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Résumé en français

Introduction

Les systèmes désordonnés et vitreux sont l’un des sujets les plus intéressants de la matière
condensée et de la physique statistique. Leur paysage énergétique est complexe, carac-
térisé par de nombreux minima locaux : lorsque la température est suffisamment basse, le
système se retrouve piégé dans l’un d’eux. Un phénomène lié à la température zéro est la
transition de brouillage (”jamming”). C’est le point où les particules athermiques ayant
une interaction répulsive à courte distance, en augmentant leur densité, commencent à
sentir la présence les unes des autres. Par exemple, nous pouvons considérer l’empilement
de sphères dures dans un volume donné : à une densité critique, les sphères dures sont
empilées au maximum avec un réseau de contacts établi entre elles ; cela correspond au
point de jamming. Ces dernières années, la physique vitreuse et la transition de jam-
ming ont trouvé un cadre commun dans la solution du modèle des sphères dures dans
des dimensions spatiales infinies, correspondant à une théorie du champ moyen. Cela
a permis la caractérisation analytique du comportement critique de jamming, qui cor-
respond aux arguments d’échelle de l’espace réel basés sur la stabilité marginale. Une
caractéristique remarquable du jamming est sa criticité super-universelle. En fait, les pré-
dictions du champ moyen ont été confirmées par des simulations numériques de sphères
à dimensions finies. Plus généralement, le jamming peut être considéré comme le seuil
de satisfaction d’un problème de satisfaction de contraintes avec des variables continues
(CCSP). Par conséquent, des caractéristiques de jamming ont également été trouvées dans
les CCSP comme le perceptron, un modèle introduit comme classificateur binaire dans
les réseaux de neurones qui peut être résolu avec des techniques de champ moyen. Dans
cette thèse, nous montrons l’émergence de la criticité du jamming dans un nouveau type
de phase brouillée (“jammed”). Les contraintes du CCSP peuvent être assouplies, ce qui
permet de les enfreindre en payant un coût énergétique. Dans les modèles de sphères,
cela correspond à des sphères molles interagissant avec un potentiel mou par paire qui est
une fonction croissante du degré de chevauchement entre elles. Nous étudions la phase
UNSAT/jammed, tant dans le perceptron que dans les sphères molles à dimension finie,
lorsque le potentiel doux est choisi comme étant linéaire. La particularité de ce modèle
est que la dérivée première de l’énergie potentielle est constante par parties, avec une
discontinuité au point de contact entre les sphères. Ce fait a des conséquences physiques
non négligeables : les minima du paysage énergétique sont des points angulaires carac-
térisés par des contraintes marginalement satisfaites, c’est-à-dire des sphères en contact,
même quand le système est profondément dans la phase jammed / UNSAT. Une sim-
ple dynamique de type descente de gradient se termine par ces minima singuliers. Nous
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découvrons qu’ils sont marginalement stables et critiques, avec un ensemble d’exposants
critiques plus nombreux que celui de la transition de jamming. Néanmoins, les valeurs des
exposants critiques sont les mêmes que celles de l’universalité du jamming, indépendam-
ment de la dimensionnalité. Elles caractérisent les mécanismes d’excitation/relaxation
qui sont non linéaires et analogues à ceux des emballages de sphères marginales. Par
conséquent, la phase jammed est auto-organisée critique et marginalement stable. Dans
cette phase, la réponse du système aux perturbations est caractérisée par des avalanches
sans échelle. La découverte d’une phase critique en dimensions finies est intéressante en
soi du point de vue de la physique statistique. En outre, elle offre un nouveau cadre pour
étudier les caractéristiques super-universelles du jamming et comprendre ses origines.

Chapitres introductives

Dans le premier chapitre, nous présentons brièvement quelques points principaux de la
physique des verres.

En suivant nombreuses revues disponibles [27, 155, 51, 24], nous résumons la phénoménolo-
gie des systèmes vitreux et nous introduisons un modèle simple de verres structurels,
c’est-à-dire les sphères dures. La théorie des sphères dures a été résolue dans la limite
dimensionnelle d infinie (c’est-à-dire dans le champ moyen). Cette solution exacte permet
d’étudier les caractéristiques qui ont une nature de champ moyen et obtenir des résultats
pour les systèmes à dimensions finies en étendant le petit paramètre 1/d ; cependant,
certains effets locaux trouvés dans les modèles de dimension finie ont souvent une origine
non perturbative [58, 57]. Le résultat le plus intéressant est la caractérisation du point
de jamming des sphères dures.

Dans le scénario de champ moyen, ceci est obtenu par une théorie d’échelle dérivant
de la construction de la rupture complète de la symétrie des répliques (fullRSB) [63, 200],
développée à l’origine pour les verres de spin (spin glass) [168]. Il est intéressant de noter
que les propriétés critiques du jamming sont indépendantes de la dimension spatiale et
peuvent être vérifiées dans le point de jamming des emballages de sphères de dimension
finie [64].

Au point de brouillage, un réseau de contacts entre les sphères est établi. Le nombre
de contacts est égal au nombre de degrés de liberté, saturant ainsi la limite de stabilité de
Maxwell [172] pour un système rigide. Cette propriété est appelée isostaticité et elle est
liée à la stabilité marginale [188] : la suppression d’un seul contact déstabilise le système.
Elle déclenche un mouvement collectif des particules qui n’est interrompu que lorsqu’un
nouveau contact est formé et que l’isostaticité est rétablie. Cette dynamique critique
d’ouverture/fermeture des contacts est contrôlée par deux exposants critiques dans la
distribution des forces de contact et des espaces entre les particules. La distribution des
courtes distances ρ(h) entre les sphères présente un comportement de loi de puissance
ρ(h) ∼ h−γ pour h → 0+. De même, la distribution des forces de contact présente un
pseudo-gap ρ(f) ∼ f θ pour les petites forces f → 0+. Les deux exposants critiques
γ ' 0, 41269... et θ ' 0, 42311... sont des nombres irrationnels non triviaux calculés dans
la théorie de l’échelle du champ moyen. Ils satisfont à la relation de stabilité marginale
γ = 1/(2+θ) obtenue par les arguments d’échelle dans l’espace réel [247]. Nous présentons
les propriétés des sphères molles athermiques au point de jamming et dans la phase
marginalement jammed [158].

Les sphères molles sont obtenues en relâchant les contraintes dures des sphères dures,
correspondant à hij ≥ 0, ∀(ij), où hij est la distance par paire entre la sphère i et la
sphère j, c’est-à-dire les distances entre leurs centres moins la somme de leurs rayons.
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En considérant l’hamiltonien H = ∑
(ij)

ν(hij), le potentiel par paire ν(h) de sphères dures

correspond à ν(h) = 0 si h ≥ 0, ν(h) =∞ si h < 0. Les sphères molles sont obtenues en
considérant, par exemple, ν(h) = 1

a
|h|aθ(−h), avec a > 1, qui associe une énergie positive

aux sphères qui se chevauchent. Pour une densité élevée, les sphères ne peuvent pas éviter
le chevauchement et les configurations d’énergie minimale des systèmes ont H > 0 : cela
correspond à la phase jammed. En diminuant la densité, l’énergie devient plus petite :
le régime de très faible énergie correspond au solide marginalement jammed et la limite
H → 0+ correspond à la limite de jamming, où le comportement critique de jamming
des sphères dures est récupéré. Les résultats de cette thèse portent sur la phase jammed
lorsque l’exposant de potentiel doux est pris pour a = 1. Cela correspond au potentiel
linéaire et sa dérivée ν ′(h) = −θ(−h) est discontinue pour h = 0, c’est-à-dire lorsque deux
sphères sont tangentes.

Dans le chapitre 2, nous présentons le modèle de perceptron en suivant les références
[105, 234]. Le modèle est défini par un vecteur X à dimension N sur l’hypersphère
|X |2 = N et un ensemble deM = αN vecteurs aléatoires ξµ à dimension N , µ = 1, ...,M ,
dont les entrées sont des variables aléatoires échantillonnées à partir d’une distribution
normale standard. Dans le langage des réseaux de neurones, X représente les poids neu-
ronaux tandis que ξµ sont les pattern à classer. À chaque vecteur aléatoire ξµ est associé
un gap hµ = 1√

N
ξµ ·X−σ, où σ est un paramètre de contrôle fini. Dans la limite ther-

modynamique N,M → ∞, avec α ∼ O(1), le problème de satisfaction des contraintes
continues (CCSP) est défini en demandant de trouver X de sorte que hµ ≥ 0, ∀µ. Si α
et σ sont suffisamment petits, ce problème est satisfaisant et la phase correspondante est
appelée SAT. Sinon, les contraintes ne peuvent pas être toutes satisfaites simultanément
avec un seul X et le problème est UNSAT. La ligne de transition de satisfaisabilité dans
le plan σ-α correspond à la ligne de "jamming", par analogie avec le cas des sphères. Le
modèle correspond à un champ moyen et le diagramme de phase peut être trouvé en util-
isant la méthode de réplique. Pour σ < 0, la ligne de transition de jamming est critique
et appartient à la même classe d’universalité du jamming des sphères. La phase UNSAT
correspond clairement à la phase jammed des sphères molles. Par conséquent, elle peut
être étudiée par un potentiel doux H = ∑

µ
ν(hµ), avec ν(h) = 1

a
|h|aθ(−h). Comme dans

le cas des sphères, la phase SAT est à énergie zéro, tandis que les minima de la phase
UNSAT ont une énergie positive. Les calculs du chapitre 2 sont effectués pour un poten-
tiel générique ν(h), donc ils sont utiles aussi pour le cas linéaire a = 1 qui fait l’objet du
reste des chapitres.
Nous montrons la solution d’échelle des équations fullRSB à la ligne de jamming critique,
qui est universelle et indépendante du potentiel doux. À la fin du chapitre, nous réca-
pitulons brièvement la phase UNSAT avec le potentiel harmonique, c’est-à-dire a = 2,
qui présente quelques caractéristiques communes avec la phase jammed des sphères har-
moniques douces de dimensions finies. Le cas harmonique a le même comportement quali-
tatif que les cas avec d’autres potentiels convexes a > 1. La physique change radicalement
lorsque a = 1 (ou, plus généralement, lorsque a ≤ 1).

Principaux résultats

Les résultats présentés dans les chapitres 3-4-5-6 sont publiés dans [108]-[107]-[109]-[215].
Dans le chapitre 3, nous étudions la phase UNSAT (jammed) du perceptron avec le
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potentiel linéaire. Nous définissons d’abord une version régularisée du modèle ça-veut-dire
Hε = ∑

µ
νε(hµ), avec νε(h) = |h|θ(−h − ε

2) + (h− ε2 )2

2ε I(− ε
2 < h < ε

2), où I est la fonction
indicatrice. Dans la limite ε→ 0, le modèle devient celui d’origine. Cette procédure nous
permet d’utiliser des techniques de gradient pour trouver les minima locaux du paysage
énergétique.

Nous montrons que dans la phase jammed, où l’énergie est positive, un grand nombre
de gaps deviennent marginaux, c’est-à-dire hc = 0 pour c ∈ C. Nous les appelons contacts,
ce qui les distingue des overlaps pour lesquels ho < 0 pour o ∈ O. Seuls les overlaps
contribuent à l’énergie du système, tandis que les contacts sont cruciaux pour stabiliser
les minima du système. Ils fournissent en effet un ensemble de forces de contact, fc
pour c ∈ C, qui sont contenus dans l’intervalle fc ∈ (0, 1). Leur présence est nécessaire
pour obtenir la stabilité mécanique des minima énergétiques. La cardinalité de l’ensemble
des contacts C = |C| est particulièrement importante. En effet, on définit un indice
d’isostaticité c = C/N qui est égal à un si les minima du modèle sont isostatiques et
c < 1 si les minima sont hypostatiques. Nous montrons que dans une partie de la phase
UNSAT, le modèle est isostatique, tandis que dans l’autre, il est hypostatique. D’un point
de vue théorique, ces deux phases correspondent respectivement à une phase fullRSB et à
une phase réplique symétrique (RS). Ceci est contenu dans le fait que le réplicon λreplicon,
c’est-à-dire la plus petite valeur propre de la Hessienne de la théorie de la réplique, satisfait
λreplicon ∝ 1 − c. La phase isostatique est marginalement stable. La distribution des
petits gaps est caractérisée par le même exposant γ que celui trouvé dans la transition de
jamming. Il est intéressant de noter qu’il caractérise également la distribution des petits
overlaps, donnant ρ(h) ∼ |h|−γ pour h → 0±. De même, l’exposant θ de la distribution
des petites forces au jamming se retrouve dans la distribution des forces de contact.
Dans ce cas, en plus des petites forces, l’exposant caractérise également les forces de
contact proches de un, c’est-à-dire la limite supérieure du domaine de force (0, 1), ce
qui donne ρ(f) ∼ f θ pour f → 0+ et ρ(f) ∼ (1 − f)θ pour f → 1−. Cette forme de
criticité étendue est due à la stabilité marginale et au fait que les mécanismes d’excitation
(rupture de contacts) et de relaxation (formation de contacts) sont étendus à la possibilité
d’avoir des gaps négatifs hµ < 0. La stabilité marginale et l’isostaticité du système sont
liées à la géométrie sphérique du problème, donnée par |X |2 = N . Ceci est révélé par
le multiplicateur de Lagrange η qui impose cette condition sphérique : dans la phase
isostatique η < 0 et la géométrie effective est non convexe. En raison de la nature du
potentiel linéaire, la stabilité (marginale) n’est atteinte que lorsque tous les degrés de
liberté sont contraints par un contact. Dans la phase hypostatique, au contraire, η > 0 et
la géométrie du problème est convexe. Cet argument est mis en évidence par l’utilisation
d’une Hessienne rééchelonnée défini par le potentiel régularisé.
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Figure 1: Diagramme de phase du perceptron avec potentiel linéaire. La partie col-
orée représente la phase jammed. Au-dessus des lignes pointillés, le système est vitreux
(fullRSB). La partie violette est la phase isostatique, non convexe et critique. La partie
rouge est hypostatique, convexe et non critique.
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Figure 2: Distributions des gaps (à gauche) et des forces de contact (à droite) dans la
phase critique (α = 2, σ = 0.4, energy 1.02). La distribution des gaps a un comportement
de loi de puissance pour les petits gaps, ρ(h) ∼ |h|−γ pour h → 0±. La distribution des
forces a deux pseudo-gap pour les petites forces et les forces proches de l’unité, ρ(f) ∼ f θ

pour f → 0+ et ρ(f) ∼ (1− f)θ pour f → 1−.

La phase isostatique est critique et une théorie d’échelle est élaborée à partir des
équations fullRSB. Elle résume les résultats observés dans les simulations numériques et
établit le lien avec la classe d’universalité de jamming grâce à une relation contenue dans
les équations fullRSB. La phénoménologie exposée dans le chapitre 3 est le fil conducteur
pour le reste des chapitres.

Dans le chapitre 4, nous montrons par des simulations numériques que les minima
énergétiques de la phase jammed des sphères molles à potentiel linéaire sont critiques de
la même manière que dans leur homologue du perceptron. De manière remarquable, ils
constituent une phase critique en dimensions deux et trois, ce qui est particulièrement
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Figure 3: Une configuration stable des sphères dans la phase jammed. Les lignes
rouges/noires correspondent aux contacts/chevauchements entre les sphères. Leur épais-
seur est proportionnelle à l’intensité de la force correspondante.

intéressant en physique statistique. Nous mesurons les exposants critiques montrant le
lien avec la transition de jamming.

De la même manière, la criticité du brouillage dans les basses dimensions est dévoilée
en séparant correctement les effets locaux dans les statistiques. Il est intéressant de noter
qu’en allant à des densités plus élevées dans la phase jammed avec le potentiel linéaire,
les effets locaux disparaissent. Nous caractérisons également les réseaux de sphères qui se
touchent et se chevauchent.

Comme dans le cas du perceptron, les overlaps contribuent à l’énergie, tandis que
les contacts sont liés à la stabilité du système. Comme lors de la transition de jam-
ming, il s’avère que les fluctuations de la connectivité locale dans le réseau de contacts
s’échelonnent plus lentement que la taille du système. C’est la raison pour laquelle, le
réseau de contact est “hyperuniforme” et ça montre qu’il existe des corrélations à longue
portée. Nous fournissons la définition d’une matrice hessienne rééchelonnée et nous étu-
dions son spectre. Nous montrons la connexion avec le point de jamming et avec le
perceptron également dans ce cas.

Dans le chapitre 5, nous définissons un algorithme de compression pour la phase cri-
tique UNSAT du perceptron linéaire. Il nous permet d’étudier les avalanches qui car-
actérisent la réponse du système à une compression infinitésimale, de manière cohérente
avec ce qui est attendu dans une phase marginalement stable.

Lorsqu’une configuration isostatique est déstabilisée par une légère augmentation de
la pression, certaines forces de contact sortent de leur domaine de définition (0, 1). Le
système commence à se déplacer selon les modes doux jusqu’à ce que de nouveaux con-
tacts soient formés et qu’une configuration isostatique (marginalement) stable soit trou-
vée. Nous développons des arguments d’échelle pour diverses quantités physiques et nous
montrons que les statistiques d’avalanche ont un comportement de loi de puissance avec
des exposants critiques donnés par la théorie fullRSB [110]. Nous utilisons ce protocole
de compression pour étudier numériquement la limite de la pression nulle, c’est-à-dire la
limite de jamming, en montrant que le potentiel linéaire a un comportement d’échelle
différent des autres potentiels doux convexes.

Contrairement aux cas convexes a > 1, la pression a un comportement logarithmique
avec la distance de jamming, correspondant à une correction logarithmique au comporte-
ment linéaire de l’énergie. Le nombre de overlaps a une tendance de puissance avec un
exposant ν ∼ 0.83, différent de la valeur 0.5 habituellement obtenue pour les sphères

vi



10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

1

10−1 1 101 102 103 104 105

ρ
(N

ω
δσ

)

Nω δσ

N = 1024
N = 512
N = 256
N = 128
N = 64
∝ δσ̂−τ

Figure 4: Distribution de la taille des avalanches pour des variations de pression infinitési-
males. L’échelle de taille finie est caractérisée par un exposant ω ' 2.19 et la distribution
de la loi de puissance a un exposant τ ' 1.41. Les exposants exacts peuvent être calculés
à partir de la théorie.

marginalement jammed indépendamment de la dimensionnalité et du potentiel doux con-
vexe.

Dans le chapitre 6, nous étudions une simple variation du système précédent, qui est
un potentiel linéaire par parties. Nous montrons que tous ses points non différentiables
donnent lieu à des ensembles d’excitations non linéaires, toujours caractérisées par les
mêmes exposants critiques.

La phase jammed du potentiel linéaire avait été étudiée dans les années 1990 [164], mais
ses propriétés critiques n’avaient pas été observées. Cette thèse caractérise une nouvelle
phase critique dans des modèles de champ moyen et dans les systèmes à dimensions
finies. Cela fournit des modèles intéressants de criticité auto-organisée et une nouvelle
façon d’étudier l’universalité du jamming.
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Introduction

Disordered and glassy systems are among the most interesting subjects in condensed mat-
ter and statistical physics. Their energy landscape is complex, characterized by many local
minima: when the temperature is low enough, the system gets trapped in one of them. A
related zero-temperature phenomenon is the jamming transition. This is the point where
athermal particles with a repulsive short-range interaction, upon increasing the density,
start to feel each other’s presence. For example, we can consider the packing of hard
spheres in a given volume: at a critical density the hard spheres are maximally packed
with a network of contacts established between them; this corresponds to the jamming
point.
In recent years, glassy physics and the jamming transition have found a common frame-
work in the solution of the hard sphere model in infinite spatial dimensions, corresponding
to a mean-field theory. This has allowed the analytical characterization of the jamming
critical behavior, which matches with real-space scaling arguments based on marginal
stability.
A remarkable feature of jamming is its super-universal criticality. In fact, the mean-field
predictions of critical exponents have been confirmed in numerical simulations of finite
dimensional spheres. More generally, jamming can be seen as the satisfiability thresh-
old of a constraint satisfaction problem with continuous variables (CCSP). Consequently,
jamming features have been found also in CCSPs like the perceptron, a model introduced
as a binary classifier in neural networks that can be solved with mean-field techniques.
In this thesis, we show the emergence of jamming criticality in a new kind of jammed
phase. In fact, the constraints of the CCSP can be relaxed, allowing them to be violated
by paying an energy cost. In sphere models, this corresponds to soft spheres interacting
with a pairwise soft potential being an increasing function of the amount of overlap be-
tween them.
We study the UNSAT/jammed phase, both in the perceptron and in finite-dimensional
soft spheres, when the soft potential is chosen to be linear. The peculiarity of this model is
that the first derivative of the potential energy is piece-wise constant, with a discontinuity
at the touching point between spheres. This fact has non-trivial physical consequences:
minima of the energy landscape are corner points characterized by marginally satisfied
constraints, i.e. touching spheres, even deeply in the jammed/UNSAT phase. A sim-
ple gradient-descent-like dynamics ends in these singular minima. We discover that they
are marginally stable and critical, with a larger set of critical exponents than the jam-
ming transition. Nevertheless, the values of the critical exponents are the same as those
of the jamming universality, independent of dimensionality. They characterize the exci-
tation/relaxation mechanisms which are non-linear and analogous to those of marginal
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sphere packings. Therefore, the jammed phase is self-organized critical and marginally
stable. In this phase, the response of the system to perturbations is characterized by
scale-free avalanches.
Discovering a critical phase in finite dimensions is interesting in itself from the statis-
tical physics point of view. Furthermore, it provides a new setting to investigate the
super-universal features of jamming and understand its origins.

Main results
The results presented in this thesis are published in:

• [108] Silvio Franz, Antonio Sclocchi, and Pierfrancesco Urbani. “Critical Jammed
Phase of the Linear Perceptron”. In: Phys. Rev. Lett. 123.11 (2019), p. 115702.
doi: 10.1103/PhysRevLett.123.115702.

• [107] Silvio Franz, Antonio Sclocchi, and Pierfrancesco Urbani. “Critical energy
landscape of linear soft spheres”. In: SciPost Phys. 9 (1 2020), p. 12. doi:
10.21468/SciPostPhys.9.1.012. url: https://scipost.org/10.21468/SciPostPhys.9. 1.012.

• [109] Silvio Franz, Antonio Sclocchi, and Pierfrancesco Urbani. “Surfing on minima
of isostatic landscapes: avalanches and unjamming transition”. In: Journal of Statis-
tical Mechanics: Theory and Experiment 2021.2 (Feb. 2021), p. 023208. doi: 10.
1088/1742-5468/abdc16. url: https://doi.org/10.1088/1742-5468/abdc16.

• [215] Antonio Sclocchi and Pierfrancesco Urbani. “Proliferation of non-linear ex-
citations in the piecewise-linear perceptron”. In: SciPost Phys. 10 (1 2021), p.
13. doi: 10.21468/SciPostPhys.10.1.013. url: https://scipost.org/10.21468/ Sci-
PostPhys.10.1.013.

In [108], we study the jammed phase of the perceptron with linear potential. We first
define a regularized version of the model in order to use gradient-based techniques to find
the local minima of the energy landscape. We show that in one section of the jammed
phase the minima are isostatic and characterized by the same critical exponents as those
of the jamming transition. This is related to the fact that the phase is marginally stable.
We also use replica theory to solve the model and we show that the critical jammed phase
is described by a full Replica Symmetry Breaking construction (fullRSB). We develop a
scaling theory in the critical phase and show that it relates the critical exponents to the
jamming universality.
In [107], we show by numerical simulations that the energy minima of the jammed phase
of soft spheres with linear potential are critical in the same way as in their perceptron
counterpart. Remarkably, they constitute a critical phase in dimensions two and three,
which is of particular interest in statistical physics. We measure the critical exponents
showing the connection with the jamming transition. We also characterize the networks
of touching/overlapping spheres, showing that the contact network is hyperuniform and
has system-spanning correlations. We provide the definition of a rescaled Hessian matrix
and we study its spectrum. We show the connection with the jamming point also in this
case.
In [109], we define a compression algorithm for the critical UNSAT phase of the linear
perceptron. It allows us to study the avalanches that characterize the response of the sys-
tem to an infinitesimal compression, in accordance with what is expected in a marginally

2



CONTENTS

stable phase. We develop scaling arguments for various physical quantities and we show
that the avalanche statistics has a power law behavior with critical exponents given by
the fullRSB theory. We use this compression protocol to numerically study the limit of
zero pressure, i.e. the unjamming limit, showing that the linear potential has different
scalings from those provided by the other convex soft potentials.
In [215], we study a simple variation of the previous system, which is a piece-wise linear
potential. We show that all its non-differentiable points give rise to sets of non-linear
excitations, always characterized by the same critical exponents.

The content of [108]-[107]-[109]-[215] is reproduced in the chapters 3-4-5-6 of this thesis.
Additional information is provided with respect to the articles, in particular a detailed
analysis of the replica theory, a wider discussion of the singular Hessian and the scaling
arguments relating the critical exponents.
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Chapter 1

Introduction to glasses and the jamming transition

Glasses, and the adjective "glassy", refer to a whole class of systems characterized by
sluggish dynamics in which the degrees of freedom get stuck in a disordered state. They
are ubiquitous in the natural world and characterize many different materials, e.g. plas-
tics, molecular glasses, colloidal gels, foams, electron glasses, active glassy matter, spin
glasses, granular materials, to name a few. Even if they have a long and well-established
history on the experimental point of view, their theoretical understanding has always been
challenging and controversial, with no complete microscopic theory from first principles
being achieved. In the 1995, P. W. Anderson wrote: “The deepest and most interesting
unsolved problem in solid state theory is probably the theory of the nature of glass and
the glass transition.”[9] Thirteen years later, stating the lack of theoretical consensus, the
experimental physicist David A. Weitz joked on the New York Times: “There are more
theories of the glass transition than there are theorists who propose them.”[53] The reason
why amorphous materials are so much more difficult to describe than crystalline solids is
that the latter have constituents arranged on perfectly symmetric lattices: this underlying
symmetry structure plus small perturbations around it, such as thermal vibrations (i.e.
phonons) and defects, made them the prototypical model of solid state theory.[16] Amor-
phous materials, instead, do not have any structural symmetry and can be qualified as
"frozen liquids". The glass transition is not even a proper bona fide thermodynamic phase
transition and the glass transition temperature Tg is operationally defined as the tem-
perature at which the relaxation time of the system is much larger than the observation
time. Therefore, a glassy state is inherently an out-of-equilibrium one since it has larger
free-energy than the ground state, and dynamics plays a crucial role in its definition.
The glass transition is a fascinating and intricate subject and a considerable number of
reviews have been written about it [11, 118, 123, 78, 12, 228, 145, 84, 32, 86, 156, 144, 51,
27]. This work, however, focuses on the glassy physics at zero temperature where colloids
and grains at high density undergo a related transition: the jamming transition [158].
The jamming point is a transition to an amorphous solid at high density, happening at
the jamming transition density φJ , and it is commonly studied in athermal systems like
granular media, emulsions and foams. Increasing density in a colloidal system and get-
ting closer to the jamming transition, many features of the glassy phenomenology can
be observed, like an increase of viscosity and a history dependent jamming transition
density φJ . Different from molecular glasses, the jamming point is a true critical point
characterized by scaling laws and infinite lengthscales, with marginally jammed solids ex-
hibiting an anomalous elastic response due to the presence of soft (zero or low-frequency)
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vibrational modes. Due to these analogies, one may be tempted to ask if the glass and
jamming transitions are different facets of the same jammed solid phase, which was done
by A. J. Liu and S. R. Nagel in 1998 [159] by proposing a unifying jamming phase dia-
gram. From the current understanding, we can say that the jamming transition has more
peculiar properties than a generic glass transition. In infinite dimensional hard spheres,
for example, the jamming transition occurs when the system is already in a marginally
stable glassy phase [64].

The focus of this work is the study of the zero temperature jammed phase in two
specific models: soft spheres in finite dimensions and their mean-field counterpart, the
perceptron. We show that the jammed phase constitutes a new critical phase when we
choose the short-range repulsive potential to be a linear function of the properly defined
distances (gaps). Critical means that it is characterized by critical exponents, scaling
laws, marginal stability, infinite correlation length and scale free avalanches when slightly
perturbed. Both theoretically and by numerical simulations, we show that this critical
phase is deeply connected to the jamming point.

In this introductory chapter, we briefly present some highlights of the physics of glasses.
Therefore we introduce a simple structural glass model, i.e. hard spheres, whose theory
has been solved in the infinite dimensional limit (i.e. mean-field). This exact solution
allows the characterization of the jamming point of hard spheres, which presents critical
properties that are independent of the space dimensionality and can be verified in the
jamming of finite dimensional sphere packings [64]. We present the properties of athermal
soft spheres at jamming and in the marginally jammed phase. We conclude the chapter
by describing the main physical picture contained in our work about the linear potential
and we give an outlook of the organization of the thesis.

1.1 Glasses and the glass transition problem
The glass transition corresponds to the passage of a system from a liquid phase to an
amorphous solid. By "liquid" and "solid" in this context we refer to the ability of the
system to sustain a shear stress when it is subjected to a shear strain, which gives a quan-
titative prescription to the intuition that a liquid flows, while a solid does not. This means
that at equilibrium, a fluid does not have a shear modulus while a solid does, allowing a
harmonic description. This is true at thermodynamic equilibrium. However, considering
the dynamical relaxation of a strain by a liquid, this is characterized by a combination
of processes with their relaxation time scales. In a supercooled liquid, it happens that
the dominant relaxation process becomes slower and slower, at least exponentially for de-
creasing temperature, until the relaxation time τR is much larger than the experimental
time scale τexp: it means that the system "looks" like a solid, since it can sustain a shear
stress on the experimental time, but it is an out-of-equilibrium system.
Let’s consider a molecular liquid whose temperature T is decreased with a certain cooling
rate. If this is "fast enough", it is possible to avoid crystallization at the melting temper-
ature Tm: this is in fact a first order transition that happens by nucleation. Therefore it
requires a surface tension (i.e. a positive free energy cost) to be overcome, which gives a
time scale τN to the process. For T < Tm, in the regime τR << τexp << τN , we have a su-
percooled liquid whose properties can be seen as a continuation of those of the equilibrium
liquid existing for T > Tm. The supercooled liquid is actually a metastable state since
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Figure 1.1: Pictorial view of the behavior of the entropy as a function of temperature. For
high temperature the system is liquid. The relaxation times τ are indicated in seconds.
At the melting point Tm crystallization can be avoided and the system eventually enters
in the supercooled liquid phase. At the mode-coupling temperature Tc, the relaxation
is dominated by activated dynamics and the relaxation time grows exponentially for de-
creasing temperature. At the (protocol dependent) glass transition Tg, the relaxation time
of the supercooled liquid is longer than the experimental one and the system is frozen in
a glass state. The point where the extrapolated entropy of the supercooled liquid meets
the one of the crystal is called Kauzmann point TK . Reprinted from [51].

the crystal has a lower free energy. It shows a sharp increase, at least exponential, of the
relaxation time τR, in a way that has common features for very different glassy systems,
suggesting the presence of some common origin for these phenomena. When the relaxation
time exceeds the experimental time, we have reached the glass transition temperature Tg
and the system is out of equilibrium. Therefore, Tg depends on the experimental protocol
1 and is not a thermodynamic transition.

For a Maxwell fluid 2, we can write its instantaneous shear modulus as G(t) = G∞e
− t
τR

and relate the (dynamic) viscosity of the fluid η to the relaxation time τR using the infinite
frequency shear modulus G∞:

η = G∞τR (1.1)

Therefore, the glass transition is often conventionally defined [151] as the temperature Tg
for which

η(Tg) ∼ 1012 Pa · s (1.2)

that, using standard values G∞ ∼ 109 − 1010 Pa, gives τR(Tg) ∼ 102 − 103 s. 3

1By the way, due to the exponential dependence of τR from T , the change of Tg with respect to the
cooling rate is only logarithmic, corresponding to the Bartenev-Ritland equation.[19, 206]

2A Maxwell material is a viscoelastic material having the properties both of elasticity and viscosity.
It is represented by a purely viscous damper and a purely elastic spring connected in series.[173, 68]

3For comparison, the viscosity of water at T = 25◦C is 8.9 10−4 Pa·s, and varies between 2.8 10−4 Pa·s
at T = 100◦C and 1.8 10−3 Pa · s at T = 0◦C.
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Figure 1.2: Angell plot: behavior of the viscosity/relaxation time for several glass formers
with respect to the inverse temperature (or w.r.t. packing fraction φ for hard-spheres).
OTP=orthoterpheny, KA=Kob-Andersen, Wahn=Wahnström binary Lennard-Jones, HS
= hard spheres. Reprinted from [211].

This allows to plot the logarithmic viscosities/relaxation times as function of Tg
T

for
different glass formers that therefore meet at Tg

T
= 1: it is called the Angell plot [13].

Straight lines in the Angell plot correspond to Arrhenius behavior and the correspond-
ing materials are indicated as strong glass formers (e.g. silica SiO2):

τR = τ0 e
E

kBT (1.3)

where kB is the Boltzmann constant and E is the energy of the barriers to be crossed in
order to relax the system. The glass formers defined fragile are instead characterized by
a super-Arrhenius behavior usually fitted by the Vogel-Fulcher-Tamman law (VFT):

τR = τ0 e
KT0
T−T0 (1.4)

where K indicates the index of fragility. The VFT law and the physical meaning of
the temperature T0 are object of debate[127, 92] and other good fitting laws have been
proposed, like the Bässler law [20]

τR = τ0e
K (T∗T )2

(1.5)

One main feature of glasses is that the exponential increase in relaxation time has no
signature in simple static correlation functions like the structure factor

S(q) = 1
N
〈ρqρ−q〉 (1.6)
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Figure 1.3: Intermediate scattering function at different temperatures in a glass former
model (the Wahnström model). Reprinted from [211].

where the average 〈...〉 includes averaging over angles and the Fourier component is

ρq =
N∑
j=1

eiq·xj (1.7)

, where xj is the d-dimensional position of particle j. Signals of the glass transition appear
in dynamic correlations like the intermediate scattering function

F (q, t) = 1
N
〈ρq(t)ρ−q(0)〉 (1.8)

As pictured in Fig. 1.3, the dynamical correlation functions near the glass transition
show a two-step relaxation process: a fast one, called β relaxation, and a slow one, called α
relaxation with time-scale τα. Between them there exists a plateau whose time extension
becomes larger and larger approaching the glass transition. At low temperature, we have
a clear separation of time-scales, with τβ weekly dependent on temperature and τα heavily
dependent on temperature, so that τα dominates the total relaxation time τR ∼ τα. This
behavior is mirrored by the mean-square displacement (MSD) of a particle

〈r(t)2〉 = 1
N

N∑
i=1
〈|xi(t)− xi(0)|2〉 (1.9)

When approaching the glass transition, 〈r(t)2〉 has three regimes: a ballistic one for
short times, a localized one for intermediate times and a diffusive one for long times. These
have a clear correspondence with the behavior of the dynamical correlation functions. The
emergence of the plateau can therefore be pictured as due to the vibrations of the particles
inside some "cages", with τα being the time scale needed to escape these cages and restore
ergodicity. Let’s notice that this behavior is observed also in mean field models, where
the notion of trapped particles cannot be applied: a better picture is given by thinking
of "cages" in the phase space.
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Figure 1.4: Mean-square displacement of particles in time for a liquid of Lennard-Jones
particles approaching the glass transition. Reprinted from [27].

The relaxation of supercooled liquids has several features very different from ordinary
liquids, in particular the break-down of the Stokes-Einstein relation [230, 221] and the
emergence of dynamical heterogeneity [242, 137, 88, 26, 28]. Dynamic heterogeneity
refers to the fact that structural relaxation does not happen uniformly in the material,
but instead particles rearrange collectively in clusters while the rest of the system remains
temporarily frozen. These domains have non-trivial spatio-temporal fluctuations encoded
in the dynamic susceptibility χ4(t) [97, 102, 27], that can hint to a growing dynamical
lengthscale [183].

Describing the α-relaxation process from first-principles is very challenging, since it
is controlled by activated dynamics, meaning rearrangements in real space that involve
crossing free-energy barriers whose time-scales are given by the Arrhenius formula. The
discussion about what happens near the glass transition in the activated dynamics phase
is actually very intense. There exist different approaches and many references that discuss
them [211, 27, 161, 150, 213, 229]. One of the main controversies is the role played by
thermodynamics.

One perspective is taken by the dynamical facilitation approach [52] and kinetically
constrained models (KCM) [207, 114]. In these models, the interactions between the de-
grees of freedom are trivial and so the thermodynamics is trivial. On the other hand, the
dynamical rules to change a variable are constrained by its local neighborhood. These
models are simple enough to be studied analytically and numerically and they consistently
show several features of glassy dynamics, like cooperativity of the relaxation with super-
Arrhenius relaxation time and the emergence of dynamical heterogeneities in a space-time
representation. Their limitation is a lack of explanation of how these dynamical models
should emerge from real atomistic liquids [115] and their impossibility to describe ther-
modynamic features [35].
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A different perspective looks at thermodynamics as playing a major role in defining
the dynamics. This idea is grounded on the fact that it is correct in mean-field models,
but its difficulty consists in dealing with activated processes in finite-dimensional models.
These are in fact non-perturbative effects whose presence could jeopardize the mean-field
scenario.

In this work, we study glassy models at zero temperature and we do not enter into the
discussion of thermally activated processes in real space. Since we make use of mean-field
theory, we mention two frameworks that are instrumental for our discussion.

Mode Coupling Theory

Mode Coupling Theory (MCT) [23, 119, 131] is a dynamical theory built on the hypoth-
esis that the structural properties of the glass former are similar to those of the high
temperature liquid and that there are two separated time scales, the microscopic (fast)
relaxation and a slower one. Therefore it obtains an equation for the time evolution of
the dynamical correlation functions which depend on a memory kernel (it is a generalized
Langevin equation). The difficulty comes from the fact that the memory kernel depends
on higher orders correlations. The standard approach consists in approximating it as a
function of two-point correlations: this gives self-consistent integro-differential equations.
The input used in this theory is only the static structure factor, therefore it is considered
to be close to a first-principles approach.
Solving MCT equations gives a divergent relaxation time for a temperature TMCT . It is
not due to local effects, since it involves the divergence of a length scale characterizing the
spatial correlations in the dynamics [102, 34]. However, the quantitative predictions are
not accurate for real glass formers, since in general TMCT > Tg and the relaxation time
diverges as a power-law. It turns out that MCT is a "mean-field like" approximation that
can predict the β-relaxation process but not the activated dynamics and its dynamical
heterogeneities. In finite dimensions, this singularity is modified both by the fact that its
upper critical dimension is du = 8 [96] and by the presence of activated processes that
destroy it altogether.
More recently, a Generalized Mode Coupling Theory (GMCT) [226, 132] has tried to
include higher order correlations into the framework: it does improve some quantitative
features, like giving a smaller TMCT , and it has potential to give also better qualitative
predictions, such as a relaxation time with (super-)Arrhenius behavior [131, 174, 133].

Random First Order Transition

The Random First Order Transition (RFOT) [142, 143, 141, 161, 33] is a theory born
from the realization that some mean-field models with quenched disorder, like the random
p-spin and Potts-glass models with infinite range interactions, have dynamical equations
of the same kind as Mode Coupling Theory. In these mean-field models, there exists a
dynamical transition temperature Td corresponding to ergodicity breaking: for T < Td
the dynamics gets trapped in metastable states whose lifetime is infinite, because the
energy barriers separating them are infinite in the mean-field setting. Each one of these
states is a "glass". Their number is exponential in the system size and they dominate the
thermodynamic measure. Therefore it is possible to define the configurational entropy Σ
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as

Σ(E) = lim
N→∞

1
N

logN (E) (1.10)

where N (E) is the number of glassy states at energy E. For decreasing temperature
(i.e. decreasing energy), the number of glassy states diminishes until Σ vanishes at a
temperature TK , called Kauzmann temperature [136]. In supercooled liquids, the Kauz-
mann temperature corresponds to the point where the extrapolation of the entropy of the
supercooled liquid below Tg meets with the entropy of the crystal (whose formation was
avoided).
Contrary to the dynamical transition, the Kauzmann point is a true thermodynamic phase
transition to an ideal glass phase. It is a second order transition, since no latent heat is
involved, but it is accompanied by a discontinuous jump of the order parameter, corre-
sponding to the correlation between two typical configurations.
In real supercooled liquids, the dynamical transition Td (corresponding to the Mode Cou-
pling one) is "avoided" and becomes a cross-over, since activated dynamics becomes the
dominant relaxation mechanism and restores ergodicity, even if with longer and longer
time-scales as temperature decreases. Therefore, in the real-space formulation of RFOT,
these non-perturbative processes are added to the theory by a "mosaic state" scenario
characterized by a mosaic length diverging at TK [141, 130, 33, 94, 51]. The last stage of
the theory for glass-forming liquids is made by some phenomenological modeling to take
into account other experimental phenomena [251, 252, 161].
The validity of the complex landscape scenario in real supercooled liquids is debatable,
but it is correct in mean-field models [103, 49, 202]. We use the RFOT framework to
understand the mean-field version of the simplest glass former: hard spheres in infinite
dimensions.

1.2 Simple structural glass model: dense hard spheres
Let’s consider N hard spheres of diameter σ in d dimensions in a volume V . We indicate
their center positions at time t by xi(t), with i = 1, ..., N . The pairwise distances between
spheres are given by hij = |xi−xj | − σ and the corresponding pair-wise hard sphere
potential is simply

ν(hij) =
0 hij > 0
∞ hij < 0

(1.11)

Calling ρ = N
V

and given the single sphere volume vσ, the packing fraction is simply
φ = ρvσ. In this problem the temperature is just a rescaling factor for the energy, so
we make use of the reduced pressure p(φ) = P

ρT
, where P is the actual pressure. We

can understand the glassy phenomenology by using the density φ as control parameter,
instead of the temperature as it is done in supercooled liquids.
At low density, the system is in a liquid phase with a corresponding equilibrium pressure
p(φ). Increasing the density adiabatically, we get an increasing pressure up to φf : at this
point the system undergoes a first-order phase transition to a crystalline state and the
density jumps to φm. This is true for dimensions d = 2 and d = 3 where the densest
packings are known to be the hexagonal lattice and the face centered cubic (FCC) lattice,
respectively; it is true also for those dimensions where the densest packing is known to be
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Figure 1.5: Dynamical Mean Square Displacement as a function of time. For low packing
fractions a), the liquid phase is characterized by a ballistic regime at short time followed
by a diffusive one. For higher packing fractions b), the particles of the supercooled liquid
tend to stay trapped in cages for longer times, therefore ∆(t) develops a plateau after the
ballistic regime. The length of the plateau increases exponentially for increasing packing
fraction. At the glass transition, the length of the plateau is infinite and ergodicity is
broken (with respect to the experimental time-scale).

crystalline [239, 70, 73], even if the crystallization process is more difficult for increasing
dimensionality [224, 176, 54, 60]. Once the crystal is formed, it is possible to compress
it further to reduce the thermal vibrations and block the system into the perfect crystal,
with diverging pressure.
If instead of compressing quasi-statically we do it with a finite compression rate, we
can avoid the crystallization and enter in the "supercooled" metastable phase [258, 224,
177, 178]. As a dynamical order parameter we can use the dynamical Mean Square
Displacement (MSD)

∆(t) = 1
N

N∑
i=1
|xi(t)− xi(0)|2 (1.12)

In the liquid phase, the spheres move in a ballistic way for short times, therefore ∆(t) ∼
t2, and in a diffusive manner after they start undergoing collisions, giving ∆(t) ∼ t.
In the supercooled liquid phase, the ballistic and diffusive regime are separated by a
plateau whose length increases for increasing density, due to the fact that the particles
stay trapped in "cages" for longer times before managing to get uncorrelated from their
initial positions. The time to escape the cages is therefore the α-relaxation time and it
increases exponentially upon compression.

Compressing further, the relaxation time eventually becomes larger than the experi-
mental time, the system stays out-of-equilibrium and the glass transition φg is met. Also
in this case, longer experiments, i.e. slower compression protocols, modify the glass tran-
sition point and push φg to higher values. The system gets frozen in an amorphous
solid, a hard sphere glass, and it is not able to relax to the metastable supercooled liq-
uid. Experiments with colloidal hard spheres presenting all the glassy phenomenology
(i.e. super-Arrhenius relaxation time, two-step relaxation of the dynamical correlation,
stretched exponential for the α-process and increasing dynamical heterogeneities) can be

13



CHAPTER 1. INTRODUCTION TO GLASSES AND THE JAMMING TRANSITION

Figure 1.6: Pictorial view of the phase diagram of hard spheres under compression. The
black line corresponds to the thermodynamic equilibrium one, which has a first order
phase transition from the liquid to the lattice packing, where the density jumps from
ϕf to ϕm. The close packing of the crystalline structure corresponds to ϕc, the highest
possible density. The red line corresponds to the supercooled liquid. According to the
compression rate, a glass transition is met at different ϕg: for a smaller compression rate,
an higher ϕg is obtained. Compressing a glass, the infinite pressure point corresponds to
the jamming point, with packing fraction ϕJ dependent on ϕg. Reprinted from [234].

found in Ref. [42, 69].
If we compress a glass further, the system does not follow any longer the equation of state
of the supercooled liquid and the pressure increases sharply and diverges at a density φJ :
as φg, it depends on the compression rate.
The protocol-dependent φJ is the jamming point and its critical properties do not depend
on the protocol [135, 147, 66, 165, 192, 259].

1.2.1 Infinite dimensional hard spheres
The theory of a liquid of hard spheres has been solved in infinite-dimensional space d→∞
[201, 202, 149, 148, 63, 62, 205, 204, 64, 200]. The approach is inspired by the fact that,
as for many strongly coupled systems, amorphous materials lack a natural reference for
building a perturbative expansion. Therefore, the idea is to solve the problem in d→∞
and use 1

d
as a small parameter to approximate the behavior of finite dimensional systems.

This approach has little to say about features that strongly depend on the dimensionality,
like singularly dense packings due to lattice structures in d = 2, 3, 8, 24, but it highlights
features of amorphous materials that are weakly dependent, or even independent, of
dimensionality [60, 55, 54, 178, 87, 224, 216].
In infinite dimensions, the problem can be solved using techniques developed for mean-
field spin glasses. A comprehensive presentation of the theory can be found in the book
[200]. Here we discuss the results.
First of all, we have to rescale pressure and packing fraction as p̂ = p/d and φ̂ = 2d φ

d

to have finite quantities in the d → ∞ limit. Starting from the liquid phase at low
density, it is possible to follow the equilibrium liquid line upon compression (we think of
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Figure 1.7: Pictorial view of the dynamical transition for hard spheres. Reprinted from
[64].

the compression obtained by increasing the spheres’ diameters). In infinite dimensions, it
is not known if a crystal structure appears.
The infinite dimensional dynamics gives the behavior of the dynamical Mean Square
Displacement (MSD) for increasing density [163]. It shows the appearance of a two-step
relaxation with τα diverging as a power law at the density φ̂d

τα ∼ |φ̂− φ̂d|−γMCT (1.13)

where the exponent γMCT can be computed analytically [148]. While in finite dimensions
φ̂d is just a cross-over, in infinite dimensions it is a true dynamical transition: ergodicity is
broken, the landscape gets split in an exponentially large number of glassy states separated
by infinite energy barriers and the system gets trapped in one of them. This is revealed
by the plateau of the MSD that for long times satisfies

lim
t→∞

∆(t) = ∆EA <∞ (1.14)

This transition corresponds to the Mode Coupling (MCT) one discussed for general glass
formers [119]. As for usual critical points, the dynamical transition can be detected by
the divergence of the dynamical susceptibility χ4(t):

χ4(t) = N
(
∆2(t)−∆(t)2

)
(1.15)

where the average · · · is over the thermal history of the system and the initial configu-
rations. In the glass phase, χ4 goes to a constant for long times lim

t→∞
χ4(t) = χ and it

diverges as χ ∼ |φ̂ − φ̂d|−
1
2 when approaching the transition from above φ̂ → φ̂+

d . When
approaching the transition from the liquid phase φ̂ → φ̂−d , χ4(t) has peak at t ∼ τα sim-
ilarly diverging [102, 82, 25, 24]. Associated with χ4 there is a dynamical correlation
length diverging at the transition as ξd ∼ |φ̂− φ̂d|−

1
4 [96, 98, 99].
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Figure 1.8: Left panel. Behavior of the configurational entropy. The glassy states appear
at the dynamical transition φ̂d and vanish at the Kauzmann point φ̂K . Right panel. Phase
diagram of hard spheres in infinite dimensions. The black line is the equilibrium liquid
line; the blue line represents the Gardner transition; the red line is the jamming line.
Between the blue and red lines, glassy states are marginally stable. Reprinted from [64].

