes α and β do not influence considerably the

system performance, and can therefore be chosen in a large range.

Fig. 4.6 presents an example of an impulse response over the multipath channel (4.12); it illustrates that the impulse

response gradually accelerates, which makes the equalization and phase estimation difficult to achieve with conven-

tional algorithms. Fig. 4.7 and Fig. 4.8 depict the step-size and MSE curves of the proposed fully adaptive step-size

algorithm for different iterations, averaged over 1000 Monte Carlo simulations, it can be observed that a maximum of

5 iterations is sufficient to obtain a stability of the adaptive step-size behaviour. Fig. 4.9 (reps. Fig. 4.10) compares

the BER performance between the proposed fully adaptive step-size algorithm, the so-called ”CS tracking” algorithm

for which the step-size is adaptively updated over the preamble, followed by a tracking period with a constant step-size

obtained at the end of the (100 symbols) preamble, and finally the algorithm for which the step size is fixed to the initial

value µ = 0.015 for all symbols transmitted over the time varying channel (4.12) for the BPSK (resp. QPSK) constel-

lation. We can observe that the conventional algorithm for which the step size remain constant in the tracking period

penalizes considerably the overall performance.
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Figure 4.6: Impulse response over the Rayleigh multipath channel (4.12) for εmax = 0.005.
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Figure 4.7: Adaptive step-size µ over the channel (4.12) for εmax = 0.005 at different iterations and for the BPSK
constellation at 6 dB.
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Figure 4.8: MSE curve over the channel (4.12) for εmax = 0.005 for the fully adaptive step-size algorithm at different
iterations and for the BPSK constellation at 6 dB.
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Figure 4.9: BER comparison over the channel (4.12) for εmax = 0.005 and for the BPSK constellation
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Figure 4.10: BER comparison over the channel (4.12) for εmax = 0.005 and for the QPSK constellation
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Figure 4.11: BER comparison between the fully adaptive step-size algorithm and the CS tracking one over the channel
BCH1 of Watermark for the QPSK constellation.

For example at a BER = 10−4, it can be observed for the BPSK (resp. QPSK) constellation on Fig. 4.9 (resp. Fig.

4.10) that the proposed fully adaptive step-size algorithm achieves roughly a 0.8 dB (resp. 1.3 dB) BER performance
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gain compared to the CS tracking algorithm and the CS tracking algorithm achieves around a 1 dB (resp. 1.6 dB) BER

performance gain compared to the algorithm for which the step-size µ is fixed to µ = 0.015 for all symbols transmitted.

This is a positive result for a channel that can be considered as difficult (see chapter 2). Finally, Fig. 4.11 compares

the BER performance for the fully adaptive step-size algorithm and the CS tracking one over the channel BCH1 of the

Watermark simulator for the QPSK constellation; it can be observed that the proposed fully adaptive step-size algorithm

has an advantage of about 0.6 dB. The gain is smaller than the one observed on the synthetic channel because BCH1

is not a fast-varying channel.

4.3 Conclusion

In this chapter, a fully adaptive low complexity joint iterative channel equalization and channel decoding process is

first proposed; indeed, with this proposal, only a small number of coefficients need to be updated. The equalizer was

successfully tested over Rayleigh time-varying and over some recorded multipath underwater channels. The good

performance and the simplicity of our proposal make it very attractive for practical implementation, in particular for

underwater communication systems for which a large number of taps is usually needed.

This chapter also proposes a new joint equalizer - phase estimator algorithm with adaptive step-sizes. It leads to

good BER performance by achieving a good trade-off between the convergence speed and MSE minimization over

time-varying channels. Simulation results of our proposals show a significant BER improvement compared to the

conventional solutions currently used in practice for doubly selective channels with high and varying Doppler shifts.
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General Conclusion

In a context where bandwidth is limited, the environment is dynamic and communications systems operate outside a

standardized framework, the realization of the IoT and its need of low complexity algorithms and energy efficiency, is

particularly difficult. The research work of this thesis, in the context of the underwater acoustic channel that is time

and frequency selective, focused on the study of low-complexity rotated constellations and adaptive turbo equalization.

Indeed, rotated constellations allow better performance than the conventional ones and adaptive turbo equalization

algorithm is effective in removing ISI over multi-paths channels. These techniques nevertheless suffer from several

limitations and this thesis, therefore, consisted in proposing practical solutions to overcome those limitations.

We started by presenting in detail the main characteristics of the underwater acoustic channel and the general model

of a digital communication transmission chain. We then introduced OFDM modulation and we noted its large PAPR

problem and its impact on the energy efficiency of the transmitter. We illustrated that diversity is a factor that consider-

ably affects the performance of wireless communication systems over fading channels. We then presented the rotated

constellations with its inherent diversity and described several methods proposed in the literature for the selection of the

rotation angle as well as for the soft demodulation of the rotated signals. In addition, we have formalized the equaliza-

tion problem and underlined the impact of this task over the overall performance of communication systems. The main

contributions of this thesis with regard to the objectives set are contained in the following chapters.