The glassy states emerging above φd are exponential in number, therefore the configura-
tional entropy can be defined

Σ(φ̂) = lim
N→∞

1
N

logN (φ̂) (1.16)

with N (φ̂) being the number of glassy states at packing fraction φ̂. It is maximal at φ̂d,
diminishes for increasing density and vanishes at the Kauzmann point φ̂K .

For φ̂ > φ̂d the system cannot equilibrate. However, if starting from the liquid phase
at equilibrium the system is quickly compressed to φ̂ > φ̂d, it starts aging, meaning that
∆(tw, t− tw) relaxes ever more slowly and becomes a function of both the time tw passed
since the rapid compression and the time difference t− tw [76, 75, 163].

Following a glass state

Notice that φ̂d is a singular point only for the dynamics and does not show thermodynamic
signatures. However, modifying the measure over the configurations, it is possible to ex-
tract dynamical information using only statistical mechanics tools. In disordered systems,
this is done using the so called Franz-Parisi potential [95, 18, 205, 204]. The construction
starts by considering a configuration Y at equilibrium for φ̂g > φ̂d: if a configuration X(t)
is let relaxing, with X(0) = Y , then their long time mean square displacement behaves
like

lim
t→∞

∆(X(t), Y ) = lim
t→∞

d

Nσ2

∑
i

|xi(t)− yi|2 = ∆r (1.17)

since X(t) can relax only inside the glassy state of Y but cannot escape it. It is possible
also to compress/decompress X to another density φ̂ 6= φ̂g (by changing the spheres’
diameter σ and keeping the volume constant), where it will relax as

lim
t→∞,τ→∞

∆ (X(t+ τ), X(τ))→ ∆ (1.18)
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Assuming that X is sampled by the Boltzmann distribution at φ̂ with the constraint that
its average distance from Y is ∆r, we can define

P (X, φ̂ |Y, φ̂g) = e−βH(X,φ̂) δ (∆r −∆ (X, Y ))

Z[∆r, φ̂ |Y, φ̂g] =
∫
dX P (X, φ̂ |Y, φ̂g)

(1.19)

The generalized free-energy of the metastable state selected by Y is therefore

f(∆r, φ̂ |Y, φ̂g) = − 1
Nβ

logZ[∆r, φ̂ |Y, φ̂g] (1.20)

Averaging over Y with the equilibrium Boltzmann weight, we obtain the Franz-Parisi
potential VFP

VFP (∆r, φ̂ | φ̂g) =
∫ dY e−βH[Y ;φ̂g ]

Z[φ̂g]
f(∆r, φ̂ |Y, φ̂g) (1.21)

VFP can be computed explicitly using the replica method. The value of self mean square
displacement ∆ of X is chosen so as to minimize the free energy. VFP (∆r, φ̂ | φ̂g) depends
explicitly on ∆r.
For φ̂g < φ̂d the potential does not have any local minimum at finite ∆r, therefore Y is
unable to trap X at long times and the system is liquid. For φ̂g > φ̂d, instead, there is
a local minimum at finite ∆r and Y is in a metastable state characterized by ∆r. The
transition between these two behaviors corresponds to the dynamical transition φ̂d.
Notice that we can follow the system at fixed φ̂g varying φ̂, and the equation of state of the
glass for a given φ̂g is obtained by computing the pressure p(φ̂ | φ̂g) = d

d φ̂VFP (∆r, φ̂ | φ̂g)
[205]. At φ̂ = φ̂g, the system sits on the line of the equilibrium glasses and therefore
∆r = ∆EA with pressure p(φ̂g | φ̂g) corresponding to the analytic continuation of the
liquid one. A system prepared in an equilibrium glass state is therefore an amorphous
solid: the configurations of its degrees of freedom are confined in a restricted portion of
the phase space; inside this basin, the system relaxes with a finite relaxation time τβ and
has a well defined shear modulus and non-linear elastic susceptibilities [36]. Moreover,
neglecting the Debye contribution, it has a gapped vibrational density of states [106, 56].

Gardner transition

Considering an equilibrium glass at φ̂g, we can follow the state when we compress it to
φ̂ > φ̂g. At sufficiently high density φ̂G (depending on φ̂g), the system undergoes aGardner
phase transition. Beyond this density the system cannot be described any longer by the
two order parameters ∆r and ∆ and it enters in the Gardner phase [148, 205, 63, 62].
This phase was first observed in spin-glasses [112, 121] and takes its name from Elisabeth
Gardner. It is characterized by the fact that the simple basin of the glass state acquires
a complex internal structure of metastable states organized with an ultrametric structure
and described by full replica symmetry breaking [168, 63]. At the Gardner transition,
the minimum of the glass state flattens causing the divergence of the relaxation time
scale τβ ∼ | φ̂G− φ̂ |−a and of the dynamical susceptibility lim

t→∞
χ4(t) ∼ | φ̂G− φ̂ |−1, where

the exponent a is non-universal and depends on φ̂g [196, 204, 30, 61]. Moreover, the
divergence of χ4 is associated with a diverging correlation length ξG.
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Figure 1.9: For φ̂ < φ̂d, hard spheres are in a liquid phase: all the phase space can be
dynamically explored and the mean-square displacement reaches a diffusive regime that
makes it diverge for long times. For φ̂ ∈ [φ̂d, φ̂G], the phase space is clustered in an
exponential number of metastable states and the system is caged in one of them: it is a
normal glass. The particles can only vibrate around an amorphous lattice, therefore the
mean-square displacement has a plateau proportional to the amplitude of the vibrations.
For φ̂ > φ̂G, the system is in a marginal glass phase: the basin of the normal glass
state gets split in basins of hierarchically organized configurations. The mean-square
displacement is not stationary for long times and displays an infinite series of plateaus.
Reprinted from [64].
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The Gardner transition is of second-order nature and is accompanied by the emergence
of soft-modes. They characterize all the Gardner phase that is therefore a marginal
glass phase. The relaxation of the system is characterized by the rapid vibrations of the
spheres around the amorphous lattice positions followed by infinitely slow changes of the
amorphous lattice itself [64]. The vibrations of the spheres have heterogeneous amplitudes
and are correlated over large regions.
A key feature of the marginal glass phase is the break-down of elasticity [36]. Considering
an expansion of the elastic stress in powers of the strain, it is found that the non-linear
response coefficient has divergent sample-to-sample fluctuations when approaching the
Gardner phase: this is related to plasticity, meaning the irreversibility of the elastic
response [134], in contrast with the reversibility of the response characterizing the normal
glass phase. In the Gardner phase, an infinitesimal variation of density or shear strain
produces extensive rearrangements: avalanches [188, 153, 110], whose size distribution
scales as a power law with universal critical exponents. This is a common signature of
marginal stability that emerges in various physical systems like equilibrium mean-field
models [187, 77], out-of-equilibrium systems in finite dimensions [188] and self-organized
critical models [17, 93]. The presence of avalanches in the response of the system produces
the so-called crackling noise[218].

The prediction of the existence of a Gardner transition for infinite dimensional hard-
spheres is a new non-trivial feature for a structural glass without quenched disorder. The
possibility of its existence in finite d is under exploration, both by using renormaliza-
tion group techniques [235, 65, 59, 10, 184, 256] and numerical simulations (looking for
growing correlation length, susceptibility and correlation time) [30, 217, 157]. At the
moment, there is consensus on the fact that the lower critical dimension of this transition
is dl ' 2.5, therefore the exploration is focused on its possible existence in d = 3. For a
review of Gardner physics, see Ref. [29].

1.3 The jamming transition

1.3.1 Jamming of hard spheres
Considering a glass in the marginal phase of infinite dimensional hard spheres, the com-
pression can be continued: the endpoint is reached when the pressure diverges at a certain
φ̂J (depending on φ̂g). That is the jamming point of the glass. It reaches its densest pack-
ing and the spheres are in direct mechanical contact with each other. With a hard sphere
interaction, the system cannot be compressed any further.
In the case of infinite dimensional hard spheres, we see that the dynamical glass transition
happens before approaching the jamming point. Moreover, the jamming point is met in
the marginal glass phase: marginal stability is in fact a very important feature of the
jamming of spheres [45, 44, 160, 247, 154, 188]. It corresponds to the limit p → ∞ and
the exact location φ̂J depends on the compression history. Despite this fact, the criti-
cal behavior at the jamming point is remarkably universal. In particular, the number of
sphere contacts scales like C ∼ dN , a property called isostaticity, and correspondingly the
distribution of contact forces f and that of gaps h between particles develop power laws
for small argument, i.e. ρ(f) ∼

f→0+
f θ and ρ(h) ∼

h→0+
h−γ, with irrational critical exponents

θ = 0.42311... and γ = 0.41269... [62]. This critical behavior is strongly connected with
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Figure 1.10: Reprinted from [64]. Left panel. Decay of the plateau of the mean-square
displacement for divergent pressure upon approaching jamming. The scaling ∆ ∼ p−κ

is observed independently of the spatial dimension d (d = 3, 4, 6, 8 in the plot). Right
panel. Cumulative number of spheres at distance h. The critical exponent γ is robust for
different dimensions d (represented d from 2 to 12).

the complex structure of the hierarchical metabasins that is fractal with dimension 2/κ,
with κ = 1.41574... . This exponent also controls the scaling of the innermost metabasin
that shrinks to a point (i.e. the jamming configuration) giving ∆ ∼ p−κ.
This critical behavior is completely different from what is observed in non-marginal glasses
and crystals, where no power law scaling characterizes small forces and gaps and it holds
∆ ∼ p−1 in normal glasses and ∆ ∼ p−2 in a crystal [202, 40].
Jamming criticality is strongly linked to the emergence of a large excess of low-frequency
modes compared to the Debye scaling for solids, that is a more general feature found
in amorphous glasses (even without marginality). This excess of low-frequency modes is
called boson peak [254, 106]. In fact, the density of vibrational states does not vanish in
the limit of zero frequency and it tends to a constant [15, 191, 222, 248, 246]. These soft
modes are extended but they have a disordered structure, very different from plane waves
[253].
The remarkable feature of jamming criticality is that its universality is very robust with
respect to dimensionality, with numerical simulations suggesting that the results of mean-
field theory (infinite dimensions) hold down to dimension d = 2. This leads to the idea
that the upper critical dimension of this universality class is du = 2 [116, 128, 129].

The jamming point is often studied in the case of athermal systems like grains and
foams, where it corresponds to a rigidity transition from a floppy phase to a solid one
[159, 190, 191, 160, 233, 158]. Such systems, in fact, can be thought of as athermal soft
spheres with pair-wise potential ν(hij) = 0 if hij > 0 and ν(hij) = |hij|a if hij < 0, with
a > 1: in this case the jamming point corresponds to the transition from zero pressure to
a positive one (i.e. p→ 0+).
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Figure 1.11: Jamming phase diagram proposed by A.J. Liu and S.R. Nagel: inside the
shaded green area the system is an amorphous solid (jammed); for high temperature or
low density, instead, the system is unjammed and can flow. At zero temperature and
zero applied stress there is the jamming transition of ideal spheres. The transition line in
the density-temperature phase corresponds to the glass transition, while the one in the
density-stress plane is the yield stress. Reprinted form [158].

1.3.2 Jamming in finite dimensions and the marginally jammed
solid

Let’s consider N spheres in a box of volume V in d spatial dimensions, as before. This
time we consider a soft spheres pairwise potential, H = ∑

i<j
ν(hij), with

ν(hij) =
0 hij > 0

1
a
|hij|a hij < 0

(1.22)

and hij = |xi−xj |−σij, where σij = σi+σj takes into account the possible polydispersity
in the radii σi. The case a = 0 corresponds to hard spheres. In soft spheres models,
differentiable potentials are usually considered, so a > 1. Common choices are a = 2
(harmonic spheres) and a = 5/2 (Hertzian spheres) [191].
We consider the zero temperature case with no applied stress. The control parameter is
the packing fraction φ.
For small φ, the system has zero energy by avoiding overlaps between the spheres, therefore
it has no rigidity and flows when a perturbation is applied. Increasing the density, the
spheres get more and more closely packed until they start touching: this is the jamming
point φJ . Increasing the density produces overlaps between the spheres and the energy and
pressure become different from zero. Also the bulk and shear moduli become different from
zero, making the jamming point a transition from a liquid-like phase to an amorphous
solid one. A further analogy with the glass transition is the fact that the value of φJ
depends on the preparation protocol [191, 31, 66, 170]. However, the jamming transition
has more peculiar universal properties than generic thermal glass transitions. We list
them in the following.
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Isostaticity

Since the system is at zero temperature, the contact network formed between the spheres
at jamming has to be in mechanical equilibrium. Maxwell’s criterion [172] states that,
with no frictional forces, the rigidity condition can be satisfied only if the number of inter-
particle forces Nz

2 (i.e. the number of contacts between the spheres), where z is the average
particle connectivity, is at least equal to the number of force balance equations, i.e. the
total number of degrees of freedom (d.o.f) which is Nd. Therefore Maxwell criterion gives
the condition z ≥ 2d. At jamming it is found that

z = 2d (1.23)

meaning that the system is isostatic and the number of contacts is the minimal one
required by stability [212, 186, 209, 126, 232, 233, 116, 154]. More precisely, the total
number of contacts satisfy Z = Nd+O(d), where the order d correction takes into account
the choice of the boundary conditions.
In preparing a configuration at jamming, there are other local effects that appear in
finite dimensions, for example the presence of rattlers, i.e. spheres that are not part of
the contact network but rattle inside the cages created by the network. Therefore the
isostaticity condition has to be corrected as Z = dN(1 − fratt(d)) + O(d), where fratt(d)
is the fraction of particles being rattlers which decays exponentially fast for increasing
dimensionality [58, 57].

Gap and force distributions

At jamming, the distribution of gaps hij has a Dirac delta for h = 0 that signals the
presence of contacts. As discussed for hard spheres, the small gaps between pairs of
spheres display a power law scaling

ρ(h) ∼
h→0+

h−γ (1.24)

with an exponent γ ' 0.4 [233, 58]. This result holds for all d ≥ 2 and is compatible with
the d→∞ prediction γ = 0.41269....

Mechanical marginal stability connects the exponent γ to the power law behavior that
is observed for small contact forces [247, 188]. By the way, in finite d a careful analysis of
some local effects is necessary. There exist spheres called bucklers characterized by a weak
connectivity with the rest of the network and that give rise to quasi-localized excitations.
We can define bucklers as the spheres with d+ 1 contacts: they have d contacts that are
quasi-coplanar and a remaining weak contact that compensates the asymmetry. These
weak forces are characterized by an exponent θl ' 0.18 [154, 81], different from the
critical exponent θ ' 0.42 obtained in the infinite dimensional solution. Therefore one
can consider the force distribution as a mixture of local and extended components

ρ(f) = nlocρloc(f) + nextρext(f) ∼ nlocf
θl + nextf

θ (1.25)

The analysis of all the contact forces together gives a spurious exponent θl < θ̃ < θ
and eventually θ̃ ' θl for f small enough. Instead, the analysis of the bucklers sepa-
rately allows to observe the two exponents θl and θ, with θ being compatible with the
infinite dimensional value θ = 0.4231... also for dimensions as small as d = 2. Moreover,
the number of bucklers, proportional to nloc, vanishes exponentially with increasing d [57].
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Figure 1.12: Left panel. Probability of having a rattler (z < d+ 1) or a buckler z = d+ 1
at jamming as a function of the dimension d. These probabilities decay exponentially for
increasing dimensionality, making the presence of rattlers and bucklers a non-perturbative
effect with respect to the infinite dimensional solution. Right panel. Cumulative distri-
bution of contact forces separating bucklers’ contribution (∼ f 1+θl) from the other forces
(∼ f 1+θe). Their behavior is compatible with the scalings θl ' 0.18 (blue line) and
θe ' 0.42 (red line). Reprinted from [64].

The values of the critical exponents of gaps and forces satisfy the relation

γ = 1
2 + θ

(1.26)

that implies marginal stability [188]. Studying the fundamental excitations corresponding
to opening/closing of contacts, it has been found that stability requires γ ≥ 1/(2 + θ),
where the saturation corresponds to marginal stability [247].

Density of vibrational states

One of the most interesting features of the jamming transition is the anomalous behavior
of the density of vibrational states (DOS) D(ω), where ω is the frequency [248, 246,
253]. For a crystal, or in a general elastic medium, at small energies the Debye dispersion
relation ω = c k holds, with c the speed of sound and k the magnitude of the wave
vector, which gives a DOS D(ω) ∼ ωd−1 at low frequencies, with d the spatial dimension.
As a consequence, the scaling of the specific heat cV = 1

V
∂
∂T

∫ ωD
0 dωD(ω) ~ω

eβ~ω−1 ∝ T d

is obtained, which gives the ubiquitous cV ∝ T 3 for three-dimensional crystals at low
temperature.
Instead, in amorphous materials it is found that cV ∝ T at low temperature, indicating
a DOS that goes to a constant for vanishing frequency: plotting D(ω)/ω2 for a three-
dimensional glass a peak at low frequency, called boson peak, is observed [8, 189, 67, 203,
46, 47, 171, 120].
To study the behavior of the vibrational spectrum, the model is analyzed in an equilibrium
jammed configuration at density φ > φJ , so that ∆φ = φ − φJ is the distance from the
jamming point. A second order expansion of the energy of the system gives

∆H =
∑
c

kc
2 |u

‖
c |2 −

fc
2rc
|u⊥c |2 (1.27)
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where c runs all over the interacting pairs of spheres (i, j) (i.e. hij ≤ 0), kc = ∂2 ν(h)
∂h2 |h=hij

are the stiffnesses, fc = ∂ ν(h)
∂h
|h=hij are the exchanged forces, rc = |xi−xj | the dis-

tance between the spheres centers, uc = δ xi−δ xj the relative displacement between the
spheres. When the system is in the overcompressed phase, fc > 0, the transverse term is
destabilizing: it is called pre-stress, it has a geometrical origin and the fact it is destabi-
lizing is important to bring about isostaticity at the jamming of spheres [212, 246]. The
quadratic expansion of the energy can be written in matrix form

∆H = δxαiM
αβ
ij δx

β
j (1.28)

where i, j run over the particles and α, β over the dimensional component. The matrix
M is the dynamical matrix and the spectrum of its eigenvalues λk gives the density of
vibrational states, with ωk =

√
λk (assuming spheres of same mass equal to one). Effective

medium theory [80] gives

D(ω) =


ωd−1 ω << ω0
ω2

ω2
∗

ω0 << ω << ω∗

constant ω >> ω∗

(1.29)

where the cross-over frequencies ω0 and ω∗ depend on the distance from jamming ∆φ. The
scaling ωd−1 corresponds to the Debye one that disappears in the jamming limit because
ω0 → 0 for ∆φ → 0. Interestingly, in mean-field theory [106] it is found that ω0 = 0 so
that the scaling is always non-Debye. This scaling is also found in finite dimensions, close
enough to the jamming point [56, 80].
Furthermore, the localization [223, 257] of these modes is studied, for example, by the
participation ratio (PR) of each normalized mode {ui(ω)}

PR(ω) =
[
N

N∑
i

|ui(ω)|4
]−1

(1.30)

that is O(1) for extended modes and O( 1
N

) for localized ones. While in mean-field theory
the low frequency modes are completely delocalized [106], in finite dimensions there are
quasi-localized modes at low frequency [167, 243, 253, 166]: they become more delocalized
by getting closer to jamming and by increasing dimensionality [56]. At intermediate
frequencies, instead, the modes are delocalized, while at high frequency there are localized
ones, as it is common in disordered media.

The crossover frequency ω∗ vanishes at jamming [250] as

ω∗ ∼ ∆z (1.31)

where we are using the excess of connectivity with respect to isostaticity ∆z = z − ziso
as a measure of the distance from the jamming point. Therefore, exactly at the jamming
transition, the spectrum D(ω) goes to a constant for vanishing frequency, consistent with
the numerical observation [191].

Diverging lengthscales

The vanishing of ω∗ can be associated to a diverging length scale following an argument
provided by M. Wyart in [250]. In a marginally jammed system, the bonds along a cube of
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1.3. THE JAMMING TRANSITION

Figure 1.13: Reprinted from [158]. Vibrational modes for d = 2 at ∆φ = 10−4. a) The
density of states D(ω), with lines indicating the frequencies of the modes represented
in the panels b,c,d. b) Quasi localized mode at low frequency. c) Extended mode at
intermediate frequency. d) Localized mode at high frequency.
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Figure 1.14: Reprinted from [158]. Density of states in log-log scale for three-dimensional
harmonic spheres for different values of ∆φ. At a given density, the lower frequency end
of the plateau is the cross-over ω∗. For ∆φ→ 0, ω∗ → 0 and the density of states tend to
a constant at zero frequency.

size l are cut: the number of broken contacts is therefore ∼ ld−1. On the other hand, the
number of the excess contacts in the bulk with respect to isostaticity is ∼ δzld. Therefore,
the smallest part that can be cut without creating floppy modes is given by equating the
two terms:

l∗ ∼
1

∆z (1.32)

For lengths larger that l∗, the system is comparable to a continuum elastic medium, while
for lengths smaller than l∗ the modes are anomalous, sensitive to the microscopic structure
and form the plateau of the DOS. Therefore at jamming l∗ diverges and the anomalous
modes control the response of the system. It is difficult to directly measure the length l∗
form the data [160], but it has been shown that the cross-over length can be revealed by
the response of a jammed system to a point force or an inflation of a local particle [91,
90, 89].
Another lengthscale diverging as ∆φ−1/4 is associated to the decay length of spatial cor-
relations in modes at frequency ω+

∗ [222, 241, 245].

Scalings at unjamming

When the system is in the jammed phase but close to the unjamming transition, i.e.
∆φ→ 0, interesting scalings appear [191, 246, 117].
We have seen in the previous section the scaling of the spectrum of vibrational modes,
that shows universality at jamming for low frequency.
With a soft potential ν(h) = |hij |a

a
θ(−hij), a > 1, the typical amount of overlaps δhij

between spheres created by compressing from the jamming point is proportional to ∆φ;
this happens because the soft potential a > 1 makes a contact at jamming (i.e. hij = 0)
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become an overlap (i.e. hij = δhij < 0) as soon as an infinitesimal pressure is applied.
Therefore, the energy E and the pressure p scale as

E ∼ ∆φa

p ∼ ∆φa−1 (1.33)

since the pressure is proportional to the forces ν ′(hij) = |hij|a−1θ(−hij). The scaling of
energy and pressure depends on the soft potential but not on the dimension: in fact it is
found also in mean-field theory [105].
The behavior of the excess coordination number with respect to jamming, i.e. the number
of overlaps between spheres beyond isostaticity ∆z = z − ziso, has a more universal
behavior related to the universality of the density of vibrational states. We have seen
that the onset frequency ω∗ of the anomalous modes scales as ω∗ ∼ ∆z [250]. Following
[246], in the marginally jammed system, the lowest frequency of the anomalous modes
is rescaled by a stiffness

√
k and its energy receives a contribution proportional to the

pressure from the destabilizing stress term of Eq. (1.27); therefore, the energy of the
mode scales as

kω2
∗ − Ap (1.34)

where k is the stiffness proportional to ν ′′(h) = (a − 1)|h|a−2 and A is an order one
constant. Since k ∼ ∆φa−2, p ∼ ∆φa−1 and ω∗ ∼ ∆z, the stability condition of having a
positive energy mode

∆φa−2ω2
∗ − A∆φa−1 ≥ 0 (1.35)

gives

∆z ≥
√

∆φ (1.36)

This stability bound is eventually saturated, giving

∆z ∼
√

∆φ (1.37)

as it is found in numerical simulations [191, 85, 190].

Another anomalous scaling behavior is found for the elastic moduli: the bulk modulus
B and the shear modulus G [191, 85, 190]. They both vanish at the jamming point with
power law behavior, but with their ratio

G

B
∼
√

∆φ (1.38)

and therefore scaling as ∆z. While the bulk modulus is proportional to the stiffness of
the potential B ∼ k ∼ ∆φa−2, the shear modulus is smaller and is given by G ∼ k∆φ0.5.
This large difference in shear and bulk modulus is a peculiar property of jamming and it
is not found in ordinary solids.
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1.4 Jamming criticality in the jammed phase: a full
critical and marginally stable phase

In the previous section we have summarized some peculiar characteristics of the jamming
transition point. Using a soft potential, the jammed phase corresponds to an amorphous
solid whose properties have scaling behavior at the unjamming transition. The discussed
soft potentials have the form ν(hij) = |hij |a

a
θ(−hij) with a > 1, where hij = |xi−xj |−σij

are the gaps between the spheres. A legitimate question is what happens to the jammed
solid if the potential is considered to have a singular behavior with a ≤ 1. The technical
difficulty of this model comes from the fact that the gradient of the energy has a singularity
every time that two spheres are just in contact, i.e. hij = 0. This is an undesired feature,
because at zero temperature the equilibrium is given by mechanical stability that simply
corresponds to having a zero gradient, i.e. the balance of all the forces acting on a sphere.
A good starting point is to note that the critical properties of the jamming point must be
unchanged, independently of the exponent a. At the transition point, a certain number
of gaps become contacts hij = 0 and are therefore insensitive to the scaling of the soft
potential. Moreover, the properties at jamming are well defined also for the hard spheres
potential, corresponding to a = 0.
We can prepare a configuration of spheres at jamming with some protocol and ask what
happens if we try to compress the system having the soft potential scaling linearly: a = 1.
This linear potential is the subject of this work.

A trivial but important observation is that a linear potential ν(hij) = F |hij|θ(−hij),
where F is a constant parameter, gives a constant repulsive force ν ′(hij) = −F θ(−hij)
when an overlap hij < 0, no matter how small, is created. Consequently, two spheres just
touching have to be compressed with a force whose intensity is at least F for them to
create an overlap. When compressed with a force intensity smaller than F , the spheres
continue just touching and exchange a contact force f < F . The physical consequence is
that, even at finite pressure, the spheres have two possible kinds of interaction: forming
an overlap hij < 0, with associated force F , or forming a contact hij = 0, with associated
force 0 < f < F . The linear potential is therefore an intermediate case between the purely
soft interaction a > 1, where the contacts of jamming are destabilized by an infinitesimal
compression, and the hard spheres potential, where the contacts can withstand any com-
pression up to infinite pressure without creating overlaps. The linear interaction gives a
critical value F to the force needed to destabilize a contact. In the limit F → ∞, the
hard spheres case is recovered. Since F is a trivial rescaling factor for the forces and the
energy, we simply consider F = 1.
The other fundamental ingredients in the system we study are the disorder and the ge-
ometry. Let’s consider a system of spheres with linear potential in the dense phase, i.e.
φ > φJ , and let’s take their positions {xi} to be random. We have a set S of positive
gaps hij > 0, meaning pairs of spheres that are not interacting, and a set O of negative
gaps hij < 0, corresponding to pairs of overlapping spheres. The energy landscape is
made of linear ramps having some additional curvature due to the spherical geometry of
the particles; the linear ramps meet in angular lines and points. If we take the non-linear
constraints hij > 0 for ij ∈ S and hij < 0 for ij ∈ O to be hard constraints, we can
minimize the energy inside the portion of phase space defined by S and O: because of the
linear potential, this problem is akin to linear programming in some curved geometry. We
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AND MARGINALLY STABLE PHASE

Figure 1.15: Sphere configurations in two dimensions. Red lines correspond to contacts,
i.e. spheres just touching; black lines corresponds to overlaps between the spheres. The
thickness of the lines is proportional to the corresponding force intensity. Left panel. A
snapshot of a configuration of spheres at the jamming point: the spheres form contacts,
the energy is zero and the configuration is insensitive to the form of the soft poten-
tial. Central panel. A snapshot of a jammed configuration with harmonic potential
ν(hij) = |hij |2

2 θ(−hij): there is no contact, only overlaps which provide the mechanical
forces necessary to keep the system in mechanical equilibrium. Pressure and energy have
positive values. Right panel. A snapshot of a jammed configuration with linear potential
ν(hij) = |hij|θ(−hij): the spheres have both contacts and overlaps. The thickness of
the black lines is constant because overlaps give constant force intensities. Instead, red
lines have various thicknesses, since contact forces do the job of keeping the system in
mechanical equilibrium. The critical properties are encoded in the contact network, while
the overlap network provides an internal stress. Each sphere needs at least two contacts
(d contacts in d dimensions) to be in equilibrium.
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know that the solution to this optimization problem is a vertex of the high-dimensional
manifold defined by S and O: this implies that a certain number of constraints will be
saturated, therefore hij = 0 for several pairs ij.
This analogy with linear programming suggests that the energy minima in the jammed
phase necessarily have an extensive number of contacts. Each of them brings a contact
force fc (i.e. the Lagrange multiplier of the saturated constraint), while instead overlaps
give forces of constant intensity. If the system does not have a highly symmetrical con-
figuration, the overlaps cannot give mechanical stability to the system. Stability can be
achieved only through the contact forces: following Maxwell’s argument, the number of
contacts needs to be greater or equal than the number of degrees of freedom Nd. For
a system of spheres with continuous polydispersity, the geometry does not allow crys-
talline configurations and the minima that are found by minimizing the linear potential
are isostatic. Isostatic configurations at finite pressure display all the critical signatures
of the jamming point, but with the important difference that the whole jammed phase is
a critical phase. Compressing or decompressing the system does not wash out the critical
behavior, since other mechanically stable configurations are still isostatic and disordered.
These configurations are actually only marginally stable: removing a contact creates an
unstable mode. The system flows along the unstable modes until isostaticity is restored.
As discussed for the jamming transition, marginal stability is accompanied by some pecu-
liar power-law behaviors in the distributions of forces and gaps [188]. As for the jamming
point, small positive gaps and small contact forces are controlled by exponents γ and
θ respectively, both belonging to the jamming universality class. The jammed phase of
the linear potential has also negative gaps (overlaps) and an upper bound F = 1 for the
intensity of contact forces. Remarkably, it turns out that also small negative gaps and
contact forces close to F = 1 have power law behaviors in their distributions with the
same exponents γ and θ. This kind of enlarged universality stems directly from marginal
stability. One may think that any isostatic configuration would be mechanically stable,
but this is not the case. The stronger requirement is that the contact network and the
overlap network are such that the contact forces can stabilize the configuration with in-
tensities 0 < fc < 1. This requirement can be satisfied only by proper contact/overlap
networks. The minimization procedure is such that the system self-organizes into critical
configurations.
The peculiar properties of the system characterize its response to perturbations. Let us
imagine taking a (marginally) stable isostatic configuration at finite pressure and com-
pressing it slightly. The additional stress is distributed on the contact forces: those that
are the closest to the boundaries 0 and F = 1 may fall outside the physical bound [0, 1].
Therefore, the corresponding contacts are destabilized and the system starts flowing along
the unstable floppy modes. The number of forces near the boundaries 0 and 1, and there-
fore the exponent θ, controls the excitations of the system. When the spheres move,
eventually new pairs meet and form new contacts: when the system has formed again
an isostatic network of contacts, the configuration can eventually be stable if 0 < fc < 1
for each contact force. The pairs of spheres that form new contacts are those that were
already close to one another, i.e. those whose gaps hij were close to 0. Therefore, the
number of small gaps, depending on the exponent γ, controls the relaxation of the system.
Let’s notice that an infinitesimal pressure variation is sufficient to destabilize one or more
contacts: the evolution of the system along the unstable modes corresponds to avalanches,
whose power-law size distribution is characterized by a critical exponent. This plastic be-
havior produces the so called crackling noise.
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The jammed phase with the linear potential is an isostatic, self-organized critical,
marginally stable phase whose excitations/relaxations correspond to the opening/closing
of contacts. Its universality class is strongly connected to the jamming criticality.

1.5 Organization of the thesis
The presentation of the topics in this thesis follows the logical order in which they have
been understood. Some definitions are repeated in order to ease the reading of a single
chapter.

In chapter 2 we introduce the perceptron model. After a short historical introduction,
the model is defined and its connection to jamming is explained. A mapping between the
perceptron and spheres in finite dimensions is provided. The free energy of the model is
computed using the replica method, with a generic interaction potential. The obtained
equations, both for the replica symmetric and the fullRSB constructions, are therefore
general. We solve the model in the SAT phase and we present the scaling solution for
the critical jamming transition obtained from the fullRSB equations. At the end of the
chapter, the UNSAT phase is briefly discussed using the harmonic potential.
Chapter 3 is the core chapter. It starts with the discussion of an algorithm to find the
minima of the perceptron in the UNSAT phase with the linear cost-function. The re-
sults are presented both for the critical/non-convex phase and for the non-critical/convex
phase. A proper definition of the Hessian of the model is discussed. In the second part of
the chapter, the replica theory is used to understand the UNSAT phase of the model and
the phase diagram is presented. In the end, a scaling theory, reminiscent of the one known
for jamming, is developed for the critical phase starting from the fullRSB equations: it
consistently connects with the numerical observations.
In chapter 4 the critical phase is shown to exist also for jammed spheres with linear poten-
tial in two and three dimensions. The results are obtained by numerical simulations. The
critical behavior is characterized, together with other properties typical of the jamming
point like the flat density of soft modes and the hyperuniformity of the contact network.
In chapter 5 we present a compression protocol for the perceptron and we present the
results. It shows the crackling noise characterizing the critical phase, with power-law
distributed avalanches. Scaling relations are obtained for finite system size. The protocol
allows a fine studying of the unjamming transition: it is shown that the scaling laws are
different from other soft potentials and an explanation is provided by scaling arguments.
In chapter 6 a variation of the linear potential is studied, consisting in a piece-wise linear
one. By numerical simulations, we show that an extended version of isostaticity is in place
and that there is a proliferation of excitation/relaxation mechanisms, each one controlled
by the same exponents as the jamming universality.
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Chapter 2

The perceptron: a simple model for jamming

In this chapter we introduce the perceptron model. Starting with a historical presentation,
we clarify the role that this model has acquired in the study of the jamming transition
in disordered materials and how the mathematical and conceptual mapping is performed.
Therefore, following [105, 234], we develop its theory using the replica method and briefly
discuss some features of its phase diagram.

2.1 Introduction to the perceptron

2.1.1 Historical prelude: from Rosenblatt to Gardner
In 1943, McCulloch and Pitts introduced the idea of using networks of "formal neurons" to
model some information processing activities of biological brains[175]. Their idea sparked
a lot of interest around the subject of artificial neural networks and in 1962 the psycholo-
gist Frank Rosenblatt introduced the perceptron, that is the simplest feed-forward neural
network[208]. Its task is to perform a binary classification of input patterns, a feature
that was soon interpreted as a simplified model of some basic cognitive abilities. However,
this euphoria was suddenly interrupted in 1969 when Minsky and Papert pointed out the
limitations of the tasks that can be realized using this kind of single layer machine[181];
interestingly, they completely failed in grasping the potential of multilayer architectures.
The field got revived in the ’80s and a major theoretical achievement was made in a
famous paper of 1988 by Elisabeth Gardner [113] where she solved the problem of com-
puting the storage capacity of a perceptron (i.e. how many patterns it can classify) by
using techniques from the statistical mechanics of disordered models. Moreover, together
with B. Derrida she also studied the phase beyond the limit of capacity[111]: associat-
ing an energy cost to the misclassified patterns, an optimization problem is obtained,
particularly well suited for a statistical mechanics point of view.

2.1.2 Definition of the perceptron model
The degrees of freedom of a perceptron consist in its "synaptic weights" Xi which are N
real numbers forming an N -dimensional vector X ∈ RN . For convenience, this vector
belongs to the hypersurface of an N -dimensional hypersphere, that is ∑

i
X2
i = N .

Given a set of M patterns ξµ ∈ RN with their binary labels yµ = ±1, where index µ goes
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from 1 to M , the perceptron classifies them according to the rule

ŷµ = sign

(
1√
N

X · ξµ
)

(2.1)

To have a correct classification ŷµ = yµ it is therefore necessary to find X so that
yµ

1√
N

X · ξµ ≥ 0, ∀µ = 1, ...,M . To have a more robust classification, a margin σ can be
introduced and the required inequalities become

yµ
1√
N

X · ξµ ≥ σ, ∀µ = 1, ...,M (2.2)

Equation (2.2) defines a Constraint Satisfaction Problem with Continuous variables (CCSP).
In a real classification task, it is required that σ > 0 so to have a positive margin when
the patterns are linearly separated.
In our treatment, we are interested in this model only as a random CCSP. Therefore, we
consider the patterns to be made of random variables, independently identically dis-
tributed (i.i.d.) according to a normal distribution of zero mean and unit variance:
ξµ,i ∼ N (0, 1). Choosing random labels yµ we can absorb them into their respective
patterns without changing the statistical properties of the system. Now our CCSP is
simply

1√
N

X · ξµ−σ ≥ 0, ∀µ = 1, ...,M (2.3)

in the thermodynamic limit N →∞, M →∞, M/N = α ∼ O(1).
Gardner’s solution to the storage capacity starts by evaluating

Ωξµ =
∫
dµ(X)

M∏
µ=1

θ

(
1√
N

X · ξµ−σ
)

(2.4)

where dµ(X) is the uniform measure on the hypersphere |X |2 = N and θ(·) is the
Heaviside step function. This volume is a random variable since it depends on the patterns
ξµ; it is possible to obtain its typical value by computing the quenched entropy

v = 1
N

log Ωξµ (2.5)

where the symbol · · · stands for the average over the patterns ξµ: it is in performing this
computation that the replica machinery comes into use.
As a result of this computation, the typical volume of solutions X that satisfy the CCSP
(2.3) is obtained. Changing the control parameters α and σ, that are the number of pat-
terns and the margin, it is possible to see how the volume of solutions changes accordingly:
when it shrinks to a point, the satisfiability threshold is met. This boundary therefore
separates a SAT phase where there are solutions to the problem (2.3) from an UNSAT
phase where it is not possible to satisfy all the constraints. In figure (2.1) we report the
corresponding phase diagram.

To have a lighter notation (and for analogy with the models of sphere packings), it is
convenient to define the gap variables

hµ = 1√
N

X · ξµ−σ (2.6)
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Figure 2.1: SAT-UNSAT phase diagram of the CCSP defined in equation (2.3). The area
shaded in red corresponds to the UNSAT phase, the red line is the satisfiability transition.

so that our CCSP (2.3) is simply restated as

hµ ≥ 0, ∀µ = 1, ...,M (2.7)

When the system enters in the UNSAT phase, it means that all the constraints cannot
be satisfied with a single X and it is necessary to accept that hµ < 0 at least for some
µ. A natural idea from statistical mechanics is to associate a positive energy cost to this
UNSAT patterns, say ν(hµ) = |hµ|a

a
θ(−hµ), where a is a positive exponent and θ(·) is the

Heaviside step-function. The following Hamiltonian can be defined

H (X) =
∑
µ

ν(hµ) (2.8)

whose minima X∗ have positive energy E = H (X∗) > 0 in the UNSAT phase and zero
energy E = H (X∗) = 0 in the SAT phase: by looking for the minima of (2.8) we are
solving an optimization problem.
Following this statistical mechanics approach, we can introduce a temperature T and its
inverse β = 1

T
(the Boltzmann constant is set equal to 1) and the corresponding Gibbs

measure

e−βH(X) (2.9)

The quantity (2.4) is generalized with the partition function

Zξµ (T ) =
∫
dµ(X)e−βH(X) (2.10)

which clearly becomes equal to Ωξµ in the zero temperature limit, Zξµ (T ) →
T→0

Ωξµ .
The corresponding free energy is given by the average over the patterns of the logarithm
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of the partition function

f(T ) = lim
N→∞

− T

N
logZξµ (T ) (2.11)

which is often referred to as quenched average over the disorder.

2.2 Perceptron as jamming paradigm
The studies started by Gardner on the perceptron were mainly inspired by its use as a
binary classifier, which requires the margin σ to be a positive quantity in order to have a
stable classification boundary. However, the mathematical problem is perfectly coherent
also when the case σ < 0 is considered. A key observation is that the set Sµ of X satisfying
the µ constraint

1√
N

X · ξµ ≥ σ (2.12)

is a convex set1 if σ > 0. Therefore, the solutions of the CCSP live in the set S = ∩µ Sµ
that is the intersection of convex sets: it is a convex set itself.
When instead σ < 0, the sets Sµ are non-convex and their intersection can be a non-
convex set. This situation can lead to the presence of glassy phases, where islands of
solutions can be disjoint or connected in a complex structure. The important intuition
put forward in 2015 was that the satisfiability threshold of the CCSP inside a glassy phase
corresponds to a critical point belonging to the same universality class found in the jam-
ming of hard spheres in infinite dimensions.[104] The importance of this result is twofold:
first, it casts the jamming phenomenon in a more general framework since the packing of
spheres can be seen as a particular case of CCSP; second, it makes the perceptron the
simplest model where to study the jamming universality class, without the need of using
the models of spheres and taking the limit of infinite dimensions.

In the following section we present the mapping between CCSP (and specifically the
perceptron) and sphere systems. This mapping has been first presented in [106, 105].

2.2.1 Mapping with spheres
• CCSP. Continuous constraint satisfaction problem with excluded volume constraints

can be defined in an abstract way. One considers first a vector X ∈ IRN and a set
of M = αN functions hµ(X) ∈ IR indexed by µ = 1, . . . ,M . Each function hµ(X) is
called gap. The constraint satisfaction problem is defined by asking to find a config-
uration of X that satisfies all the constraints hµ(X) ≥ 0. If the problem cannot be
satisfied one can define an optimization problem by asking to find a configuration of
X that minimizes a cost function. Therefore, a positive cost function H = ∑

µ
ν(hµ)

can be defined, with ν(h) = 0 if h > 0 and ν(h) > 0 if h < 0, where the poten-
tial ν(hµ) sets the magnitude of the contribution of the negative gaps to the total
cost. The satisfiable (SAT) phase corresponds to an assignment where H = 0, while

1A set is convex if, given any two points, it contains the whole geodesic that joins them. Since in
this case the points belong to the hypersurface of a hypersphere, the corresponding geodesics of spherical
geometry must be considered.
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we have H > 0 in the unsatisfiable (UNSAT) phase. The boundary between the
two phases is the SAT/UNSAT transition and will be generically referred to as the
jamming point. The precise location of this point as a function of the control param-
eters of the problem may depend on the precise protocol used to obtain solutions.
Marginally satisfied gaps are defined by hµ(X) = 0.

• Spheres. In this case the degrees of freedom of the problem are the positions of N
spheres in IRd denoted by {xi ∈ IRd}i=1,...,N . The gap variables are defined for each
couple of spheres as hij = |xi−xj |−σij, where σij = σi+σj and {σi}i=1,...,N are the
values of the radii of the spheres. The constraint satisfaction problem is defined by
asking to find a configuration of the spheres such that hij ≥ 0 for all couples {ij}.
A contact between two spheres i and j appears if hij = 0, which corresponds to a
marginally satisfied gap. The jamming point separates the unjammed (SAT) phase
where it is possible to find a SAT configuration for the positions of the spheres, from
the jammed (UNSAT) phase where the spheres overlap and an extensive number of
gaps are negative. In the jammed phase, a positive cost function H = ∑

i<j
ν(hij) can

be defined, with ν(hij) > 0 if hij < 0 and zero otherwise. Usual choices for ν(hij)
are ν(hij) = 1

a
|hij|aθ(−hij). The cases a = 2, 2.5 are usually called harmonic and

Hertzian soft spheres, respectively.

• Spherical perceptron. The degrees of freedom of the spherical perceptron prob-
lem are represented by the N -dimensional vector X ∈ IRN subject to the spherical
constraint |X |2 = N . One then introduces a set of M = αN random vectors
{ξµ ∈ IRN}µ=1,...,M whose components are i.i.d. random Gaussian variables with
zero mean and unit variance. Given these random vectors, the gaps are defined by
hµ(X) = ξ

µ
·X /

√
N − σ. σ is a control parameter in the problem, playing a role

similar to the diameter in spheres. The constraint satisfaction problem requires to
find a configuration of X such that hµ ≥ 0 for all µ = 1, . . . ,M . In the UNSAT
phase, where such configurations cannot be found, one can define an optimization
problem by asking to find configurations of X that minimize a positive cost function
given by H = ∑

µ
ν(hµ), where usually ν(hµ) = 1

a
|hµ|aθ(−hµ). In this thesis we are

interested in the case a = 1 that defines the linear cost function, while the harmonic
case has already been studied [106, 105]. Again, marginally satisfied gaps, analogous
to contacts between spheres, correspond to hµ = 0.

2.3 The replica analysis and the SAT phase

In this section we present the computation of the free-energy of the perceptron model
using the replica method. We do it for the generic cost function H = ∑

µ
ν(hµ) and present

the general equations that will be the starting point of our analysis. Thereafter, we briefly
recapitulate the solution for the harmonic case ν(hµ) = 1

2 |hµ|
2θ(−hµ) that can be useful

to understand our work on the linear case.
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2.3.1 The replica analysis
As stated before, from a statistical mechanics point of view we want to compute the free
energy

f = lim
N→∞

− 1
βN

logZξµ (2.13)

where the partition function defined in (2.10)

Zξµ =
∫
dµ(X)

M∏
µ=1

e−β ν(hµ(X)) (2.14)

depends on the disorder given by the random patterns ξµ. The complicated task is to
perform the average of the log of Zξµ and the replica method offers a solution to this task
by an analytic continuation of the moments Zn

ξµ
:

f = − lim
N→∞

1
βN

logZξµ =

= − lim
N→∞

lim
n→0

1
βN

Zn
ξµ
− 1
n

=

= − lim
N→∞

lim
n→0

1
βN

∂nZn
ξµ

(2.15)

This quantity can be easily computed when n is an integer. Therefore we can think of n
as the number of replicas of our system that form a set of coordinates {Xa}a=1...n:

Zn
ξµ

=
∫ [

n∏
a=1

d Xa

]
αN∏
µ=1

e
−β

n∑
a=1

ν(hµ(Xa))
(2.16)

Remark: only the degrees of freedom get replicated, the random patterns stay the same.

Computation of Zn
ξ

In the following we integrate over the auxiliary variable raµ that we fix to be equal to
1√
N
ξµ ·Xa through a Dirac delta, and we use its Fourier representation δ(raµ − z) =∫ dr̂aµ

2π e
ir̂aµ(raµ−z). So we have

Zn
ξ =

∫  n∏
a=1

d Xa

αN∏
µ=1

draµ

 e−β
n∑
a=1

αN∑
µ=1

ν(raµ−σ) n∏
a=1

αN∏
µ=1

δ

(
raµ −

1√
N

ξµ ·Xa

)
=

=
∫  n∏

a=1
d Xa

αN∏
µ=1

draµdr̂aµ
2π

 e
n∑
a=1

αN∑
µ=1

[−β ν(raµ−σ)+iraµr̂aµ]
exp

− i√
N

αN∑
µ=1

n∑
a=1

r̂aµ ξµ ·Xa


(2.17)

At this point it is easy to perform the Gaussian integral:

exp
− i√

N

αN∑
µ=1

n∑
a=1

r̂aµ ξµ ·Xa

 = exp
−1

2

αN∑
µ=1

n∑
a,b=1

r̂aµr̂
b
µ

Xa ·Xb

N

 (2.18)
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We see that the quantity Xa ·Xb

N
appears naturally in the computation and measures the

overlap between two replicas a and b; consequently we define the n× n overlap matrix Q
as

Qab = Xa ·Xb

N
(2.19)

Let’s notice that Qab = 0 if Xa and Xb are orthogonal, while Qab = 1 if Xa ≡ Xb. Due
to the spherical constraint on X, the diagonal terms are equal to 1, Qaa = |Xa |2

N
= 1.

Putting everything into eq. (2.17) and noticing that the index µ gets factorized, we get:

Zn
ξ =

∫ ∏
a<b

dQab

 J (Q)
∫ [

n∏
a=1

dradr̂a
2π

]
exp

−1
2

n∑
a,b=1
Qabr̂ar̂b + i

∑
a

rar̂a − β
∑
a

ν (ra − σ)
αN

(2.20)

where we have introduced the Jacobian J(Q) =
∫

[∏n
a=1 d Xa]∏a≤b δ

(
Qab − Xa Xb

N

)
to transform the integral in dX into an integral in dQ. Let’s evaluate this integral by
decomposing the Dirac delta into its Fourier representation

J(Q) = Nn(n−1)/2
∫ [

n∏
a=1

d Xa

] ∏
a≤b

δ
(
NQab −Xa Xb

)
=

= Nn(n−1)/2
∫ ∏

a≤b

dQ̂ab
2π

 ∫ [
n∏
a=1

d Xa

]
e
iN
∑
a≤b
Q̂abQab−i

∑
a≤b
Q̂ab Xa ·Xb

(2.21)

and by performing the Gaussian integration over dXa:

∫ [
n∏
a=1

d Xa

]
e
−i
∑
a≤b
Q̂ab Xa ·Xb

=
∫ [

n∏
a=1

d Xa

]
e
− 1

2
∑
ab

i(1+δab)Q̂ab Xa ·Xb

=

=
 (2π)n2√

det Q̃

N = (2π)Nn2 e−N2 log det Q̃

(2.22)

where Q̃ = i(1 + δab)Q̂ and δab is the Kronecker delta. Now the Jacobian reads

J(Q) = Nn(n−1)/2(2π)Nn2
∫ ∏

a≤b

dQ̂ab
2π

 exp
N

i∑
a≤b
Q̂abQab −

1
2 log det Q̃

 (2.23)

and the integral over dQ̂ can be evaluated by the saddle point method. Noting that
dQ̃ab = i dQ̂ab and that d

dQ̃ log det Q̃ = Q̃−1, the saddle point equation gives

Q̃ = Q−1 (2.24)

and consequently the matrix Q̂ab = Q−1
ab

i(1+δab)
. Evaluating the integral at the saddle point,

we have finally the Jacobian

J(Q) ' DN,n exp
[
Nn

2 (1 + log(2π)) + N

2 log detQ
]

(2.25)
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with

DN,n = Nn(n−1)/2(2π)−n(n−1)/2 (2.26)

Using this expression of the Jacobian in eq. (2.20) we get

Zn
ξ = DN,n

∫ ∏
a<b

dQab

 exp
[
Nn

2 (1 + log(2π)) + N

2 log detQ+ αN logZ
]

(2.27)

where Z is the expression

Z =
∫ [

n∏
a=1

dradr̂a
2π

]
exp

−1
2

n∑
a,b=1
Qabr̂ar̂b + i

∑
a

rar̂a − β
∑
a

ν (ra − σ)
 (2.28)

Let’s notice that in the exponential of the integral (2.27) only the term Z depends
on the energy of the model, while the other terms coming from the Jacobian J(Q) are
entropic terms.

The replicated action

We can further develop the term Z by using the identity

exp
−1

2

n∑
a,b=1
Qabr̂ar̂b

 = exp
1

2

n∑
a,b=1
Qab

∂2

∂ha∂hb

 [ n∏
c=1

e−ir̂
chc

]∣∣∣∣∣
{hc=0}

(2.29)

which gives

Z = exp
1

2

n∑
a,b=1
Qab

∂2

∂ha∂hb

 [ n∏
c=1

∫ drcdr̂c
2π e−β ν(rc−σ)+ir̂c(rc−hc)

]∣∣∣∣∣
{hc=0}

=

= exp
1

2

n∑
a,b=1
Qab

∂2

∂ha∂hb

 [ n∏
c=1

e−β ν(hc−σ)
]∣∣∣∣∣
{hc=0}

(2.30)

Now we can write the average replicated partition function as

Zn
ξ = DN,n

∫ ∏
a<b

dQab

 exp
[
NS (Q) + Nn

2 (1 + log(2π))
]

(2.31)

where we have defined the replicated action

S (Q) = 1
2 log detQ+ α log exp

1
2

n∑
a,b=1
Qab

∂2

∂ha∂hb

 [ n∏
c=1

e−β ν(hc−σ)
]∣∣∣∣∣
{hc=0}

(2.32)

We can now put this expression back into the free-energy of eq. (2.15):

f = − lim
N→∞

lim
n→0

1
βN

∂nZn
ξ =

= −lim
n→0

lim
N→∞

∂n

DN,n

∫ ∏
a<b

dQab

 exp
[
NS (Q) + Nn

2 (1 + log(2π))
] (2.33)
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where in the second line we have exchanged the order of the limits so that we can use
the saddle point method to evaluate the integral over the n×n matrices Qab. The saddle
point approximation ∫ ∏

a<b

dQab

 exp [NS (Q)] ' exp [NS(Q∗)] (2.34)

requires to find the solution Q∗ of the saddle point equation
∂S (Q)
∂Qab

= 0 (2.35)

in order to get the free energy

f = −T2 (1 + log(2π))− T lim
n→0

∂nS (Q∗) (2.36)

The first term −T
2 (1 + log(2π)) is an irrelevant factor for our analysis, therefore it will

be neglected hereafter.

Solving the replica equations

Solving the saddle point equation (2.35) is a difficult problem. In principle, it could be
possible to analyze the equation for each of the n(n−1)

2 parameters Qab but it is unclear
what happens in the limit of n → 0 dimensional matrix. Another possibility is to make
an ansatz about the structure of the matrix Q, parametrize it accordingly and compute
S (Q) as an analytic function of the parameter n.
The first case we consider is having all the off-diagonal matrix elements equal to the same
value: this structure is symmetric under permutation of the replica indexes, therefore it
is called the replica symmetric solution.

2.3.2 The replica symmetric solution
The replica symmetric ansatz corresponds to assuming that the matrix Q solving the
saddle point equation (2.35) has 1 on the diagonal entries (due to the spherical constraint)
and the value qM in the off-diagonal ones:

Qab = δab + (1− δab)qM (2.37)
Let’s evaluate the replicated action with this matrix structure.
The entropic term becomes:
log detQ = log

[
(1− qM)n−1(1 + (n− 1)qM)

]
= (n− 1) log(1− qM) + log (1 + (n− 1)qM)

(2.38)
The energy term:

α logZ = α log exp
1

2

n∑
a,b=1
Qab

∂2

∂ha∂hb

 [ n∏
c=1

exp [−β ν(hc)]
]∣∣∣∣∣
{hc=−σ}

=

= α log exp
qM

2

(
n∑
a=1

∂

∂ha

)2

+ 1
2(1− qM)

n∑
a=1

∂2

∂h2
a

 [ n∏
c=1

exp [−β ν(hc)]
]∣∣∣∣∣
{hc=−σ}

=

= α log exp
qM

2

(
n∑
a=1

∂

∂ha

)2
 [ n∏

c=1
exp

[
1
2(1− qM) ∂

2

∂h2
c

]
exp [−β ν(hc)]

]∣∣∣∣∣
{hc=−σ}

(2.39)
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We develop the diffusion operator as a Gaussian convolution

e
w
2
∂2
∂h2 f(h) =

∫ ∞
−∞

dz√
2πw

e−
z2
2w f(h− z) := γw ∗ f(h) (2.40)

to get

α logZ = α log exp
qM

2

(
n∑
a=1

∂

∂ha

)2
 [ n∏

c=1
γ1−qM ∗ exp [−β ν(hc)]

]∣∣∣∣∣
{hc=−σ}

=

= α log exp
[
qM
2

∂2

∂h2

]
[γ1−qM ∗ exp [−β ν(h)]]n|{h=−σ} =

= α log γqM ∗
[
γ1−qM ∗ e−β ν(h)

]n∣∣∣
{h=−σ}

(2.41)

The replicated action under the replica symmetric ansatz is:

S(Q) = 1
2 [(n− 1) log(1− qM) + log (1 + (n− 1)qM)] + α log γqM ∗

[
γ1−qM ∗ e−β ν(h)

]n∣∣∣
{h=−σ}

(2.42)

To take the limit n→ 0, we can expand in n:

S(Q) ' nS̃(Q) = n

[
1
2 log(1− qM) + 1

2
qM

1− qM
+ αγqM ∗ log γ1−qM ∗ e−β ν(h)

∣∣∣
{h=−σ}

]
(2.43)

We finally get the RS free energy

−β fRS = ∂nS(QRS) =

= 1
2 log(1− qM) + 1

2
qM

1− qM
+ αγqM ∗ log γ1−qM ∗ e−β ν(h)

∣∣∣
{h=−σ}

(2.44)

Now the only parameter of the overlap matrix is qM and the saddle point condition
(2.35) corresponds to the condition d

dqM (−βfRS) = 0 that reads:

qM
(1− qM)2 = α

∫ dh√
2πqM

e
− h2

2qM

[
∂

∂h
log γ1−qM ∗ e−β ν(h−σ)

]2

(2.45)

The SAT phase

Studying the SAT phase in the limit T → 0 corresponds to recovering Gardner’s analysis.
In fact

e−β ν(h) →
β→∞

θ(h) (2.46)

and the convolution becomes

γ1−qM ∗ θ(h) = 1
2

1 + erf
 h√

2(1− qM)

 = Θ
 h√

2(1− qM)

 (2.47)
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where we have defined Θ(x) = 1
2 [1 + erf (x)], with erf being the error function erf(x) :=

2
∫ x

0
e−t

2
√
π
dt. So the value of qM is found by solving numerically the equation

qM
(1− qM)2 = α

∫ ∞
−∞

dh√
2qM

e
− (h+σ)2

2qM

 d
dh log Θ

 h√
2(1− qM)

2

(2.48)

which is solved for values of 0 < qM < 1 when we are in the SAT phase. Intuitively, the
value of 1 − qM gives a measure of how large the volume of solutions X of the CCSP
(2.3) is. When we get towards the UNSAT phase, the value of 1− qM decreases and the
transition line is defined by the limit qM → 1. Taking this limit in eq. (2.48), one obtains
the relationship between the control parameters α and σ which defines the transition line,
i.e. the jamming line (in the RS computation):

αJ(σ) =
[∫ σ

−∞

dh√
2π
e−

h2
2 (h− σ)2

]−1

(2.49)

Stability of the RS solution

Having found an extremum of the replicated action is not enough: we have to check that
it is stable at least against small fluctuations. To do so, we have to consider fluctuations
of the overlap matrix around our saddle point solution

Q = Q∗ + δQab (2.50)

and the corresponding expansion

S(Q) = S(Q∗) + 1
2
∑
a<b

∑
c<d

Mab;cdδQabδQcd =

= S(Q∗) + 1
8
∑
a6=b

∑
c 6=d

M̃ab;cdδQabδQcd
(2.51)

where

Mab;cd = δ2S(Q)
δQabδQcd

∣∣∣∣∣
Q=Q∗

(2.52)

and M̃ is its symmetrized version. At this point it is necessary to compute the terms that
contribute to Mab;cd under the RS ansatz and take the limit n → 0. For details of this
computation see Ref. [234, 4, 231].
It turns out that there is an eigenspace of the stability matrix whose corresponding eigen-
value can eventually become negative in some parts of the phase diagram and therefore
destabilize the RS solution: this eigenspace is usually called the replicon and the associ-
ated eigenvalue replicon eigenvalue. Its expression under the RS ansatz reads:

λreplicon = −2
 1

(1− qM)2 − αγqM ∗
[

d2

dh2 log γ1−qM ∗ e−β ν(h)
]2
∣∣∣∣∣∣
h=−σ

 (2.53)
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RS stability in the SAT phase

To see when the RS solution gets unstable, we can solve for the equation λreplicon = 0: it
gives the boundary line of stability of the RS solution and it is usually called deAlmeida-
Thouless (dAT) line [4]. Using the expression (2.47) for the convolution in the SAT phase
in eq. (2.53), we get

1
(1− qM)2 = α

∫ ∞
−∞

dhγqM (h+ σ)
 d2

dh2 log Θ
 h√

2(1− qM)

2

(2.54)

Analyzing this equation together with eq. (2.48), it turns out that it can be solved
only for σ ≤ 0. In fact, this is what we expect: as explained in section (2.2), for σ > 0 the
solutions of the CCSP live in a convex set, therefore they will form a connected island.
The existence of a single minimum (or a single basin of solutions) is what is associated to
the RS ansatz.
By expanding the convolution for qM → 1, it is easy to check that the dAT line starts from
the point (α = 2, σ = 0), that is exactly on the jamming line. Therefore the jamming line
for σ < 0 is in a portion of the phase diagram where the RS ansatz is unstable.

2.3.3 The RSB transition

When the RS solution is unstable, it is necessary to find another ansatz for the matrixQab.
This problem was first addressed in the context of spin-glasses, trying to solve the low-
temperature phase of the Sherrington-Kirkpatrick model [140, 39]. The solution was then
found by Parisi who proposed an iterative scheme of replica symmetry breaking (RSB).
This construction has been mathematically proven to be correct for the Sherrington-
Kirkpatrick model [227, 194, 122, 193] and it is believed to give a correct physical picture
in disordered mean-field models like the perceptron. In the following we study the Parisi
RSB solution.

RSB scheme

The central hypothesis is that the structure of the overlap matrix Q is a hierarchical one.
The simplest is the replica symmetric, which has the diagonal equal to 1 (due to the
spherical constraint) and the off-diagonal entries equal to q0.
The 1-step RSB is given by dividing the n replicas into n/m0 groups, each one of size m0.
Then the diagonal blocks have the diagonal equal to 1 and the off-diagonal entries equal
to q1, while the off-diagonal blocks are filled with the value q0. So the parameters of the
1-RSB matrix are the three numbers m0, q0, q1.
The 2-step RSB is constructed starting from the 1-step RSB matrix, considering its diag-
onal blocks of size m0 and dividing them in sub-blocks of size m1: the diagonal sub-blocks
are filled with the value 1 in the diagonal and the value q2 in the off-diagonal entries,
while the off-diagonal sub-blocks are left filled with the value q1. Therefore the 2RSB
hierarchical matrix has 5 parameters: m0, m1, q0, q1, q2.
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Figure 2.2: Hierarchical matrices following the 1RSB (left) and 2RSB (right) construc-
tions.

It is possible to continue this process creating a kRSB matrix starting from a (k-
1)RSB one, each time increasing the number of parameters: m0, ...mk−1, q0, ...qk. It is
worth noting that this kind of hierarchical matrices form an algebra: given two kRSB
matrices A and B with the same parameters {mi}i=0,...,k−1, their product C = AB is still
a kRSB matrix.
By this construction, the parameters mi satisfy the inequalities

n > m0 > m1 > ... > mk−1 > mk = 1 (2.55)

The limit n→ 0 requires some care. The parameters mi are inside the interval [1, n), but
when n → 0 the bounds get exchanged and mi ∈ (0, 1]. In particular, the inequalities
(2.55) exchange their direction as

n < m0 < m1 < ... < mk−1 < mk = 1 (2.56)

A more detailed discussion of this passage can be found in [168].
In the kRSB scheme with n→ 0, considering the parameters qi as functions of mi ∈ (0, 1],
a stepwise function q(x) is obtained. Repeating this scheme iteratively for k → ∞, the
function q(x) becomes a continuous one with x ∈ [0, 1]: this is the order parameter of a
RSB phase [199]. The k-step RSB construction is simply referred to as kRSB, while the
limit k →∞ is usually called fullRSB.

The fullRSB equations of the perceptron

Now we have to compute the replicated action (2.32) using an overlap matrix Q that has
a hierarchical structure parametrized by the function q(x). We remind that there are two
terms to compute: the entropic one

SE = 1
2 log detQ (2.57)

and the energy one

SI = α log exp
1

2

n∑
a,b=1
Qab

∂2

∂ha∂hb

 [ n∏
c=1

e−β ν(hc−σ)
]∣∣∣∣∣
{hc=0}

(2.58)
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Figure 2.3: Function q(x) in the kRSB case (left) and in the fullRSB case (right).

Starting with the entropic one, it turns out to be [234, 179]

1
2 lim
n→0

∂n log detQ = 1
2

[
log (1− 〈q〉) + q(0)

(1− 〈q〉)2 −
∫ 1

0

dx

x2
λ(x)

1− 〈x〉

]
(2.59)

with

λ(x) = 1− xq(x)−
∫ 1

x
dyq(y) 〈q〉 =

∫ 1

0
dyq(y) (2.60)

To compute the energy term, we proceed by finding a general formulation for the
kRSB scheme and then taking the limit k →∞. Let’s introduce the n× n matrix 1(n,mi)

that has diagonal blocks of size mi ×mi filled with ones and off-diagonal blocks with all
entries equal to 0. With this definition we can write the kRSB Q matrix as

Q =
k+1∑
i=0

(qi − qi−1)1(n,mi−1) (2.61)

with the conventional choice qk+1 = 1 and q−1 = 0. Therefore the energy term

SI = α log exp
1

2

k+1∑
i=0

(qi − qi−1)
n∑

a,b=1
1(n,mi−1)
a,b

∂2

∂ha∂hb

 [ n∏
c=1

e−β ν(hc−σ)
]∣∣∣∣∣
{hc=0}

(2.62)

Making the term i = k + 1 explicit:

SI = α log exp
1

2

k∑
i=0

(qi − qi−1)
n∑

a,b=1
1(n,mi−1)
a,b

∂2

∂ha∂hb

 exp
[

1
2(1− qk)

n∑
a=1

∂2

∂h2
a

] [
n∏
c=1

e−β ν(hc−σ)
]∣∣∣∣∣
{hc=0}

=

= α log exp
1

2

k∑
i=0

(qi − qi−1)
n∑

a,b=1
1(n,mi−1)
a,b

∂2

∂ha∂hb

 [ n∏
c=1

γ1−qk ∗ e−β ν(hc−σ)
]∣∣∣∣∣
{hc=0}

(2.63)

Let’s rename the convolution as

g(1, h) ≡ g(mk, h) := γ1−qk ∗ e−β ν(h−σ) (2.64)
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and make explicit the term i = k:

SI = α log exp
1

2

k−1∑
i=0

(qi − qi−1)
n∑

a,b=1
1(n,mi−1)
a,b

∂2

∂ha∂hb


exp

1
2(qk − qk−1)

n∑
a,b=1

1(n,mk−1)
a,b

∂2

∂ha∂hb

 [ n∏
c=1

g(mk, hc − σ)
]∣∣∣∣∣
{hc=0}

=

= α log exp
1

2

k−1∑
i=0

(qi − qi−1)
n/mk−1∑
a,b=1

1

(
n

mk−1
,
mi−1
mk−1

)
a,b

∂2

∂ha∂hb


exp

1
2(qk − qk−1)

n/mk−1∑
a,b=1

1

(
n

mk−1
,1
)

a,b

∂2

∂ha∂hb

 n/mk−1∏
c=1

gmk−1(mk, hc − σ)
∣∣∣∣∣∣
{hc=0}

=

= α log exp
1

2

k−1∑
i=0

(qi − qi−1)
n/mk−1∑
a,b=1

1

(
n

mk−1
,
mi−1
mk−1

)
a,b

∂2

∂ha∂hb

 n/mk−1∏
c=1

γqk−qk−1 ∗ gmk−1(mk, hc − σ)
∣∣∣∣∣∣
{hc=0}

=

= α log exp
1

2

k−1∑
i=0

(qi − qi−1)
n/mk−1∑
a,b=1

1

(
n

mk−1
,
mi−1
mk−1

)
a,b

∂2

∂ha∂hb

 n/mk−1∏
c=1

g(mk−1, hc − σ)
∣∣∣∣∣∣
{hc=0}

(2.65)

where we have defined

g(mk−1, h) := γqk−qk−1 ∗ gmk−1(mk, h) (2.66)

This process can be iterated defining at each step the function

g(mi−1, h) := γqi−qi−1 ∗ gmi−1/mi(mi, h) (2.67)

We can rewrite this definition in the continuum limit. Using the relationships

mi = x mi−1 ' mi − dx = x− dx qi − qi−1 = q̇(x)dx (2.68)

it becomes the differential equation

g(x, h)− dxġ(x, h) = g(x, h) + 1
2 q̇(x)g′′(x, h)− 1

x
g(x, h) log g(x, h) (2.69)

that we can recast as

ġ(x, h) = − q̇(x)
2 g′′(x, h) + 1

x
g(x, h) log g(x, h) (2.70)

where we are using the dot to indicate the derivative with respect to x and the prime
for the derivative with respect to h. The boundary condition of the partial differential
equation (2.70) is given by

g(1, h) = γ1−q(1) ∗ e−β ν(h) (2.71)

For convenience, this equation is usually written for the function

f(x, h) = 1
x

log g(x, h) (2.72)
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and takes the name of Parisi’s flow equation:ḟ(x, h) = − q̇(x)
2 [f ′′(x, h) + x(f ′(x, h))2]

f(1, h) = log γ1−q(1) ∗ e−β ν(h) (2.73)

This equation was first derived in the context of the Sherrington-Kirkpatrick model [199].
In fact, the form of the differential equation (2.73) is generic since it is due to the differ-
ential operator; the details of the model enter in the initial condition of the equation.
To conclude the computation of the energy term, at the end of the iteration we get

SI = α log e
q(0)

2 ∂2
hgn/m0(m0, h)|h=−σ → nαγq(0) ∗ f(0,−σ) n→ 0 (2.74)

Finally we can write the free energy of the perceptron in the fullRSB ansatz:

−β f [q(x)] = lim
n→0

∂nS(Q) =

= 1
2

[
log (1− 〈q〉) + q(0)

(1− 〈q〉)2 −
∫ 1

0

dx

x2
λ(x)

1− 〈x〉

]
+ αγq(0) ∗ f(0,−σ)

(2.75)

where f(0,−σ) is obtained from the solution of the flow equation (2.73): therefore this
expression depends both explicitly and implicitly on q(x).

FullRSB saddle point

To find the saddle point, we should take the functional derivative of the fullRSB free
energy with respect to the function q(x): this step is not straightforward since the function
f(x, h) depends implicitly on q(x) through the flow equation (2.73). Following [225], a
way to solve this task is by introducing the function P (x, h) as a Lagrange multiplier to
enforce the flow equation:

S(Q) = 1
2

[
log(1− 〈q〉) + q(0)

(1− 〈q〉)2 −
∫ 1

0

dx

x2
λ(x)

1− 〈x〉

]
+ αγq(0) ∗ f(0,−σ)+

− α
∫ ∞
−∞

dhP (1, h)
[
f(1, h)− log e−β ν(h)

]
+

+ α
∫ 1

0
dx
∫ ∞
−∞

dhP (x, h)
[
ḟ(x, h) + q̇(x)

2
[
f ′′(x, h) + x (f ′(x, h))2]]

(2.76)

Taking the functional derivative with respect to P (x, h) gives back the flow equa-
tion. Instead, the functional derivative with respect to f(x, h) and f(0, h) gives a new
differential equation for P (x, h):

Ṗ (x, h) = q̇(x)
2

[
P ′′(x, h)− 2x (f ′(x, h)P (x, h))′

]
P (0, h) = 1√

2πq(0)
e−

(h+σ)2
2q(0)

(2.77)

Taking the derivative with respect to q(x) [234, 225], we get the final equation

q(0)
(1− 〈q〉)2 +

∫ x

0
dy

q̇(y)
λ2(y) = α

∫ ∞
−∞

dhP (x, h) (f ′(x, h))2 (2.78)
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The function P (x, h) for x→ 1 is related to the probability distribution of gaps ρ(h).
Using q(x) as a variable instead of x, with q(1) = qM , the relation reads

ρ(h) = 1
α

d f
d ν(h) = e−βν(h)

∫
dz P (qM , z)e−f(qM ,z)γ1−qM (z − h) (2.79)

The expression for ρ(h) in terms of P (q, h) is expressed explicitly for the linear potential
case in appendix A.

Marginal stability

We can obtain an important equation by deriving eq. (2.78) on both sides w.r.t. x:

1
λ2(x) q̇(x) = q̇(x)α

∫ ∞
−∞

dhP (x, h) (f ′′(x, h))2 (2.80)

When q̇(x) > 0 it becomes

1
λ2(x) = α

∫ ∞
−∞

dhP (x, h) (f ′′(x, h))2 (2.81)

To understand the physical meaning of this equation, it is useful to notice that in the
replica symmetric case it just becomes eq. (2.54) that defines the deAlmeida-Touless line
where there is the transition between the RS and RSB phase. In fact, it is related to the
stability of the saddle point and actually implies the marginal stability of the fullRSB
solution, related to the Hessian

δ2S(Q)
δq(x)δq(y) (2.82)

Marginal stability is a crucial feature in the context of the jamming universality class.
We will show how equation (2.81) is the connection between the replica formalism and
the property of isostaticity that is a landmark of the critical jamming transition.

Another useful relationship is obtained by deriving equation (2.81) for x:

x = λ(x)
2

∫∞
−∞ dhP (x, h) (f ′′′(x, h))2∫∞

−∞ dhP (x, h) (f ′′(x, h))2 (1 + λ(x)f ′(x, h))
(2.83)

Computing this quantity in the limit of approaching the RS phase from the RSB one, gives
the so called breaking point of q(x), that is the point x∗ where the profile of q(x) that is
constantly equal to qM in the RS phase starts to break in the smooth profile typical of the
fullRSB phase. The breaking point is useful to understand what kind of RSB transition
takes place. Its study in the case of the linear potential is done in appendix C.

2.3.4 The jamming line
We are now able to study the portion of the phase diagram where the RS solution is
unstable and we need the fullRSB ansatz. Computing the thermodynamic quantities in
this phase requires solving the partial differential equations (2.73-2.77), a task that can
be done only numerically. The most interesting part, however, is studying the solution of
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the problem when approaching the jamming line in the RSB phase: in this regime it is
possible to have an interesting theoretical description from an analytical point of view; in
particular, a scaling theory of the jamming transition is obtained.
The saddle point equations are

ḟ(x, h) = − q̇(x)
2 [f ′′(x, h) + x(f ′(x, h))2]

f(1, h) = log γ1−q(1) ∗ e−β ν(h)
Ṗ (x, h) = q̇(x)

2

[
P ′′(x, h)− 2x (f ′(x, h)P (x, h))′

]
P (0, h) = 1√

2πq(0)
e−

(h+σ)2
2q(0)

q(0)
(1− 〈q〉)2 +

∫ x

0
dy

q̇(y)
λ2(y) = α

∫ ∞
−∞

dhP (x, h) (f ′(x, h))2

λ(q) = 1− qM +
∫ qM

q
dpx(p)

(2.84)

where qm and qM stand for q(0) and q(1) respectively. In addition, marginal stability
implies

1
λ2(x) = α

∫ ∞
−∞

dhP (x, h) (f ′′(x, h))2

x = λ(x)
2

∫∞
−∞ dhP (x, h) (f ′′′(x, h))2∫∞

−∞ dhP (x, h) (f ′′(x, h))2 (1 + λ(x)f ′(x, h))

(2.85)

In the SAT phase, the typical cluster of solutions has size 1− qM ; in the jamming limit,
each one of these clusters shrinks to a point, corresponding therefore to the limit qM → 1.
We can call ε the (small) distance from the jamming line (it can be |α− αJ | or |σ − σJ |)
and correspondingly the maximum overlap behaves like

qM = 1− εκ (2.86)

Looking at the functions appearing in our equations, it is convenient to rescale them as

y(q) = x(q)
ε

f̂(q, h) = εf(q, h)

λ̂(q) = λ(q)
ε

(2.87)

from which it follows that y(q) ∈ [0, 1
ε
]. From eq. (2.86) we also get that in the limit

q → 1

y(q) '
q→1

y(1− q)− 1
κ (2.88)

The form of the equations we are guessing is actually very reminiscent of the scaling
solution of hard-spheres close to jamming in infinite dimensions [62, 200].
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Scaling of the flow equation for f(q, h)

Remembering that in the SAT phase e−β ν(h) = θ(h), the boundary condition for the
function f(q, h) is given by

f(qM , h) = log γ1−qM ∗ θ(h) = log Θ
 h√

2(1− qM)

 =
 0 h→ +∞
− h2

2(1−qM ) h→ −∞
(2.89)

We can also show that the flow equation for f(q, h) in (2.84) has an asymptotic solution

f(q, h) =
 0 h→ +∞
− h2

2λ(q) h→ −∞
(2.90)

that is compatible with the condition (2.89). The regime h → +∞ is a trivial solution,
while the one for h→ −∞ can be checked by plugging it into the flow equation. In fact,
the left hand side becomes

ḟ(q, h) = − x(q)
λ2(q)h

2 (2.91)

that is equal to the right hand side

−1
2
[
f ′′(q, h) + x(q) (f ′(q, h))2] = −1

2

[
− 1
λ(q) + x(q) h2

λ2(q)

]
' − x(q)

2λ2(q)h
2 h→ −∞

(2.92)

It is convenient to define the function

m(q, h) = λ(q)f ′(q, h) (2.93)

so that the flow equation for f(q, h) becomes a flow equation for m(q, h):

ṁ(q, h) = −1
2m

′′(q, h)− y(q)
λ̂(q)

m(q, h) [1 +m′(q, h)] (2.94)

with boundary conditions

m(q, h) =
 −h h→ −∞

0 h→ +∞
(2.95)

To find the scaling equation of m(q, h) for q → 1, it is necessary to see what happens to
the ratio y(q)/λ̂(q) in this limit:

y(q)
λ̂(q)

= y(q)
(1− qM)/ε+

∫ qM
q dpy(p) = y(1− q)−1/κ

εκ−1(1− y κ
1−κ) + y κ

κ−1(1− q)(κ−1)/κ (2.96)

where we have used the scalings (2.86-2.88). In the regime 1− q << εκ we get

y(q)
λ̂(q)

' κ− 1
κ

1
1− q (2.97)
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Let’s notice that we are studying the solution in the regime qM → 1, q → 1 and
1− q >> 1− qM .

We can finally consider the scaling ansatz for m(q, h) in the limit q → 1 as having the
form

m(q, h) = −
√

1− q M
(

h√
1− q

)
M(t→∞) = 0 M(t→ −∞) = t (2.98)

Plugging this ansatz into the equation (2.94) and using the scaling (2.97) we get

M(t)− tM′(t) =M′′(t) + 2κ− 1
κ
M(t) (1−M′(t)) (2.99)

This is the first of our equations describing the universality of the jamming transition.
It depends on the only parameter κ and admits a unique solution with the boundary
conditions (2.98).

Scaling of the flow equation for P (q, h)

The flow equation for the function P (q, h) has boundary condition

P (qm, h) = γqm(h+ σ) (2.100)

As before, we can find the asymptotic solutions

P (q, h) =
 γq(h+ σ) h→ +∞
∝
√
D(q)e−D(q)h2

h→ −∞
(2.101)

In fact, for h → ∞ we have f(q, h) ' 0 and therefore the flow equation for P (q, h)
becomes

Ṗ (q, h) ' −P
′′(q, h)

2 h→ +∞ (2.102)

For h→ −∞, we have f(q, h) ' h2

2λ(q) which gives

Ṗ (q, h) = P ′′(q, h)
2 + y(q)

λ̂(q)
[hP ′(q, h) + P (q, h)] (2.103)

that is solved by the form (2.101) given that D(q) solves the equation

Ḋ(q) = −2D2(q) + 2D(q)κ− 1
κ

1
1− q (2.104)

where again we are using the scaling (2.97) for y(q)/λ̂(q). If κ < 2, as we will check it is
the case, equation (2.104) provides the scaling for q → 1

D(q) ' D(1− q)−2(κ−1)/κ q → 1 (2.105)

This is very useful because it allows us to see the scaling variable of P (q, h) for h negative;
so we should have

P (q, h) =
 P+(h) h >>

√
1− q

(1− q)−κ−1
κ P−

(
h

(1−q)(κ−1)/κ

)
h ∼ −(1− q)(κ−1)/κ (2.106)
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Looking at this expression, there should me a matching regime between P+ and P−;
therefore, we conjecture that the complete scaling solution for P (q, h) when q → 1 has
the form

P (q, h) =


P+(h) h >>

√
1− q

(1− q)− aκP0
(

h√
1−q

)
|h| ∼

√
1− q

(1− q)−κ−1
κ P−

(
h

(1−q)(κ−1)/κ

)
h ∼ −(1− q)(κ−1)/κ

(2.107)

where a is a scaling exponent. The scaling variable t = h√
1−q is chosen to be equal to the

one of the equation (2.99) and in fact it gives a non-trivial differential equation for P0(t).
The three scaling regimes should match and so the functions P−, P0, P+. For h < 0,
supposing

P−(t) ∼ |t|θ t→ 0−

P0(t) ∼ |t|θ t→ −∞
(2.108)

we get the relationship between the exponents

θ = 2 (1− κ+ a)
κ− 2 (2.109)

Similarly, for h > 0 assuming

P0(t) ∼ t−γ t→ +∞
P+(t) ∼ t−γ t→ 0+ (2.110)

we get

γ = 2a
κ

(2.111)

Putting the matching part of the scaling ansatz (2.107) into the flow equation for P , we
get a non-trivial equation for P0:

a

κ
P0(t) + 1

2tP
′
0(t) = 1

2P
′′
0 (t) + κ− 1

κ
[P0(t)M(t)]′

P0(t→ −∞) ∼ |t|2(1−κ+a)/(κ−2) P0(t→ +∞) ∼ t−2a/κ
(2.112)

Having fixed κ and found the solution M(t), there is a unique solution P0(t) for
equation (2.112) that satisfies both the boundary conditions for a unique value of a(κ).

Fixing the exponent κ

Up to now, the scaling equations (2.99) and (2.112) depend on a parameter κ: it can be
fixed internally byM(t) and P0(t) by using equation (2.85):

κ− 1
κ

= 1
2

∫∞
−∞ dtP0(t)M′′(t)2∫∞

−∞ dtP0(t)M′(t)2 [1 +M′(t)] (2.113)

By solving the equations (2.99), (2.112) and (2.113) iteratively, the exponent κ converges
to the value

κ = 1.4157... (2.114)
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and, correspondingly, the exponent a converges to

a = 0.2921... (2.115)

which satisfies, up to numerical precision, the relationship

a = 1− κ

2 (2.116)

This last equality (2.116) is found empirically and no theoretical explanation is yet avail-
able [200, 62].
In section 3.3.3 we report the plots of the functions obtained by numerically solving these
equations and we confirm the values of the critical exponents reported in the literature.

Physical meaning of the scaling solution

By solving the CCSP given by the perceptron, it is possible to study the distribution ρ(h)
of gaps hµ. This distribution can be obtained from the function P (q, h) for q → 1. At the
critical jamming line, there is a number of marginally satisfied gaps hµ ≡ 0 equal to N−1
(a degree of freedom is blocked by the spherical constraint for the X): there is therefore the
emergence of isostaticity, as in the jamming of hard spheres. This property corresponds
to equation (2.81) in the language of replica symmetry breaking, that corresponds to
marginal stability. This correspondence is made explicit in section 3.3.3 for the linear
potential case (particularly in equation 3.165).
Looking at the distribution of small positive gaps, it exhibits a power law

ρ(h) ∼ h−γ h→ 0+ (2.117)

that is exactly the scaling solution ρ(h) ∼ P+ ∼ h−γ we have found in (2.110). The value
of the exponent γ is fixed by κ to

γ = 0.41269... (2.118)

A set of Lagrange multipliers, that play the role of contact forces fc, is associated to
the marginally satisfied gaps hc ≡ 0, in analogy with the case of sphere packings. The
distribution of these forces ρ(f) has a pseudo-gap appearing for small values of f

ρ(f) ∼ f θ f → 0+ (2.119)

that is exactly the scaling solution ρ(f) ∼ P−(f) ∼ f θ appearing in eq. (2.108) (the
conncetion between ρ(f) and P−(f) is made explicit in appendix A). Also the value of θ
depends on κ and turns out to be

θ = 0.42311... (2.120)

Between these two exponents there is the relationship

γ = 1
2 + θ

(2.121)

which was found in the context of jamming of hard spheres using scaling arguments[247,
248]. This argument tells that stability in a jammed packing is achieved if γ ≥ 1

2+θ , while
the equality (2.121) implies marginal stability. There is no direct way of obtaining this
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relationship in the context of the fullRSB equations, but it is actually implied indirectly
by the equality a = 1− κ

2 that is verified empirically.
There is also a physical interpretation of the exponent κ. In fact, in the context of hard
spheres, the order parameter is given by the mean-square displacement ∆ab between two
different configurations. In the infinite dimensional limit, where the mean-field replica for-
malism applies, these mean-square displacements are distributed according to a function
∆(x) whose maximum value is ∆EA, describing the size of a typical cluster of solutions.
In the jamming limit, these clusters shrink to a point, corresponding to ∆EA → 0, exactly
what happens in the perceptron with 1− qM → 0. Since in the jamming of hard spheres
the pressure diverges, the relationship becomes

∆EA ∼ p−κ (2.122)

Interestingly, the exponent κ is the same both for spheres and the perceptron, and con-
sequently also the other exponents γ and θ. This is due to the emergence of universality
of the jamming transition.

2.4 The harmonic perceptron
Up to now we have explored the phase diagram of the perceptron below the satisfiability
line. However, the replica equations derived in section (2.3) with the factor e−β ν(h) are
completely general for a potential of the form ∑

µ
ν(hµ). Now we study the perceptron

above the saturation line, with a harmonic cost function for the unsat gaps

H =
∑
µ

1
2h

2
µθ(−hµ) (2.123)

We will generally refer to this model as the harmonic perceptron. After Elisabeth Gardner,
other attempts of studying the perceptron above the satisfiability line with different po-
tentials were done in the ’90s[164, 41, 124, 125]. Here we present the results as presented
in [105].

2.4.1 The UNSAT replica symmetric phase
We can start by rewriting the replica symmetric free energy of the perceptron

−β fRS = 1
2 log(1− qM) + 1

2
qM

1− qM
+ αγqM ∗ f(qM , h)|{h=−σ} (2.124)

with

f(qM , h) = log γ1−qM ∗ e−β
h2
2 θ(−h) (2.125)

We want to study the model in the UNSAT phase in the limit of zero temperature:
therefore, the system sits in the only minimum which gives

qM →
T→0

1 (2.126)

and the replica symmetric ansatz implies the validity of linear response theory (i.e. the
square displacements < |δX |2 > grow linearly in T ) which corresponds to

qM ∼ 1− χT (2.127)

where χ is a constant fixed by the saddle point equation. χ is clearly a susceptibility.
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Expansion of f(qM , h) for T → 0

The first step is to compute f(qM , h) in the zero temperature limit β → ∞ using the
linear response relation

β(1− qM) = χ (2.128)

We get

f(qM , h) = log γ1−qM ∗ e−β
h2
2 θ(−h) =

= log
∫ ∞
−∞

dz√
2πχT e

−β2

[
(h−z)2
χ

+z2θ(−z)
] (2.129)

Since β →∞, we can use the saddle point method by finding z∗ defined by

d
dz

[
(h− z)2

2χ + z2

2 θ(−z)
]∣∣∣∣∣
z∗

= 0 (2.130)

which gives

z∗ =
 h h > 0

χ
1+χh h < 0

(2.131)

Therefore we have

f(qM → 1, h) = log e−
β
2

[
(h−z∗)2

χ
+z∗2θ(−z∗)

] ∫ ∞
−∞

dz√
2πχT e

−β2 ( 1
χ

+θ(−z∗))(z−z∗)2 =

'

 0 h > 0
−β h2

2(1+χ) h < 0

(2.132)

It’s worth noting that there is a matching region around h ∼ 0 between these two be-
haviors. In particular, the matching part is for h ∼

√
χT , so we can rescale the variables

z′ = z√
χT

and h′ = h√
χT

and define

f(qM , h) = log
∫ ∞
−∞

dz′√
2π
e−

1
2 [(h′−z′)2+χz′2θ(−z′)] := F

(
h√
χT

)
, h ∼

√
χT (2.133)

Wrapping everything up, we have

f(qM → 1, h) =


0 h >>

√
χT

F
(

h√
χT

)
|h| ∼

√
χT

−β h2

2(1+χ) h << −
√
χT

(2.134)

The replica symmetric saddle point

We can now easily solve the saddle point equation (2.45) that fixes the value of qM :

qM
(1− qM)2 = α

∫ dh√
2πqM

e
− h2

2qM [f ′(qM , h)]2 (2.135)
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In the limit T → 0, qM ' 1− χT , it becomes

1
χ2 = α

(1 + χ)2

∫ σ

−∞

dh√
2π
e−

h2
2 (h− σ)2 (2.136)

We see that the equation fixes the value of the susceptibility χ, since qM is required to
take the value 1. The last equation can be rewritten using the relation (2.49) for the
transition line αJ(σ) =

[∫ σ
−∞

dh√
2πe
−h

2
2 (h− σ)2

]−1
:

(
1 + 1

χ

)2

= α

αJ(σ) (2.137)

Energy

In the limit T → 0, the ground state energy is simply given by

eRS = lim
T→0

fRS(qM → 1) = − 1
2χ + α

2(1 + χ)

∫ σ

−∞

dh√
2π
e−

h2
2 (h− σ)2 (2.138)

Using again the expression for αJ(σ) and the saddle point condition (2.137), it reads

eRS = 1
2χ2 = 1

2

(√
α

αJ(σ) − 1
)2

(2.139)

Stability of the RS solution in the UNSAT phase

To check in which parts of the phase diagram the RS solution is stable, we have to compute
the replicon eigenvalue defined in equation (2.53) and check when it is positive. We can
write the equation for the dAT line in the UNSAT phase as

1
(1− qM)2 = α

∫ ∞
−∞

dhγqMf
′′(qM , h)2 (2.140)

Using the asymptotic limit T → 0, qM → 1, it becomes

1
χ2 = α

(1 + χ)2

∫ σ

−∞

dh√
2π
e−

h2
2 (2.141)

Substituting the saddle point condition (2.137):

1 = αJ(σ)
∫ σ

−∞

dh√
2π
e−

h2
2 (2.142)

This equation is solved only for σ = 0. Therefore, we have obtained that also in the
UNSAT phase the RS solution is stable for σ > 0 and in the region σ < 0 we need to
break the replica symmetry.
While in the SAT phase this condition is easy to understand due to convexity arguments,
in the UNSAT phase this condition is less obvious as it will become clear in chapter 3
when discussing the linear perceptron.
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Jamming limit

Going towards the transition line from the UNSAT phase for σ > 0, it is possible to study
the (non-critical) jamming transition. Since, for T ' 0, in the SAT phase we have qM < 1
and in the UNSAT phase qM ' 1−χT , the matching between the two conditions is made
asking that

jamming line: χ→∞ (2.143)

In fact, the saddle point equation (2.137) gives α→ αJ(σ) for χ→∞.
Expanding for χ → ∞ and α = αJ(σ) + δα, the following scaling relationships are
obtained:

1
χ
' δα

eRS ' δα2
(2.144)

Equivalently, expanding for σ = σJ + δσ, we can approximate the integral as

∫ σ

−∞

dh√
2π
e−

h2
2 (h− σ)2 '

∫ σJ

−∞

dh√
2π
e−

h2
2 (h− σJ)2 +

√ 2
π
e−

σ2
J
2 + σJ

(
1 + erf( σJ√

2
)
) δσ
(2.145)

and get:

1
χ
' cJ δσ

eRS '
c2
J

2 δσ2
(2.146)

where we have defined cJ = e
−σ2

J
/2

√
2π + σJ

2

(
1 + erf( σJ√2)

)
.

Looking at the gap distribution ρ(h) (derived from eq. (2.79)), in the limit χ→∞ it
is obtained that the number of zero gaps is still extensive but less than N :

c = α
∫ 0

−∞
dhρ(h) →

χ→∞
αJ(σ)Θ

(
σ√
2

)
< 1 (2.147)

where c stands for the isostaticity index. Therefore, the jamming in the RS phase, i.e.
when σ > 0, is not isostatic: it is actually hypostatic and non-critical. It is in fact a stable
line, and not a marginally stable one.
The crossing point between the RS jamming and the RSB critical jamming transition is
for σ = 0. In fact, the isostaticity index in eq. (2.147) becomes 1 for σ = 0, that is also
where the dAT line starts, signaling the transition to a glassy phase.

2.4.2 The UNSAT RSB phase
In the UNSAT fullRSB phase, it is necessary to solve the partial differential equations
(2.84) to get the physical quantities. However, in the limit T → 0 it is possible to find a
scaling solution inside the UNSAT phase, and then studying the matching with the scaling
solution studied in section 2.3.4 when moving towards the jamming line. The details of
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Figure 2.4: Behavior of the isostaticity index c along the jamming line. The jamming is
isostatic and critical for σ < 0 and is hypostatic and non-critical for σ > 0.

this computation are not discussed here and the interested reader can find them in Ref.
[105].
The same reference discusses also another feature of the phase diagram: for σ negative
enough, that is for σ < σRFOT , the system gets into a discontinuous 1RSB solution, which
is analogous of the random first order transition of glasses. The details of this discussion
are found in [105].

2.4.3 Hessian spectrum of the harmonic perceptron
The perceptron is very well suited for the analytical study of the vibrational spectrum.
In [106], the analysis is made for the harmonic perceptron in the UNSAT phase, showing
it reproduces the non-Debye scaling observed in soft-spheres near the jamming transition
[80, 56]. The Hessian of the harmonic perceptron reads

∂2H

∂Xi∂Xj

= 1
N

M∑
µ=1

ξµ,iξµ,iθ(−hµ) + η δij (2.148)

where η is the Lagrange multiplier associated to the spherical constraint |X |2 = N .
The Hessian is therefore a Wishart random matrix [244] with quality factor 1

o
, where

o =
∑M

µ=1 θ(−hµ)
N

, plus a constant shift η on the diagonal. Therefore the eigenvalue spectrum
follows the modified Marchenko-Pastur law [169]

ρ(λ) =

 (1− o)δ(λ− η) + 1
2π

√
(λ−λ−)(λ+−λ)

λ−η o < 1
1

2π

√
(λ−λ−)(λ+−λ)

λ−η o > 1
λ± = (

√
o± 1)2 + η

(2.149)

Three regimes can be distinguished:
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Figure 2.5: The phase diagram of the harmonic perceptron, reprinted from [105].

• in the RS phase λ− > 0 and the spectrum is gapped;

• in the RSB phase λ− = 0 and the spectrum is gapless, with a pseudogap ρ(λ) ∼
√
λ

for λ→ 0;

• in the RSB phase near the jamming transition, the spectrum develops a divergence
ρ(λ) ∼ 1√

λ
for λ→ 0 because η → 0−.

In frequency terms, ω =
√
λ, the density of states D(ω) in the fullRSB phase repro-

Figure 2.6: Reprinted from [106]. Spectrum of the Hessian obtained for α = 4 and
σ = −0.3, 0, 0.5, with N = 1600.
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duces the boson peak observed in soft spheres models near jamming [80, 56]:

D(ω) = 1
π

ω2√ωmax − ω2

ω2 + ω2
∗

∼

ω2 ω << ω∗

constant ω∗ < ω < ωmax
(2.150)

with ω∗ =
√
| η | → 0 at jamming.

Studying the Hessian in the SAT phase is less straightforward since the minima of the
systems are found in clusters of zero energy configurations. This is true also when ap-
proaching the jamming point in hard spheres system, where a jammed-UNSAT phase is
not defined. A possible approach is using an effective potential derived from the TAP free
energy [7, 5, 6].
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Chapter 3

The spherical perceptron with linear cost function

A short version of the results of this chapter is published in [108].

In this chapter we study the UNSAT phase of the perceptron with linear cost function,
that means substituting the potential ν(hµ) of chapter 2 with ν(hµ) = |hµ|θ(−hµ), so that
the Hamiltonian reads

H (X) =
∑
µ

|hµ|θ(−hµ) (3.1)

The most important feature of this potential ν(h) = |h|θ(−h) is that its derivative
ν ′(h) = −θ(−h) is piecewise constant with a discontinuity in the origin, therefore the
Hamiltonian (3.1) is non-differentiable. Moreover, the second derivative is a Dirac delta
ν ′′(h) = δ(h) which makes the Hessian a singular quantity. We will see that this singu-
larity in h = 0 has striking physical consequences.

The first studies of this model were made in the paper Perceptrons above saturation
[164] by P. Majer, A. Engel and A. Zippelius in 1993 where they focus on the UNSAT
phase of the perceptron in three different cases, namely with the potentials

• ν(h) = θ(−h), that is the Gardner-Derrida case [111];

• ν(h) = |h|θ(−h), the linear case which they simply call Perceptron cost function;

• ν(h) = h2θ(−h), the harmonic case called Adatron cost function.

It is very interesting to note fig. (3.2) reprinted from [164]: the authors studied
the linear cost-function and obtained that the distribution ρ(h) of gaps hµ (stabilities in
their language) has a Dirac delta for h = 0. They also studied the model beyond the
dAT instability line, where the RS solution is unstable, using a 1RSB approximation:
they obtained a smaller weight of the Dirac delta and a modification of ρ(h) in the
neighborhood of h = 0. We will show in this chapter that the correct procedure to study
the linear cost-function beyond the stability line is to use a fullRSB scheme, that gives
a weight of the Dirac delta equal to 1

α
(i.e. 0.25 in the case of fig. 3.2), where α is the

number of patterns divided by N , and a divergence of the distribution in its neighborhood
as ρ(h) ∼ |h|−γ for h→ 0.
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Figure 3.1: Reprinted from [164]: in their notation, kappa corresponds to σ in our model
and alpha to our α. The leftmost line corresponds to our jamming line for σ > 0. The
stability lines for the three cost functions they study are reported: the ones for the linear
(Perceptron) case and for the quadratic (Adatron) case are correct, while the stability
line of the Gardner-Derrida cost-function is wrong and it should instead coincide with the
capacity line (see ref. [41] for a discussion about this instability).