Chapter 3 first reviewed the properties of the UP-RCQD constellations that enables to design a low- complexity demap-

per for fading channels that gives almost the same performance as the Max-Log algorithm. We have also underlined the

good performances of these constellations: indeed, the UP-RCQD constellations allow better performances on several

underwater acoustic channels. In addition, we have proposed a PAPR reduction method for OFDM systems testing

several two-dimensional interleavers and a single rotation angle ; the best OFDM symbol in terms of PAPR reduction

is selected on the transmitter side and the index of the two-dimensional interleaver is not sent to the receiver in order
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to preserve the spectral efficiency of the system. Unlike conventional constellations, the receiver is able to identify the

interleaver used with the Max-Log estimator that we have proposed. In addition, we again relied on the structural prop-

erties of the UP-RCQD constellations in order to design a low complexity estimator; it is able to reduce the complexity

of estimating the interleaver index by more than 98% compared to the Max-Log solution.

Finally, in the last chapter, we first proposed a fully adaptive low-complexity joint iterative channel equalization and

channel decoding process. Indeed, for our proposal, a sparse adaptive turbo detector with only a small number of

coefficient updates is proved on one side, to enable a large reduction of the overall computational complexity by more

than 60% and, on the other side, to achieve better performance compared to the conventional one, which makes the low

complexity equalizer suited for real-time processing. Furthermore, we proposed an original adaptive step-size iterative

MSE equalizer where the soft-information exchanged between the equalizer and the channel decoder can also be used

for adjusting the adaptive step-size, as it is an appealing indicator of the symbol reliability. The proposed algorithm

for joint phase recovering and equalization allows fast convergence, a better tracking performance over time varying

channel and a lower mean square error compared to the constant step-size case.

Perspectives

A short-term objective is to develop adaptive step-size algorithms for synchronization and for channel estimation.

In this thesis, we have focused on the case of two-dimensional rotated constellations. Middle term objectives concern

further development of those rotated constellations.

On one side, it seems interesting to design a particular rotation matrix for the multidimensional case, which would

give similar properties to that of UP-RCQD constellations. The design of a low-complexity soft demapper for this case

would then be possible in a similar way.

On the other side, dedicated signal processing algorithms, such as channel attenuation estimation or synchroniza-

tion, should specifically be adapted to the special case of rotated constellations. They are still to be invented and could

take advantage of the particular a priori of this type of modulation.

Finally a long-term objective is to develop a platform to test those algorithms in a real environment and then have

them embarked on real autonomous objects.
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Résumé

La terre est recouverte d’environ 70% d’eau et environ 95% des océans et 99% des fonds marins restent inexplorés.

En d’autres termes, la majeure partie de notre planète bleue et de ses ressources reste à découvrir. D’une certaine

manière, l’hostilité de l’environnement sous-marin a intrinsèquement protégé ce monde secret jusqu’à récemment. Mais

l’intérêt pour le monde marin, illustré d’une part par le lien entre la fonte arctique et la montée des eaux et d’autre part

par la compétition pour l’exploitation des ressources énergétiques sous-marines, ouvre la question éthique de savoir

comment trouver un équilibre satisfaisant entre les besoins toujours croissants de l’humanité et la fragilité de notre

écosystème face à une population humaine toujours plus nombreuse.

Les recherches visant à comprendre le milieu sous-marin et à exploiter ses riches ressources ont conduit à l’essor

de l’exploration sous-marine à des fins d’abord militaires, puis scientifiques et économiques. Pour être en mesure

d’observer, de surveiller et d’explorer les océans, nous pouvons utiliser des observatoires des fonds marins, des réseaux

de capteurs ou des véhicules sous-marins, soit télécommandés (Remotely Operated Vehicles - ROV), soit autonomes

(Autonomous Underwater Vehicles - AUV).

Tous ces systèmes d’exploration et d’observation nécessitent des moyens de communication avec la surface pour

l’instrumentation et le contrôle, ou pour le transfert de données. En milieu sous-marin, cette communication peut être

réalisée par voie filaire au moyen de câbles (mais souvent équipés de fibre optique) ; c’est le cas des observatoires

filaires comme NEPTUNE (Ifremer) situé sur le plateau tectonique de Juan de Fuca, au large du Canada. C’est

également le cas des ROVs pour lesquels l’ombilical est utilisé pour contrôler le robot et récupérer les données acquises.

L’intérêt de la communication par câble réside dans sa vitesse (jusqu’à plusieurs PetaBits/s pour les câbles sous-marins

intercontinentaux) et sa très faible latence, cependant, son prix est très élevé (jusqu’à 600 kC/km) et la maintenance

de tels systèmes est complexe. En outre, la communication filaire pose de sérieux problèmes de mobilité, comme on

l’a observé avec les ROVs.

Une autre approche est la communication sous-marine sans fil qui ne nécessite pas de lien physique entre l’émetteur

et le récepteur, et donc un coût d’installation et de maintenance plus faible. Cependant, comme nous le verrons dans la
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suite, la fiabilité et le taux de transmission sont plus faibles par rapport à la communication filaire. Pour transmettre des

informations sans fil dans un environnement sous-marin, les supports classiques sont les ondes de radiofréquence, les

ondes optiques et enfin les ondes acoustiques.

Les ondes RF sont très fortement atténuées par l’eau (de l’ordre de 3 à 5 dB/m selon la fréquence), elles nécessitent

donc une puissance de transmission élevée et/ou des transducteurs de grande taille. Les communications RF sous-

marines peuvent donc être intéressantes pour transmettre à haut débit (de l’ordre du Mbit/ s) sur une très courte

distance (jusqu’à 10 m). A plus haute fréquence, les ondes optiques permettent de communiquer à très haut débit

(jusqu’à quelques Gbit/s) mais subissent rapidement des phénomènes de diffusion et d’absorption dus à l’eau (1 dB/m

et jusqu’à 11 dB/m en eau trouble) limitant la portée de la communication à quelques dizaines de mètres. L’alignement

des faisceaux lumineux entre l’émetteur et la réception est également un problème important pour ces systèmes de

communication. L’intérêt des ondes optiques se révèle lorsque l’on souhaite transférer rapidement un grand volume de

données sur une courte distance, notamment au moyen de robots sous-marins.

Enfin, les ondes acoustiques subissent une atténuation relativement faible dans l’eau (de l’ordre de 0,1 à 4 dB/km) et

permettent de communiquer sur des distances relativement importantes (de quelques kilomètres à plusieurs centaines

de kilomètres). Ceci a contribué à faire des ondes acoustiques, le vecteur de transmission le plus utilisé dans un

environnement sous-marin. Les communications acoustiques sous-marines sont cependant fortement perturbées par

les atténuations des ondes acoustiques, le bruit, le phénomène des trajets multiples, l’étalement temporel du canal,

et enfin par l’effet Doppler. Tous ces effets combinés rendent le canal acoustique sous-marin unique puisqu’il est

variable dans le temps, la fréquence et l’espace limitant ainsi les débits de transmission (selon la fréquence) à quelques

dizaines de kbit/s par kilomètre. Enfin, la vitesse des ondes sonores dans l’eau (environ 1500 m/s en fonction de divers

paramètres physiques) entraı̂ne une latence importante dans la communication.

Les techniques modernes de communications acoustiques sous-marines ont commencé à être développées à des

fins militaires pendant la Seconde Guerre mondiale En 1945, le premier système de communication sous-marine a

vu le jour aux États-Unis d’Amérique afin d’établir une liaison de communication entre les sous-marins. Ce premier

modem utilisait la modulation Single Side Band (SSB) dans la bande de fréquence 8 - 11 kHz pour une distance

de plusieurs kilomètres. Jusqu’à la fin des années 1970, d’autres modems acoustiques ont été référencés dans la

littérature, tous basés sur des techniques de transmission analogiques, ce qui constitue une sérieuse limitation face

aux distorsions apportées par le canal acoustique sous-marin. A partir des années 1980, avec le développement des

circuits électroniques hautement intégrés, Very-Large-Scale Integration (VLSI) et l’avènement des processeurs DSP

compacts à consommation réduite, il est devenu possible d’implémenter, au sein des émetteurs/récepteurs immergés,

des algorithmes complexes de traitement du signal ouvrant la voie aux technologies de transmission numérique. Ainsi,
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au cours de ces quarante dernières années, des progrès considérables ont été réalisés dans le développement des

modems acoustiques, tant en termes de portée de communication que de vitesse de transmission.

Dans cette thèse, nous nous intéressons au contexte scientifique du projet européen H2020 appelé Bridges pour

lequel les laboratoires UME et U2IS de l’ENSTA Paris ont tous deux été impliqués. Dans ce projet, un planeur (un

AUV plutôt non coûteux de moins de 2 mètres de long) navigue et échange des informations avec différents capteurs

déployés dans un cercle d’environ moins de 1 km de rayon. Dans ce contexte d’Internet des objets (IoT) sous-marin,

nous nous concentrons sur les problèmes de communication numérique soulevés par l’environnement acoustique et

nous gardons ainsi à l’esprit que la complexité est un problème clé pour ces objets autonomes économes en énergie.