Figure 3.2: Reprinted from [164]: distribution of the quantities hµ + σ = 1√
N

X · ξµ
(delta or stabilities in their notation) for the linear cost-function. They notice that the
distribution has a Dirac delta in h = 0. Beyond the dAT stability line, the RS solution
is unstable and they use the 1RSB approximation: it decreases the weight of the Dirac
delta w.r.t. the RS case and it increases the values of the distribution around it.
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3.1 Numerical simulations
We start the study of the linear cost-function by performing numerical simulations.
We run a gradient descent algorithm starting from a random initialization, which corre-
sponds to a zero temperature quench from an infinite temperature configuration. If the
landscape of the function to minimize is convex, then we obtain the unique minimum of
the function, that corresponds to the ground state of our system; otherwise, if the land-
scape is glassy, a more thorough discussion about the accessible configurations is needed.
We keep this fundamental discussion for a later section when we compare the results of
the minimization with the computations describing the ground state.

For fixed values of α and σ, we want to minimize the function

H(X) =
∑
µ

(
σ − 1√

N
X · ξµ

)
θ (−hµ) (3.2)

with the spherical constraint |X |2 = N . Let’s notice that the gradient of this function
is discontinuous for every hµ = 0:

∇iH(X) = ∂

∂Xi

H(X) = − 1√
N

∑
µ

ξµ,iθ (−hµ) (3.3)

The gradient of H(X) is therefore the sum of all the UNSAT patterns at the given X.
We see that the condition of stationary point

∇H(X) = 0 (3.4)

with the gradient defined in eq. (3.3) is not a good condition to define a minimum of
the function. To address this issue we propose to regularize the function H(X) so that it
becomes differentiable (i.e. its derivative becomes continuous).

3.1.1 The smoothed potential

Regularization of the linear potential in h = 0

To regularize H(X) we introduce a smoothed linear potential νε(h) depending on a
smoothing parameter ε, defined as

νε(h) = |h|θ
(
−h− ε

2

)
+ 1

2ε

(
h− ε

2

)2
I
(
− ε2 < h <

ε

2

)
(3.5)

where I is the indicator function

I(a) =
 1 if a is true

0 if a is false
(3.6)

This smoothed potential has a continuous derivative:

ν ′ε(h) = −1θ
(
−h− ε

2

)
+
h− ε

2
ε

I
(
− ε2 < h <

ε

2

)
(3.7)
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and has a discontinuous second derivative

ν ′′ε (h) = 1
ε
I
(
− ε2 < h <

ε

2

)
(3.8)

It is clear that in the limit ε→ 0 this smoothed potential becomes the linear potential we
want to study:

lim
ε→0

νε(h) = ν(h) = |h|θ(−h) (3.9)

We can now use the smoothed Hamiltonian

Hε(X) =
∑
µ

νε(hµ) =
∑
µ

|hµ|θ
(
−hµ −

ε

2

)
+ 1

2ε

(
hµ −

ε

2

)2
I
(
− ε2 < hµ <

ε

2

)
(3.10)

It is interesting to notice that when a gap hµ has value in the interval (− ε
2 ,

ε
2), then its

energy contribution is only of order ε since

1
2ε

(
hµ −

ε

2

)2
∼ O(ε2)

2ε ∼ O(ε) (3.11)

while its contribution to the gradient is of order 1, since

1
ε

(
hµ −

ε

2

)
∈ (−1, 0) (3.12)

The quantity of equation (3.12) turns out to be particularly important for the stability of
the system and has a precise physical meaning that will be explained in the following.
For ease of notation, let’s define the set O of all the patterns µ so that hµ ≤ − ε

2 and the
set C of all the patterns µ whose gap is inside the ε-window around 0, i.e.

O =
{
µ : hµ ≤ −

ε

2

}
C =

{
µ : − ε2 < hµ <

ε

2

} (3.13)

Now we can write the smoothed Hamiltonian and its gradient as

Hε(X) =
∑
o∈O
|ho|+

∑
c∈C

1
2ε

(
hc −

ε

2

)2
(3.14)

and

∇Hε(X) = − 1√
N

∑
o∈O

ξo−
1√
N

∑
c∈C

ξc

ε
2 − hc
ε

(3.15)

Based on the observations made in equations (3.11-3.12), we can argue that

lim
ε→0

Hε(X) = H(X) (3.16)

but

lim
ε→0
∇Hε(X) 6= ∇H(X) (3.17)

if the number of patterns in the set C does not go to 0 for vanishing ε.
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Enforcing the spherical constraint |X |2 = N

Before describing the minimization algorithm, let’s add the spherical constraint on X to
the function to be minimized (3.14). It can be done simply by adding a term

ζ

4

(
N∑
i=1

X2
i −N

)2

(3.18)

with the constant ζ chosen to be large (it needs to be tuned numerically). We notice also
that

lim
ζ→∞

ζ

(
N∑
i=1

X2
i −N

)
= η (3.19)

with η being the Lagrange multiplier associated to the spherical constraint: this quantity
is very important since it turns out to control the convexity of the function we are mini-
mizing.
Putting everything together, we look for minima of the function

Lε(X) =
∑
o∈O
|ho|+

∑
c∈C

1
2ε

(
hc −

ε

2

)2
+ ζ

4

(
N∑
i=1

X2
i −N

)2

(3.20)

whose gradient reads

∇Lε(X) = − 1√
N

∑
o∈O

ξo−
1√
N

∑
c∈C

ξc

ε
2 − hc
ε

+ ζ

(
N∑
i=1

X2
i −N

)
X (3.21)

3.1.2 The minimization algorithm
We minimize (3.20) by annealing the regularization parameter ε.
When ε is bigger than the typical smallest non-zero gaps |hµ|, the landscape is smoothened
by the quadratic contribution. When ε is smaller than the smallest non-zero gap, then
the function (3.20) is equivalent to its original non-regularized counterpart. Therefore,
we start with a large regularization ε1 (we choose ε1 ∼ 10−2), perform the gradient-
descent minimization, reduce the regularization parameter to ε2 (we choose εi = εi−1/2)
and perform again the gradient-descent minimization starting from the previously found
configuration. We repeat this step n times until the regularization εn is small (we choose
εn ∼ 10−8).
Algorithm 1: Smoothed minimization

X(0) ← random point on the N−sphere (with |X(0) |2 = N);
ε1 ← εinitial;
for i in {1, ..., n} do

X(i) ← minimize Lεi(X) starting from X(i−1);
εi+1 ← εi/2;

end
Result: X∗ ← X(n)

This minimization procedure is performed for fixed values of the control parameters
α and σ.
For the gradient-descent minimization, we actually choose a quasi-Newton method to im-
prove the performance.
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Numerical and algorithm details

We explore the following intervals for the parameters in our computer simulations:

• N takes values from 64 to 2048;

• α takes values up to 5;

• σ can vary from −0.6 to 5;

• the constant of the term enforcing the spherical constraint can be chosen as an
arbitrary number much bigger than 1; we set it to ζ = 500;

• our starting regularization is εinitial = 10−2 and we perform n = 20 steps, halving ε
at each step, to arrive at a final εfinal = εinitial 2−19 ' 1.91 · 10−8.

The choices of εinitial, εfinal and the ε-decreasing rate at each step depend on N and
on the minimizer. We have chosen εinitial and the decreasing rate in an empirical manner,
based on the fact that they work reasonably well for the values of N we explore and the
minimizer we use.
The choice of εfinal is more important: ideally, we want it to be as small as possible. In
particular, the minimum configuration X∗ we want to reach has a gap distribution ρ(h)
with minimal non-zero gap hmin defined as

hmin = min
µ: |hµ|>0

|hµ| (3.22)

For large N , the value of hmin scales according to a power law depending on ρ(h) for
h ∼ 0. With the quite general assumption that

ρ(h) ∼ |h|p for |h| → 0, (3.23)

the condition
∫ hmin

0 ρ(h) ∼ 1
N

gives

hmin ∼ N−
1

1+p (3.24)

Therefore, our condition on εfinal is

εfinal << N−
1

1+p (3.25)

On the other hand, as previously observed, when a gap in the ε-window hc has a variation
δhc of order O(ε), the corresponding Hamiltonian variation δHε is of order O(ε2); for this
variation to be detectable, it has to be larger than the machine precision εmachine (in our
computer simulations εmachine ∼ 10−16). Therefore, the condition

δHε ≥ εmachine (3.26)

gives the bound

εfinal ≥
√
εmachine ∼ 10−8 (3.27)

For this reason, we choose εfinal ∼ 10−8. Let’s notice that the condition
√
εmachine ≤ εfinal << N−

1
1+p (3.28)
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gives the limit of usability of the smoothed potential; eventually, for N large enough, we
may not be able to use this technique to study the minima of the linear cost-function.
Empirically, we do not run into this problem for the linear perceptron model with the
values of N we study. In the case of linear spheres, some care is needed, as we discuss in
chapter 4.

The quasi-Newton method we use for the gradient-descent-like minimization is the
Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS) [48]. We use a
Fortran implementation of this algorithm [260, 185] available through a Python interface
in the library SciPy [240].

3.1.3 Results of the numerical simulations
In this section, we present the numerical results obtained from the algorithm described
in the previous section 3.1.2.
To get a glimpse of how the minima of our system look like, we report a plot of the
distribution ρ(h) of gaps hµ for a minimal configuration in the UNSAT phase, let’s say
α = 2, σ = 0.31.

0

0.2

0.4

0.6

0.8

1

−3 −2 −1 0 1 2 3

ρ
(h
)

h

Figure 3.3: gap distribution for α = 2, σ = 0.31, N = 2048, averaged over 5 samples.

From figure 3.3, we see a concentration of gaps at the value h = 0. This peak in the
distribution comes from an extensive number of gaps in the ε-window around 0, meaning
that the set C has a number of elements proportional to N . We refer to the gaps in C as
contacts, in analogy to sphere models where a couple of touching spheres has zero gap
between them. We call

C = |C| = number of contacts (3.29)

In the numerical simulations hc ∈ (− ε
2 ,

ε
2), so in the limit ε → 0 we get hc → 0. The

value of C converges to an extensive number when decreasing ε. In particular, since C is
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a discrete quantity, we notice that it reaches its convergence for ε smaller than a certain
value (dependent on N).

720
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735
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750

10−8 10−7 10−6 10−5 10−4 10−3 10−2

C

ε

Figure 3.4: Dependence of the number of contacts C with respect to the smoothing
parameter ε during minimization. Each color represents a different sample with the same
parameters N = 1024, α = 1.5, σ = 0.6.

We can therefore define an isostaticity index c

c = C

N
(3.30)

that measures how many contacts are present in a given configuration.

We make two remarks:

• in the harmonic potential case, discussed in section 2.4, a peak of zero gaps appears
only at the satisfiability threshold (the jamming transition), while here it appears
also deep inside the UNSAT phase;

• this behavior is in line with the results of [164] as replotted in figure 3.2, where their
distribution of stabilities (corresponding to our hµ) has a Dirac delta.

Why there are contacts in the minima of the linear potential

In the harmonic potential case, a peak of zero gaps can appear only at the jamming
transition for rigorously zero pressure. This is true for any convex potential of the kind
ν(h) = |h|aθ(−h) with a > 1. In fact, let’s consider such a configuration at jamming and
let’s say that we want to apply an infinitesimal compression. To destabilize a contact and
make it a slightly negative gap, that is changing a gap from h = 0 to h = δh < 0, we
need to increase the energy of the system by a quantity δE = |δh|a. It means we need to
provide a work δW = f |δh| with a force of order f ∼ |δh|a−1, which is an infinitesimal
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quantity for a > 1.
In the linear case ν(h) = F |h|θ(−h), with a slope F ∼ O(1), the energy increase δE =
F |δh| and the work δW = f |δh| requires a force at least bigger than the slope of the
linear potential, i.e. f ≥ F . It means that an infinitesimal compression is not sufficient to
destabilize a contact. Indeed, a contact can sustain a compression force whose intensity
is in the interval (0, F ).
In our model, the slope of the linear energy is F = 1 and the contacts are always present
in the UNSAT phase, therefore we expect the presence of associated contact forces. In
fact, they appear quite naturally in the gradient of the smoothed Hamiltonian we have
defined: in equation (3.15), it is possible to recognize the terms

fc = ε/2− hc
ε

∈ (0, 1) (3.31)

that are exactly the forces associated to the contacts. Making these contact forces
explicit in the gradient of the energy and including the term enforcing the spherical
constraint |X |2 = N , we get

∇L(X) = − 1√
N

∑
o∈O

ξo−
1√
N

∑
c∈C

ξc fc + ηX (3.32)

The Lagrange multiplier of the spherical constraint η is very important since the
convexity of the energy landscape depends on its sign. Its value is fixed by the condition
∇L(X) = 0 and is an observable of the system. We discuss further its role in section
3.2.2 looking at the Hessian of the model. For the moment, we simply state that

• for η > 0 we have a convex phase (described by the replica symmetric ansatz);

• for η < 0 we have a non-convex phase (described by a replica symmetry breaking
ansatz).

In the following we present the numerical results in two different sections of the UNSAT
phase. In particular, we report the isostaticity index c, the Lagrange multiplier η, the
energy, the number of negative gaps (overlaps), the empirical distributions of gaps ρ(h)
and of contact forces ρ(f).

The convex/Replica-symmetric phase

Fixing the value of α = 1.5, we study minima of the systems for different values of σ in
the UNSAT phase. According to equation (2.49), the satisfiability (jamming) transition
for α = 1.5 is at σJ ' 0.186, therefore we consider σ > σJ . We know that the jamming
at α = 1.5 is hypostatic, since from equation (2.147)

c|σJ ' 0.86 < 1 (3.33)

At the RS jamming line, the system is convex and has a single minimum. These properties
remain valid when entering in the UNSAT phase by increasing σ.

In figure 3.5, we see that the isostaticity index c remains smaller than 1 and is a
decreasing function of σ. This means that the number of contacts in the system, that
is smaller than N at σJ , decreases further when increasing σ. The system is therefore
hypostatic. We also notice that the Lagrange multiplier of the spherical constraint η is
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Figure 3.5: Isostaticity index c and Lagrange multiplier of the spherical constraint η for
α = 1.5 and different values of σ. Values averaged over 69 samples with N = 2048. This
plot shows that in this region of the phase diagram the system is hypostatic c < 1 and
that η > 0 which implies convexity (see section 3.2).
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Figure 3.6: Intensive energy e = H(X∗)/N and number of overlaps O divided by N ,
o = O/N . Values averaged over 69 samples with N = 2048. As expected, e and o tend
to 0 for σ going to σJ .
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positive and is an increasing function of σ, implying that the model is convex. In this
phase, hypostaticity and positive η come together.
In figure 3.6, we see the increase of the energy and of the number of overlaps with respect
to σ. As expected, they tend to 0 when approaching the unjamming transition at σJ .
The detailed study of their behavior for σ → σJ is very interesting and it is performed in
chapter 5 where we use the pressure as control parameter instead of σ.
In the plots of fig. 3.7-3.10, we report the evolution of the distributions of gaps and
contact forces. Going deeper into the UNSAT phase increases the number of negative
gaps (overlaps) and pushes the bulk of the distribution of contact forces from 0 towards
1. In section 3.3.1, we show that these distributions in the replica symmetric phase are
Gaussian.

Plots of the gap distribution ρ(h) and contact force distribution ρ(f) at
α = 1.5, N = 2048, averaged over 69 samples.

0

0.2

0.4

0.6

0.8

1

−3 −2 −1 0 1 2 3

ρ
(h
)

h

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1

ρ
(f
)

f

Figure 3.7: σ = 0.25, energy e = 0.02
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Figure 3.8: σ = 0.5, energy e = 0.15
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Figure 3.9: σ = 0.75, energy e = 0.33
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Figure 3.10: σ = 1.25, energy e = 0.85

We complete this data analysis by checking the behavior of the distribution ρ(h) for
h→ 0+ and h→ 0− and of the distribution ρ(f) for f → 0+ and f → 1−. From the figs.
3.7-3.10, we expect them to go to constant values. In fact, as shown in fig. 3.11, their
respective cumulative distributions have a linear behavior. Therefore, this phase is stable
(not just marginally) and there is no critical behavior.

74



3.1. NUMERICAL SIMULATIONS

10−4

10−3

10−2

10−1

1

10−3 10−2 10−1 1

C
D
F

|h|

h > 0
h < 0

x

10−4

10−3

10−2

10−1

1

10−3 10−2 10−1 1

C
D
F

f , 1− f

f
1− f

x

Figure 3.11: Left panel. Cumulative distribution functions (CDF) of positive/negative
gaps, defined as

∫ h
0 ρ(h′)dh′ and

∫ 0
h ρ(h′)dh′ respectively. Right panel. Cumulative dis-

tribution functions (CDF) of forces f and 1 − f , defined as
∫ f
0 ρ(f ′)df ′ and

∫ 1
1−f ρ(f ′)df ′

respectively.
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The non-convex/RSB phase

Fixing the value α = 4, we study the minima for different values of σ inside the UNSAT
phase. We know that for α = 4 the jamming transition occurs at σJ ' −0.4 (it is possible
to use equation (2.49) as an approximation). As discussed in chapter 2, the jamming line
for σ < 0 is a critical line belonging to the universality class of the jamming of spheres.
The energy landscape is glassy, with many marginally stable minima, and the system is
isostatic at the transition:

c|σJ = 1 (3.34)

The data we present in this section show that the isostaticity and the criticality do
not disappear when the system enters in the UNSAT phase with the linear potential, very
differently from other common potentials where the critical behavior is washed out.
Performing the minimization with the smoothed Hamiltonian, we see that the number of
contacts C converges to exactly N − 1, with basically no fluctuations 1.
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10−8 10−7 10−6 10−5 10−4 10−3 10−2

C

ε

Figure 3.12: Evolution of the number of contacts C with respect to ε, for α = 4, σ = 0,
N = 1024. It shows that C converges to N − 1 = 1023. Each color represents a different
sample.

The reason why C converges to exactly N − 1 is that the number of free degrees of
freedom is N − 1: one constraint is given by the spherical condition |X |2 = N . In fact,
this constraint provides the Lagrange multiplier η which is basically a reaction force, and
together with the contact forces fc they form a complete set of N forces stabilizing the
configuration. Therefore, in a portion of the UNSAT phase the system is isostatic.
The reason for isostaticity comes from the fact that in this phase the energy landscape
is non-convex. This can be seen from the fact that η < 0. In figure 3.13, we plot the
behavior of c and η at α = 4 for increasing σ. We see that the system is isostatic as

1Numerically, C can have fluctuations of O(1), but the associated gradient deteriorates abruptly.
Equilibrium configurations (i.e. with zero gradient) are found only for C = N − 1.
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long as η is negative, and finally becomes hypostatic when η becomes positive. We can
therefore state that

c = 1 for η < 0 (non-convexity) (3.35)

The reason why (3.35) is true is that, in a non-convex landscape and a linear potential,
the only way to stabilize the configuration is to constrain all the degrees of freedom. This
argument will become apparent in section 3.2.2.

In figure 3.14, we report the behavior of the energy and of the number of overlaps. It
is surely very interesting to understand the scaling of these quantities at the unjamming
transition. We study it in detail in chapter 5. Here we anticipate that the number of
overlaps o (usually called ∆z in the jamming literature) does not behave according to the
universal scaling o ∼

√
σ − σJ .
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Figure 3.13: Isostaticity index c and Lagrange multiplier of the spherical constraint η at
α = 4 for increasing σ in the UNSAT phase. It shows the existence of an isostatic phase
(with η < 0) and then the transition to a hypostatic one (with η > 0). Data for N = 1024
averaged over 100 samples.

77



CHAPTER 3. THE SPHERICAL PERCEPTRON WITH LINEAR COST FUNCTION

0

0.5

1

1.5

2

2.5

3

3.5

4

σJ 0 0.5 1 1.5 2.0

e,
o

σ

e
o

Figure 3.14: Energy e and number of negative gaps (overlaps) o at α = 4 for increasing
σ. For σ → σJ , they tend to 0 with a non-trivial behavior: the energy goes linearly with
logarithmic corrections, while the overlaps have a power-law exponent between 0.5 and 1
(discussed in 5). Data for N = 1024 averaged over 100 samples.

The connections of this non-convex phase with the critical jamming transition are
not limited to isostaticity. Surprisingly, also the critical exponents appear all over the
non-convex/UNSAT phase. Even more strikingly, the criticality appears to be richer
than what was known. In fact, at the jamming transition a power law divergence of the
distribution of small positive gaps ρ(h) ∼

h→0+
h−γ is observed together with a pseudo-

gap in the distribution of small forces ρ(f) ∼
f→0

f θ, with the two non-trivial exponents
γ ' 0.41269 and θ ' 0.4231 discussed in section 2.3.4.
In the critical phase of the linear cost-function, not only we observe both this behavior
for h→ 0+ and f → 0+ but also a similar one for h→ 0− and f → 1−. In fact, we have

ρ(h) ∼ |h|−γ for h→ 0± (3.36)

and

ρ(f) ∼ f θ for f → 0+

ρ(f) ∼ (1− f)θ for f → 1−
(3.37)

This richer criticality was never observed before. It is due to the fact that in this
model there are two kinds of excitations related to a contact hc = 0: making it positive
hc = δh > 0 or making it negative hc = δh < 0. In the same manner, there are two
ways of forming a contact: taking a positive gap hµ > 0 and closing it, or taking a
negative gap hµ < 0 and relaxing it to zero. These four processes are related to the four
exponents appearing for positive/negative small gaps and contact forces close to zero/one.
The interesting aspect is that these exponents only take the values γ and θ known for
the jamming universality. The reason why this holds is connected to marginal stability,
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discussed in section 3.4.1. Moreover, their equality appears naturally through a mapping
in the scaling solution of the model presented in section 3.4.
In the figures 3.15-3.21 we present the gap and force distributions for α = 4 and increasing
values of σ. We see that in the isostatic/non-convex phase the gap distribution has a
power law divergence for h → 0 from both sides and the contact force distribution has
two pseudogaps, one for f → 0 and one for f → 1. For σ > 0.6 the system enters into the
hypostatic phase, where the critical behavior and the corresponding power laws disappear.

Plots of the gap distribution ρ(h) and contact force distribution ρ(f) at α = 4,
N = 1024, averaged over 100.
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Figure 3.15: σ = −0.3, energy e = 0.06.
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Figure 3.16: σ = 0, energy e = 0.35.
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Figure 3.17: σ = 0.4, energy e = 1.02.
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Figure 3.18: σ = 0.5, energy e = 1.23.
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Figure 3.19: σ = 0.6, energy e = 1.46.
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Figure 3.20: σ = 0.7, energy e = 1.71.
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Figure 3.21: σ = 1.5, energy e = 4.21.

We conclude this section by measuring the critical exponents through their respective
cumulative distribution functions and showing that they are compatible, up to numerical
precision, with the exponents γ and θ of the jamming of spheres.
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Figure 3.22: Cumulative distribution functions (CDF) of positive/negative gaps (left
panel) and of forces close to 0 or 1 (right panel). In both cases, the exponents appear to
be compatible with the jamming ones γ ' 0.41 and θ ' 0.42. Data for α = 4, σ = 0.4,
N = 1024, averaged over 100 samples.

81



CHAPTER 3. THE SPHERICAL PERCEPTRON WITH LINEAR COST FUNCTION

3.2 Making sense of the linear potential
In this section, we use the evidence obtained from the numerical simulations to get a
better understanding of the model.
First of all, we have understood that the correct Hamiltonian (or, more precisely, the
Lagrangian) describing the system reads

H(X) =
∑
o∈O
|ho| −

∑
c∈C

fchc + η

2
(
|X |2 −N

)
(3.38)

whose gradient is

∇H(X) = − 1√
N

∑
o∈O

ξo−
1√
N

∑
c∈C

ξc fc + ηX (3.39)

with

fc ∈ (0, 1), ∀c ∈ C (3.40)

Equation (3.38) corresponds to its simpler version H(X) = ∑
o∈O
|ho| with the addition

of the constraints hc = 0 and |X |2 = N and their respective Lagrange multipliers. In
fact, the stationarity condition with respect to fc and η gives

∂ H
∂fc

= hc = 1√
N

ξc ·X−σ = 0, ∀c ∈ C

∂ H
∂ η

= |X |2 −N = 0
(3.41)

which are C + 1 constraints to be satisfied by X. Moreover, we can derive H with
respect to Xi for each component i = 1, ..., N and impose the equilibrium condition

∇H(X) = 0 (3.42)

to get

− 1√
N

∑
o∈O

ξoi −
1√
N

∑
c∈C

ξci fc + η Xi = 0 (3.43)

Given the two sets of overlaps O and contacts C, (3.43) represents a set of N equations,
to be solved together with the constraints (3.41).
The conditions (3.43) plus (3.41) form a set of N + C + 1 equations to be solved for the
unknowns

Xi, with i = 1, ..., N
fc, with c = 1, ..., C and fc ∈ (0, 1)
η

(3.44)
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whose total number is therefore N + C + 1.
Having the same number of equations and unknowns, one could think that, choosing
randomly two sets of linearly independent contact patterns ξc and unsat patterns ξo, it
is always possible to find the Xi, fc, η by solving the equations (3.43)-(3.41) and thus
obtaining a stable configuration of the system. The flaw in this statement is overlooking
the condition (3.40) on contact forces: there is no reason why a randomly chosen set C
would satisfy (3.43)-(3.41) with fc ∈ (0, 1).
The minimization procedure is therefore essential to find the sets C and O which allow
(3.43)-(3.41) to be solved with the constraint (3.40). Once C and O are known, finding
Xi, fc and η becomes a linear algebra procedure.

3.2.1 Equilibrium equations

Projecting equation (3.43) on the contact patterns − 1√
N
ξc
′ (i.e. multiplying (3.43) by

− 1√
N
ξc
′
i and summing over i), we get

1
N

ξc
′ ·
∑
o∈O

ξo + 1
N

∑
c∈C

ξc
′ · ξc fc − η

1√
N

ξc′ ·X = 0 (3.45)

Calling
1
N

ξc
′ ·
∑
o∈O

ξo = vc′

1
N

ξc
′ · ξc = Ξc′c

(3.46)

and noticing that 1√
N
ξc
′ ·X = σ for all c′ ∈ C, we can write (3.45) as∑

c

Ξc′c fc − σ η = vc′ (3.47)

The C×C matrix Ξc′c = 1
N
ξc
′ · ξc is a Wishart matrix since ξci is a standard normally

distributed random variable. Ξc′c is full rank, since C ≤ N .

In a similar manner, projecting 3.43 on X, we get

− 1√
N

∑
o∈O

ξo ·X− 1√
N

∑
c∈C

fc ξ
c ·X + η |X |2 = 0 (3.48)

where we can substitute 1√
N
ξc ·X = σ, |X |2 = N , − 1√

N

∑
o∈O

ξo ·X = ∑
o∈O
|ho|−σNo, with

No the number of overlaps |O|, and get

η = 1
N

(
∑
c

fc + No)σ − e (3.49)

where e is the intensive energy e = 1
N

∑
o∈O
|ho|. We can define the pressure p of the system

as

p = 1
N

∂H

∂σ
= 1
N

(
∑
c

fc + No) (3.50)
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and finally recast (3.49) as

η = pσ − e (3.51)

The quantity pσ − e is clearly the Legendre transform of the energy with respect to
σ, that at equilibrium turns out to be equal to η. Eventually, one could think to change
ensemble by using p as control parameter, letting σ become a variable and studying the
potential pσ − H. We use this approach in chapter 5.

Equilibrium in the isostatic phase

We have seen in section 3.1.3 the existence of a critical isostatic phase with

C = N − 1 (3.52)

The constraints (3.41)

hc = 1√
N

ξc ·X−σ = 0, ∀c ∈ C

|X |2 −N = 0
(3.53)

are therefore N equations that completely define X (except for a sign ±). In fact, the
linear system (we are summing on repeated indices)

1√
N
ξciXi = σ (3.54)

has an affine space of solutions of dimension 1, since the matrix ξci of dimension (N−1)×N
has a singular value equal to 0 with corresponding null-space (right singular vector) wi.
The solution to (3.54) is given by

Xi = σ√
N
ξci
∑
c′

Ξ−1
cc′ + k wi (3.55)

where we use Ξ−1 to indicate the inverse of the matrix Ξcc′ = 1
N
ξc · ξc′ ; k is a constant

whose absolute value is fixed by the condition |X |2 = N . The sign of k is determined by
requiring that ho = 1√

N
ξoiXi − σ < 0 for the unsat patterns o ∈ O.

Once X is known, it is straightforward to compute the energy e = 1
N

∑
o∈O
|ho|.

At this point, the equations 3.47-3.49 form a linear systemΞc′c fc − σ η = vc′
σ
N

∑
c
fc − η = e− No

N
σ

(3.56)

of C + 1 equations that can be solved for the C + 1 unknowns fc and η.
It is interesting to notice that in the isostatic phase, given the sets C and O realizing
a stable configuration, it is possible to solve the equations for Xi independently of the
equations for fc and η. In the hypostatic case, instead, the equations for fc, η and Xi

have to be solved together and they are quadratic.
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Equilibrium in the hypostatic phase

The equations for fc and η Ξc′c fc − σ η = vc′
σ
N

∑
c
fc − η = e− No

N
σ

(3.57)

depend on X through the energy term e. To find all the components Xi, it is not sufficient
to use the contacts and spherical constraints (3.41) since they constitute C + 1 < N
conditions. Therefore it is necessary also to use the stationarity condition with respect to
Xi

− 1√
N

∑
c∈C

ξci fc + η Xi = 1√
N

∑
o∈O

ξoi (3.58)

that has a non-linear coupling between the unknowns η Xi. Therefore, in the hypostatic
phase, even knowing the contacts and overlaps sets C and O, finding the stable configu-
ration is a quadratic problem and not a linear one.

3.2.2 Hessian of the linear potential
Since the potential is a piece-wise linear function, its second derivative is a singular quan-
tity. Anyway, interesting insights can be obtained by looking at the smoothed Hamiltonian
we have used for the numerical simulations

Hε =
∑
o

(
σ − 1√

N
ξo ·X

)
θ
(
−hµ −

ε

2

)
+

+ 1
2ε
∑
c

(
ε

2 − σ + 1√
N

ξc ·X
)2

I
(
− ε2 < hc <

ε

2

)
+

+ η

2
(
|X |2 −N

)
(3.59)

where we have made explicit the expressions of the gaps. If we compute the Hessian, we
get

∂2Hε

∂Xi∂Xj

= 1
ε

∑
c∈C

1
N
ξci ξ

c
j + η δij (3.60)

Notice that we are always considering taking the limit ε → 0 before N → ∞, also
because we have asked ε to be smaller than the minimal non-zero gap hmin that is hmin ∼
N−1 in the hypostatic phase and hmin ∼ N−

1
1−γ ' N−1.7 in the isostatic phase. To make

things clearer, let’s say that ε << N−2 always.
Looking at eq. 3.60, we recognize the Wishart matrix [244]

W =
∑
c∈C

1
N
ξci ξ

c
j (3.61)

whose eigenvalue spectrum is given by the well known Marchenko-Pastur distribution
[169]. It is important to distinguish between the hypostatic and the isostatic cases.
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• In the hypostatic case, c = C
N
< 1 and W has N − C eigenvalues equal to 0. The

corresponding eigenvalue distribution ρ(λ) in the continuum limit reads

ρ(λ) = (1− c)δ(λ) + c

2π

√
(λ+ − λ)(λ− λ−)

λ
(3.62)

with

λ± = 1
c

(
1±
√
c
)2

(3.63)

and c = C
N

the usual isostaticity index.

• In the isostatic case, we have c = 1 and the eigenvalue distribution becomes

ρ(λ) = 1
2π

√
4− λ√
λ

(3.64)

that therefore diverges for λ → 0 as ρ(λ) ∼ 1√
λ
. For finite N , we can get the scale

of smallest eigenvalue from ∫ λmin

0

1√
λ
∼ 1
N

(3.65)

which gives

λmin ∼ N−2 (3.66)

Therefore, the eigenvalues λ̃ of the Hessian

∂2Hε

∂Xi∂Xj

= 1
ε
W + η δij (3.67)

live on two scales:

• the non-zero eigenvalues λi of W get multiplied by 1
ε
and since ε << λmin they all

diverge

λ̃i = 1
ε
λi →

ε→0
∞ (3.68)

irrespective of η;

• the N − C zero eigenvalues of W stay identical to 0 also when multiplied by 1
ε
,

therefore the term η δij becomes important and shifts the 0 eigenvalues to the value
η:

λ̃i = η for i = 1, ..., N − C (3.69)

If η > 0, then a configuration X can be a stable minimum also if it is hypostatic since
all the eigenvalues of the Hessian are positive (or infinite). In fact, in a portion of the
UNSAT phase we observe

c < 1 AND η > 0 (3.70)
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If η < 0, then any hypostatic configuration would get a number of negative eigenvalues
λ̃ = η: any hypostatic configuration would be unstable. In fact, we observe that

c = 1 AND η < 0 (3.71)

In principle, it could be possible to stabilize the system also with a hyperstatic configura-
tion, that is c > 1. However, with high-dimensional random vectors ξc, these configura-
tions are not possible. To see this, one can think of the condition 1√

N
ξc ·X−σ = 0 as the

condition that X belongs to the affine hyperplane defined by ξc and σ. With the number
of contacts C = N − 1, we get the intersection of N − 1 hyperplanes, that defines a line:
the configuration is determined by taking one of the two points on this line satisfying
|X |2 = N . a hyperstatic configuration would require that a certain number of other
random hyperplanes (ξµ, σ) should pass through the point X as well, and the probability
for this to happen is negligible for large N .

In the non-convex, isostatic phase, the system has actually a number of contacts
C = N − 1, so the matrix W should have a 0 eigenvalue that, with negative η, gener-
ates an unstable direction. This is not the case, since we have seen that the additional
constraint to be added to the N − 1 contacts is the spherical one |X |2 = N . In fact,
the eigenvector associated to the only zero mode of W is the right singular vector wi of
the matrix ξci introduced in equation (3.55): the component of the configuration along
wi is fixed by the normalization |X |2 = N , therefore wi cannot be used as an unstable
direction. The only way to destabilize the system in the non-convex phase is to break at
least one contact, causing the configuration to change until isostaticity is restored.

Analogy with the prestress in spheres and ellipses

The role of the term η δij in (3.60), whose sign determines isostaticity or hypostaticity, is
strongly reminiscent of the role of the pre-stress in the models of finite dimensional spheres
or ellipses [83, 214]. In these models, the Hessian, usually called dynamical matrix M in
the condensed matter literature, is decomposed in two terms: the stiffness H, containing
the second derivatives of the repulsive potential, and the pre-stress −S, depending on the
geometry of the particles and on the forces between them:

M = H − S (3.72)

It happens that exactly at the jamming point S = 0, but slightly in the overcompressed
phase −S 6= 0 and it is

• negative definite in sphere packings;

• positive definite in ellipse packings.

As a result, in the jamming of spheres the stiffness matrix H must be full-rank, otherwise
an infinitesimal compression would make the negative eigenvalues of −S destabilize the
system: for H to be full rank, the jamming has to be isostatic in spheres.
For ellipses, instead, jamming is hypostatic and the matrix H has N(ziso− z) eigenmodes
ê0 with zero eigenvalues, where N is the number of ellipses, ziso is the average number
of contacts per particle needed to get isostaticity and z is the actual number of contacts
per particle (z < ziso because of hypostaticity). However, the fact that the prestress −S
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is positive definite guarantees that ê0 are not unstable modes: for an infinitesimal com-
pression, the positive eigenvalues of −S make the dynamical matrix M positive definite.
Moreover, at the jamming point, a perturbation of magnitude δ along these zero modes ê0
produces an overlap between ellipses of order δ2, different from the overlap δ produced by
perturbing along the non-zero modes of H. In the harmonic approximation, an overlap δ2

produces an energy increase ∼ δ4: for this reason, the modes ê0 are often called "quartic"
modes and are associated with collective rotational motions [162, 214].

In our linear perceptron, an analogous mechanism is in place. There is a problem
coming from the fact that the minima of the linear potential are corner points that are
not suitable for any harmonic approximation. Nevertheless, we can use the smoothed
Hamiltonian Hε and apply a perturbation of order ∼ ε. Considering a normalized non-
zero mode δXi of the matrix W and a displacement δX̃ ∼ εδXi, we get

δHε ∼
1
ε
Wijε

2δXiδXj + η δijε
2δXiδXj = λε+ η ε2 ∼ λε (3.73)

where λ is the (positive) eigenvalue of the Wishart matrixW associated to the eigenvector
δXi. We see that the energy variation is dominated by the linear term in ε, that in fact is
of the order of the displacement |δX̃|. This is in line with the fact that a non-zero mode
of W is associated to breaking at least one contact and the consequent energy increase is
linear in the displacement (due to the linear potential).
Let’s consider specifically the hypostatic phase, and let’s make, instead, a perturbation
δX̃ ∼ εδXi along a mode δXi of W with zero eigenvalue. We get

δHε ∼
1
ε
Wijε

2δXiδXj + η δijε
2δXiδXj = η ε2 (3.74)

The energy increase is positive, due to the positive η > 0, and it is of order |δX̂|2.
Noting that in our system the amount of overlap of an unsat gap is exactly its energy
contribution, we deduce that in the hypostatic phase:

• moving by an amount δ along a non-zero mode of the matrixW (i.e. breaking some
contacts) generates an overlap of order δ;

• moving by an amount δ along a zero mode of the matrixW (i.e. leaving the contacts
untouched) generates an overlap of order δ2.

Therefore, we see that the zero modes of the matrix W in the hypostatic phase are com-
pletely analogous to the "quartic" modes of hypostatic jamming in ellipses and ellipsoids.
The peculiar feature of our system is that the argument is valid all over the hypostatic
UNSAT phase, and not only at the jamming onset.

The extended modes

In section 3.2.2 we have studied a Hessian for the linear potential using the regularized
model Hε. Anyway, in the limit ε→ 0, the Hessian is still a singular quantity because of
the term 1

ε
. To obtain something that is well defined in the ε→ 0 limit, we can consider

the quantity

lim
ε→0

ε
∂2Hε

∂Xi∂Xj

=
∑
c∈C

1
N
ξci ξ

c
j =Wij (3.75)
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that is the Wishart matrix we have already introduced. As discussed in section 3.2.2,
it is full rank in the isostatic phase with a divergent spectrum for small, positive eigen-
values. In this phase, the breaking of a contact causes the creation of a zero-eigenvalue
mode, that is an unstable direction due to η < 0. The system follows this direction until
a new contact is formed and isostaticity is restored.
In the jamming of spheres, this role is played by the stiffness matrix. Its eigenvalue spec-
trum is usually discussed in terms of the physical frequencies ω that are the square root of
its eigenvalues. In particular, it provides a density D(ω) of low energy vibrational modes
that is flat at jamming: D(ω) goes to a constant for ω → 0 [191]. This is very different
from the Debye law of crystalline solids (i.e. D(ω) ∼ ωd−1 in d dimensions) and the
excess number of low-frequency vibrational modes is associated to important properties
of glasses. The flat D(ω) for soft spheres, however, is present only at the jamming point:
a slight compression creates a cut-off frequency ω∗ that increases with compression. The
vibrational modes appearing at ω∗ have an associated length scale l∗ ∼ 1

ω∗
that diverges

at the jamming point. Therefore, these low frequencies modes are system spanning and
the divergent lengthscale l∗ is often called isostatic lengthscale [248].
In the linear perceptron, we have a very similar scenario in all the isostatic phase, with
W playing the role of the stiffness matrix. It provides a flat density of states D(ω), even
if these are not properly harmonic vibrational modes. They are system-spanning modes,
associated with broken contacts. In this case, ω∗ ≡ 0 in all the isostatic phase and there-
fore the associated lengthscale is always infinite. A detailed discussion of the excitations
of the system given by breaking contacts is provide in chapter 5.
An additional observation that can be made is about the energy variation (3.73) along
a non-zero mode of the matrix W : through the use of the smoothed potential, we have
argued that the energy variation is order δE ∼ λ|δX̃|, therefore linear in the perturba-
tion δX̃ as it is expected for the linear cost-function. The slope of this linear increase is
given by λ, that is the eigenvalue of the mode of W we are exciting. When the system
is hypostatic, the non-zero eigenvalues have a lower bound given by λ− = 1

c
(1 −

√
c)2

introduced in eq. (3.63). When the system is isostatic, instead, the lower bound for λ
is 0 and we have seen there is an abundance of close-to-zero eigenvalues. This suggests
that, in the isostatic phase, there exist modes obtained by breaking contacts whose linear
energy increase δE ∼ λ|δX̃| has a vanishingly small slope. In other words, the minima in
the isostatic phase are corner points surrounded by ramps of increasing energy that, in
some directions, are nearly flat. This is related to marginal stability that is discussed in
section 3.4.

In the figures 3.23-3.26 we report the eigenvalue spectra of the Wishart matrix W as
obtained from the numerical minimizations of section 3.1.2 in the isostatic and hypostatic
phases. We also plot the same spectra as a function of the frequencies ω =

√
λ, corre-

sponding to the density of states D(ω). We see that for c = 1, the spectrum ρ(λ) diverges
as ∼ 1√

λ
and the corresponding D(ω) becomes flat for ω → 0. When c < 1, instead,

the spectrum is gapped and there is a Dirac delta of zero modes given by the N − C
zero-eigenvalues.

Plots of the eigenvalue distribution ρ(λ) and corresponding density of states
D(ω =

√
λ) of matrix W (3.75) at α = 4, N = 2048, averaged over 100 samples.
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Figure 3.23: σ = −0.3, energy e = 0.06.
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Figure 3.24: σ = 0.6, energy e = 1.46.
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Figure 3.25: σ = 0.9, energy e = 2.27.
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Figure 3.26: σ = 1.5, energy e = 4.22.

3.3 The replica analysis
In this section we solve the replica theory of the linear perceptron. The starting point
are the equations obtained in chapter 2 for a perceptron with general potential ν(h): we
set ν(h) = |h|θ(−h) and solve the model. We first study the replica symmetric (RS)
solution and compute its domain of stability, confirming that it corresponds to the hypo-
static phase explored in the simulations of section 3.1.3. We plot the phase diagram of the
model. Moreover, we study the unjamming limit in the RS/hypostatic phase, showing the
presence of logarithms in the scalings of important quantities like energy and pressure.
Thereafter, we investigate the nature of the broken replica symmetry phase, showing it
is of a continuous kind (fullRSB). In particular, the theory establishes a perfect corre-
spondence between isostaticity and marginal stability. We formulate a scaling ansatz for
the equations of the fullRSB theory, showing it provides the same universality class that
has been found for the jamming point of spheres (and presented in section 2.3.4 for the
perceptron). Therefore, it gives the values of the critical exponents observed in the sim-
ulations of section 3.1.3. Very remarkably, this scaling solution provides also a mapping
between the distributions of small positive gaps and small negative gaps, predicting that
their respective power law divergences must have the same exponents. The same mapping
also implies that the pseudogaps at the boundaries of the distribution of contact forces
have the same exponents. This is in perfect agreement with our numerical results.

3.3.1 The replica symmetric solution
We can write the RS free energy fRS(qM) of the perceptron derived in equation (2.44)
making explicit the potential ν(h) = |h|θ(−h). We have

−βfRS(qM) = 1
2

[
log(1− qM) + qM

1− qM

]
+ αγqM ∗ f(qM , h)

∣∣∣
h=−σ

(3.76)

where

f(qM , h) = log
∫ dz√

2π(1− qM)
e
− z2

2(1−qM )−β|h−z|θ(−h+z)

 (3.77)

As a reminder:
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• β is the inverse temperature β = 1
T
, setting the Boltzmann constant equal to 1;

• qM is the Edwards-Anderson order parameter;

• α and σ are the usual control parameters of the perceptron model.

Computation of f(qM , h)

f = log
∫ ∞
−∞

dz√
2π(1− qM)

e
− z2

2(1−qM )−β|h−z| θ(−h+z)

 =

= log
∫ h

−∞

dz√
2π(1− qM)

e
− z2

2(1−qM ) +
∫ ∞
h

dz√
2π(1− qM)

e
− z2

2(1−qM )−β(z−h)

 =

= log [I1 + I2]

(3.78)

where I1 and I2 are the two integrals

I1 =
∫ h

−∞

dz√
2π(1− qM)

e
− z2

2(1−qM ) (3.79)

I2 =
∫ ∞
h

dz√
2π(1− qM)

e
− z2

2(1−qM )−β(z−h) =

= eβh
∫ ∞
h

dz√
2π(1− qM)

e
− 1

2(1−qM ) [z2+2β(1−qM )z] =

= eβh+β2(1−qM )
2

∫ ∞
h

dz√
2π(1− qM)

e
− 1

2(1−qM ) [z+β(1−qM )]2 =

= eβh+β2(1−qM )
2

1
2 erfc

h+ β(1− qM)√
2(1− qM)



(3.80)

Defining the function Θ(x), that already appeared in section 2.3.2, as

Θ(x) = 1
2

[
1 + erf

(
x√
2

)]
(3.81)

and using the relationship

1
2 erfc

(
x√
2

)
= 1

2

(
1− erf

(
x√
2

))
= 1

2

(
1 + erf

(
− x√

2

))
= Θ(−x) (3.82)

we can write in a compact manner

I1 = Θ
(

h√
1− qM

)
(3.83)
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I2 = e
β

(
h+β(1−qM )

2

)
Θ
(
−h+ β(1− qM)√

1− qM

)
(3.84)

Therefore:

f(qM , h) = log
[
Θ
(

h√
1− qM

)
+ e

β

(
h+β(1−qM )

2

)
Θ
(
−h+ β(1− qM)√

1− qM

)]
(3.85)

We want to study the zero temperature limit β → ∞ in the UNSAT phase, where it
holds that qM →

T→0
1.

Asymptotic analysis T → 0, qM → 1

We know that for T → 0 in the RS phase, the linear response hypothesis

qM ' 1− χT (3.86)

holds. In the expression (3.85) we can substitute β(1− qM) = χ and write

f(qM , h) = log
[
Θ
(

h√
1− qM

)
+ eβ(h+χ

2 ) Θ
(
− h+ χ√

1− qM

)]
=

= log [I1 (qM , h) + I2 (qM , χ, h)]
(3.87)

with

I1 (qM , h) = Θ
(

h√
1− qM

)

I2 (qM , χ, h) = eβ(h+χ
2 ) Θ

(
− h+ χ√

1− qM

) (3.88)

In the limit qM → 1, we have to study the relative dominance between I1 and I2.
Noting that Θ

(
h√

1−qM

)
→

qM→1
θ(h) and that Θ

(
− h+χ√

1−qM

)
→

qM→1
θ(−h− χ), there is clearly

one regime for h > 0 where I1 dominates and a regime h < −χ where I2 does.
In between, that is for −χ < h < 0, we need to expand the integrals: it turns out that
I1 ' I2.
Therefore we have three regimes:

• h > 0 for which I1 >> I2

• −χ < h < 0 for which I1 ' I2

• h < −χ for which I1 << I2
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Figure 3.27: Plot of I1 and I2 vs h for qM = 0.95, β = 100 (then T = 0.01, χ = 5) with
vertical axis in log-scale.

Let’s develop f(qM , h) in these three regions for qM → 1, β →∞.

• For h > 0:

f(qM , h) = log [I1 + I2] ' log [I1] = log
[
Θ
(

h√
1− qM

)]
=

= F
(

h√
1− qM

) (3.89)

where we have defined

F (x) = log [Θ (x)] = log
1 + erf

(
x√
2

)
2

 (3.90)

We see that

F
(

h√
1− qM

)
'

0, h >>
√

1− qM
− h2

2(1−qM ) , h << −
√

1− qM
(3.91)

while it has a non-trivial matching regime for h ∼ O (
√

1− qM).
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Figure 3.28: Plot of the function F (x) defined in eq. (3.90) and comparison with the
expansion −x2

2 − log
(
−
√

2πx
)
. For x→ −∞, the asymptotic behavior is given by −x2

2 .

• For −χ < h < 0, we can use the following development

c > 0, Θ
(

−c√
1− qM

)
= e

− c2
2(1−qM )

√
2π

√1− qM
c

+O

(√1− qM
c

)3
 (3.92)

that gives

I1 = e
− h2

2(1−qM )

√
2π

√1− qM
−h

+O

(√1− qM
h

)3
 (3.93)

I2 = eβ(h+χ
2 ) e
− (h+χ)2

2(1−qM )

√
2π

√1− qM
χ+ h

+O

(√1− qM
χ+ h

)3
 =

= e
− h2

2(1−qM )

√
2π

√1− qM
χ+ h

+O

(√1− qM
χ+ h

)3


(3.94)

We see that the leading order e−
h2

2(1−qM ) is the same in I1 and I2. Therefore we have

I1 + I2 = e
− h2

2(1−qM )

√
2π

√1− qM
χ

−h(χ+ h) +O

( √1− qM
−h(χ+ h)

)3
 (3.95)

that gives

f(qM , h) = log [I1 + I2] = − h2

2(1− qM) +O

[
log

( √
1− qM

−h(χ+ h)

)]
(3.96)

Also in this case, this development breaks down for h ∼ O (
√

1− qM) and h ∼
−χ+O (

√
1− qM)
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• For h < −χ:

f(qM , h) = log [I1 + I2] ' log [I2] = log
[
eβ(h+χ

2 ) Θ
(
− h+ χ√

1− qM

)]
=

= β
(
h+ χ

2

)
+ log Θ

(
− h+ χ√

1− qM

)
=

= β
(
h+ χ

2

)
+ F

(
− h+ χ√

1− qM

) (3.97)

In this case

F
(
− h+ χ√

1− qM

)
'

0 h << −χ−
√

1− qM
− (h+χ)2

2(1−qM ) h >> −χ+
√

1− qM
(3.98)

with a non-trivial matching regime for h+ χ ∼ O (
√

1− qM).
Recapitulating:

f(h)
∣∣∣∣∣
qM→1,β→∞

=



0 h >>
√

1− qM
F
(

h√
1−qM

)
h ∼ O (

√
1− qM)

− h2

2(1−qM ) −χ < h < 0
β
(
h+ χ

2

)
+ F

(
− h+χ√

1−qM

)
h+ χ ∼ O (

√
1− qM)

β
(
h+ χ

2

)
h << −χ−

√
1− qM

(3.99)

with β(1− qM) = χ, F(x) =
1+erf

(
x√
2

)
2 .

-χ
h

f(h)

Quadratic

Linear

Figure 3.29: Behavior of function f defined in eq. (3.99) for parameters qM = 0.95 and
χ = 6. The red dashed line corresponds to h = −χ.

We notice that the asymptotic form has three regions, delimited by h = 0 and h = −χ,
and two matching regimes between them of width ∼

√
1− qM .

It is useful to write its derivatives:
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d

dh
f(h)

∣∣∣∣∣
qM→1,β→∞

=



0 h >>
√

1− qM
1√

1−qM
F ′
(

h√
1−qM

)
h ∼ O (

√
1− qM)

− h
1−qM −χ < h < 0

β − 1√
1−qM
F ′
(
− h+χ√

1−qM

)
h+ χ ∼ O (

√
1− qM)

β h << −χ−
√

1− qM

(3.100)

d2

dh2f(h)
∣∣∣∣∣
qM→1,β→∞

=



0 h >>
√

1− qM
1

1−qMF
′′
(

h√
1−qM

)
h ∼ O (

√
1− qM)

− 1
1−qM −χ < h < 0
1

1−qMF
′′
(
− h+χ√

1−qM

)
h+ χ ∼ O (

√
1− qM)

0 h << −χ−
√

1− qM

(3.101)

-χ
h

f'(h)

χ/(1-qM)

-χ
h

f''(h)

-1/(1-qM)

Figure 3.30: First derivative (left) and second derivative (right) of the function f(h)
defined in the equations (3.100) and (3.101). The first derivative has a linear behavior for
−χ < h < 0 and a plateau at β = χ

1−qM for h < −χ. The second derivative is different
from 0 only in the region −χ < h < 0 and takes the value − 1

1−qM . In both cases, the
matching regions at h ∼ 0 and h ∼ −χ can be seen.

The saddle point equation

We can now take the saddle point equation

d

dqM
fRS(qM) = 0 (3.102)

We have seen in (2.45) that its general form reads

qM
(1− qM)2 = α

∫ ∞
−∞

γqM (h+ σ)
[
d

dh
f(h)

]2

(3.103)
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In the zero temperature limit we have qM =' 1− χ
β
and the equation (3.103) fixes the

value of χ as a function of the control parameters α and σ.
Using the expression (3.100), we have

1
(1− qM)2 = αβ2

∫ −χ
−∞

dhγ(h+ σ) + α
∫ 0

−χ
dhγ(h+ σ) h2

(1− qM)2 (3.104)

Using the relationship β = χ
1−qM :

1 = αχ2
∫ −χ
−∞

dhγ(h+ σ) + α
∫ 0

−χ
dhγ(h+ σ)h2 (3.105)

We see that we can take the unjamming limit by sending χ→∞, recovering the usual
Gardner storage capacity line

1 = αJ

∫ 0

−∞
dhγ(h+ σ)h2 (3.106)

We can use this expression to rearrange the term
∫ 0
−χ dhγ(h+σ)h2 = 1

αJ
−
∫−χ
−∞ dhγ(h+σ)h2

and write (3.105) in the form
1
αJ
− 1
α

=
∫ −χ
−∞

dhγ(h+ σ)
(
h2 − χ2

)
(3.107)

This expression allows us to compute χ as a function of the distance from unjamming
α− αJ at fixed σ.
In an equivalent manner, we can consider keeping α fixed and varying σ. We can use
(3.106) to rewrite 1

α
=
∫ 0
−∞ dhγ(h+ σJ)h2, so (3.105) becomes∫ 0

−∞
dh [γ(h+ σ)− γ(h+ σJ)]h2 =

∫ −χ
−∞

γ(h+ σ)
(
h2 − χ2

)
(3.108)

Defining the distance from unjamming through ∆α = α − αJ and ∆σ = σ − σJ , we
can now use the following expansions:

1
αJ
− 1
α

= ∆α
α2
J

+O(∆α2) (3.109)

∫ −χ
−∞

γ(h+ σ)
(
h2 − χ2

)
=

χ→∞
e−

(χ−σ)2
2

√
2
π

(
1
χ

+O

(
1
χ2

))
(3.110)∫ 0

−∞
dh [γ(h+ σ)− γ(h+ σJ)]h2 = kJ∆σ +O

(
∆σ2

)
(3.111)

where we have defined the coefficient

kJ = e−σ
2
J/2

√
2
π

+ σJ

(
1 + erf

(
σJ√

2

))
(3.112)

From these expansions:
• keeping σ fixed and going to unjamming χ→∞ by ∆α→ 0, we get to the leading

order

∆α
α2
J

= e−
(χ−σ)2

2

χ

√
2
π

(3.113)

that gives

χ '
∆α→0

√
2| log ∆α| (3.114)
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• keeping α fixed and going to unjamming χ→∞ by ∆σ → 0, we get to the leading
order

kJ∆σ = e−
(χ−σJ )2

2

χ

√
2
π

(3.115)

that gives

χ '
∆σ→0

√
2| log ∆σ| (3.116)

The logarithmic behavior of χ with respect to the distance from unjamming is very
interesting, because it is related to the behavior of the pressure. This link is explained in
the next section 3.3.1.

For completeness, we can also take the limit for α or σ going to infinity. From equation
(3.105), we get

• keeping σ fixed, for α→∞

χ '
α→∞

1√
Θ(σ) α

(3.117)

where Θ(σ) = 1
2 (1 + erf(σ));

• keeping α fixed, for σ →∞

χ '
σ→∞

1√
α

(3.118)

10-9 10-6

0.001 1

σ-σJ

1

2

5

χ

χ

2 logΔσ

1 /α

Figure 3.31: Behavior of χ with respect to σ − σJ at fixed α = 1.5. The dashed lines
represent the asymptotic expansions χ '

∆σ→0

√
2| log ∆σ| and χ '

σ→∞
1√
α
.
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Figure 3.32: Behavior of χ with respect to α − αJ at fixed σ = 0.2. The dashed lines
represent the asymptotic expansions χ '

∆α→0

√
2| log ∆α| and χ '

α→∞
1√

Θ(σ) α
.

Pressure

In section 3.43 we have defined the pressure p of a configuration as

p = ∂H

∂σ
= 1
N

(∑
o∈O

1 +
∑
c∈C

fc

)
(3.119)

It is basically the average force in the system, where the overlaps contribute with
constant forces equal to 1 and the contacts with forces fc in the interval (0, 1).
In the RS phase, we can compute its thermodynamic average by

p = dfRS
dσ (3.120)

The replica symmetric free energy fRS depends on σ both directly and through the order
parameter qM , therefore

p = dqM
dσ

dfRS
dqM

+ ∂fRS
∂σ

(3.121)

We know that the saddle point condition is given by
dfRS
dqM

= 0 (3.122)

so we are left with

p = ∂fRS
∂σ

(3.123)

With fRS given by equation (3.76), we get

p = α

β

∫ ∞
−∞

dhγqM (h+ σ) d
dh
f(h) (3.124)
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In the zero temperature limit β → ∞, qM → 1, we can substitute f(h) with its
asymptotic form (3.99):

p =
β→∞

α

β

∫ −χ
−∞

dhγ(h+ σ)β + α

β

∫ 0

−χ
dhγ(h+ σ) −h1− qM

=

= α
∫ −χ
−∞

dhγ(h+ σ) + α
∫ 0

−χ
dhγ(h+ σ)−h

χ

(3.125)

where we have used the fact that β(1 − qM) = χ. We can develop further by making
simple changes in the dummy variables of the integrals, i.e. h → h − χ in the first one
and h→ −χf̃ in the second one:

p = α
∫ 0

−∞
dhγ(h− χ+ σ) + αχ

∫ 1

0
df̃γ(−χf̃ + σ)f̃ (3.126)

Confronting (3.126) with (3.119), there is the strong temptation of identifying f̃ and
αχγ(−χf̃ + σ) with the contact forces and their distribution, and αγ(h − χ + σ) with
the distribution of the overlaps ho ∈ (−∞, 0). This interpretation is in fact correct, as we
show in appendix A.
To obtain the behavior of p we have to use the saddle point equation for χ (3.105). From
(3.125) we can write α

∫−χ
−∞ dhγ(h + σ) = p − α

∫ 0
−χ dhγ(h + σ)−h

χ
and substitute this

expression in (3.105), to obtain

p = 1
χ2 − α

∫ 0

−χ
dhγ(h+ σ)h

2

χ2 + α
∫ 0

−χ
dhγ(h+ σ)−h

χ
(3.127)

We can expand this expression in the unjamming limit χ→∞:

p =
χ→∞

α

2

e−σ2
2

√
2
π

+ σΘ(σ)
 1

χ
+

+
1− αΘ(σ)− ασ

2

e−σ2
2

√
2
π

+ σΘ(σ)
 1

χ2 +

+O

e−χ2
2

χ3


(3.128)

This relationship establishes the fact that p ∼ 1
χ

to leading order at unjamming.
Therefore we have:

• at σ fixed, when unjamming with ∆α = α− αJ → 0

p =
∆α→0

k1√
| log ∆α|

+ k2

| log ∆α| +O

 ∆α√
| log ∆α|

 (3.129)

with coefficients

k1 = αJ

2
√

2

e−σ2
2

√
2
π

+ σΘ(σ)


k2 = 1
2

1− αJΘ(σ)− αJσ

2

e−σ2
2

√
2
π

+ σΘ(σ)
 (3.130)
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• at α fixed, when unjamming with ∆σ = σ − σJ → 0

p =
∆σ→0

k̃1√
| log ∆σ|

+ k̃2

| log ∆σ| +O

 ∆σ√
| log ∆σ|

 (3.131)

with coefficients

k̃1 = αkJ

2
√

2

k̃2 = 1
2

(
1− αΘ(σJ)− ασJkJ

2

)

kJ = e−σ
2
J/2

√
2
π

+ σJ

(
1 + erf

(
σJ√

2

)) (3.132)

This result is important because it tells us that the pressure has a logarithmic behavior
near the jamming transition:

p ∝ 1√
| log δ|

@jamming (3.133)

where δ is the distance from the jamming point, i.e. ∆α or ∆σ for the perceptron. No-
tice that this result is valid also for overcompressed sphere packings with linear repulsive
potential, where the distance from unjamming is given by δ = φ − φJ , with φ the pack-
ing fraction 2. We give an experimental verification of this logarithm for the pressure in
chapter 5 for the perceptron and in chapter 4 for finite dimensional linear spheres.

The logarithmic behavior of the pressure could be expected from this reasoning: con-
sidering a model with a generic repulsive potential H = ∑

µ
|hµ|aθ(−hµ), with a > 1, the

perceptron equations give that at unjamming 1
χ
∝ δa−1 and p ∝ 1

χ
, therefore p ∝ δa−1,

with δ the distance from unjamming. This scaling is found, theoretically and experimen-
tally, also in finite dimensional overcompressed soft spheres [191, 117, 250, 85]. We see
that the exponent a − 1 becomes zero for the linear potential a = 1: we would expect
logarithmic corrections to appear in the scaling, as they do.

We report also the behavior of p when the system is pushed deeply in the UNSAT
phase, i.e. α→∞ or σ →∞.
From the expansions (3.117)-(3.118), we get

p =
α→∞

α +O(
√
α) for α→∞ (3.134)

p =
σ→∞

α for σ →∞ (3.135)

For fixed α, it is clear that the pressure has an upper bound: it reaches the maximum
value when all the gaps have become negative. In that case:

p = 1
N

∑
o∈O

1 = M

N
= α for σ large (3.136)

2In numerical simulations it is easy to see that the pressure has a logarithmic behavior, but it is hard
to distinguish between p ∝ 1√

| log ∆φ|
and p ∝ 1

| log ∆φ| .
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Energy

The energy corresponds to the UNSAT free energy in the zero temperature limit. Using
(3.99) and β(1− qM) = χ we can write

fRS
∣∣∣
T=0

= − 1
2χ − α

∫ −χ
−∞

dhγ(h+ σ)
(
h+ χ

2

)
+ α

2χ

∫ 0

−χ
dhγ(h+ σ)h2 =

= 1
2χ

[
α
∫ 0

−χ
dhγ(h+ σ)h2 − 1

]
− α

∫ −χ
−∞

dhγ(h+ σ)
(
h+ χ

2

) (3.137)

We can now substitute the term 1 in the square brackets of (3.137) with the right hand
side of the saddle point equation for χ (3.105):

fRS
∣∣∣
T=0

= 1
2χ

[
α
∫ 0

−χ
dhγ(h+ σ)h2 − χ2α

∫ 0

−χ
dhγ(h+ σ)− α

∫ 0

−χ
dhγ(h+ σ)h2

]
+

− α
∫ −χ
−∞

dhγ(h+ σ)
(
h+ χ

2

)
=

= −χ2α
∫ 0

−χ
dhγ(h+ σ)− α

∫ −χ
−∞

dhγ(h+ σ)
(
h+ χ

2

)
=

= α
∫ −χ
−∞

γ(h+ σ)|h+ χ| =

= α
∫ 0

−∞
γ(h− χ+ σ)|h|

(3.138)

The energy e at zero temperature is therefore

e = α
∫ 0

−∞
γ(h− χ+ σ)|h| (3.139)

At the unjamming χ→∞,

e =
χ→∞

α
e−

(χ−σ)2
2

√
2πχ2

+O

e−χ2
2

χ3

 (3.140)

that gives

• for fixed σ, unjamming with ∆α = α− αJ → 0

e '
∆α→0

1√
2αJ

∆α√
| log ∆α|

(3.141)

• for fixed α, unjamming with ∆σ = σ − σJ → 0

e '
∆σ→0

αkJ√
2

∆σ√
| log ∆σ|

(3.142)

This result tells that, with the linear potential, the energy near the jamming transition
behaves linearly plus logarithmic corrections:

e ∝ δ√
| log δ|

@jamming (3.143)
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where δ represents the distance from the jamming point (i.e. ∆α or ∆σ for the per-
ceptron). In chapter 4, we show that this is true also for spheres with linear repulsion
in finite dimensions (in that case δ is φ − φJ , with φ the packing fraction). As already
discussed for pressure, a repulsive potential ν(h) = |h|aθ(−h) gives a behavior e ∼ δa

for the energy near the jamming transition, both in mean-field models (perceptron) and
finite dimensional packings [191]. We have shown that in the linear case a = 1 the scaling
of the energy has logarithmic corrections, necessary to give a logarithmic behavior to the
pressure.

Distribution of gaps and forces

As shown in the appendix A, in the replica symmetric phase the distribution of gaps is
given by

g(h) = θ(h)γ(h+ σ) + δ(h)
∫ 0

−χ
dzγ(z + σ) + θ(−h)γ(h+ σ − χ) (3.144)

and the associated contact force distribution (normalized to 1) reads

ρ(f̃) =
γ
(
−χf̃ + σ

)
∫ 1

0 df̃ γ
(
−χf̃ + σ

) , f̃ ∈ (0, 1) (3.145)

We notice that, in the replica symmetric phase, the distributions of gaps and forces are
Gaussian distributions restricted to intervals.
As a consistency check, we can compute the energy through this definition of g(h)

e =
∫ 0

−∞
dhg(h)|h| =

∫ 0

−∞
dhγ(h+ σ − χ)|h| (3.146)

and we get the same expression as in eq. (3.139), obtained in a different manner.
The interesting quantity is the weight of the Dirac delta in h = 0, that gives the number
of gaps equal to zero, i.e. the number of contacts. In equation (3.144), g(h) is normalized
to 1, therefore it corresponds to g(h) = 〈 1

M

∑
µ
δ(h− hµ)〉, where M is the total number of

gaps (i.e. the total number of patterns). To normalize with respect to N instead of M ,
we can simply multiply by α = M

N
. Therefore, the weight of δ(h) in (3.144) multiplied by

α corresponds exactly to the isostaticity index c = C/N , with C the number of contacts:

c = α
∫ 0

−χ
dhγ(h+ σ) (3.147)

As we have seen in the section 3.1.3 on the numerical simulations, this quantity plays
a crucial role in our system. We show in the next section 3.3.2 that it enters directly in
determining the stability of the replica symmetric solution.

3.3.2 The replica symmetry breaking transition line
To check the stability of the replica symmetric solution, it is necessary to compute the
smallest eigenvalue of the Hessian of the free energy with respect to the overlap matrix:
this eigenvalue is called the replicon eigenvalue. As computed for the general case in
equation (2.53), we have
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Figure 3.33: Phase diagram of the linear perceptron

λreplicon ∝
1

(1− qM)2 − α
∫ ∞
−∞

dhγqM (h+ σ)
[

d2

dh2f(qM , h)
]2

(3.148)

In the zero temperature limit, using the expression (3.101), we have

λreplicon ∝ 1− α
∫ 0

−χ
dhγ(h+ σ) (3.149)

We recognize that α
∫ 0
−χ dhγ(h+σ) is the isostaticity index c obtained in (3.147), therefore

λreplicon ∝ 1− c (3.150)

This result tell us that the replica symmetric solution is stable as long as the system
is hypostatic (c < 1). As soon as the system gets isostatic, c = 1 and the replicon
becomes equal to zero. The deAlmeida-Touless line, defining the limit of stability of the
RS solution, is given by the condition c = 1:

α
∫ 0

−χ
dhγ(h+ σ) = 1 (3.151)

Solving eq. (3.151) together with the equation for χ (3.105) gives the deAlmeida-Touless
line (dAT).

Spherical Lagrange multiplier

To see that the instability of the RS solution and the occurrence of isostaticity coincide
with the change of convexity, we need to compute the Lagrange multiplier of the spherical
constraint. This can be done using replicas and the computation is reported in the
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appendix B. Here we just report the formula for the RS case in the zero temperature limit
(B.22):

η = 1
χ

[
1− α

∫ 0

−χ
γ(h+ σ)

]
(3.152)

We recognize the isostaticity index c = α
∫ 0
−χ γ(h+ σ) and write

η = 1
χ

(1− c) in RS phase (3.153)

This formula implies that the hypostatic/isostatic transition corresponds to the point
where the Lagrange multiplier becomes zero and the problem changes from convex to
non-convex, since η corresponds to the effective curvature of the energy landscape. In
fact, using the RS expression (3.152) as an approximation in the non-convex phase, it
gives a negative η, as observed in the simulations.
Equation (3.152) also implies that at the unjamming transition η → 0 since χ→∞, with
the scaling

η ∼ 1
χ

η ∼ p @jamming
(3.154)

Therefore η has a logarithmic scaling with respect to the distance from unjamming, as we
have found for the pressure (3.133).

3.3.3 A scaling ansatz for the replica-symmetry-broken phase
In the non-convex isostatic phase, the replica symmetry is broken. We show in the
appendix C that the transition is to a fullRSB phase. Therefore the physical quantities
have to be computed by solving the partial differential equations found in section 2.3 (in
the following, dots are the derivative with respect to q and primes those w.r.t. h):

ḟ(q, h) = −1
2 [f ′′(q, h) + x(q)(f ′(q, h))2] qm < q < qM

f(qM , h) = log γ1−qM ∗ e−β ν(h) (3.155)


Ṗ (q, h) = 1

2

[
P ′′(q, h)− 2x(q)

λ(q) (f ′(q, h)P (q, h))′
]

qm < q < qM

P (qm, h) = 1√
2πqm e

− (h+σ)2
2qm

(3.156)

qm
λ(qm)2 +

∫ q

qm
dp

1
λ2(p) = α

∫ ∞
−∞

dhP (q, h) (f ′(q, h))2

λ(q) = 1− qM +
∫ qM

q
dpx(p)

(3.157)

In addition, marginal stability of the fullRSB solution implies
1

λ2(q) = α
∫ ∞
−∞

dhP (q, h) (f ′′(q, h))2

x(q) = λ(q)
2

∫∞
−∞ dhP (q, h) (f ′′′(q, h))2∫∞

−∞ dhP (q, h) (f ′′(q, h))2 (1 + λ(q)f ′′(q, h))

(3.158)
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The equations (3.155)-(3.156)-(3.157) are completely general and the only connection
to the model we are studying comes from the initial condition of the function f(q, h) in
(3.155), where the potential ν(h) appears:

f(qM , h) = log γ1−qM ∗ e−β|h|θ(−h) (3.159)

This function is the one we already studied in equation (3.99) for the replica symmetric
solution. Using it as initial condition, it is necessary to solve (3.155)-(3.156)-(3.157) to
get P (qM , h). In fact, we have seen in appendix A that the distribution of gaps g(h) is
given by

g(h) =
q→1

θ(h)P (q, h) + δ(h)
∫ 0

−λ̂(q)
dzP (q, z) + θ(−h)P (q, h− λ̂(q)) (3.160)

with the isostaticity index

c = α
∫ 0

−λ̂(q)
dzP (q, z) (3.161)

where λ̂(q) is the function λ(q) defined in (3.157) scaled by β:

λ̂(q) = β(1− qM) + β
∫ qM

q
dp x(p) (3.162)

We notice that λ(qM) = 1 − qM . Since we have seen in (3.101) that in the zero
temperature limit f ′′(qM , h) = − 1

1−qM I (−χ < h < 0), we can assume that a good scaling
form for f ′′(q, h) in the limit q → qM → 1 is

f ′′(q, h) = − 1
λ(q) I

(
−λ̂(q) < h < 0

)
(3.163)

Plugging this expression into the marginal stability condition (3.157)

1
λ2(q) = α

∫ ∞
−∞

dhP (q, h) (f ′′(q, h))2 (3.164)

we get

c = α
∫ 0

−λ̂(q)
dhP (q, h)

∣∣∣∣∣
q→1

= 1 (3.165)

where we have recognized the expression (3.161) of the isostaticity index c. This equation
makes the connection between the marginal stability of the fullRSB solution and the
isostaticity that is observed in simulations:

marginal stability←→ isostaticity

Scaling form of the solution

There is no obvious way to solve (3.155)-(3.156)-(3.157) analytically and it is necessary
to rely on numerical methods. However, we are not interested in getting the complete
distribution g(h). Instead, we would like to obtain a scaling theory describing the critical
properties of the model in the zero temperature limit. We perform this task in analogy
with the jamming solution of the infinite dimensional spheres [62, 200] and the jamming
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of the perceptron [105](reported in section 2.3.4).

First of all, the linear response theory qM ' 1− χT , valid in the RS phase, does not
work in the fullRSB phase, as it happens also in other models [180]. Now we have

qM ∼ 1− χT κ (3.166)
for an appropriate exponent κ. From the construction of the fullRSB ansatz, it can be
seen that x(q) is proportional to T for low temperatures [195, 237, 180], therefore

y(q) = βx(q) (3.167)

is a finite quantity. Moreover, from the breaking point x(qM)
∣∣∣
dAT line

(appendix C), we de-
duce that x(qM) is finite at zero temperature, implying that βx(qM) is divergent: therefore
y(q) has to diverge for q → qM → 1. Consistently with (3.166), we make the ansatz

y(q) ∼ yχ

(1− q) 1
κ

, q → 1 (3.168)

for some constant yχ. In fact, at q = qM , y(qM) ∼ yχ(1 − qM)− 1
κ ' yχχ

− 1
κ

1
T
, consistent

with the fact that y(qM) = βx(qM) has to diverge as 1
T
.

Now we have
λ̂(q) = βλ(q) = β(1− qM) +

∫ qM

q
dp y(p) (3.169)

Looking at the asymptotic form of f(qM , h) (3.99)

f(qM , h)
∣∣∣∣∣
qM→1,β→∞

=



0 h >>
√

1− qM
F
(

h√
1−qM

)
h ∼ O (

√
1− qM)

− h2

2(1−qM ) −χ < h < 0
β
(
h+ χ

2

)
+ F

(
− h+χ√

1−qM

)
h+ χ ∼ O (

√
1− qM)

β
(
h+ χ

2

)
h << −χ−

√
1− qM

(3.170)

we assume the scaling form for q → qM → 1:

f(q, h) =



0 h >>
√

1− q
F̂
(

h√
1−q

)
h ∼ O (

√
1− q)

− h2

2λ(q) −λ̂(q) < h < 0

β
(
h+ λ̂(q)

2

)
+ F̂

(
−h+λ̂(q)√

1−q

)
h+ λ̂(q) ∼ O (

√
1− q)

β
(
h+ λ̂(q)

2

)
h << −λ̂(q)−

√
1− q

(3.171)

where we have not guessed the scaling of the matching parts F̂ yet. For convenience,
instead of using f(q, h), the solution is studied for a rescaled form of f ′(q, h):

m(q, h) = λ(q)f ′(q, h) =



0 h >>
√

1− q
−
√

1− q M+
(

h√
1−q

)
h ∼ O (

√
1− q)

−h −λ̂(q) < h < 0
λ̂(q) +

√
1− q M−

(
−h+λ̂(q)√

1−q

)
h+ λ̂(q) ∼ O (

√
1− q)

λ̂(q) h << −λ̂(q)−
√

1− q
(3.172)
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where now we have inserted two scaling functionsM+ andM−. They have to satisfy
the boundary conditions

M+(t→∞) = 0 M−(t→∞) = 0
M+(t→ −∞) = t M−(t→ −∞) = t

(3.173)

to match the other parts of the function. We can write the equation for m(q, h) by
substituting f ′(q, h) = m(q, h)/λ(q) in the equation for f(q, h) (3.155):

ṁ(q, h) = −1
2m
′′(q, h)− x(q)

λ(q)m(q, h) [1 +m′(q, h)]
m(qM , h) = (1− qM) ∂

∂h
ln γ1−qM ∗ e−β|h|θ(−h) (3.174)

The presence of the two matching regimes for m(q, h) suggest something similar for
the function P (q, h). Therefore, for q → 1 we guess a form of the kind

P (q, h) =



p+(h) h >>
√

1− q
(1− q)− aκ p0

(
h√
1−q

)
h ∼ O (

√
1− q)

1
λ̂(q) p−

(
h
λ̂(q)

)
−λ̂(q) < h < 0

(1− q)− ãκ p̃0

(
−h+λ̂(q)√

1−q

)
h+ λ̂(q) ∼ O (

√
1− q)

p̃+(h) h << −λ̂(q)−
√

1− q

(3.175)

that has to satisfy eq. (3.156)


Ṗ (q, h) = 1

2P
′′(q, h)− x(q)

λ(q) (P (q, h)m(q, h))′

P (qm, h) = 1√
2πqm e

− (h+σ)2
2qm

(3.176)

Both the equations of m and P depend on the ratio x(q)
λ(q) = βx(q)

βλ(q) = y(q)
λ̂(q) . Therefore

x(q)
λ(q) '

yχ(1− q)− 1
κ

β(1− qM) +
∫ qM
q dp yχ(1− p)− 1

κ

=

= yχ(1− q)− 1
κ[

χ
1
κ − κ

κ−1yχ
]

(1− qM)κ−1
κ + κ

κ−1yχ(1− q)κ−1
κ

(3.177)

where we have used 1− qM = χT κ. It is fundamental to clarify that we are studying the
regime q → 1 but with q << qM so that the second term of the denominator dominates.
Therefore

y(q)
λ̂(q)

∼ κ− 1
κ

1
1− q , q → 1, q << qM (3.178)

109



CHAPTER 3. THE SPHERICAL PERCEPTRON WITH LINEAR COST FUNCTION

Scaling equations

Now we consider the interval h ∼ O(
√

1− q) where the functions M and p0 appear.
Noticing that for m(q, h) = −

√
1− qM

(
h√
1−q

)
:

ṁ(q, h) = 1
2
√

1− qM+

(
h√

1− q

)
− h

2(1− q)M
′
+

(
h√

1− q

)

m′(q, h) = −M′
+

(
h√

1− q

)

m′′(q, h) = − 1√
1− qM

′′
+

(
h√

1− q

) (3.179)

and calling t = h√
1−q , we can insert the scaling expression of m(q, h) into its equation

(3.174) and, using (3.178), obtain

M+(t)− tM′
+(t) =M′′

+(t) + 2κ− 1
κ
M+(t)

[
1−M′

+(t)
]

(3.180)

This equation forM+ is to be solved together with its boundary conditions

M+(t→∞) = 0 M+(t→ −∞) = t (3.181)

We repeat the same procedure plugging P (q, h) = (1 − q)− aκp0
(

h√
1−q

)
into its equation

(3.176) and we obtain

a

κ
p0(t) + 1

2t p
′
0(t) = p′′0(t)

2 + κ− 1
κ

[p0(t)M+(t)]′ (3.182)

with boundary conditions

p0(t→∞) = t−2 a
κ p0(t→ −∞) = |t|2(1−κ+a)/(κ−2) (3.183)

The universal equations (3.180) and (??) are the same as those found at the jamming
transition of spheres, and we have obtained them also in section (2.3.4) when presenting
the jamming transition in the perceptron. The function p0 is related to the exponents of
the distributions of small positive gaps and small forces.

Now we consider the interval h + λ̂(q) ∼ O(
√

1− q) where the functionsM− and p̃0

appear. Noticing that for m(q, h) = λ̂(q) +
√

1− qM−

(
−h+λ̂(q)√

1−q

)
:

ṁ(q, h) = −y(q)− 1
2
√

1− qM−

−h+ λ̂(q)√
1− q

− h+ λ̂(q)
2(1− q)M

′
−

−h+ λ̂(q)√
1− q

+ y(q)M′
−

−h+ λ̂(q)√
1− q


m′(q, h) = −M′

−

−h+ λ̂(q)√
1− q


m′′(q, h) = 1√

1− qM
′′
−

−h+ λ̂(q)√
1− q


(3.184)
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and calling t = −h+λ̂(q)√
1−q , we can insert the scaling expression of m(q, h) into its equation

(3.174) and, using (3.178), obtain

M−(t)− tM′
−(t) =M′′

−(t) + 2κ− 1
κ
M−(t)

[
1−M′

−(t)
]

(3.185)

with boundary conditions

M−(t→∞) = 0 M−(t→ −∞) = t (3.186)

We see that the functionM− is the same as the functionM+.

We have therefore discovered that the equation (3.174) has a structure:

if m(q, h) = −
√

1− qM
(

h√
1−q

)
is a solution,

then m̃(q, h) = λ̂(q) +M
(
−h+λ̂(q)√

1−q

)
is a solution as well.

This structure has consequences on P (q, h). We repeat the same procedure plugging
P (q, h) = (1−q)− ãκ p̃0

(
−h+λ̂(q)√

1−q

)
and m(q, h) = λ̂(q)+

√
1− qM−

(
−h+λ̂(q)√

1−q

)
into (3.176);

calling t = −h+λ̂(q)√
1−q , we obtain

ã

κ
p̃0(t) + 1

2t p̃
′
0(t) = p̃′′0(t)

2 + κ− 1
κ

[p̃0(t)M−(t)]′ (3.187)

with boundary conditions

p̃0(t→∞) = t−2 ã
κ p̃0(t→ −∞) = |t|2(1−κ+ã)/(κ−2) (3.188)

Since we have seen thatM−(t) =M+(t), this is the same equation as (3.182), therefore

p̃0(t) = p0(t)
M−(t) =M+(t)

ã = a

(3.189)

To complete the picture, we need the equation fixing the exponent κ as a function ofM+
(that now we simply call M) and p0. This is given by the marginal stability condition
(3.158)

y(q)
λ̂(q)

= 1
2

∫∞
−∞ dhP (q, h)m′′(q, h)2∫∞

−∞ dhP (q, h)m′(q, h)2 [1 +m′(q, h)] (3.190)

that, using (3.178), the scaling forms for P (q, h) and m(q, h), and the equalities (3.189),
becomes

κ− 1
κ

= 1
2

∫
dtp0(t)M′′(t)2∫

dtp0(t)M′(t)2 [1−M′(t)] (3.191)

This equation corresponds to the one controlling the exponents of the jamming tran-
sition (2.113). Since also the equations (3.180) and (3.182) forM and p0 are the same as
those found at jamming, then also κ and all the other critical exponents are the same.
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The important physical consequence of the equalities (3.189) is that the power laws of the
distributions of small positive and negative gaps have the same exponents. The same is
valid for the pseudo-gaps of the distribution of contact forces near 0 and near 1 In fact,
the matching conditions

p0(t)
∣∣∣
t→∞
∼ t−γ ⇒ g(h→ 0+) ∼ h−γ

p0(t)
∣∣∣
t→−∞

∼ |t|θ ⇒ ρ(f → 0+) ∼ f θ
(3.192)

relate the asymptotic behavior of p0 with the physical distributions. Analogously, we have

p̃0(−t)
∣∣∣
t→−∞

∼ |t|−γ̃ ⇒ g(h→ 0−) ∼ |h|−γ̃

p̃0(−t)
∣∣∣
t→+∞

∼ tθ̃ ⇒ ρ(f → 1−) ∼ (1− f)θ̃
(3.193)

In principle, the functions p0 and p̃0 could be different and so also the exponents γ, γ̃ and
θ, θ̃ would be different. Because of the structure we have seen in the scaling equations,
the equality p0 = p̃0 holds and so also the exponents are all equal to the jamming ones
[62, 64, 105]:

κ ' 1.41574
θ ' 0.42311
γ ' 0.41269
a ' 0.29213

(3.194)

with the relationships between them

a = 1− κ

2
γ = 2− κ

κ

θ = 3κ− 4
2− κ

γ = 1
2 + θ

(3.195)

Solving the scaling equations

We solve numerically the equations (3.201) and we confirm the values of the critical
exponents reported in the literature [200, 62].
The ODEs and the boundary conditions for M(t) and p0(t) define a boundary value
problem for these functions. At fixed κ, we find the solution M(t). We verify that
the solution of the equation for p0(t) only converges for a single value of a depending
on κ. Therefore we solve the boundary value problem with the BVP solver [138, 219]
implemented in the library Scipy [240], keeping a as an unknown variable that is found
by the algorithm. The last equation of (3.201) is a closure equation that gives κ as a
function ofM(t) and p0(t). We can therefore iterate finding the value of κ that givesM
and p0 consistent with the closure equation. Our algorithm converges to the values of the
exponents:

κ = 1.4157(3) a = 0.2921(3) (3.196)

where the uncertain digit is in brackets. These values verify the relationship a = 1 − κ
2

and we confirm the fact that κ 6=
√

2.
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Figure 3.34: FunctionsM(t) (left panel) and p0(t) (right panel) obtained by the numerical
solution of the scaling equations (3.201) for the values κ ' 1.4157 and a ' 0.2921.
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Figure 3.35: Left panel: the value of a, depending on κ, that makes the equation of p0
solvable; the algorithm converges to the single value satisfying a = 1 − κ
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of κ must be the same: the algorithm converges to the fixed point of the blue line.
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3.4 A scaling theory for the critical phase
In the non-convex phase, the perceptron with linear potential displays isostaticity and
jamming-like criticality. The distribution of gaps near zero has the form

g(h) ∼ |h|−γ + 1
α
δ(h), h→ 0± (3.197)

where the factor 1
α
comes from the normalization over the total number of gapsM = αN .

The zero-gaps are associated to contact forces fc ∈ (0, 1) whose distribution has a power-
law behavior near the bounds of the domain f ∼ 0+ and f ∼ 1−:

ρ(f) ∼ f θ, f → 0+

ρ(f) ∼ (1− f)θ, f → 1−
(3.198)

The value of these exponents depend on an exponent κ

γ = 2− κ
κ

(3.199)

θ = 3κ− 4
2− κ (3.200)

that is found by solving the scaling theory
M(t)− tM′(t) =M′′(t) + 2κ−1

κ
M(t) [1−M′(t)] , M(t→∞) = 0, M(t→ −∞) = t

a
κ
p0(t) + 1

2t p
′
0(t) = p′′0 (t)

2 + κ−1
κ

[p0(t)M(t)]′ , p0(t→∞) = t−2 a
κ , p0(t→ −∞) = |t|2

1−κ+a
κ−2

κ−1
κ

= 1
2

∫
dtp0(t)M′′(t)2∫

dtp0(t)M′(t)2[1−M′(t)]

(3.201)
The exponents γ and θ verify the relationship

γ = 1
2 + θ

(3.202)

that is connected to marginal stability (and therefore isostaticity).

Meaning of the exponent κ

The exponent κ has a central role in the scaling theory. In replica theory, it appears in
the function y(q)

y(q) ∼ 1
(1− q) 1

κ

(3.203)

that controls the distribution of distances 1− q between states in the glassy phase. The
divergence of y(q) for q → 1 implies a large number of states close to each other. Marginal
stability suggests that, when a zero temperature equilibrium configuration is slightly
perturbed, the system starts moving until it falls in a nearby stable state. The availability
of nearby states is controlled by the exponent κ, that therefore enters in describing the
response of the system to perturbation. The theory of this critical dynamics in the replica
framework is done in [110] and it shows that κ enters in the distribution of avalanches of
the response of the system. In chapter 5, we use a compression algorithm in the critical
phase of the perceptron with linear cost function and we confirm the predictions of the
theory, in excellent agreement with the value of κ ' 1.416 being the one obtained in the
jamming theory (3.3.3).
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3.4.1 Non-linear excitations
The excitations in the critical phase of our model are strictly non-linear. In fact, a stable
configuration is defined by the associated N−1 zero-gaps, the contacts (plus the spherical
constraint). The configuration is therefore the point of intersection of N − 1 random
planes with the N -sphere. Since the cost function is linear, the energy landscape around
the point is made of ramps with linearly increasing energy. Such an angular point does
not admit a harmonic approximation. Perturbing the system, instead, necessarily breaks
some contacts, and the system stabilizes again only when new contacts are formed and
isostaticity is restored. The excitations of the system, therefore, cannot be understood in
terms of harmonic fluctuations around some minima, but only as a dynamics of opening
and closing contacts. This mechanism is akin to excitations of packing of spheres at the
jamming point. In fact, scaling arguments about the excitations that can be induced in
an isostatic system of spheres [247] can easily be generalized to the critical phase of the
linear perceptron.

Marginal stability argument

Consider an isostatic stable configuration X in the critical phase of the perceptron with
linear cost function, with an isostatic number of contacts hc = 0, c ∈ C, associated to the
contact forces fc, and a certain number of overlaps ho < 0, o ∈ O:

H =
∑
o∈O

(
σ − 1√

N
ξo ·X

)
+
∑
c∈C

fc

(
σ − 1√

N
ξc ·X

)
+ η

2
(
|X |2 −N

)
(3.204)

∂

∂Xi

H = − 1√
N

∑
o∈O

ξoi −
1√
N

∑
c∈C

fcξ
c
i + η Xi = 0, i = 1, ..., N (3.205)

Now we perturb the system with a displacement δXi so that all the contacts stay in
place, except for one contact, of index c′ = 1, whose gap becomes δ1:

1√
N
ξci δXi = δc,1δh1

Xi δXi = 0
(3.206)

where we are summing over repeated indices and the last equation implies that the per-
turbation is tangent to the surface of the sphere. This system is made of N equations for
N unknowns δXi, therefore our displacement is uniquely defined by δh1. For simplicity
of notation, we can think of including Xi in the matrix ξci as the "pattern" of index c = 0:
this has no effect on the spectrum of ξci and the rest of the discussion. We simply write

δXi =
√
N(ξ−1)i,1δh1 (3.207)

Since the N × N random matrix 1√
N
ξci has entries of order O( 1√

N
), we would expect its

inverse
√
N(ξ−1)ci to have entries of order O( 1√

N
): this is not the case, since we have seen

when discussing the Hessian in section 3.2.2 that 1
N
ξci ξ

c
j has a spectrum divergent in zero

with the smallest eigenvalue of order O(N−2). It follows that the matrix
√
N(ξ−1)ci has

entries of order O(1) and that

δXi ∼ δh1

|δX|2 = ANδh2
1

(3.208)
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for some positive constant A ∼ O(1).

Let’s say that we want to open the weakest contact, meaning the one whose associated
force f1 is the smallest among the fc. In doing so, the gradient looses the contribution
coming from f1, therefore it is

∂H

∂Xi

∣∣∣∣∣
c′=1

= − 1√
N

∑
o∈O

ξoi −
1√
N

∑
c∈Cr1

fcξ
c
i + η Xi = 1√

N
f1ξ

1
i (3.209)

where the last equality comes form (3.205). The energy variation to second order reads:

δH = 1√
N
f1ξ

1
i δXi + η

2 |δX|
2 = f1δh1 + η

2ANδh
2
1 (3.210)

Since we are in the non-convex phase, η < 0. Therefore, for δh∗1 > f1
− η AN the energy

would start to decrease, making the system unstable. To have stability, it is necessary
that a new contact is formed for δh1 ≤ δh∗1. Since the variations of the other non-zero
gaps is of order δhµ ∼ δh1, having a new contact hµ + δhµ = 0 for δh1 ≤ δh∗ imposes a
condition on the smallest non-zero gaps hmin:

|hmin| ≤
f1

− η AN
(3.211)

With ρ(f → 0+) ∼ f θ, the minimal force scale as f1 ∼ N−
1

1+θ . For g(h→ 0) ∼ |h|−γ, we
have |hmin| ∼ N−

1
1−γ . Therefore, the condition O(N−

1
1−γ ) ≤ O(N−

1
1+θ /N), becomes

γ ≥ 1
2 + θ

(3.212)

This relationship becomes an equality for the jamming universality class, which corre-
sponds to marginal stability. In this case, we haven’t made a distinction between contacts
being formed by positive gaps closing to zero or by overlaps relaxing until becoming con-
tacts. In principle, these are two different mechanisms of stabilizing the system and they
could be controlled by different exponents g(h → 0+) ∼ h−γ and g(h → 0−) ∼ h−γ̃. We
have seen this is not the case and the small positive gaps have the same scaling as the
small negative gaps: γ = γ̃.

In a very similar way, we could think of taking the strongest contact, meaning the
contact associated with the force closest to one, and compress it in order to make it
become an overlap. Therefore we are making a perturbation δh1 < 0. The corresponding
pattern adds to the set O of unsat patterns, therefore

∂H

∂Xi

∣∣∣∣∣
c′=1

= − 1√
N
ξ1
i −

1√
N

∑
o∈O

ξoi −
1√
N

∑
c∈Cr1

fcξ
c
i + η Xi = − 1√

N
(1− f1)ξ1

i (3.213)

The energy variation reads

δH = − 1√
N

(1− f1)ξ1
i δXi + η

2 |δX|
2 = (1− f1)(−δh1) + η

2ANδh
2
1 (3.214)

with the linear term being positive, since δh1 < 0, and the quadratic term being negative,
since η < 0. Therefore we have the same condition of stability as before

|hmin| ≤
1− f1

− η AN
(3.215)
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For ρ(f → 1−) ∼ (1−f)θ, the largest force satisfies 1−f1 ∼ N−
1

1+θ and condition (3.212)
is found. Like for the small gaps, also small forces and forces close to one could have two
different scaling exponents θ and θ̃ and being associated with different kind of excitations,
but this is not the case since θ = θ̃.

The critical phase of the perceptron with linear cost-function has all the features of
jamming criticality but with a richer physics. The excitations are of two kinds, contacts
that are open and contacts that are compressed. Also the relaxation mechanisms are
two, since a contact can be formed coming from the positive side or the negative one.
Moreover, the system can be compressed/decompressed over a range of pressure values,
since there is no need of fine-tuning to see the criticality appearing.

3.5 Discussion
In this chapter we have introduced all the main concepts of the linear cost-function in
the jammed phase. The first important feature is the fact that the minima of the system
have marginally satisfied gaps, a.k.a. contacts, needed to stabilize the system. This cre-
ates an analogy with the problem of optimizing a linear function in a domain, i.e. linear
programming, where the minimum sits in one vertex of the polytope, that is where some
of the inequalities defining the domain become marginally satisfied. The other important
feature comes from the spherical geometry of the problem: when the resulting force pushes
the configuration towards the exterior of the hyper-sphere, then the effective geometry in
the neighborhood is convex and also a hypostatic configuration can be stable, since the
unconstrained directions see an effective positive curvature. When instead the system is
in a configuration that is pulled by the resultant force towards the center of the hyper-
sphere, then the system lives in a region whose effective curvature is negative. Therefore,
the only way to stabilize the configuration is to constrain each degree of freedom with
a contact, and this directly leads to the fact that the only stable configurations are (at
least) isostatic. This discussion about the "effective curvature" is measurable through the
sign of the Lagrange multiplier η of the spherical constraint, that in fact is proportional
to the resultant force along the X direction.
From the algorithmic point of view, the introduction of the smoothed linear potential is a
simple solution that can be straightforwardly replicated in other systems having a similar
interaction potential, as we do for finite dimensional soft spheres. Pictorially, it is possible
to think of the smoothing parameter ε as playing the role of the temperature that blurs
the irregularity of the linear interaction in the origin.
A remarkable point is the correspondence between the replica theory and the simula-
tions. While in the replica symmetric/convex phase it is expected to hold, in the replica
symmetry broken/non-convex phase it is much less obvious. In fact, the fullRSB theory
and the scaling solution describe the ground-state, while the local minima we study by
gradient-descent-like minimizations from random configurations are not the ground state.
Yet, statistical properties like the power law distributions of small gaps and contact forces
can be found both in the simulations’ local minima and the theoretical scaling solution.
A deeper understanding of this fact will be the subject of further research.
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Chapter 4

Critical jammed phase of linear soft spheres

The content of this chapter is published in [107].

In this chapter we study the overcompressed phase of finite dimensional soft spheres
with linear repulsion. The model is defined similarly to the perceptron with linear cost-
function, but now the gap variables represent the distances between the spheres. We show
that the physics of this model, even in dimension as low as 2 and 3, is the same as the
one found in the perceptron counterpart, with the remarkable difference that this defines
a physical model in finite dimensions having a novel critical phase.

• Accessible local minima of the potential energy landscape are isostatic. Even if
there is a finite fraction of overlapping spheres making the total energy finite, there
is also an isostatic number of pairs of spheres that just touch.

• Contacts play a crucial role in the stability of the system. Their number is fixed
to be exactly equal to the number of degrees of freedom and its fluctuations are
suppressed, as it happens at jamming [128, 129]. In fact the spatial fluctuations
of the local connectivity of the contact network are hyperuniform implying that
the variance of the number of contacts in a volume V grows more slowly than
|V |. Conversely, the fluctuations of the number of overlaps follow the central limit
theorem and spatial fluctuations of the overlap network are only uniform.

• If we look at gap variables and we focus on strictly positive and negative gaps,
we find that their distribution has a power law divergence for small argument (in
absolute value). The power law exponents appear to be the same - within numerical
precision - for both positive and negative small gaps. The numerical value of the
exponent is compatible with the one controlling the divergence of small positive
gaps at jamming.