Dans un contexte où la bande passante est limitée, l’environnement est dynamique et les systèmes de communica-

tion fonctionnent en dehors d’un cadre standardisé, la réalisation de l’IoT et son besoin d’algorithmes à faible complexité

et d’efficacité énergétique, est particulièrement difficile. Les travaux de recherche de cette thèse, dans le contexte du

canal acoustique sous-marin sélectif en temps et en fréquence, se sont focalisés sur l’étude des constellations tour-

nantes à faible complexité et de la turbo égalisation adaptative. En effet, les constellations tournantes permettent

d’obtenir de meilleures performances que les constellations conventionnelles et l’algorithme de turbo égalisation adap-

tative est efficace pour supprimer l’ISI sur les canaux multi-trajets. Ces techniques souffrent néanmoins de plusieurs

limitations et cette thèse a donc consisté à proposer des solutions pratiques pour surmonter ces limitations.

Nous avons commencé par présenter en détail les principales caractéristiques du canal acoustique sous-marin.

Le chapitre 1 rappelle les propriétés de l’environnement de propagation sous-marine. Nous passons en revue les

dégradations apportées par le canal à grande et petite échelle et leur impact sur les canaux de communication. Nous

illustrons également la double sélectivité du canal acoustique.

L’objectif d’un système de communication numérique est de transmettre des informations des émetteurs aux récepteurs,

sous forme de symboles ou de bits binaires, à un rythme généralement mesuré en symboles ou en bits par seconde.

Cette transmission s’effectue dans un environnement qui dicte les lois de propagation des ondes qui transportent les

signaux d’information. Ces signaux correspondent aux symboles contenant l’information et occupent une largeur de

bande déterminée dans le spectre des fréquences, autour d’une ou plusieurs fréquences porteuses. L’environnement

physique est appelé canal de communication. Les canaux de communication ont une capacité exprimée en nombre de

symboles par seconde qui peuvent être transmis avec un taux d’erreur arbitrairement bas. Lorsqu’une communication

est établie par un canal, une certaine ressource physique de ce canal est utilisée : typiquement, une certaine bande de

fréquences est utilisée par un système pendant une certaine période de temps. L’un des principaux problèmes lors de

la conception de réseaux de communication est le partage des ressources disponibles pour établir des transmissions
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fiables entre chaque élément du réseau. Lorsque plusieurs systèmes non coopératifs se disputent l’utilisation d’une

ressource, ils interfèrent au détriment de leur robustesse et de leur fiabilité.

Outre le cas des très courtes distances (moins de 100 m), les ondes électromagnétiques ne sont pas adaptées

aux communications sous-marines, car l’eau est un milieu conducteur qui absorbe rapidement la majeure partie de

l’énergie transmise. En revanche, les propriétés physiques du milieu sous-marin permettent aux ondes acoustiques de

se propager sur de longues distances. Les ondes acoustiques sous-marines sont donc le support privilégié des signaux

de communication dans cet environnement. Cependant, la physique se présente également comme un facteur limitant

les performances des modems de communication acoustique sous-marine qui fonctionnent à des débits de données

très faibles par rapport aux modems à radiofréquence. Ces différences de performance reflètent les différences en

ordres de grandeur entre certains paramètres physiques de base des deux milieux de propagation. Par exemple, le

rapport entre la vitesse de l’onde électromagnétique dans l’air et celle de l’onde acoustique sous-marine est de 105

(3, 108 m/s contre environ 1500 m/s, respectivement). La fréquence porteuse des communications RF peut attein-

dre quelques gigahertz (109 Hz), alors que pour les communications acoustiques sous-marines, elle ne dépasse pas

quelques dizaines de kilohertz. La bande passante dans ce milieu est strictement limitée, surtout lorsque la distance

de transmission augmente. Par conséquent, le canal de communication acoustique sous-marin est souvent considéré

comme étant à large bande, la fréquence porteuse et la largeur de la bande de transmission ayant le même ordre de

grandeur. La limite de performance actuelle des modems acoustiques sous-marins se traduit par un produit vitesse de

transmission-distance généralement inférieur à 40 kbits/s × km. D’une part, en raison du manque d’interopérabilité, et

d’autre part, en raison du manque de ressources disponibles pour communiquer sans interférence entre les utilisateurs,

la coexistence de sources acoustiques d’origines différentes dans le même canal est également difficile. Ceci, couplé

aux longs délais de propagation, entraı̂ne des difficultés dans la conception de protocoles fiables et efficaces adaptés

aux réseaux de communication. Enfin, l’environnement sous-marin présente une variabilité et une hétérogénéité à

plusieurs échelles spatiales et temporelles, ce qui nécessite une certaine flexibilité et la capacité d’adapter les modems

acoustiques sous-marins à l’environnement dynamique dans lequel ils fonctionnent.