• Contacts can be associated with forces in the interval (0, F ), with the maximal
force fixed to the value F = 1. We measure the empirical distribution of the forces:
it displays two singular pseudogaps at the domain boundaries, close to zero and
close to F = 1. Close to jamming, the pseudogap exponent of forces near to zero
appears to depend on the packing fraction. However, if we carefully separate the
contribution of "bucklers", namely spheres that have d + 1 interacting spheres [57],
from the bulk statistics, both the pseudogaps are universal and characterized by the
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same exponent in the whole jammed phase, even far from jamming. The value of the
critical exponent is compatible with the one of the force distribution at jamming.

4.1 Definition of the model

We consider a set of N spheres in d dimensions whose centers are d-dimensional vectors
denoted by {xi}i=1,...,N . We define a gap between two spheres, say i and j, as

hij = rij − σij (4.1)

where we have denoted by σij the sum of the radii of the corresponding spheres and by
rij = |xi − xj| the distance between their centers.
In the overcompressed phase, above jamming, spheres cannot be arranged without creating
overlaps between them. Usually, an energy cost is associated to overlapping spheres via a
power interaction potential νa(hij) = (hij)a+, where x+ = |x|θ(−x). Common choices for
the penalty exponent a are a = 2 or a = 5/2, corresponding to harmonic and Hertzian
spheres, respectively. If a > 1 the interaction potential is convex and differentiable at
rij = σij, i.e. when spheres just touch. As a consequence, given a contact at jamming, an
infinitesimal normal force is enough to destabilize it and causes an overlap between the
corresponding particles. Therefore, for a > 1 jamming is a singular point in the phase
diagram: as soon as the spheres overlap, the system stabilizes. This implies that jamming
criticality is washed out when the system enters in the overcompressed phase.
Here we present soft spheres interacting through a linear ramp potential, obtained by
setting a = 1. Therefore the Hamiltonian reads

H ({xi}) = F
∑
i<j

|hij|θ(−hij) (4.2)

where F is a constant that sets the scale of forces. We set F = 1.
The linear ramp potential is at the boundary between convex and non-convex interpar-

ticle potentials and presents important qualitative differences from the case a > 1. First
of all, it is non-differentiable for hij = 0: the consequence is that small forces applied to
zero-gaps hij = 0 do not necessarily destabilize them. To induce an overlap hij < 0, a
total force greater than F is necessary. In addition, the modulus of the force generated
by an overlap does not depend on the extent of the overlap itself. This phenomenology is
analogous to the one of the perceptron with linear cost function presented in chapter 3.
We use the following terminology:

• contacts are gaps exactly equal to zero: hij ≡ 0. Therefore, the corresponding
spheres are in contact;

• overlaps are negative gaps: hij < 0. Therefore, the corresponding spheres are
overlapping;

• interacting spheres are those that are in contact or overlapping.
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Figure 4.1: On the left, overlapping spheres; the black dashed line indicates the amount
of overlap |hij| between them, with hij < 0. On the right, spheres in contact; the red dot
indicates that the gap between them is exactly zero: hij = 0.

We focus on systems of two and three dimensional polydisperse spheres and produce
local minima by gradient descent minimization. Isostaticity and critical behavior in the
force and gap distributions appear in the unsatisfiable phase of the spherical perceptron
with linear cost function, which is a mean field model for linear spheres ([108] and chapter
3). Here we show that these properties appear to survive in a robust way when we go
to finite dimensions. Therefore, jammed packings of linear spheres are characterized by
diverging isostatic lengthscales and are critical even far from jamming. This provides a
new, richer example of self-organized critical, marginally stable, finite dimensional system.

4.2 The emergence of contacts in the jammed phase

Setting the force scale F = 1, the gradient of the Hamiltonian defined in (4.2) reads

∂H

∂ xi
= −

∑
j 6=i

nij θ(−hij) (4.3)

where we are using ∂
∂ xi to indicate the partial derivative with respect to each compo-

nent of the vector xi, i.e. xα=1,...,d
i , and nij to indicate the unit vector pointing from xj to

xi, i.e. nij = xi−xj
|xi−xj | . We see that each sphere j that is overlapped with i pushes it with

a force of intensity equal to F = 1. If these are the only forces acting in the system, then
the mechanical equilibrium is reached only for very symmetric configurations of sphere
positions.
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Figure 4.2: In the configuration on the left, the central sphere is at equilibrium: the forces
exerted by surrounding spheres counterbalance in couples. Notice that the intensity of
the overlapping force is insensitive to the amount of overlap. In the configuration on the
right, instead, the resulting force on the central sphere is different from zero: the bottom
right sphere is not aligned with the opposite one. The arrow represent the resulting force.

Because we are addressing random configurations of spheres (eventually by inserting
polydispersity in their radii), such highly symmetrical configurations are not achievable.
Instead, the system gets stabilized by the presence of contacts with the corresponding
contact forces. By simple energetic arguments it is clear that a pair of spheres in contact
can sustain a compression force up to the critical value F (= 1), corresponding to the slope
of the energy ramp.

-f f

Figure 4.3: A pair of spheres in contact exchange a contact force of intensity between
0 and F = 1, keeping the contact in place. Energetically, overlapping a sphere with
another is equivalent to pushing a sphere up an inclined plane against gravity: if the
energy increases as F∆x, then the pushing force has to do a work F∆x that requires a
force (tangent to the plane) of at least F even for an infinitesimal ∆x.

The Lagrangian that takes into account the contact forces reads

L ({xi}, {fij}) =
∑
i<j

|hij|θ(−hij)−
∑
i<j

fijhijδhij ,0 (4.4)

where the forces fij are defined only for the contacts hij = 0 and the minus sign is
chosen so to have fij > 0. To make the notation simpler, we introduce two sets, C and O:

• C is the set of all pairs of spheres that are in contact; it contains C = |C| elements
composed of the pairs of indices c = 〈i, j〉, i < j, for c = 1, ..., C. The corresponding
contact forces form a C-dimensional vector f = {fc=1,...,C}.
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• O is the set of all pairs of spheres that are overlapping, i.e. hi,j < 0. It contains
O = |O| elements made of the pairs of indices o = 〈i, j〉, i < j, for o = 1, ..., O.
The corresponding overlap forces have all intensity equal to 1 (= F ), that we can
conveniently indicate via the O-dimensional vector made of 1s: 1 = [1, ..., 1].

Therefore we can write

L ({xi}, {fc}) =
∑
o∈O
|ho| −

∑
c∈C

fchc (4.5)

4.3 Static analysis: equilibrium condition for local
minima

We can impose the stationary condition of the Lagrangian with respect to its variables.
Deriving with respect to the contact forces fc we simply get the contact condition:

∂ L
∂fc

= hc = |xi−xj | − σij = 0, 〈ij〉 = c ∈ C (4.6)

Deriving with respect to the sphere positions xi, we get the force balance condition
∂ L
∂ xi

= −
∑

j∈O(i)
nij −

∑
j∈C(i)

fij nij = 0 (4.7)

where O(i) indicates the set of spheres overlapping with i and C(i) the set of spheres in
contact with i. Introducing the matrices S and T, with dimensions C ×Nd and O ×Nd
respectively, defined as Skα〈ij〉 = (δjk− δik)nαij, with 〈ij〉 ∈ C, and Tkα

〈ij〉 = (δjk− δik)nαij, with
〈ij〉 ∈ O, where nαij is the α-component of the unit vector nij = (xi−xj)/|xi−xj |, we
can write the force balance condition in matrix form:

ST f = −TT 1 . (4.8)

We see that, knowing the matrices S and T (that implies knowing the sphere positions
xi and the sets C and O), the contact forces fc=<ij> can be computed algebraically from
equation (4.8). In fact, it is always possible to project on the contact directions by S and
solve the equation

S ST f = − S TT 1 (4.9)

Anyway, to have a stable configuration it is necessary that the resultant forces f = {fij}
are in the interval (0, 1) and that the gradient ST f + TT 1 is equal to zero. For this to
happen, it is necessary that the configuration of sphere centers is properly organized. In
the next section 4.4 we define a minimization algorithm in order to reach a minimum
configuration.

A remark can be done about the contact condition (4.6). If we know the isostatic
contact network, the number of equations (4.6) is C = Nd, therefore equal to the number
of unknowns xαi . Finding the positions of the spheres xαi from the contact network requires
solving for xαi the system of non-linear equations (4.6). This is a difference with respect
to the perceptron with linear cost-function: we have seen in section 3.2.1 that knowing
the contact and overlap sets in the isostatic phase provides a linear problem defining the
corresponding perceptron configuration.
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4.4 Numerical simulations
We want to minimize the Hamiltonian (4.2) or its Lagrangian counterpart (4.5). The pres-
ence of a singularity in the first derivative for hij = 0 requires a regularization analogous
to the one used for the perceptron in 3.1.2.

4.4.1 Smoothening of the potential
We define a differentiable ε-regularized potential between particles:

νε(h) =


0 h > ε

2
1
2ε(h−

ε
2)2 − ε

2 < h < ε
2

|h| h < − ε
2

(4.10)

which in the limit ε → 0 reduces to the linear ramp potential. More precisely, the limit
ε→ 0 gives back the Lagrangian (4.5). In fact we have

Lε ({xi}) =
∑
i<j

νε(h) =
∑
o∈O
|ho|+

∑
c∈C

(
hc − ε

2

)2

2ε
(4.11)

where now we have redefined the sets O as O = {〈i, j〉 : hij < − ε
2 , i < j} and C as

C = {〈i, j〉 : − ε
2 < hij <

ε
2 , i < j}.

Now Lε is differentiable and the equilibrium condition for each sphere i reads

∂ Lε ({xi})
∂ xi

= −
∑

j∈O(i)
nij −

∑
j∈C(i)

ε
2 − hc
ε

nij = 0 (4.12)

We see the natural occurrence of the order one quantity
ε
2−hc
ε
∈ (0, 1) that in the limit

ε→ 0 is exactly the contact force fc:

lim
ε→0

ε
2 − hc
ε

= fc (4.13)

This recovers the force balance condition (4.8). Notice that, while the smoothed ε part
of the potential (4.10) gives an O(1) contribution to the force balance condition, its
contribution to the energy of the model is O(ε).

4.4.2 Gradient descent protocol and minimization algorithm
We consider a set of polydisperse spheres in d dimensions in a box of side length L with
periodic boundary conditions. The radii σi=1,...,N of the spheres are uniformly randomly
distributed in the interval [1− p, 1 + p], with polydispersity p = 0.2. The side-length L of
the box is set by the volume density φ = ∑N

i=1 kdσ
d
i /L

d, with kd = πd/2/Γ(1 + d/2) where
Γ(x) is the Euler gamma function.
We minimize (4.11) through an annealing on the regularization parameter ε.
Identically to the perceptron case, when ε is bigger than the typical smallest non-zero gaps
|hmin|, the landscape is smoothened by the quadratic contribution. When ε is smaller
than the smallest non-zero gap, then the function (4.11) is equivalent to its original non-
regularized counterpart. Therefore, we start with a large regularization ε1 (we choose
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ε1 ∼ 10−2), perform the gradient-descent minimization, reduce the regularization param-
eter to ε2 (we choose εk = εk−1/2) and perform again the gradient-descent minimization
starting from the previously found configuration. We repeat this step n times until the
regularization εn is small (we choose εn ∼ 10−7 or εn ∼ 10−8).

Algorithm 2: Spheres smoothed minimization
{xi=1,...,N}(0) ← random point in the d dimensional box of side L;
ε1 ← εinitial;
for k in {1, ..., n} do
{xi}(k) ← minimize Lεk ({xi}) starting from {xi}(k−1);
εk+1 ← εk/2;

end
Result: {xi}∗ ← {xi}(n)

This minimization procedure is performed for a fixed value of the packing fraction φ.
For the gradient-descent minimization, we actually choose a quasi-Newton method to
improve the performance.
With this procedure we meet the jamming transition at packing fractions φJ

∣∣∣
d=2
' 0.84

and φJ
∣∣∣
d=3
' 0.64.

This procedure provides the set C of the C = |C| particle pairs c = 〈ij〉, with i < j, that
are in contact (i.e. −ε/2 < hij < ε/2) and the set O of the O = |O| particle pairs o = 〈ij〉
that are overlapping (i.e. that have negative gaps hij < −ε/2).

Numerical and algorithm details

We explore the following intervals for the parameters in our computer simulations:

• N takes values from 64 to 4096;

• d takes values 2 and 3;

• the packing fraction φ can vary from the jamming values φJ
∣∣∣
d=2
' 0.84, φJ

∣∣∣
d=3
'

0.64 to φ = 2;

• our starting regularization is εinitial = 10−2 and we perform n steps, halving ε at
each step, to arrive at a final εfinal ∼ 10−7 in n = 17 steps or εfinal ∼ 10−8 in n = 20
steps.

The choices of εinitial and the ε-decreasing rate are chosen empirically, based on the
fact that they work well with the minimizer we use. The choice of εfinal depends on N :
since for a generic power law distribution of the small gaps ρ(h→ 0) ∼ |h|p the smallest
non-zero gap scales as hmin ∼ N−

1
1+p , we need

εfinal << N−
1

1+p (4.14)

On the other hand, we see that for ε ∼ 10−8 we have δLε ∼ εmachine and we start to loose
precision on the control of the contacts (i.e. the gaps in the window − ε

2 < hij <
ε
2). This

is a limiting factor in the sizes of the systems that we explore. In fact, exploring larger
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sizes N , we still find the same physics (i.e. isostaticity and the emergence of criticality),
but we loose the single contact control for ε . 10−8; by the way, also in this case the fluc-
tuations of the number of contacts are O(1) (therefore the relative fluctuations are O( 1

N
))

and get reflected in a strong degradation of the gradient. For sizes up to N ∼ 512, 1024,
instead, the control of the contact network is excellent up to a single contact.

The quasi-Newton method we use for the gradient-descent-like minimization is the
Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS) [48]. We use a
Fortran implementation of this algorithm [260, 185] available through a Python interface
in the library SciPy [240]. We have performed some minimizations using the FIRE algo-
rithm [38] for the first step ε1, for performance reasons: changing gradient-based routines
is completely irrelevant for the physics of the system.

4.5 Results

Inside the jammed phase, φ > φJ , the energy and the pressure in the system are positive
and a large number of overlaps is present in the system. In minimum configurations, an
extensive number of contacts is also present, as expected from the force balance argument
(4.8).

Figure 4.4: A snapshot of a configuration of disks with the linear potential at packing
fraction φ = 1. The contact network is in red while the overlap network is in black. The
thickness of the lines reflects the intensities of forces. While black lines carry all forces
equal to one, red lines, associated to contacts, carry a force that varies in the interval
[0, F = 1].
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Figure 4.5: Radial distribution function of a system of overcompressed disks in d = 2 at
φ = 1, as a function of rij

σij
= |xi−xj |

σij
. It reveals the presence of contacts in the system,

meaning pairs of tangent spheres rij = σij. Data obtained for N = 2048, averaged over
14 samples.

4.5.1 Structural properties of the jammed phase

In all the jammed phase, also very far from the jamming transition point, the system
is isostatic, meaning there is a number of contacts C equal to the number of degrees of
freedom. Due to the periodic boundary conditions, the system is invariant to a global
translation, therefore the degrees of freedom are Nd− d. We have that

C = N∗d− d (4.15)

in all the jammed phase, where N∗ is the number of spheres minus the number of rattlers,
meaning spheres that are out of the interaction network of the system. They are present
for densities close to φJ , but they quickly disappear going deeper in the overcompressed
phase. Therefore the isostaticity index c = C

Nd−d is always equal to one

c = 1 (4.16)

While the number of contacts stays constant from the jamming transition, the (inten-
sive) number of overlaps no = O

Nd−d , the energy e and the pressure p start from zero at
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φJ . Having defined

e =
∑
o∈O
|ho|

p = 1
dLd

 ∑
〈ij〉∈O

|xi−xj |+
∑
〈ij〉∈C

|xi−xj |fij

 (4.17)

we report the quantities c, no, e, p in figure 4.6 for dimension d = 2 and figure (4.7) for
dimension d = 3.

In the lower panel of figure (4.6) we report the scaling of the energy, the number of
overlaps and the pressure as a function of the distance from unjamming φ − φJ . It has
been shown [191, 117, 250] for soft-spheres interacting with a power law repulsion

H =
∑
i<j

|hij|aθ(−hij) with a > 1 (4.18)

that close to jamming it holds

e ∼ ∆φa p ∼ ∆φa−1 ∆z =
√

∆φ (4.19)

where ∆φ = φ − φJ and ∆z = z − ziso represents the excess average connectivity per
particle with respect to the jamming point where isostaticity holds ziso = 2d. The scaling
of ∆z is universal and independent of the power law repulsion a.
In our case, a = 1 and the scaling (4.19) for the pressure becomes marginal: we have that
logarithmic terms come into play and

p ∼ 1
| log ∆φ|b (4.20)

where b is some positive power. In the case of the perceptron with linear cost-function,
we have b = 1

2 . The energy has a linear scaling with logarithmic corrections,

e ∼ ∆φ
| log ∆φ|b (4.21)

The number of overlaps, which is equivalent to ∆z for general soft spheres, does not have
the known scaling (4.19). Instead, data in figure 4.6 suggest that

no ∼ ∆φν (4.22)

with an exponent 0.5 < ν < 1. We argue that this is due to the nature of the critical
jammed phase induced by the linear potential and it can be understood via mean-field
theory, i.e. with the perceptron model. In chapter 5, we define a compression algorithm
and obtain by scaling arguments that

ν = 21 + θ

3 + θ
' 0.83 (4.23)

where θ ' 0.42 is the critical exponent associated to the distribution of small forces at
jamming.
Some remarks can be made:
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Figure 4.6: Upper Panel. Main plot: the isostaticity index defined as c = C/(Nd − d)
and the fraction of overlaps defined as nO = O/(Nd − d) as a function of the packing
fraction in dimension d = 2 (we find the jamming transition at φJ ' 0.84). Inset:
Behavior of energy and pressure for φ > φJ . Energy, pressure and number of overlaps are
increasing functions continuous at jamming. Data produced with system size N = 512,
dimension d = 2, averaged over ∼ 40 samples for each point. Lower Panel. The behavior
of pressure, energy and overlaps close to the unjamming transition. We attempted some
logarithmic fits of the form e ∼ |∆φ|/

√
log(∆φ/2), p ∼ 1/

√
log(∆φ/2) and nO ∼ |∆φ|ν .

The unjamming packing fraction φJ is extracted from the fit of the energy.
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Figure 4.7: Isostaticity index and fraction of overlaps in dimension d = 3. While at all
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dimension d = 3, averaged over ∼ 30 samples for each density φ.
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• the scalings for soft spheres (4.19) with a > 1 correspond to what is obtained in the
corresponding mean-field theory, i.e. the perceptron [105];

• the scalings for energy (4.21) and pressure (4.20) for the linear potential correspond
to those found in the perceptron with linear cost-function (3.143)-(3.133) by a replica
symmetric computation;

• the scaling of the number of overlaps no is also found in the perceptron with linear
cost-function, but only in the non-convex/isostatic phase that requires the fullRSB
theory. In the non-critical, replica symmetric phase, in fact, the number of overlaps
scales proportionally to the distance from unjamming. Unfortunately, we are not
able to compute ν from the fullRSB theory, but we provide a scaling argument in
chapter 5 when studying the avalanches dynamics.

The reason why we do not report in this section a systematic numerical study of the
unjamming transition is that the algorithm we are considering is not suited for this kind
of analysis. To have good quality data, in fact, it is necessary to follow a configuration
by progressively reducing φ until φJ , which is a fluctuating point [191] (it depends on
the algorithm and on the disorder realization). The problem is that, when an isostatic
minimum is found at φ, a variation δφ necessarily destroys all the contacts of the con-
figuration: in order to find a new stable packing, it is necessary to proceed with a new
annealing in the regularization parameter ε. This procedure does not allow to follow a
configuration in a fine manner, for example with the objective of addressing a certain value
of the energy with arbitrary precision. The way to get a finer control of the structure is
by changing ensemble and using the pressure as control parameter while promoting the
average radius, therefore the packing fraction, to a variable. In this manner, it is possible
to look for configurations of the system at a given pressure, arbitrarily close to the jam-
ming point. A (small) variation of the pressure destabilizes only a part of the contacts,
and the configuration evolves by creation of avalanches. This is done in chapter 5.

Gaps and forces

At all jammed packing fractions φ > φJ , the distribution of gaps hij has a divergence
in h = 0 due to the presence of contacts and a power law behavior for h → 0±. The
associated exponent is the same both for small positive and small negative gaps, and it
is compatible with the exponent γ ' 0.41 [64] of the distribution of small positive gaps
at jamming:

ρ(h→ 0±) ∼ |h|−γ (4.24)

This is shown in fig. 4.8 for d = 2 and fig.4.9 for d = 3.
The contact forces associated to the contacts are distributed in the interval (0, F = 1)

and have two pseudo-gaps at its boundaries:

ρ(f) ∼
f θ0 f → 0+

(1− f)θ f → 1−
(4.25)

At low packing fractions local effects are still present and they influence the distribution
of forces near 0: these are due to the bucklers which carry small forces whose distribution
ρbucklers(f → 0) ∼ f θl , with θl ' 0.18 [154]. These effects vanish when the packing fraction
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is increased. Therefore the exponent θ0 of the distribution of small forces is dependent
on φ and satisfies θl < θ0 < θ, with θ ' 0.42 being the critical exponent of small forces
at jamming [64]. Deeper in the jammed phase, the effects of the bucklers disappear and
ρ(f → 0) ∼ f θ with the jamming exponent. Therefore, in this model it is possible to
remove local effects already in dimension d = 2 by simply increasing the packing fraction
φ. Notice that this is not possible when studying only the jamming point: in that case it
is possible to eliminate local effects only by increasing d [57]. For f → 1, the local effects
do not affect the statistics and ρ(f → 1) ∼ (1− f)θ always.

Rattlers and Bucklers

Rattlers are spheres that, for a given stable configuration, do not interact with any other
sphere and therefore they do not have any contact or overlap. This can happen for pack-
ing fractions near φJ because the interaction network of spheres can form a cage large
enough for a sphere to fit in, isolated from the other particles. This is a local effect in
finite dimension. In our model, going into the overcompressed phase, the typical size of
the cages becomes smaller and all the spheres enter the contact and overlap networks:
therefore the rattlers vanish by increasing φ.

Bucklers are spheres that, when perturbed, can relax by buckling locally. They carry
small contact forces that affect the total distribution of forces, and are characterized by
being typically weakly connected with the rest of the system. Therefore, following [57],
bucklers can be defined as spheres having only d+ 1 contacts. In our case, both contacts
and overlaps are present in the system, so we define bucklers as spheres having total
connectivity equal to d+ 1:

zc,i + zo,i = d+ 1 (4.26)

where zc,i is the number of spheres in contact with sphere i and zo,i is the number of
spheres overlapping with sphere i.

In a packing of spheres at jamming, a sphere (that isn’t a rattler) can be in mechanical
equilibrium only if it has at least d+ 1 contacts, so the connectivity constraint is

@jamming zc,i ≥ d+ 1 for all i non-rattlers (4.27)

Interestingly, in the overcompressed phase of our model, a sphere can be in mechanical
equilibrium even by having 1 overlap and just d contacts: a sphere can have the resultant
of the overlapping forces being compensated in the d directions by d contacts. Therefore,
the constraint of connectivity for a sphere being in mechanical equilibrium is

zc,i + zo,i ≥ d+ 1
zc,i ≥ d

for all non-rattlers i (4.28)

Hyperuniformity of the contact network

Following [128], we study the fluctuations of the local number of contacts and number
of overlaps. Each sphere i has its center in xi and a number zc,i of contacts and zo,i of
overlaps. Defining by zc the average contact number (that it is equal to 2d because of
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Figure 4.10: Contact force distributions. Upper panel: the cumulative of the contact force
distribution at φ = 0.85 in 2d, close to the unjamming transition. We plot the cumulative
both starting from the edge at f = 0 and at f = 1. While a blind statistics of forces is
controlled by a hybrid power law exponent, once the effects of bucklers are removed we
clearly observe power laws controlled by the mean field exponents, both close to f = 0+

and f = 1−. In the inset we plot the empirical probability distribution function. Lower
panel: Cumulative distribution of contact forces close to zero and one at φ = 2 in 2d, far
from jamming. We observe that both distributions follow the mean field exponent. Our
statistics is not sufficient to detect any localized excitations at this packing fraction and
therefore in this case we consider directly all forces without separating the contribution
of bucklers from the analysis.
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Figure 4.11: Cumulative distribution of contact forces close to the two edges at φ = 1.5.
The solid line corresponds to the mean field theory prediction. In the inset we plot the
corresponding empirical distribution function. Data produced with system size N = 1024,
dimensions d = 3, averaged over 45 samples for density φ = 0.7, 44 samples for φ = 1.5,
27 samples for φ = 2.0.

Figure 4.12: Examples of sphere configurations in d = 2: black lines represent overlaps,
red lines represent contacts and their thicknesses are proportional to the contact force
intensities. Left panel. Example of two rattlers, i.e. spheres that do not have any contact
or overlap and are caged by the other particles. Central panel. Example of a buckler with
three contacts and no overlap. Right panel. Example of a buckler with two contacts and
one overlap.
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Figure 4.13: Fraction of spheres being rattlers or bucklers (defined in (4.26)) as a function
of the packing fraction in dimension d = 2.
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Figure 4.14: Fraction of spheres being rattlers or bucklers (defined in (4.26)) as a function
of the packing fraction in dimension d = 3.
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Figure 4.15: Fraction of spheres having z contacts as a function of the packing fraction
φ, for d = 2. At the jamming point, some spheres have z = 0 contacts (rattlers) and no
sphere has only z = d = 2 contacts. Increasing the packing fraction, the rattlers quickly
disappear and an extensive number of spheres have just d = 2 contacts.
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Figure 4.16: Fraction of spheres having z overlaps as a function of the packing fraction
φ, for d = 2. At the jamming point, no sphere has any overlap. Increasing the packing
fraction, overlaps start to appear and for φ ' 1.5 every sphere has at least one overlap.
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Figure 4.17: Fraction of spheres having z contacts as a function of the packing fraction
φ, for d = 3. At the jamming point, some spheres have z = 0 contacts (rattlers) and
no sphere has 1, 2 or 3 contacts. Increasing the packing fraction, the rattlers quickly
disappear and an extensive number of spheres appear to have only d = 3 contacts.
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Figure 4.18: Fraction of spheres having z overlaps as a function of the packing fraction
φ, for d = 3. At the jamming point, no sphere has any overlap. Increasing the packing
fraction, overlaps start to appear and for φ ' 1.1 every sphere has at least one overlap.
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isostaticity) and by zo the average overlap number (that it is an increasing function of φ),
we can define the local fluctuations as δzc,i = zc,i− zc and δzo,i = zo,i− zc. We study their
structure factors

Sc(q) = 1
N

N∑
i,j=1
〈δzc,iδzc,jeiq·rij〉 (4.29)

and

So(q) = 1
N

N∑
i,j=1
〈δzo,iδzo,jeiq·rij〉 (4.30)

where the angular brackets represent the average over different minima and rij = |xi−xj |.
The behavior at small/large q tells about the correlations of connectivity at large/short
scale. If the local connectivities are uncorrelated random numbers, their square fluctua-
tions should scale extensively, therefore proportionally to the volume V (or, equivalently,
to N), because of the central limit theorem. In that case, we should see Sc,o(q → 0) going
to a constant. This is true only for the fluctuations of the overlap numbers.
Differently, the contact number fluctuations are suppressed and they scale sub-extensively:
this property is called hyperuniformity. Consequently Sc(q → 0)→ 0 and this is possi-
ble only with correlations being present at large lengthscales. This is due to the fact that
isostaticity is a global condition.
The difference of behavior between Sc and So is a manifestation of the different roles that
contacts and overlaps play in the stability of the system. As the system is progressively
compressed from the jamming point to higher densities, the networks self-organize keeping
the number of contacts fixed while increasing the overlaps. As at regular jamming [128],
fluctuations of contact numbers away from isostaticity are suppressed and controlled by
an infinite lengthscale.
In figure 4.19, we observe the structure factor of the contact numbers and of the overlap
numbers in dimension d = 2 for different densities φ. Interestingly, for small argument
Sc(q) goes to zero as a power law whose exponent appears to be compatible with the one
measured at the jamming transition [128]. For the overlap numbers, instead, So(q) goes
to a constant for small argument. The same phenomenon is observed for dimension d = 3
in figure 4.20.

4.5.2 A singular Hessian
The linear potential is non-differentiable when a gap is zero and therefore the correspond-
ing Hessian is a singular quantity. However, we can follow the same line of reasoning used
for the linear perceptron in section 3.2.2 where we used the smoothed potential to define
a Hessian matrix. For a general pairwise potential ν(hij), the Hessian reads

Hiα,jβ =
− ν

′′(hij)nαijn
β
ij − 1

rij
ν ′(hij)(δαβ − nαijn

β
ij) i 6= j

−∑k 6=iHiα,kβ i = j
(4.31)

where rij = |xi−xj |, nαij = xαi −x
α
j

|xi−xj | , the indices i and j run over all the spheres 1, ..., N
and the indices α and β indicate the component 1, ..., d.
Considering the smoothed Lagrangian (4.11), we have

Hiα,jβ =


−1
ε

∑
〈ij〉∈C

nαijn
β
ij + ∑

〈ij〉∈C

fij
rij

(δαβ − nαijn
β
ij) + ∑

〈ij〉∈O

1
rij

(δαβ − nαijn
β
ij) i 6= j

−∑k 6=iHiα,kβ i = j
(4.32)
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Figure 4.19: Structure factor of the local connectivity of the network of contacts and
overlaps for d = 2. For small momentum, the structure factor of the contact network
decreases down to zero implying hyperuniformity in the fluctuations of connectivity. The
exponent controlling the behavior of the structure factor appears to be close to ∼ 1.53
which is the same as the one found at jamming [128]. On the contrary, the connectivity
of the overlap network is not hyperuniform. These data are produced with system size
N = 4096.
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size N = 1024, dimensions d = 3, averaged over ∼ 30 samples for each density φ.
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We can clearly identify the stiffness part

−1
ε

∑
〈ij〉∈C

nαijn
β
ij (4.33)

that is of order O(1
ε
), and the pre-stress part∑
〈ij〉∈C

fij
rij

(δαβ − nαijn
β
ij) +

∑
〈ij〉∈O

1
rij

(δαβ − nαijn
β
ij) (4.34)

that is of order O(1) and vanishes at the jamming point. The eigenvalues of the stiffness
part are of order 1

ε
, while the pre-stress matrix is negative definite: to have a positive

definite Hessian it is necessary that the stiffness matrix is full-rank, since if it has any
zero eigenvalue it would receive a contribution from the pre-stress matrix and become
negative. Therefore, the system is stable in the limit ε → 0 only if it is isostatic, since
that is the only way to have a full-rank stiffness matrix.

The Hessian is therefore dominated by its isostatic random elastic part. Isostatic ran-
dom matrices are gapless [191, 249, 255, 197, 106, 22] and characterized by an abundance
of soft modes. Their spectrum should behave as λ−1/2 at small argument, where λ repre-
sents the eigenvalues. We measure the spectrum of the elastic term matrix, namely the
spectrum of

lim
ε→0

ε Hiα,jβ (4.35)

In Fig.4.21, we plot the corresponding density of states (DOS) with respect to the vibra-
tional frequency ω =

√
λ. Varying the density from φ = 0.85 to φ = 2.0, our numerical

simulations are compatible with having a constant DOS for ω → 0.
We see that having a constant DOS for ω → 0 corresponds to what we observed in the
mean-field case, i.e. the perceptron, in section 3.2.2.

4.5.3 The jamming criticality: marginal stability
Further understanding can be obtained by analyzing the marginal stability of the local
minima of the energy landscape. They are isostatic, with power-law divergences in the
distribution of small gaps and pseudo-gaps at the boundaries of the contact force domain.
We realize that the excitations of the system correspond to breaking contacts while the
formation of new ones let the system restore isostaticity. Therefore these non-linear exci-
tations dominate the dynamics of the system when it is perturbed away from a minimum.
We can generalize the line of thought employed in [247, 154] for the jamming point.

Marginal stability argument

Starting from a configuration in mechanical equilibrium

∇i L = −
∑
j∈C(i)

fij nij −
∑

j∈O(i)
nij = 0 (4.36)

we want to move the particles according to a certain displacement field δ xi. The second
order variation of the energy reads

∆L '
N∑
i=1
∇i L ·δ xi−

∑
〈ij〉

Fij(δ xij ·n⊥ij)2

2rij
(4.37)
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Figure 4.21: Density of states (DOS) of the rescaled elastic part of the Hessian matrix,
i.e. eq. (4.35), for different packing fractions above jamming in d = 2 and with N = 4096,
averaged over 44 samples for φ = 0.85, over 40 samples for φ = 1.0, over 48 samples for
φ = 2.0. Inset: the finite size behavior of the left tail of the DOS is consistent with having
a finite value for D(ω = 0).

with δ xij = δ xi−δ xj, rij = |xi−xj |, δ xij ·n⊥ij the component of the displacement
perpendicular to nij, Fij = fc if 〈ij〉 ∈ C or Fij = 1 if 〈ij〉 ∈ O. The linear term can
generically be recast into

N∑
i=1
∇i L ·δ xi = −

∑
〈ij〉∈C

fij nij ·δ xij −
∑
〈ij〉∈O

nij ·δ xij (4.38)

Let’s say that we want to open a contact α by pulling apart the two spheres by an
amount s, keeping all the other contacts in place. The displacement field is defined by

nij ·δ xij(s) +O(s2) = sδα,ij 〈ij〉 ∈ C (4.39)

Transforming the contact α into a positive gap makes (4.36) loose the contribution coming
from fα, therefore the energy variation with this displacement field reads

∆L = fαs−
∑
〈ij〉

Fij(δ xij ·n⊥ij)2

2rij
+ o(s2) (4.40)

A crucial feature inherited by isostaticity is the fact that the displacements δ xij ·n⊥ij are
of order s even very far from the contact opening α (see Ref. [247, 154] for a discussion on
this point). The quadratic term in (4.40) can therefore be rewritten as ∑

〈ij〉

Fij(δ xij ·n⊥ij)
2

2rij =

cα〈F 〉Ns2, where 〈F 〉 is an average force (proportional to the pressure) and cα a constant.
So we can write

∆L = fαs− cα〈F 〉Ns2 + o(s2) (4.41)
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Exactly the same procedure can be followed if, instead of opening a contact, we push
the two spheres into each other in order to make them overlap. In this case the displace-
ment field is defined by

nij ·δ xij(s) +O(s2) = −sδα,ij 〈ij〉 ∈ C (4.42)

The gradient in this direction would loose the contribution of fα but gain the one of the
new overlap, therefore

∆L = (1− fα)s− cα〈F 〉Ns2 + o(s2) (4.43)

In the first case (4.41), the smallest perturbation would correspond to the opening of
the weakest contact, i.e. the one with the smallest contact force. With a distribution
having a power-law for small forces ρ(f → 0+) ∼ f θ0 , the smallest force scales as

fmin ∼ N
− 1

1+θ0 (4.44)

The quadratic term makes the energy variation become negative for s∗ = fα
cα〈F 〉N , therefore

to have a configuration that is stable against these elementary excitations we need that
a new contact is formed for an sc ≤ s∗. Since we are opening a contact by pulling two
spheres apart, we are reducing the volume available for the other spheres that will tend to
get closer: in this setting, a new contact is typically formed by a positive gap that reduces
until becoming zero. Therefore sc is of the order of the smallest positive gap h+

min, that
for a power law distribution ρ(h → 0+) ∼ h−γ+ scales as h+

min ∼ N
− 1

1−γ+ . The condition
h+
min . s∗ = fmin

cα〈F 〉N gives the relationship between the exponents γ+ and θ0

γ+ ≥
1

2 + θ0
(4.45)

In the second case (4.43), the change in the sign of the energy happens for s∗ = 1−fα
cα〈F 〉N .

The weakest perturbation is obtained by overlapping two spheres whose contact force is
the closest to 1. With a power-law ρ(f → 1−) ∼ (1− f)θ1 , the following scaling holds

(1− f)min ∼ N
− 1

1+θ1 (4.46)

Since overlapping a pair of spheres makes more volume available for other spheres, new
contacts can be formed by relaxing an overlap until it becomes zero. Like in the previous
case, for a power-law ρ(h → 0−) ∼ |h|−γ− the smallest overlap scales as h−min ∼ N

− 1
1−γ− ,

and the stability condition h−min . s∗ = (1−f)min
cα〈F 〉N gives

γ− ≥
1

2 + θ1
(4.47)

By numerical simulations, we have seen that the two stability bounds are saturated
and

γ+ = γ− = γ

θ0 = θ1 = θ

γ = 1
2 + θ

(4.48)

where γ ' 0.41 and θ ' 0.42 are the two critical exponents of small gaps and forces of
spheres at jamming, related to marginal stability. To be precise, in small dimension near
the jamming onset the exponent θ0 needs to be considered by properly analyzing local
effects (i.e. separating the forces of buckler spheres, presented in section 3.3.1).
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4.6 Discussion
We have studied soft spheres with linear repulsion in the jammed phase which we have
shown to be a marginally stable, critical phase. As it happens for the jamming transition,
this corresponds with our finding in the mean-field version of the model, the perceptron,
suggesting once again that the upper critical dimension for the jamming universality class
is du = 2. Since the configurations are isostatic, breaking one contact is enough to desta-
bilize the system and make it flow along the unstable mode; only creating a new contact
can restore isostaticity and eventually stabilize the system. Therefore the excitations/re-
laxations of the system are controlled by the mechanisms of breaking/forming contacts
and they are strongly non-linear.
An interesting feature of having a critical phase in finite dimensions is the fact that we
can study the jamming criticality in sphere models without the need of looking for the
critical point by fine-tuning the control parameters. Moreover, increasing the pressure
by going deeper into the jammed phase makes the spheres more connected together and
reduces the effects of localized excitations also for finite dimensions.
Since the critical phase is marginally stable, we expect that the response of the system to
perturbations is characterized by scale-free avalanches and crackling noise.
Another difference with common soft spheres can be noticed at the unjamming transition,
where the pressure has a logarithmic behavior and the number of overlaps scales with a
different power-law of the distance from unjamming instead of the typical square-root
behavior (more details about this in chapter 5 [109]).
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Chapter 5

Surfing on minima of isostatic landscapes: avalanches

and the unjamming transition

The content of this chapter is published in [109].

We have seen, both numerically and theoretically, that the UNSAT phase of the per-
ceptron with linear cost-function has a non-convex critical phase related to the jamming
universality class. Minima in this phase are isostatic, marginally stable, and their excita-
tion/relaxation mechanisms are controlled by breaking/forming contacts.
Once we have characterized the properties of the static configurations, a natural ques-
tion is what happens when we perturb the system. In particular, we are interested in
studying small compressions of the system, in order to move inside the jammed phase.
One way to do so, is to perform small changes of the packing fraction (by changing the
average radius or the volume) for spheres or small changes of the parameter σ in the case
of the perceptron. The inconvenience of this procedure is that, no matter how small the
perturbation, it breaks instantaneously all the contacts. Instead, we perform a Legendre
transform over the average-radius for spheres or over σ for the perceptron and we use its
conjugate variable, i.e. a pressure p, as a control parameter. The interesting aspect of
this procedure is that the contact forces are a linear function of p. Therefore, for finite
system size N , we can perform a small variation δp while the contact forces remain in
their physical domain (0, 1). For a given configuration, a "critical" value δpc exists which
causes at least one contact force to meet one boundary, be it 0 or 1: it corresponds to the
instability point of that contact. Breaking (at least) a contact creates a soft mode that
the system can follow until a new isostatic configuration is formed. In this chapter:

• we define the model and its constitutive equations in this transformed ensemble;

• we define an algorithm that performs a compression of the system by triggering
small instabilities, both for the perceptron and for spheres;

• we show that this kind of compression gives access to information about the mi-
crostructure of the system, like the typical distance between consecutive minima;

• we implement the algorithm for the perceptron, showing that this procedure gives
rise to a zero-temperature avalanche dynamics;

• the avalanche dynamics is critical with diverging avalanche sizes;
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AVALANCHES AND THE UNJAMMING TRANSITION

• we use this fine control to study the unjamming transition in the perceptron and
we show it corresponds to a different behavior than the one known for differentiable
soft potentials.

5.1 Changing control parameters: a compression al-
gorithm for the perceptron

Let’s consider the perceptron with linear cost-function studied in chapter 3.
The configuration is given by an N -dimensional vector X ∈ RN living on the surface of the
hypersphere |X |2 = N , subjected toM = αN random soft constraints. They are given by
a set ofM N -dimensional vectors ξµ ∈ RN , with µ = 1, ...,M , called patterns that we take
as random points on the sphere. Their entries ξiµ, i = 1, . . . N are independent Gaussian
random numbers with zero mean and unit variance. The total number of random vectors,
M , scales with the dimension of the phase space as M/N = α and α is a O(1) control
parameter of the problem. For a given configuration X, each pattern has a corresponding
gap variable

hµ = 1√
N

ξµ ·X−σ (5.1)

with σ being a real number often called margin in the machine learning literature. Since
in the classification problem the constraints are defined by requiring the positive gaps,
hµ ≥ 0, an energy cost is associated to the negative gaps. We are interested in the linear
cost-function given by

H (X) =
∑
µ

|hµ|θ(−hµ) (5.2)

We have seen in chapter 3 that the minima of this cost-function are characterized by
an extensive number C = cN of gaps being exactly zero, called contacts, that are asso-
ciated to their Lagrange multipliers, the contact forces. Therefore, the model is better
understood by considering the Lagrangian

L (X, {fc}, η) =
∑
o∈O
|ho| −

∑
c∈C

fchc + η

2
(
|X |2 −N

)
(5.3)

where we have made explicit the spherical constraint |X |2 = N and we have defined the
overlap set O and the contact set C

O = {o : ho < 0} C = {c : hc = 0} (5.4)

In chapter 3, we have studied the model (5.3) and obtained the phase diagram (fig. 5.1)
using the number of patterns α and the margin σ as control parameters.

The UNSAT phase of the model has two main regions:

• a critical, non-convex, isostatic phase: the landscape is non-convex due to the
fact that η < 0 and the number of contacts is exactly equal to the number of degrees
of freedom (d.o.f.) N − 1 (one d.o.f. is set by the spherical constraint). Therefore
the isostaticity index c = 1, and the minima are marginally stable. The distribution
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FOR THE PERCEPTRON
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Figure 5.1: The phase diagram of the spherical perceptron problem with linear cost
function [108]. The blue dashed curve is a topology trivialization transition line (that
coincides with the onset of Replica Symmetry Breaking). Above this line the landscape is
non-covex with many local minima while below it is convex with just one unique minimum.
The isostaticity index, defined as the number of contacts divided by N is c = 1 in the
glassy/non-convex phase while c < 1 in the convex phase. In the glassy phase one has
isostatic minima which are marginally stable. In the SAT phase, we indicated with a black
dashed line the point where the solutions to the satisfiability problem become clustered
and replica symmetry breaks.

of gaps has a Dirac delta in zero due to the presence of contacts and a power law
divergence for small gaps, both positive and negative:

g(h→ 0±) ∼ |h|−γ (5.5)

The contact forces are distributed in the interval (0, 1) and have pseudogaps near
the boundaries of the interval:

ρ(f → 0+) ∼ f θ ρ(f → 1−) ∼ (1− f)θ (5.6)

The exponents γ ' 0.41 and θ ' 0.42 correspond to the critical exponents of the
jamming universality class. The theory of this phase is obtained through the replica
formalism and a fullRSB ansatz.

• a non-critical, convex, hypostatic phase: the energy landscape is convex due
to η > 0 and the number of contacts is still extensive but smaller than N , therefore
c < 1. Due to convexity, there exists a single, stable minimum. The distribution of
gaps has a Dirac delta in zero due to the presence of contacts, but no divergence
for small gaps. The contact forces are distributed in the interval (0, 1) and have a
regular behavior at the boundaries. The distributions of positive/negative gaps and
contact forces, in fact, are Gaussian functions (with restricted domains).
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Ensemble transformation

We change ensemble by performing a Legendre transform on the parameter σ. We have

L = L−σ∂ L
∂σ

(5.7)

We notice that
∂ L
∂σ

=
∑
o∈O

1 +
∑
c∈C

fc (5.8)

Therefore, we define its intensive version, the pressure p, as done in section 3.3.1, that is
basically an average force intensity:

p = 1
N

∂ L
∂σ

= 1
N

(∑
o∈O

1 +
∑
c∈C

fc

)
(5.9)

p is the (intensive) conjugate variable of σ. The transformed Lagrangian becomes

L (X, σ, {fc}, µ) = L−σNp =

=
∑
o∈O

(
σ − ξo ·X√

N

)
+
∑
c∈C

fc

(
σ − ξc ·X√

N

)
+ η

2
(
|X |2 −N

)
− pσN

(5.10)

Now σ is a degree of freedom and the control parameters are α and p.

5.1.1 Physical intuition
The addition of the term −pσN in (5.10) is basically tilting the landscape. If the energy
part were not present, the term −pσN , even for small p, would push σ to∞. The energy
partH = ∑

o∈O

(
σ − ξo ·X√

N

)
, instead, would become zero by making σ small enough so that

hµ ≥ 0 for all µ. Therefore, minimizing 5.10 corresponds to finding a trade-off between
the two terms, and this is controlled by p.
For p → 0, we get to the jamming transition point where the energy H → 0. For p > 0
we enter into the UNSAT/jammed phase. From the definition (5.9), the upper bound for
p is given by α, when all the gaps of the system have become negative.

5.1.2 Equilibrium equations for local minima
Once the sets O and C are fixed, the extrema of the Lagrangian satisfy the first-order
conditions
∂Xi L =

∑
o

−ξo,i√
N

+
∑
c

fc
−ξc,i√
N

+ η Xi = 0

∂σ L =
∑
o

1 +
∑
c

fc − pN = 0


∂fc L = −hc = σ − ξc ·X√

N
= 0 ∀c ∈ C

∂η L = 1
2(X2−N) = 0

(5.11)
The first set of these equations states the force balance conditions on each of the variables
and the fact that the pressure is the average force due to contacts and overlaps. The
second set of equations describes the conditions that hc = 0 for all contacts and the
spherical constraint for X. From the constitutive equations (5.11), we can derive a ’1st
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principle’-like relation between p, σ, η, and the intensive energy due to the overlaps
e = ∑

o∈O |ho|/N . Indeed, if we consider ∑iXi∂Xi L = 0 from eq. (5.11), we obtain

η = pσ − e (5.12)

This relationship implies that, in a minimum, the value of the Lagrangian is L ∗
N

= − η.
Taking the derivatives w.r.t. σ and w.r.t. p keeping the other parameters fixed, we get

p = de
dσ

∣∣∣∣∣
p,η

σ = d η
d p

∣∣∣∣∣
σ,e

. (5.13)

The first relation is consistent with the definition of the pressure. The second one tells
that η has a minimum for σ = 0. In fact, let us consider the jamming line, where η = 0:
for σ < 0, we enter the jammed phase with η < 0 and we get the non-convex phase; for
σ > 0, instead, η increases and we get η > 0 defining the convex phase. Moreover, it
holds that e < pσ in the convex phase and e > pσ in the non-convex phase.
Let us notice that (5.11) are N + C + 2 equations to be solved for N + C + 2 variables,
i.e. Xi=1,...,N , σ, fc=1,...,C , η.
We can write the first set of equations (5.11) in a more compact form by introducing the
C + 1 dimensional vector

f =


f1
...
fC
η

 , (5.14)

the (N + 1)× (C + 1) matrix S

S =
[− ξ1√

N

− ξ2√
N

... − ξC√
N

X
1 1 ... 1 0

]
, (5.15)

and the N + 1 dimensional vector

v =
[ 1√

N

∑
o ξo

pN −O

]
. (5.16)

where O = |O| is the number of overlaps. We can write

∇L =


∂X1 L
...

∂XN L
∂σ L

 ≡ S f −v = 0. (5.17)

We can also rewrite the second set of equations (5.11) through the matrix S. We have
in fact

ST
[
X
σ

]
=
[

0
N

]
(5.18)

If the configuration
[
X
σ

]
is known, then it is possible to use equation (5.17) to find the

contact forces and the Lagrange multiplier η. A valid physical configuration at equilibrium
has to satisfy the condition on the contact forces

fc ∈ (0, 1) ∀c ∈ C (5.19)
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that is not automatically satisfied for any set C and O: they have to be properly found
by a minimization algorithm.
In the isostatic phase, we have a number of contacts equal to the number of d.o.f.: con-

sidering that a configuration
[
X
σ

]
has N + 1 d.o.f. and one of them is constrained by

the spherical condition |X |2 = N , isostaticity in this model is achieved with C = N
contacts. Therefore, knowing the sets C and O in the isostatic phase, eq. (5.18) alone

completely defines the configuration
[
X
σ

]
. In fact, considering the matrix S without the

last column (the one containing X), it will be a rectangular (N +1)×N matrix with only

one left-singular-vector
[
w
s

]
∈ RN+1 having zero singular value:


− ξ1√
N

1
− ξ2√
N

1
... ...
− ξC√
N

1


[
w
s

]
= 0 (5.20)

Once
[
w
s

]
has been found, the configuration is fixed through the spherical constraint

|X |2 = N : [
X
σ

]
= ±
√
N

|w|

[
w
s

]
(5.21)

and the sign is chosen so that ho < 0 for all o ∈ O. Knowing X, we can solve (5.17) to
find the contact forces and η.

In the hypostatic phase, knowing C and O, the condition (5.18) is not enough to find
[
X
σ

]
,

thus it is necessary to solve it together with (5.17): they do not form a linear problem
any longer because of the quadratic coupling ηX in (5.17).

5.1.3 Instability points and evolution of the configuration

Evolution in the non-convex, isostatic phase

Let us consider what happens when we have an isostatic configuration X, σ, and we vary
the pressure p→ p+ δp. For finite size N , an infinitesimal δp does not change X and eq.
(5.17) produces a variation of the contact forces and of µ according to

S δ f =
[

0
Nδp

]
(5.22)

As long as every fc + δfc is in the interval (0, 1), the configuration is stable and does not
change. When δp reaches a critical value δp∗, one contact force hits a boundary, that is
fc + δfc = 1 or fc + δfc = 0 and the corresponding contact becomes unstable: it becomes
an overlap (i.e. a negative gap) if fc + δfc = 1, it becomes a positive gap if fc + δfc = 0.
Let us say that this destabilized contact has index c = 1. At this point, we do not vary
δp any longer and we let the system find another stable configuration. The system is
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missing one constraint, so the configuration makes a move
[
δX
δσ

]
while keeping the stable

contacts in place. Therefore, the movement direction is uniquely defined by:
1√
N
ξc ·δX−δσ = 0 ∀c ∈ C r 1

δX ·
(
X +1

2δX
)

= 0
(5.23)

where the first condition ensures that all the contacts except the unstable one stay in
place and the second equation, quadratic in δX, is the spherical constraint. During this
evolution, all the gaps, except the stable contacts, have a variation δhµ

δhµ = 1√
N

ξµ ·δX−δσ (5.24)

We see that the condition (5.23) ensures that δhc = 0 for the stable contacts c ∈ C r 1,
while for all the other gaps δhµ 6= 0. The evolution continues along the direction defined
by (5.23) until a positive or negative gap becomes a contact:

hµ̃ + δhµ̃ = 0 for one µ̃ /∈ C (5.25)

At this point, we have again an isostatic configuration and the evolution halts. As a
net result, the set C has lost the contact c = 1 but has acquired a new pattern µ̃; at the
same time, the set O or the one of the positive gaps have lost the pattern µ̃ and acquired
the ex-contact c = 1. The new configuration is given by X +δX, σ + δσ.
Given the new sets C and O, we can find the new contact forces fc and the new η by
solving equation (5.17). If all the new contact forces are in the interval (0, 1), then the
configuration is stable. If not, then a further evolution of the configuration is demanded
as described in the following section.

Breaking multiple contacts

Let us say that, following the procedure of the last section, we have reached a new
configuration that turns out to be unstable because not all the contact forces are in the
physical domain (0, 1). Then there are two possibilities:

• only one contact force is outside the support (0, 1): we have only one unstable
contact and we can follow the only direction prescribed by (5.23). Then everything
proceeds as in the previous section, until a new contact is formed;

• more than one contact force is outside the support (0, 1): then the condition of
keeping the stable contacts in place, plus the spherical condition, define a multi-
dimensional manifold and the evolution direction is not uniquely defined.

In case of multiple unstable contacts, it is necessary to choose in which direction to
move and this is an arbitrary choice. We decide to choose the "softest", or "least-descent",
direction, defined by

min
f
|∇L |2 with constraints fc ∈ [0, 1] (5.26)

where

∇L = S f −v (5.27)
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According to the procedure (5.26), the unstable contacts k get a contact force saturated
to the boundary, i.e. fk = 0 or fk = 1, while the stable contacts have fc ∈ (0, 1).
The solution of (5.26) gives the gradient ∇∗L that we follow for the evolution of the
configuration [

δX
δσ

]
∝ −∇∗L (5.28)

We should add the spherical condition δX
(
X +1

2δX
)

= 0, but we can actually avoid
this non-linear condition and perform a rescaling at the end. The evolution (5.28) induces
a variation δhµ for the non-contact gaps: when one of them becomes a contact, i.e.
hµ̃ + δhµ̃ = 0, the evolution stops and the new configuration is given by

K

([
X
σ

]
+
[
δX
δσ

])
(5.29)

where K is the rescaling factor K =
√
N

|X +δX | needed to ensure the spherical constraint.
Note that this rescaling does not change the value of the contact gaps that are zero and
does not change the sign of the positive and negative gaps.
At this point we have a new set C: if we still do not have an isostatic and stable configu-
ration, we can compute the new gradient ∇∗L by (5.26) and evolve the configuration.

Evolution in the convex, hypostatic phase

The convex phase is hypostatic and the procedure described in the previous section does
not apply. In fact, even keeping the contacts in place, an infinitesimal variation of pressure

δp, however small, necessarily causes also a variations of the configuration
[
δX
δσ

]
: we have

therefore a state following scenario. Given a hypostatic configuration and a δp, it is
possible to track the evolution by the equilibrium equations (5.11):

∑
c δfc

−ξc,i√
N

+Xiδ η+ η δXi + δ η δXi = 0∑
c δfc = Nδp

δσ − 1√
N
ξc ·δX = 0 ∀c ∈ C

δX(X +1
2δX) = 0

(5.30)

The first two equations give the change in δfc, δ η and δX as a function of δp, while
the last two equations impose the contacts staying in place and the spherical condition.
As discussed in the isostatic phase, a contact gets destabilized when its force touches a
boundary, i.e. fc + δfc = 0 or fc + δfc = 1. At that point, the contact can be removed
from C. By the way, the system does not need necessarily to find another contact to
stabilize: due to the convexity η > 0, a proper change δX can be enough to compensate
the gradient and restore equilibrium.
Another main difference is that in the isostatic phase it was possible to separate the
evolution of δfc, δ η from that of δX. In fact the algorithm in that case is made of
two steps: a pressure variation until the trigger δp∗ that destabilizes a contact and a

variation
[
δX
δσ

]
until the stability is restored. In the convex hypostatic case, it is not

possible to separate the evolution of δfc from that of δX since they vary together with
δp. However, in the numerical algorithm, we decide to make compression steps with the
following routine, that clearly mimics the one of the critical phase.
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1 Keeping the configuration
[
X
σ

]
, increase δp and compute the approximated variation

δfc, δ η from

ST S δ f = Nδp (5.31)

It is an approximation of the correct δ f since the left hand-side should have an
additional term − η δσ − δ η δσ. In this way we find a δp∗ where one contact force
meets one boundary of (0, 1) and the corresponding contact gets destabilized.

2 The contact forces fc + δfc ensure that the gradient ∇L (X, f +δ f) is orthogonal
to the stable contacts, therefore we evolve the configuration according to[

δX
δσ

]
= −1

η
∇L (X, f +δ f) (5.32)

This evolution makes a variation of the non-contact gaps

δhµ = −1
η

[ ξµ√
N

−1

]
· ∇L (5.33)

If there is one non-contact gap that changes sign because of this variation, then we
have to reduce the "step" to let this gap potentially become a contact. Giving index
µ̃ to this gap, we have hµ̃ + t∗δhµ̃ = 0 for some 0 < t∗ < 1. Therefore, the actual
evolution of the system is [

δX
δσ

]
= −t

∗

η
∇L (X, f +δ f) (5.34)

In this way the gap µ̃ becomes a contact and enters the set C.

3 The new configuration is given byK
([

X
σ

]
+
[
δX
δσ

])
, whereK is the rescaling factor

K =
√
N

|X +δX | needed to ensure the spherical constraint.

4 We use the equilibrium equation (5.17) projected on ST to compute the contact
forces fc in the new configuration

ST S f = ST v (5.35)

Since the set C may have changed, it can happen that some forces are outside the
desired physical domain. In that case, we compute the contact forces according
to (5.26), i.e. those that minimize the gradient, that is simply a generalization of
(5.35).

5 The new set of contact forces gives the new gradient ∇L . If it is still non-zero,
then we evolve the configuration according to − 1

η
∇L or − t∗

η
∇L as done in step 2.

We continue iterating until a configuration X, η, f is found, with the corresponding
sets C, O.
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5.1.4 The algorithm
We wrap-up the reasoning of the last section by writing the algorithmic procedure used
to obtain the data. The compression algorithm is performed at fixed α, from pressure
p = 0+, corresponding to the jamming point, to a finite value pfinal, by "small" variations
δp that trigger the instability of one contact at each step, as described in the previous
section. As a preliminary step, at fixed α, it is necessary to produce a configuration at
the jamming line.

Step 0: producing a configuration at jamming

We consider the smoothed version of the Lagrangian

L ε =
∑
o∈O

(
σ − ξo ·X√

N

)
+
∑
c∈C

1
2ε

(
σ − ξc ·X√

N

)2

+ λ

4
(
|X |2 −N

)2
− pσN (5.36)

where we have introduced a regularization of the interaction for the contacts and the
spherical constraint. The extrema of the Lagrangian Eq. (5.10) are recovered from the
one of the smoothed one in an appropriate limit ε → 0 and λ → ∞. Once the number
of patterns α and a value of p small enough are chosen, we run a conjugate-gradient
descent on the cost function (5.36) with the degrees of freedom (X, σ), repeating the
minimization for smaller and smaller values of ε (identical to the procedure of section
3.1.2): this produces a configuration (X, σ)J .
In the thermodynamic limit, jamming points are only stable for pressure p→ 0. However,
as it will become clear in a moment, for finite system size configurations at jamming can
sustain small pressures without moving, and they can be compressed till the point where
the largest of the contact forces leaves the stability interval (0, 1). Therefore, a finite
size configuration at jamming is stable in an interval of pressure values p ∈ [0, pJ(N)]
where pJ(N) → 0 as N → ∞. Given a configuration at jamming, we can compute the
contact forces from Eq. (5.11). For p strictly equal to zero all the contact forces are zero.
Increasing p, since the set of overlaps is empty O = ∅, the solution of the linear system
has the form fc = pf̂c, with f̂c independent of pressure. The force distribution therefore
progressively invades the stability interval (0, 1), and the solution is stable till pressures
pJ(N) = 1/f̂max where the largest contact force exits the stability interval and we enter
the jammed phase. In Fig. 5.3, we show the empirical distribution ρf (f̂) of the rescaled
forces f̂ = f/p at jamming for α = 1.5 and α = 4. For α = 1.5 the jamming point
is in the convex non-critical phase and the isostaticity index is c = C

N
' 0.86, since we

are in the hypostatic phase. The distribution ρf (f̂) is a Gaussian branch, as expected
from the replica symmetric computations for the theory of the linear perceptron in section
3.3.1. For α = 4, instead, the jamming point is in the non-convex critical region and the
configuration is isostatic, c = 1. The force distribution displays the critical pseudogap for
f̂ → 0 [105] in analogy with hard spheres at jamming [64]. In addition, similarly to what
is found in [191] for jamming points in spheres, we empirically observe a large argument
tail which is compatible with a Gaussian.
Usual extreme value statistic arguments, supposing independence of the contact forces,
imply that f̂max ∼

√
lnN , or pJ(N) = 1/f̂max ∼ (lnN)−1/2. Fig.5.2 shows that such a

scaling is in agreement with numerical simulations, and gives rise to rather large critical
pressures for the system sizes we have studied. When the pressure reaches p = pJ(N),
the system becomes unstable because the largest contact force gets to the upper bound
of the stability interval (0, 1) and we enter in the jammed phase.
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Figure 5.2: The scaling of pJ(N) as a function of the system size at jamming with α = 4.
In the inset we plot the maximum scaled force f̂max as a function of the system size. In
black lines we show a logarithmic fit.

Notice that the argument for finite volume stability of isostatic configuration under
small pressure changes extends without changes into the jammed phase. In fact, also for
isostatic jammed configurations, despite the fact that now contact forces have an affine
dependence on the pressure, we still have that for fixed (X, σ) a small pressure variation
δp induces small force changes δfc ∼ δp. Since generically all forces are strictly smaller
than one, this does not cause destabilization if δp is small enough.

Compression in the critical, isostatic phase

Starting with an isostatic stable configuration (X, σ) at pressure p, we proceed with the
compression step. The starting configuration can be the isostatic-jamming one: that
would be compression step number 1 and the routine works like in the rest of the jammed
phase. We rationalize the procedure discussed in section 5.1.3.

1 We compute δp∗ for which one contact force gets to the boundary (0, 1), let us say
fk + δfk = 1 for a single k ∈ C. With p → p + δp∗ we would have one force at
exactly the boundary but still a zero gradient. To make it acquire a component in
the unstable direction, we need to add a little push δδp << δp∗. Therefore we set
p← p+ δp∗ + δδp and we compute the gradient ∇∗L (f∗) = S f∗−v according to

∇∗L = ∇L (f∗) with f∗ = argmin
f ,fc∈[0,1]

|∇L (f) |2 (5.37)

It keeps fk = 1 while the stable contacts compensate for the pressure increment
making the gradient ∇∗L 6= 0 acquire the direction corresponding to breaking
only the contact k.
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Figure 5.3: The scaled force distribution at jamming for different system sizes at α = 1.5
(upper panel) and α = 4 (lower panel). Insets: zoom on the tails. The jamming at
α = 1.5 happens at σJ ' 0.186 and belongs to the convex, hypostatic phase. The black
line represents the functional form ρ(f̂) = A e−

(Bf̂−σJ )
2 , with the constants A, B fitted,

according to the replica symmetric theory developed in section 3.3.1. The jamming at
α = 4 happens at σJ ' −0.4 and belongs to the non-convex phase; it manifests the
signatures of the jamming criticality, in this case the pseudo-gap ρ(f̂) ∼ f̂ θ for small
forces, with θ ' 0.42 the critical exponent; the black line represents the functional form
ρ(f̂) = A f̂ θe−

(Bf̂−σJ )
2 , with the constants A, B fitted.
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2 We make the move [
δX
δσ

]
= −t∗∇∗L (5.38)

with

t∗ = min
µ
{tµ : hµ + tµδhµ = 0 ∧ tµ > 0 ∧ µ /∈ C} (5.39)

where δhµ = ( ξµ√
N
,−1) · (δX, δσ).

In this way we move following the gradient until a new contact is formed.

3 We set the new configuration[
X
σ

]
← K

([
X
σ

]
+
[
δX
δσ

])
(5.40)

with the rescaling K =
√
N

|X +δX | necessary for ensuring the spherical normalization
|X |2 = N .

4 Given the new configuration, we have two new sets C and O. If it is isostatic, we
can try to solve ∇L (f) = S f −v = 0 for f and check if all the contact forces
fc ∈ (0, 1); it can happen that now several fk are outside (0, 1) and we have to
break multiple contacts. In any case, if the configuration is unstable we need to find
the new gradient ∇∗L (f∗) with the procedure (5.37). We can prescribe to always
do (5.37), since it becomes equivalent to solving the linear system S f −v = 0 every
time that this is possible.
If ∇∗L 6= 0, we reiterate from point 2. If ∇∗L = 0, then we have found a
new stable configuration for the new pressure value, having all the contact forces
fc ∈ (0, 1).

Algorithm 3: Linear perceptron: Compression step
(X, σ) starting configuration at p0;
δp∗ ← compute critical pressure variation at fixed (X, σ);
p← p0 + δp∗ + δδp;
f∗ ← argmin

f ,fc∈[0,1]
|∇L (f) |2 ;

∇∗L ← ∇L (f∗) ;
while |∇∗L | > tollerance do

δhµ = −(ξµ /
√
N,−1) · ∇∗L ;

t∗ ← min
µ
{tµ : hµ + tµδhµ = 0 ∧ tµ > 0 ∧ µ /∈ C};

(δX, δσ)← −t∗∇∗L ;
K ←

√
N/|X +δX |;

(X, σ)← K [(X, σ) +(δX, δσ)];
compute the new C, O;
f∗ ← argmin

f ,fc∈[0,1]
|∇L (f) |2 ;

∇∗L ← ∇L (f∗) ;
end
Result: (X, σ) is a stable configuration at pressure p0 + δp∗ + δδp
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Remarks on the algorithm

• The algorithm 3 can also be applied starting from a jamming configuration (X, σ)J .
In that case p0 = 0 and δp∗ = pJ(N).

• The algorithm 3 simulates plastic events: at p = p0 + δp∗+ a contact breaks and the
system starts moving; it goes thorough intermediate configurations characterized
by the formation or the breaking of contacts. Each one of these configurations is a
saddle, since it is characterized by stable directions (i.e. the stable contacts) and
unstable ones (i.e. the broken contacts). At each intermediate configuration, the
system can acquire at most one new stable contact, since the gaps close one by one.
Therefore, the unstable directions diminish progressively when approaching a new
isostatic stable point.

• In the critical phase, the number of iterations to get a new stable configuration
varies a lot: this is due to the avalanche distribution that is a fat-tailed power law,
as discussed in the next section.

• The most computational demanding step is the constrained minimization argmin
f ,fc∈[0,1]

|∇L (f) |2

which corresponds to a constrained least-squares problem. To solve it, we use the
routine described in reference [152].

• It is possible to avoid the rescaling and implementing directly the spherical condition
on the displacement δX ·(X +1

2δX) = 0. The direction of the displacement −∇∗L
is such that ∇∗L ·(X, 0) = 0. Since the spherical condition is a non-linear one, we
would need to find the correct displacement direction ∇∗L

∣∣∣
δX

by iteration using

the projector 1 − S̃
(

S̃T S̃
)−1

S̃T , where the matrix S̃ is the same as S but with

X +1
2δX in the last column (instead of simply X). Therefore ∇∗L

∣∣∣
δX

is found by
convergence of

∇∗L
∣∣∣
δX

=
[
1− S̃

(
S̃T S̃

)−1
S̃T
]
∇∗L

∣∣∣
δX

(5.41)

The role of the projector 1− S̃
(

S̃T S̃
)−1

S̃T is simply to eliminate the component of
the displacement along X +1

2δX while keeping all the stable contacts, corresponding
to the other columns of S̃, intact.

Compression in the convex, hypostatic phase

In the convex phase, the configuration (X, σ) can continuously follow any pressure varia-
tion (δX, δσ) ∝ δp. Anyway, we decide to take steps in δp with the same criteria used in
the isostatic phase, i.e. by destabilizing one contact at the time. Therefore, it is possible
to use exactly the algorithm (3) modifying only the computation of t∗ in the following
manner:

tµ̃ = min
µ
{tµ : hµ + tµδhµ = 0 ∧ tµ > 0 ∧ µ /∈ C}

t∗ = min{1
η
, tµ̃}

(5.42)
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In fact, in the convex phase, η > 0 and the gradient can be compensated by a move δX
following the positive curvature 1

η
.

5.2 Results of numerical simulations
In this section, we discuss the results obtained by running the algorithm presented in the
previous section. We are mainly interested in the case α > 2, where the jamming point
lies in the non-convex domain of the phase diagram and the system enters in the critical
phase characterized by avalanches. For comparison we also consider values α < 2. We
simulated system sizes N = 64, 128, 256, 512, 1024, all quantities were averaged over 100
independent samples. In the step 0, the gradient based minimization has been done with
the same L-BFGS minimizer [260, 185, 240] as used in the section 3.1.2.

We first see the behavior of bulk physical quantities across the full compression cycle
and then analyze the statistics of avalanches. Finally we will discuss the scalings at the
unjamming transition.

5.2.1 Following a jammed configuration across the phase dia-
gram: the topology trivialization transition

Let us consider the case α = 4, so the initial configuration is at a non-convex jamming
point with σJ < 0. Compressing the system, we enter the jammed phase: based on the
phase diagram of Fig.5.1, we expect that the system undergoes a transition from the
glassy phase to the convex phase where the landscape reduces to a unique minimum.

In Fig.5.4 we plot the evolution of the isostaticity index c = C/N , measuring the num-
ber of contacts C, and the value of the Lagrange multiplier η for the spherical constraint.
We plot the corresponding behavior both as a function of the pressure and as a function
of the distance from the algorithmic jamming point σJ . It is clear from the figure that
there are two regimes. For p < p∗ the isostaticity index is strictly equal to one. In this
regime, the system is isostatic and the compression steps correspond to avalanches be-
tween isostatic minima. Correspondingly, the Lagrange multiplier η is negative. In fact,
as already discussed in section 3.1.3, the convex or non-convex nature of the problem is
self-generated and is detected from the sign of the Lagrange multiplier η. The region where
η < 0 corresponds to the glassy phase where the optimization problem is non-convex while
η > 0 corresponds to the convex phase where the landscape is characterized by a unique
attractive minimum. Therefore the replica symmetry breaking transition point at which
η changes sign is the point of a topology trivialization: it separates a region where the
landscape is very rough and the dynamics surfs on marginally stable states from a region
where the landscape is convex.

5.2.2 Statistics of avalanches in the non-convex UNSAT phase
In this section we consider the statistics of jumps in the critical phase where, increasing
the pressure, the system undergoes a series of avalanches. As we have discussed, they
are triggered by the fact that some of the contact forces exit the support (0, 1) leading
to a rearrangement of the contact network, with consequent jumps in σ and energy (see
Fig.5.5). In order to quantitatively describe the statistics of avalanches, we need to
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Figure 5.4: Left panel: The evolution of the number of contacts normalized by N and the
Lagrange multiplier η (indicated as µ in the plot legend) as a function of p (top plot) and
σ−σJ (bottom plot) at α = 4 and N = 256. The dotted lines correspond to the topology
trivialization transition point (a.k.a. the RSB transition) where the landscape changes
from being glassy to being convex. Right panel: Behavior of the absolute value of the
Lagrange multiplier η (indicated as µ in the plot legend) near the unjamming transition
with respect to p (top plot) and σ−σJ (bottom plot). We observe a linear dependence on
η in p, η ' σJp, and a logarithmic dependence in σ − σJ , see discussion of section 5.2.3.
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Figure 5.5: The staircase of the values of σ as a function of p for a single sample at α = 4
for N = 32, starting from jamming. The vertical dashed line signals the point where η
changes signs and the landscape of the model becomes convex. Correspondingly, coming
from jamming, one looses the jerky staircase profile that characterizes the non-convex
phase and signals crackling noise.

establish the typical finite size scale of the pressure variation between two stable isostatic
configurations, δp, and also the typical finite size scale of the jumps δσ that take place
when the rearrangements happen.

The jumps of the pressure

As we have seen, minima have a small range of stability when the pressure is changed.
We would like to estimate here the order of magnitude of pressure changes δp needed to
destabilize a minimum. This is different at jamming and in the jammed phase. We have
seen that at jamming, supposing a Gaussian tail of the force distribution, δpJ ∼ 1/

√
logN .

In the jammed phase, the situation is different. The force distribution has a pseudo-gap
rather than an exponential tail, namely ρf (f) ∼ (1−f)θ, and one can expect that typically
δp scales as an inverse power of N : δp ∼ N−β.

In order to estimate the exponent β, we start from Eq. (5.13). Since in the interval
[p, p+ δp] the configuration (X, σ) does not move, we have that

δ η = σδp (5.43)

Therefore, the force balance condition, upon increasing pressure by δp, reads

−vi +
∑
c

(fc + δfc)
−ξc,i√
N

+ (η+σδp)Xi = 0. (5.44)

vi =
∑
o

ξo,i√
N
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or, defining ξ̃c,i = ξc,i√
N

δfc = δpσ
∑
i

(ξ̃−1)c,iXi. (5.45)

We would like to argue that, while 1
N

∑
c δfc = δp, the typical values of δfc are of order

O(δp
√
N). An increase of pressure results in a additional force on each variable i propor-

tional to Xi. These forces need to be compensated by variations in the contact forces fc.
These forces are correlated with the ξc by the contact conditions. In order to proceed,
we argue that the effect of a pressure change is statistically similar to the application of
random forces on the variables 1. Let us then slightly modify the problem, imagining
to perturb the equilibrium equations by a random term εYi with Y a vector of random
variables independent of the patterns with 〈Y 2

i 〉=1. Since the resulting δfc will have both
signs, we can estimate the order of magnitude of each term, by studying

1
N

∑
c

(δfc)2 = ε
1
N

∑
i,j

Yi(M−1)ijYj (5.46)

where the matrix Mij is

Mij = 1
N

∑
c

ξc,iξc,j. (5.47)

This matrix is known to be close to a Wishart matrix with quality factor 1 [106]. In the
thermodynamic limit its spectral density behaves as ρ(λ) ∼ λ−1/2 for small λ, and, for
finite N , the minimum eigenvalue is of order λmin ∼ N−2. Moreover, the eigenvectors
|n〉 of M are just random points on the sphere of radius 1 independent on the eigen-
values, orthogonal to each other and weakly correlated with X. Let us use the spectral
representation of M and write:

1
N

∑
i,j

Yi(M−1)ijYj = 1
N

∑
n

1
λn
〈Y |n〉2. (5.48)

The random factors 〈Y |n〉 are Gaussian variables with unit variance, so the expected
value over Y of this quantity is

1
N

Tr M−1 =
∫ 4

λmin

ρ(λ)
λ
∼ λ

−1/2
min ∼ N, (5.49)

leading to δfc = O(εN1/2). We verified that the calculation of higher moments confirms
this scaling. Looking back at the original perturbation δfc = δpσ

∑
i(ξ̃−1)c,iXi, we want

to check that it is equivalent to a random one. To do so, let us notice that the contact
forces fc read

fc =
∑
i

(ξ̃−1)c,ivi + η
∑
i

(ξ̃−1)c,iXi ∈ (0, 1). (5.50)

We notice that the contribution from the overlaps vi = ∑
o ξ̃o,i is a random term essentially

independent of the choice of the contacts. If O ∼ N , vi is of order O(1) and therefore
1In infinite dimensions, it is clear that any direction is effectively a random direction from the per-

spective of the system. While it can be shown analytically for thermodynamic observables [1], it is much
less obvious for mesoscopic quantities, meaning quantities that scale in a nontrivial way with the system
size as we are showing.
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Figure 5.6: Left panel: Statistics of the scaled jumps of the pressure δ̂p = Nβδp. Right
panel: Average cumulative number of plastic events up to pressure p, rescaled by N−β, as
a function of p. It shows that the number of plastic events scales as Nβ for finite pressure
variation ∆p.

the two terms at the r.h.s. of (5.50) are of order O(
√
N). To have fc ∈ (0, 1), these two

terms have to cancel out at the order O(
√
N). Consequently, the perturbation δfc, which

is proportional to the second term in the r.h.s. of (5.50), can be considered uncorrelated
from fc and we have

δfc = O(δpN1/2) (5.51)

This scaling does not apply close to jamming, where |vi| � |Xi| and there is no cancella-
tion: the second contribution in (5.50) dominates the sum and δfc = δpfc.
Let us notice that this argument has an interesting byproduct: it shows that, in the bulk
of the jammed phase, the effect of a small compression is statistically equivalent to a
random perturbation.

We can now estimate the order of magnitude of a destabilizing pressure variation δp.
Following a compression, the first force that exits the stability support (0, 1) is one close to
the edges in the unperturbed configuration; because of the pseudo-gaps ρf (f → 0+) ∼ f θ

and ρf (f → 1−) ∼ (1 − f)θ in the critical phase, standard extreme value statistics tells
us that the corresponding δfc is of the order δfc ∼ N−1/(1+θ). Therefore we obtain the
scaling

N−1/(1+θ) ∼ N1/2δp (5.52)

or,

δp ∼ N−β β = 1
2 + 1

1 + θ
(5.53)

In Fig.5.6, we show the histogram of the rescaled pressure jumps δp̂ = Nβδp between
plastic events, collected from all the jumps taking place when the pressure lies in the
interval p ∈ [0.2, 1.2] 2 for different system sizes and we observe an excellent data collapse.
Notice that the tail of the distribution at large argument converge to zero exponentially
and in any case much faster than (δp̂)−2. The first moment of δp̂, 〈δp̂〉 remains finite for

2We verified that in this interval of pressure the statistics of jumps is reasonably stationary.
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N →∞, and the number N (∆p) of plastic events that occur when pressure is increased
by a finite amount ∆p scales as

N (∆p) = ∆p
〈δp〉

∼ ∆pNβ (5.54)

The left panel of Fig. 5.7 shows the average 〈δp〉 as a function of pressure. As expected,
the scaling 〈δp〉 ∼ N−β is well respected except for the vicinity of jamming.

Statistics of the jumps of σ

In a similar way, we can relate the order of magnitude of the jumps in σ after a plastic
event to the exponent γ of the gap distribution. For N → ∞, the statistics of the small
jumps of σ shrinks to zero as δσ ∼ N−ω. To determine ω, let us consider the variation of σ
that ensues a process where a weak single contact, say contact c, becomes a small positive
gap or overlap. Therefore we have a configuration movement (δX, δσ) that conserves all
the contacts c′ 6= c and modifies the contact c by an amount δhc:∑

i

ξ̃c′,iδXi − δσ = δc,c′δhc (5.55)

The movement stops when a new contact is formed, therefore δhc is of the order of the
smallest gap present in the system. Because of the divergences in the distribution of small
gaps ρh(h→ 0±) ∼ |h|−γ, extreme value statistics gives an estimation of the smallest gaps
δhc ∼ N−1/(1−γ). Being full rank, ξ̃c′,i can be inverted and we get

δXi =
∑
c′
ξ̃−1
i,c′ (δc,c′δhc + δσ) (5.56)

Multiplying both sides by Xi and summing over i

X ·δX =
∑
i

Xi

(
ξ̃−1
i,c δhc + δσ

∑
c′
ξ̃−1
i,c′

)
(5.57)

Because of the spherical condition X ·δX = −1
2δX ·δX, the l.h.s. of (5.57) is of order

O(|δX |2) and the two terms at the r.h.s. have to compensate each other at their leading
order. Therefore they are of the same order and we get

δσ ∼ N−ω ω = 1
2 + 1

1− γ (5.58)

Using the scaling relation γ = (2 + θ)−1 [247] we get

ω = 3
2 + 1

1 + θ
= 1 + β . (5.59)

Our argument could be extended to compression of jammed configurations of soft linear
spheres giving rise to identical exponents. In fact, we notice that both Eq. (5.53) and
Eq. (5.59) coincide with the ones obtained for hard spheres at jamming under shear strain
[210, 79]. This indicates that any destabilizing perturbation that leads isostatic states to
new isostatic states with self-similar distributions of forces and gaps close to the edges
gives rise to the same kind of avalanche statistics. Notice that the scaling of (5.58) is
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Figure 5.7: Upper panel: Average jump 〈δp〉, rescaled by Nβ as a function of p−pJ(N) for
N = 64, 128, 256, 512, 1024. The first point is the pressure jump at jamming pJ ∼ 1√

logN .
All the subsequent jumps are much smaller. Notice that the scaling 〈δp〉 ∼ N−β is very
well verified far away from jamming. Close to jamming there are small deviations to this
behavior. It is not clear to us if these are due to next to leading finite-size corrections or
to genuine changes in the leading behavior. Lower Panel: Average rescaled avalanche
size 〈δσ〉Nβ as a function of ∆σ = σ − σJ for the same values of N . The scaling is well
respected untill the jamming point.
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incompatible with a distribution of the rescaled jumps δσ̂ which admits a finite first
moment in the thermodynamic limit. In fact, a finite pressure increase ∆p = N〈δp〉,
should correspond to a finite jump ∆σ = N〈δσ〉. This tells that 〈δσ〉 = N−ω〈δσ̂〉 ∼ N−β

and that the finite N average of δσ̂ should diverge as 〈δσ̂〉 ∼ N for large N . As can be
seen in the upper panel of Fig. 5.7, the scaling 〈δσ〉 ∼ N−β is observed already right after
jamming. The divergence of the first moment indicates that the distribution of avalanches
δσ̂ should exhibit, in the thermodynamic limit, a power law at large argument

ρ(δσ̂) ∼ δσ̂−τ δσ̂ >> 1. (5.60)

The exponent τ should be in the interval 1 < τ ≤ 2, so that the distribution has a
divergent first moment. For finite N , however, the distribution should be cut-off around
a value δσ̂M so that

〈δσ̂〉 ∼
∫ δ̂σM

0
dδ̂σ(δ̂σ)1−τ ∼ (δ̂σM)2−τ ∼ N. (5.61)

Therefore we get
δ̂σM ∼ N

1
2−τ (5.62)

The statistics of avalanches in mean-field disordered systems has been fully characterized
using equilibrium techniques [153, 110], where instead of studying the change of local
minima following a destabilizing perturbation, one studies the discontinuities in the evo-
lution of the actual ground state of the system when it is in a fullRSB region. In this
case, the exponent τ can be related to the force pseudogap exponent by the relation

τ = 3 + θ

2 + θ
' 1.41. (5.63)

Differently from the scaling with N , that we have obtained by purely local considerations,
this form for the avalanche distribution with the specific value of τ depends on the sta-
tistical properties of the neighborhood of the ground state, something that is captured
by the replica solution. Remarkably, we find that within numerical precision, the value
(5.63) coincides with the one found for avalanches of sheared hard spheres at jamming [74]
and soft spheres close to jamming [110]. Our simulations indicate that the remarkable
coincidence between static and dynamic avalanche statistics also holds in this case. In
Fig.5.8-Upper Panel we show the statistics of the rescaled jumps of δ̂σ = Nωδσ collected
from all the plastic events taking place for pressures in the interval [0.2, 1.2]. We notice
a very good collapse of the numerical results for different sizes and we observe the ex-
pected power law distribution (5.60). In the lower panel we show that the maximum δσ̂M
corresponding to the cut-off of the power law respects the expected scaling with N .

Ultimately, the results of Fig.5.8 strengthen the observation that the non-convex
jammed phase of the linear perceptron is marginally stable, self-organized critical and
belongs to the jamming universality class.

Energy avalanches and squared displacement

A similar analysis as in the previous section allows to analyze the jumps in energy and in
position. It is easy to see that the jumps in energy density follow exactly the same scaling
as the ones in σ, namely

δe ∼ N−ω (5.64)
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As in the case of σ, a power law avalanche distribution with divergent first moment follows,
and it is possible to see that the static avalanche exponent coincides with τ .

As far as the jumps in position X are concerned, we can see from Eq. (5.56) that for
a typical displacement δXi is of the order of the smallest non-zero gap hmin

δXi ∼ hmin ∼ N−
1

1−γ (5.65)

Therefore the squared displacement |δX |2 scales as

δq = 1
N

(δX)2 ∼ N−2/(1−γ) = N−(1+2β). (5.66)

Notice that the mean-squared displacement on the sphere corresponds to the overlap
between successive minima, up to a factor 1: 1

N
X ·(X +δX) = 1− 1

N
X ·δX = 1− 1

N
|δX |2.

Also the distribution of displacements is a power law. The static avalanche exponent [153,
110] is in this case τ ′ = τ+1

2 . In Fig. 5.9 we display the probability distributions of energy
and displacement jumps, which confirm the above scaling, and shows that also in this
case the dynamical avalanche exponents coincide with the static ones.

5.2.3 The critical behavior of the unjamming transition
Given the very fine control we have on the compression of the system, the algorithm is
very well suited for studying the unjamming transition, that occurs when the pressure
vanishes from positive values p→ 0+.
From the study of unjamming in soft spheres with Hamiltonian H = ∑

i<j
|hij|aθ(−hij), the

features of this transition when the exponent a in the interaction potential is larger than
unity are known [191, 246, 117]. The analysis can be extended to the perceptron along
the line of [105] for the harmonic case. Using, as already done, the distance from the
jamming point ∆σ = σ− σJ as a control parameter, the pressure and the energy close to
the transition behave as

p ∼ ∆σa−1

e ∼ ∆σa
(5.67)

while the variation in the number of overlaps ∆z with respect to the isostatic value z = 1,
shows a square root singularity independently of a

∆z ∼
√

∆σ. (5.68)

The Lagrange multiplier η, according to Eq. (5.12) is dominated by the pressure variation
η ≈ σJ p ∼ ∆σa−1. The laws (5.67) are a consequence of the fact that, for a > 1, an
increase of the margin ∆σ causes all the contacts to become overlaps with |δhc| ∼ ∆σ,
independently of a [246, 117]. Simple dimensional analysis gives then (5.67). In the
compressed phase, the leading excitations are linear. Relation (5.68) expresses a condition
of stability for the linear modes [246].

These relations should break down in the linear potential case a = 1, as it is manifest
from the facts that (1) the pressure has to vanish for ∆σ → 0 and (2) all excitations
are non-linear even away from jamming. The vanishing of the exponent relating p to ∆σ
suggests that a logarithmic behavior could appear

p ∼ 1/ log(1/∆σ)b

e ∼ ∆σ/ log(1/∆σ)b
(5.69)
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with b a positive exponent. Again η ≈ σJp ∼ 1/ log(1/∆σ)b.
The behavior of the different quantities close to jamming should be accessible from

the analysis of the exact mean-field equations of the replica method [108]. This analysis is
rather simple for α < 2, where replica symmetry holds. In that case, we have obtained in
(3.143)-(3.133) that close to jamming the pressure, energy, and density of overlaps behave
as

e ∼ ∆σ√
| ln(∆σ)|

p ∼ 1√
| ln(∆σ)|

no = O

N
∼ ∆σ

(5.70)

In Fig.5.10-Left Panel we plot these scalings for α = 1.5 showing a good agreement.
The predictions (5.70) could be questioned in the non-convex case. Notice that in the
case a > 1, the replica symmetric analysis gives the correct scaling (5.67) of energy and
pressure, while it predicts a linear behavior ∆z ∼ ∆σ, rather than the square-root of the
non-convex case.

In our case, if we look at the number of overlaps n0 from numerical simulations in
the non-convex case, we do not find either linear nor square root behavior. In Fig.5.11
we plot no vs ∆σ close to jamming for α = 4 in double-log scale. We observe power law
behavior no ∼ ∆σν , with an an exponent ν smaller than one but larger than 1/2, that we
estimate ν ' .83, compatible with the value ν = 1/β. The origin of 1/β can be traced
to the behavior with N of δn0 and δσ in avalanches close to jamming. There, typical
avalanches produce a small number of overlaps, therefore δno ∼ 1/N . The statistics of
jumps in σ, on the other hand, is likely to give 〈δσ〉 ∼ N−β untill jamming. If we suppose
that the scaling δno ∼ 1/N remains valid for small but finite δno, we find

no ∼ ∆σν ν = 1
β

= 2 + 2θ
3 + θ

(5.71)

The presence of the logarithms in the behavior of the pressure and energy can also be
rationalized by qualitative scaling. The destabilizing jumps in pressure depend on the tail
of the distribution of forces, which for the perceptron close to jamming has a Gaussian
tail p(f/p) ∼ exp(−A(f/p)2), implying δp ∼ 1√

logN . Supposing that this scaling holds
untill to the very first events, we obtain, using (5.71), the relationship

p ∼ 1√
| ln(∆σ)|

, (5.72)

and by dimensional reasons, e ∼ ∆σ√
| ln((∆σ)|

. We remark that these relations depend
critically on the Gaussian tail of the distribution of the scaled forces at large argument.
With a different tail this argument would give a different dependence: e.g. a stretched
exponential, with stretching exponent 1/b, would give rise to a log with a power −b as in
(5.69). It would be interesting to see if such a behavior could be produced in a physical
system.

5.3 Extension of the algorithm to jammed linear spheres
The algorithm can be extended in a very natural manner for the compression of spheres
with linear repulsive potential. Let us consider N spheres in d dimensions, with center
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Figure 5.10: Upper Panel. The behavior of the scaled energy e/α as a function of the
distance from jamming ∆σ = σ − σJ . For α = 1.5, jamming is in the convex phase
and we can use the replica symmetric theory to study the corresponding scaling behavior
as in Eq. (5.70). For α = 4, jamming is in the non-convex region and in principle the
replica symmetric theory is not valid anymore. Anyway, we fit the numerical curves with
the replica symmetric approximation and we see a good agreement, signaling the fact
that for the energy the scaling behavior as a function of the distance from jamming is
preserved. In the inset we plot the same quantities divided by σ−σJ . This way we reveal
the presence of logarithmic corrections to the linear scaling of the energy with respect
to σ − σJ . Lower Panel. The behavior of the scaled pressure p/α as a function of the
distance from jamming ∆σ = σ − σJ . As for the energy, the replica symmetric theory
gives a good prediction for the pressure also in the non-convex region. Data obtained
with N = 2048 for α = 1.5, N = 512 (N = 1024 in the inset) for α = 4. Error bars are
sample to sample fluctuations.
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Figure 5.11: The scaled number of overlaps no/α as a function of the distance from
jamming. In this case, the replica symmetric prediction clearly holds only in the convex
region while the non-convex one shows the presence of a non-trivial power law behavior.
The dotted line represent the prediction form the scaling analysis. Data has been produced
with N = 2048 for α = 1.5 and N = 1024 for α = 4. Error bars are sample to sample
fluctuations.

coordinates {xi}i=1,...,N and radii Rσi, inside a cubic box of length L with periodic bound-
ary conditions. The radii have been split in a component R, corresponding to the average
radius, and a component σi, that can be distributed according to some polydispersity but
with its mean being strictly equal to one: 1

N

N∑
i=1

σi = 1. Keeping the box size L fixed, the
average radius controls the packing fraction φ according to

φ = πd/2
∑N
i=1 σ

d
i

Γ(1 + d
2)Ld

Rd = kd R
d (5.73)

with Γ(x) the Euler gamma function and kd constant. Using a Legendre transform, we
change ensemble by introducing the pressure p that is the conjugate variable of the average
radius R. Therefore, the Lagrangian (5.10) we wrote for the perceptron case, now reads

L ({Xi}, {fij}, R) =
∑

(i,j)∈O
(Rσij − |xi−xj |) +

∑
(i,j)∈C

fij (Rσij − |xi−xj |)− pR
N∑
i=1

σi

(5.74)

where σij = σi +σj, the set O is the set of couples of overlapping spheres, i.e. |xi−xj |−
Rσij < 0, the set C for those in contact, i.e. |xi−xj | −Rσij ≡ 0, and fij ∈ (0, 1) are the
contact forces. Now the degrees of freedom (d.o.f.) are given by the coordinates of spheres’
centers xi, that are Nd, and the average radius, that is one additional degree of freedom.
Considering the d d.o.f. that are lost because of the periodic boundary conditions, perfect
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isostaticity is obtained with a number of contacts C = |C| equal to C = Nd− d+ 1.
Once the sets O and C are known, the extrema of L satisfy the first-order condition

∂xi L = − ∑
j∈O(i)

nij −
∑

j∈C(i)
fij nij = 0

∂R L = ∑
(ij)∈O

σij + ∑
(ij)∈C

fijσij − p
N∑
i=1

σi = 0
(5.75)

∂fij L = |xi−xj | −Rσij = 0, (ij) ∈ C (5.76)

where nij = xi−xj
|xi−xj | , O(i) is the set of spheres overlapping with sphere i and C(i) is the

set of spheres in contact with sphere i. The analogy with the equations of the perceptron
(5.11) is quite strong. The equations (5.75) correspond to the force balance condition at
a given pressure p, while (5.76) corresponds to the condition of having the pairs (ij) ∈ C
in contact.
We can introduce the matrix S of dimension (Nd+ 1)×C, where the first Nd rows have
elements

Siα,c = −nαijδc,(ij) (5.77)

where i = 1, ..., N indexes the sphere, α = 1, .., d indexes the dimensional component and
c indexes the pairs of spheres in contact c ∈ {(ij) : hij = 0}. The last row of S is given by

SNd+1,c = σijδc,(ij) (5.78)

Similarly, we introduce the Nd+ 1 vector v whose first Nd components are

viα =
∑

j∈O(i)
nαij (5.79)

and the last one is

vNd+1 = p
N∑
i=1

σi −
∑

(ij)∈O
σij (5.80)

Now, using the vector of contact forces f = {fij}(ij)∈C, we can write the gradient of L in
linear algebra form

∇L (f) =
[
∂xαi L
∂R L

]
= S f −v (5.81)

and the force balance condition ∇L = 0 gives a linear equation for the contact forces

ST S f = ST v (5.82)

Now we have all the elements to easily extend the compression algorithm for the
spheres with linear cost-function
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Step 0: jamming point configuration

The preliminary step is to produce a configuration at the jamming point. We do this by
using the regularizing the Lagrangian for hij ∈ [− ε

2 ,
ε
2 ]

L ε ({Xi}, R) =
∑

(i,j)∈O
(Rσij − |xi−xj |) + 1

2ε
∑

(i,j)∈C

(
ε

2 +Rσij − |xi−xj |
)2
− pR

N∑
i=1

σi

(5.83)

where now O = {(ij) : hij < − ε
2} and C = {(ij) : − ε

2 < hij <
ε
2}. As we have already

discussed for perceptron and spheres, we recover the original Lagrangian by lim
ε→0

L ε = L

and the contact forces by lim
ε→0

ε
2 +Rσij−|xi−xj |

ε
= fij ∈ (0, 1).

We can proceed by choosing a small value for the pressure, namely p < pJ(N), with pJ(N)
the smallest pressure value in the jammed phase, and run a gradient-based minimizer over
the Nd+ 1 variables ({Xi}, R).
As for the perceptron, for N →∞ we get pJ(N)→ 0 logarithmically.

Compression step

Given an isostatic configuration, Eq. (5.82) gives the value of the contact forces fc = fij
that must be contained in the interval (0, 1) to have a stable configuration. Increasing
p → p + δp, the contact forces have a variation δfc ∝ δp and the configuration does not
move until one of the them does not get to a boundary, fc + δfc = 0 or fc + δfc = 1.
The corresponding contact gets destabilized and the system moves along the floppy mode
defined by keeping the stable contacts in place. If more than one contact is unstable, we
use the same prescription as for the perceptron

∇∗L = ∇L (f∗) f∗ = argmin
f∈[0,1]C

|∇L (f) |2 (5.84)

that saturates the forces of unstable contacts to 0 or 1 and points along the softest/least
descent direction in the manifold defined by the floppy modes.
The displacement of the configuration halts when a new contact is formed. By the way,
the curvature of the spheres makes the condition of keeping the stable contacts in place
hc = 0 a non-linear one. Therefore, we need to adjust the direction of movement ∇∗L

∣∣∣
δ x

according to δ xi, δR. Therefore, the displacement (δ xi, δR) satisfies

(δ xi, δR) = −t∗∇∗L
∣∣∣
δ x

(5.85)

with

t∗ = min
(ij)
{t(ij) : t(ij) > 0 ∧ |xi−xj +δ xi−δ xj | − σij(R + dR) = 0, (ij) /∈ C} (5.86)

∇∗L
∣∣∣
δ x

=
(

1− S̃(S̃S̃T )−1S̃T
)
∇∗L

∣∣∣
δ x

(5.87)

where the matrix S̃ is the same matrix as S but with the perturbed entries S̃iα,c̃ =
−
(
nαij + δnαij

)
δc̃,(ij) given by δnαij = δ xi−δ xj

|xi−xj | , and the index c̃ runs over the stable con-

tacts only. In words, the projector
(

1− S̃(S̃S̃T )−1S̃T
)
takes away the component of the
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movement that would make the stable contacts develop a gap O(|δ x |2) if we simply follow
∇∗L .
For each step, the set (5.85),(5.86),(5.87) can be solved by iteration:

1 Start with ∇∗L from (5.84).

2 Compute the corresponding t∗ from (5.86) (eventually with a quadratic approxima-
tion of |xi−xj +δ xi−δ xj |).

3 Iterate (5.85),(5.86),(5.87) until convergence.

This procedure takes few iterations because it is made to get rid of terms O(|δ x |2) that
would violate the condition of keeping stable contacts in place.

Remarks on the algorithm for the spheres

The compression algorithm for the spheres with linear repulsion has many similarities
with the algorithms developed for the shear strain of hard spheres [71, 210, 79]. The main
difference with them is the fact that a contact is destabilized also for getting its force
fc = 1 and not only for fc = 0 as it is the case for hard-spheres. Moreover, in our case
overlaps are allowed and we can move inside the jammed phase.
Another difference with the cited algorithms is the choice of following the least descent
direction in the manifold of floppy modes: another common choice in the case of hard
spheres under straining is following the floppy mode with largest traction, i.e. the one
with a more negative fc < 0.
As in the perceptron case, the step (5.84) is a constrained least-squares problem and can
be computationally demanding for large matrices S.