L’objectif du premier chapitre est de présenter en détail les particularités de l’environnement acoustique sous-marin,

considéré comme le canal de communication, afin de permettre au lecteur de mieux comprendre les différentes hy-

pothèses de travail qui seront présentées dans les chapitres suivants. Tout d’abord, les propriétés physiques impor-

tantes du canal acoustique sous-marin sont introduites, puis la distorsion subie par le signal de communication sous-

marin est expliquée en détail. Le canal de communication acoustique sous-marin est souvent présenté comme difficile,

en raison de ses caractéristiques physiques et des hétérogénéités du milieu. Ces difficultés sont l’une des principales

raisons pour lesquelles le développement des communications acoustiques sous-marines a été plus lent que celui des
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communications par radiofréquence, car les techniques utilisées dans ce domaine ne peuvent être transposées directe-

ment au milieu sous-marin. La large bande du canal, les différentes échelles de variabilité de l’environnement, ainsi que

l’absence de protocoles de réseau normalisés et d’infrastructures pour organiser l’accès au canal, posent de grands

défis. Le chapitre suivant rappelle comment les systèmes de communications numériques tentent de relever ces défis.

Le chapitre 2 est un chapitre classique qui synthétise plusieurs solutions de communication numérique pour faire

face aux dégradations de canaux. Nous avons d’abord rappelé quelques bases élémentaires des communications

numériques, puis présenté les principales caractéristiques des canaux à évanouissement. Ce chapitre présente le

modèle général d’une chaı̂ne de communication numérique et précise le cadre dans lequel ce travail de thèse a été

mené.

La première section présente les composants de la chaı̂ne de transmission et ce chapitre s’intéresse tout d’abord

aux paramètres de l’émetteur. La modulation d’amplitude en quadrature (QAM) numérique est d’abord utilisée comme

véhicule de l’information numérique à travers le canal de transmission. Le démappeur doux est utilisé dans la suite

de ce travail. La partie suivante de ce chapitre introduit la modulation OFDM (Orthogonal Frequency Division Multi-

plexing) et le problème du PAPR (Peak-to-Average Power Ratio) est présenté. En général, les signaux provenant de

plusieurs trajets peuvent s’additionner de manière constructive ou destructive ; les canaux à évanouissement sont donc

peu fiables, ce qui rend nécessaire l’utilisation de techniques de diversité. De plus, lorsque la liaison est sélective en

fréquence, le signal transmis sur ce type de canal suit des trajets différents pour arriver au récepteur sur des symboles

successifs, une égalisation côté récepteur est donc nécessaire. Enfin, ce chapitre présente plusieurs égaliseurs pro-

posés dans la littérature, l’algorithme LMS, l’égaliseur MMSE et la turbo égalisation. La troisième section de ce chapitre

illustre comment un système de communication numérique fait face à la dégradation du canal, le concept de diversité

est introduit et la dernière section présente le concept d’égalisation.

Dans le troisième chapitre, nous développons davantage un angle spécial pour obtenir la diversité des signaux.

Cette diversité de signaux ne gâche aucune ressource du canal, ce qui est particulièrement intéressant pour le canal

acoustique sous-marin pour lequel la bande passante est particulièrement limite.

Le canal acoustique sous-marin varie dans le temps et sa bande passante est particulièrement limitée. Cela rend

difficile l’établissement de communications fiables et limite le taux d’information. La constellation tournée est une

technique efficace qui économise à la fois la bande passante et l’énergie, car elle permet de tirer parti de la diversité

du canal et donc d’améliorer les performances des constellations tournées sur certains canaux à évanouissement tels

que les canaux acoustiques sous-marins. Cependant, le coût réel de cette technique est la grande complexité de la

démodulation qui a empêché son utilisation à grande échelle. Pour faire face à ce problème, ce chapitre propose de se

concentrer sur la modulation M-QAM en utilisant une série d’angles de rotation θ = arctan(1/
√
M) qui introduit plusieurs
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propriétés structurelles pouvant être utilisées pour faciliter considérablement le processus de démappeur doux.

Comme nous l’avons montré au chapitre 2, les constellations tournées apportent une diversité inhérente à un

système sans perte de spectre. La norme DVB-T2 a été la première norme industrielle à utiliser des constellations

M-QAM tournées qui, en théorie, donnent de meilleurs résultats que les constellations M-QAM classiques sur les

canaux à évanouissement. Néanmoins, cette solution augmente considérablement la complexité du côté du récepteur.

En effet, les démappeurs bidimensionnels proposés dans la littérature ont une complexité de calcul élevée qui a un

impact non négligeable sur la conception du récepteur.