5.4 Discussion
Using an athermal adiabatic compression algorithm, we have studied the statistics of
plastic events in the critical jammed phase of the perceptron with linear cost-function.
Consistently with the jamming universality class, the statistics and the scalings correspond
to what is found for hard sphere packings under quasi-static strain [71, 210, 79]. This
suggests that any local dynamics that destabilizes isostatic configurations and leads to
other isostatic configurations has the same critical properties.
With this compression algorithm we have studied the unjamming transition and verified
that the universal scalings holding for soft spheres at the jamming onset [191, 117] break
down in the linear potential case. In particular, the number of overlaps, corresponding to
the excess coordination number in softer potentials, does not scale as the square root of
the distance from jamming but instead it has a different power law.
On the theoretical side, following [43] it would be interesting to count the number of
solutions of the equilibrium equations for fixed control parameter α and p.
On the algorithmic side, it would be interesting to implement compression/decompression
cycles and observe whether it is possible to anneal the system. It would give information
about the energy barriers connecting different energy levels that may scale as N t with
t < 1, in analogy with what is found in the Sherrington-Kirkpatrick model where t = 1/3
[238, 139, 37].
An interesting point is the fact that the statistical properties of the avalanches created
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by our compression algorithm are essentially indistinguishable from those obtained by a
random local perturbation that brings isostatic minima to isostatic minima with similar
statistical properties. This is a property of stochastic stability, a concept that is relevant
for marginally stable disordered systems and has been extensively studied in spin-glasses
[168, 2, 198, 72]. It states that random perturbations may move the system far away in
the configuration space, but still to points having the same statistical properties as the
starting ones. Its implication is that static and dynamical responses are controlled by the
overlap distribution of the replica theory that can be extracted by a static computation
[101, 100]. At zero temperature, it implies that static and dynamic avalanches share the
same statistics, consistently with the correspondence between our simulations and the
theory of Ref. [110]. A further analysis along this line is left for future work.
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Chapter 6

Proliferation of non-linear excitations in the

piecewise-linear perceptron

The content of this chapter is published in [215].

We have seen in chapter 3 and 4, Refs. [108, 107], that the jamming criticality does
not belong exclusively to the jamming transition point. Using a repulsive linear potential,
the criticality characterizes the entire jammed phase, both in the mean-field case (the
perceptron) and in the case of finite dimensional soft spheres. In both models, at finite
energy density local minima, the system self-organizes into marginally stable, critical,
configurations characterized by non-linear excitations corresponding to the breaking and
the formation of contacts. They are analogous to the ones characterizing the jamming
transition, but richer in the sense that there are more mechanisms by which a contact can
be broken or formed. Yet, the critical exponents controlling their density appear to be
the same (within numerical precision) to the ones of the jamming point of hard spheres,
suggesting that the underlying universality class could be broader than previously thought.
The key feature that associates contacts to the linear potential in the jammed phase is
the non-analyticity of the interaction potential. In this chapter we show what happens
if we increase the number of non-analytic points. We study a piece-wise linear potential,
with a ramp slope equal to 1 for gaps in the interval (−H0, 0) and a ramp slope equal
to 2 for gaps in (−∞,−H0). In this scenario, there are two kinds of "contacts" that the
potential can sustain: gaps equal to 0 and gaps equal to −H0. We show that a general
notion of isostaticity holds also in this case, together with all the features of the jamming
universality class. This result reinforces the idea that jamming criticality does not pertain
only to the jamming point but it is rather related to three concomitant ingredients: the
singular nature of the cost function, the non-convex nature of the problem and disorder.

6.1 The model
We define the usual perceptron model by an N dimensional vector X, which lives on the
N -dimensional sphere |X |2 = N , and M = αN N -dimensional random vectors (called
patterns) ξµ with µ = 1, . . . ,M . Every component of all these random vectors is a
Gaussian random variable with zero mean and unit variance. Given the patterns and the
state vector X, the gap variables are defined as hµ = ξµ ·X /

√
N − σ, where σ and α are

control parameters of order one.
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Figure 6.1: The piecewise linear cost function ν(h) defined in Eq. (6.2) where we set
H0 = 0.3.

The cost function to minimize for X is

H (X) =
αN∑
µ=1

ν(hµ) (6.1)

In this chapter we consider the piecewise linear cost function defined as

ν(h) =


−2h−H0 h < −H0

−h h ∈ [−H0, 0]
0 h > 0

(6.2)

where H0 is a positive constant of order one that is taken to be fixed. In Fig. 6.1 we
sketch the form of the corresponding potential. The model admits a satisfiable (SAT)
phase for α and σ small enough, where hµ > 0 for all µ = 1, . . . ,M , in the same way
it happens in the perceptron of chapter 2. At fixed α, starting from the SAT phase and
increasing σ there exists the jamming point (that may be algorithm-dependent) beyond
which finding configurations where all gaps are positive becomes impossible. As always,
the properties of the configurations at jamming do not depend on the cost function used
in correspondence of the negative gaps, since up to jamming the gaps are still all positive.
We are interested in going beyond the jamming point and entering the jammed phase.
We want to characterize the properties of the minima found by minimizing the potential
(6.1) by gradient-descent-like algorithms.
We have already studied in chapter 3[108] the phenomenology of the purely linear case,
which corresponds to the present one by taking the limit H0 → ∞. In that case, the
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jammed non-convex/glassy phase contains minima where the distribution of gap variables
contains a Dirac delta peak at h = 0. The weight of the peak is equal to N which is the
number of degrees of freedom in the problem. This implies that local minima have an
isostatic number of gaps that are strictly equal to zero. Isostaticity is accompanied by
power law divergences ρh(h → 0±) ∼ |h|−γ in the distribution of small gaps. Moreover,
the contact forces, i.e. the Lagrange multipliers needed to enforce that the corresponding
gaps vanish, are distributed in the interval (0, 1) with pseudo-gaps at the boundaries of
their distribution, ρf (f → 0+) ∼ f θ, ρf (f → 1−) ∼ (1− f)θ.
In the present case we expect a similar phenomenology. For the same arguments that
contacts arises in the non-differentiable point h ≡ 0 of the purely linear potential, here
we have the presence of two Dirac’s delta in the gap distribution, one for h = 0 and the
other one for h = −H0. So, in this case, we have two species of contacts,

C0 = {µ : hµ ≡ 0} (6.3)

and

CH0 = {µ : hµ ≡ −H0} (6.4)

associated with contact forces in (0, 1) for the C0 and in (1, 2) for CH0 . For convenience,
let us define also the sets

O− = {µ : hµ < −H0} (6.5)

and

O= = {µ : −H0 < hµ < 0} (6.6)

Based on the phenomenology of the linear cost-function, we can write the Lagrangian

L
(
X, fc, f̃c̃, µ

)
=
∑
õ∈O−

(−2hõ −H0)−
∑
c̃∈CH0

f̃c̃(h+H0)

+
∑
o∈O=

(−ho)−
∑
c∈C0

fch

+ η

2
(
|X |2 −N

)
(6.7)

Since we want to explore the jammed phase, we use the compression algorithm dis-
cussed in chapter 5 (Ref. [109]) by using the transformed Lagrangian

L
(
X, σ, fc, f̃c̃, η

)
= L−pσN (6.8)

where now σ is a variable and the pressure p a control parameter.

6.1.1 Equilibrium conditions
Given the Lagrangian L , a local minimum satisfies the variational equations with respect
to X and σ, as well as w.r.t. the contact forces and η.

The constitutive equations for local minima areη Xi = 2∑õ∈O−
ξõi√
N

+∑
o∈O=

ξoi√
N

+∑
c∈C0 fc

ξci√
N

+∑
c̃∈CH0

f̃c̃
ξc̃i√
N

p = 2
N

∑
õ∈O− 1 + 1

N

∑
o∈O= 1 + 1

N

∑
c∈C0 fc + 1

N

∑
c̃∈CH0

f̃c̃
(6.9)
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hc = 0 ∀c ∈ C0

hc̃ = −H0 ∀c̃ ∈ CH0

|X |2 = N

(6.10)

The equations (6.9) give a linear system for finding the contact forces in a minimum.
Because of the slopes of the potential, they have to satisfy

fc ∈ (0, 1) ∀c ∈ C0

f̃c̃ ∈ (1, 2) ∀c̃ ∈ CH0 .
(6.11)

If a solution has contact forces that are outside the corresponding stability intervals, such
solutions identify an unstable configuration.
To make the correspondence with the purely linear case clearer, we can redefine the
contact forces f̃c̃ ∈ (1, 2) as f̃c̃ = 1 + fc, with fc ∈ (0, 1). So, the first equation of (6.9)
can be rewritten as

η Xi = 2
∑
õ∈O−

ξõi√
N

+
∑

o∈O=∪CH0

ξoi√
N

+
∑

c∈C0∪CH0

fc
ξci√
N

(6.12)

where now we have again only one kind of contact forces fc ∈ (0, 1).

We observe that, as it happens for the purely linear case [109], the Lagrangian L is
effectively linear in all variables except for the term proportional to η. Therefore the
convexity of the problem is self-determined and is fixed by the sign of η. If η < 0 we are
in the non-convex phase with multiple minima and a glassy landscape, while if η > 0 we
are in a convex phase with just one minimum.
Since we are interested in the glassy, critical phase, we use the compression algorithm in
the regime α > 2 so that the jamming happens in the non-convex phase and we enter the
jammed phase in the glassy regime.

6.2 Numerical simulations
The compression algorithm of chapter 5 [109] can be used directly in this model with very
small adaptations:

• using the form (6.12) for the equilibrium condition, the corresponding linear equa-
tion ∇L = S f +v is the same as in the purely linear case up to an evident re-
definition of the term v; therefore, all kind of contacts get destabilized when the
corresponding contact force fc gets outside the interval (0, 1);

• when moving the configuration, we have to take into account not only the formation
of a contact hµ̃ = 0 but also the possibility of forming a contact hµ̃ = −H0: this
simply enters in the definition of the step t∗. The configuration displacement remains
(δX, δσ) = −t∗∇∗L as discussed in section 5.1.4.

We fix α = 4 and we study the compression along the phase diagram.
In Fig.6.2 we plot the behavior of the Lagrange multiplier η as a function of σ − σJ

being σJ the jamming point. It is clear that as soon as we enter the jammed phase,
the landscape is strictly non-convex, since the Lagrange multiplier is negative. When
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Figure 6.2: The Lagrange multiplier µ (= η) as a function of the distance from jamming.
The jump observed at σ = σJ is due to finite size effects. Indeed in a finite system the
configuration at jamming is stable for a finite amount of pressure before being destabilized
and entering in the jammed phase [109]. The Lagrange multiplier is negative in the non-
convex phase while it is positive when the landscape becomes convex. The figure has been
produced simulating the model at α = 4 and N = 256. The error bars represent sample
to sample fluctuations.
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Figure 6.3: The number (normalized by N) of contacts in h = 0, meaning c0, in h = −H0,
meaning cH0 and their sum. We clearly see that in the whole interval in which the system
is in the glassy/non-convex phase, the total number of gaps in the two non-analytic
points of the cost functions, is isostatic. Isostaticity is lost when we enter the convex
phase. Also in this case as for the purely linear cost function, we note that the sample to
sample fluctuations away from isostaticity in the glassy phase are essentially absent. The
figure has been produced simulating the model at α = 4 and N = 256 and the error bars
represent sample to sample fluctuations.

compressing the system further, it undergoes a topology trivialization transition towards
a convex phase where the landscape is characterized by just one unique minimum and the
Lagrange multiplier η becomes positive. We expect that this transition can also be found
by analyzing the problem with the replica method and corresponds to the transition point
between replica symmetry breaking and replica symmetry.

6.2.1 Contacts
Let us study now the number of contacts in the minima of the non-convex phase. In
Fig. 6.3 we plot the cardinality of the sets C0 and CH0 normalized over N . At the beginning
of the compression protocol, the system contains N gaps in zero and therefore the system
is isostatic with a number |C0| = c0N = N , as in the usual jamming. As soon as we enter
the jammed phase, contacts in h = −H0 start to appear, while those in h = 0 start to
diminish. Remarkably, we find that if we define |CH0 |/N = cH0 we have that

c0 + cH0 = 1 (6.13)

which implies that the system is isostatic only globally. The number of gaps in h = 0 or
in h = −H0 fluctuates but the total sum is equal to the number of degrees of freedom
in the problem. It is very interesting to notice that the sample to sample fluctuations of
c0 and cH0 seem to be normal yet completely anticorrelated in order to have Eq. (6.13)
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satisfied even at finite N . The system self-organizes in such a way that only the sum of
the number of gaps in zero and −H0 is isostatic.

To understand this fact, we can use the smoothed version of the piece-wise linear
potential, consisting in regularizing the non-differentiable points with an arc of parabola
of curvature 1

2ε :

νε(h) =



−2h−H0 h < −H0 − ε
2

−h+ (h+H0− ε2 )2

2ε −H0 − ε
2 < h < −H0 + ε

2
−h −H0 + ε

2 < h < − ε
2

(h− ε2 )2

2ε − ε
2 < h < ε

2
0 h > ε

2

(6.14)

As for the purely linear case [108], the smoothing removes the degeneracy of the
contacts and allows for a real space description of the contact forces that appear as gaps
contained within the smoothed regions. Since now the cost function Lε = ∑

µ
νε(hµ) +

η
2(|X |2−N) admits a harmonic expansion, we can define a corresponding rescaled Hessian
that takes a contribution from both the contacts in h = 0 as well as the ones in h = −H0:

Hij = ε∂2
XiXj
Lε =

∑
c∈C

ξci ξ
c
j

N
+ ε η δij (6.15)

where C = C0 ∪ CH0 . We notice that, neglecting correlations, Hij is a Wishart random
matrix shifted on the diagonal [106]. In the glassy phase where η < 0, we need to have
that the Wishart part of the Hessian matrix is full-rank in order to have stable minima.
Therefore we get the condition

|C0|+ |CH0| ≥ N (6.16)
If marginal stability holds, the bound is saturated and we get isostaticity [188]. This
argument tells that the number of contacts in h = 0 and h = −H0 can fluctuate but in a
correlated way in order to satisfy Eq. (6.16).

6.2.2 Statistics of gaps and forces
We turn to the analysis of the force and gap distributions. The empirical distribution of
gap variables is defined as

ρ(h) = 1
M

M∑
µ=1

δ(h− hµ) (6.17)

In Fig.6.4 we plot the histogram of ρ(h) at p = 4 which corresponds to the point where
c0 ∼ cH0 . It is clear from this qualitative picture that the two Dirac delta functions in
h = 0,−H0 are surrounded by four power law divergences.

In order to characterize those divergences, in Fig.6.5 we plot the cumulative distri-
bution function of the gaps, starting from h = 0 and h = −H0. Within our numerical
precision we observe that

ρ(h) ∼


A+

0 h
−γ h→ 0+

A−0 |h|−γ h→ 0−

A+
H0(h+H0)−γ h ∼ −H+

0

A−H0|h+H0|−γ h ∼ −H−0

(6.18)
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Figure 6.4: The empirical probability distribution function of the gap variables, obtained
at pressure p = 4 and for α = 4 and N = 2048.

where the exponent γ ' 0.41 . . . coincide (within our numerical precision) with the one
characterizing the distribution of positive gaps at the jamming transition point [63, 62]
and the As are constants.

Finally we look at the contact forces. In Fig. 6.6 we plot the empirical distribution
of contact forces both in h = 0 and in h = −H0. We clearly see that there are four
pseudogaps appearing close to the edges of the support of fc.

In order to quantitatively analyze the behavior close to the four edges of the stabil-
ity supports, we look at the cumulative distribution functions that we plot in Fig.6.7.
We observe that, at the edges of the stability domains, the force distribution has four
pseudogaps

ρ(f) ∼


B+

0 f
θ f → 0+

B−1 (1− f)θ f → 1−

B+
1 (f − 1)θ f → 1+

B−2 (2− f)θ f → 2−

(6.19)

where the Bs are constants of order one and the exponent θ = 0.42 . . . is compatible with
the one controlling the small forces at the jamming transition point [63, 62].

6.3 Discussion
The results of the piece-wise linear potential show that all the discussion about marginal
stability and self-organized criticality regarding the purely linear potential can be trans-
ferred verbatim to the general case of a potential whose first derivative has several dis-
continuities. The only novelty is the fact that different kinds of contacts can exist and
consequently there is a proliferation of the possible excitations/relaxations of the system,
consisting in breaking/forming all sorts of contacts. For example, it is possible to imagine
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Figure 6.5: The cumulative distribution functions of the gaps on both sides of both Dirac
delta peaks at h = 0 and h = −H0.The plot has been produced looking at minima at
p = 4 for α = 4 and N = 2048. The error bars represent sample to sample fluctuations
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Figure 6.6: The empirical probability distribution function of the contact forces. In
red we plot the ones corresponding to the gaps at h = 0 while in blue we plot the
ones corresponding to the gaps at h = −H0. The fact that the two pdfs appear rather
similar is mainly due to the fact that we have measured such distributions at p = 4 where
c0 ' cH0 .The plot has been produced looking at minima at p = 4 for α = 4 and N = 2048.
Error bars are obtained looking at sample to sample fluctuations.
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Figure 6.7: The cumulative distribution functions for the contact forces close to the edges
of their stability supports. We see that the apparent prefactors look very similar and the
dots are rather one onto the other, because we measured the forces at the rather symmetric
point where the number of gaps in zero and in −H0 is roughly the same. We do not expect
such prefactors to be universal but to depend on the point of the phase diagram where
local minima are probed. The plot has been produced looking at minima at p = 4 for
α = 4 and N = 2048 Error bars are obtained from sample to sample fluctuations.
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a cost function of the form

H =
∑
µ

ν(hµ) ν(h) =
K∑
i=1
|h−Hi|θ(−h+Hi) (6.20)

that for each point Hi has a jump in the derivative. This model would have K species of
"contacts" that, in the non-convex phase, would contribute to the global isostatic condi-
tion

K∑
i=1

ci = 1.
Also in this case, perturbations of the local minima would trigger system-spanning avalanches
and give rise to crackling noise.
In the same spirit of the purely linear potential [107], we expect this phenomenology to
be found also for finite dimensional linear spheres.
The robustness of the observed critical behavior stems from the topological nature of the
isostaticity condition. This is reflected in the fact that the number of contacts of a single
kind, like c0 and cH0 in Fig. 6.3, fluctuates normally, but their sum does not. This is
analogous to the hyperuniformity of the contact network for linear spheres: the number
of contacts of a single sphere can fluctuate, but on the large scale the sum of the number
of contacts must be equal to the number of degrees of freedom.
From the theoretical point of view, the analysis of the piece-wise linear potential can be
done using the replica formalism presented for the perceptron. In the critical phase, the
scaling fullRSB theory should apply, giving a prediction of the observed critical expo-
nents. The equality of the exponents appearing for every singular point of the potential is
expected to be a consequence of the structure of the scaling solution discussed in section
3.3.3.
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Chapter 7

Conclusions and perspectives

Although jamming has been extensively studied and characterized, it still provides inter-
esting questions to be answered. In particular, its super-universality stems from the fact
that simulations of packings of spheres have jamming critical behavior well described by
mean-field theory (except for the local/finite-dimensional effects) [64]. In this thesis we
have extended this universal behavior from a critical point to an entire critical phase by
choosing a proper potential energy, i.e. a finite-range linear interaction.

• In chapter 3 we have studied a mean-field model, the perceptron, which we can
analytically solve by the replica method. We have obtained the phase diagram,
showing the existence of a convex, hypostatic phase described by the replica sym-
metric solution and a non-convex, isostatic, marginally stable phase, described by
the full replica symmetry breaking solution.
The convex phase is non-critical, reminiscent of the jamming point of ellipses and
ellipsoids that is as well hypostatic and non-critical [83, 162]. On the other hand,
the non-convex phase is critical, with the emergence of power laws whose critical
exponents correspond to those characterizing the jamming point of spheres.
We have validated the theory by numerical simulations, minimizing the energy of
the model by gradient-descent-like algorithms. The different behavior of the two
phases, with criticality emerging in the non-convex one, is fairly robust. In particu-
lar, the only stable configurations found by the algorithm in the non-convex phase
are perfectly isostatic, accompanied by power-law divergences in the distribution of
small positive and small negative gaps, as well as pseudo-gaps in the contact force
distribution at the boundaries of its domain, i.e. [0, 1]. Therefore, if at the jamming
transition there is one exponent for gaps and one for forces, in the critical phase
there are two exponents for gaps and two for forces. Remarkably, they are equal
in couples to the jamming ones. On this basis we say that the critical phase is an
extended version of the jamming point.
The replica theory in the non-convex phase is made of a system of partial differen-
tial equation that in principle can be solved numerically. Knowing that the critical
phase is characterized by scaling behavior and knowing the form of the solution at
the jamming point [200], we have inserted a scaling form in the equations: they pro-
vide a scaling theory giving a prediction of the critical exponents. It turns out that
there is a mapping in the equations that ensures that the two exponents of the gap
distribution have the same value, and the same holds for the force distribution. As
a result, the scaling functions in our theory become equal to those of the jamming
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solution, establishing the observed universality also on the theoretical level.

• In chapter 4, we have verified that the mean-field behavior is found also in finite
dimensional systems: in this case soft spheres in two and three dimensions. We have
done it by minimizing the energy of the model in the jammed phase, where energy
and pressure are positive. This jammed phase is self-organized critical, isostatic
and marginally stable, with the same critical exponents found in the mean-field
model. Also real space quantity, like the suppression of fluctuations of the number
of contacts at large distances [128, 129], behave in a jamming-like fashion. Therefore,
we have extended arguments based on marginal stability at jamming [247] to this
scenario, verifying the same kind of relationship between the critical exponents.
We also have shown that quantities like energy, pressure and number of overlaps
near the unjamming point have a behavior that is different from the one observed
in other soft potentials.

• In chapter 5, we have characterized the microstructure of the energy landscape of
the perceptron with linear potential by defining a compression algorithm. It consists
in increasing the pressure until a single contact gets destabilized and following the
gradient along the unstable modes. This creates avalanches and crackling noise,
a signature of marginal stability [188]. We have characterized the avalanche size
statistics, which is a power law with divergent mean, and the finite size scalings
of different quantities that have non-trivial exponents. This has let us analyze in
detail the unjamming transition, revealing a new scaling for the number of overlaps
w.r.t. the distance from unjamming: we have found an exponent ν ' 0.83 instead
of 1/2 generally observed in other soft potentials [191, 116]. These results are in
agreement with the theoretical computation of Ref. [110] and the scalings found in
shearing hard spheres [71, 79].

• In chapter 6, we have studied a variation of the purely linear potential, i.e. a piece-
wise linear one, where there are two discontinuities in the first derivative. We have
used the same compression algorithm as the previous chapter, properly adapted, to
study the jammed phase. The interest lies in the fact that two singularities in the
potential transform in two kinds of possible contacts. In the non-convex phase of
this model, while the number of a single kind of contacts can fluctuate, their sum
verifies the isostatic condition. This reinforces the idea of isostaticity as a global
condition on the system in order to achieve mechanical equilibrium. Remarkably,
each kind of these contacts is accompanied by power law divergences of small gaps
and pseudo-gaps for force distributions, giving a total of eight critical exponents.
However, their values are found to be the same as the two known for gaps and forces
at jamming. Also in this case, the exponents are related to the global isostaticity and
marginal stability, controlling the excitation/relaxation mechanisms corresponding
to breaking/forming all kinds of contacts.

The main result of this work sheds new light on the universality class of jamming.
Its robustness with dimensionality is related to its strong geometrical nature, since the
formation of an isostatic contact network can be seen as a topological condition.
In the models we have studied, ordered structures are frustrated by disorder or they are
not accessible by local-searching algorithms, while the non-convex geometry makes every
unconstrained degree of freedom unstable. As a result, the system finds a stable configu-
ration only by constraining all the degrees of freedom, i.e. by becoming (at least) isostatic.
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The virtue of the linear potential is to expose the underlying geometry of the problem,
since it has no curvature that can contribute to create minima in the energy landscape
other than the geometrically defined ones. To understand this point, it is useful to think
of the function |x|, whose only minimum is in x = 0: it corresponds to the point where
the function changes slope. The linear potential in high dimensions creates a similar pic-
ture: the only minima are those angular points surrounded by increasing energy ramps.
For spheres interacting through ν(hij) = |hij|θ(−hij), where hij is the gap between two
spheres, the points where the slope changes are those where hij = 0, that is when contacts
are formed. Therefore the problem of finding a minimum can be recast as the problem of
finding a stable contact network.
As we have shown with the piece-wise linear potential, increasing the number of non-
differentiable points in the interaction creates the possibility for new kinds of "contacts"
to appear: still isostaticity is the global condition for stability while power laws appear
in corresponds of each singularity.
A natural question therefore is if there is some generic property of problems in high dimen-
sions with disorder that gives rise to these special points characterized by highly universal
properties.

We do not know if the critical phase we have studied is relevant for some experimental
physical systems, since a linear interaction potential is quite uncommon. Nevertheless, it
offers interesting perspectives in theory and in computer models.
In the case of spheres, we aim at characterizing their rheology and avalanches response
[36, 205, 71, 110, 220]. Another interesting feature is inserting the temperature in the
model and see if there exists a marginally stable phase at finite temperature: this would
reveal the presence of a Gardner transition [30, 236].
On the mean-field side, we can modify the perceptron with more singular interaction
potentials and see how the criticality behaves. It would be important to find the known
scaling solution from a purely dynamical perspective, for example by using message pass-
ing algorithms [182, 3, 14].
Another interesting topic is connecting our findings to more general optimization prob-
lems. In fact, it is easy thinking of extensions of the perceptron model where a cost-
function has to optimized over some continuous variables: choosing a linear cost-function
could give rise to interesting behavior. We leave this subject for future explorations.
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Chapter A

Distribution of gaps and forces in the linear potential

case

In this section we compute the distribution of gaps and forces for the linear potential
case.
We do it for the general fullRSB case, clarifying the connection between the function
P (qM , h) appearing in the theory (2.77) and the physical distributions.

The general formula for the gap distribution is:

g(h) = 1
α

d f
d ν(h) = e−βν(h)

∫
dz P (qM , z)e−f(qM ,z)γ1−qM (z − h) (A.1)

where f is the free energy and ν(h) the arbitrary potential.
With the linear potential, using the asymptotic form of f(qM , z) for the zero temperature
limit found in (3.99), we get

g(h) =

= e−β|h|θ(−h)
∫ ∞

0
dzP (qM , z)γ1−qM (z − h)︸ ︷︷ ︸

A

+

+ e−β|h|θ(−h)
∫ 0

−χ
dz P (qM , z) exp

[
z2

2(1− qM)

]
γ1−qM (z − h)︸ ︷︷ ︸

B

+

+ e−β|h|θ(−h)
∫ −χ
−∞

dz P (qM , z) exp
[
−β

(
z + χ

2

)]
γ1−qM (z − h)︸ ︷︷ ︸

C

= A+B + C

(A.2)

where we have divided our integral in 3 parts A, B, C.
We show that, in the limit β →∞ and qM → 1, the dominant term depends on the value
of h.

• For h > 0:

A =
∫ ∞

0
dzP (qM , z)γ1−qM (z − h) =

qM→1
P (1, h) (A.3)
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B =
∫ 0

−χ
dz P (qM , z) exp

[
z2

2(1− qM)

]
γ1−qM (z − h) =

=
∫ 0

−χ
dz P (qM , z) exp

[
− h2 − 2hz

2(1− qM)

]
<

< exp
[
− h2

2(1− qM)

] ∫ 0

−χ
dz P (qM , z) =

qM→1
O
(
e
− h2

2(1−qM )

)
<< A

(A.4)

C =
∫ −χ
−∞

dz P (qM , z) exp
[
−β

(
z + χ

2

)]
γ1−qM (z − h) =

=
∫ −χ
−∞

dz P (qM , z) exp
[
−+2χz + χ2 + h2 − 2hz + z2

2(1− qM)

]
<

< exp
[
− h2 + 2χh

2(1− qM)

] ∫ −χ
−∞

dz P (qM , z) =
qM→1

O

(
e
− h2+2χh

2(1−qM )

)
<< A

(A.5)

So for h > 0 it is the part A of the integral that dominates.

• For h = 0:

A =
∫ ∞

0
dzP (qM , z)γ1−qM (z) =

qM→1
P (1, 0+) (A.6)

B =
∫ 0

−χ
dz P (qM , z) exp

[
z2

2(1− qM)

]
γ1−qM (z) =

=
∫ 0

−χ
dz P (qM , z) =

qM→1

∫ 0

−χ
dz P (1, z)

(A.7)

C =
∫ −χ
−∞

dz P (qM , z) exp
[
−β

(
z + χ

2

)]
γ1−qM (z) =

=
∫ −χ
−∞

dz P (qM , z) exp
[
−+2χz + χ2 + z2

2(1− qM)

]
=

=
∫ −χ
−∞

dz P (qM , z)γ1−qM (z + χ) =
qM→1

P (1,−χ−)

(A.8)

We have found that for h = 0 the gap distribution has not just a value but a weight
given by the part B of the integral, i.e.

∫ 0
−χ dz P (1, z).

• For h < 0:

A = e−β|h|θ(−h)
∫ ∞

0
dzP (qM , z)γ1−qM (z − h) <

< exp
[
− h2 − 2χh

2 (1− qM)

] ∫ ∞
0

dzP (qM , z) =
qM→1

O

(
e
− h2−2χh

2(1−qM )

) (A.9)

B = e−β|h|θ(−h)
∫ 0

−χ
dz P (qM , z) exp

[
z2

2(1− qM)

]
γ1−qM (z − h) =

=
∫ 0

−χ
dz P (qM , z) exp

[
−h

2 − 2hz − 2χh
2(1− qM)

]
<

< exp
[
− h2 − 2χh

2 (1− qM)

] ∫ 0

−χ
dz P (qM , z) =

qM→1
O

(
e
− h2−2χh

2(1−qM )

) (A.10)
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C = e−β|h|θ(−h)
∫ −χ
−∞

dz P (qM , z) exp
[
−β

(
z + χ

2

)]
γ1−qM (z − h) =

=
∫ −χ
−∞

dz P (qM , z) exp
[
−−2χh+ 2χz + χ2 + h2 − 2hz + z2

2(1− qM)

]
=

=
∫ −χ
−∞

dz P (qM , z) exp
[
−(h− χ− z)2

2(1− qM)

]
=

qM→1
P (1, h− χ)

(A.11)

We have found that for h < 0 it is the part C that dominates the integral and the
gap distribution corresponds to P (1, h− χ).

Summarizing, the gap distribution in the limit T → 0 (qM → 1) reads

g(h) =
qM→1

θ(h)P (1, h) + δ(h)
∫ 0

−χ
dzP (1, z) + θ(−h)P (1, h− χ) (A.12)

The weight in the gap distribution associated to δ(h) gives the number of zero gaps
(i.e. contacts) in the system. The integrand

P (qM , z) for − χ < z < 0 (A.13)

is actually the distribution of contact forces f̃ = −z
χ
, that are in fact inside the interval

(0, 1). So we have

ρ(f̃) ∝ P (qM ,−χf̃), f̃ ∈ (0, 1) (A.14)

To see this is the case, it is possible to study the free energy of the smoothed Hamiltonian
(3.14) and see that the distribution of P (qM , z) with −χ < z < 0 corresponds to the
distribution of the gaps in ε-window (− ε

2 ,
ε
2), that converge in fact to the contact forces

when ε→ 0.
It is interesting to see that the peak of zero gaps and the distribution of their contact
forces appear naturally in the thermodynamic calculation even if they were not specifi-
cally accounted for in the studied Hamiltonian.

Actually, equation (A.12) is not properly correct in the fullRSB case: to get the right
formula it is necessary to take the limit q → 1 of the function P (q, h) that solves the
full-RSB partial differential equations (3.156). Moreover, χ has to be substituted by the
corresponding quantity lim

q→1
λ̂(q) = lim

q→1
βλ(q), where the function λ(q) is a generalization

of χ defined in (3.157). The correct expression in the fullRSB case is therefore

g(h) =
q→1

θ(h)P (q, h) + δ(h)
∫ 0

−λ̂(q)
dzP (q, z) + θ(−h)P (q, h− λ̂(q)) (A.15)

and similarly for contact forces

ρ(f̃) ∝ P (q,−λ̂(q)f̃)
∣∣∣
q→1

, f̃ ∈ (0, 1) (A.16)
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A.1 Replica symmetric gap and force distribution
In the case of the replica symmetric solution, we have

P (qM , h) = γqM (h+ σ) (A.17)

and so the gap distribution becomes

g(h) =
qM→1

θ(h)γ(h+ σ) + δ(h)
∫ 0

−χ
dzγ(z + σ) + θ(−h)γ(h+ σ − χ) (A.18)

The associated contact force distribution reads

ρ(f̃) ∝ γ
(
−χf̃ + σ

)
, f̃ ∈ (0, 1) (A.19)
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Chapter B

Computation of the spherical Lagrange multiplier η

We have study the partition function

Z =
∫
d ~X exp

−β
H[ ~X] + µ

2
∑
j

(
X2
j − 1

) (B.1)

with the generic Hamiltonian

H[ ~X] =
∑
µ

ν(hµ) (B.2)

using replicas. The procedure is exactly the same as in section 2.3: we consider directly
the general fullRSB case making the necessary modifications to the action (2.76).
Since X2 is not constrained, now we have another parameter on diagonal of the overlap
matrix, Qa,a = qd. The full RSB free energy of eq. (2.76) now reads:

s [qd, q(x), µ] =

= 1
2

[
log (qd − qM) + qM

qd− < q >
+
∫ 1

0
dx
q̇(x)
λ(x)

]
+

+ αγqm ∗ f(q, h)
∣∣∣
h=−σ

− β

2µ(qd − 1)+

− α
∫
dhP (qM , h)

[
f(qM , h)− log γqd−qM ∗ e−βν(h)

]
+

+ α
∫
dh
∫ qM

qm
dqP (q, h)

[
ḟ(q, h) + 1

2
[
f ′′(q, h) + x(q)f ′(q, h)2

]]
(B.3)

where

λ(x) = qd − xq(x)−
∫ 1

x
dyq(y)

λ(q) = qd − qM −
∫ qM

q
dpx(p)

(B.4)

The variational equations for q(x), f(q, h) and P (q, h) are the same as already obtained
in (2.73)-(2.77)-(2.78):

ḟ(q, h) = −1
2
[
f ′′(q, h) + x(q)f ′(q, h)2

]
, qm < q < qM (B.5)
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APPENDIX B. COMPUTATION OF THE SPHERICAL LAGRANGE MULTIPLIER
η

 P (qm, h) = γqm(h+ σ)
Ṗ (q, h) = 1

2

[
P ′′(q, h)− 2x(q) (P (q, h)f ′(q, h))′

]
, qm < q < qM

(B.6)

qm
λ(qm)2 +

∫ q

qm
dp

1
λ(p)2 = α

∫
dhP (q, h)f ′(q, h)2 (B.7)

but with the different initial condition

f(qM , h) = log γqd−qM ∗ e−βν(h) (B.8)

From equation (B.7) we also have the relationship
1

λ(q)2 = α
∫
dhP (q, h)f ′′(q, h)2 (B.9)

Now we take the derivative w.r.t. qd of the variational equation (B.3), that reads:

βµ

2 = 1
2

[
1

qd − qM
− qm
λ(qm)2 −

∫ qM

qm
dp

1
λ(p)2

]
+ α

∫
dhP (qM , h) ∂

∂qd
log γqd−qM ∗ e−βν(h)

(B.10)

Using equations (B.5), (B.7) and posing qd = 1, we can write

βµ = 1
1− qM

+ α
∫
P (qM , h) [f ′′(qM , h)] (B.11)

B.1 Independence from q

The quantity µ might be a function of q. To show it is not the case, we write the right
hand side of (B.11) in the general form depending on q and show that its derivative w.r.t.
q is zero. We have

βµ = 1
λ(q) + α

∫
dhP (q, h) [f ′′(q, h)] (B.12)

We take the derivative w.r.t. q of the second term (we use a short hand notation
omitting the integral

∫
dh):

Ṗ f ′′ + P ḟ ′′ = Ṗ f ′′ + P ′′ḟ =

=
[
P ′′

2 − xP
′f ′ − xPf ′′

]
f ′′ − P ′′

2
[
f ′′ + xf ′2

]
=

= −xP ′f ′f ′′ − xPf ′′2 + xP ′f ′f ′′ =
= −xPf ′′2

(B.13)

We take the derivative w.r.t. q of the first term:

∂q
1

λ(q) = x(q)
λ(q)2 =

∫
dhx(q)P (q, h)f(q, h)′′2 (B.14)

where we have used eq. (B.9).
Putting together B.14 and B.13 we have that

∂

∂q
(βµ) = 0 (B.15)
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B.1. INDEPENDENCE FROM Q

B.1.1 RS case
In the RS case, P (qM , h) = γqM (h) and the action reads

s [qd, qM , µ] =

= 1
2

[
log(qd − qM) + qM

qd − qM

]
+ αγqM ∗ f(qM , h)

∣∣∣
h=−σ

− βµ

2 (qd − 1)
(B.16)

The derivative w.r.t. qM gives the usual RS saddle point equation

qM
(qd − qM)2 = αγqM ∗ f ′(qM , h)2

∣∣∣∣∣
h=−σ

(B.17)

The derivative w.r.t. qd gives

βµ = 1
qd − qM

− qM
(qd − qM)2 + αγqM ∗

[
f ′′(qM , h) + f ′(qM , h)2

] ∣∣∣∣∣
h=−σ

(B.18)

that, using (B.17), can be simplified into

βµ = 1
qd − qM

+ αγqM ∗ [f ′′(qM , h)]
∣∣∣∣∣
h=−σ

(B.19)

We can now substitute qd = 1 and study the limit T → 0 by taking

qM = 1− χT (B.20)

and the asymptotic form (3.101)

f ′′(qM , h) = − 1
1− qM

for − χ < h < 0 (B.21)

which gives

µ = 1
χ

[
1− α

∫ 0

−χ
γ(h+ σ)

]
(B.22)
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Chapter C

Nature of the Replica Symmetry Breaking in the

linear perceptron

A way to study a replica symmetry breaking (RSB) transition is to take the general
formula of the function x(q) appearing in the RSB theory (2.83) and studying it when
moving from the RSB phase to the RS one: exactly at the transition, we can plug into
(2.83) the replica symmetric functions. This gives the so called breaking point, that is
the point m = x∗ in which the profile of the order parameter, i.e. the function q(x),
changes from a flat one of the RS phase to an increasing one of the RSB phase. To have a
consistent phase transition, the breaking point m must satisfy the condition m < 1, since
the domain of q(x) is x ∈ [0, 1]. If m ≥ 1, it means that the deAlmeida-Touless (dAT)
instability line gets divided into two transition lines: a "dynamical" one, with a 1RSB
solution appearing discontinuously, and a true phase transition line, called "Kauzmann
transition" or condensation. This discussion is outside the scope of this work and further
information is found in references [105, 50, 146].
Our program is the following:

• we compute the breaking point m of q(x) at the dAT instability line, showing we
have a proper RS-RSB transition since m ∈ (0, 1);

• we compute the derivative q̇(x)
∣∣∣
x=m

, which gives the slope of the profile of q(x) at
the transition. We show that in our model q̇(m) > 0, which implies a fullRSB
transition (see ref. [21] for a discussion of the slope of q(x)).

C.1 Breaking point

The general formula for the breaking point is given by (2.83) using the RS solution:

m = 1− qM
2

∫
dhγ(h+ σ)f ′′′(qM , h)2∫

dhγ(h+ σ)f ′′(qM , h)2 [1 + (1− qM)f ′′(qM , h)] (C.1)
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APPENDIX C. NATURE OF THE REPLICA SYMMETRY BREAKING IN THE
LINEAR PERCEPTRON

In the zero temperature limit, we can use the of f(qM , h) computed in (3.99):

d2

dh2f(h)
∣∣∣∣∣
qM→1,β→∞

=



0 h >>
√

1− qM
1

1−qMF
′′
(

h√
1−qM

)
h ∼ O (

√
1− qM)

− 1
1−qM −χ < h < 0
1

1−qMF
(
− h+χ√

1−qM

)
h+ χ ∼ O (

√
1− qM)

0 h << −χ−
√

1− qM

(C.2)

d3

dh3f(h)
∣∣∣∣∣
qM→1,β→∞

=



0 h >>
√

1− qM
1

(1−qM )
3
2
F ′′′

(
h√

1−qM

)
h ∼ O (

√
1− qM)

0 −χ < h < 0
− 1

(1−qM )
3
2
F
(
− h+χ√

1−qM

)
h+ χ ∼ O (

√
1− qM)

0 h << −χ−
√

1− qM

(C.3)

Therefore:
• the numerator:∫

dhγ(h+ σ)f ′′′(qM , h)2 =
√

1− qM
(1− qM)3γ(σ)

∫
dxF ′′′(x)2 +

√
1− qM

(1− qM)3γ(σ − χ)
∫
dxF ′′′(x)2 =

= γ(σ) + γ(−χ+ σ)
(1− qM) 5

2

∫
dxF ′′′(x)2

(C.4)

• the denominator:∫
dhγ(h+ σ)f ′′(qM , h)2 [1 + (1− qM)f ′′(qM , h)] =

=
∫ 0

−χ
dhγ(h+ σ) 1

(1− qM)2 [1− 1] +

+ γ(σ)
√

1− qM
(1− qM)2

∫
dxF ′′(x)2 [1 + F ′′(x)] +

+ γ(−χ+ σ)
√

1− qM
(1− qM)2

∫
dxF ′′(x)2 [1 + F ′′(x)] =

= γ(σ) + γ(−χ+ σ)
(1− qM) 3

2

∫
dxF ′′(x)2 [1 + F ′′(x)]

(C.5)

Putting together, the breaking point reads:

m = 1− qM
2

γ(σ)+γ(−χ+σ)
(1−qM )

5
2

∫
dxF ′′′(x)2

γ(σ)+γ(−χ+σ)
(1−qM )

3
2

∫
dxF ′′(x)2 [1 + F ′′(x)]

= 1
2

∫
dxF ′′′(x)2∫

dxF ′′(x)2 [1 + F ′′(x)] (C.6)

We have thus obtained that the braking point m on the dAT-line, for T → 0, tends
to a constant independent of the point of the phase diagram:

m =
∫
dxF ′′′(x)2

2
∫
dxF ′′(x)2 [1 + F ′′(x)] ' 0.125 (C.7)

We have m ∈ (0, 1), therefore at the dAT instability line there is a properly defined
RS-RSB transition.

204



C.2. SLOPE OF THE FUNCTION Q(X)

C.2 Slope of the function q(x)
The formula for the slope q̇(x) is obtained by deriving eq. (2.83) with respect to x:

q̇(x) =
[
α

2

∫
dhP (x, h)A(x, h)− 3x2

λ(x)4

]−1 ( 1
λ(x)3 + α

∫
dhP (x, h)f(x, h)′′3

)
(C.8)

with

A(x, h) = f ′′′′(x, h)2 − 12xf ′′(x, h)f ′′′(x, h)2 + 6x2f ′′(x, h)4 (C.9)

We need to evaluate this expression for x = m using the replica symmetric solution.
Therefore we can substitute:

P (x, h) = γ(h+ σ)
λ(x) = 1− qM

f(x, h) = f(qM , h)
x = m

(C.10)

Looking at the form of f(qM , h) for T → 0 in eq. (3.99), all the derivatives higher than
the second order get a contribution only from the scaling part F(x). The numerator at
leading order:

1
(1− qM)3

(
1− α

∫ 0

−χ
dhγ(h+ σ)

)
= 0 (C.11)

because of the isostaticity condition (3.151) on the dAT line.
At the next-to-leading order:

α
γ(σ) + γ(σ − χ)

(1− qM)
5
2

∫
dxF ′′(x)3 (C.12)

For the denominator, we have:

α

2
γ(σ) + γ(σ − χ)

(1− qM)
7
2

∫
dx
[
F ′′′′(x)2 − 12mF ′′(x)F ′′′(x)2 + 6m2F ′′(x)4

]
+

+ α

2
6m2

(1− qM)4

∫ 0

−χ
dhγ(h+ σ)+

− 3m2

(1− qM)4

(C.13)

We see that the terms 1
(1−qM )4 cancel out because of the isostaticity condition. Putting

everything together, we get:

q̇(x)
∣∣∣∣∣
x=m

=
∫
dxF ′′(x)3∫

dx [F ′′′′(x)2 − 12mF ′′(x)F ′′′(x)2 + 6m2F ′′(x)4]
1− qM

2 =

= kχT > 0
(C.14)

where k is a positive number. Therefore we have a positive slope, vanishing in T , of the
q(x) at the dAT instability line: this tells that the transition is to a fullRSB phase.
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Titre: Une nouvelle phase critique pour les modèles brouillés : le brouillage ("jamming")
est encore plus cool qu’avant
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Résumé Au cours des vingt dernières an-
nées, un courant de recherche important a car-
actérisé la transition de brouillage, un point cri-
tique à température zéro des systèmes ayant
des interactions répulsives à courte portée.
Plusieurs de ses propriétés sont indépendantes
de la dimension spatiale, avec des prédictions
de champ moyen étant valables même pour les
systèmes bidimensionnels. Dans cette thèse,
nous montrons l’existence de ce comportement
critique du point de brouillage ("jamming")
dans toute une phase brouillée ("jammed"). Ce
comportement est observé en étudiant le po-
tentiel de répulsion linéaire dans les sphères
molles et le modèle de champ moyen correspon-
dant, c’est-à-dire le perceptron. Nous mon-
trons que le point non différentiable du poten-
tiel d’interaction produit un réseau de contact
de sphères tangentes à chaque densité surcom-
primée, même loin de la transition de jamming.
Les réseaux de contact caractérisant les min-

ima du système sont isostatiques, critiquement
auto-organisés et marginalement stables. Dans
la première partie, nous utilisons la théorie du
champ moyen pour le cas du perceptron et nous
la validons par des simulations numériques. En-
suite, nous utilisons des simulations numériques
pour étudier le cas des sphères molles en deux
et trois dimensions. Dans les deux cas, nous
caractérisons la phase marginalement stable et
nous montrons que les exposants critiques cor-
respondent à ceux connus pour la transition de
jamming. De plus, nous définissons un proto-
cole de compression et nous étudions numérique-
ment les propriétés statistiques des avalanches
dans la phase critique du perceptron. Nos ré-
sultats sont en accord parfait avec la théorie
sous-jacente. Ce travail montre l’existence d’une
phase critique dans les dimensions finies dont la
classe d’universalité correspond au jamming des
sphères. Cela ouvre de nouvelles perspectives
pour l’étude des verres marginalement stables et
des paysages énergétiques qui leur sont associés.



Title: A new critical phase in jammed models: jamming is even cooler than before

Keywords: Jamming, self-organized criticality, marginal stability, avalanches, disordered sys-
tems, glasses

Abstract Over the last two decades, an in-
tensive stream of research has characterized the
jamming transition, a zero-temperature critical
point of systems with short-range repulsive in-
teractions. Many of its properties are indepen-
dent of spatial dimensionality, with mean-field
scalings being valid even for two-dimensional
systems. In this thesis, we show the existence
of this critical behaviour not only at the jam-
ming point, but also in an entire jammed phase.
This is observed by studying the linear repulsive
interaction potential for soft spheres and in its
correspondent mean-field model, i.e. the percep-
tron. We show that the non-differentiable point
in the interaction potential produces a contact
network of tangent spheres at every overcom-
pressed density, even far away from the jamming
transition. The contact networks characterizing

the minima of the system are isostatic, critically
self-organized and marginally stable. First, we
solve the mean-field theory for the perceptron
case and we validate it through numerical sim-
ulations. Furthermore, we use numerical sim-
ulations to study the soft spheres case in two
and three dimensions. In both cases, we charac-
terize the marginally stable phase and we show
that the critical exponents correspond to those
known for the jamming transition. Moreover,
we define a compression protocol and we study
numerically the avalanche statistics in the crit-
ical phase of the perceptron. Our findings are
strongly consistent with the underlying theory.
This work shows the existence of a critical phase
in finite dimensions whose universality class
corresponds to the jamming of spheres. This
opens new perspectives to study marginally sta-
ble glasses and their related energy landscapes.
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