Dans la première section, nous avons étudié une série d’angles de rotation θ = arctan
(

1/
√
M
)

présentant des

propriétés structurelles intéressantes pour différents signaux RCQD (Rotated and Cyclically Q-Delayed). Sur la base

de ces propriétés, nous avons étudié un démappeur à faible complexité pour les canaux à évanouissement qui donne

presque les mêmes performances que l’algorithme optimal Max-Log. Grâce aux bonnes performances des angles

proposés et à la simplicité de la mise en œuvre du démappeur proposé, l’efficacité spectrale et la consommation

d’énergie du système de communication sous-marin peuvent être améliorées. Il est important de noter que la diversité

inhérente du signal explorée sans expansion de la bande passante pourrait à son tour économiser encore plus de bande

passante en permettant l’utilisation d’un code de canal à plus haut débit. En s’appuyant sur celles-ci, nous détaillerons

un démappeur de faible complexité dédié à ces angles et le testerons sur deux canaux sous-marins.

Comme nous l’avons rappelé au chapitre 2, la solution OFDM peut être une alternative aux communications sous-

marines monoporteuses pour les canaux stables à courte portée (quelques centaines de mètres) ; en effet, sa bonne

efficacité spectrale est payée au prix d’une grande sensibilité aux problèmes de synchronisation et de PAPR. Le PAPR

élevé des signaux OFDM entraı̂ne une sérieuse dégradation des performances du système, ce qui limite en particulier

la portée de la communication.

Pour contourner ce problème, plusieurs algorithmes ont été proposés dans la littérature (voir chapitre 2) pour

réduire la PAPR, mais ils souffrent souvent de multiples limitations ; en particulier, le principal problème des techniques

d’entrelacement est la perte d’efficacité spectrale, car la transmission d’une information latérale (SI) est généralement

requise.

Contrairement aux travaux précédents, cette section propose une technique d’entrelacement aveugle pour les

systèmes OFDM avec diversité d’espace de signal (SSD). En effet, avec les constellations RCQD, les composantes

en phase (I) et en quadrature (Q) des symboles de constellations sont corrélées, ce qui permet au récepteur d’estimer

l’indice d’entrelacement sans aucun SI. De plus, pour réduire la charge de complexité du côté du récepteur, nous

concevons d’abord un décodeur aveugle basé sur le critère d’erreur quadratique moyenne minimale (MMSE), puis

nous proposons un décodeur à faible complexité pour la QAM à projection uniforme RCQD (UP-RCQD), car nous
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avons montré dans la première partie de ce chapitre que cette constellation possède plusieurs propriétés structurelles

intéressantes et permet d’obtenir des performances de taux d’erreur binaire (TEB) presque optimales.

La deuxième section propose une nouvelle technique d’entrelacement aveugle pour la réduction du PAPR sans au-

cune distorsion pour les systèmes OFDM utilisant la diversité d’espace de signal. Elle est basée sur l’utilisation de con-

stellations tournantes car elles permettent au récepteur d’identifier, sans aucun SI, l’entrelaceur à deux composantes

utilisé dans la diffusion. Pour réduire la charge de complexité du côté du récepteur, un détecteur basé sur le MMSE

avec de bonnes performances est proposé. De plus, afin de réduire encore plus la complexité de calcul du démappeur,

nous proposons d’utiliser à nouveau la constellation UP-RCQD car cette constellation apporte de nombreuses pro-

priétés structurelles intéressantes que nous employons pour concevoir un décodeur d’index d’entrelacement à faible

complexité. Les principaux avantages de cette technique sont les suivants. Notre proposition permet d’obtenir une

réduction importante du PAPR sans dégradation du TEB, ni altération spectrale. En outre, par rapport à la méthode

SLM aveugle, la technique proposée simplifie la conception de l’émetteur et du récepteur et sa faible complexité la rend

particulièrement adaptée à une mise en œuvre matérielle.

Le chapitre 4 est consacré au problème de l’égalisation. Le canal sous-marin est l’un des canaux les plus difficiles

car le signal acoustique peut souffrir à la fois d’une largeur de bande de cohérence très limitée et d’un effet Doppler

élevé. En particulier, la propagation par trajets multiples introduit une ISI qui peut sérieusement limiter les perfor-

mances du système. Après la découverte du turbo-décodage, l’égalisation itérative a été proposée pour éliminer l’ISI,

car l’égaliseur et le décodeur de canal peuvent échanger mutuellement des informations extrinsèques à chaque itération

afin d’améliorer leurs performances. La récupération de la phase est encore un autre problème auquel le récepteur doit

faire face, en particulier dans le cas d’une importante dérive Doppler. Néanmoins, la complexité du schéma théorique

de turbo égalisation croı̂t exponentiellement avec les paramètres de communication, ce qui interdit son utilisation dans

des applications réelles. Comme la réponse impulsionnelle du canal peut être très longue en raison de la célérité rela-

tivement faible des ondes acoustiques, nous proposons un égaliseur sparse avec récupération de phase conjointe. De

plus, pour un canal dont les caractéristiques varient dans le temps, les algorithmes conventionnels de turbo égalisation

utilisant des pas constants sont incapables, par construction, d’atteindre des performances de poursuite satisfaisantes

et donc un bon compromis entre la performance et la vitesse de convergence, donc nous présentons également une

architecture entièrement adaptative avec une taille de pas adaptative. Pour faire face à ces problèmes, ce chapitre

présente deux algorithmes différents et originaux pour l’égalisation et l’estimation de phase conjointes. Il est divisé en

deux sections principales.

La première section propose un détecteur turbo adaptatif sparse avec seulement quelques taps à mettre à jour afin

de réduire la charge de complexité. Elle est organisée comme suit : la première sous-section présente le modèle de
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système d’égalisation turbo adaptatif ; ensuite, la structure de l’égaliseur adaptatif est présentée dans la deuxième

sous-section, l’analyse détaillée de la complexité de l’algorithme et la performance TEB de l’algorithme proposé sur les

canaux sous-marins et un canal synthétique sont données dans la dernière sous-section.

Nous avons d’abord proposé un processus d’égalisation et de décodage de canal itératif conjoint entièrement adap-

tatif et à faible complexité. En effet, pour notre proposition, un détecteur turbo adaptatif sparse avec seulement un petit

nombre de mises à jour de coefficients s’est avéré, d’une part, permettre une réduction importante de la complexité de

calcul globale de plus de 60% et, d’autre part, obtenir de meilleures performances par rapport au détecteur convention-

nel, ce qui rend l’égaliseur à faible complexité adapté au traitement en temps réel. L’égaliseur a été testé avec succès

sur des canaux de Rayleigh variant dans le temps et sur certains canaux sous-marins à trajets multiples enregistrés.

Les bonnes performances et la simplicité de notre proposition la rendent très intéressante pour une mise en œuvre

pratique, en particulier pour les systèmes de communication sous-marins pour lesquels un grand nombre de prises est

généralement nécessaire.

Jusqu’à présent, notre objectif était de considérer des algorithmes peu complexes pour les applications de l’Internet

des objets. En particulier, l’algorithme standard d’égalisation itérative est souvent utilisé dans l’estimation en temps

réel grâce à sa faible complexité. Cependant, les performances de cette technique dépendent de sa taille de pas

constante ; en particulier, la taille de pas contrôle à la fois la vitesse de convergence et l’erreur quadratique moyenne

en régime permanent de l’algorithme ; si la taille de pas est choisie trop petite, la vitesse de convergence est trop

lente, mais si elle est choisie trop grande, l’erreur quadratique moyenne en régime permanent est faible. En outre,

il est difficile de choisir une taille de pas constante qui peut certainement conduire à une mauvaise initialisation et à

des performances médiocres, mais qui pourrait également être incapable de suivre l’évolution de l’état du canal. Cela

affecte donc de manière significative le comportement de l’égaliseur adaptatif. Par conséquent, dans cette section,

nous présentons une égalisation itérative entièrement adaptative avec une estimation de phase conjointe, en utilisant

des pas adaptatifs. Nous appliquons ensuite les résultats obtenus au cas sous-marin dans le cas difficile des canaux

sous-marins doublement sélectifs.

La deuxième section de ce chapitre propose un égaliseur original auto-optimisé pour lequel les pas de l’égaliseur et

de l’estimateur de phase sont mis à jour de manière adaptative et assistés par des informations souples fournies par le

décodeur de canal de manière itérative. Cette deuxième section est organisée comme suit : la première sous-section

détaille l’algorithme de la technique proposée et décrit le fonctionnement de l’égaliseur proposé ; certains résultats de

simulation sont présentés dans la sous-section suivante.

Il convient de noter que, contrairement aux travaux précédents, l’erreur quadratique moyenne est calculée sur tous

les points de constellation possibles et englobe tous les modes de synchronisation (Data Aided (DA), Non Data Aided
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(NDA) et Code Aided (CA)); en particulier, pour le mode CA, la probabilité du point de constellation peut être calculée

par les valeurs LLR à la sortie du décodeur de canal. Contrairement aux travaux précédents, les tailles de pas ne sont

pas constantes, ni pendant la période d’apprentissage, ni pendant la période de suivi ; en effet, elles sont mises à jour

de manière adaptative afin de minimiser l’erreur quadratique moyenne. Il convient de mentionner que, contrairement

aux solutions de pointe, les tailles de pas adaptatives proposées sont mises à jour de manière continue et aveugle

sur l’ensemble de la salve d’informations, ce qui contribue à obtenir de bonnes performances en matière d’égalisation

et d’estimation des erreurs de phase. Nous devrions également mentionner que les tailles de pas devraient être

contraintes à appartenir à un intervalle fini où les valeurs maximales empêchent la divergence de l’algorithme et la

valeur minimale l’empêche de rester immobile.

Le nouvel algorithme conjoint d’égaliseur et d’estimateur de phase avec des pas adaptatifs permet d’obtenir de

bonnes performances en termes de TEB en réalisant un bon compromis entre la vitesse de convergence et la min-

imisation de l’erreur quadratique moyenne sur des canaux variant dans le temps. Les résultats de simulation de nos

propositions montrent une amélioration significative du TEB par rapport aux solutions conventionnelles actuellement

utilisées dans la pratique pour les canaux doublement sélectifs avec des décalages Doppler élevés et variables.
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Titre: Traitement statistique de l’information et du signal pour l’internet des objets sous-marins
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Résumé: On assiste au développement des activités
humaines liées au monde océanique, mais aucune
norme n’a encore émergé pour l’Internet des objets
appliqué aux objets autonomes marins. Bien qu’elle
possède une bande passante limitée, l’onde acous-
tique est le seul moyen de communiquer sur des dis-
tances importantes et elle est donc utilisée par de nom-
breux systèmes sous-marins pour communiquer, nav-
iguer ou déduire des informations sur l’environnement.
Cela a conduit à une forte demande de réseaux sans
fil qui nécessitent à la fois une bonne efficacité spec-
trale et énergétique avec la faible complexité des al-
gorithmes associés. Par conséquent, au cours de ce
doctorat, nous avons proposé plusieurs solutions origi-
nales pour relever le défi de développer des techniques
numériques, capables de faire face au canal acous-
tique.
En raison d’une diversité inhérente d’espace du sig-
nal (SSD), les constellations tournées permettent
de meilleures performances théoriques que les con-
stellations conventionnelles et ce, sans détérioration

spectrale. Nous passons en revue les propriétés
structurelles des constellations tournées M-QAM uni-
formément projetées, afin de proposer une technique
de demapping souple à faible complexité pour les
canaux à fading. Puis, nous proposons une technique
originale de réduction du PAPR pour les systèmes
OFDM utilisant les constellations tournées. Afin de
réduire la complexité du décodage aveugle, nous nous
appuyons sur les propriétés des constellations tournées
M-QAM uniformément projetées, pour concevoir un es-
timateur de faible complexité. De plus, pour faire face
à la sélectivité du canal acoustique, nous avons pro-
posé un turbo-détecteur parcimonieux adaptatif avec
seulement quelques coefficients à mettre à jour afin de
réduire la complexité. Enfin, nous avons proposé un
algorithme original auto-optimisé pour lequel les tailles
de pas de l’égaliseur sont mises à jour de manière
adaptative et assistées par des informations souples de
manière itérative, afin de répondre à l’exigence de con-
vergence rapide et de faible erreur quadratique sur des
canaux variant rapidement dans le temps.

Title: Statistical information and signal processing for the underwater internet of things.

Keywords: adaptive algorithms, wireless digital communications, underwater acoustic communications

Abstract: There has been recently a large devel-
opment of human activities associated with the ocean
world, where no standard has emerged for the Internet
of Things (IoT) linked to marine autonomous objects.
Though it has a limited bandwidth, the acoustic wave is
the only way to communicate over average to large dis-
tances and it is thus used by many underwater systems
to communicate, navigate, or infer information about
the environment. This led to high demand for wireless
networks that require both spectral efficiency and en-
ergy efficiency with the associated low-complexity al-
gorithms. Therefore, in this Ph.D. thesis, we proposed
several original solutions to face this challenge.
Indeed, due to the inherent Signal Space Diversity
(SSD), rotated constellations allow better theoretical
performance than conventional constellations with no
spectral spoilage. We review the structural properties
of uniformly projected rotated M-QAM constellations, so

as to propose a low complexity soft demapping tech-
nique for fading channels. Then, we present an original
blind technique for the reduction of the PAPR for OFDM
systems using the rotated constellations with SSD. In
order to reduce the complexity of blind decoding for
this technique, we again rely on the properties of uni-
formly projected M-QAM rotated constellations to de-
sign a low-complexity estimator. Moreover, to face the
selectivity of the acoustic channel, we suggest a sparse
adaptive turbo detector with only a few taps to be up-
dated in order to lower down the complexity burden. Fi-
nally, we have proposed an original self-optimized al-
gorithm for which the step-sizes of both the equalizer
and the phase estimator are updated adaptively and as-
sisted by soft-information in an iterative manner, so as
to meet the requirement of fast convergence and low
MSE over time-varying channels.
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